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Preface

The finite element method is now widely used to solve a variety of important problems
in the field of groundwater hydrology. Thus a clear understanding of the method is
essential to scientists and engineers working in this field. The goal of this book is to
provide the reader with the basic skills needed to use the finite element method to solve
"real-world" problems. Examples are used throughout the text to illustrate each step in the
solution process.

The text is divided into three parts. In the Part 1, the basic concepts of the finite
element method are presented. Chapters 2 to 6 present a step-by-step application of the
finite element method to problems of groundwater flow and solute transport. Techniques
for dividing an aquifer system into a suitable finite element mesh are described in Chapter
2. A number of practical "rules" are presented for locating and numbering nodes and for
selecting the proper element type, size, and shape. In Chapter 3, the method of weighted
residuals is used to derive the integral formulations of the equations governing steady-state
and transient groundwater flow and solute transport through saturated and unsaturated
porous media. The derivations are presented for one-, two-, and three-dimensional
problems; the integral formulations for axisymmetric problems are derived in an exercise.
The derivations are unique in that they do not require the reader to be familiar with
advanced mathematics; although a basic understanding of differential and integral calculus
is assumed. In Chapter 4, the important properties of element interpolation functions are
discussed at length. Expressions are presented for computing the element conductance,
capacitance, advection-dispersion, and sorption matrices for each element type and for
assembling the element matrices into a system of linear or nonlinear equations. Procedures
are also presented for modifying this system of equations for different types of boundary
conditions (such as constant head or no-flow boundaries) Procedures for solving the
system of equations are presented in Chapter 5. In Chapter 6, procedures are presented for
using computed values of hydraulic head (or pressure head or solute concentration) to
compute rates of groundwater flow and solute flux.

In Part 2, the computer implementation of the finite element method is discussed. Each
chapter contains a description of one or more FORTRAN subroutines, example input data
and output, and the complete source code listing. The same subroutines are also available
on diskette. These subroutines, although intended for instructional purposes, contain many
advanced features. Most importantly the "modular” design of these subroutines means that
they form convenient "building blocks” for several different finite element computer
programs.

Part 3 is concemed with applications of the material in Parts 1 and 2 to "real-world"
problems. Chapter 20 discusses applications to problems of regional groundwater flow.
Chapter 21 discusses solute transport with application to problems of groundwater
contamination from point and diffuse sources.

Useful supplementary information is contained in the Appendices. Detailed derivations
of the equations of groundwater flow and solute transport are presented in Appendices I,
II, and II. A concise review of important topics from linear algebra is in Appendix IV.
Typical values of physical properties for selected aquifer materials are in Appendix V.

The author would like to thank the many individuals and institutions who helped to
make this book possible. Former graduate students Richard Cooper, Jeffrey Smith and
Alan Rea helped with the development of the computer programs. Sang Bong Lee
carefully read (and reread) early versions of the manuscript and helped me correct

xiii
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computational errors in the example problems. Janet Lee helped me with the computer
programming (but any remaining bugs are my fault!). Joan Istok drew the example finite
element meshes in Chapter 2. I also wish to thank Jing Leung, Jonathan Yap, and Elvina
Lim - who typeset the entire book on a Macintosh computer. They did a terrific job!

The Oregon Agricultural Experiment Station and the U.S. Geological Survey provided
financial support for this project. I also wish to thank the students in my groundwater
modeling classes who mugﬂt me a lot about the finite element method while I was trying to
explain it to them. I also wish to thank Francis Hall for his interest in this project. It
provided a needed lift when my enthusiasm had almost run out.

Jonathan Istok

Department of Civil Engineering
Oregon State University
Corvallis, Oregon 97331
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Chapter 1

INTRODUCTION

1.1 GROUNDWATER FLOW AND SOLUTE TRANSPORT MODELS

Groundwater is an important natural resource. Many agricultural, domestic, and
industrial water users rely on groundwater as the sole source of low-cost, high-quality
water. However, in recent years it has become apparent that many human activities can
have a negative impact on both the quantity and quality of the groundwater resource. Two
examples are the depletion of the groundwater resource by excessive pumping and the
contamination of the groundwater resource by waste disposal and other activities. One way
to objectively assess the impact of existing or proposed activities on groundwater quantity
and quality is through the use of groundwater flow and solute transport models.

In developing a groundwater flow or solute transport model the analyst begins by
preparing a conceptual model consisting of a list of the physical and chemical processes
suspected of governing the behavior of the system being studied (e.g., groundwater
seepage through soil and rock pores, laminar and turbulent water flow through large pores
and rock fractures, and solute transport by advection, dispersion, and diffusion). The next
step is to translate the conceptual model into mathematical terms and the result is a
mathematical model consisting of one or more partial differential equations and a set of
auxillary conditions. Solutions of the equations subject to the auxilliary conditions can be
obtained by one of several methods (see below). If numerical methods are used, the
collection of partial differential equations, auxilliary conditions, and numerical algorithms
are referred to as a numerical model. If a computer program is used to implement the
numerical model (as is usually done) the computer program is sometimes referred to as a
computer model .

Existing mathematical models of groundwater flow and solute transport are necessarily
greatly simplified descriptions of reality. The movement of water and solutes from the
surface of the earth to the aquifer, and through the aquifer to a point of water use is an
extremely complex phenomenom and many of the physical and chemical processes
involved are poorly understood. It is therefore difficult to translate all of these processes-
into a single set of equations that apply equally well to all situations encountered in practice.
Instead the usual approach has been to classify groundwater flow and solute transport
problems into categories and to develop mathematical and numerical models for each
category separately. In this book we will consider five such categories: (1) steady-state,
saturated groundwater flow, (2) steady-state, unsaturated groundwater flow, (3) ransient
(or time-dependent), saturated groundwater flow, (4) transient, unsaturated groundwater
flow, and (5) solute transport. The partial differential equations used in mathematical
models of groundwater flow and solute transport for each problem category are:

a%(K,%E) + %(Kyg—;‘) + %(Kzg—:) =0 (1.1)
3
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9 0 d
a—x(Kx(‘”%)*a—y(Ky(‘v)aa—‘}')*?a;(Kz(‘l"(%*1))=° 1.2)
3__The T ient. Sat ted Fl E tion:
d(, oh) (., ah) d(, oh) _ah
w5 5 (o%) 5(8) = S5 (1.3)
{_ The T. ient. Unsat ted Fl E tion;

2(kwi)+ 2(kwit) skw(FE 1)) =cwF e

S._The Solute Transport Equation:

2 2 2

2 ay’

= 2,0~ L(0eK.C) - MOC + Py C) 1.5
RO 5

where h is hydraulic head, Ky, Ky, and K, are the components of saturated hydraulic
conductivity in the x, y, and z coordinate directions, t is time, W is pressure head, K, (y),
Ky(\v), and K,(y) are the components of unsaturated hydraulic conductivity, S is specific
storage, C(y) is specific moisture capacity, C is solute concentration, Dy, Dy, and D, are
dispersion coefficients, 0 is the volumetric water content, vy is apparent groundwater

velocity in the x coordinate direction, py, is bulk density, K is the equilibrium distribution
coefficient for a particular sorption/desorption reaction involving the solute and the porous

media, and A is the solute decay coefficient.

Equations 1.1 to 1.5 are derived in Appendices I, II, and III. These derivations should
be studied carefully and the simplifying assumptions used in the derivations should always
be kept in mind when using these equations to solve a particular groundwater flow or
solute transport problem. Partial differential equations can also be derived for additional
categories of problems including energy flow (e.g., the flow of heat in a geothermal
reservoir), multiphase fluid flow (e.g., the simultaneous flow of air, water, oil, and natural
gas in a petroleum reservoir), aquifer deformation (e.g., the consolidation of an aquifer due
to excessive groundwater withdrawl), and more complex forms of solute transport (e.g.,
solute transport subject to microbial degradation). Although this book is concerned only
with the application of the finite element method to the solution of equations 1.1 to 1.5,
marll,)l' of the same procedures also can be used to solve equations derived for other types of
problems.

The mathematical model for each category of groundwater flow and solute transport
problems consists of one of the partial differential equations listed above and a set of
auxilliary conditions. The auxilliary conditions for equations 1.1 to 1.5 are classified as

Copyright American Geophysical Union
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either boundary conditions or initial conditions (defined in sections 1.2 and 1.3,
respectively). A mathematical model consisting of one or more partial differential equations
and a set of boundary conditions is referred to as a boundary value problem; a
mathematical model consisting of one or more partial differential equations, a set of -
boundary conditions, and a set of initial conditions is referred to as an initial value problem.

1.2 BOUNDARY VALUE PROBLEMS

Mathematical models of groundwater flow based on equations 1.1 or 1.2 are classified
as boundary value problems. In boundary value problems, the analyst can specify the
value of the unknown quantity or field variable (i.e., hydraulic head or pressure head)
along portions of the aquifer boundaries. Derivatives of the field variable (i.e., rates of
groundwater flow) also can be specified along portions of the aquifer boundaries (e.g. to
represent groundwater recharge) or at special points within the aquifer called point sources
or sinks (e.g. to represent groundwater withdrawl from wells). These specified values
are collectively referred to as boundary conditions and when they are combined with
equation 1.1 or 1.2 the result is a mathematical model that can be solved for values of the
field variable at any point within the aquifer. Examples of boundary value problems and
boundary conditions are in Figure 1.1. In boundary value problems, boundary conditions
and computed values of the field variable do not change with time and the minimum and
maximum values of the field variable always occur on the boundaries of the aquifer or at
point sources or sinks.

1.3 INITIAL VALUE PROBLEMS

Mathematical models of groundwater flow and solute transport based on equations 1.3,
1.4, or 1.5 are classified as initial value problems. In initial value problems, boundary
conditions, i.e., specified values of the field variable (hydraulic head, pressure head, or
solute concentration) and its derivatives (rates of groundwater flow or solute flux), are
specified in the same way as for boundary value problems. In addition, values of the field
variable must be specified at 3]] points within the aquifer at some initial time t; and these
specified values are collectively referred to as initial conditions. When the boundary
conditions and initial conditions are combined with equation 1.3, 1.4, or 1.5, the resultis a
mathematical model that can be solved for values of the field variable at any point in the
aquifer at any time t> t5. Some examples of initial value problems, boundary conditions,
and initial conditions are in Figure 1.2. In initial value problems, boundary conditions and
computed values of the field variable can change with time and the minimum and maximum
values of the field variable at time t can occur at any point within the aquifer.

1.4 ANALYTICAL METHODS FOR SOLVING THE EQUATIONS

In general we can use two types of methods to obtain solutions to 2 mathematical model
of groundwater flow or solute transport: analytical methods and numerical methods.
When using analytical methods we seek to obtain a functional representation for the
solution of the partial differential equation (e.g, a mathematical expression that gives
hydraulic head as a function of position and time within the aquifer). The accuracy of
analytical solutions can be very good (exact in many cases) and analytical solutions to
equations 1.1 to 1.5 are widely used to study the behavior of groundwater flow and
transport processes under hypothetical conditions (e.g., to determine the sensitivity of
computed values of hydraulic head to values of saturated hydraulic conductivity), to

Copyright American Geophysical Union
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Plan Vi £ Alluvial Aquif
River
* (Constant head boundary) Valley Walls

* (No flow boundaries)

Pumping Well

*( Specified rate of
groundwater

flow : point sink )

Cross-Sectional View of Earth D
Upstream Face of Dam Water Table
*(Constant head boundary) *(Pressure head = 0)

Downstream Face of Dam
¥*(Constant head boundary)

Low Permeability Bedrock
*(No flow boundaries)

Figure 1.1 Examples of boundary value problems and boundary conditions for
steady-state, saturated groundwater flow, ®* = boundary condition.
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Pumping Well . ** Initial Position of Water
*(Specified rate of Table att =t
groundwater flow) ™

DA M ARV AV M ARV N

CAC AT A A A MRV A N N
........................

............. -

Position of Water
\ Tableatt; >tg
T ae ey

Position of Water
Table att, >t
Low Permeability Bedrock
*(No flow boundary)
Cross-Secti Vie Aaquifer
Leaking Landfill

* (Specified rate of solute flux)

** Initially No Contaminant
Present in Aquifer

Position of Plume
att; >tg

Position of Plume
atty, >ty

Figure 1.2

Examples of initial value problems, * = boundary condition, **
condition.

initial
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interpret data from laboratory and field experiments (e.g., to compute values of dispersion
coefficients for a soil sample in a laboratory column from the results of a miscible
displacement experiment), and to verify the accuracy of solutions obtained by numerical
methods (e.g., by comparing computed solute concentrations obtained using analytical and
numerical methods for a wide range of apparent groundwater velocities and dispersion
cocfficients).

Example
Problem Statement:

One-dimensional, steady-state, groundwater flow through isotropic and homogeneous
aquifer (v = 0.01 m/d; D, = 1 m?/d). '

Solute transport by advection and dispersion only. No solute decay (A = 0) or sorption
of solute to porous media (K4 = 0).

Initially no solute is present. At time t = 0, solute concentration at one end of aquifer is
increased instantaneously to 100 mg/1.
Compute solute concentration at x = 100m, t = 500 days
Mathematical Model:
Partial Differential Equation

ac ’c _ac
= D,—-v,5— (see Appendix IIT)
T‘-t- ax2 ox PP

Boundary Conditions
C(x=0,t>0) = 100 mgA

Initial Conditions
C(x>0,t=0)=0

Solution Obtained by Analvtical Method (Ogata. 1970);

Cx=0,t>0) X = vyt VX X+ vt
Cix,t) = 3 l:erfc [ + exp (—] erfc| ——
ZJD_Xt] Dy 24/Dyt
_ 100 100 - 0.01(500) 0.01(100) 100 + 0.01(500)
C(100,500) = 2 [erfc (—2 ’_(l)(SOO J+ exp ( 1 )erfc ( > '_—(1)(500 J:I

= 50 [erfc (2.124) + exp (1) erfc (2.348)]

(values of the complementary error function, erfc( ) are tabulated in Freeze and
Cherry (1979))

Copyright American Geophysical Union



Groundwater Modeling by
Water Resources Monograph the Finite Element Method Vol. 13

Chapter 1 9

= 50 [0.002711 + 2.718(0.000925)] = 0.26 mg/l

The principal limitation of analytical methods is that solutions can only be obtained by
imposing severely restrictive assumptions about aquifer properties, boundary conditions,
or initial conditions. For example, an assumption commonly made to obtain analytical
solutions to equation 1.1 is that the aquifer is isotropic and homogeneous for hydraulic
conductivity (i.e., that the components of saturated hydraulic conductivity, K,, Ky, and
K, are the same and do not change from point to point within the aquifer). In most field
situations, however, the assumptions required to obtain solutions to groundwater flow or
solute transport problems using analytical methods are not valid.

1.5 NUMERICAL METHODS FOR SOLVING THE EQUATIONS

Numerical methods do not require such restrictive assumptions. For example, it is
possible to obtain numerical solutions for the case of anisotropic and nonhomogeneous
aquifer properties and for problems with complex and time-dependent boundary
conditions. When using numerical methods we seek a discrete approximation for the
solution i.e., computed values of the field variable at a set of specified points within the
aquifer at a set of specified times; the number and location of the points and the number and
choice of times is determined in advance by the analyst. The accuracy of solutions obtained
by numerical methods can be very good (exact in some cases) but depends on several
factors including: the type of numerical method used, the complexity of the boundary and
initial conditions, and the computational precision of the computer used to implement the
method. In general, it is easier to obtain high-accuracy numerical solutions for steady-state
groundwater flow problems than for transient groundwater flow and solute transport
problems and for saturated groundwater flow problems than for unsaturated groundwater
flow problems.

Several types of numerical methods have been used to solve groundwater flow and
solute transport problems, the two principal ones being the finite difference method and
the finite element method. Although the word "method" is singular, these terms actually
refer to two rather large groups of numerical procedures.

The finite difference method was initially applied to the flow of fluids in petroleum
reservoirs (Table 1.1). The method was first applied to problems of groundwater flow and
solute transport in the mid-1960's. The method has a number of advantages that contribute
to its continued widespread use and popularity: (1) for simple problems (e.g., one-
dimensional, steady-state groundwater flow in an isotropic and homogeneous aquifer) the
mathematical formulation and computer implementation are easily underst by those
without advanced training in mathematics or computer programming, (2) good textbooks
are available to help the beginner, (3) efficient numerical algorithms have been developed
for implementing the finite difference method on computers, (4) well-documented computer
programs for solving problems of groundwater flow and solute transport are widely
available at little or no cost, (5) the accuracy of solutions to steady-state and transient

oundwater flow problems is generally quite good, and (6) several case histories have
en published that describe successful applications of the method to the solution of
practical problems.

Unfortunately the finite difference method also has disadvantages: (1) the method
works best for rectangular or prismatic aquifers of uniform composition; it is difficult to
incorporate irregular or curved aquifer boundaries, anisotropic and heterogeneous aquifer
properties, or sloping soil and rock layers into the numerical model without introducing
numerous mathematical and computer programming complexities, (2) the accuracy of
solutions to solute transport problems is lower than can be obtained by the finite element

Copyright American Geophysical Union
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Jopic References

Early Developments in Petroleumn Bruce et al. (1953), Peaceman and Rachford

Reservoir Modeling (1962

Saturated Groundwater Flow Remson et al. (1965), Freeze and Whitherspoon
(1966), Pinder and Bredehoeft (1968).

Unsaturated Groundwater Flow Philip(1957), Aschroft et al. (1962), Freeze
(1971), Brutsaert (1973).

Solute Transport Stone and Brian (1963), Oster et al. (1970),
Tanji et al. (1967), Wierenga (1977).

Application to field problems Orlob and Woods (1967), Gambolati et al.
(1973), Fleck and McDonald (1978).

Comprehensive References Trescott and Larson (1977), Ames (1977),
Mitchell and Griffiths (1980), Lapidus and
Pinder (1982).

Computer Programs '(I'lr;s%c):tt et al. (1976), Konikow and Bredehoeft

78).

Table 1.1 Selected references for the finite difference method.

method (which is now widely used in place of the finite difference method for this
purpose).

The finite element method was first used to solve groundwater flow and solute
transport problems in the early 1970's (Table 1.2). The method has several advantages: (1)
irregular or curved aquifer boundaries, anisotropic and heterogeneous aquifer properties,
and sloping soil and rock layers can be easily incorporated into the numerical model, (2) the
accuracy of solutions to groundwater flow and solute transport problems is very good
(exact in some cases), (3) solutions to the solute transport equation are generally more
accurate than solutions obtained by the finite difference method, and (4) the finite element
method lends itself to modular computer programming wherein a wide variety of types of
problems can be solved using a small set of identical computer procedures.

The principal disadvantages of the finite element method for solving problems of
groundwater flow and solute transport are (1) for simple problems, the finite element
method requires a greater amount of mathematical and computer programming
sophistication than does the finite difference method (although this disadvantage disappears
for more complicated problems), (2) there are fewer well-documented computer programs
and case histories available for the finite element method than for the finite difference
method, and (3) there are few textbooks available to assist the beginner.

The purpose of this book is to help remove some of these disadvantages. Part 1
describes the basic principles of the finite element method as it applies to mathematical
models of groundwater flow and solute transport based on equations 1.1 to 1.5. Obtaining
a numerical solution to a groundwater flow or solute transport problem using the finite
element method is performed in five basic steps that will be described in detail in the next
five chapters. Computer implementation of each of these steps and computer programs for
solving equations 1.1 to 1.5 are in Part 2. The application of the finite element method to
the sglution of practical groundwater flow and solute transport problems is discussed in
Part 3.
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Topic References
Early Developments in Petroleumn Price et al. (1968).

Reservoir Modeling

Saturated Groundwater Flow

Unsaturated Groundwater Flow

Solute Transport

Application to field problems

Comprehensive References

Computer Programs

Zienkiewicz et al. (1966), Javandel and
Witherspoon (1968), Zienkiewicz and Parekh
(1970), Pinder and Frind (1972).

Neuman (1973), Gureghian et al. (1979),
Pickens and Gillham (1980).

Price et al. (1968), Guymon et al. (1970),
Neuman (1973), Van Genuchten et al. (1977),
Kirkner et al. (1984).

Pinder (1973), Gupta and Tanji (1976), Senger
and Fogg (1987).

Ziekiewicz (1971), Pinder and Gray (1977),
Lapidus and Pinder (1982), Huyakorn and
Pinder (1983).

Neuman and Witherspoon (1970), Reeves and
Duguid (1975), Segol et al. (1975), Pickens et
al. (1979)

Table 1.2 Selected references for the finite element method.
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NOTES AND ADDITIONAL READING

1.

This text assumes the reader has a thorough understanding of the basic terminology and
principles of groundwater hydrology. Readers without this background should review
these subjects before proceeding. Excellent books for this purpose are Freeze and
Cherry (1979), de Marsily (1986), de Wiest (1969) and Bear (1979). The reader is
also assumed to have a basic knowledge of differential and integral calculus and linear
algebra but no prior knowledge of numerical methods is required (a concise review of
the concepts from linear algebra used in the finite element method is in Appendix IV).

. Reviews of the historical development of groundwater flow and solute transport models

are in Huyacomn and Pinder (1983) and Prickett (1975).

Analytical solutions to selected groundwater flow and solute transport problems are in
Bear (1979), Javandel et al. (1984), and Bear and Verruijt (1987).

. Reviews of existing computer models for solving groundwater flow and solute

transrort problems by the finite difference and finite element method are in Bachmat et
al. (1978) and Oster (1982). These reports compare model capabilities and give
references for the numerical algorithms used, user documentation, and program
listings.

. An excellent introduction to the use of the finite difference method for solving problems

of l%roux&dwater flow is in Bennett (1978) which is designed as a programmed guide for
self study.

. Segerlind (1984) is an excellent introduction to the finite element method.

Other references for the use of finite difference and finite element methods to solve
groundwater flow and solute transport problems are Remson et al. (1971) (advanced
treatment of finite difference method, introduction to finite element method), Pinder and
Gray (1977) (intermediate treatment of both methods), Wang and Anderson (1982)
(introductory treatment of both methods, contains computer programs in FORTRAN),
Huyakorn and Pinder (1983) (advanced treatment of both methods), and Bear and
ins'lii(j:t)(l987) (intermediate treatnent of both methods, contains computer programs in
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STEP 1: DISCRETIZE THE PROBLEM DOMAIN

The first step in the solution of a groundwater flow or solute transport problem by the
finite element method is to discretize the problem domain (aquifer, soil profile, etc.). This
is done by replacing the problem domain with a collection of rodes (or nodal points) and
elements referred to as the finite element mesh. (Figure 2.1). Elements consist of two or
more nodes joined together by line (or arc) segments. There are different element types for
one-, two-, and three-dimensional problems and for problems with axisymmetry (Figure
2.2). Elements may be of any size, the size and shape of each element in the mesh can be
different, and several different types of elements can be used in a single mesh. The
material properties of the aquifer (e.g., hydraulic conductivity or dispersivity) must be
specified for each element. The values of the material properties are usually assumed to be
constant within each element but are allowed to vary from one element to the next.

The first step in the finite element method then, is to draw the finite element mesh,
Although computer programs are available for this purpose, it has been the author's
experience that except for very large problems (i.e., problems with more than one or two
hundred nodes) or for three-dimensional problems with complex geometry, little (if any)
time is saved by their use. The following procedure will be satisfactory for most problems
encountered in practice. First, prepare a drawing of the problem domain to some
convenient scale on a piece of graph paper. It is desirable that the drawing scale be the
same in each of the coordinate directions although this is not necessary. Next, the finite
element mesh is added to the original drawing or to a transparent overlay by drawing in the
positions of the nodes and the element boundaries. Then, each rode is assigned a node
number and each element is assigned an element number (sec below). As a final step, an
Lr;gut.data file for the finite element computer program can be prepared directly from this

wing,

‘When preparing the finite element mesh it is important to remernber that the precision of
the solution obtained and the level of computational effort required to obtain a solution will
be determnined to a great extent by the number of nodes in the mesh. A coarse mesh has a
smaller number of nodes and will give a lower precision than a fine mesh. However, the
larger the number of nodes in the mesh, the greater will be the required computational effort
and cost. Unfortunately, it is usually not possible to determine in advance the number of
nodes required to achieve a given level of precision. In fact, the only way to determine the
precision of a solution obtained by the finite element method is to repeat the calculations
with a finer mesh to see if the results change significantly. For this reason, it is best to start
with a coarse mesh consisting of only a few nodes. The input data for such a mesh can be
prepared easily and a solution can be obtained with little computational effort. A second,
finer mesh is then prepared that has a greater number of nodes in those parts of the mesh
where the first solution indicates the field variable is varying rapidly or where the most
precise results are required. A second solution is then obtained and compared with the
first. If computed nodal values are significantly different from those obtained from the
coarser mesh, the mesh is again refined and a third solution is obtained. This process is
repeated until there are no significant changes in computed values of the field variable (at
least in the parts of the domain of most interest), Usually no more than two or three mesh
refinements are required.

13
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3 .

b

soil surface

impermeable layer

element

Figure 2.1 Discretization of one-, two-, and three-dimensional problem domains.
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Figure 2.2 Some types of finite elements.
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To prepare a finite element mesh that provides solutions with an acceptable level of

ision with a reasonable amount of computional effort requires considerable practice and
or this reason, this step of the finite element method is still considered an "art” by most
modelers. It helps considerably if the person drawing the mesh is familiar with
groundwater flow and solute transport processes. Being able to visualize the flow or
transport process is especially helpful and the use of roughly sketched flow nets is to be
encouraged. It is important to remember that solutions with similar accuracy can be
obtained from two meshes that appear quite different and, for this reason there is no single
"correct” choice of mesh for a particular problem. The following set of "rules" describe
some of the procedures used by the author to prepare a finite element mesh. These rules
are by no means definitive but they should provide some initial guidance to the
inexperienced modeler.

2.1 RULES FOR NODAL POINT PLACEMENT

The finite element mesh consists of several nodes (problems have been solved with as
many as one million nodes but typically only a few hundred nodes are used). Each node is
assigned a unique node number . Node numbers range from one to the number of nodes in
the mesh; no "skips" in the node numbers are allowed and no two nodes can have the same
node number. Each node also is assigned a set of nodal coordinates . These are the (x),
(x,y), (x,y,2), or (r,z) coordinates of the node.

1. Place nodes along the boundaries of the problem domain, at the location of pumping
wells or other point sources or sinks, and at any point where a computed value of the
field variable is desired (Figure 2.3). Nodes located at points with known values of the
field variable are sometimes called Dirichlet nodes, because they are used to represent
Dirichlet boundary conditions (see section 4.5). Examples are nodes along constant-
head boundaries or at points of known solute concentration (also see Chapter 20).
Nodes located at points with known rates of groundwater flow or solute flux are
sometimes called Neumann nodes, because they are used to represent Neumann
boundary conditions (see section 4.5). Examples are nodes located at production and
injection wells or recharge boundaries (also see Chapter 20).

2. Place nodes closest together in those parts of the problem domain where the field
variable is expected to change most rapidly. This will include regions near point
sources or sinks, and in any other part of the problem domain where gradients in head
or solute concentration are expected to be large (Figure 2.4).

3. Place nodes along the interface between two different materials, for example along the
interface between two soil or rock layers that have different hydraulic conductivities
(Figure 2.5). Because material properties must be constant within an element, an
interface between two different materials will also be an element boundary (see below).

4. Number the nodes to minimize the semi-bandwidth of the resulting system of linear
equations. Minimization of the semi-bandwidth is desirable because the size of the
system of linear equations created by the finite element method can be quite large (see
section 4.5). When this systems of equations is operated on in matrix form, the storage
capacity of many computers can be quickly exceeded. The semi-bandwidth for any
mesh can be computed from: SBW = R+1, where R is the maximum difference in any
two node numbers within a single element in the mesh (if the value of the field variable
is specified at a node however that node is not used in the calculation of R, see section
4.4). The minimum bandwidth for a particular mesh can usually be achieved by
numbering nodes across the narrow dimension of the problem domain (Figure 2.6).
For problems with very complex geometry, a computer program may be required to
minimize the semi-bandwidth of the matrix.
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impermeable boundary

constant head . ‘ constant head

bo
boundary $™ 14— 11 o

pumping well, pumping rate = Q

Figure 2.3 Place nodes along boundaries of problem domain and at point sources
and sinks.

pumping well

Figure 2.4 Place nodes close together where values of the field variable are expected
to change rapidly.
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£ .y ~

comect ~  material intecface

Figure 2.5 Correct nodal placement at the interface of two different materials.

node numbers
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7 10 13 16

15 16 17 18

13 14
SBW =R+l
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9] 10 11 12
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Figure 2.6 Numbering nodes to minimize semi-bandwidth of system of equations.
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2.2 ,RULES FOR SELECTING ELEMENT SIZE, SHAPE, AND
PLACEMENT

The size and shape of the elemeats in a mesh is determined primarily by the size and
shape of the problem domain, the number of different types of aquifer materials, and by the
number of nodes in the mesh. In problems that have a complex geometry (e.g., caused by
an irregular depth to bedrock) or geologic structure (e.g., due to the presence of faults)
many elements will be required. In problems with a simple geometry (e.g., shallow
alluvial aquifer underlain by horizortal bedrock) fewer elements will be required. If the
problem domain contains curved botndaries or interfaces different types of elements may
be used than if the boundaries and icterfaces consist of straight lines or planes. Elements
will generally be smaller in parts of the mesh where the field variable is changing rapidly,
because nodes will be placed closest together in these areas. When drawing the finite
element mesh, each element is assigned a unique element number. In most computer
programs, the element numbers begin with one and continue sequentially to the number of
clements in the mesh. However, the way that element numbers are assigned will have no
effect on the size or semi-bandwidth of the matrices generated during the solution process.
Each element is defined using two or more nodes; the nodal coordinates define the size and
shape of the element. For this reason the node numbers for each element are listed. Some
convention is used to insure that node numbers for all elements of a given type in the mesh
are listed in the same way (see Chaper 4). The material properties also must be specified
for each element in the mesh. Becazase, in most cases, the material properties for several
elements will be the same (e.g., all elements within a particular geologic strata) it is
common to assign all elements with tie same material properties to a common material set.
The properties for each material set are then listed once,

1. Use the simplest type(s) of element required for a particular problem. This usually
means that we use linear bar elements for one-dimensional problems, linear triangle or
rectangle elements for two-dimersional problems, and linear parallelepiped elements for
three-dimensional problems (see Chapter 4). However we should not hesitate to use
more complex elements, especially when curved boundaries or interfaces are
encountered. The biggest disadvantage in using complex elements, which can have as
many as 32 nodes, is that their use can greatly increase the chance of errors occurring
during the preparation of the input data.

2. The edges of adjacent elements should never overlap, nor should "gaps" appear
between elements in the mesh (Figure 2.7).

3. Material properties are usually assumed to be constant within an element, but they can
vary from one element to the next. Therefore no elements should overlap an interface
between two different types of materials (Figure 2.5).

4. The shape of the elements can affect the accuracy of the resulting solution. In general,
the use of highly distorted elements should be avoided. This is particularly important
when solving transient groundwater flow or solute transport problems because the
element shape influences the size of the time step required to obtain a stable solution
(see Chapter 5).

5. Do not change element size abruptly; instead use a transition region to achieve a gradual
change in element size (Figure 2.8).

6. Take advantage of symmetry in the problem domain to reduce the number of elements
(and nodes) in the mesh (Figure 2.9). Keep in mind, however, that the boundary
conditions, initial conditions, material properties and domain geometry all must display
symmetry to use this approach.
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r—P —-_ye

element 1
.4/ = —

element 2
*r—9 *r—=_9p

gaps overlapping
edges

Figure 2.7 Gaps and overlapping edges for adjacent elements are not permitted.

triangular elements triangular and rectangular elements
{—‘_W’—#-_‘P %
[ )
two types of rectangular elements quadrilateral elements

Example transition regions for changing from a coarse mesh to a fine

Figure 2.8
mesh.
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constant head impermeable constanthead constanthead impermeable boundary

x . . X
well with pumping rate = Q well with pumping rate = Q/4

Three-dimensional, Two-dimensional,
cartesian coordinate system axisyrnmetric coordinate system

Figure 2.9 Use symmetry to reduce the number of elements and nodes in the mesh.
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2.3 EXAMPLE MESHES
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Problems

For problems 1 t0 5, draw a finite element mesh for the aquifer using the element types
given in the problem, label node and element numbers, and compute the semi-bandwidth.

1. Plan view of alluvial aquifer

River
( Constant
head
boundary )
Impermeable Valley Walls A
(No flow boundary)

2. Plan view of sedimentary aquifer

River Sandstone A

(Constant head boundary)

7
Low permeability basalt
(No flow boundary)
3. Cross-sectional view of sedimentary aquifer
Pumping Well
el Groundwater Divide
=1 (No flow boundary)
shale / / Q
sandstone sandsto ne
VIIe /7///////////////////// ]
Impermeable Bedrock
(No flow boundary)
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4. Plan view of alluvial aquifer

Irapermeable Valley Walls Groundwater Divide
(No flow boundary) (No flow boundary)

VA
N

River ® Well #1
(Constant Iead ® Well #2

® Well #3

a) Pumping rates for all wells are equal
b) Pumping rates for all wells are not equal

5. Plan view and three cross-sections for alluvial aquifer

ble Valley Walls
(No flow boundary) .
PPN 7777977 River
- e ( Constant
B c head
boundary )
B C

el res il dd

6. Obtain a geologic map for an aquifer in your area. Draw a finite clement mesh using a
mixture of two-dimensional elements, label node and element numbers, and compute
the slcl:mi-bandwidth. Speculate about appropriate boundary conditions to use with your
mesh.
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STEP 2: DERIVE THE APPROXIMATING
EQUATIONS

3.1 THE METHOD OF WEIGHTED RESIDUALS

The second step in the finite element method is to derive an integral formulation for the
governing groundwater flow or solute transport equation. This integral formulation leads
to a system of algebraic equations that can be solved for values of the field variable
(hydraulic head, pressure head, or solute concentration) at each node in the mesh. Several
methods can be used to derive the integral formulation for a particular differential equation.
The variational method has been used to derive integral formulations for the differential
equations that govern the behavior of mechanical systems e.g., in the fields of elasticity
and structural mechanics. The merhod of weighted residuals is a more general approach
that is widely used in groundwater flow and solute transport modeling.

In the method of weighted residuals, an approximate solution to the boundary or initial
value problem is defined. When this approximate solution is substituted into the governing
differential equation, an error or residual occurs at each point in the problem domain. We
tlwunalforce the weighted average of the residuals for each node in the finite element mesh to
equal zero.

Consider a differential equation of the form

L($p(x,y,z)) - F(x,y,z) = 0 3.1)

where L is the differential operator, ¢ is the field variable, and F is a known function.
Define an approximate solution ¢ of the form

Bxya) = Y, Nixy.2) o (3.2)

where N; are interpolation functions, ¢; are the (unknown) values of the field variable at the

nodes, and m is the number of nodes in the mesh. When the approximate solution is
substituted into equation 3.1 the differential equation is no longer satisfied exactly

L(0(x.y,2) ) - F(x,y,2) = R(x,y,2) # 0 (3.3)

where R is the residual or error due to the approximate solution. The residual varies from
point-to-point within the problem domain. At some points it may be large and at other
points it may be small (the sign of the residual also can vary from point-to-point).
Therefore we cannot force R to be zero at certain specified points because the residual may
then become unacceptably large elsewhere in the problem domain.

In the method of weighted residuals, we force the weighted average of the residuals at
the nodes to be equal to zero

30
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JW(x,y,z) R(x,y.2) 4 = 0 (3.4)

where W(x,y,z) is a weighting function and Q represents the problem domain. Q will be a
length in one-dimensional problems, an area in two-dimensional problems, and a volume in
three-dimensional problems. Substituting equation 3.3 into equation 3.4 we have

j'ﬂwoc.y.z)[ Lbexy.2) - Fixy) |0 = 0 (3.5)

To e\{_aluate equation (3.5) we must specify the mathematical form of the approximate
solution ¢ and the weighting function W. In the finite element method ¢ is defined in a piece
~wise I:'ashion over the problem domain. The value of ¢, within any element e, 6"’, is
given by

9xy2) = Y, NP ¢, (3.6)

i=1

where N;(®) are the element interpolation functions (one interpolation function per node), ¢;
are the (unknown) values of the field variable at each node, and n is the number of nodes
within the element. For example, the approximate solution for a one-dimensional element
with two nodes i and j (Figure 3.1) can be written

09 = NO) o+ Nx) ¢ 3.7
or in matrix form

090 = [N1{o} (3.8)
where

[N®] = [NPex) NO] (3.9)

{6} = {I:} (3.10)

&T——-m—m =4
>4
Lho

node i node ')
e
(x=x) (x=x")
X
L
Figure 3.1 Approximate solution for one-dimensional element with two nodes.
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For the element in Figure 3.1 the interpolation functions are lirear functions of x

(e) (e)

@, - X ~X Oy = XK
Nl (x) - L(e) Nj (x) L(e)

(3.11)

where x;(®) and x;(®) are the coordinates of the nodes, and L) is the element length (L) =
x;(®) —x;(®)). These interpolation functions are plotted in Figure 3.2. The value of N;® is
one at node i and decreases linearly to zero at node j, while the value of N;(® is one at node
j and decreases linearly to zero at node i.

Atnodei (x=x;®)

] 1 0
0“xp) = NIUK) ¢i+N§e) i) &
= ¢ 3.12)

atnode j (x = xj(°))

. 0 1
o®x) = NJHx) ¢ + NOlx) ¢,

= ¢; (3.13)
and at the midpoi I ¥
e midpoint of the element | x = =
. 2 12
o) = NM+ P o;
. + O:
- ﬁTﬁ (3.14)
NPx)
1 - /
@ I
N 1/2— N}e)(x)
0 —
node i node j
x
| ——
Figure 3.2 Linear interpolation functions for one-dimensional element with two
nodes.
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Several other types of interpolation functions that can be used to obtain an approximate
solution for ¢ for use in solving one-, two-, and three-dimensional problems are described
in Chapter 4.

In addition to the interpolation functions, the form of the weighting function W in
equation 3.5 also must be specified. Several subsets of the method of weighted residuals
are defined by the choice of weighting function used.

3.1.1 Subdomain Method

In the subdomain method the value of W is equal to one within a small part of the
problem domain surrounding a node (the subdomain) and zero elsewhere. The size of
subdomain is usually chosen to be equal to the size of the element containing the node. For
a one-dimensional element the weighting function for a node is given by

L(’) L(’)
Wix) =] 1 for X- 5 €x< xi+T 3.15)
0 otherwise

where Lis the length of the ¢lement (Figure 3.3)

LO = {9 -

| —» [
Wi(x)
0 ° o °
node i node j
el )
———

Figure 3.3 Weighting function for node i in the subdomain method.

3.1.2 Collocation Method

The collocation method is a special case of the subdomain method when the subdomain
is chosen to be very small. For a one-dimensional element

Wi(x) = 8(x; £ Ax) (3.16)

where 8 is the Dirac delta function and Ax is some small distance. This notation means that
within a distance Ax of node i Wj(x) = 1, otherwise Wi(x) =0 (Figure 3.4)
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—  jf— 2AX
Wi(x)

04 o— L, ®
node i node j
x

| —

Figure 3.4 Weighting function for node i in the collocation method.

3.1.3 Galerkin's Method

In Galerkin's Method the weighting function for a node is identical 1o the interpolation

function used to define the approximate solution ¢. For the one~dimensional element with
two nodes

X:—~X
Wi(x) = —JT— forx2x; (3.17)
X=X
W;(x) = e forx2x; (3.18)
which is plotted in Figure 3.5.
1—
W;(x)
0- ®
node i node j
X
—

Figure 3.5 Weighting function for node i in Galerkin's Method.

Galerkin's Method is the subset of the method of weighted residuals that is most
commonly used to solve groundwater flow and solute transport problems.

After specifying the form of the approximate solution and weighting function, we can
evaluate the integral in equation 3.5 to obtain a system of linear equations of the form

K] {¢} = {F} (3.19)

that can be solved for the values of the field variable at each node in the mesh. We will
illustrate the entire process with an example.
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3.2 A FINITE ELEMENT EXAMPLE

The column of soil in Figure 3.6 is saturated and water is flowing vertically downward
at a constant rate Q. Hydraulic head is held constant at the upper and lower ends of the
column and we wish to calculate the values of head at points A and B. The problem
domain has been divided into a mesh with four elements and five nodes. The governing
differential equation is the one-dimensional form of the steady-state, saturated groundwater
flow equation derived in Appendix I

d oh
a—x[Kxg] =0 (3.20)

where K, is the saturated hydraulic conductivity in the x direction and h is hydraulic head.

Using the method of weighted residuals we will define an approximate solution h. If this
approximate solution is substituted into equation 3.20, the differential equation is no longer
satisfied exactly

d [ aﬁ]
K,—|=R(x) # 0 (3.21)
ax ox
where the residual will vary from point-to-point within the problem domain. Define the

vector {R] to be the value of residual at each node in the finite element mesh

element numbers node numbers

vy
: \ V4
1 (x=0)
? ol
2 (x=2)
i o
* 3 (x=4)
3 ®)
* 4 (x=7)
i @)
DATUM ®5 (x=10)
Finite Element Mesh

Figure 3.6 Example problem for method of weighted residuals.
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R(x=0) R,
R(x=2) R,
{R} = {R(x=4); ={R3 (3.22)
R(x=7) R4

R(x = 10) Rs
where R, for example is the value of the residual at node 1. The residual at any node i, R;

represents the error between the true value of hydraulic head and the approximate solution h
at that node. The approximate solution at a node is determined by the values of hydraulic
head at the nodes in all elements that are joined to node i, For example, elements 2 and 3
are joined to node 3. Thus the values of hydraulic head for the other nodes in these
elements contribute to the residual at node 3. We can write this as

R; = RP +RY) (3.23)

where the first term is the contribution of element 2 to the residual at node 3 and the second
term is the contribution of element 3 to the residual at node 3. In general, we can write

P
R = ), R (3.24)
e=1

where p is the number of elements that are joined to node i.
The contribution of element e to the residual at node i can be obtained from the integral
formulation for that node. For the one-dimensional elements in our example

x(') azﬁ(e)
RO = - J‘ 0 NP [ KO —ax_’] & (3.25)
i

X,

where x;(®) and x;(®) are the coordinates of the nodes at each end of the element, N;(®) is the
weighting function for node i in element e (which is identical to the interpolation function
for node i in element ¢ because we are using Galerkin's Method), and K,(® is the saturated

hydraulic conductivity for the element (K,(®) is assumed to be constant withir an element
but can vary from one element to the next). The equation was multiplied by a negative one
for later convenience.

A similar equation can be written for the contribution of element e to the residual at any
other node j joined to the element

£ 20 (e)
© _ [ o] godh
Rje) = _J-x§°) NJ(-e [ K;) ?-:I dx (3.26)

In general, if an element has n nodes it will contribute to the residual at n nodes.
The interpolation functions for the type of elements in Figure 3.6 are in equation 3.11.
From equations 3.7 and 3.11 the approximate solution h is given by

h®x) = N b+ N i

x}e)—x X x—xge) X
= L(G) H + L(e) i (327)
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Because the approximate solution is a linear function of x, %2-121 is not defined. The
X

approximate solution does have a continuous first derivative, however, so we can evaluate
equation 3.25 if we rewrite it in terms of %

Using integration by parts we can write

()

© G (€) 25 (e) . b | %
5 0@ g@ 889 o [ o N 35 ( (@ g 9™
J'N[K ~ dx-L K¢ = dx + NP KO 2

() o ox © 3.28)

X

where the second term on the right-hand side of equation 3.28 represents groundwater flow
across the element’s surface. For elements on the exterior of the mesh this term will be

used to represent specified rates of groundwater flow (Neumann boundary conditions).
We will give this term the symbol F§°’

(3.29)

K@ | X
o o [n© g© o
F( (N Ky -r i
F will be positive if water is entering the mesh. If no flows are specified or at impermeable
1
aquifer boundaries F(f) will be zero. For elements on the interior of the mesh, the term F§°) for

adjacent elements will have opposite signs cancelling out the contribution of Ffe) for the two
elements for the node(s) they share. In two- or three-dimensions we have

Fo J'@ NO K %’x— ds (330)

where S(¢) is the surface area of the element along the specified flow boundary (see Section

3.3).
Substituting equation 3.28 into equation 3.25 we have

© .
Xj (O]
RY = <[ o (0 %2 Jon

(e)
e) aN(e) h(e)
(e) ox

X

aN(e) oh'®
‘[(,, KO S (3.31)
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From the definition for h (equation 3.27) we can write

h(e)(x)

e) (e)
= (N‘ b+ N{¥ by) (3.32)

From the definitions of the interpolation functions we can write

N aff-x) 1
NP afx-a) 1
x x| @ )T L@ (3:34)
so that
oh® 1 1
ol —Ehi+ I,(_th
1
F( —h; +b;) (3.35)

Substituting equations 3.34 and 3.35 into equation 3.32 gives

R‘(e) = J-(e) K(:)( L(G)IL(e)]( h +h)dx

(e)
B L(e)z( x(e) (e) )(-h; + hy)
x§°) = L® and we have
K(e)
R® = -(—J( h;~h;) (3.36a)

Similarly for the contribution of element e to the residual at node j

© (e)
€. -
R" L(e)

_(-h; + h;) (3.36b)
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Equations 3.36a and 3.36b can be combined and written in matrix form as
(e) (e)
{ K —11(hs
Rj - % [ 1 1]{ 1} (3.37)
nge) L@OL-1 11k

- (K] { "i} (3.38)

h;
where
(e)
K[ 1 -1
h = =%
[K*¥] = = [_1 1] (3.39)
2x2

is called the element conductance matrix .
The element conductance matrix depends on the hydraulic conductivity of the aquifer

material within the element (K,(), and the size (L(¢)) and shape (through the interpolation
functions for the element) of the element. [K(®)] is always a square, symmetric matrix with
a size nxn where n is the number of nodes in the element. Thus for a one-dimensional
element with two nodes the size of [K(®)] is 2x2, for a two-dimensional element with three
nodes the size of [K(®)] is 3x3, and so on.

We can compute the element conductance matrix for each element in the mesh in Figure

3.6 once we assign node numbers to the i th and j t nodes for each element. This is done
in Figure 3.7 where the i t node for element 1 is assigned to node 1, the j th node for

element 1 is assigned to node 2, the i th node for element 2 is assigned to node 2, and so
on.

node numbers element numbers

“y S

i@ node numbers
29, element . .
1 @) number, e i j ng) L@
3 4 1 1 2 1 2
i
- 2 2 3 2 2
i 3 3 4 1 3
4 @.
1 @ 4 4 5 1 3
j
5@

Figure 3.7 Assigning node numbers to element nodes i and j
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The element conductance matrices can then be computed as follows

(K = _[ ] 12 —1/2]

-12 12

oy @ =} 11 __.[1/3 ‘1’3]
mh[K13L1]_m1B
We can combine the element conductance matrices to obtain a system of linear equations of
the form

(R} = [K] {h} - (F} = {0} (3.40)
where {R)} is the global residual marrix , [K] is the global conductance matrix , {h) is the

vector of unknown hydraulic heads, and {F} is a vector containing the specified fluxes at
Neumann nodes (see section 3.3). For our example no fluxes were specified, (F} = {0},

and we can write
R, h, 0
R, hy 0
{R} = IRy {n} = {n, {F} = {0 (3.41)
§x1 Ry 5x1 hy §x1 0
Rs hs 0

The entries of the global conductance matrix can be obtained by combining the element
conductance matrices for all the elements in the mesh. An easy way to do this when the
number of elements is small is to expand each element conductance matrix to the same size
as the global conductance matrix. These can then be added together to form the global
conductance matrix using the formula

K] = ) (K (3.42)
global  e=1 expanded

where m is the number of elements in the mesh. For the elements in our example, the
expanded form of the element conductance matrices are

12-12 0 0 0 0 00 0 O
-12 12 0 0 0 01-1 00
(K?1=] o0 0o 0 o0 0 [(K?=| 0-1 1 0 O
0 0 0 00 00 0 0 0
0 0 0 00 00 0 0O
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0 0 O 0 0 0 0 0 O 0
0 0 O 0 o 0 o 0 O 0
(KM= 0 0 13-13 0 (K= 0 0 0 0o o
0 0-13 13 O 0 0 0 13 -173
0 0 O 0 0 ¢ 0 0 -113 113

and the global conductance matrix is

K] = [ KP4+ [ K@)+ [ K+ [K¥)]
global

[ 12 -1/2 0 0 0

-1/2 1412 -1 0 0
= 0 -1 1413 -13 0
0 0 -113 13413 113
| 0 0 0 -13 113

(12 -12 0 0 O
-12 32 -1 0o o0
=| 0 -1 43 -13 0
0 0 -13 213 -1/3
| 0 O 0 -1/3 173

The system of equations that result when this global conductance matrix is substituted into
equation 3.40is

2 -12 0 0 0
-12 32 -1 0 o]||h
0 -1 43 -13 0 |{hs
0 0 -13 213 -13||h,
0 0 0 -13 13][p

(3.43)

]
===

But we know h; = 12 and hs = 0 (nodes 1 and 5 are sometimes called Dirichlet nodes)

from the boundary conditions and we can use this information to modify equation 3.43 (the
procedure is explained in section 4.5)

32 -1 07][h; 6
-1 453 -13[{hst =40 (3.44)
0 -13 2/3]|hs 0

from which we obtain hz = hA =933, h3 = 8.0, and h4 = hB =4,0.
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This example has illustrated each of the major steps of the finite element method. To
review we first discretized the problem domain into a collection of nodes and elements
(Figure 3.6). We then used the method of weighted residuals to obtain an integral

formulation for the residual at each node. This integral formulation contained the

differential equation written in terms of the approximate solution h. Because the second
derivative of approximate solution was not defined for our choice of element, we used the
product rule to obtain an integral formulation for the residual at a node in terms of the first
derivative of the element interpolation functions and the values of hydraulic head at the
nodes. When these integrals were evaluated we obtained an expression for the element
conductance matrix [K(e)]. The conductance matrix was then computed for all of the
elements and, by combining these matrices, the global conductance matrix was obtained for
the finite element mesh. The golbal conductance matrix is one part of a system of linear
equations [K] {h] = {F} where {F} contains any specified flow rates at Neumann nodes
(see Section 3.3). Finally this system of equations was modified using the known values
of hydraulic head on the boundary of the mesh and then solved to obtain values of
hydraulic head at the remaining nodes.

The procedure used for this example can be generalized to include two- and three-
dimensional problems as well as problems of unsaturated flow, transient flow, and solute
transport.

3.3 STEADY-STATE, SATURATED FLOW EQUATION

The three-dimensional form of the equation for steady-state groundwater flow through
saturated porous media is written as

202 0 2) Hx2) -o

where K, K, and K, are the saturated hydraulic conductivities of the porous media in the
X, y, and z coordinate directions, and h is hydraulic head (Appendix I). As in the previous
section, we will assume an approximate solution for h of the form

n
B = ) NO, (3.46)
i=1

where 0 is the approximate solution for hydraulic head within element e, Ni(°) are the

interpolation functions for each node within element e, n is the number of nodes within
element e, and h; are the unknown values of hydraulic head for each node within element e.

When the approximate solution is substituted into equation 3.45, the differential equation is
not satisfied exactly and an error or residual occurs at every point in the problem domain.
The contribution of any element e to the residual at a node i to which the element is joined is

e o ). ) ]
R = .”..I'Wf ("""z)[ax K"T +ay Ky dy *+ 3% K, 3 dxdydz

v(‘)
(3.47)
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where Wi() is the weighting function for node i and the limits of the integration are chosen

to represent the volume of elemente. .
In Galerkin's method we choose the weighting function for each node in the element to

be equal to the interpolation function for that node, W(®) = Nj(®). If we also assume that
values of saturated hydraulic conductivity in the three coordinate directions are constant
within an element (but can vary from one element to the next), equation 3.47 can be
written as

2" (e) 27 (e) 2+ (e)
© _ _ @] y(&dh (©dh @dh
RO = J'”N, [K, S dx dy dz

v(e)
(3.48)

where, for example, K, (@) is the value of saturated hydraulic conductivity in the x direction

within element e.
Because the second derivative of the approximate solution is not defined for most types
of elements, we can use the results of equations 3.29 to 3.32 to reduce the order of the

derivatives of h appearing in equation 3.48.

AN 3@ aN{® ght aN{® 3pte ]
() = - (e) (€)=~ 1 (e)* "t (e) "1
R J'J'J'Nl [K,‘ o Ky eyt K | dydz

Ve (3.49)

Equation 3.49 is the integral formulation for the three-dimensional, steady-state, saturated
groundwater flow equation. If the problem domain is two-dimensional, equation 3.49

reduces to
IN® 3p@ aNf"ai,(e)]
© - _ @ o2 g@__t
R = J.‘I.Ng [K,‘ I 3x +Ky TY—T dx dy (3.50)
A

where the limits of integration are chosen to represent the area of element e. If the problem
domain is one-dimensional, equation 3.49 reduces to

N 1@
0 = [t | x5 65
S

where the limits of integration are chosen to represent the length of element e.

Before we can evaluate these integral equations we must first choose the type of
element and interpolation functions to use. In the example in Figure 3.6, the problem
domain was one-dimensional and each element had two nodes i and j. In this case the
interpolation functions used were functions only of x
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<8 x—x
NP = 1—> and NOx) = — (3.52)
' (e) (e)
L L

where x}°) and x{®) are the coordinates of the two nodes used to define the element and L® is
the element length. Because each element had two nodes, it contributed to the residual at
two nodes, Rj®) and R;(©). In the example we represented these residuals as separate
integral equations

£
eaN ) 31
R = J'@ (‘)[K() | ax (3.53)

C
R L (°)|:K(°)7"’—ah ] (3.54)

After evaluating these integrals the results were combined to obtain the element conductance
matrix, [ K(¢)]. A more direct approach is to combine equations 3.53 and 3.54 to obtain a
matrix-integral formulation for [ K()]. For a one-dimensional element with two nodes
[K()] is given by

©r
/]

aNPaN® NP aN®
gL N @i O
K®)] = X dx dx % dx oOx
2x2 aN{aN® aN{?aN®
K(e) ] 1 K(e) J J
O17% ox ox X dx dx

©
J

'aN(e)
= an® aNf"]
= (e) Ly
N (e) KX ][ 3 dx (3.55)
T_ Ix1 Ix2
@ L 9%
i 2x1
If the ong-gslmen:llgtll;l problem had been solved using elements with 3 nodes, i, j, k,
equation WO written
rx}" -aN_(e)-
1
ox
€) () Ang(®)
o _ aN®| [aN§ aN{ aNk]
<) = | | 5 = ) & (3.56)
afo) 1x1 3
dlge) L. ax -
3Ix1
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If a two-dimensional problem was being solved using elements with three nodes, i, j
and k, the matrix—integral formulation for the element conductance matrix [K'] would be

[([an® ang®]
I  |r@ aN{® an¥? an{?
e) e) X
K®) = a_N;_ %NJ‘_ a:: x|, &
x || e aN® aN{® an{?
J aN® aN® Yil oy 9y 9y
JJL7ox™ oy
» A© ) 22 23 3.57)

Where A® is the area of the element e. The most general formulation for [K(e)] can be
written for the case of a three-dimensional problem being solved using elements with n

nodes.
((( [ IN© (@]
aN(e) aN(e) aN(e) aNle aN“e
1 ! 1 K? 0 o ax ox
ox dy oz x
(o . : . aN® aN®
[K*¥] = : : : 0 K9 o 1 ... 2 ldxdydz
wa © aN©@ aN© ’ oy 9y
&,
dN;” dN;” dNp 0 0 Kie) aN® aN®
ox dz -1 I
JJJ % | o0z oz |
v 3 33 3xa (3.58)

where V is the volme of element e. In Chapter 4 we will learn how to evaluate equation
3.58 for several different types of elements.

If we combine equations 3.58 and equation 3.47 we can write

RY hy

Pb= Y (3.59)
Rt(:)
nx1 na Bx1
Equation 3.59 is written for each element in the mesh. These equations are then combined
to obtain
R, h,
P =[Kl4: (3.60)
R,] global|h,

pxt P pxd
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and by setting the residuals equal to zero we have

[X] {h} = {0} (3.61)
global
pxp px1 Pxl

Before we can solve this system of equations for the values of hydraulic head at the
nodes, equation 3.61 must be modified to incorporate known boundary conditions.
Procedures for modifying equation 3.61 for known values of hydraulic head are in section
4.5.

If flow rates are specified on the boundary of the mesh (for example to represent
seepage from lakes of rivers, or recharge from the soil surface) or at points within the mesh
(for example to represent groundwater withdrawl by pumping) the steady-state, saturated
flow equation becomes

HEONTE R IR

where q is the specified flow rate. q is positive if water is flowing into the mesh and

negative if water is flowing out of the mesh. The specified flow rate within element e, (),
contributes to the residual at all nodes in element e. Substituting equation 3.62 into
equation 3.49 gives

aN® 5p@ aN{® 5p@ AN gp@ ]
® _ _ o) | (e (%N % ©
R® = I”N§ [K, o T oy K ik dy &2

ve (3.63)

The only new term is the integral

_[” NI ¢ dx dy dz = F? (3.64)
v(e)

where F{® is the integrated specified flow rate for node i in element e. If q® represents a
specified flow rate along the boundary of element e we can write (Section 3.2)

“(e)
© _ ¢) () Oh _J‘ (©)
O = [ NORD 5 as= [ MO o (.63)

where S®© is the surface area of element e. The evaluation of these integrals for each node
in element e gives the components of the specified flow matrix for element e, {F(e)}

FY
{F} =1 : (3.66)
F®
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Combining equation 3.66 with equation 3.59 gives

R hy Eo
Pl = [KOd il -1 (3.67)
R £
We can combine the { F¥} for each element in the mesh to obtain the global specified flow
matrix {F}
m
{F} = 3, {F9} (3.68)
global =13
and equation 3.61 becomes
[X] {h} = {F} (3.69)
global global
pxp px1 px1

If there are no specified flow rates (i.e., no Neumann Boundary Conditions) {F} = {0].
The evaluation of the integrals in equations 3.64 and 3.65 and the assembly of {F} are
illustrated for a one-dimensional problem in the following example.

Example
Compute { F(e)} for each element in the mesh shown below. Assemble {F}
10m*/d 1 2 3 4 10m’/d
®
Gnflow) T 0 T @ 0 (outflow)

The node numbers for the elements are

clernent node i node j
1 1 2
2 2 3
3 3 4

For node i, element 1

7= [, N0 as
But N; = 1 at node i and with S equal to unity in a one—dimension problem

(FD} = N qmjs ds= ¢V = 10m*d

(1)
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Nodes 2 and 3 are not on the specified flow boundary and we can write

{F{"} = (FP) = (F) = (F} =0
For node j, element 3

) = [ N ¢ ds=-10m’id
and we have

R AT SR ¥

and (F} is given by

{F} = {FM} + {FP} + {F®}
global cxpanded  expanded  expanded

10 0 0 10
- 0 + 0 + 0 - 0

0 0 0 0

0 0 -10 -10

3.4 STEADY-STATE, UNSATURATED FLOW EQUATION

The three-dimensional form of the equation for steady-state flow through an

unsaturated porous media is
() + S w3+ L(xm(FE+1)) = 0 (3.10)

where Kx(y), Ky(\v), and K,(y) are the components of unsaturated hydraulic conductivity
(which are functons of the pressure head W) in the three coordinate directions and the z
coordinate direction is assumed to be vertical (see Appendix I). The unknown quantity at
each nodes is the pressure head y. We will assume an approximate solution for y, , of the
form

v = ) NNy, 3.71)
i=1

Where \Il(‘) is the approximate solution for pressure head within element e, NE” are the
interpolation functions for each node within element ¢, n is the number of nodes within
element e, and y; are the unknown values of pressure head for each node within element e.

When the approximate solution is substituted into equation 3.70, the differential
equation is not satisfied exactly and an error or residual occurs at every point in the problem
domain. The contribution of any element e to the residual at a node i to which the element
is joined is
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o ot ) o)
R = [ [ [Woosa | 2(xw)s 2 x,m
v(e) 3 a";,
+ 5\ K) 5, +1))| dx dydz (3.72)

Where W;(©) is the element's weighting function for node i and the limits of integration are

chosen to represent the volume of element e.
In Galerkin's method we choose the weighting function for each node in the element to

be equal to the element's interpolation function for that node W;(®) = Nj(¢). If we also
assurne that unsaturated hydraulic conductivity functions are constant within an element
(but can vary from one element to the next), equation 3.72 can be written

©_ @ @ ﬂ © ﬂ © ﬂ 3K
R= I .[ I N [Kx (“’)axz *KW 2y +K; (w)azz + =5 (y) |dx dy dz
ve (3.73)

where, for example, K, ©)(y) is the unsaturated hydraulic conductivity function in the x
direction within element e.

Because the second derivative of the approximate solution is not defined for some types
of elements, we can use the results of equations 3.28 to 3.32 to reduce the order of the
derivatives of \ appearing in equation 3.73

e e e aNge) ay e BNP ay
w0 = ][I oo Bl B3

v(‘) (e) ~ (e)
oN{"gy 9
+ K?)(‘l’)ﬁz_?'z' + —%(\v)]dx dydz (3.74)

Equation 3.74 is the integral formulation for the steady-state, unsaturated flow equation.

aK®
When the porous media is relatively dry, the term —Ié-(w)wﬂlbesmalli.e.,capﬂlary forces
" oK®
(%]aremuchlargermmgnvimﬁmalfoms g In this case the last term within the integral

can be neglected in the calculation of [ K(¢) (y)]. We will assume this is true for the
remainder of this section (also see section 5.4.3). If necessary the integral can be evaluated
by developing a functional form for K,(€) (y) within element e. Of course for problems of
horizontal flow the last two terms in the integral in equation 3.74 are always zero.

From previous work we know that we can write a matrix expression for the
contribution of element e to the residuals at all nodes that join the element

R(le) Vi
RY v
nxi na nxl
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where the element has n nodes and[K‘°)(\|t)] is the unsaturated form of the element

conductance matrix given by
o aN(:’-
) ) L
(© w oy & aN®  NO
[K™(y)]=- I 0 X%y o a_;...._a_;_ dx dy dz
NG aN© BN(G) 0 0 Ié:)(\lf)
— —— — ©) Q]
ox oy oz % %
V@ ax3 3x3 "~ 3xa (376)

where V is the volume of element e. In Chapter 4 we will learn how to evaluate equation
3.76 for several different types of elements.

When we combine the element conductance matrices for all the elements of the mesh we
can obtain an unsaturated form of the global conductance matrix

KW = ) [KOy)] 317
global e=1 expanded

where there are m elements in the mesh. The dependence of the global conductance matrix

on the pressure head v is emphasized because in the solution process we will be concerned
with a system of nonlinear equations of the form

W F
Kwil{:}t=4: (3.78)
global [y, Fp

where Y .. . yp are the values of pressure head at each node (there are p nodes in the

mesh). For the case of unsaturated flow, {F}) will contain specified rates of groundwater
flow at boundaries and at sources and sinks. If we wish to include gravitational forces,
€

oK’
additional contributions to {F} in equation 3.78 result from the integration of T’(\v). The
solution of equation 3.78 is discussed in Chapter 5.

3.5 TRANSIENT, SATURATED FLOW EQUATION

The three-dimensional form of the equation for transient groundwater flow through

saturated porous media is
22 Hs2) 33) - 52

where S; is the specific storage of the porous media and t is time (Appendix IT). The only
difference between the integral formulanons for steady-state and transient groundwater

flow equations is the addition of the term S When the approximate solution for hydraulic

head, h is substituted into eqution 3.79, the comnbuuon of element e to the residual at node
118
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© - (@ (e)ah 3 3 K( )3h( N _ @3
R = IIIW K + o Ky W -8 > dx dydz
(3.80)

where W is the weighting function for node i and the limits of the integration are chosen
to represent the volume of element e.
In Galerkin's method W = N{*'. If we assume that values of K, K“) K,and S©

are constant within an element (but can vary from one element to the next), equation 3. 80
can be written

5O 0O e 3he
@ - _[[[n® K(e)a b godh_ | g@dh” oo ] dxdy dz
R -[ -[ -[ 5 ax® 3y w @

R " o
=-[[]we Ki"a;l;z + x;ﬂa;:z +x02E ] dx dy dz

922

(20"
+_[ J' _[ N SO ax dy a2 (3.81)
where Sg(®) is the specific storage for element e. We know that the first integral on the
right-hand side of equation 3.81 can be written

R{®
(3.82)

®
Ra'l g

where [K] is the element conductance matrix. Similarly, the evaluation of the second
integral on the right-hand side of equation 3.81 can be written

y ah
RY -
[c*4 : (3.83)
)
P

where [d )] is called the element capacitance matrix.

The subscripts K and C in equations 3.82 and 3.83 are used to indicate the portion of
the resxdu;lsxlnam represented by the first and second integrals on the right-hand side of
equation

To evaluate the second integral m}mres that the time derivative of the approximate
solution be defined over the volume of the element. We can do this using interpolation
functions and the values of the time derivative at the nodes, in the same manner that we

defined h over the voluine of the element using the interpolation functions and the values of
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h at the nodes. Depending on the type of interpolation functions we use, the procedure is
called either a consistent element formulation or a lumped element formulation .

Both formulations are used in practice. However, the lumped formulation is less
susceptible to problems of numerical oscillation (see Chapter S) than is the consistent
formulation (also see Segerlind, 1984).

3.5.1 Consistent Element Formulation

We used interpolation functions to obtain an approximate solution for hydraulic head
within an element, h in section 3.3. For an element with n nodes the approximate solution
can be written in matrix form as

h
h9xy.2) = [NPxy.2) - NOxy.2]11 (3.84)
hll

where N;(®) is the interpolation function at node i and h; is the (unknown) hydraulic head at
node i. In the consistent element formulation, we use the same interpolation functions to
define the time-derivative of the approximate solution for hydraulic head within an element,

)
?ah_t_ For an element with n nodes, the time—derivative can be written in matrix form as
ah,
an'® ) x*
T(x,y,z) =[ N(le)(x,y,z) e Ns.e xy.2)]4 : (3.85)
dh,,
ot

oh;
where N{© are the interpolation functions and -a—t' are the (unknown) time derivatives of

hydraulic head at each node.
If equation 3.85 is substituted into the second integral on the right-hand side of
equation 3.81 we have

ah,
. ot

J J JN?) sse)%_ltg dx dy dz = J‘J‘J‘Nge) SO[NE - N©] ahi;) dxdydz  (3.86)
ot

We can write equation 3.86 for each node (i = 1, 2, ...., n) in element e. This set of
equations can also be written in matrix form

oh,

R{? 3
=[co]} : (3.87)

RO . oh,

o

Copyright American Geophysical Union



Groundwater Modeling by

Water Resources Monograph the Finite Element Method Vol. 13
Chapter 3 53
where

N{
[c@] = P[s@Ng - N®]axdydz
na N@| 1x1 Ixn
n
v axt (3.88)

For two-dimensional problems equation 3.88 becomes

N
[C("] = : [S?’][N‘f’ fo’]dxdy
Nge)

e A9 ma 1 Da (3.89)

where A® is the area of element e. For one—dimensional problems equation 3.88 becomes

Ny
[c“’] = : [s£°’][N‘,°’ fo’]dx
NO
L® ma 14 ba (3.90)

where L is the length of element e.

3.5.2 Lumped Element Formulation

In the lumped element formulation we also define the time-derivative of the approximate
solution for hydraulic head within an element using interpolation functions and the values
of the time derivative at the elgment's nodes. However, in this case we use different

© ~
interpolation functions to define 1 than are used to define h®
at

o,
: 3
()
ey = [ Ny - MOy (31)
ah,
£

where Ni. ©) are the interpolation functions for the time derivative of hydraulic head at each
node. These interpolation functions are defined so that
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» » 1 . . =
NiN; = Y if i=j
0 if i#j (3.92)

where n is the number of nodes in the element. If we rewrite equation 3.88 using these
interpolation functions

TNz
[c®] = P [s@Ng® - N®]dx dy dz
N©| 1

nx1

[~ ¥ » -
NIONT® .. NONO

=8| dx dy dz
-N;(G)N;(e) vee N;(G)N;(e)
v(e)
e) 1_ O
[c? = si"v(T[ ]
01
na nxa (3.93)

For example, for the case of a one-dimensional element with two nodes (n = 2) equation
3.93 becomes

o LOT1 0
[c“’] = sg)_z_[o 1] (3.94)

where L© is the length of the element. For a two—dimensional element with three nodes
(n = 3), equation 3.93 becomes

[c®] = sg°)-3— 010 (3.95)
001
where A@ is the area of element e.
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3.5.3 Finite-Difference Formulation for Time-Derivative of the
Approximate Solution

A global capacitance matrix [C] can be obtained by combining the element capacitance
matrices for all the elements in the mesh in the same way that the global conductance matrix
was obtained by combining the element conductance matrices in section 3.2

€1 = X, [c¥] (3.96)
global =1 expanded

The global capacitance matrix is a square, symmetric matrix with size pxp where p is the
number of nodes in the mesh. By substituting the appropriate matrix formulation for each
of the integrals on the right-hand side of equation 3.81, the weighted residual formulation
for the transient, saturated flow equation becomes

oh
[C1{ : t+[Kl1{ i} ={F} (3.97)
bal | jobal global

gl:xp -;t‘ Soxp (Bp) Pt

If we define the two vectors {l;} and {h} as

dh;
. T hl
{h} = aE {h} =
h,
= hy
equation 3.97 can be written
[C] {h} + [K]{h} = {F} (3.98)
global  global globat

Equation 3.98 isa system of ordinary differential equations , whose solution provides
values of h and g—:‘ at each node in the finite element mesh. Although several methods are

available for solving this system of equations, it has become standard practice in
groundwater flow and solute transport modeling to use the finite difference method .

From the mean value theorem of elementary calculus we know that we can compute the
time derivative of a function h at some point € on the interval t to t+At by the difference
between the value of the function at the two end points of the interval (Figure 3.8)
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%h © = h(t+AtA)t— h(t)

h(t+ At)

h(t)

t € t+ At
<4—A t—P

Figure 3.8 Finite difference approximation to the time derivative for hydraulic head.

Unfortunately the position of € on the interval t to t+At is not known and different subsets
of the finite difference methods have evolved based on different choices for the position of

€. From Figure 3.8

dh _ ht+Aa) - h()

5(5) = (3.99)
* d

he) = h®)+ (e-1) 5@ (3.100)
If we define a variable @

E—-t

W= At (3.101)
we can write

h(e) = (1~ )h(t)+wh (t+At) (3.102)
which can be extended to the vector of unknown hydraulic heads {h) and to the vector {F}

{h} = (1-o){h}; + @ {h};, s (3.103)

{F} = (1-o {FL + @ {F},a (3.104)

If we substitute equations 3.103 and 3.104 into equation 3.98 we have the finite difference
formulation for the transient, saturated flow equation
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([C1+ 0 At[K]) {h}isa
= ([C]- (1-w) At[K]) {h}; + At ((1 - ){F};+ @ {F}.a)
(3.105)

The solution procedure begins by specifying the initial values of {h} (i.c., the values of
head at time t = t, = 0)

{h},o = specified values

Then the system of linear equations (equation 3.105) is solved to obtain values of {h} at
the end of the first time step,egh},o,, a- We then set

{h}: = {h}to-n-Ar,

and repeat the solution process for the next time step, and so on. Depending on the choice
of @ several different subsets of the finite difference formulation are defined:

w=0 — Forward Difference Method
[Cl{h}ar = ([C]-At[K]){h}; + At{F}, (3.106)

—> Cenrral Difference or Crank-Nicholson Method

o=l
=3

(114 501 )ibbne = (€1~ KT )b} + FCIFY+ {(Fhua) (107

w=1 — Backward Difference Method

([C1+ At [K] )}{h}uae = [Cl{h}: + At{F}ia (3.108)

3.5.4 A Finite Element Example

To illustrate the use of equation 3.105 we will again consider the column of soil from
the example in Section 3.2. Initially the column is in steady-state saturated flow with a
distribution of hydraulic head computed from the previous example (Figure 3.9). Then at
time t = 0 we increase the value of hydraulic head at the upper boundary (node 1) from 12
to 20 cm. We wish to find the value of hydraulic head at each node at time t =1, 2, ...
seconds.
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Steady-state solution initial conditions (t = 0)
hydraulic head, h (cm) hydraulic head, h (cm)
12.0 —“u —>® 20.00

9.33 9.33
8.00
4.00
0.00
Figure 3.9 Initial conditions for example tramsient, saturated flow problem.

The governing differential equation is the one-dimensional form of equation 3.79

where K, is the saturated hydraulic conductivity in the direction of flow (the x axis is
directed vertically downward in this case). We will use the lumped element formulation to
solve this problem. Let S¢(1) = 0.02, S;@ = 0.01, and S;©®) = §;@® = 0.02. For one-
dimensional elements with two nodes, the element capacitance matrices are given by

equation 3.94
[c®] = LU 1 o _ (00221 0] _[0.02 0]
¢ 2 |0 1] 2 (o1 L o o.02]
[c] = 211 0] _ @ov@y o) _roor o]
¢ 2 10 1] 2 o1 "L o o001}
SPLPT1 01 _ (0o2)3)[1 07 _[0.03 0
O] =[] = = = 0.02)3) _[o.

The global capacitance matrix is obtained by adding the expanded form of the element
capacitance matrices
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0.02 0 0 0 0
0 0.02+0.01 0 0 0
[Cl=] O 0 0.01+0.03 0 0
0 0 0 0.03+0.03 0
0 0 0 0 0.03

002 0 0 O0 O
0 003 0 0 O
=| 0 0 004 0 O
0 0 0 006 0
0 0 0 0 o0.03

(3.109)

From the previous example, the global conductance matrix is

12-12 0 0 O
-12 32 -1 0 o
K] = 0 -1 43-13 0 (3.110)
0 0 -173 2/3 -173
0 0 0 -13 173

The initial values of hydraulic head at the nodes are

hy 20.00
by 9.33
{h}p = {hs} = {8.00 (3.111)
hy 4.00
hs) o L 0.00

We will use the backward difference formulation (equation 3.108), with a time step At =1
sec. By setting {F} =0 (no specified flow rates) the system of equations for the end of the
first time step becomes

0
([C1+ At[K]){h},y = [CHh}+ ,m{}:l

(3.112)
Substituting eguations 3.109, 3.110, and 3.111 into equation 3.112 gives
002 0 0 0 O z-12 0 o oly[Mm
0 003 0 0 O -12 32 -1 0 0 h,
0 0 004 0 O +(| 0 -1 43 <13 o hy
0 0 0 006 O 0 0 -13 253 -13| ||h,
0 0 0 0 003 0 o 0 -13 131/ |0
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002 0 0 0 0 ][20.00

0 003 0 0 O 9.33

=| 0 0 004 0 O 8.00
0 0 0 006 O 4.00

0 0 O0 o0 0.03]L0.00

which simplifies to
052050 o o0 o 1[Mm 0.04
-0.50 153 -1.00 0 o ||h 0.28
0 -1.00 137 =033 0 |{hs} = {032 (3.113)
0 0 -033 073 -0.33||h, 0.24
0 0 0 -033 036 0.00

hg t=1

But h; =20 and hg = O for all values of t (because the hydraulic head at the upper and
lower ends of the column are held constant). Modifying equations 3.113 for these known

values (see Section 4.5) gives
153 -1.00 O hy 10.28
-100 137 -0.33|{hs = 4032
0 =033 073]|hy) 0.24

which can be solved to obtain the values of hydraulic head at the end of the first time step

hy 20.00
hy 14.95
h3 = 4 12.60
hy 6.02
hs) o 0.00

This process is repeated for each subsequent time step until a solution is obtained for cach
required value of t.

3.6 TRANSIENT, UNSATURATED FLOW EQUATION

The three-dimensional form of the equation for transient groundwater flow through
unsaturated porous media is written as

2xw)+ Hxwd)+ H (1) - cngt
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where K,(y), Ky(\v), and K, () are the unsaturated hydraulic conductivities (which are
functions of the pressure head ) in the three coordinate directions (the z coordinate
direction is assumed to be vertical), and C(\) is the specific moisture capacity

de
Cy) = P (3.115)
where 0 is the volumetric water content (Appendix I). The unknown quantity at each node
is the pressure head y. As before we assume an approximate solution for y,  of the form

¥ = Z N v; (3.116)
i=1

where ' is the approximate solution for pressure head within element ¢ and N{® are the

interpolation functions for each node within element e.

When the approximate solution is substituted into equation 3.114, the differential
equation is not satisfied exactly and an error or residual occurs at every point in the problem
domain. The contribution of any element ¢ to the residual at node i to which the element is
joined is

RO = - [ [Wira | S(k3) + (K3 )+ (kT +1)
v - C(w)%’]dx dy dz (3.117)

where W;(® is the element's weighting function for node i and the limits of integration are

chosen to represent the volume of element .
In Galerkin's method we choose the weighting function for each node in the element to

be equal to the element's interpolation function for that node Wi(®) = Nj(¢). If we also

assume that the unsaturated hydraulic conductivity and specific moisture capacity are
constant within an element (but can vary from one element to the next), and that
gravitational forces are small, equation 3.117 can be written

‘ ’ 0¥+ @B Y 1Y _ )
R = —JHM ’(x.y.z>[K£ ’(wa—i",’ +K§ ’(w)a—?ﬁ +K§ ’(w)a%' -t ’(w)%‘-{’]dx dy dz
W

= - o k@Y 1 @D ¥ o gD Y
= J”M '[K, W) o (\v)ayz +K; (\v)azz dx dy dz
Ve

+ ”J Nf”d”(w)%—? dx dy dz
ve (3.118)

Copyright American Geophysical Union



Groundwater Modeling by

Water Resources Monograph the Finite Element Method Vol. 13

62 Step 2: Derive the Approximating Equations

where C®)(y) is the specific moisture capacity within element e.
We know from the results of sections 3.4 and 3.5 that the integrals in equation 3.118
can be written

R /]
L= KOyl (3.119)
R’ v
and
() a\l’l
R n
= [C¥w4 (3.120)
. oy,
R1(|) c '31—

where [K)(y)] and [C®)(y)] are the unsaturated forms of the element conductance and
capacitance matrices for element e. Just as in the case of transient, saturated flow, we can
use two different types interpolation functions to evaluate the integral

J‘IJ‘N?)C(’)(\v)%E' dx dy dz (3.121)
v&)

and obtain the computational form for [C(”(\y)]. In the consistent element formulation we
use the same interpolation functions to define the time-derivative of the approximate

o)
solution for pressure head within an element, %'{-, as those used to define the approximation

solution for pressure head y

oV,

~ () T
Sxy.2d = Nxy2) -~ Nxyal] ¢ (3.122)

N

ot

oy

where N{° are the interpolation functions and a—l' are the (unknown) time derivatives of

pressure head at each node within element e. For this choice of interpolation functions, we
can write the unsaturated form of the element capacitance matrix as
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le)
[y = blcYan NP - NP daxdy dz
na N9 | 1 1a
n
v na (3.123)

In the lumped element formulation, we use different interpolation functions to define

- (€) -
than are used to define y©
v,
“r0) ot
%("J-z) = [NOxy2) -~ NOxya]] (3.124)
oYy
ot

where N;*(¢) is the interpolation function for the time derivative at node i within element e.

These mterpolauon functions were defined in equation 3.92 and using equation 3.93 we
can immediately write

1

[c®wl = C‘"(\v)v(—[ O] (3.125)|
O

na nxa

where V(® is the volume of the element.
The unsaturated form of the global capacitance matrix is obtained by combining the
element capacitance matrices for all elements in the mesh

m
[cwl = Y [cOy] (3.126)
global e=1 expanded
where there are m elements in the mesh. By substituting the appropriate matrix

formulations for each of the integrals on the right-hand side of equation 3.118, the
weighted residual formulation for the transient, unsaturated flow equation

[Cwl{ | t+[KWI{ :} = {F} (3.127)
global | dy,| global global

P
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If we define {\it} = { %—\:’} equation 3.127 can be rewritten as
[Cw)] {w} + [K(w) {y} = {F} (3.128)
global global global

Using the results of Section 3.53 we can also write the finite difference formulation for
the transient, unsaturated flow equation

([C(W)] + At [K(W] Hyhae = ([CW)] - (1-0)At Ky},
+ At (1-0){F}, + ©{F}a ) (3.129)

Equation 3.129 is a system of ordinary differential equations, whose solution provides
values of \ and %‘E at each node in the finite element mesh at each time. A modification of

the finite difference method described in section 3.5.3 can be used to obtain this solution.
The modified procedure will be described in Chapter 5.

3.7 SOLUTE TRANSPORT EQUATION

The three-dimensional form of the solute transport equation for uniform groundwater
flow in the x direction is

3(6C) a2 3 3’
29 . D,SF(OC) + Dya—yz(OC) +D;—@0)

~ 29,0~ (pyK0) ~MOC + pyK,0) (3.130)

where 0 is the volumetric water content of the porous media, C is solute concentration, D,
Dy, and D, are the dispersion coefficients of the porous media in the x, y, and z coordinate

directions, vy is the apparent groundwater velocity in the x coordinate direction, py, is the

bulk density of the porous media, K, is the distribution coefficient, and A is the solute

decay constant (Appendix IIT).
When we solve a solute transport problem by the finite element method, the unknown
quantity at each‘nodc is the solute concentration C. We begin by assuming an approximate

solution for C, C of the form

xy.z) = 3 N9 G (.131)
i=1
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where C'® is the approximate solution for solute concentration within element e, N{? are the
interpolation functions for each node within element e, and C; are the unknown solute

concentrations for each node within element e. When the approximate solution is
substituted into equation 3.130, the differential equation is not satisfied exactly and an error
or residual occurs at every point in the problem domain. The contribution of element e to
the residual at node iis

¢ ¢ R iy B aneh oy B D A
R = -II(LW% ’(x.y.z)[ ng(ed )+ D,a—y,(ed ) + D;g(ec( ) = 2=(v,C®)
v

- $ORLE) - AOED + K, C) - %(eé“’)]dx dy dz
(3.132)

where Wi() is the element's weighting function for node i and the limits of integration are
chosen to represent the volume of the element.

In Galerkin's method we choose the weighting function for each node in the element to
be equal to the element's interpolation function for that node, W;(®) = N;(¢). If we also
assume that the properties of the porous media and the apparent groundwater velocity are
gcemstz_mt within an element (but can vary from one element to the next) equation 3.132 can

written

2{¢) Fc© 2¢40 ~(e)

@ _[[[n® 9g@3 C . @g@FCY | 4090dCY _ @3

R®= ”(J)Nf (x,y,z)[nge R L + 0TS I
Ve

&) ) )
- pge)xge)%_ @O 4 oK)

- %(e“’ é‘")] dx dydz (3.133)

where, for example, 8 is the volumetric water content of the porous media within element
e. A isnot superscripted because it is a property of the solute (not the porous media) and
is therefore constant from one element to the next. Because water content 8 and the

apparent groundwater velocity v,(¢) may or may not change with time, two separate
formulations of equation 3.133 are possible.

3.7.1 Steady-State Groundwater Flow

In steady-state groundwater flow (saturated or unsaturated), the water content and
apparent groundwater velocity are constant from one time step to the next. They are also
constant within an element (but can vary from one element to the next). In this case
equation 3.133 becomes
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p- 2 ~ ~
R = [ [ [ng0 DL | pog@d T €9 | pegedt” C:e)]dx dy dz
| ox By oz

of [N 02 Jax oy o

At ot e
Ve

+I”N§°’ :A(e“’é“’ + PR |ax ay &z

+”IN§°’ 6(°)i?r:|dx dy dz (3.134)
v(e)

From our previous work with the transient groundwater flow equations we know that
we can write equation 3.134 in matrix form by combining the integral expressions for each
node in element e. Specifically we can write

acC
R® (o} T‘
=[p®]{ i } +[a®] aE (3.135)
© G
= '3

where [ D )] is the element advection—dispersion matrix and [ A(’)] is the element sorption
matrix. The element advection-dispersion matrix is defined as

Nf) aN(f) Nf) -ﬁ) ﬁﬂ
Ty = D%° o 0 ox ax
[D(e)] = : : : 0 D(;)e(ﬁ) 0 ?(f) e ﬁ dx dy dz
we a0 a0 a0 o 0 g e
x 9y & ?' aTz"-
v »d 33 o
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N{®
. | @] NP anﬁ:’]
+ I R dx dy dz
© * [ 5x 5)(
Nl'l
Ve ma 1x I
Ny
+ P2 @9+ pPRE)| N - N ax dy dz
NS:)
v® px1 1x1 1xn (3.136)

where V@ is the volume of element e. The reader should recognize the terms in these
equations as coming from the first, second and fourth integrals on the right-hand side of
equation 3.134. The validity of these equations can be checked by multiplying a few of the
terms and comparing the resuits with the integrals in equation 3.134. If the groundwater
flow is not uniform (see Appendix IIT), equation 3.136 becomes

(¢ Q -Nle) ll)
A ap afp D D Do ™ &
ox dy o2 = N0 O
[D®]= tof i ||ofee pgee pgel| S .. B dxdydz
a0 N 0 || o e Do [ o0y ke
e R - .
|z oz |
Ve
rf [aN®  aN®]
N® NO NO]VE® 0 o 1ox o
P aN®  aN®
+ : : 0 v(;) 0 1 .. n
oo 2l ang? N
o o -_az _az |
v 23 »3 3xn
N{®
+ P [MebxE + 6] NG - NP dxdy dz
N
v  nx1 1x1 1xn (3.137)
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The element sorption matrix is defined as

N
[a¥] = E|[pbKE + 6] N - N dx dy d
N® 1x1 ba
Ve axi (3.138)

if a consistent element formulation is used for the time derivative of the approximate

solution % If a lumped element formulation is used for %Cl-, the element sorption matrix is
defined as

e) (€ e v(e) l' O

[a®] = (PPKE +6©) [TIO ] (3.139)
1
n>xa

where V® is the volume of element ¢ and n is the number of nodes within element e.

A global advection-dispersion matrix [D] and a global sorption matrix {A)] can be
obtained by combining the element matrices for all the elements in the mesh in the same
way that the global conductance matrix was obtained by combining the element
conductance matrices in Section 3.2

m
o =Y, [p¥] (3.140)
global e=1 expanded
PXP nxn
(A1 = Y, [a®] (3.141)
global  ¢=! expanded
pxp >

where m is the number of elements and p is the number of nodes in the mesh. The
weighted residual formulation for the solute transport equation becomes

Cl W
D14 :} + [A] : = {F} (3.142)
global L Cp]  global | 9Cy|  global
dt
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If we define the two vectors {C} and {é}
aC,

(o ot

{C}=4: {Ct=4 : (3.143)
> £y

equation 3.142 can be written as

[AJ{C} + D){C} = {F} (3.144)
global global global

Equation 3.144 is a system of ordinary differential equations, the solution of which
provides values of C and %—f at each node in the finite element mesh at each time. This

equation can be solved using the finite difference method described in section 3.5.3. Using
equation 3.105, we can immediately write the finite difference formulation for equation
3.144

([A] + @At [D] {C}yyar = ([A] - (1-0) At [D] }{C}, + At (1-){F}i+ 0{F}yyar)
(3.145)

The solution procedure begins by specifying the initial values of {C)
{C},o = specified values

Then we solve the system of linear equations to obtain values of {C} at the end of the first
time step, {C}, + a. We then set

{Ck = {C}l°+At

in equation 3.145 and repeat the solution process for the next time step, and so on (see
Chapter §).

3.7.2 A Finite Element Example

The use of equation 3.145 is illustrated with the one-dimensional problem in Figure
3.10. Steady-state, saturated groundwater flow is occurring in a confined aquifer. Initially
no solute is present. At time zero, the solute concentration along the left boundary of the
aquifer is increased to 10 mg/1 and remains constant thereafter. The problem domain is
discretized into a mesh with five elements and six nodes. Each element has two nodes so
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the dispersion-advection matrix for each element is given by the one-dimensional form of
equation 3.136 (n=2)

(e)

k aN‘°’
[p®] = % “’][aN(‘e) aN‘;)] dx
N (°) ox ox
»e Tx 1x1 1x2
AP 2a
o
)
. N [(e)][aN"’) aN("]
N(e) dx ox
k)
Ho2x1 1x1 1x2
<9
1 N(lc)
+ [28° + pPKh] [NE NP]ax (3.146)
N(e)
2
X9 2 1x1 D2
Z 4 L Flo element numbers
— Direction o mundwatu W —— .
Impermeable a @ 3G ) /
Boundaries T' J;l .igi .i:i fg' -'6
node numbers

7
X—P

v9=003md, DP=1m’d, L9=10m 0®=n®=0.3 forall elements

Figure 3.10 Example one-dimensional solute transport problem.

Now if we use the interpolation functions of the example in section 3.2 we have

N ) —x aN; -1
17T ' x T @

(3.147a)
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(e)
X —X; oN 1
i 2 (3.147b)

=T ' &~

for all five elements in the mesh. Since the aquifer is saturated, equation 3.146 can be
divided by 0(°)(Appendix II). If we assume that the solute does not react with the porous
media and does not decay i.e., K =0 for all elements and A =0,and since the porous
media is saturated 8 = n‘?, equation 3.146 can be written

()

JE T x9-x

(e ©

L -1 1 L9 |[vr-t 1
p®] = p® [_ _]dx + Voo ff =L L
[zn] i. [ x] L L x_xge) e(e) L(e) L(e)

@ L® ol O
DO 1 -1 v® o1
- :(:)'[-1 1] + 2% [_1 1] (3.148)

For the elements in Figure 3.10 these matrices are

1 1 -1 003 [-1 1]
[p®] = ﬁ[—l 1] 203) [—1 1]

_d[1-]  1T-11
T101-1 1 20p-1 1

= zlo[-; _;] = [D®] = [D®] = [D¥] = [ D]

In this problem we elect to use the lumped element formulation of the element sorption
matrix, equation 3.139 (written here for saturated flow)

0
(e (e) (e)
o] < | PP L9rro] _ L9110
M-[ 5 H]z[m]- 1L

For the elements in Figure 3.10 these matrices are

1001 0
[a®] = %[0 1]

= 5[(1) (1)] =[a®] = [a®] = [a®] = [A®]
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We can now assemble the global matrices [D] and [A] as follows

[-1/20 -1/20 0 0 0 0
-3/20 343y20 -1/20 0 0 0
0 =320 3320 -1/20 0 0
:El]:al 0 0 =320 (3+3)20 -1/20 0
| 0 0 0 0 =320 3720

[ 05-05 0 0 0 O]

-15 30 -05 O 0o 0
0 -15 30-05 0 o0
0 0 -15 30-05 O
0 0 0 -15 .30 -.05
0O 0 0 0 -15 .05]

(Al

We will use the backward difference form of equation 3.145 (@ = 1)

0
([A] + At[D] )}{Chyay = [AH{CL+ Ayf{m

The solute concentrations at the nodes at time t=0 are

(3.149)

. c 10
C, 0
C3 0

C = 4 3 = 4 3

{Clo C. 0
C5 0
C6. =0 [ 0
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With a time step of 10 days (At=10) equation 3.149 can be solved for the solute
concentrations at the end of the first time step (t=10)

([A]+ @At [D] {C}e1o = [AHClwo

3005 0 0 0 07[C] 50 0 0 0 0][10] [50
15 8005 0 0 O0|[C 01000 0 o0 of|0 0
0-1580-05 0 o0[|C| _[oo01w0 0offo] |o
0 0-15 80 =05 o|]c] " |oo o010 0o0|jof Jof
0 0 0 -15 80 -0.5(|Cs 000 0100||0 0
| 0 o o o0 -1.5 3.0](Ce,., LOO 0 0 05sllo)] Lol

However, this system of equations must be modified because of the boundary condition
(C1}=0=10. Modifying this system of equations (see Section 4.5) gives

8005 0 0 0][C 75.0
-15 8005 0 0](GCs 0
0 -15 80-05 0 [|{Cyp = 0
0 0 -1.5 80 -05(|Cs 0
0 0 0 -15 3.0J|Cs) g0 0
which can be solved to give values of C; to Cg at the end of the first time step. The
solution is
[ Cy] [10.000]
C; 9.488
C, 1.800
1| = o3|
Cs 0.066
[ Cs) =10 [ 0.033

This solution is then substituted into the right hand side of equation 3.149 and the
procedure is repeated for the next time step.

3.7.3 Transient Groundwater Flow

In transient groundwater flow, the volumetric water content © and the components of
apparent groundwater velocity vy, vy, and v, are functions of time t

0 =0@
vy = v(t)
vy = vy(t) (3.150)
v, = v(t)
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The dispersion coefficients Dy, Dy, and D, (0r Dyy, Dyy, etc) are computed using vy,
vy, and v, (see Appendix IIT) and therefore are also functions of time

D, = D,4(1)
D, = D,(1) (3.151)
D, = D,(1)

if groundwater flow is uniform, or
Dy, = Dy(1)
D,y = Dyylt) (3.152)
D,, = D,(t)

if groundwater flow is not uniform.
The advection—dispersion matrix [D(°)] and the element sorption matrix [A(e)] are
computed using 6, v,(f), etc., D;", etc., and are therefore also functions of time

[D*] = DY)

[A®)] = [A®)] (3.153)

Matrix integral formulations for [D(°)(t )] can be obtained by substiuting equations 3.150,
3.151, and 3.152 into equations 3.136 and 3.137

[D®©]=
[aN® O]
[ O an® aN® 15 .5
— —— — D(e)(lﬁ(e)(l) o o X X
ox ay 32 x aN(e) aN‘e) .
L 0 dPae® o a_‘ a" dx dy dz
€ € y Yy
) x| o 0 DPue%) o e
[ ox dy oz -1 .Zn
| oz oz J
v ma 313 3xn
N(le) I:aNge) . aNf:):I
+ [vx(©] e Ix dx dy dz
JJ)|ve
v® wa 1a ba
"~ N(le)
+ A 0“0 + pPKE)] NS - N9 dx dy dz
Il
v ax1 1x1 1xn (3.154)
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if groundwater flow is uniform and

[D®m]= _
N ]
Pl ad 90 D90e% DL =
2 D20e%) DSwen DRne®n 0
P || we% DRwme®e pfuee a_yl - | dxdy dz
G) &)
?(_ a%,, DE0e“ DYwe®n D) N a0
=
ve 3 33 3
~p e - M ) aN(:)-
N‘" N@ M vWo o o x %
+ il o Wo o ¥ 0 ax dy dz
e dy
N‘e) N() NO 0 ) 2O 2
S S _? e T-
V(e) 3 3 3xn
o
+ P @0+ pPKREN ING - N dx dy dz
N
Ve axt 1x1 1xn (3.155)

if the groundwater flow is not uniform. The matrix integral formulation for [A“’(t)] can be
obtained by substituting equation 3.150 into equation 3.138

N
[A®®] = t A pPKE +09w) IND - NP dx dy dz (3.156)
NY
9" “ax1 1x1 1xn

The global advection-dispersion matrix and the global sorption matrix are also functions
of time and the weighted residual formulation for the solute transport equation for transient
groundwater flow becomes

[A®HC} + [DONC} = {F}

.157
global global global (3.157)
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The finite difference formulation for equation 3.158 is

([A(t+ AD] + @At [D(t+ AD]) {Cliya,

= (A() - (1 - @) At[D]) {Ch + At ((1 - @){F}; + @fFly,a)
(3.158)

To solve equation (3.158), we first solve the transient groundwater flow problem

(either saturated or unsaturated) to obtain the values of 8)(t), v¥(t) etc., and DP(1) erc.,
for each element for each choice of time step used in (3.158). Then we specify the initial
values of {C}

{C},o = specified values

and compute [D(ty)], [A(ty)], [D(ty+At)] and [A(tg+At)]. These are substituted into
equation 3.158 which is then solved for the values of {C} at the end of the first time step,
{C}|°+A: We then set

{ChL = {C}‘o +4t

compute [D(t+At)] and [A(t+At)], substitute these matrices into equation 3.158 and repeat
the solution procedure. It should be obvious that computing each element matrix and
assembling and modifying the global system of equations can be extremely time
consuming,

It should be noted that M@A&mﬁ_@sgmﬁmﬂalm_whgnmnm

(see Appnd.lx IlI) When this i s not true, the groundwater flow and
solute transport equations are coupled and must be solved simultaneously.

3.7.4 Saturated Groundwater Flow
The solute transport equation for saturated groundwater flow is (Appendix III)

oC ?’Cc FR *c 2 (vxc]
EIR v P el
PbKdC] ( PbKdC)
- 5(—“— - A C+——n— (3.159)
for uniform flow and
aC ’C ?*C a’C ?*C o’C d’c

x = Dng + ny—r + Du—a Dy‘éyT + Dyyay + Dyzm
a’c 3%c 9’ c ) (v,‘c ) ( ) ( )
Dugesx * Pugzgy *Puz “ &\ n ) " 5y

eI
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if the groundwater flow is not uniform. If the porous media is saturated € = n = constant
within an element and the element advection-dispersion matrix for steady-state groundwater

flow is . i

fre 20 a0 20 ﬁ e
ax ay _; Dge) 0 0 ox ox
[D(e)] = 0 ]j;) 0 ﬂ ﬁ
na 84‘:) BNS‘,’) m‘;’ 0 0 D(;) ay %

T a®  a®
JJJIs & " = =

v© 3 33 »a
.(Nf;)-_ v(?] aN®  aN®
+ N;e) _n—@ [T -F]dx dydz

ve® ma  1x1 Ixn

dx dy dz

N{? POk
+ B Py PP - IN© - N dx dy dz (3.161)
Ng? i

v nx1 Ix1 Ixn

for uniform flow and

o
RO O L
du ljxy dﬂ
(e)y _ a.x a.y ? ©) e) Nf)
[(D™]= T 1 o 5
A ap a0 o8 o o8| e
= ¥y &z Ll

| oz

dx dy dz

N R

v

o 20 0 [oN®  aN®]

N“’ N“’ N“’ . & K
© aN® aN®

N‘" (e) N‘" n®® ¥y oy
ollatr o

o 0 0 F az az

ve 3 »3 3

k]
k]

N{? p<e)K<e)
+ : [x[l +— ]] IN$ - N©®) dx dy dz (3.162)
Ng o

v®  x1 Ix1 Ixn
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for nonuniform flow. The element sorption matrix is

Ny ©
K(e)
: [1 + Po ]

[a®] = o [ IND -+ NP ax dy dz (3.163)
N© n 1>
n 1x1
v®  axi
Similar equations can be written for transient groundwater flow for a lumped
poKS

forrulation. The term ll + ] is frequently called the retardation factor

n®

for the element.
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NOTES AND ADDITIONAL READING

1. For problems with axisymmetry equations 3.1 to 3.5 can be written in an (r,2)

coordinate systemn:
Steady-State, Saturated Flow Equation
190 oh} o oh
x5+ 5(xg) = 0 (3.164)

Steady-State, Unsaturated Flow Equation

12(rn 20 Sl 1) o

Transient, Saturated Flow Equation

1x:2) 2x) - o2
Transient, Unsaturated Flow Equation
13k onr )+ Lx(FE+1)) = cnt (3.167)

Solute Transport Equation (Uniformm Groundwater Flow)

36C) _ 13(. 9 a? 3
T ;;(‘?rf:;("‘:))*"rg("c*E(Vrc)
- 2 K P0) - BC + pPRSO) (3.168)

where r is the radial coordinate direction (directed outward from the axis of symmetry)
and z is the vertical coordinate direction (see, for example Figure 2.9)

2. Matrix-integral formulation for the element conductance, capacitance, advection
dispersion, and sorption matrices can also be derived for equations 3.164 to 3.168.
For example, the element conductance matrix for saturated flow in an axisymmetric
coordinate systern is

aN{? an¥

aNY  aN®
. & =g o || "
K9] = : : 2nr dr dz
e an@|L 0 KOl aN® aNp
- % oz o
A© ) 22 2a (3.169)
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STEP 3: DEVELOP SYSTEM OF EQUATIONS

4.1 REQUIRED PROPERTIES OF ELEMENT INTERPOLATION
FUNCTIONS

As we saw in the previous chapter, application of the method of weighted residuals to
the groundwater flow and solute transport equations leads to several matrix-integral
expressions (i.e., the equations for the saturated and unsaturated forms of the element
conductance matrix, the saturated and unsaturated forms of the element capacitance matrix,
the element dispersion-advection matrix, and the element sorption matrix) that must be
evaluated for each element in the mesh. To evaluate these expressions the element
: . N o NP N® .
interpolation functions N,( » and their derivatives oy and 55 st be known functions
of the three coordinate directions x, y, and z.

Recall that the interpolation functions are used to define the approximate solution for
hydraulic head (or pressure head, or solute concentration) at any point within an element.
For example

n

Bx,y,2) = O, NOx, v, Dy @.1)

i=1

where b is the approximate solution for hydraulic head within element e, N are the
interpolation functions for the nodes of element e, h; are the unknown values of hydraulic
head at the nodes of element e, and n are the number of nodes in element e. Because the
interpolation functions are defined using the element's size and shape they are generally
different for each element in the mesh. For example, the interpolation functions for one-
dimensional elements with two nodes will be different if the lengths of the elements are
different (equation 3.11). The set of interpolation functions for all elements in the mesh

define an approximate solution for h (or \il or €) throu ghout the problem domain,

4.1.1 Continuity

The need to integrate this solution (or its derivatives) places a restriction on the types of
interpolation functions that may be used: the interpolated value of h (or y or §) must be
continuous along the boundary between adjacent elements. That is the value of h computed
at each point on the boundary between two adjacent elements must be the same regardless
of which element’s set of interpolation functions are used (Figure 4.1). Because the
approximate solution is continuous from one element to the next, we say that h (or y or C)
is interpolated in a "piecewise continuous" manner over the problem domain. The
derivatives of the approximate solution do not have to be continuous across element
boundaries, however. This is so because for the integral

P fl(x) dx
oxP

80
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to be defined, ﬁ(x) must be continuous to the order (p—1). Because all the integral eanﬁorls
for element matrices in Chapter 3 contain (at most) only the first derivative (p=1) of h (or y

or é), h must be continuous but g—:, g—;, and % do not have to be (p~1=0).

BB (x2) = iP(xy)

ﬁ(z)(x), X3 SXSx3

ﬁ(l)(x), X; SXSxX)

5 O 5 7)) X3
Figure 4.1 Approximate solution must be continuous along adjacent element's
boundaries.

4.1.2 Convergence

When the finite element method is used to solve a groundwater flow or solute transport
problem, the solution consists of the approximate value of hydraulic head (or pressure head
or solute concentration) at each node. If suitable interpolation functions are used in the
solution procedure, the accuracy of the approximate solution will improve as the number
of nodes and elements in the mesh increases (which usually is equivalent to a decrease in
the size of elements in the mesh). We say that the solution converges to the true solution
as the number of nodes and elements in the mesh increases. Fortunately there is a simple
rule that allows us to determine which types of interpolation functions possess this
convergence property.

This rule has its origin in the approximate solution (equation 4.1). Consider the case of
an element e that is ina Por’tion of the problem domain where hydraulic head is constant.

In this case, the value of h(°)(x, y, 2) is constant and should also be equal to the value of h

at any node in the element, h® = h;, 1 =1 to n. If we call this constant value hy and substitute
it into equation 4.1 we have

A9%,y,2) = ho = 2, N"h = > N hg “.2)

i=1 i=1

which is only true if the values of all the element interpolation functions sum to one at every
point within the element
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Z NOx,y,2) = 1 forall(x, y, 2)in V© 4.3)

i=1

Where V© is the volume of element e.  This rule insures that the elements are capable of
modeling a constant head region within the mesh when such a condition exists. This rule
also insures that the approximate solution converges to the true solution as the number of
nodes in the mesh increases,

4.2 SUBPARAMETRIC, SUPERPARAMETRIC, AND
ISOPARAMETRIC ELEMENTS

The approximate solution for hydraulic head is given by

2 - Z N b, 4.4)

i=1

where N are the interpolation functions and h; are the unknown values of hydraulic head
at the element’s nodes. It is also possible to describe the shape of the element using the
coordinates of each node in the element and another set of interpolation functions for the
element. To see how this is done, let P represent an arbitrary point on the boundary of an
element and let x;, y;, and z; represent the coordinates of the i node for the element (Figure
4.2). Then we can describe the position of element boundaries using the coordinates of
each node and another set of interpolation functions for the element S;(®)

x®) = Y, SOP) % (4.52)
i=1

y® = Y, s y; (4.5b)
i=1

GEPCE 4.5¢)
=1
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a'e
b

X

Figure 4.2 P Is any point on an element boundary.

where equation 4.5a, for example, says that the x coordinate of point P is equal to the sum
of the product of the interpolation function for a node evaluated at point P and the x
coordinate of the node, for all nodes in the element.

Because the interpolation functions S;(®) are used to define the shape of the element
they are often called shape functions. Linear, quadratic, and cubic polynomials are the
most common type of shape functions used in groundwater flow and solute transport
modeling. For example, linear shape functions are used when the boundaries of the
element can be represented by straight line segments. Quadratic shape functions are used
when the boundaries of the element can be represented by quadratic curves. Similarly,
linear interpolation functions are used when values of hydraulic head can be considered to
vary in a linear fashion within the element. Quadratic interpolation functions are used when
values of hydraulic head can be considered to vary in a (quadratic) curvilinear fashion
within the element.

The order of the polynomials used for the interpolation and shape functions within an
element do not have to be the same. For example, an element with straight edges (linear
shape functions) can have a curvilinear variation in head (quadratic or cubic interpolation
functions) (Figure 4.3). The order of polynomials used for the interpolation and shape
functions are used to classify types of elements into three groups, which are illustrated for
one-dimensional elements in Figure 4.4, Subparametric elements use polynomials for the
shape functions that are a lower order than the polynomials used for the interpolation
functions. In isoparamerric elements the orders of the polynomials used for the shape and
interpolation functions are the same. Superparametric elements use polynomials for the
shape functions that are a higher order than the polynomials used for the interpolation
functions.

It is important to realize that when subparametric or superparametric element types are
used, not all of the nodes may have a value of hydraulic head (or pressure head or solute
concentration) assigned to them. Thus in a one-dimensional, superparametric element with
three nodes, quadratic shape functions, and linear interpolation functions, hydraulic head
will only be computed at two of the three nodes. These nodes will also be the ones where
boundary conditions are specified if the element is on the boundary of the mesh. The
coordinates of all three nodes would have to be specified, however. These coordinates are
used with the three shape functions to define the quadratic curve that describes the
element's shape.
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linear interpolation functions, linear shape functions

4
by b,
interpolation functions
- 7 \
90 hO) = N9 by + N9 by
*. P/ =0+ 00 ”
--- - $  shape functions
X xjge)

' §
hk ..............................
X h90x) = N9 b + Ni9(x) by + NOx) by
W) b |.......... e
interpolation functions
( x() = ${9x) % + 5{7x) »f?
hl ...... / \ /.
shape functions
*>—e L
x(ie) x}e) ] x(:)

Figure 4.3 Interpolation and shape functions for two types of one-dimensional
elements.

At present, isoparametric elements are used almost exclusively in groundwater flow and
solute transport modeling. Because in isoparametric elements the order of the polynomials
used for the shape functions and interpolation functions are identical we will refer to both
types of functions as interpolation functions in the remainder of Chapter 4. The next
section describes the most commonly used interpolation functions for a variety of one-,
two-, and three-dimensional elements and the procedures needed to compute the element
matrices.

Copyright American Geophysical Union



Groundwater Modeling by

Water Resources Monograph the Finite Element Method Vol. 13
Chapter 4 85
Example Subparametric Elernent
B T
h; . s . .
- J o prrneermeneeeess quadratic interpolation functions
h®x) (nodes 1, j, and k)
b ... ‘/linear shape function (nodes i and k )
xge) x}e) . x £e)
Example Isoparametric Element
he linear shape functions (nodes i and j)
J
R linear interpolation functions
h(x) (nodes i and j)
b

P, v
o, )
o, v
linear interpolation functions (nodes i and k)

\ 4 L 4 >
sge) s}e) s(ke)
S

Figure 4.4 Illustration of definitions of subparametric, isoparametric, and
superparametric one-dimensional elements.

4.3 EVALUATION OF ELEMENT MATRICES
In Chapter 3 we applied the Method of Weighted Residuals to the equations of

groundwater flow and solute transport. The result was a series of matrix integral equations
for each element in the mesh. These equations are listed here for reference
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Element Conductance Matrix (Saturated Flow)

o o
ap ap aw]. ¥ %
3" ? & Ko o NY N
[XK®) = ot o Ko |lS .. T8 dxdyds (4.6)
m“" e | K N @
x oy & _a;' ?n
ve® 3 33 3

Element Conductance Matrix (Unsaturated Flow)

aN(e) aN(G) aq(e) ;a:(i) ﬂ
= Wy o o |[& &
[K9)] = T rw o || 2 ey
a0 20 a0 o o0 x|
= 3 = ¥ %'?
v 3 33 o %))

Element Capacitance Matrix (Saturated Flow, Consistent Formulation)

N{?
[C9) = P SONG - N dx dy dz (4.8)
nxa fo) ix1 Ixn
nxl

Element Capacitance Matrix (Saturated Flow, Lumped Formulation)

@[l O
c'® s“’v !
[CT] = [ o ,1] (4.9)
nxn nxXn
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Element Capacitance Matrix (Unsaturated Flow, Consistent Formulation)

Ny
[COy)] = : ICOIING - NP dx dy dz (4.10)
na NOo| = Da
1
v ma

Element Capacitance Matrix (Unsaturated Flow, Lumped Formulation)

o[1. O

[C®y)] = C“’(\v)v( [ ‘ @.11)
O

nxa nxa

Element Advection-Dispersion Matrix

. T aw]
ap ap ﬁ Di%® Ditg® Dy =
x oy oz NO O
[D91=-[ || ¢ ¢ & |{oo%* o pte - e dxdy dz
' NG e aN“’ R ]| e aN!" .
x oy oL.ta
| &2 oz
ve nxn 3x3 3xn
a2
@0 oll® =
N“’ NP NO|| Vx o 2
+ : il o v§°’ 0 T‘Tn dx dy dz
N(:) NN o o W NG aNe
e
V9 ma 33 »a
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N
s[|]F [T+ pfREHN DN - N dx dy
N©
VO 10 1x1 % (4.12)

Element Sorption Matrix (Consistent Formulation)

N{
[A®) = P pSKE + 0@ 1IN -+ Ny dx dy dz
Nf:)
v®  axi Ix1 Da 4.13)

Element Sorption Matrix (Lumped Formulation)

oY1 O
[A®)] = (p“’K‘°’+e‘°’)[v 10 ] (4.14)
1

We can evaluate each of these matrices for any type of element once we specify the
interpolation functions and their derivatives for each node in the element. When the
interpolation functions have a simple form and the number of nodes is small, the
integrations can be performed analytically. If the interpolation functions are complex or if
the number of nodes is large, the integrations must be performed numerically.

4.3.1 Analytical Method

Certain one- and two-dimensional elements have relatively simple interpolation
functions and it is possible to use analytical methods to perform the integrations required
for the element matrices. The most commonly used one-dimensional element is the linear
bar element used in the examples in Chapter 3 (Figure 4.5)
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(e)
X:i"—X
NP(x) = J(T
L
1
Nx)
0 .
xge) xge)
[— L& ——p|
Figure 4.5
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(e)

x~Xi

N{(x) = —o oN® _-l
L(e)

oN®

< e

Interpolation functions and their derivatives for the linear bar element.

The element matrices for this type of element were computed in the examples in Chapter

3. The results are

[K®] = (e)[ 1 1] (4.152)
22
saturated flow
S(e) L(G)
(¢ = [f ;] (4.162)
22
saturated flow
consistent formulation
Py 1¥r2 1
[y = SPE[2 7 g
2x2
unsaturated flow
consistent formulation
(D% = —D’(‘e)e(e)[ ] wr-
wa 1O L-11 2

+ M09 +pPKE ) -

©
oo+ M9 +pPk{) -"-2-

(l) (l)] lumped formulation

K& -
(K9] = Te;")[_i 11] (4.15b)
22
unsaturated flow
Sﬁ" L®
[C9) = =5— [(1) (1)] (4.16b)
22
saturated flow
lumped formulation
e) (e)
[C®w)] = C((+L[(1) (1)] (4.17b)
22
unsaturated flow
lumped formulation
] consistent forrulation (4.18a)
(4.18b)
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¢ @@ gy L [2 1 . i
[A®) (PR + ) = consistent formulation (4.19a)
12
22
or = (PP + 9")) = [ (l) (l)] lumped formulation (4.19b)

A commonly used two-dimensional element is the linear triangle (Figure 4.6). The
interpolation functions for this type of element are derived in Segerlind (1984).

o, v

N®(x,y) =
K
Y| NPxy) =
(e)
y/ N Mx,y) =
&, ¥ o, ¥

Figure 4.6

In Figure 4.6
g = x(ls) yff) (e) (e) 3 = < y_(e)_ (e) Yl(:)
b = y}"-yx‘:’ b; = y& -y
G = xff)-x}’) 6 = xf? - x{®
and
A® = Areaof element

1A 59

1
L @ @
2|1 %" ¥ |  Appendix IV Part 12c.)

1 x(e) Yf:e)

The derivatives of the interpolation functions are

aN® b,

T)Jt_-- ZAJ(e)

aNe® b
ox G

ZA(,,(a,+bX+cly)

2A‘°) (3 +bx+cjy)

2A(,) (@ + byx + 6y )

Interpolation functions for the linear triangle element.

(&) o) _ (&) (o)

a =x" " -x"yi
be = ¥
ck=x})-x§)

( An equation to compute this determinant is in

aN® b,
ox ZA(e)
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N(‘) LY anNg® S aN® o
ay ZA(G) ay ZA(G) 5; ZA(G)

The element matrices for the linear wriangle element can be easily computed using an
integration formula in Segerlind (1984). For a linear triangle element

ON) g) (e) - a! b! c! (g)
,[(.)(N( ) A = @bt

where a, b, and ¢ are exponents of the interpolation functions N{%, Nj'). and N{. For
example consider the integral

NN A

A

In this case a =1, b= 1, and ¢ =0 and we can immediately write

()
N ga = 10 o0 A
o NN dA = 3170+ =73

where 0! = 1. As another example consider the integral
o,
e)
J‘ (e) N(
In this case a =1, b=c¢ =0 and we have

aN“’ b;
e) e) 1 _
I () N( L"’ Nf (e)

b; b; 1ot

= —— .') = (G)
TG A«)Nf dA 2A® (1+l+0+2)!2A
6

Example
Evaluate the matrix integral formulation for [A“)] (consistent formulation) for the linear
triangle element. From equation 4.13

N
[A“] = N(“) [pEKE + 61N NP N7 aA
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R
N
= PR + 61| | N9 NS NP N aa
Jo| N§

[ [NPNE NONP NN
= [pf,"Kff)+0(“’] N‘{’N%" N‘{’N&” N‘{’N&" dA
bl NOND NN NN

Now
ehg(e) _ (eh2
J'A@N(l N(l dA = J'A(,)(Ni )y dA
___ 200 @ _ A®
T 2+0+0+2)
Similarly

()
oo x MO A®
NN A = A = 4

() _ 110! 1! (g)_ﬁ
,[A(-)N(l N3"dA = (l+0+l+2)!2A T 12

and so on for each term in the integral. The final result is

A©@ 211
[A®] = 55 (pEKE +69 |1 2 1
112

A similar procedure can be used to compute the other element matrices. The results are:

2 2
© bi bib; biby K® G G CiCy
[K9 = —Z=|pb b2 bb |+ —= 2 (4.20)
33 PIC] B Jzk 4A@ | 6 G cj‘;k '
beb; byb; by CiCi CkSj C
saturated flow
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K9) ©y) !

(€ X 27/ 2 i Sh 4

[13( 1= A bb; bj bb| + AA® | G G o 4.21)
byb; byb; by Gl Gl Ok

unsaturated flow

@ @0[211 ) A0[1 00
[c = s 12 [1 2 1] (4222) [C¥) = 55 3A [o 1 o] (4.22b)

3 112 3x3 001
saturated flow saturated flow
consistent formulation lumped formulation

e) @211 o) @[100
[C9w)] = C(—-(-"LA—[I 2 1] @.232) [Cy)] = d‘+""[o 1 o] (4.23b)
11

12
3 2 3x3 001
unsaturated flow unsaturated flow
consistent formulation lumped formulation

[ .2
o L D00 0 TN e S
[3D ] 4A(°) b]bl bj bjbk + 4A(°) cjci Cj CjCk
x3 2 2
[ beb; beb; by | | CkCi CkCj Ck

D [bic; bicj bicy | D [cib; by cby
+=X—| bg; bg; bo | + L—| cibi cib; o

(e)
A | bc; byc; bycy |

Ve [b; b; by Ve [¢; ¢ o
r3 bi bj bk + Ty C; Cj ck
[ b; b; b G ¢ ¢©
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A© [2 1 17
+ 53 M09 +pPkH[1 2 1 consistent formulation (4.24a)
|11 2]
ZA(Q) -1 0 0-
or + == +pkh[0 1 0 Inmped formulation  (4.24b)
00 1]
€ = A oo, o® 211 : -
[A™] = ﬁ(pb Ki'+06)[121 consistent formilation (4.25a)
3%3 11 2]
A® 10 0]
oo = = (pPkP+e9) 010 lumped formulation ~ (4.25b)
[0 0 1]

Example
The clement conductance matrix for the linear triangle element is given by

ol -
aN{® aNy?
ox dy © aN{? aN® aN{®
[K(G)] = 3N§°’ aN?’ K* 0 ax Jx odx dxd
= W (Lo x| anp ang |
aNg ang? dy dy oy
JJox dy |
A(B)
b; c;
o)) o s o =
= Ga® Jl 520 )| bi € . y
2A e 2A b: c 0 K(y) C; cj C
A@
= Lz bl bj bk] A(e)
4A© G € C
(o ¢ cg oo
Kxe K(e) 1] -
T — it 2 2
2A© T AP % G o
CiCi CiCj 013
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Example

Compute [ K] for the element shown below (K,(:) =1, K(y‘) =2)

(3.8) (8,8)
y| G2
X
Jr32
A® =311 8 8|=15, 4A9 =60
138
bi=y§e)—ye)=8-8=0 ci=x£¢)_._x§e)=3_8=_5
b=y?-y?=8-2=6 g=x-x)=3-3=0
b =y?-y¥ =2-8=-6 G =x7-x? =8-3=5
1 [ (0)(0) (0)6) (0)(-6) 2 (=5)(=5) (-5)(0) (-5)(5)
[K¥) = % (6)(0) (6)(6) (6)(-6) |+ 0)=5 ©X0 (©)X5)
| (-6)(0) (—6)(6) (—6)(—6) 5)=5) GXO) (5)XS)
[ 5/6 0 -5/6
= 0 610 -6/10
| -5/6 —6/10 43730
Example

Vol. 13

95

Compute [ D] for the element in the previous example (v,(f) =2, v§°) =3, Dg = D@

=10,D=D)=0,1=0,K{ =0,0®=0.3)

60

0 0 0 25 0 -2
[D“’]=%gﬁo 36 —36] +1°(—°'3)[ 0 0 01

-25 0 25
5035
505
5035
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[0 0 0 ( 125 0 -1.25
= 0 18 -1.8] + 0o 0 o
0 ~1.8 138 [-1.25 0 1.25
[0 2.0 -2.0 [~2.5 0 2.5
+]| 02020} + =25 025
| 0 2.0 -2.0 | -2.5 0 25
[~1.25 2.00 -0.75
= -2.50 3.80 -1.30
|-3.75 020 3.55

Another commonly used two-dimensional element is the linear rectangle (Figure 4.7).
For this type of element, the sides of the element are required to be parallel to the x and y
coordinate axes (a more flexible type of element, the linear quadrilateral, is described in the

next section).
o, ¥ =9, v
¢4
za(e)
s._ i ¢
(¢) _(e)
y| oy ™ ¥ )

+— 2 —»
X

Figure 4.7 The linear rectangle element.

The interpolation functions for this type of element are derived in Segerlind (1984). Using
the local (s,t) coordinate system

2b® - 5)2a9 - 1)

Es,t) =
N6 229
(e)
() _ s5(2a™-1)
N0 = = @
(e) _ st
N0 = 0@
() _
NGy = E_K
229
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Because the s and x axes are parallel and the t and y axes are parallel %=% and %=% and
the derivatives of the interpolation functions are

NP 1240 NP 25y
ox 42 ox 429p®
N N
ox 42 ox 42®p®
BN?) _s- 2b(°) BN(‘) _ =S
9 45 ® T 4a9p®
aNp _ s aN{? _ 2685
%Y 2a0© 9  4a9®

The element matrices are computed in an exercise. The results are

@@'2—2—1 17 [ 2 1 -1 =2
[K®] = G2 2 14 + —K’('e)b(e) 1224 (4.261)
ica 6® |-1 1 2 =2 6 [-1-2 2 1 .
[ 1 -1 =2 2] (-2 -1 1 2]
satrated flow
© (.)- 2 <2 -1 17 © (s)' 2 1 -1 -2]
Ky’Wa™ |2 2 1 -1 ()b 1 -2 -1
[K9=—"—0—|_, | 52 +5"('%) | (4.26b)
x4 6b - 6a! -1-2 2 1
o [ 1 -1 <2 2] | -2 -1 1 2]
Iﬂw w
(e) (&) (o) 4212
S;a"b 12421
e) = s -
[ 4C:“] - 1242 (4.27a)
2124
saturated flow
consistent formulation
1000
[CY =  sWyepe]|0 100 4.270)
axd 0010
0001
saturated flow
lumped formulation
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Oy 2@ 2
() 0 e,
® w)a®®|2 421
[C4 (:I’)] — 9 (1242 (4.28a)
X 2124
unsaturated flow
consisteat formulation
1000
[y = C‘”(v)a“’b“’ 0100 (4.28b)
- 0010
0001
unsaturated flow
lumped formulation
e(e)(e)-z—z_l 1 ogone| 2 112
(Do = D D% 2 2 1-1| Dyb b 1 2 =2 -1
Teb® |11 22 @@ |-1 -2
x4 [ 1 -1 2 2] -2 -1 1 2
(‘)(e)'l 1 -1 =17 ()()'l—l—l 17
o DO7f-1-1 1 oaf DO [ 1 -1 -1 1
4 -1-1 11 4 -1 1 1-1
L -1 -1 -1 1 1 -1]
[~2 2 -1 [—2 -1 1 2]
w2 2 1-1f o W2 2
-1 1 2= 6 -1 -2 2 1
-1 1 22 | -2 -1 1 2]
O [ 4 2 1 2
b*| 2
+ A(O(°)+p(°)K(°)) 1 ; i ; consistent formulation (4.29a)
| 2 1 2 4
1000
0100
or  + A0+ pPK{)a @b 0010 lumped formulation (4.29b)
0001
90 ( 4 2 1 2
b 2 4 2 1
[A®] = (k{40 2 ) consistent formulation (4.30a)
PP 2 4 2
(21 2 4
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1000
o+  EPKS+e®) @ g (1) (1) g lumped formulation  (4.30b)
0001

Example
The second integral in the equation for advection-dispersion matrix (equation 4.12) for
the linear rectangle element is
(e)
NE N© N© v 00 aNg® aNg
1 =
: 5 : v® o (e) e) dx dy
N NP N Y aN® Ny
0 Vv 9y

A©

The matrix that results from the integration is
1 42 2
voa® 2 2 41 1
6 |4 4 33
52 22

The entry in the first row and column is obtained by evaluating the integral

J- J- N vff)-l?; ixdy = ‘Lzb(e) J.:,.(-)N(e) 9_3_ o
A(e)

dtds

x 4a(e)b(e) 4a(=)b(e)

(G) Zb") 2.(0)
=k [ @9-9e-ue-2) aras
" (@@
© 2 20
) ‘:; (€ 2-[0 (s — 2622~ 1)%de ds
4a*'b'")
(¢} 25 12,
) (:; @ 2.[ (s - 2622~ 42t + ) de ds
(4a*p'™)"%
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v,(f) (°)[ (e] [ (N2 .2 ts]
= (4a(°)b(3))2fb (S-2b )) (23 )t 2a t+-3- .

NO) b® €3
= J: (2b‘°’-s)[(za‘°’)3—(2a‘°))3+ -(%l]as

2.(‘)
ds

(4a(¢)b(°))2
b(ﬂ)
_ (:) © (za(e)):! _ (2a(e))3
= ——— 2b —g s ds
(4a(e)b(3)) 3
. [ 0,28 _s22a3 |27
(4a(°)b(°))2 >3 2 3 0
- [(2b‘°’)(2b(=)\ (229 _ 20®)? (h“’)’]
(4 (G)b(e))2 2 3
(e) (e) ()
N AN a® _ _wa"
(4a (G)b(e)) 3

Example

Verify the entry in the second row and third column of equation 4.27a.
From equation 4.8 we can write

N{?
(€9 = ]| i [SP1NE - N ax dy
N§
A©

The integral for the entry in the second row and third column of [C®] is

© s 26 2@
S (-3 = —5 O
SSF F o [1 2a(°)]4a(°)b(°) deds (4a(°)b(°))2,[ fb (2a™s —st)stdt ds

S l’(e) 2.(‘)
= 7 (e);(e))zf (a(e)sze S5 as
a
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©
sl 4 3I(e) 2
= e 3¥ 5
(42™'b™)

(e)
- L(i o |”
(4a(e)b(e))2 3 3 0
- Ss (4) 3(e) (8b3(°)] _ zs‘a(e)b(e)
- (4a(e)b(°))2 3 (a ) 3 - 9

4.3.2 Numerical Methods

In the ll:revious section we presented equations for computing the element matrices for
three simple (but commonly used) element types, the linear bar, the linear triangle, and the
linear rectangle. Because the number of nodes was small and the interpolation functions
were relaﬁ;/neali' simple (i.e., linear functions of x or x and y), the integrations could be
performed analytically. For elements with more complex interpolation functions or a larger
number of nodes, performing the required integrations analytically is awkward. Instead,
the integrations are performed numencally. The numerical integration procedure is greatly
simplified if the interpolation functions and their derivatives for each node are defined using
a local coordinate system as was done for the linear rectangle element. In a local
coordinate system a point within an clement is assigned coordinates using a coordinate
system origin aftached to the element (e.g., the origin of the s-t coordinate system in
Figure 4.7 is attached to node i). In a global coordinate system a point within an element
is assigned coordinates using an arbitrary coordinate system origin. Interpolation functions
and their derivatives can be defined using either global or local coordinates. For example,
the interpolation functions for the linear bar element can be written using the global
coordinate x (where the origin of the x axis can be anywhere) or the local coordinate €
(where the origin of the € axis is at the center of the element) (Figure 4.8).

Global Coordinates

(e
NOx) = e

) -X
(©
1 L
(e)
& _ X=X
N“’(x)] N = T8
0
9

(e)
Xj

fe— 1 © ——>
———» origin of global
X coordinate system
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Local Coordinates
N = 3(1-¢)
1 ' 2
. 1
N) N@) = 3(1+¢)
0
g=-1 e=0 g=1
origin of local >
coordinate system €

Figure 4.8 Element interpolation functions can be defined using global or local
coordinates.

The interpolation functions defined using local coordinates have the same properties as
interpolation functions defined using global coordinates namely

l.g=1 at e=g g=1 at e=g;
=0 at e=g; =0 at e=g¢

n
2. ) g@)=1 forall e, -15es1

i=1

However, when we use a local coordinate system, the integrations for the element
matrices can easily be performed numerically, even when the element has curved edges.
The shapes of several isoparametric elements in the local and global coordinate systems as
well as the interpolation functions and their derivatives are shown in Figures 4.9 to 4.15.
Derivations of the interpolation functions for these element types are in Lapidus and Pinder
(1982) and Dhatt and Touzot (1984). The derivatives of the interpolation functions, and
the value of the derivatives at the center of each element are also given in the figures. The
notation can best be illustrated by an example. Consider the two-dimensional, linear
quadrilateral element shown in Figure 4.10. The interpolation functions and their
derivatives for the element's four nodes are

N, = §(-€)1-n)

aN, 1 dN; 1
== -3 R
N, = %(l+e)(l—n)

8N2 _ 1 aNz 1
% = 30 EL R
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N; = 7:(1+e)(1+r|)

oN; 1 oN; 1
= -3t 7 - 30+
N, = 0-e)(1+)

oN oN
Teedom oo

The choice of element type to use for a particular problem is not always clear. The
calculation of the element matrices requires less computational for the linear clements than
for the quadratic and cubic elements. Also curvilinear variations in head or solute
concentration can usually be adequately represented by many small, linear elements.
However, when gradients of head or concentration are large, quadratic or cubic elements
may be preferable to linear elements because the quadratic or cubic interpolation functions
can approximate curvilinear variations in the field variable with fewer nodes than linear
interpolation functions. Also quadratic and cubic elements are useful when the problem
don;ain has curved boundaries (e.g., near a well or a buried structure such as a tunnel,
etc.).

In the local coordinate system, the isoparametric clements in Figures 4.9 to 4.15 have

straight edges and symmetry about the g, 1}, and § axes. However, in the global coordinate
system (which is the coordinate system of the problem domain) the clements can have
curved edges and asymmetric shapes. This is an t property because it means that,
when we discretize the problem domain, we can better represent curved boundaries or
curved interfaces between soil or rock layers. However, because the interpolation
functions and their derivatives are defined in a local coordinate system while the integral
formulations for the element matrices are defined in a global coordinate system, we must
use a coordinate transformation to evaluate the integrals.

(a) linear bar element

local system global system
€
—b o ——
® ® o .
for nodes 1 and 2
N; = 5(1+€e)
aN; & aNil _&
& 2 e leo 2
where
i 2
§ - 1
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(b) quadratic bar element
local system global system
£ —Eee
e
7\
0, @ ® ———
fornodes 1 and 3 :

N; = 8‘2;8(1 +&€)

oN; § oN; §
& - 2t1+2%e) % le0 =32
where
i 1 3
§ -1 1
fornode2:
N, =(1+e)(1-¢)
oN; - oN;
%k - F le0 =0
(c) cubic bar element
local system global system
le_b e

fornodes 1 and 4 ;

) .
% = 10 e m-3)

aN’ o
% leo = "T6
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where

i 1
g -1 1
fornodes2 and 3:

27¢; €;
N; = 1—68'(e+l)(e-l)(e—-§'-)
oN; _ 27&(362_ 2% e l)

% 16 3
aNi _ 2781
e le0 - T 16
where
i 2 3
§ 1 -1

Figure 4.9 Interpolation functions and their derivatives for three types of
one-dimensional elements.

local system global system

@ ®

O

fornodes 1,2, 3,and 4 :

N; = 301 +ge)(1 +nn)

aNi 1 8N1| _
5 = z@(1+nn) % leomeo =
aN; 1 I ﬂl =
AW g T

&3 aleP

Copyright American Geophysical Union



Groundwater Modeling by

Water Resources Monograph the Finite Element Method Vol. 13
106 Step 3: Develop System of Equations
where

i 1 2 3 4

§ -1 1 1 -1
™ -1 -1 1 1

Figure 4.10 Interpolation functions and their derivatives for linear quadrilateral

elements.
local systern global system

(6

7 \6/ 5

O nT—ev
L

o

1 \2} 3 x

fornodes 1,3,5,and 7 :

N, = %(1+eie)(1+nm)(sie+nm—l)

N, 1 2 i
T = F(irnaelernen) [, =0
N, 1 i
ﬁ=i(l+€i5)(2ﬂizﬂ+“isie) o '=°"l=°=0
where
i 1 5 7
§ -1 1 1 -l
no-1o-r
fornodes2and 6:

N = 5(1-e)1+nn)

aN, _ o,
Te = "e(1+nm) e leon=0= 0
M 2 M leon=0 ~ 2
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where

i 2 6

g 0

™ -1 1
for nodes 4 and 8 :

N, = 5(1+ee)(1-1")

aN; 2 aN; o
% - 3-m) -aguomo-i
aN; N; _
i SR I T WP
where
i 4 8
& 1 -1
n; 0

Figure 4.11 Interpolation functions and their derivatives for quadratic quadrilateral
elements.

local system global system

fornodes 1,4, 7,and 10 :
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N = g(1+ee)(1+nm)9(e +1%)-10]

aNi 1 2 2

5 = 330 1+nin)(18e+27e€” +9en’" - 10g;)
oN; 1 2 2

-aT = -35( 1+ (A )( 18T| + 27‘“1‘“ + 91'|i€ - lonl)
oN; 10 oN; 10

% leon=0 = "2 M leson0 = 32

where
i 1 4 7 10
[ -1 1 1 -1
n -1 -1 1 1
for nodes 2, 3,8,and 9 :
9 2
Ni = (1-e")(1+%¢e)(1+nn)
oN; 9
= = 33( 1+ )% - 26~ 2Tee’)
o = Rl-e)m+%me)
oN; _ 8 N, 5
€ |e=0n=0 325 on leon=0 2
where

i 2 3 8 9
g -3 13 13 -3
n -1 -1 1 1

for nodes 5, 6, 11, and 12 :

N, = g(1-mP)(1+9mn X 1+e8)

oN; 9

= = 35(1-1")&+men)

oN; 9 2

E (1 +&e)(5n;-2n-2mn°)

aNi _ 2. aN, - 8_1
Floana = B% T leone = 2"
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where

i 5 6 11 12
g 1 1 -1 -1
w -3 13 13 -1

Figure 4.12 Interpolation functions and their derivatives for cubic quadrilateral
elements.

global system
z| /_'yE
X
fornodes 1to 8 :
N = g(1+ge)(1+nm)(1+LK)
5= q1nnX1+5L)
aN;
T = g 1ree)1+L0)
oaN; &
= $(1+ge)(1+m0)
oN; _& oN; Wi oN; _G
& le0n=05=0" F M le=on-0t=0 8 N leon=0g0~ §
where
i 1 2 3 4 s 6 1 8
g -1 1 1 -1 -1 1 1 -l
n -1 -1 1 1 -1 -1 1 1
g -1 -1 -1 -1 1 1 1 1

Figure 4.13 Interpolation functions and their derivatives for linear parallelepiped
elements.
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local system global system

fornodes 1,3, 5,7,13, 15,17,and 19 :

N; (1+s,e)(1+n.n)(1+§.§)(e,a+n.n+ci§ 2)

%? F(1+nM)(1+8E) 2ee+nm +LL-1)

% Il- (1+ee)(1+EE)2nn+ee+LL-1)

%g- = —(1+e.t:)(1+nm W24 +ee+nn-1)

oN; g N i ON; G

= e=0m=08=0 = 8  ON le=om=0z=0 8 O lesom=0g=0 8

where
i 1 3 5 7 13 15 17 19
& -1 1 1 -1 -1 1 1 -1
i -1 -1 1 1 -1 -1 1 1
& -1 -1 -1 -1 1 1 1 1

for nodes 2, 6, 14, and 18 :

N; (l-e J(1+mm)(1+E8)

oN;
'E 5(1+TliTl)(1+§i§)
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oN; m
= U -EN+E0)
N, ¢
o = F(1-€)1+nn)
aN; oN; _ M oN; G
Ewﬂﬂ?ﬂ M leson=0¢0 4 O le=one0¢=0 ~ 4
where
i 2 6 14 18
g 0o 0 o0 o
;i -1 1 -1 1
& -1 -1 1 1

for nodes 4, 8, 16, and 20 :

N, = 3(1-1°)(1+ee)(1+GL)

N, g
S = 20-m1+58)
aN;
o = —I'-(l+eie)(l+§i§)
aNi C-
T - F(1+ee)1- n?)
aNil _ & oN; =0 aN; _S
O le=0n=0¢=0 ~ 4 M |eom=0t0 OC |e=on=0g-0 %
where
i 4 8 16 20
§ 1 -1 1 -1
% 0 0 o0 0
G -1 -1 1 1
for nodes 9, 10, 11, and 12 :
N; (1 ) 1+ge)(1+0M)

aN;
= = F1-C)1+am)
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N,
35 = F1-U)1+ee)

Nt
- —3(1+ge)(1+nm)
oN; & oN; _n oN; -0
0€ |e0n=0z0 4 M leon0g0 4 O | e0n=0¢=0
where
i 10 11 12
g -1 1 1 A
% -1 4 1 1
G 0 0 0

Figure 4.14 Interpolation functions and their derivatives for quadratic
parallelepiped elements,

local system global system
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for nodes 1, 4, 7, 10, 21, 24,27, and 30 :

N = g(+ee)X1+nm1 o[ @ +nt+th - F ]

aNi 9 19

% = a1+ R0 & (g + et ent+ g )+ 2]

aN;

r 64(l+t-:.8)(l+§£)[nl(——+e +3n +C2 ]

aNi 9

T = Z(1+ee) 140 )[Ci(—%+e’+n’+ 3C’)+2C]

aNi __1_9

T letn=0g=0 = TS

aN, 19

I leone0c=0 ~ gg

aN; __1,

of le=on=0g=0 4

where
i 1 4 7 10 21 24 21 30
& -1 1 1 -1 -1 1 1 -1
m -1 -1 1 1 -1 -1 1 1
& -1 -1 -1 -1 1 1 1 1
for nodes 2, 3, 8,9, 22,23, 28, and 29 :

N = g(1-¢) gree K 1enaX1+LL)

aN;

g‘ = a(lﬂ'lm )(1+§i§)(€i-§8—38i82)

aN; 8l

T = g1 grae K1+8L)

aN; 81

T = @ -¢) gree Jieam)

aN; _ 8l

e le=0m=0¢=0 ~ GAC

aNi _ 9

M leoneog0 = G

aN, _ 5

OC |eom=0g=0 647
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where
i 2 3 8 9 2 23 28 2
g -1 13 1B -1 -1 13 13 -1B
m -1 -1 1 1 -1 -1 1 1
& -1 -1 -1 -1 1 1 1 1
for nodes 5, 6, 11, 12, 25, 26, 31, and 32 :
N, = g(1-nt) g+nn J(1+ee)1+52)
aN,
S = (- 4 (1+EE)
aN, 2
T = g1+ 1+ 88 mi-gn-na? )
aN, 81
T = w11 §+na X 1vee)
aN,
% |oon-og0 ~ 64%
aNi _-‘;l )
wo'q=0§=()—64‘rll
oN; 9
o le=on=0¢=0 ~ A
where
i 5 6 11 12 25 2 31 32
& 1 1 -1 -1 1 1 -1 -1
n -3 13 1B 18 -1B 13 13 -173
& -1 -1 -1 -1 1 1 1 1

for nodes 13, 14, 15, 16, 17, 18, 19, and 20 :

= 200 (5+8L J1+ee)1+10)
=—(1-§ )( +§.C)(l+n.n)

= -t (§+58 Y1 vee)

= §(1+eis)(1+nm)(§i—§§-3§£2)
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aN; _
% le=0n=0t=0 = &5
aN; 9
N le=0n=0¢=0 — 64T
aN; _ 81 t
O l=0n=0¢0 647
where
i 13 14 15 16 17 18 19 20
§ -1 1 1 -1 -1 1 1 -1

m -1 -1 1 1 -1 -1 1 1
L -13 -13 -13 -13 13 13 13 173

Figure 4.15 Interpolation functions and their derivatives for cubic parallelepiped
elements.

To illustrate the coordinate transformation process consider the one-dimensional form
of the element conductance matrix for saturated flow

{
i

an{
Tox aN{® ang
e)| = (¢)
- | |l 52
© ox

The derivatives of the interpolation functions are given in terms of x, but we can use a
coordinate transformation of the form

x = f(e)

to rewrite the interpolation functions and their derivatives in terms of the local coordinate €.
For the linear, bar element (Figure 4.9a)

1 1
N = -2-(1-6) N, = §(l+e)
and
aNl _ 1 aNz _ 1
T -2 & 2
Using the chain rule of calculus we can immediately write
oN; oN; ax dN, _ 9N, ax
T€ T ox oe % T 9x de
oN, oN,
=%l ==
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The quantity -a-::- is called the Jacobian matrix of the coordinate transformation and, for a
one-dimensional element, the Jacobian matrix [J] is a square matrix with a size of one

oN® ., oNP
m = [F] = T+ Tt @
X

We can also write the inverse coordinate transformation

aNl _ 1 aNl aNz _ 1 aNz

Ox  Ox/oE o 9 Oxfoe oe
oN oN

= =1 -l 2
=[] T ==

where [I' 1is the inverse of the Jacobian matrix (for a matrix of size 1x1, [T} 1= 1/I1], see
Appendix IV).

The limits of the integration in equation 4.31 also change during the coordinate
transformation (see Figure 4.8)

x=x? s5e=-1

x=x? se=1

We can now rewrite equation 4.31 as

(¢)

i aN@
(e) (e)
K®] = Q) [3N oN; ]
[k9] = | | o [T
A0 X
rl
aNg? N
|7 e | 3 ]
= | a0 IR | = o [19] e (4.33)
L= 1x1
2x1

where |J | is the determinant of the Jacobian matrix.
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Example

Consider the one-dimensional element in Figure 4.8 and let x;() = 1 and x;(¢) = 2.
Then

aNy® ., oNy

]
= (3)w+(3)@ = 3 =51 ee Appendix IV, Part 12
=2 (see Appendix IV, Part 13a)
.1
ke - | | 1{elxele-3 2] G)e
22 il 2

K91 - 1 -1
x[1 - _ @] 1 -
S e - w7 @

which is identical to the conductance matrix obtained for the same element in the global
coordinate system, equation 4.15a (L® =xP-x=2-1=1)

For a two—dimensional element [J] and [I™ l] are square matrices of size 2x2. Fora
two-dimensional element with n nodes, the entries of [J] are given by

I
n =i 5
where
oN, oN,
Ju=3*%+ "+t 5%,
oN, oN,
Jiz = 3Nt g
oN, oN,
Ia =gt gt
oN, oN,
In =Nt A {h
or more compactly
oN, N, _—
0l = aa;l ;f P (4.36)
2x2 eae n Xn ¥
W 2xn n nx2
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The value of |7| and the entries of [I'] can be determined using the equations in Appendix
IV, parts 12b and 13b.

For a three—dimensional element [J] and [J™}] are square matrices of size 3x3. For a

three-dimensional element with n nodes, the entries of [J] are given by

where

or more compactly
aNI aNn
e T Te
M= N
3x3 3!] an
oNy  oN,
3xn

Jin Jiz2 Y13
(0 = [J21 J22 I3
I3 J3p J3s

N,

In= ¥x1+ s 4

aN,
Jiz = 5+

oN;
Jis = 52+

ha = gt

X112
Xn ¥Ya

nx3
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The value of |J| and the entries of [r l] can be determined using the equations in
Appendix IV parts 12c and 13c.

In general [J], [J° 1], and | J | vary from point—to—point within the element (because the
interpolation function derivatives are themselves functions of €, € and 11, or €, 1, and {).

Example

Compute [J] , [T” 1]. and [J| atthe point € =0, 1 = 1 for the element shown below

—
(8] ]
w

=)
GQO\MANNH§_

x
0
5
10
7.5
5.0
25
0
-1

NN
hoooineeex

The element is a quadratic quadrilateral. From Figure 4.11, the interpolation function
derivatives ate=0,m =1 are

aN,
o

dN,

o€
oN;s
3
oONg
oe

aN,
o

aN,

HZ o2 5

70-D(2@+1) = 0

0
1
3

0

N

N, aN,
% =0 = 0
8N6 BN7 1
e -0 = -2
1 1
71-002(M+0) = 3
8N3 l BN4
32 o -1
BNs 1 BN7 1
M -3 -3

Nl =
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[ 0
5

—
(=2~}

: 0
o o o e 12 0 -2 o0]|7525
m‘[l/z A2 1241 12 12 12 —1] 5.0 5.0
2.5 5.0
0 5.0
-1 2.5,

_[ 250 0 ]
~1-0.25 2.50
[3] = (2.50)(2.50) - (0)(-0.25) = 6.25

[J"]-L[z's 0 _[0.40 o]
~ 6.2510.25 2.5] ~ L0.04 0.40

The coordinate transformation can be used to rewrite the integrals in Chapter 3. These

transformed integral equations can be used to compute the element matrices for each type of
element shown in Figures 4.9 to 4.15.

Element Conductance Matrix (Saturated flow)

1
g
0
[x@] = [ k@) [J"][ N ]|J|de 4.39)
nxa aN(,f) 1x1 1x1 1x1 lxn
L 9e
nx1
Two-dimensional _
1 1
;aN‘.z aN(f) aN(G) aIN®
e ) o[KP o ol 3 e
[x®] = SN ol 7] % 2 (l3]dean
wa a0 awl L0 K| 1a0 aw
J 5 w2 2x2  2x2l7om om
nx2 2xn (4.40)
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T i ional el .
1 o1 ol [aN® aNO®]
NP aN‘,” aN® a_tl...a_:
ot an a; lé? 00
AR 1,T L& a® 5]
[K(e)]= : ; : |1 o KSI" 0 ([T7] o Jldedndg
nxn ad a N[ 3x3| g o g9 3x3 20 2@
Ll T s a—c'T"
w3 X sxn @4.41)
Element Conductance Matrix (Unsaturated flow)
1
g
o
[xowl=| | & [ [xoo]or[ 28 3]sl “42)
nxa a@ |1 1a 71 lxn
1 a_e
nx1
1 o1 N
S a aN("
de —
[xk®w)] = P 0 K(;, ] a:;) an@ |7/ de an
D aN® aN@ 2x2 22| 1. S
o om
e
it 2xn (4.43)
Three-di ional elements:
[xOw)] = _
nxan
1 61 ol [ aN© mf;"
Ny aw“’ am“’ _51_ e —
]ée)(‘v) 0 0 [ €
EC 1T 1| N aN®
i1 2 || o Kdw 0 I W‘...#hh&dﬂd@
aN(:) aN(:) aN(:) 3x3 0 0 lé:)(‘v) 3Ix3 NO N
WJaal@e . 3T Tl Tﬂ
3 3Ix3 - »a - (4.44)
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Element Capacitance Matrix (Saturated Flow, Consistent Formulation)

One-di ional ¢l .
N
[C(e)] = [s(e)][N(e) N(e)] |7]de 4.45)
Da . N(f-) 1x1
nxl
Two-i ionalel .
1 Ng"
[ce] = : [S(e)][N(°) fo’] |7]de dn (4.46)
na . N@| 1x1 DLa
1 n
axi
T i ional ] .
1 N(°’
[c@] = [s¢] [N(" - N®]l1ldedn ag (4.47)
e 1111 N(e) b
ox1

Element Capacitance Matrix (Saturated Flow, Lumped Formulation)

‘W imensi ]
s“’v‘" o)
[c®] = IJI[ ) ] (4.48)
nxn o 1
nxXn
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Element Capacitance Matrix (Unsaturated Flow, Consistent Formulation)

one-dimensional clements
l N(le)
(€% = P ICOwI[NE - NO]17]de (4.49)
nxp AN 1 1xa
nx1
Two-dim 1
1 ()
1 N(l)
(9w = P ICOw[Ng - NO] |5l dedan (4.50)
na JLa N9 1a Da
nxl
Thzce-dimensional clements:
1 ol ol N
[C%) = P ICOWI[ NG - N®]|3]dedn dg (4.51)
na WL N9 1a 1xn
nxl

Element Advection-Dispersion Matrix

- nsional el
1 _
o
e
[09] = | | % [0 [ppee] o[ 2. 22 )irlee
na aN[pa  pa o wa de b de
1 de
nXx1
l - -
N
© ()
+ a [v‘°’1[r‘1[aNl aNn]l:lds
ol 1 % %
1LNp'] 1x1 1Ix1 1xn
nxl
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1
N
+ || ¢ |nE?+pKPA[ND - NO][7]ae 4.52)

1[N 1x1 I>n
nxd

Two-dimensional el .

rl Pl

ap ap RPN )
? W [J_I]T[ pig® D’(‘e)e(e)] - % g
nxp aN‘:’ aN.‘:) D§°}9(e) D%e® ﬁ ﬁ
Lidiloe "o o o
e 22 22 »e 2>m

[p®] = |31 de an

ol el
(e) 0 aN(;) m(c)
Vx |3 T e

[ ?][r] af |7dedn

an  on

N‘ N“”

N‘"fo’
Ll e 22 22 2a

+ @@+ pPRE N - N 1] de dn

nx1 1x1 1xn (4.53)

101 pl y . [ ap aN‘;f
% ﬁ N) dg)e(g) x}e(e) D(::e(e) T . e
ro 71| Do e oo |31 B | AL 1] de am ag

ap ap ap D% o Dde® .
Ll = =% = ap ap

L ag a
3 33 33 33 3a
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101 EE
© — e D
o N NO]| vk O O e de
| I MR PR
+ tor il o v o | 'aTl"'Wn [3]de dn dg
©) ©)
NN o0 o W N ave
1/~1-1 -§-c— -Fc—_
nx3 X3 . 33 3xn
1 o1 (1 N(le)
+ Eo[1n @ + pPREN IND -+ N 1] de dn g
N®
1/-1-1 n
nx1 1x1 Ixn (4.54)

Element Sorption Matrix

One-dimensional el i
1
N{®
[a®] = | | i [FKE +0[NE .. NO]T]ce
N
ma 1 na 1 a (4.55)
mension
[a®] = | oK + 0@ [N® - N [1]de an
N®
151" 1 o (4.56)
nsi nts:
1 Al pl N(le)
[a®]=] - P 1pPKE + 0@ NP - NP1 1] de an o
N(e)
15-1-1 n
ma nx1 11 a 4.57)
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When the number of nodes for an element is greater than two, or when the order of the
polynomial for the interpolation functions is greater than one, or for two-dimensional or
three-dimensional elements, it is convenient to use numerical methods to evaluate the
integrals in equations 4.39 to 4.57. Specifically the method of Gauss quadrature can be
used. In this method, we obtain a numerical approximation to the integral of a function
over an interval by computing the weighted sum of values of the function for specific
points on the interval. In one-dimension, the equation for Gauss quadrature is

N,
1 L3
I feyde = Y wiete)  0sWes1 (4.58)
- i=1

where Wj(g,) is the weight assigned to the value of the function f at the Gauss point € = g;,

-1 £¢g; £ 1, and N is the number of Gauss points on the interval. In two-dimensions, the
equation for Gauss quadrature is

1A N, N,
[ [ flen) dedn = D, O Wi(e) Wiin) fen)

1L i=1 =1
0sWe) <1
0SWimp <1 (4.59)

where Wj(€;) and Wj(n;) are the weights assigned to the value of the function f at the Gauss
point (€= g;, 1 =7;) and Ng and Ny, are the number of Gauss points on the intervals -1 <

g<land-1sm;<1.
In three dimensions, the equation for Gauss quadrature is

1Al N N, N
[ [ [ fenl)dedndl = 3, 3 Wile) Win) Wy fe; ;.50
1

1.1 i=l j=1 k=1
0sWnp <1
0SW (L) <1 (4.60)

where Wi(g;), Wjm;), and Wi (&) are the weights assigned to the value of function f at the
Gauss point (€ = &;, N =M;, { ={; ) and N, Ny, and N are the number of Gauss points on
the intervals -1 Sg;<1and-1Sn;<1,and-1<E;< 1.

The number and location of the Gauss points and the values of the weights are selected
to achieve the greatest accuracy. If the function f is a polynomial, Gauss quadrature can
provide an exact integration. A total of (n+1)/2 Gauss points are required to obtain an exact
integration for a polynomial function of order n. If the quantity (n + 1)/2 is not a whole
number it is rounded up to the next largest integer. For example, if n=2, (n + 1)/2=3/2
= 1.5 which is rounded up to 2 and 2 Gauss points are required. The number and locations

of the Gauss points and the values of the weights, for polynomial functions of orders 0 to 9
are in Table 4.1.
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Table 4.1 Locations of Gauss points and values of weights for exact integration of

a polynomial function by Gauss quadrature (after Dbatt and
Touzot, 1984).
Order of Numberof  Locations(s) of Weight(s)
polynomial Gauss points  Gauss Points
Oorl 1 0 2
20r3 2 IN3 1
-IN3 1
4or5 3 0 89
V35 M
35 P
3-2V6/5 1 1
6or?7 4 3 i + m
3-2V6/5 1,1
7 27 &N65
342V6/5 1__1
7 27 V65
342V6/5 1__1
7 27 V65
128
8or9 5 0 ﬁ
1 ,—Q— 161 13
Fvvsnd 450 T T80v/14
1 161 13
-5 54 5/14 m + W-l 314
1 161 13
- 4 - —
GV 450 ~ 180V5/14
1 161 13
/5754 250 ~ 8OVS4
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For example, consider the integral

1
[ (e+3) de
1

The analytical solution is
' & |1 1 1
(erade = Fade| = (53+3)-(3-3) =6

The highest-order polynomial in the function to be integrated is 1 (n = 1) and the number of
Gauss points required is also 1 (Table 4.1). Using equation 4.58, the numerical solution is

J: (e+3) de = ZW.(eo fle) = Wile=e) f(e)

= W(£=0) f(e=0) = 2:(0+3) = 6

which is the same as the analytical solution.
For another example, consider the integral

J: (e%+) de

The analytical solution is

1 3 2
J:(ez+e)de = %+e—
1 2-1

The highest-order polynomial in the function to be integrated is 2 (n = 2) and the number of
Gauss points required is also 2 (Table 4.1). Using equation 4.58, the numerical solution is

1 1
L(ezﬂ-:) de = O Wile) f(e)

) e o))

{4

which is the same as the analytical solution.
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Example

Evaluate the integral
J:J:‘n‘ez + n3 de dn

The highest order polynomial term is quartic (N4) and from Table 4.1 we find that three
Gauss points are required in each direction for a total of nine points. They are (gn):

©, 0) 35, 0) (~V3/5, 0)
0,vV3/5) 35, V355)  (=V35,.Y35)
0,~V35) 35,365  (=V3/5,-V3/5)

The value of the integral can be computed using equation 4.59

Z ZW () Wimpmiel + 1)

i=lj=

= (9)(%)[“” @2+ @™ + (5 )3 ) VTBY @2 + (3B
X3 J—vamy o7 + (VM

+
o} o0

)

@B + 0 (3)(3)1BBY B + (3
=35y VFS + (<3
)
)

p——d
N

+
WVl vl Vi Vlx

+
TN N N N N

[0)'~V35Y* + (01 + (g)(g)[d%)‘(—%)’ + (V35"
[~V (V35 + (~V375)°]

0.230 -0.230 + 0 + 0.210-0.077 + 0 +0.210 - 0.077

+

+
ol vl ol vl

+ == >

o

E

Example

Evaluate the integral
el . 5
I_l_[l_[len ¢ + e'ng’dedn dg

The highest order polynomial term is cubic ({3) and from Table 4.1 we find that two Gauss
points are required in each direction for a total of eight points. They are (g1,E):
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The application of Gauss quadrature to the computation of the element matrices leads to
the following equations.

Element Conductance Matrix (Saturated Flow)

e imenional o ]
" NP
- de . .
[x©@] =D Wil | ¢ |De™"[k?] [J(ei)“l[M M] |3e) | }
nxn i=1 aN(:)(e‘) 1x1 1x1 de Ixn oe
oe J
e (4.61)
Turo-gimensional c _

aNPien) NPem)
AR o n | K2 0
(k9] =X > wiewmp! | LR
2x2

axn =1 j=1 Ngm) aNem) 2x2
ot an
nx2

Mgy  NDgm)

[emr™| % % xemlt (4.62)
e;,l Nen)  aNdem) &
am o
2xn
Three-dimensional elemens:
aNiemzh o) ANFremihe) aNElem;he)
de on C
[x¢] - ZZZW.(e.) Wim) WG :
=1 Fl =t Nremhe) 3N‘°(e..n,.h;) A (e..n,-h;)
de an ot
3
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[ aflen b aOign L)

lé') 0 0 de de
~ -~ ©)e. 1. e
eyt T| 0 k@ o |Iem;go™| 2 ‘;:‘r‘*’...““ﬁg“:‘k’ |scenyto| |
9 3

a3 i F'd " ok ]

3a 4.63)

Element Conductance Matrix (Unsaturated Flow)

These equations can be obtained by substituting K(y), K§,’"(\y). and KO(y) forK®,
K", and K{" in equations 4.61, 4.62, and 4.63.

Element Capacitance Matrix (Saturated Flow, Consistent Formulation)

e dimensional e
N, N{e)
€9 = Yweq] ¢ [IsPNPee) - NPl 1l (4.64)
nxn i=1 Nl(:)(ai) 1x1 1xn '
ax1

Two-dimensional elements:

N, N, Ny
[T = Y, Y Wye) Witnp P SP1INeny - NI enp|
nxn i=lj=1 mee)(ei’ﬂj) Ix1 Ixn
nx1 (4.65)
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T i ional el .
NN N N{em; %o
€= Z D Wile) Witn) WylG) P |is®)
t=1j=lk=1 NOem;to |
' nx1
[N(le)(ai’nj’Ck) e Nfle)(ei’nj’Ck)] IJ (ei’nj'gk) I}
Ixn
(4.66)

Element Capacitance Matrix (Saturated Flow, Lumped Formulation)

No numerical integration is required; use equation 4.9,

Element Capacitance Matrix (Unsaturated Flow, Consistent Formulation)

These equations can be obtained by substituting C(y) for S in equations 4.64, 4.65,
and 4.66.

Element Capacitance Matrix (Unsaturated Flow, Lumped Formulation)

No numerical integration is required; use equation 4.11.

Element Advection-Dispersion Matrix

R
N, [EL)
de [ m(
D1 = Y Wite). ey oeurce) | 2w 2800 |56)
axn i=1 BN(;)(ei) ix1 1x1 ix1 1xn
de
nxi
(e
dwed| ¢ | moEtT [Ne“" L ""]Ix(e,)l
i=1 NS."(ei) ix1  1Ixi ixn
) nx1 )
a [ [ Noe]
s 2w ]| | me@+pPRE NPl - Nl e |
i= fo’(ei)J ix1 a

(4.67)
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T ji ional ¢l .
aN('e)( ) aN('e)( )
e &W &N DR Dl
D) = ZZW.(e.) wim) = D)™ l l
nXa i=lj=1 :) :) ! D‘"O‘" D‘"e“’
T(&pﬂj) W(&.ﬂj) 2x2 2x2
nx2
Ny anNe®

1
| @ ==&y
[](ei-ﬂj) 1] a:;e) ;: ! |](epnj)|

1
2x2 W (e..ﬂ,) - arl (E.-TI,)

2xn

+Z ZW.(e.)wm,) P
i=ti= Ny Noeemy)
2 2x2

NPen) Nenp ve o
H H ( ] [ (epn J) ]

Ovy

Nle) m(e)
W (2.-11,) (3.-11,)
g an‘ |3¢e;mp|

& - &)
2>a

N{%e;n )
i=lj= Nfle)(e"‘nj) Ixd

nx1

[Mem) - NOemy] |J(si,n,-)|} (4.68)

IxXn
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Three-dimensional el .
® =

o oad A ]
Y dwewmwe| : P e
i=1lj=1k=1 m(:) mﬁ—) m(:) 3x3
3¢ &N W(eivﬂijk) T(ﬁ-ﬂj-Ck)_
ox3
e
D% DEe? D™ | [I(e; ;L) ] %ﬁ'ﬂj-ck)"'i:‘i@vﬂjv;k) |3yt
D(;)e(e) D(:’)'d# D(;)e(e) 3x3 m(le) m(:)
3x3 | 3¢ &Mk 566
nx3
e N X Nem; b0 Mem; G NP0
200D Wite) Wi Wil : :
f=1j=1k=1 Mg G0 NOGn; b Nem; o)
nd
a\l(f) m(:) T
vge) 0 0 Te)(eivﬂjvck)"'a—ee)(ei-ﬂjvck)
o v® o BEn; 8™ Wl(ei,nj,ck)---#(gi,qj,ck) l3Emtol |
0 o V¥ ¥ g @
3x3 | €50 €80 |
3xn
N N, N N(le)(ei.ﬂj,Cn:)
£ 2 DD Wite) Wi WilGy) (A + pPK]
i=lj=1k=1 Nﬁle)(ei,nj,c“) 1x1

nx1

[N(le)(einnjDCK) o Nsle)(ennka)] | J(epank) | }

1xn
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Element Sorption Matrix

Onedimensional e ,
NP
[A®) = Ew,(eo o ePRS + 691 NPe) - ND(e] | acea|
na i=1 fo)(ei) Ix1 1xn
ax1 (4.70)
Ne NPy
A=Y Y wiEe wmp{ | i [piPKY +e?)
e i Ney| 0
nx1
[Ny NOemy] IJ(el.n,) |
ixn (4.71)
Three-dimensional ,
N(l"(ei,nj,gk)
A“’] Z Z Zw,(q) W) Wil P [ 1PKE + 6
i=1 j=1k=1 Nf:’(ei,ﬂj:Ck) 1x1
nx1
[N(le)(eirnanK) st)(eiiﬂj:Ck)] | I(ei!njngk) | }
Ixn 4.72)

The order of polynomial for the element matrices for the element types in Figures 4.9 to
4.15 are in Table 4.2
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Example

Determine the number of Gauss points to use in equation 4.69 for the element
advection—dispersion matrix [D'] for the cubic parallelepiped element (Figure 4.15).

From equation 4.69, [D(°)] consists of three terms containing the dispersion coefficients,
the apparent groundwater velocities, and the solute decay and distribution coefficients. The
first term contains products of the derivatives of the mterpolauon functions and terms such

oN; oN;
as TT are polynomials of order six (e.g. terms such as ere’ or 'n '11 ) and can be
integrated using 4-point Gauss quadrature, Ng = N, = N =4 (Table 4.1). The second
terrn contains products of the interpolation funcuons and their derivatives. Terms such as

aN,
N_EE are polynomials of order six and can also be integrated using 4-point Gauss
quadrature. The third term in equation 4.69 contains products of the interpolation functions
and terms such as N;N; are polynomials of order six and can be integrated using 4-point

Gauss quad:ature,N =N. N =5 (Table 4.1). The locations of the 64 Gauss points

are (0,0,0), 3‘2 6/ ) 0,0, 3-2 6/5 ) [ /3+z:16/s / 3+2T=6/5'

342V6/5
7

Example

Compute [ K®] for the lincar, quadrilateral element shown below (K< = 1, Kg,') =2)

node (7,5) ('l’l) ﬁn (1’1)
numbers (3.4
€
Y (3,2)
7.0 ¢1,1) (1,-1)
X
Global Coordinates Local Coordinates

Using equation 4.62 and the derivatives in Figure 4.10 we can write
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N N,
_ 10 _
[K9] = D, WieW;my X 1 |pemy T [o 2] [Ny~
4x4 =t j=l g DL 5 T 2x2

1 1 1 1
Lo low lom) dasm)]lien)]

1 1 1 1
<09 e e 309

2x4

The highest-order polynomial in this equation is quadratic (n = 2). For example,

F1-1) A +1) = 150 +17

Referring to Table 4.1, two Gauss points are required in each direction (i.e. Ng = Ny =2).
The locations of these Gauss points are (e, 1): (4IN3,-143), (-IN3, 1N3), (1/6.1/5'5) and
(1N3,-1/3). At the first Gauss point (8,= —1N3, 1= -143) the Jacobian matrix (equation
4.36) is
1 1Y 1y Y1, 1Y 1, Y [32
o o |30 i) i-35) 0-5)
1

71
() <0-%) {0-5) -] |5 4

-0.3943 -0.1057 0.1057 0.3943

3
[-0.3943 0.3943 0.1057 —0.1057] 7
7
3

[2.0000 —0.2887]
0.0000 1.2113

[3] = (2.000)(1.2113) - (0.000)(~0.2887) = 2.4228

0.5000 0.1192
1= oo osass)
I 0.0000 0.8255

The contribution of the first Gauss point to the element conductance matrix is
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[~0.3943 ~0.3943

0.3943 -0.1057 [0.5000 0.0000][1 0] [0.5000 0.1192
0.1057 0.1057 | L0.1192 0.8255]L0 2] 0.0000 0.8255]
| —0.1057 0.3943

"-0.3943 0.3943 0.1057 —0.1057
* | -0.3943 -0.1057 0.1057 o.3943](2‘4226)
T 0.6578  0.0285 ~0.1763 —0.5099
00285 0.1194 —0.0076 —0.1403
~0.1763 ~0.0076 0.0473 0.1367
| 05099 ~0.1403 0.1367 0.5135

K, mpl = (1)(1)

At the second Gauss point (&, = -1N3, N2 = 143, the Jacobian matrix is

- 32
[ = _%[I-V%J %[l_vll?] %[“.%J 1%[“1%) 71
%) 30-5) i) ()] |73

[~0.1057 0.1057 0.3943 —0.3943

2
- ] 1
~ L-0.3943 -0.1057 0.1057 0.3943 5
4

W W

_ [2.0000 0.2886]
0.0000 1.2114

|3]= 2.4228 ad (Y = [0.5000 —o.ugz]

0.0000 0.8255

The contribution of the second Gauss point to the element conductance matrix is

~0.1057 ~0.3943]
0.1057 —-0.1057 [ 0.5000 0.0000][1 0
0.3943 0.1057 {[-0.1192 0.8255]L0 2]
-0.3943 0.3943 |

[K®e,mpl = ()1

. [ 05000 -0.1192] [—0.1057 0.1057 0.3943 —0.3943]
| 0.0000 0.8255][-0.3943 -0.1057 0.1057 0.3943
X (2.4224)

[ 05135 0.1367 -0.1403 -0.5099

0.1367 0.0473 -0.0076 -0.1763
-0.1403 -0.0076 0.1194 0.0285
[ -0.5099 -0.1763 0.0285 0.6578
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At the third Gauss point (g, = 143, 1, =~1/~N3 ) we have

2.0000 0.2386
n = [o.oooo 1.7886] 1] = 35772
1, _ [0.5000 0.08
1= [o.oooo 0.5591

and the contribution of the third Gauss point to the element conductance matrix is

0.1763 -0.0284 -0.1555 0.0076
-0.0284 0.4455 -0.2976 -0.1194
-0.1555 -0.2976 0.3733 0.0798

0.0076 -0.1194 0.0798 0.0320

K enyl =

At the fourth Gauss point (g, = 1~3, n= 1N3) we have

2.0000 0.288
1, _ [0.5000 —0.0807]
[ = [o.oooo 0.5591

and the contribution of the fourth Gauss point to the element conductance matrix is

0.0318 0.0793 -0.1188 0.0076
0.0793 0.3713 -0.2960 -0.1546
-0.1188 -0.2960 0.4430 -0.0283
0.0076 -0.1546 -0.0283 0.1753

K(enyl =

The element conductance matrix is the sum of the contributions at the four Gauss points

K9 = KONy + KO, 0] + K®(e,m )] + (K™ (e,

1.37952 0.21649 -0.59149 —1.00452
_ | 021649 0.98551 -0.61051 —0.59149
~ |--0.59149 —0.61051 098551 0.21649

~1.00452 —0.59149 021649 1.37952
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4.4 ASSEMBLING THE GLOBAL SYSTEM OF EQUATIONS

After the element matrices have been computed, they must be combined to obtain the
global matrices needed to solve for unknown heads or solute concentrations at the nodes.
This process is called assembling the global system of equations. The assernbly process
can be written

M= Y, M) 4.73)
global e=1

where [M] is any global matrix, e is the element number, [M(‘)] is an element matrix, and m

global
is the number of elements in the mesh. For example the global conductance matrix for a
mesh can be obtained by combining the element conductance matrices for each element in
the mesh

K= D, K] (4.748)
global e=1

Similarly for the other types of global matrices

{F}= Y {F9) (4.74b)
global e=1
Kl = Y, K9] (4.74¢)
global e=1
[ =Y, c*) (4.74d)
glcbal e=1
[cwl = Y, [C9)] (4.74¢)
global e=1
D] =, D] (474D
gldbal e=1
[A] = ), [A®)] (4.74g)
global e=1
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The summations in equation 4.74 can be performed by direct matrix addition only if the
element matrices are first expanded to the same size as the global matrices. This is done by
adding rows and columns of zeros to the element marrices.

For example, the element conductance matrix for element 1 in the example problem in
section 3.2 was

1 2
l —-l- l‘-\

K] = 2; 12 element node numbers 4.75)
2 2

where the numbers above the columns and to the right of the rows of the element
conductance matrix are the node numbers for the nodes within element 1. Element 1 had

two nodes (n=2) and the size of [ K“)] is 2<2. The finite element mesh had 5 nodes and

therefore the size of the global conductance matrix [llfz'].l is 5x5. We can expand the
glo

conductance matrix for element 1 to this size by adding zeros to the rows and columns

containing node 3, 4, and 5.

1 2 3 4 5
%-% 0001
11 mesh node numbers
k=33 0002 (4.76)
0 0 0 0 O] 4
| 0 0 0 O 015

Let Kf;) refer to the entry in the i" row and j* column of the expanded element conductance
marrix. K{}= 1/2 is nonzero because element 1 contains node number 1. Similarly for K§5.
K{2 = K§¥ = —1/2 are nonzero because element 1 contains both nodes 1 and 2. K{J = K{}

=K{@=K{g= - K=0because clement 1 does not contain nodes 3, 4 or 5.

We can also write the expanded form of the element conductance matrix for the other
elements in the mesh (elements 2, 3, and 4)

1 2 3 4 5

00 0 0 0]1

0 1-10 o2
K® =(o-1 1 0 0|3 %)
epndd 10 0 0 0 0|4

000 0 0]s
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1 2 3 4 5
[0 0 0 O O]1:
00 0 O 02
K =|0 0 13-13 0|3 (4.78)
0 0-13 13 0|4
0 0 0 O O0]s
123 4 5
(000 0 011
000 0 O] 2
K =(o0o0 0 o] 3 4.79)
expanded |00 0 153 -1/3| 4
000 -13 131 5

The global conductance matrix for the mesh can then be assembled by direct matrix addition
of the expanded matrices
K] = [K®] + [K®] + [KP] + [K9)
global epanded expanded expanded  xpanded

1 2 3 4 5
12-12 0 0 O
-12 32 -1 c o
0 -1 43-13 0
0 0 -13 233 -113
0 o0 o0 -183 113

(4.80)

wm & W o -

For this problem [K] is symmetric and has a semi-bandwidth of two (SBW =2).
global

Consider the same mesh with a different choice of node numbers (Figure 4.16)

o (1) . Q) o 3 .(4) o
1 3 2 5 4

Figure 4.16 Finite element mesh with a different choice of node numbers.

The expanded form of the element conductance matrices are

1 2 3 4 5
12 0-12 0 0] 1
0 0 0 0 o] 2
KM=[-12 0 12 0 of 3 (4.81)
expanded 0 0 0O 0 o 4
0 0 0 o0 0] s
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1 2 3 4 5
000 0 0O0]1
01-10 0] 2
K? =|0-11 0 0| 3 4.82)
epanded [0 0 0 O Of 4
00 00O 5
1 2 3 4 5
0 0 0 0 071
0 13 0 0-13|2
K® =0 0 0 0 03 (4.83)
epanded 10 0 0 O 04
0-13 0 0 173]5s
1 2 3 4 5
000 0 0]1
000 0 02
K" =[o0o0 0 of s (4.84)
expnded [0 0 0 173 -173| 4
0 0 0-13 13] s

and the global conductance matrix for the mesh is

K] = [K(l)] + [K(z)] + [K(”] + [K(4)]
global expanded expanded expanded expanded

12 0 -12 0 O
0 43 -1 0 -13
=[-12 -1 32 0 O
0 0 0 13-13
0 -1/3 0 -113 273

[K] is still symmetric (and will be symmetric for any choice of node numbers) but the semi~
global
bandwidth has increased to 3. Using the formula from Chapter 2, SBW =R + 1 where R
is the maximum difference in node numbers for any element in the mesh. For the mesh in
Figure 4.16 R = 3 (computed in element 3) and SBW =3 +1=4.
The effect of choice of node numbers on the entries of the global conductance matrix
and its semi-bandwidth for this mesh are shown in Figure 4.17.
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Assembling the global matrices by direct matrix addition requires that each element
matrix first be expanded to size p x p, where p is the number of nodes in the mesh.
Although this procedure helps us visualize the assembly process it is inconvenient in that
we must manipulate a large number of zero entries in cach expanded matrix. In computer
programs, direct matrix addition is also wasteful of computer memory because each
expanded element matrix is the same size as the global matrices.

A more computationally efficient procedure is to assemble the global matrices by
component addition. In this procedure the element matrices are not expanded to the size of
the global matrices by adding rows and columns of zeros. Instead, the element node
numbers are used to assign entries in the element matrices to their proper position in the
global matrices. The procedure can be used for one-, two-, or three-dimensional problems
and for meshes containing several different element types. In the examples that follow, the
elemeat number for each term in the global matrix is shown in parentheses as a superscript.

choice of node numbers

. n Q)

3
&

resulting global
conductance matrix

[ 12 -1/'2“"---..q 0 0]

@ A N

—
e
w

n @
@ —

(3

A )

0™gl 43 -1/
0 O™l/3 23 -1
Lo 0o 013 15l

u,,

(VY |

[12 0 -12 0 "0 ]

@ 0 43 <1 0 -1/%

—
w

1 @
-

Ne

(3)

we

12 -1 32 0 0
K 0 0 18 -113
[ 0™w)3 0 -113 2/3J

(12 0 -12 o'"‘-‘..,“g 1
0 13 0 0 -1

o J

@

Y )

. 1 Q@

3)

(VY ]

-2 0 1 -1 0
g 0 -1 43 -13
| o™ 0 -1 23

Ne

[12 0 0 o0 -1
@ 0 1313 0 0

Db
we
N ]

n @

3)
®

we

0 -13 23 13 0
2 00 a3 4p

E'aqqo 0 -1 1)

13 <130 0 0]
3 23 -13%0 0

[8Y

@

wne
0
w

Figure 4.17

Ne

-

0™y3 4B T
h "y,
0 O™zl 32 -1/

[ 0 0 O™c12 12

global conductance matrix.
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Example

Compute [K®] and [C'¥] (consistent formulation) for the elements in the mesh shown
below. Assemble [K] and [C]

global global
1 2 3 4
. 10y o 2 o 3) 4) °
1 3 2 4 5
LY=4 L?=6 L =5 L9=4
k=2 kP=1 KD =2 K =4
sM=1 sP=1 sP=6 s¥=3
Using equations 4.15a and 4.16a
1 3 3 2 2 4
ayn _ [ 12 -1/2]1 @ _[ 16 -1/6]13 @) _[ %5 -2/5] 2
K =| _n 12ls B ={ye uslz ®1=| s 2s)4
4 5
@, _[1 —l] 4
(K™ = -1 1]5
1 3 32 2 4
ay _ [43 2/3] 1 @y - [2 1] 3 o - [10 5] 2
€ =1oman]ls 75|12 €T =15 10] «
45
@y _ [ 4 2] 4
€71 =12 4] s
1 2 3 4 5
TS O T e - oo SO O N B
0 uePan® e L s o ] 2
Kl = | 120! -16% nDrue®i 0 10| s
0 i -5® i ¢ 2/5(3)+1(‘)!-1“) 4
0: 0 : 0 -9 19| s
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12 0 -12 0 O
0 17/30 -1/6 -2/5 0O
= |-12-1/6 23 0 0
0 =25 0 75 -1
0 0 0 -1 1

1 2 3 4 5
1
2
[ = : : : 3
- ZiﬁZfﬁd.ﬁZZ%ZIﬁZsﬁ‘ﬁ’ﬁ?'.’.ﬁ%Zﬁﬁiiiﬁlﬁ'.’ié’???é%é’f".‘?iﬁlé?f?ﬁ 4
0: 0 : 0 i 20 49| ;s
43 0 23 0 0
0 121 50
= 0 1 2 00O
0 50 142
| 0 0 0 2 4
Example

Compute [K(°)] and [C(")] (lumped formulation) for the elements in the mesh shown
below. Assemble [K] and [C].

global global
2 4 6
0.1) (Ln 2.5,1)

(0,0 (1,0) (2.5,0)
Kx K(l) K(z) K;2)=2

Kf) = K(ys) - Ki-t) - K;-t) =4
sP =s@=5P) =s¥ =3
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Using equations 4.20 and 4.22b with

element _node pumbers
i j k
1 1 3 2
2 2 3 4
3 3 5 4
4 6 4 5

[ ~1? (-1)1) (-1)0) ) 1% (=1)0) (-1)(1)
(1D (12 (1o |+ 3|0 (02 (o)1)
[(0)X=1) (0)(1) (0)0) (1)=1) (1)0) (1)
1 3 2
[ 2 -1 =171
-1 1 0|3

-1 0 1]2

2'(—1)2 (0) XD (0* (0)1) (0X D)
(0)-1) (0)2 (0)1)|+3|eD0) 1? (-1x1)
(1)1 (1)0) (1) (1)0) (1)-1) (1)
2 3 4

1 0 -17 2
0 1-1]3

-1 -1 2] 4

4- (—l)2 (-1)(1) (-1X0) 4 (—1.5)2 (-1.5)(0) (-1.5)1.5)
(D (12 (x| +3[0)-15 (0 (0)15)
[(0)-1) (0)(1) (0)? (1.5)(-1.5) (1.5)0) (1.5)1.5)
3 5 4

( 43 -1.3 -3.0| 3

~-1.3 13 00| s

|30 00 3.0] 4
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(1} (1)1 (1)(0) 1.57%  (15(0) (1.5)(-1.5)
X = 4 2 4 2
=3| (1) DT E1X0)] + 3| (0)X1S)  (0)° (0 )-1.5)

(0)(1) (0)-1) (0) (-1.5)(1.5) (-15)(0) (1.5
6 4 5
43 -1.3 -3.076
= |-1.3 13 004
-3.0 0.0 3.0]s
1 2 3 4 5 6
[ aMi -1® o i 0o il
2
K] =] : 3
lobal ....9...?..:.!??? ....... !.‘.’.’..-...?-1.‘.’.’.. .?f.’.’.f.?.f':‘?:.l.?.“.’.é...9".’: 0 13
0i 0 -1.3% 09+0@  :13®, 3(9: 3] 5
e P S S e o S

[2-1 -1 0 0 0]
-12 0 -1 0 O
-1 0 63 -4 -13 0
0-1 -4 63 0 -13
0 0-13 0 43 -3
[0 0 0 -13 -3 43

1 3 2 2 3 4
05 0 01 05 0 072
¢ ={0 05 0|3 €® =|o0 05 o3
0 0 05]2 0 0 05]4
3 5 4 6 4 5
075 0 0 13 075 0 0 76
ic®™ =0 075 0 |s i = o 075 o0 |4
0 0 075 0 0 075
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11
2
3
4
1 { 5
[0 0 0 : 0 P 0 Tioast] 6
050 0 0 0 07
010 0 0 0 O
2|0 0175 0 0 O
|lo o 0 200 0
0 0 0 015 0
0 0 0 0 O 075l
Example
Compute [C(”] (consistent formulation) for the elements in the mesh shown below.
Assemble [C].
global
6
(3,1
k
3)
j
1 3 5
0.0 1.0 (3,0)
sW=3 §P=6 sP=6
Using equations 4.22a and 4.27a with
— nodepumbers
element i j k 1
1 1 3 2
2 2 3 4
3 3 5 6 4
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134
[2 1 1] [2 1 1]
[c‘"]=(3)f#121 =%1213
11 2] [112]4
234
[2 1 1] [2 1 1]
[c"’]=%121 =%121
|11 2] 11 2]
356 4
4212 [4212]3
[C(g)]_(6)(l)(2) 2421 _ 4[2421)5
T 9 (1242 3|1242f6
(2124 (2124] 4

1 2 3 . 4 .5 _ 6

[Cl=

global l/s“) 1/4‘2’ 18N +14@ 4 83@ : 1/4“)+1/z‘2)+w3‘3) 4/3"’ 83 | 4
R e gy e |
L0 io 4@ 83® 8a® i165” ] 6

(025 0 01250125 O 0
0 05 02500250 0 0
0.125 0.25 6.607 3.042 2.667 1.333
0.125 0.25 3.042 6.083 1.333 2.667
0 0 2.667 1.333 5.333 2.667
0 0 1.333 2.667 2.667 5.333

4.5 MODIFICATION OF GLOBAL SYSTEM OF EQUATIONS TO
INCORPORATE BOUNDARY CONDITIONS

4.5.1 Dirichlet Boundary Conditions

In most problems the value of the field variable (hydraulic head, pressure head, or
solute concentration) is specified at one or more nodes, sometimes called Dirichlet nodes.
These specified values constitute the Dirichlet boundary conditions needed to solve the
governing differential equation of groundwater flow or solute transport. When Dirichlet
boundary conditions are specified, the global system of equations must be modified before
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a solution can be obtained. The modification procedure reduces the size of the global
system of equations to a size (p-d) x (p-d) where p is the number of nodes in the mesh and
d is the number of nodes with specified values of the field variable. For example consider
the system of equations from the example problem in Section 3.2.

12-12 0 0 07l 0
-12 32 -1 0 O |{h 0

0 -1 43 -13 0 |{hyy = 40 (4.85)
0 0 =153 23 -1/3||hs 0

0 0 0 -13 1/3]|hs 0

In this example the values of hydraulic head were specified at nodes 1 and 5, hy = 12 and
hg =0. This means that the first and fifth rows of equation 4.85 are not needed and can be

crossed out :

-12 32 -1 0 O
0 -1 43-13 0
0 0 -13 283 -13|| hs

&
[
$ o oo

A=

We then modify the remaining equations to eliminate colurns 1 and 5. For row 2 we have

1 3
-Ehl + 'z'hz—h3 =0
o 3 1 1
Ehz— h3 = Ehl = '2'(12) = 6
and for row 4 we have
1 2 1
—'3'h3 + ‘3'h4 - '3'h5 = 0

but hs = 0, so row 4 becomes

—‘;'h3 + ‘2'h4 =0

3

(]
oo ad
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and the modified system of equations becomes

32 -1 07[h 6
-1 43 -1/3{{hst = {0
0 -1/3 2/3]|hs 0
which can be solved to give hy = 9.33, hy = 8.0, and hy = 4.0.

Example
Modify the following system of equations if y; = 10 and y4 = 5. Solve fory,, V3,

and ys

12 0 -12 0 01w 0
0 17730 -1/6 0 -2/5||wv2 0
~12 ~-1/6 213 0 0 |{vapr =40
0 0 0 1 ~11]]|vs 0
0 -2/5 0 -1 7/5]lvs 0
Crossing out rows 1 and 4 and columns 1 and 4
- 0-3-Lyr=-10] 9
17730 -1/6 =2/5| w2 0
-l —l/6 m 0 < % > = < 0 >
8 -] =3 8
R =25 0 -i 7/51 | s 0)

For row 2 we have
(0)X(10) + (17/30)y; ~ (1/6)y;3 + 0(5) - (XS)ys = 0
(17/30)y2 - (1/6)ys = (2/5)ys = 0

Forrow 3:
=(1/2)(10) - (1/6)y, +(23)ys + (0)(5) = (O)ys = O
-(1/6)y; + 23)y3 + (O)ys = 5

Forrow 5:
0)(10) = 252 + O)ys = (DG) + (/S)ys = 0
=2/, + Oy + (S)ys = 5
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and the modified system of equations becomes

17/30 -1/6 =2/5] [v2 0
=1/6 23 0 |{vat =45
=2/5 0 7/5]1\Vs 5

from which we obtain y; = 6.52, y3 = 9.13, and y5 = 5.44.

4.5.2 Neumann Boundary Conditions

Rates of groundwater flow or solute flux can be specified at one or more nodes,
sometimes called Neumann nodes. These specified values constitute Neumann boundary
conditions and can be used, for example, to represent specified rates of groundwater or
solute recharge at the soil surface, or the injection or withdrawl of groundwater or solutes
at wells. When Neumann boundary conditions are specified, some entries in the global
{F} matrix are nonzero. The equation for computing the contribution of element ¢ to the

global {F) matrix at node i {F;(®)} for the steady-state saturated flow equation was given in
Section 3.3 as
1 = [[[ M@ axayaz 4.86)
Ve
where q(e is the specified groundwater flow rate within element e (positive if groundwater
is flowing into the element). This equation can also be used to compute {F;(®)) for
unsaturated and transient gronndwater flow. The corresponding equation for {F;(®)} in the

solute transport equation is
#% = [[[NM2dP axayaz 487)
v

where g is the specified solute flux within element e.
There are two common situations encountered in practice, The first is the point source
or point sink representing, for example, a well as seen in a plan (ma%) view of an aquifer.

If the point source or sink is located at a node, equations 4.86 and 4.87 become

{F% =q ) | (4.88)
and

{F = q (4.89)

for the node where the point source or point sink is located and zero at all other nodes in the
element. For example if a point sink of -10m3/d is located at node j in the element in Figure
4.18 we have {F} = -10 and {F{?} = {F{?} = 0. The specified flux matrix for the
elementis {F9} = [ 0
K
0
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Specified Flow Rate
= 10m’/d (outflow)

Figure 4.18 Point sink located at a node.

We must be careful not to count the contribution from a point source or sink more than

once. For example if a point source of 20 m3/d is located at node 3 in the mesh in Figure
4.19 it makes no difference whether we consider the point source to be located at node j in
element 1, node k in element 2, node j in element 3, or node i in element 4. But we can

only count the contribution of 20 m3/d to node 4 once.

node
Speci
=20 m"/d (inflow)

BN W e e
SISV R R
W = AWK

2

Figure 4.19 Point source located at a node.

If we assign the point source to node k in element 2 the specified flow matrices for the
clements are

01 0]3 0] 2 0] 4
{FfY} =Jots  [F?} = { 0}5 {F} = {0}4 {F9} = {o 2
0)s 20} 4 0 1 0 3

and the global {F} matrix becomes

Copyright American Geophysical Union



Groundwater Modeling by

Water Resources Monograph the Finite Element Method Vol. 13
Chapter 4 157
[0 4@ ] 0]
0(3) + 0(3) 0
{F} = 0(2) + 0(3) = 40;
bal
go 0™ +20@ +0® + 0@ 20
oD 4+ 0@ L 0

where the superscripts indicate each element's contribution to {F}. Another approach is to
divide the point source at node 4 among the four elements joining that node. In this case
the element matrices are :

0 ]! 0]3 0]2 20/4) 4
{F‘l)]={20/4}4 {F‘”]={0}5 {F‘”}=‘zo/4}4 {F‘"}={0}2

0ls 20/4) 4 01 0])3
and the global {F} matrix becomes
[0 4 o® 1

0(3) + 0(4)
{F} = 0(2)+0(4) =40}
global m @ @ @

20/4" + 20/4' + 20/4" + 20/4 20

oM 4+ 0@ L 0}

If the source or sink is not located at a node, the specified flow or flux is divided among the
nodes of the element that contains the point source or sink. The rule is

FY N{P(xo,y0:20)
P =q9 : (4.90)
Fy N (x0,¥0:20)
for specified rates of groundwater flow, and
l=(le) N(le)(xorYoJo)
il =q : (4.91)
o N(xo:¥0:20)

for specified rates of solute flux where n is the number of nodes in element ¢ and the
coordinates of the point source or sink are (xg,yg.zg). The application of equations 4.90

and 4.91 is illustrated by the following examples.
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Example

Calculate {F)] for the element shown below (q = ~25m’/d).

4, 6)
kK pumping well (point sink)
"I ®,3)
x 2,2)
122
209 = |1 83| =22
146

3 = (8)(6)-(4(3) = 36

bj=3-6=-3
c;=4-8=—4
3 = (9(2)-(2)(6) = -4
bj=6-2=4
cj =2-4 =2
8 = (2)(3)-(8)2) = -10
by =2-3 =-1
=8-2=6
and
NG9 = %(35-3(6)-4(4)) =222
N(6.4) = %(—4+4(6)—2(4)) = 12722
NE(6,4) = % (10— 1(6)+ 6(@)) = 8/22

(Note that the interpolation functions sum to one at the point which is a useful check on the
calculations)

2122 -2273
(F9 = 2512220 = l-13636
8/22 -9.091
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Example

Calculate {F} for the two elements shown below (q, = 10 kg/d)

©,2) 4,2 8,2
1 kj1 k
0)) 41 7))
i ili j
©, 0) 4,0 8,0
injection well (point source)

The point source can be assigned to either element (or it can be divided between the two
clements) We will arbitrarily assign it to element 2. For element 2, N(4,1) = N{?(4,1) =
172 and Nf(4,1) = NP(4,1) = 0 and we have

12

2y _ 0 _
{F?} = 10 ol =

1/2

{F} =

o000
h © O W

In the case of a distributed source or sink the rate of groundwater or solute flow is
specified for a portion of the length, surface area, or volume of an element. In a one-
dimensional problem we may wish to specify a flow rate along the length of the element

(Figure 4.20a). In this case {F{?} is given by

() = © N q dx 4.92)
for groundwater flow problems or
)y )
7} = [ ,NOq.x 4.93)

for solute transport problems, where L isthe length of the element. The specified rates q
and g, can be functions of x.
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Example

Compute {F} for the element shown

i ®=5)

—> | «— 9% @m

i (=10

The interpolation functions for the linear bar element are in Figure 4.9. For node i

G

©_ N
@ _ | XX X" ~x
{F| } = [(.) L(e) qu QJ:(.) L(e) dx
i

x &
) q[_x§=>x . .
L(e) 2L(°) © 2
Xj
5m’(10-5 12.5m’ "
-m(TRk = = o

7y = {173}

For the linear bar element, the distributed source or sink is divided equally between the two
nodes of the element (as long as q or g are constant along the length of the element). For

quadratic or cubic bar elements, the division is different (Figure 4.21). The formulas can
be confirmed by integrating the interpolation functions along the length of the element.
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quadratic bar element
1
— —

2 1 p@ [t

F =3>_1412

> < {F™} 514

cubic bar element
—_— —
— g 11
{F* =£(2 312
1 4

—_— ¢ —

Figure 4.21 Division of distributed source or sink to nodes in two-types of one-
dimensional elements.

In two- or three-dimensional elements we may wish to specify the rate of groundwater flow
or solute flux along one or more element boundaries or surfaces.

In this case {K{®} is given by
{F} = | Nads (4.94)
for groundwater flow problems or
{F) = o N® g ds (4.95)

where S is the portion of the boundary or surface of element e for which q is specified.
Similar formulas can be developed for sources or sinks that are distributed throughout an
element volume but these are rarely used in groundwater flow or solute transport modeling.
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@

=1 b
— | = T ™

(c) )

Figure 4.20 Typical applications of distributed source/sinks for one-, two-, and
three-dimensional elements.

Example
Compute {F”} for the elements shown below

q = 10m’/d/m
0,1) (L1l A3,1)
sV > ¢——5sP — »
k i/T k
nodal coordinates
€)] are in meters
j
(0,0 (1,0) 3,0
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For element 1,
K =0

1 1
1
K" = L N{xy) M ds = L PYCICA q® ds

but A% =0.5,8;=0,b;=1,¢;=0,and " = 10

1
K" = J;%(x)(m) ds = 5m’d = F

and
0
5
For element 2,
0
F? =0 (why ?)
0
For element 3,
B =F =0

2
Ff) = J; Nf')(s,t) q(3) ds

st
- f[4a(°)b(°)]lo &

but 2a® =1, 2b® =2, and t=1 along the boundary and we have

D = J:(;)lods = 10m’d = F?

and

{F%} =
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In the previous example the element interpolation functions were linear and the
distributed source was divided equally between the two nodes of the element on the

boundary S©. For quadratic or cubic quadrilateral elements the division would be different
(Figure 4.22)

quadratic quadrilateral (1] 1
ol?2
' 3
gl R S s(,g .
—_— e - B _JU|
q 4 F7) = 5%~ of3
— ol ¢
1 2 3 7
> o 1
(4] 8
cubic quadrilateral (1] 4
0|2
013
10 9 8 7 0l
0|5
—_ gy _ a5 ol
q { }— 8 ‘0’7
—
0|38
1 2 3 4 01°
1110
3|11
13)12

Figure 4.22 Division of distributed source or sink to nodes in two-types of two-
dimensional . elements.

Example
Compute {F} for the elements shown below

q; = 2kg/yr/m

HlHHH

,HT.

10m >4 10m >
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For element 1

5)2
o = 82 )6( ) - 17k

5)2)@
D = (_).(# = 6.7 kg/yr
P = O, 008 _ 505gy
) = % = 133 kglyr
F§1) = %4_(10‘#2): 6.7 kg/yr
FQ) = w = 133 kglyr

and

1.7]1

6.7| 2

50| 3

0 4

133| s

0|e
Fy=1 0 t7

678

0|9

13.3[10

0|1

0 |12

33)13
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NOTES AND ADDITIONAL READING

1. For problems with axisymmetry, the element conductance matrix is given by equation
3.169. This equation is valid for the linear triangle and rectangle elements (Figure 4.6
and 4.7) and for the quadrilateral elements (Figures 4.10 to 4.12). However, the
interpolation functions and their derivatives must be written using an axisymmetric (r,z)
coordinate system. For example, consider the axisymmetric, linear triangle element.
The interpolation functions are in Figure 4.23 (Segerlind, 1984).

'\
@, £
NO@2) = —— (& + b + ¢2)
2A®

. 1
z N} )(r,z) = m(aj + bjr + cjz)

) 1
@, 29 NP2 = 0 O b+ o)

o, 4%
>

T

Figure 4.23 Interpolation functions for the axisymmetric, linear triangle element.

The derivatives of the interpolation functions are

N® b NP by N® b
I @ = 2A© T
oN{® G aN® S oN® "
9z 5,® 0z 2, 9z 5@
where  A® = Area of element
149 .©
e
1

r}é)zae)_,(ke)zi(e) g = r(ke)zi(e)"‘{e)zs) a = l.§t=)z‘|(e)_I.J(ﬁ)zi(t%)

b, = z}°) -9 b = 2 -2 b = z?)—z}”
I T
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The element matrices are easily computed because of the relation

” 2nrdrdz = 23¢9 A@
A(G)

where 7@ is the r coordinate of the centroid of A

- T
The results are
&)y (e) b? bib; biby © cxz CiCj CiCx
K 2 X 2 220Ky ?
[3x3 = F bjbi bJ bjbk —-4AT) Ci¢i ¢ Citk (4.96)
bb; beb; bf ai Oy o
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Problems

1. Verify that the approximate solution for C is continuous along the boundary joining the
pairs of elements shown below

a) <)
1 4 6
1 2 4 4 4
.i )] .- ) o (01) £61) I(‘9 )
1 ) '3
¢)) )
[ 4 —ple— 6 —>] , i ;
2 3 5
0.0) 6.0) (9.0

b)

2. Verify that the interpolation functions for the elements shown below sum to one at an

arbitrary point (x) or (x, y)
a) c)
2,6 (9.6)
Ol
i x J k j
x=3 X= PS
(x.y)
1
2.2)
b)
9,7
(3.4)

(10,2)
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3.

9.

Calculate [K®], [C'*®], [D'], and [A®] (consistent formulation) for the elements in
problem 2 if K, = K, = 2, Dyy = Dyy = I, Dyy = Dyy =2, Dyy = 1, vy = 10, vy = 1, S
=1,0=n=04,p,=11,K;=5and A =0.

Derive equation 4.18a by substituting the interpolation functions and interpolation
function derivatives for the linear bar element into equation 4.12 (remember that, for
olne-dimensional clements the integrations are performed over the length of the
clement).

Derive equation 4.20 or 4.21 by substituting the interpolation function derivatives for
the linear triangle element into equation 4.6 or 4.7 (remember that, for two-dimensional

ellement;. the integrations for [K)] and [K(y)] are performed over the area of the
clement).

Derive the following equations for the linear triangle element

a) Equation 4.22a c¢) Equation 4.25a
b) Equation 4.24b

N
Plot N;, %, and F" i=11012 for the cubic quadrilateral element in Figure 4.12
along the linee=0fromm =-1tomn =1 and along the linen =0 frome=-1t0e=1.

Given the interpolation functions for the linear rectangle element (Figure 4.8) verify the
entries in the first row and second column of the element matrices in

a) Equation 4.26 ¢) Equation 4.29
b) Equation 4.27 b) Equation 4.30

Repeat problem 5 for the third row and second column of the element matrices.

10. Verify that the interpolation functions for the following element types sum to one at an

arbitrary point (gg), (€o, Ng)» or (€g, Mo» Lo)-

a) Linear bar (Figure 4.9a).

b) Quadratic bar (Figure 4.9b).

¢) Linear quadrilateral (Figure 4.10).
d) Linear parallelepiped (Figure 4.13).
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11. Compute [J], [T 1]. and IJ | at the center (€ =1} =0) of the elements shown below

a) b)
3(5.8
58) 6 5 node x y
1 20 20
4(1,6 2 40 3.0
7 4 3 60 33
4 60 53
8 5 60 7.0
3 6 40 65
1 2 7 20 5.0
(1,3 2(6,3) 8 20 35
Y| Y|
X X
©)
7
node x y z
1 000
6 2 700
3 730
4 030
s 003
zt : 3 6 703
y 7 733
2 8§ 033

12. Perform the following integrations analytically and numerically using Gauss quadrature

1 1 pl
a) Le3+3az+9ede d) [[e‘+k2n3+n2dedn
11
1 4 2 1 pl pl
b) J'lse +elde ¢ J'JJlencdedndc
1 12 2 1pl l3
c) LLE +2en+n°dedn f L_[l_[en+en§2+3§2dedn dg
1
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13. Compute the contribution of the first Gauss point (71? vlg)to the element conductance
matrix [K®] for the linear quadilateral elements shown below if K,=1 and K,=2 for

all elements
a) b)
©.1) (L,1) ©0.2) 2,2
4 3 4 3
® 9
1 2
(0,0) (1,0
@ 9
1 2
(0,0) 2,0)
c) d
364 4(2,6) 3(9,6)
4
3.2
1 2 1 2
0,0) 6.0) 2,2) (5.2)

14, Repeat problem 13 except compute the contribution of the first Gauss point to the
element capacitance matrix [C*®)] (consistent formulation). Let S, = 5 for all elements.

15. Repeat problem 13 for the element in problem 11b.
16. Repeat problem 14 for the element in problem 11b.
17. Repeat problem 13 for the element in problem 11c.

18. Repeat problem 14 for the element in problem 11c.
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19. Given the following element conductance matrices assemble [K] for the mesh shown

below global
l- 1-1 0 1 1 -1 0
KV = 3(-1 2 -1 K =3[-1 2 -1
| 0 -1 1 0-1 1
[ 4 -1 =2 -1
@ - 1 -1 4 -1 =2
[K*] 6|-2 -1 4 -1
| -1 -2 -1 4
3 n
element numbers
i j k 1
2/ O 1 124 -
6 2 2 35 4
3 4 6 5 -
¥
w| @
9
1 2 3

20. Repeat problem 19 if the nodes are numbered as shown below
1

SO
3
2
) )]
—
2 4 6
21. Write the system of equations
[K] {h} = {F}
global global
for problem 19 with
175
175
175
{F} =1,
lobal
glo 0
0

Given that hg = 0, modify the system of equations and solve for hy, hy, h3, h4, and hs.
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22. Repeat problem 21 if hy = hy = hy =0.

23. Solve the following one-dimensional, steady-state groundwater flow problem if h; =
10 mand hs =0 m. Ploth(x),0£x<19m

=0 (1 2 3 4 (x=19
(x.O)() (2) - (3) F() (. )
1 2 3 4 5
LV=4 L?=6 =5 L9=4 m
KV=2 K§2’=1 k¥=2 K9=4 md
24. Repeat problem 23 if K = KP = K& = k¥ = 2 myd.

25. Given the following element conductance matrices assemble [K] for the mesh show

global
below. Mod:fy the system of equations and solve for h at each node if hy =hy =10
and h3 = hg =hg =0, (F} = {0}.
L -1 0 4 -1 =2 -1
( _ _ ) -1 4 -1 -2
K" = {121‘ K1 =3, ; 41
-1 -2-1 4

[ 145 -1.74 0.72 -0.36 0.64 -0.92 0.53 -0.31]
-1.74 382 -1.74 0 -092 151 -092 O
074 -1.74 144 -031 0.53 -0.92 0.64 -0.36
o) = -036 0 -031 196 -0.31 0 -0.36 -0.62
[ 0.64 -092 053 -0.31 144 -1.74 0.72 -0.36
=092 151 =092 0 -174 38 -1.74 0
0.53 -0.92 064 -036 072 -1.74 1.44 -0.31
|-031 O -0.36 -062-036 0 -031 196

(12)  (322,2)
3 6

8(2,2)

node
element  numbers
ijkl
1 143-
o1 (L1 o1 2 2541
€)) node
clement numbers
3 53003634
2 L) W S 1)
0.0 (1,0 (3/2 0 (2,0

K =K =1 for all elements
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26. Given the following element conductance matrices assemble [K]
global

Vol. 13

Step 3: Develop System of Equations

for the mesh show

below. Modify the system of equations and solve for h at each node if hs =0 and {F)T

= {10,10,10,10,0,0,0,0,-10,-10,-10,-10}.

[ 064 0.17 000 0.15
0.17 064 015 0.00
000 015 051 0.11
0.15 000 011 051

-0.22 -0.17 —0.10 -0.13

-0.17 -0.22 —0.13 -0.10

-0.21 -0.36 —0.32 —0.22

|-0.36 —0.21 -0.22 -0.32

0.22
-0.17
-0.10
-0.13

0.51

0.15
-0.05

0.01

-0.17
-0.22
-0.13
-0.10
0.15
0.51
0.01
-0.05

-0.22
-0.36
-0.32
-0.22
-0.05
0.01
0.84
0.32

[ 084 032 -0.05 005
0.32 084 005 -0.05
-0.05 005 051 015
005 -0.05 0.15 051
|-0.32 -0.22 —0.10 -0.13
-0.22 -0.32 -0.13 -0.10
-0.21 -0.36 —0.22 -0.17
| -0.36 -0.21 —0.17 -0.22

-0.32 -0.22 -0.21

-0.10 -0.13
-0.13 -0.10 -0.17
051 011 0.00
0.11 051 0.15
0.00 0.15 0.64
0.15 000 0.17

K#

9 (0,3,1)

z

element 1

K® =K =K = 1 for all elements
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27. Assume that the solution to problem 23 represents initial conditions. At time t=0h, is
increased to 15 m and held constant thereafter. Solve for hy - hg attimes t = 1, 2,

and 3d. Useatimestepofld. SV =1,8P=1,5§ =6 and sV =3 m™.

28. Compute {F*} for the elements shown below (nodal coordinates in meters)

a) b)

8,6) O,1) (1,1)
Pumping Well (Outflow)
=10m¥d

3.2) ar
Pumping Well (Inflow)
=25m¥d
c) d)
4,7 (13,7 (8,6) ‘/q: 10m3/d-m @nflow)
« as) ’
1 i
4,2) ' / (13,2) 3,2) ar
Pumping Well (Inflow)
=8m3(d
e) )]
Pumping Well (Outflow)
=8m3d
4,7 a13,n (0,1) (L1
L ;
g=4m¥/dm (0.6,0.6)
1 i
&3 1.2)
0,0) (1,0)
11ttt

10 tI I t I |
15 kg/d-m (Inflow) q=4m3dm
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STEP 4: SOLVE SYSTEM OF EQUATIONS

As we saw in Chapter 3 the application of Galerkin's method to the equations of
groundwater flow and solute transport results in systems of equations that can be written in
matrix form:

1. Steady-State, Saturated Flow Equation

[X] {h} = {F} (6.1

2. Steady-State, Unsaturated Flow Equation
[Ky)l{y} = {F} (5.2)

3. Transient, Saturated Flow Equation

([C] + @At [K] ){h}a = ([C] - (1-w) At [K] ){h},
+ At ((1~0){F} + ofF}, o) (5.3)

4. Transient, Unsaturated Flow Equation

([C(W)] + @At KW H{Whar = ([C(y)] - (1-w)At [K(y)] ){v}
+At ((1-w){F} + 0{F}ys ) (549

5. Solute Transport Equation

([A]+ @At [D] }{C}ya = ([A] - (1-)At [D] ){C},
+ At ((1-0){F}; + @{Fha,) (5.5)

This chapter describes methods that can be used to solve these systems of equations to
obtain values of hydraulic head, pressure head, or solute concentration at each node in the
mesh (and for each time-step in the case of transient flow or solute transport problems).
Equations 5.1, 5.3, and 5.5 are systems of linear equations of the form

MI{X} = {B} (3-6)

where [M] is matrix of known coefficients m;;, {X} is a vector of the unknowns x;, and
{B} is a vector of known values b;. Equation 3.6 is a system of linear equations because
none of the coefficients in [M] are a function of the unknowns {X). Equations 5.2 and 5.4

176
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are systems of nonlinear equations of the form
IMX){X} = {B} (5.7)

where [M(X)] is a matrix of known coefficients with entries m;;(x), {X} is a vector of the
unknowns x;, and (B} is a vector of known values b;. Equation 5.7 is nonlinear because

some or all of the coefficients in [M(X)] are functions of the unknowns {X}. We will first
describe a method that can be used to solve equation 5.6.

5.1 PROCEDURE FOR SOLVING SYSTEM OF LINEAR EQUATIONS
Equation 5.6 can be written in an expanded form as follows

my; My °°° Myy|| Xy by
my my; My ||X _ by 5.8)
Oy My " Xn b,

There are several different numerical methods that can be used to solve equation 5.8. In
selecting a method for use in solving the equations of groundwater flow and solute
transport the following criteria should be considered:

1. [M] is diagonally dominant (i.e., for any row the entry on the main diagonal is
larger than the other entries in the row), banded, and sparse (i.e., contains many
zero entries).

2. [M] may or may not be symmetrical (see Appendix IV).

3. For each matrix [M] we may wish to solve equation 5.8 for several different right-
hand side vectors {B}.

One choice of method that meets these criteria and which has been widely used for this
purpose is the Choleski method (Cook, 1981). We will first describe the Choleski method
for the case when [M] is stored in full matrix storage mode because the notation is simpler.
We will then describe a modification of the Choleski method for the case when [M] is
stored in vector storage mode. Vector storage reduces the sizes of the arrays that must be
stored and manipulated when the Choleski method is implemented in a computer program
(see Chapter 13).

5.1.1 Choleski Method for Nonsymmetric Matrix in Full Matrix Storage
The Choleski method is a direct method for solving a system of linear algebraic

equations which makes use of the fact that any square matrix [M] can be expressed as the
product of a lower triangular matrix [L] and an upper triangular matrix [U]

M] = [L][U] (5.92)
or
l u e
my; My My, Ly 0 = o %1, ;2 :Z u;n
m. m e l 0 “ee 0 n
2o m2n = 12:l Fal ;[]0 0 1+ us, (5.9b)
my My by L s o 00 0 ~ 1
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We say that matrix [M] is decomposed or factored into the product of two triahgular
matrices and this step of the Choleski method is sometimes referred to as the triangular
decomposition of [M]. The entries of [L] and [U] are given by

=1
Ly = my= ) leuy, Q2] (5.102)
k=1
lij = 0, i<j (S.IOb)
i-1
m= ), g
uj; = + , 1<j (5.10c)
uij = 1, i=j (5.10(1)
u;; = 0, l>] (5.103)
Example

Perform triangular decomposition on the following matrix

m,;; m;; my3 M, 2 1-11
[M] = m2) My Mp3 Myt -1 4 1 -1
m3; M3, M33 Mgy -2 -1 4 1
My My My3 My, -1-2 1 2

W3 = mu/l" =-12 =-0.5
Uy = myfly = 12 = 05

Iy = my = -1
122 = mzz—lzlu‘z = 4—(—1)(0.5) = 45
I3 =1l = 0

u =0, upy=1
Uz3 = (my3 = lyu;3)/ly = ( 1- (-1)(-0.5) )/4.5
Uzq = (Mg = ly1u3e)lpn = (-1-(=1)(0.5) )/4.5

0.11
-0.11

I3 = mg =-2
i = mg; —l3u); = -1-(-2)(0.5) = 0.0
l33 = my3 - l31uy3 - lypugy = 4 - (=2)(-0.5) - (0)(0.11) = 3.0
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Ly =

u3p=up =0, uz=1
Use = (mae - lagze — ligigdlss = (1~(~2)(0.5) - (0)(=0.11)/3.0 = 0.67

lyy = my = -1
lig = mgy - Ljupy = -2 -(-1)(0.5) = -1.5
= my3 - lgyuy3 = lgguys = 1-(=1)(-0.5) - (-1.5)(0.11) = 0.67

= Myy — l4gu4 ~ l4gU2s — lg3uss
2 - (~1)(0.5) - (~1.5)(-0.11) - (0.67)(0.67) = 1.89

£ &
"on

U =Up=us =0, uy=1
20 00 00 0.0 1.0 0.5 -0.5 05
-1.0 45 0.0 0.0 0.0 1.0 0.11 -0.11
L=l 0 00 30 00| ™M=loo000 10 o0&
-1.0 -15 0.67 .1.89 0000 00 1.0

and it is easy to verify that [M]= [L){U].
Once [M] has been decomposed into lower and upper triangular matrices the solution of
the system of equations for any choice of {B} is very simple. Because [M] = [L][U] we

can write

MI{X} = {B} = [LI[UK{X} = {B} (5.11)
If we define a vector {Z} as

[UX} = {Z} (5.12)
we can write

[Li{z} = {B} (5.13a)

112 = b

13121 + 1929 = by (5.13b)

Inzy +lppzg + o +lngzy = by
which can be solved for the values in {Z} using

N

z=~—=L 7 i=1ltwn (5.14)

I

After we have computed the values in {Z] we can then solve for the values in {X]} using
equation 5,12 (this step is sometimes called "backward substitution")
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Xy +UupXg+ UpzxX3g+ 7t F U X, = 2
Xy + UgaXg + *** + Uk, = 2

X3+ b UgXy = 23 (5.15)
Xy =7
The solution is given by
=1
Xorl+i = Zneli zuml-i.n-n—k Xntl-ke i=lton (5.16)
k=1

Example
Solve the following system of equations

2 1 -1 1][x

-1 4 1 -1}|x

2 -1 4 1||x3

-1 -2 1 2]|x4

===

Triangular decomposition of [M] was performed in the previous example and using
equation 5.13 we have

20 0 0 01fzn 1
-1.0 45 0 0 ||z| _|o
20 00 30 0 [|lz| Jo
-10 -1.5 0.67 1.89]|z 0

Z; = b]/lu = 1/2 = 0.50
zp = (by—1p2;) /1y = (0~(-1.0)(0.5)) /4.5 = 0.11
z3 = (b3 =321 = hap2) / la3 = (0 — (~2.0)(0.5) - (0)(0.11) /3 = 0.33

24 = (by— 14121 — lgzz — 14323) / 144
= (0~(-1.0)(0.5) - (-1.5)(0.11) — (0.67)(0.33)) / 1.89 = 0.24

In the next step we have

1.0 0.5 -0.5 0.5 [x; 0.50
0 1.0 0.11 -0.11{[x, 0.11
0 0 10 067 xs 0.33
0 0 0 1.0 Jlxs 0.24
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Xq =24 = 0.24

X3 = Z3 — uyXq = 0.33 - (0.67)(0.24) = 0.17

X2 = 2y UpXq = Ug3Xy

0.11 - (—0.11)(0.24) - (0.11)(0.17) = 0.12

X1 = Z; ~ UpgR4 — U13X3 — UpoXp

0.50 - (0.5)(0.24) ~ (-0.5)(0.17) — (0.50)(0.12) = 0.41

0.41

0.12
{x} = 0.17

0.24

5.1.2 Choleski Method for Symmetric Matrix in Full Matrix Storage

If [M] is a symmetric matrix, [M] can be decomposed into the product of an upper
triangular matrix and its transpose

™M = [U1'[U] (5.17)
where the entries of [U] are given by
-1 12
u = [mij - Zuﬁi] . i=j (5.182)
k=1
i~1
m= 3, ug g
Uy = ——, Q<] (5.18b)
u; = 0, l>] (5-18¢c)

Example

Perform triangular decomposition on the following matrix

m;; my; my3 My, 2-1 21
_|m21 mpy Mgy mye| | -1 6 -1 1
(M) = my; M3y myy Myl [ 2 -1 6 -1
my; Mgy My Mgy 1 1-1 2
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414 =

my,/uy; = -1/1.414 = ~0.707

1.414

182
uy = @)'"? = @2 = 1.414
U =
u3 =my/uy = 2/1
Uy = myg/uy = 11

uy =0

414 =

0.707

Vol. 13

Step 4: Solve System of Equations

Uy = (myp-u)'? = (6-(-0.707%)7 = 2.345

Ugs = (M3 = Uggup3) /Uy = (=1 = (<0.707)(1.414))/2.345
Ugg = (mu - ul2u14) / Upp = ( 1- ("0.707)(0707))/2-345

Uy =uzp =0

0.000
0.640

uzs = (g3 = udy = u%)'? = (6 - (1.414)% - (0)1)"? = 2.000
uzg = (M3q = Uj3uy4 — Ug3Uzg) / U3z

Uy = Uy = ug =0

U4y

(Mygy — U34 = UZg = U3y)

172

(-1 (1.4145)(0.707) - (0.000)(0.640))/2.000 = -1.000

= (2 - (0.707) - (0.640)> - (-1.000%)'2 = 0.301

=, 0
0 0
[ 1414 0
T _|-0.707 2.345
(1 = 1.414 0.000

and it is easy to verify that [M] = [U]T[U].

[1.414 -0.707 1.414 0.707]
0 2.345 0.000 0.640
2.000 -1.000
0.301 |

0

0
0
2.000

| 0.707 0.640 -1.000 0.301]

0
0
0

Once the symmetric matrix [M] has been decomposed the solution of the system of
equations for any choice of {B) is very simple. Because [M] = [U]T[U] we can write

[MI{X} = {B} = [UI"[UI{X} = {B}

Then by defining a vector {Z} as
[UKX} = {Z}

(5.19)

(5.20)
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we can write

[u1'{z} = {B} (5.21)
If the entries in [U] are
Upp upp 7O Upn]
0 uyy - gy
[U] = 0 0 U3zz *°° Uzg, (5.22)

the entries in [U]T are
Fu}'l 0 0 - 0 1 -ull 0 0 1
ll;l ll;z 0 - 0 U3z U2 0
T _ ..
M = ol 0= ugz (5.23)
_“:1 “:z “Is “:n_ [ Upn U2 U3p " Upg
and equation 5.21 can be written
U312 = b
gz + UxZ, = b, (5.29)
UpnZ) +UzpZ3+ **° +UppZy = b
which can be solved for the values in {Z}] using
i-1
[bi - Z Uy Zk]
z=—=XL 7 j=lton (5.25)

Uji
After we have computed the values in {Z} we can then solve for the values in {X} using
equation 5.20

Uy 1Xy + UppXg +Up3Xz + "t F Xy = 2
UpaXy + UpzXa+ - +uyX, =275

UggXz + ** +UgpXy = 23 (5.26)
UppXn = 2
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The solution is given by

i-1

Zpp1-i ~ Z“ml-i.m-l—k Xn+1-k
k=1
L= (5.27)
e Uny 11—

Example

Solve the following system of equations

2 -1 2 1][%x;
-1 6 -1 1 Xo
2 -1 6 -1||x3
1 1-1 2]lx4

o0 O =

Triangular decomposition of [M] was performed in the previous example and using
equation 5.24 we have

1414 0 0 0 Z)

-0.707 2345 0 0 73

1.414 0.000 2.000 0 z;

0.707 0.640 -1.000 0.301]| 2

o OO -

= b, /uy = 1/1414 = 0.707
2 = (by~Upz;) /ugg = (0 - (~0.707)(0.707))/2.3456 = 0213
= (b3 -~ 1132 ~uy2y) /U3
= (0-(1.414)(0.707) - (0.000)(0.213))/2.000 = -0.5000
z4 = (bg ~ Uya2) = U4y — U34Z3)usy
= (0-(0.707)(0.707) - (0.640)(0.213) — (~1.000)(-0.500))/0.301 = -3.775

In the next step we have
1.414 -0.707 1.414 0.707][ x, 0.707
0 2345 0.000 0.640 | x2| | 0213
0 0 2.000 -1.000(] xs[ ~ |-0.500
0 0 0 0.301 | x4 -3.775
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X = %/ Uy = -3.775/0.301 = ~12.54
X3 = (23 - Usgxg) / gz = (~0.500 — (~1.000)(~12.54))/2.000 = —6.52
Xy = (23 — ugyXg — upXs) /up,

= (0.213 - (0.640)(—12.54) - (0.000)(—6.52))/2.345 = 3.51

X1 = (2] — ugXq ~ Uy3x3 — uppxg) /Uy
(0.707 - (0.707)(-12.54) — (1.414)(-6.52) — (-0.707)(3.51))/1.414
15.05

15.05

| 3.
X} =165
—12.54

5.1.3 Choleski Method for Nonsymmetric Matrix in Vector Storage

We have seen that the application of the finite element method to the equations of
groundwater flow and solute transport results in systems of equations that are banded.
Large savings in computer storage can be achieved by assembling and solving the system
of equations in vector storage. In vector storage only the entries within the band are
stored; the entries outside the band (which are all zero) are discarded. Consider the banded
matrix in Figure 5.1. There are 6 equations and the semi-bandwidth is 2. In full matrix
storage, 36 entries are stored including 20 entries "outside" the band that are known to be
zero. If the matrix in Figure 5.1 is nonsymmetric (e.g., when solving the solute transport
equation using equation 5.5 and 5.6) the entries within the band can be stored in a vector
with length IJSIZE where

USIZE = (NDOF)? - (NDOF — SBW)(1 + NDOF — SBW) (5.28)

where NDOF (for Number of Degrees of Freedom) is the number of equations and SBW is
the semi-bandwidth. For the example in Figure 5.1, NDOF = 6, SBW = 2 and

USIZE = (6)* - (6-2)(1+6—-2)
=36-20 = 16
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(a) Full Mauix Storage

-mu miqg. 0 0 0 07 NDOF =6
SBW =2
My myy mp3n0 0 0
M = 0"y, mg3 mgi, 0 0
0 0'mey myy my3:0
0 0 0nmss mss msg
| 0 0 O 0’ .mgs Mg |
B
36 entries and
20 entries "outside” of band
(b) Vector Storage (c) Vector Storage
Non-Symmetric Matrix Symmetric Matrix
[(myy
mj2
a1 [ my;)
my2 m
12
my;
my)
mj3a
ma3
mj3
My, 33
{M}'—-‘ r {M}=<m34$
my3
myy
Mgy
mys
Mys m
55
Msy
Msg
mss
mge )
Msg
Mgs
g J
Figure 5.1 Full matrix and vector storage schemes for non-symmetric and symmetric
matrices.
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Compute the length of array required to store the banded, nonsymmetric matrix shown

below in vector storage

For this matrix NDOF = 5

, SBW =3 and from equation 5.28

USIZE = (5)%-(5-3)(1+5-3)

=25-6=19

A typical entry mjj in [M] (full matrix storage) can be assigned to an entry myy in {M}
(vector storage) using the algorithm in Figure 5.2. Note that the subscript 1J refers to a
single index, the position of an entry in the vector (M].

IJ =

IF

3

IF i>1 THEN

SBW<NDOF THEN
IF i>SBW THEN

IJ = IJ + SBW - i
ENDIF
IJ = IJ + (i-1) (2SBW-1)
L = MIN(SBW,i)-1
IJ = IJ - (L/2)[(SBW-1) + (SBW-L)]
L = i - NDOF + SBW - 2
IF L>0 THEN

IJ = IJ - L(L+1)/2
ENDIF

ELSE

IJ = IJ + (i-1)NDOF

ENDIF
ENDIF

Figure 5.2

Vector matrix storage for banded, nonsymmetric matrix.

means take the minimum value of SBW and i.

MIN(SBW, i)

The Choleski method can be used with nonsymmetric matrices in vector storage. The
only difference is that the index IJ (in vector storage) must be computed using the algorithm
in Figure 5.2 for each pair of indices (i,j) or (j.k) in equations 5.10, 5.14, and 5.16.
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Example

Use the algorithm in Figure 5.2 to assign the entries of the nonsymmetric matrix shown
below in full matrix storage to vector storage

32101 NDOF = 4
4412 SBW =3
1331 2
0242 USIZE=@’-@-3)1+4-3)=14
i=1 j =1 I0=3j =1
j=2 13 =2
jas 13 =3
i=2 Ja1 13 =1
2>1
3<4
2<3

IJ = 1 + (2-1)((2) (3)-1) =6
L = MIN(3,2) -1 =2« 1w=1
I = 6 - 1/2[(3-1) + (3-1)]

-6 -2 =4
L =2 ~-44+4+3-2a«1<090
S IT = 4
i1 =4 j =4 IJ = j =4
img>1
3< 4
i=4>3
I =4 +3 ~-4=3
IJ = 3 + (4-1)(2(3) - 1) =18
L = MIN(3,4) -1 =3 ~1=2
IJ = 18 - 2/2[(3-1) + (3-2)]
=18 - 3 = 15
L =4~4+3-2=1>090
17 = 15 - 1(1+1)/2 = 14

Copyright American Geophysical Union



Groundwater Modeling by

Water Resources Monograph the Finite Element Method Vol. 13
Chapter 5 189

and [ 3]

2 o i j

1 1 1 1

4 2 1 2

3 1 3

4 4 2 1

1 5 2 2

2 6 2 3

{M} = 4 l> 7 2 4

§ 3 1

3 9 3 2

3 10 3 3

1 11 3 4

12 4 2

2 13 4 3

4 14 4 4
L21

§.1.4 Choleski Method for Symmetric Matrix in Vector Storage

If the matrix [M] is banded and symmetric (e.g., when solving the steady-state or
transient groundwater flow equations) the entries within the band can be stored in a vector
with length IJSIZE where

USIZE = SBW(NDOF - SBW + 1) + (SBW - 1) 3+ ) (5.29)
where NDOF is the number of equations and SBW is the semi-bandwidth (The quantity

(SBW - 1)x(SBW) is always an even number). For the example in Figure 5.1, NDOF = 6,
SBW =2 and

USIZE =2(6—2+l)+(2-l)(%)
=11

A typical entry my; in [M] (full matrix storage) can be assigned to an entry myy in {M] using
the algorithm in Figure 5.3

=3 -4+1
IF i>1 THEN
IF SBW<NDOF THEN
IJ = IJ + (i-1)SBW
L =i - NDOF + SBW - 2
IF L>0 THEN
I3 = IJ - L(L+1)/2
ENDIF
ELSE
IJ = IJ + (i-1) (NDOF+ (NDOF-1i+2))/2
ENDIF
ENDIF

Figure 5.3 Vector matrix storage for banded, symmetric matrix.
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Example

Use the algorithm in Figure 5.3 to assign the entries of the symmetric matrix shown
below in full matrix storage to vector storage

3200] NDOF =4
2420 SBW=2
0242 _ (2)_
0023 USIZE = 24-2+ 1)+ (2 1)2 =7
i=1 j=1 IJ=1-1+1=1
j=2 IJ=2-1+1=2
i=2 j =2 IJ=2-2+1m=1
2>1
SBW < NDOF
ITJ= 1+ (2-1)(2) =3
L =2 -4+2-~2=22<0
v IJ = 3
j=3 Ig=3-2+1=2
2>1
SBW < NDOF
IJ =2 + (2-1)(2) = 4
L =2-4+2-2=-2<0
IT = 4
i=q j=4q IJ=4 -4+1m=1
4>1
SBW < NDOF
IT=1+ (4-1)(2) =7
L =4-4+2-2 =0
Y & I ]
and (3 O i j
2
4 1 1 1
2 1 2
{M} =42¢ 3 2 2
4 4 2 13
2 5 3 13
6 3 4
3] 7 4 4

. The Choleski method can be used with symmetric matrices in vector storage. The only
difference is that the index IJ (in vector storage) must be computed using the algorithm in
Figure 5.2 for each pair of indices (i,j) or (j,k) in equations 5.18, 5.25, and 5.27.
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5.2 APPLICATION OF CHOLESKI METHOD
5.2.1 Steady-State, Saturated Flow Equation

The matrix formulation for the steady-state, saturated flow equation (equation 5.1) can
be solved by the Choleski method for symmetric matrices described in sections 5.1.2 and
5.1.4. We simply set [M] = [K), the global conductance matrix; {X} = {h], the unknown
values of hydraulic head at each node, and [B} = {F}, the specified rates of groundwater
flow at nodes representing sources and sinks (i.e., at Neumann nodes). The global
conductance matrix is symmetric because the element matrices it contains are symmetric.
Equation 5.1 is a system of linear equations because none of the entries of the global
conductance matrix are functions of hydraulic head. Recall that the element conductance

matrix [K(e)] is computed using the interpolation function derivatives for each node in the
element and the components of saturated hydraulic conductivity for the element. The
interpolation function derivatives depend only on the number of nodes in the element and
the element's size and shape. The components of saturated hydraulic conductivity are
constant within an element (but can vary from one element to the next) and do not depend
on the value of hydraulic head at the element's nodes.

Because the global conductance matrix is symmetric and banded, equation 5.1 is
conveniently assembled and solved in vector storage using the procedure described in
sections 5.1.2 and 5.1.4. Decomposition of [K] and {F} is performed once and {h)} is
obtained directly by backward substitution.

5.2.2 Transient, Saturated Flow Equation
The matrix formulation for the transient, saturated flow equation (equation 5.3) can be

solved by the Choleski method for symmetric matrices described in sections 5.1.2 and
5.14. We set

M] = [C] + wAt [K] (5.30a)
X} = {h}ua (5.30b)
{B} = (IC] - (1 - w)At [KD{h,} + At (1 — w){F}; + 0{F},,4) (5.30c)

where [C] is the global capacitance matrix, [K] is the global conductance matrix, w is the
relaxation factor, At is the time step, and (F) are the specified rates of groundwater flow
representing sources and sinks at Neumann nodes. {F) is known at all time steps. (h}, is
known from the initial conditions or from the solution obtained for the previous time step.
{h}¢,.a; are the unknown values of hydraulic head at time t + At,

[M] is symmetric because [C] and [K] are symmetric. The choice of  and At will have
no effect on the symmetry of [M]. Equation 5.3 is a system of linear equations because
none of the entries of [C] or [K] are functions of hydraulic head.

Because [M] is symmetric and banded equation 5.3 is conveniently assembled and
solved in vector storage using the procedures described in sections 5.1.2 and 5.1.4.
Assembly and decomposition of [M] is performed only once (unless ® or At changes from

one time step to the next). However, assembly and decomposition of {B} and backward
substitution to obtain {h},; must be performed for each time step. Thus it is desirable to

minimize the number of time steps used to solve a particular problem, suggesting that large
time steps should be used. However, several numerical difficulties can arise during the

solution process when At is large. The size of time step required to obtain useful results
depends on the size and shape of the elements in the mesh, the values of specific storage
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and hydraulic conductivity for each element, whether a lumped or consistent formulation
was used to compute the element capacitance matrices, the boundary conditions contained
in {B}, and the value of the relaxation parameter .

The first type of difficulty that can occur when solving equation 5.2 occurs when
calculated values of head violate "reality” (Segerlind, 1984). For example when computed
values of head decrease near a point source or increase near a point sink. This situation can
be avoided by choosing @ and At so that the coefficients in [M] (equation 5.30a) are
positive for positions on the main diagonal and negative for off diagonal positions (see
below) (Segerlind, 1984, Maadooliat, 1983).

The second type of difficulty that can occur when solving equation 5.2 is called
instability. Instability occurs when the difference between the true solution and the
numerical solution grows extremely large in a few time steps (Figure 5.4). Fortunately it is
possible to avoid instability by setting @ 2 1/2. When this condition is met, the numerical
solution for equation 5.3 will be unconditionally stable (L.apidus and Pinder, 1982, p.166).

numerical solution
true solution

\

hydraulic head

>

time

Figure 54 Numerical instability in computed value of hydraulic head.

The third type of difficulty that can occur when solving equation 5.3 for large values of

At s called numerical oscillation. Numerical oscillation occurs when the computed values
of hydraulic head fluctuate about the true solution. From one time step to the next the
numerical solution is alternatively above and below the true solution (Figure 5.5).

Criteria to avoid numerical oscillations can be derived based on the properties of the

matrix product [M'][P] where
[Pl = [C]-(1-w)At[K] (5.31)

To avoid numerical oscillations it is sufficient to require that all of the eigenvalues of [M'l]
[P] be positive (Myers, 1971). An eigenvalue is defined as any number E that satisfies the
matrix equation

| 1er - | = 0 (5:32)
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/ true solution

hydraulic head

numerical solution

- -
fime

Figure 5.5 Numerical oscillation in computed value of hydraulic head.

where | | is the determinant and [I] is the identity matrix ( see Appendix IV). Equation
5.32 is also satisfied (Segerlind, 1984) if

|tP1-EMI| =0 (5.33)

In equation 5.33 E will be positive if both [P] and [M] are positive definite. Now [C] and
[X] will always be positive definite. For transient, saturated flow

M] = [C] + @At [K] (5.34)

where @ and At are positive constants. [M] will always be positive definite because a
matrix obtained by adding a positive definite matrix to a positive definite matrix multiplied
by any positive constant is also positive definite (Myers, 1971).

However, [P] is not guaranteed to be positive definite because a matrix obtained by
subtracting a portion of one positive definite matrix from another is not necessarily positive
definite (Myers, 1971). The problem of avoiding numerical oscillations thus becomes one

of selecting values of @ and At that insure that [P] is positive definite. In other words, we
select values of @ and At such that (for any number §)

|P1-pm| =0 (5.35)
[P] will be positive definite if no value of § < 0. Now the minimum value of any global

matrix is greater than the minimum eigenvalue for all its component (or element) matrices
(Fried, 1979). Thus we can develop criteria to select values of © and t by using a form of

equation 5.35 written for an arbitrary element ¢
|P®1-89m| =0 (5.36)

where

P = [C9] - (1 - WAL [K®)] (5.37)
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and [C*®)] is the element capacitance matrix, [K] is the element conductance matrix, and
B(") is an eigenvalue for element e. Now if the minimum eigenvalue for any element equals
2ero (B“) =0), the minimum eigenvalue for the global matrix will be greater than 0 (B 20)
and numerical oscillations will not occur. Setting B(°) =0, equation 5.36 becomes

|P®1-0m| =0
|P@1| =0
[c®1- - o)At k| =0 (5.38)

Let o = (1 - w)At. Then equation 5.38 becomes

[l -ax®| =0 (5.39)

and the criteria for stability becomes

o
At < o’ o>1 (5.40)

where o is the smallest number (for any element) that satisfies equation 5.39 (the smallest
number of o will occur in the sn_:a]lqst clement in the mesh). For the case @ = 1, it can be

shown that no pumerical oscillations will occur (Segerlind, 1984). In practice the
following procedure can be used to avoid numerical oscillations when solving the transient,

saturated flow equation:
1. Compute [C*] and [K®] for the smallest element in the mesh.
2. Solve equation 5.39 to obtain the minimum value of o for that element.

3. Use equation 5.40 to select a suitable value for At and .

Example

The element capacitance and conductance matrices for the smallest element in a mesh

are given below. Find combinations of & and At that do not violate reality and that prevent
instability and numerical oscillations

1= [° o] i = 23 03]

For a mesh consisting of this type of element the diagonal coefficients in [M] will be

positive and the off-diagonal coefficients in [M] will be negative for all values of ® and At.
From equation 5.39
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[0.03 0 ]—a[ 0.5 —0.5] =0
0 0.03 -05 05]}

or
(003 -0005) (a0.05) | _,
(®0.05)  (0.03 — a0.05)
(0.03 — 0.05)(0.03 — 0.05) — (¢:0.05)(0.05) = 0
or
0.00250% - 0.003cx + 0.0009 — 0.0025¢> = 0
or

0.0009
@ = 5003 - &d

Instability will not occur if @ 2 1/2 and numerical oscillations will not occur if

0.3
At < T-e

The values of At and c that meet this criteria are plotted below. Any combination of At and
® in the shaded region will prevent instability and numerical oscillations.

15

10 1
At

0.5 0.6 0.7 0.3 0.9 1.0

For linear elements with 4 nodes or less, equation 5.39 can be used to derive algebraic

expressions for At that prevent numerical oscillations. For more complicated elements,
equation 5.39 must be solved numerically. Consider first the linear bar element (Figure
4.5). The element conductance matrix is given by equation 4.15a
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3

where K& is the saturated hydraulic conductivity and L® is the element length. If we use
the consistent formulation the element capacitance matrix is given by equation 4.16a

[c = sEL® [2 l]
T 6 12
where S is the specific storage.

For a mesh consisting of this type of element, the diagonal coefficients in [M] will be
positive for all values of @ and At. The off-diagonal coefficients will be negative if

X

§@L©
=g o
or
s@p @
At < —
6K

[ ]
l 2

SOL ok

S g’)L(G)

or

K(e)
)

<0

oK®

0

1)

sge)L(e) GK(;)

L®

|

)

)

3 L@ T
sse)L(G) . CLK(;) si‘)L(e) _ G.K(;)
6 L(G) 3 L(‘)
Evaluating the determinant we have

sOL®  ox®

sOL® okl

[

|

| J -0

3 e 6§ @
which can be solved to give
2
sge)L(G)
12K
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so that the criteria for avoiding numerical oscillations for the linear bar element with a
consistent formulation for [C?] is

S SG)L(G)z
At < (5.41)

12K9(1- w)

If we use the lumped formulation the element capacitance matrix is given by equation 4.16b

- 2

For a mesh consisting of this type of element the diagonal coefficients in [M] will be
positive and the off-diagonal coefficients in [M] will be negative for all values of @ and At.

Substituting [C*®] and [K®] into equation 5.39 we have

Sﬁ”L“’[1 o] _ aKSf’[ 1 -1] o
2 o]~ TO L1 1
or
SOL®  ak® oK
2 - L(c) L(e)
ey SPL®  ak?
L(e) 2 L(e)
Evaluating the determinant we have
sEL®  oK® ¥ oK® : 0
2 @) (o)~
which can be solved to give
_ sPay?
T4k

so that the criteria for avoiding numerical oscillations for the linear bar element with a
lumped formulation for [C*?] is

520y

t € =————————
4KO(1-0) G42
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quaﬁons similar to 5.41 and 5.42 can be derived for other element types (Segerlind,
1984)

The element matrices are given by equations 4.20 and 4.22b. As an example consider
the triangle element shown below. Node i is at (0,0), the element is a right triangle, and the
side lengthis b

2
(e)__b_
AT=3

@ >
(0,0) (b0) x
If we assume that Kff) = K§,°) =K® we can use equation 5.39 to find

25840

poe (5.43)

25FA®

9K“(1-w)

(5.44)

. inear rectangle ]
The element matrices are given by equations 4.26 and 4.27b. As an example consider
a square element (22 = 2b). If we assume that K& = Kg.‘) =K® we can use equation
5.39 to find

S ge)a(e)b(e)
K( ) (5.45)
and
sge)a(e)b(e)
(5.46)

[ € =
K%1-w)

5.2.3 Solute Transport Equation

The matrix formulation for the solute transport equation (equation 5.5) can be solved by
the Choleski method for nonsymmetric matrices described in sections 5.1.3 and 5.1.5.
This is done by setting

M] = [A] + @At [D] (5.482)
{X} = {Cl.a: (5.48b)
{B} = ({A]l-(1-w)At[D] {C}, + At ((1-w){F};+ w{F},a) (5.48¢c)
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where [A] is the global sorption matrix, [D] is the global advection-dispersion matrix, ® is
the relaxation factor, At is the time step, and (F} are the specified solute fluxes
representing sources and sinks at Neumann nodes. {F) is known at all time steps. {C}, is
known from the initial conditions or from the solution obtained for the previous timestep.

{C)r4ar are the unknown values of solute concentration at time t+At.

[M] is nonsymmetric because [D] is nonsymmetric. The choice or ® and At will have
no effect on the symmetry of [M]. Equation 5.5 is a system of linear equations because
none of the entries of [A] or [D] are functions of solute concentration.

Because [M] is banded equation 5.5 is conveniently assembled and solved in vector
storage (Section 5.1.5). Assembly and decomposition of [M] are usually performed only
once. However, for solute transport in transient groundwater flow conditions, e.g. Section
373, [M] would be assembled and decomposed at each time step (because the

components of apparent groundwater velocity, vff), vgf), and vi" used to compute D] are
changing from one time step to the next in transient flow). [M] must also be assembled and
decomposed if ® or At change during the solution process (e.g., it is common to use a
small time step for the first few time steps, when solute concentrations are changing rapidly

and then use a larger At when solute concentrations are changing more slowly).

The same criteria used to avoid problems of violating reality, instability, and numerical
oscillations when solving the transient, saturated flow equation (Section 5.2.3) can be used
when solving the solute transport equation. Thus to avoid problems of instability we set ®
2 1/2. The criteria for preventing numerical oscillations can be written (following the

discussion in section 5.2.3)
A< o (5.49)
where a is the smallest number (for any element) that satisfies
[A®] - aD®)| =0 (5.50)

where [A®] and [D'?] are the element sorption matrix and advection—dispersion matrix,
respectively.
For simple element types, equation 5.50 can be used to derive algebraic expressions for

combinations of At and @ that prevent numerical oscillations. For more complicated
elements, equation 5.50 must be evaluated numerically. As for the case of transient,
saturated flow the smallest value of o will occur in the smallest element in the mesh.

Example

Determine the criteria for preventing numerical oscillations when solving the solute
transport equation using linear bar elements (Figure 4.5).

We will use the lumped formulation for [A)] and [D®] (equations 4.19b and 4.18b)
and setA=0

A = P+ 65 1]

DY) = D,(f)ﬂ(”[ 1 -1] . vo) [—1 1]

L@ [-1 1 2[-1 1
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where p{ is bulk density, K is the distribution coefficient, 8 is volumetric water

content, L is the element length, D is a dispersion coefficient, and v is the apparent
groundwater velocity. To simplify the algebra set

R® = plOKY + 6©
Substituting into equation 5.50 we have

ROL® _ [D,‘f’e“’ v?)]

[D,‘f’e“’ v,‘f’]

2 T 2 2
0
Dgc)e(G) V(xe) ROL® Die)e(e) V(xe)
—_— - + =
L® 2 2 L® 2
Evaluating the determinant

ROL® _ D’(‘e)e(e) f REL® D,(f)e(") VS:)
2 e 72 2 X7 7T

D9  © DY@ @
-la = _ VL o ot S 4 VL = 0
L(e) 2 L(e) 2

or
(C; ~aC)(Cy —aC3)-a (C))a(C3) =0
(e} (0
where C, = R 2L , etc.
Ci-aCy(C+CY = 0
or
Cl
= GrG
ROLO
_ 2
T D% ©® p&el® ©
L® 27 (@ T2
S (5.51a)
4D
and
o
&t < == (5.51b)
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5.3 PROCEDURE FOR SOLVING SYSTEM OF NONLINEAR
EQUATIONS

Equation 5.7 can be written in expanded form as

myy(xy, 4 Xg) 0 myg(Xy, t, Xg) | X b
: : ir=1: (5.52)
my (Xg, ** 4 Xy) 7 WXy, 0, Xp) [ Xn b,
where each m;; is a function of one or more values of x;. Although not shown explicitly in
equation 5.52 the coefficients in (B} are also sometimes functions of one or more x; ie.,
b;(X], «.s Xp)- The nonlinear solution process begins by specifying an initial guess for
{X}, (X9

=
x%=4: (5.53)

%

If {X0} was an exact solution, it would satisfy equation 5.52 exactly. In other words

MEH{X"} = {B}

or

{B} - MEXIIX’} = R} = {0} (5.53)

where {R0} are the residuals at each node (not to be confused with the residuals obtained in
Chapter 3 using Galerkin's method). Equation 5.53 can also be written in expanded form

0 0 0 o110 0
b, my,(x, >y Xy) " mya(xy, ot Xp) || X n 0

-— . Yy . =
.

(5.54)

ba| | mgy (2, 5 - mged, oo, 29[ 9 0

where 1,0 are the entries of {R). If the initial guess for (X} is incorrect, the solution will

not be exact and the residuals will not all equal zero, {R%} # {0}. In practice, we usually
only require the residuals to be "close” to zero

|max{:"}| <& (5.55)

where max denotes the maximum value of the residual at any node and € is a predetermined
tolerance.

If the initial prediction {X°} does not satisfy equation 5.55 we search for an improved
prediction {Xk). The process continues in an iterative fashion until 2 sufficiently accurate
solution is found. Several methods can be used to obtain the improved prediction {Xk}.
We will consider only two methods: Picard iteration and the Newton-Raphson method.
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5.3.1 Picard Iteration

In Picard iteration (also called the substitution method) we construct a sequence of
solutions {X?), {X!}, {X?}, etc. and each solution {XX} is calculated from the previous
solution {Xk-1}

[Ma*)]1x*} = {B} (5.56)

where [M(Xk-1)] represents the matrix of coefficients constructed from the previous
solution (Klute et al., 1965). Equation 5.56 can be written in expanded form as

my&f kg ) my T x| [ X by
: : it =4 (5.57)
myy (e e XY e my T e, B || o by

(If the coefficients in [B} are functions of (X} they would also be computed using
[XX-1}). The procedure begins by specifying an initial guess {X0). Then we solve the
system of linear equations

[Mx9]ix'} = (B} (5.58)
to obtain the new solution {X!} (for example using Choleski's method). We then compute
the residuals

(R} = (B} -[Ma)]{x"} (5.59)

and determine if the r;° are sufficiently close to zero. If they are, we can use the solution
{X1}. If they are not we construct a new matrix of coefficients using {X!) and solve for
the next solution {X2)

[Mxh] (X%} = (B} (5.60)
where [M(X!)] represents the matrix of coefficients constructed from solution {X1}. This
process is repeated until the maximum value of a residual is smaller than a specified
tolerance €

| maxte| <€ (5.61)

Equation 5.61 is called a test for convergence or convergence criterion because it is a
measure of how close the approximate solution {Xk} is to the unknown true solution {X}.
This test can also be performed on residuals computed from two consecutive solutions

{R} = (x*}-(x*"} (5.62)
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which can be written in expanded form as

a4 [

ip=qir—q i (5.63)
d L L

n,

The algorithm for Picard iteration is summarized in Figure 5.6.

1. Specify initial approximate solution {X"}
2. Fork=1,2,3,... (each value of k is an iteration) do the following

A. Construct the matrix of coefficients [M(X"™")]

B. Solve the system of linear equations
[Mex*]{x"} = {B}

for {X"}

C. Construct the vector of residuals {R"} using
{R"} = {B} -[MxX*"]{x"}
{R"} = {X} - {x*"}

D. Test for convergence
|max{f}| < €2

If convergence criterion is satisfied, use solution {Xk} , otherwise
setk =k + 1 and repeat steps A, B, Cand D

Figure 5.6 Algorithm for Picard iteration.

Example
Use Picard iteration to solve the following system of nonlinear equations (let € = 0.05)

Sxf + 4x;x,— 4x§ =35
-4x,xy + 4x§ + 3x9%X3 — 3x§ =4
- 3x9x3 + 3x§ =3
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The system of equations can be written in matrix form as

Ox; +4x;) —4x, 0 1x, 5
—4xy  (4x3+3x3) =3x3|{xp =44
0 '—3X3 3X3 X3 3

Following the algorithm in Figure 5.6, we specify an initial solution {X%} (usually selected
arbitrarily)

1
{x% =11
1

This can be used to construct the matrix of coefficients [M(X?%)]

[5(1)+4(1) =4(1) 0
[M(X°)]= —4(1) (41 +371) -3(1)
(] =3(1) 3(1)

9 -4 0

[ 0 -3 3

We can then construct the system of linear equations

[Mec}ix') = (B}

Lh

9 —4 0[x!
~ 7 -3l
0-3 3l[xlf |3

|
H

which can be solved to give
x} 2.40
X't = {xhp = 14.15
X3 5.15

The residual vector for the first iteration is

1 2.40 -1.40
R} = {x%-(x} = {1} - 4.15} = {-3.15]
1 5.15 -4.15
and |max{r'}| = 4.15 > 0.05

For the next iteration (k = 2) the matrix of coefficients is
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(5(2.4) + 4(4.15) —4(4.15) 0
[M(x‘)] = —4(4.15)  (4(4.15) + 3(5.15)) -3(5.15)
0 =3(5.15) 3(5.15)

-16.60 32.05 -15.45

[ 28.60 -16.60 0 ]
0 -1545 1545

The resulting system of linear equations

28.60 -16.60 0 7[x? 5
-16.60 32.05 -15.45[1 x3t = {4
0 -1545 1545]|x3 3
can be solved for {X2)
x; 1.00
X% = {3} = {142
x3 1.62
and
2.40 1.00 1.40
(R} = [X'}-{x%} = l4aas} - {142} = {273
5.15 1.62 3.53

with | max{r} | =3.53>0.05. The results for the remaining iterations are summarized
below

k x'l‘ x'2‘ x‘;‘ |max{rik} |
0 1 1 1 -
1 2.40 4.15 5.15 4.15
2 1.40 1.42 1.62 3.53
3 1.54 2.77 3.39 1.77
4 1.56 2.19 2.49 0.90
5 1.54 2.34 2.74 0.25
6 1.56 2.31 2.67 0.07
7 1.54 2.30 2.67 0.02 < 0.05
and the solution is
1.54
{X} =4230
2.67
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For some nonlinear problems (i.e., when the coefficients in [M(X)] are sensitive to
small changes in {X}) it is better to use a modification of Picard iteration based on an
incremental solution procedure (sometimes called the modified Newton-Raphson

method ). As before, we specify an initial approximate solution{X%} and construct the
matrix of coefficients [M(X09)]. However, the residual vector {R9)} is computed before the
system of linear equations is solved i.e.,

{R% = {B}-[MX)}x"} (5.64)
We then test for convergence
| max{r’}| < e? (5.65)

If a new solution is needed we construct a system of linear equations using {R9)} as the
right hand side

[MxH)Ax'} = {(RY (5.66)
where {AX!} is a vector of increments used to construct the next solution {X!}

{x'1 = {x% +0’{Ax"} (5.67)
and " is a relaxation factor (usually determined by trial and error). We then compute a
new residual vector {R1} and repeat the entire process until the convergence criterion is
satisfied. The algorithm is summarized in Figure 5.7. This procedure can increase the rate

of convergence compared to the algorithm in Figure 5.6 (i.e., a fewer number of iterations
are required to reach the specified tolerance) for some problems but may also increase the

total number of calculations because of the matrix multiplications required to obtain {Rk}.

Example

Use Picard iteration with an incremental solution procedure to solve the system of
nonlinear equations in the previous example (let € = 0.05 for max {Ax;} and use @* = 0.5)
Following the algorithm in Figure 5.7, we specify an initial solution

1
-l
1

The matrix of coefficients is the same as before

9-4 0
MxY] = [—4 7 —3]
0-3 3

The residual vector is
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1. Specify initial approximate solution {X"}

2. Fork=1, 2,3, ... (cach value of k is an iteration) do the following
A. Construct the matrix of coefficients [M(X“™)]
B. Compute the entries of the residual vector{R*"'}

{R*"} = {B} - MX )X}
C. Test for convergence
| max{rf'}| < e?

If convergence criterion is satisfied use solution {x*
otherwise perform steps D, E, and F

D. Solve the system of linear equations
M H){Ax} = {(R"}
for {AX*}
E. Construct the next solution {X"}
{X*} = {(X*'} + 0 {AX"}
F. Setk=k+1 and go to step A.

Figure 5.7 Algorithm for Picard iteration with an incremental solution procedure.

{R%} = (B} -[ Mx%]{x%

L5

and |max{r?}| =4
We can then construct the system of linear equations
IMEY]{AX'} = {R%}
9 -4 0|faAx] ]
-4 7 -3[{ Ax} 4
0 -3 3]|Ax] 3

Copyright American Geophysical Union



Groundwater Modeling by

Water Resources Monograph the Finite Element Method Vol. 13
208 Step 4: Solve System of Equations
and solve for {AXl}

1.40
{aAX'} = {3.15
4.15
The next solution is given by
1 1.40 1.70
[ ]
{x'} = (X" +0'{ax'} = {1}+0543.15} = {258
1 4.15 3.08
The results for the remaining iterations are summarized below
k X x5 o Imax{f}  axf  axf  axt |max{adyl
0 1 1 1 4 1.40 3.15 4.15 4.15
1 170  2.58 3.08 1.62 -029 -0.49 -0.67 0.67
2 156 234 275 0.38 -0.02 -0.05 -0.10 0.10
3 1.55 232 270 0.13 -0.0026 -0.019 -0.029 0.029 <0.5
4 1.549 2311 2.686
and the solution is
1.549
{X} = {2.311
2.686

In this example, the incremental solution procedure reduced the number of iterations
required for Picard iteration from 7 to 4.

5.3.2 Newton-Raphson Method

For some problems, Picard iteration may converge slowly. In this case we may wish
to use the Newton-Raphson method (Concus, 1967). This method is similar to the

algorithm in Figure 5.7 in that we specify an initial solution {X°} and compute a series of
new solutons {X!1], [{X2], {X3]), ... where at each iteration k we compute the solution
{Xk} using equation 5.68

{x*} = {(x*"} + 0" {aAX"} (5.68)
As before, we continue to compute new solutions until the residuals are close to zero i.e.,
{Rk} = {0}. Inthe Newton—Raphson method we solve for {AXX} by writing a Taylor
series approximation for {Rk) and setting it equal to zero

d{R}

{R"} = (R} + 3K {ax"}

X}={x""}

2
+ d°{R}

Yo {AX“D? +- = {0} (5.69)

Xy =(x*"}
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Neglecting the higher—order terms containing ({AX*})?, ({AX*1)’, etc ... we have

-1, . 9{R} X
{R*} = (R*"}+ {Ax*} = {0} (5.70)
XY | (xp = gty
or
J{R} x k-1
- {AX"} = {R™} (5.71)
XY | = oty
But
(R*"} = (B} -[MX*)}x*") 5.72)

and if we assume that the entries in {B} are not functions of {X} (for convenience only,
this is not a requirement of the Newton-Raphson method) we can write (using the product
rule)

o{R} k-1y; . OIMX)] k-1
- =[M +—== X 5.73
IXT oXpe gt MEX)]+=35 X | e (x“‘}{ } (5.73)

Substituting equation 5.73 into equation 5.71 gives a system of linear equations that can be
solved for {AXk)

k-1,, , IIMX)]
[[M(X )]+-a{—x}—

{X““}]{AX“} = (R*} (5.74a)
X}={x"}

which can be written in expanded form as

- - am om
m"(x]; l, ....x.:_l) b mln(x'{_l. -...x: l) T“(xrlv H-'x:_l) . ax_ln(xs—l' ""x=—l)
1 1
: +x! : :
om am,,
MG, o XY e m XY ax—'l“(x"".....x‘,:") ax_,("H' X

omy, . _ omy, -
b, 0 - e, ad] 47

+ood X1 : : Pl=4 (5.74b)

oam,, _' _
Tn(xl 9 e00y Xp ) %( 1 l. .x: l) Ax: t:-l

The algorithm is summarized in Figure 5.8. The major difficulty in implementing the
Newton—Raphson method is computing the entries in a[;dp(z?}. However, the rate of
convergence is usually faster than Picard iteration and this can sometimes give an overall
improvement in computational efficiency.
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1. Specify initial approximate solution {X°}
2. Fork=1,2,3,... (each value of k is an iteration) do the following

IIMX)]

A. Construct the matrices [M(X*")] and k-1

B. Compute the entries of the residual vector {Rk'l}
{R*'} = {B} - (MX*){X""}

C. Test for convergence
|max{R?'l} | <e?

If convergence criterion is satisfied use solution {X* "'}
otherwise perform steps D, E, and F

D. Solve the system of linear equations

k-1 dIMX)] k-1 ky _ rokel
[[M(X N+ 5T {x}={xk-1‘}:x }]{Ax b= (R}

for {AX*} )
E. Construct the next approximate solution {X"}
(X} = (x*'}+ 0 {aX*}
F. Perform steps A through E until convergence criterion is satisfied

Figure 5.8 Algorithm for Newton-Raphson Method.

Example

Use the Newton-Raphson method to solve the system of equations in the previous
example (let € = 0.05 for max {Ax;} and use w* = 1.0) Following the algorithm in Figure
5.8 we specify an initial solution X0}

1
o[
1

Fork = 1, the matrix of coefficients [M(Xk-1)] and the residual vector {Rk-!} are the same
as in the previous example

94 0
M) = MY = [-4 7 -3]

0-3 3
0
{R*'} = (R%} = H
3
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The derivatives of [M(X)] are given by

32—1(5x1+4x2) 32—1(-4;‘,) %(0)
J[M d d d
L ,g()] = 5;1'(_4"2) 5x—;(4x2+3x3) m(—3x3)
d
=© =) O
500
=(ooo0
000
Similarly
"4 4 0 00 0
AMCO] _ _: 4 0] and M=[o 3_3]
% 19 0 0 93 0-3 3
aM(X)] k-1 k-10IM(X)]
9{X} {X}={X“’}{x b= x1= 08¢
4 13ME]
T X1 =}
k-10[M(X)]
+x dxs X=pcY

500 4 4 0 0 00
(Io00|+(1)})—4 4 0|+ (@130 3 -3
000 0 00 0-3 3

94 0
-4 7 -3
0-3 3

and referring to equation 5.74 we have

9-4 0 9 -4 0]]|ax} 0
-4 7 -3|+|4 73 Ax; =44
0-3 3 0-3 3 Ax; 3
which can be solved for {AX'}
Ax} 0.700
{ax't = {axl} = 11575
Ax; 2.075
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and

1.700
2.575
3.075

0.700
1.575
2.075

1
1
1

o[l -

For k =2 we have

the Finite Element Method

g by
Vol. 13

Step 4: Solve System of Equations

|

18.18 -1030 0
MEY] = |-1030 19.52 -9.23
0 -923 923
5 18.80 -10.30 0 ) [1.700 -0.438
{R'} = {4} -1-1030 19.52 —9.23}{ 2.575 = {-0.372
3 0 -9.23 9.23)|3.075 -1.615
and
18.80 -10.30 0 500 4 -4 0]
-1030 19.52 -9.23|+(1.700) 0 0 0|+ (2.575) -4 4 o©
0 -923 923 000 0 0 0
000 37.60 —20.60 0 ]
+(3.075) 0 3 -3| =|-20.60 39.05 -18.46
0-3 3 0 -18.46 18.46)
37.60 2060 0 |[ax? -0.143
-20.60 39.05 -18.46|{ Axp2} = {-0.239
0 -18.46 18.46|| Ax3 -0.327
which can be solved to give
-0.143
{ax? = {-0.239
-0.327
and
1.700] (-0.143 1.557

-0.239
-0.327

2.575
3.075

a2

After one more iteration (k =3) we find {X°} ={

{x% = {

2.336
2.748

|

1.54
2.32} with |max {£’}| = 0.03.
2.71
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5.4 APPLICATION OF PICARD ITERATION

5.4.1 Steady-State, Unsaturated Flow Equation

The matrix formulation for the steady-state, unsaturated flow equation (equation 5.2)
can be solved using Picard iteration. We simply set [M(X)] = [K(y)], the global
conductance matrix, {X} = { ], the unknown values of pressure head at each node, and
{B} = {F}, the specified rates of groundwater flow at nodes representing sources and
sinks (i.e., at Neumann nodes). The global conductance matrix is symmetric because the
element matrices it contains are symmetric. Equation 5.2 is a system of nonlinear equations
because the entries of the element conductance matrices contain the hydraulic conductivity
for the element and, in unsaturated flow, hydraulic conductivity is a function of pressure
head. An example of the dependence of hydraulic conductivity on pressure head for three
soils is in Figure 5.9. Hydraulic conductivity is maximum when the porous media is

saturated i.e., ¥ = 0 and decreases rapidly with increasing negative values of .
Unfortunately, the unsaturated hydraulic conductivity function is difficult to measure

experimentally. K(y) also displays hysteresis (i.e., the value of K(y?) for a fixed value of

pressure head yOis usually different for conditions of wetting and drying).
To solve the steady-state, unsaturated flow equation using Picard iteration we can use
the algorithm in Figure 5.6 or 5.7. To begin we specify an initial approximate solution

{y0}. We use these values to compute initial values of hydraulic conductivity for each
element in the mesh and compute the element conductance matrices. The global

conductance matrix is assembled and modified for specified values of W and the system of
linear equations is solved for the new values of pressure head at each node {y!}

KyO{y'} = {F}

The residuals are computed from

{R'} = {F} - [KyM{y'}

or
{R'} = (y'1- v

If the convergence criterion is satisfied we use the solution {y!}. Otherwise we use {y!}
to compute new values of hydraulic conductivity for each element, compute new element

conductance matrices, assemble [K(y!)] and so on. Because of the need to determine
values of hydraulic conductivity for each element for each iteration it is convenient to

express measured values of K(y) vs ¥ in a simple analytical form. Several empirical
equations have been proposed for this purpose e.g.,

K(y) = (5.76)

-2 _
b+y™
K(y) = Kexp(-ay) (5.77)
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10 I I
10!
= 10°
5
2
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o
107
107
_ | ]
107
-1072 -107" -10° -10"
Pressure Head, ¥ (cm)
Figure 5.9 Dependence of hydraulic conductivity on pressure head for three soils.

where a, b, and m are empirical coefficients and K is the saturated value of hydraulic
conductivity (i.e., at ¥ = 0) (Gardner and Mayhugh, 1958). Other equations for K(y) vs

y are discussed in Mualem (1976), Raats and Gardner (1971), and Bear (1972). Although
these equations are convenient for calculations they often provide a poor fit to experimental
data. In many cases a simple "table lookup" interpolation scheme (i.e., using cubic

splines) can be used to compute K(y) for any value of y.  is computed at the nodes of
the mesh so we must decide which value of y and K(y) to use to compute the element
conductance matrices. If analytical methods are used to compute [K(°)(\|r)] (e.g., for the linear
bar, triangle, or rectangle elements) we can simply use the average value of y for the

nodes of each element (see Chapter 6). If Gauss quadrature is used to compute [K(°)(\|r)]
(e.g., for the isoparametric elements) we can also use the average value of y or we can
compute the value of y and K(y) at each Gauss point during the numerical integration
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(i.e., we can write K(e)(\lf(eiv M, &) etc. in equation 4.63. The vaule of y at the Gauss

point can be computed using the element's interpolation functions and the values of W for
each node in the element (see Chapter 6). The various steps in solving the steady-state,
unsaturated flow equation are illustrated in the following example.

Example

Use Picard iteration to solve the steady-state, unsaturated flow equation for the mesh
shown below. Assume that K& (y)(co/s) vs y(cm) is given by

Ky) = 0.01exp(0.01 y)

for all elements and use € = 0.05

) @ (3)
y=-100 ® . ~— o ¥=-80
3

> L = 5 cm for all elements

The element conductance matrices are given by equation 4.15a

K9%wr 1 -1 02 -0.2
O - T W) I~ 2 -0.
K™ = 1) [-1 1] = K ("’)[-0.2 0.2]

for all elements. The global conductance matrix can be assembled using the procedures in
chaptea 42 and the global system of equations can be written (after dividing by the common
factor 0.2)

o) kP w 0 o Jfw] [0
KOy KW +KPw) KL o) 0 ||wa| |0
0 K%y &P &P xPw||ws| o
0 0 Py KO [lvd Lo

Modifying these equations for the boundary conditions y; = -100 and y4 = -80 gives the
system of nonlinear equations to be solved for y; and y3

&Py +kPw) kP {‘vz} ) {—moxi"(w}
<P  &Pw+xPwn)lwl | -8kPw
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Following the algorithm in Figure 5.6 we specify an initial solution [y9)
0, _ —90}
v = {5
The average value of v,  and K() for each element can now be computed

D = (y;+y)2 = (-100-90)2 = —95.0
¥ = (Yo +ya)2 = (~90 - 85)2 = 87.5
P = (Y3 + Y2 = (-85-80)2 = —82.5

KP(y) = 0.01 exp(0.01(-95)) = 0.00387 cmy/s
KP(y) = 0.01 exp(0.01(-87.5)) = 0.00417 cmis

K®&(y) = 0.01 exp(0.01(~82.5)) = 0.00438 crny's

The system of linear equations for the first iteration (k = 1) is

[(o.ooss7+o.oo417) —0.00417 ] v {—0.387}
-0.00417 (0.00417 + 0.00438) ] | v -0.351

1 -92.94
{32
v -86.37
The residual vector {R1} is
1 _ pedy ey _ [-901 _[-92.94] _ [2.94
R} ={y}l-{vl= {_35} {-—86.36} - {1-36}

and |max {f'}| = 2.94. The results for the remaining iterations are summarized below

k v ¥ K% kKP0® kPP |max{}
0 -90 -85 0.00387 0.00417 0.00438 -
1 9294 -86.36 0.00381 0.00408 0.00435 2.95
2 -92.88 -86.23 0.00381 0.00408 0.00436 0.13
3 -92.88 -86.22 0.01 < 0.05
and the solution is
-100.00
-92.88
v} =1 g2
-80.00
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5.4.2 Transient, Unsaturated Flow Equation

The matrix formulation for the transient, unsaturated flow equation (equation 5.4) can
be solved using Picard iteration. We simply set

IMEX)] = [C(y)] + wAt [K(y)] (5.78a)
{X} = {v},a (5.78b)
{B} = ([C(W)] - (1-w) At [K(W)] {v}; + At((1-0){F}k + o{F}) (5.78¢)

in equation 5.7 where [C(y)] is the global capacitance matrix, [K(y)] is the global

conductance matrix , @ is the relaxation factor, At is the time step, and {F) are the specified
rates of groundwater flow representing sources and sinks at Neumnann nodes. {F) is

known at all ime steps. (), is known from the initial conditions or from the solution for
the previous time step. {y};,a; contains the unknown values of pressure head at time

t+At. [M(X)] is symmetric because [C(y)] and [K(y)] are symmetric.

Equation 5.7 is a system of nonlinear equations because the entries of the element
conductance and capacitance matrices contain the hydraulic conductivity and specific
moisture capacity for the element, and for unsaturated flow these are functions of pressure
head. An example of the dependence of hydraulic conductivity on pressure head is in

Figure 5.9. C(y) is usually calculated by differentiating experimental curves of 6 vs v,
where 0 is volumetric water content (Figure 5.10)

cw = 5 (5.79)

Both K(y) and C(y) may display hysteresis.
To solve the transient, unsaturated flow equation using Picard iteration we use the
algorithm in Figure 5.6 or 5.7 at each time step. To begin we specify an initial guess for

{W°)sar We use these values to compute initial values of hydraulic conductivity and

specific moisture capacity for each element in the mesh and compute the element
conductance and capacitance matrices. The global matrices are assembled and modified for

specified values of W and the system of linear equations is solved for the new values of
pressure head at each node (y1}, A

ACW™] + wat KOV Yar = ACHYH] - (1-0) At KONV
+ At ((1-0){F}, + o{F},,,) (5.80)

where all values of {y?) refer to time t+At. (The values of {y}, on the right-hand side of
equation 5.80 are known from the solution for the previous solution and do not change
during the iterations required to find (y!};,5,). The residuals are computed from

{R'} = ([(C¥"] - (1-0) At [KWOD i)+ At (1-0){F), + o{F},,,)
- ([COy™ + At K Lra) (5.81)

{R'} = {y'1-{v"} (5.82)
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0.7

0 cm’/em’)

0.0 l ]
-102 -107! -10° -10!
Pressure Head, y (cm)

Figure 5.10 Dependence of volumetric water content on pressure head for three soils
and definition fo specific moisture capacity.

If the convergence criterion is satisfied we use the solution {1}, o, for this time step, set
{¥)¢= (W}i4ar and proceed to the next time step. Otherwise we compute new values of
hydraulic conductivity and specific moisture capacity, assemble and modify [K(y1)] and
[C(y1)] and solve the system of equations for {y2} A, and so on. We usually use the
solution from the previous time step as the initial guess to begin the iterations for the next
time step

¥’ heae = VL (5.83)

The procedure for solving the transient, unsaturated flow equation using Picard iteration is
in Figure 5.11. Similar algorithms can be written for Picard iteration with an incremental
solution procedure and for the Newton-Raphson method.

Because of the need to determine values of hydraulic conductivity and specific moisture
capacity for each element for each iteration it is convenient to express measured values of
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K(y) vs ¥ and C(y) vs ¥ in simple analytical forms. Several empirical equations have
been proposed for this purpose, although it is often preferable to use "table look up”

interpolation schemes to compute K(y) and C(y) for any value of y. As with the case of
steady-state, unsaturated flow we can use the average value of y within an element to
compute the entries in [K()(y)] and [C€)(y)] or we can compute the value of y, K(y), and
C(y) at each Gauss point during the numerical integration.

For each time step do the following

1. Specify an initial guess solution for pressure head at the current time

step {‘Ifo}:m: . Usually we use the values of pressure head computed
from the previous time step

{‘l’o}um = {y}
2. For k=1,2,3, ... (each value of k is an iteration) do the following
A. Compute the values of K(e)(\f_l)and C(e)(\f-l)for each element.

Construct the clement conductance and capacitance matrices

KO and [CP0 )]

B. Solve the system of linear equations

(ICO ™+ oAt KO Whaat

= ([COV )] - (1~w)At KW ) {w}h

\ + At (1-@){F}, + o{F}i,a)
for {W }aar

C. Construct the vector of residuals {R*} using
{R*} = ([COv" )] - (1-)At K )y,
+ At((1-w){F}, + o{F};;a0)
- ([COV ™)) + At KO D W a
or

{R} = (v'1- (v
D. Test for convergence
k
|rnax{ri}| <g?
If convergence criterion is satisfied use solution{‘lfk}um. Set

{vh={¥hssand proceed to the next time step. Otherwise, set
k=k+1 and repeat steps A, B, C,D

Figure 5.11 Procedure for solving the transient, unsaturated flow equation using
Picard iteration.
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5.4.3 Modification of Solution Procedure for Relatively Dry Porous Media

When the porous media is relatively dry, hydraulic conductivity can change rapidly
with only a small change in pressure head. For example, in Figure 5.9 the hydraulic
conductivity of the sandy loam soil decreases from 0.8 to 0.0017 cm/day as the pressure
head decreases from -1 to -10 cm. This behavior can cause difficulties when solving the
steady-state or transient, unsaturated flow equations using Picard iteration or the Newton-
Raphson method. An alternative approach can be developed by rewriting equations 1.2

and 1.4 in terms of the volumetric water content 6. For steady-state, unsaturated flow we
have

30y} JK(®
5(0:0F)+ 5(005)+ H{p0F)+ 52 = 0 (5.84)
where Dx(0), Dy(8,), and D,(8) are the components of the aquifers diffusivity

D(®) = KOFY = o

and K(6) and C(0) are the unsaturated hydraulic conductivity and specific moisture
capacity written as functions of 6. Empirical expressions can be developed for K(8) and

C(0) or simiple "table-look up" or interpolation schemes (e.g. using the data in Figures 5.9
and 5.10) can be used. For example Gardner and Mayhugh (1958) proposed the equation

D(8) = aexp(bd) (5.85)
where a and b are empirical coefficients. In equations 5.84 the z coordinate axis is oriented
vertically upward. For transient, unsaturated flow we have

w(0:0%)+ 50,05+ 2P0F) 52 - & (5.86)

If the porous media is relatively dry it is often assumed that the effect of gravity on
water flow is small. In this case, the last term on the right-hand side of equation 5.84 can
be discarded. Following the procedures described in Chapter 3 and 4, matrix expressions
;uggla: to equations 5.2 and 5.4 can be developed for use in solving equations 5.84 and

[C(6)]{6} + [D(8)]{6} = {F} (5.87)

Equation 5.84 can be written
([C] + @At [D(@)]) {0} 44, = ([C] - (1-w) At [D(B)]){6),
+ At ((1-w) {F}, + o{F},,4) (5.88)

where [C] is a global capacitance matrix that can be obtained by assembling the element

capacitance matrices [C*] for all elements in the mesh (written here with a consistent
element formulation)
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N{
[ = P IN® - N dx dy dz (5.89)
N®
Ve

and [D(9)] is a global diffusivity matrix that can be obtained by assembling the element
diffusivity matrices [D'(8)] for all elements in the mesh

[ ~Ang(e) €) ©]
ag:1 a;ﬁ; ag:z1 @) 0 0
[D®@)] = SR o Df%e o
(e) e) (e)
2202 o o ot
nd 3
[aN®  aNY]
5; 5x
(c) )
Eg;_c ig(;i dx dy dz
oaN®  aN®@
3xn (5.90)

The procedures in Chapter 4 can be used to compute the element matrices, assemble the

global system of equations, and modify the system of equations for known values of 0 at
Dirichlet nodes. Equation 5.88 is a system of nonlinear equations that can be solved using
cither Picard iteration or the Newton-Raphson method. Because the diffusivity varies less
with changing water content than hydraulic conductivity varies with changing pressure
head the numerical solutions should converge more rapidly when solving equation 5.86
than when solving equation 5.2. However, equation 5.86 can be extremely difficult to
solve when the porous media is nonhomogeneous because large changes in water content
can occur abruptly at boundaries between layers with different hydraulic properties (e.g. at
the cor:letgct between sand and clay layers). In this case solutions based on equation 5.2 are
preferred.
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NOTES AND ADDITIONAL READING

1. A variety of numerical methods can be used to solve the system of linear equations
represented by equations 5.1, 5.3, and 5.5. Some examples are Gauss elimination
(C%ok, 1981), Gauss-Seidel] iteration (Wang and Anderson, 1979), and the wavefront
method (Irons, 1970). The merits of these methods are compared in Meyer (1973) and
Jensen and Parks (1970). There is no single "best" equation solver because the
performance of an algorithm varies from one class of problem to the next. Unless the
number of unknowns exceeds several hundred, choice of method has little impact on
speed or accuracy of computation.

2. An alternative form of matrix storage that is widely used is called "skyline” matrix
storage (Everstine, 1979). Skyline storage is useful for reducing storage requirements
when the number of zero entries within the band is large.

3. A thorough discussion of instability and numerical oscillation for transient groundwater
flow and solute transport is in Lapidus and Pinder (1982), Pinder and Gray (1977) and
Remson et al. (1971, p.71 - 77).

4. A computer program that uses Picard iteration to solve the transient unsaturated
groundwater flow equation using linear triangle elements is described in Davis and
Neumann (1983). Comparisons of several computer programs for transient,
unsaturated groundwater flow are in Matanga and Frind (1981), Bachmat et al. (1978),
and Oster (1982).
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Problems

1. Perform triangular decomposition on the following matrices

f1-1 0 212
(@) -1 2 -1 ® (241
0 -1 1 212
F 4 -1 22 -1 C 4 -2 =2 -1
-1 4 -1 =2 -1 4222
© 2. 44 @ |22 44
121 4 -12-1 4

2. Solve the system of equations [M]{X]} = {B;},i = 1, 2, using Choleski's method

@@

®)

d

M] =

M] =

1-10 5
-12-1, wg={4,
0-1 1 0

10
{B,} = { 0}

0
10
m}
10

, {B,} = {

{B,} = ;

oo~

{Bz} =

~ooco

3. Compute the length of vector [ M} required to store each matrix in problem 1 in vector
storage.
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4, Use the algorithms in Figures 5.2 and 5.3 to assign the entries of the following

matrices to vector storage
1200 1020
2120 0100
@ o211 ® 12012
0012 0021
(40220
042414
(c) 42402
44040
04204

5. Find combinations of \ and At that prevent instability and numerical oscillations when
solving the transient, saturated flow equation using the elements shown below (use the

consistent formulation for element capacitance matrices). S =0.1 m™, K= K=

0.1 m/day.
(a) (b)
i j 1 ]
*———- ¢ 9
<4— Sm —p < 10m >
I x
© d
.7 (10,3)
i
(10,1)
(11,4) (0,0)
(3.3)

6. Repeat problem 5 if K9 =1 m/day and Ké,e) = 0.05 m/day.

7. Repeat problem 5 using a lumped formulation for the element capacitance matrices.
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8. Repeat problem 6 using a lumped formulation for the element capacitance matrices.

9. Find combinations of o and At that prevent instability and numerical oscillations when
solving the solute transport equation using the elements in problem 5. Consider
saturated groundwater flow and use the lumped formulation for element sorption and

advection—dispersion matrices. p{® = 1600 kg/m® K =4 =0, n=0.35, D) =D =
1 m?/day, DY) = D) = 0.5 m¥/day, v&? = 1 m/day, v = 0.2 m/day.

10. Solve the following systems of nonlinear equations using Picard iteration (Figure 5.6)

[(2x; + 3x;) -3x, 0 X1 { 10}

(a) -3x, (3x, + 4x3) —4x; X =415
0 -4X3 4X3 X3 1
'(xl + ZXQ) —ZX2 0 X1 6
(b) —ZX2 (xl + ZXQ + X3) (—ZX2 - X3) Xap = {4}
0 (—2x2 - X3) (2X2 + X3) X3 2

11. Repeat problem 10 using Picard iteration with an incremental solution procedure
(Figure 5.7).

12. Repeat problem 10 using the Newton-Raphson Method.
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STEP 5: CALCULATE REQUIRED ELEMENT
RESULTANTS

By solving the global system of equations we obtain values of the field variable
(hydraulic head, pressure head, or solute concentration) at each node in the finite element
mesh (and at each time step if we are solving a transient groundwater flow or solute
transport problem). We also may wish to calculate certain additional quantities for each
element that we will collectively refer to as element resultants. The three types of element
resultants usually considered are

1) The value of the field variable at any specified point (not necessarily a nodal point)
within an element,

2) The average value of the field variable within an element, and
3) The values of derivatives of the field variable at any specified point within an element

In most cases the computed values of the field variable at the nodal points are the only
information required. However, it is possible to calculate the value of the field variable at
any point in the mesh. For example, the value of hydrauvlic head may be required at a
pumping well that is not located at a node.

6.1 LINEAR ELEMENTS

If the interpolation functions for an element are defined using a global coordinate
system the procedure is very simple. We first specify the coordinates of the point of
interest and determine which element in the mesh contains the point (If the point falls on the
boundary between two elements either element can be considered to "contain" the point
because the approximate solution is continuous from one element to the next). Let
(x0,Y0,Zg) refer to the global coordinates of the specified point and let e, refer to the
element that contains the point. The value of head or concentration at the point can be
obtained directly from the approximate solutions (see section 3.1)

B (xg.y020) = zNge")(xo,YoJo)hi (6.1a)
i=1
Voo = D NED(xoy020)V; (6.1b)
i=1
CEP(xo,¥020) = zNge")(xo,YOvzo)Ci (6.1c)
i=1
226
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where N§'°) are the interpolation functions for the element containing the point, n is the

number of nodes in element ey, and h;, ;. and C; are the computed values of hydraulic
head, pressure head, and solute concentration at each node in element ;.

Example

Given the mesh shown below compute the value of pressure head \ at points A and B.

.5 (15,5)
5
k node v
B

1 s
o sy 2 3
3 3
i 4 .10
y 5 12

©,0) (5.0) (15,0)

We can compute the value of y at point A using the interpolation functions for either
element.
For element 1 (see Figure 4.6):

N%')(5,3) - —1?3 (a; + by(5) + ¢(3)
2A

1
N(5.3) = YO by5) +¢,(3))

1
N{P(G5,3) = 230 Bt B9+

2A0= 5(5) = 25

8 = X%Fi-xye = ()N0)-0(5) = 0

b =w-y=5-0=5

G =X-x=0-5=-5

N(5,3) =0 (why?)

N(5,3) = g (0+5(5) - 53) = 0.4
N{(5.3) = 1-040 = 0.6 (why?)
v¥(5,3) = 0(-5) + 0.4(-5) + 0.6(~8) = —4.8
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For element 2 (see Figure 4.7):

N@ - @992

! 4a(e)b(°)
N@ - 52290

J 4a(=)b(°)

@ _ St
Ne™ = 42 ©
N® - 2b"-s)t

T 429

269 = 15-5 =10 209 =5-0=5

At pointA,x=5,y=3,s=0,andt=3

(10 - 0)(5 -3)
(10)()

NP@©3) = 1-04 = 06 (why?)

N®(03) = = 04

NP0,3) = NP(0,3) = 0

v2(0,3) = 0.4(=5)+ 0(-10) + 0(-12) + 0.6(-8) = =4.8 = y*')(5,3)

We compute the value of  at point B using the interpolation functions for element 2. At
point B,x=13,y=3,5s=8,andt=3

N?@8,3) = @{%g)'—” = 0.08
NP@33) = % = 0.32
NP@8,3) = % = 048
N?@s3) = (1?10)2;3) = 0.12

v?(8,3) = 0.08(=5) + 0.32(-10) + 0.48(-12) + 0.12(-8) = =103

If the interpolation functions for an element are defined using a local coordinate system
the same procedure is used but the approximate solution is given by

h“(eomo o) = ZNgw(EOleovCo)hi (6.22)
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n
VOeomolo) = NP (eomolow: (6:2b)
i=1
n
SV enole) = DNV (Mool (6.2c)
i=1

where (€9.N¢.5p) are the local coordinates of the specified point.

Example

Compute the value of solute concentration at point A for the isoparametric, linear
quadrilateral element shown below in the local (e,n) coordinate system. The local
coordinates of point A are (2/3,1/3)

4 3
('1..1) (1..1)
C;
4 A i (mgl)
1 100
e 2 15
3 80
4 95
[ . ]
1 2
('ln'l) (ln'l)

The interpolation functions for this type of element are in Figure 4.10. Using equation
6.2c we have

¢(3.3) 24,', N; (eoMo) G;

(=36 + (30300

+ (1+§)(1+'%)(80) + (1—%)(”%)(95)] = 81 mglL

1
a

(Note that the same results could be obtained by using the interpolation functions for the
linear rectangle element in Figure 4.7).

If the coordinates of the specified point are given in a global coordinate system and the
interpolation functions for the element containing the point are defined using a local
coordinate system, a coordinate transformation is required to obtain the coordinates of the
specified point in the local coordinate system

& = f1(xo) (6.3a)
Mo = f2(yo) (6.3b)
&o = fa(zp) (6.3¢c)
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where f;, f;, and f; are the coordinate transformation equations. Once the values of &, g,

and {, are obtained equation 6.2 can be used to obtain the value of h, W, or C atthe
specified point. Unfortunately, obtaining general coordinate transformation equations for
many two-, and three-dimensional isoparametric elements is difficult because the
interpolation functions are nonlinear. This approach is seldom used in practice. If
isoparametric elements are used (and if the shape of the elements will be highly distorted) it
is recommended that the analyst

1) insures that nodal points are placed at any special points of interest, and

2) uses a large enough number of nodal points so that contour lines, streamlines, etc.
can be drawn using only the computed values of the field variable at the nodes.

The second type of element resultant we will consider is the average value of the field
variable within an element. This information is needed, for example, when solving
unsaturated groundwater flow problems. For unsaturated porous media, the components
of hydraulic conductivity and specific moisture capacity are functions of the pressure head,

v

K = K(y) (6.42)
C = C(y) (6.4b)

We usually assume that the value of hydraulic conductivity and specific moisture capacity
are constant within an element but can vary from one element to the next. A typical
procedure is to compute an average value of pressure head for each element and then use

this average value to obtain a value of K(y) or C(y). The average value of pressure head
within element e, Y is given by

v = ﬁ v dx dy dz
©)

=L [ZN?’(x,y,z)wi]dx dy dz (6.5)
v(e) ©) i=1

where V(@ is the volume of element e. Similar equations can be written for one— and two—
dimensional elements.

Evaluating the integral in equation 6.5 for isoparametric elements will usually require
numerical integration and the procedures of Chapter 4 can be used for this purpose.
However, as long as the element shape is not highly distorted and if pressure head is not
changing rapidly within the element an acceptable approximation to equation 6.5 is given
by

- (0) 1 2
v - ;i;wi (66)

where n is the number of nodes in element e. Equation 6.6 assigns equal weight to the

value of y at each node. For two types of elements, the linear bar and linear triangle, the
results obtained by equations 6.5 and 6.6 will be identical.
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Example

Compute the average value of v, \II for the element shown below using equations 6.5
and 6.6

-=—l -=—l.
M () v;=-1.8
[ 9
i i
xi=l Xj=3

The one-dimensional form of equation 6.5 is

2
v = -L-i-, J[ZN%“’(x)wi]dx
o i=1

iy
= Elﬁ [ Ny + NP x)ypdx
)

x5

(e _ - (e)
3o {5 (b
-1 _[13{(3;")(-1) + (x;l)(-l.S)}dx
r(-% + X - 0ox + 0.9)dx

(-0.4x - 0.6)dx
1

2 3
1 [—0-24x _0.6x|1= %(—1.8-1.8+0.2+0.6) = =14

[

[ ]

Using equation 6.6 we have

VO = 5 (14 (-18) = =4

Example .
Compute the average value of V, y for the element shown below using equations 6.5
and 6.6
Y =-5.5 V= -6
(3.8 8,8)
7

YT—b ‘
¥==3
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The two-dimensional form of equation 6.5 is

3
o _ 1 © '
v A(e)_[ ) [Zle (x,y)\v,]dx dy

1

=@ (_L(,, NOxy)w; dx dy + [ N(x.y)w; dx dy + . NOx,y)wy dx dy]

Performing the integrations one at a time using the integration formulas for the linear
triangle element described in Chapter 4 we have

A® 15
.L(o NO(x.y)y; dx dy = Vi =35 =-25
(e)
[oNPmnvaxay = 5w = Beo = a0
(e)
0 A =B s =
L(‘)Nﬁ (5 dxdy = Sy = =(-5.5) = -21.5
and
¥ = 2 (-25-30-275) = =55
Using equation 6.6 we have

¥ = 2(-5-6-55) = =55

The third type of element resultant that we will need to compute is the derivative of the
field variable at a specified point within an element. In groundwater flow problems the
derivatives of hydraulic head or pressure head are needed to compute the components of
apparent groundwater velocity using Darcy's Law. The velocity components can then be
used to draw streamlines, showing the direction and magnitude of apparent groundwater
velocity throughout the mesh. In a solute transport problem, the components of apparent
groundwater velocity are needed to compute the element advection-dispersion matrices.
Derivatives of solute concentration can also be used to compute the components of solute
flux although this is rarely done in practice.

The components of apparent groundwater velocity are computed using Darcy's Law

which can be written
oh
Vy = —Kxx (6.73)
oh
vy = -Kyw (6.7b)
oh
va = K37 (6.7¢)
for saturated flow and
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vx = —Kx(w)%",;' (6.82)
vy = —Ky(w)%ly' (6.8b)
v = -Kz(\v)(%;‘" + 1) (6.8¢)

for unsaturated flow. In equation 6.8 it assumed that the z axis is directed vertically
downward. Remember that hydraulic head = pressure head + elevation head

h=vy+z (6.9)
where the elevation head z* is defined with respect to an arbitrarily placed datum

(Appendix I). In unsaturated flow in a horizontal direction (in our case in the plane of the
x and y coordinate axes) equation 6.8a is obtained from equation 6.7a

dh ch
Vx = -Kxa = _Kx(w)ﬁ

= K=ty + ) .

= _K"("’)(?T\:'c’ + 2 X )

= K 3

Similarly for v,. Since the z axis s dirccted vertically downward &- = 1 and

v, = K+

= _Kz(‘l’)(% + 1)

Once we have computed the values of hydraulic head or pressure head for each node in the
mesh we can compute the derivatives of head at any specified point in the mesh. Let
(Xg»Y0s2o) Tefer to the coordinates (in a global coordinate system) of the specified point and
let e refer to the element that contains the point. The values of the derivatives of head at
the specified point can be obtained by evaluating the derivatives of the approximate solution
(equation 6.1) at the point. For hydraulic head the approximate solution is

bP(xq,y0.20) = Z N{(x0,y0,20)h;
i=1

hy
= [N{Pxq.y0.2z0) - N§O(xg,y0,20)}] (6.9)
by
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The derivatives are given by

ane aN‘°°’ aNgo 1™
T(x01y0120) = (xo,)'o,zo) T(XO,YOyzo) 1+t (6-103)

i "L by

i [ an{ aNGY I
T(Xo:)’o:zo) = T(Xo:)'o,zo) —ay—(xo,yo.zo) {1t (6.10b)

"L hy)

) aN(ea aNe? 1™
3 (xoYo:zo) = 7 (xoYozo) * ——(oyoZO ] ¢t (6.10c)

by

Similar expressions can be written for the derivatives of pressure head

a“,(ea an‘*o’ aN“n’ 1(¥]
(xo,)'o,zo) = (xo’)'ovzo) (Xo’)'o,zo) y L (6-113)

"L W)

a\ll(e“) aN(eo) aN{% ] V'l.
(XO’YOizO) L (x0|y0120) T(x01y0120) i1 -1 (6.llb)

"L W

v [ aNe N 114
T(Xo,mzo) (xo,yo,zo) T(xo,yo,zo) TS (6.11c)

| Wal

The components of apparent groundwater velocity at the specified point are given by

v{P(xo¥0z0) = K °’-r(xo,yo 20) (6.122)
oh
v (xo.y0.20) = KPS —(xo0%0) (6.12b)
PYAGY
vP(xo.y0.20) = KV =—(x0,y0,20) (6.120)
for saturated flow and
(o) i
vi*(x0.yo.zg) = —K®(W)—5—(xo.y0:Z0) (6.13a)
o)
vid(xo.y0.20) = —K§,°°’(w)a'f’(Ty(xo,yo,zo) (6.13b)

Ay’

v (xo.y0:20) = —K(ze")(\lf)( =

(x0’y0vzo) + 1] (6.133.)
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for unsaturated flow, where, for example, vff“)(xo, Yo Zo) is the component of apparent
groundwater velocity in the x coordinate direction at the point (xg,yo,2¢) within element e,.
The saturated and unsaturated hydraulic conductivities have also been superscripted with e
because they can vary from one element to the next. The use of equations 6.10 to 6.13 is
illustrated by the following examples.

Example

Compute v, at X =2.5 cm for the element shown below. LetK, = 0.02 cm/d, h; =1
cm, and h;=1.6 cm

d )Xo ]
X0 =1 03
X

The one-dimensional form of equation 6.10a is (for a two-node element n =2)

PG aN®  aNl  |(ny
ax (xo) = ox (xo) ax (xo) hj}

For this type of element ( see Figure 4.5)

SR U
o 0= TTg T2
aNg® 11
—;L—(xo) = L(_°°’ = 3
an'

and

v(x)) = v = —(0.02)(0.3) = =0.006cm/d

The negative value means that flow is in the negative x direction (to the left in the figure).
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Compute v, and v, at xo = 5 and yo = 7 for the element show below. Let K, = 0.03

cm/d and K, = 0.015 cm/d.

Vi =-5.5 ¥;= -6
(3.8) (8,8)
V[ 6.2)
y;=-3
X
The two-dimensional forms of equations 6.10a and 6.10b are
D [ N N ang Y]
55 Xoyo) = I T XoYo) 5, (Xo:Yo) T(Xo,Yo) 1 vt
L Vil
e EN an{o g |V
T'(xo,Yo) T("o:Yo) ay ——(x0,y0) T(Xo,Yo) 1{ vt
L Vil
For this type of element{see Figure 4.6 and the example following equation 4.25)
e _ b _ o NP by 6 MNP b6
ox oA ax A 30 9x  ga 30
aNgc& C; 5 aNSen) Cj aN(:& Cy 5
= = —— = =0 = = =
. 1 -5 3
A6 = (55)i0 6-61{ -6 | =~ = 0010
-5.5
o ‘5 2.5
T—(S g = ( )[—5 0 5] = —ﬁ = —0.083
—5 5
and
vi9(5,7) = vi¥ = —(0.03)-0.100) = 0.0030 em/d
Wo(5,7) = v = —(0.015)-0.083) = 0.0013 cm/d

The positive values mean that flow is in the positive x and y directions (up and to the right

in the figure).
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Note that for the two types of elements in the previous examples the components of
apparent groundwater velocity within the elements were constant (did not vary from point-
to-point within the element). This is so because the derivatives of the interpolation
functions for these types of elements are not functions of either x or y.

For isoparametric elements, the values of the derivatives of head at a specified point in

the local coordinate system (€g, g, §g) can be obtained by evaluating the derivatives of the
approximate solution at the point. The derivatives (with respect to the local coordinate

directions) are

) BN aNG 1[™]
aITT(GOvnO-CO) = Tl (eoMobo) *+* —3g—€oMoBol|] ¢ ¢

| e,

" - 1( h,)

e aN{ aNEY !
(EOJ‘O'CO) = (EOJ‘O’CO) o ﬁ (EOJ‘O'CO) 1°T
7“— ) "L hy)
e [ angY aNGo 1[™]
egr(eo,ﬂo@o) = %(Eo-ﬂo&o) T(Eo-ﬂo-ﬁo) 1:t
) "L hy)

for hydraulic head and

o [ aN aNgo 1[¥]
(€oMobo) = | —ge—(eoMolo) ** —3—(eaMo.Lo)]q : ,‘J

) LW

) ESS g 1¥]
'a"l’;ﬁ-(eo-ﬂo-‘;o) = fa—,:-(eo-ﬂo-go) T(Go:ﬂo-‘;o) 1:t
i "L W)

“e [ IN( AN 7 \I’1
L) (eoMabo) = —(eoMobo) 57— (€o:No:bo) { i
14 | 7aC 4 ™

(6.14a)

(6.14b)

(6.14¢c)

(6.152)

(6.15b)

(6.15¢)

for pressure head. To obtain the values of the derivatives for the point in the global
coordinate system, a coordinate transformation can be used (see Chapter 4). The
coordinate transformation equations are

e .
A (Moo

)
1 a{IT(EoJIo-Co)

oh®
T(eo,ﬂo,‘;o)
) ax1

for three-dimensional elements,

3x3

+ = [ (eomo:Go)]

oN{
T(Eo-ﬂo:‘;o)

an{®
—a-n—(eo.ﬂo,Co)

N
_—ar(eo,ﬂo.‘;o)
3

aN(o ]
—3¢(€oMo:Lo)
o)

on

(Eo.ﬂ 0:;0)

N
T(eo-ﬂ o:Co)-
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G AN AN By
I (Mo ?(Eoﬂlo) 3¢ (Eoo)
[r‘(eo,no)l Ne . (6.17)
3h AN :
5y €oMo) W(Eolﬂo) " (&m0 b,
2x1 2x2 2xn nxl

for two-dimensional elements, and

35 WL L |
) = [T (&)l 3 (&) 5 @1 ¢ (6.18)

hn

1x1 Ix1 1xa : oxl

for one-dimensional elements.

For unsaturated flow we have
' oN{® oN{% ]
z‘gt—(eofﬂmCo) (T¥(Eoﬂlof§o) —%(Eov"loﬁo) Vi
aNfo oN{®
1 ;a\!,(r(eomo't;o) = [0 o, ol Tl(eomo@o) Tn(eo"ﬂm%)
2y ang an
. Tz—(eo,"lovCo)_ T(eofﬂo,Co) T(Eo,'ﬂofﬁo) ¥
3x1 3x3 3xn T (6.19)
for three-dimensional elements,
3@‘ aN""” sto) WV
—Ix_(Eo:"0) - T(Eof'ﬂo) 3¢ (€0Mo)
“ (e = [ (g, np)] SN (=o) 3N£.°°) (6.20)
T(Eolﬂo) T(E“'%) T(Solﬂo) v,
2x1 2x2 2xn nxl
for two-dimensional elements, and
*(ep) N(eo) N 41
{ NT(E«;)} = ‘(Eo)]{ G T?(Eo)]{ ’ (6:21)
1x1 1x1 1xn n xnl

for one-dimensional elements.
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The entries of the Jacobian matrix [J] are given in equations 4.32, 4.35, and 4.37 for one-,

two—, and three—dimensional elements, respectively. The entries in g l] can be computed
using the equations in Appendix IV.
The components of apparent groundwater velocity at the specified point are given by

A

vi(eomoLo) = —KEP——(eomolo) (6:222)
vieomobo) = -K(e“)T(eo-ﬂo-Co) (6:22b)
oot = KO e 108 (622
for saturated flow and
o
v{¥eomoo) = ~K{y) a‘!'(T(eo.no.co) (623a)
e
vid(eomoto) = -K$Pw) %(Eo-ﬂo-go) (6.23b)
v -
v¥leomoto) = -KP(w) (ﬂ;'f(z—(eo.no.co) + 11 (6.23¢)

for unsaturated flow where, for example, v, °°) (€g» Mo L) is the component of apparent

groundwater velocity in the x coordinate direction at the point (eg,ng,5g) within element eg.
For two-dimensional elements we have

v¥(eo o) = KLY 9;'?'(,(—@ (s o) (6242
vi(eg np) = —K§Y af;# (€0: o) (6.24b)

for saturated flow and
! To) (6.25a)
v§(eo. mo) = —KyP(y) S— aw —— (&g, o) (6.25b)

for unsaturated flow. For one-dimensional elements we have

aho
Ve = K5 5 () (6.262)
for saturated flow and

Copyright American Geophysical Union



Groundwater Modeling by

Water Resources Monograph the Finite Element Method Vol. 13
240 Step 5: Calculate Required Element Resultants
W
Vile) = K{P(w) 9‘—5",‘— (e) (6.26b)
for unsaturated flow.

The use of equations 6.14 to 6.26 is illustrated by the following examples.

Example
Compute v, and v, at (e = %, n= %)and a (e=0, 1 =0) for the element show below.
Let K, = 0.03 cm/d and K, = 0.015 cm/d.

/

7 6 S5

node x y h(cm)
1 2 2 10.0
2 7 2 9.0
3 12 2 8.0
4 4 12 5 84
8 5 12 8 8.7
6 10 8 9.0
® 7 7 8 9.6
y 1 3 8 1 4 102
X

The interpolation function derivatives for this type of element are in Figure 4.11. At the
point (€ = 1/2, = 1/3) the derivatives are

= = i[5 {(3) s coenf3)] - 3

3 (Avea(d)] - 4

3 - il o) coofd)] -
- 9[-(3] -5

% oD on)] -
3 (Dheold] - 3

5 i ocn(t] -

3 - (] -4
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9% i— 1+ (—l)(%)][Z(—l) ( )+(-1)(_1)( )] - z7§
N2 _ (1)

% - i o)) cold)] - &
3 -Gl e(d] -4

% - o [oon(}] - 3
3 - -] 4

2
7 = 31+ en(3)[20(3) wnen(3)] - %

The Jacobian matrix at the point is given by equation 4.36

(2 2
72
2 11 44 22 441|122
[J(l,l)]=[§ 39 99739 _'9']'12 5|
23 7 31 17 31 1|]l128
48 816 216 8 48 "6]|108
7 8
[ 1 4]

_ [4.556 0.444

N [1.396 3.167]

PG =[ 03 ool
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Using equation 6.17 we have

10.0
X 9.0
9h® i 0012 11 44 22 47|80
FG3)| [P 09%2)5 35 535535 5||ga
aheory - 7 31 117 31 1|87
S 33)] Lo oxmllf 52 % F 3]l o0
9.6
[10.2)
_[ 0229 -0.032] {—0.689} _ {-0.160}
~L-0.10t 0.330]1 0065/ ~ 1 0.091
and
V(1) = ~(0.09)-0.160) = 4.8 107 o
¥o(33) = ~(0.015)0.091) = ~1.4x 107 crvd
At the point (€ = 0, 1} = 0) the derivatives are
aNl = 0 8N2 _ 8N3 = 0 8N4 _ 1
e P e e - 2
aNs = 0 3N6 = 0 aN-, =0 aNs _ 1
e T e e o 2
aNl = 0 aNz _ 1 3N3 = 0 aN4 = 0
T P -2 P - e T
aNs = 0 8N6 _ 1 aN-, = 0 aNg _
E Pe 2 e e
The Jacobian matrix at the point is
(2 2
72
12 2
_[o 0o 0120 0 o0-12]|125
1.0 = [ 0-12 0 0 0 12 0 o]‘ 12 8
10 8
78
1 4
_ [s.so o.so]
~ L1.50 3.00
and
1 _[ o019 -0.032]
[ 0.0 ‘[-0.095 0.349
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Using equation 6.17

[10.0)
9.0
an® 0.0 8.0
i [ 0.190 -o.osz][o 0 012 00 0 -1/2]‘ 8.4
PN - 1-0.095 0349]0-12 00 012 0 0l]]87
T(O 0) 9.0
9.6
[ 10.2)
_[ 0.190 —o.osz] {-0.900} _ {-0.171}
~ [-0.095 0.349 ~ 1 0.086
and
v#9(0,0) = ~(0.03)(-0.171) = 5.13x 10~ cm/d
v#(0,0) = <(0.015)(0.086) = 1.29 x 107 cmyd
Example

Compute vy, v,, and v, at (e =-1,M=1,{ =1) and at (€ = 0,n =0, { = 0) for the
element shown below. Let K, = 0.01 cvd, K, = 0.02 cm/d, and K, = 0.03 cm/d.

w
[FYTYSYRYTYPY SYNL
ALWAOOOON
AWARLELT

The interpolation function derivatives for this type of element are in Figure 4.13. At the
point (€ =-1,m = 1, { = 1) the derivatives are

aN
Fl =1 FL+EDLM+EN(] = 0
aN.
- .s-[1+(-1)( DI+E1)(1)] = 0
aN.
= .1.[1+(1)(1)][1+(—l)(1)] =0

EINA
5= = --[1+(1)(1)1[1+(—1)(1)1 =0

aNs 1
== = —g L+ D +(1)(1)] = 0

aNg 1
= = g+EDN+(1)1] = 0

Copyright American Geophysical Union



Groundwater Modeling by

Water Resources Monograph the Finite Element Method Vol. 13
244 Step 5: Calculate Required Element Resultants
aN7 1 1
o = gD+ XD = 3
oN. .
= g I+(I(DI+(1)X(1)] =
oN; 1
o -8 [I+CEDEDIM+()] = 0
aNz 1
r ol g1 +(DEDIR+E(1)] = 0
oN3 1
el FO+(HEDIN+ED()] = 0

dN, 1
T = gHEDEDI+ED(L)] = 0

E |

oNs 1 1 _ 1
ol ~gA+EDNEDNT+(1)(1)] = -3
N 1

T = g (DEDI+(1)(1)] = 0
dN, 1

= g+ (DEDI+(1)1)I = 0
aNg _ 1. 1 _ 1
r ol +EDEDIR+(I)(1)] = 5
oN; 1

= " HEDEDIT+EN(] = 0
aN; 1

o¢ = g+ (EDIN+ED()] = 0
oN; 1

o = g+ (ED+(1)(D] = 0
oN,

T = - [+ EDEDI+ (0] = -5
dNs 1

= glHEDEDI+EN(D] = 0
dNg 1

S = g+ DEDI+E(DI = 0
oN; 1

o = g+ (DEDII+(1)(1] = 0
oN; 1 : 1
T = g+EDEDII+HIXD] = 5
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The Jacobian matrix at the point is given by equation 4.38

(3 2 0)
1020
000 0 O 0172 -1/2 13028
FELLDI =000 0 -120 0 12K3 5
000-12 000 12{ 7.
1053
(3 56
3.50 0.00 -1.50
=10.00 1.50 0.00
0.00 0.00 3.00
and
029 0.00 0.14
(r¢-1,1,1) = | 0.00 0.67 0.00
0.00 0.00 0.33
Using equation 6.16 we have
. [ 5]
an 7 4
= CLLD 3
(00 0.29 000 0.14]f000 0 0 012 -12]f,
‘a%_(_l’“), =|0.00 067 000[|/000 0 -120 0 121
%5 0.00 0.00 033j]l000-12 0 0 0 12
ah(‘u) 4
§; (—lllll) 3
' 4]

0.29 0.00 0.14] [-0.50 -0.15
= | 0.00 0.67 0.00|4-1.00p =4-0.67
0.00 0.0 0.33 0.00 0.00

ve9(=1,1,1) = —(0.01)(=0.15) = 1.50 x 10> cm/d
vE9(-1,1,1) = —(0.02)(-0.67) = 1.34x 107 cm/d
vE(-1,1,1) = —{(0.03)(0.00) = 0.00 covd

At the point (€ =0, 1 = 0, { = 0) the derivatives are
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aN, _ _l aNz _ l 8N3 _ l aN4 _ _l
=78 ] P 8 P 8
8N5 _ _-1- 3N5 _ l 3N7 _ .1_ aNg _ —l
% ~ 8 % 8 % 8 o 8
oN; _ 1 aN, _ 1 oN, _ 1 dN, _ 1
oM - 8 o 8 on - 8 on - 8
3N5 _ -_1. aNs _ _l 3N7 _ 1 aNg _ l
o "8 o T8 Eo ] ET
aNl _ _l aNz _ __1- aN3 - .1- aN4 _ l
oC T8 oC T8 oC 78 ]
dNg _ 1 oNg 1 oN; 1 oNg 1
oC T 8 oC T 8 ¢ T 8 ¢ T 8
The Jacobian matrix at the point is
(3 2 Q)
1020
-8 18 18 -1 18 18 18 -]l 3 D
[1(,0,0)] =|-1/8 -1/8 1/8 1/8 -1/8 -1/8 1/8 1/8 |4 326
| ~-1/8 -1/8 -1/8 -1/8 1/8 1/8 1/8 1/8 1023
105 3
) |3 5 6
3.50 0.00 -0.75
=10.00 1.50 0.00
0.00 0.00 225
and
0.29 0.00 0.10
[7'(0,0,0)] = | 0.00 0.67 0.00
0.00 0.00 0.44
Using equation 6.16
[ 5
h®
aah—x(o.0.0) ;
5 (0.29 0.00 0.10|( -2/8 158 1/8 -1/8 -1/8 1/8 1/8 -1/8 4
-7y—(0,0,0) =10.00 0.67 0.00{| -1/8 -1/8 18 1/8 -1/8 -1/8 1/8 1/8] { 6 d
aﬁ("‘)  0.00 0.00 0.441L~-1/8 -1/8 -1/8 -1/83 1/8 1/8 1/8 1/8 4
T(0.0.o) 3
4)
[0.29 0.00 0.107 [-0.625 -0.169
=10.00 0.67 0.00(4-0.625; = 4 -0.419
| 0.00 0.00 0.44 0.125 0.055
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and

v{9(0,0,0) = —(0.01)(-0.169) = 1.69 x 10~ cav/d
v9(0,0,0) = ~(0.02)(-0.419) = 838 x 107 crid
v{9(0,0,0) = —(0.03)( 0.055) = -1.65 x 10~ cm/d

The previous examples have shown that, for some types of elements, the computed
components of apparent groundwater velocity vary from point-to-point within the element.
This is true for the linear rectangle element (because the derivatives of the interpolation
functions are functions of s and t, see Figure 4.7) and for all the isoparametric elements
except the one-dimensional, linear bar element (because the derivatives of the interpolation

functions are functions of g, 7, and §, see Figure 4.9b to 4.15).

The previous examples have also shown why it is common practice, when using
isoparametric elements, to compute the components of apparent groundwater velocities at
the center of the element. When the derivatves are evaluated at the center of the element

((e=0),(€=0,1=0),0r(e=0,1=0,{ = 0) for one- two-, and three- dimensional
clements respectively) the calculations are greatly simplified. Expressions giving the values
of tlsle derivatives at the center of each type of isoparametric element are in Figures 4.9 to
4.15.

Once the components of apparent groundwater velocity have been computed, the
magnitude and direction of apparent groundwater velocity can be computed and plotted for
each element in the mesh.

Example
Compute and plot the magnitude and direction of apparent groundwater flow for the
mesh shown below.

element v v

x Yy

1 2 2

2 3

3 3 0

4 3 1

5 2 2

6 2 3

7 3 -1

] 3 0

y 9 3 0

10 2 1

1 2 1

" 12 2 2

For element 1
v = ofv2+v2 = f @7+ (20 = 283

e oamlYy =2 . .
6=’ = un (3) =50

where ¥ is the magnitude of apparent groundwater velocity and 0 is an angle between v and
x-axis, Plotting these at the center of the element we have
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v=23

The results for the remaining elements are
element v
1 2.83 -45.0
2 3.16 -18.4
3 3.00 0.0
4 3.16 18.4
5 2.83 45.0
6 3.61 56.3
7 3.16 -18.4
8 3.00 0.0
9 3.00 0.0
10 224 26.6
11 2.24 26.6
12 2.83 45.0

which are plotted below
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Problems

Note: In the following problems, the units of nodal point coordinates and hydraulic head
are centimeters.

1. Compute v, for the elements shown below (IQ(‘I) =2 cm/s, K,(‘z) = L.5 co/s).

node x h
g (6] % )] 2 1 -3 200
i ji i 2 1 100
x 3 2 50
—

2. Compute v, and v, for the elements shown below (Kg) = Kiz) = lem/s, Kg,l) =1 cm/s,
K? =3 cmys).

AN e
—
“\D‘OQr

3. Compute h, v,and v, atpoint A, B, and C for the element shown below (Kg) = 0.5
cm/s, K§,1) =2 cm/s).

node or
2 4 point
k

WWAhAINNO O X
ONNLONOC
1 11 v oo

“«
r
_....
ne 2
e
OW> S WN -
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4. Computeh, v, and v, at point A for the elements shown below (K,(‘l) =1 cm/s, K;,l) =
0.05 cm/s, K2 = 0.5 cmys, K2 = 0.01 cmys).

2 node or
point x y h
2 7 1 10
1) 3 1 5 8
4 7 5 17
1 5 12 1 6
y h A 7 3 -

S. Compute h, v, and v, at point A, B and C for the element shown below (K, = 0.05
cm/s K, = 0.01 cmy/s).

2 4

=

> .AwN-—-é
-

™M 00O NOX

®oogT

1
—
o 3 anooovw

<

[ —
o) J
Ow
co

6. Compute h, v, and v, at node 5 for the elements shown below (K, = 0.05 cm/s, and

= 0.01 cm/s for all elements).
K,
3 6 8 1 node X ¥ B
[ $ @ ] 2 0 2 2
3 0 4 6
) 4 4 0 6
5 5 4 2 7
2¢ 9 3 ¢ 10 6 4 4 8
A
9
l @ 9 8 0 3
10 8 2 9
& ®
11 8 4 10
1 4 7 9
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7. Compute h, vy and v, at point A and B for the element shown below (K, = lcm/s, K,

= 2 cm/s).
node x y h
1 5 6 5
2 15 52 4
2 3 0 35 1
4 0 20 05
A
3 8 7 4 0 1
8 4 3 4
4

y point € 1

A 0 O

x 5 6 1 B -12 -12

8. Comp{xte h, v, and v, at point A (¢ = 0, n = 0) for the element shown below (K, = 0.5
cm/s, K, = 1 cmy/s).

2

- XX Y. Y7 ¥ WRYN TN
uaagmahn

WULLIN NN NN
NAWNNDNNDND D

9. Compute h, vy, vy and v, atpoint A €=0,M=0,{=0andB(e =1,n = 0,{=1)
for the element shown below (K, = K, =K, =1 cm/s).

7

node «x y z h
1 4 0 O 2
6 2 4 2 0 2
3 0o 2 0 6
8 4 0 0 O 6
5 4 0 2 2
2 6 4 2 2 2
7 0 4 2 6
8 0 O 2 6
z 4
y
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10. Repeat problem 9 if the values of hydraulic head are

node h node h
1 10 5 9
2 9 6 8
3 8 7 7
4 9 8 8

11. Compute v, and vy for each element shown below and sketch the magnitude and
direction of groundwater flow in each element (K, =K, = 1 cm/s for all elements).
Hint: the interpolation function derivatives need only be computed for one element.

node x y h
1 0 0 86
2 0 3 92
3 0 6 10
4 4 0 82
5 4 3 85
6 4 6 9
7 8 0 78
8 8 3 75
9 8 6 7.8
10 12 0 6.8
11 12 3 178
12 12 6 73
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FINITE ELEMENT COMPUTER PROGRAMS

7.1 INTRODUCTION

In previous chapters, the steps involved in solving a groundwater flow or solute
transport problem by the finite element method were illustrated with simple hand
calculations for meshes with a very few nodes and elements. In practice we will need to
solve problems with many hundreds or even thousands of nodes and this requires the use
of a computer program. Implementing the various steps of the finite element method in a
computer program is not difficult; a simple program may consist of less than a hundred

lines of code. However, as we increase the versatility of a particular computer program,
for example, by giving the user a choice of several element types, we will inevitably
increase it's size. It is not uncommon for programs to consist of several hundred
thousands of lines of code. The programs presented in this chapter were developed
primarily for educational purposes but nevertheless contain many advanced features that
make them suitable for use in solving many problems encountered in practice. Because the
programs are written in a "modular” form (i.e., the computations are performed in a set of
sub-programs) the reader will find it easy to modify the programs or to use portions of the
code to develop other programs. The programs are written in FORTRAN-77 and were
initially intended for use on microcomputers. However, they have successfully been
compiled on a variety of mini and mainframe computers as well. Many arrays and
variables are defined in the INCLUDE file "COMALL" (Figure 7.1). By editing this file
the user can adjust program data requirements to match the memory capacity of the
particular computer used.

An attempt has been made to choose FORTRAN variable names that are suggestive of
the variables and symbols used in the text. References are also given in the code to
equation or figure numbers in the text as needed to explain a computation or procedure.

Five computer programs are presented: GW1, GW2, GW3, GW4, and ST1. Program
GW1 solves the steady-state, saturated groundwater flow equation. Program GW2 solves
the steady-state, unsaturated flow equation (neglecting gravitational effects). Program
GW3 solves the transient, saturated flow equation. Program GW4 solves the transient,
unsaturated flow equation (neglecting gravitational effects). Program ST1 solves the solute
transport equation for steady-state, saturated groundwater flow. All programs are capable
of solving one-, two-, and three-dimensional problems as well as problems with
axisymmetry. The programs will accommodate up to thirteen different element types. The
element matrices [K(©)], [C(€)], [A(®)], and [D(®)] are computed in a set of subroutines.
Because of space limitations subroutines are not provided for all element matrices and
element types. However, examples of each are included and the reader should have no
difficulty in coding a particular subroutine using the examples as a guide.

255
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CARRARARARARRARR AR R AR AR AR AR RRRARR AR R AR R AR AR R ARR AR RN R AR AR AR AR AR AR R AN R AR
FILE "COMALL"

THIS FILE DIMENSIONS ARRAYS FOR THOSE VARIABLES SHARED
BY THE SUBROUTINES IN THE TEXT. WHEN THE SUBROUTINES ARE
COMPILED, THE STATEMENT

$INCLUDE: °'COMALL’
THAT APPEARS IN EACH SUBROUTINE WILL DIRECT THE COMPILER TO
PROCEED AS THOUGH THE SPECIFIED FILE (COMALL) WERE INSERTED
AT THE POINT OF THE $INCLUDE (SOME COMPILERS MAY USE A
A SLIGHTLY DIFFERENT FORM OF THE INCLUDE STATEMENT). BY
CHANGING THE PARAMETER STATEMENTS IN THIS FILE THE USER CAN
EASILY MODIFY THE SUBROUTINES FOR USE ON ANY COMPUTER SYSTEM.

DEFINITION OF PARAMETERS:

INF = UNIT SPECIFICATION FOR INPUT DATA FILE

OUTF = UNIT SPECIFICATION FOR OUTPUT FILE

MAX1 = MAXIMUM NUMBER OF NODES

MAX2 = MAXIMUM NUMBER OF ELEMENTS

MAX3 = MAXIMUM NUMBER OF NODES PER ELEMENT

MAX4 = MAXIMUM NUMBER OF MATERIAL SETS

MAXS = MAXIMUM NUMBER OF MATERIAL PROPERTIES PER MATERIAL SET
MAX6 = MAXIMUM VALUE OF SEMI-BANDWIDTH

MAX7 = MAXIMUM NUMBER OF DIFFERENT TIME STEP INCREMENTS

MAX8 = MAXIMUM SIZE OF MODIFIED GLOBAL CONDUCTANCE MATRIX IN

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c VECTOR STORAGE
c

c

KAAKARRAREARRRRRRNRRRRRRNRARNRRRARNRRRRARNRARNRARRRRRRAARARAAARR A AR R AAR A AR AARAR

REAL M,B1
INTEGER OUTF,DIM, ELEMTYP, SBW,E,DTSTEP
LOGICAL SYMM
CHARACTER*20 LABEL1, LABEL2
PARAMETER (INF=5,0UTF=6)
PARAMETER (MAX1=200,MAX2=200,MAX3=32,MAX4=200,
1 MAX5=32, MAX6=200, MAX7=20, MAX8=40000)
COMMON /COM1/ DIM,NUMNOD,NUMELM, NUMMAT, NUMPROP,
NDN, NNN, NDOF, SBW, ICH (MAX1) , LCH (MAX1),
X (MAX1) , FLUX (MAX1) , B (MAX1) , X1 (MAX1),
X2 (MAX1) , X3 (MAX1) , SYMM, LABEL1, LABEL2
COMMON /COM2/ IN(MAX2,MAX3),ELEMTYP (MAX2),V1 (MAX2),
1 V2 (MAX2) , V3 (MAX2)
COMMON /COM3/ MATSET (MAX2) , PROP (MAX4, MAXS)
COMMON /TFUNC/ FC(MAX1),DTSTEP (MAX7),DELTAT (MAX7),
1 TIME (MAX7) ,GT (MAX7) ,OMEGA, OMOMEGA,
2 MXSTEP, T, IDT, IGT, IGTDT
COMMON /GLOBAL/ M(MAX8)
COMMON /GLOB/ B1 (MAX8)

(A

Figure 7.1 Source code listing for COMALL.
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7.2 STEADY-STATE, SATURATED GROUNDWATER FLOW,
PROGRAM GW1

The steps used to solve the steady-state, saturated groundwater flow equation by the
finite element method were described in Part 1. The computer program GW1 implements
these steps in a set of eight FORTRAN subroutines: NODES, ELEMENT, MATERL,
BOUND, ASMBK, DECOMP, SOLVE, VELOCITY, and DUMP. The operations
performed by each subroutine are described briefly in the source code listing for GW1
(Figure 7.2); detailed information about these operations is contained in subsequent
chapters (e.g., the operations performed by subroutine NODES are described in Chapter
8). Thirteen different element types are provided (see Chapter 12). Material properties
(i.e, the components of saturated hydraulic conductivity) can be different for each element
in the mesh (see Chapter 10). Both Dirichlet (specified hydraulic head) and Neumann
(specified flow) boundary conditions can be prescribed. Hydraulic head is computed at
each node and the components of apparent groundwater velocity are computed at the center
of each element in the mesh. Program GW1 reads the problem description (i.e., node
numbers and coordinates, element numbers, etc.) from a single input file. This information
is written to an output file followed by computed values of hydraulic head and apparent
groundwater velocity (Figure 7.3). The components of apparent groundwater velocity for
each element are also written to an additional output file for use with the solute transport
program ST1 (see Section 7.6). Arrays and variables can also be written to additional user-
defined output files using subroutine DUMP (see Chapter 15).

PROGRAM GW1
AR AR R AR AR KRR IR IR R KR RR IR KRR RRRAR IR KRR RRARRR AR IR AR ARR AR IR R AR AR R AR
c THIS PROGRAM SOLVES STEADY-STATE, SATURATED
c GROUNDWATER FLOW PROBLEMS.

Chhkhhhhhhkhkhkhhhhkhkhkhhhhrkkhhhkhkkhhhbrrrhhkkkrhhhhhkkhhhhkkkkrrhhhhhhhrrr

$INCLUDE: 'COMALL'
DIMENSION XX (MAX1)
INTEGER HDF,VLF
LOGICAL LOOP
CHARACTER*20 INFILE,OUTFILE
CHARACTER*80 TITLE

SYMM = _TRUE.

LOOP = .FALSE.

LABEL]l = ' HYDRAULIC HEAD'

LABEL2 = ' GROUNDWATER FLOW'

WRITE(*,10) ' ENTER THE NAME OF THE INPUT DATA FILE: '
10 FORMAT (A\)

READ (*,20) INFILE
20 FORMAT (A)

WRITE(*,10) ' ENTER THE NAME OF THE OUTPUT FILE: '

READ (*,20) OUTFILE

OPEN (INF,FILE=INFILE)

OPEN (OUTF, FILE=QUTFILE, STATUS='NEW"')

READ (INF,20) TITLE

WRITE (OUTF, 20) TITLE

INPUT NODE NUMBERS AND COORDINATES

onon
-
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Finite Element Computer Programs

READ (INF, *) DIM
CALL NODES

INPUT ELEMENT NUMBERS, TYPES, AND NODE NUMBERS
CALL ELEMENT

INPUT MATERIAL PROPERTIES FOR EACH ELEMENT

CALL MATERL

INPUT BOUNDARY CONDITIONS

CALL BOUND

ASSEMBLE AND MODIFY THE GLOBAL SYSTEM OF EQUATIONS
CALL ASMBK

SOLVE THE SYSTEM OF EQUATIONS

CALL DECOMP (NDOF, SBW, SYMM, M)
CALL SOLVE (NDOF, SBW, SYMM, M, B, XX)

WRITE OUT COMPUTED HYDRAULIC HEAD VALUES

WRITE (OUTF, 30) LABEL1,LABEL1
FORMAT(//70('*') //16X, '"COMPUTED VALUES OF ',A/
16X,39('-')//19%, '"NODE NO.',10X,a/)
J=0
DO 50 I = 1, NUMNOD
IF (ICH(I) .EQ. 0) THEN
IJ=J+1
X(I) = XX(J)
ENDIF
IF (ICH(I) .EQ. 0) THEN
WRITE (OUTF,40) I,X(I),' '
ELSE
WRITE (OUTF, 40) I,X(I),'*'
ENDIF
FORMAT (19X, I5,12X,F15.4,A)
CONTINUE
WRITE (OUTF, 60)
FORMAT (/40X, '* = SPECIFIED VALUE')

COMPUTE GROUNDWATER VELOCITIES FOR EACH ELEMENT
CALL VELOCITY
WRITE OUT CONTENTS OF ARRAYS (IF REQUESTED)

CALL DUMP (LOOP, HDF, VLF)
END

Figure 7.2 Source code listing for program GWI1.
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INPUT FILE OUPUTFILE #1
Problem Title Problem Title
Input for NODES Output from NODES
Input for ELEMENT »| GW1| —» Qutput from ELEMENT
Il'lpl.lt for MATERL Output from MATERL
Input for BOUND Output from BOUND
Input for DUMP Qutput from ASMBK
(Optional) Output from SOLVE
Qutput from VELOCITY
OUTPUT FILE #2
—— | Output from VELOCITY |
(for use with ST1)
OUTPUT FILE #3, #4, #5, ...
L » | OuputfromDUMP |

(for use in plotting software)

Figure 7.3 Input and output file structure for program GWI1.

The use of program GW1 is best illustrated with an example. The mesh in Figure 7.4
is being used to solve a two-dimensional (plan view) groundwater flow problem in a
confined aquifer. The aquifer consists of two types of material: silty sand and sandy
gravel. Aquifer recharge is occurring along the constant head boundary and groundwater
is being pumped from the aquifer at a single well. All other boundaries are considered
impermeable. The input and output files are in Figures 7.5 and 7.6.
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sandy gravel silty sand
PUSRSUD N— A

Low permeability basalt
(No flow boundary)

Nodal coordinates are in kilometers
For sandy gravel Ky = Ky = 1 m/day

For silty sand Ky = K, = 0.1 m/day

For well Q = 5 m3/day (discharge)

Figure 74 Example problem for program GWI.

EXAMPLE PROBLEM FOR PROGRAM GW!1 (SEE FIGURE 7.4) ] Problem Title

2 (Problem Dimension)
1 1 3000 5000 (Node Coordinates)
4 1 18000 5000
g 1 5000 1%
1 20000 1
9 1 2000 17000 Input for NODES
12 1 21000 15000
-1 -1 -1 |
1 6 1 5§ g 10 9 (Element Node Numbers) =
3 6 1 7 12 11
46 112 6 5 Input for ELEMENT
6 6 1 3 4 8 7
-1 -1 -1 -1 -1 -1 -1 N
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1 ; (Element Material Set Numbers) i
2
3 2
4 1
g % Input for MATERL
-1 -1
2
1 1 1 (Element Material Properties)
2 1 d (Saturated Hydraulic Conductivities) =
1 1%5 (Specified Head Boundary Conditions)
5 125
B Input for BOUND
7 -5 (Specified Flow Boundary Conditions)
-1 -1 d
1 ] Input for DUMP

Figure 7.5 Example input file for program GWI1.

EXAMPLE PROBLEM FOR PROGRAM GW1 (SEE FIGURE 7.4)

NODE NODAL COORDINATES
NUMBER X Y
1 3000.0000 5000.0000
2 8000.0000 5000.0000
3 13000.0000 5000.0000
4 18000.0000 5000.0000
5 5000.0000 10000.0000
6 10000.0000 10000.0000
7 15000.0000 10000.0000
8 20000.0000 10000.0000
9 2000.0000 17000.0000
10 8333.3333 16333.3300
11 14666.6700 15666.6700
12 21000.0000 15000.0000
ELEMENT ELEMENT
NO. TYPE NODE NUMBERS
1 6 5 6 10 9
2 6 6 7 11 10
3 6 7 8 12 11
4 6 1 2 6 5
5 6 2 3 7 6
6 6 3 4 8 7

Copyright American Geophysical Union



Groundwater Modeling by

Water Resources Monograph the Finite Element Method Vol. 13
262 Finite Element Computer Programs
ELEMENT
NO. MATERIAL SET NUMBER
1 1
2 2
3 2
4 1
5 2
6 2
ELEMENT
SET NO. MATERIAL PROPERTIES
1 1.000000E+00 1.000000E+00
2 1.000000E -01 1.000000E -01
ELEMENT SPECIFIED
NO. HYDRAULIC HEAD
1 125.0000
5 125.0000
9 125.0000
NUMBER OF NODES WITH SPECIFIED HYDRAULICHEAD = 3
NODE SPECIFIED
NO. GROUNDWATER FLOW
7 -5.0000
NUMBER OF NODES WITH SPECIFIED GROUNDWATER FLOW = 1

NUMBER OF DEGREES OF FREEDOM IN MODIFIED K MATRIX = 9

SEMI-BANDWIDTH OF MODIFIED K MATRIX = 5
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COMPUTED VALUES OF

HYDRAULIC HEAD

NODE NO.

ROV NAMAWN -

HYDRAULIC HEAD

125.0000*
123.5652
108.8910
94.8066
125.0000*
122.0316
88.5567
97.6736
125.0000*
123.5305
106.4210
94.3300

* = SPECIFIED VALUE

s e 2 s e o e s e e s e e e s 26 2o e e e sfe e s e s e e oo e s e e o e e e b s e 2o e e e she e oo e e o e e e e o e o e s e e e e e e sfe o e ok e ok ok

COMPUTED VALUES OF APPARENT GROUNDWATER VELOCITY

ELEMENT

Figure 7.6

AL WN -

vX

3.930606E-04
4.411657E-04
1.816742E-05
4.403232E-04
4.814902E-04
4.967537E-05

vY

2.514829E-05
-8.783318E-05
-1.372678E-04
-2.276382E-05
2.608370E-05
1.548034E-04

Example output file from program GWI1.

7.3 STEADY-STATE, UNSATURATED GROUNDWATER FLOW,

PROGRAM GW2

The computer program GW2 solves the steady-state, unsaturated groundwater flow
equation (equation 1.2) (Figure 7.7). The effect of gravity is not included (although it can
easily be added if necessary). The program is almost identical to GW1 except that
subroutine INITIAL (see Chapter 16) is used to read in initial values of pressure head for
each node in the mesh (Figure 7.8) and Picard iteration is used to solve the system of

nonlinear equations.
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PROGRAM GW2
c**********************************************************************
C THIS PROGRAM SOLVES STEADY-STATE, UNSATURATED GROUNDWATER FLOW
C FLOW PROBLEMS. SUBROUTINE ASMBK, KBAR2, KBAR3, ETC. MUST BE
C MODIFIED FOR USE IN UNSATURATED FLOW PROBLEMS

CREREEIRER R KRR AR KR AR R AR R AR AR AR A RR AR AR AR R AR AR A AR Ak R R Ak kAR Ak AR R Kk kd

$INCLUDE: °'COMALL'
DIMENSION XX (MAX1)
INTEGER HDF,VLF
LOGICAL LOOP,CONVRGE
CHARACTER*20 INFILE,OUTFILE
CHARACTER*80 TITLE
DATA MAXIT/20/, TOLRNCE/0.01/

SYMM = _TRUE.

LOOP = .FALSE.

LABEL1l = ' PRESSURE HEAD'

LABEL2 = ' GROUNDWATER FLOW'

WRITE (*,10) * ENTER THE NAME OF THE INPUT DATA FILE: '
10 FORMAT (A\)

READ (*,20) INFILE
20 FORMAT (a)

WRITE (*,10) * ENTER THE NAME OF THE OUTPUT FILE: ‘'

READ (*,20) OUTFILE

OPEN (INF, FILE=INFILE)

OPEN (OUTF, FILE=QUTFILE, STATUS="'NEW')

READ (INF,20) TITLE

WRITE (OUTF,20) TITLE

INPUT NODE NUMBERS AND COORDINATES

o000
-

READ (INF, *) DIM
CALL NODES

INPUT ELEMENT NUMBERS, TYPES, AND NODE NUMBERS

[eNeNe]
N

CALL ELEMENT

INPUT MATERIAL PROPERTIES FOR EACH ELEMENT

[eNeNe]
w

CALL MATERL

INPUT BOUNDARY CONDITIONS

o0on
)

CALL BOUND

INPUT INITIAL CONDITIONS

[eNeNe]
(4,

CALL INITIAL

. BEGIN PICARD ITERATION

o0o
h

DO 40 ITER = 1, MAXIT
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C 7. ASSEMBLE AND MODIFY THE GLOBAL SYSTEM OF EQUATIONS
C
CALL ASMBK

8. SOLVE THE SYSTEM OF EQUATIONS

[eNeNe]

CALL DECOMP (NDOF, SBW, SYMM, M)
CALL SOLVE (NDOF, SBW, SYMM, M, B, XX)
CONVRGE = .TRUE.
II = NDOF
DO 30 I = NUMNOD, 1, -1

IF (ICH(I) .EQ. 0) THEN

9. CHECK FOR CONVERGENCE

(e NeNe]

IF (ABS((X(I) = XX(II)) / X(I)) .GE. TOLRNCE)
1 CONVRGE = .FALSE.
X(I) = XX(II)
II = II -1
ENDIF
30 CONT INUE
IF (CONVRGE) GOTO 50
40 CONTINUE
WRITE (OUTF,20) ' **% MAXIMUM NUMBER OF ITERATIONS EXCEEDED **'

10. WRITE OUT COMPUTED PRESSURE HEAD VALUES

(e NeNe

50 WRITE (OUTF, 60) LABEL1,LABEL1
60 FORMAT(//70('*')//16X, 'COMPUTED VALUES OF ',A/
1 16X,39('-")//19X, 'NODE NO.',10X,A/)
DO 80 I = 1, NUMNOD
IF (ICH(I) .EQ. 0) THEN
WRITE (OUTF,70) I,X(I),' '
ELSE
WRITE (OUTF,70) I, X(I),'*!
ENDIF
70 FORMAT (19X, IS, 12X,F15.4,3)
80 CONTINUE
WRITE (OUTF, 90)
90 FORMAT (/40X,'* = SPECIFIED VALUE')

11. COMPUTE GROUNDWATER VELOCITIES FOR EACH ELEMENT
CALL VELOCITY

12. WRITE OUT CONTENTS OF ARRAYS (IF REQUESTED)

o000 oaooo

CALL DUMP (LOOP, HDF, VLF')
END

Figure 7.7 Source code listing for program GW2.
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OUTPUT FILE #1
INPUT FILE Problem Title
Problem Title Output from NODES
Input for NODES Output from ELEMENT
Input for ELEMENT Output from MATERL
Inputfor MATERL |— [ GW2 [—| Output from BOUND
Input for BOUND Output from INITIAL
Input for INITIAL Output from ASMBK
Input for DUMP Output from SOLVE
(Optional)
Output from VELOCITY
OUTPUT FILE #2, #3,...
————————f  Output from DUMP

Figure 7.8 Input and output file structure for program GW2.

The user must modify the calculation of the element conductance matrix [K()]
performed in subroutines KBAR2, KTRI3, etc. called by ASMBK (see Chapter 12).
Currently these subroutines use a single fixed-value of hydraulic conductivity read by
subroutine MATERL (Chapter 10) i.e.,

KXE = PROP (MATSET (E), 1)
KYE = PROP (MATSET (E), 2)
KZE = PROP (MATSET (E), 3)

These statements will have to be modified to compute the function K, (w), Ky(y), and

K,(y) after each iteration. The value of pressure head for each node in the mesh is
recomputed at the end of each iteration and stored in the array X. The user could put the

Kx(¥), Ky(¥), and K,(y) functions in a subroutine PSIK

CALL PSIK (E, KXE, KYE, KZE)

where E is the element number and KXE, KYE, and KZE are the computed values of
unsaturated hydraulic conductivity for that element.
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7.4 '(I}‘%NSIENT, SATURATED GROUNDWATER FLOW, PROGRAM

The computer program GW?3 solves the transient, saturated groundwater flow equation
using a set of eleven subroutines : NODES, ELEMENT, MATERL, BOUND, INITIAL,
ASMBKC, RHS, DECOMP, SOLVE, VELOCITY, and DUMP (Figure 7.9). Detailed
information about the operation of these subroutines is contained in subsequent chapters.
Program GW3 reads the program description from a single input file (Figure 7.10). This
information is written to an output file followed by computed values of hydraulic head and
apparent groundwater velocity at each time step. Arrays and variables can also be written
to additional user-defined files using subroutine DUMP (see Chapter 15). Example input
and output files are in Figures 7.12 and 7.13 for the mesh in Figure 7.11. In the example,
a single well is pumping in a confined aquifer (homogeneous and isotropic). The results
are compared with the Jacob approximation to the Theiss solution for one point in Figure
7.15. The coding of input data for the mesh in Figure 7.14 is left as an exercise.

PROGRAM GW3
CRARRRRARRRRARRIRRRRRARTRRA KRR AR AR ARk kR kR Rk dkk ke kkdik
c THIS PROGRAM SOLVES TRANSIENT, SATURATED
c GROUNDWATER FLOW PROBLEMS.

(C e e e e vk o e o e o e ko o e o e ot ok e e e o e ok ok ok ok ok ok ok ok ok o ok ok ok ko o o ok ok ok ok ok ok ok ok o ok ok e ok ok o ok ok ok ok ok ok ok ok ok ok

$INCLUDE: °'COMALL'
DIMENSION XX (MAX1),V (MAX2,3)
INTEGER HDF,VLF
LOGICAL LOOP
CHARACTER*20 INFILE,OUTFILE
CHARACTER*80 TITLE
EQUIVALENCE (V1,V(1,1)),(V2,V(1,2)), (V3,V(1,3))

SYMM = ,TRUE.

LOOP = ,TRUE.

LABEL]l = ' HYDRAULIC HEAD'

LABEL2 = ' GROUNDWATER FLOW'

WRITE(*,10) ' ENTER THE NAME OF THE INPUT DATA FILE: '
10 FORMAT (A\)

READ (*,20) INFILE
20 FORMAT (A)

WRITE(*,10) ' ENTER THE NAME OF THE OUTPUT FILE: '

READ (*,20) OUTFILE

OPEN (INF,FILE=INFILE)

OPEN (OUTF, FILE=OUTF ILE, STATUS='NEW')

READ (INF, 20) TITLE

WRITE (OUTF,20) TITLE

. INPUT NODE NUMBERS AND COORDINATES

oo
[

READ (INF, *) DIM
CALL NODES

. INPUT ELEMENT NUMBERS, TYPES, AND NODE NUMBERS

aaon
N

CALL ELEMENT
3. INPUT MATERIAL PROPERTIES FOR EACH ELEMENT

CALL MATERL

(¢} o000
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[eNeKel [eNeo N oo oo

o o000

o000 aooan

[eNeNel

10.

11,

12.

30

Finite Element Computer Programs

INPUT BOUNDARY CONDITIONS

CALL BOUND

INPUT INITIAL CONDITIONS

CALL INITIAL

WRITE OUT CONTENTS OF ARRAYS (IF REQUESTED)
CALL DUMP (LOOP, HDF, VLF)

INITIALIZE COUNTERS

IF (DIM .LE. 3) THEN
IDIM = DIM

ELSE
IDIM = 2

ENDIF

IDT = 0

IGT = 1

IGIDT = 1

T=0,.

FOR EACH TIME STEP. . .

DO 90 ISTEP = 1, MXSTEP

IF SIZE OF TIME STEP CHANGES REASSEMBLE GLOBAL MATRICES

IF (ISTEP .EQ. 1 .OR. ISTEP .GT. DTSTEP(IDT)) THEN

IDT = IDT + 1

ASSEMBLE AND MODIFY THE GLOBAL SYSTEM OF EQUATIONS
CALL ASMBKC

DECOMPOSE THE MODIFIED GLOBAL SYSTEM OF EQUATIONS

CALL DECOMP (NDOF, SBW, SYMM, M)
ENDIF

CALCULATE THE RIGHT HAND SIDE VECTOR FOR THIS TIME STEP
CALL RHS
SOLVE THE SYSTEM OF EQUATIONS AND OUTPUT NODAL VALUES

CALL SOLVE (NDOF, SBW, SYMM, M, B, XX)
WRITE (QUTF, 30) LABEL1l,LABEL1
FORMAT (//70('*')//16X, 'COMPUTED VALUES OF ',a/
16X,39('-")//19X, '"NODE NO.',10X,Aa/)
J=20
DO S0 I = 1, NUMNOD
IF (ICH(I) .EQ. 0) THEN

J=J+1
X(I) = XX(J)
ENDIF

IF (ICH(I) .EQ. 0) THEN
WRITE (QUTF,40) I,X(I),*' '
ELSE

WRITE (OUTF,40) I,X(I),'*'

ENDIF
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40 FORMAT (19X, I5,12X,F15.4,3)
IF (HDF .NE. 0) WRITE(HDF,*) I,X(I)
50 CONTINUE
WRITE (QUTF, 60)
60 FORMAT (/40X, ** = SPECIFIED')
WRITE (OUTF,70) T
70 FORMAT (/19X, '*** RESULTS FOR TIME =',F7.2,' **x!)
[+
C 13. COMPUTE VELOCITIES
[+

CALL VELOCITY
WRITE (QUTF,70) T
IF (VLF .NE. 0) THEN
DO 80 I = 1, NUMELM
WRITE(VLF,*) I, (V(I,J),J=1,IDIM)

80 CONTINUE
ENDIF
90 CONTINUE
END

Figure 7.9 Source code listing for program GW3.

OUTPUT FILE #1

INPUT FILE Problem Title
Problem Tiile Output from NODES
Input for NODES Output from ELEMENT
Input for ELEMENT Output from MATERL
mputfr MATERL |— [ GW3 |— Output from BOUND
Input for BOUND Output from INITTAL
Input for INITIAL Output from ASMBKC
I(n “ttiggilwp .. for first time step ..
Output from SOLVE
Output from VELOCITY

.. for last time step ..
Cutput from SOLVE
Output from VELOCITY

OUTPUT FILE #2, #3, ...
_.l Output from DUMP

Figure 7.10 Input and output file structure for program GW3.
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EXAMPLE PROBLEM FOR PROGRAM GW3 (SEE FIGURE 7.11)

183
191
192
194
195
196
-1

13
14
26
27
39

52

LGt a

o b b et b et b Bt b e b b bbb bd bb bbb bk b b b b et et b b

b b pd Pk b b fd b Pk P pb b Pl b b o .

15 29 30
29 43 4
43 57 58

0
800
1000
1400
1700
2000
0
800
1000
1400
1700

1700

13
27
41
55

16
30

27
41
55
69

28
4
56
70
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53 51 57 71 72 58
65 51 69 83 84 170
66 51 71 85 86 72
78 51 83 97 98 84
79 51 8 99 100 86
91 51 97 111 112 98
92 51 99 113 114 100
104 51 111 125 126 112
105 51 113 127 128 114
117 51 125 139 140 126
118 51 127 141 142 128
130 51 139 153 154 140
131 51 141 155 156 142
143 51 " 153 167 168 154
144 51 155 169 170 156
156 51 167 181 182 168
157 51 169 183 184 170
169 51 181 195 196 182
-1 -1 -1 -1 -1 -1 -1
1 1 (Element Material Set
169 1 Numbers)
-1 -1
3
1 300 300 0.002 (Material Set Properties : Ky Ky S9
-1 -1 (No Specified Heads)
ll -50(11 (Specified Flow Rate)
1. (Relaxation Factor) —
10 .01 (Time Steps)
20 .02
30 .04
40 .06
50 09
2
7
. Input for
80 30 [~
90 45 INITIAL
177 1
-1 -1
0 1 (Time Function)
100.1 1
-1 -1
1 0 (Initial Conditions)
169 0
-1 -1 -~
-1 (subroutine Dump not used)

Figure 7.12 Example input file for program GW3.
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EXAMPLE PROBLEM FOR PROGRAM GW3 (SEE FIGURE 7.11)

NODE NODAL COORDINATES
NUMBER X Y
1 .0000 .0000
2 .0000 100.0000
3 .0000 200.0000
4 .0000 300.0000
S .0000 400.0000
6 .0000 500.0000
7 .0000 600.0000
8 .0000 700.0000
9 .0000 800.0000
10 .0000 1000.0000
11 .0000 1200.0000
12 .0000 1400.0000
13 .0000 1700.0000
14 .0000 2000.0000
183 2000.0000 .0000
184 2000.0000 100.0000
185 2000.0000 200.0000
186 2000.0000 300.0000
187 2000.0000 400.0000
188 2000.0000 500.0000
189 2000.0000 600.0000
190 2000.0000 700.0000
191 2000.0000 800.0000
192 2000.0000 1000.0000
193 2000.0000 1200.0000
194 2000.0000 1400.0000
195 2000.0000 1700.0000
196 2000.0000 2000.0000
ELEMENT ELEMENT

NO. TYPE NODE NUMBERS
1 5 1 15 16 2
2 5 2 16 17 3
3 5 3 17 18 4
4 5 4 18 19 5§
5 5 5 19 20 6
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160
161
162
163
164
165
166
167
168
169

ELEMENT
NO.

C OV NAMAE LN -
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TYPE NODE NUMBERS

¢
[=2V-N--TN ¥, §

172
173
174
175
176
177
178
179
180
181

[V RV RV AV AV AV RV NV RV RV B

20
21
22
23
24

186
187
188
189
190
191
192
193
194
195

21
22
23
24
25

187
188
189
190
191
192
193
194
195
196

1
1

— OO 00~

173
174
175
176
177
178
179
180
181
182

MATERIAL SET NUMBER

O b et Pt et et b ek fd et et

Pt ot Pt ot Pk ok ok ot ¢ e

MATERIAL PROPERTIES

3.000000E+02  3.000000E+02
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NUMBER OF NODES WITH SPECIFIED HYDRAULICHEAD = 0

o GROUNDWATER FLOW
1 -500.000
NUMBER OF NODES WITH SPECIFIED GROUNDWATER FLOW = 1

OMEGA = 1.0000

START END DELTAT
1 10 .0100
11 20 .0200
21 30 .0400
31 40 .0600
41 50 .0900
51 60 .1400
61 70 .2000
1 80 .3000
81 90 4500
91 177 1.0000

TIMET G(T)
.0000 1.0000
100.1000 1.0000
COMPUTED VALUES OF HYDRAULIC HEAD
NODE NO. HYDRAULIC HEAD
1 .0000
2 .0000
3 .0000
4 .0000
5 .0000
6 .0000
7 .0000
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COMPUTED VALUES OF HYDRAULIC HEAD
NODE NO. HYDRAULIC HEAD
8 .0000
9 .0000
10 .0000
190 .0000
191 .0000
192 .0000
193 .0000
194 .0000
195 .0000
196 .0000

* = SPECIFIED VALUE

NUMBER OF DEGREES OF FREEDOM IN MODIFIED,
GLOBAL COMBINED CONDUCTANCE AND CAPACITANCE MATRIX = 196

SEMI-BANDWIDTH OF MODIFIED,
GLOBAL COMBINED CONDUCTANCE AND CAPACITANCE MATRIX = 16

J01 Ak

*** RESULTS FOR TIME

J02 *kx

*** RESULTS FOR TIME
*** RESULTS FORTIME = .03 ***

*** RESULTS FOR TIME = .04 ***

3 3 3 3 s 3 3 3 e e s e e e e e e e e o e e e o e e e e e e o s e e e el S o e e o e e e e e e e S e e e o e e e e e e sk e ek e ok sk ke ok ok

COMPUTED VALUES OF HYDRAULIC HEAD
NODE NO. HYDRAULIC HEAD

1 -10.6991

2 -8.2799

3 -7.6519
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COMPUTED VALUES OF HYDRAULIC HEAD

NODE NO. HYDRAULIC HEAD
4 -7.2344
5 -6.9411
6 -6.7157
7 -6.5350
8 -6.3858
9 -6.2606
10 -6.0636
11 -5.9199
12 -5.8166
13 -5.7229
14 -5.6928
15 -8.2799
16 -8.1215
17 -7.5490
18 -7.1863
19 -6.9122
20 -6.6969
180 -5.5604
181 -5.5323
182 -5.5224
183 -5.6928
184 -5.6916
185 -5.6881
186 -5.6823
187 -5.6744
188 -5.6647
189 -5.6535
190 -5.6410
191 -5.6276
192 -5.5996
193 -5.5722
194 -5.5481
195 -5.5224
196 -5.5133

* = SPECIFIED VALUE

ETC.
Figure 7.13 Example output file for program GW3.

Copyright American Geophysical Union

Vol. 13

271



Groundwater Modeling by

Vol. 13

the Finite Element Method

Water Resources Monograph

Finite Element Computer Programs

278

‘Sjuawd)d 3j3uepraa aeauy pue jdueryy aeaut] ‘e weadoad a0y wagqoad ydwexy L dandig
(0°0002) (0°005) Y
€81 691 Ssi IvE LTl €I 66 S8 | ¥ LS €F 67 St .
061) (s81) (081), (sLn) oL1)
sy (1) (1en) (811) (son) 6 (60) 99) %) ) 10 (o) W . £
(161) (981) 9L1) L)
(ss1) (s (2)
(Z61) _~|(L81) LLY) ZLl) €
(91) ()
(c61)_~](88D) 8L1)_~ KeLn) v
(L) (+)
(v61)_~fes1)_~| 0~ |6L1)~ fviL~] ¢
(81) (s)
9
(61) (9)
L
02 w
8
(1) (¢}
6(008 0)
@) (3]
ot
(€D oD
11
SISQUINU JUMLS[D w2 | av
e
— (41
(a91) 4 s | @
[ ¢
(691) (951) (ev1) (ogD) wn wo1) (16) 80 (s9) @9 (69) 92) (€D
vl
961 781 891 rs1 (X7 971 (40 86 vs oL 9 (47 8T (000Z'0)
(o00z §Nv‘., SIIBUIPIOOD IpOU f SI9quInu Spou

Copyright American Geophysical Union



Groundwater Modeling by

Vol. 13

the Finite Element Method

Water Resources Monograph

Chapter 7

‘uonnos spPYL Iy o3 uonsunxoxdde qodel pue ppnH weslosd uroyy jndino uwIIMIIQ uosuaedwo)

(SAVQ@ FNLL
001 o1 01 1’0

10°0

¢MD weidord woyy indnp

¢

WwoEeT = uSN+uoo~\( =4

P/ 000z = O

uonnjos stay ], 3y o1 uoneunxoiddy qooer

SI°L 2an3ig

o
(W) NMOAMVEA

Copyright American Geophysical Union



Groundwater Modeling by
Water Resources Monograph the Finite Element Method Vol. 13

280 Finite Element Computer Programs

7.5 TRANSIENT, UNSATURATED GROUNDWATER FLOW,
PROGRAM GW4

The computer program GW4 solves the transient, unsaturated groundwater flow
equation (equation 1.4) (Figure 7.16). The program is similar to GW?3 except that Picard
iteration is used to solve the system of nonlinear equations at each time step. The input and
output file structure are in Figure 7.17.

PROGRAM GW4
R AR AR R R AR R R AR AR R AR R AR R AR R R R AR AR AR R RN R AR R AR AR RRRRRRRRRRARRRRRARRRRR
c THIS PROGRAM SOLVES TRANSIENT, UNSATURATED
c GROUNDWATER FLOW PROBLEMS. SUBROUTINES ASMBKC,
c KBARZ2, CBAR2, ETC. WILL HAVE TO BE MODIFIED FOR
c UNSATURATED CONDITIONS.

R AR RN AR R AR AR AR AR AR AR R R AR A RN AN AR R RN RRR AR R AR R RRRRRR R RRR AR R RN

$INCLUDE: 'COMALL'
DIMENSION XX(MAX1),V(MAX2,3)
INTEGER HDF,VLF
LOGICAL LOOP,CONVRGE
CHARACTER*20 INFILE,OUTFILE
CHARACTER*80 TITLE
EQUIVALENCE (V1,V(1,1)),(V2,V(1,2)),(V3,V(1,3))
DATA MAXIT/20/,TOLRNCE/0.01/

SYMM = ,TRUE.

LOOP = ,TRUE.

LABELLl = ! PRESSURE HEAD'

LABELZ = ' GROUNDWATER FLOW'

WRITE (*,10) ' ENTER THE NAME OF THE INPUT DATA FILE:
10 FORMAT (A\)

READ (*,20) INFILE
20 FORMAT (A)

WRITE(*,10) ' ENTER THE NAME OF THE OUTPUT FILE:

READ (*,20) OUTFILE

OPEN (INF, FILE=INFILE)

OPEN (OUTF, FILE=OUTFILE, STATUS="'NEW')

READ (INF,20) TITLE

WRITE (OUTF,20) TITLE

INPUT NODE NUMBERS AND COORDINATES

(e NeNe]
[

READ (INF,*) DIM
CALL NODES

INPUT ELEMENT NUMBERS, TYPES, AND NODE NUMBERS

[t NeNe)
N

CALL ELEMENT
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[eXeN¢e]

[eNeNe N NeNe!

3. INPUT MATERIAL PROPERTIES FOR EACH ELEMENT
CALL MATERL

4. INPUT BOUNDARY CONDITIONS
CALL BOUND

5. INPUT INITIAL CONDITIONS
CALL INITIAL
6. WRITE OUT CONTENTS OF ARRAYS (IF REQUESTED)
CALL DUMP (LOOP, HDF', VLF)
7. INITIALIZE COUNTERS
IF (DIM .LE. 3) THEN
IDIM = DIM
ELSE
IDIM = 2
ENDIF
IDT = 0
IGT = 1
IGIDT = 1
T = 0.
8. FOR EACH TIME STEP. . .
DO 120 ISTEP = 1, MXSTEP
DO 40 ITER = 1, MAXIT
IF SIZE OF TIME STEP CHANGES REASSEMBLE GLOBAL MATRICES
IF ((ITER .GT. 1) .OR. (ISTEP .EQ. 1) .OR.
1 (ISTEP .GT. DTSTEP (IDT))) THEN
IF (ITER .EQ. 1) IDT = IDT + 1
9. ASSEMBLE AND MODIFY THE GLOBAL SYSTEM OF EQUATIONS
CALL ASMBKC
10. DECOMPOSE THE MODIFIED GLOBAL SYSTEM OF EQUATIONS

CALL DECOMP (NDOF, SBW, SYMM, M)
ENDIF

11. CALCULATE THE RIGHT HAND SIDE VECTOR FOR THIS TIME STEP
CALL RHS

12, BEGIN PICARD ITERATION

Vol. 13

281

Figure continued —»
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CALL SOLVE (NDOF, SBW, SYMM,M, B, XX)
CONVRGE = .TRUE.
II = NDOF
DO 30 I = NUMNOD, 1, -1
IF (ICH(I) .EQ. 0) THEN
IF (ABS((X(I) - XX(II)) / X(I)) .GT. TOLRNCE)
1 CONVRGE = ,FALSE.
X(I) = X(II)
II = II -1
ENDIF
30 CONTINUE

IF (CONVRGE) GOTO S50
40 CONTINUE

WRITE (*,20) ' *** EXCEEDS MAXIMUM NUMBER OF ITERATIONS ***!¢
50 WRITE (OUTF, 60) LABELl,LABEL1l

60 FORMAT (//70('*') //16X, 'COMPUTED VALUES OF ',A/
1 16X,39('-')//19X%, '"NODE NO.',10X,A/)
DO 80 I = 1, NUMNOD
IF (ICH(I) .EQ. 0) THEN
WRITE (OUTF,70) I, X(I),' '

ELSE
WRITE (OUTF,70) I,X(I),'*!
ENDIF
70 FORMAT (19%,I5,12X,F15.4,3)
IF (HDF .NE. 0) WRITE (HDF,*) I,X(I)
80 CONTINUE
WRITE (OUTF, 90)
90 FORMAT (/40X, '* = SPECIFIED')
WRITE (OUTF,100) T
100 FORMAT (/19X, '*** RESULTS FOR TIME =',F7.2,' *#x%!')
c
C 13. COMPUTE VELOCITIES
c
CALL VELOCITY
WRITE (OUTF,100) T
IF (VLF .NE. 0) THEN
DO 110 I = 1, NUMELM
WRITE (VLF,*) I, (V(I,J),J=1,IDIM)
110 CONTINUE
ENDIF
120 CONTINUE
END

Figure 7.16 Source code listing for program GW4.
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OUTPUT FILE #1
INPUT FILE
Problem Title
Problem Title Output from NODES
Input for NODES Output from ELEMENT
Input for ELEMENT Output from MATERL
nputfor MATERL | — | W4 |—[ Output from BOUND
Input for BOUND Output from INITIAL
Input for INTTIAL Output from ASMBKC
Input for DUMP .. for first time step ..
(Optional) e St
Output from SOLVE
Output from VELOCITY

.. for last time step ..
Output from SOLVE
Output from VELOCITY

OUTPUT FILE #2, #3, ...

3 | Output from DUMP

Figure 7.17 Input and output file structure for program GW4.

7.6 SOLUTE TRANSPORT, PROGRAM ST1

The steps used to solve the solute transport equation for steady-state, saturated
groundwater flow were described in Part 1. The computer program ST1 implements these
steps in a set of ten FORTRAN subroutines (NODES, ELEMENT, MATERL, BOUND,
INITIAL, ASMAD, DECOMP, RHS, SOLVE, and DUMP) (Figure 7.18). The
operations performed by each subroutine are described briefly in the source code listing for
ST1; additional details are in subseguent chapters. The input and output file structure is
similar to program GW3 (Figure 7.19). The components of apparent groundwater velocity
for each element are read from a file created by program GW 1 (using subroutine DUMP,
see Chapter 15). Example input and output files for the mesh in Figure 7.20 are in Figures
721and 7.22. A comg:rison between solute concentrations computed with ST1 and with
an analytical solution from Bear (1979) is in Figure 7.23. Example input and output files
for the mesh in Figure 7.24 are in Figures 7.25 and 7.26. The coding of the mesh in
Figure 7.27 is left as an exercise.
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PROGRAM ST1

(C % e e i e vk o o ok o ok o ok ok o ok o ok e o ok i ok ok o e ok ok o ok i o ok o Ok o o ok o ok o ok kO ok o O ok o o ok o O ok o ok 0K ok o O ok O ok O ok

c
c

THIS PROGRAM SOLVES SOLUTE TRANSPORT PROBLEMS FOR
STEADY-STATE, SATURATED GROUNDWATER FLOW.

Lt e T ]
$INCLUDE: °'COMALL'

[eNeKel

[eNeNe!

o000 aooo o000

oo o000

10
20

DIMENSION XX (MAX1),V(MAX2,3)

INTEGER HDF,VLF

LOGICAL LOOP

CHARACTER*20 INFILE,OUTFILE,VELFILE
CHARACTER*80 TITLE

EQUIVALENCE (V1,V(1,1)),(V2,V(1,2)),(V3,Vv(1,3))

SYMM = .FALSE.

LOOP = .TRUE.

LABEL1 = 'SOLUTE CONCENTRATION'

LABEL2 = ' SOLUTE FLUX'

WRITE (*,10) ' ENTER THE NAME OF THE INPUT DATA FILE: '
FORMAT (A\)

READ (*,20) INFILE

FORMAT (A)

WRITE(*,10) ' ENTER THE NAME OF THE VELOCITY FILE: '
READ (*,20) VELFILE

WRITE (*,10) ' ENTER THE NAME OF THE OUTPUT FILE: '
READ (*,20) OUTFILE

OPEN (INF,FILE=INFILE)

VLF = 2

OPEN (VLF, FILE=VELFILE)

OPEN (OUTF, FILE=QUTFILE, STATUS="'NEW"')

READ (INF,20) TITLE

WRITE (OUTF, 20) TITLE

INPUT NODE NUMBERS AND COORDINATES

READ (INF, *) DIM
CALL NODES

INPUT ELEMENT-NUMBERS, TYPES, AND NODE NUMBERS
CALL ELEMENT

INPUT MATERIAL PROPERTIES FOR EACH ELEMENT
CALL MATERL

INPUT BOUNDARY CONDITIONS

CALL BOUND

INPUT INITIAL CONDITIONS

CALL INITIAL

. WRITE OUT CONTENTS OF ARRAYS (IF REQUESTED)

CALL DUMP (LOOP, HDF, IDMY)
INITIALIZE COUNTERS

IF (DIM .LE. 3) THEN
IDIM = DIM
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ELSE
IDIM = 2
ENDIF

DO 30 I = 1, NUMELM
READ (VLF, *) J, (V(J,K),K=1, IDIM)
30 CONTINUE
IDT = 0
IGT = 1
IGIDT = 1
T=0.

c
c 8. FOR EACH TIME STEP. .
c

DO 90 ISTEP = 1, MXSTEP
IF SIZE OF TIME STEP CHANGES REASSEMBLE GLOBAL MATRICES
IF (ISTEP .EQ. 1 .OR. ISTEP .GT. DTSTEP(IDT)) THEN
IDT = IDT + 1

(¢}

9. ASSEMBLE AND MODIFY THE GLOBAL SYSTEM OF EQUATIONS

[eXe N2

CALL ASMBAD

10. DECOMPOSE THE MODIFIED GLOBAL SYSTEM OF EQUATIONS

o000

CALL DECOMP (NDOF, SBW, SYMM, M)
ENDIF

11. CALCULATE THE RIGHT HAND SIDE VECTOR FOR THIS TIME STEP

o000

CALL RHS

12. SOLVE THE SYSTEM OF EQUATIONS AND OUTPUT NODAL VALUES

aoao

CALL SOLVE (NDOF, SBW, SYMM, M, B, XX)
WRITE (OUTF, 40) LABEL1,LABEL1
40 FORMAT (//70(**') //16X, 'COMPUTED VALUES OF ',A/
1 16X%,39('~')//19X%, '"NODE NO.',10X,3a/)
J=0
DO 60 I = 1, NUMNOD
IF (ICH(I) .EQ. 0) THEN
J=J+1
X(I) = XX(J)
ENDIF
IF (ICH(I) .EQ. 0) THEN
WRITE (OUTF,50) I,X(I),' '
ELSE
WRITE (OUTF,50) I,X(I),'*'
ENDIF
50 FORMAT (19%, IS, 12X,F15.4,3)
IF (HDF .GT. 0) WRITE (HDF,*) I,X(I)
60 CONT INUE
WRITE (OUTF, 70)
70 FORMAT (/40X, '* = SPECIFIED')
WRITE (OUTF, 80) T
80 FORMAT (/19X, '*** RESULTS FOR TIME =',F7.2,' *%%1)
90  CONTINUE
END

Figure 7.18 Source code listing for program STL1.
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OUTPUT FILE #1

INPUT FILE
Problem Title
Problem Title Output from NODES
Input for NODES " Output from ELEMENT
Input for ELEMENT Output from MATERL
Input for MATERL | — —p» |>7' | =" Output from BOUND
Input for BOUND Output from INITIAL
Input for INITIAL Output from ASMBAD
Input for DUMP 3
(Optional) .. for first time step ..
Output from SOLVE
INPUT FILE #2 .
%?%@ﬁ)lﬂom _ .. for last time step ..
Output from SOLVE
OUTPUT FILE #2, #3, ...
L » | Output from DUMP

Figure 7.19 Input and output file structure for program ST1.

Direction of Groundwater Flow

CO) =100, t 2 0 v, =0.0035
C(x,00=0,x 20

. . . * * . . ®... ——o——o
1 2 3 4 5 6 7 8 19 20 21
< 100 >

Figure 7.20 Example problem for program ST1 using linear bar elements.
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EXAMPLE PROBLEM FOR PROGRAM ST1 (SEE FIGURE 7.20)
1

1
21
-1

1
20
-1

1
20
-1

1
1

Groundwater Modeling by
the Finite Element Method Vol. 13

0
100
-1
1 1 2
1 20 21
-1 -1 -1
0 1 0
Figure 7.21

287

(Problem Dimension)
(Nodal Point Data)

(Element Numbers, Types,
and Node Numbers)
(Element Material Set Data)

(Material Properties)
(Specified Concentration)
(No Specified Solute Fluxes)

(Relaxation Factor)
(Take 11 Time Steps of 50 Days Each)

(Time Function)

35 1 1

Example input file for program STI1.

EXAMPLE PROBLEM FOR PROGRAM ST1 (SEE FIGURE 7.20)

NODE

ST~ =t L L P

NODAL CO}(()RD]NATES

.0000
5.0000
10.0000
15.0000
20.0000
25.0000
30.0000
35.0000
40.0000
45.0000
50.0000
55.0000
60.0000
65.0000
70.0000
75.0000
80.0000
85.0000
90.0000
95.0000
100.0000
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ELEMENT ELEMENT
NO. TYPE NODE NUMBERS
1 1 1 2
2 1 2 3
3 1 3 4
4 1 4 5
5 1 5 6
6 1 6 7
18 1 18 19
19 1 19 20
20 1 20 21
ELEMENT
NO. MATERIAL SET NUMBER
1 1
2 1
3 1
18 1
19 1
20 1
MATERIAL
SET NO. MATERIAL PROPERTIES

1 1.000000E+02 0.000000E+00 1.000000E+00 0.000000E-+00
3.500000E-01 1.000000E+00 1.000000E+00

NODE SPECIFIED
NO. SOLUTE CONCENTRATION
1 100.0000

NUMBER OF NODES WITH SPECIFIED SOLUTE CONCENTRATION = 1
NUMBER OF NODES WITH SPECIFIED SOLUTE FLUX =0

OMEGA = 1.0000

TOTAL TIME = 550.0000
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TIMET G(T)
.0000 1.0000
1.0000 1.0000
550.0000 1.0000

INITIAL VALUES OF SOLUTE CONCENTRATION

NODE NO. SOLUTE CONCENTRATION
T 100.0000*
2 .0000
3 -0000
18 .0000
19 .0000
20 .0000
21 10000
* = SPECIFIED

NUMBER OF DEGREES OF FREEDOM IN MODIFIED,
GLOBAL COMBINED SORPTION AND ADVECTION-DISPERSION MATRIX =20

SEMI-BANDWIDTH OF MODIFIED,
GLOBAL COMBINED SORPTION AND ADVECTION-DISPERSION MATRIX = 2

e s e e e e o afe e e e e s e e e e o e s e e e s e e e e e e e e s e e e e e e e s o e e e e o e e e e e e e e e e s e o e e e e s e e e oo

COMPUTED VALUES OF SOLUTE CONCENTRATION

NODE NO. SOLUTE CONCENTRATION
1 100.0000*
2 54.2676
3 27.0555
4 13.4887
5 6.7249
6 3.3527
7 1.6715
8 .8333
9 4155
10 2071
11 .1033
12 .0515
13 .0257
14 0128
15 .0064
16 .0032
17 .0016
18 .0008
19 0004
20 .0002

21 .0002
* = SPECIFIED

*kk RESULTS FOR TIME = 50.00 ***
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0303 3 o a3 s s o a3 s s o s s s s o o s s s s o s a2 e e e 3 e 2 2 e s e 3o s e e 3o 3o 3o 2o 2o 2o e 2 s 2o 2o 2o 2 2 ok S 2o e o6 e e ke e ke

COMPUTED VALUES OF SOLUTE CONCENTRATION

NODE NO. SOLUTE CONCENTRATION
1 100.0000*
2 69.8320
3 44.9692
4 27.4820
5 16.2252
6 9.3475
7 5.2876
8 2.9489
9 1.6261
10 .8885
11 4817
12 .2595
13 1390
14 .0741
15 .0393
16 .0208
17 0110
18 .0059
19 .0032

20 .0020
21 .0016
* = SPECIFIED

*#% RESULTS FOR TIME = 100.00 ***

¢ e 22 e 3 e e 2 2 e e 2 o e e a3 e e 2 s e 3o e dede o e e e 3o oo 2fe o e o e e 2o 3o e afe e e 3o oo e e o o e e 2 0 o e e o 2 ok ol ok e e ok e

COMPUTED VALUES OF SOLUTE CONCENTRATION

NODE NO. SOLUTE CONCENTRATION
1 100.0000*
2 83.1162
3 66.6319
4 51.5875
5 38.6600
6 28.1214
7 19.9123
8 13.7633
9 9.3098
10 6.1769
11 4.0280
12 2.5863
13 1.6376
14 1.0241
15 .6335
16 3884
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COMPUTED VALUES OF SOLUTE CONCENTRATION

NODE NO. SOLUTE CONCENTRATION
17 .2369
18 .1453
19 .0921
20 .0645
21 .0559
* = SPECIFIED

*+* RESULTS FOR TIME = 250.00 ***

sk el o s el o s el oo e ol oo oo ke ok e e o sk e e s o e e o o s sk el sl s ke ol ab ool 0 o s e e ool e ol sk e oo ke oo e ke oe

COMPUTED VALUES OF SOLUTE CONCENTRATION

NODE NO. SOLUTE CONCENTRATION
1 100.0000*
2 84.9458
3 70.0360
4 56.0643
5 43,6218
6 33.0407
7 24.4070
8 17.6170
9 12.4487
10 8.6274
11 5.8739
12 3.9350
13 2.5975
14 1.6919
15 1.0891
16 .6945
17 .4407
18 2814
19 1857
20 .1349
21 1189

* = SPECIFIED

*+* RESULTS FOR TIME = 500.00 ***
F————r e e e e PP LD TR LS LA 2

COMPUTED VALUES OF SOLUTE CONCENTRATION

NODE NO. SOLUTE CONCENTRATION
1 100.0000*
2 89.7406
3 79.2830
4 68.9309

Figure continued —
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COMPUTED VALUES OF SOLUTE CONCENTRATION

NODE NO. SOLUTE CONCENTRATION
5 58.9663
6 49.6288
7 41.1007
8 33.5004
9 26.8832
10 21.2485
11 16.5506
12 12.7118
13 9.6349
14 72147
15 5.3466
16 3.9339
17 2.8918
18 2.1504
19 1.6557
20 13713
21 1.2781
* = SPECIFIED

Figure 7.22 Example output file from program STI1.

120

100

Analytical Solution

¢  FEM Solution

Solute Concentration (mg/1)

0 20 40 60 80 100 120
Distance (m)
Figure 7.23 Comparison of analytical and FEM solutions for program STI.

EXAMPLE PROBLEM FOR PROGRAM ST1 (SEE FIGURE 7.24)

2 (PROBLEM DIMENSION)
1 1 0 0 (NODAL POINT DATA)
2 1 0 40
3 1 0 60
7 1 0 100
9 1 0 140

10 1 0 180
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11

111
112
113
117
119
120

-1

11
12
22
23
33
177
187
188

198
-1

1
198

00 ~J OV L £ L3 D 1 1me =D 0

116
117
118
119
120

-1

-1

20
-1

200
-1

120
-1
-1

PN N N G O N el el e

el edek - XX - X -

W
. OOOSOOOON

w
t ' [y 0 8|
—) Dttt s O — - O0000-

10 0
220 0
220 40
220 60
220 100
220 140
220 180

-1 -1

10 1

10 101

10 2

10 102

10 2

10 102

10 9

10 109

10 10

10 110

-1 -1

1 0

Figure 7.24
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11 2 (ELEMENT DATA)
111 102
11 12
111 112
12 3
112 103
19 20
119 120
9 20
109 120
-1 -1 -1
(MATERIAL PROPERTIES)
2 0 .25 1
(SPECIFIED CONCENTRATIONS)
(SPECIFIED SOLUTE FLUX)
(RELAXATION FACTOR)
(TAKE 20 TIME STEPS OF 10 EACH)
(TIME FACTOR)
(INTTIAL CONCENTRATIONS)

Example input file for program STI1.

Copyright American Geophysical Union



Groundwater Modeling by
Water Resources Monograph the Finite Element Method Vol. 13

294 Finite Element Computer Programs

EXAMPLE PROBLEM FOR PROGRAM ST1 (SEE FIGURE 7.24)

NODE NODAL COORDINATES
NUMBER X Y
1 .0000 .0000
2 .0000 40.0000
3 .0000 60.0000
4 .0000 70.0000
5 .0000 80.0000
6 .0000 90.0000
7 .0000 100.0000
8 .0000 120.0000
9 .0000 140.0000
10 .0000 180.0000
110 160.0000 180.0000
111 220.0000 .0000
112 220.0000 40.0000
113 220.0000 60.0000
114 220.0000 70.0000
115 220.0000 80.0000
116 220.0000 90.0000
117 220.0000 100.0000
118 220.0000 120.0000
119 220.0000 140.0000
120 220.0000 180.0000
ELEMENT ELEMENT
NO. TYPE NODE NUMBERS
1 4 1 11 2
2 4 11 21 12
3 4 21 31 22
4 4 31 41 32
5 4 41 51 42
6 4 51 61 52
7 4 61 71 62
8 4 71 81 72
9 4 81 91 82
10 4 91 101 92
157 4 28 38 39
158 4 38 48 49
159 4 48 58 59
160 4 58 68 69
161 4 68 78 79
162 4 78 88 89
163 4 88 98 99
164 4 98 108 109
165 4 108 118 119
166 4 9 8 19
167 4 19 18 29
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N

168 4 29 28 39

169 4 39 38 49

170 4 49 48 59

171 4 59 58 69

172 4 69 68 79

173 4 79 78 89

174 4 89 88 99

175 4 99 98 109

176 4 109 108 119

177 4 9 19 20

178 4 19 29 30

179 4 29 39 40

180 4 39 49 50

181 4 49 59 60

182 4 59 6 70

183 4 69 79 80

184 4 79 89 90

185 4 89 99 100

186 4 99 109 110

187 4 109 119 120

188 4 10 9 20

189 4 20 19 30

190 4 30 29 40

191 4 40 39 50

192 4 50 49 60

193 4 60 59 170

194 4 70 69 80

195 4 80 79 90

196 4 9 89 100

197 4 100 99 110

198 4 110 109 120
ELEMENT

NO. MATERIAL SET NUMBER

1 1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

9 1

10 1

194 1

195 1

196 1

197 1

198 1

Groundwater Modeling by
the Finite Element Method

LEMENT
TYPE NODE NUMBERS
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MATERIAL
SET NO. MATERIAL PROPERTIES

1 2.000000E+00 1.000000E+00 0.000000E+00 2.000000E+00
0.000000E+00 2.500000E-01 1.000000E+00

NODE SPECIFIED
NO. SOLUTE CONCENTRATION
1 .0000
2 .0000
3 .0000
4 .0000
5 300.0000
6 .0000
7 .0000
8 .0000
9 .0000
10 .0000
20 .0000
30 .0000
40 .0000
50 .0000
60 .0000
70 .0000
80 .0000
90 .0000
100 .0000
110 .0000
111 .0000
112 .0000
113 .0000
114 .0000
115 .0000
116 .0000
117 .0000
118 .0000
119 .0000
120 .0000

NUMBER OF NODES WITH SPECIFIED SOLUTE CONCENTRATION = 30

NODE SPECIFIED
NO. SOLUTE FLUX
5 300.0000

NUMBER OF NODES WITH SPECIFIED SOLUTE FLUX =1
OMEGA = 1.0000
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START END DELTAT
1 20 10.0000

TIME T G(T)
0000 1.0000
200.0000 1.0000

INITIAL VALUES OF SOLUTE CONCENTRATION

NODE NO. SOLUTE CONCENTRATION
1 .0000*
2 .0000*
3 .0000*
4 .0000*
5 300.0000*
6 .0000*

117 .0000*
118 -0000*
119 .0000*
120 .0000*
* = SPECIFIED

NUMBER OF DEGREES OF FREEDOM IN MODIFIED,
GLOBAL COMBINED SORPTION AND ADVECTION-DISPERSION MATRIX = 90

SEMI-BANDWIDTH OF MODIFIED,
GLOBAL COMBINED SORPTION AND ADVECTION-DISPERSION MATRIX =11

#+% RESULTS FOR TIME = 10.00 ***

*#x RESULTS FOR TIME = 20.00 ***

w#% RESULTS FOR TIME = 30.00 ***

#+% RESULTS FOR TIME = 40.00 ***

x#% RESULTS FOR TIME = 50.00 ***

wx% RESULTS FOR TIME = 60.00 ***

+#% RESULTS FOR TIME = 70,00 ***
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*** RESULTS FOR TIME = 80.00 ***
*++ RESULTS FOR TIME = 90.00 ***
*#++ RESULTS FOR TIME = 100.00 ***
*#++ RESULTS FOR TIME = 110.00 ***
*** RESULTS FOR TIME = 120.00 ***
*+* RESULTS FOR TIME = 130.00 ***

e 3 e e e 3 e e 2 3 e e o o 3 e e e 3 e e e e e e e e e e e 3k e e e 3 e e 30 e 3 e e s e e e e e e e e e e e sl e e ke e e e e ke ke ke ok ek o ok

COMPUTED VALUES OF SOLUTE CONCENTRATION

NODE NO. SOLUTE CONCENTRATION
1 .0000*
2 .0000*
3 .0000*
4 .0000*
5 300.0000*
6 .0000*
7 .0000*
8 .0000*
9 .0000*
10 .0000*
11 -.4024
12 .5881
13 -3.3477
14 42,5015
15 228.2954
16 42.4914
17 -3.2888
18 9138
19 -.1811

20 .0000*
21 -.1427
22 0470
23 -.6714
24 62.3467
25 182.7819
26 62.3475
27 -.5372
28 .2034
29 -.0590
30 .0000*
31 2244
32 -.6711
33 3.7866
4 68.3779
35 149.0262
36 68.3933
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COMPUTED VALUES OF SOLUTE CONCENTRATION

NODE NO. SOLUTE CONCENTRATION
37 3.9406
38 -.7868
39 .0968
40 .0000*
41 .4454
42 -1.1199
43 7.3474
44 64.3831
45 117.9321
46 64.4055
47 7.4753
48 -1.4140
49 .1748
50 .0000*
51 5042
52 -1.2155
53 8.6262
54 53.3718
55 89.8220
56 53.3947
57 8.7133
58 -1.5534
59 .1859
60 .0000*
61 4447
62 -1.0155
63 7.5597
64 36.9853
65 56.5931
66 37.0008
67 7.6051
68 -1.3035
69 1395
70 .0000*
7 3103
72 -.5886
73 3.0124
74 13.5022
75 19.7430
76 13.5078
77 3.0336
78 -7412
79 0969
80 .0000*
81 1952
82 -.2791
83 4304
84 3.0719
85 5.0566
86 3.0735
87 4379

Figure continued —-
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COMPUTED VALUES OF SOLUTE CONCENTRATION

NODE NO. SOLUTE CONCENTRATION
88 -.3506
89 .0688
90 .0000*
91 .0746
92 -.0640
93 -.0802
94 2728
95 .6212
96 2730
97 -.0784
98 -.0779
99 .0251
100 .0000*
101 .0102
102 .0051
103 -.0254
104 -.0480
105 -.0048
106 -.0481
107 -.0255
108 .0088
109 .0042
110 .0000*
111 .0000*
112 .0000*
113 .0000*
114 .0000*
115 .0000*
116 .0000*
117 .0000*
118 .0000*
119 .0000*
120 .0000*

* = SPECIFIED

Figure 7.25 Example output file from program STI1.
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SUBROUTINE NODES

8.1 PURPOSE

Subroutine NODES inputs the node numbers and coordinates for each node in the finite
element mesh. The subroutine can be used for one-, two-, or three-dimensional problems
or for problems with axisymmetry.

8.2 INPUT

Node numbers and coordinates are read "free-format" from the user-supplied file
assigned to unit "INF". The operation of the subroutine is controlled by the variable
"DIM" (see Section 8.5 for a description of program usage). Both INF and DIM are
passed to the subroutine through labeled common blocks contained in the file "COMALL"
(see Chapter 7 for a listing of COMALL).

8.3 OUTPUT

Node numbers and coordinates are written to the user-defined file assigned to unit
"OUTF". OUTF is passed to the subroutine through a labeled common block in
COMALL. Column headings are added to the list of node numbers and coordinates written
to OUTF. The number of nodes in the mesh, variable "NUMNOD", and the coordinates
for each node in the mesh, arrays "X1", "X2", and "X3", are stored in labeled common
blocks (contained in the file COMALL) for use by other subroutines.

8.4 DEFINITIONS OF VARIABLES

DIM = Type of coordinate system used in this problem (Figure 8.1).
= 1, problem is one-dimensional.
= 2, problem is two-dimensional.
= 3, problem is three-dimensional.
= 4, problem is two-dimensional (axisymmetric).
INC = Node number increment used to generate "missing" node numbers.
NUMNOD = Number of nodes in the mesh.
X1 = x coordinate for node Iif DIM =1, 2, or 3.
= rcoordinate for node I if DIM = 4.
X2(h) = notusedif DIM=1.
= y coordinate for node I if DIM = 2 or 3.
= zcoordinate for node Iif DIM = 4.
X3() notused if DIM =1, 2, or 4.

z coordinate for node I if DIM = 3.

303
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DIM=1

[ -0 -9 . 4 @
>
X
DIM =2
y
X
DIM=3

DIM =4

Figure 8.1 Correct values of DIM to use with different types of finite element
meshes.
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Example input data and output for subroutine NODES are in Figures 8.2 to 8.5. Each
line of input contains the node number, node number increment, and the coordinates of a
node. The mesh in Figure 8.2 is two-dimensional (DIM = 2). Node number 1 has a node
number increment of 1 (INC = 1), an x coordinate of 0 (X1(1) = 0) and a y coordinate of 0
(X2(1) = 0). Node number 4 has a node number increment of 1 (INC = 1), an x
coordinate of 2 (X1(4) = 2) and a y coordinate of 9 (X2(4) = 9). The subroutine has the
capability to "generate" the node numbers and coordinates for nodes "missing" from the

2,9 7.9 (12,9)
4 8 ° 12
3 7
DIM =2 ® 11
2 6 $ 10 L .
y e num!
1 5 o9 /"
ode coordinate:
©,0 6.0 (12,0) 4> ¢ )
Input Data :
1 1 0. 0.
4 1 2. 9.
5 1 6. 0.
8 1 7. 9.
9 1 12. 0.
12 1 12. 9.
-1 -1 -1 -1
Output :
NODE NODAL COORDINATES
NUMBER X Y
1 .0000 .0000
2 .6667 3.0000
3 1.3333 6.0000
4 2.0000 9.0000
5 6.0000 .0000
6 6.3333 3.0000
7 6.6667 6.0000
8 7.0000 9.0000
9 12.0000 .0000
10 12.0000 3.0000
11 12.0000 6.0000
12 12.0000 9.0000

Figure 8.2 Example input data and output for subroutine NODES. -
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10 (0,6,8)

12 (12,6,2)

6(12,6,0)
9/(12,0,2)
(0,0,0) (12,0,0)
Input Data :
1 1 0. 0. 0.
3 1 12. 0. 0.
4 1 0. 6. 0.
6 1 12. 6. 0.
7 1 0. 0. 8.
9 1 12. 0. 2,
10 1 0. 6. 8.
12 1 12, 6. 2.
-1 -1. -1 -1 -1
Output :
NODE NODAL COORDINATES
NUMBER X Y yA
1 .0000 .0000 .0000
2 6.0000 .0000 .0000
3 12.0000 .0000 .0000
4 .0000 6.0000 .0000
5 6.0000 6.0000 .0000
6 12.0000 6.0000 .0000
7 .0000 .0000 8.0000
8 6.0000 .0000 5.0000
9 12.0000 .0000 2.0000
10 .0000 6.0000 8.0000
11 6.0000 6.0000 5.0000
12 12.0000 6.0000 2.0000
Figure 8.3 Example input data and output for subroutine NODES.
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input file, and this feature can be used to greatly simplify data input for portions of the
mesh where nodes are regularly spaced. In Figure 8.2, nodes 2 and 3 are equally spaced
between nodes 1 and 4. Therefore it is necessary only to enter the node numbers, node
number increments, and coordinates for nodes 1 and 4. The subroutine computes the node
numbers and coordinates for the two "missing” nodes (nodes 2 and 3) using the node
number coordinates for nodes 1 and 4 and the node number increment for node 4. Linear
interpolation (in this case between nodes 1 and 4) is used to compute the coordinates of the
"missing" nodes. The computed coordinates of the missing nodes are also stored in the
arrays X1 and X2 (X1(2) = 0.6667, X2(2) = 3.0000, X1(3) = 1.3333, X2(3) = 6.0000).
This process is repeated for nodes 5 and 8 (nodes 6 and 7 are "missing") and for nodes 9
and 12 (nodes 10 and 11 are "missing"). Input is terminated by placing a -1 in all fields.

The mesh in Figure 8.3 is three-dimensional (DIM = 3), so three coordinates (x, y, and
z) are read for each node. For example, node 9 has a node number increment of 1, an x
coordinate of 12 (X1(9) = 12), a y coordinate of 0 (X2(9) = 0, and a z coordinate of 2
(X3(9) = 2). Node numbers and coordinates for the "missing” nodes 2, 5, 8, and 11 are
computed by the subroutine.

DIM=4
(3,6) (18,6)
2 4 6 8 10
1 3 5 7 9
(3,3) (18,3)
r
Input Data : 1 2 3. 3.
9 2 18. 3.
2 2 3. 6.
10 2 18. 6.
-1 -1 -1 -1
Output : NODE NODAL COORDINATES
NUMBER R Z
1 3.0000 3.0000
2 3.0000 6.0000
3 6.7500 3.0000
4 6.7500 6.0000
5 10.5000 3.0000
6 10.5000 6.0000
7 14.2500 3.0000
8 14.2500 6.0000
9 18.0000 3.0000
10 18.0000 6.0000

Figure 8.4 Example input data and output for subroutine NODES.
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The nodes do not have to be entered sequentially and the node number increments can
be assigned any positive integer value. Two examples are in Figures 8.4 and 8.5. The
mesh in Figure 8.4 is for an axisymmetric problem (DIM = 4), so two coordinates (r and z)
are read for each node. For example, node 2 has a node number increment of 2, an r
coordinate of 3 (X1(2) = 3) and a z coordinate of 6 (X2(2) = 6). Node numbers and
coordinates for the "missing” nodes 3, 4, 5, 6, 7, and 8 are computed by the subroutine.
The mesh in Figure 8.5 is two-dimensional (DIM = 2) and a node number increment of 3 is
used to generate the "missing” nodes 4, 7, 10, 5, 8, 11, 6, 9, and 12.

DIM =2
2.8) X (14,8)
.3 . 6 ‘9 .1 ’15
(23)¢ 2 45 8 1! 14 (14,3)
Ll o & —oil o!3
yl 2.1 (14,1)
—>
Input Data : 1 3 2, 1.
13 3 14. 1.
2 3 2. 3.
14 3 14. 3.
3 3 2. 8.
15 3 14. 8.
-1 -1 -1 -1
Output NODE NODAL COORDINATES
NUMBER X Y
1 2.0000 1.0000
2 2.0000 3.0000
3 2.0000 8.0000
4 5.0000 1.0000
5 5.0000 3.0000
6 5.0000 8.0000
7 8.0000 1.0000
8 8.0000 3.0000
9 8.0000 8.0000
10 11.0000 1.0000
11 11.0000 3.0000
12 11.0000 8.0000
13 14.0000 1.0000
14 14.0000 3.0000
8.0000

15 14.0000 -

Figure 8.5 Example input data and output for subroutine NODES.
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8.6 SOURCE CODE LISTING

SUBROUTINE NODES
CRRR ke kR ke kA R R KRR AR AR AR AR AR AR R R AR AR R RN Rk

8.1 PURPOSE:
TO INPUT NODE NUMBERS AND COORDINATES

8.2 INPUT:
NODE NUMBERS AND COORDINATES ARE READ FROM THE USER-

SUPPLIED FILE ASSIGNED TO UNIT "INF"

8.3 OUTPUT:
NODE NUMBERS AND COORDINATES ARE WRITTEN TO THE USER-
DEFINED FILE ASSIGNED TO UNIT "OUTF"

8.4 DEFINITIONS OF VARIABLES:
DIM = COORDINATE SYSTEM TYPE
INC = NODE NUMBER INCREMENT
NUMNOD = NUMBER OF NODES READ

X1(I) = X COORDINATE FOR NODE I IF DIM = 1, 2, OR 3
= R COORDINATE FOR NODE I IF DIM = 4

X2(I) = IS NOT USED IF DIM = 1
= Y COORDINATE FOR NODE I IF DIM = 2 OR 3
= 2 COORDINATE FOR NODE I IF DIM = 4

X3(I) = IS NOT USED IF DIM = 1, 2, OR 4
= 2 COORDINATE FOR NODE I IF DIM = 3

8.5 USAGE:

NODE NUMBERS AND COORDINATES ARE READ, ONE NODE
PER LINE, BEGINNING WITH NODE 1. NODE NUMBERS
FOR "MISSING" NODES ARE GENERATED BY THE
SUBROUTINE BY ADDING THE NODE NUMBER INCREMENT
TO THE NODE NUMBER FOR THE PRECEEDING NODE.
COORDINATES FOR "MISSING" NODES ARE COMPUTED BY
THE SUBROUTINE USING LINEAR INTERPOLATION. TO
TERMINATE INPUT, PLACE A ~1 IN ALL FIELDS OF
THE INPUT FILE.

SUBROUTINES CALLED:
NONE

REFERENCES :
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 8.

[eXeNeNeNeReReNeNeNeNeReReNeNeReNeNe NeReNe Ne Ne e ReNeNeNeReNeNeNe NeNeNe Ne Ne Ne Ne Ne Ne N e}

c*********************************************************************

$INCLUDE: 'COMALL"
DIMENSION XY2 (MAX1, 3)
EQUIVALENCE (X1,XY2(1,1)), (X2,XY¥2(1,2)), (X3,X¥2(1,3))
INTEGER CNODE, OLDNOD

c
NUMNOD = 0
IDIM = DIM
IF (DIM .EQ. 4) IDIM = 2
OLDNOD = MAX1
c READ FROM INPUT FILE: NODE NUMBER, NODE NUMBER INCREMENT,
c AND NODAL COORDINATES
10 READ (INF, *) CNODE, INC, (XYZ (CNODE, I),I=1,IDIM)

IF (CNODE .EQ. -1) GOTO 40
IF (CNODE .GT. NUMNOD) NUMNOD = CNODE
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20
30

40

50

60

70

80

90
100

110

N =

Subroutine Nodes

GENERATE NODE NUMBERS AND COORDINATES FOR "MISSING" NODES
NGENP1 = (CNODE - OLDNOD) / INC
IF (NGENP1 .GT. 0) THEN
DO 30 I = 1, IDIM
XYZINC = (XY2(CNODE,I) - XYZ(OLDNOD,I)) / FLOAT (NGENP1)
DO 20 J = OLDNOD + INC, CNODE - INC, INC
XYZ (J,I) = XY2(J-INC,I) + XYZINC
CONTINUE
CONTINUE
ENDIF
OLDNOD = CNODE
GOTO 10
WRITE NODE NUMBERS AND NODAL COORDINATES TO OUTPUT FILE
IF (NUMNOD .GT. 0) THEN
IF (DIM .EQ. 1) THEN
WRITE (OUTF, 50)
FORMAT (3X, '"NODE', 10X, '"NODAL COORDINATES'/
2X, '"NUMBER', 18X, 'X"'/
2X,6('="),8%,20('="))
ELSEIF (DIM .EQ. 2) THEN
WRITE (OUTF, 60)
FORMAT (3X, 'NODE', 21X, '"NODAL COORDINATES'/
2X, 'NUMBER', 18X, 'X', 20X, 'Y'/
ZX,G('-')'BX'ZO('-')'IX'ZO('-'))
ELSEIF (DIM .EQ. 3) THEN
WRITE (OUTF,70)
FORMAT (3X, '"NODE', 31X, 'NODAL COORDINATES'/
2X, 'NUMBER', 18X, 'X', 20X, 'Y"', 20X, '2'/
2X,6('-"),8X,20('-"),1X,20("'="),1X,20('-"))
ELSEIF (DIM .EQ. 4) THEN
WRITE (QUTF, 80)
FORMAT (3X, 'NODE', 21X, 'NODAL COORDINATES'/
2X, '"NUMBER', 18X, 'R', 20X, '2'/
2X%,6('="),8X,20('-"'),1X,20('="))
ENDIF
DO 100 I = 1, NUMNOD
WRITE (OUTF, 90) I, (XY¥2(I,J),J=1,IDIM)
FORMAT (I6,10X,3(F15.4,6X))
CONTINUE
ELSE
WRITE (OUTF, 110)
FORMAT (' NO NODAL POINT DATA READ.')
ENDIF
RETURN
END
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SUBROUTINE ELEMENT

9.1 PURPOSE

Subroutine ELEMENT inputs the element number, element type, and ¢lement node
numbers for each element in the finite element mesh. The subroutine can be used for one-,
two-, or three-dimensional problems or for problems with axisymmetry.

9.2 INPUT

Element numbers, element types, and element node numbers are read "free-format”
from the user-supplied file assigned to unit "INF". INF is passed to the subroutine
through a labeled common block contained in the file "COMALL" (see Chapter 7 for a
listing of COMALL).

9.3 OUTPUT

Element numbers, element types, and element node numbers are written to the user-
defined file assigned to unit "OQUTF". Column headings are added to the list of element
numbers, element types, and element numbers written to OUTF. The number of elements
in the mesh (variable "NUMELM"), element types (array "ELEMTYP"), and element node
nubn;obers (array "IN"), are stored in labeled common blocks in COMALL for use by other
subroutines.

9.4 DEFINITIONS OF VARIABLES

ELEMTYP(I) = Element type for elementI (Table 9.1).
IN(,T) = Node number J for element L.
INC = Element node number increment.
NODETBL(I) = Number of nodes in element type I (Table 9.1).
NUMELM = Number of elements in the mesh.

9.5 USAGE

Example input and output for subroutine ELEMENT are in Figures 9.1 to 9.3. Each
line of input contains an element number, and the element type, element node number
increment, and node numbers for the element. The mesh in Figure 9.1 is one-dimensional
(DIM = 1) and contains five linear bar elements. Element 1 has an element type of 1
(ELEMTYP(1) = 1), an element node number increment of 1 (INC = 1), and node numbers
1 and 2 (IN(1,1) = 1 and IN(1,2) =2). Element 5 has an element type of 1
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/— node numbers
1 2 3 4 5 6
*—o—0 8- — 9

m @ 6 @ ©)

\— element numbers

Input Data :
1 1 1 1 2
5 1 1 5 6
-1 -1 -1 -1 -1
Cutput :
ELEMENT ELEMENT
NO. TYPE NODE NUMBERS
1 1 1 2
2 1 2 3
3 1 3 4
4 1 4 5
5 1 5 6

Figure 9.1 Example input data and output for subroutine ELEMENT.

(ELEMTYP(S5) = 1), an element node number increment of 1 (INC = 1), and node numbers
5 and 6 (IN(5,1) = 5 and IN(5,2) = 6). The subroutine has the capability to "generate”
element numbers, element types, and element node numbers for elements "missing" from
the input file, and this feature can be used to greatly simplify data input. In Figure 9.1, for
example, the element node numbers for element 2 are generated within ELEMENT by
adding the node number increment for node 5 to the node numbers for element 1 :

IN2,1) = IN(1,L1) +INC = 1+1 =2
IN2,2) = IN(1,2)+INC = 2+1 =3

Similarly the element node numbers for elements 3 and 4 are generated within ELEMENT
by adding the node number increment for node 5 to the node numbers for element 2 and 3.
For element 3 :

IN(3,1) = INQ,1)+INC = 2+1
IN(3,2) = IN(2,2) +INC = 3 +1

[ ]
IS
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Forelement 4 :

IN(4,1) = IN3,1)+INC = 3+1 =4
IN(4,2) = IN42)+INC =4+1 =5

Input is terminated by placing a -1 in all fields.

The mesh in Figure 9.2 is two-dimensional (DIM = 2) and contains ten linear
quadrilateral elements. Element 1 has an element type of 6 (ELEMTYP(1) = 6), an element
node number increment of 3 (INC = 3), and element node numbers 1, 4, 5, and 2 (IN(1,1)
= 1, IN(1,2) = 4, IN(1,3) = 5, IN(1,4) = 2). Element 5 has an element type of 6
(ELEMTYP(5) = 6), an element node number increment of 3 (INC = 3), and element node
numbers 13, 16, 17, and 14 (IN(5,1) = 13, IN(5,7) = 16, IN(5,3) = 17, and IN(5,4) =
14). The node number increment for element 5 is used to "generate” the element node
numbers for the "missing” elements 2, 3, and 4.

/— node numbers

18

17
element
2 ~— numbers
1 4 7 10 13 16
Input Data :

1 6 3 1 4 5 2

5 6 3 13 16 17 14

6 6 3 2 5 6 3

10 6 3 14 17 18 15

-1 -1 -1 -1 -1 -1 -1

Output :
ELEMENT ELEMENT
NO. TYPE NODE NUMBERS

1 6 1 4 5 2
2 6 4 7 8 5
3 6 7 10 11 8
4 6 10 13 14 11
5 6 13 16 17 14
6 6 2 5 6 3
7 6 5 8 9 6
8 6 8 11 12 9
9 6 11 14 15 12
10 6 14 17 18 15

Figure 9.2 Example input data and output for subroutine ELEMENT.
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For element 2 : INQ,I) = IN(L1)+INC = 1+3 =4

IN2,2) = IN(1,2) +INC = 4+3 = 7

IN(2,3) = IN(1,3) +INC = 5+3 = 8

INQ,4) = IN(14)+INC = 2+3 =5
For element 3 : ING,1) = INQ,)+INC =4+3 = 7

IN(3,2) = IN2,2)+INC =7+3 = 10

IN(3,3) = INR,3)+INC = 8+3 =11

IN(3,4) = INR4)+INC = 5+3 = 8

/ node numbers
1 4
3 Y 9’ L Fl ® element numbers

4)) v
0]
/

@)

2 3 8¢ ¥ 13
3
()]
@
o — il
1 4 7 10 12
Input Data :
1 4 1 2 6 3
2 4 1 2 5 6
3 4 1 1 5 2
4 4 1 4 5 1
5 5 1 5 8 9 6
6 5 1 4 7 8 5
7 7 1 7 10 12 13 14 11 9 8
4 1 1 -1 1 4 4 -1 -1 1 4
Qutput :
ELEMENT ELEMENT
NO. TYPE NODE NUMBERS

1 4 2 6 3

2 4 2 5 6

3 4 1 5 2

4 4 4 5 1

5 5 5 8 9 6

6 5 4 7 8 5

7 7 7 10 12 13 14 11 9 8

Figure 9.3 Example input data and output for subroutine ELEMENT.
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for element 4 : IN@4,1) = INGD+INC = 7 +3 =10

IN@4,2) = IN3,2) +INC = 10+3 = 13
IN(4,3) = IN(3,3) +INC = 11+3 = 14
IN@4,4) = ING4H+INC = 8 +3 = 11

The same procedure is used to "generate” the "missing” elements between elements 6 and
10

Subroutine ELEMENT allows the user to use any combination of compatible element
types in a mesh. Referring to Table 9.1 a one-dimensional mesh can be designed using
any combination of one-dimensional elements (Types 1, 2, or 3). Similarly, any
combination of element types 3, 4, 5, 6, 7, or 8 can be used in a two-dimensional mesh,
any combination of element types 9, 10, or 11 can be used in a three-dimensional mesh,
and any combination of element types 12 or 13 can be used in an axisymmetric mesh. An
example of a two-dimensional mesh containing a three element types is in Figure 9.3.
Elements 1, 2, 3, and 4 are linear wriangle elements (Type 4), elements 5 and 6 are linear
rectangle elements (Type 5), and element 7 is a quadratic quadrilateral element (Type 7).

Note that the element node numbers must be entered in a specific order. The proper
order is shown in the definition sketch for the interpolation functions for each element type.
For example, by referring to Figure 4.10 we see that the node numbers for linear
quadrilateral elements must be entered in a "counter clockwise” fashion.

9.6 SOURCE CODE LISTING

SUBROUTINE ELEMENT
AR AR AR R AR R AR R AR AR AR AR AR AR AR AR R R AR AR R AR R AR KRR R R KRR R KRN AR KRR R R AR AR AR K&

a0

9.1 PURPROSE:
TO INPUT ELEMENT NUMBERS, TYPES, NODE NUMBERS

9.2 INPUT:
ELEMENT NUMBERS, TYPES, AND NODE NUMBERS ARE READ
FROM THE USER-SUPPLIED FILE ASSIGNED TO UNIT "INF"

9.3 OUTPUT:
ELEMENT NUMBERS, TYPES, AND NODE NUMBERS ARE WRITTEN
TO THE USER-DEFINED FILE ASSIGNED TO UNIT "OUTF"™

9.4 DEFINITIONS OF VARIABLES:
ELEMTYP(I) = ELEMENT TYPE FOR ELEMENT I
IN(I,J) = NODE NUMBER J FOR ELEMENT I
INC = NODE NUMBER INCREMENT
NODETBL(I) = NUMBER OF NODES IN ELEMENT TYPE I
NUMELM = NUMBER OF ELEMENTS IN MESH

9.5 USAGE:
ELEMENT DATA (ELEMENT NUMBER, TYPE, AND NODE NUMBERS)
ARE READ SEQUENTIALLY, SET OF ELEMENT DATA PER LINE.
ELEMENT NUMBERS, TYPES, AND NODE NUMBERS FOR "MISSING"
ELEMENTS ARE GENERATED BY THE SUBROUTINE. TO TERMINATE
INPUT, PLACE A -1 IN ALL FIELDS OF THE INPUT FILE.

SUBROUTINES CALLED:
NONE

REFERENCES :

ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
C
C
C
C
C
c MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 9.
C

C

AR AR R R R R R R R AR R R R R R R AR R R AR AR R R R AR R R R R AR AR AR R KRR AR AR AR AR AR R AR AR R AR ARk
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$INCLUDE: 'COMALL'

10

20
30

40

50

60
70

80

INTEGER OLDELM,ELM, TYPE
DIMENSION NODETBL (13)
DATA NODETBL/2,3,4,3,4,4,8,12,8,20,32,3,4/

MAXNOD=0
OLDELM=MAX2
NUMELM=0
READ FROM INPUT FILE: ELEMENT NUMBER, ELEMENT TYPE,
AND ELEMENT NODE NUMBERS
READ (INF,*) ELM,TYPE, INC, (IN(ELM, I), I=1,NODETBL (ABS (TYPE)))
IF (ELM .EQ. -1) GOTO 40
ELEMTYP (ELM) = TYPE
IF (ELM .GT. NUMELM) NUMELM = ELM
IF (NODETBL (TYPE) .GT. MAXNOD) MAXNOD = NODETBL (TYPE)
GENERATE THE MISSING ELEMENTS
IF (ELM .GT. OLDELM+1) THEN
DO 30 I = OLDELM + 1, ELM -1
IML=I-1
DO 20 J = 1, NODETBL (TYPE)
IN(I,J) = IN(IM1,J) + INC
CONTINUE
ELEMTYP (I) = TYPE
CONT INUE
ENDIF
OLDELM = ELM
GOTO 10
WRITE ELEMENT NUMBERS AND ELEMENT NODE NUMBERS TO OUTPUT FILE
IF (NUMELM .GT. 0) THEN
IF (MAXNOD .EQ. 2) THEN
WRITE (OUTF,50) (' *,I=1,2)
ELSEIF (MAXNOD .EQ. 3) THEN

WRITE (OUTF,50) (' ', I=1,2)
ELSEIF (MAXNOD .EQ. 4) THEN

WRITE (OUTF,50) (' ', I=1,2)
ELSEIF (MAXNOD .GT. 4) THEN

WRITE (OUTF,50) (' 4, I=1,2)
ENDIF
FORMAT (/, 2 (2X, 'ELEMENT', 4X) / 4X, 'NO. ', 10X, 'TYPE', 6X, A,

'NODE NUMBERS'/2 (2X, ' ~=====m ', 4%) ,1X, A, V== mm e ')

DO 70 I = 1, NUMELM
WRITE (OUTF, 60) I,ELEMTYP (I),
(IN(I,J),J=1,NODETBL (ELEMTYP (I)))
FORMAT (I7, I13,6X,8I6:4(/26X,8I6))
CONTINUE
ELSE
WRITE (OUTF, 80)
FORMAT (! NO ELEMENT DATA READ.')
ENDIF
RETURN
END
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SUBROUTINE MATERL

10.1 PURPOSE

Subroutine MATERL inputs the element material set numbers for each element in the
finite element mesh and a set of material properties for each material set. The term "material
property” refers to any physical or chemical property for an element. For example, in
solving the steady-state, saturated groundwater flow equation we use the components of
saturated hydraulic conductivity to compute a conductance matrix for each element . It is
convenient to assign all elements with the same saturated hydraulic conductivity to a single
material set, the material properties for that set would be the components of saturated
hydraulic conductivity for the elements in the set. Other examples of material properties are
specific storage, porosity, bulk density, dispersivities, distribution coefficients, or a table
of values of unsaturated hydraulic conductivity as a function of pressure head.

10.2 INPUT

Element material set numbers are read "free-format” from the user-supplied file
assigned to unit "INF". INF is passed to the subroutine through a labeled common block
contained in the file "COMALL" (see Chapter 7 for a listing of COMALL). Then the
number of material properties in a material set and a list of material properties for each
material set are read from INF.

10.3 OUTPUT

Element material set numbers and the list of material properties for elements in each
material set are written to the user-defined file assigned to unit "OUTF". Column headings
are added to the list of material set numbers and material properties written to OUTF. The
number of element material sets (variable "NUMMAT"), the material set numbers for each
element (array "MATSET"), the number of material properties in a material set (variable
"NUMPROP"), and the material properties for each material set, array "PROP", are stored
in labeled common blocks in COMALL for use by other subroutines.

10.4 DEFINITIONS OF VARIABLES

MATSET(@) = Material set number for element I.

NUMMAT = Number of material sets in the mesh.
NUMPROP = Number of material properties in a material set.
PROP(1,]) = Material property J for material set I.

318
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Material property order for MATERL.

Table 10.1

Material Properties, PROP (L,J)

Problem
Dimension

Computer
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10.5 USAGE

Material set numbers are read in sequentially from element one to element NUMELM,
one element and material set number per line. The subroutine has the capability to
"generate” the material set numbers for elements "missing" from the input file. In the mesh
in Figure 10.1, the material set numbers for all elements are the same. In this case we need
only list the material set numbers for elements 1 and 10 (MATSET(1) = 1 and

element numbers
$ & 9

Ol & @ )

.-—?—C 9- . 4 ®

©@[m] & ® (10

*-—o—& @ o ®

All elements have identical material properties
Ky =K, =10, Sg=0.0002

Input Data :
1 1
10 1
-1 -1
3
1 10. 10.  0.0002
Output :
ELEMENT
NO. MATERIAL SET NUMBER
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 1
MATERIAL
SET NO. MATERIAL PROPERTIES
1 .100000E+2  .100000E+2  .200000E-3

Figure 10.1 Example input data and output for subroutine MATERL.
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MATSET(10) = 1). The subroutine "generates” the material set numbers for the eight
"missing" elements (elements 2, 3, 4, 5, 6, 7, 8, and 9), MATSET(2) = MATSET(3) = -
MATSET(9) = 1. Input of material set number is terminated by placing a -1 in both fields.
The number of material properties in a material set is read next. Note that all material
sets must have the same number of material properties. For the mesh in Figure 10.1
NUMMAT = 3 (the two components of hydraulic conductivity and specific storage). The
material properties for each material set are read next. The correct order to use for entering
material properties is in Table 10.1. Any consistent system of units can be used (If in
doubt see the source code listing for the subroutines that compute the element matrices, e.g.
KBARZ, KQUA4, DQUA4, etc.). For the mesh in Figure 10.1, PROP(1,1) = 10,

element numbers

sandstone

granite —l:

For sandstone: K;=K,=1x10-4
For granite:  K;=K,=1x10-6

Input Data : 1 1
4 1
5 2
8 2

-1 -1

2
1 1.E-4 1.E4
2 1LE-6 1.E-6

Qutput : ELEMENT

NO. MATERIAL SET NUMBER
1 1
2 1
3 1
4 1
5 2
6 2
7 2
8 2
MATERIAL
SET NO. MATERIAL PROPERTIES

1 .100000E-03 .100000E-03
2 .100000E-05 .100000E-05

Figure 10.2 Example input data and output for subroutine MATERL.
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PROP(1,2) = 10, and PROP(1,3) = 0.0002. Input of material properties is terminated
automatically by the subroutine.

There are two material sets in the mesh in Figure 10.2. Elements 1, 2, 3, and 4 are in
material set 1 and elements §, 6, 7, and 8 are in material set 2. Each material set has two
properties, in this case the two components saturated hydraulic conductivity.

Material properties can also be used to represent a table, for example a table of values of
unsaturated hydraulic conductivity as a function of pressure head. If an unsaturated flow
problem was being solved, the value of unsaturated hydraulic conductivity at any value of
pressure head could be obtained from such a list by interpolation (alternative approaches to
describing unsaturated hydraulic conductivity were described in Chapter 5). An example of
the use of material property data for this purpose is in Figure 10.3.

element numbers

/
4

)

@ 3) @

All elements have identical material properties

¥ K(y)
0 1.000
10 .600
20 .200
50 .015
100 .010
200 .002
300 .003
InputData: 1 1
4 1
-1 -1
14
1 0 1.000 10. 0.600 20. 0.200
50. 0.015 100. 0.010 200. 0.002
300. 0.003
Output: ELEMENT
NO. MATERIAL SET NUMBER
1 1
2 1
3 1
4 1
MATERIAL
SET NO. MATERIAL PROPERTIES
1 .000000E+00 .100000E+01 .100000E+02 .600000E+00
.200000E+02 .200000E+00 .500000E+02 .150000E- 01
.100000E+03 .100000E- 01 .200000E+03 .200000E- 02
.300000E+03  .300000E- 02
Figure 10.3 Example input data and output for subroutine MATERL.
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10.6 SOURCE CODE LISTING

SUBROUTINE MATERL

ChRAXRARAARRRRARRARRRRRAR KA RA DA ARARARAA AR AR ARAARAARAR AR AR A AR A A A AR AR

c

C 10.1

10.2

10.3

10.4

10.5

a0 0000000000Q00000000000000

PURPOSE :
TO INPUT ELEMENT MATERIAL SET NUMBERS AND MATERIAL
PROPERTIES FOR EACH MATERIAL SET

INPUT:
ELEMENT MATERIAL SET NUMBERS AND MATERIAL PROPERTIES
FOR EACH MATERIAL SET ARE READ FROM THE USER-SUPPLIED
FILE ASSIGNED TO UNIT "INF"

OUTPUT:
ELEMENT MATERIAL SET NUMBERS AND MATERIAL PROPERTIES
FOR EACH MATERIAL SET ARE WRITTEN TO THE USER-DEF INED
FILE ASSIGNED TO UNIT "OUTF"

DEFINITIONS OF VARIABLES:
MATSET(I) = MATERIAL SET NUMBER FOR ELEMENT I
NUMMAT = NUMBER OF MATERIAL SETS
NUMPROP = NUMBER OF MATERIAL PROPERTIES IN EACH
MATERIAL SET
PROP(I,J) = MATERIAL PROPERTY J FOR MATERIAL SET I

USAGE:
ELEMENT MATERIAL SET NUMBERS ARE READ IN SEQUENTIALLY,
ONE ELEMENT NUMBER AND MATERIAL SET NUMBER PER LINE.
MATERIAL SET NUMBERS FOR "MISSING" ELEMENTS ARE
GENERATED BY THE SUBROUTINE BY ASSIGNING THE MATERIAL
SET NUMBER OF THE PRECEEDING ELEMENT TO EACH "MISSING"
ELEMENT. TO TERMINATE INPUT OF ELEMENT MATERIAL SET
NUMBERS, PLACE A -1 IN ALL FIELDS OF THE INPUT FILE.
THE PROGRAM THEN READS THE NUMBER OF MATERIAL SET
PROPERTIES IN EACH MATERIAL SET (THE NUMBER OF MATERIAL
PROPERTIES IN EACH MATERIAL SET IS THE SAME). THEN
THE MATERIAL PROPERTIES FOR EACH MATERIAL SET ARE READ IN
SEQUENTIALLY, ONE MATERIAL SET NUMBER AND ONE SET OF
MATERIAL PROPERTIES PER LINE. INPUT IS TERMINATED
AUTOMATICALLY WHEN THE LAST MATERIAL SET PROPERTIES ARE
READ.

SUBROUTINES CALLED:
NONE

REFERENCES :
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 10.

ol L e e e T e T e T e ST T Es
S$INCLUDE: 'COMALL'

c

10

INTEGER OLDELM, ELM, SETNUM

OLDELM = MAX4

NUMMAT = 0

READ FROM INPUT FILE: ELEMENT NUMBER, AND MATERIAL SET NUMBER
READ (INF, *) ELM,MATSET (ELM)

IF (ELM .EQ. -1) GOTO 30

DETERMINE THE NUMBER OF MATERIAL SETS

IF (MATSET(ELM) .GT. NUMMAT) NUMMAT = MATSET(ELM)
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20

30

40

50
60
c

Subroutine Materl

GENERATE THE MATERIAL SET NUMBER FOR EACH "MISSING" ELEMENT
IF (ELM .GT. OLDELM + 1) THEN
DO 20 I = OLDELM + 1, EIM - 1
MATSET (I) = MATSET(I-1)
CONTINUE
END IF
OLDELM = ELM
GOTO 10
WRITE THE MATERIAL SET NUMBER FOR EACH ELEMENT TO OUTPUT FILE
IF (NUMELM .GT. 0) THEN
WRITE (OUTF, 40)
FORMAT (//2X, '"ELEMENT'/4X, 'NO. ', 9X, '"MATERIAL SET NUMBER'/
zx'l l'7x'l l)
DO 60 I = 1, NUMELM
WRITE (OUTF, 50) I,MATSET(I)
FORMAT (I6,I20)
CONTINUE
READ FROM INPUT FILE: THE NUMBER OF PROPERTIES IN EACH

MATERIAL SET

70

80
90

100

READ (INF, *) NUMPROP

IF (NUMPROP .EQ. 1) THEN
WRITE (OUTF,70) (' ',I=1,2)

ELSEIF (NUMPROP .EQ. 2) THEN

WRITE (OUTF,70) (' ', I=1,2)
ELSEIF (NUMPROP .EQ. 3) THEN

WRITE (OUTF,70) (' ', I=1,2)
ELSEIF (NUMPROP .GE. 4) THEN

WRITE (OUTF,70) (' ', I=1,2)
ENDIF
FORMAT (//2X, '"MATERIAL'/3X, 'SET NO.', 3X,3,

'MATERIAL PROPERTIES'/2X, '===v= ---',3%,A,
L] l)
WRITE MATERIAL PROPERTIES INFORMATION TO OUTPUT FILE
DO 90 I = 1, NUMMAT
READ (INF, *) SETNUM, (PROP (SETNUM, J) , J=1, NUMPROP)
WRITE (OUTF, 80) SETNUM, (PROP (SETNUM, J) , J=1,NUMPROP)
FORMAT (I7,7X,8 (1P4E15.6/14X))
CONTINUE
ELSE
WRITE (OUTF, 100)
FORMAT (' NO ELEMENT MATERIAL PROPERTY DATA READ.')
ENDIF
RETURN
END
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SUBROUTINE BOUND

11.1 PURPOSE

Subroutine BOUND inputs specified values of the field variable (hydraulic head,
pressure head, or solute concentration) and specified values of either groundwater flow or
solute flux, for selected nodes in mesh. These values are used to represent Dirichlet and
Neumann boundary conditions for the groundwater flow and solute transport equations.

11.2 INPUT

Specified values of the field variable are read "free-format" from the user-supplied file
assigned to unit "INF". INF is passed to the subroutine through a labeled common block
contained in the file "COMALL" (See Chapter 7 for a listing of COMALL). Then specified
values of either groundwater or solute flux are read from INF.

11.3 OUTPUT

Specified values of the field variable (hydraulic head, pressure head, or solute
concentration) and either groundwater flow or solute flux are written to the user-defined file
assigned to unit "OUTF". Column headings are added to the list of specified values written
to OUTF. The character variables "LABEL1" and "LABEL2" are used to label the column
headings on OUTF as "HYDRAULIC HEAD", "PRESSURE HEAD", or "SOLUTE
CONCENTRATION" and "GROUNDWATER FLOW" or "SOLUTE FLUX".

11.4 DEFINITIONS OF VARIABLES

FLUX(I) = Specified value of groundwater flow or solute flux at node L.
X = Specified value of the field variable (hydraulic head, pressure head
or solute concentration) at node L.
ICH(I) = 1if the value of the field variable is specified for node L.
= 0, otherwise.
1
LCH(I) = 2 ICH(k). The arrays ICH and LCH are used in subroutines
k=1
ASMBK, ASMBKC, and ASMBAD to modify global system of
equations for specified values of the field variable.
LABELL1 = Character variable used to label column headings for specified

values of the field variable on the file assigned to unit QUTF.
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LABEL1 = "HYDRAULIC HEAD", "PRESSURE HEAD", or
"SOLUTE CONCENTRATION".

LABEIL2 Character variable used to label column headings for specified
values of groundwater flow or solute flux on the file assigned to unit
OUTF. LABEL2 = "GROUNDWATER FLOW" or "SOLUTE

FLUX".

NDN = Number of nodes with specified values of the field variable (named
for "Number of Dirichlet Nodes™).

NDOF = Number of nodes where the value of the field variable are unknown
(named for "Number of Degrees of Ereedom).
= NUMNOD - NDN.

NNN = Number of nodes with specified values of groundwater flow or
solute flux (named for "Number of Neumann Nodes).

11.5 USAGE

Specified values of the field variable are read first, one node number and the specified
value of the field variable at that node per line. The node numbers and specified values can
be listed in any order on the input file. i i
at least one node in the mesh. Input is terminated by placing a -1 in both fields. Specified
values of groundwater flow or solute flux are read next, one node number and the specified
value of groundwater flow or solute flux at that node per line. The node numbers and
specified values can be listed in any order on the input file. Input is terminated by placing a
-1 in both fields.

The mesh in Figure 11.1 is for an unsaturated groundwater flow problem. In this case,
the calling program would assign the character strings "PRESSURE HEAD" and
"GROUNDWATER FLOW?", to the character variables "LABEL1" and "LABEL2",
respectively. Four values of pressure head are specified (at nodes 1, 2, 5, and 6) and there
are no specified values of groundwater flow. Specified values of pressure head are
assigned to the array "X", the remaining entries of X are arbitrarily assigned a value of zero
(the values of pressure head at these nodes will be computed by subroutine SOLVE, see
Chapter 13). The entries of the arrays "ICH" and "LCH" are assigned and, since there are
no specified values of groundwater flow, the entries of the array are assigned a value of
zero. After BOUND is executed these arrays would contain the following :

bt

(1)) ICH(I) LCH() FLUX()

-10.
-10.
0.
0.
-5.
-5.

AN WN—=
— OO
AU
eeeese

The mesh in Figure 11.2 is for a saturated groundwater flow problem. In this case the
calling program would assign the character strings "HYDRAULIC HEAD" and
"GROUNDWATER FLOW" to the character variables "LABEL1" and "LABEL2",
respectively. Five values of hydraulic head are specified (at nodes 3, 5, 8, 10, and 13) and
a pumping well is located at node 7. After BOUND is executed the entries of arrays X,
ICH, LCH, and FLUX would contain the following :
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I XD ICHQ) LCHQ®) FLUX(@)
1 0. 0 0 0.
2 0. 0 0 0.
3 10. 1 1 0.
4 0. 0 1 0.
5 10. 1 2 0.
6 0. 0 2 0.
7 0. 0 2 -10.
8 10. 1 3 0.
9 0. 0 3 0.
10 10. 1 4 0.
11 0. 0 4 0.
12 0. 0 4 0.
13 10. 1 5 0.
2 4 6
y=-10 y=-5
M 3
2 @
=-10 =-5
M 1 3 5 M
Input Data :
1 -10.
2 -10.
5 -5.
6 -5.
-1 -1
-1 -1
Cutput :
NODE SPECIFIED
NO. PRESSURE HEAD
1 -10.00
2 -10.00
5 -5.00
6 -5.00
NUMBER OF NODES WITH SPECIFIED PRESSURE HEAD = 4
NUMBER OF NODES WITH SPECIFIED GROUNDWATERFLOW = 0

Figure 11.1 Example input data and output for subroutine BOUND.
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328 Subroutine Bound
h = 10
3 5 8 10 13
o 4 & T
2 / 7 ¢ 12
Q=-10m’d
s g @ o
1 4 6 9 11
Input Data :
3 10.
5 10.
8 10.
10 10.
13 10.
-1 -1
7 -10.
-1 -1
Qutput :
NODE SPECIFIED
NO. HYDRAULIC HEAD
3 10.00
5 10.00
8 10.00
10 10.00
13 10.00
NUMBER OF NODES WITH SPECIFIED HYDRAULIC HEAD = 5
NODE SPECIFIED
NO. GROUNDWATER FLOW
7 -10.00
NUMBER OF NODES WITH SPECIFIED GROUNDWATER FLOW = 1

Figure 11.2 Example input data and output for subroutine BOUND.

Copyright American Geophysical Union



Groundwater Modeling by
Water Resources Monograph the Finite Element Method Vol. 13

Chapter 11 329

11.6 SOURCE CODE LISTING

SUBROUTINE BOUND
o2 IR L L L L R e I L T T T T T T 2

11.1 PURPOSE:
TO INPUT SPECIFIED VALUES OF THE FIELD VARIABLE
(HYDRAULIC HEAD, PRESSURE HEAD, OR SOLUTE CONCENTRATION)
AND SPECIFIED VALUES OF GROUNDWATER FLOW OR SOLUTE FLUX,
FOR SELECTED NODES.

11.2 INPUT:
SPECIFIED VALUES OF THE FIELD VARIABLE AND SPECIFIED
VALUES OF GROUNDWATER FLOW OR SOLUTE FLUX ARE READ
FROM THE USER-SUPPLIED FILE ASSIGNED TO UNIT "INF".

11.3 OUTPUT:
SPECIFIED VALUES OF THE FIELD VARIABLE AND SPECIFIED
VALUES OF GROUNDWATER FLOW OR SOLUTE FLUX ARE WRITTEN
TO THE USER-DEFINED FILE ASSIGNED TO UNIT “OUTF".

11.4 DEFINITIONS OF VARIABLES:
FLUX(I) = SPECIFIED VALUE OF GROUNDWATER FLOW OR
SOLUTE FLUX AT NODE I
ICH(I) = 1 IF THE VALUE OF THE FIELD VARIABLE IS
SPECIFIED FOR NODE I,
= 0 OTHERWISE
LCH(I) = ICH(I) + ICH(I-1) + ICH(I-2) + ...
THE ARRAYS ICH AND LCH ARE USED TO MODIFY
GLOBAL SYSTEM OF EQUATIONS IN SUBROUTINES
ASMBK, ASMBKC, AND ASMBAD
LABEL1 = CHARACTER VARIABLE USED TO LABEL COLUMN
HEADINGS FOR SPECIFIED VALUES OF THE FIELD
VARIABLE ON FILE ASSIGNED TO UNIT OUTF.
LABELl = "HYDRAULIC HEAD", "“PRESSURE HEAD"
OR "SOLUTE CONCENTRATION"
LABEL2Z = CHARACTER VARIABLE USED TO LABEL COLUMN HEADINGS
FOR SPECIFIED VALUES OF GROUNDWATER FLOW OR
SOLUTE FLUX ON FILE ASSIGNED TO UNIT OUTF.
LABEL2 = "GROUNDWATER FLOW" OR "SOLUTE FLUX"
NDN = NUMBER OF NODES WITH SPECIFIED VALUES OF THE
FIELD VARIABLE (NAMED FOR NUMBER OF DIRICHLET
NODES)
NDOF = NUMBER OF NODES WHERE THE VALUE OF THE FIELD
VARIABLE IS UNKNOWN (NAMED FOR NUMBER OF DEGREES
OF FREEDOM)
NNN = NUMBER OF NODES WITH SPECIFIED VALUES OF
GROUNDWATER FLOW OR SOLUTE FLUX (NAMED FOR NUMBER
OF NEUMANN NODES)
X(I) = SPECIFIED VALUE OF THE FIELD VARIABLE
(HYDRAULIC HEAD, PRESSURE HEAD, OR
SOLUTE CONCENTRATION) AT ‘NODE I

11.5 USAGE:

SPECIFIED VALUES OF THE FIELD VARIABLE ARE READ FIRST, ONE
NODE NUMBER AND THE SPECIFIED VALUE OF THE FIELD VARIABLE
AT THAT NODE PER LINE. THE NODE NUMBERS CAN BE LISTED IN
ANY ORDER ON THE INPUT FILE. THE VALUE OF THE FIELD
VARIABLE MUST BE SPECIFIED FOR AT LEAST ONE NODE IN THE
MESH. INPUT IS TERMINATED BY PLACING A -1 IN BOTH FIELDS.
SPECIFIED VALUES OF GROUNDWATER FLOW OR SOLUTE FLUX ARE

Q0000000000000 00000000N0NNANN0NNNNNNNNNNN000000NA0N00000O
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oO000000000000

Subroutine Bound

READ NEXT, ONE NODE NUMBER AND THE SPECIFIED VALUE OF
GROUNDWATER FLOW OR SOLUTE FLUX AT THAT NODE PER LINE.

THE NODE NUMBERS AND SPECIFIED VALUES CAN BE LISTED IN ANY
ORDER ON THE INPUT FILE. INPUT IS TERMINATED BY PLACING
A -1 IN BOTH FIELDS.

SUBROUTINES CALLED:
NONE

REFERENCES :
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 11.

CRARRE KRR AT R AR TR AR R AR AR AR KRR T RRRRARARAR AT RRRRRTRATR AR ARk ke ke k ko
SINCLUDE: 'COMALL'

c
c

10

20

30

40

50

60

70

INITIALIZATION
DO 10 I = 1, NUMNOD
ICH(I) = 0
FLUX(I) = 0.
CONTINUE
NDN = (0
READ FROM INPUT FILE: NODE NUMBER AND SPECIFIED VALUE OF
FIELD VARIABLE
READ (INF, *) I,X(I)
IF (I .NE. -1) THEN
IF (NDN .EQ. 0) WRITE (OUTF,30) LABEL1l
FORMAT (//3X, "NODE', 15X, 'SPECIFIED'/4X, 'NO.',10X,A/
2x' | J . l'gx'l l)
NDN = NDN + 1
ICH(I) = 1
WRITE INFORMATION JUST READ TO OUTPUT FILE
WRITE (OUTF,40) I,X(I)
FORMAT (I6,10X,F15.4)
GOTO 20
ENDIF
WRITE (QUTF, 50) LABEL1l,NDN
FORMAT (//*' NUMBER OF NODES WITH SPECIFIED ‘',A,' =',I7)
NNN = 0
READ FROM INPUT FILE: NODE NUMBER AND SPECIFIED VALUE OF
GROUNDWATER FLOW OR SOLUTE FLUX
READ (INF, *) I,FLUX(I)
IF (I .NE. -1) THEN
IF (NNN .EQ. 0) WRITE (OUTF,30) LABEL2
NNN = NNN + 1
WRITE THE INFORMATION JUST READ TO OUTPUT FILE
WRITE (OUTF,40) I,FLUX(I)
GOTO 60
ENDIF
WRITE (OUTF,50) LABEL2,NNN
LCH(1) = ICH(1)
DO 70 I = 2, NUMNOD
LCH(I) = LCH(I-1) + ICH(I)
CONT INUE
NDOF = NUMNOD - NDN
RETURN
END
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SUBROUTINE ASMBK

12.1 PURPOSE

Subroutine ASMBK assembles the global conductance matrix [K] and the global
specified flow matrix {F} (equation 5.1). The global matrices are modified during the
assembly process to account for specified values of the field variable (hydraulic head or
pressure head) and groundwater flow. ASMBK also computes the semi-bandwidth and the
number of degrees of freedom for the modified system of equations.
12.2 INPUT

None

12.3 OUTPUT

The semi-bandwidth and number of degrees of freedom for the modified system of
equations are written to the user-defined file assigned to unit "OUTF".

12.4 DEFINITIONS OF VARIABLES

B() = Modified specified flow matrix.
E = Element number.
ELEMTYP(Q) = Itiyl;;r;c)zm type for element I (see Table 9.1 for a list of element
FLUX() = Specified value of groundwater flow at node 1.
ICH(I) = 1 if the value of the field variable is specified for node I,
= 0 otherwise.
IISIZE = Length of array M.
KE(LJ) = Conductance matrix for element e in full matrix storage.
I
LCH(I) = z ICH(k). The arrays ICH and LCH are used to modify the
gklztlml system of equations for specified values of the field
variable.
M) = Modified global conductance matrix in vector storage.

331
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NDOF = Number of nodes where the value of the field variable is
unknown.

NODETBL(I) = Number of nodes in element type L

NUMELM = Number of elements in mesh.

SBW = Semi-bandwidth of modified global conductance matrix.

X = Value of the field variable (hydraulic head or pressure head) at
node L.

12.5 USAGE

Subroutine ASMBK assembles the global conductance matrix [K] and the global
specified groundwater flow matrix {F}. [K] and {F} are modified to account for specified
values of the field variable (hydraulic head or pressure head) during the assembly process,
using the procedures in Chapter 4. The global conductance matrix is assembled and
modified in vector storage in the array M. The modified, global specified flow matrix is
stored in the array B. Arrays M and B can be passed to subroutines DECOMP and SOLVE
(see Chapter 13) to obtain the remaining unknown values of head.

The number of degrees of freedom (number of unknown values of the field variable),
NDOF is computed in subroutine BOUND as

NDOF = NUMNOD - NDN (12.2)

where NUMNOD is the number of nodes in the mesh (Chapter 8) and NDN is the number
of nodes with specified values of the field variable (Number of Dirichlet Nodes) (Chapter
11). The semi-bandwidth, SBW for the modified system of equations is computed in
ASMBK using

SBW = R+1 (12.3)

where R is the maximum difference in node numbers for any two nodes within any element
in the mesh. However, if the value of the field variable is specified for a node, that node is
not used in the calculation of R (because the row in [K] for that node will be eliminated
when [K] is modified for the specified value of head).

The element conductance matrices are computed in a set of subroutines, one subroutine
for each element type (Table 12.1). Each subroutine name in this set begins with the letter

"K" (for the element conductance matrix [K(°)] ) followed by three or four letters that
identify the element type and the number of nodes in elements of that type. For example,
subroutine KBAR2 computes the element conductance matrix for one-dimensional, linear
bar elements and subroutine KPAR20 computes the element conductance matrix for three-
dimensional, quadratic parallelepiped elements. Subroutines KTRI3A and KREC4A
compute the element conductance matrix for two-dimensional (axisymmetric) linear triangle
and linear rectangle elements, respectively.
The source code listing for each element conductance matrix subroutine gives the

figure containing the interpolation functions and the equation used to compute [K(°)] for that
element type. Subroutines KBAR2, KTRI3, KREC4, and KTRI3A use analytical methods

to compute [K(’)] (Section 4.3.1). The rest of the subroutines use numerical methods
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(Section 4.3.2). An attempt has been made to choose FORTRAN variable names that are
suggestive of the symbols used in the equations in Chapter 4. A list of the most important
FORTRAN variable names and their symbols are in Table 12.2.

The operation of ASMBK is most easily explained by considering specific examples.
The mesh in Figure 12.1 contains four nodes (NUMNOD = 4) and three elements
(NUMELM = 3).

o ) G)
hy=10m @ ° ° 9 h,=0m
1 2 3 4

KM = K? = k& = 0.02ma

LWY=5 1P=6 LP=4m
Figure 12.1 Example mesh for ASMBK.

The value of hydraulic head is specified at nodes one and four ICH(1) = ICH4) = 1,
NDN = 2) and we are to compute the head at nodes two and three. NDOF =4 -2 =2 and
SBW = 1+1 = 2. All elements are the same type, ELEMTYP(1) = ELEMTYP(2) =
ELEMTYP(3) = 1, corresponding to a linear bar element type (Table 12.1). This element
type has two nodes (NODETBL(1) = 2) and the element conductance matrix for this
element type are computed using subroutine KBAR2. The results are:

for element 1

_ _ [ 0.0040 —0.0040]
E=1 KE = | 0.0040 0.0040
for element 2
[ 0.0033 -0.0033
E=2 KE = | -0.0033 0.0033]
for element 3 )
E=3 KE = 0.0050 -0.0050

[ -0.0050 0.0050

The global system of equations for this problem is

0.0040 —0.0040 0 0 h, =10 0
~0.0040 0.0073 —0.0033 0 ) 0
0  —0.0033 0.0083 —0.0050|| hy 0
0 0  —0.0050 0.0050]| h,= 0

> =

which can be modified to give

[ 0.0073 —0.0033] { hz} _ {0.04} o4
-00033 00083)\hsf ~ | 0O 4)
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Equation 12.4 is stored in three arrays in ASMBK: M, X, and B

0.0073
h .04
M= {-0.0033} X = {hz} B = {0: }
0.0083 3
These arrays can be passed to subroutines DECOMP and SOLVE (see Chapters 13) to
obtain hz and h3.

For another example consider the mesh in Figure 12.2.

node number
node coordinates
3 6 8 11
(0,10) (5,10) (10,10) (15,10
. 4 . 4 W |
o, | =
number
Q
h=10 ﬁ 2(0,5) 5(5,5) [©)] 910(155 ¢ h=0
)
3)
- —e >~ ) ’
1 4 7 9
0,0 (5,0) (10,0 (15,0)
y KV=k®=k®=k¥=1.0mud
KP=Kk®P=kP =k =1.0mu
X Q=-100m’A
Element Node Numbers
Number 1 2 3 4 5 6 7 8
1 2 5 6 3 - - - -
2 1 5 2 - - - - -
3 1 4 5 - - - - -
4 4 7 9 10 11 8 6 5

Figure 12.2 Example mesh for ASMBK.
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The mesh contains eleven nodes (NUMNOD = 11) and four elements (NUMNOD = 4).
The value of hydraulic head is specified at nodes 1, 2, 3, 9, 10, and 11 (NDN = 6) and we
are to compute the head at nodes 4, 5,6, 7,and 8. NDOF=11-6=5and SBW=4 +1
= 5, where the maximum difference in node numbers occurs in element 4 (nodes 1, 2, 3, 9,
10, and 11 are not used to calculate SBW). Element 1 is a linear rectangle (ELEMTYP(1)
= 5, with NODETBL(S) = 4), elements 2 and 3 are linear triangles (ELEMTYP(2) =
ELEMTYP(3) = 4, with NODETB(4) = 3), and element 4 is a quadratic quadrilateral
(ELEMTYP(4) = 7, with NODETBL(7) = 8). The element conductance matrix for element
1 is computed by subroutine KREC4:

2 ] 6 3
0.666 -0.166 —0.333 -0.166
-0.166 0.666 -0.166 —0.333
-0.333 -0.166 0.666 —0.166
-0.166 -0.333 -0.166 0.666

K =

W o N

the element conductance matrices for elements 2 and 3 are computed by subroutine KTRI3:

1 5 2
" 0.500 0.000 —0.500] 1
[K® =| 0.000 0.500 —0.500] s
| —0.500 —0.500 1.000] 2

1 4 5
" 0.500 —0.500 0.0007 1
[K® =|-0.500 1.000 -0.500
[ 0.000 -0.500 0.500] s

and the element conductance matrix for element 4 is computed by subroutine KQUAS:

4 7 9 10 11 8 6 5

[ 1.555 -0.822 0.500 -0.511 0.511 -0.511 0.500 -0.822] 4
-0.822 2311 -0.822 0.000 -0.511 0.355 -0.511 0.000| 7
0.500 -0.822 1.155 -0.822 0.500 -0.511 0.511 -0.511]9
-0.511 0.000 -0.822 2311 -0.822 0.000 -0.511 0.355]10
0.511 -0.511 0.500 -0.822 1.152 -0.822 0.500 -0.511{11
-0.511 0.355 -0.511 0.000 -0.822 2.311 -0.822 0.000|8
0.500 -0.511 0.511 -0.511 0.500 -0.822 1.155 -0.822(6
| -0.822 0.000 -0.511 0.355 -0.511 0.000 -0.822 2.311J5

K?) =

The global system of equations for the problem is
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[ 1.000 -0.500 0.000 -0.500 0.000 0.000 0.000 0.000 0.000 0.000 0000 ][ h=10] [ o)
-0.500 1.666 -0.166 0.000 -0.666 -0.333 0.000 0.000 0.000 0.000 0.000 || h,=10 0
0.000 -0.166 0.666 0.000 -0.333 -0.166 0.000 0.000 0.000 0.000 0.000 (| hy=10 0
0500 0.000 0.000! 2555 -1322 0.500 -0.822 -0.511° 0500 0511 0511 || s 0
0.000 -0.666 -0.333,-1.322 3.977 -0.988 0.000 0.000,-0.511 0.355 -0.511 hs -100
0.000 -0.333 -0.166, 0.500 -0.988 1821 -0.511 -0.822: 0.511 -0.511 0500[ hg =19 0 ¢
0.000 0.000 0.000 E-o.szz 0.000 -0.511 2311 0.3555-0.822 0.000 -0.511 hy 0
0.000 0.000 0.000,-0.511 0000 -0.822 0.355 2.311,-0.511 0.000 -0.822 hg 0
0.000 0.000 0.000 " 0300" 5T 0511 ~0.822 ~0.511° 1.155 -0.822 0.500 (| hg=0 0
0.000 0.000 0.000 -0.511 0.355 -0.511 0.000 0.000 -0.822 2311 -0.822 || h,,=0 0
L 0.000 0000 0.000 0.511 -0.511 0.500 -0.511 -0.822 0.500 -0.822 1.155 JL hy;=0) L o)

Figure 12.3 Global system of equations for the mesh in Figure 12.3.
" After modifying the global system for the six specified values of hydraulic head we
ave

2.555 -1.322 0.500 -0.822 -0.5117{ hy =5

-1.322 3977 -0.988 0.000 0.000|{ hs -90

0.500 -0.988 1.821 -0.511 -0.822{hgt =4 0 (12.5)

-0.822 0.000 -0.511 2311 0.355]| hy 0

-0.511 0.000 -0.822 0.355 2311 hg 0

Equation 12.5 is stored in arrays M, X, and B

[ 2.555)
-1.322
0.500
-0.822
-0.511
3.977 h, -5
-0.988 hs —9ol
M =< 0.000} X =4{hg B = 0
0.000 hy 0
1.821 h 0,
-0.511
-0.822
2.311
0.355
| 2.311)

These arrays can be passed to subroutines DECOMP and SOLVE to obtain hy, hs, hg, hy

and hg.
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12.6 SOURCE CODE LISTING

SUBROUTINE ASMBK
R R Ty e T Y

12.1 PURPOSE:

SUBROUTINE ASMBK ASSEMBLES THE GLOBAL CONDUCTANCE MATRIX
AND THE GLOBAL SPECIFIED FLOW MATRIX. THE GLOBAL MATRICES
ARE MODIFIED DURING THE ASSEMBLY PROCESS TO ACCOUNT FOR
SPECIFIED VALUES OF THE FIELD VARIABLE AND GROUNDWATER
FLOW DURING THE ASSEMBLY PROCESS. THE GLOBAL CONDUCTANCE
MATRIX IS ASSEMBLED AND MODIFIED IN VECTOR STORAGE. ASMBK
ALSO COMPUTES THE SEMI-BANDWIDTH AND THE NUMBER OF DEGREES
OF FREEDOM FOR THE MODIFIED GLOBAL CONDUCTANCE MATRIX.

12.2 INPUT:
NONE

12.3 OUTPUT:
THE SEMI-BANDWIDTH AND NUMBER OF DEGREES OF FREEDOM FOR
THE MODIFIED GLOBAL CONDUCTANCE MATRIX ARE WRITTEN TO THE
USER-DEFINED FILE ASSIGNED TO UNIT “OUTF"

12.4 DEFINITIONS OF VARIABLES:
B(I) = MODIFIED SPECIFIED FLOW MATRIX
E = ELEMENT NUMBER
ELEMTYP (I) = ELEMENT TYPE FOR ELEMENT I (SEE TABLE 9.1
FOR A LIST OF ELEMENT TYPES)
FLUX (I) = SPECIFIED VALUE OF GROUNDWATER FLOW
AT NODE I
ICH(I) = 1 IF THE VALUE OF THE FIELD VARIABLE IS
SPECIFIED FOR NODE I,
0 OTHERWISE
IJSIZE = LENGTH OF ARRAY M
KE(I,J) = CONDUCTANCE MATRIX FOR ELEMENT E IN
FULL MATRIX STORAGE
LCH(I) = ICH(I) + ICH(I-1) + ICH(I-2) + ...
THE ARRAYS ICH AND LCH ARE USED TO MODIFY
GLOBAL SYSTEM OF EQUATIONS FOR SPECIFIED
VALUES OF THE FIELD VARIABLES
M(IJ) = MODIFIED GLOBAL CONDUCTANCE MATRIX
IN VECTOR STORAGE
NDOF = NUMBER OF NODES WHERE THE VALUE OF THE
FIELD VARIABLE IS UNKNOWN
NODETBL (I) = NUMBER OF NODES IN ELEMENT TYPE I
NUMELM = NUMBER OF ELEMENTS IN MESH

SBW = SEMI-BANDWIDTH OF MODIFIED GLOBAL
CONDUCTANCE MATRIX
X(I) = VALUE OF THE FIELD VARIABLE (HYDRAULIC
HEAD OR PRESSURE HEAD) AT NODE I

12.5 USAGE:
THE SEMI-BANDWIDTH OF THE GLOBAL CONDUCTANCE MATRIX
IS COMPUTED FIRST. THEN THE ENTRIES OF THE ELEMENT
CONDUCTANCE MATRIX ARE COMPUTED IN A SET OF SUBROUTINES,
ONE SUBROUTINE FOR EACH ELEMENT TYPE. THE GLOBAL
CONDUCTANCE MATRIX FOR THE MESH IS ASSEMBLED BY ADDING
THE CORRESPONDING ENTRIES OF THE ELEMENT CONDUCTANCE
MATRICES TO THE GLOBAL CONDUCTANCE MATRIX. DURING THE
ASSEMBLY PROCESS THE GLOBAL CONDUCTANCE MATRIX IS MODIFIED

(oMo NeNeNeNeNo NN e Ne N NoNe e NeNe NeNeNe e ReNe Ne Re Ne Re e Re Ne e Ko e Ko e Re Ne Re Ne Ne Re Ne e Ne e Ke e Ne Ne e Ne Ko Ne Ne e NeXel
]
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FOR SPECIFIED VALUES OF HEAD. SPECIFIED VALUES OF
GROUNDWATER FLOW ARE ADDED TO THE GLOBAL FLOW MATRIX.

SUBROUTINES CALLED:
KBAR2, KBAR3, KBAR4,KTRI3,KREC4,KQUA4,KQUAS, KQUAl12, KPARS,
KPAR20,KBAR32, KTRI3A, KREC4A
LoC

REFERENCES :
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 12.

bt L T T
$INCLUDE: 'COMALL'

[eNeNe]

10

20
30

40

50

60

REAL KE (MAX3,MAX3)
INTEGER NODETBL (13)
DATA NODETBL/2,3,4,3,4,4,8,12,8,20,32,3,4/

COMPUTE THE SEMI-BANDWIDTH

SBW = 1
DO 30 E = 1, NUMELM
DO 20 I = 1, NODETBL (ELEMTYP (E))
KI = IN(E,I)
IF (ICH(KI) .EQ. 0 .AND. I .LT. NODETBL (ELEMTYP (E))) THEN
II = KI - LCH(KI)
DO 10 J = I + 1, NODETBL (ELEMTYP (E))
KJ = IN(E,J)
IF (ICH(KJ) .EQ. 0) THEN
JJ = ABS(KJ - LCH(KJ) - II) + 1
IF (JJ .GT. SBW) SBW = JJ
ENDIF
CONTINUE
ENDIF
CONTINUE
CONTINUE
WRITE (OUTF, 40) NDOF, SBW
FORMAT (//' NUMBER OF DEGREES OF FREEDOM IN MODIFIED K MATRIX =',
IS///' SEMI-BANDWIDTH OF MODIFIED K MATRIX =',1IS)
IF (SBW .GT. MAX6) STOP'** EXCEEDS MAXIMUM SEMI-BAND WIDTH **°'
INITIALIZE ENTRIES OF GLOBAL CONDUCTANCE MATRIX TO ZERO
IJSIZE = SBW * (NDOF - SBW + 1) + (SBW - 1) * SBW / 2
DO 50 IJ = 1, IJSIZE
M(IJ) = 0.0
CONTINUE
DO 60 I = 1, NUMNOD
IF (ICH(I) .EQ. 0) B(I-LCH(I)) = FLUX(I)
CONTINUE
LOOP ON THE NUMBER OF ELEMENTS
DO 90 E = 1, NUMELM
COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR THIS ELEMENT TYPE
IF (ELEMTYP(E) .EQ. 1) THEN
ELEMENT IS A ONE-DIMENSIONAL, LINEAR BAR
CALL KBAR2 (E, KE)
ELSEIF (ELEMTYP(E) .EQ .2) THEN
ELEMENT IS A ONE-DIMENSIONAL, QUADRATIC BAR
CALL KBAR3 (E,KE)
ELSEIF (ELEMTYP (E) .EQ. 3) THEN
ELEMENT IS A ONE-DIMENSIONAL, CUBIC BAR
CALL KBAR4 (E,KE)
ELSEIF (ELEMTYP(E) .EQ. 4) THEN
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c ELEMENT IS A TWO-DIMENSIONAL, LINEAR TRIANGLE
CALL KTRI3(E,KE) '
ELSEIF (ELEMTYP(E) .EQ. 5) THEN
c ELEMENT IS A TWO-DIMENSIONAL, LINEAR RECTANGLE
CALL KREC4 (E,KE) .
ELSEIF (ELEMTYP(E) .EQ. 6) THEN
c ELEMENT IS A TWO-DIMENSIONAL, LINEAR QUADRILATERAL
CALL KQUA4 (E,KE)
ELSEIF (ELEMTYP(E) .EQ. 7) THEN
c ELEMENT IS A TWO-DIMENSIONAL, QUADRATIC QUADRILATERAL
CALL KQUAS (E, KE)
ELSEIF (ELEMTYP(E) .EQ. 8) THEN
c ELEMENT IS A TWO-DIMENSIONAL, CUBIC QUADRILATERAL
CALL KQUA12 (E,KE)
ELSEIF (ELEMTYP(E) .EQ. 9) THEN
c ELEMENT IS A THREE-DIMENSIONAL, LINEAR PARALLELEPIPED
CALL KPARS (E,KE)
ELSEIF (ELEMTYP(E) .EQ. 10) THEN
c ELEMENT IS A THREE-DIMENSIONAL, QUADRATIC PARALLELEPIPED
CALL KPAR20 (E, KE)
ELSEIF (ELEMTYP(E) .EQ. 11) THEN
c ELEMENT IS A THREE-DIMENSIONAL, CUBIC PARALLELEPIPED
CALL KPAR32 (E,KE)
ELSEIF (ELEMTYP(E) .EQ. 12) THEN
c ELEMENT IS A TWO~-DIMENSIONAL, LINEAR TRIANGLE (AXISYMMETRIC)
CALL KTRI3A(E,KE)
ELSEIF (ELEMTYP(E) .EQ. 13) THEN
c ELEMENT IS A TWO-DIMENSIONAL, LINEAR RECTANGLE
(AXISYMMETRIC)
CALL KREC4A (E,KE)
ENDIF

ADD THE ELEMENT CONDUCTANCE MATRIX FOR THIS ELEMENT

TO THE GLOBAL CONDUCTANCE MATRIX

KE(I,J) =====-==--- > M(IJ) <=> M (KI,KJ)
C (FULL MATRIX STORAGE) (VECTOR MATRIX STORAGE) (FULL MATRIX
STORAGE)

Cc

[eNeNeXe]

DO 80 I = 1, NODETBL(ELEMTYP (E))
KI = IN(E,I)
IF (ICH(KI) .EQ. 0) THEN
II = KI - LCH(KI)
DO 70 J = 1, NODETBL (ELEMTYP (E))
KJ = IN(E,J)
IF (ICH(KJ) .NE. 0) THEN
B(II) = B(II) - KE(I,J) * X(KJ)
ELSEIF (J .GE. I) THEN
JJ = KJ - LCH(KJ)
CALL LOC(II,JJ, IJ,NDOF,SBW, SYMM)
M(IJ) = M(IJ) + KE(I,J)
ENDIF

70 CONTINUE
ENDIF

80 CONTINUE
90 CONTINUE

RETURN
END
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SUBROUTINE LOC(I,J, IJ,NDOF, SBW, SYMM)

c*****'k******i****'k**t*********************'k'k'k***t********************

[eNeNeNeNeNeNeNeKe]

s NeNeNeNeNeNeNe Ne Ke]

PURPOSE:
SUBROUTINE LOC COMPUTES THE LOCATION IN VECTOR STORAGE
OF A SPECIFIED ROW AND COLUMN OF A MATRIX (SYMMETRIC OR
NONSYMMETRIC) IN FULL MATRIX STORAGE .

DEFINITIONS OF VARIABLES:
I = SPECIFIED ROW OF MATRIX IN FULL MATRIX STORAGE
J = SPECIFIED COLUMN OF MATRIX IN FULL MATRIX
STORAGE
IJ = LOCATION IN VECTOR STORAGE CORRESPONDING TO
SPECIFIED ROW AND COLUMN IN FULL MATRIX STORAGE
NDOF = NUMBER OF DEGREES OF FREEDOM OF MATRIX
SBW = SEMI-BANDWIDTH OF MATRIX

REFERENCES :
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, CHAPTER S,
SECTIONS 5.1.3 AND 5.1.4

L2 2R SRS RR RS2 2222222 R 222222222222 222222222 2222 2 2R RS

INTEGER SBW
LOGICAL SYMM

IF (SYMM) THEN
M IS A SYMMETRIC MATRIX
II = I
JJ =J
IF (I .GT. J) THEN
K=1
I=J
J =K
ENDIF
IJ=J-I+1
IF (I .GT. 1) THEN
IF (SBW .LT. NDOF) THEN
IJ=1IJ + (I - 1) * SBW
L =1I - NDOF + SBW - 2
IF (L .GT. 0) IJ=IJ - L * (L+1) / 2
ELSE
IJ =13+ (I - 1) * (NDOF + (NDOF - I + 2)) / 2
ENDIF
ENDIF
I =1II
J =JJ
ELSE
M IS A NONSYMMETRIC MATRIX
IJ=J
IF (I .GT. 1) THEN
IF (SBW .LT. NDOF) THEN
IF (I .GT. SBW) IJ = IJ + SBW - I
IJ = IJ + (I - 1) * (2 * SBW - 1)
L = MIN(SBW,I) -1
IJ = IJ - L * ((SBW - 1) + (SBW - L)) / 2
L = I - NDOF + SBW -2
IF (L .GT. 0) IJ=IJ - L * (L+1) /2
ELSE
IJ =IJ + (I - 1) * NDOF
ENDIF
ENDIF
ENDIF
RETURN
END
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SUBROUTINE KBARZ2 (E,KE)
oL T T s

PURPOSE:
TO COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR A
ONE-DIMENSIONAL, LINEAR BAR ELEMENT

DEFINITIONS OF VARIABLES:
E = ELEMENT NUMBER
KE(I,J) = ELEMENT CONDUCTANCE MATRIX
KXE = HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION
LE = ELEMENT LENGTH

REFERENCES:
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, CHAPTER {4,
FIGURE 4.5, EQUATION 4.15.

[eNeNeNeNeNeNeoNeNeNeNeNeNeNe Ne Ne]

c**********************t***********t**t******************t**********t‘*

$INCLUDE: 'COMALL'
REAL KE (MAX3,MAX3),KXE,LE
c
KXE = PROP (MATSET (E),1)
LE = ABS(X1(IN(E,2)) - X1(IN(E,1)))
KE(1,1) = KXE / LE
KE(1,2) = -KE(1,1)
KE(2,1) = -KE(1,1)
KE(2,2) = KE(1,1)
RETURN
END

SUBROUTINE KBARS3 (E, KE)
oL e

PURPOSE:
TO COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR ONE-
DIMENSIONAL, QUADRATIC BAR ELEMENT

c
c
Cc
(o]
c
Cc DEFINITIONS OF VARIABLES:
c DETJAC = DETERMINANT OF JACOBIAN MATRIX
Cc DNDXI (I) = PARTIAL DERIVATIVE OF INTERPOLATION
(o] FUNCTION WITH RESPECT TO XI AT NODE I
(o] DNDX(I) = PARTIAL DERIVATIVE OF INTERPOLATION
Cc FUNCTION WITH RESPECT TO X AT NODE I
E
JAC
JACINV
KE (I,J)
KXE

ELEMENT NUMBER

JACOBIAN MATRIX

INVERSE OF JACOBIAN MATRIX
ELEMENT CONDUCTANCE MATRIX
HYDRAULIC CONDUCTIVITY

IN X COORDINATE DIRECTION
WEIGHT FOR GAUSS POINT I

Cc

(o]

(o]

c

c

c

c W(I)

c XI(I) = LOCATION OF GAUSS POINT I
(o] IN XI COORDINATE DIRECTION
c

c

(o]

(o]

(o]

(o]

(o]

REFERENCES :
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 4,
FIGURE 4.9, EQUATION 4.61

i 22222 RS2 R R R 2R R R RS2 RRRRE S22
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S$INCLUDE: 'COMALL'

20
30

40

50

60
70
80

REAL JAC,JACINV, KE (MAX3,MAX3) ,DNDXI (3) ,DNDX(3) ,W(2),
1 XI(2) ,KXE

XI(l) = 1 / SQRT(3.)
XI(2) = -XI(1)
W(l)= 1.
W(2)= 1.
KXE = PROP (MATSET (E),1)
DO 30 I =1, 3
DO 20 =1, 3
KE(I,J) = 0.
CONTINUE
CONTINUE
DO 80 I =1 2
DNDXI(1l)= -0.5 + XI(I)
DNDXI(2)= -2.0 * XI(I)
DNDXI(3)= 0.5 + XI(I)
JAC = 0
DO 40 J =1, 3
JAC = JAC + DNDXI(J) * X1(IN(E,J))

CONTINUE
JACINV = 1 / JAC
DETJAC = JAC
DO 50 g =1, 3
DNDX(J) = JACINV * DNDXI (J)
CONTINUE
DO 70 g =1, 3
DO 60 K =1, 3
KE(J,K) = KE(J,K) + W(I) * KXE * DNDX(J)
1 * DNDX(K) * DETJAC
CONTINUE
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE KBAR4 (E,KE)

CrRARA KKK KA R KRR RR KRR KRR RR KRR KRR KRR KRR KRR RRRRARARA KRR KA A RAARA AR AR AR R Ak

[eNeNeNeNeNoNoNeNeNeNeNe Ne e Ne Ne Re e Xe K el

PURPOSE:
TO COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR ONE-
DIMENSIONAL, CUBIC BAR ELEMENT

DEFINITIONS OF VARIABLES:
DETJAC = DETERMINANT OF JACOBIAN MATRIX
DNDXI(I) = PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO XI AT NODE I
DNDX(I) = PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO X AT NODE I
E = ELEMENT NUMBER
JAC = JACOBIAN MATRIX
JACINV = INVERSE OF JACOBIAN MATRIX
KE(I,J) = ELEMENT CONDUCTANCE MATRIX
KXE = HYDRAULIC CONDUCTIVITY IN X
COORDINATE DIRECTION
W(I) = WEIGHT FOR GAUSS POINT I
XI(I) = LOCATION OF GAUSS POINT I IN
XI COORDINATE DIRECTION
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REFERENCES :
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 4,
FIGURE 4.9B, EQUATION 4.61

[eNeNeNeNeNe]

o T s
$INCLUDE: 'COMALL'
REAL JAC, JACINV,KE (MAX3,MAX3),DNDXI (4) ,DNDX(4),W(3),

1 XI(3),KXE
c
XI(1) = 0.
XI{2) = SQRT(3. / 5.)
XI(3) = -XI(2)

W(l) =8./ 9.
W(2) = 5. / 9.
W(3) = W(2)
KXE = PROP (MATSET (E), 1)
DO30I=1, 4
DO 20 J =1, 4
KE(I,J) = 0.
20 CONTINUE
30 CONTINUE
DO 80 I =1, 3
DNDXI(1) = -(9. / 16.) * (3. * (XI(I)**2) -

1 2. * XI(I) - 1. / 9.)

DNDXI(2) = (27. / 16.) * (3. * (XI(I)**2) -
1 (2. / 3.) * XI(I) - 1.)

DNDXI(3) = -(27. / 16.) * (3. * (XI(I)**2) +
1 (2. / 3.) * XI(I) - 1.)

DNDXI(4) = (9. / 16.) * (3. * (XI(I)**2) +
1 2. * XI(I) - 1. / 9.)

JAC = 0

DO 40 T =1, 4
JAC = JAC + DNDXI(J) * X1(IN(E,J))
40 CONTINUE
JACINV = 1 / JAC
DETJAC = JAC
DO S50 J =1, 4
DNDX(J) = JACINV * DNDXI (J)
50 CONTINUE
DO 70 J =1, 4
DO 60 K =1, 4
KE(J,K) = KE(J,K) + W(I) * KXE * DNDX(J)
1 * DNDX(K) * DETJAC
60 CONTINUE
70 CONTINUE
80 CONTINUE
RETURN
END

SUBROUTINE KTRI3 (E,KE)
ol e e 2

PURPOSE:
TO COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR TWO-
DIMENSIONAL, LINEAR TRIANGLE ELEMENT

DEFINITIONS OF VARIABLES: )
AE4 = FOUR TIMES ELEMENT AREA
E = ELEMENT NUMBER

[eNeNeNeNeNeNeNe]
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KE (I,J) = ELEMENT CONDUCTANCE MATRIX

KXE = HYDRAULIC CONDUCTIVITY IN X
COORDINATE DIRECTION

KYE = HYDRAULIC CONDUCTIVITY IN Y
COORDINATE DIRECTION

REFERENCES :
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 4,
FIGURE 4.6, EQUATION 4.20

OO0O0O0O000000

CrRARA KA KR A KRR RKR a KRR KRR KRR RR KRR KRR KRR RRARRR KRR KRR RARRR KRR KRR RA KRR AR AR AR R Ak K

SINCLUDE: 'COMALL'
REAL KE (MAX3,MAX3),KXE,KYE,BE (3),CE (3)
c
KXE = PROP (MATSET (E), 1)
KYE = PROP (MATSET (E), 2)
BE(1) = X2(IN(E,2)) - X2(IN(E,3))
BE(2) = X2(IN(E,3)) - X2 (IN(E,1))
BE(3) = X2(IN(E,1)) = X2(IN(E,2))
CE(1) X1(IN(E,3)) - X1(IN(E,2))
CE(2) = X1(IN(E,1)) - X1(IN(E,3))
CE(3) = X1(IN(E,2)) - X1(IN(E,1))
AE4 = 2 * (X1(IN(E,2)) * X2(IN(E,3)) + X1(IN(E,1)) *
1 X2 (IN(E,2)) + X2(IN(E,1)) * X1(IN(E,3)) -
2 X2 (IN(E,3)) * X1(IN(E,1)) - X1(IN(E,3)) *
3 X2 (IN(E,2)) - X1(IN(E,2)) * X2(IN(E,1)))
DO 20 I =1, 3
DO 10 J =1, 3
KE(I,J) = (KXE * BE(I) * BE(J) + KYE * CE(I) * CE(J)) / AE4
10 CONTINUE
20  CONTINUE
RETURN
END

SUBROUTINE KREC4 (E,KE)
oL s e e e T

PURPOSE:
TO COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR TWO-
DIMENSIONAL, LINEAR RECTANGLE ELEMENT

c

Cc

(o]

c

c

(o] DEFINITIONS OF VARIABLES:

c E = ELEMENT NUMBER

C KE(I,J) = ELEMENT CONDUCTANCE MATRIX
(o] KXE = HYDRAULIC CONDUCTIVITY IN X
Cc COORDINATE DIRECTION

Cc KYE = HYDRAULIC CONDUCTIVITY IN Y
c COORDINATE DIRECTION

c

(o]

o]

Cc

(o]

c

(o]

REFERENCES :
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 4,
FIGURE 4.7, EQUATION 4.26

LR R 22 SR RS2 2R R Rt s SRR R R s s s s s s s R S ]
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$INCLUDE:

c

[eNeNeNoNoNoRoNe NN Ne NeNe Re e NeNe NeNe Ne Ne Ne e Ne Re Ne Ne Re Xe e Ke!

'COMALL'

Subroutine ASMBK

REAL KE (MAX3,MAX3),KXE,KYE

KXE = PROP (MATSET(E), 1)
KYE = PROP (MATSET (E) ,2)
AE = ABS (X2 (IN(E,1))-X2(IN(E,3))) / 2.

BE = ABS(X1(IN(E,1))

- X1(IN(E,3))) / 2.

CX = KXE * AE / (6. * BE)

CY = KYE * BE / (6.

KE(1,1) =
KE(1,2) =
KE(1,3) =
KE(1,4) =
KE(2,1) =
KE(2,2) =
KE(2,3) =
KE(2,4) =
KE(3,1) =
KE(3,2) =
KE(3,3) =
KE(3,4) =
KE(4,1) =
KE(4,2) =
KE(4,3) =
KE(4,4) =
RETURN
END

2. * C
-2. * C
-CX - C

CcX - 2
KE (1,2)

* AE)
X + 2. * CY
X + CY

Y

. *CY

2. * CX + 2. * CY

cxX - 2

. *CY

-CX - CY

KE(1,3)
KE (2, 3)

2. *xC
-2. * C
KE (1, 4)
KE (2, 4)
KE (3,4)

2. *CX + 2. *

X+ 2. *CY

X +

cY

SUBROUTINE KQUA4 (E,KE)

CrRAA AR AR AR AR KRR R R R AR ARRARARARRARKARRR AR AKRARR AR AR AR AR AR R R A AR ARk kh Kk

PURPOSE:

TO COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR TWO-
DIMENSIONAL,

LINEAR QUADRILATERAL ELEMENT

DEFINITIONS OF VARIABLES:
DETJAC =
DNDXI(I) =

DNDX(I) =

DNDETA (I) =

DNDY(I) =

E =

ETA(I) =

JAC(I,J)

KE(I,J)

JACINV(I,J) =

KXE

KYE

W(I)

X2 (IN(E,I)

X1(IN(E,I) =

XI(I)

DETERMINANT OF JACOBIAN MATRIX
PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO XI AT NODE I
PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO X AT NODE I
PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO ETA AT NODE I
PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO Y AT NODE I
ELEMENT NUMBER

LOCATION OF GAUSS POINT IN ETA COORDINATE
DIRECTION

JACOBIAN MATRIX

INVERSE OF JACOBIAN MATRIX

ELEMENT CONDUCTANCE MATRIX

HYDRAULIC CONDUCTIVITY IN X

COORDINATE DIRECTION

HYDRAULIC CONDUCTIVITY IN Y

COORDINATE DIRECTION

WEIGHT FOR GAUSS POINT I

X COORDINATE FOR NODE I, ELEMENT E

Y COORDINATE FOR NODE I, ELEMENT E
LOCATION OF GAUSS POINT IN XI COORDINATE
-DIRECTION
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REFERENCES :
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.10,
EQUATION 4.62

CrRAI KA KKK KRR KRR KRR AR RN RAR KRR KRR KRR KRR RRAR KRR AR KA KRR ARk Rk ke kkk k&

$INCLUDE:

'COMALL'

REAL JAC(2,2),JACINV(2,2),KE (MAX3,MAX3) ,DNDXI (4) ,DNDX(4),

1
2

DNDETA (4) ,DNDY (4) ,W(2),XI(2),ETA(2),SIGN1(4),SIGN2(4),
KXE,KYE

DATA SIGN1/-1.,1.,1.,-1./
DATA SIGN2/-1.,-1.,1.,1./

XI(1l) = 1. / SQRT(3.)
XI(2) = -XI(1)

ETA(1l) = XI(1)

ETA(2) = XI(2)

W(l) = 1.

W(2) = 1.

KXE = PROP (MATSET(E),1)
KYE = PROP (MATSET (E),2)

DO 30 K=1, 4

20

DO 20 N =1, 4

KE(K,N) = 0.

CONTINUE

30 CONTINUE

DO 120 I =1, 2

40
50

60

70

80

90

DO 110 J =1, 2

DO 50 K = 1, 2
DO 40 N = 1, 2
JAC(K,N) = 0.
CONTINUE
CONTINUE

DO 60 N =1, 4
DNDXI(N) = 0.25 * SIGN1(N) * (1. + SIGN2(N) * ETA(J))
DNDETA(N) = 0.25 * SIGN2(N) * (1. + SIGN1(N) * XI(I))

CONTINUE

DO 70 N =1, 4
JAC(1,1) = JAC(1,1) + DNDXI(N) * X1 (IN(E,N))

JAC(1,.) = JAC(1,2) + DNDXI(N) * X2 (IN(E,N))
JAC(2,1) = JAC(2,1) + DNDETA(N) * X1 (IN(E,N))
JAC(2,2) = JAC(2,2) + DNDETA(N) * X2 (IN(E,N))

CONTINUE

DETJAC = JAC(1,1) * JAC(2,2) - JAC(1,2) * JAC(2,1)

JACINV(1,1) = JAC(2,2) / DETJAC

JACINV(1,2) = -JAC(1,2) / DETJAC

JACINV(2,1) = -JAC(2,1) / DETJAC

JACINV(2,2) = JAC(1,1) / DETJAC

DO 80 N =1, 4
DNDX (N) = JACINV(1,1) * DNDXI(N) + JACINV(1,2) * DNDETA(N)
DNDY (N) = JACINV(2,1) * DNDXI(N) + JACINV(2,2) * DNDETA(N)

CONTINUE

DO 100 K = 1, 4
DO 9O N =1, 4

KE(K,N) = KE(K,N) + W(I) * W(J) * (KXE * DNDX(K) *
DNDX(N) + KYE * DNDY(K) * DNDY(N)) * DETJAC
CONTINUE
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100 CONTINUE
110 CONTINUE
120 CONTINUE
RETURN
END

SUBROUTINE KQUAS (E,KE)
oL 2 e e e e R T e

PURPOSE:
TO COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR TWO-
DIMENSIONAL, QUADRATIC QUADRILATERAL ELEMENT

DEFINITIONS OF VARIABLES:
DETJAC = DETERMINANT OF JACOBIAN MATRIX
DNDXI(I) = PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO XI AT NODE I
DNDX(I) = PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO X AT NODE I
DNDETA(I) = PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO ETA AT NODE I
DNDY(I) = PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO Y AT NODE I
E = ELEMENT NUMBER
ETA(I) = LOCATION OF GAUSS POINT I IN ETA
COORDINATE DIRECTION
JAC(I,J) = JACOBIAN MATRIX
JACINV(I,J) = INVERSE OF JACOBIAN MATRIX
KE(I,J) = ELEMENT CONDUCTANCE MATRIX
KXE = HYDRAULIC CONDUCTIVITY IN X
COORDINATE DIRECTION
KYE = HYDRAULIC CONDUCTIVITY IN Y
COORDINATE DIRECTION
W(I) = WEIGHT FOR GAUSS POINT I
XI(I) = LOCATION OF GAUSS POINT I IN XI
COORDINATE DIRECTION

REFERENCES :
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.11,
EQUATION 4.62

[eNeNeNeNeNeNe KeNeNeNeNe e Ne Ne Ne NeNe Ne NeNe Ne Ne Ne No Ne Ne Ne Ne Neo Ne Re Ne N el

c******t'k'k**t*'k*t'k***t**t*tt*****t********t*t******t****t******'k**
$INCLUDE: 'COMALL'

REAL JAC(2,2),JACINV(2,2),KE (MAX3,MAX3),DNDXI (8),

1 DNDX (8) , DNDETA (8) ,DNDY (8) ,W(3),XI(8) ,ETA(8),

2 SIGN1 (8),SIGN2 (8) ,KXE,KYE

DATA SIGN1l/-1.,0.,1.,1.,1.,0.,-1.,-1./

DATA SIGN2/-1.,-1.,-1.,0.,1.,1.,1.,0./

XI(1) = 0.

XI(2) = SQRT(3. / 5.)
XI(3) = -XI(2)

ETA(1) = XI(1)

ETA(2) = XI(2)

ETA(3) = XI(3)
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20
30

40
50

60

70

80

90

100
110
120

W(l) = 8. / 9.
W(2) = 5. / 9.
W(3) = W(2)
KXE = PROP (MATSET(E),1)
KYE = PROP (MATSET (E),2)
DO 30 K=1, 8
DO 20 N=1, 8
KE(K,N) = 0.
CONTINUE
CONTINUE
DO 120 I =1, 3
DO 110 J =1, 3
DO S50 K =1, 2
DO 40 N =1, 2
JAC(K,N) = 0.
CONTINUE
CONTINUE
DO 60 N =1, 8
IF ((N .EQ. 1) .OR. (N .EQ. 3) .OR.
(N .EQ. 5) .OR. (N .EQ. 7)) THEN
DNDXI(N) = 0.25 * (1. + SIGN2(N) * ETA(J)) *
(2. * SIGNL(N)**2 * XI(I) + SIGN2(N) *
SIGN1(N) * ETA(J))
DNDETA(N) = 0.25 * (1. + SIGN1(N) * XI(I)) *
(2. * SIGN2(N)**2 * ETA(J) + SIGN2(N) *
SIGN1(N) * XI(I))
ELSEIF ((N .EQ. 2) .OR. (N .EQ. 6)) THEN
DNDXI(N) = -XI(I) * (1. + SIGN2(N) * ETA(J))
DNDETA(N) = 0.5 * SIGN2(N) * (1. - XI(I)**2)
ELSEIF ((N .EQ. 4) .OR. (N .EQ. 8)) THEN
DNDXI(N) = 0.5 * SIGNL(N) * (1. - ETA(J) **2)
DNDETA(N) = -ETA(J) * (1. + SIGN1(N) * XI(I))
ENDIF
CONTINUE
DO 70 N=1, 8
JAC(1,1) = JAC(1,1) + DNDXI(N) * X1(IN(E,N))

JAC(1,2) = JAC(1,2) + DNDXI(N) * X2(IN(E,N))

JAC(2,1) = JAC(2,1) + DNDETA(N) * X1(IN(E,N))

JAC(2,2) = JAC(2,2) + DNDETA(N) * X2 (IN(E,N))
CONTINUE

DETJAC = JAC(1,1) * JAC(2,2) - JAC(1,2) * JAC(2,1)

JACINV(1,1) = JAC(2,2) / DETJAC
JACINV(1,2) = -JAC(1,2) / DETJAC
JACINV(2,1) = -JAC(2,1) / DETJAC
JACINV(2,2) = JAC(1,1) / DETJAC

DO 80 N=1, 8
DNDX(N) = JACINV(1l,1)

*

CONTINUE
DO 100 K =1, 8
DO SO N=1, 8
KE(K,N) = KE(K,N) + W(I) * W(J) * (KXE * DNDX(K) *

1 DNDX(N) + KYE * DNDY(K) * DNDY(N)) * DETJAC

CONTINUE
CONTINUE
CONTINUE
CONTINUE
RETURN
END

DNDXI(N) + JACINV(1,2) * DNDETA (N)
DNDY(N) = JACINV(2,1) * DNDXI(N) + JACINV(2,2) * DNDETA(N)

351
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SUBROUTINE KQUA12 (E, KE)

CrAX A XA A R AR KA R A AR KA XK KA A KA AR AR AR RN KA AR AR A AR A A AR ARk kh ko kkkk kA kkxk

PURPOSE:
TO COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR TWO-
DIMENSIONAL, CUBIC QUADRILATERAL ELEMENT

DEFINITIONS OF VARIABLES:

DETJAC = DETERMINANT OF JACOBIAN MATRIX
DNDXI(I) = PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO XI AT NODE I
DNDX(I) = PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO X AT NODE I
DNDETA(I) = PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO ETA AT NODE I
DNDY(I) = PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO Y AT NODE I
E = ELEMENT NUMBER
ETA(I) = LOCATION OF GAUSS POINT I IN ETA
COORDINATE DIRECTION
JAC(I,J) = JACOBIAN MATRIX
JACINV(I,J) = INVERSE OF JACOBIAN MATRIX
KE (I,J) = ELEMENT CONDUCTANCE MATRIX
KXE = HYDRAULIC CONDUCTIVITY IN X

COORDINATE DIRECTION
KYE = HYDRAULIC CONDUCTIVITY IN Y
COORDINATE DIRECTION
W(I) = WEIGHT FOR GAUSS POINT I
XI(I) = LOCATION OF GAUSS POINT I IN XI
COORDINATE DIRECTION

REFERENCES :
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 4,
FIGURE 4.12, EQUATION 4.62

[eNeNeEesNeNeNeNeNeNoNeNoNeNoNeNoNe Ne e e Re Ne Ne Ne Ne e Ne Ne e Ne Ne e Ne Nel

cti’*****************************'A'********t**********t*********t***t***

SINCLUDE: 'COMALL'
REAL JAC (2,2),JACINV(2,2),KE (MAX3,MAX3) ,DNDXI(12),
1 DNDX (12) ,DNDETA (12) ,DNDY (12) ,W(4),XI(12),ETA(12),
2 SIGN1(12),SIGN2(12),KXE,KYE,KZE

DATA SIGN1l/-1.,-1.,1.,1.,1.,1.,1.,1.,-1.,-1.,-1.,-1./
DATA SIGN2/-1.,-1.,-1.,-1.,-1.,1.,1.,1.,1.,1.,1.,-1./

XI(l) = SQRT((3. - 2.

XI(2) = -XI(1)

XI(3) = SQRT((3. + 2. * SQRT(6. / 5.)) / 7.)

XI(4) = -XI(3)

ETA(l) = XI(1)

ETA(2) = XI(2)

ETA(3) = XI(3) .

ETA(4) = XI(4)

W(l) = 0.5 + 1. / (6.

W(2) = W(1l)

W(3) = 0.5 - 1. / (6.

W(4) = W(3)

KXE = PROP (MATSET (E), 1)

KYE = PROP (MATSET (E), 2)

DO 20 K =1, 12

DO 10 N =1, 12

KE(K,N) = 0.

* SQRT(6. / 5.)) / 7.)

* SQRT(6. / 5.))

* SQRT(6. / 5.))



Chapter 12 353

10 CONTINUE
20 CONTINUE
DO 110 I =1, 4
DO 100 J = 1, 4
DO 40 K =1, 2
DO 30 N =1, 2
JAC(K,N) = 0.
30 CONTINUE
40 CONTINUE
DO 50 N = 1, 12
IF ((N .EQ. 1) .OR. (N .EQ. 4) .OR.

1 (N .EQ. 7) .OR. (N .EQ. 10)) THEN
DNDXI(N) = (1. / 32.) * (1. + SIGN2(N) * ETA(J)) *
1 (18. * XI(I) + 27. * SIGN1(N) * XI(I)**2 +
2 9. * SIGN1(N) * ETA(J)**2 - 10. * SIGN1(N))
DNDETA(N) = (1. / 32.) * (1.+ SIGN1(N) * XI(I)) *
1 (18. * ETA(J) + 27. * SIGN2(N) * ETA(J)**2 +
2 9. * SIGN2(N) * XI(I)**2 - 10. * SIGN2(N))
ELSEIF ((N .EQ. 2) .OR. (N .EQ. 3) .OR.
1 (N .EQ. 8) .OR. (N .EQ. 9)) THEN
DNDXI(N) = (9. / 32.) * (1. + SIGN2(N) * ETA(J)) *
1 (9. * SIGN1(N)/3. - 2. * XI(I) - 27. *
2 SIGN1(N) /3. * XI(I)**2)
DNDETA(N) = (9. / 32.) * (1. - XI(I)**2) * (SIGN2(N) +
1 9. * SIGN1(N)/3. * SIGN2(N) * XI(I))
ELSEIF ((N .EQ. S5) .OR. (N .EQ. 6) .OR.
1 (N .EQ. 11) .OR. (N .EQ. 12)) THEN
DNDXI(N) = (9. / 32.) * (1. - ETA(J)**2) * (SIGN1(N) +
1 9. * SIGN2(N)/3. * SIGN1(N) * ETA(J))
DNDETA(N) = (9. / 32.) * (1. + SIGN1(N) * XI(I)) *
1 (9. * SIGN2(N)/3. = 2. * ETA(J) - 27. *
2 SIGN2(N) /3. * ETA(J) **2)
ENDIF
50 CONTINUE

DO 60 N =1, 12
JAC(1,1) = JAC(1,1) + DNDXI(N) * X1(IN(E,N))

JAC(1,2) = JAC(1,2) + DNDXI(N) * X2 (IN(E,N))

JAC(2,1) = JAC(2,1) + DNDETA(N) * X1(IN(E,N))

JAC(2,2) = JAC(2,2) + DNDETA(N) * X2 (IN(E,N))
60 CONTINUE

DETJAC = JAC(1,1) * JAC(2,2) - JAC(1,2) * JAC(2,1)

JACINV(1,1) = JAC(2,2) / DETJAC

JACINV(1,2) = -JAC(1,2) / DETJAC

JACINV(2,1) = -JAC(2,1) / DETJAC

JACINV(2,2) = JAC(1,1) / DETJAC

DO 70 N = 1, 12
DNDX(N) = JACINV(1l,1) DNDXI(N) + JACINV(1l,2) * DNDETA(N)
DNDY(N) = JACINV(2,1) * DNDXI(N) + JACINV(2,2) * DNDETA(N)

70 CONTINUE
DO 90 K = 1, 12
DO 80 N = 1, 12
KE(K,N) = KE(K,N) + W(I) * W(J) * (KXE * DNDX(K) *
1 DNDX (N) + KYE * DNDY(K) * DNDY(N)) * DETJAC

*

80 CONTINUE
90 CONTINUE
100 CONTINUE
110 CONTINUE
RETURN
END
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SUBROUTINE KPARS (E,KE)
o T T

Subroutine ASMBK

c PURPOSE :

Cc TO COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR THREE-
c DIMENSIONAL, LINEAR PARALLELEPIPED ELEMENT

(o]

(o] DEFINITIONS OF VARIABLES:

c DETJAC = DETERMINANT OF JACOBIAN MATRIX

c DNDXI(I) = PARTIAL DERIVATIVE OF INTERPOLATION
c FUNCTION WITH RESPECT TO XI AT NODE I
c DNDX(I) = PARTIAL DERIVATIVE OF INTERPOLATION
(o] FUNCTION WITH RESPECT TO X AT NODE I
c DNDETA(I) = PARTIAL DERIVATIVE OF INTERPOLATION
(o] FUNCTION WITH RESPECT TO ETA AT NODE I
c DNDY(I) = PARTIAL DERIVATIVE OF INTERPOLATION
(o] FUNCTION WITH RESPECT TO Y AT NODE I
c DNDZETA(I) = PARTIAL DERIVATIVE OF INTERPOLATION
(o] FUNCTION WITH RESPECT TO ZETA AT NODE I
c DNDZ (I) = PARTIAL DERIVATIVE OF INTERPOLATION
c FUNCTION WITH RESPECT TO Z AT NODE I
(o] E = ELEMENT NUMBER

c ETA(I) = LOCATION OF GAUSS POINT IN ETA

c COORDINATE DIRECTION

c JAC(I,J) = JACOBIAN MATRIX

(o] JACINV(I,J) = INVERSE OF JACOBIAN MATRIX

(o] KE (I,J) = ELEMENT CONDUCTANCE MATRIX

Cc KXE = HYDRAULIC CONDUCTIVITY IN X

(o] COORDINATE DIRECTION

c KYE = HYDRAULIC CONDUCTIVITY IN Y

c COORDINATE DIRECTION

Cc KZE = HYDRAULIC CONDUCTIVITY IN 2

(o] COORDINATE DIRECTION

(o] W(I) = WEIGHT FOR GAUSS POINT I

(o] XI(I) = LOCATION OF GAUSS POINT IN XI

c COORDINATE DIRECTION

c ZETA(I) = LOCATION OF GAUSS POINT IN ZETA

c COORDINATE DIRECTION

c REFERENCES :

c ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT

Cc MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 4,

c FIGURE 4.13, EQUATION 4.63

CrRER A K AR AR KRR KRR KRR KRR KRR AR KRR KRR AR AR R AR KRR R RARAR A AR AR KRR AR A kX

$INCLUDE:
REAL

'COMALL"’

JAC (3, 3) ,JACINV (3, 3) ,KE (MAX3,MAX3) ,DNDXI (8),DNDX(8),

1 DNDETA (8) ,DNDY (8) , DNDZETA (8) ,DNDZ (8) ,W(2) ,XI(8),
2 ETA(8),2ZETA(8),SIGN1(8),SIGN2(8),SIGN3(8) ,KXE,KYE,6 KZE

DATA
DATA
DATA

SIGN1/-1.,1.,1.,-1.,-1.,1.,1.,-1./
SIGN2/-1.,-1.,1.,1.,-1.,-1.,1.,1./
SIGN3/-1.,-1.,-1.,-1.,1.,1.,1.,1./

XI(1l) = 1. / SQRT(3.)
XI(2) = =XI(1)

ETA(1) = XI(1)

ETA(2) = XI(2)

ZETA(1) = XI(1)

ZETA(2) = XI(2)

W(l) = 1.

W(2) = 1.

KXE = PROP (MATSET(E),1)
KYE = PROP (MATSET (E), 2)
KZE = PROP (MATSET (E), 3)
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DO 20K =1, 8
DO 10 N=1, 8
KE (K,N) = 0.
10 CONTINUE
20 CONTINUE
DO 120 I =1, 2
DO 110 g =1, 2
DO 100 K =1, 2
DO 40 L =1, 3
DO 30 N=1, 3
JAC(L,N) = 0.
30 CONTINUE
40 CONTINUE
DO S0 N=1, 8
DNDXI (N) = 0.125 * SIGN1(N) * (1. + SIGN2(N) *

1 ETA(J)) * (1. + SIGN3(N) * 2ETA(K))
DNDETA(N) = 0.125 * SIGN2(N) * (1. + SIGN1l(N) *
1 XI(I)) * (1. + SIGN3(N) * ZETA(K))
DNDZETA(N) = 0.125 * SIGN3(N) * (1. + SIGN1(N) *
1 XI(I)) * (1. + SIGN2(N) * ETA(J))
50 CONTINUE
DO 60 N =1, 8
JAC(1,1) = JAC(1l,1) + DNDXI(N) * X1(IN(E,N))
JAC(1,2) = JAC(1,2) + DNDXI(N) * X2(IN(E,N))
JAC(1,3) = JAC(1,3) + DNDXI(N) * X3(IN(E,N))
JAC(2,1) = JAC(2,1) + DNDETA(N) * X1 (IN(E,N))
JAC(2,2) = JAC(2,2) + DNDETA(N) * X2 (IN(E,N))
JAC(2,3) = JAC(2,3) + DNDETA(N) * X3(IN(E,N))
JAC(3,1) = JAC(3,1) + DNDZETA(N) * X1(IN(E,N))
JAC(3,2) = JAC(3,2) + DNDZETA(N) * X2 (IN(E,N))
JAC(3,3) = JAC(3,3) + DNDZETA(N) * X3 (IN(E,N))
60 CONTINUE

DETJAC = JAC(1,1) * (JAC(2,2) * JAC(3,3) - JAC(3,2) *

1 JAC(2,3)) - JAC(1,2) * (JAC(2,1) * JAC(3,3) -
2 JAC(3,1) * JAC(2,3)) - JAC(1,3) * (JAC(2,1) *
3 JAC(3,2) - JAC(3,1) * JAC(2,2))
JACINV(1,1) = ( JAC(2,2) * JAC(3,3) - JAC(2,3) *
1 JAC(3,2)) / DETJAC
JACINV(1,2) = (-JAC(2,1) * JAC(3,3) + JAC(2,3) *
1 JAC(3,1)) / DETJAC
JACINV(1,3) = ( JAC(2,1) * JAC(3,2) - JAC(3,1) *
1 JAC(2,2)) / DETJAC
JACINV(2,1) = (-JAC(1,2) * JAC(3,3) + JAC(1,3) *
1 JAC(3,2)) / DETJAC
JACINV(2,2) = ( JAC(1l,1) * JAC(3,3) - JAC(1,3) *
1 JAC(3,1)) / DETJAC
JACINV(2,3) = (-JAC(1,1) * JAC(3,2) + JAC(1,2) *
1 JAC(3,1)) / DETJAC
JACINV(3,1) = ( JAC(1,2) * JAC(2,3) - JAC(1,3) *
1 JAC(2,2)) / DETJAC
JACINV(3,2) = (-JAC(1,1) * JAC(2,3) + JAC(1,3) *
1 JAC(2,1)) / DETJAC
JACINV(3,3) = ( JAC(1,1) * JAC(2,2) - JAC(1,2) *
1 JAC(2,1)) / DETJAC
DO 70 N =1, 8
DNDX(N) = JACINV(1l,1) * DNDXI(N) + JACINV(1,2) *
1 DNDETA (N) + JACINV(1,3) * DNDZETA(N)
DNDY (N) = JACINV(2,1) * DNDXI(N) + JACINV(2,2) *
1 DNDETA(N) + JACINV(2,3) * DNDZETA(N)

DNDZ (N) = JACINV(3,1) * DNDXI(N) + JACINV(3,2) *
1 DNDETA (N) + JACINV(3,3) * DNDZETA(N)
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70

80
100

110
120
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[o]
(o]
Cc
(o]
(o]
c
(o]
c
Cc
(o]
(o]
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(o]
Cc
(o]
c
C
C
C
C
C
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C
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C
(o
C
C
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C
C
C

CONTINUE

DO 9O L =1,
DO 80 N = 1,8
KE(L,N) = KE(L,N) + W(I) * W(J) * W(K) * (KXE *
DNDX(L) * DNDX(N) + KYE * DNDY(L) *
DNDY(N) + KZE * DNDZ (L) * DNDZ(N)) * DETJAC

CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
RETURN
END

8

SUBROUTINE KPAR20 (E,KE)

CrRAA KA K AR KRR AR KA KRR KRR R AR KA AR KRR KRR KRR AR KRR KRR KRR R AR R AR A Ak Ak kkkkkhk ok

PURPOSE:

Subroutine ASMBK

TO COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR THREE-
QUADRATIC PARALLELEPIPED ELEMENT

DIMENSIONAL,

DEFINITIONS OF VARIABLES:
DETJAC =~ DETERMINANT OF JACOBIAN MATRIX

DNDXI(I)
DNDX(I)
DNDETA(I)
DNDY (I)
DNDZETA (I)
DNDZ (I)

E
ETA(I)

JAC(I,J)
JACINV(I, J)
KE(I,J)

KXE

KYE

K2E

W(I)
XI(I)

2ETA (I)

REFERENCES :

PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
ELEMENT NUMBER

INTERPOLATION
TO XI AT NODE I
INTERPOLATION
TO X AT NODE I
INTERPOLATION
TO ETA AT NODE I
INTERPOLATION
TO Y AT NODE I
INTERPOLATION
TO ZETA AT NODE I
INTERPOLATION
TO Z AT NODE I

LOCATION OF GAUSS POINT IN ETA

COORDINATE DIRECTION
JACOBIAN MATRIX

INVERSE OF JACOBIAN MATRIX
ELEMENT CONDUCTANCE MATRIX
HYDRAULIC CONDUCTIVITY IN X

COORDINATE DIRECTION

HYDRAULIC CONDUCTIVITY IN Y

COORDINATE DIRECTION

HYDRAULIC CONDUCTIVITY IN 2

COORDINATE DIRECTION

WEIGHT FOR GAUSS POINT I
LOCATION OF GAUSS POINT IN XI

COORDINATE DIRECTION

LOCATION OF GAUSS POINT IN ZETA

COORDINATE DIRECTION

ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT

MODELING BY THE FINITE ELEMENT METHOD,
FIGURE 4.14,

EQUATION 4.63

CHAPTER 4,

E2 2222 2222222222222 X222 2222222222 222222222222 2222222222222
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S$INCLUDE: 'COMALL'
REAL JAC(3,3),JACINV(3, 3),KE (MAX3,MAX3) ,DNDXI (20) ,DNDX(20),

10
20

30
40

1
2

1

1

1

IF ((N .EQ. 1)
1 (N .EQ. 7)
2 (N .EQ. 17)
1
2
3
1
2
3
1
2
3
1

DATA SIGN1/-1.,0.,1.,1.,1.,0.,-1.,-1.,-1.,1.,1.,-1.,-1.,
0.,1.,1.,1.,0.,-1.,-1./
DATA SI1GN2/-1.,-1.,-1.,0.,1.,1.,1.,0.,-1.,-1.,1.,1.,-1.,

-1.,-1.,0.,1.,1.,1.,0./

DNDETA (20) , DNDY (20) ,DNDZETA (20) ,DNDZ (20) ,W(3) ,XI (20),
ETA (20),2ETA(20) ,SIGN1(20),SIGN2(20), SIGN3 (20) ,KXE, KYE, KZE

DATA SIGN3/-1.,-1.,-1.,-1.,-1.,-1.,-1.,-1.,0.,0.,0.,0.,1.,
1.,1.,1.,1.,1.,1.,1./

XI(1) = 0.

XI(2) = 1. / SQRT(3. / 5.)

XI(3) = -XI(2)
ETA(1l) = XI(1l)
ETA(2) = XI(2)
ETA(3) = XI(3)
ZETA (1) = XI(1)
ZETA(2) = XI(2)
ZETA(3) = XI(3)
W(l) = 8. / 9.
W(2) = 5./ 9.
W(3) = W(2)
KXE = PROP (MATSET (E),1)
KYE = PROP (MATSET(E),2)
KZE = PROP (MATSET (E), 3)
DO 20 K =1, 20
DO 10 L =1, 20
KE(K,L) = 0.
CONTINUE
CONTINUE
DO 120 I =1, 3
DO 110 J =1, 3
DO 100 K =1, 3
DO 40 L =1, 3
DO 30N=1, 3
JAC(L,N) = 0.
CONTINUE
CONTINUE
DO S0 N =1, 20

.OR.
.OR.
.OR.

(N .EQ. 3) .OR. (N .EQ. 5)

(N .EQ.
(N .EQ.

13) .OR. (N .EQ. 15)
19)) THEN

DNDXI(N) = 0.125 * SIGN1(N) * (1. + SIGN2(N)
+ SIGN3(N) * ZETA(K))

ETA(J)) * (1.

(2. * SIGN1(N) * XI(I) + SIGN2(N)

ETA(J) + SIGN3(N) * ZETA(K) -1.)
DNDETA(N) = 0.125 * SIGN2(N) * (1. + SIGN1(N)
XI(I)) * (1. + SIGN3(N) * ZETA(K)) *
(2. * SIGN2(N) * ETA(J) + SIGN1(N)
XI(I) + SIGN3(N) * ZETA(K) -1.)
DNDZETA(N) = 0.125 * SIGN3(N) * (1. + SIGN1(N) *
XI(I)) * (1. + SIGN2(N) * ETA(J)) *
(2. * SIGN3(N) * ZETA(K) + SIGN1l(N) *
XI(I) + SIGN2(N) * ETA(J) -1.)

ELSEIF ((N .EQ. 2) .OR. (N .EQ. 6) .OR.

(N .EQ. 14) .OR. (N .EQ. 18)) THEN
DNDXI(N) = -0.5 * XI(I) * (1. + SIGN2(N) *
ETA(J)) * (1. + SIGN3(N) * ZETA(K))

*

*

*

.OR.
.OR.

*

*
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50

60

wN e

DNDETA

DNDZETA

DNDXI

DNDZETA

(N) = 0.25 * SIGN2(N) * (1.

(1. + SIGN3(N) * ZETA(K))

(N) = 0.25 * SIGN3(N) * (1. - XI(I)**2) *
(1. + SIGN2(N) * ETA(J))
ELSEIF ((N .EQ. 4) .OR
(N .EQ. 16) .OR.

(N) = 0.25 * SIGN1(N) * (1.

(N .EQ. 8)

.OR.
(N .EQ. 20)) THEN

(1. + SIGN3(N) * ZETA(K))
DNDETA(N) = -0.5 * ETA(J) * (1. + SIGN1(N) * XI(I)) *

(1. + SIGN3(N) * ZETA(K))
(N) = 0.25 * SIGN3(N) * (1. + SIGN1(N) *

XI(I)) * (1.

ELSEIF ((N .GE. 9) .AND.

DNDXI

DNDETA

DNDZETA(N) = -0.5 * ZETA(K) *

ENDIF
CONTINUE

(N) = 0.25 * SIGN2(N) * (1.

- ETA(J) **2)

(N .LE. 12)) THEN
(N) = 0.25 * SIGN1(N) * (1 - ZETA(K)**2) *
(1. + SIGN2(N) * ETA(J))

(1. + SIGN1(N) * XI(I))

(1.

Subroutine ASMBK

- XI(I) **2) *

- ETA(J) **2) *

= ZETA(K) **2) *

+ SIGN1(N) *

XI(I)) * (1. + SIGN2(N) * ETA(J))

DO 60 N = 1, 20

JAC(1,1)
JAC(1,2)
JAC(1,3)
JAC(2,1)
JAC(2,2)
JAC(2,3)
JAC(3,1)
JAC(3,2)
JAC(3,3)
CONTINUE

DETJAC = JAC(1,1) * (JAC(2,2) * JAC(3,3)

= JAC(1,1)
JAC(1,2)
JAC(1,3)
JAC(2,1)
JAC(2,2)
JAC(2,3)
JAC(3,1)
JAC(3,2)
JAC(3,3)

+++

DNDXI (N) * X1(IN(E,N))
DNDXI (N) * X2(IN(E,N))
DNDXI(N) * X3(IN(E,N))
DNDETA(N) * X1 (IN(E,N))
DNDETA (N) * X2 (IN(E,N))
DNDETA (N) * X3 (IN(E,N))
DNDZETA(N) * X1 (IN(E,N))
DNDZETA(N) * X2 (IN(E,N))
DNDZETA(N) * X3 (IN(E,N))

- JAC(3,2) *

JAC(2,3)) - JAC(1,2) * (JAC(2,1) * JAC(3,3) -

JAC(3,1) * JAC(2,3))

JAC(3,2) - JAC(3,1) * JAC(2,2))

JACINV(1,1)
JACINV(1,2)
JACINV(1, 3)
JACINV(2,1)
JACINV(2,2)
JACINV (2, 3)
JACINV (3, 1)
JACINV(3,2)

JACINV(3, 3)

= ( JAC(2,2)
JAC(3,2))
(-JAC(2,1)
JAC(3,1))
= ( JAC(2,1)

JAC(2,2))
= (-JAC(1,2)
JAC(3,2))
( JAC(1,1)
JAC(3,1))
(-JAC(1,1)
JAC(3,1))
( JAC(1,2)
JAC(2,2))
= (-JAC(1,1)

JAC(2,1))
= ( JAC(1,1)

JAC(2,1))

DO 70 N = 1, 20
JACINV(1,1) * DNDXI(N) + JACINV(1,2) *
DNDETA(N) + JACINV(1,3) * DNDZETA (N)
JACINV(2,1) * DNDXI(N) + JACINV(2,2) *
DNDETA (N) + JACINV(2,3) * DNDZETA (N)

DNDX(N) =
DNDY(N) =

DNDZ (N) =

*

SN N % TN RN R NNk N N % NN % .

JAC(3,3)
DETJAC
JAC(3,3)
DETJAC
JAC(3,2)
DETJAC
JAC(3,3)
DETJAC
JAC(3,3)
DETJAC
JAC(3,2)
DETJAC
JAC(2,3)
DETJAC
JAC(2,3)
DETJAC
JAC(2,2)
DETJAC

+

+

JAC(2,3)
JAC(2,3)
JAC(3,1)
JAC(1,3)
JAC(1,3)
JAC(1,2)
JAC(1,3)
JAC(1,3)

JAC(1,2)

- JAC(1,3) * (JAC(2,1) *

*

*

JACINV(3,1) * DNDXI(N) + JACINV(3,2) *

DNDETA(N) + JACINV(3,3) * DNDZETA(N)
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c
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(o]
c
c
(o]
c
(o]
(o]
c
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(o]
(o]
(o]
(o]
c
C
C
C
C
C
C
C
C
C
C
C
C
C
C
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KE(L,N) = KE(L,N) + W(I) * W(J) * W(K) *
(KXE * DNDX(L) * DNDX(N) + KYE * DNDY(L) *
DNDY(N) + KZE * DNDZ (L) * DNDZ(N)) * DETJAC

Chapter 12
70 CONTINUE
DO 90 L = 1,
DOBON=1, 20
1
2
80 CONTINUE
90 CONTINUE
100 CONTINUE
110 CONTINUE
120 CONTINUE
RETURN
END

SUBROUTINE KPAR32 (E,KE)
oLt L L T e T T e

(o]
(o]
(o]

PURPOSE:

TO COMPUTE THE ELEMENT CONDUCTANCE MATRIX FOR THREE-
CUBIC PARALLELEPIPED ELEMENT

DIMENSIONAL,

DEFINITIONS OF VARIABLES:

DETJAC = DETERMINANT OF JACOBIAN MATRIX

DNDXI (I)
DNDX(I)
DNDETA (I)
DNDY (I)
DNDZETA (I)
DNDZ (I)

E

ETA(I)

JAC(I,J)
JACINV(I, J)

KE(I,J) -

KXE
KYE
KZE

W(I)
XI(I)

ZETA(I)

REFERENCES :

PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
ELEMENT NUMBER

INTERPOLATION
TO XI AT NODE I
INTERPOLATION
TO X AT NODE I
INTERPOLATION

TO ETA AT NODE I
INTERPOLATION
TO Y AT NODE I
INTERPOLATION
TO ZETA AT NODE I
INTERPOLATION
TO Z AT NODE I

GAUSS POINT IN ETA COORDINATE DIRECTION
JACOBIAN MATRIX

INVERSE OF JACOBIAN MATRIX
ELEMENT CONDUCTANCE MATRIX
HYDRAULIC CONDUCTIVITY IN X
COORDINATE DIRECTION

HYDRAULIC CONDUCTIVITY IN Y
COORDINATE DIRECTION

HYDRAULIC CONDUCTIVITY IN 2
COORDINATE DIRECTION

WEIGHT FOR GAUSS POINT I
LOCATION OF GAUSS POINT IN XI
COORDINATE DIRECTION

LOCATION OF GAUSS POINT IN ZETA
COORDINATE DIRECTION

ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT

MODELING BY THE FINITE ELEMENT METHOD,
FIGURE 4.15,

CHAPTER 4,
EQUATION 4.63

% % J e % J % J % J Kk % K J %k K % Kk J % Kk J Kk % % %k J %k %k % Kk d % %k Kk % Kk %k %k Kk % %k Kk J Kk J %k Kk Kk Kk kK Kk ke ok ok k ok ok kokkokkkk
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$INCLUDE: '

10
20

30
40

1
2

WK WNhNHE WoHE DR

wN e

REAL

DATA
DATA
DATA

XI(1)
XI(2)
XI(3)
XI(4)

Subroutine ASMBK

COMALL'

JAC (3,3) ,JACINV(3, 3), KE (MAX3,MAX3) ,DNDXI (32) ,DNDX(32),
DNDETA (32) ,DNDY (32) ,DNDZETA (32) ,DNDZ (32) ,W(4) ,XI(32),
ETA(32),2ETA(32),SIGN1(32),SIGN2(32),SIGN3 (32),KXE,KYE,KZE
SIGN1l /2*-1.,6*1.,5*%-1.,2*1.,2*%-1,,2*1,,3*=-1.,6%*1.,4*-1./
SIGN2 /5*-1.,6*1.,3*-1.,2*1.,2*-1,,2*1,.,5*-1.,6*1.,-1./
SIGN3 /16*-1., 16*1./

SQRT({(3. - 2. * SQRT(6. / 5.)) / 7.)
=XI(1)
SQRT((3. + 2. * SQRT(6. / 5.)) / 7.)
-XI(3)

ETA(1) = XI(1)
ETA(2) = XI(2)
ETA(3) = XI(3)
ETA (4) = XI(4)
ZETA(1l) = XI(1)
ZETA(2) = XI(2)
ZETA(3) = XI(3)
ZETA(4) = XI(4)

W(l)
W(2)
W(3)
w(4)

= 0.5+ 1. / (6. * SQRT(6. / 5.))
= W(1)
=0.5-1. / (6. * SQRT(6. / 5.))
= W(3)

KXE = PROP (MATSET (E),1)
KYE = PROP (MATSET (E),2)
KZE = PROP (MATSET (E),3)
DO 20 K = 1, 32

DO

10 N =1, 32

KE(K,N) = 0.
CONTINUE
CONTINUE
DO 120 I =1, 4

DO

110 g =1, 4

DO 100 K =1, 4

DO 40 L =1, 3
DO 30 N=1, 3
JAC(L,N) = 0.
CONTINUE
CONTINUE
DO S0 N = 1, 32
IF ((N .EQ. 1) .OR. (N .EQ. 4) .OR. (N .EQ. 7) .OR.
(N .EQ. 10) .OR. (N .EQ. 21) .OR. (N .EQ. 24) .OR.
(N .EQ. 27) .OR. (N .EQ. 30)) THEN
DNDXI(N) = (9. / 64.) * (1. + SIGN2(N) * ETA(J)) *
(1. + SIGN3(N) * ZETA(K)) * (SIGN1(N) *
(-(19. / 9.) + 3. * XI(I)**2 +
ETA(J) **2 + ZETA(K) **2) + 2. * XI(I))
DNDETA(N) = (9. / 64.) * (1. + SIGN1(N) * XI(I)) *
(1. + SIGN3(N) * ZETA(K)) * (SIGN2(N) *
(-(19. / 9.) + XI(I)**2 + 3, *
ETA(J) **2 + ZETA(K)**2) + 2. * ETA(J))
DNDZETA(N) = (9. / 64.) * (1. + SIGNL(N) * XI(I)) *
(1. + SIGN2(N) * ETA(J)) * (SIGN3(N) *
(-(19. / 9.) + XI(I)**2 + ETA(J)**2 +
3. * ZETA(K)**2) + 2. * ZETA(K))
ELSEIF ((N .EQ. 2) .OR. (N .EQ. 3) .OR.
(N .EQ. 8) .OR. (N .EQ. 9) .OR.
(N .EQ. 22) .OR. (N .EQ. 23) .OR.
(N .EQ. 28) .OR. (N .EQ. 29)) THEN
DNDXI(N) = (81. / 64.) * (1. + SIGN2(N) * ETA(J))
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50

60

wN -

wN

DNDETA(N) =

DNDZETA(N) =

ELSEIF ((N .EQ.
(N .EQ.

(N .EQ.

(N .EQ.
DNDXI(N) =

DNDETA (N) =

DNDZETA (N) =

ELSEIF ((N .GE.
DNDXI(N) =

DNDETA(N) =

DNDZETA(N) =

ENDIF
CONTINUE
DO 60 N =1, 32
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* (1. + SIGN3(N) * ZETA(K))
* (SIGN1(N)/3. - 2./9. * XI(I) -
3.*SIGN1(N)/3. * XI(I)**2)
(81. / 64.) * SIGN2(N) * (1. = XI(I)**2)
* (1. / 9. + SIGN1(N)/3.*XI(I))
* (1. + SIGN3(N) * ZETA(K))
(81. / 64.) * SIGN3(N) * (1. = XI(I)**2)
* (1. / 9. + SIGN1(N)/3.*XI(I))
* (1. + SIGN2(N) * ETA(J))
5) .OR. (N .EQ. 6) .OR.
11) .OR. (N .EQ. 12) .OR.
25) .OR. (N .EQ. 26) .OR.
31) .OR. (N .EQ. 32)) THEN
(81./64.) * SIGNL(N) * (1. - ETA(J)**2)
* (1./9. + SIGN2(N)/3. * ETA(J))
* (1. + SIGN3(N) * ZETA(K))
(81./64.) * (1. + SIGN1(N)*XI(I))
* (1. + SIGN3(N)*2ETA(K)) * (SIGN2(N)/3. -
2./9.*ETA(J) - 3.*SIGN2(N)/3. * ETA(J)**2)
(81./64.) * SIGN3(N) * (1.- ETA(J)**2)
* (1./9. + SIGN2(N)/3. * ETA(J) )
* (1. + SIGN1(N) * XI(I) )
13) .AND. (N .LE. 20)) THEN
(81./64.) * SIGN1(N) * (1. - ZETA(K)**2)
* (1. / 9. + SIGN3(N)/3. * ZETA(K))
* (1. + SIGN2(N) * ETA(J))
(81./64.) * SIGN2(N) * (1. = ZETA(K)**2)
* (1. / 9. + SIGN3(N)/3. * ZETA(K))
* (1. + SIGN1(N) * XI(I))
(81./64.) * (1. + SIGN1(N) * XI(I))
* (1. + SIGN2(N)*ETA(J)) * (SIGN3(N)/3. -
2./9.*2ETA(K) - 3.*SIGN3(N)/3.*ZETA(K)**2)

JAC(1,1) = JAC(1,1) + DNDXI(N) * X1 (IN(E,N))
JAC(1,2) = JAC(1,2) + DNDXI(N) * X2 (IN(E,N))
JAC(1,3) = JAC(1,3) + DNDXI(N) * X3 (IN(E,N))
JAC(2,1) = JAC(2,1) + DNDETA(N) * X1 (IN(E,N))
JAC(2,2) = JAC(2,2) + DNDETA(N) * X2 (IN(E,N))
JAC(2,3) = JAC(2,3) + DNDETA(N) * X3 (IN(E,N))
JAC(3,1) = JAC(3,1) + DNDZETA(N) * X1 (IN(E,N))
JAC(3,2) = JAC(3,2) + DNDZETA(N) * X2 (IN(E,N))
JAC(3,3) = JAC(3,3) + DNDZETA(N) * X3 (IN(E,N))
CONTINUE
DETJAC = JAC(1,1) * (JAC(2,2) * JAC(3,3) - JAC(3,2) *
JAC(2,3)) - JAC(1,2) * (JAC(2,1) * JAC(3,3) -
JAC(3,1) * JAC(2,3)) - JAC(1,3) * (JAC(2,1) *
JAC(3,2) - JAC(3,1) * JAC(2,2))
JACINV(1,1) = ( JAC(2,2) * JAC(3,3) - JAC(2,3) *
JAC(3,2)) / DETJAC
JACINV(1,2) = (-JAC(2,1) * JAC(3,3) + JAC(2,3) *
JAC(3,1)) / DETJAC
JACINV(1,3) = ( JAC(2,1) * JAC(3,2) - JAC(3,1) *
JAC(2,2)) / DETJAC
JACINV(2,1) = (-JAC(1,2) * JAC(3,3) + JAC(1,3) *
JAC(3,2)) / DETJAC
JACINV(2,2) = ( JAC(1,1) * JAC(3,3) - JAC(1,3) *
JAC(3,1)) / DETJAC
JACINV(2,3) = (-JAC(1,1) * JAC(3,2) + JAC(1,2) *
JAC(3,1)) / DETJAC
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70

80
90
100

JACINV(3,1) = ( JAC(1,2)
JAC(2,2))
JACINV(3,2) = (-JAC(1,1)
JAC(2,1))
JACINV(3,3) = ( JAC(1,1)
JAC(2,1))
DO 70 N =1, 32

*
/
*
/
*
/

JAC(2,3)
DETJAC
JAC(2,3)
DETJAC
JAC(2,2)
DETJAC

Subroutine ASMBK

- JAC(1,3) *
+ JAC(1,3) *

- JAC(1,2) *

DNDX(N) = JACINV(1l,1) * DNDXI(N) + JACINV(1,2) *

DNDETA(N) +
DNDY (N) = JACINV(2,1)
DNDETA (N) +
DNDZ (N) = JACINV(3,1)
DNDETA(N) +
CONTINUE
DO 9 L =1, 32
DO 80 N = 1, 32

KE(L,N) = KE(L,N) + W(I) * W(J)
(KXE * DNDX(L) * DNDX(N) + KYE * DNDY(L) *
DNDY (N) + KZE * DNDZ (L) * DNDZ(N)) * DETJAC

CONTINUE
CONTINUE
CONTINUE

110 CONTINUE
120 CONTINUE
RETURN

END

JACINV(1,3) * DNDZETA(N)
* DNDXI(N) + JACINV(Z2,2) *
JACINV(2,3) * DNDZETA (N)
* DNDXI(N) + JACINV(3,2) *
JACINV(3,3) * DNDZETA(N)

* W(K) *
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Chapter 13

SUBROUTINES DECOMP AND SOLVE

13.1 PURPOSE
Subroutines DECOMP and SOLVE solve a system of linear equations of the form
M] {X} = {B} (13.1)

where [M] is a banded matrix of known coefficients (symmetric or not ), {X} are the
unknowns, and {B]) is a vector of known values.

13.2 INPUT

None

13.3 OUTPUT

None

13.4 DEFINITIONS OF VARIABLES

B() = Vector of known values.
Mdn = Matrix of known cofficients in vector storage.
NDOF = Number of unknown values in {X].
SBW = Semi-band width of [M].
SYMM = Logical variable
= 'True' if [M] is symmetric
= 'False’ if [M] is nonsymmetric.
XM = Vector of unknown values to be compted.
13.5 USAGE

Subroutine DECOMP performs triangular decomposition on the matrix of known
coefficients in vector matrix storage {M} (see Chapter 5). The resulting upper-, and lower-
triangular matrices are stored in {M} (the original contents of {M} are overwritten during
the decomposition process). Subroutine SOLVE solve for values of the unknowns by
backward substitution. Once {M) has been decomposed SOLVE can be used to obtain
values of {X} for any number of different vectors {B}.

For example, consider the system of linear equations

363
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2 1-1 1]|x 1
-1 4 1 -1]||x%x2 0
-2 -1 4 1]|x3 0
-1 -2 1 2]|x4 0

[M] is a nonsymmetric matrix (SYMM = 'False") with NDOF = SBW = 4, For use in
DECOMP and SOLVE [M] must be in vector storage. Using the procedure in Section
5.1.3 we can write

{M} = J 1
Before
Decompostion -1

After executing subroutine DECOMP, {M] contains the upper and lower triangular
matrices for {M) in vector storage

2.0 :
0.5 u“
-0.5 u”
0.5 u”
-1.0 : 14
4.5 21
0.11 ::3
4
o = fonl o1
A -2.00
Decomposition 0.0 l
3.0 3
0.67 ta4
-1.0 :‘“
-1.5 142
0.67 1‘3
1.89 “
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where 1;; and uj; are the entries in the i'h row and j" column of the lower and upper
triangular matrices that would have been stored in [L] and [U] if the decomposition had
been performed in full matrix storage.

After (M} has been decomposed, subroutine SOLVE can be used to find a solution
{X} for any known right-hand-side vector {B}. For this example

O -

{B} = {
L0
and after executing SOLVE (with NDOF = SBW = 4, and SYMM = False’) we have

0.41
0.12
0.17
[ 0.24

{X} = ;

SOLVE can be executed repeatedly to obtain a set of solutions (X}, (X3}, ... for a set of
known vectors {B;}, {Bs},....
As another example consider the two system of equations

~

3200](xy 1
2420||x 0
0242|]x; 0
0023](xJ lo
and
320 0]([x) 0
2420||x[ |1
0242||x] o
0023f|xJ o

Writing the mawrix of coefficients in vector storage gives

M} = |

Before
Decompostion

WRONBENNDENNW
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After executing DECOMP with NDOF = 4, SBW =2, and SYMM = 'True’, we have

,

1.732) LY
1.155 Uj2
1.633 uyy
{M} = 4¢1.225;¢ = qU23p
Decommsion | 1-581]  [uss
1.265 U34 ;
[1.183] rm

wher ujj is an entry in the i*h row and j*h column of the upper triangular matrix that would
have been stored in [U] if the decomposition had been perfored in full matrix storage.

Subroutine SOLVE will be executed twice, once for each vector {B). The first time
SOLVE is executed, NDOF = 4, SBW = 2, SYMM = 'True’,

(1
0
{B} = 9 0
L0
and the solution is
[ 0.71
-0.57
X}=1 043
[ -0.29
The second time SOLVE is executed, NDOF = 4, SBW =2, SYMM = 'True',
(0
1
{B} =9 0
L0
and the solution is
[ -0.57
_ ] 0.86
x} = -0.64
[ 043
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13.6 SOURCE CODE LISTING

SUBROUTINE DECOMP (NDOF, SBW, SYMM, M)
L T e Ty T T

13.1 PURPOSE:
SUBROUTINES DECOMP AND SOLVE SOLVE A SYSTEM OF
LINEAR EQUATIONS OF THE FORM
[M] (X} = (B}
WHERE [M] IS A BANDED MATRIX OF KNOWN COEFFICIENTS
(SYMMETRIC OR NONSYMMETRIC), {X} ARE THE UNKNOWNS,
AND {B} IS A VECTOR OF KNOWN VALUES

00000000

13.2 1INPUT:
NONE

13.3 OUTPUT:
NONE

13.4 DEFINITIONS OF VARIABLES:
B(I) = VECTOR OF KNOWN VALUES
M(IJ) = MATRIX OF KNOWN COEFFICIENTS IN VECTOR STORAGE
NDOF = NUMBER OF UNKNOWN VALUES IN {X}
SBW = SEMI-BANDWIDTH OF [M]
SYMM = LOGICAL VARIABLE
= 'TRUE' IF [M] IS SYMMETRIC
= 'FALSE' IF (M] IS NONSYMMETRIC
X(I) = VECTOR OF UNKNOWN VALUES TO BE COMPUTED
13.5 USAGE:
SUBROUTINE DECOMP PERFORMS TRIANGULAR DECOMPOSITION
ON THE MATRIX OF KNOWN COEFFICIENTS IN VECTOR MATRIX
STORAGE, {M}. THE RESULTING UPPER-, AND LOWER-
TRIANGULAR MATRICES ARE STORED IN {M} (THE ORIGINAL
CONTENTS OF (M} ARE OVERWRITTEN DURING THE
DECOMPOSITION PROCESS). SUBROUTINE SOLVE SOLVES FOR
VALUES OF THE UNKNOWNS BY BACKWARD SUBSTITUTION. ONCE
{M} HAS BEEN DECOMPOSED SOLVE CAN BE USED TO OBTAIN
VALUES OF {X} FOR ANY NUMBER OF DIFFERENT VECTORS ({B}.

SUBROUTINES CALLED:
LOC

REFERENCES:
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 13.

e NeNeNeNe e NeNe e NoNe o Ne Ne Re Ne Ne Ne e Ne NeRe Re e Ne e Ne Re Ne Re Ne Ne Ne Ke Ne Ko

e e g ok e o e o ok o o o e o e o o o ok ol o Tk ok o o ok ok Ok o O o ke e o o ok T ke o ok ok o i ok ok o ok e o O O ok ok o ok v e ok e ok e e ok e

INTEGER NDOF, SBW
LOGICAL SYMM
REAL M(1)

IF (SYMM) THEN
Cc M IS A SYMMETRIC MATRIX
J2 = SBW
=0
DO 30 I = 1, NDOF
II = IJ + 1
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DO 20 J = I, J2
I0 =13 +1
IF (I .GT. 1) THEN
Kl = J - SBW + 1
IF (K1 .LT. I) THEN
IF (K1 .LE. 0) K1 = 1
DO 10 K = K1, (I-1)
CALL LOC (K, I,KI,NDOF, SBW, SYMM)
CALL LOC(K,J,KJ,NDOF, SBW, SYMM)
M(IJ) = M(IJ) - M(KI) * M(KJ)
10 CONTINUE
ENDIF
ENDIF
IF (I .EQ. J) THEN
M(IJ) = SQRT(M(IJ))
ELSE
M(IJ) = M(IJ) / M(II)
ENDIF
20 CONTINUE
IF (J2 .LT. NDOF) J2 = J2 + 1
30 CONTINUE
ELSE
c M IS A NONSYMMETRIC MATRIX
Jl =1
J2 = SBW
IJ =0
DO 60 I = 1, NDOF
II =IJ +I-J1+1
Kl = J1
IKBEG = IJ + 1
DO 50 J = J1, J2
I0 = I3 + 1
IF (J .GT. SBW .AND. I .LT. J) THEN
Kl =Kl +1
IKBEG = IKBEG + 1
ENDIF
K2 = MIN(I,J) -1
IF (K2 .GE. K1) THEN
IK = IKBEG
DO 40 K = K1, K2
CALL LOC(K,J,KJ,NDOF, SBW, SYMM)
M(IJ) = M(IJ) - M(IK) * M(KJ)
IK = IK + 1
40 CONTINUE
ENDIF
IF (I .LT. J) THEN
M(IJ) = M(IJ) / M(II)
ENDIF
50 CONTINUE
IF (I .GE. SBW) J1l = J1 + 1
IF (J2 .LT. NDOF) J2 = J2 + 1
60 CONTINUE
ENDIF
RETURN
END
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SUBROUTINE SOLVE (NDOF, SBW, SYMM, M, B, X)
oL T T T Ty T

[
C 13.1 PURPOSE:

Cc SUBROUTINES DECOMP AND SOLVE SOLVE A SYSTEM OF

(o] LINEAR EQUATIONS OF THE FORM

(o] [M] (X} = (B}

[ WHERE [M] IS A BANDED MATRIX OF KNOWN COEFFICIENTS
[ (SYMMETRIC OR NONSYMMETRIC), (X} ARE THE UNKNOWNS,
Cc AND (B} IS A VECTOR OF KNOWN VALUES

[

[

[

[

13.2 INPUT:
NONE

C 13.3 OQUTPUT:

[ NONE

[

C 13.4 DEFINITIONS OF VARIABLES:

[ B(I) = VECTOR OF KNOWN VALUES

[ M(IJ) = MATRIX OF KNOWN COEFFICIENTS IN VECTOR STORAGE
[ NDOF = NUMBER OF UNKNOWN VALUES (X}

[ SBW = SEMI-BANDWIDTH OF [M]

Cc SYMM = LOGICAL VARIABLE

[ = 'TRUE' IF [M] IS SYMMETRIC

[ = 'FALSE' IF ([M] IS NONSYMMETRIC

[ X(I) = VECTOR OF UNKNOWN VALUES TO BE COMPUTED

[

C 13.5 USAGE:

c SUBROUTINE DECOMP PERFORMS TRIANGULAR DECOMPOSITION

Cc ON THE MATRIX OF KNOWN COEFFICIENTS IN VECTOR MATRIX
[ STORAGE, (M}. THE RESULTING UPPER-, AND LOWER-

[ TRIANGULAR MATRICES ARE STORED IN (M} (THE ORIGINAL

Cc CONTENTS OF {M} ARE OVERWRITTEN DURING THE

[ DECOMPOSITION PROCESS). SUBROUTINE SOLVE SOLVES FOR
[ VALUES OF THE UNKNOWNS BY BACKWARD SUBSTITUTION. ONCE
Cc {M} HAS BEEN DECOMPOSED SOLVE CAN BE USED TO OBTAIN

Cc VALUES OF (X} FOR ANY NUMBER OF DIFFERENT VECTORS {B}.
[

[ SUBROUTINES CALLED:

[ LOoC

[

[ REFERENCES:

Cc ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT

[ MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 13.

[
CRAdhhdhshdhdihasohhmhdhdikdhdh ik dhkh kh ko dk ok sk ok sk ko st stk stk o stk sk ok sk e ok ok ok e ok b

INTEGER NDOF, SBW
LOGICAL SYMM
REAL M(1),B(1),X(1)

DO 10 I = 1, NDOF
X(I) = B(I)
10 CONTINUE
IF (SYMM) THEN
c M IS A SYMMETRIC MATRIX
K2 = SBW
IK = 0
DO 30 I = 1, NDOF
DO 20 K = I, K2

Copyright American Geophysical Union



Groundwater Modeling by

Water Resources Monograph the Finite Element Method Vol. 13

370

20
30

40

50

60

70

80

90

Subroutines Decomp and Solve

IK = IK + 1
IF (K .EQ. I) THEN
X(K) = X(K) / M(IK)
ELSE
X(K) = X(K) - M(IK) * X(I)
ENDIF
CONTINUE
IF (K2 .LT. NDOF) K2 = K2 + 1
CONTINUE
K2 = 0
DO 50 I = NDOF, 1, -1
IF (K2 .GT. 0) THEN
DO 40 K = (I + K2), (I +1), -1
X(I) = X(I) - M(IK) * X(K)

IK = IK - 1
CONTINUE
ENDIF
X(I) = X(I) / M(IK)
IK = IK - 1
IF (K2 .LT. (SBW - 1)) K2 = K2 + 1
CONTINUE

ELSE
M IS A NONSYMMETRIC MATRIX
X(1) = X(1) / M(1)
IF (NDOF .GT. 1) THEN
K2 = 1
DO 70 I = 2, NDOF
IF (I .GT. SBW) K2 = K2 + 1
CALL LOC(I,I,II,NDOF,SBW, SYMM)
IF (I .GT. K2) THEN
IK = II -1
DO 60 K= (I - 1), K2, ~1
X(I) = X(I) - M(IK) * X(K)
IK = IK - 1
CONTINUE
ENDIF
X(I) = X(I) / M(II)
CONTINUE
ENDIF
J = NDOF - SBW + 1
K2 = NDOF
IF (NDOF .GT. 1) THEN
DO 90 I = (NDOF - 1), 1, -1
IF (I .LT. J) K2 = K2 - 1
IF (I .LT. K2) THEN
CALL LOC(I,I,II,NDOF,SBW,SYMM)
IK = II + 1
DO 80 K = (I + 1), K2
X(I) = X(I) - M(IK) * X(K)
IK = IK + 1
CONTINUE
ENDIF
CONTINUE
ENDIF
ENDIF
RETURN
END
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SUBROUTINE VELOCITY

14.1 PURPOSE

To compute the components of apparent groundwater velocity for each element in the
mesh.

14.2 INPUT

None

14.3 OUTPUT

The components of apparent groundwater velocity are written to the user-defined file
assigned to unit "OUTF".

14.4 DEFINITIONS OF VARIABLES

DIM = Type of coordinate system used in this problem (Figure 8.1).
= 1, problem is one-dimensional.
= 2, problem is two-dimensional,
= 3, problem is three-dimensional.
= 4, problem is two-dimensional (axisymmetric).
E = Element number.
ELEMTYP(I) = Element type for element L.
NUMELM = Number of elements in the mesh.
Vi@ = App)arent groundwater velocity in x coordinate direction (DIM =1,2,
or 3).
= Apparent groundwater velocity in r coordinate direction (DIM = 4).
V2(D = Unused (DIM = 1).
= 13\)ppamnt groundwater velocity in y coordinate direction (DIM =2 or
= Apparent groundwater velocity in z coordinate direction (DIM = 4).
Vi) Unused (DIM = 1, 2, or 4).

Apparent groundwater velocity in z coordinate direction (DIM = 3).

mn
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14.5 USAGE

The components of apparent groundwater velocity are computed in a set of subroutines,
one subroutine for each element type (Table 14.1). Each subroutine name in this set begins
with the letter "V” (for velocity) followed by three or four letters that identify the element
type and the number of nodes in elements of that type. For example, subroutine VBAR2

computes the single component of apparent groundwater velocity (vff)) for one~dimensional,
linear bar elements and subroutine VPAR32 computes the three components of apparent

groundwater velocity (v, vgf), v for three—dimensional, cubic parallelepiped elements.

Table 14.1 Subroutines used to compute components of apparent groundwater velocity
in VELOCITY.

Element Type Description Subroutine Name DM
1 Linear bar VBAR2 1
2 Quadratic bar VBAR3 1
3 Cubic bar VBAR4 1
4 Linear triangle VTRI3 2
5 Linear rectangle VREC4 2
6 Linear quadrilateral VQUA4 2
7 Quadratic quadrilateral VQUAS 2
8 Cubic quadrilateral VQUAI12 2
9 Linear parallelepiped VPARS 3
10 Quadratic parallelepiped VPAR20 3
1 Cubic parallelepiped VPAR32 3
12 Linear triangle (axisymmetric) VTRI3A* 4
13 Linear rectangle (axisymmetric) VREC4A* 4

* Source code listing not provided for these subroutines.

The source code listings for each of the element velocity subroutines gives the figure
number that shows the interpolation functions for that element type and the equation used to
compute the velocity components. For the linear rectangle and quadrilateral elements the
components of apparent groundwater velocity are computed at the center of the element. A
list of many of the FORTRAN variable names used in these subroutines and the

corresponding textbook symbols are in Table 12.2. The variable names and symbols for
the velocity components are in Table 14.2

The mesh in Figure 14.1 consists of three, linear bar elements (ELEMTYP(I)=1,1=
1, 2, 3). Apparent groundwater velocities are computed using subroutine VBAR2. The
output lists the computed value of apparent groundwater velocity in the x coordinate
direction for each element.

The mesh in Figure 14.2 consists of twelve linear triangle elements (ELEMTYP(]) = 4,
I=1,...,12). Apparent groundwater velocities are computed using subroutine VTRI3.
The output lists the computed values of apparent groundwater velocity in the x and y
coordinate directions for each element.
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Table 14.2 FORTRAN variable names and textbook symbols for components of
apparent groundwater velocity in VELOCITY.

FORTRAN Variable Definition Symbol in Text
Name
VXE Velocity component in x coordinate direction Ve
VYE Velocity component in y coordinate direction v§,°)
VZE Velocity component in z coordinate direction v
VRE Velocity component in r coordinate direction v
element
/ numbers
(1) ¥)) 3)
o g g ® Node Hydraulic
1 2 3 4 Number Head (cm)
x=0) x=4) (x=8) (x=12) ) 209
x 3 6.67
—> 4 4.00

K=K =0.04 cys, KP =0.01 emy's

Output:
COMPUTED VALUES OF APPARENT GROUNDWATER VELOCITY
ELEMENT VX
1 2.666668E-02
2 2.666666E-02
3 2.666666E-02

Figure 14.1 Example output for subroutine VELOCITY.
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3 6 9 12
(5,15) (10,15) (15,15) (20,15)
Node Hydraulic
%) Number Head(ft)
1 4.60
® 2 4.73
3 6.00
2 4 4.58
(5,10) 8 (15,10) /1(20,10) 5 4.69
6 5.50
7 4.55
8 4.61
9 5.00
® 10 4.50
1 4 7 10 11 4.50
55 105 (155 (05 12 4%
y M _ @ ®)
Ky’ =K;"=...K;’ =0.01 ft/s
x K?=g®=.. k8?=0.02 fifs
1 2) 12) _
kP =kP=...K{!?=0.001 ftss
Output :

COMPUTED VALUES OF APPARENT GROUNDWATER VELOCITY

:

PO VONAUNAWN—

Figure 14.2

Copyright American Geophysical Union

VX

7.999995E-05
4.000018E-05
1.599997E-04
5.999957E-05
2.200000E-04
1.000001E-05
2.000000E-03
1.600003E-04
2.000000E-03
3.199996E-04
2.000000E-03
4.400007E-04

vY

-2.600000E-05
-2.200002E-05
-2.200002E-05
-1.200001E-05
-1.200001E-05

2.235174E-11
-2.540000E-04
-1.620000E-04
-1.620000E-04
-7.799997E-05
-7.799997E-05

2.235174E-11

Example output for subroutine VELOCITY.
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14.6 SOURCE CODE LISTING

SUBROUTINE VELOCITY
CARARRRRRR AR R AR RRRR R KRR RRRR KR RRRRRR AR AR AR AR AR AR AR A Ak

14.1 PURPOSE:

TO COMPUTE THE COMPONENTS OF APPARENT GROUNDWATER
VELOCITY FOR EACR ELEMENT IN THE MESH

14.2 INPUT:

NONE

14.3 OUTPUT:

THE COMPONENTS OF APPARENT GROUNDWATER VELOCITY ARE

WRITTEN TO THE USER-DEFINED FILE ASSIGNED TO UNIT

"OQUTF".
14.4 DEFINITIONS OF VARIABLES:
DIM = COORDINATE SYSTEM TYPE
E = ELEMENT NUMBER
ELEMTYP (I) = ELEMENT TYPE FOR ELEMENT I
NUMELM = NUMBER OF ELEMENTS IN THE MESH
V1(I) = APPARENT GROUNDWATER VELOCITY IN X
COORDINATE DIRECTION (DIM=1, 2, OR 3)
= APPARENT GROUNDWATER VELOCITY IN R
COORDINATE DIRECTION (DIM=4)
V2(I) = UNUSED (DIM=1)
= APPARENT GROUNDWATER VELOCITY IN Y
COORDINATE DIRECTION (DIM=2 OR 3)
= APPARENT GROUNDWATER VELOCITY IN 2
COORDINATE DIRECTION (DIM=4)
V3(I) = UNUSED (DIM=1l, 2, OR 4)

APPARENT GROUNDWATER
COORDINATE DIRECTION

VELOCITY IN 2
(DIM=3)

Vol. 13
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0000000000000 00000000000000000O00O0000000000O0000O00O0O0O00O0

14.

5

USAGE:
THE COMPONENTS OF APPARENT GROUNDWATER VELOCITY ARE
COMPUTED IN A SET OF SUBROUTINES, ONE SUBROUTINE
FOR EACH ELEMENT TYPE.

SUBROUTINES CALLED:
VBAR2, VBAR3, VBAR4, VTRI3, VREC4, VQUA4, VQUAS, VQUAL12, VPARS,
VPAR20, VPAR32, VTRI3A, VREC4A

REFERENCES :
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, CHAPTERS 6
AND 14.

oL L e T I ey
$INCLUDE: 'COMALL'

C

10

WRITE (CUTF, 10)

FORMAT (//70('*') //11X, 'COMPUTED VALUES OF APPARENT ',
YGROUNDWATER VELOCITY'/11X,48('-'))

IF (DIM .EQ. 1) THEN

WRITE (OUTF, 20) °' VXY, T,
ELSEIF (DIM .EQ. 2) THEN

WRITE (OUTF,20) * TR, VY,
ELSEIF (DIM .EQ. 3) THEN

WRITE (OUTF,20) ' ','VX','VY','v2'
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ELSEIF (DIM .EQ. 4) THEN
WRITE (OUTF, 20) * 'yIVR', V2, 0

ENDIF

FORMAT(/7X,A, 'ELEMENT', 10X, 4,2 (13X,3) /)
COMPUTE THE COMPONENTS OF APPARENT GROUNDWATER VELOCITY
FOR EACH ELEMENT

DO 40 E = 1, NUMELM

IF (ELEMTYP(E) .EQ. 1) THEN
ELEMENT IS A LINEAR BAR
CALL VBAR2(E,V1(E))

ELSEIF (ELEMTYP(E) .EQ. 2) THEN
ELEMENT IS A QUADRATIC BAR
CALL VBAR3(E,V1(E))

ELSEIF (ELEMTYP(E) .EQ. 3) THEN
ELEMENT IS A CUBIC BAR
CALL VBAR4 (E,V1(E))

ELSEIF (ELEMTYP(E) .EQ. 4) THEN
ELEMENT IS A LINEAR TRIANGLE
CALL VTRI3(E,V1(E),V2(E))

ELSEIF (ELEMTYP(E) .EQ. 5) THEN
ELEMENT IS A LINEAR RECTANGLE
CALL VREC4(E,V1(E),V2(E))

ELSEIF (ELEMTYP(E) .EQ. 6) THEN
ELEMENT IS A LINEAR QUADRILATERAL
CALL VQUA4(E,V1(E),V2(E))

ELSEIF (ELEMTYP(E) .EQ. 7) THEN
ELEMENT IS A QUADRATIC QUADRILATERAL
CALL VQUAS (E,V1(E),V2(E))

ELSEIF (ELEMTYP(E) .EQ. 8) THEN
ELEMENT IS A CUBIC QUADRILATERAL
CALL VQUA12(E,V1(E),V2(E))

ELSEIF (ELEMTYP(E) .EQ. 9) THEN
ELEMENT IS A LINEAR PARALLELEPIPED
CALL VPARS(E,V1(E),V2(E),V3(E))

ELSEIF (ELEMTYP(E) .EQ. 10) THEN
ELEMENT IS A QUADRATIC PARALLELEPIPED
CALL VPAR20 (E,V1(E),V2(E),V3(E))

ELSEIF (ELEMTYP(E) .EQ. 11) THEN
ELEMENT IS A CUBIC PARALLELEPIPED
CALL VPAR32(E,V1(E),V2(E),V3(E))

ELSEIF (ELEMTYP(E) .EQ. 12) THEN

ELEMENT IS A LINEAR TRIANGLE (AXISYMMETRIC)

CALL VTRI3A(E,V1(E),V2(E))
ELSEIF (ELEMTYP(E) .EQ. 13) THEN

ELEMENT IS A LINEAR RECTANGLE (AXISYMMETRIC)

CALL VREC4A(E,V1(E),V2(E))

ENDIF

IF (DIM .EQ. 1) THEN
WRITE (OUTF, 30) * '+E,V1(E)

ELSEIF (DIM .EQ. 2) THEN
WRITE (OUTF, 30) *

'\E,V1(E),V2(E)

ELSEIF (DIM .EQ. 3) THEN
WRITE (OUTF,30) ' ',E,V1(E),V2(E),V3(E)

ELSE

WRITE (OUTF, 30) *' ' ,E,V1(E),V2(E)

ENDIF

FORMAT (7X, A, IS5, 4X,1P3E15.6)

CONTINUE
RETURN
END
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SUBROUTINE VBARZ2 (E, VXE)
CARRARARRRRRRRRRRR AR AR AR KRR R R AR KRR ARRRR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR

PURPOSE:
TO COMPUTE APPARENT GROUNDWATER VELOCITY FOR A
ONE-DIMENSIONAL, LINEAR BAR ELEMENT

DEFINITIONS OF VARIABLES:
DHDX = PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO X
E = ELEMENT NUMBER
KXE = HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION
LE = ELEMENT LENGTH
VXE = APPARENT GROUNDWATER VELOCITY IN
X COORDINATE DIRECTION
X(IN(E,I)) = COMPUTED HEAD FOR NODE I, ELEMENT E
X1(IN(E,I)) = X COORDINATE FOR NODE I, ELEMENT E

REFERENCES:
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.5,
EQUATIONS 6.10A, 6.12A.

[eNeNeNeNeNeNeNeNeNeNeNeNeNe NeNe Ne Ne Ne Nt

c**********************************************************************

$INCLUDE: 'COMALL'
REAL KXE,LE
c
KXE = PROP(MATSET(E), 1)
LE = X1(IN(E,2)) - X1(IN(E,1))
DHDX = (X(IN(E,2)) - X(IN(E,1))) / LE
VXE = -KXE * DHDX
RETURN
END

SUBROUTINE VBARS3 (E, VXE)
CRRARERRRARRRRRRRRRRRR AR AR AR AR A AR R AR AR KRR KRR KRR KRR R KRR AR AR R R AR AR AR A A&

PURPOSE:
TO COMPUTE APPARENT GROUNDWATER VELOCITY FOR A
ONE-DIMENSIONAL, QUADRATIC BAR ELEMENT

DEFINITIONS OF VARIABLES:
DHDX = PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO X
DNDXI (I) = PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO XI FOR NODE I
ELEMENT NUMBER
JACOBIAN MATRIX
INVERSE OF JACOBIAN MATRIX
HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION
APPARENT GROUNDWATER VELOCITY IN
X COORDINATE DIRECTION
X(IN(E,I)) = COMPUTED HEAD FOR NODE I, ELEMENT E
X1(IN(E,I)) X COORDINATE FOR NODE I, ELEMENT E

E

JAC
JACINV
KXE
VXE

REFERENCES :
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.9B,
EQUATIONS 6.18 AND 6.26A.

[of
[of
[of
[of
[of
[of
[of
[of
[of
[of
[of
[of
[of
[of
[of
[of
[of
[of
[of
[of
[of
[of
[of
CRARARARARARARAARAAAARKKARRRRRRI AR RRRARRRRRRR AR AR AR AR AR AR KR AR R RRRA AR
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$INCLUDE: 'COMALL'

Cc

10

20

REAL DNDXI (3),JAC, JACINV,KXE

KXE = PROP (MATSET(E), 1)
DNDXI (1)= ~0.S
DNDXI (2)= 0.0
DNDXI(3)= 0.S
JAC = 0
DO 10 I =1, 3
JAC = JAC + DNDXI(I) * X1(IN(E,I))
CONTINUE
JACINV = 1 / JAC
DHDX = 0.
DO 20 I =1, 3
DHDX = DHDX + JACINV * DNDXI(I) * X(IN(E,I))
CONTINUE
VXE = -KXE * DHDX
RETURN
END

SUBROUTINE VBAR4 (E, VXE)

CrRARARRRARARRRRRARRRRRRRRRRRRRRERRRANANNANRRRRANRAARRRNARANRARARAANNR AR AR AR

D000 O0O000000000000000O00O00O00O00

PURPOSE :
TO COMPUTE APPARENT GROUNDWATER VELOCITY FOR A
ONE-DIMENSIONAL, CUBIC BAR ELEMENT

DEFINITIONS OF VARIABLES:
DHDX = PARTIAL DERIVATIVE OF HEAD WITH RESPECT
TO X COORDINATE DIRECTION

DNDXI (I) = PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO XI FOR NODE I
ELEMENT NUMBER
JACOBIAN MATRIX
INVERSE OF JACOBIAN MATRIX
HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION
APPARENT GROUNDWATER VELOCITY IN
X COORDINATE DIRECTION
X(IN(E,I)) = COMPUTED HEAD FOR NODE I, ELEMENT E
X1(IN(E,I)) X COORDINATE OF NODE I, ELEMENT E

E

Jac
JACINV
KXE
VXE

REFERENCES :
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.9C,
EQUATIONS 6.18 AND 6.26A.

CANRRRRR AR R AR R ARRRRRRR AR AR AR AR AR AR N R RA RN R AR R R R R R AR AR AR AR RARRRR AR R R RN A
$INCLUDE: 'COMALL'

c

20

REAL DNDXI (4) , JAC, JACINV,KXE

KXE = PROP (MATSET (E),1)
DNDXI(1) = 1. / 16.
DNDXI(2) = -27. / 16.
DNDXI(3) = -DNDXI (2)
DNDXI(4) = -DNDXI (1)
JAC = 0
DO 20I =1, 4
JAC = JAC + DNDXI(I) * X(IN(E,I))
CONTINUE
JACINV = 1 / JAC
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DHDX = 0.

DO 30 1 =1, 4
DHDX = DHDX + JACINV * DNDXI(I) * X(IN(E,I))
30 CONTINUE
VXE = -KXE * DHDX
RETURN
END

SUBROUTINE VTRI3 (E,VXE, VYE)
c*******i**************************************************************
PURPOSE :

TO COMPUTE COMPONENTS OF APPARENT GROUNDWATER
VELOCITY FOR A TWO-DIMENSIONAL, LINEAR TRIANGLE ELEMENT

DEFINITIONS OF VARIABLES:
DHDX = PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO X
DHDY = PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO Y
DNDX (I) = PARTIAL DERIVATE OF INTERPOLATION
FUNCTION WITH RESPECT TO X FOR NODE I
DNDY(I) = PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO Y FOR NODE I

E = ELEMENT NUMBER
KXE = HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION
KYE = HYDRAULIC CONDUCTIVITY IN Y COORDINATE DIRECTION
VXE = APPARENT GROUNDWATER VELOCITY IN

X COORDINATE DIRECTION
VYE = APPARENT GROUNDWATER VELOCITY IN
Y COORDINATE DIRECTION
X(IN(E,I)) = COMPUTED HEAD FOR NODE I, ELEMENT E
X1(IN(E,I)) = X COORDINATE FOR NODE I, ELEMENT E
X2 (IN(E,I)) = Y COORDINATE FOR NODE I, ELEMENT E

REFERENCES:

ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT

MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.6,

EQUATIONS 6.10A, 610B, 6.12A, AND 6.12B.
CRARARIRARRARHARRIRERRIRARIRIRAR IR IR IR RR AR AR AR AR AR R AR AR R AR R
$INCLUDE: ‘'COMALL'

REAL DNDX (3),DNDY(3) ,KXE,KYE

[eNeNeNeReNeNe NeReNe e e ReReNeNeEe Ee Ne Ne NeNeNe Ne Ro el

c
KXE = PROP (MATSET (E),1)
KYE = PROP (MATSET (E),2)
AE2 = X1(IN(E,2)) * X2(IN(E,3)) + X1(IN(E,1l)) * X2(IN(E,2)) +

1 X2 (IN(E,1)) * X1(IN(E,3)) - X2(IN(E,3)) * X1(IN(E,1l)) -
2 X1(IN(E,3)) * X2(IN(E,2)) - X1(IN(E,2)) * X2(IN(E,1l))
DNDX (1) = (X2 (IN(E,2)) - X2(IN(E,3))) / AE2

DNDX(2) = (X2(IN(E,3)) - X2(IN(E,1))) / AE2

DNDX (3) = (X2(IN(E,1)) - X2(IN(E,2))) / AE2

DNDY (1) = (X1(IN(E,3)) - X1(IN(E,2))) / AE2

DNDY(2) = (X1(IN(E,1)) - X1(IN(E,3))) / AE2

DNDY (3) = (X1(IN(E,2)) - X1(IN(E,1))) / AE2

DHDX = 0.

DHDY = 0.

DO 20 I =1, 3
DHDX = DHDX + DNDX(I) * X(IN(E,I))
DHDY = DHDY + DNDY(I) * X(IN(E,I))

20 CONTINUE

VXE = -KXE * DHDX

VYE = -KYE * DHDY

RETURN

END
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SUBROUTINE VRECA4 (E,VXE, VYE)
CAARAAA KRR AR AR AR R AR R AR AR AR AR AR AR AR AR AR AR AR AR AR R R AR AR AR AR R R RRRRN AR AR AR

PURPOSE:
TO COMPUTE COMPONENTS OF APPARENT GROUNDWATER
VELOCITY FOR A TWO-DIMENSIONAL, LINEAR RECTANGLE ELEMENT

DEFINITIONS OF VARIABLES:
DHDX = PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO X
DHDY = PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO Y
DNDX(I) = PARTIAL DERIVATE OF INTERPOLATION
FUNCTION WITH RESPECT TO X FOR NODE I
DNDY(I) = PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO Y FOR NODE I

E = ELEMENT NUMBER
KXE = HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION
KYE = HYDRAULIC CONDUCTIVITY IN Y COORDINATE DIRECTION
VXE = APPARENT GROUNDWATER VELOCITY IN

X COORDINATE DIRECTION
VYE = APPARENT GROUNDWATER VELOCITY IN
Y COORDINATE DIRECTION
X(IN(E,I)) = COMPUTED HEAD FOR NODE I, ELEMENT E
X1(IN(E,I)) = X COORDINATE FOR NODE I, ELEMENT E
X2 (IN(E,I)) = ¥ COORDINATE FOR NODE I, ELEMENT E

REFERENCES :
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.7,
EQUATIONS 6.10a, 6.10B, 6.12A, AND 6.12B.

(e NeXeNe e e Ne Ke Ne Ne Ne e Ne e Ne Ne Ne e Ee Ne e Ne Ne Ne e Ne Ne N

CRAAAAARAAARAAN AR AR AR A AR ARA A RN A RARAARA R A AR ARNRRARARRRRRRARARARARAA RN R AR AR AR AR AR AR K

$INCLUDE: 'COMALL‘
REAL DNDX(4),DNDY (4) ,KXE, KYE
c
KXE = PROP (MATSET(E), 1)
KYE = PROP (MATSET(E),2)
AE = ABS(X2(IN(E,1)) - X2(IN(E,3))) / 2.
BE = ABS(X1(IN(E,1)) - X1(IN(E,3))) / 2.

DNDX(1l) = - 1. / (2.*BE)
DNDX(2) = -DNDX(1)
DNDX(3) = 0

DNDX(4) = 0

DNDY(1l) = = 1. / (2.%AE)
DNDY(2) = 0

DNDY(3) = 0

DNDY (4) = -DNDY(1)

DHDX = 0.

DHDY = 0.

DO 10 I =1, 4
DHDX = DHDX + DNDX(I) * X(IN(E,I))
DHDY = DHDY + DNDY (I) * X(IN(E,I))
10 CONTINUE

VXE = -KXE * DHDX
VYE = -KYE * DHDY
RETURN

END
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SUBROUTINE VQUA4 (E, VXE, VYE)
el A 2 L T T T

PURPOSE:
TO COMPUTE COMPONENTS OF APPARENT GROUNDWATER
VELOCITY FOR A TWO-DIMENSIONAL, LINEAR QUADRILATERAL
ELEMENT

c

c

c

c

c

c

c DEFINITIONS OF VARIABLES:

[+ DETJAC = DETERMINANT OF JACOBIAN MATRIX

[+ DHDX = PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO X
c DHDY = PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO Y
c DNDXI(I) = PARTIAL DERIVATIVE OF INTERPOLATION

c FUNCTION WITH RESPECT TO XI FOR NODE I
c DNDX(I) = PARTIAL DERIVATIVE OF INTERPOLATION

c FUNCTION WITH RESPECT TO X FOR NODE I

c DNDETA(I) = PARTIAL DERIVATIVE OF INTERPOLATION

c FUNCTION WITH RESPECT TO ETA FOR NODE I
c DNDY(I) = PARTIAL DERIVATIVE OF INTERPOLATION

c FUNCTION WITH RESPECT TO Y FOR NODE I

[o

c

c

c

E = ELEMENT NUMBER
JAC(I,J) = JACOBIAN MATRIX
JACINV(I,J) = INVERSE OF JACOBIAN MATRIX
KXE = HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION
[+ KYE = HYDRAULIC CONDUCTIVITY IN Y COORDINATE DIRECTION
[+ VXE = APPARENT GROUNDWATER VELOCITY IN
c X COORDINATE DIRECTION
[+ VYE = APPARENT GROUNDWATER VELOCITY IN
c Y COORDINATE DIRECTION
c X(IN(E,I)) = COMPUTED HEAD FOR NODE I, ELEMENT E
[+ X1(IN(E,I)) = X COORDINATE FOR NODE I, ELEMENT E
c X2 (IN(E,I)) = ¥ COORDINATE FOR NODE I, ELEMENT E
c
c REFERENCES :
[+ ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
[+ MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.10,
[+ EQUATIONS 6.14A, 6.14B, 6.17, 6.22A, AND 6.22B.
g**********************************************************************

$SINCLUDE: 'COMALL'
REAL JAC(2,2),JACINV(2,2),DNDXI (4),DNDX(4),
1 DNDETA (4) ,DNDY (4) , SIGN1 (4) , SIGN2 (4) , KXE, KYE
DATA SIGN1l/-1.,1.,1.,-1./
DATA SIGN2/-1.,-1.,1.,1./

KXE = PROP (MATSET(E),1)
KYE = PROP (MATSET(E),2)

DO 20 I =1, 2
DO 10 J = 1, 2
JAC(I,J) = 0.
10 CONTINUE
20 CONTINUE

DO 30I=1, 4

DNDXI(I) = 0.25 * SIGN1(I)
DNDETA(I) = 0.25 * SIGN2(I)
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30 CONTINUE

DO 40 I = 1, 4
JAC(1,1) = JAC(1,1) + DNDXI(I) * X1(IN(E,I))
JAC(1,2) = JAC(1,2) + DNDXI(I) * X2 (IN(E,I))
JAC(2,1) = JAC(2,1) + DNDETA(I) * X1 (IN(E,I))
JAC(2,2) = JAC(2,2) + DNDETA(I) * X2 (IN(E,I))

40 CONT INUE

DETJAC = JAC(1l,1) * JAC(2,2) - JAC(1l,2) * JAC(2,1)
JACINV(1,1) = JAC(2,2) / DETJAC
JACINV(1,2) = -JAC(1,2) / DETJAC
JACINV(2,1) = -JAC(2,1) / DETJAC
JACINV(2,2) = JAC(1l,1) / DETJAC

DO SO I =1, 4
DNDX (I) = JACINV(1,1)
DNDY (I) = JACINV(2,1)
50 CONTINUE

*

DNDXI(I) + JACINV(1l,2) * DNDETA(I)
DNDXI(I) + JACINV(2,2) * DNDETA(I)

*

DHDX = 0.
DHDY = 0.

DO 60 I =1, 4
DHDX = DHDX + DNDX(I) * X(IN(E,I))
DHDY = DHDY + DNDY(I) * X(IN(E,I))
60 CONT INUE

VXE = ~KXE * DHDX
VYE = -KYE * DHDY
RETURN

END

SUBROUTINE VQUAS (E, VXE, VYE)
AR AR AR AR AR IR A AR AR AR KRR AR A RN RN KRR KRR AR KRN RN R AR KA AN KRN RARRRRRRRAR A AR

PURPOSE :
TO COMPUTE COMPONENTS OF APPARENT GROUNDWATER
VELOCITY FOR A TWO~DIMENSIONAL, QUADRATIC QUADRILATERAL
ELEMENT

DEFINITIONS OF VARIABLES:
DETJAC = DETERMINANT OF JACOBIAN MATRIX
DHDX = PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO X
DHDY = PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO Y
DNDXI (I) = PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO XI FOR NODE I
DNDX(I) = PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO X FOR NODE I
DNDETA (I) = PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO ETA FOR NODE I
DNDY (I) = PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO Y FOR NODE I

E = ELEMENT NUMBER
JAC(I,J) = JACOBIAN MATRIX
JACINV(I,J) = INVERSE OF JACOBIAN MATRIX
KXE = HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION
KYE = HYDRAULIC CONDUCTIVITY IN Y COORDINATE DIRECTION
VXE = APPARENT GROUNDWATER VELOCITY IN X

[eNeNeNeNeNoNeNeNeNeNeNeNe NeNeNe NeReRe ReReRe Ro Re R o)

COORDINATE DIRECTION
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[+ VYE = APPARENT GROUNDWATER VELOCITY IN Y
(o} COORDINATE DIRECTION
[od X(IN(E,I)) = COMPUTED HEAD FOR NODE I, ELEMENT E
c X1(IN(E,I)) = X COORDINATE FOR NODE I, ELEMENT E
o X2(IN(E,I)) = Y COORDINATE FOR NODE I, ELEMENT E
[+
[+ REFERENCES:

[+ ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
[+ MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.11,
(o} EQUATION 6.14A, 6.14B, 6.17, 6.22A, AND 6.22B.

e st stk e R R de e dede e dede e de e dede e dede st et st e e A e ek R Ak kAR kR Ak kR kK
$INCLUDE: 'COMALL'

10
20

30

40

50

60

REAL JAC(2,2),JACINV(2,2),DNDXI(8),DNDX(8),DNDETA(8),
1 DNDY (8) ,SIGN1(8), SIGN2 (8) ,KXE,KYE
DATA SIGN1/-1.,0.,1.,1.,1.,0.,-1.,-1./
DATA SIGN2/-1.,-1.,-1.,0.,1.,1.,1.,0./

KXE = PROP (MATSET (E), 1)
KYE = PROP (MATSET(E),2)
DO 20 I =1, 2
DO 10 J =1, 2
JAC(I,J) = 0.
CONTINUE
CONTINUE
DO 30 I =1, 8
IF ((I .EQ. 1) .OR. (I .EQ. 3) .OR.
1 (I .EQ. 5) .OR. (I .EQ. 7)) THEN
DNDXI(I) = 0.
DNDETA(I) = O.
ELSEIF ((I .EQ. 2) .OR. (I .EQ. 6)) THEN
DNDXI(I) = 0.
DNDETA(I) = 0.5 * SIGN2(I)
ELSEIF ((I .EQ. 4) .OR. (I .EQ. 8)) THEN
DNDXI(I) = 0.5 * SIGN1(I)
DNDETA(I) = 0.
ENDIF
CONTINUE
DO 40 I =1, 8
JAC(1,1) = JAC(1l,1) + DNDXI(I) * X1(IN(E,I))

JAC(1,2) = JAC(1,2) + DNDXI(I) * X2(IN(E,I))

JAC(2,1) = JAC(2,1) + DNDETA(I) * X1(IN(E,I))

JAC(2,2) = JAC(2,2) + DNDETA(I) * X2(IN(E,I))
CONTINUE

DETJAC = JAC(1l,1) * JAC(2,2) - JAC(1,2) * JAC(2,1)
JACINV(1,1) = JAC(2,2) / DETJAC
JACINV(1,2) = -JAC(1,2) / DETJAC
JACINV(2,1) = -JAC(2,1) / DETJAC
JACINV(2,2) = JAC(1,1l) / DETJAC
DOS0 I=1, 8
DNDX(I) = JACINV(1,1) DNDXI(I) + JACINV(1,2) * DNDETA(I)
DNDY (I) = JACINV(2,1) * DNDXI(I) + JACINV(2,2) * DNDETA(I)
CONTINUE
DHDX = 0.
DHDY = 0.
DO 60 I =1, 8
DHDX = DHDX + DNDX(I) * X(IN(E,I))
DHDY = DHDY + DNDY(I) * X(IN(E,I))
CONTINUE
VXE = -KXE * DHDX
VYE = -KYE * DHDY
RETURN
END

*

Copyright American Geophysical Union



Groundwater Modeling by

Water Resources Monograph

384

SUBROUTINE VQUAl2 (E,VXE,VYE)

the Finite Element Method

Vol. 13

Subroutine Velocity

(oA 22 22220 R 22 R R 2R iRt il I 22222 2222

PURPOSE:

TO COMPUTE COMPONENTS OF APPARENT GROUNDWATER

VELOCITY FOR A TWO-DIMENSIONAL,
ELEMENT
DEFINITIONS OF VARIABLES:
DETJAC =
DHDX =
DHDY =
DNDXI(I) =

PARTIAL DERIVATIVE OF
PARTIAL DERIVATIVE OF
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT

DNDX(I) =
DNDETA (I) =

DNDY(I) =

CUBIC QUADRILATERAL

DETERMINANT OF JACOBIAN MATRIX

HEAD WITH RESPECT TO X
HEAD WITH RESPECT TO Y
INTERPOLATION

TO XI FOR NODE I
INTERPOLATION

TO X FOR NODE I
INTERPOLATION

TO ETA FOR NODE I
INTERPOLATION

TO ¥ FOR NODE I

ELEMENT NUMBER
JACOBIAN MATRIX
INVERSE OF JACOBIAN MATRIX

HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION
HYDRAULIC CONDUCTIVITY IN Y COORDINATE DIRECTION
APPARENT GROUNDWATER VELOCITY IN X

COORDINATE DIRECTION

APPARENT GROUNDWATER VELOCITY IN Y

COORDINATE DIRECTION
COMPUTED HEAD FOR NODE I,
X COORDINATE FOR NODE I,
Y COORDINATE FOR NODE I,

JAC(I,J)
JACINV(I,J)
KXE
KYE
VXE

VYE =

ELEMENT E
ELEMENT E
ELEMENT E

X(IN(E,I)) =
X1(IN(E,I)) =
X2 (IN(E,I)) =

REFERENCES:
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.12,

6.14B, 6.17, 6.22A, AND 6.22B.

[+

[+

[+

[+

[+

[+

[+

[+

[+

[+

[+

[+

[+

[+

[+

[+

[+

[+

[+ E
[+

[+

[+

[+

[+

[+

[+

C

C

C

C

C

C

C

C

[+ EQUATIONS 6.14a,
C
C

J v e e v v v v v v vk el o vk v vk ko e ke ke ol v e Sk Y e R e e e e e e e e ke ek e A M R R Rk R Nk kN

SINCLUDE: 'COMALL'
REAL JAC(2,2),JACINV(2,2),DNDXI(12),DNDX(12),DNDETA(12),
1 DNDY (12) ,SIGN1(12),SIGN2(12) ,KXE,KYE
DATA SIGNl/-1.,-1.,1.,1.,1.,1.,1.,1.,-1.,~1.,~1.,-1./
DATA SIGN2/-1.,-1.,-1.,-1.,-1.,1.,1.,1.,1.,1.,1.,~-1./

KXE = PROP (MATSET(E), 1)
KYE = PROP (MATSET (E),2)
DO 20 I =1, 2
DO10J =1, 2
JAC(I,J) = 0.

10 CONTINUE
20 CONTINUE
DO 30 I =1, 12
IF ((I .EQ. 1) .OR. (I .EQ. 4) .OR.
1 (I .EQ. 7) .OR. (I .EQ. 10)) THEN

DNDXI(I) = -(10.

DNDETA(I) = ~(10.
ELSEIF ((I .EQ. 2) .OR. (I .EQ. 3) .OR.

1 (I .EQ. 8) .OR. (I .EQ. 9)) THEN
DNDXI(I) = (81. / 32.) * SIGN1(I)/3.

/ 32.) * SIGN1(I)
/ 32.) * SIGN2(I)
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DNDETA(I) = (9. / 32.) * SIGN2(I)

ELSEIF ((I .EQ. 5)
.EQ. 11)

1 (I

.OR.
.OR.

(I .EQ. 6) .OR.
(I .EQ. 12)) THEN

DNDXI(I) = (9. / 32.) * SIGN1(I)
DNDETA(I) = (81. / 32.) * SIGN2(I)/3.

ENDIF
30 CONTINUE
DO 40 I = 1, 12

JAC(1,1) = JAC(1,1)
JAC(1,2) = JAC(1,2)
JAC(2,1) = JAC(2,1)
JAC(2,2) = JAC(2,2)

40 CONTINUE

DETJAC = JAC(1,1) * JAC(2,2)

+ DNDXI(I) * X1(IN(E,I))
+ DNDXI(I) * X2(IN(E,I))
+ DNDETA(I) * X1(IN(E,I))
+ DNDETA(I) * X2(IN(E,I))

- JAC(1,2) * JAC(2,1)

Vol. 13
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JACINV(1,1) = JAC(2,2)
JACINV(1,2) = -JAC(1,2)
JACINV(2,1) = -JAC(2,1)
JACINV(2,2) = JAC(1,1)
DO 50 I = 1, 12
DNDX(I) = JACINV(1l,1)
DNDY (I) = JACINV(2,1)

Y

*

DETJAC
DETJAC
DETJAC
DETJAC

DNDXI (I) + JACINV(1,2) * DNDETA(I)
DNDXI (I) + JACINV(2,2) * DNDETA(I)

S0 CONTINUE
DHDX = 0.
DHDY = 0.
DO 60 I = 1, 12

DHDX = DHDX + DNDX(I) * X(IN(E,I))
DHDY = DHDY + DNDY(I) * X(IN(E,I))

60 CONTINUE
VXE = -KXE * DHDX
VYE = —-KYE * DHDY
RETURN
END

SUBROUTINE VPARS (E,VXE,VYE,VZE)
CRRAKRARRKIKAKRIRIKIIRIRIRRIKERRARRARA KRNI RIRIKIRARRIRRRRA KRR IR AR KRR A K

PURPOSE:

DETJAC

DHDX

DHDY

DHDZ
DNDXI (I)
DNDX (I)
DNDETA(I)
DNDY (I)
DNDZETA (I)
DNDZ (I)

E

JAC(I,J)
JACINV(I,J)

OO00000000000000000000O0O0O0O0O00

DEFINITIONS OF

VARIABLES:

TO COMPUTE COMPONENTS OF APPARENT GROUNDWATER
VELOCITY FOR A THREE-DIMENSIONAL,
PARALLELEPIPED ELEMENT

LINEAR

DETERMINANT OF JACOBIAN MATRIX

PARTIAL DERIVATIVE OF
PARTIAL DERIVATIVE OF
PARTIAL DERIVATIVE OF
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
ELEMENT NUMBER

JACOBIAN MATRIX

HEAD WITH RESPECT TO X
HEAD WITH RESPECT TO Y
HEAD WITH RESPECT TO 2
INTERPOLATION

TO XI FOR NODE I
INTERPOLATION

TO X FOR NODE I
INTERPOLATION

TO ETA FOR NODE I
INTERPOLATION

TO Y FOR NODE I
INTERPOLATION

TO ZETA FOR NODE I
INTERPOLATION

TO Z FOR NODE I

INVERSE OF JACOBIAN MATRIX
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X(IN(E,I))
X1(IN(E,I))

X3(IN(E,I))

REFERENCES :

3

Groundwater Modeling by
the Finite Element Method

COORDINATE DIRECTION
VYE = APPARENT GROUNDWATER VELOCITY IN Y
COORDINATE DIRECTION
VZE = APPARENT GROUNDWATER VELOCITY IN 2
COORDINATE DIRECTION

= COMPUTED HEAD FOR NODE I,
= X COORDINATE FOR NODE I,
X2 (IN(E,I)) = Y COORDINATE FOR NODE I,
= 2 COORDINATE FOR NODE I,

Vol. 13

Subroutine Velocity

ELEMENT E
ELEMENT E
ELEMENT E
ELEMENT E

ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT

MODELING BY THE FINITE ELEMENT METHOD,

EQUATIONS 6.14, 6.16, AND 6.22

FIGURE 4.13,

HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION
HYDRAULIC CONDUCTIVITY IN Y COORDINATE DIRECTION
HYDRAULIC CONDUCTIVITY IN 2 COORDINATE DIRECTION
APPARENT GROUNDWATER VELOCITY IN X

C vk vk ok vk ok vk v ok ok ok ok ok ok vk o ok ok ok ke ok ok o ok ke ok ok ok ok o o ok o o O O O o o ok o ok o ok o R O ok ke ke ok ok ok ok ok ok o ok ok ok ke ok ek

386

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c
$INCLUDE:

1
2

10
20

30

40
1
2
3

1

1

K2E

'COMALL'
REAL JAC(3,3) ,JACINV(3,3),DNDXI (8) ,DNDX(8) ,DNDETA (8) ,DNDY (8),
DNDZETA (8) ,DNDZ (8) , SIGN1 (8) , SIGN2 (8) , SIGN3 (8) , KXE, KYE,

DaTA SIGN1/-1.,1.,1.,-1.,-1.,1.,1.,-1./
DATA SIGN2/-1.,-1,,1.,1.,-1.,-1.,1.,1./
DATA SIGN3/-1.,-1.,-1.,-1.,1.,1.,1.,1./

KXE = PROP (MATSET(E),1)
KYE = PROP (MATSET(E),2)
KZE = PROP (MATSET (E),3)
DO 20 I =1,
DO 10 J =1, 3
JAC(I,J) = 0.

CONTINUE

CONTINUE

DO 30 I =1,
DNDXI(I)
DNDETA (I)
DNDZETA (I)

CONTINUE

DO 40 I = 1,

JAC(1,1)
JAC(1,2)
JAC(1,3)
JAC(2,1)
JAC(2,2)
JAC(2,3)
JAC(3,1)
JAC(3,2)
JAC(3,3)
CONTINUE

3

8

JAC(1,1)
JAC(1,2)
JAC(1,3)
JaC(2,1)
JAC(2,2)
JAC (2, 3)
JAC(3,1)
JAC(3,2)
JAC(3,3)

+
+
+
+
+
+
+
+
+

0.125 * SIGN1(I)
0.125 * SIGN2(I)
0.125 * SIGN3(I)

DNDXI(I) * X1(IN(E,I))
DNDXI(I) * X2(IN(E,I))
DNDXI(I) * X3(IN(E,I))
DNDETA(I) * X1(IN(E,I))
DNDETA(I) * X2 (IN(E,I))
DNDETA (I) * X3(IN(E,I))
DNDZETA(I) * X1(IN(E,I))
DNDZETA(I) * X2(IN(E,I))
DNDZETA(I) * X3(IN(E,I))

DETJAC = JAC(1,1) * (JaC(2,2) * JAC(3,3) - Jac(3

f2) *

JAC(2,3)) - JAC(1,2) * (JAC(2,1) * JAC(3,3) -
JAC(3,1) * JAC(2,3)) - JAC(1,3) * (JAC(2,1) *
JAC(3,2) - JAC(3,1) * Jac(2,2))

IF ( DETJAC .EQ. 0 ) STOP ' DETERMINANT IS ZERO
JACINV(1,1) = ( JAC(2,2) * JAC(3,3) ~ JAC(2,3) *
JAC(3,2)) / DETJAC

JACINV(1,2) = (-JAC(2,1) * Jac(3,3) + JAC(2,3) *
JAC(3,1)) / DETJAC
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JACINV(1,3) = ( JAC(2,1) * JAC(3,2) - JAC(3,1) *

1 JAC(2,2)) / DETJAC

JACINV(2,1) = (-JAC(1,2) * JAC(3,3) + JaC(1,3) *

1 JAC(3,2)) / DETJAC

JACINV(2,2) = ( JAC(1,1) * JAC(3,3) - JAC(1,3) *

1 JAC(3,1)) / DETJAC

JACINV(2,3) = (-JAC(1,1) * JAC(3,2) + JAC(1,2) *

1 JAC(3,1)) / DETJAC

JACINV(3,1) = ( JAC(1,2) * JAC(2,3) - JAC(1,3) *

1 JAC(2,2)) / DETJAC

JACINV(3,2) = (-Jac(l,1) * JAC(2,3) + JAC(1,3) *

1 JAC(2,1)) / DETJAC

JACINV(3,3) = ( JAC(1,1) * JAC(2,2) - JAC(1,2) *

1 JAC(2,1)) / DETJAC

DO 50 I =1, 8
DNDX(I) = JACINV(1,1) * DNDXI(I) + JACINV(1,2) *

1 DNDETA(I) + JACINV(1l,3) * DNDZETA(I)
DNDY(I) = JACINV(2,1) * DNDXI(I) + JACINV(2,2) *

1 DNDETA(I) + JACINV(2,3) * DNDZETA(I)
DNDZ (I) = JACINV(3,1) * DNDXI(I) + JACINV(3,2) *

1 DNDETA(I) + JACINV(3,3) * DNDZETA(I)

50 CONTINUE

DHDX = 0.

DHDY = 0.

DHDZ = 0.

DO 60 I =1, 8
DHDX = DHDX + DNDX(I) * X(IN(E,I))
DHDY = DHDY + DNDY(I) * X(IN(E,I))
DHDZ = DHDZ + DNDZ(I) * X(IN(E,I))

CONTINUE

VXE = -KXE * DHDX

VYE = -KYE * DHDY

VZE = -KZE * DHDZ

RETURN

END

60

SUBROUTINE VPAR20 (E,VXE,VYE,VZE)

c**********************************************************************

PURPOSE :

VELOCITY FOR A THREE-DIMENSIONAL,
PARALLELEPIPED ELEMENT

FUNCTION WITH RESPECT

TO COMPUTE COMPONENTS OF APPARENT GROUNDWATER
QUADRATIC

c

c

c

c

c

c

C DEFINITIONS OF VARIABLES:

o] DETJAC = DETERMINANT OF JACOBIAN MATRIX

c DHDX = PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO X
c DHDY = PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO Y
C DHDZ = PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO 2
c DNDXI(I) = PARTIAL DERIVATIVE OF INTERPOLATION

c FUNCTION WITH RESPECT TO XI FOR NODE I

c DNDX(I) = PARTIAL DERIVATIVE OF INTERPOLATION

c FUNCTION WITH RESPECT TO X FOR NODE I

C DNDETA (I) = PARTIAL DERIVATIVE OF INTERPOLATION

c FUNCTION WITH RESPECT TO ETA FOR NODE I

c DNDY(I) = PARTIAL DERIVATIVE OF INTERPOLATION

c FUNCTION WITH RESPECT TO ¥ FOR NODE I

C DNDZETA(I) = PARTIAL DERIVATIVE OF INTERPOLATION

C FUNCTION WITH RESPECT TO ZETA FOR NODE I

c DNDZ (I) = PARTIAL DERIVATIVE OF INTERPOLATION

c

TO Z FOR NODE I
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JAC(I,J)
JACINV(I,J)
KXE

KYE

KZE

VXE

VYE =
VZE =
X(IN(E,I)) =
X1(IN(E,I)) =
X2 (IN(E,I)) =
X3 (IN(E,I)) =

REFERENCES:

Groundwater Modeling by

the Finite Element Method Vol. 13

Subroutine Velocity

JACOBIAN MATRIX

INVERSE OF JACOBIAN MATRIX

HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION
HYDRAULIC CONDUCTIVITY IN Y COORDINATE DIRECTION
HYDRAULIC CONDUCTIVITY IN Z COORDINATE DIRECTION
APPARENT GROUNDWATER VELOCITY IN X

COORDINATE DIRECTION

APPARENT GROUNDWATER VELOCITY IN Y

COORDINATE DIRECTION

APPARENT GROUNDWATER VELOCITY IN 2

COORDINATE DIRECTION

COMPUTED HEAD FOR NODE I, ELEMENT E

X COORDINATE FOR NODE I, ELEMENT E

Y COORDINATE FOR NODE I, ELEMENT E

Z COORDINATE FOR NODE I, ELEMENT E

ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.14,
EQUATIONS 6.14, 6.16, AND 6.22

Chhkkhkkhkkhkhhhkhhhhhhkhhhdhhhkhkhkhhhhhhhhhhhhkhdhhhkhkhkhkhhdhhrkhkdhhkkk

SINCLUDE: 'COMALL'

REAL JAC(3,3),JACINV(3,3),DNDXI (20) ,DNDX(20) ,DNDETA (20) ,
DNDY (20) ,DNDZETA (20) ,DNDZ (20) , SIGN1 (20), SIGN2 (20),
SIGN3(20),KXE,KYE,KZE

DATA SIGNl1l/-1.,0.,1.,1.,1.,0.,-1.,~-1.,~1.,1.,1.,-1.,-1.,

1
3

1

1

1

10
20

1
2

0.,1.

f1.,1.,0.,-1.,-1./

DATA SIGN2/-1.,-1.,-1,,0.,1.,1.,1.,0.,-1.,-1.,1.,1,,-1.,
-1.,-1.,0.,1.,1.,1.,0./
DATA SIGN3/-1.,-1.,-1.,-1.,-1.,-1.,-1.,-1.,0.,0.,0.,0.,1.,

1.,1.

f1.,1.,1.,1.,1./

KXE = PROP (MATSET(E),1)
KYE = PROP (MATSET (E),2)
KZE = PROP (MATSET (E),3)

DO 20 I = 1, 20

DO 10 J = 1, 20

JAC(I,J) = 0.
CONTINUE
CONTINUE
pO 30 I = 1, 20
IF ((I .EQ. 1)
(I .EQ. 7)
(I .EQ. 17)
DNDXI(I)
DNDETA (I)
DNDZETA (I)
ELSEIF ((I .EQ.
(I .EQ.
DNDXI (I)
DNDETA (I)
DNDZETA (I)
ELSEIF ((I .EQ.
(I .EQ.
DNDXI(I)

.OR. (I .EQ. 3) .OR. (I .EQ. 5) .OR.
.OR. (I .EQ. 13) .OR. (I .EQ. 15) .OR.
.OR. (I .EQ. 19)) THEN
= =0.125 * SIGN1(I)
= -0.125 * SIGN2(I)
= -0.125 * SIGN3(I)
2) .OR. (I .EQ. 6) .OR.
14) .OR. (I .EQ. 18)) THEN
= 0.
= 0.25 * SIGN2(I)
= 0.25 * SIGN3(I)
4) .OR. (I .EQ. 8) .OR.
16) .OR. (I .EQ. 20)) THEN
= 0.25 * SIGN1(I)

DNDETA(I) = 0.
DNDZETA(I) = 0.25 * SIGN3(I)

ELSEIF ((I .GE.

9) .AND. (I .LE. 12)) THEN
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DNDXI(I) = 0.25 * SIGN1(I)
DNDETA(I) = 0.25 * SIGN2(I)
DNDZETA(I) = 0.
ENDIF
30 CONTINUE

DO 40 I =
JAC(1,1)
JAC(1,2)
JAC(1,3)
JAC(2,1)
JAC(2,2)
JAC(2,3)
JAC(3,1)
JAC(3,2)
JAC(3,3)

40 CONTINUE

1
2
3
1
1
1
1
1
1
1

1

1

1
1

1

DETJAC = JAC(1,1) * (JAC(2,2) * JAC(3,3) - JAC(3,2) *
JAC(2,3)) - JAC(1,2) * (JAC(2,1) * JAC(3,3) -
JAC(3,1) * JAC(2,3)) - JAC(1,3) * (JAC(2,1) *

1,

20

JAC(1,1)
JAC(1,2)
JAC(1,3)
JAC(2,1)
JAC(2,2)
JAC(2,3)
JAC(3,1)
JAC(3,2)
JAC(3,3)

++++ A+

DNDXI(I) * X1(IN(E,I))
DNDXI(I) * X2(IN(E,I))
DNDXI(I) * X3(IN(E,I))
DNDETA(I) * X1(IN(E,I))
DNDETA(I) * X2(IN(E,I))
DNDETA(I) * X3(IN(E,I))
DNDZETA(I) * X1(IN(E,I))
DNDZETA(I) * X2 (IN(E,I))
DNDZETA(I) * X3(IN(E,I))

JAC(3,2) - JAC(3,1) * JAC(2,2))
JACINV(1,1) = ( JAC(2,2) * JAC(3,3)

JACINV(1,2) =

JACINV(1,3)

JACINV(2,1
JACINV (2,2
JACINV (2,3

JACINV (3,1

)

)
) =

) =

JACINV(3,2) =

JACINV(3,3) =

DO 50 I =
DNDX(I)

DNDY (I)

DNDZ (I)

50 CONTINUE

60

DHDX = 0.
DHDY = 0.
DHDZ = 0.
DO 60 I =

DHDX = DHDX + DNDX(I) * X(IN(E,I))
DHDY = DHDY + DNDY(I) * X(IN(E,I))
DHDZ = DHDZ + DNDZ(I) * X(IN(E,I))

CONTINUE

1,

JAC(3,2)) / DETJAC
(-JAC(2,1) * JAC(3,3)
JAC(3,1)) / DETJAC
( JAC(2,1) * JAC(3,2)
JAC(2,2)) / DETJAC
(-JAC(1,2) * JAC(3,3)
JAC(3,2)) / DETJAC
( JAC(1,1) * JAC(3,3)
JAC(3,1)) / DETJAC
(-JAC(1,1) * JAC(3,2)
JAC(3,1)) / DETJAC
( JAC(1,2) * JAC(2,3)
JAC(2,2)) / DETJAC
(-JAC(1,1) * JAC(2,3)
JAC(2,1)) / DETJAC
( JAC(1,1) * JAC(2,2)
JAC(2,1)) / DETJAC
20

+

JAC(2,3)
JAC(2, 3)
JAC(3,1)
JAC(1,3)
JAC(1,3)
JAC(1,2)
JAC(1,3)
JAC(1,3)

JAC(1,2)

*

*

= JACINV(1,1) * DNDXI(I) + JACINV(1,2)
DNDETA(I) + JACINV(1,3) * DNDZETA(I)
= JACINV(2,1) * DNDXI(I) + JACINV(2,2)
DNDETA (I) + JACINV(2,3) * DNDZETA(I)
= JACINV(3,1) * DNDXI(I) + JACINV(3,2)
DNDETA(I) + JACINV(3,3) * DNDZETA(I)

1,

20

VXE = -KXE * DHDX
VYE = -KYE * DHDY
VZE = ~KZE * DHDZ

RETURN
END
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SUBROUTINE VPAR32 (E,VXE,VYE, VZE)
3k ok ke ek ok ok ek e ok ok ot ok e O o 3 3 O o ok ok ok e o e

c

[+ PURPOSE :

c TO COMPUTE COMPONENTS OF APPARENT GROUNDWATER

[+ VELOCITY FOR A THREE-DIMENSIONAL, CUBIC

c PARALLELEPIPED ELEMENT

c

c DEFINITIONS OF VARIABLES:

c DETJAC = DETERMINANT OF JACOBIAN MATRIX

[+ DHDX = PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO X
[+ DHDY = PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO ¥
[+ DHDZ = PARTIAL DERIVATIVE OF HEAD WITH RESPECT TO 2
c DNDXI(I) = PARTIAL DERIVATIVE OF INTERPOLATION

c FUNCTION WITH RESPECT TO XI FOR NODE I

c DNDX(I) = PARTIAL DERIVATIVE OF INTERPOLATION

c FUNCTION WITH RESPECT TO X FOR NODE I

c DNDETA(I) = PARTIAL DERIVATIVE OF INTERPOLATION

c FUNCTION WITH RESPECT TO ETA FOR NODE I

c DNDY (I) = PARTIAL DERIVATIVE OF INTERPOLATION

c FUNCTION WITH RESPECT TO Y FOR NODE I

c DNDZETA(I) = PARTIAL DERIVATIVE OF INTERPOLATION

c FUNCTION WITH RESPECT TO 2ETA FOR NODE I

c DNDZ(I) = PARTIAL DERIVATIVE OF INTERPOLATION

c FUNCTION WITH RESPECT TO Z FOR NODE I

c E = ELEMENT NUMBER

c JAC(I,J) = JACOBIAN MATRIX

c JACINV(I,J) = INVERSE OF JACOBIAN MATRIX

c KXE = HYDRAULIC CONDUCTIVITY IN X COORDINATE DIRECTION
[+ KYE = HYDRAULIC CONDUCTIVITY IN Y COORDINATE DIRECTION
[+ KZE = HYDRAULIC CONDUCTIVITY IN Z COORDINATE DIRECTION
c VXE = APPARENT GROUNDWATER VELOCITY IN X

c COORDINATE DIRECTION

c VYE = APPARENT GROUNDWATER VELOCITY IN Y

[+ COORDINATE DIRECTION

[+ VZE = APPARENT GROUNDWATER VELOCITY IN 2

c COORDINATE DIRECTION

[+ X(IN(E,I)) = COMPUTED HEAD FOR NODE I, ELEMENT E

c X1(IN(E,I)) = X COORDINATE FOR NODE I, ELEMENT E

Cc X2 (IN(E,I)) = Y COORDINATE FOR NODE I, ELEMENT E

c X3(IN(E,I)) = 2 COORDINATE FOR NODE I, ELEMENT E

c

[+ REFERENCES :

[+ ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT

c MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.15,

c EQUATIONS 6.14, 6.16, AND 6.22.

c

(C % e sk o o e o ok e o ok ko e e o ok o o ke o o ok o ke ok o o o e o o ok o o ok o ok o o ok o o o o o ok o ok o o o o ok o o o ok o o o o o o ok ok ok ke ok

SINCLUDE: 'COMALL'
REAL JAC(3,3),JACINV(3, 3) ,DNDXI(32),DNDX(32),DNDETA (32),
1 DNDY (32) ,DNDZETA (32) ,DND2 (32),SIGN1 (32),SIGN2(32),
3 SIGN3 (32) ,KXE, KYE, KZE
DATA SIGNl/ -1.,-1., 6*1., S5*-1.,
1 1.,1., -1.,-1., 1.,1,, 3*-1,, 6*1., 4*-1. /
DATA SIGN2/ 5*-1., 6*1., 3*-1,,
1 1.,1., -1.,-1., 1.,1., 5*-1., 6*1., -1 /
DATA SIGN3/ 16*-1., 16*1. /

KXE = PROP (MATSET(E), 1)
KYE = PROP (MATSET(E),2)
KZE = PROP (MATSET(E), 3)
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DO 20 I =1,

DO 10 J = 1,

32
32

JAC(I,J) = 0.
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the Finite Element Method

.OR.

10 CONTINUE
20 CONTINUE
DO 30 I = 1, 32
IF ((I .EQ. 1) .OR. (I .EQ. 4) .OR. (I .EQ. 7) .OR.
1 (I .EQ. 10) .OR. (I .EQ. 21) .OR. (I .EQ. 24) .OR.
2 (I .EQ. 27) .OR. (I .EQ. 30)) THEN
DNDXI(I) = (-19. / 64.) * SIGN1(I)
DNDETA(I) = (~19. / 64.) * SIGN2(I)
DNDZETA(I) = (~19. / 64.) * SIGN3(I)
ELSEIF ((I .EQ. 2) .OR. (I .EQ. 3) .OR. (I .EQ. 8) .OR.
1 (I .EQ. 9) .OR. (I .EQ. 22) .OR. (I.EQ.23) .OR.
2 (I .EQ. 28) .OR. (I .EQ. 29)) THEN
DNDXI(I) = (81. / 64.) * SIGN1(I) /3.
DNDETA(I) = (9. / 64.) * SIGN2(I)
DNDZETA(I) = (9. / 64.) * SIGN3(I)
ELSEIF ((I .EQ. S5) .OR. (I .EQ. 6) .OR. (I .EQ. 11) .OR.
1 (I .EQ. 12) .OR. (I .EQ. 25) .OR. (I .EQ. 26)
2 (I .EQ. 31) .OR. (I .EQ. 32)) THEN
DNDXI(I) = (9. / 64.) * SIGN1(I)

DNDETA(I) =
DNDZETA (I) =
ELSEIF ((I .GE.
DNDXI(I) =
DNDETA(I) =
DNDZETA(I) =

ENDIF
30 CONTINUE

DO 40 I = 1,

JAC(1,1)
JAC(1,2)
JAC(1,3)
JAC(2,1)
JAC(2,2)
JAC(2,3)
JAC(3,1)
JAC(3,2)
JAC(3,3)
40 CONTINUE

(9.
13)

(9.

(9.

32

JAC(1,1)
Jac(1,2)
JAC(1,3)
JAC(2,1)
JAC(2,2)
Jac (2, 3)
JAC(3,1)
JAC (3,2)
Jac(3,3)

/ 64.) * SIGN3(I)

.AND.
/ 64.) * SIGN1(I)
/ 64.) * SIGN2(I)

+++++++++

(81. / 64.) * SIGN2(I) /3.

(I .LE. 20)) THEN

(81. / 64.) * SIGN3(I) /3.

DNDXI(I) * X1(IN(E,I))
DNDXI(I) * X2(IN(E,I))
DNDXI(I) * X3(IN(E,I))
DNDETA(I) * X1(IN(E,I))
DNDETA (I) * X2 (IN(E,I))
DNDETA(I) * X3 (IN(E,I))
DNDZETA (I) * X1(IN(E,I))
DNDZETA(I) * X2 (IN(E,I))
DNDZETA (I) * X3(IN(E,I))

DETJAC = JAC(1,1) * (JAC(2,2) * JAC(3,3) ~ JAC(3,2) *
1 JAC(2,3)) - JAC(1,2) * (JAC(2,1) * JAC(3,3) -
2 JAC(3,1) * JAC(2,3)) - Jac(1,3) * (JAC(2,1) *
3 JAC(3,2) ~ JAC(3,1) * JAC(2,2))

JACINV(1,1) = ( JAC(2,2) * JAC(3,3) - JAC(2,3) *
JAC(3,2)) / DETJAC

1JACINV(1,2)
1JACINV(1,3)
1JACINV(2,1)
1JACINV(2,2)
1JACINV(2,3)
1JACINV(3,1)
1JACINV(3,2)

JAC(3,1)) / DETJAC

(-Jac(2,1) * JAC(3,3) + JAC(2,3) *

( JAC(2,1) * JAC(3,2) - JAC(3,1) *
JAC(2,2)) / DETJAC

(-JAC(1,2) * JAC(3,3) + JAC(1,3) *
JAC(3,2)) / DETJAC

( JAC(1,1) * JAC(3,3) - JAC(1,3) *
JAC(3,1)) / DETJAC

(~JAC(1,1) * JAC(3,2) + JAC(1,2) *
JAC(3,1)) / DETJAC

( JAC(1,2) * JAC(2,3) - JAC(1,3) *
JAC(2,2)) / DETJAC

(~JAC(1,1) * JAC(2,3) + JAC(1,3) *

JAC(2,1)) / DETJAC
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JACINV(3,3) = ( JAC(1,1) * JAC(2,2) - JAC(1,2) *
1 JAC(2,1)) / DETJAC
DO 50 I = 1, 32
DNDX(I) = JACINV(1,1) * DNDXI(I) + JACINV(1,2) *

1 DNDETA (I) + JACINV(1l,3) * DNDZETA(I)
DNDY(I) = JACINV(2,1) * DNDXI(I) + JACINV(2,2) *
1 DNDETA (I) + JACINV(2,3) * DNDZETA(I)
DNDZ (I) = JACINV(3,1) * DNDXI(I) + JACINV(3,2) *
1 DNDETA (I) + JACINV(3,3) * DNDZETA(I)
50 CONTINUE
DHDX = 0.
DHDY = 0.
DHDZ = 0.

DO 60 I =1, 32
DHDX = DHDX + DNDX(I) * X(IN(E,I))
DHDY = DHDY + DNDY(I) * X(IN(E,I))
DHDZ = DHDZ + DNDZ(I) * X(IN(E,I))

60 CONTINUE

VXE = -KXE * DHDX

VYE = ~KYE * DHDY

VZE = -KZE * DHD2

RETURN

END
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SUBROUTINE DUMP

15.1 PURPOSE

Subroutine DUMP writes the contents of various variables and arrays to files for use in
other computer programs (e.g. plotting packages). DUMP is also used to pass velocities
computed in groundwater program GW1 (see Chapters 7 and 14) to the solute transport
program ST1.

15.2 INPUT

Control information is read "free-format” from the user-supplied file assigned to unit
“INF". The control information consists of a code (ICODE) that indicates which arrays are
10 be written to a user-defined file (FNAME), followed by the file name (two-lines of input
for each choice of ICODE). This information can be repeated as often as desired. Input is
terminated by placing a -1 in the first field of any line."

15.3 OUTPUT

The arrays are written to a set of user-defined files. DUMP opens the files using the
file names read from INF. The contents of requested variables and arrays are written to the
files "free-format" (i.e., without column headings or titles).
15.4 DEFINITIONS OF VARIABLES

FNAME = File name for a user-defined file (20 characters or less).

ICODE Code indicating which variables and arrays are to be written to file

= 1, a list of node numbers and coordinates is written.
= 2, alist of element numbers, types, and node numbers is written.

= 3, a list of element numbers and material set numbers is written
followed by the number of material properties and a list of properties for
each material set.

= 4, alist of node numbers and specified values of the field variable is
written for Dirichlet nodes, followed by a list of node numbers and
specified values of groundwater flow or solute flux for Neumann
nodes.

393
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= 5, the relaxation factor, ®, is written first. Then a list of time step
intervals is written followed by a list of values of the time function g(t),
the total length of time for which calculations will be performed, and a
list of node numbers and initial values of the field variable at each node.

= 6, a list of node numbers and computed values of the field variable at
each node is written.

= 7, a list of element numbers and computed components of apparent
groundwater velocity for each element is written.

15.5 USAGE

A list of the FORTRAN variable names written to file FNAME for each choice of
ICODE is in Table 15.1. Additional information about these variables is in the chapters
listed in Table 15.1. If the file "FNAME" does not yet exist, DUMP will create and open it
for writing. If the file FNAME already exists, DUMP will overwrite it's contents. An
exception is when DUMP is used to write out heads and velocities in programs GW2 and
GW4, or solute concentrations in program ST1. In these cases DUMP appends the
computed heads, velocities, and solute concentrations onto the bottom of the files after each
time step.

An example input file for DUMP as used in program GW1 is shown below

I{IOD.LST
IZELEM.LST
16-IEAD.LST
;’iELO.LST

In this example DUMP would write a list of node numbers and coordinates to the file
NOD.LST, a list of element numbers and element node numbers to file ELEM.LST, a list
of node numbers and computed values of hydraulic head to file HEAD.LST, and a list of
element numbers and computed components of apparent groundwater velocity for each
element to file VELO.LST.
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15.6 SOURCE CODE LISTING

SUBROUTINE DUMP (LOOP, HDF, VLF)

(G e e e e e e e e e e e e v e e e e ok e e e ok o v e ol e e e e ke e o e e oo ol e o e e ok o o o e o o e ok e e o e e e e e ok ek ke

0000000000000 000000000000000000000000000000000

15.1

15.2

15.3

15.4

[
w
w

PURPOSE:
TO WRITE CONTENTS OF ARRAYS TO USER-SUPPLIED DATA
FILES

INPUT:
CONTROL INFORMATION IS READ FROM USER-SUPPLIED FILE
ASSIGNED TO UNIT "INF". FIRST LINE IS CODE INDICATING
WHICH ARRAYS ARE TO BE WRITTEN TO A OUTPUT FILE, THE
SECOND LINE IS THE NAME OF THE OUTPUT FILE. THESE
TWO LINES CAN BE REPEATED AS OFTEN AS DESIRED. INPUT
IS TERMINATED BY PLACING A -1 ON FILE "INF".

OUTPUT:
CONTENTS OF ARRAYS ARE WRITTEN TO A SET OF OUTPUT
FILES.

DEFINITIONS OF VARIABLES:
FNAME = QUTPUT FILE NAME
ICODE = ARRAYS TO BE WRITTEN TO FNAME:
1, NODE NUMBERS AND COORDINATES
2, ELEMENT NUMBERS, TYPES, AND NODE NUMBERS
3, ELEMENT NUMBERS, MATERIAL SET NUMBERS,
AND MATERIAL SET PROPERTIES
4, NODE NUMBERS AND SPECIFIED VALUES OF HEAD
OR SOLUTE CONCENTRATION (DIRICHLET BOUNDARY
CONDITIONS) AND SPECIFIED RATES OF GROUNDWATER
FLOW OR SOLUTE FLUX (DIRICHLET AND NEUMANN
BOUNDARY CONDITIONS)
= 5, RELAXATION FACTOR, TIME FUNCTION, AND INITIAL
VALUES OF HEAD OR SOLUTE CONCENTRATION
= 6, COMPUTED VALUES OF HEAD OR SOLUTE CONCENTRATION
= 7, ELEMENT NUMBERS AND COMPONENTS OF APPARENT
GROUNDWATER VELOCITY

USAGE:
THE CONTENTS OF THE ARRAYS ARE WRITTEN "FREE-FORMAT" TO
EACH DATA FILE,

SUBROUTINES CALLED:
NONE

REFERENCES :
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 15.

Coedk ik ke e e ok ok e o e e sk sk ok 3 ok o e e A e ok ok ok ok ok o 9 ol o e e ok R ok e e e ok ke ok o ok o o o o ok ok 9 ok ok ok ok o o ok e e ok

$INCLUDE

: 'COMALL'
INTEGER DMPF, HDF, VLF
LOGICAL LOOP,OPNED
CHARACTER*20 FNAME
DIMENSION XY3Z (MAX1,3),V(MAX2,3),NODETBL(13)
EQUIVALENCE (X1,XYz(1,1)), (X2,XY2(1,2)), (X3,X¥2(1,3)),

(vi,v(1,1)),(v2,v(1,2)),(v3,Vv(1,3))

DATA NODETBL/2,3,4,3,4,4,8,12,8,20,32,3,4/

HDF = 0
VLF = 0
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10 READ (INF, *,END=140,ERR=140) ICODE

IF (ICODE .LE. 0) GOTO 140
READ (INF, 20, END=140, ERR=10) FNAME
20 FORMAT (&)
IF (ICODE .LE. 6) THEN
DMPF = 1
ELSE
DMPF = 2
ENDIF
INQUIRE (UNIT=DMPF, OPENED=OPNED)
IF (.NOT. OPNED)
1 OPEN (DMPF, FILE=FNAME, STATUS='NEW' , FORM="'FORMATTED ")
IF (ICODE .EQ. 1) THEN

c
[ WRITE OUT NODE NUMBERS AND COORDINATES
o]
IF (DIM .LT. 4) THEN
IDIM = DIM
ELSE
IDIM = 2
ENDIF

DO 30 I = 1, NUMNOD
WRITE (DMPF, *) I, (X¥z(I,J),Jd=1, IDIM)
30 CONTINUE
ELSEIF (ICODE .EQ. 2) THEN

WRITE OUT ELEMENT NUMBERS, TYPES, AND NODE NUMBERS

[eNeRe]

DO 40 I=1, NUMELM
WRITE (DMPF, *) I,ELEMTYP(I), (IN(I,J),J=1,NODETBL (ELEMTYP (I)))
40 CONTINUE
ELSEIF (ICODE .EQ. 3) THEN

WRITE OUT ELEMENT AND MATERIAL SET NUMBERS AND MATERIAL
PROPERTIES

(e NeNeXel

DO 50 I = 1, NUMELM
WRITE (DMPF, *) I,MATSET(I)
50 CONTINUE
WRITE (DMPF, *) NUMPROP
DO 60 I = 1, NUMMAT
WRITE (DMPF, *) I, (PROP (I,J),J=1, NUMPROP)
60 CONTINUE
ELSEIF (ICODE .EQ. 4) THEN

WRITE OUT SPECIFED VALUES OF FIELD VARIABLE AND GROUNDWATER
FLOW OR SOLUTE FLUX

[t NeXeNe!

IF (NDN .GT. 0) THEN
DO 70 I = 1, NUMNOD
IF (ICH(I) .NE. 0) WRITE(DMPF,*) I,X(I)
70 CONTINUE
ENDIF
IF (NNN .GT. 0) THEN
DO 80 I = 1, NUMNOD
IF (FLUX(I) .NE. 0.) WRITE(DMPF,*) I,FLUX(I)
80 CONTINUE
ENDIF
ELSEIF (ICODE .EQ. 5) THEN

c WRITE OUT RELAXATION FACTOR, TIME FUNCTION, AND INITIAL
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o VALUES OF FIELD VARIABLE
o

IF (LOOP) THEN
WRITE (DMPF, *) OMEGA
ISTART = 1
IT =1
TOTALT = 0.
90 WRITE (DMPF, *) ISTART,DTSTEP (IT),DELTAT(IT)
TOTALT = TOTALT + (DTSTEP (IT) - ISTART + 1) * DELTAT(IT)
IF (DTSTEP(IT) .LT. MXSTEP) THEN
ISTART = DTSTEP(IT) + 1
IT = IT + 1
GOTO 90
ELSE
WRITE (DMPF, *) TOTALT
IT = 1
100 WRITE (DMPF, *) TIME(IT),GT (IT)
IF (TIME(IT) .GE. 0. .AND. TIME(IT) .LT. TOTALT) THEN
IT = IT + 1
GOTO 100
ELSE
DO 110 I = 1, NUMNOD
IF (ICH(I) .EQ. Q) WRITE(DMPF,*) I,X(I)
110 CONTINUE
ENDIF
ENDIF
ENDIF
ELSEIF (ICODE .EQ. 6) THEN
o
c WRITE OUT COMPUTED VALUES OF FIELD VARIAEBLE
o
IF (LOOP) THEN
HDF = DMPF
ELSE
DO 120 I = 1, NUMNOD
WRITE (DMPF, *) I,X(I)
120 CONTINUE
ENDIF
ELSEIF (ICODE .EQ. 7) THEN
o
o WRITE OUT ELEMENT NUMBERS AND COMPUTED COMPONENTS
o OF APPARENT GROUNDWATER VELOCITY
o
IF (LOOP) THEN
VLF = DMPF
ELSE
IF (DIM .LT. 4) THEN
IDIM = DIM
ELSE
IDIM = 2
ENDIF
DO 130 I = 1, NUMELM
WRITE (DMPF, *) I, (V(I,J),J=1,IDIM)
130 CONTINUE
ENDIF
ENDIF
IF (ICODE .LE. 5 .OR. (ICODE .GT. 5 .AND. .NOT. LOOP))
CLOSE (UNIT=DMPF')
GoTo 10
140 RETURN

END

Copyright American Geophysical Union



Groundwater Modeling by
Water Resources Monograph the Finite Element Method Vol. 13

Chapter 16

SUBROUTINE INITIAL

16.1 PURPOSE

Subroutine INITIAL inputs control parameters and initial conditions needed to solve
transient groundwater flow and solute transport problems. Subroutine INITIAL is also
used to input control parameters and initial estirates for pressure head needed to solve,
unsaturated flow problems.

16.2 INPUT

All data are read "free-format” from the user-supplied file assigned to unit "INF". INF
is passed to INITIAL through a labeled common block contained in the file "COMALL"
(Chapter 7). The relaxation factor used in the finite difference approximation of the time
derivative, a list of time step intervals, and a list of values of the time function (see below)
are also read. These are followed by a list of initial values of the field variable (hydraulic
head, pressure head, or solute concentration) for each node in the mesh.

16.3 OUTPUT
The relaxation factor, time step intervals, values of the time function, and initial values

of the field variable are written to the user-defined file assigned to unit "OUTEF".

16.4 DEFINITIONS OF VARIABLES

DELTAT(I) = Size of time step .

DTSTEP(I) = Lasttime step to take using a time step of size DELTAT().

GTQ) = Value of time function at time L.

ICH(I) = 1 if the value of the field variable is specified at node I.

= 0 otherwise.

LABELI1 = Character variable used to label column headings for specified
values of the field variable on file assigned to unit OUTF. LABEL]
= "HYDRAULIC HEAD", "PRESSURE HEAD", OR "SOLUTE
FLUX". )

MXSTEP = Number of different time step intervals.

NUMNOD = Number of nodes.

OMEGA = Relaxation factor, ®.

400
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OMOMEGA = 1-o.
TIME(Q®) = Starting time for time function value GT(I).
TOTALT = Total length of time for which calculations are performed.
XM = Value of the field variable (hydraulic head, pressure head, or solute

concentration) at node L.

16.5 USAGE

The relaxation factor OMEGA is read first, followed by a list of time steps and time

intervals. Each record in the list contains the last time step to take with a specified time step
interval. Input of time steps and time step intervals is terminated by placinfg a -1 in both
fields. This is followed by a list of times and values of the time function for each time.
Input is terminated by placing a -1 in both fields. Finally, the initial values of the field
variable are read for each node. The subroutine will "generate” initial values of the field
variable for nodes "missing” from the input file. However, the specified values of the field
variable for Dirichlet nodes read by subroutine BOUND will not be changed. Input is
terminated by placing a -1 in both fields.
In the mesh in Figure 16.1, nodes 1, 2, 3, 12, 13, and 14 have specified values of pressure
head. These boundary conditions would be read by subroutine BOUND. For this
problem @ =0.5, and a solution is required for 6 time steps. The time step interval will be
1 minute for time steps 1, 2, and 3 and the time step interval will be 3 minutes for time
steps 4, 5, and 6. The specified flow rate for the point sink at node 8, F(8), varies with
time as shown below

0.8 [~

0.6 |

gt) B
04 |

F(8) = g(t)*FLUX(8)

02 |

time, t (minutes)

where F(8) = g(t) * FLUX(8) and FLUX(8) is the specified flow rate for node 8 read in
subroutine BOUND. For this problem we choose to use an initial value of pressure head
of -15 for all nodes not on a constant head boundary. Note that the same time function is
applied to every Neumann node.
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Q =Flux(8)

h=10 { 2 13¢; h=30
. ®
1 4 7 10 12
Input Data : 0.5
3 1.0
6 3.0
-1 -1
0.0 0.0
4.0 1.0
12.0 1.0
-1 -1
1 15.
14 15.
-1 -1
Output : OMEGA = 0.5000
START END DELTAT
1 3 "'1.0000
4 6 3.0000
TOTAL TIME = 12.0000
TIMET G(T)
0000 0000
4.0000 1.0000
12.0000 1.0000

INITIAL VALUES OF HYDRAULIC HEAD

NODE NO. HYDRAULIC HEAD

1 10.0000*
2 10.0000*
3 10.0000*
4 15.0000
5 15.0000
6
7
8
9

15.0000
15.0000
15.0000
15.0000
10 15.0000
11 15.0000
12 30.0000*
13 30.0000
14 30.0000*

* = SPECIFIED

Figure 16.1 Example input data and output for subroutine INITIAL.
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16.6 SOURCE CODE LISTING

SUBROUTINE INITIAL
LR R e I e ey

16.1 PURPOSE:
SUBROUTINE INITIAL INPUTS CONTROL PARAMETERS AND INITIAL
CONDITIONS NEEDED TO SOLVE TRANSIENT GROUNDWATER FLOW AND
SOLUTE TRANSPORT PROBLEMS. SUBROUTINE INITIAL IS ALSO
USED TO INPUT CONTROL PARAMETERS AND TO SPECIFY INITIAL
ESTIMATES FOR PRESSURE HEAD NEEDED TO SOLVE STEADY-STATE,
UNSATURATED FLOW PROBLEMS.

16.2 INPUT:
ALL DATA ARE READ "FREE-FORMAT" FROM THE USER-SUPPLIED
FILE ASSIGNED TO UNIT "INF". THE RELAXATION FACTOR
USED IN THE FINITE DIFFERENCE APPROXIMATION OF THE TIME
DERIVATIVE, A LIST OF TIME STEP INTERVALS, AND A LIST OF
VALUES OF THE TIME FUNCTION (SEE BELOW) ARE ALSO READ.
THESE ARE FOLLOWED BY A LIST OF INITIAL VALUES OF THE
FIELD VARIABLE FOR EACH NODE IN THE MESH.

16.3 OUTPUT:
THE RELAXATION FACTOR, TIME STEP INTERVALS, VALUES OF
THE TIME FUNCTION, AND INITIAL VALUES OF THE FIELD
VARIABLE ARE WRITTEN TO THE USER-DEFINED FILE ASSIGNED
TO UNIT "OUTF".

16.4 DEFINITIONS OF VARIABLES:
DELTAT(I) = SIZE OF TIME STEP I
DTSTEP (I) = NUMBER OF TIME STEPS TO TAKE USING A TIME
STEP OF SIZE DELTAT(I)
GT(I) = VALUE OF TIME FUNCTION AT TIME I
ICH(I) = 1 IF THE VALUE OF THE FIELD VARIABLE IS
SPECIFIED FOR NODE I,
= 0 OTHERWISE
LABEL]1 = CHARACTER VARIABLE USED TO LABEL COLUMN
HEADINGS FOR SPECIFIED VALUES OF THE FIELD
VARIABLE ON FILE ASSIGNED TO UNIT OUTF.
LABEL1 = "HYDRAULIC HEAD", "PRESSURE HEAD",
OR "SOLUTE FLUX"

MXSTEP = NUMBER OF DIFFERENT TIME STEP INTERVALS
NUMNOD = NUMBER OF NODES

OMEGA = RELAXATION FACTOR
OMOMEGA = 1. - OMEGA
TIME(I) = STARTING TIME FOR TIME FUNCTION VALUE GT(I)
TOTALT = TOTAL LENGTH OF TIME FOR WHICH CALCULATIONS

ARE PERFORMED

X(I) = VALUE OF THE FIELD VARIABLE (HYDRAULIC
HEAD, PRESSURE HEAD, OR SOLUTE CONCENTRATION)
AT NODE I

16.5 USAGE:

THE RELAXATION FACTOR OMEGA IS READ FIRST. THIS

IS FOLLOWED BY A LIST OF TIME STEPS AND TIME STEP
INTERVALS. EACH LINE OF INPUT CONTAINS THE NUMBER OF
TIME STEPS TO TAKE FOLLOWED BY A SPECIFIED TIME STEP
INTERVAL. INPUT OF TIME STEPS AND TIME STEP INTERVALS
IS TERMINATED BY PLACING A -1 IN BOTH FIELDS.

THIS IS FOLLOWED BY A LIST OF TIMES AND VALUES OF THE
TIME FUNCTION FOR EACH TIME. INPUT IS TERMINATED BY

(oo N e e N e N e N N N e N N e e e e Ne e Re e Re Ne Re e Ne R Ne N Re Re Re Re Ko Re Re Re Ne e Re Re R Re e Re Re e e e ReRe Re e ReRe Re Re N o)
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[ PLACING A -1 IN BOTH FIELDS. FINALLY, THE INITIAL
[ VALUE OF THE FIELD VARIABLE IS READ FOR EACH NODE.

[ INPUT IS TERMINATED BY PLACING A -1 IN BOTH FIELDS.
c

c

[ SUBROUTINES CALLED:

[ NONE

c

[ REFERENCES :

c ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT

[ MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 16.
c

CRARARRRRRR AR AR RN AR AR R AR R AR AR R A RN AR AR RN RN R RN RAR AR RN AR KR AR RARNRAR AR R
$INCLUDE: 'COMALL'

Cc
Cc

10

Cc

20

30

40

50

60
70

80

90

100

110
120

130

INPUT OMEGA FROM INPUT FILE
READ (INF,*) OMEGA
WRITE (OUTF, 10) OMEGA
FORMAT (//2X, "OMEGA = ',F15.4)
OMOMEGA = 1. = OMEGA
INPUT LIST OF TIME STEPS AND TIME STEP INTERVALS FROM INPUT FILE
IT = 1
MXSTEP = 0
READ (INF, *) DTSTEP (IT),DELTAT(IT)
IF (DTSTEP(IT) .LE. 0) GOTO 30
IF (DTSTEP(IT) .GT. MXSTEP) MXSTEP = DTSTEP (IT)
IT = IT + 1
GOTO 20
IT = IT - 1
WRITE (OUTF, 40)
FORMAT (//2X, 'START',8X,' END ',10X, 'DELTA T'/
2%,5('~"'),8X,5(*'~"),8X,11('~"))
ISTART = 1
TOTALT = 0.
DO 60 I = 1, IT
WRITE (OUTF, 50) ISTART,DTSTEP (I),DELTAT(I)
FORMAT (2X, 14, 9X,14,3X,F15.4)
TOTALT = TOTALT + (DTSTEP(I) - ISTART + 1) * DELTAT(I)
ISTART = DTSTEP(I) + 1
CONTINUE
WRITE (OUTF,70) TOTALT
FORMAT (/10X, 'TOTAL TIME =',F15.4)
INPUT LIST OF TIME STEPS AND VALUES OF TIME FUNCTION
IT = 1
READ (INF,*) TIME (IT),GT(IT)
IF (TIME(IT) .LT. 0.) GOTO 90
IT = IT + 1
GOTO 80
IT = IT - 1
IF (TIME(IT) .LT. TOTALT) TIME(IT) = TOTALT
WRITE (OUTF, 100)
FORMAT (//8X, 'TIME T',11X,'G(T)'/7X,8('~"'),9%,6('~"'))
DO 120 I = 1, IT
WRITE (OUTF,110) TIME(I),GT(I)
FORMAT (2F15.4)
CONTINUE
INPUT INITIAL VALUES OF FIELD VARIABLE FROM INPUT FILE
ISTART = 1
READ (INF, *) IT,HINIT
IF (IT .LE. 0) GOTO 150
IF (IT .GT. MAX1) IT = MAX1
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140

150
160

170
180

190

DO 140 I = ISTART, IT

IF (ICH(I) .NE. 1) X(I) = HINIT
CONTINUE
ISTART = IT + 1
IF (ISTART .LE. MAX1l) GOTO 130
WRITE (OUTF, 160) LABELl,LABEL1
FORMAT (//2X, 'INITIAL VALUES OF ',A/2X,38('-')//

2X, '"NODE NO.',10X,A/2X,8('-"'),10X,20('-"))

DO 180 I = 1, NUMNOD

IF (ICH(I) .EQ. 0) THEN

WRITE (OUTF,170) I,X(I),' '
ELSE
WRITE (OUTF,170) I,X(I),'*'

ENDIF

FORMAT (2X,15,12X,F15.4,3)
CONTINUE
WRITE (OUTF, 190)
FORMAT (/23X, '* = SPECIFIED')
RETURN
END
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SUBROUTINE ASMBKC

17.1 PURPOSE

Subroutine ASMBKC assembles the combined global conductance and capacitance
matrix (equation 5.30a) and the global specified flow matrix {F}. The global matrices are
modified to account for specified values of the field variable (hydraulic head or pressure
head) and for specified rates of groundwater flow. ASMBKC also computes the semi-
bandwidth and number of degrees of freedom for the modified system of equations.
17.2 INPUT

None

17.3 OUTPUT

The semi-bandwidth and number of degrees of freedom for the modified system of
equations are written to the user-defined file assigned to unit "OUTF".

17.4 DEFINITIONS OF VARIABLES

B(D) = Modified specified flow matrix.
CE(L)) = Capacitance matrix for element e in full matrix storage.
E = Element number.
ELEMTYP(E) = glegsl;,nt type for element E (see Table 9.1 for a list of element
P .
FLUX®) = Specified rate of groundwater flow at node I.
ICH(D)= = 1 if the value of the field variable is specified at node I,
= 0 otherwise.
1ISIZE = Length of array [M] in vector storage ([M] is symmetric).
KE()) = Conductance matrix for element E in full matrix storage.
I
LCH(I) = ZICH(k). The arrays ICH and LCH are used to modify the global

k=1
system of equations for specified values of the field variable.

406
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MQ@) = Modified, combined global conductance and capacitance matrix in
vector storage.
NDOF = Number of nodes where the value of the field variable is unknown.

NODETBL() = Number of nodes in element type L.

NUMELM = Number of clements in mesh.
SBW = Semi-bandwidth of modified, combined global conductance and
capacitance matrix.
XM = Value of the field variable (hydranlic head or pressure head) at node
I
17.5 USAGE
Subroutine ASMBKC assembles the combined global conductance and capacitance
matrix [M]
M] = [C] + 0At[K] 17.1)

and the specified groundwater flow matrix {F}. [M] and {F} are modified to account for
specified values of the field variable (hydraulic head or pressure head), during the assembly
process, using the procedures in Chapter 4. [M] is assembled and modified in vector
storage in the array M. The modified, global specified flow matrix is stored in the array B.
Further modifications to B are made in subroutine RHS (see Chapter 18).

The number of degrees of freedom (number of unknown values of the field variable)
NDOF is computed in subroutine BOUND as

NDOF = NUMNOD - NDN

where NUMNOD is the number of nodes in the mesh (Chapter 8) and NDN is the number
of nodes with specified values of the field variable (Chapter 11). The semi-bandwidth,
SBW for the modified system of equations is computed in ASMBKC using

SBW = R+1 (17.2)

where R is the maximum difference in node numbers for any two nodes within any element
in the mesh. However, if the value of the field variable is specified for a node that node is
not used in the calculation of R (because the row in [M] for that node will be eliminated
when [M] is modified for the specified value of head).

The element conductance and capacitance matrices are computed in two sets of
subroutines. The element conductance matrices are computed using the set of subroutines
in Table 12.1. The element capacitance matrices (consistent formulation) are computed
using the set of subroutines in Table 17.1. Each subroutine in this set begins with the letter

"C" (for the element capacitance matrix [C(°)]) followed by three or four letters, that

identify the element type, and the number of nodes in elements of that type. For example,
subroutine CBAR2 computes the element capacitance matrix for one-dimensional, linear
bar elements and CPARS computes the element capacitance matrix for three-dimensional,
linear parallelepiped elements.
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Table 17.1 Subroutines used to compute element conductance matrices in ASMBKC.

Element Type Description Subroutine Name DIM
1 Linear bar CBAR2 1
2 Quadratic bar CBAR3* 1
3 Cubic bar CBAR4' 1
4 Linear triangle CTRI3 2
5 Linear rectangle CREC4 2
6 Linear quadrilateral OQUA4 2
7 Quadratic quadrilateral CQUAS* 2
8 Cubic quadrilateral CQUA12* 2
9 Linear parallelepiped CPARS 3

10 Quadratic parallelepiped CPAR20" 3
11 Cubic parallelepiped CPAR32* 3
12 Linear triangle (axisymmetric) CTRI3A® 4
13 Linear rectangle (axisymmetric) CRECAA* 4

*Source code listing not provided for these subroutines.

The source code listing for each element capacitance matrix gives the figure that shows

the interpolation functions and the equation used to compute [C(‘)] for that element type. A
list of many of the important FORTRAN variables names and their symbols is in Table
12.2. Additional names and symbols for the subroutines in Tables 17.1 are shown below

FORTRAN Variable Definition Symbols(s) in Text
or Array Name
NQ@) Interpolation function fornodeI ~ N{(e) or N®(e,n)

or N®en.0)

SSE Specific storage for element e s

The operation of ASMBKC is most easily explained by considering a specific example.
The mesh in Figure 17.1 contains four nodes (NUMNOD = 4) and three elements
(NUMELM = 3).

h2=0,t=0 X h3=0,t=0
(1) 2 3)
h; =10m, t20 @ & @ o hy=0,t20
1 2 3 4

K=K =K® = 0.02 m/day
s{P=sP=5P=0.10

LY=5,1%=6, L® = 4m, 0= 1.0, At= 1day
Figure 17.1 Example mesh for ASMBKC.
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The value of hydraulic head is specified at node one and four (ICH(1) = ICH(4) = 1,
NDN = 2) and will remain constant for all time steps. The initial values of head at nodes 2
and 3 are zero and we are to compute the head at these nodes for subsequent time steps.
All elements are linear bar elements, ELEMTYP(1) = ELEMTYP(2) = ELEMTYP(3) = 1.
This element type has two nodes (NODETBL(1) = 2). The element conductance matrices
will be computed using subroutine KBAR2 (Table 12.1). The results are:

for element 1
[ 0.0040 -0.00407
E=1 KE = | -0.0040  0.0040
for element 2
[ 0.0033 —0.0033]
E=2 KE = | -0.0033  0.0033 |
for element 3
[ 0.0050 —0.00507
E=3 KE = | -0.0050 0.0050 |
The element capacitance matrices will be computed using subroutine CBAR2 (Table 17.1).
The results are:
for element 1
[0.1667 0.0833]
E=1 CE =  0.0833 0.1667 |
for element 2
[0.2000 0.1000]
E=2 CE =10.1000 0.2000]
for element 3
[0.1333 0.0667]
E=3 CE = [ 0.0667 0.1333]
The global system of equations is

{0} {0}
([C1+ @At [KD{h}ien, = ([C] - (1-w) At [K]{h}, + At ((l_m){ﬂ + 0{Flad)

0.1667 0.0833 0.0000 0.0000 0.0040 -0.0040 00000 0.00007] |[ h

0.0833 0.3667 0.1000 0.0000( oAt | 00040 00073 -00033 00000 ) -
0.0000 0.1000 0.3333 0.0667 0.0000 -0.0033 00083 -0.0050| || bs
0.0000 0.0000 0.0667 0.1333 0.0000 0.0000 —0.0050 0.0050] )| hs) ..,
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0.1667 0.0833 0.0000 0.0000 0.0040 -0.0040 0.0000 0.0000 h,
0.0833 0.3667 0.1000 0.0000 (1-w)At -0.0040 0.0073 -0.0033 0.0000 h;
0.0000 0.1000 0.3333 0.0667 0.0000 -0.0033 0.0083 -0.0050 h;
0.0000 0.0000 0.0667 0.1333 0.0000 0.0000 —0.0050 0.0050 hy t

There are no specified rates of groundwater flow in this problem and {F} = 0 for all time
steps. With @ =0.5 and At = 1 day the global system of equations can be simplified to :

[0.1687 0.0183 0.0000 0.00007[ h;]
0.0813 0.3704 0.0984 0.0000 J h,
0.0000 0.0984 0.3375 0.0642(| h;

| 0.0000 0.0000 0.0642 0.1358](hy) ,,,

[0.1647 0.0853 0.0000 0.0000] 'hq
0.0853 0.3631 0.1017 0.0000| h,
0.0000 0.1017 0.3292 0.0692 | hs
[ 0.0000 0.0000 0.0692 0.1308] [ by

Buth; = 10 and h4 = 0 and for the first time step the modified global system of equations
becomes

0.0§13 0.3704 0.0984 0.0900 || b,
0.0§00 0.0984 0.3375 0.0§42 (| hs

N O

=g v g g TC p l=lday
T0-1647-0-6859—0-0600—6-00007 16 1.647

_ | 0-0853 0.3631 0.1017 0.0000(] 0 _ |o.8s53

~ 1 0.0000 0.1017 0.3292 0.0692(] 0 ~ 10.000
+6-5000—6-0000—0-0692—0-13084H—6-F, .o L 0.000

or
[0.3704 0.0984] { hz} _ [0.353] _ [(10) (0.0813)]_ [0.0400]
0.0484 0.3375] hs),_, 4, L0.000] [(10)(0.0000)] [0.0000

This system is stored in arrays M, X

0.3704
M=40.0984; (banded, symmeuic matrix in vector storage)
0.3375

h
X ={h2} (obtained using DECOMP and SOLVE)
3) 1=1dav

The right-hand side terms are constructed in subroutine RHS (see Chapter 18).
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17.6 SOURCE CODE LISTING

SUBROUTINE ASMBKC
oL L e e e e L P e T S D D e e L e e e

17.1 PURPOSE:
TO ASSEMBLE THE COMBINED GLOBAL CONDUCTANCE AND
CAPACITANCE MATRIX (EQUATION 5.30A) AND THE GLOBAL
SPECIFIED FLOW MATRIX FOR THE MESH AND TO MODIFY THE
SYSTEM OF EQUATIONS FOR SPECIFIED HEAD AND GROUNDWATER
FLOW BOUNDARY CONDITIONS

17.2 INPUT:
NONE

17.3 OUTPUT:
THE SEMI-BANDWIDTH AND NUMBER OF DEGREES OF FREEDOM
FOR THE MODIFIED, COMBINED GLOBAL CONDUCTANCE AND
CAPACITANCE MATRIX ARE WRITTEN TO THE USER-DEFINED
FILE ASSIGNED TO UNIT “OUTF"

17.4 DEFINITIONS OF VARIABLES:
B(I) = MODIFIED SPECIFIED FLOW MATRIX
E(I,J) = CAPACITANCE MATRIX FOR ELEMENT E IN
FULL MATRIX STORAGE
E = ELEMENT NUMBER
ELEMTYP (E) = ELEMENT TYPE FOR ELEMENT E (SEE TABLE
9.1 FOR A LIST OF ELEMENT TYPES)
FLUX(I) = SPECIFIED RATE OF GROUNDWATER FLOW
AT NODE I
ICH(I) = 1 IF THE VALUE OF HYDRAULIC HEAD OR
PRESSURE HEAD IS SPECIFIED FOR NODE I,
= 0 OTHERWISE
IJSIZE = LENGTH OF ARRAY (M] IN VECTOR STORAGE
KE(I,J) = CONDUCTANCE MATRIX FOR ELEMENT E IN
FULL MATRIX STORAGE
LCH(I) = ICH(I) + ICH(I-1) + ICH(I-2) + ...
THE ARRAYS ICH AND LCH ARE USED TO MODIFY
THE GLOBAL SYSTEM OF EQUATIONS FOR SPECIFIED
VALUES OF THE FIELD VARIABLE
M(IJ) = MODIFIED, COMBINED GLOBAL CONDUCTANCE
AND CAPACITANCE MATRIX IN VECTOR STORAGE
NDOF = NUMBER OF NODES WHERE THE VALUE OF
THE FIELD VARIABLE IS UNKNOWN
NODETBL(I) = NUMBER OF NODES IN ELEMENT TYPE I
NUMELM = NUMBER OF ELEMENTS IN MESH
SBW = SEMI-BANDWIDTH OF MODIFIED, COMBINED
GLOBAL CONDUCTANCE AND CAPACITANCE MATRIX
X(I) = VALUE OF HYDRAULIC HEAD OR PRESSURE HEAD
AT NODE I

17.5 USAGE:
THE SEMI-BANDWIDTH OF THE COMBINED GLOBAL CONDUCTANCE AND
CAPACITANCE MATRIX IS COMPUTED FIRST. THEN THE ENTRIES
OF THE ELEMENT CONDUCTANCE AND CAPACITANCE MATRICES ARE
COMPUTED IN A SET OF SUBROUTINES, TWO SUBROUTINES FOR
EACH ELEMENT TYPE. THE COMBINED GLOBAL CONDUCTANCE AND
CAPACITANCE MATRIX FOR THE MESH IS ASSEMBLED BY ADDING THE
CORRESPONDING ENTRIES OF THE ELEMENT MATRICES TO THE GLOBAL
MATRIX. DURING THE ASSEMBLY PROCESS THE GLOBAL MATRIX IS
MODIFIED FOR SPECIFIED VALUES OF HEAD AND SPECIFIED VALUES
OF GROUNDWATER FLOW ARE ADDED TO THE GLOBAL FLOW MATRIX.

0000000000000 00000000000000N0N00N0N0N00000N000N000N000000000N0000
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[

C SUBROUTINES CALLED:

[ KBAR2, KBAR3, KBAR4, KTRI3, KREC4,KQUA4, KQUAB, KQUA12, KPARS,
[ KPAR20,KBAR32,KTRI3A,KREC4A,LOC (LISTED WITH SUBROUTINE
[ ASMBK IN CHAPTER 12)

[ CBAR2, CBAR3, CBAR4, CTRI3, CREC4,CQUA4,CQUAB, CQUAL2, CPARS,
[ CPAR20, CBAR32, CTRI3A,CREC4A

[

C REFERENCES :

[ ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT

C MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 17.

[

CARRR A AR R R RRR AR AR R R AR AR RAR KRR R AR R R R R AR R AR AR RRRR R AR R AR KR ARRRRRRAR
$INCLUDE: 'COMALL'

REAL KE (MAX3,MAX3),CE (MAX3, MAX3)

INTEGER NODETBL(13)

DATA NODETBL/Z2,3,4,3,4,4,8,12,8,20,32,3,4/

COMPUTE THE SEMI-BANDWIDTH

[eNeNe]

SBW = 1
DO 30 E = 1, NUMELM
DO 20 I = 1, NODETBL(ELEMTYP (E))
KI = IN(E,I)
IF (ICH(KI) .EQ. 0 .AND. I .LT. NODETBL(ELEMTYP(E))) THEN
IT = KI - LCH(KI)
DO 10 J = I + 1, NODETBL(ELEMTYP (E))
KJ = IN(E,J)
IF (ICH(KJ) .EQ. 0) THEN
JJ = ABS(KJ - LCH(KJ) - II) + 1
IF (JJ .GT. SBW) SBW = JJ
ENDIF
10 CONTINUE
ENDIF
20 CONTINUE
30 CONT INUE
WRITE (OUTF, 40) NDOF, SBW
40 FORMAT (//' NUMBER OF DEGREES OF FREEDOM IN MODIFIED, '/
' GLOBAL COMBINED CONDUCTANCE AND CAPACITANCE',
' MATRIX =',I5///' SEMI~-BANDWIDTH OF MODIFIED, '/
' GLOBAL COMBINED CONDUCTANCE AND CAPACITANCE',
' MATRIX =',I5)
IF (SBW .GT. MAX6) STOP'** EXCEEDS MAXIMUM SEMI-BAND WIDTH **°!
c INITIALIZE ENTRIES OF GLOBAL MATRIX TO ZERO
IJSIZE = SBW * (NDOF -~ SBW 4+ 1) + (SBW = 1) * SBW / 2
DO 50 IJ = 1, IJSIZE
M(IJ) = 0.0
B1(IJ) = 0.0
50 CONTINUE

= WN =

DO 56 I = 1, MAaX1
56 FC(I) = 0.

[ INITIALIZE ENTRIES OF THE GLOBAL GROUNDWATER MATRIX TO ZERO
DO 60 I = NDOF
B(I) = 0.0
60 CONTINUE
Cc LOOP ON THE NUMBER OF ELEMENTS
DO 90 E = 1, NUMELM
Cc COMPUTE THE ELEMENT CONDUCTANCE AND CAPACITANCE MATRICES
[ FOR THIS ELEMENT TYPE
IF (ELEMTYP(E) .EQ. 1) THEN
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[+ ELEMENT IS A ONE-DIMENSIONAL, LINEAR BAR

CALL KBAR2 (E,KE)
CALL CBAR2 (E,CE)
ELSEIF (ELEMTYP(E) .EQ .2) THEN
[+ ELEMENT IS A ONE-DIMENSIONAL, QUADRATIC BAR
CALL KBAR3 (E,KE)
CALL CBAR3 (E,CE)
ELSEIF (ELEMTYP(E) .EQ. 3) THEN
C ELEMENT IS A ONE-DIMENSIONAL, CUBIC BAR
CALL KBAR4 (E,KE)
CALL CBAR4(E,CE)
ELSEIF (ELEMTYP(E) .EQ. 4) THEN
[+ ELEMENT IS A TWO-DIMENSIONAL, LINEAR TRIANGLE
CALL KTRI3 (E,KE)
CALL CTRI3(E,CE)
ELSEIF (ELEMTYP(E) .EQ. 5) THEN
C ELEMENT IS A TWO-DIMENSIONAL, LINEAR RECTANGLE
CALL KREC4(E,KE)
CALL CRECA4 (E,CE)
ELSEIF (ELEMTYP (E) .EQ. 6) THEN
C ELEMENT IS A TWO-DIMENSIONAL, LINEAR QUADRILATERAL
CALL KQUA4 (E,KE)
CALL CQUA4 (E,CE)
ELSEIF (ELEMTYP(E) .EQ. 7) THEN
[+ ELEMENT IS A TWO-DIMENSIONAL, QUADRATIC QUADRILATERAL
CALL KQUAS (E,KE)
CALL CQUAS (E,CE)
ELSEIF (ELEMTYP(E) .EQ. 8) THEN
[+ ELEMENT IS A TWO-DIMENSIONAL, CUBIC QUADRILATERAL
CALL KQUAl2 (E,KE)
CALL CQUAl2(E,CE)
ELSEIF (ELEMTYP(E) .EQ. 9) THEN
C ELEMENT IS A THREE-DIMENSIONAL, LINEAR PARALLELEPIPED
CALL KPARS (E,KE)
CALL CPARS (E,CE)
ELSEIF (ELEMTYP(E) .EQ. 10) THEN
[+ ELEMENT IS A THREE-DIMENSIONAL, QUADRATIC PARALLELEPIPED
CALL KPAR20 (E,KE)
CALL CPAR20 (E,CE)
ELSEIF (ELEMTYP(E) .EQ. 1l1) THEN
[+ ELEMENT IS A THREE-DIMENSIONAL, CUBIC PARALLELEPIPED
CALL KPAR32 (E,KE)
CALL CPAR32 (E,CE)
ELSEIF (ELEMTYP(E) .EQ. 12) THEN
[+ ELEMENT IS A TWO-DIMENSIONAL, LINEAR TRIANGLE (AXISYMMETRIC)
CALL KTRI3A(E,KE)
CALL CTRI3A(E,CE)
ELSEIF (ELEMTYP(E) .EQ. 13) THEN
[+ ELEMENT IS A TWO-DIMENSIONAL, LINEAR RECTANGLE (AXISYMMETRIC)
CALL KREC4A (E,KE)
CALL CREC4A(E,CE)
ENDIF
[+ ADD THE ELEMENT CONDUCTANCE AND CAPACITANCE MATRICES FOR
[+ THIS ELEMENT TO THE GLOBAL MATRIX
[+ KE(I,J),CE(I,J) --—————==—= > M(IJ) <=> M(KI,KJ)
C (FULL MATRIX STORAGE) (VECTOR MATRIX STORAGE) (FULL MATRIX STORAGE)

DO 80 I = 1, NODETBL(ELEMTYP (E))
KI = IN(E,I)
IF (ICH(KI) .EQ. 0) THEN
II = KI - LCH(KI)
DO 70 J = 1, NODETBL (ELEMTYP (E))
KJ = IN(E,J)
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IF (ICH(KJ) .NE. 0) THEN

FC(II) = FC(II) - DELTAT(IDT) * KE(I,J) * X(KJ)
ELSEIF (J .GE. I) THEN

JJ = KJ - LCH(KJ)

CALL LOC(II,JJ,1J,NDOF,SBW, SYMM)

M(1J) = M(IJ) + CE(I,J) + OMEGA *

1 DELTAT(IDT) * KE(I,J)
B1(IJ) = B1(IJ) + CE(I,J) - OMOMEGA *
1 DELTAT (IDT) * KE(I,J)
ENDIF
70 CONTINUE
ENDIF
80 CONTINUE
90 CONTINUE

DO 999 I = 1,IJSIZE
WRITE (*,*) M(I),B(I)
999 CONTINUE
RETURN
END

SUBROUTINE CBAR2 (E, CE)
Rk ke e A ke o o ok ok Ak o o ok o A A A ko o ok

PURPOSE:
TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT
CAPACITANCE MATRIX FOR A ONE-DIMENSIONAL, LINEAR
BAR ELEMENT

DEFINITIONS OF VARIABLES:
E = ELEMENT NUMBER
CE(I,J) = ELEMENT CAPACITANCE MATRIX
SSE = ELEMENT SPECIFIC STORAGE
LE = ELEMENT LENGTH

REFERENCES:
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.5,
EQUATION 4.16a.

0000000000000 0000

O sk e ook Akt ok ok ok kA kR kR ok Rk
$INCLUDE: ‘COMALL'
REAL CE(MAX3,MAX3),LE
Cc
SSE = PROP (MATSET(E),2)
LE = ABS(X1(IN(E,2)) - X1(IN(E,1)))
CE(1,1) = SSE * LE / 3.
CE(1,2) = SSE * LE / 6.
CE(2,1) = CE(1,2)
CE(2,2) = CE(1,1)
RETURN
END
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SUBROUTINE CTRI3 (E,CE)
CRRRERRRRERKRAARRRAER R AR KR EREREKR KR KRR RR AR RRRR AR AR ERRIRRARRRRR

PURPOSE :
TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT CAPACITANCE
MATRIX FOR TWO-~ DIMENSIONAL, LINEAR TRIANGLE ELEMENT

DEFINITIONS OF VARIABLES:
AE4 = FOUR TIMES ELEMENT AREA
E = ELEMENT NUMBER
CE(I,J) = ELEMENT CAPACITANCE MATRIX
SSE = ELEMENT SPECIFIC STORAGE

REFERENCES:
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.7,
EQUATION 4.22a

Q0000000000000 00

c*********************************************************************

$INCLUDE: °‘COMALL'
REAL CE (MAX3, MAX3)
c
SSE = PROP (MATSET (E), 3)
AE4 = 2 * (X1(IN(E,2)) * X2(IN(E,3)) + X1(IN(E,1)) *
X2 (IN(E,2)) + X2(IN(E,1)) * X1(IN(E,3)) -
X2 (IN(E,3)) * X1(IN(E,1)) =~ X1(IN(E,3)) *
X2 (IN(E,2)) = X1(IN(E,2)) * X2(IN(E,1)))
AE = AE4 / 4.

WN

CE(1,1) = SSE * AE / 6.
CE(1,2) = CE(1,1) / 2.
CE(1,3) = CE(1,2)
CE(2,1) = CE(1,2)
CE(2,2) = CE(1,1)
CE(2,3) = CE(1,2)
CE(3,1) = CE(1,2)
CE(3,2) = CE(1,2)
CE(3,3) = CE(1,1)
RETURN

END

SUBROUTINE CREC4 (E,CE)
CARRRRRR AR AR R AR RRRRRRERRERRRRRRIRRRRRRRE RN ARRRRR R AR R AR RR AR ARk

PURPOSE :
TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT CAPACITANCE
MATRIX FOR TWO- DIMENSIONAL, LINEAR RECTANGLE ELEMENT

DEFINITIONS OF VARIABLES:
E = ELEMENT NUMBER
CE(I,J) = ELEMENT CAPACITANCE MATRIX
SSE = ELEMENT SPECIFIC STORAGE

REFERENCES:
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.6,
EQUATION 4.27a

de e e g Je o de e e e e e g ok e e v ok e e ok e v e sk e v e o e e e o ok e e v ok o e e v ok e e e ok v o o e ok e ok o o ke ok v ok e o ok ke e e ke e

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
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$INCLUDE: 'COMALL'
REAL CE (MAX3,MAX3)

c

Groundwater Modeling by
the Finite Element Method

SSE = PROP (MATSET(E),3)
AE = ABS(X2(IN(E,1)) = X2(IN(E,3

) /2
BE = ABS(X1(IN(E,1)) - X1(IN(E,3))) / 2

TEMP = (SSE * AE * BE) / 9
= 4, * TEMP

CE(1,1)
CE(1,2)
CE(1,3)
CE(1,4)
CE(2,1)
CE(2,2)
CE(2,3)
CE(2,4)
CE(3,1)
CE(3,2)
CE(3,3)
CE(3,4)
CE(4,1)
CE (4,2)
CE(4,3)
CE(4,4)
RETURN
END

TEMP

CE(1,2)
CE(1,2)
CE(1,1)
CE(1,2)
CE(1,3)
CE(1,3)
CE(1,2)
CE(1,1)
CE(1,2)
CE(1,2)
CE(1,3)
CE(1,2)
CE(1,1)

2. * TEMP

SUBROUTINE CQUAA4 (E,CE)
L R T e T T T T T T

PURPOSE:
TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT CAPACITANCE

MATRIX FOR A TWO-DIMENSIONAL,

DEFINITIONS OF VARIABLES:
CE(I,J) = ELEMENT CAPACITANCE MATRIX
DETERMINANT OF JACOBIAN MATRIX

DETJAC =

DNDX (I) =

DNDETA(I) =

X2(

c
c
c
c
c
c
c
c
c DNDXI(I) =
c
c
c
c
c
[
c
c

DNDY (I) =
XI(I) =

ETA(I) =

JAC(I,J)

E =

SSE =
N(I) =
W(I) =
IN(E,I) =
IN(E,I) =

REFERENCES:
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.10,
EQUATION 4.65

c
c
c
c
c
c
c
c
c X1(
c
c
c
c
c
c
c
c

PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT

Vol. 13

Subroutine ASMBKC

LINEAR QUADRILATERAL ELEMENT

INTERPOLATION
TO XI AT NODE I
INTERPOLATION
TO X AT NODE I
INTERPOLATION
TO ETA AT NODE I
INTERPOLATION
TO Y AT NODE I

LOCATION OF GAUSS POINT IN XI COORDINATE

DIRECTION

LOCATION OF GAUSS POINT IN ETA COORDINATE

DIRECTION
JACOBIAN MATRIX
ELEMENT NUMBER

ELEMENT SPECIFIC STORAGE
INTERPOLATION FUNCTION FOR NODE I
WEIGHT FOR GAUSS POINT I

X COORDINATE FOR NODE
Y COORDINATE FOR NODE

I, ELEMENT E
I, ELEMENT E

KRR R KRR R AR AR A RR AR KRR AR AR AR R A A AR AR RR AR KRR AN R R AR R AR AR A AR AR ARk
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$INCLUDE: 'COMALL' ]
REAL JAC(2,2),JACINV(2,2),CE (MAX3,MAX3),N(4),DNDXI(4),
1 DNDR (4) ,DNDETA (4) ,DNDZ (4) ,W(2) ,XI (2) ,ETA(2),SIGN1(4),
2 SIGN2(4)

DATA SIGN1/-1.,1.,1.,-1./
DATA SIGN2/-1.,-1.,1.,1./

XI(1l) = 1. / SQRT(3.)
XI(2) = -XI(1)

ETA{l) = XI(1)

ETA(2) = XI(2)

W(l) = 1.

w(2) = 1.

SSE = PROP (MATSET (E), 3)

DO 30 I=1, 4
DO 20 J=1, 4
CE(I,J) = 0.
20 CONTINUE
30 CONTINUE

DO 120 I =1, 2
DO 110 3 =1, 2

DO 50 K= 1, 2
DO 40 K1 =1, 2
JAC(K,K1) = 0.
40 CONTINUE
50 CONTINUE

DO 60 K1 =1, 4 ,
N(K1) = 0.25 * (1. + SIGN1(Kl) * XI(I))
1 * (1. + SIGN2(K1l) * ETA(J))
DNDXI (K1) = 0.25 * SIGN1(Kl1l) * (1. + SIGN2(K1l) * ETA(J))
DNDETA (K1) = 0.25 * SIGN2(K1l) * (1. + SIGN1(Kl) * XI(I))

60 CONT INUE
DO 70 K1 = 1, 4
JAC(1,1) = JAC(1,1) + DNDXI(Kl1l) * X1(IN(E,Kl))
JAC(1,2) = JAC(1,2) + DNDXI(K1l) * X2 (IN(E,Kl))
JAC(2,1) = JaC(2,1) + DNDETA(K1l) * X1(IN(E,Kl))
JAC(2,2) = JAC(2,2) + DNDETA(K1l) * X2 (IN(E,Kl))
70 CONTINUE

DETJAC = JAC(1,1) * JAC(2,2) - JAC(1,2) * JAC(Z,1)
DO 100 K= 1, 4
DO 90 K1 = 1, 4
CE(K,Kl1) = CE(K,K1) + W(I) * W(J) * SSE* N(K) *
1 N(K1) * DETJAC
90 CONTINUE
100 CONTINUE
110 CONTINUE
120 CONTINUE
RETURN
END
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SUBROUTINE CPARS (E,CE)
CRAARRARARARRAARRERRRRRRRARRARRRRARRRRR AN RERARRARRRNRRNRRARRRAXRRRRNRRRRR AR AR

PURPOSE:

DNDXI (I)
DNDX (I)
DNDETA (I)
DNDY (I)
DNDZETA (I)
DNDZ (I)
XI(I)
ETA(I)
ZETA (I)
JAC(I,J)

E

SSE

N(I)

w(I)

X1 (IN(E,I)
X2 (IN(E, I)
X3 (IN(E,I)

REFERENCES :

(e Ne N e NeNe N Ne N NeNe N Ne Ne Ne e Ne Ne Ne Ne NeNe Ne Ne Ne Ne Ne Ne Ne NeNe Ne Ko e Ne Ne e Ne Ne N e Ne Ko

DEFINITIONS OF VARIABLES:
CE(I,J) = ELEMENT CAPACITANCE MATRIX
DETJAC = DETERMINANT OF JACOBIAN MATRIX

PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT

Vol. 13
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TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT
CAPACITANCE MATRIX FOR A THREE-DIMENSIONAL,
LINEAR QUADRILATERAL ELEMENT

INTERPOLATION
TO XI AT NODE I
INTERPOLATION
TO X AT NODE I
INTERPOLATION
TO ETA AT NODE I
INTERPOLATION
TO Y AT NODE I
INTERPOLATION
TO ZETA AT NODE I
INTERPOLATION
TO Z AT NODE I

LOCATION OF GAUSS POINT IN XI COORDINATE

DIRECTION

LOCATION OF GAUSS POINT IN ETA COORDINATE

DIRECTION

LOCATION OF GAUSS POINT IN ZETA COORDINATE

DIRECTION
JACOBIAN MATRIX
ELEMENT NUMBER

ELEMENT SPECIFIC STORAGE
INTERPOLATION FUNCTION FOR NODE I
WEIGHT FOR GAUSS POINT I

X COORDINATE FOR NODE
Y COORDINATE FOR NODE
Z COORDINATE FOR NODE

I,
I,
I,

ELEMENT E
ELEMENT E
ELEMENT E

ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD,
EQUATION 4.66

FIGURE 4.10,

CRAARRRARARRR AR AR AR AR R AR AR R RN AR ARN AR AR RRNRNNR R AN AR A A AR ARR AR AR R AR RN RN KA

$INCLUDE: 'COMALL'

REAL

JAC (3, 3),CE (MAX3,MAX3) ,DNDX (8) ,DNDY (8) ,DNDZ (8),

1 XI(8) ,ETA(8),2ETA(8),DNDXI (8),DNDETA (8) ,DNDZETA (8) ,W(2),
2 N(8),SIGN1(8),SIGN2(8),SIGN3(8)

DATA
DATA
DATA

XI(1l) = 1.
XI(2) = -XI(1)
ETA(1) = XI(1)
ETA(2) = XI(2)
ZETA(1l) = XI(1)
ZETA(2) = XI(2)
W(l) = 1.

W(2) = 1.

SIGN1/-1.,1.,1.,-1.,-1.,1,,1,,~1./
SIGN2/-1.,-1.,1.,1.,-1.,-1.,1.,1./
SIGN3/-1.,-1.,-1.,-1.,1.,1.,1.,1./

/ SQRT(3.)

SSE = PROP (MATSET (E), 4)
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50

60

80
90

100
110
120

wN =

DO 20 K =1, B
DO 10 N1 = 1, 8
CE(K,N1) = 0.

N(N1l) = 0,125 * (1.+SIGN1(N1)*XI(I)) * (1.+SIGN2(N1l) *

the Finite Element Method

ETA(J)) * (1. + SIGN3(Nl) * ZETA(K))

= 0.125 * SIGN1(N1l) * (1. + SIGN2(N1l) *

ETA(J)) * (1. + SIGN3(N1l) * ZETA(K))

SIGN2(N1) * (1. + SIGN1(N1l) *
(1. + SIGN3(Nl) * ZETA(K))
SIGN3(N1l) * (1. + SIGN1(Nl) *
(1. + SIGN2(N1) * ETA(J))

DNDXI (MS) * X1(IN(E,MS))
DNDXI (MS5) * X2 (IN(E,MS))
DNDXI (MS) * X3 (IN(E,MS))
DNDETA (M5) * X1(IN(E,MS))
DNDETA (MS) * X2 (IN(E,MS))
DNDETA(MS5) * X3 (IN(E,MS))
DNDZETA (M5) * X1 (IN(E,MS))
DNDZETA (M5) * X2 (IN(E,MS))
DNDZETA (M5) * X3 (IN(E,MS))

DETJAC = JAC(1l,1) * (JAC(2,2) * JAC(3,3) - JAC(3,2) *
JAC(2,3)) - JAC(l,2) * (JAC(2,1) * JAC(3,3)

JAC(3,1) * JAC(2,3)) =- JAC(1,3) * (JAC(2,1) *
- JAC(3,1) * JAC(2,2))

CE(L,M5) = CE(L,M5) + W(I) * W(J) * W(K) * SSE *

CONTINUE
CONTINUE
DO 120 I =1, 2
po 110 g =1, 2
DO 100 K= 1, 2
DO 40 L =1, 3
DO 30 N1 = 1, 3
JAC(L,N1) = 0.
CONTINUE
CONTINUE
DO SO N1 = 1, 8
DNDXI (N1)
DNDETA(N1) = 0.125 *
XI(1)) *
DNDZETA(Nl) = 0.125 *
XI(I)) *
CONTINUE
DO 60 M5 =1, 8
JAC(1,1) = JAC(1l,1) +
JAC(1,2) = JAC(1,2) +
JAC(1,3) = JAC(1,3) +
JAC(2,1) = JAC(2,1) +
JAC(2,2) = JAC(2,2) +
JAC(2,3) = JAC(2,3) +
JAC(3,1) = JAC(3,1) +
JAC(3,2) = JAC(3,2) +
JAC(3,3) = Jac(3,3) +
CONTINUE
JAC(3,2)
DO 90 L =1, B
DO BO M5 = 1, 8
N(L) * N(MS5) * DETJAC
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
RETURN
END
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SUBROUTINE RHS

18.1 PURPOSE

Subroutine RHS assembles the "right-hand-side" vector, for the transient,
groundwater flow equation

(IC1- (1 - w) At [K]) {h}; + At (1 - ) {F}; + @ {F}iap (18.1H
and for the solute transport equation
([A] - (1 - @) At [D]) {C};+ At ((1 - ®) {F}; + ® (F}iyap) (18.2)

where [C] is the gobal capacitance matrix, @ is the relaxation factor, At is the timestep
interval, [K] is the global conductance matrix, {h}, are the heads at time t, {F}, and

{F} 44 are specifies rates of groundwater flow (or solute flux) at times t and t+At, [A] is
the global adsorption matrix, [D] is the gobal advection dispersion matrix, and {C}, and

{C};+4: are the solute concentrations at times t and t+At. RHS performs the matrix
multiplications and additions and modifys the resulting vector for specified values of head
or solute concentration

18.2 INPUT

None

18.3 OUTPUT

None

18.4 DEFINITIONS OF VARIABLES
DELTAT() = Size of time step I
FLUX(I) = Specified value of groundwater flow or solute flux at node I

GTQ@) = Value of time function at time t (see Chapter 16)
ICH(I) = 1 if the value of the field variable is specified at node I
= ( otherwise
B1(I) = Modified global matrix (equation 18.1 or 18.2) in vector storage
NDOF = Number of nodes where the value of the field variable is unknown
420
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NUMNOD = Number of nodes
OMEGA  =Relaxation factor ()
OMOMEGA =1 -®

18.5 USAGE
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Equation 18.1 or 18.2 is evaluated for each time step. The global matrices [C],

[K], [A] and [D] are assembled in subroutines ASMBKC (Chapter 17) and ASMBAD

(Chapter 19).
18.6 SOURCE CODE LISTING

SUBROUTINE RHS

ctttttttttttt*tttttttt*ttttttttttttttttttttttt*tt*tttttttttt*ttttttttt

18.1 PURPOSE:
SUBROUTINE RHS ASSEMBLES THE RIGHT-HAND-SIDE VECTOR
FOR TRANSIENT GROUNDWATER FLOW AND SOLUTE TRANSPORT
PROBLEMS.

18.2 INPUT:
NONE

18.3 OUTPUT:
NONE

18.4 DEFINITIONS OF VARIABLES:
DELTAT(I) = SIZE OF TIME STEP I
FLUX(I) = SPECIFIED VALUE OF GROUNDWATER FLOW OR
SOLUTE FLUX AT NODE I
GT(I) = VALUE OF TIME FUNCITON AT TIME I
ICH(I) = 1 IF THE VALUE OF THE FIELD VARIABLE IS
SPECIFIED AT NODE I
= 0 OTHERWISE
Bl(IJ) = MODIFIED GLOBAL MATRIX IN VECTOR STORAGE
NDOF = NUMBER OF NODES WHERE THE VALUE OF THE
FIELD VARIABLE IS UNKNOWN (NAMED FOR
NUMBER OF DEGREES OF FREEDOM)
NUMNOD = NUMBER OF NODES
OMEGA = RELAXATION FACTOR
OMOMEGA = 1 - OMEGA

18.5 USAGE:
FOR EACH TIME STEP, THE RIGHT-HAND-SIDE VECTOR IS
COMPUTED USING THE VALUES OF HEAD OR SOLUTE
CONCENTRATION FOR THE PREVIOUS TIME STEP, AND THE
MODIFIED COMBINED CONDUCTION AND CAPACITANCE MATRIX,
RELAXATION FACTOR, AND TIME STEP INTERVAL FOR THAT
TIME STEP

SUBROUTINES CALLED:
LoC

REFERENCES:
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 18.

e e NeNeNeRe ReNe Ne Ne NeNe Ne Re Re NeNe Ne Ne Ne Ne Ne Ne Ne Ne Ne e Ne e e Ne e e Ne Re Ne Ne No Ne Ne e Ne Re Ne !
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$INCLUDE: 'COMALL'

[

10

20
30

40

50

60

Groundwater Modeling by
the Finite Element Method

IF (T .GT. TIME(IGT)) IGT = IGT + 1
T = T + DELTAT(IDT)
IF (T .GT. TIME(IGTDT)) IGTDT = IGTDT + 1

I =90

DO 10 J = 1, NUMNOD

IF (ICH(J)
I=I+1

.EQ. 0) THEN

Vol. 13

Subroutine RHS

B(I) = FC(I) + DELTAT(IDT) * (OMOMEGA * GT(IGT) * FLUX(J)
+ OMEGA * GT(IGTDT) * FLUX(J))

ENDIF
CONTINUE
Jl =1
J2 = SBW

DO 60 I = 1, NDOF

J=20
DO 20 K = 1
IF (ICH(K
J=J +
IF (J .
ENDIF
CONTINUE
K=K-1

+ NUMNOD

) .EQ. 0) THEN
1

EQ. J1) GOoTOo 30

DO 50 J = J1, J2

K=K+ 1

IF (ICH(K) .NE. 0) GOTO 40

CALL LOC(
B(I) = B(
CONTINUE
IF (I .GE.
IF (J2 .LT.
CONTINUE
RETURN
END

I,J,1IJ,NDOF,SBW, SYMM)
I) + B1(IJ) * X(K)

SBW) J1 =J1 + 1
NDOF) J2 = J2 + 1
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SUBROUTINE ASMBAD

19.1 PURPOSE

Subroutine ASMBAD assembles the combined global sorption and advection-
dispersion matrix [M] (equation 5.48a) and the global specified flux matrix {F}. The
global matrices are ified to account for specified values of solute concentration (at
Dirichlet nodes) and for specified rates of solute flux (at Neumann nodes). [M] is
assembled and modified in vector storage. ASMBAD also computes the semi-bandwidth
and number of degrees of freedom for [M].

19.2 INPUT

None

19.3 OUTPUT
The semi-bandwidth and number of degrees of freedom for the modified, combined

global conductance and capacitance matrix are written to the user-defined file assigned to
unit "OUTF".

19.4 DEFINITIONS OF VARIABLES

AE(LD) = Sorption matrix for element ¢ in full matrix storage.
DE(LJ) = Advection-dispersion matrix for element ¢ in full matrix storage.
ELEMTYP(E) = Element type for element E (see Table 9.1 for a list of element
types).
F(I) = Global solute flux matrix.
FLUX(I) = Specified rate of solute flux at node I.
XD = Value of solute concentration at node 1.
ICH(I) = 1 if the value of solute concentration is specified at node I,
0 otherwise.
JSIZE = Length of array [M] in vector storage.
1
LCH() = ) ICH(K). The arrays ICH and LCH are used to modify the global

k=1 System of equations for specified values of the field variable.

423
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M(,D) = Modified, combined global sorption and advection-dispersion matrix
in vector storage.
= ([A]+o AD])
NDOF = Number of nodes where the value of solute concentration is
unknown.

NODETBL(I) = Number of nodes in element type 1.
NUMELM = Number of elements in mesh.
SBW = Semi-bandwidth of modified, combined global sorption and
advection-dispersion matrix.
19.5 USAGE

Subroutine ASMBAD assembles the combined global sorption and advection-
dispersion matrix [M]

M] = ([A] + @ At [D)) 19.1

and the specified solute flux matrix {F}. [M] and {F} are modified to account for specified
values of solute concentration during the assembly process, using the procedures in
Chapter 4. The modified, global specified flux matrix is stored in the array B. Further
modifications to B are made in subroutine RHS (see Chapter 18).

Table 19.1 Subroutines used to compute element advection-dispersion matrices (DBAR2,
DBAR3J, etc.) and element sorption matrices (ABAR2, ABAR), etc.) in ASMBAD.

Element Type Description Subroutine Names DIM
De] (A

1 Linear bar DBAR2 ,ABAR2 1
2 Quadratic bar DBAR3* ,ABAR3* 1
3 Cubic bar DBAR4* , ABAR4* 1
4 Linear triangle DTRI3 ,ATRI3 2
5 -° Linear rectangle DREC4 , AREC4 2
6 Linear quadrilateral DQUA4 ,AQUA4 2
7 Quadratic quadrilateral DQUAS® ,AQUASg* 2
8 Cubic quadrilateral DQUAI2* , AQUA12* 2
9 Linear parallelepiped DPAR8 , APARS 3
10 Quadratic parallelepiped DPAR20* , APAR20" 3
11 Cubic parallelepiped DPAR32* , APAR32* 3
12 Linear triangle (axisymmetric) DTRI3A* , ATRI3A* 4
13 Linear rectangle (axisymmetric) = DREC4A* , AREC4A"® 4

*Source code listing not provided for these subroutines.
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The number of degrees of freedom, NDOF, (number of unknown values of solute
concentration) and semi-bandwith, SBW, are computed the same way as in ASMBKC
(Chapter 17).

The element sorption and advection - dispersion matrices are computed in two sets of
subroutines (Table 19.1). The first set of subroutines begins with the letter "A" (for the

element sorption matrix [A()] and the second set begins with the letter "D" (for the element

advection-dispersion matrix [D()]). Additional letters and numbers in the subroutine
names identify the element type and number of nodes in elements of that type. For
example, subroutine ATRI3 computes the element sorption matrix for two-dimensional,
linear triangle elements and subroutine DPARS computes the element advection-dispersion
matrix for three-dimensional, linear parallelepiped elements.

The source code listing for each subroutine gives the figure that shows the interpolation
functions and the equations used to compute [A] and [D] for that element type. Many of
the important FORTRAN variable names and their symbols are in Table 12.2. Additional
names and symbols for the subroutines in Table 19.1 are shown below

FORTRAN Variable Definition Symbol(s) in Text
ALE Longitudinal dispersivity for element E of®
ATE Transverse dispersivity for element E o)
KDE Solute distribution coefficient for element E K40
LAMBAD  Solute decay coefficient A
NE Porosity for element E n®
RHOBE  bulk density for element E pl®

: N v

VXEP Pore water velocity in x coordinate direction F
Ve

VYEP Pore water velocity in y coordinate direction ;(%

The operation of ASMBAD is very similar to ASMBKC and needs no special
explanation. Remember that the global advection-dispersion matrix is nonsymmetric so the
assembly and modification process is somewhat different (see Chapter 5).
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Subroutine ASMBAD

19.6 SOURCE CODE LISTING

SUBROUTINE ASMBAD

Chhkkhkhkhkhkkkhhhhkhkhhkkhkhkhkhhhhhhkkhkkkkkh kAR AXXXRAARR KRR KRRk kkkhkhkhkhkkk

[eRr e NN e R NN N e R N N R N e e N N o N e N e N o N e o Ne Ne Ne Ko Re Re e Re Ko Re Ke Ne Re e Re Re e NeRe Re NeRe N e Re NoRo NeRe Re ReXe K o)

PURPOSE:

TO ASSEMBLE THE COMBINED GLOBAL SORPTION AND
ADVECTION-DISPERSION MATRIX AND THE GLOBAL SPECIFIED
SOLUTE FLUX MATRIX FOR THE MESH AND TO MODIFY THE
SYSTEM OF EQUATIONS FOR SPECIFIED CONCENTRATION AND
SOLUTE FLUX BOUNDARY CONDITIONS

INPUT:

NONE

19.3 OUTPUT:

THE SEMI-BANDWIDTH AND NUMBER OF DEGREES OF FREEDOM
FOR THE MODIFIED, COMBINED GLOBAL SORPTION AND
ADVECTION-DISPERSION MATRIX ARE WRITTEN TO THE USER-
DEFINED FILE ASSIGNED TO UNIT OUTF

19.4 DEFINITIONS OF VARIABLES:

AE(I,J) = SORPTION MATRIX FOR ELEMENT E IN FULL
MATRIX STORAGE
B(I) = GLOBAL SPECIFIED SOLUTE FLUX MATRIX
DE(I,J) = ADVECTION-DISPERSION MATRIX FOR ELEMENT
E IN FULL MATRIX STORAGE
E = ELEMENT NUMBER
ELEMTYP (E) = ELEMENT TYPE FOR ELEMENT E (SEE TABLE
9.1 FOR A LIST OF ELEMENT TYPES)
FLUX(I) = SPECIFIED VALUE OF SOLUTE FLUX
AT NODE I
ICH(I) = 1 IF THE VALUE OF SOLUTE CONCENTRATION
IS SPECIFIED FOR NODE I,
= 0 OTHERWISE
IJSIZE = LENGTH OF ARRAY ADGLOBAL
LCH(I) = ICH(I) + ICH(I-1) + ICH(I-2) +
THE ARRRYS ICH AND LCH ARE USED TO
MODIFY THE GLOBAL MATRIX
M(IJ) = MODIFIED, COMBINED GLOBAL SORPTION AND
ADVECTION-DISPERSION MATRIX IN VECTOR
STORAGE
NDOF = NUMBER OF NODES WHERE THE VALUE OF
THE FIELD VARIABLE IS UNKNOWN
NODETBL (ELEMTYP (E) ) = NUMBER OF NODES IN ELEMENT TYPE E
NUMELM = NUMBER OF ELEMENTS IN MESH
SBW = SEMI-BANDWIDTH OF MODIFIED, COMBINED
GLOBAL SORPTION AND ADVECTION-
DISPERSION MATRIX
X(I) = VALUE OF SOLUTE CONCENTRATION
AT NODE I

19.5 USAGE:

THE SEMI-BANDWIDTH OF THE COMBINED GLOBAL SORPTION AND
ADVECTION-DISPERSION MATRIX IS COMPUTED FIRST. THEN THE
ENTRIES OF THE ELEMENT SORPTION AND ADVECTION-DISPERSION
MATRICES ARE COMPUTED IN A SET OF SUBROUTINES, TWO
SUBROUTINES FOR EACH ELEMENT TYPE. THE COMBINED GLOBAL
SORPTION AND ADVECTION-DISPERSION MATRIX FOR THE MESH IS
ASSEMBLED BY ADDING THE CORRESPONDING ENTRIES OF THE ELEMENT
SORPTION AND ADVECTION-DISPERSION MATRICES TO THE GLOBAL

Copyright American Geophysical Union



Groundwater Modeling by

Water Resources Monograph the Finite Element Method Vol. 13

Chapter 19

OO0 00000000O000O0

427

MATRIX. DURING THE ASSEMBLY PROCESS THE GLOBAL MATRIX IS
MODIFIED FOR SPECIFIED VALUES OF SOLUTE CONCENTRATION AND
SOLUTE FLUX ARE ADDED TO THE GLOBAL SOLUTE FLUX MATRIX.

SUBROUTINES CALLED:
ABAR2, ABAR3, ABAR4, ATRI3, AREC4, AQUA4, AQUAB, AQUAL12, APARS,
APAR20,ABAR32,ATRI3A, AREC4A
LOC (LISTED WITH SUBROUTINE ASMBK IN CHAPTER 12)
DBAR2, DBAR3,DBAR4,DTRI3, DREC4, DQUA4,DQUAS,DQUAL2, DPARS,
DPAR20,DBAR32,DTRI3A,DREC4A

REFERENCES:
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, CHAPTER 19.

Chikdhdhkkktkhhhhhiikikikikikikkkhrhhhhhhhehhhherhtokthhhrhrhehtkhhhrs
$INCLUDE: 'COMALL'

10

20
30

40

S0

60

56

o W=

REAL AE (MAX3,MAX3),DE (MAX3,MAX3)
INTEGER NODETBL (13)
DATA NODETBL/2,3,4,3,4,4,9,12,8,20,32,3,4/

COMPUTE THE SEMI-BANDWIDTH
SBW = 1
DO 30 E = 1, NUMELM
DO 20 I = 1, NODETBL(ELEMTYP (E))
KI = IN(E,I)
IF (ICH(KI) .EQ. 0 .AND. I .LT. NODETBL (ELEMTYP (E))) THEN
II = KI - LCH(KI)
DO 10 J = I + 1, NODETBL (ELEMTYP (E))
KJ = IN(E,J)
IF (ICH(KJ) .EQ. 0) THEN
JJ = ABS(KJ - LCH(KJ) - II) + 1
IF (JJ .GT. SBW) SBW = JJ
ENDIF
CONTINUE
ENDIF
CONTINUE
CONTINUE
WRITE (OUTF, 40) NDOF, SBW
FORMAT (//' NUMBER OF DEGREES OF FREEDOM IN MODIFIED, '/
' GLOBAL COMBINED SORPTION AND ADVECTION-DISPERSION',
' MATRIX =',I5///' SEMI-BANDWIDTH OF MODIFIED, '/
' GLOBAL COMBINED SORPTION AND ADVECTION~DISPERSION',
' MATRIX =',IS)
INITIALIZE ENTRIES OF GLOBAL CONDUCTANCE MATRIX TO ZERO
IJSIZE = NDOF * NDOF - (NDOF - SBW) * (1 + NDOF - SBW)
DO 50 I = 1, IJSIZE
M(I) = 0.0
B1(I) = 0.0
CONT INUE
INITIALIZE ENTRIES OF THE GLOBAL SOLUTE FLUX MATRIX TO ZERO
DO 60 I = NDOF
B(I) = 0.0
CONTINUE

DO 56 I = 1, MAX1 .
FC(I) = 0.

LOOP ON THE NUMBER OF ELEMENTS

DO 90 E = 1, NUMELM
COMPUTE THE ELEMENT SORPTION AND ADVECTION-DISPERSION MATRICES
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[
Cc FOR THIS ELEMENT TYPE
IF (ELEMTYP(E) .EQ. 1) THEN
c ELEMENT IS A ONE-DIMENSIONAL,

CALL ABAR2 (E, AE)
CALL DBAR2 (E,DE)
ELSEIF (ELEMTYP(E) .EQ .2) THEN
c ELEMENT IS A ONE-DIMENSIONAL,
CALL ABAR3 (E, AE)
CALL DBAR3 (E,DE)
ELSEIF (ELEMTYP(E) .EQ. 3) THEN
c ELEMENT IS A ONE-DIMENSIONAL,
CALL ABAR4 (E, AE)
CALL DBARA (E,DE)
ELSEIF (ELEMTYP(E) .EQ. 4) THEN
c ELEMENT IS A TWO-DIMENSIONAL,
CALL ATRI3(E,AE)
CALL DTRI3(E,DE)
ELSEIF (ELEMTYP(E) .EQ. 5) THEN
c ELEMENT IS A TWO-DIMENSIONAL,
CALL ARECA (E,AE)
CALL DREC4 (E,DE)
ELSEIF (ELEMTYP(E) .EQ. 6) THEN
c ELEMENT IS A TWO-DIMENSIONAL,
CALL AQUA4 (E, AE)
CALL DQUA4 (E,DE)
ELSEIF (ELEMTYP(E) .EQ. 7) THEN
c ELEMENT IS A TWO-DIMENSIONAL,
CALL AQUAS (E,AE)
CALL DQUAS (E, DE)
ELSEIF (ELEMTYP(E) .EQ. 8) THEN
c ELEMENT IS A TWO-DIMENSIONAL,
CALL AQUA12 (E, AE)
CALL DQUA12 (E,DE)

ELSEIF (ELEMIYP(E) .EQ. 9) THEN

c ELEMENT IS A THREE-DIMENSIONAL,

CALL APARS (E,AE)
CALL DPARS (E,DE)
ELSEIF (ELEMTYP (E)

CALL APAR20 (E,AE)
CALL DPAR20 (E,DE)
ELSEIF (ELEMTYP (E)

the Finite Element Method

Vol. 13
Subroutine ASMBAD
LINEAR BAR
QUADR%TIC BAR
CUBIC BAR
LINEAR TRIANGLE
LINEAR RECTANGLE
LINEAR QUADRILATERAL
QUADRATIC QUADRILATERAL
CUBIC QUADRILATERAL

LINEAR PARALLELEPIPED

.EQ. 10) THEN
c ELEMENT IS A THREE-DIMENSIONAL,

QUADRATIC PARALLELEPIPED

.EQ. 11) THEN

Cc ELEMENT IS A THREE-DIMENSIONAL, CUBIC PARALLELEPIPED

CALL APAR32 (E, AE)
CALL DPAR32 (E,DE)
ELSEIF (ELEMTYP (E)
c ELEMENT IS A TWO-DIMENSIONAL,
CALL ATRI3A(E, AE)
CALL DTRI3A(E,DE)
ELSEIF (ELEMTYP (E)
c ELEMENT IS A TWO-DIMENSIONAL,
(AXISYMMETRIC)
CALL AREC4A (E,AE)
CALL DRECA4A (E,DE)
ENDIF

[eXeNe!

AE (I,J),DE(I,J)
C (FULL MATRIX STORAGE)
STORAGE)

-EQ. 13) THEN

.EQ. 12) THEN

LINEAR TRIANGLE (AXISYMMETRIC)

LINEAR RECTANGLE

ADD THE ELEMENT SORPTION AND ADVECTION-DISPERSION MATRICES
FOR THIS ELEMENT TO THE GLOBAL MATRIX
M(1J)

(VECTOR MATRIX STORAGE)

<=> M(KI,KJ)

(FULL MATRIX
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DO 80 I = 1, NODETBL(ELEMTYP (E))
KI = IN(E,I)
IF (ICH(KI) .EQ. 0) THEN
II = KI - LCH(KI)
DO 70 J = 1, NODETBL (ELEMTYP (E))
KJ = IN(E,J)
IF (ICH(KJ) .NE. 0) THEN
FC(II) = FC(II) - DELTAT(IDT) * DE(I,J) * X(KJ)
ELSE
JJ = KJ - LCH(KJ)
CALL LOC(II,JJ,1J,NDOF, SBW,SYMM)
M(IJ) = M(IJ) + AE(I,J) + OMEGA *

1 DELTAT(IDT) * DE(I,J)
B1(IJ) = B1(IJ) + AE(I,J) - OMOMEGA *
1 DELTAT(IDT) * DE(I,J)
ENDIF
70 CONTINUE
ENDIF
80 CONTINUE
90 CONTINUE
RETURN
END

SUBROUTINE ABAR2 (E,AE)

CRARRARRRRRARARARRRRTAARARRRRTRAAARRRARA R A RRARAA RN RAR AR ARk R R RRkhd

PURPOSE:
TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT
SORPTION MATRIX FOR A ONE-DIMENSIONAL, LINEAR
BAR ELEMENT

DEFINITIONS OF VARIABLES:
AE(I,J) = ELEMENT SORPTION MATRIX
E = ELEMENT NUMBER
KDE = ELEMENT DISTRIBUTION COEFFICIENT
LE = ELEMENT LENGTH
RHOBE = ELEMENT BULK DENSITY

REFERENCES :
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.5,
EQUATION 4.189A.

o000 000000000000

c*********************************************************************
$INCLUDE: 'COMALL'
REAL AE (MAX3,MAX3),KDE,LE, NE
[+
RHOBE = PROP (MATSET (E),3)
KDE = PROP (MATSET (E),4)
NE = PROP(MATSET(E),5)
LE = ABS(X1(IN(E,2)) - X1(IN(E,1)))
AE(1l,1) = (1. + RHOBE*KDE/NE) * (LE / 6.) * 2.
AE(1,2) = AE(1,1) / 2.
AE(2,1) = AE(1,2)
AE(Z'Z) - AE(1'1)
RETURN
END
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SUBROUTINE ATRI3(E,AE)
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PURPOSE :
TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT SORPTION
MATRIX FOR A TWO-DIMENSIONAL, LINEAR TRIANGLE ELEMENT

DEFINITIONS OF VARIABLES:
AE4 = FOUR TIMES ELEMENT AREA
AE(I,J) = ELEMENT SORPTION MATRIX
E = ELEMENT NUMBER
KDE = ELEMENT DISTRIBUTION COEFFICIENT
RHOBE = ELEMENT BULK DENSITY

REFERENCES :
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.6,
EQUATION 4.25A

(oMo NeNeNeNe Ne e NeNeNeNeNeNeNeNe Ne!
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$INCLUDE: 'COMALL'
REAL AE (MAX3,MAX3),KDE, NE

c

RHOBE = PROP (MATSET (E) , 4)

KDE = PROP (MATSET(E),5)

NE = PROP (MATSET(E),6)

AE4 = 2. * (X1(IN(E,2)) * X2(IN(E,3)) + X1(IN(E,1)) *
X2 (IN(E,2)) + X2(IN(E,1)) * X1(IN(E,3)) -
X2 (IN(E,3)) * X1(IN(E,1)) - X1(IN(E,3)) *
X2 (IN(E,2)) - X1(IN(E,2)) * X2(IN(E,1)))

TEMP = AE4 / 12. / 4. * (1. + RHOBE*KDE/NE )

AE(1,1) = 2. * TEMP

AE(1,2) = TEMP

AE(1,3) = TEMP

W

AE(2,1) = TEMP
RAE(2,2) = AE(1,1)
AE(2,3) = TEMP
AE(3,1) = TEMP
AE(3,2) = TEMP
RE(3,3) = AE(1,1)
RETURN

END

SUBROUTINE ARECAY (E,AE)
CRrKAR KR KRR KRR KR KRR KRR KRR KRR KR KR KA KRR R RR AR AR AR AR IR R AR KRR R AR AR AR

PURPOSE:
TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT SORPTION
MATRIX FOR A TWO-DIMENSIONAL, LINEAR TRIANGLE ELEMENT

[of
[of
[of
[of
[of
[of DEFINITIONS OF VARIABLES:

[of AE (I,J) = ELEMENT SORPTION MATRIX

[of E = ELEMENT NUMBER

[of KDE = ELEMENT DISTRIBUTION COEFFICIENT
[of RHOBE = ELEMENT BULK DENSITY

[of

[of

[of

[of

[of

[of

[of

REFERENCES :
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.7,
EQUATION 4.30A
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c
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c
c
c
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c
c
c
C
C
C
C
C
C
C
C

INCLUDE: 'COMALL'

Groundwater Modeling by
the Finite Element Method

REAL AE (MAX3,MAX3),KDE, NE

RHOBE = PROP (MATSET (E), 4)
KDE = PROP (MATSET (E),S)
NE = PROP (MATSET (E),6)
TEMP = (RHOBE*KDE/NE + 1.) * ABS( (X2(IN(E,1))-X2(IN(E,3)))/2.

1 * (X1(IN(E,1)) - X1(IN(E,3)))/2.) / 9.
AE(1,1) = 4. * TEMP
AE(1,2) = 2. * TEMP
AE(1,3) = TEMP
AE(1,4) = AE(1,2)
AE(2,1) = AE(1,2)
AE(2,2) = AE(1,1)
AE(2,3) = AE(1,2)
AE(2,4) = AE(1,3)
AE(3,1) = AE(1,3)
AE(3'2) - AE(lrz)
AE(3,3) = AE(1,1)
AE(3,4) = AE(I'Z)
AE(4,1) = AE(1,2)
AE(4,2) = AE(1,3)
AE(4,3) = AE(1,2)
AE(4,4) = AE(1,1)
RETURN
END

SUBROUTINE AQUA4 (E,AE)
CHhARRAKKARRARRRRARRERRRKARRARR AR AARRKAARAARRRRRRRRRRRANRRRRAR KRN R KRR

PURPOSE:

TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT SORPTION

MATRIX FOR A TWO-DIMENSIONAL,

DEFINITIONS OF VARIABLES:

AE(I,J) =
DETJAC =
DNDXI(I) =

DNDX(I) =
DNDETA(I) =
DNDY(I) =

E=
XI(I) =

ETA(I) =

JAC(I,J) =
N(I) =

W(I) =

KDE =

RHOBE =

X1 (IN(E,I) =
X2 (IN(E,I) =

REFERENCES :

ELEMENT CAPACITANCE MATRIX

DETERMINANT OF JACOBIAN MATRIX

PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO XI AT NODE I
PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO X AT NODE I
PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO ETA AT NODE I
PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO Y AT NODE I
ELEMENT NUMBER

LOCATION OF GAUSS POINT IN XI COORDINATE
DIRECTION

LOCATION OF GAUSS POINT IN ETA COORDINATE
DIRECTION

JACOBIAN MATRIX

INTERPOLATION FUNCTION FOR NODE I
WEIGHT FOR GAUSS POINT I

ELEMENT DISTRIBUTION COEFFICIENT
ELEMENT BULK DENSITY

X COORDINATE FOR NODE I, ELEMENT E

Y COORDINATE FOR NODE I, ELEMENT E

ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.10,

EQUATION 4.71

AARRRRARRRERRRARRRAR AR ARRRNRNR AR ARRRRARRRRAR AN AR KRR AR AR AR AR AR AR RA AN
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$INCLUDE: °'COMALL®
REAL JAC(2,2),JACINV(2,2),CE (MAX3,MAX3),N(4),DNDXI (4),

20
30

40
50

60

70

90

100
110

1 DNDETA (4) ,W(2) ,XI(2),

2 SIGN2 (4), KDE, NE
DATA SIGN1/-1.,1.,1.,-1./
DATA SIGN2/-1.,-1.,1.,1./

XI(1) = 1. / SQRT(3.)
XI(2) = =XI(1)

ETA(1) = XI(1)

ETA(2) = XI(2)

W(l) = 1.

W(2) = 1.

RHOBE = PROP (MATSET (E), 4)
KDE = PROP (MATSET(E),S5)
NE = PROP (MATSET(E),6)

DO30I =1, 4
DO 20 J =1, 4
AE(I,J) = 0.
CONTINUE
CONTINUE

DO 120 I =1, 2
DO 110 J =1, 2

DO SO K =1, 2
DO 40 K1 = 1, 2
JAC (K,K1) = 0.
CONTINUE
CONTINUE

DO 60 K1 = 1, 4
N(Kl) = 0.25 *
*
DNDXI (K1) = 0.25 *
DNDETA(K1) =~ 0.25 *
CONTINUE
DO 70 K1 =1, 4
JAC(1,1) = JAC(1,1)
JAC(1,2) = JAC(1,2)
JAC(2,1) = JAC(2,1)
JAC(2,2) = JAC(2,2)
CONTINUE

the Finite Element Method Vol. 13

Subroutine ASMBAD

ETA(2),SIGN1(4),AE (MAX3, MAX3),

(1. + SIGN1(Kl) * XI(I))
(1. + SIGN2(K1l) * ETA(J))
SIGN1 (K1) * (1. + SIGN2(Kl1l) * ETA(J))
SIGN2 (K1) * (1. + SIGN1(Kl1l) * XI(I))

+ DNDXI (K1) * X1(IN(E,Kl1))
+ DNDXI (K1) * X2 (IN(E,K1))
+ DNDETA (K1) * X1 (IN(E,Kl))
+ DNDETA (K1) * X2 (IN(E,K1l))

DETJAC = JAC(1,1) * JAC(2,2) - JAC(1,2) * JAC(2,1)

DO 100 K= 1, 4
DO 90 K1 = 1, 4

AE(K,K1) = AE(K,K1) + W(I) * W(J) * (1. + RHOBE*KDE/NE)

1 * N(K)
CONTINUE
CONTINUE
CONTINUE

120 CONTINUE

RETURN
END

* N(K1) * DETJAC
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PURPOSE:

LINEAR QUADRILATERAL ELEMENT
DEFINITIONS OF VARIABLES:

DETJAC =
DNDXI (I) = PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT

DNDX (I) =
DNDETA(I) =
DNDY(I) =
DNDZETA(I) =

DNDZ(I) =

EQUATION 4.72

Q0000000000000 000000000000N0N00N000NN00O00Q0

MODELING BY THE FINITE ELEMENT METHOD,

TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT
SORPTION MATRIX FOR A THREE-DIMENSIONAL, .

AE(I,J) = ELEMENT CAPACITANCE MATRIX
DETERMINANT OF JACOBIAN MATRIX

INTERPOLATION
TO XI AT NODE I
INTERPOLATION
TO X AT NODE I
INTERPOLATION
TO ETA AT NODE I
INTERPOLATION
TO ¥ AT NODE I
INTERPOLATION
TO ZETA AT NODE I
INTERPOLATION
TO Z AT NODE I

E = ELEMENT NUMBER
XI(I) = LOCATION OF GAUSS POINT IN XI COORDINATE
DIRECTION
ETA(I) = LOCATION OF GAUSS POINT IN ETA COORDINATE
DIRECTION
ZETA(I) = LOCATION OF GAUSS POINT IN ZETA COORDINATE
DIRECTION
JAC(I,J) = JACOBIAN MATRIX
N(I) = INTERPOLATION FUNCTION FOR NODE I
W(I) = WEIGHT FOR GAUSS POINT I
KDE = ELEMENT DISTRIBUTION COEFFICIENT
RHOBE = ELEMENT BULK DENSITY
X1(IN(E,I) = X COORDINATE FOR NODE I, ELEMENT E
X2(IN(E,I) = Y COORDINATE FOR NODE I, ELEMENT E
X3 (IN(E,I) = 2 COORDINATE FOR NODE I, ELEMENT E
REFERENCES :
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT

FIGURE 4.10,

(C % Je de de de de vk sk e e e e e e e e e e e e e e e e ke ke ke ok ok ke o o o e e o e ke ke ke ke e ok ok ok e ke ke e o o o ek ke ok ok e ok ok o ok e ok ok ok ok ke ok

$INCLUDE: 'COMALL'
REAL JAC(3,3),AE (MAX3,MAX3) ,DNDX(8) ,DNDY(8) ,DNDZ (8),
1 XI(8),ETA(8),2ETA(B8),DNDXI (8) , DNDETA (8) ,DNDZETA (8) ,W(2),
2 N(8),SIGN1(8),SIGN2(8),SIGN3(8) ,KDE, NE

DATA SIGN1/-1.,1.,1.,-1.,-1.,1.,1.,-1./
DATA SIGN2/-1.,-1.,1.,1.,-1.,-1.,1.,1./
DATA SIGN3/-1.,-1.,-1.,-1.,1.,1.,1.,1./

XI(1) = 1. / SQRT(3.)
XI(2) = -XI(1l)

ETA(1l) = XI(1)

ETA(2) = XI(2)
ZETA(l) = XI(1)
ZETA(2) = XI(2)

W(l) = 1.

W(2) = 1.
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RHOBE
KDE
NE

DO20 K=1, 8

DO 10 N1 = 1,

Groundwater Modeling by
the Finite Element Method

Vol. 13

Subroutine ASMBAD

= PROP (MATSET(E), 4)
= PROP (MATSET(E),5)
= PROP (MATSET(E), 6)

AE (K,N1) = 0.

CONTINUE

CONTINUE

Do 120 I = 1, 2

[ S )

1

DO 110 0 = 1,
DO 100 K =

DO 40 L =

2
1, 2

1, 3

DO 30 N1 = 1, 3
JAC(L,N1) = 0.
CONTINUE

CONTINUE

DO 50 N1

-1, 8

N(N1l) = 0,125 * (1.+SIGN1(N1)*XI(I)) * (1,.+SIGN2(N1l) *

DNDXI (N1)

DNDZETA(N1) = 0.125 * SIGN3(N1l) * (1. + SIGN1(N1l) *

XI(I)) * (1. + SIGN2(Nl1l) * ETA(J))
CONTINUE
DO 60 M5 = 1, 8
JAC(1,1) = JAC(1l,1) + DNDXI(M5) * X1 (IN(E,MS))
JAC(1,2) = JAC(1,2) + DNDXI(M5) * X2 (IN(E,MS))
JAC(1,3) = JAC(1,3) + DNDXI(M5) * X3 (IN(E,MS))
JAC(2,1) = JAC(2,1) + DNDETA(MS5) * X1 (IN(E,MS5))
JAC(2,2) = JAC(2,2) + DNDETA(M5) * X2 (IN(E,MS))
JAC(2,3) = JAC(2,3) + DNDETA(M5) * X3 (IN(E,M5))
JAC(3,1) = JAC(3,1) + DNDZETA(MS5) * X1 (IN(E,M5))
JAC(3,2) = JAC(3,2) + DND2ZETA(MS5) * X2 (IN(E,MS5))
JAC(3,3) = JAC(3,3) + DND2ETA(M5) * X3 (IN(E,M5))
CONTINUE
DETJAC = JAC(1,1) * (JAC(2,2) * JAC(3,3) - JAC(3,2) *

ETA(J)) * (1. + SIGN3(Nl1l) * ZETA(K))
= 0,125 * SIGN1(N1l) * (1. + SIGN2(N1l) *
ETA(J)) * (1. + SIGN3(N1l) * ZETA(K))
DNDETA(N1) = 0.125 * SIGN2(N1l) * (1. + SIGN1(N1l) *

XI(I)) * (1. + SIGN3(Nl) * ZETA(K))

JAC(2,3)) - JAC(1,2) * (JAC(2,1) * JAC(3,3) -
JAC(3,1) * JAC(2,3)) - JAC(1,3) * (JAC(2,1) *

JAC(3'2) - JAC(3'1) * JAC(ZIZ))

DO S0 L =1, 8

DO 80 M5 = 1, 8

AE(L,M5) = AE(L,M5) + W(I) * W(J) * W(K) *
(1. + RHOBE*KDE/ NE) * N(L) * N(M5) * DETJAC

CONTINUE

CONTINUE

CONTINUE
CONTINUE

120 CONTINUE

RETURN
END
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SUBROUTINE DBARZ2 (E,DE)
ke e e e oo ok R ek R

PURPOSE:
TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT
ADVECTION-DISPERSION MATRIX FOR A ONE-DIMENSIONAL,
LINEAR BAR ELEMENT

DEFINITIONS OF VARIABLES:

ALE = LONGITUDINAL DISPERSIVITY FOR ELEMENT
DE(I,J) = ELEMENT ADVECTION-DISPERSION MATRIX

DXE = ELEMENT DISPERSION COEFFICIENT

E = ELEMENT NUMBER

KDE = ELEMENT DISTRIBUTION COEFFICIENT
LAMBDA = SOLUTE DECAY COEFFICIENT

LE = ELEMENT LENGTH

NE = ELEMENT POROSITY

RHOBE = ELEMENT BULK DENSITY
VXE = APPARENT GROUNDWATER VELOCITY IN

X COORDINATE DIRECTION
VXEP = PORE WATER VELOCITY IN X COORDINATE DIRECTION

REFERENCES :
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.5,
EQUATION 4.18A, EQUATION AIII.12

e NeNeNeNeNeReNeReReRe NeNe Ne e NeRe Ne Ne Re Ne Ne e Ne Ke!
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$INCLUDE: 'COMALL’
REAL DE (MAX3,MAX3),KDE, LAMEDA, LE, NE

c
ALE = PROP (MATSET (E), 1)
LAMBDA = PROP (MATSET (E), 2)
RHOBE = PROP (MATSET(E), 3)
KDE = PROP (MATSET (E), 4)
NE = PROP (MATSET(E), S)
VXE = V1(E)
VXEP = VXE / NE
LE = ABS (X1(IN(E,2)) - X1(IN(E,1)))
DXE = ALE * VXEP
TEMP3 = LAMBDA * (1., + RHOBE * KDE/NE) * (LE / 6.)
DE(1,1) = DXE / LE - VXEP / 2. + 2. * TEMP3
DE(1,2) = -DXE / LE + VXEP / 2. + TEMP3
DE(2,1) = -DXE / LE - VXEP / 2. + TEMP3
DE(2,2) = DXE / LE + VXEP / 2. + 2. * TEMP3
RETURN
END

SUBROUTINE DTRI3 (E,DE)
CRRRRARARKE IR RRIRTIRRRRIIT IR AR AR RRR R ARk Rk ki ko khhk

PURPOSE:
TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT
ADVECTION- DISPERSION MATRIX FOR A TWO-DIMENSIONAL,
LINEAR TRIANGLE ELEMENT

DEFINITIONS OF VARIABLES:
AE4 = FOUR TIMES ELEMENT AREA
ALE = LONGITUDINAL DISPERSIVITY FOR ELEMENT
ATE = TRANSVERSE DISPERSIVITY FOR ELEMENT

e NeNeNeNeNe Ne Ne Ne Ne!
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DE(I,J)

DXXE

Groundwater Modeling by
the Finite Element Method

(ETC.)
E

KDE
LAMEDA
NE
RHOBE
VXE

Vol. 13

Subroutine ASMBAD

VYE = APPARENT GROUNDWATER VELOCITY IN

Y COORDINATE DIRECTION

ELEMENT ADVECTION-DISPERSION MATRIX
ELEMENT DISPERSION COEFFCIENTS
ELEMENT NUMBER
ELEMENT DISTRIBUTION COEFFCIENT
SOLUTE DECAY COEFFICIENT

ELEMENT POROSITY

ELEMENT BULK DENSITY

APPARENT GROUNDWATER VELOCITY IN
X COORDINATE DIRECTION

VXEP = PORE WATER VELOCITY IN X COORDINATE DIRECTION
VYEP = PORE WATER VELOCITY IN Y COORDINATE DIRECTION

REFERENCES:

ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD,

EQUATION 4.24A, EQUATION AIII.1ll

FIGURE 4.6,

c***********ﬁ*********************************************************

SINCLUDE:

c

10
20

'COMALL'

REAL DE (MAX3,MAX3),LAMBDA,KDE,NE,BE(3),CE(3)

(ATE * VYEP**2 + ALE * VXEP**2) / SQRT(VYEP**2+VXEP**2)
(ATE * VXEP**2 + ALE * VYEP**2) / SQRT(VYEP**2+VXEP**2)
((ALE - ATE) * VXEP * VYEP) / SQRT(VYEP**2 + VXEP**2)

2. * (X1(IN(E,2)) * X2(IN(E,3)) + X1(IN(E,1)) =

X2 (IN(E,3))
X2(IN(E,1))
X2 (IN(E, 2))
X1(IN(E,2))
X1(IN(E,3))
X1 (IN(E, 1))

X2 (IN(E,2)) + X2(IN(E,1)) =* X1(IN(E,3))
X2(IN(E,3)) * X1(IN(E,1)) - X1(IN(E,3)) =*
- X1(IN(E,2)) * X2(IN(E,1)))

ALE = PROP (MATSET (E), 1)
ATE = PROP (MATSET (E), 2)
LAMBDA = PROP (MATSET (E), 3)
RHOBE = PROP (MATSET (E), 4)
KDE = PROP (MATSET (E),S)
NE = PROP (MATSET (E), 6)
VXE = V1(E)
VYE = V2(E)
VXEP = VXE / NE
VYEP = VYE / NE
DXXE =
DYYE =
DXYE -
DYXE = DXYE
BE(1l) = X2(IN(E,2)) -
BE(2) = X2(IN(E,3)) -
BE(3) = X2(IN(E,1)) =
CE(1l) = X1(IN(E,3)) -
CE(2) = X1(IN(E,1)) -
CE(3) = X1(IN(E,2)) -
AE4 =
1
2
3 X2 (IN(E,2))
AE = AE4 / 4.

TEMP = AE / 12.

DO 20 I =1, 3
DO 10 g =1, 3
DE(I,J) = (DXXE*BE(I)*BE(J) + DYYE*CE(I)*CE(J) +

DXYE*BE (I) *CE(J) + DYXE*CE(I)*BE(J) ) / AE4
+ VXEP/6.*BE(J) + VYEP/6.*CE(J) + TEMP
IF (I .EQ. J) DE(I,J) = DE(I,J) + TEMP

CONTINUE

CONTINUE

RETURN
END

* LAMBDA * (1. + RHOBE * KDE/NE )
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SUBROUTINE DREC4 (E,DE)
o T T Ty T T e Ty

TO
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PURPOSE:

COMPUTE THE CONSISTENT FORM OF THE ELEMENT

ADVECTION-DISPERSION MATRIX FOR A TWO-DIMENSIONAL,
LINEAR TRIANGLE ELEMENT

DEFINITIONS OF VARIABLES:

ALE = LONGITUDINAL DISPERSIVITY FOR ELEMENT

ATE = TRANSVERSE DISPERSIVITY FOR ELEMENT
DE(I,J) = ELEMENT ADVECTION-DISPERSION MATRIX

DXXE (ETC.) = ELEMENT DISPERSION COEFFCIENTS
E = ELEMENT NUMBER

KDE = ELEMENT DISTRIBUTION COEFFCIENT
LAMBDA = SOLUTE DECAY COEFFICIENT

NE = ELEMENT POROSITY

RHOBE = ELEMENT BULK DENSITY
VXE = APPARENT GROUNDWATER VELOCITY IN

X COORDINATE DIRECTION
VYE = APPARENT GROUNDWATER VELOCITY IN

¥ COORDINATE DIRECTION
VXEP = PORE WATER VELOCITY IN X COORDINATE DIRECTION
VYEP = PORE WATER VELOCITY IN Y COORDINATE DIRECTION

REFERENCES :
ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.7,
EQUATION 4.29a, EQUATION AIII.11

Chakkhhhhhhhkhhhhhhhhhhhhhhhhkdhhhhhkhkhhkhhkhhhkhhhhkhhhhhhhkhhkhhhhhhhkhhrxh

SINCLUDE: 'COMALL'
REAL DE (MAX3,MAX3) , LAMBDA, KDE, NE

c
ALE
ATE
LAMBDA
RHOBE
KDE
NE
VXE
VYE
VXEP
VYEP
DXXE =
DYYE =
DXYE =
DYXE =
AE =
BE =

PROP (MATSET (E) , 1)
PROP (MATSET (E) , 2)
PROP {(MATSET (E), 3)
PROP (MATSET (E) , 4)
PROP {(MATSET (E), 5)
PROP (MATSET (E), 6)
V1(E)

V2(E)

VXE / NE

VYE / NE

(ATE * VYEP**2 + ALE * VXEP**2) / SQRT(VYEP**2 + VXEP**2)
(ATE * VXEP**2 + ALE * VYEP**2) / SQRT(VYEP**2 + VXEP**2)
((ALE - ATE) * VXEP * VYEP) / SQRT(VYEP**2 + VXEP**2)
DXYE

ABS (X2 (IN(E,1)) - X2(IN(E,3))) / 2.
ABS (X1 (IN(E,1)) - X1(IN(E,3))) / 2

TEMP1 = (DXXE * AE) / (6. * BE)
TEMP2 = (DYYE * BE) / (6. * AE)
TEMP3 = DXYE / 4.
TEMP4 = DYXE / 4.

TEMPS
TEMP 6

VXEP * AE / 6.

= VYEP * BE / 6.

TEMP7 = LAMBDA * (1. + RHOBE * KDE/NE) * (AE * BE) / 9.

DE(1l,1)= 2.*TEMP1+2.*TEMP2+TEMP3+TEMP4-2.*TEMP5-2, *TEMP6+4 . *TEMP7
DE(1,2)=-2. *TEMP1+ TEMP2+TEMP3-TEMP4+2 . *TEMP S5~ TEMP 6+2 . *TEMP 7
DE(1,3) = - TEMP1- TEMP2-TEMP3-TEMP 4+ TEMP5+ TEMP 6+ TEMP7
DE(1,4) = TEMP1~2.*TEMP2-TEMP 3+TEMP 4~ TEMPS5+2.*TEMP 6+2 . *TEMP7
DE{2,1)=-2.*TEMP1+ TEMP2-TEMP3+TEMP4~-2 ., *TEMP S~ TEMP 6+2 . *TEMP7
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DE(2,2)= 2.*TEMP1+2,*TEMP2-TEMP3-TEMP4+2.*TEMP5-2 . *TEMP 6+4 . *TEMP7

DE(2,3) = TEMP1-2
DE(2,4) = - TEMP1l-
DE(3,1) = - TEMPl-
DE(3,2) = TEMP1-2

DE (3,4)=-2.*TEMP1+
DE(4,1) = TEMP1-2
DE(4,2) = - TEMPl-
DE (4,3)=~2.*TEMPl+

. *TEMP2~TEMP 3+TEMP 4+

. *TEMP2+TEMP 3-TEMP 4~

TEMP2+TEMP 3+TEMP4+

. *TEMP2+TEMP 3-TEMP 4+ TEMP5+2. *TEMP6+2 . *TEMP7
TEMP2+TEMP 3+TEMP 4~ TEMPS+ TEMP 6+ TEMP7
TEMP2-~TEMP 3-TEMP4- TEMPS- TEMP 6+ TEMP7

TEMPS5-2, *TEMP 6+2 . *TEMP7
DE(3,3) =2.*TEMP1+2.*TEMP2+TEMP3+TEMP4+2,*TEMPS5+2.*TEMP6+4 . *TEMP7
TEMP2+TEMP3-TEMP4-2 . *TEMPS+
TEMP5~2 . *TEMP 6+2 . *TEMP7

TEMP5-

TEMP2~-TEMP 3+TEMP4+2 . *TEMPS +

TEMP6+2 . *TEMP7

TEMP 6+ TEMP7
TEMP6+2 . *TEMP7

DE (4,4) =2.*TEMPl+2.*TEMP2~TEMP3-TEMP4-2.*TEMP5+2.*TEMP6+4.*TEMP7

RETURN
END

SUBROUTINE DQUA4 (E,DE)
oL Ty L R e T P T T T T

PURPOSE :

TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT
ADVECTION-DISPERSION MATRIX FOR A TWO-DIMENSIONAL,
LINEAR QUADRILATERAL ELEMENT

DEFINITIONS OF VARIABLES:
ALE = LONGITUDINAL DISPERSIVITY FOR ELEMENT

ATE
DE(I,J)
DETJAC
DNDXI (I)

DNDX (I)
DNDETA (I)
DNDY (I)

E
XI(I)

ETA(I)

JAC(I,J)
JACINV(I, J)
N(I)

w(I)

KDE

LAMBDA

NE

RHOBE

VXE

VYE
VXEP
VYEP
X1 (IN(E, I)
X2 (IN(E, I)

REFERENCES :

TRANSVERSE DISPERSIVITY FOR ELEMENT
ELEMENT ADVECTION-DISPERSION MATRIX
DETERMINANT OF JACOBIAN MATRIX

PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO XI AT NODE I
PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO X AT NODE I
PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO ETA AT NODE I
PARTIAL DERIVATIVE OF INTERPOLATION
FUNCTION WITH RESPECT TO Y AT NODE I
ELEMENT NUMBER

LOCATION OF GAUSS POINT IN XI COORDINATE
DIRECTION

LOCATION OF GAUSS POINT IN ETA COORDINATE
DIRECTION

JACOBIAN MATRIX

INVERSE OF JACOBIAN MATRIX

INTERPOLATION FUNCTION FOR NODE I

WEIGHT FOR GAUSS POINT I

ELEMENT DISTRIBUTION COEFFICIENT

SOLUTE DECAY COEFFICIENT

ELEMENT POROSITY

ELEMENT BULK DENSITY

APPARENT GROUNDWATER VELOCITY IN X
COORDINATE DIRECTION

APPARENT GROUNDWATER VELOCITY IN Y
COORDINATE DIRECTION

PORE WATER VELOCITY IN X COORDINATE DIREC
PORE WATER VELOCITY IN Y COORDINATE DIREC
X COORDINATE FOR NODE I, ELEMENT E

Y COORDINATE FOR NODE I, ELEMENT E

ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.10,

EQUATION 4.68
AEKRAR AR AR AR TR AR AR R AR AR AR AT A AR AR AN AA AR AR RARNRNA AR AN AN AR AR AR AR Ak
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S$INCLUDE: 'COMALL'

20
30

40
50

60

70

REAL JAC(2,2),JACINV(2,2),DE (MAX3,MAX3),N(4) ,DNDXI(4),

1 DNDX (4) ,DNDETA(4) ,DNDY (4) ,W(2) ,XI(2) ,ETA(2),SIGN1(4),
2 SIGN2 (4) ,NE, KDE, LAMEDA

DATA SIGN1l/-1.,1.,1.,-1./

DATA SIGN2/-1.,-1.,1.,1./

XI(l) = 1. / SQRT(3.)
XI(2) = -XI(1)

ETA(l) = XI(1)

ETA(2) = XI(2)

W(1l) = 1.

W(2) = 1.

ALE = PROP (MATSET (E),1)
ATE = PROP (MATSET (E),2)
LAMBDA= PROP (MATSET (E), 3)
RHOBE = PROP (MATSET (E),4)
KDE = PROP (MATSET (E), S)
NE = PROP (MATSET (E) , 6)
VXE = V1(E)

VYE = V2(E)

VXEP = VXE / NE

VYEP = VYE / NE

DXXE = (ATE * VYEP**2 + ALE * VXEP**2) / SQRT(VYEP**2 + VXEP**2)
DYYE = (ATE * VXEP**2 + ALE * VYEP**2) / SQRT(VYEP**2 + VXEP**2)
DXYE = ((ALE - ATE) * VXEP * VYEP) / SQRT(VYEP**2 + VXEP**2)
DYXE = DXYE

DO 30 I = 1, 4
DO 20T =1, 4
DE(I,J) = 0.
CONTINUE
CONTINUE
DO 120 I = 1, 2
PO 110 J = 1, 2

DO 50 K =1, 2
DO 40 K1 = 1, 2
JAC(K,K1) = 0.
CONTINUE
CONT INUE

DO 60 K1 = 1, 4

N(K1) = 0,25 * (1. + SIGN1(Kl) * XI(I))

1 * (1, + SIGN2 (K1) * ETA(J))
DNDXI (K1) = 0.25 * SIGN1(K1l) * (1. + SIGN2(K1l) * ETA(J))
DNDETA(K1) = 0.25 * SIGN2(Kl) * (1. + SIGN1(Kl) * XI(I))

CONTINUE
pO 70 K1 = 1, 4
JAC(1,1) = JAC(1l,1) + DNDXI(Kl) * X1(IN(E,K1))
JAC(1,2) = JAC(1,2) + DNDXI(K1l) * X2(IN(E,K1))
JAC(2,1) = JAC(2,1) + DNDETA(K1l) * X1(IN(E,K1))
JAC(2,2) = JAC(2,2) + DNDETA(K1) * X2 (IN(E,K1))
CONTINUE
DETJAC = JAC(1,1) * JAC(2,2) - JAC(1,2) * JAC(2,1)
JACINV(1,1) = JAC(2,2) / DETJAC
JACINV(1,2) = -JAC(1,2) / DETJAC
JACINV(2,1) = =JAC(2,1) / DETJAC
JACINV(2,2) = JAC(1,1) / DETJAC
pO 80 K1 = 1, 4
DNDX (K1) = JACINV(1,1) * DNDXI(K1l) + JACINV(1,2) * DNDETA (K1)
DNDY (K1) = JACINV(2,1) * DNDXI(K1l) + JACINV(2,2) * DNDETA (K1)

»
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80 CONTINUE
DO 100 K =1, 4
DO 90 K1 = 1, 4
DE (K,Kl1) = DE(K,K1l) + W(I) * W(J) *

1 (DXXE * DNDX(K) * DNDX(K1)

2 + DXYE * DNDX(K) * DNDY (K1)

3 + DYXE * DNDY(K) * DNDX(K1)

4 + DYYE * DNDY(K) * DNDY (K1)

S + VXKEP * N(K) * DNDX (K1)

[ + VYEP * N(K) * DNDY (K1)

7 + LAMBDA * (1. + RHOBE * KDE / NE )

8 * N(K) * N(K1)) * DETJAC
90 CONTINUE
100 CONTINUE
110 CONTINUE
120 CONTINUE

RETURN
END

SUBROUTINE DPARS (E,DE)
XA AR AR AR AR AR A AR A AR N RN R AR AR AR AR AR AR AR AR RN RRR RN RAN AR NN AN

PURPOSE:

ATE
DE(I,J)
DNDXI (1)

DNDX(I)
DNDETA (1)
DNDY (1)
DNDZETA(I)
DNDZ (1)

E
XI(1)

ETA(I)
2ETA(I)

JAC(I, )
DETJAC
JACINV(I,J)
N(I)

W(I)

KDE

LAMBDA

NE

RHOBE

VXE

VYE

e NeNeNeNeNeNe NN e NeNe e Ne Ne Ne Ne e Ne Ne Ne Ne e e Ne Ne e R e e Ko Ko Mo e e e Ne Ne e Ne Re X e}

DEFINITIONS OF VARIABLES:
ALE = LONGITUDINAL DISPERSIVITY FOR ELEMENT

TO COMPUTE THE CONSISTENT FORM OF THE ELEMENT
ADVECTION-DISPERSION MATRIX FOR A THREE-DIMENSIONAL,
LINEAR QUADRILATERAL ELEMENT

TRANSVERSE DISPERSIVITY FOR ELEMENT
ELEMENT ADVECTION-~DISPERSION MATRIX

PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
PARTIAL DERIVATIVE OF
FUNCTION WITH RESPECT
ELEMENT NUMBER

INTERPOLATION
TO XI AT NODE I
INTERPOLATION
TO X AT NODE I
INTERPOLATION
TO ETA AT NODE I
INTERPOLATION
TO Y AT NODE I
INTERPOLATION
TO ZETA AT NODE I
INTERPOLATION
TO 2 AT NODE I

LOCATION OF GAUSS POINT IN XI COORDINATE

DIRECTION

LOCATION OF GAUSS POINT IN ETA COORDINATE

DIRECTION

LOCATION OF GAUSS POINT IN ZETA COORDINATE

DIRECTION
JACOBIAN MATRIX

DETERMINANT OF JACOBIAN MATRIX
INVERSE OF JACOBIAN MATRIX
INTERPOLATION FUNCTION FOR NODE I
WEIGHT FOR GAUSS POINT I

ELEMENT DISTRIBUTION COEFFICIENT
SOLUTE DECAY COEFFICIENT

ELEMENT POROSITY
ELEMENT BULK DENSITY

APPARENT GROUNDWATER VELOCITY IN X

COORDINATE DIRECTION

APPARENT GROUNDWATER VELOCITY IN Y

COORDINATE DIRECTION
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C VXEP = PORE WATER VELOCITY IN X COORDINATE DIRECTION
C VYEP = PORE WATER VELOCITY IN Y COORDINATE DIRECTION
Cc X1(IN(E,I) = X COORDINATE FOR NODE I, ELEMENT E
Cc X2 (IN(E,I) = Y COORDINATE FOR NODE I, ELEMENT E
Cc X3(IN(E,I) = 2 COORDINATE FOR NODE I, ELEMENT E
Cc
Cc REFERENCES:
Cc ISTOK,J.D. GROUNDWATER FLOW AND SOLUTE TRANSPORT
Cc MODELING BY THE FINITE ELEMENT METHOD, FIGURE 4.10,
Cc EQUATION 4.69

ChhkkhkhhkhhhkhhhhkdrhhbdrddhdhdddddddddrddhddddAR AR RA AR AR AR AR AR

$INCLUDE: 'COMALL'
REAL JAC(3,3),JACINV(3,3),DE (MAX3,MAX3) ,DNDX(8) ,DNDY (8) ,DNDZ (8),
1 XI(2),ETA(2),2ETA(8),DNDXI(8),DNDETA(8) ,DNDZETA (8),W(2),
2 N(8),SIGN1(8),SIGN2(8),SIGN3(8),NE,KDE, LAMBDA
DATA SIGNl1l/-1.,1.,1.,-1.,-1.,1.,1.,-1./
DATA SIGN2/-1.,-1.,1.,1.,-1.,-1.,1.,1./
DATA SIGN3/-1.,-1.,-1.,-1.,1.,1.,1.,1./

XI(l) = 1. / SQRT(3.)
XI(2) = -XI(1)

ETA(1l) = XI(l)

ETA(2) = XI(2)
ZETA(l) = XI(1l)
Z2ETA(2) = XI(2)

W(l) = 1.

W(2) = 1.

ALE = PROP (MATSET (E), 1)
ATE = PROP (MATSET (E),2)
LAMBDA = PROP (MATSET (E), 3)
RHOBE = PROP (MATSET (E), 4)
KDE = PROP (MATSET (E), 5)

NE = PROP (MATSET (E), 6)

VXE V1 (E)

VYE V2 (E)

VZE V3 (E)

VXEP = VXE / NE

VYEP = VYE / NE

VZEP = VZE / NE

VXYZ = SQRT (VXEP**2 + VYEP**2 + VZEP**2)

(ATE * (VYEP**2 + VZEP**2) + ALE * VXEP**2 ) / VXY2
((ALE - ATE) * VXEP * VYEP) / VXY2

DXYE

(ATE * (VXEP**2 4 VZEP**2) + ALE * VYEP**2 ) / VXY2
((ALE - ATE) * VXEP * VZEP) / VXY2Z

DXZE

(ATE * (VXEP**2 4 VYEP**2) + ALE * VZEP**2 ) / VXY2
((ALE - ATE) * VYEP * V2EP) / VXYZ

DYZE

DYYE
DXZE
DZXE
DZZE
DYZE
DZYE

:

DO 20 K =1, 8
DO 10 N1 =1, 8
DE(K,N1) = 0.
10 CONTINUE
20 CONTINUE

DO 120 I =1, 2
po 110 g =1, 2
DO 100 K =1, 2
DO 40 L =1, 3
DO 30 N1 =1, 3
JAC(L,N1) = 0.
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30
40

50

60

70

80
90
100
110
120

wh e

A WP

CONTINUE
CONTINUE
DO 50 N1 =

N(N1l) = 0.125 * (1.+SIGN1(N1)*XI(I)) * (1.+SIGN2(N1) *
+ SIGN3(N1l) * ZETA(K))

+ SIGN2 (N1) *
ETA(J)) * (1. + SIGN3(Nl1l) * ZETA(K))
SIGN1(N1) *

Groundwater Modeling by
the Finite Element Method

1, 8

Vol. 13

Subroutine ASMBAD

+
* ZETA(K))
+
*

ETA(J))

DNDXI (M5) * X1 (IN(E,MS))

DNDXI (MS) * X2 (IN(E,M5))
DNDXI (M5) * X3 (IN(E,M5))
DNDETA (M5) * X1(IN(E,M5))

DNDETA (M5) * X2 (IN(E,M5))
DNDETA (M5) * X3(IN(E,MS))
DNDZETA (M5) * X1 (IN(E,MS))
DNDZETA (M5) * X2 (IN(E,MS))
DNDZETA (M5) * X3 (IN(E,MS))

- JAC(1,2) * (JAC(2,1) * JAC(3,3)
- JAC(1,3) * (JAC(2,1) *

SIGN1(N1) *

= ( JAC(2,2)*JAC(3,3)-JAC(2,3)*JAC(3,2))/DETJAC

* + %+ » +

JACINV(1,2)
DNDZETA (M5)
JACINV(2,2)
DNDZETA (M5)
JACINV(3,2)
DNDZETA (M5)

(~JAC(2,1) *JAC (3, 3)+JAC(2,3) *JAC(3,1) ) /DETJIAC
( JAC(2,1)*JAC(3,2)~JAC(3,1) *JAC(2,2)) /DETJIAC
(-JAC (1,2) *JAC (3, 3)+JAC (1, 3) *JAC(3,2) ) /DETJAC
( JAC(1,1)*JAC(3,3)~JAC(1,3)*JAC(3,1))/DETJAC
(-JAC(1,1) *JAC (3,2)+JAC(1,2) *JAC(3,1)) /DETJIAC
( JAC(1,2)*JAC(2,3)-JAC(1,3)*JAC(2,2)) /DETJIAC
(-JAC(1,1) *JAC (2, 3) +JAC (1, 3) *JAC (2,1) ) /DETJIAC
( JAC(1,1)*JAC(2,2)~JAC(1,2) *JAC(2,1)) /DETJIAC

DNDX (L) * (DXXE*DNDX (M5) + DXYE*DNDY (M5) + DXZE*DNDZ(M5)) +
DNDY (L) * (DYXE*DNDX (M5) + DYYE*DNDY (M5) + DYZE*DNDZ (M5)) +

+ RHOBE*KDE/NE ) * N(L) * N(MS) )

ETA(J)) * (1.
DNDXI (N1) = 0.125 * SIGNL(N1l) * (1.
DNDETA (N1) = 0.125 * SIGN2(N1) * (1.
XI(I)) * (1. + SIGN3(N1)
DNDZETA(N1) = 0.125 * SIGN3(N1l) * (1.
XI(I)) * (1. + SIGN2(N1)
CONTINUE
DO 60 M5 = 1, 8
JAC(1,1) = JAC(1,1) +
JAC(1,2) = JAC(1,2) +
JAC(1,3) = JAC(1,3) +
JAC(2,1) = JAC(2,1) +
JAC(2,2) = JAC(2,2) +
JAC(2,3) = JAC(2,3) +
JAC(3,1) = JAC(3,1) +
JAC(3,2) = JAC(3,2) +
JAC(3,3) = JAC(3,3) +
CONTINUE
DETJAC = JAC(1,1) * (JAC(2,2) * JAC(3,3) - JAC(3,2) *
JAC(2,3))
JAC(3,1) * JAC(2,3))
JAC(3,2) - JAC(3,1) * JAC(2,2))
JACINV(1,1)
JACINV(1,2) =
JACINV(1,3) =
JACINV(2,1) =
JACINV(2,2) =
JACINV(2,3) =
JACINV(3,1) =
JACINV(3,2) =
JACINV(3,3) =
DO 70 M5 = 1, 8
DNDX (M5) = JACINV(1l,1) * DNDXI (M5)
DNDETA (M5) + JACINV(1,3)
DNDY (M5) = JACINV(2,1) * DNDXI (M5)
DNDETA (M5) + JACINV(2,3)
DNDZ (M5) = JACINV(3,1) * DNDXI (MS)
DNDETA (M5) + JACINV(3,3)
CONTINUE
DO 90 L =1, 8
DO 80 MS = 1, 8
DE(L,M5) = DE(L,M5) + W(I) * W(J) * W(K) * (
DNDZ (L) * (DZXE*DNDX (M5) + DZYE*DNDY (M5) + DZZE*DNDZ (MS))
+ N(L) *(VXEP*DNDX(MS) + VYEP*DNDY (M5) + VZEP*DNDZ (M5))
+ LAMBDA * (1.
* DETJAC
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
RETURN
END
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Chapter 20

MODELING REGIONAL GROUNDWATER FLOW

20.1 PURPOSE OF GROUNDWATER FLOW MODELING

To "model regional groundwater” flow means to develop mathematical and numerical
models of the aquifer system being studied and to use these models to predict the value of
hydraulic head at points (and times) of interest. For example, the values of head may be
needed to determine the impact of pumping on water table levels (e.g., to determine if a
proposed well will cause excessive drawdown at an existing well) or to predict the direction
and rate of groundwater flow (e.g., to compute groundwater travel times for site
assessment or to predict the rate of movement of groundwater contaminants). The
numerical procedures for solving the steady-state and transient groundwater flow equations
by the finite element method were described in Part 1 and the implementation of these
procedures in computer programs was described in Part 2. However, before these
procedures and programs can be applied to an actual field problem the analyst must collect
and analyze a variety of information about the study area:

1) toidentify the type of model that should be used,

2) to identify the locations of aquifer boundaries,

3) to determine values for aquifer material properties,

4) to determine values and types of boundary and initial conditions,and
5) to calibrate and verify the model.

20.2 TYPES OF GROUNDWATER FLOW MODELS

Several types of models (e.g., one-, two-, and three-dimensional models; steady-state,
saturated flow models; transient, unsaturated flow models; fracture flow models) can be
used to study groundwater flow systems. The selection of the type of model to apply to a
particular field problem can be di.(¥'1cu1t, particularly if field data are scarce or if the analyst
has no previous experience in the study area. Ultimately, the choice is made by selecting a
model 1) that represents the physical (and perhaps chemical and biological) processes that,
in the opinion of the analyst, are most important in determining aquifer behavior, and 2)
that is consistent with the available data. Particular attention should be paid to the
assumptions used in the derivation of the differential equation(s) on which the model is
based. The assumptions used to derive the four types of groundwater flow equations
presented in this book (steady-state, saturated flow; steady-state, unsaturated flow;
transient, saturated flow; and transient, unsaturated flow) are discussed in Appendices I
and II. Care must be taken to avoid the application of these equations (and the procedures
and computer programs in Parts 1 and 2 that are based on these equations) to field
situations where the assumptions may not be valid.

For example, in these derivations, Darcy's Law is assumed to be valid and we can
immediately conclude that problems involving flow through fractured rock, large cavities in
Karst limestone, lava tubes, etc. can not be sclved with models based on these equations

445
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because it is likely that groundwater velocities will be too large for Darcy's Law to be valid
(Hillel, 1980, pp. 181-182). Darcy's Law may also not be valid when groundwater
velocities are extremely small, e.g. in flow through compacted clay with small hydraulic
gradients (Swarzendruber, 1962). Further, aquifer stress:strain behavior is assumed to be
elastic, and the change in thickness of the aquifer in response to changes in head is
assumed to be small; thus invalidating the use of these equations to solve problems of
consolidation (the large and usually irreversible reduction in aquifer thickness that occurs
beneath many foundations and earth structures as a result of surface loading, or that can
occur in any area due to excessive groundwater withdrawls).

Recall also that groundwater density is assumed constant therefore invalidating the use
of these equations to predict heads in problems where density variations are expected to be
large e.g., near the fresh water:salty water interface that develops in coastal aquifers or in
brine fields, or in problems involving multiple fluid phases such as the flow of non-
aqueous phase liquids into groundwater at hazardous waste sites. Flow of groundwater
above the water table as water vapor is also assumed to be negligibly small.

20.3 CONFINED VS UNCONFINED AQUIFERS

The steady-state and transient, saturated groundwater flow equations presented in this
book can be applied to confined and unconfined aquifers (see e.g., Bear, 1979). In a
confined aquifer, a true water table (the surface where water pressure equals atmospheric
pressure) does not exist; the upper limit of the saturated zone is the base of a low-
permeability layer called an aquitard (Figure 20.1). Hydraulic head is measured with
piezometers and the height that water rises in the piezometers defines the piezometric
surface. The procedures and computer programs in Parts 1 and 2 can be used to solve
steady-state and transient, saturated groundwater flow problems for confined aquifers in
one-, two-, and three-dimensions using as aquifer material properties the components of
saturated hydraulic conductivity, K,, Ky, and K7, and specific storage, Sg. However, in
two-dimensional (map view) problems it is cornmon to use as aquifer properties
transmissivity , T, and storativty, S. Storativity is the name given to specific storage in
confined aquifers. The two components of transmissivity , Ty and Ty are defined as

T, = bK; (20.1a)
Ty = be (20.1b)

where b is the saturated thickness of the aquifer (Figure 20.1). In this case the steady-
state, saturated groundwater flow equation (e.g. equation 3.45) can be written

2e2)32) <o

The method of weighted residuals can be applied to equation 20.2 and the results from Part
1 can be used to solve for unknown values of head, h(x, y). We simply substitute T,(® for
K, and Ty for K (® in the equations for [K()] for any of the two-dimensional
elements. Otherwise the solution procedure is identical and program GW1 can be used

without modification (However, when specifying groundwater flow rates at Neumann
nodes, we must be careful to use units for q that are consistent with Ty and Ty).

The transient, saturated groundwater flow equation (e.g. equation 3.79) can be written
d(..oh d(.. oh dh
x(Tx'a—x) + E(T’,E) = S'a—t (20.3)

where S is the aquifer storazivity
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Figure 20.1 Confined aquifer.

The method of weighted residuals can also be applied to equation 20.3 and the results
from Part 1 can be used to solve for unknown values of head, h(x, y, t). We simply

substitute T,(©) for K, Ty(® for K,(®), and S for S4() in the equations for [K(*)] and
[C)] for any for the two-dimensional elements. Otherwise the solution procedure is

identical and program GW3 can be used without modification (if the units for specified
groundwater flow rates are consistent with T, Ty, and S).

In an unconfined aquifer the upper limit of the saturated zone is the water table (Figure
20.2). Hydraulic head is measured with wells. If the position of the water table is known
(not common) the entire surface of the water table is treated as a Dirichlet boundary

Figure 20.2  Unconfined aquifer.
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Figure 20.3 Saturated flow through earth dam, position of water table is assumed
known.

condition. Programs GW1 or GW3 could be used to compute heads at points within the
aquifer (Figure 20.3). However, in most situations the position of the water table is not
known (except at a few locations) and we wish to compute it from the available data. Three
approaches have been used to solve this type of problem.

In the first approach we assume that the stope of the water table is small so that 1) the
saturated thickness of the aquifer is approximately constant and 2) groundwater flow is
approximately horizontal (i.e., the Dupuit-Forchheimer assumption, see Freeze and
Cherry, 1979). This approach is particularly useful in studies of regional groundwater
flow where the lateral extent of the aquifer is much larger than the saturated thickness.
With this approach the steady-state, saturated groundwater flow equation for two-
dimensional flow in an unconfined aquifer can be written (see e.g. Bear, 1979)

2 dh 2 oh

x[K,‘ha—J+ x(Kyh-s;) =0 (20.4)
But since

a%h? dh

3‘—2- = ZhB; (20.5)

equation 20.4 can be written
2 Kxahz) a(ﬁan’) _
5[7:; t\z ) =0 @06)

The results from Part 1 can be used to solve equation 20.4 for unknown values of head,
h(x, y). To see this, define a new variable u = h? so that equation 20.6 becomes

2R 25 =0 @
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Now we can substitue $ for K¢ and %) for Kg,e) in the equations for [K‘] for any of the
two-dimensional elements. Dirichlet boundary conditions are specified for u by squaring
specified values of hydraulic head. Program GW1 can then be used without modification
to solve form unknown values of u and values of head can be computed at each node, h; =
Jﬁ; , for each node i. If velocities are required, program GW 1 could easily be modified by

the addition of the following FORTRAN statements just before (above) the statement
"CALL VELOCITY"

DO 99 I = 1, NUMNOD
X(I) = SQRT(X(I))
99 CONTINUE

The transient, saturated groundwater flow equation for two-dimensional flow in an
unconfined aquifer can be written

3 K,ath 3[Ky3h2) _ < dh
g[ 3 ox +$ 3 W = Syg (20.8)

where Sy is the aquifer specific yield. Defining u =h2 with

oh au'? 1 du

il llew (20.9)
equation 20.8 can be written

d (Kxau) a (K,au) _ Sy ou

= ZxtH\2y) " e (20.10)

Equation 20.10 is a nonlinear differential equation (because of the term 1IN ) and cannot
be solved using program GW3 unless it is modified (e.g. by using Picard iteration as in
program GW4). Program GW?3 could be further modified to compute heads and velocities
using the same FORTRAN statements given for program GW 1 above.

The second approach that can be used to solve the transient and steady-state, saturated
groundwater flow equations for an unconfined aquifer is based on the definition of the
water table as a surface where water pressure is equal to atmospheric pressure (zero gage
pressure). From the definition of hydraulic head

0 onwater table
h = Z+)f (20.11)

where z is the elevation head. The solution procedure is very simple. We guess the
position of the water table and draw a finite element mesh. We then compute the value of
head at each node in the mesh. For each node on the water table the computed value of
head should equal the elevation of the node. If the values are not equal we set the
coordinates of the nodes on the water table equal to the computed values of head. The
process is repeated until a convergence criteria is satisfied (Neumann and Witherspoon,
1970). The shape of the mesh changes with each iteration (Figure 20.4). Programs GW1
and GW3 could be casily modified to use this method. This approach is useful for
problems where the Dupuit-Forscheimer assumption is not valid (e.g. near a pumping
well).
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Figure 20.4 Example problem for unconfined aquifer. z coordinate of nodes marked
with asterisk change during solution procedure until h; = z| for each

node i.

In the third approach we solve the steady-state or transient unsaturated flow equations
and the position of the water table is indicated by nodes with computed pressure heads
equal to zero. We use this approach when groundwater flow above the water table is
considered to be significant (e.g., in a study of the response of a shallow water table to
recharge during a rainstorm).

20.4 SENSITIVITY ANALYSIS

The development of a mathematical model for an aquifer system is a difficult task.
Aquifer systems are complex and the interpretation of field and laboratory data for use in a
regional groundwater flow model requires a considerable amount of professional
judgement (which is why groundwater modeling is sometimes referred to as an "arn").
Measured values of aquifer properties are usually scarce and well logs often give a rather
incomplete description of the stratigraphy, structure, and lithology of subsurface materials.
For example, the locations of aquifer boundaries are needed to specify the size and shape of
the problem domain and to draw the finite element mesh. In many problems encountered in
practice, there are insufficient data to precisely determine the position of aquifer boundaries
€.g., in a valley-fill aquifer it may be difficult to determine the position of the contact
between the alluvium and the underlying bedrock. In this case, the positions of aquifer
boundaries must be inferred from the available data (e.g., the elevations of aquifer contacts
recorded in well logs). This can be done quantitatively (e.g., using some form of
interpolation) or qualitatively (e.g., using the ju&gement of persons knowledgable about the
geology and geomorphology of the study area). In any case the effect of uncertainty in the
positions of aquifer boundaries on model results should be investigated using a sensitiviry
analysis. In a sensitivity analysis, the values of model parameters (in this case the
positions of aquifer boundaries) are varied across the range of likely values and the effect
upon computed heads is noted. The most effort is expended to identify parameters that
have the most effect on computed results (in most cases the positions of aquifer boundaries
hav‘eii r_elan';rely little effect relative to aquifer material properties and boundary and initial
conditions).
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Lack of data can make it particularly difficult to specify aquifer material properties.
Real aquifers are rarely homogeneous and isotropic. The finite element method allows the
analyst to specify a different set of material properties for each element in the mesh but a
method is needed to obtain these properties from a (usually) limited data set (e.g., the
results of pumping tests for a few wells). Although it may be possible to estimate aquifer
properties using statistical methods (e.g., geostatistics) or by solving the inverse problem
(see below) considerable uncertainty will remain and the effect of uncertainty in values of
aquifer properties on model results should be investigated in a sensitivity analysis.

The most commonly occurring boundary conditions are the specified head (Dirichlet)
and specified flow (Neumann) boundary conditions described in Part 1. Specified head
bo conditions are commonly used where a surface water body (lake, river, etc.) is in
hydraulic connection with groundwater along a portion of the aquifer boundary. Specified
flow boundary conditions are commonly used to represent groundwater withdrawal or
recharge e.g., from wells, infiltration, and leakage between aquifer units. However, the
interpretation of the available data (e.g., pumping rates, precipitation data, irrigation
schedules, streamflow records, lake water surface elevations) to determine appropriate
boundary head or flow values is rarely straightforward. Also, it can sometimes be very
difficult to decide which type of boundary condition a particular feature represents (e.g.,
should a lake be represented as a constant head or Spenf]' 1ed flow boundary condition, or as
some combination of the two). The effects of alternative types and values of boundary
conditions on mode] results also should be investigated using a sensitivity analysis.

20.5 CALIBRATION, VERIFICATION AND PREDICTION

Calibration is the process of adjusting model parameters (material properties, boundary
conditions, and initial conditions) until 1) the model is consistent with the analyst's
understanding of the groundwater flow system and with all available data, and 2) computed
values of head closely match measured values at selected points in the aquifer (locations of
wells, springs, etc). The procedure is essentially an exercise in "trial and error” wherein a
plausible set of model parameters are proposed, computed and measured values of head are
compared, and model parameters are adjusted to improve the fit. Unfortunately there is no
guarantee that the values of model parameters obtained by this procedure are unique. For
this reason it is best to calibrate the model using only a portion of the available head data (or
to make additional measurements after calibration). The fitted model is then used to predict
these "reserved" head measurements. The results are used as a quasi-independent check on
the model parameters arrived at by calibration. For example, it is sometimes possible to
calibrate a model using measurements made at one time and to verify the model using
measurements made at a different time (possibly using the same wells). This step is
sometimes called model verification. Once the model is calibrated and verified it is ready
for use in prediction (e.g., predicting water table response to pumping, predicting
groundwater velocities for use in a solute transport model, etc.).

An altemative approach to calibration is to solve the inverse problem, i.e., to compute
the values of model parameters directly from measured values of head. This approach is
analogous to fitting a line to a data set using regression, except that the number of unknown
parameters is much larger. An objective tion is defined (e.g., the sum of the squares
of the differences between measured and computed heads) and values of the parameters are
sought that make the value of the function a minimum. There is a great deal of literature on
this subject but the approach has not been widely used in practice (in part because of the
theoretical and computational difficulties involved in succcessfully fitting a model with
many plausible combinations of parameters, a common situation). Menke (1984) is an
excellent introduction to techniques for solving the inverse problem. Reviews of different
approaches for solving the inverse problem in groundwater hydrology are in Neuman and
Yakowitz (1979), Neuman (1980), and Yeh et al. (1983).
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20.6 MASS BALANCE CALCULATIONS

An additional check on model behavior that should always be performed is a mass
balance for water. If the model is performing properly, the change in the amount of water
stored in the aquifer should equal the inflow (e.g., through specified head boundaries or
injection wells) minus the outflow (e.g., from pumping wells). For a steady-state flow
problem, the change in storage will be zero. For a transient flow problem. the change in
storage can be computed for each element in the mesh using the change in head for each
node in the element and the value of storativity, specific yield, or storage coefficient for that
element. Inflow and outflow at Neumann nodes will be known from the boundary
conditions, and inflow and outflow across Dirichlet boundaries can be computed using the
components of apparent groundwater velocity for each element on the boundary. If the
results of the mass balance calculations are poor, it is probably an indication that the mesh
is too coarse. Numerical errors in computed heads obtained using a coarse mesh will cause
errors in the calculation of aquifer storage and apparent groundwater velocites. Errors in
computed velocities will most impact mass balance calculations at Dirichlet boundaries,
where water is entering or leaving the mesh. Refining the mesh will always improve the
mass balance (unless there are gross errors, e.g., entering specified groundwater flows
with the wrong sign or magnitude, etc.).

20.7 REPORTING MODEL RESULTS

Because of the variety of procedures that may be used to develop a groundwater flow
model it is essential that the analyst document each step of the process used to obtain
predictions in the project report. As a minimum such a report should contain the following
information:

1. ;
For example "two-dimensional, steady-state, saturated flow of groundwater with
constant density through a rigid (nondeformable) aquifer”. Always give the governing
equation(s) used.

Show the finite element mesh. Label Dirichlet and Neumann nodes. Give a reference
for the computer program used.

D i i 1 10 identif: ifer faries:
For example "The lower boundary of the alluvial aquifer was assumed to vary linearly
between alluvium-bedrock contacts reported in well logs". In this case the report
should contain a map showing well locations and computed elevations of alluvium-
bedrock contact and an appendix containing the well logs.

[ )3ata sources 2 JI¢ : (e - €1l

For example, "The aquifer was assumed to be homogeneous and isotropic. Aquifer
hydraulic conductivity was set equal to the average value of hydraulic conductivity
obtained for three wells using the Theis solution (see, e.g., Bear,1972) and the results
of constant discharge pumping tests". In this case the report should contain a map
showing pumping and observation well locations, drawdown curves for the pumping
tests, and a summary of calculations.

L I l 1104 ine | i it
For example, "The portion of the aquifer boundary along the Red River was modeled
as a specified head boundary. The value of head for this boundary was taken to be the
average river stage for the months of October through December. Discharge from
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several domestic water-supply wells in the study area were assumed to have negligible
impact on model results and were neglected”. In this case, the report should contain the
stage and discharge records for the river and the location and estimated discharge rate
for the wells.

R X 2 3 and Ma3 Balance Calculati

For example, "The model was calibrated using ten of the available water level
measurements (show well locations on a map). Values of model parameters were
adjusted by trial and error until the difference between measured and predicted heads at
each well was less than 0.5 m. The model was then verified using measured water
levels in the five remaining wells. The maximum difference between measured and
predicted head at these wells was 1.3 m. Results of a mass balance for the aquifer,
performed after calibration, indicated that 95% of the water in the aquifer was

conserved.”
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MODELING SOLUTE TRANSPORT

21.1 PURPOSE OF SOLUTE TRANSPORT MODELING

To "model solute transport” means to develop mathematical and numerical models of
the aquifer system being studied and to use these models to predict the concentration of a
solute (radionuclide, hazardous waste, pesticide, plant nutrient, etc.) at points of interest
for a set of specified times.. For example, it may be necessary to estimate the potential
impacts on human health of a proposed waste disposal site, e.g., a municipal landfill. A
solute transport model could be used to predict the likely concentration of contaminants
leached from the site in the groundwater at nearby wells. This is an example of sire
assessment, the determination if a site is suitable for some purpose based on the likely
impact of proposed activities on groundwater quality. Solute transport models are also
used as a basis for the design of contaminant recovery and treatment systems at sites of
existing contamination. For example, it may be necessary to install a set of capture wells at
a hazardous waste site to prevent contaminant movement off-site. A solute transport model
could be used to select the most effective combination of well locations and pumping rates.
This is an example of performance assessment, the evaluation of how effective a proposed
design is at meeting the project objectives.

The first step in developing a solute transport model is to calibrate and verify a
groundwater flow model and the comments in Chapter 20 apply. During the calibration of
the groundwater flow model the emphasis should be on producing a good fit between
measured and predicted aquifer heads near solute sources and sinks (e.g., near a waste
injection well). These heads will be used to compute groundwater velocities which are
needed as input for the solute transport model (recall that apparent groundwater velocities
are used to compute the rate of solute transport by advection and to compute dispersion
coefficients, see Appendix III). The accuracy of predicted solute concentrations will to a
large part be determined by the accuracy of predicted groundwater velocities near solute
sources and sinks.

The development of a solute transport model will require additional information about
the study area:

1) toidentify the type of solute ransport model that should be used,

2) to determine values for additional properties of the aquifer and the solute,
3) to determine values and types of boundary and initial conditions, and

4) to calibrate and verify the model.

21.2 TYPES OF SOLUTE TRANSPORT MODELS

Several types of models can be used to predict solute concentrations in groundwater
flow systems. The models differ 1) in the type of groundwater flow equation used to obtain
groundwater velocities (e.g., steady-state or transient flow, saturated or unsaturated flow),
and 2) in the types of physical, chemical, and biological processes considered in the solute
transport equation(s). In this book we have used a form of the solute ransport equation

454
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that includes processes of advection, dispersion, diffusion, and decay. The assumptions
used to derive this equation are discussed in Appendix ITI. Care must be taken to avoid the
application of this equation to field situations where the assumptions may not be valid.

For example, in this derivation, the aquifer is assumed to be isotropic with respect to
dispersion processes. This assumption is made primarily for convenience since field
procedures for measuring all the coefficients of a general dispersion model are not
available. Transport by advection is limited to Darcy-type flow through the pore space and
the equation can not be used to predict rates of solute transport through fractured rock,
large cavities in Karst limestone, lava tubes, etc. Recall also that the density of the solute-
groundwater mixture is assumed constant therefore invalidating the use of this equation to
predict solute concentrations in the presence of very high solute concentrations or multiple
liquid phases (e.g.,cases with simultaneous flow of gasoline and groundwater phases).
Transport in the gas phase was assumed to be small, thus invalidating the application of
this equation to the transport of highly volatile compounds above the water table.

A very important assumption was that sorption processes can be described using an
equilibrium distribution coefficient, Kq. Although this is a common assumption in

practice, it should be considered a crude approximation because of the importance of other
processes including competition among different solutes for exchange sites, reactions that
require relatively long periods of time to reach equilibrium, and multiple-step sorption
processes (e.g., involving diffusion through an immobile water layer before sorption can
occur at the solid surface). Several alternative formulations for the sorption process are
given in de Marsily (1986) and Bear (1979). Similarly, the assumption that solute decay

can be described using a simple decay constant, A, although appropriate for certain
radionuclides, should be a considered a crude approximation for biological degradation
(e.g., microbial metabolism).

21.3 SENSITIVITY ANALYSIS

Just as in the case of a groundwater flow model, the effect of uncertainty in the values
of model parameters (boundary and initial conditions and the values of lateral and
transverse dispersivity, distribution coefficient, and decay constant) on computed solute
concentrations should be investigated using a sensitivity analysis. In most situations the
greatest uncertainty involves the selection of dispersivities. Ideally these should be
measured at the site using a tracer test but in most cases they must be estimated from
tabulated values (e.g., Appendix V). However, for long times or large distances advection
tends to be a much more important process than dispersion, and the effects of uncertainties
in dispersivities tends to have less effect on computed solute concentrations, than for short
times and small distances. Sometimes the effects of dispersion, sorption, and decay are
neglected entirely and computed solute concentrations based only on advection are used to
assess the greatest likely travel distances along a particular flow path (or the shortest likely
travel times to a particular point), which is sometimes called a worst case scenario.

The most commonly occurring boundary conditions are the specified concentration
(Dirichlet) and specified flux (Neumann) boundary conditions described in Part 1.
Dirichlet boundary conditions are commonly used where a surface water body (waste
storage lagoon, river, etc.) with a fixed solute concentration is in hydraulic connection with
groundwater along a portion of the aquifer boundary. Specified flow boundary conditions
are commonly used to represent solute leakage into the aquifer and solute withdrawal and
injection by wells. However, the data needed to decide which type of boundary condition a
particular feature represents are often unavailable, for example in the preliminary stages of
an investigation at an uncontrolled waste site. The effects of alternative types and values of
bo:lndgry conditions on model results also should be investigated using a sensitivity
analysis.
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21.4 CALIBRATION, VERIFICATION, AND PREDICTION

In the case of a solute transport model, calibration consists of proposing a plausible set
of mode] parameters, comparing measured and predicted solute concentrations at a set of
points, and adjusting model parameters to improve the fit. As in the case of the
groundwater flow equation there is no guarantee that the values of model parameters
obtained by this procedure are unique. For this reason it is best to calibrate the model using
only a portion of the available data and to predict the remaining concentrations as a check
on the model parameters arrived at by calibration. Once the model is calibrated and verified
it is ready for use in prediction. It may also sometimes be possible to obtain values of
certain model parameters by solving the inverse problem (e.g., dispersivities are often
computed from measured concentrations in a tracer test).

21.5 MASS BALANCE CALCULATIONS

Just as in the case of groundwater flow a mass balance for the solute should be
computed as a check on model behavior. If the model is performing properly, the change
in the amount of solute stored in the aquifer should equal the inflow (e.g., through
specified concentration boundaries or injection wells) minus the outflow (e.g., pumping
wells). The change in storage can be computed for each element in the mesh using the
change in concentration for each node in the element and the element's size, shape, and
porosity. Inflow and outflow at Neumann nodes will be known from the boundary
conditions, and inflow and outflow across specified concentration boundaries can be
computed using the components of apparent groundwater velocity and the computed solute
concentration at the nodes of each element on the boundary. If the results of the mass
balance calculations are poor, it is probably an indication that the mesh is too coarse.

21.6 REPORTING MODEL RESULTS

Because of the variety of procedures that may be used to develop a solute transport
model it is essential that the analyst document each step of the process used to obtain
pre ictions in the project report. As a minimum such a report should contain the following

ormation:

1. i ;
List the assumptions used to derive the governing equation(s) used. Comment on the
applicability of these assumptions to the conditions at the site.

2. ipti i ed.
Show the finite element mesh. Label Dirichlet and Neumann nodes. Give a reference
for the computer program used.

For example, "The aquifer was assumed to be homogeneous and isotropic with respect
to dispersion. Lateral and transverse dispersivities were estimated using tabulated
values (give reference). Decay and sorption were assummed to be negligible". Or,
"Lateral and ransverse dispersivities were estimated using a tracer test (give references
and show data)".

L i i {10d ine t i it
For example, "The portion of the aquifer boundary along the Red River was modeled
as a specified concentration boundary. The value of concentration for this boundary
was assummed to be zero based on water quality measurements taken upstream of point
x.l'
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5.

For example "The model was cahbrated usmg measured concenu'auons in five wells
(show well locations on a map). Values of model parameters were adjusted by trial and
error until the difference between measured and predicted concentrations at each well
was less than 25 ppm. The model was then verified using measured water levels in the
six remaining wells. The maximum difference between measured and predicted
concentration at these wells was 47 ppm. Results of a mass balance for the aquifer,
performed after calibration, indicated that 95% of the solute in the aquifer was
conserved.
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DERIVATION OF EQUATIONS OF
STEADY-STATE GROUNDWATER FLOW

Consider a unit volume of saturated porous media (Figure Al1). In fluid mechanics,
such a volume is called a control volume. The boundaries of the element are called control

surfaces.

d
PV, + v
portion of z o+ 500
control surface
PY;
d
pYy —’ p°y+ %(Pl)y)
a ............. _’
pug+ &(P”x) y
control volume

pv,

Figure AIl Control volume for groundwater flow through porous media.

The law of conservation of mass for steady-state flow requires that the rate at which fluid is
entering the control volume is equal to the rate at which fluid is leaving the control volume
or

net rate of inflow = inflow — outflow = 0 (AL1)

For purposes of analysis, consider the rate at which groundwater enters the control volume
per unit surface area to consist of three components pvy, pvy, and pv, where p is the
density of water and vy, vy and v, are the apparent velocities of groundwater flow entering
the control volume through control surfaces perpendicular to the x, y, and z coordinate
axes. The dimensions of pvy, pvy, and pv, are M/LT.

Using a Taylor Series approximation, the rate at which groundwater leaves the control
volume in the x direction can be written

poy + -q-(pv JAx + —i-(pu )Ax? + —az—(pu JAX? + - (AL2)
G YF Y h i 30
458
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If we make the size of the control volume small, we can neglect higher-order terms (i.c.,
those involving Az, A etc.) and , because we have chosen a unit control volume (Ax = Ay

= 1) the rate at which groundwater leaves the control volurne is p\;‘-v%(pq). The net rate of
inflow in the x direction is then

net rate of inflow = rate of inflow — rate of outflow
in x direction in x direction  in x directon

)
= puy —[pvx + g(pox)]
= - %(pvx) (AL3)

and the net rate of inflow in the y and z directions are ‘a%““’&) and -%(pu,), respectively.

Because the net rate of inflow for the entire control volume must equal zero if the law of
conservation of mass is to be satisfied, we can write

- a%(pv,a - %(puy) - %(p\),) =0 (AL4)

If we assume that groundwater density, p is constant (i.e., the fluid is incompressible), we
can use the product rule of calculus to evaluate a typical term in equation AL4

0

dv
- 5Py = —[pa—x"-+u x]
ov

= e pﬁ
(ALS)

Similarly for the x and y directions. Because groundwater density appears outside the
derivative it cancels from equation AL4 and we have

Sy (AL6)

oh (AL7a)

c
B

1

~
5

oh (AL7b)

£
"
!
5y
>4
<

v, = -K,=— (AL7c)
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where K,, Ky and K, are the hydraulic conductivities in the X, y, and z directions,
respectively and h is the hydraulic head. Substituting equation AL7 into equation AL6.
We arrive at the steady-state, saturated flow equation.

{5 5(0%) (k) - 0
(ALB)

If flow is two-dimensional, equation Al.8 simplifies to
d ( dh

- K,$)+ %(Ky%h) =0 (AL9)

and if the flow is one-dimensional, we have

%(K,%l:-) =0 (AL10)

If a component of hydraulic conductivity is independent of position for a particular
direction (i.e., is the same at all points along a line oriented in that direction), we can
further simplify equation AI.8 using the product rule. For example, if K, is independent

of postion x

0
3 (. oh o*h  oh I,
(Kex) = Kt : ;;Z
o*h
= K,—
ox
(AL11)
.. . . 0K, 3K, .
Similar terms can be obtained for K, and K if = =5 =0 In this case we say the porous
media is homogenous and equation Al8 simplifies to
°h . *h _ o*h
Ki—+K,—~—+K,— =0 (AL12)
Yoyt o

Finally, if Ky = Ky =K; =K, a constant we say the porous media is homogeneous and
isotropic and equation AL8 simplifies to

. + 3" + 2 0 (AL13)

which is known to mathematicians as La Place’s equation.
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If the porous media is not saturated, the value of hydraulic conductivity at a point is a
function of the pressure head of the water in the voids at that point

K = K(¥) (AL14)

where 'V is the pressure head. Substituting equation Al.14 into equation AL8 yields

2xwi)+ w5 )+ (Kmg) = 0 (ALLS)

for the case where the unsaturated hydraulic conductivity function is different in the x, y,
and z directions. Recalling the definition of hydraulic head

h=W¥+z* (AL16)

where z* is the elevation head ( i.e., the vertical distance from any point to an arbitrary
datum ). If the z coordinate axis is assumed to be vertical

0
oh 2 3
Al Ak %'77;
_ 9y
= ox
(AL17)
similarly
% - % (AL18)
and
1
B30 a_v;t' 2.,
(AL19)
Substituting equations Al.17, 18, and 19 into equation AL 15 gives
kWP + (k) + HrmFE+1)) =0
(AL20)

which is the steady-state, unsaturated flow equation.
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Problems

1. Appendix I has presented the derivation of the equations of steady-state groundwater
flow for a rectangular coordinate system i.c., a coordinate system defined by the three
orthogonal coordinate axes X, y, and z. In some situations, for example in the case of
groundwater flow to a well, it is more convenient to work in a cylindrical coordinate

system i.e., in a coordinate system defined by the two orthogonal coordinate axesr, 9,
and z (Fig. AL.2).

-«

Figure AL2 Control volume for groundwater flow through porous media in
cylindrical coordinates.

a. Using the same approach presented in this chapter derive the steady-state, saturated
flow equation in cylindrical coordinates

ttat ,%%(Keg—g) + 5 (Kg) =0 (AL20)

eor)- S 1) o) -0
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2. We can often use symmetry to reduce the dimensionality of a flow problem in
cylindrical cordinates. In the case of groundwater flow to a well, it is common to
consider the well to be an axis of symmetry. This is only true however if the aquifer
geometry (i.e., the position of the soil surface and soil and rock layers), the
components of hydraulic conductivity, and the specified boundary conditions are all

independent of angular coordinate 8. In this case the derivatives of head with respect to

0 vanish and we say the problem is axisymmetric. Show that the axisymmetric forms
of the steady-state saturated and the steady-state unsaturated flow equations can be

written
ﬁ(xfar) 15'3': + r( zgh) 0 (AL22a)
UxwP) + =2F + Lxw(RE+1))= 0 (AL22b)
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DERIVATION OF EQUATIONS OF
TRANSIENT GROUNDWATER FLOW

The law of conservation of mass for transient flow requires that the net rate at which
fluid enters a control volume is equal to the time rate of change of fluid mass storage within
the control volume.

net rate of inflow = inflow —outflow = rate of change in storage (ALL.1)

From equations AL 1 and AL4 we can write

net rate of inflow = -%(pu,) -%(puy) - %(pu,) (AIL2)

In steady-state flow, the change in storage within the control volume is zero. In ransient
flow, the change in storage is not zero and equation AllL2 becomes

d d
2 (oo 2P0 - 2o = 2(pn) (AIL3)
L I | 1 T |
net rate of inflow rate of change
in storage

where n is the porosity of the porous media. The dimensions of the term %}ﬂ) are M/L>T

or the time rate of change of fluid mass per unit volume of the control volume. Now
assume that the porous media is saturated. Then using the chain-rule we can expand the
right-hand side of equation AIL3

3
Zom = 2(om) 3 (ALL4)

where we can see that, in transient, saturated flow, the rate of change in fluid storage in the
control volume is related to the rate of change in hydraulic head. Using the product rule we
can expand the first term on the right-hand side of equation AIL.4

J _ on_ dp
a—h(pn) = pm-ﬁ-nﬁ (AILS)

The first term on the right-hand side of equation AILS5 is the mass of water produced by the

expansion or compression of the porous media and the second term is the mass of water

produce by the expansion or compression of the fluid. In the case of saturated flow,
n

water can only enter the control volume if the porosity increases (% > O) or the fluid density
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mcn:ase(29>o).

To continue we must define two new terms: the porous media compressibility o and
the fluid compressibility B. Compression or expansion of the porous media is caused by a
change in effective stress G,. If the porous media is saturated

do, = —pgdy (AIL6)

where v is the pressure head. Butsincedy=d(h-z) = dh-;we can write
= —pgdh (AIL7)
Now define the porous media compressibility o

dVve 1 dn

a=-

where Vi is the volume of fluid and V is the control volume. Combining equations AIL7
and AIL8 we have

dn
Ih = P8 (AIL9)

The fluid compressibility P is defined as

de 1
B= va (AIL10)

where p is the fluid pressure. The change in pressure is given by
dp = pgdy = pgdh (AIL.11)
and with dV¢/V¢=dp/p equation AIL10 becomes

= ——n (AIL12)

EE =p EB (ALL.13)
Substituting equations AII9 and AII13 into equation AIl4 gives
560 = (55 + 13 )5
= (p’ga+np2gb)g (AIL14)

Now define the specific storage Sgqas
S; = pg(c+nP) (AIL15)
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The dimensions of S, are Lt representing the volume of water that a unit volume of aquifer
releases from storage for a unit decline in hydraulic head. Substituting equation AII15 into
equation All.14 gives

%(Pn) = ps.%h (AIL16)
and substituting equation AIL.16 into equation AIl.3 we have

- 5500 ~ 35 (60~ 36V = PS, 3 (AIL17)
If we assume that density is constant in the three coordinate directions equation AIL.17
becomes

p(—%—%—%) = ps%h (AIL18)

Cancelling p from both sides of equation AIIL. 18 and using Darcy's Law we arrive at the
transient, saturated-flow equation.

(<) 5(05)+ 56F) = 85
(AIL19)

If the porous media is homogeneous, Ky, Ky, and K; are constant and equation AIL19

reduces to
h _ 9h _ 3h oh
Kx_z + K 87 + K g = S’ﬁ- (AII.20)

If the porous media is also isotropic, Ky = Ky =K, =K, equation AII.20 is written
(AIL21)

which is known to mathematicians as the diffusion equation. For the special case of
horizontal, two-dimensional groundwater flow in a confined aquifer of constant thickness b
equation AIL21 simplifies to

h oh _Sah

+—_— = - (AH22)
x? i)y2 Tat

where S = Sgb and T = Kb.
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In transient, unsaturated flow, the degree of saturation of the porous media within the
control volume changes with time

ol = el(t) (AII.23)

where ' is the degree of saturation. The mass of fluid, within the control volume is now
pn0' instead of pn. Substituting this term into equation AIL3 gives

d d d d .
- 3x(PV2) ~ yy(pvy) -5 (Pv2) = 3(pn@) (AIL24)
Expanding the term on the right-hand side of equation AIl.24 using the product rule gives
%(pne') = pnaTe + pe'gt—“ + ne'é?p (AIL.25)
Now if we assume that % > %‘ and aa—(:' >> %%, the last two terms on the right — hand side of

equation AIL25 can be discarded. Taking p's outside the derivatives in the left-hand side
of equation AIL24 and cancelling p from both sides of equation AIl.24 gives

d d d a9’
—3x (V0 — E(Uy) - 5;(0) = n3 (AIL26)
If we now substitute Darcy's law for unsaturated flow into equation AIL.26 we have
d Jh) 4 Jh),K 49 dh a0’
E(Kx(\ll)x) + Ty(Ky(\")Ty) + ;(Kz(\ll)g) = o3 (AIL27)
Recalling the definition of volumetric water content (6 = n6') we can write
30" Jd0
0y = 5 (AIL28)
If we define the specific moisture capacity C(y)
do
Cy) = Iy (AIL29)

where v is the pressure head and recall the definition of hydraulic head (h = y + 2*), we
can rewrite equation AIl.27 as

(. w3E)+ 5K 0T+ £(x(FE+1)) = cwFt .
30)

which is the equation for transient unsaturated flow. Equation AIL.30 is also known as
Richards equation.
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Problems

1. Derive the transient, saturated flow equation in cylindrical coordinates

()52 L2 (E) 2 - o2

(AIL31)
2. Derive the transient, unsaturated flow equation in cylindrical coordinates
SR+ 25+ (o) k(1) = co
(AIL32)

3. Rewrite equations AIL.31 and AIL.32 for problems with axisymmetry.
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DERIVATION OF EQUATIONS OF
SOLUTE TRANSPORT

Consider a unit volume of porous media (Figure AITL1). Asin A dix I, we refer to
such a volume as a control volume with boundaries called control surfaces

d
F.+ 5 (F)

portion of
control surface

Fy —ipF+
0. .. la i g0 S
Fyt TZ(F")

control volume
FZ
Figure AIIL1 Control volume for solute transport through porous media.
The law of conservation of mass for solute transport requires that the rate of change of
solute mass within the control volume is equal to the net rate at which solute is entering the

control volume through the control surfaces plus the net rate at which solute is produced
within the control volume by various chemical and physical processes.

rate of change = netrateof + netrateof
of solute mass  solute inflow solute production (AIIL1)

For purposes of analysis, consider the rate at which solute enters the control volume to
consist of three components Fy, Fy, and F, that are parallel to the x, y, and z coordinate

axes, respectively. The dimensions of Fy, Fy, and F, are M/L2T.
The rates at which solute leaves the control volume are

F,+ %(Fx) in the x direction,

Fy+ %(F,) in the y direction, and

F,+ %(Fl) in the z direction,
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(which can be obtained from a Taylor's series approximation as in Appendix I). The net
rate of solute inflow is the difference between the inflow and outflow for each component

net rate of solute inflow = F, — (Fx + %(Fx)) +F, - (F, + %(Fy)) +
d
Fz - (Fz + ;(F))
=-2 - 3 F,) - 3 F (AIIL.2
= - 2=(Fy) 5');( Y = 57(F2) 2)

In porous media, solute transport occurs by three processes: advection, diffusion, and
mechanical dispersion.

Advection

The process by which solutes are trans;:orted by the bulk motion of the flowing
groundwater is called advection. The rate of solute transport that occurs by advection is
given by the product of the solute concentration C and the components of the apparent
groundwater velocity vy, vy, and v,. In terms of the three components of solute transport

in the x, y, and z directions, the rate of solute transport by advection is

Fx)advection = VxC
Fy)advection = VyC (AIL3)

F)advection = V2C

Diffusion

The process by which solutes are transported by the random thermal motion of solute
molecules is called diffusion. The rate of solute transport that occurs by diffusion is given
by Fick’s Law. In terms of the three components of solute transport in the x, y, and z
directions, the rate of solute transport by diffusion is given by

«dC
Fy)pitfusion = =D X

»dC
Fy)pitfusion = =D £ (AlIL4)

«dC
Fopittusion = ~D 37

where D" is the solute's apparent diffusion coefficient. The apparent diffusion coefficient
for a solute in porous media is much smaller than the diffusion coefficient for the same

solute in aqueous solution, Dy, An empirical relationship for D* can be written

D = @D (AIILS)

(Goeme)  (3emes)
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where X0) is an empirical correction factor that is a function of the volumetric water

content. Values of @ typically range from 0.01 for very dry soils to 0.5 for saturated soils.
Values of the apparent diffusion coefficients for the major, naturally-occurring constituents

of groundwater (eg., Na*, K*, Mg?*, Caz"', CI', HCO;3, and SOZ") are in the range

1x10°% t0 1x107° m¥s at25° C. Apparent diffusion coefficients are strongly temperature
dependent (for example, values of the apparent diffusion coefficient are about 50% smaller
at 5° C than at 25° C), but are only weakly dependent on the concentrations of other
dissolved species.

The small size of apparent diffusion coefficient means that the rate of solute transport
by diffusion is usually neglibly small relative to the rates of solute transport by advection
and dispersion.

Mechanical Dispersion

Mechanical dispersion (or hydraulic dispersion ) is 2 mixing or spreading process
caused by small-scale fluctuations in groundwater velocity along the tortuous flow paths
within individual pores. On a much larger scale mechanical dispersion can also be caused
by the presence of heterogeneities (e.g. clay lenses or faults) within the aquifer. The rate of
solute transport by mechanical dispersion is given by a generalized form of Fick's Law of
diffusion. In terms of the three components of solute transport in the x, y, and z
directions, the rate of solute transport by mechanical dispersion is given by

F M Dispenion = ~ Dice(80) = Dy a-(8C) ~ Dy (6C)

Fy)Mechanical Dispersion = = Dyx%(ec) - Dyy%(ec) - Dyz%(GC) (AIILS6)

F)Mechica Dispion = = Dax3g(8C) ~ Dy 3-(0C) - D3 (6C)

where Dyy, Dyy, etc are the coefficients of mechanical dispersion. These coefficients can
be computed from the expression:

Dij = a'ijh'n (Am-7)

where the subscripts i and j refer to the three coordinate directions x, y, and z, ¥,, and v, are
the components of the pore water velocity (as opposed to the apparent groundwater
velocity used in Darcy’'s Law),and the subscripts m and n refer to the directions of the
principal components of pore water velocity. Components of the pore water velocity are
computed from

Vy = V,/0
vy = v,/0 (AIIL8)
vV, = v,/0

where 0 is the volumetric water content of the porous media.
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The terms a;j, are the components of the aquifer’s dispersivity. If the aquifer is
assumed to be isotropic with respect to dispersion, all components of the aquifer's
dispersivity are zero except for

A5 =2,
ali]j = aT (Am.9)
1 . .
= Ay = Flag—ap), i#]
where ap, is the longirudinal dispersivity and a is the transverse dispersivity of the
aquifer. "Longitudinal” refers to a direction along the flow path and "transverse" refers to a

direction at right angles to the flow path. In this case, the coefficients of mechanical
dispersion can be computed from the following expressions

Dy = oy (2 +72) + o721 [ |51

D,y = Dy; = [(ay -2r)%¥,1[[%]

Dy, = Dy = [(a,-27)%%,1[ [¥] (ALIL10)
Dy, = [ap(Z+72) + 8,9 1 [ |3

Dy, = Dy = [(a—27 ) %¥,] | M
Dy = [er (¥+ %) + a, %21 [ [¥]

where || = 4\/ w'/f + \75 + \73 . In a two—dimensional problem equation AIIl.10 becomes
D= [arvy+a 71 [ |9
Dyy= [a¥;+a#1 [ |9
Dyy = Dy = [ap-37) %7, 1 | [¥] (ALL1Y)
where |\7 | = A\/ \73 + \75 . In a one-dimensional problem, equation AIIL.10 becomes
Dy = D, = a ¥, (AlL.12)

If we have uniform flow in the x-direction (vx # 0, vy = v, = 0) in a three-dimensional
aquifer, equation AIIL6 simplifies to

d
Fx)Mechanical Dispersion = — D,g;(BC)

d
Fy)Mechanical Dispersion = ~Dy 57(8C) (AIIL13)
F,)Mechanical Dispersion = = D; %(BC)

where D, =a_v,, Dy = D, = agv,. If we substitute equations AIIl.13 and AIIL3 into
equation AIIL.2 and neglect the contribution of diffusion we have

Copyright American Geophysical Union



Groundwater Modeling by

Water Resources Monograph the Finite Element Method Vol. 13
Appendix III 473
net rate of solute inflow = — %[v,c - D,%(OC))
ar A% 3
-3 0 00)
_f 0,3 ©0)
az\/ 9z

or

. 3 & ? 3
net rate of solute inflow = - E(VXC) + DXF(GC) + D,;(OC) + Dza—zz(GC)
X

(AIlL.14)

Net Rate of Solute Production

Several processes can act as sources or sinks for solute within the control volume
including sorption/desorption, chemical or biological reactions, and radioactive decay.
Consider the case of transport involving a sorption/desorption reaction

Ao A
between a dissolved species A and a sorbed species A. The net rate of reaction T, can be
written
r= e% = —p‘,%(tE (ALL15)

where 0 and py, respectively are the porosity and bulk density of the porous media, C is
the concentration of the dissolved species A (mass of solute / volume of groundwater ), and

C is the concentration of the sorbed species A (mass of solute / mass of dry porous media).
Equation AITL15 can also be written

r=-%kC+kC (AIIL16)

where k; is the constant for the forward reaction (A—A) and k, is the rate constant for
the reverse reaction (A—A). A rate law of this mathematical form, for example could be
used if the sorption process can be described by a first-order, reversible reaction or by a
combination of linear diffusion and a linear equilibrium isotherm.

If we assume that the net rate of reaction is zero (i.e., the reaction is in equilibrium),
equation ATIL.16 can be solved directly for the concentration of the sorbed species A

C-= -t-:c = KC (AIL17)

where Ky is the equilibrium distribution coefficient (L3/M). The net rate of solute
production due to a sorption/desorption reaction between a solute and the porous media
within the control volume can be obtained by combining equations AIIL.15 and AIIL.17 and
introducing the volumetric water content of the porous media 6
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a(8C) ac
T) on = " pbKd-; (AIIL.18)

If the solute also undergoes radioactive decay or biological degradation, the net rate of
solute production by this mechanism can be written

309, = A EC+pKLC) (AIIL19)
where A is the decay constant for the solute.
Integrating equation ATl 19 gives
(BC + pK4C); = (BC + ppKC) e ™ (AIIL20)

where the left-hand side is the mass of solute (dissolved and sorbed) in the control volume
at some future time t and the first term on the right-hand side is the initial mass of solute in
the control volume. We can see that equation AIIL.19 applies to processes that display
exponential decay. The half-life T for such a process is defined by

(0C+ppK4C) 1

OCT K0, PeKO), =3 a t=T (AIlL.21)
which gives

ar _ 1 _In2 _ 0.693

e =3 or A= T =7 (AIlL.22)

Solute Transport Equation

If we substitute equations AIll.14, AIIL18, and AIIL.19 into equation AITI.1 and write

the rate of change of solute mass in the control volume as ‘.’LC), we arrive at the solute

at
transport equation for uniform flow

3(6C) ?? ?? ??
= Dx__(eC).'. —(0C)+ D,—(0C
o a2 D’ayz( © ‘azz( )

—L(1,C) -5 (PeKLC) - MOC + K C)
(AIIL.23)

If the porous media is saturated, © = n, and equation AIII.23 can be written

aC 3%C ?*C ?*C a[vxC)
e A e

n
- (258 (e8]

n

(AIL.24)
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Similar equations can be written for uniform groundwater flow in the y or z directions. If
we define a retardation factor, R to be

R= 1+ p":(" (AIIL.25)

equation AIIl.24 can be written

ac _ ¢ _dc _d3c 3 (vxC)
R-aT = Dx—2 + Dya—yz + Dza? %\ ) ARC (AIIL.26)

If the groundwater flow is not uniform (v, # 0, vy # 0, v; # O)the rate of solute transport
by mechanical dispersion is given by equation AIIL6. The net rate of solute inflow into the

control volume becomes
net rate of solute inflow = %(VKC - Dna(aef) - D‘yage;:) - Dﬂa(aOzC))
] 3(6C) 9(6C) a(6C)
—Ty(v"c ~Dyx ox Dyy oy Dy=52 )
] a(6C) a(6C) 3(6C)
'a'z("zc ~Dx dx =Dy oy ~Dz oz )
or
. 9 ] 9
net rate of solute inflow = —§;(vxC) —W(V’,C) —a—z(sz)
3%(00) 3%(60) 3%(6C)
*Pa— 7 *Dugay * Dxignaz
3*(8C) 2%(8C) 9%(6C)
*Dyx5yax * P o *Dyagyaz
2%(6C) 9%(8C) 2%(8C)
+ D335 + Doy 3.3, + D ~
(AIIL27)

If we substitute equations AIII.18, AIIL19, and AIIL.27 into equation AIIIL1 and write the
rate of change of solute mass in the control volume as a(#.c’,we arrive at the solute transport

equation for nonuniform flow
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300 _ , 200 | p. 2€0) D, 3%(eC)
ot w2 ™ axdy T %2 oxdz

2*(6C) 3*@0) 3*(e0)
+ Dyx 5y§x +Dyy ayz +Dyz ayaz

3%(C) 2%(eC) %80
*Pugx *Po gy *Da

d
- 340 - 54,0~ 540

- 2 (psK ) - MOCH pKO)

(AIIT 28)

If the porous media is saturated, @ = n, and equation AIIL.28 can be written

ac ac a’c & c a’c a’c d’c
o = Pz * Dodgy + Duddm * Drgym * Pz * Drlyl:
a’c ac Fc (€Y 3 (wC) a3 %C
+Dagge + Doy + Part - 3 2-) - 3 5) - %)
KC / C
- §(B25) - a{c+ 225 (ATEL29)

Equation AITL.29 can also be written using the retardation factor (equation AIIL.25)

aC a’C 9’C a’c d’c a’C
Ra = Dui * Dogdy * Do * Pregyax * Pz
?*C 3*C 3*C ?°’c
+ Dyzm+Dum + Dzym + Dug
2(49)- 3(59)- 49
_ X(T - ) - 5l 5)-axre (AIIL30)
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Problems

1. Derive the solute transport equation for problems with axisymmerry.

9(8C) 19
at = -;(D T ;(GC)) + D 2(9C) - ;;(l‘ Vl.C)

—%(v,C)-%(p.,KdC)—x(ecw.,KdC) (ATIL31)

2. Rewrite equation AIIL26 if the porous media is saturated

ac _12( a_C) oc _ i(ﬁ)
x - Tt P el

)35 o258

3. Using data from a field tracer test, the longitudinal and transverse dispersivity of an
aquifer were determined to be 12 m and 1 m, respectively. Compute the coefficients
for mechanical dispersion for each element in the mesh shown below

element v v
X y
1 2 -2
2 3 -1
3 3 0
4 3 1
5 2 2
6 2 3
1
0
y 9 3 0
10 2 1
11 2 1
X 12 2 2
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CONCEPTS FROM LINEAR ALGEBRA USED IN
THE FINITE ELEMENT METHOD

The finite element method involves many operations on systems of equations and these

are best handled using matrices. A typical system of linear algebraic equations has the form
a;x; + X+t + Xy = f)

agX; +agXy+ Xy =

: ; : : (AIV.1)
ayX) +apXp+ t FaggXy =

where each of the n equations contains m unknowns ( Xy, X3, . . . , Xp ) and m+1 known
coefficients ( the a;, 3j, . . . , &, f;, where i is any equation ). Equation AIV.1 can also
be written in matrix form as

a;; 213 ¢ || xs f;
a a3 " W] X| _ | (AIV2)
alll anz “ee f

where each set of terms enclosed in brackets or braces is a marrix (plural matrices). A
matrix is simply a rectangular array of numbers. If we use capital letters to denoted each
matrix in equation AIV.2 we can rewrite that equation in the form

[A] {X]} = {F} (AIV.3)
where
a;) 232 "' Ay X f;
[A] = 3:21 a:22 az;m X} = xl2 {F} = f:2 (AIV.4)
2 8y Xm f

A matrix consists of one or more rows of numbers and one or more columns of numbers.
Thus the matrix A contains n rows and m columns, the matrices {X} and {F} contain m
rows and 1 column. A matrix with 1 row is termed a row matrix. A matrix with 1 column
is termed a column matrix or vector. Thus matrices {X} and {F} are vectors. Some other
definitions are
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1. The size of a matrix is the number of rows and columns the matrix contains. The size
is written as two numbers separated by an "x" representing a cartesian product e.g. 3 x
2 where the first number is the number of rows and the second is the number of

columns. Some examples are
321 1 232
243 2 124
135 3

size: 3x3 Ixl 2x3

2. A square matrix has an equal number of rows and columns (n=m). Some examples

321
[1] [f ;] [2 4 3]
135
1x1 2x2 3Ix3

3. The main diagonal of a matrix is the set of positions in the matrix where the row
number and column numbers are equal. If we use 2;; to designate any number that is in
row i and column j then the main diagonal is given by a; for all i = j. Some examples

214
4213
2134
412

.1\

main dmgonal

4. Ina symmetric matrix the numbers in positions on opposites sides of the main diagonal
are equal. That is a;; = a;; for all i, j. Some examples
3.‘ 21
2 “1. 3
13%

[
15
83 = 3y 23 = 29

13 =23,

a3y = a3

5. In a diagonal matrix, all positions in the matrix not on the main diagonal are zero. That
isa;j=0foralli#j. Anexample

00 %0
9. 0 Wri b
B3 e [
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6. The identity matrix is a diagonal matrix where a;; =1 for all i =j. Anexample
100 1 @)
010 also written 1
001 O

An identity matrix is usually designated by the letter [I] regardless of the size of the
matrix.

7. In upper and lower triangular matrices all positions below and above the main diagonal,
respectively are occupied by zeros. Some examples

[1 0 0] B O'

420 also written 42

|5 4 3] |5 4 3]
lower triangular matrix

[1 4 5] (1 4 5]

0214 also written 24

00 3] O 3
upper triangular matrix

8. The transpose of a matrix is a matrix obtained by interchanging numbers using the rule

3 = a5
transpose original
matrix matrix

The superscript "T" is used to designate the transpose of a matrix. Some examples

[B] = [i 2] Bl = [§ ‘;]

14
] [C]T=!2 5]
36

9. Matrix addition involves the addition of entries in corresponding positions of two
matrices to form a new matrix. If [C] = [A] + [B] then cjj = a;j + by foralli and j. An

example
123 01 2]
[A]=!456} B]=[345
789

6 7 8]

w

a-[i}

[}

(1+0) 2+1) 3+2)] [1 3 5
[C] = [A]+[B] = | (4+3) (5+4) (6+5)|{ =| 7 9 11]
(746) (8+7) (9+8) |13 15 17

Marrix addition is commutative (i.c., [A] + [B] = [B] + [A]) and associative (i.e., ([A] +
[B]) +[C] =[A] + ([B] + [CD.
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10. Matrix subtraction involves the subtraction of numbers in corresponding positions in
two matrices to form a new matrix. If [C] = [A] - [B] then c;; = a;; — b;; for all i and j.

An example
215 _[031
Cratl_m - |30 (1-3) -] _[2 -2 4
(1 = Al-tel = [(6—2) (3-1) 40 [4 2 4]

Matrix subtraction is commutative and associative.

11. Matrix multiplication of a pair of matrices [A] and [B] to form a new matrix [C] is only
defined if the number of columns of [A] is equal to the number of rows of [B]. If the
size of [A] is n x m and the the size of [B] is m x r, then multiplication of these two
matrices is given by

[Cl1 = [A]l [B]

nxr nxXm mxr
where

m
c,,=2aﬂ‘bk, i=1ton, j=lt01'
k=1

The number of rows of [C] is the same as the number of rows of [A] and the number of
columns of [C] is the same as the number of columns of [B]. An example

=[5 m =[5 5 o

(] =[ALB] = | DEHD® DEHO) DOHAO)
)SH@@B) BNOEHD(I) (BXTHA)O0)
2x3  2x22x3  *+
2124 7]
47 54 21

Matrix multiplication is not communative (i.e., [A][B] # [B][A]) but it is associative

(i.e., (IAIBDIC] = [ANBIIC]).

12. The determinant of a matrix is a single number that is only defined for square matrices.
The determinant has several uses, principly in matrix inversion (to be described next).
Although it is possible to calculate the determinant for a square matrix of any size we
only need to consider three cases:

a. Let [A] = [a;]. Then the determinant of [A] written | A| =a,,
1
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a 232
b. Let[A] = [ 1 ]
) 2
2x2

Then IAl=ajjay; —ajrag
Example
21
[A] = [3 4]
Al = @@ -@E) =5
a;1 2)2 23

c. Let[A] =] a3 a3 axn
3x3 a3) 233 23

Then [Al= a)j(apa3; - a32273) - 2)2(821233 — 831223) + 213(a21332 — 231222)

Example
123
[A]=|010
321
Al = 1(1-0)-2(0-0)+3(0-3)=-8

13. The inverse of a matrix is a new matrix of the same size as the original matrix. The
inverse operation is only defined for square matrices with nonzero determinants.
Although it is possible to calculate the inverse of a square matrix of any size (although it
is very difficult for large matrices ), we only need to consider three cases:

a. Let[A] =[a,,]. Then the inverse matrix for [A] writen [A]} is [A]'= [-ai—l]

b, Lct[A]=|:au axz]_ Then [A" = _1_[ 2 —axz]
az; 3 |A| -2y 2y
Example
25
a1 =3 3]
lal =@@3)-6)x1 =1
a_13-5 3 -5
(AT = '1'[-1 2] [—1 2]
2;; 212 a3 .
c. Let [A] = 3.21 azz 3,23 . Then [A]_l= TA—l[B]T
231 a3; a3
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by by by
The matrix [B] = by by, by | is called the classical adjoint matrix of the matrix [A].
by by by,
The entries of [B] are given by
bj1 = apay; — axap
bz =-2j233 + 2323,
bi3= 27123 - a31an
by1 =-ajp233 + aj3a3
by = ajjaz3 - aj3ay
by =-ajja3; + apay;
b3 = 2223 — 233
b3z =-ajja3 + 2j3a3]
biz = ajjan - apay)
Example
2 3 -
Let[A] =|0 -4 2
1-1 5

Then [Al = 46and

b= (4)(35) - (2)(-1)=-18
bia=—(0)(3)+ (2 = 2
bi3= (01 - (A)( D= 4
by =—( 3)( 3) + (A1) =-11
b= (2)(3) - (D= 14
byy=—(2)-1) + (3)( D= 35
byi= (3)(2) - (4(4)=-10
ba=—(2)(2) + (4(0)= 4
byz= (2)(4) - (0)( 3)= -8

18/46 11746 10/46
and [A]'=|-2/46 -14/46 446
~4/46 -5/46 8/46
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Problems

1. Given the following matrices,

a1 = [2 7]
find:

a. [Al", [B]"
b. [A] + [B], [B] +[A]
c. [A] - [B], [B] - [A]

2. Given the following matrices,
321
[A] =]2 4 2
123
find:
a. [A]", [B]"

b. [A] + [B], [B] +[A]
c. [A]-[B], [B]-[A]

3. Given the following matrices,

=110

find:
a. [B]"[K]

b. [K][B]
c. [ IKI[B]

d. [A][B], [B][A]
e. IAI, |B|
£ [A™Y, [B7Y

e

[ A
Pdlantiion’

[B]

- = N

[}
| ———

d. [A][B], [B][A]
e. |Al, IB]
£ [A™Y, [B7Y

w [

d. BI'I™ " (K1 1(B]
e. Let [C] =[B]" [KI[B], find [C']and | C|
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PROPERTIES OF SELECTED AQUIFER
MATERIALS

Table AV.1 Physical properties of selected aquifer materials.

Hydraulic Specific Bulk
Material Conductivity, K Storage, S;*  Porosity,n  Density, py,
(m/s) (m?) (kg/m3)
Gravel 10° - 103 0.1-0.3 0.20- 040 1200 - 1800
Sand 102 - 10® 0.1-04 0.25-0.55 1300 - 1900
silt 102 - 107 02-04 0.35-0.60 1200 - 1800
Clay 107 - 1010 0.05 - 0.2 0.35-0.55 1000 - 1600
Sandstone 10% - 10 0.01 - 0.2 0.25-0.50 2000 - 2400
Siltstone 10° - 1012 0.01 - 02 0.20- 0.40 2000 - 2400
Shale 107 - 101 0.01-008  0.01-0.10 2000 - 2400
Limestone
(No solution cavities) 10" - 10'1° 001-005  0.01-020 2000 - 2500
(solution cavities) 102 - 10 001-020 005-055 1800 -2000
Igneous & Metamorphic
(fractured) 10%- 10 0.01-005  0.05-0.15 2000 -2500
(unfractured) 107% 1074 ~0 0.01-0.05 2400 - 3000
Basalt
(fractured) 102- 107 0.01-020  0.05-035 2000 - 2400
(unfractured) 1019 104 ~0 0.01-0.10 2400 - 2800
Tuff/Breccia 10%- 10” 0.01-005  0.05-025 2000 - 2400

* These values are for unconfined aquifers (see Chapter 20). Values for confined aquifers
will be 100 to 1000 times smaller.
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Table AV.2 Aquifer dispersivities after Anderson(1979).

Material Porosity, n ap apfay,
(m) (m)
Alluvium 0.40 61 0.3

0.40 61 0.01
0.30 30.5 1.0
- 30.5 1.0

- 15 0.067

0.20 12 0.33
0.20 3.05 0.3
Glacial Deposits 0.35 21.3 0.2
Limestone 0.35 61 0.3
0.25 6.7 0.1
Fractured Basalt 0.10 91 1.5
0.10 91 1.0
- 30.5 0.6
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Advection, 470

Analytical method, 5-9

Apparent groundwater velocities,
232-248

Aquifer properties, 485-486

Assembling global system of equations,

A 142-151 b 1. 79.80

xisymmetric lems, 21, 79-80,

166-16'11),1'0462-463, 468, 477

Backward difference, 57
Bandwidth (see Semi-bandwidth)
Boundary conditions:
(see Dirichlet and Neumann boundary
conditions)
Boundary value problem, 5

Central difference, 57
Choleski Method:
nonsymmetric matrix, 177-181,
185-189
solute transport, 198-200
steady-state, saturated flow, 191
symmetric matrix, 181-185, 189-191
transient, saturated flow, 203-212
Collocation Method, 33
Computer Programs:
main programs:
pGWl 257-262
GW2 262-267
GW3, 267-280
GW{4, 280-283
ST1, 283-302
subprograms:
ASMBAD, 423-443
ASMBK, 331-362
ASMBKGC, 406-419
BOUND, 325-330
DECOMP, 363-370
DUMP, 393-399
ELEMENT, 311-317
INITIAL, 400-405
NODES, 303-310
MATERL, 318-324
RHS, 420-422
SOLVE, 363-370
VELOCITY, 371-392
Confined aquifer, 446-448
Consistent formulation, 52, 62-63
Coordinate systems:
local, 101
global, 101

Coordinate system transformations:
one-dimensional, 103, 115-117
two-dimensional, 117-118
three-dimensional, 118-119

Crank-Nicholson Method, 57

Decay constant, 65, 474

Derivation of governing equations:
solute transport, 464-476
steady-state, saturated flow, 458-461
steady-state, unsaturated flow,

460-461

transient, saturated flow, 464-467
transient, unsaturated flow, 465-467

Diffusion, 470-471

Diffusivity, 220

Dirichlet Boundary Conditions, 152

Dirichlet Nodes, 16

Dispersion coefficients, 470-471

Dispersivity, 471-472

Distribution coefficient, 64, 473

Distributed source or sink, 159

Effective stress, 465
Eigenvalues, 194
Element matrix formulas:

advection-dispersion matrix, 87-88,
123-125, 133-135
linear bar element, 89
linear rectangle element, 98-99
linear triangle element, 93-94
capacitance matrix, 86-87, 122-123
132-133
linear bar element, 89
linear rectangle element, 97-98
linear triangle element, 93
conductance matrix, 86, 120-121, 136,
131-132
linear bar element, 89
linear rectangle element, 97
linear triangle element, 92-95
sorption matrix, 88, 125
linear bar element, 90
linear rectangle element, 98-99
linear triangle, 94
Element matrix subprograms:
advection-dispersion matrix [D(®)):
linear bar element, 435
linear parallelepiped element, 440
linear quadrilateral element, 438
linear rectangle element, 437
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linear triangle element, 435
apparent groundwater velocity:
cubic bar element, 378
cubic parallelepiped element, 390
cubic quadrilateral element, 384
linear bar element, 377
linear parallelepiped element, 385
linear quadrilateral element, 381
linear rectangle element, 380
linear triangle element, 379
quadratic bar element, 377
quadratic parallelepiped element, 387
quadratic quadrilateral element, 382
capacitance matrix [C(®)]:
linear bar element, 414
linear parallelepiped element, 418
linear quadrilateral element, 416
linear rectangle element, 415
linear triangle element, 415
conductance matrix [K©)]:
cubic bar element, 345
cubic parallelepiped element, 359
cubic quadrilateral element, 352
linear bar element, 344
linear parallelepiped element, 354
linear quadrilateral element, 348
linear rectangle element, 347
linear triangle element, 346
quadratic bar element, 344
Quadratic parallelepiped element, 356
quadratic quadrilateral element, 350
sorption matrix [A®)]:
linear bar element, 429
linear rectangle element, 430
linear triangle element, 430
linear quadrilateral element, 431
linear parallelepiped element, 433
Element resultants, 226
Examples:
advection-dispersion matrix calculation
(linear triangle), 95-96
advection-dispersion matrix derivation
(linear rectangle), 99-100
analytical solution, 8
apparent groundwater velocity
calculation, 235, 236, 240-248
assembling global system of equations,
143-144, 144-145, 147-152
average value of head, 231-232
capacitance matrix derivation (linear
rectangle), 100-101
Choleski method, 178-179, 180-181,
184-185, 187, 188-189, 190

Index

concengtration at point within element,

22

conductance matrix calculation (linear
quadrilateral), 138-141

conductance matrix calculation (linear
triangle), 95

conductance matrix derivation (linear
triangle), 94

head a; point within element, 227-228,
22

Jacobian matrix calculation, 117,
119-120

modification of global system of
equations, 154-155

Newton-Raphson method, 210-212

number of Gauss points, 138

numerical integration, 128-130

Picard iteration, 203-205, 206-208

semi-bandwidth calculation, 16

size of time step, 194-195, 199-200

solute transport equation, 69-73

sorption matrix derivation (linear
triangle), 91-92

specified flow matrix, 47, 158, 159, 160,
162-165

steady-state, saturated groundwater flow,
35-42

transient, saturated groundwater flow,
57-60

Finite difference method, 9-10, 55-57
Finite element mesh:
examples, 22-27
rules for drawing, 16-21
Finite element method, 9-11
Fluid compressibility, 465
Forward difference, 57
Full matrix storage, 177

Galerkin's method, 34
Gauss point, 126

Gauss points (table), 127
Gauss quadrature, 126-131

Hysteresis, 213

Initial value problem, 5
Interpolation functions:
continuity, 80-81
convergence, 81-82
definition, 30
one-dimensional elements, 32, 89,
103-105
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two-dimensional elements, 90, 96,
105-109
three-dimensional elements, 109-115

Instability, 192
Integration by parts, 37
Isoparametric elements, 82-85

Jacobian matrix, 116-120
Jacobian matrix inverse, 116

Linear algebra, 478-483
Lumped formulation, 53-54, 63-64

Mass balance calculations, 452-456

Matrix operations, 478-483

Mechanical dispersion, 471

Method of weighted residuals, 30

Model calibration, 451, 456

Model prediction, 451, 456

Model verification, 451, 456

Modification of system of equations,
152-165

Neumann boundary conditions, 155-165
Neumann nodes, 16

Newton Raphson Method, 208-212
Node numbering, 16-18

Node placement, 16-18

Nonuniform flow, 475

Numerical integration, 126

Numerical oscillations, 192-198
Numerical stability, 192
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Picard iteration, 202-208, 213-219
Point source or sink, 155

Relatively dry porous media, 220
Residual, 30

Retardation factor, 475

Richard's equation, 467

Sensitivity analysis, 450

Semibandwidth, 16

Shape functions, 82-85

Solute transport:
saturated groundwater flow, 76-78
steady-state groundwater flow, 65-69
transient groundwater flow, 73-76
uniform flow, 64-65

Sorption, 473

Specific moisture capacity, 61

Specific storage, 465

Subdomain method, 33-34

Subparametric elements, 82-85

Superparametric elements, 82-85

Time step (choice of), 191-200

Unconfined aquifer, 447-450
Uniform groundwater flow, 64, 474

Variational method, 30
Vector storage, 185-190
Verification, 451, 456

Weighting function, 30-34
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