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Preface 

The f'mite element method is now widely used to solve a variety of important problems 
in the field of groundwater hydrology. Thus a clear understanding of the method is 
essential to scientists and engineers working in this field. The goal of this book is to 
provide the reader with the basic skiRs needed to use the finite element method to solve 
"real-world" problems. Examples are used throughout the text to illustrate each step in the 
solution process. 

The text is divided into three parts. In the Part 1, the basic concepts of the finite 
element method are presented. Chapters 2 to 6 present a step-by-step application of the 
finite element method to problems of groundwater flow and solute transport. Techniques 
for dividing an aquifer system into a suitable finite element mesh are descr;,• in Chapter 
2. A number of practical "rules" are presented for locating and numbering nodes and for 
selecting the proper element type, size, and shape. In Chapter 3, the method of weighted 
residuals is used to derive the integral formulations of the equations governing steady-state 
and transient groundwater flow and solute transport through saturated and unsaturated 
porous media. The derivations are presented for one-, two-, and three-dimensional 
problems; the integral formulations for axisymmetric problems arc derived in an exercise. 
The derivations are unique in that they do not require the reader to be familiar with 
advanced mathematics; although a basic understanding of differential and integral calculus 
is assumed. In Chapter 4, the important properties of element interpolation functions are 
discussed at length. Expressions are presented for computing the element conductance, 
capacitance, advection-dispersion, and sorption matrices for each element type and for 
assembling the element matrices into a system of linear or nonlinear equations. Procedures 
are also presented for modifying this system of equations for different types of boundary 
conditions (such as constant head or no-flow boundaries) Procedures for solving the 
system of equations are presented in Chapter 5. In Chapter 6, procedures arc presented for 
using computed values of hydraulic head (or pressure head or solute concentration) to 
compute rates of groundwater flow and solute flux. 

In Part 2, the computer implementation of the finite element method is discussed. Each 
chapter contains a description of one or more FORTRAN subroutines, example input data 
and output, and the complete source code listing. The same subroutines are also available 
on diskette. These subroutines, although intended for instructional purposes, contain many 
advanced features. Most importantly the "modular" design of these subroutines means that 
they form convenient "building blocks" for several different finite element computer 
programs. 

Part 3 is concerned with applications of the material in Parts 1 and 2 to "real-world" 
problems. Chapter 20 discusses applications to problems of regional groundwater flow. 
Chapter 21 discusses solute transport with application to problems of groundwater 
contamination from point and diffuse sources. 

Useful supplementary information is contained in the Appendices. Detailed derivations 
of the equations of groundwater flow and solute transport are presented in Appendices I, 
H, and HI. A concise review of important topics from linear algebra is in Appendix IV. 
Typical values of physical properties for selected aquifer materials are in Appendix V. 

The author would lLke to thank the many individuals and institutions who helped to 
make this book possible. Former graduate students Richard Cooper, Jeffrey Smith and 
Alan Rea helped with the development of the computer programs. Sang Bong Lee 
carefully read (and reread) early versions of the manuscript and helped me correct 



Prefac• xiv 

computational errors in the example problems. Janet Lee helped me with the computer 
programming (but any remaining bugs are my fault!). Joan Istok drew the example f'mite 
element meshes in Chapter 2. I also wish to thank ling Leung, Jonathan Yap, and Elvina 
Lim - who typeset the entire book on a Macintosh computer. They did a terrific job! 

The Oregon Agricultta'al Experiment Station and the U.S. Geological Survey provided 
financial support for this project. I also wish to thank the students in my groundwater 
modeling classes who taught me a lot about the firrite element method while I was trying to 
explain it to them. I also wish to thank Francis Hall for his interest in this project. It 
provided a needed lift when my enthusiasm had almost run out. 

Jonathan Istok 

Department of Civil Engineering 
Oregon State University 
Corvallis, Oregon 



Chapter I 

INTRODUCTION 

1.1 GROUNDWATER FLOW AND SOLUTE TRANSPORT MODELS 

Groundwater is an important natural resource. Many agricultural, domestic, and 
industrial water users rely on groundwater as the sole source of low-cost, high-quality 
water. However, in recent years it has become apparent that many human activities can 
have a negative impact on both the quantity and quality of the groundwater resource. Two 
examples are the depletion of the groundwater resource by excessive pumping and the 
contamination of the groundwater resource by waste disposal and other activities. One way 
to objectively assess the impact of existing or proposed activities on groundwater quantity 
and quality is through the use of groundwater flow and solute transport models. 

In developing a groundwater flow or solute transport model the analyst begins by 
preparing a conceptual model consisting of a list of the physical and chemical processes 
suspected of governing the behavior of the system being studied (e.g., groundwater 
seepage through soil and rock pores, laminar and turbulent water flow through large pores 
and rock fractures, and solute transport by advection, dispersion, and diffusion). The next 
step is to translate the conceptual model into mathematical terms and the result is a 
mathematical model consisting of one or more partial differential equations and a set of 
auxiliary conditions. Solutions of the equations subject to the auxilliary conditions can be 
obtained by one of several methods (see below). If numerical methods are used, the 
collection of partial differential equations, auxilliary conditions, and numerical algorithms 
are referred to as a numerical model. If a computer program is used to implement the 
numerical model (as is usually done) the computer program is sometimes referred to as a 
computer model. 

Existing mathematical models of groundwater flow and solute transport are necessarily 
greatly simplified descriptions of reality. The movement of water and solutes from the 
surface of the earth to the aquifer, and through the aquifer to a point of water use is an 
extremely complex phenomenom and many of the physical and chemical processes 
involved are poorly understood. It is therefore difficult to translate all of these processes. 
into a single set of equations that apply equally well to all situations encountered in practice. 
Instead the usual approach has been to classify groundwater flow and solute transport 
problems into categories and to develop mathematical and numerical models for each 
category separately. In this book we will consider five such categories: (1) steady-state, 
saturated groundwater flow, (2) steady-state, unsaturated groundwater flow, (3) transient 
(or time-dependent), saturated groundwater flow, (4) transient, unsaturated groundwater 
flow, and (5) solute transport. The partial differential equations used in mathematical 
models of groundwater flow and solute transport for each problem category are: 

1, The Steady. State. Saturated Flow Equation: 

Water Resources Monograph
Groundwater Modeling by 
the Finite Element Method Vol. 13

Copyright American Geophysical Union



4 Introduction 

The Steady-State. Unsaturated Flow Equation: 

(1.2) 

The Transient. Saturated Flow Eauation: 

3/ 3h'• 3/ 3h• 3/ 3h• s3h 

4, The Transient. Unsaturated Flow Eouation: 
_ 

(1.4) 

The Solute Transport Eo_uation: 

32 •2 32 

3(OC) = Dx•x2(OC ) + Dy•y•(OC)+ Dz•z2(OC) 
(1.5) 

where h is hydraulic head, K x, Ky, and K z are the components of saturated hydraulic 
conductivity in the x, y, and z coordinate directions, t is time, • is pressure head, Kx0l/), 

Ky(•i/), and Kz(•) are the components of unsaturated hydraulic conductivity, S s is specific 
storage, C(•i/) is specific moisture capacity, C is solute concentration, D x, Dy, and D z are 
dispersion coefficients, 0 is the volumetric water content, v x is apparent groundwater 
velocity in the x coordinate direction, Pb is bulk density, K d is the equilibrium distribution 
coefficient for a particular sorpfion/desorpfion reaction involving the solute and the porous 
media, and •. is the solute decay coefficient. 

Equations 1.1 to 1.5 are derived in Appendices I, II, and HI. These derivations should 
be studied carefully and the simplifying assumptions used in the derivations should always 
be kept in mind when using these equations to solve a particular groundwater flow or 
solute transport problem. Partial differential equations can also be derived for additional 
categories of problems including energy flow (e.g., the flow of heat in a geothermal 
reservoir), multiphase fluid flow (e.g., the simultaneous flow of air, water, oil, and natural 
gas in a petroleum reservoir), aquifer deformation (e.g., the consolidation of an aquifer due 
to excessive groundwater withdrawl), and more complex forms of solute transport (e.g., 
solute transport subject to microbial degradation). Although this book is concerned only 
with the application of the finite element method to the solution of equations 1.1 to 1.5, 
many of the same procedures also can be used to solve equations derived for other types of 
problems. 

The mathematical model for each category of groundwater flow and solute transport 
problems consists of one of the partial differential equations listed above and a set of 
auxilliary conditions. The auxilliary conditions for equations 1.1 to 1.5 are classified as 

Water Resources Monograph
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Chapter 1 5 

either boundary conditions or initial conditions (defined in sections 1.2 and 1.3, 
respectively). A mathematical model consisting of one or more partial differential equations 
and a set of boundary conditions is referred to as a boundary value problem; a 
mathematical model consisting of one or more partial differential equations, a set of' 
boundary conditions, and a set of initial conditions is referred to as an initial value problem. 

1.2 BOUNDARY VALUE PROBLEMS 

Mathematical models of groundwater flow based on equations 1.1 or 1.2 are classified 
as boundary value problems. In boundary value problems, the analyst can specify the 
value of the unknown quantity orfleld variable (i.e., hydraulic head or pressure head) 
along portions of the aquifer boundaries. Derivatives of the field variable (i.e., rates of 
groundwater flow) also can be specified along portions of the aquifer boundaries (e.g. to 
represent groundwater recharge) or at special points within the aquifer called point sources 
or sinks (e.g. to represent groundwater withdrawl from wells). These specified values 
are collectively referred to as boundary conditions and when they are combined with 
equation 1.1 or 1.2 the result is a mathematical model that can be solved for values of the 
field variable at any point within the aquifer. Examples of boundary value problems and 
boundary conditions are in Fi•ttre 1.1. In boundary value problems, boundary conditions 
and computed values of the f•eld variable do not change with time and the minimum and 
maximum values of the field variable always occur on the boundaries of the aquifer or at 
point sources or sinks. 

1.3 INITIAL VALUE PROBLEMS 

Mathematical models of goundwater flow and solute transport based on equations 1.3, 
1.4, or 1.5 are classified as initial value problems. In initial value problems, boundary 
conditions, i.e., specified values of the field variable (hydraulic head, pressure head, or 
solute concentration) and its derivatives (rates of groundwater flow or solute flux), are 
specified in the same way as for boundary value problems. In addition, values of the field 
variable must be specified at all points within the aquifer at some initial time to and these 
specified values are collectively referred to as initial conditions. When the boundary 
conditions and initial conditions are combined with equation 1.3, 1.4, or 1.5, the result is a 
mathematical model that can be solved for values of the field variable at any point in the 
aquifer at any time t > to. Some examples of initial value problems, boundary conditions, 
and initial conditions are in Fi•tre 1.2. In initial value problems, boundary conditions and 
computed values of the field variable can change with time and the minimum and maximum 
values of the field variable at time t can occur at any point within the aquifer. 

1.4 ANALYTICAL METHODS FOR SOLVING THE EQUATIONS 

In general we can use two types of methods to obtain solutions to a mathematical model 
of groundwater flow or solute •ansport: analytical methods and numerical methods. 
When using analytical methods we seek to obtain a functional representation for the 
solution of the partial differential equation (e.g, a mathematical expression that gives 
hydraulic head as a function of position and time within the aquifer). The accuracy of 
analytical solutions can be very good (exact in many cases) and analytical solutions to 
equations 1.1 to 1.5 are widely used to study the behavior of groundwater flow and 
•ansport processes under hypothetical conditions (e.g., to determine the sensitivity of 
computed values of hydraulic head to values of saturated hydraulic conductivity), to 
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6 Introduction 

Plan View of Alluvial Aauifer 
__ 

River 

(Constant head boundary) Valley Walls 
* (No flow boundaries) 

,L'¾oss-Secti0nal View of Earth Dam 

Upstream Face of Dam 
*(Constant head boundary) 

Water Table 
*(Pressure head = 0) 

Downstream Face of Dam 

*(Constant head boundary) 

Low Permeability Bedrock 
*(No flow boundaries) 

Figure 1.1 Examples of boundary value problems and boundary conditions for 
steady-state, saturated groundwater flow, * = boundary condition. 

Water Resources Monograph
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Chapter 1 7 

Cross-Sectional View of Aauifer 
_ 

Pumping Well, 
*(Specified rate of 

groundwater 
4'////// 

** Initial Position of Water 

Table at t --.t o 

****************************** 

Low Permeability Bedrock 
*(No flow boundary) 

Position of Water 

Table at tl > to 

Position of Water 

Table at t2 > t 1 

(7ross-Sectional View of Aquifer 

Leaking Landfill 
* (Specified rate of solute flux) 

** Initially No Contaminant 
Present in Aquifer 

Position of Plume 
at t 1 > t o 

Position of Plume 

at t2> t I 

Figure 1.2 Examples of initial value problems, * = boundary condition, ** = initial 
condition. 
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8 lmroducfion 

intcrprct data from laboratory and ficld experiments (c.g., to compute valucs of dispersion 
cocfficicnts for a soil samplc in a laboratory column from thc results of a miscible 
displacement experiment), and to verify the accuracy of solutions obtained by numerical 
methods (e.g., by comparing computed solute concentrations obtained using analytical and 
numerical tacthods for a wide range of apparent groundwater vclocities and dispersion 
coefficients). 

Example 

Problem Statement: 

One-dimensional, steady-state, groundwater flow through isotropic and homogeneous 
aquifer (v x = 0.01 m/d; D x = 1 m2/d). " 
Solute transport by advection and dispersion only. No solute decay (•. -- 0) or sorption 
of solute to porous media (K d -- 0). 
Initially no solute is present. At time t -- 0, solute concentration at one end of aquifer is 
increased instantaneously to 100 mg/l. 
Compute solute concentration at x -- 100m, t -- 500 days 

Mathematical Model: 

Partial Differential Equation 

•C _ •2C •C 
X' = •Xax--•- Vx•xx (see Appendix Ill) 

Boundary Conditions 

C (x = O, t • O) = 100 mg/l 

Initial Conditions 

C(x>O,t=O) = 0 

Solution Obtained bv Analytical Method (O•ata. 1970•: 
_ _ _ 

[ (X-Vxt) (VxX • (x +v•t)] C(x,t ) = C(x -- O, t > O) erfc + exp effe 

c(loo,500) = • 2•(1)(• '• ( •+0.01(5•))] 2•(•)(• 

= 50 [effc (2.124) + exp (1) effc (2.348)] 

(values of the complementmy e•or function, effc( ) •e tabulated in Freeze and 
Che• (1979)) 

Water Resources Monograph
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Chapter 1 9 

-- 50 [0.002711 + 2.718(0.000925)] -- 0.26 mg/l 

The principal limitation of analytical methods is that solutions can only be obtained by 
imposing severely restrictive assumptions about aquifer properties, boundary conditions, 
or initial conditions. For example, an assumption commonly made to obtain analytical 
solutions to equation 1.1 is that the aquifer is isotropic and homogeneous for hydraulic 
conductivity (i.e., that the components of saturated hydraulic conductivity, K x, Ky, and 
K z, are the same and do not change from point to point within the aquifer). In most field 
situations, however, the assumptions required to obtain solutions to groundwater flow or 
solute transport problems using analytical methods are not valid. 

1.5 NUMERICAL METHODS FOR SOLVING THE EQUATIONS 

Numerical methods do not require such restrictive assumptions. For example, it is 
possible to obtain numerical solutions for the case of anisotropic and nonhomogeneous 
aquifer properties and for problems with complex and time-dependent boundary 
conditions. When using numerical methods we seek a discrete approximation for the 
solution i.e., computed values of the field variable at a set of specified points within the 
aquifer at a set of specified times; the number and location of the points and the number and 
choice of times is determined in advance by the analyst. The accuracy of solutions obtained 
by numerical methods can be very good (exact in some cases) but depends on several 
factors including: the type of numerical method used, the complexity of the boundary and 
initial conditions, and the computational precision of the computer used to implement the 
method. In general, it is easier to obtain high-accuracy numerical solutions for steady-state 
groundwater flow problems than for transient groundwater flow and solute transport 
problems and for saturated groundwater flow problems than for unsaturated groundwater 
flow problems. 

Several types of numerical methods have been used to solve groundwater flow and 
solute transport problems, the two principal ones being the finite difference method and 
the finite element method. Although the word "method" is singular, these terms actually 
refer to two rather large groups of numerical procedures. 

The finite difference method was initially applied to the flow of fluids in petroleum 
reservoirs (Table 1.1). The method was first applied to problems of groundwater flow and 
solute transport in the mid-1960's. The method has a number of advantages that contribute 
to its continued widespread use and popularity: (1) for simple problems (e.g., one- 
dimensional, steady-state groundwater flow in an isotropic and homogeneous aquifer) the 
mathematical formulation and computer implementation are easily understood by those 
without advanced training in mathematics or computer programming, (2) good textbooks 
are available to help the beginner, (3) efficient numerical algorithms have been developed 
for implementing the finite difference method on computers, (4) well-documented computer 
programs for solving problems of groundwater flow and solute transport are widely 
available at little or no cost, (5) the accuracy of solutions to steady-state and transient 
groundwater flow problems is generally quite good, and (6) several case histories have 
been published that describe successful applications of the method to the solution of 
practical problems. 

Unfortunately the finite difference method also has disadvantages: (1) the method 
works best for rectangular or prismatic aquifers of uniform composition; it is difficult to 
incorporate irregular or curved aquifer boundaries, anisotropic and heterogeneous aquifer 
properties, or sloping soil and rock layers into the numerical model without introducing 
numerous mathematical and computer programming complexities, (2) the accuracy of 
solutions to solute transport problems is lower than can be obtained by the finite element 
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Remson et al. (1965), Freeze and Whitherspoon 
(1966), Pinder and Bredehoeft (1968). 

Philip(195?), Aschroft et al. (1962), Freeze 
(1971), Brutsaert (1973). 

Stone and Brian (1963), Oster et al. (1970), 
Tanji et al. (1967), Wierenga (1977). 

Orlob and Woods (1967), Gambolaft et al. 
(1973), Fleck and McDonald (1978). 

Trescott and Larson (1977), Ames (1977), 
Mitchell and Griffiths (1980), Lapidus and 
Pinder (1982). 

Trescott et al. (1976), Konikow and Bredehoeft 
(1978). 

Table 1.1 Selected references for the finite difference method. 

method (which is now widely used in place of the finite difference method for this 
purpose). 

The finite element method was first used to solve groundwater flow and solute 
transport problems in the early 1970's (Table 1.2). The method has several advantages: (1) 
irregular or curved aquifer boundaries, anisotropic and heterogeneous aquifer properties, 
and sloping soil and rock layers can be easily incorporated into the numerical model, (2) the 
accuracy of solutions to groundwater flow and solute transport problems is very good 
(exact in some cases), (3) solutions to the solute transport equation are generally more 
accurate than solutions obtained by the finite difference method, and (4) the finite element 
method lends itself to modular computer programming wherein a wide variety of types of 
problems can be solved using a small set of identical computer procedures. 

The principal disadvantages of the finite element method for solving problems of 
groundwater flow and solute transport are (1) for simple problems, the finite element 
method requires a greater amount of mathematical and computer programming 
sophistication than does the finite difference method (although this disadvantage disappears 
for more complicated problems), (2) there are fewer well-documented computer programs 
and case histories available for the finite element method than for the finite difference 
method, and (3) there are few textbooks available to assist the beginner. 

The purpose of this book is to help remove some of these disadvantages. Part 1 
describes the basic principles of the finite element method as it applies to mathematical 
models of groundwater flow and solute transport based on equations 1.1 to 1.5. Obtaining 
a numerical solution to a groundwater flow or solute transport problem using the finite 
element method is performed in five basic steps that will be described in detail in the next 
five chapters. Computer implementation of each of these steps and computer programs for 
solving equations 1.1 to 1.5 are in Part 2. The application of the finite element method to 
the solution of practical groundwater flow and solute transport problems is discussed an 
Part 3. 
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Early Developments in Petroleum 
Reservoir Modeling 

Saturated Groundwater Flow 

Unsaturated Groundwater Flow 

Solute Transport 

Application to field problems 

Comprehensive References 

Computer Programs 

Price et al. (1968). 

Zienkiewicz et al. (1966), Javandel and 
Witherspoon (1968), Zienkiewicz and Parekh 
(1970), Pinder and Frind (1972). 

Neuman (1973), Gureghian et al. (1979), 
Pickens and Gillham (1980). 

Price et al. (1968), Guymon et al. (1970), 
Neuman (1973), Van Genuchten et al. (1977), 
Kh'kner et al. (1984). 

Pinder (1973), Gupta and Tanji (1976), Senget 
and Fogg (1987). 

Ziekiewicz (1971), Pinder and Gray (1977), 
Lapidus and Pinder (1982), Huyakom and 
Pinder (1983). 

Neuman and Witherspoon (1970), Reeves and 
Duguid (1975), Segol et al. (1975), Pickens et 
al. (•979) 

Table 1.2 Selected references for the finite element method. 
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12 Introduction 

NOTES AND ADDITIONAL READING 

1. This text assumes the reader has a thorough understanding of the basic terminology and 
principles of groundwater hydrology. Readers without this background should review 
these subjects before .proceeding. Excellent books for this purpose are Freeze and 
Cherry (1979), de Marsily (1986), de Wiest (1969) and Bear (1979). The reader is 
also assumed to have a basic knowledge of differential and integral calculus and linear 
algebra but no prior knowledge of numerical methods is required (a concise review of 
the concepts from linear algebra used in the finite element method is in Appendix Fv'). 

2. Reviews of the historical development of groundwater flow and solute transport models 
are in Huyacom and Pinder (1983) and Prickett (1975). 

3. Analytical solutions to selected groundwater flow and solute transport problems are in 
Bear (1979), Javandel et al. (1984), and Bear and Verruijt (1987). 

4. Reviews of existing computer models for solving groundwater flow and solute 
transport problems by the finite difference and finite element method are in Bachmat et 
al. (1978) and Oster (1982). These reports compare model capabilities and give 
references for the numerical algorithms used, user documentation, and program 
listings. 

5. An excellent introduction to the use of the finite difference method for solving problems 
of groundwater flow is in Bennett (1978) which is designed as a programmed guide for 
self study. 

6. Segerlind (1984) is an excellent introduction to the finite element method. 

7. Other references for the use of finite difference and finite element methods to solve 
groundwater flow and solute transport problems are Remson et al. (1971) (advanced 
treatment of finite difference method, introduction to finite element method), Pinder and 
Gray (1977) (intermediate treatment of both methods), Wang and Anderson (1982) 
(introductory treatment of both methods, contains computer programs in FORTRAN), 
Huyakorn and Pinder (1983) (advanced treatment of both methods), and Bear and 
Vernalit (1987) (intermediate treatment of both methods, contains computer programs in 
BASIC). 
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Chapter 2 

STEP 1: DISCRETIZE THE PROBLEM DOMAIN 

The first step in the solution of a groundwater flow or solute transport problem by the 
finite element method is to discretize the problem domain (aquifer, soil profile, etc.). This 
is done by replacing the problem domain with a collection of nodes (or nodal points) and 
elements referred to as the finite element mesh. (Figure 2.1). Elements consist of two or 
more nodes joined together by line (or arc) segments. There are different element types for 
one-, two-, and three-dimensional problems and for problems with axisymmetry (Figure 
2.2). Elements may be of any size, the size and shape of each element in the mesh can be 
different, and several different types of elements can be used in a single mesh. The 
material properties of the aquifer (e.g., hydraulic conductivity or dispersivity) must be 
specified for each element. The values of the material properties are usually assumed to be 
constant within each element but are allowed to vary from one element to the next. 

The first step in the finite element method then, is to draw the finite element mesh. 
Although computer programs axe available for this purpose, it has been the author's 
experience that except for very large problems (i.e., problems with more than one or two 
hundred nodes) or for three-dimensional problems with complex geometry, little (if any) 
time is saved by their use. The following procedure will be satisfactory for most problems 
encountered in practice. First, prepare a drawing of the problem domain to some 
convenient scale on a piece of graph paper. It is desirable that the drawing scale be the 
same in each of the coordinate directions although this is not necessary. Next, the finite 
element mesh is added to the original drawing or to a transparent overlay by drawing in the 
positions of the nodes and the element boundaries. Then, each riode is assigned a node 
number and each element is assigned an element number (see below). As a final'step, an 
input data file for the finite element computer program can be prepaxed directly from this 
drawing. 

When preparing the f'mite element mesh it is important to remember that the precision of 
the solution obtained and the level of computational effort required to obtain a solution will 
be deten'nined to a great extent by the number of nodes in the mesh. A coarse mesh has a 
smaller number of nodes and will give a lower precision than a fine mesh. However, the 
larger the number of nodes in the mesh, the greater will be the required computational effort 
and cost. Unfortunately, it is usually not possible to determine in advance the number of 
nodes required to achieve a given level of precision. Lr• fact, the only way to determine the 
precision of a solution obtained by the œmite element method is to repeat the calculations 
with a finer mesh to see if the results change significantly. For this reason, it is best to start 
with a coarse mesh consisting of only a few nodes. The input data for such a mesh can be 
prepared easily and a solution can be obtained with little computational effort. A second, 
finer mesh is then prepared that has a greater number of nodes in those parts of the mesh 
where the first solution indicates the field variable is varying rapidly or where the most 
precise results are required. A second solution is then obtained and compared with the 
first. If computed nodal values are significantly different from those obtained from the 
coarser mesh, the mesh is again refined and a third solution is obtained. This process is 
repeated until there are no significant changes in computed values of the field variable (at 
least in the parts of the domain of most interest). Usually no more than two or three mesh 
refinements are required. 
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one-dimension 

rainfall 

soil surface 

two-dimensions 

soil surface 

water table 

element 

thrc½-dimcn$iQn• 

element 

Figure 2.1 Discretization of one-, two-, and three-dimensional problem domains. 

Water Resources Monograph
Groundwater Modeling by 
the Finite Element Method Vol. 13

Copyright American Geophysical Union



Chapter 2 15 

One-dimensional 
elements 

Two-dimensional 
elements 

Three-dimensional 
elements 

Axisymmetric 
elements 

Figure 2.2 Some types of finite elements. 
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16 Step 1: Discretize the Problem Domain 

To prepare a f'mite element mesh that provides solutions with an acceptable level of 
precision with a reasonable amount of computional effort requires considerable practice and 
for this reason, this step of the finite element method is still considered an "art" by most 
modelers. It helps considerably if the person drawing the mesh is familiar with 
groundwater flow and solute transport processes. Being able to visualize the flow or 
lransport process is especially helpful and the use of roughly sketched flow nets is to be 
encouraged. It is important to remembe. r that solutions with' similar accuracy can be 
obtained from two meshes that appear quite different and, for this reason there is no single 
"correct" choice of mesh for a particular problem. The following set of "rules" describe 
some of the procedures used by the author to prepare a finite element mesh. These rules 
are by no means definitive but they should provide some initial guidance to the 
inexperienced modeler. 

2.1 RULES FOR NODAL POINT PLACEMENT 

The finite element mesh consists of several nodes (problems have been solved with as 
many as one million nodes but typically only a few hundred nodes are used). Each node is 
assigned a unique node number. Node numbers range from one to the number of nodes in 
the mesh; no "skips" in the node numbers are allowed and no two nodes can have the same 
node number. Each node also is assigned a set of nodal coordinates. These are the (x), 
(x,y), (x,y,z), or (r,z) coordinates of the node. 

1. Place nodes along the boundaries of the problem domain, at the location of pumping 
wells or other point sources or sinks, and at any point where a computed value of the 
field variable is desired (Figure 2.3). Nodes located at points with known values of the 
field variable are sometimes called Dirichlet nodes, because they are used to represent 
Dirichlet boundary conditions (see section 4.5). Examples are nodes along constant- 
head boundaries or at points of known solute concentration (also see Chapter 20). 
Nodes located at points with known rates of groundwater flow or solute flux are 
sometimes called Neumann nodes, because they are used to represent Neumann 
boundary conditions (see section 4.5). Examples are nodes located at production and 
injection wells or recharge boundaries (also see Chapter 20). 

2. Place nodes closest together in those parts of the problem domain where the field 
variable is expected to change most rapidly. This will include regions near point 
sources or sinks, and in any other part of the problem domain where gradients in head 
or solute concentration are expected to be large (Figure 2.4). 

3. Place nodes along the interface between two different materials, for example along the 
interface between two soil or rock layers that have different hydraulic conductivities 
(Figure 2.5). Because material properties must be constant within an element, an 
interface between two different materials will also be an element boundary (see below). 

4. Number the nodes to minimize the semi-bandwidth of the resulting system of linear 
equations. Minimization of the semi-bandwidth is desirable because the size of the 
system of linear equations created by the finite element method can be quite large (see 
section 4.5). When this systems of equations is operated on in matrix form, the storage 
capacity of many computers can be quickly exceeded. The semi-bandwidth for any 
mesh can be computed from: SBW = R+ 1, where R is the maximum difference in any 
two node numbers within a single element in the mesh (ff the value of the field variable 
is specified at a node however that node is not used in the calculation of R, see section 
4.4). The minimum bandwidth for a particular mesh can usually be achieved by 
numbering nodes across the narrow dimension of the problem domain (Figure 2.6). 
For problems with very complex geometry, a computer program may be required to 
minimize the semi-bandwidth of the man-ix. 
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impermeable boundary 

constant head ,, . ./' .. constant head 

. .../I.. ß r-'"'"' •', '- 

pumping well, pumping rate = Q 

Figure 2.3 Place nodes along boundaries of problem domain and at point sources 
and sinks. 

pumping well 

impermeable 
boundaries 

Figure 2.4 Place nodes close together where values of the field variable are expected 
to change rapidly. 
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silt 

correct material interface incorrect 

Figure 2.5 Correct nodal placement at the interface or two different materials. 
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node numbers 
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Figure 2.6 Numbering nodes to minimize semi-bandwidth of system of equations. 
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2.2 ,RULES FOR SELECTING ELEMENT SIZE, SHAPE, AND 
PLACEMENT 

The size and shape of the elements in a mesh is determined primarily by the size and 
shape of the problem domain, the number of different types of aquifer materials, and by the 
number of nodes in the mesh. In problems that have a complex geometry (e.g., caused by 
an irregular depth to bedrock) or geologic structure (e.g., due to the presence of faults) 
many elements will be required. In problems with a simple geometry (e.g., shallow 
alluvial aquifer underlain by horizontal bedrock) fewer elements will be required. If the 
problem domain contains curved boumdaries or interfaces different types of elements may 
be used than if the boundaries and interfaces consist of straight lines or planes. Elements 
will generally be smaller in pans of the mesh where the field variable is changing rapidly, 
because nodes will be placed closest together in these areas. When drawing the finite 
element mesh, each element is assigned a unique element number. In most computer 
programs, the element numbers begin with one and continue sequentially to the number of 
elements in the mesh. However, the way that element numbers are assigned will have no 
effect on the size or semi-bandwidth of the matrices generated during the solution process. 
Each element is der'reed using two or more nodes; the nodal coordinates define the size and 
shape of the element. For this reason the node numbers for each element are listed. Some 
convention is used to insure that nocl• numbers for all elements of a given type in the mesh 
are listed in the same way (see Chap:er 4). The material properties also must be specified 
for each element in the mesh. Because, in most cases, the material properties for several 
elements will be the same (e.g., all elements within a particular. geologic strata) it is 
common to assign all elements with the same material properties to a common material set. 
The properties for each material set •,• then listed once. 

1. Use the simplest type(s) of elen:ent required for a particular problem. This usually 
means that we use linear bar elements for one-dimensional problems, linear triangle or 
rectangle elements for two-dimem'ional problems, and linear parallelepiped elements for 
three-dimensional problems (see Chapter 4). However we should not hesitate to use 
more complex elements, especially when curved boundaries or interfaces are 
encountered. The biggest disadvantage in using complex elements, which can have as 
many as 32 nodes, is that their use can greatly increase the chance of errors occurring 
during the preparation of the input data. 

2. The edges of adjacent elements should never overlap, nor should "gaps" appear 
between elements in the mesh (1=,• 2.7). 

3. Material properties are usually assumed to be constant within an element, but they can 
vary from one element to the next. Therefore no elements should overlap an interface 
between two different types of w. aterials (Figure 2.5). 

4. The shape of the elements can affect the accuracy of the resulting solution. In general, 
the use of highly distorted elements should be avoided. This is particularly important 
when solving transient groundwater flow or solute transport problems because the 
element shape influences the size of the time step required to obtain a stable solution 
(see Chapter 5). 

5. Do not change element size abru?tly; instead use a transition region to achieve a gradual 
change in element size (Figure 2.$). 

6. Take advantage of s'ymmetry in the problem domain to reduce the number of elements 
(and nodes) in the mesh (Figure 2.9). Keep in mind, however, that the boundary 
conditions, initial conditions, material properdes and domain geometry all must display 
symmetry to use this approach. 
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gap 

gaps overlapping 
edges 

element 1 

element 2 

Figure 2.7 Gaps and overlapping edges for adjacent elements are not permitted. 

triangular elements Iriangular and rectangular elements 

two types of rectangular elements quadrilateral elements 

Figure 2.8 Example transition regions for changing from a coarse mesh to a fine 
mesh. 
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constant head impermeable constant head constant head 
boundary boundary 

/ 
well with pumping rate -- Q 

impermeable boundary 

x 

well with pumping rate -- Q/4 

Q 

z 

x 

Three-dimensional, 
cartesian coordinate system 

} silt 

Two-dimensional, 
axisymmetric coordinate system 

Figure 2.9 Use symmetry to reduce the number of elements and nodes in the mesh. 
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2.3 EXAMPLE MESHES 
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km 
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28 Step 1: Discrefize the Problem Domain 

Problems 

For problems 1 to 5, draw a finite element mesh for the aquifer using the element types 
given in the problem, label node and element numbers, and compute the semi-bandwidth. 

1. Plan view of alluvial aquifer 

Impermeable Valley Walls 
(No flow boundary) 

Well •2 

Well #1 

2. Plan view of sedimentary aquifer 

River 

(Constant head boundary) 

Low permeability basalt 
(No flow boundary) 

3. Cross-sectional view of sedimentary aquifer 

River 

( Constant 
head 

boundary 

Pumping Well 

shale 

Impermeable Bedrock 
(No flow boundary) 

Groundwater Divide 

ow boundary) 

sandsto 
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4. Plan view of alluvial aquifer 

Impermeable Valley Walls 
(No flow boundary) 

Groundwater Divide 
(No flow boundary) 

(Constant head 

boundary ß Well #3 

a) Pumping rates for all wells are equal 
b) Pumping rates for all wells are not equal 

5. Plan view and three cross-sections for alluvial aquifer 

Impermeable Valley Walls 
(No flow boundary) 

A' B' 

A B 

A A' B B'C 

River 

( Constant 
head 

boundary ) 

! 

6. Obtain a geologic map for an aquifer in your area. Draw a finite element mesh using a 
mixture of two-dimensional elements, label node and element numbers, and compute 
the semi-bandwidth. Speculate about ap•opriate boundary conditions to use with your 
mesh. 
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Chapter 3 

STEP 2: DERIVE THE APPROXIMATING 
EQUATIONS 

THE METHOD OF WEIGHTED RESIDUALS 

The second step in the finite element method is to derive an integral formulation for the 
governing groundwater flow or solute transport equation. This integral formulation leads 
to a system of algebraic equations that can be solved for values of the field variable 
(hydraulic head, pressure head, or solute concentration) at each node in the mesh. Several 
methods can be used to derive the integral formulation for a particular differential equation. 
The variational method has been used to derive integral formulations for the differential 
equations that govern the behavior of mechanical systems e.g., in the fields of elasticity 
and structural mechanics. The method of weighted residuals is a more general approach 
that is widely used in groundwater flow and solute transport modeling. 

In the method of weighted residuals, an approximate solution to the boundary or initial 
value problem is defined. When this approximate solution is substituted into the governing 
differential equation, an error or residual occurs at each point in the problem domain. We 
then force the weighted average of the residuals for each node in the finite element mesh to 
equal zero. 

Consider a differential equation of the form 

L(q•(x,y,z)) - F(x,y,z) = 0 (3.1) 

where L is the differential operator, q) is the field variable, and F is a known function. 

Define an approximate solution q) of the form 

•(x,y,z) = Z Ni(x'Y'Z) q}i (3.2) 
i--1 

where N i are interpolation functions, q•i are the (unknown) values of the field variable at the 
nodes, and m is the number of nodes in the mesh. When the approximate solution is 
substituted into equation 3.1 the differential equation is no longer satisfied exactly 

L($(x,y,z))-F(x,y,z) = R(x,y,z) •: 0 (3.3) 

where R is the residual or error due to the approximate solution. The residual varies from 
point-to-point within the problem domain. At some points it may be large and at other 
points it may be small (the sign of the residual also can vary from point-to-point). 
Therefore we cannot force R to be zero at certain specified points because the residual may 
then become unacceptably large elsewhere in the problem domain. 

In the method of weighted residuals, we force the weighted average of the residuals at 
the nodes to be equal to zero 
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W(x,y,z) R(x,y,z) dgl = 0 (3.4) 
where W(x,y,z) is a weighting function and/1 represents the problem domain. /1 will be a 
length in one-dimensional problems, an area in two-dimensional problems, and a volume in 
three-dimensional problems. Substituting equation 3.3 into equation 3.4 we have 

(3.5) 

To evaluate equation (3.5) we must specify the mathematical form of the approximate 
solution • and the weighting function W. In the finite element method • is defined in a piece 
-wise fashion over the problem domain. The value of •, within any element e, •(e), is 
given by' 

n 

i=l 

where Ni (e) are the element interpolation functions (one interpolation function per node), (•i 
are the (unknown) values of the field variable at each node, and n is the number of nodes 
within the element. For example, the approximate solution for a one-dimensional element 
with two nodes i and j (Figure 3.1) can be written 

•(e)(x) : N?(x) •)i + N?)(x) •j 
or in mauix form 

(3.7) 

$(•)(x): [ N(•)]{•} (3.8) 
where 

[ N(")I: [ l•i")(x) •")(x)l (3.9) 

{,} : •j (3.•0) 

• • •(•)(x) 

•-• L(•) 

nOdexit) nodej (x: ) (x:x•)) 

Figure 3.1 Approximate solution for one-dimensional element with two nodes. 
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32 Step 2: Derive the Approximating Equations 

For the element in Figure 3.1 the interpolation functions are linear functions of x 

N?'(x) = x•e)- x Nje)(x ) -_ x-x?' L (,) L (,) 
(3.•) 

where xi(e) and xj(,) are the coordinates of the nodes, and L(e) is the element length (L(O = 
xj(e) - xi (e)). These interpolation functions are plotted in Figure 3.2. The value of Ni (e) is 
one at node i and decreases linem'ly to zero at node j, while the value of Nj(O is one at node 
j and decreases linearly to zero at node i. 
At node i (x = xi (•)) 

1 0 

•(e)(x•) = N-(e)••) ,, + Nj(e•t•,j 
= q•i (3.12) 

at node j (x = xj(e)) 

N.(•j) 0 + N(.• 
and at the midpoint of the element 

(3.13) 

(3.14) 

1 

1/2 

0 

N?)(x) 

N•')(x) 

node i node j 
x 

Figure 3.2 Linear interpolation functions for one-dimensional element with two 
nodes. 
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Several other types of interpolation functions that can be used to obtain an approximate 
solution for q• for use in solving one-, two-, and three-dimensional problems are described 
in Chapter 4. 

In addition to the interpolation functions, the form of the weighting function W in 
equation 3.5 also must be specified. Several subsets of the method of weighted residuals 
are defined by the choice of weighting function used. 

3.1.1 Subdomain Method 

In the subdomain method the value of W is equal to one within a small part of the 
problem domain surrounding a node (the subdomain) and zero elsewhere. The size of 
subdomain is usually chosen to be equal to the size of the element containing the node. For 
a one-dimensional element the weighting function for a node is given by 

0 otherwise 

where L(e)is the length of the element (Figure 3.3) 

L(•) _- x•) - x? ) 
1 

node 

I 

I 

node j 

(x=x 

Figure 3.3 Weighting function for node i in the subdomain method. 

3.1.2 Collocation Method 

The collocation method is a special case of the subdomain method when the subdomain 
is chosen to be very srnnll_ For a one-dimensional element 

Wi(x) = õ(x i _+ Ax) (3.16) 

where 8 is the Dirac delta function and Ax is some small distance. This notation means that 

within a distance fix of node i Wi(x) = 1, otherwise Wi(x) = 0 (Figure 3.4) 
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lm 

O' : : 

node i node j 

Figure 3.4 Weighting function for node i in the collocation method. 

3.1.3 Galerkin's Method 

In Galerkin's Method the weighting function for a node is identical to the interpolation 
function used to define the approximate solution •. For the one-dimensional element with 
two nodes 

Wi(x = xi - x L for x > x i 

Wj(x) = L for x > x i (3.18) 

which is plotted in Figure 3.5. 

1-- 

W(x) 

node i node j 

Figure 3.5 Weighting function for node i in Galerkin's Method. 

Galerkin's Method is the subset of the method of weighted residuals that is most 
commonly used to solve groundwater flow and solute transport problems. 

After specifying the form of the approximate solution and weighting function, we can 
evaluate the integral in equation 3.5 to obtain a system of linear equations of the form 

[K] {•} = {F} (3.19) 

that can be solved for the values of the field variable at each node in the mesh, We will 
illustrate the entire process with an example. 
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3.2 A FINITE ELEMENT EXAMPLE 

The column of soil in Figure 3.6 is saturated and water is flowing vertically downward 
at a constant rate Q. Hydraulic head is held constant at the upper and lower ends of the 
column and we wish to calculate the values of head at points A and B. The problem 
domain has been divided into a mesh with four elements and five nodes. The governing 
differential equation is the one-dimensional form of the steady-state, saturated groundwater 
flow equation derived in Appendix I 

(3.20) 

where K x is the saturated hydraulic conductivity in the x direction and h is hydraulic head. 

Using the method of weighted residuals we will define an approximate solution •. If this 
approximate solution is substituted into equation 3.20, the differential equation is no longer 
satisfied exactly 

where the residual will vary from point-to-point within the problem domain. Define the 
vector [ R} to be the value of residual at each node in the finite element mesh 

Kx=l' { 
Kx=2 

element numbers node numbers 

2 

h: 12 • 1 (x=0) 
2 (1) 

Kx=l 

Q 

2 (2) 

DATUlVl 

(3) 

(4) 

• 2 (x:2) 

! 3 (x=4) 

• 4 (x=7) 

• 5 (x=10) 

Finite Element Mesh 

Figure 3.6 Example problem for method of weighted residuals. 
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R(x =0 ) R(x = 2 ) R2 

{R} = Rix=4) = R a (3.22) 

R(x = 7 ) R4] R(x = 10) Rs 

where R l, for example is the value of the residual at node 1. The residual at any node i, R i 

represents the error between the true value of hydraulic head and the approximate solution h 
at that node. The approximatc solution at a node is dctcrmined by thc values of hydraulic 
hcad at the nodes in all elemcnts that are joined to node i, For example, elements 2 and 3 
are joined to node 3. Thus the valucs of hydraulic hcad for thc other nodes in these 
elemcnts contribute to thc residual at node 3. We can write this as 

where the fret term is the contribution of clcment 2 to the residual at node 3 and the second 
term is the contribution of elcmcnt 3 to thc residual at node 3. In gcncral, we can write 

P 

Ri = Z R?) (3.24) 

where p is thc number of clements that are joined to node i. 
The conlribution of elemcnt e to the residual at node i can be obtained from the integral 

formulation for that node. For the one-dimensional elements in our example 

R? ) = _j,x, • 1•i ') I• ø) •.2•.!e) dx (3.2:5) ax 

where xi (e) and xj (e) are the coordinates of the nodes at each end of the clcmcnt, N i (e) is the 
weighting function for node i in element e (which is identical to the interpolation function 
for node i in element e because we are using Galerkin's Method), and Kx (e) is the saturated 
hydraulic conductivity for the element (Kx(e) is assumed to be constant within an element 
but can vary from one element to the next). The equation was multiplied by a negative one 
for later convenience. 

A similar equation can be written for the contribution of element e to the residual at any 
other node j joined to the element 

= N? ax 2 

Ln general, if an element has n nodes it will contribute to the residual at n nodes. 
The interpolation functions for the type of elements in Figure 3.6 are in equation 3.11. 

From equations 3.? and 3.11 the approximate solution • is given by 

(3.27) 
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Because the approximate solution is a linear function of x, •x 2 is not defined. The 
approximate solution does have a continuous first derivative, however, so we can evaluate 

equation 3.25 if we rewrite it in teauus of •-•. 
Using integration by parts we can write 

.28) 

where the second term on the right-hand side of equation 3.28 represents groundwater flow 
across the element's surface. For elements on the exterior of the mesh this term will be 
used to represent specified rates of groundwater flow (Neumann boundary conditions). 
We will give this term the symbol •ii e) 

F?) (N?) K?) (3.29) 

F? ) will be positive if water is enterLug the mesh. If no flows are specified or at impermeable 
aquifer boundaries •e) will be zero. For elements on the interior of the mesh, the term F? ) for 
adjacent elements will have opposite signs cancelling out the contribution of l•i e) for the two 
elements for the node(s) they share. In two- or three-dimensions we have 

(3.30) 

where S(•) is the surface area of the element along the specified flow boundary (see Section 
3.3). 

Substituting equation 3.28 into equation 3.25 we have 

zi 

= ax -•-•-x dx (3.31) 
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38 Step 2: Derive the Approximating Equations 

From the clef'tuition for • (equation 3.27) we can write 

a•(½)(x) = 3-•( N? ) h i + N• ½) ax hj ) (3.32) 

Prom the definitions of the interpolation functions we can write 

•x' = L(½) = 

a/•) -lh. •h. 
•x L(½) ' L(½) J 

1 

•;$(-h• + h ) 

(3.33) 

(3.34) 

(3.35) 

Substituting equations 3.34 and 3.35 into equation 3.32 gives 

1 1 

= -L(eJ2( - )( -h i + hj ) 

but x? )- x? = L (•) and we have 

L(½) ( h i - hj ) (3.36a) 

Sin:fil•ly for the contribution of element e to the residual at node j 

R? K?) = •'•(-h i + hj ) (3.36b) 
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Equations 3.36a and 3.36b can be combined and written in matrix form as 

where 

2x2 

(3.39) 

is called the element conductance matrix. 
The element conductance matrix depends on the hydraulic conductivity of the aquifer 

material within the element (Kx(e)), and the size (L(e)) and shape (through the interpolation 
functions for the element) of the element. [K( e)] is always a square, symmetric matrix with 
a size nxn where n is the number of nodes in the element. Thus for a one-dimensional 
element with two nodes the size of [K(e)] is 2x2, for a two-dimensional element with three 
nodes the size of [K(e)] is 3x3, and so on. 

We can compute the element conductance matrix for each element in the mesh in Figure 
3.6 once we assign node numbers to the i th and j th nodes for each element. This is done 
in Figure 3.7 where the i th node for element 1 is assigned to node 1, the j th node for 
element 1 is assigned to node 2, the i th node for element 2 is assigned to node 2, and so 
on. 

node numbers element numbers 

,1 
(2) 

(3) 

(4) 

node numbers 

element i j K• ) L (e) number, e 

1 1 2 1 2 

2 2 3 2 2 

3 3 4 1 3 

4 4 5 1 3 

Figure 3.7 Assigning node numbers to element nodes i and j 
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The element conductance matrices can then be computed as follows 

[ K0)] = 1 - = 1/'2 
-1 -1/2 1/2 

We can combine the element conductance matrices to obtain a system of linear equations of 
the form 

JR} = [K] {hi - {F} = {0l (3.40) 

where {R} is the global residual matrix, [K] is the global conductance matrix, {h] is the 
vector of unknown hydraulic heads, and {F} is a vector containing the specified fluxes at 
Neumann nodes (see section 3.3). For our example no fluxes were specified, {F} = {0 }, 
and we can write 

{R} = R• R2 
Ra 

Rs 

hi 0 

{h} = ha 0=} = 

$xl h4 $xl • h5 

(3.41) 

The entries of the global conductance matrix can be obtained by combining the element 
conductance matrices for all the elements in the mesh. An easy way to do this when the 
number of elements is small is to expand each element conductance matrix to the same size 
as the global conductance matrix. These can then be added together to form the global 
conductance matrix using the formula 

m 

[K] = E [ 
gld•al ½---1 • 

(3.42) 

where m is the number of elements in the mesh. For the elements in our example, the 
expanded form of the element conductance matrices are 

1/2 -1/2 0 0 0 0 0 0 0 0 

-1/2 1/2 0 0 • 0 1-1 0 • [K 0)] = 0 0 0 0 [K(2)I = 0 -1 1 0 

0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 
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[ = 

o o o 

o o o 

o 1/3 -1/3 

o -1/3 1/3 
o o o 

[ K = 

o o o 

o o o o 

0 1/3 -1/3 

o -1/3 1/3j 

and the global conductance matrix is 

[K] 
global 

1/2 -1/2 

-1/2 

-- i -1 0 

0 

o o o 

--! o • 1+]/3 -1/3 

o -1/3 1/3 

1/2 -1/2 0 0 0 

-1/2 3/2 -1 o • 
= i -1 4/3 -1/3 0-1/3 2/3-1/3 

0 o -1/3 1/3 

The system of equations that result when this global conductance matrix is substituted into 
equation 3.40 is 

1/2 -1/2 0 0 0 

-1/2 3/'2 -1 0 • 
-1 4/3 -1/3 0-1/3 2/3-1/3 

0 0-1/3 1/31 

hi 0 
h2 
h 3 _- • (3.43) 

But we know hi = 12 and h5 = 0 (nodes 1 and 5 are sometimes called Dirichlct nodes) 
from the boundary conditions and we can use this information to modify equadon 3.43 (the 
procedure is explained in section 4.5) 

3/2 4/3 -1 h3 

-1/3 2/3J•. h4 

(3.44) 

from which we obtain h 2 = h A = 9.33, h 3 = 8.0, and h4 = ha = 4.0. 
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42 Step 2: Derive the Approximating Equations 

This example has illustrated each of the major steps of the finite element method. To 
review we first discretized the problem domain into a collection of nodes and elements 
(Figure 3.6). We then used the method of weighted residuals to obtain an integral 
formulation for the residual at each node. This integral formulation contained the 
differential equation written in terms of the approximate solution •. Because the second 
derivative of approximate solution was not defined for our choice of element, we used the 
product rule to obtain an integral formulation for the residual at a node in terms of the fh'st 
derivative of the element interpolation functions and the values of hydraulic head at the 
nodes. When these integrals were evaluated we obtained an expression for the element 
conductance matrix [K(e)]. The conductance matrix was then computed for all of the 
elements and, by combining these matrices, the global conductance matrix was obtained for 
the finite element mesh. The golbal conductance matrix is one part of a system of linear 
equations [K] {h} -- {F} where {F] contains any specified flow rates at Neumann nodes 
(see Section 3.3). Finally this system of equations was modified using the known values 
of hydraulic head on the boundary of the mesh and then solved to obtain values of 
hydraulic head at the remaining nodes. 

The procedure used for this example can be generalized to include two- and three- 
dimensional problems as well as problems of unsaturated flow, transient flow, and solute 
transport. 

3.3 STEADY-STATE, SATURATED FLOW EQUATION 

The three-dimensional form of the equation for steady-state groundwater flow through 
saturated porous media is written as 

(3.45) 

where Kx, Ky, and K z are the saturated hydraulic conductivities of the porous media in the 
x, y, and z coordinate directions, and h is hydraulic head (Appendix I). As in the previous 
section, we will assume an approximate solution for h of the form 

(3.46) 

where •(e) is the approximate solution for hydraulic head within element e, N! e) are the 
interpolation functions for each node within element e, n is the nhmber of nodes within 
element e, and h i are the unknown values of hydraulic head for each node within element e. 
When the approximate solution is substituted into equation 3.45, the differential equation is 
not satisfied exactly and an error or residual occurs at every point in the problem domain. 
The contribution of any element e to the residual at a node i to which the element is joined is 

v(½) 
(3.47) 
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where Wi (e) is the weighting function for node i and the limits of the integration are chosen 
to represent the volume of element e. 

In Galerkin's method we choose the weighting function for each node in the element to 
be equal to the interpolation function for that node, Wi (c) -- Ni(e). If we also assume that 
values of saturated hydraulic conductivity in the three coordinate directions are constant 
within an element (but can vary from one element to the next), equation 3.47 can be 
written as 

x• •x-• •- + I•j •y• •,_ •z • j dx dy dz 
V (c) 

(3.48) 

where, for example, Kx(e) is the value of sanu'ated hydraulic conductivity in the x direction 
within element e. 

Because the second derivative of the approximate solution is not der'met for most types 
of elements, we can use the results of equations 3.29 to 3.32 to reduce the order of the 
derivatives of • appearing in equation 3.48. 

Equation 3.49 is the integral formulation for the three-dimensional, steady-state, saturated 
groundwater How equation. If the problem domain is two-dimensional, equation 3.49 
reduces to 

•N .(•) x 8x •x Y •y 'By 'J dx dy (3.50) 

where the limits of integration are chosen to represent the area of element e. If the problem 
domain is one-dimensional, equation 3.49 reduces to 

(3.51) 

where the limits of integration are chosen to represent the length of element e. 
Before we can evaluate these integral equations we must first choose the type of 

element and interpolation functions to use. In the example in Figure 3.6, the problem 
domain was one-dimensional and each element had two nodes i and j. In this case the 
interpolation functions used were functions only of x 
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N?)(x) x••(e) x x x? ) -- and l•j•)(x)-- L( 0 (3.52) 

where x• •) and x? ) are the coordinates of the two nodes used to define the element and L (e) is 
the element length. Because each clement had two nodes, it contributed to the residual at 
two nodes, Ri(e) and Rj(e). In the example wc represented these residuals as separate 
integral equations 

(3.53) 

(3.54) 

After evaluating these integrals the results were combined to obtain the element conductance 
matrix, [ K(½)]. A more direct approach is to combine equations 3.53 and 3.54 to obtain a 
matrix-integral fo•7nulation for [ K(½)]. For a one-dimensional element with two nodes 
[K(e)] is given by 

(3.55) 

If the one-dimensional problem had been solved using elements with 3 nodes, i, j, k, 
equation 3.55 would be written 

[K(e)] -_ 
3x3 

,(•) 
,j 

, 

ax ax ax J -•x lxl 
•)N(k:e) •x3 
ax J 

3xl 

dx (3.56) 
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If a two-dimensional problem was being solved using elements with three nodes, i, j 
and k, the matrix-integral formulation for the element conductance matrix [K (e)] would be 

[K( = 

3x3 •(e) 2x2 2x3 (3.57) 
Where A (e) is the area of the element e. The most general formulation for [K (e)] can be 
written for the case of a three-dimensional problem being solved using elements with n 
nodes. 

[ K (e)] = • 8.y 8.z '! K(y e) • 
8x 8y 8z J 

dx dy dz 

V (e) nx3 3x• 3xn (3.58) 

where x•e) is the volme of element e. In Chapter 4 we will learn how to evaluate equation 
3.58 for several different types of elements. 

If we combine equations 3.58 and equation 3.47 we can write 

nxl nxn 

(3.59) 

Equation 3.59 is written for each element in the mesh. These equations are then combined 
to obtain 

pxl pxp 

(3.60) 
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and by setting the residuals equal to zero we have 

ix] (h) -- (0) 
global 
pxp p•l px1 

Before we can solve this system of equations for the values of hydraulic head at the 
nodes, equation 3.61 must bc modified to incorporate known boundary conditions. 
Procedures for modifying equation 3.61 for known values of hydraulic head are in section 
4.5. 

If flow rates are specified on the boundary of the mesh (for example to represent 
seepage from lakes of rivers, or recharge from the soil surface) or at points within the mesh 
(for example to represent groundwater withdrawl by pumping) the steady-state, saturated 
flow equation becomes 

Kx•- • + •-•[Ky•) + •'•[,Kz•,J + q TM 0 (3.62) 

where q is the specified flow rate. q is positive if water is flowing into the mesh and 
negative if water is flowing out of the mesh. The specified flow rate within clement e, 
contributes to the residual at all nodes in element c. Substituting equation 3.62 into 
equation 3.49 gives 

= -•x • 8x + "Y -i•y 8y + K(*) i ___ + q(e) clx dy dz z 8z 8z 

v (•) (3.63) 

The only new term is the integral 

IIIN?) q(•)dxdy dz =•) (3.64) 

where F! e) is the integrated specified flow rate for node i in element e. If q(•) represents a 
specified flow rate along the boundary of element e we can write (Section 3.2) 

-•- ds = $s(• ) l•ie) q ds (3.6:5) 

where S (e) is the surface area of dement e. The evaluation of these integrals for each node 
in element e gives the components of the specified flow man'ix for element e, {F (e)} 

{ F (•)3 = ß (3.66) 
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Combining equation 3.66 with equation 3.59 gives 

(3.6?) 

We can combine the { F (e)} for each element in the mesh to obtain the global specified flow 
mau'ix {F} 

m 

(F) =' Z { 
gldxil ß = ! 

(3.68) 

and equation 3.61 becomes 

[K] {h} = 
global global 
pxp px1 p•l 

(3.69) 

If there are no specified flow rates (i.e., no Neumann Boundary Conditions) {F} = {0 }. 
The evaluation of the integrals in equations 3.64 and 3.65 and the assembly of {F} are 
illustrated for a one-dimensional problem in the following example. 

Example 

Compute { F (e)} for each element in the mesh shown below. Assemble {F} 

10m3/d I 2 3 
(inflow• '-'-• * '(1) - (2) - (3) _.4 _••10m3/d 

(outflow) 

The node numbers for the elements are 

element node i node j 
1 1 2 
2 2 3 
3 3 4 

For node i, element 1 

But N i = 1 at node i and with S (e) equal to unity in a one-dimension problem 

{F! 1)} = l•ii l) qO) fs ds = qO)= lOrnaid 
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Nodes 2 and 3 are not on the specified flow boundary and we can write 

3 { F(•)• -- --10 4 

For node j, element 3 

fs •3• q• ds =-10m•/d {F• 

and we have 

2 

and IF ) is given by 

iF)-- {F 
global 

lO o o 1 i i o o ø = + 0 + 
0 -10 -10j 

3.4 STEADY-STATE, UNSATURATED FLOW EQUATION 

The three-dimensional form of the equation for steady-state flow through an 
unsaturated porous media is 

•-•(Kx(•)•••x) + •-•lKr(•)•-'••y)+' •--•IKz(•)I• + 11)--0 (3.70, 
where Kx(Xlt), Ky(¾), and Kz(w) are the components of unsaturated hydraulic conductivity 
(which are functions of the pressure head •) in the three coordinate directions and the z 
coordinate direction is assumed to be vertical (see Appendix I). The unknown quantity at 
each nodes is the pressure head ¾. We will assume an approximate solution for •, •, of the 
form 

I! 

= Ni vi (3.71) 
i=l 

Where •e) is the approximate solution for pressure head within element e, N? are the 
interpolation functions for each node within element e, n is the number of nodes within 
element e, and •gi are the unknown values of pressure head for each node within element e. 

When the approximate solution is substituted into equation 3.70, the differential 
equation is not satisfied exactly and an error or residual occurs at every point in the problem 
domain. The contribution of any element e to the residual at a node i to which the element 
is joined is 
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v (•) o • • + •IlCz(•)l• + 1))] dx dy dz (3.72) 

Where Wi (e) is the element's weighting function for node i and the limits of integration are 
chosen to represent the volume of element e. 

In Galerkin's method we choose the weighting function for each node in the element to 
be equal to the element's interpolation function for that node Wi(e) -- Ni(e). If we also 
assume that unsaturated hydraulic conductivity functions are constant within an element 
(but can vary from one element to the next), equation 3.72 can be written 

(3.73) 

where, for example, Kx(e)(•) is the unsaturated hydraulic conductivity function in the x 
direction within element e. 

Because the second derivative of the approximate solution is not defined for some types 
of elements, we can use the results of equations 3.28 to 3.32 to reduce the order of the 
derivatives of • appearing in equation 3.73 

(3.74) 

Equation 3.74 is the integral formulation for the steady-state, unsaturated flow equation. 
a,i 

When the porous media is relatively dry, the term •:, (•) will be small i.e., capillary forces 

are much larger than grav•onal forces -•-. In this case the last term within the integral 
can be neglected in the calculation of [ K(e) 0F)]. We will assume this is true for the 
remainder of this section (also see section 5.4.3). If necessary the integral can be evaluated 
by developing a functional form for Kz(e) (•) within element e. Of course for problems of 
horizontal flow the last two terms in the integral in equation 3.74 are always zero. 

From previous work we know that we can write a matrix expression for the 
contribution of element e to the residuals at all nodes that join the element 

nxl n•n n•l 

(3.75) 
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where the element has n nodes and [ Kie)(•)] is the unsaturated form of the element 
conductance matrix given by 

[ _- _ "ax ay 0 ø : : : 0 K•)(V) 

0 ax •y 

dx dy dz 

o•x o•x 

"ay ...... aY 

V (") n x3 3 x3 (3.76) 

where V (0 is the volume of element e. In Chapter 4 we will learn how to evaluate equation 
3.76 for several different types of elements. 

When we combine the element conductance matrices for all the elements of the mesh we 
can obtain an unsaturated form of the global conductance matrix 

In 

[KCv)] = •.,[ K(':)Cv)] (3.77) 
glol•! e=l • 

where there are m elements in the mesh. The dependence of the global conductance matrix 
on the pressure head • is emphasized because in the solution process we will be concerned 
with a system of nonlinear equations of the form 

[K(¾)] = (3.78) 
global 

where •o• • are the values of pressure head at each node (there are p nodes in the *' p 
mesh). the case of unsaturated flow, {F} will contain specified rates of groundwater 
flow at boundaries and at sources and sinks. If we wish to include gravitational forces, 

additional contributions to {F} in equation 3.78 result from the integration of -•-z (•). The 
solution of equation 3.78 is discussed in Chapter 5. 

3.5 TRANSIENT, SATURATED FLOW EQUATION 

The three-dimensional form of the equation for transient groundwater flow through 
saturated porous media is 

(3.79) 

where S s is the specific storage of the porous media and t is time (Appendix II). The only 
difference between the integral formulations for steady-state and transient groundwater 

ah 

flow equations is the addition of the term S s •. When the approximate solution for hydraulic 
head, fi is substituted into eqution 3.79, the contribution of element e to the residual at node 
i is 
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(3.80) 

where •i e) is the weighting function for node i and the limits of the integration are chosen 
to represent the volume of element e. 

In Oalerkin's method W? N? ). If we assume that values (e) (e) (e)..• •(e) = ofK x,Ky ,K z ,-,,uo s 
are constant within an element (but can vary from one element to the next), equation 3.80 
can be written 

Kz az 2 LKx '•X2'+Ky •y2 + -S s -•-- dxdydz 

= -IIIN!*)[-(,)a2•'(') -(.)a2fi(') -(')a2•'(')]dx dydz K, ax 2 +K•y aY 2 +I• az 2 

V(e.) 

(3.8]) 

where Ss (e) is the specific storage for element e. We know that the first integral on the 
right-hand side of equation 3.81 can be written 

R? 1 hi ß = [ K(')] (3.82) 

where [K (e)] is the element conductance matrix. Similarly, the evaluation of the second 
integral on the right-hand side of equation 3.81 can be written 

ß = [ C (')1 : 

c 

(3.83) 

where [C (•)] is called the element capacitance matrix. 
The subscripts K and C in equations 3.82 and 3.83 are used to indicate the portion of 

the residual matrix represented by the first and second integrals on the right-hand side of 
equation 3.81. 

To evaluate the second integral requires that the t/me derivative of the approximate 
solution be defined over the volume of the element. We can do this using interpolation 
functions and the values of the time derivative at the nodes, in the same manner that we 
defined • over the volume of the element using the interpolation functions and the values of 
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fi at the nodes. Depending on the type of interpolation functions we use, the procedure is 
called eit•her a consg•tent element formula•on or a lumped element formulmion . 

Both formulations are used in practice. However, the lumped formulation is less 
susceptible to problems of numerical oscillation (see Chapter '5) than is the consistent 
formulation (also see Segerlind, 1984). 

3.5.1 Consistent Element Formulation 

We used interpolation functions to obtain an approximate solution for hydraulic head 
within an element, •(c) in section 3.3. For an element with n nodes the approximate solution 
can be written in man-ix form as 

(3.84) 

where Ni (c) is the interpolation function at node i and h i is the (unknown) hydraulic head at 
node i. In the consistent element formulation, we use the same interpolation functions to 
define the time-derivative of the approximate solution for hydraulic head within an element, 

8--[-' For an element with n nodes, the time-derivative can be written in matrix form as 

-- [ (3.85) 

where N? ) are the interpolation functions and •- are the (unknown) time derivatives of 
hydraulic head at each node, 

If equation 3.85 is substituted into the second integral on the fight-hand side of 
equation 3.81 we have 

dx dy dz (3.86) 

We can write equation 3.86 for each node (i = 1, 2 ...... n) in element e. This set of 
equations can also be written in man'ix form 

R•e) J : [C(½)] •:hn 
c 

(3.87) 
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where 

[C (•)] = S?)][N?'" N?]dx dy dz 
J J JLNff'J 1x1 1x• 
V (e) nxl 

, 

For two-dimensional problems equation 3.88 becomes 

a:m A (•) uxl Ix1 (3.89) 

where A (½) is the area of element c. For one-dimcnsionaJ problems equation 3.88 becomes 

N (e) 

L (e) nxt lxl lxn (:3.90) 

where L (e) is the length of element c. 

3.5.2 Lumped Element Formulation 

In the lumped clement formulation we also define the time-derivative of the approximate 
solution for hydraulic head within an element using interpolation functions and the .values 
of the time derivative at the element's nodes. However, in this case we use d[f'ferent 

interpolation functions to define • than arc used to der'me •(e) 

-•--(x,y,z) = [ N?)(x,y,z)"' N?)(x,y,z)] 

ahll 

(3.91) 

where N? ) are the interpolation functions for the time derivative of hydraulic head at each 
node. These interpolation functions are defined so that 
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ß ß 1 if i=j 

0 if icj (3.92) 

where n is the number of nodes in the element. If we rewrite equation 3.88 using these 
intexpolation functions 

. N?)J 

= S? ) ' ' dx dy dz 

[d'>] : s? '. 
o 

(3.93) 

For exarnple, for the case of a one-dimensional element with two nodes (n = 2) equation 
3.93 becomes 

(3.94) 

where L (e) is the length of the element. For a two-dimensional element with three nodes 
(n--3), equation 3.93 becomes 

(3.95) 

where A (e) is the area of element e. 
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3.5.3 Finite. Difference Formulation for Time.Derivative of the 
Approximate Solution 

A global capacitance matrix [C] can be obtained by combining the element capacitance 
matrices for all the elements in the mesh in the same way that the global conductance matrix 
was obtained by combining the element conductance matrices in section 3.2 

global m=!• 

The global capacitance matl'ix is a square, symmc•c matrix with size pxp where p is the 
number of nodes in the mesh. By substituting the appropriate matrix formulation for each 
of the integrals on the right-hand side of equadon 3.81, the weighted residual formulation 
for the transient, saturated How equation becomes 

(3.97) 

If we define the two vectors {•} and {h} as 

•[. h• 

{•}: •p {h}: •p 
equation 3.97 can be Written 

[C] {•} + [K] {h}: {F} (3.98) 
global global global 

Equation 3.98 is a system of ordinary differential ½•io•, whose solution provides 
•h 

values of h and • at each node in the finite element mesh. Although several methods are 
available for solving this system of equations, it has become standard practice in 
groundwater flow and solute transport modeling to use the finite difference method. 

From the mean value theorem of elementary calculus we know that we can compute the 
time derivative of a function h at some point e on the interval t to t+At by the difference 
between the value of the function at the two end points of the interval (Figure 3.8) 
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-•(e) -- h(t•t)- h,(t) At 

h(t+ •t) .-. 

h(O 

t e t+At 

4,•A t• 

Figure 3.8 Finite difference approximation to the time derivative for hydraulic head. 

Unfortunately the position of e on the interval t to t+At is not known and different subsets 
of the finite difference methods have evolved based on different choices for the position of 
e. From Figure 3.8 

or 

-•(e) = h(t + At) - h(t) At 

•h 

h(e) = h(t) + ( e-t )•'(e) 

(3.99) 

(3.•00) 

If we define a variable co 

'At (3.101) 

we can write 

h(e) = ( l-co ) h(t) + co h ( t + At ) (3.102) 

which can be extended to the vector of unknown hydraulic heads [ h } and to the vector IF] 

{h} = ( 1-m ){h}t + co {h}t+& t (3.103) 

{F} = ( 1-co ){F}t + co {F}t+A t (3.104) 

If we substitute equations 3.103 and 3.104 into equation 3.98 we have the finite difference 
formulation for the transient, saturated flow equation 

Water Resources Monograph
Groundwater Modeling by 
the Finite Element Method Vol. 13

Copyright American Geophysical Union



Chapter 3 57 

, , 

( [C] + m At [K] ) {h}t+A t 

= ( [C] - (l-m) At [K] ) {h} t + At ( (1 - m)fF}t + m {F}t+A t ) 

(3.105) 

The solution procedure begins by specifying the initial values of (h) (i.e., the values of 
head at time t -- t o -- O) 

(h}, ø = specified values 

Then the system of linear equations (equation 3.105) is solved to obtain values of {h} at 
the end of the First time step, [h•to + at. We then set 

{h}, = {h}r•+A t 

and repeat the solution process for the next time step, and so on. Depending on the choice 
of co several different subsets of the finite difference formulation are der'reed: 

co=0 --+ Forward Difference Method 

[C]{h}t+At = ( It] - At [K] ){h}t + At {F}t (3.106) 

1 

co=• --+ Central Difference or Crank--Nicholson Method 

At 

([C]+ •-•t[K]){h}t+At = ([C]--•[K]){h}t + -•-( {F}t+ {F}t+At ) (a.o7) 

m=l --) Backward Difference Method 

( [C] + At [K] ){h}t+A t = [C]{h} t + At {F}t+A t (3.108) 

3.5.4 A Finite Element Example 

To illustrate the use of equation 3.105 we will again consider the column of soil from 
the example in Section 3.2. Initially the column is in steady-state saturated flow with a 
distribution of hydraulic head computed from the previous example (Figure 3.9). Then at 
time t = 0 we increase the value of hydraulic head at the upper boundary (node 1) from 12 
to 20 cm. We wish to find the value of hydraulic head at each node at time t = 1, 2 .... 
seconds. 
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•h--12 

Steady-state solution initial conditions (t = 0) 

hydraulic head, h (cm) hydratfiic head, h (cm) 

.3 12.0 '•• 20.00 

/.00 1/4'00 4.00 I 0.00 W 0.00 
Figure 3.9 Initial conditions for example transient, saturated flow problem. 

The governing differential equation is the one-dimensional form of equation 3.79 

a (K ah• S ah 

where K x is the saturated hydraulic conductivity in the direction of flow (the x axis is 
directed vertically downward in this case). We will use the lumped element formulation to 
solve this problem. Let Ss (1) = 0.02, Ss (2) = 0.01, and Ss (:•) = Ss (4) = 0.02. For one- 
dimensional elements with two nodes, the element capacitance matrices are given by 
equation 3.94 

(0.02)(2) [• •1 = [0.02 0.002] 2 0 

[o.o,. o 1 [C(2)3 = 2 = 2 = 0 0.01 

2 = 0 0.03 

The global capacitance matrix is obtained by adding the expanded form of the element 
capacitance matrices 
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[C]= 
0.02 0 0 0 0.024-0.01 0 0 

0 0.014.0.03 0 0 0 0.034-0.03 

0 0 0 

0 

o.o3.• 

0.02 0 0 0 0 

0 0.03 0 0 0 0 0.04 0 

0 0 0 0.06 

o o o o 0.03] 

From the previous example, the global conductance matfix is 

(3.•o9) 

1/2 -1/2 o o o 

-1/2 3/2-1 o ø o 
[K] = ! -1 4/3 -1/3 (3.110) o-1/3 2/3-1/3 

0 0-1/3 I/3.1 

The initial values of hydraulic head at the nodes are 

hi 20.001 
h 2 9.33 ! 

h 3 -- 8.00 l h 4 4.00 

hs •0 0.00 

{h}t= 0 = (3.111) 

We will use the backw• difference formulation (equation 3.108), with a time step At -- 1 
sec. By setting IF] -- 0 (no specified flow rates) the system of equations for the end of the 
first time step becomes 

( [C] + At [K] ){h}t__ 1 = [C]{h}t__ 0 +,,••t•l 0 
(3.112) 

Substituting egluations 3.109, 3.110, and 3.111 into equation 3.112 gives 

0.02 0 0 0 0 1/2 -1/2 0 0 0 

0 0.03 0 0 ! -1/2 3/2-1 0 O0 0 0 0.04 0 +(1) 0 -1 4/3 -1/3 
o o oo.o o o 

0 0 0 0 0.033 0 0 0 -1/3 1/3J 

hi 

h2 
h3 

h4 

h5 t=l 
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o.o2 o o o o 2o.oo 1 o.o• o o ! •.• --I 0 0.04 0 8.00[' 0 0 0.06 4.00 [ 
o o o o.o3.1!, o.ooj 

which simplifies to 

0 0 h• [0.041 

r [-0.50 _11i30 -•1i•73 0.73 3 h 4 [0.24 I 0 -0.33 0.36J h •l !,0.00J 

(3.113) 

But hl -- 20 and h 5 = 0 for all values of t (because the hydraulic head at the upper and 
lower ends of the column are held constant). Modifying equations 3.113 for these known 
values (see Section 4.5) gives 

1.53-1.00 0 ]{ha] -1.00 1.37 -0.33 h3 

0 -0.33 0.73 h4 10.281 0.32 [ 
0.24 j 

which can be solved to obtain the values of hydraulic head at the end of the first time step 

h 1 20.00] 
h2 14.95 / 
h 3 = 12.60• 
h 4 6.02 / 
h 5 •l 0.00 J 

This process is repeated for each subsequent time step until a solution is obtained for each 
required value of t. 

3.6 TRANSIENT, UNSATURATED FLOW EQUATION 

The three-dimensional form of the equation for transient groundwater flow through 
unsaturated porous media is written as 

•x(Kx(¾)•-••x )+ •-•(Ky(¾)•--•)+ •(Kz(¾)(•-•z + 1))= C(¾).•• t (3.114) 
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where Kx(W), Ky(W), and Kz(W) are the unsaturated hydraulic conductivities (which are 
functions of the pressure head ¾) in the three coordinate directions (the z coordinate 
direction is assumed to be vertical), and C(¾) is the specific moisture capacity 

dO 

C(•t) = •-• (3.i15) 
where 0 is the volumeffic water content (Appendix II). The unknown quantity at each node 

is the pressure head •. As before we assume an approximate solution for •, • of the form 

i=l 

where ½(e) is the approximate solution for pressure head within element e and N? am the 
interpolation functions for each node within element e. 

When the approximate solution is substituted into equation 3.114, the differential 
equation is not satisfied exactly and an error or residual occurs at every point in the problem 
domain. The contribution of any element e to the residual at node i to which the element is 
joined is 

where Wi(•) is the clcment's weighting function for node i and the limits of integTation arc 
chosen to represent the volume of element e. 

In Galcrkin's method we choose the weighting function for each node in the element to 
be equal to the element's interpolation function for that node Wi (e) -- Ni(e). If we also 
assume that the unsaturated hydraulic conductivity and specific moisture capacity are 
constant within an element (but can vary from one element to the next), and that 
gravitational forces am small, equation 3.117 can be written 

+ i (V)•" dx dY dz 
(3.118) 
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where C(e)(¾) is the specific moisture capacity within element e. 
We know from the results of sections 3.4 and 3.5 that the integrals in equation 3.118 

can be written 

ß = ß 

(3.119) 

(3.120) 

where [K(•)(¾)] and [C(e)(•)] are the unsaturated forms of the element conductance and 
capacitance matrices for element e. Just as in the case of transient, saturated flow, we can 
use two different types interpolation functions to evaluate the integral 

•'•i ',- •v•-dxdydz (3.121) 

and obtain the computational form for [c(e)oI/)]. In the consistent element formulation we 
use the same interpolation functions to define the time-derivative of the approximate 

solution for pressure head within an element, • -•., as those used to define the approximation 
solution for pressure head • 

•(•) 
• (x,y,z) = [N?)(x,y,z)'" N(ne)(x,y,z)] (3.122) 

where N? ) are the interpolation functions and -•- are the (unknown)time derivatives of 
pressure head at each node within element e. For this choice of interpolation functions, we 
can write the unsaturated form of the element capacitance matrix as 
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(3.123) 

In the lumped element formulation, we use different inflation functions to define 

a4?') than ,,• us.d to dm,,e •') 

4h• (") [ N;(,)(x,y,z) N?)(x,y,z)] •t-(x,y,z) = ... (3.124) 

where Ni*(e) is the interpolation function for the time derivative at node i within element e. 
These interpolation functions were defined in equation 3.92 and using equation 3.93 we 
can immediately write 

where V (e) is the volume of the element. 
The unsaturated form of the global capacitance matrix is obtained by combining the 

element capacitance man•ees for all elements in the mesh 

m 

global e=l • 

(3.126) 

where there are m elements in the mesh. By substituting the appropriate matrix 
formulations for each of the integrals on the right-hand side of equation 3.118, the 
weighted residual formulation for the uansient, unsaturated flow equation becomes 

[c(¾)] 
global 

+ [K(v)] 
global 

= {F} (3.127) 
global 
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[c(v)] {{t) + [K(•_)] (v) = (F) (3. 
global global global 

Using the results of Section 3.53 we can also write the finite difference formulation for 
the wangent, unsaowated flow equation 

( [C(w)] + •t [K(W)] )(W}t+At = ( [C(v)] - (1-•)At 

+ At ((1-o)){F}t + o)[F}t+A t ) (3.129) 
,, 

Equation 3.129 is a system of ordinary differential equations, whose solution provides 

values of W and •t at each node in the finite element mesh at each time. A modification of 
the finite difference method described in section 3.5.3 can be used to obtain this solution. 
The modified procedure will be described in Chapter :5. 

3.7 SOLUTE TRANSPORT EQUATION 

The three-dimensional form of the solute wansport equation for uniform groundwater 
flow in the x direction is 

(3.•3o) 

where 0 is the volumetric water content of the porous media, C is solute concentration, Dx, 
Dy, and D z are the dispersion coefficients of the porous media in the x, y, and z coordinate 
directions, v x is the apparent groundwater velocity in the x coordinate direction, Pb is the 
bulk density of the porous media, K d is the distribution coefficient, and •. is the solute 
decay constant (Appendix liT). 

When we solve a solute wansport problem by the finite element method, the unknown 
quantity at each node is the solute concentration C. We begin by assuming an approximate 
solution for C, • of the form 

&(')(x,y,z) = • N? ) c• 
i=l 

(3.131) 
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where •(e) is the approximate solution for solute concentration within element e, N? ) are the 
interpolation functions for each node within element e, and C i are the unknown solute 
concentrations for each node within element e. When the approximate solution is 
substituted into equation 3.130, the differential equation is not satisfied exactly and an error 
or residual occurs at every point in the problem domain. The contribution of element e to 
the residual at node i is 

(3.132) 

where Wi(e) is the element's weighting function for node i and the limits of integration are 
chosen to represent the volume of the element. 

In Galerkin's method we choose the weighting function for each node in the element to 
be equal to the element's interpolation function for that node, wi(e) = Ni(e). If we also 
assume that the properties of the porous media and the apparent g•oundwater velocity are 
constant within an element (but can vary from one element to the next) equation 3.132 can 
be written 

(3.133) 

where, for example, e (e) is the volumetric water content of the porous media within element 
e. • is not superscripted because it is a property of the solute (not the porous media) and 
is therefore constant from one element to the next. Because water content 9 (e) and the 
apparent groundwater velocity vx(e) may or may not change with time, two separate 
formulations of equation 3.133 are possible. 

3.7.1 Steady-State Groundwater Flow 

In steady-state groundwater flow (saturated or unsaturated), the water content and 
apparent groundwater velocity are constant from one time step to the next. They are also 
constant within an element (but can vary from one element to the nex0. In this case 
equation 3.133 becomes 
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= D• 0 •)x2 •)y2 + 

Vx •)x jaxdydz 

+•fl •½" p, Kd "'b'•JaX dy dz 

t 0 o• t Jdx dy dz (3.134) 

From our previous work with the transient groundwater flow equations we know that 
we can write equation 3.134 in matrix form by combining the integral expressions for each 
node in element e. Specifically we can write 

ac, l 

(3.135) 

where [ D½c)] is the element advectfon-dispersion marr/x and [ A (•1] is the element sorption 
matr/x. The element advection-dispersion matrix is defined as 

[ D (c)]: ß , 

ax •y • 

dx dy dz 
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J JJ L x•,j [•, (•<•> •?'•?•] [Md "' •21 d• dy dz 
V le) nxl lxl Ixn (3.136) 

where V (e) is the volume of element e. The reader should recognize the terms in these 
equations as coming from the first, second and fourth integrals on the right-hand side of 
equation 3.134. The validity of these equations can be checked by multiplying a few of the 
terms and comparing the results with the integrals in equation 3.134. If the groundwater 
flow is not uniform (see Appendix HI), equation 3.136 becomes 

[ D (e)] = 
c•x •y • 

•x •y • 

dx dy dz 

o o v? 

v (•) nx3 3x3 3xn 

+ ' [•(p?)K• e) + O(e))] [N? ) '" N?] dx dy dz 
JLN?J 

V (e) nx I Ix I Ix n (3.137) 
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The clement sorption matrix is defined as 

(3.138) 

if a consistent clement formulation is used for the time derivative of the approximate 

solution .•.. If a lumped clement formulation is used for •., the clement sorption matrix is 
defined as 

[ A(e)] -- (@•e)K(c•) + OCe)) \T•LO'.i (3.139) 

where V (e) is the volume of element e and n is the number of nodes within element e. 
A global advection-dispersion matrix [D] and a global sorption matrix [A] can be 

obtained by combining the element matrices for all the elements in the mesh in the same 
way that the global conductance matrix was obtained by combining the element 
conductance matrices in Section 3.2 

[D] = E[D (½)] 
global ß = • • 

pxp nxn 

In 

global e=l • 
px p nxn 

(3.140) 

(3.141) 

where m is the number of elements and p is the number of nodes in the mesh. The 
weighted residual formulation for the solute transport equation becomes 

ac,] 

[D] + [A] ' -- {F} 

global global •)•p global 
(3.142) 
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If we define the two vectors {C} and 

equation 3.142 can bc written as 

(3.143) 

global global global 

Equation 3.144 is a system of ordinary differential equations, the solution of which 
•C 

provides values of C and •. at each node in the finite element mesh at each time. This 
equation can be solved using the f'tnite difference method described in section 3.5.3. Using 
equation 3.105, we can immediately write the finite difference formulation for equation 
3.144 

(3.145) 

The solution procedure begins by specifying the initial values of {C} 

[C}t0 = specified values 

Then we solve the system of linear equations to obtain values of { C} at the end of the first 
time step, (C}to + at- We then set 

(C)t = 

in equation 3.145 and repeat the solution process for the next time step, and so on (see 
Chapter 5). 

3.7.2 A Finite Element Example 

The use of equation 3.145 is illustrated with the one-dimensional problem in Figure 
3.10. Steady-state, saturated groundwater flow is occmving in a conf'med aquifer. Initially 
no solute is present. At time zero, the solute concentration along the left boundary of the 
aquifer is increased to 10 rag/1 and remains constant thereafter. The problem domain is 
discrefized into a mesh with five elements and six nodes. Each element has two nodes so 

Water Resources Monograph
Groundwater Modeling by 
the Finite Element Method Vol. 13

Copyright American Geophysical Union



70 Step 2: Derive the Approximating Equations 

the dispersion-advection matrix for each element is given by the one-dimensional form of 
equation 3.136 (n--2) 

[ D (e)] = 
ax ax j 

•) 

+ ax 'a x J 
lxl 

2xl lxl 

(3.146) 

Y'//////////////////////////////////////////////' clcment numbers 
• Direction of Groundwater Flow • Impermeable / (1) (2) (3) (4) (5) • 

Botmdaxies • •i j•i j•i j•i j•i 
• ...... node numbers 

--//rjj/////////•ff/////,/./r///////////////////////,• 
, 

v}• ) = 0.03 m/d, Di e)= 1 rn2/d, L (e) = 10 m 0(c)= n (e) = 0.3 for all elements 

Figure 3.10 Example one-dimensional solute transport problem. 

Now if we use the interpolation functions of the example in section 3.2 we have 

x? )- x •N• -1 
N• = L(•) , •)x L(•) (3.147a) 
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x - x? ) i•N2 
N 2 = L(e) , , -• = L(e) (3.147b) 

for all five elements in the mesh. Since the aquifer is saturated, equation 3.146 can be 
divided by 0(e)(Appendix 1II). If we assume that the solute does not react with the porous 
media and does not decay i.e., I• e) = 0 for all elements and •. = 0, and since the porous 
media is saturated 0 (e) = n(e), equation 3.146 can be written 

: , v• 
L(•) + -1 

For the elements in Figure 3.10 these matrices are 

o.o, [:l [."']: k[_, 
1 

=i6[_• • + 

111-1] DO)i 
• this problem w, elect to use •e lump• element fomulafion of the elem, nt so•fion 
m•, •ua•on 3.139 (•tten h•e for samt• flow) 

(' L (') 1 

For •e ele•nm in Fi• 3.10 •ese mffices • 

[A(i)] : ,1½[• •] 
: 5110 •]: CA(2'] : [A0)] : CA(4)] : [A (5)] 
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72 Step 2: Derive the Approximating Equations 

We can now assemble the global matrices [D] and [A] as follows 

global 
6x6 

-1/20 -1/20 0 0 0 0 

-3/20 (3+3)/20 -1/20 0 0 -3/20 (3+3•0 -1/20 0 

0 -3/20 (3+3y20 -1/20 0 0 -3/20 (3+3¾20 -1/20] 
0 0 0 -3/20 3/20J 

.O5 -.05 0 0 0 o 

-.15 .30 -.05 0 0 __ ! -.15 .30 -.05 0 0 -.15 .30 -.05 

0 0 -.15 .30 
-.05 

L 0 0 0 0 -.15 .05 

[A] = 

5 0 0 0 0 0 

o 0 5+5 0 0 

0 0 0 5+5 

0 0 0 0 

'5O 0 0 00' 
0 10 0 0 0 0 

0 0 10 0 0 0 

0 0 0 10 0 0 

0 0 0 0 10 0 

0 0 0 0 05. 

We will use the backward difference form of equation 3.145 (co = 1) 

( [A] + At [D] ){C}t+at = [AI{C}t + At,•}•.•t 0 
The solute concentrations at the nodes at time t--O are 

CI 1œ 
C2 o 

C3 = 0 
{C}l=O = C4 0 

C5 0 

C6 •o 0 

(3.149) 
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With a time step of 10 days (at=10) equation 3.149 can be solved for the solute 
concentrations at the end of the first time step (t=10) 

( [AI + coat [DI ){C},:•o -- [AI{C}•-o 

3.0-0.5 0 0 0 0 C• 5 0 0 0 0 0 50 

-1.5 8.0-0.5 _0•5 0 i C2 • 10 0 0 0 0 -1.5 8.0 0 C• = 0 10 0 0 

o ioooo 0 0 -1 8.0 

0 0 0 -1.• 3.0 c• t=o 0 0 0 0 •J 

However, this system of equations must be modified because of the boundary condition 
{C1 ]•0--10. Modifying this system of equations (see Section 4.5) gives 

8.0 --0.5 0 0 0 

-1.5 8.0 -0.5 0 • 0 -1.5 8.0 -0.5 

0 0 -1.5 8.0 -0.5 

0 0 0 -1.5 3.0 

C2 75.0 
C3 
124 

C6 •o 

which can be solved to give values of C2 to C 6 at the end of the first time step. The 
solution is 

el 

C,• 

C• 

C6 

tO.000] 
9.488 
1.800 
0.342 
0.066 
0.033 

This solution is then substituted into the fight hand side of equation 3.149 and the 
procedure is repeated for the next time step. 

3.7.3 Transient Groundwater Flow 

In transient groundwater flow, the volumeu'ic water content 0 and the components of 
apparent groundwater velocity v x, Vy, and v z are functions of time t 

0 -- O(t) 
v: = v:(t) 

Vy = Vy(O (3.150) 
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74 Step 2: Derive •e Approximating Equations 

The dispersion coefficients D x, Dy, and D z (•or Dxx, Dxy, etc) are computed using v x, 
Vy, and v z (see Appendix Ill) and therefore are also functions of time 

D x = Dx(t) 

D r = Dr(t) 
D z = Dz(0 

(3.151) 

if groundwater flow is uniform, or 

Dxx = Dxx(t) 

Dxy = Dxy(t) 
. 

. 

Dzz = Dzz(t) 

(3.152) 

if groundwater flow is not uniform. 

The advection-dispersion matrix [D (c)] and the element sorpfion matrix [A (e)] axe 
computed using O (•), v?, etc., D? ), etc., and are therefore also functions of time 

[D (•)1 = [D(•)(t)] 
[A (e)] = [A(½)(t)] (3.153) 

Matrix integral formulations for [D(•)(t )] can be obtained by substituting equations 3.150, 
3.151, and 3.152 into equations 3.136 and 3.137 

[ D(C)(t)] = 

V (½) nx3 3>0 3xn 

+ i [vx(t)] 'Sx "' iJx jdxdydz 

v (e) nXl Ix1 lxn 

N? ) 
ß ..(•)u'(•),, iN?) ... N?] dx dy dz + [X (O(•)(t) + •b •"d •, 

JJ['qJ 
V (½) uxl lxl (3.154) 

Water Resources Monograph
Groundwater Modeling by 
the Finite Element Method Vol. 13

Copyright American Geophysical Union



Chapter 3 75 

if groundwater flow is uniform and 

[ D½•)(t)] = 

: : : 

. ilx i)y 

3x3 

dx dy dz 

0 v(=')(t) 

V (c) nx3 3x3 3xa 

ß •'(')•(")'• IN? ) "N? )1 (ix dy dz + [• (O(•)(t) + r• ,-,• n ' 
N?.I 

V (•) nxl Ixl lxn (3.155) 

if the groundwater How is not uniform. The matrix integral formulation for [A(e)(t)] can be 
obtained by substituting equation 3.150 into equation 3.138 

[A(e)(O] 
[,.,(O•r(") •'b '"a + O(O(t)] [N? )'" N(• )1 (ix dy dr,. 

lxl lxn 

(3.156) 

The global advection-dispersion matrix and the global sorption matrix are also functions 
of time and the weighted residual formulation for the solute transport equation for transient 
groundwater flow becomes 

[A(O]{&} + [IXO][C}: {F} (3.157) 
global global global 
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76 Step 2: Derive the Approximating Equations 

The œmite difference formulation for equation 3.158 is 

( [A(t + aO] + mat [O(t + aO] ) {C},+•,, 

= (A(O - (• - m) at [•01 ) {C}, + at ((• - m){Vh + m{F},+•,,)) 
(3.158) 

To solve equation (3.158), we first solve the transient groundwater flow problem 
(either saturated or unsaturated) to obtain the values of O(=)(t), v?)(t) etc., and D?(t) etc., 
for each element for each choice of time step used in (3.158). Then we specify the initial 
values of {C} 

{C3t ø = specified values 

and compute [D(to)], [A(to)], [D(to+At)] and [A(to+At)]. These are substituted into 
equation 3.158 which is then solved for the values of {C} at the end of the first time step, 
{C}to + at. We then set 

{c}, = {c}•+ a, 

compute [D(t+At)] and [A(t+At)], substitute these matrices into equation 3.158'and repeat 
the solution procedure. It should be obvious that computing each element matrix and 
assembling and modifying the global system of equations can be extremely time 
consuming. 

It should be noted that the procedure j.u. st described is only valid when changes in 
•oundwater densi _ty due to chanong solute concentrations in the aquifer can be assumed to 
be negli•bly small (see Appendix Ill). When this is not nine, the groundwater flow and 
solute transport equations are coupled and must be solved simultaneously. 

3.7.4 Saturated Groundwater Flow 

The solute transport equation for saturated groundwater flow is (Appendix m) 

(3.159) 
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if the groundwater flow is not uniform. If the porous media is saturated 8 = n -- constant 
within an element and the element advection-dispersion matrix for steady-state groundwater 
flow is 

[ D (")] _- dx dy dz 

N Lax ax J 
V (•) wO. lxl l>cu 

JJJLN?J 
V (0 uxl lxl lxn 

dx dy dz (3.161) 

for uniform flow and 

ß • 

• •x "' 'N• ) N? ) N? ) n• v• ) a•/) 
+ ' ' ' 0 0 •Y .... 

0 0 n•.. • "' 
v (e) n• 3• 3• 

+ • •l+ ... 

•) n I:) JJ 
V (•) nxl lxl lxn 

•)N(ne) ' 

•N• ) 
•y 

(3.162) 

Water Resources Monograph
Groundwater Modeling by 
the Finite Element Method Vol. 13

Copyright American Geophysical Union
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for nonuniform flow. The element sorption matfix is 

(3.163) 

Similar equations can be written for transient groundwater flow for a lumped 

formulation. The term 1 + n(e) is frequently called the retardation factor 
for the element. 
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NOTES AND ADDITIONAL READING 

1. For problems with axisymmetry equations 3.1 to 3.5 can be written in an (r,z) 
coordinate system: 

Steady-State, Saturated Flow Equation 

3•(K• r •) + •[Kz•J -- 0 (3.164) 
Steady-State, Unsaturated Flow Equation 

r •(Kz(•)(•- (3.165) 

Transient, Saturated Flow Equation 

}) Oh, (3.166) 

Transient, Unsaturated Flow Equation 

3•r(Kr(llt) r •?)+ •(Kz(•)(•--•-•z + 1))= C(•/')-•t (3.167) 

Solute Transport Equation (Uniform Groundwater Flow) 

•(OC) 1•)(Dr •--[(0C,)+ Dr•z2(0C)--•-(vrC' at ' = 

-•w• d •-[(0C+v•a• (3.168) 
where r is •e ra&fl c•r&nate •cfion (•ected ou•d •om •e •is of syme•) 
•d z is •e vefficfl c••ate •efion (see, for ex•ple Fi• 2.9) 

2. Matrix-integral formulation for the element conductance, capacitance, advection 
dispersion, and sorpfion matrices can also be derived for equations 3.164 to 3.168. 
For example, the element conductance matrix for saturated flow in an axisymmetric 
coordinate system is 

(3.169) 
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Chapter 4 

STEP 3: DEVELOP SYSTEM OF EQUATIONS 

4.1 REQUIRED PROPERTIES OF ELEMENT INTERPOLATION 
FUNCTIONS 

As we saw in the previous chapter, application of the method of weighted residuals to 
the groundwater flow and solute transport equations leads to several matrix-integral 
expressions (i.e., the equations for the saturated and unsaturated forms of the element 
conductance matrix, the saturated and unsaturated forms of the element capacitance matrix, 
the element dispersion-advection matrix, and the element sorption matrix) that must be 
evaluated for each element in the mesh. To evaluate these expressions the element 

interpolation functions N?, and their derivatives '•x'x "•' and .•. must be known functions 
of the three coordinate directions x, y, and z. 

Recall that the interpolation functions are used to define the approximate solution for 
hydraulic head (or press• head, or solute concentration) at any point within an element. 
For example 

i=l 

where •(e) is the approximate solution for hydraulic head within element e, N? ) are the 
interpolation functions for the nodes of element e, h i are the unknown values of hydraulic 
head at the nodes of element e, and n are the number of nodes in element e. Because the 
interpolation functions are defined using the element's size and shape they are generally 
different for each element in the mesh. For example, the interpolation functions for one- 
dimensional elements with two nodes will be different if the lengths of the elements are 
different (equation 3.11). The set of interpolation functions for all elements in the mesh 
define an approximate solution for f• (or • or •) throughout the problem domain. 

4.1.1 Continuity 

The need to integrate this solution (or its derivatives) places a res•ctio•n on the types of 
interpolation. functions that may be used: the interpolated value of h (or • or ½) must be 
continuous along the boundary between adjacent elements. That is the value of h computed 
at each point on the boundary between two adjacent elements must be the same regardless 
of which element's set of interpolation functions are used (Figure 4.1)•, Beca•use .the 
approximate solution is continuous from one element to the next, we say that h (or •l/or C) 
is interpolated in a "piecewise continuous" manner over the problem domain. The 
derivatives of the approximate solution do not have to be continuous across element 
boundaries, however. This is so because for the integral 

Bx p 

8O 
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to be defined, •(x) must be continuous to the order (p-l). Because all the integral eq.uation. s 
for element matrices in Chapter 3 contain (at most) only the first derivative (p=l) of h (or • 

or C), h must be continuous but •, •, and •. do not have to be (p-l--0). 

Figure 4.1 

. 

(1) (2) 
Xl x2 x3 

Approximate solution must be continuous along adjacent element's 
boundaries. 

4.1.2 Convergence 

When the finite element method is used to solve a groundwater flow or solute transport 
problem, the solution consists of the approximate value of hydraulic head (or pressure head 
or solute concentration) at each node. If suitable interpolation functions are used in the 
solution procedure, the accuracy of the approximate solution will improve as the number 
of nodes and elements in the mesh increases (which usually is equivalent to a decrease in 
the size of elements in the mesh). We say that the solution converges to the true solution 
as the number of nodes and elements in the mesh increases. Fortunately there is a simple 
rule that allows us to determine which types of interpolation functions possess this 
convergence property. 

This rule has its origin in the approximate solution (equation 4.1). Consider the case of 
an element e that is in a portion of the problem domain where hydraulic head is constant. 
In this case, the value of •(e)(x, y, z) is constant and should also be equal to the value of h 
at any node in the element, •(e) = hi ' i = 1 to n. If we call this constant value h 0 and substitute 
it into equation 4.1 we have 

(4.2) 

which is only true if the values of all the clement interpolation functions sum to one at every 
point within the element 
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82 Step 3: Develop System of Equations 

n 

N?)(x, y, z) = 1 for all (x, y, z)in V (•) (4.3) 

Where V (e) is the volume of clement c. This rule insures that the elements are capable of 
modeling a constant head region within the mesh when such a condition exists. This rule 
also insures that the approximate solution converges to the mac solution as the number of 
nodes in the mesh increases. 

4.2 SUBPARAMETRIC, SUPERPARAMETRIC, AND 
ISOPARAMETRIC ELEMENTS 

The approximate solution for hydraulic head is given by 

n 

i=l 

(4.4) 

where N? are the interpolation functions and h i are the unknown values of hydraulic head 
at the element's nodes. It is also possible to describe the shape of the element using the 
coordinates of each node in the element and another set of interpolation functions for the 
element. To see how this is done, let P represent an arbitrary point on the boundary of an 
element and let xi, Yi, and z i represent the coordinates of the i th node for the element (Figure 
4.2). Then we can describe the position of element boundaries using the coordinates of 
each node and another set of interpolation functions for the element Si (e) 

x(v) = 
i=l 

i:l 

z(P) -- E S?)(P) Zi 
i=l 

(4.5a) 

(4.5b) 

(4.5c) 
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Figure 4.2 P is any point on an element boundary. 

where equation 4.5a, for example, says that the x coordinate of point P is equal to the sum 
of the product of the interpolation function for a node evaluated at point P and the x 
coordinate of the node, for all nodes in the element. 

Because the interpolation functions Si (e) are used to define the shape of the element 
they are often called shape functions. Linear, quadratic, and cubic polynomials are the 
most common type of shape functions used in groundwater flow and solute transport 
modeling. For example, linear shape functions are used when the boundaries of the 
element can be represented by straight line segments. Quadratic shape functions are used 
when the boundaries of the element can be represented by quadratic curves. Similarly, 
linear interpolation functions are used when values of hydraulic head can be considered to 
vary in a linear fashion within the element. Quadratic interpolation functions are used when 
values of hydraulic head can be considered to vary in a (quadratic) curvilinear fashion 
within the element. 

The order of the polynomials used for the interpolation and shape functions within an 
element do not have to be the same. For example, an element with straight edges (linear 
shape functions) can have a curvilinear variation in head (quadratic or cubic interpolation 
functions) (Figure 4.3). The order of polynomials used for the interpolation and shape 
functions are used to classify types of elements into three groups, which are illustrated for 
one-dimensional elements in Figure 4.4. Subparametric elements use polynomials for the 
shape functions that are a lower order than the polynomials used for the interpolation 
functions. In isoparametric elements the orders of the polynomials used for the shape and 
interpolation functions are the same. Superparametric elements use polynomials for the 
shape functions that are a higher order than the polynomials used for the interpolation 
functions. 

It is important to realize that when subparamelric or superparameffic element types are 
used, not all of the nodes may have a value of hydraulic head (or pressure head or solute 
concentration) assigned to them. Thus in a one-dimensional, superparame•c element with 
three nodes, quadratic shape functions, and linear interpolation functions, hydraulic head 
will only be computed at two of the three nodes. These nodes will also be the ones where 
boundary conditions are specified if the element is on the boundary of the mesh. The 
coordinates of all three nodes would have to be specified, however. These coordinates are 
used with the three shape functions to define the quadratic curve that describes the 
element's shape. 
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84 Step 3: Develop System of Equations 

•,(•(x) 

linear interpolation functions, linear shape functions 

........................... interpolation functions 

x(P) S,•x) x, ß - ß ß j (x) xj 
- • : • shape functions 

x 

quadratic interpolation functions. linear shape functions 

h k 

•,(•)(x) h{ 

hi 

x)-'- N?)(x) h i + N.(½)(x) h. 4- N•)(x) h k 
interpolation functions 

_ .._ functions 

(•) x•) xi x• • 
x 

Figure 4.3 Interpolation and shape functions for two types of one-dimensional 
elements. 

At present, isoparametric elements are used almost exclusively in groundwater flow and 
solute transport modeling. Because in isoparametric elements the order of the polynomials 
used for the shape functions and interpolation functions are identical we will refer to both 
types of functions as interpolation functions in the remainder of Chapter 4. The next 
section describes the most commonly used interpolation functions for a variety of one-, 
two-, and three-dimensional elements and the procedures need• to compute the element 
rna•ceso 
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hk 

Examole Suboarametric Element 
_ _ 

(nodes i, j, and k) 
...... •,•• shape function (nodes i and k ) 

_Exan•_ole Isoparametric Element 

linear shape functions (nodes i and j) 

hj .......... J• linear interpolation functions 
• (nodes i and j) 

hi ..... • •' : • 
Y4 ') x ') 

Example Superparametric Element 

quadratic shape functions (nodes i, j, and k) 

hk ............................ S.a/ (x?, y•e)) ' Y(k½)) 
hi [" linear interpolation functions (nodes i and k) 

Figure 4.4 Illustration of definitions of subparametric, isoparametric, and 
superparametric one-dimensional elements. 

4.3 EVALUATION OF ELEMENT MATRICES 

In Chapter 3 we applied the Method of Weighted Residuals to the equations of 
groundwater flow and solute •'ansport. The result was a series of matrix integral equations 
for each element in the mesh. These equations are listed here for reference 
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86 Step 3: Develop System of Equations 

Element Conductance Matrix (Saturated Flow) 

[ K? )1 = 

'a•' 

V (") •o 

dx dy dz (4.6) 

Element Conductance Matrix (Unsaturated Flow) 

•)x •)x 

0y 0y 
dx dy dz 

(4.7) 

Element Capacitance Matrix (Saturated Flow, Consistent Formulation) 

(4.8) 

Element Capacitance Matrix (Saturated Flow, Lumped Formulation) 

(4.9) 
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Element Capacitance Matrix (Unsaturated Flow, Consistent Formulation) 

[ C(')(¾)] -- ' [C(')(¾)] [N? ) -.- lq(,• )1 (Ix dy dz 

v (") nx• 

(4.10) 

Element Capacitance Matrix (Unsaturated Flow, Lumped Formulation) 

(4.11) 

Element Advection. Dispersion Matrix 

[ D (")] =_ 

ax ax 

ay ay ß 

V (") n xn 3 x3 3 xn 

v (") nx3 3x3 3xn 
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88 Step 3: Develop System of Equations 

[ •.(O (•) + •'b "-d •.• ' 

JL?J 
V (e) Ix3 lxl 3xn (4.12) 

Element $orption Matrix (Consistent Formulation) 

[^(')] ß [ o(,) N?)... = •b •-d + ][ dxdydz 

V (e) nxl lxl lxn (4.13) 

Element $orption Matrix (Lumped Formulation) 

•,Pb •'d n /Lo 
(4.14) 

We can evaluate each of these ma•ces for any type of element once we specify the 
interpolation functions and their derivatives for each node in the element. When the 
interpolation functions have a simple form and the number of nodes is small, the 
integrations can be performed analytically. If the interpolation functions are complex or if 
the number of nodes is large, the integrations must be performed numerically. 

4.3.1 Analytical Method 

Certain one- and two-dimensional elements have relatively simple interpolation 
functions and it is possible to use analytical methods to perform the integrations required 
for the element matrices. The most commonly used one-dimensional element is the linear 
bar element used in the examples in Chapter 3 (Figure 4.5) 
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The element matrices for this type of element were computed in the examples in Chapter 
3. The results are 

•-•[_11 •l ] (4.15a) , K(')(¾)]: 'K' ?(qt)[_11 •1 ] (4.15b) 
sa•t• flow ••t• flow 

[ c (•)] = s? ) L (") ,['0 ,ø 3 
saturated flow saturated flow 

consistent formulation lumped formulation 

[ c(")(v)] = c(")(•) L(,) 6 [•• (4.17a) 
unsaturated flow 

consistent formulation 

[ C(*)(qt)] = C(e)(•) L(e) [ 1 01] 2 0 

unsaturated flow 

lumpe• formulation 

(4.17b) 

[D (e)] = D• )O(e) V(x e) 2•2 i.,(e) [-11-•] + T[-I I] 
..(.),.,(•) L(e)[2 12] + •.(0•') + •,b •-,• ) •' 1 

or -I- •(0 (e)-I- Pb •"d ) T 0 

consistent formulation 

lumped formulation 

(4.18a) 

(4.18b) 
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90 Step 3: Develop System of Equations 

•,["b •d + '•- 1 consistent formuhtion (4.19a) 
2•2 

,,,,(e)v.(•) 0(e)) L(e) [ 1 (]] lumped formulation (4.19b) or -- •Vb •d + -•- 0 1 

A commonly used two-dimensional element is the linear triangle (Figurc 4.6). The 
interpolation functions for this type of clement are derived in Scgerlind (1984). 

1 (x?, y?) N?)(x'Y) = 2-• (ai + bix +ciy ) 
Y•' N?(x,y) = •AI(½)(aj+ bjx+½jy) 

(x?, y?') (x• '), y?) 
Figure 4.6 Interpolation functions for the linear triangle element. 

In Figure 4.6 

bi = y•O _ y•) 
½i = Xi•) -- x• •) 

and 

A (e) = Area of element 

=• 1 
( An equation to compute this determin•t is in 

Appendix IV Pan 12c. ) 

The derivatives of the interpolation functions are 

8N? b i 8N _-- , j = 
o•x 2A(e) o•x 2A(e) 

aN? bk 

2A (•) 
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•}y 2Ate) ay 2At,) i}y 

The element matrices for the linear triangle element can be easily computed using an 
integration formula in Segerlind (1984). For a linear triangle element 

a! b! c! 2A(e) 
(a+ b•c + ;•)i 

where a, b, and c ale exponents of the interpolation functions N? ), N? ), and N(k e). For 
example consida' the integral 

IA(e) N(e)N e) 
In this case a = 1, b = 1, and c = 0 and we can immediately write 

•A(.) 1! 1! 0! 2A(e) = A •.f•') aA = (] + ] + 0 + =)! -•- 
where O! -- 1. As another example consider the integral 

•A• •. •aN• , o• x dA 

In this case a = 1, b = c = 0 and we have 

ß 'i •)x dA -- l•.f ) dA 

_ b i •,• N?)dA= bi 1!1!0! 2A(e) - 2A(e) (.) 2Ai.) (1 4- 1 4- 0'4- 2)i 
bi 
6 

Example 
Evaluate the man-ix integral formulation for [A (')] (consistent formulation) for the linear 

triangle element. From equation 4.13 
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= [p?K? + O (")] N•ii][N(• ") 1'4(2 ") 
_ r..,(½)v(m) - L•'b •Xd + 

Now 

2! 0! 0! 

= (2 +o4-o+'•)! 
2A (e) = A (•) 

6 

Similarly 

fA 11 110! 2A(. ) A ,) N?)N?dA = (1 + 1 +0+2)! = 

fA •a(e)•,(e) dA = 1 ! 0! 1! 2A(e) A (e) ½,) ,,• ,-3 (1 + 0'+ 1 + 2)! = 1--•' 

and so on for each term in the integral. The final result is 

[ A(*)] = • t•b •d + 2 
1 

A similar procedure can be used to compute the other element matrices. The results are: 

[ K (')] = K?) [ bill bib j bibk] K•) ci2 ci½ j CiCk] 
4 4A (e) 4A (e) 

tbkbi bkb j qJ. CkC i clJ 

(4.20) 

saunated flow 

Water Resources Monograph
Groundwater Modeling by 
the Finite Element Method Vol. 13

Copyright American Geophysical Union



Chapter 4 93 

3x3--4A (•) bib i b• bjbk/ 4-4A(• )' 
bkbi bkbj q J L CkCi CkCj 4 J 

unsaturated flow 

[C(•)] = S?)A(•)[2 1 !] 12 1 2 
3• 1 1 

saturatexl flow 
consistent formulation 

(4.22a) [ C(•)] -- 3 0 1 
3x3 0 0 

saturated flow 

lumped formulation 

(4.22b) 

12 2 (4.23a) [ C(½)(•g)] -- C(•)(•) -- ' ' 3 1 (4.23b) 
3x3 1 3x3 0 0 

unsaturated flow 
consistent formulation 

unsaturated flow 

lumped formulation 

[ D (•)] -._ D(x• e (') 
4A (•) 

3 x3 

bibj bibk 13(•) O (e) 

4A (e) 
I ½i ½i½j ½i½k 
cjci c• cica, 
c•,ci c•c• c• 

---yx- ½ibj cit•l 
-",- /b,½• b. icj hck / + 4A(. ) 4A(e) Lbkci •cj •ck.I Lckbi ckbj ckl•.[ 

v• ) b i bj bk] V0,e ) C i Cj C k -•- b i bjb k + 6 ci ½j ck 
b i bjb k c i cj c 
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94 Step 3: Develop System of Equations 

consistent formulation (4.24a) 

lumped formuladon (4.24b) 

[ A(e)] __ A(•)t•,(•)•(•)0(e))[2 1 il 1"•' •Vb •d + 1 2 
3x3 1 1 

or = -•-•Vb •d + 1 
0 

consistent formhlation (4.25a) 

lumped formulation (4.25b) 

Example 
The clement conductance matrix for the linear triangle element is given by 

[K ½•)] = dx dy 

bk Ck 

A (e) 

1 0 b i bjb k A(e) 
bj cj 0 C i cj C k 4A(e)• b k ck 

/bjbi bjb / + 4A (e) 4A(e) 
Lbkbi bkbj b• 

Ci 2 CiC j CiCk] 

Water Resources Monograph
Groundwater Modeling by 
the Finite Element Method Vol. 13

Copyright American Geophysical Union



Chapter 4 95 

Example 

Compute [ K (e)] for the clement shown bclow (l• • -- 1, KSe)- - 2) 

(3,8) (8,8) 

A(e) 1 =: 

132 

188 

138 

=15, 4A (•)=60 

b• -- y•- y? -- s- • = • 
•,-- y?•-yl'•- - •-s -- -6 

1[ [ K •"•] = • 
(0)(0) (0)(6) (0)(-6)] 
(6)(0) (6)(6) (6)(-6){•- 
(-6)(0) (-6)(6) (-6)(-6).J 

6/10 -6/10 ! 
L-5/6 -6/10 43/301 

Example 

Compute [ D (e)] for the ½lcrncnt in the previous example (vi e) 2, v• ) = 3, D(• = r•(e) 
- 10, D•= n(e) 0, 1. = 0, K(d e) 0, 0 (•)= 0.3) 

[D(")] = 60 36 -36 
-36 36 

lO(O.3) o 
6O L-25 0 25.] 

6 + • 0 +• 6 0 
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96 Step 3: Develop System of Equations 

1.8- 8 

-1.8 1.8J 

0 2.0 -2.(] 1 + 0 2.0 -2.0 + 

0 2.0-2.0 

-1.25 2.00 --0.75] 
-2.50 3.80 -1.30 I 
-3.75 0.20 3.55J 

0 0 

-1.25 0 1.25J 

-2.5 0 2.51 -2.5 0 2.5 

-2.5 0 2.5 

Another commonly used two-dimensional clement is the linear rectangle (Figure 4.7). 
For this type of element, the fides of the element are required to be parallel to the x and y 
coordinate axes (a more flexible type of element, the linear quadrilateral, is described in the 
next section). 

y?b (x[ 

(x?), y?)) ß .•)) 

Figure 4.7 The linear rectangle element. 

The interpolation functions for this type of element are derived in Segefiind (1984). Using 
the local (s,t) coordinate system 

N?)(s,t) = (.2b (e) - s)(2a •) - t) 
4a(½)b (•) 

N?•(s,0 = s(2a <•)- t) 
4a(e)b (e) 

4a(e)b (e) 

N?)(s,t) = (2b (e)- s)t 
4a(•)b (•) 
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Because the s and x axes arc parallel and the t and y axes arc parallel • =• and •-• =• and 
the derivatives of the interpolation functions are 

ax 4a(e)b(e) ax 4a(e)b(ei 

ax 4a(e•b(e) ax 4a(e)b(•) 

s-2b (e) aN•j e) -s 
4aCe)b(e) ay = 4aCe)bee) 

s aN? ) 2b c') - s 
4a(e)b(e) ay 4a(e)b(e) 

The element matrices are computed in an exercise. The results are 

2 -2 -1 1 

[K(,)] = K•)a (') -2 2 1 _-221 4x4 6b(e) -1 I 2 
! -1 -2 

satura• flow 

2 1 -1 -2 

,K•'b(: ' 1 2 -2 -211 6a (e) -1-2 2 
-2 -1 1 

2 -2 -1 1 

K•)(V) a (e) -2 2 1 • IC•)(V) b (e) [K(')(V)]= 6b (,) -1 1 2 +" 
4X4 ! --1 --2 

unsamta•i flow 

2 1 -1 -2 

-2 2 

-1 1 

[ c (')] = 9 
4x4 

saturat• flow 
consistent formulation 

4212 

i 42 24 

12 

[ c øø] 
4x4 

samra• flow 

lumped formu!odon 

lOOO 

o 1 o OOl 

ooo 

(4.26a) 

(4.26b) 

(4.27a) 

(4.27b) 
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98 Step 3: Develop System of Equations 

4212 

[C(C)(•)] C(')(•)a(')b (') 2 4 2 = 9 ' 124 
4x4 2 1 2 

uammmlexl flow 
consistent formulation 

lOOO 

] = o 4x4 0 ! 
000 

• flow 

lump•l fonn-!•don 

(4.28a) 

(4.28b) 

[ m(,)] = 
4x4 

2-2-1 1 r•(Oa(Oh(c) 2 1 -1 -2 

Dtx•0(')a(') -2 2 1 -1 -yy-- -- 1 2 -2: 6b(e) -1 I 2 -22 + 6a(0 -1 -2 2 I -! -2 -2 -1 1 

1 -1 -1 1 

D•x)O ½0 I -1-1 :! 4 -1 1 1 

-1 I 1 

6 1 2 + '6 - -1 -2 2 
1 2 -2 -1 1 

+ )'.( o(')+pb Ka ) 9' 
4 2 1 2 

2 4 2 

1 2 4 

2 1 2 

consistent formulation (4.29a) 

1000 

•(•)[r(•)•(').(') 0 1 0 or + 1-( O(')+ Wb '•a •', ,, 0 0 1 
0 0.0 

lumped formulation (4.29b) 

4 2 1 

[A(,)] = ,.,(,)v.(,), 0(•))a(•)b (•) 2 4 2 tFb aXd 'r ' 9 1 2 4 
4x4 

2 1 2 

2 

consistent formulation (4.30a) 
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1000 

or + (P?)K•')+ 0(')) a(')b(e) i 1 0 lumped formulation (4.30b) 01 

00 

Example 

The second integral in the equation for advection-dispersion matrix (equation 4.12) for 
the linear rectangle element is 

jjL?, ... 0 v• ') Lay ay J 
A (,) 

The matrix that results from the integration is 

1 4-2 2 

6 -4 4 3 

$-2 2 

The entry in the first ww and column is obtained by evaluating the integral 

• •s 

= v?),•:b("•02a("(2b(e)-s)(2a(')- t) 4a(e)b (e) 
(t- 2a ½½)) dt ds 
4a(')b (') 

--(4a(•)b(•))2Yo J'o (2b(•)-s)(2a(•)-t)(t-2a(•))dtds 
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100 Step 3: Develop System of Equations 

½"r (,,,,.,,,,,,,.,,,+,;) -- (4a(•)b(e)) 2Jo k(s - 2b (e)) - 
2e(½) 

0 

(e) t'2b(•)/ ) -_ _j vx ! /2bte)(2a(')) 3 s.(2a•))3 (4a(•)b(e))•Jo k 3 - ds 

_ v• ) (2b(e)s(2a(e))3 - -(4a(e3b(e)):• "'3 
s • (2a(e)) 3 
2 3 

2b •½) 

_ _ v• ) [ (2b(e))(2b(e)) (2a(e)) 3 - (4a(e)b(e))2 3 (2b(e)) 2 (2a(i))3 ] 
v• ) a (e) v?a (•) 

-- - (4a(½)b(e))2(4a(½)b(e))2 '•- = - 3 

Example 

Verify the entry in the second row and third column of equation 4.27a. 
From equation 4.8 we can write 

[C (')1 = ' [S? )1 [•?)'" N? )1 dx dy 

The integral for the enn'y in the second row and third column of [C (e)] is 

2b(') ,2b (½) 

SsJ• .• 2'• 1 - 2a(e))4a(e)b(e) dt ds = (2a(e)s - st' st dt ds (4a(e)b(e)) z 

,2b (e)' l:2a (e) _ Ss • / S2t3 - (4a(e')b(e)) 2 a(e)s2t2- -•- 0 ds 
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(4a(e)b(e)) 2 • a•(e)s2ds 

_ s, s -(4a(,)bi;•i)2 T 

(4a(e)b(e)) 2 
2Ssa(e)b (e) 

9 

4.3.2 Numerical Methods 

In the previous section we presented equations for computing the element matrices for 
three simple (but commonly used) element types, the linear bar, the linear triangle, and the 
linear rectangle. Because the number of nodes was small and the interpolation functions 
were relatively simple (i.e., linear functions of x or x and y), the integrations could be 
performed analytically. For elements with more complex interpolation functions or a larger 
number of nodes, performing the required integrations analyticall.y is awkward. Instead, 
the integrations are performed numerically. The numerical integration procedure is grea. tly 
simplified if the interpolation functions and their derivatives for each node are defined using 
a local coordinate system as was done for the linear rectangle element. In a local 
coordinate system a point within an element is assigned coordinates using a coordinate 
system origin attached to the element (e.g., the origin of the s-t coordinate system in 
Figure 4.7 is attached to node i). Ln a global coordinate system a point within an element 
is assigned coordinates using an arbitrary coordinate system origin. Interpolation functions 
and their derivatives can be defined using either global or local coordinates. For example, 
the interpolation functions for the linear bar element can be written using the global 
coordinate x (where the origin of the x axis can be anywhere) or the local coordinate e 
(where the origin of the e axis is at the center of the element) (Figure 4.8). 

Global Coordinates 

= xj)- x 
L (') 

ß 1 x-x? ) N )(x = 
Oa 

origin of global 
coordinate system 
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102 Step 3: Develop System of Equations 

Local Coordinates 

1 

N?)(•) = •(1-•) 1 

0a 

•=-1 •--0 •_•j= 1 
origin of local 

coordinate system 

Figure 4.8 Element interpolation functions can be defined using global or local 
coordinates. 

The interpolation functions defined using local coordinates have the same properties as 
interpolation functions defined using global coordinates namely 

1.•=1 at e=•i •--1 at 
=0 at e=•j =0 at 

2. E ei(e) = 1 
i=l 

for all e, -1 •e_• 1 

However, when we use a local coordinate system, the integrations for the element 
matrices can easily be performed numerically, even when the element has curved edges. 
The shapes of several isoparamctric elements in the local and global coordinate systems as 
well as the interpolation functions and their derivatives are shown in Figures 4.9 to 4.15. 
Derivations of the interpolation functions for these element types are in Lapidus and Pinder 
(1982) and Dhatt and Touzot (1984). The derivatives of the interpolation functions, and 
the value of the derivatives at the center of each clement are also given in the figures. The 
notation can best be illustrated by an example. Consider the two-dimensional, linear 
quadrilateral element shown in Figure 4.10. The interpolation functions and their 
derivatives for the element's four nodes are 

•)Ni 1 
•hl = -•(l-e) 

•)N2 -•(1+•) = 
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N• -- •.(1+•)(1+•) 
•N3 1 
• = •(•+n) 

N• = •(•-•)(•+n) 

•)N• = •(1+•) 

aN4 = aN4 -•(1-•) -•- -•(1+•) an = 
The choice of element type to use for a particular problem is not always clear. The 

calculation of the element matrices requires less computational for the linear elements than 
for the quadratic and cubic elements. Also curvilinear variations in head or solute 
concentration can usually be adequately represented by many small, linear elements. 
However, when gradients of head or concentration are large, quadratic or cubic elements 
may be preferable to linear elements because the quadratic or cubic interpolation functions 
can approximate curvilinear variations in the field variable with fewer nodes than linear 
interpolation functions. Also quadratic and cubic elements are useful when the problem 
domain has curved boundaries (e.g., near a well or a buried structure such as a tunnel, 
etc.). 

In the local coordinate system, the isoparametric elements in Figures 4.9 to 4.15 have 
straight edges and symmetry about the •, •1, and • axes. However, in the global coordinate 
system (which is the coordinate system of t_he .problem domain) the elements can have 
curved edges and asymmelxic shapes. This is an unportant property because it means that, 
when we discretize the problem domain, we can better represent curved boundaries or 
curved interfaces between soil or rock layers. However, because the interpolation 
functions and their derivatives are defined in a local coordinate system while the integral 
formulations for the element matrices are defined in a global coordinate system, we must 
use a coordinate tratu•formation to evaluate the integrals. 

(a) linear bar element 

local system global system 

for nodes 1 and 2' 

1 

N• = •( 1 + •e ) 
•Ni • 
-•- = •- 8• e•o 2 

where 

i 1 2 

• -I 1 
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104 Step 3: Develop System of Equations 

(b) quadratic bar element 

local system global system 

for nodes 1 and 3' 

where 

1 

-1 

for node 2' 

Ni -- (l+e)(1-g) 
•)N• 
o• =-2e =o 

(c) cubic bar clement 

local system 

I 

global system 

x 

for nodes 1 and 4' 

9• 

aNi 9•i(.. 2 

aNi 
a• •=o 16 
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where 

i 1 4 

• -1 1 

for nodes 2 and 3 ß 

where 

i 2 3 

e• 1 -1 

Figure 4.9 Interpolation functions and their derivatives for three types of 
one.dimensional elements. 

local system global system 

for nodes 1, 2, 3, and 4' 

N• = ¬(1 + e•e)(1 + q•tl) 
aNi • ß •- = (El) ( 1 + •]iTI ) 
aNi 1 
i•q = • ('rli)(1 + EiE) 

•}N i 
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106 Step 3: Develop System of Equations 

where 

Figure 4.10 

i I 2 3 4 

• -1 1 1 -1 
•li -1 -1 1 1 

Interpolation functions and their derivatives for linear quadrilateral 
elements. 

local system global system 

), © 

) c) G 

for nodes 1, 3, 5, and 7 ß 

where 

i 1 3 5 

•i -1 1 1 
qi -1 -1 1 

, 

for nodes 2 and 6' 

1 82 N i = •(1- )(l+qiq) 
•Ni •N i 

•Ni qi E2 3Ni •,- = •(1- ) 8q 

0 

•=o q=o 2 

• q--o 

•q=o 

7 

-1 

1 

=0 

=0 
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where 

i 

qi 

2 

0 

-1 

for nodes 4 and 8' 

Ei 

--o 

where 

Figure 4.11 

i 4 8 

g 1 -1 
Tli 0 0 

Interpolation functions and their derivatives for quadratic quadrilateral 
elements. 

local system ,global system 

for nodes 1, 4, 7, and 10- 
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where 

i 1 4 7 10 

g -1 1 1 -1 
qi -1 -1 1 1 

ß ii ii i 

for nodes 2, 3, 8, and 9 ß 

9 

= •TI i 

where 

i 2 3 8 

c• -1/3 1/3 1/3 

Tli -1 -1 1 

for nodes 5, 6, 11, and 12' 

ii 

9 

-1/3 

1 

81 
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where 

5 6 11 12 

1 1 -1 -1 
-1/3 1/3 1/3 -1/3 

Figure 4.12 Interpolation functions and their derivatives for cubic quadrilateral 
elements. 

local system global system 

for nodes 1 to 8' 

Tli 
•-oq=o g--o 8 

wher• 

Figure 4.13 

i 1 2 3 4 5 6 7 8 

gi -1 1 1 -1 -1 1 1 -1 
Tli -1 -1 1 1 -1 -1 1 1 
• -1 -1 -1 -1 I 1 I 1 

Interpolation functions and their derivatives for linear parallelepiped 
elements. 
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local system global system 

for nodes 1, 3, 5, 7, 13, 15, 17, and 19' 

+ • )( 1 + qiq )( • + K• )( • + q•q + • - • ) 

•)N i 
a• 

where 

i i i i i ß 

i 1 3 5 7 13 15 17 19 

• -1 1 1 -1 -1 1 1 -1 
qi -1 -1 1 1 -1 -1 1 1 
•i -1 -1 -1 -1 1 1 1 1 
ß is i i i = ß i 

for nobles 2, 6, 14, and 18 ß 

• =•(•- )(•+•tq)(•+•) 
•}Ni 
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where 

i 2 6 14 18 

• o o o o 
vii -1 1 -1 1 

for nodes 4, 8, 16, and 20' 

=0. 

where 

i 4 8 

• 1 -1 
•li 0 0 
•i --1 --1 

16 

1 

0 

1 

i 

20 

-1 

0 

1 

•}N i 
ß =on=o•=o - 4 

for nodes 9, 10, 11, and 12' 

N i -- •( 1- )( 1 + •ie)( 1 + Yli• ) 

•)Ni • •2 • -- ( 1 - )( 1 + TliT I ) 
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•)Ni 

aN, Og = - ( t + ge )( t + q• ) 

•)N i •4 •Ni 
•-oq=o g--o 4 '•' •=o q=o g--o 4 

•)N i 
•=0 q=O g=O 

=o 

where 

, , 

i 9 10 11 12 

c• -1 1 1 -! 

qi -1 -1 1 1 
• 0 0 0 0 

Figure 4.14 Interpolation functions and their derivatives for quadratic 
parallelepiped elements. 

local system global system 
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for nodes 1, 4, ?, 10, 21, 24, 2?, and 30 ß 

N i -- •(l+•..i e)(l+niq)(l'•i•) ( e2 +q2+•2) _• 

• = •( 1 +nin)( l +•i•) • ---+ 3ea+n2+• 2 + 

• = •( 1 + q•)( 1 +•) n• --- + d + 3• 2 + •2 + 2n 

• = •( 1 +g•)( 1 +q•q) g• ---+e=+q=+ 3g • +2g 

8Ni[ 19 
19 

• q=O •=0 = -• 'rli 

where 

19 

•--'0 •1=0 •--0 i 

i 1 4 7 10 21 

• -1 1 1 -1 -1 
lli -1 -1 1 1 -1 
• -1 -1 -1 -1 I 

24 

1 

for nodes 2, 3, 8, 9, 22, 23, 28, and 29 ß 

81 

9 

= 

-1 

27 

1 

1 

1 

30 

-1 

1 

1 
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where 

i 2 3 8 9 22 23 

• -1/3 1/3 1/3 -1/3 -1/3 1/3 
vii -1 -1 1 1 -1 -1 
• -1 -1 -1 --1 1 1 

for nodes 5, 6, 11, 12, 25, 26, 31, and 32 ß 

28 29 

1/'3 -1/'3 

1 1 

1 1 

8Ni 9 

n--o = 
81 

•--o n=o ;--o- 

•=o n---o g=o = 
where 

5 6 11 12 25 26 31 32 

1 I -1 -1 1 1 -1 -1 
-1/3 1/3 1/3 -1/3 -1/3 1/3 1/3 -1/3 
-1 -1 -1 -1 1 1 1 1 

for nodes 13, 14, 15, 16, 17, 18, 19, and 20' 
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where 

•)Ni _ 9 '•' [ •,•=o•=o - • 
•)Ni] 9 '•' •=Oq--Ot•=O---- • 

aNi[ 81 '•' •---o;=o = •;i 

i 13 14 15 16 17 18 19 20 

•i -1 1 1 -1 -1 1 1 -1 
qi -1 -1 1 1 -1 -1 1 1 

Figure 4.15 Interpolation functions and their derivatives for cubic parallelepiped 
elements. 

To illustrate the coordinate transformation process consider the one-dimensional form 
of the element conductance matfix for saturated flow 

The derivatives of the interpolation functions are given in terms of x, but we can use a 
coordinate wansformation of the form 

x = f(e) 

to rewrite the interpolation functions and their derivatives in terms of the local coordinate e. 
For the linear, bar element (Figure 4.9a) 

and 
N x = «(l-e) N2 = «(l+e) 
•)Nx 1 3N2 1 

Using the chain rule of calculus we can immediately 

3Nx •Nx 3x 3N 2 3N• 3x 
a• = 'T•'• a• = •-•-• 

3N1 _ 3N2 
: -3Tp] : -•T[J] 
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•x 

The quantity • is called the Jacobian mauix of the coordinate transformation and, for a 
one-dimensional element, the $acobian matrix [J] is a square matrix with a size of one 

(4.32) 

Wc can also wn'm the inverse coordinate transformation 

•N1 1 •N1 •N2 1 •N2 

= [.r-•]?•e• = [.C't].• 
where [j-l] is the inverse of the Jacobian matrix (for a matrix of size lxl, [j-l] = 1/[J], see 
Appendix P¾). 

The limits of the integration in equation 4.31 also change during the coordinate 
transformation (scc Figure 4.8) 

x--x? ) -'> E = -1 

We can now rewrite equation 4.31 as 

2xl 

where ]$] is thc determinant of thc $acobian matrix. 

(4.33) 
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Example 
Consider the one-dimensional element in Figure 4.8 and let xi(e) -- 1 nnd xj(e) -- 2. 

Then 

"• ..(e) ø'•2 x(2 e) 

= - (1)+ (2) = • =l;I (see Appendix IV, Part 12a) 

[J"•] = 2 (see Appendix IV, Part 13a) 

I d, [•1 •] : •-L-• -]1 : •? 
1 

(4.34) 

which is identical to the conductance matrix obtained for the same element in the global 
coordinate system, equation 4.15a ( L (e) = x• e)- x{ -e) = 2-1 -- 1 ) 

For a two-dimensional element [J] and [T 'l] are square man'ices of size 2><2. For a 
two-dimensional element with n nodes, the entries of [I] are given by 

[ 31X J•] (4.35) [J]: J21 J22] 
where 

• = •x• + '" +-•-x., 

3N• •)N n 
ll2 = '•"Yl + "' + •"Y. 

• = •-• + ... + •-• 
aN• aN,, 

•=: •n + "' + •s. 
or more compactly 

,! ß ß ß aN[l 1 I X• I Y•i 1 [J] = ] ON• ann 
2x n nx 2 

(4.36) 
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Thc value of [JI and the cntdcs of [j-l] can bc determined using the equations in Appendix 
IV, pans 12b and 13b. 

For a three-dimensional element [•] and [j-t] are square matrices of size 3x3. For a 
three-dimensional element with n nodes, the entries of [YJ are given by 

Jll J12 J]'131 
[J] -- J21 J22 J25 / 

J31 J32 J33J 
(4.37) 

where 

or more compactly 

3x3 

3xn 

(4.38) 
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The value of ]JI and the entries of [ j-i] can be detemfined using the equations in 
Appendix IV parts 12c and 13c. 

In general [J], [j-l], and I J[ vary from point-to-point within the element (because the 
interpolation function derivatives are themselves functions of E, E and •1, or e.., •1, and •). 

Example 

Compute [J], []-1], and l$] at the point • = 0, •l = 1 for the element shown below 

7 

8 

6 5 node x y 
1 0 0 
2 5 0 
3 10 0 
4 7.5 2.5 
$ $.0 $.0 
6 2.5 5.0 
7 0 5.0 
8 -1 2.5 

The element is a quadratic quadrilateral. From Figure 4.11, the interpolation function 
derivatives at E = 0, •1 = 1 are 

8• = (1 - •)(2(o) + 1 ) = o 
•}N2 •}N3 •}N• 
•,=o -•-T=o •, =o 

•N5 1 •N6 •N7 1 
a• = • a• = o • = -• 

•}N• 1 1 
-•- = •(• - o)(2(•) + o ) = • 
•N2 1 

•}N• 1 

aNs 
---- --1 

•}N3 1 

•Ns 1 •N? 1 
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120 Step 3: Develop System of Equations 

I o 0 0 0 1/2 [•] = 1/2-1/2 1/2-1 1/2 

L-0.25 2.50 

• 0 0 

10 0 

0 -1/2 _01] 7.5 2.• 1/2 1/2 5.0 5.• 

2.5 5.• 

.01 5.1 2.: 

-- (2.50)(2.50) - (0)(-0.25) -- 6.25 

[J-•] = 6.--• 0.25 2.5 = k0.04 0.40 

The coordinate transformation can be used to rewrite the integrals in Chapter 3. These 
transformed integral equations can be used to compute the element matrices for each type of 
element shown in Figures 4.9 to 4.15. 

Element Conductance Matrix (Saturated flow) 

Qn• dimensional elements: 

1 

[K("] = 

1 

(4.39) 

Two-dimensional elements: 

[ K (•)] = [Kff ) 0 ] [j-l] [j-1]T K• ) 
2x2 2x2 2x2 

2xn 

IJldd 

(4.40) 
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Three-dimensional elements: 

[•-I]T 0 I• ) 
•x• 0 0 

3x3 

[j-•] 
3x3 

al "' a'"•' 

at• a•. 
•xn (4.41) 

Element Conductance Matrix (Unsaturated flow) 

•e-dimensional elements: 

nxl 

(4.42) 

Two-dimensional elements: 

nx2 

2x2 •hl •)• J 

2xn (4.43) 

Thre•-dimcnsional elements: 

= 
nxIi 

1 1 aE al• 
ux3 

[•-I]T 0 
3x3 O 

(4.44) 
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122 Step 3: Develop System of •iuafions 

Element Capacitance Matrix (Saturated Flow, Consistent Formulation) 

One-dimensional elements: 

[c•,] -- 
n•n .N•)J lxl lXll 

nxl 

(4.45) 

Two-dimensional elements; 

[c•,,] -- ß [s•,][•,•, ... •;,] I•{• •,, 
•, LN•)j 1X1 Ixll 1 I 

(4.46) 

Three-dimensional elements: 

I I l iN?) l 
[o*"] = l' 
""' Lm[yJ I I 1 

nxl 

lxn 
(4.47) 

Element Capacitance Matrix (Saturated Flow, Lumped Formulation) 

One-. Two-. or Three-dimensional elements: 

[d')]= . I:1 ' nxn O' 
nxn 

(4.48) 
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Element Capacitance Matrix (Unsaturated Flow, Consistent Formulation) 

One-dimensional elements: 

,,x,,, [N•)J lxl lxa 
•x! 

(4.49) 

Two-dimensional elements: 

nxl 

Three-•mensional elements: 

(4.50) 

Element Advection-Dispersion Matrix 

On•-dimensiQnal element,s: 

nxn •1%,(•) b<l lxl lxl as a• J lxn 

nxl 

iLN?] lxl lxl 
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124 Step 3: Develop Sys•m of Equations 

(4.52) 

lxl 

Two-dimensional elements: 

Iix Ii 
[j-liT !¾e)A (e) [j-l] o•Z .... •)E'" _._ •;•,., j •? ... • 

2•2 2•2 2•2 2xn 

[I. (0 (') + •b "-dn ' 

•xl lxl lxn (4.53) 

3:<5 

[•ldednd[ 
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nx3 3x3 . 3x3 

oo. 

3xa 

[•. (0(•) + Vb .•d • 

nxl lxl lxd (4.54) 

Element Sorption Matrix 

One-dimensional elements: .. 

1 

[ A(e)] : ß 
L•>j 

nxn 1 nxl 

[,.(e)•(e) O(e)] ... 

lxl (4.55) 

Two-dimensional elementS: 

1 1 

1 I 

' r,,(•)u-(•) 0(½)] ,,.,,, ...,, + r•?.-- •?]lJl•d• 

nxl lxl l><n (4.56) 

Three-dimensional elements: 

(4.57) 
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126 Step 3: Develop System of Equations 

When the number of nodes for an element is greater than two, or when the order of the 
polynomial for the interpolation functions is greater than one, or for two-dimensional or 
three-dimensional elements, it is convenient to use numerical methods to evaluate the 
integrals in equations 4.39 to 4.5?. Specifically the method of Gauss quadrature can be 
used. In this method, we obtain a numerical approximation to the integral of a function 
over an interval by computing the weighted sum of values of the function for specific 
points on the interval. In one-dimension, the equation for Gauss quadrature is 

f(e) d• = •W•(•) f(•), 
1 

i=l 

o _• w•(r•) < • (4.58) 

where Wi(ei) is the weight assigned to the value of the function f at the Gauss point 
-1 g gi -< 1, and N z is the number of Gauss points on the interval. In two-dimensions, the 
equation for Gauss quadrature is 

I I i=l j=l 
o _< w•(•) • • 
0 f Wj(vlj) • 1 (4.59) 

where Wi(e i) and Wi(Vl j) are the weights assigned to the value of the function f at the Gauss 
point (• -- e i, Vl = vii) and N e and N•i are the number of Gauss points on the intervals -1 • 
ei • 1 and.1 _<rli • 1. , 

In three dimensions, the equation for Gauss quadrature is 

I I I i=l j=l k=l 

0 • w•(e•) • 1 

o < W•(•k) < • (4.60) 

where Wi(ei), Wj(xlj), and Wk(•k) are the weights assigned to the value of function f at the 
Gauss point (e = ei, rl = rli, • = •i ) and Ne, N•i and N• are the number of Gauss points on 
the intervals -1 _< ei -< 1 and -1 < xli < 1, and -1 • •i < 1. 

The number and location of the Gauss points and the values of the weights are selected 
to achieve the greatest accuracy. If the function f is a polynomial, Gauss quadrature can 
provide an exact integration. A total of (n+ 1)/2 Gauss points are required to obtain an exact 
integration for a polynomial function of order n. If the quantity (n + 1)/2 is not a whole 
number it is rounded up to the next largest integer. For example, if n = 2, (n + 1)/2 = 3/2 
= 1.5 which is rounded up to 2 and 2 Gauss points are required. The number and locations 
of the Gauss points and the values of the weights, for polynomial functions of orders 0 to 9 
are in Table 4.1. 
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Table 4.1 Locations of Gauss points and values of weights for exact integration of 
a polynomial function by Gauss quadrature (after Dhatt and 
Touzot, 1984). 

Order of Number of Locations(s) of Weight(s) 
polynomial Gauss poims Gauss Poims 

Oor 1 1 0 2 

2or :3 

4or 5 o 8/9 

6or7 

8 or9 
128 

0 22'-• 
1 

•.,•5-4q5/14 161 13 4•-• + i8o4•/•.4 

--•,•/5-4 '' 161 13 •/14 

•5•q•/14 161 13 4s•- 18•s/ld' 

161 13 450 180• 5/14' 
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128 Step 3: Develop System of Equations 

For example,. consider the integral 

• (•+3) de 1 

The analytical solution is 

1 

(e+3)de--•+3e -- +3 - -3 --6 
I -1 

The highest-order polynomial in the function to be integrated is 1 (n -- 1) and the number of 
Gauss points required is also 1 (Table 4.1). Using equation 4.58, the numerical solution is 

(e+3) de = %(eO f(•) = %(e=v4) 
I i=l 

= W(e---O)f(œ=O)= 2-(0+3) = 6 

which is the same as the analytical solution. 
For another example, consider the integral 

The analytical solution is 

1 E3 E2 (•+•) d• = T+T 
1 

1 

-- (3+ i)-(-}+ i) = =- 3 
-1 

The highest-order polynomial in the function to be integrated is 2 (n = 2) and the number of 
Gauss points required is also 2 (Table 4.1). Using equation 4.58, the numerical solution is 

(œ2-1-•) dœ --- Wi(F4) f(•-i) 
1 i=l 

2 

-3 

which is the same as the analytical solution. 
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Example 

Evaluate the integral 

The highest order polynomial term is quartic 0'} 4) and from Table 4.1 we find that three 
Gauss points are rexluired in each direction for a total of nine points. They are (•,vl): 

(o, o) (3,/]•, o) (-•-J'•Y, o) 

•o, •,/•Y) (•4•', •,Y37•) •-•4•', 

The value of the integral can be computed using equation 4.5;9 

3 3 

i=l j=l 

= 0 + 0.230- 0.230 + 0 + 0.210- 0.0•7 + 0 + 0.210 
= 0.266 

Example 

Evaluate the integral 

The highest order polynomial term is cubic (•3) and from Table 4.1 we find that two Gauss 
points are required in each direction for a total of eight points. They are (•,Vl,•): 
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130 Step 3: Develop System of Equations 

The value of the integral can be computed using equation 4.60 

(Note: Values of weights equal 1 at all Gauss points) 

1 1 2 1 • 1 1 1 

1 1 •3 1 2 1 1 
1 1 2 1 3 1 • 1 1 

1 1 )•+ 1 2 1 1 
1 )3 2 1 1 

1 2 1 3 1 • 1 1 2 

0.1012 + 0.0272 - 0.0272 - 0.1012 + 0.0272 - 0.1012 + 0.1012 - 0.0272 
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The application of Gauss quadrature to the computation of the element matrices leads to 
the following equations. 

Element Conductance Matrix (Saturated Flow) 

One-dimensional elements: 

[K (e)] =EW•(•), 
!IX !! i=l aN(J)(q) lxl lxl a= 

ax! 
(4.61) 

Two-dimensional element•: 

nx n i=1 j=l 

aN(•)(•,q•) a•)(•,q•) ' 
ae aq 

: 

ag 

P(r'q 

[J(Ei,T]i)-l]T [ I•) i•) ] 0 
2x2 2x2 

(4.62) 

Three-dimensional element•: 

n•i• i=l •-1 k=l 

nx3 
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132 Step 3: Develop System of Equations 

I J(œi,•j,•k) ] 

(4.63) 

Element Conductance Matrix (Unsaturated Flow) 

These equations can be obtained by substituting K?)(V), K•e)(V), and K?)(•) for K?, 
K• ), and K? in equations 4.61, 4.62, and 4.63. 

Element Capacitance Matrix (Saturated Flow, Consistent Formulation) 

One-dimensional elements: 

[C (e)] = ZWi(ei) ' IS?] [N?)(ei)... N?(ei)] I J (ei) l (4.64) 

Two-dimensional clements: 

N•: N,, N?)(ei,,rlj)] _ 
[C(½)] = Z Z Wi(œi) Wj(qj) i /[S?] [N?'(ei,qj)"' N•'(ei,q•)] I • 

(½) ! Ix I lxn nx n i= I j = 1 Nn (œi,qj)J 
nxl (4.65) 
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Thre•imen•on• elemems: 

Nc N• Ng [ N?)(l•i,T•j,•g)] 
'= j=,,=, L•)([i,•j,•,) J lx' 

axl } 
(4.66) 

Element Capacitance Matrix (Saturated Flow, Lumped Formulation) 

No numerical integration is required; use equation 4.9. 

Element Capacitance Matrix (Unsaturated Flow, Consistent Formulation) 

These equations can be obtained by substituting C(e)(¾) for S? ) in equations 4.64, 4.65, 
and 4.66ß 

Element Capacitance Matrix (Unsaturated Flow, Lumped Formulation) 

No numerical integration is required; use equation 4.11• 

Element Advection-Dispersion Matrix 

One-dimensional elements: 

[D (e)] : i•lWi(Ei) !!XII ' ---- 

ß 

i 

nxl 

ff(e0-l?[o)e(')lff(v4) & .... 
1x1 1x1 lxl 

(4.67) 
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134 Step 3: Develop System of Equations 

Two-dimensional elements; 

[•(•i,Tlj)-l]T [ D(• 0(•) D(• 0(• 
2x 2 2x 2 

2xn 

ß ,,(e)•,, (•)v• '1'• •]Wi(•)Wj('qj) [•,( 0(e)'l' i•b a'd 2.1 
'=' J=' LN?(ei,qj) j •x• 

nx! 

[N?)(ei,nj) .-. N?)(ei,nj)] [ j(ei,qj) [} (4.68) 
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Three-dimensional elements: 

[D (½)] = 

nx3 

[J(ei,'qj,•k)-l] 'r 

3x3 

[J(Ei,TJj,•k) -1 ] 

V• ) [J(Ei,TIj,•k) -1] 0 V(z e 3x3 
3x3 
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136 Step 3: Develop System of Equations 

Element Sorption Matrix 

One-dimensional elements: 

[A (•)] = EWi(•i) ' r"(e)v'(e) I I 
!l)(11 i=l N?Cei)J 1x1 Ix, 

(4.70) 

Two-dimensional elements: 

(4.71) 

Three-•men•ionfl •lement$: 

Ne Nn N; [ N?)(•i,TIj,•k)] [A(e)] = i•l E Z Wi'•i) Wj(TIj ) Wk([k' ' r"(e'•(e' LPb iXd 

""' '= J='"=' LN?c•,,Ui,•k)J lxl 
nxl 

[N?)(•i,•j,•k' '" N•'(Ei,T]j,•,'] I J(Ei,T]j,•k' l} 
Ix-, (4.72) 

The order of polynomial for the element matrices for the element types in Figuzes 4.9 to 
4.15 are in Table 4.2 

Water Resources Monograph
Groundwater Modeling by 
the Finite Element Method Vol. 13

Copyright American Geophysical Union



Chapter 4 137 

Water Resources Monograph
Groundwater Modeling by 
the Finite Element Method Vol. 13

Copyright American Geophysical Union



138 Step 3: Develop System of Equations 

Example 

De•e the number of Gauss points to use in equation 4.69 for the element 
advection-dispersion matrix [D (e)] for the cubic parallelepiped element (Figure 4.15). 

From equation 4.69, [D (e)] consists of three terms containing the dispersion coefficients, 
the apparent groundwater velocities, and the solute decay and distribution coefficients. The 
first term contains products of the derivatives of the interpolation functions and terms such 

as -•.•- are polynomials of order six (e.g. terms such as ß or ) and can be 
integrated using 4-point Gauss quadrature, N s -- N•i -- N -- 4 (Table 4 1). The second ß 
term contains products of the interpolation functions and their derivatives. Terms such as 

i• z are polYnOmials of order six and can also be integrated using 4-point Gauss 
quadrature. The third term in equation 4.69 contains products of the interpolation functions 
and terms such as NiN i are polynomials of order six and can be integrated using 4-point 

Gauss quadrature, N z = Nvl = N• = S (Table 4.1). The locations of the 64 Gauss points 

are (0,0,0), ,0, 3-• ,0, ? ... ? , ? , 

Example 

Compute [ K (½)] for the linear, quadrilateral element shown below (K• e) •- 1, K(y e) -- 2). 

node (7,5) (-1,1). TI _1,1) 
numbers (3,4) ß 

(3,2) 

7,1) (-1,-1•' (1,-1) 
x 

Global Coordinaœ½s I•al Coordinates 

Using equation 4.62 and the derivatives in Figure 4.10 we can write 
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4x2 

2x2 2x2 2x2 

•(•'-0 q(•'•) ¬0'•) 
2x4 

The highest-order polynomial in this equation is quadratic (n: 2). For example, 

i( 1 _q). i(1 +q) = •6(1 +q2) 

Referring to Table 4.1, two Gauss points are required in each direction (i.e. N e = Nn = 2). 
The locations of these Gauss points are (e, Vl): (-l/•r•,-1/•r•), (-1/•/•, 1/4•), (l/•r•,lt•) and 
(1/,•,-lP•). At the f'srst Gauss point (•1 = -1/,•, vl 1 = -1/,•) the $acobian ramfix (equation 
4.36) is 

:[_•[1+•] 41_[1+•] 41_[1_•]_•[1_•]] 3! 2 
32 

: [-0.3943 0.3943 0.1057 -0.•057] i L-0.3943 -0.1057 O. 1057 0.3943J 

[2.0000 
Lo.oooo 1.2113J 

(2.000)(1.2113) - (0.000)(-0.2887) = 2.4228 

and 

[•-,1 = [0.5000 0.1192] 
LO.OOOO 0.8255J 

The contribution of the first Gauss point to the element conductance matrix is 
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140 Step 3: Develop System of Equations 

'-0.3943 -0.3943' 

0.3943 -0.1057 

[K(O(el,rll)] -- (1)(1) 0.1057 0.1057 
-0.1057 0.3943 

o.ooo o.oooo] [$ ro.ooo 0.1192 0.82551 L0.0000 0.8255..I 

-0.3943 x -0.3943 0.3943 0.1057 --0.1057] -0.1057 0.1057 0.39431 (2'4226) 

0.6578 0.0285 -0.1763 -0.5099] 
0.0285 0.1194 -0.0076 --0.1403 / 

-0.1763 -0.0076 0.0473 0.1367 / 
-0.5099 -0.1403 0.1367 0.5135.1 

At the second Gauss point ( el = -1/•', r12 = 1/x/•' ), the lacobian matrix is 

3 

32 

_- •-0.•0•7 0.•0•7 0.• -0.•] i c-o.•n•-0.•0•7 0.•0•7 o.•n• 

= [2.0000 0.2886'] 0.0000 1.2114.] 

]J I= 2.4228 and [0.5000 -0.1192] [J'-•] = LO.OOOO 0.82553 

The contribution of the second Gauss point to the element conductance matrix is 

[-0.1057 -0.3943' 

[K(e)(•l'•12}] = (1)(1) / 0.3943 1 0.1057 -0. 192 0.82553 
L-0.3943 0.3943 

[ 0.5000-0.1192][-0.1057 0.1057 0.3943-0.3943] x 0.0000 0.8255.J L-0.3943 -0.1057 0.1057 0.39431 
x (2.4224) 

0.5135 0.1367 -0.1403 -0.5099] 
0.1367 0.0473 -0.0076 -0.1763 / 

-0.1403 .-0.0076 0.1194 0.0285• 
-0.5099 -0.1763 0.0285 0.6578J 
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At the third Gauss point ( • = 1/•/•, qt = -lh•' ) we have 

[2.0000 0.2886' I [.rl = L o.oooo •.?88•J 

ro.5ooo o.o8o•] [F•] = LO.OOOO o.559t] 

3.5772 

and the contribution of the third Gauss point to the element conductance matrix is 

0.1763 -0.0284 -0.1555 0.0076] 
-0.0284 0.4455 -0.2976-0.1194 I -0.1555-0.2976 0.3733 0.0798! 

0.0076-0.1194 0.0798 0.0320.1 

At the fotmh Gauss point (g2 = 1/q•', •12 = 1/•/•') we have 

2.0000 0.2886'] [J] = 0.0000 1.78863 

0.5000 -0.080T} L0.00O0 o.559• 

3.5772 

and the contribution of the fourth Gauss point to the element conductance matrix is 

0.0318 0.0793 -0.1188 0.0076' 

0.0793 0.3713 -0.2960 -0.1546 

-0.1188 --0.2960 0.4430 -0.0283 
0.0076 -0.1546 -0.0283 0.1753 

The element conductance matrix is the sum of the contributions at the four Gauss points 

[K (')1 = [K(e)(E;i,TIi)] + [K(e)(E1,TI2)] + [K(e)(%,q0] + [(K(e)(EA,TI2)] 

[ 1.37952 0,21649 -0.59149 -1.00452] 
= ! 0.21649 0.98551 -0.61051-0.59149[ 

[.-0.59149 -0.61051 0.98551 0.21649! 
L-1.00452 -0.59149 0.21649 1.37952J 
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4.4 ASSEMBLING THE GLOBAL SYSTEM OF EQUATIONS 

After the element matrices have been computed, they must be combined to obtain t.he 
global matrices needed to solve for unknown heads or solute concentrations at the nodes. 
This process is called assembling the global system of equations. The assembly process 
can be written 

[M]= Z [M(½)] (4.73) 
global ß = 1 

where [M] is any global matrix, e is the element number, [M (½)] is an element matrix, and m 
•1obal 

iS the number of elements in the mesh. For example the global conductance matrix for a 
mesh can be obtained by combining the element conductance matrices for each element in 
the mesh 

{K] = E [K(e)] (4.74a) 
glob• ½ = 1 

Similarly for the other types of global matrices 

{1:} = E {F(½)} (4.74b) 
global ß = 1 

[K(v)] = 
global e= 1 

(4.74c) 

[C] = Z [C(")] (4.74d) 
gld•al ½= 1 

[c(¾)] = 
global ß = 1 

(4.74e) 

[A] = Z [A(')] (4.74g) 
global ß = 1 

global ½ = 1 
[D] = Z [D(e)] (4.74f) 
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The summations in equation 4.74 can be performed by direct matrix addition only if the 
element matrices are first expanded to the same size as the global matrices. This is done by 
adding rows and columns of zews to the element matrices. 

For example, the element conductance matrix for element 1 in the example problem in 
section 3.2 was 

1 2 

[K o)] = (4.75) 

where the numbers above the columns and to the right of the rows of the element 
conductance matrix are the node numbers for the nodes within element 1. Element 1 had 

two nodes (n = 2) and the size of [ KID] is 2x2. The finite element mesh had 5 nodes and 
therefore the size of the global conductance matrix [ K] is /5 x/5. We can expand the 

global 
conductance matrix for element 1 to this size by adding zeros to the rows and columns 
containing node 3, 4, and 5. 

expanded 

' I 

i 2 3 4 5 

1 

-000 
1 

ooo 
0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

1 

3 

4 

5 

mesh node numbers 

(4.76) 

Let I• ) refer to the entry in the i th row and jth column of the expanded element conductance 
•r(1) •rO)_ 1/2 is nonzero because element 1 contains node number 1 S'unilarly for •,-22. Inane •,I 1-' 

L,.(I) •'(•) K(21x ) ---1/2 are nonzero because clement 1 contains both nodes 1 and 2. •3 -'- •,• 

We can also write the expanded form oœ the clement conductance matrix œor the other 
elements in the mesh (elements 2, 3, and 4) 

1 2 3 4 5 

0 0 0 0 0 1 

[K (2)] = -1 1 0 3 

• 00 0 0 0 • 4 0 0 0 5 

(4.77) 
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144 Step 3: Develop System of Equations 

1 2 3 4 5 

0 0 0 0 

0 0 0 0 

[K 0)] = 0 0 1/3-1/3 
• 0 0-1/3 1/3 

0 0 0 0 0.]5 

(4.78) 

[K H)] = 

123 4 5 

000 0 0 

000 0 0 

000 0 0 

0 0 0 1/3 -1/3 

o o o -1/3 1/3 

(4.79) 

The global conductance matrix for the mesh can then be assembled by direct matrix addition 
of the expanded matrices 

[K] = [K (1)] + [K (2)] + [K (3)] + [K (4)] 

I 2 3 4 5 

1/2 -1/2 0 0 0 

-1/2 3/2-1 o • 
= ! -1 4/3 -1/3 o-1/3 2/3-1/3 

o o -1/3 1/3 

(4.80) 

For this problem [K] is symmetric and has a semi-bandwidth of two (SBW = 2). 
global 

Consider the same mesh with a different choice of node numbers (Figure 4.16) 

Figure 4.16 

(1) (2) (3) (4) 

1 3 2 5 4 

Finite element mesh with a different choice of node numbers. 

The expanded form of the element conductance matrices are 

I 2 3 4 5 

1/2 0 -1/2 0 o 1 

0 0 o 0 ø 0 2 [K 0)] = -10/2 0 1/2 0 3 • 0 0 0 4 

0 0 0 0 5 

(4.81) 
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1 2 3 4 5 

0 0 0 0 0 1 

[K(2)]= -1' I 0 3 

• • 0 0 0 4 0 0 0 5 

(4.82) 

I 2 3 4 5 

0 0 0 0 0 1 

[e•j= 0 0 0 • 
0 0 0 0 4 -1/3 00' 1/3'/ 5 

(4.83) 

1 2 3 4 5 

0 0 0 0 0 1 

!oo o [K (4)] -- 0 0 0 3 
• 0 0 1/3 -1 4 

L O o o-•/3 •/3.1 • 

(4.84) 

and the global conductance matrix for the mesh is 

[K] 
global 

= [K (1)] + [K (2)] + [K (3)] + [K (4)] 
• • e. xpn,,d• e. xpa,,ded 

1/2 o -1/2 o o 

0 4/3 -1 0 -1•3 = -1/2 -1 3/2 0 

0 0 0 1/3 -1/3J 0 -1/3 0 -1/3 2/3 

[K] is still symmetric (and will be symmetric for any choice of node numbers) but the semi- 
global 
bandwidth has increased to 3. Using the formula from Chapter 2, SBW -- R + 1 where R 
is the maximum difference in node numbers for any element in the mesh. For the mesh in 
Figure 4.16 R -- 3 •computed in element 3) and SBW -- 3 + 1 = 4. 

The effect of choice of node numbers on the entries of the global conductance matrix 
and its semi-bandwidth for this mesh are shown in Figure 4.17. 
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146 Step 3: Develop System of Equations 

Assembling the global matrices by direct matrix addition requires that each clement 
matrix fi_rst be expanded to size p x p, where p is the number of nodes in the mesh. 
Although this procedure helps us visualize the assembly process it is inconvenient in that 
we must manipulate a large number of zero entries in each expanded matrix. In computer 
programs, direct matrix addition is also wasteful of computer memory because each 
expanded clement matrix is the same size as the global matrices. 

A more computationally efficient procedure is to assemble the global matrices by 
component addition. In this procedure the element matrices are not expanded to the size of 
the global matrices by adding rows and columns of zeros. Instead, the element node 
numbers are used to assign entries in the element matrices to their proper position in the 
global matrices. The procedure can be used for one-, two-, or three-dimensional problems 
and for meshes containing several different element types. In the examples that follow, the 
element number for each term in the õ1obal matrix is shown in parentheses as a superscript. 

choice of node numbers resulting global semi- 
conductance matrix bandwidth 

(1) 

1 

(1) 

1 

(•) 

1 

(1) 

1 

(1) 

5 

[,n o -,n 6 ...... ,oq 
, / o -, o 4>,{. 

(2) ß (3)., (4) .. •. 1/2 -1 3/2 0 O/ SBW=4 2 5 4 ['"',@,, 0 0 1/3-1/3 
L 0"'",,1/3 0 -1/3 2/3J 

/ o o o 
_ (2) _ (3) .= (4) .. L-l/2 0 ] -1 O[ SBW=4 3 4 5 2 ]'",.Q,,, 0 -1 4/3-1/3 

L 0 "W,•./3 0 -1/3 2/3J 

(2) (3) (4) 

5 4 3 2 

1/3 -1/3 0 

-1/3 2/3 -1/3 SBW = 5 

..... [ 0 0 -1/3 4/3 
[>q/• 0 0 -1 I 

Figure 4.17 Effect of choice of node numbers on entries and semi-bandwidth of 
global conductance matrix. 
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Example 

Compute [K (e)] and [C (e)] (consistent formulation) for the elements in the mesh shown 
below. Assemble [K] and [C] 

global global 

(1) (2) (3) (4) 

1 3 2 4 5 

L O) = 4 L (2)= 6 L 0) = 5 L (4) = 4 

K(x•') = 2 K? )-- 1 K? )-- 2 K?)= 4 

Using equations 4.15a and 4.16a 

1 3 3 2 2 4 

[K(l)] =-1/2 1/'2 3 [K(•-)] :L-1/6 1/6] 2 [K(3)] = -2/5 2/5] 4 
4 5 

1 3 

4/3 2/3' 2/3 4/3. 
4 5 

3 2 

[C(2)] =[2 121 3 1 2 

2 4 

1 2 3 4 5 

0 '1/6(:2)+ 2/5 0)' -1/6 (2) ' -2/5 (3) ' 0 
........... _-. .............. .• ................ ) ............. ) ....... 

-1/2 0)' -1/6 (2) ' 1/2(1)+ 1/6 (2)' 0 ' 0 
.......... .-, ............... _. ................ : ..................... 

0 ' -2/5 (3) : 0 :2/5(3)+ 1 (4) '-1 (4) 
.......... .-. ............... : ................ .• ............. ! ....... 

0 ' 0 i 0 : -1 ('•) ' 1 (4). 
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148 Step 3: Develop System of Equations 

1/2 0 -1/2 0 

0 17/30 -1/6 -2/5 -1/2 -1/6 2/3 0 

o -2/5 o 7/5 0 0 0 -1 

global 

I 2 3 4 5 
o 

0 '2(•)+•o (3)' 1 t•) ' 5 0) ' 0 

.... •'": .... 'ii•i'"•"• '"• ...... • ..... i'"/•" 

....,.... 

0 : 5 © : 0 '100)+4 ©' 2 © 

..... •'": ..... '• ..... : .... •;'": ..... •'(•i .... 
4/302/300 

0 12 1 500 0 1 2 0 

0 5 0 14 • o o o 2 

Example 
Compute [ K (*)] and [ C (*)] (lumped formulation) for the elements in the mesh shown 

below. Assemble [ K ] and [ C ]. 
global global 

2 4 6 

(0,1) (1,1) (2.5,1) 

T•i k••,j iT 

1 3 5 

(0,0) (1,0) (2.5,0) 

K?) = K?) = K(x4) = K•4) = 4 
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Using equations 4.20 and 4.22b with 

element 09•le numbers 
J 

we have 

(-•)• (-1)( • ) (-1)(o) (-•)• (-1)(o) (-1)( 1 
2 )2 2 )2 [K0•]=• 11)(-1) (1 (1)(01 +• (0)(-1) (0 (0)(1 o)(-1) (o)(1) (o)(o (•)(-0 (1)(o) (1) • 

i 3 2 

= 1 3 

0 2 

(-1)2(-1)(0)(-1)(11 [(0)2(0)(-1)(0)(1) [•2•] = •' (o)(_•) (o (o)( • + • ) (-• (-•)( 1 )/ 
(1)(-1) (1)(0) (1) 2 L(1)(O) (1)(-1) (1) 2 

2 3 4 

1 o 

= o 1 3 

-1 -1 4 

(•_•)2 c_•)• • ) c_•)c ol c-•.•)2 c-•.•)c o) c-•'•)•'•)l 4 )2 4 )2 ( 0 )(1.5)/ [Ic ø)]=•' (•)(-•) (1 (•)(o +• (o)(-1.•) (o 
( 0 )(-1) ( 0 )( 1 ) ( 0 )2 (1.5)(-1.5) ( 1.5)( 0 ) ( 1.5)(1.5).J 

3 5 4 

4.3 -1.3-3.0 3 

-- -1.3 1.3 0.0 • 

-3.0 0.0 3.0 4 
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150 Step 3: Develop System of Equations 

4F (1)2 (1)(_1) (1)(0 4 
[ K(4)] = •'[(-1)(1) (-1) 2 (-1)(0 + • 

L(o)(1) (o)(-•) (0) 2 

(1.5) 2 (1.5)( 0 ) (1.5)(-1.5)' 
(o)(1.5) (o)• (o)(-•.5) 
(- •.5)(1.5) (- 1.5)( o ) (- •.5) 2 

6 4 5 

[ 
-3.0 

= -1.3 1.3 0.0 

-3.0 o.o 3.0 

[K] = 
global 

1 2 3 4 5 6 

2 -1 -1 

-• 2 0 _ - 0 6.3 

-1 -4 0 -1.3 

0 0 

0 0 0 

-1 0 0 

-4 -1.3 0 

6.3 0 -1.3 

0 4.3 -3 

-1.3 -3 4.3 

1 3 2 

[C ø)] = 0 0.5 3 
0 0 O.52 

2 3 4 

0 0.54 

3 5 4 

[C 0)] = 0 0.75 
0 0 0.75 

6 4 5 

io: :1 [C (4)] = 0.75 
L o 0 0.75 
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[C]= 
global 

0.5 0 0 0 0 0 

1•0 0 0 0 
= 1.752.00 0 0 0 0 

0 0 0 1•5 o o o o.75J 

Example 
Compute [ C (e)] (consistent formulation) for the elements in the mesh shown below. 

Assemble [ C ]. 
global 

2 4 6 

(0.,1) (1,1) (3,1) ns_ -,-- , am, 

1 3 5 
(o,o) (],o) (3,0) 

s?'=a, s?=6 

Using equations 4.22a and 4.27a with 

element 
n•;•le num!•r• 

1 3 2 
2 3 4 
3 5 6 
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152 St• 3: Develop System of Fxluatiom 

[C (1)] --_ 

134 

ß 12 = • 12 3 12 1 1 1 1 4 

[c (a)] = 

234 

i2 2 = • 2 3 
1 1 4 

3564 

4212 4212 3 

' ' 24 = • 124 6 
12 212 4 

global 

1 2 3 4 5 6 

1/4 0)' 0 : 1/8 0) : 1/8 0 ) • 0 ' 0 1 
.........'..,.,,o,,.............o........... '......o.......o.......... ß 

0 '1/'2 (2)' 1/4 (2) • 1/4 (2) :. 0 : 0 2 

,0 ooo, ß .oo . •. . ..0 . , oo . ß 

1• (1)' 1/4 (2)' 1/8 (1) + 1/4 (2) +8/3 (3) ' I/4 (1) + 1/2 (2) + 16/3 (3)' 4/3 (3) ' 8/'3 (3) 4 
'"i; ...... ............ 'i)ia .......... i ......... ;/3i .......... ' , 
........ • ....... ,. .......................... .• .......................... ., ......... • ......... 

0 : 0 i 4/3 0) : 8/'3 0) '8/3 (3) '16f3½31 6 

I0'205 0 0'1250'125 0 g 0.5 0.250 0.250 0 

= /0.125 0.25 6.607 3.042 2.667 1.333 

[0.1•• 0.2• •.042 6.0a• 1.• 2.667 / 0 2.667 1.333 5.333 2.667 / 
0 1.333 2.667 2.667 5.333.1 

4.5 MODIFICATION OF GLOBAL SYSTEM OF EQUATIONS TO 
INCORPORATE BOUNDARY CONDITIONS 

4.5.1 Dirichlet Boundary Conditions 

In most problems the value of the field variable (hydraulic head, pressure head, or 
solute concentration) is specified at one or more nodes, sometimes called Dirichlct nodes. 
These specified values constitute the Dirichlct boundary conditions needed to solve the 
governing differential equation of groundwater flow or solute uansport. When Dirichlct 
boundary conditions are specified, the global system of equations must be modified before 
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a solution can be obtained. The modification procedure reduces the size of the. global 
system of equations to a size (p-d) x (p-d) where p is the number of nodes in the mesh and 
d is the number of nodes with specified values of the field variable. For example consider 
the system of equations from the example problem in Section 3.2. 

1/2 -1/2 0 0 0 

-1/2 3/2-1 0 00 0 -1 4/3 -1/3 

0 0-1/3 2/3-1/3 

0 0 0 -1/3 1/3 

hi 0 

h2 0 0 h• -- 
h4 

h• 

(4.85) 

In this example the values of hydraulic head were specified at nodes 1 and 5, h I -- 12 and 
h 5 -- 0. This means that the first and fifth rows of equation 4.85 are not needed and can be 
crossed out: 

We then modify the remaining equations to eliminate columns 1 and 5. For row 2 we have 

_- 0 
I , 

and for row 4 we have 

-]•h3+•h4-•h5 = 0 
but h 5 = 0, so row 4 becomes 

-•h3+•h4= 0 

-1 0 h2 6 
4/3 -1/'3 h3 -- 0 

-1/3 2/3-1 h• 0 
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and the modified system of equations becomes 

Step 3: Develop System of Equations 

3/2 -1 

0 

4/3 ha = 

-1/3 h4 

which can be solved to give h 2 -- 9.33, h 3 -- 8.0, and h 4 = 4.0. 

Example 
Modify the foUowing system of equations if ¾1 TM 10 and ¾4 = 5. Solve for •2, ¾3, 

and¾z 

17/30-1/(5 0 -!5 •2 /-10/2 -1/6 2/3 0 ¾3 = o o 1 - ¾4 

L o -21:5 o -1 7/5J •:• 

CrossLug out rows 1 and 4 and columns 1 and 4 

1= I 

17/30 -1/6 

-1/6 2/3 

-2/5 0 

r g• 

o 

,: 

For row 2 we have 

or 

(0)(10) + (17/30)•2 - (1/6)•3 + 0(5) - (2/$)•5 = 0 

(17/30)¾2 - (1/6)•3 - (2/5)•5 = 0 

For row 3' 

or 

--(1/2)(10) - (1/6)•2 4-(2/3)• + (0)(5) - (O)w5 = 0 

-(1/6)•2 + (2/3)•3 + (O)•s -- 5 

For row 5' 

or 

(0)(10) - (2/$)¾2 + (0)¾3 - (1)(5) + (7/$)¾5 = 0 

-(2/5)W• + (0)¾3 + (7/5)¾• = 5 
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and the modified system of equations becomes 

-1/6 2/3 ¾3 = 

-2/5 0 ?/SJ ¾• 

from which we obtain ¾2 = 6.52, ¾3 = 9.13, and ¾5 -- 5.44. 

4.5.2 Neumann Boundary Conditions 

Rates of groundwater flow or solute flux can be specified at one or more nodes, 
sometimes called Neumann nodes. These specified values constitute Neumann boundary 
conditions and can be used, for example, to represent specified rates of groundwater or 
solute recharge at the soil surface, or the injection or withdrawl of groundwater or solutes 
at wells. When Neumann boundary conditions are specified, some entries in the global 
[F] matrix are nonzero. The equation for computing the contribution of element ß to the 
global IF) matrix at node i {Fi(c)) for the steady-state saturated flow equation was given in 
Section 3.3 as 

(4.86) 

where q(e) is the specified groundwater flow rate within element e (positive if groundwater 
is flowing into the elemen0. This equati.on can also be used to compute [Fi(e)} for 
unsaturated and transient groundwater flow. The corresponding equation for [Fi(e)} in the 
solute transport equation is 

where q•e) is the specified solute flux within element e. 
There are two common situations encountered in practice, The first is the point source 

or point sink representing, for example, a well as seen in a plan (map) view of an aquifer. 
If the point source or sink is located at a node, equations 4.86 and 4.87 become 

{1•? )} = q (4.88) 
,. 

and 

{1•? )} = q• (4.89) 

for the node where the point source or point sink is located and zero at all other nodes in the 
element. For example if a point sink of-10m3/d is located at node j in the element in Figure 
4.18 we have {•e)} = -10 and {•i? )} = {F?} = 0. The specified flux matrix for the 

element is {F(e)} = f i0t 
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156 Step 3: Develop System of Equations 

Specified Flow Rate 

Figure 4.18 Point sink located at a node. 

We must be careful not to count the contribution from a point source or sink more than 
once. For example if a point source of 20 m3/d is located at node 3 in the mesh in Figure 
4.19 it makes no difference whether we consider the point source to be located at node j in 
element 1, node k in element 2, node j in element 3, or node i in element `4. But we can 
only count the contribution of 20 m3/d to node `4 once. 

Specifie• Flow Rate 
= 20 m•'/d (inflow) 

clement 

1 

2 

3 

,' `4 

node 

• j k 

:2 `44. 1 

,4:2 3 

Figure 4.19 Point source located at a node. 

If we assign the point source to node k in element 2 the specified flow matrices for the 
elements are 

{t =ø)} = 4 {t =•2)} = 0 • {po)} = 4 {t =•'*)} = 2 
5 20 4 I 3 

and the global {F} matrix becomes 
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global 

'0 (1) + 0 (3) 
o 0) + 0 (3) 

0 (2) + 0 (3) 
0 (1) + 20 (2) + 0 (3) + 0 © 
0 (l) + 0 (2) 

o 

o 

o 

2{ 

o 

where the superscripts indicate each element's conlribution to { F}. Another approach is to 
divide the point source at node 4 among the four elements joining that node. In this case 
the clement matrices are 

{F (1)] = 2 4 {F (2)] = 5 } = 2 4 {F (4)} = 0 2 
5 2 4 1 0 3 

and the global {F} matrix becomes 

{F} = 
global 

'0 (1) + 0 (3) 

0 (3) + 0 (4) 0 (2) + 0 © 

20/4 (1) + 20/4 (2) + 20/40) + 20/4 (4 .0 (1) + 0(2) 

If the source or sink is not located at a node, the specified flow or flux is divided among the 
nodes of the element that contains the point source or sink. The rule is 

ß = q(e) ß 
l•:)J N•)(xo,yo,zo)J 

(4.90) 

for specified rates of groundwater flow, and 

F(•)J N?(xo,Yo,zo)J 
(4.91) 

for specified rates of solute flux where n is the number of nodes in element e and the 
coordinates of the point source or sink are (x0,Y0,Z0). The application of equations 4.90 
and 4.91 is illustrated by the following examples. 
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Example 

Calculate {F (c)] for the clement shown below (q = -25m3/d). 

(4, 6) 

11 (point sink) 

• (8, 3) 
(2, 2) 

2A(O -_ 
122 

183 

146 

= 22 

and 

• = (8)(6)- (4)(3) = 36 
bi = 3-6 = -3 

ci = 4-8 ---4 

ai = (4)(2)-(2)(6) = -4 
h=6-2=g 
• = 2-4 = -2 

(2)(3) - (8)(2) = -10 

2-3 =-1 
Ck=8-2=6 

1 

N?)(6,4) -- • (36-3(6)-4(4)) -- 2/22 
1 

•e)(6,4) = • (-4 + 4(6) - 2(4)) -- •2/22 
N(•*)(6,4) = • (-10-1(6) + 6(4)) = 8/22 

(Note that the interpolation functions sum to one at the point which is a useful check on the 
calculations) 

2/22 ] - 2.273 ] {F (c)] = -25 12/22• = 13.636• 
8/22 J 9.091 j 
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Example 
Calculate (F (e)) for the two elements shown below (• = 10 kg/d) 

(0, 2) (4,.=2) (8, 2) 

(1) • (4, 1) (2) i i 

(0, O) (4, O) (8, O) 

injection well (point source) 

The point source can be assigned to either element (or it can be divided between the two 

elements) We will arbitrarily assign it to element 2. For element 2, N?(4,1) = 1•12)(4,1) = 
1/2 and Nfj2)(4,1) -- N?(4,1)--0 and we have 

0 

{F 0)} -_ {F (•)} = 10 = 
1/2J 

In the case of a distn'buted source or sink the rate of groundwater or solute flow is 
specified for a portion of the length, surface area, or volume of an element. In a one- 
dimensional problem we may wish to specify a flow rate along the length of the element 
(Figure 4.20a). In this case {•e)} is given by 

(4.92) 

for groundwater flow problems or 

{•e)} = fL •') q½ dx (4.93) ?) 

for solute nansport problems, where L (e) is the length of the element. The specified rates q 
and qc can be •nctions of x. 
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Example 

Compute {F (e)} for the clement shown 

j (x•½) = 10) 

q • 

The interpolation functions for the linear bar clement arc in Figure 4.9. For node i 

= q L(e) - 2L(½ ) 

xj( ½ ) 

(½) 
xi 

L (c) 

and 

12.5J 

For the linear bar clement, the distributed source or sink is divided equally between the two 
nodes of the element (as long as q or qc are constant along the length of the element). For 
quadratic or cubic bar elements, the division is different (Figure 4.21). The formulas can 
be conf'mned by integrating the interpolation functions along the length of the element. 
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quadratic bar element 
1 

4•q 

cubic bar element 

! 1 

{t;(.)} q 
4 

Figure 4.21 Division of distributed source or sink to nodes in two-types of one- 
dimensional elements. 

In two- or three-dimensional elements we may wish to specify the rate of groundwater flow 
or solute flux along one or more element boundaries or surfaces. 

In this case (l•i •)} is given by 

{•?)} = •s•. ) N!e)q ds (4.94) 

for groundwater flow problems or 

(4.95) 

where S (e) is the portion of the boundary or surface of element e for which q is specified. 
Similar formulas can be developed for sources or sinks that are distributed throughout an 
element volume but these are rarely used in groundwater flow or solute wansport modeling. 
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162 Step 3: Develop System of Equations 

(b) 

(c) (d) 

Figure 4.20 Typical applications of distributed source/sinks for one-, two-, and 
three-dimensional elements. 

Example 

Compute (F (e)) for the elements shown below 

q = 10m3/d/m 

(o,1) (•,•) 
•-- S (1) •, • 

k j 1 

i 

S (a) 
(3,1) 

nodal coordinates 
(3) are in meters 

(3,0) (0,0) (1,0) 
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For clement 1, 

F? ) = 0 

'f •• 1 q(1) F?) = N?)(x,y) qO) ds = 2•(e ) (aj + bjx + cjy) ds 
but A O) = 0.5, aj = 0, bj = 1, cj = 0, and qO) = 10 

and 

1 

Ffl)= •o 0.•(x)(10) ds = 5m3/d = Fit •) 

0 

For element 2, 

(why ?) 

For element 3, 

F?) =.•3) = 0 

F(•3) = ••Ni•3)(s,t) q(3) ds 
- 4ai=)b(= ) 10ds 

but 2a (e) = 1, 2b (e) = 2, and t = 1 along the boundary and we have 

and 
F(•3) = •z[«]10 ds 
{F(3)} = li 

1 

= 10m3/d-_ 1•1') 
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164 Step 3: Develop System of Equations 

In the previous example the element interpolation functions were linear and the 
distributed source was divided equally between the two nodes of the element on the 
boundary S (e). For quadratic or cubic quadrilatex• elements the division would be different 
(Figure 4.22) 

qS (e) 

10 9 

• 11 

• 12 

1 2 

cubic quadrilateral 

6 qS(e) 
= 

3 4 

1 

2, 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Figure 4.22 Division of distributed source or sink to nodes in two-types of two- 
dimensional, elements. 

Example 
Compute {F (•)} for the elements shown below 

qc = 2kg/yr/m 

t • 3 5 -8 10 13- 

• 2. (1) 7 6 (2) 12 • 1 4 9 11 
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For element I 

F? ) (5)(2) = 1.7 kg/yr = 6 

F(• ) (5)(2)(4) = 6.7 kg/yr 

F? (•)(2) (•0)(2) = 5.0 kgtyr = 6 + 6 

F? ) (•o)(2)(4) •3.3 kg/yr --- 6 

F(s• ) (10)(2) (10)(2) 6.7 kg/yr -- 6 + 6 = 

F(2) (10)(2)(4) 
lo = 6 ' TM 13.3 kg/yr 

F[• = (10)(2) = 3.3 kg/yr 6 

and 

{F} = 

1 

2 

3 

4 

5 

6 

7 

8 

lO 

11 

12 

13 
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166 Step 3: Develop System of Equations 

NOTES AND ADDITIONAL READING 

1. For problems with axisymmetry, the clement conductance matrix is given by equation 
3.169. This equation is valid for the linear triangle and rectangle elements (Figure 4.6 
and 4.7) and for the quadrilateral elements (Figures 4.10 to 4.12). However, the 
interpolation functions and their derivatives must be written using an axisymmetric (r,z) 
coordinate system. For example, consider the axisymmetric, linear triangle element 
The interpolation functions are in Figure 4.23 (Segerlind, 1984). 

1 

N?)(r'z) -- 2-• (ai + bir + ciz) 
N•)(r,z) = 1 2A(½ ) (aj + bjr + cjz) 

, 

Figure 4.23 Interpolation functions for the axisymmetric, linear triangle element. 

The derivatives of the interpolation functions are 

• 2A(•) • 2A½• 8r 2A½•) 

aN? • c i a• e) cj aN• ) c k 
•- 2A(e) •z 2A(•) •z 2A(e) 

where A (e) = Area of element 

1 
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The clement matrices are easily computed because of the relation 

f[ 2•r dr dz = 2m '•e) A 

where r •e) is the r coordinate of the centroid of A 

3 

The results are 

3x3 

b.bi bkbj b• J 
4A (e) 

2 cicj cick ci 

cjci c• C•Ck (4.96) 
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168 Step 3: Develop System of Equations 

Problems 

1. Verify that the approximate solution for • is continuous along the boundary joining the 
pairs of elements shown below 

•) c) 

b) 

1 4 6 

(1) (2) (0,4) (6,4) (9,4) 

• j i J kl ' 
1 2 3 

Jl i 
2 3 5 

(0,0) (6,0) (9,0) 

(8,4) (12,4) 
3 

1 

(o,o) (8,o) 

2. Verify that the interpolation functions for the elements shown below sum to one at an 
arbitrary point (x) or (x, y) 

a) c) 

b) 

i x J 

x=3 x=7 

(9,7) 

(3,4 

(10,2) 

(2,6) (9,6) 

(x•,y) 

(2,2) (9,2) 
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3. Calculate [K(•)], [C(•)], [D(•)], and [A (•)] (consistent formulation) for the elements in 
problem 2 if K x -- Ky -- 2, Dxx -- Dyy -- 1, Dxy -- Dy x -- 2, Dyy -- 1, v x -- 10, vy -- 1, 8 s 
-- 1, 0 -- n -- 0.4, Pb -- I. 1, K d -- 5, and •, -- 0. 

4. Derive equation 4.18a by substituting the interpolation functions and interpolation 
function derivatives for the linear bar element into equation 4.12 (remember that, for 
one-dimensional elements the integrations are performed Over the length of the 
element). 

5 Derive equation 4.20 or 4.21 by substituting the interpolation function derivatives for 
the linear triangle element into equation 4.6 or 4.7 (remember that, for two-dimensional 
elements, the integrations for [K (")] and [K(e)(¾)] are performed over the area of the 
element). 

6. Derive the following equations for the linear triangle element 

a) Equation 4.22a c) Equation 4.25a 
b) Equation 4.24b 

0Ni 0N i 
7. Plot N i, .•., and •-, i = 1 to 12 for the cubic quadrilateral element in Figure 4.12 

along the line e = 0 from xl = -1 to xl = 1 and along the line xi -- 0 from • -- -1 to e = 1. 

8. Given the interpolation functions for the linear rectangle element (Figtu'e 4.8) verify the 
entries in the first row and second column of the element matrices in 

a) Equation 4.26 
b) EquatiOn 4.27 

c) EquatiOn 4.29 
b) Equation 4.30 

9. Repeat problem 5 for the third row and second column of the element matrices. 

10. Verify that the interpolation functions for the following element types sum to one at an 
arbitrary point (e0), (e0, x10), or (e0, x10, COO). 

a) Linear bar (Figure 4.9a). 
b) Quadratic bar (Figure 4.9b). 
c) Linear quadrilateral (Figure 4.10). 
d) Linear parallelepiped (Figure 4.13). 
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170 Step 3: Develop System of Equations 

11. Compute [J], [j--l], and I$[ at the center (e -- •1 = O) of the elements shown below 

a) b) 

3(5,8) 5 node x y 
1 2.0 2.0 
2 4.0 3.0 

4 7 4 3 6.0 3.3 

(1 7 2.0 5.0 4 6.0 5.3 
5 6.0 ?.0 

8 3 6 4.0 6.5 

• YL 8 2.03.5 Y f'(1,3) 2 (•,3) 1 2 

8 ? 

Z•y 3 
x 1 2 

node x y z 
1 000 
2 700 
3 730 
4 030 

5 003 
6 703 
7 733 
8 033 

12. Perform the following integrations analytically and numerically using Gauss quadrature 

a) • + 3e2 + 9e de d) I• 4 + + 'ri2de. dq 
1 1 1 

b) 81• 4 + e 2 de e) •"q• cl• d'rl d• 
I a-la-la-1 

E37] + •rr}•2 + 3•2 cl• d'q d• c) F. 2 + 2•"q + de dq f) .,-i-'-l-'-I 1 I 
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13. Compute the conuibution of the first Gauss point (•3, •3 ) to the element condunce 
matrix [K (e)] for the linear quadrilateral elements shown below if Kx = 1 and Ky= 2 for 
all elements 

a) b) 
(0,1) (1,1) (0,2) (2,2) 

4 3 4 3 

(o,o) (1,o) 

(o,o) (2,o) 

½) d) 
3 (6,4) 4 (2,6) 3 (9,6) 

1 2 1 2 
(0,0) (6,0) (2,2) (5,2) 

14. Repeat problem 13 except compute the contribution of the first Gauss point to the 
element capacitance matrix [•e)] (consistent formulation). Let Ss = 5 for all elements. 

15. Repeat problem 13 for the element in problem 1 lb. 

16, Repeat problem 14 for the element in problem 1 lb. 

17. Repeat problem 13 for the element in problem 1 lc. 

18. Repeat problem 14 for the element in problem 11c. 
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172 Step 3: Develop System of Equations 

19. Given the following element conductance matrices assemble [K] for the mesh shown 
below global 

!] !] 2- [Kø)]=• -1 2- [Kit)] = • -1 o -1 
4 -I -2 -1 

[K(2)] -- • -1 4 
-2 -1 

4 

(2) 

ß i ' ß 

'6 

node 
element numbers 

i j k 
1 1 2 4 
2 235 
3 465 

20. Repeat pwblcm 19 if the nodes are numbered as shown below 

(2) 

2 4 

21. Write the system of equations 

[K] {h} = {F} 
global global 

for problem 19 with 

{F} = 
global 

175] 
175• 

Given that h 6 = 0, modify the system of equations and solve for h 1, h 2, h 3, h 4, and h 5. 
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22. Repeat problem 21 if hi = h2 = h3 = 0. 

23. Solve the following one-dimensional, steady-state groundwater flow problem if h I = 
10 m and h 5 = 0 m. Plot h(x), 0 g x g 19 m 

(x •,0) (1) .. (2) , (3) _ (4) (x• 19) 
1 2 3 4 5 

L 0) = 4 L (2) = 6 L 0) = 5 L (4) = 4 m 
K?=2 K?)= 1 K13)=2 K?)=4 m/d 

24. Repeat problem 23 if K•I)= K(x 2)= K? )= K? )= 2 m/d. 

25. Given the following element conductance matrices assemble [K] for the mesh show 
g•ob• 

below. Modi• the system of equations and solve for h at each node if h 1 = h2 = 10 
and h 3 = h6.= h i = 0, {F} = {0}. 

4 -1 -2 -1 

[K (1)] = -1 2 - [K½2)] = • -1 4 
o -1 -• -2 -1 

[K 0)] = 

' 1.415 -1.74 0.72 -0.36 0.64 --0.92 0.53 --0.31' 
-1.74 3.82 -1.74 0 --0.92 1.51 --0.92 0 

0.74 -1.74 1.44 -0.31 0.53 --0.92 0.64 --0.36 

--0.36 0 -0.31 1.96 --0.31 0 --0.36 --0.62 

0.64 --0.92 0.53 --0.31 1.44 -1.74 0.72 --0.36 

-0.92 1.51 -0.92 0 -1.74 3.82 -1.74 0 

0.53 --0.92 0.64 --0.36 0.72 -1.74 1.44 --0.31 

--0.31 0 --0.36 -0.62 '-0.36 0 -0.31 1.96. 

(1,2) (3/2,2) 
3 6 

(0,1) I (1,1) 
(3) 

2 (2) 5 2 
(0,0) (1,0) (3/2,0) 

8(2,2) 

node 
element numbers 

i j kl 
1 143- 

9(2,1) 2 2 5 4 1 
node 

element numbers 

1234567 8 
3 571098634 

-.10 

(2,0) 

K• ) = K•e)= 1for all elements 
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1'/4 Step 3: Develop System of Equations 

26. Given the following element conductance matrices assemble FIe] for the mesh show 
global 

below. Modify the system of equations and solve for h at each node ff h 5 = 0 and [ F} T 
= [ 10,10,10,10,0,0,0,0,-10,-10,-10,-10}. 

' 0.64 0.17 0.00 0.15 0.22 --0.17 -=0.22 --0.36' 
0.17 0.64 0.15 0.00 -0.17 -0.22 -0.36 -0.21 

0.00 0.15 0.51 0.11 .0.10 .0.13 -0.32 -0.22 

0.15 0.00 0.11 0.51 -0.13-0.10-0.22-0.32 

[K(1)] = -0.22 -0.17 -0.10 -0.13 0.51 0.15 -0.05 0.01 
-0.17 -0.22 -0.13 -0.10 0.15 0.51 0.01 -0.05 

-0.21 -0.36-0.32-0.22 -0.05 0.01 0.84 0.32 

--0.36 -0.21 -0.22 -0.32 0.01 -0.05 0.32 0.84. 

[K ½:0] = 

' 0.84 0.32 -0.05 0.05 --0.32 --0.22 -0.21 -0.36' 
0.32 0.84 0.05 -0.05 .0.22 .0.32 -0.36 -0.21 

-0.05 0.05 0.51 0.15 -0.10 -0.13 -0.22 -0.17 

0.05 -0.05 0.15 0.51 -0.13 -0.10 -0.17 -0.22 

-0.32 -0.22 -0.10 -0.13 0.51 0.11 0.00 0.15 

-0.22 -0.32 -0.13 -0.10 0.11 0.51 0.15 0.00 

-0.21 -0.36 -0.22 --0.17 0.00 0.15 0.64 0.17 

--0.36 .0.21 .0.17 -0.22 0.15 0.00 0.17 0.64 

node 
element numbers 

i=l 2 3 4 5 6 7 8 

I 2378 1 465 
2 8 7 1112 5 6 10 9 

1 

(0,0, ,,' 

z (0,0,0) (2,0,1) 

3 

(2,0,0) 

9 (0,3,1) 
element 2 

(0,3,0) , 

IIlIIIliii I 
(2,1,1) :::". (2,3,0) 

'7 

(2,2,0) 

element 1 

for all elements 
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27. Assume that the solution to problem 23 represents initial conditions. At time t -- 0 h I is 
increased to 15 m and held constant thereafter. Solve for h 2 -.- h 5 at times t = 1, 2, 

---- = ---- R(4) 3 m -l. ..(1) 1,-•(2) 1, S? ) 6, and and 3 d. Use a time step of ld. •s ,-s = 

28. Compute IF (e)} for the elements shown below (nodal coordinates in meters) 

a) b) 
(8,6) (0,1) 

Pumping Well (Outflow) i 

-- •0m3/• 

(3,2) ) 
(o,o) 

(1,1) 

) 

(1,0) 

Pumping Well (Inflow) 
=25m3/d 

c) 

(4,7) (13,7) 

(•,5) $ 

Pumping Well (Inflow) 
--•m3/d 

d) 

(8,6) ••q 10m3/d.m (Inflow) 

(3,2) (1:) 

e) 

(4,7) (13,7) 

i 

(•,,2) (13'•2) 

•o 
15 kg/d.m (Inflow) 

q--4m3/d.m 

Pumping Well (Ouuqow) 

= 8m3/d tl 1• _(0,1) •/d f (1,., 

) 

(0,0) (1,o) 

tttttt 
q--4m3/d.m 
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Chapter 5 

STEP 4: SOLVE SYSTEM OF EQUATIONS 

As we saw in Chapter 3 the application of Galerkin's method to the equations of 
groundwater flow and solute transport results in systems of equations that can be written in 
mat• form: 

1. Steady-State, Saturated Flow Equation 

[KI {h} = (5.1) 

2. Steady-State, Unsaturated Flow Equation 

[K(¾)1{¾} = {F} (5.2) 

3. Transient, Saturated Flow Equation 

([C] + mat [K] ){h}t+at = ([C] - (1-0)) At [K] ){h}t 

+ at ( (1-•o){Fh + o•{Fh+,,, ) (5.3) 

4. Transient, Unsaturated Flow Equation 

( [C(v)] + eat [K(V)] 

+ At ( (1-m){F}t + m{F}t+a t ) (5.4) 

5. Solute Transport Equation 

([A] + OAt [D] ){C}t+a t = ([A] - (1-re)At [D] ){C}t 

+ At ( (1-m){F}t + m{F}t+at ) (5.5) 

This chapter describes methods that can be used to solve these systems of equations to 
obtain values of hydraulic head, pressure head, or solute concentration at each node in the 
mesh (and for each time-step in the case of transient flow or solute transport problems). 
Equations 5.1, 5.3, and 5.5 are systems of linear equations of the form 

[M]{X} = {B} (5.6) 

where [M] is matrix of known coefficients mij, {X} is a vector of the unknowns x i, and 
{B} is a vector of known values b i. Equation 5.6 is a system of linear equations because 
none of the coefficients in [M] are a function of the unknowns {X}. Equations 5.2 and 5.4 

176 
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are systems of nonlinear equations of the form 

[M(X)][X) = lB) (5.7) 

where [M(X)] is a matrix of known coefficients with enuies mij(x), IX} is a vector of the 
unknowns x i, a•d [B ] is a vector of known values hi. Equation 5.7 is nonlinear because 
some or all of the coefficients in [M(X)] are functions of the unknowns IX}. We will first 
describe a method that can be used to solve equation 5.6. 

$.1 PROCEDURE. FOR SOLVING SYSTEM OF LINEAR EQUATIONS 

Equation 5.6 can be written in an expanded form as follows 

m.?l m? 2 3I• -- bill (5.8) 
There are several different numerical methods that can be used to solve equation 5.8. In 
selecting a method for use in solving the equation• of groundwater flow and solute 
transport the following criteria should be considered: 

1. [M] is diagonally dominant (i.e., for any row the entry on the main diagonal is 
larger than the other entries in the row), banded, and sparse (i.e., contains many 
zero entries). 

2. [M] may or may not be symmetrical (see Appendix IV). 
3. For each matrix [M] we may wish to solve equation 5.8 for several different right- 

hand side vectors [B ]. 

One choice of method that meets these criteria and which has been widely used for this 
purpose is the Choleski method (Cook, 1981). We will first describe the Choleski method 
for the case when [M] is stored in full matrix storage mode because the notation is simpler. 
We will then describe a modification of the Choleski method for the case when [M] is 
stored in vector storage mode. Vector storage reduces the sizes of the arrays that must be 
stored and manipulated when the Cholesld method is implemented in a computer program 
(see Chapter 13). 

5.1.1 Choleski Method for Nonsymmetric Matrix in Full Matrix Storage 

The Choleski method is a direct method for solving a system of linear algebraic 
equations which makes use of the fact that any square realfix [M] can be expressed as the 
product of a lower triangular matrix [L] and an upper triangular matrix [U] 

[M] = [L][U] (5.9a) 

or 

(5.9b) 
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178 Step 4: Solve System of Equations 

We say that man'ix [M] is decomposed or factored into the product of two triangular 
matrices and this step of the Choleski method is sometimes referred to as the triangular 
decomposition of [M]. The entries of [L] and [U'J are given by 

j-.l 

lij = miJ - Z li• ukJ ' i _> j 
k--I 

lij --- O, i<j 
i-! 

mij- Z lik Ukj 
k=l 

Uij -- li i , i <j 
uij = 1, i=j 

Uij ---- O, i>j 

(5.10a) 

(5.lOb) 

(5.10d) 

(5.10e) 

Example 

Perform triangular decomposition on the following matrix 

roll m12 m•3 m14] 2 1 -1 1' 
[M] = m21 m22 m23:m241 = -1 4 1 -1 

! 4 m4! m42 m43 m44 j -1-2 1 

111 = mll = 2 

1•2 = l•s = 1•4 = 0 

Ull---- 1 

u•2 = m•2/l• = 1/2 = 0.$ 

U!3 = m13/lll =-1,/2 = -0.5 

u•4 = m14/l•l = 1/2 = 0.5 

12• = rn2• =-1 

122 = m22-121u•2 = 4-(-1)(0.5) = 4.5 

123 -- 124 -- 0 

U21 ---- O, U22 = 1 

u23 = (m23-121ut3)/122 = ( 1-(-1)(-0.5))/4.5 = 0.11 

U24 = (m24-121u14)f122 = (-1-(-1)(0.5))/4.5 = -0.11 

lz• = rn• = -2 

1•2 = m•2-l:•lul2 =-1-(-2)(0.5) = 0.0 

1:•3 = ma3 - 13lUna - 1•2u2• = 4- (-2)(-0.5) - (0)(0.11) = 3.0 
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134 --0 

us! = u32 --O, uss -- ! 

u34 = (m34-131ul•-132u24)/133 -- (1-(-2)(0.5)-(0)(-0.11)/3.0 = 0.67 

141 = m• ---1 

h2 = m•2-1•lu12 -- -2-(-1)(0.5) ---1.5 
1•3 -- m•3 - h•u13 - l•2uz• = 1 - (-1)(-0.5) - (-1.5)(0.11) -- 0.6? 
1•4 = man- 14•u•4- 142u24- 145u34 

= 2 - (-1)(0.5) - (-1.5)(-0.11) - (0.67)(0.67) = 1.89 
U41 ---- U42---- U43 ---- O, Ua4 ---- 

2.0 0.0 0.0 0.0 

-1.0 4.5 0.0 0.0 

[L] =-2.0 0.0 •.0 0.0 JUl = 
-1.0 -1.5 0.67.1.89 

1.0 0.5 -0.5 0.5 0.0 1.0 0.11 -0.11 

0.0 0.0 1.0 0.6? 
0.0 0.0 0.0 1.0 

and it is easy to verify that [M]-- [L][U]. 
Once [M] has been decomposed into lower and upper triangular matrices the solution of 

the system of equations for any choice of [B ] is very simple. Because [M] = [L][U] we 
can write 

[M]{X} = {B} = [L][U]{X} = {B} (5.11) 

If we define a vector [Z} as 

[U]{X} = {Z} (5.12) 

we can write 

ILlf Z} = rS} (5.13a) 

111z 1 --- b 1 

121Zl + 122Z2 = b 2 

1.•zi + ln2z2 + "' + l,mz,, = 

(5.13b) 

which can be solved for the values in [Z] using 

i = 1 to n (5.14) z i = lii ' 

After we have computed the values in {Z} we can then solve for the values in [ X } using 
equation 5.12 (this step is sometimes called "backward substitution") 
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180 Step 4: Solve System of Equations 

X I+uI2x2+u13x3+ --. +UlnX. n = Z 1 

X 2+u23x3+ --- +U2nX. n = Z 2 

X 3+ -.. +U3nXn = Z 3 
. . 

x•=z. 

The solution is given by 

i-I 

Xn+l_ i = Zn+l_ i --ZUn+l_i,n+l_k Xn+l-k, 
k=l 

i = 1 to n (5.16) 

Example 

Solve the following system of equations 

2 1 -1 1 xl 1 

!! 4 1--211 x2 = i -1 4 x3 

-2 1 x4 

Triangular decomposition of [M] was performed in the previous example and using 
equation 5.13 we have 

-1.0 4.5 0 0 

-2.0 .0.0 3.0 0 z3] -1.0 -1.5 0.67 1.89 z4 

1 

z I = bl/ltt = 1/2 = 0.50 

z 2 = (b 2 - 121Zl) / 122 = (0-(-1.0)(0.5)) / 4.5 = 0.11 

z 3 = (b 3 - 131z 1 - 132z2) / 133 = (0 - (-2.0)(0.5) - (0)(0.11) / 3 = 0.33 

z4 = (b4 - 141Zl - 142z2 - 143z3) / 144 
= (0-(-1.0)(0.5) - (-1.5)(0.11) - (0.67)(0.33)) / 1.89 = 0.24 

In the next step we have 

1.0 0.5 -0.5 0.5 0 1.0 0.11 -0.11 

0 0 1.0 0.67 
0 0 0 1.0 

xt 0.50] 
X 2 --_ 0.11• 
x3 0.33[ 
x,• 0.24J 
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and 

X 4 --== Z 4 = 0.24 
X 3 ---- Z 3 --U34X 4 = 0.33- (0.67)(0.24) = 0.17 
X 2 ---- Z 2 --U24X 4 -- U23X 3 

-- 0.11-(--0.11)(0.24)-•0.11)(0.17) -- 0.12 

X 1 ---- Z I--uI4x 4--uI3x $--uI2x2 

= 0.50 - (0.5)(0.24) - (-0.5)(0.17) - (0.50)(0.12) -- 0.41 

0.41] 
0.12[ 

{x} = 
0.24J 

5.1.2 Choleski Method for Symmetric Matrix in Full Matrix Storage 

If [M] is a symmetric matrix, [MJ can be decomposed into the product of an upper 
triangular mau• and its •mspose 

[M] = [U]?[U] (5.17) 

where the entries of [U] are given by 

i-• ] 1/2 ui= , 
k=l 

i =j (5.18a) 

i-1 

mij- E uta u•j 
k=l 

Uij= ' , uii 

uij = O, 

i<j (5.18b) 

i>j (5.18c) 

Example 

Perform triangular decomposition on the following man• 

mll m12 m13 m141 2 --1 2 1 

[M] = m21 m22 m23 m24[ = -1 6 -1 -2 • m31 m32 m33 m34 / 2 -1 6 
m41 m42 m43 m441 1 1 -1 
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ull = (roll) 1/2 = (2) 1/2 = 1.414 
u12 = m12/Ull =-1/1.41.4 = -0.707 

Ula = mla/Ul• = 2/1.414 = 1.414 

ul4 = ml4/ull = 1/1.414 = 0.707 

U21 = 0 

u• = (m22- u•2) •/2 = (6 - (-0.707)2) 1/2 = 2.345 
u s = (m s - u12ula)/u• = (-1- (-0.707)(1.414))/2.345 = 0.000 

u24 = (m24-u12u14 ) /u22 = ( 1- (-0.707)(0.707))/'2.345 = 0.640 

U31 •- U32 = 0 

Uaa = (maa - U•a - ula} •/• = (6- (1.414) 2- (0)2) 1/2 = 2.000 
Ua4 = (man- u•au•n- UsUen) / uaa 

= (-1 (1.4145)(0.707) - (0.000)(0.640))/2.000 = -1.000 

U41 = U42 = U4a -- 0 

U44 = (m4•- U•- U224- U324)1/2 
= (2-(0.707) 2-- (0.640)2-(-1.000)2) •/2 = 0.301 

[U] = 

1.414 -0.707 1.414 0.707] 
0 2.345 0.000 0.640[ 
0 0 2.000 -1.000! 
o o o o.3ol] 

1.414 0 0 0 

--0.707 2.345 0 0 

[U]? = 1.414 0.000 2.000 0 
0.707 0.640 -1.000 0.301 

and it is easy to verify that [lVl] = ILlIT[U]. 

Once the symmetric matrix [M] has been decomposed the solution of the system of 
equations for any choice of {B } is very simple. Because [M] = [U]T[U] we can write 

[M]{X} = {B} = [u]T[uI{X} = {B} (5.19) 
Then by defining a vector {Z} as 

[U]{X} = {Z} (5.20) 
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we can write 

[u]T{z} -- 

If the entries in [U] arc 

[U] -- 
Ull UI2 ...... Uln 1 U22 " U2n [ 

0 0 UnnJ 

the entries in [U] T are 

(5.21) 

(5.22) 

(5.23) 

and equation 5.21 can be written 

UllZ 1 = b 1 

Ui2Z 1 + U22Z2 ---- b 2 
ß ß ß ß 

UlnZ I+u2nz 3+ .-. +UnnZn = b 3 

(5.24) 

which can be solved for the values in {Z } using 

( ) b i - uki Zk 
k=l 

z i = , i = 1 to n (5.25) 
uii 

After we have computed the values in {Z} we can then solve for the values in {X} using 
equation 5.20 

UllX l+u12x 2+u13x 3+ --- +UlnXn --- Z 1 

u22x 2 + u23x3+ --. + u2nx n = z 2 

U33X 3+ --- +U3nX n ---- Z 3 
ß . 

UnnXn =Zn 

(5.26) 
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The solution is given by 

Za+l=i -- = Un+l-i,n+l-k F'n+l-k 
Xn+l_ i ---- 

Un+ 1-i.n+ 1-i 
(5,2?) 

Example 

Solve the following system of equations 

2 -1 2 1 xl 1 

-1 6-1 -i x2 -- 2 -1 6 x• 

1 1 --1 X 4 

Triangular decomposition of [M] was performed in the previous example and using 
equation 5.24 we have 

1.414 0 0 0 

--0.707 2.345 0 • 1.414 0.000 2.000 

0.707 0.640 -1.000 0.301 

Z 1 = bl/u• = 1/1.414 = 0.707 
za = (!h - u•2z•) / uz• = (0 - (--0.707)(0.707))/2.3456 = 0.213 
z 3 = (b 3 - u13zl - u23z2) / u33 

= (0- (1.414)(0.707) - (0.000)(0.213))/2.000 = -0.5000 
z,• = (b,•- u14Zl - U2nZ 2 - u34z3)u44 

= (0- (0.707)(0.707) - (0.640)(0.213) - (-1.000)(-0.500))/0.301 = -3.775 

In the next step we have 

1.414 -0.707 1.414 0.707][x, 

0 2,345 0.000 0.640/t x2 = 0 0 2.000 -1.000 x3 

0 0 0 0.301J!. x4 

0.707] 
0.213 L 

-0,500 / 
-3,775J 
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and 

Z4/U44 =-3.775/0.301 =-12.54 

(z 3 -u34x4)[u33 = (-0.500- (-1.000)(-12.54))/2.000 = -6.52 

(zz - u•x4 - u23x•) / u2z 
(0,213 - (0.640)(-12.54) - (0.000)(-6.52))/2.345 = 3.51 

(Z 1 -- Hi4X 4 -- Hi3X3 -- Hi2X2) ! Ull 
(0.707 - (0.707)(-12.54) - (1.414)(-6.52) - (-0.707)(3.51))/1.414 
15.05 

15.051 
3.sx / 

_6.521 
-12.54J 

$.1.3 Choleski Method for Nonsymmetric Matrix in Vector Storage 

We have seen that the application of the finite element method to the equations of 
groundwater flow and solute transport results in systems of equations that axe banded. 
Laxge savings in computer storage can be achieved by assembling and solving the system 
of equations in vector storage. In vector storage only the entries within the band are 
stored; the entries outside the band (which arc all zero) arc discarded. Consider the banded 
matrix in Figure 5.1. There are 6 equations and the semi-bandwidth is 2. In full matrix 
storage, 36 entries are stored including 20 entries "outside" the band that are known to be 
zew. If the matrix in Figure 5.1 is nonsymmetric (e.g., when solving the solute uransport 
equation using equation 5.5 and 5.6) the entries within the band can be stored in a vector 
with length IJSIZE where 

LISI• = (NDOF) 2 - (NDOF - SBW)(1 + NDOF - SBW) (5.28) 

where NDOF (for Number of D_=egrees of Freedom) is the number of equations and SBW is 
the semi-bandwidth. For the example in Figure 5.1, NDOF = 6, SBW = 2 and 

IJ$IZE = (6) 2- (6-2)(1 + 6- 2) 
= 36-20 = 16 
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186 Step 4: Solve System of Equations 

(a) Full Matrix Storage 

'mll ml2'., 0 0 0 0 ' 

.•m_21 rn22 m•«'.,,.0. 0 0 
'0',,,• maa m•.,.o o ... 

o 0', •.• m. m•,.,.o 
o o 0"..•.• r• m'• 

o o o •"• ••an 36 entries d 
20 entries "outside" of band 

NDOF = 6 
SBW = 2 

(b) Vector Storage 
Non-Symmetric Matrix 

(c) Vector Storage 
Symmetric Mau'ix 

{M} = 

ml 

ml 

m2 

m2 

{M} = m3 

m4 

m• 

m• 

m6 

Figure 5.1 Full matrix and vector storage schemes for non-symmetric and symmetric 
matrices. 
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Example 

Compute the length of array requir• to store the banded, nonsymmeu'ic matrix shown 
below in vector storage 

123OO 

[M]= 340 

0432 032 

For this matrix NDOF = 5, SBW = 3 and from equation 5.28 

IJSIZE = (5)2-(5-3)(1 + 5- 3) 
= 25-6=19 

A typical entry mij in [M] (full matrix storage) can be assigned to an entry mu in {M} 
(vector storage) using the algorithm in Figure 5.2. Note that the subscript LI refers to a 
single index, the position of an entry in the vector {M}. 

IJ = j 
IF i>l THEN 

IF SBW<NDOF THEN 

IF i>SBW THEN 

IJ - IJ + SBW - i 

ENDIF 

IJ -- IJ + (i-1) (2SBW-1) 
L = MIN (SBW, i) -1 
IJ = IJ- (L/2)[ (SBW-1) + (SBW-L)] 
L = i - NDOF + SSW- 2 
IF L>0 THEN 

IJ = IJ - L(L+i)/2 
ENDIF 

ELSE 

IJ - IJ + (i-1)NDOF 
ENDIF 

ENDIF 

Figure 5.2 Vector matrix storage for banded, nonsymmetric matrix. MIN(SBW, i) 
means take the minimum value of SBW and i. 

The Choleski method can be used with nonsymmetric matrices in vector storage. The 
only difference is that the index IJ (in vector storage) must be computed using the algorithm 
in Figure 5.2 for each pair of indices (i,j) or (j,k) in equations 5.10, 5.14, and 5.16. 
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Example 

Use the algorithm in Figure 5.2 to assign the entries of the nonsymmetric matrix shown 
below in full matrix storage to vector storage 

3210 

33 

24 

NDOF = 4 
SBW = 3 

usu• = (4) =- (4- 3)(• + 4- 3) = •4 

i=1 j -1 I J= j -1 
j -2 IJ-Z 
j- 3 IJ-• 

i-2 j-1 IJ = 1 
2>1 

3<4 

2<3 

IJ - 1 + (2-1) ((2) (3)-1) - 6 
L -MIN(3,2) - i - 2 - 1 = 1 
IJ - 6 - 1/2[(3-1) + (3-1)] 

= 6- 2- 4 

L -2-4+3-2--1<0 

' IJ=4 

i - 4 j = 4 I J- j =4 
i= 4 > 1 

3<4 

i= 4 > 3 

IJ- 4+3- 4=3 

IJ - 3 + (4-1) (2(3) - 1) - 18 
L = MIN(3,4) - 1 - 3 - 1 - 2 
IJ = 18 - 2/2[(3-1) + (3-2)] 

- 18 - 3 = 15 

L = 4 -4+3-2=1>0 

IJ = 15 - 1(1+1)/2 - 14 
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and 

{M} = 

IJ i j 

1 1 1 
2 1 2 
3 1 3 
4 2 1 
5 2 2 
6 2 3 
7 2 4 
8 3 1 
9 3 2 
10 3 3 
11 3 4 
12 4 2 
13 4 3 
14 4 4 

5.1.4 Choleski Method for Symmetric Matrix in Vector Storage 

If the matrix [M] is banded and symmetric (e.g., when solving the steady-state or 
transient groundwater flow equations) the entries within the band can be stored in a vector 
with length I/SIZE wher• 

I/SIZE= SBW(NDOF-SBW+ 1)+ (SBW-1)[Sl• W] (5.29) 
where NDOF is the number of equations and SBW is the semi-bandwidth (The quantity 
(SBW - 1)x(SBW) is always an even number). For the example in Figure 5.1, NDOF = 6, 
SBW = 2 and 

I/SIZE= 2(6-2+ 1)+(2-1) (-•) 
=11 

A typical entry mij in [M] (full matrix storage) can be assigned to an entry mij in {M} using 
the algorithm in Figure 5.3 

I J- j - i + 1 
IF i>1 THEN 

IF SBW<NDOF THEN 

IJ - IJ + (i-1)SBW 
L - i - NDOF + SBW - 2 

IF L>0 THEN 

IJ • IJ - L(L+i)/2 
ENDIF 

ELSE 

IJ- IJ + (i-l)(NDOF+(NDOF-i+2))/2 
ENDIF 

ENDIF 

Figure 5.3 Vector matrix storage for banded, symmetric matrix. 
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Example 
Use the algorithm in Figure 5.3 to assign the entries of the symmetric matrix shown 

below in full matrix storage to vector storage 
3200 NDOF -- 4 

24 

0 2 IJS•- = 2(4 - 2 + 1) + (2 - 1) = 7 

i- 1 j = i XJ• 1- 1+ 1-1 
j--• •J•2- i + I-2 

-.,--...., ............ .---..,.. ...................................................................... .., 

i-2 j-2 IJ=2-2 + 1=1 
2>1 

SBW < NDOF 

IJ m I + (2-1)(2) = 3 
L =2-4+2 -2=-2<0 

' IJ•3 

j i 3 IJ=3-2 + 1-2 

2>1 

SBW < NDOF 

IJ = 2 + (2-1)(2) = 4 
L =2-4+2-2=-2<0 

.'. IJm4 

i= 4 j-• 4 I J=4 - 4 + 1- 1 

4>1 

SBW < NDOF 

IJ • i + (4 - 1)(2) = 7 
L = 4 - 4 + 2 - 2 = 0 

ß IJ = 1 

m•d 

{M} = 

3 u i j 

• 1 1 1 2 1 2 
3 2 2 
4 2 3 
5 3 3 
6 3 4 
7 4 4 

The Choleski method can be used with symmelric matrices in vector storage. The only 
difference is that the index IJ (in vector storage) must be computed using the algorithm in 
Figure 5.2 for each pair of indices (i•j) or (j,k) in equations 5.18, 5.25, and 5.27. 
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$.2 APPLICATION OF CHOLESKI METHOD 

$.2.1 Steady-State, Saturated Flow Equation 

The matrix formulation for the steady-state, saturated flow equation (equation 5.1) can 
be solved by the Choleski method for symmeuic matrices described in sections $. 1.2 and 
$. 1.4. We simply set [M] = [K], the global conductance matrix; {X} = {h}, the unknown 
values of hydraulic head at each node, and {B } = {F], the specified rates of groundwater 
flow at nodes representing sources and sinks (i.e., at Neumann nodes). The global 
conductance matrix is symmetric because the element matrices it contains are symmetric. 
Equation $.1 is a system of linear equations because none of the entries of the global 
conductance matrix are functions of hydraulic head. Recall that the element conductance 
mauix [K (•)] is computed using the interpolation function derivatives for each node in the 
element and the components of saturated hydraulic conductivity for the element. The 
interpolation function derivatives depend only on the number of nodes in the element and 
the clement's size and shape. The components of saturated hydraulic conductivity are 
constant within an element (but can vary from one element to the next) and do not depend 
on the value of hydraulic head at the elcment's nodes. 

Because the global conductance matrix is symmetric and banded, equation 5.1 is 
conveniently assembled and solved in vector storage using the procedure described in 
sections 5.1.2 and 5.1.4. Decomposition of [K] and {F} is performed once and {h} is 
obtained directly by backward substitution. 

$.2.2 Transient, Saturated Flow Equation 

The matrix formulation for the transient, saturated flow equation (equation 5.3) can be 
solved by the Choleski method for symmetric matrices described in sections 5.1.2 and 
5.1.4. Weset 

[M] = [C] + tofit [K] 

{X} = {h}t+a t 

{B} = ([C] - (1 - tO)At [K]){ht} + At ((1 - to){F} t + 

(5.30a) 

(5.30b) 

(5.30c) 

where [C] is the global capacitance matrix, [K] is the global conductance matrix, to is the 
relaxation factor, At is the time step, and {F} are the specified rates of groundwater flow 
representing sources and sinks at Neumann nodes. {F) is known at all time steps. (h) t is 
known from the initial conditions or from the solution obtained for the previous time step. 
{h}t+At are the unknown values of hydraulic head at time t + At. 

•d] is symmeuic because [C] and [K] are symmetric. The choice of to and At will have 
no effect on the symmetry of [M]. Equation 5.3 is a system of linear equations because 
none of the entries of [C] or [K] are functions of hydxaulic head. 

Because [M] is symrnelric and banded equation 5.3 is conveniently assembled and 
solved in vector storage using the procedures described in sections 5.1.2 and 5.1.4. 
Assembly and decomposition of [lVl] is performed only once (unless to or At changes from 
one time step to the next). However, assembly and decomposition of {B } and backward 
substitution to obtain (h)t+At must be performed for each time step. Thus it is desirable to 
minimize the number of time steps used to solve a particular problem, suggesting that large 
time steps should be used. However, several numerical difficulties can arise during the 
solution process when At is large. The size of time step required to obtain useful results 
depends on the size and shape of the elements in the mesh, the values of specific storage 
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and hydraulic conductivity for each element, whether a lumped or consistent formulation 
was used to compute the element capacitance maltices, the boundary conditions contained 
in [ B ), and the value of the r•laxation parameter o•. 

The first type of difficulty that can occur when solving equation $.2 occurs when 
calculated values of head violate "reality" (Segerlind, 1984). For example when computed 
values of head d•e near a point source or increase near a point sink. This situation can 
be avoided by choosing o• and At so that the coefficients in [M] (equation 5.30a) are 
positive for positions on the main diagonal and negative for off diagonal positions (see 
below) (Segerlind, 1984, Maadooliat, 1983). 

The second type of difficulty that can occur When solving equation 5.2 is called 
instability. Instability occurs when the difference between the true solution and the 
numerical solution grows extremely la/'ge in a few time steps (Figure 5.4). Fortunately it is 
possible to avoid instability by setting r.0 > 1/2. When this condition is met, the numerical 
solution for equation 5.3 will be unconditionally stable (Lapidus and Pinder, 1982, p. 166). 

numerical solution 

true solution 

Fillure $.4 Numerical instability in computed value of hydraulic head. 

The third type of difficulty that can occur when solving equation 5.3 for large values of 
At is called numerical oscillation. Numerical oscillation occurs when the computed values 
of hydraulic head fluctuate about the true solution. From one time step to the next the 
numerical solution is alternatively above and below the true solution (Figm• 5.5). 

Criteria to avoid numerical oscillations can be derived based on the properties of the 
matrix product [M-I][P] wher• 

[Pl: [c] - (t - m) [K] (5.31) 

To avoid numerical oscillations it is sufficient to require that all of the cigenvalues of [M -1] 
[P] be positive (Myers, 1971). An eigenvalue is defined as any number E that satisfies the 
matr• equation 

{ [M-'I[Pl - ] = o (5.32) 
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numerical solution 

u-ue solution 

Figure 5.5 Numerical oscillation in computed value of hydraulic head. 

where I I is the determinant and [I] is the idcndty mau'ix ( see Appendix IV). Equation 
:5.32 is also sadstied (Segerlind, 1984) if 

[[PI-E[M][ -- 0 (5.33) 
In equation 5.33 E will be positive if both [P] and [lV[] are positive deftmite. Now [C] and 
[K] will always be positive definite. For transient, saturated flow 

[M] = [C] + co•t [K] (5.34) 

where m and At are positive constants. [M] will always be positive definite because a 
matrix obtained by adding a positive definite matrix to a positive definite matrix multiplied 
by any positive constant is also positive definite (Myers, 1971). 

However, ['P] is not guaranteed to be positive def'mite because a matrix obtained by 
subtracting a portion of one positive definite matrix from another is not necessarily positive 
definite (Myers, 1971). The problem of avoiding numerical oscillations thus becomes one 
of selecting values of co and At that insure that [P] is positive defipite. In other words, we 
select values of co and At such that (for any number 

-- o 
[P] will be positive definite if no value of [• _< 0. Now the minimum value of any global 
matrix is greater than the minimum eigenvalue for all its component (or element) matrices 
(Fried, 1979). Thus we can develop criteria to select values of co and t by using a form of 
equation 5.35 written for an arbitrary element e 

I[P ('ø1 - I](•)[I] ] = 0 (5.36) 
where 

[P(')] = [c (•)] - (] - re)at [K (')] (5.37) 
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and [C (e)] is the element capacitance matrix, [K (e)] is the element conductance matrix, and 
[•(c) is an eigenvalue for element e. Now if the minimum eigenvalue for any element equals 
zero ([5 (e) = 0), the minimum eigenvalue for the global matrix will be greater than 0 ([• >_ 0) 
and numerical'oscillations will not occur. Setting [5 (e) = 0, equation $.36 becomes 

I,(q-o m l =o 

I[c(q -(1 - co)At [K(')] J : 0 (,5.38) 
Let c• = (1 - co)At. Then equation 5.38 becomes 

J[c(q- a J = o (5.39) 

and the criteria for stability becomes 

At < 1-co' co> 1 (5.40) 

where 0• is the smallest number (for any element) that satisfies equation 5.39 (the smallest 
number of • will occur in the smallest element in the mesh). For the case co = 1, it can be 
shown that no numerical oscillati9n• will 9•!•r (Segerlind, 1984). In practice the 
following procedure can be used to avoid numerical oscillations when solving the transient, 
saturated flow equation: 

1. Compute [C (½)] and [K (½)] for the smallest element in the mesh. 

2. Solve equation 5.39 to obtain the minimum value of ct for that element. 

3. Use equation 5.40 to select a suitable value for At and co. 

Example 

The element capacitance and conductance matrices for the smallest element in a mesh 
are given below. Find combinations of co and At that do not violate reality and that prevent 
instability and numerical oscillations 

it(e)] : 0.03 0 [K(½)] : 0.5 
0 0.03 -0.5 0.5 

For a mesh consisting of this type of element the diagonal coefficients in [M] will be 
positive and the off-diagonal coefficients in [M] will be negative for all values of co and At. 
From equation 5.39 
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0.03 0 0.5 

0 0.03 - • -0.5 0.5 

or 

(0.03 - •0.05) (•0.05) 
(•0.05) (0.03 - •0.05) 

=0 

(0.03 -•0.05)(0.03 - •0.05)- (•0.05)(•0.05) -- 0 

or 

0.0025• 2- 0.003• + 0.0009 - 0.0025• 2 -- 0 

or 

0.0009 

0.003 = 0.3 

Instability will not occur if co > 1/2 and numerical oscillations will not occur if 

0.3 
At < 1-co 

The values of At and co that meet this criteria are plotted below. Any combination of At and 
co in the shaded region will prevent instability and numerical oscillations. 

15 

At 

5 

0 

0.5 0.6 0.7 0.8 0.9 1.0 

For linear elements with 4 nodes or less, equation 5.39 can be used to derive algebraic 
expressions for fit that prevent numerical oscillations. For more complicated elements, 
equation 5.39 must be solved numerically.. Consider furst the linear bar element (Figure 
4.5). The element conductance matrix is gxven by equation 4.15a 
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where K(x e) is the saturated hydraulic conductivity and L (0 is the element length. If we use 
the consistent formulation the element capacitance matrix is given by equation 4.16a 

S?)L(•) 

where S? ) is the specific storage. 
For a mesh consisting of this type of element, the diagonal coefficients in [M] will be' 

positive for all values of m and At. The off-diagonal coefficients will be negative if 

6 - mAt•-• < 0 
or 

At < 

6K?m 

From equation 5.39 

'6 [2•]_ 1 
=o 

or 

'• = . + i.(,)'j 

•'•x ø 3 - 6 "+ L•) L•) j 

=o 

Evaluating the dctcrmin•t wc have 

'3 L(,) J 6 L(•) J 
which can be solved to give 

12K(x •) 
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so that the criteria for avoiding numerical oscillations for the linear bar element with a 
consistent formulation for [C (e)] is 

i , 

, (5.41) < - 
If we use the lumped formulation the element capacitance matrix is given by equation 4.16b 

[C½:)]: 2 [0 •] 
For a mesh consisting of this type of element the diagonal coefficients in [M] will be 

positive and the off-diagonal coefficients in [M] will be negative for all values of o) and At. 
Substituting [C (e)] and [K (e)] into equation 5.39 we have 

=0 

or 

Evaluating the determinant we have 

=0 

which can be solved to give 

4K? ) 

so that the criteria for avoiding numerical oscillations for the linear bar element with a 
lumped formulation for [C (c)] is 

• m 

At < 4K•)(l_m ) (5.42) 
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198 Step 4: Solve System of Equations 

Equations similar to 5.41 and 5.42 can be derived for other element types (Segerlind, 
1984) 

1. Linear triangle element. lumoed formulation 

The element •natrices are given by equations 4.20 and 4.22b. As an example consider 
the triangle element shown below. Node i is at (0,0), the element is a right triangle, and the 
side length is b 

y • 

(0,b) A =T 

(o,o) (b,0) x 

If we assume that K(x e) = K(y e) = K (e) we can use equation 5.39 to find 

and 

2S?)A (½) 
a = 9K(. ) (5.43) 

2S?)A (e) 
At < (5.44) 

9K(e)(l_(o) ß 

2. Linear rectangle element, lumped formulation 
The element matrices are given by equations 4.26 and 4.27b. As an example consider 

a square element (2a (e) = 2b(e)). If we assume that I• e) = K(y •) = K (e) we can use equation 
5.39 to find 

$?)a(e)b (e) 
(x = K(,0 (5.45) 

S?)a(')b (e) 
At < K(C)(l_(o) (5.46) 

5.2.3 Solute Transport Equation 

The matrix formulation for the solute transport equation (equation 5.5) can be solved by 
the Choleski method for nonsymmetric matrices described in sections 5.1.3 and 5.1.5. 
This is done by setting 

[M] = [A] + coat [D] (5.48a) 
{X} = {C}t+a t (5.48b) 

{B} = ({A] - (1-re)At I'D] ){C}t + At ((1-(o){F}t + (o{F}t+a,) (5.48c) 
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where [A] is the global sorption matrix, [D] is the global advection-dispersion matrix, m is 
the relaxation factor, At is the time step, and IF] are the specified solute fluxes 
representing sources and sinks at Neumann nodes. IF} is known at all time steps. [ C} t is 
known from the initial conditions or from the solution obtained for the previous timestep. 
[CJt+a t are the unknown values of solute concentration at time t+At. 

[1• is nonsymmetric because [D] is nonsymmetric. The choice or m and At will have 
no effect on the symmetry of [MI. Equation 5.5 is a system of linear equations because 
none of the entries of [A] or [D] are functions of solute concentration. 

Because [M] is banded equation 5.5 is conveniently assembled and solved in vector 
storage (Section 5.1.•). Assembly and decomposition of [M] are usually perfon•ned only 
once. However, for solute transport in transient groundwater flow conditions, e.g. Section 
3.7.3, [M] would be assembled and decomposed at each time step (because the 

components of apparent groundwater velocity, v? ), v5 e), and v? ) used to compute [D (e)] are 
changing fi'om one time step to the next in transient flow). [M] must also be assembled and 
decomposed if co or At change during the solution process (e.g., it is common to use a 
small time step for the first few time steps, when solute concentrations are changing rapidly 
and then use a larger At when solute concentrations are changing more slowly). 

The same criteria used to avoid problems of violating reality, instability, and numerical 
oscillations when solving the transient, saunmted flow equation (Section 5.2.3) can bc used 
when solving the solute transport equation. Thus to avoid problems of instability we set co 
• 1/2. The criteria for preventing numerical oscillations can be written (following the 
discussion in section 5.2.3) 

At < 1 - co (5.49) 
where o• is the smallest number (for any element) that satisfies 

[A (")1 - a[U(*)]] : 0 (5.50) 

where [A (e)] and [D (e)] are the element sorption matrix and advection-dispersion matrix, 
respectively. 

For simple element types, equation 5.$0 can be used to derive algebraic exprcssions for 
combinations of At and co that prevent numerical oscillations. For more complicated 
elements, equation 5.50 must be evaluated numerically. As for the case of transient, 
saturated flow the smallest value of c• will occur in the smallest elemcnt in the mesh. 

Example 
Detentinc the criteria for preventing numerical oscillations when solving the solute 

transport equation using linear bar elements (Figure 4.5). 
We will use the lumped formulation for [A (e)] and [D (e)] (equations 4.19b and 4.18b) 

and set •. -- 0 

e..(,),.,.(,) ' (..• [10 •] [ d(")] = •'b '"d + 

+ I] -I 
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200 Step 4: Solve System of Equations 

where p•) is bulk density, K• e) is the disu'ibution coefficient, 0 (e) is volumetric water 
content, L (e) is the element length, D(x e) is a dispersion coefficient, and v• ) is the apparent 
groundwater velocity. To simplify the algebra set 

R(e) •(e)T,,-(e) ---- •b •d 

Substituting into exluation 5.50 we have 

R(e)L (e) (D•)0 (e) 2 , - c• 

=o 

Evaluating the dec.•finant 

or 

JJ[ 
]:)?)o (•) v?)•l 

I (e) (e) - or, L(e) J] +tjj --o 
(Cz - aC1)(C] - czC3) - ct (C2) cz (C3) = 0 

where Cz = 
R(e)L(O 

,, etc. 
2 

or 

Cx 2 - c•C ]. (C3 + C9 = 0 

el 
C2 + Ca 

R(e)L (e) 
2 

D•o('• v?)D?O •i ¾? 
L(½) -T + L(•) ' +T 

and 

R(e)(L(½)) 2 
4Die)0 (½) 

At < 
1-CO 

(5.51a) 

(5.51b) 
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5.3 PROCEDURE FOR SOLVING SYSTEM OF NONLINEAR 
EQUATIONS 

Equation 5.7 can be written in expanded form as 

mll(Xl, ... mnl(X1, ß .. , xa) -'- mln(Xl,.'" i xn)]I !} { b•i } , x.) .- m=(x,,. 
(5.52) 

where each mij is a function of one or more values of x i. Although not shown explicitly in 
equation 5.52 the coefficients in {B } are also sometimes functions of one or more x i i.e., 
bi(Xl ..... Xn). The nonlinear solution process begins by specifying an initial guess for 
{x}, {xo} 

x,ø 1 (x ø} = ß (5.53) 

If {X ø} was an exact solution, it would satisfy equation 5.52 exactly. In other words 

[M(Xø)I{X ø} = {B} 
or 

{B}- [M(Xø)I{X ø} = {R ø} = {0} (5.53) 

where {R ø} are the residuals at each node (not to be confused with the residuals obtained in 
Chapter 3 using Galerkin's method). Equation 5.53 can also be written in expanded form 

bl mll(Xl,." , . ' . . 

Lm, i(x• ø, , x•) m=(x•, , x•)Jl, x•J [r•øJ 
(5.54) 

where ri o are the entries of {Rø}. If the initial guess for {X} is incorrect, the solution will 
not be exact and the residuals will not all equal zero, [R ø } ;e [0}. In practice, we usually 
only require the residuals to be "close" to zero 

where max denotes the maximnm value of the residual at any node and • is a predetem•ed 
tolerance. 

If the initial prediction {X ø} does not satisfy equation 5.55 we search for an improved 
prediction [Xk}. The process continues in an iterative fashion until a sufficiently accurate 
solution is found. Several methods can be used to obtain the improved prediction [ X k). 
We will consider only two methods: Picard iteration and the Newton-Raphson method. 
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202 Step 4: Solve System of Equations 

5.3.1 Picard Iteration 

In Picard iteration (also called the substitution method) we construct a sequence of 
solutions {Xø}, {X1}, {X2}, etc. and each solution {X k} is calculated from the previous 
solution {X k-1 } 

{x k} = {B} (5.56) 

where [M(Xk-1)] represents the matrix of coefficients constructed from the previous 
solution (Klute et al., 1965). Equation 5.56 can be written in expanded form as 

(5.57) 

(If the coefficients in {B} arc functions of {X} they would also be computed using 
{Xk'l}). The procedure be•n• by specifying an initial guess {X0}. Then we solve the 
system of linear equations 

[M(Xø)] {X'} = {B} (5.58) 

to obtain the new solution {X 1 } (for example using Cholcski's method). We then compute 
the residuals 

{R 0} = {B } - [M(X0)] {X 1 } (5.59) 

and determine if the ri o arc sufficiently close to zero. If they arc, wc can use the solution 
{X1 }. L•' they are not wc conslruct a new matfix of coefficients using {X• } and solve for 
the next solution {X 2} 

[M(X')]fX 2} = lB} (5.60) 
where [l•[(Xl)] represents the matrix of coefficients conslructed from solution {X l }. This 
process is repeated until the maximum value of a residual is smaller than a specified 
tolerance • 

J ma,,{h J < e 
Equation 5.61 is called a test for convergence or convergence criterion because it is a 
measure of how close the approximate solution {X k} is to the unknown mae solution {X}. 
This test can also be performed on residuals computed from two consecutive solutions 

{R k} = {X k}-{x k-l} (5.62) 
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which can be written in expanded form as 

The algorithm for Picard iteration is summarized in Figure 5.6. 

(5.63) 

1. Specify initial approxfmate solution {X ø} 

2. For k = 1, 2, 3 .... (each value of k is an iteration) do the following 

A. Construct the matrix of coefficients [M(X k-t)] 

B. Solve the system of linear equations 

[M(X (Xk = 
for {X •} 

C. Construct the vector of residuals { Rk} using 

{R k} = {B} -[M(Xk-I)]{X k) 
or 

{R k} = {xkt-{X k-l} 

D. Test for convergence 

I ma(rl < 
If convergence criterion is satisfied, use solution {Xk}, otherwise 
set k = k + 1 and repeat steps A, B, C and D 

Figure $.6 Algorithm for Picard iteration. 

Example 
Use Picard iteration to solve the following system of nonlinear equations (let e -- 0.05) 

5xl 2 + 4XlX 2- 4x:• = 5 
-4XlX 2+ 4x2 2 + 3x2x 3 - 3x3 2 = 4 

-3x2x 3+ 3x3 2 = 3 
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204 Step 4: Solve System of Equations 

The system of equations can be written in matrix form as 

(5x 1 + 4x 2) -4x 2 0 ]I xl f it -4x 2 (4x 2+3x 3) -3x 3 x 2 

0 -3x 3 3x3 J [ x 3 

Following the algorithm in Figure 5.6, we specify an initial solution IX 0} (usually s½lecte• 
arbitrary) 

This can be used to construct the matrix of coefficients [MOO)] 

5(1)+4(1) -4(1) 3• ] [M(xO)] -- -4(1) (4(1)+3(1))-1) 
o -3(•) 3(1)j 

= -4 7 

0-3 

We can then construct the system of linear equations 

MCXø))X !} -- {B} 

-4 0 •I] • 
0 -3 x•J 

which can be solved to give 

[XI) = x•[ =J4.151 
The residual vector for the first iteration is 

f!t f f {R 1} --- {X 0} - {X 1} -- -- 4.15[. = -3.15[ 
5.15J -4.15.1 

and Imaxtr•}l = 4.15 > 0.05 
For the next iteration (k = 2) the matrix of coefficients is 
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{' (5(2.4) + 4(4.15) 

['M(X•)] =[ -4(;.15) -4(4.15) 0 ] (4(4.15) + 3(5.15)) -3(5.15) 
-3(5.•5) 3(5.•5).1 

28.60 -16.60 0 ] = -16.60 32.05 -15.45 

0 -15.45 15.45] 

The re, suiting system of linear equations 

28.60 -16.60 0 

-16.60 32.05 -15.45 

0 -15.45 15.45 

5 

can be solved for {X 2} 

[X2] = x22• = 142' 

and 

{R 2} = {Xi}-{X 2} = 4.15{,- 1.42{• = 2.73{• 
5.15J 1.62J 3.53J 

with [max{r•} [ = 3.53 > 0.05. The results for the remaining iterations arc summarized 
below 

0 1 1 1 
1 2.40 4.15 5.15 4.15 
2 1.40 1.42 1.62 3.53 
3 1.54 2.77 3.39 1.77 
4 1.56 2.19 2.49 0.90 
5 1.54 2.34 2.74 0.25 
6 1.56 2.31 2.67 0.07 
7 1.54 2.30 2.67 0.02 < 0.05 

and the solution is 

1.54] {X} = 2.30] 
2.67J 
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206 $tc'p 4: Solve System of Equations 

For some nonlinear problems (i.e., when the coefficients in [M(X)] am sensitive to 
small changes in IX]) it is better to use a modification of Picard iteration based on an 
incremental solution procedure (sometimes called the modified Newton-Raphson 
method ). As before, we specify an initial approximate solutionIX ø] and construct the 
matrix of coefficients [M(Xø)]. However, the residual vector [R ø] is computed before the 
system of linear equations is solved i.e., 

(5.64) 

We then test for convergence 

If a new solution is needed we construct a system of linear equations using {R 0} as the 
right hand side 

(5.66) 

where { AX 1 } is a vector of increments used to construct the next solution [X1 ] 

{X } = {X ø} + co*{Ax (5.67) 

and co* is a relaxation factor (usually determined by trial and error). We then compute a 
new residual vector { Rl } and repeat the entire process until the convergence criterion is 
satisfied. The algorithm is summarized in Figure 5.7. This procedure can increase the rate 
of convergence compared to the algorithm in Figure 5.6 (i.e., a fewer number of iterations 
are required to reach the specified tolerance) for some problems but may also increase the 
total number of calculations because of the matrix multiplications required to obtain [Rk}. 

Example 

Use Picard iteration with an incremental solution procedure to solve the system of 
nonlinear equations in the previous example (let • = 0.05 for max [ &x i ] and use co* = 0.5) 
Following the algorithm in Figure 5.7, we specify an initial solution 

1 

The matrix of coefficients is the same as before 

[M(Xø)] = 7 
-3 

The residual vector is 
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1. Specify initial approximate solution {X ø} 
2. For k = 1, 2, 3 .... (each value of k is an iteration) do the following 

A. Consmict the matrix of coefficients [M(X k-l)] 

B. Compute the entries of the residual vector[Rk-1} 

{R k-l} = {B} - [M(xk-I)]{X k-l} 

C. Test for convergence 

[max•r•-•l < •? 
If convergence criterion is satisfied use solution 
ofi•erwise perform steps D, E, and F 

D. Solve the system of linear equations 

[M(xk-1)I{Ax k} -_ [R k-I } 

for {aX k } 
E. Construct the next solution {X k} 

{x k} = {x •-• } + o)'{•x k} 
F. Set k = k+ 1 and go to step A. 

Figure $.7 Algorithm for Picard iteration with an incremental solution procedure. 

{go} = {•}_[M•xO)]fX o} 

-• _ ? = 

and I max{riø}l = 4 
We can then cons•uct •he sys•m of linear equations 

[M(xo)]{•X•} = {go} 

-4 7 -3 3 , AxI• = o xIJ 
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208 Step 4: Solve System of Equations 

and solve for fAX • } 

1.40 {ax = 
4.15J 

The next solution is given by 

iX'} = {X ø} + m*{AX t} = + 0.5 3.15[ -- 2.58• 
4.15J 3.08J 

The results for the remaining iterations are summarized below 

0 1 1 1 4 1.40 3.15 4.15 
1 1.70 2.58 3.08 1.62 -0.29 -0.49 -0.67 
2 1.56 2.34 2.75 0.38 -0.02 -0.05 -0.10 
3 1.55 2.32 2.70 0.13 -0.0026 -0.019 -0.029 
4 1.549 2.311 2.686 

4.15 
0.67 
0.10 
0.029 < 0.5 

and the solution is 

1.549 {X}= 2.311• 
2.686J 

In this example, the incremental solution procedure reduced the number of iterations 
required for Pieard iteration from 7 to 4. 

5.3.2 Newton-Raphson Method 

For some problems, Picard iteration may converge slowly. In this case we may wish 
to use the Newton-Raphson method (Coneus, 1967). This method is similar to the 
algorithm in Figure 5.7 in that we specify an initial solution {X 0} and compute a series of 
new solutions |Xt }, {Xa), {X 3 ) .... where at each iteration k we compute the solution 
{Xk} using equation 5.68 

{X k} ---- {X k-l} + (0'{• k} (5.68) 
As before, we continue to compute new solutions until the residuals axe close to zero i.e., 
{R k} - {0}. In the Newton-Raphson method we solve for {fix k} by writing a Taylor 
series approximation for {R •'} and setting it equal to zero 

{Rk} = + a{x} {fix k} 
ix} = ix k-•} 

•)2{R} 
2!•){X} 2 

({AXk}) 2 + '" = {0} (5.69) 
{x} = {x •'-• } 
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Neglecting the higher-order terms containing ([Axk]) 2, (fAXk]) 3, etc ... we have 

{Rk} = {Rk-•} + :x•_•Dx •) = fo} fx} = 
(5.70) 

or 

afR}[ {xk_i}{AX k} m {g k-l} afX} ix}= 
(5.71) 

But 

{Rk-1} ---- [B)_IM(xk-1)][xk-1 ) (5.72) 

and if we assume that the entries in {B } are not functions of [X} (for convenience only, 
this is not a requirement of the Newton-Raphson method) we can write (using the pr•uct 
rule) 

9fR} 

{x) = (x •-•} 

3[M(X)] 
= [M (xk-1)] 4- •{X)" {X k4 } (5.73) 

(x} = ix •'•} 

Substituting equation 5.73 into equation 5.71 gives a system of linear equations that can be 
solved for [AX k] 

[M(xk-I)] + •){X}- {X}={x•-,} {x } {AXk} -- (5.74a) 

which can be written in expanded form as 

'ml l(Xlj-l,., x•-')---mlu(Xl• -1 , x•-' am,, (x•._ , .... x•_l) am,.. •_, ...... a•T'' '" •-•-, •' ..... 
: : +Xl k-I : ... : 

•mul (x,k-! .... X• -1) •mnn mnl(Xkl -I ..... x• -l' m•(4-L ,•-bJ • ,. ---•5-•,, ..... 

i•1Ill 1. k-I k-I •ml n (xkl-I x•-I Axkl] rlk-1 •-•-•tx, ..... x. ).-- •x• '"' . 

k-I ß ß : ß 

•311 1. k-1 k-I •}mnn. k-I Xkn-I Xn ) **' ,-•-•-• tXl ..... •Xn,. {,X 1 ... A rnk-lJ 

(5.74b) 

The algorithm is summarized in Figure 5.8. The major difficulty in implementing the 
Newton-Raphson method is computing the entries in •[M.00) However, the rate of 
convergence is usually faster than Picard iteration and this can sometimes give an overall 
improvement in computational efficiency. 
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i i i i i i i i i i ii 

1. Specify initial approximate solution {X ø} 
2. For k = 1, 2, 3 .... (each value of k is an iteration) do the following 

3[M(X)] tXk_ 1 A. Construct the mawices [M(xk-I)] and 3{X} {X}={xk-I• 
B. Compute the entries of the residual vector {R k-• } 

{a k-I } = {B} - [M(X k-l)]tx k-l} 
C. Test for convergence 

If convergence criterion is satisfied use solution {X k-1 } 
otherwise perform steps D, E, and F 

D. Solve the system of Encar equations 

[ i)[M(X)] lc-,] [MiX-)I + aixl ta-- lxk'• X } {Axk} = } 
for {AX k } 

E. Construct the next approximate solution {X k} 
---- {x {x {ax 

F. Perform steps A through E until convergence criterion is satisfied 
, ,, , , 

_ 

Figure 5.8 Algorithm for Newton-Raphson Method. 

Example 

Use the Newton-Raphson method to solve the system of equations in the previous 
example (let e -- 0.05 for max [Axi] and use t0* = 1.0) Following the algorithm in Figure 
5.8 we specify an initial solution [X ø } 

For k = 1, the matrix of coefficients [M(X•-•)] and the residual vector {R k-I } are the same 
as in the previous example 

[M(X•-•)] = [M(Xø)] = 7 
-3 
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The derivatives of [M•] are given by 

•x•(Sxx + •x•) 8_•z (_4x2) 8 ' lo) 

a•i --' 

= 0 

0 

Similarly 

a[•)] 
-- -4 4 and 8x3 3 

0 0 -3 

•3[M(X)] •_•[M(X)] 
{X} -- {Xk-l] '{xk-1 } --'-- xl 3X1 - 

4- x• •)x 2 

+ 3x• 

{:x) = t•-') 

= (1) 0 +(1 -4 4 + (1 3 
0 0 0 -3 

= -4 7 

0-3 

and referring to equation 5.74 we have 

9-4 0 9-4 0 Axll 0 
-4 7 -33 + --4 7 -33 o -3 o -3 

which can be solved for {AX • } 

0.700] 

AxlJ 2.075J 
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and 

{X'} = + (1.0), 1.575• = 2.575• 
2.075J 3.075J 

For k = 2 we have 

[ 18.0(••8-10.30 0 ] [•(x•)] =-• 0 19.•2-9.23 
-9.23 9.23.l 

{R 1} = - -1•30 19.52 -9.23 2.575• = J-0.372! -9.23 9.23J 3.075J L-1.615J 
and 

[ o 1 -10.30 19.52 -9.23 + (1.700) 0 0 + (2.575 4 
0 -9.23 9.233 0 0 0 0 

+(3.075) 0 3 = -20.60 39.05 -18.46 
0 -3 0 -18.46 18.463 

-18.46 18.46J[ Ax]J -0.327J 

which can be solved to give 

-0.•4•] {ax •}: -0.• 
-0.327J 

and 

{ 1.7001 {-0.1431 {1.557] 3.075J -0.327J 2.748J 

{ 1.54] After one more iteration (k = 3) we find {X 3} = 2.32• with I max {ri 3} I TM 0.03. 
2.71J 
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5.4 APPLICATION OF PICARD ITERATION 

5.4.1 Steady-State, Unsaturated Flow Equation 

The matrix formulation for the steady-state, unsaturated flow equation (equation 5.2) 
can be solved using Picard iteration. We simply set [M(X)] = [K(W)], the global 

conductance matrix, {X} = { W}, the unknown values of pressure head at each node, and 
{B} = {F}, the specified rates of groundwater flow at nodes representing sources and 
sinks (i.e., at Neumann nodes). The global conductance matrix is symmetric because the 
element maltices it contains are symmetric. Equation 5.2 is a system of nonlinear equations 
because the entries of the element conductance matrices contain the hydraulic conductivity 
for the element and, in unsaturated flow, hydraulic conductivity is a function of pressure 
head. An example of the dependence of hydraulic conductivity on pressure head for three 
soils is in Figure 5.9. Hydraulic conductivity is maximum when the porous media is 
saturated i.e., W = 0 and decreases rapidly with increasing negative values of W. 
Unfortunately, the unsaturated hydraulic conductivity function is difficult to measure 
experimentally. K(W) also displays hysteresis (i.e., the value of K(W ø) for a fixed value of 
pressure head W 0 is usually different for conditions of wetting and drying). 

To solve the steady-state, unsaturated flow equation using Picard iteration we can use 
the algorithm in Figure 5.6 or 5.7. To begin we specify an initial approximate solution 
{Wø}. We use these values to compute initial values of hydraulic conductivity for each 
element in the mesh and compute the element conductance matrices. The global 
conductance matrix is assembled and modified for specified values of W and the system of 
linear equations is solved for the new values of pressure head at each node {W1 } 

[K(vø)]{V •} = {F} 

The residuals arc computed from 

{R = {F} 
or 

= 

If the convergence criterion is satisfied we use the solution { W1 }. Otherwise we use {W• } 
to compute new values of hydraulic conductivity for each element, compute new element 
conductance matrices, assemble [KOg•)] and so on. Because of the need to determine 
values of hydraulic conductivity for each element for each iteration it is convenient to 
express measured values of K(W) vs W in a simple analytical form. Several empirical 
equations have been proposed for this purpose e.g., 

a 

K(•) = (5.76) 

K(•) = K•exp(-a V) (5.77) 
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lo o 

10-2 

Clay 

Figure 5.9 

Pressure Head,¾ (cm) 

Dependence of' hydraulic conductivity on pressure head for three soils. 

where a, b, and m are empirical coefficients and K s is the saturated value of hydraulic 
conductivity (i.e., at • -- 0) (Gardner and Mayhugh, 1958). Other equations for K(•F) vs 
¾ are discussed in Mualem (1976), Raats and Gardner (1971), and Bear (1972). Althouõh 
these equations are convenient for calculations they often provide a poor fit to experimental 
data. In many cases a simple "table lookup" interpolation scheme (i.e., using cubic 
splines) can be used to compute K(•F) for any value of •F. • is computed at the nodes of 
the mesh so we must decide which value of • and KOF) to use to compute the element 
conductance matrices. If analytical methods are used to compute [K(e)(tF)] (e.g., for the linear 
bar, triangle, or rectangle elements) we can simply use the average value of•Fforthe 
nodes of each element (see Chapter 6). If Gauss quadrature is used to compute [K(½)(W)] 
(e.g., for the isoparametric elements) we can also use the average value of •F or we can 
compute the value of •F and K(• F) at each Gauss point during the numerical integration 
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(i.e., we can write K(e)(•(ei, rl i, •i)) etc. in equation 4.63. The vaul½ of • at the Gauss 
point can be computed using the ½lemcnt's interpolation functions and the values of • for 
each node in the element (see Chapter 6). The various steps in solving the steady-state, 
unsaturated flow equation are illustrated in the following example. 

Example 

Use Picard iteration to solve the steady-state, unsaturated flow equation for the mesh 
shown below. Assume that I•e)0g)(cm/s) vs lg(cm) is given by 

K(, •)(v) = o.o•exp(O.O• v) 

for all elements and use e = 0.05 

(1) (2) (3) 

•g---100 © : -' _- •g=-80 
1 2 3 4 

L (e) = 5 crn for all elements 

The element conductance matrices ar• given by equation 4.15a 

-0.2 

[K(½)(•)] = L(½) 
for all elements. The global conductance matrix can be assembled using the procedures in 
chapter 4 and the global system of equations can be written (after dividing by the common 
factor 0.2) 

-K (V) (ICI1)(V) +I(?(•)) 
-K?)(V) 

0 

-K?)(•). . v• = 

-K?)(•) K?)(•) J 

Modifying these equations for the boundary conditions •gl = ' 100 and •g4 = -80 gives the 
system of nonlinear equations to be solved for •g2 and •g3 

(2) (3) 
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216 Step 4: Solve System of Equations 

Following the algorithm in Figure 5.6 we specify an initial solution {¾0} 

The average value of ¾, • and K(Cl/) for each element can now be computed 

(¾• + ¾2)/2 = (-100-90)/2 = -95.0 
+ ¾s)/2 = (-9o- 

(¾3 + ¾•/2 = (-85 - 80)/2 = -82.5 

K(x•)(¾) = 0.01 exp(0.01(-95)) = 0.00387 crrds 
K?(¾) = 0.01 exp(0.01(-87.5)) = 0.00417 cm/s 
K?)(•) = 0.01 exp(0.01(-82.5)) = 0.00438 crrds 

The system of linear equations for the first iteration (k = 1) is 

-0.00417 (0.00417 + 0.00438).][¾]j 
and 

{¾1} = ¾]J -86.37J 

-0.3871 = {-0.351J 

The residual vector { R• } is 

{-92.94• 2.94• -86.36J = f 1.36J 
and I max = 2.94. The results for the remaining iterations are summarized below 

0 -90 -85 0.00387 0.00417 0.00438 - 
1 -92.94 -86.36 0.00381 0.00408 0.00435 2.95 
2 -92.88 -86.23 0.00381 0.00408 0.00436 0.13 
3 -92.88 -86.22 0.01 < 0.05 

and the solution is 

-92.88 [ 
-86.22 ] 
-80.00 J 
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$.4.2 Transient, Unsaturated Flow Equation 

The matrix formulation for the transient, unsaturated flow equation (equation 5.4) can 
be solved using Picard iteration. We simply set 

[M(X)] = [C(NO] + mat [K(¾)] (5.78a) 

{X} = {•}t+at (5.78b) 

{B}: ([C(¾)] - (l-m) At [K(•)] ){¾}t + At ((1-<o){F} t + m{F}t+at ) (5.78e) 

in equation 5.7 where [C(•)] is the global capacitance matrix, [K(•)] is the global 
conductance matrix, to is the relaxation factor, At is the time step, and {F} are the specified 
rates of groundwater flow representing sources and sinks at Neumann nodes. {F} is 
known at all time steps. {V}t is known from the initial conditions or from the solution for 
the previous time step. /•l/}t+At contains the unknown values of pressure head at time 
t+At. [M(X)] is symmetric because [C(•)] and [K(•)] are symmeu•c. 

Equation 5.7 is a system of nonlinear equations because the entries of the element 
conductance and capacitance matrices contain the hydraulic conductivity and specific 
moisture capacity for the element, and for unsaturated flow these are functions of pressure 
head. An example of the dependence of hydraulic conductivity on pressure head is in 
Figure 5.9. C(¾) is usually calculated by differentiating experimental curves of 0 vs •, 
where 0 is volumetric water content (Figure 5.10) 

•0 

C(V): • (5.79) 

Both K(•) and C(•) may display hysteresis. 
To solve the transient, unsaturated flow equation using Picard iteration we use the 

algorithm in Figure 5.6 or 5.7 at each time step. To begin we specify an initial guess for 
[ xg 0} t+At. We use these values to compute initial values of hydraulic conductivity and 
.specific moisture capacity for each element in the mesh and compute the element 
conductance and capacitance matrices. The global matrices are assembled and modified for 
specified values of Xl/and the system of linear equations is solved for the new values of 
pressure head at each node [•1 }t+At 

(it(vø)] + coat [IC(vø)ltv'},+a,: ([c(vø)] -(•-m) at [IC(vø)l)fv}, 
+ at ((1-m){r} t + to{r}t+at) (5.80) 

where all values of {tiP] refer to time t+At. (The values of [ •]t on the right-hand side of 
equation 5.80 are known from the solution for the previous solution and do not change 
during the iterations required to find {¾• }t+at)- The residuals are computed from 

or 

{R •} = ([C(vø)] - (•-m) at [K(Vø)]){¾}, + 
-([c(vø)] + coat (5.8•) 

{R •}: {V•} _ {vo} (S.82) 
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0.7 

0.6 

0.5 

0.4 

0.2 

0.1 

0.0 

Figure 5.10 

c(o: 

_10 -• _10 o _10 • 

Pressure Head, W (cm) 

Dependence of volumetric water content on pressure head for three soils 
and definition fo specific moisture capacity. 

If the convergence criterion is satisfied we use the solution [ •l } t+At for this time step, set 
[¾]t = [¾}t+At, and proceed to the next time step. Otherwise we compute new values of 
hydraulic conductivity and specific moisture Capacity, assemble and modify [K(•I)] and 
[C(•I)] and solve the system of equations for [l[/2]t+A t, and so on. We usually use the 
solution from the previous time step as the initial guess to begin the iterations for the next 
time step 

(¾o},+•,: {•g}, (5.83) 
The procedure for solving the transient, unsaturated flow equation using Picard iteration is 
in Figme $.11. Similar algorithms can be written for Picard iteration with an incremental 
solution procedure and for the Newton-Raphson method. 

Because of the need to determine values of hydraulic conductivity and specific moisture 
capacity for each element for each iteration it is convenient to express measured values of 
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K(¾) vs ¾ and C(¾) vs ¾ in simple analytical forms. Several empirical equations have 
been proposed for this purpose, although it is often preferable to use "table look up" 
interpolation schemes to compute K010 and C010 for any value of •. As with the case of 
steady-state, unsaturated flow we can use the average value of ¾ within an element to 
compute the entries in [K(•)(•)] and [C(e)(•)] or we can compute the value of •!/, K010, and 
C(¾) at each Gauss point during the numerical integration. 

For each time step do the following 

1. Specify an initial guess solution for pressure head at the current time 
.0 

step [• •t+z•t. Usually we use the values of pressur• head computed 
from the previous time step 

2. For k = 1, 2, 3 .... (each value of k is an iteration) do the following 

A. Compute the values ofK(e)(Vk-1)and C(e)(Vk-i)for each element. 
Consu'uct the element conductance and capacitance matrices 

[K(•)(Vk-•)] and [C(')(•k-•)] 

B. Solve the system of linear equations 

= ([COltk-1)]- (I-co)at [K(xItk-1)l){•}t 
+ At ((1-co){F}t + 

for 

C. Construct the vector of residuals { Rk} using 
{R k} = ([C(l•tk-l)] - (1-co)At [K(ll/k-1)l){v} t 

+ At ((1-co){F}t + o){F}t+a t) 

- + 
or 

{R = 

n. Test for convergence 

If convergence criterion is satisfied use solution{Vk}t+at. Set 
{•}t = {Vk}t+a,and proceed to the next time step. Otherwise, set 
k = k + 1 and repeat steps A, B, C, D 

Figure 5.11 Procedure for solving the transient, unsaturated flow equation using 
Picard iteration. 
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220 Step 4: Solve System of Equations 

5.4.3 Modification of Solution Procedure for Relatively Dry Porous Media 

When the porous media is relatively dry, hydraulic conductivity can change rapidly 
with only a small change in pressure head. For example, in Figure 5.9 the hydraulic 
conductivity of the sandy loam soil decreases from 0.8 to 0.0017 cm/day as the pressure 
head decreases from -1 to -10 cm. This behavior can cause difficulties when solving the 
steady-state or transient, unsaturated flow equations using Picard iteration or the Newton- 
Raphson method. An alternative approach can be developed by rewriting equations 1.2 
and 1.4 in terms of the volumetric water content 0. For steady-state, unsaturated flow we 
have 

aK(e) 
8z = 0 (5.84) 

where Dx(0), Dy(0,), and Dz(0) are the components of the aquifers diffusivity 

• K(O) D(O) = K(e) = 

and K(0) and C(0) are the unsaturated hydraulic conductivity and specific moisture 

capacity written as functions of 0. Empirical expressions can be developed for K(0) and 
C(0) or simiple "table-look up" or interpolation schemes (e.g. using the data in Figures 5.9 
and 5.10) can be used. For example Gardner and Mayhugh (1958) proposed the equation 

D(0) = a exp(b0) (5.85) 

where a and b are empirical coefficients. In equations 5.84 the z coordinate axis is oriented 
vertically upward. For transieng unsaturated flow we have 

+ + •(D,.(0)•) + •'(Dy(0)•' aK(e) a0 
az = a: (5.86) 

If the porous media is relatively dry it is often assumed that the effect of gravity on 
water flow is small. In this case, the last term on the right-hand side of equation 5.84 can 
be discarded. Following the procedures described in Chapter 3 and 4, matrix expressions 
similar to equations 5.2 and 5.4 can be developed for use in solving equations 5.84 and 
5.86. 

[C(O)]{•}} + [D(O)]{O} = {F} (5.87) 

Equation 5.84 can be written 

([c] + coat [D(O)]) {O},+•, = ([C] - (1-o•) At [D(O)]){O), 

+ At ((l-m) {F}t + m{F}t+A 0 (5.88) 

where [C] is a global capacitance matrix that can be obtained by assembling the element 
capacitance matrices [C (e)] for all elements in the mesh (written here with a consistent 
element formulation) 
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• N? ) ] 
N•'J 

(5.89) 

and [D(O)] is a global diffusivity matrix that can be obtained by assembling the element 
diffusivity matrices [D(e)(O)] for all elern•nts in the mesh 

[D00(e)] = 

'•N? ) •N? ) •N? )' 
3x i}y 3z 

nx3 

o D•>(e) 

3x3 

oo. 

•x 

o•N? ) 

•N? ) •N• ) 
oo. 

. 8z 8z . 

dx dy dz 

3xa (5.90) 

The procedures in Chapter 4 can be used to compute the element matrices, assemble the 
global system of equations, and modify the system of equations for known values of'0 at 
Dirichlet nodes. Equation 5.88 is a system of nonlinear equations that can be solved using 
either Picard iteration or the Newton-Raphson method. Because the diffusivity varies less 
with changing water content than hydraulic conductivity varies with changing pressure 
head the numerical solutions should converge more rapidly when solving equation 5.86 
than when solving equation 5.2. However, equation 5.86 can be extremely difficult to 
solve when the porous media is nonhomogeneous because large changes in water content 
can occur abruptly at boundaries between layers with different hydraulic properties (e.g. at 
the contact between sand and clay layers). In this case solutions based on equation 5.2 are 
preferred. 
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NOTES AND ADDITIONAL READING 

1. A variety of numerical methods can be used to solve the system of linear equations 
represented by equations 5.1, 5.3, and 5.5. Some examples are Gauss elimination 
(Cook, 1981), Gauss-Seidel iteration (Wang and Anderson, 1979), and the wavefront 
method (Irons, 1970). The merits of these methods are compared in Meyer (1973) and 
Jensen and Parks (1970). There is no single "best" equation solver because the 
performance of an algorithm varies from one class of problem to the next. Unless the 
number of unknowns exceeds several hundred, choice of method has little impact on 
speed or accuracy of computation. 

2. An alternative form of matrix storage that is widely used is called "skyline" matrix 
storage (Eversfine, 1979). Skyline storage is useful for reducing storage requirements 
when the number of zero entries within the band is large. 

3. A thorough discussion of instability and numerical oscillation for transient groundwater 
flow and solute transport is in Lapidus and Pinder (1982), Pinder and Gray (1977) and 
Remson et al. (1971, p.71 - 77). 

4. A computer program that uses Picard iteration to solve the transient unsaturated 
groundwater flow equation using linear triangle elements is described in Davis and 
Neumann (1983). Comparisons of several computer programs for transient, 
unsaturated groundwater flow are in Matanga and Frind (1981), Bachmat et al. (1978), 
and Oster (1982). 
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Problems 

1. Perform triangular decomposition on the following matrices 

(a) -1 2- Co) 4 
o-1 1 

4 -1 -2 -1 

-1 4-1 2i (c) -2-1 4 (d) 
-1 -2 -1 

4 -2 -2 -1 

-1 4 -2 2i -2 -1 4 

-1 -2 -1 

2. Solve the system of equations [M] {X} = { B i}, i = 1, 2, using Cholesld's method 

(a) [M]=-• 2- , {B•}= , {Sa}= 
0-1 

(b) [M] = 2 4 , 
2 1 

{B•} = , {•a} = lo 
lO 

(c) [M] = 

4 -1 -2 -1 1 1 

-2 -1 4 ' ' 

-1 -2 -1 

(d) [M] = 

4 -2 -2 -1 1 0 

-1 4 -2 -2, {B!} = -2 -1 4 -41 ' -1 -2 -1 

3. Compute the length of vector [M} required to store each matrix in problem 1 in vector 
storage. 
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224 Step 4: Solve System of Equations 

4. Use the algorithms in Figures 5.2 and 5.3 to assign the entries of the following 
matrices to vector storage 

1200 

(a) 21 (b) 
01 

1020 

o 1 

o2 

(o 

40220 

042442 4240 

4404 

0420 

5. Find combinations of ¾ and At that prevent instability and numerical oscillations when 
solving the transient, saturated flow equation using the elements shown below (use the 

cons/stent formulation for element capacitance matrices). S? ) = 0.1 m -l, K?)= Kiy e) = 
0.1 m/day. 

(a) (b) 

[ x • 

(c) 
(6,7) 

(d) 

(10,3) 

(•o,•) 

,4) (0,0) 
(3,3) 

6. Repeat problem 5 if K? = 1 m/day and K• e) = 0.05 m/day. 

7. Repeat problem 5 using a lumped formulation for the element capacitance man'ices. 
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8. Repeat problem 6 using a lumped formulation for the element capacitance matrices. 

9. Find combinations of t0 and At that prevent instability and numerical oscillations when 
solving the solute transport equation using the elements in problem 5. Consider 
saturated groundwater flow and use the lumped formuhtion for element sorption and 
advection-dispersion matrices. @?) = 1600 kg/m 3 K• ) = •, = 0, n = 0.35, r•ie) = r)ie)- '"xx '"yy -- 

1 m2/day, Dix• = r)(e) 0.5 m2/day, v? = 1 m/day, v• ) = 0.2 m/day. 

10. Solve the following systems of nonlinear equations using Picard iteration (Figure $.6) 

(a) 

(2x• + 3x 2) 

-3x 2 
0 

(3x 2 + 4x 3) -4x 3 x 2 -- 

-4x• 4xs3 •, xs 

(x• + 2xz) 
-2x 2 

0 

(x l+2x 2+x 3) (-2x 2-x3) x2 = 
(-2xz- x•) (2xz + x•) J• x• 

11. Repeat problem 10 using Picard iteration with an incremental solution procedure 
(Figure 5.7). 

12. Repeat problem 10 using the Newton-Raphson Method. 
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STEP 5: CALCULATE REQUIRED ELEMENT 
RESULTANTS 

By solving the global system of equations we obtain values of the field variable 
(hydraulic head, pressure head, or solute concentration) at each node in the finite element 
mesh (and at each time step if we are solving a transient groundwater flow or solute 
transport problem). We also may wish to calculate certain additional quantities for each 
element that we will collectively refer to as element resultants. The three types of element 
resultants usually considez'ed axe 

1) The value of the field variable at any specified point (not necessarily a noaa• point) 
within an element, 

2) The average value of the field variable within an element, and 

3) The values of derivan'ves of the field variable at any specified point within an element 

In most cases the computed values of the field variable at the nodal points are the only 
information required. However, it is possible to calculate the value of the field variable at 
any point in the mesh. For example, the value of hydraulic head may be requized at a 
pumping well. that is not located at a node. 

6.1 LINEAR ELEMENTS 

If the interpolation functions for an element are defined using a global coordinate 
system the procedure is very simple. We first specify the coordinates of the point of 
interest and detem•e which element in the mesh contains the point (If the point falls on the 
boundary between two elements either element can be considered to "contain" the point 
because the approximate solution is continuous from one element to the next). Let 
(x0,Y0,Zo) refer to the global coordinates of the specified point and let e 0 refer to the 
element that contains the point. The value of head or concentration at the point can be 
obtained directly from the approximate solutions (see section 3.1) 

n 

fi(%)(xo,Y0,Z0) = ZN?ø)(xo,Y0,Zo)hi (6.1a) 
i=l 

n 

•%)(xo, Yo,Zo) = N?ø)(xo,Yo,Zo)V (6.1b) 
i=l 

n 

•(%)(xo, Yo,Zo) = ZN?O)(xo,Yo,zo)Ci (6.1e) 
i=l 

226 
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where N? 0) are the interpolation functions for the element containing the point, n is the 
number of nodes in element e 0, and h i, •i- and C i are the computed values of hydraulic 
head, pressure head, and solute concentration at each node in element e0. 

Example 

Given the mesh shown below compute the value of pressure head • at points A and B. 

(5,5) (•5,5) 
3 5 

j_ 1). j I_ 15,3) (2) (•3,31: 
1 2 4 

(0,0) (5,0) (15,0) 

node 

1 -5 
2 -5 
3 -8 
4 -10 
5 -12 

We can compute the value of • at point A using the interpolation functions for either 
element. 

For element 1 (see Figure 4.6): 

N?(5,3) = 1 (a i+bi(5 )+ci(3)) 
2A (e) 

N•)(5,3) = 1 2A(• ) (aj + bj(5) + cj(3)) 

N?(s,3) = + bdS) + cd3)) 
2A0)= 5(5) = 25 
aj = xkY i -- xiY k = (5)(0)-0(5) = 0 

bj = yk-Yi= 5-0= 5 
Cj ---- X i-x k = 0-5 = -5 

N?)(5,3) = 0 (why ?) 

N?(5,3) = 2-• (0 + 5(5)- 5(3)) = 0.4 
N(k•)(5,3) = 1 - 0.40 = 0.6 (why ?) 

¾0)(5,3) = 0(-5) + 0.4(-5) + 0.6(-8) = ":4.8 
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For element 2 (see Figure 4.7): 

N?-- (2b(e)-s)(2a(e)-t! 
4a(e)b (•) 

2) -_ 
s(2a(e)-t) 
4a(e)b (e) 

(k 2) = St 
4a(e)b(0 

N? = '(2b(e)-s)t 

2b (e) = 15-5 = lO 2a (e) = 5-0 = 5 

At point A, x = 5, y = 3, s = 0, and t = 3 

N?(0,3) -- fl. 0 - 0)(5 -3) _- 0.4 (lo)(5) 

NJ2)(0,3) = 1-0.4 = 0.6 (why ?) 
•?(o,3) = •)(o,3) = o 

•(2)(0,3) = 0.4(-5) + 0(-10) + 0(-12) + 0.6(-8) = -4.8 

We compute the value of W at point B using the interpolation functions for element 2. At 
point B, x = 13, y = 3, s = 8, and t = 3 

N?(8,3) (•0- 8)(5 - 3) = 0.08 = ''(•0)(5) ' 

N?(8,3) 8(10-3) = ' (•o)(5) = 0.32 

N?(8,3) = 8(3) = 0/,8 4(5/2)(5) 

N?(8,3) (10- 8)(3) -- 0.12 = ' (10)(5) 

•(2)(8,3) = 0.08(-5) + 0.32(-10) + 0.48(-12) + 0.12(-8) = -10.3 
If the interpolation functions for an element are defined using a local coordinate system 

the same procedure is used but the approximate solution is given by 

[(•(•,qo,•o) -- ZN?ø)(•o,qo,•o)hi 
i=l 

(6.2a) 
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n 

i--1 

(6.2b) 

n 

= 
i=l 

wher• (•,q0,•o) are the local coordinates of the specified point. 

(6.2c) 

Example 
Compute the value of solute concentration at point A for the isoparamcwic, linear 

quadrilateral element shown below in the local (E,q) coordinate system. The local 
coordinates of point A are (2/3,1/3) 

L A q 

-.• 

4 

1 

(-1,-1) 

3 

(1,1) 

(1,-1) 

Ci 

i (mg/L) 
1 100 
2 75 
3 80 
4 95 

The interpolation functions for this type of element arc in Figure 4.10. Using equation 
6.2c we have 

(Note that the same results could be obtained by using the interpolation functions for the 
linear rectangle clement in Figure 4.7). 

If the coordinates of the specified point are given in a global coordinate system and the 
interpolation functions for the element containing the point are defined using a local 
coordinate system, a coordinate transformation is required to obtain the coordinates of the 
specified point in the local coordinate system 

eo = ft(xo) (6.3a) 

•o = f2(Yo) (6.3b) 

• = f•(zo) (6.3c) 
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where fl, f2, and f3 are the coordinate transformation equations. Once the values of •0, 
and •0 are obtained equation 6.2 can be used to obtain the value of •, •, or • at the 
specified point. Unfortunately, obtaining general coordinate transformation equations for 
many two-, and three-dimensional isoparametric elements is difficult because the 
interpolation functions are nonlinear. This approach is seldom used in practice. If 
isoparametric elements are used (and if the shape of the elements will be highly distorted) it 
is recommended that the analyst 

I) insures that nodal points are placed at any special points of interest, and 

2) uses a large enough number of nodal points so that contour lines, streamlines, etc. 
can be drawn using only the computed values of the field variable at the nodes. 

The second type of element resultant we will consider is the average value of the field 
variable within an element. This information is needed, for example, when solving 
unsaturated groundwater flow problems. For unsaturated porous media, the components 
of hydraulic conductivity and specific moisture capacity are functions of the pressure head, 

K = K(•') (6.4a) 
C = C(•) (6.4b) 

We usually assume that the value of hydraulic conductivity and specific moisture capacity 
are constant within an element but can vary from one element to the next. A typical 
procedure is to compute an average value of pressure head for each element and then use 
this average value to obtain a value of K(•) or C(•). The average value of pressure head 
within element e, •e) is given by 

1 I•(e)/ix dy dz 
_ I N?(x,y,z)v i (ix dy dz (6.5) 

v(e) \i = 1 

where V (e) is the volume of element e. Similar equations can be written for one- and two- 
dimensional elements. 

Evaluating the integral in equation 6.5 for isoparametric elements will usually require 
numerical integration and the procedures of Chapter 4 can be used for this purpose. 
However, as long as the element shape is not highly distorted and if pressure head is not 
changing rapidly within the element an acceptable approximation to equation 6.5 is given 
by 

1 

•(•) • • XVi (6.6) 
i--1 

where n is the number of nodes in element e. Equation 6.6 assigns equal weight to the 
value of •l/at each node. For two types of elements, the linear bar and linear triangle, the 
results obtained by equations 6.5 and 6.6 will be identical. 
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Example 
Compute the average value of •, • for the element shown below using equations 6.5 

and 6.6 

¾i = -1 (e) ¾J = -1.8 
! j 

x•=• x•=• 
The one-dimensional form of equation 6.5 is 

1 N?(x)V• • •e) _- L (e) •,i= 1 

= L=•x!) (N{e)(x),i + N•C)(x)w'j) dx ß 

= =+.,;i,{rx,.,- .,. 
_ I f{(3-x + (X-1)(_l.8)}dx _ • z )(-1) 

1 -•. + - 0.9x + 0.9 dx 
-- • (-0.4x - 0.6)dx 

, [_o½., I'' = • -------- o. dx = • (-t.8 - •.8 + 0.2 + o.d) = :t.4 1 

Using equation 6.6 we have 

1 

,•) = • (-1 + (-,...8)) = -'1.4 
Example 

Compute the average value of •, • for the element shown below using equations 6.5 
and 6.6 

•/•, = -5.5 •/ j = -6 
(3,8) (8/.s) 

ß 

d• (3,2) Y L,,•,, ¾i ---5 
x 
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The two-dimensional form of equation 6.5 is 

•t{c) = •-•IA(•) N?)(x,y)llti dx dy 
_ 1 (I.•,• ' N?)(x,y)• i dx dy+ la,,•, N•jO(x,y)•j dx dy+ la,,•, l•)(x,y)•k dx dy) 

Performing the integrations one at a time using the integration formulas for the linear 
triangle element described in Chapter 4 we have 

and 
1 

•) = •. (-25 - 30- 27.5) = -5..__•5 

Using equation 6.6 we have 

(-5 - 6- 5.5) = --5.5 
The third type of element resultant that we will need to compute is the derivative of the 

field variable at a specified point within an element. In groundwater fiow problems the 
derivatives of hydraulic head or pressure head are needed to compute the components of 
apparent groundwater velocity using Darey's Law. The velocity components can then be 
used to draw streamlines, showing the direction and magnitude of apparent groundwater 
velocity throughout the mesh. In a solute transport problem, the components of apparent 
groundwater velocity are needed to compute the element advection-dispersion matrices. 
Derivatives of solute concentration can also be used to compute the components of solute 
flux although this is rarely done in practice. 

The components of apparent groundwater velocity are computed using Darey's Law 
which can be written 

vx = -Kx•'• (6.7a) 
•h 

Vy = -Ky• (6.7b) 

v, -- -K2• (6.7c) 

for saturated flow and 
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for.unsaturated flow. In equation 6.8 it assumed that the z axis is directed vertically 
downward. Remember that hydraulic head -- pressure head 4- elevation head 

h = • + z (6.9) 

where the elevation head z* is defined with respect to an arbitrarily placed datum 
(Appendix I). In unsaturated flow in a horizontal direction (in our case in the plane of the 
x and y coordinate axes) equation 6.8a is obtained from equation 6.7a 

•}h •h 
v• = -K• = -K•(V)• 

=-K,(•)•(•+ Z'•O 

= -K• (•)-•x• 
Similarly for Vy. Since the z axis is directed vertically downward .•. = 1 and 

, 

v, = -r,,(¾)•(• + 

Once we have computed the values of hydraulic head or pressure head for each node in the 
mesh we can compute the derivatives of head at any specified point in the mesh. Let 
(x0,Y0,Z0) refer to the coordinates (in a global coordinate system) of the specified point and 
let e 0 refer to the element that contains the point. The values of the derivatives of head at 
the specified point can be obtained by evaluating the derivatives of the approximate solution 
(equation 6.1) at the point. For hydraulic head the approximate solution Is 

!1 

fi(%)(xo'Yo'Zo) = Z N(?(xo'Yo'Zo)hi 
i=l 

(6.9) 
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The derivatives are given by 

•[t (• _ •.., •N? ø) • N(neo ) '][ 'c3x (X0'Y0'-u)= [ cqx (x0'Y0'Z0) .... c3x (xo'yo'zo)J I (6.10a) 
•)•(• [ øqN?ø) &N•O ) ]{ '3y (x0'Yø'Zø) = 3y (xø'Yø'Zø) ..... 3y "(xø'yø'zø) (6.10b) 

'• (xo,Yo,•o• = •z (xo,Yo,Zo)'" i)z (xo,Yo,Zo) (6.10c) 

Similar expressions can be written for the derivatives of pressure head 

•'(• [ •(•) (xo,yo,%) -- •r4(n•) ]{ 3x (xø'Yø'Zø) = ' 3x ' •)x' (xø'Yø'Zø) (6.11a) 

•y (xo,Yo,Zo) = "•y (xo,Yo,Zo) '" •)y (xo,Yo,Zo) (6.1lb) 

[ •) •(•(xo,yo,zo) "' (xo,yo,zo) (6.• •c) 3z (xø'Yø'Zø) = '•z 

The components of apparent groundwater velocity at the specified point are given by 

v(?(xo,Yo,Zo) =-K• ø) •)x (xo,Yo,Zo) (6.12a) 

•(xo, Yo,Zo) = -K(? a•7 (xo,Yo,Zo) (6.12b) 
v('-•(xø'Yø'Zø) =-Kiz• o• (xø'Yø"•) (6.12c) 

for saturated flow and 

v•(xo,yo,zo) (%) = -Kx (•) c3X' (xo,Yo,Zo) (6.13a) 

v?(xo,Yo,Zo) =-K(?(•) •)y (xo,Yo,Zo) (6.13b) 

. ) v(-%)(xo,Yo,Zo) =- z •'•)•.- 3z •'xø'Yø'Zø)+ 1 (6.13a) 

Water Resources Monograph
Groundwater Modeling by 
the Finite Element Method Vol. 13

Copyright American Geophysical Union



Chapter 6 235 

for unsaturated flow, where, for example, v•ø)(Xo, Y0, z0) is the component of apparent 
groundwater velocity in the x coordinate direction at the point (x0,Y0,Z 0) within element e 0. 
The saturated and unsaturated hydraulic conductivities have also been superscripted with e 0 
because they can vary from one element to the next. The use of equations 6.10 to 6.13 is 
illustrated by the following examples. 

Example 

Compute v x at x o = 2.5 ½m for the element shown below. Let K x -- 0.02 era/d, h i -- 1 
cm, and hj -- 1.6 cm 

i (%) .xo .} 

The one-dimensional form of equation 6.10a is (for a two-node element n = 2) 

a x"(xo) = Lax (Xo) ax (xo)J t h• 

For this type of element ( see Figure 4.5) 

and 

8• %) 1 1 
ax (Xo)=-L( • TM -• 

i)l•j eø) 1 1 
ax (xo)= L( •= • 

i]{ =o., 8x (2.5)= -•. I 

v?)(Xo) = v(? = -(0.02)(0.3) = -O,006cm/d 

The negative value means that flow is in the negative x dizection (to the left in the figure). 
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Example 

Compute v x and vy at x o = 5 and y0 = 7 for the element show below. Let K x = 0.03 
cm/d and I• = 0.015 cm/d. 

¾k -- -5.5 ¾j = -6 
•,•) •8,_8) 

(5,7) • 

•' (3,2) 

¾i =-5 

The two-dimensional forms of equations 6.10a and 6.10b are 

8x 8x (xo,Yo) 

xo,,o,j{ 
For this type of element.(see Figure 4.6 and the example following equation 4.25) 

•)y = 2A(• =-3'• '•)y ' = 2A(eO) •)y 

bk 6 

2A(%) 30 

Ck 

2A(• 

5 

3h(•(5,7,= [•0][0 6--6] •.5 •)x = -• = -0.01o 

8y (5,7)= [-5 o 5]-•.5 = -T6' = -o.083 
and 

v•ø)(5,7) = v? ) =-(0.03)(-0.100) = 0.0030 em/d 

v•eø)(5,7) = v(? ) = -(0.015)(-0.083) = 0.0013 cm/d 
The positive values mean that flow is in the positive x and y directions (up and to the right 
in the figure). 
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6.2 ISOPARAMETRIC ELEMENTS 

Note that for the two types of elements in the previous examples the components of 
apparent groundwater velocity within the elements were constant (did not vary from point- 
to-point within the element). This is so because the derivatives of the interpolation 
functions for these types of elements are not functions of either x or y. 

For isoparametric elements, the values of the derivatives of head at a specified point in 
the local coordinate system (E 0, TI0, •0) can be obtained by evaluating the derivatives of the 
approximate solution at the point. The derivatives (with respect to the local coordinate 
ciixecfions) are 

o• (e-o,qo,•o)-- o•e' (•,TI0,•0)'" o• (e0,q0,•0 (6.14a) 

ø••(•,q0,•0) [ ø•N• c3•!•(E0,TI0,•0)][ = •rl' (eø'T!ø'•0) '" (6.14b) 

c3•(• ) (•,TI0,•0) [ •)N?O) •)N(neo) ][ = 8{' (eo,qo,•)"' 3{ (•ø'qø'{ø)J t (6.14c) 
for hydraulic head and 

at• (eo•1o{o) = 3• (•0'TI0'{0)"' 3• (Co,q0,{0 (6.15a) 

(• [ 81•1e• •N?O ) )]{ !1 • '(eø'qø'{ø)= '3q (eo,qo,{o)'" 3q'(•,qo,{o : (6.15b) 

a• (eo,qo,{o) = a{ (eo,%,{o)--. a{ (co,no,go (6.•5c) 

for pressure head. To obtain the values of the derivatives for the point in the global 
coordinate system, a coordinate transformation can be used (see Chapter 4). The 
coordinate transformation equations are 

a• (eo,qo,•o) 

ay (eo,qo,{o) TM W•(eo'qo'•o)] 
• (eo,•o,•o) 

3xl 3x3 

for three-dimensional elements, 

nxl 

(6.16) 
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ax ½eo,qo•}. = [ aN?O• . aN(? I f h'l 
•}y (e0..,] [J-] (eo'qø)] ' 

2xl 2x2 2xn nxl 

for two-dimensional elements, and 

._•(eOjf _-- [j-I(F.o)] •)• (F.o) ..... •)• (F.o) 
lxl lxl lxn nxl 

for one-dimensional elements. 

(6.•8) 

For unsaturated How we have 

8y (eo.qo.•o) 

'-•-(eo.qo.•o) 

= ff'•(eo, 'qo, •o)] 

3x3 

for three-dimensional elements, 

•h• (•O , 'Sx (eo,qo][ 
a• 

2xl 

for two-dimensional elements, and 

ax (eø)œ =['r-'(eo)]{ aN?") aN?) ll'V a• (•)'" a• 
lxl lxl lxn nxl 

/ 

for one-dimensional elements. 

¾1 

(6.19) 

(6.20) 

(6.21) 
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The entries of the JacobJan matrix [l] are given in equations 4.32, 4.35, and 4.3? for one-, 
two-, and tlh-ce-dimensional elements, respectively. The entries in [•.1] can be computed 
using the equations in Appendix IV. 

The components of apparent groundwater velocity at the specified point are given by 

(6.22a) 

(6.22b) 

(6.22c) 

for saturated flow and 

v•i•o,•o,r,o):-K•økV) ax (eo,qo,r,o) 

v•(•o,•o,•o) =-K?økV)( az (•oao,•o)+ •) 

(6.23a) 

(6.23b) 

(6.23c) 

for unsaturated flow where, for example, v(? ) (e0, q0, •0) is the component of apparent 
groundwater velocity in the x coordinate direction at the point (eo,qo,•) within element e0. 
For two-dimensional elements we have 

(6.24a) 

(6.24b) 

(6.25a) 

(6.25b) 

for unsaturated flow. For one-dimensional elements we have 

,a x (•o) (6.26a) 

for sauwated flow and 
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(6.26b) 

for unsaturated flow. 

The use of equations 6.14 to 6.26 is illustrated by the following examples. 

Example 

Compute v x and vy at -- •, •i = and at (• --- 0, •i -- 0) for the element show below. 
Let K x --0.03 cm/d and ICy --0.015 cm/d. 

7 6 5 

•4 

node x y h(cm) 
1 2 2 10.0 
2 7 2 9.0 
3 12 2 8.0 
4 12 5 8.4 
5 12 8 8.7 
6 10 8 9.0 
7 7 8 9.6 
8 1 4 10.2 

The interpolation function derivatives for this type of clement axe in Figure 4.11. At the 
point (• = 1/2, •1 = 1/3) the derivatives ax• 
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(-1) 2(-1) 2 + (-1)(-1) = 4-• 

aN2, (?) 1- ---- aq -- 8 

-• = • 1 + (1) 2(-1) 2 + (-1)(1) = 1'•* 

•N4 («I /«)] 1 oq --- 1+(1) =-• 

•)N• __ I (1)/1•)][ 2(1)2/«/+ (1)(1)/«)] = 16 '•- •[•+ 7_ 

•-=T •- =• 

"•q = • 1+(-1) 2(1)2(•-)+(1)(-1) 48 

•1 =- •' 14-(-1) =-• 

The $acobian matrix at the point is given by equation 4.36 

:_!! _4_. 

[ (11)] • 39 99 J •'• = 3 1 1 ? 

and 

= [4.556 0.444] 
L 1.396 3.167J 

,,1 [ (:.5)] __ --0.101 0.330.1 
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Using equation 6.17 we have 

: [ -0.101 0.33011, 0.065J : 0.091J 
and 

0.•3 

L0 

t.0 

1.4 

1.7 

L0 

•.6 

D.2 

At the point (e = 0, q = 0) the derivatives are 

8N 1 

• = 0 

-•-= 0 

•)N 2 
'Be : 0 

' --- 0 

ON• 1 
•T- = -E 

8Ns 1 
ae : 

The Jacobian matrix at the point is 

o o o 1/2 o o [J(0,0)] = 0 -1/2 0 0 0 1/2 

and 

: Fs.so o.so 1 
L •.5o 3.ooj 

o•N 3 
,• : o 
•N 7 

& = 0 
•}N 7 
-•-= 0 

2 2 

0-10/21 12 0 12 

1 

•)N4 
ae : 

8Na 1 
'ae" : -• 

a• 

8N8 
8e = 0 

g 0.190-0.032] [j-l(o,o)] = L-0.095 0.349.1 
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Using equation 6.17 

ax ,(o,o)[ [0.190-0.0321F0 o a•('0 / = -0.095 0.349]L0-1/2 
-•y (o,o)] 

01/2 o o 

o o Ol/2 

and 

_ [ o.,o-o.o3211-o.,ool, - -0.095 0.349][ O.000J = 0.086J 

v?o)(0,0) -- -(0.03)(-0.171) = 5.13 x 10 4 cm/d 

v?(0,0) -- -(0.015)(0.086) -- 1.29 x 10 -3 cm/d 

o 8.7 

9.0 

9.6 

10.2 

Example 

Compute v x, Vy, and v z at (• = -1, •1 -n 1, • = 1) and at (• = 0, •l = 0, • = 0) for the 
element shown b•low. I.•t K x = 0.01 cm/d, ICy = 0.02 era/d, and K a = 0.03 cm/d. 

8 

5 

node x y z h 
I 3 205 
210204 
310503 
4 3504 
5 3266 
610234 
7 10 5 3 3 
8 3564 

x 

The interpolation function derivatives for this type of elemem are in Figure 4.13. At the 
poim (• = -1, vl = 1, • -- 1) the derivatives are 

•N• 1 
• -- -•. [1 + (-1)( 1 )][1 + (-1)( 1 )] -- 0 
•)N2 1 
• = E [• + (-•)( • )][• + (-•)( • )] = o 
c')N3 1 
•)e = •' [• +( • )( • )][1 + (-•)( • )] = o 

•---•œ1+(1)(1)][1+(-1)(1)] = 0 
3N5 1 
•- = -• [1 + (-1)( 1 )][1 +( 1 )( 1 )] = o 
3N• 1 
• = • [1 + (-1)( 1 )][1 +( 1 )( 1 )] = o 
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•tN7 1 1 
'OE -- •'[1+(1)(1)][1+(1)(1)] = •, 
3Ns 1 1 
'a• = -• [1 +( i )( 1 )][1 +( 1 )( 1 )] = -• 

-•- = -• [1 + (-1)(-1)][1 + (-1)( 1 )] = 0 
•tN2 1 
ß • = -• [1 +( 1 )(-1)][1+(-1)(1)] = 0 
3N• 1 
-•--- •[1.+(1)(-1)][1+(-1)(1)] -- 0 
aN4 1 
o• = • [1+ (-1)(-1)][1 + (-1)(.1)] -- 0 
aNs 1 1 
-•- -- -*• [1 + (-1)(-1)][1 +( 1 )( 1 )] = --• 
3N6 1 
ß •.---•[1+(1)(-1)][1+(1)(1)] = 0 
aN7 1 
• -- •[1+(1)(-1)][1+(1)(1)1 = 0 
aN8 1 1 

D• = • [1 + (-1)(-1)][1 +( 1 )( 1 )] = • 
1 

• -- -• [1 + (-1)(-1)][1 +(-1)( 1 )] = 0 
a•N2 1 
• = -• [1 +( 1 )(-1)][1 + (-1)( I )] = 0 
3N• 1 
• =-•[1+(1)(-1)111+(1)(1)1 = 0 
•)N4 1 1 
-• - -• [1 + (-1)(-1)111 +( 1 )( I )1 -- -• 
dNs 

c•N7 

1 

• [1 + (-1)(-1)][1 + (-1)( 1 )] -- 0 
1 

•. [1 +( 1 )(-1)][1 +(-1)(1 )] -- 0 
1 

•[1+(1)(-1)][1+(1)(1)] -- 0 
1 1 

•[1+(-1)(-1)J[1+(1)(1)] = • 

Water Resources Monograph
Groundwater Modeling by 
the Finite Element Method Vol. 13

Copyright American Geophysical Union



Chapter 6 245 

The JacobJan matrix a• the point is given by equation 4.38 

-1/2] 
000 0 0 0 1/2 

ß 1/2 [J(-1,1,1)1 = 0 0 0 0 -1/2 0 0 
0 0 0-1/2 0 0 0 1/2 

•3.50 0.00 -1.50• 
-- 13.00 

0.00 

[0.29 0.00 0.14] 
0.67 0.00 I 
0.00 0.33J 

2O 

5 

5 

26 

5 

5 

Using equation 6.16 we have 

,(-1,1,1) 

(-1,1,1) 

FO.29 
= [0.00 

LO.OO 0.00 0.14][0 0 0 0 0.67 0.00 / 0 0 0 0 
0.00 0.33J 0 0 0 -1/2 0 0 1/2 -1/2] -1/2 0 0 1/2 

0 0 0 1/2 

0.29 = 0.00 

0.00 0.000.14]{-0.50] {-0.15] ---1.00 = 

o.6v o.oo I o.ool 0.00 0.333 O.00J 

and 

v(x•(-1,1,1) = -(0.01)(-0.15) = 1.250 x 10 -3 cm/d 

v(y%)(-1,1,1) = -(0.02)(-0.67) = 1.34 x 10 -2 cm/d 
v•O)(-1,1,1) = -(0.03)( 0.00 ) = 0.00 cm/d 

At the point (e = 0, q = 0, • = 0) the derivatives are 
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1 

1 

=-• 

1 

=-•* 

1 

=-• 

1 

= g 

The lacobian matrix at the point is 

(o,o,o)]: -1/8 1/8 1/8 -1/8 -1/8 1/8 1/8 -1/8] -1/8 -1/8 1/8 1/8 -1/8 -1/8 1/8 1/8! 
-1/8 -1/8 -1/8 -1/8 1/8 1/8 1/8 1/83 

3.50 0.00 -0.75] 0.00 1.50 o.oo 

o.oo o.oo 2.25 

and 

3020 20 

50 

326 

1023 

[•-'(0,0,0)1 = 0.29 0.00 0.10] 0.00 0.67 0.00! 
0.00 0.00 0.44J 

Using equation 6.16 

a•-•-(x• (o,o,o} 
(o,o,o) 

a-•o,o,o} 
=10.00 0.67 0.00 I 

L O.00 o. oo 0.44J -1/8 1/8 1/8 -1/8 -1/8 1/8 1/8 ] 
-1/8 

-1/8 -1/8 1/8 1/8 -1/8 -1/8 1/8 1/8 
-1/8 -1/8-1/8 -1/8 1/8 1/8 1/8 1/8 

0.29 0.00 0.10• {-0.6251 0.00 0.67 0.00[ -0.625• 
0.00 0.00 0.441 0.125J -0.169] = --0.419• 

0.055J 

'5 
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and 

v?O(O,O,O) = -(0.01)(-0.169) = 1.69 x 10 -3 cm/d 

viy•(O,O,O) =-(0.02)(-0.419) = 8.38 x 10 -3 cm/d 
v(?(O,O,O) = -(0.03)( 0.055 ) = -1.65 x 10 -3 cm/d 

The previous examples have shown that, for some types of elements, the computed 
components of apparent groundwater velocity vary from point-to-point within the element. 
This is true for the linear rectangle element (because the derivatives of the interpolation 
functions are functions of s and t, see Figure 4.?) and for all the isoparametric elements 
except the one-dimensional, linear bar element (because the derivatives of the interpolation 
functions are functions of •, •1, and •, see Figure 4.9b to 4.15). 

The previous examples have also shown why it is common practice, when using 
isoparametric elements, to compute the components of apparent groundwater velocities at 
the center of the element. When the derivauves are evaluated at the center of the element 

((E -- 0), (• = 0, •1 -- 0), or (• -- 0, •1 -- 0, • -- 0) for one- two-, and three- dimensional 
elements respectively) the calculations are greatly simplified. Expressions giving the values 
of the derivatives at the center of each type of isoparametric element are in Figures 4.9 to 
4.15. 

Once the components of apparent groundwater velocity have been computed, the 
magnitude and direction of apparent groundwater velocity can be computed and plotted for 
each element in the mesh. 

Example 
Compute and plot the magnitude and direction of apparent groundwater flow for the 

mesh shown below. 

/(2) ,/(4) 

element v v 
x y 

I 2 -2 
2 3 -1 
3 3 0 
4 3 1 
5 2 2 
6 2 3 
7 3 -1 
$ 3 0 
9 3 0 
10 2 1 
11 2 1 
12 2 2 

For element 1 

v = + Vy 2 = + = 2.83 

•xx = tan-1 = -45.0' 
where • is the magnitude of apparent groundwater velocity and 0 is an angle between • and 
x-axis. Plotting these at the center of the element we have 
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v=2.3 

The results for the remaining elements are 

element 

1 
2 
3 
4 
5 
6 
7 
$ 
9 
lO 
11 
12 

2.83 
3.16 
3.oo 
3.16 
2.83 
3.61 
3.16 
3 .oo 
3 .oo 
2.24 
2,24 
2,83 

-45.0 
-18.4 

o.o 
18.4 
45.0 
56.3 
-18.4 
o.o 
o.o 

26.6 
26.6 
45.0 

which ar• ploRed below 
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Problems 

Note: In the following problems, the units of nodal point coordinates and hydraulic head 
are centimeters. 

1. Compute v x for the elements shown below (K? -- 2 cm/s, K? -- 1.5 cm/s). 

1 (1) 2 (2) 3 

• ji j 

node x h 
1 -3 200 
2 1 100 
3 2 50 

2, Compute vx ahd Vy for the elements shown below (K?-- K(x 2) -- lcm/s, K•I)- - 1 cm/s, 
I• •)-- 3 cm/s). 

3 4 

"i k - node x y h 
1 2 2 10 
2 10 2 9 
3 6 6 9 
4 24 6 8 

1 2 

, Compute h, v x and vy at point A, B, and C for the element shown below (K? -- 0.5 
cm/s, I• l) -- 2 cm/s). 

node or 

2 4 point x y h 

"•i I k""j A 1 0 0 8 B 2 0 4 7 3 6 0 6 
ß 4 6 4 5 
(1) A 6 2 - 

- ß B 3 2 - 
, c c a o - 
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250 Step 5: Calculate Required Element Resultants 

4. Compute h, v x and Vy at point A for the elements shown below (K? = 1 cm/s, K• •) = 
0.05 cm/s, K? = 0.• cm/s, r• 2) = 0.01 cm/s). 

2 4 node or 

" - ' j point x y h 
1 1 1 9 

(1) A 2 7 1 10 3 1 5 8 
4 7 5 7 

i 5 12 1 6 

i' A ? 3 - 

5. Compute h, vx and vy at point A, B and C for the element shown below (K x = 0.05 
cm/s r• = o.o• cm/s). 

2 4 node x y 
' 1 0 0 

2 2 6 
3 8 0 

A Be 4 8 6 

i point e q A -1 0 
= ' - B 0 0 

I C 3 C 0 -1 

h 
10 
9 
9 
8 

6. Compute h, v x and Vy at node 5 for the elements shown below (IQ = 0.05 cm/s, and 
Ky = 0.01 cm/s for all elements). 

6 

(2) , 
4 

8 11 

(3) )1o 

node x y h 
I 0 0 1 
2 0 2 2 
3 0 4 6 
4 4 0 6 
5 4 2 7 
6 4 4 8 
7 6 0 7 
8 6 4 9 
9 8 0 8 
10 8 2 9 
11 8 4 10 
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7. Compute h, v x and vy at point A and B for the element shown below (K x = lcm/s, Ky 

B 

A 

5 6 7 

-- 2 c'm/s). 
node x y h 

1 
2 1.5 5.2 4 
3 0 3.5 1 
4 0 2.0 0.5 
5 0 0 0 
6 2 0 0.5 
7 4 0 1 
8 

point 
A 0 0 
15 -1/2 

8. Comp•te h, v x and vy at point A (e = 0, rl = 0) for the clement shown below (K x = 0.5 
cm/s, = 1 cm/s). 

node x y h 
1 2 2 2 
2 4 2 2 
3 6 2 2 
4 8 2 2 
5 10 2 2 
6 8.5 3 3 
7 6 5 4 
8 3 3 2 

9. Compute h, vx, Vy and vz at point A (e = 0, •l = 0, • = 0) and B (e = 1, •1 = 0, • = 1) 
for the element shown below (K x = Ky = K z = 1 cm/s). 

z Y 4 

node x y z h 
1 4 0 0 2 
2 4 2 0 2 
3 0 2 0 6 
4 0 0 0 6 
5 4 0 2 2 
6 4 2 2 2 
7 0 4 2 6 
8 0 0 2 6 
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252 Step $: Calculate Required Element Resultants 

10. Repeat problem 9 if the values of hydraulic head are 

node h node h 
1 10 5 9 
2 9 6 8 
3 8 7 7 
4 9 $ 8 

11. Compute v x and Vy for each element shown below and sketch the magnitude and 
direction of groundwater flow in each element (K x =Ky = 1 cm/s for all elements). 
Hint: the interpolation function derivatives need only be computed for one element. 

3 6 9 12 

1 4 7 lO 

11 

node x y h 
1 0 0 8.6 
2 0 3 9.2 
3 0 6 10 
4 4 0 8.2 
5 4 3 8.5 
6 4 6 9 
7 8 0 7.8 
8 8 3 7.5 
9 8 6 7.8 
10 12 0 6.8 
11 12 3 7.8 
12 12 6 7.3 
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Chapter 7 

FINITE ELEMENT COMPUTER PROGRAMS 

7.1 INTRODUCTION 

In previous chapters, the steps involved in solving a groundwater flow or solute 
transport problem by the finite element method were illustrated with simple hand 
calculations for meshes with a very few nodes and elements. In practice we will need to 
solve problems with many hundreds or even thousands of nodes and this requires the use 
of a computer program. Implementing the various steps of the finite element method in a 
computer program is not difficult; a simple program may consist of less than a hundred 
lines of code. However, as we increase the versatility of a particular computer program, 
for example, by giving the user a choice of several element types, we will inevitably 
increase it's size. It is not uncommon for programs to consist of several hundred 
thousands of lines of code. The programs presented in this chapter were developed 
primarily for educational purposes but nevertheless contain many advanced features that 
make them suitable for use in solving many problems encountered in practice. Because the 
programs are written in a "modular" form (i.e., the computations are performed in a set of 
sub-programs) the reader will find it easy to modify the programs or to use portions of the 
code to develop oth.•r programs. The programs are written in FORTRAN-77 and were 
initially intended for use on microcomputers. However, they have successfully been 
compiled on a variety of mini and mainframe computers as well. Many arrays and 
variables are defined in the INCLUDE file "COMALL" (Figure 7.1). By editing this file 
the user can adjust program data requirements to match the memory capacity of the 
particular computer used. 

An attempt has been made to choose FORTRAN variable names that are suggestive of 
the variables and symbx)ls used in the text. References are also given in the code to 
equation or figure numbers in the text as needed to explain a computation or procedure. 

Five computer programs are presented: GW1, GW2, GW3, GW4, and ST1. Program 
GW1 solves the steady-state, saturated groundwater flow equation. Program GW2 solves 
the steady-state, unsaturated flow equation (neglecting gravitational effects). Program 
GW3 solves the transient, saturated flow equation. Program GW4 solves the transient, 
unsaturated flow equation (neglecting gravitational effects). Program ST1 solves the solute 
transport equation for steady-state, saturated groundwater flow. All programs are capable 
of solving one-, two-, and three-dimensional problems as well as problems with 
axisyrnmetry. The programs will accommodate up to thirteen different element types. The 
element matrices [K(e)], [c(e)], [A(e)], and [D(e)] are computed in a set of subroutines. 
Because of space limitations subroutines are not provided for all element matrices and 
element types. However, examples of each are included and the reader should have no 
difficulty in coding a particular subroutine using the examples as a guide. 

255 
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256 Finite Element Computer Programs 

C FILE "COMALL" 

THIS FILE DIMENSIONS ARRAYS FOR THOSE VARIABLES SHARED 

BY THE SUBROUTINES IN THE TEXT. WHEN THE SUBROUTINES ARE 

COMPILED, THE STATEMENT 
$INCLUDE: t COMALL t 

THAT APPEARS IN EACH SUBROUTINE WILL DIRECT THE COMPILER TO 

PROCEED AS THOUGH THE SPECIFIED FILE (COMALL) WERE INSERTED 
AT THE POINT OF THE $INCLUDE (SOME COMPILERS MAY USE A 
A SLIGHTLY DIFFERENT FORM OF THE INCLUDE STATEMENT). BY 
CHANGING THE PARAMETER STATEMENTS IN THIS FILE THE USER CAN 

EASILY MODIFY THE SUBROUTINES FOR USE ON ANY COMPUTER SYSTEM. 

DEFINITION OF PARAMETERS: 

INF = UNIT SPECIFICATION FOR INPUT DATA FILE 

OUTF = UNIT SPECIFICATION FOR OUTPUT FILE 

MAX1 =MAXIMUMNUMBER OF NODES 

MAX2 = MAXIMUM NUMBER OF ELEMENTS 
MAX3 • MAXIMUM NUMBER OF NODES PER ELEMENT 

MAX4 • MAXIMUM NUMBER OF MATERIAL SETS 
MAX5 = MAXIMUM NUMBER OF MATERIAL PROPERTIES PER MATERIAL SET 
MAX6 • MAXIMUM VALUE OF SEMI-BANDWIDTH 

MAX7 • MAXIMUM NUMBER OF DIFFERENT TIME STEP INCREMENTS 
MAX8 = MAXIMUM SIZE OF MODIFIED GLOBAL CONDUCTANCE MATRIX IN 

VECTOR STORAGE 

********************************************************************** 

REAL M, B1 
INTEGER OUTF, DIM, ELEMTYP, SBW, E, DTSTEP 
LOGICAL SYMM 

CHARACTER*20 LABEL1, LABEL2 
PARAMETER (INF=5, OUTF=6) 
PARAMETER (MAX1•200 ,MAX2=200 ,MAX3=32, MAX4=200 , 

MAX5•32, MAX6=200, MAX7 •20, MAXS= 40000 ) 
COMMON /COM1/ DIM, NUMNOD,NUMELM, NUMMAT, NUMPROP, 

NDN, NNN, NDOF , SBW, ICH (MAX1) ,LCH (MAX1), 
X (MAX1), FLUX (MAX1), B (MAX1), X1 (MAX1), 
X2 (MAX1), X3 (MAX1), SYMM, LABEL1, LABEL2 

COMMON / COM2 / IN (MAX2, MAX3 ), ELEMTYP (MAX2), V1 (MAX2), 
V2 (MAX2), V3 (MAX2) 

COMMON /COM3/ MATSET (MAX2) ,PROP (MAX4,MAX5) 
COMMON /TFUNC/ FC (MAX1) ,DTSTEP (MAX7) ,DELTAT (MAX7), 

TIME (MAX7), GT (MAX7), OMEGA, OMOMEGA, 
MXSTEP, T, IDT, IGT, IGTDT 

COMMON /GLOBAL/ M (MAX8) 
COMMON /GLOB/ BI(MAXS) 

Figure 7.1 Source code listing for COMALL. 
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7.2 STEADY.STATE, SATURATED GROUNDWATER FLOW, 
PROGRAM GW1 

The steps used to solve the steady-state, saturated groundwater How equation by the 
f'mite element method were descfibeA in Part 1. The computer program GW1 implements 
these steps in a set of eight FORTRAN subroutines: NODES, ELEMENT, MATERL, 
BOUND, ASMBK, DECOMP, SOLVE, VELOCITY, and DUMP. The operations 
performed by each subroutine are described briefly in the source code listing for GW1 
(Figure 7.2); detailed information about these operations is contained in subsequent 
chapters (e.g., the operations performed by subroutine NODES are described in Chapter 
8). Thirteen different element types are provided (see Chapter 12). Material properties 
(i.e, the components of saturated hydraulic conductivity) can be different for each element 
in the mesh (see Chapter 10). Both Dirichlet (specified hydraulic head) and Neumann 
(specified flow) boundary conditions can be prescribed. Hydraulic head is computed at 
each node and the components of apparent groundwater velocity are computed at the center 
of each element in the mesh. Program GW1 reads the problem description (i.e., node 
numbers and coordinates, element numbers, etc.) from a single input file. This information 
is written to an output file followed by computed values of hydraulic head and apparent 
groundwater velocity (Figure 7.3). The components of apparent groundwater velocity for 
each element are also written to an additional output file for use with the solute transport 
program ST1 (see Section 7.6). Arrays and variables can also be written to additional user- 
defined output files using subroutine DUMP (see Chapter 15). 

PROGRAM GW1 

********************************************************************** 

C THIS PROGRAM SOLVES STEADY-STATE, SATURATED 
C GROUNDWATER FLOW PROBLEMS. 
********************************************************************** 

$ INCLUDE: ' COMALL ' 
DIMENSION XX (MAX1) 
INTEGER HDF, VLF 
LOGICAL LOOP 

CHARACTER*20 INFILE,OUTFILE 
CHARACTER*80 TITLE 

lO 

2o 

SYMM - .TRUE. 

LOOP -- .FALSE. 

LABEL1 - ' HYDRAULIC HEAD ' 

LABEL2 - ' GROUNDWATER FLOW' 

WRITE(*,10) ' ENTER THE NAME OF THE INPUT DATA FILE: ' 
FORMAT (A\) 
READ (*,20) INFILE 
FORMAT (A) 
WRITE(*,10) ' ENTER THE NAME OF THE OUTPUT FILE: ' 
READ (*, 20) OUTFILE 
OPEN ( INF, FILE-INF ILE) 
OPEN (OUTF, FILE-OUTFILE, STATUS-- 'NEW' ) 
READ (INF, 20) TITLE 
WRITE (OUTF, 20) TITLE 

1. INPUT NODE NUMBERS AND COORDINATES 
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30 

40 

50 

60 

c 

c 

c 

READ ( INF, *) DIM 
CALL NODES 

2. INPUT ELEMENT NUMBERS, TYPES, AND NODE NUMBERS 

CALL ELEMENT 

3. INPUT MATERIAL PROPERTIES FOR EACH ELEMENT 

CALL MATERL 

4. INPUT BOUNDARY CONDITIONS 

CALL BOUND 

ASSEMBLE AND MODIFY THE GLOBAL SYSTEM OF EQUATIONS 

CALL ASMBK 

6. SOLVE THE SYSTEM OF EQUATIONS 

CALL DECOMP (NDOF, SBW, SYMM, M) 
CALL SOLVE (NDOF, SBW, SYMM, M, B, XX) 

7. WRITE OUT COMFUTED HYDRAULIC HEAD VALUES 

WRITE (OUTF, 30) LABEL1, LABEL1 
FORMAT(//70('*')//16X,'COMPUTED VALUES OF ',A/ 

16X, 39('-')//19X,'NODE NO.•,10X, A/) 
J=0 

DO 50 I = 1, NUMNOD 
IF (ICH(I) .EQ. 0) THEN 

J= J + 1 

X{I) - XX{J) 
ENDIF 

IF (ICH(I) .EQ. 0) THEN 
WRITE(OUTF, 40) I,X(I),' ' 

ELSE 

WRITE(OUTF, 40) I,X(I),'*' 
ENDIF 

FORMAT ( 19X, I5, 12X, F15.4, A) 
CONTINUE 

WRITE (OUTF, 60) 
FORMAT (/40X, '* = SPECIFIED VALUE' ) 

8. COMPUTE GROUNDWATER VELOCITIES FOR EACH ELEMENT 

CALL VELOCITY 

9. WRITE OUT CONTENTS OF ARRAYS (IF REQUESTED) 

CALL DUMP (LOOP, HDF, VLF) 
END 

Figure 7.2 Source code listing for program GW1. 
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INPUT FILE 

Problem Tifie 

Input for NODES 

Input for ELEMENT 

Input for MATERL 

Input for BOUND 

Input for DUMP 

(Optional) 

OUPUT FILE # 1 

Problem Title 

Output from NODES 

øu•ut •om •eMe • 

Output from MATERL 

Output from BOUND 
Output from AsMBK 
Output from SOLVE 

output from vELocrrY 

OUTPUT FILE #2 

v.ocrr¾ I 
(for use with ST1) 

OUTPUT FILE #3, #4, #5 .... 

[ OuuomD 
(for u se in Plotting software) 

Figure 7.3 Input and output file structure for program GW1. 

The use of program GW1 is best illustrated with an example. The mesh in Figure 7.4 
is being used to solve a two-dimensional (plan view) groundwater flow problem in a 
confined aquifer. The aquifer consists of two types of material: silty sand and sandy 
gravel. Aquifer recharge is occurring along the constant head boundary and groundwater 
is being pumped from the aquifer at a single well. All other boundaries are considered 
impermeable. The input and output files are in Figures 7.5 and 7.6. 
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260 Finite Element Computer Programs 

sandy gravel silty sand 

Low permeability basalt 
(No flow boundary) 

Nodal coordinates are in kilometers 

For sandy gravel K x = Ky = 1 m/day 
For silty sand K x = Ky = 0.1 m/day 

For well Q = 5 m3/day (discharge) 

Figure 7.4 Example problem for program GW1. 

EXAMPLE PROBLEM FOR PROGRAM GW1 (SEE FIGURE 7.4) 
2 (Problem Dimension) 
1 1 3o00 5000 
4 1 18000 5000 
5 1 5000 10000 
8 1 20000 10000 
9 1 2000 17000 
12 1 21000 15000 
-1 -1 -1 -1 
I 6 1 5 6 10 
3 6 1 7 8 12 
4 ..6 1 1 2 6 
6 6 1 3 4 8 
-1 -1 -1 -1 -1 -1 

9 
11 

5 
7 

-1 

(Node Coordinates) 

(Element Node Numbers) 

Problem Title 

Input for NODES 

Input for ELEMENT 
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1 
2 
3 
4 
5 
6 
ol 
2 
1 
2 
1 
5 
9 
-1 
7 
-1 
-1 

1 
2 
2 
1 
2 
2 

-1 

1 
.1 
125 
125 
125 

-1 
-5 
-1 

1 
.1 

(Element Material Set Numbers) 

(Element Material Properties) 
(Saturated Hydraulic Conductivities) 
(Specified Head Boundary Conditions) 

(Specified Flow Boundary Conditions) 

Input for MATERL 

Input for BOUND 

Input for DUMP 

Figure 7.$ Example input file for program GW1. 

EXAMPLE PROBLEM FOR PROGRAM GW1 (SEE FIGURE 7.4) 

NODE 
NUMBER 

NODAL COORDINATES 
X Y 

1 3000.0000 5000.0000 
2 8000.0000 5000.0000 
3 13000.0000 5000.0000 
4 18000.0000 5000.0000 
5 5000.0000 10000.0000 
6 10000.0000 10000.0000 
7 15000.0000 10000.0000 
8 20000.0000 10000.0000 
9 2000.0000 17000.0000 

10 8333.3333 16333.3300 
11 14666.6700 15666.6700 
12 21000.0000 15000.0000 

ELEMENT 
NO. 

ELEMENT 
TYPE NODE NUMBERS 

6 5 6 10 9 
6 6 7 11 10 
6 7 8 12 11 
6 1 2 6 5 
6 2 3 7 6 
6 3 4 8 7 
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ELEMEN'r 
NO. MATERIAL SET NUMBER 

ELEMENT 
SET NO. MATERIAL PROPERTIES 

1.000000E+00 1.000000E+00 
1.000000E -01 1.000000E -01 

ELEMENT 
NO. 

SPECIFIED 
HYDRAULIC HEAD 

1 125.0000 
5 125.0000 
9 125.0000 

NUMBER OF NODES W1TH SPECIFIED HYDRAULIC HEAD = 3 

NODE SPECIFIED 
NO. GROUNDWATER FLOW 

7 -5.0000 

NUMBER OF NODES wrrH SPECIFIED GROUNDWATER FLOW = 1 

NUMBER OF DEGREES OF FREEDOM IN MODIFIED K MATRIX = 9. 

SEMI-BANDWIDTH OF MODIFIED K MATRIX = 5 
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COMPU'I•D VALUES OF HYDRAULIC HEAD 
....................... ., ......... .•....._...,...• ..... . ....... .•...., ....... 

NODE NO. HYDRAULIC HEAD 

1 125.0000' 
2 123.5652 
3 108.8910 
4 94.8066 
5 125.0000' 
6 122.0316 
7 88.5567 
8 97.6736 
9 125.0000' 
10 123.5305 
11 106.4210 
12 94.3300 

* -- SPECIFIED VALUE 

COMPUTED VALUES OF APPARENT GROUNDWATER VELOCITY 

1 3.930606E-04 2.514829E-05 
2 4.411657E-04 -8.783318E-05 
3 1.816742E-05 -1.372678E-04 
4 4.403232E-04 -2.276382E-05 
5 4.814902E-04 2.608370E-05 
6 4.967537E-05 1.548034E-04 

Figure 7.6 Example output file from program GWl. 

7.3 STEADY-STATE, UNSATURATED GROUNDWATER FLOW, 
PROGRAM GW2 

The computer program GW2 solves the steady-state, unsaturated groundwater flow 
equation (equation 1.2) (Figure 7.7). The effect of gravity is not included (although it can 
easily be added if necessary). The program is almost identical to GW1 except that 
subroutine INITIAL (see Chapter 16) is used to read in initial values of pressure head for 
each node in the mesh (Figure 7.8) and Picard iteration is used to solve the system of 
nonlinear equations. 
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PROGRAM GW2 

*********************************************************************** 

C THIS PROGRAM SOLVES STEADY-STATE, UNSATURATED GROUNDWATER FLOW 
C FLOW PROBLEMS. SUBROUTINE ASMBK, KBAR2, KBAR3, ETC. MUST BE 
C MODIFIED FOR USE IN UNSATURATED FLOW PROBLEMS 

*********************************************************************** 

$ INCLUDE: ' COMALL ' 

DIMENSION XX (MAX1) 
INTEGER HDF, VLF 
LOGICAL LOOP, CONVRGE 
CHARACTER*20 INFILE, OUTFILE 
CHARACTER* 80 TITLE 

DATA MAXIT/20/ , TOLRNCE/O . 01/ 

10 

2O 

SYMM - .TRUE. 

LOOP - .FALSE. 

LABEL1 - ' PRESSURE HEAD' 

LABEL2 - ' GROUNDWATER FLOW' 

WRITE(*,10) • ENTER THE NAME OF THE INPUT DATA FILE: 
FORMAT (A\) 
READ (*, 20) INFILE 
FORMAT (A) 
WRITE(*,10) ' ENTER THE NAME OF THE OUTPUT FILE: ' 
READ (*,20) OUTFILE 
OPEN (INF, FILE-INFILE) 
OPEN (OUTF, FILE=OUTFILE, STATUS• 'NEW' ) 
READ (INF, 20) TITLE 
WRITE (OUTF, 20) TITLE 

1. INPUT NODE NUMBERS AND COORDINATES 

READ (INF, *) DIM 
CALL NODES 

2. INPUT ELEMENT NUMBERS, •YPES, AND NODE NUMBERS 

CALL ELEMENT 

3. INPUT MATERIAL PROPERTIES FOR EACH ELEMENT 

CALL MATERL 

4. INPUT BOUNDARY CONDITIONS 

CALL BOUND 

5. INPUT INITIAL CONDITIONS 

CALL INITIAL 

6. BEGIN PICARD ITERATION 

DO 40 ITER- 1, MAXIT 

Water Resources Monograph
Groundwater Modeling by 
the Finite Element Method Vol. 13

Copyright American Geophysical Union



Chapter 7 265 

7. ASSEMBLE AND MODIFY THE GLOBAL SYSTEM OF EQUATIONS 

CALL ASMBK 

8. SOLVE THE SYSTEM OF EQUATIONS 

CALL DECOMP(NDOF, SBW, SYMM, M) 
CALL SOLVE(NDOF, SBW, SYMM, M,B, XX) 
CONVRGE m .TRUE. 

II • NDOF 

DO 30 I m NUMNOD, 1, -1 
IF (ICH(I) .EQ. 0) THEN 

9. CHECK FOR CONVERGENCE 

30 

40 

IF (ABS((X(I) - XX(II)) / X(I)) .GE. TOLRNCE) 
i CONVRGE - .FALSE. 

X{I) ', XX(II) 
II - II - 1 

ENDIF 

CONTINUE 

IF (CONVRGE) GOTO 50 
CONTINUE 

WRITE(OUTF, 20) ' *** MAXIMUM NUMBER OF ITERATIONS EXCEEDED ***' 

10. WRITE OUT COMPUTED PRESSURE HEAD VALUES 

50 
60 

70 

SO 

90 

WRITE (OUTF, 60) LABEL1, LABEL1 
FORMAT(//70('*')//16X,'COMPUTED VALUES OF ',A/ 

16X, 39('-')//19X,'NODE NO.',10X, A/) 
DO 80 I - 1, NUMNOD 

IF (ICH(I) .EQ. 0) THEN 
WRITE(OUTF, 70) I,X(I),' ' 

ELSE 

WRITE(OUTF, 70) I,X(I),'*' 
ENDIF 

FORMAT (19X, I5, 12X, F15.4, A) 
CONTINUE 

WRITE (OUTF, 90) 
FORMAT (/40X, '* = SPECIFIED VALUE' ) 

11. COMPUTE GROUNDWATER VELOCITIES FOR EACH ELEMENT 

CALL VELOCITY 

12. WRITE OUT CONTENTS OF ARRAYS (IF REQUESTED) 

CALL DUMP (LOOP, HDF, VLF ) 
END 

Figure 7.7 Source code listing for program GW2. 
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INPUT FILE 

Problem Title 

Input for NODES 

Input for ELEMENT 
• , 

Input for MATERL 

Input for BOUND 

Input for IN1TIAL 

Input for DUMP 
(Optional) 

Figure 7.8 

GW 2 

OL]TP• FILE #1 

Problem Title 

•3utput frOrn NODES 
Output from •.LEMENT 

, , , • , 

Output from MATERL 

' Output from B'•)UND ' 
' 6utput'from INITIAL 

Output from ASMBK 
Output SOLVi' 
'Output from VELOCITY 

, ,, 

OUTPUT FILE #2, #3 .... 

"f' 6'u'tputfromDVM1; 1 
Input and output file structure for program GW2. 

The user must modify the calculation of the element conductance matrix [K(e)] 
performed in subroutines KBAR2, KTRI3, etc. called by ASMBK (see Chapter 12). 
Currently these subroutines use a single fixed-value of hydraulic conductivity read by 
subroutine MATERL (Chapter 10) i.e., 

KXE = PROP (•ATS ET (E), 1) 
KYE = PROP (MATSET (E), 2) 
KZE = PROP (MATSET (E), 3) 

ß 

These stafements will have to be modified to compute the function Kx(Xl/), Ky(Xl/), and 
Kz(W) after each iteration. The value of pressure head for each node in the mesh is 
recomputed at the end of each iteration and stored in the array X. The user could put the 
Kx(W), K¾0g), and Kz(•) functions in a subroutine PSIK 

CALL PSIK (E, •XE, KYE, KZE) 

where E is the element number and KXE, KYE, and KZE are the corn up_Lt•_ values of 
unsaturated hydraulic conductivity for that element. 
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7.4 TRANSIENT, SATURATED GROUNDWATER FLOW, PROGRAM 
GW3 

The computer program GW3 solves the transient, saturated groundwater flow equation 
using a set of eleven subroutines: NODES, ELEMENT, MATERL, BOUND, INITIAL, 
ASMBKC, RHS, DECOMP, SOLVE, VELOCITY, and DUMP (Figure ?.9). Detailed 
information about the operation of these subroutines is contained in subsequent chapters. 
Program GW3 reads the program description from a single input file (Figure ?.10). This 
information is written to an output file followed by computed values of hydraulic head and 
apparent groundwater velocity at each time step. Arrays and variables can also be written 
to additional user-def'med files using subroutine DUMP (see Chapter 15). Example input 
and output files are in Figures ?.12 and ?.13 for the mesh in Figure 7.11. In the example, 
a single well is pumping in a confined aquifer (homogeneous and isotropic). The results 
are compared with the Jacob approximation to the Theiss solution for one point in Figure 
?.15. The coding of input data for the mesh in Figure ?.14 is left as an exercise. 

PROGR3• GW3 
********************************************************************** 

C THIS PROGRAM SOLVES TRANSIENT, SATURATED 
C GROUNDWATER FLOW PROBLEMS. 
********************************************************************** 

$ INCLUDE: ' COMALL ' 

DIMENSION XX(MAXl) ,V(MAX2, 3) 
INTEGER HDF, VLF 
LOGICAL LOOP 

CHARACTER*20 INFILE, OUTFILE 
CHARACTER* 80 TITLE 

EQUIVALENCE (V1,V(1,1)), (V2,V(1,2)), (V3,V(1,3)) 

10 

2O 

SYMM • .TRUE. 

LOOP = .TRUE. 

LABEL1 = • HYDRAULIC HEAD • 

LABEL2 = • GROUNDWATER FLOW ' 

WRITE(*,10} • ENTER THE NAME OF THE INPUT DATA FILE: 
FORMAT (A\) 
READ (*, 20) INFILE 
FORMAT (A) 

WRITE(*,10) • ENTER THE NAME OF THE OUTPUT FILE: • 
READ (*,20) OUTFILE 
OPEN ( INF, FILE=INFILE) 
OPEN (OUTF, FILE=OUTFILE, STATUS= •NEW • ) 
READ (INF, 20) TITLE 
WRITE (OUTF, 20) TITLE 

1. INPUT NODE NUMBERS AND COORDINATES 

READ(INF,*) DIM 
CALL NODES 

2. INPUT ELEMENT NUMBERS, TYPES, AND NODE NUMBERS 

CALL ELEMENT 

C 

C 3. INPUT MATERIAL PROPERTIES FOR EACH ELEMENT 
C 

CALL MATERL 

C 
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C 4. INPUT BOUNDARY CONDITIONS 

C 

CALL BOUND 

C 

C 5. INPUT INITIAL CONDITIONS 
C 

CALL INITIAL 

C 

C 6. WRITE OUT CONTENTS OF ARRAYS (IF REQUESTED) 
C 

CALL DUMP (LOOP, HDF, VLF) 
C 

C 7. INITIALIZE COUNTERS 
C 

IF (DIM .LE. 3) THEN 
IDIM = DIM 

ELSE 

IDIM = 2 

ENDIF 

IDT • 0 

IGT • 1 

IGTDT -- 1 

C 

C 8. FOR EACH TIME STEP. . . 
C 

DO 90 ISTEP • 1, MXSTEP 
C IF SIZE OF TIME STEP CHANGES REASSEMBLE GLOBAL MATRICES 

IF (ISTEP .EQ. 1 .OR. ISTEP .GT. DTSTEP(IDT)) THEN 
IDT • IDT + 1 

C 

C 9. ASSEMBLE AND MODIFY THE GLOBAL SYSTEM OF EQUATIONS 
C 

CALL ASMBKC 
C 

C 10. DECOMPOSE THE MODIFIED GLOBAL SYSTEM OF EQUATIONS 
C 

CALL DECOMP (NDOF, SBW, SYMM, M) 
END IF 

C 

C 11. CALCULATE THE RIGHT HAND SIDE VECTOR FOR THIS TIME STEP 
C 

CALL RHS 

C 

C 12. SOLVE THE SYSTEM OF EQUATIONS AND OUTPUT NODAL VALUES 
C 

CALL SOLVE (NDOF, SBW, SYMM, M, B, XX) 
WRITE (OUTF, 30) LABEL1, LABELi 

30 FORMAT(//70('*')//16X,'COMPUTED VALUES OF ',A/ 
1 16X, 39('-')//19X,'NODE NO.',10X, A/) 

J= 0 

DO 50 I = 1, NUMNOD 
IF (ICH(I) .EQ. O) THEN 

J-- J + 1 

X(I) = XX(J) 
ENDIF 

IF (ICH(I) .EQ. 0) THEN 
WRITE(OUTF, 40) I,X(I),' ' 
ELSE 

WRITE(OUTF, 40) I,X(I), '*' 
ENDIF 
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40 

50 

6O 

70 

c 

c 13. 
C 

80 

90 

FORMAT (19X, I5, 12X, F15.4, A) 
IF (HDF .NE. 0) WRITE(HDF,*) I,X(I) 

CONTINUE 

WRITE (OUTF, 60) 
FORMAT(/40X,'* - SPECIFIED') 
WRITE (OUTF, 70) T 
FORMAT(/19X,'*** RESULTS FOR TIME -',F7.2,' ***') 

COMPUTE VELOCITIES 

CALL VELOCITY 

WRITE (OUTF, 70) T 
IF (VLF .NE. 0) THEN 

DO 80 I - 1, NUMELM 
WRITE (VLF,*) I, (V(I,J) ,J-l, IDIM) 

CONTINUE 

ENDIF 

CONTINUE 

END 

Figure 7.9 Source code listing for program GW3. 

INPUT FILE 
II I 1111 

Problem Title 
, 

Input for NODES 

Input for ELEMENT 
Input for MATERL 

Input for BOUND 

Input for INITIAL 
Input for DUMP 
(Optional) 

GW 3 

OUTPUT FILE #1 

Problem Title 

Output from NODES 

Output from ELEMENT 

Output from MATERL 

Output fromBOUND 
Output from iNITIAL 

Output from ASMBKC 

.. for fin'st time step .. 

Output from SOLVE 

Output from VELOCITY 
. 

ß 

. 

ß 

.. for last time step .. 
.. 

Output from SOLVE 

Output from VELOCITY 

OUTPUT FILE #2, #3 .... 

Output from DUMP ] 
Figure 7.10 Input and output file structure for program GW3. 
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EXAMPLE PROBLEM FOR PROGRAM GW3 (SEE FIG• 7.11) 

2 
1 1 0 0 
9 1 0 800 
10 1 0 1000 
12 1 0 1400 
13 1 0 1700 
14 1 0 2000 
15 1 100 0 
23 1 lOO 800 
24 1 100 1000 
26 1 100 1400 
27 1 100 1700 
28 1 lOO 2000 
29 1 200 0 
37 1 200 800 
38 1 200 1000 
40 I 200 1400 
,41 1 200 1700 
42 1 200 2000 
43 1 300 0 
51 1 300 800 

ß 52 1 300 1000 
54 1 300 1400 
55 1 300 1700 
56 1 300 2000 
57 1 400 0 
65 1 400 800 

i83 i 200 '0 
191 1 2000 800 
192 1 2000 1000 
194 1 2000 1400 
195 1 2000 1700 
196 1 2000 2000 
-1 -1 -1 -1 
1 5 1 1 15 16 2 
13 5 1 
14 5 1 15 29 30 16 
26 5 1 
27 5 1 29 43 44 30 
39 5 1 
40 5 1 43 57 58 44 
52 5 1 

(Problem Dimension) 
(Node Numbers and 

Coordinates) 

(Element 
Number, 

13 27 28 14 Types, and 
Node 

27 41 42 28 Numbers) 

41 55 56 42 

55 69 70 56 

Fi9ure continued 
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$3 
65 
66 
78 
79 
91 
92 
104 
105 
117 
118 
130 
131 
143 
144 
156 
157 
169 
-1 
1 
169 
-1 
3 
1 

-1 
1 
-1 

1. 
10 
20 
30 
40 
$0 
6O 
7O 
80 
9O 
177 
-1 
0 
100.1 
-1 
1 
169 
-1 

-1 

5 1 57 71 72 58 
51 
5 1 71 85 86 72 
51 
5 1 85 99 100 86 
51 
5 1 99 113 114 100 
51 
5 1 113 127 128 114 
51 
5 1 127 141 142 128 
51 
5 1 141 155 156 142 
51 
5 1 155 169 170 156 
51 
5 1 169 183 184 170 
51 

-1 -1 -1 -1 -1 -1 
1 
1 

-1 

69 83 84 70 

83 97 98 84 

97 111 112 98 

111 125 126 112 

125 139 140 126 

139 153 154 140 

153 167 168 154 

167 181 182 168 

181 195 196 182 

(Element Material Set 
Numbers) 

300 300 0.002 
-1 

-500 
-1 

.Ol 
.02 
.04 
.06 
.09 

.14 
.20 

.30 
.45 

1 
-1 

1 
1 

-1 
o 
o 

-1 

(Material Set Properties' K x Ky Ss) 
(No Specified Heads) 
(Specified Flow Rate) 

(Relaxation Factor) - 
(Time Steps) 

(Time Function) 

(Initial Conditions) 

_ Input for 
INITIAL 

(subroutine Dump not used) 

Figure 7.12 Example input file for program GW3. 
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EXAMPLE PROBLEM FOR PROGRAM GW3 (SEE FIG• 7.11) 

NODE NODAL COORDINA•S 
NUMBER X Y 

1 .0000 .0000 
2 .0000 100.0000 
3 .0000 200.0000 
4 .0000 300.0000 
5 .0000 400.0000 
6 .0000 500.0000 
7 .0000 600.0000 
8 .0000 700.0000 
9 .0000 800.0000 
10 .0000 1000.0000 
11 .0000 1200.0000 
12 .0000 1400.0000 
13 .0000 1700.0000 
14 .0000 2000.0000 

1•3 200010000 i0000 
•n 2000.0000 •oo.oooo 
• 2000.0000 200.0000 
186 2000.0000 300.0000 
187 2000.0000 400.0000 
• 2000.0000 •00.0000 
189 2000.0000 600.0000 
190 2000.0000 700.0000 
•9• 2000.0000 800.0000 
192 2000.0000 1000.0000 
193 2000.0000 1200.0000 
! 94 2000.0000 1400.0000 
195 2000.0000 1700.0000 
196 2000.0000 2000.0000 

ELEMENT 
NO. 

ELEMENT 
TYPE NODE NUMBERS 

5 1 15 16 2 
5 2 16 17 3 
5 3 17 18 4 
5 4 18 19 5 
5 5 19 20 6 
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ELEMENT 
NO. 

6 
7 
8 

9 
10 

•o 
161 
162 
163 
164 
165 
166 
167 
168 
169 

ELEMENT 
TYPE 

5 
5 
5 
5 
5 

5 
5 
5 
5 
5 
5 
5 
5 
5 

NODE NUMBERS 

6 20 21 7 
7 21 22 8 
8 22 23 9 
9 23 24 10 

10 24 25 11 

1:72 1•6 1}7 1:73 
173 187 188 174 
•74 •88 •89 
•75 •89 •9o 
176 190 191 177 
177 191 192 178 
•78 •92 •93 •79 
•79 x93 •94 
•80 •94 •9• •8• 
•8x •9• •96 •82 

ELEMENT 
NO. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
lO 

1•i2 
163 
164 
165 
166 
167 
168 
169 

MATERIAL SET NUMBER 

ELEMENT 
SET NO. MATERIAL PROPERTIES 

1 3.000000E+02 3.000000E+02 2.000000E-03 
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NUMBER OF NODES WITH SPECIFIED HYDRAULIC HEAD = o 

NODE 
NO. 

SPECIFIED 
GROUNDWATER FLOW 

-500.000 

NUMBER OF NODES WITH SPECIP•D GROUNDWATER FLOW = 1 

OMEGA = 1.oooo 

START END DELTA T 

1 10 .0100 
11 20 .0200 
21 30 .0400 
31 40 .0600 
41 50 .0900 
51 60 .1400 
61 70 .2000 
71 80 .3000 
81 90 .4500 
91 177 1.0000 

TOTAL TIME = 100.1000 

• T G(T) 

.oooo 1.oooo 
lOO. lOOO 1.oooo 

COMPUTED VALUES OF HYDRAULIC HEAD 

NODE NO. HYDRAULIC HEAD 

1 .0000 
2 .0000 
3 .0000 
4 .0000 
5 .0000 
6 .0000 
7 .0000 
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COMPUTED VALUES OF HYDRAULIC HEAD 

NODE NO. HYDRAULICHEAD 

8 .0000 
9 .0000 
lO .oooo 

, 

.ooo 
191 .0000 
192 .0000 
193 .0000 
194 .0000 
195 .0000 
196 .0000 

* = SPECIFIED VALUE 

NUMBER OF DEGREES OF FREEDOM IN MODIFIED, 
GLOBAL COMBINED CONDUCTANCE AND CAPACITANCE MATRIX = 196 

SEMI-BANDWID• OF MODIFIED, 
GLOBAL COMBINED CONDUCTANCE AND CAPACITANCE MATRIX = 16 

*** RESULTS FOR TIME = .01 *** 

ß 

*** RESULTS FOR TIME = .02 *** 

ß 

. 

*** RESULTS FOR TIME = .03 *** 
ß 

ß 

ß 

*** RESULTS FOR TIME = .04 *** 

COMPtH'ED VALUES OF HYDRAULIC HEAD 

NODE NO. HYDRAULIC HEAD 

1 - 1 o. 6991 
2 -8.2799 
3 -7.6519 
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COMPUTED VALUES OF HYDRAULIC HEAD 

NODE NO. HYDRAULIC HEAD 

4 ø7.2344 
5 -6.9411 
6 -6.7157 
7 -6.5350 
8 -6.3858 
9 -6,2606 
10 -6,0636 
11 -5,9199 
12 -5,8166 
13 -5.7229 
14 -5.6928 
15 -8,2799 
16 -8.1215 
17 -7.5490 
18 -7.1863 
19 -6.9122 
20 -6.6969 

ß ß 

ß ß 

1•0 -5.5•04 
181 -5.5323 
182 -5.5224 
183 -5.6928 
184 -5.6916 
185 -5.6881 
186 -5.6823 
187 -5.6744 
188 -5.6647 
189 -5.6535 
190 -5.6410 
191 -5.6276 
192 -5.5996 
193 -5.5722 
194 -5.5481 
195 -5.5224 
196 -5.5133 

* = SPECIFIED VALUE 

ETC. 

Figure 7.13 Example output file for program GW3. 
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I ! 

(tu) lq•(Xl•v'cI• 

'1' 

-.,-- ß 

Water Resources Monograph
Groundwater Modeling by 
the Finite Element Method Vol. 13

Copyright American Geophysical Union



280 Finite Element Computer Programs 

7.5 TRANSIENT, UNSATURATED GROUNDWATER FLOW, 
PROGRAM GW4 

The computer program GW4 solves the transient, unsaturated groundwater flow 
equation (equation 1.4) (Figure 7.16). The program is similar to GW3 except that Picard 
iteration is used to solve the system of nonlinear equations at each time step. The input and 
output file structure are in Figure 7.17. 

PROGRAM GW4 

********************************************************************** 

C THIS PROG•M SOLVES TRANSIENT, UNSATURATED 
C GROUNDWATER FLOW PROBLEMS. SUBROUTINES ASMBKC, 
C KBAR2, CBAR2, ETC. WILL HAVE TO BE MODIFIED FOR 
C UNSATURATED CONDITIONS. 
********************************************************************** 

$INCLUDE: ' COMALL t 

DIMENSION XX(MAX1) ,V(MAX2,3) 
INTEGER HDF, VLF 
LOGICAL LOOP, CONV•GE 
CHARACTER*20 INFILE, OUTFILE 
CHARACTER*SO TITLE 

EQUIVALENCE (V1, V ( 1,1 ) ), (V2, V ( 1, 2 ) ), (V3, V ( 1, 3 ) ) 
DATA MAXIT/20/, TOLRNCE/0.01/ 

10 

20 

SYMM ' .TRUE. 

LOOP" .TRUE. 

LABEL1 - ' PRESSURE HEAD' 

LABEL2 ' ' GROUNDWATER FLOW' 

WRITE(*,10) ' ENTER THE NAME OF THE INPUT DATA FILE: 
FORMAT (A\) 
READ (*, 20) INFILE 
FORMAT(A) 
WRITE(*,10) • ENTER THE NAME OF THE OUTPUT FILE: 
READ (*, 20) OUTFILE 
OPEN ( INF, FILE'INFILE) 
OPEN (OUTF, FILE"OUTFILE, STATUS• • NEW • ) 
READ (INF, 20) TITLE 
.W•ITE (OUTF, 20) TITLE 

1. INPUT NODE NUMBERS AND COORDINATES 

READ(INF,*) DIM 
CALL NODES 

C 

C 2. INPUT ELEMENT NUMBERS, TYPES, AND NODE NUMBERS 
C 

CALL ELEMENT 

C 
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C 3. INPUT MATERIAL PROPERTIES FOR EACH ELEMENT 
C 

CALL MATERL 

C 

C 4. INPUT BOUNDARY CONDITIONS 

C 

CALL BOUND 

C 

C 5. INPUT INITIAL CONDITIONS 

C 

CALL INITIAL 

C 

C 6. WRITE OUT CONTENTS OF ARRAYS (IF REQUESTED) 
C 

CALL DUMP (LOOP, HDF, VLF ) 
C 

C 7. INITIALIZE COUNTERS 
C 

IF (DIM .LE. 3) THEN 
IDIM B DIM 

ELSE 

IDIM" 2 
ENDIF 

IDT = 0 

IGT = 1 

IGTDT - 1 

C 

C 8. FOR EACH TIME STEP. . . 

C 

DO 120 ISTEP • 1, MXSTEP 
DO 40 ITER- 1, MAXIT 
IF SIZE OF TIME STEP CHANGES REASSEMBLE GLOBAL MATRICES 

IF ((ITER .GT. 1) .OR. (ISTEP .EQ. 1) .OR. 
I (ISTEP .GT. DTSTEP(IDT))) THEN 

IF (ITER .EQ. 1) IDT • IDT + i 
C 

C 9. ASSEMBLE AND MODIFY THE GLOBAL SYSTEM OF EQUATIONS 
C 

CALL ASMBKC 

C 

C 10. DECOMPOSE THE MODIFIED GLOBAL SYSTEM OF EQUATIONS 
C 

CALL DECOMP (NDOF, SBW, SYMM, M) 
ENDIF 

C 

C 11. CALCULATE THE RIGHT HAND SIDE VECTOR FOR THIS TIME STEP 
C 

CALL RHS 

C 

C 12. BEGIN PICARD ITERATION 
C 

Figure continued 
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30 

CALL SOLVE (NDOF, SBW, SYMM, M, B, XX) 
CONVRGE - . TRUE . 

II - NDOF 

DO 30 I - NUMNOD, 1, -1 
IF (ICH(I) .EQ. 0) THEN 

IF (ABS((X(I) - XX(II)) ! X(I)) .GT. TOLRNCE) 
CONVRGE • .FALSE. 

x(•) - x(•) 
II -- II - 1 

ENDIF 

CONTINUE 

4O 

50 

60 

7O 

8O 

90 

100 

110 

120 

IF (CONVRGE) GOTO 50 
CONTINUE 

WRITE (*,20) ' *** EXCEEDS MAXIMUM NUMBER OF ITERATIONS ***' 
WRITE (OUTF, 60) LABEL1, LABEL1 

FORMAT(//70('*')//16X,'COMPUTED V/•LUES OF ',A/ 
16X, 39('-')//19X,'NODE NO.',10X, A/) 

DO 80 I - 1, NUMNOD 
IF (ICH(I) .EQ. 0) THEN 

WRITE(OUTF, 70) I,X(I),' ' 
ELSE 

WRITE(OUTF, 70) I,X(I),'*' 
ENDIF 

FORMAT ( 19X, I5, 12X, F15.4 , A) 
IF (HDF .NE. 0) WRITE(HDF,*) I,X(I) 

CONTINUE 

WRITE (OUTF, 90) 
FORMAT (/40X, ' * • SPECIFIED ' ) 
WRITE (OUTF, 100) T 
FORMAT(/19X,'*** RESULTS FOR TIME =',F7.2,' ***') 

13. COMPUTE VELOCITIES 

CALL VELOCITY 

WRITE (OUTF, 100) T 
IF (VLF .NE. 0) THEN 

DO 110 I - 1, NUMELM 
WRITE(VLF,*) I, (V(I,J),J-I,IDIM) 

CONTINUE 

ENDIF 

CONTINUE 

END 

Figure 7.16 Source code listing for program GW4. 
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INPUT FILE 

Problem Title 

Input for NODES 

input for ELEMENT 
Input for MATERL 

Input for BOUND 

Input for IN1TIAL 

Input for I•UMP 
(Optional) 

Figure 7.17 

GW 4 

OUTPUT FILE #1 

Problem Tifie 

Output from NODES 

Output from ELEMENT 

Output from MATERL 

Output from BOUND 

Output from INITIAL 

Outv'ut ASMZCC 
.. for first time step .. 

t I Output from VELOCITY 

ß 

ß 

.. for last time step .. 

outP 'ut from SOLVE 
' "Outvui •rom VELOCiTY 

OUTPUT FILE $$2, $$3 .... 

Output from DUMP 

Input and output file structure for program GW4. 

7.6 SOLUTE TRANSPORT, PROGRAM ST1 

The steps used to solve the solute transport equation for steady-state, saturated 
groundwater flow were described in Part 1. The computer program ST1 implements these 
steps in a set of ten FORTRAN subroutines (NODES, ELEMENT, MATERL, BOUND, 
INITIAL, ASMAD, DECOMP, RHS, SOLVE, and DUMP) (Figure 7.18). The 
operations performed by each subroutine are described briefly in the souwe code listing for 
ST1; additional details are in subsequent chapters. The input and output file structure is 
similar to program GW3 (Figure 7.19). The components of apparent groundwater velocity 
for each element are read from a file created by program GW I (using subroutine DUMP, 
see Chapter 15). Example input and output fries for the mesh in Figure 7.20 are in Figures 
7.21 and 7.22. A comparison between solute concentrations computed with ST1 and with 
an analytical solution from Bear (1979) is in Figure 7.23. Example input and output files 
for the mesh in Figure 7.24 are in Figures 7.25 and 7.26. The coding of the mesh in 
Figure 7.27 is left as an exercise. 
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PROGRAM ST1 

********************************************************************** 
C THIS PROGRAM SOLVES SOLUTE TRANSPORT PROBLEMS FOR 

C STEADY-STATE, SATURATED GROUNDWATER FLOW. 
********************************************************************** 

$ INCLUDE: ' COMALL ' 
DIMENSION XX(MAX1) ,V(MAX2, 3) 
INTEGER HDF, VLF 
LOGICAL LOOP 

CHARACTER*20 INFILE,OUTFILE,VELFILE 
CHARACTER* 80 TITLE 

EQUIVALENCE (V1,V(1,1)), (V2,V(1,2)), (V3,V(1,3)) 

10 

2O 

SYMM • .FALSE. 

LOOP ' .TRUE. 

LABEL1 ' 'SOLUTE CONCENTRATION' 
LABEL2 - ' SOLUTE FLUX' 

WRITE(*,10) ' ENTER THE NAME OF THE INPUT DATA FILE: ' 
FORMAT (A\) 
READ (*, 20) INFILE 
FORMAT (A) 
WRITE(*,10) ' ENTER THE NAME OF THE VELOCITY FILE: ' 
READ (*, 20) VELFILE 
WRITE(*,10) ' ENTER THE NAME OF THE OUTPUT FILE: ' 
READ (*,20) OUTFILE 
OPEN ( INF, FILE•INFILE) 
VLF' 2 

OPEN (VLF, FILE•VELFILE) 
OPEN (OUTF, FILE•OUTFILE, STATUS" ' NEW ' ) 
READ (INF, 20) TITLE 
WRITE (OUTF, 20) TITLE 

1. INPUT NODE NUMBERS AND COORDINATES 

READ(INF,*) DIM 
CALL NODES 

2. INPUT ELEMENT NUMBERS, TYPES, AND NODE NUMBERS 

CALL ELEMENT 

3. INPUT MATERIAL PROPERTIES FOR EACH ELEMENT 

CALL MATERL 

4. INPUT BOUNDARY CONDITIONS 

CALL BOUND 

5. INPUT INITIAL CONDITIONS 

CALL INITIAL 

6. WRITE OUT CONTENTS OF ARRAYS (IF REQUESTED) 

CALL DUMP(LOOP,HDF, IDMY) 

7. INITIALIZE COUNTERS 

IF (DIM .LE. 3) THEN 
IDIM - DIM 
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3O 

ELSE 

IDIM - 2 
ENDIF 

DO 30 I - 1, NUMELM 
READ(VLF,*) J, (V(J,K) ,K-I, IDIM) 

CONTINUE 

IDT- 0 
IGT - 1 

IGTDT - 1 

8. FOR EACH TIME STEP. . . 

DO 90 ISTEP - 1, MXSTEP 
IF SIZE OF TIME STEP CHANGES REASSEMBLE GLOBAL MATRICES 

IF (ISTEP .EQ. I .OR. ISTEP .GT. DTSTEP(IDT)) THEN 
IDT - IDT + 1 

9. ASSEMBLE AND MODIFY THE GLOBAL SYSTEM OF EQUATIONS 

CALL ASMBAD 

C 

C 10. DECOMPOSE THE MODIFIED GLOBAL SYSTEM OF EQUATIONS 
C 

CALL DECOMP (NDOF, SBW, SYMM, M) 
ENDIF 

C 

C 11. CALCULATE THE RIGHT HAND SIDE VECTOR FOR THIS TIME STEP 

C 

CALL RHS 

C 

C 12. SOLVE THE SYSTEM OF EQUATIONS AND OUTPUT NODAL VALUES 
C 

CALL SOLVE (NDOF, SBW, SYMM, M, B, XX) 
WRITE (OUTF, 40) LABEL1, LABEL1 

40 FORMAT(//70('*')//16X,'COMPUTED VALUES OF ',A/ 
1 16X, 39('-')//19X,'NODE NO.',10X, A/) 

J- 0 

DO 60 I - 1, NUMNOD 
IF (ICH(I) .EQ. 0) THEN 

J- J + 1 

X(I) - XX(J) 
ENDIF 

IF (ICH(I) .EQ. 0) THEN 
WRITE(OUTF, 50) I,X(I),' ' 

ELSE 

WRITE(OUTF, 50) I,X(I),'*' 
ENDIF 

50 FORMAT (19X, I5,12X, F15 ..4, A) 
IF (HDF .GT. 0) WRITE(HDF,*) I,X(I) 

60 CONTINUE 

WRITE (OUTF, 70) 
70 FORMAT(/40X,'* - SPECIFIED') 

WRITE (OUTF, 80) T 
80 FORMAT(/19X,'*** RESULTS FOR TIME -',F7.2,' ***') 
90 CONTINUE 

END 

Figure 7.18 Source code listing for program ST1. 
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INPUT FILE 

i . ii 

Problem Tide 

Input for NODES 

Input for ELEI• NT 
! 

Input for MATERL 

Input for BOUND 

Input for INITIAL 

Input for DUMP 
(Optional) 

INPUT FR, E #2 

(•u•' frorn __VELOC• 
gram GW1) 

OUTPUT FILE #1 
ß 

Problem Title 

Output f•m •ODES 
Output from ELEMEI• 
Output from M•• 
Output from BOUND 

' O•tput from IN1TIAL' ' 
Output from ASMBAD 
.. for f'•rst time step .. 

Output from SOLVE 

. 

.. for last time step .. 

Output from SOLVE 

OUTPUT FILE #2, #3 .... 

Output frøm D. UMP I•liI ! 

Figure 7.19 Input and output file structure for program ST1. 

C(O,t) = 100, t • 0 

Direction of Groundwater Flow 

vff ) = O. 0035 

C(x,O)=O, x_> 0 

1 2 3 4 5 6 7 8 19 20 21 

Figure 7.20 Example problem for program ST1 using linear bar elements. 
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EXAMPLE PROBLEM FOR PROGRAM ST1 (SEE FIGUR• 7.20) 
1 
1 

21 
-1 
1 

2o 
-1 
1 

2o 
-1 
7 
1 
1 

-1 
-1 
1 

11 
-1 
o 
1 

11 
-1 
-1 
-1 

1 
1 

-1 
1 
1 

-1 
1 
1 

-1 

lOO 
lOO 

-1 
-1 

50 
-1 

1 
1 
1 

-1 
-1 

o 
lOO 

-1 
1 
1 

-1 

1 2 
20 21 
-1 -1 

.35 

(Problem Dimension) 
(Nodal Point Data) 

(Element Numbers, Types, 
and Node Numbers) 

(Element Material Set Data) 

(Material Properties) 

(Specified Concentration) 

(No Specified Solute Fluxes) 
(Relaxation Factor) 

(Take 11 Time Steps of 50 Days Each) 

(Time Function) 

Figure 7.21 Example input file for program ST1. 

EXAMPLE PROBLEM FOR PROGP•M ST1 (SEE FIG• 7.20) 
NODE NODAL COORDINA•S 

NUMBER X 

1 .0000 
2 5.0000 
3 10.0000 
4 15.0000 
5 20.0000 
6 25.0000 
7 30.0000 
8 35.0000 
9 40.0000 
10 45.0000 
11 50.0000 
12 55.0000 
13 60.0000 
14 65.0000 
15 70.000O 
16 75.0000 
17 80.0000 
18 85.0000 
19 90.0000 
20 95.0000 
21 100.0000 
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ELEMENT 
NO. 

1 
2 
3 
4 

6 

1 
1 
1 
1 
1 
1 

19 1 
20 1 

NODE NUMBERS 

1 2 
2 3 
3 4 
4 5 
5 6 
6 7 

l'S 
19 20 
20 21 

ELEMENT 
NO. MATERIAL SET NUMBER 

I 1 
2 1 
3 1 
ß ß 

19 1 
20 1 

MATERIAL 
SET NO. MATERIAL PROPERTIES 

1.000000E+02 0.000000E+00 1.000000E+00 0.000000E+00 
3.500000E-01 1.000000E+00 1.000000E+00 

NODE SPECIFIED 
NO. SOLUTE CONCENTRATION 

1 100.0000 

NUMBER OF NODES WqTH SPECIFIED SOLUTE CONCENTRATION = 1 

NUMBER OF NODES WITH SPECIFIED SOLUTE FLUX -- 0 

OMEGA = 1.oooo 

START END DELTA T 

1 11 50.0000 

TOTAL TIME = 550.0000 
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• T 

.oooo 1.oooo 
1.oooo 1.oooo 

550.0000 1.0000 

INHIAL VALUES OF SOLUTE CONCENTRATION 

NODE NO. SOLUTE CONCENTRATION 

1 100.0000' 
2 .0000 
3 .0000 

1'8 .0•00 
19 .0000 
20 .0000 
21 .0000 

* = SPECIFIED 

NUMBER OF DEGREES OF FREEDOM IN MODIFIED, 
GLOBAL COMBINED SORPTION AND ADVECHON-DISPERSION MATRIX = 20 

SEMI-BANDWIDTH OF MODWIED, 
GLOBAL COMBINED SORFrION AND ADVECHON-DISPERSION MATRIX = 2 

COMPUTED VALUES OF SOLUTE CONCENTRATION 

NODE NO. SOLUTE CONCENTRATION 
1 100.0000' 
2 54.2676 
3 27.0555 
4 13.4887 
5 6.7249 
6 3.3527 
7 1.6715 
8 .8333 
9 .4155 
10 .2071 
11 .1033 
12 .0515 
13 .0257 
14 .0128 
15 .0064 
16 .0032 
17 .0016 
18 .0008 
19 .0004 
20 .0002 
21 .0002 

* = SPECIFIED 

*** RESULTS FOR TIME = 50.00 *** 
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COMPUTED VALUES OF SOLUTE CONCEPTION 
........... ......., ....... .. .... ., ......... .,.,....,.....,., ...... ., ..... ,. ....... 

NODE NO. $OLtrrE CONCENTRATION 

1 100.0000' 
2 69.8320 
3 44.9692 
4 27.4820 
5 16.2252 
6 9.3475 
7 5.2876 
8 2.9489 
9 1.6261 
10 .8885 
11 .4817 
12 .2595 
13 .1390 
14 .0741 
15 .0393 
16 .0208 
17 .0110 
18 .0059 
19 .0032 
20 .0020 
21 .0016 

* = SPECIFIED 

*** RESULTS FOR TIME = 100.00 *** 

COMPUTED VALUES OF SOLU/• CONCENTRATION 

NODE NO. SOLUTE CONCENTRATION 

1 100.0000' 
2 83.1162 
3 66.6319 
4 51.5875 
5 38.6600 
6 28.1214 
7 19.9123 
8 13.7633 
9 9.3098 
10 6.1769 
11 4.0280 
12 2.5863 
13 1.6376 
14 1.0241 
15 .6335 
16 .3884 
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COMPUTED VALUES OF SOLUTE CONCENTRA•ON 

NODE NO. SOLUTE CONCENTRATION 

17 .2369 
18 .1453 
19 .0921 
20 .0645 
21 .0559 

SPECIFIED 

*** RESULTS FOR TIME = 250.00 *** 

********************************************************************** 

COMPUTED VALUES OF SOLUTE CONCENTRATION 

NODE NO. SOLUTE CONCENTRATION 

1 100.0000' 
2 84.9458 
3 ?0.0360 
4 56.0643 
5 43.6218 
6 33.0407 
7 24.4070 
8 17.6170 
9 12.4487 
10 8.6274 
11 5.8739 
12 3.9350 
13 2.5975 
14 1.6919 
15 1.0891 
16 .6945 
17 .4407 
18 .2814 
19 .1857 
20 .1349 
21 .1189 

* = SPECIFIED 

*** RESULTS FOR TIME = 500.00 *** 

********************************************************************** 

COMPUTED VALUES OF SOLUTE CONCENTRATION 

NODE NO. SOLUTE CONCENTRATION 

1 100.0000' 
2 89.7406 
3 79.2830 
4 68.9309 

Fi9ure conbinued 
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COMPUTED VALUES OF SOLUTE CONCENTRATION 

NODE NO. SOLUTE CONCENTRATION 

5 58.9663 
6 49.6288 
7 41.1007 
8 33.5004 
9 26.8832 
10 21.2485 
11 16.5506 
12 12.7118 
13 9.6349 
14 7.2147 
15 5.3466 
16 3.9339 
17 2.8918 
18 2.1504 
19 1.6557 
20 1.3713 
21 1.2781 

* = SPECIFIED 

Figure 7.22 Example output file from program ST1. 

120 

8O 

6O 

4O 

2O 

t=50d 

t 250d 

t = 500d 

Analytical Solution 
FEM Solution 

o 

o 20 40 60 80 100 120 

Distance (m) 

Figure 7.23 Comparison of analytical and FEM solutions for program ST1. 

EXAMPLE PROBLEM FOR PROGRAM ST1 (SEE FIG• 7.24) 
2 (PROBLEM DIMENSION) 
1 1 0 0 (NODAL POI•Cr DATA) 
2 1 0 40 
3 1 0 60 
7 1 0 100 
9 1 0 140 

10 1 0 180 
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11 

111 
112 
113 
117 
119 
12o 

-1 
1 

11 
12 
22 
23 
33 

187 
188 
198 

-1 
1 

198 
-1 
7 
1 
1 
2 
3 
4 
$ 
6 
7 
8 

1•6 
117 
118 
119 
12o 

-1 
5 

-1 
1. 

2o 
-1 
o 

200 
-1 
1 

12o 
-1 
-1 

1 
1 
1 
1 
1 
1 

-1 
4 
4 
4 
4 
4 
4 

4 
4 
4 

-1 
1 
1 

-1 

2 
0 
0 
0 
0 

3OO 
0 
0 
0 

o 
o 
o 
o 

-1 
300 

-1 

lO 
-1 

1 
1 

-1 
o 
o 

-1 

lO 

220 
220 
220 
220 
220 
220 

-1 
lO 
lO 
lO 
lO 
lO 
lO 

'1o 
lO 
!o 
lO 
-1 

o 
40 
60 

lOO 
14o 
18o 

-1 
1 

lol 
2 

lO2 
2 

lO2 

9 
lO9 

lO 
11o 

-1 

11 
111 

11 
111 

12 
112 

'19 
119 

9 
109 

-1 

2 
102 

12 
112 

3 
103 

•0 
120 
20 

120 
-1 -1 

(ELEME• DATA) 

.25 
(MATERIAL PROPERTIES) 

1 

(SPECIFIED CONCENTRATIONS) 

(SPECIFIED SOLUTE FLUX) 

(RELAXATION FACTOR) 
(TAKE 20 TIME STEPS OF 10 EACH) 

(TI1VIE FACTOR) 

(IN1TIAL CONCEPTIONS) 

Figure 7.24 Example input file I'or program ST1. 
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EXAMPLE PROBLEM FOR PROGRAM ST1 (SEE FIGURE 7.24) 
NODE NODAL COORDINATES 

NUMBER X Y 

1 
2 
3 
4 
5 
6 
7 
8 
9 
lO 

.0000 .0000 

.0000 40.0000 

.0000 60.0000 

.0000 70.0000 

.oooo 80.0000 

.0000 90.0000 

.oooo lOO.OOOO 
ß 0000 120.0000 
.oooo 14o.oooo 
.0000 180.0000 

111 
112 
113 
114 
115 
116 
117 
118 
119 
12o 

16010000 180•0000 
220.0000 .0000 
220.0000 40.0000 
220.0000 60.0000 
220.0000 70.0000 
220.0000 80.0000 
220.0000 90.0000 
220.0000 100.0000 
220.0000 120.0000 
220.0000 140.0000 
220.0000 180.0000 

ELEMENT ELEMENT 
NO. TYPE NODE NUMBERS 

1 4 1 11 2 
2 4 11 21 12 
3 4 21 31 22 
4 4 31 41 32 
5 4 41 51 42 
6 4 51 61 52 
7 4 61 71 62 
8 4 71 81 72 
9 4 81 91 82 
10 4 91 101 92 

1•7 • 2• iS i9 
158 4 38 48 49 
159 4 48 58 59 
160 4 58 68 69 
161 4 68 78 79 
162 4 78 88 89 
163 4 88 98 99 
164 4 98 108 109 
165 4 108 118 119 
166 4 9 8 19 
167 4 19 18 29 
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ELEMENT ELEME• 
NO. TYPE NODE NUMBERS 

168 4 29 28 39 
169 4 39 38 49 
170 4 49 48 59 
171 4 59 58 69 
172 4 69 6•1 79 
173 4 79 78 89 
174 4 89 88 99 
175 4 99 98 109 
176 4 109 108 119 
177 4 9 19 20 
178 4 19 29 30 
179 4 29 39 40 
180 4 39 49 50 
181 4 49 59 60 
182 4 59 69 70 
183 4 69 79 80 
184 4 79 89 90 
185 4 89 99 100 
186 4 99 109 110 
187 4 109 119 120 
188 4 !0 9 20 
189 4 20 19 30 
190 4 30 29 40 
191 4 40 39 50 
192 4 50 49 60 
193 4 60 59 70 
194 4 70 69 80 
195 4 80 79 90 
196 4 90 89 100 
197 4 100 99 110 
198 4 110 109 120 

ELEMENT 
NO. MATERIAL SET NUMBER 

1 1 
2 1 
3 1 
4 1 
5 1 
6 1 
7 1 
8 1 
9 1 
10 1 

1•}4 i 
195 1 
196 1 
197 
198 1 

Water Resources Monograph
Groundwater Modeling by 
the Finite Element Method Vol. 13

Copyright American Geophysical Union



296 Finite Elcmcnt Computer Programs 

MATERIAL 
SET NO. MATERIAL PROPERTIES 

2.000000E+00 1.000000E+00 0.000000E+00 2.000000E+00 
0.000000E+00 2.$00000E-01 1.000000E+00 

NODE SPECIFIED 
NO. SOLUTE CONCENTRATION 

1 .oooo 
2 .oooo 
3 .0000 
4 .0000 
$ 300.0000 
6 .0000 
7 .0000 
8 .0000 
9 .0000 
10 .0000 
20 .0000 
3O .0000 
40 .0000 
50 .0000 
60 .0000 
70 .0000 
80 .0000 
90 .0000 
100 .0000 
110 .0000 
111 .0000 
112 .0000 
113 .0000 
114 .0000 
115 .0000 
116 .0000 
117 .0000 
118 .0000 
119 .0000 
120 .0000 

NUMBER OF NODES WITH SPECIFIED SOLUTE CONCENTRATION = 30 

NODE SPECIFIED 
NO. SOLUTE FLUX 

5 300.0000 

NUMBER OF NODES WITH SPECIFIED 

OMEGA = 1.oooo 

SOLUTE FLUX = 1 
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START END DELTA T 

1 20 lO.OOOO 

TOTAL TIME = 200.0000 

TIlVlE T G(T) 

.oooo 1.oooo 
200.0000 1.oooo 

INITIAL VALUES OF SOLUTE CONCENTRATION 

NODE NO. SOLLrrE CONCENTRATION 

1 .0000' 
2 .0000' 
3 .0000' 
4 .0000' 
5 300.0000' 
6 .0000' 

.oboo* 
118 .0000' 
119 .0000' 
120 .0000' 

* = SPECIFIED 

NUMBER OF DEGREES OF FREEDOM IN MODIFIED, 
GLOBAL COMBINED SoRFrION AND ADVECTION-DISPERSION MATRIX = 90 

SEMI-BANDWIDTH OF MODWIED, 
GLOBAL COMBINED SORP'rION AND ADVECTION-DISPERSION MATRIX = 11 

*** RESULTS FOR TIME = 10.00 *** 

*** RESULTS FOR TIME = 20.00 *** 

*** RESULTS FOR TIME = 30.00 *** 

*** RESULTS FOR TIME = 40.00 *** 

*** RESULTS FOR TIME = 50.00 *** 

*** RESULTS FOR TIME = 60.00 *** 

*** RESULTS FOR TIME = 70.00 *** 
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*** RESULTS FOR TIME = 80.00 *** 

*** RESULTS FOR TIME = 90.00 *** 

*** RESULTS FOR TIME = 100.00 *** 

*** RESULTS FOR TIME = 110.00 *** 

*** RESULTS FOR TIME = 120.00 *** 

*** RESULTS FOR TIME = 130.00 *** 

COMPU•D VALUES OF SOLUTE CONCENTRATION 

NODE NO. SOLUTE CONCENTRATION 

1 .0000' 
2 .0000' 
3 .0000' 
4 .0000' 
5 300.0000* 
6 .0000' 
7 .0000' 
8 .0000' 
9 .0000' 
10 .0000' 
1! -.4024 
12 .5881 
13 -3.3477 
14 42.5015 
15 228.2954 
16 42.4914 
17 -3.2888 
18 .9138 
19 -.1811 
20 .0000' 
21 -.1427 
22 .0470 
23 -.6714 
24 62.3467 
25 182.7819 
26 62.3475 
27 -.5372 
28 .2034 
29 -.0590 
30 .0000' 
31 .2244 
32 -.6711 
33 3.7866 
34 68.3779 
35 149.0262 
36 68.3933 
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COMPU•D VALUES OF SOLUTE CONCENTRATION 

NODE NO. SOLUTE CONCENTRATION 

37 3.9406 
38 -.7868 
39 .0968 
40 .0000' 
41 .4454 
42 -1.1199 
43 7.3474 
44 64.3831 
45 117.9321 
46 64.4055 
47 7.4753 
48 -1.4140 
49 .1748 
50 .0000' 
51 .5042 
52 -1.2155 
53 .8.6262 
54 53.3718 
55 89.8220 
56 53.3947 
57 8.7133 
58 -1.5534 
59 .1859 
60 .0000' 
61 .•".•.7 
62 -1.0155 
63 7.5597 
64 36.9853 
65 56.5931 
66 37.0008 
67 7.6051 
68 -1.3035 
69 .1395 
70 .0000' 
71 .3103 
72 -.5886 
73 3.0124 
74 13.5022 
75 19.7430 
76 13.5078 
77 3.0336 
78 -.7412 
79 .0969 
80 .0000' 
81 .1952 
82 -.2791 
83 .4304 
84 3.0719 
85 5.0566 
86 3.0735 
87 .4379 

Fi9ure continued 
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COMPUTED VALUES OF SOLUTE CONCEYlON 

NODE NO. SOLUTE CONCENTRATION 

88 -.3506 
89 .0688 
90 .0000' 
91 .0?46 
92 -.0640 
93 -.0802 
94 .2728 
95 .6212 
96 .2730 
97 -.0784 
98 -.0779 
99 .0251 
100 .0000' 
101 .0102 
102 .0051 
103 -.0254 
104 -.0480 
105 -.0048 
106 -.0481 
107 -.0255 
108 .0O88 
109 .0042 
110 .0000' 
111 .0000' 
112 .0000' 
113 .0000' 
114 .0000' 
115 .0000' 
116 .0000' 
117 .0000' 
118 .0000' 
119 .0000' 
120 .0000' 

* = SPECIFIED 

Figure 7.25 Example output file from program ST1. 
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SUBROUTINE NODES 

8.1 PURPOSE 

Subroutine NODES inputs the node numbers and coordinates for each node in the finite 
element mesh. The subroutine can be used for one-, two-, or three-dimensional problems 
or for problems with axisymmetry. 

8.2 INPUT 

Node numbers and coordinates are read "free-format" from the user-supplied file 
assigned to unit "INF". The operation of the subroutine is controlled by the variable 
"DIM" (see Section 8.5 for a description of program usage). Both INF and DIM are 
passed to the subroutine through labeled common blocks contained in the file "COMALL" 
(see Chapter 7 for a listing of COMALL). 

8.3 OUTPUT 

Node numbers and coordinates are written to the user-defined file assigned to unit 
"OUTF". OUTF is passed to the subroutine through a labeled common block in 
COMALL. Column headings are added to the list of node numbers and coordinates written 
to OUTF. The number of nodes in the mesh, variable "NUMNOD", and the coordinates 
for each node in the mesh, arrays "X l", "X2", and "X3", are stored in labeled common 
blocks (contained in the file COMALL) for use by other subroutines. 

8.4 DEFINITIONS OF VARIABLES 

DIM = Type of coordinate system used in this problem (Figure 8.1). 
= 1, problem is one-dimensional. 
= 2, problem is two-dimensional. 
= 3, problem is three-dimensional. 
= 4, problem is two-dimensional (axisymmetric). 

INC = Node number increment used to generate "missing" node numbers. 

NUMNOD = Number of nodes in the mesh. 

= x coordinate for node I if DIM -- 1, 2, or 3. 
= r coordinate for node I if DIY,,I = 4. 

X2(I) = not used if DIM = 1. 

= y coordinate for node I if DIM = 2 or 3. 
= z coordinate for node I if DIM = 4. 

X3(I) = not used if DIM = 1, 2, or 4. 
= z coordinate for node I if DIM = 3. 
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DIM -- 1 

DIM = 2 

Y 

DIM = 3 

Y• 

DIM = 4 

axis of 

symmetry 

Figure 8.1 Correct values of DIM to use with different types of finite element 
meshes. 

Water Resources Monograph
Groundwater Modeling by 
the Finite Element Method Vol. 13

Copyright American Geophysical Union



Chapter 8 305 

USAGE 

Example input data and output for subroutine NODES are in Figures 8.2 to 8.5. Each 
line of input contains the node number, node number increment, and the coordinates of a 
node. The mesh in Figure 8.2 is two-dimensional (DIM = 2). Node number I has a node 
number increment of 1 (INC = 1), an x coordinate of 0 (X1(1) = 0) and a y coordinate of 0 
(X2(1) = 0). Node number 4 has a node number increment of 1 (INC = 1), an x 
coordinate of 2 (X1(4) = 2) and a y coordinate of 9 (X2(4) = 9). The subroutine has the 
capability to "generate" the node numbers and coordinates for nodes "missing" from the 

DIM = 2 

(2,9) (7,9) (12,9) 

(o,o) 

8 

(6,0) 

12 

11 

I _ 9 •node number 
(12,0) .••.aode coordinates 

Input Data' 

1 I o. o. 
4 1 2. 9. 
5 I 6. o. 
8 I 7. 9. 
9 I 12. o. 

12 I 12. 9. 
-1 -1 -1 -1 

Output' 

NODE NODAL COORDINATES 
NUMBER X Y 

1 .0000 .0000 
2 .6667 3.0000 
3 1.3333 6.0000 
4 2.0000 9.0000 
5 6.00o0 .0000 
6 6.3333 3.0000 
7 6.6667 6.0000 
8 7.0000 9.0000 
9 12.0000 .0000 

10 12.0000 3.0000 
11 12.0000 6.0000 
12 12.0000 9.0000 

Figure 8.2 Example input data and output for subroutine NODES. ß 
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(o,o,8) 

10 (0,6,8) 

11 
DIM = 3 

! 12 (12,6,2) 
4!(0,6. 
.• .................... ß 6 (12,6,0) 

--' ..-' (12,0,2) 
-- 

1 2 3 

(0,0,0) (12,0,0) 

Input Data: 

1 I o. o. o. 
3 1 12. o. o. 
4 1 o. 6. o. 
6 1 12. 6. o. 
7 1 o. o. 8. 
9 1 12. o. 2. 

10 1 o. 6. 8. 
12 1 12. 6. 2. 
-1 -1. -1 -1 -1 

Output: 

NODE NODAL COORDINA•S 
NUMBER X Y Z 

1 .0000 .0000 .0000 
2 6.0000 o0000 .0000 
3 12.0000 .0000 .0000 
4 .0000 6.0000 .0000 
5 6.0000 6.0000 .0000 
6 12.0000 6.0000 .0000 
7 .0000 .0000 8.0000 
8 6.0000 .0000 5.0000 
9 12.0000 .0000 2.0000 

10 .0000 6.0000 8.0000 
11 6.0000 6.0000 5.0000 
12 12.0000 6.0000 2.0000 

Figure 8.3 Example input data and output for subroutine NODES. 
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Chapter 8 30? 

input file, and this feature can be us.ed to greatly simplify data input for portions of the 
mesh where nodes are regularly spaced. In Figure 8.2, nodes 2 and 3 are equally spaced 
between nodes 1 and 4. Therefore it is necessary only to enter the node numbers, node 
number increments, and coordinates for nodes 1 and 4. The subroutine computes the node 
numbers and coordinates for the two "missing" nodes (nodes 2 and 3) using the node 
number coordinates for nodes 1 and 4 and the node number increment for node 4. Linear 
interpolation (in this case between nodes 1 and 4) is used to compute the coordinates of the 
'*missing*' nodes. The computed coordinates of the missing nodes are also stored in the 
arrays X1 and X2 (Xl(2) -- 0.6667, X2(2) -- 3.0000, Xl(3) -- 1.3333, X2(3) -- 6.0000). 
This process is repeated for nodes 5 and 8 (nodes 6 and 7 are "missing**) and for nodes 9 
and 12 (nodes 10 and 11 are '*missing**). Input is terminated by placing a -1 in all fields. 

The mesh in Figure 8.3 is three-dimensional (DIM --- 3), so three coordinates (x, y, and 
z) are read for each node. For example, node 9 has a node number increment of 1, an x 
coordinate of 12 (Xl(9) -- 12), a y coordinate of 0 (X2(9) -- 0, and a z coordinate of 2 
(X3(9) = 2). Node numbers and coordinates for the **missing** nodes 2, 5, 8, and 11 are 
computed by the subroutine. 

DIM = 4 

(3,6) (18,6) 
2 4 6 8 10 

1 

Input Data: 

3 5 

1 2 3. 3. 
9 2 18. 3. 
2 2 3. 6. 

10 2 18. 6. 
-1 -1 -1 -1 

9 

(18,3) 

Output: NODE NODAL COORDINATES 
NUMBER R Z 

1 3.0000 3.0000 
2 3.0000 6.0000 
3 6.7500 3.0000 
4 6.7500 6.0000 
5 10.5000 3.0000 
6 10.5000 6.0000 
7 14.2500 3.0000 
8 14.2500 6.0000 
9 18.0000 3.0000 

10 18.0000 6.0000 

Figure 8.4 Example input data and output for subroutine NODES. 
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308 Subroutine Nodes 

The nodes do not have to be entered sequentially and the node number increments can 
be assigned any positive integer value. Two examples are in Figures 8.4 and 8.$. The 
mesh in Figure 8.4 is for an axisymmetric problem (DIM = 4), so two coordinates (r and z) 
are read for each node. For example, node 2 has a node number increment of 2, an r 
coordinate of 3 (Xl(2) = 3) and a z coordinate of 6 (X2(2) = 6). Node numbers and 
coordinates for the "missing" nodes 3, 4, 5, 6, ?, and 8 are computed by the subroutine. 
The mesh in Figure 8.5 is two-dimensional (DIM = 2) and a node number increment of 3 is 
used to generate the "missing" nodes 4, ?, 10, 5, 8, 11, 6, 9, and 12. 

DIM = 2 

(2,8) (14,8) 
3 6 9 12 15 

Input Data' 1 3 2. 1. 
13 3 14. 1. 
2 3 2. 3. 

14 3 14. 3. 
3 3 2. 8. 

15 3 14. 8. 
-1 -1 -1 -1 

Output' NODE NODAL COORDINATES 
NUMBER X Y 

1 2.0000 1.0000 
2 2.0000 3.0000 
3 2.0000 8.0000 
4 5.0000 1.0000 
5 5.0000 3.0000 
6 5.0000 8.0000 
7 8.0000 1.0000 
8 8.0000 3.0000 
9 8.0000 8.0000 
10 11.0000 1.0000 
11 11.0000 3.0000 
12 11.0000 8.0000 
13 14.0000 1.0000 
14 14.0000 3.0000 
15 14.0000 • 8.0000 

Figure 8.5 Example input data and output for subroutine NODES. 
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Chapter 

8.6 SOURCE CODE LISTING 

SUBROUTINE NODES 

********************************************************************** 

8.1 PURPOSE: 
TO INPUT NODE NUMBERS AND COORDINATES 

8.2 INPUT: 

NODE NUMBERS AND COORDINATES ARE READ FROM THE USER- 
SUPPLIED FILE ASSIGNED TO UNIT "INF" 

8.3 OUTPUT: 

NODE NUMBERS AND COORDINATES ARE WRITTEN TO THE USER- 
DEFINED FILE ASSIGNED TO UNIT "OUTF" 

8.4 DEFINITIONS OF VARIABLES: 
DIM - COORDINATE SYSTEM TYPE 

INC • NODE NUMBER INCREMENT 
NUMNOD =NUMBER OF NODES READ 

Xl(I) • X COORDINATE FOR NODE I IF DIM • 1, 2, OR 3 
= R COORDINATE. FOR NODE I IF DIM • 4 

X2(I) = IS NOT USED IF DIM m 1 
• Y COORDINATE FOR NODE I IF DIM • 2 OR 3 
= Z COORDINATE FOR NODE I IF DIM = 4 

X3(I) - IS NOT USED IF DIM = 1, 2, OR 4 
= Z COORDINATE FOR NODE I IF DIM = 3 

8.5 USAGE: 

NODE NUMBERS AND COORDINATES ARE READ, ONE NODE 
PER LINE, BEGINNING WITH NODE 1. NODE NUMBERS 
FOR "MISSING" NODES ARE GENERATED BY THE 
SUBROUTINE BY ADDING THE NODE NUMBER INCREMENT 
TO THE NODE NUMBER FOR THE PRECEEDING NODE. 
COORDINATES FOR "MISSING" NODES ARE COMPUTED BY 
THE SUBROUTINE USING LINEAR INTERPOLATION. TO 

TERMINATE INPUT, PLACE A -1 IN ALL FIELDS OF 
THE INPUT FILE. 

SUBROUTINES CALLED: 
NONE 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 8. 

********************************************************************** 
$ INCLUDE: ' COMALL ' 

DIMENS ION XYZ (MAX1, 3) 
EQUIVALENCE (XI,XYZ(1,1)), (X2,XYZ(1,2)), (X3,XYZ(1,3)) 
INTEGER CNODE, OLDNOD 

C 

C 

10 

NUMNOD = 0 

IDIM = DIM 

IF (DIM .EQ. 4) IDIM = 2 
OLDNOD = MAX1 

READ FROM INPUT FILE: NODE NUMBER, NODE NUMBER INCREMENT, 
AND NODAL COORDINATES 

READ (INF, *) CNODE, INC, (XYZ (CNODE, I), I-1, IDIM) 
IF (CNODE .EQ. -1) GOTO 40 
IF (CNODE .GT. NUMNOD) N!JMNOD m CNODE 
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3! 0 Subroutine Nodes 

20 

30 

c 

4o 

50 

6o 

7o 

8o 

90 

100 

110 

GENERATE NODE NUMBERS AND COORDINATES FOR "MISSING" NODES 

NGENP1 - (CNODE - OLDNOD) / INC 
IF (NGENP1 .GT. 0) THEN 

DO 30 I - 1, IDIM 
XYZINC - (XYZ (CNODE, I) - XYZ (OLDNOD, I) ) / FLOAT (NGENP1) 
DO 20 J - OLDNOD + INC, CNODE - INC, INC 

XYZ (J, I) - XYZ (J-INC, I) + XYZINC 
CONTINUE 

CONTINUE 
ENDIF 

OLDNOD - CNODE 

GOTO 10 
WRITE NODE NUMBERS AND NODAL COORDINATES TO OUTPUT FILE 
IF (NUMNOD .GT. 0) THEN 

IF (DIM .EQ. 1) THEN 
WRITE (OUTF, 50 ) 
FORMAT (3X, 'NODE ' , 10X, 'NODAL COORDINATES ' / 

2X, 'NUMBER' , 18X, wX' / 
2X, 6 ('-'), 8X, 20 ('-') ) 

ELSEIF (DIM .EQ. 2) THEN 
WRITE (OUTF, 60 ) 
FORMAT (3X, 'NODE', 21X, 'NODAL COORDINATES ' / 

2X, 'NUHBER' , 18X, 'X', 20X, 
2X, 6('-') ,8X, 20('-') ,1X, 20('-') ) 

ELSEIF (DIM .EQ. 3) THEN 
WRITE (OUTF, 70 ) 
FORMAT (3X, 'NODE •, 31X, WNODAL COORDINATES ' / 

2X, • NUMBER ', 18X, ' X ', 20X, ' Y ', 20X, ' Z ' / 
2X, 6 ('-') , 8X,20 ('-') , lX, 20 ('-') , 1X, 20 ('-') ) 

ELSEIF (DIM .EQ. 4) THEN 
WRITE (OUTF, 80) 
FORMAT (3X, 'NODE ', 21X, 'NODAL COORDINATES • / 

2X, •NUMBER', 18X, 'R', 20X, ' Z' / 
2X, 6 ( '-' ) , 8X, 20 ('-') , 1X, 20 ('-') ) 

ENDIF 

DO 100 I •' 1, NUMNOD 
WRITE (OUTF, 90) I, (XYZ (I, J) ,J=l, IDIM) 
FORMAT (I6, 10X, 3 (F15.4, 6X) ) 

CONTINUE 

ELSE 

WRITE (OUTF, 110 ) 
FORMAT (' NO NODAL POINT DATA READ. ') 

ENDIF 

RETURN 

END 

Water Resources Monograph
Groundwater Modeling by 
the Finite Element Method Vol. 13

Copyright American Geophysical Union



Chapter 9 

SUBROUTINE ELEMENT 

9.1 PURPOSE 

Subroutine ELEMENT inputs the element number, element type, and element node 
numbers for each element in the f'mite element mesh. The subroutine can be used for one-, 
two-, or three-dimensional problems or for problems with axisymmetry. 

9.2 INPUT 

Element numbers, element types, and element node numbers are read "free-format"' 
from the user-supplied file assigned to unit "INF". INF is passed to the subroutine 
through a labeled common block contained in the file "COMALL" (see Chapter 7 for a 
listing of COMALL). 

9.3 OUTPUT 

Element numbers, element types, and element node numbers are written to the user- 
defined file assigned to unit "OUTF". Column headings are added to the list of element 
numbers, element types, and element numbers written to OUTF. The number of elements 
in the mesh (variable "NUMELM"), element types (array "ELEMTYP"), and element node 
numbers (array "IN"), are stored in labeled common blocks in COMALL for use by other 
subroutines. 

9.4 DEFINITIONS OF VARIABLES 

ELEMTYP(I) 

INC 

NODETBL(I) 

NUMELM 

= Element type for element I (Table 9.1). 

= Node number J for element I. 

= Element node number increment. 

= Number of nodes in element type I (Table 9.1). 

= Number of elements in the mesh. 

9.5 USAGE 

Example input and output for subroutine ELEMENT are in Figures 9.1 to 9.3. Each 
line of input contains an element number, and the element type, element node number 
increment, and node numbers for the element. The mesh in Figure 9.1 is one-dimensional 
(DIM = 1) and contains five linear bar elements. Element 1 has an element type of 1 
(ELEMTYP(1) = 1), an element node number increment of 1 (INC = 1), and node numbers 
1 and 2 (IN(1,1) = 1 and IN(1,2) = 2). Element 5 has an element type of 1 
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Chapter 9 313 

/ 
1 2 3 

(1) (2) 

node numbers 

4 5 6 

(3) (4) (5) 

element numbers 

Input Data' 

1 1 1 1 2 
5 1 1 5 6 

-1 -1 -1 -1 -1 

Output. 

NO. 
ELEMENT 

TYPE NODE NUMBERS 

1 1 1 2 
2 1 2 3 
3 1 3 4 
4 1 4 5 
5 1 5 6 

Figure 9.1 Example input data and output for subroutine ELEMENT. 

(ELEMTYP(5) = 1), an element node number increment of 1 (INC = 1), and node numbers 
5 and 6 (IN(5,1) = 5 and IN(5,2) = 6). The subroutine has the capability to "generate" 
element numbers, element types, and element node numbers for elements "missing" from 
the input file, and this feature can be used to greatly simplify data input. In Figure 9.1, for 
example, the element node numbers for element 2 are generated within ELEMENT by 
adding the node number increment for node 5 to the node numbers for element 1 ß 

IN(2,1) = IN(1,1)+ INC = 1 + 1 = 2 
IN(2,2) = IN(1,2) + INC = 2 + 1 = 3 

Similarly the element node numbers for elements 3 and 4 are generated within ELEMENT 
by adding the node number increment for node 5 to the node numbers for element 2 and 3. 
For element 3' 

IN(3,1) = IN(2,1) +INC = 2+ 1 = 3 
IN(3,2) = IN(2,2) + INC = 3 + 1 = 4 
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314 Subroutine Element 

For element 4: 

IN(4,1) = IN(3,1) +INC = 3 + 1 = 4 
IN(4,2) = IN(4,2) + INC -- 4 + 1 = $ 

Input is terminated by placing a -1 in all fields. 
The mesh in Figure 9.2 is two-dimensional (DIM = 2) and contains ten linear 

quadrilateral elements. Element 1 has an element type of 6 (ELEMTYP(1) = 6), an element 
node number increment of 3 (INC = 3), and element node numbers 1, 4, 5, and 2 (IN(1,1) 
= 1, IN(I,2) = 4, IN(1,3) = 5, IN(1,4) = 2). Element 5 has an element type of 6 
(ELEMTYP(5) = 6), an element node number increment of 3 (INC = 3), and element node 
numbers 13, 16, 17, and 14 (IN(5,1) = 13, IN(5,7) = 16, IN(5,3) = 17, and IN(5,4) = 
14). The node number increment for element 5 is used to "generate" the element node 
numbers for the "missing" elements 2, 3, and 4. 

node numbers 

18 

17 
clement 
numbers 

Input Data: 

1 4 7 10 13 16 

1 6 3 1 4 5 2 
5 6 3 13 16 17 14 
6 6 3 2 5 6 3 

10 6 3 14 17 18 15 
-1 -1 -1 -1 -1 -1 -1 

Output: 

NO. 

1 
2 
3 
4 

6 
7 
8 
9 

10 

ELEMENT 
TYPE NODE NUMBERS 

6 1 4 5 
6 4 7 8 
6 7 10 11 
6 10 13 14 
6 13 16 17 
6 2 5 6 
6 5 8 9 
6 8 11 12 
6 11 14 15 
6 14 17 18 

2 
5 
8 

11 
14 
3 
6 
9 

12 
15 

Figure 9.2 Example input data and output for subroutine ELEMENT. 
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For element 

For dement 3: 

IN(2,1) -- IN(1,1) + INC -- 1 + 3 = 4 
[N(2,2) -- IN(1,2) + INC -- 4 + 3 -- 7 
IN(2,3) -- IN(1,3)+ INC -- 5 + 3 -- 8 
IN(2,4) -- IN(1,4) + INC -- 2 + 3 -- 5 

IN(3,1) -- IN(2,1) + INC -- 4 + 3 -- 7 
IN(3,2) -- IN(2,2) + INC = 7 + 3 = 10 
IN(3,3) = IN(2,3) + INC -- 8 + 3 -- 11 
IN(3,4) -- IN(2,4) + INC = 5 + 3 -- 8 

node numbers 
(5) 

, 8,, (7)• 
(6) 

2• 

element numbers 

13 

7 10 12 

Input Data: 

1 4 1 2 6 3 
2 4 1 2 5 6 
3 4 1 1 5 2 
4 4 1 4 5 1 
5 5 1 5 8 9 
6 5 1 4 7 8 
7 7 1 7 10 12 

-1 -1 -1 -1 -1 -1 

6 
5 

13 
-1 

14 11 9 8 
-1 -1 -1 -1 

Output: 

ELEMENT ELEMTd• 
NO. TYPE 

1 4 2 6 3 
2 4 2 5 6 
3 4 1 5 2 
4 4 4 5 1 
5 5 5 8 9 
6 5 4 7 8 
7 7 7 10 12 

NODE NUMBERS 

6 
5 

13 14 11 9 8 

Figure 9.3 Example input data and output for subroutine ELEMENT. 
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316 Subroutine Element 

for clement 4' IN(4,1) = IN(3,1)+INC = 7 +3 = 10 
IN(4,2) = IN(3,2) + INC = 10 + 3 -- 13 
IN(4,3) = IN(3,3) + INC = 11 + 3 = 14 
IN(4,4) = IN(3,4)+INC = 8 +3 = 11 

The same procedure is used to "generate" the "missing" elements between elements 6 and 
10. 

Subroutine ELEMENT allows the user to use any combination of compatible element 
types in a mesh. Refeaing to Table 9.1 a one-dimensional mesh can be designed using 
any combination of one-dimensional elements (Types 1, 2, or 3). Similarly, any 
combination of element types 3, 4, 5, 6, 7, or 8 can be used in a two-dimensional mesh, 
any combination of element types 9, 10, or 11 can be used in a three-dimensional mesh, 
and any combination of element types 12 or 13 can be used in an axisymmetric mesh. An 
example of a two-dimensional mesh containing a three element types is in Figure 9.3. 
Elements 1, 2, 3, and 4 are linear triangle elements (Type 4), elements 5 and 6 are linear 
rectangle elements (Type 5), and element 7 is a quadratic quadrilateral element (Type 7). 

Note that the element node numbers must be entered in a specific order. The proper 
order is shown in the definition sketch for the interpolation functions for each element type. 
For example, by referring to Figure 4.10 we see that the node numbers for linear 
quadrilateral elements must be entered in a "counter clockwise" fashion. 

9.6 SOURCE CODE LISTING 

SUBROUTINE ELEMENT 

********************************************************************** 

9.1 PURPOSE: 

TO INPUT ELEMENT NUMBERS, TYPES, NODE NUMBERS 

9.2 INPUT: 

ELEMENT NUMBERS, TYPES, AND NODE NUMBERS ARE READ 
FROM THE USER-SUPPLIED FILE ASSIGNED TO UNIT "INF" 

9.3 OUTPUT: 

ELEMENT N-GMBERS, TYPES, AND NODE NUMBERS ARE WRITTEN 
TO THE USER-DEFINED FILE ASSIGNED TO UNIT "OUTF" 

9.4 DEFINITIONS OF VARIABLES: 

ELEMTYP(I) • ELEMENT TYPE FOR ELEMENT I 
IN(I,J) • NODE NUMBER J FOR ELEMENT I 

INC • NODE NUMBER INCREMENT 

NODETBL(I) - NUMBER OF NODES IN ELEMENT TYPE I 
NUMELM • NUMBER OF ELEMENTS IN MESH 

9.5 USAGE: 

ELEMENT DATA (ELEMENT N/IMBER, TYPE, AND NODE NUMBERS) 
ARE READ SEQUENTIALLY, SET OF ELEMENT DATA PER LINE. 
ELEMENT NUMBERS, TYPES, AND NODE NUMBERS FOR "MISSING" 
ELEMENTS ARE GENERATED BY THE SUBROUTINE. TO TERMINATE 

INPUT, PLACE A -1 IN ALL FIELDS OF THE INPUT FILE. 

SUBROUTINES CALLED: 

NONE 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 9. 

********************************************************************** 
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$ INCLUDE: • COMALL t 
INTEGER OLDELM, ELM, TYPE 
DIMENSION NODETBL (13) 
DATA NODETBL/2,3,4,3, 4, 4,8,12,8,20,32,3,4/ 

c 

c 

lO 

20 

30 

c 

40 

50 

60 

70 

80 

MAXNODm0 
OLDELMtMAX2 
NUMELMt0 

READ FROM INPUT FILE: ELEMENT NUMBER, ELEMENT TYPE, 
AND ELEMENT NODE NUMBERS 

READ (INF, *) ELM, TYPE, INC, (IN(ELM, I), Iml,NODETBL (ABS (TYPE)) ) 
IF (ELM .EQ.-1) GOTO 40 
ELEMTYP (ELM) -- TYPE 
IF (ELM .GT. NUMELM) NUMELM • ELM 
IF (NODETBL (TYPE) .GT. MAXNOD) MAXNOD • NODETBL (TYPE) 
GENERATE THE MISSI-NG ELEMENTS 

IF (ELM .GT. OLDELM+l) THEN 
DO 30 I -OLDELM + 1, ELM-1 

IM1 • I - 1 

DO 20 J • 1, NODETBL(TYPE) 

IN(I,J) - IN(IM1,J) + INC 
CONTINUE 

ELEMTYP (I) t TYPE 
CONTINUE 

ENDIF 

OLDELM - ELM 

GOTO 10 

WRITE ELEMENT NUMBE.RS AND ELEMENT NODE NUMBERS TO OUTPUT FILE 
IF (NUMELM .GT. 0) THEN 

IF (MAXNOD .EQ. 2) THEN 
WRITE(OUTF, 50) (t •,I-1,2) 

ELSEIF (MAXNOD .EQ. 3) THEN 
WRITE (OUTF, 50) (' ', I•1,2) 

ELSEIF (MAXNOD .EQ. 4) THEN 
WRITE (OUTF, 50) (• t, I-1,2) 

ELSEIF (MAXNOD .GT. 4) THEN 
WRITE (OUTF, 50) ( • '•, I-l, 2) 

ENDIF 

FORMAT (/,2 (2X, •ELEMENT • , 4X)/4X, •NO. t, 10X, •TYPE • , 6X, A, 
•NODE NUMBERS •/2 (2X, • ....... t, 4X) , lX, A, • ............ 

DO 70 I • 1, NUMELM 
WRITE(OUTF, 60) I,ELEMTYP (I), 

(IN (I, J), Jr1, NODETBL (ELEMTYP (I)) ) 
FORMAT (I7, I13, 6X, 816: 4 (/26X, 816) } 

CONTINUE 

ELSE 

WRITE (OUTF, 80) 
FORMAT ( • NO ELEMENT DATA READ. • ) 

ENDIF 

RETURN 

END 
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, 

SUBROUTINE MATERL 

10.1 PURPOSE 

Subroutine MATERL inputs the element material set numbers for each element in the 
finite element mesh and a set of material properties for each material set. The term "material 
property" refers to any physical or chemical property for an element. For example, in 
solving the steady-state, saturated groundwater flow equation we use the components of 
saturated hydraulic conductivity to compute a conductance matrix for each element. It is 
convenient to assign all elements with the same saturated hydraulic conductivity to a single 
material set, the material properties for that set would be the components of saturated 
hydraulic conductivity for the elements in the set. Other examples of material properties are 
specific storage, porosity, bulk density, dispersivities, distribution coefficients, or a table 
of values of unsaturated hydraulic conductivity as a function of pressure head. 

1 0.2 INPUT 

Element material set numbers are read "free-format" from the user-supplied file 
assigned to unit "INF". INF is passed to the subwutine through a labeled common block 
contained in the file "COMALL" (see Chapter 7. for a listing of COMALL). Then the 
number of material properties in a material set and a list of material properties for each 
material set are read from INF. 

10.3 OUTPUT 

Element' material set numbers and the list of material properties for elements in each 
material set are written to the user-defined file assigned to unit "OUTF". Colurnn headings 
are added to the list of material set numbers and material properties written to OUTF. The 
number of element material sets (variable "NU•T"), the material set numbers for each 
element (array "MATSET"), the number of material properties in a material set (variable 
"NUMPROP"), and the material properties for each material set, array "PROP", are stored 
in labeled common blocks in COMALL for use by other subroutines. 

10.4 DEFINITIONS OF VARIABLES 

MATSET(I) 

NUMMAT 

= Material set number for element I. 

= Number of material sets in the mesh. 

NUMPROP 

PROP(I,J) 

= Number of material properties in a material set. 

= Material property J for material set I. 
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320 Subroutine Mateft 

1o.$ USAGE 

Material set numbers are read in sequentially from element one to element NUMELM, 
one element and material set number per line. The subroutine has the capability to 
"generate" the material set numbers for elements "missing" from the input f'fie. In the mesh 
in Figure 10.1, the material set numbers for all elements are the same. In this case we need 
only list the material set numbers for elements I and 10 (MATSET(i) = 1 and 

Input Dam- 

Output ß 

element numbers 

(•) (2) (3) (4) (5) 

(6) (7) (8) (9) (10) 

• • ,• ,• , 

All elements have identical material properties 
K x = Ky = 10, S s = 0.0002 

1 1 
lO 1 
-1 -1 
3 
1 lO. 10. 0.0002 

E• •MENT 
NO. 

1 
2 
3 
4 
:5 
6 
7 

9 
10 

MATERIAL 
SET NO. 

1 

MATERIAL SET NUMBER 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

MATERIAL PROPERTIES 

.100000E+2 .100000E+2 .200000E-3 

Figure I0.1 Example input data and output for subroutine MATERL. 
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MATSET(10) = 1). The subroutine "generates" the material set numbers for the eight 
"missing" elements (elements 2, 3, 4, 5, 6, 7, 8, and 9), MATSET(2) = MATSET(3) = ... 
MATSET(9) = 1. Input of material set number is terminated by placing a -1 in both fields. 

The number of material properties in a material set is read next. Note that all material 
sets must have the same number of material properties. For the mesh in Figure 10.1 
NUMMAT = 3 (the two components of hydraulic conductivity and specific storage). The 
material properties for each material set are read next. The correct order to use for entering 
material properties is in Table 10.1. Any consistent system of units can be used (If in 
doubt see the sottree code listing for the subroutines that compute the element matrices, e.g. 
KBARZ, KQUA4, DQUA4, etc.). For the mesh in Figure 10.1, PROP(I,1) = 10, 

element numbers 

sandstone 

granite--• 
For sandstone: K x = Ky = 1 x 10 -4 
For granite: K x -- Ky -- 1 x 10 -6 

Input Data: 1 
4 
5 
8 

-1 
2 
1 
2 

1 
1 
2 
2 

-1 

1 .E-4 1 .E-4 
1.E-6 1.E-6 

Output: 

Figure 10.2 

ELEMENT 
NO. MATERIAL SET NUMBER 

1 1 
2 1 
3 1 
4 1 
5 2 
6 2 
7 2 
8 2 

MATERIAL 
SET NO. MATERIAL PROPERTIES 

1 .100000E--03 .100000E--03 
2 .100000E-05 .100000E-05 

Example input data and output for subroutine MATERL. 
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322 Subroutine Materl 

PROP(I,2) = 10, and PROP(I,3) = 0.0002. Input of material properties is terminated 
automatically by the subroutine. 

There are two material sets in the mesh in Figure 10.2. Elements 1, 2, 3, and 4 are in 
material set 1 and elements 5, 6, ?, and 8 are in material set 2. Each material set has two 
properties, in this case the two components saturated hydraulic conductivity. 

Material properties can also be used to represent a table, for example a table of values of 
unsaturated hydraulic conductivity as a function of pressure head. If an unsaturated flow 
problem was being solved, the value of unsaturated hydraulic conductivity at any value of 
pressme head could be obtained from such a list by interpolation (alternative approaches to 
describing unsaturated hydraulic conductivity were described in Chapter 5). An example of 
the use of material property data for this purpose is in Figure 10.3. 

Input Data: 1 
4 

-1 
14 

1 

element numbers 

All elements have identical material properties 

o 1.oo0 
lO .6oo 
20 .200 
50 .015 

100 .010 
200 .002 
30O .003 

1 
1 

-1 

o 
50. 

300. 

1.000 10. 0.600 
0.015 100. 0.010 
0.003 

(4) 

20. 
200. 

0.200 
O.002 

Output: ELEME1Wr 
NO. 

1 
2 
3 
4 

MATERIAL 
SET NO. 

1 

MATERIAL SET NUMBER 

1 
1 
1 
1 

MATERIAL PROPERTIES 

.000000E+00 .100000E+01 .100000E+02 .600000E+00 

.200000E+02 .200000E+00 .500000E+02 .150000E- 0! 

.100000E+03 .100000E- 01 .200000E+03 .200000E- 02 

.300000E+03 .300000E- 02 

Figure 10.3 Example input data and output for subroutine MATERL. 
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10.6 SOURCE CODE LISTING 

SUBROUTINE MATERL 

********************************************************************** 

c 

c lO.1 PURPOSE: 

C TO INPUT ELEMENT MATERIAL SET NUMBERS AND MATERIAL 
C PROPERTIES FOR EACH MATERIAL SET 

C 

C 10.2 INPUT: 
C ELEMENT MATERIAL SET NUMBERS AND MATERIAL PROPERTIES 

C FOR EACH MATERIAL SET ARE READ FROM THE USER-SUPPLIED 

C FILE ASSIGNED TO UNIT "INF" 
C 

C 10.3 OUTPUT: 
C ELEMENT MATERIAL SET NUMBERS AND MATERIAL PROPERTIES 

C FOR EACH MATERIAL SET ARE WRITTEN TO THE USER-DEFINED 

C FILE ASSIGNED TO UNIT "OUTF" 

C 

C 10.4 DEFINITIONS OF VARIABLES: 

C MATSET(I) - MATERIAL SET NUMBER FOR ELEMENT I 
C NUMMAT - NUMBER OF MATERIAL SETS 
C NUMPROP - NUMBER OF MATERIAL PROPERTIES IN EACH 

C MATERIAL SET 

C PROP(I,J) - MATERIAL PROPERTY J FOR MATERIAL SET I 
C 

C 10.5 USAGE: 

ELEMENT MATERIAL SET NUMBERS ARE READ IN SEQUENTIALLY, 
ONE ELEMENT NUMBER AND MATERIAL SET NLP'•ER PER LINE. 

MATERIAL SET NUMBERS FOR "MISSING" ELEMENTS ARE 

GENERATED BY THE SUBROUTINE BY ASSIGNING THE MATERIAL 
SET NUMBER OF THE PRECEEDING ELEMENT TO EACH "MISSING" 
ELEMENT. TO TERMINATE INPUT OF ELEMENT MATERIAL SET 

NUMBERS, PLACE A -1 IN ALL FIELDS OF THE INPUT FILE. 
THE PROGRAM THEN READS THE NUMBER OF MATERIAL SET 

PROPERTIES IN EACH MATERIAL SET (THE NUMBER OF MATERIAL 
PROPERTIES IN EACH MATERIAL SET IS THE SAME). THEN 
THE MATERIAL PROPERTIES FOR EACH MATERIAL SET ARE READ IN 

SEQUENTIALLY, ONE MATERIAL SET NUMBER AND ONE SET OF 
MATERIAL PROPERTIES PER LINE. INPUT IS TERMINATED 

AUTOMATICALLY WHEN THE LAST MATERIAL SET PROPERTIES ARE 

SUBROUTINES CALLED: 

NONE 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 10. 

********************************************************************** 

$INCLUDE:•COMALL • 

INTEGER OLDELM, ELM, SETNUM 
C 

OLDELM - MAX4 

NUMMAT = 0 

C READ FROM INPUT FILE: ELEMENT NUMBER, AND MATERIAL SET NUMBER 
10 READ(INF,*) ELM,MATSET(ELM) 

IF (ELM .EQ. -1) GOTO 30 
DETERMINE THE NUMBER OF MATERIAL SETS 

IF (MATSET(ELM) .GT. NUMMAT) NUMMAT = MATSET(ELM) 
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324 ß Subroutine Mateft 

2O 

c 

30 

40 
1 

50 
60 

C 

MATERIAL SET 

READ ( INF, * ) NUMPROP 
IF (NUMPROP .EQ. 1) THEN 

WRITE(OUTF, 70) (' ',I-1,2) 
ELSEIF (NU'•ROP .EQ. 2) THEN 

WRITE (OUTF, 70) (' 
ELSEIF (NUMPROP .EQ. 3) THEN 

WRITE(OUTF, 70) (• 
ELSEIF (NUMPROP .GE. 4) THEN 

WRITE(OUTF, 70) (• 
ENDIF 

GENERATE THE MATERIAL SET NUMBER FOR EACH "MISSING" ELEMENT 

IF (ELM .GT. OLDELM + 1) THEN 
DO 20 I - OLDELM + 1, ELM - 1 

MATSET (I) = MATSET (I-l) 
CONTINUE 

END IF 

OLDELM = ELM 

GOTO 10 
WRITE THE MATERIAL SET NUMBER FOR EACH ELEMENT TO OUTPUT FILE 

IF (N7JMELM .GT. 0) THEN 
WRITE (OUTF, 40) 
FORMAT (//2X, •ELEMENT •/4X, •NO. ', 9X, 'MATERIAL SET NUMBER' / 

2X, ' ....... ', 7X, ' .................... ' ) 
DO 60 I = 1, NUMELM 

WRITE (OUTF, 50) I,MATSET (I) 
FORMAT (I6, I20) 

CONTINUE 

READ FROM INPUT FILE: THE NUMBER OF PROPERTIES IN EACH 

', I=l, 2) 

', I=l, 2) 

',I=1,2) 

70 

80 

90 

100 

FORMAT (//2X, 'MATERIAL'/3X, ' SET NO. ', 3X, A, 
'MATERIAL PROPERTIES '/2X, ' ........ ', 3X, A, 
! .................... ! ) 

WRITE MATERIAL PROPERTIES INFORMATION TO OUTPUT FILE 

DO 90 I = 1, NUMMAT 
READ (INF, *) SETNUM, (PROP (SETNUM, J) , J--1,NUMPROP) 
WRITE (OUTF, 80) SETNUM, (PROP (SETNUM, J) , J=I,NUMPROP) 
FORMAT (I7, 7X, 8 (1P4E15.6/14X)) 

CONTINUE 

ELSE 

WRITE (OUTF, 100) 
FORMAT (' NO ELEMENT MATERIAL PROPERTY DATA READ. ') 

ENDIF 

RETURN 

END 
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Chapter 11 

SUBROUTINE BOUND 

11,1 PURPOSE 

Subroutine BOUND inputs specified values of the field variable (hydraulic head, 
pressure head, or solute concentration) and specified values of either groundwater flow or 
solute flux, for selected nodes in mesh. These values are used to represent Dirichlet and 
Neumann boundary conditions for the groundwater flow and solute wansport equations. 

11.2 INPUT 

Specified values of the field variable are read "free-format" from the user-supplied file 
assigned to unit "INF". INF is passed to the subroutine through a labeled common block 
contained in the f'fie "COMALL" (See Chapter 7 for a listing of COMALL). Then specified 
values of either groundwater or solute flux are read from INF. 

11.3 OUTPUT 

Specified values of the field variable (hydraulic head, pressure head, or solute 
concentration) and either groundwater flow or solute flux are written to the user-def'med file 
assigned to unit "OUTF". Column headings are added to the list of specified values written 
to OUTF. The character variables "LABELl" and "LABEL2" are used to label the column 
headings on OUTF as "HYDR_AULIC HEAD", "PRESSURE HEAD", or "SOLUTE 
CONCENTRATION" and "GROUNDWATER FLOW" or "SOLUTE FLUX". 

11.4 DEFINITIONS OF VARIABLES 

FLUX(I) • Specified value of groundwater flow or solute flux at node I. 

x(i) = Specified value of the field variable (hydraulic head, pressure head 
or solute concentration) at node I. 

ICH(I) = 1 if the value of the field variable is specified for node I. 
= 0, otherwise. 

LCH(I) 

I 

E ICH(k). The arrays ICH and LCH are used in subroutines 
k•-I 

ASMBK, ASMBKC, and ASMBAD to modify global system of 
equations for specified values of the field variable. 

LABEL1 = Character variable used to label column headings for specified 
values of the field variable on the file assigned to unit OUTF. 

325 
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326 Subroutine Bound 

LABEL2 

NDN 

NDOF 

NNN 

LABEL1 --"HYDRAULIC HEAD", "PRESSURE HEAD", or 
"SOLUTE CONCENTRATION". 

= Character variable used to label column headings for specified 
values of groundwater How or solute flux on the file assigned to unit 
OUTF. LABEL2 = "GROUNDWATER FLOW" or "SOLUTE 
FLUX". 

= Number of nodes with specified values of the field variable (named 
for "Number of Dirichlet Nodes"). 

= Number of nodes where the value of the field variable are unknown 
(named for "Number of Degrees of Freedom). 

= NUMNOD- NDN. 

-- Number of nodes with specified values of groundwater flow or 
solute flux (named for "Number of Neumann Nodes). 

11.5 USAGE 

Specified values of the field variable are read first, one node number and the specified 
value of the field variable at that node per line. The node numbers and specified values can 
be listed in any order on the input file. Th$ v•10e of the field variable must be specified for 
at least one node in the mesh. Input is terminated by placing a -1 in both fields. Specified 
values of groundwater flow or solute flux are read next, one node number and the specified 
value of groundwater flow or solute flux at that node per line. The node numbers and 
specified values can be listed in any order on the input file. Input is' terminated by placing a 
-1 in both fields. 

The mesh in Figure 11.1 is for an unsaturated groundwater flow problem. In this case, 
the calling program would assign the character strings "PRESSURE HEAD" and 
"GROUNDWATER FLOW", to the character variables "LABELl" and "LABEL2", 
respectively. Four values of pressure head are specified (at nodes 1, 2, 5, and 6) and there 
are no specified values of groundwater flow. Specified values of pressure head are 
assigned to the array "X", the remaining entries of X are arbitrarily assigned a value of zero 
(the values of pressure head at these nodes will be computed by subroutine SOLVE, see 
Chapter 13). The entries of the arrays "ICH" and "LCH" are assigned and, since there are 
no specified values of groundwater flow, the entries of the array are assigned a value of 
zero. After BOUND is executed these arrays would contain the following: 

I x(I) ICH(I) LCH(I) FLUX(I) 

1 -10. 1 1 o. 
2 -10. 1 2 o. 
3 o. 0 2 o. 
4 o. 0 2 o. 
5 -5. 1 3 o. 
6 -5. 1 4 o. 

The mesh in Figure 11.2 is for a saturated groundwater flow problem. In this case the 
calling program would assign the character strings "HYDRAULIC HEAD" and 
"GROUNDWATER FLOW" to the character variables "LABEL1" and "LABEL2", 
respectively. Five values of hydraulic head are specified (at nodes 3, 5, 8, 10, and 13) and 
a pumping well is located at node 7. After BOUND is executed the entries of arrays X, 
ICH, LCH, and FLUX would contain the following: 
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Chapter 11 327 

X(I) ICH(I) LCH(I) FLUX(I) 

1 0. 0 0 0. 
2 0. 0 0 0. 
3 10. 1 1 0. 
4 0. 0 1 0. 
5 10. 1 2 0. 
6 0. 0 2 0. 
7 0. 0 2 -10. 
8 10. 1 3 0. 
9 0. 0 3 0. 
10 10. 1 4 0. 
11 0. 0 4 0. 
12 0. 0 4 0. 
13 10. 1 5 0. 

!g=-10 

lit =-10 

Input Data' 

Output' 

2 4 6 

1 3 5 

1 -10. 
2 -10. 
5 -5. 
6 -5. 

-1 -1 
-1 -1 

NODE SPECIFIED 
NO. PRESSURE HEAD 

I -10.00 
2 -10.00 
5 -5.00 
6 -5.O0 

•=-5 

•=-5 

NUMBER OF NODES WITH SPECIFIED PRESSURE HEAD = 4 

NUMBER OF NODES WITH SPECIFIED GROUNDWATER FLOW = 0 

Figure 11.1 Example input data and output for subroutine BOUND. 
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328 Subroutine Bound 

h--10 

3 5 8 10 

-lOm/a 

1 4 6 9 

13 

12 

Input Data' 
3 10. 
5 10. 
8 10. 
10 10. 
13 10. 
-1 -! 
7 -10. 
-1 -1 

Output' 
NODE SPECIFIED 
NO. HYDRAULIC HEAD 

3 10.00 
5 10.00 
8 10.00 
10 10.00 
13 10.00 

NUMBER OF NODES WITH SPECIFIED HYDRAULIC HEAD = 5 

NODE SPECIFIED 
NO. GROUNDWATER FLOW 

7 - 10.00 

NUMBER OF NODES WITH SPECIFIED GROUNDWATER FLOW = 1 

Figure 11.2 Example input data and output for subroutine BOUND. 
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11.6 SOURCE CODE LISTING 

SUBROUTINE BOUND 

********************************************************************** 
c 

c 11.1 PURPOSE: 

C TO INPUT SPECIFIED VALUES OF THE FIELD VARIABLE 

C (HYDRAULIC HEAD, PRESSURE HEAD, OR SOLUTE CONCENTRATION) 
C AND SPECIFIED VALUES OF GROUNDWATER FLOW OR SOLUTE FLUX, 
C FOR SELECTED NODES. 

C 

C 11.2 INPUT: 

C SPECIFIED VALUES OF THE FIELD VARIABLE AND SPECIFIED 

C VALUES OF GROUNDWATER FLOW OR SOLUTE FLUX ARE READ 
C FROM THE USER-SUPPLIED FILE ASSIGNED TO UNIT "INF". 

C 

C 11.3 OUTPUT: 

C SPECIFIED VALUES OF THE FIELD VARIABLE AND SPECIFIED 
C VALUES OF GROUNDWATER FLOW OR SOLUTE FLUX ARE WRITTEN 

C TO THE USER-DEFINED FILE ASSIGNED TO UNIT "OUTF". 

C 

C 11.4 DEFINITIONS OF VARIABLES: 

C FLUX(I) - SPECIFIED VALUE OF GROUNDWATER FLOW OR 
C SOLUTE FLUX AT NODE I 

C ICH(I) • i IF THE VALUE OF THE FIELD VARIABLE IS 
C SPECIFIED FOR NODE I, 
C - 0 OTHERWISE 

C LCH(I) • ICH(I) + ICH(I-1) + ICH(I-2) + ... 
C THE ARRAYS ICH AND LCH ARE USED TO MODIFY 

C GLOBAL SYSTEM OF EQUATIONS IN SUBROUTINES 
C ASMBK, ASMBKC, AND ASMBAD 
C LABEL1 - CHARACTER VARIABLE USED TO LABEL COLUMN 
C HEADINGS FOR SPECIFIED VALUES OF THE FIELD 
C VARIABLE ON FILE ASSIGNED TO UNIT OUTF. 

C LABEL1 = "HYDRAULIC HEAD", "PRESSURE HEAD" 
C OR "SOLUTE CONCENTRATION" 

C LABEL2 = CHARACTER VARIABLE USED TO LABEL COLUMN HEADINGS 
C FOR SPECIFIED VALUES OF GROUNDWATER FLOW OR 
C SOLUTE FLUX ON FILE ASSIGNED TO UNIT OUTF. 
C LABEL2 • "GROUNDWATER FLOW" OR "SOLUTE FLUX" 
C NDN - NUMBER OF NODES WITH SPECIFIED VALUES OF THE 
C FIELD VARIABLE (NAMED FOR NUMBER OF DIRICHLET 
C NODES ) 
C NDOF - NUMBER OF NODES WHERE THE VALUE OF THE FIELD 
C VARIABLE IS UNKNOWN (NAMED FOR NUMBER OF DEGREES 
C OF FREEDOM) 
C NNN = NUMBER OF NODES WITH SPECIFIED VALUES OF 

C GROUNDWATER FLOW OR SOLUTE FLUX (NAMED FOR NUMBER 
C OF NEUMANN NODES) 
C X(I) • SPECIFIED VALUE OF THE FIELD VARIABLE 
C (HYDRAULIC HEAD, PRESSURE HEAD, OR 
C SOLUTE CONCENTRATION) AT 'NODE I 
C 

C 11.5 USAGE: 

C SPECIFIED VALUES OF THE FIELD VARIABLE ARE READ FIRST, ONE 
C NODE NUMBER AND THE SPECIFIED VALUE OF THE FIELD VARIABLE 
C AT THAT NODE PER LINE. THE NODE NUMBERS CAN BE LISTED IN 
C ANY ORDER ON THE INPUT FILE. THE VALUE OF THE FIELD 

C VARIABLE MUST BE SPECIFIED FOR AT LEAST ONE NODE IN THE 

C MESH. INPUT IS TERMINATED BY PLACING A -1 IN BOTH FIELDS. 

C SPECIFIED VALUES OF GROUNDWATER FLOW OR SOLUTE FLUX ARE 
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330 Subroutine Bound 

READ NEXT, ONE NODE NUMBER AND THE SPECIFIED VALUE OF 
GROUNDWATER FLOW OR SOLUTE FLUX AT THAT NODE PER LINE. 

THE NODE NUMBERS AND SPECIFIED VALUES CAN BE LISTED IN ANY 

ORDER ON THE INPUT FILE. INPUT IS TERMINATED BY PLACING 
A -1 IN BOTH FIELDS. 

SUBROUTINES CALLED: 

NONE 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 11. 

********************************************************************** 

$INCLUDE: 'COMALL' 
C 

C INITIALIZATION 

10 

C 

C 

2O 

3O 

40 

50 

C 

C 

60 

70 

DO 10 I m 1, NUMNOD 
ICH (I) "0 
FLUX(I) m 0. 

CONTINUE 

READ FROM INPUT FILE: NODE NUMBER AND SPECIFIED VALUE OF 
FIELD VARIABLE 

READ (INF, * ) I,X(I) 
IF (I .NE. -1) THEN 

IF(NDN .EQ. 0) WRITE(OUTF, 30) LABEL1 
FORMAT (//3X, 'NODE', 15X, 'SPECIFIED'/4X, 'NO. ', 10X, A/ 

2X, ' ...... ', 9X, ' ..................... ' ) 
NDN - NDN + 1 

ICH (I) ' 1 
WRITE INFORMATION JUST READ TO OUTPUT FILE 
WRITE (OUTF, 40) I,X(I) 
FORMAT (I6, 10X, F15.4) 
GOTO 20 

ENDIF 

WRITE (OUTF, 50 ) LABEL1, NDN 
FORMAT(//' NUMBER OF NODES WITH SPECIFIED ',A, • '•',I7) 
NNN'0 

READ FROM INPUT FILE: NODE NUMBER AND SPECIFIED VALUE OF 
GROUNDWATER FLOW OR SOLUTE FLUX 

READ (INF, *) I, FLUX (I) 
IF (I .NE. -1) THEN 

IF (NNN .EQ. 0) WRITE(OUTF, 30) LABEL2 
NNN • NNN + 1 

WRITE THE INFORMATION JUST READ TO OUTPUT FILE 
WRITE (OUTF, 40) I, FLUX (I) 
GOTO 60 

ENDIF 

WRITE (OUTF, 50 ) LABEL2, NNN 
LCH(1) " ICH(1) 
DO 70 I • 2, NUMNOD 

LCH(I) = LCH(I-1) + ICH(I) 
CONTINUE 

NDOF - NUMNOD - NDN 

RETURN 

END 
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Chapter 12 

SUBROUTINE ASMBK 

12.1 PURPOSE 

Subroutine ASMBK assembles the global conductance matrix [K] and the global 
specified flow matrix (F) (equation 5.1). The global matrices are modified during the 
assembly process to account for specified values of the field variable (hydraulic head or 
pressure head) and groundwater flow. ASMBK also computes the semi-bandwidth and the 
number of degrees of freedom for the modified system of equations. 

12.2 INPUT 

None 

12.3 OUTPUT 

The semi-bandwidth and number of degrees of freedom for the modified system of 
equations are written to the user-defined rue assigned to unit "OUTF". 

12.4 DEFINITIONS OF VARIABLES 

B(I) Modified specified flow matrix. 

E = Element number. 

ELEMTYP(I) = Element type for element I (see Table 9.1 for a list of element 
types). 

FLUX(I) = Specified value of groundwater flow at node 1. 

ICH(I) = 1 if the value of the field variable is specified for node I, 
= 0 otherwise. 

IJSIZE = Length of array M. 

KE(I,J) = Conductance matrix for element e in full matrix storage. 

I 
LCH(I) = I ICH(k). The arrays ICH and LCH are used to modify the 

k=l 
global system of equations for specified values of the field 
variable. 

M(IJ) Modified global conductance matrix in vector storage. 
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NDOF = Number of nodes where the value of the field variable is 
unknown. 

NODETBL(I) = Number of nodes in element type I. 

NUMELM = Number of elements in mesh. 

SBW = Semi-bandwidth of modified global conductance matrix. 

XCI) = Value of the field variable (hydraulic head or pressure head) at 
node I. 

12.5 USAGE 

Subroutine ASMBK assembles the global conductance matrix [K] and the global 
specified groundwater flow matrix (F). [K] and (F) are modified to account for specified 
values of the field variable (hydraulic head or pressure head) during the assembly process, 
using the procedures in Chapter 4. The global conductance matrix is assembled and 
modified in vector storage in the array M. The modified, global specified flow matrix is 
stored in the array B. Arrays M and B can be passed to subroutines DECOMP and SOLVE 
(see Chapter 13) to obtain the remaining unknown values of head. 

The number of degrees of freedom (number of unknown values of the field variable), 
NDOF is computed in subroutine BOUND as 

NDOF = NUMNOD - NDN (12.2) 

where NUMNOD is the number of nodes in the mesh (Chapter 8) and NDN is the number 
of nodes with specified values of the field variable (Number of ,Qirichlet Nodes) (Chapter 
11). The semi-bandwidth, SBW for the modified system of equations is computed in 
ASMBK using 

SBW = R+ 1 (12.3) 

where R is the maximum difference in node numbers for any two nodes within any element 
in the mesh. However, if the value of the field variable is specified for a node, that node is 
IlQ1 used in the calculation of R (because the row in [K] for that node will be eliminated 
when [K] is modified for the specified value of head). 

The element conductance matrices are computed in a set of subroutines, one subroutine 
for each element type (fable 12.1). Each subroutine name in this set begins with the letter 

"K" (for the element conductance matrix [K(e)]) followed by three or four letters that 
identify the element type and the number of nodes in elements of that type. For example, 
subroutine KBAR2 computes the element conductance matrix for one-dimensional, linear 
bar elements and subroutine KP AR20 computes the element conductance matrix for three­
dimensional, quadratic parallelepiped elements. Subroutines KTRI3A and KREC4A 
compute the element conductance matrix for two-dimensional (axisymmetric) linear triangle 
and linear rectangle elements, respectively. 

The source code listing for each element conductance matrix subroutine gives the 

figure containing the interpolation functions and the equation used to compute [K(e)] for that 
element type. Subroutines KBAR2, KTRI3. KREC4, and KTRI3A use analytical methods 

to compute [K(e)] (Section 4.3.1), The rest of the subroutines use numerical methods 
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334 Subroutine ASMBK 

(Section 4.3.2). An attempt has been made to choose FORmAN variable names that are 
suggestive of the symbols used in the equations in Chapter 4. A list of the most imponant 
FORnAN variable names and their symbols &Ie in Table 12.2. 

The operation of ASMBK is most easily explained by considering specific examples. 

The mesh in Figure 12.1 contains four nodes (NUMNOD = 4) and three elements 
(NUMELM = 3). 

hi = 10m • 
1 

(1) 
• 

2 

K�l) = K�) = K�) = 0. 02 mid 

L(1)=5, L(2)=6, L(3)=4m 
Fiaure 12.1 Example mesh for ASMBK. 

The value of hydraulic head is specified at nodes one and four (lCH(l) = ICH(4) = I, 
NON = 2) and we are to compute the head at nodes two and three.NOOF = 4 - 2 = 2 and 
SBW = 1+1 = 2. All elements are the same type, ELEMTYP(l) = ELEMTYP(2) = 
ELEMTYP(3) = 1, corresponding to a linear bar element type (Table 12.1). This element 
type has two nodes (NODETBL(l) = 2) and the element conductance matrix for this 
element type &Ie computed using subroutine KBAR2. The results &Ie: 

for element 1 

E = 1 

for element 2 

E=2 

for element 3 

E=3 

KE 
= 

[ 0.0040 -0.0040] 
-0.0040 0.0040 

KE 
= 
[ 0.0033 -0.0033] 

-0.0033 0.0033 

KE 
= 
[ 0.0050 -0.00501 

-0.0050 0.0050J 

The global system of equations for this problem is 

[ 0.0040 -0.0040 0 O]{ hi = 1O} { O} 
-0.0040 0.0073 -0.0033 0 h2 0 

o -0.0033 0.0083 -0.0050 h3 
= 

0 
o 0 -0.0050 0.0050 h4 = 0 0 

which can be modified to give 

[ 0.0073 -0.0033]{ h2} 
= 

{ 0.04} 
-0.0033 0.0083 h3 0 

(12.4) 
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Equation 12.4 is stored in three arrays in ASMBK: M, X, and B 

{ 0.0073} 
M = -0.0033 

0.0083 

These arrays can be passed to subroutines DECOMP and SOLVE (see Chapters 13) to 
obtain hZ and h3. 

For another example consider the mesh in Figure 12.2. 

3 
(0,10) 

6 
(5,10) 

noclenwnber 

I node coordinates 

8 /: 1 1  
(10,10) . ( 15,10) 

element 
(1) nwnber 

h = 10 2 (0,5) .... -_Q--. 5 (5,5) �4) 10 (15,5) h = 0 

Element 
Number 

1 
2 
3 
4 

1 

2 
1 
1 
4 

1 
(0,0) 

x 

2 

5 
5 
4 
7 

4 
(5,0) 

7 
(10,0) 

9 
(15,0) 

3 

6 
2 
5 
9 

K�l) = K�) = K�) = K�4) = 1. 0 mid 

K�l) = K�2) = K?) = K�4) = 1.0 mid 

Q=-100m3/d 

Node Numbers 
4 5 6 7 

3 

10 11 8 6 

Figure 12.2 Example mesh ror ASMBK. 

8 

5 



Ta
bl

e 
12

.2 
De

fin
iti

on
s 

ror
 s

ele
cte

d 
va

ria
bl

es
 i

n 
ele

me
nt

 c
on

du
cta

nc
e 

ma
tri

x 
su

br
ou

tin
es

. 

F
O

R
mAN

 V
ari

ab
le

 
De

fi
niti

on
 

or
 A

rra
y 

N
ame

 

AE4
 

4 
x

 (Ar
ea

 o
f 

el
em

en
t)

 

DET
JA

C 
De

te
rm

in
an

t o
f J

ac
ob

ia
n 

m
atrix

 a
t 

G
au

ss
 p

oi
nt

 

D
N

D
XI

(I )
 

Part
ial

 d
eri

va
tiv

e 
of

 i
nt

erp
ol

ati
on

 

fu
nc

tio
n 

fo
r n

od
e I

 w
ith

 re
sp

ec
t t

o 
£ 

at
 G

au
ss

po
in

t 

DNE
TA

(I )
 

Pan
ial

 d
eri

va
tiv

e 
of

 i
n

te
rpo

la
ti

on
 

fu
nc

ti
on

 for
 n

od
e I

 w
ith

 re
spe

ct
 t o

 
1'1 

at
 G

au
ss

po
in

t 

D
ND

ZET
A(

I ) 
Pan

ia
l 

de
riv

ativ
e 

of
 i

nt
erpol

atio
n 

fu
nc

tio
n 

fo
r 

nod
e I

 w
ith

 re
sp

ec
t t

o 
t 

at
 G

au
ss

po
in

t 

D
N

D
X(

I) 
Pan

ial
 d

eri
va

tiv
e 

of
 

in
te

rpol
atio

n 

fu
nc

tio
n 

fo
r n

od
e I

 w
ith

 re
sp

ec
t t

o 
x 

at
 G

au
ss

po
in

t 

Sy
m

bo
l(s

) i
n

 T
ex

t 

4A
(e)

 

I J (
£j )

 I o
r 

I J (
£j .

1'I j
) I 

or
 I J

(£
j .1'I

j.t
k)

 I 

aN
j 

aN
j 

aN
j 

Te
(£

j) 
or

 Te
(£

j.1'I
j) 

or
 Te

(£
j .1'I

j.t
k)

 

aN
i 

aN
j 

ail
(£

j.1'I
j) 

or
 ail

(£
j.1'I

j.t
k)

 

aN
· 

at
l(£

j.1'I
j.t

k)
 

aN
i 

aN
i 

aN
i 

ax-
(£

j) 
or

 ax-
(£

j.1'I
j) 

or
 ax-

(£
j.1'I

j.t
k)

 

t.»
 

t.»
 

0\
 

VJ
 g- o � �.
 Ii »- VJ
 � � 



D
N

D
Y

(I
) 

P
art

ial
 d

eri
v

at
iv

e 
of

 i
nterp

ol
ati

on
 

fu
n

ct
io

n 
fo

r 
nod

e 
I w

ith
 re

sp
ec

t t
o 

y 
at

 G
au

ss
p

oi
n

t 

D
ND

Z(
I) 

P
art

ia
l 

de
ri

va
ti

ve
 o

f 
in

terp
ol

ati
on

 

fu
nc

ti
on

 f
or

 n
od

e 
I w

ith
 re

sp
ec

t 
to

 
z 

at
 G

au
ss

p
oi

n
t 

JA
C

(I .
J)

 
Ja

co
bi

an
 m

atri
x

 at
 G

au
ss

 p
oi

nt
 

JA
CI

N
V(

I .J
) 

In
ve

rs
e 

of
 J

ac
ob

ia
n

 m
ani

x
 at

 G
au

ss
 

po
in

t 

K
E

(I
.J

) 
Con

du
ct

an
ce

 m
atri

x
 f

or
 e

le
me

n
t 

e 

KX
E

 
H

ydra
ul

ic
 c

on
du

ct
iv

ity
 in

 x
 dire

ctio
n

 

for
 e

le
m

en
t 

e 

K
Y

E
 

H
yd

ra
ul

ic
 c

on
du

ct
iv

it
y

 in
 y

 d
ire

ct
io

n 

for
 e

le
m

en
t 

e 

KZE
 

H
yd

ra
ul

ic
 c

on
du

cti
vi

ty
 i

n
 z

 direc
ti

on
 

fo
r 

el
eme

n
t 

e 

IE
 

Le
ng

th
 o

f 
el

eme
nt

 e
 

W
(I

) 
W

ei
g

h
t 

fo
r 

G
au

ss
 p

oi
n

t 
I 

aN
j 

aN
j 

ay
(E

j.1'I
j) 

or
 ay

(E
j.1'I

j.t
k)

 

aN
j 

Tz
(£

it1'l
j. t

k)
 

[J(
£j»

 o
r 

[J
(£

j.1'I
j) ]

 o
r 

[J
( E

j. 1'I
j. t

J
] 

[J
(£

jf
l] 

or
 

[J
( E

j.1'I
jf

1] 
or

 
[J

(E
j. 1'I

j. t
tl

-1] 

[K
(e)]

 

K
(e) 
x 

K
(e) y I4 e) 

L
(e) 

X
I (

I) .
 ET

A
(I)

. 
Loc

at
io

n
 o

f 
G

au
ss

 p
o

in
ts

 i
n

 £,
 1'1

. a
n

d
 t 

coo
rd

in
at

e 
E. 

1'1.
 t

 
ZET

A
(I

) 
di

re
cti

on
s 

SI
G

N
l(

I)
.S

IG
N

2(
I)

. A
lg

eb
ra

ic
 s

ig
n

s 
of

 te
rms

 i
n

 in
te

rp
ol

at
io

n
 

£j;
 1'I

j. 
tk

 
SI

G
N

3(
I) 

fu
n

ct
io

n
s 

an
d 

d
er

iv
at

iv
es

 f
or

 n
od

e 
I. 

(') :r
 

� Ii ... l,)
 ..., � 



338 Subroutine ASMBK 

The mesh contains eleven nodes (NUMNOD ::: 11) and four elements (NUMNOD ::: 4). 
The value of hydraulic head is specified at nodes 1,2,3,9, 10, and 11 (NON::: 6) and we 
are to compute the head at nodes 4, 5, 6, 7, and 8. NDOF::: 11 - 6 = 5 and SBW = 4 + 1 
= S. where the maximum difference in node numbers occurs in element 4 (nodes 1,2.3,9, 
10, and 11 are not used to calculate SBW). Element 1 is a linear rectangle (ELEMTYP(I) 
::: 5, with NODETBL(5) ::: 4), elements 2 and 3 are linear triangles (ELEMTYP(2) ::: 
ELEMTYP(3) ::: 4, with NODETB(4) ::: 3), and element 4 is a quadratic quadrilltteral 
(ELEMTYP(4) = 7. with NODETBL(7) = 8). The element conductance matrix for element 
1 is computed by subroutine KREC4: 

2 S 6 3 [ 0.666 -0.166 -0.333 -0.166] 2 

[K(l)] = 
-0.166 0.666 -0.166 -0.333 S 
-0.333 -0.166 0.666 -0.166 6 
-0.166 -0.333 -0.166 0.666 3 

the element conductance matrices for elements 2 and 3 are computed by subroutine KTRI3: 

1 S 2 [ 0.500 0.000 -0.500] 1 
[K(2)] = 0.000 0.500 -0.500 S 

-0.500 -0.500 1.000 2 

1 4 S [ 0.500 -0.500 0.000] 1 
[K(3)] = -0.500 1.000 -0.500 4 

0.000 -0.500 0.500 s 

and the element conductance matrix for element 4 is computed by subroutine KQUA8: 

4 7 9 10 11 8 6 S 
1.555 ·-0.822 0.500 -0.511 0 .. 511 -0.511 0.500 -0.822 4 

-0.822 2.311 -0.822 0.000 -0.511 0.355 -0.511 0.000 7 
0.500 -0.822 1.155 -0.822 0.500 -0.511 0.511 -0.511 9 

-0.511 0.000 -0.822 2.311 -0.822 0.000 -0.511 0.355 10 
0.511 -0.511 0.500 -0.822 1.152 -0.822 0.500 -0.511 11 

-0.511 0.355 -0.511 0.000 -0.822 2.311 -0.822 0.000 8 
0.500 -0.511 0.511 -0.511 0.500 -0.822 1.155 -0.822 6 

-0.822 0.000 -0.511 0.355 -0.511 0.000 -0.822 2.311 S 

The global system of equations for the problem is 
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1 1.000 -0.500 0.000 -O.SOO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
2 -0.500 1.666 -0.166 0.000 -0.666 -0.333 0.000 0.000 0.000 0.000 0.000 
3 0.000 -0.166 0.666 0.000 -0.333 -0.166 0.000 0.000 0.000 0.000 0.000 

1--------------------, 
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h1=10 0 
h2=10 0 
h3=10 0 

h4 0 4 -0.500 0.000 0.000: 2.555 -1.322 O.SOO -0.822 -0.511: O.SOO -0.511 0.511 
s 0.000 -0.666 -0.333 :-1.322 3.977 -0.988 0.000 0.000:-0.511 0.355 -0.511 
6 0.000 -0.333 -0.166: 0.s00 -0.988 1.821 -0.511 -0.822: 0.s11 -O.s11 0.500 

hs -100 

I I 
7 0.000 0.000 0.000 :-0.822 0.000 -0.511 2.311 0.355 :-0.822 0.000 -0.511 
s 0.000 0.000 0.000 :-0.511 0.000 -0.822 0.355 2.311 :-0.511 0.000 -0.822 
9 0.000 0.000 0.000' o.sexf :tf5ii -0:5ii :0.11"22 --CUll" 1.155 -0.822 0.500 
10 0.000 0.000 0.000 -0.511 0.355 -O.Sl1 0.000 0.000 -0.822 2.311 -0.822 
11 0.000 0.000 0.000 0.511 -0.511 O.SOO -0.511 -0.822 0.500 -0.822 1.155 

h 6 
h7 
h s 

h9=0 
hl0=0 
hll=O 

Figure 12.3 Global system 01 eqaatiODs lor the mesh iD Figure 12.3. 

After modifying the global system for the six specified values of hydraulic head we 
have 

2.SSS -1.322 0.500 -0.822 -o.Sl1 

-1.322 3.977 -0.988 0.000 0.000 

0.500 -0.988 1.821 -o.Sl1 -0.822 

-0.822 0.000 -0.511 2.311 0.35S 

-o.SI1 0.000 -0.822 0.35S 2.311 

Equation 12.S is stored in arrays M, X. and B 

2.55S 
-1.322 

0.500 

-0.822 

-0.511 

3.977 h4 

-0.988 hs 
M= 0.000 X= h6 

0.000 h7 
1.821 hs 

-0.511 

-0.822 

2.311 
0.355 
2.311 

h4 

hS 
h6 = 

h7 

hs 

-S 

-90 

0 

0 

0 

!':°l 

B= 0 

o 

o 

(12.5) 

These arrays can be passed to subroutines DECOMP and SOL VB to obtain h4. h5. h6. h7 
and h8' 

0 
0 
0 
0 
0 
0 
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12.6 SOURCE CODE LISTING 

SUBROUT INE ASMBK 
C* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

C 
C 12 . 1  
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 12. 2 
C 
C 
C 1 2. 3 
C 
C 
C 
C 
C 12 . 4  
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 12. 5 
C 
C 
C 
C 
C 
C 
C 
C 

PURPOSE: 
SUBROUTINE ASMBK ASSEMBLES THE GLOBAL CONDUCTANCE MATRIX 
AND THE GLOBAL SPECIFIED FLOW MATRIX .  THE GLOBAL MATRICES 
ARE MOD IF IED DURING THE ASSEMBLY PROCESS TO ACCOUNT FOR 
SPECIFIED VALUES OF THE F IELD VAR IABLE AND GROUNDWATER 
FLOW DURING THE ASSEMBLY PROCESS . THE GLOBAL CONDUCTANCE 
MATRIX IS ASSEMBLED AND MODIFIED IN VECTOR STORAGE . ASMBK 
ALSO COMPUTES THE SEMI-BANDWIDTH AND THE NUMBER OF DEGREES 
OF FREEDOM FOR THE MODIF IED GLOBAL CONDUCTANCE MATRIX . 

INPUT : 
NONE 

OUTPUT : 
THE SEMI-BANDWIDTH AND NUMBER OF DEGREES OF FREEDOM FOR 
THE MOD IFIED GLOBAL CONDUCTANCE MATRIX ARE WRITTEN TO THE 
U SER-DEFINED F ILE AS S IGNED TO UNIT "OUTF" 

DEF INIT IONS OF VARIABLES : 
B ( I )  - MOD IFIED SPECIF IED FLOW MATRIX 

E - ELEMENT NUMBER 
ELEMTYP ( I )  - ELEMENT TYPE FOR ELEMENT I ( SEE TABLE 9.1 

FOR A LIST OF ELEMENT TYPES ) 
FLUX ( I )  - SPECIFIED VALUE OF GROUNDWATER FLOW 

AT NODE I 
ICH ( I )  - 1 IF THE VALUE OF THE FIELD VARIABLE I S  

SPEC IFIED FOR NODE I ,  
- 0 OTHERWISE 

IJSlZE = LENGTH OF ARRAY M 
KE (l , J ) - CONDUCTANCE MATRIX FOR ELEMENT E IN 

FULL MATRIX STORAGE 
LCH ( I ) - lCH ( I ) + ICH (I-1) + ICH ( I-2) + 

THE ARRAYS ICH AND LCH ARE USED TO MOD IFY 
GLOBAL SYSTEM OF EQUATIONS FOR SPECIFIED 
VALUES OF THE F IELD VAR IABLES 

M ( IJ) - MODIFIED GLOBAL CONDUCTANCE MATRIX 
IN VECTOR STORAGE 

NDOF - NUMBER OF NODES WHERE THE VALUE OF THE 
FIELD VAR IABLE IS UNKNOWN 

NODETBL ( l )  - NUMBER OF NODES IN ELEMENT TYPE I 
NUMELM - NUMBER OF ELEMENTS IN MESH 

USAGE : 

SBW - SEM I-BANDWIDTH OF MODIFIED GLOBAL 
CONDUCTANCE MATRIX 

XC I )  - VALUE OF THE F IELD VAR IABLE ( HYDRAULIC 
HEAD OR PRES SURE HEAD ) AT NODE I 

THE SEM I -BANDWIDTH OF THE GLOBAL CONDUCTANCE MATRIX 
I S  COMPUTED FIRST. THEN THE ENTRIES OF THE ELEMENT 
CONDUCTANCE MATRIX ARE COMPUTED IN A �ET OF SUBROUTINES , 
ONE SUBROUT INE FOR EACH ELEMENT TYPE . THE GLOBAL 
CONDUCTANCE MATRIX FOR THE MESH IS AS SEMBLED BY ADD ING 
THE CORRESPONDING ENTRIES OF THE ELEMENT CONDUCTANCE 
MATRICES TO THE GLOBAL CONDUCTANCE MATRIX . DURING THE 
ASSEMBLY PROCES S  THE GLOBAL CONDUCTANCE MATRIX IS MOD IFIED 
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C FOR SPEC IF IED VALUES OF HEAD . SPECIF IED VALUES OF 
C GROUNDWATER FLOW ARE ADDED TO THE GLOBAL FLOW MATRIX . 
C 
C SUBROUT INES CALLED : 
C KBAR2 , KBAR3 , KBAR4,KTRI 3 , KREC4 , KQUA4,KQUA8,KQUA1 2 , KPAR8 , 
C KPAR20 , KBAR3 2 , KTRI 3A, KREC4A 
C LOC 
C 
C REFERENCES : 
C ISTOK, J . D .  GROUNDWATER FLOW AND SOLUTE TRANSPORT 
C MODELING BY THE F INITE ELEMENT METHOD , CHAPTER 12 . 
C 
C* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

$ INCLUDE : ' COHALL ' 

C 

REAL KE (MAX3 , MAX3 ) 
INTEGER NODETBL ( 1 3 )  
DATA NODETSL/ 2 , 3 , 4 , 3 , 4 , 4 , 8 , 1 2 , 8 , 2 0 , 32 , 3 , 4 /  

C COMPUTE THE SEM I -BANDWIDTH 
C 

SBW = 1 
DO 30 E � 1 ,  NUHELH 

DO 2 0  I a 1 ,  NODETBL (ELEMTYP ( E »  
K I  '" IN (E , I )  
IF ( ICH (KI ) .EQ . 0 . AND .  I . LT . NODETBL ( ELEMTYP ( E » ) THEN 

II - KI - LCH (KI ) 
DO 10 J = I + 1 ,  NODETBL ( ELEMTYP ( E» 

KJ = IN(E , J) 
IF ( ICH ( KJ )  . EQ .  0) THEN 

JJ '" ABS(KJ - LCH(KJ) - I I )  + 1 
IF (JJ . GT .  SBW )  SSW - JJ 

END IF 
10 CONTINUE 

ENDIF 
2 0  CONTINUE 
3 0  CONTINUE 

WRITE (OUTF, 4 0 ) NDOF, SBW 
4 0  FORMAT ( / /, NUMBER O F  DEGREES O F  FREEDOM I N  MOD IF IED K MATRIX -' , 

1 15 / / / ' SEMI -BANDW IDTH OF MOD IF IED K MATRIX -',IS) 
IF (SBW .GT. MAX6) STOP'·· EXCEEDS MAXIMUM SEMI -BAND WIDTH •• ' 

C INITIALIZE ENTRIES OF GLOBAL CONDUCTANCE MATRI X  TO ZERO 
IJS I ZE - SBW • (NDOF - SSW + 1 )  + (SBW - 1 )  • SBW / 2 
DO 50 IJ - 1 ,  IJSIZE 

M ( IJ) - 0 . 0  
5 0  CONTINUE 

DO 60 I - 1, NUMNOD 
IF ( ICH ( I )  . EQ .  0 )  B ( I -LCH ( I )  ) - FLUX( I ) 

6 0  CONTINUE 
C LOOP ON THE NUMBER OF ELEMENTS 

DO 90 E - 1, NUHELH 
C COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR TH IS ELEMENT TYPE 

IF (ELEMTYP(E) .EQ. 1 )  THEN 

C ELEMENT IS A ONE -DIMENS I ONAL , L INEAR BAR 
CALL KBAR2 (E, KEI 

ELSE IF (ELEHTYP(EI .EQ . 2 )  THEN 
C ELEMENT IS A ONE -DIMENS IONAL , QUADRAT IC BAR 

CALL KBAR3 (E, !tEl 
ELSE IF (ELEMTYP(E ) .EQ . 3 )  THEN 

C ELEMENT I S  A ONE -DIMENS IONAL , CUBIC BAR 
CALL KBAR4 (E , KE )  

ELSE I F  (ELEMTYP(E ) . EQ .  4 )  THEN 
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C ELEMENT I S  A TWO-DIMENSIONAL, LINEAR TRIANGLE 
CALL KTRI 3 ( E , KE )  

ELSE IF (ELEMTYP ( E )  . EQ. 5 )  THEN 

Subroutine ASMBK 

C ELEMENT I S  A TWO-DIMENS IONAL, LINEAR RECTANGLE 
CALL KREC 4 ( E , KE )  

ELSEIF ( ELEMTYP ( E )  . EO .  6 )  THEN 
C ELEMENT IS A TWO-DIMENS IONAL , LINEAR QUADRILATERAL 

CALL KQUA4 ( E , KE )  
ELSEIF ( ELEMTYP ( E )  . EO .  7 )  THEN 

C ELEMENT I S  A TWO-DIMENS IONAL, QUADRATIC QUADRILATERAL 
CALL KQUA8 ( E , KE ) 

ELSEIF (ELEMTYP ( E )  . EQ .  8) THEN 
C ELEMENT I S  A TWO-D IMENS IONAL , CUBIC QUADRILATERAL 

CALL KQUA12 ( E , KE )  
ELSE IF ( ELEMTYP ( E )  . EQ .  9) THEN 

C ELEMENT IS A THREE-D IMENS IONAL, LINEAR PARALLELEP IPED 
CALL KPAR8 ( E ,  KE) 

ELSEIF (ELEMTYP ( E )  . EQ .  10 ) THEN 
C ELEMENT IS A THREE-DIMENS IONAL , QUADRATIC PARALLELEP IPED 

CALL KPAR2 0 ( E , KE )  
ELSEIF ( ELEMTYP ( E )  . EQ .  II) THEN 

C ELEMENT IS A THREE-DIMENSIONAL , CUBIC PARALLELEP IPED 
CALL KPAR32 ( E , KE )  

ELSEIF ( ELEMTYP ( E )  . EO .  1 2 ) THEN 
C ELEMENT IS A TWO-D IMENS IONAL , LINEAR TRIANGLE ( AXISYMMETRI C )  

CALL KTRI3A ( E , KE )  
ELSE IF (ELEMTYP ( E )  . EQ .  13) THEN 

C ELEMENT IS A TWO-DIMENS IONAL, LINEAR RECTANGLE 
( AXISYMMETRIC) 

C 

CALL KREC 4A ( E , KE )  
ENDIF 

C ADD THE ELEMENT CONDUCTANCE MATRIX FOR TH I S  ELEMENT 
C TO THE GLOBAL CONDUCTANCE MATRIX 
C KE ( I , J) -----------> M ( IJ )  <-> M ( KI , KJ)  
C ( FULL MATRIX STORAGE ) (VECTOR MATRIX STORAGE ) ( FULL MATRIX 
STORAGE ) 
C 

DO 80 I - 1 ,  NODETBL ( ELEMTYP ( E ) ) 
KI • IN ( E , I )  
I F  ( ICH (KI ) .EQ . 0 )  THEN 

II • KI - LCH ( K I ) 
DO 7 0  J • 1 ,  NODETBL ( ELEMTYP ( E ) 1 

KJ • IN ( E , J )  
IF ( ICH ( KJ )  . NE .  0) THEN 

B ( I I )  - B ( I I )  - KE ( I , J) * X (KJ) 
ELSE IF (J . GE .  I )  THEN 

JJ - KJ - LCH ( KJ)  
CALL LOC ( I I , JJ, IJ, NDOF , SBW , SYMM ) 
M ( IJ)  • M ( IJ )  + KE ( I , J) 

END IF 

7 0  CONTINUE 
END IF 

8 0  CONTINUE 

90 CONTINUE 

RETURN 
END 
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SUBROUTINE LOC ( I , J, IJ, NDOF , SBW, SYMM ) 
C* * * * * * * * * ** * ** * * * ** ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

C PURPOSE : 
C SUBROUTINE LOC COMPUTES THE LOCAT ION IN VECTOR STORAGE 
C OF A SPECIFIED ROW AND COLUMN OF A MATRIX ( SYMMETRIC OR 
C NONSYMMETRIC) IN FULL MATRIX STORAGE 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

DEFINIT IONS OF VARIABLES : 
I - SPECIFIED ROW OF MATRIX IN FULL MATRIX STORAGE 
J '" SPECIF IED COLUMN OF MATRIX IN FULL MATRIX 

STORAGE 
IJ '" 

NDOF 
SBW '" 

LOCATION IN VECTOR STORAGE CORRESPOND ING TO 
SPECIF IED ROW AND COLUMN IN FULL MATRIX S TORAGE 
NUMBER OF DEGREES OF FREEDOM OF MATRI� 
SEM I -BANDWIDTH OF MATRIX 

REFERENCES :  
I STOK , J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 5, 
SECTIONS 5.1.3 AND 5. 1.4 

C* * * * * * * * * * * * * * * * * *** * ** ** * * * * * * * * ** * ** * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * *  
INTEGER SBW 

c 
C 

LOGICAL SYMM 

IF ( SYMM ) THEN 
M IS A SYMMETRIC MATRIX 
II - I 
JJ - J 
IF ( I  . GT .  J) THEN 

K '" I 
I '" J 
J '" K 

END IF 
IJ '" J - I + 1 
IF ( I  . GT .  1) THEN 

IF (SBW . LT .  NDOF ) THEN 
IJ a IJ + ( I  - 1) * SBW 
L - I - NDOF + SBW - 2 
IF (L . GT .  0 )  IJ '" IJ - L * ( L  + 1) I 2 

ELSE 
IJ'" IJ + ( I  - 1) * ( NDOF + (NDOF - I + 2» I 2 

END IF 
END IF 
I - I I  
J - JJ 

ELSE 
C M IS A NONSYMMETRIC MATRIX 

IJ - J 
IF ( I  . GT .  1) THEN 

IF (SBW . LT .  NDOF ) THEN 
IF ( I  . GT .  SBW) IJ - IJ + SBW - I 
IJ - IJ + (I - 1) * (2 * SBW - 1) 
L '" M IN ( SBW, I )  - 1 
IJ - IJ - L * «( SBW - 1 )  + ( SBW - L» I 2 
L '" I - NDOF + SBW -2 
IF ( L  .GT . 0 )  IJ - IJ - L * ( L  + 1) I 2 

ELSE 
IJ '" IJ + ( I  - 1) * NDOF 

END IF 
ENDIF 

END IF 
RETURN 
END 
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SUBROUT INE KBAR2 ( E , KE )  
C* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

C 
C PURPOSE : 
C TO COMPUTE THE ELEMENT CONDUCTANCE MATR IX FOR A 
C ONE-DIMENSIONAL, LINEAR BAR ELEMENT 
C 
C DEF INITIONS OF VARIABLES : 
C E • ELEMENT NUMBER 
C KE ( I , J) ELEMENT CONDUCTANCE MATRIX 
C KXE • HYDRAULIC CONDUCTIVITY IN X COORDINATE D IRECT ION 
C LE - ELEMENT LENGTH 
C 
C REFERENCES : 
C ISTOK, J . D .  GROUNDWATER FLOW AND SOLUTE TRANSPORT 
C MODELING BY THE FINITE ELEMENT METHOD , CHAPTER 4, 
C FIGURE 4.5 ,  EQUAT ION 4 . 1 5 .  
C 
C * * * * * * * * * * * * * * * * * * * * * * *� * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **� * 

$ INCLUDE : ' COMALL '  

C 
REAL KE (MAX3 ,  MAX3 ) , KXE , LE 

KXE - PROP (MATSET ( E ) , l ) 
LE • ABS (Xl ( IN ( E , 2» - Xl ( IN (E , l » ) 
KE ( l , l )  • KXE I LE 
KE ( l , 2 )  -KE ( l, l )  
KE(2 , 1 ) -KE ( l , l )  
KE ( 2 , 2 )  - KE ( l , l )  
RETURN 
END 

SUBROUTINE KBAR3 ( E , KE )  
C* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

C 
C PURPOSE: 
C TO COMPUTE THE ELEMENT CONDUCTANCE MATR I X  FOR ONE-
C D IMENS IONAL, QUADRATIC BAR ELEMENT 
C 
C DEFINITIONS OF VAR IABLES : 

DETJAC . 

DNDXI ( I )  

DNDX (I ) 

E 
JAC 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

JACINV • 

KE ( I ,  J )  
KXE 

W e I )  
X I  ( I )  

C REFERENCES: 

-

-

DETERMINANT OF JACOBIAN MATR I X  
PARTIAL DERIVATIVE OF INTERPOLAT ION 
FUNCTION WITH RESPECT TO XI AT NODE 
PARTIAL DERIVATIVE OF INTERPOLAT ION 
FUNCTION WITH RESPECT TO X AT NODE I 
ELUJENT NUMBER 
JACOB IAN MATR I X  
INVERSE OF JACOBIAN MATR IX 
ELEMENT CONDUCTANCE MATRIX 
HYDRAULIC CONDUCT IVITY 
IN X COORDINATE DIRECT ION 
HEIGHT FOR GAUSS POINT I 
LOCAT ION OF GAUSS POINT I 
IN XI COORD INATE D IRECTION 

I 

C ISTOK , J . D .  GROUNDWATER FLOW AND SOLUTE TRANSPORT 
C MODEL ING BY T H E  F INITE ELEMENT METHOD , CHAPTER 4 ,  
C F IGURE 4 . 9 ,  EQUATION 4 . 61 
C 
C* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **** 
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$INCLUDE :  'COMALL' 

C 

REAL JAC , JACINV , KE (MAX3 , MAX3 ) , DNDXI (3) , DNDX ( 3 ) , W ( 2 ) , 
1 XI ( 2 ) ,KXE 

XI (l)  - 1 / SQRT (3 . )  
XI ( 2 )  � -XI (1) 
W ( l ) - l .  
W ( 2 ) - l .  
KXE - PROP (MATSET ( E ) , l ) 
DO 30 I = 1, 3 

DO 2 0  J - 1, 3 
KE (I , J) = O .  

2 0  CONTINUE 
30 CONT INUE 

DO 8 0  I = 1, 2 
DNDXI ( l ) = -0 . 5  + XI ( I )  
DNDXI ( 2 ) = -2.0 * XI (I)  
DNDXI ( 3 ) = 0.5 + XI ( I )  
JAC - 0 
DO 40 J - 1 ,  3 

JAC" JAC + DNDXI ( J )  * X1 (IN ( E , J» 
4 0  CONTINUE 

JACINV - 1 / JAC 
DETJAC .. JAC 
DO 5 0  J .. 1 ,  3 

DNDX ( J )  - JACINV * DNDXI (J)  
5 0 CONTINUE 

DO 7 0  J .. 1, 3 
DO 6 0 K - 1 ,  3 

KE ( J , K) - KE (J, K )  + W ( I )  * KXE * DNDX ( J )  
1 * DNDX ( K )  * DETJAC 

6 0  CONT INUE 
7 0  CONTINUE 
80 CONTINUE 

RETURN 
END 

SUBROUTINE KBAR 4 ( E , KE )  

34S 

C* * * * * * * * * * * * * * * * * * * * *� * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

C 
C PURPOSE : 
C TO COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR ONE-
C D IMENS IONAL, CUS IC BAR ELEMENT 
C 
C DEFINITIONS OF VARIABLES : 
C DETJAC - DETERMINANT OF JACOBIAN MATRIX 
C DNDXI ( I )  .. PARTIAL DERIVATIVE O F  INTERPOLATION 
C FUNCT ION WITH RESPECT TO XI AT NODE I 
C DNDX (I)  .. PARTIAL DERIVATIVE OF INTERPOLATION 
C FUNCTION WITH RESPECT TO X AT NODE I 
C E .. ELEMENT NUMBER 
C JAC .. JACOBIAN MATRIX 
C JACINV .. INVERSE OF JACOBIAN MATRIX 
C KE ( I , J) - ELEMENT CONDUCTANCE MATRIX 
C KXE - HYDRAULIC CONDUCTIVITY IN X 
C COORDINATE DIRECTION 
C WeI) WEIGHT FOR GAUSS POINT I 
C XI ( I )  - LOCATION O F  GAUSS POINT I IN 
C XI COORDINATE DIRECTION 
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C 
C REFERENCES : 
C ISTOK, J . D .  GROUNDWATER FLOW AND SOLUTE TRANSPORT 
C MODELING BY THE FINITE ELEMENT METHOD , CHAPTER 4 ,  
C FIGURE 4. 9B ,  EQUATION 4.61 
C C***************************************************************** 
$INCLUDE: ' COMALL ' 

C 

REAL JAC , JACINV , KE (MAX3 , MAX3 ) , DNDXI ( 4 ) , DNDX ( 4 ) , W ( 3 ) , 
1 XI ( 3 ) , KXE 

XI ( l )  - O. 
XI ( 2 )  = SQRT ( 3. / 5 .1 
XI ( 3 )  = -XI ( 2) 
WI l l - 8 .  / 9 .  
W ( 2 )  - 5 .  / 9. 
W ( 3 ) = W ( 2 )  
KXE - PROP (MATSET ( E ) , l ) 
DO 3 0  I = 1 ,  4 

00 2 0  J - 1 ,  4 
KE ( I , J )  = O. 

2 0  CONTINUE 
3 0 CONTINUE 

00 8 0  I - 1, 3 
DNDXI ( 1 )  - - ( 9 . / 1 6 . )  * ( 3 . * ( XI (I) **2 )  -

1 2 .  * XI (I ) - 1. / 9 . )  
ONDXI ( 2 )  - ( 27 . / 1 6 . )  * ( 3 .  * (XI ( I ) * *2) -

1 ( 2 . / 3 . )  * XI ( I )  - 1 . )  
ONDXI (3)  - - ( 2 7. / 1 6 . )  * (3 . * (XI (I) * * 2 )  + 

1 ( 2 . / 3. ) * XI (I ) - 1 . )  
ONDXI ( 4 )  ( 9 .  / 1 6. )  * ( 3 . * ( XI (I) * * 2 )  + 

1 2 .  * XI ( I )  - 1. / 9 . )  
JAC - 0 
00 4 0  J - 1, 4 

JAC - JAC + ONDXI (J ) * X 1 (IN ( E , J »  
4 0  CONTINUE 

JACINV - 1 / JAC 
OETJAC - JAC 
00 50 J - 1 ,  4 

ONDX ( J )  = JACINV * ONDXI ( J) 
5 0  CONTINUE 

00 7 0  J - 1 ,  4 
00 60 K = 1 ,  4 

KE (J , K) - KE (J , K ) + W (I )  * KXE * DNDX (J) 
1 * ONDX ( K )  * OETJAC 

60  CONTINUE 
7 0  CONTINUE 
80 CONTINUE 

RETURN 
END 

SUBROUTINE KTRI3 ( E , KE )  c********************************************************************* 
C 
C PURPOSE : 
C TO COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR TWO-
C DIMENSIONAL , LINEAR TRIANGLE ELEMENT 
C 
C DEFINITIONS OF VARIABLES : 
C AE4 - FOUR TIMES ELEMENT AREA 
C E - ELEMENT NUMBER 
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C KE ( I ,  J) - ELEMENT CONDUCTANCE MATRIX 
C KXE .. HYDRAUL IC CONDUCT IVITY IN X 
C COORDINATE D IRECTION 
C KYE - HYDRAULIC CONDUCT IVITY IN Y 
C COORD INATE DIRECTION 
C 
C REFERENCES : 
C ISTOK, J . D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
C MODELING BY THE F INITE ELEMENT METHOD , CHAPTER 4 , 
C FIGURE 4 . 6 , EQUATION 4 . 2 0  
C 
C* * * * * * * * * * * * * *� * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

$ INCLUDE : 'COHALL' 
REAL KE (MAX3 , MAX3 ) , KXE , KYE , BE (3) , CE (3 )  

C 
KXE � PROP (MATSET ( E ) , l ) 
KYE - PROP{MATSET{E ) , 2 )  
BE{ l )  = X2{ IN{E , 2» - X2{ IN{E , 3» 
BE ( 2 )  - X2 ( IN{E , 3 »  - X2{IN ( E , l» 
BE (3)  - X2{ IN ( E , 1» - X2{ IN{E , 2» 
CE{ l )  - X 1 ( IN ( E , 3» - X1{ IN{E , 2» 
CE ( 2 )  - X 1{ IN{E , 1» - X 1{IN{E, 3» 
CE (3)  - X 1 ( IN ( E , 2» - X1{ IN(E,1» 
AE4 - 2 * ( X1{IN{E , 2» * X2{IN{E , 3» + X1{IN ( E , 1» * 

1 X2{IN ( E , 2» + X2 ( IN (E , 1» * X1 ( IN (E , 3» -
2 X2 ( IN (E, 3 »  * X1 ( IN (E, 1 »  - X1 ( IN ( E , 3 »  * 
3 X2{ IN ( E , 2 »  - Xl ( IN ( E , 2 »  * X2 ( IN (E , 1 » ) 

DO 2 0  I .. 1 ,  3 
DO 1 0  J .. 1 ,  3 

KE{ I,J ) - (KXE * BE ( I )  * BE{J) + KYE * CE ( I )  * CE ( J» I AE 4  
1 0  CONTINUE 
2 0  CONTINUE 

RETURN 
END 

SUBROUT INE KREC4 ( E , KE )  
C * * * * * * ** * * ***** * ** ** **** * * * * * ** * * * ** * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * *  

C 
C PURPOSE: 
C TO COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR TWO-
C D IMENS IONAL, LINEAR RECTANGLE ELEMENT 
C 
C DEFINITIONS OF VARIABLES: 
C E - ELEMENT NUMBER 
C KE ( I , J) - ELEMENT CONDUCTANCE MATRIX 
C KXE - HYDRAULIC CONDUCTIVITY IN X 
C COORDINATE DIRECT ION 
C KYE - HYDRAULIC CONDUCT IVITY IN Y 
C COORDINATE DIRECTION 
C 
C REFERENCES: 
C I STOK, J . D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
C MODELING BY THE F INITE ELEMENT METHOD , CHAPTER 4 ,  
C F IGURE 4 . 7 , EQUAT ION 4 . 2 6  
C 
C * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * ** * ** * * * * * * * * * * * * * * * * * * * * *** * * * * *  
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$ INCLUDE : ' COHALL ' 

C 
REAL KE (MAX3 , MAX3 ) , KXE , KYE 

KXE - PROP (HATSET ( E) , l) 
KYE - PROP (MATSET ( E) , 2) 
AE s AB S ( X2 ( IN ( E , 1 » -X2 ( IN ( E , 3 » ) I 2 .  
BE • ABS ( X l ( IN ( E , l »  - Xl (IN ( E , 3 » ) I 2 .  
CX - KXE * AE I ( 6. * BE ) 
CY - KYE * BE I ( 6 .  * AS) 
KE ( l , l )  - 2 .  * CX + 2 .  * CY 
KS ( 1 , 2 )  c -2 . * CX + CY 
KE ( 1 , 3 )  - -CX - CY 
KE ( 1 , 4 )  CX - 2. * CY 
KE ( 2 , 1) - KE (1 , 2 )  
KE ( 2 , 2 )  - 2 .  * CX + 2. * CY 
KE ( 2, 3 )  - cx - 2 .  * CY 
KE ( 2 , 4 )  - -CX - CY 
KE ( 3 , 1 )  - KE (1 , 3 ) 
KE ( 3 , 2 ) - KE ( 2 , 3 )  
KE ( 3 , 3) - 2 .  * C X  + 2 .  * CY 
KE(3 , 4 ) - -2 . * CX + CY 
KE ( 4 , 1 ) - KE( 1 , 4 )  
KE ( 4 , 2 )  - KE ( 2 , 4 )  
KE ( 4 , 3 )  - KE ( 3 , 4 )  
KE ( 4 , 4 )  - 2 .  * C X  + 2 .  * CY 
RETURN 
END 

SUBROUT INE KQUA 4 ( E , KE ) 

Subroutine ASMBK 

C* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

C 
C PURPOSE: 
C TO COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR TWO-
C DIMENS IONAL , L INEAR QUADR ILATERAL ELEMENT 
C 
C DEF INITIONS OF VARIABLES : 
C DETJAC - DETERMINANT OF JACOBIAN MATRIX 
C DNDXI ( I) - PARTIAL DERIVATIVE OF INTERPOLATION 
C FUNCTION WITH RESPECT TO XI AT NODE I 
C DNDX ( I) - PARTIAL DERIVATIVE OF INTERPOLAT ION 
C FUNCT ION WITH RESPECT TO X AT NODE I 
C DNDETA ( I )  - PART IAL DERIVATIVE OF INTERPOLAT ION 
C FUNCTION WITH RESPECT TO ETA AT NODE I 
C DNDY ( I) - PART IAL DERIVAT IVE OF INTERPOLAT ION 
C FUNCT ION WITH RESPECT TO Y AT NODE I 
C E - ELEMENT NUMBER 
C ETA (I) - LOCAT ION OF GAUSS POINT IN ETA COORD INATE 
C D IRECT ION 
C JAC ( I , J) - JACOBIAN MATRIX 
C JACINV ( I , J )  - INVERSE O F  JACOBIAN MATRIX 
C KE ( I , J) - ELEMENT CONDUCTANCE MATRIX 
C KXE - HYDRAUL IC CONDUCTIVITY IN X 
C COORD INATE D IRECT ION 
C KYE - HYDRAULIC CONDUCT IVITY IN Y 
C COORD INATE DIRECT ION 
C W ( I )  - WE IGHT FOR GAUSS POINT I 
C Xl ( IN ( E , I) - X COORD INATE FOR NODE I ,  ELEMENT E 
C X2 ( IN ( E , I ) - Y COORD INATE FOR NODE I , ELEMENT E 
C XI ( I )  - LOCAT ION OF GAUSS POINT IN X I  COORD INATE 
C . D IRECTION 
C 
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C
' 

REFERENCES: 
C I STOK, J . D .  GROUNDWATER FLOW AND SOLUTE TRANSPORT 
C MODELING BY THE F INITE ELEMENT METHOD , F IGURE 4 . 1 0 ,  
C EQUAT ION 4 . 62 
C 
C**** ***** * ** * * ** * * * ** * * * * * ******** * * * * * * * * * *** * * * ** * ** * ***** ** * ** 

$INCLUDE: ' COMALL ' 

C 

REAL JAC ( 2 , 2 ) , JACINV ( 2 , 2 ) , KE (MAX3 , MAX3 ) , DNDXI ( 4 ) , DNDX ( 4 ) , 
1 DNDETA ( 4 ) , DNDY ( 4 ) , W ( 2 ) , XI ( 2 ) , E TA ( 2) , S IGN1 ( 4 ) , SIGN2 ( 4 ) , 
2 KXE , KYE 

DATA SIGN1 /-1 . , 1 . , 1 . , -1 . /  

DATA S IGN2 / - 1 . , - 1. , 1 . , 1. /  

XI (l)  - 1 . / SQRT ( 3 . )  
XI ( 2 )  = -XI ( 1) 
ETA (l)  .. X I (l)  
ETA ( 2 )  .. XI ( 2 ) 
W (l )  = l .  
W ( 2 )  .. l. 
KXE - PROP (MATSET ( E ) , l ) 
KYE .. PROP (MATSET ( E ) , 2 ) 

DO 30 K = 1 ,  4 
DO 2 0  N - 1 ,  4 

KE ( K , N )  .. o. 
20 CONTINUE 
30 CONTINUE 

DO 1 2 0  I - 1, 2 
DO 110  J - 1, 2 

DO SO K - 1 ,  2 
DO 40 N - 1 ,  2 

JAC (K, N)  - O. 
4 0  CONTINUE 
SO CONTINUE 

DO 6 0  N - 1 ,  4 
DNDXI (N) - 0 . 25 * S IGN1 ( N )  * ( 1 .  + S IGN2 (N)  * ETA ( J» 
DNDETA (N)  - 0 . 2 5  * S IGN2 (N)  * ( 1 .  + S IGN1 (N)  * XI ( I» 

6 0  CONTINUE 

7 0  

8 0  

1 
90 

DO 7 0  N .. 1, 4 
JAC ( l , l )  - JAC ( l , l )  + DNDXI (N)  * X1 ( IN (E , N» 
JAC ( l , � )  = JAC ( 1 , 2 )  + DNDXI (N)  * X2 ( IN (E , N» 
JAC ( 2 , 1 )  - JAC ( 2 , 1 )  + DNDETA ( N )  * X1 ( IN (E , N» 
JAC ( 2 , 2 )  - JAC ( 2 , 2 )  + DNDETA (N)  * X2 (IN (E , N» 

CONTINUE 
DETJAC - JAC (l , l )  * JAC ( 2 , 2 )  - JAC (1 , 2 )  * JAC ( 2 , 1 )  
JACINV (l, l )  - JAC ( 2 , 2) / DETJAC 
JACINV ( 1 , 2 )  .. -JAC (1 , 2 )  / DETJAC 
JACINV ( 2 , 1 )  .. -JAC ( 2 , 1 )  / DETJAC 
jACINV ( 2 , 2 )  - JAC ( l , l )  / DETJAC 
DO 80 N .. 1 , 4 

DNDX (N)  .. JACINq ( l , l) * DNDXI (N)  + JACINV (1, 2 )  * DNDETA (N)  
DNDY (N)  - JACINV ( 2 , 1 ) * DNDXI (N)  + JACINV ( 2 , 2 )  * DNDETA ( N )  

CONTINUE 
DO 1 0 0  K .. 1, 4 

DO 90 N - 1 , 4 
KE ( K , N )  - KE (K, N)  + W ( I )  * W ( J)  * ( KXE * DNDX ( K )  * 

DNDX (N)  + KYE * DNDY ( K )  * DNDY (N» ) * DETJAC 
CONTINUE 
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100 CONT INUE 
1 1 0  CONTINUE 
120 CONTINUE 

RETURN 
END 

SUBROUTINE KQUAS(E,KE ) 
C****** *************************************************************** 

C 
C PURPOSE: 
C TO COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR TWO-
C D IMENS IONAL , QUADRAT IC QUADRILATERAL ELEMENT 
C 
C DEFINITIONS OF VARIABLES: 
C DETJAC - DETERMINANT OF JACOBIAN MATRIX 
C DNDXI ( I )  - pART IAL DERIVATIVE O F  INTERPOLAT ION 
C FUNCTION WITH RESPECT TO XI AT NODE I 
C DNDX ( I )  - PARTIAL DERIVATIVE OF INTERPOLATION 
C FUNCTION WITH RESPECT TO X AT NODE I 
C DNDETA ( I )  - PART IAL DERIVATIVE OF INTERPOLATION 
C FUNCTION WITH RESPECT TO ETA AT NODE I 
C DNDY ( I )  - PARTIAL DERIVATIVE OF INTERPOLATION 
C FUNCTION WITH RESPECT TO Y AT NODE I 
C E - ELEMENT NUMBER 
C ETA ( I )  - LOCATION OF GAUSS POINT I I N  ETA 
C COORD INATE DIRECTION 
C JAC ( I,J) - JACOBIAN MATRIX 
C JACINV( I , J) INVERSE OF JACOBIAN MATRIX 
C KE ( I ,  J) - ELEMENT CONDUCTANCE MATRIX 
C KXE - HYDRAULIC CONDUCTIVITY IN X 
C COORDINATE D IRECTION 
C KYE - HYDRAULIC CONDUCT IV ITY IN Y 
C COORD INATE D IRECTION 
C We I )  - WEIGHT FOR GAUSS POINT I 
C X I ( I )  - LOCATION OF GAUSS POINT I I N  XI 
C COORDINATE DIRECTION 
C 
C REFERENCES : 
C ISTOK , J . D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
C MODELING BY THE F INITE ELEMENT METHOD , FIGURE 4 . 1 1 ,  
C EQUATION 4 . 62 
C 
C***************************************************************** 

$ INCLUDE : ' COMALL ' 

C 

REAL JAC ( 2 , 2 ) , JACINV ( 2 , 2 ) , KE (MAX3 , MAX3 ) , DNDXI (B ) ,  
1 DNDX (S ) , DNDETA (B ) , DNDY (S ) , W ( 3 ) , XI (S ) , ETA ( 8 ) , 
2 S IGN1 (B ) , S IGN2 (8) , KXE , KYE 

DATA S IGN1 /- 1 . , 0 . , 1 . , 1 . , 1 . , 0 . , - 1 . , - 1 . /  
DATA S IGN2/-1 . , - 1 . , - 1. , 0 . , 1. , 1 . , 1 . , 0 . / 

XI ( 1 )  - o. 
XI ( 2 )  - SQRT (3 . / 5 . )  
XI ( 3 )  - -XI ( 2 )  
ETA ( l )  - XI ( l )  
ETA ( 2 )  - XI ( 2 )  
ETA ( 3 )  = XI ( 3 )  
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W ( 1 )  - 8 .  / 9 .  
W ( 2 )  - 5. I 9 .  
W( 3 ) - W (2 )  
KXE .. P ROP (MATSET ( E ) , l ) 
KYE - PROP(MATSET(E),2) 
DO 30 K - 1, 8 

DO 2 0  N - 1 ,  8 
KE ( K, N) - O. 

2 0  CONTINUE 
30 CONTINUE 

DO 1 2 0  I - 1, 3 
DO 1 1 0  J .. 1 ,  3 

DO 50 K .. 1, 2 
DO 4 0  N - 1 ,  2 

JAC (K, N )  .. O. 
40 CONT INUE 
50 CONTINUE 

DO 60 N .. 1 ,  8 
IF «N . EO . 1) . OR .  (N . EO .  3) .OR . 

1 (N .EO. 5) . OR . (N .EO . 7» THEN 
DNDXI (N) .. 0 . 2 5  * ( 1 .  + S IGN2 (N) * ETA ( J» * 

1 (2. * S IGN1 (N) **2 * XI ( I) + S IGN2 (N)  * 

2 S IGNl (N)  * ETA ( J» 
DNDETA (N)  .. 0 . 2 5  * ( 1 . + S IGN1 (N) * XI ( I» * 

1 (2 . * SIGN2 (N) **2 * ETA ( J )  + SIGN2 (N)  * 
2 S IGNl (N)  * X I  ( I )  ) 

ELSEIF «N .EO . 2 )  . OR. (N .EO. 6» THEN 
DNDXI (N)  .. -XI ( I )  * ( 1 .  + S IGN2 (N)  * ETA ( J» 

DNDETA (N)  .. 0 . 5  * S IGN2 (N) * ( 1 . - XI ( I ) **2 )  
ELSEIF «N .EO. 4 )  . OR .  ( N  . EO .  8» THEN 

DNDXI (N) - 0 . 5  * S IGN1 (N) * ( 1 . - ETA (J)  **2 )  
DNDETA (N) - -ETA ( J) * ( 1 .  + S IGN1 (N)  * XI ( I» 

ENDIF 
6 0  CONTINUE 

DO 7 0  N - 1 ,  8 
JAC ( l, l )  - JAC( l, l )  + DNDXI (N)  * Xl ( IN ( E , N» 
JAC ( 1 , 2 )  - JAC ( 1,2 ) + DNDXI (N)  * X2 ( IN (E , N» 
JAC ( 2 , 1 ) .. JAC ( 2 , 1 )  + DNDETA (N)  * Xl ( IN (E,N» 
JAC ( 2 , 2 )  .. JAC ( 2 , 2 )  + DNDETA (N)  * X2 ( IN (E , N» 

70 CONT INUE 
DETJAC" JAC ( l , l ) * JAC ( 2 , 2 ) - JAC ( 1 , 2 )  * JAC ( 2 , 1 )  
JACINV ( l , l )  .. JAC ( 2 , 2 )  / DETJAC 
JAC INV ( 1 , 2 )  .. -JAC ( 1 , 2 )  / DETJAC 
JAC INV ( 2 , 1 )  .. -JAC (2, 1 )  / DETJAC 
JACINV ( 2 , 2 )  - JAC ( l , l )  / DETJAC 
DO 80 N .. 1 ,  8 

DNDX (N)  - JACINV ( l , l )  * DNDXI (N)  + JAC INV ( 1 , 2 )  * DNDETA (N) 
DNDY (N) .. JACINV ( 2 , 1 )  * DNDXI (N) + JACINV ( 2 , 2 )  * DNDETA (N) 

80 CONTINUE 
DO 1 0 0  K .. 1, 8 

DO 90 N .. 1 ,  8 
KE (K,N) - KE ( K , N) + We I )  * W ( J) * ( KXE * DNDX (K)  * 

1 DNDX (N) + KYE * DNDY ( K )  * DNDY (N» * DETJAC 
90 CONTINUE 
100 CONTINUE 
1 1 0  CONTINUE 
12 0 CONTINUE 

RETURN 
END 
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SUBROUT INE RQUA12(E,RE) 
C********************************************************************* 
C 
C PURPOSE : 
C TO COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR TWO-
C D IMENS IONAL, CUBIC QUADRILATERAL ELEMENT 

C 
C DEF INITIONS OF VARIABLES :  

C DETJAC - DETERM INANT OF JACOBIAN MATRIX 
C DNDXI ( I )  - PARTIAL DERIVATIVE OF INTERPOLATION 
C FUNCTION WITH RESPECT TO XI AT NODE I 
C DNDX ( I )  .. PARTIAL DERIVATIVE OF INTERPOLATION 
C FUNCTION WITH RESPECT TO X AT NODE I 
C DNDETA ( I )  - PARTIAL DERIVATIVE OF INTERPOLATION 
C FUNCTION WITH RESPECT TO ETA AT NODE I 
C DNDY ( I )  - PARTIAL DERIVATIVE OF INTERPOLATION 
C FUNCTION WITH RESPECT TO Y AT NODE I 
C E - ELEMENT NUMBER 
C ETA ( I )  - LOCATION OF GAUS S POINT I IN ETA 
C COORDINATE DIRECT ION 
C JAC( I , J )  - JACOBIAN MATRIX 
C JACINV (I , J) - INVERSE OF JACOBIAN MATRIX 
C KE ( I , J) - ELEMENT CONDUCTANCE MATRIX 
C KXE - HYDRAULIC CONDUCTIV ITY IN X 
C COORDINATE DIRECTION 
C RYE - HYDRAULIC CONDUCTIVITY IN Y 
C COORD INATE D IRECTION 
C W ( I )  . WEIGHT FOR GAUSS POINT I 
C XI (I ) . LOCATION OF GAUSS POINT I IN XI 
C COORDINATE D I RECTION 
C 
C REFERENCES :  
C ISTOR , J . D .  GROUNDWATER FLOW AND SOLUTE TRANSPORT 
C MODELING BY THE F INITE ELEMENT METHOD , CHAPTER 4 ,  
C FIGURE 4 . 12 ,  EQUATION 4 . 62 
C C********************************************************************* 
$ INCLUDE : ' COHALL '  

C 

REAL JAC ( 2 , 2 ) , JACINV ( 2,2 ) , KE (MAX 3 , MAX 3 ) , DNDXI( 1 2 ) , 
1 DNDX ( 1 2 ) , DNDETA ( 12 ) , DNDY ( 12 ) , W ( 4 ) , XI (12 ) , ETA ( 12 ) , 
2 S IGN 1 ( 12 ) , SIGN2 ( 1 2 ) , KXE , KYE , KZE 

DATA S IGN1 / -l . , - 1 . , 1 . , 1 . , 1 . , 1 . , 1 . , 1 . , - 1 . , - 1 . , - 1 . , - 1 . 1 
DATA SIGN2 / -l . ,-1 . ,- 1 .,-1 . , - 1., 1 . , 1 . , 1 . ,1 . , 1 . , 1 . , - 1.1 

XI ( 1) - SORT ( ( 3. - 2 .  * SQRT ( 6 .  
XI ( 2 )  • -XI ( 1 )  
XI ( 3 )  SORT ( ( 3 . + 2 .  * SQRT ( 6 .  
XI ( 4 )  -XI ( 3 )  
ETA ( 1 )  • XI ( l )  
ETA ( 2 )  - XI ( 2 )  
ETA ( 3 )  - X I  ( 3 )  
ETA ( 4 )  - XI ( 4 )  
WIll - 0 . 5+ 1 . I ( 6 .  * SQRT ( 6 .  
W ( 2) - W I ll 
W ( 3 )  .. 0 . 5  - 1 .  I ( 6 .  * SQRT ( 6  . 
W ( 4) • W ( 3 )  
KXE - PROP (MATSET ( E ) , l )  
KYE - PROP (MATSET ( E ) , 2 ) 
DO 20 K - 1 ,  12  

DO 10 N • 1,  12 
KE (K, N)  - O. 

I 5 . »  I 7. ) 

I 5 . »  I 7. ) 

I 5 . »  

I 5 . » )  
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1 0  CONTINUE 
2 0  CONTINUE 

DO 11 0 I = 1, 4 
DO 1 0 0  J - 1, 4 

DO 4 0  K = 1 ,  2 
DO 30 N = 1, 2 

JAC (K,N) - O. 
3 0  CONTINUE 
4 0  CONTINUE 

DO 5 0 N - 1, 12 
IF «N . EO .  1 )  . OR . (N . EO .  4 ) . OR .  

1 (N . EO .  7 )  . OR . (N . EO .  1 0 »  THEN 
DNDXI ( N )  - ( 1. / 32 . )  * (1. + SIGN2 ( N )  * ETA ( J» * 

1 (18. * XI ( I) + 2 7 . * S IGN1 ( N) * XI ( I ) * *2 + 
2 9 .  * SIGN1 ( N) * ETA ( J) * * 2  - 1 0 . * SIGN1 ( N »  

DNDETA ( N) - ( 1 .  / 32 . )  * ( 1.+ S IGN1 ( N) * XI (I» * 
1 ( 18 .  * ETA ( J )  + 27. * S IGN2 ( N )  * ETA ( J ) **2 + 
2 9 .  * SIGN2 (N) * XI ( I ) **2 - 1 0 . * SIGN2 (N» 

ELSEIF « N  . EO .  2) . OR .  (N . EO .  3) . OR .  
1 (N . EO. 8) . OR .  (N . EO .  9» THEN 

DNDXI ( N )  = ( 9 .  / 32 . )  * ( 1 .  + SIGN2 (N) * ETA ( J» * 

1 ( 9 .  * S IGN1 (N) / 3 .  - 2 .  * XI ( I) - 2 7 . * 

2 SIGN1 (N) / 3 .  * XI ( I ) **2 )  
DNDETA (N ) = ( 9 . / 32 . )  * (1. - XI ( I )  * * 2 )  * ( SIGN2 ( N )  + 

1 9 .  * SIGN1 (N) / 3 . * SIGN2 ( N )  * XI (I » 
ELSEIF «N .EO . 5 )  . OR. (N . EO .  6 )  . OR .  

1 (N . EO .  11 ) . OR .  (N . EO .  12» THEN 
DNDXI (N)  • ( 9 .  / 32 . )  * ( 1 .  - ETA ( J )  **2 )  * ( S IGN1 ( N )  + 

1 9 .  * SIGN2 ( N ) / 3 .  * SIGN1 (N) * ETA ( J »  
DNDETA (N)  = ( 9 .  / 32 . ) * ( 1 . + S IGN1 ( N )  * XI ( I »  * 

1 ( 9 .  * SIGN2 ( N ) /3 . - 2 .  * ETA ( J) - 27 . * 

2 SIGN2 (N) / 3 . * ETA ( J )  **2 )  
END IF 

5 0 CONTINUE 
DO 6 0  N = 1, 12 

JAC (l, l )  - JAC (l , l )  + DNDXI ( N) * Xl (IN ( E , N »  
JAC ( 1,2 ) - JAC ( 1,2 ) + DNDXI ( N) * X2 ( IN ( E,N» 
JAC (2,1) - JAC (2, 1 )  + DNDETA (N)  * Xl (IN ( E , N» 
JAC (2,2 ) - JAC (2,2 ) + DNDETA (N)  * X2 (IN ( E,N » 

60 CONTINUE 

7 0  

1 

DETJAC = JAC ( l, l )  * JAC (2,2 ) - JAC (1,2 ) * JAC ( 2 , 1 )  
JACINV ( l , l )  - JAC (2,2 ) / DETJAC 
JACINV ( 1,2 ) - -JAC ( 1 , 2 )  / DETJAC 
JACINV ( 2,1) - -JAC ( 2,1) / DETJAC 
JACINV (2,2 ) = JAC ( l,l ) / DETJAC 
DO 7 0  N - 1 ,  12 

DNDX (N)  - JACINV (l,l ) * DNDXI (N)  + JACINV ( 1,2 ) * DNDETA (N)  
DNDY ( N )  - JACINV (2,1 ) * DNDXI (N)  + JACINV (2 , 2 )  * DNDETA ( N) 

CONTINUE 
DO 9 0  K = 1, 12 

DO 8 0  N = 1, 12 
KE ( K,N) = KE (K, N )  + W (I )  * W ( J )  * (KXE * DNDX ( K )  * 

DNDX(N) + KYE * DNDY ( K) * DNDY (N» * DETJAC 

80 CONTINUE 
9 0  CONTINUE 
1 0 0  CONTINUE 
1 1 0  CONT INUE 

RETURN 
END 
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SUBROUTINE KPAR8 ( E,KE ) 
C**** **** ** *************** ** * * ** * ** * ** **** ***** ****** ** * ** * **** * * * * * * *  

C PURPOSE: 
C TO COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR THREE-
C DIMENSIONAL, LINEAR PARALLELEPIPED ELEMENT 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

DEF INITIONS OF VARIABLES: 
DETJAC - DETERMINANT OF JACOBIAN MATRIX 

DNDXI (I ) .. PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO XI AT NODE I 

DNDX (I) = PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO X AT NODE I 

DNDETA (I) - PART IAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ETA AT NODE I 

DNDY ( I )  .. PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO Y AT NODE I 

DNDZETA (I ) .. PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ZETA AT NODE I 

DNDZ ( I )  ... PART IAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO Z AT NODE I 

E .. ELEMENT NUMBER 
ETA (I ) - LOCATION OF GAU S S  POINT IN ETA 

JAC ( I, J) 
JACINV (I,J) 

KE ( I,J) 
KXE 

COORDINATE DIRECTION 
- JACOBIAN MATRIX 
- INVERSE OF JACOBIAN MATRIX 
- ELEMENT CONDUCTANCE MATRIX 
• HYDRAUL IC CONDUCTIVITY IN X 

COORDINATE D IRECTION 
KYE - HYDRAULIC CONDUCTIVITY IN Y 

COORDINATE DIRECTION 
KZE - HYDRAULIC CONDUCTIVITY IN Z 

COORDINATE DIRECTION 
W (I )  .. WEIGHT FOR GAUSS POINT I 

XI (I ) - LOCATION OF GAUSS POINT IN XI 
COORDINATE DIRECTION 

ZETA (I ) - LOCATION OF GAUSS POINT IN ZETA 
COORDINATE DIRECTION 

REFERENCES: 
ISTOK,J . D .  GROUNDWATER FLOW AND SOLUTE 
MODELING BY THE FINITE ELEMENT METHOD, 
FIGURE 4 . 1 3, EQUATION 4. 6 3  

TRANSPORT 
CHAPTER 4, 

C* * ******************************************************** * * * ** * * * * * *  

$INCLUDE : ' COHALL ' 

C 

REAL JAC ( 3,3 ) ,JACINV ( 3,3 ) ,KE (MAX3,MAX3 ) ,DNDXI (8 ) ,DNDX ( 8 ) ,  
1 DNDETA (8 ) ,DNDY (8 ) ,DNDZETA (8 ) ,DNDZ ( 8 ) ,W (2 ) ,XI (8 ) ,  
2 ETA (8 ) , ZETA ( 8 ) , SIGN1 (8) ,S IGN2 (8 ) ,SIGN3 (8 ) ,KXE,KYE , KZE 

DATA SIGN1 / - 1 . , 1 . , 1 . , - 1 . ,-1.,1 . , 1 . , - 1 . /  
DATA S IGN2 / - l . , - 1 . , 1 . , 1 . , - 1 .,-1 . ,1 . , 1 . /  
DATA SIGN3 /-l . , - 1 . ,- 1.,- 1 . , 1 . ,1 . , 1., 1 . /  

XI ( 1 )  .. 1 .  / SQRT ( 3 . )  
XI ( 2 )  .. -XI (l ) 
ETA (l ) .. XI (l ) 
ETA ( 2 )  .. XI (2 ) 
ZETA (l ) .. XI (l ) 
ZETA (2 ) .. XI (2 ) 
W I ll .. l .  
W (2 ) .. l .  
KXE .. PROP (MATSET ( E ) , l )  
KYE .. PROP (MATSET (E ) ,2 )  
KZE .. PROP (MATSET ( E ) , 3 )  
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DO 2 0  K - 1 ,  8 
DO 10 N = 1 ,  8 

KE ( K , N)  = O. 
10 CONTINUE 
20 CONT INUE 

DO 120 I - 1, 2 
DO 110 J = 1 ,  2 

DO 1 0 0  K - 1 ,  2 
DO 4 0  L - 1, 3 

DO 30 N .. 1 ,  3 
JAC ( L , N)  = O. 

3 0  CONTINUE 
4 0  CONTINUE 

DO 5 0  N '" 1 ,  8 
DNDXI (N)  - 0 . 125 * S IGN1 (N)  * (1 . + S IGN2 (N)  * 

1 ETA ( J» * (1 . + SIGN3 (N)  * ZETA ( K» 
ONDETA (N)  '" 0 . 12 5  * S IGN2 (N)  * (1 . + S IGN1 ( N )  * 

1 XI ( I» * (1 . + S IGN3 (N)  * ZETA ( K» 
ONDZETA (N)  - 0 . 125 * S IGN3 (N) * (1 . + S IGN1 (N)  * 

1 XI ( I» * (1 . + S IGN2 (N)  * ETA ( J» 
5 0  CONTINUE 

00 60 N '" 1, 8 
JAC (1 , 1 )  - JAC ( l , l )  + DNDX I ( N )  * X1 ( IN ( E , N» 
JAC (1 , 2 )  '" JAC (1 , 2 )  + ONDXI (N)  * X2 (IN ( E , N» 
JAC ( 1 , 3 )  .. JAC ( 1 , 3 )  + ONDXI (N)  * X3 ( IN ( E , N» 
JAC (2 , 1 ) .. JAC ( 2 , 1 )  + DNDETA (N)  * X1 ( IN ( E , N» 
JAC (2 , 2 )  .. JAC (2 , 2 )  + DNDETA (N ) * X2 ( IN ( E , N» 
JAC (2 , 3 )  = JAC ( 2 , 3 )  + DNDETA ( N) * X3 ( IN ( E , N» 
JAC ( 3 , 1 )  = JAC ( 3 , 1 )  + DNDZETA (N)  * X1 ( IN ( E , N» 
JAC ( 3 , 2 )  = JAC ( 3 , 2 )  + DNDZETA (N)  * X2 ( IN ( E , N» 
JAC ( 3 , 3 )  - JAC ( 3 , 3 )  + 'DND ZETA (N)  * X3 ( IN ( E , N» 

6 0  CONTINUE 
DETJAC .. JAC (l , l )  * ( JAC (2 , 2 )  * JAC ( 3 , 3 )  - JAC ( 3 , 2 )  * 

1 JAC ( 2 , 3» - JAC (1 , 2 )  * ( JAC (2 , 1 )  * JAC ( 3 , 3 ) -
2 JAC (3 , 1 )  * JAC (2 , 3 »  - JAC (1 , 3 )  * (JAC (2,1 ) * 
3 JAC ( 3 , 2 )  - JAC ( 3 , 1 )  * JAC (2 , 2» 

JACINV (1 , 1 )  '" ( JAC (2 , 2 )  * JAC ( 3 , 3 )  - JAC (2 , 3 )  * 
1 JAC ( 3 , 2» I DETJAC 

JACINV (1 , 2 )  .. ( -JAC (2 , 1 )  * JAC ( 3 , 3 )  + JAC ( 2 , 3 ) * 

1 JAC ( 3 , 1» I DETJAC 
JACINV ( 1 , 3 )  .. ( JAC (2 , 1 )  * JAC ( 3 , 2 )  - JAC ( 3 , 1 )  * 

1 JAC ( 2 , 2» I DETJAC 
JACINV (2 , 1 )  = ( -JAC (1 , 2 )  * JAC ( 3 , 3 )  + JAC (1 , 3 )  * 

1 JAC ( 3 , 2» I DETJAC 
JACINV (2 , 2 )  - ( JAC ( l , l )  * JAC ( 3 , 3 )  - JAC (1 , 3 )  * 

1 JAC ( 3 , 1» I DETJAC 
JACINV (2 , 3 )  ( -JAC ( 1 ,  1 )  * JAC ( 3 ,  2 )  + JAC (1 , 2 )  * 

1 JAC ( 3 , 1» I DETJAC 
JACINV ( 3 , 1 )  .. ( JAC (1 , 2 )  * JAC (2 , 3 )  - JAC (1 , 3 )  * 

1 JAC (2 , 2» I DETJAC 
JAC INV ( 3 , 2 )  ( -JAC (1 , 1 )  * JAC (2 , 3 )  + JAC ( 1 , 3 )  * 

1 JAC (2 , 1» I DETJAC 
JACINV ( 3 , 3 )  = ( JAC ( 1 , 1 )  * JAC (2 , 2 )  - JAC (1 , 2 )  * 

1 JAC ( 2 , 1» I DETJAC 
DO 7 0  N .. 1 ,  8 

DNDX (N)  - JACINV ( l , l )  * DNDXI (N)  + JACINV (1 , 2 )  * 

1 DNDETA (N)  + JACINV (1 , 3 )  * DND ZETA ( N) 
DNDY (N) .. JACINV (2 , 1 )  * DNDXI (N)  + JACINV ( 2 , 2 )  * 

1 DNDETA (N)  + JACINV ( 2 , 3 )  * DND ZETA (N)  
DNDZ (N)  - JACINV ( 3 , 1 )  * DNDX I (N)  + JACINV ( 3 , 2 ) * 

1 DNDETA (N) + JACINV ( 3 , 3 )  * DNDZETA (N)  
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70 CONTINUE 
DO 90 L - 1 ,  8 

DO 80 N .. 1,8 

Subroutine ASMBK 

KE(L,N) '" KE(L , N )  + W e I )  * W ( J )  * W (K )  * ( KXE * 

1 DNDX ( L )  * DNDX (N)  + KYE * DNDY (L)  * 

2 DNDY (N) + KZE * DNDZ ( L ) * DNDZ (N»  * DETJAC 
8 0  CONTINUE 
90 CONTINUE 

100 CONTINUE 
1 1 0  CONTINUE 
120 CONTINUE 

RETURN 
END 

SUBROUTINE KPAR20(E,KE) 
C**************************************************************** ***** 

C 
C PURPOSE: 
C TO COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR THREE-
C D IMENS I ONAL, QUADRATIC PARALLELEP IPED ELEMENT 
C 
C DEFINITIONS OF VARIABLES: 
C DETJAC DETERMINANT OF JACOBIAN MATRIX 
C DNDXI (I) '" PARTIAL DERIVATIVE OF INTERPOLATION 
C FUNCTION WITH RESPECT TO XI AT NODE I 
C DNDX ( I )  z PARTIAL DERIVAT IVE O F  INTERPOLATION 
C FUNCTION WITH RESPECT TO X AT NODE I 
C DNDETA (I ) z PARTIAL DERIVAT IVE OF INTERPOLAT ION 
C FUNCTION WITH RESPECT TO ETA AT NODE I 
C DNDY ( I )  .. PARTIAL DERIVATIVE OF INTERPOLATION 
C FUNCT ION WITH RESPECT TO Y AT NODE I 
C DNDZETA ( I ) - PARTIAL DERIVATIVE OF INTERPOLAT ION 
C FUNCTION WITH RESPECT TO ZETA AT NODE I 
C DNDZ ( I )  - PARTIAL DERIVATIVE OF INTERPOLAT ION 
C FUNCTION WITH RESPECT TO Z AT NODE I 
C E � ELEMENT NUMBER 
C ETA ( I )  � LOCAT ION OF GAUSS POINT IN ETA 
C COORDINATE DIRECTION 
C JAC ( I,J) = JACOBIAN MATRIX 
C JACINV ( I,J) '" INVERSE OF JACOBIAN MATRIX 
C KE ( I, J) .. ELEMENT CONDUCTANCE MATRIX 
C KXE .. HYDRAULIC CONDUCTIVITY IN X 
C COORDINATE DIRECT ION 
C KYE HYDRAULIC CONDUCTIVITY IN Y 
C COORDINATE DIRECT ION 
C KZE .. HYDRAULIC CONDUCTIV ITY IN Z 
C COORDINATE DIRECTION 
C W e I )  .. WE IGHT FOR GAUSS POINT I 
C XI ( I )  .. LOCATION OF GAUSS POINT IN XI 
C COORDINATE DIRECTION 
C ZETA ( I )  = LOCATION OF GAUSS PO INT I N  ZETA 
C COORD INATE DIRECT ION 
C 
C REFERENCES: 
C ISTOK, J . D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 

C MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 4, 

C FIGURE 4 . 1 4, EQUATION 4 . 6 3 
C 
C********************************************************************* 
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$ INCLUDE : ' COHALL ' 

C 

REAL JAC ( 3 , 3 ) , JACINV ( 3 , 3 ) , KE (MAX3 , MAX3 ) , ONDXI ( 2 0 ) , ONDX ( 2 0 ) , 
1 ONDETA ( 2 0 ) , DNDY ( 2 0 ) , DNDZETA ( 2 0 ) , DNDZ ( 2 0 ) , W ( 3 ) , XI ( 2 0 ) , 
2 ETA ( 2 0 ) , ZETA ( 2 0 ) , S IGN1 ( 2 0 ) , S IGN2 ( 2 0 ) , S IGN3 ( 2 0 ) , KXE , KYE , KZE 

DATA S IGN1 / - 1 . , 0 . , 1 . , 1 . , 1 . , 0 . , -1 . , - 1 . , -1 . , 1 . , 1 . , -1 . , - 1 . ,  
1 0 . , 1 . , 1 . , 1 . , 0 . , -1 . , -1 . 1  

DATA S IGN2 / - 1 . , - 1 . , -1 . , 0 . , 1 . , 1 . , 1 . , 0 . , - 1 . , -1 . , 1 . , 1 . , - 1 . ,  
1 - 1 . , - 1 . , 0 . , 1 . , 1 . , 1 . , 0 . 1  

DATA S IGN3 / - 1 . , -1 . , - 1 . , -1 . , -1 . , -1 . , -1 . , -1 . , 0 . , 0 . , 0 . , 0 . , 1 . ,  
1 1 . , 1 . , 1 . , 1 . , 1 . , 1 . , 1 . /  

X I ( l )  = O .  
XI ( 2 )  � 1 .  1 SORT ( 3 .  / 5 . )  
XI ( 3 )  - -XI ( 2 )  
ETA ( l )  - XI ( l )  
ETA ( 2 )  - X I  ( 2 )  
ETA ( 3 )  = XI ( 3 )  
ZETA ( l )  - XI ( l )  
ZETA ( 2 )  - XI ( 2 )  
ZETA ( 3 )  - XI ( 3 )  
W e l l - 8 .  / 9 .  
W ( 2 )  - 5 .  / 9 .  
W ( 3 )  - W(2 ) 
KXE = PROP (MATSET ( E ) , l ) 
KYE = PROP (MATSET ( E ) , 2 )  
KZE = P ROP (MATSET ( E ) , 3 ) 
DO 2 0  K - 1 ,  2 0  

D O  10 L - 1 ,  2 0  
KE ( K , L)  = O. 

1 0  CONT INUE 
2 0  CONT INUE 

DO 1 2 0  I = 1, 3 
DO 1 1 0  J = 1 , 3 

DO 1 0 0  K - 1 ,  3 
DO 4 0  L = 1 ,  3 

DO 3 0  N = 1 ,  3 
JAC ( L , N )  - o. 

3 0  CONTINUE 
4 0  CONTINUE 

DO 50 N - 1 ,  2 0  
IF ( (N . EO .  1 )  . OR . (N  . EO .  3 )  . OR . (N . EO .  5 )  . OR .  

1 (N . EO .  7 )  . OR .  (N . EO .  1 3 )  . OR .  (N . EO .  1 5 )  . OR .  
2 (N . EO .  1 7 )  . OR .  (N . EO .  1 9 »  THEN 

DNDXI (N)  - 0 . 12 5  * S IGN1 (N)  * ( 1 .  + SIGN2 ( N )  * 
1 ETA ( J »  * ( 1 . + S I GN3 ( N )  * ZETA ( K »  * 
2 ( 2 . * SIGN 1 (N)  * XI ( I ) + S IGN2 ( N )  * 
3 ETA ( J )  + S IGN3 (N)  * ZETA (K)  - 1 . )  

DNDETA (N)  = 0 . 12 5  * S I GN2 (N)  * ( 1 .  + S IGN1 ( N )  * 

1 XI ( I »  * ( 1 .  + SIGN3 (N)  * ZETA ( K »  * 
2 ( 2 . * S IGN2 ( N )  * ETA ( J )  + S IGN1 ( N )  * 
3 XI ( I )  + S IGN3 ( N )  * ZETA ( K )  - 1 . )  

DNDZETA (N) - 0 . 12 5  * S IGN3 (N)  * ( 1 .  + S I GN1 ( N ) * 
1 XI ( I »  * ( 1 .  + SIGN2 (N) * ETA ( J »  * 
2 ( 2 . * SIGN3 (N)  * ZETA ( K )  + S IGN 1 ( N )  * 
3 XI ( I )  + SIGN2 (N)  * ETA ( J) - 1 . )  

ELSE IF ( (N . EO .  2 )  . OR .  ( N  . EO .  6)  . OR .  
1 (N . EO . 1 4 )  . OR .  (N . EO .  1 8 »  THEN 

DNDXI ( N) = -0 . 5  * XI ( I )  * ( 1 .  + S IGN2 (N)  * 

1 ETA ( J »  * ( 1 .  + S IGN3 (N)  * ZETA ( K »  

357 
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DNDETA (N) - U . 2 5  * S IGN2 ( N )  * (1 .  - XI ( I ) * *2 )  * 

DNDZETA ( N )  

ELSE IF « (N . EO .  
( N  . EO .  

DNDXI (N)  .. 

( 1 .  + S IGN3 ( N )  * ZETA ( K ) ) 
0 . 2 5 * S IGN3 ( N )  * (1 . - XI ( I ) * * 2 )  * 
(1 .  + SIGN2 ( N )  * ETA ( J »  
4 )  . OR .  (N .EO . 8 )  . OR .  
1 6 )  . OR .  ( N  . EO .  2 0 »  THEN 
0 . 2 5 '" S IGN1 ( N )  '" ( 1 . - ETA ( J) * *2 )  * 

( 1 .  + S IGN3 ( N )  '" ZETA ( K »  
DNDE TA ( N )  .. - 0 . 5  '" ETA ( J )  '" ( 1 .  + SIGN1 (N )  * XI ( I »  * 

( 1 . + SIGN3 (N)  * ZETA ( K »  
DNDZETA (N)  - 0 . 2 5  * S IGN3 (N)  '" ( 1 .  + S IGN1 ( N) '" 

XI ( I »  * ( 1 .  - ETA ( J )  * *2 )  
ELSE I F  ( (N . GE .  9 )  . AND . ( N  . LE .  1 2 » THEN 

DNDXI (N)  - 0 . 2 5  * S IGN1 (N)  * (1 - ZETA (K) * "'2 )  * 
( 1 .  + SIGN2 ( N )  '" ETA ( J »  

DNDETA (N) .. 0 . 2 5  '" SIGN2 ( N )  * ( 1 .  - ZETA ( K ) "' '''2 )  * 

(1 . + S IGN1 (N)  * XI ( I »  
DNDZETA (N)  .. - 0 . 5  * ZETA ( K )  * ( 1 .  + S IGN1 (N)  * 

XI ( I »  * ( 1 .  + S IGN2 (N)  * ETA ( J »  
ENDIF 

CONTINUE 
DO 60 N - 1, 2 0  

JAC ( l , l )  .. JAC ( l , l )  + DNDXI (N)  * X 1 ( IN ( E , N» 
JAC ( 1 , 2 )  .. JAC ( 1 , 2 )  + DNDXI (N)  '" X2 ( IN ( E , N» 
JAC ( 1 , 3 )  .. JAC ( 1 , 3 )  + DNDXI ( N )  '" X3 ( IN ( E , N » 
JAC (2 , 1 )  .. JAC ( 2 , 1 )  + DNDETA ( N )  .. X1 ( IN (E , N » 
JAC (2 , 2 )  .. JAC (2 , 2 )  + DNDETA ( N )  .. X2 ( IN ( E , N »  
JAC ( 2,3 ) .. JAC ( 2 , 3 )  + DNDETA ( N )  .. X3 ( IN ( E , N » ) 
JAC (3, 1 )  .. JAC (3 , 1 )  + DNDZETA ( N )  '" X1 ( IN ( E , N) ) 
JAC (3 , 2 )  = JAC (3 , 2 )  + DNDZETA ( N )  * X2 ( IN ( E , N) ) 
JAC (3 , 3 )  .. JAC ( 3 , 3 )  + DNDZETA ( N )  '" X3 ( IN ( E , N )  

CONTINUE 
DETJAC " JAC ( l , l )  '" ( JAC ( 2 , 2 )  * JAC (3 , 3 )  - JAC (3 , 2 )  * 

JAC (2 , 3 ) ) - JAC ( 1 , 2 )  '" ( JAC ( 2 , 1 )  * JAC ( 3 , 3 )  -
JAC (3, 1 )  * JAC (2,3 ) ) - JAC ( 1 , 3 )  * ( JAC ( 2 , 1 )  * 

JAC ( 3 ,  2 )  - JAC (3, 1 )  * JAC (2, 2 »  
JACINV ( l ' l )  .. ( JAC ( 2 , 2 )  * JAC (3 , 3 )  - JAC ( 2 , 3 ) * 

JAC (3 , 2 »  / DETJAC 
JAC INV (1 , 2 )  .. ( -JAC ( 2 , 1 )  * JAC ( 3 , 3 )  + JAC ( 2 , 3 ) * 

JAC (3, 1 »  / DETJAC 
JACINV ( l,3 ) .. ( JAC (2, 1 )  .. JAC (3 , 2 )  - JAC (3 , 1 )  .. 

JAC (2 , 2 )  / DETJAC 
JAC INV ( 2 , 1 )  .. ( -JAC ( 1 , 2 )  .. JAC (3 , 3 )  + JAC ( 1 , 3 ) .. 

JAC ( 3 , 2 »  / DETJAC 
JAC INV ( 2 , 2 )  ( JAC ( l , l )  * JAC ( 3 , 3 )  - JAC ( 1 , 3 ) .. 

JAC (3 , 1 » ) / DETJAC 
JAC INV ( 2 , 3 )  ( -JAC ( l , l )  * JAC ( 3 , 2 )  + JAC ( 1 , 2 )  * 

JAC ( 3 , 1 ) )  / DETJAC 
JACINV (3 , 1 )  = ( JAC ( l , 2 )  .. JAC (2 , 3 )  - JAC ( 1 , 3 ) .. 

JAC ( 2 , 2 ) ) / DETJAC 
JACINV (3 , 2 )  .. ( -JAC ( l , l )  .. JAC (2 , 3 )  + JAC (1 , 3 )  * 

JAC ( 2 , 1 )  / DETJAC 
JAC INV (3 , 3 ) - ( JAC ( l , l )  * JAC ( 2 , 2 )  - JAC (1, 2 )  * 

JAC ( 2 , 1 )  / DETJAC 
DO 7 0  N .. 1 ,  2 0  

DNDX ( N )  .. JACINV ( l , l ) * DNDXI ( N )  + JACINV ( 1 , 2 )  .. 
DNDETA (N)  + JACINV (1 , 3 )  * DNDZETA ( N )  

DNDY ( N )  - JACINV ( 2 , 1 )  * DNDXI ( N )  + JACINV ( 2 , 2 )  .. 
DNDETA (N)  + JACINV ( 2,3 )  * DNDZETA ( N )  

DNDZ ( N )  - JACINV (3, 1) * DNDXI ( N )  + JACINV ( 3,2 ) * 

DNDETA (N) + JACINV ( 3, 3 )  * DNDZETA (N ) 
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7 0  CONTINUE 
00 90 L - 1 ,  2 0  

0 0  8 0  N .. 1 ,  2 0  
KE ( L , N)  = KE ( L, N)  + W ( I )  * W ( J)  * W ( K )  * 
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1 
2 

(KXE * DNDX ( L )  * DNDX (N) + KYE * DNDY ( L )  * 

DNDY (N)  + KZE * DNDZ ( L )  * DNDZ (N» * DETJAC 
8 0  CONT INUE 
9 0  CONTINUE 
1 0 0  CONTINUE 
1 1 0  CONTINUE 
1 2 0  CONTINUE 

RETURN 
END 

SUBROUT INE KPAR32 ( E , KE )  
C* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

C 
C PURPOSE : 
C TO COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR THREE-
C D IMENS IONAL , CUBIC PARALLELEPIPED ELEMENT 
C 
C DEFINITIONS OF VARIABLES : 
C DETJAC .. DETERMINANT OF JACOBIAN MATRIX 
C DNDXI ( I )  = PARTIAL DERIVATIVE OF INTERPOLATION 
C FUNCTION WITH RESPECT TO XI AT NODE I 
C DNDX ( I )  .. PARTIAL DERIVATIVE OF INTERPOLATION 
C FUNCTION WITH RESPECT TO X AT NODE I 
C DNDETA ( I )  - PARTIAL DERIVATIVE OF INTERPOLATION 
C FUNCTION WITH RESPECT TO ETA AT NODE I 
C DNDY ( I )  - PARTIAL DERIVATIVE OF INTERPOLAT ION 
C FUNCTION WITH RESPECT TO Y AT NODE I 
C DNDZETA ( I )  .. PARTIAL DERIVATIVE OF INTERPOLATION 
C FUNCTION WITH RESPECT TO ZETA AT NODE I 
C DNDZ ( I )  ,. PARTIAL DERIVATIVE OF INTERPOLATION 
C FUNCTION WITH RESPECT TO Z AT NODE I 

E = ELEMENT NUMBER C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

ETA ( I )  - GAUSS POINT I N  ETA COORDINATE 
JAC ( I , J) - JACOBIAN MATRIX 

JACINV ( I , J) .. INVERSE OF JACOBIAN MATRIX 
KE ( I , J ) . - ELEMENT CONDUCTANCE MATRIX 

KXE .. HYDRAULIC CONDUCTIVITY IN X 
COORDINATE D IRECTION 

KYE .. HYDRAULIC CONDUCTIVITY IN Y 
COORDINATE D IRECTION 

KZE .. HYDRAULIC CONDUCTIVITY IN 
COORDINATE D IRECTION 

C W ( I )  .. WEIGHT FOR GAUSS POINT I 
Z 

C XI ( I )  .. LOCATION OF GAUSS POINT IN XI 
C COORDINATE D IRECTION 

D IRECTION 

C ZETA ( I )  .. LOCATION OF GAUSS POINT I N  ZETA 
C COORDINATE D IRECTION 
C 
C REFERENCES : 
C ISTOK, J . D .  GROUNDWATER FLOW AND SOLUTE TRANSPORT 
C MODELING BY THE FINITE ELEMENT METHOD , CHAPTER 4 , 
C FIGURE 4 . 15 ,  EQUATION 4 . 63 
C 
C* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
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$ INCLUDE : ' COMALL ' 

C 

REAL JAC ( 3 , 3 ) , JACINV ( 3 , 3 ) , KE (MAX3 , MAX3 ) , DNDXI ( 3 2 ) , DNDX ( 3 2 ) , 
1 DNDETA ( 3 2 )  , DNDY ( 3 2 )  , DNDZETA ( 3 2 )  , DNDZ ( 3 2 )  , W ( 4 )  , XI ( 32 ) , 
2 ETA ( 32 ) , ZETA ( 32 ) , S IGNl ( 3 2 ) , S IGN2 ( 3 2 ) , S IGN3 ( 32 ) , KXE , KYE , KZE 

DATA S IGNI / 2 * - 1 . , 6 * 1 . , 5 *- 1 . , 2 * 1 . , 2 * - 1 . , 2 * 1 . , 3 * - 1 . , 6 * 1 . , 4 * - 1 . /  
DATA S IGN2 / 5 * - 1 . , 6 * 1 . , 3 *- 1 . , 2 * 1 . , 2 * - 1 . , 2 * 1 . , 5 * - 1 . , 6 * 1 . , - 1 . /  
DATA S IGN3 / 1 6 * - 1 . ,  1 6 * 1 . /  

XI ( l )  - SORT « 3 .  - 2 .  * SORT ( 6 .  / 5 . »  / 7 . )  
XI ( 2 )  - -XI ( 1 )  
XI ( 3 )  - SORT « 3 .  + 2 .  * SORT ( 6 .  / 5 . »  / 7 . )  
XI ( 4 )  - -XI ( 3 )  
ETA ( 1 )  - X I  ( 1 )  
ETA ( 2 )  - XI ( 2 )  
ETA ( 3 )  - XI ( 3 )  
ETA ( 4 )  - XI ( 4 )  
ZETA ( l )  - XI ( l )  
ZETA ( 2 )  - XI ( 2 )  
ZETA ( 3 )  - XI ( 3 )  
ZETA ( 4 )  - X I  ( 4 )  
W ( l )  = 0 . 5 + 1 .  / 1 6 .  * SORT I 6 .  / 5 . »  
W ( 2 )  - W ( l ) 
W ( 3 )  - 0 . 5  - 1 .  / 1 6 .  * SORT I 6 .  / 5 . »  
W ( 4 ) - W ( 3 )  
KXE - PROP (MATSET I E ) , I ) 
KYE - PROP (MATSET ( E ) , 2 )  
KZE - PROP (MATSET ( E ) , 3 ) 
DO 2 0  K - 1 ,  3 2  

DO 1 0  N - 1 ,  3 2  
KE (K, N )  - O .  

1 0  CONT INUE 
2 0  CONT INUE 

3 0  
4 0  

1 
2 

1 
2 

3 

1 
2 
3 

1 
2 
3 

1 
2 
3 

DO 1 2 0  I - 1 ,  4 
DO 1 1 0  J - 1 ,  4 

DO 1 0 0  K - 1 ,  4 
DO 40 L - 1, 3 

DO 3 0  N - 1 ,  3 
JAC ( L , N) ., O .  

CONTINUE 
CONTINUE 
DO 50 N - 1, 32  

IF I I N  . EO .  1 )  . OR .  (N . EO .  4 )  . OR .  I N  . EO .  7 )  . OR .  
I N  . EQ .  1 0 )  . OR .  I N  . EO .  2 1 )  . OR .  I N  . EO .  2 4 )  . OR . 

IN . EO .  2 7 )  . OR .  (N . EQ .  3 0 »  THEN 
DNDXI I N )  - 1 9 .  / 6 4 . )  * I I .  + S IGN2 (N) * ETA ( J »  * 

I I . + S IGN3 IN)  * ZETA I K »  * I S IGN1 I N )  * 
1 - 1 1 9 . / 9 . )  + 3 .  * XI ( I ) * * 2 + 

ETA ( J ) * *2 + ZETA I K ) * * 2 )  + 2 .  * XI ( I »  
DNDETA (N)  - 1 9 . / 6 4 . )  * ( 1 .  + S IGN1 I N )  * XI ( I »  * 

I I . + S IGN3 ( N )  * ZETA I K »  * I S IGN2 IN)  * 
( - 1 1 9 . / 9 . )  + XI I I )  * *2 + 3 .  * 

ETA I J ) * * 2 + ZETA I K )  * * 2 )  + 2 .  * ETA I J »  
DNDZETA (N)  • ( 9 .  / 6 4 . )  * ( 1 .  + S IGN1 (N)  * XI ( I »  * 

(1 . + S IGN2 (N)  * ETA I J »  * ( S IGN3 (N)  * 

1 - 1 1 9 .  / 9 . )  + XI I I ) * * 2 + ETA I J )  * * 2 + 
3 .  * ZETA I K ) * * 2 )  + 2 .  * ZETA I K »  

ELSEIF I IN . EO .  2 )  . OR .  ( N  . EO .  3 )  . OR .  
I N  . EQ .  8 )  . OR .  ( N  . EQ .  9 )  . OR .  
I N  . EO .  2 2 ) . OR .  ( N  . EQ . 2 3 )  . OR .  
I N  . EQ .  2 8 )  . OR .  ( N  . EO .  2 9 »  THEN 

DNDXI IN)  - 1 8 1 . I 6 4 . )  * I I .  + S IGN2 IN)  * ETA ( J »  
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* ( 1 .  + S IGN3 (N) * ZETA ( K »  
* ( S IGN1 (N) 1 3 . - 2 . / 9 .  * XI ( I )  -

3 . *S IGN1 ( N ) / 3 . * XI ( I ) * * 2 )  
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DNDETA (N) � ( 81 . 1 6 4 . )  * S IGN2 (N)  * (1 . - XI ( I ) * * 2 )  
* ( 1 .  1 9 .  + S IGN1 (N) / 3 . *XI ( I »  
* ( 1 .  + SIGN3 (N)  * ZETA ( K »  

DNDZETA ( N )  - ( 8 1 . 1 6 4 . )  * S IGN3 (N)  * ( 1 . - XI ( I ) * * 2 )  
* ( 1 . 1 9 .  + S IGN1 (N) / 3 . *XI ( I »  
* ( 1 . + S I GN2 (N)  * ETA ( J »  

ELSEIF « N  . EO .  5 )  . OR .  ( N  . EO .  6 )  . OR .  
( N  . EO .  1 1 )  . OR .  ( N  . EO .  12 ) . OR .  
( N  . EO .  2 5 )  . OR .  ( N  . EO .  2 6 )  . OR .  
I N  . EO .  3 1 ) . OR . IN . EO .  3 2 »  THEN 

DNDXI (N)  .. ( 8 1 . / 6 4 . )  * S IGN1 (N)  * ( 1 .  - ETA ( J )  * * 2 ) 
* (1.  1 9 .  + S IGN2 (N) 1 3 . * ETA ( J »  
* ( 1 . + S IGN3 (N)  * ZETA ( K »  

DNDETA (N)  - ( 8 1 . / 6 4 . )  * ( 1 . + S IGN1 (N) *XI ( I » 
* ( 1 .  + S IGN3 (N) *ZETA ( K »  * ( S IGN2 ( N ) / 3 . -

2 . / 9 . *ETA ( J )  - 3 . * S IGN2 (N) / 3 . * ETA ( J )  * * 2 ) 
DNDZETA (N)  - ( 8 1 . / 6 4 . )  * S IGN3 ( N )  * ( 1 . - ETA ( J )  * * 2 )  

* ( 1 . / 9 .  + S I GN2 (N) 1 3 . * ETA ( J )  ) 
* ( 1 .  + S IGN1 (N)  * XI ( I )  ) 

ELSE IF « N  . GE .  1 3 ) . AND .  (N . LE .  2 0 »  THEN 
DNDXI (N)  .. ( 8 1 . / 6 4 . )  * S I GN1 (N)  * ( 1 . - ZETA ( K ) * * 2 )  

* ( 1 .  / 9 .  + S IGN3 (N)  1 3 . * ZETA ( K »  
* ( 1 .  + S IGN2 (N) * ETA ( J »  

DNDETA ( N )  ( 8 1 . / 6 4 . )  * S IGN2 ( N )  * ( 1 .  - ZETA ( K ) * * 2 )  
* ( 1 .  1 9 .  + S IGN3 (N) / 3 . * ZETA ( K »  
* ( 1 .  + S IGN1 ( N )  * X I  ( I »  

DNDZETA ( N )  .. ( 8 1 . / 6 4 . ) * ( 1 . + S IGN1 (N)  * XI ( I »  

ENDIF 
CONTINUE 
DO 60 N = 1, 3 2  

* ( 1 .  + S IGN2 (N ) *ETA ( J »  * ( S IGN3 ( N ) / 3 . -
2 . / 9 . * ZETA ( K )  - 3 . * S IGN3 (N) / 3 . * ZETA ( K ) * * 2 )  

JAC ( l , l )  = JAC ( l , l
"
) + DNDXI (N)  * X1 ( IN ( E, N» 

JAC ( 1 , 2 )  = JAC ( 1 , 2 )  + DNDXI (N)  * X2 ( IN (E, N »  
JAC ( 1 , 3 )  = JAC ( 1 , 3 )  + DNDXI ( N )  * X3 ( IN ( E , N »  
JAC ( 2 , 1 )  = JAC ( 2 , 1 ) + DNDETA ( N )  * X1 ( IN ( E , N » 
JAC ( 2 , 2 )  = JAC ( 2 , 2 )  + DNDETA ( N )  * X2 ( IN ( E , N» 
JAC ( 2 , 3 ) = JAC ( 2 , 3 )  + DNDETA (N)  * X3 ( IN ( E , N »  
JAC ( 3 , 1 )  = JAC ( 3 , 1 )  + DNDZETA (N)  * X1 ( IN ( E , N » 
JAC ( 3 , 2 )  .. JAC ( 3 , 2 )  + DNDZETA (N)  * X2 ( IN ( E , N »  
JAC ( 3 , 3 )  = JAC ( 3 , 3 )  + DNDZETA (N)  * X3 ( IN ( E , N »  

CONTINUE 
DETJAC = JAC ( l , l )  * ( JAC ( 2 , 2 )  * JAC ( 3 , 3 )  - JAC ( 3 , 2 )  * 

JAC ( 2 , 3 »  - JAC ( 1 , 2 )  * ( JAC ( 2 , 1 )  * JAC ( 3 , 3 )  -
JAC ( 3 , 1 )  * JAC ( 2 , 3 »  - JAC ( 1 , 3 )  * ( JAC ( 2 , 1 )  * 
JAC ( 3 , 2 )  - JAC ( 3 , 1 )  * JAC ( 2 , 2 »  

JACINV ( l , l )  = ( JAC ( 2 , 2 )  * JAC ( 3 , 3 )  - JAC ( 2 , 3 )  * 

JAC ( 3 , 2 »  1 DETJAC 
JACINV ( 1 , 2 )  .. ( -JAC ( 2 , 1 )  * JAC ( 3 , 3 ) + JAC ( 2 , 3 ) * 

JAC ( 3 , 1 »  1 DETJAC 
JACINV ( 1 , 3 )  .. ( JAC ( 2 , 1 )  * JAC ( 3 , 2 ) - JAC ( 3 , 1 ) * 

JAC ( 2 , 2 »  1 DETJAC 
JACINV ( 2 , 1 )  � ( -JAC ( 1 , 2 )  * JAC ( 3 , 3 ) + JAC ( 1 , 3 )  * 

JAC ( 3 , 2 »  1 DETJAC 
JACINV ( 2 , 2 )  = ( JAC ( l , l )  * JAC ( 3 , 3 ) - JAC ( 1 , 3 )  * 

JAC ( 3 , 1 »  1 DETJAC 
JACINV ( 2 , 3 )  ( -JAC ( l , l )  * JAC ( 3 , 2 )  + JAC ( 1 , 2 )  * 

JAC ( 3 , 1 »  / DETJAC 
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1 

1 

1 

1 

1 

1 
7 0  

JACINV ( 3 , 1 )  - ( JAC ( 1 , 2 ) 
JAC ( 2 , 2 )  ) 

JACINV ( 3 , 2 )  '" ( -JAC ( l , l ) 
JAC ( 2 ,  1 )  I 

JACINV ( 3 , 3 )  '" ( JAC ( l , l )  
JAC ( 2 , 1 »  

D O  7 0  N = 1 ,  3 2  
DNDX ( N )  '" JACINV ( l , l )  

DNDETA (N) + 
DNDY ( N )  '" JACINV ( 2 , 1 )  

DNDETA (N) + 
DNDZ (N) - JACINV ( 3 , 1 )  

DNDETA (N)  + 
CONTINUE 
DO 90 L '" 1, 32  

DO 8 0  N = 1 ,  32 

Subroutine ASMBK 

* JAC ( 2 , 3 ) - JAC ( 1 , 3 )  * 

I DETJAC 
* JAC ( 2 , 3 )  + JAC ( 1 , 3 ) * 

I DETJAC 
* JAC ( 2 , 2 )  - JAC ( 1 ,  2 )  * 
I DETJAC 

* DNDXI (N)  + JACINV ( 1 , 2 )  * 
JACINV ( 1 , 3 ) * DNDZETA ( N )  

* DNDXI ( N )  + JACINV ( 2 , 2 )  * 
JACINV ( 2 , 3 )  * DNDZETA ( N )  

* DNDXI (N) + JACINV ( 3 , 2 )  * 
JACINV ( 3 , 3 )  * DNDZETA ( N )  

KE ( L , N) '" KE ( L , N) + W e I )  * W ( J ) * W ( K) * 
1 
2 

8 0  CONTINUE 
9 0  CONT INUE 
1 0 0  CONTINUE 
1 1 0  CONTINUE 

1 2 0  CONTINUE 
RETURN 
END 

( KXE * DNDX ( L )  * DNDX ( N )  + KYE * DNDY ( L )  * 
DNDY (N)  + KZE * DNDZ ( L )  * DNDZ ( N »  * DETJAC 
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SUBROUTINES DECOMP AND SOLVE 

13.1 PURPOSE 

Subroutines DECOMP and SOLVE solve a system of linear equations of the form 

[M] {X} = {B} (13.1) 

where [M] is a banded matrix of known coefficients (symmetric or not ), {X} are the 
unknowns, and { B } is a vector of known values. 

13.2 INPUT 

None 

13.3 OUTPUT 

None 

13.4 DEFINITIONS OF VARIABLES 

B(I) 

M(IJ) 

NDOF 

SBW 

SYMM 

x(I) 

= Vector of known values. 

= Matrix of known cofficients in vector storage. 

= Number of unknown values in {X}. 

= Semi-band width of [M]. 

= Logical variable 
= •rrue' if [M] is symmetric 
= 'False' if [M] is nonsymmetric. 
= Vector of unknown values to be compted. 

13.5 USAGE 

Subroutine DECOMP performs triangular decomposition on the matrix of known 
coefficients in vector matrix storage {M} (see Chapter 5). The resulting upper-, and lower- 
triangular matrices are stored in {M} (the original contents of {M} are overwritten during 
the decomposition process). Subroutine SOLVE solve for values of the unknowns by 
backward substitution. Once {M } has been decomposed SOLVE can be used to obtain 
values of {X} for any number of different vectors {B }. 

For example, consider the system of linear equations 
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2 1 -1 1 xl 1 

-1 4 1 -• x2 = -2 -1 4 x• 

-1 -2 1 .2 x4 

[M] is a nonsymmetric matrix (SYMM = 'False') with NDOF = SBW = 4. For use in 
DECOMP and SOLVE [M] must be in vector storage. Using the procedure in Section 
5.1.3 we can write 

(M) = 
Before 

Decompostion 

After executing subroutine DECOMP, [M] contains the upper and lower triangular 
matrices for {M] in vector storage 

2.0 
0.5 
-0.5 0.5 
- 1.0 12 
4.5 U23l 0.11 

-o.11• = u2n/ 

Decomposition 0.0 3.0 U34f 
0.67 141 / 
-1.0 la2 / 
- 1.5 143 / 
0.67 la a j 1.89J 

Water Resources Monograph
Groundwater Modeling by 
the Finite Element Method Vol. 13

Copyright American Geophysical Union



Chapter 13 365 

where lij and uij are the entries in the i th row and jth column of the lower and upper 
triangular matrices that would have been stored in ILl and [U] if the decomposition had 
been performed in full matrix storage. 

After [M] has been decomposed, subroutine SOLVE can be used to find a solution 
IX} for any known right-hand-side vector [B }. For this example 

1 

and after executing SOLVE (with NDOF = SBW = 4, and SYMM = 'False') we have 

0.411 
0.12•. 

{X} = 0.17 / 
0.24J 

SOLVE can be executed repeatedly to obtain a set of solutions {X1 }, {X2} .... for a set of 
known vectors {B 1 }, {B2 } ..... 

As another example consider the two system of equations 

3200 xl 1 

242 x2 024 x3 

002 xn 

and 

3200 

24 

O2 

X 1 0 

X3 

X4 

Writing the mawix of coefficients in vector storage gives 

{M} = 

De•ompostioa 

Water Resources Monograph
Groundwater Modeling by 
the Finite Element Method Vol. 13

Copyright American Geophysical Union



366 Subroutines Decorap and Solve 

After executing DECOMP with N-DOF = 4, SBW = 2, and SYMM = True', we have 

1.7321 ull , 

•M] -- 11.225[-- u2 
1.s81 / 

Decomposfion u, 
Ll.183J u4 

wher uij is an en• in the i th row •d j • column of •e upper •an•l• ma•x that would 
have been stored in [• • the decomposition had been peffored in fu• ma•x storage. 

Subroutine SOLVE will • executed twice, once for each vectbr [B }. The •st time 
SOLVE is execute, •OF = 4, SBW = 2, SY• = True', 

1 

{B}= ! 
and the solution is 

0.71] 
-0.57 L 

{X} = 0.43 / 
-0.29J 

The second time SOLVE is executed, bIDOF = 4, SBW = 2, SYMM = 'True', 

0 

{B}= ! 
and the solution is 

--0.571 
0.86[ 

{x} -- -o.•4| 
0.43J 
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13.6 SOURCE CODE LISTING 

SUBROUTINE DECOMP (NDOF• SBW, SYMM, M) 
********************************************************************** 

c 

C 13.1 PURPOSE: 

C SUBROUTINES DECOMP AND SOLVE SOLVE A SYSTEM OF 

C LINEAR EQUATIONS OF THE FORM 
c [M] {X} - 
C WHERE [M] IS a BANDED MATRIX OF KNOWN COEFFICIENTS 
C (SYMMETRIC OR NONSYMMETRIC), { X } ARE THE UNKNOWNS, 
C AND {B} IS A VECTOR OF KNOWN VALUES 
C 

C 13.2 INPUT: 
C NONE 

C 

C 13.3 OUTPUT: 
C NONE 

C 

C 13.4 DEFINITIONS OF VARIABLES: 

C B(I) - VECTOR OF KNOWN VALUES 
C M(IJ) - MATRIX OF KNOWN COEFFICIENTS IN VECTOR STORAGE 
C NDOF - NUMBER OF UNKNOWN VALUES IN {X} 
C SBW • SEMI-BANDWIDTH OF [M] 
C SYMM - LOGICAL VARIABLE 

C • 'TRUE' IF [M] IS SYMMETRIC 
C - 'FALSE' IF [M] IS NONSYMMETRIC 
C X(I) - VECTOR OF UNKNOWN VALUES TO BE COMPUTED 
c 
C 13.5 USAGE: 

SUBROUTINE DECOMP PERFORMS TRIANGULAR DECOMPOSITION 
ON THE MATRIX OF KNOWN COEFFICIENTS IN VECTOR MATRIX 

STORAGE, {M}. THE RESULTING UPPER-, AND LOWER- 
TRIANGULAR MATRICES ARE STORED IN {M} (THE ORIGINAL 
CONTENTS OF {M} ARE OVERWRITTEN DURING THE 
DECOMPOSITION PROCESS). SUBROUTINE SOLVE SOLVES FOR 
VALUES OF THE UNKNOWNS BY BACKWARD SUBSTITUTION. ONCE 
{M} HAS BEEN DECOMPOSED SOLVE CAN BE USED TO OBTAIN 
VALUES OF {X} FOR ANY NLFMBER OF DIFFERENT VECTORS {B}. 

SUBROUTINES CALLED: 

LOC 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 13. 

********************************************************************** 

INTEGER NDOF, SBW 
LOGICAL SYMM 

REAL M(1) 

IF (SYMM) THEN 
M IS A SYMMETRIC MATRIX 
J2 = SBW 
IJ= 0 

DO 30 I • 1, NDOF 
II-- IJ + i 
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10 

20 

3O 

C 

4O 

5O 

60 

DO 20 J -. I, J2 
IJ • IJ + 1 

IF (I .GT. 1) THEN 
K1 - J - SBW + 1 

IF (K1 .LT. I) THEN 
IF (K1 .LE. 0) K1- 1 
DO 10 K - K1, (I-1) 

CALL LOC (K, I,KI,NDOF, SBW, SYMM) 
CALL LOC (K, J, KJ, NDOF, SBW, SYMM) 
M(IJ) - M(IJ) - M(KI) * M(KJ) 

CONTINUE 

ENDIF 

ENDIF 

IF (I .EQ. J) THEN 
M(IJ) - SQRT(M(IJ)) 

ELSE 

M(IJ) - M(IJ) / M(II) 
ENDIF 

CONTINUE 

IF (J2 .LT. NDOF) J2 - J2 + 1 
CONTINUE 

ELSE 

M IS A NONSYMMETRIC MATRIX 

Jl' 1 
J2 - SBW 
IJ- 0 

DO 60 I • 1, NDOF 
I I - IJ + I - J1 + 1 

K1 - J1 

IKBEG - IJ + 1 

DO 50 J - J1, J2 
IJ- IJ + 1 

IF (J .GT. SBW .AND. i .LT. J) THEN 
K1 -K1 + 1 

IKBEG = IKBEG + 1 

ENDIF 

K2 - MIN(I,J) - 1 
IF (K2 .GE. K1) THEN 

IK ' IKBEG 

DO 40 K = K1, K2 
CALL LOC (K, J, KJ, NDOF, SBW, SYMM) 
M(IJ) f M(IJ) - M(IK) * M(KJ) 
IK f IK + 1 

CONTINUE 

ENDIF 

IF (I .LT. J) THEN 
M(IJ) - M(IJ) / M(II) 

ENDIF 

CONTINUE 

IF (I .GE. SBW) J1 -- J1 + 1 
IF (J2 .LT. NDOF) J2 = J2 + 1 

CONTINUE 

ENDIF 

RETURN 

END 
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SUBROUTINE SOLVE (NDOF, $BW, SYMM, M, B, X) 
********************************************************************** 

c 

c 13.1 PURPOSE: 

C SUBROUTINES DECOMP AND SOLVE SOLVE A SYSTEM OF 

C LINEAR EQUATIONS OF THE FORM 
C [M] {X) - (B} 
C WHERE [M] IS A BANDED MATRIX OF KNOWN COEFFICIENTS 
C (SYMMETRIC OR NONSYMMETRIC), {X} ARE THE UNKNOWNS, 
C AND {B} IS A VECTOR OF KNOWN VALUES 
C 

C 13.2 INPUT: 
c NONE 

C 

C 13.3 OUTPUT: 

C NONE 

C 

C 13.4 DEFINITIONS OF VARIABLES: 

C B(I) - VECTOR OF KNOWN VALUES 
C M(IJ) - MATRIX OF KNOWN COEFFICIENTS IN VECTOR STORAGE 

C NDOF - NUMBER OF UNKNOWN VALUES {X} 
C SBW - SEMI-BANDWIDTH OF [M] 
C SYMM - LOGICAL VARIABLE 

C - 'TRUE' IF [M] IS SYMMETRIC 
C - 'FALSE' IF [M] IS NONSYMMETRIC 
C X(I) - VECTOR OF UNKNOWN VALUES TO BE COMPUTED 
C 

C 13.5 USAGE: 

SUBROUT INE DECOMP PERFORMS TRIANGULAR DECOMPOS IT ION 
ON THE MATRIX OF KNOWN COEFFICIENTS IN VECTOR MATRIX 

STORAGE, {M}. THE RESULTING UPPER-, AND LOWER- 
TRIANGULAR MATRICES ARE STORED IN {M} (THE ORIGINAL 
CONTENTS OF {M} ARE OVERWRITTEN DURING THE 
DECOMPOSITION PROCESS). SUBROUTINE SOLVE SOLVES FOR 
VALUES OF THE UNKNOWNS BY BACKWARD SUBSTITUTION. ONCE 
{M} HAS BEEN DECOMPOSED SOLVE CAN BE USED TO OBTAIN 
VALUES OF {X} FOR ANY NUMBER OF DIFFERENT VECTORS {B}. 

SUBROUTINES CALLED: 
LOC 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 13. 

********************************************************************** 

INTEGER NDOF, SBW 
LOGICAL SYMM 

REAL M(1),B(1),X(1) 
C 

DO 10 I = 1, NDOF 
X(I) - B(I) 

10 CONTISSUE 

IF (SYMM) THEN 
M IS A SYMMETRIC MATRIX 
K2 = SBW 

IK = 0 

DO 30 I • 1, NDOF 
DO 20 K • I, K2 
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2O 

3O 

40 

5O 

60 

70 

80 

90 

IK I IK + 1 

IF (K .EQ. I) THEN 
X(K) • X(K) / M(IK) 

ELSE 

X(K) w X(K) -M(IK) * X(I) 
ENDIF 

CONTINUE 

IF (K2 .LT. NDOF) K2 w K2 + 1 
CONTINUE 

K2- 0 

DO 50 I • NDOF, 1, -1 
IF (K2 .GT. 0) THEN 

DO 40 K I (I + K2), (I + 1), -1 
X(I) - X(I) - M(IK) * X(K) 
IK - IK - 1 

CONTINUE 
ENDIF 

X(I) - X(I) / M(IK) 
IK- IK - 1 

IF (K2 .LT. (SBW - 1)) K2 - K2 + 1 
CONTINUE 

ELSE 

M IS A NONSYMMETRIC MATRIX 

X(1) I X(1) / M(1) 
IF (NDOF .GT. 1) THEN 

K2- 1 

DO 70 I - 2, NDOF 
IF (I .GT. SBW) K2 • K2 + 1 

CALL LOC (I, I, II,NDOF, SBW, SYMM) 
IF (I .GT. K2) THEN 

IK- II - 1 

DO 60 K = (I - 1), K2, -1 
X(I) - X(I) - M{IK) * X(K) 
IK - IK - 1 

CONTINUE 
ENDIF 

X(I) • X(I) / M(II) 
CONTINUE 

ENDIF 

J • NDOF - SBW + 1 

K2 - NDOF 

IF (NDOF .GT. 1) THEN 
DO 90 I - (NDOF - 1), 1, -1 

IF (I .LT. J) K2 • K2 - 1 
IF (I .LT. K2) THEN 

CALL LOC (I, I, II,NDOF, SBW, SYMM) 
IK- II + 1 

DO 80 K = (I + 1), K2 
X(I) = X(I) -M(IK) * X(K) 
IK = IK + 1 

CONTINUE 

ENDIF 

CONTINUE 

ENDIF 

ENDIF 

RETURN 

END 
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Chapter 14 

SUBROUTINE VELOCITY 

14.1 PURPOSE 

To compute the components of apparent groundwater velocity for each element in the 
mesh. 

14.2 INPUT 

None 

14.3 OUTPUT 

The components of apparent groundwater velocity are written to the user-defined file 
assigned to unit "OUTF". 

14.4 DEFINITIONS OF VARIABLES 

Type of coordinate system used in this problem (Figure 8.1). 
1, problem is one-dimensional. 
2, problem is two-dimensional. 
3, problem is three-dimensional. 
4, problem is two-dimensional (axisymmetric). 

E = Element number. 

ELEMTYP(I) = Element type for element I. 

NUMELM = Number of elements in the mesh. 

VI(I) = Apparent groundwater velocity in x coordinate direction (DIM =1,2, 
or 3). 

= Apparent groundwater velocity in r coordinate direction (DIM = 4). 

v2(D Unused (DIM = 1). 
Apparent groundwater velocity in y coordinate direction (DIM = 2 or 
3). 
Apparent groundwater velocity in z coordinate direction (DIM = 4). 

= Unused (DIM = 1, 2, or 4). 
= Apparent groundwater velocity in z coordinate direction (DIM = 3). 
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372 Subroutine Velocity 

14.5 USAGE 

The components of apparent groundwater velocity are computed in a set of subroutines, 
one subroutine for each element type (Table 14.1). Each subroutine name in this set begins 
with the letter "V" (for velocity) followed by three or four letters that identify the element 
type and the number of nodes in elements of that type. For example, subroutine VBAR2 
computes the single component of apparent groundwater velocity (v?)) for one-dimensional, 
linear bar elements and subroutine VPAR32 computes the three components of apparent 
groundwater velocity (v•), v(y e), v? )) for three-dimensional, cubic parallelepiped elements. 

Table 14.1 Subroutines used to compute components of apparent groundwater velocity 
in VELOCITY. 

Element Type Description Subroutine Name DIM 

1 Linear bar VBAR2 1 
2 Quadratic bar VBAR3 1 
3 Cubic bar VBAR4 1 
4 Linear triangle VTRI3 2 
5 Lineal' teetangle VREC4 2 
6 Linear quadrilateral VQUA4 2 
7 Quadratic quadrilateral VQUA8 2 
8 Cubic quadrilateral VQUA 12 2 
9 Linear parallelepiped VPAR8 3 
10 Quadratic parallelepiped VPAR20 3 
11 Cubic parallelepiped VPAR32 3 
12 Linear triangle (axisymmetric) VTRI3A* 4 
13 Linear teetangle (axisymme•c) VREC4A* 4 

* Source code listing not provided for these subroutines. 

The source code listings for each of the element velocity subroutines gives the figure 
number that shows the interpolation functions for that element type and the equation used to 
compute the velocity components. For the linear rectangle and quadrilateral elements the 
components of apparent groundwater velocity are computed at the center of the element. A 
list of many of the FORTRAN variable names used in these subroutines and the 
corresponding textbook symbols are in Table 12.2. The variable names and symbols for 
the velocity components are in Table 14.2 

The mesh in Figure 14.1 consists of three, linear bar elements (ELEMTYP(I) -- 1, I -- 
1, 2, 3). Apparent groundwater velocities are computed using subroutine VBAR2. The 
output lists the computed value of apparent.groundwater velocity in the x coordinate 
direction for each element. 

The mesh in Figare 14.2 consists of twelve linear triangle elements (ELEMTYP(I) = 4, 
I -- 1 ..... 12). Apparent groundwater velocities are computed using subroutine VTRI3. 
The output lists the computed values of apparent groundwater velocity in the x and y 
coordinate directions for each element. 
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CMptcr 14 373 

Table 14.2 FORTRAN variable names and textbook symbols for components of 
apparent groundwater velocity in VELOCITY. 

FORTRAN Variable 
Name 

Der'tuition Symbol in Text 

Velocity component in x coordinate direction 

Velocity component in y coordinate direction 

Velocity component in z coordinate direction 

Velocity component in r coordinate direction 

v? 
v? ) 

(•) (2) (3) 

element 

J numbers 

1 2 3 4 

(x = 0) (x = 4) (x = 8) (x = 12) 

K{x•) = K?)= 0.04 crrds, K?)= 0.01 cm/s 

Node Hydraulic 
Number Head (cm) 

I 20.00 
2 17.33 
3 6.67 
4 4.00 

Output: 

COMP•D VALUES OF APPAKE• GROUNDWATER VELOCrl• 

ELEMENT VX 

1 2.666668E-02 
2 2.666666E-02 
3 2.666666E-02 

Figure 14.1 Example output for subroutine VELOCITY. 
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374 Subroutine Velocity 

3 6 9 12 
(5,15) (10,15) (15,15) (20,15) 

(5,10) r _ rS (10,10)•' 8 (15,10)• (20,10) 

1 4 7 10 

(5,5) (10,5) (15,5) (20,5) 

Node 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Hydxaulic 
Head(ft) 
4.60 
4.73 
6.00 
4.58 
4.69 
5.50 
4.55 
4.61 
5.00 
4.50 
4.50 
4.5O 

• • oo. 

Output' 

COMP•D VALUES OF APPARENT GROUNDWATER VELOCITY 

1 7.999995E-05 -2.600000E-05 
2 4.000018E-05 -2.200002E-05 
3 1.599997E-04 -2.200002E-05 
4 5.999957E-05 -1.20(•1E-05 
5 2.200000E-04 - 1.200001E-05 
6 1.000001E-05 2.235174E-11 
7 2.000000E-03 -2.540000E-04 
8 1.600003E-04 -1.620000E-04 
9 2.000000E-03 -1.620000E-04 
10 3.199996E-04 -7.799997E-05 
11 2.000000E-03 -7.799997E-05 
12 4.400007 E-04 2.235174 E- 11 

Figure 14.2 Example output for subroutine VELOCITY. 
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14.6 SOURCE CODE LISTING 

14.5 USAGE: 

SUBROUTINE VELOCITY 
********************************************************************** 
c 

c 14.1 PURPOSE: 
C TO COMPUTE THE COMPONENTS OF APPARENT GROUNDWATER 
C VELOCITY FOR EACH ELEMENT IN THE MESH 
C 

C 14.2 INPUT.- 
C NONE 
C 

C 14.3 OUTPUT: 

C THE COMPONENTS OF APPARENT GROUNDWATER VELOCITY ARE 
C WRITTEN TO THE USER-DEFINED FILE ASSIGNED TO UNIT 
C "OUTF". 

C 

C 14.4 DEFINITIONS OF VARIABLES: 
DIM • COORDINATE SYSTEM TYPE 

E • ELEMENT NUMBER 

ELEMTYP (I) • ELEMENT TYPE FOR ELEMENT I 
NUMELM • NUMBER OF ELEMENTS IN THE MESH 

Vl (I) • APPARENT GROUNDWATER VELOCITY IN X 
COORDINATE DIRECTION (DIM•i, 2, OR 3) 

• APPARENT GROUNDWATER VELOCITY IN R 

COORDINATE DIRECTION (DIM-4) 
V2(I) • UNUSED (DIM-l) 

• APPARENT GROUNDWATER VELOCITY IN Y 

COORDINATE DIRECTION (DIM•2 OR 3) 
• APPARENT GROUNDWATER VELOCITY IN Z 

COORDINATE DIRECTION (DIM-4) 
V3(I) - UNUSED (DIM•i, 2, OR 4) 

• APPARENT GROUNDWATER VELOCITY IN Z 

COORDINATE DIRECTION (DIM•3) 

THE COMPONENTS OF APPARENT GROUNDWATER VELOCITYARE 

COMPUTED IN A SET OF SUBROUTINES, ONE SUBROUTINE 
FOR EACH ELEMENT TYPE. 

SUBROUTINES CALLED .' 

VBAR2, VBAR3, VBAR4 , VTRI 3, VREC 4 , VQUA4, VQUA8 , VQUA12, VPAR8 , 
VPAR20, VPAR32, VTRI 3A, VREC4A 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, CHAPTERS 6 
AND 14. 

********************************************************************** 

$ INCLUDE: ' COMALL ' 
C 

WRITE ( OUTF, 10 ) 
10 FORMAT(//70('*')//llX,'COMPUTED VALUES OF APPARENT ', 

I 'GROUNDWATER VELOCITY'/11X, 48 ( •-' ) ) 
IF (DIM .EQ. 1) THEN 

WRITE(OUTF, 20) t ', 'VX', t •, ' ' 
ELSEIF (DIM .EQ. 2) THEN 

WRITE(OUTF,20) • •, tVX• tVY • • ' 
ELSEIF (DIM .EQ. 3) THEN 

WRITE(OUTF, 20) ' •, •VX •, •VY' 'VZ' 
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20 
C 

C 

30 

40 

ELSEIF (DIM .EQ. 4) THEN 
WRITE(OUTF,20) ' ', 'VR', 'VZ',' ' 

ENDIF 

FORMAT (/7X, A, 'ELEMENT', 10X,A, 2 (13X, A)/) 
COMPUTE THE COMPONENTS OF APPARENT GROUNDWATER VELOCITY 

FOR EACH ELEMENT 

DO 40 g = 1, NUMELM 
IF (ELEMTYP(E) .EQ. 1) THEN 

ELEMENT IS A LINEAR BAR 

CALL VBAR2 (E, Vl (E)) 
ELSEIF (ELEMTYP(E) .EQ. 2) THEN 

ELEMENT IS A QUADRATIC BAR 
CALL VBAR3 (E, V1 (E)) 

ELSEIF (ELEMTYP(E) .EQ. 3) THEN 
ELEMENT IS A CUBIC BAR 

CALL VBAR4 (E, Vl (E)) 
ELSEIF (ELEMTYP(E) .EQ. 4) THEN 

ELEMENT IS A LINEAR TRIANGLE 

CALL VTRI3 (E, V1 (E), V2 (E)) 
ELSEIF (ELEMTYP(E) .EQ. 5) THEN 

ELEMENT IS A LINEAR RECTANGLE 

CALL VREC4 (E, V1 (E), V2 (E)) 
ELSEIF (ELEMTYP(E) .EQ. 6) THEN 

ELEMENT IS A LINEAR QUADRILATERAL 
CALL VQUA4 (E, Vl (E), V2 (E)) 

ELSEIF '(ELEMTYP(E) .EQ. 7) THEN 
ELEMENT IS A QUADRATIC QUADRILATERAL 
CALL VQUA8 (E, V1 (E), V2 (E)) 

ELSEIF (ELEMTYP(E) .EQ. 8) THEN 
ELEMENT IS A CUBIC QUADRILATERAL 
CALL VQUA12 (E, V1 (E), V2 (E)) 

ELSEIF (ELEMTYP(E) .EQ. 9) THEN 
ELEMENT IS A LIN•.AR PARALLELEPIPED 
CALL VPAR8 (E, V1 (E), V2 (E), V3 (E)) 

ELSEIF (ELEMTYP(E) .EQ. 10) THEN 
ELEMENT IS A QUADRATIC PARALLELEPIPED 
CALL VPAR20 (E, Vl (E), V2 (E), V3 (E)) 

ELSEIF (ELEMTYP(E) .EQ. 11) THEN 
ELEMENT IS A CUBIC PARALLELEPIPED 

CALL VPAR32 (E, V1 (E), V2 (E), V3 (E)) 
ELSEIF (ELEMTYP(E) .EQ. 12) THEN 

ELEMENT IS A LINEAR TRIANGLE (AXISYMMETRIC) 
CALL VTRI3A (E, V1 (E), V2 (E)) 

ELSEIF (ELEMTYP(E) .EQ. 13) THEN 
ELEMENT IS A LINEAR RECTANGLE (AXISYMMETRIC) 
CALL VREC4A (E, V1 (E), V2 (E)) 

ENDIF 

IF (DIM .EQ. 1) THEN 

WRITE(OUTF, 30) ' ',E,VI(E) 
ELSEIF (DIM .EQ. 2) THEN 

WRITE(OUTF, 30) ' ',E,VI(E),V2(E) 
ELSEIF (DIM .EQ. 3) THEN 

WRITE(OUTF, 30) ' ',E,VI(E),V2(E),V3(E) 
ELSE 

WRITE(OUTF, 30) ' ',E,Vl(E),V2(E) 
ENDIF 

FORMAT (7X, A, I5, 4X, 1P3E15.6) 
CONTINUE 

RETURN 

END 
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SUBROUT INE VBAR2 (E, VXE) 
C********************************************************************** 

PURPOSE: 

TO COMPUTE APPARENT GROUNDWATER VELOCITY FOR A 
ONE-DIMENSIONAL, LINEAR BARELEMENT 

DEFINITIONS OF VARIABLES: 
DHDX - PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO X 

E m ELEMENT NUMBER 

KXE m HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION 
LE = ELEMENT LENGTH 

VXE • APPARENT GROUNDWATER VELOCITY IN 
X COORDINATE DIRECTION 

X(IN(E,I)) - COMPUTED HEAD FOR NODE I, ELEMENT E 
XI(IN(E,I)) - X COORDINATE FOR NODE I, ELEMENT E 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.5, 

C E•UATIONS 6.10A, 6.12A. 
C 

*********************************************************************** 
$INCLUDE:tCOMALL t 

REAL KXE,LE 

KXE • PROP (MATSET (E), 1) 
LE = XI(IN(E,2)) - XI(IN(E,1)) 
DHDX -- (X(IN(E,2)) - X(IN(E,1))) / LE 
VXE = -KXE * DHDX 

RETURN 

END 

SUBROUT INE VBAR3 (E, VXE) 
*********************************************************************** 

PURPOSE: 

TO COMPUTE APPARENT GROUNDWATER VELOCITY FOR A 

ONE-DIMENSIONAL, QUADRATIC BAR ELEMENT 

DEFINITIONS OF VARIABLES: 

DHDX = PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO X 

DNDXI(I) • PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO XI FOR NODE I 

E • ELEMENT NUMBER 

JAC • JACOBIAN MATRIX 

JACINV = INVERSE OF JACOBIAN MATRIX 
KXE = HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION 

VXE m APPARENT GROUNDWATER VELOCITY IN 

X COORDINATE DIRECTION 

X(IN(E,I)) = COMPUTED HEAD FOR NODE I, ELEMENT E 
Xi(IN(E,I)) = X COORDINATE FOR NODE I, ELEMENT E 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.9B, 
EQUATIONS 6.18 AND 6.26A: 

*********************************************************************** 
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$ INCLUDE: ' COMALL ' 
PEAL DNDXI (3) , JAC, JACINV, KXE 

KXE • PROP (MATSET (E) , 1) 
DNDXI(1)- -0.5 
DNDXI (2)- 0.0 
DNDXI (3) - 0.5 
JAC - 0 

DO 10 I .- 1, 3 
JAC m JAC + DNDXI(I) * XI (IN (E, I) ) 

10 CONTINUE 

JACINV .- 1 / JAC 
DHDX m 0. 

DO 20 I - 1, 3 
DHDX .- DHDX + JACINV * DNDXI(I) * X(IN(E,I)) 

20 CONTINUE 
VXE = -KXE * DHDX 

RETURN 

END 

SUBROUTINE VBAR4 (E,VXE) 
*********************************************************************** 

PURPOSE: 

TO COMPUTE APPARENT GROUNDWATER VELOCITY FOR A 

ONE-DIMENSIONAL, CUBIC BAR ELEMENT 

DEFINITIONS OF VARIABLES: 

DHDX = PARTIAL DERIVATIVE OF HEAD WITH RESPECT 
TO X COORDINATE DIRECTION 

DNDXI (I) •. PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO XI FOR NODE I 

E • ELEMENT NUMBER 

JAC = JACOBIAN MATRIX 

JACINV • INVERSE OF JACOBIAN MATRIX 

KXE -- HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION 
VXE = APPARENT GROUNDWATER VELOCITY IN 

X COORDINATE DIRECTION 

X(IN(E,I)) = COMPUTED HEAD FOR NODE I, ELEMENT E 
Xl (IN (E, I) ) = X COORDINATE OF NODE I, ELEMENT E 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.9C, 
EQUATIONS 6.18 AND 6.26A. 

*********************************************************************** 

$ INCLUDE: ' COMALL ' 
REAL DNDXI ( 4 ) , JAC, JACINV, KXE 

C 

KXE = PROP (MATSET (E), 1) 
DNDXI(1) = 1. / 16. 
DNDXI(2) • -27. / 16. 
DNDXI(3) - -DNDXI(2) 
DNDXI(4) •. -DNDXI(1) 
JAC = 0 

DO 20 I = 1, 4 
JAC - JAC + DNDXI(I) * X(IN(E,I)) 

20 CONTINUE 

JACINV • i / JAC 
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DHDX - 0. 

DO30 I • 1, 4 
DHDX = DHDX '+ JACINV * DNDXI(I) * X(IN(E,I)) 

30 CONTINUE 
VXE • -KXE * DHDX 

R•TURN 

SUBROUTINE VTRI3 (E, VXE, VYE) 
*********************************************************************** 

PURPOSE: 

TO COMPUTE COMPONENTS OF APPARENT GROUNDWATER 
VELOCITY FOR A TWO-DIMENSIONAL, LINEAR TRIANGLE ELEMENT 

DEFINITIONS OF VARIABLES: 
DHDX • PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO X 
DHDY = PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO Y 

DNDX(I) = PARTIAL DERIVATE OF INTERPOLATION 
FUNCTION WITH RESPECT TO X FOR NODE I 

DNDY(I) • PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO Y FOR NODE I 

E = ELEMENT NUMBER 

KXE • HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION 
KYE • HYDRAULIC CONDUCTIVITY IN Y COORDINATE DIRECTION 
VXE • APPARENT GROUNDWATER VELOCITY IN 

X COORDINATE DIRECTION 

VYE • APPARENT GROUNDWATER VELOCITY IN 
Y COORDINATE DIRECTION 

X(IN(E,I) ) • COMPUTED HEAD FOR NODE I, ELEMENT E 
XI(IN(E,I) ) • X COORDINATE FOR NODE I, ELEMENT E 
X2 (IN(E,I)) • Y COORDINATE FOR NODE I, ELEMENT E 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.6, 
EQUATIONS 6.10A, 610B, 6.12A, AND 6.12B. 

*********************************************************************** 
$INCLUDE: 'COMALL' 

REAL DNDX(3),DNDY(3),KXE,KYE 

KXE = PROP (MATSET (E), 1) 
KYE • PROP (MATSET (E), 2) 
AE2 = XI(IN(E,2)) * X2(IN(E,3)) + Xi(IN(E,1)) * X2(IN(E,2)) + 

1 X2(IN(E,1)) * Xi(IN(E,3)) - X2(IN(E,3)) * Xi(IN(E,1)) - 
2 Xi(IN(E,3)) * X2(IN(E,2)) - Xl(IN(E,2)) * X2(IN(E,1)) 

DNDX(1) = (X2(IN(E,2)) - X2(IN(E,3))) / AE2 
DNDX(2) = (X2(IN(E,3)) - X2(IN(E, 1))) / AE2 
DNDX(3) = (X2(IN(E,1)) - X2(IN(E,2))) / AE2 
DNDY(1) = (XI(IN(E,3)) - Xl(IN(E,2))) / AE2 
DNDY(2) • (Xi(IN(E,1)) - Xi(IN(E,3))) / AE2 
DNDY(3) • (Xl(IN(E,2)) - Xl(IN(E,1))) / AE2 
DHDX = 0. 

DHDY • 0. 

DO 20 I = 1, 3 
DHDX = DHDX + DNDX(I) * X(IN(E,I)) 
DHDY = DHDY + DNDY(I) * X(IN(E,I)) 

20 CONTINUE 
VXE • -KXE * DHDX 

VYE = -KYE * DHDY 

RETURN 

END 
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SUBROUTINE VREC4 (E, VXE, VYE) 
*********************************************************************** 

PURPOSE: 
TO COMPUTE COMPONENTS OF APPARENT GROUNDWATER 

VELOCITY FOR A TWO-DIMENSIONAL, LINEAR RECTANGLE ELEMENT 

DEFINITIONS OF VARIABLES: 

DHDX - PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO X 

DHDY - PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO Y 

DNDX ( I } • PARTIAL DERIVATE OF INTERPOLATION 
FUNCTION WITH RESPECT TO X FOR NODE I 

DNDY (I) - PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO Y FOR NODE I 

E • ELEMENT NUMBER 

KXE • HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION 
KYE - HYDRAULIC CONDUCTIVITY IN Y COORDINATE DIRECTION 

VXE • APPARENT GROUNDWATER VELOCITY IN 

X COORDINATE DIRECTION 

VYE - APPARENT GROUNDWATER VELOCITY IN 

Y COORDINATE DIRECTION 

X(IN(E,I)) - COMPUTED HEAD FOR NODE I, ELEMENT E 
XI(IN(E,I) ) - X COORDINATE FOR NODE I, ELEMENT E 
X2(IN(E,I) ) - Y COORDINATE FOR NODE I, ELEMENT E 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.7, 
EQUATIONS 6.10A, 6.10B, 6.12A, AND 6.12B. 

*********************************************************************** 

$ INCLUDE: • COMALL • 
REAL DNDX ( 4 ), DNDY ( 4 ), KXE, KYE 

C 

KXE - PROP (MATSET (E), 1) 
KYE - PROP (MATSET (E) ,2) 
AE • ABS(X2(IN(E, 1)) - X2(IN(E,3))) / 2. 
BE - ABS(XI(IN(E, 1)) - XI(IN(E,3))) ! 2. 

DNDX(1) -- 1. / (2.*BE) 
DNDX(2) - -DNDX(1) 
DNDX (3) = 0 
DNDX (4) - 0 
DNDY(1) •- 1. ! (2.*AE) 
DNDY (2) - 0 
DNDY (3) • 0 
DNDY(4) • -DNDY(1) 

DHDX • 0. 
DHDY • 0. 

DO 10 I -. 1, 4 
DHDX - DHDX + DNDX(I) * X(IN(E,I)) 
DHDY - DHDY + DNDY(I) * X(IN(E,I)) 

10 CONTINUE 

VXE - -KXE * DHDX 

VYE - -KYE * DHDY 

RETURN 

END 
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SUBROUTINE VQUA4 (E, VXE, VYE) 

C 

C PURPOSE: 

C TO COMPUTE COMPONENTS OF APPARENT GROUNDWATER 

C VELOCITY FOR A TWO-DIMENSIONAL, LINEAR QUADRILATERAL 
C ELEMENT 

DEFINITIONS OF VARIABLES: 

DETJAC • DETERMINANT OF JACOBIAN MATRIX 

DHDX • PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO X 

DHDY - PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO Y 

DNDXI (I) • PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO XI FOR NODE I 

DNDX(I) -- PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO X FOR NODE I 

DNDETA(I) = PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ETA FOR NODE I 

DNDY(I) = PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO Y FOR NODE I 

E = ELEMENT NUMBER 

JAC ( I, J) • JACOBIAN MATRIX 
JACINV (I, J) = INVERSE OF JACOBIAN MATRIX 

KXE • HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION 

KYE = HYDRAULIC CONDUCTIVITY IN Y COORDINATE DIRECTION 
VXE = APPARENT GROUNDWATER VELOCITY IN 

X COORDINATE DIRECTION 

VYE = APPARENT GROUNDWATER VELOCITY IN 

Y COORDINATE DIRECTION 

X(IN(E,I)) = COMPUTED HEAD FOR NODE I, ELEMENT E 
Xl (IN(E, I)) = X COORDINATE FOR NODE I, ELEMENT E 
X2 (IN(E,I)) • Y COORDINATE FOR NODE I, ELEMENT E 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.10, 
EQUATIONS 6.14A, 6.14B, 6.17, 6.22A, AND 6.22B. 

*********************************************************************** 

$ INCLUDE: ' COMALL ' 

REAL JAC(2,2),JACINV(2,2),DNDXI(4),DNDX(4), 

1 DNDETA (4) ,DNDY (4) , SIGN1 (4) , SIGN2 (4) , KXE, KYE 
DATA SIGN1/-1.,1.,1.,-1./ 
DATA SIGN2/-1.,-1.,1.,1./ 

C 

KXE = PROP (MATSET (E) , 1) 
KYE m PROP (MATSET (E), 2) 

DO 20 I = 1, 2 
DO 10 J• 1, 2 

JAC(I,J) = 0. 
10 CONTINUE 
20 CONTINUE 

DO 30 I - 1, 4 
DNDXI(I) m 0.25 * SIGNI(I) 
DNDETA(I) •= 0.25 * SIGN2(I) 
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30 

40 

50 

60 

CONTINUE 

DO 40 I- 1, 4 
JAC(1,1) - JAC(1,1) + DNDXI{I) * Xi (IN (E, I) ) 
JAC(1,2) - JAC(1,2) + DNDXI(I) * X2(IN(E,I)) 
JAC(2,1) - JAC(2,1) + DNDETA(I) * Xi (IN (E, I) ) 
JAC(2,2) - JAC(2,2) + DNDETA(I) * X2 (IN (E, I) ) 

CONTINUE 

DETJAC - JAC(1,1) * JAC(2,2) - JAC(1,2) * JAC(2,1) 
JACINV(1,1)" JAC(2,2) / DETJAC 
JACINV(1,2) --JAC(1,2) / DETJAC 
JACINV(2,1) - -JAC(2,1) / DETJAC 
JACINV(2,2) = JAC(1,1) / DETJAC 

DO 50 I • 1, 4 
DNDX(I) - JACINV(1,1) * DNDXI(I) + JACINV(1,2) * DNDETA(I) 
DNDY(I) - JACINV(2,1) * DNDXI(I) + JACINV(2,2) * DNDETA(I) 

CONTINUE 

DHDX • 0. 
DHDY • 0. 

DO 60 I• 1, 4 
DHDX - DHDX + DNDX(I) * X(IN(E,I)) 
DHDY - DHDY + DNDY(I) * X(IN(E,I)) 

CONTINUE 

VXE - -KXE * DHDX 

VYE - -KYE * DHDY 

RETURN 

END 

SUBROUTINE VQUA8 (E, VXE, VYE) 
*********************************************************************** 

PURPOSE: 

TO COMPUTE COMPONENTS OF APPARENT GROUNDWATER 

VELOCITY FOR A TWO-DIMENSIONAL, QUADRATIC QUADRILATERAL 
ELEMENT 

DEFINITIONS OF VARIABLES: 

DETJAC m DETERMINANT OF JACOBIAN MATRIX 

DHDX = PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO X 
DHDY - PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO Y 

DNDXI(I) - PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO XI FOR NODE I 

DNDX (I) = PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO X FOR NODE I 

DNDETA(I) = PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ETA FOR NODE I 

DNDY(I) = PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO Y FOR NODE I 

E - ELEMENT NUMBER 

JAC (I, J) - JACOBIAN MATRIX 
JACINV ( I, J) = INVERSE OF JACOBIAN MATRIX 

KXE - HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION 
KYE - HYDRAULIC CONDUCTIVITY IN Y COORDINATE DIRECTION 
VXE - APPARENT GROUNDWATER VELOCITY IN X 

COORDINATE DIRECTION 
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VYE - APPARENT GROUNDWATER VELOCITY IN Y 
COORDINATE DIRECTION 

X(IN(E,I)) • COMPUTED HEAD FOR NODE I, ELEMENT E 
Xl(IN(E,I) ) • X COORDINATE FOR NODE I, ELEMENT E 
X2(IN(E,I) ) • Y COORDINATE FOR NODE I, ELEMENT E 

REFERENCES '. 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.11, 
EQUATION 6.14A, 6.14B, 6.17, 6.22A, AND 6.22B. 

*********************************************************************** 
$ INCLUDE: • COMALL ' 

REAL JAC (2,2) , JACINV(2,2) , DNDXI (8) ,DNDX(8) ,DNDETA(8) , 
1 DNDY(8),SIGNI(8),SIGN2(8),KXE,KYE 
DATA SIGN1/-1.,0.,1.•I.,1.,0.,-1.,-1./ 
DATA SIGN2/-1.,-1.,-1.,0.,1.,1.,1.,0./ 

KXE w PROP (MATSET (E), 1) 
KYE • PROP (MATSET (E) , 2) 
DO 20 I • 1, 2 

DO 10 J • 1, 2 
JAC(I,J) = 0. 

10 CONTINUE 

20 CONTINUE 

DO 30 I • 1, 8 
IF ((I .EQ. 1) .OR. (I .EQ. 3) .OR. 

I (I .EQ. 5) .OR. (I .EQ. 7)) THEN 
DNDXI(I) = 0. 

DNDETA(I) - 0. 
ELSEIF ((I .EQ. 2) .OR. (I .EQ. 6)) THEN 

DNDXI(I) = 0. 
DNDETA(I) = 0.5 * SIGN2(I) 

ELSEIF ((I .EQ. 4) .OR. (I .EQ. 8)) THEN 
DNDXI(I) • 0.5 * SIGNI(I) 

DNDETA (I) = 0. 
ENDIF 

30 CONTINUE 

DO 40 I = 1, 8 
JAC(1,1) = JAC(1,1) + DNDXI(I) * Xl(IN(E,I)) 
JAC(1,2) = JAC(1,2) + DNDXI(I) * X2(IN(E,I)) 
JAC(2,1) = JAC(2,1) + DNDETA(I) * Xi(IN(E,I)) 
JAC(2,2) = JAC(2,2) + DNDETA(I) * X2(IN(E,I)) 

40 CONTINUE 

DETJAC • JAC(1,1) * JAC(2,2) - JAC(1,2) * JAC(2,1) 
JACINV(1, 1) -- JAC(2,2) / DETJAC 
JACINV(1,2) • -JAC(1,2) / DETJAC 
JACINV(2, 1) • -JAC(2, 1) / DETJAC 
JACINV(2,2) • JAC(1,1) / DETJAC 
DO 50 I - 1, 8 

DNDX(I) • JACINV(1,1) * DNDXI(I) + JACINV(1,2) * DNDETA(I) 
DNDY(I) • JACINV(2,1) * DNDXI(I) + JACINV(2,2) * DNDETA(I) 

50 CONTINUE 

DHDX- 0. 
DHDY - 0. 

DO 60 I • 1, 8 
DHDX'- DHDX + DNDX(I) * X(IN(E,I)) 
DHDY - DHDY + DNDY(I) * X(IN(E,I)) 

60 CONTINUE 
VXE • -KXE * DHDX 
VYE - -KYE * DHDY 

END 
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SUBROUTINE VQUA12 (E, VXE, VYE) 
*********************************************************************** 

PURPOSE: 

TO COMPUTE COMPONENTS OF APPARENT GROUNDWATER 

VELOCITY FOR A TWO-DIMENSIONAL, CUBIC QUADRILATERAL 
ELEMENT 

DEFINITIONS OF VARIABLES: 

DETJAC m DETERMINANT OF JACOBIAN MATRIX 

DHDX - PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO X 
DHDY - PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO Y 

DNDXI (I) • PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO XI FOR NODE I 

DNDX (I) - PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO X FOR NODE I 

DNDETA(I) • PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ETA FOR NODE I 

DNDY(I) - PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO Y FOR NODE I 

E m ELEMENT NUMBER 

JAC (I, J) -- JACOBIAN MATRIX 
JACINV ( I, J) "INVERSE OF JACOBIAN MATRIX 

KXE = HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION 
KYE -- HYDRAULIC CONDUCTIVITY IN Y COORDINATE DIRECTION 
VXE -- APPARENT GROUNDWATER VELOCITY IN X 

COORDINATE DIRECTION 

VYE - APPARENT GROUNDWATER VELOCITY IN Y 
COORDINATE DIRECTION 

X(IN(E,I) ) - COMPUTED HEAD FOR NODE I, ELEMENT E 
X1 (IN(E, I)) • X COORDINATE FOR NODE I, ELEMENT E 
X2 (IN(E, I) ) • Y COORDINATE FOR NODE I, ELEMENT E 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.12, 
EQUATIONS 6.14A, 6.14B, 6.17, 6.22A, AND 6.22B. 

*********************************************************************** 

INCLUDE: w COMALL w 

REAL JAC (2,2) , JACINV(2,2) ,DNDXI (12) ,DNDX (12) ,DNDETA(12) , 
i DNDY ( 12 ) , SIGN1 ( 12 ) , S IGN2 ( 12 ) , KXE, KYE 
DATA SIGN1/-1.,-1.,1.,1.,1.,1.,1.,1.,-1.,-1.,-1.,-1./ 
DATA SIGN2/-1.,-1.,-1.,-1.,-1.,1.,1.,1.,1.,1.,1.,-1./ 

KXE m PROP (MATSET (E) , 1) 
KYE ' PROP (MATSET (E) , 2) 
DO 20 I ' 1, 2 

DO 10 J• 1, 2 
JAC(I,J) - 0. 

10 CONTINUE 

20 CONTINUE 

DO 30 I ' 1, 12 
IF ((I .EQ. 1) .OR. (I .EQ. 4) .OR. 

i (I .EQ. 7) .OR. (I .EQ. 10)) THEN 
DNDXI(I) - -(10. / 32.) * SIGNi(I) 

DNDETA(I) '-(10. / 32.) * SIGN2(I) 
ELSEIF ((I .EQ. 2) .OR. (I .EQ. 3) .OR. 

1 (I .EQ. 8) .OR. (I .EQ. 9)) THEN 
DNDXI(I) ' (81. / 32.) * SIGNi(I)/3. 
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DNDETA(I) - (9. / 32.) * SIGN2(I) 
ELSEIF ((I .EQ. 5) .OR. (I .EQ. 6) .OR. 

I (I .EQ. 11) .OR. (I .EQ. 12)) THEN 
DNDXI(I) - (9. / 32.) * SIGNI(I) 

DNDETA(I) m (81. / 32.) * SIGN2(I)/3. 
ENDIF 

30 CONTINUE 

DO 40 I • 1, 12 
JAC(1,1) m JAC(1,1) + DNDXI(I) * XI (IN (E, I) ) 
JAC(1,2) -- JAC(1,2) + DNDXI(I) * X2 (IN (E, I) ) 
JAC(2,1) - JAC(2,1) + DNDETA(I) * XI(IN(E,I)) 
JAC(2,2) -- JAC(2,2) + DNDETA(I) * X2 (IN (E, i) ) 

40 CONTINUE 

DETJAC - JAC(1,1) * JAC(2,2) - JAC(1,2) * JAC(2,1) 
JACINV(1,1) • JAC(2,2) / DETJAC 
JACINV(1,2) -- -JAC(1,2) / DETJAC 
JACINV(2, 1) • -JAC (2, 1) / DETJAC 
JACINV(2,2) - JAC(1,1) / DETJAC 
DO 50 I f 1, 12 

DNDX(I) m JACINV(1,1) * DNDXI(I) + JACINV(1,2) * DNDETA(I) 
DNDY(I) - JACINV(2,1) * DNDXI(I) + JACINV(2,2) * DNDETA(I) 

50 CONTINUE 

DHDX - 0. 
DHDY -- 0. 

DO 60 I -- 1, 12 
DHDX • DHDX + DNDX(I) * X(IN(E,I)) 
DHDY • DHDY + DNDY(I) * X(IN(E,I)) 

60 CONTINUE 
VXE -- -KXE * DHDX 

VYE -- -KYE * DHDY 

RETURN 

END 

SUBROUT INE VPAR8 (E, VXE, VYE, VZE) 
*********************************************************************** 

PURPOSE: 

TO COMPUTE COMPONENTS OF APPARENT GROUNDWATER 
VELOCITY FOR A THREE-DIMENSIONAL, LINEAR 
PARALLELEP IPED ELEMENT 

DEFINITIONS OF VARIABLES: 

DETJAC - DETERMINANT OF JACOBIAN MATRIX 
DHDX - PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO X 
DHDY - PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO Y 
DHDZ - PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO Z 

DNDXI (I) -- PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO XI FOR NODE I 

DNDX(I) - PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO X FOR NODE I 

DNDETA (I) - PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ETA FOR NODE I 

DNDY (I) - PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO Y FOR NODE I 

DNDZETA(I) - PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ZETA FOR NODE I 

DNDZ(I) m PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO Z FOR NODE I 

E - ELEMENT NUMBER 

JAC (I, J) - JACOBIAN MATRIX 
JACINV ( I, J) - INVERSE OF JACOBIAN MATRIX 
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KXE " HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION 
KYE - HYDRAULIC CONDUCTIVITY IN Y COORDINATE DIRECTION 
KZE - HYDRAULIC CONDUCTIVITY IN Z COORDINATE DIRECTION 
VXE • APPARENT GROUNDWATER VELOCITY IN X 

COORDINATE DIRECTION 

VYE = APPARENT GROUNDWATER VELOCITY IN Y 
COORDINATE DIRECTION 

VZE = APPARENT GROUNDWATER VELOCITY IN Z 
COORDINATE DIRECT ION 

X(IN(E,I) ) = COMPUTED HEAD FOR NODE I, ELEMENT E 
X1 (IN(E, I) ) = X COORDINATE FOR NODE I, ELEMENT E 
X2 (IN(E,I)) • Y COORDINATE FOR NODE I, ELEMENT E 
X3(IN(E,I) ) = Z COORDINATE FOR NODE I, ELEMENT E 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.13, 
EQUATIONS 6.14, 6.16, AND 6.22 

*********************************************************************** 

$ INCLUDE: i COMALL I 

REAL JAC(3,3),JACINV(3,3),DNDXI(8),DNDX(8),DNDETA(8),DNDY(8), 
1 DNDZETA (8) ,DNDZ (8), SIGN1 (8), SIGN2 (8), SIGN3 (8), KXE, KYE, 
2 KZE 

DATA SIGN1/-1.,1.,1.,-1.,-1.,1.,1.,-1./ 
DATA SIGN2/-1.,-1.,1.,1.,-1.,-1.,1.,1./ 
DATA SIGN3/-1.,-1.,-1.,-1.,1.,1.,1.,1./ 

KXE = PROP (MATSET (E) , 1) 

KYE = PROP (MATSET (E) , 2) 
KZE = PROP (MATSET (E) , 3) 
DO 20 I • 1, 3 

DO 10 J = 1, 3 
JAC(I,J) • 0. 

10 CONTINUE 
20 CONTINUE 

DO 30 I • 1, 8 
DNDXI(I) - 0.125 * $IGNI(I) 

DNDETA(I) "= 0.125 * SIGN2(I) 
DNDZETA(I) - 0.125 * SIGN3(I) 

30 CONT INUW• 

DO 40 I • 1, 8 
JAC(1,1) • JAC'(1,1) + DNDXI(I) * Xi(IN(E,I)) 
JAC(1,2) ' JAC(1,2) + DNDXI(I) * X2(IN(E,I)) 
JAC(1,3) = JAC(1,3) + DNDXI(I) * X3(IN(E,I)) 
JAC(2,1) = JAC(2,1) + DNDETA(I) * Xi(IN(E,I)) 
JAC(2,2) ' JAC(2,2) + DNDETA(I) * X2(IN(E,I)) 
JAC(2,3) = JAC(2,3) + DNDETA(I) * X3 (IN (E, I) ) 
JAC(3,1) - JAC(3,1) + DNDZETA(I) * Xi (IN (E, I) ) 
JAC(3,2) = JAC(3,2) + DNDZETA(I) * X2(IN(E,I)) 
JAC(3,3) = JAC(3,3) + DNDZETA(I) * X3 (IN (E, I) ) 

40 CONTINUE 

DETJAC' JAC(1,1) * (JAC(2,2) * JAC(3,3)- JAC(3,2) * 
1 JAC(2,3)) -JAC(1,2) * (JAC(2,1) * JAC(3,3) - 
2 JAC(3,1) * JAC(2,3) ) - JAC(1,3) * (JAC(2,1) * 
3 JAC(3,2) - JAC(3,1) * JAC(2,2)) 

IF ( DETJAC .EQ. 0 ) STOP ' DETERMINANT IS ZERO 
JACINV(1,1) = (JAC(2,2) * JAC(3,3) -JAC(2,3) * 

1 JAC(3,2)) / DETJAC 
JACINV(1,2) = (-JAC(2,1) * JAC(3,3) + JAC(2,3) * 

1 JAC (3, 1) ) / DETJAC 
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JACINV(1,3) - (JAC(2,1) * JAC(3,2) -JAC(3,1) * 
1 JAC(2,2)) / DETJAC 
JACINV(2,1) = (-JAC(1,2) * JAC(3,3) + JAC(1,3) * 

I JAC(3,2)) / DETJAC 
JACINV(2,2) = (JAC(1,1) * JAC(3,3) -JAC(1,3) * 

1 JAC(3, 1) ) / DETJAC 
JACINV(2,3) - (-JAC(1,1) * JAC(3,2) + JAC(1,2) * 

i JAC(3,1)) / DETJAC 
JACINV(3,1) = (JAC(1,2) * JAC(2,3) -JAC(1,3) * 

1 JAC(2,2)) / DETJAC 
JACINV(3,2)- (-JAC(1,1) * JAC(2,3)+ JAC(1,3) * 

i JAC(2, 1) ) / DETJAC 
JACINV(3,3) - (JAC(1,1) * JAC(2,2) - JAC(1,2) * 

1 JAC(2,1) ) / DETJAC 
DO50 I = 1, 8 

DNDX(I) = JACINV(1,1) * DNDXI(I) + JACINV(1,2) * 
1 DNDETA(I) + JACINV(1,3) * DNDZETA(I) 

DNDY(I) = JACINV(2,1) * DNDXI(I) + JACINV(2,2) * 
i DNDETA(I) + JACINV(2,3) * DNDZETA(I) 

DNDZ(I) TM JACINV(3,1) * DNDXI(I) + JACINV(3,2) * 
i DNDETA(I) + JACINV(3,3) * DNDZETA(I) 

50 CONTINUE 
DHDX = 0. 
DHDY = 0. 
DHDZ = 0. 

DO 60 I = 1, 8 
DHDX - DHDX + DNDX(I) * X(IN(E,I)) 
DHDY = DHDY + DNDY(I) * X(IN(E,I)) 
DHDZ TM DHDZ + DNDZ(I) * X(IN(E,I)) 

60 CONTINUE 

VXE = -KXE * DHDX 

VYE = -KYE * DHDY 

VZE = -KZE * DHDZ 

RETURN 

END 

SUBROUTINE VPAR20 (E, VXE, VYE, VZE) 
*********************************************************************** 

PURPOSE: 

TO COMPUTE COMPONENTS OF APPARENT GROUNDWATER 
VELOCITY FOR A THREE-DIMENSIONAL, QUADRATIC 
PARALLELEP IPED ELEMENT 

DEFINITIONS OF VARIABLES: 
DETJAC = DETERMINANT OF JACOBIAN MATRIX 

DHDX • PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO X 
DHDY m PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO Y 
DHDZ - PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO Z 

DNDXI(I) - PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WiTH RESPECT TO XI FOR NODE I 

DNDX(I) = PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO X FOR NODE I 

DNDETA(I) = PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ETA FOR NODE I 

DNDY(I) = PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO Y FOR NODE I 

DNDZETA(I) = PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ZETA FOR NODE I 

DNDZ(I) -- PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO Z FOR NODE I 
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JAC (I, J) • JACOBIAN MATRIX 
JACINV ( I, J) • INVERSE OF JACOBIAN MATRIX 

KXE • HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION 
KYE - HYDRAULIC CONDUCTIVITY IN Y COORDINATE DIRECTION 

KZE • HYDRAULIC CONDUCTIVITY IN Z COORDINATE DIRECTION 

VXE • APPARENT GROUNDWATER VELOCITY IN X 
COORDINATE DIRECTION 

VYE • APPARENT GROUNDWATER VELOCITY IN Y 

COORDINATE DIRECTION 

VZE • APPARENT GROUNDWATER VELOCITY IN Z 

COORDINATE DIRECTION 

X(IN(E, I)) • COMPUTED HEAD FOR NODE I, ELEMENT E 
Xl (IN(E,I)) • X COORDINATE FOR NODE I, ELEMENT E 
X2 (IN(E,I)) - Y COORDINATE FOR NODE I, ELEMENT E 
X3(IN(E,I) ) • Z COORDINATE FOR NODE I, 'ELEMENT E 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.14, 
EQUATIONS 6.14, 6.16, AND 6.22 

*********************************************************************** 

INCLUDE: ' COMALL ' 

REAL JAC(3,3),JACINV(3,3),DNDXI(20),DNDX(20),DNDETA(20), 
1 DNDY (20), DNDZETA (20),DNDZ (20), SIGN1 (20), SIGN2 (20), 
3 SIGN3 (20), KXE, KYE, KZE 

DATA SIGN1/-1.,0.,1.,1.,1.,0.,-1.,-1.,-1.,1.,1.,-1.,-1., 
I 0.,1.,1.,1.,0.,-1.,-1./ 

DATA SIGN2/-1.,-1.,-1.,0.,1.,1.,1.,0.,-1.,-1.,1.,1.,-1., 
i -1.,-1.,0.,1.,1.,1.,0./ 

DATA SIGN3/-1.,-1.,-1.,-1.,-1.,-1.,-1.,-1.,0.,0.,0.,0.,1., 
I 1.,1.,1.,1.,1.,1.,1./ 

KXE • PROP (MATSET (E), 1) 
KYE • PROP (MATSET (E), 2) 
KZE - PROP (MATSET (E), 3) 
DO 20 I • 1, 20 

DO 10 J • 1, 20 
JAC(I,J) • 0. 

10 CONTINUE 

20 CONTINUE 

DO 30 I ' 1, 20 
IF ((I .EQ. 1) .OR. (I .EQ. 3) .OR. (I .EQ. 5) .OR. 

1 (I .EQ. 7) .OR. (I .EQ. 13) .OR. (I .EQ. 15) .OR. 
2 (I .EQ. 17) .OR. (I .EQ. 19)) THEN 

DNDXI(I) - -0.125 * SIGNI(I) 
DNDETA(I) •-0.125 * SIGN2(I) 

DNDZETA(I) •-0.125 * SIGN3(I) 
ELSEIF ((I .EQ. 2) .OR. (I .EQ. 6) .OR. 

i (I .EQ. 14) .OR. (I .EQ. 18)) THEN 
DNDXI {I) - 0. 

DNDETA(I) • 0.25 * SIGN2(I) 
DNDZETA(I) - 0.25 * SIGN3(I) 

ELSEIF ((I .EQ. 4) .OR. (I .EQ. 8) .OR. 
i (I .EQ. 16) .OR. (I .EQ. 20)) THEN 

DNDXI(I) - 0.25 * SIGNi(I) 
DNDETA (I) • 0. 

DNDZETA(I) - 0.25 * SIGN3(I) 
ELSEIF ((I .GE. 9) .AND. (I .LE. 12)) THEN 
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DNDXI(I) • 0.25 * SIGNI(I) 
DNDETA(I) • 0.25 * SIGN2(I) 

DNDZETA(I) • 0. 
ENDIF 

30 CONTINUE 

DO 40 I • 1, 20 
JAC(1,1) -- JAC(1,1) + DNDXI(I) * Xi (IN (E, I) ) 
JAC(1,2) • JAC(1,2) + DNDXI(I) * X2 (IN (E, I) ) 
JAC(1,3) • JAC(1,3) + DNDXI(I) * X3 (IN (E, I) ) 
JAC(2,1) - JAC(2,1) + DNDETA(I) * XI (IN (E, I) ) 
JAC(2,2) • JAC(2,2) + DNDETA(I) * X2 (IN (E, I) ) 
JAC(2,3) • JAC(2,3) + DNDETA(I) * X3 (IN (E, I) ) 
JAC(3,1) • JAC(3,1) + DNDZETA(I) * Xl (IN (E, I) ) 
JAC(3,2) --JAC(3,2) + DNDZETA(I) * X2(IN(E,I)) 
JAC(3,3) • JAC(3,3) + DNDZETA(I) * X3(IN(E,I)) 

40 CONTINUE 

DETJAC • JAC(1,1) * (JAC(2,2) * JAC(3,3)- JAC(3,2) * 
I JAC(2,3)) -JAC(1,2) * (JAC(2,1) * JAC(3,3) - 
2 JAC(3,1) * JAC(2,3))- JAC(1,3) * (JAC(2,1) * 
3 JAC(3,2) - JAC(3,1) * JAC(2,2)) 

JACINV(1,1) -- (JAC(2,2) * JAC(3,3) -JAC(2,3) * 
i JAC(3,2)) / DETJAC 
JACINV(1,2) • (-JAC(2,1) * JAC(3,3)+ JAC(2,3) * 

i JAC(3,1)) / DETJAC 
JACINV(1,3) • (JAC(2,1) * JAC(3,2) -JAC(3,1) * 

I JAC(2,2) ) / DETJAC 
JACINV(2,1) - (-JAC(1,2) * JAC(3,3) + JAC(1,3) * 

1 JAC(3,2)) ! DETJAC 
JACINV(2,2) • (JAC(1,1) * JAC(3,3)- JAC(1,3) * 

i JAC(3,1)) / DETJAC 
JACINV(2,3) • (-JAC(1,1) * JAC(3,2)+ JAC(1,2) * 

i JAC(3,1)) / DETJAC 
JACINV(3,1) -- (JAC(1,2) * JAC(2,3) -JAC(1,3) * 

I JAC (2,2)) / DETJAC 
JACINV(3,2) • (-JAC(1,1) * JAC(2,3) + JAC(1,3) * 

i JAC (2,1)) / DETJAC 
JACINV(3,3) • (JAC(1,1) * JAC(2,2) -JAC(1,2) * 

1 JAC(2,1) ) / DETJAC 
DO 50 I • 1, 20 

DNDX(I) • JACINV(1,1) * DNDXI(I) + JACINV(1,2) * 
I DNDETA(I) + JACINV(1,3) * DNDZETA(I) 

DNDY(I) - JACINV(2,1) * DNDXI(I) + JACINV(2,2) * 
1 DNDETA(I) + JACINV(2,3} * DNDZETA(I) 

DNDZ(I) - JACINV(3,1) * DNDXI(I) + JACINV(3,2) * 
1 DNDETA(I) + JACINV(3,3) * DNDZETA(I) 

50 CONTINUE 
DHDX • 0. 
DHDY • 0. 

DHDZ • 0. 

DO 60 I - 1, 20 
DHDX • DHDX + DNDX(I) * X(IN(E,I)) 
DHDY • DHDY + DNDY(I) * X(IN(E,I)) 
DHDZ = DHDZ + DNDZ(I) * X(IN(E,I)) 

60 CONTINUE 
VXE = -KXE * DHDX 

VYE - -KYE * DHDY 
VZE -- -KZE * DHDZ 

RETURN 

END 
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SUBROUTINE VPAR32 (E, VXE, VYE, VZE) 
*********************************************************************** 

PURPOSE: 

TO COMPUTE COMPONENTS OF APPARENT GROUNDWATER 

VELOCITY FOR A THREE-DIMENSIONAL, CUBIC 
PARALLELEP IPED ELEMENT 

DEFINITIONS OF VARIABLES: 

DETJAC • DETERMINANT OF JACOB IAN MATRIX 
DHDX -- PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO X 

DHDY = PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO Y 

DHDZ • PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO Z 

DNDXI (I) = PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO XI FOR NODE I 

DNDX(I) = PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO X FOR NODE I 

DNDETA(I) = PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ETA FOR NODE I 

DNDY (I) = PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO Y FOR NODE I 

DNDZETA (I) • PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ZETA FOR NODE I 

DNDZ(I) = PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO Z FOR NODE I 

E = ELEMENT NUMBER 

JAC(I,J) = JACOBIAN MATRIX 
JACINV(I, J) • INVERSE OF JACOBIAN MATRIX 

KXE - HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION 
KYE - HYDRAULIC CONDUCTIVITY IN Y COORDINATE DIRECTION 
KZE • HYDRAULIC CONDUCTIVITY IN Z COORDINATE DIRECTION 

VXE • APPARENT GROUNDWATER VELOCITY IN X 

COORDINATE DIRECTION 

VYE - APPARENT GROUNDWATER VELOCITY IN Y 

COORDINATE DIRECTION 

VZE - APPARENT GROUNDWATER VELOCITY IN Z 

COORDINATE DIRECTION 

X(IN(E,I)) = COMPUTED HEAD FOR NODE I, ELEMENT E 
XI (IN (E, I) ) = X COORDINATE FOR NODE I, ELEMENT E 
X2(IN(E,I) ) - Y COORDINATE FOR NODE I, ELEMENT E 
X3(IN(E,I) ) • Z COORDINATE FOR NODE I, ELEMENT E 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.15, 
EQUATIONS 6.14, 6.16, AND 6.22. 

*********************************************************************** 

$INCLUDE: 'COMALL' 
REAL JAC(3,3),JACINV(3,3),DNDXI(32),DNDX(32),DNDETA(32), 

I DNDY (32), DNDZETA (32) ,DNDZ (32), SIGN1 (32), SIGN2 (32), 
3 SIGN3 (32), KXE, KYE, KZE 

DATA SIGN1/ -1.,-1., 6'1., 5'-1., 
I 1.,1., -1.,-1., 1.,1., 3'-1., 6'1., 4'-1. 

DATA SIGN2/ 5'-1., 6'1., 3'-1., 
I 1.,1., -1.,-1., 1.,1., 5'-1., 6'1., -1 / 

DATA SIGN3/ 16'-1., 16'1. / 

KXE - PROP (MATSET (E) , 1) 
KYE - PROP (MATSET (E) , 2) 
KZE - PROP (MATSET (E) , 3) 
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DO 20 I - 1, 32 
DO 10 J i 1, 32 

JAC (I, J) i 0. 
10 CONTINUE 

20 CONTINUE 

DO 30 I • 1, 32 
IF ((I .EQ. 1) .OR. (I .EQ. 4) .OR. (I .EQ. 7) .OR. 

I (I .EQ. 10) .OR. (I .EQ. 21) .OR. (I .EQ. 24) .OR. 
2 (I .EQ. 27) .OR. (I .EQ. 30)) THEN 

DNDXI(I) - (-19. / 64.) * SIGNi(I) 
DNDETA(I) • (-19. / 64.) * SIGN2(I) 

DNDZETA(I) - (-19. / 64.) * SIGN3(I) 
ELSEIF ((I .EQ. 2) .OR. (I .EQ. 3) .OR. (I .EQ. 8) .OR. 

I (I .EQ. 9) .OR. (I .EQ. 22) .OR. (I.EQ.23) .OR. 
2 (I .EQ. 28) .OR. (I .EQ. 29)) THEN 

DNDXI(I) = (81. / 64.) * SIGNI(I) /3. 
DNDETA(I) -' (9. / 64.) * SIGN2(I) 

DNDZETA(I) - (9. / 64.) * SIGN3(I) 
ELSEIF ((I .EQ. 5) .OR. (I .EQ. 6) .OR. (I .EQ. 11) .OR. 

i (I .EQ. 12) .OR. (I .EQ. 25) .OR. (I .EQ. 26) .OR. 
2 (I .EQ. 31) .OR. (I .EQ. 32)) THEN 

DNDXI(I) = (9. / 64.) * SIGNI(I) 
DNDETA(I) • (81. / 64.) * SIGN2(I) /3. 

DNDZETA(I) = (9. / 64.) * SIGN3(I) 
ELSEIF ((I .GE. 13) .AND. (I .LE. 20)) THEN 

DNDXI(I) - (9. / 64.) * SIGNI(I) 
DNDETA(I) - (9. / 64.) * SIGN2(I) 

DNDZETA(I) -- (81. / 64.) * SIGN3(I) /3. 
ENDIF 

30 CONTINUE 

DO 40 I = 1, 32 
JAC(1,1) = JAC(1,1) + DNDXI(I) * XI(IN(E,I)) 
JAC(1,2) = JAC(1,2) + DNDXI(I) * X2(IN(E,I)) 
JAC(1,3) • JAC(1,3) + DNDXI(I) * X3(IN(E,I)) 
JAC(2,1) • JAC(2,1) + DNDETA(I) * XI(IN(E,I)) 
JAC(2,2) - JAC(2,2) + DNDETA(I) * X2(IN(E,I)) 
JAC(2,3) - JAC(2,3) + DNDETA(I) * X3(IN(E,I)) 
JAC(3,1) - JAC(3,1) + DNDZETA(I) * Xl(IN(E,I)) 
JAC(3,2) = JAC(3,2) + DNDZETA(I) * X2(IN(E,I)) 
JAC(3,3) • JAC(3,3) + DNDZETA(I) * X3 (IN (E, I) ) 

40 CONTINUE 

DETJAC" JAC(1,1) * (JAC(2,2) * JAC(3,3) - JAC(3,2) * 
i JAC(2,3)) - JAC(1,2) * (JAC(2,1) * JAC(3,3) - 
2 JAC(3,1) * JAC(2,3))- JAC(1,3) * (JAC(2,1) * 
3 JAC(3,2) - JAC(3,1) * JAC(2,2)) 

JACINV(1,1) - (JAC(2,2) * JAC(3,3) - JAC(2,3) * 
i JAC(3,2)) / DETJAC 

JACINV(1,2) - (-JAC(2,1) * JAC(3,3) + JAC(2,3) * 
1 JAC(3,1)) / DETJAC 

JACINV(1,3) "(JAC(2,1) * JAC(3,2) -JAC(3,1) * 
1 JAC(2,2)) / DETJAC 

JACINV(2,1) - (-JAC(1,2) * JAC(3,3) + JAC(1,3) * 
i JAC(3,2)) / DETJAC 

JACINV(2,2) - (JAC(1,1) * JAC(3,3) -JAC(1,3) * 
i JAC(3,1)) / DETJAC 

JACINV(2,3) • (-JAC(1,1) * JAC(3,2) + JAC(1,2) * 
1 JAC(3,1)) / DETJAC 

JACINV(3,1) = (JAC(1,2) * JAC(2,3) - JAC(1,3) * 
1 JAC(2,2)) / DETJAC 

JACINV(3,2) • (-JAC(1,1) * JAC(2,3) + JAC(1,3) * 
1 JAC(2,1)) / DETJAC 
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JACINV(3,3) = (JAC(1,1) * JAC(2,2) -JAC(1,2) * 
1 JAC(2,1)) / DETJAC 

DO 50 I - 1, 32 
DNDX(I) • JACINV(1,1) * DNDXI(I) + JACINV(1,2) * 

1 DNDETA(I) + JACINV(1,3) * DNDZETA(I) 
DNDY(I) -- JACINV(2,1) * DNDXI(I) + JACINV(2,2) * 

I DNDETA(I) + JACINV(2,3) * DNDZETA(I) 
DNDZ(I) • JACINV(3,1) * DNDXI(I) + JACINV(3,2) * 

1 DNDETA(I) + JACINV(3,3)' * DNDZETA(I) 
50 CONTINUE 

DHDX • 0. 

DHDY • 0. 
DHDZ - 0. 

DO 60 I = 1, 32 
DHDX • DHDX + DNDX(I) * X(IN(E,I)) 
DHDY = DHDY + DNDY(I) * X(IN(E,I)) 
DHDZ • DHDZ + DNDZ(I) * X(IN(E,I)) 

60 CONTINUE 
VXE - -KXE * DHDX 

VYE - -KYE * DHDY 

VZE = -KZE * DHDZ 

RETURN 

END 
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Chapter 15 

SUBROUTINE DUMP 

15.1 PURPOSE 

Subroutine DUMP writes the contents of various variables and arrays to fries for use in 
other computer programs (e.g. plotting packages). DIJMP is also used to pass velocities 
computed in groundwater program GW1 (see Chapters 7 and 14) to the solute transport 
program ST1. 

15.2 INPUT 

Control information is read "flee-format" from the user-supplied file assigned to unit 
"INF". The control information consists of a code (ICODE) that indicates which arrays are 
to be written to a user-defined file (FNA•), followed by the file name (two-lines of input 
for each choice of ICODE). This information can be repeated as often as desired. Input is 
terminated by placing a -1 in the first field of any line.' 

15.3 OUTPUT 

The arrays are wrfften to a set of user-defined files. DUMP opens the files using the 
file names read from INF. The contents of requested variables and arrays are written to the 
files "free-format" (i.e., without column headings or titles). 

15.4 DEFINITIONS OF VARIABLES 

FNAME = File name for a user-defined f'fie (20 characters or less). 

ICODE = Code indicating which variables and arrays are to be written to file 
FNAME. 

= 1, a list of node numbers and coordinates is written. 

= 2, a list of element numbers, types, and node numbers is written. 

= 3, a list of element numbers and material set numbers is written 
followed by the number of material properties and a list of properties for 
each material set. 

= 4, a list of node numbers and specified values of the field variable is 
written for Dirichlet nodes, followed by a list of node numbers and 
specified values of groundwater flow or solute flux for Neumann 
nodes. 

393 
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394 Subroutine Dump 

-- 5, the relaxation factor, rs, is written first. Then a list of time step 
intervals is written followed by a list of values of the time function g(t), 
the total length of time for which calculations will be performed, and a 
list of node numbers and initial values of the field variable at each node. 

= 6, a list of node numbers and computed values of the field variable at 
each node is written. 

= 7, a list of element numbers and computed components of apparent 
groundwater velocity for each element is written. 

15.5 USAGE 

A list of the FORTRAN variable names written to file FNAME for each choice of 
ICODE is in Table 15.1. Additional information about these variables is in the chapters 
listed in Table 15.1. If the •e "FNA•" does not yet exist, DUMP will create and open it 
for writing. If the file FNAME already exists, DUMP will overwrite it's contents. An 
exception is when DUMP is used to write out heads and velocities in programs GW2 and 
GW4, or solute concentrations in program ST1. In these cases DUMP appends the 
computed heads, velocities, and solute concentrations onto the bottom of the fries after each 
time step. 

An example input f'rie for DUMP as used in program GW1 is shown below 

1 
NOD.LST 
2 
ELEM.LST 
6 
HEAD.LST 
7 
VELO. LST 
-1 

In this example DUMP would write a list of node numbers and coordinates to the file 
NOD.LST, a list of element numbers and element node numbers to file ELEM.LST, a list 
of node numbers and computed values of hydraulic head to file HEAD.LST, and a list of 
element numbers and computed components of apparent groundwater velocity for each 
element to file VELO.LST. 
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15.6 SOURCE CODE LISTING 

SUBROUTINE DUMP (LOOP, HDF, VLF) 
********************************************************************** 

C 

C 15.1 

C 

C 

C 
C 15.2 

C 

C 

C 

C 

C 

C 

C 

C 15.3 

C 

C 

C 

C 15.4 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 15.5 
C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

PURPOSE: 

TO WRITE CONTENTS OF ARRAYS TO USER-SUPPLIED DATA 
FILES 

INPUT: 

CONTROL INFORMATION IS READ FROM USER-SUPPLIED FILE 

ASSIGNED TO UNIT "INF". FIRST LINE iS CODE INDICATING 

WHICH ARRAYS ARE TO BE WRITTEN TO A OUTPUT FILE, THE 
SECOND LINE IS THE NAM• OF THE OUTPUT FILE. THESE 

TWO LINES CAN BE REPEATED AS OFTEN AS DESIRED. INPUT 
IS TERMINATED BY PLACING A -1 ON FILE "INF". 

OUTPUT: 

CONTENTS OF ARRAYS ARE WRITTEN TO A SET OF OUTPUT 

FILES. 

DEFINITIONS OF VARIABLES: 

FNAME = OUTPUT FILE NAME 

ICODE = ARRAYS TO BE WRITTEN TO FNAME: 

= 1, NODE NUMBERS AND COORDINATES 
= 2, ELEMENT NUMBERS, TYPES, AND NODE NUMBERS 
- 3, ELEMENT NUMBERS, MATERIAL SET NUMBERS, 

AND MATERIAL SET PROPERTIES 

= 4, NODE NUMBERS AND SPECIFIED VALUES OF HEAD 
OR SOLUTE CONCENTRATION (DIRICHLET BOUNDARY 
CONDITIONS) AND SPECIFIED RATES OF GROUNDWATER 
FLOW OR SOLUTE FLUX (DIRICHLET AND NEUMANN 
BOUNDARY CONDITIONS) 

- 5, RELAXATION FACTOR, TIME FUNCTION, AND INITIAL 
VALUES OF HEAD OR SOLUTE CONCENTRATION 

= 6, COMPUTED VALUES OF HEAD OR SOLUTE CONCENTRATION 
' 7, ELEMENT NUMBERS AND COMPONENTS OF APPARENT 

GROUNDWATER VELOCITY 

USAGE: 

THE CONTENTS OF THE ARRAYS ARE WRITTEN "FREE-FORMAT" TO 
EACH DATA FILE. 

SUBROUTINES CALLED: 

NONE 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 15. 

********************************************************************** 

$ INCLUDE : ' COMALL ' 
INTEGER DMPF, HDF,VLF 
LOGICAL LOOP, OPNED 
CHARACTER*20 FNAME 

DIMENSION XYZ (MAX1,3) ,V(MAX2,3) ,NODETBL (13) 
EQUIVALENCE (XI,XYZ(1,1)), (X2,XYZ(1,2)), (X3,XYZ(1,3)), 

1 (V1,V(1,1)), (V2,V(1,2)), (V3,V(1,3)) 
DATA NODETBL/2,3,4,3,4,4,8,12,8,20,32,3,4/ 

HDF = 0 

VLF = 0 
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10 

20 

30 

40 

SO 

60 

7O 

80 

READ (INF, *,END=140,ERR=140) ICODE 
IF (ICODE .LE. 0) GOTO 140 
READ (INF, 20, END=140, ERR=10) FNAME 
FORM. AT (A) 
IF (ICODE .LE. 6) THEN 

DMPF • 1 

ELSE 

DMPF ' 2 
ENDIF 

INQUIRE (UNIT'DMPF, OPENED-OPNED ) 
IF (.NOT. OPNED) 

OPEN (DMPF, FILE'FNAME, STATUS = 'NEW ', FORM= ' FORMATTED ' ) 
IF (ICODE .EQ. 1) THEN 

WRITE OUT NODE NUMBERS AND COORDINATES 

IF (DIM .LT. 4) THEN 
IDIM = DIM 

ELSE 

IDIM = 2 
ENDIF 

DO 30 I - 1, NUMNOD 
WRITE (DMPF, *) I, (XYZ (I, J) , J=l, IDIM) 

CONTINUE 

ELSEIF (ICODE .EQ. 2) THEN 

WRITE OUT ELEMENT NUMBERS, TYPES, AND NODE NUMBERS 

DO 40 I=l, NUMELM 
WRITE (DMPF, *) I, ELEMTYP (I) , (IN (I, J) , J-l, NODETBL (ELEMTYP (I)) ) 

CONTINUE 

ELSEIF (ICODE .EQ. 3) THEN 

WRITE OUT ELEMENT AND MATERIAL SET NUMBERS AND MATERIAL 

PROPERTIES 

DO 50 I = 1, NUMELM 
WRITE (DMPF, *) I,MATSET (I) 

CONTINUE 

WRITE (DMPF, *) NUMPROP 
DO 60 I = 1, NUMMAT 

WRITE(DMPF,*) I, (PROP(I,J) ,J-1,NUMPROP) 
CONTINUE 

ELSEIF (ICODE .EQ. 4) THEN 

WRITE OUT SPECIFED VALUES OF FIELD VARIABLE AND GROUNDWATER 

FLOW OR SOLUTE FLUX 

IF (NDN .GT. 0) THEN 
DO 70 I = 1, NUMNOD 

IF (ICH(I) .NE. 0) WRITE(DMPF,*) I,X(I) 
CONTINUE 

ENDIF 

IF (NNN .GT. 0) THEN 
DO 80 I = 1, NUMNOD 

IF (FLUX(I) .NE. 0.) WRITE(DMPF,*) I,FLUX(I) 
CONTINUE 

ENDIF 

ELSEIF (ICODE .EQ. 5) THEN 

WRITE OUT RELAXATION FACTOR, TIME FUNCTION, AND INITIAL 

Water Resources Monograph
Groundwater Modeling by 
the Finite Element Method Vol. 13

Copyright American Geophysical Union



Chapter 15 399 

90 

•oo 

11o 

12o 

VALUES OF FIELD VARIABLE 

IF (LOOP) THEN 
WRITE (DMPF, *) OMEGA 
ISTART = 1 
IT = 1 
TOTALT = 0. 

WRITE (DMPF, *) ISTART,DTSTEP (IT) ,DELTAT (IT) 
TOTALT - TOTALT + (DTSTEP(IT) - ISTART + 1) * DELTAT(IT) 
IF (DTSTEP (IT) .LT. MXSTEP) THEN 

ISTART - DTSTEP(IT) + 1 
IT = IT + 1 

GOTO 90 
ELSE 

WRITE (DMPF,*) TOTALT 
IT = 1 

WRITE(DMPF,*) TIME(IT),GT(IT) 
IF (TIME(IT) .GE. 0. .AND. TIME(IT) .LT. TOTALT) THEN 

IT- IT + 1 

GOTO 100 
ELSE 

IF (ICH(I) .EQ. 0) WRITE(DMPF,*) I,X(I) 
CONTINUE 

ENDIF 

ENDIF 

ENDIF 

ELSEIF (ICODE .EQ. 6) THEN 

WRITE OUT COMPUTED VALUES OF FIELD VARIABLE 

IF (LOOP) THEN 
HDF - DMPF 

ELSE 

DO 120 I = 1, NUMNOD 
WRITE (DMPF, *) I, X(I) 

CONTINUE 

ENDIF 

ELSEIF (ICODE .EQ. 7) THEN 

WRITE OUT ELEMENT NUMBERS AND COMPUTED COMPONENTS 
OF APPARENT GROUNDWATER VELOCITY 

IF (LOOP) THEN 
VLF = DMPF 

ELSE 

IF (DIM .LT. 4) THEN 
IDIM = DIM 

ELSE 

IDIM = 2 
ENDIF 

DO 130 I = 1, NUMELM 
WRITE(DMPF,*) I, (V(I,J),J=i, IDIM) 

130 CONTINUE 
ENDIF 

ENDIF 

IF (ICODE .LE. õ .OR. (ICODE .GT. 5 .AND. .NOT. LOOP)) 
1 CLOSE (UNIT-DMPF) 

GOTO 10 

140 RETURN 
END 
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Chapter 16 

SUBROUTINE INITIAL 

16.1 PURPOSE 

Subroutine INITIAL inputs control parameters and initial conditions needed to solve 
transient groundwater flow and solute transport problems. Subroutine INITIAL is also 
used to input conu:ol parameters and initial estimates for pressure head needed to solve, 
unsaturated flow problems. 

16.2 INPUT 

All data are read "free-format" from the user-supplied file assigned to unit "IN". INF 
is passed to INITIAL through a labeled common block contained in the file "COMALL" 
(Chapter 7). The relaxation factor used in the finite difference approximation of the time 
derivative, a list of time step intervals, and a list of values of the time function (see below) 
are also read. These are followed by a list of initial values of the field variable (hydraulic 
head, pressure head, or solute concentration) for each node in the mesh. 

16.3 OUTPUT 

The relaxation factor, time step intervals, values of the time function, and initial values 
of the field variable are written to the user-defined file assigned to unit "OUTF". 

16.4 DEFINITIONS OF VARIABLES 

DELTAT0) 

DTSTEP(I) 

GT(I) 

ICH(I) 

Size of time step I. 

Last time step to take using a time step of size DELTAT0). 

Value of time function at time I. 

1 if the value of the field variable is specified at node I. 
0 otherwise. 

Character variable used to label column headings for specified 
values of the field variable on file assigned to unit OUTF. LABEL1 
= "HYDRAULIC HEAD", "PRESSURE HEAD", OR "SOLUTE 
FLUX". ' 

MXSTEP 

NUMNOD 

= Number of different time step intervals. 

= Number of nodes. 

OMEGA = Relaxation factor, 
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OMOMEGA = 1 - to. 

TOTALT 

X(I) 

-- Starting time for time function value GT(I). 

= Total length of time for which calculations are performed. 

-- Value of the field variable (hydraulic head, pressure head, or solute 
concentration) at node I. 

16.5 USAGE 

The relaxation factor OMEGA is read f•rst, followed by a list of time steps and time 
intervals. Each record in the list contains the last time step to take with a specified time step 
interval. Input of time steps and time step intervals is terminated by placing a -1 in both 
fields. This is followed by a list of times and values of the time function for each time. 
Input is terminated by placing a -1 in both fields. Finally, the initial values of the field 
variable are read for each node. The subroutine will "generate" initial values of the field 
variable for nodes "missing" from the input file. However, the specified values of the field 
variable for Dirichlet nodes read by subroutine BOUND will not be changed. Input is 
tenuinated by placing a -1 in both fields. 
In the mesh in Figure 16.1, nodes 1, 2, 3, 12, 13, and 14 have specified values of pressure 
head. These boundary conditions would be read by subroutine BOUND. For this 
problem co = 0.5, and a solution is required for 6 time steps. The time step interval will be 
1 minute for time steps 1, 2, and 3 and the time step interval will be 3 minutes for time 
steps 4, 5, and 6. The specified flow rate for the point sink at node 8, F(8), varies with 
time as shown below 

1.0 

0.8 

0.6 

g(t ) 
0.4 

0.2 

0 2 4 6 8 10 12 
time, t (minutes) 

where F(8) = g(t) * FLUX(8) and FLUX(8) is the specified flow rate for node 8 read in 
subroutine BOUND. For this problem we choose to use an initial value of pressure head 
of- 15 for all nodes not on a constant head boundary. Note that the same time function is 
applied to every Neumann node. 
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402 Subroutine Initial 

h=10 

Input Data- 

Output- 

3 6 9 11 

•5 ' '/'•Q = Flux(8) "8 13 

1 4 7 10 12 

0.5 
3 
6 

-! 
0.0 
4.0 

12.0 
-1 

1 
14 
-1 

1.0 
3.0 

-1 
0.0 
1.0 
1.0 

-1 
15. 
15. 

-1 

h=30 

OMEGA = 0.5000 

START END 

1 3 
4 6 

DELTA T 

1.0000 
3.0OO0 

TOTAL TIME = 12.0000 

TIME T G(T) 

.0000 .0000 
4.0000 1.0000 

12.0000 1.0000 

INITIAL VALUES OF HYDRAULIC HEAD 

NODE NO. HYDRAULIC HEAD 

1 10.0000' 
2 10.0000' 
3 10.0000' 
4 15.0000 
5 15.0000 
6 15.0000 
7 15.0000 
8 15.0000 
9 15.0000 

10 15.0000 
11 15.0000 
12 30.0000* 
13 30.0000 
14 30.0000* 

* = SPECIFIED 

Figure 16.1 Example input data and output for subroutine INITIAL. 
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16.6 SOURCE CODE LISTING 

SUBROUTINE INITIAL 

********************************************************************** 
c 

c 16.1 PURPOSE: 

C SUBROUTINE INITIAL INPUTS CONTROL PARAMETERS AND INITIAL 

C CONDITIONS NEEDED TO SOLVE TRANSIENT GROUNDWATER FLOW AND 

C SOLUTE TRANSPORT PROBLEMS. SUBROUTINE INITIAL IS ALSO 
C USED TO INPUT CONTROL PARAMETERS AND TO SPECIFY INITIAL 

C ESTIMATES FOR PRESSURE HEAD NEEDED TO SOLVE STEADY-STATE, 
C UNSATURATED FLOW PROBLEMS. 

C 

C 16.2 INPUT: 

C ALL DATA ARE READ "FREE-FORMAT" FROM THE USER-SUPPLIED 

C FILE ASSIGNED TO UNIT "INF". THE RELAXATION FACTOR 

C USED IN THE FINITE DIFFERENCE APPROXIMATION OF THE TIME 

C DERIVATIVE, A LIST OF TIME STEP INTERVALS, AND A LIST OF 
C VALUES OF THE TIME FUNCTION (SEE BELOW) ARE ALSO READ. 
C THESE ARE FOLLOWED BY A LIST OF INITIAL VALUES OF THE 

C FIELD VARIABLE FOR EACH NODE IN THE MESH. 

C 

C 16.3 OUTPUT: 

C THE RELAXATION FACTOR, TIME STEP INTERVALS, VALUES OF 
C THE TIME FUNCTION, AND INITIAL VALUES OF THE FIELD 
C VARIABLE ARE WRITTEN TO THE USER-DEFINED FILE ASSIGNED 

C TO UNIT "OUTF". 

C 

C 16.4 DEFINITIONS OF VARIABLES: 

C DELTAT(I) • SIZE OF TIME STEP I 
C DTSTEP (I) • NUMBER OF TIME STEPS TO TAKE USING A TIME 
C STEP OF SIZE DELTAT(I) 
C GT (I) • VALUE OF TIME FUNCTION AT TIME I 
C ICH(I) = 1 IF THE VALUE OF THE FIELD VARIABLE IS 

C SPECIFIED FOR NODE I, 
C • 0 OTHERWISE 

C LABEL1 • CHARACTER VARIABLE USED TO LABEL COLUMN 
C HEADINGS FOR SPECIFIED VALUES OF THE FIELD 
C VARIABLE ON FILE ASSIGNED TO UNIT OUTF. 

C LABEL1 = "HYDRAULIC HEAD", "PRESSURE HEAD", 
C OR "SOLUTE FLUX" 

C MXSTEP = NUMBER OF DIFFERENT TIME STEP INTERVALS 

C NUMNOD • NUMBER OF NODES 

C OMEGA • RELAXATION FACTOR 

C OMOMEGA • 1. - OMEGA 

C TIME(I) • STARTING TIME FOR TIME FUNCTION VALUE GT(I) 
C TOTALT • TOTAL LENGTH OF TIME FOR WHICH CALCULATIONS 
C ARE PERFORMED 

C X(I) = VALUE OF THE FIELD VARIABLE (HYDRAULIC 
C HEAD, PRESSURE HEAD, OR SOLUTE CONCENTRATION) 
C AT NODE I 

C 

C 16.5 USAGE: 

THE RELAXATION FACTOR OMEGA IS READ FIRST. THIS 

IS FOLLOWED BY A LIST OF TIME STEPS AND TIME STEP 
INTERVALS. EACH LINE OF INPUT CONTAINS THE NUMBER OF 

TIME STEPS TO TAKE FOLLOWED BY A SPECIFIED TIME STEP 

INTERVAL. INPUT OF TIME STEPS AND TIME STEP INTERVALS 

IS TERMINATED BY PLACING A -1 IN BOTH FIELDS. 
THIS IS FOLLOWED BY A LIST OF TIMES AND VALUES OF THE 
TIME FUNCTION FOR EACH TIME. INPUT IS TERMINATED BY 
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PLACING A -1 IN BOTH FIELDS. FINALLY, THE INITIAL 
VALUE OF THE FIELD VARIABLE IS READ FOR EACH NODE. 

INPUT IS TERMINATED BY PLACING A -1 IN BOTH FIELDS. 

SUBROUTINES CALLED: 

NONE 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 16. 

********************************************************************** 

$INCLUDE:'COMALL' 
C 

C INPUT OMEGA FROM INPUT FILE 

READ ( INF, *) OMEGA 
WRITE (OUTF, 10) OMEGA 

10 FORMAT (//2X, 'OMEGA = ',F15.4) 
OMOMEGA ' 1. - OMEGA 

C INPUT LIST OF TIME STEPS AND TIME STEP INTERVALS FROM INPUT FILE 

2O 

30 

4O 

5O 

60 

7O 

80 

9O 

lOO 

11o 

12o 
c 

13o 

IT = 1 

MXSTEP - 0 

READ(INF, *) DTSTEP (IT) ,DELTAT (IT) 
IF (DTSTEP(IT) .LE. 0) GOTO 30 
IF (DTSTEP (IT) .GT. MXSTEP) MXSTEP = DTSTEP (IT) 
IT - IT + 1 

GOTO 20 
IT • IT - 1 

WRITE (OUTF, 40 ) 
FORMAT(//2X,'START',SX,' END ',10X,'DELTA T'/ 

2X, 5 ( '-' ), 8X, 5 ('-') ,8X, 11 ( '-' ) ) 
ISTART - 1 

TOTALT - 0. 

DO 60 I - 1, IT 
WRITE (OUTF, 50) ISTART,DTSTEP (I) ,DELTAT (I) 
FORMAT (2X, I4, 9X, I4,3X, F15.4) 
TOTALT • TOTALT + (DTSTEP(I) - ISTART + 1) * DELTAT(I) 
ISTART - DTSTEP(I) + 1 

CONTINUE 

WRITE (OUTF, 70) TOTALT 
FORMAT (/10X, 'TOTAL TIME •',F15.4) 
INPUT LIST OF TIME STEPS AND VALUES OF TIME FUNCTION 
IT- 1 

READ(INF,*) TIME(IT),GT(IT) 
IF (TIME (IT) .LT. 0.) GOTO 90 
IT • IT + 1 

GOTO 80 
IT - IT - 1 

IF (TIME (IT) .LT. TOTALT) TIME (IT) - TOTALT 
WRITE (OUTF, 100) 
FORMAT(//SX,'TIME T',11X, 'G(T) '/7X, 8('-') ,9X, 6('-') ) 
DO 120 I = 1, IT 

WRITE(OUTF, 110) TIME(I),GT(I) 
FORMAT (2F15.4) 

CONTINUE 

INPUT INITIAL VALUES OF FIELD VARIABLE FROM INPUT FILE 
I START = 1 

READ(INF,*) IT, HINIT 
IF (IT .LE. 0) GOTO 150 
IF (IT .GT. MAX1) IT = MAX1 
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140 

150 
160 

170 

1BO 

190 

DO 140 I = ISTART, IT 
IF (ICH(I) .NE. 1) X(I) = HINIT 

CONTINUE 

ISTART - IT + 1 

IF (ISTART .LE. MAX1) GOTO 130 
WRITE (OUTF, 160) LABEL1, LABEL1 
FORMAT (/ /2X, ' INITIAL VALUES OF ' ,A/2X, 38 ( '- ' ) / / 

2X,'NODE NO.',10X, A/2X, 8('-'),10X, 20('-')) 
DO 180 I ' 1, NUMNOD 

IF (ICH(I) .EQ. 0) THEN 
WRITE(OUTF, 170) I,X(I),' ' 

ELSE 

WRITE(OUTF, 170) I,X(i),'*' 
ENDIF 

FORMAT (2X, I5, 12X, F15.4, A) 
CONTINUE 

WRITE (OUTF, 190) 
FORMAT (/23X, ' * - SPECIFIED ' ) 
RETURN 

END 
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SUBROUTINE ASMBKC 

17.1 PURPOSE 

Subroutine ASMBKC assembles the combined global conductance and capacitance 
matrix (equation 5.30a) and the global specified flow matrix {F}. The global matrices are 
modified to account for specified values of the field variable (hydraulic head or pressure 
head) and for specified rates of groundwater flow. ASMBKC also computes the semi- 
bandwidth and number of degrees of freedom for the modified system of equations. 

17.2 INPUT 

None 

17.3 OUTPUT 

The semi-bandwidth and number of degrees of freedom for the modified system of 
equations are written to the user-defined f'ale assigned to unit "OUTF". 

17.4 DEFINITIONS OF VARIABLES 

B(I) = Modified specified flow matrix. 

CE(I,J) = Capacitance matrix for element e in full matrix storage. 

E = Element number. 

ELEMTYP(E) = Element type for element E (see Table 9.1 for a list of element 
types). 

FLUX(I) = Specified rate of groundwater flow at node I. 

ICH(I)= = 1 if the value of the field variable is specified at node I, 
= 0 otherwise. 

IJSIZE = Length of array [M] in vector storage ([M] is symmetric). 

KE(IJ) = Conductance matrix for element E in full matrix storage. 
I 

LCH(I) = EICH(k). The arrays ICH and LCH are used to modify the global 
k=l 

system of equations for specified values of the field variable. 

Water Resources Monograph
Groundwater Modeling by 
the Finite Element Method Vol. 13

Copyright American Geophysical Union



Chapter 17 407 

M(IJ) 

NDOF = 

NODETBL(I) = 

SBW 

x(i) 

Modified, combined global conductance and capacitance matrix in 
vector storage. 

Number of nodes where the value of the field variable is unknown. 

Number of nodes in element type I. 

Number of elements in mesh. 

Semi-bandwidth of modified, combined global conductance and 

Value of the field variable (hydraulic head or pressure head) at node 
I. 

17.5 USAGE 

Subroutine ASMBKC assembles the combined global conductance and capacitance 

[M] = [C] + mat [K] (17.1) 

and the specified groundwater flow matrix {F}. [lVl] and {F} are modified to account for 
specified values of the field variable (hydraulic head or pressure head), during the assembly 
process, using the procedures in Chapter 4. [M] is assembled and modified in vector 
storage in the array M. The modified, global specified flow matrix is stored in the array B. 
Further modifications to B are made in subroutine RHS (see Chapter 15). 

The number of degrees of freedom (number of unknown values of the field variable) 
NDOF is computed in subroutine BOUND as 

NDOF' = NUMNOD - NDN 

where •OD is the number of nodes in the mesh (Chapter 8) and NDN is the number 
of nodes with specified values of the field variable (Chapter 11). The semi-bandwidth, 
SBW for the modified system of equations is computed in ASMBKC using 

SBW = R + 1 (17.2) 

where R is the maximum difference in node numbers for any two nodes within any element 
in the mesh. However, if the value of the field variable is specified for a node that node is 
not used in the calculation of R (because the row in [M] for that node will be eliminated 
when [M] is modified for the specified value of head). 

The element conductance and capacitance matrices are computed in two sets of 
subroutines. The element conductance matrices are computed using the set of subroutines 
in Table 12.1. The element capacitance matrices (consistent formulation) are computed 
using the set of subroutines in Table 17.1. Each subroutine in this set begins with the letter 
"C" (for the element capacitance matrix [C(e)]) followed by three or four letters, that 
identify the element type, and the number of nodes in elements of that type. For example, 
subroutine CBAR2 computes the element capacitance matrix for one-dimensional, linear 
bar elements and CPAR8 computes the element capacitance matrix for three-dimensional, 
linear parallelepiped elements. 
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Table 17.1 Subroutines used to compute element conductance matrices in ASMBKC. 

Element Type Description Subroutine Name DIM 

1 Linear bar CBAR2 1 

2 Quadratic bar CBAR3* 1 
3 Cubic bar CBAR4* 1 
4 Linear uiangle CTRI3 2 
5 Linear rectangle CREC4 2 
6 Linear quadrilateral CQUA4 2 
7 Quadratic quadrilateral CQUA8* 2 
8 Cubic quadrilateral CQUA 12' 2 
9 Linear parallelepiped CPAR8 3 
10 Quadratic parallelepiped CPAR20* 3 
11 Cubic parallelepiped CPAR32* 3 
12 Linear triangle (axisymmetric) C'I•I3A* 4 
13 Linear rec•gle (axisymmetric) CREC4A* 4 

*Source code listing not provided for these subroutines. 

The source code listing for each element capacitance matrix gives the figure that shows 
the interpolation functions and the equation used to compute [C (e)] for that element type. A 
list of many of the important FORTRAN variables names and their symbols is in Table 
12.2. Additional names and symbols for the subroutines in Tables 17.1 are shown below 

FORTRAN Variable Definition 

or Array Name 
Symbols(s) in Text ' 

N(I) Interpolation function for node I N?)(e) or N?)(e,q) 
or N!e)(e,q,•) 

SSE Specific storage for element e S? ) 

The operation of ASMBKC is most easily explained by considering a specific example. 
The mesh in Figure 17.1 contains four nodes (NUMNOD = 4) and three elements 
(NUMELM = 3). 

h 2 = 0, t= 0 h 3 =0, t= 0 

(1) (2) (3) 

$ • •, h 4 --0, t•_0 
2 3 4 

K? ) I•(2) K? ) 0.02m/day 

s? 0.0 S$ • • • 

hi = 10m, t_> 0 ß 
1 

L O) = 5, L (2) = 6, L (3) = 4m, {o = 1.0, At = 1 day 
Figure 17.1 Example mesh for ASMBKC. 
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The value of hydraulic head is specified at node one and four (ICH(1) = ICH(4) = 1, 
NDN = 2) and will remain constant for all time steps. The initial values of head at nodes 2 
and 3 are zero and we axe to compute the head at these nodes for subsequent time steps. 
All elements axe linear bar elements, ELEMTYP(1) = ELEMTYP(2) = ELEMTYP(3) = 1. 
This element type has two nodes (NODETBL(1) = 2). The element conductance matrices 
will be computed using subroutine KBA• (Table 12.1). The results are: 

for element 1 

E=I 0.0040 -0.0040] KE = -0.0040 0.00401 
for element 2 

E=2 0.0033 -0.0033] KE = -0.0033 0.00331 
for element 3 

E=3 0.0050 -0.0050• KE = -0.0050 0.0050.1 

The element capacitance matrices will be computed using subroutine CBAR2 (Table 17.1). 
The results are: 

for element 1 

E=I CE = [0.1667 0.0833] 0.0833 0.16673 

for element 2 

E=2 CE: [0.2000 0.•0001 0.1000 0.20003 

for element 3 

E=3 0.1333 0.0667] CE = 0.0667 0.13333 

The global system of equations is 

([C] + o)z•t [K]){h}t+4 , = ([C] - (l-m) At [K][h), + z•t ((l-m) + o)(•}t+,• t) 

0.1667 0.0833 0.0000 0.0000' 

0.0833 0.3667 0.1000 0.00130 

0.0000 0.1000 0.3333 0.0667 

0.0000 0.0000 0.0667 0.1333 

+ m•t 

0.0040 -0.00•0 0.0000 0.0000 

-0.0040 0.0073 -0.0033 0.0000 

0.0000 -0.0033 0.0083 -0.0050 

0.0000 0.0000 -0.0050 0.0050 t+At 
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410 Subroutine ASMBKC 

0.1667 0.0833 0.0000 0.0000] 
0.0833 0.3667 0.1000 0.0000] __ 
0.0000 0.1000 0.3333 0.0667] 
0.0000 0.0000 0.06(57 0.1333.1 

(1-co)At 

0.0040 --0.0040 o.oooo o.oooo' hi 

-o.oo4o 0.0073 -o.oo33 o.oooo h2 
o.oo00 -0.0033 0.0083 -0.0050 h3 

0.oooo o.oooo -0.0050 0.0050 h4 t 

There are no specified rates of groundwater flow in this problem and IF] = 0 for all time 
steps. With m = 0.5 and At = 1 day the global system of equations can be simplified to' 

0.1687 0.0183 0.0000 0.0000] 
0.0813 0.3704 0.0984 O.00001. 
0.0000 0.0984 0.3375 0.0642 / 
0.0000 0.0000 0.0642 0.1358.1 

hi 

h2 

h3 

h4 

[0.,647 o.o8•3 o.oooo 0.000 9 
/o.o•3 o.3•3, o.,o,? o.oooo I 
/O.0000 0.1017 0.3292 0.0692 I 
LO.0000 0.0000 0.0692 0.1308J 

hi 
h2 
h3 

h4 t 

But hl = 10 and h4 = 0 and for the fast time step the modified global system of equations 
becomes 

I O. Of13 0.3704 0.0984 O. O0 h { •0.•0•0•)• 0.0984 0.3375 u,.,.,.,,r,.,,., 0.C•r• n•.n•'•a2 •.'f-"-'a,, v •t=lday 

FZ.:647 o. ou:3 z.•z 
= 10.0853 0.3631 0.1017 0.00001• o L 

I •0.•0000 0.1017 0.3292 0.0692 I/0 / 

[ 1.647] 
_/o. 8•3/ 

0.000 

or 

0.3704 0.0984] : F0.8531 _[ (10)(0.0813)1: ro.0400] œ-- 1day LO. OOOJ (10) (o.oooo)j LO.OOOO] 

This system is stored in arrays M, X 

0.3704] M = 0.0984• 
0.3375J 

(banded, symmetric matrix in vector storage) 

h3 t: 1 day 
(obtained using DECOMP and SOLVE) 

The right-hand side terms are constructed in subroutine RHS (see Chapter 18). 
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17.6 SOURCE CODE LISTING 

SUBROUTINE ASMBKC 

********************************************************************** 
c 

c 17.1 

c 

c 

c 

c 

c 

c 

c 17.2 

c 

c 

c 17.3 
c 

c 

c 

c 

c 
c 17.4 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 17.5 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

PURPOSE: 

TO ASSEMBLE THE COMBINED GLOBAL CONDUCTANCE AND 

CAPACITANCE MATRIX (EQUATION 5.30A) AND THE GLOBAL 
SPECIFIED FLOW MATRIX FOR THE MESH AND TO MODIFY THE 

SYSTEM OF EQUATIONS FOR SPECIFIED HEAD AND GROUNDWATER 
FLOW BOUNDARY CONDITIONS 

INPUT: 

NONE 

OUTPUT: 

THE SEMI-BANDWIDTH AND NUMBER OF DEGREES OF FREEDOM 

FOR THE MODIFIED, COMBINED GLOBAL CONDUCTANCE AND 
CAPACITANCE MATRIX ARE WRITTEN TO THE USER-DEFINED 

FILE ASSIGNED TO UNIT "OUTF" 

ELEMTYP (E) = 

DEFINITIONS OF VARIABLES: 

B(I) = MODIFIED SPECIFIED FLOW MATRIX 
E(I,J) •- CAPACITANCE MATRIX FOR ELEMENT E IN 

FULL MATRIX STORAGE 

ELEMENT NUMBER 

ELEMENT TYPE FOR ELEMENT E (SEE TABLE 
9.1 FOR A LIST OF ELEMENT TYPES) 

FLUX(I) •- SPECIFIED RATE OF GROUNDWATER FLOW 
AT NODE I 

ICH(I) = 1 IF THE VALUE OF HYDRAULIC HEAD OR 
PRESSURE HEAD IS SPECIFIED FOR NODE I, 

-- 0 OTHERWISE 

IJSIZE - LENGTH OF ARRAY [M] IN VECTOR STORAGE 
KE (I, J) = CONDUCTANCE MATRIX FOR ELEMENT E IN 

FULL MATRIX STORAGE 

LCH(I) = ICH(I) + ICH(I-1) + ICH(I-2) + ... 
THE ARRAYS ICH AND LCH ARE USED TO MODIFY 

THE GLOBAL SYSTEM OF EQUATIONS FOR SPECIFIED 
VALUES OF THE FIELD VARIABLE 

M (IJ) = MODIFIED, COMBINED GLOBAL CONDUCTANCE 
AND CAPACITANCE MATRIX IN VECTOR STORAGE 

NDOF = NUMBER OF NODES WHERE THE VALUE OF 

THE FIELD VARIABLE IS UNKNOWN 

NUMBER OF NODES IN ELEMENT TYPE I 

NUMBER OF ELEMENTS IN MESH 

SEMI-BANDWIDTH OF MODIFIED, COMBINED 
GLOBAL CONDUCTANCE AND CAPACITANCE MATRIX 

X(I) = VALUE OF HYDRAULIC HEAD OR PRESSURE HEAD 
AT NODE I 

NODETBL (I) -- 
NUMELM = 

SBW = 

USAGE: 

THE SEMI-BANDWIDTH OF THE COMBINED GLOBAL CONDUCTANCE AND 
CAPACITANCE MATRIX IS COMPUTED FIRST. THEN THE ENTRIES 
OF THE ELEMENT CONDUCTANCE AND CAPACITANCE MATRICES ARE 

COMPUTED IN A SET OF SUBROUTINES, TWO SUBROUTINES FOR 
EACH ELEMENT TYPE. THE COMBINED GLOBAL CONDUCTANCE AND 
CAPACITANCE MATRIX FOR THE MESH IS ASSEMBLED BY ADDING THE 
CORRESPONDING ENTRIES OF THE ELEMENT MATRICES TO THE GLOBAL 
MATRIX. DURING THE ASSEMBLY PROCESS THE GLOBAL MATRIX IS 
MODIFIED FOR SPECIFIED VALUES OF HEAD AND SPECIFIED VALUES 
OF GROUNDWATER FLOW ARE ADDED TO THE GLOBAL FLOW MATRIX. 
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412 Subroutine ASMBKC 

SUBROUTINES CALLED: 

KBAR2 , KBAR3, KBAR4, KTRI 3, KREC 4 , KQUA4, KQUA8 , KQUA12 , KP AR8 , 
KPAR20, KBAR32, KTRI3A, KREC4A, LOC (LISTED WITH SUBROUTINE 
ASMBK IN CHAPTER 12) 

CBAP,2 , CBAR3 , CBAR4, CTRI3, CREC4 , CQUA4, C. QUA8 , CQUA12 , CPAR8 , 
CPAR20, CBAR32, CTRI 3A, CREC4A 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 17. 

********************************************************************** 

$ INCLUDE: ' COMALL ' 
PEAL KE (MAX3, MAX3 ), CE (MAX3, MAX3 ) 
INTEGER NODETBL (13) 
DATA NODETBL/2,3, 4,3, 4, 4, 8,12, 8,20, 32,3, 4/ 

10 

20 

30 

40 

50 

COMPUTE THE SEMI-BANDWIDTH 

SBW • 1 

DO 30 E - 1, NUMELM 
DO 20 I = 1, NODETBL(ELEMTYP(E)) 

KI = IN(E,I) 
IF (ICH(KI) .EQ. 0 .AND. I .LT. NODETBL(ELEMTYP(E))) THEN 

II = KI - LCH(KI) 
DO 10 J • I + 1, NODETBL(ELEMTYP(E)) 

KJ - IN(E,J) 
IF (ICH(KJ) .EQ. 0) THEN 

JJ • ABS(KJ - LCH(KJ) - II) + 1 
IF (JJ .GT. SBW) SBW - JJ 

ENDIF 

CONTINUE 

ENDIF 

CONTINUE 

CONTINUE 

WRITE (OUTF, 40) NDOF, SBW 
FORMAT (//' NUMBER OF DEGREES OF FREEDOM IN MODIFIED, ' / 

' GLOBAL COMBINED CONDUCTANCE AND CAPACITANCE' 

' MATRIX =', I5///' SEMI-BANDWIDTH OF MODIFIED, •/ 
' GLOBAL COMBINED CONDUCTANCE AND CAPACITANCE', 
' MATRIX --',I5) 

IF (SBW .GT. MAX6) STOP'** EXCEEDS MAXIMUM SEMI-BAND WIDTH **' 
INITIALIZE ENTRIES OF GLOBAL MATRIX TO ZERO 

IJSIZE • SBW * (NDOF - SBW + 1) + (SBW - 1) * SBW / 2 
DO 50 IJ • 1, IJSIZE 

M(IJ) • 0.0 
Bi(IJ) • 0.0 

CONTINUE 

56 
DO 56 I • 1, MAX1 

FC(I) = 0. 

6O 

C 

INITIALIZE ENTRIES OF THE GLOBAL GROUNDWATER MATRIX TO ZERO 

DO 60 I • NDOF 

B(I) - o.o 
CONTINUE 

LOOP ON THE NUMBER OF ELEMENTS 

DO 90 E = 1, NUMELM 
COMPUTE THE ELEMENT CONDUCTANCE AND CAPACITANCE MATRICES 
FOR THIS ELEMENT TYPE 

IF (ELEMTYP(E) .EQ. 1) THEN 
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c 

c 

c 

c (FULL MATRIX STORAGE) (VECTOR MATRIX STORAGE) 
DO 80 I • 1, NODETBL(ELEMTYP(E)) 

KI - IN(E,I) 
IF (ICH(KI) .EQ. 0) THEN 

II • KI - LCH(KI) 
DO 70 J-- 1, NODETBL(ELEMTYP(E)) 

KJ - IN(E,J) 

ELEMENT IS A ONE-DIMENSIONAL, LINEAR BAR 
CALL KBAE2 (E, KE ) 
CALL CBAR2 ( E, CE ) 

ELSEIF (ELEMTYP(E) .EQ .2) THEN 
ELEMENT IS A ONE-DIMENSIONAL, QUADRATIC BAR 
CALL KBAR3 (E, KE) 
CALL CBAR3 (E, CE) 

ELSEIF (ELEMTYP(E) .EQ. 3) THEN 
ELEMENT IS A ONE-DIMENSIONAL, CUBIC BAR 
CALL KBAR4 (E, KE) 
CALL CBAR4 (E, CE) 

ELSEIF (ELEMTYP(E) .EQ. 4) THEN 
ELEMENT IS A TWO-DIMENSIONAL, LINEAR TRIANGLE 
CALL KTRI3 (E, KE) 
CALL CTRI 3 (E, CE) 

ELSEIF (ELEMTYP(E) .EQ. 5) THEN 
ELEMENT IS A TWO-DIMENSIONAL, LINEAR RECTANGLE 
CALL KREC 4 (E, KE ) 
CALL CREC4 (E, CE) 

ELSEIF (ELEMTYP(E) .EQ. 6) THEN 
ELEMENT IS A TWO-DIMENSIONAL, LINEAR QUADRILATERAL 
CALL KQUA4 (E, KE) 
CALL CQUA4 (E,CE) 

ELSEIF (ELEMTYP(E) .EQ. 7) THEN 
ELEMENT IS A TWO-DIMENSIONAL, QUADRATIC QUADRILATERAL 
CALL KQUA8 (E, KE) 
CALL CQUA8 (E, CE) 

ELSEIF (ELEMTYP(E) .EQ. 8) THEN 
ELEMENT IS A TWO-DIMENSIONAL, CUBIC QUADRILATERAL 
CALL KQUA12 (E, KE) 
CALL CQUA12 (E,CE) 

ELSEIF (ELEMTYP(E) .EQ. 9) THEN 
ELEMENT IS A THREE-DIMENSIONAL, LINEAR PARALLELEPIPED 
CALL KPAR8 (E, KE) 
CALL CPAR8 (E, CE) 

ELSEIF (ELEMTYP(E) .EQ. 10) THEN 
ELEMENT IS A THREE-DIMENSIONAL, QUADRATIC PARALLELEPIPED 
CALL KPAR20 (E, KE) 
CALL CPAR20 (E, CE) 

ELSEIF (ELEMTYP(E) .EQ. 11) THEN 
ELEMENT IS A THREE-DIMENSIONAL, CUBIC PARALLELEPIPED 
CALL KPAR32 (E,KE) 
CALL CPAR32 (E,CE) 

ELSEIF (ELEMTYP(E) .EQ. 12) THEN 
ELEMENT IS A TWO-DIMENSIONAL, LINEAR TRIANGLE (AXISYMMETRIC) 
CALL KTRI3A(E, KE) 
CALL CTRI 3A (E, CE ) 

ELSEIF (ELEMTYP(E) .EQ. 13) THEN 
ELEMENT IS A TWO-DIMENSIONAL, LINEAR RECTANGLE (AXISYMMETRIC) 
CALL KREC4A (E, KE) 
CALL CREC4A (E, CE) 

ENDIF 

ADD THE ELEMENT CONDUCTANCE AND CAPACITANCE MATRICES FOR 
THIS ELEMENT TO THE GLOBAL MATRIX 

KE (I, J) ,CE (I, J) ........... > M(IJ) <=> M (KI, KJ) 
(FULL MATRIX STORAGE) 
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7O 

8O 
9O 

999 

IF (ICH(KJ) .NE. 0) THEN 
FC(II) s FC(II) - DELTAT(IDT) * KE(I,J) * X(KJ) 

ELSEIF (J .GE. I) THEN 
JJ s KJ - LCH(KJ) 

CALL LOC (II, JJ, IJ, NDOF, SBW, SYMM) 
M(IJ) - M(IJ) + CE(I,J) + OMEGA * 

DELTAT(IDT) * KE(I,J) 
Bi(IJ) • Bi(IJ) + CE(I,J) - OMOMEGA * 

DELTAT(IDT) * KE(I,J) 
ENDIF 

CONTINUE 

ENDIF 

CONTINUE 

CONTINUE 

DO 999 I - 1,IJSIZE 
W•ITE(*,*) M(I),B(I) 

CONTINUE 

RETURN 

END 

SUBROUTINE CBAR2 (E, CE) 
********************************************************************** 

PURPOSE: 

TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT 

CAPACITANCE MATRIX FOR A ONE-DIMENSIONAL, LINEAR 
BAR ELEMENT 

DEFINITIONS OF VARIABLES: 

E -- ELEMENT NUMBER 

CE (I, J) • ELEMENT CAPACITANCE MATRIX 
SSE • ELEMENT SPECIFIC STORAGE 

LE - ELEMENT LENGTH 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.5, 
EQUATION 4.16a. 

****************************************************************** 

$ INCLUDE: • COMALL • 
REAL CE (MAX3, MAX3 ) , LE 

C 

SSE ' PROP (MATSET (E), 2) 
LE • ABS(Xi(IN(E,2)) - XI(IN(E, 1))) 
CE(1,1) ' SSE * LE / 3. 
CE(1,2) - SSE * LE / 6. 
CE(2,1) • CE(1,2) 
CE(2,2) =" CE(1,1) 
RETURN 

END 
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SUBROUTINE CTRI3 (E,CE) 
********************************************************************** 

PURPOSE: 

TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT CAPACITANCE 
MATRIX FOR TWO- DIMENSIONAL, LINEAR TRIANGLE ELEMENT 

DEFINITIONS OF VARIABLES: 
AE4 - FOUR TIMES ELEMENT AREA 

E - ELEMENT NUMBER 

CE (I, J) - ELEMENT CAPACITANCE MATRIX 
SSE • ELEMENT SPECIFIC STORAGE 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.7, 
EQUATION 4.22a 

********************************************************************** 
$ INCLUDE: • COMALL • 

REAL CE (MAX3, MAX3 ) 

SSE - PROP (MATSET (E), 3} 
AE4 - 2 * (XI(IN(E,2)) * X2(IN(E,3)) + Xi(IN(E,1)) * 

X2(IN(E,2)) + X2(IN(E, 1)) * Xi(IN(E,3)) - 
X2(IN(E, 3)) * XI(IN(E,1)) - XI(IN(E,3)) * 
X2(IN(E,2)) - Xi(IN(E,2)) * X2(IN(E,1))) 

CE(1,1} • SSE * AE / 6. 
CE(1,2) • CE(1,1) / 2. 
CE(1,3) = CE(1,2) 
CE(2,1) • CE(1,2) 
CE(2,2) = CE(1,1) 
CE(2,3) = CE(1,2) 
CE(3,1) = CE(1,2) 
CE(3,2) = CE(1,2) 
CE(3,3) - CE(1,1) 
RETURN 

END 

SUBROUTINE CREC4(E, CE) 
********************************************************************** 
c 

PURPOSE: 

TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT CAPACITANCE 
MATRIX FOR TWO- DIMENSIONAL, LINEAR RECTANGLE ELEMENT 

DEFINITIONS OF VARIABLES: 

E • ELEMENT NUMBER 

CE(I,J) • ELEMENT CAPACITANCE MATRIX 
SSE - ELEMENT SPECIFIC STORAGE 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.6, 
EQUATION 4.27a 

********************************************************************** 
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INCLUDE: • COMALL w 
REAL CE (MAX3, MAX3) 

SSE m PROP (MATSET (E), 3) 
AE - ABS(X2(IN(E,1)) - X2(IN(E,3))) / 2. 
BE ' ABS(XI(IN(E,1)) - XI(IN(E,3))) / 2. 
TEMP ' (SSE * .AE * BE) / 9 
CE(1,1) ' 4. * TEMP 
CE(1,2) m 2. * TEMP 
CE(1,3) ' TEMP 
CE(1,4) - CE(1,2) 
CE(2,1) m CE(1,2) 
CE(2,2) - CE(1,1) 
CE(2,3) - CE(1,2) 
CE(2,4) ' CE(1,3) 
CE(3,1) = CE(1,3) 
CE(3,2) - CE(1,2) 
CE(3,3) • CE(1,1) 
CE(3,4) • CE(1,2) 
CE(4,1) • CE(1,2) 
CE(4,2) - CE(1,3) 
CE(4,3) - CE(1,2) 
CE(4,4) • CE(1,1) 
RETURN 

SUBROUTINE CQUA4 (E, CE) 
********************************************************************** 

PURPOSE: 

TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT CAPACITANCE 

MATRIX FOR A TWO-DIMENSIONAL, LINEAR QUADRILATERAL ELEMENT 

DEFINITIONS OF VARIABLES: 

CE (I, J) m ELEMENT CAPACITANCE MATRIX 
DETJAC = DETERMINANT OF JACOBIAN MATRIX 

DNDXI (I) = PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO XI AT NODE I 

DNDX(I) • PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO X AT NODE I 

DNDETA (I) = PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ETA AT NODE I 

DNDY (I) = PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO Y AT NODE I 

XI (I) • LOCATION OF GAUSS POINT IN XI COORDINATE 
DIRECTION 

ETA(I) = LOCATION OF GAUSS POINT IN ETA COORDINATE 
DIRECTION 

JAC (I, J) • JACOBIAN MATRIX 
E = ELEMENT NUMBER 

SSE = ELEMENT SPECIFIC STORAGE 

N(I) '- INTERPOLATION FUNCTION FOR NODE I 
W(I) = WEIGHT FOR GAUSS POINT I 

Xl(IN(E,I) = X COORDINATE FOR NODE I, ELEMENT E 
X2(IN(E, I) = Y COORDINATE FOR NODE I, ELEMENT E 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.10, 
EQUATION 4.65 

C 

****************************************************************** 
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$ INCLUDE: ' COMALL ' 
REAL JAC (2,2), JACINV (2, 2), CE (MAX3,MAX3) ,N(4) ,D•DXI (4), 

1 DNDR (4), DNDETA (4), DNDZ (4), W(2), XI (2), ETA (2), SIGN1 (4), 
2 SIGN2 (4) 

DATA SIGN1/-1.,1.,1.,-1./ 
DATA SIGN2/-1.,-1., 1., 1. / 

XI(1) = 1. / SQRT(3.) 
XI(2) = -XI(1) 
ETA(l) = XI(1) 
ETA(2) = XI(2) 
W(1) -- 1. 
W(2) = 1. 
SSE = PROP (MATSET (E), 3) 

20 

30 

DO 30 I = 1, 4 
DO 20 J = 1, 4 

CE (I, J) = 0. 
CONTINUE 

CONTINUE 

DO 120 I = 1, 2 
DO 110 J-- 1, 2 

4O 

5O 

DO 50 K- 1, 2 
DO 40 K1 = 1, 2 

JAC(K, K1) = 0. 
CONTINUE 

CONTINUE 

60 

70 

90 

100 

110 

120 

DO 60 K1 = 1, 4 
N(K1) = 0.25 * (1. '+ SIGNI(K1) * XI(I)) 

1 * (1. + SIGN2(K1) * ETA(J)) 
DNDXI(K1) = 0.25 * SIGNI(K1) * (1. + SIGN2(K1) * ETA(J)) 

DNDETA(K1) = 0.25 * SIGN2(K1) * (1. + SIGNi(K1) * XI(I)) 
CONTINUE 

DO 70 K1 = 1, 4 
JAC(1,1) = JAC(1,1) + DNDXI(K1) * Xi(IN(E,K1)) 
JAC(1,2) - JAC(1,2) + DNDXI(K1) * X2(IN(E,K1)) 
JAC(2,1) = JAC(2,1) + DNDETA(K1) * Xi(IN(E,K1)) 
JAC(2,2) - JAC(2,2) + DNDETA(K1) * X2(IN(E,K1)) 

CONTINUE 

DETJAC - JAC(1,1) * JAC(2,2) - JAC(1,2) * JAC(2,1) 
DO 100 K - 1, 4 

DO 90 K1 = 1, 4 
CE(K, K1) "CE(K, K1) + W(I) * W(J) * SSE* N(K) * 

N(K1) * DETJAC 
CONTINUE 

CONTINUE 

CONTINUE 

CONTINUE 

RETURN 

END 
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418 Subroutine ASMBKC 

SUBROUTINE CPAR8 (E, CE) 
********************************************************************** 

PURPOSE: 

TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT 

CAPACITANCE MATRIX FOR A THREE-DIMENSIONAL, 
LINEAR QUADRILATERAL ELEMENT 

DEFINITIONS OF VARIABLES: 

CE (I, J) • ELEMENT CAPACITANCE MATRIX 
DETJAC - DETERMINANT OF JACOBIAN MATRIX 

DNDXI(I) • PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO XI AT NODE I 

DNDX (I) -- PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO X AT NODE I 

DNDETA(I) • PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ETA AT NODE I 

DNDY (I) • PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO Y AT NODE I 

DNDZETA(I) - PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ZETA AT NODE I 

DNDZ (I) - PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO Z AT NODE I 

XI (I) • LOCATION OF GAUSS POINT IN XI COORDINATE 
DIRECTION 

ETA(I) - LOCATION OF GAUSS POINT IN ETA COORDINATE 
DIRECTION 

ZETA(I) - LOCATION OF GAUSS POINT IN ZETA COORDINATE 
DIRECTION 

JAC (I, J) • JACOBIAN MATRIX 
E • ELEMENT NUMBER 

SSE • ELEMENT SPECIFIC STORAGE 

N (I) • INTERPOLATION FUNCTION FOR NODE I 
W(I) • WEIGHT FOR GAUSS POINT I 

Xi(IN(E,I) • X COORDINATE FOR NODE I, ELEMENT E 
X2 (IN(E,I) -- Y COORDINATE FOR NODE I, ELEMENT E 
X3(IN(E,I) -- Z COORDINATE FOR NODE I, ELEMENT E 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.10, 
EQUATION 4.66 

********************************************************************** 

$ INCLUDE: ' COMALL ' 

REAL JAC (3, 3) ,CE (MAX3,MAX3) ,DNDX(8) ,DNDY(8) ,DNDZ (8) , 
1 XI (8) , ETA (8) , ZETA (8) , DNDXI (8) , DND•.TA (8) ,DNDZETA (8) ,W(2) , 
2 N(8),SIGNI(8),SIGN2(S),SIGN3(8) 

DATA SIGN1/-1.,1.,1.,-1.,-1.,1.,1.,-1./ 
DATA SIGN2/-1.,-1.,1.,1.,-1.,-1.,1.,1.! 
DATA SIGN3/-1.,-1.,-1.,-1.,1.,1.,1.,1./ 

XI(1) - 1. / SQRT(3.) 
XI(2) - -XI(1) 
ETA(l) - XI(1) 
ETA(2) = XI(2) 
ZETA(l) = XI(1) 
ZETA(2) - XI(2) 
W(1) - 1. 
W(2) - 1. 
SSE - PROP (MATSET (E) , 4) 
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DO 20 K = 1, 8 
DO 10 N1 - 1, 8 

CE (K, N1) - 0. 
10 CONTINUE 
20 CONTINUE 

DO 120 I = 1, 2 
DO 110 J = 1, 2 

DO 100 K' 1, 2 

30 

40 

DO 40 L= 1, 3 
DO 30 N1 - 1, 3 

JAC(L,N1) ' 0. 
CONTINUE 

CONTINUE 

50 

DO 50 N1 - 1, 8 
N(N1) -0.125 * (1.+SIGNI(N1)*XI(I)) * (1.+SIGN2(N1) * 

ETA(J)) * (1. + SIGN3(N1) * ZETA(K)) 
DNDXI (N1) = 0.125 * SIGNi(N1) * (1. + SIGN2 (N1) * 

ETA(J)) * (1. + SIGN3(N1) * ZETA(K)) 
DNDETA(N1) - 0.125 * SIGN2 (N1) * (1. + SIGNI(N1) * 

XI(I)) * (1. + SIGN3(N1) * ZETA(K)) 
DNDZETA(N1) - 0.125 * SIGN3(N1) * (1. + SIGNi(N1) * 

XI(I)) * (1. + SIGN2(N1) * ETA(J)) 
CONTINUE 

60 

DO 60 N5 = 1, 8 
JAC(1,1) = JAC(1,1) + DNDXI(MS) * XI(IN(E,M5)) 
JAC(1,2) ' JAC(1,2) + DNDXI(M5) * X2(IN(E,M5)) 
JAC(1,3) - JAC(1,3) + DNDXI(M5) * X3(IN(E,M5)) 
JAC(2,1) = JAC(2,1) + DNDETA(M5) * Xi(IN(E,MS)) 
JAC(2,2) = JAC(2,2) + DNDETA(MS) * X2(IN(E,M5)) 
JAC(2,3) = JAC(2,3) + DNDETA(M5) * X3(IN(E,M5)) 
JAC(3,1) - JAC(3,1) + DNDZETA(MS) * XI(IN(E,MS)) 
JAC(3,2) = JAC(3,2) + DNDZETA(M5) * X2(IN(E,M5)) 
JAC(3,3) ' JAC'(3,3) + DNDZETA(M5) * X3(IN(E,M5)) 

CONTINUE 

DETJAC - JAC(1,1) * (JAC(2,2) * JAC(3,3) - JAC(3,2) * 
JAC(2,3))- JAC(1,2) * (JAC(2,1) * JAC(3,3) - 
JAC(3,1) * JAC(2,3))- JAC(1,3) * (JAC(2,1) * 
JAC(3,2) - JAC(3,1) * JAC(2,2)) 

DO 90 L=I, 8 
DO 80 M5 - 1, 8 
CE(L,M5) ' CE(L, M5) + W(I) * W(J) * W(K) * SSE * 

N(L) * N(MS) * DETJAC 

80 CONTINUE 

90 CONTINUE 

100 CONTINUE 

110 CONTINUE 
120 CONTINUE 

RETURN 

END 
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Chapter 18 

SUBROUTINE RHS 

18.1 PURPOSE 

Subroutine RHS assembles the "right-hand-side" vector, for the transient, 
groundwater flow equation 

([C] - (1 - o)) At [K-J) {h }t + At ((1 - e) {F}, + o) {F}t+a 0 (18.1) 

and for the solute transport equation 

([A] - (1 - r•) At [D]) {C} t + At ((1- (18.2) 

where [C] is the gobal capacitance matrix, co is the relaxation factor, At is the timestep 
interval, ['K'] is the global conductance matrix, {h } t are the heads at time t, {F} t and 
{F}t+a t are specifies rates of groundwater flow (or solute flux) at times t and t+At, [A] is 
the global adsorption matrix, [D] is the gobal advection dispersion matrix, and { C}t and 
{ C} t+at are the solute concentrations at times t and t+At. RHS performs the matrix 
multiplications and additions and modif3rs the resulting vector for specified values of head 
or solute concentration 

18.2 INPUT 

None 

18.3 OUTPUT 

None 

18.4 DEFINITIONS OF VARIABLES 

DELTAT(1) = Size of time step I 

FLUX(l) = Specified value of groundwater flow or solute flux at node I 

GT(I) = Value of time function at time t (see Chapter 16) 

ICH(I) = 1 if the value of the field variable is specified at node I 
= 0 otherwise 

BI(I) 

NDOF 

= Modified global matxix (equation 18.1 or 18.2) in vector storage 

= Number of nodes where the value of the field variable is unknown 

420 
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Chapte• 18 421 

NUMNOD = Number of nodes 

OMEGA = Relaxation factor (co) 

OMOMEGA = 1 -co 

18.5 USAGE 

Equation 18.1 or 18.2 is evaluated for each time step. The global matrices [C], 
['K], [A] and [D] are assembled in subroutines ASMBKC (Chapter 17) and ASMBAD 
(Chapter 19). 

18.6 SOURCE CODE LISTING 

SUBROUTINE RHS 

********************************************************************** 
c 
c 18.1 
c 

c 

c 

c 

c 18.2 
c 

c 

c 18.3 

c 

c 

c 18.4 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 18.5 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

PURPOSE: 
SUBROUTINE RHS ASSEMBLES THE RIGHT-HAND-SIDE VECTOR 
FOR TRANSIENT GROUNDWATER FLOW AND SOLUTE TRANSPORT 
PROBLEMS. 

INPUT: 

NONE 

OUTPUT: 

NONE 

DEFINITIONS OF VARIABLES: 

DELTAT(I) = SIZE OF TIME STEP I 
FLUX(I) = SPECIFIED VALUE OF GROUNDWATER FLOW OR 

SOLUTE FLUX AT NODE I 

GT(I) • VALUE OF TIME FUNCITON AT TIME I 
ICH(I) • I IF THE VALUE OF THE FIELD VARIABLE IS 

SPECIFIED AT NODE I 

• 0 OTHERWISE 

Bi(IJ) • MODIFIED GLOBAL MATRIX IN VECTOR STORAGE 
NDOF • NUMBER OF NODES WHERE'THE VALUE OF THE 

FIELD VARIABLE IS UNKNOWN (NAMED FOR 
NUMBER OF DEGREES OF FREEDOM) 

NUMNOD • NUMBER OF NODES 

OMEGA • RELAXATION FACTOR 
OMOMEGA - 1 - OMEGA 

USAGE: 

FOR EACH TIME STEP, THE RIGHT-HAND-SIDE VECTOR IS 
COMPUTED USING THE VALUES OF HEAD OR SOLUTE 

CONCENTRATION FOR THE PREVIOUS TIME STEP, AND THE 
MODIFIED COMBINED CONDUCTION AND CAPACITANCE MATRIX, 
RELAXATION FACTOR, AND TIME STEP INTERVAL FOR THAT 
TIME STEP 

SUBROUTINES CALLED: 

LOC 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 18. 

********************************************************************** 
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422 Subroutine RH$ 

INCLUDE: • COMALL • 

IF (T .GT. TIME(IGT)) IGT = IGT + 1 
T • T + DELTAT(IDT) 

IF (T .GT. TIME(IGTDT)) IGTDT = IGTDT + 1 
I = 0 

DO 10 J • 1, NUMNOD 
IF (ICH(J) .EQ. 0) THEN 

I = I + 1 

B(I) = FC(I) + DELTAT (IDT) * (OMOMEGA * GT(IGT) * FLUX(J) 
1 + OMEGA * GT(IGTDT) * FLUX(J)) 

ENDIF 

10 CONTINUE 
J1 = 1 

J2 = S BW 

DO 60 I = 1, NDOF 
J=0 

DO 20 K = 1, NUMNOD 
IF (ICH(K) .EQ. 0) THEN 

J= J+ 1 

IF (J .EQ. J1) GOTO 30 
ENDIF 

20 C ONT I NUE 

30 K = K- 1 

DO 50 J = J1, J2 
40 K =K + 1 

IF (ICH(K) .NE. 0) GOTO 40 
CALL LOC ( I, J, IJ, NDOF, SBW, SYMM) 
B(I) -- B(I) + BI(IJ) * X(K) 

50 CONTINUE 

IF (I .GE. SBW) J1 = J1 + 1 
IF (J2 .LT. NDOF) J2 = J2 + 1 

60 CONTINUE 
RETURN 

END 
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Chapter 19 

SUBROUTINE ASMBAD 

19.1 PURPOSE 

Subroutine ASMBAD assembles the combined global sorption and advection- 
dispersion matrix [M] (equation 5.48a) and the global specified flux matrix {F}. The 
global matrices are modified to account for specified values of solute concentration (at 
Dirichlet nodes) and for specified rates of solute flux (at Neumann nodes). [M] is 
assembled and modified in vector storage. ASMBAD also computes the semi-bandwidth 
and number of degrees of freedom for [MI. 

19.2 INPUT 

None 

19.3 OUTPUT 

The semi-bandwidth and number of degrees of freedom for the modified, combined 
global conductance and capacitance matrix are written to the user-defined file assigned to 
unit "OUTF". 

19.4 DEFINITIONS OF VARIABLES 

AE(I,J) = Sorption matrix for element e in full matrix storage. 

DE(I,J) = Advection-dispersion matrix for element e in full matrix storage. 

ELEMTYP(E) = Element type for element E (see Table 9.1 for a list of element 
types). 

F(I) 

FLUX(•) 

X(•) 

IJSIZE 

LCH(I) 

= Global solute flux matrix. 

= Specified rate of solute flux at node I. 

= Value of solute concentration at node I. 

if the value of solute concentration is specified at node I, 
otherwise. 

= Length of array [M] in vector storage. 

I 

= •ICH(k). The arrays ICH and LCH are used to modify the global 
k = 1 system of equations for specified values of the field variable. 

423 
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424 Subroutine ASMBAD 

M(I,J) = Modified, combined global sorption and advection-dispersion matrix 
in vector storage. 

: ([A] + o• At[D]) 

NDOF = Number of nodes where the value of solute concentration is 
unknown. 

NODETBL(I) -- Number of nodes in element type I. 

NUMELM = Number of elements in mesh. 

SBW = Semi-bandwidth of modified, combined global sorption and 
advection-dispersion matrix. 

USAGE 

Subroutine ASMBAD assembles the combined global sorption and advection- 
dispersion ma•ix [MI 

[M] = ([A] + to At [D]) 19.1 

and the specified solute flux matrix {F}. [M] and {F} are modified to account for specified 
values of solute concentration during the assembly process, using the procedures in 
Chapter 4. The modified, global specified flux matrix is stored in the array B. Further 
modifications to B are made in subroutine RI-IS (see Chapter 18). 

Table 19.1 Subroutines used to compute element advection-dispersion matrices (DBAR2, 
DBAR3, etc.) and element sorption matrices (ABAR2, ABAR3, etc.) in ASMBAD. 

, .. 

Element Type Description Subroutine Names DIM 
[O(e) l [A(e)] 

1 Linear bar DBAR2 , ABAR2 1 
2 Quadratic bar DBAR3* , ABAR3* 1 
3 Cubic bar DBAR4* , ABAR4* 1 
4 Linear triangle DTRI3 , ATRI3 2 
5 ' Linear rectangle DREC4 , AREC4 2 
6 Linear quadrilateral DQUA4 , AQUA4 2 
7 Quadratic quadrilateral DQUA8* , AQUA8* 2 
8 Cubic quadrilateral DQUA12*, AQUA12* 2 
9 Linear parallelepiped DPAR8 , APAR8 3 
10 Quadratic parallelepiped DPAR20* , APAR20* 3 
11 Cubic parallelepiped DPAR32* , APAR32* 3 
12 Linear tdangle (axisymmetric) DTRI3A* , ATRI3A* 4 
13 Linear rectangle (axisymmetric) DREC4A*, AREC4A* 4 

*Source code listing not provided for these subroutines. 
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The number of degrees of freedom, NDOF, (number of unknown values of solute 
concentration) and semi-bandwith, SBW, are computed the same way as in ASMBK(] 
(Chapter 17). 

The element sorption and advection - dispersion matrices are computed in two sets of 
subroutines (Table 19.1). The first set of subroutines begins with the letter "A" (for the 
element sorption matrix [A(e)] and the second set begins with the letter "D"(for the element 
advection-dispersion matrix [D(e)]). Additional letters and numbers in the subroutine 
names identify the element type and number of nodes in elements of that type. For 
example, subroutine ATRI3 computes the element sorption matrix for two-dimensional, 
linear triangle elements and subroutine DPAR8 computes the element advection-dispersion 
matrix for three-dimensional, linear parallelepiped elements. 

The source code listing for each subroutine gives the figare that shows the interpolation 
functions and the equations used to compute [A] and [D] for that element type. Many of 
the important FORTRAN variable names and their symbols are in Table 12.2. Additional 
names and symbols for the subroutines in Table 19.1 are shown below 

FOR'IRAN Variable Definition Symbol(s) in Text 

ALE Longitudinal dispersivity for element 

ATE Transverse dispersivity for element E •Z(T e) 

KDE Solute distribution coefficient for element E Kat,) 

LAMBAD Solute decay coefficient 

NE Porosity for element E n (e) 

RHOBE bulk density for element E p(•e) 

VXEP 

VYEP 

Pore water velocity in x coordinate direction 

Pore water velocity in y coordinate direction 

v? 
n (•) 

n (•) 

The operation of ASMBAD is very similar to ASMBKC and needs no special 
explanation. Remember that the global advection-dispersion matfix is nonsymmetric so the 
assembly and modification process is somewhat different (see Chapter 5). 
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426 Subroutine ASMBAD 

19.6 SOURCE CODE LISTING 

SUBROUTINE ASMBAD 

********************************************************************** 

c 

C 19.1 
C 

c 

C 

c 

C 

C 

c 19.2 

C 

C 

C 19.3 

c 

C 

C 

c 

c 

c 19.4 

c 

c 

C 

C 

c 

C 

C 

c 

C 

c 

c 

C 

C 

c 

C 

C 

c 

C 

C 

c 

C 

C 

c 

C 

c 

C 

C 

c 

C 

C 

c 19.5 

C 

C 

C 

C 

c 

c 

C 

C 

PURPOSE: 

TO ASSEMBLE THE COMBINED GLOBAL SORPTION AND 
ADVECTION-DISPERSION MATRIX AND THE GLOBAL SPECIFIED 

SOLUTE FLUX MATRIX FOR THE MESH AND TO MODIFY THE 

SYSTEM OF EQUATIONS FOR SPECIFIED CONCENTRATION AND 
SOLUTE FLUX BOUNDARY CONDITIONS 

INPUT: 

NONE 

OUTPUT: 

THE SEMI-BANDWIDTH AND NUMBER OF DEGREES OF FREEDOM 

FOR THE MODIFIED, COMBINED GLOBAL SORPTION AND 
ADVECTION-DISPERSIONMATRIX ARE WRITTEN TO THE USER- 

DEFINED FILE ASSIGNED TO UNIT OUTF 

DEFINITIONS OF VARIABLES: 

AE(I,J) - SORPTION MATRIX FOR ELEMENT E IN FULL 

B(I) = 

DE (I,J) = 

E LEMT YP (E) = 

FLUX(I) 

ICH (I) = 

IJSIZE = 

LCH (I) • 

M(IJ) = 

NDOF = 

NODETBL (ELEMTYP (E)) = 
NUMELM = 

SBW = 

X(I) = 

MATRIX STORAGE 

GLOBAL SPECIFIED SOLUTE FLUX MATRIX 

ADVECTION-DISPERSION MATRIX FOR ELEMENT 

E IN FULL MATRIX STORAGE 

ELEMENT NUMBER 

ELEMENT TYPE FOR ELEMENT E (SEE TABLE 
9.1 FOR A LIST OF ELEMENT TYPES) 
SPECIFIED VALUE OF SOLUTE FLUX 

AT NODE I 

I IF THE VALUE OF SOLUTE CONCENTRATION 

IS SPECIFIED FOR NODE I, 
0 OTHERWISE 

LENGTH OF ARRAY ADGLOBAL 

ICH(I) + ICH(I-1) + ICH(I-2) + ... 
THE ARRAYS ICH AND LCH ARE USED TO 
MODIFY THE GLOBAL MATRIX 

MODIFIED, COMBINED GLOBAL SORPTION AND 
ADVECTION-DISPERSIONMATRIX IN VECTOR 
STORAGE 

NUMBER OF NODES WHERE THE VALUE OF 
THE FIELD VARIABLE IS UNKNOWN 

NUMBER OF NODES IN ELEMENT TYPE E 

NUMBER OF ELEMENTS IN MESH 

SEMI-BANDWIDTH OF MODIFIED, COMBINED 
GLOBAL SORPTION AND ADVECTION- 
DISPERSION MATRIX 

VALUE OF SOLUTE CONCENTRATION 
AT NODE I 

USAGE: 

THE SEMI-BANDWIDTH OF THE COMBINED GLOBAL SORPTION AND 
ADVECTION-DISPERSION MATRIX IS COMPUTED FIRST. THEN THE 
ENTRIES OF THE ELEMENT SORPTION AND ADVECTION-DISPERSION 

MATRICES ARE COMPUTED IN A SET OF SUBROUTINES, TWO 
SUBROUTINES FOR EACH ELEMENT TYPE. THE COMBINED GLOBAL 
SORPTION AND ADVECTION-DISPERSION MATRIX FOR THE MESH IS 
ASSEMBLED BY ADDING THE CORRESPONDING ENTRIES OF THE ELEMENT 
SORPTION AND ADVECTION-DISPERSION MATRICES TO THE GLOBAL 
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MATRIX. DURING THE ASSEMBLY PROCESS THE GLOBAL MATRIX IS 

MODIFIED FOR SPECIFIED VALUES OF SOLUTE CONCENTRATION AND 
SOLUTE FLUX ARE ADDED TO THE GLOBAL SOLUTE FLUX MATRIX. 

SUBROUTINES CALLED: 

ABAR2 , ABAR3, ABAR4, ATRI3, AREC4, AQUA4, AQUA8 , AQUA12 , APAR8 , 
APAR20, ABAR32, ATRI 3A, AREC4A 
LOC (LISTED WITH SUBROUTINE ASMBK IN CHAPTER 12) 
DBAR2 , DBAR3, DBAR4 , DTRI3, DREC4, DQUA4 , DQUA8 , DQUA12 , DPAR8 , 
DPAR20, DBAR32, DTRI3A, DREC4A 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT M•THOD, CHAPTER 19. 

********************************************************************** 
$ INCLUDE: ' COMALL ' 

REAL AE (MAX3, MAX3 ), DE (MAX3, MAX3 ) 
INTEGER NODETBL ( 13 ) 
DATA NODETBL/2,3,4,3, 4, 4,8,12,8,20,32,3, 4/ 

10 

20 

30 

40 

5O 

C 

60 

COMPUTE THE SEMI-BANDWIDTH 

SBW • 1 

DO 30 E - 1, NUMELM 
DO 20 I • 1, NODETBL(ELEMTYP(E) ) 

KI - IN(E, I) 
IF (ICH(KI) .EQ. 0 .AND. I .LT. NODETBL(ELEMTYP (E)) ) THEN 

II • KI - LCH(KI) 
DO 10 J • I + 1, NODETBL(ELEMTYP(E)) 

KJ - IN(E,J) 
IF (ICH(KJ) .EQ. 0) THEN 

JJ -- ABS(KJ - LCH(KJ) - II) + 1 
IF (JJ .GT. SBW) SBW • JJ 

ENDIF 

CONTINUE 

ENDIF 

CONTINUE 

CONTINUE 

WRITE (OUTF, 40) NDOF, SBW 
FORMAT (//' NUMBER OF DEGREES OF FREEDOM IN MODIFIED, ' / 

t GLOBAL COMBINED SORPTION AND ADVECTION-DISPERSION', 
' MATRIX -•,I5///' SEMI-BANDWIDTH OF MODIFIED, •/ 
' GLOBAL COMBINED SORPTION AND ADVECTION-DISPERSION', 
' MATRIX -', I5) 

INITIALIZE ENTRIES OF GLOBAL CONDUCTANCE MATRIX TO ZERO 

IJSIZE -- NDOF * NDOF - (NDOF - SBW) * (1 + NDOF - SBW) 
DO 50 I = 1, IJSIZE 

M(I) - 0.0 
Bi(I) -- 0.0 

CONTINUE 

INITIALIZE ENTRIES OF THE GLOBAL SOLUTE FLUX MATRIX TO ZERO 

DO 60 I -NDOF 

B(I) - 0.o 
CONTINUE 

56 
DO 56 I - 1, MAX1 

FC(I) • 0. 

LOOP ON THE NUMBER OF ELEMENTS 

DO 90 E = 1, NUMELM 
COMPUTE THE ELEMENT SORPTION AND ADVECTION-DISPERSION MATRICES 
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428 Subroutine ASMBAD 

C FOR THIS ELEMENT TYPE 

IF (ELEMTYP(E) .EQ. 1) THEN 
C ELEMENT IS A ONE-DIMENSIONAL, LINEAR BAR 

CALL ABAR2 (E, AE) 
CALL DBAR2 (E, DE) 

ELSEIF (ELEMTYP(E) .EQ .2) THEN 
C ELEMENT IS A ONE-DIMENSIONAL, QUADRATIC BAR 

CALL ABAR3 (E, AE) 
CALL DBAR3 (E, DE) 

ELSEIF (ELEMTYP(E) .EQ. 3) THEN 
C ELEMENT IS A ONE-DIMENSIONAL, CUBIC BAR 

CALL ABAR4 (E, AE) 
CALL DBAR4 (E, DE) 

ELSEIF (ELEMTYP(E) .EQ. 4) THEN 
C ELEMENT IS A TWO-DIMENSIONAL, LINEAR TRIANGLE 

CALL ATRI 3 (E, AE ) 
CALL DTRI3 (E,DE) 

ELSEIF (ELEMTYP (E) .EQ. 5) THEN 
C ELEMENT IS A TWO-DIMENSIONAL, LINEAR RECTANGLE 

CALL AREC4 (E, AE) 
CALL DREC4 (E,DE) 

ELSEIF (ELEMTYP(E) .EQ. 6) THEN 
C ELEMENT IS A TWO-DIMENSIONAL, LINEAR QUADRILATERAL 

CALL AQUA4 (E, AE) 
CALL DQUA4 (E, DE) 

ELSEIF (ELEMTYP(E) .EQ. 7) THEN 
C ELEMENT IS A TWO-DIMENSIONAL, QUADRATIC QUADRILATERAL 

CALL AQUA8 (E, AE) 
CALL DQUA8 (E, DE) 

ELSEIF (ELEMTYP(E) .EQ. 8) THEN 
C ELEMENT IS A TWO-DIMENSIONAL, CUBIC QUADRILATERAL 

CALL AQUA12 (E, AE ) 
CALL DQUA12 (E,DE) 

ELSEIF (ELEMTYP(E) .EQ. 9) THEN 
C ELEMENT IS A THREE-DIMENSIONAL, LINEAR PARALLELEPIPED 

CALL APAR8 (E, 
CALL DPAR8 (E, DE) 

ELSEIF (ELEMTYP (E) .EQ. 10) THEN 
C ELEMENT IS A THREE-DIMENSIONAL, QUADRATIC PARALLELEPIPED 

CALL APAR20 (E,AE) 
CALL DPAR20 (E,DE) 

ELSEIF (ELEMTYP(E) .EQ. 11) THEN 
C ELEMENT IS A THREE-DIMENSIONAL, CUBIC PARALLELEPIPED 

CALL APAR32 (E, 
CALL DPAR32 (E, DE) 

ELSEIF (ELEMTYP(E) .EQ. 12) THEN 
C ELEMENT IS A TWO-DIMENSIONAL, LINEAR TRIANGLE (AXISYMMETRIC) 

CALL ATRI3A (E, 
CALL DTRI 3A (E, DE) 

ELSEIF (ELEMTYP (E) .EQ. 13) THEN 
C ELEMENT IS A TWO-DIMENSIONAL, LINEAR RECTANGLE 
(AXISYMMETRIC) 

CALL AREC4A (E, AE) 
CALL DREC4A (E, DE) 

ENDIF 

C ADD THE ELEMENT SORPTION AND ADVECTION-DISPERSION MATRICES 
C FOR THIS ELEMENT TO THE GLOBAL MATRIX 

C AE (I, J) ,DE (I, J) ........... > M(IJ) <=> M (KI, KJ) 
C (FULL MATRIX STORAGE) (VECTOR MATRIX STORAGE) (FULL MATRIX 
STORAGE) 
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70 

8O 
9O 

DO 80 I ' 1, NODETBL(ELEMTYP(E)} 
KI • IN(E,I) 
IF (ICH(KI) .EQ. 0) THEN 

II t KI - LCH(KI) 
DO 70 J • 1, NODETBL(ELEMTYP(E)) 

KJ = IN(E,J) 
IF (ICH(KJ) .NE. 0) THEN 

FC(II) ' FC(II) - DELTAT(IDT) * DE(I,J) * X(KJ) 
ELSE 

JJ - KJ - LCH(KJ) 

CALL LOC (II, JJ, IJ, NDOF, SBW, SYMM) 
M(IJ) ' M(IJ) + AE(I,J) + OMEGA * 

DELTAT(IDT) * DE (I,J) 
Bi(IJ) ' Bi(IJ) + AE(I,J) - OMOMEGA * 

DELTAT(IDT) * DE(I,J) 
ENDIF 

CONTINUE 

ENDIF 

CONTINUE 

CONTINUE 

RETURN 

END 

SUBROUTINE ABAR2 (E, AE) 
********************************************************************** 

PURPOSE: 

TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT 

SORPTION MATRIX FOR A ONE-DIMENSIONAL, LINEAR 
BAR E•EMENT 

DEFINITIONS OF VARIABLES: 

AE (I, J) • ELEMENT SORPTION MATRIX 
E" ELEMENT NUMBER 

KDE • ELEMENT DISTRIBUTION COEFFICIENT 

LE " ELEMENT LENGTH 

RROBE • ELEMENT BULK DENSITY 

REFERENCE S: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.5, 
EQUATION 4.19A. 

********************************************************************** 

$ INCLUDE: ' COMALL ' 

REAL AE (MAX3, MAX3 ) , KDE, LE, NE 
C 

RHOBE - PROP (MATSET (E), 3) 
KDE "PROP (MATSET (E), 4) 
NE • PROP (MATSET (E), 5) 
LE • ABS(Xi(IN(E, 2)) - XI(IN(E,1))) 
AE(1,1) - (1. + RHOBE*KDE/NE) * (LE / 6.) * 2. 
AE(1,2) • AE(1,1) / 2. 
AE(2,1) • AE(1,2) 
AE(2,2) - AE(1,1) 
RETURN 

END 
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SUBROUTINE ATRI3(E,AE) 
********************************************************************** 

PURPOSE: 

TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT SORPTION 

MATRIX FOR A TWO-DIMENSIONAL, LINEAR TRIANGLE ELEMENT 

DEFINITIONS OF VARIABLES: 

AE4 t FOUR TIMES ELEMENT AREA 

AE(I,J) = ELEMENT SORPTION MATRIX 
E t ELEMENT NUMBER 

KDE • ELEMENT DISTRIBUTION COEFFICIENT 

RHOBE • ELEMENT BULK DENSITY 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.6, 
EQUATION 4.25A 

********************************************************************** 

$ INCLUDE: ' COMALL ' 
REAL AE (MAX3 , MAX3 ) , KDE, NE 

RHOBE ' PROP (MATSET (E), 4) 
KDE - PROP (MATSET (E), 5) 
NE - PROP (MATSET (E), 6) 
AE4 - 2. * (XI(IN(E,2)) * X2(IN(E,3)) + Xi(IN(E,1)) * 

X2(IN(E,2)) + X2(IN(E,1)) * XI(IN(E,3)) - 
X2(IN(E,3)) * Xi(IN(E,1)) - Xi(IN(E,$)) * 
X2(IN(E,2)) - XI(IN(E,2)) * X2(IN(E,1))) 

TEM•- AE4 / 12. / 4. * (1. + RHOBE*KDE/NE ) 
AE(1,1) - 2. * TEMP 
AE(1,2) - TEMP 
AE(1,3) - TEMP 
AE(2,1) - TEMP 
AE(2,2) - AE(1,1) 
AE(2,3) - TEMP 
AE(3,1) - TEMP 
AE(3,2) = TEMP 
AE(3,3) - AE(1,1) 
RETURN 

END 

SUBROUTINE AREC4 (E,AE) 
********************************************************************** 

PURPOSE: 

TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT SORPTION 

MATRIX FOR A TWO-DIMENSIONAL, LINEAR TRIANGLE ELEMENT 

DEFINITIONS OF VARIABLES: 

AE(I,J) = ELEMENT SORPTION MATRIX 
E - ELEMENT NUMBER 

KDE = ELEMENT DISTRIBUTION COEFFICIENT 
RHOBE = ELEMENT BULK DENSITY 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 

MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.7, 
EQUATION 4.30A 

********************************************************************** 
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$ INCLUDE: ' COMALL ' 
REAL AE (MAX3, MAX3) , KDE, NE 

C 

RHOBE ' PROP (MATSET (E) , 4) 
KDE • PROP (MATSET (E) , 5) 
NE • PROP (MATSET (E), 6) 
TEMPt (RHOBE*KDE/NE + 1.) * ABS( (X2(IN(E,1))-X2(IN(E,3)))/2. 

I .* (Xi(IN(E,1)) -Xi(IN(E,3)))/2. ) / 9. 
AE(1,1) '-' 4. * TEMP 
AE(1,2) - 2. * TEMP 
AE(1,3) • TEMP 
AE(1,4) • AE(1,2) 
AE(2,1) .- AE(1,2) 
AE(2,2) = AE(1,1) 
AE(2,3) "AE(1,2) 
AE(2,4) • AE(1,3) 
AE(3,1) • AE(1,3) 
AE(3,2) • AE(1,2) 
AE(3,3) = AE(1,1) 
AE(3,4) • AE(1,2) 
AE(4,1) • AE(1,2) 
AE(4,2) = AE(1,3) 
AE(4,3) = AE(1,2) 
AE(4,4) • AE(1,1) 
RETURN 

END 

SUBROUTINE AQUA4 (E, AE) 
********************************************************************** 

PURPOSE: 

TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT SORPTION 
MATRIX FOR A TWO-DIMENSIONAL, LINEAR QUADRILATERAL ELEMENT 

DEFINITIONS OF VARIABLES: 

AE(I,J) = ELEMENT CAPACITANCE MATRIX 
DETJAC = DETERMINANT OF JACOBIAN MATRIX 

DNDXI(I) = PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO XI AT NODE I 

DNDX (I) • PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO X AT NODE I 

DNDETA(I) = PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ETA AT NODE I 

DNDY(I) = PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO Y AT NODE I 

E = ELEMENT NUMBER 

XI (I) • LOCATION OF GAUSS POINT IN XI COORDINATE 
DIRECTION 

ETA(I) '" LOCATION OF GAUSS POINT IN ETA COORDINATE 
DIRECTION 

JAC(I,J) • JACOBIAN MATRIX 
N(I) • INTERPOLATION FUNCTION FOR NODE I 
W(I) - WEIGHT FOR GAUSS POINT I 

KDE • ELEMENT DISTRIBUTION COEFFICIENT 
RHOBE - ELEMENT BULK DENSITY 

Xl (IN(E,I) - X COORDINATE FOR NODE I, ELEMENT E 
X2(IN(E,I) • Y COORDINATE FOR NODE I, ELEMENT E 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.10, 
EQUATION 4.71 

****************************************************************** 
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$ INCLUDE: ' COMALL ' 
REAL JAC (2,2), JACINV (2,2), CE (MAX3,MAX3) ,N(4) ,DNDXI (4), 

I DNDETA (4) ,W (2), XI (2), ETA (2), SIGN1(4), AE (MAX3, MAX3), 
2 SIGNm(4), KDE, NE 

DATA $IGN1/-1.,1.,1.,-1./ 
DATA SIGNm/-1.,-1.,1.,1./ 

XI(1) = 1. / SQRT(3.) 
XI(2) - -XI(1) 
ETA(l) .. XI(1) 
ETA(m) .. XI (2) 
W (1) .. 1. 
W(2)., 1. 
RHOBE = PROP (MATSET (E), 4) 
KDE .. PROP (MATSET (E), 5) 
NE - PROP (MATSET(E), 6) 

20 
3O 

DO 30 I •. 1, 4 
DO 20 J- 1, 4 

AE(I,J) = 0. 
CONTINUE 

CONTINUE 

DO 120 I .. 1, 2 
DO 110 J- 1, 2 

40 

50 

DO 50 K -- 1, 2 
DO 40 K1 - 1, 2 

JAC(K, K1) = 0. 
CONTINUE 

CONTINUE 

6O 

7O 

90 

100 

110 

120 

DO 60 K1 •. 1, 4 
N(K1) • 0.25 * (1.. + SIGNi(K1) * XI(I)) 

I * (1. + SIGNm(K1) * ETA(J)) 
DNDXI(K1) • 0.25 * SIGNi(K1) * (1. + SIGN2(K1) * ETA(J)) 

DNDETA(K1) - 0.25 * $IGNm(K1) * (1. + SIGNi(K1) * XI(I)) 
CONTINUE 

DO 70 K1 •. 1, 4 
JAC(1,1) -- JAC(1,1) + DNDXI(K1) * Xi(IN(E, K1)) 
JAC(1,2) - JAC(1,2) + DNDXI(K1) * xm(IN(E, K1)) 
JAC(2,1) - JAC(2,1) + DNDETA(K1) * Xi(IN(E, K1)) 
JAC(2,2) = JAC(2,2) + DNDETA(K1) * X2(IN(E, K1)) 

CONTINUE 

DETJAC - JAC(1,1) * JAC(2,2) - JAC(1,2) * JAC(2,1) 
DO 100 K - 1, 4 

DO 90 K1 - 1, 4 
AE(K, K1) = AE(K, K1) + W(I) * W(J) * (1. + RHOBE*KDE/NE) 

1 * N(K) * N(K1) * DETJAC 
CONTINUE 

CONTINUE 

CONTINUE 

CONTINUE 

RETURN 

END 
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SUBROUTINE APAR8 (E,AE) 
********************************************************************** 
c 

c PURPOSE: 

C TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT 

C SOR•TION MATRIX FOR A THREE-DIMENSIONAL, ß 
C LINEAR QUADRILATERAL ELEMENT 
C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

DEFINITIONS OF VARIABLES: 

AE (I, J) - ELEMENT CAPACITANCE MATRIX 
DETJAC - DETERMINANT OF JACOBIAN MATRIX 

DNDXI (I) - PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO XI AT NODE I 

DNDX (I) - PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO X AT NODE I 

DNDETA (I) - PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ETA AT NODE I 

DNDY (I) - PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO Y AT NODE I 

DNDZETA(I) - PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ZETA AT NODE I 

DNDZ (I) - PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO Z AT NODE I 

E - ELEMENT NUMBER 

XI (I) - LOCATION OF GAUSS POINT IN XI COORDINATE 
DIRECTION 

ETA(I) - LOCATION OF GAUSS POINT IN ETA COORDINATE 
DIRECTION 

ZETA(I) m LOCATION OF GAUSS POINT IN ZETA COORDINATE 
DIRECTION 

JAC (I, J) - JACOBIAN MATRIX 
N(I) - INTERPOLATION FUNCTION FOR NODE I 
W(I) • WEIGHT FOR GAUSS POINT I 

KDE - ELEMENT DISTRIBUTION COEFFICIENT 

RHOBE • ELEMENT BULK DENSITY 

Xl(IN(E,I) - X COORDINATE FOR NODE I, ELEMENT E 
X2(IN(E,I) - Y COORDINATE FOR NODE I, ELEMENT E 
X3(IN(E,I) - Z COORDINATE FOR NODE I, ELEMENT E 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW. AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.10, 
EQUATION 4.72 

********************************************************************** 

$ INCLUDE: ' COMALL ' 

REAL JAC (3,3), AE (MAX3,MAX3) ,DNDX(8) ,DNDY(8) ,DNDZ (8), 
1 XI(8),ETA(8),ZETA(8),DNDXI(8),DNDETA(8),DNDZETA(S),W(2), 
2 N(8) , SIGN1 (8) , SIGN2 (8) , SIGN3 (8) ,KDE, NE 

DATA SIGN1/-1.,1.,1.,-1.,-1.,1.,1.,-1./ 
DATA SIGN2/-1.,-1.,1.,1.,-1.,-1.,1.,1./ 
DATA SIGN3/-1.,-1.,-1.,-1.,1.,1.,1.,1./ 

XI(1) = 1. / SQRT(3.) 
XI(2) = -XI(1) 
ETA(l) = XI(1) 
ETA(2) - XI(2) 
ZETA(l) - XI(1) 
ZETA(2) - XI(2) 
W(1) = 1. 
W(2) = 1. 
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RHOBE - PROP (MATSET (E), 4) 
KDE s PROP (MATSET (E), 5) 
N•. - PROP (MATSET (E), 6) 

DO 20 K- 1, 8 
DO 10 N1 - 1, 8 

AE(K, N1) w 0. 
10 CONTINUE 
20 CONTINUE 

DO 120 I - 1, 2 
DO 110 J w 1, 2 

DO 100 K s 1, 2 

DO 40 L- 1, 3 
DO 30 N1 • 1, 3 

JAC(L, N1) - 0. 
30 CONTINUE 

40 CONTINUE 

DO 50 N1 - 1, 8 

50 

60 

80 
90 

N(N1) • 0.125 * (1.+$IGNi(N1)*XI(I)) * (1.+$IGN2(N1) * 
ETA(J)) * (1. + SIGN3(N1) * ZETA(K)) 

DNDXI(N1) = 0.125 * SIGNi(N1) * (1. + SIGN2(N1) * 
ETA(J)) * (1. + $IGN3(N1) * ZETA(K)) 

DNDETA(N1) = 0.125 * $IGN2(N1) * (1. + SIGNI(N1) * 
XI(I)) * (1. + SIGN3(N1) * ZETA(K)) 

DNDZETA(N1) = 0.125 * SIGN3(N1) * (1. + SIGNi(N1) * 
XI(I)) * (1. + SIGN2(N1) * ETA(J)) 

CONTINUE 

DO 60 M5 - 1, 8 
JAC(1,1) = JAC(1,1) + DNDXI(M5) * XI(IN(E,M5)) 
JAC(1,2) • JAC(1,2) + DNDXI(M5) * X2(IN(E,MS)) 
JAC(1,3) - JAC(1,3) + DNDXI(M5) * X3(IN(E,M5)) 
JAC(2,1) - JAC(2,1) + DNDETA(M5) * XI(IN(E,M5)) 
JAC(2,2) • JAC(2,2) + DNDETA(M5) * X2(IN(E,M5)) 
JAC(2,3) - JAC(2,3) + DNDETA(M5) * X3(IN(E,M5)) 
JAC(3,1) -- JAC(3,1) + DNDZETA(M5) * XI(IN(E,M5)) 
JAC(3,2) = JAC(3,2) + DNDZETA(M5) * X2(IN(E,M5)) 
JAC(3,3) • JAC(3,3) + DNDZETA(MS) * X3(IN(E,M5)) 

CONTINUE 

DETJAC • JAC(1,1) * (JAC(2,2) * JAC(3,3) - JAC(3,2) * 
JAC(2,3)) - JAC(1,2) * (JAC(2,1) * JAC(3,3) - 
JAC(3,1) * JAC(2,3))- JAC(1,3) * (JAC(2,1) * 
JAC(3,2) - JAC(3,1) * JAC(2,2)) 

DO 90 L - 1, 8 
DO 80 M5 -, 1, 8 
AE(L, MS) = AE(L, MS) + W(I) * W(J) * W(K) * 

(1. + RHOBE*KDE/ NE) * N(L) * N(MS) * DETJAC 

CONTINUE 

CONTINUE 

100 CONTINUE 

110 CONTINUE 

120 CONTINUE 
RETURN 

END 
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SUBROUT INE DBAR2 (E, DE) 
********************************************************************** 

PURPOSE: 

TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT 
ADVECTION-DISPERSION MATRIX FOR A ONE-DIMENSIONAL, 
LINEAR BAR ELEMENT 

DEFINITIONS OF VARIABLES: 
ALE • LONGITUDINAL DISPERSIVITY FOR ELEMENT 

DE (I, J) - ELEMENT ADVECTION-DISPERSION MATRIX 
DXE - ELEMENT DISPERSION COEFFICIENT 

E - ELEMENT NUMBER 

KDE • ELEMENT DISTRIBUTION COEFFICIENT 
LAMBDA • SOLUTE DECAY COEFFICIENT 

LE - ELEMENT LENGTH 

NE - ELEMENT POROSITY 

RHOBE - ELEMENT BULK DENSITY 

VXE - APPARENT GROUNDWATER VELOCITY IN 

X COORDINATE DIRECTION 

VXEP • PORE WATER VELOCITY IN X COORDINATE DIRECTION 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.5, 
EQUATION 4.18A, EQUATION AIII.12 

********************************************************************** 

$ INCLUDE: ' COMALL ' 
REAL DE (MAX3, MAX3), KDE, LAMBDA, LE,NE 

C 

ALE • PROP (MATSET (E) , 1) 
LAMBDA • PROP (MATSET (E) , 2) 
RHOBE • PROP (MATSET (E) , 3) 
KDE - PROP (MATSET (E) , 4) 
NE - PROP (MATSET (E) , 5) 
VXE • Vl {E) 
VXEP - VXE / NE 
LE • ABS(XI(IN(E,2)) - XI(IN(E, 1))) 
DXE = ALE * VXEP 

TEMP3 = LAMBDA * (1. + RHOBE * KDE/NE) * (LE / 6.) 
DE(l,1) = DXE / LE - VXEP / 2. + 2. * TEMP3 
DE(l,2) -- -DXE / LE + VXEP / 2. + TEMP3 
DE(2,1) = -DXE / LE - VXEP / 2. + TEMP3 
DE(2,2) - DXE / LE + VXEP / 2. + 2. * TEMP3 
RETURN 

END 

SUBROUTINE DTRI3 (E,DE) 
*********************************************************************** 

PURPOSE: 

TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT 

ADVECTION- DISPERSION MATRIX FOR A TWO-DIMENSIONAL, 
LINEAR TRIANGLE ELEMENT 

DEFINITIONS OF VARIABLES: 

AE4 - FOUR TIMES ELEMENT AREA 

ALE - LONGITUDINAL DISPERSIVITY FOR ELEMENT 
ATE - TRANSVERSE DISPERSIVITY FOR ELEMENT 
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DE (I, J) - ELEMENT ADVECTION-DISPERSION MATRIX 
DXXE (ETC.) • ELEMENT DISPERSION COEFFCIENTS 

E • ELEMENT NUMBER 

KDE w ELEMENT DISTRIBUTION COEFFCIENT 

LAMBDA - SOLUTE DECAY COEFFICIENT 

NE • ELEMENT POROSITY 

RHOBE • ELEMENT BULK DENSITY 
VXE w APPARENT GROUNDWATER VELOCITY IN 

X COORDINATE DIRECTION 

VYE • APPARENT GROUNDWATER VELOCITY IN 

Y COORDINATE DIRECTION 

VXEP • PORE WATER VELOCITY IN X COORDINATE DIRECTION 

VYEP • PORE WATER VELOCITY IN Y COORDINATE DIRECTION 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.6, 
EQUATION 4.24A, EQUATION AIII.11 

********************************************************************** 

$INCLUDE: 'COMALL' 
REAL DE (MAX3,MAX3), LAMBDA, •E, NE, BE (3) ,CE (3) 

RHOBE 

KDE 

NE 

VXE 

VYE 

VXEP 

VYEP 

D•XE 
DYYE 

DXYE 

DYXE 

BE(1) 
BE(2) 
BE(3) 
CE(1) 
CE(2) 
CE (3) 
AE4 

1 

2 

ALE ' PROP (MATSET (E) , 1) 
ATE ' PROP (MATSET (E), 2) 
LAMBDA - PROP (MATSET (E), 3) 

- PROP (MATSET (E), 4) 
' PROP (MATSET (E), 5) 
= PROP (MATSET (E), 6) 
- V1 (E) 
= v2 {E) 
= VXE / NE 
-VYE / NE 
- (ATE * VYEP**2 + ALE * VXEP**2) / SQRT(VYEP**2+VXEP**2) 
- (ATE * VXEP**2 + ALE * VYEP**2) / SQRT(VYEP**2+VXEP**2) 
- ((ALE - ATE) * VXEP * VYEP) / SQRT(VYEP**2 + VXEP**2) 
- DXYE 

- X2(IN(E,2)) - X2(IN(E,3)) 
- X2(IN(E,3)} - X2(IN(E,1)) 
- X2(IN(E, 1)) - X2(IN(E,2)) 
= Xi(IN(E, 3)) - Xi(IN(E,2)) 
= XI(IN(E, 1)) - Xi(IN(E,3)) 
= Xl(IN(E,2)) - Xi(IN(E,1)) 
- 2. * (XI(IN(E, 2)) * X2(IN(E,3)) + Xl(IN(E, 1)) * 

X2(IN(E,2)) + X2(IN(E, 1)) * Xl(IN(E,3)) - 
X2(IN(E,3)) * XI(IN(E, 1)) - Xi(IN(E,3)) * 

X2(IN(E,2)) - Xl(IN(E,2)) * X2(IN(E,1))) 
-- AE4 / 4. 

TEMP = AE / 12. * LAMBDA * (1. + RHOBE * KDE/NE ) 

10 

20 

DO 20 I - 1, 3 
DO 10 J- 1, 3 

DE(I,J) - (DXXE*BE (I) *BE (J) + DYYE*CE(I)*CE(J) + 
I DXYE*BE (I) *CE (J) + DYXE*CE (I) *BE (J)) / AE4 
2 + VXEP/6.*BE (J) + VYEP/6.*CE (J) + TEMP 

IF (I .EQ. J) DE(I,J)- DE(I,J) + TEMP 
CONTINUE 

CONTINUE 

RETURN 

END 
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SUBROUTINE DREC4 (E,DE) 
*********************************************************************** 

PURPOSE: 

TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT 

ADVECTION-DISPERSIONMATRIX FOR A TWO-DIMENSIONAL, 
LINEAR TRIANGLE ELEMENT 

DEFINITIONS OF VARIABLES: 

ALE - LONGITUDINAL DISPERSIVITY FOR ELEMENT 
ATE - TRANSVERSE DISPERSIVITY FOR ELEMENT 

DE(I,J) - ELEMENT ADVECTION-DISPERSIONMATRIX 
DXXE (ETC.) - ELF/4ENT DISPERSION COEFFCIENTS 

E - ELEMENT NUMBER 

KDE I ELEMENT DISTRIBUTION COEFFCIENT 

LAMBDA I SOLUTE DECAY COEFFICIENT 

NE • ELEMENT POROSITY 

RHOBE • ELEMENT BULK DENSITY 

VXE • APPARENT GROUNDWATER VELOCITY IN 

X COORDINATE DIRECTION 

VYE • APPARENT GROUNDWATER VELOCITY IN 
Y COORDINATE DIRECTION 

VXEP • PORE WATER VELOCITY IN X COORDINATE DIRECTION 
VYEP = PORE WATER VELOCITY IN Y COORDINATE DIRECTION 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.7, 
EQUATION 4.29a, EQUATION AIII.11 

********************************************************************** 

$ INCLUDE: • COMALL • 

REAL DE (MAX3,MAX3) , LAMBDA, KDE, NE 
C 

ALE • PROP (MATSET (E), 1) 
ATE = PROP (MATSET (E), 2) 
LAMBDA • PROP (MATSET (E), 3) 
RHOBE • PROP (MATSET (E), 4) 
KDE • PROP (MATSET (E), 5) 
NE • PROP (MATSET (E), 6) 
VXE -- Vl (E) 
VYE -- V2 (E) 
VXEP I VXE / NE 
VYEP • VY• / NE 

DXXE • (ATE * VYEP**2 + ALE * VXEP**2) / SQRT(VYEP**2 + VXEP**2) 
DYYE = (ATE * VXEP**2 + ALE * VYEP**2) / SQRT(VYEP**2 + VXEP**2) 
DXYE • ((ALE - ATE) * VXEP * VYEP) / SQRT(VYEP**2 + VXEP**2) 
DYXE • DXYE 

AE • ABS(X2(IN(E,1)) - X2(IN(E,3))) / 2. 
BE • ABS(XI(IN(E, 1)) - XI(IN(E, 3))) / 2. 
TEMP1 • (DXXE * AE) / (6. * BE) 
TEMP2 • (D'fYE * BE) / (6. * AE) 
TEMP3 • DXYE / 4. 
TEMP4 • DYXE / 4. 
TEMP5 • VXEP * AE / 6. 
TEMP6 • VYEP * BE / 6. 
TEMP7 • LAMBDA * (1. + RHOBE * KDE/NE) * (AE * BE) / 9. 
DE (1, 1) • 2. *TEMPI+2. *TEMP2+TEMP3+TEMP 4-2. *TEMPS-2. *TEMP6+4. *TEMP7 
DE (1,2) '-2. *TEMP 1+ TEMP2 +TEMP3-TEMP 4+2. *TEMPS- TEMP 6+2. *TEMP7 
DE (1, 3) - - TEMP1- TEMP2-TEMP3-TEMP4+ TEMPS+ TEMP6+ TEMP7 
DE (1, 4) • TEMP1-2. *TEMP2-TEMP3+TEMP4- TEMP5+2. *TEMP6+2. *TEMP7 
DE (2, 1) '-2. *TEMPi+ TEMP2-TEMP3+TEMP 4-2. *TEMPS- TEMP6+2. *TEMP7 
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DE (2,2) - 2. *TEMP 1+2. *TEMP2-TEMP3-TEMP4+2. *TEMPS-2. *TEMP 6+4. *TEMP7 
DE (2, 3) - TEMP1-2. *TEMP2+TEMP3-TEMP4+ TEMPS+2. *TEMP6+2. *TEMP7 
DE (2, 4) - - TEMP1- TEMP2+TEMP3+TEMP4- TEMPS+ TEMP6+ TEMP7 
DE (3, 1) - - TEMP1- TEMP2-TEMP3-TEMP4- TEMPS- TEMP6+ TEMP7 
DE (3,2) - TEMP1-2. *TEMP2-TEMP3+TEMP4+ TEMP5-2. *TEMP6+2. *TEMP7 
DE (3, 3) "2. *TEMPI+2. *TEMP2+TEMP3+TEMP4+2. *TEMP5+2. *TEMP6+4. *TEMP7 
DE (3, 4) "-2. *TEMPi+ TEMP2+TEMP3-TEMP4-2. *TEMP5+ TEMP 6+2. *TEMP7 
DE (4, 1) - TEMP1-2. *TEMP2+TEMP3-TEMP4- TEMPS-2. *TEMP 6+2. *TEMP7 
DE(4,2) - - TEMP1- TEMP2+TEMP3+TEMP4+ TEMPS- TEMP6+ TEMP7 
DE (4,3) "-2. *TEMPI+ TEMP2-TEMP3+TEMP 4+2. *TEMP 5+ TEMP 6+2. *TEMP7 
DE (4, 4) "2. *TEMPI+2. *TEMP2-TEMP3-TEMP4-2. *TEMP5+2. *TEMP6+4. *TEMP7 
RETURN 

END 

SUBROUTINE DQUA4 (E, DE) 
********************************************************************** 

PURPOSE: 

TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT 

ADVECTION-DISPERSION MATRIX FOR A TWO-DIMENSIONAL, 
LINEAR QUADRILATERAL ELEMENT 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

DEFINITIONS OF VARIABLES: 

ALE • LONGITUDINAL DISPERSIVITY FOR ELEMENT 

ATE - TRANSVERSE DISPERSIVITY FOR ELEMENT 

DE(I, J) = ELEMENT ADVECTION-DISPERSiON MATRIX 
DETJAC • DETERMINANT OF JACOBIAN MATRIX 

DNDXI(I) -- PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO XI AT NODE I 

DNDX(I) • PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO X AT NODE I 

DNDETA(I) i PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO ETA AT NODE I 

DNDY (I) • PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT TO Y AT NODE I 

E • ELEMENT NUMBER 

XI (I) - LOCATION OF GAUSS POINT IN XI COORDINATE 
DIRECTION 

ETA(I) • LOCATION OF GAUSS POINT IN ETA COORDINATE 
DIRECTION 

JAC ( I, J) • JACOBIAN MATRIX 
JACINV ( I, J) • INVERSE OF JACOBIAN MATRIX 

N(I) • INTERPOLATION FUNCTION FOR NODE I 

W(I) • WEIGHT FOR GAUSS POINT I 
KDE = ELEMENT DISTRIBUTION COEFFICIENT 

LAMBDA • SOLUTE DECAY COEFFICIENT 

NE i ELEMENT POROSITY 

RHOBE • ELEMENT BULK DENSITY 

VXE • APPARENT GROUNDWATER VELOCITY IN X 

COORDINATE DIRECTION 

VYE - APPARENT GROUNDWATER VELOCITY IN Y 

COORDINATE DIRECTION 

VXEP - PORE WATER VELOCITY IN X COORDINATE DIRECTION 

VYEP i PORE WATER VELOCITY IN Y COORDINATE DIRECTION 

X1 (IN(E, I) = X COORDINATE FOR NODE I, ELEMENT E 
X2(IN(E,I) - Y COORDINATE FOR NODE I, ELEMENT E 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.10, 
EQUATION 4.68 

****************************************************************** 

Water Resources Monograph
Groundwater Modeling by 
the Finite Element Method Vol. 13

Copyright American Geophysical Union



Chapter 19 439 

$ INCLUDE: ' COMALL ' 
REAL JAC (2,2) , JACINV(2,2) ,DE (MAX3,MAX3) ,N(4) ,DNDXI (4) , 

I DNDX (4) , DNDETA(4) , DNDY (4) , W (2) , XI (2) , ETA(2) , SIGN1 (4) , 
2 S IGN2 ( 4 ), NE, KDE, LAMBDA 

DATA $IGN1/-1.,1.,1.,-1./ 
DATA $IGN2/-1.,-1.,1.,1./ 

XI(1) = 1. / SQRT(3.) 
XI(2) • -XI(1) 
ETA(l) -- XI(1) 
ETA(2) • XI(2) 
W(1) • 1. 
W(2) • 1. 
ALE • PROP (M/%.TSET (E), 1) 
ATE • PROP (MATSET (E), 2) 
LAMBDA• PROP (MATSET (E), 3) 
RHOBE • PROP (MATSET (E), 4) 
KDE • PROP (MATSET (E), 5) 
NE • PROP (MATSET (E), 6) 
VXE • V1 (E) 
VYE -- V2 
VXEP • VXE / NE 
VYEP • VYE / NE 
DXXE • (ATE * VYEP**2 + ALE * VXEP**2) / SQRT(VYEP**2 + VXEP**2) 
DYYE • (ATE * VXEP**2 + ALE * VYEP**2) / SQRT(VYEP**2 + VXEP**2) 
DXYE • ((ALE - ATE) * VXEP * VYEP) / SQRT(VYEP**2 + VXEP**2) 
DYXE = DXYE 

DO 30 I = 1, 4 
DO 20 J • 1, 4 

DE(I,J) = 0. 
20 CONTINUE 

30 CONTINUE 

DO 120 I • 1, 2 
DO 110 J- 1, 2 

40 
50 

DO 50 K - 1, 2 
DO 40 K1 = 1, 2 

JAC(K,K1) = 0. 
CONTINUE 

CONTINUE 

60 

7O 

DO 60 K1 ' 1, 4 
N(K1) = 0.25 * (1. + SIGNI(K1) * XI(I)) 

ß (1. + SiGN2(K1) * ETA(J)) 
DNDXI(K1) - 0.25 * SIGNI(K1) * (1. + SIGN2(K1) * ETA(J)) 

DNDETA(K1) ' 0.25 * SIGN2(K1) * (1. + SIGNI(K1) * XI(I)) 
CONTINUE 

DO 70 K1 ' 1, 4 
JAC(1,1) ' JAC(1,1) + DNDXI(K1) * Xl(IN(E, K1)) 
JAC(1,2) - JAC(1,2) + DNDXI(K1) * X2(IN(E, K1)) 
JAC(2,1) ' JAC(2,1) + DNDETA(K1) * XI(IN(E,K1)) 
JAC(2,2) ' JAC(2',2) + DNDETA(K1) * X2(IN(E,K1)) 

CONTINUE 

DETJAC ' JAC(1,1) * JAC(2,2) - JAC(1,2) * JAC(2,1) 
JACINV(1,1) = JAC(2,2) / DETJAC 
JACINV(1,2) ' -JAC(1,2) / DETJAC 
JACINV(2, 1) ' -JAC(2,1) / DETJAC 
JACINV(2,2) ' JAC(1,1) / DETJAC 
DO 80 K1 ' 1, 4 

DNDX(K1) ' JACINV(1,1) * DNDXI(K1) + JACINV(1,2) * DNDETA(K1) 
DNDY(K1) ' JACINV(2,1) * DNDXI(K1) + JACINV(2,2) * DNDETA(K1) 
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80 CONTINUE 

DO 100 K- 1, 4 
DO 90 K1 = 1, 4 

DE(K, K1) - DE(K, K1) + W(I) * W(J) * 
(DXXE * DNDX(K) * DNDX(K1) 

+ DXYE * DNDX(K) * DNDY(K1) 
+ DYXE * DNDY(K) * DNDX(K1) 
+ DYYE * DNDY(K) * DNDY(K1) 
+ VXEP * N(K) * DNDX(K1) 
+ VYEP * N(K) * DNDY(K1) 
+ LAMBDA * (1. + RHOBE * KDE / NE ) 
ß N(K) * N(K1)) * DETJAC 

90 CONTINUE 

100 CONTINUE 
110 CONTINUE 

120 CONTINUE 
RETURN 

END 

SUBROUTINE DPAR8 (E,DE) 
********************************************************************** 

PURPOSE: 

TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT 

ADVECTION-DISPERSION MATRIX FOR A THREE-DIMENSIONAL, 
LINEAR QUADRILATERAL ELEMENT 

DEFINITIONS OF VARIABLES: 

ALE - LONGITUDINAL DISPERSIVITY FOR ELEMENT 

ATE • 

DE (I, J) = 
DNDXI (I) • 

DNDX (I) - 

DNDETA ( I ) 

DNDY (I) 

DNDZETA ( I ) 

DNDZ (I) 

XI (I) 

ETA(I) 

ZETA (I) 

JAC (I, J) 
DETJAC 

JACINV (I, J) 
N(I) 
W {I) 

KDE 

LAMBDA 

RHOBE 

VXE 

VYE 

TRANSVERSE DISPERSIVITY FOR ELEMENT 

ELEMENT ADVECTION-DISPERSION MATRIX 

PARTIAL DERIVATIVE OF INTERPOLATION 
FUNCTION WITH RESPECT 

PARTIAL DERIVATIVE OF 

FUNCTION WITH RESPECT 

PARTIAL DERIVATIVE OF 

FUNCTION WITH RESPECT 

PARTIAL DERIVATIVE OF 

FUNCTION WITH RESPECT 
PARTIAL DERIVATIVE OF 

FUNCTION WITH RESPECT 

PARTIAL DERIVATIVE OF 
FUNCTION WITH RESPECT 

ELEMENT NUMBER 

TO XI AT NODE I 

INTERPOLATION 

TO X AT NODE I 

INTERPOLATION 

TO ETA AT NODE I 

INTERPOLATION 

TO Y AT NODE I 

INTERPOLATION 

TO ZETA AT NODE I 

INTERPOLATION 

TO Z AT NODE I 

LOCATION OF GAUSS POINT IN XI COORDINATE 
DIRECTION 

LOCATION OF GAUSS POINT IN ETA COORDINATE 

DIRECTION 

LOCATION OF GAUSS POINT IN ZETA COORDINATE 
DIRECTION 

JACOBIANMATRIX 

DETERMINANT OF JACOBIAN MATRIX 

INVERSE OF JACOBIAN MATRIX 

INTERPOLATION FUNCTION FOR NODE I 
WEIGHT FOR GAUSS POINT I 

ELEMENT DISTRIBUTION COEFFICIENT 
SOLUTE DECAY COEFFICIENT 

ELEMENT POROSITY 

ELEMENT BULK DENSITY 

APPARENT GROUNDWATER VELOCITY IN X 
COORDINATE DIRECTION 

APPARENT GROUNDWATER VELOCITY IN Y 
COORDINATE DIRECTION 
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VXEP = PORE WATER VELOCITY IN X COORDINATE DIRECTION 

VYEP - PORE WATER VELOCITY IN Y COORDINATE DIRECTION 

X1 (IN(E,I) -- X COORDINATE FOR NODE I, ELEMENT E 
X2(IN(E,I) - Y COORDINATE FOR NODE I, ELEMENT E 
X3(IN(E,I) - Z COORDINATE FOR NODE I, ELEMENT E 

REFERENCES: 

ISTOK, J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT 
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.10, 

C EQUATION 4.69 . 
********************************************************************** 

$ INCLUDE: ' COMALL ' 

REAL JAC (3, 3), JACINV(3, 3), DE (MAX3,MAX3) ,DNDX(8) ,DNDY(8) ,DNDZ (8), 
1 XI (2), ETA (2) ,ZETA(S), DNDXI (8}, DNDETA (8), DNDZETA (8) ,W(2), 
2 N(S),SIGNI(8),SIGN2(8),SIGN3(8),NE, KDE,LAMBDA 

DATA SIGN1/-1.,l.,1.,-1.,-1.,1.,1.,-1./ 
DATA SIGN2/-1.,-1.,1.,1.,-1.,-1.,1.,1./ 
DATA SIGN3/-1.,-1.,-1.,-1.,1.,1.,1.,1./ 

C 

XI(1) = 1. / SORT(3.) 
XI(2) = -XI(1) 
ETA(l) = XI(1) 
ETA(2) = XI(2) 
ZETA(l) -- XI(1) 
ZETA(2) = XI(2) 
W (1) = 1. 
W(2) -- 1. 

ALE • PROP (MATSET (E), 1) 
ATE = PROP (MATSET (E), 2) 
LAMBDA = PROP (MATSET (E), 3) 
RHOBE = PROP (MATSET (E), 4) 
KDE = PROP (MATSET (E), 5) 
NE = PROP (MATSET (E), 6) 

VXE -- Vl (E) 
VYE - V2 (E) 
VZE -- V3(E) 
VXEP = VXE / NE 
VYEP = VYE / NE 
VZEP • VZE / NE 
VXYZ = SQRT(VXEP**2 + VYEP**2 + VZEP**2) 
DXXE == (ATE * (VYEP**2 + VZEP**2) + ALE * VXEP**2 ) / VXYZ 
DXYE • ((ALE - ATE) * VXEP * VYEP) / VXYZ 
DYXE = DXYE 

DYYE = (ATE * (VXEP**2 + VZEP**2) + ALE * VYEP**2 ) / VXYZ 
DXZE -- ((ALE - ATE) * VXEP * VZEP) / VXYZ 
DZXE - DXZE 

DZZE = (ATE * (VXEP**2 + VYEP**2) + ALE * VZEP**2 ) / VXYZ 
DYZE = ((ALE - ATE) * VYEP * VZEP) / VXYZ 
DZYE = DYZE 

lO 

20 

DO 20 K = 1, 8 
DO 10 N1 = 1, 8 

DE (K, N1) = 0. 
CONTINUE 

CONTINUE 

DO 120 I = 1, 2 
DO 110 J = 1, 2 

DO 100 K = 1, 2 
DO 40 L=i, 3 

DO 30 N1 = 1, 3 
JAC(L, N1) = 0. 
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30 

4O 

1 

50 

60 

1 

7O 

1 

2 

3 
4 

5 

6 

80 

90 

100 
110 
120 

CONTINUE 

CONTINUE 

DO 50 N1 = 1, 8 
N(N1) = 0.125 * (1.+SIGNI(N1)*XI(I)) * (1.+SIGN2(N1) * 

ETA(J)) * (1. + SIGN3(N1) * ZETA(K)) 
DNDXI(N1) • 0.125 * SIGNi(N1) * (1. + SIGN2(N1) * 

ETA(J)) * (1. + SIGN3(N1) * ZETA(K)) 
DNDETA(N1) -0.125 * SIGN2(N1) * (1. + SIGNI(N1) * 

XI(I)) * (1. + SIGN3(N1) * ZETA(K)) 
DNDZETA(N1) • 0.125 * SIGN3(N1) * (1. + SIGNI(N1) * 

XI(I)) * (1. + $IGN2(N1) * ETA(J)) 
CONTINUE 

DO 60 M5 = 1, 8 
JAC(1,1) = JAC(1,1) + DNDXI(M5) * XI(IN(E,M5)) 
JAC(1,2) • JAC(1,2) + DNDXI(MS) * X2(IN(E,M5)) 
JAC(1,3) = JAC(1,3) + DNDXI(M5) * X3(IN(E,M5)) 
JAC(2,1) = JAC(2,1) + DNDETA(M5) * Xi(IN(E,M5)) 
JAC(2,2) • JAC(2,2) + DNDETA(M5) * X2(IN(E, M5)) 
JAC(2,3) • JAC(2,3) + DNDETA(M5) * X3(IN(E,MS)) 
JAC(3,1) = JAC(3,1) + DNDZETA(M5) * XI(IN(E,M5)) 
JAC(3,2) = JAC(3,2) + DNDZETA(M5) * X2(IN(E,M5)) 
JAC(3,3) = JAC(3,3) + DNDZETA(M5) * X3(IN(E,M5)) 

CONTINUE 

DETJAC • JAC(1,1) * (JAC(2,2). * JAC(3,3) 
JAC(2,3))- JAC(1,2) * (JAC(2,1 
JAC(3,1) * JAC(2,3)) - JAC(1,3) 
JAC(3,2) - JAC(3,1) * JAC(2,2)) 

JACINV(1,1) = (JAC(2,2)*JAC(3,3)-JAC(2, 
JAC INV ( 1, 
JAC INV ( 1, 
JAC I NV (2, 
JACINV ( 2, 
JAC INV ( 2, 
JAC INV ( 3, 
JAC INV ( 3, 
JAC INV ( 3, 

2) = (-JAC(2,1)*JAC(3,3)+JAC(2, 
3) • ( JAC(2,1)*JAC(3,2)-.JAC(3, 
1) = (-JAC(1,2)*JAC(3,3)+JAC(1, 
2) • ( JAC(1,1)*JAC(3,3)-JAC(1, 
3) = (-JAC (1, 1) *JAC (3,2) +JAC (1, 
1) • ( JAC(1,2)*JAC(2,3)-JAC(1, 
2) - (-JAC(1,1)*JAC(2,3)+JAC(1, 
3) = ( JAC(1,1)*JAC(2,2)-JAC(1, 

- JAC(3,2) * 
) * JAC(3,3) - 

ß (JAC(2,1) * 

3) *JAC (3,2))/DETJAC 
3) *JAC (3, 1) )/DETJAC 
1) *JAC (2, 2) )/DETJAC 
3) *JAC (3, 2) )/DETJAC 
3) *JAC (3, 1) )/DETJAC 
2 ) * JAC ( 3, 1 ) )/DETJAC 
3) *JAC (2, 2) )/DETJAC 
3) *JAC (2, 1) )/DETJAC 
2 ) * JAC (2, 1) )/DETJAC 

DO 70 M5 = 1, 8 
DNDX(MS) m JACINV(1,1) * DNDXI(M5) + JACINV(1,2) * 

DNDETA(M5) + JACINV(1,3) * DNDZETA(M5) 
DNDY(MS) - JACINV(2,1) * DNDXI(M5) + JACINV(2,2) * 

DNDETA(M5) + JACINV(2,3) * DNDZETA(M5) 
DNDZ(M5) = JACINV(3,1) * DNDXI(M5) + JACINV(3,2) * 

DNDETA(MS) + JACINV(3,3) * DNDZETA(MS) 
CONTINUE 

DO 90 L" 1, 8 
DO 80 M5" 1, 8 
DE(L, M5) "DE(L, M5)+ W(I) * W(J) * W(K) * ( 
DNDX(L) * (DXXE*DNDX(MS) + DXYE*DNDY(M5) + DXZE*DNDZ (MS)) + 
DNDY (L) * (DYXE*DNDX (M5) + DYYE*DNDY (M5) + DYZE*DNDZ (MS)) + 
DNDZ (L) * (DZXE*DNDX(MS) + DZYE*DNDY(MS) + DZZE*DNDZ (MS)) 
+ N(L) * (VXEP*DNDX(MS) + VYEP*DNDY(MS) + VZEP*DNDZ (M5)) 

+ LAMBDA * (1. + RHOBE*KDE/NE ) * N(L) * N(M5) ) 
ß DETJAC 

CONTINUE 

CONTINUE 

CONTINUE 

CONTINUE 

CONTINUE 

RETURN 

END 
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MODELING REGIONAL GROUNDWATER FLOW 

20.1 PURPOSE OF GROUNDWATER FLOW MODELING 

To "model regional groundwater" flow means to develop mathematical and numerical 
models of the aquifer system being studied and to use these models to predict the value of 
hydraulic head at points (and times) of interest. For example, the values of head may be 
needed to determine the impact of pumping on water table levels (e.g., to determine if a 
proposed well will cause excessive drawdown at an existing well) or to predict the direction 
and rate of groundwater flow (e.g., to compute groundwater travel times for site 
assessment or to predict the rate of movement of groundwater contaminants). The 
numerical procedures for solving the steady-state and transient groundwater flow equations 
by the finite element method were described in Part 1 and the implementation of these 
procedures in computer programs was described in Pan 2. However, before these 
procedures and programs can be applied to an actual field problem the analyst must collect 
and analyze a variety of information about the study area: 

1) to identify the type of model that should be used, 

2) to identify the locations of aquifer boundaries, 

3) to determine values for aquifer material properties, 

4) to determine values and types of boundary and initial conditions,and 

5) to calibrate and verify the model. 

20.2 TYPES OF GROUNDWATER FLOW MODELS 

Several types of models (e.g., one-, two-, and three-d/mensional models; steady-state, 
saturated flow models; transient, unsaturated flow models; fracture flow models) can be 
used to study groundwater flow systems. The selection of the type of model to apply to a 
particular field problem can be difficult, particularly if field data are scarce or if the analyst 
has no previous experience in the study area. Ultimately, the choice is made by selecting a 
model 1) that represents the physical (and perhaps chemical and biological) processes that, 
in the opinion of the analyst, are most important in determining aquifer behavior, and 2) 
that is consistent with the available data. Panieular attention should be paid to the 
assumptions used in the derivation of the differential equation(s) on which the model is 
based. The assumptions used to derive the four types of groundwater flow equations 
presented in this book (steady-state, saturated flow; steady-state, unsaturated flow; 
transient, saturated flow; and transient, unsaturated flow) are discussed in Appendices I 
and II. Care must be taken to avoid the application of these equations (and the procedures 
and computer programs in Parts 1 and 2 that are based on these equations) to field 
situations where the assumptions may not be valid. 

For example, in these derivations, Darcy's Law is assumed to be valid and we can 
immediately conclude that problems involving flow through fractured rock, large cavities in 
Karst limestone, lava tubes, etc. can not be solved with models based on these equations 
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because it is likely that groundwater velocities will be too large for Darcy's Law to be valid 
(Hillel, 1980, pp. 181-182). Darcy's Law may also not be valid whcn groundwater 
velocities are extremely small, e.g. in flow through compacted clay with small hydraulic 
gradicnts ($warzendruber, 1962). Further, aquifer stress:strain behavior is assumed to be 
elastic, and thc change in thickncss of the aquifcr in response to changes in head is 
assumed to be small; thus invalidating the use of these equations to solvc problems of 
consolidation (the largc and usually irreversible reduction in aquifer thickncss that occurs 
bencath many foundations and earth su'ucturcs as a result of surface loading, or that can 
occur in any arca duc to cxccssive groundwater withdrawIs). 

Recall also that groundwater density is assumed constant therefore invalidating the use 
of these equations to predict heads in problems where density variations are expected to be 
large e.g., near the fresh water:salty water interface that develops in coastal aquifers or in 
brine fields, or in problems involving multiplc fluid phases such as the flow of non- 
aqueous phasc liquids into groundwater at hazardous waste sitcs. Flow of groundwater 
above the water table as water vapor is also assumed to be negligibly small. 

20.3 CONFINED V$ UNCONFINED AQUIFERS 

The steady-state and transicnt, saturated groundwater flow cquations presented in this 
book can be applied to confined and unconfined aquifcrs (sec e.g., Bcar, 1979). In a 
confined aquifer, a true water tablc (thc surface where water pressure equals atmospheric 
pressure) does not exist; the upper limit of the saturated zone is the base of a low- 
pcrmcability layer called an aquitard (Figurc 20.1). Hydraulic head is measured with 
piezometers and the hcight that water rises in the piczometers defincs the piezornetric 
surface. The procedurcs and computer programs in Parts 1 and 2 can be used to solve 
steady-state and transient, saturated groundwater flow problems for confined aquifers in 
one-, two-, and three-dimensions using as aquifer material properties the components of 
saturated hydraulic conductivity, K x, Ky, and K z, and spccific storage, S s. However, in 
two-dimensional (map view) problems it is common to usc as aquifer properties 
transmissivity, T, and storativty, S. Storativity is the name given to specific storage in 
confined aquifers. The two components of transmissivity, T x and Ty are def'med as 

Tx = bKx (20. la) 

Ty = bKy (20. lb) 

where b is the saturated thickness of the aquifer (Figure 20.1). In this case the steady- 
state, saturated groundwater flow equation (e.g. equation 3.45) can be written 

•xx•T•xl+ •-•T•-• = 0 (20.2) 

The method of weighted residuals can be applied to equation 20.2 and the results from Part 
1 can be used to solve for unknown values of head, h(x, y). Wc simply substitute Tx (e) for 
Kx (e) and Ty(e) for Ky (e) in the equations for [K(e)] for any of the two-dimensional 
elements. Othcrwise the solution procedure is identical and program GW1 can be used 
without modification (However, when specifying groundwater flow rates at Neumann 
nodes, we must be careful to use units for q that are consistent with T x and Ty). 

The transient, saturated groundwater flow equation (e.g. equation 3.79) can be written 

•'•, x•'•j + •-•[Ty• = S•. (20.3) 

where S is the aquifer storativity 
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iii I' 

la•d 

•k 

Figure 20.1 Confined aquifer. 

The method of weighted residuals can also be applied to equation 20.3 and the results 
from Part 1 can be used to solve for unknown values of head, h(x, y, t). We simply 
substitute Tx(e) for Kx(e), Ty(c) for Ky(O, and S(•) for Ss (e) in the equations for [K(O] and 
[C(e)] for any for the two-dimensional elements. Otherwise the solution procedure is 
identical and program GW3 can be used without modification (if the units for specified 
groundwater flow rates are consistent with T x, Ty, and $). 

In an unconfined aquifer the upper limit of the saturated zone is the water table (Figure 
20.2). Hydraulic head is measured with wells. If the position of the water table is known 
(not common) the entire surface of the water table is treated as a Dirichlet boundary 

well 

. land,surf, ace ,, • 

.................................... ß ..C'.•.. '.'.• ,•• ...... •' '"• ' 
bedrock 

Figure 20.2 Uneonfined aquifer. 
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earth tlnrn 

henri water ............................. water table 

' reservoir 
Dirichlet B.C •li!'•"-..•......:•i•ii•i•i•:..`..............•?•i..........•............•ii•`•..... •. ,..'.?... :•.. •• tail water 

.... :ii::'.....•2• 

bedrock 

Figure 20.3 Saturated flow through earth dam, position of water table is assumed 
known. 

condition. Programs GW1 or GW3 could be used to compute heads at points within the 
aquifer (Figure 20.3). However, in most situations the position of the water table is not 
known (except at a few locations) and we wish to compute it from the available data. Three 
approaches have been used to solve this type of problem. 

In the first approach we assume that the slope of the water table is small so that 1) the 
saturated thickness of the aquifer is approximately constant and 2) groundwater flow is 
approximately horizontal (i.e., the Dupuit-Forchheimer assumption, see Freeze and 
Cherry, 1979). This approach is particularly useful in studies of regional groundwater 
How where the lateral extent of the aquifer is much larger than the saturated thickness. 
With this approach the steady-state, saturated groundwater flow equation for two- 
dimensional flow in an unconfined aquifer can be written (see e.g. Bear, 1979) 

•x(Kxh•x ) 8 •)h (20.4) 

But since 

82h 2 = 2h •h 

equation 20.4 can be written 

(20.5) 

(20.6) 

The results from Part 1 can be used to solve equation 20.4 for unknown values of head, 
h(x, y). To see this, define a new variable u = h 2 so that equation 20.6 becomes 

(20.7) 
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Now we can substime -•. for and for in the equations for [K (e)] for any of the 
two-dimensional elements. Dirichlet boundary conditions are specified for u by squaring 
specified values of hydraulic head. Program GW1 can then be used without modification 
to solve form unknown values of u and values of head can be computed at each node, h i = 
•, for each node i. If velocities are required, program GW1 could easily be modified by 
the addition of the following FORTRAN statements just before (above) the statement 
"CALL VELOCITY" 

DO 99 I = 1, NUMNOD 
X(I) - SQRT(X(I)) 

99 CONTINUE 

The transient, saturated groundwater flow equation for two-dimensional flow in an 
unconfmexi aquifer can be written 

(20.8) 

where Sy is the aquifer specific yield. Defining u = h 2 with 

8h •u la 1 8u 
' = (20.9) •t •t 2'•'u & 

equation 20.8 can be written 

(20.10) 

Equation 20.10 is a nonlinear differential equation (because of the term 1/'•'•' ) and Gann0t 
be solved using program GW3 unless it is modified (e.g. by using Picard iteration as in 
program GW4). Program GW3 could be further modified to compute heads and velocities 
using the same FORTRAN statements given for program GWl above. 

The second approach that can be used to solve the transient and steady-state, saturated 
groundwater flow equations for an unconfined aquifer is based on the definition of the 
water table as a surface where water pressure is equal to atmospheric pressure (zero gage 
pressure). From the definition of hydraulic head 

0 on water table 

h = z+j• (20.11) 
where z is the elevation head. The solution procedure is very simple. We guess the 
position of the water table and draw a f'mite element mesh. We then compute the value of 
head at each node in the mesh. For each node on the water table the computed value of 
head should equal the elevation of the node. If the values are not equal we set the 
coordinates of the nodes on the water table equal to the computexi values of head. The 
process is repeated until a convergence criteria is satisfied (Neumann and Witherspoon, 
1970). The shape of the mesh changes with each iteration (Figure 20.4). Programs 
and GW3 could be easily modified to use this method. This approach is useful for 
problems where the Dupuit-Forscheimer assumption is not valid (e.g. near a pumping 
well). 
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Dirichlet 
B.C. 

Z• ?J/J/J/J/' ' .....• 
x 

Q 

Neumann 
B.C. 

Figure 20.4 Example problem for unconfined aquifer. z coordinate of nodes marked 
with asterisk change during solution procedure until h I = z I for each 
node i. 

In the third approach we solve the steady-state or transient unsaturated flow equations 
and the position of the water table is indicated by nodes with computed pressure heads 
equal to zero. We use this approach when groundwater flow above the water table is 
considered to be significant (e.g., in a study of the response of a shallow water table to 
recharge during a rainstorm). 

20.4 SENSITIVITY ANALYSIS 

The development of a mathematical model for an aquifer system is a difficult task. 
Aquifer systems axe complex and the interpretation of field and laboratory data for use in a 
regional groundwater How model requires a considerable amount of professional 
judgement (which is why groundwater modeling is sometimes referred to as an "art"). 
Measured values of aquifer properties axe usually scarce and well logs often give a rather 
incomplete description of the stratigraphy, structure, and lithology of subsurface materials. 
For example, the locations of aquifer boundaries axe needed to spec• the size and shape of 
the problem domain and to draw the finite element mesh. In many problems encountered in 
practice, there are insuffi•ent data to tn, ecisely determine the position of aquifer boundaries 
e.g., in a valley-f'Hl aquifer it may be difficult to determine the position of the contact 
between the alluvium and the underlying bedrock. In this case, the positions of aquifer 
boundaxies must be inf• from the available data (e.g., the elevations of aquifer contacts 
recorded in well logs). This can be done quantitatively (e.g., using some form of 
interpolation) or qualitatively (e.g., using the judgement of persons knowledgable about the 
geology and geomorphology of the study area). In any case the effect of uncertainty in the 
positions of aquifer boundaries on model results should be investigated using a sensitivity 
analysis. In a sensitivity analysis, the values of model parameters (in this case the 
positions of aquifer boundaries) are varied across the range of likely values and the effect 
upon computed heads is noted. The most effort is expended to identify parameters that 
have the most effect on computed results (in most cases the positions of aquifer boundaries 
have relatively little effect relative to aquifer material properties and boundary and initial 
conditions). 
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Lack of data can make it particularly difficult to specify aquifer material properties. 
Real aquifers are rarely homogeneous and isotropic. The finite element method allows the 
analyst to specify a different set of material properties for each element in the mesh but a 
method is needed to obtain these properties from a (usually) limited data set (e.g., the 
results of pumping tests for a few wells). Although it may be possible to estimate aquifer 
properties using statistical methods (e.g., geostatistics) or by solving the inverse problem 
(see below) considerable uncertainty will remain and the effect of uncertainty in values of 
aquifer properties on model results should be investigated in a sensitivity analysis. 

The most commonly occurring boundary conditions are the specified head (Dirichlet) 
and specified flow (Neumann) boundary conditions described in Part 1. Specified head 
boundary conditions are commonly used where a surface water body (lake, river, etc.) is in 
hydraulic connection with groundwater along a portion of the aquifer boundary. Specified 
flow boundary conditions are commonly used to represent groundwater withdrawal or 
recharge e.g., from wells, infiltration, and leakage between aquifer units. However, the 
interpretation of the available data (e.g., pumping rates, precipitation data, irrigation 
schedules, streamflow records, lake water surface elevations) to determine appropriate 
boundary head or flow values is rarely straightforward. Also, it can sometimes be very 
difficult to decide which type of boundary condition a particular feature represents (e.g., 
should a lake be represented as a constant head or specified flow boundary condition, or as 
some combination of the two). The effects of alternative types and values of boundary 
conditions on model results also should be investigated using a sensitivity analysis. 

20.5 CALIBRATION, VERIFICATION AND PREDICTION 

Calibration is the process of adjusting model parameters (material properties, boundary 
conditions, and initial conditions) until l) the model is consistent with the analyst's 
understanding of the groundwater flow system and with all available data, and 2) computed 
values of head closely match measured values at selected points in the aquifer (locations of 
wells, springs, etc). The procedure is essentially an exercise in "trial and error" wherein a 
plausible set of model parameters are proposed, computed and measmvA values of head are 
compared, and model parameters are adjusted to improve the fit. Unfortunately there is no 
guarantee that the values of model parameters obtained by this procedure are unique. For 
this reason it is best to calibrate the model •ising only a portion of the available head data (or 
to make additional measurements after calibration). The fitted model is then used to predict 
these "reserved" head measurements. The results are used as a quasi-independent check on 
the model parameters arrived at by calibration. For example, it is sometimes possible to 
calibrate a model using measurements made at one time and to verify the model using 
measurements made at a different time (possibly using the same wells). This step is 
sometimes called model verification. Once the model is calibrated and verified it is ready 
for use in prediction (e.g., predicting water table response to pumping, predicting 
groundwater velocities for use in a solute transport model, etc.). 

An alternative approach to calibration is to solve the inverse problem, i.e., to compute 
the values of model parameters directly from measured values of head. This approach is 
analogous to fitting a line to a data set using regression, except that the number of unknown 
parameters is much larger. An objective function is defined (e.g., the sum of the squares 
of the differences between measured and computed heads) and values of the parameters are 
sought that make the value of the function a minimum. There is a great deal of literature on 
this subject but the approach has not been widely used in practice (in part because of the 
theoretical and computational difficulties involved in succcessfully fitting a model with 
many plausible combinations of parameters, a common situation). Menke (1984) is an 
excellent introduction to techniques for solving the inverse problem. Reviews of different 
approaches for solving the inverse problem in groundwater hydrology are in Neuman and 
Yakowitz (1979), Neuman (1980), and Yeh et al. (1983). 
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20.6 MASS BALANCE CALCULATIONS 

An additional check on model behavior that should always be performed is a mass 
balance for water. If the model is performing properly, the change in the amount of water 
stored in the aquifer should equal the inflow (e.g., through s•ecified head boundaries or 
injection wells) minus the outflow (e.g., from pumping wells). For a steady-state flow 
problem, the change in storage will be zero. For a transient flow problem. the change in 
storage can be computed for each element in the mesh using the change in head for each 
node in the element and the value of storafivity, specific yield, or storage coefficient for that 
element. Inflow and outflow at Neumann nodes will be known from the boundary 
conditions, and inflow and outflow across Dirichlet boundaries can be computed using the 
components of apparent groundwater velocity for each element on the boundary. If the 
results of the mass balance calculations are poor, it is probably an indication that the mesh 
is too coarse. Numerical errors in computed heads obtained using a coarse mesh will cause 
errors in the calculation of aquifer storage and apparent groundwater velocites. Errors in 
computed velocities will most impact mass balance calculations at Dirichlet boundaries, 
where water is entering or leaving the mesh. Refining the mesh will always improve the 
mass balance (unless there are gross errors, e.g., entering specified groundwater flows 
with the wrong sign or magnitude, etc.). 

20.7 REPORTING MODEL RESULTS 

Because of the variety of procedures that may be used to develop a groundwater flow 
model it is essential that the analyst document each step of the process used to obtain 
predictions in the project report. As a minimum such a report should contain the following 
information: 

1. Assumotions about the eroundwater flow orocesses considered: 

For example "two-diniensional, steadySstate, saturated flow of groundwater with 
constant density through a rigid (nondeformable) aquifer". Always give the governing 
equation(s) used. 

2. I)escription of Numerical Procedures Used: 
Show the finite element mesh. Label Dirichlet and Neumann nodes. Give a reference 
for the computer program used. 

3. Data sources and orocedures used to identify aouifer boundaries: 

For example "Th• lower boundary of the a•luvial aquifer was assumed to vary linearly 
between alluvium-bedrock contacts reported in well logs". In this case the report 
should contain a map showing well locations and computed elevations of alluvium- 
bedrock contact and an appendix containing the well logs. 

4. Data sources and orocedures used to determine aauifer material proper0½$, 
For example, "Tile aquifer was assumed to be homogeneous and isotropic. Aquifer 
hydraulic conductivity was set equal to the average value of hydraulic conductivity 
obtained for three wells using the Theis solution (see, e.g., Bear, 1972) and the results 
of constant discharge pumping tests". In this case the report should contain a map 
showing pumping and observation well locations, drawdown curves for the pumping 
tests, and a summary of calculations. 

5. Data sources and procedures !•sed to determine bounq!0Xy conditions. 
For example, "The portion of the aquifer boundary along the Red River was modeled 
as a specified head boundary. The value of head for this boundary was taken to be the 
average river stage for the months of October through December. Discharge from 
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several domestic water-supply wells in the study area were assumed to have negligible 
impact on model results and were neglected". In this case, the report should contain the 
stage and discharge records for the river and the location and estimated discharge rate 
for the wells. 

6. Results of Model Calibration. Verification. and Mass Balance Calculations. 
For example, "The model was calibrated using ten of the available water level 
measurements (show well locations on a map). Values of model parameters were 
adjusted by trial and error until the difference between measured and predicted heads at 
each well was less than 0.5 m. The model was then verified using measured water 
levels in the five remaining wells. The maximum difference between measured and 
predicted head at these wells was 1.3 m. Results of a mass balance for the aquifer, 
performed after calibration, indicated that 95% of the water in the aquifer was 
conserved." 
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MODELING SOLUTE TRANSPORT 

21.1 PURPOSE OF SOLUTE TRANSPORT MODELING 

To "model solute transport" means to develop mathematical and numerical models of 
the aquifer system being studied and to use these models to predict the concentration of a 
solute (radionuclide, hazardous waste, pesticide, plant nutrient, etc.) at points of interest 
for a set of specified times.. For example, it may be necessary to estimate the potential 
impacts on human health of a proposed waste disposal site, e.g., a municipal landfill. A 
solute transport model could be used to predict the likely concentration of contaminants 
leached from the site in the groundwater at nearby wells. This is an example of site 
assessment, the determination if a site is suitable for some purpose based on the likely 
impact of proposed activities on groundwater quality. Solute transport models are also 
used as a basis for the design of contaminant recovery and treatment systems at sites of 
existing contamination. For example, it may be necessary to install a set of capture wells at 
a hazardous waste site to prevent contaminant movement off-site. A solute transport model 
could be used to select the most effective combination of well locations and pumping rates. 
This is an example of performance assessment, the evaluation of how effective a proposed 
design is at meeting the project objectives. 

The first step in developing a solute transport model is to calibrate and verify a 
groundwater flow model and the comments in Chapter 20 apply. During the calibration of 
the groundwater flow model the emphasis should be on producing a good fit between 
measured and predicted aquifer heads near solute sources and sinks (e.g., near a waste 
injection well). These heads will be used to compute groundwater velocities which are 
needed as input for the solute transport model (recall that apparent groundwater velocities 
are used to compute the rate of solute transport by advection and to compute dispersion 
coefficients, see Appendix III). The accuracy of predicted solute concentrations will to a 
large part be determined by the accuracy of predicted groundwater velocities near solute 
sources and sinks. 

The development of a solute transport model will require additional information about 
the study area: 

1) to identify the type of solute transport model that should be used, 

2) to determine values for additional properties of the aquifer and the solute, 

3) to det•xmine values and types of boundary and initial conditions, and 

4) to calibrate and verify the model. 

21.2 TYPES OF SOLUTE TRANSPORT MODELS 

Several types of models can be used to predict solute concentrations in groundwater 
flow systems. The models differ 1) in the type of groundwater flow equation used to obtain 
groundwater velocities (e.g., steady-state or transient flow, saturated or unsaturated flow), 
and 2) in the types of physical, chemical, and biological processes considered in the solute 
transport equation(s). In this book we have used a form of the solute transport equation 
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that includes processes of advection, dispersion, diffusion, and decay. The assumptions 
used to derive this equation are discussed in Appendix llI. Care must be taken to avoid the 
application of this equation to field situations where the assumptions may not be valid. 

For example, in this derivation, the aquifer is assumed to be isotropic with respect to 
dispersion processes. This assumption is made primarily for convenience since field 
procedures for measuring all the coefficients of a general dispersion model are not 
available. Transport by advection is limited to Darcy-type flow through the pore space and 
the equation can not be used to predict rates of solute transport through fractured rock, 
large cavities in Karst limestone, lava tubes, etc. Recall also that the density of the solute- 
groundwater mixture is assumed constant therefore invalidating the use of this equation to 
predict solute concentrations in the presence of very high solute concentrations or multiple 
liquid phases (e.g.,cases with simultaneous flow of gasoline and groundwater phases). 
Transport in the gas phase was assumed to be small, thus invalidating the application of 
this equation to the transport of highly volatile compounds above the water table. 

A very important assumption was that sorption processes can be described using an 
equilibrium distribution coefficient, K d. Although this is a common assumption in 
practice, it should be considered a crude approximation because of the importance of other 
processes including competition among different solutes for exchange sites, reactions that 
require relatively long periods of time to reach equilibrium, and multiple-step sorption 
processes (e.g., involving diffusion through an irmnobile water layer before sorption can 
occur at the solid surface). Several alternative formulations for the sorption process are 
given in de Marsily (1986) and Bear (1979). Similarly, the assumption that solute decay 
can be described using a simple decay constant, )•, although appropriate for certain 
radionuclides, should be a considered a crude approximation for biological degradation 
(e.g., microbial metabolism). 

21.3 SENSITIVITY ANALYSIS 

Just as in the case of a groundwater How model, the effect of uncertainty in the values 
of model parameters (boundary and initial conditions and the values of lateral and 
transverse dispersivity, distribution coefficient, and decay constant) on computed solute 
concentrations should be investigated using a sensitivity analysis. In most situations the 
greatest uncertainty involves the selection of dispersivifies. Ideally these should be 
measured at the site using a tracer test but in most cases they must be estimated from 
tabulated values (e.g., Appendix V). However, for long times or large distances advection 
tends to be a much more important process than dispersion, and the effects of uncertainties 
in dispersivifies tends to have less effect on computed solute concentrations, than for short 
times and small distances. Sometimes the effects of dispersion, sorpfion, and decay are 
neglected entirely and computed solute concentrations based only on ad-vecfion are used to 
assess the greatest likely travel distances along a particular flow path (or the shortest likely 
travel times to a particular point), which is sometimes called a worst case scenario. 

The most commonly occurring boundary conditions are the specified concentration 
(Dirichlet) and specified flux (Neumann) boundary conditions described in Part 1. 
Dirichlet boundary conditions are commonly used where a surface water body (waste 
storage lagoon, fiver, etc.) with a fixed solute concentration is in hydraulic connection with 
groundwater along a portion of the aquifer boundary. Specified flow boundary conditions 
are commonly used to represent solute leakage into the aquifer and solute withdrawal and 
injection by wells. However, the data needed to decide which type of boundary condition a 
particular feature represents are often unavailable, for example in the preliminary stages of 
an investigation at an uncontrolled waste site. The effects of alternative types and values of 
boundary conditions on model results also should be investigated using a sensitivity 
analysis. 
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21.4 CALIBRATION, VERIFICATION, AND PREDICTION 

In the case of a solute transport model, calibration consists of proposing a plausible set 
of model parameters, comparing measured and predicted solute concentrations at a set of 
points, and adjusting model parameters to improve the fit. As in the case of the 
groundwater flow equation there is no guarantee that the values of model parameters 
obtained by this procedure are unique. For this reason it is best to calibrate the model using 
only a portion of the available data and to predict the remaining concentrations as a check 
on the model parameters arrived at by calibration. Once the model is calibrated and verified 
it is ready for use in prediction. It may also sometimes be possible to obtain values of 
certain model parameters by solving the inverse problem (e.g., dispersivities are often 
computed from measm'ed concentrations in a tracer tesO. 

21.5 MASS BALANCE CALCULATIONS 

Just as in the case of groundwater flow a mass balance for the solute should be 
computed as a check on model behavior. If the model is performing properly, the change 
in the amount of solute stored in the aquifer should equal the inflow (e.g., through 
specified concentration boundaries or injection wells) minus the outflow (e.g., pumping 
wells). The change in storage can be computed for each element in the mesh using the 
change in concentration for each node in the element and the element's size, shape, and 
porosity. Inflow and outflow at Neumann nodes will be known from the boundary 
conditions, and inflow and outflow across specified concentration boundaries can be 
computed using the components of apparent groundwater velocity and the computed solute 
concentration at the nodes of each element on the boundary. If the results of the mass 
balance calculations are poor, it is probably an indication that the mesh is too coarse. 

21.6 REPORTING MODEL RESULTS 

Because of the variety of procedures that may be used to develop a solute transport 
model it is essential that the analyst document each step of the process used to obtain 
predictions in the project report. As a minimum such a report should contain the following 
information: 

1. Assumotions about the solute u'ansoort orocesses considered: 

List th• assumptions used to deriv• the-governing equation(s) used. Comment on the 
applicability of these assumptions to the conditions at the site. 

2. Descriution of Numerical Procedures U•½d; 
_ 

Show the finite element mesh. Label Dirichlet and Neumann nodes. Give a reference 
for the computer program used. 

3. Data sources and urocedures used to determine aquifer matexial properties. 
For example, "The aquifer was assumed to be homogeneous and isotropic with respect 
to dispersion. Lateral and transverse dispersivities were estimated using tabulated 
values (give reference). Decay and sorption were assummed to be negligible". Or, 
"Lateral and transverse dispersivities were estimated using a tracer test (give references 
and show data)". 

4. Data sources and urocedures used to determine boundgry conditions. 
For example, "TEe portion of the aquifer boundary along the Red River was modeled 
as a specified concentration boundary. The value of concentration for this boundary 
was assurereed to be zero based on water quality measurements taken upstream of point 
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Chapter 21 457 

5. Results of Model Calibration. Verification. and Mass Balance Calculations. 

For example, "The model was calibrated using measured concentrations in five wells 
(show well locations on a map). Values of model parameters were adjusted by trial and 
error until the difference between measured and predicted concentrations at each well 
was less than 25 ppm. The model was then verified using measured water levels in the 
six remaining wells. The maximum difference between measured and predicted 
concentration at these wells was 47 ppm. Results of a mass balance for the aquifer, 
performed after calibration, indicated that 95% of the solute in the aquifer was 
conserved. 
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Appendix I 

DERIVATION OF EQUATIONS OF 
STEADY-STATE GROUNDWATER FLOW 

Consider a unit volume of saturated porous media (Figure AI. 1). In fluid mechanics, 
such a volume is called a control volume. The boundaries of the element are called control 
surfaces. 

portion of 
control surface 

@l)y •z 

pt): 

Figure AI.1 

p13y+ •'• (p'Oy) 

pt)x+ •x Y 
control volume 

Control volume for groundwater flow through porous media. 

The law of conservation of mass for steady-state flow requires that the rate at which fluid is 
entering the control volume is equal to the rate at which fluid is leaving the control volume 
or 

net rate of inflow = inflow - outflow = 0 (AI. 1) 

For purposes of analysis, consider the rate at which groundwater enters the control volume 

per unit surface area to consist of three components P•x, PUy, and px> z where p is the 
density of water and •x, uy and •z are the apparent velocities of groundwater flow entering 
the control volume through control surfaces perpendicular to the x, y, and z coordinate 

axes. The dimensions of pv x, pry, and pv z are M/L2T. 
Using a Taylor Series approximation, the rate at which groundwater leaves the control 
volume in the x direction can be written 

458 

Water Resources Monograph
Groundwater Modeling by 
the Finite Element Method Vol. 13

Copyright American Geophysical Union



Appendix I 459 

If we make the size of the control volume small, we can neglect higher-order terms (i.e., 
those involving A 2, A 3 etc.) and, because we have chosen a unit control volume (Ax = Ay 
= 1) the rate at which groundwater leaves the control volume is ph+•x(pOx). The net rate of 

inflow in the x direction is then 

net rate of inflow = rate of inflow - rate of outflow 
in x direction in x direction in x directon 

= - (AI.3) 

• ) -• and the net rate of inflow in the y and z directions are -•(O• and - (put), respectively. 
Because the net rate of inflow for the entire control volume must equal zero if the law of 
conservation of mass is to be satisfied, we can write 

- •x(pU,,) - o • o • •(p•)y) - •(p•),) = o (AI.4) 

If we assume that groundwater density, p is constant (i.e., the fluid is incompressible), we 
can use the product role of calculus to evaluate a typical term in equation AI.4 

a - •'•(PUx) = - P'•'•' + 

= -P •x 
(AI.5) 

Similarly for the x and y directions. Because groundwater density appears outside the 
derivative it cancels from equation AI.4 and we have 

i•x i•y /}z = 0 (AI.6) 

Now the apparent groundwater velocities are given by Darcy's Law 
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460 Derivation of Equations of Steady-State Groundwater Flow Problems 

where K x, Ky and K z are the hydraulic conductivities in the x, y, and z directions, 
respectively and h is the hydraulic head. Substituting equation AI.7 into equation AI.6. 
We arrive at the steady-state, saturated flow equation. 

If flow is two. dimensional, equation AI.8 simplifies to 

+ o (^I.9) 

and if the flow is one-dimensional, we have 

•'•k, x•'•',y: 0 (AI. 10) 

If a component of hydraulic conductivity is independent of position for a particular 
direction (i.e., is the same at all points along a line oriented in that direction), we can 
further simplify equation AI.8 using the product rule. For example, if K x is independent 
of postion x 

0 

•)f 0h'• _ O2h 0h• = 

•2 h 
= K x 

•x 2 
(ALIi) 

aKv aK'z =0. In this case we say the porous Similar terms can be obtained for Ky and K z if a•' :'•' 
media is homogenous and equation AI.8 simplifies to 

K •2h _ •)2h _ •)2h 
X•}x2 --+Ky•y2 +• • = 0 (AI. 12) 

Finally, if K x = Ky = K z = K, a constant we say the porous media is homogeneous and 
isotropic and equation AI.8 simplifies to 

•)2h •)2h •)2h 
•-+-•+-• = 0 

•x 2 •y2 •z 2 
(AI. 13) 

which is known to mathematicians as La Place's equation. 
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If the porous media is not saturated, the value of hydraulic conductivity at a point is a 
function of the pressure head of the water in the voids at that point 

K = K(W) (AI. 14) 

where •F is the pressure head. Substituting equation AI. 14 into equation AI.8 yields 

• •h • •h • •h + •(Iq(v)•) = 0 + 
for the case where the unsaturated hydraulic conductivity function is different in the x, y, 
and z dir•fion$. Recalling the definition of hydraulic head 

h -- ß + z* (AI. 16) 

where z* is the elevation head ( i.e., the vertical distance from any point to an arbitrary 
datum ). If the z coordinate axis is assumed to be vertical 

• = (v+z*) = •+ 

=• 
(AI.•?) 

s'nnilarly 

and 

ah a • • 
a'• = •(V+z*)= •+ •+ • 

(AI. 19) 

Substituting equations AI. 17, 18, and 19 into equation AI. 15 gives 

which is the steady-state, unsaturated flow equation. 

(AI. 20) 
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Problems 

1. Appendix I has presented the derivation of the equations of steady-state groundwater 
flow for a rectangular coordinate •ystem i.e., a coordinate system defined by the three 
orthogonal coordinate axes x, y, and z. In some situations, for example in the case of 
groundwater flow to a well, it is more convenient to work in a cylindrical coordinate 
system i.e., in a coordinate system der'reed by the two orthogonal coordinate axes r, 0, 
and z (Fig. AI.2). 

(r + Ar)fil3 

Figure AI.2 Control volume for groundwater flow through porous media in 
cylindrical coordinates. 

a. Using the same approach presented in this chapter derive the steady-state, saturated 
flow equation in cyh'ndrical coorob'nates 

J/ •}h X KrSh 1 J/ Jh • J/ •}h'• 
(AI.20) 

b. Derive the steady-state, unsaturated flow equation in cylindrical coordinates 
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2. We can often use symmetry to reduce the dimensionality of a flow problem in 
cylindrical cordinates. In the case of groundwater flow to a well, it is common to 
consider the well to be an axis of symmetry. This is only role however if the aquifer 
geometry (i.e., the position of the soil surface and soil and rock layers), the 
components of hydraulic conductivity, and the specified boundary conditions are all 
independent of angular coordinate 0. In this case the derivatives of head with respect to 
0 vanish and we say the problem is axisymmetric. Show that the axisymmetric forms 
of the steady-state saturated and the steady-state unsaturated flow equations can be 
written 

(AI.22a) 

•(Kr(¾)•) + r-•--• + •, ,.(• •,•. + 1)) = 0 (AI.22b) 

Water Resources Monograph
Groundwater Modeling by 
the Finite Element Method Vol. 13

Copyright American Geophysical Union



Appendix II 

DERIVATION OF EQUATIONS OF 
TRANSIENT GROUNDWATER FLOW 

The law of conservation of mass for transient flow requires that the net rate at which 
fluid enters a control volume is equal to the time rate of change of fluid mass storage within 
the control volume. 

net rate of inflow = inflow - outflow = rate of change in storage (AII. 1) 

From equations AI. 1 and AI.4 we can write 

net rate of inflow = -•(P")x) - (P")y) - (Pt)z) (AII.2) 

In steady-state flow, the change in storage within the control volume is zero. In transient 
flow, the change in storage is not zero and equation AH.2 becomes 

-•(P'Ox) (p'0y) - •zz(p'0z) = (AII.3) 

I I 
net rate of inflow rate of change 

in storage 

where n is the porosity of the porous media. The dimensions of the term •(pn) are M/L3T 
or the time rate of change of fluid mass per unit volume of the control volume. Now 
assume that the porous media is saturated. Then using the chain-rule we can expand the 
right-hand side of equation AH.3 

• • 8h (pn) = •-•(pn) •- (AII.4) 

where we can see that, in transient, saturated flow, the rate of change in fluid storage in the 
control volume is related to the rate of change in hydraulic head. Using the product rule we 
can expand the first term on the right-hand side of equation AH.4 

•h •n •p (pn) = p•-• + n•-•. (AII.5) 

The fLrSt term on the right-hand side of equation AII. 5 is the mass of water produced by the 
expansion or compression of the porous media and the second term is the mass of water 
produce by the expansion or compression of the fluid. In the case of saturated flow, 

water can only enter the control volume ff the porosity increases • > 0 or the fluid density 
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To continue we must define two new terms: the porous media compressibility cz and 

the fluid compressibility •. Compression or expansion of the porous media is caused by a 
change in effective stress o e. If the porous media is saturated 

dae = -pgdxl/ 

where ¾ is the pressure head. But since dxl/= d(h - z*) = dh - we can write 

(An.6) 

do e = -pgdh (ArL7) 

Now define the porous media compressibility 

dVf 1 dn 
•x =- V dae doe (An.8) 

where Vf is the volume of fluid and V is the control volume. Combining equations AH.7 
and AH.8 we have 

• = o•pg (AH.9) 

The fluid compressibility [• is defined as 

dVf 1 
[•: -•f-f • (,aJI. 10) 

where p is the fluid pressure. The change in pressure is given by 

dp = pgdv = pgdh (AII. 11) 

and with dVi/Vf = dp/p equation AH. 10 becomes 

or 

[•=dp 1 -•-pg• (AII. 12) 
dp 
•' = p2g[• (AII. 13) 

Substituting equations AH.9 and AH.13 into equation AII.4 gives 

-•(pn) (•)n _•p•h : p•-• + 

: (p2ga + np2g]3)• - 
Now define the specific storage Ss as 

$. -- pg(o• + 

(AII. 14) 

(AII. 15) 
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466 Derivation of Equations of Transient Groundwater Flow Problems 

The dimensions of S s are L -1 representing the volume of water that a unit volume of aquifer 
releases from storage for. a unit decline in hydraulic head. Substituting equation AII. 15 into 
equation AII. 14 gives 

•(pn) $ •)h = P s•' (AII. 16) 

and substituting equation AH. 16 into equation AII.3 we have 

•'(p't)y) - (AII. 17) 

If we assume that density is constant in the three coordinate directions equation AII. 17 
becomes 

P ( (3!J x •Uy c•U, 3h - • - •- - -•-•..) = pS,.•]- (AII. 18) 
Cancelling p from both sides of equation AH.18 and using Darcy's Law we arrive at the 
transient, saturated-flow equation. 

• / •h'• • / •h'• • / 3h'• S •h 
(AII. 19) 

If the porous media is homogeneous, K x, Ky, and K z are constant and equation AH. 19 
reduces to 

Kx•)2h _ •)2h _ •)2h •)h •x 2 Ky•y 2 Kz•z 2 Ss• (AII.20) 
If •e porous me•a is •so iso•pic, K x = Ky = • = K, equation AH.20 is •uen 

•)2h •)2h •)2h Ss •)h 
----+----+----. = --..-- 

•)x 2 3y2 •)z 2 K •t 
(An.21) 

which is known to mathematicians as the diffusion equation. For the special case of 
horizontal, two-dimensional groundwater flow in a confined aquifer of constant thickness b 
equation AH.21 simplifies to 

•)2h 32h S o3h 

(3x 2 (3y2 T 
where S = Ssb and T = Kb. 

(A1'I.22) 
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In transient, unsaturated flow, the degree of saturation of the porous media within the 
control volume changes with time 

6' -- o'(t) (AH.23) 

where 0' is the degree of saturation. The mass of fluid, within the control volume is now 
pn0' instead of lan. Substituting this term into equation AH.3 gives 

- - = a , - •(pn0 ) (AII.24) 

Expanding the term on the right-hand sid• of equation AII.24 using the product rule giv• 

• •0' ,•}n ,•p (pn0') = pn•- + p0 •. + nO •. (AII.25) 

Now if we assume that •. >> •. and •. >> , the last two terms on the right- hand side of 
equation AII.25 can be discarded. Taking p's outside the derivatives in the left-hand side 
of equation AH.24 and cancelling p from both sides of equation AII.24 gives 

•x(•X)_ 3 •z(uz) •(Uy) - = (AII.26) - n-•- 

If wc now substitute Darcy's law for unsaturated How into equation AII.26 wc have 

• ah • •h • ah 
•(Kz(¾)•) (AII.27) •(K•(¾)•) + 

Recalling the definition of volumetric water content (0 = nO') we can write 

n-•- = •, (AII.28) 

If we define the specific moisture capacity C(¾) 

dO 
(AII.29) 

where W is the pressure head and recall the definition of hydraulic head (h = ¾ + z* ), we 
can rewrite equation AII.27 as 

(AII. 30) 

which is the equation for transient unsaturated flow. Equation AII.30 is also known as 
Richards equation. 
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Problems 

1. Derive the transient, saturated How equation in cylindrical coordinates 

•)(KC3h'• Kr•)h 1 c3 Z' •)h• •)/ c3h\ c3h 
(AH.31) 

2. Derive the transient, unsaturated flow equation in cylindrical coordinates 

+ + + + = C(v)• 
(AII.32) 

3. Rewrite equations AII.31 and AII.32 for problems with axisymmctry. 
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Appendix III 

DERIVATION OF EQUATIONS OF 
SOLUTE TRANSPORT 

Consider a unit volume of porous media (Figure AIH. 1). As in Appendix I, we refer to 
such a volume as a control volume with boundaries called control surfaces 

portion of 
control surface 

•(Fz) 

F•+ 

F Z 

F x 

Fy+ •(Fy) 

control volume 

Figure AIH.I Control volume for solute transport through porous media. 

The law of conservation of mass for solute wansport requires that the rate of change of 
solute mass within the control volume is equal to the net rate at which solute is entering the 
control volume through the control surfaces plus the net rate at which solute is produced 
within the contwl volume by various chemical and physical processes. 

rate of change = net rate of + net rate of 
of solute mass solute inflow solute production (Alii. 1) 

For purposes of analysis, consider the rate at which solute enters the control volume to 
consist of three components F x, Fy, and F z that are parallel to the x, y, and z coordinate 
axes, respectively. The dimensions of F x, Fy, and F z are M/L2T. 
The rates at which solute leaves the control volume are 

F• + •(F•) 

Fy + •-•(Fy) 
F,. + •(Fz) 

in the x direction, 

in the y direction, and 

in the z direction, 
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470 Derivation of Equations of Solute Transport Problems 

(which can be obtained from a Taylor's series approximation as in Appendix I). The net 
rate of solute inflow is the difference between the inflow and outflow for each component 

(ALII.2) 

In porous media, solute transport occurs by three processes: advection, diffusion, and 
mechanical dispersion. 

Advection 

The process by which solutes are transported by the bulk motion of the flowing 
groundwater is called advection. The rate of solute transport that occurs by advection is 
given by the product of the solute concentration C and the components of the apparent 
groundwater velocity v x, Vy, and v z. In terms of the three components of solute transport 
in the x, y, and z directions, the rate of solute transport by advection is 

Fx)Advectio n = vxC 

Fy)Advection = vyC (AIII. 3) 

Fz)Adve. ction= vzC 

Diffusion 

The process by which solutes are transported by the random thermal motion of solute 
molecules is called diffusion. The rate of solute transport that occurs by diffusion is given 
by Fickøs Law. In terms of the three components of solute transport in the x, y, and z 
directions, the rate of solute transport by diffusion is given by 

,•c 
Fx)Diffusio n = - D • 

,3C 

Fy)Diffusio n = -- D • 
Fz)Diffusion = -- D* 3C 

(ALII.4) 

where D* is the solute's apparent diffusion coefficient. The apparent diffusion coefficient 
for a solute in porous media is much smaller than the diffusion coefficient for the same 
solute in aqueous solution, D 0. An empirical relationship for D* can be written 

D* = m(0)D 0 
orous'• (aq. ue.ous'• 

rn•a ) k, solut•on ) 
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where m(0) is an empirical correction factor that is a function of the volumetric water 
content. Values of m typically range from 0.01 for very dry soils to 0.5 for saturated soils. 
Values of the apparent diffusion coefficients for the major, naturally-occurring constituents 
of groundwater (eg., Na +, K +, Mg 2+, Ca 2+, CI-, HCO•, and SO• 2-) are in the range 

ß 

1x10 -s to 1x10 -lø m2/s at 25' C. Apparent diffusion coefficients are strongly temperature 
dependent (for example, values of the apparent diffusion coefficient are about 50% smaller 
at 5' C than at 25' C), but are only weakly dependent on the concentrations of other 
dissolved species. 

The small size of apparent diffusion coefficient means that the rate of solute transport 
by diffusion is usually neglibly small relative to the rates of solute transport by advection 
and dispersion. 

Mechanical Dispersion 

Mechanical dispersion (or hydraulic dispersion ) is a mixing or spreading process 
caused by small-scale fluctuations in groundwater velocity along the tortuous flow paths 
within individual pores. On a much larger scale mechanical dispersion can also be caused 
by the presence of heterogeneifies (e.g. clay lenses or faults) within the aquifer. The rate of 
solute transport by mechanical dispersion is given by a generalized form of Fick's Law of 
diffusion. In terms of the three components of solute transport in the x, y, and z 
directions, the rate of solute wansport by mechanical dispersion is given by 

Fx)M•:hanical Dbpersion ---- -- Dxx3-•(ec)- Dxy•(0C)- Dxz•(0C) 
Fy}M•:hanical Disp•ion----- DyX•x(eC)-Dyy•y(ec)-Dyz3•(ec) (Am.6) 

Fz)Mechanica• Dispersion--- Dzx•x(OC) - Dzy•y(OC) - Dzz•z(OC) 
where Dxx, Dxy, etc are the coefficients of mechanical &'spersion. These coefficients can 
be computed from the expression. 

Vm Vn 

Dij = aijkm •2m+_ 2 V n 

(AIII.7) 

where the subscripts i and j refer to the three coordinate directions x, y, and z, •m and •n are 
the components of the pore water velocity (as opposed to the apparent groundwater 
velocity used in Darcy's Law),and the subscripts m and n refer to the directions of the 
principal components of pore water velocity. Components of the pore water velocity are 
computed from 

ß 

•x = vx/O 

= vy/O 

•,_ = v,/0 

(Am.8) 

where 0 is the volumetric water content of the porous media. 
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The terms aijkm are the components of the aquifer's dispersivity. If the aquifer is 
assumed to be isotropic with respect to dispersion, all components of the aquifer's 
dispersivity are zero except for 

aiiii --a L 

aiiij = aT 
1 

aijij = aijji = •(a L- aT), i • j 

(Am.9) 

where aL is the longitudinal dispersivity and a T is the transverse dispersivity of the 
aquifer. "Longitudinal" refers to a direction along the flow path and "l•ansverse" refers to a 
direction at right angles to the flow path. In this case, the coefficients of mechanical 
dispersion can be computed from the following expressions 

--_ -2 -2 -2 

D•y = D,x = t(aL-aT )•'x•y ] I I•1 
Dxz = D= = [( al. ' - a T ) •'x•z ] I I•1 (ALII. 10) 

-2 -2 •,, = [ar(v,+,z) + a,_v, ] [ I•1 
V,z = % = [( a,.- a• ) O, Oz ] / I•1 

---- -2 -2 -2 D= [aT (v,, + v, ) + a•.v• ] ! I•i 

where ]•l 4.V2 -2 -2 In a two-dimensional problem equation AIII. 10 becomes = x 4- Vy + V z . 

D• --' [ aTgx 2 + ally 2 ] I I•1 
(AIII. 11) 

4•x2 -2 In a one-dimensional problem, equation A1U. 10 becomes where ]ol = +Vy. 

Du = Dx = alex (Alii. 12) 

If we have uniform flow in the x-direction (v x • 0, Vy = v z = 0) in a three-dimensional 
aquifer, equation AIII.6 simplifies to 

Fx)Mechanical Disix'rsion --- -- Dx•-•(0C) 

Fy)M•hanical Dispersion TM -Dy •y(0C) (ALII. 13) 
Fz,)Mechanical Dispersion = - Dz •(0C) 

where Dx = aLvx, Dy = D z = aTV x. If we substitute equations A1TI. 13 and Affl.3 into 
equation AIII.2 and neglect the conuibution of diffusion we have 
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or 

net rate of solute inflow = 
,ø 

3z 

Net Rate of Solute Production 

Several processes can act as sources or sinks for solute within the control volume 
including sorption/desorption, chemical or biological reactions, and radioactive decay. 
Consider the case of transport involving a sorption/desorption reaction 

between a dissolved species A and a sorbed species ,•. The net rate of reaction r, can be 
written 

r = O•- =-Pb•' (Am. 15) 

where 0 and Pb, respectively are the porosity and bulk density of the porous media, C is 
the concentration of the dissolved species A (mass of solute / volume of groundwater ), and 
[2 is the concentration of the sorbed species • (mass of solute / mass of dry porous media). 
Equation Alii. 15 can also be written 

r = -kfC + Icrc (Am.•6) 

where kf is the constant for the forward reaction (A--•A) and k r is the rate constant for 
the reverse reaction (•---)A). A rate law of this mathematical form, for example could be 
used if the sorption process can be described by a first-order, reversible reaction or by a 
combination of linear diffusion and a linear equilibrium isotherm. 

If we assume that the net rate of reaction is zero (i.e., the reaction is in equilibrium), 
equation Alii. 16 can be solved directly for the concentration of the sorbed species A 

• = •C = KoC (AITI. 17) 
where K d is the equilibrium distribution coefficient (L3/M). The net rate of solute 
production due to a sorption/desorption reaction between a solute and the porous media 
within the control volume can be obtained by combining equations AIII. 15 and A_UI. 17 and 
introducing the volumetric water content of the porous media 0 
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(AIII. 18) 

If the solute also undergoes radioactive decay or biological degradation, the net rate of 
solute production by this mechanism can be written 

a(oc)'l = 4, (oc + bKC) (Am. 19) 

where •. is the decay constant for the solute. 
Integrating equation AHI. 19 gives 

(0C + PbKdC)t = (0C + PbKdC)%e -xt (ALII.20) 

where the left-hand side is the mass of solute (dissolved and sorbed) in the control volume 
at some future time t and the first term on the right-hand side is the initial mass of solute in 
the control volume. We can see that equation AHI. 19 applies to processes that display 
exponential decay. The half-life T for such a process is def'med by 

(0C + @bKdC), 1 

•'0C + PbKaC)% = -• at t = T (ALII.21) 
which gives 

-•T 1 ln2 0.693 
e = • or X = T = T (ALII.22) 

Solute Transport Equation 

If we substitute equations AIH. 14, AIII. 18, and AIH. 19 into equation Alii. 1 and write 
•(•c), the rate of change of solute mass in the control volume as • we arrive at the solute 

transport equation for uniform flow 

,, , , 

z(Oc) 

(AIII.23) 

If the porous media is saturated, 0 = n, and equation Arrl.23 can be written 

(Am.24) 
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Similar equations can be written for uniform groundwater flow in the y or z dixections. If 
we define a retardan'on factor, R to be 

PbKd 
R = 1 + (ALII.25) 

equation AK[.24 can be written 

(Am.26) 

If the groundwater flow is not uniform (v x • 0, Vy • 0, v z • 0)the rate of solute transport 
by mechanical dispersion is given by equation Am.6. The net rate of solute inflow into the 
control volume becomes 

net rate of solute inflow -•xlvxC - D(OC) - D(OC)-DxzD(•z C)) --- -Dxx •}X -Lixy 

-••--•(vyC -•}(OC) _ •}(0C)_ •}(OC)'• -Dyx •x -DYY'•y -uy z 8z j 

- D•, 8y - 
or 

net rate of solut• inflow--- •-• (vxC)-•-•(vyC)-•(vzC) 
,,, - 8•(oc) _ 8•(oc) + Dxx ø•2(0C) + ax a D•y 8xay' + •" axSz 

- a2(0c)+D 8•(0C) - a•(0C) 
+ Dyx 8ySx YY 8y2 ' + Dyz' 8y•iz 

ø•2(0C) -- a2(0C) D 
+ Dz• az•x + u• az•Y + • •z • 

(AIII. 27) 

If we substitute equations AIR. 18, ALII. 19, and AIII.27 into equation Am. 1 and write the 
a(0C),we arrive at the solute transport rate of change of solute mass in the control volume as -•- 

equation for nonuniform flow 
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4?6 Derivation of Equations of Solute Transpon Problems 

a(ec) 
,,, 

(AIII. 28) 

If the porous media is saturated, O = n, and equation ALII.28 can be written 

Equation AHI.29 can also be written using the retardation factor (equation AIII.25) 

-•xk n ]- o•yk n Y- c3zk n ]-),.RC (Am. a0) 
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Problems 

1. Derive the solute transport equation for problems with axisymmetry. 

0(0c) 
Ot 

(Am.31) 

2. Rewrite equation AIII.26 if the porous media is saturated 

(AIII.32) 

3. Using data from a field tracer test, the longitudinal and transverse dispersivity of an 
aquifer were determined to bc 12 m and 1 m, respectively. Compute the coefficients 
for mechanical dispersion for each element in the mesh shown below 

'(1)/ 
(2) 

q, 

qw 

element v v 

1 2 -2 
2 3 -1 
3 3 0 
4 3 1 
5 2 2 
6 2 3 
7 3 -1 
8 3 0 
9 3 0 
10 2 1 
11 2 1 
12 2 2 
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Appendix IV 

CONCEPTS FROM LINEAR ALGEBRA USED IN 
THE FINITE ELEMENT METHOD 

The finite element method involves many operations on systems of equations and these 
are best handled using matrices. A typical system of linear algebraic equations has the form 

(AIV.•) 

where each of the n equations contains m unknowns ( x 1, x 2 ..... x m ) and m+l known 
coefficients ( the all, ai2, .... aim, fi, where i is any equation ). Equation AIV. 1 can also 
be written in matrix form as 

a• a•2 '" a•m][X• f• 
(AIV.2) 

where each set of terms enclosed in brackets or braces is a matrix (plural matrices). A 
matrix is simply a rectangular array of numbers. If we use capital letters to denoted each 
mau'ix in equation AIV.2 we can rewrite that equation in the form 

[A] {X} = {F} (AIV.3) 

where 

all a12 '" aim] Xl 
(AIV.4) 

A matrix consists of one or more rows of numbers and one or more columns of numbers. 
Thus the matrix A contains n rows and m columns, the matrices {X} and {F} contain m 
rows and 1 column. A matrix with 1 row is termed a row matr/x. A matrix with 1 column 
is termed a column matrix or vector. Thus matrices {X} and { F} are vectors. Some other 
der'tuitions are 

478 

Water Resources Monograph
Groundwater Modeling by 
the Finite Element Method Vol. 13

Copyright American Geophysical Union



Appendix IV 479 

1. The size of a matrix is the number of rows and columns the matrix contains. The size 
is written as two numbers separated by an "x" representing a cartesian product e.g. 3 x 
2 where the first number is the number of rows and the second is the number of 
columns. Some examples are 

4 

35 12 
size: 3x 3 3 xl 2 x 3 

2. A square matrix has an equal number of rows and columns ( n = m ). Some examples 

13 
lxl 2x2 3x3 

3. The main diagonal of a matrix is the set of positions in the matrix where the row 
number and column numbers are equal. If we use aij to designate any number that is in 
row i and column j then the main diagonal is given by aij for all i = j. Some examples 

4. In a symmetric matrix the numbers in positions on opposites sides of the main diagonal 
are equal. That is aij = aji for all i, j. Some examples 

a12 = a21 

2 

a12 = a21 

a13 = a31 

az• = a• 

5. In a diagonal marr/x, all positions in the matrix not on the main diagonal are zero. That 
is aij = 0 for all i •e j. An example 

1 / 
o o',.A LO ',.J 
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480 Concepts from Linear Algebra used in the Finite Element Method Problems 

6. The identity matrix is a diagonal matrix where aij = 1 for all i = j. An example 

1 also written 1 

0 

An identity matrix is usually designated by the letter [I] regardless of the size of the 
matrix. 

7. In upper and lower triangular matrices all positions below and above the main diagonal, 
respectively are occupied by zeros. Some examples 

2 also written 4 

54 543 
lower triangular matrix 

2 also written 2 

00 

upper triangular matrix 

8. The transpose of a matrix is a matrix obtained by interchanging numbers usipg the rule 

aij = aji 
transpose original 

The superscript "T" is used to designate the transpose of a matrix. Some examples 

lB]: [4 

5 3 

9. Matrix addition involves the addition of entries in corresponding positions of two 
matrices to form a new matrix. If [C] = [A] + [B] then cij = aij + bij for all i and j. An 
example 

[A] = 5 
8 

[C] = [AI + lB] = 

lB]= 4 
7 

(4+3) (5+4) (6+5)• = 173 171 (7+6) (8+7) 

Matrix addition is commutative (i.e., [A] + [B] = [B] + [A]) and associative (i.e., ([A] + 
[B]) + [C] = [A] + (lB] + [el). 

Water Resources Monograph
Groundwater Modeling by 
the Finite Element Method Vol. 13

Copyright American Geophysical Union



Appendix IV 481 

10. Matrix subtraction involves the subtraction of numbers in corresponding positions in 
two matrices to form a new matrix. If [C'] = [A] - [B] then cij = aij - bij for all i and j. 
An example 

1 

(6-2) (3-1) (4-0), 2 

Matrix subtraction is commutativc and associative. 

11. Matrix multiplication of a pair of matrices [A] and [B] to form a new matrix [C] is only 
defined if the number of columns of [A] is equal to the number of rows of lB]. If the 
size of [A] is n x m and the the size of [B] is m x r, then multiplication of these two 
matrices is given by 

where 

It] = [AI [B] 
nxr nxm mxr 

cij-- •a•bkj i=lton, j=ltor 
k=l 

The number of rows of [C] is the same as the number of rows of [A] and the number of 
columns of [C] is the same as the number of columns of [B]. An example 

[C] =[Ai[B] = [(1)(5)+(2)(8) (1)(6)+(2)(9) (1)(7)+(2)(0)] 2x3 2x22x3 (3)(5)+(4)(8) (3)(6)+(4)(9) (3)(7)+(4)(0)J 

_[21 24 7] 47 54 21 

Matrix multiplication is not communative (i.e., [A][B] ½ [B][A]) but it is associative 
(i.e., ([A][B])[C] = [A]([B][C])). 

12. The determinant of a matrix is a single number that is only defined for square matrices. 
The determinant has several uses, principly in matrix inversion (to be described next). 
Although it is possible to calculate the determinant for a square matrix of any size we 
only need to consider three cases: 

a. Let [A] = [all ]. Then the determinant of [A] written [A [ = all 
lxl 
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482 Concepts from Linear Algebra used in the Finite Element Meff•od Problems 

b. Let[A] = [ al! a121 
La21 a22J 

2x2 

Then IAI = alia22-a12a21 

Example 

[AI = (2)(4)- (1)(3) = 5 

c. Let [A] = 

3x3 

all a12 a131 
a21 a22 a23[ 
a•l a•2 a•.{ 

Then IAI = all(a22a33 - a32a23) - a12(a21a33 - a31a23) + a13(a21a32 - a3]a22) 

Example 

[A] = 0 1 
32 

{A{ = 1 (1 - 0) - 2(0 - 0) + 3(0 - 3) = -8 

13. The inverse of a matrix is a new matrix of the same size as the original matrix. The 
inverse operation is only defined for square matrices with nonzero determinants. 
Although it is possible to calculate the inverse of a square matrix of any size (although it 
is very difficult for large matrices ), we only need to consider three cases: 

a. Let [A] = [all]. Then the inverse matrix for [A] written [A] -] is 

a2] a22.] 
1 r a22 -al2] [A]-I = '{•'•L-a2! allj 

Example 

{A{ = (2)(3)-(5)(1) = 1 

[A]-I= 11-[_31 -253 = [__31 -253 
all a12 a13] 

c. Let [A] -- a21 a22 a23 {. Then [A] -1-- i--•{[B]T 
a•l a32 a33.1 
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b12 b13] . TI• matrix [B] =[bb:: b22 b23 is called the classicaladjoint matrix of the matrix [A]. Lbs• t•2 
The entries of lB] are given by 

bll = a22a33 - a23a32 
b12 =-a21a33 + a23a31 
b13 = a21a32 - a31a22 
b21 =-a12a33 + a13a32 
b22= alla33 - a13a31 
b23 =-a•a32 + a•2a3! 
b3! = a12a23 - a13a22 
b32 =-alia23 + a13a21 
b33 = alla22 - a12a21 

Example 

Let[A] = -4 
-1 

Then IAI = -46 and 

bll = (-4)(5) - (2)(-1) =-18 
b12=-( 0)(5) + ( 2)( 1)= 2 
b13= (0)(-1) - (-4)( 1)= 4 
b21 =-( 3)(5) + (-4)(-1) = -11 
b22-- (2)(-5)- (-4)( 1)= 14 
b23=-(2)(-1) + ( 3)( 1)= 5 
b31 = ( 3)( 2)- (-4)(-4)=-10 
b32 =--( 2)(2) + (-4)(0) = -4 
b33= ( 2)(-4)- (0)( 3)= -8 

18/46 11/46 and [A]-•=-2/46-14/46 
- 4/46 - 5/46 

10/46] 
4/46 [ 
8/4• j 
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484 Concepts from Linear Algebra used in the Finite Element Method Problems 

Problems 

1. Given the following matrices, 

find: 

a. [A] 'r, [B] 'r 
b. [A] + [B], []{] + [A] 

c. [A] - [B], [B] - [A] 

d. [AI[B], 

f. [A-•], [B -•] 

2. Given the following matrices, 

[!'i] [A] = 4 
2 

f'md: 

a. [A] 'r, [tq 'r 
b. [A] + [B], [B] + [A] 

c. [A] - [B], [B] - [A] 

is]= 12 
1 1 

d. [AI[B], [B][A] 

f. [A-•], [•-•1 

3. Given the following matrices, 

[B] -- 2 1 
f'md: 

a. [B]T[K] 
b. [K][B] 

½. [J"l] [K][B] 

d. [BIT[j-I] T [K][J-•][B] 
½. Let [C] = [B]T [K][B], find [C-'] and I cl 
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Appendix V 

PROPERTIES OF SELECTED AQUIFER 
MATERIALS 

Table AV.1 Physical properties of selected aquifer materials. 

Hydraulic Specific Bulk 
Material Conductivity, K Storage, Ss* Porosity, n Density, Pb 

(m/s) (m -1) (kg/m 3) 

Gravel 10 ø - 10 'a 0.1 - 0.3 0.20- 0.40 1200- 1800 
Sand 10 '2 - 10 '6 0.1 - 0.4 0.25 - 0.55 1300- 1900 
Silt 10 '$ - 10 '7 0.2 - 0.4 0.35 - 0.60 1200- 1800 
Clay 10 '? - 10 '•ø 0.05 - 0.2 0.35 - 0.55 1000- 1600 
Sandstone 10 '• - 10 '•ø 0.01 - 0.2 0.25 - 0.$0 2000- 2400 
Siltstone 10 's - 10 '•2 0.01 - 0.2 0.20 - 0.40 2000- 2400 
Shale 10 '9 - 10 '13 0.01 - 0.08 0.01 - 0.10 2000- 2400 
Limestone 

(No solution cavities) 10 '• - 10 '•ø 0.01 - 0.05 0.01 - 0.20 2000 - 2500 
(solution cavities) 10 '2 - 10 '6 0.01 - 0.20 0 05 - 0.55 1800 - 2000 
Igneous & Metamorphic 
(fractured) 10 '4- 10 's 0.01 - 0.05 0.05 - 0.15 2000- 2500 
(unfractured) 10 'lø- 10 '!4 ~ 0 0.01 - 0.05 2400- 3000 
Basalt 

(fractured) 10 '2- 10 '7 0.01 - 0.20 0.05 - 0.35 2000- 2400 
(unfractured) 10 'lø- 10 '14 ~ 0 0.01 - 0.10 2400- 2800 
Tuff/Brex:cia 10 '• - 10 '9 0.01 - 0.05 0.05 - 0.25 2000- 2400 

* These values are for unconfined aquifers (see Chapter 20). Values for conf'med aquifers 
will bc 100 to 1000 times smaller. 
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486 Appendix V 

Table AV.2 Aquifer dispersivities after Anderson(1979). 

Porosity, n a L aT/aL 
(m) (m) 

, 

Alluvium 

Glacial Deposits 

Limestone 

Fractured Basalt 

0.40 61 0.3 
0.40 61 0.01 
0.30 30.5 1.0 

- 30.5 1.0 
- 15 0.067 

0.20 12 0.33 
0.20 3.05 0.3 

0.35 21.3 0.2 

0.35 61 0.3 
0.25 6.7 0.1 

0.10 91 1.5 
0.10 91 1.0 

- 30.5 0.6 
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Advection, 470 
Analytical method, 5-9 
Apparent groundwater velocities, 

232-248 

Aquifer properties, 485-486 
Assembling global system of equations, 

142-151 

Axisymmetric problems, 21, 79-80, 
166-167, 462-463, 468, 477 

Backward difference, 57 
Bandwidth (see Semi-bandwidth) 
Boundary conditions: 

(see Dirichlet and Neumann boundary 
conditions) 

Boundary value problem, 5 

Central difference, 57 
Choleski Method: 

nonsymmetric matfix, 177-181, 
185-189 

solute transport, 198-200 
steady-state, saturated flow, 191 
symmetric matrix, 181-185, 189-191 
transient, saturated flow, 203-212 

Collocation Method, 33 
Computer Programs: 
main programs: 

GW1,257-262 
GW2, 262-267 
GW3, 267-280 
GW4, 280-283 
ST1,283-302 

subprograms: 
ASMBAD, 423-443 
ASMBK, 331-362 
ASMBKC, 406-419 
BOUND, 325-330 
DECOMP, 363-370 
DUMP, 393-399 
ELEMENT, 311-317 
INITIAL, 400-405 
NODES, 303-310 
MATERL, 318-324 
RHS, 420-422 
SOLVE, 363-370 
VELOCITY, 371-392 

Confined aquifer, 446-448 
Consistent formulation, 52, 62-63 
Coordinate systems: 

local, 101 
global, 101 

Coordiaate system transformations: 
one-dimensional, 103, 115-117 
two-dimensional, 117-118 
three-dimensional, 118-119 

Crank-Nicholson Method, 57 

Decay constant, 65, 474 
Derivation of governing equations: 

solute u'ansport, 464-476 
steady-state, saturated flow, 458-461 
steady-state, unsaturated flow, 

460-461 
transient, saturated flow, 464-467 
transient, unsaturated flow, 465-467 

Diffusion, 470-471 
Diffusivity, 220 
Dirichlet Boundary Conditions, 152 
Dirichlet Nodes, 16 
Dispersion coefficients, 470-471 
Dispersivity, 471-472 
Distribution coefficient, 64, 473 
Distributed source or sink, 159 

Effective stress, 465 
Eigenvalues, 194 
Element matrix formulas: 

advection-dispersion matrix, 87-88, 
123-125, 133-135 
linear bar element, 89 
linear rectangle element, 98-99 
linear triangle element, 93-94 

capacitance matrix, 86-87, 122-123, 
132-133 
linear bar element, 89 
linear rectangle element, 97-98 
linear triangle element, 93 

conductance matrix, 86, 120-121, 136, 
131-132 
linear bar element, 89 
linear rectangle element, 97 
linear tdangle element, 92-95 

sorption matrix, 88, 125 
linear bar element, 90 
linear rectangle element, 98-99 
linear triangle, 94 

Element matrix subprograms: 
advection-dispersion matrix [D(e)]: 

linear bar element, 435 
linear parallelepiped element, 440 
linear quadrilateral element, 438 
linear rectangle element, 437 
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linear triangle element, 435 
apparent groundwater velocity: 

cubic bar element, 378 
cubic parallelepiped element, 390 
cubic quadrilateral element, 384 
linear bar element, 377 
linear parallelepiped element, 385 
linear quadrilateral element, 381 
linear rectangle element, 380 
linear triangle element, 379 
quadratic bar element, 377 
quadratic parallelepiped element, 387 
quadratic quadrilateral element, 382 

capacitance matrix [C(e)]: 
linear bar element, 414 
linear parallelepiped element, 418 
linear quadrilateral element, 416 
linear rectangle element, 415 
linear triangle element, 415 

conductance matrix [K(e)l: 
cubic bar element, 345 
cubic parallelepiped element, 359 
cubic quadrilateral element, 352 
linear bar element, 344 
linear parallelepiped element, 354 
linear quadrilateral element, 348 
linear rectangle element, 347 
linear triangle element, 346 
quadratic bar element, 344 
quadratic parallelepiped element, 356 
quadratic quadrilateral element, 350 

sorpfion matrix [A(e)]: 
linear bar element, 429 
linear rectangle element, 430 
linear triangle element, 430 
linear quadrilateral element, 431 
linear parallelepiped element, 433 

Element resultants, 226 
Examples: 

advection-dispersion matrix calculation 
(linear triangle), 95-96 

advection-dispersion matrix derivation 
(linear rectangle), 99-100 

analytical solution, 8 
apparent groundwater velocity 

calculation, 235,236, 240-248 
assembling global system of equations, 

143-144, 144-145, 147-152 
average value of head, 231-232 
capacitance matfix derivation (linear 

rectangle), 100-101 
Choleski method, 178-179, 180-181, 

184-185, 187, 188-189, 190 

concentration at point within element, 
229 

conductance matrix calculation (linear 
quadrilateral), 138-141 

conductance matrix calculation (linear 
triangle), 95 

conductance matrix derivation (linear 
triangle), 94 

head at point within element, 227-228, 
229 

lacobian matrix calculation, 117, 
119-120 

modification of global system of 
equations, 154-155 

Newton-Raphson method, 210-212 
number of Gauss points, 138 
numerical integration, 128-130 
Picard iteration, 203-205, 206-208 
semi-bandwidth calculation, 16 
size of time step, 194-195, 199-200 
solute transport equation, 69-73 
sorpfion matrix derivation (linear 

triangle), 91-92 
specified flow matrix, 47, 158, 159, 160, 

162-165 

steady-state, saturated groundwater flow, 
35-42 

transient, saturated groundwater flow, 
57-60 

Finite difference method, 9-10, 55-57 
Finite element mesh: 

examples, 22-27 
rules for drawing, 16-21 

Finite element method, 9-11 
Fluid compressibility, 465 
Forward difference, 57 
Full matrix storage, 177 

Galerkin's method, 34 
Gauss point, 126 
Gauss points (table), 127 
Gauss quadrature, 126-131 

Hysteresis, 213 

Initial value problem, 5 
Interpolation functions: 

continuity, 80-81 
convergence, 81-82 
definition, 30 
one-dimensional elements, 32, 89, 

103-105 
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two-dimensional elements, 90, 96, 
105-109 

three-dimensional elements, 109-115 

Instability, 192 
Integration by parts, 37 
Isoparametric elements, 82-85 

$acobian matrix, 116-120 
$acobian matrix inverse, 116 

Linear algebra, 478-483 
Lumped formulation, 53-54, 63-64 

Mass balance calculations, 452-456 
Matrix operations, 478-483 
Mechanical dispersion, 471 
Method of weighted residuals, 30 
Model calibration, 451,456 
Model prediction, 451,456 
Model verification, 451,456 
Modification of system of equations, 

152-165 

Neumann boundary conditions, 155-165 
Neumann nodes, 16 
Newton Raphson Method, 208-212 
Node numbering, 16-18 
Node placement, 16-18 
Nonuniform flow, 475 
Numerical integration, 126 
Numerical oscillations, 192-198 
Numerical stability, 192 

Picm.d iteration, 202-208, 213-219 
Point source or sink, 155 

Relatively dry porous media, 220 
Residual, 30 
Retardation factor, 475 
Richm'd's equation, 467 

Sensitivity analysis, 450 
Semibandwidth, 16 
Shape functions, 82-85 
Solute transport: 

saturated groundwater flow, 76-78 
steady-state groundwater flow, 65-69 
transient groundwater flow, 73-76 
uniform flow, 64-65 

Sorpfion, 473 
Specific moisture capacity, 61 
Specific storage, 465 
Subdomain method, 33-34 
SUbparametric elements, 82-85 
Superparametric elements, 82-85 

Time step (choice of), 191-200 

Unconfined aquifer, 447-450 
Uniform groundwater flow, 64, 474 

V ariational method, 30 
Vector storage, 185-190 
Verification, 451, 456 

Weighting function, 30-34 
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