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To Fred



Preface to the Second Edition

The reception given to the first edition of this book, especially by nonstatis-
ticians, has been most pleasing. Yet several readers have written to me asking
for further details on, or clarifications of, methods and examples, and suggest-
ing the preparation of sets of problems at the end of each chapter so that the
book would be more useful as a text. This second edition was prepared, in
large part, as a response to these requests.

Methodological research on the analysis of categorical data based on the
use of loglinear models has continued at a rapid pace over the last three years.
In this new edition, I have attempted to expand the discussion of several
topics, by drawing selectively from this new literature, while at the same time
preserving the existing structure of chapters and sections.

While not a single chapter remains completely unchanged, the bulk of the
new material consists of (1) problem sets at the end of Chapters 2 through 8,
(2) expanded discussion of linear logistic response models and polytomous
response models in Chapter 6, (3) a further discussion of retrospective epi-
demiological studies in Chapter 7,and (4) a new appendix on the small-sample
behavior of goodness-of-fit statistics. I have added briefer materials and
references elsewhere and corrected several minor errors from the first edition.
A relatively major correction has been made in connection with the theorem
on collapsing tables in Section 3.8.

I gave considerable thought to the preparation of an additional appendix
on computer programs for the analysis of categorical data, but in the end I
resisted the temptation to do so. Many programs for maximume-likelihood
estimation in connection with loglinear models are now in widespread use.
These include the GLIM package prepared in England under the guidance of
John Nelder and the sponsorship of the Royal Statistical Society, and various
adaptations of iterative scaling programs originally prepared by Yvonne
Bishop and Shelby Haberman (e.g., BMDP3F in the BMDP Programs dis-
tributed by the UCLA Health Sciences Computing Facility). Most users are
likely to find one or more suitable programs available at their own computer
installation that can be used to work through the examples and problems in
this book. My primary reason for not providing any further guidance to com-
puter programs is that I believe there will be major changes in both their
availability and in the numerical methods they will be using within the next
two to three years. Thus any explicit advice I could offer now would be out of
date soon after the publication of the second edition.

Many friends, colleagues, and students provided me with suggestions, com-
ments, and corrections for this edition. These include John Duffy, O. Dudley
Duncan, David Hoaglin, J. G. Kalbfleisch, Kinley Larntz, S. Keith Lee,
William Mason, Michael Meyer, Doug Ratcliff and Stanley Wasserman. The
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preparation of this edition was partially supported by Office of Naval
Research Contract N00014-78-C-0600 to the University of Minnesota.

For the typing and organization of the final manuscript, as well as for the
updating of the indexes, I am indebted to Linda D. Anderson.

New Brighton, Minnesota Stephen E. Fienberg
November 1979



Preface to the First Edition

The analysis of cross-classified categorical data has occupied a prominent
place in introductory and intermediate-level statistical methods courses for
many years, but with a few exceptions the only techniques presented in such
courses have been those associated with the analysis of two-dimensional
contingency tables and the calculation of chi-square statistics. During the
past 15 years, advances in statistical theory and the ready availability of
high-speed computers have led to major advances in the analysis of multi-
dimensional cross-classified categorical data. Bishop, Fienberg, and Holland
[1975], Cox [1970a], Haberman [1974a], Lindsey [1973], and Plackett
[1974] have all presented detailed expositions of these new techniques, but
these books are not directed primarily to the nonstatistical reader, whose
background may be limited to one or two semesters of statistical methods at
a noncalculus level.

The present monograph is intended as an introduction to the recent work
on the analysis of cross-classified categorical data using loglinear models.
I have written primarily for nonstatisticians, and Appendix I contains a
summary of theoretical statistical terminology for such readers. Most of the
material should be accessible to those who are familiar with the analysis of
two-dimensional contingency tables, regression analysis, and analysis-of-
variance models. The monograph also includes a variety of new methods
based on loglinear models that have entered the statistical literature
subsequent to the preparation of my book with Yvonne Bishop and Paul
Holland. In particular, Chapter 4 contains a discussion of contingency tables
with ordered categories for one or more of the variables, and Chapter 8
presents several new applications of the methods associated with incomplete
contingency tables (i.e., tables with structural zeros).

Versions of material in this monograph were prepared in the form of notes
to accompany lectures delivered in July 1972 at the Advanced Institute on
Statistical Ecology held at Pennsylvania State University and during 1973
through 1975 at a series of Training Sessions on the Multivariate Analysis of
Qualitative Data held at the University of Chicago. Various participants at
these lectures have provided me with comments and suggestions that have
found their way into the presentation here. Most of the final version of
the monograph was completed while I was on sabbatical leave from the
University of Minnesota and under partial support from National Science
Foundation Grant SOC72-05257 to the Department of Statistics, Harvard
University, and grants from the Robert Wood Johnson Foundation and the
Commonwealth Fund to the Center for the Analysis of Health Practices,
Harvard School of Public Health.
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I am grateful to Stephen S. Brier, Michael L. Brown, Ron Christensen,
David R. Cox, William Fairley, S. Keith Lee, William Mason, and Roy E.
Welsch for extremely valuable comments and suggestions. Many people have
provided me with examples and other materials, from both published and
unpublished works, that have found their way into the final manuscript,
including Albert Beaton, Richard Campbell, O. Dudley Duncan, Leo
Goodman, Shelby Haberman, David Hoaglin, Kinley Larntz, Marc Nerlove,
S. James Press, Ira Reiss, Thomas Schoener, and Sanford Weisberg. Most of
all, I am indebted to Yvonne Bishop, Paul Holland, and Frederick Mosteller,
whose collaboration over a period of many years helped to stimulate the
present work.

For the typing and organization of the final manuscript, I wish to thank
Sue Hangge, Pat Haswell, Susan Kaufman, and Laurie Pearlman.

New Brighton, Minnesota Stephen E. Fienberg
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1
Introduction

1.1 The Analysis of Categorical Data

A variety of biological and social science data come in the form of cross-
classified tables of counts, commonly referred to as contingency tables. The
units of a sampled population in such circumstances are cross-classified
according to each of several categorical variables or sets of categories such
as sex (male, female), age (young, middle-aged, old), or species. Intermediate-
level statistics textbooks for biologists, such as Bliss [1967], Snedecor and
Cochran [1967], and Sokal and Rohlf [1969], focus on the analysis of such
data in the special case of two-way cross-classifications, as do textbooks for
social scientists, such as Blalock [1972]. More detailed treatments, by
Maxwell [1961] and by Fleiss [1973], are also available. A review of the
material presented in one or more of these books is adequate preparation for
this presentation.

When we look at several categorical variables simultaneously, we say
that they form a multidimensional contingency table, with each variable
corresponding to one dimension of the table. Such tables present special
problems of analysis and interpretation, and these problems have occupied
a prominent place in statistical journals since the first article on testing in
2 x 2 x 2tables by Bartlett [1935].

Until recent years the statistical and computational techniques available
for the analysis of cross-classified data were quite limited, and most re-
searchers handled multidimensional cross-classifications by analyzing
various two-dimensional marginal totals, that is, by examining the categorical
variables two at a time. This practice has been encouraged by the wide
availability of computer program packages that automatically produce
chi-square statistics for all two-dimensional marginal totals of multi-
dimensional tables. Although such an approach often gives great insight
about the relationship among variables, it
(a) confuses the marginal relationship between a pair of categorical variables

with the relationship when other variables are present,

(b) does not allow for the simultaneous examination of these pairwise
relationships,

(c) ignores the possibility of three-factor and higher-order interactions among
the variables.

My intention here is to present some of the recent work on the statistical
analysis of cross-classified data using loglinear models, especially in the
multidimensional situation. The models and methods that will be considered
do not have the shortcomings mentioned above. All the techniques described
will be illustrated by actual data. Readers interested in mathematical proofs
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should turn to the source articles or books cited.

I view this monograph as an introduction to a particular approach to
the analysis of cross-classified categorical data. For more details on this
approach, including mathematical proofs, various generalizations, and their
ramifications, see Bishop, Fienberg, and Holland [1975] or Haberman
[1974a, 1978]. Other presentations with differing contents or points of view
include Cox [1970a], Gokhale and Kullback [1978], Goodman [1970,
1971b], Grizzle, Starmer, and Koch [1969], Ku, Varner, and Kullback
[1971], Lancaster [ 1969], Lindsey [1973], and Plackett [1974]. Bock [1970,
1975] also discusses the analysis of cross-classified data, based on the notion
of multinomial response relationships much like those considered here.

1.2 Forms of Multivariate Analysis

The analysis of cross-classified categorical data falls within the broader
framework of multivariate analysis. A distinction will be made here between
variables that are free to vary in response to controlled conditions—that is,
response variables—and variables that are regarded as fixed, either as in
experimentation or because the context of the data suggests they play a
determining or causal role in the situation under study—that is, explanatory
variables. Dempster [1971] notes that the distinction between response and
explanatory variables need not be firm in a given situation, and in keeping
with this view, in exploratory analyses, we often choose different sets of
response variables for the same data set.

Of importance in describing various types of models and methods for
multivariate analysis is the class of values assumed by the variables being
examined. In many circumstances, we wish to distinguish among variables
whose values are
(i) dichotomous (e.g., yes or no),

(ii) nonordered polytomous (e.g., five different detergents),

(iii) ordered polytomous (e.g., old, middle-aged, young),

(iv) integer-valued (e.g., nonnegative counts), or

(v) continuous (at least as an adequate approximation).

Variables with values of types (i) through (iv) are usually labeled discrete,
although integer-valued variables might also be treated as if they were
continuous. Here the term categorical will be used to refer primarily to types
(1), (i1), and (iii), and the possibility of type (iv) will be ignored. Mixtures of
categorical and continuous variables appear in many examples.

We can categorize classes of multivariate problems by the types of response
and explanatory variables involved, as in the cross-classification of Table 1-1.
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Table 1-1
Classes of Statistical Problems

Explanatory Variables

Categorical Continuous Mixed
Categorical (a) (b) (c)
Response ]
Variables Continuous (d) (e) (f)
Mixed ? ? ?

The cells in the bottom row of this table all contain question marks in order
to indicate the lack of generally accepted classes of multivariate models and
methods designed to deal with situations involving mixtures of continuous
and discrete response variables. Dempster [1973] has proposed a class of
logit models that is of use here, but his approach has yet to see much applica-
tion. The cells in the middle row correspond to problems dealt with by
standard multivariate analysis, involving techniques such as

(d) analysis of variance,

(e) regression analysis,

(f) analysis of covariance (or regression analysis with some dummy variables).

The work on linear logistic response models by Walker and Duncan
[1967], Cox [1970a], and Haberman [1974a] deals with problems for all
three cells in the first row when there is a single dichotomous response
variable, while the more recent results of Nerlove and Press [1973] handle
multiple response variables. Linear logistic response models will be discussed
to some extent in Chapter 6. Cell (a) of the table corresponds to cross-classified
categorical data problems, and some of the most widely used models for their
analysis will be described in the following chapters.

The models used throughout this book rely upon a particular approach to
the definition of interaction between or among variables in multidimensional
contingency tables, based on cross-product ratios of expected cell values. As
a result, the models are linear in the logarithms of the expected value scale;
hence the label loglinear models. There are several analogies between
interaction in these loglinear models and the notion of interaction in analysis-
of-variance (ANOVA) models. These will be pointed out in the course of the
discussion. The use of ANOVA-like notation is deceptive, however. In
ANOVA models one tries to assess the effects of independent variables on a
dependent variable and to partition overall variability. In contingency table
analysis the ANOVA-like models are used to describe the structural relation-
ship among the variables corresponding to the dimensions of the table. The
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distinction here is important, and the fact that many researchers have not
understood it has led to considerable confusion.

When a distinction is made between explanatory variables and response
variables, loglinear models can be converted into logit or linear logistic
response models, in which one predicts log-odds quantities involving the
dependent (or response) variables using a linear combination of effects due
to the explanatory variables. There is a much closer analogy between these
linear logistic models and the usual ANOVA or regression models. This
point is discussed in considerable detail in Chapter 6.

1.3 Some Historical Background

The use of cross-classifications to summarize counted data clearly predates
the early attempts of distinguished investigators such as Quetelet in the
mid-nineteenth century to summarize the association between variables in a
2 x 2table. Not until the turn of the century, however, did Pearson and Yule
formulate the first major developments in the analysis of categorical data.
Despite his proposal of the well-known chi-square test for independence for
two-dimensional cross-classifications (see Pearson [1900a]), Karl Pearson
preferred to view a cross-classification involving two or more polytomies as
arising from a partition of a set of multivariate data, with an underlying
continuum for each polytomy and a multivariate normal distribution for the
“original” data. This view led Pearson [1900b] to develop his tetrachoric
correlation coefficient for 2 x 2 tables and served as the basis for the approach
adopted by many subsequent authors, such as Lancaster [1957] and
Lancaster and Hamdan [1964]. This approach in some sense also led to
Lancaster’s method of partitioning chi-square, to which I shall return shortly.
The most serious problems with Pearson’s approach were (1) the complicated
infinite series linking the tetrachoric correlation coefficient with the fre-
quencies in a 2 x 2 table and (2) his insistence that it always made sense to
assume an underlying continuum for a dichotomy or polytomy, even when
the dichotomy of interest was dead-alive or employed—unemployed, and
that it was reasonable to assume that the probability distribution over such
a dead-alive continuum was normal.

Yule [1900], on the other hand, chose to view the categories of a cross-
classification as fixed, and he set out to consider the structural relationship
between or among the discrete variables represented by the cross-classifica-
tion. This approach led him to consider various functions of the cross-product
ratio, discussed here in Chapter 2. When there actually is an underlying
continuum for each of two polytomies, the cross-product ratio for a 2 x 2
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table resulting from a partitioning of the two variables simply is not a
substitute for an estimate of the true correlation coefficient of the underlying
continuum (see Plackett [1965] or Mosteller [1968]). Thus the methods
proposed by Yule are not necessarily applicable in cases where the 2 x 2
table is simply a convenient summary device for continuous bivariate data
and the original observations are in fact available.

The debate between Pearson and Yule was both lengthy and acrimonious
(see, e.g., Pearson and Heron [1913]), and in some ways it has yet to be
completely resolved, although the statistical literature of the past 25 years on
this topic would indicate that Yule’s position now dominates. In fact, Yule
can be thought of as the founder of the loglinear model school of contingency
table analysis, and most of the results in this book are an outgrowth of his
pioneering work. However, the notions of Yule were not immediately
generalized beyond the structure of two-dimensional tables. Thirty-five years
passed before Bartlett [1935], as a result of a personal communication from
R. A. Fisher, utilized Yule’s cross-product ratio to define the concept of
second-order interactionina 2 x 2 x 2 contingency table (see Chapter 3).

While the multivariate generalizations of the Yule—Bartlett cross-product
ratio or loglinear model approach were fermenting, the technique of
standardization (see Bishop, Fienberg, and Holland [1975], Chapter 4, and
Bunker et al. [ 1969]) to eliminate the effects of categorical covariates received
considerable attention in the epidemiological literature. Standardization is
basically a descriptive technique that has been made obsolete, for most of
the purposes to which it has traditionally been put, by the ready availability
of computer programs for loglinear model analysis of multidimensional
contingency tables. Thus it is not discussed in detail in this book.

During the past 25 years, the statistical literature on the analysis of
categorical data has focused primarily on three classes of parametric models:
(1) loglinear models, (2) additive models, and (3) models resulting from
partitioning chi-square, which may be viewed as a combination of multi-
plicative and additive. This last class of models, which is usually associated
with the work of Lancaster, is much misunderstood, as Darroch [1974, 1976
has recently noted. In addition, there has been a related literature on measures
of association (e.g., Goodman and Kruskal [1954, 1959, 1963, 1972]).
Although different groups of authors use different methods of estimation
(maximum likelihood, minimum modified chi-square, or minimum dis-
crimination information), almost all of the recent literature can be traced back
either to the 1951 paper of Lancaster or to the work of S. N. Roy and his
students at North Carolina in the mid-1950s (e.g., Roy and Kastenbaum
[1956], Roy and Mitra [ 1956]). It is interesting that Roy’s students developed



6 Introduction

his ideas using both the minimum modified chi-square approach (e.g.,
Bhapkar and Koch [1968a, b], Grizzle, Starmer, and Koch [1969]) and the
method of maximum likelihood (e.g., Bock [1970], Kastenbaum [ 1974]).

The major advances in the literature on multidimensional contingency
tables in the 1960s grew out of Roy and Kastenbaum’s work and papers by
Birch [1963], Darroch [1962], Good [1963], and Goodman [1963, 1964].
These advances coincided with the emergence of interest in and the availabi-
lity of high-speed computers, and this work received substantial impetus from
several large-scale data analysis projects. Much of the recent literature on
loglinear models can be linked directly to the National Halothane Study
(see Bunker et al. [1969], Bishop, Fienberg, and Holland [1975], Mosteller
[1968]), while problems in the Framingham Study led to work on linear
logistic models involving both categorical and continuous predictor variables
(e.g., Cornfield [1962], Truett, Cornfield, and Kannel [1967]). The Framing-
ham study work paralleled work on linear logistic models by Cox [1966] and
had ties to the earlier contributions of Berkson [ 1944, 1946 .

A fairly complete bibliography for the statistical literature on contingency
tables through 1974 is given by Killion and Zahn [1976].

1.4 A Medical Example

Table 1-2 presents data compiled by Cornfield [1962] from the Framingham
longitudinal study of coronary heart disease (see Dawber, Kannel, and Lyell
[1963] for a detailed description). Variable 1 is a binary response variable
indicating the presence or absence of coronary heart disease, while variable 2

Table 1-2
Data from the Framingham Longitudinal Study of Coronary Heart Disease (Corn-
field [1962])

Coronary Serum Systolic

Heart Cholesterol Blood Pressure (mm Hg)

Disease (mg/100 cc) <127 127146 147-166 167+
<200 2 3 3 4

Present 200-219 3 2 0 3
220-259 8 11 6 6
>260 7 12 11 11
<200 117 121 47 22

Absent 200-219 85 98 43 20
220-259 119 209 68 43
>260 67 99 46 33
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(serum cholesterol at four levels) and variable 3 (blood pressure at four levels)
are explanatory. The data as displayed in Table 1-2 form a 2 x 4 x 4 three-
dimensional contingency table.

This example is typical of those encountered in medical contexts. Although
serum cholesterol and blood pressure might well be viewed as continuous
variables, the values of these variables have been broken up into four
categories each, corresponding to different levels of a priori perceived risk of
coronary heart disease. An alternative to this approach would be to treat the
variables as continuous and to use a regression-like logistic response model
that expresses the dependency of coronary heart disease in a smooth and
simple fashion.



2
Two-Dimensional Tables

2.1 Two Binomials

We often wish to compare the relative frequency of occurrence of some
characteristic for two groups. In a review of the evidence regarding the
therapeutic value of ascorbic acid (vitamin C) for treating the common cold,
Pauling [1971] describes a 1961 French study involving 279 skiers during
two periods of 5-7 days. The study was double-blind with one group of 140
subject receiving a placebo while a second group of 139 received 1 gram of
ascorbic acid per day. Of interest is the relative occurrence of colds for the
two groups, and Table 2-1 contains Pauling’s reconstruction of these data.

If P, is the probability of a member of the placebo group contracting a cold
and P, is the corresponding probability for the ascorbic acid group, then we
are interested in testing the hypothesis that P, = P,. The observed numbers
of colds in the two groups, x;; = 31 and x,, = 17 respectively, are observa-
tions on independent binomial variates with probabilities of success P, and
P, and sample sizes n; = 140 and n, = 139. The difference in observed
proportions,

has mean P, — P, and variance

P,(l—P1)+P2(1—P2)
n, n,

Table 2-1
Incidence of Common Colds in a Double-Blind Study Involving 279 French Skiers
(Pauling [1971])

(a) Observed values
Cold No Cold Totals

Placebo 31 109 140
Treatment

Ascorbic Acid 17 122 139

Totals 48 231 279

(b) Expected values under independence
Cold No Cold | Totals

Placebo 24.1 1159 140
Ascorbic Acid 239 1151 139
Totals 48 231 279

Treatment
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If P, = P,,then we could estimate the common value by

total no. of colds 2.1)
ny + n,

o

and the estimated variance of P, — P, by
= = (1 1 .
Pl —-P)(—+—]. (2.2)
nyo on,
Assuming that the hypothesis P, = P, is correct, a reasonable test can be

based on the approximate normality of the standardized deviate

z= P, . (2.3)

a value that is significant at the 0.05 level. If we take these data at face value,
then we would conclude that the proportion of colds in the vitamin C group
is smaller than that in the placebo group. This study, however, has a variety
of severe shortcomings (e.g., the method of allocation is not specified and the
evaluation of symptoms was largely subjective). For a further discussion of
these data, and for a general review of the studies examining the efficacy of
vitamin C as a treatment for the common cold up to 1974, see Dykes and
Meier [1975].

As an alternative to using the normal approximation to the two-sample
binomial problem, we could use the Pearson chi-square statistic (see Pearson
[1900a]),

x? =Z (Observed — Expected)? (2.4)
Expected ’ '

where the summation is over all four cells in Table 2-1. We obtain the expected
values by estimating P, = P, = P (the null value) as P = 48/279; that is, we
multiply the two sample sizes n, and n, by P, obtaining the expected values
for the (1, 1) and (2, 1) cells, and then get the other two expected values by
subtraction. Table 2-1b shows these expected values, and on substituting the
observed and expected values in expression (2.4) we get X2 = 4.81, a value
that may be referred to a y? distribution with 1 d.f. (degree of freedom). A large
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value of X2 corresponds to a value in the right-hand tail of the ¥ distribution
and is indicative of a poor fit. Rather than using the x? table we note that the
square root of 4.81 is 2.19, the value of our z-statistic computed earlier. Some
elementary algebra shows that, in general, z2 = X2 Ifweset x,, = n; — x,,
and x,, = n, — X5, then

<zm_m>2

J2 n N
X1+ Xay | [ X12 + X3 l+ 1 (2.5)
nl + nZ nl + n2 nl n2

_ Dxaalny = x5,) = x54(ny = x11)]%(ny + ny)
(11 + X21)(X12 + x22)n0,

2 2
[Xll —n,(}“ +x21>:l [xlz_n1<X12+xu>:|
X2 ny + n, + ny + n,
n X131+ Xpy n.[ X2t X2
I Cr— 1 —
ny + n, ny + n,
. —n xi1 + %20\ | X0 —n X124 %22 ) | (2.6)
21 2 hnl T, N 22 2 _——"1 + n, .
n x“ +XA n x12+X22
o ———— N
ny +n, ny, +n,

_ Dxualny = x50) = x54(ny = x4 )1%(ny + 1))
(X171 + X21)(xy5 + X30)n4n,

and

+

The use of the statistic X? is also appropriate for testing for independence
in 2 x 2 tables, as noted in the next section.

Throughout this book we use the Greek quantity y? to refer to the chi-
square family of probability distributions, and the Roman quantity X2 to
refer to the Pearson goodness-of-fit test statistic given in general by expression
(2.4).

2.2 The Model of Independence

We have just examined a 2 x 2 table formed by considering the counts
generated from two binomial variates. For this table the row totals were fixed



Two-Dimensional Tables 11

Table 2-2
Counts for Structural Habitat Categories for sagrei Adult Male Anolis Lizards of
Bimini (Schoener [1968])

(a) Observed values
Perch Diameter

(inches)
<4.0 > 4.0 Totals
>4.75 32 11 43
Perch Height
(feet) <475 86 35 121
Totals 118 46 164
(b) Expected values under independence
Diameter
<4.0 > 4.0 Totals
) > 4.75 30.9 12.1 43
Height
<475 87.1 339 121
Totals 118 46 164

by design. In other circumstances we may wish to consider 2 x 2 tables where
only the total for the table is fixed by design. For example, ecologists studying
lizards are often interested in relationships among the variables that can be
used to describe the lizard’s habitat. Table 2-2a contains data on the habitat
of sagrei adult male Anolis lizards of Bimini, originally reported by Schoener
[1968] in a slightly different form. A total of 164 lizards were observed, and
for each the perch height (variable 1) and perch diameter (variable 2) were
recorded. The two variables were dichotomized partially for convenience and
partially because the characteristics of interest for perches are high versus
low and wide versus narrow.

Let us denote the observed count for the (i, j) cell by x;; and the totals for
the ith row and jth column by x;, and x, ;, respectively. Corresponding to
this table of observed counts is a table of probabilities,

Variable 2
1 2 Totals

L pia P12 Pi+
Variable | (2.7)

2| pa | P22 P2+

Totals | p4y | P42 1
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where the probabilities {p;;} add to 1, p;s = p;; + piz, and p, ;= py; + pa;.
In the two-binomial example we wanted to compare two proportions. In
the present situation we wish to explore the relationship between the two
dichotomous variables corresponding to rows and to columns, that is, to
perch height and perch diameter.

If perch height is independent of perch diameter, then

pi; = Pr{row category = iand column category = j}
= Pr{row category = i} Pr{column category = j}
=Pi+DP+j (2.8)

fori=1,2and; = 1, 2. Since only the total sample size N is fixed, {x;;} is an
observation from a multinomial distribution with sample size N and cell
probabilities {p;;}. The expected value of x;; (viewed as a random variable) is
m;; = Np,;, and under the model of independence m;; = Np; . p. ;. Finally, if
we substitute the observed row proportion x;, /N for p;, and the observed
column proportion x ., ;/N for p, ;, we get the well-known formula for the
estimated expected value in the (i, j) cell:

r;1ij=x,-+x+j/N. (29)

Table 2-2b displays the estimated expected values for the lizard data
(assuming that perch height is independent of perch diameter). We can then
test this hypothesis of independence using the Pearson chi-square statistic of

expression (2.4):
2 2
X2 = Z Z (Xij - Xi+x+j/N)2
Xi+ X4 /N

i=1j=1

Foliss o . (2.10)
Xp+X24 X4 1 X4 2
For the data in Table 2-2 X? = 0.18, and comparing this value with a table
for the ¥? distribution with 1 d.f., such as in Appendix III, we conclude that
the model of independence of perch height and perch diameter fits the data
quite well.

Table 2-3a presents a set of data similar to that in Table 2-2a, but for a
different species of Anolis lizards, distichus, and a different size, adults and
subadults. Were perch height and perch diameter independent here, we would
expect the entries in the table to be as in Table 2-3b. The model of indepen-
dence, if applied to the data in Table 2-3a, yields X? = 1.83, and again the
model fits the data quite well.
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Table 2-3
Counts for Structural Habitat Categories for distichus Adult and Subadult A4nolis
Lizards of Bimini (Schoener [1968])

(a) Observed values

Perch Diameter

(inches)
<40 > 4.0 Totals
. > 475 61 41 102
Perch Height
(feet) <475 73 70 143
Totals 134 111 245
(b) Expected values under independence
Diameter
<40 > 4.0 Totals
> 4.75 55.8 46.2 102
Height
<475 78.2 64.8 143
Totals 134 111 245

We note that X? as given by expression (2.10) is the same as X2 in ex-
pression (2.6), provided we equate the totals in the corresponding tables,
that is, provided we set

ny=X;4, Hy=x,,, and N =n; +n,.
2.3 The Loglinear Model

In the two-dimensional tables just examined, the estimated expected values
were of the form

A Xig Xy

mij N > i=1’25 j=1,2, (211)

both under the model of independence of row and column variables and
under the model of equality of binomial proportions (more generally referred
to as the model of homogeneity of proportions). The hat in expression (2.11) is
a reminder that m;; is a parameter being estimated by ;.

Taking the natural logarithm of both sides of equation (2.11),

log m;; = log x;, + log x,; — log N, (2.12)

and thinking in terms of an I x J table with I rows and J columns reveals a
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close similarity to analysis-of-variance notation. Indeed, the additive form
suggests that the parameter m;; be expressed in the form

log m;; = u + uy ) + Uy, (2.13)

where u is the grand mean of the logarithms of the expected counts,

1 I J
u= Z Z log m, (2.14)

i=1j=1

u + u, is the mean of the logarithms of the expected counts in the J cells at
level i of the first variable,

J
u+ul(,~)=.llz log m,-j, (2.15)
i=1
and, similarly,

I
U+ iy = ;Z log m;. (2.16)

i=1

Because u, ;) and u,;, represent deviations from the grand mean u,

Zu”,’)=zllz(ﬁ=0- (217)
i J

In the case of the model of homogeneity of proportions, n; = x;, is fixed,
and thus
log m;; = —log (n, + n,) + logn; + log x ;. (2.18)

The term u,; in the corresponding model of the form (2.13) is fixed by the
sample design and is not otherwise directly interpretable.

It is rarely the case that the model of independence fits as well as it did in the
two examples in the preceding section, and this result is all the more surprising
in that the frequency of wide perches tends to decrease with increasing perch
height in many natural habitats. If we think in terms of perch height and perch
diameter interacting, we can add an “interaction term” to the independence
model, yielding

log m;; = u + uy + uygy + Uy, (2.19)

where, in addition to (2.17), we have

J

I
Z Uyaij) = Z Uz = 0. (2.20)

i=1 j=1
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For the example on vitamin C and the common cold, a term u,,;; would
represent the fact that the two binomial proportions are not equal. The model
given by expressions (2.19), (2.17), and (2.20) is the most general one for the
two-dimensional table.

2.4 Sampling Models

There are three commonly encountered sampling models that are used for

the collection of counted cross-classified data:

(1) Poisson: We observe a set of Poisson processes, one for each cell in the
cross-classification, over a fixed period of time, with no a priori knowledge
regarding the total number of observations to be taken. Each process
yields a count for the corresponding cell (see Feller [1968]). The use of
this model for contingency tables was first suggested by Fisher [1950].

(2) Multinomial: We take a fixed sample of size N and cross-classify each
member of the sample according to its values for the underlying variables.
This was the model assumed for the lizard examples of Section 2.3.

(3) Product-Multinomial: For each category of the row variable we take a
(multinomial) sample of size x;, and classify each member of the sample
according to its category for the column variable (the roles of rows and
columns can be interchanged here). This was the sampling model used
in the example on vitamin C and the common cold.

A more technical discussion of these sampling models will be given after
multidimensional tables have been considered. The basic result of interest
here is that the three sampling schemes lead to the same estimated expected
cell values and the same goodness-of-fit statistics. (For a more general
statement of this result, see the theoretical summary in Appendix I1.)

Some stress has been placed on the sampling model in this section, but
it is equally important to distinguish between response variables and
explanatory variables. For the example of Table 2-1, which has a product-
binomial sampling model, treatment (placebo or vitamin C) is an explanatory
variable and the occurrence of colds is the response variable. For the two
lizard examples, both perch height and perch diameter can be viewed as
response variables, and the sampling model is approximately Poisson. It is
also possible to have a Poisson or a multinomial sampling model with one
response and one explanatory variable. For example, suppose we take a
random sample of husband-wife pairs and cross-classify them by voting
behavior (e.g., liberal or conservative) in the last election, with the husband’s
voting behavior as the row variable and the wife’s voting behavior as the
column variable. If we wish to assess the effect of the husband’s behavior
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Table 2-4
Piano Choice of Soloists Scheduled for the 1973-1974 Concert Season, for Selected
Major American Orchestras

Piano Choice
Orchestra Steinway Other Totals
Boston Symphony 4 2 6
Chicago 13 1 14
Cleveland 11 2 13
Minnesota 2 2 4
New York Philharmonic 9 2 11
Philadelphia 6 0 6
Totals 45 9 54

on the wife, for example, the wife’s behavior is a response variable and the
husband’s behavior an explanatory variable. If we condition on the husband’s
behavior, we go from a multinomial sampling model to a situation based
on a product-multinomial model.

It must be noted that not all two-dimensional tables are necessarily
generated by one of the three sampling models listed above. Table 2-4
presents data on the piano choice of soloists scheduled during the 1973-1974
concert season, for selected major American orchestras. For these data the
basic sampling unit is the soloist; a given soloist may appear with several
orchestras during a concert season, however, and in all appearances he or
she will use the same brand of piano. Indeed, the total of 9 for “other” can
probably be attributed to two or three pianists who use Baldwin pianos.

2.5 The Cross-Product Ratio and 2 x 2 Tables

In the examples above I = J = 2, and, because of the constraints,

Upra1y = — U212y = —Ui2021) = Ur222) (2.21)

Thus there is, in effect, one parameter to measure interaction. When this
parameter is set to zero, we get the one degree of freedom associated with
the chi-square tests for independence or homogeneity of proportions. For
2 x 2tables we can show that

Uiz = % loga, (2.22)
where

— MuMmaa (2.23)
my My,
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We can also write

o = P1iPa2 (2.24)
P12P21
since the expected value for the (i, j) cell is just the probability associated
with that cell times the sample size:

m;; = Np;;. (2.25)

This relationship between expected values and cell probabilities follows from

results related to the sampling models considered above.

The quantity o defined by (2.23) or (2.24) is usually referred to as the
cross-product ratio (see Mosteller [1968]) or odds-ratio, and it is a basic
measure of association in 2 x 2 tables, in part because it is appropriate for
all three types of sampling models described in Section 2.4. Surprisingly,
this measure appears only rarely in social science research literature, although
it is widely used in chemical, genetic, and medical contexts (see, e.g., Anderson
and Davidovits [1975], Kimura [1965], and Cornfield [1956]). The cross-
product ratio « has several desirable properties:

(1) It is invariant under the interchange of rows or columns (except for its
“sign”: if we interchange rows or columns but not both, the sign of log a
changes).

(2) Itis invariant under row and column multiplications: Suppose we multiply
the probabilities in row 1 by r; > 0, row 2 by r, > 0, column 1 by ¢, > 0,
and column 2 by ¢, > 0, and then renormalize these values so that they
once again add to 1. The normalizing constant cancels out and we get

o = ("1C11711)(";2f21’22) _ P11P22 _ o (2.26)
(rycapi2)(rac,pay) P12P21

(3) Clear interpretation: If we think of row totals as fixed, then p,,/p;, is
the odds of being in the first column given that one is in the first row, and
P21/P25 1s the corresponding odds for the second row. The relative odds
for the two rows, or the odds-ratio, is then

P11/P12 _ P11P2>
P21/P22 Pi2Pa

(4) It can be used in I x J tables (and multidimensional tables) either through
a series of 2 x 2 partitionings or by looking at several 2 x 2 subtables.
The quantity o runs from 0 to oo and is symmetric in the sense that two
values of the cross-product ratio a, and o, such that log o, = —log «,
represent the same degree of association, although in opposite directions.

= 0. (2.27)
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If « = 1, the variables corresponding to rows and columns are independent;
if « # 1, they are dependent or associated.
The observed cross-product ratio,

q =it (2.28)
X12X21
is the maximum-likelihood estimate of « for all three types of sampling
models considered above.
For the data in Tables 2-2a and 2-3a we estimate o as &, = 1.18 and
o, = 1.42, respectively. The estimate of the large-sample standard deviation
of log & is

S R R @)

X11 X120 X1 X2z
and we can use log & and s, to get confidence intervals for log «, since for
large samples log & is normally distributed with mean log «. Also, we can

use the statistic

X? = (log &,ﬁ _ (log x;; + log x,, — log x;, — log x,,)? (2.30)
; .
52 ESEE.

X111 X122 X3y Xpp

as an alternative to the usual chi-square statistic (2.10) to test for independ-
ence in a 2 x 2 table. Several authors have suggested alternative ways of
getting confidence intervals and tests of significance for o or its logarithm.
For an excellent review and discussion of these methods, see Gart [1971].

Goodman and Kruskal [ 1954, 1959, 1963, 1972] discuss various measures
of association for two-dimensional tables, and in the 2 x 2 case a large
number of these are simply monotone functions of the cross-product ratio.
For example, Yule’s [1900] Q can be written as

Q _ X11Xa2 = Xy2X2
Xp1X2p + X12X5

-1
Ca+ 1

(2.31)

Pielou [1969] and others have been critical of such measures because they
preclude the distinction between complete and absolute association. For
example, Table 2-5 contains two cases in which @ = 1 (and a = o0). Pielou’s
claim is that any ecologist would assert that the association in Table 2-5b
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Table 2-5
Examples of Complete and Absolute Association

(a) Complete association

‘ Species B
Present  Absent Totals
. Present 60 20 80
Species A
Absent 0 20 20
Totals 60 40 100
(b) Absolute association
Species B
Present  Absent Totals
) Present 80 0 80
Species A
Absent 0 20 20
Totals 80 20 100

is greater by far than the association in Table 2-5a, and thus Q (or «) is not
the most desirable measure in ecological contexts. Of course, measures that
are not monotonic functions of o are tied into the relative values of the
marginal totals, and this too is undesirable. For a further discussion of this
point, see the papers by Goodman and Kruskal, or Bishop, Fienberg, and
Holland [1975].

Returning to model (2.19) for the 2 x 2 table, it is of interest that the
remaining two parameters, u;, (= —u; ;) and u,,, (= —uy()), are not
simply functions of the row and column marginal totals, as one might have
expected. In fact,

1 pg Mty
iy =y log p—— (2.32)
and
1 mym
= L og MuaMar
Uz(1y 4'© —— (2.33)

All the subscripted parameters in the general loglinear model for two-
dimensional tables can thus be expressed as functions of various cross-
product-ratio-like terms. Nevertheless, « and the marginal totals {m;,} and
{m, ;} completely determine the 2 x 2 table.
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2.6 Interrelated Two-Dimensional Tables

As we mentioned in Chapter 1, a typical analysis of a multidimensional
cross-classification often consists of the analysis of two-dimensional marginal
totals. Moreover, we noted that such analyses have severe shortcomings.
To illustrate this point we now consider the analysis of a three-dimensional

Table 2-6

Two-Dimensional Marginal Totals of Three-Dimensional Cross-Classification of

4353 Individuals (See Table 3-6)

(a) Occupational group vs. educational level

(low) (high)
El E2 E3 E4 Totals
Ol 239 309 233 53 834
02 6 11 70 199 286
03 1 7 12 215 235
04 794 781 922 501 2998
Totals 1040 1108 1237 968 4353
O1 = self-employed, business
02 = self-employed, professional
O3 = teacher
04 = salaried, employed
(b) Aptitude vs. occupational level
01 02 03 04 Totals
(low) A1 122 30 20 472 644
A2 226 51 66 704 1047
A3 306 115 96 1072 1589
Ad 130 59 38 501 728
(high) AS 50 31 15 249 345
Totals 834 286 235 2998 4353
(c) Aptitude vs. educational level
El E2 E3 E4 Totals
Al 215 208 138 83 644
A2 281 285 284 197 1047
A3 372 386 446 385 1589
A4 128 176 238 186 728
AS 44 53 131 117 345
Totals 1040 1108 1237 968 4353
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example solely in terms of its two-dimensional marginal totals. Later we
shall reconsider this example and contrast the conclusions drawn from the
two analyses.

Table 2-6a contains data on the cross-classification of 4353 individuals into
four occupational groups (O) and four educational levels (E). These data
have been extracted from a larger study encompassing many more occupa-
tional groups. The Pearson chi-square test for independence of occupation
and education yields X2 = 1254.1 with 9d.f, so that occupation and
education are clearly related.

Tables 2-6b and 2-6¢ present two additional two-dimensional cross-
classifications of the same 4353 individuals, the first by aptitude (as measured
at an earlier date by a scholastic aptitude test) and occupation, the second by
aptitude and education. Testing for independence in these tables yields, for
Table 2-6b, X? = 35.8 with 12 d.f., and for Table 2-6¢, X2 = 178.6 also with
12 d.f. Both of these values are highly significant when referred to the corre-
sponding chi-square distribution, and we are forced to conclude that occu-
pation, aptitude, and education are pairwise related in all possible ways.

Now, in what ways is this analysis unsatisfactory? Everything we have
done appears to be correct. We have just not done enough, and we have not
looked at the data in the best possible way. Before we can complete the
discussion of this example, however, we must consider details of the analysis
of three-dimensional tables.

2.7 Correction for Continuity

The practice of comparing the Pearson chi-square statistic given by expres-
sion (2.4) to the tail values of the y? distribution with the appropriate
degrees of freedom is an approximation that is appropriate only when the
overall sample size N is large. Yates [ 1934] suggested that a correction be
applied to X 2, the correction for continuity, for 2 x 2 tables to make the tail
areas correspond to those of the hypergeometric distribution (used when
both row and column margins are fixed). Thus, instead of using the chi-square
formula (2.10), many introductory texts suggest using the “corrected”
statistic:
O [ = (N = 1/2)2
X2 = Z Z [xij = (xiex /N)| = 1/2)°
( Xi4 X4 /N

i=1j=1

_ N(xiixas = xaixio = N2 (2.34)

Xy X4 X4 1 X542
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Cox [1970b] provides an elementary analytical derivation of the continuity
correction that is applicable in this case. Rao [1973, p. 414] provides a
slightly different method for correcting X?2.

If, however, our aim is to correct the statistic X 2 so that it more closely
adheres to the large-sample x? distribution, rather than to the hypergeometric
distribution, then the use of the corrected chi-square statistic (2.34) may not
necessarily be appropriate. In fact, Plackett [1964], Grizzle [1967], and
Conover [1974] have shown that using X? in place of X? results in an overly
conservative test, one that rejects the null hypothesis too rarely relative to
the nominal level of significance. For example, in 500 randomly generated
multinomial data sets examined by Grizzle, with N = 40 and cell probabilities

0.56 0.24
0.14 0.06

the statistic X2 exceeded the 0.05 level of significance (i.e., 3.84) 26 times
(5.2%) whereas the corrected statistic X2 exceeded the 0.05 level about 6
times (1.2%).

Because of this empirical evidence, and because of our use of the y?
distribution as the reference distribution for the chi-square statistic X2, we
make no use of continuity corrections in this book.

Much attention has been given in the statistical literature to the use of
Fisher’s exact test for 2 x 2 tables, which is based on the hypergeometric dis-
tribution referred to above. Because this book focuses primarily on multi-
dimensional tables, and because the extension of the exact test even to
hypotheses regarding models for 2 x 2 x 2 tables is complicated at best, we
have chosen not to consider exact tests at all. For a recent debate on the
appropriateness of the exact test for 2 x 2 tables, the interested reader is
referred to Berkson [1978] and Kempthorne [1979]. Haberman [1974a]
presents a detailed discussion of exact tests in several dimensions, under the
heading of conditional Poisson models (see also Plackett [ 1974, pp. 83-87]).

2.8 Other Scales for Analyzing Two-Dimensional Tables

The discussion in this monograph is focused on models for cell probabilities
or expected values which are linear in the logarithmic scale. Other possible
scales of interest are the linear scale and those based on the angular (arc sine)
or integrated normal (probit) transforms. Another possibility is a model that
is linear in the logistic scale; that is, if p is a probability, its logistic transform
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is log (p/(1 — p)). In Chapter 6 the relationship between loglinear and linear
logistic models is discussed in detail.

Cox [1970a, pp. 26-29] examines the linearizing transformations from
p(x), the probability of success at level x, to the following scales:

(1) logistic: log [~ P\ (2.35)
1 —p(x)

(2) linear: p(x), (2.36)

(3) integrated normal: ¢ ~'(p(x)), where (2.37)

d(u) = —\7137( j e )12 dy;

(4) arc sine: sin” 1 (/p(x)). (2.38)

Cox notes that all four transformations are in reasonable agreement when
the probability of success is in the range 0.1-0.9, and that in the middle of
this range analyses in terms of each of the four are likely to give virtually
equivalent results.

For further details the interested reader is referred to Cox [1970a] and
to the discussion in Bishop, Fienberg, and Holland [1975, pp. 368-369],
which includes an example of a 2 x 2 x 2 x 2 table analyzed using both a
loglinear or logistic model and an ANOVA model following an arc sine
transformation. Hewlett and Plackett [1979] present an elementary analysis
of biological data involving quantal responses using both the probit trans-
formation of (2.37) and the logistic transformation of (2.35). Haberman [ 1978,
pp. 344-346] also provides a helpful discussion of computations for probit
models.

The remainder of this book focuses on models and analyses based on the
logarithmic or logistic scale.

Problems

2.1 (Armitage [1955]). In a study of children aged O to 15, concern was
focused on the presence or absence of the carrier for Streptococcus pyogenes,
and the relationship between the presence of the carrier and tonsil size (Table
2-7).
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Table 2-7
Tonsils present, Tonsils enlarged
not enlarged + + +
Carriers 19 29 24
Total 516 589 293
Proportion of 0.0368 00492 0.0819
carriers

(a) Test the hypothesis of homogeneity of proportions for the carriers and
noncarriers.

(b) Compute & for columns 1 and 2, and for columns 2 and 3.

(c) What alternative to the equal-proportions hypothesis is suggested by the
data?

(d) What other possible explanatory variables might be relevant to the in-
terpretation of the data?

2.2 (Reiss [1980]). The data in Table 2-8, from the National Crime Survey,
represent repeat-victimization information, i.e., successive pairs of victimiza-
tions for households in the survey. If, over the course of the period in question,
a household is victimized m times, then these m victimizations will lead to
m — 1 entries in the table, one for each successive pair of victimizations. (Here
A is assault; B, burglary; HL, household larceny; MV, motor vehicle theft;
PL, personal larceny; PP/PS, pocket picking and purse snatching; Ra, rape;
Ro, robbery.)

Table 2-8
Second Victimization in Pair
Ra A Ro PP/PS PL B HL MV | Totals
Ra 26 50 11 6 82 39 48 11 273
A 65 2997 238 85 2553 1083 1349 216 8586
First Ro 12 279 197 36 459 197 221 47 1448
Victimi- PP/PS 3102 40 61 243 115 101 38 703
zation PL 75 2628 413 229 12,137 2658 3689 687 | 22,516
in Pair B 52 1117 191 102 2649 3210 1973 301 9595
HL 42 1251 206 117 3757 1962 4646 391 | 12,372
MV 3 221 51 24 678 301 367 269 1914
Totals | 278 8645 1347 660 22,558 9565 12,394 1960
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(a) Test these data for homogeneity of row proportions.

(b) Examine a table of the square roots of the contribution from each cell to
X2, ie., (Observed — Expected)/./Expected. Which cells stand out?

(c) Provide an interpretation for your findings in part (b).

(d) Why might you not have bothered to do the full calculation of X ? after
you found the contribution from the (1, 1) cell?

2.3. The 1970 draft lottery was intended to provide a sequence of birthdates
which was to be used to select males between the ages of 19 and 26 for induc-
tion into the armed forces of the United States. Each day of the year (includ-
ing February 29) was typed on a slip of paper and inserted into a capsule. The
capsules were mixed and were assigned a “drawing number” according to
their position in the sequence of capsules picked from a bowl. The data in
Table 2-9, from Fienberg [1971], summarize the results of the drawing. The
dates are grouped by month, and the drawing numbers by thirds. Is there
evidence in the table to cast suspicion on the randomness of the sequence of
drawing numbers?

Table 2-9

Drawing Months

numbers | Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. | Totals
1-122 9 7 5 8 9 11 12 13 10 9 12 17 122
123-244| 12 12 10 8 7 7 7 7 1S 15 12 10 122

245-366) 10 10 16 14 15 12 12 1l 5 7 6 4 122

Totals 3t 29 3t 30 3t 30 3t 3t 30 31 30 31 366

2.4 (Fienberg [1980]). In a study of citation practices in the field of opera-
tions research, 336 articles were examined from the 1969 and 1970 issues of
two journals, Management Science and Operations Research. The 336 articles
have been cross-classified in Table 2-10 according to the journal in which the
article appeared and the location of other articles referenced.

Table 2-10

Cited Journal
Neither MS only OR only Both

Citing  MS | 6l 63 20 59
Journal  OR 42 3 47 41
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(a) Which variables in this table are explanatory and which can be thought of
as response variables?

(b) Viewing these data as if they were a sample from a hypothetically infinite
population, test the hypothesis of homogeneity of proportions corres-
ponding to the structure identified in (a). Do citation practices differ for
the two journals?

(c) Interpret your findings.

2.5 (Yule [1900]). The data in Table 2-11 for 205 married persons, reported
initially by Galton, give the number of cases in which a tall, medium, or short
man was mated with a tall, medium, or short woman.

Table 2-11
Wife
Tall Medium Short Totals
Tall 18 28 14 60
Husband  Medium 20 51 28 99
Short 12 25 9 46
Totals 50 104 51 205

(a) Test the hypothesis that the heights of husbands and wives are indepen-
dent.

(b) Form two 2 x 2 tables from this 3 x 3 table contrasting tall and medium
versus short, and tall versus medium and short. Test the hypothesis of
independence for each of these 2 x 2 tables.

(c) Compute Yule’s Q for each of the 2 x 2 tables in part (b).

(d) Assign “scores” of 1, 2, and 3 to the categories short, medium, and tall.
Then compute the observed correlation between the heights of husbands
and wives based on these scores.

(e) By interpreting the quantities computed in parts (b), (c), and (d), or other-
wise, discuss how the heights of husbands and wives are associated.
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3.1 The General Loglinear Model

If we put Tables 2-2a and 2-3a together, we have a 2 x 2 x 2 table with the
dimensions perch height, perch diameter, and species (see Table 3-1). What
are the interesting models for this 2 x 2 x 2 table? To answer this we must
start by introducing an appropriate notation.

Let x;; be the observation in ith row, jth column, and kth layer of the table,
and let m;; be the corresponding expected value for that entry under some
model. Our notation for marginal totals is such that when we add over a
variable we replace the corresponding subscripts by a “+.” Thus

Xij+ = Xij1 + Xijz, i,j=1,2, (3.1)

Xi++ = Xjp1 + Xigz + Xiap + Xip2
=x,~1+ + x,'2+, l= 1, 2’ (32)

2 2 2 2
Xyty = z Z Z Xijk = Z Xit4- (33)

Similar]y, m,-j+ = m,'jl + m,'jz, etc.
If the three variables corresponding to the dimensions of our table are
independent, then

and

Pr{variable 1 takes level i, variable 2 takes level j, and variable 3
takes level k} (34)

= Pr{1 takes level i} Pr{2 takes levelj} Pr{3 takes level k},

Table 3-1

Data from Tables 2-2a and 2-3a, along with Expected Values under Two Loglinear
Models: Complete Independence (Column 3) and Conditional Indepdence of Vari-
ables 1 and 2 Given the Level of 3 (Column 4)

(1) (2) (3) 4
cell (i, j, k) observed

(1,1, 1) 32 35.8 30.9
2,11 86 65.2 87.1
(1,2, 1) 11 223 12.1
(2,2, 1) 35 40.6 339
(1, 1,2) 61 53.5 55.8
(2. 1,2) 73 97.4 78.2
(1,2,2) 41 333 46.2

(2.2.2) 70 60.7 64.8
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and by analogy with the model of independence in two dimensions, it would
be natural for us to take our estimate of the expected count for the (i, j, k) cell as

o= () () (5

Taking logarithms yields

log m;j = log x;, +log x,;, +logx,,, —2logN. (3.6)

This additive form for the logarithms of the estimated expected values is once
again highly reminiscent of analysis-of-variance notation. Switching from
the estimated value m; j, to the parameter m;,, if we set

1 2 2 2
=g Z Z log m; (3.7)
1

i=1j=1k=

2 2 2
= —2logN +% Z log m;,, + Zlog mi. + Z logmy .y |,
=1 k=1

i=1 i

1 2 2
Mo =4 Z Z log m;; — u, (3.8)

j=1k=1

etc., then we can write log m;; in an ANOVA-type notation:

log m;j = u + uy + Uz + Uz (3.9)

2 2 2
Z Ui = Z Usjy = Z Usgy = 0, (3.10)
i=1 j=1 k=1

since the terms involved represent deviations from the grand mean u.
Suppose now that the three variables are not independent. Four other types
of models expressible in terms of the structural relationships among the three
variables are as follows:
(1) Independence of (i) type of species and (ii) perch height and diameter
jointly (there are two other versions of this model).
(2) Conditional independence of perch height and perch diameter given the
species (again, there are two other versions of this model).
(3) Pairwise relations among the three underlying variables, with each two-
variable interaction unaffected by the value of the third variable.
(4) Second-order interaction (or three-factor effect) relating all three variables,

where
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so that the interaction between any two does depend on the value of the

third variable.

All of the models listed above are special cases of what is known as the
general loglinear model :

log myy = u + ) + iy + Usgy + Uya) + Upaan + Uasgn + Ui2ans

where, asin the usual ANOVA model, b
zum) = zuzm = Z“s(k) =0,
i j k
Z“lzun = Z Urzij = Z“lsuk) IZ Uy 3ik)
i ' (3.12)

Z a3k = Z Uz = 0,
k

J

Z U233k = Z Uyz3ijky) = Z“nau,‘k) = 0.
J

This general model imposes no restrictions on the {m;,;} and corresponds to

model (4) above. Note that the model given by formulas (3.11) and (3.12) is

expressed in such a way that it describes the expected valuesforanl x J x K

table and not just the special case of the 2 x 2 x 2 table of our lizard example.
We have already seen that setting

Uypaaj) = Uysn) = Y23 = U123k = 0

for all i, j, k in expression (3.11) yields the model of complete independence of
the three underlying variables. Before going on to look at other special cases
of the loglinear model corresponding to models (1) through (3), let us stop for
a moment and consider various ways to generate three-dimensional tables of
counts.

3.2 Sampling Models

For all of the loglinear models we shall consider, we obtain the same
maximume-likelihood estimates (MLEs) for the expected cell counts under a
variety of different sampling distributions. In particular, the three sampling
models described in Section 2.4 yield the same MLEs. A more technical
description of these sampling models and their interrelationships follows.
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The simplest of these sampling models results from a procedure in which
the IJK observed cell counts {x,; } are viewed as having independent Poisson
distributions with the expected counts {m;;} as their means. Thus the
probability function for this model is

—m

J [ e (3.13)

ik Xijk!

Since the cells contain counts having independent Poisson distributions, the
total count in the table, x,,,, has a Poisson distribution with mean
my .+ = X; jx m. This fact is used below.

The second sampling procedure is the multinomial one in which a sample of
N individuals or objects is cross-classified according to the categories of the
three variables. The probability function for the multinomial model is

N! Xin
nl—_j‘kx,-jk!,-g puk ) (314)
where Z, ;, pi = 1. The expected or mean values of the {x;;} are {N p;;}.

We note that if the {x,;} have been generated according to a Poisson
sampling scheme, then the conditional distribution of the {x;;}, given that
X444+ = N, is multinomial with probability function (3.14), where p;;
=My /My,

The third sampling model, which we refer to as product-multinomial,
typically occurs in situations where one or more of the variables can be
thought of as explanatory variables, and the remainder as response variables.
Then for each combination of the explanatory variables we pick a fixed
sample size, and the cross-classification of each sample according to the
response variables is governed by a multinomial distribution. For example,
suppose we fix the K layer totals, {x, ,,}, and let P, be the probability
of an observation falling into the ith category of variable 1 and the jth
category of variable 2, given that it falls into the kth category of variable 3
(i.e., Pijy = pi/P++1)- Then the probability function of this product-multi-
nomial sampling scheme is

Xyqx! x
TR P‘. N I8 (315)
I_kl [ni,j xijk! l:—J[ " J

Thus we have independent multinomial samples for the K layers. The
expected values of the {x;;} for this model are {x, ,,P;;}. Similarly we could
fix a set of two-dimensional marginal totals, say {x, ;}, and have a product-
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multinomial scheme with independent multinomial samples for each column-
by-layer combination.

We note that the product-multinomial probability function given by
expression (3.15) is also the conditional probability function for {x;;}
generated by a multinomial sampling scheme, given the {x, ,,}.

Birch [1963], Haberman [1974a], and others have shown that the MLEs
of the expected cell values under the loglinear models we are about to consider
are the same under all three sampling schemes discussed above. The one
condition required for this result is that the u-terms “corresponding” to the
fixed margins in the product-multinomial sampling model be included in the
loglinear model under consideration. We elaborate on this point in Chapter 6.

In Chapters 1 and 2 it was noted that, in addition to considering the
sampling model, we should try to distinguish between response and explana-
tory variables (see also Bhapkar and Koch [1968a, b]). For example, in the
lizard data of Table 3-1, species can be thought of as an explanatory variable
or factor, and perch height and perch diameter as response variables. More
generally, for three-dimensional contingency tables there are three situations
among which we should distinguish:

(i) three-response, no factor;

(ii) two-response, one-factor;

(ii1) one-response, two-factor.

For situation (i) only Poisson or multinomial sampling models are appro-
priate, whereas for situations (ii) and (iii) we could also use a product-
multinomial model in which the fixed marginal totals correspond to
explanatory variables or factors.

A sensible approach for the analysis of data with one or two explanatory
variables is to condition on the values of these factors, treating them as fixed
even in those cases where they are not. Such an approach is discussed in more
detail when we consider logit models in Chapter 6.

There are some situations, such as case-control studies in epidemiology, in
which the marginal totals corresponding to the response variable (case or
control) is fixed. Either one can condition on the explanatory variables,
obtaining a generalized hypergeometric sampling model, or one can treat
one of the explanatory variables as if it were the response. We discuss the
rationale for the latter approach in the Section 7.5.

Few, if any, large-scale sample surveys, such as those conducted by the U.S.
Bureau of the Census, by other government agencies, or by nongovernmental
survey organizations, use simple random samples leading to the multinomial
sampling model discussed above. For example, the Current Population Sur-
vey (which yields national unemployment estimates) and the National Crime
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Survey (which estimates the extent of personal victimization) both use a com-
plex sample design involving multiple levels of stratification and clustering.
As a consequence the standard methods described in this book for the
analysis of categorical data arising from simple random samples (multi-
nomial) or stratified samples (product-multinomial) are not directly applic-
able, in part because they are insensitive to dependencies among sampling
units.

In complex sample surveys involving both clustering and stratification,
standard errors for parameter estimates based on simple random-sample
assumptions typically underestimate the true standard errors. Thus one way
to cope with complex sample designs without going into the analytic com-
plexities is to “adjust” the overall sample size by a suitable fudge factor or
“design effect” and then proceed as if simple random sampling had been used.
Kish and Frankel [ 1974] discuss some aspects of this problem, and the use of
design effects has been proposed for various large-scale national surveys
(Penick and Owens [1976, p. 31]). As a rough rule of thumb, practitioners
occasionally reduce the sample size by factors ranging from 10 to 50 percent.
An alternative to the use of design effects is the use of individual sample
weights to carry out “weighted” analyses (see, e.g., Koch, Freeman, and Free-
man [1975]). The relevance of sample weights or design effects for analyses
typically depends on the statistical models being considered, and their use
typically requires greater justification than authors have provided in the past.

Recent work on the analysis of categorical data from complex sample
surveys has led to a breakthrough of sorts. Altham [1976], Cohen [1976],
and Brier [1979] have developed techniques for use with cluster sampling,
and Fellegi [1980], Rao and Scott [1979], and Fay [1979] have proposed
somewhat more complicated methods for combinations of clustering and
stratification. These new methods go well beyond those of this book, and we
refer the interested reader to source materials for a more detailed discussion
of them.

3.3 Estimated Expected Values

We now return to the discussion of the form of estimated expected cell values
for various loglinear models. We have already introduced formula (3.5) for
the estimated expected values under the model of complete independence:
. Xig 1 X4 ie X
My = SRS Eite ALY (3.16)

N2

These are maximum-likelihood estimates when the sampling model is
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Poisson, multinomial, or product-multinomial with one set of one-dimen-
sional marginal totals fixed.
Now if we take the general loglinear model in (3.11) and set

Uiz j) = Ur23jiy =0 (3.17)
for all i, j, k, then
m+jk = eu+u2“‘+u-\m+“zl(/" ze“"” F Uk N (3.18)
i
m; = [ TRV o TP o TRV Z eu,(,,+u“u.k,’ (319)
J
and
My = e"""‘sm e“l<u+“21n+“ l,\ul)+u23uky‘ (320)

i)

Dividing the product of the right-hand sides of expressions (3.18) and (3.19)
by the right-hand side of expression (3.20) yields

My = K (3.21)
My vk

This is model (2) from Section 3.1, and it implies that variables 1 and 2 are
independent for each fixed value of variable 3 (e.g., for the data in Table 3-1,
perch height and perch diameter are independent, given species). For each
fixed value of k we get independence in the corresponding I x J subtable.
This model is appropriate for consideration when the sampling is Poisson,
multinomial, or product-multinomial with one set of fixed marginal totals,
as long as the fixed totals are not {x;;, }. Looking at the likelihood or prob-
ability functions for these sampling models, we find that {x;,,} and {x, ;}
are complete minimal sufficient statistics* for {m,,} and {m,;}. Maxi-
mizing the likelihood function in any of these cases leads to replacing expected
marginal totals in expression (3.21) by the corresponding observed totals:

N Xi+ kX + jk
g = -k (3.22)
Xy 4k

(for details see Birch [1963] or Bishop, Fienberg, and Holland [1975]).

* For a nontechnical discussion of minimal sufficient statistics and other mathemati-
cal statistics terminology, see Appendix .
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If we set
ulS(ik)=u23(jk)=u123(|'jk)=0 (3.23)

for alli, j, k, then we have a model that is appropriate for consideration when
the sampling model is Poisson, multinomial, or product-multinomial with
the set of fixed marginal totals corresponding to variable 1, 2, or 3, or to
variables 1 and 2 jointly. Some algebraic manipulations similar to those for
the conditional-independence model above yield

iy =t etk (3.24)
myy

This is model (1) from Section 3.1, and it implies that variables 1 and 2, taken
jointly, are independent of variable 3 (e.g., for the data in Table 3-1, perch
height and perch diameter are jointly independent of species). If we think
of the first two subscripts as one, then the expected values have the same
form as in two-dimensional tables. Here {x;;,} and {x,,,} are complete
minimal sufficient statistics for {m;;,} and {m,,,}, and the estimated
expected values are of the form

A Xij+X 44k
Aty = —L N (3.25)
Finally, the remaining model, which is usually referred to as the no second-
order interaction model, corresponds to setting

U123 (ijk) = 0 (3.26)

for all i, j, k. This is model (3) of Section 3.1, and it can be considered in
conjunction with Poisson, multinomial, or product-multinomial sampling
models when either a set of one-dimensional or a set of two-dimensional
marginal totals is fixed. The complete minimal sufficient statistics now are
{xij+}» {xisx}, and {x; 5}. We cannot write m;j, as a closed-form expression
involving the marginal totals {m;;.}, {m+ u}, and {m;,} as we did for the
other four models; for example,
Mo # (”Lw>m (3.27)
My My My g
The estimated expected values for this model are, however, functions of the
three sets of two-dimensional marginal totals,

{Xije b {xauds  {xival (3.28)
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In fact we have the following general rule for getting the estimated expected

values for all five models:

(1) for each variable, look at the highest-order effect in the loglinear model
involving that variable;

(2) compute the observed marginal totals corresponding to the highest-order
effects in (1)—e.g., {x;;+ |i =1, 2;j =1, 2} corresponds to {u,,u;|i =1,
2;j=1,2}

(3) estimate tl}1e expected values for the model using only the sets of observed
marginal totals in (2), or totals that can be computed from them.

This rule follows from the general results described in Appendix 1I. We shall

consider the computation of expected values under the no second-order

interaction model in detail shortly.

Going back to the 2 x 2 x 2 example in Table 3-1, we already have
considered model (2) since we have checked for independence between perch
height and perch diameter for each of the two species separately, and the
expected values under this model are just those given in Tables 2-2b and
2-3b and reproduced in column (4) of Table 3-1. Since this model of con-
ditional independence fits so well, it makes little practical sense to look at
more complicated models based on additional parameters, though we shall
do so later for illustrative purposes. Turning to the model of complete
independence of the three variables, we find the estimated expected values,
computed using (3.16), displayed in column (3) of Table 3-1. The fit of these
expected values to the observed counts is not as good as it was in previous
examples. In particular, note the discrepancies in the (2, 1, 1), (1, 2, 1), and
(2, 1, 2) cells. We consider formal methods for examining the goodness-of-fit
of this model in Section 3.5.

Table 3-2a contains further data on the structural habitat of Anolis lizards
of Bimini, this time for sagrei adult males and angusticeps adult males. This
table is also based on data reported in Schoener [1968]. Note that the class
boundaries of the dichotomies for perch height and perch diameter here are
not the same as in Tables 2-2a and 2-3a. The observed cross-product ratios
for the 2 x 2 tables corresponding to the two species are &, = 1.46 (sagrei)
and &, = 14.0 (angusticeps). These appear to be unequal and clearly different
from 1, but they are subject to sampling variability so we cannot be sure.

We could begin an analysis of these data by considering the model that
specifies equality of the cross-product ratios in each level—i.e., o0; = a,—but
does not specify the common value
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Table 3-2
Counts for Structural Habitat Categories for Anolis Lizards of Bimini: sagrei Adult
Males vs. angusticeps Adult Males (Schoener [1968])

(a) Observed data
perch diameter (inches)

sagrei angusticeps
<25 >2.5 <25 >2.5
h height (fect) 5.0 15 18 21 1
erch hei ee
P & <50 48 84 3 2

(b) 2 x 2 marginal total

perch diameter

<25 >2.5
> 5.0 36 19
perch height
<50 51 86
(c) 2 x 2 marginal total
sagrei angusticeps
> 5.0 33 22
perch height
<35.0 132 5
(d) 2 x 2 marginal total
sagrei angusticeps
<25 63 24
perch diameter [
> 2.5 102 3

My 1Moz _ My12Ma2, (3.29)

My Myyy  MypoMyy -

Setting p;j = m;/N, where m, ., = N, we find that (3.29) is equivalent to
the model

PiiiP221 _ Pr12P222 (3.30)
P121P211 P122P212 '

The loglinear model that postulates no second-order interaction (1, 53 = 0
for all i, j, k) is equivalent to the model specified by expression (3.29) and was
first considered by Bartlett [1935]. One way to test u;,3 = Oina2 x 2 x 2
table is to consider the test statistic
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log o, — log &,

\/—_T,__T , (3.31)
where s, is the estimated large-sample standard deviation of log &; given by
(2.29). Ifoc1 = a, (i.e., u;,3 = 0), then this statistic has an asymptotic normal
distribution with mean zero and variance one. The square of z, which has an
asymptotic y? distribution with 1 d.f, has been used by many authors; for

example, z? is a special case of the minimum modified chi-square statistic
discussed by Grizzle, Starmer, and Koch [1969].

3.4 Iterative Computation of Expected Values

A second way to test the hypothesis u,,; = 0 in the example above is to
compute the estimated expected cell values for this model. By the rules
described above, the {m;;} are functions only of {x;;.}, {x;:}, and {x, ;}.
Using the method of maximum likelihood (see Appendix II) we find that the
{m;; } must satisfy:

'hij+ = xij+9 = 1$2’
Misk = Xitpo k = 1,2, (3.32)
Moy je = X4 jeo j,k=1,2-

Equations (3.29) and (3.32) uniquely define a set of estimated expected values.
Unfortunately we cannot write these out in closed form. The following
iterative procedure, however, yields the MLEs:

Step 1:  Set

m =1 foralli,j,k. (3.33)
Then for v = 0 compute
Step 2:
~(3v Xij+ ~ 3y
et = G mi, (3.34)
ij+
Step 3:
~(3v Xi S (3v+
nl‘i;k v = ;;l(—,av%kﬂ j’jk o (3.35)
i+k
Step 4:
~ (3(v Xk a(3y
A = G, (3.36)
m+jk

This completes the first cycle of the iteration. Step 2 makes the estimated
expected values satisfy the first set of marginal constraints in (3.32). Step 3
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makes them satisfy the second set—m{%, = x;,, for all i and k—as well as the
first set of constraints—m{?) = x;;, for alli and j. Similarly, Step 4 makes the
expected values satisfy m’, = x, ; for all j and k, but now the other two sets
of marginal constraints are messed up—m}} # x;;, and MY} # X; 4.

Repeating the cycle (3.34)—(3.36) for v = 1, 2,. .. yields an iterative pro-
cedure that ultimately converges to the estimated expected values {r;;}. If
the change in the expected values from one cycle to the next is sufficiently
small, we terminate the iteration; otherwise we perform a further cycle.

At Step 1 of the iteration we took as starting values the vector of ones. Any
set of starting values satisfying the no second-order interaction model,
u;,3 = 0, would do, but Bishop, Fienberg, and Holland [1975] show that the
speed of convergence of the iterative method is not substantially improved
by the use of different starting values. Moreover, unit starting values are also
appropriate for other loglinear models, and their use simplifies the task of
preparing computer programs. General-purpose computer programs that
perform the iterative procedure just described are available at a large number
of computer installations and are part of several widely used program
packages. Detailed Fortran listings are available in Bishop [1967, Appendix
I] and Haberman [1972, 1973b].

The iterative proportional fitting procedure was first introduced for work
with census data by Deming and Stephan [1940a, b], and different proofs of
convergence have been given by Brown [1959], Ireland and Kullback [1968],
Fienberg [1970b], and others. An interesting generalization is provided by
Gokhale [1971] and by Darroch and Ratcliff [1972].

To apply the iterative procedure to the data in Table 3-2, we begin with
initial cell values equal to 1, that is, m{% = 1 for all i, j, k. To get the values at

the end of Step 2 we add the initial values over variable 3: for example,
m = ml + md, =2
Then we multiply each of the intital values forming this sum by the ratio
xy1+/mQ,, yielding
m, =mil), =1 x 36/2 = 18.0.

The other ri{j) are computed in a similar fashion. For Step 3 we add the rn{})
over variable 2: for example,

’;l(ll.z.l = ’h(l’l)l + ’;1(112)1 = 18.0 + 95 = 27.5.
Our estimates at this step are of the form

M =ml), x (xy4 /M) ,) = 18 x 33/27.5 = 21.6.
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Table 3-3

Estimated Expected Values for Entries in Table 3-2, Based on the Model of All Two-
Factor Effects but No Three-Factor Effect, and Cell Values at Various Stages of the
Iterative Procedure.

Cell
(i, j: k) mi o omGl o wE o mE AR MG = g
(1,1, 1) 1.0 18.0 21.6 19.2 16.5 16.2 16.2
2,1, 1) 1.0 25.5 49.1 43.8 46.5 46.8 46.8
(1,2, 1) 1.0 9.5 114 12.3 16.3 16.7 16.8
2,2,1) 1.0 43.0 82.9 89.7 85.7 85.3 85.2
(1,1,2) 1.0 18.0 14.4 21.3 19.9 19.8 19.8
2,1,2) 1.0 25.5 1.9 2.7 4.1 4.2 4.2
(1,2,2) 1.0 9.5 7.6 2.1 2.2 2.2 2.2
(2,2,2) 1.0 43.0 3.1 0.9 0.8 0.8 0.8

Table 3-3 contains the estimated expected cell values after each step in the
first cycle, and then after each subsequent cycle of the iteration. At the end of
the fourth cycle the estimated expected values differed from those at the end
of the preceding cycle by less than 0.1, and the iteration was terminated.

An alternate but essentially equivalent criterion for termination of the
iterative procedure would be to stop when the three sets of expected two-
dimensional marginal totals differed by 0.1 or less from the observed marginal
totals. Bishop, Fienberg, and Holland [1975] provide a detailed discussion of
this point.

With only a slight modification, the iterative method can also be used to
compute estimated expected values for the other models. As an example,
consider the model corresponding to the independence of variables 2 and 3
conditional on the level of variable 1. In this model each cycle of the iterative
method would have only two steps. The first adjusts for the marginal totals
{xi;+ }» and the second for the totals {x;,}. The third set of marginal totals
used earlier is not needed here according to our general rule. Suppose the
table is of size 2 x 2 x 2. Thenmy) = 1 and

k) = "2—“ (3.37)

ijk —

Adding m{}) over variable 2 yields

), = xfz” + x‘z“ = ""’2** , (3.38)

and so
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~2) _ Xij+ Xivk  _ Xij+Xitk 139
ijk 2 (xi++/2) x,'++ s ( . )

the estimated expected value for the model of conditional independence.
Only one cycle of the iteration is needed for this model, which we could have
fitted directly, and this cycle simply gives a systematic way for carrying out
the direct computation. More generally, in tables with no more than six
dimensions, when a model can be fitted directly, one cycle of the iteration will
produce exactly the same cell estimates. In seven-dimensional tables a second
cycle is sometimes necessary for particular orderings of the steps within the
cycle. At any rate, one can always use the iterative method for all models of
the class discussed above without worrying about whether direct estimation
is possible.

3.5 Goodness-of-Fit Statistics

Once we have estimated expected values under one of the loglinear models,
we can check the goodness-of-fit of the model using either of the following
statistics:

2 _\{"(Observed — Expected)?
- Expected

G = ZZ(Observed) log(

X

s (3.40)
Obscrved> , (3.41)

Expected

where the summation in both cases is over all cells in the table. Expression
(3.40) is the general form of the Pearson chi-square statistic, and expression
(3.41) is — 2 times the logarithm of the likelihood-ratio test statistic used for
testing that the model fitted is correct versus the unrestricted alternative
(for more details see Rao [1973], p. 417). If the model fitted is correct and the
total sample size is large, both X? and G? have approximate x? distributions
with degrees of freedom given by the following formula:

d.f. = # cells — # parameters fitted. (3.42)

Applying this formula to each of our five models we get the degrees of freedom
indicated in Table 3-4 (the values in the last column in square brackets are for
an I x J x K table). In the abbreviated bracket notation in column 2 of
Table 3-4 we describe a model by means of the highest order u-terms present;
for example, [12] means that u,, is present in the model. This notation
uniquely describes all hierarchical loglinear models.

The statistics X2 and G? are asymptotically equivalent, that is, they are
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Table 3-4
Degrees of Freedom Associated with Various Loglinear Models for Three-Dimen-
sional Tables

Model Abbreviation  # parameters fitted* d.f*
u+u +uy +uy [1][2][3] 4 4
[T+ -1+ =1) [IJK—=1-J—-K+2]
+ (K -=1)]
u+uy+uy +uy [12][3] 5 3
+ Uy, [+ -DH+J -1 [(K = 1)(J = 1)]
+(K-1)
+ (= 1)(J = 1]
u+uy +uy +us [12][23] 6 2
F Uy + Uy, M+ -+ =1  [JU-1)K=1)]
+(K-1)

+(I-1)J-=1
+(J - 1)K -1)]
u+u; +uy +uy [12][23][13] 7 1
+ Uy, + uy; [T+Ud-D+ =1 [(J-1DJ=1)(K-1)]
+ uy; +(K-1)
+(I-10)J=1)
+(J-D)K-=-1)
+( - 1)K -1)]
u+uy +uy +uy [123] 8 0
+Upy + Uz, IJK
‘gz + Upas

*The first entry pertains to the 2 x 2 x 2 table. The second entry pertains to the
I x J x K table.

equivalent in very large samples when the null hypothesis is true. For our
purposes we interpret “very large” to mean that the total sample size is at
least ten times the number of cells in the table. This is, of course, a very rough
rule of thumb, and we use X2 and G? even when the sample size is much
smaller. The small-sample adequacy of the y? approximations to X ? and G?
is discussed in Appendix IV. Issues with regard to the statistical power of the
two test statistics for various composite alternatives have not yet been com-
pletely resolved (see Larntz [ 1973]).

Table 3-5 contains a summary of the values of G? and X? for each of the
eight possible loglinear models as applied to the data in Tables 3-1 and 3-2.
We note that the values of X? and G? are usually quite close, except when
both are large, and are far out in the tail of the corresponding y? distributions.
For example, for the data in Table 3-1 and the model of complete indepen-
dence of the three variables, the statistics are
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(32 — 35.8) | (86 — 65.2)* (11 —22.3)% + (35 — 40.6)*

X% = +
35.8 65.2 223 40.6
(61 — 53.5)% + (73 — 97.4)* " (41 — 33.3)% " (70 — 60.7)2
53.5 97.4 333 60.7
= 2391

and

G? = 64 log (32/35.8) + 172 log (86/65.2) + 22 log (11/22.3)
+ 70 log (35/40.6) + 122 log (61/53.5) + 146 log (73/97.4)
+ 82 log (41/33.3) + 140 log (70/60.7)
=2542.

The value of G2 computed here is slightly larger than the one in Table 3-5
because the estimated expected values used in the computation above were
rounded to one decimal place. The two statistics here have almost the same
value. The number of degrees of freedom associated with each of them is 4,
and thus either the Pearson or the likelihood-ratio value is significant at the
0.001 level when referred to a chi-square table on 4 d.f. (the 0.001 value in the
table is 18.47). This result implies that the model does not provide an adequate
fit to the data.

Clearly the only model that provides a good fit to both sets of data is the
no three-factor interaction model: u,,; = 0. We have already seen that the
model specifying conditional independence of perch height and perch

Table 3-5
Loglinear Models Fit to Data in Tables 3-1 and 3-2, and Their Corresponding
Goodness-of-Fit Statistics

Data from Table 3-1 Data from Table 3-2
Model X? G? X? G? d.f.
[17[2] (3] 23.91* 25.04% 111.30* 70.08* 4
[1][23] 12.30* 12.43* 47.46* 43.87* 3
[12][3] 23.98* 24.43* 72.23* 57.39* 3
[13][2] 14.45* 14.63* 27.02* 31.09* 3
[13][23] 2.02 2.03 6.11* 4.88 2
[12][23] 11.62* 11.82* 29.55* 31.18* 2
[12][13 13.78* 14.02* 15.75* 18.40* 2
[12][13][23] 0.15 0.15 2.71 3.02 1

*The asterisk indicates goodness-of-fit statistic values in the upper 5% tail of the
corresponding x? distribution, with d.f. as indicated.
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diameter given species fits the data of Table 3-1 quite well. (The X2 value in
Table 3-5 is just the sum of the two X2 values computed for the two 2 x 2
tables separately.) For the data of Table 3-2, however, there is some question
as to whether this conditional-independence model fits, since X2 exceeds the
0.05 significance value while G? does not. The problem of model selection for
these data will be discussed further in Chapter 4.

3.6 Hierarchical Models

We have not considered all possible variants of our loglinear model. For
example, we have not considered the model

log m,-jk =u-+ ul(i) + U2(j) + u3(k) + u123(ijk)’ (343)

subject to the usual ANOVA-like constraints. In Section 3.1 we showed how
successively higher-order u-terms measure deviations from lower-order
terms (see, for example, expression (3.8)). In order to retain this interpretation
we limit our models to a hierarchical set in which higher-order terms may be
included only if the related lower-order terms are included. Thus u, ,5 cannot
be included in a model unless u,,, u,3, and u,; are all in the model. Clearly
(3.43) is not a hierarchical model in this sense. It is possible to consider fitting
nonhierarchical models such as (3.43) to data, but we cannot then compute
the estimated expected values directly via our iterative proportional fitting
procedure. Rather, we need to transform the table, interchanging cells, so that
the nonhierarchical model for the original table becomes a hierarchical model
for the transformed table. Such transformations are quite straightforward for
2* tables (for details see Bloomfield [1974]). Haberman [1974a] gives some
general results that can be used directly to get likelihood equations for non-
hierarchical loglinear models.

Our primary reason for avoiding nonhierarchical models is interpretive
rather than technical. The basic feature of ANOVA-like models is what
Nelder [1976] refers to as marginality. For example, for two sets of main
effects {u,;} and {u, )} and an associated set of interaction effects {u,,;},
the main effects are marginal to the interaction effects. This can be seen from
the restrictions placed on the interaction term (especially geometrically); that
is, if one looks at interaction terms directly in terms of contrasts, they include
the contrasts for the main effects. More importantly, if the interaction terms
are nonnegligible, then it is of little interest that the main effects may be zero.
The same remarks apply to higher-order interactions and the marginality of
lower-order ones (i.e., u,, is marginal to u, ,3).
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3.7 A Further Example

In Section 2.4 we examined the three two-dimensional marginal tables
associated with a three-dimensional cross-classification. Here we look at the
actual three-dimensional table for this example and compare a loglinear
model analysis of this table with the earlier analyses.

The data involved in this example refer to a population of World War II
volunteers for the pilot, navigator, and bombardier training programs of the
U.S. Army Air Corps. Of the approximately 500,000 volunteers, roughly
75,000 passed the qualifying examination at the required level and then took
a battery of 17 aptitude-like tests during the period July—December 1943.
Then, in the 1950s, Thorndike and Hagen [1959] undertook a study of a
random sample of 17,000 of the group of 75,000 individuals to explore the
predictive ability of the tests with regard to vocational success. Of these
17,000 about 2000 were still in the military as of 1955, and 1500 had died since
1943. Thorndike and Hagen received detailed responses from 9700 of the
remaining 13,500, a response rate of 72 percent. (This is a high response rate
for this sort of survey.)

In 1969 the National Bureau of Economic Research did a follow-up survey
of the 7500 of Thorndike and Hagen’s 9700 civilian respondents for whom
up-to-date addresses were available. About 70 percent of these people
eventually answered the NBER questionnaire, and the data in Table 3-6 are
based on 4353, or approximately 83 percent, of the NBER respondents. We
have given extensive background for this example because it will be extremely
important when we attempt to draw conclusions from our analysis. In
particular, we note that the 1969 NBER sample tended to be better-educated
and to have higher ability than the 1955 sample. Taubman and Wales [1974]
give further details.

Table 3-6 presents the full 4 x 4 x 5 cross-classification of the 4353
individuals from the NBER-TH sample by occupation, education, and
aptitude. Individuals are classified into one of five ability groupings based on
the 1943 tests of reading comprehension, numerical operations, and mathe-
matics. The AS group scored in the upper quintile on at least two of the three
tests but had no score in the lowest quintile. The A4 group had one upper-
quintile score and no lower-quintile one. Groups A1 and A2 are similar to AS
and A4, respectively, with the lowest and highest quintiles reversed, and A3
contains all other possible scores. Almost all respondents had completed
high school (i.e., 12 years of education) before applying for aviation cadet
training, and many of those with college and graduate training received this
education following World War II with financial support resulting from the
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Table 3-6

Three-Dimensional Cross-Classification of 4353 Individuals into 4 Occupational
Groups (O), 4 Educational Levels (E), and 5 Aptitude Levels (A) as Measured by a
Scholastic Aptitude Test (Beaton [1975])

Ol (Self-employed, business) 02 (Self-employed, professional)

El  E2 E3 E4]| Totals El  E2 E3 E4 | Totals
Al 42 55 22 30 122 Al 1 2 8 19 30
A2 72 82 60 12| 226 A2 1 2 15 33 51
A3 90 106 85 25| 306 A3 2 5 25 83| 115
A4 27 48 47 8| 130 A4 2 2 10 45 59
A5 8 18 19 5 50 AS 0 0 12 19 31
Totals 1239 309 233 531 834 Totals 6 11 70 1991 286
03 (Teacher) 04 (Salary-employed)

Et E2 E3 E4| Totals El  E2 E3 E4 ]| Totals
Al 0 0 1 19 20 Al 172 151 107 42| 472
A2 0 3 3 60 66 A2 208 198 206 92| 704
A3 1 4 5 86 96 A3 279 271 331 191 1072
Ad 0 0 2 36 38 A4 99 126 179 97| 501
AS 0 0 1 14 15 AS 36 35 99 79| 249
Totals 1 7 12 2151 235 Totals 794 781 922 5011 2998

GI Bill. Thus our measure of education is only partially antecedent to our
measure of aptitude. Occupation is measured as of 1969.

In other analyses of the more complete information available for the
NBER-TH sample, much attention was focused on the effects of education
on attitudes and income. Since education appears to be related to income,
one of the main reasons for analyzing the data in Table 3-6 is to answer the
questions posed by Beaton [1975]: “Is education, in fact, correlated to
ability, and does ability provide a possible alternative explanation for
education effects found for other variables?”

If we ignore for the moment the various response biases present in the
NBER-TH sample, a reasonable approach is to treat the data in Table 3-6 as
having been generated via a multinomial sampling scheme. Despite the fact
that aptitude and education are antecedents to occupation, we have chosen
for the time being not to treat them as explanatory variables for the response
variable, occupation. Table 3-7 gives the values of both goodness-of-fit
statistics for each of the eight hierarchical models fitted to the three-dimen-
sional data of Table 3-6. In this summary, variable 1 is occupation, variable 2
is aptitude, and variable 3 is education.

The two models that provide a reasonable fit to the data are
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Table 3-7
Values of the Chi-Square Goodness-of-Fit Statistics, X2 and G2, for Various Log-
linear Models as Applied to Data in Table 3-6

Model df. X2 G?
[12][13][23] 36 236 25.1
[12][13] 48 184.6 190.8*
[13][23] 48 48.0 50.9
[12][23] 45 1301.1* 1142.2*
[12](3] 57 1424.1* 1319.7*
[13][2] 60 226.7* 228.2*
[23][1] 57 1336.8* 1179.6*
[1172113] 69 1519.8* 1357.0*

* Denotes values in upper 59 tail of the corresponding y? distribution, with d.f. as
indicated.

(D uy236 = 0,
(2) uy26j = Ur236j0 = 0.
Model (2) is a special case of (1) and implies that, given the level of educa-
tion, the current occupational classification is independent of scholastic
aptitude. One could not reach such a conclusion simply by looking at the
two-dimensional marginal tables. The estimated expected cell values for this
conditional-independence model, displayed in Table 3-8, are quite similar
to the observed values in the sense that there are no glaring discrepancies,
as indicated by the standardized residuals of the form (x;j — #;)/x/Mij.-
Actually we must choose between models (1) and (2), and to do this we
require some further theoretical results. Although we shall not complete the
analysis of this example until after the discussion in Chapter 4, for the
present we proceed as if model (2) is our model of choice. The next step in
the analysis of these data should be to examine the estimated values of the
interaction u-terms in model (2): {ii; 3} and {it,3;}. These estimates are
given in Table 3-9. Occupation levels 1 and 4 (self-employed, business, and
salary-employed) are positively related to low education and negatively
related to high education with a gradual progression from one extreme
to the other, while exactly the reverse seems to hold for teachers and self-
employed professionals. This is as we would expect. There is also a natural
progression across rows and down columns in the values of {ii,3;,}, with
low education being positively related to low aptitude and high education
positively related to high aptitude. These effects as displayed here account
almost completely for the observed marginal relationship between aptitude
and occupation. Tentative answers to the questions raised by Beaton would
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Table 3-8
Estimated Expected Values under Model of Conditional Independence of Occupation
and Aptitude Given Education

o1

El E2 E3 E4 Totals
Al 49.4 58.0 26.0 45 137.9
A2 64.6 79.5 53.5 10.8 208.4
A3 85.5 107.6 84.0 21.1 298.2
Ad 29.4 49.1 44.8 10.2 133.5
A5 10.1 14.8 24.7 6.4 56.0
Totals 239.0 309.0 233.0 53.0 834.0
02

El E2 E3 E4 Totals
Al 1.2 2.1 7.8 17.1 282
A2 1.6 2.8 16.1 40.5 61.0
A3 2.1 38 252 79.1 110.2
Ad 0.7 1.7 13.5 38.2 54.1
AS 0.3 0.5 7.4 24.1 323
Totals 5.9 11.9 70.0 199.0 285.8
03

El E2 E3 E4 Totals
Al 0.2 1.3 1.3 18.4 212
A2 0.3 1.8 2.8 438 48.7
A3 0.4 24 43 85.5 926
A4 0.1 1.1 2.3 413 44.8
AS 0.0 0.3 1.3 26.0 27.6
Totals 1.0 6.9 12.0 215.0 234.9
04

El E2 E3 E4 Totals
Al 164.1 146.6 102.9 430 456.6
A2 214.5 200.9 211.7 102.0 729.1
A3 284.0 272.1 332.4 199.3 1087.8
Ad 97.7 124.1 177.4 96.3 495.5
AS 33.6 37.4 97.6 60.6 229.2
Totals 793.9 781.1 922.0 501.2 2998.2

thus be that education is correlated with ability, in the way we would expect,
and if we control for education, ability is not related to occupation, although
it may still be related to other outcome variables such as salary.

One of the issues involved in comparing our earlier analysis of the NBER—
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Table 3-9
Estimated Interaction u-Terms Corresponding to Estimated Expected Values in
Table 3-8

(a) {'313(1‘1;;}

E1l E2 E3 E4
o1 1.241 0.800 —-0.050 —1.991
02 -0.718 -0.810 0.472 1.057
03 —1.528 -0.280 —0.309 2.117
04 1.005 0.290 —-0.112 —1.182
(b) {ft230ju0

Al A2 A3 A4 AS
El 0.460 0.186 0.040 —0.225 —0.461
E2 0.323 0.095 —0.028 —0.011 -0.379
E3 -0.275 —0.096 —0.071 0.103 0.338
E4 -0.507 —0.185 0.058 0.133 0.501

TH data with the foregoing one is whether or not a test for interaction
between variables 1 and 2 based on the two-dimensional marginal table is
in fact a test for u,, = 0, where u,, is the two-factor term from the loglinear
model for the full three-dimensional array. This problem is taken up in the
next section.

3.8 Collapsing Tables

Suppose we have a three-dimensional cross-classification and we are inter-
ested in drawing inferences about the two-factor interaction terms, {u;,;},
in a loglinear model for the expected cell values {m;}. If we collapse the
cross-classification over variable 3, yielding the two-dimensional marginal
table of counts {m,;,}, we would like to know whether the two-factor
interaction terms for this marginal table, {u},;}, are the same as the {u,,;}
from the loglinear model for the three-dimensional table.

In order to appreciate the result that explains “when we can collapse,”
we first recall a well-known formula from standard multivariate statistical
analysis regarding partial correlation coefficients (see, for example, Snedecor
and Cochran [1967], p. 400):

P12 — P13P23
> (3.44)
\/(1 - 0132) (- /’232)

Pr23 =
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where p,,.5 is the partial correlation between variables 1 and 2, controlling
for variable 3, and p,,, p,3, and p,; are the simple correlations. If p,; =0
or p,3 =0, py,.51s a scalar multiple of the p, ,, and we can test the hypothesis
P12.3 = 0 by testing for p,, = 0.

In the general loglinear model (3.11) for the three-dimensional contingency
table, we can think of the two-factor terms {u,;} as being the two-factor
interactions between variables 1 and 2, controlling for variable 3 (since the
effects of variable 3 are taken into account in the model). By analogy with
the correlation coefficient result above, the following seems quite reasonable.

Theorem 3-1 In a three-dimensional table the interaction between two
variables (as given by the appropriate u-terms) may be measured from the
table of sums obtained by collapsing over the third variable if the third
variable is independent (again as given by the appropriate u-terms) of ar
least one of the two variables exhibiting the interaction.

Bishop, Fienberg, and Holland [1975] give a detailed proof of this result
as well as some natural generalizations.

The version of Theorem 3-1 originally given by Bishop, Fienberg, and
Holland [1975] incorrectly implied that the converse result was also true. It
is possible, for example, to construct a three-dimensional table in which (1)
one dimension has more than two categories, (2) u,,3 = 0 but u,,, u,;, and
u,yare all nonzero, and (3) the table is collapsible over variable 3. Whittemore
[1978] gives such an example, included here as Table 3-10, in which condition
(2) above holds and each of the first-order u-terms can be computed from the
corresponding collapsed table.

Darroch [1962] also considered counterexamples to the converse of

Table 3-10
Artificial Cross-Classification of Variables A, B, and C (Each at Three Levels), with
;3 = 0 (Whittemore [1978])

A 1 2 3
B 1 2 3 1 2 3 1 2 3
1 125 40 75 | 40 32 120 75 24 45
2 40 32 24 | 32 64 96 120 96 72
3 75 120 45 | 24 96 72 45 72 27

*To interpret the entries as probabilities, divide by the grand total, 1728.
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Theorem 3-1. He defined a perfect three-dimensional table as one in which
the following equations hold exactly:

PisPivk _ o py . foralljk, (3.45)

D

Pewbisr _ o opies  forallik, (3.46)
4 P+j+

J

PiskPei _p po,w  foralli,). (3.47)
D+ +k

If, in addition to (3.45), (3.46), and (3.47), u,,5 = O, then we can write

_ P+ jPi+kPij+

pijk_pi++P+j+P++k’ (3.48)
and it is straightforward to show that each first-order interaction can be
measured from the corresponding collapsed table. Table 3-10 is an example
of such a perfect table.

While perfect tables do exist, they are not really common, and rather than
using the necessary and sufficient conditions of Whittemore [1978], it is
reasonable to consider working with collapsed tables only when the condi-
tion of Theorem 3-1 is met.

We can illustrate the importance of this theorem in the context of our
example of a cross-classification of a sample of individuals by occupation,
education, and aptitude. The two models we have yet to choose between are

(D uyp3 =0,
(2 uy, =u,,3=0.

The theorem states that we can measure u;, from the two-dimensional
marginal table of occupation and education if u;3 =0 or u,; = 0. Since
neither u;; = Onor u,; = 0in either of the models, we cannot choose between
them on the basis of a test for no interaction carried out on the two-dimen-
sional marginal table. Thus, as noted in Section 2.4, it is not sufficient to
examine the three two-dimensional marginal tables resulting from the full
cross-classification.

This theorem also provides a simple and straightforward explanation of
the so-called Simpson’s paradox (see Simpson [1951]). Blyth [1972] states
the paradox as follows: It is possible to have

P(A|B) < P(4|B’) (3.49)
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and have at the same time both
P(A|BC) > P(A|B’C),

(3.50)
P(A|BC’) =2 P(A|B'C').
He offers the following hypothetical example:
C C’
B’ B B’ B
A | 950 9000 A’ | 5000 5 (3.51)
A 50 (5%) | 1000 (10%) A | 5000 (50%) | 95(95%) '
The marginal table, adding over the third variable in (3.47), is
B’ B
A'| 5950 9005
(3.52)

5050 (46%,) | 1095 (11%)

and the conditions in (3.49) and (3.50) are satisfied. But another way to
interpret these conditions is that if we collapse a 2 x 2 x 2 table over the
third variable, the cross-product ratio for the marginal table (& = 0.14 in
(3.52)) caun be less than 1 while the cross-product ratio in each layer (cor-
responding to levels of this third variable) is greater than 1 (&, = 2.11 and
&, = 19 in (3.51)). Theorem 3-1 states that we can collapse over a variable
and expect to find the same cross-product ratio in the margin as we have in
each layer if the variable collapsed over is independent of at least one of the
other two variables. Thus we can view Simpson’s paradox as a statement
about the possible effects of collapsing multidimensional tables in the pres-
ence of interactions. On the other hand, as Darroch [1962] notes, there are
no paradoxes of this sort in perfect tables.

Both Meehl and Rosen [1955] and Lindley and Novick [1975] discuss
Simpson’s paradox, although from somewhat different perspectives. Darroch
[1976] notes that it might be more appropriate to name the paradox after
Yule, rather than Simpson, since Yule discussed it in the final section of his
1903 paper on the theory of association of attributes.

Problems

3.1. Analyze the data in Table 1-2 on the effects of serum cholesterol and
blood pressure on the incidence of coronary heart disease.
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(a) Begin by testing the model of no second-order interaction.

(b) Are the effects of both explanatory variables necessary for inclusion in
the model?

(c) After you arrive at a reasonable model, compute the estimated u-terms.
Can you detect any pattern in their values that corresponds to the order-
ing of the explanatory variables?

3.2. Thedatain Problem 2.4 can be profitably viewed as forminga2 x 2 x 2
table. To see this three-variable structure, note that the column variable
“Cited Journal” is in fact a 2 x 2 cross-classification of the variables “Cited
MS” and “Cited OR” (each with categories Yes and No).

(a) To which loglinear model does the test in Problem 2.4 pertain?

(b) Fit the model of no second-order interaction to the 2 x 2 x 2 table, using
a 0.05 level of significance, and interpret your findings.

3.3 (continuation). We can reexpress the data from the previous problem
in the form of a different 2 x 2 x 2 table by replacing the two variables
“Cited MS” and “Cited OR” by two different but related variables, “Cited
the Same Journal” and “Cited the Other Journal.”

(a) Construct this revised table, and note how it differs from the one you
analyzed in Problem 3.2.

(b) Fit the model of no second-order interaction to the revised table and
compare your answer with that for Problem 3.2(b).

(c) For which loglinear models should the fitted values coincide for the two
different forms of data display. Explain your answer.

3.4 (Fienberg [1980]). Table 3-11 contains one version of the results of
an experiment in which the food additive Red Dye No. 2 was fed to four
different groups of rats at varying dosages. Some of the rats died during
the experiment (i.e., between 0 and 131 weeks). The remainder were sacrificed
at the end of 131 weeks. All rats were examined for tumors.

(a) Which variables are explanatory and which are response?

(b) Fit all relevant loglinear models to the data consistent with your specifi-
cation in part (a).

(c) Which is the most parsimonious model that fits the data? What does
this model say about whether Red Dye No. 2 causes cancer?
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Table 3-11
Age at Death 0-131 weeks Terminal sacrifice
Dosage Group Low High Low  High
Cancer Present 4 7 0 7
Absent 26 16 14 14
Totals 30 23 14 21

3.5. Plackett [1974] presented the data in Table 3-12 on a random sample
of diabetic patients. Fit appropriate loglinear models to these data and com-
ment on the influence of family history on the other two variables, and on
the relationship between the other variables.

Table 3-12

Family History of Diabetes Yes No

Dependence on Insulin Injections Yes No Yes No
< 45 6 1 16 2

Age at Onset > 45 6 36 8 48

3.6 (Bickel, Hammel, and O’Connell [1975]). In a study of possible sex
bias in graduate admissions at the University of California at Berkeley, data
were examined for all 12,763 applications to the 101 graduate programs for
1973. The data were first displayed in the form of a2 x 2 table (Table 3-13).
About 44 percent of males and 35 percent of females were admitted. These
data appear to suggest a sex bias. Test the hypothesis of equality of propor-
tions admitted for males and females.

Table 3-13
Admission
Yes No Totals
Applicants Men 3738 4704 8442
pp Women | 1494 2827 4321
Totals 5232 7531 12,763

3.7 (continuation). Table 3-14, reported by Freedman, Pisani, and Purves
[1978], gives admissions data for the six largest graduate programs at
Berkeley for 1973.
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Table 3-14
Men Women
Number of Percent Number of Percent
Major applicants  admitted applicants  admitted
A 825 62 108 82
B 560 63 25 68
C 325 37 593 34
D 417 33 375 35
E 191 28 393 24
F 373 6 341 7

(a) Reexpress these data in the form of a 6 x 2 x 2 table, and find which
loglinear models fit the data reasonably well.
(b) Comment on the issue of sex bias.

(c) Can you think of other variables that should have been measured and
included in this analysis?

3.8. The fictitious data in Table 3-15 are expressed in multiples of the
number x, where x is taken to be sufficiently large that sampling variability
can be ignored.

Table 3-15
Male Female
Treated  Untreated Treated  Untreated
Success 8x 16x 2x 14x
Failure 3x S5x 2x 12x

(a) Examine the data for the presence of Simpson’s paradox.
(b) What loglinear model describes the data?

3.9 (Duncan, Schuman, and Duncan [1973]). In a survey of a large Ameri-
can city, respondents were asked the question: “Are the radio and TV net-
works doing a good job, just a fair job, or a poor job?” Data for the responses
to this question were broken down by the color of the respondent, and the
question was asked in two separate years (Table 3-16).
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Table 3-16
Response
Year Color Good  Fair Poor
Black 81 23 4
1959 White | 325 253 54
1971 Black 224 144 24
White 600 636 158

(a) Which variables are explanatory?
(b) Which loglinear models provide an acceptable fit to the data?

(c) In your most parsimonious model that fits the data, examine the estimated
u-terms corresponding to the effects of the explanatory variables on the
response.

(d) Interpret your results.

3.10. Using the iterative proportional fitting procedure, or other means,
confirm that, for Table 3-10:

(@) uyy3=0;
(b) u,,, u;3, and u,3 have the same values in the full table as they do in the
corresponding two-dimensional margins.



4
Selection of a Model

4.1 General Issues

Complicated models involving large numbers of parameters most often fit a
set of data more closely than a simpler model that is just a special case of
the complicated one. (In the simplest contingency-table model considered in
Chapter 3, the three-factor effect and the two-factor effects were set equal to
zero, whereas the more complicated models allowed at least some nonzero
two-factor effects.) On the other hand, a simple model is often to be preferred
over a more complicated one that provides a better fit. There is thus a
trade-off between goodness-of-fit and simplicity, and the dividing line
between the “best” model and others that also fit the data adequately is
clearly very fine (see the discussion of this point in Kruskal [1968]).

The goodness-of-fit tests discussed in Chapter 3 allow us to take a parti-
cular model and see if it yields expected values that are close in some sense
to the observed values. For three-dimensional tables, there are eight possible
hierarchical loglinear models (all containing the “main-effect” terms), any one
of which might be used to fit the data. Because the test statistics are not
statistically independent, we are not able to interpret the corresponding
significance levels in the usual way. We simply cannot test the goodness-of-
fit of each model separately, as we did in Chapter 3. Therefore we need a
method that aids in the selection of the interaction terms to be included in
the fitted model. Unfortunately, there is no all-purpose, best method of
model selection. Bishop [1969], Brown [1976], Fienberg [ 1970b ], Goodman
[1970, 1971a], and Ku and Kullback [1968] all suggest different approaches
to the model selection problem.

4.2 Conditional Test Statistics

Before discussing some approaches to model selection, it will be useful to
introduce a general technique for comparing expected values for two different
loglinear models, where one model is a special case of the second. Suppose
that the two estimated expected values for the observed frequency x;; are

(1) = (Expected),,

m;i (2) = (Expected),, (4.1)

where model 2 is a special case of model 1 (e.g., the model of complete
independence in a three-dimensional table is a special case of the model of
independence of variable 3 with 1 and 2 jointly). Then the likelihood-ratio
test statistic,
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2Z(Observed) log [igigzzgj—ﬂ 4.2)

can be used to test whether the difference between the expected values for
the two models is simply due to random variation, given that the true
expected values satisfy model 1. This conditional test statistic has an asymp-
totic chi-square distribution (under the null situation), with degrees of
freedom equal to the difference in the degrees of freedom for the two models
(for technical details see Rao [1973], pp. 418-420).

Goodman [1969] has noted that because of the multiplicative form of the
estimated expected values for hierarchical loglinear models, expression (4.2)

is equal to
(Expected),
22 . (Expected), 43
(Expected), log [(Expected)z ’ -

a test statistic analogous to the Pearson-like statistic proposed by Rao
[1973, pp. 398-402]:

[(Expected), — (Expected) 2]2
(Expected),

(4.4)

The methods discussed below are based mainly on expression (4.2).

We can use expression (4.2) to resolve our choice of models for the data in
Table 3-6 (see Section 3.7 for the earlier discussion of this example). Since
model (2) of Section 3.7, u,;, = u;,5 = 0, is a special case of model (1), u,,;
= 0, the difference in the values of the likelihood-ratio statistics for the two
models (from Table 3-7), G*(2) — G*(1) = 50.9 — 25.1 = 25.8, should be
referred to a y? distribution table with 48 — 36 = 12 d.f. to test if the true
expected values satisfy model (2). This value corresponds to a descriptive
level of significance somewhere between 0.05 and 0.01, and if we were to
adhere to a 0.05 level of significance, we would choose model (1) over model

().
4.3 Partitioning Chi-Square

The method of partitioning breaks the likelihood-ratio goodness-of-fit
statistic for a hierarchical loglinear model into several additive parts. To
make use of partitioning we must formulate a nested hierarchy of models
in which we are interested, where each of the models considered must
contain the previous ones in the hierarchy as special cases. For example, in
a three-dimensional contingency table, the following sequence of models for
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the logarithms of the expected values forms a nested hierarchy:

(@) u+uye + Uz + Uz (4.5)
(b) u+ g + Uz + Uswy + Upsary (4.6)
(©) u+uyg + Uy + Usgy + Uraan T U2y 4.7)
(d)  u+uyg + Uy + Usgy + Uiz + Uraan T Uzage:- (4.8)

A different nested hierarchy of models could be created by adding the two-
factor effect terms in a different order. Depending on the hierarchy chosen,
the partitioning method may yield different “best” models.

There are different strategies for constructing a hierarchy of models.
If an investigator has auxiliary information regarding the interrelationships
among the variables, he might set up the models so that the interaction terms
added at successive stages are ordered according to their importance or
expected magnitude. For three-dimensional tables one could, of course, look
at all six possible hierarchies in order to determine if the choice of a hierarchy
affects the choice of a model. The theorem on collapsing from Section 3.8,
or the results given below in expressions (4.12) and (4.13), indicate that we
can reduce this number to three hierarchies. Unfortunately, when we deal
with higher-dimensional tables, the task of looking at all possible hierarchies
is an onerous one, and the interpretation of the related tests of significance
is difficult at best.

In the hierarchy given by (4.5)—(4.8) there are four possible models, and
we use the partitioning technique for this hierarchy and the data from
Table 3-2. We denote the likelihood-ratio goodness-of-fit statistics for
models (4.5)-(4.8) by G*(a), G*(b), G*(c), and G*(d), respectively, and Table
3-5 indicates that G?(a) = 70.08, G*(b) = 31.09, G*(c) = 4.88, and G*(d) =
3.02. Note that

G*(a) > G*(b) = G*(c) = G*(d). (4.9)

This result is true in general, and its importance will soon be evident. One
of the reasons we do not partition the Pearson goodness-of-fit statistic, X2,
is that (4.9) does not necessarily hold for any set of nested models when G2
is replaced by X 2. For example, in Table 3-5 (for the data from Table 3-1),
we see that X ? for model (4.5) is slightly less than X 2 for the model

U+ Uy + Uygy + Uz + Upzaj), (4.10)

Note that G?(a) — G?(b), G*(b) — G?(c), and G?(c) — G*(d) are statistics
of the form (4.2) and can be used to test the difference between models (b)
and (a), (¢) and (b), and (d) and (c), respectively. Thus we can write the like-
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lihood-ratio goodness-of-fit statistics for the model of complete independence
as

G*(a) = [G*(a) — GX(b)] + [G*(b) — GX(©)] + [G*(c) — GA(d)] + G(d),

(4.11)
and each component has an asymptotic y? distribution with appropriate
d.f. under a suitable null model.

As an example of a partitioning argument we consider the data in Table 3-2.
We begin by looking at the component due to model (d), whose value 3.02
has a descriptive level of significance greater than 0.05 when referred to a
table of the y? distribution with 1 d.f. This model fits the data fairly well, and
we proceed to the next component, G(c) — G*(d) = 1.86, whose descriptive
level of significance is close to 0.20 when referred to the 2 distribution with
1 d.f. Moreover, the cumulative value of the components so far, G(c) = 4.88,
has a descriptive level of significance slightly less than 0.10 when referred to
the »? distribution with 2 d.f. Thus model (4.7) seems to fit well, and we go
on to the third component, G*(b) — G?(c) = 26.21, which exceeds the 0.001
upper tail value of the y? distribution with 1 d.f. by a considerable amount.
It thus makes sense to stop the partitioning here and choose model (c),
conditional independence of perch height and perch diameter given species.
Were we to continue examining components we would find that G?(a) —
G?*(b) = 38.99 is also highly significant, but this will not necessarily be the
case for partitioning analyses in other examples.

At each stage of the partitioning we should look at two things: the value
of the appropriate component, and the cumulative value of the components
examined, which is equivalent to the G? statistic for the simple model
examined so far. One possible rule for the partitioning technique is: Stop
partitioning when either of these values is significant at some level, when
referred to the appropriate y* distribution, and choose as the best model
the one from the previous step.

Choosing the appropriate hierarchy of models is very important. To
illustrate this point, consider an alternate hierarchy of models consisting of

(@) w4 uy + Uy + Uz

(0) u+ uygy + Uy + Uz + Uy

(C) w4 Uy + Uiy + Uz + Ui2a) T Ursgny

(d) u+ g+ Uy + Uspy + Uiy + Ui T U2
From Table 3-5 (for the data in Table 3-2), we have G*(d’) = G3(d) = 3.02
as before, but now the remaining three components,

G¥(c') — G¥(d) = 15.38,
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G(b') — G3(c') = 38.99,
G(a') — GH(b') = 12.69,

are all greater than the 0.001 upper tail value of the y* distribution with
1 d.f. Thus, based on this partition of G*(a’), we are forced to settle on (d’),
no three-factor interaction, as the most appropriate model for the data.

The method of partitioning was first introduced by Lancaster [1951] for
the Pearson test statistic X2 (see also Lancaster [1969]) and was later
extended by Kullback, Kupperman, and Ku [1962] and Ku and Kullback
[1968] for the likelihood-ratio statistic G*. Unfortunately, the methods of
Lancaster, Kullback, Kupperman, and Ku are somewhat different from
those described here, and they cannot be used as a substitute for the pro-
cedures in this section. In particular, the method of Kullback, Kupperman,
and Ku [1962] can yield negative values for the likelihood-ratio goodness-of-
fit statistic in tests for three-way or higher interactions. This is due to an
improper procedure used by these authors to estimate expected cell counts
under the no three-factor interaction model. The correct procedure is now
known and is the one described here. Thus it is not possible to get negative
values for the likelihood-ratio statistics in the partitioning method described
here, except as a result of numerical roundoff errors associated with the
iterative proportional fitting procedure, and such errors tend to be quite
small. Darroch [1974, 1976] gives further detail> on the Lancaster method
and the models for which it is suitable.

Goodman [1969, 1970] describes an elaborate method for partitioning the
likelihood-ratio goodness-of-fit statistics. He not only carries out the parti-
tioning as described above, but he also gives an additional interpretation to
several of the components due to differences between models, and he offers
a general set of rules for this more elaborate method of partitioning. These
rules have been elaborated upon by Bishop, Fienberr, and Holland [1975].
An interesting special case of Goodman’s results is that certain conditional
tests are identical to corresponding marginal tests. For example, in the hier-
archy of models given by (4.5)-(4.7), the conditional test statistic for model (b)
given model (c) is algebraically identical to the marginal test statistic for
independence in the two-dimensional table for variables 2 and 3; that is,

X4 /X + 4k
*(blc 22 o log | ZEEE K }
’ )= o [ Xy X1/ N

i,j,k

_ X+ jk
_zzx,.jk log [————x+j+x++k/N] 4.12)

i,jk
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=2 Zx log I:#:'
e Xyj+X4q1/N

ik

Similarly, the conditional test statistic for model (a) given model (b) is
algebraically identical to the marginal test statistic for independence between
variables 1 and 3; that is,

v X k/N
Gz(ab)=2zxi. log[ X+]+x|+k/ :!
l s xi++x+j+x++k/N2

ik

i+k
22 " log[ ,++x++k/N] (4.13)

i,j,k

___22 ; 10 |+k ]
i g[ Xir+ X1 44x/N

Thus the use of the two-dimensional marginal test statistic to test for
u,, = 0is justified provided u,; = 0, u,;; = 0, or both. This is a byproduct
of the somewhat more general theorem on collapsing discussed in Section 3.8.

Goodman [1971a] suggests the use of stepwise procedures for model
selection, by analogy with the stepwise methods of multiple regression. These
methods are mostly of interest for tables with four or more dimensions, so we
defer our discussion of them until the next chapter.

4.4 Using Information about Ordered Categories

One characteristic of the techniques used up to this point is that they have
made no assumptions regarding the ordering of categories for any of the
underlying variables. In many situations, however, the categories for a
variable represent points in an ordinal scale; in political preference polls, for
example, respondents are often asked to rate the incumbent’s position
according to a five-point scale: agree strongly, agree, indifferent, disagree,
disagree strongly. If this information on the ordered structure of the categories
isignored, all the relevant aspects of the data have not been utilized.

We have not completely ignored information regarding ordered categories
in earlier analyses. For example, after fitting a reasonable loglinear model to
the NBER-TH data in Section 3.7, we looked at the values of the estimated
interaction u-terms and interpreted them in light of the underlying ordering
of the categories. But this was done informally, and the discussion might have
been strengthened by a more structured approach to the problem.
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A number of authors have proposed methods for dealing with ordered
categories in multidimensional contingency tables (e.g., Bock [ 1975], Clayton
[1974], Grizzle, Starmer, and Koch [1969], and Williams and Grizzle
[1972]). The approach described here is essentially the same as those pre-
sented in Haberman [1974b], Nerlove and Press [1973], and Simon [1974].

For simplicity we begin with an I x J two-dimensional contingency table
with observed entries {x;;} generated by one of the three basic sampling
models. Suppose that the J columns are ordered and that a priori we can
assign scores {v;} to them. If we decide that the model of independence does
not hold, rather than going directly to the general saturated loglinear model
it might be logical to explore an interaction structure that directly reflects the
ordering of the columns and of the scores {v;}, such as

log m,-]- =u -+ ul(i) + uzu') + (Uj - l_))u'l(“, (414)

where ¥ is the average of the {v;} and the usual side constraints hold:

zul(i)=zu2(j)=zul(i)=0- (4.15)
i J i

Note that the {v;} have been centered in the interaction term so that

Z“mm = Z(Uj — Duyy =0, (4.16)

J J
in keeping with the convention used elsewhere in this book. This normaliza-
tion is really not necessary in the present circumstances.
The likelihood equations for model (4.14) follow the general format of the
likelihood equations for other loglinear models discussed in this book:

s =X, =121, 4.17)
rAn*J':x‘*j’ .]: 1’27~~~7J7 (418)

Zv,.rh,.jzzvjx,.j, i=1,2,...,1I (4.19)
J j

The symmetry inherent in the sets of equations (4.17) and (4.18) is important.
To put (4.19) into a similar form we transform the {v;} to {v¥}, where
0 <v¥ < lIforj=1,2,...J.Then(4.19) becomes

2 vim;; = Z vEXy, i=12,...,1, (4.20)

/ ]

and
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and by subtracting (4.20) from (4.17) we also have

Z(l —uy)mi,.=2(1 —oMx, =121 (4.21)
/ /
Equation (4.21) is redundant once we have (4.20), in the same sense that
mi, =x;, fori=1,2,...,1 — 1 implies m;, = x;,.

The likelihood equations (4.17), (4.18), (4.20), and (4.21) can be solved by a
version of iterative proportional fitting in which we set

';15}))= 1, i=1,2,...,1, (4.22)
Jj= ,2,...,J,
and for v > 0 cycle through the three steps:
SGv+1) _ | Xi+
m;; = my; (ﬁ]iE‘T))’ (423)
vt — pven [ Xg (4.24)
ij ij ﬁ1(3;+1) > :

mvrd = ﬁz}}vu)( T X )l""‘( il — vi) x )l —U;, (4.25)

St D)\ = oy

fori =1,2,...,Iandj = 1,2,...,J. Repeated application of (4.23)-(4.25)
forv=0,1,2,...givesan iterative procedure that converges to the estimated
expected values {m;;} (for a proof of convergence see Darroch and Ratcliff
[1972]). Note that the adjustment for equations (4.20) and (4.21) is done in
(4.25) simultaneously, and that the two multiplicative adjustment factors
associated are raised to the powers v} and 1 — v¥, respectively.

While the version of iterative proportional fitting used to solve the likeli-
hood equations in this problem does converge, the rate of convergence in
practice is considerably slower than the rate for the standard iterative
proportional fitting procedure. Some unpublished work of Darroch, Fien-
berg, and Ratcliff suggests that the algorithm can often be speeded up sub-
stantially by dropping the powers v} and 1 — v} in (4.25). This alteration
always seems to work when v¥ only takes on the values 0, 0.5, and 1, and
it appears to work in other situations as well. Unfortunately we have yet to
see a proof that such an altered algorithm actually converges in general.
Goodman [1979] has proposed an alternative algorithm, based on succes-
sive applications of Newton’s elementary (unidimensional) method, which in
the examples he considers converges more rapidly than the Darroch—Rat-
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Table 4-1
Frequency of Visits by Length of Stay for 132 Long-Term Schizophrenic Patients

(Wing [1962])

Length of stay in hospital

At least At least
Frequency of 2 years but 10 years but At least Totals
visiting less than less than 20 years

10 years 20 years
Goes home, or visited 43 16 3 62
regularly
Visited less than once 6 11 10 27
a month. Does not go
home.
Never visited and 9 18 16 43
never goes home
Totals 58 45 29 132

cliff algorithm. Haberman [1974b] describes a Newton—Raphson algorithm
to handle this problem that converges more rapidly than the algorithm out-
lined above. The speed of convergence of the Newton—-Raphson algorithm
must be weighed against the simplicity of the structure of equations (4.23)-
(4.25).

Since we are estimating I — 1 additional parameters relative to the
model of independence, the degrees of freedom associated with (4.14) equal
(I-NJ—=1)=(U=1)=( - 1)(J — 2). Clearly this approach only makes
sense if J > 2. The goodness-of-fit of this model may be tested with either
X2 or G? in the usual fashion.

Haberman [1974b] presents an analysis of data given by Wing [1962]
comparing frequency of visits with length of stay for 132 long-term schizo-
phrenic patients in two London mental hospitals (Table 4-1). Fitting the
model of independence to these data yields X* = 35.2 and G? = 38.4 with
4 d.f. Instead of fitting the “ordered-interaction” model (4.14) directly, Haber-
man adds the constraint u,, = (v; — 0)u’, so that the model becomes

log my; = u + uy + (v; — D' + (v; — D)uy ;) (4.14a)

For the data in Table 4-1, this model has 3 d.f. (1 d.f. comes from fitting only
a linear component for u,;,, and 2 d.f. come from the special form of the
interaction term in (4.14)), and in the likelihood equations (4.18) is replaced
by
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Zujm+,.= Zu,.x+,.. (4.18a)

J J
Finally in the iterative proportional fitting procedure the step corresponding
to (4.24) is dropped since the adjustment in (4.25) will automatically lead to
equation (4.18a) being satisfied. This revised “ordered-interaction” model
yields X? = 3.3 and G2 = 3.2 with 3 d.f. Using the ordered restrictions here
provides a remarkable improvement in fit. Expected values for this model
are in Table 4-2.

The approach just described generalizes immediately to handle (1) tables
of dimension three or more, (2) ordered categories for more than one variable,
and (3) quadratic and higher-order components, in a manner analogous to
the handling of such problems in the analysis of variance. The only thing
about which we need to be careful is that once quadratic and higher-order
components are set equal to zero for a particular set of u-terms, they are also
set equal to zero for all related higher-order u-terms. This restriction preserves
the hierarchical structure of the loglinear models being used. For example,
suppose we have an I x J x K table (where J > 2) with ordered columns
having assigned scores {v;}, and we wish to explore the linearity of various
interaction effects involving the columns. If we set

”12“‘_,-) = (Uj — E)IJII(i) (426)
in the general loglinear model, as we did in (4.14), then we must also set
Uy 2300 = (V) = D) U305, (4.27)

Table 4-2
MLEs of Expected Values under Model (4.14a) for Data in Table 4-1

Length of stay in hospital

o At least 2 years At least 10 years
Ergq\xellcy of but less than but less than At least
visiting 10 years 20 years 20 years
Goes home, or visited 44.19 13.61 4.19
regularly
Visited less than once 7.07 8.85 11.07
a month. Does not go
home.
Never visited and 10.98 14.05 17.98
never goes home
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where

z U3k = Z Uyagn = 0. (4.28)

i k

Forcing expression (4.27) to follow from (4.26) is similar to the restrictions
associated with hierarchical models (e.g., u;, = 0 implies u;,3 = 0). Such
restrictions are needed to simplify the interpretation of our models and also
for technical reasons not discussed here.

The degrees of freedom for this model equal (I — 1) (J — 2)K. Following
the general results for loglinear models in Appendix II, we can write the
likelihood equations for this model as

i=12,...,1, (4.29)
k=12,...,K,
2 J
2

Mivk = Xit+k

rh+jk=x+jk’ _]=1’ R (430)
k=12,...,K,
Zvjrhijkzzvjxijk, l= 1,2,...,1, (4.31)

: - k=12,...,K.

If the model is specified only by (4.27), then the likelihood equations consist of
(4.29)-(4.31) and

Yi’lij+ = 32,']'4,, l= 1,2, N ,I, (432)
i=12...,J,

whereas for the model given by (4.26) and u;,34% = O, the likelihood
equations consist of (4.29), (4.30), and

}:ujmi“ = Eujxi,.+, i=1,2...,1 (4.33)

J J

For any of these models, we can solve the likelihood equations using a
version of iterative proportional fitting in which each cycle of the iteration
has a step to adjust for one of the sets of likelihood equations. Alternatively,
Haberman’s [1974b] Newton—Raphson algorithm is especially useful when
we wish to explore quadratic and higher-order components of the interaction
involving variables with ordered categories.

Ashford and Sowden [1970] present data on British coal miners between
the ages of 20 and 64 years who were smokers but did not show radiological
signs of pneumoconiosis. The data, consisting of information on two
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Table 4-3

Coal Miners Classified by Age, Breathlessness, and Wheeze (Ashford and Sowden
[1970])

Age group Breathlessness No breathlessness

in years Wheeze  No wheeze Wheeze  No wheeze Totals
20-24 9 7 95 1841 1952
25-29 23 9 105 1654 1791
30-34 54 19 177 1863 2113
35-39 121 48 257 2357 2783
40-44 169 54 273 1778 2274
45-49 269 88 324 1712 2393
50-54 404 117 245 1324 2090
55-59 406 152 225 967 1750
60-64 372 106 132 526 1136
Totals 1827 600 1833 14,022 18,282

symptoms (breathlessness and wheeze) and age, are given in Table 4-3. Age is
represented in terms of nine 5-year groupings. The analysis here is similar to
that given by Plackett [1974].

A cursory examination of Table 4-3 suggests that the relationship between
breathlessness (variable 1) and wheezing (variable 2) decreases with age
(variable 3). For the loglinear model that posits no second-order interaction
(u;23 = 0), the likelihood-ratio statistic is G> = 26.7 with 8 d.f, a highly
significant value. The linear second-order interaction model of expression

Table 4-4
Estimated Expected Values under Model of Expression (4.27) for Ashford—-Sowden
Data in Table 4-3

Age group Breathlessness No breathlessness

in years Wheeze  No wheeze Wheeze  No wheeze Totals
20-24 10.2 5.8 93.8 1842.2 1952
25-29 21.2 10.8 106.8 1652.2 1791
30-34 52.5 20.5 178.5 1861.5 2113
35-39 121.4 47.6 256.6 2357.0 2783
40-44 169.3 53.7 272.7 1778.3 2274
45-49 274.8 82.2 318.2 1717.8 2393
50-54 3933 127.7 255.7 13133 2090
55-59 418.8 139.2 212.2 979.8 1750
60-64 365.5 112.5 138.5 519.5 1136
Totals 1827 600 1833 14,022 18,282
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(4.27), with v; = j, yields G*> = 6.8 with 7 d.f., an extremely good fit. The
expected values under this model are listed in Table 4-4, and the estimated
value of the one parameter used to describe the second-order interaction is
#3431 = —0.13.

We shall return to the discussion of ordered effects associated with ordered
categories in Chapter 6, where we consider logistic response models.

Problems

4.1. Show that expressions (4.2) and (4.3) are in fact equivalent for all
possible pairs of nested hierarchical loglinear models in a three-way table.
Hint: You need to show first that.

z (Observed) log (Expected) = z (Expected) log (Expected).

4.2. (a) Examine all possible partitions of G* for the Red Dye No. 2 data
in Problem 3.4.

(b) Use these partitions to decide on an appropriate parsimonious model. Is
this model different from the one you chose in Problem 3.4?

(c) Explain why you can compute the u-term corresponding to the effect of
Red Dye No. 2 on the presence and absence of cancer by looking at the
marginal two-way table. Compute its value.

4.3. (a) Reanalyze the data in Table 4-1 without the constraint that u,; =
(v; — D'

(b) Compute a conditional test statistic for the appropriateness of this con-
straint.

4.4. (a) Verify that G? = 26.7 and compute the value of X? for the no
second-order interaction model applied to the data in Table 4-3.

(b) Compute the values of the estimated u-terms, i ,3j,), from the saturated
model, and plot &, ,3(;, against j.

(c) Fit a least-squares line to your plot in (b), and compare the estimated
slope with @'y 3(, ), the MLE.

4.5. Rosenberg [1962] reports the results, shown in Table 4-5, of a survey
that assessed respondents’ self-esteem (high, low) as it related to religion
(three categories) and father’s education (six categories). The entries give the
percentage of the sample with high self-esteem.
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Table 4-5
Father’s Education
8th Some High

grade or high school cicl)lr:e ?c:jllegle r};gst-t
Religion less school  graduate ge  graduale - graduate
Catholic 0.681 0.685 0.717 0.709 0.675 0.729

(n = 360) (482) (541) (141) (114) (70)
Jewish 0.718 0.706 0.745 0.788 0.879 0.827

(39) (126) (137) (85) 99) (75)
Protestant 0.648 0.720 0.574 0.699 0.706 0.738

(193) (325) (406) (156) (279) (122)

(a) Reconstruct the three-way table of counts that corresponds to this sum-
mary.

(b) Fit all appropriate loglinear models to your three-way table, keeping in
mind the distinction between explanatory and response variables.

(c) Using the method of partitioning, choose a reasonable model that fits the
data from among those fitted in part (b).

(d) The six categories for father’s education are clearly ordered. Devise one or
more sets of scores for these categories, and use them to fit various models
that take the ordering directly into account.

(e) Do any of the models that you fit in part (d) significantly improve upon
the one you chose in part (c)?

4.6. In Problem 3.9 the three categories for the response variable were
ordered. Using scores of —1, 0, and 1, fit all appropriate reduced models,
corresponding to your most parsimonious model, that use information on
the ordering.

4.7. For the NBER-TH data in Table 3-6, can you devise sets of scores for
aptitude and education that yield a reduced-parameter model that conforms
with the discussion in Section 3.7?

4.8. Katz [1978] analyzes data from a study of social interaction and
social mobility in which a husband and the fathers of both the husband and
wife were classified, for 709 families, according to the social status of their
occupations. The following scale is used:

1. professional, technical, kindred white-collar managers, officials;
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2. clerical and sales white-collar workers;
3. craftsmen (blue-collar workers);
4. operatives, service workers, laborers other than farm workers (blue-collar

workers).

The data are given in Table 4-6.

Selection of a Model

Table 4-6
Husband’s Status
(1) 2) (3) @)

Husband’s
Father's )@ G @ 1M)EE @] 0 G @] 0 3@
Status
Wife’s (1) 44>17 4 12|11 2 4 8 8 2 19 11 9 2 910
Father’s 2110 3 6 2| 1 2 23 00 5 5 00 2 6
Status 3)[29 7 2222 6 7 4 9 |11 2 26 35|11 0 22 32

4| 13 8 21 32 S 1 11 8 4 1 21 37 (12 4 28 39

(a) Fit the model of no second-order interaction to these data.

(b) Does it make sense to use the four-point scale for status to model the
interactions associated with this table? Explain your answer.
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Four- and Higher-Dimensional
Contingency Tables

Although all the models and methods discussed so far have been in the context
of three-dimensional tables, the extensions to higher-dimensional tables are
relatively straightforward. To illustrate these extensions to fourway tables we
shall use the data in Table 5-1, which were studied earlier by Ries and Smith
[1963], Cox and Lauh [1967], Goodman [1971a], Bishop, Fienberg, and
Holland [1975], and others. The data come from an experiment in which a
sample of 1008 individuals was asked to compare two detergents, a new
product X and a standard product M, placed with members of the sample.
In addition to assessing brand preferences (X or M) the experimenters
inquired about whether sample members had used brand M previously (yes
or no), about the degree of softness of the water they used (soft, medium, hard),
and about the temperature of the laundry water used (high, low). We refer
to “softness,” “use,” “temperature,” and “preference” as variables 1, 2, 3, and
4, respectively. The table is of dimension 3 x 2 x 2 x 2, and we note that
preference is a response variable and the other three are explanatory variables.
While we shall not make use of this information in our present analysis of
these data, we shall take advantage of the response—explanatory distinction
in a reanalysis of the data in Section 6.2.

5.1 The Loglinear Models and MLEs for Expected Values

Suppose for a four-dimensional I x J x K x L table that the total of the
counts is N and that the count for the (i,j,k,!) cell is x;;,. As usual, when the
cell frequencies are added over a particular variable, we replace the subscript

Table 5-1

Cross-Classification of Sample of 1008 Consumers According to (1) the Softness of
the Laundry Water Used, (2) the Previous Use of Detergent Brand M, (3) the Tem-
perature of the Laundry Water Used, (4) the Preference for Detergent Brand X over
Brand M in a Consumer Blind Trial (Ries and Smith [1963])

Previous user of M Previous nonuser of M
Water Brand High Low High Low

softness preference | temperature temperature | temperature temperature
Soft X 19 57 29 63
© M 29 49 27 53
. X 23 47 33 66
Medium M 47 55 23 50
X 24 37 42 68
Hard M 4 52 30 42
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for that variable by a “+”. We denote by m;;, the expected cell value for the
(i, J, k, 1) cell under some parametric model, and we use the same summation
notation for the expected values.

The simplest model for a four-dimensional table corresponds to the
complete independence of all four variables, and for this model we can write
the natural logarithm of the expected cell frequencies in the form

log mji = u + Uy + Uz + Uswy + Uaqy (5.1

with the usual ANOVA-like constraints:

Zum) = E“zm = Zu3(k) = Zum) =0. (5.2)
i j k [

In our abbreviated notation we refer to this model as [1] [2] [3] [4]. Since it
is highly unlikely that the four variables for the data in Table 5-1 are com-
pletely independent, we require more complex loglinear models that include
two-factor and higher-order interaction terms. There are (3) = 6 possible sets
of two-factor terms such as {u;(;}, (3) = 4 possible sets of three-factor terms
such as {u;,34n}, and 1 set of four-factor terms {u;;34¢}. We restrict
ourselves to the use of hierarchical loglinear models in which, whenever we
include an interaction term, we must also include all lower-order interactions
involving variables in the higher-order term. Thus, if we include u;,3j) in a
loglinear model, we must also include u; ), 4y 3k and U, 3. Conversely, if
uy2ij = Oforall values of i and j, then

U123(ijk)y = Ur24Gjl) = U1234Gijkl) = 0 (5.3)

for all i, j, k, and [. The restriction to hierarchical models allows us to use a
simple generalization of the iterative proportional fitting procedure, described
in Chapter 3, for computing MLEs of the expected cell values.

For four-dimensional tables there are 113 different hierarchical loglinear
models, all of which include the main-effect u-terms in expression (5.1). Good
[1975] has addressed the problem of enumerating the possible models of
independence (both mutual independence and conditional independence) in
an m-dimensional table. The number of such models grows extremely rapidly
with m, and for m = 10 there are 3,475,978. This number is considerably
smaller than the total number of different hierarchical loglinear models.

As in Chapter 3, there usually exist unique nonzero MLEs for the expected
cell counts under various hierarchical loglinear models when the observed
data are generated by any one of the following three sampling schemes:

(1) a Poisson sampling scheme, with independent Poisson random variables
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for each cell (usually based on observations from a set of Poisson processes
for a given period of time);
(2) a single, common multinomial sampling scheme;
(3) a set of multinomial sampling schemes, each multinomial corresponding
to one entry in a given set of fixed marginal totals.
In scheme (1) nothing is fixed by the sampling model; in scheme (2) the total
number of observations N is fixed ; and in scheme (3) one set of marginal totals
is fixed. These three sampling schemes lead to the same MLEs if we include in
our model the u-terms corresponding to the marginal totals fixed in scheme
(3). The detergent example we are considering here resulted from sampling
scheme (2), although in Chapter 6 we shall analyze the data using a condi-
tional argument that corresponds to sampling scheme (3).

For many sets of data we can usually get by with models that include only
two-factor interaction terms. (This is fortunate because it is easier to interpret
two-factor interactions than it is to interpret those involving three or four
factors.) Nevertheless, we still must use an iterative computing procedure to
get the MLEs of the expected cell values for most loglinear models. Two
exceptions, where we can write down MLEs directly, are the complete-
independence model, given by expression (5.1), for which we get

Xit++X4jt+X b4k +X 4441 4
N3 s (5.4)

My j =

and the conditional-independence model with u, ,;, = Ofor alli and j (by our
restriction to hierarchical models, this implies that u;,3, u;,4, and u;,34 are
also zero), for which we get

g = MM (5.5)
X4kl
Expressions (5.4) and (5.5) are the natural generalizations of (3.16) and (3.22).
Bishop [1971], Goodman [1971b], Bishop, Fienberg, and Holland [1975],
and Sundberg [1975] give rules for deciding whether or not the MLE:s for a
particular model can be found directly; however, the method of iterative
proportional fitting can always be used to compute the MLEs.
We now consider the model with all two-factor terms but no higher-order
terms:

U Uy + Uy + Uspy + Uaq
+ Uy T Uisan t Uiaan (5.6)
+ Upzny + Uzagn + Uaawy

In our abbreviated notation this model is [12] [13] [14] [23] [24] [34], or
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“all two-way.” Applying the rules of Bishop and Goodman to this model we
find that a generalization of the iterative proportional fitting procedure must
be used to get estimated expected cell values. To carry out the computations
we need the observed marginal totals corresponding to the highest-order
interactions involving the variables; that is, we need the six different sets of
two-dimensional marginal totals corresponding to the two-factor effects.
Each cycle of the iteration has six different steps corresponding to the adjust-
ment for the six sets of marginal totals.

The notions of testing for goodness-of-fit generalize immediately to cover
this type of multidimensional table. Degrees of freedom to be associated with
various goodness-of-fit test statistics are determined in a manner analogous
to that for three-dimensional tables. For example, when there are I, J, K and
L levels for variables, 1, 2, 3, and 4, respectively, the degrees of freedom for
model (5.6) are equal to

IJKL-[1+I-D)+(-D+K-D+(L-D+UI-1H{J -1
+I-DK-D+I-DHL -1+ -1)(K-1) (5.7)
+(J =)L -1+ ((K-=1)(L-1)]

(see also the listing for this model in Table 5-2). In the case of Table 5-1,
where I = 3,J =2, K = 2,and L = 2, expression (5.7) reduces to 9 d.f.

In Table 5-2 are listed examples of various loglinear models, in the abbre-
viated notation, and for each the d.f. associated with the model inan I x J
x K x Ltableis given, along with the actual values for thecase | = J = K =
L = 2. Following Bishop [1971] and Goodman [1970], the models are
separated into two groups, those for which the MLEs can be found directly
and those for which iteration is required.

Table 5-3 gives values of the likelihood-ratio chi-square statistic, G2, and
the associated degrees of freedom for eleven different loglinear models
(denoted by the abbreviated notation) fitted to the Ries—Smith data of Table
5-1. We shall make use of much of this information in the discussion of
model selection in the next two sections.

Given the large number of possible hierarchical loglinear models that can
be fit to a multidimensional table, it is reasonable to ask whether a relatively
systematic approach to model selection is possible. Many different ap-
proaches have been proposed, none of them entirely satisfactory. Some of
these approaches are described in the remainder of this chapter.

5.2 Using Partitioning to Select a Model

Just as in Chapter 4, we can use the partitioning of the likelihood-ratio chi-
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Table 5-2
Degrees of Freedom Associated with Various Loglinear Models for Four-Dimen-

sional Tables

Model Abbreviation d.f.*
I. Models with Direct Estimates
(a) [1][2][3][4] 11
[IJKL—-1-J—-K—L + 3]
(b) [12][3][4] 10
[IJKL —1J — K — L + 2]
(c) [12][34] 9
[(1J - (KL - 1)]
(d) [12][23][4] 9
[JUKL-I-K+1)—L+1]
(e) [12][23][34] 8
[IJK —1J — KL —JK +J + K]
(f) [12](13][14] 8
[IJUKL-J—-K~-L+2)]
(g) [123][4] 7
[(WJK = (L - 1)]
(h) [123][34] 6

[K(IJ = 1)(L - 1)]
(i) [123][234] 4
[JK(I — 1)(L — 1)]

I1. Models Requiring Indirect Estimates

() [12][13][23][4] 8
[ITJKL—-1J —JK—-IK—-L+1+J+K]
(k) [12][13][23][34] 7
[IJKL—-1J —JK —IK —KL+1+J+2K —1]
(1) [12][13][23][24][34] 6
[IJKL —1J —JK —IK —JL — KL +1+2J+2K
+ L-2]
(m) all two-way 5
[IJKL-1J —IK —IL—-JK —JL — KL
+2(I +J + K + L) - 3]
(n) [123][24][34] 5
[IJKL-1JK~-JL~-KL+J+K+L-1]
(o) [123][14][24][34] 4
[IJKL —1JK —IL—-JL~KL+I+4+J+K
+ 2L - 2]
(p) [123][124][34] 3

[(1J = (K = (L ~ 1)]
(q) [123][124][234] 2
[T =J + (K = 1)(L-1)]
(r) allthree-way 1
[ -1~ 1)K - 1)L -1]

*The first entry pertains to the 2 x 2 x 2 x 2 table and the second entry to the
I xJ x K x Ltable.
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Table 5-3
Likelihood Ratio Chi-Square Values for Some Loglinear Models Applied to the Data
in Table 5-1

Model d.f. G?

[17121[31[4] 18 429
[12][13][14][23][24][34] 9 9.9
[123][124] [134] [234] 2 0.7
[1][3][24] 17 224
[17[24][34] 16 180
[13][24][34] 14 119
[13][23][24][34] 13 11.2
[12][13][23][24][34] 11 10.1
(17234 14 145
[134][24] 10 122
[13]1234] 12 8.4
[24][34]1123] 9 8.4
[123][234] 8 5.6

square statistic to select a loglinear model that describes a four-dimensional
table of counts. We illustrate this approach on the Ries—Smith data given in
Table 5-1, where “softness,” “use,” “temperature,” and “preference” are
variables 1, 2, 3, and 4, respectively.

The simplest model we consider has no interactions; in the abbreviated
notation it is

(@) [1][2][3][4].
It would be natural for brand preference to be related to use, so our next
model includes this interaction:

(b) [241[11[3].
Since some detergents are designed for cold water and some for hot water, it
would not be unreasonable for preference to be related to temperature as
well:

(c) [24][34][1].
Next, we add the interaction between softness and temperature, since the
softer the water, the higher the temperature the detergent manufacturers
usually suggest:

(d) [13][24][34]
Finally, we include two models that incorporate three-factor interactions:

(e) [13][234],

(f) [123][234].

Table 5-4 gives the results of partitioning the likelihood-ratio chi-square
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statistic for model (a) as applied to these data, using the hierarchy of six
models just constructed and the G* values from Table 5-3. Starting at the
bottom of the table and working our way up, we find that the first component
to exceed the upper 0.05 tail value of the corresponding y? distribution is the
one due to the difference between models (d) and (c). This suggests that model
(d) is the “best” model. We note that the values of G? for models (c) and (b)
are still not significant at the 0.05 level. Moreover, the differences between
models (d) and (c) and between (c) and (b) are not significant at the 0.01 level.
Thus we might still wish to consider models (b) and (c) as possible competitors
to model (d) for “best” model.

5.3 Stepwise Selection Procedures

We now present a brief description of the stepwise procedures for model
selection suggested by Goodman [1971a]. The description here is for four-
dimensional tables, but can easily be extended to tables with five or more
dimensions. A similar approach would be appropriate for a linear model in
a fully crossed layout with unequal numbers of observations in the cells and
a continuous response variate.

We begin by choosing a significance level, say 0.05, and then we test for

Table 5-4
A Partitioning of the Likelihood Ratio Chi-Square Statistic for Complete Indepen-
dence as Applied to the Ries—-Smith Data in Table 5-1

Component due to G? d.f.
Model (a) 42.9* 18
Difference between models (b) and (a) 20.5% 1
Model (b) 224 17
Difference between models (c) and (b) 4.4%* 1
Model(c) 18.0 16
Difference between models (d) and (c) 6.1* 2
Model(d) 11.9 14
Difference between models (e) and (d) 3.5 2
Model (e) 8.4 12
Difference between models (f) and (e) 2.8 4
Model (f) 5.6 8

*Indicates that value is in upper 5% tail of the corresponding y? distribution, with d.f.
asindicated.
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the goodness-of-fit of the three models

(1) uy,=uj3=u=ty3=1ty, =u3, =0,
(2) w3 =u10=Uj354 =Up34 =0,
(3) uy234=0.

(Note that (1) implies (2) and (2) implies (3).) If model (3) does not fit the data,

we stop and choose as our model the general one with all u-terms present.

(It is possible to have model (1) or (2) fit, while model (3) does not. Such a

situation occurs rarely, and Goodman does not discuss it.) If model (3) fits

but model (2) does not, we choose:

(A) for forward selection: model (2), and we add three-factor u-terms (as

described below).

(B) for backward elimination: model (3), and we delete three-factor u-terms.

If models (2) and (3) fit but (1) does not, we choose:

(C) for forward selection: model (1), and we add two-factor u-terms.

(D) for backward elimination: model (2), and we delete two-factor u-terms.

Suppose models (2) and (3) fit but (1) does not. Then the steps involved in
forward selection are:

(C1) Add that two-factor u-term whose conditional goodness-of-fit statistic
of the form (4.2) is most significant, provided the descriptive level of
significance (i.e., the p-value) does not exceed the preselected value, say
0.05.

(C2) Add the next most significant two-factor u-term, using the conditional
test statistic involving the model from the preceding step.

(C3) (Optional) Delete any two-factor u-terms that no longer make a signi-
ficant contribution to the model (using appropriate conditional test
statistics).

(C4) Repeat steps C2 and C3 until no further two-factor terms can be added
or dropped.

The steps involved in backward elimination are similar but go in the reverse

direction:

(D1) Eliminate the least significant two-factor u-term, given that the descrip-
tive level of significance exceeds the preselected value, say 0.05.

(D2) Eliminate the next least significant two-factor u-term, using the con-
ditional test statistic involving the model from the preceding step.
(D3) Add back two-factor terms that now significantly improve the fit of the

model.

(D4) Repeat steps D2 and D3 until no further two-factor terms can be added
or deleted.

We illustrate these selection procedures on the Ries—Smith data in Table
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5-1, using the values of G? listed in Table 5-3 and other values given by
Goodman [1971a]. We again use a 0.05 level of significance for illustrative
purposes. First we note that

(1121 [3][4] (5.8)
does not fit the data, but that
[12][13][14][23][24][34] (5.9)
and
[123][124][134][234] (5.10)

do. Thus we work to find a model that lies between (5.8) and (5.9).
Using forward selection we begin with (5.8) and add u,,, since the difference
between the G2 values for (5.8) and for

(11[3][24] (5.11)

is 42.9 — 22.4 = 20.5 with 1 d.f. (significant at the 0.05 level), and this is the
most significant u-term we can add. Next we add u;,, the most significant of
the remaining two-factor u-terms, based on the difference between the G?
values for (5.11) and for

(1] [24] [34], (5.12)

which is 22.4 — 18.0 = 4.4 with 1 d.f. At this point we are unable to delete
any terms. Now we add u, 5, the next most significant term, based on the
difference between the G2 values for (5.12) and for

[13][24][34], (5.13)

which is 18.0 — 11.9 = 6.1 with 2 d.f. We can neither delete nor add any
further two-factor terms, and so the forward selection procedure leads us to
(5.13) as the “best” model.

Using backward elimination we begin with (5.9) and delete u,,, since the
difference between G2 values for (5.9) and for

[12][13][23][24][34] (5.14)

is 10.1 — 9.9 = 0.2 with 2 d.f. Next we drop u,,, based on the difference
between G? values for (5.14) and for

[13] [23] [24] [34], (5.15)

whichis 11.2 — 10.1 = 1.1 with 2 d.f. We are unable to add back in any terms
at this stage, and so we proceed to delete u, 5, based on the difference between
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G? values for (5.15) and for (5.13), which is 11.9 — 11.2 = 0.7 with 1 d.f. Since
we are unable to add or delete any more terms, we again end up with (5.13)
as the “best” model.

Just as with the corresponding methods used in regression analysis, it is
possible for forward selection and backward elimination to lead to different
“best” models. As with stepwise regression procedures (see Draper and
Smith [1966]), the significance values of the tests carried out should be inter-
preted with great caution because the test statistics are often highly depen-
dent. For an alternative approach to model selection, based on a simultane-
ous test procedure, see Aitkin [1978, 1979].

Goodman [1971a] suggests abbreviated stepwise procedures employing
methods similar to the ones described above, along with asymptotic variance
estimates for the u-terms based on the general loglinear model with no terms
set equal to zero. Wermuth [1976a, b], using analogies between certain
loglinear models for contingency tables and certain covariance selection
models, proposes a noniterative backward selection procedure based initially
only on models involving direct estimates. Benedetti and Brown [1976]
compare several strategies of model selection, including the stepwise methods
of Goodman but not that of Wermuth, in the context of two examples, and
they compare the results in terms of whether an appropriate model is found
and the total number of models that must be fit before it is found.

It must be understood that the various stepwise methods require a con-
siderable amount of computation, and they should not be thought of as
automatic devices for deciding upon appropriate loglinear models. At best
they can be of aid in limiting attention to a reduced set of models that give
a reasonable fit to the data. In fact other, perhaps more parsimonious and
substantively interesting, models might exist that also provide an acceptable
fit.

5.4 Looking at All Possible Effects

One of the advantages of the conventional analysis of variance for quantita-
tive data, in which all estimable contrasts are entered, is that it forces us to
look at effects that we might be tempted to ignore or assume away. Within
the framework of loglinear models it is still possible to look at all possible
effects or parameters, and at least two approaches seem reasonable.

Brown [1976] proposes that the importance of effects in loglinear models
be studied by computing two ad hoc test statistics for each effect. Suppose
we have a four-dimensional table and are looking at the effect u,,5. Brown
would first test for the absence of u,, 5 in the loglinear model for the marginal
table involving variables 1, 2, and 3,
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(1) [12][133[23].

Then he would test the fit of the model for the full table that includes all
interactions of order 3,

(2) [123][124][134][234],

and the fit of the model with all interactions of order 3 except u, 53,

(3) [124][134][234].

The marginal-likelihood-ratio test for u,,5, G*(1), and the conditional test for
the absence of u,,3, G*(3) — G?(2), both have the same degrees of freedom
and are often indicative of the magnitude of other conditional tests for the
same term. Thus when both statistics are small, it is unlikely that other
conditional test statistics for that effect will be large, and the effect would
appear not to be needed in the model. When both are large, it is unlikely
that other conditional test statistics will be small, so the interaction term
would appear to be required in the model. When the two statistics are dis-
crepant, we may need to consider further models with and without the effect
in question.

In a large number of examples this type of screening approach leads to the
consideration of a limited number of loglinear models as part of a second
step in the model-building process. Since the two test statistics used for a
given effect do not bound all possible values of the conditional test statistics
for that effect, Brown’s screening approach is fallible, and it should be used
with caution.

Table 5-5 contains the values G?(1) and G2(3) — G?(2) for all interaction
u-terms computed by Brown [1976] using the Ries—Smith data from Table
5-1. A cursory examination of Table 5-5 suggests that u,, must definitely be

Table 5-5
Marginal and Conditional Tests for Interaction Effects for the Data in Table 5-1

u-term d.f. Marginal G* Conditional G2

U, 2 1.1 1.0
Uys 2 6.1 6.1
Uiy 2 0.4 0.2
Uy 1 1.3 0.7
Uy 1 20.6 19.9
Uzy 1 4.4 3.7
Uyys 2 1.6 1.4
Uyga 2 5.3 4.6
Uyag 2 0.1 0.2
Uyzg 1 2.8 22
Uir3a 2 0.7 0.7
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included in our model, and that u;, and u,; require further consideration.
This screening procedure leads directly to a secondary analysis equivalent to
that presented earlier in Section 5.2.

A second approach to looking at all possible effects relies on reasonably
simple formulas for the asymptotic or large-sample variances of estimated
u-terms in the full or saturated model. What makes this approach work is
the fact that each subscripted u-term in the general loglinear model can be
expressed as a linear combination of the logarithms of the expected values
(or equivalently the logarithms of the cell probabilities), where the weights
or coefficients used in the linear combination add to zero. Such linear com-
binations are referred to as linear contrasts. For example, if we set Z;, =
log piji or Z;j, = log m;j, in a four-dimensional table, then

1 1 1 1

Ui23aity = Lijn — 72+jkl - jzwu - Ezij+l - ZZijk+
1 1 1 1 1
+ ﬁZ++kl + Tk‘z+j+l + I_LZ+jk+ + ‘RZHH + Ezi+k+
1 1 1 1
+Ezzu++ _E_IZZ+++I —mz++k+ —'I_k‘iz+j++
1 1
_jk_zzi+++ +mz++++, (5.16)

and the right-hand side of (5.16) can then be rewritten as a linear contrast of
the {Z,;,}, that is, as

Uya3agjny = Z Bi Zijui» (5.17)
i,j,k,l
where
Z Biw = 0. (5.18)
i,j,k,l

When I = J = K = L= 2, there is only one parameter corresponding to
each u-term, and expression (5.16) reduces to

16U 535011y = 2111 22z Y Ziaar Y Zvi2a + 231210 + Z3412
+Zi212+t 22222 = Zov11 — Ziais — Zii21 — L
—Zi222 = 22122 — 23212 — Z3221- (5.19)

Other u-terms for the 2 x 2 x 2 x 2 table have the same form with coeffici-
ents B, = * 76, just as in the conventional analysis of variance.
The MLE of a linear contrast of the form (5.17), subject to (5.18), is found
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by substituting log x;, for Z;;,:

ﬁ1234(.’jh1) = Z ﬂijkl log Xijki- (5.20)

i,j.k,l

The large-sample variance of the estimated contrast (5.20) is

2 -1
Z ﬁijkl M jkrs

i,Jk,l

and this variance can be consistently estimated by

Z ﬂizjkl xi;’kll' (5.21)

i,jk,l

For large samples, a linear contrast of the form (5.17) approximately follows
a normal distribution with mean

Z Bijkl log Dijui = Z ﬁijkl log M j (5.22)

i,j.k,1 i,jk,l

if the {x;;,} follow a Poisson, multinomial, or product-multinomial sam-
pling model. In the latter case, some linear contrasts are fixed by design, so
that it makes no sense to estimate them. In the 2 x 2 x 2 x 2 table, the
estimated u-terms in the saturated model all have the same estimated large-

sample variance,
1\? -1
=) D (5.23)

Since we would like to look at several u-terms simultaneously, we need to
know something about the joint distribution of two or more contrasts. The
following theorem is a direct application of the ¢ method (see Bishop,
Fienberg, and Holland [1975]), and the result has been used by various
authors (e.g., Fienberg [1969], Goodman [1964, 1971a], Lindley [1964]).
The result is applicable for any number of dimensions, and thus we give it
using single subscripts.

Theorem 5-1.  Suppose that the ¢ counts {x;} have a multinomial distribu-
tion with corresponding cell probabilities {p;} and total sample size N, and
that the constants {$\?} satisfy X5 =0, where ' # 0 for some i and
g=1,2,..., t* with t*< . Then the joint distribution of the estimated
loglinear contrasts,
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Zﬁgq)Ingi’ q=l,2,...,t*,
is approximately multivariate normal with means

Zﬁt‘q) lOg pi=Zﬂ§q) logmi’ q= 1,2""’t*a

1 1

and covariances (variances where s = ¢)

Y BOBIND)T = ) BB gs =120

which can be consistently estimated by

Z BOROXT g s=1,2,...,t%

We can now make use of Theorem 5-1 by getting estimates of each u-term
(substituting log x; for Z; = log m; in the appropriate loglinear contrast) and
then dividing the estimated u-term by its estimated large-sample standard
deviation. Goodman [1964] has discussed the simultaneous-inference
problem for these standardized estimated u-terms (note that the covariances
among the estimated u-terms are typically nonzero).

Bishop [1969], Goodman [1970], and others have reanalyzed data pre-
sented by Dyke and Patterson [1952] based on an observational study by
Lombard and Doering [1947], in which a sample of 1729 individuals are
cross-classified in a 2° table according to whether they (1) read newspapers,
(2) listen to the radio, (3) do “solid” reading, (4) attend lectures, and (5) have
good or poor knowledge regarding cancer. Dyke and Patterson chose to
view variable 5 (knowledge) as a response variable and the other four vari-
ables as explanatory, but following the suggestion of Bishop [1969], we do
not make such distinctions here at this time. Table 5-6 presents the actual
data, and Table 5-7 lists the estimated u-terms and their standardized values
(i.e., estimated u-term divided by estimated standard deviation). We note
that the values in Table 5-7 are not identical to those given by Goodman
[1970], who added 0.5 to each cell count before computing the estimated
u-terms and their standard deviations. Since we are dealing with a 2° table,
the estimated standard deviation for each u-term is the same:

1 1/2
§2< Zx,.;,},,,,> — 0.0647.

ijklm
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Table 5-6
Data from Dyke and Patterson [1952]
Radio No Radio
Solid No Solid Solid No Solid
Reading Reading Reading Reading
Knowledge Knowledge
Good Poor Good Poor | Good Poor Good Poor
Newspaper Lectures 23 8 8 4 27 18 7 6
pap No Lectures| 102 67 35 59 | 201 177 75 156
No Newspaper Lectures 1 3 4 3 3 8 2 10
PAPEI No Lectures| 16 16 13 50 | 67 83 84 393

Perhaps the simplest way to examine the standardized estimated u-terms
is graphically. Cox and Lauh [1967], for a similar problem, suggest plotting
the standardized values on half-normal probability paper (see Daniel [ 1959]),
even though such a graph ignores the correlations among the standardized
estimated u-terms. Figure 5-1 shows such a plot for the standardized terms
in Table 5-7. The standardized values corresponding to uy,, u,, uy, U3, Uys,
and u,, all exceed 3.00 in absolute value; we exclude these from the plot and
work with the remaining 25 subscripted u-terms.

The 25 points in Figure 5-1 all lie roughly along a straight line, with the
exception of the ones corresponding to u,, and us. Combining these two
terms with the six excluded from the plot, we are led to consider the model

U+u; +uy+us+ g+ s +uUjy+upy+ Ups + gy (5.24)

Fitting this model to the data in Table 5-5 yields goodness-of-fit values of
X? = 151.2and G? = 144.1 with 22 d.f. The fit of the model is quite poor, and
an improved fit might be achieved by including the u-term corresponding to
the next largest standardized value, u5,5. Since we are restricting our attention
to hierarchical models, our new model is

U+u +uy +uy+uy +us+uy, + g3
+Uys +Uyy + Uzg + Uys + Ugs + Usgs. (5.25)

For this model, X? = 26.9 and G? = 27.2 with 18 d.f,, values corresponding to
a descriptive level of significance slightly greater than 0.05. Adding the term
corresponding to the next highest absolute standardized value, u,s, yields
a markedly improved fit: X2 = 18.5 and G? = 20.1 with 17 d.f. Thus the
simplest model that fits the data reasonably well is
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Table 5-7
Estimated u-terms and Standardized Values for Data of Dyke and Patterson [1952]
Given in Table 5-6

u-term Estimated Value Standardized Value Absolute Rank Estimated Value

Based on Based on
Saturated Model Model (5.26)

u, 0.441 6.82 3 —0.343
u, —0.444 —6.86 2 —0.486
Uy 0.081 1.25 17 0.094
Uy —1.219 —18.84 1 —1.161
uUs —0.153 —2.36 8 —0.098
Uy, 0.155 2.39 7 0.235
Uy 0.326 5.04 4 0.363
Upy 0.112 1.73 12 —
U 0.253 3.91 5 0.164
Uy, —0.042 —0.65 26 —
Uy 0.205 3.17 6 0.176
Uys 0.121 1.87 11 0.080
Usg 0.106 1.64 13 0.171
Uys 0.135 2.09 10 0.159
Uys 0.085 1.31 16 0.149
U3 —0.003 —0.05 31 —
Uiza —0.071 —1.10 18 —
Uyys —0.016 —0.25 28.5 —
Upza 0.012 0.19 30 —
Uyss 0.016 0.25 28.5 —
Uyas 0.104 1.61 14 —
Upzs —0.100 —1.55 15 —
Uszs —0.056 —0.87 24 —
Usys 0.064 0.99 21.5 —
Usys —0.144 —2.23 9 —0.101
Uiz3a 0.051 0.79 25 —
Uyyss 0.068 1.05 20 —
Uysas —0.021 —0.32 27 —
Uyags 0.070 1.08 19 —
Upzas —0.063 -0.97 23 —

Uj3as 0.064 0.99 21.5 —
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Figure 5-1

Half-Normal Plot of Absolute Standardized Values from Table 5-7 (Excluding Six
Largest Values)
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U+u;+u, +uy+uy+us+up,+ U
+ U+ Uyg + Uys + Uzy + Uss + Ugs + Uzys. (5.26)

In Chapter 6 an interpretation of (5.26) is discussed in which knowledge
(variable 5) is viewed as a response variable and the remaining four variables
are viewed as explanatory. The final column of Table 5-7 lists the MLEs
of the u-terms in model (5.26). These estimates are in some instances markedly
different from those based on the saturated model, which are given in
the second column of the table. Moreover, the large-sample standard
deviation used to produce the standardized values in the table is no longer
appropriate for the new estimated u-terms. This value, 0.0647, is now an
overestimate of the large-sample standard deviation associated with the new
estimates. For more details on the computation of asymptotic standard
deviations, see Haberman [1974a], Bock [1975], Koch, Freeman, and Tolley
[1975], Ku and Kullback [1974], and Lee [1975], and also Appendix II of
this book. Many computer programs designed to fit loglinear models to
multidimensional tables allow the user to request the estimated u-terms and
their estimated standard errors.

A sensible approach to looking at all possible effects would probably use a
combination of the two methods described in this section, for a restricted set
of u-terms.

Problems

5.1 (Bhapkar and Koch [1968b]). In an experiment designed to study the
nature of sexual symbolism, the subjects classified an object as being either
masculine or feminine when the object was presented at the following
exposure rates: 1/1000 second, 1/5 second. The subjects involved were
classified according to whether they were told the purpose of the experiment
or not (Group C and Group A, respectively), while the objects were classified
according to an anatomical meaning (M or F) related to which sex it innately
evoked. For a group of male subjects, and objects that are culturally mascu-
line, the data are shown in Table 5-8.
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Table 5-8
Subject group
A C Totals
Response Response at 1/5 Response at 1/5
Anatomical at 1/1000 sec sec
meaning sec M F M F

M M 187 15 256 42 500
F 42 40 34 62 178
F M 177 14 194 27 412
F 30 63 52 121 266
Totals 436 132 536 252 1356

(a) Which of the variables are response and which are explanatory?

(b) List the possible loglinear models that can appropriately be fitted to these
data.

(c) Devise a stepwise procedure for searching through the models in (b), and
carry it out. Which model do you end up with?

(d) Provide a suitable verbal explanation of what the model you chose in (c)
means.

(e) Look at all possible effects involving either the response variables or the
effects of the explanatory variables on the responses, using the testing
method of Section 5.4. Does this approach lead you to the same model as
in (c)?

5.2 (Wermuth [1976b]). A group of 362 patients receiving psychiatric care
were classified according to four indices: Validity (psychasthenic, energetic),
Solidity (hysteric, rigid), Stability (extroverted, introverted), and Acute
Depression (no, yes). The resulting data are shown in Table 5-9. Using the
model selection procedures described in this chapter, choose the best-fitting
loglinear model for these data, and describe what the fitted model says about
the relationships among the four indices.
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Table 5-9
Acute depression
Yes No
Stability Stability
Validity Solidity Introvert Extrovert Introvert Extrovert
Enersctic Rigid 15 23 25 14
g Hysteric 9 14 46 47
. Rigid 30 22 22 8
Psychasthenic o deric 32 16 27 12

5.3 (Kihlberg, Narragon, and Campbell [1964]). In a study of the relation-
ship between car size and accident injuries, accidents were classified according
to type of accident, severity of accident, and whether or not the driver was
ejected (Table 5-10).

Table 5-10
Accident type
Collision Rollover
Severity Severity
Car Driver Not Not
weight ejected severe Severe severe Severe
No 350 150 60 112
Small Yes 26 23 19 80
No 1878 1022 148 404
Standard Yes 11 161 2 265

(a) Which variables are response, and which are explanatory?

(b) Use a stepwise selection procedure to locate a parsimonious yet well-
fitting loglinear model for the data.

(c) Interpret your fitted model from (b).

5.4. The2 x 3 x 3 x 4 Table 5-11 contains another version of the accident
data described in the previous problem.
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Table 5-11
Accident  Accident Not ejected Ejected
type severity Small Compact Standard | Small Compact Standard

Not

Collision severe 95 166 1279 8 7 65

with Moderately

vehicle severe 31 34 506 2 5 S1
Severe 11 17 186 4 S 54
Not

Collision severe 34 55 599 5 6 46

with Moderately

object severe 8 34 241 2 4 26
Severe 5 10 89 0 1 30
Not

Rollover severe 23 18 65 6 5 11

without  Moderately

collision  severe 22 17 118 18 9 68
Severe 5 2 23 5 6 33
Not
severe 9 10 83 6 2 11

S)tlll](f\r/er Moderately
severe 23 26 177 13 16 78
Severe 8 9 86 7 6 86

(a) Find a suitable loglinear model that provides a good fit to these data.

(b) Is your model in (a), and the conclusions that can be drawn from it, con-
sistent with your model in Problem 5.3?

5.5. Hoyt, Krishnaiah, and Torrance [1959] classified Minnesota high
school graduates of June 1930 with respect to (i) position by thirds in high
school graduating class, (ii) post—high school status in April 1939, (iii) sex,
and (iv) father’s occupational level in seven categories running from high
status (1) to low status (7). The categories of post—high school status are:
C, enrolled in college; N, enrolled in noncollegiate school; E, employed full-
time; and O, other. They reported the data shown in Table 5-12. Using these
data, explore the relationships of post—high school status with the other
variables.
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Table 5-12
Father’s High school rank
Sex occupational Lowest third Middle third Upper third
level C N E O|C N E O|C N E O
M 1 87 3 17 105|216 4 14 11825 2 10 53
2 72 6 18 209 [ 159 14 28 227|176 8 22 95
3 52 17 14 541 [ 119 13 44 578 | 119 10 33 257
4 88 9 14 328 | 158 15 36 304|144 12 20 115
5 32 1 12 124 43 5 7 119 42 2 7 56
6 14 2 S5 148] 24 6 15 131 | 24 2 4 61
7 20 3 4 109| 41 5 13 8| 32 2 4 41
F 1 53 7 13 76 163 30 28 118309 17 38 89
2 36 16 11 111 | 116 41 53 214|225 49 68 210
3 52 28 49 521 {162 64 129 708 | 243 79 184 448
4 48 18 29 191 | 130 47 62 305|237 57 63 219
5 12 5 10 101 | 35 11 37 152 72 20 21 95
6 9 1 15 130 | 19 13 22 174| 42 10 19 105
7 3 1 6 8|25 9 15 I58| 36 14 19 93

5.6 (Solomon [1961]). New Jersey high school seniors were given an
attitude questionnaire in 1957 entitled ““Attitudes toward science and scien-
tific careers.”” In addition, each student obtained a score on a brief IQ vocab-
ulary test. The score was used to divide the 2982 individuals into two groups
of 1491, namely high IQ and low IQ. The four responses used in displaying
the data in Table 5-13 are related to four statements (1 means agreement and
0 disagreement with the statement):

(i) The development of new ideas is the scientist’s greatest source of satis-
faction.

(i) Scientists and engineers should be eliminated from the military draft.
(iii) The scientist will make his maximum contribution to society when he has
freedom to work on problems that interest him.

(iv) The monetary compensation of a Nobel Prize winner in physics should
be at least equal to that given popular entertainers.

Find a parsimonious loglinear model that provides a good fit to these data.
Be sure to interpret the values of the estimated parameters in your model.
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Table 5-13
1Q score IQ score

Response Low  High Response  Low  High
1111 62 122 0111 14 20
1110 70 68 0110 11 10
1101 31 33 0101 11 11
1100 41 25 0100 14 9
1011 283 329 0011 31 56
1010 253 247 0010 46 55
1001 200 172 0001 37 64
1000 305 217 0000 82 53

5.7 (Van Alstyne and Gottfredson [1978]). The data in Table 5-14 were
used in a study of parole success involving 5587 parolees in Ohio between
1965 and 1972 (a 10 percent sample of all parolees during this period). The
study involved a dichotomous response—Success (no major parole violation)
or Failure (returned to prison either as technical violators or with a new
conviction)—based on a one-year follow-up. The predictors of parole
success included here are: type of committed offense, age, prior record, and
alcohol or drug dependency. All of these explanatory variables have been
dichotomized.

The data were randomly split into two parts. The counts for each part are
given here, with those for the second part in parentheses. The second part of
the data was set aside for a validation study of the loglinear model to be
fitted to the first part.

Table 5-14

No drug or alcohol dependency Drug and/or alcohol dependency

25 or older Under 25 25 or older Under 25
Person Other Person Other Person Other Person Other
offense offense offense offense offense offense offense offense

No Prior Sentence of Any Kind

Success 48 34 37 49 38 28 35 57
(44) (34) (29) (58) (47) (38) (37) (53)
Failure 1 5 7 11 3 8 5 18
(1) (7) (7) (5) (1) (2) 4) (24)
Prior Sentence

Success 117 259 131 319 197 435 107 291
) (111) (253) (131) (320) (202) (392) (103) (294)

23 61 20 89 38 194 27 101

Failure 27) (55) (25) (93) 46)  (215) (34) (102)
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(a) Find the most parsimonious yet suitable loglinear model that provides
a good fit to the first part of the data.

(b) Carry out a test of homogeneity of proportions between the two parts of
the data set.

(c) Check the fit of the model you chose in part (a) to the second part of
the data.

(d) Find the simplest suitable loglinear model that provides an acceptable
fit to the second part of the data set.

(e) By examining any appropriate estimated parameters, fitted values, or
residuals, attempt to resolve any discrepancies that you find between
the loglinear models fit to the two parts of the data.

5.8. For the partial-association model defined by setting u;, =0 in a
four-dimensional table, show algebraically that the estimated expected
values are given by formula (5.5).

5.9 (advanced). For four-dimensional tables there are 113 unsaturated
hierarchical loglinear models that include all main-effect u-terms. Show the
following:

(a) There are eight types of models, other than the partial-association
models, for which closed-form expressions are available for the compu-
tation of estimated expected values.

(b) Of the 113 unsaturated hierarchical models, only 60 have closed-form
estimates.



6
Fixed Margins and Logit Models

In Chapters 2, 3, and 5 we noted that the estimated expected cell values for
loglinear models under product-multinomial sampling (with a set of fixed
marginal totals) are the same as those under multinomial sampling, provided
the u-terms corresponding to the fixed margins are included in the model. We
give some details regarding this point here, and then we turn to a class of
models closely related to loglinear models.

6.1 A Three-Dimensional Example

Wakeley [1954] investigated the effect of planting longleaf and slash pine
seedlings 4 inch too high or too deep in winter upon their mortality the
following fall. The data, reported by Bliss [1967], are reproduced in Table
6-1a. The row total for each type of seedling is fixed at 100 by the experimental
design.

We can still fit loglinear models to the data in 6-1a, but we must include
the u, ;-term in all of the models to be considered. In the iterative proportional
fitting procedure, this will keep the estimated expected two-dimensional
margin totals for variables 1 and 3 (depth of planting and seedling type) equal
to the observed totals fixed by design. In interpreting these fitted models,
however, we usually do not speak of the two-factor effect relating depth and

type.

Table 6-1
Effect of Depth of Planting on the Mortality of Pine Seedlings (Wakeley [1954])

(a) Observed data

Longleaf Seedlings Slash Seedlings
Depth of Planting | Dead | Alive | Totals Dead | Alive TotaE
Too high 41 59 | 100 12 88 | 100
Too low 1 89 | 100 s | 95| 100
Totals 52 148 200 17 183 200

(b) Expected values (#,,, = 0)

Depth of Planting | Dead | Alive | Totals Dead | Alive | Totals
Too high 39.38 | 60.62 100 13.62 | 86.38 100
Too low 12.62 | 87.38 100 3.38 | 96.62 100

Totals 52 148 200 17 183 200
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Table 6-2
Loglinear Models Fit to Data in Table 6-1, and their Goodness-of-Fit Statistics (All
Models Include u, ;)

Model X*  G* df
[12][13][23] 137 128 1
[13] [23] 2654 27.79 2
[12][13] 2403 2503 2
[13][2] 5470 50.10 3

Table 6-2 displays the permissible models for this set of data and gives the
values of the corresponding goodness-of-fit statistics. Clearly only the no
three-factor effect model fits the data at all well, and the estimated expected
cell values under this model are given in Table 6-1b. (Had we fitted the model
that also sets u,; = 0, we would have found small values of X2 and G2, but
the estimated expected marginal totals for variables 1 and 3 would no longer
be equal to 100.)

How do we interpret this fitted model? Since we are interested in the effects
of depth and seedling type on mortality, it is reasonable for us to look at the
mortality ratio (no. dead/no. alive) for each combination of depth and seed-
ling type, that is, m;,,/m;,, for all i and k. The fitted model says that

log mj = u + uy + Uy + Usgy + Uiy + Ui T U2z (6.1)
and thus
log <M> = [“2(1) - uzm] + [“12(:’1) - “12(1‘2)] + [“23(1k) - uzs(zm]
Miak
= 2[uaay + Uy 261 + U2301k) (6.2)

=W+ Wi+ Wi,

where in the last line of (6.2) the subscript indicating variable 2 (mortality) is
suppressed since the left-hand side is just the log mortality ratio. Model (6.2)
is usually referred to as a linear logit model (see, for example, Bishop [ 1969]);
it says that there are additive effects on the log mortality ratio due to depth
and to seedling type, but that there is no two-factor effect of depth and
seedling type considered jointly. Note that the u,;-term, which we had to
include in the loglinear model, does not appear in the resulting logit model
for the mortality ratios. This is one reason why we need not have been
concerned by its forced inclusion. Had we included the three-factor effect
u,,5 in the loglinear model (6.1), we would have had a two-factor term
W30 (= 2U;23015) 10 the logit model (6.2).
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6.2 Logit Models

When one is interested in models that assess the effects of categorical variables
on a dichotomous “response” variable, one is often led to the formation of
logit models for the response variable, especially if all other variables are
“design” variables that one wishes to manipulate. As we have just seen, logit
models contain terms corresponding to those in loglinear models. Many
investigators fit logit models to data sets in which the remaining nonresponse
variables are not design variables, and thus they lose information on the
relationships among the nonresponse variables (see Bishop [1969]). If one’s
interest lies only in the effects of the other (explanatory) variables on the
response variable, however, then an analysis based on logits for the response
variable is appropriate.

We illustrate this point using the Ries-Smith data from Table 5-1. We
view the variable “preference” as the response variable and we pretend to be
interested only in how “softness,” “use,” and “temperature” affect “pref-
erence.” Thus the general logit model for this problem is

logit,;c = log <Tﬂl> (6.3)

=W 4 Wi+ Wiy T Wagy + Wiaap + Wasgn T Wisan T Wizaaje

with the usual ANOVA-like constraints on the w-terms. In order to fit a logit
model that is a special case of expression (6.3) using iterative proportional
fitting, we must fit a loglinear model in which the terms u, u,, us, ty5, 113, U553,
and u,,, are all included; that is, the model must include [123]. This is so
because we are taking as fixed the three-dimensional marginal totals cor-
responding to the explanatory variables. For example, if we fit the loglinear
model

[123] [234], (6.4)
then we can translate our results directly into those for the logit model
W4 Wa + Wag + Wasg (6.5)

and estimated expected values for (6.4) can be used to get the estimated logits
for model (6.5).

For the Ries—Smith data, Goodman [1971a] shows that the best-fitting
(i.e., giving the best fit with the fewest number of parameters) logit model
based on logits for the preference variable is of the form

W+ Wy (6.6)
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which corresponds to the loglinear model

[123][24].

The three-dimensional totals corresponding to softness—use—temperature
were not fixed by design. The reason we consider a logit model for the data is
that we view preference as a response variable and softness, use, and tem-
perature as explanatory variables. As a result, we condition on the three-
dimensional totals involving the explanatory variables. When this distinction
between response and explanatory variables is not important the loglinear
model approach does not require conditioning on these totals and may well
yield better estimates for parameters of particular interest. (For a detailed
discussion on the advantages of loglinear models over logit models in such
circumstances, see Bishop [1969].) v

For the Dyke—Patterson data of Table 5-6, our final loglinear model was

[12][13][15] [24][25] [345]. 6.7)

If we treat variable 5 (knowledge of cancer) as a response variable and
condition on the remaining four explanatory variables, we get the logit model

W+ Wi + Way) + Wagy + Waqy + Wiy (6.8)

This fitted model implies that exposure to newspapers, radio, solid reading,
and lectures all have a positive effect on knowledge of cancer, but that there
is also a joint effect of solid reading and exposure to lectures that is negative.
The combined effect of these two explanatory variables is not as great as the
sum of their individual effects, but it is greater than the effect of either one
separately.

Cox [1970a] and others suggest that one should always condition on the
explanatory variables, whether they are fixed by design or not. For the
Dyke—Patterson data such an approach would lead to fitting the model

[15][25] [345] [1234] (6.9)

rather than the one given by expression (6.7). This loglinear model produces
the same logit model as before (i.e., (6.8)), but the estimates of the parameters
differ somewhat between the two fitted logit models, although the differences
in this example are small (see Bishop [1969] for a detailed comparison). The
difficulty with this conditional approach comes when the data are spread
thinly over the multiway cross-classification and the marginal total fixed by
conditioning on the explanatory variables contains observed zero entries.
The estimated expected values for cells corresponding to these zero marginal
entries must then be zero, and the corresponding logits are undefined. For
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example, suppose the (1, 1,2,2, 1)and (1, 1, 2, 2, 2) cells in the Dyke—Patterson
data contain zero entries. Then the (1, 1, 2, 2, +) margin total is zero, and we
get zero estimated expected values for the cells that add up to this marginal
total if we fit model (6.9).

There are two ways out of such a dilemma. The first approach is to fit a
loglinear model to the full array but condition only on marginal totals that
are fixed by design. The problematic zero marginal entries may then disappear
as a result of smoothing. In our hypothetical modification to the Dyke-
Patterson data, with zeros replacing the entries in the (1, 1, 2, 2, 1) and
(1, 1, 2,2, 2) cells, if we fit the loglinear model corresponding to the logit model
of expression (6.8), the estimated expected values for these cells would be
nonzero. The work of Bishop and Mosteller [1969] on the National
Halothane Study illustrates the strengths of this approach.

The second way to handle the dilemma posed by problematic marginal
zero entries in logit models is to simplify the hypothesized relationship
between the response and explanatory variables. When the explanatory
variables are polytomous, we might take advantage of the implicit ordering
of categories and consider fitting logit models in which the effects of ex-
planatory variables are represented by linear regression-like coefficients.
Such an approach is described in more detail in the next section.

Logit models are the categorical response analogs to regression models
for continuous response variates. Nelder and Wedderburn [1972] and
Nelder [1974] describe a general technique of iterative weighted linear
regression that is applicable to both the regular regression model with
normal errors and the logit model, as well as many others. The methods
described here are more limited. DuMouchel [1975], by analogy with the R?
criterion in standard regression problems, has proposed a particular measure
of the predictive error of a logit model, but it seems somewhat premature to
latch onto a specific measure for this purpose, and thus DuMouchel’s
measure will not be described here. It is important, however, to consider the
predictive ability of logit models in many situations.

6.3 Logit Models and Ordered Categories

In Section 4.4 our results on loglinear models were extended to allow for
structured interaction u-terms that directly reflect information regarding
scores associated with ordered categories. Such models provide a useful tool
for making the transition from the logit models described above to the linear
logistic response models to be discussed in the next section.

Suppose we havea2 x J x K table, with variable 1 being a binary response
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variable and variables 2 and 3 being explanatory variables with ordered
categories, the scores for which are {v/*} and {v>}, respectively. Further-
more, suppose that in the loglinear model being considered, two-factor
effects relating the explanatory variables to the response variable reflect the
ordered structure as in expression (4.14), so that

and
Uysgn) = 0 — D) ul). (6.11)
The hierarchical restriction on ordered effects then implies that
Uy23.ijk) = (U('Z) — )W — 5(3))u(2~3). (6.12)

The terms u, g, u}), u‘l(,), and u%}) may all be different. Finally, we must
include the u,;-term in the loglinear model since variables 2 and 3 are ex-
planatory, and thus we need to condition on the [23] marginal total.

Now we wish to translate the loglinear model just described into a logit

model for the response variable. For simplicity we set uZ3) = 0. If we set
B, = [uf?) — uily)] = 2u), (6.13)
B3 = 2u$}), (6.14)
and
Bo=2uyyy — B,0* — B3, (6.15)
then we have
IOglt;k = 108 sk =fo + ﬂzl’m + ﬂ3v‘3) (6.16)

This is a linear regressnon-hke model for the logits based on the binary
response variable.

Using the results of Section 4.4 for our standard sampling models, we have
the following likelihood equations:

Myje = Xy jis

j=12...,J, (6.17)
k=12... K,

Zv‘z’m,l+—Zu‘2’x,j+, i=12, (6.18)
va’m,H—ka e =12, (6.19)
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and
Mty = Xigy, i=12. (6.20)

Equations (6.18) and (6.19) resemble the normal equations of standard
regression theory, equation (6.17) corresponds to binary response structure,
and equation (6.20) guarantees that the expected number of observations
equals the observed, at each level of the response variable. As in Section 4.4,
we could solve these equations for the {m;;} using a version of iterative
proportional fitting, or some other iterative method such as weighted
nonlinear least-squares (see Jennrich and Moore [1975] or Nelder and
Wedderburn [1972]) or the Newton—Raphson algorithm (see, for example,
Haberman [1974a]).

Cox [1970a] describes a problem involving the preparation and testing of
ingots. For each of four heating times and five soaking times a set of ingots
was to be tested. Heating time and soaking time are explanatory variables,
and the response variable indicates whether or not the ingot is ready for
rolling. Thus we have a 2 x 4 x 5array in which the values associated with
the categories of the explanatory variables are simply the heating times
and soaking times:

7 1.0

o 14 5 1.7
v =15, and o) = 2.2
51 2.8

Y 4.0

The observed values are given in Table 6-3. Note that there were tests for only
19 of the 20 combinations of heating and soaking time.

We begin our analysis by testing the fit of the no second-order interaction
models u;,3 = 0: G = 11.3 and X? = 9.7 with 7 d.f,, values corresponding
to a descriptive level of significance greater than 0.20. Note that the d.f. are
notequalto(/ — 1)(J — 1)(K — 1) = 12. This is a result of two zero marginal
totals, x,, 4 = 0and x, ,, = 0, which imply that seven interior cells will have
zero expected cell values. We adjust the d.f. to take this fact into account;
thus d.f. = 12 — 7 + 2 = 7. For further discussion of how to deal with mar-
ginal zeros, see Chapter 8.

Next we fit the logit model based on u,,; = 0 and expressions (6.10) and
(6.11): G* = 13.8 with 11 d.f, corresponding to a descriptive level of signi-
ficance considerably greater than 0.05. This model fits the data reasonably
well and provides a significant improvement over the no second-order
interaction model at the 0.05 level of significance. Since f35 is small relative to
its estimated large-sample standard deviation, we consider the model with
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Table 6-3
Data on Ingots for Various Combinations of Heating Time and Soaking Time*

(Cox [1970])

Heating Time
7 14 27 51 Totals
1.0 | 0,10 0,31 1,55 3,10 4,106
Soaking 1.7 | 0,17 0,43 4,40 0,1 4,101
Time 22 10,7 2,31 0, 21 0,1 2, 60
28 | 0,12 0,31 1,21 0,0 1, 64
40 | 0,9 0,19 1,15 0,1 1,44
Totals 0,55 2,155 7,152 3,13 | 12,375

*First figure in each cell is number not ready for rolling, and second figure is number
ready for rolling.

B3 = 0. It also provides an acceptable fit to the data, and it is the one Cox
[1970a] deems appropriate for the data. For this model , = 0.0807. Notice
how the model can be used to get a predicted logit value for the zero marginal
total corresponding to a soaking time of 2.8 and a heating time of 51.

6.4 Linear Logistic Response Models

Continuing with the problem of the preceding section, we let J and K increase
in size to produce an ever finer grid of values for the two explanatory variables.
As J and K increase we approach a situation in which the explanatory
variables are treated as continuous rather than categorical. If we keep the
sample size N = x,,, fixed while increasing J and K, then in the most
extreme situation we would expect to end up with values of x, ; that are
either zero or one. If we continue to view this as a contingency table problem,
the standard large-sample theory no longer applies since the size of “the
table” increases with the sample size N. Similar large-sample results for the
parameters of interest are available, however (see, for example, Haberman

[1974a]).

An alternate, but equivalent, way to describe this situation is as follows.
Let y;, y2, ..., yn be independent binary random variables taking values
Oor 1, with

Pr(y;=1)=p, i=1,2,...,N. (6.21)

For the ith such variable we have observations z;; and z;, on the two explan-
atory variables, and
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log <1 _{)_lp)=ﬂo+ﬂlzu + Bazia, i=12...,N. (6.22)

The general linear logistic model, with r explanatory variables and a

binary response variable, resembles the two-variable model above. Let y,,

Y2, ..., Yy be independent binary random variables taking values O or 1,

with
exp(Bo + Zj=; B;zij) .

Pr(yi=D)=pi = LA j=1,2,...,N. (623

Y 1 + exp(Bo + Zj=1 Bjzij) (6.23)

The quantities z;; for j = 1, 2,.. ., r are the values of the r explanatory vari-

ables for the ith observatlon and are considered fixed. Expression (6.23) is
equivalent to a linear model in the logits:

log( > Bo + Z/}, g i=1,2,...,N. (6.24)

In this formulation the explanatory variables may be binary, categorical but
with explicit orderings, as in Section 6.3, or continuous.
The minimal sufficient statistics for the linear logistic regression model

(6.23) are
N
Do (6.25)

i=1

and

N
Zz,»jyi, i=1,2...,r (6.26)

i=1

The likelihood equations are found in the usual manner by setting the
minimal sufficient statistics equal to their expected values:

N N
Z pi =Zy,-, (6.27)
i=1 i=1
N N
Z ) =z Zve  i=L2...,r (6.28)
i=1 i=1

There are r + 1 likelihood equations for the r + 1 fs in model (6.24). The
solution to equations (6.27) and (6.28) must be found numerically by means
of some sort of iterative computational procedure. Haberman [1974a, 1978],
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for example, suggests the use of a modified Newton—Raphson procedure (see
also the algorithms used by Gokhale[1972], Nelder and Wedderburn [1972],
Nerlove and Press [1973], and Walker and Duncan [1967]). The modified
Newton—-Raphson algorithm has quadratic convergence properties, as
opposed to the linear convergence properties of the iterative proportional
fitting procedure used for all other problems in this book. For further details,
including a detailed discussion of the large-sample theory for the general
logistic regression model, see Haberman [1974a].

A basic problem with the use of logistic regression models is the difficulty
in determining whether the models provide an adequate fit to the data. As in
standard regression analysis, we can assess the need for sets of variables
by means of a likelihood-ratio test based on a pair of nested models with
and without the variables in question. But as long as some of the predictors
are not categorical, we cannot carry out an omnibus goodness-of-fit test for
a model. Moreover, no easily interpretable criterion such as R? is available
to aid in an assessment of the predictive power of the fitted logistic regression
equation. (For a discussion of measures of binary variation as they relate
to this problem see Efron [1978].) Typical computer programs will include
as part of their printout estimated coefficients, estimated standard errors
of the coefficients, Z-values (coefficients divided by their standard errors),
and the likelihood-ratio test comparing the fitted model to the one in which
the coefficients of all the explanatory variables are zero. Thus, when it is
convenient to do so, categorizing some continuous variables from a logistic
regression model may allow construction of a corresponding logit model
whose fit can be assessed.

Neutra et al. [1978] analyzed data from live-born infants at the Beth
Israel Hospital in Boston in an attempt to estimate the impact of fetal
monitoring on neonatal death rates. Almost half of the more than 17,000
babies born at Beth Israel between January 1, 1969, and December 31,
1975, were subjected to electronic fetal monitoring while the mother was
in labor, the percentage ranging from 20 percent at the beginning of this
period to nearly 80 percent at the end. Several variables considered to be
likely predictors of neonatal death were included along with a 0—1 variable
for fetal monitoring in a linear logistic response model, as part of a prelimi-
nary analysis not described in Neutra et al. [ 1978]. The estimated coefficients
in the resulting fitted model for predicting the log-odds of neonatal death
are given here in Table 6-4. A larger number of variables were considered
for inclusion in this model, but only those coefficients with a Z-value
(coefficient divided by its estimated standard error) in excess of + 2 are
reported here. Of the eight predictors, seven are categorical, and six of
those are binary.
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Table 6-4
Predictors of Early Neonatal Death: Coefficients from a Linear Logistic Response
Model (Unpublished data related to those reported in Neutra et al. [1978])

Predictor Estimated

variable coefficient  Z-statistic
1. Nonprivate (no, yes) 0.583 2.3
2. Monitored (no, yes) —1.268 —45
3. Multiple birth (no, yes) 1.091 2.7
4. Duration of pregnancy —1.306 —13.8
5. Extremes of age (young or old, other) 0.902 22
6. Hydramnios (yes, no) 3.415 6.9
7. Prolonged rupture of membranes (yes, no) 0.933 2.5
8. Breech presentation (yes, no) 1.931 53

While the analysis summarized in Table 6-4 is informative, we have no
information about whether the model fits the data. We know only that
using all eight predictors appears to be better than using some subset. To
explore the fit of a related model to the data, and the possible need for
interaction terms, the data were reorganized into a five-dimensional cross-
classification as follows. First, the continuous variable, duration of preg-
nancy, was broken into three categories: 28—31 weeks, 32-38 weeks, 39-41
weeks. Next, the clinical factors corresponding to variables 3, 5, 6, 7, and
8 were combined, and any mother who presented one or more of them was
considered to be a high risk (this combining of factors removed considerable
sparseness from the data set since each factor by itself was present only
rarely). The resulting table of counts is reproduced here as Table 6-5.

We leave a detailed analysis of Table 6-5 to the problems at the end of
the chapter. We simply note that a linear logit model provides a reasonable
fit to the data, that the term corresponding to the effect of fetal monitoring
on the log-odds of neonatal death has a sign consistent with that in Table
6-4 and corresponds to an “adjusted” odds ratio of 1.92. The difference
between models with and without this effect is marginally significant. In
a different but related analysis, Neutra et al. [ 1978] found that the adjusted
odds ratio of the effect of fetal monitoring on neonatal death was 1.44.
Fetal monitoring appears to have a positive effect on neonatal outcome,
but the effect is much smaller than many obstetricians might have expected.

6.5 Logistic Regression vs. Discriminant Analysis

Discriminant function analysis has often been used in the past instead of
logistic analysis (see, e.g., Truett, Cornfield, and Kannel [1967]) when the
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Table 6-5
Cross-Classification of 16,513 Live Births from Beth Israel Hospital, 1969-1975
(Unpublished data related to those reported in Neutra et al. [1978])

. L . Result
Gestational age Class Composite risk ~ Monitored Alive NND*
39+ Private None No 5193 1

Yes 3286 3

Some No 447 4

Yes 249 1

Nonprivate None No 1479 4
Yes 2242 2

Some No 152 2

Yes 247 2

32-38 Private None No 1151 7
Yes 549 1

Some No 220 7

Yes 138 1

Nonprivate None No 349 5
Yes 389 4

Some No 102 1

Yes 151 1

28-31 Private None No 14 4
Yes 3 0

Some No 15 8

Yes 6 2

Nonprivate None No 20 S
Yes 16 2

Some No 8 7

Yes 9 4

*Neonatal death.

researchers’ aim was prediction, not discrimination. But even when discrim-
ination is the actual aim, if the explanatory variables do not follow a
multivariate normal distribution with equal covariance matrices for each
group or level of the “response” variable, the use of standard discriminant
function estimators (ordinary least-squares regression in the two-group or
two-level case) will not be statistically consistent (see, e.g., the discussion
in Goldstein and Dillon [1978]).

Press and Wilson [1978] describe the relative merits of the two approaches
and give two empirical illustrations of the differences between the two
methods. Their second example examines 1970 Census data for the S0
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states, and they use the percent change in population from the 1960 Census
to the 1970 Census for each state (coded O or 1, according to whether the
change was below or above the median change for all states) as the binary
“grouping” or dependent variable. The median is chosen to divide the two
groups so that the prior probabilities are 0.5 for each group. The explanatory
variables are per capita income (in $1000), birth rate (percent), death rate
(percent), urbanization of population (0 or 1 as population is less than or
greater than 70 percent urban), and absence or presence of coastline (0 or 1).
Thus there are three continuous explanatory variables and two binary
explanatory variables. These data are included here in Table 6-6.

Table 6-6
Census Data for Predicting Population Change from 1960 to 1970 (Press and Wilson
[1978])

State Population Income  Births Coast Urban  Deaths
change

Set 1

Arkansas 0 2.878 1.8 0 0 1.1
Colorado 1 3.855 19 0 1 0.8
Delaware 1 4.524 1.9 1 1 09
Georgia 1 3.354 2.1 1 0 0.9
Idaho 0 3.290 1.9 0 0 0.8
Towa 0 3.751 1.7 0 0 1.0
Mississippi 0 2.626 22 1 0 1.0
New Jersey 1 4.701 1.6 1 1 0.9
Vermont 1 3.468 1.8 0 0 1.0
Washington 1 4.053 1.8 1 1 0.9
Set 11

Kentucky 0 3.112 1.9 0 0 1.0
Louisiana 1 3.090 2.7 1 0 1.3
Minnesota 1 3.859 1.8 0 0 0.9
New Hampshire 1 3.737 1.7 1 0 1.0
North Dakota 0 3.086 19 0 0 09
Ohio 0 4.020 1.9 0 1 1.0
Oklahoma 0 3.387 1.7 0 0 1.0
Rhode Island 0 3.959 1.7 1 1 1.0
South Carolina 0 2.990 2.0 1 0 0.9
West Virginia 0 3.061 1.7 0 0 1.2
Set 111

Connecticut 1 4917 1.6 1 1 0.8
Maine 0 3.302 1.8 1 0 1.1
Maryland 1 4.309 1.5 1 1 0.8
Massachusetts 0 4.340 1.7 1 1 1.0
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Table 6-6 (continued)

State Population Income  Births Coast Urban  Deaths
change

Michigan 1 4.180 1.9 0 1 0.9
Missouri 0 3.781 1.8 0 1 1.1
Oregon 1 3.719 1.7 1 0 0.9
Pennsylvania 0 3971 1.6 1 1 1.1
Texas 1 3.606 2.0 1 1 0.8
Utah 1 3.227 2.6 0 1 0.7
Set IV

Alabama 0 2.948 2.0 1 0 1.0
Alaska 1 4.644 2.5 1 0 1.0
Arizona 1 3.665 2.1 0 1 0.9
California 1 4.493 1.8 1 1 0.8
Florida 1 3.738 1.7 1 1 1.1
Nevada 1 4.563 1.8 0 1 0.8
New York 0 4.712 1.7 1 1 1.0
South Dakota 0 3.123 1.7 0 0 24
Wisconsin 1 3.812 1.7 0 0 0.9
Wyoming 0 3.815 1.9 0 0 0.9
Set V

Hawaii 1 4.623 2.2 1 1 0.5
Illinois 0 4.507 1.8 0 1 1.0
Indiana 1 3.772 1.9 0 0 0.9
Kansas 0 3.853 1.6 0 0 1.0
Montana 0 3.500 1.8 0 0 0.9
Nebraska 0 3.789 1.8 0 0 1.1
New Mexico 0 3.077 2.2 0 0 0.7
North Carolina 1 3.252 1.9 1 0 0.9
Tennessee 0 3.119 19 0 0 1.0
Virginia 1 3.712 1.8 1 0 0.8

In order to use a form of cross-validation to compare the two methods,
Press and Wilson randomly divided the 50 states into five groups of 10
states each. Both logistic regression and discriminant function analyses
were performed on 40 states at a time, and then the fitted equations were
used to predict the outcome for the remaining 10 states. The resulting five
pairs of fitted equations are given in Table 6-7.

When the fitted equations were applied to the excluded data, 34 of the
states were correctly classified by the discriminant analysis and 36 by the
logistic regression equation. Twelve states were incorrectly classified by
both methods, two states were incorrectly classified by only the logistic
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Table 6-7
Estimated Coefficients for Discriminant and Logistic Equations Fitted to Subsets of
Data in Table 6-6 (Press and Wilson [1978])

Models fitted
to all but data Method Constant Income Births Coast Urban Deaths

in set
1 Discriminant
analysis —10.500 +1.610 +3.060 +1.118 —0.360 —1.830
Logistic
regression —6.238 +1.388 +2.484 +0.874 —0.579 —4.046
11 Discriminant
analysis —7.000 +1.110 +2.240 +0972 +0.710 —2.240
Logistic
regression +1.918 +0.580 +0.560 +0.706 +0.249 —5910
111 Discriminant
analysis —10.700 +1.960 +2.100 +1.482 —0.250 —1.020
Logistic
regression —6.655 +1.399 +1.894 +0841 —0436 —2428
1AY Discriminant
analysis —17.400 +3.550 +5.100 +1.966 —1.890 —5.800
Logistic
regression —15.162 +3.432 +4378 +1.391 —1900 —6.037
\Y% Discriminant
analysis —13.600 +2.300 +3.610 +0.284 —0.013 —1.870
Logistic
regression —6.854 +1.542 +2728 +0437 —0.452 —4.120
Mean of Discriminant
five classes  analysis —11.840 +2.106 +3.222 +1.164 —0.361 —2.552
Logistic
regression —6.598 +1.688 +2.409 +0.850 —0.634 —4.508

regression, and four states were misclassified by only the discriminant
analysis.

The superiority of logistic regression over discriminant analysis as a
classification procedure in this example, slight though it is, may surprise
some readers. What is more important is to note that, if discriminant
analysis is used for a prediction problem involving a binary response variable,
predictions for small and large probabilities may be far off the mark. Efficient
computer programs for fitting logistic response models have now removed
computational cost as a barrier to an appropriate analysis of data not
meeting the basic assumptions of the discriminant function analysis.
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6.6 Polytomous and Multivariate Response Variables

Although the techniques considered in earlier sections have dealt only with
a single dichotomous response variable, they may easily be extended to
handle both (1) polytomous response variables and (2) two or more (possibly
polytomous) response variables.

Suppose we have a single I-category response variable and two explanatory
variables (with J and K categories, respectively). To describe the relation-
ship between the response and explanatory variables we need a set of /—1
logit models. But there are several ways we might choose to define the 7 — 1
logits. Five possibilities are:

ms..:
10 ‘—l"ji_>, i= 1’2"",1_ 1; (6‘29)
g<zl>imljk
> _my
10g<£_’1_">, = 1,2, -1 (6.30)
s iy
log<_'”_m_>, i= 1.2, -1 (6.31)
1My jk
1og<i"ﬂ), =12, 11 632)
my jx
log( My ) i=1,2,...,1—1 (6.33)
MieT, jk

When the response categories have a natural order, such as educational
attainment (grade school, high school, college, graduate school), the choice
of logits in (6.29) may be preferable. The quantities m,; /X, ;m,;, are often
referred to as continuation ratios, and they are of substantive interest
in various fields. There is also a technical reason for working with the
logarithms of the continuation ratios. Let P;; be the probability of a response
in category i of variable 1 given levels j and & of the explanatory variables,
where X, P;; = 1. Then, when the {x;;} are observed counts from JK in-
dependent multinomials with sample sizes {x,;} and cell probabilities
{Pij}s

M Py

(6.34)

s imy, ElziPljk

We can write the multinomial likelihood functions as products of 7— 1
binomial likelihoods, the ith of which has sample sizes {Z,;x;;} and cell
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probabilities {P;;/Z,;>;P,;}. This means that if we use the method of maxi-
mum likelihood to estimate the parameters in the set of logit models, then
we can do the estimation separately for each logit model, and we can simply
add individual chi-square statistics to get an overall goodness-of-fit statistic
for the set of models. Moreover, the observed binomial proportions,
T G T g (6.35)
s i X
are each asymptotically independent of the others so that we can assess the
fit of the I — 1 logit models and various associated reduced models in-
dependently. Fienberg and Mason [ 1978] use this approach involving models
for log continuation ratios in the context of logit models with simultaneous
effects for age, period, and cohort.

The asymptotic-independence property of the logits based on continuation
ratios, expression (6.29),is not shared by the next two possibilities, expressions
(6.30) and (6.31). The sets of observed binomial proportions corresponding
to these logit models are asymptotically correlated, and thus all I — 1 logit
models must be fit simultaneously. The choice of logits in (6.30) does preserve
information about the ordering of the response categories, however, and
thus might be thought of as a competitor to the continuation-ratio approach.
For trichotomous responses (i.e., I = 3), the logits in (6.30) correspond to
those modeled by Walker and Duncan [1967].

If we would like our logit models to correspond to loglinear models, the
summations in the denominators of (6.29), (6.30), and (6.31) make these
alternatives undesirable. Since we would like to fit similar models for all
the logits (i.e., with the same effects involving the explanatory variables),
working with the logits defined by (6.32) is equivalent to working with
those defined by (6.33). For example, if I = 3, there are only three possible
logits involving ratios of the form m;j, /m; with [ > i:

log< ”"), lg< “") log<%).
My jx m3jx 3jk

Clearly one of these is redundant since

1 + lo lo 6.36
o) ) =) e

Suppose we fit a loglinear model to the I x J x K array that holds fixed
the two-dimensional marginal total corresponding to the explanatory vari-
ables. Then the loglinear model can be transformed into a set of I — 1 non-
redundant logit models of the form log(m;;/m, ;). Because different investi-
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gators might choose to look at different sets of logit models, it is reasonable
to report the estimated interaction u-terms involving the effects of the
explanatory variables on the response variable, rather than going to the
trouble of constructing the estimated logit models.

Typically, the combined fit of a set of logit models based on continuation
ratios (i.e., expression (6.29)) will not differ greatly from the fit of an overall
logit-loglinear model corresponding to (6.32) or (6.33). We illustrate the
application of both types of models in the following example. _

In 1963 the President’s Task Force on Manpower Conservation inter-
viewed a national sample of 2400 young males rejected for military service
because of failure to pass the Armed Forces Qualification Test. Hansen,
Weisbrod, and Scanlon [1970] reanalyzed some of the data from this survey
in an attempt to catalog the determinants of wage level for these low achievers.
Table 6-8 offersa 3 x 4 x 2 x 2 four-dimensional cross-classification of 2294
armed forces rejectees analyzed by Talbot and Mason [1975]. The four

Table 6-8
Observed Cross-Classification of 2294 Young Males Who Failed to Pass the Armed
Forces Qualification Test (Talbot and Mason [1975])

Father’s Respondent’s Education
Race Age Education* Grammar School Some HS HS Graduate
1 39 29 8
2 4 8 1
<22 3 1 9 6
4 48 17 8
White
1 231 115 51
2 17 21 13
=22 3 18 28 45
4 197 111 35
1 19 40 19
2 5 17 7
<2 3 2 14 3
4 49 79 24
Black
1 110 133 103
2 18 38 25
=22 3 1 25 I8
4 178 206 81

*1 = Grammar School, 2 = Some HS, 3 = HS Graduate, 4 = Not Available.
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Table 6-9

Various Loglinear Models Fit to the 3 x 4 x 2 x 2 Cross-Classification in Table 6-8.
Model df. G*?
[234] [1] 30 254.8
[234] [12] 24 162.6
[234] [13] 28 242.7
[234] [14] 28 152.8
[234] [12] [13] 22 151.5
[234] [12] [14] 22 46.7
[234] [13] [14] 26 142.5
[234] [12] [13] [14] 20 36.9
[234] [123] [14] 14 27.9
[234] [124] [13] 14 18.1
[234] [134] [12] 18 332
[234] [123] [124] 8 9.7

variables are respondent’s education (grammar school, some high school,
high school graduate), father’s education (grammar school, some high school,
high school graduate, not available [NA]), age (less than 22, 22 or more),
and race (white, black). For the present analysis we view the respondent’s
education as the response variable and the remaining three variables as
explanatory. Because there are so many missing observations under father’s
education, we have included “not available” as an extra category. Chen
and Fienberg [1974] and Hocking and Oxspring [ 1974] describe alternative
methods for dealing with such missing data.

Table 6-9 summarizes the fit of various loglinear models that treat the
three-dimensional marginal totals for the explanatory variables as fixed. The
simplest such model providing a good fit to the data is

[234] [124] [13]. (6.37)

Four sets of estimated u-terms are needed in this model if we are to con-
struct the corresponding logit models: {fi;5i,}, {8300} {Hiaan}s {81240}
There are three possible logit models corresponding to this loglinear model,
and the estimated logit effects corresponding to these estimated u-terms are
listed in Table 6-10.

The interpretation of the estimated effects listed in Table 6-10 is complex,
and so we restrict ourselves here to an interpretation of the logit equation
comparing “some high school” with “high school graduates.” The estimated
effect of age follows from the fact that older men have more time to complete
high school. The first-order effects of race and father’s education are best
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Table 6-10
Estimated Logit Effects for the Three Logit Models Corresponding to the Loglinear
Model (6.37)

Grammar vs. Grammar vs. Some HS vs.
Some HS HS Grad HS Grad
log (myju/mauy)  log (myju/msjg) log (mzjm/maju)
Constant —0.289 0.451 0.740
R White 0.395 0.390 —0.005
ace Black —0.395 —-0.390 0.005
A <22 —0.120 0.099 0.219
ge >22 0.120 ~0.099 -0.219
Grammar 0.380 0.406 0.026
Father’s Some HS —-0.371 —0.355 0.016
Education HS Grad —0.441 —-0.918 —-0.477
NA 0.432 0.867 0.435
Grammar 0.063 0.345 0.282
White b Some HS -0.128 —0.016 0.112
y HS Grad 0.030 —0.429 —-0.459
NA 0.035 0.101 0.066
Grammar —0.063 —0.345 —0.282
Black b Some HS 0.128 0.016 -0.112
Y HS Grad —0.030 0.429 0.459
NA -0.035 —0.101 —0.066

combined with the second-order effects. Then we see a declining effect of
father’s education for whites, and an increasing (but less dramatic) effect of
father’s education for blacks, on the log-odds of not completing versus
completing high school. We cannot, however, ignore the effect of the missing
observations for father’s education. The size of the estimated parameter for
NA in the fitted model indicates that these data are not missing at random,
and in fact the NA proportion differs somewhat by race.

Now we turn to an alternative analysis of the data in Table 6-8 based
on models for the log continuation ratios:

M3 ki
a) log|—&),
(a) g(,nw)

Ma:
b) log(——% ).
(b) g<m1jkl+m2jkl



Fixed Margins and Logit Models 115

Table 6-11
Various Logit Models for the Log Continuation Ratios Fit to the Data in Table
6-8

(@ log <T31ﬂ> ®) log (-J—"EL) Combined fit
My ki My + My

Model d.f. G? d.f. G? d.f. G?
[234][1] 15 131.5 15 1233 30 254.8
[234] [12] 12 97.9 12 64.7 24 162.6
[234] [13] 14 123.3 14 1194 28 242.7
[234] [14] 14 49.0 14 103.8 28 152.8
[234] [12] [13] 11 91.9 11 60.3 22 1522
[234] [12] [14] 11 16.1 11 35.6 22 51.7
[234] [13] [14] 13 43.7 13 98.7 26 1424
[234] [12] [13] [14] 10 12.4 10 29.8 20 422
[234] [123] [14] 7 9.3 7 23.2 14 32.5
[234] [124] [13] 7 11.5 7 7.0 14 18.5
[234] [134] [12] 9 8.6 9 29.7 18 38.3
[234] [123] [124] 4 8.5 4 1.2 8 9.7

Note that the logit in (a) corresponds directly to minus the first column of
Table 6-10, but will be modeled independently from the other logit in this
alternative analysis. Table 6-11 contains information on the fit of all the
models listed in Table 6-9 for the log continuation ratios.

We begin by examining the last pair of columns in Table 6-11 for the
combined fit of the pair of equations, and comparing the G2 values with
the corresponding ones in Table 6-9. Note that the first four G2 values
in the two tables are equal. (This is an exact equality and follows from the
collapsing theorem of Section 3.8.) The remaining values of G2 in the two
tables differ by at most 6.3, with the overall fit being essentially the same
for the simplest model providing a good fit (p < 0.05) to the data, namely
(6.37).

Next we examine the fit for each of the two continuation-ratio logits
separately. While model (6.37) still provides the best fit for logit (b), a different
model,

[234] [12] [13] [14], (6.38)
provides a better fit for logit (a); an even simpler one,
[234] [12] [14], (6.39)

differs by a G2 value that is almost significant at the 0.05 level:

G2[(6.39)](6.38)] = 16.1 — 12.4 = 3.7.
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These simpler models for logit (a) differ from (6.37) by successive dropping
of the interactive effects of race x father’s education, and then the effect of
age. Thus, given that the respondents did not complete high school, the
odds of their completing some high school depend only on race and on
father’s education. Finally, we note that this analysis is consistent with the
first column of Table 6-10, in which these two effects have relatively small
magnitudes compared with the other effects included in the model.

Thus adopting the continuation-ratio logit approach in this example
leads to a somewhat simpler model for the data, but one that is consistent
with the use of loglinear models applied to the data set as a whole. This will
not necessarily be the case for other problems, and the choice between the
two approaches will depend on the substantive context of the problem and
on the interpretability of the resulting models. Applying both classes of
models to a given data set to see how they differ, as we did here, also seems
to be a reasonable thing to do.

Since loglinear models are well suited to handling multiple categorical
response variables, no further analytical problems are introduced when we
have categorical explanatory variables as well. If we condition on the values
of the explanatory variables (as we do for logit models), then we can use
loglinear models to assess the effects of the explanatory variables on the
individual response variables and at the same time determine the interrela-
tionships among the response variables.

Problems

6.1. For the Red Dye No. 2 data in Problem 3.4, rewrite the most par-
simonious model as a logit model.

6.2. For the data on parolee success in Problem 5.7, rewrite the loglinear
models fit to both parts of the data as logit models for predicting success.

6.3. (a) For the hospital study data in Table 4.1, using the scores —1, 0, 1
for the columns, fit a pair of logit models to the data contrasting:

(i) row 1 vs. rows 2 plus 3;

(i1) row 2 vs. row 3.

(b) Compare the fit of this combined logit model (with 2 d.f.) with the model
fit to the data in Chapter 4.
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6.4. For the data in Table 4-3, treat the pair of variables, breathlessness
and wheeze, as a four-category response variable, and break it up into three
binary comparisons:

(i) no symptoms vs. at least one,

(11) both vs. exactly one,

(i1i) only breathlessness vs. only wheeze.

(a) For each, fit a linear logit model in which the nine categories of age are
codedas x = —4, —3,...,4.

(b) Compare the overall fit of the six-parameter model from part (a) with the
models fit to the data in Chapter 4.

6.5. Bishop, Fienberg, and Holland [1975] present the data in Table 6-12
onthe three-year survival of breast cancer patients according to two histologic
criteria, age, and diagnostic center. Analyze these data using a logit model to
predict survival.

Table 6-12
Minimal inflammation  Greater inflammation
Diagnostic Malignant Benign Malignant Benign
center Age Survived appearance appearance appearance appearance
Tokyo Under 50 No 9 7 4 3
Yes 26 68 25. 9
50-69 No 9 9 11 2
Yes 20 46 18 5
70 or over  No 2 3 1 0
Yes 1 6 5 1
Boston Under 50 No 6 7 6 0
Yes 11 24 4 0
50--69 No 8 20 3 2
Yes 18 58 10 3
70 or over  No 9 18 3 0
Yes 15 26 1 1
Glamorgan Under 50 No 16 7 3 0
Yes 16 20 8 1
50-69 No 14 12 3 0
Yes 27 39 10 4
70 or over No 3 7 3 0
Yes 12 11 4 1
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Table 6-13
City # # positive/ # sampled Annual rainfall in mm
1 2/4 1735
2 3/10 1936
3 1/5 2000
4 3/10 1973
5 2/2 1750
6 3/5 1800
7 2/8 1750
8 7/19 2077
9 3/6 1920
10 8/10 1800
11 7/24 2050
12 0/1 1830
13 15/30 1650
14 4/22 2200
15 0/1 2000
16 6/11 1770
17 0/1 1920
18 33/54 1770
19 4/9 2240
20 5/18 1620
21 2/12 1756
22 0/1 1650
23 8/11 2250
24 41/77 1796
25 24/51 1890
26 7/16 1871
27 46/82 2063
28 9/13 2100
29 23/43 1918
30 53/75 1834
31 8/13 1780
32 3/10 1900
33 1/6 1976
34 23/37 2292
Total 356/697

6.6. Reanalyze the data of Table 6-8 by taking continuation ratios in the
reverse order to that used for the analyses reported in Table 6-11. Do your
conclusions differ from those reported in Section 6.6?

6.7. (a) Reexamine the loglinear models that you fit to the data in Problem
5.1 as multiple logit models involving a pair of binary responses.



Fixed Margins and Logit Models 119

(b) Reanalyze these data by constructing a set of three binary comparisons
among the response variables.

(c) Contrast the fit and interpretation of the models in parts (a) and (b).

6.8. Fit loglinear and/or logit models to the fetal monitoring data in Table
6-5, and compare your results with those discussed in Section 6.4. Be sure
to compute an estimate of the “adjusted” log odds ratio measuring the
effect of fetal monitoring on neonatal death.

6.9. Efron [1978] presents the data in Table 6-13 on subjects tested for
toxoplasmosis in 34 cities of El Salvador (all subjects are between the ages of
11 and 15). Fit a logit model to these data which represents log [ Pr(positive)/
Pr(negative)] as a function of annual rainfall.

6.10. Consider a four-dimensional table. Of the 113 unsaturated hier-
archical loglinear models with main-effect u-terms, how many correspond
to logit models in which all but the first variable are explanatory?



7

Causal Analysis Involving Logit
and Loglinear Models

7.1 Path Diagrams

Many investigators are interested in providing a causal interpretation of the

statistical relationships they find in the course of modeling a set of data. For

quantitative variables the method of path analysis has been used to provide

an interpretation of linear model systems (see, for example, Duncan [ 1966,

1975a] and Wright [1960]). Path analysis is not a method for discovering

causal links among variables from the values of correlation coefficients.

Rather, its role is

(1) to provide a causal interpretation for a given system of linear relationships,

(2) to make substantive assumptions regarding causal relationships explicit,
thus avoiding internal inconsistencies.

With regard to point (1), we note that it is often the case that several causal

models are consistent with a given set of relationships, and only additional

information, substantive theory, or further research can help us choose
among these models.

One of the salient features of path analysis as it is used in practice for the
analysis of quantitative data is the diagrammatic representation of linear
systems by means of arrows indicating various types of causal connections;
then the “calculus” of path coefficients allows us to calculate numerical values
for both direct and indirect effects, and these, in turn, are associated with the
arrows in the path diagrams. Goodman [1972, 1973a, b] has recently pro-
posed an analog to path analysis for qualitative variables, that is, for cross-
classified data. The major feature of Goodman'’s approach is the creation of
path diagrams, based on one or more loglinear or logit models and similar to
those used in the analysis of quantitative variables. While Goodman does
assign numerical values to the arrows in his diagrams, we note the following
places where the analogy to the regular path analysis approach breaks down.
For the analysis of categorical variables:

(i) there is no calculus of path coefficients;

(ii) because there is no calculus for path coefficients, there is no formal way
to decide what values to assign to arrows not explicitly accounted for by
a system of logit models, except by incomplete analogy with the regular
path analysis techniques;

(iii) multiple categories for a variable lead to multiple coefficients to be as-
sociated with a given arrow in the diagram;

(iv) the existence of three-factor and higher-order interaction terms in a log-
linear model lead to a complexity that cannot be handled without resort-
ing to a more involved diagrammatic representation.

We do not view point (iv) as a serious obstacle, and for systems of binary



Causal Analysis Involving Logit and Loglinear Models 121

variables, such as those Goodman analyzes, point (iii) presents no problem.
Because of points (i) and (ii), however, we view the assignment of numerical
values as problematic, and we would limit ourselves to an indication of sign
for causal relationships, in a fashion similar to that described by Blalock
[1964].

We begin by illustrating some basic ideas using a three-dimensional exam-
ple. In a retrospective study of premarital contraceptive usage, Reiss, Ban-
wart, and Foreman [1975] took samples of undergraduate female university
students. One sample consisted of individuals who had attended the univer-
sity contraceptive clinic, and the other was a control group consisting of
females who had not done so. A preliminary analysis of data gathered in-
dicated that the two samples did not differ significantly in terms of various
background variables such as age, years in school, parents’ education, etc.
The individuals in the two samples were then cross-classified according to
their virginity (virgin, nonvirgin) and various attitudinal variables such as
belief that extramarital coitus is not always wrong. Table 7-1 displays the
2 x 2 x 2 cross-classification corresponding to this particular attitudinal
variable.

Although the totals corresponding to the use or nonuse of the clinic are
fixed by design, we are actually interested in models that exhibit causal links
from the other variables to the clinic variable. Figure 7-1 shows possible path
diagrams that are consistent with such a causal framework. In addition, the
two-dimensional table relating virginity and clinic use shows a strong rela-
tionship between the two variables.

In the diagrams of Figure 7-1, attitudinal response is denoted as E (variable
1), virginity as V (variable 2), and clinic use as C (variable 3). Curved double-
headed arrows are used to denote relationships corresponding to nonzero

Table 7-1
Data on Premarital Contraceptive Usage From Reiss, Banwart, and Foreman [1975]

Use of Clinic
Yes No

Virgin ~ Nonvirgin | Virgin  Nonvirgin

Always Wrong 23 127 23 18
Attitude on
Extramarital
Coitus

Not Always Wrong 29 112 67 15
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(@) (b)

(c) (@

(e) E ) v

(2) (h) Y

(i)
A\
\ -
E
Figure 7-1

Some Path Diagrams Illustrating Possible Causal Connections among Variables
for the Data in Table 7-1 (V = Virginity; E = Attitudinal Response; C = Clinic
Attendance)
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u-terms, which are not necessarily causal in nature. Figure 7-1a is consistent
only with the no three-factor interaction model, u,,3 = 0. Figure 7-1b is
consistent with u,, = u,,3 = 0; Figures 7-1c, d, and e are consistent with
U3 = U;,3 = 0;and Figures 7-1f, g, and h are consistent with u,; = u,,3 = 0.
Finally, Figure 7-1i is consistent with u,, = u,3 = u,,3 = 0. This distinction
among Figures 7-1c, d, and e comes from the causal relationships involving
the explanatory variables. In Figure 7-1c, virginity and the attitudinal vari-
able are not necessarily causally related; in Figure 7-1d, virginity is an inter-
vening variable between attitude and clinic use; in Figure 7-1e, virginity is
antecedent to both attitude and clinic use.

Analyses of the data in Table 7-1 will show that the only two unsaturated
loglinear models providing an acceptable fit to the data are u,,; = 0, and
uy3 =1u,,3 =0. Moreover, the no second-order interaction model does not
provide a significantly better fit than the simpler model. The causal diagrams
consistent with the simpler model are given in Figures 7-1c, d, and e.

7.2 Recursive Systems of Logit Models

When working with more than three categorical variables we must take care
in carrying out analyses leading to the preparation of path diagrams. Implicit
in the methods proposed by Goodman [1973a] is the causal ordering of
variables. Suppose, for example, that we have four variables: A, B, C, and D.
If the causal ordering is

A precedes B precedes C precedes D, (7.1)

then we should construct a diagram based on logit models for (1) B given A4,
(2) C given 4 and B, and (3) D given A4, B, and C. This set of three logit models,
when combined, characterizes the conditional joint probability of B, C,and D,
given A. If the causal ordering is

A
<and>precede C precedes D, (7.2)
B

then Goodman suggests that the relationship between A and B can be
measured on the basis of the corresponding marginal table, and the links
between the remaining variables can then be based on the logit models for
C given A and B and for D given A, B, and C. This pair of logit models charac-
terizes the conditional joint probability of C and D given 4 and B. When we
combine the two logit models with the marginal probability of A and B
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(jointly), we get a characterization of the joint probabilities associated with
all four variables.

The key feature of expressions (7.1) and (7.2) is that they are both examples
of what is referred to in the structural equations literature as a recursive
system of models. That we should estimate the parameters in each of the logit
equations in such a recursive system by the usual methods corresponds to
the well-known results for recursive systems of linear regression models with
normal error terms (see, for example, Wold and Jureen [1953]): the MLEs
for the parameters in the system are just the MLEs of the parameters for each
equation in the system when viewed separately.

We can assess the fit of a recursive system of logit models by directly check-
ing the fit of each of the component models in the usual way, or by computing
a set of estimated expected cell values for the combined system. The computa-
tion of these combined estimates is best illustrated by an example. Suppose
we have four variables causally ordered as in expression (7.2). Then the
estimated expected cell values for a system consisting of the pair of logit
models implied by (7.2) are given by

~ AB|C > ABCID

* _m,jk mi;

m}
ijkl — AABC'D )
ijk+

@ﬁw ABCID

Xijk+ ’ (7.3)

where {m{if!°} are the estimated expected values for the logit model with

variable C as the response variable and {m{}f‘'’} are the estimated expected

values for the logit model with variable D as the response variable. Since the

latter model involves conditioning on the marginal totals {x;; ., }, we get the

second equality in expression (7.3). Next suppose we have the causal ordering

implied by expression (7.1). Then the estimated expected values for the system
of three logit models implied by (7.1) are given by

~ A|B AB|C 5, ABC|D
" mi'” mic m;

ﬁ'?jkl = L 5 (7.4)

xu++ xuk+

where {m|%}, {m{f1}, and {mAFC'P} are the estimated expected values for

the logit models with variables B, C, and D, respectively, as response variables.

Because of the simple multiplicative form of the estimated expected values
in (7.3) and (7.4), the likelihood-ratio statistic G2 for testing the fit of the
combined system is simply the sum of the likelihood-ratio statistics for the
component models. For example, for the system implied by (7.2) with the
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expected values given by expression (7.3), if

Gi =2 2 Xijk lOg(xijkl/’h:'kjkl)’ (7.5)
ikl
Gimc =2 Z Xijk+ log(xin/rh,-Ajf‘C 8 (7.6)
Tk
and
G,zqu =2 Z Xijkt log(xijkl/"h;j'll:lcw)a (7.7)
ikl
then
Gy = Gimc + G/ZUJCID- (7.8)

Similarly, for the system implied by (7.1) with expected values given by ex-
pression (7.4), if

Gi* =2 Z Xijkt log(xijkl/ﬁln*jl’(kl) (7.9)
ijkl
and
ijB =2 Z Xij++ lOg(xij++/’;lﬂ'|B), (7.10)
ij
then
Giy = Giw + stlc + Gpepp- (7.11)

Goodman [1973a, b] has used these techniques to analyze an example pre-
sented by Coleman [1964]. Each of 3398 schoolboys was interviewed at two
points in time and asked about his self-perceived membership in the “leading
crowd” (in = +; out = —) and his attitude toward the “leading crowd”
(favorable = +; unfavorable = —). The resulting data are reproduced in
Table 7-2. This example is an illustration of what is commonly referred to
as a two-wave, two-variable panel model. In order to continue with the nota-
tion used earlier in this section, we label membership and attitude in the
first interview by A and B, respectively, and in the second interview by C
and D, respectively.

What assumptions regarding the causal ordering of variables might one
assume for data in this example? One plausible assumption is that 4 and B
precede C and D (they clearly do so in a temporal sense). A second, more
speculative assumption might be that attitudes toward the “leading crowd”
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Table 7-2
Two-Wave Two-Variable Panel Data for 3398 Schoolboys: Membership in and
Attitude toward the “Leading Crowd” (Coleman [1964])

Second Interview
Membership + + - -

Attitude + - + -
Member-  Attitude
ship
+ + 458 140 110 49
First + - 171 182 56 87
Interview - + 184 75 531 281

85 97 338 554

affect membership in it, which would result in the causal order suggested by
expression (7.1). The relationship between variables 4 and B is measured by
the cross-product ratio (& = 1.53) of the two-dimensional marginal table or
1 log & (see expression (2.22)):

Attitude (B)
+ —

+ 757 496

Membership
(4) —| 1071 | 1074

To test whether a = 1, we compute the likelihood-ratio statistic: G} = 35.1,
a value in the extreme right-hand tail of the y} distribution. Thus we conclude
A and B are positively related. Note that we are not in a position, on the
basis of the data themselves, to distinguish between the causal orderings “A
precedes B” and “B precedes A” because of the symmetry inherent in the
form of the cross-product ratio. Because A and B are assumed to be related
in our model building, we have m{!® = x;;, ., and so the combined estimates
in expression (7.4) reduce in form to those described by expression (7.3).
Next we turn to building a logit model with C (membership at the time
of the second interview) as the response variable and A and B as explanatory.
The three unsaturated loglinear models corresponding to such a logit model
are
1.[AB][AC] [BC] (1d.f;G?=0.0)
2.[AB] [BC] (2d.f; G? =1005.1)
3.[AB][AC] (2df;G*=272).
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The only one of these models that provides an acceptable fit to the data is
model 1 (no second-order interaction). Model 1 corresponds to the logit
model
: madic
logit %1€ = log <m3—g|€) = wABlC + wibl€ + will, (7.12)
t

and the estimated effect parameters for this model are w{l{ = 1.24 and
w4EC = 0.22.

Finally, we turn to building a logit model with D (attitude at the time of
the second interview) as the response variable and A4, B, and C as explanatory.
There are eight unsaturated loglinear models corresponding to such a logit
model with no second-order interaction effects (each of three two-factor
effects may be present or absent), and we list four of these here:

4. [ABC][AD][BD][CD] (4df;G*=12)

5.[ABC][BD][CD] (5d.f; G? = 4.0)
6. [ABC][AD] [CD] (5d.f; G? =262.5)
7.[ABC] [ AD] [ BD] (5d.f; G2 =157).

Models 4 and 5 both provide an acceptable fit to the data, while models 6
and 7 do not. Since model 5 is a special case of model 4, and since the difference
G2%(5) — G*(4) = 4.0 — 1.2 = 2.8 is not significant when compared with the
0.05 tail value for the y? distribution, our preferred model is model 5. The
corresponding logit model is

:+ABC|D ABC|D ABC|D ABC|D
logltl-jk ! =W I + Wz(j)l + W3(k)' N (713)

and the estimated effect parameters for this model are w4f5® = 0.58 and
W4ESIP = 0.21. The estimated expected cell values (computed using expression
(7.3)) for the recursive system of logit models are displayed in Table 7-3, and

the system is summarized by the diagram in Figure 7-2. Note that, following

Table 7-3
Expected Values for System of Logit Models Given by Expressions (7.12) and (7.13)

Second Interview
Membership + + - -
Attitude + - + -

Membership  Attitude

+ + 4477 1512 104.6 53.5

First + 169.4 1828 54.6 89.3
Interview - 193.0 65.2 537.7 2752
- 88.0 949 3381 553.0

I+ 1
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A > C

A

L ] Y

B > D
First Interview Second Interview
Figure 7-2

Path Diagram Showing Causal Connections Implied by the Logit Models (7.12) and
(7.13)

our earlier discussion, we have not assigned any numerical values to the
arrows. Also, the arrow going between 4 and B has two heads since we cannot
distinguish between A causing B and B causing A. For the combined recur-
sive system we have G2 = 4.1 with 6 d.f,, clearly a good fit. The difference
between G and Gjpc + Gpcip = 4.0 is due to rounding error.

The causal interpretation of Figure 7-2 is that (1) membership and attitude
at the time of the first interview are related; (2) membership at the time of the
second interview is affected by both membership and attitude at the time of
the first interview (and there is no second-order effect of these two variables),
as indicated by equation (7.12); and (3) attitude in the second interview is
affected by concurrent membership and previous attitude, as indicated by
equation (7.13).

There are other recursive systems of logit models, based on other assump-
tions, which provide just as good a fit to these data as the system in Figure 7-2.
For example, Goodman [1973b] describes a system with an apparent time
reversal based on markedly different causal assumptions.

If we were not especially concerned about structuring the variables in this
example in terms of a series of logit models, Figure 7-2 might suggest that we
consider fitting the following loglinear model to the four-dimensional array,
with a two-factor effect corresponding to each arrow in the diagram:

8. [AB] [AC] [BC] [BD] [CD].
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The likelihood-ratio goodness-of-fit statistic for this model has a value
G? = 4.1 with 6 d.f. It is not a coincidence that this numerical value and the
associated degrees of freedom are identical to those for G2, that is, for the
recursive pair of logit models. Given that model 5 fits the data, the generaliza-
tion of Theorem 3-1 on collapsing tables (p. 49) says that we can test for the
absence of the second-order interaction involving variables 4, B, and C in
the marginal table involving those variables by fitting model 1. It then follows
from the standard results on partitioning G2 that the sum of the likelihood-
ratio statistics for models 1 and 5 equals the likelihood-ratio statistic for
model 8. We note that fitting recursive systems of logit models is not always
equivalent to fitting a single loglinear model to the full cross-classification.

7.3 Recursive Systems: A More Complex Example

While the example in the preceding section illustrates the basic features of
the analysis of recursive systems of logit models, it does not illustrate all of the
difficulties alluded to in Section 7.1. The following example includes poly-
tomous variables and logit models with second-order interaction effects.

In a study of a randomly selected cohort of 10,318 Wisconsin high school
seniors, Sewell and Shah [1968] explored the relationship among five
variables: (4) socioeconomic status (high, upper middle, lower middle, low),
(B) intelligence (high, upper middle, lower middle, low) as measured by the
Hemmon-Nelson Test of Mental Ability, (C) sex (male, female), (D) parental
encouragement (low, high), and (E) college plans (yes, no). The five-dimen-
sional cross-classification is reproduced here as Table 7-4. In the course of
their analysis, Sewell and Shah propose a causal model that can be described
by

A
and

B | precede D precedes E. (7.14)
and

C

Corresponding to this causal structure is a pair of logit models: one with
parental encouragement as a response variable and socioeconomic status
(SES), intelligence (IQ), and sex as explanatory, and the other with college
plans as the response variable and all four remaining variables as explanatory.

We develop the two logit models separately, beginning with the first one
with variable D, parental encouragement, as the response variable. Some
plausible unsaturated logit models are:



130

Causal Analysis Involving Logit and Loglinear Models

Table 7-4
Social Class, Parental Encouragement, IQ, and Educational Aspirations (Sewell and
Shah, 1968)
Sex 1Q College Parental SES
¢ Plans Encouragement L LM UM H
M L Yes Low 4 2 8 4
High 13 27 47 39
No Low 349 232 166 48
High 64 84 91 57
LM Yes Low 9 7 6 5
High 33 64 74 123
No Low 207 201 120 47
High 72 95 110 90
UM Yes Low 12 12 17 9
High 38 93 148 224
No Low 126 115 92 41
High 54 92 100 65
H Yes Low 10 17 6 8
High 49 119 198 414
No Low 67 79 42 17
High 43 59 73 54
F L Yes Low 5 11 7 6
: High 9 29 36 36
No Low 454 285 163 50
High 44 61 72 58
LM Yes Low S 19 13 5
High 14 47 75 110
No Low 312 236 193 70
High 47 88 90 76
UM Yes Low 8 12 12 12
High 20 62 91 230
No Low 216 164 174 48
High 35 85 100 81
H Yes Low 13 15 20 13
High 28 72 142 360
No Low 96 113 81 49
High 24 50 77 98
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1.[ABC][4D][BD][CD] (24 d.f; G? = 55.81)
2. [ABC][4BD][CD] (15 d.f.; G2 = 34.60)
3. [ABC][BCD][ACD] (18 d.f.; G2 = 31.48)
4. [ABC][ABD][BCD] (12d.f; G? = 22.44)
5. [ABC][ABD][ACD] (12d.f.; G2 = 22.45)

6. [ABC][ABD][ACD][BCD] (9df;G*= 9.22).

The fit of model 1, with only first-order logit effects of the explanatory
variables, is significant at the 0.001 level, and an examination of the residuals
strongly suggests the inclusion of all three possible second-order effects.
Models 2, 3, 4, and 5 include one or two such effects, and while they represent
significant improvements (at the 0.01 level) over model 1, the fit of each is still

Table 7-5
Estimated Logit Effect Parameters For Model 6, Predicting Parental Encouragement,
Fitted to Data from Table 7-4

(i) wABCID — 0,124

L LM UM H
(i) {wiEIPY = (1.178,0.384, —0.222, —1.340}

L LM UM H
{0.772, 0.226, —0.210, —0.788}

M F
(iv) {wims®y = {-0.304, +0.304}

(1Q)
L LM UM H
0.016 —0.098 0.058 0.026 | L
[ —0.066 —0.032 —0.144 0244 | LM

(i) {wsf1?}

amoDy
W i) 1—0.074 0044 0138 —0.108 [ UM SES)
0.126  0.086 —0.048 —0.164 ] H
(Sex)
M F
~0.140  0.140 | L
. , 0.052 —0.052 [ LM
ABC|D\ _
W) Wi} = 1 _oo1s 0018 [ um SES)
0.106 —0.106 | H
(Sex)
M F
0.126 —0.126 | L
y 0.016 —0.016 [ LM
i) w3503 = 1 _oois o018 [ um (19

-0.122 0122 ) H
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significant at the 0.05 level. Finally model 6, with all three second-order effects,
provides a very good fit to the data, and the differences between this model
and each of models 3, 4, and § are all significant at the 0.01 level.

The estimated logit parameters for model 6 are given in Table 7-5. (All
of the final digits are multiples of two since appropriate loglinear estimated
effects were computed to three decimal places and then doubled.) Note that
the first-order estimated effects of SES, IQ, and sex are as we might expect.
The logit for low versus high parental encouragement decreases monotonical-
ly as we move from low to high SES and from low to high IQ, and males get
more encouragement than females. The sex by IQ interactive (second-order)
effects are monotonically ordered, with low IQ males receiving relatively less
encouragement than low IQ females and high 1Q males receiving relatively
more encouragement than high 1Q females. The other two sets of second-
order effects are not monotonically ordered and are thus more difficult to
interpret. The magnitude of second-order effects rarely exceeds two-thirds the
magnitude of the smallest first-order effects.

Next we turn to the logit model for predicting college plans. Some plausible
unsaturated models are:

7. [ABCD] [E] (63 df.; G? = 4497.51)

8. [ABCD] [AE] [BE] [CE] [DE] (55df; G?= 73.82)

9. [ABCD] [BCE] [AE] [DE] (52df.; G? = 59.55)
Table 7-6

Estimated Logit Effect Parameters for Model 9, Predicting College Plans, as Fitted to
Data in Table 7-4

(i)  wABCDIE — _ 1292

L LM UM H
(ii) {wfBCPIE} = {—0.650 —0.200 0.062 0.790}

L LM UM H
(iii) {wiPIE} = {—0.840 —0.300 0.266 0.876}

M F
(iv) {w4ECPIEY  — (0,082 —0.082)
L H
(v) {wibfPE} = {—1.214 1214}
M F
—0.134 0134 )L
—~0.078 0078 | LM
(vi) {wil ¥} = 0094 —0094 [ um (1Q)

0.118 —0.118 | H
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10. [ABCD] [BCE] [ACE] [DE] (49 d.f.; G* = 57.99).

The fit of model 8, with only first-order logit effects, is barely significant at the
0.05 level, whereas the fit of model 9 corresponds to a 0.22 descriptive level
of significance, and the difference in fit between the two is significant at the
0.005 level. Since model 10 does not give a significant improvement in fit over
model 9, we conclude that model 9 is the most parsimonious model providing
a good fit to the data.

Table 7-6 gives the estimated logit effect parameters for model 9. As in
Table 7-5, the first-order logit effects are as we might expect, with monotoni-
cally increasing effects of SES and IQ on college plans and positive effects
associated with high parental encouragement and with being male. The
second-order effects involving sex and 1Q are again monotonic and show that
a male with a low IQ is much less likely to plan for college than a female with a
comparable 1Q, whereas the opposite is true for males and females with high
1Qs.

The existence of second-order effects in the pair of logit equations, and the
multiple categories for SES and 1Q, make a simple diagrammatic representa-
tion of the logit system for the data in Table 7-5 impossible.

7.4 Nonrecursive Systems of Logit Models

The results on recursive systems of logit models described in Section 7.2
mimic the results for recursive systems of linear equations with additive error
terms. In such systems the “causal linkages™ all run in one direction.

Econometricians, and more recently sociologists and other social scientists,
have spent considerable effort studying nonrecursive systems of linear
equations with additive error terms. In these nonrecursive systems, the causal
linkages between at least two response variables run both ways. For example,
in a system involving four variables X, X,, X3, and X, the following pair of
“structural’”” equations illustrate a nonrecursive system:

X3 = B31 Xy + BaaXs + &5, (7.15)
Xo = Par Xy + PazXs + &4, (7.16)

where ¢; and &, are random-error terms with zero means. Note how X is
used for predicting X; in equation (7.15), while X7 is used for predicting
X, in equation (7.16). The aim of this nonrecursive system is to explain the
relationship between the jointly dependent variables, X; and X, in terms of
the separate “causal effects” of X, on X; and of X; on X,, with f;, not
necessarily equal to 1/B8,;. If we make appropriate assumptions for such
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systems, then we can identify or separate out these reciprocal effects. Duncan
[1975a] provides an excellent introduction to both recursive and nonrecur-
sive systems of linear structural equations with additive error terms, and
econometrics textbooks such as Fisher [1966] and Goldberger [1964] give
additional technical details.

Can we set up nonrecursive systems of logit models for categorical vari-
ables, with properties resembling those of the nonrecursive systems of linear
structural equations? The answer to this question is no. We can best see
the problems in the categorical case in the context of an example involving
four dichotomous categorical variables, A, B, C, and D, with 4 and B oc-
curring a priori to C and D. We would like to predict simultaneously varia-
tions in D using B and C and variations in C using A and D. One possible way
to model such a situation is through the following pair of simultaneous logit
models:

m{}fle ABC|D BC

log —gep =W D+ WP + WAESIP, (7.17)
M jx2

1 mﬂ?lmc ABDI|C ABDI|C ABD|C

08 —Bpic — w + Wie ~ + Wi - (7.18)
m;jap

Variables C and D are both response and explanatory variables in this
system. Equations (7.17) and (7.18) mimic the form of the linear structural
equations (7.15) and (7.16). The parallel, however, is far from complete, and
there are two essential differences between the two situations. First, there are
no error terms in (7.17) and (7.18). Second, the quantities on the left-hand side
of these logit models are not random variables as in (7.15) and (7.16). Rather
they are functions of probabilities or parameters. Brier [1978] has shown
that reciprocal effects can never be separated in systems of simultaneous
logit models, that is, W45'? = W{EP'C, so that the effect of C on D is iden-
tical to the effect of D on C. This essential feature of simultaneous logit
models has been missed by others who have tried to view them by analogy
only (see, for example, Mallar [1977]). Fitting each of the logit models
independently to a four-dimensional table produces unequal reciprocal
effects of the response variables (see, for example, Nerlove and Press [1973])
but ignores the simultaneity of the models.

Both Muthén [1976] and Heckman [1977] have presented simultaneous
equation systems for categorical response situations in which the identifica-
tion of nonidentical reciprocal effects is possible. Their models are based on
latent continuous variables and make use of the probit rather than the logit
transformation. Their methods are relatively complex and go beyond those
considered in this book.
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7.5 Retrospective Epidemiological Studies

There is a specific class of studies, most common in epidemiological research,
in which, instead of working forward (in a prospective manner) from ex-
planatory variables to responses, investigators work in reverse. They start
with the existence of a disease and work backwards in time to discover
differences between those who have contracted the disease (i.e., cases) and
those who have not (i.e., controls). In such retrospective studies we first
identify the cases, then choose the controls, and finally compare the cases
and controls to see how they differ. Thus the totals for the natural response
variable—the presence or absence of disease—are fixed rather than the totals
for one or more of the explanatory variables. Even though we appear to have
done everything backwards, we can still estimate the effects of explanatory
variables on the response variable as a result of properties associated with
the cross-product ratio (and thus u-terms in loglinear models). This point is
most easily illustrated in the context of a2 x 2 table.

Let D and D refer to the presence and absence of the disease, respectively,
and 4 and A4 to the presence and absence of some (potentially causal)
characteristic. In the prospective study we fix the proportions associated with
A and A4 and then observe the numbers corresponding to D and D. The
standard measure of the association between the two variables is the odds
ratio,

Pr(DlA) Pr(DIA)

*PRO = B (DlA) Pr(DIA) (7.19)

In the retrospective study we fix the proportions for D and D and then go

back and find the numbers corresponding to A and 4. The odds ratio relevant
to this situation is

.. _ Pr(4ID) Pr(4ID)

RET ™ Pr(A4ID) Pr(AID)’

(7.20)

By invoking either Bayes’s theorem or the invariance property of the cross-
product ratio discussed in Section 2.5, we immediately see that

Xpro = ORET (7.21)

and thus the retrospective study measures the same relationship between the
explanatory and response variables as does the prospective study.

When we do a retrospective study with several explanatory variables, we
often focus on one of them as a potential causal agent and simply control for
the others. A standard approach in such circumstances is to fit a logit model
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Table 7-7
Data on Number of Mothers with Previous Infant Losses (Cochran [1954])
Birth Order
2 3-4 5+ Totals
Losses Yes No Yes No Yes No
Problems 20 82 26 41 27 22 218
Controls 10 54 16 30 14 23 147
Totals 30 136 42 71 41 45 365

using the explanatory variable that is the potential causal agent as if it were
the response, while placing conditions on all of the remaining variables. We
illustrate this approach by an example.

Cochran [1954] presents an example comparing the mothers of Baltimore
school children referred by their teachers as presenting behavioral problems
with mothers of a comparable group of control children. The basic data are
reproduced in Table 7-7. The three variables involved in this study are
(1) group (problems vs. controls), (2) infant losses (e.g., stillbirths) previous to
the child in the study (yes, no), (3) birth order of child (2, 3-4, 5+). We are
interested in the effects of previous losses and birth order on the outcome
variable (problems vs. controls). Note that the number of problems and the
number of controls are fixed by design.

Various authors (e.g., Grizzle [1961] and Kullback [1973]) have fitted
logit models to these data, treating infant losses as the response variable and
the other two variables as explanatory. The simple model of logit additivity
(i.e., no second-order interaction) fits the data extremely well: G? = 0.85 with
2d.f. The logit models that exclude the effect of problem vs. control and
of birth order have associated goodness-of-fit values of G? = 3.15 and
G? = 28.20 with 3 and 4d.f, respectively. Thus birth order is related to
previous infant losses, but problem vs. control seems to be unrelated. Finally,
we turn the model around and note that there appears to be no difference
between problem and control children as a result of previous losses.

Recently economists have proposed the use of retrospective studies of the
case-control form under the label of “endogenous” or “choice-based”
sampling (see, for example, Manski and Lerman [1976], Manski and Mc-
Fadden [1977], and McFadden [1976]). Their logit models have essentially
the same structure as the epidemiological models.

We give a brief discussion of the formal justification for the use of standard
logit analysis on retrospective data in the next section.
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7.6 Logistic Models for Retrospective Data

Farewell [ 1979] presents an excellent discussion of the use of logistic models
in examples such as the preceding one, in which we condition on disease
status, even though the model of intrinsic interest is a logistic one with
disease incidence conditional on risk factors. He begins by noting a crucial
assumption: because the sampling of cases and controls must occur at a
specific point in time, it is still possible for the controls to develop the disease
later! This possibility is ruled out, however, in the usual retrospective
epidemiological model. For the prospective model (following Farewell’s
description) we have

Pr{Y=1|X} = _explx + B X)

"7 1 ¥explo + BX) (7.22)

but in the retrospective situation we begin with the knowledge of who is a
case and who is a control. We might even know the value of the marginal
probability, Pr{Y = 1}, but such information is not critical to what follows.
Let ¢, be the probability of selecting a case, and ¢, the probability of select-
ing a control. These probabilities are assumed to be independent of X, and
are not necessarily known.

Conditional on being observed as part of the retrospective sample, the
probability of Y = 1 given X is

@, Pr{Y = 1]X}

@, Pr{Y =1|X} + ¢, Pr{Y = 0| X}
_exp(e* + fX)

T T+ explet + BX) (7.23)

Pr¥{Y = 1|X} =

where o* = o + log(¢, /¢,). Thus inferences about B from the prospective
model (7.22) can be made from the retrospective model (7.23), but the con-
stant terms in the two models differ. The presence of the same vector of
parameters, B, in both (7.22) and (7.23) includes as a special case the equality
in equation (7.21). Inferences about a, however, require knowledge about
©1/9q-

Anderson [1972] has shown that constrained maximum-likelihood esti-
mates of o* and B, given that Pr*(Y = 1) = r/n, the sample proportion of
cases, are algebraically equivalent to the unconstrained estimates based on
using (7.23) as if it were a prospective model. This theoretical result provides
the justification for our analysis of the data in Table 7-7, given in Section 7.5.
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Problems

7.1. For the data on occupation, aptitude, and education discussed in
Section 3.7, illustrate the possible path diagrams consistent with the well-
fitting models, and indicate which of these make sense given the substantive
information you have regarding the data set.

7.2 (Goodman [1973a]). The data in Table 7-8, from a study by Lazarsfeld,
give the cross-classification of 266 respondents, each interviewed at two
successive points in time, with respect to their voting intentions (Republican
vs. Democrat) and their opinion of the Republican candidate (For or Against).
Develop a well-fitting recursive system of logit models for these data.

Table 7-8
Second interview
Vote intention Republican Democrat
Candidate opinion For Against For Against
Vote Candidate
intention opinion
Republican For 129 3 1 2
First p Against 1 23 0 1
interview Democrat For 1 0 12 11
Against 1 1 2 68

7.3 (continuation). Find the most parsimonious loglinear model that fits
the data in Problem 7.2. Is this model equivalent to your recursive system of
logit models?

7.4. Goodman [1973a] presents data of Wilner, Walkley, and Cook giving
the cross-classification of 608 white women in public housing with respect to
proximity to a Negro family, favorableness of local norms toward Negroes,
frequency of contacts with Negroes, and favorableness of respondent’s atti-
tudes (sentiments) toward Negroes in general (Table 7-9). Find a suitable
loglinear model that fits these data, and summarize the relationships among
the four variables by means of a path diagram.
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Table 7-9
Sentiment
Proximity Norms Contact + -
+ + + 77 32
+ + - 14 19
+ - + 30 36
+ - - 15 27
- + + 43 20
- + - 27 36
- - + 36 37
— - - 41 118
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7.5. Verify the values of G? reported in Section 7.5 for the data in Table 7-7.

7.6 (advanced). Following the approach for recursive systems of logit
models in Section 7.3, explain how to compute estimated expected cell values
for a set of logit models for the continuation ratios associated with a poly-

tomous response (see Section 6.6).



8
Fixed and Random Zeros

Zero entries in contingency tables are of two types: fixed and sampling zeros.
Fixed zeros occur when it is impossible to observe values for certain combina-
tions of the variables (e.g., in a hospital study, we cannot find “male obstetri-
cal patients,” so that the zero is due to an honest zero probability for that
cell). In Sections 8.2 and 8.3 we shall briefly indicate how to extend the models
and methods already discussed to such incomplete tables.

Sampling zeros are due to sampling variation and the relatively small size
of the sample when compared with the large number of cells; they disappear
when we increase the sample size sufficiently (e.g., in a national study in-
volving religious affiliation and occupation, we are not likely to find many
Jewish farmers from Iowa, yet such individuals do exist).

8.1 Sampling Zeros and MLE:s in Loglinear Models

For multidimensional contingency tables, in which the number of cells is
often quite large, it is difficult to get a sufficiently large sample to rid ourselves
of all the sampling zeros. One of the most powerful properties of the models
and methods of estimation discussed so far is that cells with zero entries
due to sampling variation can have nonzero expected values. For example,
the estimated expected values for all of the models fit to the data in Table 3-6
are nonzero.

In order that the computed expected cell values for a particular model be all
positive, we must make certain that, if there are two or more sampling zeros,
when one observed zero cell is made positive, one of the remaining observed
zero cells is not made negative. For example, consider a 2 x 2 x 2 table with
positive observed values except for the (1, 1, 1) and (2, 2, 2) cells (see the
example in Table 8-1a). If the model being fitted is one with no three-factor
interaction but all two-factor interactions, making the (1, 1, 1) cell positive
automatically makes the (2, 2, 2) cell negative because the expected cell
values must satisfy three sets of two-dimensional marginal constraints. It is
often quite difficult to ascertain when situations such as the one in this
example occur; however, when the iterative proportional fitting procedure is
used to get expected values for models in tables with “too many” sampling
zeros, it converges to a table with zero entries in some of the cells that
originally had sampling zeros. If we examine the expected values after each
cycle of the iteration, we can often detect that the values in some cells are
converging to zero.

On the other hand, the computed expected values are always positive if
there is only one sampling zero in a table. For example, suppose the (1, 1, 1)
cellina 2 x 2 x 2 table has a zero observed value due to sampling variation
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Table 8-1
(a) Example of a 2 x 2 x 2 table for which there do not exist positive MLEs of the
expected cell values under the model u,,5 = 0.

015 6
16 | 7 510

(b) Example of a 2 x 2 x 2 table with an observed two-dimensional marginal total
equal to zero.

16 517

while the remaining seven cells have nonzero observed values. Then each
one-way and each two-dimensional observed marginal total is positive, and
the expected value for the (1, 1, 1) cell will be positive under any of the seven
models that do not include the three-factor interaction term.

The iterative estimation procedure presented here can be used with only
one minor change when the observed marginal totals, required for a given
loglinear model, have some zero entries. That change is to define zero divided
by zero as zero. Thus, if an entry in an observed marginal total used for a given
model is zero, all entries adding up to that total will necessarily remain equal
to zero during the iterative procedure.

In order to test the goodness-of-fit of a model that uses an observed set of
marginal totals with at least one zero entry, we must reduce the degrees of
freedom associated with the test statistic. The reason for this is quite simple.
If an observed marginal entry is zero, both the expected and the observed
entries for all cells included in that total must be zero, and so the fit of the
model for those cells is known to be perfect once it is observed that the
marginal entry is zero. As a result, we must delete those degrees of freedom
associated with the fit of the zero cell values.

For an example of how to reduce the degrees of freedom, consider a
2 x 2 x 2 table with positive observed values except for the (1, 1, 1) and
(2, 1, 1) cells (see Table 8-1b). Here the observed marginal total x,,, = 0.
Now suppose that the totals x , ;; are being used to get cell estimates for a given
model. If we have the total x ;,, knowledge of x, , is sufficient to determine
X, 1, and conversely. Thus there is one degree of freedom associated with the
cells adding up to x, ,,, and it must be subtracted from the total degrees of
freedom when x, ;; = 0. On the other hand, if the model being fitted has no
three-factor interaction but all two-factor interactions, the total degrees of
freedom is only one. If x,;, = 0 in that situation, there are no degrees of
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freedom left, and the fit of the model is perfect. The procedure for handling
zero marginal totals discussed here would also be used if all the sampling
zeros, corresponding to the observed zero marginal totals, were actually
fixed zeros (see Sections 8.2 and 8.3).

A general formula for computing the degrees of freedom in cases where
some of the margins fitted contain sampling zeros is as follows:

df. =(T. - 2,) - (T, - Z,), 8.1)
where
T. = # cells in table that are being fitted,
T, = # parameters fitted by model,
Z. = # cells containing zero estimated expected values,
Z, = #4 parameters that cannot be estimated because of zero marginal

totals.
Note how (8.1) generalizes our earlier formula (3.42) for degrees of freedom.
The application of this formula to the two examples above is straightforward,
but we must take care in more complicated cases where a zero cell entry
corresponds to multiple zero marginal totals (see Bishop, Fienberg, and
Holland [1975], pp. 114-119, for further details).

It is rather difficult to find contingency tables in the biological or social
science literature that contain zero cell values, let alone zero marginal totals.
This is mainly due to suggestions on the collapsing of categories that are
found in most elementary statistical textbooks. It is my opinion, however,
that when the categories for a given variable are truly meaningful, collapsing
of categories is not necessarily a good procedure, especially given the avail-
ability of the methods just described.

8.2 Incomplete Two-Dimensional Contingency Tables

Many authors have concerned themselves with the analysis of contingency
tables whose entries are missing, a priori zero, or otherwise predetermined.
One way to treat such data is to remove these special cells from the model
building and analysis process, after which we are left with a contingency table
that is said to be structurally incomplete. Note that this type of incompleteness
is akin to truncation of the full table, and it should not be confused with the
incompleteness that results from not being able to completely cross-classify
all of the individuals in a study. For a detailed discussion of the latter class of
problems, see Chen and Fienberg [1974, 1976].

One of the most serious problems encountered in the application of incom-
plete contingency table methodology is that investigators who have data
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in the form of an incomplete contingency table often fail to recognize that
fact. They either fill in the cells containing fixed zeros using some “appropriate
values,” or they collapse the data (i.e., they collapse either the number of
categories for certain variables or the number of variables) until the fixed
zeros have “vanished.” Some times the occurrence of fixed zeros or missing
entries leads the researcher to abandon analysis of the data. These practices
can lead to inappropriate conclusions, general confusion, and bad science.

In this section we briefly illustrate the application to incomplete situations
of the methodology for complete cross-classifications. There are several
technical problems that we shall ignore here. Readers interested in more
detailed accounts should refer to Bishop, Fienberg, and Holland [1975],
Goodman [1968], and Haberman [1974a].

We begin with two-dimensional tables. Let S be the set of cells in an
I x J array that remain after the exclusion of missing entries and fixed values,
and let x;; be the observed count in the (i, j) cell and m;; be the corresponding
expected value. For those cells not in the set S we put x;; = m;; = 0 so that
we can continue to use our usual notation for marginal totals. For example,
if S consists of all cells but (1, 1), then

J J
m1+ - zmu= Zmu
j=1 j=2

still represents the expected count for the first row of the incomplete array S.

We propose to use the same loglinear models for the incomplete array S
as we did in Chapter 2 for complete arrays; that is, by analogy with the
analysis of variance, for cells (i, j) € S we set

log m;j = u + uy + Uy + Upzi)), (8.2)
where
1 J
2 Uy = z“zm =0 (8.3)
i=1 j=1
and
1 J
Z Oij Uy ) = Z Oijuraijy = 0, (8.4)
i=1 j=1
with

=7

|1 for(i,j)e S,
i {O otherwise. (8.5)
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Those u,,-terms in (8.4) that correspond to cells not in S are set equal to an
arbitrary finite quantity so that (8.4) is well-defined, and they never enter
into formal consideration.

A very special type of incomplete array arises when we observe objects or
individuals in pairs, and the pair (J, i) is indistinguishable from the pair (i, j)
(e.g., frequencies of amino acid allele pairs in a protein). The resulting data
are usually displayed in a triangular table with the same labels for rows as
for columns. For such tables it is natural to set u, ;) = u,; in expression (8.2).
Larntz and Weisberg [1976] give further details on the use of loglinear
models for such situations (see Problems 8.8 and 8.9).

We now define the model of quasi-independence by setting

Uy =0 for (i,j)eSs, (8.6)
so that
log my; = u + uy) + uyy for (i,j)eSs. (8.7)

In other words, the variables corresponding to rows and columns are quasi-
independent if we can write the {m,;} in the form

— a;b; for (i,j)eSs, (8.8)
Y0 otherwise.

Quasi-independence is like independence as it applies to the nonempty cells
of a table.

When we estimate the expected cell values in an incomplete table under
the model of quasi-independence, the MLEs under all three of the usual
sampling schemes are the same (see Chapters 2, 3, 5, and 6) and are usually
unaffected by the presence of sampling zeros, provided no row or column
has an observed zero total (for technical details see Fienberg [1970c, 1972a],
Haberman [1974a], and Savage [1973]). These MLEs are uniquely deter-
mined by setting observed marginal totals equal to the MLEs of these ex-
pectations:

mi, = Xiq, i=1a25-'-913

(8.9)

Ma=x.  J=12.,J,

where the my;; satisfy the constraints of the model—(8.7) or (8.8).

Only in some special cases (see Bishop, Fienberg, and Holland [1975]) can
we solve the maximum likelihood equations in closed form; however, we can
always get the solution by using the following version of iterative propor-
tional fitting. For our initial estimates we take

m\) =4, (8.10)
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where d;; is defined by (8.5). Then at the vth cycle of the iteration (v > 0) we
take

Xi+

A2v+1) 2 (2v)
miE Tty = w5 (8.11)
mi+
A (2v+2) ~2vi 1) Nt
mij = m; o (8.12)
~(2v+ 1)
"74J'

continuing until the values for the {11;;} converge. Note the similarity between
(8.11) and (8.12) and (3.34)-(3.36), and their relationships to the maximum
likelihood equations.

The general rule (3.42) for computing degrees of freedom is still applicable
here. If there are e cells that have missing or fixed entries, then the set S
contains IJ — e cells. The number of parameters fitted are I + J — 1 (1 for
u,I — 1fortheu,;,J — Lfortheu, ;,leavinglJ —e — (I +J — 1) =(I — 1)
(J — 1) — e degrees of freedom. Alternatively, we can use expression (8.1),
with T,=1J,Z, =e,and T, =1+ J — 1.

In some situations it is desirable to break an incomplete set S into parts
that can considered separately for the calculation of d.f. Incomplete tables
in which this is possible are referred to as separable, and the interested reader
is referred to the papers cited above for the technical details. Separability
is not a problem for the examples we consider here.

Example: Ploog [1967] observed the distribution of genital display among
the members of a colony of six squirrel monkeys (labeled in Table 8-2a as
R,S, T, U, V,and W). For each display there is an active and passive partici-
pant, but a monkey never displays toward himself. Before analyzing the
data in Table 8-2a we delete the row for subject T, since its marginal total
is zero, and thus all MLEs for cells in that row under quasi-independence
are also zero.

Table 8-2b contains the MLEs under the model of quasi-independence,
computed using the iterative procedure. The two goodness-of-fit statistics
used to test the appropriateness of the model of quasi-independence are
both extremely large: X? = 168.05 and G? = 135.17, each with 15 d.f. (there
are 5 rows, 6 columns, and S a priori zero cells, yieldingdf. =4 x5 -5 =
15).

A simple examination of the observed and expected values reveals just
how bad the fit is, and we conclude that various monkeys choose to display
themselves more often toward specific members of the colony. This infor-
mation is helpful in assessing the social structure in the colony.
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Table 8-2

Distribution of Genital Display in a Colony of Six Squirrel Monkeys, as Reported by
Ploog [1967]. Rows represent active participants and columns represent passive
participants.

(a) Observed values

Name R S T U vV w Total
R — 1 5 8 9 0 23
S 29 — 14 46 4 0 93
T 0 0 — 0 0 0 0
U 2 3 1 — 38 2 46
|4 0 0 0 0 — 1 1
w 9 25 4 6 13 — 57
Total 40 29 24 60 64 3 220
(b) Expected values under model of quasi-independence

Name R S T U vV w Total
R - 5.26 2.48 8.22 6.65 0.40 23.01
S 19.18 — 10.32 34.18 27.66 1.65 93.00
U 10.94 12.47 5.88 - 15.77 0.94 46.00
vV 0.22 0.25 0.12 0.39 — 0.02 1.00
w 9.66 11.02 5.20 17.21 13.92 — 57.01
Total 40.01 29.00 24.00 60.00 64.00 3.01 220.02

8.3 Incompleteness in Several Dimensions

When we deal with incomplete multidimensional tables, by analogy with the
two-dimensional situation we can consider loglinear models applied only to
cells whose values are not missing or determined a priori. For simplicity we
look at three-dimensional tables since the extension to higher dimensions is
straightforward. S now represents the cells in an incomplete I x J x K table
with observed and expected values x;; and m;;, respectively, and we set
X;jx = mi = 0for (i, j, k) ¢ S so that we can continue using our usual notation
for marginal totals. The most general quasi-loglinear model for cells (i, j, k)
inSis

log mj = u + uy + uzgy + Usgy + Upa) + Ursay + Uzag + “123(:‘{1«8)’13)

where as usual the u-terms are deviations and sum to zero over each included
variable. For example,
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(23) — (3) — (2)
Zéi Uy = Zéij Uy 2(ij) "Zéik Uy 3(ik)
i i i

(8.14)
= z 5.'jk Uy23Gijk) = 0,
with
5 — 1 if(i,j, k) e S,
k™90 otherwise,
1 ifd,;; = 1 for some k
(3) ijk s
%ij {0 otherwise, (8.15)

i 70 otherwise,

and similar definitions for 6§, 65, 6{'*, and 6{'*. We set those u-terms in
(8.14) that are not included in (8.13) equal to an arbitrary finite quantity so
that expression (8.13) is well-defined and we can continue using the same
notation as in the analysis of complete multidimensional tables.

We define various unsaturated quasi-loglinear models by setting u-terms
in (8.13) equal to zero, and, as in the analysis of complete tables, we restrict
our attention to hierarchical models. Haberman [1974a] gives a detailed
discussion regarding conditions (e.g., on the structure of S) that ensure the
existence of unique nonzero MLE:s (also see Bishop, Fienberg, and Holland
[1975]).

Where there exist unique nonzero MLEs for the nonzero expected cells
or an incomplete multidimensioral table and a particular quasi-loglinear
model, these MLEs are uniquely determined by setting expected marginal
configurations equal to the observed marginal configurations corresponding
to the minimal sufficient statistics. For example, suppose we are fitting the
model specified by u,,3 = 0 in a three-dimensional table. Then the MLEs
are given by

'hij+ = Xij+s Mgy = Xitp ';1+jk:x+jk’ (8.16)
where the subscripts in each set of equations range over all sets of values for
which the expected marginal values are positive.

We can use the same iterative proportional fitting algorithm to solve
(8.16) as we did in the complete table case to solve (3.32). We take as our initial
values

MG = s (8.17)
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Table 8-3
Results From Survey of Teenagers Regarding Their Health Concerns (Brunswick

[1971]): Cross-Classification by Sex, Age, and Health Concerns

Health Male Female
Concerns 12-15  16-17 12-15  16-17

Sex,
Reproduction 4 2 ? 7

Menstrual
Problems 4 8

How Healthy
I Am

Nothing 57 20 71 31

42 7 19 10

where 6, is defined in (8.15). Then we cycle through steps (3.34)—(3.36) just
as in the case of complete tables.

The computation of degrees of freedom again follows from the general
formula (8.1). Illustrations are given in the following examples.

Example. Brunswick [1971] reports the results of a survey inquiring into
the health concerns of teenagers. Table 8-3 presents an excerpt of the data
from this study previously analyzed by Grizzle and Williams [1972]. The
three variables displayed are sex (male, female), age (broken into two cate-
gories), and health concerns (broken into four categories). Since males do
not menstruate, there are two structural zeros in this table and a structural
zero in the sex by health concern two-dimensional marginal table. Table 8-4
gives the log-likelihood ratios and Pearson chi-square values for various
loglinear models fitted to these data. Note that the degrees of freedom are
reduced by two from the usual degrees of freedom for a complete table, unless
the sex vs. health concern margin is fitted, in which case the reduction is by
one.

The fit of the models in which u, 5y = 0 is quite poor, while the fit of each
of the models
(@) uy53 =0,

(byuy, =upp3 =0,
() uy3 =uy53=0,
1s acceptable at the 0.05 level of significance. Moreover, the difference in fit
between models (a) and (b) is quite small, while the difference in fit between
models (a) and (c) is almost significant at the 0.05 level of significance. This
analysis would suggest that model (b) is an appropriate one for the data, its
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Table 8-4
The Goodness-of-Fit for Various Loglinear Models as Applied to the Data in Table
8-3 (variable 1 = sex, variable 2 = age, variable 3 = health concerns)

Model G? X? df
[12][13][23] 203 203 2
[13][23] 486 498 3
[12][23] 1345 13.12 4
[12][13] 943 962 5
[121[3] 2203 2259 7
[13][2] 1564 1595 6
123][1] 1746 1705 5
[1112][3] 2824 30.53 8

interpretation being that, given a particular health concern (other than
menstrual problems), there is no relationship between the age and sex of
individuals with that concern. We note that this is not the model decided
upon by Grizzle and Williams [1972]. They prefer model (a), but their test
statistic for model (b) given model (a), which is quite different from ours in
numerical value, appears to be in error.

Example. For our second example we return to the data in Table 3-6 on
occupation, aptitude, and education. When we analyzed these data in Chapter
3, we chose to treat all of the zero entries as sampling zeros; however, the
zeros in the first two columns of the subtable for occupation 3 (teacher) bear
further consideration. Few teachers in public schools, high schools, and
colleges have themselves not completed high school. The exceptions may
well be “nonstandard” teachers (e.g., of karate or music), whose responses
should perhaps not be analyzed with the remainder of the sample. We
therefore reanalyze the data from Table 3-6 treating all the entries in these
two columns as if they were a priori zero. One might also wish to treat the
two zeros under occupation 2 (self-employed, professional) in a similar
fashion; this task will be left as an exercise for the reader.

As before, we take variable 1 to be occupation, variable 2 aptitude, and
variable 3 education. The fits of all eight loglinear models to the truncated
data are given in Table 8-5, in a manner parallel to that of Table 3-7. Note the
differences in the degrees of freedom.

The fit of the models differs little from our earlier analysis. The two models
providing an acceptable fit to the data are:

(Duyp3 =0,
Quy, =uy,3=0.
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Table 8-5
Values of Likelihood-Ratio Goodness-of-Fit Statistics for Data in Table 3-6 When
Entries for E1 and E2 under O3 Are Treated as Empty A Priori

Model d.f. G?
[12][13][23] 28 17.3

[12][13] 40 183.7*
[13] [23] 40 418

[12] [23] 35 867.3*
[12][3] 47 1046.1*
[13] [2] 52 219.1*
[23] [1] 47 9042+

[11[02113] 59 1081.6*

*denotes values in upper 5% tail of corresponding x? distribution, with d.f. as
indicated.

The conditional test of fit for model (2) given model (1) is based on G = 41.8
— 17.3 = 24.5 with 12 d.f. This value, when referred to the y?, distribution,
corresponds to a descriptive level of significance somewhere between 0.05
and 0.01, as before. Again we prefer model (2) to model (1), in part because of
its conditional-independence interpretation. Table 8-6 contains the fitted
values for model (2). When we examine the standardized residuals of the form
(Xijk — M) /</ Mz, we find that the largest residuals correspond to the
column E4 (the highest level of education), and contribute well over 50% of
the value of G? for this model.

8.4 Some Applications of Incomplete Table Methodology

Not only are loglinear models for incomplete tables useful in their own right,
they have also proved to be of special utility for a variety of seemingly
unrelated problems such as (1) fitting separate models to different parts of a
table, (2) examining square tables for various aspects of symmetry, (3)
estimating the size of a closed population through the use of multiple censuses
or labelings. These applications are described in great detail in Chapters 5, 8,
and 6, respectively, of Bishop, Fienberg, and Holland [1975].

Several new applications of incomplete table methodology have recently
appeared, and three of these are described below.

The Bradley—Terry paired comparisons model
Suppose ¢ items (e.g., different types of chocolate pudding) or treatments,
labeled T',, T, ..., T,, are compared in pairs by sets of judges. The Bradley—
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Table 8-6
Estimated Expected Values under Quasi-Loglinear Model of Conditional Indepen-
dence of Occupation and Aptitude Given Education

o1 02

El E2 E3 E4 El E2 E3 E4
Al | 495 584 260 4.5 Al 1.2 2.1 78 171
A2 | 646 791 535 108 A2 1.6 28 161 405
A3 | 853 1072 840 210 A3 2.1 38 252 79.1
Ad | 294 494 448 102 A4 0.7 1.8 135 382
A5 | 101 149 247 6.4 AS 0.2 0.5 74 241
03 04

El E2 E3 E4 El E2 E3 E4
Al | — — 13 184 Al | 1643 1475 1029 430
A2 | — — 28 4338 A2 | 2147 2000 2117 102.0
A3 | — — 43 855 A3 | 2835 2710 3324 1993
Ad | — — 23 413 Ad | 978 1248 1774 963
AS | — — 13 260 A5 | 336 376 976  60.6

Terry model postulates that the probability of T; being preferred to T; is

Pr(T; » T)=—"—, 1#) (8.18)
Ly j=1,2...,t
where each n; > 0 and we add the constraint that Z{_, n; = 1. The model
assumes independence of the same pair by different judges and different pairs
by the same judge.

In the typical paired comparison experiment, T; is compared with T;
n;; > 0 times, and we let x;; be the observed number of times T; is preferred
to T; in these n;; comparisons. Table 8-7a shows the typical layout for the
observed data when t = 4, with preference (for, against) defining rows and
columns. An alternative layout is suggested by the binomial nature of the
sampling scheme, that is, the fact that the {x;;} are observations on in-
dependent binomial random variables with sample sizes {n;;} and “success”
probabilities {n;/(n; + n;)}. In this second layout we cross-classify the counts
by the preferred treatment and by the pair being compared. Thus we get an
incomplete ¢ x (5) table, illustrated for the case t = 4 in Table 8-7b.

The column totals in Table 8-7b are now fixed by design, and the Bradley-
Terry model of expression (8.18) is identical to the model of quasi-indepen-
dence (see expression (8.8)) for the corresponding table of expected values
once we take these fixed totals into account. Fienberg and Larntz [1976]
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Table 8-7
Two Layouts for Data in Paired-Comparisons Study with ¢t = 4

(a) Typical layout

Against
‘ T, T, T, T,
T, - X12 X13 X14
For T, | x5y - X23 X2
Ty X31 X32 - X34

Ty | X4y Xa2 Xa3 -
(b) Alternative layout

Paired Comparison No.
1 2 3 4 5 6

T

1 X12 X13 Xya - - —

Preferred T, | x5 — — X33 X4 —
Treatment 75| — X3 — X3 — X34
T, — - Xa1 — Xaz2  Xa3

and Fienberg [1979a] give further details regarding loglinear representations
for the Bradley—Terry model and its generalizations.

One of the earliest applications of paired comparison models was to the
analysis of win-loss data for major league baseball teams (see Mosteller
[1951]). We illustrate the use of the Bradley—Terry model here on the Amer-
ican League baseball records for 1975. The data are given in Table 8-8, in a
form analogous to Table 8-7a in order to conserve space. The American
League consists of two divisions, and teams are scheduled to play 18 games
with the other 5 teams in the same division, and 12 games with the remaining
6 teams. The total number of games played may be less than 12 or 18 because of
cancellation of games at the end of the season. The data were taken from a
newspaper and contain several minor errors which we shall overlook.

The Bradley—Terry model gives a very good fit to the data in Table 8-8:
G? = 56.6 with 55 d.f. The estimated expected values under this model
are given in Table 8-9. An examination of the standardized residuals,
(x;; — #1;;)/</1h;;, shows no aberrant cells.

When Mosteller [1951] applied a similar model to 1948 baseball data,
he also found a remarkably good fit. One possible explanation for the good
fits is that data like those in Table 8-8 are a mixture of games played at home
and away. Were we able to separate out these two layers, we might find that
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Table 8-8
Wins and Losses for American League Baseball Clubs, 1975 (unofficial) (read across
table for wins and down for losses)

Zlgl=|2 slg|5 2 E|7 4%

Rl | 0| 0|0 || S |2 Z|]0 |+
Balt. | —| 9] 6| 71012 7/13] 6| 8| 4| 7
Bos. | 9/—| 6| 8| 512 7/10/10]11] 6| 8
Cal. | 6| 6| —| 7] 3] 6] 4| 7] 7 7] 7|09
Chi. | 4] 4| 9l —[ 7] sl ol 8l 9] 6] 9]s
Cle. | 8|11 9] s|—l12l 6] 9| 3]8]2]s
Det. | 4| S| 5| 7| 5 6] 7] 4| 6] 6/ 1
Kan. | 5| 5|14] 9 6] 6| —| 7/11| 7] 6|13
Mil. | 4| 8] s| 4l 9f10] s|—] 2] 9] 5|6
Minn.| 6] 2|10 7] 6 11| 7] 9| —| 4| 6| 8
NY. (10 5| sl 6] 7/12] 4|10 81— 6| 8
Oak. | 8 6[10] 9]10] 6/10| 9[12] 6| — | 9
Tex. | 5| 4 ”‘%LLJQ 4] 610 5 —

the Bradley—Terry parameters associated with winning at home and winning
away are different. Then collapsing the data to form Table 8-8 would tend to
constrain the variability in the resulting counts, yielding a better fit than we
could expect even if the Bradley—Terry model were appropriate.

Partitioning polytomous variables: Collapsing

Often, when analyzing cross-classifications involving one or more poly-
tomous variables, we wish to collapse these variables as much as possible for
ease of interpretation, or we wish to infer how specific categories of a poly-
tomy interact with other variables. In Chapter 3 we gave a rule for when it is
possible to collapse across variables, and this same rule is applicable for
collapsing across categories within a variable (see Bishop, Fienberg, and
Holland [1975], Chapter 2). A formal method for checking on collapsibility
suggested by Duncan [1975b] involves representing a complete cross-
classification in the form of an incomplete one by replacing the polytomous
variable with a series of dichotomous variables. We illustrate this method
with an example taken from Duncan [1975b].

Table 8-10 contains data in the form of a three-dimensional cross-classi-
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Table 8-9
Expected Wins and Losses for Data in Table 8-8 under Bradley-Terry Paired Com-
parisons Model (read across table for wins and down for losses)

AHEIEICIFIFIERE SRR
Balt. | — | 86| 73| 6399 (11060 [108| 6999][55] 6.8
Bos. |94 |— | 75| 71]91[120]62 118 7.1[9.1{58]70
Cal. | 47|45 — | 74|53] 65|70 63| 79|52]60]82
Chi. |47]49] 86| — [57] 75/77| 68| 80[57|70]84
Cle. |81]69] 67| 63| — [109]54 106 47[74]49]62
Det. |50(50| 45| 45/61| — |37 75| 57633344
Kan. | 60|58 |11.0|103 66| 83| — | 7.6 | 104 [ 60| 7.4 |96
Mil. |[62]62] 57| 52]74] 9544 — | 48]78]46] 5.1
Minn. | 5.1 (49| 91| 8043 ] 93]76| 62| — |57]70]88
N.Y. [81]69] 68| 63]76|11.7]50[112] 63| —]50]6.2
Oak. |65/62[110[11.0]7.1 | 87[86| 9.4 [11.0]70] — |84
Tex. |52]50] 98| 86(58| 76|74 69| 925856 —

fication of responses to a question, addressed to mothers of children under
19 years of age, concerning whether boys, girls, or both should be required
to shovel snow from sidewalks. Since no mother gave a “girl” response, we
have listed the data using a dichotomy, labeled here as variable 1 (boy,
both). The two explanatory variables in this study are year (1953, 1971) and
religion (Protestant, Catholic, Jewish, Other), labeled as variables 2 and 3,
respectively.

Table 8-11 lists the four loglinear models that include the u,;-term
corresponding to the explanatory variables and the corresponding like-
lihood-ratio goodness-of-fit statistics and degrees of freedom. Clearly the
no second-order interaction model fits the data (perhaps too well!). Although
the model that includes an effect of year on response ([12][23]) also fits
the data moderately well, the conditional test for this model given the
no second-order interaction model, G = 11.2 — 0.4 = 10.8 with 3d.f, hasa
descriptive level of significance somewhere between 0.05 and 0.01.

Perhaps the effect of religion on the response, which seems necessary
for the model, can be accounted for by a single religious category. If this is
the case, we can collapse the religion variable and get a more parsimonious
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Table 8-10
Observed Frequencies of Response to “Shoveling” Question, by Religion by Year
(Duncan [1975b])

Year
1953 1971
Religion Boy Both Boy Both
Protestant 104 42 165 142
Catholic 65 44 100 130
Jewish 4 3 5 6
Other 13 6 32 23

Table 8-11
Loglinear Models Fit to Data in Table 8-10, and Their Likelihood-Ratio Goodness-

of-Fit statistics (All Models Include u,3)

Model G? d.f.
1. [1]23] 7 7
2. [12] [23] 112 6
3.[13][23] 205 4
a.[12][13][23] 04 3

and compact summary of the data. To explore this issue we replace variable
3 (religion) by a series of four dichotomous variables, labeled 4 through 7,
corresponding to Protestant, Catholic, Jewish, or Other, respectively. Each
variable takes the value 1 if the respondent has that religious affiliation and
0 otherwise. The redundancy introduced by using four rather than three
dichotomies allows us to treat the four categories symmetrically. Now we
can display the data in the form of a six-dimensional incomplete array, as
indicated in Table 8-12. Models corresponding to those fit above must keep
U54567 fixed, and in Table 8-13 we include four such models that are inter-
mediate to the two models with acceptable fits. No formal analysis is required
to show that the interaction between religion and response is due primarily
to Catholic respondents. The fitted values for this model are given in Table
8-12. Thus we can collapse religion in this example to a dichotomy.

Scaling response patterns
In psychometric and sociometric investigations, subjects are often classified
according to their responses on a sequence of p dichotomous items (all of
which have categories yes and no). These items are said to form a perfect
Guttman scale if we can reproduce exactly an individual’s response from the
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Table 8-12
Estimated Expected Values for Model 7 in Table 8-13, with Effects of Year and
Religion-Catholic on the Response Variable (Duncan [1975b])

Formal Variables for Religion Year
1953 1971

Protestant Catholic Jewish Other Boy Both  Boy Both

1 1 1 1 — -— - —

1 1 1 0 - — — —

1 1 0 1 — — — —

1 1 0 0 — — — —

1 0 1 1 — — — -

1 0 1 0 — — — —

1 0 0 1 - - — —

1 0 0 0 102.31 43.69 166.65 140.35

0 1 1 1 - = — —

0 1 1 0 — — — —

0 1 0 1 - - - —

0 1 0 0 65.47 43.53  99.53 130.47

0 0 1 1 o — — —

0 0 1 0 491 209 5.97 5.03

0 0 0 1 13.31 569 2986 25.14

0 0 0 0 — — — —
Table 8-13

Loglinear Models Fit to Six-Dimensional Version of Data in Table 8-10 (All Models
Include u;4564)

Model G?  df
2.% [24567][12] 112 6
4% [24567][12][14567] 04 3
5. [24567][12][17] 98 5
6. [24567][12][16] 109 5
7. [24567][12][15] 14 5
8. [24567][12][14] 48 5

~ *Models 2 and 4 from Table 8-11.

number of “yes” responses to the P items. This is equivalent to saying that
the items have an order and that there are exactly p + 1 possible responses
for individuals. If p = 4 and 1 = yes while 2 = no, the five response patterns
are



Fixed and Random Zeros 157

(3) (1,1,2,2)

4) (1,2,2,2)

(5 (2,2,2,2).

In practice, when we examine samples of individuals, we rarely find that
the items form a perfect Guttman scale. We refer to individuals with response
patterns other than those listed as being “unscalable.” Goodman [1975]
has proposed the following model for dealing with data in which the items
fall short of forming a perfect Guttman scale:

(i) All individuals can be classified into one of p + 2 categories. The Oth
category is for “unscalable” individuals, and categories 1 through p + 1
correspond to the p + 1 Guttman scale types.

(if) The responses of the unscalable individuals on the p items are completely
independent.

(iii) The responses of the scalable individuals correspond to their scale type.

Note that point (ii) allows unscalable individuals to be observed as giving a

scalable response by chance. For p = 4, if p;;, is the probability of response

(i, J, k, 1), this model can be written algebraically as

P =™y + meabyeyd,,
Pii12 = My + moabycyd,,
Pi122 = T3 + moa bcyd,, (8.19)
Pi222 = M + Modsbyc,d;,
P2222 = Ts + Modsb,y¢5d,,
and for all other response patterns
Piju = moa;b;cid,, (8.20)

where 7; is the probability of an individual belonging to scale category i and
5

zn‘ -h (8.21)

i=0
al+az=b1+b2=(’1+C2=d1+d2=l.

Let us denote by S the patterns corresponding to only unscalable indi-
viduals. If we look only at cells in S, then (8.20) implies that the four scale
items are quasi-independent. To compute MLEs of the expected cell counts
we fit the model of quasi-independence to the cells in S, replacing the other
five cells with structural zeros, yielding
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. {N(noaibjckd,) for (i,j,k,I)eS, (8.22)

- Xijki for (i,j,k1)¢S.

Miju =
We can.compute the estimates of n,, {a;}, {b;}, {c;}, and {d,} directly from
(8.22) by looking at various ratios of estimated expected values. Then we
use (8.21) to compute 7; for i =1, 2, 3, 4, 5; for example,

#, = N~Y(y,,, — N#od,b,é,d,). (8.23)

In the event that #; < 0 for some scalable individuals, we redo the calculation
setting these estimated probabilities equal to zero, and we include the cor-
responding cells in the set S, fitted by the model of quasi-independence.

If there are p dichotomous scale items and #; > 0 for all i, then the degrees
of freedom for testing the goodness-of-fit of Goodman’s model are

20— 2(p + 1) (8.24)

We illustrate the application of this model for scaling response patterns
on a data set used by Goodman [1975] and attributed by him to Stouffer and
Toby [1951]. The data consist of responses of 216 individuals according to
whether they tend toward universalistic values or particularistic values when

Table 8-14
Observed and Estimated Counts for Scaling Model Fit to Stouffer-Toby Data
on Role Conflict (Goodman [1975])

Response Pattern Estimated
Items Observed Expected

1 2 3 4 Counts Counts

1 1 1 1 42 42

1 1 1 2 23 23

1 1 2 1 6 4.72

1 1 2 2 25 25

1 2 1 1 6 5.99

1 2 1 2 24 24.74

1 2 2 1 7 7.56

1 2 2 2 38 38

2 1 1 1 1 1.14
2 1 1 2 4 4.73

2 1 2 1 1 1.44
2 1 2 2 6 597

2 2 1 1 2 1.83
2 2 1 2 9 7.57
22 2 1 2 2.31
202 2 2 20 20
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confronted by each of four situations of role conflict (items 1-4). The raw
counts and the estimated expected values are given in Table 8-14. The
estimated expected values for the five scale types are equal to those observed.
The fit of the model is extremely good: G* = 0.99 with 6 d.f. The estimated
parameters in the model are

(o, Tys 7p, M3y T, s) = (0.69, 0.18, 0.03, 0.03, 0.03, 0.05)
and . .
a, =077, b, =038, ¢, =051, d, =031

Goodman [1975] not only describes the basic scaling model outlined here
but also describes various extensions and relates the scaling model to a
latent class model.

Problems

8.1. Try to fit the no second-order interaction model to the data in Table
8-1 using iterative scaling, and observe the behavior of the estimated expected
values for the (1, 1, 1) and (2, 2, 2) cells at the end of each cycle.

8.2. Fit the model of no second-order interaction to the following hypo-
thetical 3 x 3 x 2 table of counts, making an appropriate adjustment for
the observed zero marginal total:

125 7 11 5 106 18
124 6 22 3 109 9
146 6 0 2 111 0

8.3. Reanalyze the victimization data from Problem 2.2 using the quasi-
independence (quasi-homogeneity) model for the following situations:

(a) deleting the diagonal cells, which correspond to repeat victimizations
involving the same crime;

(b) deleting the diagonal cells, plus the seven pairs of cells above and below
the diagonal involving:

(1) rape, assault, and robbery,

(i1) robbery and purse snatching,
(i11) personal larceny, burglary, and household larceny.
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Compare the cells deleted in model (b) with those yielding the largest
contribution to X ? for independence in Chapter 2.

8.4. Morgan and Titterington [1977] present the data in Table 8-15 on
voting transitions in Great Britain for 2152 respondents between 1970
and 1974:

Table 8-15
1974 Election
| Conservative Labor Liberal Abstain
Conservative 619 62 115 79
1970 Labor 41 604 99 74
Election Liberal 11 11 82 9
Abstain 73 112 63 98

(a) Fit the model of quasi-independence to the off-diagonal cells in this table.

(b) Using the expected values from part (a), project the model to predict
values for the cells on the diagonal, and estimate the “excess” corre-
sponding to “true” party voters.

8.5. Reanalyze the social interaction and social mobility data from Problem
4.8, deleting the (1, 1, 1) cell plus the eight cells involving only occupations
in categories 3 and 4.

8.6. Imrey, Johnson, and Koch [1976] report paired-comparison responses
of 44 white North Carolina women under 30, married to their first husband,
to the question: “Let’s suppose, for a moment, that you have just been
married and that you are given a choice of having, during your entire life
time, either x or y children. Which would you choose, x or y?” Each woman
was queried only with respect to a single pair of (x, y) values with x between
0 and 6, y between 1 and 6, and x < y. Pairs were randomly assigned to
women, resulting in the data shown in Table 8-16. The unequal totals for
the various pairs are partially the result of nonresponse, with which you
are not to concern yourselves.
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Table 8-16
Pair Choice

X v 0 1 2 3 4 5 6 Totals
0 1 2 17 - - - - - 19
0 2 1 - 22 - - - - 23
0 3 3 - - 22 - - - 25
0 4 1 - - - 15 - - 16
0 5 1 - - - - 26 - 27
0 6 2 - - - - - 25 27
1 2 - 0 19 - - - - 19
1 3 - 1 - 13 - - - 14
1 4 - 10 - - 10 - - 20
1 5 - 11 - - - 9 - 20
1 6 - 13 - - - - 11 24
2 3 - - 7 11 - - - 18
2 4 - - 12 - 11 - - 23
2 5 - - 18 - - 6 - 24
2 6 - - 20 - - - 6 26
3 4 - - - 13 6 - - 19
3 5 - - - 15 - 2 - 17
3 6 - - - 22 - - 6 28
4 5 - - - - 17 4 - 21
4 6 - - - - 14 - 0 14
5 6 - - - - - 12 11 23
Totals 10 52 98 96 73 59 59 447

(a) Fit the Bradley—Terry paired comparisons model to these data using the
methods for the quasi-independence model.

(b) Compute estimates of the preference parameters, {r;}.

8.7 (McHugh [1956]). Table 8-17 contains the cross-classification of 137
engineers according to whether they scored above (1) or below (2) the subtest
mean for four different subtests intended to measure creative ability in
machine design. Fit Goodman’s scaling model from Section 8.4 to these data.
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Table 8-17
Subtest

1 2 3 4 Observed counts
1 1 1 1 23
1 1 1 2 5
1 1 2 1 5
1 1 2 2 14
1 2 1 | 8
1 2 1 2 2
1 2 2 1 3
1 2 2 2 8
2 1 1 1 6
2 1 1 2 3
2 1 2 1 2
2 1 2 2 4
2 2 1 1 9
2 2 1 2 3
2 2 2 1 8
2 2 2 2 34

8.8. Larntz and Weisberg [1976] model the data in Table 8-18 on the
observed numbers of interactions involving all possible pairs of six U.S.
Navy recruits. The total number of observations in the entire table is 185,
and N, is the sum over all counts involving recruit i. Note that

6
ZN,-=2X185=370.

i=1
Larntz and Weisberg’s initial model can be written in the form
log m;; = u + u; + uj, i>j, (8.25)

where Zu; = 0. Model (8.25) can be interpreted as a “random-interaction
model,” where u; reflects the ith recruit’s propensity to interact.

Table 8-18

Recruit no. 1 2 3 4 5 6 N;
1 41 10 5 6 3 65
2 9 6 6 3 65
3 42 13 5 79
4 15 7 75
S 14 54
6 32

Total 185
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(a) Prepare a revised version of the data by duplicating each entry above
the diagonal; for example, place the count 41 in the (2, 1) cell, duplicating
the value in the (1, 2) cell. The {N;} will now be both the row and column
totals for the revised table.

(b) Fit the model of quasi-independence to the data in the revised table
from part (a).

(c) Compute the estimated loglinear-model parameters and verify that
Uy =ty fori=1,2, ..., 6. Thus model (8.25) is satisfied.

(d) Test the fit of the model using only those cells above the diagonal. Be
sure to compute the degrees of freedom directly from the original table
using formula (8.1).

8.9 (continuation). The six recruits in the preceding problem are located
in a bunkhouse containing three double bunks. Recruits 1 and 2 share the
first bunk, 3 and 4 the second, and 5 and 6 the third.

(a) Delete cells (1, 2), (3, 4), and (5, 6) from the original table, and redo your
analysis.

(b) Compute the estimated loglinear-model parameters, and compare them
with those from the preceding problem.

(c) Is the new model a “significant” improvement over the random-inter-
action model?



Appendix I
Statistical Terminology

Although this book is written primarily for nonstatisticians, occasionally
statistical words are used that will be unfamiliar to readers whose intro-
duction to statistics has come via a noncalculus methodology course or its
equivalent. For those readers the meaning of terms such as asymptotic,
maximum-likelihood estimation, minimal sufficient statistics, and descriptive
level of significance may be unclear. While this appendix should not be viewed
as a primer on theoretical statistical concepts, it may help some readers to
move over what might otherwise be viewed as statistical stumbling blocks
in the remainder of the monograph. For complete details the reader is referred
to books such as Cox and Hinkley [1974] or Rao [1973].

The analysis of multidimensional contingency tables via loglinear models
aims to make inferences about a set of parameters describing the structural
relationship among the underlying variables. Suppose the observations
y = (yy,..., y,) are the realized values of a corresponding set of random
variables Y = (Y,..., Y,). The probability density function, f(y), of Y
gives the frequency of observed y values. It is a function of y given the
unknown parameters 6 = (0,,..., 0,); that is, f(p) =f(y|0). The likelihood
function of the observed data views f(y|6) as a function of 0 given a particular
value of y. The method of maximum likelihood finds the value of 6 that
maximizes this likelihood function, and this value is labeled . The most
convenient way to find the maximum is to solve the likelihood equations found
by taking the first derivatives of the likelihood function with respect to the
parameters 0, ..., 0,:

af (y10)
20,

For the models used throughout this monograph the solution to the likeli-
hood equations, when it exists, is unique.

To compute maximum-likelihood estimates one typically does not need
the complete set of observations, y = (yy, ..., J,), but only a summary of
the data that can be used to describe the likelihood function. The most
compact such summary of y is referred to as the minimal sufficient statistic(s).
For loglinear models and the sampling distributions described in this book,
the minimal sufficient statistics are linear combinations of the observed
counts and are most often a set of marginal totals for the contingency table
in question.

Maximum-likelihood estimates have a variety of desirable properties,
most of which are related to asymptotic theory, which corresponds to the
situation where the sample size N goes to infinity. Since asymptotic theory
is associated with large samples, we often speak of large-sample distributions

= 0, i=12,...t
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when we use asymptotic results. Three key asymptotic properties of

maximum-likelihood estimates (MLEs) are of interest here:

(1) MLEs are consistent: if the entire population of random variables is
observed, the MLEs are exactly equal to the parameters.

(2) MLEs are asymptotically normally distributed, with the true parameter
values as the means and a covariance matrix that is relatively easy to
calculate.

(3) MLEs are asymptotically efficient: it is impossible to produce other
estimates with smaller asymptotic variances.

For these properties to hold, the probability function f(y|f) must satisfy

certain smoothness properties. This is the case for all probability functions

used in this monograph.

The asymptotic normality of property (2) leads to the asymptotic y?
distribution of the test statistics used to check on the goodness-of-fit of
loglinear models to a set of observed counts (see Bishop, Fienberg, and
Holland [1975], Chapter 14). Appendix IV discusses some results on the
use of these asymptotic x? distributions in problems with small sample sizes.

Suppose the random variable T is a test statistic used for the test of the null
hypothesis H,. Then the descriptive level of significance associated with an
observed value of T, say ¢ (e.g., the observed value of the Pearson chi-square
statistic), is

Pr(T > t|H,true),

and as such we use it as a measure of the consistency of the data with H,,.



Appendix II
Basic Estimation Results
for Loglinear Models

Most of the methods used in this book are based on four results dealing with
maximum-likelihood estimation of parameters in loglinear models. While
the proofs of these results are somewhat complex (see, for example, Haberman
[1974a]) and often rely on more general results about the existence and
uniqueness of MLEs in exponential family distributions (see, for example,
Andersen [1974]), their statements are quite simple. This appendix presents
a brief summary of this general loglinear-model theory.

Since we often wish to consider ensembles of cells in many dimensions,
and occasionally of irregular shape, we shall use single subscripts to describe
counts. All of the problems are concerned with a set of observed counts,

x = {x;:ie S},
indexed by a set .# containing ¢ elements, which are realizations of a set of
random variables X, similarly indexed. Corresponding to the observed counts
are sets of expected values

m={m;=EX,):ied}
and of log expected values

A={A=logm :iesd}.

There are two sampling schemes used to describe the observed counts,

x. The counts are either (a) observations from independent Poisson distri-

butions, or (b) observations from independent multinomial distributions.
When sampling scheme (a) is used, the likelihood function is proportional to

l—[m,*"e""',

ied

and thus the kernel of the log likelihood is

Zx,. log m, — Zm - Zx,.x,. - Zmi.

We are interested in situations where m is described by a loglinear model—
that is, a linear model for A—which we denote by M.

Result 1. Under Poisson sampling, corresponding to each parameter in M
is a minimal sufficient statistic that is expressible as a linear combination
of the {x,-}.

We denote the minimal sufficient statistics by P.x (P,, is the projection onto
the linear subspace of the t-dimensional space of real numbers corresponding
to the loglinear model M).
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Example. Suppose the x form an I x J contingency table, {x;;}, and M
corresponds to the model specifying independence of rows and columns. Then

Pyx={x;,:i=12...,1; x4;:j=1,2,...,J}.
Result 2. The MLE, i, of m under the loglinear model M exists and is
unique if and only if the likelihood equations,
Pym = Pyx,
have a solution that is in the interior of the subspace corresponding to M.

Note that the form of the likelihood equations is extremely simple. We take
the minimal sufficient statistics, which from Result 1 are linear combinations
of the {x;}, and set them equal to their expectations. Determining when the
solution of the equations lies within the interior of the subspace can be a tricky
matter. A sufficient (but not necessary) condition for a proper solution to
exist is x > 0. For a further discussion of this matter see Haberman [1974a].

Example (continued). For the I x J table, the likelihood equations are

M. = X4, i=12...,1,
Wy ;= Xy, j=12,...,J,

which have the unique solution satisfying the model M given by

s X Xy !
L
++

Now suppose we break the ¢ cells in .# up into r disjoint sets. If the
{x;1ie S}, k=12 ...r,
now represent observations from r independent multinomial distributions
with
n = X k=12,...,r,
fixed by design, we have a product-multinomial sampling, with log likelihood

Zx,- log m; = Zx,-i,-,

i i

subject to the constraints

nk:Zm,», k=12,...,r

ie g,
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Note that the product-multinomial log likelihood is the first term in the
Poisson log likelihood. When r = 1, we have the special case of multinomial
sampling, where only the total sample size N = X, _ , x; is fixed.

Suppose M is a loglinear model for a Poisson sampling scheme that
includes among its sufficient statistics

n,‘=2 X, k=1,2,...,r.

ief,
If we let L correspond to a linear subspace defined by these r constraints, and
if we denote by M © L the part of the model M that is appropriate for data
generated by product-multinomial sampling, then we have:

Result 3. The MLE of m under this product-multinomial sampling scheme
for the model M © L is the same as the MLE of m under Poisson sampling
for the model M.

This key result on the equivalence of MLEs under different sampling schemes
is used many times in the book.

Example (continued). In the I x J table, if r = 1, we have a single multi-
nomial for the IJ cells; if r = I, we have I independent multinomials, one for
each row; if r = J, we have J independent multinomials, one for each column.

In all these cases, the MLEs under M © L, where M is the independence
model, are
Xiy X4 i=1,2,...,1,

BT T J=1L2.,

We have chosen to describe the first three results in a coordinate-free
fashion, although we also can describe them in terms of a specific coordinate
system, a specific parametrization for M and M © L, and matrix notation.
For example, in the case of a single multinomial we can write the model
MO Las

o texp(AB)}
{Lilexp(4p)1}’

where A is an appropriate ¢ x s design matrix of known coefficients whose s
columns are linearly independent (of each other and of 1,) and represent a
basis for the subscripted parameters in the loglinear model, f# is the cor-
responding s x 1 vector of unknown parameters, 1,isa ¢ x 1 vector of 1s, and
exp transforms a vector elementwise to the corresponding vector of exponen-
tial functions (see Koch, Freeman, and Tolley [1975]). The likelihood
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equations can then be expressed as

Am= Ax.
Using standard large-sample theory, we can estimate the asymptotic
covariance matrix of either B or m:

Result 4. Under the multinomial sampling scheme an estimate of the
asymptotic covariance matrix of f is given by

{A'[D,; — mm'/N]A} ",
where D is a diagonal matrix with the elements of 7 on the main diagonal.

The corresponding estimated asymptotic covariance matrix of m (under the
model M © L) is

([D, — it NA} {(A'[D, — riit [N] 4}~ {A'[D, — it /NT}.

Koch, Freeman, and Tolley [1975] also give formulas for asymptotic
covariances under product-multinomial sampling. For both sampling
schemes their results are equivalent to the closed-form expressions derived
by Lee [1975, 1977] for loglinear models with direct, closed-form estimated
expected values.



Appendix I11
Percentage Points of y* Distribution

Detailed tables giving percentage points or tail errors of the y? distribution
are readily available (e.g., Pearson and Hartley [ 1966 ]). Rather than present
such a table here we give an abbreviated table plus a simple formula for
computing the percentage points in the upper tail of the y? distribution, due
to Hoaglin [1977]. If we let x2, be the value of the chi-square distribution
with v d.f. having an upper-tail probability of &, then Hoaglin shows that

\/Xf.a = v+ 2/-Tog o — Z
This formula has a percentage error for « = 0.05, 0.025, 0.01, 0.005 of less
than 19 for 6 < v < 100. For o = 0.1 the percentage error is less than 1.1%,
and for & = 0.001 it is less than 1.3%.
Line 7 of Table A-1 makes use of the Hoaglin formula.
When v is large, the chi-square distribution percentage points can be well
approximated by

X\%,a = %( 2V— 1 + za)z,

where z, is the value of the normal distribution, with mean 0 and variance 1,
having an upper-tail probability of a.

Table A-1
Xea
o
0.1 0.05 0.025 0.01 0.005
1 2.71 3.84 5.02 6.63 7.88
2 4.61 5.99 7.38 9.21 10.60
3 6.25 7.81 9.35 11.34 12.84
v 4 7.78 9.49 11.14 13.28 14.86
5 9.24 11.07 12.83 15.09 16.75
6 10.64 12.59 14.45 16.81 18.55

v>6 (Jv+0833)2 (Jv+ 11153 ;(\ﬁ +1.365)% (/v + 1.662)* (/v + 1.867)




Appendix IV
Small-Sample Properties of y* Statistics

It is all well and good to know that the asymptotic distribution of G? and
X2 is x% under a suitable null hypothesis, but these asymptotic results tell
us little about the adequacy of the y? approximations. In the precomputer
era, advice by such distinguished statisticians as Cochran and Fisher was
based on practical experience and intuition and led to standard adequacy
rules such as “the minimal expected cell size should exceed 5.” Such rules
tended to be somewhat conservative, and more recent Monte Carlo studies
by Odoroff [1970], Yarnold [1970], and Larntz [1978] suggest that, at
least for tests conducted at a nominal 0.05 level of significance, the goodness-
of-fit statistics often achieve the desired level when minimum expected cell
values are approximately 1.0.

This appendix, adapted from Fienberg [1979b], explores various aspects
of the effects of small sample sizes on the distribution of G2 and X 2.

Larntz’s Monte Carlo Study

Larntz [1978] looked at a variety of categorical data problems with estimated
parameters and determined the exact levels for various goodness-of-fit
statistics, including G2 and X %, and varying sample sizes, using a nominal
0.05 level test. Illustrative of his Monte Carlo results are those for a test of
no second-order interaction in a 3 x 3 x 3 contingency table reproduced
here as Table A-2. In all but the sparsest of situations (e.g., N = 20 and
N = 40) he found the small-sample behavior of X ? to be remarkably stable
and the actual level to come quite close to the nominal 0.05 level. The
likelihood-ratio statistic G tends to reject substantially more often than is
expected for moderate sample sizes (see Margolin and Light [1974]).

Because of the somewhat aberrant behavior of G? for very small samples
that was apparent in almost all of his Monte Carlo work, Larntz postulated
that the discrepancy in behavior between X 2 and G2 was due to the differing
influences given to very small observed counts. For example, for X ? the
contribution of each zero observed value is equal to the corresponding
expected value, while for G? the minimum contribution of a zero count
occurs when the remaining counts are spread out evenly over the other
cells in exact proportion to the expected values of those cells. Thus the
minimum contribution is

. N
lim 2N | e
Jim og (N — E> 2E,

and each zero count will have twice the impact on G2 as on X 2. Similar
results are true when there are one or more observed counts of 1.
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Table A-2
Rejection Rates for 3 x 3 x 3 No Three-Factor Interaction Model (Larntz [1978])
Row Column Layer
margins margins margins Sample size
proportional proportional proportional
to to to 20 40 60 80 100
2:3:5 2:3:5 2:3:5 X?20.0175 0.0550 0.0585 0.0645 0.0690
G2 0.0190 0.0885 0.1125 0.1160 0.1265
2:3:5 2:3:5 6:6:7 X20.0435 0.0820 0.0650 0.0740 0.0485
G2 0.0335 0.1220 0.1375 0.1340 0.0925
2:3:5 6:6:7 6:6:7 X2 0.0440 0.0710 0.0675 0.0700 0.0565
G? 0.0575 0.1410 0.1475 0.1275 0.1035
6:6:7 6:6:7 6:6:7 X20.0825 0.0870 0.0855 0.0625 0.0680

G2 0.0950 0.1740 0.1660 0.1140 0.1120

Note: Values are based on 2000 trials with the same trials used for X2 and G2. The
approximate standard error (based on true level of 0.05) for each value is 0.0049.

Larntz summarizes his results as follows:

(1) Using as a criterion the closeness of the small-sample distribution to the
asymptotic x? approximation under the null hypothesis, X 2 is preferable
to G2,

(2) The relatively high type I error rates from G?'result from the large con-
tributions to the x? value for very small observed counts in cells with
moderate expected values.

(3) Even when the minimum expected cell value in a table is between 1 and 4
in size, a P-value based on the asymptotic x> approximation is “on
average” about right for X 2 but is understated for G2

If one is concerned only about relative orders of magnitude of the P-values
associated with goodness-of-fit tests such as X 2 and G2, then Larntz’s results
suggest that values of N equal to four or five times the number of cells are

adequate for the use of the asymptotic y* results. Keeping the ratio N/t

roughly constant (say at 4 or 5) leads, however, to a different type of asymp-

totics, which we discuss below. Obvious exceptions to the rule of “average

cell sizes of 4 or 5” occur when most of the sample size is concentrated in a

few cells with relatively large cell counts.

Improved Likelihood-Ratio Tests

Williams [1976] has derived a modification to the likelihood-ratio test
wherein the statistic G2 is multiplied by a scale factor chosen to make the
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moments of G2 (under the null hypothesis) match those of the reference x>
distribution, ignoring terms of order N ~2. Williams’s result pertains to log-
linear models for complete multidimensional tables, with closed-form MLE:s,
and uses independent Poisson variables as the sampling model for the cell
frequencies.

This approach leads to replacing G* by

Gl =4 'G% (A.1)
where the inverse, g, of the multiplier is given by

q =1 + (1/6v) (sum of reciprocals of expected cell frequencies
— sums of reciprocals of expectations of marginal frequencies
in the numerators of the MLEs
+ sums of reciprocals of expectations of marginal frequencies
in the denominators of the MLEs),
(A.2)

and v is the degrees of freedom. In the case of independence in a two-dimen-
sional I x J table, g takes the form
] (A3)

(A.4)

my;

a=l1+g5= 1)(J — 1)[
which has as its minimum p0551ble value

U +DU+1)

=1
qmm + 6N

Williams suggests the use of g,,;, in (A.1), in part to avoid the problem of
estimating m;; " in (A.3). Using the adjusted statistic in (A.1) in place of G2 has
the effect of reducing the size of the test statistic (since q,,;, > 1) and thus
seems to be in accord with the small-sample results of Larntz [1978].

Williams [1976] speculates that these results using a version of g,,;, extend
to situations where the MLEs do not have closed-form expressions. Relevant
here is the difference, noted by Lee [1977], between models with closed-form
MLEs, which have closed-form expressions for asymptotic variances, and
models without closed-form MLEs, which do not.

The Asymptotics of Large Sparse Multinomials
Much has been written about the desirability of collapsing in the presence of

cells with counts of 0 and 1, and about the supposed lack of “information” in
large sparse multidimensional tables. The fact remains, however, that with
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the extensive questionnaires of modern-day sample surveys, and the detailed
and painstaking inventory of variables measured by biological and social
scientists, the statistician is often faced with large sparse arrays, full of Os and
Is, in need of careful analysis. Some recent analytical results suggest that the
beleaguered statistician need not despair: a new form of asymptotic structure
provides the underpinnings for the analysis of large sparse multinomials, and
the results for such asymptotics dovetail nicely with the “standard” small-
sample results mentioned above.

The traditional asymptotic machinery holds the number t of cells fixed,
assumes that the cell probabilities are fixed and positive, and lets the sample
size N tend to infinity. Thus all of the expected cell values become large as
N grows in size. We have already mentioned the usefulness of working with
tables with an average cell size of 4 or 5. This suggests an asymptotics which
allows t to grow at the same rate as N while the ratio N/t is kept fixed, and
in which we replace the fixed cell probabilities by a sequence of probability
vectors lying in progressively larger probability spaces.

The emergence of interest in asymptotics of large sparse multinomials is
described for the estimation of cell probabilities by Bishop, Fienberg, and
Holland [1975, Chapter 12], and in the context of central limit theorems
and testing by Morris [1975]. Recent results by Haberman [1977] and
Koehler [1977] are of special interest in the context of the use of goodness-
of-fit statistics.

Koehler [1977] has explored the asymptotic suitability of the y? dis-
tribution for G? as the dimensions of a table grow large while the ratio
N/t remains moderate. Even the expected value of G* does not appear to
be equal to the expected value of y?, which is the number of degrees of
freedom. Koehler also presents some new “asymptotic” results that allow
determination of normal approximations to the distribution of G2 that can
be used for overall tests of fit.

Haberman [1977] has looked at a closely related problem for comparing
two loglinear models in large sparse situations. His approach is to start by
establishing the asymptotic normality of linear functionals of MLEs of
log expected values. The conditions under which his results hold are quite
complex, but they essentially require that elements of m remain small relative
to a special norm of m, and they appear to include the conditions considered
by Koehler.

Haberman then looks at the Pearson and likelihood-ratio statistics for
comparing two loglinear models, one of which is a special case of the other.
The likelihood-ratio statistic is simply a difference of two statistics of the
form G2 given by expression (3.41), one for each of the models. In the large
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sparse multinomial asymptotics this amounts to considering two sequences
of models in which the difference in the estimation spaces converges to a
fixed number of degrees of freedom as t — co. Haberman shows that, under
suitable conditions, the distributions of both test statistics for comparing
the fit of the two nested models converge to the usual x? distribution.

This result has important implications for statistical practice. We have
noted that the behavior of G2 in large sparse multinomial structures requires
serious attention. If our primary interest in a large sparse table is focused
on the importance of a restricted subset of loglinear-model parameters,
however, the test statistics for comparing two models that differ by these
parameters can be used with the usual y? reference distributions.
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