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Preface 

Our motivation for writing this book was a dissatisfaction with the many books 
with titles hke Foundations of Statistics. These books provide a needed description 
of the subject with examples of various statistical methods; but they do not satisfy 
the discerning reader because they do not explain why certain conclusions may be 
drawn from certain data and they do not discuss how statistics, the subject, meshes 
with the scientific process. We naively set out to fill in these gaps, but the situation 
is not so simple. What is desired is a tool—the one true statistics—which can be 
applied to data with certainty to justify conclusions, but what is available, in fact, 
are various competing theories of statistics. 

The careful reader may correctly point out the relation of this manuscript to post-
modem epistemology, a philosophy which emphasizes that all human knowing—in 
fields as diverse as religion and science—is culture dependent and that therefore 
"truth" is not absolute. Take, for example, the "truths" of Christianity and Islam— 
wars have been fought over their differences. In the field of statistics there are, 
for example, Bayesians and sampling theorists. Carson (2003) states, "Surely it 
is better, postmodems tell us, to encourage insights that flow from many different 
perspectives..." In statistics, postmodernism is manifest at two levels. First, the 
findings of statistical applications are not about the true state of nature but about 
models of experiments on nature. Second, the theorems and concepts of statistical 
theory are not even about models of nature, they are about whatever is postulated 
by thought, and cannot be checked by experiment. What experiment on nature 
could check the efficacy of, say, the likelihood principle? 

The purpose of this book is to discuss whether statistical methods make sense. 
That is a fair question, at the heart of the statistician-client relationship, but put 
so boldly it may arouse anger. Still, we statisticians could be wrong and we need 
a better answer than just shouting a little louder. To avoid a duel, we prejudge the 
issue and ask the narrower question: "In what sense do statistical methods provide 
scientific evidence?" 

Shewhart (1939, p. 48) writes— 

.. . the statistician of the future (in applying statistical theories to quality control)... must 
go further than is customarily recognized in the current literature in that he must provide 
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operationally verifiable meanings for his statistical terms such as random variable, accuracy, 
precision, true value, probability, degree of rational belief, and the like. 

Shewhart's words will serve as an introduction to the present writing. Little 
progress has been made toward providing meanings for statistical terms; statisti­
cians have not considered that their theories and methods have no practical mean­
ing until their basic concepts are interpreted. Neither data nor mathematics speak 
for themselves; they have to be interpreted and the interpretation defended. The 
present volume begins the task of providing interpretations and explanations of 
several theories of statistical evidence. 
Another good introduction is Efron (2004). 

Have we achieved a true Foundations of Statistics? We have made the link 
with one widely accepted view of science and we have explained the senses in 
which Bayesian statistics and p-values allow us to draw conclusions. While our 
treatment is not complete, we have written a needed text and reference book on the 
foundations of statistics. We have not settled the controversy between Bayesians 
inference and sampling theory. 

In some ways our story begins with deductive logic—a subject with which most 
readers will be familiar. For these reasons we provide an appendix on logic which 
the reader may use accordingly if the need arises. 

The author wishes to thank the University of Missouri, Department of Statistics, 
particularly Tracy Pickens, for much help in production of this manuscript. Thanks 
are also due to the editor, John Kimmel, and several anonymous readers who 
substantially improved the exposition. 



1 
Overview 

We begin by clarifying terms. Evidence is grounds for belief—an imprecise con­
cept. There must be many valid reasons for believing and hence many ways of 
making the concept of evidence precise. Most of our beliefs are held because 
mother—or someone else we trust—told us so. The law trusts sworn testimony. 
Scientific and statistical evidence are other, different grounds for conclusion, sup­
posedly particularly reliable kinds. 

Scientific thinking is an approach to knowing, which emphasizes system and 
objectivity. Its success can be seen everywhere, but, while there is a 500-year-old 
scientific spirit, there still is no agreed-upon scientific method. The stated goals of 
scientists vary; they describe, explain, summarize, and/or predict. The explanatory 
power of science satisfies the human need to understand, description records the 
facts, and summarization makes the whole comprehensible. Prediction facilitates 
design, arranging things to achieve a desired end. 

Most treatments of science are implicitly restricted to experimental science. An 
experiment is a text describing the recipe for performance. An experimental science 
consists of statements about experiments; these statements are not "beliefs" but 
Tukey (1960, pp. 425-6) "conclusions." 

A conclusion is a statement which is to be accepted as applicable to the conditions of an 
experiment or observation unless and until unusually strong evidence to the contrary arises. 

But science is not—as it was treated prior to Kuhn (1962)—an automatic and im­
personal process of logic and experimentation; truth does not simply leap from the 
test tubes. Experiments have to be interpreted and conclusions defended. Deduc­
tion and experimentation are the permissible arguments, but the short-term test of 
a conclusion is peer review. 

Regularities do exist in nature and conclusions can be checked; some conclu­
sions are just better able to withstand experimental test than others. Scientists 
who hold these more fit (in the evolutionary sense) views are more successful in 
solving problems and convincing colleagues of the correctness of their solutions. 
Theories evolve in the manner in which genetic traits evolve: primarily through 
the professional survival and evolution of the scientists who carry them. Thus, it is 
not the personal considerations of what to believe or how to act which are central 
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to scientific process, but rather the social matter of how one scientist convinces 
another of his conclusions. 

Example 1.1 The law is an example of one place where the nature of scientific 
and statistical evidence becomes crucial. 

Suspicion is the basic legal attitude of the courts toward scientific evidence; courts 

. . . have sometimes been skeptical of scientists' claims of the of the virtual infallibility of 
scientific techniques. 

Imwinkelried (1989, p. 90) 

Consequently, most courts have maintained that scientific evidence is inadmissible 
unless it is established 

. . . that the theory and instrument have been generally accepted within the relevant scientific 
circles. 

Imwinkelried (1989, p. 91) 

The United States Supreme Court decision in Daubert v. Merrell-Dow Pharma­
ceuticals, Inc. 113 S. Ct. 2786,125 L. Ed. 2d469 (1993) marked a recent change in 
the legal attitude toward science. The Daubert decision replaces the "generally ac­
cepted" requirement by "scientific knowledge." To be admissible, testimony must 
be "scientific knowledge" according to the Pearsonian view that it is the product 
of sound scientific methodology. 

The Court defined scientific methodology as the process of formulating hypotheses and 
then conducting experiments to prove or falsify the hypothesis. According to the majority 
opinion in Daubert, in deciding whether a proposition rests on sound scientific methodology, 
the trial judge should consider such factors as whether the proposition is testable, whether 
it has been tested, the validity rate attained in any tests, whether the research has been peer 
reviewed, and whether the findings are generally accepted. 

Imwinkelried (1989, p. 91) 

Statistical evidence is no more readily accepted by the courts than other scientific 
evidence. 

Using ordinary statistical inference as proof of commonplace events or conditions has had 
a rocky history in the judicial system. On the civil side, in what are often called "blue 
bus" cases, courts rebel at arguments that defendant's bus or tire caused the injury simply 
because the defendant is responsible for most of the buses or tires that might have caused 
the injury. And in the landmark criminal decision in the Collins case, where eyewitness 
testimony indicated that a black man and a blond woman mugged a woman in an alley in 
Los Angeles, the California Supreme Court overturned a conviction after a trial in which the 
prosecutor argued that various human qualities common to the culprits and the defendants 
are so rare that statistical probabilities heavily favored the proposition that defendants were 
the culprits. 

Mueller and Kirkpatrick (1999, p. 953) 

Interpretations of probability and explanations of statistical inference will be 
the topics of the remainder of this book. Details of the CoUins case "were that the 
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man had a beard and a mustache, the woman had a ponytail, the two comprised an 
interracial couple, and they drove off in a partly yellow convertible." The prosecutor 
suggested that the probability of finding all qualities together should be obtained 
by multiplying the probabilities of individual qualities to obtain a probability of 
1 in 12 million. The rationale given by Mueller and Kirkpatrick (1999, p. 954) 
for reversal is that "statistical inference... should not be allowed when there is 
no proof supporting the suggested frequencies or probabilities." In Collins, for 
example, no empirical justification for multiplying probabilities was given, and 

There was no proof that one car in ten is partly yellow or that one couple in a thousand is 
"interracial." These were made-up numbers, and the point is not so much that they are too 
high or too low, but that they purport to add precision to common insights that resist such 
refinement. The tactic adds a false patina of science to the everyday process of interpretation 
and evaluation,... 

We discuss this example further in Section 14.5. 
We now turn to a general discussion of statistics. Immanuel Kant pointed out in 

the middle of the eighteenth century that mind is an active organ which processes 
experience into organized thought. There is rather little knowledge in a 2-foot stack 
of computer printout. It only becomes knowledge after its essential message has 
been highlighted by a process of organization. This is the function which statistical 
methods perform. 

While it won't quite serve as a definition, that aspect of statistics which we con­
sider is concerned with models of inductive rationality. We will be concerned with 
rational reasoning processes, called statistical methods, which transform state­
ments about the outcome of particular experiments into general statements about 
how similar experiments may be expected to turn out. As such, statistical methods 
have aims similar to the process of experimental science. But statistics is not itself 
an experimental science, it consists of models of how to do experimental science. 
Statistical theory is a logical—mostly mathematical—discipline; its findings are 
not subject to experimental test. The primary sense in which statistical theory is 
a science is that it guides and explains statistical methods. A sharpened statement 
of the purpose of this book is to provide explanations of the senses in which some 
statistical methods provide scientific evidence. 

We embed our discussion of statistical evidence into modern ideas about math­
ematics and scientific modeling. First, the axioms of statistical inference are like 
Euclid's axioms in that they are formally "empty" statements with no necessary 
implication for inference or space, respectively. But unlike Euclid's axioms, the 
axioms of inference cannot be checked against the world. The nature of a statisti­
cal theory is therefore that its truth is conditional on assumptions which cannot be 
verified. Secondly, we embed the discussion of statistical inference into modern 
ideas of scientific modeling; an inferential model depends on prevalent paradigms 
and background information. Therefore, findings are not about "true values" but 
parameters which best fit the target population. 

Different laboratories applying the same experimental text to the same "thing" 
are different experiments requiring different parameterizations. The crucial issue 
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concerning experimentation is whether results are reproducible by different labo­
ratories. Bimbaum (1962) adopts an evidential approach to statistics, and others 
have followed. They write Ey (E, y) for the evidential meaning of obtaining data 
y as the outcome of experiment E, but Ey (E, y) does not exist. Rather we should 
ask about Ey (E, T, j ) , the evidential meaning of observing y as outcome of E 
in the light of theory T, where T consists of assumptions about (i) the inferential 
logic being used, for example, Bayesian or 7?-values; and (ii) the target population 
being observed. 

This book is not a complete discussion of statistical foundations. We focus on 
two models of statistical inference: Bayesian statistics and p-values. 

Rubin (1984) describes inference to be Bayesian, if known as well as unknown 
quantities are treated as random variables—knowns having been observed but 
unknowns unobserved—and conclusions are drawn about unknowns by calculat­
ing their conditional distribution given knowns from a specified joint distribution. 
Thus, if Bayesian statistics is to explain why certain conclusions follow from cer­
tain data, we need an explanation of why the relevant quantities may be considered 
random. There are several appealing explanations. 

One explanation of randomness, based on deFinetti's theorem, is that we are 
fitting a sequence of performances of an experiment by a class of exchangeable 
random variables. This explanation is not helpful in choosing a prior distribution 
from which to start and it does not yield inferential insight for independent and 
identically distributed random variables. 

A second explanation is that we are quantifying the personal degree of belief of 
an economic man as evidenced by his betting behavior. We like these explanations 
of Bayesian inference. But economic Bayesian inference will not be useful in 
helping to resolve disagreements among the members of a group, where personal 
probability methods don't apply, since different members will have different prior 
beliefs. 

Our second inference procedure of focus is significance testing, by which we 
here mean the theory of p-values as evidence. We generalize the notion of p-
value to obtain a system for assessing evidence in favor of a hypothesis. It is 
not quite a quantification in that evidence is a pair of numbers (the j!?-value and 
the /7-value with null and alternative interchanged) with evidence for the alter­
native being claimed when the first number is small and the second is at least 
moderately large. Traditional significance tests present p-values as a measure of 
evidence against a theory. This usage is rarely called for since scientists usually 
wish to accept theories (for the time being) not just good or bad for this pur­
pose; their efficacy depends on specifics. We find that a single /7-value does not 
measure evidence for a simple hypothesis relative to a simple alternative, but 
consideration of both /^-values leads to a satisfactory theory. This consideration 
does not, in general, extend to composite hypotheses since there, best evidence 
calls for optimization of a bivariate objective function. But in some cases, no­
tably one-sided tests for the exponential family, the optimization can be solved, 
and a single p-value does provide an appealing measure of best evidence for a 
hypothesis. 
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Our overall conclusion is that there are at least two kinds of statistical evidence, 
each of which lends a different explanatory insight, and neither of which is per­
fect. This essay describes the kinds of insight contributed and the circumstances 
for which each is appropriate. This chapter summarizes our findings. Supporting 
references and argument are to be found in the body of the book, but in a different 
order. It was convenient to group the discussion into three parts: related background 
material, probability, and inference. 



I 
The Context 



Mathematics and Its Applications 

Mathematical arguments are fundamentally incapable of proving physical facts. 
Cramer (1946, p. 146) 

2.1. Axiomatic Method and Mathematics 

It is a historical fact that geometry was crucial in the development of the mod­
em view of mathematics and the axiomatic method. David Hilbert (1862-1943) 
judged that the invention of non-Euclidean geometry was "the most suggestive 
and notable achievement of the last century," a very strong statement, considering 
the advance of science during the period. Hilbert meant that the concepts of truth 
and knowledge, and how to discover truth and acquire knowledge, all this was 
changed by the invention of non-Euclidean geometry. This chapter reviews some 
of that historical development. 

In his Elements (330-320 B.C.) Euclid writes, 

Let the following be postulated: 

I. To draw a straight line from any point to any point. 
II. To produce a finite straight line continuously in a straight line. 

III. To describe a circle with any center and distance. 
IV. That all right angles are equal to one another. 
V. That, if a straight line falling on two straight lines makes the interior angles on the same 

side less than two right angles, the two straight lines, if produced indefinitely, meet on 
that side on which are the angles less than the two right angles. 

Most current work replaces Euclid's fifth postulate by the equivalent Playfair 
postulate: through a given point, not on a given line, exactly one parallel can be 
drawn to the given line. The reader will be familiar with the modem way of using 
Euclid's postulates to construct an extensive and worthwhile theory. 

To illustrate the process, Wilder (1983, pp. 10-16) considers a simpler axiomatic 
system with just two undefined terms: point and line. 
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Axiom 1. Every line is a collection of points. 
Axiom 2. There exist at least two points. 
Axiom 3. If p and q are distinct points, then there exists one and only one line 

containing p and q. 
Axiom 4. If L is a line, then there exists a point not on L. 
Axiom 5. If L is a line, and p is a point not on L, then there exists one and only 

one line containing p that is parallel to L. 

Wilder investigates the properties of this system by proving several theorems. A 
single illustration of the process will suffice for our purpose. 

Theorem 2.1 Every point is on at least two distinct lines. 

Proof 
Statement Justification 

i. Consider any point p. Axiom 2 
ii. There is a point q distinct from p. Axiom 2 
iii. There is a line L containing p and q. Axiom 3 
iv. There is a point r not on L. Axiom 4 
V. There is a line K containing p and r. Axiom 3 
vi. r is on K but not on L. iv and v 
vii. L and K are distinct. Axiom 1 and vi 
viii. p is on L and K. iii and v 

The important thing to notice about the above proof is that only axioms and logic 
are offered as justification. In particular we do not rely on geometric sketches nor 
on our experience of the space we live in. The reason for this will now appear. 
Wilder's axiom systemreminds us of our high-school study of Euclidean geometry, 
but we have a different concept in mind. We are thinking of an agricultural field 
trial to increase crop yields. Four fertilizer treatments are to be applied to blocks 
of land, each consisting of two plots. The points of the system are the treatments 
denoted by {a,b,c,d}, the lines are the six blocks of land labeled by the pairs of 
treatments applied to their subplots: {a,b}, {a,c} {a,d}, {b,c},{b,d}, {c,d}. Note 
that the axioms are satisfied—two lines being parallel meaning that they do not 
contain a common point. Here, point is interpreted as "treatment" and "line" is 
interpreted as "block." The agricultural field trail is an interpretation of the axiom 
system. The same axioms may serve for two, in fact many, interpretations. 

It is not sufficiently appreciated that a link is needed between mathematics and 
methods. Mathematics is not about the world until it is interpreted and then it is 
only about models of the world (Eves 1960, p. 149). No contradiction is introduced 
by either interpreting the same theory in different ways or by modeling the same 
concept by different theories. This is the message of the observation of Cramer 
with which we began this chapter. 

In general, a primitive undefined term is said to be interpreted when a meaning 
is assigned to it and when all such terms are interpreted we have an interpretation 
of the axiomatic system. It makes no sense to ask which is the correct interpretation 
of an axiom system. This is a primary strength of the axiomatic method; we can 
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use it to organize and structure our thoughts and knowledge by simultaneously and 
economically treating all interpretations of an axiom system. It is also a weakness 
in that failure to define or interpret terms leads to much confusion about the 
implications of theory for application. 

The axiomatic method introduces primitive terms (such as point and line) and 
propositions concerning these terms, called axioms. The primitive terms and ax­
ioms taken together are called the axiom system J2- The primitive terms are left 
completely undefined: they are to be the subject of subsequent investigation. To 
emphasize that propositions are to be phrase-able in the language of the system XI. 
they are called JZ-statements. Logic is appHed to the axioms in order to derive 
theorems. The theorems of any axiomatic system are of the form J ] =^ ^' where 
q is a X statement. The logic used to prove theorems is usually the propositional 
calculus, informally applied. In the course of the investigation it is often convenient 
to define further terms. A definition is a characterization of the thing defined. 

We might ask if it isn't a little foolish to discuss, at great length, primitive terms 
which are not defined. Why not define them so that we can agree on what we are 
talking about? The answer seems to be that definition of all terms isn't possible 
without circularity. Thus the dictionary defines truth as a verified fact and fact 
as a thing which is really true. Further, we might ask why the axioms should be 
accepted without proof. It is because "you don't get something for nothing." If 
nothing is assumed, then no theorems can be proved. The axiomatic approach is 
to agree conditionally on some basic principles and see where they lead, to ask 
"What if... ?" As a result of the ensuing investigation, altered basic principles can 
then be contemplated. 

An axiom system is consistent if it does not imply any contradictory theorems. 
Only consistent systems are of interest since any J]]-statement, q, is a theorem of 
X] if 1] is inconsistent. To see this, suppose that X! =r̂  p and ^ =^ ^V- Then, 
since ~p =^ (p^^q), we have that X =^ P ^ ( P ^ Q ) =^ ^' 

But it is not possible to prove the consistency of X ^s a consequence of X-
For suppose that c is the statement that X is consistent. A truth table shows that 
X =^ c is equivalent to X ^ ~c^-c. Thus if on the basis of the axioms, we can 
show that the axioms are consistent then we will also have shown that if the axioms 
are true but contradictory then they are consistent. It is absurd that we should be 
able to prove this last statement. 

Consistency of J2 is essential but not provable. How then might we check 
for consistency? The answer requires the concept of interpretation. The working 
mathematician adopts the test that if J2 admits an interpretation I then J2 is consis­
tent. For suppose X ^ P ^^^ J2 =^ ^P- We have | YlM = 1 and hence |p,I| = 1 
and I '^p,I| = 1 denying the Aristotelian law of contradiction. Wilder (1983, 
p. 27) refers to this bit of informal reasoning as "basic principles of applied logic." 

Bertrand Russell's famous definition of mathematics as "the subject in which 
we never know what we are talking about, nor wheither what we are saying is true" 
perhaps suggests that pure mathematics is axiomatic method without regard to the 
validity of the primitive terms and the axioms. Recall that the primitive terms of 
an axiom system are undefined, axioms are set down without regard to their truth 
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and the conclusions of the theorems may not be true since their hypotheses may 
be false. 

But not all mathematicians agree with Russell; it has been remarked that it 
would be difficult to find two mathematicians who agree on the same definition. In 
desperation, mathematics has been defined to be "what mathematicians do when 
they are doing mathematics." The suggestion is not as facetious as it sounds; it 
indicates that mathematics is a cultural group activity, which is true. 

Constructing and investigating axiomatic systems is certainly one of the things 
which some mathematicians do in a professional capacity. Other mathematicians 
find the axiomatic method too confining and do not take it seriously. A casual 
examination of the books on the author's shelf indicates that many mathematical 
texts and subjects are not developed from a single set of axioms, but the hypotheses 
of the theorems are altered as necessary to obtain results. 

Well, when doing mathematics, mathematicians prove theorems and construct 
counterexamples. A counterexample to a conjectured theorem consists of exhibit­
ing a logical possibility where the hypothesis is true but the conclusion is false. 
Mathematicians measure their day-to-day progress in terms of whether or not a 
theorem has been proved. Counterexamples seem to be equally important but for 
some reason, they are interpreted as indicating lack of progress. So, as far as it 
goes, perhaps mathematics is proving theorems. A theorem is a true statement of 
implication, of the form p =^ q; p is called the hypothesis of the theorem and q 
its conclusion. Recall that implication means truth preservation or that p-^q is a 
tautology. 

A proof of the theorem p=^q is an argument which shows p -> q to be a tautology. 
Equivalence of the statements p ^- q, ~q ^- ~p, (pA ^^q) -^ ~ p, (p A '^q) -^ q 
and (p A ~q) -^ c, where c is any contradiction provides several other important 
ways of proving p =^ q. The second and last ways are called "the indirect method 
of proof" and "reductio ad absurdum," respectively. 

2.2. Prepositional Calculus as an Axiomatic System* 

Lukasiewicz (1929) takes ^ and -^ as primitive and defines pvq = '^p-^q and 
p Aq = ~(p^^ ~q). He then assumes that the three statements (i) (p Vp)^- p, (ii) p-> 
(pvq) and (iii) (p^-q)^- [(q^-r)^- (p->r)] are tautologies and shows that all of the 
tautologies of the propositional calculus, as we have outlined it, can be derived from 
these three. We say that the propositional calculus is axiomatized by the primitive 
terms ~ and -^ and the three assumed tautologies. The rules of derivation to be 
used are substitution and modus ponens. Substitution authorizes the replacement 
of any simple proposition by a compound proposition in an axiom or previously 
proved formula. Modus ponens (in other contexts called affirming the antecedent) 
is the rule that given p and p^^q we may infer q. We illustrate the process of 
derivation with two examples. First, substituting ~p for p in statement ii we obtain 

* Sections marked with an asterisk may be omitted. 
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~ p ^ - (p-^q), a formula which has been called a paradox of the conditional since 
it implies that a false proposition is sufficient for every proposition. In fact, if 
p is false then ~p is true so that from ~p-> (p-^q) we obtain p->q by modus 
ponens. Second, assuming p->q, we have from statement iii by modus ponens that 
(q->r)-^ (p-^r). From this formula, assuming in addition q->r we obtain p-^r by 
modus ponens. This is the transitive result that from p^^q and q^-r we may infer 
p ^ r . 

Lukasiewicz's axioms may be verbalized as follows: 

i. if p is true or p is true than p is true 
ii. if p is true then p or q is true 
iii. if p is sufficient for q then r or ^q is sufficient for r or ~p. 

It is interesting that none of Aristotle's "basic laws of thought" are included among 
Lukasiewicz's axioms. 

2.3. The Euclidean Geometry Paradigm^ 

The quote of Cramer, with which we began this chapter, might appear common­
place except that for 2,000 years it was thought to be otherwise. What might be 
called the Euclidean geometry paradigm for learning about the world is the fol­
lowing. There are intuitive entities such as point and line; one looks around till 
one finds "self-evident truths" concerning these entities, Euclid's postulates, for 
example. Logic is then used to derive, from the basic truths, more interesting and 
more complicated truths about the entities being studied. Rene Descartes in his 
Discourse on Method (after 1600) described the situation succinctly as follows: 

The long chain of simple and easy reasoning by means of which geometers are accustomed 
to reach the conclusions of their most difficult demonstrations, has led me to imagine that 
all things, to the knowledge of which man is competent, are mutually connected in the same 
way, and there is nothing so far removed from us as to be beyond our reach or so hidden 
that we cannot discover it, provided only we abstain from accepting the false for true, and 
always preserve in our thoughts the order necessary for the deduction of one truth from 
another. 

Euclidean geometry was conceived to be the study of the actual physical space 
in which we live, and its theorems were thought to be discovered truths about the 
world. Further, Euclidean geometry was the prototype of how other disciplines 
should proceed in their development. 

There had been early indications of the inadequacy of the paradigm, but minds 
were not ready to receive them. That the world was flat and that the sun revolved 
about the earth were "self-evident truths"; one merely had to observe to see that 
they were true. By the sixteenth century both of these views had given way to 
superior theories. 

^ The Euclidean geometry paradigm is often called classical rationalism. 
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FIGURE 2.1. The sum of interior angles 
of a triangle exceeds two right angles. 

Much later Einstein's theory of relativity would make the paradigm clearly 
untenable. Newtonian mechanics was and is a prime example of science. But if 
it has to be interpreted literally as what is going on in nature, then we must say 
that Einstein showed Newton to be wrong. For how can our one world be two 
different ways? But Newton wasn't wrong. Euclid was wrong—geometry is not 
about physical space, and scientific theory isn't about nature, only models of nature. 

But it was the invention of non-Euclidean geometry which first and finally laid 
the paradigm to rest. If Euclid's second postulate is relaxed and the fifth changed 
so that every pair of lines meet, then one obtains elliptic geometry, useful in global 
navigation where the fines are great circles. An important consideration is to note 
that the properties of elliptic geometry are realized on a sphere (merging antipodal 
points) in Euclidean three-space and so any inconsistency in elliptic geometry is 
also an inconsistency in Euclidean geometry. Euclidean geometry was no more 
valid or correct than non-Euclidean. But the truth of a proposition depends on which 
geometry is postulated. In Euclidean geometry the sum of the interior angles of a 
triangle equals two right angles. But in elliptic geometry this sum exceeds two right 
angles. For example, consider the triangle of Figure 2.1, formed by the equator 
and two great circles through the poles. 

In summary, equally valid geometries existed side by side, but their true propo­
sitions were in some instances mutually contradictory. It was clearly inappropriate 
to search for "the one true geometry." For the purpose of surveying, Euclidean 
geometry is the proper instrument whereas elliptic geometry is more useful for 
navigating a flight from New York to Tokyo. The adequacy of Eucfidean geometry 
depends on the purpose to which it is put. How could this be if geometry were 
about physical space? The world can be only one way. 

As a result, the geometry of Euclid ceased to be accepted as a paradigm for 
mathematics and scientific method at about the end of the nineteenth century. How 
can the axioms, and in particular the axiom of parallels, be self-evident if there are 
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other interesting and productive but contradictory possibiHties? C.S. Pierce wrote 
in 1891, 

Geometry suggested the idea of a demonstrative system of absolutely certain philosophical 
principles, and the ideas of the metaphysicians have at all times been in large part drawn 
from mathematics. The metaphysical axioms are imitations of the geometrical axioms; and 
now the latter have been thrown overboard, without doubt the former will be sent after them. 

Euclid, that well-meaning genius, misled us for 2000 years until the development 
of non-Euclidean geometries showed that geometry is not about physical space. 
Morris Kline (1980) in his book Mathematics: The Loss of Certainty pounds nail 
after nail into Euclid's coffin. The message of Kline's book is outdated by 100 years, 
but such ideas die hard. The Euclidean geometry paradigm has penetrated to the 
core of Western thought and it may be another 2000 years before "self-evident 
truths" disappear from the high-school curriculum. Self-evident truths are dead 
but not buried in matters of science, but they are very much alive where ideologies 
are the issue: "We hold these truths to be self-evident. That all men are created 
equal— " Getting ahead of our story, only when statistical inference is treated as 
an ideology are its basic premises "self-evident truths." 

2.4. Formal Science and Applied Mathematics 

The question of the source of the axioms of a system J2 is especially important for 
our purpose. We have seen that they are not "self-evident truths." We can conceive 
of setting up an axiom system involving nonsense syllables just for the fun of 
it, but statements involving nonsense syllables do not readily suggest themselves 
and it is difficult to judge whether several such statements would be consistent. 
Most axiom systems are motivated by some primitive concept (as physical space 
motivates Euclidean geometry). The axioms are statements which seem to hold 
for the concept; this is the only sense in which axioms may be called true. 

Feather (1959, p. 127) says of Newtons laws, 

... we shall merely state the laws of motion as he formulated them, for however much we 
may work over the experimental results beforehand, we cannot deduce the laws by rigorous 
argument. There is much intuition in them, even some obscurity, and they stand to be tested 
in the light of subsequent experience, not to be passively accepted as established on the 
basis of previous knowledge-as indeed do all the laws of physics. 

Normally the motivating concept precedes ^ , but once we have J2 it often 
proves interesting to consider the consequence of altering its features. We then 
have an axiomatic system in search of an interpretation; it is surprising how often 
we find one. 

Of course, axiomatic systems are constructed not only within mathematics 
proper, but also in mechanics and economics, for example. Formal science is 
axiomatic method done when we have some primitive concept in mind which we 
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wish to investigate. A formal science will always be consistent since the primitive 
concept motivating ^ will serve as an interpretation of J ] . 

A desirable criterion in choosing the axioms and undefined terms of a formal 
science is simplicity or neatness. We may conceive of a totality, T, of true statements 
and terms concerning a primitive concept from which we choose a subset ^ 
implying T. Choice of ^ should be based on neatness, economy of effort, and the 
degree of structural insight about T given by J2-

In summary, formal science proceeds as follows. Initially there is a primitive 
concept which one wishes to investigate. An axiom system is introduced as a model 
of the concept. Certain key properties of the concept are incorporated as axioms. 
Initially, the only sense in which the axioms are "true" is that they seem to hold 
for the concept. The axiom system is studied by purely logical methods to obtain 
theorems. Conclusions of theorems are only conditional truths; that is, they are 
true if the axioms are true. 

From the point of view of formal science the difficulty with the Euclidean 
geometry paradigm is almost obvious. Formal science does not study the real 
world, only conceptualizations of the world. The theorems are not about some 
phase of the existing world but are about whatever is postulated by thought. 
Theorems contradicting each other in different axiom systems may merely in­
dicate basic differences in conceptualization. In particular the purpose of the 
two theories may differ. We have to distinguish between mathematics and its 
applications. 

But there is no mystery, as has sometimes been suggested, about why it is that 
mathematics is useful for applications. When ^ is motivated by an application 
then the application is an interpretation of J ] and the theorems of ^ will remain 
true when interpreted for the application. As Wilder puts it, "What we get by 
abstraction can be returned." 

The subject of applied mathematics consists of proving theorems and construct­
ing counterexamples concerning some primitive concept which we wish to in­
vestigate. But the theorems need not be consistent with one another; indeed we 
will see in our examination of science that the deductive portion of a science is 
almost always inconsistent. Hence formal science is only a special kind of applied 
mathematics. 

From the previous discussion we observe that knowledge justified exclusively 
by deduction has two characteristics. First, it is certain, for deduction is truth-
preserving. Second, it is conditional, for all theorems are of the form "if A, then 
B." In particular, that portion of mathematics which is axiomatic method without 
regard to the validity of the axioms is conditional knowledge. However, much 
knowledge, particularly scientific knowledge, is unconditional but not certain. 
Hence, deduction will not, by itself, explain knowledge. Nor will mathematics 
suffice. Further evidence that some component is missing, is that if J2 is an ax­
iom system and T is the totality of consequences of ^ , then, try as we might, 
we can not prove a consequence outside of T; but scientific knowledge typically 
grows by observation of new phenomena. A theory which is solely mathematics 
is not true in any absolute sense, or does it have ethical or moral implications. 
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(such as unbiased, inadmissible, good, best, etc.) which are sometimes attributed 
to it. The component that is missing is experiment or data. The real-world valid­
ity of the whole must be judged by comparing theoretical deduction with actual 
experiment. 

Notes on the Literature 

The viewpoint of this chapter is not controversial nor is it hostile to mathematics. 
Virtually all mathematicians who have examined the foundations of their subject 
have arrived at this view. The present exposition derives from Frank (1957) and the 
geometer Blumenthal (1980) but particularly from the point set topologist Wilder 
(1983). 



The Evolution of Natural Scientists 
and Their Theories 

3.1. Background 

Evidence for the special success of science can be seen everywhere: in the automo­
biles we drive, the television we view, the increase in life expectancy, and the fact 
that man has walked on the moon. We may question the values, or lack thereof, 
of science, but surely science has been singularly successful in many of the enter­
prises which it has attempted. It is therefore a little surprising that what constitutes 
meaningful scientific work is one of the most hotly debated issues of our time. The 
nature of scientific process and method, the aims or goals of science, the nature 
and objectivity of scientific knowledge—all are controversial. Still, there is much 
agreement. This chapter discusses the controversy and attempts to find points of 
agreement. 

Most discussions of science and scientific method are implicitly restricted to 
what might be called natural science, the systemized knowledge of "nature" or the 
"real world." But there are other concepts of science; for example, mathematics 
is usually thought to be scientific but much of it is not about nature. The present 
chapter discusses the controversy in natural science; in Section 13.1 we will have 
reason to consider more general meanings of the word science. 

The purely deductive development of natural science from "self-evident truths" 
was shown to be inadequate by the invention of non-Euclidean geometries. The 
ingredient which is missing is experience. The pioneer here is Sir Francis Ba­
con, who emphasized that we learn (acquire knowledge) "by putting nature on 
the rack," that is, by conducting experiments. Experimentation is asking questions 
of nature—conditions are imposed and nature's response is observed. In the ex­
perimental investigation of natural "laws," events, called conditions, are known 
or made to occur and outcomes are observed to occur when the experiment is 
performed, that is when the conditions occur. We may think of an experiment 
abstractly as a doublet (C, Y) where C and Y describe the conditions imposed on 
nature and the instructions for observation, respectively. An experiment is in fact 
an experimental situation or set-up, the recipe for performance. A performance 
or realization of the experiment consists of carrying out the recipe, imposing the 
conditions, and observing the outcome. 

18 
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Historically, experiments were first considered to be deterministic in that the 
outcome can be predicted from the conditions. But all experiments, when examined 
sufficiently minutely, will be found to be indeterminate: there will be various 
potential outcomes and the initial conditions will not completely determine the 
outcome of any particular performance. Chance—to be discussed in Chapters 5 
through 7—is a kind of indeterminism where the rules of probability are thought 
to apply. 

We may follow the same recipe but there is no guarantee that we will obtain the 
same outcome. Nevertheless, it sometimes does happen that repeated performance 
of an experimental recipe does seem to produce approximately the same outcome 
and when this does happen we learn an important fact. The most interesting ex­
planation of this is that some condition of the experiment causes the observed 
outcome. Science adopts the Spinoza view, that natural laws exist and that cause 
of necessity produces effect, but Hume questions the necessity of the cause and 
effect relationship; Hume insists that law is simply an observed custom in the 
sequence of events. 

Knowledge is not just deduction but neither is it just experience. A modern 
version of the purely experimental view appears in Persig's Zen and the Art of 
Motorcycle Maintenance (1984, p. 92): 

If the cycle goes over a bump and the engine misfires, and then goes over another bump and 
the engine misfires, and then goes over another bump and the engine misfires, and then goes 
over a long smooth stretch of road and there is no misfiring, and then goes over a fourth 
bump and the engine misfires again, one can logically conclude that the misfiring is caused 
by the bumps. That is induction: reasoning from particular experiences to general truths. 

But Persig knows something about motorcycles and roads, and it is with the aid of 
the theory of the internal combustion engine that he draws his logical conclusion. 
In the absence of all theory we are equally justified in concluding that the misfiring 
causes the bumps. 

The basis of a purely empirical theory was destroyed by David Hume's demon­
stration that the principle of induction is a circular argument. Hume's demonstra­
tion is as follows. A purely empirical theory of science is based on something close 
to the principle of induction: If conditions C are experienced a large number of 
times and under a wide variety of other circumstances and each time outcome X—y 
is observed then whenever C is experienced, outcome Y = 3; will be observed. Since 
this is to be a purely empirical theory, what is the empirical justification for the 
principle? Presumably the justification is that the principle has worked to establish 
much of what mankind "knows." It worked to establish the boiling point of water, 
it worked to estabhsh the relation between the extension of a spring and the weight 
supported, it works in establishing plants by seed, etc. Therefore the principle 
will always work. But the justification for this last statement is the principle of 
induction: The principle has been used to justify itself, a circular argument. 

There are other difficulties for the principle; we mention two. First, is the depen­
dence of observation on theory. Usually modern scientific observations are taken 
with the aid of sophisticated measuring instruments such as optical or electron 
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microscopes or radar; what one is observing through such measurements requires 
considerable theory to interpret. Second, even after we have decided what we are 
"seeing" in an observation we must consider the relevancy of other circumstances. 

Unfortunately, future experiments (future trials, tomorrow's production) will be affected by 
environmental conditions (temperature, materials, people) different from those that affect 
this experiment. It is only by knowledge of the subject matter, possibly aided by further 
experiments to cover a wider range of conditions that one may decide, with a risk of being 
wrong, whether the environmental conditions of the future will be near enough the same as 
those of today to permit the use of results in hand. 

Deming (1986, pp. 350-351) 

Much of natural science appears to be neither deduction nor experimentation; it 
seems to be simply accurate description of particulars. But our expectation is that, 
by describing particulars carefully, general truths will become apparent. "To see 
what is general in what is particular and what is permanent in what is transitory 
is the aim of scientific thought," Whitehead (1911, quoted in Feather, 1959, p. 1) 
aptly observed. 

Nature is complex and one cannot rule out the a priori possibility that any detail 
of a particular is relevant. But the scientist attempts to unravel this complexity by 
a process of simplification and reasoning checked by experiment. The scientist's 
simplification of nature is called a theoretical model; the scientist develops it by 
introducing concepts and their operating rules, which are suggested by common 
sense and/or experiment, deducing the consequences of such concepts and rules and 
then checking the whole by comparing with experiment. In this way the scientist 
sets up an isomorphism between an aspect of nature and the model. Scientific 
method involves an interplay between deduction and experiment. 

As introduction to his dynamical theory of gases. Maxwell (1860) describes the 
process as follows: 

In order to lay the foundation of such investigations on strict mechanical principles, I shall 
demonstrate the laws of motion of an indefinite number of small, hard, and perfectly elastic 
spheres acting on one another only during impact. If the properties of such a system of 
bodies are found to correspond to those of gases, an important physical analogy will be 
established, which may lead to more accurate knowledge of the properties of matter. If 
experiments on gases are inconsistent with the hypothesis of these propositions, then our 
theory though consistent with itself, is proved to be incapable of explaining the phenomena 
of gases. In either case it is necessary to follow out the consequences of the hypotheses. 

Consistency is what mathematics is about. But the analogy may or may not hold 
for an interpretation. Consider that, if one man can dig a certain hole in 5 days, 
then 2 men can dig it in 2.5 days. But if one ship can cross the Atlantic ocean in 5 
days, can two ships cross it in 2.5 days? The arithmetic analogy holds in the first 
case but not the second. 

Gastwirth (1992) offers this summary: "The purpose of science is not only to 
describe the world but also to understand the mechanism generating our observa­
tions. Thus, scientists develop general theories that explain why certain phenomena 
are observed and that enable us to predict further results. A theory is corroborated 
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when predictions derived from it are borne out." But Karl Pearson (1935 and 1892, 
p. 119) insists— 

... all these descriptions by mathematical curves in no case represent 'natural laws' — They 
are merely graduation curves, mathematical constructs to describe... what we have ob­
served These scientific formulas "describe, they never explain ... our perceptions..." 

Pearson's 'graduation curve' is the modern concept of mathematical model. 
Franck (1957) summarizes his view as follows: "The goal of science in the 

twentieth century has been to build up a simple system of principles from which the 
facts observed by twentieth -century physicists could be mathematically derived." 
But, from the above examples, we see that the stated goals of natural scientists vary; 
they construct models to describe, explain, summarize, and/or predict nature. The 
explanatory power of science satisfies the human need to understand, description 
records the facts, and summarization makes the whole comprehensible. Prediction 
facilitates design, arranging things to achieve a desired end. 

3.2. "Prediction = Science"? 

The title of this section is from Ruhla (1993, p. 1); he continues— 

It is often thought that science is an explanation of the world. Though this is an important 
feature, it is not the most characteristic: the overriding priority in science is prediction. 

Toulmin (1963) expresses the contrary opinion that natural science is not just 
"predictivism." The predictivist view is that scientists predict the results of future 
experiments on the basis of past experiments. Toulmin (1963, p. 115) concludes, 

we can never make less than a three-fold demand of science: its explanatory techniques 
must be not only (in Copernicus' words) 'consistent with the numerical records;' they 
must also be acceptable-for the time being, at any rate-as 'absolute' and 'pleasing to the 
mind.' 

The title of Toulmin's book. Foresight and Understanding, An Inquiry into the Aims 
ofScienceT emphasizes that foresight is not enough; understanding or explaining 
nature is a further task of science. A description by itself, even if it predicts, provides 
little understanding, Toulmin insists. Examples are a purely empirical regression 
equation and a multivariate analysis principle component, as in Anderson (1958, 
Ch. 11), which is an uninterpreted linear combination of the original variables. 
Predictive descriptions which also explain are the goal. 

Toulmin makes a valid point, but we can never be sure of having achieved 
more than just an analogy and one suspects that part of the difficulty is a break­
down in communication. The word prediction as used in scientific theory testing 
(Table A.7) usually means a deduction or logical consequence and need not im­
ply foresight. The issue in evaluating strength of experimental evidence is not so 
much the time sequence as the extent to which the experimental outcome sug­
gested the theory. If theory is suggested by experimental outcome then outcome 
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cannot be said to support theory. Historical experiments performed prior to theory 
formulation are frequently considered to provide strong support for a theory if they 
are numerous and diverse, for then one has difficulty believing that the theory is 
ad hoc. 

As Toulmin emphasizes, science does strive for understanding, and yet foresight 
is important too. Experimental evidence which involves foretelling is ideal: if 
theory precedes experiment then the question of whether the outcome suggested 
the theory cannot arise. Further, retrospective prediction is one kind of explanation. 
That is, suppose we have an argument that if a theory had been consulted prior to the 
experiment it would have predicted as likely an event which contains the outcome 
which did in fact occur. Such an argument is an explanation of the experimental 
outcome in terms of the theory; and the argument taken together with the outcome 
constitutes evidence for the theory. Actually, both new and old evidence are not 
only relevant but essential. According to Feather (1959, pp. 3 and 4), a satisfactory 
model must— 

i. Summarize in simple form the observed results of a large number of diverse 
experiments with no exceptions when it should apply; 

ii. predict the results for a wider field; and 
iii. must not be mere definition (it must be conceivable that the world might have 

been otherwise); a satisfactory model thus must be falsifiable, to use Popper's 
terminology. 

Ruhla gives a good anecdotal discussion. Human beings have a natural desire 
to understand the only world in which they live. Hence they seek explanations of 
why things happen as they do. For example, many of the properties of light may be 
explained in terms of the theory that light consists of particles. Other circumstances 
require the theory that light consists of waves. This duality can still be regarded as 
an explanation if altered circumstances cause light to change state. However, for 
some interference experiments, as in Ruhla, (1993, Ch. 7), whether light behaves 
as particles or as waves is determined, according to both theories, at a point before 
the circumstances are altered. This would imply that the effect precedes the cause, 
contradicting the causahty principle, obeyed by both particles and waves. If, as 
suggested by Maxwell, scientific knowledge is just an "analogy" then neither the 
particle analogy nor the wave analogy holds for interference experiments on light 
and there is no conceptual difficulty. But in fact physicists have regarded these 
matters as very disconcerting, indicating that they are trying for an explanatory 
realist theory. 

This same investigation provides strong evidence that though they desire and 
seek explanation and understanding, scientists sometimes have to settle for just 
prediction. Compared with Einsteinian hidden variable theory, quantum mechanics 
is a poor explanation but a good predictor. And yet it is now clear that quantum 
mechanics and the positivist view of Bohr is the clear winner over the reafism of 
Einstein. 

A predictive rule p, obtained from a model by logical deduction, will take the 
form that if initial conditions C are imposed then nature's response will be p(C). 
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FIGURE 3.1. Parabolic trajec­
tory of a projectile 

Example 3.1 Ballistics an all too familiar practical example occurs in the science 
of ballistics, which concerns hitting a target with a projectile. The instructions 
for performing this experiment will include leveling and orienting the gun; initial 
conditions will include muzzle velocity v and elevation angle a as in Fig. 3.1. A 
crude first theory results from the second time derivative assumptions, T!' = —g, 
x̂^ = y^ = 0, where g is the acceleration due to gravity. 

Integration yields a parabolic trajectory. Setting z = 0, we obtain y = 0 and 
X = p(a,v) = g~ W^ sin2a for predicted coordinates at impact. 

Control of nature through adjusting the initial conditions of a predictive model 
is the cash value of science. If p is a valid predicative rule and we desire to achieve 
outcome po then we may do so by choosing C to satisfy p(C) = po- For the ballistics 
example, if v is known then given a target at range XQ, we may arrange to hit the 
target by setting a = 2~^ arc sin(xog/v^). 

More importantly, prediction plays a key role in model checking. Agreement 
of experimental outcome with theoretical prediction is the criteria for the success 
of a theory. Agreement of theory with experiment entails, first, that the theory 
must be internally (logically) consistent, and second, that the experiment must be 
consistent with itself, that is, repeatable. Finally, theory and experiment must agree 
with each other. 

Logical consistency is used here in the technical sense of the calculus of propo­
sitions. A proposition is the meaning of a declarative sentence. A collection of 
propositions is inconsistent if some proposition and its contradiction are both log­
ically deducible from the collection. If a theory implies both p and not p, then no 
matter which way an experiment turns out it will be inconsistent with the theory. 

Nor can theory be consistent with experiment if the experiment is not consistent 
with itself (repeatable). Predictions must have reference to a process which is in 
statistical control in the quality control sense. As Shewhart (1931, p. 6) explains— 

a phenomenon will be said to be controlled when, through the use of past experience, we 
can predict, at least within limits, how the phenomenon may be expected to vary in the 
future. Here it is understood that prediction within limits means that we can state, at least 
approximately, the probability that the observed phenomenon will fall within the given 
limits. 
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The scientific method of theory checking is to compare predictions deduced 
from a theoretical model with observations on nature. Thus science must pre­
dict what happens in nature but it need not explain why. But compare how? 
Since models aren't right or wrong, only more or less accurate for some purpose, 
how are we to judge the agreement between model prediction and experimental 
outcome? 

Prior to Kuhn (1962), the checking of hypotheses was thought to be an es­
sentially impersonal matter of logic and experimentation. One simply performed 
experiments and truth leapt from the test tubes. Occasionally, comparison of theory 
with experiment is direct. Consider a military test officer evaluating the relative 
merits of two kinds of antiaircraft shell. He fires the two at scrap airplane wings 
and photographs the results. For the first kind of shell one sees a few isolated holes 
in the wings; for the second a few struts remain and it is difficult to see that they 
were once wings. The results leave little room for discussion or need for statisti­
cal analysis. More often, whether experiment is consistent with theory is relative 
to accuracy and purpose. All theories are simplifications of reality and hence no 
theory will be expected to be a perfect predictor. Theories of statistical inference 
become relevant to scientific process at precisely this point. 

3.3. External Aspects of Science 

William James (1842-1910) ventures the pragmatic opinion that " the true is the 
name of whatever proves itself to be good in the way of belief." On this Will 
Durant observes, yes, if the proof is that of scientific method, but no, if personal 
utility is to be the test of truth. Kuhn (1962) seems to agree: "If I am talking at 
all about intuitions, they are not individual, rather they are the tested and shared 
possessions of the members of a successful group." Ackoff (1979) relates these 
ideas to objectivity: 

Objectivity is not the absence of value judgments in purposeful behavior. It is the social 
product of an open interaction of a wide variety of subjective value judgments. Objectivity 
is a system property of science taken as a whole, not a property of individual researchers or 
research. It is obtained only when all possible values have been taken into account: hence, 
like certainty, it is an ideal that science can continually approach but never attain. That 
which is true works, and it works whatever the values of those who put it to work. It is 
value-full not value free. 

It is now generally agreed that science evolves according to a social mechanism. 
Evolutionary models of science have been proposed for at least 100 years; for 
example, in the statistical literature. Box (1980, p. 383) writes, "New knowledge 
thus evolves by an interplay between dual processes of induction and deduction 
in which the model is not fixed but is continually developing." Scientists transmit 
their beliefs to (convince) one another while biological individuals transmit genes. 

That science is social is a recent realization. The view of scientific method in 
this century prior to Kuhn (1962) was that of an automatic process dictated by the 
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internal considerations of logic and experimentation; the role of the scientist was 
thought to be limited to the creation of new hypotheses. The basis of a science was 
thought to be a consistent set of axioms which, as a consequence of logical and 
experimental investigation, were added to in an objective and continuous process 
that drew ever closer to the truth. The accumulation of scientific facts was often 
likened to constructing a building by placing one brick of knowledge on another. 
As Feynman et al. (1975) put it, "The principle of science, the definition, almost, 
is the following: The test of all knowledge is experiment." Thomas Kuhn (1962) 
observed that the impersonal asocial view of scientific method is inconsistent with 
history. 

Deduction and experimentation are the permissible arguments of scientific test­
ing but the short-term test of scientific truth is peer review. Without loss, we may 
consider only the example of a professional journal. Matters to be tested are ini­
tiated by individual authors; they perform their experiments and submit their pre­
pared arguments to the editors of journals. The primary function of an editor is to 
organize a good fight and to judge who wins. The disputants (authors, referees, and 
sometimes the editors themselves) present their arguments in a highly adversarial 
and biased manner. Hull (1990) documents some of this, with historical evidence 
from the sciences of evolutionary biology and of systematics (the science of clas­
sifying living things). The editor or perhaps an editorial board decides whether the 
submission will be published. Thus, short-term truth is whatever emerges from a 
staged battle. An idea becomes long-term scientific knowledge if (i) the author of 
the idea wins the publication battle and (ii) the idea proves resistant to refutation 
by the peer review process. Scientists must put their professional reputations at 
risk and argue aggressively in order to get their ideas accepted. 

Kuhn observed that important events in science just didn't happen according to 
the impersonal continuous growth theory. He claimed that science consists instead 
of relatively calm periods of agreement on world view alternating with periods of 
"revolution" during which the old view is replaced by an incompatible new one. 
The theories of a scientific discipline are typically not developed from a single 
set of axioms; rather the hypotheses of the derivations are altered as necessary to 
obtain results. As a consequence, sciences are typically inconsistent at all times, 
but scientists will constantly be striving to eliminate as much of this inconsistency 
as possible. Kuhn concludes that science is not an impersonal and continuous 
accumulation of facts drawing ever closer to the truth, but rather, when viewed 
from afar, a community and period phenomenon much like art. 

Concepts central to Kuhn's now familiar scheme of things are paradigm, nor­
mal science, and anomaly. A paradigm may be initially described as a conceptual 
world-view. During periods of normal science the paradigm is not being questioned 
but is being extended to a new situation or problem. Normal science does not aim 
at novelties of fact or theory and when successful, finds none. Nevertheless, nov­
elties are repeatedly uncovered by the activities of normal science. The way that 
this comes about is that anomalies, violations of expectation, arise in the research 
of normal science. A crisis in normal science, caused by repeated and insistent 
anomaly, leads to periods of revolution in which the old paradigm is discarded and 
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new theories are invented. (Toulmin [1963] agrees that the anomalies are most in 
need of explaining.) Kuhn's picture of the advance of science follows the scheme: 
prescience—normal science—crisis—revolution—new normal science—new 
crisis. 

Since 1962, those who would understand science have emphasized a greater role 
for external factors. They have increasingly resorted to social, economic, political, 
and subjective explanations. An extreme view is that facts aren't discovered, they 
are negotiated. 

Toulmin (1972) also emphasizes that science is a social process that cannot be 
explained in terms of a purely internal scientific method. One role of the scientist 
in science is that of innovator, contributor of original ideas, but this originality 
is everywhere constrained within a particular conceptual inheritance. The articu­
lation of individual thoughts presupposes the existence of a shared language and 
is possible only within the framework of shared concepts. But the scientist's sec­
ond role of tester, carrier, teacher, and test case for ideas is also important for the 
acceptance and propagation of scientific ideas. 

The primary effect of Kuhn's book has been to create a Kuhnian crisis, which still 
exists, for scientific method. Critics have objected, first, that Kuhn's description 
does not really provide a theory of how science works, and second, that it over 
emphasizes the role of the decisions and choices of scientists. It makes of physics 
the study of the psychology and sociology of physicists rather than the study of 
matter. No doubt, science is a social practice, but surely its findings are largely 
about nature. 

The issue of over emphasis on decisions has risen in statistics as well. Tukey 
(1960) calls attention to a distinction between decisions and conclusions—a dis­
tinction which he sees as important for understanding statistical inference. He lo­
cates his discussion in the realm of science; while scientists make many decisions, 
a scientific body of knowledge accumulates primarily by arriving at conclusions. 
The decisions of decision theory are of the form "let us decide to act for the present 
as if." Conclusions on the other hand— 

are established with careful regard to evidence, but without regard to consequences of spe­
cific actions in specific circumstances Conclusions are withheld until adequate evidence 
has accumulated. 

A conclusion is a statement which is to be accepted as applicable to the conditions of an 
experiment or observation unless and until unusually strong evidence to the contrary arises. 
This definition has three crucial parts,... It emphasizes "acceptance", in the original, strong 
sense of that word; it speaks of "unusually strong evidence"; and it implies the possibility 
of later rejection. . . . 

First the conclusion is to be accepted. It is taken into the body of knowledge,... Indeed, 
the conclusion is to remain accepted, unless and until unusually strong evidence to the 
contrary arises. . . . Third, a conclusion is accepted subject to future rejection, when and 
if the evidence against it becomes strong enough. . . . It has been wisely said that "science 
is the use of alternative working hypotheses." Wise scientists use great care and skill in 
selecting the bundle of alternative working hypotheses they use. 

Tukey(1960, pp. 425-6) 
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The statistical community appears to have accepted Tukey's distinction between 
decisions and conclusions but has not followed up by developing his conclusion 
theory; that task takes the statistician out of his comfortable area of expertise. 

Note that, in agreement with Toulmin's quote of Copernicus (Section 3.2), Tukey 
conclusions are either in or out of the bundle of working hypotheses, and the only 
possible actions are adding or dropping conclusions. Scientific conclusions cannot 
be accepted with certainty, but when they are accepted, it is wholehearted and 
without reservation—for the time being. The reason for this is that deduction— 
and particularly mathematics—plays an important role in science; and classical 
logic, the tool used for deduction, adopts the simplification that statements are 
either true or false (in or out of the bundle of working hypotheses). Partially true 
statements cannot be treated by classical logic and therefore do not mesh with the 
deductive aspect of science. 

Richards (1987, Appendix I) presents an account of models—(l)static,(2) 
growth, (3) revolutionary, (4) Gestalt, and (5) social-psychological—which have 
historically been important "concerning the character of science, its advance and 
the nature of scientific knowing." He then turns to evolutionary models concluding 
with his own version. Richards compares evolutionary models favorably with the 
above five and with Lakatos's scientific research programs. 

Giere (1992) presents a decision-theoretic model for science which allows an 
evolutionary view, but he says he is not there concerned to develop the evolutionary 
analogy. 

Toulmin (1972) argues that cultural and biological evolution are special cases 
of a more general selection process. Richards (1987, p. 578) criticizes Toulmin 
for abandoning the specific "device of natural selection so quickly," but what is 
the special virtue of an analogy with natural selection? We think that any satisfac­
tory evolutionary treatment of science must incorporate Toulmin's feature since a 
major objection to the evolutionary comparison is that science is, to some extent, 
intentional, whereas natural selection is not. Giere (1992) says that science has a 
substantial cognitive component that does not fit well with the evolutionary model. 
But artificial breeding has a cognitive component and is highly intentional, and 
artificial and natural selection manifest themselves according to the same pattern. 
A major part of Darwin's (1859) argument for natural selection is that features 
can be bred into plants and animals by artificial selection; indeed the very name 
"natural selection" was coined to make this analogy. (I, thus, will argue that the 
proper biological analog to the selection of ideas is the selection of genes by both 
natural and artificial means.) 

Building on Toulmin, Hull (1990) makes a convincing case that science must 
proceed according to a process something like biological evolution. Hull's book 
contains a unified analysis of selection processes as suggested by Toulmin. Hull is 
interested in the sociology of science. The behavior of scientists may be explained 
in terms of curiosity and a desire for recognition. "Science is so organized that 
self interest promotes the greater good." But he sees no reason why everyone need 
do epistemology all the time, and he suggests that no justification of scientific 
knowledge or method exists in terms of internal principles. 
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Hull argues that the tension between cooperation and competition is the mecha­
nism that makes science go and that quite a bit of this mechanism is to be explained 
in terms of curiosity, credit (attribution), and checking. The explanatory power of 
science satisfies curiosity. The desire for credit (preferably with a formal acknowl­
edgement) is half of the remaining dynamic. The mutual checking of research that 
goes on in science is the other half. Hull further explains (p. 319) that 

The most important sort of cooperation that occurs in science is the use of the results of 
other scientists' research. This use is the most important sort of credit that one scientist 
can give another. Scientists want their work to be acknowledged as original, but for that it 
must be acknowledged. Their views must be accepted. For such acceptance, they need the 
support of other scientists. One way to gain this support is to show that one's own work 
rests solidly on preceding research. The desire for credit and the need for support frequently 
come into conflict. One cannot gain support from particular work unless one cites it, and 
this citation automatically confers worth on the work cited and detracts from one's own 
originality. 

The other side of desiring credit is the desire to avoid blame and the need 
to check one's speculations. But as Hull remarks, the self correction which is 
so important to science does not depend solely on individual unbiasedness or 
objectivity: "Scientists rarely refute their own pet hypotheses, especially after they 
have appeared in print, but that is all right. Their fellow scientists will be happy to 
expose these hypotheses to severe testing." 

Because of the logical situation of Table A.7, that the falsity but not the truth 
of generahzations can be deduced from appropriate particulars. Popper suggests 
that science learns primarily from its mistakes through the falsification of bold 
conjectures. But this view is challenged by Chalmers (1982, p. 55): "If a bold 
conjecture is falsified, then all that is learnt is that yet another crazy idea has been 
proven wrong." 

Chalmers suggests instead that the most convincing form of theory—experiment 
consistency—is a successful novel prediction. 

A confirmation will confer some high degree of merit on a theory if that confirmation 
resulted from the testing of a novel prediction. That is, confirmation will be significant if 
it is established that it is unlikely to eventuate in the light of the background knowledge of 
the time. 

Chalmers (1982, p. 58) 

A prediction of theory T will be called conservative or novel according as it 
is probable or improbable on the basis of background knowledge, excluding T. 
Evidence for a theory consists of a successful prediction which follows readily 
from the theory, but is difficult to explain if the theory were not true. 

Chalmers' view, called modern falsificationism, is supported by the opinion of 
Kuhn (1962) that the single most effective claim, in bringing about convergence 
to a new paradigm, is probably that the new paradigm can solve the problems that 
led the old one to crisis. A successful novel prediction not only creates an anomaly 
for background knowledge but also suggests how the anomaly might be resolved. 
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We have been emphasizing the controversy in natural science but perhaps we 
should end on a more unifying note; some broad characterizations are generally 
agreed on. Scientific method is an approach to knowing, which emphasizes system 
and objectivity. The system involves observing, wondering, and thinking about 
things. Most observations result from experiments, which are questions put to 
nature. The most common experimental setup is the comparison, for example a 
clinical trial of a cold remedy versus a placebo. Scientific thinking is directed 
toward finding patterns in our observations and explaining what we observed. The 
former process of inference is called induction. Scientific thinking takes the forms 
of imagining or theorizing and constructing simplifying models. 

Science is cyclical and self-perpetuating since observations will not always agree 
with theory. This creates a problem of misfit which leads to further wondering and 
thinking which motivates further observations to check the results of new thought, 
etc. In this sense science is problem solving. The objectivity of science results not 
from the high moral professional behavior of scientists but from the resistance of 
logic and nature. 

3.4. Conclusion Theory 

Kuhn (1962), Toulmin (1972), Richards (1987), and Hull (1990) document and 
analyze many historical instances of science. Sections 3.1-3.3 reviewed and dis­
cussed their and other diverse views. But if we are to adapt statistics to aid science 
then a single model of science is needed. This section explains the attitude toward 
natural science to which we will attempt to conform. 

A natural science is a bundle of trustworthy beliefs about nature; they are trust­
worthy by virtue of having been judged to agree, in the past, with experiment. 
The beliefs of science are Tukey conclusions; they have the status of working 
hypotheses. A conclusion is a statement which is to be accepted as applicable to 
the conditions of an experiment. 

Science evolves according to a social mechanism. Scientists convince (transmit 
their conclusions to) one another, just as biological individuals transmit genes. 
Regularities do exist in nature and conclusions can be checked; some conclusions 
are just better able to withstand experimental test and subsequent review than 
others. Scientists who hold these more robust views are more successful in solving 
scientific problems, achieving publication and winning support. Theories evolve 
in the manner in which genetic traits evolve: primarily through the professional 
survival and publication of the scientists who carry them. 

A "population" of scientists is a collection of individuals grouped together 
over time because they function as a unit with regard to transmission of some 
class of conclusions. The essential characteristic of a population is closure: the 
conclusions of an individual of a population will have been transmitted from earlier 
individual(s) of the same population. The subset of individuals of a population 
that exist at a specific time may be called a "generation" of the population. A 
population having a high degree of similarity with respect to conclusions is a 
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scientific school. The collective conclusions of a school are a tradition. When 
communication between two populations of scientists breaks down to the point 
where, as Kuhn says, they are "practicing their craft in different worlds" and 
transmission of conclusion from one to the other no longer occurs, then they are 
two different schools. 

Perhaps the major conceptual hurdle in thinking about the evolution of science 
is that the individual scientists must be considered in their scientific capacity. 
Scientists are organisms and survival of the organism is necessary for the survival 
of the scientist, but professional survival is what is relevant to the scientific process. 
Hull (1990, p. 434) writes, "The ideas that these scientists hold do not produce them 
in the way that genes produce organisms..." But although ideas do not produce 
scientists as organisms, ideas do indeed produce scientists as scientists. 

The professional environment in which a scientist works has several aspects. 
There is the specific location, the type of employer (whether university, industry, or 
perhaps government), the social and political climate, etc., but by environment, we 
mean also the kind of natural phenomena to be described, explained, summarized, 
and/or predicted—at the coarsest level, the discipline, whether it is psychology or 
chemistry, and within the subject, the specialty. Here, environment is interpreted 
primarily as a class of problems that the scientist attempts to solve. 

Basic assumptions are— 

i. Variation of conclusion: different scientists in a population will have accepted 
different conclusions, 

ii. Differential fitness: scientists holding different conclusions—different bundles 
of working hypotheses—will have different rates of survival (as scientists) 
and different rates of success in transmitting (convincing, publishing) their 
conclusions to other scientists in different environments. 

Hull is correct about credit received being important to scientific process. If a 
scientist does not receive some credit, then he or she will be unable to survive as 
a scientist. "On the view of science," Hull writes (p. 361), "that I am developing, 
success and failure is a function of the transmission of one's views, preferably 
accompanied by an explicit acknowledgement." 

Fitness of conclusion for an environment is intrinsic power of ideas to describe, 
summarize, explain, and/or predict the results of experiments in that environment. 
It is in this way that the internal aspects, discussed in Sections 3.1 and 3.2, are 
relevant. The reason that fit conclusion has reproductive potential is that these same 
goals are the criteria for success of a theory. Individuals with fit conclusions will 
solve new problems, thus earning funding, publications, positions of authority, or at 
least the respect of their population; their superior explanations and demonstrated 
success tend to convince their colleagues. 

The collective conclusions of a population of scientists are called its "belief 
pool." The belief pool will not extend over all conclusions, only those relevant to a 
class of experiments or problems. As A.J. Ayer (1982, p. 11) puts it, "the success 
of scientific experiments depends on our being able to treat small numbers of our 
beliefs as isolated from the rest." 
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According to our basic assumptions some individuals will have a higher tendency 
to survive as scientists and transmit their particular conclusions to subsequent 
generations. Hence, as long as the class of problems considered does not change, 
succeeding generations will likely contain a higher proportion of the more fit 
conclusion configurations. In the course of time the belief pool of the population 
will become dominated by the conclusion structure of the fittest configurations, 
thus, perhaps, replacing the traditionalists by a new school. Over longer time, 
since most scientists succeed by specialization, the total scientific environment 
will be partitioned among specialties, each particularly adapted to some portion. 
This explains the proliferation of scientific schools. Developed schools are Kuhn's 
normal sciences. 

Individual scientists are the carriers of conclusions and theories, but conclu­
sions have an existence of their own, which is continuous with all scientists past 
and present. There is more to conclusion than just individual conclusion—there is 
articulated conclusion, shared conclusion, and stored conclusion, but most impor­
tant in the present context, is transmitted conclusion. Minds die, but conclusions 
continue until they disappear from the belief pool. 

Nevertheless conclusions require minds to transmit them, and minds contribute 
the markedly original ideas which we shall call mutations of conclusion. Most 
mutations are quickly found lacking and enter the belief pool only briefly, but 
occasionally a mutation with latent fitness, called an exemplar, comes along. Ex­
emplars demonstrate their superiority, survive, and in the course of time their 
implications develop into theories. In the sense that a chicken is an egg's way of 
producing a new egg, theories beget new ideas, a few of which become exemplars 
of new theories that may replace their "parents." It is exemplars that are primarily 
responsible for major adaptive theory change. 

At least two kinds of conclusions are relevant to science—personal conclusions 
and the social conclusions of a population. A scientist's conclusion is the state of 
mind that a statement is applicable to an experiment. A scientific conclusion is 
an agreement—of sorts—among scientists. The test of scientific truth is not raw 
experiment but peer review—a staged confrontation of author(s) versus referees 
and editors. Experiments do not speak for themselves; they have to be interpreted 
in the context of some theory and the interpretation promoted and defended. An 
idea becomes scientific knowledge if (1) the author wins the publication battle 
and (2) the idea proves resistant to refutation by the peer review process. The 
current conclusions of a science are largely contained in its unrefuted journal 
articles. 

Personal conclusions are unimportant to science but crucial for scientific process 
since they become the social conclusions which are the content of a science. It is 
not the personal considerations of what to believe or how to act which are central 
to scientific process but rather the social matter of transmission of conclusion from 
one scientist to another. The central question of scientific method is: How does 
one scientist convince another of his conclusions? A scientist cannot force his or 
her colleagues to accept a conclusion; he can only confront them with evidence— 
reasons to beheve. 
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We close with a listing of the desirable characteristics of conclusion theory; the 
first three are shared with most evolutionary models. 

a. preserve "the traditional distinction between the process of discovery, when 
ideas are generated, and generational criteria are continually adjusted, and the 
process of justification, when ideas are selected" (Richards, 1987, p. 576). 
Individuals generate mutations, selection is by peer review. 

b. "avoid the presumption that theories are demonstrated by experience" and "that 
theories and creative ideas arise from any sort of logical induction from obser­
vations; thus, the older and newer problems of induction are skirted" (Richards, 
p. 576). Conclusions are just hypotheses to be worked with unless and until 
unusually strong evidence to the contrary arises. 

c. restrain the destructive relativism of the social-psycho-logical model while pre­
serving the edge of its insight (Richards, p. 574). The test of truth is peer review 
but logic and experiment are the possible arguments. 

d. allow a needed mix of what we have called the internal and external aspects of 
science. 

e. explain why Kuhn's historical observations do not make science subjective: the 
individual scientist's decision to accept a conclusion is indeed subjective and 
will be based, in part, on personal utility, but whether that conclusion survives 
to propagate (through its adherents)—its long-run public acceptance—depends 
on its fitness. 

f. preserve the objectivity of science: all scientific conclusions are not equally 
valid. Regularities do exist in nature, and conclusions can be checked; some 
just turn out to be more fit than others. 

g. distinguish science from nonscience. The criteria are the old hurdles of logical 
consistency and agreement with experimental outcome. 

h. explain the errors of science as well as its special success: scientific truth is 
only trustworthy conclusion, but science has been restricted to those aspects of 
human investigation for which there is a relatively impartial way of checking. 
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Like mathematics, statistics, too, is a handmaiden of science. See the preface in 
Senn (2003) in this regard. But, perhaps unHke mathematics, statistics derives much 
of its character and meaning from related discipHnes. In addition to logic, mathe­
matics, and scientific method, there are other bodies of thought to which statistics 
can look for guidance and with which it need come to terms. Further important 
guides are law, learning theory, and economics. Here we mention the first two; 
later, in discussing the price interpretation of probability, we touch on economics. 

4.1. The Law 

Since ancient times the law has struggled with concepts of evidence, proof, fact­
finding, and decision. We do not try to summarize how the law works; that would 
be beyond our capacity and too great a digression. We do make the point that, while 
legal truth-finding has points in common with the scientific peer review process, 
law relies less on logic than does science. Justice Fortas, in Irons and Guitton 
(1993, p. 187) describes the legal approach: 

... our adversary system, ... means that counsel for the state will do his best within the 
limits of fairness and honor and decency to present the case for the state, and counsel for 
the defense will do his best, similarly, to present the best case possible for the defendant, 
and from that clash will emerge the truth. 

That law and science differ is clear from 

the words of Justice Oliver Wendell Holmes, who noted a century ago that "the life of the law 
has not been logic; it has been experience." Holmes also reminded us that "the prejudices 
which judges share with their fellow-men" have had a great influence "in determining the 
rules by which men should be governed." 

Irons and Guitton (1993, p. 5) 

and further from Donald Sullivan: 

Typically (defendants will) assert a variety of different and often contradictory things. And 
under our law it's permissible to do that It's kind of like the situation where somebody 

33 
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says, I'm suing you because your dog bit me, and the guy will come in and defend and 
say, my dog didn't bite you, besides, my dog is real friendly and never bites anybody, and 
defense number three, I don't have a dog. 

Irons and Guitton (1993, p. xvii) 

Some legal views, if accepted, have direct implications for statistics. More often 
the connection is indirect and implications difficult to see. Reasonable people 
can and do look at these issues in different ways. Our main source for the legal 
perspective is Eggleston (1978). Sir Richard Eggleston, Chancellor of Monash 
University, writes from the perspective of the English legal scholar; but he implies 
a multinational validity. His book appears in the series Law in Context. 

Eggleston states that probable has the precise legal meaning of having proba­
bility greater than one-half. 

The law treats the issue of what constitutes valid evidence in a seemingly round 
about way. Evidence is "relevant" if it makes a fact at issue more or less probable. 
This just says that the conditional probability of the fact calculated assuming the 
evidence does not equal its unconditional probability or that fact and evidence 
are not probabilistically independent. However, some evidence which is relevant 
is "inadmissible," that is, will not be listened to by the court. Hearsay evidence 
is one example—it violates the principle that only the best evidence bearing on 
a point is admissible; the testimony of a first-hand observer would presumably 
be more reliable. A second example is evidence concerning character. In partic­
ular, evidence of a prior conviction increases probability of guilt and hence is 
relevant but is not admissible. The general principle here is that evidence which 
is relevant merely by reason of general similarity is inadmissible. An indepen­
dent basis for postulating a causal relation between the evidence and the fact is 
needed. 

The importance of fact-finding and credibility is that 

In most litigation, the decision depends on which of two contradictory versions of the facts 
should be believed. 

Eggleston (1978, p. 137) 

Thus, significance testing—to be discussed in Chapters 10 and 11—should prove 
useful. Judges take the following factors into account when judging truthfulness: 
(i) compatibility, (ii) indications of general reliability or unreliability of the witness, 
and (iii) inherent probability. By compatibility is meant internal consistency of 
the testimony and compatibility with other witnesses and with undisputed facts. 
Unlike science, consistency of observation with hypothesis—for example, whether 
symptoms are more consistent with heart failure or asphyxiation—is not to be a 
criterion for judging truthfulness. 

Eggleston (p. 89) describes a double standard concerning burden of proof. "The 
general rule in civil cases is that the burden of proving that a fact exists rests on 
the person who asserts it." Civil cases are decided on a more probable than not 
basis. "In criminal cases, the burden is on the prosecution to prove the guilt of the 
accused 'beyond reasonable doubt.' " 
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The legal view of fact-finding and prediction is interesting: 

. . . from the point of view of the evaluation of probabihties, past but unknown facts are in 
the same position as future facts. Nevertheless, the law draws a sharp distinction between 
the evaluation of probabilities in relation to past facts, and prediction as to what is likely to 
happen in the future. 

In relation to past facts, when a judge finds that the necessary standard of proof has 
been achieved... he is entitled to treat the facts as established, and to give a decision on the 
footing that those facts exist. The decision will be the same whether the facts are established 
with absolute certainty or on the balance of probability. 

When, however, the question is how much the plaintiff should be paid for prospective 
loss in the future, the law takes a different view. If there is a doubt as to whether a particular 
event will occur in the future, and the amount of the plaintiff's damages will be affected by 
the happening of the event, the court will make allowance for any measure of uncertainty in 
the prediction. Thus, where there is a forty per cent probability that the plaintiff will have to 
undergo an operation at a future time, the plaintiff will receive the 'present value' of forty 
per cent of the estimated cost of the operation. 

Eggleston (1978, p. 72) 

Thus, legal fact-finding seems to assume a two-valued or accept-reject logic, 
whereas prediction calls for a mathematical expectation. Eggleston provides us 
with a qualifying observation. 

Since judges never really know the truth, but only arrive at conclusions as to what the truth 
would turn out to be if only they could know it, the fact-finding process has much more 
affinity with prediction than judges are prepared to recognize. What the judge is required 
to do is to make a prediction as to how the facts would turn out if he were vouchsafed 
divine guidance into the truth, and in making such a prediction he is entitled to rely on the 
probabihties. 

Eggleston (1978, p. 26) 

4.2. Learning Theory 

The scientific method is a special way of learning about the world through expe­
rience and many of us have spent years learning the facts of science. Hence it is 
tempting to use our own personal educational experiences as a guide to scientific 
process. We therefore briefly consider science in the context of learning. 

Psychological learning theory is about individual learning. There is no single 
view of how learning takes place, but some features generally are accepted by 
psychologists (see Hergenhahn, 1988). A popular definition of learning, suggested 
by Kimble (1961, p. 6), is that it is a relatively permanent change in behavioral 
potentiality that occurs as a result of reinforced practice. An expectancy that is 
confirmed consistently develops into what commonly is called a belief; but belief 
cannot be observed, so learning theory emphasizes behavior. 

Most learning is by imitation or association. Mother seats the child in a wooden 
support and says the word chair. Through repetition the child comes to associate 
the word chair with the wooden object. Much of the learning of a science, like 
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the above illustration, consists of learning to speak the language; examples are 
anatomical parts of the body and names of chemicals. 

Other scientific learning is gained through insight rather than reinforced practice. 

As Hergenhahn (1988, p. 257) puts i t -

Insightful learning usually is regarded as having four characteristics: 
1. the transition from presolution to solution is sudden and complete; 
2. performance based upon a solution gained by insight usually is smooth and free of errors; 
3. a solution to a problem gained by insight is retained for a considerable length of time; 

and 
4. a principle gained by insight is applied easily to other problems. 

Particularly relevant to science is a psychological theory of learning dev eloped 
by E.G. Tolman (1886-1959). Hergenhahn (1988, p. 296) summarizes Tol man's 
theory as follows: 

1. The organism brings to a problem solving situation various hypotheses that he may utilize 
in attempting to solve the problem. 

2. The hypotheses which survive are those that correspond best with reality; that is, those 
that result in goal achievement. 

3. After a while a clearly established cognitive map develops that can be used under al­
tered conditions. For instance, when his preferred path is blocked, the organism simply 
chooses, in accordance with the principle of least effort, an alternative path from his 
cognitive map. 

4. When there is some sort of demand or motive to be satisfied, the organism will make use 
of the information in its cognitive map. 

The fact that information can exist but only be utilized on demand is the reason 
for the word potentiality in Kimble's definition. The cognitive map is Tolman's 
explanation of why a principle gained by insight is applied easily to other problems. 
For science, the cognitive map often is deductive or mathematical, and reinforced 
practice consists of experimentation that is arranged rather than encountered. 

Most of what passes for individual scientific knowledge, whether it is language 
or problem-solving, is based on imitation. Perhaps the usual method of scientific 
teaching is by example. The teacher formulates and solves a problem and then 
assigns a similar problem that the student is to structure and approach in an analo­
gous manner. The other side of teaching by example is learning by imitation. Very 
little of what a scientist "knows" is the result of personal experience. Evidence is 
grounds for belief. The most commonly used reason for believing a statement is 
expert judgment—someone we trust states the truth of the statement. Citation of 
an authority is the most common form of evidence. 

It is sometimes remarked that a student can gain insight into the scientific process 
by taking a laboratory science, but there too the learning is by imitation. Any dis­
crepancy (and there is always some discrepancy) between theory and experimental 
outcome reflects on the student's poor experimental technique rather than the truth 
of the theory. Only at a much later graduate research level will a discrepancy be 
given serious scientific consideration. 
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Hence, much individual scientific knowledge, since it is based on imitation, is 
tradition, which is culture dependent; the individual has no personal basis forjudg­
ing its truth. Education in science, the learning which goes on when an individual 
studies a scientific tradition, is not then the process by which mankind learns to 
predict a new phenomena. Neither scientific knowledge nor process is personal. 
Presumably interested students can retrace the evidence for a belief and decide its 
truth for themselves, but typically this is practical only at the graduate research 
level and then only a few beliefs can be scrutinized. This situation raises interesting 
questions (discussed elsewhere in this and the previous Chapter) of whether, why 
and in what sense a scientific tradition is true. 

Tradition is nevertheless valuable, it permits one individual to benefit from the 
experience of another and for society as a whole to transmit a useful trait to a 
later generation. The success of a human individual tends to be determined by the 
traditions he inherits, the culture to which she belongs. The success of mankind 
can be attributed to the extent to which the possibilities of learning through speech 
have been exploited. Speech, the representation of things and the relations between 
things in verbal symbols, provides an efficient means of analyzing and transmitting 
experience. Tradition based on speech facilitates flexible and rapid problem solving 
and permits better predictions of effects from causes. The possibilities opened by 
the technique of a spoken language are limited only by the scope of the language 
and the capacity of the brain to store and process verbal symbols. This has led 
on the one hand, to the invention of mathematical and logical languages with 
more specialized scope and, on the other, to the invention of writing, printing and 
computers in order to extend the role of tradition beyond individual human memory 
and capacity. But in the end, we must carefully distinguish scientific process from 
science education. 
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Interpreting Probability 



Introduction to Probability 

Gambling is the origin of the mathematical theory of probability. Cardano, who 
died in 1576, wrote a 15-page "gambler's manual" which treated dice and other 
problems; however, the effective beginning of the subject was in the year 1654. 
The Chevalier de Mere was concerned over the following problem of "points": A 
game between two persons is won by the player who first scores three points. Each 
of the participants places at stake 32 pistoles, the winner taking the entire stake 
of 64 pistoles. If the two leave off playing when the game is only partly finished, 
then how should the stakes be divided? For example, if the players have one and 
two points, respectively, and their chances for winning each point are equal, then 
what should be the division of stakes? The Chevalier consulted Blaise Pascal, 
who solved the problem and communicated his solution to Fermat. In the ensuing 
correspondence, the two mathematicians initiated the study of probability theory. 
In Chapter 6 we shall return to the modern theory of gambling. 

We begin by discussing the familiar ideas of elementary probability, but with 
different emphasis. At an advanced level probability is called a measure; but what 
does probability measure? That will be the concern here. After reviewing aspects 
of the modem axiomatic theory—to establish notation and terminology—we turn 
to motivation and interpretation of the axioms. Earlier concepts, such as "equally 
likely" and frequency probability guided the choice of axioms. The earlier concepts 
are still important because they provide interpretations of abstract mathematical 
probability, just as light rays and stretched strings are physical realizations of the 
geometric straight line. In Chapter 2 we saw that geometry played a key role in 
understanding what mathematics is about. In geometry one starts with undefined 
concepts such as point and line, makes assumptions (called axioms) about these 
concepts, and uses the assumptions to prove theorems. An important strength of 
mathematical disciplines is their capacity to describe many seemingly unrelated 
aspects of nature. Axiomatic probability is pure mathematics; hence, it will not be 
surprising to find that the same axioms will be subject to several interpretations. 

In this chapter we will introduce the following concepts of probabiHty: (i) the 
probability of event A is #A/#S, where #A is the number of elementary events in 
A and #S is the total number of elementary events; (ii) probability is long-term 
relative frequency; and (iii) probability is a formal science aimed at measuring 
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"tendency to happen." Then in Chapter 6 probabiHty is derived as perceived fair 
price. Section 6.2 treats probability as a measure of personal degree of belief. 

5.1. The Axiomatic Theory 

The undefined concepts of probability theory are events and probability itself. Let 
S, the universal set, be a collection of elementary events and ot a class of subsets 
of S. In statistics, where one is concerned with drawing inferences from samples, 
it is customary to call an elementary event a sample point s. The collection of all 
sample points S = {s} is then called the sample space. 

Kolmogorov (1950) is credited with providing the axiomatic basis of probability; 
his axioms—in the finite addition case—are as follows: 

I. a is closed^ under the operations of union, intersection and complementation. 
That is, if A and B are in ot then A U B, A Pi B and A, the complement of A, 
are also in a. 

II. Sis in a. 
III. To each set A in or is assigned a non-negative real number P(A), called the 

probability of A. 
IV. P(S) = 1. 
V. (Finite addition axiom) If A and B have no element in common,^ then P(A U 

B) = P(A) + P(B). 

A system of sets a together with a definite assignment of numbers P(A), satisfying 
the above axioms is called a probability P. 

Several consequences of these axioms are immediately apparent. First, if 
A i , . . . , An are finitely many mutually exclusive events then P(Ai U . . . U An) = 
P(Ai) H h P(An). Second, for any event C, from C U C = S and Axioms IV 
and V, it follows that P(C) = l-P(C) and in particular P(0) = 0. Also P(C) = 
l-P(C) < 1. The general formula for the probability of a union is P(A U 
B) = P(A) + P(B) - P(A n B). This follows from V as a consequence of 
P(A U B) = P(A) + P(B n A) and P(B) = P(B r\ A) + P(B H A). 

If P(C) > 0, then Kolmogorov calls the ratio P(B|C) = P(B H C)/P(C) the con­
ditional probability of B given C. Alternatively, we may introduce conditional 
probability through the multiplication rule: 

P(BnC) = P(B|C)P(C). 

The multiplication rule generalizes, by mathematical induction, to 

P(Ai n A2 n . . . n An) = P(AI)P(A2|AI) . . . . P(An|Ai n . . . n An_i). 

^ A class is closed under an operation if performing the operation on things in the class does 
not yield things outside the class. 
^ If A n B = O, that is A and B have no element in common, then A and B are called 
disjoint sets or mutually exclusive events. 
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For C a fixed set with P(C) > 0, we easily see that QfC = {AnC:AGQf}isa 
closed class of subsets of C, C e a C, P(B|C) > 0, P(C|C) = 1, P(A U B|C) = 
P(A|C) + P(B|C) provided A n B n C = 0 , P(AnB|C) = P(A|B nC)P(B|C) 
and P(AnC|C) = P(A|C). Hence conditional probability is probability in the 
earlier sense with reduced sample space C and reduced class of subsets a C. On 
the other hand, from the multiplication rule we may write P(A) = P(A fl S) = 
P(A|S)P(S) = P(A|S), and hence all Kolmogorov probabilities may be viewed as 
conditional. 

Events B and C are called independent, if P(B H C) = P(B) • P(C). Three events 
A, B, and C are said to be independent, if they are independent in pairs and also 
P(A n B n C) = P(A) • P(B) • P(C). Similarly n events are independent, if for 
each choice of n or fewer of the events, individual probabilities multiply to yield 
the probability of the intersection. 

The finite addition axiom, V, will suffice for many elementary cases but soon 
one is confronted with unions of infinitely many events and a satisfactory the­
ory requires a countable additivity axiom (Axiom VO: If Ai, A2,.. . are pairwise 
mutually exclusive events (finite or denumerable in number), then 

P(Ai U A2 U .. .) = P(Ai) + P(A2) + • • •. 

A set function P(C), defined for a class a of sets closed under countable set 
operations, and satisfying Axioms I-IV and V̂  is called a probability measure. 

The motivation for requiring that a be closed under countable set operations is 
that we wish to discuss events having structure of this complexity; for example, 
A = Ai U A2 U . . . and B = H^̂ ^Bi where Aj and Bi are events. The closure oia 
then insures that P(A) and P(B) are defined. 

The importance of the countable additivity of probabilities may be seen from 
its equivalence to the continuity property. A probability measure is said to have 
the continuity property if 

= p(n«.), 

whenever {Bk} is a nested decreasing sequence of events. 

lim P(Bk) 

Theorem 5.1 In the presence of the finite addition axioms the continuity property 
is equivalent to Axiom V^ 

Proof 

i. Axiom V̂  implies the continuity property. Let Bi D B2 D . . . D B, where B = 
n£iBk,then 

Bk - B = (Bk - Bk+i) U (Bk+i - Bk+2) U . . . , 

and from Axiom V̂  

P(Bk) - P(B) = P(Bk - B) = P(Bk - Bk+i) + P(Bk+i - Bk+2) + • • • 
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In particular, P(Bi) - P(B) = P(Bi - B2) + P(B2 - B3) + • • •, and the series 
on the right converges so that its remainder must approach 0; but the remainder 
after k - 1 terms is P(Bk) - P(B). Thus limk-^ooP(Bk) = P(B). 

ii. Conversely, the continuity Property implies Axiom V^ For, if Ai, A2, . . . are 
pair wise mutually exclusive events then define Bk = U/̂ fc ^i- Now, from 
finite additivity, 

P(Ai U A2 U .. .) = P(Bk) + P(Ai) + • • • + P(Ak-i) 

= limP(Bk) + P(Ai) + (A2) + ---. 

But n^jBk = O, for if s 6 H^^Bk, then s is an element of one of the sets 
{Ai}, say s G An. Then, 

s ^An+k fork = 1,2,. . . , 

because An and An-fk are disjoint. Now s^Bn+i and s G ng^jBk, which is 
a contradiction. The continuity property allows us to conclude the proof as 
follows: 

=KS.'^) lim P(Bk) = P ( n Bt ) = P($) = 0. 

A real-valued random variable X (•) is a mapping from the sample space to 
the real line. An example is the indicator function of an event A, defined for each 
sample point s in the sample space as follows: 

As is common in probability theory, when discussing random variables we often 
suppress the role of sample point and space, writing X instead of X(-). 

The distribution function F(x) of a real random variable X is, by definition, 
F(x) = P(X < x). An alternative way of describing the probabilistic behavior of a 
random variable is to give the density function. Here the elementary theory divides 
into two parts according as X (or its distribution) is discrete or continuous. X is 
discrete if it can assume at most a denumerable number of values xi, X2,...; in 
this case the density at Xi is f(xi) = P(X = xi) and P(X G A) = J2xieA f^^i) ^^^ ^^^ 
events A. X is continuous if its distribution function can be obtained as an integral 

(x) = / F(x) = / f(u)du 
J—00 

of some function f(x), called the density. Of course, in the continuous case, f(x) = 
dF(x)/dx and P(X = x) = 0 for all x. It is common to refer to the distributions 
of continuous random variables as absolutely continuous distribution functions, 
however they must be differentiable as well as continuous. 

Extension of the concepts of probability distribution and density to two or more 
random variables is straightforward. The pair of random variables (X, Y) is discrete 
if at most a denumerable numbers of points (xi, yi),(x2, y2), • •. can be obtained. 
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The joint density at (x, y) is then f(x, y) = P(X = x, Y = y) and 

P [ ( X , Y ) G A ] = Y1 f̂ î'̂ i)-
ixi,yi)eA 

In particular, the joint distribution function of (X,Y) is 

F(x, y) = P(X < X, Y < y) = ^ f(xi, yi). 
{i:xi<x,yi<y} 

The pair (X,Y) is continuous if the joint distribution can be represented as an 
integral 

F(x,y) = P ( X < x , Y < y ) = f f f(u,v)dvdu 
J—CO J —OO 

of a function f(x,y) called the density. 
The marginal probability distribution of X is just the probability distribution of 

X, where it is being emphasized that there are other variables present. Thus, in the 
discrete case, the marginal density is obtained by summing the joint density over 
the other variable. In the continuous case, the marginal distribution of X is 

/

x nOO 

/ f(u,v)dvdu 
-00 J—OO 

so that 

/

OO 

f(x,v)dv 
-OO 

is the marginal density of X; the marginal density is obtained by integrating the 
joint density over the other variable. The conditional density of X, given Y = y, is 

8x/y(x) = f(x,y)/fY(y). 

We write EX for the expected value of the random variable X. For a continuous 
random variable with density f, 

/

OO 

xf(x)dx. 
-OO 

The corresponding formula for a discrete random variable with possible values 
Xi ,X2,... and discrete density f is 

OO 

EX = ^ x , / f e ) . 
i = l 

Conditional expectation of the random variable h(X) is 

/

OO 

h(x)gX|y(x)dX. 
-00 

It is often convenient to calculate expectation conditionally according to the for­
mula E7 = E E(Y|X): see, for example, DeGroot (1975, p. 178). 

The variance of X, written VX, is defined to be VX = E(X - EX)^. 



46 5. Introduction to Probability 

The sets {B i , . . . Bn } are called a partition of S if no pair Bi, Bj have an element 
in common and S = BiU... UBn. 

Theorem 5.2 (Total Probability) Given a partition {Bi, . . . ,Bn} of S, then P(A) = 
P(A|Bi)P(Bi) + • • • + P(A|Bn)P(BJ. 

An elementary result which plays a central role in the foundations of statistics 
is Bayes' rule: 

P(A\B)P(B) 
P(B|A) 

P(A) 

Given a partition {Bi, . . . ,Bn} of S, we may apply the theorem on total proba­
bility to the denominator of Bayes' formula to obtain Bayes' theorem, 

P{A\Bi)P(Bi) 
P(Bi|A)= ' ' ' ' ' ' ' , 

E PiA\Bj)P(Bj) 
7 = 1 

fori = 1,. . .,n. 

Example 5.1 The problem of false positives. 
We provide a simple illustration of the utility of Bayes' theorem. The residents 

of a community are to be examined for a disease. The examination results are 
classified as +, infection suspected, or as —, no indication of infection. But the 
examination is not infallible. The probability of detecting an infection is only 0.95 
and the probability of reporting infection where none exists is 0.01. If 0.2% of the 
community is diseased, what is the probability of a false positive? We have 

P (no infection 1+) 
P(+ | no infection) • P(no infection) 

P (+1 no infection) P (no infection) + P (+1 infection) P (infection) 
(0.01)(0.998) ^ • 

(0.01)(0.998) + (0.95)(0.002) * ' 

This probability is undesirably high from a medical point of view, but that is 
unavoidable since nearly everyone is healthy. 

Two random variables X and Y are called independent if 

P[(X G A) n (Y G B)] = P(X e A)P(Y e B) 

for all sets A and B in the ranges of X and Y, respectively. This is equivalent to 
requiring that the distributions multiply, F(x, y) = Fx(x)Fy(y), or that the den­
sity functions multiply, f(x, y) = fx(x)fY(y). Several random variables Xi , . . . ,Xn 
are called independent if their marginal distributions multiply to yield the joint 
distributions. 

A particular independence model has been central iirthe evolution of proba­
bility theory. This is the Bernoulli case of events Ai, i = 1,2,... which assume 
equal probability values P(Ai) = p and such that every subset of n of them are 
independent. 
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On the basis of the Axioms I-V, V^ one can prove Borel's famous theorem (see 
for example, Loeve, 1960, pp. 14-19). Let Sn denote the counting random variable 
Sn = IAI H h Un for n = 1,2,... where IAJ is the indicator function of the set Ai. 

Theorem 5.3 [Borel's (1909) strong law of large numbers] In the Bernoulli case. 

The theorem says that the set of all sample points for which SJn eventually comes 
and remains arbitrarily close to p has probability one; it is commonly interpreted 
to mean that, whatever probability is, and however independence is interpreted, 
the ratio Sn/n is likely (in the probability sense considered) to be close to the 
probability p for large n. 

Borel's theorem was the first of many strong laws of large numbers. For a sequence 
of random variables Xi, X2, . . . , writing 5^ = Xi H + Xn, we say that the 
strong law conclusion holds for the sequence if lim„_>oo(^n/'̂  - ESn/n) = 0 
with probability one. Discussion and proof of the following two strong laws may 
be found in Gnedenko (1967, §34). 

Theorem 5.4 A sequence of independent random variables obeys the strong law if 

00 

n=l 

Theorem 5.5 A sequence of independent and identically distributed random vari­
ables, Xi, X2,. . . , obeys the strong law if and only if their common expectation 
exists. 

Loeve (1960, p. 20) calls a closely related result the central statistical theorem. 
Let Xi, X2,... be independent random variables with common distribution F(x) = 
P(Xi < x) and let Fn(x) be the proportion of Xi , . . . ,Xn which do not exceed x; 
Fn(x) = Sn(x)/n is called the empirical distribution function. 

Theorem 5.6 (Central statistical theorem) 

sup I Fn(x) - Fix)\ ^ 0 
-oo<x<oo 

= 1. 

Borel's result implies P{Fn(x) ^-F (x)} = 1 for each x; the additional content of 
the above theorem is that the convergence is uniform. 

5.2. Interpreting the Axiomatic Theory 

The axiomatic approach is to bypass the issue of what probability is and focus 
instead on how it behaves. In fact, except for the language, the axiomatic theory 
need not even be about chance or randomness. We emphasize this by providing 
three examples. First, it is recognized by the use of Venn diagrams as an aid to 
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TABLE 5.1. Comparison of truth values with probability calculus 

IP I Iq I iP A q I Ip V q I Ip I + I q I - I P A q I |p -> q| |p A q | / | p | 

1 
1 
0 
0 

1 
0 
1 
0 

1 
0 
0 
0 

1 
1 
1 
0 

1 
1 
1 
0 

1 
0 
1 
1 

1 
0 
0/0 
0/0 

probabilistic intuition that the axiomatic theory applies to areas of subsets of the 
unit square. Second, as can be seen from Table 5.1, the truth values of the calculus 
of propositions obey the probability axioms. 

Finally, for a probabilistic proof of the important Weirstrass approximation 
theorem see Iranpour and Chacon (1988, p. 36); the axiomatic theory can be and 
has been used to prove purely mathematical results. 

The axiomatic theory contains an impressive array of results. However, as ŵ e 
have emphasized in Chapter 2, before mathematical results can have practical 
implications their undefined concepts must be interpreted. What is meant by saying, 
"the risk of cancer is one in 1,000" or "the probability of rain is 0.3?" Such 
foundational issues are important and nontrivial. In making the identification of 
probability with worldly things it is easy to go wrong. For example, in attempting 
to quantify nuclear safety, the Nuclear Regulatory Commission (1975) lost a lot 
of credibility by speaking of the probability of a nuclear accident per reactor 
year. With this formulation, if the probability of an accident per reactor year is 
one in a thousand then the probability of an accident in two thousand years is 
two. Expected rate, not probability, per year is the correct tool. Probability is a 
dimensionless quantity. 

Terrence Fine (1973) concludes his thorough mathematical analysis of the foun­
dations of probability on the pessimistic note that none of the various theories are 
justified. This is the correct conclusion within his adopted framework. His Theories 
of Probability is a needed detailed verification, for the special case of probability 
theory, of Cramer's reminder that mathematical findings are only conditionally 
true—i.e., dependent on the truth of their hypotheses—and hence do not have 
any ultimate validity by themselves. Scientific method is a practice developed to 
deal with experiments on nature. Probability theory is a deductive study of the 
properties of models of such experiments. All of the theorems of probability are 
results about models of experiments. We can't prove anything about experiments 
on nature and yet these are the subject matter of scientific method. Something 
further is needed. 

A first step toward interpreting probability is introduction of the undefined 
concept of a probabilistic experiment. We have seen in Chapter 3 that science is 
much concerned with approximate permanence in repeated experiments (C,Y). 

Chance, is one explanation of this approximate permanence; the rules of proba­
bility are thought to apply. It is customary to introduce the concept of a probabilistic 
experiment or chance situation, by example. Standard examples are flipping a coin 
and rolling a die, but these are misleading because of their symmetry. Flipping 
a thumbtack and observing whether it falls point up or point down is a simple 
intuitive experiment which is not as likely to be misleading. A typical tack will fall 
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CH> 
Point up Point down 

FIGURE 5.1. Flipping a thumbtack. 

"point up" approximately two thirds of the time (see Fig. 5.1). A similar example 
more suggestive of the applications is observing whether copies of a valve do or 
do not shut off the flow of a liquid on demand. 

In order to relate Kolmogorov's axioms to probabiHstic experiments assume 
the outcomes of an experiment E partitioned into simple indivisible or elementary 
events, exactly one of which will occur when E is performed (or observed). Let 
S be the collection of all elementary events, and a a closed class of subsets of S. 
Members of the class a are called events and when E is performed the event A s 
a is said to occur if a simple event in A occurs; S and its complement O are called 
the certain and impossible events respectively. With this identification of sets with 
possible outcomes the Axioms and the definition of conditional probability read 
as before, sets A and B having no element in common being equivalent to events 
A and B not occurring simultaneously. 

A distinction—which must be kept track of—concerning probabilistic experi­
ments is that, like the outcome of Aristotle's sea battle mentioned in Section 1.4, 
performance changes them from indeterminate to determined. Before a tack is 
flipped, the point up or down outcome is uncertain, we say it is subject to chance. 
Flipping resolves this indeterminism, an outcome is realized, and we are no longer 
in a chance situation. The status of a performed experiment, the outcome of which 
is not yet known, is usually regarded to be in all respects like an experiment yet to 
be performed. 

Often the outcome of a probabilistic experiment to he observed is a random 
variable Y. Y is not a number; it can only be described in words. We follow the 
common convention of using capital letters to denote random variables; thus Y 
is the potential outcome of an experiment the response which nature may make 
when the experiment (C,Y) will be performed. After the experiment is performed 
and the outcome Y = y is observed we have a realization (C,y) of the experiment. 
The outcome y of a realization—after performance—is then a number. 

5.3. Enumerative Probability 

The simplest concept of probability—appHcable to sample spaces with finitely 
many elementary events—is that the probability of event A is #A/#S, where #A 
is the number of elementary events in A and #S is the total number of elemen­
tary events. In particular the probability of every simple event is 1/#S; they are 
equally likely in an enumerative sense. Conversely, any probability with finitely 
many equally probable elementary events can be calculated according to the rule 
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P(A) = #A/#S. This follows since P(A) = J^ P(s) = e#A where e = P(s) for 
seA 

SGS and in particular,! = P(s) = e • #S. For this reason, enumerative probability 
is alternatively called equally Hkely probability. 

It is immediate that enumerative probabilities satisfy Kolmogorov's axioms. 
For example, #A U B = #A + #B if A and B are disjoint; dividing by #S, we 
obtain the addition axiom. The definition of conditional probability is obtained as 
a theorem—not an axiom or a definition—from the multiplication formula 

T... T.̂  #AnB #AnB#B _ , _ , _ ^ , 
P(A n B) = = = P(A B) • P(B). 

#S #B #S 

The enumerative theory is the historically first concept of probability (implicitly 
utilized by Cardano around 1520); it appears in many elementary algebra texts 
as a motivation for combinatorial analysis, the advanced theory of counting. To 
calculate the equally likely probability of event C we need only count the number 
of simple or elementary events in C and the total number of simple events; the 
probability is then their ratio. A typical example, from the game of poker, is that if 
all five-card unordered hands are equally likely, then the probability of being dealt 
four aces is 48/(^5^). 

One objection to defining probabilities exclusively in terms of equally likely 
events, is that many of the most interesting applications cannot be formulated in 
this way. The equally likely idea of probability may work well for symmetric 
examples such as poker hands and rolling dice, but in both the valve and the 
thumbtack examples, it would be exceedingly difficult intuitively to determine 
mutually exclusive and equally likely simple events. 

Even for the simple experiment of flipping coins all intuitions do not agree on 
what is equally Hkely. In 1754, the respected mathematician D'Alembert incor­
rectly calculated the probability of throwing a head in the course of two throws of 
a coin. He reasoned, that if a head appears on the first throw, the issue is decided, 
and hence, there are only three cases H, TH, and TT; therefore, the probability is 
2/3. More useful answers are 2/4 for exactly one head, and 3/4 for at least one head. 

The equally likely concept originates from a time when it was thought necessary 
to base all mathematics on "self-evident truths"; it is the EucHdean geometry 
paradigm. But there is nothing self-evident about equally likely for many applied 
problems, and hence, it would seem that we must look elsewhere for a more flexible 
concept of probability. 

5.4. Frequency Probability 

Looking elsewhere, relative frequency presents itself as a promising basis for 
probability. The relative frequency of an attribute A in n observations is the ratio 
Fn(A) = Sn(A)/n where Sn(A) is the number of observations of A. Note that, since 
Sn(S) = n, relative frequency—like equally likely probability—is the ratio of two 
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quantities obtained by counting; but the countings are done in entirely different 
and unrelated contexts. 

R. vonMises (1957 pp. 28-29) develops a frequency theory along the following 
lines: 

1. It is possible to speak about probabilities only in reference to a properly defined 
collective. 

2. A collective i s . . . an unlimited sequence of observations fulfilling the following 
two conditions: (i) the relative frequencies of particular attributes within the 
collective tend to fixed limits; (ii) these fixed limits are not affected by any 
place selection (selection of a subsequence of observations from the collective 
according to some fixed rule)... 

3. The limiting value of the relative frequency of a given attribute assumed to 
be independent of any place selection, will be called 'the probability of that 
attribute within the given collective.' 

But the taking of hmits here has proved extremely difficult to make precise. The 
mathematics of limit of a sequence applies to real numbers. Therefore a collective 
must be a sequence of already realized observations and hence determined. The 
collective is interesting as a model for what a table of random numbers might 
mean; for the entry in any given row and column of a specified page of such 
a table is determined. But we wish to view frequency probability as a property 
of the indeterminism called chance, and how to do this in terms of a collective 
seems a little obscure. There are problems with vonMises' frequency theory. In 
fact, Gnedenko (1967, p. 58) says of vonMises' conditions (i) and (ii) of paragraph 
2 above: 

The construction of a mathematical theory based on the fulfillment of both these require­
ments encounters insurmountable difficulties. The fact is that the Principle of Randomness, 
(ii), is inconsistent with the requirement of the existence of a limit. 

A difficulty with defining or interpreting probability as long-term relative fre­
quency is that it is then difficult to see the need or intent of Borel's strong law, 
our Theorem 5.3. But perhaps we can realize a frequency theory along other 
lines. 

5.5. Propensity Probability—"Tendency To Happen" 

An alternative approach to a frequency theory is suggested by some anthropo­
morphic language of Eisenhart (1963, p. 29); he calls the "limiting mean..., the 
value... which each individual measurement... is trying to express." Let us recall, 
from Section 2.4, the character of a formal science. Initially there is a primitive 
concept which one wishes to investigate. An axiom system is introduced as a model 
of the concept. Certain key properties of the concept are incorporated as axioms. 
Initially, the only sense in which the axioms are "true" is that they seem to hold 
for the concept. The axiom system is studied by purely logical methods to obtain 
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theorems. Conclusions of theorems are only conditional truths; that is, they are 
true if the axioms are true. 

A famous example of a formal science is Maxwell's (1860) dynamical theory 
of gases. In our Section 3.1 we have quoted from his introduction; he aims to 
develop—by mathematical argument—an "analogy," the properties of which can 
be compared with those of gases. It is along these lines that the propensity theory 
interprets probability. Propensity probability is a formal science to investigate the 
primitive concept "tendency to happen"; it is a qualified prediction. Certainly we 
recognize this last interpretation when we refer to a probability of rain as a weather 
prediction. The investigation of "tendencies" is common in physical science. 
Gravitation, friction, electrical resistance, genetic fitness and heritability—all are 
"tendencies" when they are appHed. Consider the two statements: (i) atoms of 
radium tend to decay according to a Poisson process (a probabihstic model) and 
(ii) the tendency for an object to fall in a vacuum is that the gravitational constant 
is 32 ft/sec^. We know each of these statements just as surely as the other and 
for the same reason. Both are approximate models which have evolved in a social 
process of hypothesis formulation checked by experiment. 

In our discussion of science a recurring theme has been the permanence of out­
come in repeated experiments. For a long time, only deterministic experiments 
were considered, where the conditions (causes) determine completely the out­
comes (effects). But slowly mankind began to think of a rational interpretation of 
nature in terms of another kind of permanence which was first observed in games of 
chance. For some experiments and events the relative frequencies seem to become 
approximately stable for large n. We have already remarked that a typical thumb­
tack will fall "point up" approximately two-thirds of the time. By approximately 
stable we do not only mean for a single sequence of realizations that Fn becomes 
more or less constant but also that for different sequences the relative frequencies 
tend to cluster about the same constant. 

If it exists, the propensity probability P(A,E) of event A for experiment E is the 
proportion of the time that A tends to happen when E is performed or observed. As 
Eisenhart suggests, tendency to happen is present in each individual performance 
but opportunity for expression is very limited. 

Probability may be interpreted— 

as a measure of an objective propensity—of the strength of the tendency, inherent in the 
physical situation, to realize the event—to make it happen. 

Popper(1983, p. 395) 

The manifestation of P(A, E) is, of course, the relative frequency with which 
A does happen in a series of performances of E. Propensity probability P(A, E) 
is that which is measured by relative frequency Fn(A). The probability axioms 
certainly do "seem to hold" for P(A, E) since they hold for Fn(A). Axioms I and 
II are desirable properties of a chance situation where a is the collection of things 
which could happen when E is performed and S is the universal outcome. Axiom 
III is the assumption that a propensity probability exists. Axioms IV, V^ and the 
multiplication rule are all suggested by the corresponding properties for relative 
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frequencies. For example, the identity Fn(A 0 B) = [Sn(A fl B)/Sn(A)]Fn(A) sug­
gests the multiplication rule for propensity probability since Sn(A D B)/Sn(A) is 
the relative frequency of B in trials where A occurs. 

To attach an intuitive meaning to the concept of independence note that if B and 
C are independent, then 

P(B r\C) = P(B) - P(B n C) 

= P(B)[l-p(C)] 

= P(B) .P(Q 

so that B and C are also independent. Now, P(B | C) = P(B) = P(B | C). The tendency 
for B to happen is independent (in the grammatical sense) of whether C has or has 
not occurred; the occurrence of C has nothing to do with the happening of B. 

Borel's strong law, our Theorem 5.3, follows from the axioms. Hence, according 
to the propensity interpretation, the relative frequency of an event in repeated 
trials approaches its probability with the strongest possible tendency. Propensity 
probability is derived (not defined) to be the limit of relative frequency in the 
special Bernoulli case. But propensity probability is only a normal science—a 
model or analogy—which has no real world validity until it has been checked by 
experiment. 



The Fair Betting Utility Interpretation 
of Probability 

6.1. Probability as Personal Price 

Consider again the origins of our subject. The formulation of the de Mere-Pascal-
Fermat problem of points was not in terms of equally likely or frequency or personal 
degree of belief but as a question concerning the value of a player's position in the 
game. The issue in general is, if one is to receive a prize or payment, but the amount 
of that payment is uncertain, then how does that uncertainty affect the value of 
the prize? A modern development is that this question has been answered in terms 
of a personal price interpretation of probability. This chapter is our version of the 
details. 

Gambling on the outcome of a chance situation E, such as a horse race or a roll 
of dice, is a major theme in the history of probability and it is in this context that 
probability as price is most natural. People sometimes object on moral grounds 
to formulating their affairs in terms of gambling. But life is a gamble though 
it need not be formulated as a game. Such important commercial activities as 
insurance and investing are gambling. Many authors, beginning with vonNeumann 
and Morganstern (1944) and deFinetti (1974, Ch. 3) have viewed probability as 
price. A survey with appropriate references is Fishburn (1986). Price—which is 
exchange rate—is an economic concept; hence, it is appropriate to look at their 
economic ideas from an economic perspective and to make explicit the sometimes 
unstated economic assumptions. But we strive for an elementary and self-contained 
treatment which assumes no prior knowledge of economic theory. Varian (1992) 
is a standard source for economic background and detail. 

An essential idea of theoretical economics is that of consumer preference be­
tween bundles of k goods. This idea extends to gambling on a chance situation E 
with possible outcomes Si,... ,Sk, by considering xi, the money available in the case 
that Si occurs, to be the ith good. We allow the possibility that Xi might be negative, 
in which case the consumer assumes a debt in the amount |xi| if si occurs; debt, 
credit, and accounts with negative balances are facts of life. The gambler may then 
contemplate his preferences among various random variables X where X(Si) = Xi 
for i = 1 , . . . , k. The bundle X is the random amount of money available to the 
consumer when E is performed; X has been called an uncertain prize or a portfolio. 

54 
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A standard initial economic assumption here is— 
Al. The gambler's preferences are weakly ordered by a relation co which is 

reflexive and transitive. Indifference i and preference p are then defined in terms 
of cu: X lY if and only if XCUYAYOJX and XpY if and only if XCUYA ^YCU 

X. The relation L is an equivalence and p is asymmetric and transitive. A further 
entirely reasonable assumption is that more money is preferred to less. 

A2. If X >Y but X / Y, then XpY. A constant portfoHo c is worth c regardless 
of how E turns out; it is sure money. Hence, if XLC, then c is the amount of sure 
money which an individual prefers equally to the uncertain prize X. Note that, by 
A2, for constant portfolios c and d, ccud is equivalent to c > d. 

Definition IfXtc then c is a personal economic value of X and if X L V(X) for 
all X, then v is a value function. 

Definition A real-valued function u(X) is a utility representation of cu if XcuY 
when and only when u(X) > u(Y). 

Clearly, if a utility exists then all portfolios are co comparable since their utilities 
can be ordered. 

Theorem 6.1 If Al, A2 and v is a value function, then (i) v (X) is a utility repre­
sentation of cu and (ii) v (X) is the unique personal value of X. 

Proof 
To establish (i), first assume v (X) > v (Y). Then XL V (X)CU V (Y) lY and X(wY. 
Conversely, if XcuY then v (X) IXCUYL V (Y), and v(X)cuv(Y). Therefore v is a 
utiHty. To prove (ii), suppose Xi vi and XL V2. From Ai we have V2CuXcu viA 
vicuXcu V2 and from A2, V2 > vi A vi > V2 or vi = V2. 

A basic mechanism for gambling is that two individuals, wishing to bet on A 
and A (the complement of A), respectively, place agreed amounts c and d in a pot 
and receive in return the common amount c + d of A and A tickets. Here c and 
d, called the stakes, are non-negative and c -f- d is positive. The significance of 
an amount q of A tickets is that a pot of amount q has been set aside until E is 
performed; it entitles the bearer to receive the entire pot or nothing according as 
A does or does not occur. We may view the gambling mechanism as a transaction 
in which two gamblers have purchased amount c -H d of A and A tickets at costs 
of c and d or unit prices of c/(c + d) and d/(c + d). 

Bets are offered in terms of odds. If a gambler offers c to d odds on A, he means 
that he will purchase any quantity of A tickets at unit price c/(c + d). Offering 
c to d odds against A expresses willingness to take the "other side" of the above 
bet. That is purchase any quantity of A tickets at unit price d/(c + d).^ A gambler 
considers a bet, at given odds, to be fair if he will take either side. 

^ In practice, the size of bet which a gambler will accept is limited by available funds and 
the possibility of ruin. We return to this point later in this chapter and in the next. 
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The characteristic assumption concerning fair bets is that they exist. Preference 
between bets translates into preference between portfolios. If a gambler bets at 
odds of c to d on A, then his initial endowment X becomes X + qCU— p), where q 
is the size of the pot and p = c/(c + d). Likewise betting q, at odds of c to d against 
A, changes initial endowment X to X + qCÎ  — p) where p = 1 — p. Therefore, 
if he will offer odds of c to d both on and against A, then X + q(lA— p) cuX 
and X — q(lA— p) = X + qCÎ  — p)iv X for all X and q. In the second equation, 
substituting X + q(lA- p) for X, we get XcuX + qCU- p). The fair bet assumption 
is equivalent to— 
A3. For each A there is a fair price prA, 0 < prA <1, such that 

XLX + q(lA - prA) for all X and q. (6.1) 

A set function satisfying Kolmogorov's axioms (Section 5.1) is called aprob ability. 

Theorem 6.2 (The fundamental theorem of personal price probability) A system 
of prices is fair if and only if it is a probability and economic value is expected 
value for that probability. 

Theorem 6.2 provides special insight which is missing in other theories of prob­
ability. A modern tendency, concerning the expected value of a random variable, 
is to emphasize "expected" and deemphasize "value." Indeed, expected value is 
sometimes shortened to expectation. From the present point of view this is regret­
table. We have all heard jokes about "expecting" a man to have fewer than two arms 
and a family to have a nonintegral number of children. Actually, one "expects" that, 
when a die is rolled, 3.5 dots will never show on the up face. The above theorem 
provides motivation—which is completely bypassed in the axiomatic theory—for 
the concept of expected value; it is-not so much "expected" as it is "value." One 
interpretation of probability is risk neutral personal unit price and expected value 
is the corresponding economic value. 

Theorem 6.2 is a substantial simplification since it allows us to compare 
portfo lios and determine fair price probability by comparing expectations, which 
are real numbers. For example, consider the following. 

Corollary 6.1 Given two bets (I) risking c dollars if A occurs to win d if A occurs 
and (II) risking d if A occurs to win c if A occurs then (I) is weakly preferred to 
(II) if prA > c/{c + d). The two bets will be preferred equally, or "fair" if and 
only if prA = c/(c + d). Proof of the corollary consists of observing that E( X + 
diA — CIA) > E(X + CIA — dU) where X is prebet endowment, reduces to prA > 
c/(c + d). 

We may call A3 the assumption of risk neutrality since, from Corollary 6.1, it 
expresses the idea that betting behavior is independent of prebet endowment and 
bet size. 

From Corollary 6.1, the following are equivalent: (i) c to d fair odds on event 
A, (ii) r prA = c/(c + d), and (iii) Pr A/pr A — c/d. Hence, we may define odds 
A = pr AJpr A; thenpr A = odds A/(l + odds A). 
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As an example, let us solve the problem of deMere with which we began 
Chapter 5. A game between two players is won by scoring three points. How 
should the pot be divided if play is discontinued prematurely when the score is 
two points to one? It was Pascal who first gave the correct answer, that if their 
chances of winning a single point are equal (and assuming independence), the 
pot should be divided in the ratio one to three. If play were continued, the pos­
sible final scores would be si — three to one, S2 = three to two, and S3 = two to 
three with fair betting probabilities of 1/2, V4' ^^^ V4- Writing A = {si,S2} then 
the first player can be considered to be holding a portfolio q IA, where q is the 
size of the pot. The fair value of such a ticket is EqU = 3 q/4. Similarly, the fair 
value of the second player's position in the game is Eql^ = q/4. This is Pascal's 
answer. 

Proof of Theorem 6.2 
First assume X^EX = ^X/ P{s/ } where PA is some probability. From Theorem 6.1, 
EX is a utility representation of co so that X̂  Y if and only if EX = EY. Therefore, 
since EX = E[X + q(lA - PA)], prA = PA is a solution of (6.1) for every X, q 
and A. 

To prove the converse we first show that v(X) = ^-^^ x,/?/ is a value 
function where xi = X(si) and pt = pr(si), for i = I,... ,k. Applying (6.1) 
repeatedly, we obtain XLX - xi(Ii - p\) - X2{h - Pi) ^k{h - Pk) = 
J2i ^iPi where Ii(s) is 1 if 5" = st and is 0 otherwise. Hence, from Theorem 6.1, 
v(X) is a utility and the unique value. 

Expression (6.1) implies v(X) = Y[X -\-q(Ii - pi)] — v(X) + q{pi— 
Pi Tl]=\ Pj)^ so that either pt = o for all / or J2]^i Pj = ^' The first degen­
erate solution denies A2 so that we are left with X]y=i Pj = ^' Fi'om V(X) = 
v[X + q(lA — prA)], we obtain prA = Y,A Pi-

It is now straightforward that prA is a probability. Kolmogorov's Axioms I and II 
of Section 5.1 hold with S = {s 1,... ŝ  } and a the class of all subsets of S. Axiom III 
is part of A3. The probability addition property for disjoint sets A and B follows 
from pr(AUB) = YIAUB Pi = E A Pi + E s A = P^^ + P^^- ^^^ ^^^^^ ^ is 
a consequence of pr S = ^ J L - pi = I. Finally, v(X) = J2i=\ ̂ iPi — ̂ ^- ^he 
expected value with respect to the probability prA. 

An alternative way of looking at the risk neutrality assumption is in terms of 
additive value. A value function is additive if the value of two portfolios is the 
sum of their values. A consequence of Theorem 6.2 is that—in the presence of 
Al and A2, A3 necessarily implies the existence of an additive value function. 
Additivity of value is, for practical purposes, also a sufficient condition that A3 
should hold. Suppose Al, A2 and that v(X) is additive. Except for pathologies, 
Aczel (1966), v(X) is of the form v(X) = C • X = J^Li ^i^i^ where q = v(/{,j) 
From Theorem 6.1, C • X is a utility so we may solve (6.1) for prA by solving C • 
X = C[X + q(lA - prA)] to obtain prA = Y.SteA ^il E L I Q- From A 2 , /(,.}/OO 

and hence ci > i;(0) = 0. Therefore, A3 holds. 
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6.2. Probability as Personal Degree of Belief 

This section verifies an issue usually taken for granted: that fair betting probability 
measures degree of belief. Theorem 6.2 tells us only that probability may be 
interpreted as risk neutral personal price. 

The fair bet theory models much gambling practice and yet—as deFinetti was 
aware—the assumption A3 of risk neutrality is at odds with economic principles; 
risk aversion is considered to be prudent business practice. Fair betting does not 
assign a realistic utility interpretation to probability. Initially this looks like a 
defect in the theory. But we aren't really trying to provide a realistic model of 
economic decision-making; that is the purpose of Nau and McCardle (1991). 
Instead, the main use of the fair betting argument has been to justify a degree of 
belief interpretation of probability. 

Realistic betting behavior will reflect both attitude toward risk and attitude 
toward uncertainly. But to conceptually get at an individual's degree of belief, 
which is attitude toward uncertainty independent of attitude toward risk, we need 
to consider personal preferences and prices determined as //"the person were risk-
neutral. In order to quantify personal degree of belief, it is proper counterfactually 
to consider risk-neutral preferences. We need an additional assumption. 
A4. Degree of belief about how an experiment will turn out is to be quantified by 
risk neutral gambling preference. 

The unrealistic nature of probability interpreted as price explains why it has 
proved difficult to measure. Kadane and Winkler (1988) and Schervish et al. (1990) 
discuss the difficulties inherent in measurement or elicitation. Kadane and Winkler 
calculate that for three common methods, elicited probability will not equal true 
personal probability if the utility function is nonlinear. The paper of Schervish 
et al. is also concerned with difficulties of separating personal probability from 
utility on the basis of observed preference. Concerning these elicitation difficulties, 
Nau and McCardle (1991) take the view that the separation of belief from risk 
preference "is inessential to the characterization of economic rationality in terms of 
observable behavior." But such a separation wouldbe essential to the interpretation 
of probability as degree of belief. 

The personal degree of belief theory is the logic of a rational economic person; 
discounting attitude toward risk, when betting on the outcome of an experiment he 
will put his money where his belief is. Note that the concern is an experiment which 
has an outcome. We must be dealing with an experiment in the sense of Section 5.2, 
that is, a recipe for performance of the form (C, Y). For if we ask, "Betting on what?" 
or "Degree of belief about what?" then the answer to either question is, "How a 
chance experiment will turn out." Moreover, the experiment must eventuate. A 
person would be foolish to wager funds on the truth of a proposition when there 
is no possibility of payoff. It isn't rational to put money in a bank which is in 
default. 

But people sometimes have beliefs, which they think are rational, when there 
is no chance experiment whose outcome we can bet on. An important example 
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concerns probability statements about the truth of scientific theories. A current 
proposal is to base scientific method on coherence; see Berger and Berry (1988) 
and Howson and Urbach (1989). But where is the chance experiment which deter­
mines the gambling scientist's payoff? At what stage and in what sense does the 
experiment eventuate? Degree of belief is sometimes difficult to formulate in terms 
of a gambling situation. Our discussion of probabilities may not extend to such 
cases. An essential part of the fair betting probability argument, and its extension 
to degree of belief, is that we are concerned with a chance experiment which does 
eventuate. 

6.3. Conditional Subjective Probability 

Of course no interpretation of probability will be complete without some discussion 
of conditioning. We use Corollary 6.1 to provide a proof, in informal outline, that 
fair prices satisfy the multiplication rule of probability. The price interpretation 
is that prA is a gambler's (prior) unit price for an A ticket on an experiment 
before learning anything of its outcome. Conditional probability pr(B|A) is his 
(posterior) price per unit for a B ticket on the experiment upon learning only that 
A happens. Suppose prA = 0.6 and pr(B|A) = 0.5. The gambler is prepared to 
buy (on account) (i) a 50-cent A ticket for 30 cents and (ii) when and if he learns 
only that A happens a one dollar B ticket for 50 cents. Making these purchases the 
histories of his accounts would appear as in Table 6.1. 

From the last column we see that he would have in effect purchased a $ 1 A H B 
ticket for 30 cents; so he must be prepared to make this purchase. Considering the 
"other sides" of these bets he is willing to commit to the purchases of Table 6.2. 

TABLE 6.1. Account history scenarios 

Outcome 

A H B 
A n B 
A H B 
A H B 

TABLE 6.2. 

Outcome 

A n B 
A n B 
AHB 
A n B 

Prior 

A 

- 3 0 
-30 
- 3 0 
- 3 0 

The "other side" 

Prior 

A 

- 2 0 
- 2 0 
-20 
-20 

Posterior 

A 

20 
20 

- 3 0 
- 3 0 

of Table 6.1 

Posterior 

A 

- 2 0 
- 2 0 

30 
30 

B|A 

-50 
-50 

B|A 

-50 
-50 

A 

20 
20 

-30 
-30 

A 

- 2 0 
- 2 0 

30 
30 

Maturity 

B|A 

50 
- 5 0 

Maturity 

B|A 

- 5 0 
50 

Total 

70 
- 3 0 
- 3 0 
-30 

Total 

- 7 0 
30 
30 
30 
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So he is, in effect, willing to purchase a $1 A H B ticket for 70 cents. This is 
the "other side" of the above 30-cent bet on A H B. Therefore his pr(A Pi B) 
exists and equals 0.3, which is (0.5)(0.6) dollars. In general pr(A fl B) = pr(B|A) 
pr(A). 

This rounds out the argument that Kolmogorov's axiomatic theory of probability 
may be interpreted as individual risk-neutral price. 



7 
Attitudes Toward Chance 

7.1. Indeterminism and Chance 

The idea of a probabilistic experiment or chance situation was introduced by ex­
ample in Section 5.2. There are several attitudes concerning the indeterminism 
which we call chance: (i) chance is the opposite of determinism; (ii) the situation 
is in principle completely determinable but the initial conditions have been incom­
pletely specified; (iii) in some respects the world is fundamentally random; and 
(iv) the indeterminism is located in the mind(s) of the observer(s) rather than in the 
exterior world. We shall immediately discuss (i) and (ii). The third attitude may 
be correct, but it begs for an explanation which we cannot provide. Discussion of 
attitude (iv) was begun in Chapter 6 and will continue. 

The first attitude is rarely stated but frequently followed by statisticians of all 
persuasions. But chance is not the only alternative to determinism. The outcome 
of an experiment need not be subject to the rules of probability just because it isn't 
uniquely determined by the initial conditions; there is an additional requirement 
of statistical control. Eisenhart (1963, Section 3.1) traces this observation to many 
famous scientists: Gahleo, Millikan, Shewhart, and Student, But perhaps Deming 
(1986, p. 312) is most explicit: 

A first lesson in application of statistical theory. Courses in statistics often commence 
with study of distributions and comparison of distributions. Students are not warned in 
classes nor in the books that (statistical methods) serve no useful purpose... unless the data 
were produced in a state of statistical control. The first step in the examination of data is 
accordingly to question the state of statistical control that produced the data. 

And earlier, Deming (1950, pp. 502-3) states— 

In applying statistical theory, the main consideration is not what the shape of the universe 
is but whether there is any universe at all. No universe can be assumed, nor... statistical 
theory... applied unless the observations show statistical control. 

. . . Very often the experimenter, instead of rushing in to apply [statistical methods] should 
be more concerned about attaining statistical control and asking himself whether any pre­
dictions at all (the only purpose of his experiment), by statistical theory or otherwise, can 
be made. 

61 
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By simple statistical control, these writers mean that we are sampling from a 
population or universe, that successive performances of the experiment are inde­
pendent and subject to the same law of probability. Indeed, most of the sampling 
theory of statistics is about independent and identically distributed (i.i.d.) random 
variables. Of course, statistical inference is possible for other probability struc­
tures, but the point here is that experimental results may be haphazard rather than 
random and initial adjustment of the experimental procedure and testing of the 
results will be necessary before the rules of probability can be applied with any 
confidence. Several illustrations of how experimental results may deviate from 
intuitive distributions will be presented in Examples 7.2-4. 

Attitude (ii) is the classical physical concept of determinism and chance, in 
which prediction plays a central role. The classical concept of determinism vi­
sualizes a sequence of sources of error which, if understood and controlled or 
accounted for, would improve predictive accuracy until, in the limit, experimen­
tal outcome would be predicted exactly. The explanation of chance is then, that 
the world is deterministic but chance results from failure to account for all initial 
conditions with sufficient precision. 

A first example is that conceivably we could learn to control the flip of a coin, 
obtaining heads or tails at will; chance variation is the consequence of not having 
built a machine which controls the initial conditions sufficiently accurately. 

For a more extensive illustration, reconsider Example 3.1, the ballistics example 
of shooting at a target. The author is familiar with some of the data from this 
much-studied experiment. The predictions of the parabolic theory will be in error; 
successive firing will result in an ellipsoidal pattern of impacts more or less near 
the target. A first reason is that the parabolic trajectory ignores air resistance. 
Adjusting for air resistance improves prediction and yields a new ellipsoidal pattern 
of impacts nearer to the target. Further sources of error are (i) humidity (ii) curvature 
of the trajectory due to spin of the projectile (iii) wind, both average velocity and 
gusting, (iv) amount of projectile propellant (v) earth curvature, and (vi) the coriolis 
effect of the earth spinning under a projectile in flight. According to the classical 
explanation, chance is due to not having identified all of the relevant factors or 
learned to control them with sufficient precision. 

When we follow the recipe (C,Y), there will be additional conditions, U, not 
monitored or controlled and perhaps unknown which may also affect the outcome; 
the actual operating mechanism, will be (C,U,Y). The classical explanation is that 
the chance behavior of Y is due to variation in U. Repetition of (C,Y) is in fact a 
sequence (C,Ui,Y), (C,U2,Y) . . . , and (C,Y) is the class of aU repetitions which 
might be performed using the given recipe. Note that this is really an explanation 
of indeterminism not chance—the probability axioms have not been justified. 

7.2. The Location of Probability—Mind or Matter? 

The most important issue, for the meaning and use of a probability, is whether it 
is subjective or objective. Bruno deFinetti (1974, p. x) settles the issue neatly by 
stating that all probabilities are subjective. He has a point. 
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First, we dispose of a linguistic problem. One meaning of the word subjective 
is biased or prejudiced. That is not the relevant meaning here. Here, objective 
signifies "of, or having to do with an object" as distinguished from something 
existing only in the mind of the subject or person thinking. 

Now let us proceed to deFinetti's comment; it is also true of other basic scientific 
quantities such as length, time, coefficient of friction, etc. His point is more general, 
and is often credited to Immanuel Kant. At the epistemological level it has to be 
admitted that knowledge is influenced by perceiving and structured by mind. It is 
an important observation and seems absolutely true. All mathematical models and 
therefore all probabilities and all statistical analyses are to some extent constructs 
of the mind. This state of affairs has caused some, for example, Berger and Berry 
(1988), to become skeptical of objectivity and to abandon the search for truth about 
the world in favor of understanding the state of ones own mind. 

But, if probabilities are just one man's opinion (personal) then why should 
science as a whole pay any particular attention to them? Scientists are used to 
thinking that they function at a physical or ontological level, that they are studying 
and discovering facts about nature which are independent of any observer. Nature 
is what is left after the observer dies. Ultimately nature is unknowable but aspects 
of nature such as length, time and probability exist and can be understood in the 
sense of trustworthy belief through a process of logic checked by experiment. 
This way of thinking has been enormously successful and it is hard to argue with 
success. 

All probabilities are conjectural since they are based on models and assumptions; 
they are only as good as those assumptions. But all probabilities are not subjective 
to the same extent. The key here is suggested by considering the two statements: 
"This is a fair coin" and "I think this is a fair coin." The first would be checked 
by flipping the coin, the second by offering me various bets to determine the odds 
which I would accept. 

The test of objectivity is the manner of checking. If the correctness of a proba­
bility has been evaluated by performing an experiment on nature then presumably 
that probability has to do with the object of that experiment; it may be conjectural 
or even wrong but it is about nature. On the other hand if a probability cannot 
be checked or is to be checked by introspection or observing the behavior of the 
person thinking then it is subjective. An important possibility is that probabihties 
which are initially only subjective may make the transition to objectivity through 
a process of experimental verification. 

To what extent are probabilities properties of nature and may we think of them 
as physical or objective? Where is the location of probability? These are important 
questions. The answers will depend on the concept of probability. 

7.3. Equally Likely 

The equally likely concept is a good place to start. A recurring justification of the as­
signment of equal probabilities has been the principle of insufficient reason—that 
if there are no grounds for assigning unequal probabilities then equal probabilities 
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TABLE 7.1. Winnings from various bets 

Event\bet 

1 
2 
3 

I 

b 
—a 
—a 

II 

—a 
b 

—a 

III 

—a 
—a 

B 

I + II + III 

b - 2 a 
b - 2 a 
b - 2 a 

should be assigned. Equally likely probabilities arrived at through the principle of 
insufficient reason will be called Laplacian, for Laplace made much use of the 
principle. Apparent symmetry or invariance, as with dice, is the usual reason for 
assigning Laplacian probabilities. 

Let E be the statement that there are grounds for assigning equal probabilities 
and U that there are grounds for assigning unequal probabilities. The principle of 
insufficient reason is to act like not U implies E. This is the fallacy of appeal to 
ignorance; it is logically incorrect if probability is located beyond mind, for we 
may have no information at all and hence no grounds for any assumption about 
nature. Then, in particular, not E and not U will be true so that if not U implies E 
then E and not E are true, a contradiction. 

But while lack of knowledge is grounds for nothing in nature it does seem to be 
grounds for knowing ones own mind. Thus Laplacian probability should be viewed 
as subjective, indicating a state of individual complete lack of knowledge. This 
conclusion is supported by the following argument which shows that gambling 
probabilities corresponding to no information are Laplacian. 

Consider three elementary events none more reasonably expected to occur than 
another. 

The bets I, II, and III of Table 7.1 are bets on events 1, 2, and 3 respectively, at 
odds of a to b. Because of the invariance of the situation under permutations of the 
elementary events, if I is fair, then II and III will similarly be fair. Then I + II + 
III is a fair bet with constant winnings b — 2a. Therefore, if I is a fair bet, then 
b — 2a = 0 and the gambling probability of event I is a/(a + b) = 1/3. Each of the 
three events will be assigned this same probability. 

Let us apply the acid test. How will a Laplacian probability be checked? By ask­
ing questions or testing the behavior of the Laplacian: What might make the prob­
abilities unequal? You have no hint of which event will occur? None of the events 
can more reasonably be expected to occur? Laplacian probabilities are subjective. 

Example 7.1 The prisoner's dilemma of three prisoners, call them A, B, and C, 
two have been chosen to be executed. Prisoner A asks their jailor to name one 
prisoner other than himself who will be executed. The jailor responds that B will 
die. Now A knows that either he or C will live; hence he reasons that his probability 
of living has been increased from 1/3 to 1/2 just by getting the jailor to answer his 
question. Can this be? 

Since the jailor responds after the prisoner to live is chosen, nothing the jailor 
says can alter the tendency that A will live. So in this sense, A's reasoning must be 
in error. Here, as deFinetti says, probabilities do not attach to objects. The phrasing 
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TABLE 7.2. Joint probabilities 

Jailor' s response 

B 
C 

Prisoner to live 

A 

p/3 
q/3 
1/3 

B 

0 
1/3 
1/3 

C 

1/3 
0 

1/3 

of the problem suggests that the probabilities 1/3 and 1/2 are Laplacian and hence 
subjective. There is no experiment in nature which will check their correctness. 

One may question the principle of insufficient reason but, applied here, it does 
yield the equal probabilities of 1/3. However, in calculating the probability that A 
lives given the jailor's response, we will see that there are "grounds for assigning 
unequal probabilities" to the two remaining possibilities. 

We analyze only the situation that the jailor does not lie. He has two possible 
responses and there are three a priori choices of which prisoner will live, a total 
of six possible outcomes to the joint experiment. Note that the conditions for the 
existence of fair bet probability—with which we concluded Section 6.2—are met; 
here we are concerned with a conceptual chance experiment which does eventuate. 
Joint probabihties appear in Table 7.2. 

We may calculate from first principles that q = 1 — p and p is the conditional 
probability of response B given that A lives. The probability that A lives given 
response B is 

P/(1+P) (7.1) 

Whether As reasoning is correct depends on how the jailor's response is inter­
preted. If we suppose that the jailor adopts the equally likely strategy, p = 1/2, then 
P(A lives [response B) = 1/3 while P(C lives | response B) = 2/3 and As Laplacian 
reasoning is incorrect since the two events are not equally likely. But if p = 1 then 
the required probability is 111. In any event the expression (7.1) has absolutely 
nothing to do with whether A will live; it is a purely subjective probability. 

The solution is sensitive to particular language; suppose that A had asked, "Is 
B to die?" and the jailor had said "yes." Now, with equal a priori probabilities, 
the probability that A lives given the jailor's response is P(A lives)/P(B dies) = 
(l/3)/(2/3) = 1/2, which suggests that As Laplacian computation may be correct. 
That however, is the solution to a different problem where we are given that B is to 
die. For the problem as originally stated we are given that the jailor says truthfully 
that B is to die. The latter event implies the former but not vice versa. 

If, after hearing the jailor's response, we allow A to trade places with the remain­
ing prisoner, then we have a problem which has received much public attention, 
Morgan et al. (1991). From Table 7.3, the unconditional probability that A lives 
by switching is 2/3, while the probability that he lives by not switching is p/3 + 
q/3 = 1/3. It appears that A can boost his probability of living from 1/3 to 2/3 by 
always switching regardless of the jailers response. This is correct but it must be 
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TABLE 7.3. The prisoner's dilemma 

Jailor's 
response 

B 
B 
B 
C 
C 
C 

Prisoner 
to live a priori 

A 
B 
C 
A 
B 
C 

Probability 

p/3 
0 

1/3 
q/3 
1/3 
0 

Outcome 

Switches 

J* 
d 
I 
d 
I 
d 

Doesn't switch 

/ 
d 
d 
I 
d 
d 

*/ = A lives, d = A dies. 

remembered that these are subjective probabilities; A can boost what he thinks his 
probability of living is from 1/3 to 2/3 by always switching. 

Conditionally, P(A lives by switching | R = B) = Y/^+^ — T+i^^^ ^^^ ^̂ ^̂ ^ 
by not switching | response B) = nl\n = H " - T r̂ with equality only when 
p = 1. A still thinks he should switch but his probability of living is not always 
2/3, it depends on p. 

The above conditional and unconditional solutions are consistent with one 
another since P(A lives by switching) = P(A lives by switching | response 
B) P(response B) + P(A lives by switching [response C) P(response C) = 
J_i±p_L_l_l±q —9/q 
l+p 3 "^ l+q 3 "" ^/"^• 

The primary interest of this problem is that the solution and its meaning are 
strongly dependent on additional assumptions and interpretation. It is particularly 
difficult to remember that A does not change his objective chances of living by 
switching, only what he thinks his chances are. 

An experiment to which the probability (7.1) corresponds, is one in which the 
execution is "called off" if the jailor does not respond B. Consider the "trial" 
suggested by Table 7.2. Repeat this trial independently, calling off execution till 
response B is obtained; then note whether A lives. The probability that A lives in 
the first trial for which response B is obtained is then 

00 / ry _ \ i-\ 

V I — - ^ I p/3 = ^ — = P(A livesIresponseB). 
j^i\ 3 / l + p 

The last computation is interesting since conditional probabilities may be sim­
ilarly developed in general, in terms of independent trials rather than the usual 
reverse development. Suppose that A and B are events of experiments E. Consider 
the conditional experiment in which E is performed independently until B occurs. 
The probability that A occurs in the first trial in which B occurs is 

oo 

^ [1 - pr(B)]'" Vr(A n B) = pr(A H B)/pr(B) = pr(A|B). 
/=i 

This concludes our discussion of the prisoner's dilemma. 
Not all equally likely probabilities will be Laplacian. We may conjecture that 

a situation E has the property that when it occurs the elementary outcomes tend 
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to happen equally often, that is, a uniform propensity probability exists. If the 
conjecture survives experimental test, as for some genetic situations and with 
Bose-Einstein physics, then it becomes science. Or we may arrange it so that 
probabilities are equal, as when a table of random numbers or computer program 
previously tested for patterns is used to choose a sample from a finite population. 
Such probabilities are physical and objective, they are conjectural properties of 
nature which can be checked by experiment. 

But, remember that such physical equally likely probabilities are only conjec­
tural. Symmetries are sometimes only apparent and it is even difficult to build 
a mechanism which will generate equal probabilities. While a die may appear 
symmetric and consequently we may assign the faces equal probabilities, there 
is no guarantee that approximately equal frequencies will be obtained when 
the die is rolled. This seemingly obvious point can sometimes be a source of 
confusion. 

Example 7.2 That the sexes are equally likely at birth is a good first approxi­
mation, but when the matter is examined more carefully it is clear that a male 
birth is slightly more likely. The question has an ancient history, some of which 
may be found in Todhunter (1949) indexed under the heading "Births of boys and 
girls." 

Example 7.3 Public confidence in the fairness of the United States military draft 
was undermined by apparent non-randomness of the 1970 draft lottery. The 366! 
Possible orders of birthdays appear not to have been equally likely. Fienberg (1971, 
p. 255) summarizes: "Randomization is not easily achieved by the mixing of 
capsules in a bowl." 

Example 7.4 Deming (1986, pp. 351-2) discusses a sampling experiment in 
which a "lot" of 50 beads is drawn mechanically by dipping a paddle with 50 
depressions in it into a box containing 3,000 white and 750 red beads. 

Cumulated average. Question: As 20 per cent of the beads in the box are red, what do you 
think would be the cumulated average, the statistical Umit, as we continue to produce lots 
by the same process over many days? 

The answer that comes forth spontaneously from the audience is that it must be 10 because 
10 is 20 percent of 50, the size of a lot. Wrong. 

We have no basis for such a statement. As a matter of fact, the cumulated average for 
paddle No. 2 over many experiments in the past has settled down to 9.4 red beads per lot of 
50. Paddle No. 1, used for 30 years, shows an average of 11.3. 

The paddle is an important piece of information about the process. Would the reader have 
thought so prior to these figures? 

7.4. Frequency and the Law of Large Numbers 

The author has observed what appear to be instances of stable frequencies. For 
example, if an ordinary thumbtack is tossed against a vertical backboard and 
allowed to come to rest on a hard horizontal surface, then the frequencies of "point 
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up" and "point down" seem to display approximate stability. It seems that long-run 
stability of relative frequency should somehow provide an objective interpretation 
of probability but here too there are problems. The difficulties with vonMises' 
direct taking of limits in a collective have already been mentioned in Section 5.4. 
We discuss three further approaches: (i) proof from Borel's theorem, (ii) empirical 
justification, and (iii) propensity probability. 

Borel's theorem is a consequence of the axioms of probability and, hence, for 
any interpretation, the relative frequency of Bernoulli events will almost surely 
approach their common probability. But Borel's theorem does not prove that any 
result will hold for some series of real world experiments. Like all mathematics, 
Borel's theorem is not about the real world, it is about what has been postulated 
by thought. Probability is at most a mathematical model of the world and the 
hypotheses of Borel's theorem are difficult to justify and the conclusion is, from a 
practical perspective, imprecise. The hypotheses of independence and countable 
additivity are particularly difficult to justify. Independence will be suspect since 
ultimately everything is related to everything else. Justification of independence 
then must take the form that relatedness makes little difference for the purpose at 
hand. 

CredibiHty of countable additivity—V^ of Chapter 5—is enhanced by its equiv­
alence to the continuity property. Theorem 5.1. The utility of infinite models in 
mathematics is that they serve as approximations for large finite situations. In 
particular, continuous probabilities will be for the purpose of approximating the 
discrete probabilities of finite sample spaces with many points. From this purpose 
and from Theorem 5.1 we see the motivation for requiring countable additivity 
(VO. But this motivation is mostly wishful thinking about mathematical neatness. 

The conclusion of Borel's strong law, that almost surely relative frequency of 
an event eventually comes and remains arbitrarily close to the probability of the 
event, is imprecise in two respects. First, "eventually" has no practical meaning: 
how large must "n" be before Fn will be a specific distance from p? Second, what 
is the practical meaning of almost surely? 

Borel's strong law is a purely mathematical result which must be interpreted 
and supported in some way before it can be of any practical consequence. We do 
learn about nature by augmenting and checking mathematical theory with experi­
mentation. Cramer (1946, p. 144) writes 

We may regard it as an established empirical fact that the "long-run stability" of frequency ra­
tios is a general characteristic of random experiments, performed under uniform conditions. 

But we have seen in Sections 7.1 and 7.3 that Deming and others caution against 
such an attitude. How shall we recognize "random experiments, performed under 
uniform conditions?" 

How might we check the long run stability of relative frequency? If we are 
to compare mathematical theory with experiment then only finite sequences can 
be observed. But for the Bernoulli case, the event that frequency approaches 
probability is stochastically independent of any sequence of finite length. For, 
suppose A to be any event involving only the first n trails and B is the event 
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that frequency approaches probability. From Borel's strong law, Theorem 5.3, 
we have P(B) = 1 andO < P(A H B) < P(B) = 0. Therefore P(A n B) = P(A) -
P(A n B) = P(A) • 1 = P(A) • P(B). Any event A which is observable, is indepen­
dent of—has nothing to do with—Borel's event B. Long-run stability of relative 
frequency cannot be checked experimentally. There are neither theoretical nor 
empirical guarantees that, a priori, one can recognize experiments performed un­
der uniform conditions and that under these circumstances one will obtain stable 
frequencies. 

Turning to propensity probability, we find a frequency theory which is consistent 
with the evolutionary view of science developed in Chapter 3. Propensity prob­
ability or "tendency to happen" is that property of a chance situation (or recipe) 
which is estimated by relative frequency. That such a property exists is conjectural; 
but its existence in the sense of trustworthy belief can be tested. Not, to be sure 
by checking the existence of a limit but by comparing predictions which can be 
checked (always subject to the possibility of error) with finite experimental results. 
Much of the sampling theory of statistics is about how to do this. Stable relative 
frequency is a theoretical consequence of conjectural axioms, via Borel's theorem; 
it does not serve as a suitable starting point and it can't be checked directly. 

The conclusions of the theorems of a formal science such as propensity prob­
ability are only conditional truths; they are true if the axioms are true. The real 
world validity of the whole must be judged by comparing theoretical prediction 
with actual experiment. For a few, all too few, applications this has been done 
and documented so that the formal science of propensity probability for those 
applications has been advanced to the status of trustworthy conclusion, which is 
science. However, for other chance experiments, where belief has not been tested, 
then propensity probability is just formal science; the probability model "though 
consistent with itself" may simply not be an appropriate "analogy." 

7.5. The Single Instance 

Frequency probabilities, particularly of the vonMises type, have been criticized 
on the grounds that they do not say very much about a single observation; since 
probability is a property of a collective, we cannot speak of the probability of 
"heads" on a single flip of a coin. Equally likely and fair bet probabilities on the 
other hand, make no reference to embedding a particular flip in a class and hence 
are applicable to the single instance. 

Now turning to propensity probability, since it is a property of experimental 
situation E, that is the class of all trials performable using that recipe, trials of the 
class play a symmetric role in the definition. Therefore it is merely a convention 
whether probability is a property of the class or a common property of each trial 
in the class. Since flipping a coin is a repeatable situation, we can speak of the 
probability of "heads" on a single flip even though it would take many flips to 
accurately estimate that probability. Frequency does not directly check probability 
in the single instance but indirect verification is the rule for scientific theories. 
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For example, the definition and measurement of the coefficient of friction of a 
mechanical system depends on much theory and many experiments previously 
performed on other mechanical systems. 

We think that frequency probabilities, particularly those of the propensity type, 
are applicable to the single instance but that the nature of "the single instance" 
needs careful discussion. Propensity probability is a property of an experimental 
recipe but it "rubs off" on the individual performances of that recipe. In speaking 
of the propensity probability of "heads" the reference is not to the "coin" but to the 
"flip of the coin." Here much is usually understood about the manner of "flipping 
the coin;" if the coin is bent or the flipping is done by machine then the tendency 
for "heads" to occur may be changed. 

Example 7.5 Actuarial Science. Jones, aged 36 and male, wishes to buy one-year 
term life insurance. The cost of this insurance will be largely determined by his 
probability of dying, as estimated using the relative frequency for a sample of 
like individuals. In this very real cost-determining sense, that which is measured 
by relative frequency does attach to Jones as a member of a group subject to a 
common experimental recipe. 

But Jones can be seen as being "like" different groups of individuals. If Jones 
purchases his insurance as an employee of his employer, then experience may 
indicate his probability of death to be one in a thousand. If he purchases his insur­
ance as a member of the American Statistical Association, then the corresponding 
experience may be one in two thousand, and this difference will be reflected in 
his premium. The premium depends on the risk pool—called a cohort—to which 
Jones can establish himself as belonging. As an object, Jones does not have two 
probabilities of dying; as an object he has no (propensity) probability of dying. 
But probability does attach to Jones as representative of a group and if he can 
be seen as representing two separate groups, then the two probabilities would be 
expected to differ. The single instance which determines his premium refers to 
the experiment of picking an individual from the relevant risk pool and observing 
whether that individual dies. The risk pool of reference is crucial. 

7.6. Locations of Some Kinds of Probabilities 

All probabilities are subjective but not to the same extent. Propensity probabilities 
are influenced by mind but they are regarded as being about a performable exper­
iment, and to that extent they are physical. They are ultimately unknowable but 
their existence in nature, in the sense of trustworthy conclusion, can be tested. 

Fair betting and belief probabilities are influenced by the nature of the experi­
ment through its effect on the judgment of the observer. For instance, odds at the 
track are influenced by the field a horse is racing against. But fair betting proba­
bilities are about what an observer thinks about the experiment; they are personal 
since odds which will appear fair are a matter of personal judgment. Fair betting 
probabilities need have no relation to how nature is, but the correspondence can 
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TABLE 7.4. Locations of some kinds of probabilities 

Kind Location 

Equally likely 
Laplacian Mind of Laplacian 
Physical Experimental recipe 

Fair betting (or belief) Mind of bettor (see Section 6.2) 
Frequency 

vonMises Collective 
Propensity Experimental recipe 

be checked and corrected by performing the experiment which is the object of the 
betting, if there is one. If there is no performable experiment then degree of belief, 
as usually developed in Section 6.2, does not apply. 

Both numerator and denominator of equally likely probabilities-the ratio of the 
number of favorable outcomes to the total number of possible outcomes of an 
experiment-are directly influenced by the experiment. But equally likely probabil­
ities may be either physical or personal depending on their regarded location. By 
adding further constructs equally likely probabilities can be seen as either propen­
sity or subjective; but these constructs are not immediate so that equally likely 
probability is best thought of as a third interpretation which is sometimes the most 
appropriate. Table 7.4 is a useful summary. 
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8 
A Framework for Statistical Evidence 

8.1. Introduction 

We begin our discussion of statistical evidence by clarifying terms; while it won't 
quite serve as a definition, that aspect of statistics which we consider is concerned 
with models of inductive rationality. We will be concerned with rational reasoning 
processes which transform statements about the outcomes of particular experi­
ments into general statements about how similar experiments may be expected to 
turn out. The purpose of statistical theory is to guide and explain statistical methods. 

The concepts of experiment, parameter, and evidence play central roles in sta­
tistical theory and yet discussion of their meanings is often carefully avoided. 
What is an experiment? A parameter? What is statistical evidence about? Much 
statistical theory provisionally assumes the true density of data Y to be some un­
known member of a family F; but the nature of the provision is not discussed. 
Often, according to Basu (Ghosh, 1988, p. 12), Y is considered to be the result of 
an "experiment performed with a view to elicit some information about a physi­
cal quantity ^." Birnbaum (1962) adopts such a view; he writes Ey(E, y) for the 
"evidential meaning" of obtaining data y as the outcome of experiment £. Ey(E, y) 
is often considered to be the report to be written as a result of performing E and 
observing _y. 

The dominant framework for statistics concerns a true parameter value or state 
of nature. 

S.7.7. The 'True Value'' Model 

i. The raw material of a statistical analysis is an observation y on a random 
variable Y The totality of possible ways in which Y might turn out, {j} = 5, 
is called the sample space. 

ii. the density of Y is known to be a member of the set F = {fo : 0sQ}2ind hence 
can be written as /^where r is the unknown true value of ^; r is a fixed but 
unknown constant. The parameter ^ is a possible candidate for r. The set of 
all candidates for r, denoted by ^ , is called the parameter space. Thus /r is 
the consequence of a true "state of nature" obscured by chance variation. 

75 
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iii. Berger and Wolpert (1984, p. 24), and others, identify the concept of an exper­
iment with the triple (F, ^, F); they write E = (F, ^, F). Thus an experiment 
is formulated in terms of a parameterized set of densities know to contain the 
true density of Y. 

iv. Concerning Birnbaum's concept of evidential meaning, Berger and Wolpert 
(1984, p. 25) specify that Ey{E, y) is the "evidence about 0 arising from 
E and y." 

In spite of its general acceptance as background for statistics—for example, 
Lehmann (1986) or Berger and Wolpert (1984)—we are critical of the true value 
model. 

We first observe that the assumption (ii)^that the functional form of the density 
of Y is exactly known—cannot be literally correct. Hence fx and r do not exist: 
the true density of Y will not be a member of F and will depend on conditions 
other than the state of nature, for example, the observer and his equipment. We 
enlarge on this in Section 8.5. Second, in the next section, we will explain that an 
experiment is a text, the instructions for performance, not a triple (F, ^, F). As Basu 
says (Ghosh, 1988 p. 23), (F, 6, F) is only a model, a mathematical framework, for 
E. Third, contrary to our usage, it is usual to not distinguish between r and 0. The 
meaning of (iv) is then unclear; it probably means that Ey{E, y) is about inferring 
which fe in F is/^, the true density of Y Finally, Section 8.3 explains that a purely 
empirical model of induction—implied by the notation Ey{E, y)—does not exist; 
a missing ingredient is theory. Section 8.4 suggests an alternative interpretation 
which repairs these difficulties and 8.5 illustrates the superiority of this alternative. 

8.2. What Is an Experiment? 

An experiment is not a set of possible densities of a random variable. The purpose 
of experimentation is to ask a question of nature—conditions are imposed and 
nature's response is observed. Measurement is a kind of experiment; the question 
is, "How much of a property does a thing have?" (cf. Eisenhart, 1963). We may 
think of an experiment E abstractly as a doublet (C, Y) where C and Y describe the 
conditions imposed on nature and the instructions for observation, respectively. An 
experiment is in fact an experimental situation or setup, the recipe for performance. 
A performance or realization of the experiment consists of carrying out the recipe, 
imposing the conditions, and observing the outcome. 

It is customary, as we have done in Section 5.2, to introduce the concept of 
probability experiment or chance situation by coin, dice, or card examples, leav­
ing it otherwise completely undefined. This tactic conveniently sidesteps difficult 
issues for axiomatizing probability but is quite unsatisfactory for the purpose of 
providing interpretations. We need an example which is slightly more involved. 

Example 8.1 Toy truck experiment. Wishing to illustrate the determination of the 
coefficient of friction of a toy truck, for illustrative purposes, H.E. White (1958) 
arranged the experimental setup of Figure 8.1 on a tabletop. A stopwatch was 
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FIGURE 8.1. Coefficient of friction of a toy truck. 

TABLE 8.1. Five determinations of a coefficient of friction 

Observed 
force (F) 

.196 

.392 

.588 

.784 

.980 

Observed 
time (t) 

6.05 
4.19 
3.40 
3.03 
2.54 

Calculated coefficient 
of friction (/x) 

.0016 

.0026 

.0035 

.0067 

.0026 

used to observe the time required for the truck, having a mass of 2 kg, to be 
pulled 1.5 meters across a piece of glass. The equations F — mgfx = m a and a = 
2s/t^ are to be used to calculate /x, the coefficient of friction. F (Newton's) is the 
force pulling the truck, and t (seconds) is the observed time, m (kilograms) and a 
(meters/sec^) are the mass and acceleration of the truck, and s = 1.5 (meters) is 
the distance traveled. The acceleration due to gravity is denoted by g. 

This is the text, the recipe, for performance (C, 7), which is the experiment. 
Note that, to define the experiment, nothing need be said about a class of possible 
densities or a triple (7, ^, F). 

The data of Table 8.1 were observed. From five different pieces of data, five 
different estimates of /x, the coefficient of friction, may be calculated. The results 
of these calculations are given in the last column of Table 8.1. Table 8.1 is a record 
of five different performances of an experiment. Further theory is necessary to 
formulate and determine "the" coefficient of friction. 

8.3. Ey{E, y) Does Not Exist 

Statisticians are used to thinking that they apply their logic to models of the world; 
less common is the realization that their logic itself is only a model. 

Writing a report of the meaning of observing data y as the outcome of experiment 
E, in the absence of all theory, would be tantamount to a purely empirical scientific 
method. But it is widely accepted—Chalmers (1982, Ch. 3) and Savage (1962, 
pp. 14 and 15)—that theory and experiment are both essential to scientific process. 
Savage makes this observation to argue for prior distributions, but another part of 
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evidential meaning is the criteria or tradition according to which the experiment 
is to be judged as a solution to the puzzle at hand. 

The existence of Ey(E, y) would imply a unique inductive logic for transform­
ing particular to general statements, but even deductive logic—which transforms 
general statements into other general statements—is not unique. Till quite recently, 
it was believed that Aristotelian logic was the only possible deductive logic, but 
it is now realized—Eves (1990, pp. 166, 243)—that there are an unlimited num­
ber of possibilities and that a mathematical theory results from the interplay of 
two factors—a set of postulates and a logic. It isn't reasonable to expect greater 
specificity for induction than for deduction. 

Rather than Ey(E, y) we should ask about Ey(E, T, y), the evidential meaning 
of observing y as the outcome of experiment E in the context of some theory T. An 
important part of T is the inductive logic being employed. Examples of inductive 
logics are Bayesian statistics and p—values. This makes it clear that Ey(E, Ti, y) 
need not equal Ey(E, T2, y), in agreement with our Section 2.3. The true parameter 
model is an example of the Euclidian misconception; it assumes that conclusions 
from data are about evidence rather than models of evidence. Perhaps the belief 
is, that this error makes no difference, and hence is not worth exploring. But our 
further discussion suggests a change in perspective which has consequences. 

8.4. The Fitted Parameter Model 

A quote of Karl Pearson—found in Inman (1994, p. 6)—emphasizes the funda­
mental nature of the point we are making: 

The 'laws of Nature' are only constructs of our minds; none of them can be asserted to 
be true or to be false, they are good in so far as they give good fits to our observations of 
Nature, and are liable to be replaced by a better 'fit'... 

The "true value" is a philosophical abstraction—traceable to the ancient Greeks— 
to which we have become accustomed; but it is not verifiable since observations of 
it will employ specific instruments and persons. More recently, Davies and Kovack 
(2001, p. 3) make a similar point: 

We take the point of view that models are approximations to data. In particular we make no 
reference to "true" regression functions for real data as we do not think that these exist in 
the sense that, say, elephants exist. By formulating the problem in terms of approximation 
we avoid the embarrassment of using the word "true." 

To a statistician, Pearson's observation suggests the fitting of a density to data 
but there is a model building issue which is more important. The experimenters will 
not wish to fit just any experiment, they will be varying the text (C,Y) to achieve a 
condition- outcome correspondence which is "interesting," usually one which fits 
background knowledge or preconceived opinion. Parameters are constructs to fit 
an intended (target) experiment. 

Further, although we prefer to think that we are measuring or discovering the 
"true value"—because like Everest it is there—it is partially negotiated. 
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In the final analysis, the "true value" of the magnitude of a quantity is defined by agreement 
among experts on an exemplar method for the measurement of its magnitude. 

Eisenhart (1963, p. 30). 

This negotiation is the mission of, for example, the 130 technical committees of the 
American Society for Testing and Materials (ASTM) that establish standards for 
materials, products, systems and services. More than 10,000 standard test methods, 
specifications, classifications, definitions, and recommended practices now in use 
appear in the Annual Book of ASTM Standards (1999). Though they might talk 
otherwise; ASTM committees are not engaged in discovering "true values." They 
are concerned with constructing experiments which are reliable in that one can 
predict the results of future experiments on the basis of past experiments. 

If fr and r do not exist, how then might we view the background of statistical 
inference? We suggest the alternative. 

Fitted Parameter Model 

i. "A conclusion is a statement which is to be accepted as applicable to the 
conditions of an experiment or observation " (Tukey, 1960, p. 425). The 
basic concept of a statistical investigation is that of experiment, not true value. 

ii. An experiment is a recipe E = (C,Y) for performance, not a triple. 
iii. The triple {Y, ^, F) is not a characterization of E, but only an assumption about 

E; it summarizes the background working hypothesis that observations on 
E = (C,Y) can be fitted to some density in the class ¥ = {fe :0 eQ}. The 
parameter 0 is an index of densities being considered as candidates for fitting 
E, and F designates all densities currently being considered. 

iv. The best-fitting density (BED) of (iii) is sometimes interpreted as the true 
density of Y, but it only needs to be sufficiently precise for the practical purpose 
at hand. The BED is not the consequence of a true state of nature obscured by 
chance variation. In fact it is the other way round: the BED is a construct to fit 
E; hence, it is not a constant of nature but varies with E, F and the criterion for 
fitting. 

V. Ey(E, r , y) is not about the labeling of densities or the true value of a param­
eter; it is a statement—based on inference theory T—about fitting densities of 
the class F to experiment E. The assumption (F, ^, F) is a part of T. 

We are really concerned with fitted rather than true parameters. The reality of the 
situation (the only observable truth) is the pattern of values exhibited when an 
experimental recipe is applied, and properties of things^itted parameters—are 
constructs to describe this pattern. 

8.5. Interlaboratory Experimentation 

There has been work on the nature of chance situations, particularly by Shewhart, 
(1939), Youden (1962), Eisenhart (1963), and Deming (1986). Their work on 
interlaboratory measurement makes the concept of experiment particularly clear. 
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Shewhart formalizes the measurement experiment as consisting of a "text." 
Eisenhart calls this text a method of measurement and distinguishes it from a 
measurement process: 

Specification of the apparatus and auxiliary equipment to be used, the operations to be per­
formed, the sequence in which they are to be executed and the conditions under which they 
are respectively to be carried out—these instructions collectively serve to define a method 
of measurement. A measurement process is the realization of a method of measurement in 
terms of particular apparatus and equipment of the prescribed kinds, particular conditions 
that at best only approximate the conditions prescribed, and particular persons as operators 
and observers. 

Eisenhart (1963, p. 21) 
Concept of a "Repetition" of a Measurement 
As a very minimum a "repetition" of a measurement by the same measurement process 
should "leave the door open" to, and in no way inhibit changes of the sort that would occur 
if, on termination of a given series of measurements, the data sheets were stolen and the 
experimenter were to repeat the series as closely as possible with the same apparatus and 
auxiliary equipment following the same instructions. In contrast, a "repetition" by the same 
method of measurement should permit and in no way inhibit the natural occurrence of such 
changes as will occur if the experimenter were to mail to a friend complete details of the 
apparatus, auxiliary equipment, and experimental procedure employed—i.e., the written 
text specification that defines the "method of measurement" concerned—and the friend, 
using apparatus and auxiliary equipment of the same kind, and following the procedural 
instructions received to the best of his ability, were then after a little practice, to attempt 
a repetition of the measurement of the same quantity. Such are the extremes, but there is 
a "gray region" between in which there is not to be found a sharp line of demarcation 
between the "areas" corresponding to repetition" by the same measurement process, and to 
"repetition" by the same method of measurement. 

Eisenhart (1963, p. 41) 

The distinction between method and process will remain important for exper­
imentation in general. On the one hand there is Shewhart's "text" or Eisenhart's 
"method" or what we have called the "recipe" (C,Y). On the other there is the 
process of experimentation (C, Y,j) which is a realization of (C, Y) under particular 
circumstances j—which we call the "laboratory." Different circumstances will be 
important for different experiments but will always include fixed equipment and 
operators. Often an important consideration is that a series of experiments is car­
ried out with fixed "setup", calibration or orientation. Sometimes the day or time 
period on which the experiments are carried out is relevant. Two experimental pro­
cesses following the same method will differ because of unavoidable imprecision 
in the text and the impossibility of carrying out precise instructions in practice; 
see Eisenhart (1963, pp. 165-6). 

Example 8.2 The astronomical unit.Youden (1962) presents 15 determinations 
of the astronomical unit—the average distance between the earth and sun—along 
with each experimenter's estimate of spread (see our Table 8.2). (Youden does 
not specify the meaning of "estimate of spread.") He comments, "the best value 
reported by a later worker is often far outside the limits assigned by an earlier 
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TABLE 8.2. ^Different values reported for the astronomical 
unit* (Values 1-12, from Scientific American, April 1961) 

Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Source of 
measurement and date 

Newcomb, 1895 
Hinks, 1901 
Noteboom, 1921 
Spencer Jones, 1928 
Spencer Jones, 1931 
Witt, 1933 
Adams, 1941 
Brower, 1950 
Rabe, 1950 
Millstone Hill, 1958 
Jodrell Bank, 1959 
S. T. L., 1960 
Jodrell Bank, 1961 
Cal. Tech., 1961 
Soviets, 1961 

A.U. in 
millions 
of miles 

93.28 
92.83 
92.91 
92.87 
93.00 
92.91 
92.84 
92.977 
92.9148 
92.874 
92.876 
92.9251 
92.960 
92.956 
92.813 

Experimenter's 
estimate of 

spread 

93.20-93.35 
92.79-92.87 
92.90-92.92 
92.82-92.91 
92.99-93.01 
92.90-92.92 
92.77-92.92 

92.945-93.008 
92.9107-92.9190 
92.873-92.875 
92.871-92.882 

92.9166-92.9335 
92.958-92.962 
92.955-92.957 
92.810-92.816 

*This is Table 16 of Youden (1962, p. 94). 

worker." In fact, only 22 pairs of estimated intervals overlap, out of a possible 105. 
It seems clear that the various workers are actually estimating different quantities. 
The value of the astronomical unit depends on how the averaging is done: Who 
does the averaging? What equipment is used to measure it? What auxiliary theory 
is used? Is the equipment reoriented for each measurement or is a single "setup" 
used for all measurements? How are the measurements to be distributed over time? 
Does the effect of weather on measurement need to be accounted for? etc. 

"The" astronomical unit depends as well on the method and process of measure­
ment, (C,Y) and (C,Y,j), respectively. Further examples illustrating the unknown-
able nature of the "true value" are provided by Deming (1986, p. 280), Shewhart 
(1939, pp. 66-70) and Frosch (2001, p. 8). 

Deming (1986) declares that the true value does not exist. At least we must agree 
that it is not an operational concept. There is no way of deciding its existence, nor 
its numerical value if it does exist, On p. 280 he says, 

... the process average will depend on the method of sampling lots, as well as on the method 
of test and the criteria imposed. Change the method of sampling or the method of test and 
you will get a new count of defectives in a lot, and a new process average. There is thus 
no true value for the process average. It comes as astonishment to most people that there is 
no true value for the speed of light. The result obtained for the speed of light depends on 
the method used by the experimenter (microwave, interferometer, geodimeter, molecular 
spectra). 

And on p. 281 he further explains that there is no true number of inhabitants in a 
census since the number obtained will depend on the method of collection. 
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This observation—the statistician's dilemma—was illustrated by the 2000 
United States national election. Who "really" won quickly degenerated into a 
morass procedure concerning recounts, ballot deficiencies, dangling chads, absen­
tee ballot deadUnes, quaUfied voters, and legal decisions see Frosch, 2001, p. 8). 
It is a poHtical maximum that an election isn't over till the votes are counted. 
The declared winner depends, in part, on the manner of counting the votes, the 
experiment performed. We sometimes hear analysis of who "really" won; these 
depend on the experiment intended, the target experiment, which may differ from 
that performed. Different interested parties will naturally have different intentions 
and hence, in close elections, different conclusions about who "really" won. This 
disagreement need not involve dishonesty, merely different views about which 
votes "should" be counted. 

Shewhart (1939, pp. 66-70) examines scientists' measurements of three of the 
fundamental constants of physical science, namely, the velocity of light c, the 
gravitational constant G, and Planck's constant h. He concludes, ". . . here... we 
have a sample of measurement among the most elite of pure science that do not 
seem to behave like drawings from a bowl of chips"; he attributes the discrepancy 
to "constant error." 

Now, from a theoretical point of view, consider that several laboratories are 
available to measure a property of the same "thing." A common true value param­
eterization of the processes (C, F; 7) is : Yij = r -\- Pj + Wtj, where Ytj is the ith 
measurement carried out by laboratory j , r is the true value of the magnitude of 
the property, ^j is systematic bias, and the W^^s, assumed independent, are obser­
vational errors. We may write a? for the variance of Wtj. This model is wishful 
thinking; there is no knowable true r. 

For simplicity, consider only two laboratories. The normal equations, from 
which weighted least square estimates are calculated, reduce to Yj = r -\- fij, j = 
1,2, where Yj is the mean of measurements taken by laboratory]. These equations 
give us no hint about the value of r, they have infinitely many solutions: r = c 
and fij = Xj — c; j = 1,2. In the language of general Hnear hypothesis theory 
(Scheffe^ 1959), ris not estimable: there is no linear unbiased estimate of it. It is 
common to call (Fi -h ?2)/2, an estimate of r but this statistic actually estimates 
^ + (î i + i^2)/2, and if r were really a property of nature, the systematic measur­
ing error of the two different laboratories would be unrelated and usually would 
not sum to zero. 

On the other hand, consider the fitted value parameterization of the processes 
(C,Y;j) 

Yij = fij -f Zij 

where /xy = EYij and hence Zij = Yij — EYij is experimental error. The expecta­
tions and experimental errors of the two laboratories may be anticipated to differ. 
Now Yij = iji -^ Sj -\- Zij where /x = (/xi + /X2)/2and5y = jUj — /x. This param­
eterization assumes only that the expectation or some other measure of central 
tendency exists. The normal equations now reduce to Yj = /JL-\-Sj', j = I, 2. 
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Note that 5i + 2̂ = 0 so that (?i + Yi)!"! estimates /x; but \x is not r, the true 
value of the property being measured, rather it is a compromise being fitted to the 
systematically different determinations of the two laboratories. 

The above compromise is appropriate to a target population of two laboratories 
available to perform the experimental method (C,Y) equally often. A reasonable 
model, where the recipe does not specify which laboratory will be used, is that 
the laboratory is chosen at random. Then, the expectation of the randomly cho­
sen measurement is {\i\ + /X2)/2. The parameter of the method (C,Y) is /x = 

\\x\ -\-ui)ll. 
In summary, interlaboratory measurement illustrates that, as Karl Pearson and 

others state, statistics is not about inferring true values r; they are unknowable 
(even unidentifiable.) Instead it is about \x, a data fitting property of an experiment 
(method and or process) on nature: /^ must fit sufficiently well for the practical 
purpose at hand and at least as well as any other fe currently under consideration. 
We might then call \x the best-fitting value. Experiments are not defined by pa­
rameters. It is the other way round; parameters are defined in terms of models of 
experiments. 

8.6. Conclusion 

The current framework for statistics—the true value model—has several nonintu-
itive features. These discrepancies have been pointed out by various authors but 
have attracted little interest. Perhaps the belief is that they make little difference 
and hence are not worth exploring. We offer an alternative framework which re­
pairs these discrepancies. We may think either that the true value does not exist or 
that it depends on the target experiment and hence is not "the state of nature." This 
may just be calling things by their correct names but the alternative interpretation 
has consequences for both statistical theory and practice. 



A Critique of Bayesian Inference 

9.1. Randomness Needs Explaining 

Rubin (1984) describes statistical inference to be Bayesian, if known as well as 
unknown quantities are treated as random variables—knowns having been ob­
served but unknowns unobserved—and conclusions are drawn about unknowns 
by calculating their conditional distribution given knowns from a specified joint 
distribution. 

A more formal version of Rubin's Bayesian inference in the discrete case is as 
follows: Two quantities, Y and 0, with ranges S and Q, respectively, are treated 
as random variables with specific joint probability p(y, ^). Y = y is observed 
and therefore known; 0 is an unknown quantity about which we wish to make 
an inference. The inferential conclusion to be drawn is that the posterior prob­
ability, the conditional probability of 0 given Y = y, is n{0 \y) = p{y, 0)/p(y), 
^hQrtp(y) = Y.^^^p(y,0). 

For continuous random variables (r.v.s.) a similar development yields the same 
inferential conclusion except that probabilities are replaced by density functions. 

The usual way of specifying p(y, ̂ ) is by specifying the prior and the likelihood. 
The prior, n{0), is the marginal probability of 0. The sampling density is the 
conditional probabihty of Y given ^, it is specified to be some member of a 
parametric class F = {f(y \0) \ 0 G Q}. The likelihood is the sampHng density 
considered as a function of 0. The joint probability p(y, 0) is specified since it 
is the product of the specified sampling density and prior. Now, our inferential 
conclusion becomes 

n{e\y) = f{y,e)7T{0)/p{y)\ 

the posterior probability is proportional to the product of prior and likelihood. 
Some history provides perspective. Bayes' own illustration was published in 

1764-65. A modem version, based on Todhunter (1949, p. 294), first pubhshed in 
1865, follows: Denote by AB one side of a rectangular billiard table, the opposite 
side being one unit away. Let X (0 < X < 1) be the distance from AB of a ball 
randomly thrown on the table. In n further independent random throws of the ball 

84 
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on the table, let S denote the number of throws on which the ball is closer to AB 
than on the original throw. For 0 < b < c < 1, 

c c 

< X < c, S = s) = /pr(S = s|X = x)dx = / ( ^ ) x'(l - x f - ^ x , pr(b 

and in particular 

1 

pr(S = s) = I \ \ x'(l - x f dx. 
0 

Combining the above two equations we obtain 

c 

/ ( 
x'il-xf-'dx 

pr(b < X < c|S = s) = 

/ ( " ^ s 
0 

x\\-xf-'dx 

This, strictly speaking, is Bayes' theorem; it is a continuous version of the finite 
result which we have given that name in Section 5.2. 

About 1774 Laplace initiated the use Bayes' ideas to estimate the probabilities of 
causes from observed events. One of Laplace's results, called his rule of succession, 
is that if an event has happened n times without failure, then the probability that 
it will happen on the next trial is (n + l)/(n + 2). Laplace has illustrated the use 
of his rule by calculating the probability that the sun will rise tomorrow given that 
it has risen each morning for a recorded history of 5,000 years or 1,826,213 days. 
He obtains odds of 1,826,213 to 1 for the required event. Laplace's rule can be 
derived from the assumption of Bernoulli trials with uniformly distributed success 
probability. Write 0 for success probability, Xt = 1 or 0 to indicate success or 
failure on trial / and F„ = Yll=\ ^t- Then 

(n+l = l,Yn=n) = 

I 

1 /?r(X„+i = l,Yn=n)= 0' O'^dO = (^ + 2) 

0 

pr(Yr 

and 

; = n)= j e^de = {n + \)-\ 

pr{Xn^, = \\Y^=n) = {n + \)/{n + 2) 

There are several approaches to Bayesian inference, depending on what is meant 
by "treating" a quantity as a random variable. First, there is unexplained Bayesian-
ism where, as a matter of faith, one simply takes all quantities to be random 
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variables. But, as Deming points out (our Section 7.1) that chance is not a neces­
sary consequence of indeterminism. Consideration needs to be given to whether 
Kolmogorov's axioms are satisfied. 

Todhunter (1949) criticizes unexplained Bayesianism. Referring to Bayes' orig­
inal problem, he says. 

It must be observed ... that ... we know that a priori (any value of x between zero and 
one) is equally likely; or at least we know what amount of assumption is involved in this 
supposition. 

He then contrasts this with the rule of succession: 

In the applications which have been made of Bayes' theorem, and of such results as that 
which we have taken from Laplace... there has however often been no adequate ground for 
such knowledge or assumption. 

Unexplained Bayesianism is immediately suspect since it is a theorem without 
hypotheses—a procedure to be followed without explanation. Later, in Table 9.2, 
we provide a counterexample to unexplained Bayesianism: an instance where 
an initially promising quantity does not conform to the probability axioms. Other 
approaches to Bayesian inference attempt to explain why we may treat the relevant 
quantities as random variables. We like this kind of Bayesian theory; if a prior 
distribution can be motivated, then by all means use it. 

Rubin's description uses the probability concepts of random variable and prob­
ability distribution. Such entities have no extra mathematical meaning or conse­
quence until they are interpreted. This is not a criticism of Rubin's description; it is 
the nature of all mathematics (Eves, 1990, p. 149). While the major interpretations 
of probability are in terms of chance experiments, probability need not have any­
thing to do with chance; areas of subsets of the unit square satisfy the axioms. But if 
Bayesian inference is to be considered an explanation of why specific conclusions 
follow from specific data then it must conform to some interpretation of probabil­
ity, for Bayes' result is a theorem of probability. We take the position that some 
quantities are reasonably modeled as following the rules of probability and some 
are not, and the onus is on the declarer- the user of Bayesian statistics—to provide 
some explanation of why a quantity may reasonably be considered random. 

9.2. How to Adjust Your Belief 

There are several explanations of Bayesian inference. First, we may employ the 
Chapter 6 interpretation of probability as personal degree of belief through con­
sideration of "economic man." Our subsequent discussion provides necessary and 
sufficient conditions that economics does explain Bayesian inference. Any such 
analysis must involve economic ideas but we strive for an elementary and self-
contained treatment which assumes no prior knowledge of economic theory. 

A nice economic argument—Chapter 6 is our version—indicates that a person's 
risk-neutral pricing system on various wagers concerning Y and ^ is a probability. 
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say, p(y,^). Savage (1962, Sect. 2) is an appropriate early reference; he presents the 
case for subjective probability as follows: "Roughly speaking, it can be shown that 
. . . a probability structure Pr - • - exists for every person who behaves coherently 
in that he is not prepared to make a combination of bets that is sure to lose; the 
structure is such that 

Pr(A)/Pr(nOt A) = P r ( A ) / { l - Pr(A)} 

is the odds that he would barely be willing to offer for A against not A. "The 
concept of (equilibrium) price cannot be altogether escaped by anyone who would 
think of his own or other people's economic behavior." Therefore, since "'opinion,' 
when analyzed, is coterminal with 'odds,' " degree of belief is to be quantified as 
probability (see Chapter 6 for details). By assumption A4 of Section 6.2, p(y, 0) 
quantifies personal degree of belief in the joint outcome F = j , 0 = ^.Therefore, 
by the rules of probability, degree of belief in 0 = ^ changes from ^y^s P^y^ ^)— 
the prior density—before data, to the conditional density ^^(j, 0)/ Y^Q^Q p(y, 0)— 
called the posterior—upon observing Y = y. 

As Rubin prescribes, the known y and the unknown 0 are both treated as random 
variables—y having been observed but 0 unobserved—and conclusions about 0 
are drawn by calculating the conditional distribution of 0 from the joint density 
P(y, 0). 

An individual's posterior degree of belief in the hypothesis 0 = ô relative to 
0 = 1̂ is determined by the ratio 

^(^oly) ^ /(yl^o)^(^o) .9^. 
7r(^i|y) /(y|^i)7r(^i)' 

The individual will tend to believe 0̂ over 0\ if this ratio exceeds one, and rela­
tive strength of belief increases with the ratio; the ratio of posterior probabilities 
quantifies the Bayesian evidence—grounds for belief—of y for 0̂ over 0\. 

In summary, the coherence argument—put your money where your (risk-free) 
belief is—leads to the Bayesian result that belief is to be updated, to reflect new 
data, according to Bayes' theorem. 

Example 9.1 Prisoner's dilemma (continued). The discussion of Example 7.1 
satisfies Ruben's specification: Writing 0 and R for prisoner to live and jailer's 
response, then R is known but 0 is unknown and both are to be treated as random— 
R = r having been observed but 0 still unobserved. Conclusions about 0 are to 
be drawn from the conditional distribution of 0 given R = r. 

The subjective degree of behef interpretation is that, before the jailor's response, 
A believes the three possible outcomes of 0 are equally likely; hence the prior 
probabihty that A lives is 1/3. The probability of response B given A lives is p, as 
calculated from Table 7.2. From Bayes rule, A's posterior degree of belief that he 
will live is p/(l + p) as before. 
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9.3. The Economic Approach to Group BeHef 

Fair betting price or probability may be interpreted as individual degree of belief, 
but whose utility and whose belief? The statistical analyst's? His client's? Or 
perhaps the belief of an entire scientific community? That scientific belief is more 
social than personal is a major twentieth-century finding of the philosophy of 
science; see our Chapter 3 where we have discussed the work of Kuhn (1962), 
Toulmin (1972), and Hull (1990). A personal Bayesian finding is open to the 
comment: "You are welcome to your opinion, but what is your belief to me?" For 
some purposes what is important is not so much individual belief, but the shared 
behefs of a group. 

Other literature on the economic approach to coherence follows two main 
themes. First, Nau and McCardle (1991) develop a complete descriptive theory of 
economic decision-making, not limited to risk neutral agents. They take the view 
that the separation of belief from risk preference "is inessential to the characteriza­
tion of economic rationality in terms of observable behavior." Their paper is about 
behavior; they sidestep the concept of belief and therefore say nothing about how 
belief can be quantified. 

The second theme develops and studies the properties of what Genest and Zidek 
(1986) call the "supra-Bayesian approach." A good explanation of the supra-
Bayesian position can be found in D.V. Lindley (1985). The bulk of his book 
is about coherent individual decision-making. Then in a closing chapter, Lindley 
argues eloquently that providing a theory of group decision-making is an important 
unsolved problem. He continues, on page 180— 

... notice that it is possible to think of the committee as a decision-maker and for it to 
play the role of someone desirous of viewing the world coherently; of not violating the 
sure-thing principle; and, hence, of producing probabilities and utilities of its own. There is 
nothing in this book that requires the decision-maker to be a person: the theory concerns the 
choice of an action and the chooser could be a committee. There is just as much reason for 
a committee to be rational as for an individual. In other words, our problem can be thought 
of as passing from a set of values, one for each committee member, to a single valuation. 
How is this to be done? At present nobody knows. 

Many authors use the word pooling to describe the process of passing from 
a set of values to a single valuation. The purpose of the pooling may be either 
to achieve consensus or to summarize. Achieving consensus impHes changing 
individual opinions to a common view. A summary leaves individual opinions 
unchanged but restates them more succinctly while retaining their overall sense. 
DeGroot (1974, p. 119) advances an intuitive Markov chain model for "reaching 
a consensus." His consensus takes the form of a subjective distribution function, 

i=l 

where F/ is the pre-consensus subjective distribution function of the ith of k in­
dividuals. Since the O's are positive and sum to one, DeGroot's consensus is a 
subjective distribution common to all individuals. DeGroot's Markov assumption 
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is a clever and intuitive sociological model, but individuals might not reach con­
sensus by this or any mechanism, nor is it clear that they should. Our discussion 
is about summarization. 

Weirahandi and Zidek (1981) describe the group coherence program as aggrega­
tion; individual "assessments are combined in some way into one that may be used 
in a conventional uni-Bayesian analysis." The supra-Bayesian approach therefore 
assumes that group belief can be quantified as a probability. But G.A. Barnard 
(1980) is skeptical: 

The modified personalistic view of probability put forward by Box and Borel is, I think, in­
adequate for statisticians basically because statisticians work for clients. They are therefore 
not concerned with personal probabilities but with what might be called 'agreed probabil­
ities.' And whereas personal probabilities may be said always to exist in principle, agreed 
probabilities need not exist. 

Roberts (1965) and McConway (1981) show us where to look for Barnard's 
"agreed probabilities." Define a rule for pooling or summarizing individual prob­
abilities to have the strong setwise function property (SSFP) if there exists a 
function f such that for each event A, if a i , . . . a/ are the individual probabili­
ties then / ( a i , . . . a/) is their summary. For finite sample spaces this is equivalent 
to McConway's (1981, p. 412) definition. Restriction to SSFP pooling is intuitive 
in the present context since it says that summarized group degree of belief about an 
event depends only on the individual members' degrees of belief about the event. 

An example of a pooling rule having the SSFP is the linear opinion pool, 
f(ai,... a/) = EjWjaj, where the weights are nonnegative real numbers summing 
to one. Roberts (1965) shows that if individual unconditional probabilities are 
summarized by a linear opinion pool, and the combined summary is to satisfy the 
probability calculus, then the group summary of P(B| A) must be 

P(B|A) = ^WjajCj /^Wj^j (9.2) 
j j 

where aj and Cj are P(A) and P(B | A) for the jth individual. Conditional probabilities 
are summarized linearly but the weights are revised and depend on individual 
unconditional probabilities. With this introduction we may state the following 
result. 

Theorem 9.1 For a sample space containing at least three points, if the uncon­
ditional probabilities of a group summary satisfy the SSFP then the completed 
summary will be a probability if and only if the summary of unconditional prob­
abilities is a linear opinion pool and the summary of conditional probabilities 
follows Roberts' rule for weight revision. 

Proof of necessity 
McConway's (1981) Theorem 3.3 implies that, for any SSFP pooling rule, the 
group summary of P(A) will be a linear opinion pool. This places us in Roberts' 
situation where, to satisfy the multiplication rule, we must have equation (9.2). 

Theorem 9.1 tells us that probabilities do exist, on which the members of a 
group may agree. But to adopt that expression of belief without some justification 
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leaves Bayesian inference unexplained. Unfortunately, there is a problem with 
representing group behef as probability. The usual (Chapter 6) coherence argument 
for persons, already has implications for groups. The reason is that gambling is a 
group activity; an individual cannot place a bet unless someone else "covers" his 
bet. Price—which is exchange rate—is a group concept; we cannot contemplate the 
purchase of A or Atickets unless individuals have wealth and a market for exchange 
exists, at least conceptually. A single individual cannot engage in exchange. A 
system of markets and prices is implicit in the price interpretation of probability. 

In one sense, Barnard is correct; the economic approach to degree of belief is 
generally incompatible with supra-Bayesianism. For example, Seidenfeld et al. 
(1989) show that two Bayesians with different probabilities and utilities have no 
Bayesian Pareto compromises except to adopt one or the other's approach entirely. 
Perhaps this settles the matter. The economic explanation of Bayesian statistics 
visuahzed by Savage and Lindley doesn't work in general. But, for complete­
ness, two further questions are of interest: (i) when does the economic approach 
lead to Bayesian inference? and (ii) where does the economic approach lead for 
groups? 

To apply equilibrium price to betting, as Savage suggests, we may view gambling 
on the outcome of a chance experiment £" as a transaction in which two gamblers 
purchase amount c + d of A and A tickets at agreed costs of c and d. The significance 
of an amount q of A tickets is that a pot of amount q is set aside until E is performed; 
the bearer receives the entire pot or nothing according as A does or does not occur. 

Consider a market for A and A tickets which is subject to Savage's probability 
structure. Each individual bettor evaluates his bets solely by comparing market 
price which he considers fixed or outside of his control with his personal unit 
price—determined from his personal odds. He does not bluff, threaten, bargain, 
etc. This is the definition of a competitive market. The group will prefer to behave as 
a competitive market. This is a consequence of the personal probability argument, 
not of economic theory. 

We will be concerned with the holdings—of the form (x,y) where x and y are 
amounts of A and A tickets—of a gambler who is endowed with amount m of 
money. Denote by a(a = 1 — a) the gambler's personal probability of A(A) and let 
p(p = 1 - p), 0 < p < 1, signify the prevailing A(A) ticket price. If 0 < p < a, 
the gambler will wish to buy no A tickets and as many A tickets as possible; the 
situation is analogous for a < p < 1. However, if p = a, then any portfolio of the 
form (tm/p, tm/p)Wi\\ optimize his preference (t is the proportion of the total 
tickets purchased that are A tickets and t = 1 - t). Table 9.1 is a summary. 

TABLE 9.1. 

Condition 

0 < p < a 
p = a 
a < p < 1 

Individual demands for A and A tickets 

t 

1 
0 < t < 1 
0 

X y 

m/p 0 
tm/p tm/p 
0 m/p 
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Group demand is determined by summing over all participating individuals. 
Thus if j designates the j * participant,] = 1 , . . . , /,then 

\{j:p<aj} {j:p=aj} J ' 

(j:p<aj} 

F(p)-

mj 

-P 

{j:p=aj} 

{j:aj=p} 

1 

is the quantity of A tickets that all participants would wish to hold if the price were 
p. Similarly, 

y(p)= E "^J+ E tjmj / (1 -p ) 
\{j:p>aj} (j:p=aj} J ' 

is the demand for A tickets if their price were 1 — p. Choice of p, the ticket price 
faced by the group, divides the group into potential buyers of A tickets and potential 
sellers. Total amount exchanged will be qo — min[x(p), y(p)] since amount sold 
must equal amount bought. 

Equilibrium price is achieved when the demands for A and A tickets are equal, 
x(p) = y(p). This simplifies to 

(9.3) 

where fj = mj/M, M = E i mj, F(p) ^ E(j:a,<p) fj^ and F(p-) = E(j:,<p) fj-

Theorem 9.2 An equilibrium price PA exists and is the solution of the inequalities 

F(p-) < p < F(p). (9.4) 

Proof 
Since 0 < tj < 1, any solution of (9.3) must satisfy (9.4). The inequalities (9.4) 
have a unique solution since F(p) is a nondecreasing jump function with F(0) = 0 
and F(l) = 1 while the function p = 1 — p decreases from 1 at p = 0 to 0 at p = 1. 
The solution PA is the value of p, where z = F(p) intersects the line z = 1 — p. 
PA is an equilibrium price since we may take ti = . . . = t/ = 0 if F(PA) = PA, and 
i, = . . . = ti = [F(PA) - PA]/[F(PA) - F(pA-)] if PA < F(PA). 

The novelty of Theorem 9.2 is that (9.4) does not hold in a general economic 
setting, only for the very special market having Savage's structure. 

Equilibrium price is not in general a probability; counterexamples are easy 
to construct. For the special personal probabilities of Table 9.2 the equilibrium 
prices—calculated from (9.4) assuming equal monetary endowments—of A and 
B do not sum to that of A U B. In passing, this illustrates the error of unexplained 
Bayesianism- uncritically assuming all quantities to be random. Savage sought to 
base Bayesian inference on economic behavior; but the central economic quantity, 
equilibrium price, cannot be "taken" to be random. 



92 9. A Critique of Bayesian Inference 

TABLE 9.2. Equilibrium price is not a probability 

Events 

A 
B 
C 
A U B 

Individual 
1 

.2 

.1 

.7 

.3 

probabilities 
2 

.3 

.4 

.3 

.7 

Equilib rium price 

.3 

.4 

.5 

.5 

As a summary of group belief, equilibrium price has an optimal property. Let 
us suppose that the satisfaction of a group member with a group summary p of 
personal A probabilities is demonstrated by his preferred gambling action at A 
ticket market price p. Specifically, if he will buy, then his satisfaction is measured 
by the amount he was willing to pay minus the amount he does pay; similarly, the 
satisfaction of a seller is measured by amount received minus amount at which he 
would have sold. 

Theorem 9.3 Equilibrium price is the group summary that maximizes group 
satisfaction. 

Proof 
If x~ ̂  (q) > p, then some group member is willing to pay x~ ̂  (q)dq for amount dq of 
A tickets, but his cost is only pdq, [x~^(q) — p]dq is then a measure of that member's 
satisfaction with that purchase and J^^ [x~^ (q) — p]dq is the total satisfaction of all 
buyers. Similarly, J^^ [p - y~Hq)]dq is the satisfaction of all sellers and, therefore, 
S(p) = Q^[x~^{q) — y~Hq)]dq is the satisfaction of all group members with the 
exchange that occurs at price p. The signed area S(p) is maximized when p = PA, as 
is suggested by Figure 9.1. (Actual curves are however discontinuous at individual 
prices.) 

The novelty of Theorem 9.3 is the reinterpretation of a standard economic 
argument for statistical inference. 

price 

equilibrium 

p 

0 

x ^ \ 

^ . 

^ 

supply 

."•-̂ "•-•.. demand 

quantity 

qo 
The crosshatched area represents total group satisfaction with summary value p. 

FIGURE 9.1. Preferred group gambling behavior for a lottery ticket. 
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Barnard's criticism of economic probability comes in two parts. First, the per­
sonal perspective is inadequate for much of statistics. The statistician must satisfy 
his client(s) and the prospective author of a scientific article must convince a peer 
group of referees and editors. The attitude of one individual to the unsupported 
opinions of another will be "What is your belief to me?" Much of statistical practice 
is not about personal belief or behavior, it is about convincing, and hence involves 
multiple persons. Any economic analysis of statistical inference needs to extend 
to the beliefs of a group. 

We think Savage is right about equilibrium price being the natural way to extend 
(economic) personal beliefs to groups. In review: The personal theory already 
contains implications for groups. To employ economic man to explain personal 
belief but reject him when considering public belief would not be coherent in 
the dictionary sense of approaching all problems from a single set of principles. 
Equilibrium price is the most important single feature concerning the preferred 
economic behavior of a group of individuals called a market. Equilibrium price has 
the optimal property of Theorem 9.3. Savage does have the problem of specifying 
the distribution of initial wealth, but let us suppose that problem to be solved— 
perhaps by the democratic criteria of equality. 

A criticism is that equilibrium price cannot be a rational summary of a group 
belief as evidenced by economic behavior since it is not a probability and therefore 
a clever outsider can make a Dutch book against the group. But this ignores the 
constraints of the situation; there is something in Lindley's book which requires 
the decision-maker to be a person. An outsider cannot simply make a bet; he must 
find someone willing to take the other side. To make a bet the outsider must become 
a member of the competitive (according to Savage's structure) market where his 
proffered bet may or may not be accepted. 

Whether the second part of Barnard's criticism—that agreed probabilities need 
not exist—is correct seems to depend on purpose. In the very important task 
of model building, the model assumptions provide probabilities on which ev­
eryone is to be conditionally agreed. For example, Bayes' billiards problem 
prescribes conditionally that the position of the initial ball is uniformly dis­
tributed. Of course, if the individuals of a group are of a consensus then the 
group as a whole can agree on their common view. This follows from our 
Theorem 9.2. 

The present Chapter accepts the economic Bayesian result for persons and for 
conditional model building but is frankly critical of its extension to activities 
where diverse personal views are to be reconciled. Note, in passing, that here 
we have arrived at the same conclusion as the "generally accepted" requirement 
for legal evidence to be admissible—compare Section 4.1. Combining this with 
Chapter 6 findings, we conclude that the fair betting utility interpretation of proba­
bility provides an explanation of Bayesian inference when and only when the con­
cern is a chance experiment which does eventuate and all individuals concerned 
are agreed on the relevant probabilities. The same considerations which indicate 
probability as an expression of personal belief, point toward equilibrium price for 
groups. 
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9.4. Objective Bayesian Statistics 

Subjective Bayesianism has lost ground in recent years, partly because of the 
failure (for groups) of Savage's program to base inference on "economic man" 
but primarily due to a desire to be "objective." Scientists want physics to be about 
matter or energy rather than about the psychology or sociology of physicists. 

A definition of "objective" in this context is hard to find. Is a statistical analysis 
"objective" just because it is not subjective and therefore represents no ones belief? 
And if so, what is the virtue in that? "Objective" is not the same as "nonimfor-
mative." Ni and Sun (2003, p. 160) write "Nonimformative priors are designed to 
reflect the notion that a researcher has only vague knowledge about the distribution 
of the parameters..." and on p. 162 they refer to a nonimformative prior as an 
"expression of ignorance." It takes a mind to be uninformed or ignorant or to have 
vague knowledge. The noninformative prior is a conceptual subjective concept. 
We think that in striving to be "objective," scientists are looking for an analysis 
which arrives at conclusions about propensity probabilities, about the tendencies 
for events to occur when experiments are performed. 

An explanation of the prior, which is subject to a frequency interpretations, is 
that we are fitting a sequence of performances of an experiment by a class of 
exchangeable r.v.s. This impressive explanation is based on deFinetti's theorem. 

IfthejointdistributionofafinitenumberoftherandomvariablesXi, X2, • • -does 
not depend on which are chosen, but only on how many are chosen, then the 
random variables are exchangeable. That is, the sequence is exchangeable if 
for every /:i, • • •, /:„ and every m, we may wnicpr(Xk^ < -^i, • • *, X^^ < Xm) = 
Gm(xi,' " ,Xfn), Random variables which are independent and identically dis­
tributed (i.i.d.) provide an example of exchangeability. 

Theorem 9.4 (de Finetti) The concept of exchangeability is equivalent to that of 
conditional independence with common d.f. 

An outline of a proof due to Loeve' (1955, p. 365) follows: 

Proof 
The empirical d.f.Fn(x) = n~^ J21=i ^ i^i - -̂ l approaches a random func­
tion F(x) which has the properties of a distribution. For, Fn(x).Fm(x) = 

(nm)-^ Tf ,v / [Xi < X, Xi' < x] and, for m <n, EFn(x)Fm(x) = -Gi(jc) + 

^^—-G2(jc, x); thus E [F„(x) - Fm(x)f = ^^—^ [Gi(x) - Giix, x)] -^ 0. 
n nm m->oo 

Therefore F(x) exists such that F„(x) -^ F{x) in probability. Since Fn{x) is 
a distribution function (d.f.), the limit F(x) also has those properties. By the 
dominated consequence theorem, for k = 1,2, •" ,m, EFn(xi)" • Fn(xk) —> 
EF{xi)'-^F{xk) 

On the other hand EFn{x\) • • • Fn{xk) —> Gk{x\, • • •, Xk). Consider the 
n->oo 

case k = 2, F„(xi) • Fn{x2) = (n'^) E M - I ^ i^i < -̂ ^ ^i' < ^i'^ and EF^ixi) • 

Fn(x2) = z—G2(xi,X2) + - 7 ^ 1 [min(xi, X2] ^ G2 (^i, ^2). 
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Similarly, 

fv' — n(n — 1) — n 
EFn(xi)Fn(x2)F(x3) = r Gsixu X2, X3) + 0(n) 

-^ G3(Xi,X2,X3) 

The general result is similar but more complicated. Finally, putting the two lim­
its together, Gk(xi, • -- ,Xk) = EF{x\) • • • F{xk), where the expectation is with 
respect to the randomness of the d.f.F. 

The conditional distribution of Xi, • Xŷ  given that F„ approaches F in proba­
bility is F(xi) • • • F(xk); the unconditional distribution is EF (xi)... F (xk). De­
note the marginal probability density of lim F„ = F, over the space of all distri­
butions, by Y\F(^^' I^ usual applications Yip is either a discrete probability or an 
ordinary derivative but in general, a Radon-Nikodyn derivative is required. 

Now the posterior density, the conditional density of FgivenXi = xi, • • • ,Xk = 
Xk, is 

0(^1 ^ d(Xi)-'-d(Xk)UF(^) 
Effixi)'"f(xk) 

where d and f are densities of the distributions D and F, and Y\F—the prior—is the 
marginal density of lim Fn = F. The theorem of de Finetti allows us to interpret 
the prior as the marginal probability of the limiting empirical distribution function 
of a sequence of exchangeable r.v.s. 

It is customary to assign positive probabilities only to a convenient standard 
parametric class ¥ = {DQ : 0 e Q], such as the normal or beta. This is equiva­
lent to taking ^ as a random quantity rather than F as a random distribution; it 
corresponds to a belief that some member of F will provide an adequate fit. Our 
Bayesian inference becomes Yl@(^ |x j , • • •, xĵ ) a d(xi \0)" - d(xk \0) n0(^) ' in 
agreement with Rubin. This frequency explanation of the randomness of 0 is how­
ever not helpful in choosing the prior. In particular, presumably a nonimformative 
prior is out of place in a frequency theory. How to choose an objective prior is an 
important problem for statistical theory. 

It is sometimes said that the difference between sampling and Bayesian statistics 
is that no prior probability exists for the sampHng theorist. But that is not the 
distinction. Bayesian theory is applicable to the sampling theorist's model, but it 
yields no inferential insight. The sampling theorists model is that Xi, • • •, X„ are 
/./.J.according to some fixed distribution, say, F. Hence, the empirical distribution 
Fn approaches F with probability one (see Loeve, 1955, p. 20). For the sampling 
theorist, the marginal density of lim F„ is degenerate: 

n(^) 0, D / F 
1,D = F 
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where F is some fixed but unknown distribution. Now, following de Finetti's rea­
soning, the conditional density of F given the data is 

1,D = F V /(xi)---/fe) 1 
The posterior probability of F also assigns unit probability to F; but we don't know 
F 

From this point of view, the appropriateness of Bayesian inference depends on 
one's assumptions about repeated performances of an experiment: if we believe 
that the successive observations are exchangeable and independent according to 
some fixed but unknown distribution then an unknown one point prior leads to an 
unknown one point posterior, a solution which yields no inferential insight. The 
limiting empirical distribution of a series of exchangeable r.v.s will be probabilis­
tically distributed over some nondegenerate space of distributions only if the r.v.s 
are dependent. Only in this case will Bayesian inference for exchangeable r.v.s be 
insightful. 



10 
The Long-Run Consequence 
of Behavior 

10.1. Decision Theory 

As a consequence of Wald's (1950) powerful work, statistics was for a time defined 
as the art and science of making decisions in the face of uncertainty. The decision 
problem assumes the questionable true value model of Section 8.1 and contem­
plates deciding, on the basis of data, between various possible actions when the 
state of nature is unknown. It is anticipated that the data will be helpful in choos­
ing an action since the probabilities of data depend on the state. The task of the 
decision maker is to choose a decision rule specifying the action d(y) to be taken 
if data y is observed. The theory assumes known numerical losses / (a, ̂ ) in taking 
each action a when each state 0 "obtains." 

If r, the true state of nature, were known then it would be reasonable to take that 
action which minimizes the expected loss for that state; that is, choose a decision 
rule d(y) which minimizes the risk, or expected loss 

yeS 

for the known state, r. Then, as a consequence of the law of large numbers, if 
friy) can be given an objective interpretation, minimizing r(r,d) can be viewed as 
an attempt to adopt single instance behavior which will yield small total loss for a 
long sequence of actual future decision problems. This behavioral criterion is one 
concept of what constitutes a good statistical procedure. 

But the essence of the decision problem is that we do not know the true state 
and therefore must compromise, choosing an action which minimizes all risks, 
r (04), 0 e Q, "on balance." At this point, theory and practice divide into criteria 
and cases. 

If degree of belief (Section 9.3) probabilities, n (0), axe available for the state 
of nature then it would be reasonable to maximize believed value by minimizing 
the expected risk 

J2r'(0,d)7t(0). 
eeQ 

97 
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In the next two Sections we examine two common behavioral alternatives to this 
Bayesian view. 

10.2. The Accept-Reject Theory 

We present only the barest outline of hypothesis testing, the dominant theory 
of statistics. Our reasons are that the topic is extensively treated elsewhere, the 
reader will already have some familiarity with hypothesis testing, and our story 
is primarily about other theories. We discuss the topic for completeness and later 
comparison. 

The recognized source for the mathematics of hypothesis testing is Lehmann 
(1986). But Lehmann does not tell us how the theory is to be applied or interpreted. 
It is made clear, on Lehmann's pages 68 and 69, that the true value model (Y, 0, F) 
is known to hold and that hypothesis testing is for the purpose of deciding, in the 
sense of Wald, whether to "accept" or "reject" an hypothesis; r G H where H c 
Q. But we are not told which meanings of accept and reject are intended. 

With any reasonable interpretation, if H is true (false) then accepting (rejecting) 
H is the correct action to take and rejecting (accepting) H is an error; this is nicely 
summarized in the familiar Table 10.1. So accept (reject) H means "act like H is 
true (false)." 

Table 10.1 suggests the losses of Table 10.2. 
The risks are then 

fa P^(accept H),T eQ- H 
nr, ^) - I ^ P,(reject / / ) , r e H. 

But the real consequences of actions literally interpreted will rarely have the simple 
form of Table 10.2. Perhaps an inferential interpretation is more natural. Lehmann 
(1986, p. 4) suggests, "formally [an inference] can still be considered a decision 
problem if the inferential statement itself is interpreted as the decision to be made." 
But details of the actions and their consequences are not immediate. We might take 

TABLE 10.1. 

Action 

Accept H 
Reject H 

TABLE 10.2. 

Action 

Accept H 
Reject H 

Errors of the first and second kind 

State of nature 

H Q-U 

Correct Type II 
Type I Correct 

Hypothesis-testing losses 

State of nature 

H ^-H 

0 a 
b 0 



Frequency Interpretation of Confidence Intervals 99 

"accept" and "reject" to mean "believe true" and "believe false" respectively. And 
we might then consider / not as a literal loss but simply as an indicator of whether 
an inference is correct or not; summations of indicators over a series of inferences 
would then be the total number of incorrect inferences and minimizing the risk, 
in some sense, would be for the purpose of controlling the long run proportion of 
errors of the two kinds. 

Choosing a decision procedure by minimizing the risk is still not a well-posed 
mathematical problem since test properties will depend on the unknown parameter 
r. The hypothesis testing strategy for dealing with this basic difficulty is to adopt 
the following: 

Strategy 

Seek a test which minimizes 

sup P^(acceptH) (10.1) 

subject to the constraint 

sup Pe(reject H) <a, 

where a is some fixed small number. 
Pe (reject H) is called the power function and sup PQ (reject H) is called the 

eeH 
size of the test. Hence the strategy (10.1) consists of maximizing power subject 
to a constraint on size. The strategy (10.1) is seen to be an attempt to control 
the risks of the two decisions "on balance." There are several difficulties for the 
decision theoretic model of hypothesis testing. If the true value model is indeed 
known to hold, then acting like r ^ H is equivalent to acting like r G ̂  — H = K, 
and failing to reject H is the same as accepting H. A decision is forced, whereas 
we might sometimes wish to reserve judgment. The distribution of data will not 
really be "known" to belong to a family, only conjectured.Thus there will be two 
other error types; we may for instance act like K is true when neither H nor K is 
true. 

The likelihood ratio test of size a for testing ô vs Oi is that we reject (accept) 
r = 0̂ if riy) = fe^{y)Ifo.iy) < ^(> k), where k is chosen to satisfy Pooiriy) < 
k) = a. The jewel in the crown of the accept-reject theory, the Neyman-Pearson 
lemma, is that if H and ^-H each consist of a single point, and the likelihood 
ratio is continuously distributed, then the likelihood ratio test satisfies the strategy 
(10.1). 

10.3. Frequency Interpretation of Confidence Intervals 

In the context of the true value model of an experiment, (F, ^, F) a confidence 
interval of level 0.95 for true value r is a random region I(Y) such that 

P{(9 6 I(Y) I 6>} = 95%, 6> 6 ^ . 
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The experiment is performed, y is observed, and it is declared that r is in I(y) 
with 95% confidence. A common interpretation of this statement is that it has the 
meaning that if we perform the same single instance confidence interval behavior 
over and over then according to the law of large numbers nearly 95% of our 
statements will be correct. 

A criticism is that this interpretation does not explain the confidence interval 
behavior since a statistician does not go through life continually constructing 
confidence limits of the same level for the same parameter of repetitions of the 
same experiment. But this can be fixed. For a sequence of confidence intervals, Ii of 
level 1 — ai for parameter 6i of experiment Ei, h of level 1 — 0̂2 for parameter 62 
of experiment E2, etc., let S„/n be the proportion of the first n which cover their true 
parameters. Theorem 5.4 concludes SJn ^^ 1 — a since V(Sn /n) = Yll=i ^t (̂  
— a,i)lv^ < 1/n. If level and experiment vary, we are still assured that 100 (1 —a)% 
of our confidence intervals will cover their true parameters so long as repetitions 
are independent. 

It is reassuring that a large proportion of our confidence interval statements will 
be correct. But the question of usual interest is: what does, say, the first realized 
interval tell us about ri, the first true parameter? 

Bamett (1982, p. 35) comments, 

(behavioral inference) provides Httle comfort... to the interested party in any practical 
problem where a single inference is to be drawn with no obvious reference to a sequence 
of similar situations. 

He presents a practical example in which the proportion defective 0, of a batch 
of components is of interest and inferences are to be based on the proportion 
defective, 0 = R/n, in a sample of n components. 

... the sampling distribution ofO... must be viewed as having as 'collective' (in vonMises 
terms) the set of values of 0 which might arise from repeated random samples of n compo­
nents drawn from (then replaced in) the current batch. 

Bamett (1982, p. 34) 

Bamett's exposition concludes that while it may be satisfying to know that a 
large proportion of the conclusions drawn from consecutive samples would be 
correct, this provides little comfort as far as the present isolated conclusion is 
concerned. For example, consider a 95% confidence interval. 

All we know is that in the long run 95 percent of such intervals obtained in similar circum­
stances to the present one will contain 0; 5 percent will not. We have no way of knowing 
into which the present falls! 

Bamett (1982, p. 37) 

On the other hand, a common newspaper phrase, intended to lend credibility, is 
"according to a usually reliable source "A 95% confidence interval is a usually 
reliable source where we have improved on the newspaper phrase by quantifying 
the reliability of the source. Frequency probability does provide comfort concern­
ing the credibility of an isolated fact. In fact, if we were to bet on the truth of the 
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statement, we would want to offer 19:1 odds for its truth; this is relevant to the 
single instance. The dependability of an isolated finding is judged by the long run 
frequency of correct pronouncement of the procedure which produced the finding. 

The Neyman-Pearson and Wald theories adopt a behavioral attitude, contem­
plating the taking of actions or the making of decisions. The theory then asks what 
behavior would prove reasonable for a long sequence of analyses of experiments 
and provides a nice solution based on the law of large numbers. Hypothesis tests 
(the behavioral practice, to be distinguished from significance tests, an evidential 
strength approach to be illustrated in later chapters) control the long-run frequen­
cies of two kinds of error and the justification for confidence intervals is that 
repetitions of the procedure will produce intervals covering the true parameter a 
prescribed proportion of the time. The Neyman-Pearson-Wald behavioral attitude 
is that we should conclude in a single instance whatever would prove desirable in 
the long run. 



n 
A Critique of/7-Values^ 

11.1. The Context 

The use of significance tests to express statistical evidence has a long history. 

Example 11.1 Male and female births are not equally likely 

The earliest significance test which we have found, in Todhunter (1949, p. 197), 
is due to Dr. John Arbuthnot. About 1710, Arbuthnot observes that for 82 years the 
London records show more male than female births. Assuming that the chances 
of male and female births are equal, Arbuthnot calculates the probability of more 
male than female births for 82 years in succession to be 1/2̂ .̂ This probability is 
so small that he concludes the chances of male and female births not to be equal. 
Arbuthnot was making a scientific inference on the basis of what we would now 
call an observed significance level or /?-value. 

Observed significance levels still seem to be the concept of choice among practi­
tioners for measuring statistical evidence, but they have been much criticized, as in 
Morrison and Henkel (1970) and Roy all (1997). No doubt the/?-value concept can 
be and has been inappropriately applied, and yet—where appropriate—it serves 
an important function not addressed by other statistical methods. 

Appropriate p-value methods should prove particularly useful in helping to 
resolve disagreements among the members of the group, where—as explained 
by Barnard (1980) and Seidenfeld et al (1989)—personal probability methods 
don't apply, since different members will have different prior beliefs. Seidenfeld 
et al. show that two Bayesians with different probabilities and utilities have no 
Bayesian Pareto compromises except to adopt one or the other's approach entirely. 
Alternatively, see our Section 9.4. 

Some authors recognize two traditions of testing: (i) Neyman-Pearson-Wald 
hypothesis testing, which decides among behavioral responses to a performed 
experiment, based on the long-run error rates of the rules used for the decision; 

^This chapter follows Thompson (2006), a paper written previously. 
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and (ii) Fisherian significance testing, which considers p-wahxc as an expression 
of experimental evidence (see Lehmann, 1993). 

We briefly discussed the behavioral approach in Chapter 10, an alternative rec­
ognized source is Lehmann (1986). On page 70 Lehmann introduces /^-values 
as an accidental and tangential by-product of the Neyman-Pearson theory: "In 
applications, there is usually available a nested family of rejection regions, cor­
responding to different significance levels. It is then good practice to determine 
not only whether the hypothesis is accepted or rejected at the given significance 
level, but also to determine the.. .p-value This number gives an idea of how 
strongly the data contradict the hypothesis " But Lehmann explains neither 
why it is good practice to present thep-value nor why/7-value gives an idea of how 
strongly the data contradict the hypothesis. Neyman himself maintains (without 
explanation) that, from his behavioral hypothesis testing point of view, Fisherian 
significance tests do not express evidence; see Neyman, 1982, p. 1; Fisher, 1956, 
p. 100; and Johnston (1986, p. 491). 

Significance testing has been exposited and enlarged by Kempthorne and Folks 
(1971) and Cox and Hinkley (1974), The major difference between significance 
and hypothesis testing is the important issue of interpretation. Our treatment of 
evidence loosely follows the significance testing tradition. To have a name we call 
our explanatory model "show-me" evidence. This name—despite its suggestion 
of parochiaHsm— describes, rather well, the spirit which we intend. 

A reason that j9-values have proved so resistant to criticism is that they augment 
other views of scientific method; p-values conform to one scientific view of how 
theoretical models should be checked. Scientific knowledge consists of statements 
which are to be accepted, for the time being, as applicable to the conditions of an 
experiment or observation—essentially the unrefuted journal articles of a disci­
pline. Scientific theories become accepted through a social process of evolution of 
the working hypotheses of scientists. Hence scientific process is neither personal 
nor behavioral but pubHc; the central issue is not what to decide but how does 
one scientist convince another of his/her conclusions? Our basic tenet throughout 
is that data which agrees with prediction from a theory, but disagrees with what 
would be predicted from current background knowledge if the theory were not 
true, constitutes evidence for a theory. Writers arriving at similar views are Kuhn 
(1962), Tukey (1960), Toulmin (1972), Box (1980, p. 383), and Hull (1990); see 
our Chapter 3. 

Traditional significance tests present p-values as a measure of evidence against 
a theory. But scientists wish to accept theories for the time being, not just reject 
them. We are more interested in evidence for a theory. We find that the efficacy 
of a /?-value for this purpose depends on specifics. Our experience is that all 
successful explanations of evidence—including Bayesian and likelihood versions; 
see equation (9.1)—are relative to an alternative; therefore tests not formulated in 
this way—such as the test of normality—are not recommended. 

Section 11.2 considers testing a simple hypothesis relative to a simple alterna­
tive and concludes that a single p-value does not measure evidence for a simple 
hypothesis, but consideration of both p-values of the likelihood ratio test leads to 
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a satisfactory theory. Section 11.3 considers the consequences of this conclusion 
for arbitrary, perhaps composite hypotheses; a completely general solution is not 
obtained because dual objectives may be contradictory. Section 11.4 specializes 
these considerations to the case of testing a direction relative to the opposite direc­
tion and obtains an appealing solution. For one-sided tests, a single p-value does 
provide an appealing measure of best evidence for a theory. Section 11.5 shows 
that the bivariate concept of evidence has appealing asymptotic properties for our 
two main classes of application. Section 11.6 considers an extension of show me 
evidence and illustrates this idea on an important practical problem arising in safety 
analysis. The final section provides concluding remarks. 

11.2. Simple Hypotheses 

Show-me evidence is concerned with an experiment E having random outcome 
Y. Let y denote a possible value which Y may assume and 5, the set of all such 
values. Initially consider only two densities, fr^ and f^, as possible predictors of 
E. Allowing the symbol K to perform double duty, the hypothesis to be tested is 
that /^ will predict the outcome of E adequately for the purpose at hand and at 
least as well as /^. Hypothesis K is similarly defined. 

To formulate the concepts of evidence against r] and evidence for K we first lay 
down a serial order to which we then assign a numerical meaning. This is the 
method of fundamental measurement in physics, as in Hempel (1952, p. 62). 

Assumptions for the case of simple hypotheses are— 

i'. For any two densities /^and f^^ there is available a test statistic T = t(Y) which 
orders that sample points of S according to their agreement with ?y (relative to 
K). That is, t{y) < t{y') may be read "the agreement of y^ with r] (relative to 
K) is greater then that of y." 

ii^ The p-values or observed significance level, 

p(y) = pr,{t(Y)<t(y)}. 

is a metrization of the above ordinal scale, a measure of agreement of 3; with 
ŷ  (relative to/c); smaller values indicating poorer agreement. 

A convenient general notion for the distribution of statistic T given parameter 
value 0 is FTAO = pre(T < t). Hence p(y) = Fj^r^ {t{y)]. 

The use of quantiles to metrize ordinal quantities is commonplace in other 
similar matters and would not seem to warrant comment except that it has been 
questioned, as in Section 4.4.3 of Berger and Wolpert (1984). As a measure of 
scholastic achievement, we speak of graduating in the upper ten percent of ones 
class, and we interpret an income below the lower quartile as an indication of 
poverty. 

It is important to note three closely related concepts here: (i) the significance 
level of a performed experiment yielding data yo is p (Jo); (ii) the function p (y) is a 
prepared scale of agreement between possible experimental outcomes, y e S, and 
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hypothesis; and (iii) the random significance level of a contemplated experiment 
is a random variable P = p(Y). 

Determining the properties of a significance level entails determining the prob­
abilistic properties of the random significance level. All of these properties are 
embodied in the distributions Fp^eip) = P^eiP S p)—where 0 = rj, K—of the 
random variable P = p(Y) and hence we become interested in those distributions. 

There remains the crucial issue of choice of a specific test statistic. In choosing 
among significance procedures, it is small observed significance which corre­
sponds to poorer agreement with ij, hence, other things being equal, we prefer 
those procedures which produce small observed significance under hypothesis K. 
But we cannot attain this goal in any deterministic way since observed significance 
is a realization of a random variable. 

One criterion for choice of test statistic involves stochastic ordering. A statis­
tic U is said to be stochastically smaller than V if pr(U < a) > pr(V < a) for 
all a. Dempster and Schatzoff (1965) and Kempthome and Folks (1971, Ch. 
12) present an optimality theory, in terms of stochastic ordering of significance 
levels. 

Theorem 11.1 If the ŷ  distribution of the likelihood ratio has an inverse then when 
hypothesis /c holds, the likelihood ratio p-value is stochastically smaller than that 
based on any other test statistic. 

As a preliminary we need the result that— 

pr,(P<p)<p. (11.1) 

To see this, consider a random variable T with probability law pr and distribu­
tion function F(t) = pr(T < t). Let P = F(T). Wp = {r : Fit) < p] and b = 
sup Wp. pr(P < p) = pr(Wp) and F(b - o < pr(Wp) < F{b). If F{b) < p 
then pr(Wp) < F(b) < p. If F (b) > p, then pr(Wp) = F(b - o) < p. In either 
casepr(P < p) < p. 

Proof of Theorem 11.1 
We are concerned with two statistics, R = r{Y) and T = t(Y), with probabil­

ity distributions FR^o(r) and Fr^eiO where 0 = r],K. Let PR = F/?,̂ (7?), Pj = 
FT,rj(T); we need to show that prx (PR < P) > prKiPr < p) for o < 
/ ^ < 1 . 

Let Wp = [y: FR^, {r(y)} < p] and W> = [y : FT,, {t(y)} < p]; 

Wp = {y: r(y) < Cp} where Cp = F^^{p). Now pr, [P j , < p} = pr.iWp) = 

pr,{r(Y)<C P} = FR^,{FR,,-\P)} = P and from (11.1), pr,(W^p) = 

prr^iPr <P)<P- Therefore/^^ fn{y)dy = prrj(Wp) = p> prr^iPr < p) = 

Iw'p W)dy and/^^_^,^ fr^{y)dy > f^^p.^rp frjdy. But in Wp, fjf, < Cp 

and in the complement/,//, > Cp. Therefore !wp-w'p^pf<'^y^^y ^ 

Iwp-w'p Uy)dy > fw'p-wp CpMy)dy. 



106 11. A Critique of/?-Values 

Dividing through by Cp and adding f^^^^.p My)dy, we obtain /^^ My)dy > 

fw'p fx^y^dy, which is the required result. 
This theorem, essentially a reinterpretation of the Neyman-Person Lemma, 

motivates taking the likelihood ratio, riy) = fr^(y)/fK(y), as an ordinal criterion 
of agreement of data with ^(relative to /c). This choice is so intuitive that perhaps we 
would question any theory yielding some other order. But while stochastic ordering 
yields a satisfactory theory for continuous distributions, where the inverse exists. 
Stone (1960) observes that difficulties are encountered for discrete distributions. 

Another way of supporting the likelihood ratio p-value, which works for discrete 
as well as continuous distributions, is to consider expected significance level. Let 
PT denote significance level when the criterion T is used. Thompson (1985) proves 
the following: 

Theorem 77.2 If R is the likelihood ratio statistic and T is any other left-
tailed minimum sufficient statistic, then (i) ErjiPr) = EyjiPR) and (ii) E,C(PT) > 
EAPRI 

Proof 
First notice that since R = r(Y) and T = t(Y) are both minimally sufficient, each 
is a function of the other and hence t(y) = t(yO if and only ifr(y) = r(yO. Next 
observe that, for ^ = H, K, 

-I Ee(PT) = J prH {t(Y) < t(y)}f,(j)d^(y) = pr(Ti < T2), 

where Ti has the distribution of t(Y) under H, T2 has the distribution of t(Y) under 
9 and the two are independent. To prove (i): ER (PT) = pr (Ti < T2), where Ti 
and T2 have the same distribution, that of t(Y) under H. Thus, 

1 1 1 1 _̂ _̂ 

EH (PT) = - + - pr(Ti = T2) = - + - J ] {prnCy • t(y) = O}'-
t=—oo 

which is the same for all minimal sufficient statistics t(Y). The above summation 
notation is meaningful since all but a countable number of its terms are zero. To 
prove (ii), write 

EK(PT) - EK(PR) = pr(Ti < T2) - pr(Ri < R2) 

= pr(Ti < T2, R2 < Ri) - pr(Ti > T2, Ri < R2) 

+ pr(Ti < T2, Ri < R2) - pr(Ti < T2, Ri < R2) 

+ pr(Ti = T2,R2 < Ri) - pr(Ti > T2, Ri = R2) 

= J J [fH(yi)fK(y2) - fH(y2)fK(yi)]dM()'i)d/i(}'2) > 0. 

t(yi)<t(y2) 

r(y2) < r(yi) 
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Accepting the likelihood ratio as test statistic, assumptions /̂  and if become more 
specific: 

i. For any two densities /^ and f,^, the likelihood ratio r(y) = fr](y)/fK(y) orders 
the sample points of S according to their agreement with r] (relative to K). 
This is not an assumption about densities; in particular it is not a monotone 
likelihood ratio assumption. For any two densities it defines an order relation 
onS. 

n. 

piy; r], K) = pr^ -—— < —— (11.2) 
(MY) My)\ 

is a metrization of the above ordinal scale, a measurement of agreement of y 
with T] (relative to /c). 
The corresponding measure of agreement between y and K relative to y;, is 

, , 1 MY) ^ My) 
p{y\ /c, T]) = pr, \ ——- > MY) - My)\ 

with large values indicating greater agreement. 
In the context of significance testing, Fisher (1949, p. 16) suggests that falsifi­
cation is the primary mechanism for scientific learning; so, his concern is with 
evidence against a theory. We accept his measure of evidence against a theory. 

iii. Data y^ which disagrees with r] relative to K constitutes evidence against the 
predictive capacity of r]\ the/?-value/7(jo; ^, ^) measures the strength of such 
evidence. 

But we may object, as did Berkson (1942), that the conclusions of science 
are to be accepted, for the time being, not just not rejected. Hence the utility 
of the /7-value as a measure of evidence against a theory is questionable; we 
are more concerned with evidence for a theory. 

Thus a small value of p(yo; ^, /c) constitutes evidence against r]\ but, for 
two reasons, it is not evidence/or K. First, p(yo;/<̂ , ̂ ) may also be small, so 
that evidence against /c is also strong. In addition to small p(yo; ^, /^), evidence 
for K also requires that p(yo; K, ^) is moderately large. Second, there may be 
a third possibility, besides r] and /c, which has not been considered. Evidence 
for K is relative to background knowledge, where the assumption is that r] 
and K are the only possibilities. Not only must the data pose a problem for 
hypothesis r] but it must at least suggest how the problem might be solved; by 
adopting hypothesis K . How we might follow the basic tenet of Section 11.1 in 
the context of statistical theory is suggested by the notions of "size" and "type 
II error" in formal Neyman-Pearson hypothesis testing. But the latter notion, 
and that of "power," do not carry over so simply to significance testing. We 
augment traditional significance testing with a measure of how well data agree 
with alternative hypotheses of interest. 

iv. Data yo which disagrees with r] relative to K and agrees with K relative to r] 
constitutes evidence/or K . The strength of such evidence is measured jointly by 
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p(yo; T], K)3ndp(yo; /c, y;). Strong evidence/or/c requires the first coordinate 
of the vector ev(yo) = {p{yo\ 1, K), piyo; K, rj)} to be small and the second 
large. 

Note that consideration of ev(yo) as a measure of evidence is conceptually 
different from size and power. A striking difference is that the size and power of 
a test can be calculated without data. 

While the above structure may appear unduly complicated, it is frequently quite 
simple. 

Example 11.2 Binomial-simple hypotheses. For the binomial probabilities 

fe(y) = {;)oy(i~or-y, o = ri,K 
where t] > K, the inequality fr^{Y)/f„{Y) < fr^(y)/fK(y) becomes Y <y. Hence 

i yo n 

y=0 y=yo 

Example 11.3 Jack-queen contact. Reahstic instances of testing a simple hypoth­
esis against a simple alternative are rare, but they do occur. One example is the 
following. The theoretical probability that at least one jack is adjacent to one queen 
in a shuffled deck of ordinary playing cards is 0.486 (Thompson, 1969, p. 24). To 
check this computation an experiment is performed. The experimenter reports that 
111 shuffles out of 240 resulted in no jack-queen contact. This leads to 0.538 as 
the estimated probability of a jack-queen contact. How strong is the evidence that 
the experimenter mistakenly reported the number of shuffles resulting in at least 
one jack-queen contact? 

In either case the experimenter is observing the number of successes Y in 
240 Bernoulli trials with success probability 0. The reporting error hypothe­
sis is that success means a shuffle with at least one jack-queen contact, and 
hence 0 = 0.486. The hypothesis of correct reporting is that success consists 
of a shuffle with no jack-queen contact and hence 0 = 0.514. As in Exam­
ple 11.3, the evidence that there was an error in reporting of this specific kind 
is ei;(lll) = {pro.suiY < 111), proAseiY > HI)} :^ (0.05, 0.76). The data is 
consistent with the reporting error hypothesis and is difficult to explain from back­
ground knowledge by other means. 

11.3. Composite Hypotheses 

In generalization of the theory for simple hypotheses we now consider a class 
{fo : 0 e Q] of densities as potential predictors of E, and a partition of Q into two 
disjoint subsets, H and K. Again allowing the symbol H to perform double duty, the 
hypothesis H is that some member of a class of probability densities {fo : 9 e H} 
will predict the outcome of E adequately for the purpose at hand and at least as 
well as any other density fe with 0 e Q. Hypothesis K is similarly defined. The 
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composite test assumption is that current background knowledge and the theory 
to be tested can be formulated as hypotheses Q and K, respectively; H = Q — K, 
called the null hypothesis, is then background knowledge with K false. 

Assumptions (i) and (ii) are as before except that they now apply to every pair, 
T] e H andK e ^ . With regard to generalizing (iii) and (iv), if/?(j;/c, rj) > )6,then 
we say that y agrees with K at level p relative to rj and if p(y; rj, K) < a, then y 
disagrees with yyat level a relative to K. NOW relative to /c, sup^^^ piy^\ ^, '̂ ) is 
the level of disagreement of y with H, since sup^^^ piyo\ ^, K) ^oi if and only 
if y disagrees at level a with all r] e H. Similarly, infrjeH p(yo\ ^, '̂ ) is the level 
of agreement of y with /crelative to H. 

Assumption (iii) becomes— 

iii. Data yo which, relative to some K e K, disagrees with every fr^, r] e H con­
stitutes evidence against the predictive capacity of H; the/?-value 

piyo,H,K) = mfsuipp{yo;r],K) (11.3) 
KeK ^^H 

measures the strongest of such evidence. 

While we accept p{yo, H, K) as a valid measure of evidence against H, we 
continue to question the ultimate practical utility of any such measure; scien­
tists are concerned with accepting theories, for the time being, not rejecting 
them. 

The generalization of assumption (iv) is less explicit; we know how to recognize 
predictive evidence for a theory but there is no universally valid closed form for 
its measure: 

iv. Data jo which agrees with some KeK (relative to all rj e H) but disagrees 
(relative to /c) with dllr] e H, constitutes evidence for K. For each K e K 

ev(yo, K) = sup/?(};o; y/, K) , inf ^(jo; /c, r]) \ (11.4) 
7)eH V^H 

measures the strength of that evidence for K. 

Thus we examine (11.4) for various K e ^ . If for some /c, the first coordinate is 
small while the second is large then we have evidence/or K measured byev(yo, 1c). 
The data simultaneously poses a problem for hypothesis H and suggests how 
the problem can be resolved—by accepting hypothesis 1c e K. We would like to 
present the best such evidence for K but we are prevented from doing so by the 
bivariate nature of the objective function. Nevertheless, in some cases, we can 
carry out this optimization; this exposition focuses on those cases. Then we write 
^^(yo) = ev(yo,1<)' for the best evidence for K. 

Example 11.4 Coplanar planetary motion. A famous scientific inference based 
on a/7-value is due to Daniel Bernoulli (see Todhunter, 1949, p. 223). Bernoulli's 
1734 computation amounts to the following. For our solar system, as know in 
Bernoulli's time, the greatest inclination of the plan of any of six orbits to the sun's 
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equator is T 30' or 1/12 or 90°. Bernoulli takes 1 /12^ to be the probability that each 
of six inclinations would be so small. This small probability, along with several 
similar computations, convinced Bernoulli that we cannot attribute to chance the 
small mutual inclinations of the planetary orbits. 

A modern way of viewing Bernoulli's problem and solution is to introduce the 
additional structure that the six measured angles F i , . . . , Fe are a sample from 
a uniform distribution on the interval zero to ^(0 <0 < n/l) and that we are 
measuring evidence against the hypothesis H, that 0 = 7t/2 and for the hypothesis 
K that 0 < ^ < 7T/2. Writing T = max (F i , . . . , Ye) and t = maxCji,..., j6) the 
density is 

0, feiy) 
0 < r < i 
0 < t 

which results in the likeUhood ratio 

f^t/iiy) 

My) (I)' 
OO, 

for K < 7z/2. Thus 

and 

p{y;n/2, K) 

p{y\ K, 7T/2) = 

2K 

n 

0, 
1, 

0 < r < A: 

K < t 

K < t 

0 < t < K 

K < t 
0 <t < K. 

For given y, the smallest value of p(y; 7r/2, K) and the largest value of 
p(y; /c, 7t/2) both occur at 1c = t. Hence from (11.4), for BernouUi's data, 
to = T 30\ the best evidence for 6 < 7t/2 relative to ^ = 7t/2 is(12-^, 1), aug­
menting Bernoulli's computation. 

Example 11.1 (continued) Arbuthnot's test illustrates a two-sided problem. Writ­
ing 0 for the probability of a male birth, the two hypotheses are H : 0 = 1/2 and 
K :0 ^1/2. The expression (11.4) is 

' (2-^^ 1), K > 1/2 
ev{S2, K) = 

(1,/C^2), K < 1 /2 

taking 1c > 1/2, the evidence that male and female births are not equally likely is 
ev{^2, 1c) = (2~^^, 1), which is quite strong. 

11.4. Test of a Direction 

Example 11.5 Vitamin C. Consider, as did Berger and Berry (1988), a "double-
blind" experiment conducted to study the effectiveness of vitamin C in treating 
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the common cold and suppose that 17 matched pairings of vitamin C treatment 
with a placebo (P) have been obtained. Let 0 denote a fitted probability that, in a 
single pairing, C does better than P and let Y denote the random number of pairs 
in which C beats P. Background assumptions are 

^^^y^ = ( y ^ ) ^ ' ^ ^ ~ ^ ^ ' ' ~ ' ' y = 0' • • •' 17, 0 < ^ < 1. 

The novel theory K is that vitamin C is effective—that ^ > | ; H is that 0 < 
\. Hence, forrjeH and K e K,r] < 1/2 < K, p(y',ic, rj) = pr^^iY < y) and 
p(y; K, T]) = pr^{Y > y). Now ev(y, K) = {pri/2iY < y), pr^Y > y)} and, op­
timizing over K.^i;(3;) = {pryjiY < y), pri/2(Y > y)}. 

If y = 4 is observed, then ev(y) = (0.025, 0.994). The predictive evidence that 
vitamin C is effective—that^ > 1/2—is that the success of the KpredictionF > 4 
is difficult to explain if ^ < 1/2 but is easily explained if ^ > 1/2. 

Note that in this example, the best bivariate evidence will be strong whenever the 
/?-value is small, hence agreement of data with K need not be checked separately. 
While this is not true in general, we will show in Theorem 11.4 that it does hold 
for a class of one-sided tests. 

It is a usual feature of significance tests that they serve multiple purposes. 
The /?-value p(y; OQ, Oi) is to measure strength of predictive evidence against 
0̂ relative to the alternative Oi. But often r(j) = fe^iy)IfeM and feo(y)/My) 

yield the same order on S and hence the same /?-value. In this case we say that 
6i and/care in the same direction from ^o- Let K be the set of all such K e Q. 
Further, if fr){y)/feoi.y) yields the same order as r(y), then we say that>/ and 0\ are 
in opposite directions from ^o; let H denote OQ augmented with all such r]. Now 
writing R = riY), since fjf, = (/^//^o)(/^o/A). Piy^V^ ^) = P^R,v {̂ (>̂ )} ^^^ 
p(y',K, rj) = pr„ {R > r(y)} for all rj e //and/c e K. Note that p(y;K, rj) does 
not depend on r]. Also 

msixp(y',r], K) = pr0^{R < r(y)} = p(y;Oo,Oi) (11.5) 

Infact, F/?,^(«) < F/?,^Q(a)forall^6:Handalla.Forifnot,thenF/?,^(<2) > FR^e^ia) 
and also 1 - FR^r^(ao) < 1 - Fn^e^ia) Then for some x and y, r(x) < ao < r(y), but 
fr^{x)lfo^{x) > 1 > fr]{y)lfooiy) in coutradictiou with ^eH. The argument here is 
reminiscent of monotone likelihood ratio theory, but we make no such assumption. 

Equations (11.5) and (11.3) establish— 

Theorem 11.3 Writing K for the direction of 0\ from ô and H the oppo­
site direction, we have p{y\Oo,6\) = p{y\6{),K) for every K e K and in fact 
pir,Oo,Oi) = p(y;H,K). 

Theorem 11.3 makes it clear that a smallp-value by itself does not constitute ev­
idence for Oi; for /cin the direction of ^i, p(y; OQ,OI) = p(y\ OQ, K) constitute equal 
evidence against OQ but y may agree better with K then with Oi. The mathemati­
cal starting point for significance tests is that of simple hypothesis versus simple 
alternative. But whether intended or not the same p-value measures strength of 
predictive evidence against a direction. The basic significance test is the test of a 
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direction against the opposite direction, it becomes simple only if Q is restricted 
by assumption to only two points. 

We now turn to evidence/or K, the direction of 6>i. From (11.4) and (11.5), 
ev(y, K) = {p(y',Oo, ^i), p{y\ic, OQ)]. Since the first coordinate does not depend 
on y;, we may optimize to obtain 

{p(y;^o,^i),supp(y;/c,^o)} (11.6) 
KEK 

as our bivariate measure of evidence for the direction of ^i. 
Now consider Y = (F i . . . , y„) to be a sample from the single-parameter expo­

nential family in natural parameter form; Y will have density of the form 

My) = exp {Oi:s(yi) + nc(0) + Si7(>;,)} (11.7) 

Examples are the normal, gamma, binomial, and Poisson distributions. A sufficient 
statistic for 0 is T = l^s(Yi). We have that the agreement of y with ô relative to 
Oi is greater then that of zif and only if (̂ o - ^i) {^s(yi) = T^s(zi)} > 0. Thus 
in this case, "direction" has its usual geometric meaning in the natural parameter 
space; 0 is the same "direction" from ô as Oi if and only if (̂ o - ^i)(^o - ^) > 0. 
If Oi < Oo, then K = (^ : ^ < ^o), H = (^ : ^ > ^o), and the evidence against H is 
preo(T < ^o),where to is the observed value of T; taking the limit under the integral 
sign, the evidence (11.6) for K is 

[proo(T<to),pro,(T>to)] (11.8) 

in generalization of the result for Example 11.5. 

Theorem 11.4 When sampling from the single parameter exponential family, the 
best evidence for K is given by (11.8), and hence small j9-value alone constitutes 
evidence for a direction. 

The test of Theorem 11.4 can be related to expectations. Write 
11 = lie = E0s{Yi), o^ = al = var^5(Fi), /XQ = M ô' ^o = ^e^^"^^ consider 

the moment generating function, M (z), of Fi. We have M(z) = exp{c(^) -
c{z + <9)}, M = M'iS)) = -c\0) and a^ = -c\0). Since c'\0) < 0, /x is an 
increasing function of 0, K = {fx : /JL < /XQ} and (11.8) measures evidence for 
M < Mo-

11.5. Asymptotic Considerations 

First, consider the large sample behavior of the p-value of Theorem 11.4. From 

the central limit theorem, p(y; //, K) = preJT < ^) ~ O ( —r-r ) and 
\n^/^ ao J 

pr {p(Y, // , K)<p}-^ pre U ( ^ 7 2 ^ ) ^ P 

> o ^ " k p ) + ^ ^ / V o - M ) 
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Theorem 11.5 When testing the direction K = {/x : /x < /XQ} versus the opposite 
direction, for the single parameter exponential family, a good approximation to 
the median of p{Y\ H, K) is m(/x) = O {w /̂̂ (/x - /xo)/ao}. Note that mifz) is 
independent of cr and has the "right' asymptotic limits as w ^- oo. 

Also, with probability one as w ^ oo, the evidence (11.8) for /x < /xo ap­
proaches the ideal values of (0,1) when it is true, and (1,0) when /x > /XQ; for 
/x = /xo we have 0 = OQ, a = GQ, and p(Y;H,K) is uniformly distributed on the 
unit interval. 

For a second asymptotic investigation, return to the simple hypothesis situation 
of Section 11.2, where we are measuring evidence/or K relative to 77. Restrict 
consideration to sampHng from the exponential family (11.7) where r] > K and 
hence fir^ > fjiK- We have 

n^/^Grj ) ' ' \ U^^'^OK 

So 

pre [p{Y\ r], K) < a, p(Y; /c, rj) < p) 

max[0, a - ^ { \ ,0 = rj 

max[0,0 ' ' ' * = K 

a,6 = r] 

Theorem 11.6 Asymptotically, under hypothesis t], ev(Y) = {p(Y; rj, /c), 
p(Y; K, T])} is uniformly distributed on the line segment {(0, 0), (1, 0)} and under 
Kit is uniform on {(0, 0), (0, 1)}. 

While agreement with a false hypothesis is zero—the ideal value—agreement 
with a true hypotheses is distributed around one-half. Nevertheless, for large sam­
ples, ev{Y) allows us to identify the correct hypothesis with probability one. 

11.6. Intuitive Test Statistics 

With slightly less theoretical justification, the range of appHcability of predic­
tive evidence can be enlarged somewhat by considering test statistics other than 
the likelihood ratio. Consider the special circumstance that for all r] G /f, /c € 
K, a common statistic T = t(Y) orders the sample points of S according to 
their relative consistency with rj over/c. Assumptions entirely analogous to those 
given previously lead to equations (11.3) and (11.4), where now p(y; rj, K) = 
prr] {T < t(y)} and p(y; /c, rj) = pr,^ {T > t(y)}. In this special case, the first 
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TABLE 11.1. Rocket firing data 

Firing Burning time (coded) Tube time (same code) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

58.671 
61.284 
60.619 
60.699 
60.101 
58.619 
59.426 
60.096 
61.389 
61.249 

69.524 
69.542 
71.256 
69.462 
70.404 
70.602 
72.732 
70.420 
69.528 
71.412 

coordinate of (11.4) does not depend on K SO that we may optimize over K to obtain 

sup pr, {T < t(y)}, sup pr, {T < t(y)} (11.9) 
r]eH K€K \ 

as a bivariate measure of the evidence of y for K. 

Example 11.6 Safety analysis. If the propellant of a shoulder fired rocket is still 
burning when it leaves the tube, then the operator will be burned. Given the real 
firing data of Table 11.1, is the rocket safe to use? 

One formulation is as follows. Let D denote tube minus burning time. The prob­
ability of an accident is a = pr(D < 0). We might structure questions concerning 
the safety of the rocket in terms of a. We might, for example, require a < 0.005. If 
burning and tube time are bivariate normal, then D will be normal with unknown 
mean/x and variance (7 .̂ Now a = pr [(D — /x)/a < —/x/a] = <|)(—/x/a) where 
O is the standard normal distribution function. The requirement a < 0.005 is equiv­
alent to/X/CT > 2.58. 

From Table 11.1, the unbiased estimates of /x and a^ are J = 10.273 and s^ = 
(1.616)^,yielding 6.36 as an estimate of /x/a. This corresponds to 0.00000 as an 
estimate for a, the probability of an accident. 

We might examine the evidence that the rocket is safe, /x/a > 2.58. The like­
lihood ratio test indicates the sample mean as test statistic; this leads to a use­
less measure of evidence which depends on the unknown nuisance parameter 
0-̂ . Instead we may consider the test statistic T = \/lO D/so, which has the 
noncentral ?-distribution with 9 degrees of freedom and noncentrality parameter 
^̂ P5<8.16 ^^(^ - 20.1) = 0.4%. The hypothesis, unsafe according to the above 
criterion, corresponds to 5 < 8.16; large values of T are unfavorable to the hy­
pothesis. The observed value of T is 20.1. The observed significance level is 

sup PsiT > 20.1) = 0.4%, 
8<SA6 
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and the evidence (11.8), that the rocket is safe, is (0.4%, 99.6%), which is rela­
tively strong. Many safety analysis applications can be formulated in terms of the 
difference of two random variables. 

11.7. Discussion 

The context is that p-values have a long tradition of usage to express statistical 
evidence but they have been much criticized. Criticism mostly takes three forms: 
(i) They fail to distinguish between evidence for and evidence against a theory 
(ii) They neglect alternative hypotheses, (iii) They disagree with other models of 
statistical inference. 

We agree with the first criticism: p-values are readily explained as evidence 
against a hypothesis, but in practice we are interested in evidence for an hypothesis. 

Second, as Friedman et al. (1978, p. 492) explain, failure to consider the alterna­
tive leaves the null hypothesis to "take the heat" and we may even uncritically end 
up with the least supported of two hypotheses. Presumably, our treatment of alter­
native probabilities will answer some of these complaints. However, the suprising 
Theorem 11.4 implies that for one important class of tests, small />-value alone 
constitutes evidence for a hypothesis; alternative hypothesis probabilities need not 
be considered separately. 

The criticism that ;?-values disagree with other forms of inference is actually a 
special case of a much more general misconception—discussed in Section 2.3— 
about the nature of applied mathematics. We postpone detailed discussion of this 
criticism to Section 12.3. 

We conclude as follows; the p-ydXuQ can be explained as one measure of best 
evidence against a hypothesis, but we do not recommend that usage since exper­
imenters are really interested in evidence for a hypothesis. In general, evidence 
for a hypothesis requires the additional consideration of alternative p-values, as 
in (iv) of Section 11.3. This is true in particular, as in (iv) of Section 11.2, for 
testing simple hypotheses. But, as explained in Section 11.4, for distributions in 
the exponential family, it turns out that small p-value alone constitutes evidence 
for a direction. 

While show-me evidence provides an explanation for several interesting classes 
of problems, its applicability is limited. It may not be possible to formulate a 
desired hypothesis in terms of a direction, and show-me evidence has nothing to 
say about the handling of nuisance parameters. Section 11.7 suggests one way in 
which the applicability of show-me evidence might be enlarged. 
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The Nature of Statistical Evidence 

12.1. Introduction 

As discussed in Chapter 8, Bimbaum introduces£'y(£', y), the evidential meaning 
of obtaining data y as an instance of experiment E. Following Bimbaum, various 
authors have wrestled with the problem of developing a single set of postulates 
under which statistical inference can be made coherent. But as we claim in Section 
S.3,Ey(E, y)does not exist. Evidence is grounds for belief^an imprecise concept. 
There must be many valid reasons for believing and hence many ways of making 
the evidence concept precise. Most of our beliefs are held because mother—or 
someone else we trust—told us so. The law trusts sworn testimony. Scientific 
and statistical evidence are other different grounds for belief—supposedly partic­
ularly rehable kinds. Instead of Ey(E, y) we are concerned with Ey(E, T, y), the 
evidential meaning of observing j as an instance of E, in the context of theory T. 

What can we expect of a theory of statistical inference? We can expect an 
internally consistent explanation of why certain conclusions follow from certain 
data. The theory will not be about inductive rationality but about a model of 
inductive rationality. Statisticians are used to thinking that they apply their logic 
to models of the physical world; less common is the realization that their logic 
itself is only a model. Explanation will be in terms of introduced concepts which 
do not exist in nature. Properties of the concepts will be derived from assumptions 
which merely seem reasonable. This is the only sense in which the axioms of any 
mathematical theory are true; see Chapter 2 and Wilder (1983, Section 1.5). We can 
expect these concepts, assumptions, and properties to be intuitive but, unlike natural 
science, they cannot be checked by experiment. Different people have different 
ideas about what "seems reasonable," so we can expect different explanations and 
different properties. We should not be surprised if the theorems of two different 
theories of statistical evidence differ. If two models had no different properties 
then they would be different versions of the same model (see Chapter 2 for greater 
detail). We should not expect to achieve, by mathematics alone, a single coherent 
theory of inference, for mathematical truth is conditional and the assumptions are 
not "self-evident." Faith in a set of assumptions would be needed to achieve a 
single coherent theory. 
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12.2. Birnbaum's Theorem 

In the context of the true value model of Section 8.1, Birnbaum (1962) consid­
ers various principles for how experimental evidence should behave and obtains 
the likelihood principle as a consequence of the conditionality and sufficiency 
principles. Berger and Wolpert (1984, p. 28), and others attribute far-reaching 
significance to Birnbaum's theorem. 

A statistic s(y) is sufficient for the model (7, ^, F) if the conditional distribu­
tion of the data given the sufficient statistic does not involve 0. The sufficiency 
principal is that if s(y) = s(z) then Ey(E, y) = Ey(E, z). The justification is that, 
if F is known to contain the true density, then once s becomes available we may 
regard the rest of the data as if generated by a process not involving, and therefore 
uninformative about, the parameter ^. All major theories of statistics adhere to the 
sufficiency principle. Note however, that in Chapter 8 we observe that typically 
the functional form of the true density will be unknown. 

The likelihood principle is about the Hkelihood function fe(y)—the density 
considered as a function of 9 with y fixed at the observed value. The (strong) 
Ukefihood principle is that identical inferences, about a common unknown quan­
tity r, should be drawn from two different experiments resulting in proportional 
likelihood functions, or that all evidence about the true value r is contained in 
the likelihood function. The HkeHhood principle is at odds with forward-looking 
measures of evidence such as coverage probabilities and significance levels. A 
standard example is that obtaining y successes in n trials, according to the bi­
nomial or negative binomial experiment, results in proportional likelihoods but 
different significance levels. 

The likelihood principle is also at odds with established scientific practice. 
Wilson (1952) points out that journal articles in the experimental sciences have the 
standard section structure: (i) Background, (ii) Methods and Materials, (iii) Results, 
and (iv) Interpretation. The purpose of giving the background is to indicate the 
context of the article: the author's working hypotheses and any school to which 
he may belong, the question being asked of nature and the criteria or tradition 
according to which the experiment is to be judged as an answer. Section (ii) explains 
the experimental recipe, what is to be done and what is to be observed. Section (iii) 
summarizes the current performance of the experiment. The final section discusses 
how the puzzle came out, and particularly the class of related problems for which 
the results may be expected to come out the same way. Scientific practice holds 
that many things besides the likelihood function need to be included in the report of 
an experimental investigation. For example, if y successes are obtained in n trials, 
then Section (ii) should tell us whether the experiment was binomial or negative 
binomial. 

The reason that experimental scientists want more than just the likelihood func­
tion in the report of an experiment is that, though they might talk otherwise, 
ASTM committees (discussed in Section 8.4) are not engaged in discovering "true 
values." They are concerned with constructing experimental methods which are 
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reliable in that one can predict the results of future experiments on the basis of 
past experiments. Deming (1986, pp. 350-1) says it well: 

Unfortunately, future experiments (future trials, tomorrow's production) will be affected by 
environmental conditions (temperature, materials, people) different from those that affect 
this experiment. It is only by knowledge of the subject matter, possibly aided by further 
experiments to cover a wider range of conditions that one may decide, with a risk of being 
wrong, whether the environmental conditions of the future will be near enough the same as 
those of today to permit the use of results in hand. 

The likelihood principle is a very nice property; too good to be true in general. 
We don't need to know what experiment we are analyzing or what assumptions 
went into the analysis, just the likelihood function. "Indeed if the investigator died 
after reporting the data but before reporting the design of the experiment" (Berger 
and Berry, 1988, p. 162), we could still use the results in hand to predict future 
experiments. Unfortunately, as Deming explains so clearly, we need a great deal 
more than the likelihood function. If an ASTM committee is to construct a reliable 
experimental method, then careful discussion will be needed—and is in fact the 
rule—about what is the relevant experiment. 

Berger and Wolpert (1984, p. 28), s-tate the conditionality principle (WCP) as 
follows: 

Suppose there are two experiments £1 = (XuO, {/̂ ^})and£^2 = (^2, 0, {/̂ }̂), where only 
the unknown parameter 0 need be common to the two experiments. Consider the mixed 
experiment E*, whereby J = I or! is observed, each having probability ^ (independent of 
0, Zi, orX2), and experiment Ej is then performed. Formally, £"* = (Z*, 0, {fg}), where 
Z* = ( / ,Z , ) and / ; ( (7 , ^^ ) )= | / / (^ , ) .Then, 

Ev{E\ U,Xj)) = Ev(Ej,Xj), 

i.e., the evidence about 0 from E* is just the evidence from the experiment actually 
performed. 

On their pages 6 and 7 they present the following example as supporting intuition 
for the principle. 

Example 12.1 Berger and Wolpert. 
(It) is the key to all that follows. Suppose a substance to be analyzed can be sent either to a 
laboratory in New York or a laboratory in California. The two labs seem equally good, so 
a fair coin is flipped to choose between them, with "heads" denoting that the lab in New 
York will be chosen. The coin is flipped and comes up tails, so the California lab is used. 
After awhile, the experimental results come back and a conclusion must be reached. Should 
this conclusion take into account the fact that the coin could have been heads, and hence 
that the experiment in New York might have been performed instead? The obvious intuitive 
answer... is that only the experiment actually performed should matter. 

Practicing data analysts have largely ignored these three principles; But statis­
ticians concerned with foundations cannot afford to ignore Bimbaum's (1962) 
theorem—that the sufficiency and weak conditionality principles imply the 
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likelihood principle. As Berger and Wolpert explain, the likelihood principle is 
extremely radical from the point of view of classical statistics. Yet to reject the 
likelihood principle one must logically reject either sufficiency or weak condi-
tionality. But sufficiency is itself a cornerstone of classical statistics and there is 
nothing in statistics as "obvious" as weak conditionality or the laboratory analysis 
Example 12.1. In our view there are problems with this use of Birnbaum's theorem. 
We do not present a proof of Birnbaum's theorem since our complaint is not with 
the logical rigor but with the true value formulation. 

Berger and Wolpert say that the WCP "is nothing but a formalization o f Ex­
ample 12.1. We argue that it is a mis formulation; neither the hypothesis nor the 
conclusion of with WCP is appropriate for Example 12.1. This doesn't negate 
the WCP—we take no position on the WCP—^but it does cast doubt on this basis 
for "all the follows" and it illustrates that the absence of a true value can make a 
difference in our conclusions. 

Applying the WCP to Example 12.1 assumes two experiments E\ and 
E2 represented as triples and observing the world directly with equal skill. 
Hence, from the perspective of the true parameter model, the corresponding 
measurements, X\ and X2 will have a common true density Z ,̂ and Xj will have 
density /j:/2 -\- f^/2 = f^. The three experiments consist of observing the same 
density so, the same observed value yields the same evidential meaning. 

But we aren't free to make these assumptions: The major issue of experimenta­
tion is whether results are reproducible by different laboratories, fr and r do not 
exist, experiments aren't triples and they aren't about parameters. Parameters are 
about experiments. The assumption that "the two laboratories seem equally good" 
throws the proverbial baby out with the bath water. The only way we could arrive 
at that conclusion—with a chance of being wrong—is on the basis of a previously 
conducted interlaboratory comparison of measurements. 

If indeed one observation is all of the data, then Example 12.1 is a special case 
of interlaboratory experimentation, the subject discussed in Section 8.5. We can 
expect that two laboratories carrying out the same method (C,X) on the same 
substance are different experimental processes, Ej = (C, X;j); j — 1,2. They 
are observing the world through different instruments, operators, and supporting 
theory. 

The hypothesis and intuitive conclusion of Example 12.1 ignores the target 
population. The role of the coin flip is left uninterpreted. If, as is common in 
studies of interlaboratory experimentation, the target population is—in the lan­
guage of 8.5—the method of experimentation rather than one of the experimental 
processes, and the coin flip is to reflect a hypothesis that the laboratories will be 
used equally often, then the mixed experiment has an additional source of vari­
ability which should matter in the summarizing report. Stated symbolically, the 
best-fitting parameter for Ej = (C, X; j) is /x^; 7 = 1, 2. The best fitting param­
eter for E* = (C, X)is (/xi + /X2)/2. The report to be written for Ei is that xi 
is an (unreliable) estimate of /xi. The report to be written for E* is that xi esti­
mates (/xi + 112)/2. Note that the best fitting parameters and reports differ among 
experiments. £^(£*, Ti, (1, xi)) 7̂  Ey{Eu ^2, xi). 
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12.3. Counterexamples 

The context of this section is that there is disagreement among experts about the 
nature of statistical evidence and consequently much use of one formulation to 
criticize another. Neyman (1950) maintains that, from his behavioral hypothesis 
testing point of view, Fisherian significance tests do not express evidence. Royall 
(1997) employs the "law" of likelihood to criticize hypothesis as well as signifi­
cance testing. Pratt (1965), Berger and Selke (1987), Berger and Berry (1988), and 
Casella and Berger (1987) employ Bayesian theory to criticize sampling theory. 

O'Hagen (1994, p. 18), and others, refer to this practice as "detecting coun­
terexamples"; but that is not what a counterexample is. A counterexample to a 
theorem is an instance where the hypothesis is satisfied but the conclusion is not. 
The hypotheses of the various theories of inference differ. For example, Bayesian 
inference assumes that all relevant quantities are random, whereas sampling the­
ory assumes that some quantities are random while others are fixed but unknown 
constants. Neither set of assumptions is more 'true" in the abstract; both are choices 
of volition and it is not clear how to choose. 

Critics assume that their findings are about evidence, but they are at most about 
models of evidence. Many theoretical statistical criticisms, when stated in terms 
of evidence, have the following outline: According to model A, evidence satisfies 
proposition P. But according to model B, which is correct since it is derived from 
"self-evident truths," P is not true. Now evidence can't be two different ways so, 
since B is right, A must be wrong. Note that the argument is symmetric: since A 
appears "self-evident" (to adherents of A) B must be wrong. But both conclusions 
are invalid since evidence can be modeled in different ways, perhaps useful in 
different contexts and for different purposes. From the observation that P is a 
theorem of A but not of B, all we can properly conclude is that A and B are different 
models of evidence. In the notation of Section 8.3, it is clear that Ey(E, A,y) need 
not equally(£, B, y). The common practice of using one theory of inference to 
critique another is a misleading activity. 

As a particular example, consider the criticism of /?-values, postponed from 
Chapter 11. Royall (1986), Peto et al (1976), and Lindley and Scott (1984) point 
out that different Bayesian meanings of significance tests depend on sample size 
in different ways. 

On the other hand, presumably, the meaning of a given probability does not vary 
over experiments. That is, if pr(A, F) = pr(B, E), then event A has the same 
tendency to happen when experiment F is performed as does event B when E is 
performed. If when flipping a coin pr(head) = 1 / 2 meant something different than 
pr(even) = 1/2 when rolling a die, then probabiHty would be a useless concept. 
For each y e S the ;?-value p(y; r], /c)of Chapter 11, consists of a probability 
theoretically calculated before data. Hence the show-me meaning of p{y; rj, /c), 
J € 5, and the special case p(yo', rj, /c)does not vary with sample size. 

This discrepancy is not surprising since significance tests do not belong to the 
Bayesian logic; the theorems of different models of inductive rationality can be 
expected to differ. This is once again the Euclidean misconception. 
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Berger and Wolpert (1984) and others, employ the conditionality principle to 
criticize classical inference and in particular p-values. But the evidence of the 
conditionality principle is about the true density of experimental data known to be 
a member of a parametric class, while show-me evidence of Chapter 11 is about 
whether a subset of an assumed class of densities, includes a member that fits data 
adequately. An experiment is a recipe for performance, it isn't about parameters; 
parameters are about experiments. It cannot be literally true that we know the 
functional form of the true density and this makes a difference. 
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The Science of Statistics 

13.1. Meanings of "Science" 

On the inside of the front cover of each issue of its Journal, the American Statistical 
Association declares that it is a scientific organization. In what sense is statistics 
scientific? There are several common usages of the word "science." First, science 
is sometimes used as a synonym for systematized knowledge. Or, in more detail, 
a science is the systematized knowledge produced by the study of the structure 
of a class of concepts. A second usage is that science is explanation. Third and 
more narrowly, science is sometimes taken to mean the systemized knowledge 
of "nature," of the "real world." A fourth usage, due to Karl Pearson, is that any 
field of study which employs the scientific method of hypothesis, deduction and 
experiment is a science. A fifth usage is common in physics; Ruhla (1993) writes 
"prediction = science." 

The first concept of science is very broad; virtually all academic subjects are 
systemized knowledge. History is systemized knowledge and historians frequently 
hypothesize and deduce, but that part of history which is "just one damned fact af­
ter another" probably isn't scientific. In spite of the view that "history repeats 
itself," history is an unreliable predictor, for it is not subject to experimental 
test; the situation is not repeatable. But much history can be considered an ex­
planation. Historians of the American civil war speculate: "If Stonewall Jack­
son had not been killed at Chancellorsville then Gettysburg would have been 
a small skirmish on Lee's march to Washington." Do we want history to be a 
science? 

The latter three usages of the word science are all attempts to characterize natural 
science. Most discussions of science are implicitly limited to natural science, the 
study of nature or the world out there. Clearly, chemistry, physics, and biology 
are natural sciences but there are also computer science, political science, social 
science, and creation science. 

In contrast, many worthwhile human activities are not at all scientific. While 
some artists have used the results of science, artistic painting would seem a prime 
example of a nonscientific activity. Artistic painting is not expected to follow the 
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rules of logic and there is no corrective mechanism corresponding to the experiment 
in science. 

With regard to the fourth concept of science, going through the motions of 
scientific method is not enough to imply science. Margaret Jarman Hagood (1941, 
pp. 425-^32) states the issue for sociology with refreshing objectivity. There is— 

the premise that there is a stability, a regularity, an orderliness in the occurrence of so­
ciological phenomena, even though it is dynamic and ever-changing, and that one task of 
developing a scientific sociology embraces the description and formulation of the stable and 
regular, though dynamic, relationships underlying two or more series of phenomena. We 
have stated previously that the fact of differences in geographic location, culture and fime 
seems to preclude the possibility of developing any truly universal laws, or descriptions of 
relationships, among series of social phenomena which would be valid for all times, places 
and cultures. Therefore, our goal in developing a scientific sociology is necessarily limited 
in the description of relationships. Yet somehow, there seems to be a place for the sifting 
from sets of observed measures of relationships the irrelevant variations which particularize 
them as unique, in a search for meaningful relations, impermanent and varied with location 
though they be. This goal is so far short of those of the physical sciences that it may be 
misleading to use the term scientific in our field. 

Without judging the issue for sociology, if nothing is constant, every situation is 
unique, then the past can't be a guide for the future and it is impossible to develop 
a predictive theory. There is no guarantee that application of scientific method to 
an arbitrary class of problems will uncover a predictive theory. It may be that no 
regularities or patterns exist for the class of problems. The fourth usage of the word 
science needs to be supplemented by a requirement that it achieve some success, 
perhaps yielding a descriptive or predictive theory. 

The sign in front of the author's workplace reads, "Mathematical Sciences." Is 
mathematics a science? It is certainly systematized knowledge much concerned 
with structure, but then so is history. Does it employ the scientific method? Well, 
partly; hypothesis and deduction are the essence of mathematics and the search 
for counter examples is a mathematical counterpart of experimentation; but the 
question is not put to nature. Is mathematics about nature? In part. The hypotheses 
of most mathematics are suggested by some natural primitive concept, for it is 
difficult to think of interesting hypotheses concerning nonsense syllables and to 
check their consistency. However, it often happens that as a mathematical subject 
matures it tends to evolve away from the original concept which motivated it. 
Mathematics in its purest form is probably not natural science since it lacks the 
experimental aspect. Art is sometimes defined to be creative work displaying form, 
beauty and unusual perception. By this definition pure mathematics is clearly an 
art. On the other hand, applied mathematics, taking its hypotheses from real world 
concepts, is an attempt to describe nature. Applied mathematics, without regard 
to experimental verification, is in fact largely the "conditional truth" portion of 
science. If a body of applied mathematics has survived experimental test to become 
trustworthy belief then it is the essence of natural science. 
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13.2. Concepts of Statistics 

Logical induction, distinguished from deduction, consists of reasoning from partic­
ular facts or individual cases to a general conclusion. Fisher considered statistical 
inference to be a solution to the old problem of how to infer conclusions inductively. 
Neymann and Pearson, and later Wald, aimed to base statistics on the "frequency of 
errors in judgment" resulting from "inductive behavior" Lehmann (1993, p. 1243) 
discusses the key role of "inductive inference versus inductive behavior" in the 
Fisher versus Neymann controversy. 

We have presented Rubin's description of Bayesian statistical inference, and 
the personal degree of belief version of it, in Chapter 9. Rubin draws conclusions 
about unknowns on the basis of data. This too is a process of induction-inferring 
general statements from particular data. 

Exploratory data analysis, as discussed by Velleman and Hoaglin (1992), aims 
to identify regularities and patterns in data. It thus emphasizes the process of 
discovery of generalities from particulars rather than the process of justification. 

These four different philosophies of statistics are different paradigms for what 
constitutes rational inductive reasoning. Statistical inference, the subject, consists 
largely of models of inductive rationality. 

13.3. Is Statistics a Science? 

Box (1976, 1980) likens statistics to physics where one makes tentative assump­
tions about nature which are then checked by comparison with data. He suggests 
that progress in "the science of statistics" is to be realized in an analogous manner, 
the consulting practice of the statistician performing the function of comparison 
with data. The career of R. A. Fisher is presented in support. Wilks (1950, p. 1) 
expresses a similar view: 

The test of the applicability of the mathematics in this field as in any other branch of applied 
mathematics consists in comparing the predictions as calculated from the mathematical 
model with what actually happens experimentally. 

But Hogben (1957, p. 22) objects: 

... what controlled experiment... would settle the dispute between Jeffreys and Fisher 
concerning the legitimacy of Bayes' postulate or the contest between Fisher and Neyman 
over test procedure. 

In a footnote Wilks provides us with a reference: "For an example of such a 
comparison, see Ch. 5 of Bortkiewicz, Die Iterationen, Springer, Berlin, 1917." 
Bortkiewicz (1917) calls a repetition of a given event that takes place without 
interruption in a sequence of repeated trials, an Iterationen; the modem English 
term for an Iterationen is a "run." His book develops a number of probabilistic 
(mathematical) results concerning the theory of runs. His Chapter 5 exemplifies 
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these mathematical results by comparison with several dichotomized empirical 
numerical series. For example, one series is the list of the sizes of the communities 
of the German Reich according to the census of 1910. Essentially, the mathematical 
model appears to fit these series rather well. Bortkiewicz may have hit upon a 
more-or-less permanent feature of demographic data, but stock market data might 
or might not display this feature. 

Statisticians can and do make contributions to subject matter fields such as 
physics, and demography but statistical theory and methods proper, distinguished 
from their findings, are not like physics in that they are not about nature. 

One does accumulate insight through statistical consulting experience with sim­
ilar data sets. For example, miss distances of conventional military projectiles are 
well modeled as bi- or trivariate normal with occasional outliers, but this is a find­
ing about ballistics rather than statistics. Applied statistics is natural science but 
the findings are about the subject matter field not statistical theory or method. 

Statistical methods based on frequency probability can be checked by Monte 
Carlo experiment, comparing observed frequency with deduction from theory. 
Bayesian methods, at least those based on a degree of belief probability cannot be 
checked in this way, but experiments can be structured which observe the behavior 
of the believer. Such experiments check the consistency of conclusion with theory 
but not the ultimate rationality of theory or method. 

If we accept that natural science is trustworthy conclusion concerning nature 
and that statistical inference, having to do with inductive rationality, is about 
mind not nature then statistics is not natural science; many of its most important 
concepts such as prior distributions and confidence intervals—the theories, not 
particular applications—are not about nature. Statistical theory does not employ 
"the scientific method." As Hogben tells us, statistical theory is not subject to 
experimental test. 

To the extent that statistical theory is science, it augments and competes with 
scientific method, the art and science of natural science itself. Statistical theory 
helps with how to do natural science but it is not itself a natural science. Statistics 
is of course a science in the first weak sense that it is systematized knowledge. 
Statistics is also scientific in that it involves prediction and explanation. The utility 
of much of statistics is that it facilitates the prediction of future experiments on the 
basis of past experiments. Consistency of experimental outcome with theoretical 
prediction is the statistical criteria for success of a theory. Statistics attempts to 
guide and explain the conclusions which may be drawn from data. 



14 
Comparison of Evidential Theories 

14.1. Evidential Models and Their Criteria 

We start from the view that the purpose of statistical theory is to explain and guide 
what we choose to present as statistical evidence, i.e., what data and reasoning 
should cause us to adopt certain conclusions. We arrive at the position that there 
are kinds of statistical evidence, each of which lends a different explanatory insight 
and none of which is perfect. The explanatory models which we consider—along 
with their criteria—appear in Table 14.1. 

14.2. Two Interpretations of the Mathematics 
of Testing Are Needed 

Some authors recognize two traditions of statistical testing: (i) Neyman-Pearson-
Wald hypothesis testing, which decides among behavioral responses to a performed 
experiment, based on the long-run error rates of the rules used for decision; and (ii) 
Fisherian significance testing—developed and exposited by Kempthorne and Folks 
(1971) and Cox and Hinkley (1974)—which considers p-values as an expression 
of experimental evidence. Much to Fisher's chagrin, Neyman denied the evidential 
interpretation (Neyman, 1950, p. 1; Fisher, 1956, p. 100; Johnston, 1986, p. 491). 
On the other hand, Fisher (1956, p. 91) tells us that the force or cogency of the 
evidence is not the infrequency with which the hypothesis is rejected in repeated 
sampling of any fixed population allowed by hypothesis. But he does not tell us 
what the force of the evidence is. We suggest that the force of the evidence is the 
degree of agreement between theoretical prediction and experimental outcome. 

The mathematics used to formulate these very different tasks is similar; this is 
not surprising since both theories are attempts to explain and interpret the prior 
practice of computing significance level. As with all mathematical theories, if a 
theory of statistics is to have any practical meaning, then its basic terms must be 
interpreted and, on the other hand, intuitive statistical concepts can be modeled by 
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TABLE 14.1. Statistical models of induction and their 
explanations 

Model Criteria 

Evidential meaning Sufficiency and conditionality 
Economic Bayes Rational gambling 
Propensity Bayes Exchangeability 
Likelihood inference The "law" of likehhood 
Hypothesis testing Behavioral error rate 
Show-me evidence Agreement of prediction with 

experimental outcome 

different theories. We think Neyman was right for the meanings which he gave to 
his mathematical concepts and Fisher was right for the different meaning which 
he gave to the same mathematical entities. 

Lehmann (1993), suggests that evidential significance tests and Neyman-
Pearson hypothesis tests might in fact be just different aspects of a single theory. 
But from the point-of-view of this exposition, their interpretations and explana­
tions seem quite different. Some of the criticism of p-values is simply the result 
of trying to restructure their logic in an inappropriate behavioral context. 

14.3. Evidential Meaning 

Evidential meaning is less complete, as a model for induction, than the remaining 
models. The suggested conclusion here is the likelihood principle: that identical 
inferences, about a common unknown quantityr, should be drawn from two dif­
ferent experiments resulting in proportional likelihood functions. But, as we have 
discussed in Chapter 8, no two real but different experiments can be formulated in 
terms of a common "true value,"r. Further, the evidential meaning of observing y 
as the outcome of experiment E will depend on the theoretical context, T, within 
which the experiment is placed. Data and theory do not speak for themselves; they 
have to be interpreted and the interpretation defended. 

14.4. Comparison of Bayesian, Likelihood, 
and "Show-Me" Evidence 

As an example of a theory T and its consequences, consider the Bayesian de­
gree of behef logic—Savage (1962) and Berger and Berry (1988). From (9.1), 
identical Bayesian inferences are drawn from two different experiments resulting 
in proportional likelihood functions; Bayesian inference satisfies the likelihood 
principle. 
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Further, if f(z|^o)/f(z|6>i) = kf(y|^o)/f(y|6>i) then the posterior degree of belief 
in 0̂ relative to Oi upon observing z, is k times stronger than upon observing 
y. Hence r(y) = f(y|^o)/f(yl^i) is a Bayesian measure, on a ratio scale, of the 
evidential strength with which the observation y supports ô over Oi. 

From this Bayesian starting point is developed the theory of likelihood inference, 
a data analysis method similar in spirit to, but different in result from, hypothesis 
testing—see Royall (1997). Royall and DeGroot (1975, p. 380) assume that the 
Bayesian evidential ratio scale interpretation continues to apply in the absence of 
the Bayesian context. Royall defines statistical evidence in terms of the likelihood 
ratio—the "law" of likelihood. On page 13 he supports his definition with an 
analogy from the physics of heat; in fact his theory of likelihood inference rests on 
this pillar, since within the Bayesian model, Bayesian—not likelihood—^inference 
is appropriate. It is a judgment call. The reader may wish to examine Royall's 
analogy to judge whether it is strong enough to support an entire theory of inference. 
We judge that, without the Bayesian model, there is little reason why the likelihood 
ratio should measure strength of evidence on a ratio scale. If it isn't meaningful to 
talk about probabilities of hypotheses, then it is even less meaningful to talk about 
k fold increases in ratios of such probabilities. 

For convenience, we repeat Assumption î  of show-me evidence (Section 11.2). 
For the two densities /^ and f^, the likelihood ratio r(y) = fr}(y)/fK(y) orders the 
sample points of S according to their agreement with r] (relative to K). 

There is substantial agreement, among statistical theories, on the ordinal signif­
icance of the likelihood ratio. The various theories differ primarily on reasons and 
interpretations; the Neyman-Pearson lemma is the foremost example. As we have 
observed, the Bayesian theory agrees on the ordinal significance of the likelihood 
ratio but goes farther. 

Without the Bayesian structure, and for simple hypotheses H and K, the suffi­
ciency principle still tells us that if fH(z)/fK(z) = fH(y)/fK(y), then y and z have 
equal evidential meaning (Cox and Hinkley, 1974, pp. 20, 92). It is then highly 
intuitive that smaller likelihood ratios indicate stronger evidence against H. This 
intuition can be supported by theory—Theorem 11.1, for example. 

We may contrast three theories as follows. The Bayesian model introduces 
postulates which imply that the likelihood ratio measures strength of Bayesian 
evidence on a ratio scale. Likelihood inference defines strength of all statistical 
evidence to be the likelihood ratio on a ratio scale. Show-me inference takes the 
likelihood ratio as a measure of strength of show me evidence but only on an 
ordinal scale. The three theories provide different grounds for conclusion under 
different assumptions about which people may reasonably disagree. 

Contrasted with hypothesis testing and economic Bayesianism, the spirit of 
show-me evidence is that, while long run error rates of statistical procedures and 
appropriate personal betting odds lend some insight, people are convinced pri­
marily by agreement of theoretical prediction with experimental outcome. We 
think /7-values have something to contribute but we also like Bayesian inference; 
there are kinds of evidence. The greater assumed structure of the Bayes approach 
facilitates stronger conclusions and consideration of more problems. 
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But sometimes it may be difficult to visualize Y and 0 as having a joint prob­
ability distribution, in which case Bayes' theorem of probability does not apply 
and Bayesian inference is not indicated. It isn't so much which distribution should 
be specified but rather whether the situation at hand conforms to any probabil­
ity law. It isn't clear that all quantities may be treated as random variables nor 
that all inference situations may be treated as chance experiments. Of course, 
we may make the prior probability assumption as an unsupported leap of faith. 
But then we are attributing an aura of scientific certainty to a purely specula­
tive situation. At this writing, one of the most complete and successful expla­
nations of Bayesian inference interprets probabiHty as personal degree of behef 
through consideration of "economic man." But one encounters substantial diffi­
culties in extending that economic argument to the conclusions of a group-the 
concern of science. See our Section 9.4. Alternatively, we may explain Bayesian 
statistics as a frequency theory applicable to exchangeable r.v.s . This theory 
is not helpful in choosing a prior and does not work for i.i.d. random vari­
ables. 

Berger and Berry (1988) and Howson and Urbach (1989) suggest the normative 
approach that scientists should adopt the Bayesian model of inference, updating 
personal belief as a consequence of new data to answer the question: "What now 
should I think?" But personal evaluation is not the evidential criterion of science; 
science is social not personal. Agreement of experimental outcome with theoretical 
prediction is the scientific criterion for the success of a theory. 

The claim that scientists should alter their traditional methods of inference, to 
conform with the Bayesian paradigm, deserves consideration. But only by happy 
accident can the Bayesian model be a description of how science does work, for 
that would be an anachronism; the scientific spirit predates Bayes by hundreds of 
years. 

Marked differences between Bayesian theory and scientific practice are, the 
treatment of failed hypotheses and the possibility of innovation. When an idea 
is contradicted by experiment, science does not simply adjust background (prior) 
knowledge in the light of the data. All Bayesian prior opinion is updated using 
Bayes' theorem whereas science simply throws failed hypotheses in the trash. That 
is the meaning of the cliche "back to the drawing board." 

Bayesian updating results in the second difference. Scientific knowledge typ­
ically grows as new conclusions are arrived at as a consequence of observing 
new phenomena. In contrast, all Bayesian posterior ideas must be among those 
having positive prior probabiHty, there is no possibility of introducing things not 
previously considered. 

In another context, the importance of not working with a closed set of possibil­
ities is remarked on by Ackoff (1979): 

Creafive solutions to problems are not ones obtained by selecting the best from among 
a well- or widely recognized set of alternatives, but rather by finding or producing a new 
altemafive. Such an alternative is frequently so superior to any of those previously perceived 
that formal evaluation is not required. 
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And again by Dyson (1988, p. 196)— 

The difficulty in imagining the future comes from the fact that the important changes are 
not quantitative. The important changes are qualitative, not bigger and better rockets but 
new styles of architecture, new rules by which the game of exploration is played. 

The distinction "Bayesian" is not just whether the parameters of a sampling 
distribution are fixed or random. A parameter is a quantity which varies according 
to circumstances but is considered constant for a given circumstance. A fixed 
parameter is considered to be an unspecified constant. A random parameter is a 
quantity considered to be a random variable in the sense of probability theory. 

Eisenhart (1947) explains that the parameters of non Bayesian models may 
either be fixed or random. For example, the astronomer Airy (1861) considers 
a series of observations of the same quantity over several nights. His model for 
the j-th observation on the k-th night is ykj = fi + Uk -\- ekj where JJL is the true, 
and hence fixed but unknown, value of the observation being made while ak is 
the random k-th night effect (or parameter) caused by "atmospheric and per­
sonal circumstances"; ^̂ ^̂ is the error of the kj-th observation about its conditional 
mean fji + ak. Rather than the randomness of the parameters, the important di­
chotomy in inferential philosophy is the old one of mind versus matter (see Durant, 
1953). 

14.5. An Example—Probability Evidence and the Law 

The following question arises in several legal contexts: An accused is capable 
of leaving some incriminating trace which was left by some perpetrator. In this 
situation, what are the implications of "probability evidence" regarding the guilt 
of the accused? Statistical instruments which have been considered are population 
proportions, p-values and posterior odds (or probabilities) of guilt. 

The general legal situation is that ". . . most courts admit decent evidence of 
population proportions" (Kaye, 1987, p. 161), but as was established in the eye­
witnesses testimony case of people vs. Collins (our Section 4.1 )without some 
empirical justification of prior probabilities, hypothetical probabilistic and statis­
tical arguments are inadmissible. There is a difficulty in choosing the relevant 
population. For example, in a case like Collins should one consider all the in­
dividuals in Los Angeles, or California or the nation? Or should the population 
consist of couples? There is no "true" value. But to proceed, assume this difficulty 
resolved. 

The population proportion, j6, may be given two alternative interpretations. 
First, if rj denotes the hypothesis that the defendant is randomly chosen from 
the population and I is the event that the defendant is capable of leaving the 
incriminating trace then fi = pr(I\ rj). 

Second, ^ turns out to be the show-me evidence, of Chapter 11, for guilt relative 
to the "background knowledge" of either guilt or random choice of defendant 
from the population. To see this let /c be the hypothesis that the defendant is the 
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perpetrator and let Y indicate whether the defendant is capable of leaving the 
incriminating trace or not, that is Y = 1 or 0 according as I is or is not the case. 
We have 

and 

, (3 , )^/(3' l '?)_f^,J = l 
fiy\K) [oo,y = 0. 

Now p{l- r,, K) = pr, [r(Y) < r ( l ) ] ^ pr.iY = 1) = y6, so 

1, j = 0 

h y ^ l 

P(y•'^'''^=^l^y^O 

And the bivariate evidence for K—guilt of the defendant—is 

{^,\),y^\ 

which depends only on the size of y6. If the defendant cannot have left the 
incriminating trace, then of course he/she is innocent, but if F = 1 and ^ is 
small then there is strong evidence of guilt relative to the hypothesis of random 
choice. 

Rather than P = pr(I |ry), we would really like pr(K \I). Bayes' theorem gives 
a formula for this probability; an equivalent but neater expression is obtained in 
terms of odds: 

0dds{K \I) = P^^^^^^ odds(K). (14.1) 

pr(I \not K) 

Kaye (1987, p. 171) casts a no vote on this use of Bayes' theorem: 
I would not be the first to insist that having an expert give an opinion as to the "probability of 
guilt" or the probability that the defendant is the one who left trace evidence is inadvisable. At 
best, a forensic scientist can testify to the probability of certain observations (like matching 
blood groups) assuming that the defendant left the incriminating evidence, or assuming 
that someone else did. But these scientists have no special claim to being able to figure 
out the inverse probability that a defendant is or is not guilty given the evidence. Such 
statements require knowledge of the prior probability of guilt. How can experts know 
this? 
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According to Mueller and Kirkpatrick (1999, pps. 960, 970) formula (14.1) is 
routinely applied to paternity cases in the form 

odds(K\I)=^^^-l=r'^ (14.2) 
pr(I\r]) 

Mueller and Kirkpatrick (1999, p. 968) explain that the prior odds are taken to be 
even "(meaning one chance that a defendant is the father as against one chance 
that he is not). This number is chosen because it is supposedly neutral between 
the positions of the plaintiff (claiming paternity) and the position of the defen­
dant (resisting)." This is a new and interesting explanation or interpretation of 
the Bayesian logic. The legal attitude toward probability evidence varies with the 
context, p-values receive a lukewarm reception because of the danger of mis­
interpreting pr(I \r])2ispr(I \not K)or worsepr(not K \I) (Kaye, 1987, p. 168). 
And yet the formula (14.2) which makes the same misinterpretation—substituting 
pr{I \r]) forpr(I \not K)—is routinely applied to paternity cases. It is unreason­
able to assume that, if the defendant is not the father, then the father must have 
been randomly chosen. 

Formula (14.2) makes two assumptions: (i) rj = not K and (ii) pr{K)— 
pr{not K). Sopr(r]) = pr(notK). = 111—a relatively large value. But r] seems 
a licentious and unlikely a priori mechanism for choosing a father; so /7r(/7)should 
be small—an apparent internal inconsistency. 

Mueller and Kirkpatrick (1999, p. 961) summarize the legal attitude toward 
statistical evidence as follows: 

For various kinds of trace evidence,... including hair samples and DNA, courts generally 
admit at least statistics reflecting the scarcity of the sample, and occasionally similar statistics 
relating to the probability of other natural phenomena. Indeed, in some criminal cases where 
proof that the defendant is the father of a child would itself constitute proof of intercourse, 
hence guilt of the charged crime, some courts even admit testimony on the... probability of 
paternity. In contrast to ColUns and the blue bus cases, where the facts are personal, social, 
and economic, most of these cases involve physical and medical facts. Here probability data 
are less likely to reflect human choice or volition, where we are less comfortable resting 
specific decisions about particular people on class wide generalizations. These differences 
may account for the difference in judicial treatment. 



Appendix A 
Deductive Logic 

A.l. The Propositional Calculus 

Logic, the study of correct reasoning, is traditionally divided into two parts: de­
duction, reasoning from general principles without introducing falsehood, and 
induction, inferring generalities from particular instances. 

Our immediate concern is with deduction. The usual modem approach to de­
duction, and particularly to mathematics, is through the propositional calculus. A 
proposition, or statement, is the meaning of a declarative sentence. Thus, ques­
tions or exclamations are not propositions, and the same declaration expressed in 
two different ways, say French and English, is the same proposition. 

The propositional calculus is about truth and falsity. Since Aristotle (384-322 
B.C.) announced the "law of the excluded middle," that each proposition is either 
true or false, it has been fundamental to the mainstream of Western logical thought 
that these are the only two possibilities. Within the calculus the meaning of truth is 
left undefined, but when the calculus is applied to some concept, truth is popularly 
thought to correspond to the way things are. 

The propositional calculus hypothesizes a universal set, U = {x,y,z,...}, of 
logical possibilities and considers the truth or falsity of various propositions, p, q, 
etc., relative to U. Different listings of the logical possibilities will be appropriate 
for different purposes. 

Example A.l A red and green ball are each placed in one of three cells. The 
possibilities appear in Table A. 1. 

Example A.2 If the balls of Example A.l are regarded as indistinguishable, as 
they might appear to a color-blind person, then we obtain a different set of logical 
possibilities, which are displayed in Table A.2. 

Denote the truth value of p for logical possibility x by |p,x| and write |p,x| 
= 1 or 0 according as p is true or false for x. The truth set P of proposition p 
is P = {x: |p,x| = 1}. Conversely, truth values may be obtained from the truth 
set. In fact, |p,x| equals 1 or 0 according as possibility x is or is not in the set 
P 
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TABLE A. l . Cell placement possibilities for two balls in three 
cells 

Possibility\color Red Green 

yi 1 1 
y2 1 2 
ys 1 3 
y4 2 1 
ys 2 2 
y6 2 3 
y? 3 1 
y8 3 2 
y9 3 3 

A proposition that is true for all logical possibilities (has U for truth set) is called a 
tautology; such statements are true, regardless of circumstances, as a consequence 
of their logical structure. On the other hand, a proposition that is false for all logical 
possibilities (has empty truth set) is called a contradiction. Those propositions 
that are true for some logical possibilities but false for others are called contingent. 

Simple propositions may be combined to form compound propositions. The 
negation '^p, read not p, is the proposition that states exactly the opposite of p. 
The disjunction pvq, read p or q, is clearly true when at least one of its components 
is true. The conjunction pAq, read p and q, will be true if both components are true. 

We may formalize the above observations explicitly as follows: for all x £ U, 

| -^p,x | = l - | p , x | (A.l) 

| p v q , x | =max(|p,x| , |q,x|) , (A.2) 

|p A q, x| = min(|p, x|, |q, x|). (A.3) 

For brevity, here and in similar contexts, we may suppress the roles of possibility 
and universal set. We then write, for example, 

| -^p | = l - | p l , (A.IO 

|pvq |=max( |p | , | q | ) , (A.20 

TABLE A.2. Number of indistinguishable balls placed in the 
three cells 
Possibility\Cell 

xi 

X2 

X3 

X4 

X5 

X6 

1 

2 
0 
0 
1 
1 
0 

2 

0 
2 
0 
1 
0 
1 

3 

0 
0 
2 
0 
1 
1 
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TABLE A.3. Some famous "laws" of classical logic 

i. 
ii. 

iii. 
iv. 

Law 

Double negation 
contradiction 

deMorgan 
excluded middle 

Linguistic statement 

no proposition is simul­
taneously true and false 

each proposition is 
either true or false 

Symbolic statement 

~ ( ~ p ) = p 
1 -pApl = 0 

pAq = ~ (~pv ~q) 
IpA ~p | = 1 

and 

|pAq|=min( |p | , |q | ) . (A.30 

We say that p and q are equivalent and write p = q if P = Q or if |p,x| = |q,x| 
for all xsU. The truth sets of ~p, pvq, and pAq are P, P U Q and P Pi Q. P is the 
complement of P, and U and 0 denote union and intersection, respectively. 

For illustration and completeness several famous rules of classical logic 
are given in Table A.3. Their proofs from the present point of view are as 
follows: 

i. K<nl>~p) | = l - | ' ^ p | = l - ( l - | p | ) = |p|. 
ii. h p A p | = m i n ( l - |p|,|p|) = 0, 
iii. I - (^PV -^q)! = 1 -1 -^pv - q | = 1 - max(l - |p|,l - |q|)= min(|pMq|) = 

|pAq|. 
iv. IpV ~p | = I ~ (~pAp )| =: 1 - I ~pAp| = 1. 

A.2. Truth Tables 

A useful alternative way of defining truth values of compound statements is 
the device of truth tables, which amounts to one particular choice of universal 
set of logical possibilities. All possible true and false combinations of compo­
nent statements are enumerated and displayed in matrix array. For example, the 
truth tables corresponding to (A.l), (A.2), and (A.3) appear as Tables A.4 (a) 
and (b). 

TABLE A.4(a) Truth table 
defining negation 

p 

1 
0 

(1.1) 
~p 

0 
1 
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TABLE A.4(b) Truth tables defining disjunction and 
conjunction 

p 

1 
1 
0 
0 

TABLE A.5 

Possibility 

xi 

X2 

X3 

X4 

X5 

X6 

q 

1 
0 
1 
0 

(1.2) 
pvq 

1 
1 
1 
0 

A truth table for indistinguishable balls 

P 

0 
0 
0 
1 
1 
0 

q 1 

0 
1 
0 
0 
0 
0 

r ~ p 

I 1 

I 1 

I 1 

L 0 

[ 0 
I 1 

pvq 

0 
1 
0 
1 
1 
0 

(1.3) 

pAq 

1 
0 
0 
0 

pAq 

0 
0 
0 
0 
0 
0 

Example A.2 (cont.) We employ Example A.2 and Table A.2 to illustrate the 
concepts presented thus far. Consider the propositions p = (one ball is placed in 
the first cell), q = (two balls are placed in the second cell), and r = (the sum of the 
numbers of balls contained in all cells is two). Truth values of various propositions 
appear in Table A.5. 

We have that U = {xi , . . . , xe} and R = U; hence, r is a tautology. P = {x4, X5} and 
Q = {X2}. The truth set of pvq is {x2, X4, X5} = P U Q. The proposition pAq is a 
contradiction since its truth set is null. Note that many true and false combinations 
are not logically possible; for example, |r| = 0 is missing. 

A. 3. Deductive Arguments and Conditional Statements 

Becoming more technical, deduction is the study of valid arguments. A deductive 
argument is an assertion that one statement, the conclusion, necessarily follows 
from other statements, the premises. The word "necessarily" is important here; it 
means independent of the true or false state of the world. A deductive argument is 
said to be valid if the conclusion is true for all logical possibilities for which all 
premises are true. An invalid argument is called a fallacy. 

An alternative way of discussing arguments and their validity is in terms of 
implication. If q is a conclusion and p is the conjunction of the premises, then we 
say p implies q, or write symbolically p =^ q, to mean that q necessarily follows 
from p is a valid argument (i.e., whenever x s U and |p,x| = 1, then |q,x| = 1). 
Implication, p =^ q, is variously expressed as p is a sufficient condition for q, and 
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q is a necessary condition for p. The essence of implication and the essence of 
what constitutes a valid deductive argument is that truth is preserved. 

Directly from the definition we see that p =^ q is the requirement that P C Q. 
Hence, p =^ q and q ^ p is the requirement that P = Q or p = q. 

An important relation between arguments and propositions is the following. 

Theorem A.l p =^ q is equivalent to requiring ~pvq to be a tautology. 

Proof 
Consider X £ U. If ~pvq is a tautology, then 1 = |'^pvq,x| = max{l - |p,x|,|q,x|}, 
and if |p,x| = 1, then |q,x| = 1. Conversely, if p =^ q, then either |p,x| = 0 or 1; in 
the latter case |q,x| = 1. Hence, in either case |~pvq,x| =max{l - |p,x|,|q,x|} = 1. 

Thus, the compound proposition ~pvq is particularly important in analyzing 
the validity of arguments, and a special logical connective,"-> ", called the con­
ditional, is introduced: p ^- q is written to mean ~pvq. The compound propo­
sition p -> q may be read "if p then q." In discussing the conditional, p is called 
theantecedent and q the consequent. 

Theorem A.l states that p ^ q and p ^ q are related; but there is a difference. 
The difference is that p ^- q is a proposition that is true or false depending on x, 
while p =^ q is an argument which is valid if ~pvq is true for all xsU. 

Table A.6 is the truth table of the conditional. Two comments on Table A.6, 
sometimes called paradoxes of the conditional, are in order. First, p ^- q is not 
to be given a causal interpretation. For example, if p is the proposition that salt is 
white and q that cows eat grass, then we have possibility Xa and |p ^- q, Xa| = 1, 
but the color of salt does not affect the diet of cows. It is simply the case that p and 
q are both true and, hence, truth is preserved. Second, for Xc and Xd, p ^ q is true 
by default. The way to look at this is as follows. Suppose |p,x| = 0. Does p -> q 
fail to preserve truth? The answer is no, regardless of the truth value of q; there 
is no truth of p to be preserved. Hence, p ^- q is not false and must, therefore, be 
true as a consequence of the law of the excluded middle. 

A sufficient condition for an argument to be valid is that, in a truth table, the 
conclusion is true whenever all premises are true. 

Example A.3 Affirming the antecedent 
The premises of this argument are p and p -> q; the conclusion is q. Observe from 
Table A.6 that Xa is the only possibility where p and p ^ q are both true, and, 
there, q is also true. Therefore, affirming the antecedent is a valid argument. 

TABLE A.6 Truth table of the conditional 

Possibility 

Xa 

Xb 

Xc 

Xd 

p 

1 
1 
0 
0 

q 

1 
0 
1 
0 

p -

1 
0 
1 
1 

>q 
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Example A.4 Denying the consequent 
Observe from Table A.6 that x^ is the only case where the premises p ^ q and 
~q are both true, and, there, the conclusion ^ p is true. Denying the consequent is, 
therefore, a valid argument. 

However, the argument (p -^ q)A q =^ p, called affirming the consequent, is, 
in general, a fallacy since from Table A.6 | p ^ q, xd = 1 and |q, xd = 1 but 
|p, Xc I = 0 . However, if Xc is not a logical possibility, then the argument becomes 
valid. Similarly, (p -> q)A ~ p =^~ q, denying the antecedent, is, in general, a 
fallacy. 

Some invalid arguments are difficult to formulate and expose in terms of the 
propositional calculus; they must be recognized by their specific content. 

Appeal to ignorance, that if we do not know q, then q must be false, is such 
an informal fallacy. However, another argument, which is easily confused with 
appeal to ignorance, is valid. Consider the following paraphrase of an argument 
that appeared in a United States government pamphlet. 

AIDS cannot be transmitted by mosquito. For AIDS is now the most thoroughly researched 
communicable disease, and every case thus far has been traced to a source other than 
mosquitos. This is in spite of the fact that AIDS is most prevalent in areas of the world, 
notably central Africa, where mosquitos are common. If mosquitos could transmit AIDS, 
then at least one such case would have shown up by now. 

Let p = (AIDS can be transmitted by mosquito) and q = (we know p). The 
AIDS argument is that if p were true, then we would know it, and we do not know 
p so p is not true. Symbolically, this is (p -> q)A ~q =^^ p, a valid argument. 

The scientific method of theory checking is to compare predictions deduced 
from a theoretical model with observations on nature. A deductive analysis of how 
this works is the following. Any investigation will be in the context of background 
knowledge, m, used for constructing and interpreting the question to be put to 
nature. At issue is a hypothesis h. Using m and h, a prediction is deduced that in 
one particular experimental instance nature will answer p. The particular instance 
is carried out and mAp is observed to be true or false. 

Table A.7 is used to interpret the results. Since mAh ^ p , or ~( mAh)Vp is 
a tautology, the situation |m| = |h| = 1, |p| = 0 cannot be a logical possibility 

TABLE A.7 Deductive analysis of scientific theory checking 

m 

1 

+ 
1 
1 
0 
0 
0 
0 

h 

1 
4-
0 
0 
1 
1 
0 
0 

p 

1 

e 
1 
0 
1 
0 
1 
0 

mAh 

1 
-t 
0 
0 
0 
0 
0 
0 

~(mAh)vp 

1 

e 
1 
1 
1 
1 
1 
1 

mAp 

1 
0 
1 
0 
0 
0 
0 
0 

mA~p 

0 

+ 
0 
1 
0 
0 
0 
0 
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as indicated by "marking out" the second line of Table A.7. If | mAp| = 0 we 
cannot conclude |h| = 0, only that | mAh | = 0; or in the words of Ayer (1982, 
p. 11) ". . . the propositions of scientific theory face the verdict of experience, not 
individually but as a whole." On the other hand, if |mAp| = 1 then h as well 
as mAh may be either true or false. Or as Karl Popper puts it, the falsity but 
not the truth of generalizations can be deduced from appropriate particulars. If 
|mAp| = ImA^pl = 0 then the appropriate conclusion, is |m| = 0, to question 
background knowledge. 

A.4. Critique of Classical Logic 

It would be difficult to overestimate the importance of classical two-valued logic. 
For "the man in the street" it is a dull subject and yet many of the great achievements 
of the human mind have been made to depend on classical logic; two obvious 
examples are mathematics and computers. However, it is not at all difficult to find 
instances where classical reasoning is clearly inappropriate. A major problem with 
the deductive analysis of Table A.7, discussed in Chapter 3 and later, is that models 
and hypotheses are not true or false, only more or less accurate for some purpose. 

Now turning to another difficulty with deduction: we understand that Aristotle 
himself observed that future contingent statements, such as the outcome of tomor­
row's sea battle, cause difficulties for his law of the excluded middle. "We will 
win the battle tomorrow," stated the day before seems to be indeterminate rather 
than true or false. "We did win the battle yesterday," reported the day after, makes 
precisely the same claim about the facts, but from a different temporal perspective. 
The claim changes from indeterminate to either true or false with the passage of 
time. The calculus of propositions provides for neither indeterminate nor changed 
truth values. This still unresolved issue seems to have important implications for 
statistics. Aristotle's sea battle as predicted the day before or reported the day 
after, seems to be like the outcome of a sampling experiment before and after its 
performance. 

Two friends disagree on the role of education in a democracy. One believes that 
all citizens must receive higher education in order to vote competently, the other 
that only capable students should receive higher education because the presence 
of the slower student dilutes the quality of the whole, to the detriment of the state. 
Each reasons, from the law of the excluded middle, that since he is right and their 
positions are incompatible, that the other is wrong. Must one of them be right and 
the other wrong, though perhaps we do not know which? Or, are each of their 
positions only partly true but a little false? 

Even in mathematics, that stronghold of classical logic, there is a dissenting 
minority of "intuitionists," led by Brouwer, who reject the law of the excluded 
middle. They employ a logic in which pV'^p is not a tautology. 

Before truth can correspond to "the way things are," things must be just one way. 
The truth of a proposition must be invariant to changes of conditions not covered 
in the proposition. Truth must be invariant with respect to time perspective, the 
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same after the sea battle as before. Truth must be the same at different locations; a 
chemical experiment must give the same result at different laboratories. Changing 
the observer must not change truth value, my truth must be your truth. Either truth 
value must be unchanged by altered conditions of observation, or the proposition 
must specify the effect of the alteration. 

In summary, while classical logic has proved to be very useful, invariance quali­
fications are needed before the "universal" laws of logic are valid. Furthermore, the 
precise nature of these qualifications is not at all clear, and an adequate substitute 
for classical logic has not presented itself. 

A.5. Many-Valued Logic 

As noted in the previous section, there are compelling reasons for considering logi­
cal systems that incorporate truth values other than traditional truth and falsity. Lis­
ten to what motorcycle maintenance has to say about two-and three-valued logic. 

Because we're unaccustomed to it, we don't usually see that there's a third possible logical 
term equal to yes and no which is capable of expanding our understanding in an unrecognized 
direction. We don't even have a term for it, so I'll have to use the Japanese mu. . . (Mu) 
states that the context of the question is such that a yes or no answer is in error and should 
not be given. 

The dualistic mind tends to think of mu occurrences in nature as a kind of contextual 
cheating, or irrelevance, but mu is found throughout all scientific investigation, and nature 
doesn't cheat, and nature's answers are never irrelevant. It is a great mistake, a kind of 
dishonesty, to sweep nature's mu answers under the carpet. Recognition and valuation of 
these would do a lot to bring logical theory closer to experimental practice. Every laboratory 
scientist knows that very often his experimental results provide mu answers to the yes-no 
questions the experiments were designed for. In these cases he considers the experiment 
poorly designed, chides himself for stupidity and at best considers the "wasted" experiment 
which has provided the mu answer to be a kind of wheel-spinning which might help prevent 
mistakes in the design of future yes-no experiments. 

This low evaluation of the experiment which provided the mu answer isn't justified. The 
mu answer is an important one. It's told the scientist that the context of his question is too 
small for nature's answer and that he must enlarge the context of the question. That is a 
very important answer! His understanding of nature is tremendously improved by it, which 
was the purpose of the experiment in the first place. A very strong case can be made for 
the statement that science grows by its mu answers more than by its yes or no answers. 
Yes or no confirms or denies a hypothesis. Mu says the answer is beyond the hypothesis. 
Mu is the "phenomenon" that inspires scientific inquiry in the first place! There's nothing 
mysterious or esoteric about it. It's just that our culture has warped us to make a low value 
judgement of it. In motorcycle maintenance the mu answer given by the machine to many 
of the diagnostic questions put to it is a major cause of gumption loss. It shouldn't be! 
When your answer to a test is indeterminate, it means one of two things: that your test 
procedures aren't doing what you think they are or that your understanding of the context of 
the question needs to be enlarged. Check your tests and restudy the question. Don't throw 
away those mu answers! They're more vital. They're the ones you grow on! 

Persig (1984, p. 288, et seq.) 
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TABLE A.8 

~p p\q 

0 1 
1 I 
1 0 

Lukasiewicz' 

pAq 
110 

110 
no 
0 0 0 

s three-valued logic 

pvq 
110 

11 1 
I I I 
110 

(P->q) = (--pvq) 
110 

110 
I I I 
111 

An observation on Persig is that, w ĥile he makes an interesting point, it does not 
establish the necessity for multiple-valued logic. In Table A.7, we have analyzed 
the situation without introducing mu. Let m be the background knowledge or model 
used for constructing and interpreting the diagnostic question put to the motorcycle 
and let p be a theoretical deduction of the cycle's answer. If |mAp| = |mA ~p | = 
0 then |m| = 0. 

The best known generalization of the classical propositional calculus is Table 
A.8, the three-valued logic of Lukasiewicz. If I is thought of as being intermediate 
between 0 and 1 in truth value, then equations (1.2) and (L3) hold here as well. 
There are numerous other systems of many-valued logic besides the three-valued 
logic of Lukasiewicz. Most of these take the formulae (A.l), (A.2), and (A.3) 
as definitions of negation, disjunction, and conjunction. The following guidelines 
have been widely adopted: (a) the truth value of the negation of a statement is its 
"mirror image" in truthfulness, (b) the truth value of a disjunction is the truest of 
the truth values of its components, and (c) the truth value of a conjunction is the 
falsest of the truth values of its components. In particular, there is an infinite version 
of Lukasiewicz logic, which contemplates all possible truth values between 0, 
denoting absolute falsity, and 1, denoting absolute truth. But note that the third truth 
value in the problem of future contingency, mentioned in Section A.4, and Persig's 
mu may not be intermediate between true and false. That third value may represent 
indeterminate, inapplicable, undefined, confused, muddled, inappropriate, or out 
of context. 

In the propositional calculus a proposition is called a tautology if it is true for 
all logical possibilities. This concept is readily extended to many valued systems 
by designating certain of its truth values as being nearly true. A proposition, p, 
is then called a tautology of the many valued system if |p,x| is designated for all 
logical possibilities x s U. Similarly, we may antidesignate certain truth values 
as being nearly false and define p to be a many valued contradiction if |p,x| is 
antidesignated for all xsU. Observe that the negation of a many valued tautology 
will be a contradiction and, vice versa, (as in the propositional calculus) if the truth 
function for negation has the "mirror image" property of taking designated truth 
values into antidesignated ones and vice versa. 

In the early 1900's, when logic was being systematized and studied abstractly, 
truth functionality was thought to be an essential feature. A connective 0 is truth 
functional if there is a function F^ such that |0(p,q),x| = F0(|p,x|,|q,x|). A logic 
is truth functional if each of its connectives are. The propositional calculus and 
Lukasiewicz's three-valued system are both truth functional with F~(l) = 0, 
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F^(0) = 1, F^(I) = I, Fv(u,v) = max(u,v) and FA (U,V) = min(u,v). It is truth 
functionality that makes truth table methods possible; and, of course, a logic will 
be truth functional if each of its connectives may be defined in terms of a truth 
table. 

Notes on the Literature 

Most of the first four sections are standard and can be found in any book on 
logic. An exception is the explicit introduction of the possibility space U. Many 
writers handle this aspect linguistically. For example, they describe a tautology as 
a statement that is true no matter what the facts. We prefer the concrete possibility 
space language. A more extensive treatment close to the above is Kemeny et al. 
(1958). For more detail concerning many-valued logic, the reader may consult 
Rescher(1969). 
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