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Preface

Stochastic orders and inequalities have been used during the last 40 years,
at an accelerated rate, in many diverse areas of probability and statistics.
Such areas include reliability theory, queuing theory, survival analysis, biology,
economics, insurance, actuarial science, operations research, and management
science. The purpose of this book is to collect in one place essentially all that
is known about these orders up to the present. In addition, the book illustrates
some of the usefulness and applicability of these stochastic orders.

This book is a major extension of the first six chapters in Shaked and
Shanthikumar [515]. The idea that led us to write those six chapters arose
as follows. In our own research in reliability theory and operations research
we have been using, for years, several notions of stochastic orders. Often we
would encounter a result that we could easily (or not so easily) prove, but we
could not tell whether it was known or new. Even when we were sure that
a result was known, we would not know right away where it could be found.
Also, sometimes we would prove a result for the purpose of an application,
only to realize later that a stronger result (stronger than what we needed)
had already been derived elsewhere. We also often have had difficulties giving
a reference for one source that contained everything about stochastic orders
that we needed in a particular paper. In order to avoid such difficulties we
wrote the first six chapters in Shaked and Shanthikumar [515].

Since 1994 the theory of stochastic orders has grown significantly. We think
that now is the time to put in one place essentially all that is known about
these orders. This book is the result of this effort.

The simplest way of comparing two distribution functions is by the com-
parison of the associated means. However, such a comparison is based on only
two single numbers (the means), and therefore it is often not very informative.
In addition to this, the means sometimes do not exist. In many instances in
applications one has more detailed information, for the purpose of compari-
son of two distribution functions, than just the two means. Several orders of
distribution functions, that take into account various forms of possible knowl-
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edge about the two underlying distribution functions, are studied in Chapters
1 and 2.

When one wishes to compare two distribution functions that have the same
mean (or that are centered about the same value), one is usually interested in
the comparison of the dispersion of these distributions. The simplest way of
doing it is by the comparison of the associated standard deviations. However,
such a comparison, again, is based on only two single numbers, and therefore
it is often not very informative. In addition to this, again, the standard devi-
ations sometimes do not exist. Several orders of distribution functions, which
take into account various forms of possible knowledge about the two underly-
ing distribution functions (in addition to the fact that they are centered about
the same value), are studied in Chapter 3. Orders that can be used for the
joint comparison of both the location and the dispersion of distribution func-
tions are studied in Chapters 4 and 5. The analogous orders for multivariate
distribution functions are studied in Chapters 6 and 7.

When one is interested in the comparison of a sequence of distribution
functions, associated with the random variables Xi, i = 1, 2, . . ., then one can
use, of course, any of the orders described in Chapters 1–7 for the purpose
of comparing any two of these distributions. However, the parameter i may
now introduce some patterns that connect all the underlying distributions. For
example, suppose not only that the random variables Xi, i = 1, 2, . . ., increase
stochastically in i, but also that the increase is sharper for larger i’s. Then
the sequence Xi, i = 1, 2, . . ., is stochastically increasing in a convex sense.
Such notions of stochastic convexity and concavity are studied in Chapter 8.

Notions of positive dependence of two random variables X1 and X2 have
been introduced in the literature in an effort to mathematically describe the
property that “large (respectively, small) values of X1 go together with large
(respectively, small) values of X2.” Many of these notions of positive depen-
dence are defined by means of some comparison of the joint distribution of
X1 and X2 with their distribution under the theoretical assumption that X1
and X2 are independent. Often such a comparison can be extended to gen-
eral pairs of bivariate distributions with given marginals. This fact led re-
searchers to introduce various notions of positive dependence orders. These
orders are designed to compare the strength of the positive dependence of the
two underlying bivariate distributions. Many of these orders can be further
extended to comparisons of general multivariate distributions that have the
same marginals. In Chapter 9 we describe these orders.

We have in mind a wide spectrum of readers and users of this book. On
one hand, the text can be useful for those who are already familiar with many
aspects of stochastic orders, but who are not aware of all the developments in
this area. On the other hand, people who are not very familiar with stochastic
orders, but who know something about them, can use this book for the purpose
of studying or widening their knowledge and understanding of this important
area.
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Note

Throughout the book “increasing” means “nondecreasing” and “decreasing”
means “nonincreasing.” Expectations are assumed to exist whenever they are
written. The “inverse” of a monotone function (which is not strictly monotone)
means the right continuous version of it, unless stated otherwise. For example,
if F is a distribution function, then the right continuous version of its inverse
is F−1(u) = sup{x : F (x) ≤ u}, u ∈ [0, 1].

The following aging notions will be encountered often throughout the text.
Let X be a random variable with distribution function F and survival function
F ≡ 1 − F .

(i) The random variable X (or its distribution) is said to be IFR [increasing
failure rate] if F is logconcave. It is said to be DFR [decreasing failure
rate] if F is logconvex.

(ii) The nonnegative random variable X (or its distribution) is said to be
IFRA [increasing failure rate average] if − log F is starshaped; that is,
if − log F (t)/t is increasing in t ≥ 0. It is said to be DFRA [decreasing
failure rate average] if − log F is antistarshaped; that is, if − log F (t)/t is
decreasing in t ≥ 0.

(iii) The nonnegative random variable X (or its distribution) is said to be NBU
[new better than used] if F (s)F (t) ≥ F (s + t) for all s ≥ 0 and t ≥ 0. It
is said to be NWU [new worse than used] if F (s)F (t) ≤ F (s + t) for all
s ≥ 0 and t ≥ 0.

(iv) The random variable X (or its distribution) is said to be DMRL [decreas-

ing mean residual life] if
∫ ∞

t
F (s)ds

F (t)
is decreasing in t over {t : F (t) > 0}. It

is said to be IMRL [increasing mean residual life] if
∫ ∞

t
F (s)ds

F (t)
is increasing

in t over {t : F (t) > 0}.
(v) The nonnegative random variable X (or its distribution) is said to be

NBUE [new better than used in expectation] if
∫ ∞

t
F (s)ds

F (t)
≤ EX for all
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t ≥ 0. It is said to be NWUE [new worse than used in expectation] if
∫ ∞

t
F (s)ds

F (t)
≥ EX for all t ≥ 0.

The majorization order will be used in some places in the text. Recall from
Marshall and Olkin [383] that a vector a = (a1, a2, . . . , an) is said to be smaller
in the majorization order than the vector b = (b1, b2, . . . , bn) (denoted a ≺ b)
if
∑n

i=1 ai =
∑n

i=1 bi and if
∑j

i=1 a[i] ≤
∑j

i=1 b[i] for j = 1, 2, . . . , n−1, where
a[i] [b[i]] is the ith largest element of a [b], i = 1, 2, . . . , n. An n-dimensional
function φ is called Schur convex [concave] if a ≺ b =⇒ φ(a) ≤ [≥] φ(b).

The notation N ≡ {. . . ,−1, 0, 1, . . . }, N+ ≡ {0, 1, . . . }, and N++ ≡
{1, 2, . . . } will be used in this text.
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Univariate Stochastic Orders

In this chapter we study stochastic orders that compare the “location” or the
“magnitude” of random variables. The most important and common orders
that are considered in this chapter are the usual stochastic order ≤st, the
hazard rate order ≤hr, and the likelihood ratio order ≤lr. Some variations of
these orders, and some related orders, are also examined in this chapter.

1.A The Usual Stochastic Order

1.A.1 Definition and equivalent conditions

Let X and Y be two random variables such that

P{X > x} ≤ P{Y > x} for all x ∈ (−∞,∞). (1.A.1)

Then X is said to be smaller than Y in the usual stochastic order (denoted
by X ≤st Y ). Roughly speaking, (1.A.1) says that X is less likely than Y to
take on large values, where “large” means any value greater than x, and that
this is the case for all x’s. Note that (1.A.1) is the same as

P{X ≤ x} ≥ P{Y ≤ x} for all x ∈ (−∞,∞). (1.A.2)

It is easy to verify (by noting that every closed interval is an infinite intersec-
tion of open intervals) that X ≤st Y if, and only if,

P{X ≥ x} ≤ P{Y ≥ x} for all x ∈ (−∞,∞). (1.A.3)

In fact, we can recast (1.A.1) and (1.A.3) in a seemingly more general, but
actually an equivalent, way as follows:

P{X ∈ U} ≤ P{Y ∈ U} for all upper sets U ⊆ (−∞,∞). (1.A.4)

(In the univariate case, that is on the real line, a set U is an upper set if, and
only if, it is an open or a closed right half line.) In the univariate case the
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equivalence of (1.A.4) with (1.A.1) and (1.A.3) is trivial, but in Chapter 6 it
will be seen that the generalizations of each of these three conditions to the
multivariate case yield different definitions of stochastic orders.

Still another way of rewriting (1.A.1) or (1.A.3) is the following:

E[IU (X)] ≤ E[IU (Y )] for all upper sets U ⊆ (−∞,∞), (1.A.5)

where IU denotes the indicator function of U . From (1.A.5) it follows that if
X ≤st Y , then

E
[ m∑

i=1

aiIUi
(X)
]

− b ≤ E
[ m∑

i=1

aiIUi
(Y )
]

− b (1.A.6)

for all ai ≥ 0, i = 1, 2, . . . , m, b ∈ (−∞,∞), and m ≥ 0. Given an increasing
function φ, it is possible, for each m, to define a sequence of Ui’s, a sequence
of ai’s, and a b (all of which may depend on m), such that as m → ∞ then
(1.A.6) converges to

E[φ(X)] ≤ E[φ(Y )], (1.A.7)

provided the expectations exist. It follows that X ≤st Y if, and only if, (1.A.7)
holds for all increasing functions φ for which the expectations exist.

The expressions
∫∞

x
P{X > y}dy and

∫∞
x

P{Y > y}dy are used exten-
sively in Chapters 2, 3, and 4. It is of interest to note that X ≤st Y if, and
only if,∫ ∞

x

P{Y > y}du −
∫ ∞

x

P{X > y}dy is decreasing in x ∈ (−∞,∞).

(1.A.8)
If X and Y are discrete random variables taking on values in N, then we

have the following. Let pi = P{X = i} and qi = P{Y = i}, i ∈ N. Then
X ≤st Y if, and only if,

i∑
j=−∞

pj ≥
i∑

j=−∞
qj , i ∈ N,

or, equivalently, X ≤st Y if, and only if,

∞∑
j=i

pj ≤
∞∑

j=i

qj , i ∈ N.

1.A.2 A characterization by construction on the same probability
space

An important characterization of the usual stochastic order is the following
theorem (here =st denotes equality in law).
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Theorem 1.A.1. Two random variables X and Y satisfy X ≤st Y if, and
only if, there exist two random variables X̂ and Ŷ , defined on the same prob-
ability space, such that

X̂ =st X, (1.A.9)

Ŷ =st Y, (1.A.10)

and
P{X̂ ≤ Ŷ } = 1. (1.A.11)

Proof. Obviously (1.A.9), (1.A.10), and (1.A.11) imply that X ≤st Y . In order
to prove the necessity part of Theorem 1.A.1, let F and G be, respectively, the
distribution functions of X and Y , and let F−1 and G−1 be the corresponding
right continuous inverses (see Note on page 1). Define X̂ = F−1(U) and
Ŷ = G−1(U) where U is a uniform [0, 1] random variable. Then it is easy to
see that X̂ and Ŷ satisfy (1.A.9) and (1.A.10). From (1.A.2) it is seen that
(1.A.11) also holds. 
�

Theorem 1.A.1 is a special case of a more general result that is stated in
Section 6.B.2.

From (1.A.2) and Theorem 1.A.1 it follows that the random variables X
and Y , with the respective distribution functions F and G, satisfy X ≤st Y
if, and only if,

F−1(u) ≤ G−1(u), for all u ∈ (0, 1). (1.A.12)

Another way of restating Theorem 1.A.1 is the following. We omit the
obvious proof of it.

Theorem 1.A.2. Two random variables X and Y satisfy X ≤st Y if, and
only if, there exist a random variable Z and functions ψ1 and ψ2 such that
ψ1(z) ≤ ψ2(z) for all z and X =st ψ1(Z) and Y =st ψ2(Z).

In some applications, when the random variables X and Y are such that
X ≤st Y , one may wish to construct a Ŷ [X̂] on the probability space on
which X [Y ] is defined, such that Ŷ =st Y and P{X ≤ Ŷ } = 1 [X̂ =st X and
P{X̂ ≤ Y } = 1]. This is always possible. Here we will show how this can be
done when the distribution function F [G] of X [Y ] is absolutely continuous.
When this is the case, F (X) [G(Y )] is uniformly distributed on [0, 1], and
therefore Ŷ = G−1(F (X)) [X̂ = F−1(G(Y ))] is the desired construction Ŷ
[X̂].

1.A.3 Closure properties

Using (1.A.1) through (1.A.11) it is easy to prove each of the following closure
results. The following notation will be used: For any random variable Z and
an event A, let [Z

∣∣A] denote any random variable that has as its distribution
the conditional distribution of Z given A.
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Theorem 1.A.3. (a) If X ≤st Y and g is any increasing [decreasing ] func-
tion, then g(X) ≤st [≥st] g(Y ).

(b) Let X1, X2, . . . , Xm be a set of independent random variables and let
Y1, Y2, . . . , Ym be another set of independent random variables. If Xi ≤st
Yi for i = 1, 2, . . . , m, then, for any increasing function ψ : R

m → R, one
has

ψ(X1, X2, . . . , Xm) ≤st ψ(Y1, Y2, . . . , Ym).

In particular,
m∑

j=1

Xj ≤st

m∑
j=1

Yj .

That is, the usual stochastic order is closed under convolutions.
(c) Let {Xj , j = 1, 2, . . . } and {Yj , j = 1, 2, . . . } be two sequences of random

variables such that Xj →st X and Yj →st Y as j → ∞, where “→st”
denotes convergence in distribution. If Xj ≤st Yj, j = 1, 2, . . ., then X ≤st
Y .

(d) Let X, Y , and Θ be random variables such that [X
∣∣Θ = θ] ≤st [Y

∣∣Θ = θ]
for all θ in the support of Θ. Then X ≤st Y . That is, the usual stochastic
order is closed under mixtures.

In the next result and in the sequel we define
∑0

j=1 aj ≡ 0 for any sequence
{aj , j = 1, 2, . . . }.

Theorem 1.A.4. Let {Xj , j = 1, 2, . . . } be a sequence of nonnegative inde-
pendent random variables, and let M be a nonnegative integer-valued random
variable which is independent of the Xi’s. Let {Yj , j = 1, 2, . . . } be another
sequence of nonnegative independent random variables, and let N be a non-
negative integer-valued random variable which is independent of the Yi’s. If
Xi ≤st Yi, i = 1, 2, . . ., and if M ≤st N , then

M∑
j=1

Xj ≤st

N∑
j=1

Yj .

Another related result is given next.

Theorem 1.A.5. Let {Xj , j = 1, 2, . . . } be a sequence of nonnegative in-
dependent and identically distributed random variables, and let M be a pos-
itive integer-valued random variable which is independent of the Xi’s. Let
{Yj , j = 1, 2, . . . } be another sequence of independent and identically dis-
tributed random variables, and let N be a positive integer-valued random vari-
able which is independent of the Yi’s. Suppose that for some positive integer
K we have that

K∑
j=1

Xj ≤st [≥st] Y1

and
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M ≤st [≥st] KN,

then
M∑

j=1

Xj ≤st [≥st]
N∑

j=1

Yj .

Proof. The assumptions yield

M∑
i=1

Xi ≤st [≥st]
KN∑
i=1

Xi =
N∑

i=1

Ki∑
j=K(i−1)+1

Xj ≤st [≥st]
N∑

i=1

Yi. 
�

Consider now a family of distribution functions {Gθ, θ ∈ X} where X is a
subset of the real line R. Let X(θ) denote a random variable with distribution
function Gθ. For any random variable Θ with support in X , and with distri-
bution function F , let us denote by X(Θ) a random variable with distribution
function H given by

H(y) =
∫

X
Gθ(y)dF (θ), y ∈ R.

The following result is a generalization of both parts (a) and (c) of Theorem
1.A.3.

Theorem 1.A.6. Consider a family of distribution functions {Gθ, θ ∈ X}
as above. Let Θ1 and Θ2 be two random variables with supports in X and
distribution functions F1 and F2, respectively. Let Y1 and Y2 be two random
variables such that Yi =st X(Θi), i = 1, 2; that is, suppose that the distribution
function of Yi is given by

Hi(y) =
∫

X
Gθ(y)dFi(θ), y ∈ R, i = 1, 2.

If
X(θ) ≤st X(θ′) whenever θ ≤ θ′, (1.A.13)

and if
Θ1 ≤st Θ2, (1.A.14)

then
Y1 ≤st Y2. (1.A.15)

Proof. Note that, by (1.A.13), P{X(θ) > y} is increasing in θ for all y. Thus

P{Y1 > y} =
∫

X
P{X(θ) > y}dF1(θ)

≤
∫

X
P{X(θ) > y}dF2(θ)

= P{Y2 > y}, for all y,

where the inequality follows from (1.A.14) and (1.A.7). Thus (1.A.15) follows
from (1.A.1). 
�
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Note that, using the notation that is introduced below before Theorem
1.A.14, (1.A.13) can be rewritten as {X(θ), θ ∈ X} ∈ SI.

The following example shows an application of Theorem 1.A.6 in the area
of Bayesian imperfect repair; a related result is given in Example 1.B.16.

Example 1.A.7. Let Θ1 and Θ2 be two random variables with supports in X =
(0, 1] and distribution functions F1 and F2, respectively. For some survival
function K, define

Gθ = K
1−θ

, θ ∈ (0, 1],

and let X(θ) have the survival function K
1−θ

. Note that (1.A.13) holds be-

cause K
1−θ

(y) ≤ K
1−θ′

(y) for all y whenever 0 < θ ≤ θ′ ≤ 1. Thus, if
Θ1 ≤st Θ2 then Yi, with survival function Hi defined by

Hi(y) =
∫ 1

0
K

1−θ
(y)dFi(θ), y ∈ R, i = 1, 2,

satisfy Y1 ≤st Y2.

1.A.4 Further characterizations and properties

Clearly, if X ≤st Y then EX ≤ EY . However, as the following result shows, if
two random variables are ordered in the usual stochastic order and have the
same expected values, they must have the same distribution.

Theorem 1.A.8. If X ≤st Y and if E[h(X)] = E[h(Y )] for some strictly
increasing function h, then X =st Y .

Proof. First we prove the result when h(x) = x. Let X̂ and Ŷ be as in Theorem
1.A.1. If P{X̂ < Ŷ } > 0, then EX = EX̂ < EŶ = EY , a contradiction to the
assumption EX = EY . Therefore X =st X̂ = Ŷ =st Y . Now let h be some
strictly increasing function. Observe that if X ≤st Y , then h(X) ≤st h(Y )
and therefore from the above result we have that h(X) =st h(Y ). The strict
monotonicity of h yields X =st Y . 
�

Other results that give conditions, involving stochastic orders, which imply
stochastic equalities, are given in Theorems 3.A.43, 3.A.60, 4.A.69, 5.A.15,
6.B.19, 6.G.12, 6.G.13, and 7.A.14–7.A.16.

As was mentioned above, if X ≤st Y , then EX ≤ EY . It is easy to find
counterexamples which show that the converse is false. However, X ≤st Y
implies other moment inequalities (for example, EX3 ≤ EY 3). Thus one may
wonder whether X ≤st Y can be characterized by a collection of moment
inequalities. Brockett and Kahane [109, Corollary 1] showed that there exist
no finite number of moment inequalities which imply X ≤st Y . In fact, they
showed it for many other stochastic orders that are studied later in this book.

In order to state the next characterization we define the following class of
bivariate functions:

Gst = {φ : R
2 → R : φ(x, y) is increasing in x and decreasing in y}.
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Theorem 1.A.9. Let X and Y be independent random variables. Then X ≤st
Y if, and only if,

φ(X, Y ) ≤st φ(Y, X) for all φ ∈ Gst. (1.A.16)

Proof. Suppose that (1.A.16) holds. The function φ defined by φ(x, y) ≡ x
belongs to Gst. Therefore X ≤st Y .

In order to prove the “only if” part, suppose that X ≤st Y . Let φ ∈ Gst
and define ψ(x, y) = φ(x,−y). Then ψ is increasing on R

2. Since X and Y
are independent it follows that X and −Y are independent and also that −X
and Y are independent. Since X ≤st Y it follows (for example, from Theorem
1.A.1) that −Y ≤st −X. Therefore, by Theorem 1.A.3(b), we have

ψ(X, −Y ) ≤st ψ(Y,−X),

that is,
φ(X, Y ) ≤st φ(Y, X). 
�

The next result is a similar characterization. In order to state it we need
the following notation: Let φ1 and φ2 be two bivariate functions. Denote
∆φ21(x, y) = φ2(x, y)−φ1(x, y). The proof of the following theorem is omitted.

Theorem 1.A.10. Let X and Y be two independent random variables. Then
X ≤st Y if, and only if,

Eφ1(X, Y ) ≤ Eφ2(X, Y )

for all φ1 and φ2 which satisfy that, for each y, ∆φ21(x, y) decreases in x on
{x ≤ y}; for each x, ∆φ21(x, y) increases in y on {y ≥ x}; and ∆φ21(x, y) ≥
−∆φ21(y, x) whenever x ≤ y.

Another similar characterization is given in Theorem 4.A.36.
Let X and Y be two random variables with distribution functions F and G,

respectively. Let M(F, G) denote the Fréchet class of bivariate distributions
with fixed marginals F and G. Abusing notation we write (X̂, Ŷ ) ∈ M(F, G)
to mean that the jointly distributed random variables X̂ and Ŷ have the
marginal distribution functions F and G, respectively. The Fortret-Mourier-
Wasserstein distance between the finite mean random variables X and Y is
defined by

d(X, Y ) = inf
(X̂,Ŷ )∈M(F,G)

{E|Ŷ − X̂|}. (1.A.17)

Theorem 1.A.11. Let X and Y be two finite mean random variables such
that EX ≤ EY . Then X ≤st Y if, and only if, d(X, Y ) = EY − EX.

Proof. Suppose that d(X, Y ) = EY −EX. The infimum in (1.A.17) is attained
for some (X̂, Ŷ ), and we have E|Ŷ −X̂| = E(Ŷ −X̂). Therefore P{X̂ ≤ Ŷ } =
1, and from Theorem 1.A.1 it follows that X ≤st Y .

Conversely, suppose that X ≤st Y . Let X̂ and Ŷ be as in Theorem 1.A.1.
Then, for any (X ′, Y ′) ∈ M(F, G) we have that E|Y ′ −X ′| ≥ |EY ′ −EX ′| =
EŶ − EX̂. Therefore d(X, Y ) = EY − EX. 
�
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A simple sufficient condition which implies the usual stochastic order is
described next. The following notation will be used. Let a(x) be defined on I,
where I is a subset of the real line. The number of sign changes of a in I is
defined by

S−(a) = supS−[a(x1), a(x2), . . . , a(xm)], (1.A.18)

where S−(y1, y2, . . . , ym) is the number of sign changes of the indicated se-
quence, zero terms being discarded, and the supremum in (1.A.18) is extended
over all sets x1 < x2 < · · · < xm such that xi ∈ I and m < ∞. The proof of
the next theorem is simple and therefore it is omitted.

Theorem 1.A.12. Let X and Y be two random variables with (discrete or
continuous) density functions f and g, respectively. If

S−(g − f) = 1 and the sign sequence is −,+,

then X ≤st Y .

Let X1 be a nonnegative random variable with distribution function F1
and survival function F 1 ≡ 1 − F1. Define the Laplace transform of X1 by

ϕX1(λ) =
∫ ∞

0
e−λxdF1(x), λ > 0,

and denote

aX1
λ (n) =

(−1)n

n!
dn

dλn

[
1 − ϕX1(λ)

λ

]
, n ≥ 0, λ > 0,

and
αX1

λ (n) = λnaX1
λ (n − 1), n ≥ 1, λ > 0.

Similarly, for a nonnegative random variable X2 with distribution function F2
and survival function F 2 ≡ 1 − F2, define αX2

λ (n). It can be shown that αX1
λ

and αX2
λ are discrete survival functions (see the proof of the next theorem);

denote the corresponding discrete random variables by Nλ(X1) and Nλ(X2).
The following result gives a Laplace transform characterization of the order
≤st.

Theorem 1.A.13. Let X1 and X2 be two nonnegative random variables, and
let Nλ(X1) and Nλ(X2) be as described above. Then

X1 ≤st X2 ⇐⇒ Nλ(X1) ≤st Nλ(X2) for all λ > 0.

Proof. First suppose that X1 ≤st X2. Select a λ > 0. Let Z1, Z2, . . . , be
independent exponential random variables with mean 1/λ. It can be shown
that αX1

λ (n) = P
{∑n

i=1 Zi ≤ X1
}

and that αX2
λ (n) = P

{∑n
i=1 Zi ≤ X2

}
. It

thus follows that Nλ(X1) ≤st Nλ(X2).
Now suppose that Nλ(X1) ≤st Nλ(X2) for all λ > 0. Select an x > 0.

Thus αX1
n/x(n) ≤ αX2

n/x(n). Letting n → ∞, one obtains F 1(x) ≤ F 2(x) for all
continuity points x of F1 and F2. Therefore, X1 ≤st X2 by (1.A.1). 
�
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The implication =⇒ in Theorem 1.A.13 can be generalized as follows. A
family of random variables {Z(θ), θ ∈ Θ} (Θ is a subset of the real line) is
said to be stochastically increasing in the usual stochastic order (denoted by
{Z(θ), θ ∈ Θ} ∈ SI) if Z(θ) ≤st Z(θ′) whenever θ ≤ θ′. Recall from Theorem
1.A.3(a) that if X1 ≤st X2, then g(X1) ≤st g(X2) for any increasing function
g. The following result gives a stochastic generalization of this fact.

Theorem 1.A.14. If {Z(θ), θ ∈ Θ} ∈ SI and if X1 ≤st X2, where Xk and
Z(θ) are independent for k = 1, 2 and θ ∈ Θ, then Z(X1) ≤st Z(X2).

Note that Theorem 1.A.14 is a restatement of Theorem 1.A.6.
Let X be a random variable and denote by X(−∞,a] the truncation of

X at a, that is, X(−∞,a] has as its distribution the conditional distribution
of X given that X ≤ a. X(a,∞) is similarly defined. It is simple to prove the
following result. Results that are stronger than this are contained in Theorems
1.B.20, 1.B.55, and 1.C.27.

Theorem 1.A.15. Let X be any random variable. Then X(−∞,a] and X(a,∞)
are increasing in a in the sense of the usual stochastic order.

An interesting example in which truncated random variables are compared
is the following.

Example 1.A.16. Let X(1), X(2), . . . , X(n) be independent and identically dis-
tributed random variables. For a fixed t, let X

(1)
(t,∞), X

(2)
(t,∞), . . . , X

(n)
(t,∞) be the

corresponding truncations, and assume that they are also independent and
identically distributed. Then(

max
{
X(1), X(2), . . . , X(n)})

(t,∞) ≤st max
{

X
(1)
(t,∞), X

(2)
(t,∞), . . . , X

(n)
(t,∞)

}
,

where
(
max

{
X(1), X(2), . . . , X(n)

})
(t,∞) denotes the corresponding trunca-

tion of max
{
X(1), X(2), . . . , X(n)

}
. The proof consists of a straightforward

verification of (1.A.2) for the compared random variables.

Let φ1 and φ2 be two functions that satisfy φ1(x) ≤ φ2(x) for all x ∈ R,
and let X be a random variable. Then, clearly, φ1(X) ≤ φ2(X) almost surely.
From Theorem 1.A.1 we thus obtain the following result.

Theorem 1.A.17. Let X be a random variable and let φ1 and φ2 be two
functions that satisfy φ1(x) ≤ φ2(x) for all x ∈ R. Then

φ1(X) ≤st φ2(X).

In particular, if φ is a function that satisfies x ≤ [≥] φ(x) for all x ∈ R, then
X ≤st [≥st] φ(X).

Remark 1.A.18. The set of all distribution functions on R is a lattice with
respect to the order ≤st. That is, if X and Y are random variables with
distributions F and G, then there exist random variables Z and W such that
Z ≤st X, Z ≤st Y , W ≥st X, and W ≥st Y . Explicitly, Z has the survival
function min{F , G} and W has the survival function max{F , G}.
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The next four theorems give conditions under which the corresponding
spacings are ordered according to the usual stochastic order. Let X1, X2, . . . ,
Xm be any random variables with the corresponding order statistics X(1) ≤
X(2) ≤ · · · ≤ X(m). Define the corresponding spacings by U(i) = X(i)−X(i−1),
i = 2, 3, . . . , m. When the dependence on m is to be emphasized, we will denote
the spacings by U(i:m).

Theorem 1.A.19. Let X1, X2, . . . , Xm, Xm+1 be independent and identically
distributed IFR (DFR) random variables. Then

(m − i + 1)U(i:m) ≥st [≤st] (m − i)U(i+1:m), i = 2, 3, . . . , m − 1,

and

(m − i + 2)U(i:m+1) ≥st [≤st] (m − i + 1)U(i:m), i = 2, 3, . . . , m.

The proof of Theorem 1.A.19 is not given here. A stronger version of
the DFR part of Theorem 1.A.19 is given in Theorem 1.B.31. Some of the
conclusions of Theorem 1.A.19 can be obtained under different conditions.
These are stated in the next two theorems. Again, the proofs are not given.
In the next two theorems we take X(0) ≡ 0, and thus U(1) = X(1). For the
following theorem recall from page 1 the definition of Schur concavity.

Theorem 1.A.20. Let X1, X2, . . . , Xm be nonnegative random variables with
an absolutely continuous joint distribution function. If the joint density func-
tion of X1, X2, . . . , Xm is Schur concave (Schur convex ), then

(m − i + 1)U(i:m) ≥st [≤st] (m − i)U(i+1:m), i = 1, 2, . . . , m − 1.

Theorem 1.A.21. Let X1, X2, . . . , Xm be independent exponential random
variables with possibly different parameters. Then

(m − i + 1)U(i:m) ≤st (m − i)U(i+1:m), i = 1, 2, . . . , m − 1.

Theorem 1.A.22. Let X1, X2, . . . , Xm be independent and identically distri-
buted random variables with a finite support, and with an increasing [decreas-
ing ] density function over that support. Then

U(i:m) ≥st [≤st] U(i+1:m), i = 2, 3, . . . , m − 1.

The proof of Theorem 1.A.22 uses the likelihood ratio order, and therefore
it is deferred to Section 1.C, Remark 1.C.3.

Note that any absolutely continuous DFR random variable has a decreas-
ing density function. Thus we see that the assumption in the DFR part of
Theorem 1.A.19 is stronger than the assumption in the decreasing part of
Theorem 1.A.22, but the conclusion in the DFR part of Theorem 1.A.19 is
stronger than the conclusion in the decreasing part of Theorem 1.A.22. It is
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of interest to compare Theorems 1.A.19–1.A.22 with Theorems 1.B.31 and
1.C.42.

From Theorem 1.A.1 it is obvious that if X(1) ≤ X(2) ≤ · · · ≤ X(m) are
the order statistics corresponding to the random variables X1, X2, . . . , Xm,
then X(1) ≤st X(2) ≤st · · · ≤st X(m). Now let X(1) ≤ X(2) ≤ · · · ≤ X(m) be
the order statistics corresponding to the random variables X1, X2, . . . , Xm,
and let Y(1) ≤ Y(2) ≤ · · · ≤ Y(m) be the order statistics corresponding to the
random variables Y1, Y2, . . . , Ym. As usual, for any distribution function F , we
let F ≡ 1 − F denote the corresponding survival function.

Theorem 1.A.23. (a) Let X1, X2, . . . , Xm be independent random variables
with distribution functions F1, F2, . . . , Fm, respectively. Let Y1, Y2, . . . , Ym

be independent and identically distributed random variables with a com-
mon distribution function G. Then X(i) ≤st Y(i) for all i = 1, 2, . . . , m if,
and only if,

m∏
j=1

Fj(x) ≥ Gm(x) for all x;

that is, if, and only if, X(m) ≤st Y(m).
(b) Let X1, X2, . . . , Xm be independent random variables with survival func-

tions F 1, F 2, . . . , Fm, respectively. Let Y1, Y2, . . . , Ym be independent and
identically distributed random variables with a common survival function
G. Then X(i) ≥st Y(i) for all i = 1, 2, . . . , m if, and only if,

m∏
j=1

F j(x) ≥ G
m

(x) for all x;

that is, if, and only if, X(1) ≥st Y(1).

The proof of Theorem 1.A.23 is not given here.
More comparisons of order statistics in the usual stochastic order can be

found in Theorem 6.B.23 and in Corollary 6.B.24.
The following neat example compares a sum of independent heterogeneous

exponential random variables with an Erlang random variable; it is of interest
to compare it with Examples 1.B.5 and 1.C.49. We do not give the proof here.

Example 1.A.24. Let Xi be an exponential random variable with mean λ−1
i >

0, i = 1, 2, . . . , m, and assume that the Xi’s are independent. Let Yi,
i = 1, 2, . . . , m, be independent, identically distributed, exponential random
variables with mean η−1. Then

m∑
i=1

Xi ≥st

m∑
i=1

Yi ⇐⇒ m
√

λ1λ2 · · ·λm ≤ η.

The next example may be compared with Examples 1.B.6, 1.C.51, and
4.A.45.
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Example 1.A.25. Let Xi be a binomial random variable with parameters ni

and pi, i = 1, 2, . . . , m, and assume that the Xi’s are independent. Let Y be a
binomial random variable with parameters n and p where n =

∑m
i=1 ni. Then

m∑
i=1

Xi ≥st Y ⇐⇒ p ≤ n

√
pn1
1 pn2

2 · · · pnm
m ,

and
m∑

i=1

Xi ≤st Y ⇐⇒ 1 − p ≤ n
√

(1 − p1)n1(1 − p2)n2 · · · (1 − pm)nm .

The following example gives necessary and sufficient conditions for the
comparison of normal random variables; it is generalized in Example 6.B.29.
See related results in Examples 3.A.51 and 4.A.46.

Example 1.A.26. Let X be a normal random variable with mean µX and vari-
ance σ2

X , and let Y be a normal random variable with mean µY and variance
σ2

Y . Then X ≤st Y if, and only if, µX ≤ µY and σ2
X = σ2

Y .

Example 1.A.27. Let the random variable X have a unimodal density, sym-
metric about 0. Then

(X + a)2 ≤st (X + b)2 whenever |a| ≤ |b|.
Example 1.A.28. Let X have a multivariate normal density with mean vector
0 and variance-covariance matrix Σ1. Let Y have a multivariate normal den-
sity with mean vector 0 and variance-covariance matrix Σ1 + Σ2, where Σ2
is a nonnegative definite matrix. Then

‖X‖2 ≤st ‖Y ‖2,

where ‖ · ‖ denotes the Euclidean norm.

The next result involves the total time on test (TTT) transform and the
observed TTT random variable. Let F be the distribution function of a non-
negative random variable, and suppose, for simplicity, that 0 is the left end-
point of the support of F . The TTT transform associated with F is defined
by

H−1
F (u) =

∫ F −1(u)

0
F (x)dx, 0 ≤ u ≤ 1, (1.A.19)

where F ≡ 1−F is the survival function associated with F . The inverse, HF , of
the TTT transform is a distribution function. If the mean µ =

∫∞
0 xdF (x) =∫∞

0 F (x)dx is finite, then HF has support in [0, µ]. If X has the distribution
function F , then let Xttt be any random variable that has the distribution
HF . The random variable Xttt is called the observed total time on test.

Theorem 1.A.29. Let X and Y be two nonnegative random variables. Then

X ≤st Y =⇒ Xttt ≤st Yttt.

See related results in Theorems 3.B.1, 4.A.44, 4.B.8, 4.B.9, and 4.B.29.
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1.A.5 Some properties in reliability theory

Recall from page 1 the definitions of the IFR, DFR, NBU, and NWU proper-
ties. The next result characterizes random variables that have these properties
by means of the usual stochastic order. The statements in the next theorem
follow at once from the definitions. Recall from Section 1.A.3 that for any
random variable Z and an event A we denote by [Z

∣∣A] any random variable
that has as its distribution the conditional distribution of Z given A.

Theorem 1.A.30. (a) The random variable X is IFR [DFR] if, and only if,
[X − t

∣∣X > t] ≥st [≤st] [X − t′
∣∣X > t′] whenever t ≤ t′.

(b) The nonnegative random variable X is NBU [NWU] if, and only if, X ≥st
[≤st] [X − t

∣∣X > t] for all t > 0.

Note that if X is the lifetime of a device, then [X − t
∣∣X > t] is the residual

life of such a device with age t. Theorem 1.A.30(a), for example, characterizes
IFR and DFR random variables by the monotonicity of their residual lives
with respect to the order ≤st. Theorem 1.A.30 should be compared to Theorem
1.B.38, where a similar characterization is given. Some multivariate analogs of
Theorem 1.A.30(a) are used in Section 6.B.6 to introduce some multivariate
IFR notions.

For a nonnegative random variable X with a finite mean, let AX denote
the corresponding asymptotic equilibrium age. That is, if the distribution
function of X is F , then the distribution function Fe of AX is defined by

Fe(x) =
1

EX

∫ x

0
F (y)dy, x ≥ 0, (1.A.20)

where F ≡ 1 − F is the corresponding survival function. Recall from page 1
the definitions of the NBUE and the NWUE properties. The following result
is immediate.

Theorem 1.A.31. The nonnegative random variable X with finite mean is
NBUE [NWUE] if, and only if, X ≥st [≤st] AX .

Another characterization of NBUE random variables is the following. Re-
call from Section 1.A.4 the definition of the observed total time on test random
variable Xttt.

Theorem 1.A.32. Let X be a nonnegative random variable with finite mean
µ. Then X is NBUE if, and only if,

Xttt ≥st U(0, µ),

where U(0, µ) denotes a uniform random variable on (0, µ).

Let X be a nonnegative random variable with finite mean and distribution
function F , and let AX be the corresponding asymptotic equilibrium age
having the distribution function Fe given in (1.A.20). The requirement
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X ≥st [AX − t
∣∣AX > t] for all t ≥ 0, (1.A.21)

has been used in the literature as a way to define an aging property of the
lifetime X. It turns out that this aging property is equivalent to the new better
than used in convex ordering (NBUC) notion that is defined in (4.A.31) in
Chapter 4.

1.B The Hazard Rate Order

1.B.1 Definition and equivalent conditions

If X is a random variable with an absolutely continuous distribution function
F , then the hazard rate of X at t is defined as r(t) = (d/dt)(− log(1−F (t))).
The hazard rate can alternatively be expressed as

r(t) = lim
∆t↓0

P{t < X ≤ t + ∆t
∣∣X > t}

∆t
=

f(t)
F (t)

, t ∈ R, (1.B.1)

where F ≡ 1 − F is the survival function and f is the corresponding density
function. As can be seen from (1.B.1), the hazard rate r(t) can be thought of
as the intensity of failure of a device, with a random lifetime X, at time t.
Clearly, the higher the hazard rate is the smaller X should be stochastically.
This is the motivation for the order discussed in this section.

Let X and Y be two nonnegative random variables with absolutely con-
tinuous distribution functions and with hazard rate functions r and q, respec-
tively, such that

r(t) ≥ q(t), t ∈ R. (1.B.2)

Then X is said to be smaller than Y in the hazard rate order (denoted as
X ≤hr Y ).

Although the hazard rate order is usually applied to random lifetimes
(that is, nonnegative random variables), definition (1.B.2) may also be used to
compare more general random variables. In fact, even the absolute continuity,
which is required in (1.B.2), is not really needed. It is easy to verify that
(1.B.2) holds if, and only if,

G(t)
F (t)

increases in t ∈ (−∞,max(uX , uY )) (1.B.3)

(here a/0 is taken to be equal to ∞ whenever a > 0). Here F denotes the
distribution function of X and G denotes the distribution function of Y , and
uX and uY denote the corresponding right endpoints of the supports of X
and of Y . Equivalently, (1.B.3) can be written as

F (x)G(y) ≥ F (y)G(x) for all x ≤ y. (1.B.4)
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Thus (1.B.3) or (1.B.4) can be used to define the order X ≤hr Y even if X
and/or Y do not have absolutely continuous distributions. A useful further
condition, which is equivalent to X ≤hr Y when X and Y have absolutely
continuous distributions with densities f and g, respectively, is the following:

f(x)
F (y)

≥ g(x)
G(y)

for all x ≤ y. (1.B.5)

Rewriting (1.B.4) as

F (t + s)
F (t)

≤ G(t + s)
G(t)

for all s ≥ 0 and all t,

it is seen that X ≤hr Y if, and only if,

P{X − t > s
∣∣X > t} ≤ P{Y − t > s

∣∣Y > t} for all s ≥ 0 and all t; (1.B.6)

that is, if, and only if, the residual lives of X and Y at time t are ordered in
the sense ≤st for all t. Equivalently, (1.B.6) can be written as

[X
∣∣X > t] ≤st [Y

∣∣Y > t] for all t. (1.B.7)

Substituting u = F
−1

(t) in (1.B.3) shows that X ≤hr Y if, and only if,

G F
−1

(u)
u

≥ G F
−1

(v)
v

for all 0 < u ≤ v < 1.

Simple manipulations show that the latter condition is equivalent to

1 − FG−1(1 − u)
u

≤ 1 − FG−1(1 − v)
v

for all 0 < u ≤ v < 1. (1.B.8)

For discrete random variables that take on values in N the definition of ≤hr
can be written in two different ways. Let X and Y be such random variables.
We denote X ≤hr Y if

P{X = n}
P{X ≥ n} ≥ P{Y = n}

P{Y ≥ n} , n ∈ N. (1.B.9)

Equivalently, X ≤hr Y if

P{X = n}
P{X > n} ≥ P{Y = n}

P{Y > n} , n ∈ N.

The discrete analog of (1.B.4) is that (1.B.9) holds if, and only if,

P{X ≥ n1}P{Y ≥ n2} ≥ P{X ≥ n2}P{Y ≥ n1} for all n1 ≤ n2. (1.B.10)

In a similar manner (1.B.3) and (1.B.5) can be modified in the discrete case.
Unless stated otherwise, we consider only random variables with absolutely
continuous distribution functions in the following sections.
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1.B.2 The relation between the hazard rate and the usual
stochastic orders

By setting x = −∞ in (1.B.4) (or n1 = −∞ in (1.B.10)), and then using
(1.A.1), we obtain the following result.

Theorem 1.B.1. If X and Y are two random variables such that X ≤hr Y ,
then X ≤st Y .

1.B.3 Closure properties and some characterizations

Let φ be a strictly increasing function with inverse φ−1. If X has the survival
function F , then φ(X) has the survival function Fφ−1. Similarly, if Y has the
survival function G, then φ(Y ) has the survival function Gφ−1. If X ≤hr Y ,
then from (1.B.3) it follows that

Gφ−1(t)
Fφ−1(t)

increases in t over {t : Gφ−1(t) > 0}.

We have thus shown an important special case of the next theorem. When φ
is just increasing (rather than strictly increasing) the result is still true, but
the above simple argument is no longer sufficient for its proof.

Theorem 1.B.2. If X ≤hr Y , and if φ is any increasing function, then
φ(X) ≤hr φ(Y ).

In general, if X1 ≤hr Y1 and X2 ≤hr Y2, where X1 and X2 are independent
random variables and Y1 and Y2 are also independent random variables, then
it is not necessarily true that X1 + X2 ≤hr Y1 + Y2. However, if these random
variables are IFR, then it is true. This is shown in Theorem 1.B.4, but first
we state and prove the following lemma, which is of independent interest.

Lemma 1.B.3. If the random variables X and Y are such that X ≤hr Y and
if Z is an IFR random variable independent of X and Y , then

X + Z ≤hr Y + Z. (1.B.11)

Proof. Denote by fW and FW the density function and the survival function
of any random variable W . Note that, for x ≤ y,
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FX+Z(x)FY +Z(y) − FX+Z(y)FY +Z(x)

=
∫

v

∫
u≥v

[
fX(u)FZ(x − u)fY (v)FZ(y − v)

+ fX(v)FZ(x − v)fY (u)FZ(y − u)
]
dudv

−
∫

v

∫
u≥v

[
fX(u)FZ(y − u)fY (v)FZ(x − v)

+ fX(v)FZ(y − v)fY (u)FZ(x − u)
]
dudv

=
∫

v

∫
u≥v

[
FX(u)fY (v) − fX(v)FY (u)

]
×
[
FZ(y − v)fZ(x − u) − fZ(y − u)FZ(x − v)

]
dudv,

where the second equality is obtained by integration by parts with respect to
u and by collection of terms. Since X ≤hr Y it follows from (1.B.5) that the
expression within the first set of brackets in the last integral is nonpositive.
Since Z is IFR it can be verified that the quantity in the second pair of brackets
in the last integral is also nonpositive. Therefore, the integral is nonnegative.
This proves (1.B.11). 
�

The above proof is very similar to the proof that a convolution of two
independent IFR random variables is IFR. In fact, this convolution result can
be shown to be a consequence of Lemma 1.B.3; see Corollary 1.B.39 in Section
1.B.5.

Theorem 1.B.4. Let (Xi, Yi), i = 1, 2, . . . , m, be independent pairs of ran-
dom variables such that Xi ≤hr Yi, i = 1, 2, . . . , m. If Xi, Yi, i = 1, 2, . . . , m,
are all IFR, then

m∑
i=1

Xi ≤hr

m∑
i=1

Yi.

Proof. Repeated application of (1.B.11), using the closure property of IFR
under convolution, yields the desired result. 
�

The following neat example compares a sum of independent heterogeneous
exponential random variables with an Erlang random variable; it is of interest
to compare it with Examples 1.A.24 and 1.C.49. We do not give the proof
here.

Example 1.B.5. Let Xi be an exponential random variable with mean λ−1
i > 0,

i = 1, 2, . . . , m, and assume that the Xi’s are independent. Let Yi, i =
1, 2, . . . , m, be independent, identically distributed, exponential random vari-
ables with mean η−1. Then

m∑
i=1

Xi ≥hr

m∑
i=1

Yi ⇐⇒ m
√

λ1λ2 · · ·λm ≤ η.
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The next example may be compared with Examples 1.A.25, 1.C.51, and
4.A.45.

Example 1.B.6. Let Xi be a binomial random variable with parameters ni

and pi, i = 1, 2, . . . , m, and assume that the Xi’s are independent. Let Y be a
binomial random variable with parameters n and p where n =

∑m
i=1 ni. Then

m∑
i=1

Xi ≥hr Y ⇐⇒ p ≤ n∑m
i=1(ni/pi)

,

and
m∑

i=1

Xi ≤hr Y ⇐⇒ 1 − p ≤ n∑m
i=1(ni/(1 − pi))

.

A hazard rate order comparison of random sums is given in the following
result.

Theorem 1.B.7. Let {Xi, i = 1, 2, . . . } be a sequence of nonnegative IFR
independent random variables. Let M and N be two discrete positive integer-
valued random variables such that M ≤hr N (in the sense of (1.B.9) or
(1.B.10)), and assume that M and N are independent of the Xi’s. Then

M∑
i=1

Xi ≤hr

N∑
i=1

Xi.

The hazard rate order (unlike the usual stochastic order; see Theorem
1.A.3(d)) does not have the property of being simply closed under mixtures.
However, under quite strong conditions the order ≤hr is closed under mixtures.
This is shown in the next theorem.

Theorem 1.B.8. Let X, Y , and Θ be random variables such that [X
∣∣Θ =

θ] ≤hr [Y
∣∣Θ = θ′] for all θ and θ′ in the support of Θ. Then X ≤hr Y .

Proof. Select a θ and a θ′ in the support of Θ. Let F (·
∣∣θ), G(·

∣∣θ), F (·
∣∣θ′),

and G(·
∣∣θ′) be the survival functions of [X

∣∣Θ = θ], [Y
∣∣Θ = θ], [X

∣∣Θ =
θ′], and [Y

∣∣Θ = θ′], respectively. For simplicity assume that these random
variables have densities which we denote by f(·

∣∣θ), g(·
∣∣θ), f(·

∣∣θ′), and g(·
∣∣θ′),

respectively. It is sufficient to show that for α ∈ (0, 1) we have

αf(t
∣∣θ) + (1 − α)f(t

∣∣θ′)
αF (t

∣∣θ) + (1 − α)F (t
∣∣θ′)

≥
αg(t

∣∣θ) + (1 − α)g(t
∣∣θ′)

αG(t
∣∣θ) + (1 − α)G(t

∣∣θ′)
for all t ≥ 0.

(1.B.12)
This is an inequality of the form

a + b

c + d
≥ w + x

y + z
,
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where all eight variables are nonnegative and by the assumptions of the the-
orem they satisfy

a

c
≥ w

y
,

a

c
≥ x

z
,

b

d
≥ w

y
, and

b

d
≥ x

z
.

It is easy to verify that the latter four inequalities imply the former one,
completing the proof of the theorem. 
�

It should be pointed out, however, that mixtures, of distributions which
are ordered by the hazard rate order, are ordered by the usual stochastic
order. That is, if X, Y , and Θ are random variables such that [X

∣∣Θ = θ] ≤hr

[Y
∣∣Θ = θ] for all θ in the support of Θ, then X ≤st Y . This follows from a

(conditional) application of Theorem 1.B.1, combined with the fact that the
usual stochastic order is closed under mixtures (Theorem 1.A.3(d)).

In order to state the next characterization we define the following class of
bivariate functions.

Ghr =
{
φ : R

2 → R : φ(x, y) is increasing in x, for each y, on {x ≥ y},

and is decreasing in y, for each x, on {y ≥ x}
}
.

Theorem 1.B.9. Let X and Y be independent random variables. Then X ≤hr
Y if, and only if,

φ(X, Y ) ≤st φ(Y, X) for all φ ∈ Ghr. (1.B.13)

Proof. Suppose that (1.B.13) holds. Select an x and a y such that x ≥ y. Let
φ(u, v) = I{u≥x,v≥y}, where IA denotes the indicator function of the set A. It
is easy to see that φ(u, v) is increasing in u. In addition, for a fixed u and v
such that v ≥ u, we have that φ(u, v) = 1 if u ≥ x and φ(u, v) = 0 if u < x.
Therefore, φ ∈ Ghr. Hence,

F (y)G(x) = Eφ(Y, X) ≥ Eφ(X, Y ) = F (x)G(y) whenever x ≥ y,

where F and G are the survival functions of X and Y , respectively. Therefore,
by (1.B.4), X ≤hr Y .

Conversely, assume that X ≤hr Y . Let ψ : R → R be an increasing function
and let φ ∈ Ghr. Denote a(x, y) = ψ(φ(x, y)) − ψ(φ(y, x)). For simplicity
assume that a is differentiable and that X and Y have densities that we
denote by f and g, respectively (otherwise, approximation arguments can be
used). Then

Ea(X, Y ) =
∫ ∞

y=−∞

∫
x≥y

a(x, y)[f(x)g(y) − f(y)g(x)]dxdy

=
∫ ∞

y=−∞

∫
x≥y

∂

∂x
a(x, y)

[
F (x)g(y) − f(y)G(x)

]
dxdy ≤ 0,
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where the second equality follows from integration by parts, and the inequality
follows from X ≤hr Y , the fact that a(x, y) increases in x for all x ≥ y, and
(1.B.5). 
�

The next result is a similar characterization. It uses the notation of The-
orem 1.A.10, and their comparison is of interest. The proof of the following
theorem is omitted.

Theorem 1.B.10. Let X and Y be two independent random variables. Then
X ≤hr Y if, and only if,

Eφ1(X, Y ) ≤ Eφ2(X, Y )

for all φ1 and φ2 such that, for each x, ∆φ21(x, y) increases in y on {y ≥ x},
and such that ∆φ21(x, y) ≥ −∆φ21(y, x) whenever x ≤ y.

A further similar characterization is given in Theorem 4.A.36. The next
result describes another characterization of the order ≤hr.

Theorem 1.B.11. Let X and Y be two, absolutely continuous or discrete,
independent random variables. Then X ≤hr Y if, and only if,

[X
∣∣min(X, Y ) = z] ≤hr [Y

∣∣min(X, Y ) = z] for all z. (1.B.14)

Also, X ≤hr Y if, and only if,

[X
∣∣min(X, Y ) = z] ≤st [Y

∣∣min(X, Y ) = z] for all z. (1.B.15)

Proof. First suppose that X and Y are absolutely continuous. Denote the
survival functions of X and Y by F and G, respectively, and denote the
corresponding density functions by f and g. Then

P [X > x
∣∣min(X, Y ) = z] =

{
1, if x < z,

F (x)g(z)
f(z)G(z)+g(z)F (z)

, if x ≥ z,
(1.B.16)

and

P [Y > x
∣∣min(X, Y ) = z] =

{
1, if x < z,

G(x)f(z)
f(z)G(z)+g(z)F (z)

, if x ≥ z.
(1.B.17)

Therefore

P [Y > x| min(X, Y ) = z]
P [X > x| min(X, Y ) = z]

=

{
1, if x < z,
G(x)
F (x)

· f(z)
g(z) , if x ≥ z.

(1.B.18)

If X ≤hr Y , then G(z)
F (z)

· f(z)
g(z) ≥ 1, and G(x)

F (x)
is increasing in x. Thus (1.B.18) is

increasing in x, and (1.B.14) follows. Obviously (1.B.15) follows from (1.B.14).
Now suppose that (1.B.15) holds. Then from (1.B.16) and (1.B.17) we get

that F (x)g(z) ≤ G(x)f(z) for all x ≥ z. Therefore X ≤hr Y by (1.B.5).
The proof when X and Y are discrete is similar. 
�
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Some related characterizations are given in the next result.

Theorem 1.B.12. Let X and Y be two independent random variables. The
following conditions are equivalent:

(a) X ≤hr Y .
(b) E[α(X)]E[β(Y )] ≤ E[α(Y )]E[β(X)] for all functions α and β for which

the expectations exist and such that β is nonnegative and α/β and β are
increasing.

(c) For any two increasing functions a and b such that b is nonnegative, if
E[a(X)b(X)] = 0, then E[a(Y )b(Y )] ≥ 0.

Proof. Assume (a). Let α and β be as in (b). Define φ1(x, y) = α(x)β(y)
and φ2(x, y) = α(y)β(x). Then ∆φ21(x, y) = φ2(x, y) − φ1(x, y) = β(x)β(y) ·
[α(y)/β(y) − α(x)/β(x)], which is increasing in y. Note that ∆φ21(x, y) +
∆φ21(y, x) = 0. Condition (b) now follows from Theorem 1.B.10.

Assume (b). By taking, for some u ≤ v, α(x) = I(v,∞)(x) and β(x) =
I(u,∞)(x) in (b) one obtains (1.B.4), from which (a) follows.

Assume (b). Let a and b be two increasing functions such that b is nonnega-
tive and such that E[a(X)b(X)] = 0. Define β(x) = b(x) and α(x) = a(x)b(x).
Substitution in (b) yields E[a(Y )b(Y )] ≥ 0; that is, (c) holds.

Assume (c). Let α and β be as in (b). Denote c = E[α(X)]/E[β(X)].
Define a(x) = α(x)/β(x) − c and b(x) = β(x). Then E[a(X)b(X)] = 0.
So, by (c), E[a(Y )b(Y )] ≥ 0. But the latter reduces to E[α(X)]E[β(Y )] ≤
E[α(Y )]E[β(X)], and this establishes (b). 
�

Example 1.B.13. Let {N(t), t ≥ 0} be a nonhomogeneous Poisson process
with mean function Λ (that is, Λ(t) ≡ E[N(t)], t ≥ 0). Let T1, T2, . . . be the
successive epoch times, and let Xn ≡ Tn − Tn−1, n = 1, 2 . . . (where T0 ≡ 0),
be the corresponding inter-epoch times. The survival function of Tn is given
by P{Tn > t} =

∑n−1
i=0

(Λ(t))i

i! · e−Λ(t), t ≥ 0, n = 1, 2, . . .. It is easy to verify
that P{Tn+1>t}

P{Tn>t} is increasing in t ≥ 0, n = 1, 2, . . ., and thus, by (1.B.3),

Tn ≤hr Tn+1, n = 1, 2, . . . . (1.B.19)

A result that is stronger than (1.B.19) is given in Example 1.C.47.
If we denote by Fn the distribution function of Tn, then

P{Xn+1 > t} =
∫ ∞

0
P{Tn+1 − Tn > t

∣∣Tn = u}dFn(u)

=
∫ ∞

0
exp{−[Λ(t + u) − Λ(u)]}dFn(u)

= E[exp{−[Λ(t + Tn) − Λ(Tn)]}, n = 0, 1, . . . .

Fix t1 ≤ t2 and let α(x) ≡ exp{−[Λ(t2 +x)−Λ(x)]} and β(x) ≡ exp{−[Λ(t1 +
x) − Λ(x)]}. Note that if Λ is concave, then α(x)/β(x) is increasing. Thus, by
Theorem 1.B.12(b), if Λ is concave, then
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P{Xn+1 > t2}
P{Xn > t2}

=
E[α(Tn)]

E[α(Tn−1)]
≥ E[β(Tn)]

E[β(Tn−1)]
=

P{Xn+1 > t1}
P{Xn > t1}

,

n = 1, 2, . . . .

It follows, by (1.B.3), that

Xn ≤hr Xn+1, n = 1, 2, . . . .

It can be shown in a similar manner that if Λ is convex, then Xn ≥hr Xn+1,
n = 1, 2, . . ..

As another example of the use of Theorem 1.B.12 consider an increasing
convex function H such that H(0) = 0. Let X and Y be nonnegative random
variables such that X ≤hr Y . Then

E[H(X)]
E[X]

≤ E[H(Y )]
E[Y ]

.

Rather than using Theorem 1.B.12, one can also obtain the above inequal-
ity from (2.B.5) in Chapter 2, and from the fact that the hazard rate order
implies the hmrl order (which is discussed there).

Other characterizations of the order ≤hr can be found in Theorems 2.A.6
and 5.A.22.

Consider now a family of distribution functions {Gθ, θ ∈ X} where X is a
subset of the real line. As in Section 1.A.3 let X(θ) denote a random variable
with distribution function Gθ. For any random variable Θ with support in X ,
and with distribution function F , let us denote by X(Θ) a random variable
with distribution function H given by

H(y) =
∫

X
Gθ(y)dF (θ), y ∈ R.

The following result generalizes both Theorems 1.B.2 and 1.B.8, just as The-
orem 1.A.6 generalized both parts (a) and (c) of Theorem 1.A.3.

Theorem 1.B.14. Consider a family of distribution functions {Gθ, θ ∈ X}
as above. Let Θ1 and Θ2 be two random variables with supports in X and
distribution functions F1 and F2, respectively. Let Y1 and Y2 be two random
variables such that Yi =st X(Θi), i = 1, 2, that is, suppose that the survival
function of Yi is given by

Hi(y) =
∫

X
Gθ(y)dFi(θ), y ∈ R, i = 1, 2.

If
X(θ) ≤hr X(θ′) whenever θ ≤ θ′, (1.B.20)

and if
Θ1 ≤hr Θ2, (1.B.21)

then
Y1 ≤hr Y2. (1.B.22)
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Proof. Assumption (1.B.20) means that Gθ(y) is TP2 (totally positive of
order 2) as a function of θ ∈ X and of y ∈ R (that is, Gθ(y)Gθ′(y′) ≥
Gθ(y′)Gθ′(y) whenever y ≤ y′ and θ ≤ θ′). Assumption (1.B.21) means that
F i(θ), as a function of i ∈ {1, 2} and of θ ∈ X , is TP2. Also, from Theorem
1.B.1 it follows that Gθ(y) is increasing in θ. Therefore, by Theorem 2.1 of
Joag-Dev, Kochar, and Proschan [259], Hi(y) is TP2 in i ∈ {1, 2} and y ∈ R.
That gives (1.B.22). 
�

The following example shows an interesting and useful application of The-
orem 1.B.14

Example 1.B.15. Let {Xi
n, n ≥ 0} be a Markov chain with state space

{1, 2, . . . , M} (M can be infinity) and transition matrix P , which starts from
state i; that is, Xi

0 = i. If Xi
1 ≤hr Xi′

1 for all i ≤ i′, then

(a) I1 ≤hr I2 implies that XI1
n ≤hr XI2

n for all n ≥ 0, and
(b) X1

n ≤hr X1
n′ whenever n ≤ n′.

In order to prove (a), first note that the result is trivial for n = 0. Suppose
that the result is true for n = k. Define Y (i) = Xi

1. By the Markov property,
we have Xi

k+1 =st Y (Xi
k) for all i. By induction, XI1

k ≤hr XI2
k . In particular,

Y (Xi
k) ≤hr Y (Xi′

k ) for all i ≤ i′. Therefore, from Theorem 1.B.14 we get
XI1

k+1 = Y (XI1
k ) ≤hr Y (XI2

k ) = XI2
k+1.

In order to prove (b), note that X1
0 = 1 ≤hr X1

1 . So, by (a) and the Markov
property we have X1

n ≤hr X
X1

1
n =st X1

n+1.

The following example shows an application of Theorem 1.B.14 in the area
of Bayesian imperfect repair.

Example 1.B.16. Let Θ1 and Θ2 be two random variables as in Example 1.A.7.
Let Gθ, X(θ), Y1, and Y2 also be as in Example 1.A.7. Note that (1.B.20) holds

because K
1−θ′

(y)/K
1−θ

(y) is increasing in y whenever 0 < θ ≤ θ′ ≤ 1. Thus,
if Θ1 ≤hr Θ2, then Y1 ≤hr Y2.

It is of interest to compare Example 1.B.16 to Example 5.B.13 which deals
with random minima and maxima.

The next example deals with the same proportional hazard model as in
Example 1.B.16; however, for convenience we change the notation.

Example 1.B.17. Let Θ and X be two nonnegative random variables with
distribution function F and G, respectively. Let Y have the survival function
H defined as

H(y) =
∫ ∞

0
G

θ
(y)dF (θ), y ≥ 0.

Suppose that G is absolutely continuous with hazard rate function r. Then
H is also absolutely continuous, and we denote its hazard rate function by
q. We will now show that if EΘ ≤ 1, then X ≤hr Y . In order to see it,
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write H(y) = M(log G(y)), where M is the moment generating function of Θ.
Differentiating − log H(y) we obtain

q(y) = − d
dy

log H(y) = r(y)
M ′(log G(y))
M(log G(y))

= r(y)
EΘeΘ log G(y)

EeΘ log G(y)
≤ r(y)

EΘEeΘ log G(y)

EeΘ log G(y)
= r(y)EΘ ≤ r(y),

where the first inequality follows from Chebyshev’s Inequality (that is, Cov(Θ,

eΘ log G(y)) ≤ 0), and the second inequality follows from EΘ ≤ 1. The stated
result now follows from (1.B.2).

The following result gives a Laplace transform characterization of the order
≤hr. It should be compared with Theorem 1.A.13.

Theorem 1.B.18. Let X1 and X2 be two nonnegative random variables, and
let Nλ(X1) and Nλ(X2) be as described in Theorem 1.A.13. Then

X1 ≤hr X2 ⇐⇒ Nλ(X1) ≤hr Nλ(X2) for all λ > 0,

where the notation Nλ(X1) ≤hr Nλ(X2) is in the sense of (1.B.9).

Proof. First suppose that X1 ≤hr X2. Denote

Γλ(n, x) = λe−λx (λx)n−1

(n − 1)!
, n ≥ 1, x ≥ 0.

Let αX1
λ (n) = P{Nλ(X1) ≥ n} and αX2

λ (n) = P{Nλ(X2) ≥ n} be as in the
proof of Theorem 1.A.13. Then it can be verified that

αX1
λ (n) =

∫ ∞

0
Γλ(n, x)F 1(x)dx and αX2

λ (n) =
∫ ∞

0
Γλ(n, x)F 2(x)dx,

where F 1 and F 2 are the survival functions corresponding to X1 and X2. For
n1 ≤ n2, some computation yields

αX1
λ (n1)αX2

λ (n2) − αX1
λ (n2)αX2

λ (n1)

=
∫ ∞

y=0

∫ y

x=0
[Γλ(n1, x)Γλ(n2, y) − Γλ(n1, y)Γλ(n2, x)]

×
[
F 1(x)F 2(y) − F 1(y)F 2(x)

]
dxdy.

It is not hard to verify that if x ≤ y and n1 ≤ n2, then [Γλ(n1, x)Γλ(n2, y) −
Γλ(n1, y)Γλ(n2, x)] ≥ 0. Also, using (1.B.4) it is seen that X1 ≤hr X2 implies[
F 1(x)F 2(y)−F 1(y)F 2(x)

]
≥ 0 for x ≤ y. Thus, from (1.B.10) it is seen that

Nλ(X1) ≤hr Nλ(X2).
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Now suppose that Nλ(X1) ≤hr Nλ(X2) for every λ > 0. Define c(n, λ) =
αX1

λ (n)/αX2
λ (n). It can be shown that c(n, λ) increases in λ and decreases in

n. Thus, c(n, n/x) ≥ c(n, n/y) whenever x ≤ y. Letting n → ∞ shows that
F 1(x)/F 2(x) ≥ F 1(y)/F 2(y) for all continuity points x and y of F1 and F2
such that x ≤ y. Thus, from (1.B.3) it is seen that X1 ≤hr X2. 
�

The implication =⇒ in Theorem 1.B.18 can be generalized in the same
manner that Theorem 1.A.14 generalizes the implication =⇒ in Theorem
1.A.13. We will not state the result here since it is equivalent to Theorem
1.B.14.

A related result is the following.

Theorem 1.B.19. Let X1, X2, . . . , Xm, Θ1, and Θ2 be independent nonneg-
ative random variables. Define

Nj(t) =
n∑

i=1

I[ΘjXi](t), t ≥ 0, j = 1, 2,

where

I[ΘjXi](t) =

{
1 if ΘjXi > t,

0 if ΘjXi ≤ t.

If Θ1 ≤hr Θ2 then N1(t) ≤hr N2(t) in the sense of (1.B.9) for all t ≥ 0.

The following easy-to-prove result strengthens Theorem 1.A.15. An even
stronger result appears in Theorem 1.C.27.

Theorem 1.B.20. Let X be any random variable. Then X(−∞,a] and X(a,∞)
are increasing in a in the sense of the hazard rate order.

In Theorem 1.A.17 it was seen that if φ is a function which satisfies that
φ(x) ≤ x for all x ∈ R, then φ(X) ≤st X. The order ≤hr does not satisfy such
a general property. However, we have the following easy-to-prove result.

Theorem 1.B.21. Let X be a nonnegative IFR random variable, and let a ≤
1 be a positive constant. Then aX ≤hr X.

In fact, a necessary and sufficient condition for a nonnegative random
variable X, with survival function F , to satisfy aX ≤hr X for all 0 < a < 1,
is that log F (ex) is concave in x ≥ 0.

In the next result it is shown that a random variable, whose distribution
is the mixture of two distributions of hazard rate ordered random variables, is
bounded from below and from above, in the hazard rate order sense, by these
two random variables.

Theorem 1.B.22. Let X and Y be two random variables with distribution
functions F and G, respectively. Let W be a random variable with the dis-
tribution function pF + (1 − p)G for some p ∈ (0, 1). If X ≤hr Y , then
X ≤hr W ≤hr Y .
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Proof. Let uX , uY , and uW denote the right endpoints of the supports of the
corresponding random variables, and note that max(uX , uW ) = max(uX , uY ).
Now, if X ≤hr Y , then

pF (t) + (1 − p)G(t)
F (t)

= p + (1 − p)
G(t)
F (t)

is increasing in t ∈ (−∞,max(uX , uW )). Therefore, by (1.B.3), X ≤hr W .
The proof that W ≤hr Y is similar. 
�

Example 1.B.23. For a nonnegative random variable X with density function
f , and for a nonnegative function w such that E[w(X)] exists, define Xw as
the random variable with the so-called weighted density function fw given by

fw(x) =
w(x)f(x)
E[w(X)]

, x ≥ 0.

Similarly, for another nonnegative random variable Y with density function g,
such that E[w(Y )] exists, define Y w as the random variable with the density
function gw given by

gw(x) =
w(x)g(x)
E[w(Y )]

, x ≥ 0.

We will show that if w is increasing, then

X ≤hr Y =⇒ Xw ≤hr Y w. (1.B.23)

In order to do this, first note that the hazard rate function rXw of Xw is given
by

rXw(x) =
w(x)rX(x)

E[w(X)
∣∣X > x]

, x ≥ 0,

where rX is the hazard rate function of X. Similarly, the hazard rate function
rY w of Y w is given by

rY w(x) =
w(x)rY (x)

E[w(Y )
∣∣Y > x]

, x ≥ 0,

where rY is the hazard rate function of Y . Now, from X ≤hr Y it follows
that [X

∣∣X > x] ≤hr [Y
∣∣Y > x] for all x ≥ 0. Next, using Theorem 1.B.2 and

the monotonicity of w, we get that [w(X)
∣∣X > x] ≤hr [w(Y )

∣∣Y > x], and
therefore, by Theorem 1.B.1, E[w(X)

∣∣X > x] ≤ E[w(Y )
∣∣Y > x]. Combining

this inequality with rX ≥ rY , it is seen that rXw ≥ rY w .
The above random variables are also studied in Example 1.C.59.
In particular, taking w to be the identity function w(x) = x, we see from

(1.B.23) that the hazard rate ordering of X and Y implies the hazard rate
ordering of the corresponding spread (or length-biased) random variables. See
Example 8.B.12 for another result involving spreads.
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Analogous to the result in Remark 1.A.18, it can be shown that the set
of all distribution functions on R ∪ {∞} is a lattice with respect to the order
≤hr.

The following example may be compared to Examples 1.C.48, 2.A.22,
3.B.38, 4.B.14, 6.B.41, 6.D.8, 6.E.13, and 7.B.13.

Example 1.B.24. Let X and Y be two absolutely continuous nonnegative
random variables with survival functions F and G, respectively. Denote
Λ1 = − log F , Λ2 = − log G, and λi = Λ′

i, i = 1, 2. Consider two nonhomoge-
neous Poisson processes N1 = {N1(t), t ≥ 0} and N2 = {N2(t), t ≥ 0} with
mean functions Λ1 and Λ2 (see Example 1.B.13), respectively. Let Ti,1, Ti,2, . . .
be the successive epoch times of process Ni, i = 1, 2. Note that X =st T1,1
and Y =st T2,1.

It turns out that the hazard rate ordering of the first two epoch times
implies the hazard rate ordering of all the corresponding later epoch times;
that is, it will be shown below that if X ≤hr Y , then T1,n ≤hr T2,n, n ≥ 1.

The survival function F 1,n of T1,n is given by

F 1,n(t) = P (T1,n > t) =
n−1∑
j=0

(Λ1(t))j

j!
e−Λ1(t) = Γn(Λ1(t)), t ≥ 0, (1.B.24)

where Γn is the survival function of the gamma distribution with scale pa-
rameter 1 and shape parameter n. The corresponding density function f1,n is
given by

f1,n(t) = γn(Λ1(t))λ1(t), t ≥ 0,

where γn is the density function associated with Γn. The corresponding hazard
rate function rF1,n is given by

rF1,n(t) = rΓn(Λ1(t))λ1(t), t ≥ 0,

where rΓn is the hazard rate function associated with Γn. Similarly,

rF2,n(t) = rΓn(Λ2(t))λ2(t), t ≥ 0.

If X ≤hr Y , then

rF1,n(t) = rΓn(Λ1(t))λ1(t) ≥ rΓn(Λ2(t))λ2(t) = rF2,n(t), t ≥ 0,

where the inequality follows from λ1(t) ≥ λ2(t), Λ1(t) ≥ Λ2(t), and the fact
that the hazard rate function of the gamma distribution described above is
increasing.

Now let Xi,n ≡ Ti,n − Ti,n−1, n ≥ 1 (where Ti,0 ≡ 0), be the inter-epoch
times of the process Ni, i = 1, 2. Again, note that X =st X1,1 and Y =st X2,1.
It turns out that, under some conditions, the hazard rate ordering of the first
two inter-epoch times implies the hazard rate ordering of all the corresponding
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later inter-epoch times. Explicitly, it will be shown below that if X ≤hr Y ,
and if F and G are logconvex (that is, X and Y are DFR), and if

λ2(t)
λ1(t)

is increasing in t ≥ 0, (1.B.25)

then X1,n ≤hr X2,n for each n ≥ 1.
For the purpose of this proof let us denote F by F1, and G by F2. Let Gi,n

denote the survival function of Xi,n, i = 1, 2. The stated result is obvious for
n = 1, so let us fix an n ≥ 2. Then, from (7) in Baxter [62] we obtain

Gi,n(t) =
∫ ∞

0
λi(s)

Λn−2
i (s)

(n − 2)!
F i(s + t)ds, t ≥ 0, i ∈ {1, 2}. (1.B.26)

Condition (1.B.25) means that

λi(t) is TP2 (totally positive of order 2) in (i, t).

Condition (1.B.25) also implies that Λ2(t)/Λ1(t) is increasing in t ≥ 0, that
is, Λi(t) is TP2 in (i, t). Since a product of TP2 kernels is TP2 we get that

λi(t)
Λn−2

i (t)
(n − 2)!

is TP2 in (i, t).

The assumption F1 ≤hr F2 implies that

F i(s + t) is TP2 in (i, s) and in (i, t).

Finally, the logconvexity of F 1 and of F 2 means that

F i(s + t) is TP2 in (s, t).

Thus, by Theorem 5.1 on page 123 of Karlin [275], we get that Gi,n(t) is TP2
in (i, t); that is, X1,n ≤hr X2,n.

The inequality X1,n ≤hr X2,n, n ≥ 1, can also be obtained under slightly
weaker assumptions, namely, that X ≤hr Y , that (1.B.25) holds, and that
either X or Y is DFR; see Hu and Zhuang [245].

Example 1.B.25. Let X1, X2, Y1, and Y2 be independent, nonnegative random
variables such that X1 =st X2 and Y1 =st Y2. Denote by λX and λY the
hazard rate functions of X1 and Y1, respectively. If X1 ≤hr Y1, and if λY /λX

is decreasing on [0, 1), then

min{max(X1, X2), max(Y1, Y2)} ≤hr min{max(X1, Y1), max(X2, Y2)}.
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1.B.4 Comparison of order statistics

Let X1, X2, . . . , Xm be random variables. As usual denote the corresponding
order statistics by X(1) ≤ X(2) ≤ · · · ≤ X(m). When we want to emphasize
the dependence on m, we denote the order statistics by X(1:m) ≤ X(2:m) ≤
· · · ≤ X(m:m). The following three theorems compare the order statistics in
the hazard rate order.

Theorem 1.B.26. If X1, X2, . . . , Xm are independent random variables, then
X(k) ≤hr X(k+1) for k = 1, 2, . . . , m − 1.

A relatively simple proof of Theorem 1.B.26 can be obtained using the
likelihood ratio order which is discussed in the next section. Therefore the
proof of this theorem will be given there in Remark 1.C.40.

Theorem 12.5 in Cramer and Kamps [136] extends Theorem 1.B.26 to the
so called sequential order statistics.

Further comparisons of order statistics are given in the next two theorems.

Theorem 1.B.27. Let X1, X2, . . . , Xm be independent random variables. If
Xj ≤hr Xm for all j = 1, 2, . . . , m − 1, then X(k−1:m−1) ≤hr X(k:m) for
k = 2, 3, . . . , m.

Theorem 1.B.28. If X1, X2, . . . , Xm are independent random variables, then
X(k:m−1) ≥hr X(k:m) for k = 1, 2, . . . , m − 1.

From Theorem 1.B.27 it follows that if X1, X2, . . . , Xm are independent
random variables, then

X(1:1) ≥hr X(1:2) ≥hr · · · ≥hr X(1:m). (1.B.27)

One may wonder what kind of results of this type hold without the indepen-
dence assumption. Since X(1:1) ≥ X(1:2) ≥ · · · ≥ X(1:m) a.s., it follows from
Theorem 1.A.1 that X(1:1) ≥st X(1:2) ≥st · · · ≥st X(1:m) hold without any (in-
dependence) assumption. However, a counterexample in the literature shows
that (1.B.27) does not always hold. We now describe some conditions under
which (1.B.27) holds.

Let X = (X1, X2, . . . , Xm) be a random vector with a partially differ-
entiable survival function F . The function R = − log F is called the hazard
function of X, and the vector rX of partial derivatives, defined by

rX(x) =
(
r
(1)
X (x), r(2)

X (x), . . . , r(m)
X (x)

)
=
( ∂

∂x1
R(x),

∂

∂x2
R(x), . . . ,

∂

∂xm
R(x)

)
, (1.B.28)

for all x ∈ {x : F (x) > 0}, is called the hazard gradient of X; see Johnson
and Kotz [264] and Marshall [381]. Note that r

(i)
X (x) can be interpreted as

the conditional hazard rate of Xi evaluated at xi, given that Xj > xj for all
j �= i. That is,
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r
(i)
X (x) =

fi(xi|Xj > xj , j �= i)
F i(xi|Xj > xj , j �= i)

,

where fi(·|Xj > xj , j �= i) and F i(·|Xj > xj , j �= i) are the conditional density
and survival functions of Xi, given that Xj > xj for all j �= i. For convenience,
here and below we set r

(i)
X (x) = ∞ for all x ∈ {x : F (x) = 0}.

For any subset P ⊆ {1, 2, . . . , m} define

YP = min
i∈P

Xi.

Denote

1P (i) =

{
0 if i /∈ P,

1 if i ∈ P,

1P = (1P (1), 1P (2), . . . , 1P (m)), and 1P c = 1 − 1P ,

where 1 = (1, 1, . . . , 1), and P c denotes the complement of P in {1, 2, . . . , m}.
Also denote

∞ · 1P c(i) =

{
0 if i /∈ P c,

∞ if i ∈ P c,

and ∞ · 1P c = (∞ · 1P c(1),∞ · 1P c(2), . . . ,∞ · 1P c(m)). Then the survival
function GP of YP can be expressed as

GP (t) = F (t · 1P − ∞ · 1P c), t ∈ R.

Theorem 1.B.29. Let (X1, X2, . . . , Xm) be a random vector with an ab-
solutely continuous distribution function. Let P and Q be two subsets of
{1, 2, . . . , m} such that P ⊂ Q. If

r(i)(t · 1P − ∞ · 1P c) ≤ r(i)(t · 1Q − ∞ · 1Qc), t ∈ R, i ∈ P, (1.B.29)

then
YP ≥hr YQ.

A sufficient condition for (1.B.29) is that

r(i)(x1, x2, . . . , xm) is increasing in xj , j �= i, i = 1, 2, . . . , m.

This is easily seen to be equivalent to the requirement that

F (x1, . . . , xi−1, x
′
i, xi+1, . . . , xm)

F (x1, . . . , xi−1, xi, xi+1, . . . , xm)
is decreasing in xj , j �= i, whenever xi ≤ x′

i, i = 1, 2, . . . , m. (1.B.30)

Condition (1.B.30) means that F is RR2 (reverse regular of order 2) in pairs;
see Karlin [275]. In particular, it holds when X1, X2, . . . , Xm are independent.
Karlin and Rinott [279] showed that some multivariate normal distributions,
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as well as the Dirichlet distribution, are RR2 in pairs. So Theorem 1.B.29
applies to these distributions.

When (X1, X2, . . . , Xm) has an exchangeable distribution function, then
the corresponding multivariate hazard function R is permutation symmetric.
Therefore each r(i) can be expressed by means of r(1) as follows

r(i)(x1, x2, . . . , xi−1, xi, xi+1, . . . , xm)

= r(1)(xi, x2, . . . , xi−1, x1, xi+1, . . . , xm), i = 2, 3, . . . , m.

Corollary 1.B.30. Let (X1, X2, . . . , Xm) be a random vector with an abso-
lutely continuous exchangeable distribution function. If

r(1)(t, t, . . . , t︸ ︷︷ ︸
i times

,−∞,−∞, . . . ,−∞︸ ︷︷ ︸
m−i times

) ≤ r(1)(t, t, . . . , t︸ ︷︷ ︸
i+1 times

,−∞,−∞, . . . ,−∞︸ ︷︷ ︸
m−i−1 times

),

t ∈ R, i = 1, 2, . . . , m − 1, (1.B.31)

then
X(1:1) ≥hr X(1:2) ≥hr · · · ≥hr X(1:m). (1.B.32)

If (1.B.31) is not imposed, then (1.B.32) need not be true; this follows
from a counterexample in the literature.

The following result strengthens the DFR part of Theorem 1.A.19. Recall
that the spacings that correspond to the random variables X1, X2, . . . , Xm are
denoted by U(i) = X(i) − X(i−1), i = 2, 3, . . . , m, where the X(i)’s are the cor-
responding order statistics. When the dependence on m is to be emphasized,
we will denote the spacings by U(i:m).

Theorem 1.B.31. Let X1, X2, . . . , Xm, Xm+1 be independent and identically
distributed, absolutely continuous, DFR random variables. Then

(m − i + 1)U(i:m) ≤hr (m − i)U(i+1:m), i = 2, 3, . . . , m − 1, (1.B.33)
(m − i + 2)U(i:m+1) ≤hr (m − i + 1)U(i:m), i = 2, 3, . . . , m, (1.B.34)

and

U(i:m) ≤hr U(i+1:m+1), i = 2, 3, . . . , m. (1.B.35)

Note that (1.B.33)–(1.B.35) can be summarized as

(m − j + 1)U(j:m) ≤hr (n − i + 1)U(i:n) whenever i − j ≥ max{0, n − m}.

Theorem 1.B.31 is a simple consequence of Theorem 1.C.45 below. It is of
interest to compare Theorem 1.B.31 to Theorems 1.A.19 and 1.A.22.

A comparison of such normalized spacings from two different samples is
described next. Here U(i:m) denotes, as before, the ith spacing that corre-
sponds to the sample X1, X2, . . . , Xm, and V(j:n) denotes the jth spacing that
corresponds to the sample Y1, Y2, . . . , Yn. It is of interest to compare the next
result with Theorem 1.C.45.
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Theorem 1.B.32. For positive integers m and n, let X1, X2, . . . , Xm be inde-
pendent identically distributed random variables with an absolutely continuous
common distribution function, and let Y1, Y2, . . . , Yn be independent identically
distributed random variables with a possibly different absolutely continuous
common distribution function. If X1 ≤hr Y1, and if either X1 or Y1 is DFR,
then

(m − j + 1)U(j:m) ≤st (n − i + 1)V(i:n) whenever i − j ≥ max{0, n − m}.

The hazard rate order is closed under the operation of taking minima, as
the next result shows.

Theorem 1.B.33. Let (Xi, Yi), i = 1, 2, . . . , m, be independent pairs of ran-
dom variables such that Xi ≤hr Yi, i = 1, 2, . . . , m. Then

min{X1, X2, . . . , Xm} ≤hr min{Y1, Y2, . . . , Y m}.

Proof. Clearly, it is enough to show the result when m = 2. For simplicity
assume that X1, X2, Y1, and Y2 have hazard rate functions r1, r2, q1, and
q2, respectively. Then it is very easy to see that the hazard rate function
of min{X1, X2} is r1 + r2 and the hazard rate function of min{Y1, Y2} is
q1 + q2. By the assumptions of the theorem (see (1.B.2)) r1(t) ≥ q1(t) and
r2(t) ≥ q2(t) for all t ≥ 0. Therefore r1(t) + r2(t) ≥ q1(t) + q2(t) for all t ≥ 0,
that is, min{X1, X2} ≤hr min{Y1, Y2}. 
�

If the Xi’s in Theorem 1.B.33 are identically distributed and if the Yi’s in
Theorem 1.B.33 are also identically distributed, then all order statistics (and
not just the minima) corresponding to the Xi’s and the Yi’s can be compared
in the hazard rate order. This is shown in the following result.

Theorem 1.B.34. Let (Xi, Yi), i = 1, 2, . . . , m, be independent pairs of ab-
solutely continuous random variables such that Xi ≤hr Yi, i = 1, 2, . . . , m.
Suppose that the Xi’s are identically distributed and that the Yi’s are identi-
cally distributed. Then

X(k:m) ≤hr Y(k:m), k = 1, 2, . . . , m. (1.B.36)

If the Xi’s or the Yi’s in Theorem 1.B.34 are not identically distributed,
then the conclusion (1.B.36) need not hold. However, the following result,
from Chapter 16 by Boland and Proschan in [515], gives conditions under
which (1.B.36) holds.

Proposition 1.B.35. Let X1, X2, . . . , Xm [respectively, Y1, Y2, . . . , Ym] be m
independent (not necessarily identically distributed) absolutely continuous
random variables, all with support (a, b) for some a < b. If Xi ≤hr Yj for
all i and j, then X(k:m) ≤hr Y(k:m), k = 1, 2, . . . , m.

A result which is stronger than Proposition 1.B.35, but which uses Propo-
sition 1.B.35 in its proof, is the following.
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Theorem 1.B.36. Let X1, X2, . . . , Xm be m independent (not necessarily
identically distributed) random variables, and let Y1, Y2, . . . , Yn be other n in-
dependent (not necessarily identically distributed) random variables, all hav-
ing absolutely continuous distributions with support (a, b) for some a < b. If
Xi ≤hr Yj for all i and j, then

X(j:m) ≤hr Y(i:n) whenever i − j ≥ max{0, n − m}.

The proof of Theorem 1.B.36 uses the likelihood ratio order which is dis-
cussed in the next section. Therefore the proof will be given in Remark 1.C.41.

The following example describes an interesting instance in which the two
maxima are ordered in the hazard rate order. It may be compared with Ex-
ample 3.B.32.

Example 1.B.37. Let Y1, Y2, . . . , Ym be independent exponential random vari-
ables with hazard rates λ1, λ2, . . . , λm, respectively. Let X1, X2, . . . , Xm be
independent and identically distributed exponential random variables with
hazard rate λ =

∑m
i=1 λi/m. Then

X(m:m) ≤hr Y(m:m). (1.B.37)

Let Z1, Z2, . . . , Zm be independent and identically distributed exponential
random variables with hazard rate λ̃ =

(∏m
i=1 λi

)1/m. Then

Z(m:m) ≤hr Y(m:m). (1.B.38)

In fact, from the arithmetic-geometric mean inequality (λ ≥ λ̃) and Proposi-
tion 1.B.35, it follows that (1.B.38) implies (1.B.37).

1.B.5 Some properties in reliability theory

The order ≤hr can be trivially (but beneficially) used to characterize IFR
random variables. The next result lists several such characterizations. Recall
from Section 1.A.3 that for any random variable Z and an event A we denote
by [Z

∣∣A] any random variable that has as its distribution the conditional
distribution of Z given A.

Theorem 1.B.38. The random variable X is IFR [DFR] if, and only if, one
of the following equivalent conditions holds (when the support of the distri-
bution function of X is bounded, condition (iii) does not have a simple DFR
analog):

(i) [X − t
∣∣X > t] ≥hr [≤hr] [X − t′

∣∣X > t′] whenever t ≤ t′.
(ii) X ≥hr [≤hr] [X − t

∣∣X > t] for all t ≥ 0 (when X is a nonnegative random
variable).

(iii) X + t ≤hr X + t′ whenever t ≤ t′.
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Note that if X is the lifetime of a device, then [X − t
∣∣X > t] is the

residual life of such a device with age t. Theorem 1.B.38(i), for example,
characterizes IFR random variables by the monotonicity of their residual lives
with respect to the order ≤hr. Some multivariate analogs of conditions (i) and
(ii) of Theorem 1.B.38 are used in Section 6.D.3 to introduce a multivariate
IFR notion.

Part (iii) of Theorem 1.B.38 can be used to prove the closure under con-
volution property of IFR random variables:

Corollary 1.B.39. Let X and Y be two independent IFR random variables.
Then X + Y has an IFR distribution.

Proof. From Theorem 1.B.38(iii) it follows that X + t ≤hr X + t′ whenever
t ≤ t′. Also, Y is independent of X+t and of X+t′ for all t and t′, respectively.
From Lemma 1.B.3 it now follows that X + Y + t ≤hr X + Y + t′ whenever
t ≤ t′. Thus, again from Theorem 1.B.38(iii), it follows that X + Y is IFR.

�

Recall from (1.A.20) that for a nonnegative random variable X with a
finite mean we denote by AX the corresponding asymptotic equilibrium age.
Recall from page 1 the definitions of the DMRL and the IMRL properties.
The following result is immediate.

Theorem 1.B.40. The nonnegative random variable X with finite mean is
DMRL [IMRL] if, and only if, X ≥hr [≤hr] AX .

1.B.6 The reversed hazard order

If X is a random variable with an absolutely continuous distribution function
F , then the reversed hazard rate of X at the point t is defined as r̃(t) =
(d/dt)(log F (t)). One interpretation of the reversed hazard rate at time t is
the following. Suppose that X is nonnegative with distribution function F .
Then X can be thought of as the lifetime of some device. Given that the
device has already failed by time t, then the probability that it survived up
to time t − ε (for a small ε > 0) is approximately ε · r̃(t). Some of the results
regarding the hazard rate order have analogs when the hazard rate is replaced
by the reversed hazard rate.

Let X and Y be two random variables with absolutely continuous distri-
bution functions and with reversed hazard rate functions r̃ and q̃, respectively,
such that

r̃(t) ≤ q̃(t), t ∈ R. (1.B.39)

Then X is said to be smaller than Y in the reversed hazard rate order (denoted
as X ≤rh Y ).

In fact, the absolute continuity, which is required in (1.B.39), is not really
needed. It easy to verify that (1.B.39) holds if, and only if,
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G(t)
F (t)

increases in t ∈ (min(lX , lY ),∞) (1.B.40)

(here a/0 is taken to be equal to ∞ whenever a > 0). Here F denotes the
distribution function of X and G denotes the distribution function of Y , and
lX and lY denote the corresponding left endpoints of the supports of X and
of Y . Equivalently, (1.B.40) can be written as

F (x)G(y) ≥ F (y)G(x) for all x ≤ y. (1.B.41)

Thus (1.B.40) or (1.B.41) can be used to define the order X ≤rh Y even if
X and/or Y do not have absolutely continuous distributions. The analog of
(1.B.5) for the reversed hazard order when X and Y have densities f and g,
respectively, is that X ≤rh Y if, and only if,

f(y)
F (x)

≤ g(y)
G(x)

for all x ≤ y. (1.B.42)

Another condition that is equivalent to X ≤rh Y is

GF−1(u)
u

≤ GF−1(v)
v

for all 0 < u ≤ v < 1.

Finally, another condition that is equivalent to X ≤rh Y is

P{X − t ≤ −s
∣∣X ≤ t} ≥ P{Y − t ≤ −s

∣∣Y ≤ t} for all s ≥ 0 and all t,

or, equivalently,
[X
∣∣X ≤ t] ≤st [Y

∣∣Y ≤ t] for all t. (1.B.43)

For discrete random variables X and Y that take on values in N, we denote
X ≤rh Y if

P{X = n}
P{X ≤ n} ≤ P{Y = n}

P{Y ≤ n} , n ∈ N. (1.B.44)

A useful relationship between the hazard rate and the reversed hazard rate
orders is described in the following theorem.

Theorem 1.B.41. Let X and Y be two continuous random variables with
supports (lX , uX) and (lY , uY ), respectively. Then

X ≤hr Y =⇒ φ(X) ≥rh φ(Y )

for any continuous function φ which is strictly decreasing on (lX , uY ). Also,

X ≤rh Y =⇒ φ(X) ≥hr φ(Y )

for any such function φ.

Using Theorem 1.B.41 it is easy to obtain the following analogs of results
regarding the order ≤hr.
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Theorem 1.B.42. If X and Y are two random variables such that X ≤rh Y ,
then X ≤st Y .

Theorem 1.B.43. If X ≤rh Y , and if φ is any increasing function, then
φ(X) ≤rh φ(Y ).

Lemma 1.B.44. If the random variables X and Y are such that X ≤rh Y ,
and if Z is a random variable independent of X and Y and has decreasing
reversed hazard rate, then

X + Z ≤rh Y + Z.

Theorem 1.B.45. Let (Xi, Yi), i = 1, 2, . . . , m, be independent pairs of ran-
dom variables such that Xi ≤rh Yi, i = 1, 2, . . . , m. If Xi, Yi, i = 1, 2, . . . , m,
all have decreasing reversed hazard rates, then

m∑
i=1

Xi ≤rh

m∑
i=1

Yi.

Theorem 1.B.46. Let X, Y , and Θ be random variables such that [X
∣∣Θ =

θ] ≤rh [Y
∣∣Θ = θ′] for all θ and θ′ in the support of Θ. Then X ≤rh Y .

In order to state a bivariate characterization result for the order ≤rh we
define the following class of bivariate functions:

Grh = {φ : R
2 → R : φ(x, y) is increasing in x, for each y, on {x ≤ y},

and is decreasing in y, for each x, on {y ≤ x}}.

The proof of the next result (Theorem 1.B.47) is similar to the proof of The-
orem 1.B.9.

Theorem 1.B.47. Let X and Y be independent random variables. Then X
≤rh Y if, and only if,

φ(X, Y ) ≤st φ(Y, X) for all φ ∈ Grh.

The next result uses the notation of Theorem 1.A.10.

Theorem 1.B.48. Let X and Y be two independent random variables. Then
X ≤rh Y if, and only if,

Eφ1(X, Y ) ≤ Eφ2(X, Y )

for all φ1 and φ2 such that, for each y, ∆φ21(x, y) decreases in x on {x ≤ y},
and such that ∆φ21(x, y) ≥ −∆φ21(y, x) whenever x ≤ y.

A further similar characterization is given in Theorem 4.A.36.
The following result is an analog of Theorem 1.B.11.
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Theorem 1.B.49. Let X and Y be two independent random variables. Then
X ≤rh Y if, and only if,

[X
∣∣max(X, Y ) = z] ≤rh [Y

∣∣max(X, Y ) = z] for all z. (1.B.45)

Also, X ≤rh Y if, and only if,

[X
∣∣max(X, Y ) = z] ≤st [Y

∣∣max(X, Y ) = z] for all z. (1.B.46)

Proof. First suppose that X and Y are absolutely continuous. Denote the
distribution functions of X and Y by F and G, respectively, and denote the
corresponding density functions by f and g. Then

P [X ≤ x
∣∣max(X, Y ) = z] =

{
F (x)g(z)

f(z)G(z)+g(z)F (z) , if x ≤ z,

1, if x > z,
(1.B.47)

and

P [Y ≤ x
∣∣max(X, Y ) = z] =

{
G(x)f(z)

f(z)G(z)+g(z)F (z) , if x ≤ z,

1, if x > z.
(1.B.48)

Therefore

P [Y ≤ x| max(X, Y ) = z]
P [X ≤ x| max(X, Y ) = z]

=

{
G(x)
F (x) · f(z)

g(z) , if x ≤ z,

1, if x > z.
(1.B.49)

If X ≤rh Y , then G(x)
F (x) is increasing in x, and G(z)

F (z) ·
f(z)
g(z) ≤ 1. Thus (1.B.49) is

increasing in x, and (1.B.45) follows. Obviously (1.B.46) follows from (1.B.45).
Now suppose that (1.B.46) holds. Then from (1.B.47) and (1.B.48) we get

that F (x)g(z) ≥ G(x)f(z) for all x ≤ z. Therefore X ≤rh Y by (1.B.42).
The proof when X and Y are discrete is similar. 
�

The following result is an analog of Theorem 1.B.12.

Theorem 1.B.50. Let X and Y be two independent random variables. The
following conditions are equivalent:

(a) X ≤rh Y .
(b) E[α(X)]E[β(Y )] ≥ E[α(Y )]E[β(X)] for all functions α and β for which

the expectations exist and such that β is nonnegative and α/β and β are
decreasing.

(c) For any increasing function a and a nonnegative decreasing function b, if
E[a(Y )b(Y )] = 0, then E[a(X)b(X)] ≤ 0.

Example 1.B.51. Let X and Y be two random variables with support [c, d],
where c < 0 < d, and suppose that E[Y ] > 0. Let u be an increasing differen-
tiable concave function, corresponding to the utility function of a risk-averse
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individual. Let kX be a value which maximizes gX(k) ≡ E[u(kX)], and simi-
larly let kY be a value which maximizes gY (k) ≡ E[u(kY )]. Theorem 1.B.50(c)
can be used to prove that if X ≤rh Y , then kX ≤ kY . In order to see it, first
note that the result is trivial if kX = −∞ or if kY = ∞. Thus, let us assume
that kX and kY are finite. Note that then kX and kY satisfy E[Xu′(kXX)] = 0
and E[Y u′(kY Y )] = 0, where u′ denotes the derivative of u. Also note that
from the assumption E[Y ] > 0 it follows that kY > 0. Without loss of gen-
erality let kY = 1. Thus E[Y u′(Y )] = 0, and using the concavity of u the
assertion would follow if we show that E[Xu′(X)] ≤ 0. But this follows from
Theorem 1.B.50(c).

Consider now a family of distribution functions {Gθ, θ ∈ X} where X is a
subset of the real line. As in Section 1.A.3 let X(θ) denote a random variable
with distribution function Gθ. For any random variable Θ with support in X ,
and with distribution function F , let us denote by X(Θ) a random variable
with distribution function H given by

H(y) =
∫

X
Gθ(y)dF (θ), y ∈ R.

The following result generalizes Theorem 1.B.43, just as Theorem 1.A.6 gen-
eralized Theorem 1.A.3(a). The proof of the next theorem is similar to the
proof of Theorem 1.B.14 and is therefore omitted.

Theorem 1.B.52. Consider a family of distribution functions {Gθ, θ ∈ X}
as above. Let Θ1 and Θ2 be two random variables with supports in X and
distribution functions F1 and F2, respectively. Let Y1 and Y2 be two random
variables such that Yi =st X(Θi), i = 1, 2; that is, suppose that the distribution
function of Yi is given by

Hi(y) =
∫

X
Gθ(y)dFi(θ), y ∈ R, i = 1, 2.

If
X(θ) ≤rh X(θ′) whenever θ ≤ θ′,

and if
Θ1 ≤rh Θ2,

then
Y1 ≤rh Y2.

The following result, which is the “reversed hazard analog” of Theorem
1.B.18, gives a Laplace transform characterization of the order ≤rh.

Theorem 1.B.53. Let X1 and X2 be two nonnegative random variables, and
let Nλ(X1) and Nλ(X2) be as described in Theorem 1.A.13. Then

X1 ≤rh X2 ⇐⇒ Nλ(X1) ≤rh Nλ(X2) for all λ > 0,

where the notation Nλ(X1) ≤rh Nλ(X2) is in the sense of (1.B.44).
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The implication =⇒ in Theorem 1.B.53 can be generalized in the same
manner that Theorem 1.A.14 generalizes the implication =⇒ in Theorem
1.A.13. We will not state the result here since it is equivalent to Theorem
1.B.52.

The reversed hazard analog of Theorem 1.B.19 is the following.

Theorem 1.B.54. Let X1, X2, . . . , Xm, Θ1, and Θ2 be independent nonneg-
ative random variables. Define Nj(t) for t ≥ 0 and j = 1, 2 as in Theorem
1.B.19. If Θ1 ≤rh Θ2, then N1(t) ≤rh N2(t) in the sense of (1.B.44) for all
t ≥ 0.

The reversed hazard analog of Theorem 1.B.20 is the following.

Theorem 1.B.55. Let X be any random variable. Then X(−∞,a] and X(a,∞)
are increasing in a in the sense of the reversed hazard order.

Analogous to the result in Remark 1.A.18, it can be shown that the set of
all distribution functions on R ∪ {−∞} is a lattice with respect to the order
≤rh.

The reversed hazard analog of Theorem 1.B.26 is the following.

Theorem 1.B.56. If X1, X2, . . . , Xm are independent random variables, then
X(k) ≤rh X(k+1) for k = 1, 2, . . . , m − 1.

The reversed hazard analog of Theorem 1.B.27 is the following.

Theorem 1.B.57. Let X1, X2, . . . , Xm be independent random variables. If
Xm ≤rh Xj for all j = 1, 2, . . . , m − 1, then X(k−1:m−1) ≤rh X(k:m) for
k = 2, 3, . . . , m.

The reversed hazard analog of Theorem 1.B.28 is the following.

Theorem 1.B.58. If X1, X2, . . . , Xm are independent random variables, then
X(k:m−1) ≥rh X(k:m) for k = 1, 2, . . . , m − 1.

The reversed hazard analogs of Theorems 1.B.33, 1.B.34, and 1.B.36 are
the following results.

Theorem 1.B.59. Let (Xi, Yi), i = 1, 2, . . . , m, be independent pairs of ran-
dom variables such that Xi ≤rh Yi, i = 1, 2, . . . , m. Then

max{X1, X2, . . . , Xm} ≤rh max{Y1, Y2, . . . , Ym}.

Theorem 1.B.60. Let (Xi, Yi), i = 1, 2, . . . , m, be independent pairs of ab-
solutely continuous random variables such that Xi ≤rh Yi, i = 1, 2, . . . , m.
Suppose that the Xi’s are identically distributed and that the Yi’s are identi-
cally distributed. Then

X(k:m) ≤rh Y(k:m), k = 1, 2, . . . , m.
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Theorem 1.B.61. Let X1, X2, . . . , Xm be m independent (not necessarily
identically distributed) random variables, and let Y1, Y2, . . . , Yn be other n in-
dependent (not necessarily identically distributed) random variables, all hav-
ing absolutely continuous distributions with support (a, b) for some a < b. If
Xi ≤rh Yj for all i and j, then

X(j:m) ≤rh Y(i:n) whenever i − j ≥ max{0, n − m}.

Finally, the reversed hazard analog of Theorem 1.B.38 is the following.

Theorem 1.B.62. The random variable X with support (a, b), for some
−∞ ≤ a < b ≤ ∞, has decreasing [increasing ] reversed hazard rate if, and
only if, one of the following equivalent conditions holds:

(i) [X − t
∣∣X < t] ≥rh [≤rh] [X − t′

∣∣X < t′] whenever a < t ≤ t′ < b.
(ii) X ≤rh [≥rh] [X − t

∣∣X < t] for all t ∈ (a, b) (when X is a nonpositive
random variable).

(iii) X + t ≤rh [≥rh] X + t′ whenever a < t ≤ t′ < b.

Corollary 1.B.63. Let X and Y be two independent random variables with
decreasing reversed hazard rates. Then X+Y has a decreasing reversed hazard
rate.

1.C The Likelihood Ratio Order

1.C.1 Definition

Let X and Y be continuous [discrete] random variables with densities [discrete
densities] f and g, respectively, such that

g(t)
f(t)

increases in t over the union of the supports of X and Y (1.C.1)

(here a/0 is taken to be equal to ∞ whenever a > 0), or, equivalently,

f(x)g(y) ≥ f(y)g(x) for all x ≤ y. (1.C.2)

Then X is said to be smaller than Y in the likelihood ratio order (denoted by
X ≤lr Y ). By integrating (1.C.2) over x ∈ A and y ∈ B, where A and B are
measurable sets in R, it is seen that (1.C.2) is equivalent to

P{X ∈ A}P{Y ∈ B} ≥ P{X ∈ B}P{Y ∈ A}
for all measurable sets A and B such that A ≤ B, (1.C.3)

where A ≤ B means that x ∈ A and y ∈ B imply that x ≤ y. Note that
condition (1.C.3) does not directly involve the underlying densities, and thus
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it applies uniformly to continuous distributions, or to discrete distributions,
or even to mixed distributions.

At a first glance (1.C.1) or (1.C.2) or (1.C.3) seem to be unintuitive tech-
nical conditions. However, it turns out that in many situations they are very
easy to verify, and this is one of the major reasons for the usefulness and im-
portance of the order ≤lr. It is also easy to verify by a simple differentiation
(at least when X and Y have the same support) that

X ≤lr Y ⇐⇒ GF−1 is convex. (1.C.4)

Here F and G are the distribution functions of X and Y , respectively.

1.C.2 The relation between the likelihood ratio and the hazard
and reversed hazard orders

Note that from (1.C.1) it follows (in the continuous case) that∫ y

t=x

∫ ∞

t′=y

f(t)g(t′)dt′dt ≥
∫ ∞

t=y

∫ y

t′=x

f(t′)g(t)dt′dt for all x ≤ y,

which, in turn, implies that∫ ∞

x

f(t)dt

∫ ∞

y

g(t′)dt′ ≥
∫ ∞

x

g(t)dt

∫ ∞

y

f(t′)dt′ for all x ≤ y,

that is, (1.B.4). We thus have shown a part of the following result. The other
parts of the next theorem are proven similarly (recall that the discrete versions
of the orders ≤hr and ≤rh are defined in (1.B.9) and (1.B.44), respectively).

Theorem 1.C.1. If X and Y are two continuous or discrete random variables
such that X ≤lr Y , then X ≤hr Y and X ≤rh Y (and therefore X ≤st Y ).

Remark 1.C.2. Neither of the orders ≤hr and ≤rh (even if both hold simultane-
ously) implies the order ≤lr. In order to see it let X be a uniform random vari-
able over the set {1, 2, 3, 4} and let Y have the probabilities P{Y = 1} = .1,
P{Y = 2} = .3, P{Y = 3} = .2, and P{Y = 4} = .4. Then it is not true that
X ≤lr Y , however, in this case we have that X ≤hr Y and also that X ≤rh Y .

Remark 1.C.3. Using Theorem 1.C.1 we can now give a proof of Theorem
1.A.22. Let F and f denote, respectively, the distribution function and the
density function of X1. Given X(i−1:m) = u and X(i+1:m) = v, the conditional
density of U(i:m) at the point w is f(u+w)

F (v)−F (u) , 0 ≤ w ≤ v−u, and the conditional

density of U(i+1:m) at the point w is f(v−w)
F (v)−F (u) , 0 ≤ w ≤ v − u. Since f is

increasing [decreasing] it is seen that, conditionally, U(i:m) ≥lr [≤lr] U(i+1:m),
and therefore, by Theorem 1.C.1, U(i:m) ≥st [≤st] U(i+1:m). Theorem 1.A.22
now follows from Theorem 1.A.3(d).
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Although neither of the orders ≤hr and ≤rh implies the order ≤lr (see
Remark 1.C.2), the following result gives a simple condition under which this
is actually the case. The proof is immediate and is therefore omitted.

Theorem 1.C.4. Let X and Y be two random variables with distribution
functions F and G, (discrete or continuous) hazard rate functions r and q, and
(discrete or continuous) reversed hazard rate functions r̃ and q̃, respectively.

(a) If X ≤hr Y and if q(t)
r(t) increases in t, then X ≤lr Y .

(b) If X ≤rh Y and if q̃(t)
r̃(t) increases in t, then X ≤lr Y .

1.C.3 Some properties and characterizations

The usual stochastic order has the useful and important constructive property
described in Theorem 1.A.1. There is no analogous property associated with
the likelihood ratio order. Therefore it is of importance to understand bet-
ter the relationship between the orders ≤st and ≤lr. We already know from
Theorems 1.C.1 and 1.B.1 that the likelihood ratio order implies the usual
stochastic order. The following result characterizes the likelihood ratio order
by means of the order ≤st. It says that X ≤lr Y if, and only if, for any in-
terval I, the conditional distribution of X, given that X ∈ I, is stochastically
smaller than the conditional distribution of Y , given that Y ∈ I.

As in Section 1.A.3, [Z
∣∣A] denotes any random variable that has as its

distribution the conditional distribution of Z given A. It is of interest to
contrast the next result with (1.B.7) and (1.B.43).

Theorem 1.C.5. The two random variables X and Y satisfy X ≤lr Y if, and
only if,

[X
∣∣a ≤ X ≤ b] ≤st [Y

∣∣a ≤ Y ≤ b] whenever a ≤ b. (1.C.5)

Proof. Suppose that (1.C.5) holds. Select an a and a b such that a < b. Then

P{u ≤ X ≤ b}
P{a ≤ X ≤ b} ≤ P{u ≤ Y ≤ b}

P{a ≤ Y ≤ b} whenever u ∈ [a, b].

It follows then that

P{a ≤ X < u}
P{u ≤ X ≤ b} ≥ P{a ≤ Y < u}

P{u ≤ Y ≤ b} whenever u ∈ [a, b].

That is,

P{a ≤ X < u}
P{a ≤ Y < u} ≥ P{u ≤ X ≤ b}

P{u ≤ Y ≤ b} whenever u ∈ [a, b].

In particular, for u < b ≤ v,
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P{u ≤ X < b}
P{u ≤ Y < b} ≥ P{b ≤ X ≤ v}

P{b ≤ Y ≤ v} .

Therefore, when X and Y are continuous random variables,

P{a ≤ X < u}
P{a ≤ Y < u} ≥ P{b ≤ X ≤ v}

P{b ≤ Y ≤ v} whenever a < u ≤ b ≤ v.

Now let a → u and b → v to obtain (1.C.2). The proof for discrete random
variables is similar.

Conversely, suppose that X ≤lr Y , then clearly, [X
∣∣a ≤ X ≤ b] ≤lr [Y

∣∣a ≤
Y ≤ b] whenever a < b (see also Theorem 1.C.6). From Theorems 1.C.1 and
1.B.1 we obtain (1.C.5). 
�

The likelihood ratio order is preserved under general truncations of the
involved random variables. This is stated in the next theorem, the proof of
which follows directly from (1.C.2).

Theorem 1.C.6. If X and Y are two random variables such that X ≤lr Y ,
then for any measurable set A ⊆ R we have [X

∣∣X ∈ A] ≤lr [Y
∣∣Y ∈ A].

By combining Theorems 1.C.5 and 1.C.6 it is seen that X ≤lr Y if, and
only if,

[X
∣∣X ∈ A] ≤st [Y

∣∣Y ∈ A] for all measurable sets A ⊆ R. (1.C.6)

In fact, one can take (1.C.6) as the definition of the likelihood ratio order.
The advantage of this approach is that it does not directly involve the under-
lying densities, and thus, similarly to condition (1.C.3), it applies uniformly
to continuous distributions, or to discrete distributions, or even to mixed dis-
tributions.

Using the characterization (1.C.3), it is not hard to obtain the following
result.

Theorem 1.C.7. Let {Xj , j = 1, 2, . . . } and {Yj , j = 1, 2, . . . } be two se-
quences of random variables such that Xj →st X and Yj →st Y as j → ∞. If
Xj ≤lr Yj, j = 1, 2, . . ., then X ≤lr Y .

Let ψ be a strictly monotone increasing [decreasing] differentiable func-
tion with inverse ψ−1. If X has the density function f , then ψ(X) has the
density function (fψ−1)/(ψ′(ψ−1)). Similarly, if Y has the density function
g, then ψ(Y ) has the density function (gψ−1)/(ψ′(ψ−1)). If X ≤lr Y , then
from (1.C.1) it follows that (fψ−1)(u)/(ψ′(ψ−1(u)))

(gψ−1)(u)/(ψ′(ψ−1(u))) decreases [increases] over the
unions of the supports of ψ(X) and ψ(Y ). We have thus proved an important
special case of Theorem 1.C.8 below. For discrete random variables the result
is proven in a similar manner. When ψ is just monotone (rather than strictly
monotone) the result is still true, but the preceding simple argument is no
longer sufficient for its proof.
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Theorem 1.C.8. If X ≤lr Y and ψ is any increasing [decreasing ] function,
then ψ(X) ≤lr [≥lr] ψ(Y ).

If X1 ≤lr Y1 and X2 ≤lr Y2, where X1 and X2 are independent random
variables, and Y1 and Y2 are also independent random variables, then it is not
necessarily true that X1 +X2 ≤lr Y1 +Y2. However, if these random variables
have logconcave densities, then it is true. In fact, a slightly stronger result is
true:

Theorem 1.C.9. Let (Xi, Yi), i = 1, 2, . . . , m, be independent pairs of ran-
dom variables such that Xi ≤lr Yi, i = 1, 2, . . . , m. If Xi, Yi, i = 1, 2, . . . , m,
all have (continuous or discrete) logconcave densities, except possibly one Xl

and one Yk (l �= k), then
m∑

i=1

Xi ≤lr

m∑
i=1

Yi.

Proof. Since a convolution of random variables with logconcave densities has
a logconcave density, it is enough to show that if W1, W2, and Z are indepen-
dent random variables such that W1 ≤lr W2, and Z has a logconcave density
function, then W1 + Z ≤lr W2 + Z. We will give the proof for the continuous
case; the proof for the discrete case is similar. Let fWi

, fWi+Z , i = 1, 2, and
fZ denote the density functions of the indicated random variables. Then

fWi+Z(t) =
∫ ∞

−∞
fZ(t − w)fWi(w) dw, i = 1, 2, t ∈ R.

The assumption W1 ≤lr W2 means that fWi
(w), as a function of w and of

i ∈ {1, 2}, is TP2. The logconcavity of fZ means that fZ(t−w), as a function of
t and of w, is TP2. Therefore, by the basic composition formula (Karlin [275])
we see that fWi+Z(t) is TP2 in i ∈ {1, 2} and t; that is, W1 + Z ≤lr W2 + Z.

�

Example 1.C.10. Consider m independent Bernoulli trials with probability pi

of success in the ith trial. Let q(k,p) denote the probability of k successes, k =
1, 2, . . . , m, where p = (p1, p2, . . . , pm). Then q(k + 1,p)/q(k,p) is increasing
in each pi for k = 0, 1, . . . , m − 1. In order to see it, let Xi be a Bernoulli
random variable with probability pi of success, i = 1, 2, . . . , m, and assume
that the Xi’s are independent. Similarly, let Yi be a Bernoulli random variable
with probability p′

i of success, i = 1, 2, . . . , m, and assume that the Yi’s are
independent. Obviously, the discrete density functions of the Xi’s and of the
Yi’s are logconcave, and if p ≤ p′, then Xi ≤lr Yi, i = 1, 2, . . . , m. The stated
result thus follows from Theorem 1.C.9.

For nonnegative random variables, Theorem 1.C.9 can be generalized fur-
ther by having more Yi’s summed than Xi’s. Under the assumptions of The-
orem 1.C.9, one then obtains, for m ≤ n, that
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m∑
i=1

Xi ≤lr

n∑
i=1

Yi.

Of course, in this case, for m+1 ≤ i ≤ n, the Yi’s only need to have logconcave
densities—they do not have to have corresponding Xi’s to which they need
to be comparable in the order ≤lr. One may expect that the latter inequality
can be extended to the following one:

M∑
i=1

Xi ≤lr

N∑
i=1

Yi,

where M and N are two discrete positive integer-valued random variables, in-
dependent of the Xi’s and of the Yi’s, respectively, such that M ≤lr N . Indeed
this inequality is true under some additional assumptions on the distributions
of the Xi’s and the Yi’s that will not be stated here. An important special
case is the following theorem.

Theorem 1.C.11. Let {Xi, i = 1, 2, . . . } be a sequence of nonnegative in-
dependent random variables with logconcave densities. Let M and N be two
discrete positive integer-valued random variables such that M ≤lr N , and as-
sume that M and N are independent of the Xi’s. Then

M∑
i=1

Xi ≤lr

N∑
i=1

Xi.

In Pellerey [445] it is claimed that the conclusion of Theorem 1.C.11 holds
even under the weaker assumption that M ≤hr N (in the sense of (1.B.9) or
(1.B.10)). However, there is a mistake in [445] (see Pellerey [446]).

It is of interest to compare Theorem 1.C.11 to the following result, which
combines uses of the likelihood ratio and the hazard [reversed hazard] rate
orders.

Theorem 1.C.12. Let {Xi, i = 1, 2, . . . } be a sequence of nonnegative in-
dependent random variables that are IFR [have decreasing reversed hazard
rates]. Let M and N be two discrete positive integer-valued random variables
such that M ≤lr N , and assume that M and N are independent of the Xi’s.
Then

M∑
i=1

Xi ≤hr [≤rh]
N∑

i=1

Xi.

Note that the hazard rate part of Theorem 1.C.12 is weaker than Theorem
1.B.7 because of Theorem 1.C.1.

The hazard rate order can be characterized by means of the likelihood ratio
order and the appropriate equilibrium age variables. Recall from (1.A.20) that
for nonnegative random variables X and Y with finite means we denote by
AX and AY the corresponding asymptotic equilibrium ages. The following
result is immediate from (1.B.3) and (1.C.1).
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Theorem 1.C.13. Let X and Y be two nonnegative random variables with
finite positive means. Then X ≤hr Y if, and only if, AX ≤lr AY .

In light of Theorem 1.C.13 it is of interest to note that the order ≤lr
can also be used to characterize the hazard rate order as is described in the
next theorem. Let X and Y be two nonnegative random variables with finite
means and suppose that X ≤st Y and that EX < EY . Let F and G be the
distribution functions of X and of Y , respectively. Define the random variable
ZX,Y as the random variable that has the density function h given by

h(z) =
G(z) − F (z)
EY − EX

, z ≥ 0. (1.C.7)

Theorem 1.C.14. Let X and Y be two nonnegative random variables with
finite means such that X ≤st Y and such that EY > EX > 0. Then

AX ≤lr ZX,Y ⇐⇒ AY ≤lr ZX,Y ⇐⇒ X ≤hr Y,

where ZX,Y has the density function given in (1.C.7).

Proof. Denote by fe the density function of AY . Then, using (1.A.20), we
obtain

h(x)
fe(x)

=
EY

EY − EX

(
1 − F (x)

G(x)

)
, x ≥ 0,

and the second stated equivalence follows from (1.C.1) and (1.B.3). The proof
of the first equivalence is similar. 
�

It is of interest to contrast Theorem 1.C.14 with Theorems 2.A.5 and 2.B.3.
The likelihood ratio order enjoys a closure under mixture property which is

similar to the closure under mixture property of the hazard rate order stated
in Theorem 1.B.8. This is stated next; the proof is similar to the proof of
Theorem 1.B.8; we omit the details.

Theorem 1.C.15. Let X, Y , and Θ be random variables such that [X
∣∣Θ =

θ] ≤lr [Y
∣∣Θ = θ′] for all θ and θ′ in the support of Θ. Then X ≤lr Y .

As a corollary of Theorem 1.C.15 we obtain the following result.

Corollary 1.C.16. Let N be a positive integer-valued random variable, and
let Xi, i = 1, 2, . . ., be random variables which are independent of N . Let Y
be a random variable such that Xi ≤lr Y , i = 1, 2, . . .. Then XN ≤lr Y .

Consider now a family of (continuous or discrete) density functions {gθ, θ ∈
X} where X is a subset of the real line. As in Section 1.A.3 let X(θ) denote
a random variable with density function gθ. For any random variable Θ with
support in X , and with distribution function F , let us denote by X(Θ) a
random variable with density function h given by
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h(y) =
∫

X
gθ(y)dF (θ), y ∈ R.

The following result generalizes both Theorems 1.C.8 and 1.C.15, just as The-
orem 1.A.6 generalized parts (a) and (c) of Theorem 1.A.3.

Theorem 1.C.17. Consider a family of density functions {gθ, θ ∈ X} as
above. Let Θ1 and Θ2 be two random variables with supports in X and dis-
tribution functions F1 and F2, respectively. Let Y1 and Y2 be two random
variables such that Yi =st X(Θi), i = 1, 2, that is, suppose that the density
function of Yi is given by

hi(y) =
∫

X
gθ(y)dFi(θ), y ∈ R, i = 1, 2.

If
X(θ) ≤lr X(θ′) whenever θ ≤ θ′, (1.C.8)

and if
Θ1 ≤lr Θ2, (1.C.9)

then
Y1 ≤lr Y2. (1.C.10)

Proof. We give the proof under the assumption that Θ1 and Θ2 are absolutely
continuous with density functions f1 and f2, respectively. The proof for the
discrete case is similar. Assumption (1.C.8) means that gθ(y), as a function
of θ and of y, is TP2. Assumption (1.C.9) means that fi(θ), as a function
of i ∈ {1, 2} and of θ, is TP2. Therefore, by the basic composition formula
(Karlin [275]) we see that hi(y) is TP2 in i ∈ {1, 2} and y. That gives (1.C.10).

�

A related result is the following; see also Theorems 1.B.19 and 1.B.54.

Theorem 1.C.18. Let X1, X2, . . . , Xm, Θ1, and Θ2 be independent nonneg-
ative random variables. Define Nj(t) for t ≥ 0 and j = 1, 2 as in Theorem
1.B.19. If Θ1 ≤lr Θ2, then N1(t) ≤lr N2(t) for all t ≥ 0.

The following example is an application of Theorem 1.C.17; it may be
compared to Examples 1.A.7 and 1.B.16.

Example 1.C.19. Let Θ1 and Θ2 be two nonnegative random variables with
distribution functions F1 and F2, respectively. Let G be some absolutely con-
tinuous distribution function, and let g be the corresponding density function.
Denote by X(θ) a random variable with the distribution function Gθ. Define
Yi = X(Θi); that is, the distribution function Hi of Yi is given by

Hi(y) =
∫ ∞

0
Gθ(y)dFi(θ), y ∈ R, i = 1, 2.
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Note that the density function kθ of X(θ) is given by

kθ(y) = θg(y)Gθ−1(y), y ∈ R.

It is easy to verify that (1.C.8) holds. Thus, by Theorem 1.C.17, if Θ1 ≤lr Θ2,
then Y1 ≤lr Y2.

Now, denote by X̃(θ) a random variable with the survival function G
θ
,

where G ≡ 1 − G. Define Ỹi = X̃(Θi); that is, the survival function H̃i of Ỹi

is given by

H̃i(y) =
∫ ∞

0
G

θ
(y)dFi(θ), y ∈ R, i = 1, 2.

Note that the density function k̃θ of X̃(θ) is given by

k̃θ(y) = θg(y)G
θ−1

(y), y ∈ R.

It is easy to verify now that X̃(θ) ≥lr X̃(θ′) whenever θ ≤ θ′. Thus, by an
obvious modification of Theorem 1.C.17, if Θ1 ≤lr Θ2, then Y1 ≥lr Y2.

In order to state a bivariate characterization result for the order ≤lr we
define the following class of bivariate functions:

Glr = {φ : R
2 → R : φ(x, y) ≤ φ(y, x) whenever x ≤ y}.

Theorem 1.C.20. Let X and Y be independent random variables. Then
X ≤lr Y if, and only if,

φ(X, Y ) ≤st φ(Y, X) for all φ ∈ Glr. (1.C.11)

Proof. We give the proof for the absolutely continuous case only; the proof for
the discrete case is similar. Suppose that (1.C.11) holds. Select u, v, ∆u > 0,
and ∆v > 0 such that u ≤ v. As before, let IA denote the indicator function
of the set A, and define φ(x, y) = I{u−∆u≤y≤u,v≤x≤v+∆v}. Clearly, φ ∈ Glr.
Hence

P{v ≤ X ≤ v + ∆v, u − ∆u ≤ Y ≤ u} = Eφ(X, Y )
≤ Eφ(Y, X) = P{v ≤ Y ≤ v + ∆v, u − ∆u ≤ X ≤ u}.

Dividing both sides by ∆u∆v and letting ∆u → 0 and ∆v → 0, we obtain
(1.C.2), that is, X ≤lr Y .

Conversely, suppose that X ≤lr Y . Let φ ∈ Glr and let ψ be an increasing
function. Then

E[ψ(φ(Y, X)) − ψ(φ(X, Y ))]

=
∫

y

∫
x

[ψ(φ(y, x)) − ψ(φ(x, y))]f(x)g(y)dxdy

=
∫

y

∫
y≥x

[ψ(φ(y, x)) − ψ(φ(x, y))][f(x)g(y) − f(y)g(x)]dydx ≥ 0.
�
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A typical application of Theorem 1.C.20 is shown in the proof of Theorem
6.B.15 in Chapter 6. Another typical application is the following result.

Theorem 1.C.21. Let X1, X2, . . . , Xm be independent random variables such
that X1 ≤lr X2 ≤lr · · · ≤lr Xm. Let a1, a2, . . . , am be constants such that
a1 ≤ a2 ≤ · · · ≤ am. Then

m∑
i=1

am−i+1Xi ≤st

m∑
i=1

aπiXi ≤st

m∑
i=1

aiXi,

where π = (π1, π2, . . . , πm) denotes any permutation of (1, 2, . . . , m).

Proof. We only give the proof when m = 2; the general case then can be
obtained by pairwise interchanges. So, suppose that X1 ≤lr X2 and that
a1 ≤ a2. Define φ by φ(x, y) = a1y + a2x. Then it is easy to verify that
φ ∈ Glr. Thus, by Theorem 1.C.20, a1X2 + a2X1 ≤st a1X1 + a2X2. 
�

The next two results are characterizations similar to the one in Theorem
1.C.20. They use the notation of Theorem 1.A.10, and their comparison is of
interest. The proofs of the following two theorems are omitted.

Theorem 1.C.22. Let X and Y be two independent random variables. Then
X ≤lr Y if, and only if,

Eφ1(X, Y ) ≤ Eφ2(X, Y )

for all functions φ1 and φ2 that satisfy ∆φ21(x, y) ≥ 0 whenever x ≤ y, and
∆φ21(x, y) ≥ −∆φ21(y, x) whenever x ≤ y.

Theorem 1.C.23. Let X and Y be two independent random variables. Then
X ≤lr Y if, and only if,

φ1(X, Y ) ≤st φ2(X, Y )

for all φ1 and φ2 that satisfy ∆φ21(x, y) ≥ 0 whenever x ≤ y, and φ1(x, y) ≤
φ2(y, x) for all x and y (then, in particular, ∆φ21(x, y) ≥ −∆φ21(y, x) when-
ever x ≤ y).

The next theorem gives a characterization of the likelihood ratio order in
the spirit of Theorems 1.B.11 and 1.B.49.

Theorem 1.C.24. Let X and Y be two independent random variables. Then
X ≤lr Y if, and only if,

[X
∣∣min(X, Y ) = z1, max(X, Y ) = z2]

≤lr [Y
∣∣min(X, Y ) = z1, max(X, Y ) = z2] for all z1 ≤ z2.
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Proof. First suppose that X and Y are absolutely continuous with density
functions f and g, respectively. Then

P [X = z1
∣∣min(X, Y ) = z1, max(X, Y ) = z2]

= 1 − P [X = z2
∣∣min(X, Y ) = z1, max(X, Y ) = z2]

= P [Y = z2
∣∣min(X, Y ) = z1, max(X, Y ) = z2]

= 1 − P [Y = z1
∣∣min(X, Y ) = z1, max(X, Y ) = z2]

=
f(z1)g(z2)

f(z1)g(z2) + f(z2)g(z1)
,

and the stated result follows.
The proof when X and Y are discrete is similar. 
�

Another similar characterization is given in Theorem 4.A.36.
The following result gives a Laplace transform characterization of the order

≤lr. It should be compared with Theorems 1.A.13, 1.B.18, and 1.B.53. The
proof is omitted.

Theorem 1.C.25. Let X1 and X2 be two nonnegative random variables, and
let Nλ(X1) and Nλ(X2) be as described in Theorem 1.A.13. Then

X1 ≤lr X2 ⇐⇒ Nλ(X1) ≤lr Nλ(X2) for all λ > 0.

The implication =⇒ in Theorem 1.C.25 can be generalized in the same
manner that Theorem 1.A.14 generalizes the implication =⇒ in Theorem
1.A.13. We will not state the result here since it is equivalent to Theorem
1.C.17.

Some interesting simple implications of the likelihood ratio order are de-
scribed in the following theorem.

Theorem 1.C.26. Let X, Y , and Z be independent random variables. If
X ≤lr Y , then

[X
∣∣X + Y = v] ≤lr [Y

∣∣X + Y = v] for all v,

[X
∣∣X + Z = v] ≤lr [Y

∣∣Y + Z = v] for all v, and

[Z
∣∣X + Z = v] ≥lr [Z

∣∣Y + Z = v] for all v.

Proof. We give only the proof of the first inequality; the proofs of the other
two are similar. First suppose that X and Y are absolutely continuous with
density functions f and g, respectively. Denote the density function of X + Y

by h. Then the density function of [Y
∣∣X + Y = v] is given by f(v−·)g(·)

h(v) , and

the density function of [X
∣∣X+Y = v] is given by f(·)g(v−·)

h(v) . It is now seen that
the monotonicity of g/f implies the monotonicity of the ratio of the above
two density functions.

The proof when X and Y are discrete is similar. 
�
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The next, easily proven, result is stronger than Theorems 1.A.15, 1.B.20,
and 1.B.55.

Theorem 1.C.27. Let X be any random variable. Then X(−∞,a] and X(a,∞)
are increasing in a in the sense of the likelihood ratio order.

A similar setting in which the order ≤hr gives rise to the order ≤lr is
described in the following result.

Theorem 1.C.28. Let X, Y , and T be random variables such that T is in-
dependent of (X, Y ). If X ≤hr Y , then

[T
∣∣T < X] ≤lr [T

∣∣T < Y ].

Proof. For simplicity assume that T is absolutely continuous with density
function fT . Let FX and FY be the survival functions of X and Y . The density
function of [T

∣∣T < X] is proportional to fT FX and the density function
of [T

∣∣T < Y ] is proportional to fT FY . The stated result now follows from
(1.B.3). 
�

An analog of the remark after Theorem 1.B.21 is the following result; its
proof is straightforward.

Theorem 1.C.29. Let X be a nonnegative, absolutely continuous, random
variable with the density function f . Then aX ≤lr X for all 0 < a < 1 if, and
only if, log f(ex) is concave in x ≥ 0.

In the next result it is shown that a random variable, whose distribution is
the mixture of two distributions of likelihood ratio ordered random variables,
is bounded from below and from above, in the likelihood ratio order sense, by
these two random variables.

Theorem 1.C.30. Let X and Y be two random variables with distribution
functions F and G, respectively. Let W be a random variable with the dis-
tribution function pF + (1 − p)G for some p ∈ (0, 1). If X ≤lr Y , then
X ≤lr W ≤lr Y .

Proof. Let A and B be two measurable sets such that A ≤ B; see (1.C.3). If
X ≤lr Y , then

P{X ∈ A}P{W ∈ B} = P{X ∈ A}(pP{X ∈ B} + (1 − p)P{Y ∈ B})
≥ P{X ∈ B}(pP{X ∈ A} + (1 − p)P{Y ∈ A})
= P{X ∈ B}P{W ∈ A},

where the inequality follows from (1.C.3). Thus, by (1.C.3), X ≤lr W . The
proof that W ≤lr Y is similar. 
�
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Analogous to the result in Remark 1.A.18, it can be shown that some
general sets of distribution functions on R are lattices with respect to the
order ≤lr.

Let X1, X2, . . . , Xm be random variables, and let X(k:m) denote the corre-
sponding kth order statistic, k = 1, 2, . . . , m.

Theorem 1.C.31. Let X1, X2, . . . , Xm be m independent random variables,
all with absolutely continuous distribution functions, all having the same sup-
port which is an interval of the real line, and all having differentiable densities.
(a) If

X1 ≤lr X2 ≤lr · · · ≤lr Xm,

then

X(k−1:m) ≤lr X(k:m), 2 ≤ k ≤ m, and

X(k−1:m−1) ≤lr X(k:m), 2 ≤ k ≤ m.

(b) If
X1 ≥lr X2 ≥lr · · · ≥lr Xm,

then
X(k:m) ≤lr X(k:m−1), 1 ≤ k ≤ m − 1.

A similar result for a finite population is the following. Consider a finite
population of size N which is linearly ordered, and suppose, without loss of
generality, that it can be represented as {1, 2, . . . , N}. Here let X(1) ≤ X(2) ≤
· · · ≤ X(m) denote now the order statistics corresponding to a simple random
sample of size m from this population.

Theorem 1.C.32. Let X(1) ≤ X(2) ≤ · · · ≤ X(m) be defined as in the preced-
ing paragraph. Then

X(1) ≤lr X(2) ≤lr · · · ≤lr X(m).

Proof. For each k ∈ {1, 2, . . . , m}, let fk denote the discrete density of X(k).
Then

fk(j) =

⎧⎨⎩
(j−1

k−1)(N−j
m−k)

(N
m) , j = k, k + 1, . . . , k + N − m;

0, otherwise.

Therefore, for k ∈ {1, 2, . . . , m − 1}, we have

fk+1(j)
fk(j)

=

⎧⎪⎨⎪⎩
0, j = k;

(m−k)(j−k)
k(N−j−m+k+1) , j = k + 1, k + 2, . . . , k + N − m;

∞, j = k + N − m + 1.

This is increasing in j, and therefore X(k) ≤lr X(k+1). 
�
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Under some conditions the likelihood ratio order is closed under the for-
mation of order statistics. As above, let X(j:m) denote the jth order statis-
tic associated with the random variables X1, X2, . . . , Xm, and let Y(i:n) de-
note similarly the ith order statistic associated with the random variables
Y1, Y2, . . . , Yn.

Theorem 1.C.33. Let X1, X2, . . . , Xm be m independent random variables,
and let Y1, Y2, . . . , Yn be other n independent random variables. If

Xj ≤lr Yi for all 1 ≤ j ≤ m and 1 ≤ i ≤ n,

then
X(j:m) ≤lr Y(i:n) whenever j ≤ i and m − j ≥ n − i.

Proof. First we give the proof when X1, X2, . . . , Xm and Y1, Y2, . . . , Yn all
have absolutely continuous distribution functions. In this proof we use an
idea of Chan, Proschan, and Sethuraman [123].

Let fj , Fj , and F j ≡ 1 − Fj denote the density, distribution, and survival
functions of Xj . Similarly, let gi, Gi, and Gi denote the density, distribution,
and survival functions of Yi. The density functions of X(j:m) and Y(i:n) are
given by

fX(j:m)(t) =
∑
π

fπ1(t)Fπ2(t) · · ·Fπj
(t)Fπj+1(t) · · ·Fπm

(t),

and
gY(i:n)(t) =

∑
σ

gσ1(t)Gσ2(t) · · ·Gσi(t)Gσi+1(t) · · ·Gσn(t),

where
∑

π signifies the sum over all permutations π = (π1, π2, . . . , πm) of
(1, 2, . . . , m), and

∑
σ similarly denotes the sum over all permutations σ =

(σ1, σ2, . . . , σn) of (1, 2, . . . , n). Write

gY(i:n)(t)
fX(j:m)(t)

=
∑

σ gσ1(t)Gσ2(t) · · ·Gσi(t)Gσi+1(t) · · ·Gσn(t)∑
π fπ1(t)Fπ2(t) · · ·Fπj (t)Fπj+1(t) · · ·Fπm(t)

. (1.C.12)

Now, for any choice of a permutation π of (1, 2, . . . , m) and a permutation σ
of (1, 2, . . . , n) we have

gσ1(t)Gσ2(t) · · ·Gσi
(t)Gσi+1(t) · · ·Gσn

(t)
fπ1(t)Fπ2(t) · · ·Fπj

(t)Fπj+1(t) · · ·Fπm
(t)

=
gσ1(t)
fπ1(t)

×
Gσ2(t) · · ·Gσj (t)
Fπ2(t) · · ·Fπj (t)

×
Gσi+1(t) · · ·Gσn(t)

Fπm−n+i+1(t) · · ·Fπm
(t)

×
Gσj+1(t) · · ·Gσi(t)

Fπj+1(t) · · ·Fπm−n+i(t)
.
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Since Xπ1 ≤lr Yσ1 we see from (1.C.1) that the first fraction above is increasing
in t. From Xπk

≤lr Yσk
and Theorem 1.C.1 it follows that Xπk

≤rh Yσk
; but

that means that Gσk
(t)/Fπk

(t) is increasing in t, k = 2, . . . , j, and therefore
the second fraction above is increasing in t. Similarly, from Xπk+m−n

≤lr Yσk

and Theorem 1.C.1 it also follows that Xπk+m−n
≤hr Yσk

; but that means that
Gσk

(t)/Fπk+m−n
(t) is increasing in t, k = i + 1, . . . , n, and therefore the third

fraction above is increasing in t. The fourth fraction above obviously increases
in t too, and thus the whole product increases in t.

Note that if a1, a2, . . . , am and b1, b2, . . . , bn are all nonnegative univariate
functions, such that aj(t)/bi(t) is increasing in t for all 1 ≤ j ≤ m and
1 ≤ i ≤ n, then

∑m
j=1 aj(t)/

∑n
i=1 bi(t) is also increasing in t. It follows from

this fact, and from (1.C.12), that gY(i:n)(t)/fX(j:m)(t) is increasing in t, and
from (1.C.1) we obtain the stated result.

The result for the case when the random variables do not necessarily have
absolutely continuous distribution functions follows from the above proof and
the closure of the likelihood ratio order under weak convergence (Theorem
1.C.7). 
�

Some of the results that are described in the following pages are stated
in the literature (see Section 1.E) only for random variables with absolutely
continuous distribution functions. However, by the closure of the likelihood
ratio order under weak convergence (Theorem 1.C.7) these results are true
also for random variables that do not necessarily have absolutely continuous
distribution functions.

As a corollary of Theorem 1.C.33 we obtain the following result.

Corollary 1.C.34. Let X1, X2, . . . , Xm be m independent random variables
and let Y1, Y2, . . . , Ym be other m independent random variables. If Xj ≤lr Yi,
for all choices of i and j, then X(k) ≤lr Y(k), k = 1, 2, . . . , m.

Example 1.C.35. Let X and Y be two independent random variables. If X ≤lr
Y , then min{X, Y } ≤lr Y and X ≤lr max{X, Y }.

Example 1.C.36. Let X, Y , and Z be three independent random variables.
If X ≤lr Y ≤lr Z, then min{X, Y } ≤lr min{Y, Z} and max{X, Y } ≤lr
max{Y, Z}.

By letting all the Xj ’s and Yi’s in Theorem 1.C.33 be identically dis-
tributed we obtain the following result.

Theorem 1.C.37. For positive integers m and n, let X1, X2, . . . , Xmax{m,n}
be independent identically distributed random variables. Then

X(j:m) ≤lr X(i:n) whenever j ≤ i and m − j ≥ n − i.

In particular, it follows from Theorem 1.C.37 that

X1 ≤lr X(m:m), m = 2, 3, . . . (1.C.13)
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and
X1 ≥lr X(1:m), m = 2, 3, . . . . (1.C.14)

Note that (1.C.13) and (1.C.14) can also be obtained by induction from Ex-
ample 1.C.35.

The following two corollaries of Theorem 1.C.37 can be compared to The-
orems 1.B.27 and 1.B.28.

Corollary 1.C.38. Let X1, X2, . . . , Xm be independent identically distributed
random variables. Then X(k−1:m−1) ≤lr X(k:m) for k = 2, 3, . . . , m.

Corollary 1.C.39. Let X1, X2, . . . , Xm be independent identically distributed
random variables. Then X(k:m−1) ≥lr X(k:m) for k = 1, 2, . . . , m − 1.

Remark 1.C.40. The likelihood ratio order can be used to provide a proof
of Theorem 1.B.26. Let X1, X2, . . . , Xm be independent nonnegative random
variables, and let X(1) ≤ X(2) ≤ · · · ≤ X(m) denote the corresponding order
statistics. Fix s and t such that 0 ≤ s ≤ t. For j = 1, 2, . . . , m, define Mj = 1
if Xj ≤ s, and Mj = 0 if Xj > s, and also define Nj = 1 if Xj ≤ t, and
Nj = 0 if Xj > t. Denote M =

∑m
j=1 Mj and N =

∑m
j=1 Nj . Note that, for

j = 1, 2, . . . , m, we have

P{M < j} = P{X(j) > s}, and
P{N < j} = P{X(j) > t}.

Since P{Mj = 1} = P{Xj ≤ s} ≤ P{Xj ≤ t} = P{Nj = 1} it is easily seen
that Mj ≤lr Nj , j = 1, 2, . . . , m. Also, obviously, Mj and Nj have logconcave
discrete density functions. Thus, from Theorem 1.C.9 it is seen that M ≤lr N .
Therefore, by Theorem 1.C.1, M ≤rh N . Thus, from (1.B.44), we get that

P{N < j}
P{M < j} is increasing in j ≥ 1.

Therefore, for k such that 1 ≤ k ≤ m − 1 we have

P{X(k) > t}
P{X(k) > s} =

P{N < k}
P{M < k} ≤ P{N < k + 1}

P{M < k + 1} =
P{X(k+1) > t}
P{X(k+1) > s} .

From (1.B.3) it thus follows that X(k) ≤hr X(k+1).

Remark 1.C.41. The likelihood ratio order can be used to provide a proof of
Theorem 1.B.36. Let the Xi’s and the Yj ’s be as in that theorem. Assume
that Xi ≤hr Yj for all i, j. We first show that there exists a random variable
Z with support (a, b) such that Xi ≤hr Z ≤hr Yj for all i, j. Let rXi and rYj

denote the hazard rate functions of the indicated random variables. From the
assumption that Xi ≤hr Yj for all i, j it follows by (1.B.2) that

min{rX1(t), rX2(t), . . . , rXm(t)} ≥ max{rY1(t), rY2(t), . . . , rYn(t)}, t ∈ (a, b).
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Let q be a function which satisfies

min{rX1(t), rX2(t), . . . , rXm(t)} ≥ q(t) ≥ max{rY1(t), rY2(t), . . . , rYn(t)},

t ∈ (a, b);

for example, let q(t) = min{rX1(t), rX2(t), . . . , rXm
(t)}. It can be shown that

q is indeed a hazard rate function. Let Z be a random variable with the hazard
rate function q. Then indeed Xi ≤hr Z ≤hr Yj for all i, j.

Now, let Z1, Z2, . . . , Zmax{m,n} be independent random variables which are
distributed as Z. Then, for j ≤ i and m − j ≥ n − i we have

X(i:m) ≤hr Z(i:m) (by Proposition 1.B.35)
≤lr Z(j:n) (by Theorem 1.C.37)
≤hr Y(j:n) (by Proposition 1.B.35),

and Theorem 1.B.36 follows from the fact that the likelihood ratio order im-
plies the hazard rate order.

Recall that for a collection X1, X2, . . . , Xm of nonnegative random vari-
ables, the spacings are defined by U(i) ≡ X(i) − X(i−1), i = 1, 2, . . . , m, where
X(0) ≡ 0. The following result may be compared with Theorems 1.A.19,
1.A.21, and 1.B.31.

Theorem 1.C.42. Let X1, X2, . . . , Xm be independent exponential random
variables with possibly different parameters. Then

U(1) ≤lr
m − i + 1

m
· U(i), i = 1, 2, . . . , m.

It is worth mentioning that Kochar and Kirmani [313] claimed that if
X1, X2, . . . , Xm are independent and identically distributed random variables
with a common logconvex density, then U(i) ≤lr ((m − i)/(m − i + 1))U(i+1)
for i = 1, 2, . . . , m − 1. However, Misra and van der Meulen [396] showed via
a counterexample that this is not correct.

For spacings that are not “normalized” we have the following results. We
denote by U(i:m) = X(i:m) − X(i−1:m) the ith spacing that corresponds to a
sample X1, X2, . . . , Xm of size m.

Theorem 1.C.43. Let X1, X2, . . . , Xm, Xm+1 be independent, identically dis-
tributed, nonnegative random variables with a common logconvex density.
Then

U(i:m) ≤lr U(i+1:m), 1 ≤ i ≤ m − 1,

U(i:m+1) ≤lr U(i:m), 1 ≤ i ≤ m,

and
U(i:m) ≤lr U(i+1:m+1), 1 ≤ i ≤ m.
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Note that the three statements of the above theorem can be summarized
as

U(j:m) ≤lr U(i:n) whenever i − j ≥ max{0, n − m}.

We also have the following result.

Theorem 1.C.44. Let X1, X2, . . . , Xm, Xm+1 be independent, identically dis-
tributed, nonnegative random variables with a common logconcave density.
Then

U(i:m) ≥lr U(i+1:m+1), 1 ≤ i ≤ m.

A comparison of spacings from two different samples, that is similar to
Theorem 1.B.32, is described next. In fact, it will be argued after the next
theorem that the next result strengthens Theorem 1.B.31. Here U(i:m) =
X(i:m) − X(i−1:m) denotes, as before, the ith spacing that corresponds to the
sample X1, X2, . . . , Xm, and V(j:n) denotes, similarly, the jth spacing that
corresponds to the sample Y1, Y2, . . . , Yn. Other results which give related
comparisons can be found in Theorem 4.B.17 and in Examples 6.B.25 and
6.E.15.

Theorem 1.C.45. For positive integers m and n, let X1, X2, . . . , Xm be inde-
pendent identically distributed random variables with an absolutely continuous
common distribution function, and let Y1, Y2, . . . , Yn be independent identically
distributed random variables with a possibly different absolutely continuous
common distribution function. If X1 ≤lr Y1, and if either X1 or Y1 is DFR,
then

(m − j + 1)U(j:m) ≤hr (n − i + 1)V(i:n) whenever i − j ≥ max{0, n − m}.

Taking X1 =st Y1 in Theorem 1.C.45 it is seen that Theorem 1.B.31 is a
consequence of Theorem 1.C.45.

In the following example it is shown that, under the proper conditions,
random minima and maxima are ordered in the likelihood ratio order sense;
see related results in Examples 3.B.39, 4.B.16, 5.A.24 and 5.B.13.

Example 1.C.46. Let X1, X2, . . . be a sequence of absolutely continuous non-
negative independent and identically distributed random variables with a com-
mon distribution function FX1 and a common density function fX1 . Let N1
and N2 be two positive integer-valued random variables which are indepen-
dent of the Xi’s. Denote X(1:Nj) ≡ min{X1, X2, . . . , XNj

} and X(Nj :Nj) ≡
max{X1, X2, . . . , XNj

}, j = 1, 2. Then the density function of X(Nj :Nj) is
given by

fX(Nj :Nj)(x) =
∞∑

n=1

nFn−1
X1

(x)fX1(x)P{Nj = n}, x ≥ 0, j = 1, 2.

If N1 ≤lr N2, then P{Nj = n} is TP2 in n ≥ 1 and j ∈ {1, 2}. Also,
nFn−1

X1
(x)fX1(x) is TP2 in n ≥ 1 and x ≥ 0. Therefore, by the Basic Com-

position Formula (Karlin [275]) it follows that fX(Nj :Nj)(x) is TP2 in x ≥ 0
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and j ∈ {1, 2}. That is, X(N1:N1) ≤lr X(N2:N2). In a similar fashion it can be
shown also that X(1:N1) ≥lr X(1:N2).

Example 1.C.47. Let {N(t), t ≥ 0} be a nonhomogeneous Poisson process
with mean function Λ (that is, Λ(t) ≡ E[N(t)], t ≥ 0), and let T1, T2, . . . be
the successive epoch times. The survival function of Tn is given by P{Tn >

t} =
∑n−1

i=0
(Λ(t))i

i! e−Λ(t), t ≥ 0, and the density function of Tn is given by

fn(t) = λ(t) (Λ(t))(n−1)

(n−1)! e−Λ(t), t ≥ 0, where λ(t) ≡ d
dtΛ(t), n = 1, 2, . . .. It is

easy to verify that fn+1(t)
fn(t) is increasing in t ≥ 0, n = 1, 2, . . ., and therefore

Tn ≤lr Tn+1, n = 1, 2, . . . .

Theorem 2.6 on page 182 of Kamps [273] extends Example 1.C.47 (as
it extends Theorem 1.C.45) to the so called generalized order statistics. A
further extension is described in Franco, Ruiz, and Ruiz [205].

The following example may be compared to Examples 1.B.24, 2.A.22,
3.B.38, 4.B.14, 6.B.41, 6.D.8, 6.E.13, and 7.B.13.

Example 1.C.48. Let X and Y be two absolutely continuous nonnegative ran-
dom variables with survival functions F and G and density functions f and
g, respectively. Denote Λ1 = − log F , Λ2 = − log G, and λi = Λ′

i, i = 1, 2.
Consider two nonhomogeneous Poisson processes N1 = {N1(t), t ≥ 0} and
N2 = {N2(t), t ≥ 0} with mean functions Λ1 and Λ2 (see Example 1.B.13),
respectively. Let Ti,1, Ti,2, . . . be the successive epoch times of process Ni,
i = 1, 2. Note that X =st T1,1 and Y =st T2,1.

It turns out that, under some conditions, the likelihood ratio ordering
of the first two epoch times implies the likelihood ratio ordering of all the
corresponding later epoch times. Explicitly, it will be shown below that if
X ≤lr Y , and if

Λ2(t)
Λ1(t)

is increasing in t ≥ 0, (1.C.15)

then T1,n ≤lr T2,n, n ≥ 1.
From (1.B.24) it is easy to see that the density function f1,n of T1,n is

given by

f1,n(t) = f(t)
(Λ1(t))n−1

(n − 1)!
, t ≥ 0, n ≥ 1,

and that the density function f2,n of T2,n is given by

f2,n(t) = g(t)
(Λ2(t))n−1

(n − 1)!
, t ≥ 0, n ≥ 1.

Thus,
f2,n(t)
f1,n(t)

=
g(t)
f(t)

(Λ2(t)
Λ1(t)

)n−1
.
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Now, if X ≤lr Y and (1.C.15) holds, then f2,n/f1,n is increasing and we obtain
T1,n ≤lr T2,n.

Now let Xi,n ≡ Ti,n − Ti,n−1, n ≥ 1 (where Ti,0 ≡ 0), be the inter-epoch
times of the process Ni, i = 1, 2. Again, note that X =st X1,1 and Y =st X2,1.
It turns out that, under some conditions, the likelihood ratio ordering of the
first two inter-epoch times implies the likelihood ratio ordering of all the
corresponding later inter-epoch times. Explicitly, it will be shown below that
if X ≤hr Y , if f and g are logconvex, and if (1.B.25) holds, then X1,n ≤lr X2,n

for each n ≥ 1.
First note that by Theorem 1.C.4 we have X ≤lr Y . For the purpose of

the following proof we denote f by f1 and g by f2. Let gi,n denote the density
function of Xi,n, i = 1, 2. The stated result is obvious for n = 1, so let us fix
an n ≥ 2. From (1.B.26) we obtain

gi,n(t) =
∫ ∞

0
λi(s)

Λn−2
i (s)

(n − 2)!
fi(s + t) ds, t ≥ 0, i = 1, 2.

As in Example 1.B.24, we have that

λi(t)
Λn−2

i (t)
(n − 2)!

is TP2 in (i, t).

The assumption F1 ≤lr F2 implies that

fi(s + t) is TP2 in (i, s) and in (i, t).

Finally, the logconvexity of f1 and of f2 means that

fi(s + t) is TP2 in (s, t).

Thus, by Theorem 5.1 on page 123 of Karlin [275], we get that gi,n(t) is TP2
in (i, t); that is, X1,n ≤lr X2,n.

The following neat example compares a sum of independent heterogeneous
exponential random variables with an Erlang random variable; it is of interest
to compare it with Examples 1.A.24 and 1.B.5. We do not give the proof here.

Example 1.C.49. Let Xi be an exponential random variable with mean λ−1
i >

0, i = 1, 2, . . . , m, and assume that the Xi’s are independent. Let Yi,
i = 1, 2, . . . , m, be independent, identically distributed, exponential random
variables with mean η−1. Then

m∑
i=1

Xi ≥lr

m∑
i=1

Yi ⇐⇒ λ1 + λ2 + · · · + λm

m
≤ η.

A related example is the following. Recall from page 2 the definition of
the majorization order ≺ among n-dimensional vectors. It is of interest to
compare the example below with Example 3.B.34.
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Example 1.C.50. Let Xi be an exponential random variable with mean λ−1
i >

0, i = 1, 2, . . . , m, and let Yi be an exponential random variable with mean
η−1

i > 0, i = 1, 2, . . . , m. If (λ1, λ2, . . . , λm) � (η1, η2, . . . , ηm), then

m∑
i=1

Xi ≥lr

m∑
i=1

Yi.

The next example may be compared with Examples 1.A.25, 1.B.6, and
4.A.45.

Example 1.C.51. Let Xi be a binomial random variable with parameters ni

and pi, i = 1, 2, . . . , m, and assume that the Xi’s are independent. Let Y be a
binomial random variable with parameters n and p where n =

∑m
i=1 ni. Then

m∑
i=1

Xi ≥lr Y ⇐⇒ p ≤ n∑m
i=1(ni/pi)

,

and
m∑

i=1

Xi ≤lr Y ⇐⇒ 1 − p ≤ n∑m
i=1(ni/(1 − pi))

.

The order ≤lr can be used to characterize random variables with logcon-
cave densities. The next result lists several such characterizations. It shows
that logconcavity can be interpreted as an aging notion in reliability theory by
a correct use of the likelihood ratio ordering. This theorem may be compared
to Theorem 1.B.38.

Theorem 1.C.52. The random variable X has a logconcave density (that
is, a Polya frequency of order 2 (PF2)) if, and only if, one of the following
equivalent conditions holds:

(i) [X − t
∣∣X > t] ≥lr [X − t′

∣∣X > t′] whenever t ≤ t′.
(ii) X ≥lr [X − t

∣∣X > t] for all t ≥ 0 (when X is a nonnegative random
variable).

(iii) X + t ≤lr X + t′ whenever t ≤ t′.

Random variables that satisfy (i) in Theorem 1.C.52 (and hence any of the
conditions of that theorem) are said to have the ILR (increasing likelihood
ratio) property; see Section 13.D.2 by Righter in [515].

A multivariate extension of parts (i) and (ii) of Theorem 1.C.52 is given
in Section 6.E.3.

Another connection between logconcavity and the likelihood ratio order is
illustrated in the next result. It is worthwhile to compare the following result
with Theorem 6.B.9 in Section 6.B.3.

Theorem 1.C.53. Let X1, X2, . . . , Xm be independent random variables hav-
ing logconcave density functions. Then
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Xi

∣∣∣∣ m∑
j=1

Xj = s

]
≤lr

[
Xi

∣∣∣∣ m∑
j=1

Xj = s′
]

whenever s ≤ s′, i = 1, 2, . . . , m.

Proof. Since the convolution of logconcave density functions is logconcave, it
is sufficient to prove the result for m = 2 and i = 1. Let f1 and f2 denote the
density functions of X1 and X2, respectively. The conditional density of X1,
given X1 + X2 = s, is

fX1|X1+X2=s(x1) =
f1(x1)f2(s − x1)∫
f1(u)f2(s − u)du

.

Thus,

fX1|X1+X2=s′(x1)
fX1|X1+X2=s(x1)

=
f2(s′ − x1)

∫
f1(u)f2(s − u)du

f2(s − x1)
∫

f1(u)f2(s′ − u)du
. (1.C.16)

The logconcavity of f2 implies that the expression in (1.C.16)) increases in
x1, whenever s ≤ s′. By (1.C.1) the proof is complete. 
�

Theorems 1.C.52 and 1.C.53 have straightforward discrete analogs, which
we do not state here. A few other properties of the order ≤lr can be found in
Lemma 13.D.1 in Chapter 13 by Righter, and in (14.B.7) in Chapter 14 by
Shanthikumar and Yao, in [515].

An interesting closure property of logconcave density functions is described
in the following result.

Theorem 1.C.54. Let X1, X2, . . . , Xm be independent, identically distributed
random variables with a common logconcave density function. Then the ith
order statistic X(i:m) also has a logconcave density function, 1 ≤ i ≤ m.

Proof. Let f , F , and F denote, respectively, the density, distribution, and
survival function of X1. Then the density function of X(i:m) is given by

f(i:m)(x) = m

(
m − 1
i − 1

)
F i−1(x)f(x)F

m−i
(x).

Since the logconcavity of f implies the logconcavity of F and of F , it follows
that f(i:m) is logconcave. 
�

Misra and van der Meulen [396] showed the preservation of logconcavity
and logconvexity from the parent density to the density of the corresponding
spacings.

The likelihood ratio order can be used to characterize some aging notions
in reliability theory. Recall from (1.A.20) that for a nonnegative random vari-
able X with a finite mean we denote by AX the corresponding asymptotic
equilibrium age. Recall from page 1 the definitions of the IFR and the DFR
properties. The following result is immediate. It is of interest to contrast it
with Theorems 1.A.31 and 1.B.40
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Theorem 1.C.55. The nonnegative random variable X with finite mean is
IFR [DFR] if, and only if, X ≥lr [≤lr] AX .

An interesting comparison of asymptotic equilibrium ages is described in
the next example. Recall from page 1 the definitions of the DMRL property.

Example 1.C.56. Let X and Y be two independent nonnegative DMRL ran-
dom variables with survival functions F and G, density functions f and g, and
asymptotic equilibrium ages AX and AY , respectively. Let Amin{X,Y } denote
the asymptotic equilibrium age of min{X, Y }. Then

min{AX , AY } ≤lr Amin{X,Y }.

In order to see this, assume, for simplicity, that the supports of X and of Y
are (0, ∞). Note that the density function of min{AX , AY } is given by

fmin{AX ,AY }(t) = (EXEY )−1
(
F (t)

∫ ∞

t

G(x) dx+G(t)
∫ ∞

t

F (x)dx
)
, t ≥ 0,

and the density function of Amin{X,Y } is given by

fAmin{X,Y }(t) =
(
E[min{X, Y }]

)−1
F (t)G(t), t ≥ 0.

Therefore

fAmin{X,Y }(t)
fmin{AX ,AY }(t)

=
EXEY

E[min{X, Y }]
(
m(t) + l(t)

)−1
, t ≥ 0,

where m and l are the mean residual life functions of X and of Y , given by
m(t) = E[X − t

∣∣X > t] and l(t) = E[Y − t
∣∣Y > t], t ≥ 0. The functions m and

l are decreasing by the DMRL assumptions, and therefore min{AX , AY } ≤lr
Amin{X,Y } by (1.C.1).

In the following example it is shown that if X is increasing in Θ in the
likelihood ratio sense, then the posterior distribution of Θ is increasing in X
in the same sense.

Example 1.C.57. Let X be a random variable whose distribution function de-
pends on the real parameter Θ. Denote the prior density function of Θ by π,
and denote the posterior density function of Θ, given X = x, by π∗(·

∣∣x). Also,
denote the conditional density of X, given Θ = θ by f(·

∣∣θ), and denote the
marginal density of X by g. If X is increasing in Θ in the likelihood ratio sense
(that is, if [X

∣∣Θ = θ] ≤lr [X
∣∣Θ = θ′] whenever θ ≤ θ′), then Θ is increasing in

X in the likelihood ratio sense (that is, [Θ
∣∣X = x] ≤lr [Θ

∣∣X = x′] whenever
x ≤ x′). The proof of this statement is easy by noting that

π∗(θ
∣∣x) =

f(x
∣∣θ)π(θ)
g(x)

.



1.C The Likelihood Ratio Order 65

An extension of Example 1.C.57 to the multivariate likelihood ratio order
is given in Example 6.E.16.

Example 1.C.58. Let X be a random variable whose distribution function de-
pends on the random parameter Θ1 or, in other circumstances, on the random
parameter Θ2. Denote the prior density functions, of Θ1 and Θ2, by π1 and π2,
respectively, and denote the posterior density functions of Θ1 and Θ2, given
X = x, by π∗

1(·
∣∣x) and π∗

2(·
∣∣x), respectively. Also, denote the conditional den-

sity of X, given Θ1 = θ or Θ2 = θ, by f(·
∣∣θ), and denote the marginal density

of X by g1 or by g2, according to whether X depends on Θ1 or on Θ2. Then,
for any x, we have that

Θ1 ≤lr Θ2 =⇒ [Θ1
∣∣X = x] ≤lr [Θ2

∣∣X = x].

The proof of this statement is easy by noting that

π∗
i (θ
∣∣x) =

f(x
∣∣θ)πi(θ)
gi(x)

, i = 1, 2.

Example 1.C.59. Recall from Example 1.B.23 that for a nonnegative random
variable X with density function f , and for a nonnegative function w such
that E[w(X)] exists, we denote by Xw the random variable with the weighted
density function fw given by

fw(x) =
w(x)f(x)
E[w(X)]

, x ≥ 0. (1.C.17)

Similarly, for another nonnegative random variable Y with density function
g, such that E[w(Y )] exists, we denote by Y w the random variable with the
density function gw given by

gw(x) =
w(x)g(x)
E[w(Y )]

, x ≥ 0. (1.C.18)

It is then obvious that X ≤lr Y =⇒ Xw ≤lr Y w.

Example 1.C.60. Let X be a nonnegative random variable with density func-
tion f , and for a nonnegative function w such that E[w(X)] exists, let Xw be
the random variable with the weighted density function fw given in (1.C.17).
It is then obvious that if w is increasing [decreasing], then X ≤lr [≥lr] Xw.
In particular, the inequality X ≤lr Xw holds when Xw is the length-biased
version of X; that is, when w(x) = x, x ≥ 0.

Example 1.C.61. Let the random variable X have a generalized skew normal
distribution with parameters n and λ, that is, suppose that its density function
is given by

f(x; n, λ) =
Φn(λx)φ(x)

C(n, λ)
, x ∈ R,
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where φ and Φ are, respectively, the density and distribution functions of a
standard normal random variable, and C(n, λ) is given by

C(n, λ) =
∫ ∞

−∞
Φn(λx)φ(x)dx.

Let Y have a generalized skew normal distribution with parameters n1 and
λ. It is easy to see that if λ > [<] 0 and n ≤ n1, then X ≤lr [≥lr] Y .

1.C.4 Shifted likelihood ratio orders

In this subsection we consider only random variables with absolutely contin-
uous distribution functions and interval supports (although it is possible to
state and prove analogs of many of the results here also for discrete random
variables). So let X and Y be such random variables. Let lX and uX be the
left and the right endpoints of the support of X. Similarly define lY and uY .
The values lX , uX , lY , and uY may be infinite. Let f and g denote the density
functions of X and Y , respectively. Suppose that

X − x ≤lr Y for each x ≥ 0. (1.C.19)

Then X is said to be smaller than Y in the up shifted likelihood ratio order
(denoted as X ≤lr↑ Y ). Rewriting (1.C.19) using (1.C.1) it is seen that X ≤lr↑
Y if, and only if, for each x ≥ 0 we have

g(t)
f(t + x)

is increasing in t ∈ (lX − x, uX − x) ∪ (lY , uY ). (1.C.20)

It is readily apparent that

X ≤lr↑ Y =⇒ X ≤lr Y.

The up shifted likelihood ratio order satisfies some closure properties given
in the next theorem.

Theorem 1.C.62. (a) Let X1, X2, . . . , Xm be a set of independent random
variables and let Y1, Y2, . . . , Ym be another set of independent random
variables. If Xi ≤lr↑ Yi for i = 1, 2, . . . , m, then

m∑
j=1

Xj ≤lr↑
m∑

j=1

Yj .

That is, the up likelihood ratio order is closed under convolutions.
(b) Let {Xj , j = 1, 2, . . . } and {Yj , j = 1, 2, . . . } be two sequences of random

variables such that Xj →st X and Yj →st Y as j → ∞. If Xj ≤lr↑ Yj,
j = 1, 2, . . ., then X ≤lr↑ Y .
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Shanthikumar and Yao [530] proved Theorem 1.C.62(a) by establishing a
stochastic monotonicity property of birth and death processes. Hu and Zhu
[242] provided a straightforward analytic proof of this result. This result is
generalized in Hu, Nanda, Xie, and Zhu [237].

From Theorem 1.C.15 we obtain the following result.

Theorem 1.C.63. Let X, Y , and Θ be random variables such that [X
∣∣Θ =

θ] ≤lr↑ [Y
∣∣Θ = θ′] for all θ and θ′ in the support of Θ. Then X ≤lr↑ Y .

Some further properties of the up shifted likelihood ratio order are listed
in the following theorems.

Theorem 1.C.64. Let X and Y be two absolutely continuous random vari-
ables with interval supports. If X or Y or both have logconcave densities, and
if X ≤lr Y , then X ≤lr↑ Y .

Theorem 1.C.65. Let X and Y be two absolutely continuous random vari-
ables with differentiable densities on the respective interval supports. Then
X ≤lr↑ Y if, and only if, there exists a random variable Z with a logconcave
density such that X ≤lr Z ≤lr Y .

Theorem 1.C.66. Let X be an absolutely continuous random variable with
an interval support. Then X ≤lr↑ X if, and only if, f is logconcave on
(−∞,∞).

Example 1.C.67. Let X be a random variable with a density function h. For
each θ ∈ (−∞,∞), let Xθ be a random variable with density function fθ

defined by
fθ(x) = h(x − θ), x ∈ (−∞,∞).

Then it is easy to see that Xθ1 ≤lr↑ Xθ2 whenever θ1 ≤ θ2 if, and only if,
X ≤lr↑ X; that is, by Theorem 1.C.66, if, and only if, h is logconcave on
(−∞,∞).

A preservation result of the order ≤lr↑ is described next.

Theorem 1.C.68. Let X and Y be two absolutely continuous random vari-
ables with interval supports. If X ≤lr↑ Y and if the density function of X is
increasing [respectively, decreasing] on (lY , uX), then φ(X) ≤lr↑ φ(Y ) for any
strictly increasing twice differentiable convex [respectively, concave] function
φ (with first and second derivatives φ′ and φ′′) such that φ′′(x)/(φ′(x))2 is
increasing.

A characterization of the relation X ≤lr↑ Y for nonnegative random vari-
ables is given next.

Theorem 1.C.69. Let X and Y be two nonnegative absolutely continuous
random variables with interval supports; that is, assume that lX ≥ 0 and
lY ≥ 0. Then X ≤lr↑ Y if, and only if,[

X − x
∣∣X > x

]
≤lr Y for all x ∈ (lX , uX).
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Another shifted likelihood ratio stochastic order is defined next. Let X
and Y be two absolutely continuous random variables with support [0,∞).
Suppose that

X ≤lr [Y − x
∣∣Y > x] for all x ≥ 0.

Then X is said to be smaller than Y in the down shifted likelihood ratio order
(denoted as X ≤lr↓ Y ).

Note that in the above definition only nonnegative random variables are
compared. This is because for the down shifted likelihood ratio order it is not
possible to take an analog of (1.C.19), such as X ≤lr Y −x, as a definition. The
reason is that here, by taking x very large, it is seen that practically no random
variables would satisfy such an order relation. Note that in the definition
above, the right-hand side [Y − x

∣∣Y > x] can take on (as x varies) any value
in the right neighborhood of 0. Therefore the support of the compared random
variables is restricted here to be [0,∞).

Let f and g denote the density functions of X and Y , respectively. An
analog of (1.C.20) is the following:

X ≤lr↓ Y ⇐⇒ g(t + x)
f(t)

is increasing in t ≥ 0 for all x ≥ 0. (1.C.21)

(A discrete version of the down shifted likelihood ratio order is defined and
used in Section 6.B.3.)

It is readily apparent that for nonnegative random variables with support
[0,∞) we have

X ≤lr↓ Y =⇒ X ≤lr Y.

We describe now some further properties of the down shifted likelihood
ratio order.

Theorem 1.C.70. Let {Xj , j = 1, 2, . . . } and {Yj , j = 1, 2, . . . } be two se-
quences of random variables, with support [0,∞), such that Xj →st X and
Yj →st Y as j → ∞. If Xj ≤lr↓ Yj, j = 1, 2, . . ., then X ≤lr↓ Y .

The following result is an analog of Theorem 1.C.63, however, it does not
follow at once from Theorem 1.C.15. Its proof can be found in Lillo, Nanda,
and Shaked [361].

Theorem 1.C.71. Let X, Y , and Θ be random variables such that [X
∣∣Θ = θ]

and [Y
∣∣Θ = θ] are absolutely continuous and have the support [0,∞) for all

θ in the support of Θ. If [X
∣∣Θ = θ] ≤lr↓ [Y

∣∣Θ = θ′] for all θ and θ′ in the
support of Θ, then X ≤lr↓ Y .

More properties are listed next.

Theorem 1.C.72. Let X and Y be two absolutely continuous random vari-
ables with support [0,∞). If X or Y or both have logconvex densities on [0,∞),
and if X ≤lr Y , then X ≤lr↓ Y .
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Theorem 1.C.73. Let X and Y be two absolutely continuous random vari-
ables with differentiable densities on their support [0,∞). Then X ≤lr↓ Y
if, and only if, there exists a random variable Z with a logconvex density on
[0,∞) such that X ≤lr Z ≤lr Y .

Theorem 1.C.74. Let X be an absolutely continuous random variable with
support [0,∞). Then X ≤lr↓ X if, and only if, f is logconvex on [0,∞).

Theorem 1.C.75. Let X and Y be two absolutely continuous random vari-
ables with support [0,∞). If X ≤lr↓ Y and if Y has a decreasing density func-
tion on [0,∞), then φ(X) ≤lr↓ φ(Y ) for any strictly increasing twice differ-
entiable convex function φ : [0,∞) → [0,∞) (with first and second derivatives
φ′ and φ′′) such that φ′′(x)/(φ′(x))2 is decreasing.

Example 1.C.76. An interesting family of distribution functions, with associ-
ated random variables that are ordered in the down shifted likelihood ratio
order, is the Pareto family. Explicitly, for θ ∈ (0,∞), let Xθ be a random
variable with density function fθ defined by

fθ(x) = θ/(1 + x)θ+1, x ≥ 0.

Then, by verifying (1.C.21), it is easy to see that Xθ1 ≤lr↓ Xθ2 whenever
θ1 ≥ θ2 > 0.

Some results that compare order statistics in the shifted likelihood ratio
orders are described next. Again, X(j:m) denotes the jth order statistic asso-
ciated with the random variables X1, X2, . . . , Xm, and Y(i:n) denotes the ith
order statistic associated with the random variables Y1, Y2, . . . , Yn. An analog
of Theorem 1.C.33 for the order ≤lr↑ is the following result. Note that in the
following theorem the assumption is stronger than the assumption in Theorem
1.C.33, but so is the conclusion.

Theorem 1.C.77. Let X1, X2, . . . , Xm be m independent random variables,
and let Y1, Y2, . . . , Yn be other n independent random variables, all having
absolutely continuous distributions. If Xj ≤lr↑ Yi for all 1 ≤ j ≤ m and
1 ≤ i ≤ n, then

X(j:m) ≤lr↑ Y(i:n) whenever j ≤ i and m − j ≥ n − i.

Proof. Fix an x ≥ 0 and denote by (X −x)(j:m) the jth order statistic among
the random variables X1 − x, X2 − x, . . . , Xm − x. By assumption we have
Xj − x ≤lr↑ Yi for all 1 ≤ j ≤ m and 1 ≤ i ≤ n. Therefore from Theorem
1.C.33 we get (X − x)(j:m) ≤lr Y(i:n) whenever j ≤ i and m − j ≥ n − i. The
stated result follows from the fact that (X − x)(j:m) = X(j:m) − x. 
�

For the down shifted likelihood ratio order, the method of proof used in
the proof of Theorem 1.C.33 only yields comparisons of minima as described
in the following result.
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Theorem 1.C.78. Let X1, X2, . . . , Xm be m independent random variables,
and let Y1, Y2, . . . , Yn be other n independent random variables, all having
absolutely continuous distributions with support [0,∞). If Xj ≤lr↓ Yi for all
1 ≤ j ≤ m and 1 ≤ i ≤ n, then

X(1:m) ≤lr↓ Y(1:n) whenever m ≥ n.

Now let X1, X2, . . . be independent and identically distributed random
variables. Taking Yi =st Xj for all i and j in Theorems 1.C.77 and 1.C.78,
and using Theorems 1.C.66 and 1.C.74, we obtain the following analogs of
Theorem 1.C.37. Note that in the next theorem (unlike in Theorem 1.C.37)
we assume logconcavity or logconvexity of the underlying density function, but
the conclusion in part (a) of the next theorem is stronger than the conclusion
in Theorem 1.C.37.

Theorem 1.C.79. (a) Let X1, X2, . . . be independent and identically dis-
tributed absolutely continuous random variables with an interval support.
If the common density function is logconcave, then

X(j:m) ≤lr↑ X(i:n) whenever j ≤ i and m − j ≥ n − i.

(b) Let X1, X2, . . . be independent and identically distributed absolutely con-
tinuous random variables with support [0,∞). If the common density func-
tion is logconvex on [0,∞), then

X(1:m) ≤lr↓ X(1:n) whenever m ≥ n.

1.D The Convolution Order

Let X and Y be two random variables such that

Y =st X + U, (1.D.1)

where U is a nonnegative random variable, independent of X. Then X is
said to be smaller than Y in the convolution order (denoted as X ≤conv
Y ). Obviously, the convolution order is a partial order. It is equivalent to
the information order which is defined for statistical experiments when the
underlying parameter is a location parameter.

The convolution order is obviously closed under increasing linear transfor-
mations. That is, for any a ∈ R and b ≥ 0 we have

X ≤conv Y =⇒ a + bX ≤conv a + bY.

The convolution order is obviously also closed under convolutions. That
is, let X1, X2, . . . , Xn be a set of independent random variables, and let
Y1, Y2, . . . , Yn be another set of independent random variables. Then
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(
Xj ≤conv Yj , j = 1, 2, . . . , n

)
=⇒

n∑
i=1

Xi ≤conv

n∑
i=1

Yi.

It is obvious from Theorem 1.A.2 and (1.D.1) that

X ≤conv Y =⇒ X ≤st Y.

For any nonnegative random variable X we denote by LX its classical
Laplace transform, that is,

LX(s) = E[e−sX ], s ≥ 0.

Recall that a nonnegative function φ is a Laplace transform of a nonnegative
measure on (0,∞) if, and only if, φ is completely monotone, that is, all the
derivatives φ(n) of φ exist, and they satisfy (−1)nφ(n)(x) ≥ 0 for all x ≥ 0
and n = 1, 2, . . .. It follows that for nonnegative random variables we have

X ≤conv Y ⇐⇒ LY (s)
LX(s)

is a completely monotone function in s ≥ 0. (1.D.2)

Example 1.D.1. Let Xi be an exponential random variable with mean 1/λi,
i = 1, 2. If λ1 > λ2, then X1 ≤conv X2. To see this, note that the ratio of the
Laplace transforms of X2 and X1 at s is equal to (λ2/λ1)((s + λ1)/(s + λ2)),
and it is easy to verify that this ratio is completely monotone. The result thus
follows from (1.D.2).

Example 1.D.2. Let X1, X2, . . . , Xn be independent and identically distributed
exponential random variables with mean 1/λ for some λ > 0. Denote the cor-
responding order statistics by X(1) ≤ X(2) ≤ · · · ≤ X(n). Then

X(i) ≤conv X(j) whenever 1 ≤ i < j ≤ n.

To see this, note that
X(k+1) =st X(k) + Zk,

where Zk is an exponential random variable with mean ((n − k)λ)−1, k =
1, 2, . . . , n − 1, and use the transitivity property of the order ≤conv.

1.E Complements

Section 1.A: The usual stochastic order is being used in many areas of ap-
plications, but there is no single source where many of the basic results can
all be found. Some standard references are the books of Lehmann [342],
Marshall and Olkin [383], Ross [475], and Müller and Stoyan [419], where
most of the results described in Section 1.A can be found. For example,
Theorem 1.A.2 can be found in Marshall and Olkin [383]. The charac-
terization of the usual stochastic order by the monotonicity described in
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(1.A.8) is taken from Müller [407], whereas the characterization given in
(1.A.12) can be found in Fellman [193]. The comparison of the random
sums in Theorem 1.A.5 is motivated by ideas in Pellerey and Shaked
[455]; it was communicated to us by Pellerey [444]. The application of
the order ≤st in Bayesian imperfect repair (Example 1.A.7) is taken from
Lim, Lu, and Park [364]. The result which gives conditions for stochastic
equality (Theorem 1.A.8) can be found in Baccelli and Makowski [27] and
in Scarsini and Shaked [494]. Lemma 2.1 of Costantini and Pasqualucci
[135] with n = 1 is an interesting variation of Theorem 1.A.8. The bi-
variate characterizations in Theorems 1.A.9 and 1.A.10 are taken from
Shanthikumar and Yao [532] and from Righter and Shanthikumar [466],
respectively. The characterization of the order ≤st by means of the Fortret-
Mourier-Wasserstein distance (Theorem 1.A.11) is taken from Adell and
de la Cal [3]. The Laplace transform characterization of the order ≤st
(Theorem 1.A.13) can be found in Kebir [281] and in Kan and Yi [274].
An extension of Theorem 1.A.13 to more general orders can be found in
Nanda [422]. The closure of the order ≤st under a stochastically increasing
family of random variables (Theorem 1.A.14) is taken from Shaked and
Wong [524]. The condition for the usual stochastic order, given in Theo-
rem 1.A.17, has been communicated to us by Gerchak and He [210]. The
comparison of truncated maximum with truncations maximum (Example
1.A.16) can be found in Pellerey and Petakos [453]. The lattice property
of the order ≤st (Remark 1.A.18) is given in Müller and Scarsini [418].
The four results that give the stochastic orderings of the spacings, Theo-
rems 1.A.19–1.A.22, can be found in Barlow and Proschan [35], Ebrahimi
and Spizzichino [178], Pledger and Proschan [458], and Joag-Dev [258],
respectively. The stochastic comparison of order statistics of independent
random variables with the order statistics of independent and identically
distributed random variables (Theorem 1.A.23) is taken from Ma [371]; it
generalizes some previous results in the literature. The stochastic compar-
ison of a sum of independent heterogeneous exponential random variables
with a proper Erlang random variable (Example 1.A.24) is taken from Bon
and Păltănea [105], where more refined comparisons can also be found.
The stochastic comparison of a sum of independent heterogeneous bino-
mial random variables with a proper binomial random variable (Example
1.A.25) is taken from Boland, Singh, and Cukic [102]. The necessary and
sufficient conditions for the comparison of normal random variables (Ex-
ample 1.A.26) are taken from Müller [413]; an extension of this result to
Kotz-type distributions is given in Ding and Zhang [168]. The stochastic
comparisons of norms, in Examples 1.A.27 and 1.A.28, are taken from
Lapidoth and Moser [333]. The TTT transform (1.A.19) is introduced in
Barlow, Bartholomew, Bremner, and Brunk [32], and is further studied
in Barlow and Doksum [34] and in Barlow and Campo [33]. The observed
total time on test random variable Xttt is defined and studied in Li and
Shaked [356], where the implication in Theorem 1.A.29 can be found. The
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characterizations of the NBUE and the NWUE aging notions by means of
the usual stochastic order (Theorem 1.A.31) can be found in Whitt [565]
and in Fagiuoli and Pellerey [187]. The other characterization, by means of
the random variable Xttt (Theorem 1.A.32), is taken from Li and Shaked
[356]. The aging notion that is described in (1.A.21) is studied in Mugdadi
and Ahmad [402].

Boland, Singh, and Cukic [103] studied an order, called the stochastic
precedence order, according to which the random variable X is smaller
than the random variable Y if P{X < Y } ≥ P{Y < X}. If X and Y
are independent, then X ≤st Y implies that X is smaller than Y in the
stochastic precedence order.

Section 1.B: Many of the basic results regarding the hazard rate order can
be found in Ross [475] and in Müller and Stoyan [419]. The characteriza-
tion (1.B.8) can be found in Lehmann and Rojo [345]. The results regard-
ing the preservation of the orders ≤hr and ≤rh under monotone increasing
transformations (Theorems 1.B.2 and 1.B.43) can be found in Keilson
and Sumita [283]. The closure under convolutions result (Theorem 1.B.4)
and the bivariate characterization result (Theorem 1.B.9) are taken from
Kijima [291] and Shanthikumar and Yao [532]. A special case of Lemma
1.B.3 can be found in Mukherjee and Chatterjee [403]. The hazard rate
order comparison of a sum of independent heterogeneous exponential ran-
dom variables with a proper Erlang random variable (Example 1.B.5) is
taken from Bon and Păltănea [105], where more refined comparisons can
also be found. The hazard rate order comparison of a sum of independent
heterogeneous binomial random variables with a proper binomial random
variable (Example 1.B.6) is taken from Boland, Singh, and Cukic [102].
The hazard rate order comparison of random sums (Theorem 1.B.7) can
be found in Pellerey [445]; some related results are Theorem 7.2 of Kijima
[291] and Proposition 2.2 of Kebir [282]. The closure under mixtures result
(Theorem 1.B.8) can be found in Boland, El-Neweihi, and Proschan [97];
a generalization of it is contained in Nanda, Jain, and Singh [424]. The
bivariate characterizations in Theorems 1.B.10 and 1.B.11 are taken from
Righter and Shanthikumar [466] and from Cheng and Righter [128], re-
spectively. The characterizations given in Theorem 1.B.12 can be found in
Capéraà [118] and in Joag-Dev, Kochar, and Proschan [259]. The hazard
rate ordering result regarding the inter-epoch times of a nonhomogeneous
Poisson process (Example 1.B.13) is taken from Kochar [309] where other
applications of Theorem 1.B.12 can also be found. The hazard rate or-
dering of the epoch times of a nonhomogeneous Poisson process (1.B.19)
can be found in Baxter [62]. The closure property of the order ≤hr un-
der hazard rate ordered mixtures (Theorem 1.B.14) is taken from Shaked
and Wong [524]; a related result is Proposition 4.1 of Kebir [282]. The
preservation of the order ≤hr under the formation of a proper Markov
chain (Example 1.B.15) can essentially be found in Ross, Shanthikumar,
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and Zhu [478]; they gave a version of this preservation result for the order
≤rh. The application of the order ≤hr in Bayesian imperfect repair (Exam-
ple 1.B.16) is inspired by Lim, Lu, and Park [364], but the result given here
is stronger than their Theorem 4.1(iii). The hazard rate order comparison
of a proportional hazard mixture with its parent distribution (Example
1.B.17) is taken from Gupta and Gupta [214]. The Laplace transform
characterization of the order ≤hr (Theorem 1.B.18) can be found in Kebir
[281] and in Kan and Yi [274]. An extension of Theorem 1.B.18 to more
general orders can be found in Nanda [422]. The result about the inheri-
tance of the order ≤hr, from the mixing scales to the underlying counting
processes (Theorem 1.B.19), is essentially taken from Ma [374]. The clo-
sure property which is given in Theorem 1.B.21 can be found in Kochar
[305]; the necessary and sufficient condition, given after Theorem 1.B.21,
is taken from Ma [374]. The result involving the hazard rate comparison
of weighted random variables (Example 1.B.23) is taken from Nanda and
Jain [423]; see also Bartoszewicz and Skolimowska [51]. The hazard rate
comparison of epoch times of nonhomogeneous Poisson processes in Ex-
ample 1.B.24 can be found in Ahmadi and Arghami [6] and in Belzunce,
Lillo, Ruiz, and Shaked [69]; in the latter paper the result is extended to
nonhomogeneous pure birth processes. The hazard rate order comparison
of inter-epoch times of nonhomogeneous Poisson processes in Example
1.B.24 is taken from Belzunce, Lillo, Ruiz, and Shaked [69], who also ob-
tained a similar result for the more general nonhomogeneous pure birth
processes. The hazard rate order comparison of series systems of parallel
systems (Example 1.B.25) can be found in Valdés and Zequeira [553]. The
proof of Theorem 1.B.26 (given in Remark 1.C.40) is taken from Boland,
Shaked, and Shanthikumar [101]. The hazard rate order comparisons of
order statistics described in Theorems 1.B.27 and 1.B.28 can be found
in Korwar [321]. The conditions that lead to the hazard rate ordering of
minima (Theorem 1.B.29 and Corollary 1.B.30) are taken from Navarro
and Shaked [430]. The two results that give the hazard rate orderings of
the spacings (Theorem 1.B.31) can be found in Kochar and Kirmani [313]
and in Khaledi and Kochar [285], whereas the comparison of spacings
from two different samples (Theorem 1.B.32) is taken from Khaledi and
Kochar [285]; further results can be found in Hu and Wei [240] and in
Misra and van der Meulen [396]. The closure property under formations
of order statistics (Theorem 1.B.34) is taken from Singh and Vijayasree
[537]; see also Lynch, Mimmack, and Proschan [369]. Boland, El-Neweihi,
and Proschan [97] show, by a counterexample, that the conclusion of The-
orem 1.B.34 need not hold when the Xi’s or the Yi’s are not identically
distributed. Extensions of Theorem 1.B.34 can be found in Shaked and
Shanthikumar [516], in Belzunce, Mercader, and Ruiz [70], and in Hu and
Zhuang [247]. The general comparison result, given in Theorem 1.B.36, is
taken from Boland, Hu, Shaked, and Shanthikumar [99]; see related results
in Franco, Ruiz, and Ruiz [205] and in Hu and Zhuang [247]. The hazard
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rate order comparisons of maxima of heterogeneous exponential random
variables (Example 1.B.37) are taken from Dykstra, Kochar, and Rojo
[174] and from Khaledi and Kochar [287]. The closure under convolution
property of IFR random variables (Corollary 1.B.39) can be found, for
example, in Barlow and Proschan [36, page 100]). The characterizations
of the DMRL and the IMRL aging notions by means of the hazard rate
order (Theorem 1.B.40) can be found in Brown [111, page 229], in Whitt
[565], and in Fagiuoli and Pellerey [187]. The observation that essentially
reduces the study of the reversed hazard rate order into the study of the
hazard rate order (Theorem 1.B.41) is taken from Nanda and Shaked
[428]. The bivariate characterization results for the reversed hazard order
(Theorems 1.B.47 and 1.B.49) can be found in Shanthikumar, Yamazaki,
and Sakasegawa [529] and in Cheng and Righter [128]. The application of
the reversed hazard order in economics, described in Example 1.B.51, is
taken from Eeckhoudt and Gollier [180]; further results in this vein can be
found in Kijima and Ohnishi [293]. The closure property of the order ≤rh
under reversed hazard rate ordered mixtures (Theorem 1.B.52) is taken
from Shaked and Wong [524]; a related result is Proposition 4.1 of Kebir
[282]. The Laplace transform characterization of the order ≤rh (Theorem
1.B.53) is taken from Kebir [281]. The result about the inheritance of the
order ≤rh, from the mixing scales to the underlying counting processes
(Theorem 1.B.54), is essentially taken from Ma [374]. The results about
the reversed hazard rate ordering of order statistics (Theorems 1.B.56 and
1.B.57), and the characterizations of the reversed hazard rate order given
in Theorem 1.B.62, can be found in Block, Savits, and Singh [96], whereas
the result described in Theorem 1.B.58 is taken from Hu and He [232]. The
preservation of the order statistics in the sense of the order ≤rh (Theorem
1.B.60) can be found in Nanda, Jain, and Singh [426].

An order among nonnegative random variables, which is defined by stip-
ulating the monotonicity of the ratio of the hazard rate functions (when
they exist), is studied in Kalashnikov and Rachev [271], Sengupta and
Deshpande [500], and Rowell and Siegrist [479]. Equivalently, if F and G
are survival functions, and we denote RF = − log F and RG = − log G,
then the order mentioned above can be defined by requiring that the com-
position RF ◦R−1

G be convex on [0,∞). The notion of the monotonicity of
the ratio of hazard rate functions is used in Examples 1.B.24 (see (1.B.25))
and 1.B.25, as well as in Theorem 1.C.4. Sengupta and Deshpande [500]
and Rowell and Siegrist [479] also studied the orders defined by stipulating
that RF ◦ R−1

G be starshaped or superadditive.

Brown and Shanthikumar [112], Lillo, Nanda, and Shaked [361], Hu and
Zhu [242], Di Crescenzo and Longobardi [165], and Belzunce, Ruiz, and
Ruiz [74] have introduced and studied various shifted hazard and reversed
hazard rate orders. Similar orders which extend the likelihood ratio order
are studied in Section 1.C.4.
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Section 1.C: Again, many of the basic results regarding the likelihood ratio
order can be found in Ross [475] and in Müller and Stoyan [419]. Condi-
tion (1.C.3) is implicit in Block, Savits, and Shaked [95], and it is explicit
in Müller [408]. The relation (1.C.4) is mentioned in Chan, Proschan,
and Sethuraman [123]. The sufficient conditions for X ≤lr Y , given in
Theorem 1.C.4, have been noted in Belzunce, Lillo, Ruiz, and Shaked
[69]. The closure property of the likelihood ratio order under conditioning
(Theorem 1.C.5) is observed in Whitt [561]. Many variations of Theorem
1.C.5 with respect to general sample spaces can be found in Whitt [561]
and in Rüschendorf [485]. The closure under limits property of the order
≤lr (Theorem 1.C.7) is taken from Müller [408]. The result regarding the
preservation of the order ≤lr under monotone increasing transformations
(Theorem 1.C.8) can be found in Keilson and Sumita [283]. The several
closure under convolution results (Theorems 1.C.9, 1.C.11, and 1.C.12) as
well as the bivariate characterization result (Theorem 1.C.20) are taken
from Shanthikumar and Yao [532]; a related result is Proposition 2.4 of Ke-
bir [282]. A special case of Theorem 1.C.9 can be found in Mukherjee and
Chatterjee [403]. The result about the number of successes in independent
trials (Example 1.C.10) is statement (7) in Samuels [488], who attributed
it to Ghurye and Wallace. The characterization of the order ≤hr by means
of the order ≤lr, given in Theorem 1.C.14, is taken from Di Crescenzo
[164]; a density of the form (1.C.7) can be found in Adell and Lekuona
[4, page 773]. The likelihood ratio order comparison of a random random
variable with a fixed random variable (Corollary 1.C.16) is a slight gen-
eralization of Problem B in Szekli [544, page 22]. The closure property of
the order ≤lr under likelihood ratio ordered mixtures (Theorem 1.C.17) is
an extension of a result in Kebir [282]. The result about the inheritance of
the order ≤lr, from the mixing scales to the underlying counting processes
(Theorem 1.C.18), is taken from Ma [374]. Example 1.C.19 is inspired by
Theorem 4.12 of Asadi and Shanbhag [23], but Example 1.C.19 has weaker
assumptions (Θ1 and Θ2 need not be degenerate) and stronger conclusions
(Y1 and Y2 are ordered in the likelihood ratio order, rather than in the
hazard rate order) than the result of Asadi and Shanbhag [23]. The result
in Theorem 1.C.21 is a special case of a result in Ross [475]. The bivari-
ate characterizations in Theorems 1.C.22, 1.C.23, and 1.C.24 are taken
from Righter and Shanthikumar [466] and from Chapter 13 by Righter in
[515]. The Laplace transform characterization of the order ≤lr (Theorem
1.C.25) can be found in Kebir [281]. An extension of Theorem 1.C.25 to
more general orders can be found in Nanda [422]. The conditional likeli-
hood ratio orderings, described in Theorem 1.C.26, can be found in Ku
and Niu [324] and in Chapter 14 by Shanthikumar and Yao in [515]. The
setting in which the order ≤hr gives rise to the order ≤lr, as described in
Theorem 1.C.28, is essentially taken from Ross, Shanthikumar, and Zhu
[478]; they gave a version of this result for the order ≤rh. The necessary
and sufficient condition for aX ≤lr X (Theorem 1.C.29) can be found in
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Hu, Nanda, Xie, and Zhu [237]. The likelihood ratio order comparisons
of the order statistics given in Theorem 1.C.31 are taken from Bapat and
Kochar [31] and from Hu, Zhu, and Wei [243]; an extension of the first
part of Theorem 1.C.31(a) can be found in Ma [373]. The result about the
likelihood ratio order comparison of order statistics of a simple random
sample from a finite population (Theorem 1.C.32) can be found in Kochar
and Korwar [315]. The general result which compares order statistics from
two samples of different size (Theorem 1.C.33) is taken from Lillo, Nanda,
and Shaked [362]; see related results in Franco, Ruiz, and Ruiz [205] and
in Hu and Zhuang [247]. Belzunce and Shaked [78] extended Theorem
1.C.33 to comparison of lifetimes of coherent systems in reliability theory;
see also Belzunce, Franco, Ruiz, and Ruiz [66]. The closure property un-
der formation of order statistics (Corollary 1.C.34) can be found in Chan,
Proschan, and Sethuraman [123]; a special case of this result can be found
in Singh and Vijayasree [537]. The likelihood ratio order comparison of the
order statistics given in Theorem 1.C.37 is taken from Raqab and Amin
[465]. Theorem 2.6 in Kamps [273, page 182] extends Theorem 1.C.37 to
the so called generalized order statistics; see also Korwar [322] and Hu and
Zhuang [247]. The special case of Theorem 1.C.37 when j = i, is extended
in Nanda, Misra, Paul, and Singh [427] to the case when the sample sizes
m and n are random. Nanda, Misra, Paul, and Singh [427] also extend
the special case of Theorem 1.C.37 when m = n, to the case when the
common sample size is random. The likelihood ratio order comparison of
normalized spacings (Theorem 1.C.42) can be found in Kochar and Kor-
war [314], whereas the comparisons for nonnormalized spacings (Theorem
1.C.43) are special cases of results in Misra and van der Meulen [396] and
in Hu and Zhuang [246, 248]. The comparison of spacings that correspond
to random variables with logconcave density (Theorem 1.C.44) is a special
case of a result of Hu and Zhuang [246, 248]. The comparison of spacings
from two different samples (Theorem 1.C.45) is taken from Khaledi and
Kochar [285]; an extension of this result can be found in Franco, Ruiz, and
Ruiz [205], and a related result can be found in Belzunce, Mercader, and
Ruiz [70]. The results about the likelihood ratio order comparisons of ran-
dom minima and maxima (Example 1.C.46) are taken from Shaked and
Wong [526]; see a related result in Bartoszewicz [49]. The result about the
likelihood ratio comparison of the successive epochs of a nonhomogeneous
Poisson process (Example 1.C.47) is given in Kochar [307, 309], where it
is also shown that it implies the likelihood order comparison of successive
record values of a sequence of independent and identically distributed ran-
dom variables. The likelihood ratio comparisons of epoch and inter-epoch
times of nonhomogeneous Poisson processes (Example 1.C.48) are taken
from Belzunce, Lillo, Ruiz, and Shaked [69], who also extended them to
comparisons of epoch and inter-epoch times of nonhomogeneous pure birth
processes. The likelihood ratio order comparison of a sum of independent
heterogeneous exponential random variables with a proper Erlang ran-
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dom variable (Example 1.C.49) is a combination of results from Boland,
El-Neweihi, and Proschan [98] and from Bon and Păltănea [105], where
more refined comparisons can also be found. For instance, the compari-
son in Example 1.C.50 is given in Boland, El-Neweihi, and Proschan [98].
The likelihood ratio order comparison of a sum of independent heteroge-
neous binomial random variables with a proper binomial random variable
(Example 1.C.51) is taken from Boland, Singh, and Cukic [102]. An inter-
pretation of logconcavity and logconvexity as aging notions can be found
in Shaked and Shanthikumar [506], where the proof of parts (i) and (ii)
of Theorem 1.C.52 can be found. A proof of (1.C.13) can also be found
there. The likelihood ratio ordering of random variables conditioned on
their sum (Theorem 1.C.53) is essentially Example 12 of Lehmann [343].
The closure property of logconcave densities under order statistics (The-
orem 1.C.54) is a generalization of an observation in Li and Lu [355].
The characterizations of the IFR and the DFR aging notions by means of
the likelihood ratio order (Theorem 1.C.55) can be found in Whitt [565].
The likelihood ratio order comparison of the asymptotic equilibrium ages,
given in Example 1.C.56, is a special case of a result of Bon and Illayk
[104]. The likelihood ratio monotonicity of the parameter in the obser-
vation, given the likelihood ratio monotonicity of the observation in the
parameter (Example 1.C.57), can be found in Whitt [560], whereas the
preservation of the likelihood ratio order of the priors by the posteriors
(Example 1.C.58) is given as Remark 3.14 in Spizzichino [539]. The com-
parison of the weighted random variables (Example 1.C.59) can be found
in Bartoszewicz and Skolimowska [51]. An extension of the implication
in Example 1.C.59, when Xw and Y w are the length-biased versions of
X and of Y , respectively, is given in Hu and Zhuang [244]. An extension
of the implication in Example 1.C.59 to multivariate weighted distribu-
tions can be found in Jain and Nanda [253]. The result in Example 1.C.60
is taken from Bartoszewicz and Skolimowska [51]; extensions of the in-
equality X ≤lr Xw, when Xw is the length-biased version of X, are given
in Ross [476]. The ordering of generalized skew normal random variables
(Example 1.C.61) is taken from Gupta and Gupta [215]. The up shifted
likelihood ratio order is introduced in Shanthikumar and Yao [530]. The
results described in Section 1.C.4 can mostly be found in Lillo, Nanda, and
Shaked [361, 362]. An extension of Theorem 1.C.77 is given in Belzunce,
Ruiz, and Ruiz [74]; see also Belzunce and Shaked [78]. Ramos Romero
and Sordo Dı́az [464] defined an order that is reminiscent of the order
≤lr↑ as defined in (1.C.19). According to their definition, the nonnegative
random variable X is said to be smaller than the nonnegative random
variable Y if aX ≤lr Y for every 0 < a < 1.

Lehmann and Rojo [345] used the characterization (1.C.4) in order to
define stochastic orders that are stronger than ≤lr. For example, let X
and Y be two random variables with distribution functions F and G,
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respectively, and consider the stipulation that, for a fixed k,

dn

dun
GF−1(u) ≥ 0 for all 0 < u < 1 and all n = 1, 2, . . . , k.

If k ≥ 3, then X is stochastically smaller than Y in a sense that is stronger
than ≤lr. The order ≤lr is obtained when k = 2. Lehmann and Rojo [345]
showed, for example, that if X1, X2, . . . , Xm are independent, identically
distributed, then X1 is smaller than max{X1, X2, . . . , Xm}, in the above
sense, with k = m.

Chang [126] considered four exponential random variables X1, X2, Y1, and
Y2, with the corresponding rates λ1, λ2, µ1, and µ2, where X1 and X2 are
independent, and Y1 and Y2 are independent. He obtained the necessary
and sufficient conditions on λ1, λ2, µ1, and µ2, for each of the following
results: (i) X1 +X2 ≤lr Y1 +Y2, (ii) X1 +X2 ≥lr Y1 +Y2, and (iii) X1 +X2
and Y1 + Y2 are not comparable in the likelihood ratio order.

Section 1.D: The discussion in this section follows Shaked and Suarez-
Llorens [520].

Fagiuoli and Pellerey [185] have introduced an approach that describes a
unified point of view regarding some of the orders studied in this chapter and
some of the orders studied in Chapters 2, 3, and 4. This approach led Fagiuoli
and Pellerey to introduce some families of new orders. Several properties of
these orders were studied in Fagiuoli and Pellerey [185], in Nanda, Jain, and
Singh [424, 425], and in Hu, Kundu, and Nanda [236]; see also Hesselager
[221]. Another general approach that unifies some of the orders studied in
this chapter and in Chapter 2 was introduced in Hu, Nanda, Xie, and Zhu
[237].

Other orders that are related to the orders ≤st and ≤lr have been in-
troduced and studied in Di Crescenzo [163]. Yanagimoto and Sibuya [571],
Zijlstra and de Kroon [577], and Shanthikumar and Yao [532], extended the
definitions of X ≤st Y , X ≤hr Y , and X ≤lr Y , to jointly distributed random
variables X and Y ; see also Arcones, Kvam, and Samaniego [15]. Ebrahimi
and Pellerey [177] have introduced a stochastic order based on a notion of
uncertainty and studied its relationship to some of the orders studied in this
chapter.



2

Mean Residual Life Orders

In this chapter we study two orders that are based on comparisons of func-
tionals of mean residual lives. Like the orders in Chapter 1, the purpose of the
orders here is to compare the “location” or the “magnitude” of random vari-
ables. Among other things, the relationship between the orders of Chapter 1
and the orders in this chapter will be analyzed.

2.A The Mean Residual Life Order

2.A.1 Definition

If X is a random variable with a survival function F and a finite mean µ, the
mean residual life of X at t is defined as

m(t) =

{
E[X − t

∣∣X > t], for t < t∗;
0, otherwise,

(2.A.1)

where t∗ = sup{t : F (t) > 0}. Note that if X is an almost surely positive
random variable, then m(0) = µ. By the finiteness of µ we have that m(t) < ∞
for all t < ∞. However, it is possible that m(∞) ≡ limt→∞ m(t) = ∞. A useful
observation is that m(t) = (

∫∞
t

F (x)dx)/F (t) when t∗ = ∞.
Although in (2.A.1) there is no restriction on the support of X, the mean

residual life function is usually of interest when X is a nonnegative random
variable. In that case X can be thought of as a lifetime of a device and m(t)
then expresses the conditional expected residual life of the device at time t
given that the device is still alive at time t. Clearly, m(t) ≥ 0, but not every
nonnegative function is a mean residual life (mrl) function corresponding to
some random variable. In fact, a function m is an mrl function of some non-
negative random variable with an absolutely continuous distribution function
if, and only if, m satisfies the following properties:

(i) 0 ≤ m(t) < ∞ for all t ≥ 0,
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(ii) m(0) > 0,
(iii) m is continuous,
(iv) m(t) + t is increasing on [0,∞], and
(v) when there exists a t0 such that m(t0) = 0, then m(t) = 0 for all t ≥ t0.

Otherwise, when there does not exist such a t0 with m(t0) = 0, then∫ ∞

0

1
m(t)

dt = ∞.

Clearly, the smaller the mrl function is, the smaller X should be in some
stochastic sense. This is the motivation for the order discussed in this section.

Let X and Y be two random variables with mrl functions m and l, respec-
tively, such that

m(t) ≤ l(t) for all t. (2.A.2)

Then X is said to be smaller than Y in the mean residual life order (denoted
as X ≤mrl Y ).

Analogously to (1.B.3), it can be shown that X ≤mrl Y if, and only if,∫∞
t

G(u)du∫∞
t

F (u)du
increases in t over {t :

∫ ∞

t

F (u)du > 0}, (2.A.3)

or equivalently, if, and only if,

G(t)
∫ ∞

t

F (u)du ≤ F (t)
∫ ∞

t

G(u)du for all t, (2.A.4)

or equivalently, if, and only if,

E[(Y − t)+]
E[(X − t)+]

increases in t over {t : E[(X − t)+] > 0}, (2.A.5)

where, for any real number a, we let a+ denote the positive part of a; that is,
a+ = a if a ≥ 0 and a+ = 0 if a < 0.

Analogously to (1.B.5), we also have that X ≤mrl Y if, and only if,

F (s)∫∞
t

F (u)du
≥ G(s)∫∞

t
G(u)du

for all s ≤ t (2.A.6)

such that the denominators are positive.
It is worthwhile to note that Condition (2.A.5) uses the expectations

E[(X − t)+] and E[(Y − t)+] as (3.A.5) in Chapter 3 and (4.A.4) in Chapter 4
do.

For discrete random variables that take on values in N+ the definition of
≤mrl should be modified. Let X be such a random variable with a finite mean
µ. The mrl function of X at n is defined as

m(n) =

{
E[X − n

∣∣X ≥ n], for n ≤ n∗;
0, otherwise,
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where n∗ = max{n : P{X ≥ n} > 0}. Note that for such a random variable
m(0) = µ. By the finiteness of µ we have that m(n) < ∞ for n < ∞. Let X
and Y be two such random variables with mrl functions m and l, respectively.
We denote X ≤mrl Y if

m(n) ≤ l(n) for all n ≥ 0. (2.A.7)

The discrete analog of (2.A.3) is that (2.A.7) holds if, and only if,∑∞
j=n P{Y ≥ j}∑∞
j=n P{X ≥ j} increases in n over N+ ∩ {n :

∞∑
j=n

P{X ≥ j} > 0}.

The discrete analog of (2.A.4) is that (2.A.7) holds if, and only if,

P{Y ≥ n}
∞∑

j=n+1

P{X ≥ j} ≤ P{X ≥ n}
∞∑

j=n+1

P{Y ≥ j} for all n ≥ 0.

The discrete analog of (2.A.6) is that X ≤mrl Y if, and only if,

P{X ≥ m}∑∞
j=n+1 P{X ≥ j} ≥ P{Y ≥ m}∑∞

j=n+1 P{Y ≥ j} for all m ≤ n

such that the denominators are positive.

2.A.2 The relation between the mean residual life and some other
stochastic orders

If X is a random variable with mrl function m and hazard rate function r, it
is not hard to verify that

m(t) =
∫ t∗

t

exp
{

−
∫ x

t

r(u)du
}

dx, for t < t∗. (2.A.8)

Therefore, if Y is another random variable with mrl function l and hazard
rate function q and (1.B.2) is satisfied, that is, X ≤hr Y , then X ≤mrl Y . We
thus have proved the following result.

Theorem 2.A.1. If X and Y are two random variables such that X ≤hr Y ,
then X ≤mrl Y .

Neither of the orders ≤st and ≤mrl implies the other; counterexamples can
be found in the literature. The next result, however, gives a condition under
which X ≤mrl Y if, and only if, X ≤hr Y . Therefore, in particular, under that
condition, X ≤mrl Y =⇒ X ≤st Y .

Theorem 2.A.2. Let X and Y be two random variables with mrl functions
m and l, respectively. Suppose that m(t)

l(t) increases in t. Then, if X ≤mrl Y ,
then X ≤hr Y .
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Proof. It is not hard to verify that m is differentiable over {t : P{X > t} > 0}
and that if X has the hazard rate function r, then

r(t) =
m′(t) + 1

m(t)
,

where m′ denotes the derivative of m. Similarly, if Y has the hazard rate
function q, then

q(t) =
l′(t) + 1

l(t)
.

The monotonicity of m(t)/l(t), together with (2.A.2), implies that

r(t) =
m′(t)
m(t)

+
1

m(t)
≥ l′(t)

l(t)
+

1
l(t)

= q(t),

that is, X ≤hr Y . 
�

Under a condition that is weaker than the one in Theorem 2.A.2 one merely
obtains that X ≤mrl Y implies that X ≤st Y . This is shown in the next result.

Theorem 2.A.3. Let X and Y be two nonnegative random variables with mrl
functions m and l, respectively. Suppose that m(t)

l(t) ≥ m(0)
l(0) (that is, m(t)

l(t) ≥ EX
EY

when X and Y are almost surely positive), t ≥ 0. If X ≤mrl Y , then X ≤st Y .

Proof. Let F be the survival function of X. It is not hard to verify that

F (t) =
EX

m(t)
exp
{

−
∫ t

0

1
m(x)

dx
}

over {t : P{X > t} > 0}.

Similarly, the survival function of Y can be expressed as

G(t) =
EY

l(t)
exp
{

−
∫ t

0

1
l(x)

dx
}

over {t : P{Y > t} > 0}.

Therefore, under the assumptions of the theorem, it is seen that G(t)
F (t)

≥ 1. 
�

The mean residual life order can be characterized by means of the hazard
rate order and the appropriate equilibrium age variables. Recall from (1.A.20)
that for nonnegative random variables X and Y with finite means we denote
by AX and AY the corresponding asymptotic equilibrium ages. The following
result follows at once from (1.B.3) and (2.A.3). It may be contrasted with
Theorem 1.C.13.

Theorem 2.A.4. For nonnegative random variables X and Y with finite
means we have X ≤mrl Y if, and only if, AX ≤hr AY .
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In the next theorem the order ≤mrl is characterized by ordering two related
random variables in the sense of the hazard rate order. Let X and Y be two
nonnegative random variables with finite means and suppose that X ≤st Y
and that EX < EY . Let F and G be the distribution functions of X and of
Y , respectively. Define the random variable ZX,Y as the random variable that
has the density function h given by (1.C.7), as in Theorem 1.C.14; see also
Theorem 2.B.3.

Theorem 2.A.5. Let X and Y be two nonnegative random variables with
finite means such that X ≤st Y and such that EY > EX > 0. Then

X ≤mrl Y ⇐⇒ AY ≤hr ZX,Y ⇐⇒ AX ≤hr ZX,Y ,

where ZX,Y has the density function given in (1.C.7).

Proof. Denote by Ge and H the survival functions of AY and ZX,Y , respec-
tively. Using (1.A.20) and (1.C.7) we compute

H(x)
Ge(x)

=
EY

EY − EX

(
1 −

∫∞
x

F (u)du∫∞
x

G(u)du

)
, x ≥ 0,

and the first stated equivalence follows from (2.A.3) and (1.B.3). The second
equivalence is proven similarly. 
�

Some characterizations of the hazard rate order by means of the order
≤mrl are given below. We denote by Exp(µ) any exponential random variable
with mean µ.

Theorem 2.A.6. Let X and Y be two continuous nonnegative random vari-
ables. Then X ≤hr Y if, and only if,

min{X, Exp(µ)} ≤mrl min{Y,Exp(µ)} for all µ > 0.

The proof of Theorem 2.A.6 uses the Laplace transform order which is
discussed in Chapter 5, and it will be given in Remark 5.A.23.

Note that from Theorem 2.A.6 it follows, for continuous nonnegative ran-
dom variables, that X ≤hr Y if, and only if,

min{X, Z} ≤mrl min{Y, Z}

for any nonnegative random variable Z which is independent of X and of Y .
This is so because X ≤hr Y implies min{X, Z} ≤hr min{Y, Z} by Theorem
1.B.33, and the latter implies the above inequality by Theorem 2.A.1.

The proof of the next result is not given here.

Theorem 2.A.7. Let X and Y be two continuous nonnegative random vari-
ables. Then X ≤hr Y if, and only if,

1 − e−sX ≤mrl 1 − e−sY for all s > 0.

A characterization of the order ≤mrl, by means of the increasing convex
order, is given in Theorem 4.A.24.
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2.A.3 Some closure properties

In general, if X1 ≤mrl Y1 and X2 ≤mrl Y2, where X1 and X2 are independent
random variables and Y1 and Y2 are also independent random variables, then
it is not necessarily true that X1 +X2 ≤mrl Y1 +Y2. However, if these random
variables are IFR, then it is true. This is shown in Theorem 2.A.9, but first
we state and prove the following lemma, which is of independent interest.

Lemma 2.A.8. If the random variables X and Y are such that X ≤mrl Y
and if Z is an IFR random variable which is independent of X and Y , then

X + Z ≤mrl Y + Z. (2.A.9)

Proof. Denote by fW and FW the density function and the survival function
of any random variable W . Note that∫ ∞

x=s

FX+Z(x)dx =
∫ ∞

−∞
FX(u)FZ(s − u)du for all s.

Now, for s ≤ t, compute∫ ∞

x=s

FX+Z(x)dx

∫ ∞

y=t

FY +Z(y)dy −
∫ ∞

x=t

FX+Z(x)dx

∫ ∞

y=s

FY +Z(y)dy

=
∫

v

∫
u≥v

[
FX(u)FZ(s − u)FY (v)FZ(t − v)

+ FX(v)FZ(s − v)FY (u)FZ(t − u)
]
dudv

−
∫

v

∫
u≥v

[
FX(u)FZ(t − u)FY (v)FZ(t − v)

+ FX(v)FZ(t − v)FY (u)FZ(s − u)
]
dudv

=
∫

v

∫
u≥v

[∫ ∞

x=u

FX(x) dx · FY (v) −
∫ ∞

x=u

FY (x) dx · FX(v)
]

× [fZ(s − u)FZ(t − v) − fZ(t − u)FZ(s − v)]dudv,

where the second equality is obtained by integration of parts and by collection
of terms. Since X ≤mrl Y it follows from (2.A.4) that the expression within
the first set of brackets in the last integral is nonpositive. Since Z is IFR it
can be verified that the quantity in the second pair of brackets in the last
integral is also nonpositive. Therefore the integral is nonnegative. This proves
(2.A.9). 
�

Theorem 2.A.9. Let (Xi, Yi), i = 1, 2, . . . , m, be independent pairs of ran-
dom variables such that Xi ≤mrl Yi, i = 1, 2, . . . , m. If Xi, Yi, i = 1, 2, . . . , m,
are all IFR, then

m∑
i=1

Xi ≤mrl

m∑
i=1

Yi.
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Proof. Repeated application of (2.A.9), using the closure property of IFR
under convolution, yields the desired result. 
�

Another interesting lemma is stated next. Recall that a random variable
X is said to be (or to have) decreasing mean residual life (DMRL) if m(t) is
decreasing in t.

Lemma 2.A.10. If the random variables X and Y are such that X ≤hr Y
and if Z is a DMRL random variable independent of X and Y , then

X + Z ≤mrl Y + Z.

Proof. Integrating the identity in the proof of Lemma 1.B.3, we obtain that,
for s ≤ t, one has∫ ∞

x=s

FX+Z(x)dx

∫ ∞

y=t

FY +Z(y)dy −
∫ ∞

x=t

FX+Z(x)dx

∫ ∞

y=s

FY +Z(y)dy

=
∫

v

∫
u≥v

[
FX(u)fY (v) − fX(v)FY (u)

]
×
[ ∫ ∞

y=t

FZ(y − v)dy · FZ(s − u) −
∫ ∞

x=s

FZ(x − v)dx · FZ(t − u)
]
dudv.

The result now follows from the assumptions. 
�
It should be pointed out that a theorem such as Theorem 2.A.9 cannot be

obtained from Lemma 2.A.10. The reason is that the inductive argument used
to prove Theorem 2.A.9 does not have an analog based on Lemma 2.A.10.

Theorem 2.A.11. Let X be a DMRL random variable, and let Z be a non-
negative random variable independent of X. Then

X ≤mrl X + Z.

Proof. Let FX , FZ , and FX+Z denote the distribution functions of the corre-
sponding random variables, and let FX and FX+Z denote the corresponding
survival functions. Then, for any t ∈ R we have

FX(t)
∫ ∞

t

FX+Z(u)du = FX(t)
∫ ∞

t

∫ ∞

0
FX(u − z)dFZ(z)du

= FX(t)
∫ ∞

0

∫ ∞

t

FX(u − z)dudFZ(z)

=
∫ ∞

0
FX(t)

∫ ∞

t−z

FX(u)dudFZ(z)

≥
∫ ∞

0
FX(t − z)

∫ ∞

t

FX(u)dudFZ(z)

= FX+Z(t)
∫ ∞

t

FX(u)du,

where the inequality follows from the assumption that X is DMRL. The stated
result now follows from (2.A.4). 
�
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A mean residual life order comparison of random sums is given in the
following result.

Theorem 2.A.12. Let {Xi, i = 1, 2, . . . } be a sequence of independent and
identically distributed nonnegative IFR random variables. Let M and N be
two discrete positive integer-valued random variables such that M ≤mrl N (in
the sense of (2.A.7)), and assume that M and N are independent of the Xi’s.
Then

M∑
i=1

Xi ≤mrl

N∑
i=1

Xi.

The mean residual life order does not have the property of being simply
closed under mixtures. However, under quite strong conditions the order ≤mrl
is closed under mixtures. This is shown in the next theorem which may be
compared with Theorem 1.B.8.

Theorem 2.A.13. Let X, Y , and Θ be random variables such that [X
∣∣Θ =

θ] ≤mrl [Y
∣∣Θ = θ′] for all θ and θ′ in the support of Θ. Then X ≤mrl Y .

Proof. The proof is similar to the proof of Theorem 1.B.8. Select a θ and a
θ′ in the support of Θ. Let F (·

∣∣θ), G(·
∣∣θ), F (·

∣∣θ′), and G(·
∣∣θ′) be the survival

functions of [X
∣∣Θ = θ], [Y

∣∣Θ = θ], [X
∣∣Θ = θ′], and [Y

∣∣Θ = θ′], respectively.
It is sufficient to show that for α ∈ (0, 1) we have

α
∫∞

t
F (u
∣∣θ)du + (1 − α)

∫∞
t

F (u
∣∣θ′)du

αF (t
∣∣θ) + (1 − α)F (t

∣∣θ′)

≤
α
∫∞

t
G(u
∣∣θ)du + (1 − α)

∫∞
t

G(u
∣∣θ′)du

αG(t
∣∣θ) + (1 − α)G(t

∣∣θ′)
for all t ≥ 0.

The proof of this inequality is similar to the proof of (1.B.12). 
�

An analog of Theorem 1.B.12 exists for the order ≤mrl. This is stated next.

Theorem 2.A.14. Let X and Y be two nonnegative independent random
variables. Then X ≤mrl Y if, and only if, for all functions α and β such
that β is nonnegative and α/β and β are increasing, one has

E[α∗(X)]E[β∗(Y )] ≤ E[α∗(Y )]E[β∗(X)],

provided the expectations exist, where

α∗(x) =
∫ x

0
α(u)du and β∗(x) =

∫ x

0
β(u)du.

In particular, if X ≤mrl Y , then

E[Y n]
E[Xn]

is increasing in n. (2.A.10)



2.A The Mean Residual Life Order 89

Consider now a family of distribution functions {Gθ, θ ∈ X} where X is
a subset of the real line. As in Sections 1.A.3 and 1.C.3 let X(θ) denote a
random variable with distribution function Gθ. For any random variable Θ
with support in X , and with distribution function F , let us denote by X(Θ)
a random variable with distribution function H given by

H(y) =
∫

X
Gθ(y)dF (θ), y ∈ R.

The following result is comparable to Theorems 1.A.6, 1.B.14, 1.B.52, and
1.C.17.

Theorem 2.A.15. Consider a family of distribution functions {Gθ, θ ∈ X}
as above. Let Θ1 and Θ2 be two random variables with supports in X and
distribution functions F1 and F2, respectively. Let Y1 and Y2 be two random
variables such that Yi =st X(Θi), i = 1, 2, that is, suppose that the distribution
function of Yi is given by

Hi(y) =
∫

X
Gθ(y)dFi(θ), y ∈ R, i = 1, 2.

If
X(θ) ≤mrl X(θ′) whenever θ ≤ θ′, (2.A.11)

and if
Θ1 ≤hr Θ2, (2.A.12)

then
Y1 ≤mrl Y2. (2.A.13)

The proof of Theorem 2.A.15 uses the increasing convex order, and is
therefore given in Remark 4.A.29 in Chapter 4.

A Laplace transform characterization of the order ≤mrl is given next; it
may be compared to Theorems 1.A.13, 1.B.18, 1.B.53, and 1.C.25.

Theorem 2.A.16. Let X1 and X2 be two nonnegative random variables, and
let Nλ(X1) and Nλ(X2) be as described in Theorem 1.A.13. Then

X1 ≤mrl X2 ⇐⇒ Nλ(X1) ≤mrl Nλ(X2) for all λ > 0,

where the notation Nλ(X1) ≤mrl Nλ(X2) is in the sense of (2.A.7).

Proof. We use the notation of Theorem 1.A.13. Denote the distribution and
survival functions of Xk by Fk and F k, k = 1, 2. For k = 1, 2, note that
αXk

λ (n) can be written as

αXk

λ (n) =
∫ ∞

0

∞∑
i=n

e−λx (λx)i

i!
dFk(x)

=

{
1, n = 0,∫∞
0 λe−λx (λx)n−1

(n−1)! F k(x)dx, n = 1, 2, . . . .
(2.A.14)
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Therefore

P [Xk = n] =
∫ ∞

0
e−λx (λx)n

n!
dFk(x), n = 0, 1, 2, . . . . (2.A.15)

From (2.A.15) it is seen that

E[Nλ(Xk)] = λE[Xk], k = 1, 2, (2.A.16)

provided the expectations exist.
First assume that X1 ≤mrl X2. For the sake of this proof replace temporar-

ily the notation αX1
λ (n) and αX2

λ (n), by αλ,1(n) and αλ,2(n), respectively.
We also denote E[X1] and E[X2] by µ1 and µ2, respectively. The proof of
Nλ(X1) ≤mrl Nλ(X2) will consist of showing the following three inequalities:∑∞

n=0 αλ,2(n)∑∞
n=0 αλ,1(n)

≤
∑∞

n=1 αλ,2(n)∑∞
n=1 αλ,1(n)

, (2.A.17)∑∞
n=1 αλ,2(n)∑∞
n=1 αλ,1(n)

≤
∑∞

n=2 αλ,2(n)∑∞
n=2 αλ,1(n)

, (2.A.18)

and

∞∑
n=m

αλ,k(n) is TP2 in k ∈ {1, 2} and m ≥ 2. (2.A.19)

In order to prove (2.A.17) note that from (2.A.16) it follows that
∞∑

n=0

αλ,k(n) = 1 + λµk k = 1, 2, and

∞∑
n=1

αλ,k(n) = µk, k = 1, 2. (2.A.20)

But since X1 ≤mrl X2 implies that µ1 ≤ µ2 it follows that

1 + λµ2

1 + λµ1
≤ λµ2

λµ1
,

and (2.A.17) is obtained.
Next notice that (2.A.18) is equivalent to

αλ,2(1)
αλ,1(1)

≤
∑∞

n=1 αλ,2(n)∑∞
n=1 αλ,1(n)

. (2.A.21)

Since
∑∞

n=1 αλ,k(n) = λµk, k = 1, 2, and

αλ,k(1) =
∫ ∞

0
λe−λxF k(x)dx = λ

[
µk −

∫ ∞

0
λe−λx

∫ ∞

x

F k(u)dudx
]
,

k = 1, 2,
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it follows that (2.A.21) is the same as

µ1

∫ ∞

0
λe−λx

∫ ∞

x

F 2(u)dudx − µ2

∫ ∞

0
λe−λx

∫ ∞

x

F 1(u)dudx ≥ 0. (2.A.22)

Rewriting the left-hand side of (2.A.22) we see that∫ ∞

0
λe−λx

[
µ1

∫ ∞

x

F 2(u)du − µ2

∫ ∞

x

F 1(u)du
]
dx

=
∫ ∞

0
λe−λx

[∫ ∞

0
F 1(u)du

∫ ∞

x

F 2(u)du −
∫ ∞

0
F 2(u)du

∫ ∞

x

F 1(u)du

]
dx

≥ 0,

where the inequality follows from the TP2-ness of
∫∞

x
F k(u)du in k = 1, 2,

and x ≥ 0 (see (2.A.3)). This proves (2.A.22), and hence (2.A.18).
Finally, in order to prove (2.A.19), notice, using a straightforward compu-

tation, that, for m ≥ 2,

∞∑
n=m

αλ,k(n) =
∫ ∞

0
λ2e−λx (λx)m−2

(m − 2)!

∫ ∞

x

F k(u)dudx. (2.A.23)

By assumption,
∫∞

x
F k(u)du is TP2 in k ∈ {1, 2} and x ≥ 0. Furthermore,

λ2e−λx (λx)m−2

(m−2)! is TP2 in m ≥ 2 and x ≥ 0. Thus, it follows that
∑∞

n=m αλ,k(n)
is TP2 in k ∈ {1, 2} and m ≥ 2, and this establishes (2.A.19).

Now suppose that Nλ(X1) ≤mrl Nλ(X2) for all λ > 0. Then∑∞
n=m αλ,1(n)
αλ,1(m)

≤
∑∞

n=m αλ,2(n)
αλ,2(m)

, m = 0, 1, 2, . . . .

For m ≥ 2, by (2.A.23) and (2.A.14),∫∞
0 λe−λu (λu)m−2

(m−2)!

[∫∞
u

F 1(x)dx
]
du∫∞

0 λe−λu (λu)m−1

(m−1)! F 1(u)du
≤
∫∞
0 λe−λu (λu)m−2

(m−2)!

[∫∞
u

F 2(x)dx
]
du∫∞

0 λe−λu (λu)m−1

(m−1)! F 2(u)du
.

(2.A.24)
For a fixed y > 0, define λ = (m − 1)/y. Letting m → ∞ (λ → ∞), we have∫ ∞

0
λe−λu (λu)m−2

(m − 2)!

[∫ ∞

u

F k(x)dx

]
du →

∫ ∞

y

F k(x)dx,

and ∫ ∞

0
λe−λu (λu)m−1

(m − 1)!
F k(u)du → F k(y), k = 1, 2,

as long as y is a continuity point of F 1(x) and F 2(x). For such y’s, (2.A.24)
gives us
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y

F 1(x)dx

F 1(y)
≤
∫∞

y
F 2(x)dx

F 2(y)
.

It follows that X1 ≤mrl X2 since the set of continuity points of F 1(x) and
F 2(x) is dense in the set of positive real numbers. 
�

An analog of Theorem 1.B.21 is the following result.

Theorem 2.A.17. Let X be a nonnegative DMRL random variable, and let
a ≤ 1 be a positive constant. Then aX ≤mrl X.

Proof. It is easy to verify that the mean residual life function of aX is given
by am( t

a ), for all t, where m is the mean residual life function of X. Now

am(
t

a
) ≤ m(

t

a
) ≤ m(t) for all t,

where the first inequality follows from a ∈ [0, 1] and the second inequality
follows from the assumption that X is DMRL. The proof now follows from
(2.A.2). 
�

In the next result it is shown that a random variable, whose distribution
is the mixture of two distributions of mean residual life ordered random vari-
ables, is bounded from below and from above, in the mean residual life order
sense, by these two random variables.

Theorem 2.A.18. Let X and Y be two random variables with distribution
functions F and G, respectively. Let W be a random variable with the dis-
tribution function pF + (1 − p)G for some p ∈ (0, 1). If X ≤mrl Y , then
X ≤mrl W ≤mrl Y .

The proof of Theorem 2.A.18 is similar to the proof of Theorem 1.B.22,
but it uses (2.A.3) instead of (1.B.3). We omit the details.

The following result is proven in Remark 4.A.25 of Section 4.A.3.

Theorem 2.A.19. Let X and Y be two random variables. If X ≤mrl Y , then
φ(X) ≤mrl φ(Y ) for every increasing convex function φ.

Analogous to the result in Remark 1.A.18, it can be shown that the set of
all distribution functions on R+ with finite means is a lattice with respect to
the order ≤mrl.

Let X1, X2, . . . , Xm be random variables, and let X(k:m) denote the corre-
sponding kth order statistic, k = 1, 2, . . . , m.

Theorem 2.A.20. Let X1, X2, . . . , Xm be m independent random variables.
If

Xi ≤mrl Xm, i = 1, 2, . . . , m − 1,

then
X(m−1:m−1) ≤mrl X(m:m).
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Let X1, X2, . . . , Xm be nonnegative random variables and let U(i:m) =
X(i:m) − X(i−1:m) denote the corresponding spacings, i = 1, 2, . . . , m (where
U(1:m) = X(1:m)). Similarly, let Y1, Y2, . . . , Yn be nonnegative random variables
and let V(i:n) denote the corresponding spacings, i = 1, 2, . . . , n.

Theorem 2.A.21. For positive integers m and n, let X1, X2, . . . , Xm be
independent identically distributed nonnegative random variables, and let
Y1, Y2, . . . , Yn be other independent identically distributed nonnegative random
variables. If X1 ≤mrl Y1, and if X1 is IMRL and Y1 is DMRL, then

(m − j + 1)U(j:m) ≤mrl (n − i + 1)V(i:n) for j ≤ m and i ≤ n.

The following example may be compared to Examples 1.B.24, 1.C.48,
3.B.38, 4.B.14, 6.B.41, 6.D.8, 6.E.13, and 7.B.13.

Example 2.A.22. Let X and Y be two absolutely continuous nonnegative ran-
dom variables with survival functions F and G and density functions f and
g, respectively. Denote Λ1 = − log F , Λ2 = − log G, and λi = Λ′

i, i = 1, 2.
Consider two nonhomogeneous Poisson processes N1 = {N1(t), t ≥ 0} and
N2 = {N2(t), t ≥ 0} with mean functions Λ1 and Λ2 (see Example 1.B.13),
respectively. Let Ti,1, Ti,2, . . . be the successive epoch times of process Ni, and
let Xi,n ≡ Ti,n − Ti,n−1, n ≥ 1 (where Ti,0 ≡ 0), be the inter-epoch times
of the process Ni, i = 1, 2. Note that X =st X1,1 and Y =st X2,1. It turns
out that, under some conditions, the mean residual life ordering of the first
two inter-epoch times implies the mean residual life ordering of all the cor-
responding later inter-epoch times. Explicitly, it will be shown below that if
X ≤mrl Y , if X and Y are IMRL, and if (1.B.25) holds, then X1,n ≤mrl X2,n

for each n ≥ 1.
For the purpose of this proof we denote F by F 1 and G by F 2. The stated

result is obvious for n = 1. So let us fix n ≥ 2. The survival function Gi,n

of Xi,n, i = 1, 2, is given in (1.B.26). From (2.A.3) it is seen that the stated
result is equivalent to ∫ ∞

t

Gi,n(x)dx is TP2 in (i, t);

that is, to∫ ∞

s=0
λi(s)

Λn−2
i (s)

(n − 2)!

∫ ∞

u=s+t

F i(u)duds is TP2 in (i, t). (2.A.25)

Now, from Example 1.B.24 we know that (1.B.25) implies that λi(s)
Λn−2

i (s)
(n−2)!

is TP2 in (i, s). The assumption F1 ≤mrl F2 means that∫ ∞

u=s+t

F i(u)du is TP2 in (i, s) and in (i, t).

Finally, the assumption that Fi is IMRL means that
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u=s+t

F i(u)du is TP2 in (s, t).

Thus (2.A.25) follows from Theorem 5.1 on page 123 of Karlin [275].

2.A.4 A property in reliability theory

The order ≤mrl can be used to characterize DMRL random variables. As in
Section 1.A.3, [Z

∣∣A] denotes any random variable that has as its distribution
the conditional distribution of Z given A.

Theorem 2.A.23. The random variable X is DMRL if, and only if, any one
of the following equivalent conditions holds:

(i) [X − t
∣∣X > t] ≥mrl [X − t′

∣∣X > t′] whenever t ≤ t′.
(ii) X ≥mrl [X − t

∣∣X > t] for all t ≥ 0 (when X is a nonnegative random
variable).

(iii) X + t ≤mrl X + t′ whenever t ≤ t′.

The proofs of all these statements are trivial and are thus omitted.
Other characterizations of DMRL and IMRL random variables, by means

of other stochastic orders, can be found in Theorems 2.B.17, 3.A.56, 3.C.13,
and 4.A.51.

A multivariate extension of parts (i) and (ii) of Theorem 2.A.23 is given
in Section 6.F.3.

An interesting application of part (iii) of Theorem 2.A.23 is the follow-
ing corollary. Its proof consists of a combination of Theorem 2.A.23(iii) with
Lemma 2.A.8 (or, alternatively, a combination of Theorem 2.A.23(iii), Theo-
rem 1.B.38(iii), and Lemma 2.A.10).

Corollary 2.A.24. Let X be a DMRL random variable and let Y be an IFR
random variable. If X and Y are independent, then X + Y is DMRL.

2.B The Harmonic Mean Residual Life Order

2.B.1 Definition

Let X and Y be two nonnegative random variables with mrl functions m
and l, respectively, and suppose that the harmonic averages of m and l are
comparable as follows:[

1
x

∫ x

0

1
m(u)

du

]−1

≤
[

1
x

∫ x

0

1
l(u)

du

]−1

for all x > 0. (2.B.1)

Then X is said to be smaller than Y in the harmonic mean residual life order
(denoted as X ≤hmrl Y ).
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Notice that

1
m(u)

=
F (u)∫∞

u
F (v)dv

= − d
du

log
(∫ ∞

u

F (v)dv
)
.

Therefore ∫ x

0

1
m(u)

du = log
(

EX∫∞
x

F (u)du

)
.

Similarly ∫ x

0

1
l(u)

du = log
(

EY∫∞
x

G(u)du

)
.

Thus it is seen that (2.B.1) holds if, and only if,∫∞
x

F (u)du

EX
≤
∫∞

x
G(u)du

EY
for all x ≥ 0. (2.B.2)

For discrete random variables that take on values in N+ the definition of
≤hmrl should be modified. Let X and Y be two such random variables. We
denote X ≤hmrl Y if∑∞

j=n P{X ≥ j}
E[X]

≤
∑∞

j=n P{Y ≥ j}
E[Y ]

, n = 1, 2, . . . . (2.B.3)

2.B.2 The relation between the harmonic mean residual life and
some other stochastic orders

Since the harmonic averages of m and l are increasing functionals of m and l,
respectively, it follows that

X ≤mrl Y =⇒ X ≤hmrl Y.

The order ≤hmrl is closely related to the order ≤icx which is studied in
Section 4.A. The reader may find it helpful to browse over that section now,
since some of the ideas that are explained there are used below.

Note that both (2.B.2) and (2.B.3) are equivalent to

E[(X − t)+]
E[X]

≤ E[(Y − t)+]
E[Y ]

for all t ≥ 0, (2.B.4)

and from (2.B.4) it follows that X ≤hmrl Y if, and only if,

E[φ(X)]
E[X]

≤ E[φ(Y )]
E[Y ]

for all increasing convex functions φ : [0,∞) → R,

(2.B.5)
such that the expectations exist. It is worthwhile to note that condition (2.B.4)
uses the expectations E[(X − t)+] and E[(Y − t)+] as (2.A.5) and as (3.A.5)
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in Chapter 3 and (4.A.4) in Chapter 4 do. In Chapter 4, where the order ≤icx
is studied, we will use (2.B.4) in order to derive a relationship between the
orders ≤hmrl and ≤icx (see Theorem 4.A.28).

Neither of the orders ≤st and ≤hmrl implies the other; counterexamples
can be found in the literature.

Letting x → 0 in (2.B.1) we obtain m(0) ≤ l(0), that is,

X ≤hmrl Y =⇒ E[X
∣∣X > 0] ≤ E[Y

∣∣Y > 0].

Thus, when X and Y are positive almost surely, then

X ≤hmrl Y =⇒ EX ≤ EY. (2.B.6)

If EX = EY , then
X ≤hmrl Y ⇐⇒ X ≤cx Y, (2.B.7)

where the order ≤cx is studied in Section 3.A (see (3.A.7)). Thus, from (3.A.4)
it follows that if X ≤hmrl Y and EX = EY , then Var[X] ≤ Var[Y ]. Under
the proper condition, even if X and Y do not have the same mean, one can
still get the variance inequality; this is shown in the next result.

Theorem 2.B.1. Let X and Y be two almost surely positive random variables
with finite second moments. If X ≤hmrl Y , and if Y is NWUE, then Var[X] ≤
Var[Y ].

Proof. From (2.B.5) we get

E[X2]
E[X]

≤ E[Y 2]
E[Y ]

. (2.B.8)

From Barlow and Proschan [36, page 187] it is seen that Var[Y ] ≥ {E[Y ]}2,
since Y is NWUE. Thus, using (2.B.6), we see that Var[Y ] ≥ E[Y ]E[X].
Therefore

Var[Y ] ≥ E[X]
E[Y ]

Var[Y ] + {E[Y ] − E[X]}E[X]

=
E[X]
E[Y ]

· E[Y 2] − {E[X]}2

≥ E[X2] − {E[X]}2

= Var[X],

where the last inequality follows from (2.B.8). 
�

The harmonic mean residual life order can be characterized by means of the
usual stochastic order and the appropriate equilibrium age variables. Recall
from (1.A.20) that for nonnegative random variables X and Y with finite
means we denote by AX and AY the corresponding asymptotic equilibrium
ages. The following result follows at once from (1.A.1) and (2.B.2). It may be
contrasted with Theorems 1.C.13 and 2.A.4.
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Theorem 2.B.2. For nonnegative random variables X and Y with finite
means we have X ≤hmrl Y if, and only if, AX ≤st AY .

In the next theorem the order ≤hmrl is characterized by ordering two re-
lated random variables in the sense of the usual stochastic order. Let X and
Y be two nonnegative random variables with finite means and suppose that
X ≤st Y and that EX < EY . Let F and G be the distribution functions of X
and of Y , respectively. Define the random variable ZX,Y as the random vari-
able that has the density function h given by (1.C.7), as in Theorem 1.C.14;
see also Theorem 2.A.5.

Theorem 2.B.3. Let X and Y be two nonnegative random variables with
finite means such that X ≤st Y and such that EY > EX > 0. Then

X ≤hmrl Y ⇐⇒ AY ≤st ZX,Y ⇐⇒ AX ≤st ZX,Y ,

where ZX,Y has the density function given in (1.C.7).

Proof. It is easy to see that (here H is the survival function of Z, Ge is the
survival function of AY , and F e is as in (1.A.20))

H(x) − Ge(x) =
EX

EY − EX

[
Ge(x) − F e(x)

]
, x ≥ 0.

Thus the first stated equivalence follows from Theorem 2.B.2. The proof of
the second equivalence is similar. 
�

The order ≤hmrl can characterize the order ≤mrl as follows.

Theorem 2.B.4. Let X and Y be two nonnegative random variables with
finite means. Then X ≤mrl Y if, and only if, [X−t

∣∣X > t] ≤hmrl [Y −t
∣∣Y > t]

for all t ≥ 0.

The proof of Theorem 2.B.4 consists of applying (2.B.2) to [X − t
∣∣X > t]

and [Y − t
∣∣Y > t], for each t ≥ 0, and then showing that the resulting

inequality is equivalent to (2.A.3). We omit the details.

2.B.3 Some closure properties

Under the proper conditions, the order ≤hmrl is closed under the operation of
convolution. First we prove the following lemma. Recall that a nonnegative
random variable X with a finite mean is called NBUE (new better than used
in expectation) if E[X−t

∣∣X > t] ≤ E[X] for all t > 0. Note that a nonnegative
NBUE random variable must be almost surely positive.

Lemma 2.B.5. If the two almost surely positive random variables X and Y
are such that X ≤hmrl Y , and if Z is an NBUE nonnegative random variable
independent of X and Y , then

X + Z ≤hmrl Y + Z.
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Proof. Let F , G, and H [F , G, and H] be the distribution [survival] functions
corresponding to X, Y , and Z, respectively. The corresponding equilibrium
age distribution [survival] functions will be denoted by Fe, Ge, and He [F e,
Ge, and He]. Let AX , AY , AZ , AX+Z , and AY +Z denote the asymptotic
equilibrium ages corresponding to X, Y , Z, X + Z, and Y + Z, respectively.
Now compute

P{AX+Z > t} =
1

E[X + Z]

∫ ∞

v=t

P{X + Z > v}dv

=
1

EX + EZ

∫ ∞

v=t

∫ ∞

u=0
F (v − u)dH(u)dv

=
1

EX + EZ

∫ ∞

u=0

∫ ∞

v=t

F (v − u)dvdH(u)

=
1

EX + EZ

∫ ∞

u=0

∫ ∞

v=t−u

F (v)dvdH(u)

=
1

EX + EZ

[ ∫ t

u=0

∫ ∞

v=t−u

F (v)dvdH(u)

+
∫ ∞

u=t

∫ ∞

v=0
F (v)dvdH(u) +

∫ ∞

u=t

∫ 0

v=t−u

dvdH(u)
]

=
1

EX + EZ

[
EX

∫ t

0
F e(t − u)dH(u)

+ EX · H(t) +
∫ ∞

t

H(u)du

]
=

1
EX + EZ

[
EX · P{AX + Z > t} + EZ · He(t)

]
,

where AX and Z are taken to be independent in the above expression. Now,
since Z is NBUE we have that Z ≥st AZ . Therefore

P{AX + Z > t} ≥ P{AX + AZ > t} ≥ P{AZ > t} = He(t). (2.B.9)

Now notice that

P{AX+Z > t} =
1

EX + EZ

[
EX · P{AX + Z > t} + EZ · He(t)

]
≤ 1

EY + EZ

[
EY · P{AX + Z > t} + EZ · He(t)

]
≤ 1

EY + EZ

[
EY · P{AY + Z > t} + EZ · He(t)

]
= P{AY +Z > t}

(AY and Z are taken to be independent in the above), where the first inequal-
ity follows from (2.B.6) and (2.B.9), and the second inequality follows from
Theorem 2.B.2. The result now follows from Theorem 2.B.2. 
�



2.B The Harmonic Mean Residual Life Order 99

Repeated application of Lemma 2.B.5, using the closure property of NBUE
under convolution, and noting that every NBUE random variable is almost
surely positive, yields the following result.

Theorem 2.B.6. Let (Xi, Yi), i = 1, 2, . . . , m, be independent pairs of non-
negative random variables such that Xi ≤hmrl Yi, i = 1, 2, . . . , m. If Xi, Yi,
i = 1, 2, . . . , m, are all NBUE, then

m∑
i=1

Xi ≤hmrl

m∑
i=1

Yi.

Using Theorem 2.B.6 we can prove the following result.

Theorem 2.B.7. Let X1, X2, . . . and Y1, Y2, . . . each be a sequence of NBUE
nonnegative independent and identically distributed random variables such
that Xi ≤hmrl Yi, i = 1, 2, . . .. Let M and N be integer-valued positive random
variables that are independent of the {Xi} and the {Yi} sequences, respectively,
such that M ≤hmrl N . Then

M∑
j=1

Xj ≤hmrl

N∑
j=1

Yj .

Proof. The proof here is similar to the proof of Theorem 4.A.9. The reader
may wish to look at that proof before continuing to read the present proof.

From Theorem 2.B.6 and (2.B.4) it is seen that 1
mE[X1]

E
[(∑m

i=1 Xi −
u
)
+

]
≤ 1

mE[Y1]
E
[(∑m

i=1 Yi −u
)
+

]
(all the Xi’s have the same mean, and also

all the Yi’s have the same mean). Therefore

E
[(∑m

i=1 Xi − u
)
+

]
E[X1]

≤
E
[(∑m

i=1 Yi − u
)
+

]
E[Y1]

for all u ≥ 0, m = 1, 2, . . . .

Thus

E
[(∑M

i=1 Xi − u
)
+

]
E
[∑M

i=1 Xi

] =

∑∞
m=1 E

[(∑m
i=1 Xi − u

)
+

]
P{M = m}

E[M ]E[X1]

≤
∑∞

m=1 E
[(∑m

i=1 Yi − u
)
+

]
P{M = m}

E[M ]E[Y1]

=
E
[(∑M

i=1 Yi − u
)
+

]
E
[∑M

i=1 Yi

] .

Therefore (again by (2.B.4)) we have

M∑
i=1

Xi ≤hmrl

M∑
i=1

Yi. (2.B.10)
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Now let φ be an increasing convex function and denote g(n) ≡ E[φ(Y1 +
Y2+· · ·+Yn)]. In the proof of Theorem 4.A.9 it is shown that g(n) is increasing

and convex in n. Therefore, since M ≤hmrl N , we have that
E
[
φ
(∑M

i=1 Yi

)]
E[M ] ≤

E
[
φ
(∑N

i=1 Yi

)]
E[N ] , and since the Yi’s have the same mean we have that

E
[
φ
(∑M

i=1 Yi

)]
E
[∑M

i=1 Yi

] =
E
[
φ
(∑M

i=1 Yi

)]
E[M ]E[Y1]

≤
E
[
φ
(∑N

i=1 Yi

)]
E[N ]E[Y1]

=
E
[
φ
(∑N

i=1 Yi

)]
E
[∑N

i=1 Yi

] .

Thus we have that
M∑
i=1

Yi ≤hmrl

N∑
i=1

Yi. (2.B.11)

The inequalities (2.B.10) and (2.B.11) yield the stated result. 
�

A result that is related to Theorem 2.B.7 is given next. It is of interest to
compare it to Theorem 1.A.5.

Theorem 2.B.8. Let {Xj , j = 1, 2, . . . } be a sequence of nonnegative inde-
pendent and identically distributed NBUE random variables, and let M be a
positive integer-valued random variable which is independent of the Xi’s. Let
{Yj , j = 1, 2, . . . } be another sequence of nonnegative independent and iden-
tically distributed NBUE random variables, and let N be a positive integer-
valued random variable which is independent of the Yi’s. Suppose that for some
positive integer K we have

K∑
i=1

Xi ≤hmrl [≥hmrl] Y1,

and
M ≤hmrl [≥hmrl] KN.

Then
M∑

j=1

Xj ≤hmrl [≥hmrl]
N∑

j=1

Yj .

We do not give a detailed proof of Theorem 2.B.8 here since it is similar to
the proof of Theorem 4.A.12 in Section 4.A.1. In order to construct a proof of
Theorem 2.B.8 from the proof of Theorem 4.A.12 one just uses the equivalence
(2.B.7) and one replaces the application of Theorem 4.A.9 by an application
of Theorem 2.B.7.

Two other similar theorems are the following. Their proofs are similar to
the proofs of Theorems 4.A.13 and 4.A.14 in Section 4.A.1.

Theorem 2.B.9. Let {Xj , j = 1, 2, . . . } be a sequence of nonnegative in-
dependent and identically distributed NBUE random variables, and let M
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be a positive integer-valued random variable which is independent of the
Xi’s. Let {Yj , j = 1, 2, . . . } be another sequence of nonnegative independent
and identically distributed NBUE random variables, and let N be a posi-
tive integer-valued random variable which is independent of the Yi’s. Also,
let {Nj , j = 1, 2, . . . } be a sequence of independent random variables that are
distributed as N . If for some positive integer K we have

K∑
i=1

Xi ≤hmrl Y1 and M ≤hmrl

K∑
i=1

Ni,

or if we have

KX1 ≤hmrl Y1 and M ≤hmrl KN,

or if we have

KX1 ≤hmrl Y1 and M ≤hmrl

K∑
i=1

Ni,

then
M∑

j=1

Xj ≤hmrl

N∑
j=1

Yj .

Theorem 2.B.10. Let {Xj , j = 1, 2, . . . } be a sequence of nonnegative inde-
pendent and identically distributed NBUE random variables, and let M be a
positive integer-valued random variable which is independent of the Xi’s. Let
{Yj , j = 1, 2, . . . } be another sequence of nonnegative independent and iden-
tically distributed NBUE random variables, and let N be a positive integer-
valued random variable which is independent of the Yi’s. If for some positive
integers K1 and K2, such that K1 ≤ K2, we have

K1∑
i=1

Xi ≤hmrl
K1

K2
Y1 and M ≤hmrl K2N,

then
M∑

j=1

Xj ≤hmrl

N∑
j=1

Yj .

The harmonic mean residual life order does not have the property of being
simply closed under mixtures. However, under quite strong conditions the
order ≤hmrl is closed under mixtures. This is shown in the next theorem
which may be compared with Theorems 1.B.8 and 2.A.13.

Theorem 2.B.11. Let X and Y be nonnegative random variables, and let Θ
be another random variable, such that [X

∣∣Θ = θ] ≤hmrl [Y
∣∣Θ = θ′] for all θ

and θ′ in the support of Θ. Then X ≤hmrl Y .
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Proof. The proof is similar to the proof of Theorem 1.B.8. Select a θ and a
θ′ in the support of Θ. Let F (·

∣∣θ), G(·
∣∣θ), F (·

∣∣θ′), and G(·
∣∣θ′) be the survival

functions of [X
∣∣Θ = θ], [Y

∣∣Θ = θ], [X
∣∣Θ = θ′], and [Y

∣∣Θ = θ′], respectively.
Let E[X

∣∣θ], E[Y
∣∣θ], E[X

∣∣θ′], and E[Y
∣∣θ′] be the corresponding expectations.

By (2.B.2) it is sufficient to show that for α ∈ (0, 1) we have

α
∫∞

t
F (u|θ)du + (1 − α)

∫∞
t

F (u|θ′)du

αE[X|θ] + (1 − α)E[X|θ′]

≤
α
∫∞

t
G(u|θ)du + (1 − α)

∫∞
t

G(u|θ′)du

αE[Y |θ] + (1 − α)E[Y |θ′]
for all t ≥ 0. (2.B.12)

The proof of this inequality is similar to the proof of (1.B.12). 
�

Another condition under which the order ≤hmrl is closed under mixtures
is given in the following theorem.

Theorem 2.B.12. Let X and Y be nonnegative random variables, and let Θ
be another random variable, such that [X

∣∣Θ = θ] ≤hmrl [Y
∣∣Θ = θ] for all θ in

the support of Θ. Furthermore, assume that

E[Y |Θ = θ]
E[X|Θ = θ]

= k (independent of θ). (2.B.13)

Then X ≤hmrl Y .

Proof. As in the proof of Theorem 2.B.11, select a θ and a θ′ in the support
of Θ. Let F (·

∣∣θ), G(·
∣∣θ), F (·

∣∣θ′), and G(·
∣∣θ′) be the survival functions of

[X
∣∣Θ = θ], [Y

∣∣Θ = θ], [X
∣∣Θ = θ′], and [Y

∣∣Θ = θ′], respectively. Let E[X
∣∣θ],

E[Y
∣∣θ], E[X

∣∣θ′], and E[Y
∣∣θ′] be the corresponding expectations.

Let α ∈ (0, 1). Note that from (2.B.13) we obtain

αE[Y |θ] + (1 − α)E[Y |θ′]
αE[X|θ] + (1 − α)E[X|θ′]

= k. (2.B.14)

Also, from [X
∣∣Θ = θ] ≤hmrl [Y

∣∣Θ = θ], [X
∣∣Θ = θ′] ≤hmrl [Y

∣∣Θ = θ′], and
(2.B.13), we get, for t ≥ 0, that

k

∫ ∞

t

F (u
∣∣θ)du ≤

∫ ∞

t

G(u
∣∣θ)du and k

∫ ∞

t

F (u
∣∣θ′)du ≤

∫ ∞

t

G(u
∣∣θ′)du,

and hence

k
[
α

∫ ∞

t

F (u
∣∣θ)du + (1 − α)

∫ ∞

t

F (u
∣∣θ′)du

]
≤ α

∫ ∞

t

G(u
∣∣θ)du + (1 − α)

∫ ∞

t

G(u
∣∣θ′)du.

From this inequality and (2.B.14) we obtain (2.B.12), and this completes the
proof. 
�
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Consider now a family of distribution functions {Gθ, θ ∈ X} where X is
a subset of the real line. As in Sections 1.A.3 and 1.C.3 let X(θ) denote a
random variable with distribution function Gθ. For any random variable Θ
with support in X , and with distribution function F , let us denote by X(Θ)
a random variable with distribution function H given by

H(y) =
∫

X
Gθ(y)dF (θ), y ∈ R.

The following result is comparable to Theorems 1.A.6, 1.B.14, 1.B.52, 1.C.17
and 2.A.15.

Theorem 2.B.13. Consider a family of distribution functions {Gθ, θ ∈ X}
as above. Let Θ1 and Θ2 be two random variables with supports in X and
distribution functions F1 and F2, respectively. Let Y1 and Y2 be two random
variables such that Yi =st X(Θi), i = 1, 2, that is, suppose that the distribution
function of Yi is given by

Hi(y) =
∫

X
Gθ(y)dFi(θ), y ∈ R, i = 1, 2.

If
X(θ) ≤hmrl X(θ′) whenever θ ≤ θ′, (2.B.15)

and if
Θ1 ≤hr Θ2, (2.B.16)

then
Y1 ≤hmrl Y2. (2.B.17)

The proof of Theorem 2.B.13 uses the increasing convex order, and is
therefore given in Remark 4.A.29 in Chapter 4.

A Laplace transform characterization of the order ≤hmrl is given next; it
may be compared to Theorems 1.A.13, 1.B.18, 1.B.53, 1.C.25, and 2.A.16.

Theorem 2.B.14. Let X1 and X2 be two nonnegative random variables, and
let Nλ(X1) and Nλ(X2) be as described in Theorem 1.A.13. Then

X1 ≤hmrl X2 ⇐⇒ Nλ(X1) ≤hmrl Nλ(X2) for all λ > 0,

where the notation Nλ(X1) ≤hmrl Nλ(X2) is in the sense of (2.B.3).

Proof. First assume that X ≤hmrl Y . As in the proof of Theorem 2.A.16 we
temporarily replace the notation αX1

λ (n) and αX2
λ (n), by αλ,1(n) and αλ,2(n),

respectively. We also denote the survival function and the mean of Xk by F k

and µk, respectively, k = 1, 2. Let m ≥ 2. Using (2.A.23) we have

µ1

∞∑
n=m

P 2(n) − µ2

∞∑
n=m

P 1(n)

=
∫ ∞

0
λ2e−λx (λx)m−2

(m − 2)!

[
µ1

∫ ∞

x

F 2(u)du − µ2

∫ ∞

x

F 1(u)du
]
dx.
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The integrand is nonnegative by the assumption of the theorem, and one
direction of the proof is complete.

The proof of the converse statement is similar to the proof of the converse
of Theorem 2.A.16. 
�

The following result gives necessary and sufficient conditions for two ran-
dom variables to be equal in the sense of the order ≤hmrl.

Theorem 2.B.15. Let X and Y be two nonnegative random variables with
positive expectations, such that EX ≤ EY . Then X =hmrl Y if, and only if,
X =st BY for some Bernoulli random variable B, independent of Y .

Proof. First assume that X =st BY for some Bernoulli random variable B,
independent of Y . Then

E[(X − t)+]
E[X]

=
E[(BY − t)+]

E[BY ]
=

E[(Y − t)+]P{B = 1}
E[Y ]P{B = 1}

=
E[(Y − t)+]

E[Y ]
for all t ≥ 0,

and thus X =hmrl Y follows from (2.B.4).
Conversely, suppose that X =hmrl Y . By (2.B.2) this means that∫∞

t
P{X > u}du

EX
=

∫∞
t

P{Y > u}du

EY
for all t ≥ 0,

which yields

P{X > t} =
EX

EY
· P{Y > t}, t ≥ 0.

That is, X =st BY , where B is a Bernoulli random variable such that P{B =
1} = EX/EY . 
�

From the proof of Theorem 2.B.15 it is seen, in contrast to (2.B.6), that if
X ≤hmrl Y , then it does not necessarily follow that EX ≤ EY (unless X and
Y are positive almost surely).

In the next result it is shown that a random variable, whose distribution
is the mixture of two distributions of harmonic mean residual life ordered
random variables, is bounded from below and from above, in the harmonic
mean residual life order sense, by these two random variables.

Theorem 2.B.16. Let X and Y be two nonnegative random variables with
distribution functions F and G, respectively. Let W be a random variable with
the distribution function pF + (1 − p)G for some p ∈ (0, 1). If X ≤hmrl Y ,
then X ≤hmrl W ≤hmrl Y .

Proof. By assumption, (2.B.2) holds. Therefore
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x

F (u)du

EX
≤

p
∫∞

x
F (u)du + (1 − p)

∫∞
x

G(u)du

pEX + (1 − p)EY
≤
∫∞

x
G(u)du

EY

for all x ≥ 0,

and the stated result follows from (2.B.2). 
�

2.B.4 Properties in reliability theory

The order ≤hmrl can be used to characterize DMRL random variables. As in
Section 1.A.3, [Z

∣∣A] denotes any random variable that has as its distribution
the conditional distribution of Z given A.

Theorem 2.B.17. The nonnegative random variable X is DMRL if, and only
if, [X − t

∣∣X > t] ≥hmrl [X − t′
∣∣X > t′] whenever t′ ≥ t ≥ 0.

The proof is simple and thus omitted.
Other characterizations of DMRL and IMRL random variables, by means

of other stochastic orders, can be found in Theorems 2.A.23, 3.A.56, 3.C.13,
and 4.A.51.

The order ≤hmrl can also be used to characterize NBUE random variables
as follows.

Theorem 2.B.18. Let X be a nonnegative random variable with a finite pos-
itive mean. Then the following assertions are equivalent:

(i) X ≤hmrl X + Y for any nonnegative random variable Y with a finite
positive mean, which is independent of X.

(ii) X is NBUE.
(iii) X + Y1 ≤hmrl X + Y2 whenever Y1 and Y2 are almost surely positive

random variables with finite means, which are independent of X, such
that Y1 ≤hmrl Y2.

Proof. Suppose that (i) holds. Then, taking Y =a.s. y for some y > 0, we get
from (2.B.4) that

E[(X − t)+]
E[X]

≤ E[(X + y − t)+]
E[X] + y

, t ≥ 0.

Upon rearrangement this gives

yE[(X − t)+] ≤ E[X]
{
E[(X + y − t)+] − E[(X − t)+]

}
, t ≥ 0;

that is,

E[(X − t)+] ≤ E[X]
y

∫ t

t−y

P{X > u}du, t ≥ 0.

Letting y → 0 we obtain

E[(X − t)+] ≤ E[X]P{X > t}, t ≥ 0,
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that is, X is NBUE.
The statement (ii)=⇒(iii) is Lemma 2.B.5.
Now assume that (iii) holds. Let Y1 =a.s a and Y2 =a.s y, where 0 < a < y.

It is easy to verify (for instance, using (2.B.4)) that Y1 ≤hmrl Y2. That is,

(E[X] + y)E[(X + a − t)+] ≤ (E[X] + a)E[(X + y − t)+], t ≥ 0.

Letting a → 0 we obtain

(E[X] + y)E[(X − t)+] ≤ E[X]E[(X + y − t)+], t ≥ 0, y ≥ 0.

Integrating both sides of the above inequality with respect to the distribution
of Y (Y is any random variable as described in (i)) we obtain

(E[X] + E[Y ])E[(X − t)+] ≤ E[X]E[(X + Y − t)+], t ≥ 0,

that is, by (2.B.4), we have X ≤hmrl X + Y . 
�

Another characterization of NBUE random variables by means of the usual
stochastic order is given in Theorem 1.A.31.

2.C Complements

Section 2.A: Basic properties of the mrl function (which is also called the
biometric function) can be found in Yang [572] and references therein.
Some properties of the mrl functions are summarized in Shaked and Shan-
thikumar [513], where further references can be found. The counterexam-
ples mentioned after Theorem 2.A.1 can also be found in that paper and
further counterexamples can be found in Gupta and Kirmani [216] and in
Alzaid [12]. The conditions under which the ≤mrl order implies the ≤hr
and the ≤st orders (Theorems 2.A.2 and 2.A.3) are taken from Gupta
and Kirmani [216]. The equivalence of the order ≤mrl and (2.A.3) can
be found, for example, in Singh [536]. The characterization of the order
≤mrl which is given in Theorem 2.A.5 is taken from Di Crescenzo [164].
The characterizations of the order ≤hr by means of the order ≤mrl, given
in Theorems 2.A.6 and 2.A.7, can be found in Belzunce, Gao, Hu, and
Pellerey [67]. The closure under convolution results of the order ≤mrl in
Section 2.A.3 were communicated to us by Pellerey [444]. A special case
of Lemma 2.A.8 can be found in Mukherjee and Chatterjee [403]. The-
orem 2.A.9 can be found in Pellerey [448] and Theorem 2.A.12 can be
found in Fagiuoli and Pellerey [186]. The fact that a DMRL random vari-
able increases in the order ≤mrl when a nonnegative random variable is
added to it (Theorem 2.A.11) is a result that is slightly stronger than a re-
sult in Frostig [207]. The closure under mixtures result (Theorem 2.A.13)
is taken from Nanda, Jain, and Singh [424]. The characterization of the
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mrl order that is given in Theorem 2.A.14 can be found in Joag-Dev,
Kochar, and Proschan [259], whereas its special case given in (2.A.10) is
taken from Fagiuoli and Pellerey [187]. Fagiuoli and Pellerey [187] have
extended (2.A.10) to sums of mrl ordered random variables. The closure
under mixtures property of the order ≤mrl (Theorem 2.A.15) is a spe-
cial case of a result of Hu, Kundu, and Nanda [236], and it can also be
found in Hu, Nanda, Xie, and Zhu [237]; see also Theorem 3.4 in Ahmed
[7]. The Laplace transform characterization of the order ≤mrl (Theorem
2.A.16) is taken from Shaked and Wong [524]; see also Kan and Yi [274].
An extension of Theorem 2.A.16 to more general orders can be found in
Nanda [422]. The mean residual life order comparisons of order statistics
(Theorems 2.A.20 and 2.A.21) can be found in Hu, Zhu, and Wei [243]
and in Hu and Wei [240]. The comparison of inter-epoch times of two non-
homogeneous Poisson processes in the sense of the mean residual life order
(Example 2.A.22) is taken from Belzunce, Lillo, Ruiz, and Shaked [69].
The result that a convolution of an IFR and a DMRL random variables
is DMRL (Corollary 2.A.24) can be found in Kopocinska and Kopocinski
[320].

Nanda, Singh, Misra, and Paul [429] studied a notion of reversed residual
lifetime, and introduced and studied a stochastic order based on it.

An order which is related to the mean residual life order is introduced in
Ebrahimi and Zahedi [179]. If m and l are the mrl functions of X and Y ,
respectively, then the order is defined by requiring d

dt (l(t) − m(t)) to be
monotone in t. Ebrahimi and Zahedi [179] show that this order implies
the mean residual life order.

In Kirmani [297] it is claimed that the spacings, from a sample of indepen-
dent and identically distributed IMRL random variables, are ordered in
the mean residual life order. However, the proof of Kirmani is erroneous;
see Kirmani [298].

Section 2.B: The order ≤hmrl is studied, for example, in Deshpande, Singh,
Bagai, and Jain [161] and in Heilmann and Schröter [219]. Baccelli and
Makowski [28] call it the forward recurrence times stochastic order (see
an additional comment on the paper of Baccelli and Makowski [28] in
Section 4.C). The counterexamples mentioned after (2.B.5) can be found,
for example, in Mi [394]. In fact, Gerchak and Golani [209] have noticed
that the example given on page 489 of Wolff [567] shows that it is possible
for both X ≤st Y and Y ≤hmrl X to hold simultaneously in the strict
sense. The comparison of the expectations of ≤hmrl ordered random vari-
ables, described in (2.B.6), is a special case of a result of Nanda, Jain,
and Singh [425]. The variance inequality (Theorem 2.B.1) can be found
in Kirmani [297]. The characterization of the order ≤hmrl which is given
in Theorem 2.B.3 is taken from Di Crescenzo [164]. The characterization
of the order ≤mrl by means of the order ≤hmrl (Theorem 2.B.4) can be
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found in Hu, Kundu, and Nanda [236]. The preservation under convolu-
tion property of the order ≤hmrl (Theorem 2.B.6) is taken from Pellerey
[448, 449] (the latter is a correction note), and the closure under random
summations property of the order ≤hmrl (Theorem 2.B.7) is also taken
from Pellerey [448, 449], though it is alluded to in Heilmann and Schröter
[219]. These results (Theorems 2.B.6 and 2.B.7) can also be found in Bac-
celli and Makowski [28]. A slight extension of Theorem 2.B.6 is given in
Lefèvre and Utev [340]. Theorems 2.B.8–2.B.10 have been communicated
to us by Pellerey [447]. The closure under mixtures properties of the or-
der ≤hmrl (Theorems 2.B.11 and 2.B.12) are taken from Nanda, Jain, and
Singh [424] and from Lefèvre and Utev [340], respectively, whereas Theo-
rem 2.B.13 is inspired by Ahmed, Soliman, and Khider [9]. The Laplace
transform characterization of the order ≤hmrl (Theorem 2.B.14) is taken
from Shaked and Wong [524]. An extension of Theorem 2.B.14 to more
general orders can be found in Nanda [422]. The conditions under which
X =hmrl Y (Theorem 2.B.15) can be found in Lefèvre and Utev [340]. The
NBUE characterization, given in Theorem 2.B.18, is taken from Lefèvre
and Utev [340].



3

Univariate Variability Orders

In this chapter we study stochastic orders that compare the “variability” or
the “dispersion” of random variables. The most important and common orders
that are studied in this chapter are the convex and the dispersive orders. We
also study in this chapter the excess wealth order (which is also called the
right spread order) which is found to be useful in an increasing number of
applications. Various related orders are also examined in this chapter.

3.A The Convex Order

3.A.1 Definition and equivalent conditions

Let X and Y be two random variables such that

E[φ(X)] ≤ E[φ(Y )] for all convex functions φ : R → R, (3.A.1)

provided the expectations exist. Then X is said to be smaller than Y in the
convex order (denoted as X ≤cx Y ). Roughly speaking, convex functions are
functions that take on their (relatively) larger values over regions of the form
(−∞, a) ∪ (b,∞) for a < b. Therefore, if (3.A.1) holds, then Y is more likely
to take on “extreme” values than X. That is, Y is “more variable” than X.
It should be mentioned here that in (3.A.1) it is sufficient to consider only
functions φ that are convex on the union of the supports of X and Y rather
than over the whole real line; we will not keep repeating this point throughout
this chapter.

One can also define a concave order by requiring (3.A.1) to hold for all
concave functions φ (denoted as X ≤cv Y ). However, X ≤cv Y if, and only if,
Y ≤cx X. Therefore, it is not necessary to have a separate discussion for the
concave order.

Note that the functions φ1 and φ2, defined by φ1(x) = x and φ2(x) = −x,
are both convex. Therefore, from (3.A.1) it easily follows that
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X ≤cx Y =⇒ E[X] = E[Y ], (3.A.2)

provided the expectations exist. Later it will be helpful to observe that if
E[X] = E[Y ], then∫ ∞

−∞

[
F (u) − G(u)

]
du =

∫ ∞

−∞

[
F (u) − G(u)

]
du = 0, (3.A.3)

provided the integrals exist, where F [F ] and G [G] are the survival [distribu-
tion] functions of X and Y , respectively. The function φ, defined by φ(x) = x2,
is convex. Therefore, from (3.A.1) and (3.A.2), it follows that

X ≤cx Y =⇒ Var[X] ≤ Var[Y ], (3.A.4)

whenever Var(Y ) < ∞.
For a fixed a, the function φa, defined by φa(x) = (x−a)+, and the function

ϕa, defined by ϕa = (a − x)+, are both convex. (The reader is encouraged to
draw a sketch of φa and ϕa since they are very handy in the analysis of the
order ≤cx as well as in the analysis of the monotone convex and the monotone
concave orders discussed in Chapter 4.) Therefore, if X ≤cx Y , then

E[(X − a)+] ≤ E[(Y − a)+] for all a (3.A.5)

and
E[(a − X)+] ≤ E[(a − Y )+] for all a, (3.A.6)

provided the expectations exist. Alternatively, using a simple integration by
parts, it is seen that (3.A.5) and (3.A.6) can be rewritten as∫ ∞

x

F (u)du ≤
∫ ∞

x

G(u)du for all x (3.A.7)

and ∫ x

−∞
F (u)du ≤

∫ x

−∞
G(u)du for all x, (3.A.8)

provided the integrals exist.
In fact, when E[X] = E[Y ], (3.A.7) is equivalent to X ≤cx Y . To see

this equivalence, note that every convex function can be approximated by
(that is, is a limit of) positive linear combinations of the functions φa’s, for
various choices of a’s, and of the function φ(x) = −x. By (3.A.7), E[φa(X)] ≤
E[φa(Y )] for all a’s, and this fact, together with the equality of the means of
X and Y , implies (3.A.1). We thus have proved the first part of the following
result. The other part is proven similarly.

Theorem 3.A.1. Let X and Y be two random variables such that E[X] =
E[Y ]. Then

(a) X ≤cx Y if, and only if, (3.A.7) holds.
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(b) X ≤cx Y if, and only if, (3.A.8) holds.

By adding a to both sides of the inequality in (3.A.5), it is seen that (3.A.5)
can be rewritten as

max{X, a}] ≤ E[max{Y, a}] for all a. (3.A.9)

Thus, when E[X] = E[Y ], then (3.A.9) is equivalent to X ≤cx Y . In a similar
manner (3.A.6) can be rewritten.

The following theorem provides another characterization of the convex
order.

Theorem 3.A.2. Let X and Y be two random variables such that E[X] =
E[Y ]. Then X ≤cx Y if, and only if,

E|X − a| ≤ E|Y − a| for all a ∈ R. (3.A.10)

Proof. Clearly, if X ≤cx Y , then (3.A.10) holds. So suppose that (3.A.10)
holds. Without loss of generality it can be assumed that EX = EY = 0. A
straightforward computation gives

E|X − a| = a + 2
∫ ∞

a

F (u)du = −a + 2
∫ a

−∞
F (u)du. (3.A.11)

The result now follows from (3.A.7) or (3.A.8). 
�

The function −E|X − ·| is called the potential of the probability mea-
sure of X. Similarly, −E|Y − ·| is the potential of the probability measure
of Y . Thus, (3.A.10) can be written as −E|X − ·| ≥ −E|Y − ·| pointwise.
Using this observation, we obtain from Chacon and Walsh [122] the following
characterization.

Theorem 3.A.3. Let X and Y be two random variables such that E[X] =
E[Y ] = 0. Then X ≤cx Y if, and only if, for a standard Brownian motion
from 0, {B(t), t ≥ 0}, there exist two stopping times T1 and T2, such that
T1 ≤ T2 almost surely, and X =st B(T1) and Y =st B(T2).

An immediate consequence of (3.A.5) is shown next. Denote the supports
of X and Y by supp(X) and supp(Y ). Let lX = inf{x : x ∈ supp(X)} and
uX = sup{x : x ∈ supp(X)}. Define lY and uY similarly. Then we have that
if X ≤cx Y , then lY ≤ lX and uY ≥ uX . As proof, suppose, for example,
that uY < uX . Let a be such that uY < a < uX . Then E[(Y − a)+] = 0 <
E[(X − a)+], in contradiction to (3.A.5). Therefore we must have uY ≥ uX .
Similarly, using (3.A.6), it can be shown that lY ≤ lX . As a consequence we
have that if X and Y are random variables whose supports are intervals, then

X ≤cx Y =⇒ supp(X) ⊆ supp(Y ). (3.A.12)

An important characterization of the convex order by construction on the
same probability space is stated in the next theorem.
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Theorem 3.A.4. The random variables X and Y satisfy X ≤cx Y if, and
only if, there exist two random variables X̂ and Ŷ , defined on the same prob-
ability space, such that

X̂ =st X,

Ŷ =st Y,

and {X̂, Ŷ } is a martingale, that is,

E[Ŷ
∣∣X̂] = X̂ a.s. (3.A.13)

Furthermore, the random variables X̂ and Ŷ can be selected such that [Ŷ
∣∣X̂ =

x] is increasing in x in the usual stochastic order ≤st.

It is not easy to prove the constructive part of Theorem 3.A.4. However, it
is easy to prove that if random variables X̂ and Ŷ as described in the theorem
exist, then X ≤cx Y . Just note that if φ is a convex function, then by Jensen’s
Inequality,

E[φ(X)] = E[φ(X̂)] = Eφ(E[Ŷ
∣∣X̂]) ≤ E{E[φ(Ŷ )

∣∣X̂]} = E[φ(Ŷ )] = E[φ(Y )],

which is (3.A.1).
Other characterizations of the convex order are described in the next the-

orem.

Theorem 3.A.5. Let X and Y be two random variables with distribution
functions F and G, respectively, and with equal finite means. Then each of the
following two statements is a necessary and sufficient condition for X ≤cx Y :∫ p

0
F−1(u)du ≥

∫ p

0
G−1(u)du for all p ∈ [0, 1]; (3.A.14)

and ∫ 1

p

F−1(u)du ≤
∫ 1

p

G−1(u)du for all p ∈ [0, 1]. (3.A.15)

Proof. Since EX =
∫ 1
0 F−1(u)du and EY =

∫ 1
0 G−1(u)du, and since EX =

EY , it follows that for any p ∈ [0, 1] the inequality∫ 1

p

F−1(u)du ≤
∫ 1

p

G−1(u)du (3.A.16)

is equivalent to the inequality∫ p

0
F−1(u)du ≥

∫ p

0
G−1(u)du. (3.A.17)

It follows that (3.A.14) and (3.A.15) are equivalent. Thus, we just need to
show that X ≤cx Y is equivalent to (3.A.14).
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We only give the proof for the case when the distribution functions F and
G of X and Y are continuous; the proof for the general case is similar, though
notationally more complex. Without loss of generality, suppose that F and G
are not identical. Since EX = EY , it follows that F and G must cross each
other at least once. If either (3.A.7) or (3.A.14) hold, then, if there is a first
time that F crosses G, it must cross it there from below. Similarly, if there is
a last time that F crosses G, it also must cross it there from below. (Thus, if
there is a finite number of crossings, then it must be odd.)

Let (y0, p0), (y1, p1), and (y2, p2) be three consecutive crossing points as
depicted in Figure 3.A.1. Note that (y0, p0) may be (−∞, 0) (we then adopt
the convention that 0 · (−∞) ≡ 0), and that (y2, p2) may be (∞, 1) (we then
adopt the convention that 0 ·∞ ≡ 0). Note that by the continuity assumption
we have

pi = F (yi) = G(yi), i = 0, 1, 2.

� y

�
p

1

y0 y1 y2

p0

p1

p2

F

G

F

F

F

G

G

G

Fig. 3.A.1. Typical segments of F and G when X ≤cx Y

Assume that X ≤cx Y . Then∫ ∞

y2

F (x)dx ≤
∫ ∞

y2

G(x)dx. (3.A.18)

Thus
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p2

F−1(u)du = y2(1 − p2) +
∫ ∞

y2

F (x)dx

≤ y2(1 − p2) +
∫ ∞

y2

G(x)dx (by (3.A.18)) (3.A.19)

=
∫ 1

p2

G−1(u)du.

Now, for u ∈ [p1, p2] we have that F−1(u) − G−1(u) ≤ 0 (see Figure 3.A.1).
Thus

∫ 1
p
(F−1(u) − G−1(u))du is increasing in p ∈ [p1, p2]. Therefore, from

(3.A.19) we get that∫ 1

p

F−1(u)du ≤
∫ 1

p

G−1(u)du for p ∈ [p1, p2]. (3.A.20)

From X ≤cx Y we also have∫ y0

−∞
F (x)dx ≤

∫ y0

−∞
G(x)dx. (3.A.21)

Thus ∫ p0

0
F−1(u)du = y0p0 −

∫ y0

−∞
F (x)dx

≥ y0p0 −
∫ y0

−∞
G(x)dx (by (3.A.21)) (3.A.22)

=
∫ p0

0
G−1(u)du.

Now, for u ∈ [p0, p1] we have that F−1(u) − G−1(u) ≥ 0 (see Figure 3.A.1).
Thus

∫ p

0 (F−1(u) − G−1(u))du is increasing in p ∈ [p0, p1]. Therefore, from
(3.A.22) we get that∫ p

0
F−1(u)du ≥

∫ p

0
G−1(u)du for p ∈ [p0, p1]. (3.A.23)

Thus we see from (3.A.20) and (3.A.23) that for each p ∈ [0, 1] either (3.A.16)
or (3.A.17) hold. Therefore, (3.A.14) (or, equivalently, (3.A.15)) holds.

Conversely, assume that (3.A.14) (or, equivalently, (3.A.15)) holds. Then∫ 1

p2

F−1(u)du ≤
∫ 1

p2

G−1(u)du. (3.A.24)

Thus
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y2

F (x)dx =
∫ 1

p2

F−1(u)du − y2(1 − p2)

≤
∫ 1

p2

G−1(u)du − y2(1 − p2) (by (3.A.24)) (3.A.25)

=
∫ ∞

y2

G(x)dx.

Now, for x ∈ [y1, y2] we have that F (x) − G(x) ≤ 0 (see Figure 3.A.1). Thus∫∞
y

(F (x) − G(x))dx is increasing in y ∈ [y1, y2]. Therefore, from (3.A.25) we
get that ∫ ∞

y

F (x)dx ≤
∫ ∞

y

G(x)dx for y ∈ [y1, y2]. (3.A.26)

From (3.A.14) we also have∫ p0

0
F−1(u)du ≥

∫ p0

0
G−1(u)du. (3.A.27)

Thus ∫ y0

−∞
F (x)dx = y0p0 −

∫ p0

0
F−1(u)du

≤ y0p0 −
∫ p0

0
G−1(u)du (by (3.A.27)) (3.A.28)

=
∫ y0

−∞
G(x)dx.

Now, for x ∈ [y0, y1] we have that F (x) − G(x) ≤ 0 (see Figure 3.A.1). Thus∫ y

−∞(F (x)−G(x))dx is decreasing in y ∈ [y0, y1]. Therefore, from (3.A.28) we
get that ∫ y

−∞
F (x)dx ≤

∫ y

−∞
G(x)dx for y ∈ [y0, y1]. (3.A.29)

Thus we see from (3.A.26) and (3.A.29) that for each y ∈ R either (3.A.7) or
(3.A.8) hold. Therefore X ≤cx Y . 
�

We now give a bivariate characterization result for the order ≤cx that is
similar to the characterizations given in Theorems 1.A.9, 1.B.9, 1.B.47, and
1.C.20, for the orders ≤st, ≤hr, ≤rh, and ≤lr, respectively. We define the
following class of bivariate functions:

Gcx = {φ : R
2 → R : φ(x, y) − φ(y, x) is convex in x for all y}.

Theorem 3.A.6. Let X and Y be independent random variables. Then X ≤cx
Y if, and only if,

E[φ(X, Y )] ≤ E[φ(Y, X)] for all φ ∈ Gcx. (3.A.30)
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Proof. Suppose that (3.A.30) holds. Let ψ be a univariate convex function.
Define φ(x, y) = ψ(x). Then φ ∈ Gcx and from (3.A.30) we see that X ≤cx Y .

Conversely, suppose that X ≤cx Y . Let φ ∈ Gcx and let Ŷ be another
random variable, independent of X and Y , such that Ŷ =st Y . Define ψ by
ψ(x) ≡ E[φ(x, Ŷ ) − φ(Ŷ , x)]. From the independence of X and Ŷ it follows
that ψ is convex. Therefore, since X ≤cx Y , it follows that

E[φ(X, Y )] − E[φ(Y, X)] = E[ψ(X)] ≤ E[ψ(Y )] = 0. 
�

Another characterization of the convex order, by means of the number
of sign changes of two distribution functions, is given in Theorem 3.A.45 in
Section 3.A.3.

Let X be a random variable with survival function F , and let h : [0, 1] →
[0, 1] be an increasing function that satisfies h(0) = 0 and h(1) = 1. Such a
function h is called a probability transformation function. Consider the func-
tional

Vh(X) = −
∫ ∞

−∞
xdh(F (x)); (3.A.31)

this functional is called the Yaari functional and it is of interest in economics.

Theorem 3.A.7. Let X and Y be two random variables with the same finite
means. Then X ≤cx Y if, and only if,

Vh(X) ≤ Vh(Y ) for every convex probability transformation function h.

As can be seen from (3.A.2), only random variables that have the same
means can be compared by the order ≤cx. Often, however, we do not want
a variability order to depend on the location of the involved distributions.
Several ideas for using the order ≤cx to define a variability order that is
independent of the locations of the underlying random variables X and Y
have been suggested in the literature. When X and Y have finite means, one
idea is to say that X is less variable than Y if

[X − EX] ≤cx [Y − EY ]. (3.A.32)

This is sometimes called the dilation order. When the random variables X
and Y satisfy (3.A.32), we denote X ≤dil Y .

For nonnegative random variables X and Y with finite means one can
define X as less variable than Y if

X

EX
≤cx

Y

EY
. (3.A.33)

This is sometimes called the Lorenz order. When the nonnegative random
variables X and Y satisfy (3.A.33), we denote X ≤Lorenz Y . Bhattacharjee
and Sethuraman [88] introduced a stochastic order, for nonnegative random
variables with finite means, denoted by ≤hnbue. Kochar [306] showed that the
orders ≤hnbue and ≤Lorenz are equivalent.

The dilation order can be characterized as follows.
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Theorem 3.A.8. Let X and Y be two random variables with distribution
functions F and G, respectively, and with finite expectations. Then X ≤dil Y
if, and only if,

1
1 − p

∫ 1

p

[F−1(u) − G−1(u)]du ≤
∫ 1

0
[F−1(u) − G−1(u)]du for all p ∈ [0, 1).

(3.A.34)

Proof. Denote ∆ = EX − EY . Then the stochastic inequality X ≤dil Y can
be rewritten as X − ∆ ≤cx Y . Denote by F∆ the distribution function of
X − ∆, and note that from Theorem 3.A.5 we have that X − ∆ ≤cx Y if, and
only if, ∫ 1

p

F−1
∆ (u)du ≤

∫ 1

p

G−1(u)du for all p ∈ [0, 1]. (3.A.35)

Since F∆(x) = F (x + ∆) for all x ∈ R it follows that F−1
∆ (u) = F−1(u) − ∆

for all u ∈ [0, 1]. Therefore (3.A.35) is equivalent to∫ 1

p

[F−1(u) − ∆]du ≤
∫ 1

p

G−1(u)du for all p ∈ [0, 1];

that is,∫ 1

p

[F−1(u) − G−1(u)]du ≤
∫ 1

p

[EX − EY ]du for all p ∈ [0, 1];

that is,

1
1 − p

∫ 1

p

[F−1(u) − G−1(u)]du ≤ EX − EY for all p ∈ [0, 1). (3.A.36)

Now, since EX =
∫ 1
0 F−1(u)du and EY =

∫ 1
0 G−1(u)du it is seen that

(3.A.36) is equivalent to (3.A.34). 
�

For each p ∈ (0, 1), the quantity
∫ 1
0 [F−1(u)−G−1(u)]du on the right-hand

side of (3.A.34) is a weighted average of 1
1−p

∫ 1
p
[F−1(u) − G−1(u)]du and of

1
p

∫ p

0 [F−1(u)−G−1(u)]du. Thus, from Theorem 3.A.8 we obtain that X ≤dil Y
if, and only if,∫ 1

0
[F−1(u) − G−1(u)]du ≤ 1

p

∫ p

0
[F−1(u) − G−1(u)]du for all p ∈ (0, 1].

Also, X ≤dil Y if, and only if,

1
1 − p

∫ 1

p

[F−1(u)−G−1(u)]du ≤ 1
p

∫ p

0
[F−1(u)−G−1(u)]du for all p ∈ (0, 1).
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For p ∈ [0, 1], let us denote the p-quantiles of X and of Y by x(p) =
F−1(p) and y(p) = G−1(p), respectively. As in Jewitt [256], we observe that∫ p

0 F−1(u)du =
∫ F −1(p)
0 xdF (x) = pE[X

∣∣X ≤ x(p)]. Similarly,
∫ 1

p
F−1(u)du =

(1 − p)E[X
∣∣X ≥ x(p)],

∫ p

0 G−1(u)du = pE[Y
∣∣Y ≤ y(p)], and

∫ 1
p

G−1(u)du =
(1−p)E[Y

∣∣Y ≥ y(p)]. Thus we see that each of the following three statements
is a necessary and sufficient condition for X ≤dil Y :

E[X
∣∣X ≥ x(p)] − E[Y

∣∣Y ≥ y(p)] ≤ EX − EY for all p ∈ [0, 1), (3.A.37)

E[X
∣∣X ≤ x(p)] − E[Y

∣∣Y ≤ y(p)] ≥ EX − EY for all p ∈ (0, 1], (3.A.38)

and

E[X
∣∣X ≥ x(p)] − E[Y

∣∣Y ≥ y(p)] ≤ E[X
∣∣X ≤ x(p)] − E[Y

∣∣Y ≤ y(p)]
for all p ∈ (0, 1).

Rewriting (3.A.37) and (3.A.38) we see that under the conditions of The-
orem 3.A.8 we have that X ≤dil Y if, and only if,

E[X − EX
∣∣X ≥ x(p)] ≤ E[Y − EY

∣∣Y ≥ y(p)] for all p ∈ [0, 1). (3.A.39)

Also, X ≤dil Y if, and only if,

E[X − EX
∣∣X ≤ x(p)] ≥ E[Y − EY

∣∣Y ≤ y(p)] for all p ∈ (0, 1]. (3.A.40)

When EX = EY we have that X ≤dil Y ⇐⇒ X ≤cx Y . Therefore, when
EX = EY , the convex order can be characterized by noting that X ≤cx Y if,
and only if,

E[X
∣∣X ≥ x(p)] ≤ E[Y

∣∣Y ≥ y(p)] for all p ∈ [0, 1). (3.A.41)

Also then, X ≤cx Y if, and only if,

E[X
∣∣X ≤ x(p)] ≥ E[Y

∣∣Y ≤ y(p)] for all p ∈ (0, 1]. (3.A.42)

Another characterization of the dilation order is given next.

Theorem 3.A.9. Let X and Y be two random variables with finite means,
and let the corresponding distribution functions be F and G, respectively. Then
X ≤dil Y if, and only if,∫ 1

0
φ(p)[F−1(p) − EX]dp ≤

∫ 1

0
φ(p)[G−1(p) − EY ]dp,

for any increasing function φ on [0, 1] for which the integrals above are well-
defined.
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The Lorenz order is closely connected to the so-called Lorenz curve defined
as follows. Let X be a nonnegative random variable with distribution function
F . The Lorenz curve LX , corresponding to X, is defined as

LX(p) =

∫ p

0 F−1(u)du∫ 1
0 F−1(u)du

, p ∈ [0, 1]. (3.A.43)

The Lorenz curve is used in economics to measure the inequality of incomes.
Let Y be another nonnegative random variable with distribution function
G. The Lorenz curve LY , corresponding to Y , is defined analogously. The
next theorem, which follows from Theorem 3.A.5, highlights the connection
between the Lorenz curve and the Lorenz order.

Theorem 3.A.10. Let X and Y be two nonnegative random variables with
equal means. Then X ≤Lorenz Y (or, equivalently, X ≤cx Y ) if, and only if,

LX(p) ≥ LY (p) for all p ∈ [0, 1].

Another related characterization of the Lorenz order is described next. Let
Ψ be the set of all measurable mappings from R+ to [0, 1]. For any nonnegative
random variable X with a finite mean define the Lorenz zonoid in R

2
+ by

L(X) =
{(∫ ∞

0
ψ(x)dF (x),

1
EX

∫ ∞

0
xψ(x)dF (x)

)
: ψ ∈ Ψ

}
,

where F denotes the distribution function of X.

Theorem 3.A.11. Let X and Y be two nonnegative random variables with
finite means. Then

X ≤Lorenz Y ⇐⇒ L(X) ⊆ L(Y ).

Ramos and Sordo [463] defined what they called a “second-order absolute
Lorenz order” by requiring two random variables X and Y , with finite means
and with distribution functions F and G, respectively, to satisfy∫ 1

p

∫ u

0
[F−1(v) − EX]dvdu ≥

∫ 1

p

∫ u

0
[G−1(v) − EY ]dvdu for all p ∈ [0, 1].

3.A.2 Closure and other properties

Using (3.A.1) through (3.A.13) it is easy to prove each of the closure results
in the first two parts of the following theorem. (Recall from Section 1.A.3 that
for any random variable Z and any event A we denote by [Z

∣∣A] any random
variable whose distribution is the conditional distribution of Z given A.)

Theorem 3.A.12. (a) Let X and Y be two random variables. Then

X ≤cx Y ⇐⇒ −X ≤cx −Y.
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(b) Let X, Y , and Θ be random variables such that [X
∣∣Θ = θ] ≤cx [Y

∣∣Θ = θ]
for all θ in the support of Θ. Then X ≤cx Y . That is, the convex order is
closed under mixtures.

(c) Let {Xj , j = 1, 2, . . . } and {Yj , j = 1, 2, . . . } be two sequences of random
variables such that Xj →st X and Yj →st Y as j → ∞. Assume that

E|Xj | → E|X| and E|Yj | → E|Y | as j → ∞. (3.A.44)

If Xj ≤cx Yj, j = 1, 2, . . ., then X ≤cx Y .
(d) Let X1, X2, . . . , Xm be a set of independent random variables and let

Y1, Y2, . . . , Ym be another set of independent random variables. If Xi ≤cx
Yi for i = 1, 2, . . . , m, then

m∑
j=1

Xj ≤cx

m∑
j=1

Yj .

That is, the convex order is closed under convolutions.

In order to prove part (c) of Theorem 3.A.12 we will use the characteriza-
tion of the convex order given in Theorem 3.A.2. Without loss of generality
it can be assumed that EXj = EYj = EX = EY = 0 for all j. From (3.A.11)
we have that E|Xj − a| = −a + 2

∫ a

−∞ Fj(u)du for all a, where Fj denotes
the distribution function of Xj . In particular, when a = 0, it is seen that
E|Xj | = 2

∫ 0
−∞ Fj(u)du. Therefore E|Xj − a| = E|Xj | − a + 2

∫ a

0 Fj(u)du.
Using (3.A.44) it is seen that, as j → ∞, the latter expression converges
to E|X| − a + 2

∫ a

0 F (u)du = E|X − a|, where F is the distribution func-
tion of X. That is, for all a, E|Xj − a| → E|X − a|, as j → ∞. Similarly,
E|Yj −a| → E|Y −a|, as j → ∞. The result now follows from Theorem 3.A.2.

One way of proving part (d) of Theorem 3.A.12 is the following. Note that
part (b) of Theorem 3.A.12 can be rephrased as follows: Let Z1, Z2, and Θ
be independent random variables and let g be a bivariate function such that

g(Z1, θ) ≤cx g(Z2, θ) for all θ in the support of Θ. (3.A.45)

Then
g(Z1, Θ) ≤cx g(Z2, Θ).

If Z1 and Z2 satisfy Z1 ≤cx Z2, then the function g, defined by g(z, θ) = z+θ,
satisfies (3.A.45), since the order ≤cx is closed under shifts. Thus we have
shown that if Z1 ≤cx Z2 and Θ is any random variable independent of Z1 and
Z2, then

Z1 + Θ ≤cx Z2 + Θ. (3.A.46)

Repeated applications of (3.A.46) yield part (d) of Theorem 3.A.12.
It should be pointed out, in contrast to part (a) of Theorem 3.A.12, that

if X and Y are such that X ≤cx Y , it is not necessarily true that X ≤cx −Y
also, even when EX = EY = 0. This can be seen easily from (3.A.12).
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Without condition (3.A.44) the conclusion of part (c) of Theorem 3.A.12
need not be true. For example, let the Xj ’s be all uniformly distributed on
[.5, 1.5]. And let the Yj ’s be such that P{Yj = 0} = (j−1)/j and P{Yj = j} =
1/j, j ≥ 2. Note that the distributions of the Yj ’s converge to a distribution
that is degenerate at 0. Here Xj ≤cx Yj , j = 2, 3, . . ., but it is not true that
X ≤cx Y .

For nonnegative random variables, a “random sums” analog of Theorem
3.A.12(d) follows. We omit the proof (however, in Theorem 8.A.13 of Chap-
ter 8 we give a proof of a special case of the following theorem).

Theorem 3.A.13. Let X1, X2, . . . and Y1, Y2, . . . each be a sequence of non-
negative independent random variables such that Xi ≤cx Yi, i = 1, 2, . . .. Let
M and N be integer-valued positive random variables that are independent of
the {Xi} and {Yi} sequences, respectively, such that M ≤cx N . If the Xi’s or
the Yi’s are increasing in i in the convex order, then

M∑
j=1

Xj ≤cx

N∑
j=1

Yj .

A result that is related to Theorem 3.A.13 is given next. It is of interest
to compare it to Theorems 1.A.5 and 2.B.8.

Theorem 3.A.14. Let {Xj , j = 1, 2, . . . } be a sequence of nonnegative in-
dependent and identically distributed random variables, and let M be a pos-
itive integer-valued random variable which is independent of the Xi’s. Let
{Yj , j = 1, 2, . . . } be another sequence of independent and identically dis-
tributed random variables, and let N be a positive integer-valued random vari-
able which is independent of the Yi’s. Suppose that for some positive integer
K we have

K∑
i=1

Xi ≤cx [≥cx] Y1,

and
M ≤cx [≥cx] KN.

Then
M∑

j=1

Xj ≤cx [≥cx]
N∑

j=1

Yj .

We do not give a detailed proof of Theorem 3.A.14 here since it is similar
to the proof of Theorem 4.A.12 in Section 4.A.1.

Two other similar theorems are the following. Their proofs are similar to
the proofs of Theorems 4.A.13 and 4.A.14 in Section 4.A.1.

Theorem 3.A.15. Let {Xj , j = 1, 2, . . . } be a sequence of nonnegative in-
dependent and identically distributed random variables, and let M be a pos-
itive integer-valued random variable which is independent of the Xi’s. Let
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{Yj , j = 1, 2, . . . } be another sequence of independent and identically dis-
tributed random variables, and let N be a positive integer-valued random vari-
able which is independent of the Yi’s. Also, let {Nj , j = 1, 2, . . . } be a sequence
of independent random variables that are distributed as N . If for some positive
integer K we have

K∑
i=1

Xi ≤cx Y1 and M ≤cx

K∑
i=1

Ni,

or if we have

KX1 ≤cx Y1 and M ≤cx KN,

or if we have

KX1 ≤cx Y1 and M ≤cx

K∑
i=1

Ni,

then
M∑

j=1

Xj ≤cx

N∑
j=1

Yj .

Theorem 3.A.16. Let {Xj , j = 1, 2, . . . } be a sequence of nonnegative in-
dependent and identically distributed random variables, and let M be a pos-
itive integer-valued random variable which is independent of the Xi’s. Let
{Yj , j = 1, 2, . . . } be another sequence of independent and identically dis-
tributed random variables, and let N be a positive integer-valued random vari-
able which is independent of the Yi’s. If for some positive integers K1 and K2,
such that K1 ≤ K2, we have

K1∑
i=1

Xi ≤cx
K1

K2
Y1 and M ≤cx K2N,

then
M∑

j=1

Xj ≤cx

N∑
j=1

Yj .

Another result which involves a comparison of random sums, with respect
to the convex order, is given in Example 9.A.19.

Theorem 3.A.12(d) can be generalized to situations in which the Xj ’s or
the Yj ’s are not necessarily independent. For example, the result (7.A.13)
in Chapter 7 is a generalization of Theorem 3.A.12(d). The next result is a
trivial illustration of a case in which one of the independence assumptions is
dropped.
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Theorem 3.A.17. Let X be a random variable with a finite mean. Then

X + EX ≤cx 2X.

Proof. Let X ′ be an independent copy of X. Then, for any convex function φ
for which the expectations below exist, one has

Eφ(X + EX) = Eφ(E(X + X ′∣∣X))
≤ Eφ(X + X ′)
≤ Eφ(2X),

where the first inequality follows from Jensen’s Inequality and the second
inequality follows from Example 3.A.29 below (with n = 2). 
�

Theorem 3.A.17 can also be easily proven using Theorem 3.A.4.
The following result provides a generalization of Theorem 3.A.17; see a

comment after Theorem 3.A.18. Recall from (3.A.32) the definition of the
dilation order.

Theorem 3.A.18. Let X be a random variable with a finite mean. Then

X ≤dil aX whenever a ≥ 1.

Proof. Without loss of generality assume that EX = 0. Let φ be a convex
function which, without loss of generality, can be assumed to satisfy φ(0) = 0.
Then, for k ≥ 1 we have

Eφ(X) ≤ E[kφ(X)] ≤ Eφ(kX). 
�

From Theorem 3.A.18 it follows that

X + (k − 1)EX ≤cx kX whenever k ≥ 1,

which is, indeed, a generalization of Theorem 3.A.17.
From Theorem 3.A.12(a) it is not hard to see that

X ≤dil Y ⇐⇒ −X ≤dil −Y.

Another property of the dilation and of the convex orders is described in the
following theorem.

Theorem 3.A.19. Let X1 and X2 (Y1 and Y2) be two independent copies of
X (Y ), where X and Y have finite means. If X ≤dil Y , then X1 − X2 ≤dil
Y1 − Y2. If X ≤cx Y , then X1 − X2 ≤cx Y1 − Y2.

Proof. Using the fact that X ≤dil Y if, and only if, −X ≤dil −Y , and the fact
that the dilation order is closed under convolutions (see Theorem 3.A.12(d)),
the stated result follows. The proof of X ≤cx Y =⇒ X1 − X2 ≤cx Y1 − Y2 is
similar (using Theorem 3.A.12(a) and (d)). 
�
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An interesting comparison of sums of random variables in the convex order
is the following result.

Theorem 3.A.20. Let X1, X2, . . . , Xn, and Z be random variables. Then

X1 + X2 + · · · + Xn ≥cx E[X1
∣∣Z] + E[X2

∣∣Z] + · · · + E[Xn

∣∣Z],

provided the conditional expectations above exist.

Proof. Let φ be a convex function. By Jensen’s Inequality we have

Eφ(X1 + X2 + · · · + Xn) = E
[
E[φ(X1 + X2 + · · · + Xn)

∣∣Z]
]

≥ E
[
φ
(
E[X1

∣∣Z] + E[X2
∣∣Z] + · · · + E[Xn

∣∣Z]
)]

,

and the stated result follows. 
�

Consider now a family of distribution functions {Gθ, θ ∈ X} where X is
a convex subset (that is, an interval) of the real line or of N. As in Section
1.A.3 let X(θ) denote a random variable with distribution function Gθ. For
any random variable Θ with support in X , and with distribution function F ,
let us denote by X(Θ) a random variable with distribution function H given
by

H(y) =
∫

X
Gθ(y)dF (θ), y ∈ R.

Theorem 3.A.21. Consider a family of distribution functions {Gθ, θ ∈ X}
as above. Let Θ1 and Θ2 be two random variables with supports in X and
distribution functions F1 and F2, respectively. Let Y1 and Y2 be two random
variables such that Yi =st X(Θi), i = 1, 2; that is, suppose that the distribution
function of Yi is given by

Hi(y) =
∫

X
Gθ(y)dFi(θ), y ∈ R, i = 1, 2.

If for every convex function φ

E[φ(X(θ))] is convex in θ, (3.A.47)

and if
Θ1 ≤cx Θ2,

then
Y1 ≤cx Y2.

The proof of Theorem 3.A.21 is similar to the proof of Theorem 4.A.18
below, and therefore we omit it.

It is worth mentioning that condition (3.A.47) is the same as the condition
{X(θ), θ ∈ X} ∈ SCX which is studied in Section 8.A of Chapter 8.

The following corollary of Theorem 3.A.21 shows that the convex order
is closed under products of nonnegative random variables. A variation of this
corollary is given in Example 4.A.19.
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Corollary 3.A.22. Let X1 and X2 be a pair of independent random variables,
and let Y1 and Y2 be another pair of independent random variables. If Xi ≤cx
Yi, i = 1, 2, then X1X2 ≤cx Y1Y2.

Proof. Using Theorem 3.A.21 twice we see that

X1X2 ≤cx Y1X2 ≤cx Y1Y2,

and the stated result follows from the transitivity property of the convex order.

�

An interesting variation of Theorem 3.A.21 is the following. Again, we
omit the proof because it is similar to the proof of Theorem 4.A.18.

Theorem 3.A.23. Consider a family of distribution functions {Gθ, θ ∈ X}
as described before Theorem 3.A.21. Let Θ1 and Θ2 be two random variables
with supports in X and distribution functions F1 and F2, respectively. Let Y1
and Y2 be two random variables such that Yi =st X(Θi), i = 1, 2; that is,
suppose that the distribution function of Yi is given by

Hi(y) =
∫

X
Gθ(y)dFi(θ), y ∈ R, i = 1, 2.

If for every convex function φ

E[φ(X(θ))] is increasing in θ,

and if
Θ1 ≤st Θ2,

then
Y1 ≤cx Y2.

The next result indicates the “minimal” and the “maximal” random vari-
ables, with respect to the order ≤cx, when the support and the mean are
given. The proof, using (3.A.7) or (3.A.8) for example, is trivial and is thus
omitted.

Theorem 3.A.24. Let X be a random variable with mean EX. Denote the
left [right ] endpoint of the support of X by lX [uX ] (see the paragraph preceding
(3.A.12) for the exact definition of lX and uX). Let Z be a random variable
such that P{Z = lX} = (uX − EX)/(uX − lX) and P{Z = uX} = (EX −
lX)/(uX − lX). Then

EX ≤cx X ≤cx Z, (3.A.48)

where in (3.A.48) (and in (3.A.49)) EX denotes a random variable that takes
on the value EX with probability 1.
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Another result that indicates the “minimal” random variable, with respect
to the order ≤cx, for some rich families of random variables when the mean
is given is Theorem 3.A.46.

It follows from the first inequality of (3.A.48) and from the fact that for
any two random variables U and V one has U ≤cx V ⇐⇒ V ≤cv U , that if X
is a random variable with mean EX, then

X ≤cv EX. (3.A.49)

In analogy to Theorem 1.A.17 we have the following results. We omit the
proof of Theorem 3.A.25; however, the necessity part of Theorem 3.A.25 is a
special case of Theorem 3.A.26. In the next three theorems we assume that
all the random variables that are considered have finite means.

Theorem 3.A.25. Let X be a nonnegative random variable that is not degen-
erate at 0 and let g be a nonnegative function defined on [0,∞). If g(x) > 0
for all x > 0, and if g is increasing on [0,∞), and if g(x)/x is decreasing
[increasing ] on (0,∞), then

g(X) ≤Lorenz [≥Lorenz] X.

For example, if X is a nonnegative random variable, then

X + a ≤Lorenz X whenever a > 0.

The proof of the next theorem follows from results in Chapter 4 (see The-
orem 4.B.5 and the first part of the proof of Theorem 4.B.4).

Theorem 3.A.26. Let X be a nonnegative random variable that is not de-
generate at 0, and let g and h be nonnegative increasing functions, defined
on [0,∞), such that g(x) > 0 and h(x) > 0 for all x > 0. If h(x)/g(x) is
increasing in x ∈ (0,∞), then

g(X) ≤Lorenz h(X).

Using Theorem 3.A.25 it is not too hard to prove the following result.

Theorem 3.A.27. Let X and Z be two independent nonnegative random
variables that are not degenerate at 0 and let g be a nonnegative function
defined on [0,∞)2 such that g(Z, X) is not degenerate at 0. If g(z, x)/x is
increasing in x for every z, and if g(z, x) is increasing in x for every z, then

X ≤Lorenz g(Z, X).

The Lorenz order often implies the harmonic mean residual life order, as
the following result shows.

Theorem 3.A.28. Let X and Y be two nonnegative random variables with
positive expectations. If X ≤Lorenz Y and if EX ≤ EY , then X ≤hmrl Y .
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Proof. For t ≥ 0 we have

E[(X − t)+]
EX

≤
E
[(

EX
EY · Y − t

)
+

]
EX

= E

[( Y

EY
− t

EX

)
+

]

=
E
[(

Y − EY
EX · t

)
+

]
EY

≤ E[(Y − t)+]
EY

,

where the first inequality follows from X ≤Lorenz Y (that is, X ≤cx
(

EX
EY

)
Y ),

and the second inequality follows from EX ≤ EY . The stated result now
follows from (2.B.4). 
�

Let us now return to the characterization of the convex order given in
Theorem 3.A.4. This characterization is sometimes useful for establishing the
relation ≤cx between two random variables. The next example is a fine illus-
tration of this procedure.

Example 3.A.29. Let X1, X2, . . . be independent and identically distributed
random variables. Denote by Xn the sample mean of X1, X2, . . . , Xn. That
is, Xn = (X1 + X2 + · · · + Xn)/n. It is well known that if the variances exist,
then for every n ≥ 2 one has Var(Xn) ≤ Var(Xn−1). But more than that is
true. In fact, if the expectation of X1 exists, then for each n ≥ 2 one has

Xn ≤cx Xn−1.

In order to see it note that from the exchangeability of X1, X2, . . . , Xn it
follows that E[Xi

∣∣Xn] = Xn for all i ≤ n. Therefore E[Xn−1
∣∣Xn] = Xn.

That is, {Xn, Xn−1} is a martingale. The result now follows from Theorem
3.A.4.

An extension of Example 3.A.29 to the multivariate case is given in Ex-
ample 7.A.11.

A result that is similar to Example 3.A.29 is the following (actually it is
a generalization of Example 3.A.29 as will be argued below).

Theorem 3.A.30. Let X1, X2, . . . , Xn be independent and identically distri-
buted random variables. Let φ1, φ2, . . . , φn be measurable real functions. De-
note φ = 1

n

∑n
i=1 φi. Then

n∑
i=1

φ(Xi) ≤cx

n∑
i=1

φi(Xi).

The proof of Theorem 3.A.30 consists of verifying, using the exchangeabil-
ity of the Xi’s, that

E

[
1
n!

∑
π

n∑
i=1

φπi(Xi)
∣∣∣∣ n∑

i=1

φ(Xi)
]

=
n∑

i=1

φ(Xi)
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and that
1
n!

∑
π

n∑
i=1

φπi(Xi) =st

n∑
i=1

φi(Xi).

The desired result then follows from Theorem 3.A.4.

Corollary 3.A.31. Let X1, X2, . . . , Xn be independent and identically dis-
tributed random variables. Let a1, a2, . . . , an be real constants. Denote a =
1
n

∑n
i=1 ai. Then

a

n∑
i=1

Xi ≤cx

n∑
i=1

aiXi.

By taking ai = 1/(n − 1) for i = 1, 2, . . . , n − 1, and an = 0, it is easily
seen that Example 3.A.29 is a special case of Corollary 3.A.31.

Example 3.A.32. Let m ≤ m′ be two positive integers, and let M and N be
two Poisson random variables with means mλ and m′λ, respectively, for some
λ > 0. Define X = mN and Y = m′M . Then, using Example 3.A.29, it can
be shown that X ≤cx Y . This result can be extended to the case where m
and m′ are not integers, by approximating m/m′ with rational numbers.

Two other simple results that follow from Theorem 3.A.4 are the following
theorems.

Theorem 3.A.33. Let X and Y be independent random variables with finite
means and suppose that EY = a. Then

aX ≤cx Y X.

Proof. Clearly, E[Y X
∣∣X] = aX and the result now follows from Theorem

3.A.4. This result is also an immediate consequence of Corollary 3.A.22 if one
takes there X1 = a almost surely, X2 = X, and Y1 = Y and Y2 = X. 
�

Theorem 3.A.34. Let X and Y be independent random variables with finite
means and suppose that EY = 0. Then

X ≤cx X + Y.

Proof. Clearly, E[X + Y
∣∣X] = X and the result follows from Theorem 3.A.4.

Another way of proving this result is to use Theorem 3.A.12(d). 
�

Recall from (3.A.32) the definition of the dilation order. From Theorem
3.A.34 it follows that if X and Y are independent random variables with finite
means, then

X ≤dil X + Y. (3.A.50)

Recall from page 2 the definition of the majorization order a ≺ b among
n-dimensional vectors. The next result strengthens Corollary 3.A.31.
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Theorem 3.A.35. Let X1, X2, . . . , Xn be exchangeable random variables. Let
a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be two vectors of constants. If
a ≺ b, then

n∑
i=1

aiXi ≤cx

n∑
i=1

biXi. (3.A.51)

Proof. Below, for any constants a, b, c, and d the notation a ≤ [b, c] stands for
a ≤ min{b, c}, and the notation [b, c] ≤ d stands for max{b, c} ≤ d. By a well-
known property of the majorization order it suffices to prove the result only
for n = 2. Let X1 and X2 be exchangeable random variables, and let a1, a2,
b1, and b2 be four constants such that b1 ≤ a1 ≤ a2 ≤ b2 and a1 +a2 = b1 +b2.
Denote X(1) = min{X1, X2} and X(2) = max{X1, X2}. Then, almost surely,

b1X(2) + b2X(1) ≤ [a1X(1) + a2X(2), a1X(2) + a2X(1)] ≤ b1X(1) + b2X(2)

and

a1X(2) + a2X(1) + a1X(1) + a2X(2) = b1X(2) + b2X(1) + b1X(1) + b2X(2).

Hence for any convex function φ we have, almost surely,

φ(a1X(2) + a2X(1)) + φ(a1X(1) + a2X(2))
≤ φ(b1X(2) + b2X(1)) + φ(b1X(1) + b2X(2)).

Therefore,

2Eφ(a1X1 + a2X2) = E[φ(a1X(2) + a2X(1)) + φ(a1X(1) + a2X(2))]
≤ E[φ(b1X(2) + b2X(1)) + φ(b1X(1) + b2X(2))] = 2Eφ(b1X1 + b2X2),

and the stated result follows. 
�

A result that is related to Theorem 3.A.35 is Theorem 4.A.39. Another
result that is related to Theorem 3.A.35 is Theorem 7.B.8 in Chapter 7 by
Tong in [515]; the latter compares

∑n
i=1 biXi and

∑n
i=1 aiXi in the sense of

the peakedness order of Section 3.D, rather than in the sense of the order ≤cx.
From Theorem 3.A.35 it follows that if the Xi’s are exchangeable (in par-

ticular, if they are identically distributed), if ai ≥ 0, i = 1, 2, . . . , n, and∑n
i=1 ai = 1, and if X1 ≤cx Y for some random variable Y , then

n∑
i=1

aiXi ≤cx Y. (3.A.52)

The next result shows that (3.A.52) is true even if the Xi’s are not exchange-
able, but have any joint distribution.
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Theorem 3.A.36. Let X1, X2, . . . , Xn and Y be n + 1 random variables. If
Xi ≤cx Y , i = 1, 2, . . . , n, then

n∑
i=1

aiXi ≤cx Y,

whenever ai ≥ 0, i = 1, 2, . . . , n, and
∑n

i=1 ai = 1.

Proof. Let φ be any convex function for which the expectations below exist.
Then

E
[
φ
( n∑

i=1

aiXi

)]
≤ E

[ n∑
i=1

aiφ(Xi)
]

=
n∑

i=1

aiE[φ(Xi)]

≤
n∑

i=1

aiE[φ(Y )] = E[φ(Y )],

where the first inequality follows from the convexity of φ, and the second
inequality from Xi ≤cx Y , i = 1, 2, . . . , n. 
�

Similar results are described in Theorems 5.A.14, 5.C.8, and 5.C.18.
An interesting result in which the coefficients in (3.A.51) are replaced

by Bernoulli random variables is described next. Let Ip denote a Bernoulli
random variable with probability of success p, that is, P{Ip = 1} = 1−P{Ip =
0} = p.

Theorem 3.A.37. Let X1, X2, . . . , Xn be nonnegative exchangeable random
variables, and let Ip1 , Ip2 , . . . , Ipn and Iq1 , Iq2 , . . . , Iqn be independent Bernoulli
random variables that are independent of X1, X2, . . . , Xn. If p ≺ q, then

n∑
i=1

Ipi
Xi ≥cx

n∑
i=1

Iqi
Xi.

A result that is related to Theorem 3.A.37 is Theorem 4.A.38.

Example 3.A.38. If the Xi’s in Theorem 3.A.37 are all identically equal to 1,
then we get that p ≺ q implies that

n∑
i=1

Ipi ≥cx

n∑
i=1

Iqi .

In particular,
n∑

i=1

Iqi
≤cx Y,

where Y is a binomial random variable having the parameters n and q =(∑n
i=1 qi

)
/n.
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Conceptually it can be expected that if the random variables X1, X2, . . . ,
Xn are “more positively [negatively] associated” than the random variables
Y1, Y2, . . . , Yn in some sense, but otherwise Xi =st Yi for each i, then∑n

i=1 Xi ≥cx [≤cx]
∑n

i=1 Yi. The following result is a formalization of this
idea. Recall that random variables X1, X2, . . . , Xn are said to be positively
associated if

Cov(h1(X1, X2, . . . , Xn), h2(X1, X2, . . . , Xn)) ≥ 0 (3.A.53)

for all increasing functions h1 and h2 for which the above covariance is defined.
Similarly, X1, X2, . . . , Xn are said to be negatively associated if

Cov(h1(Xi1 , Xi2 , . . . , Xik
), h2(Xj1 , Xj2 , . . . , Xjn−k

)) ≤ 0 (3.A.54)

for all choices of disjoint subsets {i1, i2, . . . , ik} and {j1, j2, . . . , jn−k} of
{1, 2, . . . , n}, and for all increasing functions h1 and h2 for which the above
covariance is defined.

Theorem 3.A.39. Let X1, X2, . . . , Xn be positively [negatively ] associated
random variables, and let Y1, Y2, . . . , Yn be independent random variables such
that Xi =st Yi, i = 1, 2, . . . , n. Then

n∑
i=1

Xi ≥cx [≤cx]
n∑

i=1

Yi.

Theorem 3.A.39 follows from Theorem 9.A.23 in Chapter 9; see a comment
there after that theorem.

A Laplace transform characterization of the order ≤cx is stated next; it
may be compared to Theorems 1.A.13, 1.B.18, 1.B.53, 1.C.25, 2.A.16, and
2.B.14. We do not give the proof of this characterization here since it follows
easily from Theorem 4.A.21 in Chapter 4.

Theorem 3.A.40. Let X1 and X2 be two nonnegative random variables, and
let Nλ(X1) and Nλ(X2) be as described in Theorem 1.A.13. Then

X1 ≤cx X2 ⇐⇒ Nλ(X1) ≤cx Nλ(X2) for all λ > 0.

Example 3.A.41. Let Θ be a random variable whose realization, θ, is a param-
eter of interest. In the context of statistical inference the distribution function
of Θ is called a prior distribution. Let X and Y be two random variables whose
distribution functions depend on θ, that is, the conditional distribution of X
given Θ = θ is, say, Fθ, and the conditional distribution of Y given Θ = θ
is, say, Gθ. Let L(a, θ) be the loss incurred when Θ = θ and when the action
a has been taken (a is a number in the action space A which is a compact
subset of R).

In the following discussion, every expected value that is mentioned is as-
sumed to exist.
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If X = x is observed, and action a is taken, then the expected loss is

E
[
L(a, Θ)

∣∣X = x
]
.

The minimal expected loss, given that X = x has been observed, is then

min
a∈A

E
[
L(a, Θ)

∣∣X = x
]
.

Therefore the expected minimal expected loss, for an experiment in which X
is used for inference on θ, is

E
{

min
a∈A

E
[
L(a, Θ)

∣∣X]}.
Similarly, the expected minimal expected loss, for an experiment in which Y
is used for inference on θ, is

E
{

min
a∈A

E
[
L(a, Θ)

∣∣Y ]}.
We say that Y is more informative than X for Θ if

E
{

min
a∈A

E
[
L(a, Θ)

∣∣X]} ≥ E
{

min
a∈A

E
[
L(a, Θ)

∣∣Y ]} (3.A.55)

for any loss function L, and any action space A, for which the minima and
the expected values above are well defined.

Let U = E[Θ
∣∣X] and V = E[Θ

∣∣Y ] be the posterior means in the corre-
sponding experiments. Obviously,

EU = E[E[Θ
∣∣X]] = EΘ = E[E[Θ

∣∣Y ]] = EV. (3.A.56)

Take A = [0, 1] and consider the loss function

Lc(a, θ) = a(θ − c),

where c is some constant. Then

min
a∈A

E
[
Lc(a, Θ)

∣∣X] = min
a∈A

a[E[Θ − c
∣∣X]] = min{0, U − c} = −(c − U)+,

and, similarly,
min
a∈A

E
[
Lc(a, Θ)

∣∣Y ] = −(c − V )+.

From (3.A.55) we get that E[(c − U)+] ≤ E[(c − V )+] for all c. Therefore,
from (3.A.6) and (3.A.56) it follows that

E[Θ
∣∣X] ≤cx E[Θ

∣∣Y ].

The following result is an analog of Theorem 1.A.8; similar results are
Theorems 3.A.59, 4.A.48, 4.A.69, 5.A.15, 6.B.19, 6.G.12, 6.G.13, and 7.A.14–
7.A.16.
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Theorem 3.A.42. Let X and Y be two random variables. Suppose that
X ≤cx Y [X ≤cv Y ] and that E[X2] = E[Y 2], provided the expectations
exist. Then X =st Y .

Proof. Denote the distribution functions of X and Y by F and G, respectively.
Then

E[Y 2] − E[X2] = 2
∫ 0

u=−∞

[ ∫ u

v=−∞
(G(v) − F (v))dv

]
du

+ 2
∫ ∞

u=0

[ ∫ ∞

v=u

(G(v) − F (v))dv

]
du.

By Theorem 3.A.1 both inner integrals are nonnegative. From E[X2] = E[Y 2]
we thus obtain

∫ u

v=−∞ F (v)dv =
∫ u

v=−∞ G(v)dv for u ≤ 0, and
∫∞

v=u
F (v)dv =∫∞

v=u
G(v)dv for u ≥ 0. Differentiating these equalities we obtain F = G. 
�

Theorem 3.A.42 can be strengthened as follows; we do not detail the proof
here.

Theorem 3.A.43. Let X and Y be two random variables. Suppose that
X ≤cx Y [X ≤cv Y ] and that for some strictly convex function φ we have
that E[φ(X)] = E[φ(Y )], provided the expectations exist. Then X =st Y .

Theorem 3.A.60 below is a generalization of Theorem 3.A.43.

3.A.3 Conditions that lead to the convex order

Once the relation X ≤cx Y has been established between the two random
variables X and Y it can be of great use. However, given the two random
variables and their distributions it is sometimes not clear how to verify that
X ≤cx Y . In this section we point out several simple conditions that imply the
convex order. Recall the notation S−(a) (defined in (1.A.18)) for the number
of sign changes of the function a.

Theorem 3.A.44. Let X and Y be two random variables with equal means,
density functions f and g, distribution functions F and G, and survival func-
tions F and G, respectively. Then X ≤cx Y if any of the following conditions
hold:

S−(g − f) = 2 and the sign sequence is +,−,+, (3.A.57)

S−(F − G) = 1 and the sign sequence is +,−, (3.A.58)

S−(G − F ) = 1 and the sign sequence is +,−. (3.A.59)

Proof. We will prove the result for the continuous case; the proof in the dis-
crete case is similar. Suppose that S−(g − f) = 2 and that the sign sequence
is +, −,+. Let a and b (a < b) be two of the crossing points, where the defini-
tion of a crossing point is self-explanatory. Denote I1 = (−∞, a], I2 = (a, b],
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and I3 = (b, ∞). Then g(x) − f(x) ≥ 0 on I1, g(x) − f(x) ≤ 0 on I2, and
g(x) − f(x) ≥ 0 on I3. Therefore

G(x) − F (x) =
∫ x

−∞
[g(u) − f(u)]du

is increasing on I1, decreasing on I2, and increasing on I3. It is also clear that
limx→−∞[G(x) − F (x)] = limx→∞[G(x) − F (x)] = 0. Combining all these
observations shows that S−(G − F ) = 1 and that the sign sequence is +,−.
Now suppose that S−(G−F ) = 1 and that the sign sequence is +,−. Let c be
a crossing point. Denote J1 = (−∞, c] and J2 = (c,∞). Then G(x)−F (x) ≥ 0
on J1 and G(x) − F (x) ≤ 0 on J2. Clearly

lim
x→−∞

∫ x

−∞
[G(u) − F (u)]du = 0

and from the equality of the means (see (3.A.3)) it follows that

lim
x→∞

∫ x

−∞
[G(u) − F (u)]du = 0.

Combining these observations shows that (3.A.8) holds. This proves that
(3.A.57) and (3.A.59) imply X ≤cx Y . Note that S−(F − G) = S−(G − F )
with the same sign sequence. This observation, together with (3.A.59), shows
that (3.A.58) implies X ≤cx Y . 
�

The condition (3.A.58) (or, equivalently, (3.A.59)) is not only sufficient for
X ≤cx Y , but, for nonnegative random variables, it can also characterize the
convex order as the following theorem shows.

Theorem 3.A.45. Let X and Y be two nonnegative random variables with
equal means. Then X ≤cx Y if, and only if, there exist random variables
Z1, Z2, . . ., with distribution functions F1, F2, . . ., such that Z1 =st X, EZj =
EY , j = 1, 2, . . ., Zj →st Y as j → ∞, and S−(F j − F j+1) = 1 and the sign
sequence is +,−, j = 1, 2, . . ..

If the random variables in Theorem 3.A.45 are not nonnegative then the
sufficiency part of that theorem is not correct. This can be seen by noting
that Example 1 of Müller [410] describes a sequence of distribution functions
(say of the random variables Z1, Z2, . . .), and two other distribution functions
(say of the random variables X and Y , which are not nonnegative), which
satisfy all the conditions in Theorem 3.A.45, but such that X �≤cx Y . We
thank Taizhong Hu for pointing out this fact to us.

In Theorem 3.A.24 we obtained the “minimal” random variable with re-
spect to the order ≤cx when the support and the mean are given. Now, with
the aid of Theorem 3.A.44, we can obtain the “minimal” random variables
with respect to the order ≤cx for some rich families of random variables when
the mean is given. This is shown in the next result.
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Theorem 3.A.46. Let X be a nonnegative random variable with mean µ.

(a) Suppose that X has a density function that is decreasing on [0,∞). Let Y
be uniformly distributed over the interval [0, 2µ] (so that EY = µ). Then

Y ≤cx X.

(b) Suppose that X has a density function that is decreasing and convex on
[0,∞). Let Z have the triangular distribution over the interval [0, 3µ] with
density function

fZ(x) =

{
2
3µ − 2

9µ2 x, if 0 ≤ x ≤ 3µ,

0, otherwise

(so that EZ = µ). Then
Z ≤cx X.

Proof. In order to prove (a) let fX and fY denote the density functions of
X and Y , respectively. It is easy to see, using the fact that EX = EY , that
S−(fX −fY ) = 2 and that the sign sequence is +,−,+. The result now follows
from Theorem 3.A.44. The proof of (b) is similar. 
�

Some illustrations of the applicability of Theorem 3.A.44 are shown in the
following examples.

Example 3.A.47. The following statements can be proven by verifying, using
the method in Shaked [502], that in each one of them the two random variables
have the same mean, and that their densities satisfy (3.A.57).

(a) Let X and Y have, respectively, the Poisson and the Pascal distributions
with the discrete densities f and g given by

f(x) = e−λ/α (λ/α)x

x!
, x = 0, 1, . . . ,

g(x) =
( α

1 + α

)λ( 1
1 + α

)x Γ (x + λ)
Γ (λ)x!

, x = 0, 1, . . . ,

where α > 0 and λ > 0. Then X ≤cx Y .
(b) Let X and Y have, respectively, the exponential and the power distribu-

tions with the densities f and g given by

f(x) = (γ − 1)δ−1 exp{−(γ − 1)δ−1x}, x ≥ 0,

g(x) = (γ/δ)(1 + x/γ)−γ−1, x ≥ 0,

where γ > 1 and δ > 0. Then X ≤cx Y .
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(c) Let X and Y have, respectively, the binomial and the Polya distributions
with the discrete densities f and g given by

f(x) =
(

n

x

)( α

α + β

)x( β

α + β

)n−x

, x = 0, 1, . . . , n,

g(x) =
(

n

x

)
Γ (α + β)Γ (α + x)Γ (β + n − x)

Γ (α)Γ (β)Γ (α + β + n)
, x = 0, 1, . . . , n,

where α > 0 and β > 0. Then X ≤cx Y .
(d) Let X and Y have, respectively, the discrete densities f and g given by

f(x) =
( α

α + β − 1

)λ( β − 1
α + β − 1

)x Γ (x + λ)
Γ (λ)x!

, x = 0, 1, . . . ,

g(x) =
Γ (α + β)Γ (β + λ)Γ (λ + x)Γ (α + x)
Γ (α)Γ (β)Γ (λ)Γ (α + β + λ + x)x!

, x = 0, 1, . . . ,

where α > 0, β > 1, and λ > 0. Then X ≤cx Y .

Example 3.A.48. Let X and Y be Bernoulli random variables with parameters
p and q, respectively, where 0 < p ≤ q ≤ 1. Then

X

p
≥cx

Y

q
.

This can be seen by easily verifying (3.A.59), where F and G there are the
distribution functions of Y and X, respectively.

A further illustration of the applicability of Theorem 3.A.44 is shown in
the following example.

Example 3.A.49. Let U(i:n) be the ith order statistic from a sample of n uni-
form [0, 1] random variables. By examination of the density functions of the
normalized variables n+1

i U(i:n) it is possible to verify (3.A.57) and obtain the
following results (see also Example 4.B.13):

U(i+1:n) ≤Lorenz U(i:n), for all i ≤ n − 1,

U(i:n) ≤Lorenz U(i:n+1), for all i ≤ n + 1,

U(n−i+1:n+1) ≤Lorenz U(n−i:n), for all i ≤ n,

and

U(n+2:2n+3) ≤Lorenz U(n+1:2n+1), for all n.

The last inequality may be described as “sample medians exhibit less vari-
ability as sample size increases.” Arnold and Villasenor [21], who derived the
above results, give many other Lorenz order inequalities for order statistics
and record values associated with various parametric families; see also Wilfling
[566] and Kleiber [304].
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Example 3.A.50. Let X(i:n) denote the ith order statistic in a sample of n
independent and identically distributed random variables having the common
distribution F , survival function F , and density function f . Recall that a
function φ : [0,∞) → [0,∞) is said to be regularly varying at ∞ with index
ρ ∈ R if

lim
x→∞

φ(tx)
φ(x)

= tρ, for all t ∈ [0,∞).

The function φ is said to be regularly varying at −∞ with index ρ if φ(−x)
is regularly varying at ∞ with index ρ. Finally, the function φ is said to be
regularly varying at 0 with index ρ if φ(x−1) is regularly varying at ∞ with
index ρ.

For F with support (−∞,∞) Kleiber [303] showed:

(a) If F is regularly varying at −∞ with index α < 0, and if f is monotone
on (−∞, c] for some c, then X(j:m) ≤dil X(i:n) implies i ≤ j.

(b) If F is regularly varying at ∞ with index α < 0, and if f is monotone on
[c,∞) for some c, then X(j:m) ≤dil X(i:n) implies n − i ≤ m − j.

For F with support [0,∞) Kleiber [303] also showed:

(c) If F is regularly varying at 0 with index α < 0, and if f is monotone on
(0, c] for some c > 0, then X(j:m) ≤Lorenz X(i:n) implies i ≤ j.

(d) If F is regularly varying at ∞ with index α < 0, and if f is monotone on
[c,∞) for some c, then X(j:m) ≤Lorenz X(i:n) implies n − i ≤ m − j.

The following example gives necessary and sufficient conditions for the
comparison of normal random variables; it is generalized in Example 7.A.13.
See related results in Examples 1.A.26 and 4.A.46.

Example 3.A.51. Let X be a normal random variable with mean µX and vari-
ance σ2

X , and let Y be a normal random variable with mean µY and variance
σ2

Y . Then X ≤cx Y if, and only if, µX = µY and σ2
X ≤ σ2

Y .

Analogous to the result in Remark 1.A.18, it can be shown that the set of
all distribution functions on R, with any fixed finite mean, is a lattice with
respect to the order ≤cx.

Let X and Y be two random variables with densities f and g, respectively.
Recall that supp(X) and supp(Y ) denote the respective supports. We say
that X is uniformly less variable than Y (denoted as X ≤uv Y ) if supp(X) ⊆
supp(Y ) and the ratio f(x)/g(x) is unimodal over supp(Y ), where the mode
is a supremum, but X and Y are not ordered by the usual stochastic order
(see definition in Section 1.A).

The relation ≤uv is not a transitive order. It is possible to have X ≤uv Y
and Y ≤uv Z but not X ≤uv Z. However, it is useful as a simple condition
which implies (3.A.57). The next theorem points out this relationship. The
proof of the theorem is easy and is therefore omitted.
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Theorem 3.A.52. Let X and Y be two random variables with densities f
and g, respectively, such that supp(X) ⊆ supp(Y ). Then X ≤uv Y if, and
only if,

S−(g − cf) ≤ 2 whenever c > 0,

and in case of equality the sign sequence is +,−,+. (3.A.60)

From (3.A.60) and (3.A.57) we see that the order ≤uv is a sufficient con-
dition for the order ≤cx provided the underlying random variables have equal
means. This is formally stated in the next theorem.

Theorem 3.A.53. Let X and Y be two random variables with absolutely
continuous distributions and equal means such that supp(X) ⊆ supp(Y ). If
X ≤uv Y , then X ≤cx Y .

A relation that is even stronger than ≤uv is defined next. Its usefulness is
that it gives a simple sufficient condition for the order ≤uv and therefore for
the order ≤cx. Again, let X and Y be two random variables with densities
f and g, respectively. We say that X is logconcave relative to Y (denoted by
X ≤lc Y ) if f/g is logconcave. The relation ≤lc, unlike the relation ≤uv, is
transitive, and it implies the relation ≤uv as the next result shows. Again, the
proof is trivial and hence it is omitted.

Theorem 3.A.54. Let X and Y be two random variables with densities f
and g, respectively, such that supp(X) ⊆ supp(Y ) and S−(g − f) = 2. Then
X ≤lc Y =⇒ X ≤uv Y .

3.A.4 Some properties in reliability theory

Recall from page 1 the definitions of NBUE and NWUE random variables.
Such random variables are of interest in reliability theory. The next result
shows that NBUE [NWUE] random variables are smaller [larger] than expo-
nential random variables with the same means with respect to the convex
order. We denote by Exp(µ) an exponential random variable with mean µ.

Theorem 3.A.55. If X is an NBUE [NWUE] random variable with mean µ,
then

X ≤cx [≥cx] Exp(µ), (3.A.61)

or, equivalently,
X ≥cv [≤cv] Exp(µ). (3.A.62)

The proof consists of showing that if F is the survival function of X, then∫ ∞

x

F (u)du ≤ [≥] µe−x/µ, x ≥ 0,

and the result then follows from (3.A.7). We omit the details.
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Random variables that satisfy (3.A.61) are called harmonic new better
[worse] than used in expectation (HNBUE [HNWUE]). Sometimes such ran-
dom variables are defined by X ≤hmrl [≥hmrl] Exp(µ) rather than by (3.A.61),
but by (2.B.7) these two definitions are the same.

Recall from page 1 the definition of IMRL and DMRL random variables.
The following result characterizes such random variables by means of the di-
lation order defined in (3.A.32). Other characterizations of DMRL and IMRL
random variables, by means of other stochastic orders, can be found in The-
orems 2.A.23, 2.B.17, 3.C.13, and 4.A.51.

Theorem 3.A.56. The nonnegative random variable X is DMRL [IMRL] if,
and only if,

[X
∣∣X > t] ≥dil [≤dil] [X

∣∣X > t′] whenever t ≤ t′.

Two related results are stated next without proofs.

Theorem 3.A.57. Let X and Y be two random variables that have a common
support of the form (0,∞), and that have finite means. If X and/or Y is
IMRL, and if X ≤mrl Y , then X ≤dil Y .

Theorem 3.A.58. Let X and Y be two random variables that have a common
support of the form (0,∞), and that have finite means. If X is NBUE and Y
is NWUE, then

X ≤mrl Y ⇐⇒ X ≤dil Y ⇐⇒ EX ≤ EY.

3.A.5 The m-convex orders

Let S be a subinterval of the real line. The subinterval S may be open, half-
open, or closed, finite or infinite. Fix a positive integer m, and consider the
class MS

m-cx of all functions φ : S → R whose mth derivative φ(m) exists
and satisfies φ(m)(x) ≥ 0, for all x ∈ S, or which are limits of sequences of
functions whose mth derivative is continuous and nonnegative on S.

Let X and Y be two random variables that take on values in S such that

E[φ(X)] ≤ E[φ(Y )] for all functions φ ∈ MS
m-cx, (3.A.63)

provided the expectations exist. Then X is said to be smaller than Y in the
m-convex order (denoted as X ≤S

m-cx Y ). For random variables X and Y that
take on values in N++ the definition of the m-cx order is similar — it can be
found in Denuit and Lefèvre [146].

In a similar manner one can define the m-concave order and observe that

X ≤S
m-cx Y ⇐⇒

{
X ≤S

m-cv Y when m is odd,

Y ≤S
m-cv X when m is even.

It can be shown that
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X ≤S
m-cx Y ⇐⇒

{
EXk = EY k, k = 1, 2, . . . , m − 1, and
E(X − t)m−1

+ ≤ E(Y − t)m−1
+ for all t ∈ S,

(3.A.64)

and also that

X ≤S
m-cx Y ⇐⇒

{
EXk = EY k, k = 1, 2, . . . , m − 1, and
(−1)m

[
E(t − Y )m−1

+ − E(t − X)m−1
+

]
≥ 0 for all t ∈ S.

(3.A.65)
Note that the order ≤S

1-cx is just the order ≤st, and that the order ≤S
2-cx

is the order ≤cx. Menezes, Geiss, and Tressler [390] gave the following inter-
pretation to the order ≤S

3-cx: if X ≤S
3-cx Y , then, of course, X and Y have the

same mean and variance, but X then has smaller rightside risk than Y .
Let F and G be the distribution functions of X and Y , respectively. Denote

F [0](t) = F (t), and, for k ≥ 1, denote F [k](t) =
∫ t

−∞ F [k−1](x)dx. Similarly,

denote F
[0]

(t) = F (t), and, for k ≥ 1, denote F
[k]

(t) =
∫∞

t
F

[k−1]
(x)dx.

Define G[k] and G
[k]

in a similar manner. Using the identities

F
[m−1]
Y (t) − F

[m−1]
X (t) =

E(t − Y )m−1
+ − E(t − X)m−1

+

(m − 1)!

and

F
[m−1]
Y (t) − F

[m−1]
X (t) =

E(Y − t)m−1
+ − E(X − t)m−1

+

(m − 1)!

(which are easily proven by induction and Fubini’s Theorem) we obtain from
(3.A.64) and (3.A.65) that

X ≤S
m-cx Y ⇐⇒

{
EXk = EY k, k = 1, 2, . . . , m − 1, and

(−1)m
[
F

[m−1]
Y (t) − F

[m−1]
X (t)

]
≥ 0 for all t ∈ R,

(3.A.66)
and also that

X ≤S
m-cx Y ⇐⇒

{
EXk = EY k, k = 1, 2, . . . , m − 1, and

F
[m−1]
Y (t) − F

[m−1]
X (t) ≥ 0 for all t ∈ R.

(3.A.67)

Using the identities

m!
∫ ∞

t

[
F

[m−1]
Y (x) − F

[m−1]
X (x)

]
dx = E(Y − t)m

+ − E(X − t)m
+

and

m!
∫ t

−∞

[
F

[m−1]
Y (x) − F

[m−1]
X (x)

]
dx = E(t − Y )m

+ − E(t − X)m
+ ,

we obtain from (3.A.66) and (3.A.67) that
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X ≤S
m-cx Y ⇐⇒

{
EXk = EY k, k = 1, 2, . . . , m − 1, and
E(Y − t)m

+ − E(X − t)m
+ is decreasing in t ∈ R,

and also that

X ≤S
m-cx Y ⇐⇒

{
EXk = EY k, k = 1, 2, . . . , m − 1, and
(−1)m

[
E(t − Y )m

+ − E(t − X)m
+
]

is increasing in t ∈ R.

Fishburn [203] has reported some attempts at obtaining an analog of The-
orem 3.A.4 for the 3-cx order.

From (3.A.63) it is seen that if X ≤S
m-cx Y , then

EXk ≤ EY k for k ≥ m such that k − m is even.

If, moreover, X and Y are nonnegative, then

EXk ≤ EY k for k ≥ m.

Motivated by Theorem 3.A.42 (see also Theorems 1.A.8, 4.A.48, 4.A.69,
5.A.15, 6.B.19, 6.G.12, 6.G.13, and 7.A.14–7.A.16) we have the following re-
sult.

Theorem 3.A.59. Let X and Y be two random variables that take on values
in S. If X ≤S

m-cx Y , and if E[Xm] = E[Y m], then X =st Y .

Theorem 3.A.59 can be strengthened to the following result in a way that is
analogous to the way in which Theorem 3.A.43 strengthened Theorem 3.A.42;
we do not detail the proof here.

Theorem 3.A.60. Let X and Y be two random variables that take on values
in S. If X ≤S

m-cx Y and if E[φ(X)] = E[φ(Y )] for some φ ∈ MS
m-cx which

satisfies φ(m)(x) > 0 for all x ∈ S, then X =st Y .

Note that Theorems 1.A.8, 3.A.43, and 3.A.59 are all special cases of The-
orem 3.A.60.

A generalization of (3.A.12) is given in the next theorem. The notations
lX , uX , lY , and uY are described before (3.A.12).

Theorem 3.A.61. Let X and Y be two random variables that take on values
in S. If X ≤S

m-cx Y , then uX ≤ uY . Also, if m is even, then lX ≥ lY , and if
m is odd, then lX ≤ lY .

Some closure properties of the order ≤S
m-cx are given in the next theorem.

Theorem 3.A.62. (a) Let X and Y be two random variables that take on
values in S. Then

X ≤S
m-cx Y ⇐⇒

{
−X ≤−S

m-cx −Y when s is even,

−Y ≤−S
m-cx −X when s is odd.
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(b) Let X, Y , and Θ be random variables such that [X
∣∣Θ = θ] ≤S

m-cx [Y
∣∣Θ =

θ] for all θ in the support of Θ. Then X ≤S
m-cx Y . That is, the m-convex

order is closed under mixtures.
(c) If X ≤S

m-cx Y , then cX ≤cS
m-cx cY whenever c > 0, where cS = {x ∈ R :

x/c ∈ S}.
(d) If X ≤S

m-cx Y , then cX ≤cS
m-cx cY whenever c < 0 and m is even, and

cY ≤cS
m-cx cX whenever c < 0 and m is odd.

(e) If X ≤S
m-cx Y , then X + d ≤S+d

m-cx Y + d for all d ∈ R, where S + d = {x ∈
R : x − d ∈ S}; that is, the m-convex order is shift-invariant.

(f) Let {Xj , j = 1, 2, . . . } and {Yj , j = 1, 2, . . . } be two sequences of random
variables that take on values in S, such that Xj →st X and Yj →st Y
as j → ∞. Assume that E(X)m−1

+ and E(Y )m−1
+ are finite and that

E(Xj)m−1
+ → E(X)m−1

+ and that E(Yj)m−1
+ → E(Y )m−1

+ as j → ∞.
If Xi ≤S

m-cx Yi for all integers i, then X ≤S
m-cx Y . That is, the m-convex

order is closed under limits.
(g) Let X1, X2, . . . , Xn be a set of independent random variables and let Y1, Y2,

. . . , Yn be another set of independent random variables, all taking on values
in S. If Xi ≤S

m-cx Yi for i = 1, 2, . . . , n, then

n∑
j=1

Xj ≤R
m-cx

n∑
j=1

Yj ,

where R denotes the union of the supports of the distribution functions of
the two sums. That is, the m-convex order is closed under convolutions.

(h) Let X1, X2, . . . be a set of independent random variables and let Y1, Y2, . . .
be another set of independent random variables, all taking on values in
S. If Xi ≤S

m-cx Yi for i = 1, 2, . . ., then, for any positive integer-valued
random variable N which is independent of the Xi’s and of the Yj’s, one
has

N∑
j=1

Xj ≤R̃
m-cx

N∑
j=1

Yj ,

where R̃ denotes the union of the supports of the distribution functions of
the two compound sums.

Theorem 3.A.62(h) can be extended as follows.

Theorem 3.A.63. Let X1, X2, . . . be a set of independent random variables
and let Y1, Y2, . . . be another set of independent random variables, all taking on
values in S. Let N1 be an integer-valued random variable that is independent of
the Xi’s, and let N2 be an integer-valued random variable that is independent
of the Yi’s, both taking on values in Q. If Xi ≤S

m-cx Yi for i = 1, 2, . . ., and if
N1 ≤Q

m-cx N2, then
N1∑
j=1

Xj ≤R̃
m-cx

N2∑
j=1

Yj ,
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where R̃ denotes the union of the supports of the distribution functions of the
two compound sums.

Theorem 3.A.19 can be extended as follows.

Theorem 3.A.64. Let X1 and X2 (Y1 and Y2) be two independent copies of
X (Y ). If X ≤S

2m-cx Y , then X1 − X2 ≤R
2m-cx Y1 − Y2, where R denotes the

union of the supports of the distribution functions of the two differences.

The proof of Theorem 3.A.64 is similar to the proof of Theorem 3.A.19
(using Theorem 3.A.62(a) and (g)).

Recall from (1.A.20) that for nonnegative random variables X and Y with
finite means, we denote by AX and AY the corresponding asymptotic equi-
librium ages.

Theorem 3.A.65. Let X and Y be two nonnegative random variables. Then,
for m ≥ 2 we have

X ≤[0,∞)
m-cx Y ⇐⇒ AX ≤[0,∞)

(m−1)-cx AY .

In particular,
X ≤cx Y ⇐⇒ AX ≤st AY .

We now describe a generalization of Theorem 3.A.44. Let Bm(S; µ1, µ2, . . . ,
µm−1) denote the class of all the random variables X whose distribution
functions have support in S and which have the first m − 1 moments EXk =
µk, k = 1, 2, . . . , m − 1.

Theorem 3.A.66. Let X and Y be two random variables in Bm(S; µ1, µ2, . . . ,
µm−1) with distribution functions F and G, respectively, and with density
functions f and g, respectively.

(a) If S−(F −G) ≤ m−1 and if the last sign of F −G is a +, then X ≤S
m-cx Y .

(b) If S−(f − g) ≤ m and if the last sign of g − f is a +, then X ≤S
m-cx Y .

The following example describes typical applications of Theorem 3.A.66.

Example 3.A.67. Let X have the Gamma density given by

fX(x) =
βα

Γ (α)
xα−1e−βx, x > 0,

where α > 0 and β > 0 are constants, and let Y have the inverse Gaussian
density given by

fY (x) =
αx−3/2
√

2πβ
exp
{

− (α − βx)2

2βx

}
, x > 0,

where also here α > 0 and β > 0 are constants. Note that X and Y have the
same mean α/β and the same second moment α(α + 1)/β2. We claim that
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X ≤[0,∞)
3-cx Y . In order to see it, first note that without loss of generality we

can take the means to be equal to 1, that is, β = α. Now, a straightforward
computation yields

log
fX(x)
fY (x)

= C +
(
α +

1
2
)
log x +

α

2x
− αx

2
, x > 0,

where C is some constant. The first derivative of the above expression is a
quadratic form in 1/x, which cannot have more than two zeroes, so the ex-
pression itself has no more than three sign changes. In addition, the above
expression tends to −∞ as x → ∞. The stated result now follows from The-
orem 3.A.66(b).

Let Z have the lognormal density given by

fZ(x) =
1

xτ
√

2π
exp
{

− (log x − ν)2

2τ2

}
, x > 0,

where τ > 0 and ν > 0 are constants. With the choice τ2 = log(1 + 1
α ) and

ν = 1
2 log α3

(α+1)β2 we have that X and Z have the same mean α/β and the

same second moment α(α + 1)/β2. We now claim that X ≤[0,∞)
3-cx Z. In order

to see it, again note that without loss of generality we can take the means to
be equal to 1, that is, β = α. Now, a straightforward computation yields

log
fX(x)
fZ(x)

= C +
(
α +

1
2
)
log x − αx +

log2 x

2τ2 , x > 0,

where C is some constant. Substituting u = log x, the above expression is
seen to be the difference of a quadratic form in u and an exponential func-
tion, which cannot have more than three sign changes. In addition, the above
expression tends to −∞ as x → ∞. The stated result again follows from
Theorem 3.A.66(b).

Theorem 3.A.24 can be viewed as a result that gives the “minimal” and
the “maximal” random variables with respect to the order ≤S

2-cx when the
(bounded) support and the mean are given. The following theorem gives the
extrema with respect to the order ≤S

3-cx when the first two moments are given.
Here we take S = [a, b] for some finite a and b.

Theorem 3.A.68. Let X ∈ B3([a, b];µ1, µ2). Consider the random variables
X

(3)
min and X

(3)
max in B3([a, b];µ1, µ2) defined by

X
(3)
min =

⎧⎨⎩a with probability µ2−µ2
1

(a−µ1)2+µ2−µ2
1
,

µ1 + µ2−µ2
1

µ1−a with probability (a−µ1)2

(a−µ1)2+µ2−µ2
1
,

and
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X(3)
max =

⎧⎨⎩µ1 − µ2−µ2
1

b−µ1
with probability (b−µ1)2

(b−µ1)2+µ2−µ2
1
,

b with probability µ2−µ2
1

(b−µ1)2+µ2−µ2
1
.

Then X
(3)
min ≤[a,b]

3-cx X ≤[a,b]
3-cx X

(3)
max.

An effective method for deriving the support points and the associated
probabilities of the stochastic extrema in general (that is, for m’s other
than 3) will be described next. For the purpose of somewhat simplifying
the expressions below we take a = 0. Thus we describe how to obtain
the support points and the associated probabilities of X

(m)
min and X

(m)
max in

Bm([0, b];µ1, µ2, . . . , µm−1).
If m is even, m = 2k, say, then the support of X

(2k)
min in B2k([0, b];µ1, µ2, . . . ,

µ2k−1) consists of k interior points x1, x2, . . . , xk, 0 < x1 < x2 < · · · < xk < b,
which are the k distinct roots of the equation (denoting µ0 = 1)∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · xk

µ0 µ1 µ2 · · · µk

µ1 µ2 µ3 · · · µk+1
...

...
...

. . .
...

µk−1 µk µk+1 · · · µ2k−1

∣∣∣∣∣∣∣∣∣∣∣
= 0;

the corresponding probabilities p1, p2, . . . , pk are now found by solving

p1x
j
1 + p2x

j
2 + · · · + pkxj

k = µj , j = 0, 1, . . . , k − 1.

The support of X
(2k)
max in B2k([0, b];µ1, µ2, . . . , µ2k−1) consists of the points 0,

b, and k − 1 interior points x2, x3, . . . , xk, 0 < x2 < x3 < · · · < xk < b, which
are the k − 1 distinct roots of the equation∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · xk−1

µ2 − bµ1 µ3 − bµ2 µ4 − bµ3 · · · µk+1 − bµk

µ3 − bµ2 µ4 − bµ3 µ5 − bµ4 · · · µk+2 − bµk+1
...

...
...

. . .
...

µk − bµk−1 µk+1 − bµk µk+2 − bµk+1 · · · µ2k−1 − bµ2k−2

∣∣∣∣∣∣∣∣∣∣∣
= 0;

the corresponding probabilities p1, p2, . . . , pk+1 are now found by solving the
Vandermonde system{

p1 + p2 + · · · + pk+1 = 1,

p2x
j
2 + p3x

j
3 + · · · + pkxj

k + pk+1b
j = µj , j = 1, 2, . . . , k.

When m is odd, m = 2k + 1, say, then the support of X
(2k+1)
min in

B2k+1([0, b];µ1, µ2, . . . , µ2k) consists of 0 and k interior points x2, x3, . . . , xk+1,
0 < x2 < x3 < · · · < xk+1 < b, which are the k distinct roots of the equation
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1 x x2 · · · xk

µ1 µ2 µ3 · · · µk+1
µ2 µ3 µ4 · · · µk+2
...

...
...

. . .
...

µk µk+1 µk+2 · · · µ2k

∣∣∣∣∣∣∣∣∣∣∣
= 0;

the corresponding probabilities p1, p2, . . . , pk+1 are now found by solving{
p1 + p2 + · · · + pk+1 = 1,

p2x
j
2 + p3x

j
3 + · · · + pk+1x

j
k+1 = µj , j = 1, 2, . . . , k.

The support of X
(2k+1)
max in B2k+1([0, b];µ1, µ2, . . . , µ2k) consists of the points

b and k interior points x1, x2, . . . , xk, 0 < x1 < x2 < · · · < xk < b, which are
the k distinct roots of the equation∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · xk

µ1 − b µ2 − bµ1 µ3 − bµ2 · · · µk+1 − bµk

µ2 − bµ1 µ3 − bµ2 µ4 − bµ3 · · · µk+2 − bµk+1
...

...
...

. . .
...

µk − bµk−1 µk+1 − bµk µk+2 − bµk+1 · · · µ2k − bµ2k−1

∣∣∣∣∣∣∣∣∣∣∣
= 0;

the corresponding probabilities p1, p2, . . . , pk+1 are now found by solving the
Vandermonde system

p1x
j
1 + p2x

j
2 + · · · + pk+1x

j
k+1 + pk+1b

j = µj , j = 0, 1, . . . , k.

Explicit descriptions for the distribution functions of X
(m)
min and X

(m)
max, for

values of m up to 5, are given in Tables 3.A.1 and 3.A.2, where in Table 3.A.2
we use the notation

� =
(
(µ1 − b)(µ4 − bµ3) − (µ2 − bµ1)(µ3 − bµ2)

)2
− 4
(
(µ1 − b)(µ3 − bµ2) − (µ2 − bµ1)2

)
×
(
(µ2 − bµ1)(µ4 − bµ3) − (µ3 − bµ2)2

)
.

Denuit, De Vylder, and Lefèvre [142] obtained also the extrema with re-
spect to the order ≤S

m-cx when not only the first m − 1 moments and the
support are given, but also when the density function of X is known to be
unimodal with a known mode. Tables that are similar to Tables 3.A.1 and
3.A.2, but when the mode is known, are available in Denuit, Lefèvre, and
Shaked [153, 154].

3.B The Dispersive Order

3.B.1 Definition and equivalent conditions

Let X and Y be two random variables with distribution functions F and G,
respectively. Let F−1 and G−1 be the right continuous inverses of F and G,
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Table 3.A.1. Probability distribution of X
(m)
min ∈ Bm([0, b]; µ1, µ2, . . . , µm−1)

m Support point Probability mass

1 0 1

2 µ1 1

3 0 µ2−µ2
1

µ2

µ2
µ1

µ2
1

µ2

4 r+ = µ3−µ1µ2+
√

(µ3−µ1µ2)2−4(µ2−µ2
1)(µ1µ3−µ2

2)
2(µ2−µ2

1)
µ1−r−
r+−r−

r− = µ3−µ1µ2−
√

(µ3−µ1µ2)2−4(µ2−µ2
1)(µ1µ3−µ2

2)
2(µ2−µ2

1) 1 − µ1−r−
r+−r−

5 0 1 − p+ − p−

t+ = µ1µ4−µ2µ3+
√

(µ1µ4−µ2µ3)2−4(µ1µ3−µ2
2)(µ2µ4−µ2

3)
2(µ1µ3−µ2

2) p+ = µ2−t−µ1
t+(t+−t−)

t− = µ1µ4−µ2µ3−
√

(µ1µ4−µ2µ3)2−4(µ1µ3−µ2
2)(µ2µ4−µ2

3)
2(µ1µ3−µ2

2) p− = µ2−t+µ1
t−(t−−t+)

Table 3.A.2. Probability distribution of X
(m)
max ∈ Bm([0, b]; µ1, µ2, . . . , µm−1)

m Support point Probability mass

1 b 1

2 0 b−µ1
b

b µ1
b

3 bµ1−µ2
b−µ1

(b−µ1)2

(b−µ1)2+µ2−µ2
1

b
µ2−µ2

1
(b−µ1)2+µ2−µ2

1

4 0 1 − p1 − p2

µ3−bµ2
µ2−bµ1

p1 = (µ2−bµ1)3

(µ3−bµ2)(µ3−2bµ2+b2µ1)

b p2 = µ1µ3−µ2
2

b(µ3−2bµ2+b2µ1)

5 z+ = (µ1−b)(µ4−bµ3)−(µ2−bµ1)(µ3−bµ2)+
√

�

2((µ1−b)(µ3−bµ2)−(µ2−bµ1)2) q+ = µ2−(b+z−)µ1+bz−
(z+−z−)(z+−b)

z− = (µ1−b)(µ4−bµ3)−(µ2−bµ1)(µ3−bµ2)−√
�

2((µ1−b)(µ3−bµ2)−(µ2−bµ1)2) q− = µ2−(b+z+)µ1+bz+
(z−−z+)(z−−b)

b 1 − q+ − q−
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respectively, and assume that

F−1(β) − F−1(α) ≤ G−1(β) − G−1(α) whenever 0 < α ≤ β < 1. (3.B.1)

Then X is said to be smaller than Y in the dispersive order (denoted as
X ≤disp Y ). It is conceptually clear that the order ≤disp indeed corresponds
to a comparison of X and Y by variability because it requires the difference
between any two quantiles of X to be smaller than the corresponding quantiles
of Y .

It is clear from (3.B.1) that the order ≤disp is location-free. That is,

X ≤disp Y ⇐⇒ X + c ≤disp Y for any real c. (3.B.2)

For a fixed α, one can find a c such that the inverse of the distribution of
X + c, which is F−1(·)+ c, satisfies F−1(α)+ c = G−1(α) = x0, say. It follows
then from (3.B.2) that F (x − c) ≥ G(x) for all x ≥ x0. Similarly, it can be
seen that F (x − c) ≤ G(x) for all x ≤ x0. This is true for every α (c and x0
are determined by α). By varying α one can obtain any desired c of the form
G−1(α) − F−1(α). In fact, it can be shown that X ≤disp Y if, and only if,

S−(F (· − c) − G(·)) ≤ 1 for all c, with the sign sequence
being −,+ in the case of equality. (3.B.3)

It is not hard to prove that condition (3.B.3) is equivalent to the following
condition:

G(G−1(α) + c) ≤ F (F−1(α) + c) for all α ∈ (0, 1) and c > 0, (3.B.4)

or, equivalently,

G(G−1(α) − c) ≥ F (F−1(α) − c) for all α ∈ (0, 1) and c > 0. (3.B.5)

Alternatively, (3.B.4) and (3.B.5) can be written as

(X − F−1(α))+ ≤st (Y − G−1(α))+, α ∈ (0, 1). (3.B.6)

From (3.B.1) it is clear that X ≤disp Y if, and only if,

G−1(α) − F−1(α) increases in α ∈ (0, 1), (3.B.7)

or, equivalently, if, and only if,

G
−1

(α) − F
−1

(α) decreases in α ∈ (0, 1), (3.B.8)

where F ≡ 1−F and G ≡ 1−G are the survival functions associated with X
and Y , respectively. Let R ≡ − log F and Q ≡ − log G denote the cumulative
hazard functions of X and Y , respectively. Note that R−1(z) = F

−1
(e−z) and
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Q−1(z) = G
−1

(e−z). Thus from (3.B.8) we obtain that X ≤disp Y if, and only
if,

Q−1(z) − R−1(z) increases in z ≥ 0. (3.B.9)

Substituting α = F (x) in (3.B.7) we obtain that X ≤disp Y if, and only if,

G−1(F (x)) − x increases in x. (3.B.10)

When X and Y have densities f and g, respectively, then X ≤disp Y if, and
only if,

g(G−1(α)) ≤ f(F−1(α)) for all α ∈ (0, 1); (3.B.11)

this can be obtained at once by differentiation of (3.B.10) and a simple sub-
stitution. When X and Y have hazard rate functions r and q, then (3.B.11)
can alternatively be recast as

q(G−1(α)) ≤ r(F−1(α)) for all α ∈ (0, 1). (3.B.12)

The dispersive order can be characterized also by comparing transforma-
tions of the random variables X and Y . For example, for continuous random
variables X and Y we have that X ≤disp Y if, and only if,

Y =st φ(X) for some φ which satisfies
φ(x′) − φ(x) ≥ x′ − x whenever x ≤ x′. (3.B.13)

In order to prove it just let φ be G−1F . When the φ in (3.B.13) is differentiable,
the condition on φ there is the same as φ′ ≥ 1, where φ′ denotes the derivative
of φ. An equivalent way of recasting (3.B.13) for continuous random variables
X and Y is the following:

Y =st X + ψ(X) for some increasing function ψ. (3.B.14)

Condition (3.B.13) can also be rewritten as

X =st ϕ(Y ) for some increasing ϕ which satisfies
ϕ(x′) − ϕ(x) ≤ x′ − x whenever x ≤ x′. (3.B.15)

In fact, (3.B.15) characterizes X ≤disp Y even if X and Y are not continuous
random variables.

The next characterization of the dispersive order that we describe is by
means of observed total time on test random variables (see Section 1.A.4).
Let F be an absolutely continuous distribution function of a nonnegative
random variable X, and suppose, for simplicity, that 0 is the left endpoint of
the support of F . Let H−1

F be as defined in (1.A.19), and let Xttt have the
distribution function HF . Denote by hF the density function associated with
HF . Then it is easy to see that
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hF

(
H−1

F (u)
)

=
f(F−1(u))

1 − u
, 0 ≤ u < 1, (3.B.16)

where f is the density function associated with F . Similarly, if G is another
absolutely continuous distribution function, then the density hG, of the inverse
of the TTT transform HG that is associated with G, satisfies

hG

(
H−1

G (u)
)

=
g(G−1(u))

1 − u
, 0 ≤ u < 1, (3.B.17)

where g is the density function associated with G.
Let Y and Yttt have the distribution functions G and HG, respectively.

From (3.B.11), (3.B.16), and (3.B.17) we obtain the following result.

Theorem 3.B.1. Let X and Y be two nonnegative random variables with
absolutely continuous distribution functions having 0 as the left endpoint of
their supports. Then

X ≤disp Y ⇐⇒ Xttt ≤disp Yttt.

See related results in Theorems 1.A.29, 4.A.44, 4.B.8, 4.B.9, and 4.B.29.
Next we mention a characterization by means of the so-called Q-addition

(quantiles-addition). The random variable Y with distribution function G is
said to be the Q-addition of the random variables X and Z, with corresponding
distribution functions F and H, if G−1(α) = F−1(α) + H−1(α) for all α ∈
(0, 1). If X and Y have distribution functions F and G, respectively, then by
(3.B.1), X ≤disp Y if, and only if,

H−1(α) ≡ G−1(α) − F−1(α) is increasing in α ∈ (0, 1).

That means that H−1 is an inverse of a distribution function of a random
variable Z, say. Thus we see that X ≤disp Y if, and only if,

Y is a Q-addition of X and Z for some random variable Z.

Another characterization of the order ≤disp is given in the following theo-
rem.

Theorem 3.B.2. Let X and Y be two random variables. Then X ≤disp Y if,
and only if, for every increasing function φ and increasing concave function
h such that φ and ψ(·) ≡ h(φ(·)) are integrable with respect to the distribution
of Y , and for every real number c, we have that

Eφ(X − c) ≥ Eφ(Y ) =⇒ Eψ(X − c) ≥ Eψ(Y ).

It is worthwhile to mention that two twice differentiable functions φ and
ψ satisfy ψ(·) ≡ h(φ(·)) for some increasing concave function h if, and only if,
φ′′/φ′ ≥ ψ′′/ψ′ (see Pratt [459] or Arrow [22]).

Like the convex order (see Theorem 3.A.7), the dispersive order can be
characterized by means of Yaari functionals Vh defined in (3.A.31).
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Theorem 3.B.3. Let X and Y be two random variables with the same finite
means. Then X ≤disp Y if, and only if,

Vh(X) ≤ Vh(Y ) for every probability transformation function h ≤ 1.

Before leaving this subsection we should mention an alternative way of
comparing by dispersion random variables that are symmetric about 0. In
such a case one may say (as an alternative to (3.B.1)) that X is less dispersed
than Y if F−1(α)−F−1(1/2) ≤ [≥] G−1(α)−G−1(1/2) whenever α ≥ [≤] 1/2.
If X and/or Y are not necessarily symmetric, then one can define an order
that is weaker than ≤disp by requiring

F−1(α) − F−1(1 − α) ≤ G−1(α) − G−1(1 − α), α ∈ [1/2, 1];

see Townsend and Colonius [552].
If X and Y are positive random variables, then, as an alternative to (3.B.1),

one can say that X is less dispersed than Y if log X ≤disp log Y . The latter
condition is equivalent to log X ≤∗ log Y , where the order ≤∗ is defined in
Section 4.B (see Theorem 4.B.1).

3.B.2 Properties

The dispersive order satisfies some desirable closure properties but does not
satisfy some other desirable properties. For example, it is very easy to verify
the following result (compare it to Theorem 3.A.18).

Theorem 3.B.4. Let X be a random variable. Then

X ≤disp aX whenever a ≥ 1.

Theorem 3.B.4 can be generalized as follows. For two functions φ and ψ
let us denote φ ≤disp ψ if

φ(y) − φ(x) ≤ ψ(y) − ψ(x) whenever x ≤ y. (3.B.18)

Note that if φ and ψ are differentiable then φ ≤disp ψ if, and only if, φ′ ≤ ψ′,
where φ′ and ψ′ are the derivatives of φ and ψ, respectively. Now let X be
a random variable. Write ψ(X) = φ(X) + (ψ(X) − φ(X)). From (3.B.14) we
obtain the following result.

Theorem 3.B.5. Let X be a random variable. Then

φ(X) ≤disp ψ(X) whenever φ ≤disp ψ.

Another simple desirable property that is easily verified is the following
theorem.

Theorem 3.B.6. Let X and Y be two random variables. Then

X ≤disp Y ⇐⇒ −X ≤disp −Y. (3.B.19)
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However, the dispersive order is not closed under convolutions. In fact, it
is not even true in general that for any two independent random variables X
and Y we have that X ≤disp X + Y . This observation follows from the next
theorem, the proof of which is omitted.

Theorem 3.B.7. The random variable X satisfies

X ≤disp X + Y for any random variable Y independent of X

if, and only if, X has a logconcave density.

A random variable Z is said to be dispersive if X+Z ≤disp Y +Z whenever
X ≤disp Y and Z is independent of X and Y . From Theorem 3.B.7 it follows
that every dispersive random variable must be strongly unimodal (that is,
have a logconcave density). It turns out that strong unimodality is also a
sufficient condition for dispersivity, as the next result shows. Again the proof
is omitted.

Theorem 3.B.8. The random variable X is dispersive if, and only if, X has
a logconcave density.

Other characterizations of random variables with logconcave densities are
given in Theorem 1.C.52.

From Theorem 3.B.8 we obtain, by iteration, the following result.

Theorem 3.B.9. Let X1, X2, . . . , Xn be a set of independent random vari-
ables, and let Y1, Y2, . . . , Yn be another set of independent random variables.
If the Xi’s and the Yi’s have logconcave densities, and if Xi ≤disp Yi,
i = 1, 2, . . . , n, then

n∑
i=1

Xi ≤disp

n∑
i=1

Yi.

The dispersive order is closed under increasing convex and decreasing con-
cave transformations when the underlying random variables are ordered in
the usual stochastic order. We have the following result.

Theorem 3.B.10. Let X and Y be two random variables such that X ≤st Y .

(a) If X ≤disp Y , then

φ(X) ≤disp φ(Y ) for all increasing convex and all
decreasing concave functions φ. (3.B.20)

(b) If X ≤disp Y , then

φ(X) ≥disp φ(Y ) for all decreasing convex and all
increasing concave functions φ. (3.B.21)
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Proof. First we prove (3.B.20) when φ is increasing and convex. Let F and
G denote the distribution functions of X and Y , respectively, and let F−1

and G−1 be the respective inverses. For simplicity suppose that F , G, and
φ are differentiable with derivatives f , g, and φ′, respectively. The condition
X ≤st Y implies that (see (1.A.12))

F−1(α) ≤ G−1(α) for all α ∈ (0, 1).

Since φ is convex it follows that φ′ is increasing. Therefore

φ′(F−1(α)) ≤ φ′(G−1(α)) for all α ∈ (0, 1). (3.B.22)

The condition X ≤disp Y implies that (see (3.B.11))

g(G−1(α)) ≤ f(F−1(α)) for all α ∈ (0, 1). (3.B.23)

Since φ is increasing it follows that φ′ ≥ 0. Therefore, combining (3.B.22) and
(3.B.23), we see that

g(G−1(α))φ′(F−1(α)) ≤ f(F−1(α))φ′(G−1(α)) for all α ∈ (0, 1),

and, again from (3.B.11), it is seen that the latter inequality is equivalent to
φ(X) ≤disp φ(Y ).

If φ is decreasing and concave, then −φ is increasing and convex. Therefore,
from what we just proved it follows that −φ(X) ≤disp −φ(Y ). From Theorem
3.B.6 we obtain that φ(X) ≤disp φ(Y ). The proof of (3.B.21) is similar. 
�

Theorem 3.B.10 can be generalized in several ways. Here are two general-
izations of the increasing convex part of (3.B.20).

Theorem 3.B.11. Let X and Y be two random variables such that X ≤st Y .

(a) If X ≤disp Y , then φ(X) ≤disp ψ(Y ) whenever φ ≤disp ψ (in the sense of
(3.B.18)) and φ or ψ is an increasing convex function.

(b) If X ≤disp Y , then φ(X) ≤disp ψ(Y ) whenever φ and ψ are differentiable
and their derivatives, φ′ and ψ′, respectively, satisfy φ′(x) ≤ ψ′(y) for all
x ≤ y.

A relation similar to (3.B.20) can be used as a sufficient condition for
X ≤disp Y . The next result states such a condition. Note that in (3.B.24)
the directions of the monotonicity in the convex and the concave cases are
interchanged.

Theorem 3.B.12. Let X and Y be two random variables such that X ≤st Y .
If

φ(X) ≤disp φ(Y ) for some decreasing convex or
increasing concave function φ, (3.B.24)

then X ≤disp Y .
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The proof of Theorem 3.B.12 uses Theorem 3.B.10. If φ in (3.B.24) is
increasing and concave, then φ−1 is increasing and convex. Since X ≤st
Y it follows that φ(X) ≤st φ(Y ). Therefore, by Theorem 3.B.10, X =
φ−1(φ(X)) ≤disp φ−1(φ(Y )) = Y . The proof for a decreasing and convex
φ is similar.

For random variables with equal left-end support points the assumption
in Theorems 3.B.10 and 3.B.11 of the comparison of X and Y in the usual
stochastic order need not be stated. This is because of the following obser-
vation. Here, for random variables X and Y , we denote the corresponding
endpoints of their supports by lX , uX , lY , and uY as defined before (3.A.12).

Theorem 3.B.13. (a) If X and Y are random variables such that lX = lY >
−∞, then

X ≤disp Y =⇒ X ≤st Y.

(b) If X and Y are random variables such that uX = uY < ∞, then

X ≤disp Y =⇒ X ≥st Y.

For example, if X and Y are nonnegative random variables such that
lX = lY = 0, then Theorem 3.B.13(a) applies. A stronger version of this fact
is described in Remark 4.B.35.

The proof of Theorem 3.B.13(a) is based on the fact that if F and G are
the distribution functions of X and Y , respectively, then F−1(0) = lX = lY =
G−1(0). Therefore, from (3.B.1) one obtains that F−1(β) ≤ G−1(β) for all
β ∈ (0, 1), that is, X ≤st Y by (1.A.12). The proof of Theorem 3.B.13(b) is
similar. The following result can be shown using the same kind of argument.

Theorem 3.B.14. If X and Y are random variables having the same finite
support and satisfying X ≤disp Y , then they must have the same distribution.

The next result is an analog of (3.A.12). We omit the proof.

Theorem 3.B.15. Let X and Y be random variables whose supports are in-
tervals. Then

X ≤disp Y =⇒ µ{supp(X)} ≤ µ{supp(Y )},

where µ denotes the Lebesgue measure.

Suppose that X and Y are two random variables with distributions F and
G, respectively, such that X ≤disp Y . Then by taking c = 0 in (3.B.3) we see
that (3.A.59) holds for the random variables X − EX and Y − EY . We thus
have proved the following implication.

Theorem 3.B.16. Let X and Y be two random variables with finite means.
Then

X ≤disp Y =⇒ X ≤dil Y.
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A more refined result can be obtained by combining (3.C.7) and (3.C.9)
in Section 3.C below.

From Theorem 3.B.16, (3.A.32), and (3.A.4) it follows that if X ≤disp Y ,
then

Var(X) ≤ Var(Y ), (3.B.25)

whenever Var(Y ) < ∞.
From Theorem 3.B.7 it follows that(
X ≤conv Y, and X has a logconcave density

)
=⇒ X ≤disp Y. (3.B.26)

In contrast to (3.B.19), if X ≤disp Y , it does not necessarily follow that
X ≤disp −Y . In order to see it, let X be an exponential random variable with
mean 1. Clearly X ≤disp X (in fact, this is the case for any random variable
X). The distribution function of X is concave on [0, ∞), and the distribution
function of −X is convex on (−∞, 0). Since the order ≤disp is preserved under
shifts, it follows that X �≤disp −X.

Using an argument as in the proof of Theorem 3.A.44, we obtain the
following sufficient condition for the dispersive order.

Theorem 3.B.17. Let X and Y be random variables with respective densities
f and g. If

S−(f(· − c) − g(·)) ≤ 2 for all c,
with the sign sequence being −,+,− in the case of equality, (3.B.27)

then X ≤disp Y .

Another sufficient condition for X ≤disp Y is given next.

Theorem 3.B.18. Let X and Y be two absolutely continuous random vari-
ables with hazard rate functions (see (1.B.1)) r and q, respectively. If

r(u) ≥ q(u + x) for all u and x ≥ 0, (3.B.28)

then X ≤disp Y .

Proof. Let F and G denote the distribution functions of X and Y , respectively.
Condition (3.B.28) implies that r(u) ≥ q(u); that is, X ≤hr Y . This, in turn,
implies X ≤st Y , which, in turn, implies (1.A.12).

Now, (3.B.28) therefore gives r(F−1(α)) ≥ q(G−1(α)) for all α ∈ (0, 1),
which is equivalent to X ≤disp Y by (3.B.12). 
�

Let X be a random variable and denote by X(−∞,a] the truncation of X
at a as defined in Section 1.A.4. One would expect X(−∞,a] to increase in
a in the sense of the dispersion order. This is not always the case, but it is
the case if the distribution function F of X is logconcave; that is, if X has
decreasing reverse hazard (see Section 1.B.6). This is shown in the next result,
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which is an analog of Theorem 1.A.15 for the dispersion order. The proof of
the first part of the theorem consists of verifying that for α ≤ β the quantity
F−1(βF (a)) − F−1(αF (a)) increases in a when F is logconcave. The other
parts of the theorem are proven similarly. The notation X(a,b) for a < b is
self-explanatory.

Theorem 3.B.19. Let X be a random variable with distribution function F
and density f .

(a) If F is logconcave, then X(−∞,a] increases in a in the sense of the disper-
sion order.

(b) If F is logconcave (that is, if X is IFR), then X(a,∞) decreases in a in
the sense of the dispersion order.

(c) If f is logconcave, then X(a,b) decreases in a (< b) and increases in b
(> a) in the sense of the dispersion order.

Recall from page 1 the definitions of the IFR, DFR, NBU, NWU, DMRL
and IMRL properties. The following theorems list some relations between the
dispersion order and some other orders. The proofs are mostly straightforward
and are not detailed here.

Theorem 3.B.20. Let X and Y be two nonnegative random variables.

(a) If X ≤hr Y and X or Y is DFR, then X ≤disp Y .
(b) If X ≤disp Y and X or Y is IFR, then X ≤hr Y .
(c) If X is NBU and Y is NWU, then X ≤disp Y ⇐⇒ X ≤hr Y .

A version of parts (a) and (b) of Theorem 3.B.19, where ≤hr is replaced
by ≤rh, and DFR and IFR are replaced by monotonicity conditions on the
reversed hazard rate function, can be found in Bartoszewicz [44].

Recall from (1.A.20) that for nonnegative random variables X and Y with
finite means, we denote by AX and AY the corresponding asymptotic equi-
librium ages. The following result may be contrasted with Theorem 2.A.4.

Theorem 3.B.21. Let X and Y be two nonnegative random variables.

(a) If X ≤mrl Y and X or Y is IMRL, then AX ≤disp AY .
(b) If AX ≤disp AY and X or Y is DMRL, then X ≤mrl Y .
(c) If X ≤disp Y and X is DMRL and Y is IMRL, then X ≤mrl Y .

Example 3.B.22. Let X1, X2, . . . , Xn be independent DFR random variables,
and let X(1) ≤ X(2) ≤ · · · ≤ X(n) be the corresponding order statistics.
Then X(1) is DFR (since its hazard rate function is the sum of the hazard
rate functions of the Xi’s). From Theorem 1.B.26 we see that X(1) ≤hr X(i),
i = 2, 3, . . . , n. Therefore, by Theorem 3.B.20(a), we have that

X(1) ≤disp X(i), i = 2, 3, . . . , n.
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Example 3.B.23. Let X1, X2, . . . , Xm, Xm+1 be independent and identically
distributed DFR random variables and let the corresponding spacings be de-
noted by U(i:m) as in Theorem 1.B.31. It is easy to see then that the spacings
are DFR random variables (see Barlow and Proschan [35]). Then, from The-
orems 1.B.31 and 3.B.20(a) we get

(m − i + 1)U(i:m) ≤disp (m − i)U(i+1:m), i = 2, 3, . . . , m − 1, (3.B.29)
(m − i + 2)U(i:m+1) ≤disp (m − i + 1)U(i:m), i = 2, 3, . . . , m, (3.B.30)

and

U(i:m) ≤disp U(i+1:m+1), i = 2, 3, . . . , m. (3.B.31)

Note that (3.B.29)–(3.B.31) can be summarized as

(m − j + 1)U(j:m) ≤disp (n − i + 1)U(i:n) whenever i − j ≥ max{0, n − m}.

The dispersive order can be used to characterize IFR and DFR random
variables as the following result shows.

Theorem 3.B.24. Let X be a nonnegative random variable. Then X is IFR
[DFR] if, and only if, [X − t

∣∣X > t] ≥disp [≤disp] [X − t′
∣∣X > t′] whenever

t ≤ t′.

Proof. If X is IFR, then, by Theorem 3.B.19(b), [X
∣∣X > t] is decreasing in

t in the sense of the dispersive order. Since the dispersive order is preserved
under shifts, it is seen that [X − t

∣∣X > t] is decreasing in t in the sense of the
dispersive order. The proof of the DFR case is similar, though one first needs
to prove a DFR version of Theorem 3.B.19(b). The converses of the above
statements are consequences of Theorems 1.A.30(a) and 3.B.13(a). 
�

Under some regularity conditions on the distribution function of X and
on its support, but without the assumption of nonnegativity of X, we have a
related characterization of the IFR and the DFR properties. We do not give
the proof of this result here.

Theorem 3.B.25. Let X be a random variable with a continuous distribution
function, and with support of the form (a,∞), where a ≥ −∞ [respectively,
a > −∞]. Then X is IFR [DFR] if, and only if, X ≥disp [≤disp] [X − t

∣∣X > t]
for all t > a.

The next result states a preservation property of the order ≤disp which is
useful in reliability theory as well as in nonparametric statistics. Let X and
Y be two random variables. Let X(1:n) ≤ X(2:n) ≤ · · · ≤ X(n:n) denote the
order statistics from a sample X1, X2, . . . , Xn of independent and identically
distributed random variables that have the same distribution as X. Similarly,
let Y(1:n) ≤ Y(2:n) ≤ · · · ≤ Y(n:n) denote the order statistics from another sam-
ple Y1, Y2, . . . , Yn of independent and identically distributed random variables
that have the same distribution as Y .
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Theorem 3.B.26. Let X and Y be two random variables. If X ≤disp Y , then
X(j:n) ≤disp Y(j:n) for j = 1, 2, . . . , n.

The proof follows at once from (3.B.10) and the fact that

G−1
j:nFj:n = G−1F for j = 1, 2, . . . , n,

where F , Fj:n, G, and Gj:n are the distribution functions of X, X(j:n), Y , and
Y(j:n), respectively.

For the next result about comparison of order statistics we will need the
following lemma.

Lemma 3.B.27. Let E(j:m) and E(i:n) denote the jth and the ith order statis-
tics of samples from the exponential distribution with rate λ > 0 of sizes m
and n, respectively. Then

E(j:m) ≤disp E(i:n) whenever i − j ≥ max{0, n − m}.

Proof. Write E(j:m) =st
∑j

k=1 Em−j+k, where Em−j+k is an exponential ran-
dom variable with rate (m − j + k)λ, k = 1, 2, . . . , j, and the Em−j+k’s are
independent. Similarly, write E(i:n) =st

∑i
k=1 E′

n−i+k, where E′
n−i+k is an

exponential random variable with rate (n − i + k)λ, k = 1, 2, . . . , i, and the
E′

n−i+k’s are independent. It is easy to check, for instance using Theorem
3.B.4, that Em−j+k ≤disp E′

n−i+k because m − j ≥ n − i. Since exponential
random variables have logconcave densities, we obtain from Theorems 3.B.9
and 3.B.7, respectively, that

E(j:m) =st

j∑
k=1

Em−j+k ≤disp

j∑
k=1

E′
n−i+k ≤disp

i∑
k=1

E′
n−i+k =st E(i:n)

because j ≤ i. 
�

Theorem 3.B.28. Let X(j:m) and X(i:n) denote the jth and the ith order
statistics of samples from a DFR distribution F of sizes m and n, respectively.
Then

X(j:m) ≤disp X(i:n) whenever i − j ≥ max{0, n − m}.

Proof. The distribution Fj:m of X(j:m) can be expressed as Fj:m = Bj:mF ,
where Bj:m is the beta distribution with parameters j and m−j+1. Similarly,
the distribution Fi:n of X(i:n) can be expressed as Fi:n = Bi:nF . Now write

Fj:m = Bj:mGG−1F = Hj:mG−1F,

where G denotes the distribution function of an exponential random variable
with mean 1, and Hj:m = Bj:mG. Note that Hj:m is the distribution function
of E(j:m) in Lemma 3.B.27. Similarly, write

Fi:n = Hi:nG−1F,
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and finally notice that

F−1
i:n Fj:m = ψH−1

i:n Hj:mψ−1,

where ψ = F−1G. From Lemma 3.B.27 and (3.B.10) we see that H−1
i:n Hj:m(x)−

x is increasing in x. The function ψ is strictly convex because F is DFR, and
it satisfies ψ(0) = 0. Therefore, by a result of Bartoszewicz [40] it follows that
F−1

i:n Fj:m(x)−x is increasing in x. The stated result now follows from (3.B.10).

�

As a corollary of Theorems 3.B.26 and 3.B.28 we get the following result.

Theorem 3.B.29. Let X(j:m) and Y(i:n) denote the jth and the ith order
statistics of samples from the distribution F and G of sizes m and n, respec-
tively. If F or G is DFR, and if X ≤disp Y , then

X(j:m) ≤disp Y(i:n) whenever i − j ≥ max{0, n − m}.

Proof. If F is DFR, then X(j:m) ≤disp X(i:n) ≤disp Y(i:n) by Theorems 3.B.28
and 3.B.26, respectively. If G is DFR, then X(j:m) ≤disp Y(j:m) ≤disp Y(i:n) by
Theorems 3.B.26 and 3.B.28, respectively. 
�

It is of interest to compare Theorem 3.B.29 to the following example (which
follows from Example 3.A.50 and Theorem 3.B.16).

Example 3.B.30. Let X(i:n) denote the ith order statistic in a sample of n
independent and identically distributed random variables having the common
distribution function F , survival function F , and density function f . Recall
the definition of regular variation from Example 3.A.50. For F with support
(−∞,∞) we have:

(a) If F is regularly varying at −∞ with index α < 0, and if f is monotone
on (−∞, c] for some c, then X(j:m) ≤disp X(i:n) implies i ≤ j.

(b) If F is regularly varying at ∞ with index α < 0, and if f is monotone on
[c,∞) for some c, then X(j:m) ≤disp X(i:n) implies n − i ≤ m − j.

The dispersive order between X and Y implies the usual stochastic order
between the corresponding spacings as the next result shows. In order to
state it we use the following notation. Let X(1:n) ≤ X(2:n) ≤ · · · ≤ X(n:n)
and Y(1:n) ≤ Y(2:n) ≤ · · · ≤ Y(n:n) be the order statistics as above. The
corresponding spacings are defined by U(i:n) ≡ X(i:n) − X(i−1:n) and V(i:n) ≡
Y(i:n) − Y(i−1:n), i = 2, 3, . . . , n. The proof of the next theorem is given in
Example 6.B.25 in Chapter 6.

Theorem 3.B.31. Let X and Y be two random variables. If X ≤disp Y , then
U(i:n) ≤st V(i:n) for i = 2, 3, . . . , n.

Theorem 2.7 on page 182 of Kamps [273] extends Theorem 3.B.31 to the
spacings of the so called generalized order statistics.

The following example describes an interesting instance in which the two
maxima are ordered in the dispersive order. It may be compared with Example
1.B.37.
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Example 3.B.32. Let Y1, Y2, . . . , Yn be independent exponential random vari-
ables with hazard rates λ1, λ2, . . . , λn, respectively. Let X1, X2, . . . , Xn be
independent and identically distributed exponential random variables with
hazard rate λ =

∑n
i=1 λi/n. Then

X(n:n) ≤disp Y(n:n). (3.B.32)

Let Z1, Z2, . . . , Zn be independent and identically distributed exponential ran-
dom variables with hazard rate λ̃ = (

∏n
i=1 λi)1/n. Then

Z(n:n) ≤disp Y(n:n). (3.B.33)

Note that from the arithmetic-geometric mean inequality (λ ≥ λ̃) it follows
that X1 ≤hr Z1. Therefore, by Theorem 3.B.20(a), X1 ≤disp Z1. Alternatively,
we can see that X1 ≤disp Z1 from Example 1.D.1 and (3.B.26). Hence, by
Theorem 3.B.26, X(n:n) ≤disp Z(n:n). That is, actually (3.B.33) is a stronger
result than (3.B.32).

Example 3.B.33. Let Y1, Y2, . . . , Yn and X1, X2, . . . , Xn be as in Example
3.B.32. Denote the corresponding spacings by U(i:n) ≡ X(i:n) − X(i−1:n) and
V(i:n) ≡ Y(i:n) − Y(i−1:n), i = 2, 3, . . . , n. Then

U(i:n) ≤disp V(i:n), i = 2, 3, . . . , n.

A related example is the following. Recall from page 2 the definition of
the majorization order ≺ among n-dimensional vectors. It is of interest to
compare the example below with Example 1.C.50.

Example 3.B.34. Let Xi be an exponential random variable with mean λ−1
i >

0, i = 1, 2, . . . , m, and let Yi be an exponential random variable with mean
η−1

i > 0, i = 1, 2, . . . , m. If (λ1, λ2, . . . , λm) � (η1, η2, . . . , ηm), then

m∑
i=1

Xi ≥disp

m∑
i=1

Yi.

Similar examples are the following.

Example 3.B.35. Let Xi be a uniform random variable on [0, λ−1
i ], i =

1, 2, . . . , m, and let Yi be a uniform random variable on [0, η−1
i ], i = 1, 2, . . . , m.

If (λ1, λ2, . . . , λm) � (η1, η2, . . . , ηm), then

m∑
i=1

Xi ≥disp

m∑
i=1

Yi.

Example 3.B.36. Let Xi be a Gamma random variable with density func-
tion (1/Γ (α))λα

i xα−1e−λix, x > 0, i = 1, 2, . . . , m, and let Yi be a Gamma
random variable with density function (1/Γ (α))ηα

i xα−1e−ηix, x > 0, i =
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1, 2, . . . , m. Here α ≥ 1, and the λi’s and the ηi’s are positive parameters. If
(λ1, λ2, . . . , λm) � (η1, η2, . . . , ηm), then

m∑
i=1

Xi ≥disp

m∑
i=1

Yi.

The proof of the next example is omitted.

Example 3.B.37. Let {N(t), t ≥ 0} be a nonhomogeneous Poisson process
with mean function Λ (that is, Λ(t) ≡ E[N(t)], t ≥ 0), and let T1, T2, . . . be
the successive epoch times. If Λ is strictly increasing and concave, then

Tn ≤disp Tn+1, n = 1, 2, . . . .

In the following example the idea of the proof of Theorem 3.B.26 is used.
This example may be compared with Examples 1.B.24, 1.C.48, 2.A.22, 4.B.14,
6.B.41, 6.D.8, 6.E.13, and 7.B.13.

Example 3.B.38. Let X and Y be two absolutely continuous nonnegative
random variables with survival functions F and G, respectively. Denote
Λ1 = − log F and Λ2 = − log G, i = 1, 2. Consider two nonhomogeneous
Poisson processes N1 = {N1(t), t ≥ 0} and N2 = {N2(t), t ≥ 0} with mean
functions Λ1 and Λ2 (see Example 3.B.37), respectively. Let Ti,1, Ti,2, . . . be
the successive epoch times of process Ni, i = 1, 2. Note that X =st T1,1 and
Y =st T2,1.

It turns out that the dispersive ordering of the first two epoch times implies
the dispersive ordering of all the corresponding later epoch times; that is, it
will be shown below that if X ≤disp Y , then T1,n ≤disp T2,n, n ≥ 1.

In order to see it, fix an n ≥ 1, and denote by F1,n and F2,n the distribution
functions of T1,n and T2,n, respectively. Note from (1.B.24) that

F1,n(t) = ψn(F (t)) and F2,n(t) = ψn(G(t)),

where ψn(u) ≡ Γn(− log(1 − u)), u ∈ [0, 1]. Therefore,

F−1
2,n(F1,n(t)) − t = (ψn(G))−1(ψn(F (t))) − t = G−1(F (t)) − t, t ≥ 0.

Thus, from (3.B.10) it is seen that X ≤disp Y if, and only if, T1,n ≤disp T2,n.

In the following example it is shown that, under the proper conditions,
random minima and maxima are ordered in the dispersive order sense; see
related results in Examples 1.C.46, 4.B.16, 5.A.24, and 5.B.13.

Example 3.B.39. Let X1, X2, . . ., and Y1, Y2, . . ., each be a sequence of inde-
pendent and identically distributed random variables with common distri-
bution functions FX1 and FY1 , respectively, and common survival functions
FX1 and FY1 , respectively. Let N be a positive integer-valued random vari-
able, independent of the Xi’s and of the Yi’s, with a Laplace transform LN .
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Denote X(1,N) = min{X1, X2, . . . , XN}, X(N,N) = max{X1, X2, . . . , XN},
Y(1,N) = min{Y1, Y2, . . . , YN}, and Y(N,N) = max{Y1, Y2, . . . , YN}. The distri-
bution functions of X(N,N) and Y(N,N) are given by

FX(N,N)(x) = LN (− log FX1(x)), x ≥ 0, j = 1, 2,

and
FY(N,N)(x) = LN (− log FY1(x)), x ≥ 0, j = 1, 2.

If X1 ≤disp Y1, then, for 0 < α ≤ β < 1 we compute

F−1
X(N:N)

(β) − F−1
X(N:N)

(α) = F−1
X1

(
e−L−1

N (β))− F−1
X1

(
e−L−1

N (α))
≤ F−1

Y1

(
e−L−1

N (β))− F−1
Y1

(
e−L−1

N (α))
= F−1

Y(N:N)
(β) − F−1

Y(N:N)
(α).

Therefore X(N :N) ≤disp Y(N :N). Similarly it can be shown that if X1 ≤disp Y1,
then X(1:N) ≤disp Y(1:N).

Example 3.B.40. Let X (respectively, Y ) have the central t-distribution with
νX (respectively, νY ) degrees of freedom. If νX ≤ νY , then X ≥disp Y .

Example 3.B.41. As in Example 1.C.59, for nonnegative absolutely continuous
random variables X and Y , let Xw and Y w be the random variables with the
weighted density functions fw and gw given in (1.C.17) and (1.C.18). Suppose
that X ≤disp Y . If X is DFR, if Y is IFR, and if w is decreasing and convex,
then Xw ≤disp Y w.

Analogous to the result in Remark 1.A.18, it can be shown that a certain
quotient set of all distribution functions on R is a lattice with respect to the
order ≤disp.

A consequence of the order ≤disp is given in the next theorem. It is a
motivation for a multivariate dispersion order that is described in Chapter 7.

Theorem 3.B.42. Let X and X ′ be two independent and identically dis-
tributed random variables and let Y and Y ′ be two other independent and iden-
tically distributed random variables. If X ≤disp Y , then |X −X ′| ≤st |Y −Y ′|,
that is,

P{|X − X ′| > z} ≤ P{|Y − Y ′| > z} for all z ≥ 0. (3.B.34)

Proof. Denote the common distribution function of X and X ′ [respectively,
Y and Y ′] by F [G]. Select a z ≥ 0. Then

P{|X − X ′| ≤ z} =
∫ ∞

−∞
[F (x + z) − F (x − z)]dF (x)

=
∫ 1

0
{F [F−1(u) + z] − F [F−1(u) − z]}du
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≥
∫ 1

0
{G[G−1(u) + z] − G[G−1(u) − z]}du

= P{|Y − Y ′| ≤ z},

where the inequality is a consequence of (3.B.4) and (3.B.5). This proves
(3.B.34). 
�

3.C The Excess Wealth Order

3.C.1 Motivation and definition

Let X be a nonnegative random variable with distribution function F and
with a finite mean. Recall from (3.A.43) the definition of the Lorenz curve.
The nonstandardized (or the generalized) Lorenz curve L̃X , corresponding to
X, is defined as

L̃X(p) =
∫ p

0
F−1(u)du, p ∈ [0, 1].

Note that the requirement that X is nonnegative is not needed in order for L̃X

to be well defined. Thus, in this section we will not assume the nonnegativity
of the discussed random variables, unless stated otherwise.

For a nonnegative random variable X with a finite mean, a transform that
is closely related to the nonstandardized Lorenz curve is the transform TX

defined as

TX(p) =
∫ F −1(p)

0
F (x)dx, p ∈ [0, 1].

The transform TX is called the TTT transform, and is denoted by H−1
F in

(1.A.19).
A third transform, that is related to the nonstandardized Lorenz curve

and to the TTT transform, and which will be heavily used in this section, is
the excess wealth transform WX defined as

WX(p) =
∫ ∞

F −1(p)
F (x)dx, p ∈ (0, 1].

Note that it is not necessary for the random variable X to be nonnegative in
order for WX to be well defined; it is only required that X has a finite mean.
This useful property of the excess wealth transform is one of the main reasons
for its applicability as a tool that defines a stochastic order.

The transforms L̃X , TX , and WX , when X is nonnegative with a finite
mean, are depicted in Figure 3.C.1. For p ∈ (0, 1) the value L̃X(p) is depicted
as the area of the region A in the figure. The value TX(p) is the area of A∪B,
and the value WX(p) is the area of C. Note that the area of A∪B ∪C is EX.

The order which is determined by the pointwise comparison of the excess
wealth transforms of two random variables is of interest in this section. Let X
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Fig. 3.C.1. Depiction of L̃X(p), TX(p), and WX(p).

and Y be two random variables with distribution functions F and G. Assume
that

WX(p) ≡
∫ ∞

F −1(p)
F (x)dx ≤

∫ ∞

G−1(p)
G(x)dx ≡ WY (p) for all p ∈ (0, 1).

(3.C.1)
Then X is said to be smaller than Y in the excess wealth order (denoted as
X ≤ew Y ).

Note that since F−1(p) = F
−1

(1 − p) and G−1(p) = G
−1

(1 − p), we see
that X ≤ew Y if, and only if,∫ ∞

F
−1(p)

F (x)dx ≤
∫ ∞

G
−1(p)

G(x)dx for all p ∈ (0, 1).

If we define ΨX(y) =
∫∞

y
F (x)dx and ΨY (y) =

∫∞
y

G(x)dx, x ∈ R, then
X ≤ew Y if, and only if,

Ψ−1
Y (z) − Ψ−1

X (z) is decreasing in z ≥ 0. (3.C.2)

In order to obtain another characterization of the ≤ew order, rewrite
(3.C.1) as∫ 1

p

(
F−1(u) − F−1(p)

)
du ≤

∫ 1

p

(
G−1(u) − G−1(p)

)
du (3.C.3)

(this can be formally verified by Fubini’s Theorem or, informally, by rewriting
the area of the region C in Figure 3.C.1 as the left-hand side above). It is thus
seen that X ≤ew Y if, and only if,
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G−1(p) − F−1(p) ≤ 1
1 − p

∫ 1

p

(
G−1(u) − F−1(u)

)
du, p ∈ (0, 1).

By a straightforward differentiation it can be verified that the latter is equiv-
alent to

1
1 − p

∫ 1

p

(
G−1(u) − F−1(u)

)
du is increasing in p ∈ (0, 1). (3.C.4)

Thus, X ≤ew Y if, and only if, (3.C.4) holds.

Let mX and mY , defined by mX(t) ≡
∫ ∞

t
F (x)dx

F (t)
and mY (t) ≡

∫ ∞
t

G(x)dx

G(t)
(for t’s for which the denominators are not 0), denote the mean residual life
functions associated with X and Y (see (2.A.1)). Then it is seen that X ≤ew Y
if, and only if,

mX(F−1(p)) ≤ mY (G−1(p)), p ∈ (0, 1). (3.C.5)

Also, X ≤ew Y if, and only if,

mX(F
−1

(p)) ≤ mY (G
−1

(p)), p ∈ (0, 1). (3.C.6)

Another characterization of the excess wealth order is given in Theorem
4.A.43.

Like the convex and the dispersive orders (see Theorems 3.A.7 and 3.B.3),
the excess wealth order can be characterized by means of Yaari functionals
Vh defined in (3.A.31). Recall that an increasing function h : [0, 1] → [0, 1] is
starshaped if h(t)/t is increasing on [0, 1].

Theorem 3.C.1. Let X and Y be two random variables with the same finite
means. Then X ≤ew Y if, and only if,

Vh(X) ≤ Vh(Y ) for every starshaped probability transformation function h.

Jewitt [256] considered an order, called the location independent riskier
order that can be denoted by ≤lir. It is shown in Fagiuoli, Pellerey, and Shaked
[188] that X ≤lir Y ⇐⇒ −X ≤ew −Y . Thus every result that holds for the
order ≤ew can be reworded by means of the order ≤lir.

3.C.2 Properties

It is easy to verify that the excess wealth order is location-independent. That
is,

X ≤ew Y =⇒ X + a ≤ew Y for any a ∈ R.

From (3.C.4) and Theorem 3.A.8 we see that

X ≤ew Y =⇒ X ≤dil Y. (3.C.7)
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It follows that if EX = EY , then

X ≤ew Y =⇒ X ≤cx Y. (3.C.8)

Shaked and Shanthikumar [518] showed that if X ≤cx Y , then it does not
necessarily follow that X ≤ew Y .

From (3.C.7), (3.A.32), and (3.A.4) it follows that

X ≤ew Y =⇒ Var(X) ≤ Var(Y ),

provided Var(Y ) < ∞.
From (3.C.3) and (3.B.1) we see that for random variables with finite

means, we have
X ≤disp Y =⇒ X ≤ew Y. (3.C.9)

A characterization of the excess wealth order, which is similar to the char-
acterization of the dispersive order, given in Theorem 3.B.2, is given next.

Theorem 3.C.2. Let X and Y be two random variables. Then X ≤ew Y
if, and only if, for all increasing convex functions φ and h such that φ and
ψ(·) ≡ h(φ(·)) are integrable with respect to the distribution of Y , and for
every real number c, we have that

Eφ(X − c) ≤ Eφ(Y ) =⇒ Eψ(X − c) ≤ Eψ(Y ).

It is worthwhile to mention that two twice differentiable functions φ and
ψ satisfy ψ(·) ≡ h(φ(·)) for some increasing convex function h if, and only if,
φ′′/φ′ ≤ ψ′′/ψ′.

Another characterization of the excess wealth order is described in the
following theorem. It is similar to the characterization of the convex order
in Theorem 3.A.45. Below, for any random variable Z, the function ΨZ is as
defined before (3.C.2).

Theorem 3.C.3. Let X and Y be two random variables with equal means.
Then X ≤ew Y if, and only if, there exist random variables Z1, Z2, . . ., with
distribution functions F1, F2, . . ., such that Z1 =st X, EZj = EY , j = 1, 2, . . .,
ΨZj (x) → ΨY (x) as j → ∞ for all x ∈ R, and, for any c ≥ 0, it holds that
S−(F j(·) − F j+1(· − c)

)
= 1 and the sign sequence is +,−, j = 1, 2, . . ..

An important closure property of the excess wealth order is given next.

Theorem 3.C.4. Let X and Y be two continuous random variables with finite
means. Then, for any increasing convex function φ, we have

X ≤ew Y =⇒ φ(X) ≤ew φ(Y ).

In the next two results we describe some relationships between the orders
≤ew and ≤mrl. We denote the left endpoint of the support of a random variable
X by lX .
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Theorem 3.C.5. Let X and Y be two random variables with distribution
functions F and G, respectively, with finite means, and with finite left end-
points lX and lY such that lX ≤ lY . If X ≤ew Y , and if either X or Y or both
are DMRL, then X ≤mrl Y .

Proof. We only give the proof for the case when the distribution functions F
and G of X and Y are continuous; the proof for the general case is similar,
though notationally more complex. Let (y0, p0), (y1, p1), and (y2, p2) be three
consecutive points of crossing as in the proof of Theorem 3.A.5 (see Figure
3.A.1). Note that by the continuity assumption we have pi = F (yi) = G(yi),
i = 0, 1, 2.

Suppose that Y is DMRL. For p ∈ [p1, p2] we have F−1(p) ≤ G−1(p), and
therefore, for such a p we have

mX(F−1(p)) ≤ mY (G−1(p)) ≤ mY (F−1(p)),

where the first inequality follows from (3.C.5), and the second from the as-
sumption that Y is DMRL. Thus,

mX(y) ≤ mY (y) for y ∈ [y1, y2]. (3.C.10)

If X (rather than Y ) is DMRL, then (3.C.10) follows from

mX(G−1(p)) ≤ mX(F−1(p)) ≤ mY (G−1(p)), p ∈ [p1, p2],

where the first inequality follows from the assumption that X is DMRL, and
the second from (3.C.5).

Since y0 = F−1(p0) = G−1(p0), from X ≤ew Y we also have that∫ ∞

y0

F (x)dx ≤
∫ ∞

y0

G(x)dx. (3.C.11)

Now let y ∈ (y0, y1). For x ∈ (y0, y) we have F (x) ≥ G(x). Therefore∫ y

y0

F (x)dx ≥
∫ y

y0

G(x)dx. (3.C.12)

Hence ∫ ∞

y

F (x)dx =
∫ ∞

y0

F (x)dx −
∫ y

y0

F (x)dx

≤
∫ ∞

y0

G(x)dx −
∫ y

y0

F (x)dx [by (3.C.11)]

≤
∫ ∞

y0

G(x)dx −
∫ y

y0

G(x)dx [by (3.C.12)]

=
∫ ∞

y

G(x)dx.
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Therefore ∫ ∞

y

F (x)dx ≤
∫ ∞

y

G(x)dx, for all y ∈ [y0, y1].

But since F (y) ≥ G(y) for y ∈ [y0, y1], we see that∫∞
y

F (x)dx

F (y)
≤
∫∞

y
G(x)dx

F (y)
≤
∫∞

y
G(x)dx

G(y)
.

So
mX(y) ≤ mY (y) for y ∈ [y0, y1]. (3.C.13)

That is, from (3.C.10) and (3.C.13) we have

mX(y) ≤ mY (y) for y ∈ [y0, y2].

In order to complete the proof we need to show that the interval [lX ,∞)
is a union of segments [y0, y2) as above. Suppose that a last point of crossing
of F and G exists, and denote it by (yl, pl). Denote (y′′

0 , p′′
0) = (yl−1, pl−1),

(y′′
1 , p′′

1) = (yl, pl), and (y′′
2 , p′′

2) = (∞, 1), where (yl−1, pl−1) is the point of the
next to the last crossing of F and G. From the facts that F−1(p′′

1) = G−1(p′′
1),

and that X ≤ew Y implies
∫∞

F −1(p′′
1 ) F (x)dx ≤

∫∞
G−1(p′′

1 ) G(x)dx, it follows that
F crosses G from below at (y′′

1 , p′′
1), and therefore the interval [y′′

0 ,∞) is of
the type described above.

Now suppose that a first point of crossing of F and G exists, and denote
it by (yf , pf ). If lX < lY , then at the first point of crossing, F crosses G from
above. Thus, from the above proof it follows that mX(y) ≤ mY (y) for all
y ≥ yf . The proof that mX(y) ≤ mY (y) also for y < yf is similar to the proof
of (3.C.10).

If lX = lY , then consider two possible cases: (a) in the first point of
crossing, F crosses G from above, and (b) in the first point of crossing, F
crosses G from below. In case (a) we obtain mX(y) ≤ mY (y) for all y, as we
obtained it above when lX < lY . In case (b) denote y′

0 = sup{y : F (y) =
G(y)}, p′

0 = F (y′
0), (y′

1, p
′
1) = (yf , pf ), and (y′

2, p
′
2) = (yf+1, pf+1), where

(yf+1, pf+1) is the point of the second crossing of F and G. The interval
[y′

0, y
′
2) is of the kind described above, and therefore mX(y) ≤ mY (y) for

y ∈ [y′
0, y

′
2), and from it it also follows that mX(y) ≤ mY (y) for y < y′

0. 
�

Theorem 3.C.6. Let X and Y be two random variables with distribution
functions F and G, respectively, with finite means, and with finite left end-
points lX and lY such that lX ≤ lY . If X ≤mrl Y , and if either X or Y or
both are IMRL, then X ≤ew Y .

Proof. Again, we only give the proof for the case when the distribution func-
tions F and G of X and Y are continuous; the proof for the general case is
similar, though notationally more complex. Let (y0, p0), (y1, p1), and (y2, p2)
be three consecutive points of crossing as in the proof of Theorem 3.A.5 (see
Figure 3.A.1).
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Suppose that Y is IMRL. For p ∈ [p1, p2] we have F−1(p) ≤ G−1(p), and
therefore, for such a p we have

mX(F−1(p)) ≤ mY (F−1(p)) ≤ mY (G−1(p)),

where the first inequality follows from X ≤mrl Y , and the second from the
assumption that Y is IMRL. Thus,

mX(F−1(p)) ≤ mY (G−1(p)) for p ∈ [p1, p2]. (3.C.14)

If X (rather than Y ) is IMRL, then (3.C.14) follows from

mX(F−1(p)) ≤ mX(G−1(p)) ≤ mY (G−1(p)), p ∈ [p1, p2],

where the first inequality follows from the assumption that X is IMRL, and
the second from X ≤mrl Y .

Since y0 = F−1(p0) = G−1(p0), from X ≤mrl Y we also have that

mX(F−1(p0)) ≤ mY (G−1(p0)). (3.C.15)

Now let p ∈ (p0, p1). Since F (x) ≥ G(x) for x ∈ [y0, y1] we see that∫ F −1(p)

y0

F (x)dx ≥
∫ F −1(p)

y0

G(x)dx ≥
∫ G−1(p)

y0

G(x)dx, (3.C.16)

where the second inequality follows from F−1(p) ≥ G−1(p). Therefore

mX(F−1(p)) =

∫∞
F −1(p) F (x)dx

1 − p

=

∫∞
y0

F (x)dx −
∫ F −1(p)

y0
F (x)dx

1 − p

≤
∫∞

y0
G(x)dx −

∫ G−1(p)
y0

G(x)dx

1 − p
[by (3.C.15) and (3.C.16)]

= mY (G−1(p)), for p ∈ [p0, p1].

So, from the preceding inequality and from (3.C.14) we obtain

mX(F−1(p)) ≤ mY (G−1(p)) for p ∈ [p0, p2].

In order to complete the proof we need to show that the interval [lX ,∞)
is a union of segments [y0, y2) as above. Suppose that a last point of crossing
of F and G exists, and denote it by (yl, pl). Denote (y′′

0 , p′′
0) = (yl−1, pl−1),

(y′′
1 , p′′

1) = (yl, pl), and (y′′
2 , p′′

2) = (∞, 1), where (yl−1, pl−1) is the point of the
next to the last crossing of F and G. From the facts that F (y′′

1 ) = G(y′′
1 ), and

that X ≤mrl Y implies
∫∞

y′′
1

F (x)dx ≤
∫∞

y′′
1

G(x)dx, it follows that F crosses



170 3 Univariate Variability Orders

G from below at (y′′
1 , p′′

1), and therefore the interval [y′′
0 ,∞) is of the type

described above.
Now suppose that a first point of crossing of F and G exists, and denote

it by (yf , pf ). If lX < lY , then at the first point of crossing, F crosses G from
above. Thus, from the above proof it follows that mX(F−1(p)) ≤ mY (G−1(p))
for all p ≥ pf . The proof that mX(F−1(p)) ≤ mY (G−1(p)) also for p < pf is
similar to the proof of (3.C.14).

If lX = lY , then consider two possible cases: (a) in the first point of cross-
ing, F crosses G from above, and (b) in the first point of crossing, F crosses
G from below. In case (a) we obtain mX(F−1(p)) ≤ mY (G−1(p)) for all p, as
we obtained it above when lX < lY . In case (b) denote y′

0 = sup{y : F (y) =
G(y)}, p′

0 = F (y′
0), (y′

1, p
′
1) = (yf , pf ), and (y′

2, p
′
2) = (yf+1, pf+1), where

(yf+1, pf+1) is the point of the second crossing of F and G. The interval [y′
0, y

′
2)

is of the kind described above, and therefore mX(F−1(p)) ≤ mY (G−1(p)) for
p ∈ [p′

0, p
′
2), and from it it also follows that mX(F−1(p)) ≤ mY (G−1(p)) for

p ≤ p′
0.

In summary, we have shown that mX(F−1(p)) ≤ mY (G−1(p)) for all p ∈
(0, 1). Therefore X ≤ew Y by (3.C.5). 
�

The following few results give conditions under which the order ≤ew is
closed under convolutions.

Theorem 3.C.7. Let (Xi, Yi), i = 1, 2, . . . , m, be independent pairs of ran-
dom variables such that Xi ≤ew Yi, i = 1, 2, . . . , m. If Xi, Yi, i = 1, 2, . . . , m,
all have (continuous or discrete) logconcave densities, except possibly one Xl

and one Yk (l �= k), then
m∑

i=1

Xi ≤ew

m∑
i=1

Yi.

In order to prove Theorem 3.C.7 one first proves that if X and Y are
two random variables such that X ≤ew Y , and if Z is a random variable
with logconcave density that is independent of X and of Y , then X + Z ≤ew
Y + Z. The statement of the theorem can then be derived from the fact that
a convolution of random variables with logconcave densities has a logconcave
density. We do not give the details here.

The next two results are analogs of Theorems 3.B.7 and 3.B.8.

Theorem 3.C.8. The random variable X satisfies

X ≤ew X + Y for any random variable Y independent of X

if, and only if, X is IFR.

Theorem 3.C.9. Let Z be a random variable. Then

X + Z ≤ew Y + Z whenever X ≤disp Y and Z is independent of X and Y

if, and only if, Z is IFR.
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Since a convolution of IFR random variables is IFR (see Corollary 1.B.39),
repeated application of Theorem 3.C.9 yields the following result, which is an
analog of Theorem 3.B.9.

Theorem 3.C.10. Let X1, X2, . . . , Xn be a set of independent random vari-
ables, and let Y1, Y2, . . . , Yn be another set of independent random variables.
If the Xi’s and the Yi’s are all IFR, and if Xi ≤disp Yi, i = 1, 2, . . . , n, then

n∑
i=1

Xi ≤ew

n∑
i=1

Yi.

An interesting closure property of the order ≤ew is given next.

Theorem 3.C.11. Let X1, X2, . . . be a collection of independent and iden-
tically distributed random variables, and let Y1, Y2, . . . be another collection
of independent and identically distributed random variables. Also, let N be a
positive, integer-valued, random variable, independent of the Xi’s and of the
Yi’s. If X1 ≤ew Y1, then max{X1, X2, . . . , XN} ≤ew max{Y1, Y2, . . . , YN}.

The following result may be compared to Theorem 3.B.31. By (3.C.9), we
assume below less than is assumed in Theorem 3.B.31, but the conclusion is
weaker. We use below the notation for spacings that was used in Theorem
3.B.31.

Theorem 3.C.12. Let X and Y be two random variables. If X ≤ew Y , then
EU(n−1:n) ≤ EV(n−1:n) for n = 2, 3, . . ..

The order ≤ew can be used to characterize DMRL and IMRL random vari-
ables. The following result may be compared with Theorems 2.A.23, 2.B.17,
3.A.56, and 4.A.51. As in Section 1.A.3, [Z

∣∣A] denotes any random variable
that has as its distribution the conditional distribution of Z given A.

Theorem 3.C.13. Let X be a continuous random variable with a finite left
endpoint of its support lX . Then X is DMRL [IMRL] if, and only if, any one
of the following equivalent conditions holds:

(i) [X − t
∣∣X > t] ≥ew [≤ew] [X − t′

∣∣X > t′] whenever t′ ≥ t ≥ lX .
(ii) X ≥ew [≤ew] [X − t

∣∣X > t] for all t ≥ lX (when lX = 0).

The proof of this result is omitted.

3.D The Peakedness Order

3.D.1 Definition

In this section we discuss a variability order that applies to random variables
with symmetric distribution functions. This is one of the oldest (if not the
oldest) variability notions that can be found in the literature. It stochastically
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compares random variables according to their distance from their center of
symmetry.

Let X be a random variable with a distribution function that is symmetric
about µ, and let Y be another random variable with a distribution function
that is symmetric about ν. Suppose that

|X − µ| ≤st |Y − ν|.

Then X is said to be smaller than Y in the peakedness order (denoted by
X ≤peak Y ). Note that, in the literature, often X is said to be more peaked
about µ than Y about ν if X ≤peak Y .

The following result is easy to prove.

Theorem 3.D.1. Let X and Y be two random variables with different dis-
tribution functions, but with the same mean. Suppose that the distribution
functions F and G, of X and Y , respectively, are symmetric about the com-
mon mean. Then X ≤peak Y if, and only if,

S−(G − F ) = 1 and the sign sequence is +,−,

where S− is defined in (1.A.18).

3.D.2 Some properties

The peakedness order satisfies some desirable closure properties. For example,
it is easy to verify the following result.

Theorem 3.D.2. Let X be a random variable with a symmetric distribution
function. Then

X ≤peak aX whenever a ≥ 1.

The closure results in the next theorem can also be easily verified.

Theorem 3.D.3. (a) Let X, Y , and Θ be random variables such that the
distribution functions of [X

∣∣Θ = θ] are symmetric about some µ (which
is independent of θ) and the distribution functions of [Y

∣∣Θ = θ] are
symmetric about some ν (which is also independent of θ) and such that
[X
∣∣Θ = θ] ≤peak [Y

∣∣Θ = θ] for all θ in the support of Θ. Then X ≤peak Y .
That is, the peakedness order is closed under mixtures.

(b) Let {Xj , j = 1, 2, . . . } and {Yj , j = 1, 2, . . . } be two sequences of random
variables with symmetric distribution functions such that Xj →st X and
Yj →st Y as j → ∞. If Xj ≤peak Yj, j = 1, 2, . . ., then X ≤peak Y .

The peakedness order is also closed under convolutions of random variables
that have unimodal symmetric distribution functions (that is, with mode at
their center of symmetry). This is shown next.
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Theorem 3.D.4. Let X1, X2, . . . , Xn and Y1, Y2, . . . , Yn be two sets of inde-
pendent random variables, all having distribution functions that are symmetric
about possibly different centers, and all having unimodal densities with pos-
sibly some probability mass at their respective centers. If Xi ≤peak Yi for
i = 1, 2, . . . , n, then

n∑
i=1

Xi ≤peak

n∑
i=1

Yi.

In particular, X ≤peak Y , where X and Y denote the corresponding sample
means.

Proof. Without loss of generality we may assume that all the centers of the
Xi’s and of the Yi’s are 0. First we prove the result for n = 2. Let F1, F2, G1,
and G2 denote the distribution functions of X1, X2, Y1, and Y2, respectively.
Select an a > 0. Then

P{|X1 + X2| ≤ a} = 2
∫ ∞

0
[F1(x + a) − F1(x − a)]dF2(x)

≥ 2
∫ ∞

0
[F1(x + a) − F1(x − a)]dG2(x)

= 2
∫ ∞

0
[G2(x + a) − G2(x − a)]dF1(x)

≥ 2
∫ ∞

0
[G2(x + a) − G2(x − a)]dG1(x)

= P{|Y1 + Y2| ≤ a},

where the first inequality follows from the unimodality of X1 (therefore, the
integrand is decreasing in x ≥ 0) and from X2 ≤peak Y2, and the second
inequality follows from the unimodality of Y2 and from X1 ≤peak Y1. This
proves the result for n = 2. The general result can be obtained by a simple
induction together with the observation that a sum of independent random
variables, all having distribution functions that are symmetric about 0 and all
having unimodal densities, also has a unimodal density symmetric about 0.

�

If X1, X2, . . . are independent and identically distributed random vari-
ables, then, for each n, we denote by Xn the sample mean of X1, X2, . . . , Xn.
That is, Xn = (X1 + X2 + · · · + Xn)/n. In Example 3.A.29 it is shown that
Xn ≤cx Xn−1. The following result shows that a similar property holds for
the peakedness order under an additional condition.

Theorem 3.D.5. If X1, X2, . . . are independent and identically distributed
random variables, having a common logconcave density function that is sym-
metric about a common value, then for each n ≥ 2 one has

Xn ≤peak Xn−1.
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A relationship between the dispersive and the peakedness orders is de-
scribed next.

Theorem 3.D.6. Let X and Y be two random variables having distribution
functions that are symmetric about possibly different centers. If X ≤disp Y ,
then X ≤peak Y .

3.E Complements

Section 3.A: For historical reasons, the convex order is sometimes referred
to as “dilation.” However, in recent literature the order defined in (3.A.32)
is often called the dilation order. Some standard references about the con-
vex order are Ross [475] and Müller and Stoyan [419], where many of the
results described in Section 3.A can be found. Another monograph that
studies the convex order (under the mask of the Lorenz order) is Arnold
[19], and many of the results in this section that deal directly with the
Lorenz order can be found there. The proof of Theorem 3.A.2 is taken from
Muñoz-Perez and Sanches-Gomez [421]; an alternative proof, using ideas
from the area of comparison of experiments, can be found in Torgersen
[551, page 369]. Result (3.A.12) is taken from Hickey [223]. The present
version of the characterization of the convex order given in Theorem 3.A.4
is taken from Müller and Rüschendorf [415]. The characterization of the
convex order in Theorem 3.A.5 can be found in Fagiuoli, Pellerey, and
Shaked [188]; see also Levy and Kroll [346] and Ramos and Sordo [463].
The characterization of the convex order by means of Yaari functionals
(Theorem 3.A.7) can be found in Chateauneuf, Cohen, and Meilijson [127].
The characterization of the dilation order, given in Theorem 3.A.8, is taken
from Fagiuoli, Pellerey, and Shaked [188]. The characterization given in
Theorem 3.A.9 can be found in Ramos and Sordo [463]. The characteriza-
tion of the Lorenz order by means of the Lorenz zonoids (Theorem 3.A.11)
is taken from Arnold [20]. The result about the convex ordering of ran-
dom sums (Theorem 3.A.13) is a special case of a result of Jean-Marie and
Liu [254]; the extensions of it when the underlying random variables are
identically distributed (Theorems 3.A.14–3.A.16) are taken from Pellerey
[450]. Theorem 3.A.17 and some related results can be found in Berger
[79]. The property of the increase in the dilation order with an increase in
the scale (Theorem 3.A.18) is taken from Hickey [223]. The result about
the dilation ordering of two differences (Theorem 3.A.19) can be found
in Kochar and Carrière [312]. The convex order lower bound on

∑n
i=1 Xi,

given in Theorem 3.A.20, is taken from Vyncke, Goovaerts, De Schepper,
Kaas, and Dhaene [557]. The property of inheritance of the convex order
from the mixing random variables to the mixed ones (Theorem 3.A.21) can
be found in Schweder [499]; its variation, Theorem 3.A.23, is taken from
Kottas and Gelfand [323]. The property of the preservation of the convex
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order under products of nonnegative random variables (Corollary 3.A.22)
can be found in Whitt [562]. The Lorenz order comparison of g(X) and
h(X) (Theorem 3.A.26) can be found in Wilfling [566]. The relationship
between the orders ≤Lorenz and ≤hmrl, given in Theorem 3.A.28, is taken
from Lefèvre and Utev [340]. The result about the convex ordering of the
sample means (Example 3.A.29) can be found in Marshall and Olkin [383,
page 288]. Its generalizations (Theorem 3.A.30 and Corollary 3.A.31) are
taken from Denuit and Vermandele [158] and from O’Cinneide [439]. The
convex order comparison of scaled Poisson random variables (Example
3.A.32) is inspired by a result at the end of page 1078 in Bäuerle [60]. The
convex order comparison in Theorem 3.A.33 can be found in O’Cinneide
[439]. The closure property (3.A.50) of the dilation order can be found in
Muñoz-Perez and Sanches-Gomez [421]. The majorization result (Theo-
rem 3.A.35) is a special case of a result of Marshall and Proschan [384];
related results can be found in Ma [375]. The preservation of the convex
order under linear convex combinations (Theorem 3.A.36) is taken from
Pellerey [452]. The convex order comparison of sums of random variables
with random coefficients (Theorem 3.A.37) can be found in Ma [375]. The
particular case of it, given in Example 3.A.38, is a result of Karlin and
Novikoff [277]; Marshall and Olkin [383, Section 15.E] obtained a gener-
alization of this special case which is different from the result in Theorem
3.A.37. The convex order comparison of sums of positively [respectively,
negatively] associated random variables, and independent random vari-
ables, given in Theorem 3.A.39, can be found in Denuit, Dhaene, and
Ribas [143] [respectively, Shao [535]]; see also Boutsikas and Vaggelatou
[107]. The Laplace transform characterization of the order ≤cx (Theo-
rem 3.A.40) is taken from Shaked and Wong [524]; see also Kan and Yi
[274]. The convex order comparison of posterior means, in the context of
statistical experiments (Example 3.A.41), is essentially taken from Baker
[30]. The condition for stochastic equality of ≤cx-ordered random vari-
ables (Theorem 3.A.42) is a special case of a result by Denuit, Lefèvre,
and Shaked [151], whereas its generalization (Theorem 3.A.43) has been
motivated by a result in Bhattacharjee and Bhattacharya [87]; see also
Huang and Lin [249]. The result that gives sufficient conditions for the
convex order by means of the number of crossings of the underlying den-
sities or distribution functions (Theorem 3.A.44) is taken from Shaked
[502], but its origins may be found in Karlin and Novikoff [277], if not be-
fore. A proof of the characterization of the convex order by means of the
number of crossings of two distribution functions (Theorem 3.A.45) can
be found in Müller [407]; similar results are given in Borglin and Keiding
[106]. The convex order comparison of normalized Bernoulli random vari-
ables (Example 3.A.48) can be found in Makowski [379]. The necessary
and sufficient conditions for the comparison of normal random variables
(Example 3.A.51) are taken from Müller [413]. The relations ≤uv and ≤lc
were introduced in Whitt [564] as means to identify the order ≤cx. The
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characterization of DMRL and IMRL random variables by means of the
convex order (Theorem 3.A.56) is taken from Belzunce, Candel, and Ruiz
[64]. The relationships between the orders ≤dil and ≤mrl that are described
in Theorems 3.A.57 and 3.A.58 can be found in Belzunce, Pellerey, Ruiz,
and Shaked [72] where further related results can also be found.

The results on the m-convex order (Section 3.A.5) are mostly taken from
Denuit, Lefèvre, and Shaked [151]. The condition that implies the stochas-
tic equality of ≤S

m-cx-ordered random variables (Theorem 3.A.60) is taken
from Denuit, Lefèvre, and Shaked [152]. The method for deriving the dis-
tributions of the stochastic extrema in Bm([0, b];µ1, µ2, . . . , µm−1) is taken
from Denuit, De Vylder, and Lefèvre [142]. The stochastic comparisons of
the Gamma, inverse Gaussian, and lognormal random variables (Example
3.A.67) are taken from Kaas and Hesselager [270]. Tables 3.A.1 and 3.A.2
can be found in Denuit, Lefèvre, and Shaked [153, 154]. Theorem 3.A.63
can be found in Denuit, Lefèvre, and Utev [155]. The result about the
2m-cx ordering of two differences (Theorem 3.A.64) is taken from Bas-
san, Denuit, and Scarsini [52]. Denuit and Lefèvre [146], Denuit, Lefèvre,
and Utev [156], and Denuit, Lefèvre, and Mesfioui [149] studied discrete
analogs of the m-convex order; in particular they obtained some analogs
of the results in Section 3.A.5 for arithmetic random variables, as well as
some specific results for the discrete case. Denuit, Lefèvre, and Utev [155]
extended the m-convex order to Tchebycheff-type orders; see also Lynch
[367].

Bhattacharjee [85] studied the order ≤cx under the restriction that the
compared random variables are discrete.

Metzger and Rüschendorf [393] studied variability orderings, which are
related to ≤uv and ≤lc, defined by requiring the ratio of the distribu-
tion functions F/G or of the survival functions F/G to be unimodal. For
example, they showed that if X and Y are two random variables with dis-
tribution functions F and G, respectively, such that supp(X) ⊆ supp(Y ),
and if X ≤uv Y , then F/G is unimodal. They also considered the or-
der defined by requiring the ratio of a shifted density to another density
f(· + a)/g(·) to be unimodal for all a. This order is to be compared with
the order ≤uv and also with the order ≤lr↑ studied in Section 1.C.4.

Müller [412] considered an order that is defined by requiring (3.A.1) to
hold for all so-called (a, b)-concave functions. Other related stochastic or-
ders can be found in Müller [412] as well.

An order which is related to the Lorenz order is studied in Zenga [576].
Section 3.B: Doksum [169] studied some properties of the dispersive order

by stipulating (3.B.10) and calling it the “tail-order” (see Deshpande and
Kochar [159] for further early references in which this order is studied).
A basic paper on the dispersive order is Shaked [503] where many of the
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equivalent conditions described in Section 3.B.1 can be found. The condi-
tions (3.B.3), (3.B.4), and (3.B.6) are taken, respectively, from Saunders
[489], Hickey [223], and Muñoz-Perez [420]. Another characterization of
the order ≤disp, which is related to (3.B.3), is given in Burger [115]. The
observation (3.B.15) has been noted in Müller and Stoyan [419]. The char-
acterization of the dispersive order by means of the observed total time on
test random variables (Theorem 3.B.1) can be found in Bartoszewicz [42];
other related results can be found in Bartoszewicz [39, 42]. The notion of
Q-addition was introduced in Muñoz-Perez [420]. The characterization of
the dispersive order given in Theorem 3.B.2 is taken from Landsberger
and Meilijson [330]. The characterization of the dispersive order by means
of Yaari functionals (Theorem 3.B.3) can be found in Chateauneuf, Co-
hen, and Meilijson [127]. The properties described in Section 3.B.2 have
been collected from many sources. The result of Theorem 3.B.7 can be
found in Droste and Wefelmeyer [171]. Several versions of Theorem 3.B.8
can be found in Lewis and Thompson [347] and in Lynch, Mimmack, and
Proschan [368]. Some versions of Theorem 3.B.10 can be found in Bar-
toszewicz [37] and in Rojo and He [472]. Some related results appear in
Hickey [223]; for example, his Theorem 4 can be obtained from (3.B.21)
applied to the decreasing convex case. Theorems 3.B.14 and 3.B.15 are
also taken from that paper. The relationship between the orders ≤disp
and ≤conv, given in (3.B.26), was noted in Shaked and Suarez-Llorens
[520]. The sufficient condition for the dispersive order by means of com-
parison of shifted hazard rate functions (Theorem 3.B.18) can be found in
Belzunce, Lillo, Ruiz, and Shaked [69]. Theorem 3.B.19 has been proved
in Mailhot [377], whereas Theorem 3.B.20 combines results from Bar-
toszewicz [38, 40] and Bagai and Kochar [29]. The relationships between
the orders ≤disp and ≤mrl, given in Theorem 3.B.21, can be found in Bar-
toszewicz [44]. The result about the dispersive ordering of order statistics
of DFR random variables (Example 3.B.22) is taken from Kochar [308];
some other related results can also be found there. The results about the
dispersive ordering of the spacings of DFR random variables (Example
3.B.23) are taken from Kochar and Kirmani [313] and from Khaledi and
Kochar [285]; an extension of these results can be found in Belzunce,
Hu, and Khaledi [68]. The characterizations of IFR and DFR random
variables by means of the dispersive order (Theorems 3.B.24 and 3.B.25)
have been derived by Belzunce, Candel, and Ruiz [64], and by Pellerey
and Shaked [456]. The results on the dispersive order comparisons of or-
der statistics and spacings (Theorems 3.B.26, 3.B.28, 3.B.29, and 3.B.31)
can be found in Bartoszewicz [39], in Khaledi and Kochar [286], and in
Oja [440], whereas Example 3.B.30 is mentioned in Kleiber [303]; related
results can be found in Alzaid and Proschan [14], in Belzunce, Hu, and
Khaledi [68], in Belzunce, Mercader, and Ruiz [70], and in Hu and Zhuang
[247]. An extension of Theorem 3.B.26 to order statistics from samples
with random size can be found in Nanda, Misra, Paul, and Singh [427].
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The dispersive order comparisons of maxima of heterogeneous exponen-
tial random variables (Example 3.B.32) are taken from Dykstra, Kochar,
and Rojo [174] and from Khaledi and Kochar [287], whereas the com-
parison of the spacings (Example 3.B.33) is taken from Kochar and Kor-
war [314]. The comparison of sums of heterogeneous exponential random
variables (Example 3.B.34) can be found in Kochar and Ma [317]. The
comparisons of sums of uniform and Gamma random variables (Exam-
ples 3.B.35 and 3.B.36) are slightly weaker than results that are given
in Khaledi and Kochar [288, 289]. The result about the dispersive order
comparison of the successive epochs of a nonhomogeneous Poisson process
(Example 3.B.37) is given in Kochar [310], though it is stated by means
of the dispersive order comparison of successive record values of a se-
quence of independent and identically distributed random variables with
a common DFR distribution function. The dispersive order comparison
of epoch times of nonhomogeneous Poisson processes (Example 3.B.38)
can be found in Belzunce, Lillo, Ruiz, and Shaked [69] and in Yue and
Cao [575]. The results about the dispersive order comparisons of random
minima and maxima (Example 3.B.39) are taken from Shaked and Wong
[526]; a simple proof of these results is given in Bartoszewicz [49]. The com-
parison of t-distributed random variables (Example 3.B.40) can be found
in Arias-Nicolás, Fernández-Ponce, Luque-Calvo, and Suárez-Llorens [17],
whereas the comparison of weighted random variables (Example 3.B.41)
can be found in Bartoszewicz and Skolimowska [51]. Finally, the result of
Theorem 3.B.42 has been derived by Giovagnoli and Wynn [211] in order
to motivate a definition of multivariate dispersive order (see Section 7.B);
Theorem 3.B.42 was also obtained by Kusum, Kochar, and Deshpande
[327] who actually derived it for logarithms of positive random variables.

Fernández-Ponce and Suárez-Llorens [197] introduced a “weakly disper-
sive” order by requiring that, corresponding to every interval of length ε
in the support of the “larger” variable, there exists an interval of the same
length in the support of the “smaller” variable, such that the probability
mass of the latter with respect to the distribution of the “smaller” variable
is at least as large as the probability mass of the former with respect to
the distribution of the “larger” variable.

Belzunce, Hu, and Khaledi [68] studied an order, which they denoted by
≤disp-hr, that is stronger than the order ≤disp.

Condition (3.B.1) can be written as

F−1(β) − F−1(α)
G−1(β) − G−1(α)

≤ M whenever 0 < α < β < 1,

where M = 1. Lehmann [344] considered this condition for other possible
values of M in order to compare the tails of F and G. Burger [115] studied,
among other things, the above condition (with M = 1), but only for α
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and β such that 0 < α < G−1(µ) < β < 1, where µ is some constant.
Rojo [471] studied the above condition with M = ∞ in the sense

lim sup
u→1

F−1(u)
G−1(u)

< ∞,

and Bartoszewicz [43] obtained comparison results, with respect to the
latter order, for the observed total time on test random variables Xttt
and Yttt, with distribution functions as defined in (1.A.19).

Section 3.C: Most of the results, about the excess wealth order, that are
described in this section are taken from Shaked and Shanthikumar [518],
Fagiuoli, Pellerey, and Shaked [188], and Kochar, Li, and Shaked [316].
Fernandez-Ponce, Kochar, and Muñoz-Perez [195] also studied the excess
wealth order by the name of the right spread order. The characterization
of the excess wealth order given in (3.C.2) is taken from Chateauneuf, Co-
hen, and Meilijson [127]; the characterization of the excess wealth order
by means of Yaari functionals (Theorem 3.C.1) can be found in that paper
as well. The characterization of the excess wealth order given in Theorem
3.C.2 is a translation of the definition of the order ≤lir into the order
≤ew, which can be done by virtue of Lemma 3.1 of Fagiuoli, Pellerey, and
Shaked [188]. The characterization of the excess wealth order by means
of the number of crossings of two distribution functions (Theorem 3.C.3)
can be obtained in a similar manner from a correction by Müller [410]
of Theorem 1 in Landsberger and Meilijson [330]. The conditions for the
preservation of the order ≤ew under convolutions (Theorems 3.C.7–3.C.10)
can essentially all be found in Hu, Chen, and Yao [231]. The result about
the preservation of the excess wealth order under random maxima (Theo-
rem 3.C.11) is taken from Li and Zuo [358], and the result that compares
the expected values of the extreme spacings (Theorem 3.C.12) is a special
case of a result of Li [353]. The characterization of DMRL and IMRL ran-
dom variables by the order ≤ew (Theorem 3.C.13) is taken from Belzunce
[63].

Belzunce, Hu, and Khaledi [68] studied a stochastic order, denoted by
≤disp-mrl, which is stronger than the order ≤ew.

Section 3.D: The peakedness order was introduced by Birnbaum [90]. The
characterization of this order, given in Theorem 3.D.1, was observed in
Kottas and Gelfand [323]. Theorem 3.D.4 was essentially proven by Birn-
baum [90]; the proof given here is adopted from Bickel and Lehmann [89].
The result about the monotonicity of the sample means in the sense of the
peakedness order (Theorem 3.D.5) is given in Proschan [461]; an extension
of Theorem 3.D.5 can be found in Ma [372]. The relationship between the
dispersive and the peakedness orders, given in Theorem 3.D.6, was ob-
served in Shaked [503].



4

Univariate Monotone Convex and Related
Orders

In Chapter 1 we studied orders that compare random variables according to
their “magnitude”. In Chapter 3 the studied orders compare random variables
according to their “variability”. The orders that are discussed in this chap-
ter compare random variables according to both their “location” and their
“spread”. The most important and common orders that are studied in this
chapter are the increasing convex and the increasing concave orders. Also the
transform orders that are studied here, that is, the convex, the star, and the
superadditive orders, are of interest in many theoretical and practical appli-
cations. In addition, some other related orders are investigated in this chapter
as well.

4.A The Monotone Convex and Monotone Concave
Orders

4.A.1 Definitions and equivalent conditions

Let X and Y be two random variables such that

E[φ(X)] ≤ E[φ(Y )]
for all increasing convex [concave] functions φ : R → R, (4.A.1)

provided the expectations exist. Then X is said to be smaller than Y in the
increasing convex [concave] order (denoted by X ≤icx Y [X ≤icv Y ]). Roughly
speaking, if X ≤icx Y , then X is both “smaller” and “less variable” than Y
in some stochastic sense. Similarly, if X ≤icv Y , then X is both “smaller” and
“more variable” than Y in some stochastic sense.

One can also define a decreasing convex [concave] order by requiring
(4.A.1) to hold for all decreasing convex [concave] functions φ (denoted by
X ≤dcx [≤dcv] Y ). The terms “decreasing convex” and “decreasing concave”
are counterintuitive in the sense that if X is smaller than Y in the sense



182 4 Univariate Monotone Convex and Related Orders

of either of these two orders, then X is “larger” than Y in some stochastic
sense. These orders can be easily characterized using the orders ≤icx and ≤icv.
Therefore, it is not necessary to have a separate discussion for these orders.

In analogy with Theorem 3.A.12(a), the orders ≤icx and ≤icv are related
to each other as follows.

Theorem 4.A.1. Let X and Y be two random variables. Then

X ≤icx [≤icv] Y ⇐⇒ −X ≥icv [≥icx] − Y.

The proof of Theorem 4.A.1 is based on the fact that a function φ satisfies
that φ(x) is increasing and convex in x if, and only if, −φ(−x) is increasing
and concave in x. We omit the straightforward details.

Note that the function φ, defined by φ(x) = x, is increasing and is both
convex and concave. Therefore, from (4.A.1) it follows that

X ≤icx Y =⇒ E[X] ≤ E[Y ] (4.A.2)

and that
X ≤icv Y =⇒ E[X] ≤ E[Y ], (4.A.3)

provided the expectations exist.
Let F [F ] and G [G] be the survival [distribution] functions of X and Y ,

respectively. For a fixed a, the function φa, defined by φa(x) = (x − a)+, is
increasing and convex. Therefore, if X ≤icx Y , then

E[(X − a)+] ≤ E[(Y − a)+] for all a, (4.A.4)

provided the expectations exist. Alternatively, using a simple integration by
parts, it is seen that (4.A.4) can be rewritten as∫ ∞

x

F (u)du ≤
∫ ∞

x

G(u)du for all x, (4.A.5)

provided the integrals exist. For any real number a let a− denote the negative
part of a, that is, a− = a if a ≤ 0 and a− = 0 if a > 0. For a fixed a, the
function ζa, defined by ζa(x) = (x−a)−, is increasing and concave. Therefore,
if X ≤icv Y , then

E[(X − a)−] ≤ E[(Y − a)−] for all a, (4.A.6)

provided the expectations exist. Alternatively, again using a simple integration
by parts, it is seen that (4.A.6) can be rewritten as∫ x

−∞
F (u)du ≥

∫ x

−∞
G(u)du for all x, (4.A.7)

provided the integrals exist.
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In fact (4.A.5) [(4.A.7)] is equivalent to X ≤icx Y [X ≤icv Y ]. To see it,
note that every increasing convex [concave] function can be approximated by
(that is, is a limit of) positive linear combinations of the functions φa’s [ζa’s],
for various choices of a’s. By (4.A.5), E[φa(X)] ≤ E[φa(Y )] for all a, and
this fact implies (4.A.1) in the increasing convex case. Similarly, by (4.A.7),
E[ζa(X)] ≤ E[ζa(Y )] for all a, and this fact implies (4.A.1) in the increasing
concave case. We thus have proved the following result.

Theorem 4.A.2. Let X and Y be two random variables. Then X ≤icx Y
[X ≤icv Y ] if, and only if, (4.A.5) [(4.A.7)] holds.

The next two results give further characterizations of the order ≤icx. The
first one is an analog of Theorem 3.A.5.

Theorem 4.A.3. Let X and Y be two random variables with distribution
functions F and G, respectively. Then X ≤icx Y if, and only if,∫ 1

p

F−1(u)du ≤
∫ 1

p

G−1(u)du for all p ∈ [0, 1].

Theorem 4.A.4. Let X and Y be two random variables with distribution
functions F and G, respectively. Then X ≤icx Y if, and only if,∫ 1

0
F−1(u)dφ(u) ≤

∫ 1

0
G−1(u)dφ(u)

for all increasing convex functions φ : [0, 1] → R.

Another necessary and sufficient condition for X ≤icx Y is the following:

F−1(p) +
1

1 − p

∫ ∞

F −1(p)
F (x)dx

≤ G−1(p) +
1

1 − p

∫ ∞

G−1(p)
G(x)dx, p ∈ (0, 1). (4.A.8)

Condition (4.A.8) may be compared with (3.C.1); see also Corollary 4.A.32.
An important characterization of the increasing convex and the increasing

concave orders by construction on the same probability space is stated next.

Theorem 4.A.5. Two random variables X and Y satisfy X ≤icx Y [X ≤icv
Y ] if, and only if, there exist two random variables X̂ and Ŷ , defined on the
same probability space, such that

X̂ =st X,

Ŷ =st Y,

and {X̂, Ŷ } is a submartingale [{Ŷ , X̂} is a supermartingale], that is,
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E[Ŷ
∣∣X̂] ≥ X̂ [E[X̂

∣∣Ŷ ] ≤ Ŷ ] almost surely. (4.A.9)

Furthermore, the random variables X̂ and Ŷ can be selected such that [Ŷ
∣∣X̂ =

x] [[X̂
∣∣Ŷ = x]] is increasing in x in the usual stochastic order ≤st.

The proof of this theorem is similar to the proof of Theorem 3.A.4. It is
not easy to prove the constructive part of Theorem 4.A.5. However, it is easy
to prove that if random variables X̂ and Ŷ as described in the theorem exist,
then X ≤icx Y [X ≤icv Y ]. For example, if the first inequality in (4.A.9) holds
and if φ is an increasing convex function, then, using Jensen’s Inequality,

E[φ(X)] = E[φ(X̂)] ≤ E{φ(E[Ŷ
∣∣X̂])}
≤ E{E[φ(Ŷ )

∣∣X̂]} = E[φ(Ŷ )] = E[φ(Y )],

which is (4.A.1).

Theorem 4.A.6. (a) Two random variables X and Y satisfy X ≤icx Y if,
and only if, there exists a random variable Z such that

X ≤st Z ≤cx Y.

(b) Two random variables X and Y satisfy X ≤icx Y if, and only if, there
exists a random variable Z such that

X ≤cx Z ≤st Y.

(c) Two random variables X and Y satisfy X ≤icv Y if, and only if, there
exists a random variable Z such that

X ≤cv Z ≤st Y.

(d) Two random variables X and Y satisfy X ≤icv Y if, and only if, there
exists a random variable Z such that

X ≤st Z ≤cv Y.

Proof. First we prove part (a). It is obvious (see, for example, Theorem 4.A.34
below) that X ≤st Z ≤cx Y =⇒ X ≤icx Y . So suppose that X ≤icx Y . Let X̂
and Ŷ be defined on the same probability space, as in Theorem 4.A.5. Define
Ẑ = E[Ŷ

∣∣X̂]. It is seen that E[Ŷ
∣∣Ẑ] = E[Ŷ

∣∣X̂] = Ẑ. Thus, by Theorem 3.A.4,
Ẑ ≤cx Ŷ . Also, by Theorem 4.A.5, X̂ ≤ Ẑ, and therefore, by Theorem 1.A.1,
X̂ ≤st Ẑ. Letting Z have the same distribution as Ẑ, we obtain the stated
result.

Now we prove part (b). Again it is obvious that X ≤cx Z ≤st Y =⇒
X ≤icx Y . So suppose that X ≤icx Y . Let X̂ and Ŷ be defined on the same
probability space, as in Theorem 4.A.5. Let Ẑ = Ŷ + X̂ − E[Ŷ

∣∣X̂]. Then,
by Theorem 4.A.5, Ẑ ≤ Ŷ , and therefore, by Theorem 1.A.1, Ẑ ≤st Ŷ . Also,
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E[Ẑ
∣∣X̂] = X̂, and thus, by Theorem 3.A.4, X̂ ≤cx Ẑ. Letting Z have the

same distribution as Ẑ, we obtain the stated result.
Parts (c) and (d) can be proven similarly. Alternatively, using Theorem

4.A.1, part (c) can be obtained from part (a), and part (d) can be obtained
from part (b). 
�

The following bivariate characterization of the orders ≤icx and ≤icv is
analogous to Theorem 3.A.6. Its proof is similar to the proof of Theorem 3.A.6
and is therefore omitted. Define the following classes of bivariate functions:

Gicx = {φ : R
2 → R : φ(x, y) − φ(y, x) is increasing and convex in x for all y}

and

Gicv = {φ : R
2 → R : φ(x, y)−φ(y, x) is increasing and concave in x for all y}.

Theorem 4.A.7. Let X and Y be independent random variables. Then X
≤icx Y [X ≤icv Y ] if, and only if,

E[φ(X, Y )] ≤ E[φ(Y, X)] for all φ ∈ Gicx [Gicv].

Another characterization of the increasing convex order, by means of the
number of sign changes of two distribution functions, is given in Theorem
4.A.23 below.

4.A.2 Closure properties and some characterizations

Using (4.A.1) through (4.A.9) it is easy to prove each of the closure results
in the first two parts of the following theorem. The last two parts can be
proven as in Theorem 3.A.12. (Recall from Section 1.A.3 that for any random
variable Z and any event A we denote by [Z

∣∣A] any random variable whose
distribution is the conditional distribution of Z given A.)

Theorem 4.A.8. (a) If X ≤icx Y [X ≤icv Y ] and g is any increasing and
convex [concave] function, then g(X) ≤icx [≤icv] g(Y ).

(b) Let X, Y , and Θ be random variables such that [X
∣∣Θ = θ] ≤icx [≤icv]

[Y
∣∣Θ = θ] for all θ in the support of Θ. Then X ≤icx [≤icv] Y . That is,

the increasing convex [concave] order is closed under mixtures.
(c) Let {Xj , j = 1, 2, . . . } and {Yj , j = 1, 2, . . . } be two sequences of random

variables such that Xj →st X and Yj →st Y as j → ∞. Assume that
EX+ [EX−] and EY+ [EY−] are finite and that

E(Xj)+ → EX+ [E(Xj)− → EX−] and
E(Yj)+ → EY+ [E(Yj)− → EY−] as j → ∞. (4.A.10)

If Xj ≤icx [≤icv] Yj, j = 1, 2, . . ., then X ≤icx [≤icv] Y .
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(d) Let X1, X2, . . . , Xm be a set of independent random variables and let
Y1, Y2, . . . , Ym be another set of independent random variables. If Xi ≤icx
[≤icv] Yi for i = 1, 2, . . . , m, then

m∑
j=1

Xj ≤icx [≤icv]
m∑

j=1

Yj .

That is, the increasing convex [concave] order is closed under convolu-
tions.

In part (c), as in Theorem 3.A.12, the condition (4.A.10) is necessary —
without it the conclusion of part (c) may not hold.

Part (d) of Theorem 4.A.8 can be strengthened as follows.

Theorem 4.A.9. Let X1, X2, . . . and Y1, Y2, . . . each be a sequence of non-
negative independent and identically distributed random variables such that
Xi ≤icx [≤icv] Yi, i = 1, 2, . . .. Let M and N be positive integer-valued random
variables that are independent of the {Xi} and the {Yi} sequences, respectively,
such that M ≤icx [≤icv] N . Then

M∑
j=1

Xj ≤icx [≤icv]
N∑

j=1

Yj .

Proof. Let φ be an increasing convex [concave] function and denote g(n) ≡
E[φ(X1 + X2 + · · · + Xn)]. Clearly g(n) increases in n. Denote Sn = X1 +
X2 + · · · + Xn for n ≥ 1. Now, E[φ(Sn + Xn+1) − φ(Sn)

∣∣Sn = s] = E[φ(s +
Xn+1) − φ(s)] = h(s), say. Since φ is convex [concave] it follows that h(s) is
increasing [decreasing] in s. Since Sn is increasing in n in the usual stochastic
order, it follows that g(n + 1) − g(n) = E[h(Sn)] is increasing [decreasing] in
n. That is, g(n) is increasing and convex [concave] in n. Therefore

E
[
φ
( M∑

i=1

Xi

)]
≤ E

[
φ
( N∑

i=1

Xi

)]
,

that is,
M∑
i=1

Xi ≤icx [≤icv]
N∑

i=1

Xi. (4.A.11)

From Theorem 4.A.8 (b) and (d) it follows that

N∑
i=1

Xi ≤icx [≤icv]
N∑

i=1

Yi,

and the proof is complete by the transitivity property of the order ≤icx [≤icv].

�
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A special case of Theorem 4.A.9 is stated, and proven in a different manner,
in Chapter 8 (see Theorem 8.A.13).

Remark 4.A.10. If in Theorem 4.A.9 the Xi’s are only assumed to be increas-
ing [decreasing] in i in the increasing convex [concave] order (rather than
being identically distributed), or if the same is assumed about the Yi’s, then
the conclusion of the theorem is still true.

As a special case of the result mentioned in Remark 4.A.10 we obtain the
following theorem.

Theorem 4.A.11. Let {Xi, i = 1, 2, . . . } be a sequence of nonnegative inde-
pendent random variables such that Xi ≤st Xi+1, i = 1, 2, . . .. Let M and N
be two discrete positive integer-valued random variables such that M ≤icx N ,
and assume that M and N are independent of the Xi’s. Then

M∑
i=1

Xi ≤icx

N∑
i=1

Xi.

The following result follows easily from Theorem 4.A.9. It is of interest to
compare it to Theorems 1.A.5, 2.B.8, and 3.A.14.

Theorem 4.A.12. Let {Xj , j = 1, 2, . . . } be a sequence of nonnegative in-
dependent and identically distributed random variables, and let M be a pos-
itive integer-valued random variable which is independent of the Xi’s. Let
{Yj , j = 1, 2, . . . } be another sequence of independent and identically dis-
tributed random variables, and let N be a positive integer-valued random vari-
able which is independent of the Yi’s. Suppose that for some positive integer
K we have

K∑
i=1

Xi ≤icx [≥icx,≤icv,≥icv] Y1,

and
M ≤icx [≥icx,≤icv,≥icv] KN.

Then
M∑

j=1

Xj ≤icx [≥icx,≤icv,≥icv]
N∑

j=1

Yj .

Proof. The assumptions yield

M∑
i=1

Xi ≤icx [≥icx,≤icv,≥icv]
KN∑
i=1

Xi

=
N∑

i=1

Ki∑
j=K(i−1)+1

Xj ≤icx [≥icx,≤icv,≥icv]
N∑

i=1

Yi,

where the inequalities follow from Theorem 4.A.9. This gives the stated result.

�
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Some results that are related to Theorem 4.A.12 are given in the next
theorem.

Theorem 4.A.13. Let {Xj , j = 1, 2, . . . } be a sequence of nonnegative in-
dependent and identically distributed random variables, and let M be a pos-
itive integer-valued random variable which is independent of the Xi’s. Let
{Yj , j = 1, 2, . . . } be another sequence of independent and identically dis-
tributed random variables, and let N be a positive integer-valued random vari-
able which is independent of the Yi’s. Also, let {Nj , j = 1, 2, . . . } be a sequence
of independent random variables that are distributed as N . If for some positive
integer K we have

K∑
i=1

Xi ≤icx Y1 and M ≤icx

K∑
i=1

Ni, (4.A.12)

or if we have

KX1 ≤icx Y1 and M ≤icx KN, (4.A.13)

or if we have

KX1 ≤icx Y1 and M ≤icx

K∑
i=1

Ni, (4.A.14)

then
M∑

j=1

Xj ≤icx

N∑
j=1

Yj . (4.A.15)

Proof. Assume that (4.A.13) holds. Then

M∑
i=1

Xi ≤icx

KN∑
i=1

Xi =
N∑

i=1

Ki∑
j=K(i−1)+1

Xj ≤cx

N∑
i=1

KXi ≤icx

N∑
i=1

Yi,

where the first and the third inequalities follow from Theorem 4.A.9, and
the second inequality follows from Theorem 3.A.13 and Example 3.A.29. This
gives (4.A.15).

Next note, using Example 3.A.29, that
∑K

i=1 Ni ≤icx KN . Thus, by The-
orem 4.A.12, the conditions in (4.A.12) imply (4.A.15), and, by (4.A.13), the
conditions in (4.A.14) imply (4.A.15). 
�

A slight generalization of the conditions in (4.A.12) is given in the next
theorem.
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Theorem 4.A.14. Let {Xj , j = 1, 2, . . . } be a sequence of nonnegative in-
dependent and identically distributed random variables, and let M be a pos-
itive integer-valued random variable which is independent of the Xi’s. Let
{Yj , j = 1, 2, . . . } be another sequence of independent and identically dis-
tributed random variables, and let N be a positive integer-valued random vari-
able which is independent of the Yi’s. If for some positive integers K1 and K2,
such that K1 ≤ K2, we have

K1∑
i=1

Xi ≤icx
K1

K2
Y1 and M ≤icx K2N,

then
M∑

j=1

Xj ≤icx

N∑
j=1

Yj .

Proof. The first assumption and Example 3.A.29 yield

K1 ·
∑K2

i=1 Xi

K2
≤cx K1 ·

∑K1
i=1 Xi

K1
≤icx

K1

K2
Y1;

that is,
∑K2

i=1 Xi ≤icx Y1. The result now follows from Theorem 4.A.12. 
�

Parts (a) and (d) of Theorem 4.A.8 can be generalized as follows.

Theorem 4.A.15. Let X1, X2, . . . , Xm be a set of independent random vari-
ables and let Y1, Y2, . . . , Ym be another set of independent random variables.
If Xi ≤icx Yi for i = 1, 2, . . . , m, then

g(X1, X2, . . . , Xm) ≤icx g(Y1, Y2, . . . , Ym) (4.A.16)

for every increasing and componentwise convex function g.

Proof. Without loss of generality we can assume that all the 2m random vari-
ables are independent because such an assumption does not affect the distri-
butions of g(X1, X2, . . . , Xm) and g(Y1, Y2, . . . , Ym). The proof is by induction
on m. For m = 1 the result is just Theorem 4.A.8(a). Assume that (4.A.16) is
true for vectors of size m − 1. Let g and φ be increasing and componentwise
convex functions. Then

E[φ(g(X1, X2, . . . , Xm))
∣∣X1 = x] = E[φ(g(x, X2, . . . , Xm))]

≤ E[φ(g(x, Y2, . . . , Ym))]

= E[φ(g(X1, Y2, . . . , Ym))
∣∣X1 = x],

where the equalities above follow from the independence assumption and the
inequality follows from the induction hypothesis. Taking expectations with
respect to X1, we obtain
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E[φ(g(X1, X2, . . . , Xm))] ≤ E[φ(g(X1, Y2, . . . , Ym))].

Repeating the argument, but now conditioning on Y2, . . . , Ym and using
(4.A.16) with m = 1, we see that

E[φ(g(X1, Y2, . . . , Ym))] ≤ E[φ(g(Y1, Y2, . . . , Ym))],

and this proves the result. 
�

From Theorem 4.A.15 we obtain the following corollary.

Corollary 4.A.16. Let X1, X2, . . . , Xm be a set of independent random vari-
ables and let Y1, Y2, . . . , Ym be another set of independent random variables.
If Xi ≤icx Yi for i = 1, 2, . . . , m, then

max{X1, X2, . . . , Xm} ≤icx max{Y1, Y2, . . . , Ym}.

From Corollary 4.A.16 and Theorem 4.A.1 it is easy to see that if
X1, X2, . . . , Xm are independent random variables, and if Y1, Y2, . . . , Ym are
independent random variables, and if Xi ≤icv Yi for i = 1, 2, . . . , m, then

min{X1, X2, . . . , Xm} ≤icv min{Y1, Y2, . . . , Ym}.

A comparison of maxima of two partial sums in the increasing convex
order is given next. Recall from (3.A.54) the definition of negatively associated
random variables.

Theorem 4.A.17. Let X1, X2, . . . , Xn be negatively associated random vari-
ables, and let Y1, Y2, . . . , Yn be independent random variables such that Xi =st
Yi, i = 1, 2, . . . , n. Then

max
1≤k≤n

k∑
i=1

Xi ≤icx max
1≤k≤n

k∑
i=1

Yi.

Theorem 4.A.17 follows from Theorem 9.A.23 in Chapter 9; see a comment
there after that theorem.

Consider now a family of distribution functions {Gθ, θ ∈ X} where X is
a convex subset (that is, an interval) of the real line or of N. As in Section
1.A.3 let X(θ) denote a random variable with distribution function Gθ. For
any random variable Θ with support in X , and with distribution function F ,
let us denote by X(Θ) a random variable with distribution function H given
by

H(y) =
∫

X
Gθ(y)dF (θ), y ∈ R.

The following result generalizes Theorem 4.A.8(a), just as Theorem 1.A.6
generalized Theorem 1.A.3(a).
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Theorem 4.A.18. Consider a family of distribution functions {Gθ, θ ∈ X}
as above. Let Θ1 and Θ2 be two random variables with supports in X and
distribution functions F1 and F2, respectively. Let Y1 and Y2 be two random
variables such that Yi =st X(Θi), i = 1, 2; that is, suppose that the distribution
function of Yi is given by

Hi(y) =
∫

X
Gθ(y)dFi(θ), y ∈ R, i = 1, 2.

If for every increasing convex [concave] function φ

E[φ(X(θ))] is increasing and convex [concave] in θ, (4.A.17)

and if
Θ1 ≤icx [≤icv] Θ2, (4.A.18)

then
Y1 ≤icx [≤icv] Y2. (4.A.19)

Proof. Select an increasing convex [concave] function φ for which the expec-
tations below exist, denote

ψ(θ) = E[φ(X(θ))], θ ∈ X ,

and notice that ψ is increasing and convex [concave] by (4.A.17). Then

E[φ(Y1)] = E[ψ(Θ1)] ≤ E[ψ(Θ2)] = [E[φ(Y2)],

where the inequality follows from (4.A.18). This gives (4.A.19). 
�

Note that (4.A.11) can be easily obtained from the result above. It is
worth mentioning also that condition (4.A.17) is weaker than the condition
{X(θ), θ ∈ X} ∈ SICX [SICV] which is studied in Section 8.A of Chapter 8.
An extension of Theorem 4.A.18 is given as Theorem 4.A.65 below.

The following example illustrates the use of Theorem 4.A.18. It may be
compared to Corollary 3.A.22.

Example 4.A.19. Let U , Θ1, and Θ2 be independent positive random variables.
Define

Y1 =
U

Θ1
and Y2 =

U

Θ2
.

If Θ1 ≤icv [≤icx] Θ2, then Y1 ≥icx [≥icv] Y2. This can be proven by a simple
application of Theorems 4.A.18 and 4.A.1.

An interesting variation of Theorem 4.A.18 is the following. Its proof is
similar to the proof of Theorem 4.A.18 and is therefore omitted.
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Theorem 4.A.20. Consider a family of distribution functions {Gθ, θ ∈ X}
as described before Theorem 4.A.18. Let Θ1 and Θ2 be two random variables
with supports in X and distribution functions F1 and F2, respectively. Let Y1
and Y2 be two random variables such that Yi =st X(Θi), i = 1, 2; that is,
suppose that the distribution function of Yi is given by

Hi(y) =
∫

X
Gθ(y)dFi(θ), y ∈ R, i = 1, 2.

If for every increasing convex [concave] function φ

E[φ(X(θ))] is increasing in θ,

and if
Θ1 ≤st Θ2,

then
Y1 ≤icx [≤icv] Y2.

A Laplace transform characterization of the orders ≤icx and ≤icv is given
next; it may be compared to Theorems 1.A.13, 1.B.18, 1.B.53, 1.C.25, 2.A.16,
and 2.B.14.

Theorem 4.A.21. Let X1 and X2 be two nonnegative random variables, and
let Nλ(X1) and Nλ(X2) be as described in Theorem 1.A.13. Then

X1 ≤icx [≤icv] X2 ⇐⇒ Nλ(X1) ≤icx [≤icv] Nλ(X2) for all λ > 0.

Proof. First assume that X1 ≤icx [≤icv] X2. For k = 1, 2, denote the distribu-
tion function of Xk by Fk. Let φ be an increasing convex [concave] function.
Without loss of generality assume that φ(0) = 0. Then, from (2.A.16) we have
that

E[φ(Xk)] =
∫ ∞

0

∞∑
n=1

φ(n)e−λx (λx)n

n!
dFk(x),

and therefore it is seen that it suffices to show that

g(x) ≡
∞∑

n=1

φ(n)e−λx (λx)n

n!

is increasing and convex [concave] in x. Now compute

g′(x) =
∞∑

n=1

φ(n)λe−λx

[
(λx)n−1

(n − 1)!
− (λx)n

n!

]

= λ
∞∑

n=0

[φ(n + 1) − φ(n)]e−λx (λx)n

n!
.

If we denote ∆φ(n) ≡ φ(n + 1) − φ(n), then it is seen that
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g′(x) = λE{∆φ[N(x)]},

where {N(x), x ≥ 0} is a Poisson process with rate λ. Since ∆φ(n) ≥ 0, by the
monotonicity of φ, it follows that g′(x) ≥ 0. Also, since ∆φ(n) ↑ [↓] n by the
convexity [concavity] of φ, and since N(x) ↑st x, it follows that g′(x) ↑ [↓] x.
Therefore g is increasing and convex [concave].

Now suppose that Nλ(X1) ≤icx Nλ(X2) for all λ > 0, that is, using the
notation of the proof of Theorem 2.A.16,

∞∑
n=m

αλ,1(n) ≤
∞∑

n=m

αλ,2(n), m = 0, 1, 2, . . . .

Then for m ≥ 2, (2.A.23) yields∫ ∞

0
λe−λu (λu)m−2

(m − 2)!

[ ∫ ∞

u

F 1(x)dx

]
du

≤
∫ ∞

0
λe−λu (λu)m−2

(m − 2)!

[ ∫ ∞

u

F 2(x)dx

]
du.

For any fixed y > 0 set λ = (m − 1)/y. It follows that as m → ∞ (then
λ → ∞),∫ ∞

0
λe−λu (λu)m−2

(m − 2)!

[ ∫ ∞

u

F k(x)dx

]
du →

∫ ∞

y

F k(x)dx, k = 1, 2.

Therefore we obtain∫ ∞

y

F 1(x)dx ≤
∫ ∞

y

F 2(x)dx, y > 0,

that is X1 ≤icx X2 (see (4.A.5)). The proof of the converse for the ≤icv order
is similar. 
�

The implication =⇒ in Theorem 4.A.21 can be generalized in the same
manner that Theorem 1.A.14 generalizes the implication =⇒ in Theorem
1.A.13. We will not state the result here since it is equivalent to Theorem
4.A.18.

4.A.3 Conditions that lead to the increasing convex and increasing
concave orders

Once the relation X ≤icx Y or the relation X ≤icv Y has been established
between the two random variables X and Y , it can be of great use. However,
given the two random variables and their distribution functions it is sometimes
not clear how to verify that X ≤icx Y or that X ≤icv Y . Parallel to the
analysis in Section 3.A.3 we point out here some simple conditions that imply
the increasing convex and the increasing concave orders.
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Theorem 4.A.22. Let X and Y be two random variables with distribution
functions F and G and survival functions F and G, respectively, and with
finite means such that EX ≤ EY .

(a) If S−(F −G) ≤ 1 and the sign sequence is +,− [−,+] when equality holds,
then X ≤icx Y [X ≤icv Y ].

(b) If S−(G−F ) ≤ 1 and the sign sequence is +,− [−,+] when equality holds,
then X ≤icx Y [X ≤icv Y ].

The proof of this theorem is similar to the proof of Theorem 3.A.44 and
is not detailed here.

The condition in part (a) (or, equivalently, in part (b)) of Theorem 4.A.22
is not only sufficient for X ≤icx Y , but, for nonnegative random variable,
it can also characterize the increasing convex order in a similar manner in
which (3.A.58) (or, equivalently, (3.A.59)) characterizes the convex order in
Theorem 3.A.45. This is stated next.

Theorem 4.A.23. Let X and Y be two nonnegative random variables such
that EX ≤ EY . Then X ≤icx [≤icv] Y if, and only if, there exist random
variables Z1, Z2, . . ., with distribution functions F1, F2, . . ., such that Z1 =st
X, EZj ≤ EY , j = 1, 2, . . ., Zj →st Y as j → ∞, EZj → EY as j → ∞,
and S−(F j − F j+1) = 1 and the sign sequence is +,− [−,+], j = 1, 2, . . ..

If the random variables in Theorem 4.A.23 are not nonnegative, then the
sufficiency part of that theorem is not correct. This follows from the remark
after Theorem 3.A.45.

An interesting characterization of the mean residual life order by means
of the increasing convex order is the following result.

Theorem 4.A.24. Let X and Y be two random variables. Then X ≤mrl Y
if, and only if,

[X − s
∣∣X > s] ≤icx [Y − s

∣∣Y > s] for all s. (4.A.20)

Proof. Let F and G be the survival functions of X and Y , respectively. Con-
dition (4.A.20) can be written as∫∞

t
F (s + u)du

F (s)
≤
∫∞

t
G(s + u)du

G(s)
for all s and all t ≥ 0,

which is equivalent to X ≤mrl Y by (2.A.6). 
�

Remark 4.A.25. Let φ be an increasing convex function. For any s let s′ be
selected such that φ(s′) = s. Note that if (4.A.20) holds, then [X

∣∣X > s′] ≤icx

[Y
∣∣Y > s′]. Therefore E[φ(X)

∣∣X > s′] ≤ E[φ(Y )
∣∣Y > s′], and therefore

E[φ(X) − s
∣∣φ(X) > s] ≤ E[φ(Y ) − s

∣∣φ(Y ) > s]. Thus we have proven that if
X ≤mrl Y , then φ(X) ≤mrl φ(Y ) for every increasing convex function φ.
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From Theorem 4.A.24 we see that if X ≤mrl Y , then [X
∣∣X > s] ≤icx

[Y
∣∣Y > s] for all s. Letting s → −∞ we obtain from Theorem 4.A.8(c) the

following result.

Theorem 4.A.26. Let X and Y be two random variables with finite means.
If X ≤mrl Y , then X ≤icx Y .

An analog of Theorem 4.A.26 for the increasing concave order is the fol-
lowing result.

Theorem 4.A.27. Let X and Y be two random variables with finite means.
If

E[X
∣∣X ≤ x] ≤ E[Y

∣∣Y ≤ x] for all x ∈ R,

then X ≤icv Y .

For positive random variables we have a result that is stronger than The-
orem 4.A.26:

Theorem 4.A.28. Let X and Y be two almost surely positive random vari-
ables with finite means. If X ≤hmrl Y , then X ≤icx Y .

Proof. Let F and G be the survival functions of X and Y , respectively. From
(2.B.4) (or, equivalently, from (2.B.2)) it follows that∫∞

t
F (u)du

EX
≤
∫∞

t
G(u)du

EY
for all t ≥ 0. (4.A.21)

Since, for almost surely positive random variables, X ≤hmrl Y implies that
EX ≤ EY (see (2.B.6)), it follows that (4.A.5) holds. 
�
Remark 4.A.29. With the help of Theorem 4.A.28 we can now provide proofs
for Theorems 2.A.15 and 2.B.13.

First we prove Theorem 2.A.15. From (2.A.3) it is seen that assumption
(2.A.11) means that

∫∞
y

Gθ(u)du, as a function of θ and of y, is TP2, where Gθ

is the survival function associated with Gθ. Assumption (2.A.12) means that
F i(θ), as a function of i ∈ {1, 2} and of θ, is TP2. From Theorem 4.A.28 and
(4.A.5) it follows that

∫∞
y

Gθ(u)du is increasing in θ. Therefore, by Theorem
2.1(i) of Lynch, Mimmack, and Proschan [369],

∫
X
∫∞

y
Gθ(u)du dFi(θ) is TP2

in i ∈ {1, 2} and y. But
∫

X
∫∞

y
Gθ(u)du dFi(θ) =

∫∞
y

[ ∫
X Gθ(u)dFi(θ)

]
du,

and that, by (2.A.3), gives (2.A.13).
Next we prove Theorem 2.B.13. Fix an x > 0. From (2.B.2) it is seen

that assumption (2.B.15) implies that
∫∞

y
Gθ(u)du is TP2 in y ∈ {0, x}

and θ, where Gθ is the survival function associated with Gθ. Assumption
(2.B.16) means that F i(θ), as a function of i ∈ {1, 2} and of θ, is TP2.
From Theorem 4.A.28 and (4.A.5) it follows that

∫∞
y

Gθ(u)du is increas-
ing in θ. Therefore, by Theorem 2.1(i) of Lynch, Mimmack, and Proschan
[369],

∫
X
∫∞

y
Gθ(u)du dFi(θ) is TP2 in i ∈ {1, 2} and y ∈ {0, x}. But∫

X
∫∞

y
Gθ(u)du dFi(θ) =

∫∞
y

[ ∫
X Gθ(u)dFi(θ)

]
du and this expression is TP2

in i ∈ {1, 2} and y ∈ {0, x} for all x > 0. Thus, by (2.B.2), we obtain (2.B.17).
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Under quite weak conditions the order ≤dil implies the order ≤icx. This is
shown in the next theorem. For any random variable Z, let lZ denote the left
endpoint of the support of Z.

Theorem 4.A.30. Let X and Y be two random variables with finite means.
If

lX ≤ lY (4.A.22)

and if X ≤dil Y , then X ≤icx Y .

Proof. Suppose that X ≤dil Y . Then

[X − EX] ≤cx [Y − EY ]. (4.A.23)

Therefore, by (3.A.12) we get that supp(X − EX) ⊆ supp(Y − EY ). Thus
lY − EY ≤ lX − EX. Hence,

EY − EX ≥ lY − lX . (4.A.24)

Combining (4.A.22) with (4.A.24) it is seen that

EX ≤ EY. (4.A.25)

From (4.A.23) it follows that

X ≤cx Y − (EY − EX), (4.A.26)

and from (4.A.25) it follows that

Y − (EY − EX) ≤st Y. (4.A.27)

Using Theorem 4.A.6(b) it is seen that, from (4.A.26) and (4.A.27), we obtain
X ≤icx Y . It is also easy to obtain X ≤icx Y from (4.A.26) and (4.A.27) by
noticing that the usual stochastic order and the convex order both imply the
increasing convex order. 
�

As a corollary of Theorem 4.A.30 we obtain the following result.

Corollary 4.A.31. Let X and Y be two nonnegative random variables with
finite means, such that X has the support [0,∞). If X ≤dil Y , then X ≤icx Y .

A corollary of Theorem 4.A.30 and of (3.C.7) is the following result.

Corollary 4.A.32. Let X and Y be two random variables with finite means.
If lX ≤ lY and if X ≤ew Y , then X ≤icx Y .

The next result gives a simple condition that implies the increasing convex
order between a given random variable and a scale transformation of another
random variable. Let X1, X2, . . . be a sequence of independent and identi-
cally distributed nonnegative random variables with a common distribution
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function F , and let Y1, Y2, . . . be another sequence of independent and iden-
tically distributed nonnegative random variables with a common distribution
function G. Let X(n) ≡ max{X1, X2, . . . , Xn} be the nth order statistic of a
sample of size n from the distribution F , n = 1, 2, . . .. Let Y(n) be similarly
defined for n = 1, 2, . . .. Note that from Corollary 4.A.16 it follows that if
X1 ≤icx Y1, then X(n) ≤icx Y(n) for all n = 1, 2, . . .. The following theorem is
a weak converse of this observation. The proof is not given here.

Theorem 4.A.33. Let X1, X2, . . . be a sequence of independent and identi-
cally distributed nonnegative random variables and let Y1, Y2, . . . be another
sequence of independent and identically distributed nonnegative random vari-
ables. If E[X(n)] ≤ E[Y(n)] for all n = 1, 2, . . ., then X1 ≤icx κY1 for some
constant κ ≥ 1 that is independent of the distributions of X1 and Y1. The
constant κ can be taken to be equal to 2(1 − e−1)−1.

4.A.4 Further properties

Let X and Y be two random variables. If E[φ(X)] ≤ E[φ(Y )] for all increasing
functions φ, then (4.A.1) definitely holds. If E[φ(X)] ≤ E[φ(Y )] for all convex
[concave] functions φ, then (4.A.1) also holds. From (1.A.7) and (3.A.1) we
thus obtain the following result. Note that in the conclusion of the second part
of (b) in the next theorem the random variables X and Y are interchanged.

Theorem 4.A.34. Let X and Y be two random variables.

(a) If X ≤st Y , then X ≤icx Y and X ≤icv Y .
(b) If X ≤cx Y , then X ≤icx Y and Y ≤icv X.

Thus we see that indeed the increasing convex [concave] order has both
properties of ordering by size and ordering by variability. One indication of
the ordering by size property is (4.A.2) [(4.A.3)], that is, the ordering of
the expected values (when they exist) that follows from the increasing convex
[concave] order. It turns out that the ordering of the expected values is actually
the only indication of the ordering by size property. If the two means are
equal, then the monotone convex and the monotone concave orders reduce
to the convex order of Section 3.A. This is stated formally in the following
theorem.

Theorem 4.A.35. Let X and Y be two random variables with finite means.

(a) If X ≤icx Y and EX = EY , then X ≤cx Y .
(b) If X ≤icv Y and EX = EY , then Y ≤cx X.

Proof. If X ≤icx Y , then (4.A.5) (which is the same as (3.A.7)) holds. Part (a)
now follows from Theorem 3.A.1(a). Part (b) is proven similarly using (4.A.7),
(3.A.8), and Theorem 3.A.1(b). 
�
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The order ≤icx can be used to yield bivariate characterizations of the or-
ders ≤st, ≤hr, ≤rh, and ≤lr (compare the following result to Theorems 1.A.10,
1.B.10, 1.B.48, 1.C.22, and 1.C.23). Let φ1 and φ2 be two bivariate func-
tions and let ∆φ21(x, y) = φ2(x, y) − φ1(x, y). Consider the following set of
conditions on φ1 and φ2:

(a) ∆φ21(x, y) ≥ −∆φ21(y, x) whenever x ≤ y.
(b) ∆φ21(x, y) ≥ 0 whenever x ≤ y.
(c) φ1(y, x) ≤ φ2(x, y) whenever x ≤ y.
(d) For each x, φ2(x, y) increases in y on {y ≥ x}.
(e) For each y, φ2(x, y) decreases in x on {x ≤ y}.
(f) For each x, ∆φ21(x, y) increases in y on {y ≥ x}.
(g) For each y, ∆φ21(x, y) decreases in x on {x ≤ y}.

The proof of the next theorem is omitted.

Theorem 4.A.36. Let X and Y be two independent random variables. Then

(i) X ≤st Y if, and only if,

φ1(X, Y ) ≤icx φ2(X, Y ) (4.A.28)

for all φ1 and φ2 satisfying (a), (b), (c), (d), (e), (f), and (g).
(ii) X ≤hr Y if, and only if, (4.A.28) holds for all φ1 and φ2 satisfying (a),

(b), (c), (d), and (f).
(iii) X ≤rh Y if, and only if, (4.A.28) holds for all φ1 and φ2 satisfying (a),

(b), (c), (e), and (g).
(iv) X ≤lr Y if, and only if, (4.A.28) holds for all φ1 and φ2 satisfying (a),

(b), and (c).

A typical application of Theorem 4.A.36 is the following result (compare
it to Theorem 1.C.21).

Theorem 4.A.37. Let X1, X2, . . . , Xm be independent random variables such
that X1 ≤rh X2 ≤rh · · · ≤rh Xm. Let a1, a2, . . . , am be constants such that
a1 ≤ a2 ≤ · · · ≤ am. Then

m∑
i=1

am−i+1Xi ≤icv

m∑
i=1

aπiXi ≤icv

m∑
i=1

aiXi,

where π = (π1, π2, . . . , πm) denotes any permutation of (1, 2, . . . , m).

Proof. We only give the proof when m = 2; the general case then can be
obtained by pairwise interchanges. So, suppose that X1 ≤rh X2 and that
a1 ≤ a2. Define φ1 and φ2 by φ1(x, y) = −a1x−a2y and φ2(x, y) = −a1y−a2x.
Then it is easy to verify that (a), (b), (c), (e), and (g) above hold. Thus, by
Theorem 4.A.36(iii), −a1X1 − a2X2 ≤icx −a1X2 − a2X1. By Theorem 4.A.1
this means a1X2 + a2X1 ≤icv a1X1 + a2X2. 
�
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In the next few results we denote by Ip a Bernoulli random variable with
probability of success p, that is, P{Ip = 1} = 1 − P{Ip = 0} = p. Recall
from page 2 the definition of the majorization order ≺ among n-dimensional
vectors. It is shown after the next theorem that it partially extends Theorem
3.A.37.

Theorem 4.A.38. Let X1, X2, . . . , Xn be independent nonnegative random
variables, and let Ip1 , Ip2 , . . . , Ipn and Iq1 , Iq2 , . . . , Iqn be independent Bernoulli
random variables that are independent of X1, X2, . . . , Xn. Suppose that

(i) 1 ≥ p1 ≥ p2 ≥ · · · ≥ pn and 1 ≥ q1 ≥ q2 ≥ · · · ≥ qn,
(ii) Xn ≤st Xn−1 ≤st · · · ≤st X1, and
(iii) p ≺ q.

Then
n∑

i=1

IpiXi ≤icv

n∑
i=1

IqiXi.

If X1, X2, . . . , Xn in Theorem 4.A.38 are identically distributed, then
E
(∑n

i=1 Ipi
Xi

)
= E

(∑n
i=1 Iqi

Xi

)
and therefore the conclusion in this theo-

rem is
∑n

i=1 IpiXi ≤cv
∑n

i=1 IqiXi; that is,
∑n

i=1 IpiXi ≥cx
∑n

i=1 IqiXi. This
is the same as the conclusion of Theorem 3.A.37.

The following result partially extends Theorem 3.A.35.

Theorem 4.A.39. Let X1, X2, . . . , Xn be independent and identically dis-
tributed nonnegative random variables, and let Ip1 , Ip2 , . . . , Ipn be indepen-
dent Bernoulli random variables that are independent of X1, X2, . . . , Xn. Let
a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be two vectors of constants. Sup-
pose that

(i) 1 ≥ p1 ≥ p2 ≥ · · · ≥ pn,
(ii) a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn, and
(iii) a ≺ b.

Then
n∑

i=1

Ipi
aiXi ≤icx

n∑
i=1

Ipi
biXi.

A family of nonnegative random variables {X(θ), θ > 0} is said to have
the semigroup property if, for all θ1 > 0 and θ2 > 0, one has X(θ1 + θ2) =st
X(θ1) + X(θ2), where X(θ1) and X(θ2) are independent. As a corollary of
Theorem 4.A.39 we obtain the following result.

Corollary 4.A.40. Let {X(θ), θ > 0} be a family of random variables with
the semigroup property, and let Ip1 , Ip2 , . . . , Ipn be independent Bernoulli ran-
dom variables that are independent of {X(θ), θ > 0}. Let θ = (θ1, θ2, . . . , θn)
and γ = (γ1, γ2, . . . , γn) be two vectors of constants. Suppose that

(i) 1 ≥ p1 ≥ p2 ≥ · · · ≥ pn,
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(ii) θ1 ≥ θ2 ≥ · · · ≥ θn and γ1 ≥ γ2 ≥ · · · ≥ γn, and
(iii) θ ≺ γ.

Then
n∑

i=1

Ipi
X(θi) ≤icx

n∑
i=1

Ipi
X(γi).

The following characterizations of the dilation order, by means of the order
≤icx, are similar to characterizations (3.A.39) and (3.A.40).

Theorem 4.A.41. Let X and Y be two random variables with distribution
functions F and G, respectively, and with finite expectations. Then X ≤dil Y
if, and only if, any of the following two statements hold:

[X − EX
∣∣X ≥ F−1(p)] ≤icx [Y − EY

∣∣Y ≥ G−1(p)] for all p ∈ [0, 1),

and

[X − EX
∣∣X ≤ F−1(p)] ≥icx [Y − EY

∣∣Y ≤ G−1(p)] for all p ∈ [0, 1).

The following characterizations of the convex order, by means of the order
≤icx, are similar to characterizations (3.A.41) and (3.A.42). These character-
izations follow at once from Theorem 4.A.41 and from (3.A.32).

Theorem 4.A.42. Let X and Y be two random variables with distribution
functions F and G, respectively, and with equal finite means. Then X ≤cx Y
if, and only if, any of the following two statements hold:

[X
∣∣X ≥ F−1(p)] ≤icx [Y

∣∣Y ≥ G−1(p)] for all p ∈ [0, 1),

and
[X
∣∣X ≤ F−1(p)] ≥icx [Y

∣∣Y ≤ G−1(p)] for all p ∈ [0, 1).

In a manner similar to the characterization (3.B.6) of the dispersive order
by the usual stochastic order, the increasing convex order can characterize the
excess wealth order as follows.

Theorem 4.A.43. Let X and Y be two continuous random variables with
distribution functions F and G, respectively. Then X ≤ew Y if, and only if,

(X − F−1(α))+ ≤icx (Y − G−1(α))+, α ∈ (0, 1). (4.A.29)

Proof. We give the proof under the assumption that F and G are strictly
increasing; the more general proof can be found in the literature.

First assume that (4.A.29) holds. Then, by (4.A.2) we get

E[(X − F−1(α))+] ≤ E[(Y − G−1(α))+], α ∈ (0, 1).

The latter inequality is easily seen to be equivalent to (3.C.5), and therefore
X ≤ew Y .
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In order to obtain the converse note that (4.A.29) is equivalent to

H(t, α) ≡
∫ ∞

t+G−1(α)
G(x)dx−

∫ ∞

t+F −1(α)
F (x)dx ≥ 0, (t, α) ∈ [0,∞)×(0, 1).

Select an α ∈ (0, 1). Note that limt→∞ H(t, α) = 0. If H(·, α) attains a min-
imum at t∗, since H(·, α) is continuous and differentiable, t∗ should satisfy
∂H(t,α)

∂t

∣∣
t=t∗ = 0. This equality holds if, and only if,

F (t∗ + F−1(α)) = F (t∗ + G−1(α)) = β, say.

Since F and G are strictly increasing it is seen that F−1(β) = t∗ + F−1(α)
and G−1(β) = t∗ + G−1(α). Therefore

H(t∗, α) =
∫ ∞

G−1(β)
G(x)dx −

∫ ∞

F −1(β)
F (x)dx ≥ 0,

where the inequality follows from X ≤ew Y . 
�

Let X and Y be two nonnegative random variables with respective distri-
bution functions F and G. Let H−1

F and H−1
G be the TTT transforms asso-

ciated with F and G, respectively (see (1.A.19)), and let HF and HG be the
respective inverses. Let Xttt and Yttt be random variables with distribution
functions HF and HG (see Section 1.A.4).

Theorem 4.A.44. Let X and Y be two nonnegative random variables. Then

X ≤icv Y =⇒ Xttt ≤icv Yttt.

See related results in Theorems 1.A.29, 3.B.1, 4.B.8, 4.B.9, and 4.B.29.
The next example may be compared with Examples 1.A.25, 1.B.6, and

1.C.51.

Example 4.A.45. Let Xi be a binomial random variable with parameters ni

and pi, i = 1, 2, . . . , m, and assume that the Xi’s are independent. Let Y be a
binomial random variable with parameters n and p where n =

∑m
i=1 ni. Then

m∑
i=1

Xi ≥icx Y ⇐⇒ p ≤ n

√
pn1
1 pn2

2 · · · pnm
m ,

and
m∑

i=1

Xi ≤icx Y ⇐⇒ p ≥
∑m

i=1 nipi

n
.

The following example gives necessary and sufficient conditions for the
comparison of normal random variables; it is generalized in Example 7.A.13.
See related results in Examples 1.A.26 and 3.A.51.
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Example 4.A.46. Let X be a normal random variable with mean µX and vari-
ance σ2

X , and let Y be a normal random variable with mean µY and variance
σ2

Y . Then X ≤icx Y if, and only if, µX ≤ µY and σ2
X ≤ σ2

Y .

Example 4.A.47. Let X1, X2, . . . , Xn be independent exponential random vari-
ables with distinct hazard rates λ1 > λ2 > · · · > λn > 0. Then 1

n

∑n
i=1 Xi ≤icx

Xn.

Conditions for stochastic equality, for random variables that are ≤icx- or
≤icv-ordered, are given in the following result. This result may be compared
to Theorems 1.A.8, 3.A.43, 3.A.60, 4.A.69, 5.A.15, 6.B.19, 6.G.12, 6.G.13, and
7.A.14–7.A.16.

Theorem 4.A.48. Let X and Y be two nonnegative random variables. Sup-
pose that X ≤icx Y [X ≤icv Y ] and that E[Xr] = E[Y r] for some r ∈ (1,∞)
[r ∈ (0, 1)], provided the expectations exist. Then X =st Y .

This result is a corollary of Theorem 4.A.69 below with p = 1.
In fact, the following stronger result, which is an analog of Theorem 3.A.43,

holds for the orders ≤icx and ≤icv.

Theorem 4.A.49. Let X and Y be two random variables. Suppose that
X ≤icx [≤icv] Y and that for some increasing strictly convex [concave] func-
tion φ we have that E[φ(X)] = E[φ(Y )], provided the expectations exist. Then
X =st Y .

Of course, in Theorem 4.A.49 we can replace “increasing strictly convex
[concave] function” by “decreasing strictly concave [convex] function.”

Theorem 4.A.50. Let X1, X2, . . . , Xn and Y1, Y2, . . . , Yn (n ≥ 2) be two
collections of independent and identically distributed random variables. If
X1 ≤icx Y1 and if E[max{X1, X2, . . . , Xn}] = E[max{Y1, Y2, . . . , Yn}], then
X1 =st Y1.

Analogous to the result in Remark 1.A.18, it can be shown that the set of
all distribution functions on R with finite means is a lattice with respect to
the order ≤icx.

Meilijson and Nádas [389] have proved the following result which, for the
sake of simplicity, we describe informally. Let X be a random variable with
mean residual life function m (see, for example, (2.A.1)). Define H by H(x) =
m(x) + x = E[X

∣∣X > x], for all x, and note that H is increasing. Denote
X̃ = H(X). Then X̃ ≥st Y for every random variable Y which satisfies Y ≤icx
X. In fact, Meilijson and Nádas [389] proved that X̃ is the least stochastic
majorant in the sense that if another random variable Z also satisfies Z ≥st Y
for every Y such that Y ≤st X, then X̃ ≤st Z.
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4.A.5 Some properties in reliability theory

We have seen in Theorem 1.A.30 that a nonnegative random variable is IFR
[DFR] if, and only if, [X − t

∣∣X > t] ≥st [≤st] [X − t′
∣∣X > t′] whenever t ≤ t′.

A question of interest then is what does one get if in the above condition one
replaces the order ≥st by the order ≥icx. It turns out that the order ≥icx can
characterize another familiar aging notion in reliability theory. Recall from
page 1 the definitions of DMRL and IMRL random variables. A combination
of Theorems 2.A.23 and 4.A.24 provides a proof of the DMRL part of the
next theorem. The proof of the IMRL part is similar.

Theorem 4.A.51. The nonnegative random variable X is DMRL [IMRL] if,
and only if, [X − t

∣∣X > t] ≥icx [≤icx] [X − t′
∣∣X > t′] whenever t ≤ t′.

Other characterizations of DMRL and IMRL random variables, by means
of other stochastic orders, can be found in Theorems 2.A.23, 2.B.17, 3.A.56,
and 3.C.13.

We will now describe a generalization of the sufficiency part of Theorem
4.A.51. For two independent random variables X and T , let XT denote a
random variable that has the distribution of [X − T

∣∣X > T ]. Note that XT

is not the residual life of X given T .

Theorem 4.A.52. Let X, T1, and T2 be independent random variables. If
T1 ≤rh T2, and if X is DMRL [IMRL], then XT1 ≥icx [≤icx] XT2 .

Proof. We will prove the DMRL part only. The proof of the IMRL part is
similar. Let F denote the survival function of X, and let Gi denote the survival
function of XTi

, i = 1, 2. Then, for any fixed x we have∫ ∞

x

G2(y)dy −
∫ ∞

x

G1(y)dy

=
E
[
F (T1)

]
E
[ ∫∞

x
F (T2 + y)dy

]
− E

[
F (T2)

]
E
[ ∫∞

x
F (T1 + y)dy

]
E
[
F (T1)

]
E
[
F (T2)

] .

(4.A.30)

Define the functions α and β by α(t) =
∫∞

x
F (t + y)dy and β(t) = F (t). Note

that β is nonnegative and decreasing, and that α/β is decreasing because X
is DMRL. Therefore, by Theorem 1.B.50(b), we see that the numerator in
(4.A.30) is nonpositive for any x. It follows, by (4.A.5), that XT1 ≥icx XT2 .

�

Note that if the nonnegative random variable X is DMRL [IMRL], then,
from Theorem 4.A.51 it follows that

X ≥icx [≤icx] [X − t
∣∣X > t] for all t ≥ 0. (4.A.31)
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Nonnegative random variables that satisfy (4.A.31) are called new better
[worse] than used in convex ordering (NBUC [NWUC]) or new better [worse]
than used in mean (NBUM [NWUM]). An equivalent definition of the NBUC
notion, by means of the usual stochastic order, is given in (1.A.21).

It is of interest to note that a nonnegative random variable X with survival
function F is NBUC if, and only if,∫ ∞

x+t

F (y)dy ≤ F (t)
1 − F (t)

∫ x+t

x

F (y)dy for all t ≥ 0 and x ≥ 0. (4.A.32)

It is worthwhile to point out that a nonnegative random variable X that
satisfies (4.A.31), but with the increasing concave (rather than the increasing
convex) order, is said to be NBU(2) [NWU(2)].

If a nonnegative random variable X satisfies

[X − t
∣∣X > t] ≥icv [≤icv] [X − t′

∣∣X > t′] whenever t ≤ t′, (4.A.33)

then, in some places in the literature, the random variable X is said to have the
IFR(2) [DFR(2)] property. However, Belzunce, Hu, and Khaledi [68] proved
that the IFR(2) [DFR(2)] property is the same as the IFR [DFR] property.
Thus they obtained the following characterization of the IFR [DFR] property.

Theorem 4.A.53. The nonnegative random variable X is IFR [DFR] if, and
only if, (4.A.33) holds.

4.A.6 The starshaped order

A function φ : [0,∞) → [0,∞), which satisfies φ(0) = 0, is called starshaped
if φ(x)/x is increasing in x on (0,∞) (here we use the convention a/∞ = 0 for
a > 0). Note that such a function is increasing. Note also that every increasing
convex function φ on [0,∞), such that φ(0) = 0, is starshaped.

Let X and Y be two nonnegative random variables such that

E[φ(X)] ≤ E[φ(Y )] for all starshaped functions φ : [0,∞) → [0,∞),
(4.A.34)

provided the expectations exist. Then X is said to be smaller than Y in the
starshaped order (denoted by X ≤ss Y ).

Theorem 4.A.54. Let X and Y be two nonnegative random variables with
distribution functions F and G, respectively. Then X ≤ss Y if, and only if,∫ ∞

y

xdF (x) ≤
∫ ∞

y

xdG(x), y ≥ 0. (4.A.35)

Proof. The function φy, defined by

φy(x) =

{
0, x ≤ y,

x, x > y,
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is starshaped. Thus, (4.A.34) =⇒ (4.A.35). Conversely, let φ be a starshaped
function. Then h(x) = φ(x)/x is increasing in x on (0,∞). Approximate h by
a sequence of increasing step functions hn. Then (4.A.35) yields∫ ∞

0
xhn(x)dF (x) ≤

∫ ∞

0
xhn(x)dG(x).

Letting n → ∞, we obtain (4.A.34). 
�
Theorem 4.A.54 shows that when the compared random variables have the

same mean, then the starshaped order is equivalent to the usual stochastic
ordering of the corresponding length-biased (or spread) random variables.
Such random variables are studied in Examples 1.B.23, 1.C.59, 1.C.60, and
8.B.12.

Theorem 4.A.55. Let X and Y be two nonnegative random variables. Then

X ≤st Y =⇒ X ≤ss Y =⇒ X ≤icx Y.

Proof. The first implication follows from the fact that a starshaped function
φ, such that φ(0) = 0, is increasing. In order to prove the second implication,
let φ be an increasing convex function. First suppose that φ(0) = 0. Then φ is
starshaped and the inequality in (4.A.1) follows from X ≤ss Y . If φ(0) = a �=
0, then define φ̃(x) = φ(x) − a, x ≥ 0. The function φ̃ is increasing convex,
and it satisfies φ̃(0) = 0. Thus, by the previous argument E[φ̃(X)] ≤ E[φ̃(Y )];
that is, E[φ(X)] − a ≤ E[φ(Y )] − a, and the inequality in (4.A.1) follows. 
�

Some closure properties of the starshaped order are given in the next
theorem.

Theorem 4.A.56. (a) If the nonnegative random variables X and Y are such
that X ≤ss Y , and g is any starshaped function with g(0) = 0, then
g(X) ≤ss g(Y ). In particular, cX ≤ss cY for any c > 0.

(b) Let X, Y , and Θ be random variables such that [X
∣∣Θ = θ] ≤ss [Y

∣∣Θ = θ]
for all θ in the support of Θ. Then X ≤ss Y . That is, the starshaped order
is closed under mixtures.

(c) Let {Xj , j = 1, 2, . . . } and {Yj , j = 1, 2, . . . } be two sequences of non-
negative random variables such that Xj →st X and Yj →st Y as j → ∞.
Assume that EX2 and EY 2 are finite and that

EX2
j

EXj
→ EX2

EX
and

EY 2
j

EYj
→ EY 2

EY
as j → ∞.

If Xj ≤ss Yj, j = 1, 2, . . ., then X ≤ss Y .

Theorem 4.A.57. Let X be a nonnegative random variable. Then I[a,∞)(X)
≤ss I[b,∞)(X) whenever b ≥ a ≥ 0, where I[a,∞) and I[b,∞) are the indicator
functions of the indicated intervals.

The proof of Theorem 4.A.57 consists of verifying (4.A.35) in each of the
cases y ≤ a, a < y ≤ b, and y > b.
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4.A.7 Some related orders

Let X and Y be two random variables with survival function F and G, and
distribution functions F and G, respectively. Let F [k], F

[k]
, G[k], and G

[k]
be

defined as in (3.A.66) and (3.A.67). The inequalities (4.A.5) and (4.A.7) can
be generalized as follows: For a positive integer m suppose that

F
[m−1]

(x) ≤ G
[m−1]

(x) for all x, (4.A.36)

or that
F [m−1](x) ≥ G[m−1](x) for all x, (4.A.37)

provided these integrals are finite (the integrals are finite if F and G have
finite (m − 1)st moments). If (4.A.36) holds, then X is said to be smaller
than Y in the m-icx order (denoted by X ≤m-icx Y ). If it is known that
X and Y take on values in N++, then the definition of the m-icx order can
be modified, exploiting the special structure of N++; see Denuit and Lefèvre
[146]. If (4.A.37) holds, then X is said to be smaller than Y in the m-icv
order (denoted by X ≤m-icv Y ).

It is seen from the definition that the orders ≤1-icx and ≤1-icv are equivalent
to the order ≤st, the order ≤2-icx is equivalent to the order ≤icx, and the order
≤2-icv is equivalent to the order ≤icv.

The orders ≤m-icx and ≤m-icv have some properties that are similar to the
properties of the orders ≤icx and ≤icv. For example, the extension of (4.A.4)
is that X ≤m-icx Y if, and only if,

E[(X − a)+]m−1 ≤ E[(Y − a)+]m−1 for all a. (4.A.38)

The extension of (4.A.6) is that X ≤m-icv Y if, and only if,

E[(X − a)−]m−1 ≤ E[(Y − a)−]m−1 for all a. (4.A.39)

The characterization (4.A.1) of the orders ≤icx and ≤icv has an analog
for the orders ≤m-icx and ≤m-icv. We will not give the technical details here
(see Section 4.C for a reference), but we just mention the following results.
For m = 1, 2, . . ., let Mm-icx be the set of all functions φ : R → R such that
limx→−∞ φ(x) is finite, and whose first m−1 derivatives, φ(1), φ(2), . . . , φ(m−1),
exist, and are such that limx→−∞ φ(j)(x) = 0, j = 1, 2, . . . , m− 1, and φ(m−1)

is increasing. Let Mm-icx be the closure of Mm-icx in the topology of weak
convergence (that is, pointwise convergence in each continuity point of the
limit). Let X and Y be two random variables and suppose that the support
of each of them contains an interval of the form (−∞, a) for some a. Then
X ≤m-icx Y if, and only if,

E[φ(X)] ≤ E[φ(Y )] for all functions φ ∈ Mm-icx, (4.A.40)

provided the expectations exist.
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Next, for m = 1, 2, . . ., let Mm-icv be the set of all functions φ : R → R such
that limx→∞ φ(x) is finite, whose first m−1 derivatives, φ(1), φ(2), . . . , φ(m−1),
exist, and are such that limx→∞ φ(j)(x) = 0, j = 1, 2, . . . , m − 1, and
(−1)m−1φ(m−1) is increasing. Let Mm-icv be the closure of Mm-icv in the
topology of weak convergence. Let X and Y be two random variables and
suppose that the support of each of them contains an interval of the form
(a,∞) for some a. Then X ≤m-icv Y if, and only if,

E[φ(X)] ≤ E[φ(Y )] for all functions φ ∈ Mm-icv, (4.A.41)

provided the expectations exist.
Let us denote X ≤∞-icx [≤∞-icv] Y if

X ≤m-icx [≤m-icv] Y for all positive integers m. (4.A.42)

A characterization of the order ≤∞-icv is given in Theorem 5.A.17.
It can be shown that if X and Y have finite (m − 1)st moments, then

X ≤m-icx Y =⇒ E[X] ≤ E[Y ]

and
X ≤m-icv Y =⇒ E[X] ≤ E[Y ],

provided the expectations exist. In fact we have the following more general
result.

Theorem 4.A.58. Let X and Y be two random variables with finite first m−1
moments. If X ≤m-icx Y [X ≤m-icv Y ], then EXk < EY k [(−1)k+1EXk <
(−1)k+1EY k] for the smallest k for which EXk �= EY k.

Some closure properties of the orders ≤m-icx and ≤m-icv are stated next.
We omit the proof of the following theorem. Note, however, that parts (b)
and (c) of the next theorem are easy to prove. The proof of part (a) uses
the fact that if φ ∈ Mm-icx [Mm-icv] then φ(j) [(−1)jφ(j)] is nonnegative and
increasing [decreasing] for all j ∈ {1, 2, . . . , m − 1}, and therefore Mm-icx and
Mm-icv are closed under compositions.

Theorem 4.A.59. (a) Let X and Y be two random variables and suppose
that the support of each of them contains an interval of the form (−∞, a)
[(a,∞)] for some a. If X ≤m-icx [≤m-icv] Y and if g is any function in
Mm-icx [Mm-icv], then g(X) ≤m-icx [≤m-icv] g(Y ).

(b) Let X, Y , and Θ be random variables such that, for all θ in the support
of Θ, we have that [X

∣∣Θ = θ] ≤m-icx [≤m-icv] [Y
∣∣Θ = θ]. Then X ≤m-icx

[≤m-icv] Y . That is, the m-icx [m-icv ] order is closed under mixtures.
(c) Let {Xj , j = 1, 2, . . . } and {Yj , j = 1, 2, . . . } be two sequences of random

variables such that Xj →st X and Yj →st Y as j → ∞. Assume that
E(X+)m−1 and E(Y+)m−1 are finite and that
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E(Xj)m−1
+ → EXm−1

+ [E(Xj)m−1
− → EXm−1

− ] and

E(Yj)m−1
+ → EY m−1

+ [E(Yj)m−1
− → EY m−1

− ] as j → ∞. (4.A.43)

If Xj ≤m-icx [≤m-icv] Yj, j = 1, 2, . . ., then X ≤m-icx [≤m-icv] Y .
(d) Let X1, X2, . . . , Xl be a set of independent random variables and let Y1, Y2,

. . . , Yl be another set of independent random variables. If Xi ≤m-icx
[≤m-icv] Yi for i = 1, 2, . . . , l, then

l∑
j=1

Xj ≤m-icx [≤m-icv]
l∑

j=1

Yj .

That is, the m-icx [m-icv ] order is closed under convolutions.

In part (c), as in Theorem 3.A.12, the condition (4.A.43) is necessary —
without it the conclusion of part (c) may not hold.

The following result, which extends the m-icx part of Theorem 4.A.59(d),
is essentially the same as Theorem 8.A.29.

Theorem 4.A.60. Let X1, X2, . . . be a set of independent random variables
and let Y1, Y2, . . . be another set of independent random variables. Let N1 be
an integer-valued random variable that is independent of the Xi’s, and let
N2 be an integer-valued random variable that is independent of the Yi’s. If
Xi ≤m-icx Yi for i = 1, 2, . . ., and if N1 ≤m-icx N2, then

N1∑
j=1

Xj ≤m-icx

N2∑
j=1

Yj .

For the orders ≤m-icx and ≤m-icv, the analog of Theorem 3.A.12(a) is the
following.

Theorem 4.A.61. Let X and Y be two random variables. Then

X ≤m-icx [≤m-icv] Y ⇐⇒ −X ≥m-icv [≥m-icx] − Y.

The proof of Theorem 4.A.61 easily follows from (4.A.36) and (4.A.37).
It is not hard to verify the next statement.

Theorem 4.A.62. Consider two random variables X and Y . If X ≤m1-icx
[≤m1-icv] Y , then X ≤m2-icx [≤m2-icv] Y for all m2 ≥ m1.

Since the order ≤1-icx is the same as the order ≤st we see that

X ≤st Y =⇒ X ≤m-icx Y

and that
X ≤st Y =⇒ X ≤m-icv Y.

The following obvious relationships hold between the orders of Section 3.A.5
and the present orders:
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X ≤S
m-cx Y =⇒ X ≤m-icx Y,

and
X ≤S

m-cv Y =⇒ X ≤m-icv Y.

Sufficient conditions for X ≤m-icv Y and X ≤m-icv Y are given in the next
result, which is related to Theorem 4.A.22. It is of interest to compare the
next result with Theorem 3.A.66.

Theorem 4.A.63. Let X and Y be two nonnegative random variables with
distribution functions F and G, respectively, and with density functions f and
g, respectively, such that E[Xi] = E[Y i], i = 1, 2, . . . , m − 2, and E[Xm−1] ≤
E[Y m−1].

(a) If S−(F −G) ≤ m−1 and if the last sign of F −G is a +, then X ≤m-icx Y .
(b) If S−(f − g) ≤ m and if the last sign of g − f is a +, then X ≤m-icx Y .

The following example describes a typical application of Theorem 4.A.63.

Example 4.A.64. Let the inverse Gaussian random variable Y , and the log-
normal random variable Z, be as in Example 3.A.67; in particular they both
have the mean α/β and the second moment α(α + 1)/β2. We claim that
Y ≤4-icx Z. In order to see it, first note, as in Example 3.A.67, that without
loss of generality we can take the means to be equal to 1, that is, β = α. Now,
a straightforward computation yields

log
fY (x)
fX(x)

= C +
log2 x

2τ2 − αx

2
− α

2x
, x > 0,

where C is some constant. Substituting u = log x, the second derivative of the
above expression is seen to have two sign changes. Therefore the expression
itself has at most four sign changes. We also have here, by a lengthy compu-
tation (see Kaas and Hesselager [270]), that E[Y 3] < E[Z3]. The stated result
now follows from Theorem 4.A.63(b).

In fact, it can be shown that if X, Y , and Z, are, respectively, Gamma,
inverse Gaussian, and lognormal random variables (with parameters that are
different from the ones in Example 3.A.67), such that E[X] = E[Y ] = E[Z]
and E[X2] ≤ E[Y 2] ≤ E[Z2], then X ≤3-icx Y , X ≤3-icx Z, and Y ≤4-icx Z.

Some comparisons of Gamma, inverse Gaussian, lognormal, and Birnbaum-
Saunders random variables in the ≤3-icv sense were derived by Klar [300].

Consider now a family of distribution functions {Gθ, θ ∈ R}. As in Section
1.A.3 let X(θ) denote a random variable with distribution function Gθ. For
any random variable Θ with support R, and with distribution function F , let
us denote by X(Θ) a random variable with distribution function H given by

H(y) =
∫

X
Gθ(y)dF (θ), y ∈ R.
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The following result generalizes Theorem 4.A.8(a), just as Theorem 1.A.6
generalized Theorem 1.A.3(a). Its proof is similar to the proof of Theorem
4.A.18, using the fact that Mm-icx and Mm-icv are closed under compositions.
We omit the details.

Theorem 4.A.65. Consider a family of distribution functions {Gθ, θ ∈ R} as
above. Let Θ1 and Θ2 be two random variables with support R and distribution
functions F1 and F2, respectively. Let Y1 and Y2 be two random variables such
that Yi =st X(Θi), i = 1, 2; that is, suppose that the distribution function of
Yi is given by

Hi(y) =
∫

X
Gθ(y)dFi(θ), y ∈ R, i = 1, 2.

If ψφ, defined by ψφ(θ) ≡ E[φ(X(θ))], is in Mm-icx [Mm-icv] whenever φ ∈
Mm-icx [φ ∈ Mm-icv], and if

Θ1 ≤m-icx [≤m-icv] Θ2,

then
Y1 ≤m-icx [≤m-icv] Y2.

For example, the family {Gθ, θ ≥ 0} of the Poisson distributions (or,
in fact, every family of distribution functions whose associated density func-
tions {gθ, θ ∈ R} satisfy that gθ(x) is totally positive of order m; see Karlin
[275]) satisfies the condition in Theorem 4.A.65 that ψφ is in Mm-icx [Mm-icv]
whenever φ ∈ Mm-icx [φ ∈ Mm-icv].

A Laplace transform characterization of the orders ≤m-icx and ≤m-icv is
given next; it may be compared to Theorems 1.A.13, 1.B.18, 1.B.53, 1.C.25,
2.A.16, 2.B.14, and 4.A.21. Before stating it we make a few observations.
First, note that the random variables X1 and X2 in the theorem below have
the support [0,∞). Then the characterizations (4.A.40) and (4.A.41) are still
valid provided the test functions φ in (4.A.40) satisfy that φ(j)(0) = 0 (rather
than limx→−∞ φ(j)(x) = 0), j = 1, 2, . . . , m − 1. Next, note that the random
variables Nλ(X1) and Nλ(X2) in the theorem below are discrete with support
N+. There are several ways of defining the orders ≤m-icx and ≤m-icv for such
random variables. One possible way is by the requirement (4.A.36) or (4.A.37)
(or, equivalently, by (4.A.38) or (4.A.39)). Another possible way is by replacing
the integrals in (4.A.36) or (4.A.37) by sums. In the theorem below we adopt a
definition that is a discrete analog of (4.A.40) and (4.A.41). For m = 1, 2, . . .,
let Km-icx be the set of functions φ : N+ → R such that ∆

(j)
φ (0) = 0, j =

0, 1, . . . , m−1 (where ∆
(0)
φ (n) ≡ φ(n) and ∆

(j)
φ (n) = ∆

(j−1)
φ (n+1)−∆

(j−1)
φ (n),

j = 1, 2, . . .), and such that ∆
(m−1)
φ (n) is increasing on N+. For the discrete

random variables M1 and M2 denote M1 ≤′
m-icx M2 if E[φ(M1)] ≤ E[φ(M2)]

for all functions φ ∈ Km-icx. Similarly, let Km-icv be the set of functions
φ : N+ → R such that limn→∞ ∆

(j)
φ (n) = 0, j = 0, 1, . . . , m− 1, and such that
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(−1)m−1∆
(m−1)
φ (n) is increasing on N+. For the discrete random variables

M1 and M2 denote M1 ≤′
m-icv M2 if E[φ(M1)] ≤ E[φ(M2)] for all functions

φ ∈ Km-icv.

Theorem 4.A.66. Let X1 and X2 be two nonnegative random variables, and
let Nλ(X1) and Nλ(X2) be as described in Theorem 1.A.13. Then

X1 ≤m-icx [≤m-icv] X2 ⇐⇒ Nλ(X1) ≤′
m-icx [≤′

m-icv] Nλ(X2) for all λ > 0.

The proof of this theorem is similar to the proof of Theorem 4.A.21 and
is therefore omitted.

Another family of orders that are related to the ≤cx, ≤icx, and ≤icv orders
can be defined by a generalization of (4.A.5) and (4.A.7) that is different from
the generalization that is described in (4.A.36) and (4.A.37). Let X and Y be
two random nonnegative variables with distribution functions F and G, and
survival functions F and G, respectively. Let p > 0 and suppose that E[Xp]
and E[Y p] exist. If∫ ∞

x

up−1F (u)du ≤
∫ ∞

x

up−1G(u)du for all x, and E[Xp] = E[Y p],

then X is said to be smaller than Y in pth order (denoted by X ≤p Y ). If∫ ∞

x

up−1F (u)du ≤
∫ ∞

x

up−1G(u)du for all x,

then X is said to be smaller than Y in p+ order (denoted by X ≤p+ Y ).
Finally, if ∫ x

0
up−1F (u)du ≥

∫ x

0
up−1G(u)du for all x,

then X is said to be smaller than Y in p− order (denoted by X ≤p− Y ).
It is not hard to verify that for nonnegative random variables X and Y

we have
X ≤p Y ⇐⇒ Xp ≤cx Y p, (4.A.44)

X ≤p+ Y ⇐⇒ Xp ≤icx Y p,

and
X ≤p− Y ⇐⇒ Xp ≤icv Y p. (4.A.45)

It is seen at once that
X ≤p Y =⇒ X ≤p+ Y,

and that
X ≤p Y =⇒ Y ≤p− X.

Notice that, for p = m, the order ≤p+ [≤p−] is not the same as the order
≤m-icx [≤m-icv]. In fact, X ≤m+ Y if, and only if,
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E[(Xm − a)+] ≤ E[(Y m − a)+] for all a

(compare this to (4.A.38)), and X ≤m− Y if, and only if,

E[(Xm − a)−] ≤ E[(Y m − a)−] for all a

(compare this to (4.A.39)).
It is easy to verify that the orders ≤p, ≤p+ and ≤p− are closed under mix-

tures. They are also closed under limits in distribution provided a condition on
convergence of moments, which is an obvious modification of (4.A.10) (simi-
lar to (4.A.43)), holds. The following result points out some interrelationships
among these orders.

Theorem 4.A.67. Let X and Y be two nonnegative random variables. If
X ≤p+ [≤p−] Y , then X ≤q+ [≤q−] Y whenever q ≥ p [q ≤ p].

A relationship to the order ≤∗ is given next (the order ≤∗ is defined in
Section 4.B below).

Theorem 4.A.68. Let X and Y be two nonnegative random variables that
have finite pth moments and that are not degenerate at 0. If X ≤∗ Y and if
E[Xp] = E[Y p], then X ≤p Y .

A simple proof of Theorem 4.A.68 will be given in Remark 4.B.24.
Motivated by the result of Theorem 1.A.8 (see also Theorems 3.A.43,

3.A.60, 4.A.48, 5.A.15, 6.B.19, 6.G.12, 6.G.13, and 7.A.14–7.A.16), the fol-
lowing results have been derived.

Theorem 4.A.69. Let X and Y be two nonnegative random variables. Sup-
pose that X ≤p+ Y [X ≥p− Y ] and that E[Xr] = E[Y r] for some r ∈ (p,∞)
[r ∈ (0, p)], provided the expectations exist. Then X =st Y .

Theorem 4.A.70. Let X and Y be two nonnegative random variables with
finite means and distribution functions F and G, respectively. If X ≤p Y and
if ∫ 1

0

[
F−1(t)

]rdφ(t) =
∫ 1

0

[
G−1(t)

]rdφ(t)

for some r ≥ p and some increasing and strictly convex function φ : [0, 1] → R,
then X =st Y .

We end this section by mentioning still another sequence of orders that
is based on iterated integrals. If F is a distribution function, then let F−1

denote the inverse of F (see page 1). Denote recursively

F−1
1 (p) = F−1(p), p ∈ [0, 1],

and

F−1
n (p) =

∫ 1

p

F−1
n−1(u)du, p ∈ [0, 1], (4.A.46)
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for n = 2, 3, . . .. Similarly define G−1
n for a distribution function G. For any

positive integer m, if the distribution functions F and G, of the random vari-
ables X and Y , satisfy

F−1
m (p) ≤ G−1

m (p) for p ∈ [0, 1],

then we denote X ≤−1
m Y . It is easy to see that

X ≤−1
1 Y ⇐⇒ X ≤st Y.

Also, if EX = EY , then, by Theorem 3.A.5 we see that

X ≤−1
2 Y ⇐⇒ X ≤cx Y.

From (4.A.46) we obtain at once the following result

Theorem 4.A.71. Let X and Y be two random variables. If X ≤−1
m1

Y , then
X ≤−1

m2
Y for all m2 ≥ m1.

A necessary condition for X ≤−1
m Y is given in the next result.

Theorem 4.A.72. Let X and Y be two random variables. If X ≤−1
m Y , then

E[max{X1, X2, . . . , Xk}] ≤ E[max{Y1, Y2, . . . , Yk}], k ≥ m − 1,

where the Xi’s [Yi’s] are independent random variables, all distributed accord-
ing to the distribution of X [Y ].

Proof. Let F and G denote the distribution functions of X and Y , respectively.
A straightforward computation yields

F−1
m (0) = E[max{X1, X2, . . . , Xm−1}]

and
G−1

m (0) = E[max{Y1, Y2, . . . , Ym−1}].

Therefore E[max{X1, X2, . . . , Xm−1}] ≤ E[max{Y1, Y2, . . . , Ym−1}]. The in-
equality for k > m − 1 now follows from Theorem 4.A.71. 
�

4.B Transform Orders: The Convex, Star, and
Superadditive Orders

4.B.1 Definitions

Let X and Y be two nonnegative random variables with distribution functions
F and G, respectively. Suppose that the support of X is an interval (finite or
infinite).
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We say that X is smaller than Y in the convex transform order (denoted
as X ≤c Y ) if G−1F (x) is convex in x on the support of F .

We say that X is smaller than Y in the star order (denoted by X ≤∗ Y )
if G−1F (x) is starshaped in x (that is, if G−1F (x)/x increases in x ≥ 0). It
is easily seen that X ≤∗ Y if, and only if,

G−1(u)
F−1(u)

is increasing in u ∈ (0, 1). (4.B.1)

Also, recalling the definition of the number of sign changes in (1.A.18), it is
easily seen that X ≤∗ Y if, and only if, for all b > 0 we have that

S−(F (·) − G(b·)) ≤ 1, (4.B.2)

and the sign sequence is −,+ if a crossing occurs.
We say that X is smaller than Y in the superadditive order (denoted

by X ≤su Y ) if G−1F (x) is superadditive in x (that is, if G−1F (x + y) ≥
G−1F (x) + G−1F (y) for all x ≥ 0 and y ≥ 0).

4.B.2 Some properties

Every nonnegative function that vanishes at 0, and that is increasing and
convex on [0,∞), is also starshaped on [0,∞). Furthermore, every nonnegative
function that vanishes at 0, and that is increasing and starshaped on [0,∞),
is also superadditive on [0,∞). Therefore, for any two nonnegative random
variables X and Y we have

X ≤c Y =⇒ X ≤∗ Y, (4.B.3)

and
X ≤∗ Y =⇒ X ≤su Y.

The star order is related to the dispersion order as follows:

Theorem 4.B.1. Let X and Y be two nonnegative random variables. Then

X ≤∗ Y ⇐⇒ log X ≤disp log Y. (4.B.4)

Proof. The relation X ≤∗ Y holds if, and only if, G−1F (x)/x is increasing in
x ≥ 0; that is, if, and only if, log G−1F (x) − log x = log G−1F (elog x) − log x
is increasing in x. The result now follows from (3.B.10). 
�

An equivalent way of writing (4.B.4) is the following. For any two nonneg-
ative random variables X and Y ,

X ≤disp Y ⇐⇒ eX ≤∗ eY .

Under an obvious restriction, the superadditive (and hence also the star
and the convex transform) order implies the dispersion order as is shown in
the next theorem.
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Theorem 4.B.2. Let X and Y be two nonnegative random variables such
that X ≤st Y . If X ≤su Y , then X ≤disp Y .

Proof. Let F and G denote the distribution functions of X and Y , respectively,
and let SF denote the support of F . Let x and y be two values in SF . Then

G−1F (x + y) − (x + y) ≥ G−1F (x) + G−1F (y) − (x + y)

≥ G−1F (y) − y,

where the first inequality follows from X ≤su Y and the second inequality
follows from F (x) ≥ G(x). Thus G−1F (x) − x is increasing in x. Now, from
(3.B.10), we obtain X ≤disp Y . 
�

The condition X ≤st Y is clearly needed because without it it is impossible
that X ≤disp Y (see Theorem 3.B.13). The condition X ≤su Y by itself (in
fact, even the condition X ≤∗ Y ) does not necessarily imply that X ≤st Y .

Theorem 4.B.2, together with (4.B.3), implies that if X and Y are two
nonnegative random variables with finite means such that X ≤st Y and if
X ≤su Y (and therefore if X ≤c Y or if X ≤∗ Y ), then (see Theorem 3.B.16)
[X − EX] ≤cx [Y − EY ], and in particular,

Var(X) ≤ Var(Y ).

Another condition, under which X ≤su Y implies X ≤disp Y , is given in
the next theorem.

Theorem 4.B.3. Let X and Y be two nonnegative random variables with
distributions F and G, respectively, such that limx→0(G−1F (x)/x) ≥ 1. If
X ≤su Y , then X ≤disp Y .

In particular, if F and G are absolutely continuous with F (0) = G(0) = 0
and their corresponding density functions f and g are such that f(0) ≥ g(0) >
0, then X ≤su Y implies X ≤disp Y .

The relationship between the orders ≤∗ and ≤icx is described in the next
theorem.

Theorem 4.B.4. Let X and Y be two nonnegative random variables such
that EX ≤ EY . If X ≤∗ Y , then X ≤icx Y .

Proof. First we show that X ≤∗ Y =⇒ X ≤Lorenz Y . For this end we can
assume temporarily, without loss of generality, since both orders are scale
invariant, that EX = EY = 1. Let F and G denote the distribution functions
of X and of Y , respectively. If F ≡ G, then the result is trivial. Thus assume
F �≡ G. From (4.B.2) (with b = 1), and from the fact that EX = EY , it
follows that S−(G − F ) = 1, and that the sign sequence is +,−. Thus, from
(3.A.59) we obtain X ≤Lorenz Y . (Another proof of X ≤∗ Y =⇒ X ≤Lorenz Y
can be found in Section 4.B.3.)

Now suppose that X ≤Lorenz Y and that EX ≤ EY . Then
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X ≤cx
EX

EY
· Y ≤st Y.

Thus we see from Theorem 4.A.6(b) that X ≤icx Y . 
�

The following theorem describes a star order comparison of two functions
of the same random variable.

Theorem 4.B.5. Let X be a nonnegative random variable that is not de-
generate at 0, and let g and h be nonnegative increasing functions, defined
on [0,∞), such that g(x) > 0 and h(x) > 0 for all x > 0. If h(x)/g(x) is
increasing in x ∈ (0,∞), then

g(X) ≤∗ h(X).

Proof. Denote by F the distribution function of X. From the assumption that
h(x)/g(x) is increasing in x ∈ (0,∞) it follows that

h(F−1(u))
g(F−1(u))

is increasing in u ∈ (0, 1).

Therefore, denoting by Fg and Fh the distribution functions of g(X) and of
h(X), we have that

F−1
h (u)

F−1
g (u)

is increasing in u ∈ (0, 1).

Thus g(X) ≤∗ h(X) by (4.B.1). 
�

For example, if X is a nonnegative random variable, then

X + a ≤∗ X whenever a > 0.

An interesting property of the order ≤∗ is given in the next theorem.

Theorem 4.B.6. Let X and Y be positive random variables. If X ≤∗ Y , then
Xp ≤∗ Y p for any p �= 0. In particular, 1/X ≤∗ 1/Y .

Proof. Let F and G be the distribution functions of X and Y , respectively.
First consider the case where p > 0. Then the distribution functions F̃ and G̃
of Xp and Y p, respectively, are given by

F̃ (x) = F (x1/p) and G̃(x) = G(x1/p), x ≥ 0.

Noting that G̃−1(F̃ (x)) = (G−1(F (x1/p)))p we compute

G̃−1(F̃ (x))
x

=
(G−1(F (x1/p)))p

x
=
(G−1(F (y))

y

)p

,
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where y = x1/p. From the assumption X ≤∗ Y it is seen that the right-hand
side of the above equation is increasing in y ≥ 0, and therefore the left-hand
side of that equation is increasing in x ≥ 0.

Now, in order to complete the proof it is only necessary to prove that
1/X ≤∗ 1/Y . Let now F̃ and G̃ denote the distribution functions of 1/X and
1/Y , respectively. These are given by

F̃ (x) = F (1/x) and G̃(x) = G(1/x), x ≥ 0,

where F ≡ 1 − F and G ≡ 1 − G. Noting that G̃−1 = 1/G
−1

and that
G

−1
F = G−1F , we compute

G̃−1(F̃ (x))
x

=
1

G
−1

(F (1/x))x
=

1/x

G−1(F (1/x))
.

From the assumption X ≤∗ Y it is seen that the latter expression is increasing
in x ≥ 0. 
�

Example 4.B.7. Let X and Y be two positive random variables, and let E1 be
a mean 1 exponential random variable which is independent of both X and
Y . Define X̃ = E1/X and Ỹ = E1/Y ; that is, the distributions of both X̃

and Ỹ are scale mixtures of exponential distributions. Then

X ≤∗ Y =⇒ X̃ ≤∗ Ỹ .

The proof is obtained by showing that X ≤∗ Y =⇒ 1/X̃ ≤∗ 1/Ỹ , and then
using Theorem 4.B.6. We omit the details.

See Remarks 5.A.2 and 5.B.1 for similar results.

A characterization of the order ≤c by means of the observed total time
on test random variables (see Section 1.A.4) is given next. Let X and Y
be two random variables with absolutely continuous distribution functions F
and G, respectively. Suppose that 0 is the left endpoint of the supports of X
and Y . Let H−1

F and H−1
G be the TTT transforms associated with F and G,

respectively (see (1.A.19)), and let HF and HG be the respective inverses. Let
Xttt and Yttt be random variables with distribution functions HF and HG.

Theorem 4.B.8. Let X and Y be two nonnegative random variables with
absolutely continuous distribution functions having 0 as the left endpoint of
their supports. Then

X ≤c Y ⇐⇒ Xttt ≤c Yttt.

Proof. Note that X ≤c Y if, and only if,

f(F−1(u))
g(G−1(u))

is increasing in u ∈ [0, 1], (4.B.5)
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where f and g are the densities associated with F and G. From (4.B.5),
(3.B.16), and (3.B.17) it is seen that X ≤c Y if, and only if, the ratio
hF (H−1

F (u))/hG(H−1
G (u)) is increasing in u ∈ [0, 1] where hF and hG are

the density functions associated with HF and HG, respectively. Thus, again
by (4.B.5), we obtain the stated result. 
�

A related result is the following.

Theorem 4.B.9. Let X and Y be two nonnegative random variables with
absolutely continuous distribution functions having 0 as the left endpoint of
their supports. If X ≤∗ Y , then Xttt ≤∗ Yttt.

See related results in Theorems 1.A.29, 3.B.1, 4.A.44, and 4.B.29.
The following characterization of the order ≤∗ is similar to the character-

ization of the order ≤hr in Theorem 1.B.12.

Theorem 4.B.10. Let X and Y be two random variables with continuous
distribution functions F and G, respectively, with common support [0,∞).
The following conditions are equivalent:

(a) X ≤∗ Y .
(b) For all functions α and β, such that α is nonnegative and α and α/β are

decreasing, and such that
∫ 1
0 α(u)dF−1(u) < ∞,

∫ 1
0 α(u)dG−1(u) < ∞,

0 �=
∫ 1
0 β(u)dF−1(u) < ∞, and 0 �=

∫ 1
0 β(u)dG−1(u) < ∞, we have∫ 1

0 α(u)dG−1(u)∫ 1
0 β(u)dG−1(u)

≤
∫ 1
0 α(u)dF−1(u)∫ 1
0 β(u)dF−1(u)

.

(c) For any two increasing functions a and b such that b is nonnegative, if∫ 1
0 a(u)b(u)dF−1(u) = 0, then

∫ 1
0 a(u)b(u)dG−1(u) ≤ 0.

The orders ≤c, ≤∗, and ≤su can be used to characterize, respectively, IFR,
IFRA, and NBU random variables as follows.

Theorem 4.B.11. Let Exp denote any exponential random variable (no mat-
ter what its mean is). Let X be a nonnegative random variable. Then

X is IFR ⇐⇒ X ≤c Exp,
X is IFRA ⇐⇒ X ≤∗ Exp, and
X is NBU ⇐⇒ X ≤su Exp.

The theorem follows at once from the definitions and the observation that
a random variable is IFR [IFRA, NBU] if, and only if, the negative of the
logarithm of its survival function is convex [starshaped, superadditive] on
(0,∞).

The claim in the next example is easy to prove.

Example 4.B.12. Let X be a nonnegative random variable with an absolutely
continuous distribution function. Then X has a decreasing density if, and only
if, U ≤c X, where U is a uniform[0, 1] random variable.
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Example 4.B.13. Let U(j:m) and U(i:n) denote the jth and the ith order statis-
tics of samples from the uniform distribution on [0, 1] of sizes m and n, re-
spectively. Then

U(j:m) ≤∗ U(i:n) whenever i − j ≥ max{0, n − m}.

This follows from Lemma 3.B.27 and (4.B.4), and from the fact that if U is a
uniform random variable on [0, 1], then − log(1−U) is a standard exponential
random variable.

It is worthwhile to mention that the above inequality, together with The-
orem 4.B.4, yields the first three inequalities in Example 3.A.49.

The following example may be compared with Examples 1.B.24, 1.C.48,
2.A.22, 3.B.38, 6.B.41, 6.D.8, and 6.E.13.

Example 4.B.14. Let X and Y be two absolutely continuous nonnegative
random variables with survival functions F and G, respectively. Denote
Λ1 = − log F and Λ2 = − log G, i = 1, 2. Consider two nonhomogeneous
Poisson processes N1 = {N1(t), t ≥ 0} and N2 = {N2(t), t ≥ 0} with mean
functions Λ1 and Λ2 (see Example 3.B.37), respectively. Let Ti,1, Ti,2, . . . be
the successive epoch times of process Ni, i = 1, 2. Note that X =st T1,1 and
Y =st T2,1.

It turns out that any of the three transform orderings of the first two epoch
times implies the same ordering of all the corresponding later epoch times;
that is, if X ≤c [≤∗,≤su] Y , then T1,n ≤c [≤∗,≤su] T2,n, n ≥ 1. The proof of
this fact is similar to the proof in Example 3.B.38, and is therefore omitted.

Similar to the orders ≤st, ≤hr, and ≤lr (see Theorems 1.B.34, 1.C.33, and
6.B.23), the orders ≤c, ≤∗, and ≤su are also preserved under the formation
of orders statistics. This is shown in the next result.

Theorem 4.B.15. Let (Xi, Yi), i = 1, 2, . . . , m, be independent pairs of ran-
dom variables such that Xi ≤c [≤∗,≤su] Yi, i = 1, 2, . . . , m. Denote the cor-
responding order statistics by X(1) ≤ X(2) ≤ · · · ≤ X(m) and Y(1) ≤ Y(2) ≤
· · · ≤ Y(m). Suppose that the Xi’s are identically distributed and that the Yi’s
are identically distributed. Then

X(k) ≤c [≤∗,≤su] Y(k), k = 1, 2, . . . , m. (4.B.6)

Proof. Let F [G] denote the common distribution function of the Xi’s [Yi’s]
and let F(k) [G(k)] denote the distribution function of X(k) [Y(k)]. Then it is
well known that

F(k)(x) =
m!

(k − 1)!(m − k)!

∫ F (x)

0
uk−1(1 − u)m−kdu

and, similarly,
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G(k)(x) =
m!

(k − 1)!(m − k)!

∫ G(x)

0
uk−1(1 − u)m−kdu.

Thus, G−1
(k)F(k) = G−1F , and (4.B.6) follows from the assumptions of the

theorem. 
�

In the following example it is shown that, under the proper conditions,
random minima and maxima are ordered in the convex transform, star, and
superadditive order senses; see related results in Examples 1.C.46, 3.B.39,
5.A.24, and 5.B.13.

Example 4.B.16. Let X1, X2, . . ., and Y1, Y2, . . ., each be a sequence of inde-
pendent and identically distributed random variables. Let N be a positive
integer-valued random variable, independent of the Xi’s and of the Yi’s.
Denote X(1,N) = min{X1, X2, . . . , XN}, X(N,N) = max{X1, X2, . . . , XN},
Y(1,N) = min{Y1, Y2, . . . , YN}, and Y(N,N) = max{Y1, Y2, . . . , YN}. It can
be shown that if X1 ≤c [≤∗,≤su] Y1, then X(1:N) ≤c [≤∗,≤su] Y(1:N) and
X(N :N) ≤c [≤∗,≤su] Y(N :N).

The convex transform order between X and Y implies the usual stochas-
tic order between ratios of the corresponding spacings as the next result
shows; related results can be found in Theorem 1.C.45, and in Examples
6.B.25 and 6.E.15. In the next result we use the following notation. Let
X(1:n) ≤ X(2:n) ≤ · · · ≤ X(n:n) and Y(1:n) ≤ Y(2:n) ≤ · · · ≤ Y(n:n) be the
order statistics corresponding to samples X1, X2, . . . , Xn and Y1, Y2, . . . , Yn;
each consists of independent, identically distributed random variables, where
the Xi’s have the same distribution as X, and the Yi’s have the same distribu-
tion as Y . The corresponding spacings are defined by U(i:n) ≡ X(i:n)−X(i−1:n)
and V(i:n) ≡ Y(i:n) − Y(i−1:n), i = 2, 3, . . . , n.

Theorem 4.B.17. Let X and Y be two random variables. If X ≤c Y , then

U(j:n)

U(i:n)
≤st

V(j:n)

V(i:n)
for 2 ≤ i ≤ j ≤ n.

Proof. First note that from the convexity of G−1F we obtain

G−1F (x2) − G−1F (x1)
x2 − x1

≤ G−1F (x4) − G−1F (x3)
x4 − x3

whenever x1 ≤ [x2, x3] ≤ x4,

where x1 ≤ [x2, x3] ≤ x4 denotes x1 ≤ x2 ≤ x4 and x1 ≤ x3 ≤ x4. Thus, for
2 ≤ i ≤ j ≤ n,
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P

{
U(j:n)

U(i:n)
> z

}
= P

{
X(j:n) − X(j−1:n)

X(i:n) − X(i−1:n)
> z

}
≤ P

{
G−1F (X(j:n)) − G−1F (X(j−1:n))
G−1F (X(i:n)) − G−1F (X(i−1:n))

> z

}
= P

{
V(j:n)

V(i:n)
> z

}
,

where the last equality follows from the observation that the joint distribution
of G−1F (X(i:n)), G−1F (X(i−1:n)), G−1F (X(j:n)), and G−1F (X(j−1:n)) is the
same as the joint distribution of Y(i:n), Y(i−1:n), Y(j:n), and Y(j−1:n). 
�

Under a weaker assumption than the one in Theorem 4.B.17 we have the
following results.

Theorem 4.B.18. Let X and Y be two random variables with distribution
functions F and G, respectively, such that F (0) = G(0) = 0. Let 0 ≤ p ≤ q.
If X ≤∗ Y , then

(a) E[Xq
(i:n)]/E[Y p

(i:n)] is decreasing in i,
(b) E[Xq

(i:n)]/E[Y p
(i:n)] is increasing in n, and

(c) E[Xq
(n−i:n)]/E[Y p

(n−i:n)] is decreasing in n,

provided the expectations exist.

The notation in Theorem 4.B.17 is used in the next result.

Theorem 4.B.19. Let X and Y be two nonnegative random variables. If
X ≤∗ Y , then E[U(i:n)] ≤ E[V(i:n)], i = 2, 3, . . . , n.

4.B.3 Some related orders

In this subsection we consider random variables X and Y with distribution
functions F and G, respectively, and with supports of the form [0, a), a > 0
(a can be infinity). We assume throughout this subsection that X and Y have
finite means. Denote the mrl functions (see (2.A.1)) that are associated with
X and Y , by m and l, respectively.

The random variable X is said to be smaller than Y in the DMRL order
(denoted by X ≤dmrl Y ) if

l(G−1(u))
m(F−1(u))

is increasing in u ∈ [0, 1]. (4.B.7)

Note that (4.B.7) is the same as the condition

1
EY

∫∞
G−1(u) G(x)dx

1
EX

∫∞
F −1(u) F (x)dx

is increasing in u ∈ [0, 1], (4.B.8)



222 4 Univariate Monotone Convex and Related Orders

where F and G are the survival functions associated with F and G, respec-
tively. Condition (4.B.8) can be written equivalently as

EY − H−1
G (u)

EX − H−1
F (u)

is increasing in u ∈ [0, 1],

where H−1
F and H−1

G are the TTT transforms (see (1.A.19)) that are associated
with F and G, respectively.

Theorem 4.B.20. Let X and Y be two random variables, each with support
of the form [0, a). If X ≤c Y , then X ≤dmrl Y .

Proof. Let the equilibrium survival functions associated with F and G be
defined as

F e(x) =
∫ ∞

x

F (t)
EX

dt and Ge(x) =
∫ ∞

x

G(t)
EY

dt.

Let α(x) ≡ G−1(F (x)) = G
−1

(F (x)) and let

γ(u) ≡ F e
(
α−1(G−1

e (u)
))

, u ∈ [0, 1].

For simplicity suppose that α and γ are differentiable. A lengthy straightfor-
ward computation gives

γ′(u) =
EX

EY
· d
dx

α−1(x)
∣∣∣∣
G

−1
e (u)

. (4.B.9)

By assumption, α is convex. It follows from (4.B.9) that γ is convex, and
therefore γ is starshaped. That is,

F e
(
F−1

(
G
(
G

−1
e (u)

)))
u

is increasing in u ∈ [0, 1].

Equivalently,
F e
(
F−1(u)

)
Ge
(
G−1(u)

) is decreasing in u ∈ [0, 1],

and (4.B.8) is obtained. 
�

The random variable X is said to be smaller than Y in the NBUE order
(denoted by X ≤nbue Y ) if

m
(
F−1(u)

)
l
(
G−1(u)

) ≤ EX

EY
for all u ∈ [0, 1]. (4.B.10)

Note that (4.B.10) is the same as the condition
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1
EX

∫ ∞

F −1(u)
F (x)dx ≤ 1

EY

∫ ∞

G−1(u)
G(x)dx for all u ∈ [0, 1]. (4.B.11)

Condition (4.B.11) can be written equivalently as

H−1
F (u)
EX

≥ H−1
G (u)
EY

for all u ∈ [0, 1].

From (4.B.11) and (3.C.1) it follows that if EX = EY , then X ≤nbue
Y ⇐⇒ X ≤ew Y . In other words, for nonnegative random variables X and Y
we have

X ≤nbue Y ⇐⇒ X

EX
≤ew

Y

EY
. (4.B.12)

Without the condition that EX = EY the orders ≤nbue and ≤ew are distinct
(see Kochar, Li, and Shaked [316]).

The following result is immediate from (4.B.7) and (4.B.10).

Theorem 4.B.21. Let X and Y be two random variables, each with support
of the form [0, a). If X ≤dmrl Y , then X ≤nbue Y .

In the following two theorems some further relationships among some or-
ders are proven.

Theorem 4.B.22. Let X and Y be two random variables, each with support
of the form [0, a). If X ≤∗ Y , then X ≤nbue Y .

Proof. If X ≤∗ Y , then, from Theorem 4.B.9, we have that H−1
G (u)

H−1
F (u)

is increas-

ing in u ∈ [0, 1] (see (4.B.1)). Therefore, H−1
G (u)

H−1
F (u)

≤ H−1
G (1)

H−1
F (1)

= EY
EX . 
�

Recall from Theorem 3.B.16 that for random variables with the same
means the dispersion order implies the convex order. Thus, from Theorem
4.B.2 it follows that for nonnegative random variables X and Y with finite
means, such that X(EX)−1 ≤st Y (EY )−1, we have that the star order im-
plies the Lorenz order. However, a stronger result is true — one can obtain
the Lorenz order without assuming any usual stochastic comparison associ-
ated with X and Y . This follows from Theorem 4.B.22 and the next result.

Theorem 4.B.23. Let X and Y be two nonnegative random variables. If
X ≤nbue Y , then X ≤Lorenz Y .

Proof. The proof follows at once from (4.B.11) and (3.C.8). 
�

A summary of the implications among orders that were mentioned so far
in this section is given in the following chart.

X ≤c Y ⇒ X ≤∗ Y ⇒ X ≤su Y
⇓ ⇓

X ≤dmrl Y ⇒ X ≤nbue Y ⇒ X ≤Lorenz Y
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Remark 4.B.24. Using the above facts, we provide here a simple proof of The-
orem 4.A.68. Recall from Theorem 4.B.6 that for any p > 0 we have that
X ≤∗ Y if, and only if, Xp ≤∗ Y p. Thus, from (4.A.44) and from Theo-
rems 4.B.22 and 4.B.23 it is seen that if X ≤∗ Y , then Xp ≤Lorenz Y p. This
observation, again with the aid of (4.A.44), proves Theorem 4.A.68.

The orders ≤dmrl and ≤nbue can be used to characterize, respectively,
DMRL and NBUE random variables as follows.

Theorem 4.B.25. Let Exp denote any exponential random variable (no mat-
ter what its mean is). Let X be a nonnegative random variable. Then

X is DMRL ⇐⇒ X ≤dmrl Exp, and
X is NBUE ⇐⇒ X ≤nbue Exp.

The theorem follows at once from the definitions and the observation that
the mrl function of an exponential random variable is a constant.

Recall from (1.A.19) the definition of the TTT transform. We will now
introduce and discuss an order that is defined through a comparison of TTT
transforms. Let X and Y be two nonnegative random variables with distribu-
tion functions F and G, respectively. If∫ F −1(u)

0
F (x)dx ≤

∫ G−1(u)

0
G(x)dx, for all u ∈ (0, 1) (4.B.13)

then X is said to be smaller than Y in the TTT order (denoted by X ≤ttt Y ).
A simple sufficient condition for the order ≤ttt is the usual stochastic order:

X ≤st Y =⇒ X ≤ttt Y. (4.B.14)

In order to verify (4.B.14) one may just notice that if X ≤st Y , then F−1(u) ≤
G−1(u) for all u ∈ (0, 1) (see (1.A.12)).

By letting u → 1 in (4.B.13) it is seen that

X ≤ttt Y =⇒ EX ≤ EY. (4.B.15)

From (4.B.11) and (4.B.13) it follows that if EX = EY , then X ≤ttt
Y ⇐⇒ X ≥nbue Y . In other words, for nonnegative random variables X and
Y we have

X ≥nbue Y ⇐⇒ X

EX
≤ttt

Y

EY
;

see a similar relation in (4.B.12).
It is easy to see that for any two nonnegative random variables X and Y

we have
X ≤ttt Y =⇒ aX ≤ttt aY for any a > 0.

An important closure property of the order ≤ttt, analogous to Theorem
3.C.4, is given next.
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Theorem 4.B.26. Let X and Y be two finite mean continuous nonnegative
random variables with interval supports, and with 0 being the common left
endpoint of the supports. Then, for any increasing concave function φ, such
that φ(0) = 0, we have

X ≤ttt Y =⇒ φ(X) ≤ttt φ(Y ).

As a corollary we obtain an analog of (3.C.8):

Corollary 4.B.27. Let X and Y be two finite mean continuous nonnegative
random variables with interval supports, and with 0 being the common left
endpoint of the supports. Then

X ≤ttt Y =⇒ X ≤icv Y.

Proof. Suppose that X ≤ttt Y . Let φ be an increasing concave function
defined on [0,∞). Define φ̃(·) = φ(·) − φ(0), so that φ̃(0) = 0. From
Theorem 4.B.26 we obtain φ̃(X) ≤ttt φ̃(Y ). Hence from (4.B.15) we get
E[φ̃(X)] ≤ E[φ̃(Y )], and this reduces to E[φ(X)] ≤ E[φ(Y )], provided the
expectations exist. 
�

An interesting closure property of the order ≤ttt, analogous to Theorem
3.C.11, is given next.

Theorem 4.B.28. Let X1, X2, . . . be a collection of independent and iden-
tically distributed random variables, and let Y1, Y2, . . . be another collec-
tion of independent and identically distributed random variables. Also, let
N be a positive, integer-valued, random variable, independent of the Xi’s
and of the Yi’s. If X1 and Y1 are nonnegative, and if X1 ≤ttt Y1, then
min{X1, X2, . . . , XN} ≤ttt min{Y1, Y2, . . . , YN}.

Some interesting connections between the order ≤ttt and observed total
time on test random variables are given in the next theorem. Let X and Y be
two nonnegative random variables. Recall from Section 1.A.4 the definition of
the observed total time on test random variables Xttt and Yttt.

Theorem 4.B.29. Let X and Y be two nonnegative random variables. Then

Xttt ≤st Yttt ⇐⇒ X ≤ttt Y

and
X ≤ttt Y =⇒ Xttt ≤ttt Yttt.

Some related results can be found in Theorems 1.A.29, 3.B.1, 4.A.44, 4.B.8,
and 4.B.9.

The following example describes comparisons of random variables that
arise in the model of imperfect repair, and as the lifetimes of series systems.
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Example 4.B.30. Let X be a nonnegative random variable with survival func-
tion F . For θ > 0, let X(θ) denote a random variable with the survival function
(F )θ. Similarly, if Y is a nonnegative random variable with the survival func-
tion G, then denote by Y (θ) a random variable with survival function (G)θ.
Suppose that both X and Y have 0 as the left endpoint of their supports.

(a) If θ > 1, then X ≤ttt Y =⇒ X(θ) ≤ttt Y (θ).
(b) If θ < 1, then X(θ) ≤ttt Y (θ) =⇒ X ≤ttt Y .

A generalization of the TTT order is described next. This generalization
contains as special cases the orders ≤st, ≤lir, and ≤ttt. Let H denote the set
of all functions h such that h(u) > 0 for u ∈ (0, 1), and h(u) = 0 for u �∈ [0, 1].
For h ∈ H, if∫ F −1(p)

−∞
h(F (x))dx ≤

∫ G−1(p)

−∞
h(G(x))dx, p ∈ (0, 1),

then we say that X is smaller than Y in the generalized total time on test
transform order with respect to h. We denote this by X ≤(h)

ttt Y .

Example 4.B.31. Let X and Y be random variables with the same left end-
point of support a > −∞. Let h be a constant function on [0, 1]; that is,
h(u) = c, u ∈ [0, 1], for some c > 0, and h(u) = 0 otherwise. Then X ≤(h)

ttt Y
if, and only if,

F−1(p) ≤ G−1(p), p ∈ (0, 1);

that is (by (1.A.12)), if, and only if, X ≤st Y .

Example 4.B.32. Let h(u) = u, u ∈ [0, 1], and h(u) = 0 otherwise. Then
X ≤(h)

ttt Y if, and only if,∫ F −1(p)

−∞
F (x)dx ≤

∫ G−1(p)

−∞
G(x)dx, p ∈ (0, 1);

that is, if, and only if, X ≤lir Y ; the order ≤lir is defined in Section 3.C.1.

Example 4.B.33. Let X and Y be nonnegative random variables with 0 being
the left endpoint of their supports. Let h(u) = 1 − u, u ∈ [0, 1], and h(u) = 0
otherwise. Then X ≤(h)

ttt Y if, and only if,∫ F −1(p)

0
F (x)dx ≤

∫ G−1(p)

0
G(x)dx, p ∈ (0, 1);

that is, if, and only if, X ≤ttt Y .

The next result describes a relationship among the orders ≤(h)
ttt for different

h’s.
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Theorem 4.B.34. Let X and Y be two random variables with continuous
distribution functions, having 0 as the left endpoint of their supports. Let
h1, h2 ∈ H. Suppose that

h2(u)/h1(u) is decreasing on (0, 1).

Then
X ≤(h1)

ttt Y =⇒ X ≤(h2)
ttt Y.

Remark 4.B.35. In Theorem 4.B.34 let h1(u) = u and h2(u) = c for some
constant c > 0, u ∈ [0, 1]. Then by Theorem 4.B.34, X ≤(h1)

ttt Y =⇒ X ≤(h2)
ttt

Y ; that is, by Examples 4.B.31 and 4.B.32,

X ≤lir Y =⇒ X ≤st Y (4.B.16)

when X and Y are two random variables with continuous distribution func-
tions, having 0 as the left endpoint of their supports.

Recall from Theorem 3.B.13(a) that if X and Y have 0 as the left endpoint
of their supports, then X ≤disp Y =⇒ X ≤st Y. It is not hard to see that
X ≤disp Y =⇒ X ≤lir Y . Thus (4.B.16) strengthens Theorem 3.B.13(a) when
X and Y have 0 as the left endpoint of their supports.

Some relationships between the usual stochastic order ≤st and the orders
≤(h)

ttt are given next.

Theorem 4.B.36. Let X and Y be two nonnegative random variables with
continuous distribution functions, having 0 as the left endpoint of their sup-
ports. Let h ∈ H.

(a) If h is decreasing on [0, 1], then X ≤st Y =⇒ X ≤(h)
ttt Y .

(b) If h is increasing on [0, 1], then X ≤(h)
ttt Y =⇒ X ≤st Y .

A relationship between the order ≤icv and some orders ≤(h)
ttt is described

next.

Theorem 4.B.37. Let X and Y be two random variables with continuous
distribution functions, and supports [0, a) and [0, b), respectively, for some
finite or infinite constants a and b. Let h ∈ H be decreasing on [0, 1]. Then

X ≤(h)
ttt Y =⇒ X ≤icv Y.

4.C Complements

Section 4.A: Some standard references for the monotone convex and con-
cave orders are Ross [475] and Müller and Stoyan [419], where many of
the results that are described in Section 4.A can be found. The character-
izations of the order ≤icx by means of the quantile functions (Theorems
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4.A.3 and 4.A.4) are taken from Sordo and Ramos [538]. The condition
(4.A.8) is studied in Hürlimann [251]; there it is called the RaC (risk-
adjusted capital) order. The present version of the characterizations of
the orders ≤icx and ≤icv, given in Theorem 4.A.5, is taken from Müller
and Rüschendorf [415]. The two characterizations of the order ≤icx, given
in Theorem 4.A.6, can be found in Makowski [378]; an alternative proof
of these results is given in Müller [407]. The result that gives the clo-
sure under random convolutions property of the monotone convex and
concave orders (Theorem 4.A.9) and its proof are taken from Ross and
Schechner [477]. Extensions of Theorem 4.A.9 are given in Jean-Marie
and Liu [254]; for example, the results mentioned in Remark 4.A.10 can
be found there. Theorem 4.A.11 can be found in Fagiuoli and Pellerey
[186]. The comparisons of the random sums in Theorems 4.A.12–4.A.14
are motivated by ideas in Pellerey and Shaked [455]; they can be found
in Pellerey [450]. The result that gives the closure under general convex
increasing transformations property of the increasing convex order (Theo-
rem 4.A.15) and its proof can be found in Ross [475]. The ordering of the
maxima in the sense of ≤icx (Corollary 4.A.16) is implicit in Theorem 9 of
Li, Li, and Jing [354]. The increasing convex order comparison of maxima
of partial sums (Theorem 4.A.17) is taken from Shao [535]; see also Bu-
linski and Suquet [114]. The icx and icv comparisons of ratios (Example
4.A.19) are restatements of results of Pellerey and Semeraro [454]. The
result that gives the closure under mixtures property of the increasing
convex and concave orders (Theorem 4.A.20) has been motivated by a
result of Ahmed, Soliman, and Khider [10]. The Laplace transform char-
acterization of the orders ≤icx and ≤icv (Theorem 4.A.21) is essentially
taken from Ross and Schechner [477] and from Shaked and Wong [524]. A
proof of the characterization of the increasing convex order by means of
the number of crossings of two distribution functions (Theorem 4.A.23)
can be found in Müller [407]. The characterization of the order ≤mrl by
the order ≤icx (Theorem 4.A.24) is taken from Brown and Shanthikumar
[112]. The closure property of the order ≤mrl given in Remark 4.A.25 is
also taken from Brown and Shanthikumar [112]. The sufficient condition
for the increasing concave order in Theorem 4.A.27 is given on page 484
of Landsberger and Meilijson [329]. The fact that the order ≤hmrl implies
the order ≤icx (Theorem 4.A.28) can be found in Fagiuoli and Pellerey
[185]. The relationship between the orders ≤dil and ≤icx that is described
in Theorem 4.A.30 and in Corollary 4.A.31 can be found in Belzunce,
Pellerey, Ruiz, and Shaked [72]. The relationship between the orders ≤ew
and ≤icx that is described in Corollary 4.A.32 can be found in Fagiuoli,
Pellerey, and Shaked [188]; in Kochar, Li, and Shaked [316] it is shown
that Corollary 4.A.32 can be easily obtained from Theorem 3.C.4. The re-
sult about the expected values of the extremes and the increasing convex
order (Theorem 4.A.33) is taken from Downey and Maier [170]. The bi-
variate characterizations of the orders ≤st, ≤hr, and ≤lr in Theorem 4.A.36
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are taken from Righter and Shanthikumar [466]; its application (Theorem
4.A.37) is taken from Kijima and Ohnishi [292]. The increasing convex and
concave comparisons of linear functions of random variables with random
coefficients, whose parameters are comparable in the majorization order
(Theorems 4.A.38 and 4.A.39 and Corollary 4.A.40), are taken from De-
nuit and Frostig [144]; further results of this type can be found there.
The characterizations of the dilation and the icx orders by means of the
increasing convex order (Theorems 4.A.41 and 4.A.42) are taken from
Sordo and Ramos [538]. The characterization of the excess wealth order
by means of the increasing convex order (Theorem 4.A.43) can be found in
Belzunce [63]. The inheritance of the icv order by the observed total time
on test random variables (Theorem 4.A.44) is given in Li and Shaked [356].
The icx order comparisons of a sum of independent heterogeneous bino-
mial random variables with a proper binomial random variable (Example
4.A.45) is taken from Boland, Singh, and Cukic [102]. The necessary and
sufficient conditions for the comparison of normal random variables (Ex-
ample 4.A.46) are taken from Müller [413]. The icx comparison of average
of exponential random variables with the largest among them (Example
4.A.47) can be found in Argon and Andradóttir [16]. The condition for
stochastic equality in the icx case of Theorem 4.A.48 can be found Bhat-
tacharjee and Bhattacharya [87]; the condition for stochastic equality in
the icv case of Theorem 4.A.48 follows from the above condition and from
Theorem 4.A.1. The condition for stochastic equality in Theorem 4.A.50
is taken from Sordo and Ramos [538]. The characterization of the DMRL
and IMRL aging notions by means of the increasing convex order (Theo-
rem 4.A.51) can be found in Cao and Wang [117], who also defined and
studied the classes of NBUC and NWUC random variables. The terminol-
ogy of NBUM and NWUM is due to Bergmann [81]. The characterization
of NBUC random variables, given in (4.A.32), is taken from Belzunce,
Ortega, and Ruiz [71]. The notions of NBU(2) and NWU(2) are defined
in Deshpande, Kochar, and Singh [160]. The extension of the sufficiency
condition in Theorem 4.A.51, given in Theorem 4.A.52, is taken from Li
and Zuo [359]. Most of the results about the starshaped order (Section
4.A.6) can be found in Alzaid [13]. Most of the results on the orders ≤m-icx
and ≤m-icv (Section 4.A.7) are taken from Rolski [473]; see also Mukherjee
and Chatterjee [404], Fishburn and Lavalle [204], Wang and Young [558],
Cheng and Pai [129], and references therein. Lefèvre and Utev [339] stud-
ied some stochastic orders among discrete random variables by replacing
the integrals in (4.A.36) and in (4.A.37) by summations. Fishburn and
Lavalle [204] also studied discrete analogs of the ≤m-icv orders. Thorlund-
Petersen [549] characterized the ≤3-icv comparison of arithmetic random
variables. The definition of the order ≤∞-icv can be found in Thistle [548]
or in Fishburn and Lavalle [204] and in other references that are given
in the latter paper. The moment inequalities that are given in Theorem
4.A.58 are also taken from Fishburn and Lavalle [204]; see further ref-
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erences there, and see also Carletti and Pellerey [121]. Theorem 4.A.60
can be found in Denuit, Lefèvre, and Utev [155]. The sufficient condi-
tions for the m-icx order, in terms of sign changes (Theorem 4.A.63),
are taken from Kaas and Hesselager [270]; the stochastic comparisons of
the Gamma, inverse Gaussian, and lognormal random variables (Exam-
ple 4.A.64) can also be found there. A variation of Theorem 4.A.65 can
be found in Hesselager [222]. Some results that are related to Theorem
4.A.66 have been derived in Denuit [140]. Fishburn [201, 202] and Stoyan
[540, page 22] extended the orders ≤m-icx and ≤m-icv by allowing m to be
any positive number (that is, not necessarily an integer). They did it by
letting the m in (4.A.38) and in (4.A.39) be any number greater than 0.
Shaked and Wong [524] considered orders defined by requiring the test
functions φ in (4.A.40) [respectively, (4.A.41)] to satisfy that φ(j) [respec-
tively, (−1)jφ(j)] is increasing, j = 0, 1, . . . , m − 1. Denuit, Lefèvre, and
Shaked [151] studied the orders defined by requiring (4.A.38) and (4.A.39)
to hold as well as E(X − a)i ≤ E(Y − a)i, i = 1, 2, . . . , m − 1, where a is
the left endpoint of the support of the underlying random variables, and
a is assumed to be finite. The results about the orders ≤p, ≤p+, and ≤p−
(Theorems 4.A.67–4.A.69) are taken from Bhattacharjee and Sethuraman
[88], Bhattacharjee [83], Li and Zhu [351], and Jun [265]. Note that the
order that we denote by ≤p− is not the same as, but is a modification
of, an order discussed by these authors. Some generalizations of Theorem
4.A.69 can be found in Cai and Wu [116]. The condition for stochastic
equality in Theorem 4.A.70 is taken from Sordo and Ramos [538]. The
discussion involving the orders ≤−1

m is motivated by Muliere and Scarsini
[406]; extensions of these orders are developed in Wang and Young [558]
and in Maccheroni, Muliere, and Zoli [376].

Bhattacharjee [85] studied the order ≤icx under the restriction that the
compared random variables are discrete.

Baccelli and Makowski [28] denote X ≤FR-st Y whenever (4.A.21) holds
(that is, X ≤FR-st Y ⇐⇒ X ≤hmrl Y ). They also define the orders ≤FR-cx
and ≤FR-icx in a similar manner, and they study many closure properties
of the orders ≤FR-st, ≤FR-cx, and ≤FR-icx. The order ≤FR-icx is a “hybrid”
of the orders ≤hmrl (see (2.B.2)) and ≤3-icx (see (4.A.36)). It is defined by
saying that the nonnegative random variables X and Y satisfy X ≤FR-icx
Y if (here F and G denote the survival functions of X and Y , respectively)∫∞

x

∫∞
x2

F (x1)d1dx2

EX
≤
∫∞

x

∫∞
x2

G(x1)dx1dx2

EY
for all x ≥ 0.

Clearly, if EX = EY , then X ≤FR-icx Y if, and only if, X ≤2-icx Y . The
order ≤FR-cx is defined by saying that the nonnegative random variables
X and Y satisfy X ≤FR-cx Y if X ≤FR-icx Y and if E[X2]/E[X] =
E[Y 2]/E[Y ].
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Section 4.B: A good reference about the convex transform, star, and super-
additive orders is Barlow and Proschan [36], where further references can
be found. Many of the results given in this section can be found there. An-
other basic reference about the convex transform order is van Zwet [578].
The result about the relation of the star order and the dispersive order
(Theorem 4.B.1) is implicit in Shaked [503], whereas the results about
the relation of the superadditive order and the dispersive order (Theo-
rems 4.B.2 and 4.B.3) can be found in Ahmed, Alzaid, Bartoszewicz, and
Kochar [8]. The relationship between the star order and the icx order (The-
orem 4.B.4) is taken from Szekli [544, page 23]; the idea of the first part
of the proof of Theorem 4.B.4 is adopted from Arnold and Villasenor [21].
The property of the star order given in Theorem 4.B.6, when p = −1,
can be found in Taillie [546]; Rivest [469] has obtained it for a general
p �= 0. The comparison of the exponential mixtures with respect to the
order ≤∗, given in Example 4.B.7, is taken from Bartoszewicz [50]. The
characterization of the order ≤c by means of observed total time on test
random variables (Theorem 4.B.8) can be found in Barlow and Doksum
[34]. The proof of the implication that is given in Theorem 4.B.9 can be
found in Bartoszewicz [42, 45]. An interesting study of the relationship
between the convex transform, star, and superadditive orders and some
variability orders can be found in Metzger and Rüschendorf [393]. A char-
acterization of the star order, by means of the monotonicity in k of the
ratio of the quantile functions of the corresponding order statistics X(k)
and Y(k) (see (4.B.6)), is given in Bartoszewicz [41]. The characterization
of the star order given in Theorem 4.B.10 is taken from Bartoszewicz
[45]. The star ordering of order statistics from uniform distribution (Ex-
ample 4.B.13) can be found in Jeon, Kochar, and Park [255]. The three
transform orderings of the epoch times of two nonhomogeneous Poisson
processes (Example 4.B.14) are given in Gupta and Kirmani [217]. The
result about the preservation of the convex transform, star, and super-
additive orders under formation of order statistics (Theorem 4.B.15) is a
special case of a result in Belzunce, Mercader, and Ruiz [70]. The results
about the convex transform, star, and superadditive order comparisons
of random minima and maxima (Example 4.B.16) are taken from Bar-
toszewicz [49]. An extension of Theorem 4.B.15 to order statistics from
samples with a random size can be found in Nanda, Misra, Paul, and
Singh [427]. This extension of Nanda, Misra, Paul, and Singh [427] also
extends the results in Example 4.B.16. The fact that the convex transform
order implies the usual stochastic order among ratios of spacings (Theo-
rem 4.B.17) can be found in Oja [440]. The result about the monotonicity
of the ratios of expected values of the order statistics which is implied
by the order ≤∗ (Theorem 4.B.18) is given in Bartoszewicz [45]; see also
Barlow and Proschan [35]. The inequalities between the expected values
of spacings from different samples (Theorem 4.B.19) are taken from Paul
and Gutierrez [443]. The discussion of the DMRL and the NBUE orders in



232 4 Univariate Monotone Convex and Related Orders

Section 4.B.3 follows the work of Kochar and Wiens [319] and of Kochar
[306], although some of the proofs here are different; see also Belzunce,
Candel, and Ruiz [65] and Fernandez-Ponce, Kochar, and Muñoz-Perez
[195]. The discussion of the TTT order in Section 4.B.3 follows the work
of Kochar, Li, and Shaked [316]. The result about the preservation of the
TTT order under random minima (Theorem 4.B.28) is taken from Li and
Zuo [358]. The connections between the order ≤ttt and observed total time
on test random variables (Theorem 4.B.29) can be found in Li and Shaked
[356]. The comparisons of random variables of interest in reliability the-
ory, given in Example 4.B.30, are taken from Li and Shaked [357]. The
generalization ≤(h)

ttt of the TTT order has been introduced and studied in
Li and Shaked [357].

The definitions of the orders ≤c, ≤∗, and ≤su, given in Section 4.B.1,
are proper when the comparisons apply to distributions of nonnegative
random variables. Van Zwet [578], Lawrence [334], and Loh [365] study
modifications of these orders which apply to symmetric distributions.
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The Laplace Transform and Related Orders

The most important common order that is studied in this chapter is the
Laplace transform order. Like the orders that were discussed in Chapter 4,
the Laplace transform order compares random variables according to both
their “location” and their “spread”. Two other useful orders, based on ratios
of Laplace transforms, are also discussed in this chapter. In addition, some
other related orders are investigated in this chapter as well.

5.A The Laplace Transform Order

5.A.1 Definitions and equivalent conditions

The relations X ≤st Y , X ≤cx Y , X ≤icx Y , and X ≤icv Y , as well as
many others, are defined by requiring E[φ(X)] ≤ E[φ(Y )] to hold for all
functions φ in some class of functions. For example, the class of functions
which corresponds to the usual stochastic order is the class of all increasing
functions. The order that is discussed in this section corresponds to the class
of functions φ of the form φ(x) = −e−sx where s is a positive number.

More explicitly, let X and Y be two nonnegative random variables such
that

E[exp{−sX}] ≥ E[exp{−sY }] for all s > 0. (5.A.1)

Then X is said to be smaller than Y in the Laplace transform order (denoted
by X ≤Lt Y ). Throughout this section we consider only nonnegative random
variables.

For a nonnegative random variable X with distribution function F and
survival function F ≡ 1 − F , denote by

f∗(s) =
∫ ∞

0
e−sxdF (x) and F

∗
(s) =

∫ ∞

0
e−sxF (x)dx

the Laplace-Stieltjes transform of F (or the Laplace transform of X) and the
Laplace transform of F , respectively. Then it is easy to verify that
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F
∗
(s) = s−1(1 − f∗(s)) for all s > 0. (5.A.2)

Using (5.A.2), the following result is easy to verify.

Theorem 5.A.1. Let X and Y be two nonnegative random variables with
survival functions F and G, respectively. Then X ≤Lt Y if, and only if,∫ ∞

0
e−sxF (x)dx ≤

∫ ∞

0
e−sxG(x)dx for all s > 0. (5.A.3)

Note that (5.A.3) can be written as

E min{X, Es} ≤ E min{Y, Es} for all s > 0, (5.A.4)

where Es is an exponential random variable with mean 1/s, which is indepen-
dent of X and of Y .

Using (5.A.2) it is also easy to verify the statement that is given in the
following remark.

Remark 5.A.2. Let X and Y be two positive random variables, and let E1 be
a mean 1 exponential random variable which is independent of both X and
Y . Define X̃ = E1/X and Ỹ = E1/Y ; that is, the distributions of both X̃

and Ỹ are scale mixtures of exponential distributions. Then

X ≤Lt Y ⇐⇒ Ỹ ≤st X̃.

See similar results in Example 4.B.7 and in Remark 5.B.1.

If X ≤Lt Y , then (1 − E[exp{−sX}])/s ≤ (1 − E[exp{−sY }])/s for all
s > 0. Letting s ↓ 0 it is seen that

X ≤Lt Y =⇒ EX ≤ EY, (5.A.5)

provided the expectations exist.
A function φ : [0,∞) → R is said to be completely monotone if all its

derivatives φ(n) exist and satisfy φ(0)(x) ≡ φ(x) ≥ 0, φ(1)(x) ≤ 0, φ(2)(x) ≥
0, . . .; that is, φ is completely monotone if (−1)nφ(n)(x) ≥ 0 for all x > 0 and
n = 0, 1, 2, . . .. It is well known that φ is completely monotone if, and only if,
there exists a measure µ on (0,∞) such that

φ(x) =
∫ ∞

0
e−xuµ(du).

Therefore, if X ≤Lt Y and φ is completely monotone, then

E[φ(X)] = E
[ ∫ ∞

0
e−Xuµ(du)

]
=
∫ ∞

0
E[e−Xu]µ(du)

≥
∫ ∞

0
E[e−Y u]µ(du) = E[φ(Y )],

provided the expectations exist. The function φ, which is defined by φ(x) =
exp{−sx}, is completely monotone for each s > 0. We thus have proven the
following characterization of the order ≤Lt.
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Theorem 5.A.3. Let X and Y be two nonnegative random variables. Then
X ≤Lt Y if, and only if,

E[φ(X)] ≥ E[φ(Y )] (5.A.6)

for all completely monotone functions φ, provided the expectations exist.

A similar result is the following.

Theorem 5.A.4. Let X and Y be two nonnegative random variables. Then
X ≤Lt Y if, and only if,

E[φ(X)] ≤ E[φ(Y )]

for all differentiable functions φ on [0,∞) with a completely monotone deriva-
tive, provided the expectations exist.

Next we characterize the order ≤Lt by a function of the respective mo-
ments. In order to do that we notice that if X is a nonnegative random
variable with survival function F such that all its moments exist, then∫ ∞

0
e−sxF (x)dx =

∞∑
i=0

(−s)i

i!

∫ ∞

0
xiF (x)dx =

∞∑
i=0

(−s)i

i!
EXi+1

i + 1
.

Using this fact and Theorem 5.A.1, the proof of the next theorem is apparent.

Theorem 5.A.5. Let X and Y be nonnegative random variables that possess
moments µi and νi, respectively, i = 1, 2, . . . . Then X ≤Lt Y if, and only if,

∞∑
i=0

(−s)i

(i + 1)!
µi+1 ≤

∞∑
i=0

(−s)i

(i + 1)!
νi+1 for all s > 0.

A Laplace transform characterization of the order ≤Lt is stated next. It
may be compared to Theorems 1.A.13, 1.B.18, 1.B.53, 1.C.25, 2.A.16, 2.B.14,
and 4.A.21. We omit its proof.

Theorem 5.A.6. Let X1 and X2 be two nonnegative random variables, and
let Nλ(X1) and Nλ(X2) be as described in Theorem 1.A.13. Then

X1 ≤Lt X2 ⇐⇒ Nλ(X1) ≤Lt Nλ(X2) for all λ > 0.

5.A.2 Closure and other properties

Using (5.A.1) and (5.A.6) it is easy to prove each of the closure results in the
following theorem. The first part of the theorem follows from the observation
that if φ is a completely monotone function and g is a positive function with
a completely monotone derivative, then φ(g) is completely monotone. Com-
ments about the proof of the last part are given after the statement of the
theorem. (Recall from Section 1.A.3 that for any random variable Z and any
event A we denote by [Z

∣∣A] any random variable whose distribution is the
conditional distribution of Z given A.)
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Theorem 5.A.7. (a) If X ≤Lt Y and g is any positive function with a com-
pletely monotone derivative, then g(X) ≤Lt g(Y ).

(b) Let X, Y , and Θ be random variables such that [X
∣∣Θ = θ] ≤Lt [Y

∣∣Θ =
θ] for all θ in the support of Θ. Then X ≤Lt Y . That is, the Laplace
transform order is closed under mixtures.

(c) Let {Xj , j = 1, 2, . . . } and {Yj , j = 1, 2, . . . } be two sequences of random
variables such that Xj →st X and Yj →st Y as j → ∞. If Xj ≤Lt Yj,
j = 1, 2, . . ., then X ≤Lt Y .

(d) Let X1, X2, . . . , Xm be a set of independent random variables and let
Y1, Y2, . . . , Ym be another set of independent random variables. If Xi ≤Lt
Yi for i = 1, 2, . . . , m, then

g(X1, X2, . . . , Xm) ≤Lt g(Y1, Y2, . . . , Ym)

for all nonnegative functions g on [0,∞)n such that (∂/∂xi)g(x1, x2, . . . ,
xn) is completely monotone in xi, i = 1, 2, . . . , m. In particular, the
Laplace transform order is closed under convolutions.

The proof of Theorem 5.A.7(d) is very similar to the proof of Theorem
4.A.15. The basic difference is that one should use Theorem 5.A.7(a) rather
than Theorem 4.A.8(a) in the first step of the inductive argument.

Another closure property of the order ≤Lt is described in the following
theorem.

Theorem 5.A.8. Let X1, X2, . . . and Y1, Y2, . . . each be a sequence of non-
negative independent random variables, and let M and N be integer-valued
positive random variables that are independent of the {Xi} and the {Yi} se-
quences, respectively. Suppose that there exists a nonnegative random variable
Z such that Xi ≤Lt Z ≤Lt Yj for all i and j. If M ≤Lt N , then

M∑
j=1

Xj ≤Lt

N∑
j=1

Yj .

Proof. Note that for all s > 0 we have

E

[
exp
{

− s

M∑
j=1

Xj

}]
=

∞∑
n=1

P{M = n}
n∏

j=1

E[exp{−sXj}]

≥
∞∑

n=1

P{M = n}(E[exp{−sZ}])n

=
∞∑

n=1

P{M = n} exp{−n(− log E[exp{−sZ}])}

≥
∞∑

n=1

P{N = n} exp{−n(− log E[exp{−sZ}])}



5.A The Laplace Transform Order 237

=
∞∑

n=1

P{N = n}(E[exp{−sZ}])n

≥
∞∑

n=1

P{N = n}
n∏

j=1

E[exp{−sYj}]

= E

[
exp
{

− s

N∑
j=1

Yj

}]
,

where the first and the last equalities follow from the independence of M and
N of the {Xi} and the {Yi} sequences, the first and the last inequalities follow
from Xi ≤Lt Z ≤Lt Yj for all i and j, and the middle inequality follows from
M ≤Lt N . The stated result now follows. 
�

As a corollary of Theorem 5.A.8 we obtain the next result, which is an
analog of Theorem 4.A.9. It is worthwhile to point out that Theorem 7.D.7,
which is proven in Section 7.D.1, is a more general result than the following
theorem.

Theorem 5.A.9. Let X1, X2, . . . and Y1, Y2, . . . each be a sequence of non-
negative independent and identically distributed random variables such that
Xi ≤Lt Yi, i = 1, 2, . . .. Let M and N be integer-valued positive random vari-
ables that are independent of the {Xi} and the {Yi} sequences, respectively,
such that M ≤Lt N . Then

M∑
j=1

Xj ≤Lt

N∑
j=1

Yj .

A result that is related to Theorem 5.A.9 is given next. It is of interest to
compare it to Theorems 1.A.5, 2.B.8, 3.A.14, and 4.A.12.

Theorem 5.A.10. Let {Xj , j = 1, 2, . . . } be a sequence of nonnegative in-
dependent and identically distributed random variables, and let M be a pos-
itive integer-valued random variable which is independent of the Xi’s. Let
{Yj , j = 1, 2, . . . } be another sequence of independent and identically dis-
tributed random variables, and let N be a positive integer-valued random vari-
able which is independent of the Yi’s. Suppose that for some positive integer
K we have

K∑
i=1

Xi ≤Lt [≥Lt] Y1,

and
M ≤Lt [≥Lt] KN.

Then
M∑

j=1

Xj ≤Lt [≥Lt]
N∑

j=1

Yj .
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We do not give a detailed proof of Theorem 5.A.10 here since it is similar
to the proof of Theorem 4.A.12 in Section 4.A.1.

Two other similar theorems are the following. Their proofs are similar to
the proofs of Theorems 4.A.13 and 4.A.14 in Section 4.A.1.

Theorem 5.A.11. Let {Xj , j = 1, 2, . . . } be a sequence of nonnegative in-
dependent and identically distributed random variables, and let M be a pos-
itive integer-valued random variable which is independent of the Xi’s. Let
{Yj , j = 1, 2, . . . } be another sequence of independent and identically dis-
tributed random variables, and let N be a positive integer-valued random vari-
able which is independent of the Yi’s. Also, let {Nj , j = 1, 2, . . . } be a sequence
of independent random variables that are distributed as N . If for some positive
integer K we have

K∑
i=1

Xi ≤Lt Y1 and M ≤Lt

K∑
i=1

Ni,

or if we have

KX1 ≤Lt Y1 and M ≤Lt KN,

or if we have

KX1 ≤Lt Y1 and M ≤Lt

K∑
i=1

Ni,

then
M∑

j=1

Xj ≤Lt

N∑
j=1

Yj .

Theorem 5.A.12. Let {Xj , j = 1, 2, . . . } be a sequence of nonnegative in-
dependent and identically distributed random variables, and let M be a pos-
itive integer-valued random variable which is independent of the Xi’s. Let
{Yj , j = 1, 2, . . . } be another sequence of independent and identically dis-
tributed random variables, and let N be a positive integer-valued random vari-
able which is independent of the Yi’s. If for some positive integers K1 and K2,
such that K1 ≤ K2, we have

K1∑
i=1

Xi ≤Lt
K1

K2
Y1 and M ≤Lt K2N,

then
M∑

j=1

Xj ≤Lt

N∑
j=1

Yj .
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Recall from page 2 the definition of the majorization order a ≺ b among
n-dimensional vectors.

Theorem 5.A.13. Let X1, X2, . . . , Xm be independent nonnegative random
variables. Let a1 ≥ a2 ≥ · · · ≥ am ≥ 0 and b1 ≥ b2 ≥ · · · ≥ bm ≥ 0 be
constants such that a ≺ b. If

X1 ≤rh X2 ≤rh · · · ≤rh Xm,

then
m∑

i=1

aiXi ≤Lt

m∑
i=1

am−i+1Xi and
m∑

i=1

biXi ≤Lt

m∑
i=1

aiXi.

Proof. By Theorem 5.A.7(d) the order ≤Lt is closed under convolutions. Thus,
it suffices to prove the stated results for m = 2.

Select an s ≥ 0. In Theorem 1.B.50(b), take α(x) = e−a1sx and β(x) =
e−a2sx to obtain

E[exp{−s(a1X1 + a2X2)}] ≥ E[exp{−s(a1X2 + a2X1)}], s ≥ 0;

that is, a1X1 + a2X2 ≤Lt a1X2 + a2X1.
In order to prove the second statement, take α(x) = e−a2sx and β(x) =

e−b2sx in Theorem 1.B.50(b) to obtain

E[exp{−b2X2s}]
E[exp{−a2X2s}]

≥ E[exp{−b2X1s}]
E[exp{−a2X1s}]

, s ≥ 0. (5.A.7)

Also, by Theorem 3.A.35 we have a1X1 + a2X
∗
1 ≤cx b1X1 + b2X

∗
1 , where X∗

1
is an independent copy of X1. Therefore, a1X1 + a2X

∗
1 ≥Lt b1X1 + b2X

∗
1 , and

hence,

E[exp{−b2X1s}]
E[exp{−a2X1s}]

=
E[exp{−b2X

∗
1s}]

E[exp{−a2X∗
1s}]

≥ E[exp{−a1X1s}]
E[exp{−b1X1s}]

, s ≥ 0.

(5.A.8)
Combining (5.A.7) and (5.A.8) we obtain b1X1 + b2X2 ≤Lt a1X1 + a2X2. 
�

The Laplace transform order is closed under linear convex combinations
as the following theorem shows. This result is an analog of Theorem 3.A.36,
and its proof is similar to the proof of that theorem; therefore the proof is
omitted. Similar results are Theorems 5.C.8 and 5.C.18.

Theorem 5.A.14. Let X1, X2, . . . , Xn and Y be n + 1 random variables. If
Xi ≥Lt Y , i = 1, 2, . . . , n, then

n∑
i=1

aiXi ≥Lt Y,

whenever ai ≥ 0, i = 1, 2, . . . , n and
∑n

i=1 ai = 1.
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A result that is similar to Theorems 1.A.8, 3.A.43, 3.A.60, 4.A.69, 6.B.19,
6.G.12, 6.G.13, and 7.A.14–7.A.16, is the following.

Theorem 5.A.15. Let X and Y be two nonnegative random variables. Sup-
pose that X ≤Lt Y and that E[Xα] = E[Y α] for some α < 0 or for some
α ∈ (0, 1), provided the expectations exist. Then X =st Y .

The function φ defined by φ(x) = exp{−sx} is decreasing and convex for
each s > 0. Therefore −φ is increasing and concave. We thus obtain the next
result.

Theorem 5.A.16. Let X and Y be two nonnegative random variables. If
X ≤icv Y , then X ≤Lt Y . In particular, if X ≤st Y , then X ≤Lt Y .

In fact, from (4.A.41) it follows that if X ≤m-icv Y , for any m, then
X ≤Lt Y . For random variables with finite supports we have the following
characterization of the Laplace transform order by means of the orders ≤m-icv
that were studied in Section 4.A.7.

Theorem 5.A.17. Let X and Y be two random variables with finite supports.
Then X ≤Lt Y if, and only if, X ≤∞-icv Y (where ≤∞-icv is defined in
(4.A.42)).

Another strengthening of Theorem 5.A.16 is stated and proven next. Recall
from Section 4.A.7 the definition of the order ≤p−.

Theorem 5.A.18. Let X and Y be two nonnegative random variables. If
X ≤p− Y for some p ≤ 1, then X ≤Lt Y .

Proof. Recall from (4.A.45) that if X ≤p− Y , then Xp ≤icv Y p. Select an
s > 0. Define φ(x) ≡ e−sx and let

h(x) ≡ φ
(
x1/p

)
= e−sx1/p

.

It is easy to verify that the function h is decreasing and convex, and therefore
−h is increasing and concave. From the fact that Xp ≤icv Y p it follows that

−E[h(Xp)] ≤ −E[h(Y p)],

or, equivalently, that
E
[
e−sX

]
≥ E

[
e−sY

]
.

Since the latter inequality holds for all s > 0 it follows that X ≤Lt Y . 
�

Closure properties of an order under the operation of taking minima are of
importance in reliability theory. The next result gives conditions under which
the order ≤Lt is closed under this operation. We do not give the proof here.
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Theorem 5.A.19. Let the independent nonnegative random variables X1, X2,
. . . , Xm, Y1, Y2, . . . , Ym have the survival functions F 1, F 2, . . . , Fm, G1, G2,
. . . , Gm, respectively. If Xi ≤Lt Yi, i = 1, 2, . . . , m, and F i and Gi, i =
1, 2, . . . , m, are completely monotone, then

min{X1, X2, . . . , Xm} ≤Lt min{Y1, Y2, . . . , Ym}.

Remark 5.A.20. Let {X, X1, X2, . . . } be a set of nonnegative independent
and identically distributed random variables, and let {Y, Y1, Y2, . . . } be an-
other set of nonnegative independent and identically distributed random vari-
ables. Denote by X(i:n) the ith order statistic in a sample of size n from
{X1, X2, . . . }, and denote by Y(i:n) the ith order statistic in a sample of size
n from {Y1, Y2, . . . }. If X ≤disp Y , then, by Theorem 3.B.31, for 2 ≤ i ≤ n we
have X(i:n) −X(i−1:n) ≤st Y(i:n) −Y(i−1:n), and therefore, by Theorem 5.A.16,
we have

X(i:n) − X(i−1:n) ≤Lt Y(i:n) − Y(i−1:n), 2 ≤ i ≤ n. (5.A.9)

Bartoszewicz [46] proved a similar result. He showed that if X ≤disp Y , and
if the Xi’s and the Yi’s are independent, then

X(i:n) + Y(i−1:n) ≤Lt X(i−1:n) + Y(i:n), 2 ≤ i ≤ n. (5.A.10)

This is different from (5.A.9) because X(i−1:n) and X(i:n) (and Y(i−1:n) and
Y(i:n)) in (5.A.9) have a particular joint distribution, whereas (5.A.10) involves
only the marginal distributions of X(i−1:n) and X(i:n) (and of Y(i−1:n) and
Y(i:n)). Bartoszewicz [46] also proved that if X ≤disp Y , and if the Xi’s and
the Yi’s are independent, then

X(n+1−i:n+1) + Y(n−i:n) ≤Lt X(n−i:n) + Y(n+1−i:n+1), 0 ≤ i ≤ n − 1,

and
X(i:n) + Y(i:n+1) ≤Lt X(i:n+1) + Y(i:n), 1 ≤ i ≤ n.

In reliability theory, motivated by (3.A.62) and Theorem 5.A.16, one may
consider the class of nonnegative random variables X which satisfy

X ≥Lt [≤Lt] Exp(µ) (5.A.11)

or, equivalently,∫ ∞

0
e−suP{X > u}du ≥ [≤]

µ

1 + sµ
for s ≥ 0,

where µ is the mean of X. Such random variables have interesting aging
properties. From Theorems 3.A.55 and 5.A.16 it is seen that if X is NBUE
[NWUE], then X satisfies (5.A.11).

Some researchers studied random variables X which satisfy
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X ≥Lt Gamma(α, β),

where Gamma(α, β) denotes a Gamma random with shape parameter α and
scale parameter β, which has the same mean as X. See Klar [300], Hu and
Lin [228], and references therein.

Let X be a nonnegative random variable with a finite mean. Recall the
definition of the asymptotic equilibrium age AX whose distribution function
is given in (1.A.20). Let Y be another nonnegative random variable with the
corresponding asymptotic equilibrium age AY . From (5.A.3) it is seen at once
that if EX = EY , then

X ≤Lt Y ⇐⇒ AX ≥Lt AY . (5.A.12)

The next result indicates the “minimal” and the “maximal” random vari-
ables, with respect to the order ≤Lt, when the mean and the variance are
given. It is worthwhile to contrast it with Theorem 3.A.24.

Theorem 5.A.21. Let Y be a nonnegative random variable with mean µ and
variance σ2. Let X be a random variable such that P{X = 0} = 1 − P{X =
(µ2 + σ2)/µ} = σ2/(µ2 + σ2) (so that EX = µ and Var(X) = σ2) and let Z
be a random variable degenerate at µ. Then

X ≤Lt Y ≤Lt Z. (5.A.13)

Proof. The right-side inequality in (5.A.13) follows at once from Jensen’s In-
equality. Let F and G be, respectively, the survival functions of X and Y . In
order to obtain the left-side inequality in (5.A.13) we will show that∫ ∞

0
e−sxF (x)dx ≤

∫ ∞

0
e−sxG(x)dx for all s ≥ 0. (5.A.14)

The result will then follow from Theorem 5.A.1.
Define the functions α and β on (0,∞) by α(x) = F (x)/µ and β(x) =

G(x)/µ. It is easy to see that both α and β are density functions with a
common mean (µ2 + σ2)/2µ. In fact, α is the density function of the uniform
distribution over the interval [0, (µ2 + σ2)/µ), whereas β is a density which is
decreasing on [0, ∞). From Theorem 3.A.46 it now follows that∫ ∞

0
φ(x)

F (x)
µ

dx ≤
∫ ∞

0
φ(x)

G(x)
µ

dx

for all convex functions φ, and in particular (5.A.14) holds. 
�

A characterization of the hazard rate order, by means of the Laplace trans-
form order, is described in the following theorem. Recall from Section 1.A.3
that for any random variable Z and an event A we denote by [Z

∣∣A] any ran-
dom variable that has as its distribution the conditional distribution of Z
given A.
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Theorem 5.A.22. Let X and Y be two continuous random variables with
right support endpoints uX and uY , respectively. Then X ≤hr Y if, and only
if,

[X − t
∣∣X > t] ≤Lt [Y − t

∣∣Y > t] for all t < min{uX , uY }. (5.A.15)

Proof. The fact that X ≤hr Y implies (5.A.15) follows from (1.B.6) and The-
orem 5.A.16. In order to prove the converse, let us assume, for simplicity,
that uX = uY = ∞. Denote by F and G the survival functions of X and Y ,
respectively. Now note that

[X − t
∣∣X > t] ≤Lt [Y − t

∣∣Y > t] for all t

⇐⇒
∫ ∞

0
e−su F (u + t)

F (t)
du ≤

∫ ∞

0
e−su G(u + t)

G(t)
du for all t and s > 0

⇐⇒
∫∞

t
e−suG(u)du∫∞

t
e−suF (u)du

≥ G(t)
F (t)

for all t and s > 0

⇐⇒
∫∞

t
e−suG(u)du∫∞

t
e−suF (u)du

is increasing in t for all s > 0 (5.A.16)

⇐⇒
1
se−st

[
G(t) − est

∫∞
t

e−suG(u)du
]

1
se−st

[
F (t) − est

∫∞
t

e−suF (u)du
] is increasing in t for all s > 0

⇐⇒
[
G(t) − est

∫∞
t

e−suG(u)du
][

F (t) − est
∫∞

t
e−suF (u)du

] is increasing in t for all s > 0, (5.A.17)

where the second from last equivalence follows by integration by parts.
Using the Dominated Convergence Theorem, it is not hard to see that
lims→0 est

∫∞
t

e−suF (u)du = lims→0 est
∫∞

t
e−suG(u)du = 0. Therefore, let-

ting s → 0 in (5.A.17) we obtain that G(t)/F (t) is increasing in t; that is,
X ≤hr Y . 
�

Remark 5.A.23. The equivalence of X ≤hr Y and (5.A.16), together with
(2.A.3), yield a proof of Theorem 2.A.6.

In the following example it is shown, under a proper condition which is
stated by means of the Laplace transform order, that random minima and
maxima are ordered in the usual stochastic order sense; see related results in
Examples 1.C.46, 3.B.39, 4.B.16, and 5.B.13.

Example 5.A.24. Let X1, X2, . . . be a sequence of nonnegative independent
and identically distributed random variables with a common distribution
function FX1 and a common survival function FX1 . Let N1 and N2 be two
positive integer-valued random variables, which are independent of the Xi’s,
and which have the Laplace transforms LN1 and LN2 . Denote X(1:Nj) ≡
min{X1, X2, . . . , XNj } and X(Nj :Nj) ≡ max{X1, X2, . . . , XNj }, j = 1, 2. Then
the survival function of X(1:Nj) is given by
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FX(1:Nj)(x) = LNj
(− log FX1(x)), j = 1, 2.

It is thus seen that if N1 ≤Lt N2, then X(1:N1) ≥st X(1:N2). In a similar manner
it can be shown that if N1 ≤Lt N2, then also X(N1:N1) ≤st X(N2:N2).

An example with a similar spirit is the following.

Example 5.A.25. Consider a compound Poisson process with rate λ and dis-
tribution φ. Suppose that this process is the (random) hazard rate function
of a random variable X. Then the survival function F of X is given by

F (t) = exp
{

−
∫ t

0
λ[1 − Lφ(s)]ds

}
, t ≥ 0, (5.A.18)

where Lφ is the Laplace transform of φ (see Kebir [280, page 873]). Similarly
let Y have the survival function G given by

G(t) = exp
{

−
∫ t

0
λ[1 − Lϕ(s)]ds

}
, t ≥ 0, (5.A.19)

where ϕ is a distribution function, and where Lϕ is the Laplace transform of
ϕ. It is now seen that if the random variable associated with φ is larger, in the
Laplace transform order, than the random variable associated with ϕ, then
G(t)/F (t) is increasing in t ≥ 0; that is (see (1.B.3)), X ≤hr Y .

A variation of this result is given in Example 5.B.14.

When X is a nonnegative integer-valued random variable, then it is cus-
tomary and convenient to analyze it using its probability generating function
E[tX ], t ∈ (0, 1), rather than its Laplace transform E[e−sX ], s ≥ 0. This fact
suggests the following definition.

Let X and Y be two nonnegative integer-valued random variables such
that

E[tX ] ≥ E[tY ] for all t ∈ (0, 1). (5.A.20)
Then X is said to be smaller than Y in the probability generating function
order (denoted as X ≤pgf Y ).

It is not hard to verify the following relation which holds for any nonneg-
ative integer-valued random variable X:

∞∑
j=1

tjP{X ≥ j} = t

∞∑
j=0

tjP{X > j} =
t
(
1 − E[tX ]

)
1 − t

for all t ∈ (0, 1).

We thus obtain the following analog of Theorem 5.A.1.

Theorem 5.A.26. Let X and Y be two nonnegative integer-valued random
variables. Then X ≤pgf Y if, and only if,

∞∑
j=1

tjP{X ≥ j} ≤
∞∑

j=1

tjP{Y ≥ j} for all t ∈ (0, 1).

It is easy to see that (5.A.20) holds if, and only if, (5.A.1) holds. That is,

X ≤pgf Y ⇐⇒ X ≤Lt Y.
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5.B Orders Based on Ratios of Laplace Transforms

5.B.1 Definitions and equivalent conditions

In this section, for a nonnegative random variable X with distribution function
F and survival function F ≡ 1 − F , let us denote by

LX(s) =
∫ ∞

0
e−sxdF (x) and L∗

X(s) =
∫ ∞

0
e−sxF (x)dx

the Laplace-Stieltjes transform of F (or the Laplace transform of X) and
the Laplace transform of F , respectively. If Y is another nonnegative random
variable, we similarly define LY and L∗

Y . If

LY (s)
LX(s)

is decreasing in s > 0, (5.B.1)

then X is said to be smaller than Y in the Laplace transform ratio order
(denoted by X ≤Lt-r Y ). If

1 − LY (s)
1 − LX(s)

is decreasing in s > 0, (5.B.2)

then X is said to be smaller than Y in the reverse Laplace transform ratio
order (denoted by X ≤r-Lt-r Y ).

Since L∗
X(s) = s−1(1 − LX(s)) and L∗

Y (s) = s−1(1 − LY (s)) for all s > 0,
it follows that

X ≤Lt-r Y ⇐⇒ 1 − sL∗
Y (s)

1 − sL∗
X(s)

is decreasing in s > 0,

and that

X ≤r-Lt-r Y ⇐⇒ L∗
Y (s)

L∗
X(s)

is decreasing in s > 0.

Using (5.A.2) it is easy to verify the statements that are given in the
following remark.

Remark 5.B.1. Let X and Y be two positive random variables, and let E1 be
a mean 1 exponential random variable which is independent of both X and
Y . Define X̃ = E1/X and Ỹ = E1/Y ; that is, the distributions of both X̃

and Ỹ are scale mixtures of exponential distributions. Then

X ≤Lt-r Y ⇐⇒ Ỹ ≤hr X̃ and

X ≤r-Lt-r Y ⇐⇒ Ỹ ≤rh X̃.

See similar results in Example 4.B.7 and in Remark 5.A.2.
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The next theorem characterizes the orders ≤Lt-r and ≤r-Lt-r by means of
functions of the respective moments. The characterization is an analog of the
characterization of the Laplace transform order given in Theorem 5.A.5.

Theorem 5.B.2. Let X and Y be nonnegative random variables that possess
moments µi and νi, respectively, i = 1, 2, . . ., (µ0 = ν0 = 1). Then

(a) X ≤Lt-r Y if, and only if,∑∞
n=0

(−s)i

i! νi∑∞
n=0

(−s)i

i! µi

is decreasing in s > 0.

(b) X ≤r-Lt-r Y if, and only if,∑∞
n=1

(−s)i

i! νi∑∞
n=1

(−s)i

i! µi

is decreasing in s > 0.

Proof. By writing e−st =
∑∞

i=0
(−s)i

i! ti, the result follows easily from the def-
initions. 
�

5.B.2 Closure properties

We list below some preservation properties of the orders ≤Lt-r and ≤r-Lt-r.
Below, for any nonnegative random variable Z, we will denote by LZ the
Laplace transform of Z.

Theorem 5.B.3. Let X1, X2, . . . be independent, identically distributed non-
negative random variables, and let N1 and N2 be positive integer-valued ran-
dom variables which are independent of the Xi’s. Then

N1 ≤Lt-r [≤r-Lt-r] N2 =⇒
N1∑
i=1

Xi ≤Lt-r [≤r-Lt-r]
N2∑
i=1

Xi.

Proof. For j = 1, 2, we have

LX1+X2+···+XNj
(s) =

∞∑
i=1

P{Nj = i}LX1+X2+···+Xi
(s)

=
∞∑

i=1

P{Nj = i}Li
X1

(s)

= LNj
(− log LX1(s)).

The stated results now follow from the assumptions. 
�

If the Xi’s are not assumed to be identically distributed, then stronger
assumptions on the relationship between N1 and N2 yield the same conclusion.
This is shown in the next two theorems.
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Theorem 5.B.4. Let X1, X2, . . . be independent nonnegative random vari-
ables, and let N1 and N2 be positive integer-valued random variables which
are independent of the Xi’s. If N1 ≤rh N2, then

N1∑
i=1

Xi ≤Lt-r

N2∑
i=1

Xi.

Proof. For j = 1, 2, we have

LX1+X2+···+XNj
(s) =

∞∑
i=1

P{Nj = i}
i∏

k=1

LXk
(s).

For 0 < s1 < s2 we need to show that[ ∞∑
m=1

P{N1 = m}
m∏

k=1

LXk
(s1)

][ ∞∑
n=1

P{N2 = n}
n∏

k=1

LXk
(s2)

]

−
[ ∞∑

m=1

P{N2 = m}
m∏

k=1

LXk
(s1)

][ ∞∑
n=1

P{N1 = n}
n∏

k=1

LXk
(s2)

]
≤ 0.

This follows from the remark after Theorem 2.1 of Joag-Dev, Kochar, and
Proschan [259] by noting that

(
g1(m), g2(m)

)
≡
( m∏

k=1

LXk
(s2),

m∏
k=1

LXk
(s1)
)

is a pair of what Joag-Dev, Kochar, and Proschan [259] call DP2 functions of
m, whenever 0 < s1 < s2, and g1(m) is decreasing in m. 
�

Theorem 5.B.5. Let X1, X2, . . . be independent nonnegative random vari-
ables, and let N1 and N2 be positive integer-valued random variables which
are independent of the Xi’s. If N1 ≤hr N2, and if Xi ≤r-Lt-r Xi+1, then

N1∑
i=1

Xi ≤r-Lt-r

N2∑
i=1

Xi.

Proof. For j = 1, 2, we have

1 − LX1+X2+···+XNj
(s) =

∞∑
m=1

P{Nj = m}
[
1 −

m∏
k=1

LXk
(s)
]

=
∞∑

m=0

P{Nj > m}
m∏

k=1

LXk
(s)
[
1 − LXm+1(s)

]
,

where
∏0

k=1 LXk
(s) ≡ 1. So for 0 < s1 < s2 we have that
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1 − LX1+X2+···+XN1

(s1)
][

1 − LX1+X2+···+XN2
(s2)
]

−
[
1 − LX1+X2+···+XN2

(s1)
][

1 − LX1+X2+···+XN1
(s2)
]

=
∞∑

m=1

m−1∑
n=0

[
P{N1 > m}P{N2 > n} − P{N2 > m}P{N1 > n}

]
×

n∏
k=1

LXk
(s1)

n∏
k=1

LXk
(s2)

×
[ m∏

k=n+1

LXk
(s1)(1 − LXm+1(s1))(1 − LXn+1(s2))

−
m∏

k=n+1

LXk
(s2)(1 − LXm+1(s2))(1 − LXn+1(s1))

]
≤ 0.

The last inequality follows since N1 ≤hr N2 implies that

P{N1 > m}P{N2 > n} − P{N2 > m}P{N1 > n} ≤ 0 for m > n,

and Xi ≤r-Lt-r Xi+1 implies that

(1 − LXm+1(s1))(1 − LXn+1(s2)) − (1 − LXm+1(s2))(1 − LXn+1(s1)) ≥ 0
for m > n.

The stated result now follows. 
�

Some other preservation results are given in the following theorems.

Theorem 5.B.6. Let X1, X2, . . . , Xn be a set of independent nonnegative
random variables and let Y1, Y2, . . . , Yn be another set of independent non-
negative random variables. If Xj ≤Lt-r Yj, j = 1, 2, . . . , n, then X1 + X2 +
· · · + Xn ≤Lt-r Y1 + Y2 + · · · + Yn.

Proof. Since LX1+X2+···+Xn
(s) =

∏n
i=1 LXi

(s), we see that if
LYj

(s)
LXj

(s) is de-

creasing in s, j = 1, 2, . . . , n, then LY1+Y2+···+Yn (s)
LX1+X2+···+Xn (s) is also decreasing in s.


�

As a special case of Theorem 5.B.6 we see that if X and Y are nonnegative
independent random variables, then

X ≤Lt-r X + Y. (5.B.3)

Theorem 5.B.7. Let {Xj} and {Yj} be two sequences of random variables
such that Xj →st X and Yj →st Y as j → ∞. If Xj ≤Lt-r [≤r-Lt-r] Yj,
j = 1, 2, . . ., then X ≤Lt-r [≤r-Lt-r] Y .



5.B Orders Based on Ratios of Laplace Transforms 249

Theorem 5.B.8. Let X, Y , and Θ be random variables such that [X
∣∣Θ =

θ] ≤Lt-r [≤r-Lt-r] [Y
∣∣Θ = θ′] for all θ and θ′ in the support of Θ. Then X ≤Lt-r

[≤r-Lt-r] Y .

Proof. We only give the proof for the ≤Lt-r order. The proof for the order
≤r-Lt-r is similar. Note that

LX(s)
LY (s)

=
EΘ

[
L[X|Θ](s)

]
EΘ

[
L[Y |Θ](s)

] .
It can be verified that d

ds

[
LX(s)
LY (s)

]
≥ 0 if d

ds

[
L[X|θ](s)
L[Y |θ′](s)

]
≥ 0 for all θ and θ′ in

the support of Θ. 
�

In the next result it is shown that a random variable, whose distribution
is the mixture of two distributions of ≤Lt-r [≤r-Lt-r] ordered random variables,
is bounded from below and from above, in the ≤Lt-r [≤r-Lt-r] order sense, by
these two random variables.

Theorem 5.B.9. Let X and Y be two nonnegative random variables with
distribution functions F and G, respectively. Let W be a random variable
with the distribution function pF + (1 − p)G for some p ∈ (0, 1). If X ≤Lt-r
[≤r-Lt-r] Y , then X ≤Lt-r [≤r-Lt-r] W ≤Lt-r [≤r-Lt-r] Y .

The proof of Theorem 5.B.9 is similar to the proof of Theorem 1.B.22, but
it uses (5.B.1) [(5.B.2)] instead of (1.B.3). We omit the details.

5.B.3 Relationship to other stochastic orders

In this subsection we describe some relationships between the Laplace ratio
orders and some other stochastic orders. We also mention some known coun-
terimplications.

Theorem 5.B.10. Let X and Y be positive random variables. Then

X ≤Lt-r Y =⇒ X ≤Lt Y

and
X ≤r-Lt-r Y =⇒ X ≤Lt Y.

Proof. Denote LX(∞) = lims→∞ LX(s) and LY (∞) = lims→∞ LY (s). Since
LX(0) = LY (0) = 1 and LX(∞) = LY (∞) = 0, we see that if X ≤Lt-r Y ,
then

LY (s)
LX(s)

≤ LY (0)
LX(0)

= 1,

and if X ≤r-Lt-r Y , then

1 − LY (s)
1 − LX(s)

≥ 1 − LY (∞)
1 − LX(∞)

= 1.

This proves the stated results. 
�
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As a corollary of Theorem 5.B.10 and (5.A.5) we see that

X ≤Lt-r Y =⇒ EX ≤ EY,

and that
X ≤r-Lt-r Y =⇒ EX ≤ EY

provided the expectations exist.
The proof of the next theorem will not be given here.

Theorem 5.B.11. Let X and Y be nonnegative absolutely continuous or
integer-valued random variables. Then

X ≤rh Y =⇒ X ≤Lt-r Y

and
X ≤hr Y =⇒ X ≤r-Lt-r Y.

The following result gives a relationship between the orders ≤mrl and ≤Lt-r.

Theorem 5.B.12. Let X and Y be two nonnegative absolutely continuous
random variables that possess all moments and with bounded support [0, b]. If
X ≤mrl Y , then b − Y ≤Lt-r b − X.

Proof. Denote g(1, n) = E[Xn] and g(2, n) = E[Y n]. Since X ≤mrl Y it
follows from (2.A.10) that g(i, n) is totally positive of order 2 in i = 1, 2, and
in n ≥ 0. Therefore, by the Basic Composition Formula (Karlin [275]) we have
that

h(i, s) ≡
∞∑

n=0

sn

n!
g(i, n)

is totally positive of order 2 in i = 1, 2, and in s ≥ 0. That is,

h(2, s)
h(1, s)

=
EesY

EesX
is increasing in s ≥ 0. (5.B.4)

It is easy to verify that (5.B.4) implies b − Y ≤Lt-r b − X. 
�

Counterexamples in the literature show that for nonnegative integer-valued
random variables X and Y we have

X ≤hr Y �=⇒ X ≤Lt-r Y �=⇒ X ≤icv Y

and
X ≤rh Y �=⇒ X ≤r-Lt-r Y �=⇒ X ≤icv Y.

It is of interest to compare the above counterimplications, and the implications
given in Theorems 5.B.10 and 5.B.11, with the implication X ≤icv Y =⇒
X ≤Lt Y given in Theorem 5.A.16.
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From the above counterimplications it follows that for nonnegative integer-
valued random variables X and Y we have

X ≤Lt-r Y �=⇒ X ≤r-Lt-r Y

and
X ≤r-Lt-r Y �=⇒ X ≤Lt-r Y.

Counterexamples in the literature also show that for nonnegative integer-
valued random variables X and Y we have

X ≤Lt-r Y �=⇒ X ≤icx Y

and
X ≤r-Lt-r Y �=⇒ X ≤icx Y.

From (1.D.2) it follows that for nonnegative random variables,

X ≤conv Y =⇒ X ≤Lt-r Y. (5.B.5)

Example 5.B.13. The Laplace ratio orders are useful for the purpose of stochas-
tically comparing random minima and maxima. Let X1, X2, . . . be a se-
quence of nonnegative independent and identically distributed random vari-
ables. Let N1 and N2 be two positive integer-valued random variables which
are independent of the Xi’s. Denote X(1:Nj) ≡ min{X1, X2, . . . , XNj

} and
X(Nj :Nj) ≡ max{X1, X2, . . . , XNj }, j = 1, 2. Let the common distribution
function, and the common survival function, of the Xi’s be denoted, respec-
tively, by FX1 and FX1 , and let FX(Nj :Nj) and FX(1:Nj) denote, respectively,
the distribution function of X(Nj :Nj) and the survival function of X(1:Nj),
j = 1, 2. Note that

FX(Nj :Nj)(x) =
∞∑

n=1

Fn
X1

(x)pNj (n) = LNj (− log FX1(x)), j = 1, 2,

and that

FX(1:Nj)(x) =
∞∑

n=1

F
n

X1
(x)pNj

(n) = LNj
(− log FX1(x)), j = 1, 2.

Thus,
FX(1:N2)(x)

FX(1:N1)(x)
=

LN2(− log FX1(x))
LN1(− log FX1(x))

.

Therefore
N1 ≤Lt-r N2 =⇒ X(1:N1) ≥hr X(1:N2).

In a similar manner it can be shown that

N1 ≤Lt-r N2 =⇒ X(N1:N1) ≤rh X(N2:N2),
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N1 ≤r-Lt-r N2 =⇒ X(1:N1) ≥rh X(1:N2),

and that
N1 ≤r-Lt-r N2 =⇒ X(N1:N1) ≤hr X(N2:N2).

From Theorem 5.B.11 and the above implications it follows that

N1 ≤rh N2 =⇒ X(1:N1) ≥hr X(1:N2), (5.B.6)
N1 ≤rh N2 =⇒ X(N1:N1) ≤rh X(N2:N2),

N1 ≤hr N2 =⇒ X(1:N1) ≥rh X(1:N2), (5.B.7)

and that

N1 ≤hr N2 =⇒ X(N1:N1) ≤hr X(N2:N2).

See related results in Examples 1.C.46, 3.B.39, 4.B.16, and 5.A.24.

The following example is a variation of Example 5.A.25 — under a stronger
condition (the order ≤Lt-r is stronger than the order ≤Lt) we obtain a stronger
conclusion.

Example 5.B.14. As in Example 5.A.25, let X have a compound Poisson pro-
cess, with rate λ and distribution φ, as its (random) hazard rate function.
The survival function of X is given in (5.A.18), and it follows that its density
function f is given by

f(t) = λ[1 − Lφ(t)] exp
{

−
∫ t

0
λ[1 − Lφ(s)]ds

}
, t ≥ 0.

Similarly let Y have a compound Poisson process, with rate λ and distribu-
tion ϕ, as its (random) hazard rate function. Its survival function is given in
(5.A.19), and its density function g is given by

g(t) = λ[1 − Lϕ(t)] exp
{

−
∫ t

0
λ[1 − Lϕ(s)]ds

}
, t ≥ 0.

It is now seen that if the random variable associated with φ is larger, in the
reverse Laplace transform order (and hence, by Theorem 5.B.10, also larger
in the Laplace transform order), than the random variable associated with ϕ,
then g(t)/f(t) is increasing in t ≥ 0; that is, X ≤lr Y .

5.C Some Related Orders

5.C.1 The factorial moments order

The factorial moments of a random variable X are µi = E[X(X − 1) · · · (X −
i + 1)], i = 1, 2, . . .. They are particularly useful when X is a nonnegative
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integer-valued random variable, since they can be easily obtained from the
probability generating function of X by repeated differentiation. Throughout
this subsection we consider only nonnegative integer-valued random variables.
The ith factorial moment of such a random variable X can also be written as
µi = i!E

(
X
i

)
, where

(
x
i

)
is defined as 0 when i > x.

Let X and Y be two nonnegative integer-valued random variables such
that

E

(
X

i

)
≤ E

(
Y

i

)
for all i ∈ N++. (5.C.1)

Then X is said to be smaller than Y in the factorial moments order (denoted
by X ≤fm Y ).

For a real function φ defined on N+, define ∆0φ(x) = φ(x), and ∆jφ(x) =
∆j−1φ(x+1)−∆j−1φ(x), x ∈ N+, j = 1, 2, . . .. It can be shown that for every
φ : N+ → [0,∞), one has

φ(x) =
∞∑

j=0

∆jφ(0)
(

x

j

)
, x ∈ N+. (5.C.2)

The following characterization of the order ≤fm is a direct consequence of
(5.C.2).

Theorem 5.C.1. Let X and Y be two nonnegative integer-valued random
variables. Then X ≤fm Y if, and only if,

E[φ(X)] ≤ E[φ(Y )] for all φ such that ∆jφ(0) ≥ 0, j ∈ N+.

It is easy to see that

X ≤fm Y =⇒ EX ≤ EY.

Some closure properties of the order ≤fm are given in the next theorem.

Theorem 5.C.2. (a) Let X and Y be two nonnegative integer-valued random
variables. If X ≤fm Y , then X + k ≤fm Y + k for every k ∈ N+.

(b) Let X and Y be two nonnegative integer-valued random variables. If
X ≤fm Y , then kX ≤fm kY for every k ∈ N+.

(c) Let X1, X2, . . . , Xm be a set of independent nonnegative integer-valued
random variables. Let Y1, Y2, . . . , Ym be another set of independent non-
negative integer-valued random variables. If Xi ≤fm Yi, i = 1, 2, . . . , m,
then

m∑
i=1

Xi ≤fm

m∑
i=1

Yi.

Proof. It is enough to prove part (a) for k = 1; the proof can then be completed
by induction. But for k = 1 the desired result follows directly from the identity(

x + 1
i + 1

)
=
(

x

i + 1

)
+
(

x

i

)
, i, x ∈ N+.
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A lengthy straightforward calculation yields

∆j

(
kx

i

)∣∣∣∣
x=0

≥ 0, i, j, k ∈ N+.

Part (b) then follows.
Finally, in order to prove part (c) it is enough to consider the case m = 2.

This case follows immediately from the identity(
x1 + x2

i

)
=

i∑
j=0

(
x1

j

)(
x2

i − j

)
, x1, x2, i ∈ N+. 
�

The next result shows that under some conditions the order ≤fm is closed
under formation of random sums. We do not give the proof here.

Theorem 5.C.3. Let X1, X2, . . . and Y1, Y2, . . . each be a sequence of non-
negative independent integer-valued random variables such that Xi ≤fm Yi,
i = 1, 2, . . . . Let M and N be integer-valued nonnegative random variables
that are independent of the {Xi} and the {Yi} sequences, respectively, such
that M ≤icx N . If the Xi’s or the Yi’s are identically distributed, then

M∑
j=1

Xj ≤fm

N∑
j=1

Yj .

Select a positive integer i and consider the real function φ defined on
{i + 1, i + 2, . . . } by φ(x) =

(
x
i

)
. A straightforward computation yields that

φ(x) + φ(x + 2) ≥ 2φ(x + 1) for x ∈ {i + 1, i + 2, . . . }. That is, the function φ
is convex on {i + 1, i + 2, . . . }. Thus we have proven the following result.

Theorem 5.C.4. Let X and Y be two nonnegative integer-valued random
variables. If X ≤icx Y , then X ≤fm Y . In particular, if X ≤st Y , then
X ≤fm Y .

A relationship between the orders ≤fm and ≤pgf is given in the next result.

Theorem 5.C.5. Let X and Y be two nonnegative integer-valued random
variables with bounded support {0, 1, 2, . . . , b}. If X ≤fm Y , then b − Y ≤pgf
b − X.

Proof. For a ≥ 1 define MX(a) = E[aX ] and MY (a) = E[aY ]. Note that the
ith derivative of MX [MY ] at 1 is M

(i)
X (1) = E[X(X − 1) · · · (X − i + 1)]

[M (i)
Y (1) = E[Y (Y − 1) · · · (Y − i + 1)]]. Expanding MX and MY about 1,

using the finiteness of the support for convergence, it is seen that

MX(a) =
∞∑

i=0

M
(i)
X (1)
i!

(a − 1)i

=
∞∑

i=0

E[X(X − 1) · · · (X − i + 1)]
i!

(a − 1)i
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≤
∞∑

i=0

E[Y (Y − 1) · · · (Y − i + 1)]
i!

(a − 1)i

= MY (a),

where the inequality follows from the assumption that X ≤fm Y and from the
fact that a ≥ 1. Thus,

E[aX ] ≤ E[aY ] for all a ≥ 1. (5.C.3)

Now it is easy to verify that (5.C.3) implies that b − Y ≤pgf b − X. 
�

5.C.2 The moments order

Consider now two general (that is, not necessarily integer-valued) nonnegative
random variables X and Y such that

E[Xi] ≤ E[Y i] for all i ∈ N++.

Then X is said to be smaller than Y in the moments order (denoted by
X ≤mom Y ). Thus X ≤mom Y if, and only if,

E[φ(X)] ≤ E[φ(Y )] (5.C.4)

for all polynomials φ with nonnegative coefficients. In fact, X ≤mom Y if,
and only if, (5.C.4) holds for all absolutely monotone functions φ of the form
φ(x) =

∑∞
k=0 akxk, where the ak’s are nonnegative, provided the expectations

exist.
Clearly,

X ≤mom Y =⇒ EX ≤ EY.

Some closure properties of the order ≤mom are given in the next theorem.
Its proof is similar to the proof of Theorem 5.C.2 (except that it is simpler)
and is thus omitted.

Theorem 5.C.6. (a) Let X and Y be two nonnegative random variables. If
X ≤mom Y , then X + k ≤mom Y + k for every k ≥ 0.

(b) Let X and Y be two nonnegative random variables. If X ≤mom Y , then
kX ≤mom kY for every k ≥ 0.

(c) Let X1, X2, . . . , Xm be a set of independent nonnegative random variables.
Let Y1, Y2, . . . , Ym be another set of independent nonnegative random vari-
ables. If Xi ≤mom Yi, i = 1, 2, . . . , m, then

m∑
i=1

Xi ≤mom

m∑
i=1

Yi.

The next result shows that under some conditions the order ≤mom is closed
under formation of random sums. We do not give the proof here.
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Theorem 5.C.7. Let X1, X2, . . . and Y1, Y2, . . . each be a sequence of nonneg-
ative independent random variables such that Xi ≤mom Yi, i = 1, 2, . . .. Let M
and N be integer-valued nonnegative random variables that are independent
of the {Xi} and the {Yi} sequences, respectively, such that M ≤icx N . If the
Xi’s or the Yi’s are identically distributed, then

M∑
j=1

Xj ≤mom

N∑
j=1

Yj .

The moments order is closed under linear convex combinations as the
following theorem shows. This result is an analog of Theorems 3.A.36 and
5.A.14. Its proof is similar to the proof of Theorem 3.A.36 and is therefore
omitted. A similar result is Theorem 5.C.18.

Theorem 5.C.8. Let X1, X2, . . . , Xn and Y be n + 1 random variables. If
Xi ≤mom Y , i = 1, 2, . . . , n, then

n∑
i=1

aiXi ≤mom Y,

whenever ai ≥ 0, i = 1, 2, . . . , n and
∑n

i=1 ai = 1.

The following result gives a relationship between the orders ≤fm and ≤mom.

Theorem 5.C.9. Let X and Y be two nonnegative integer-valued random
variables. If X ≤fm Y , then X ≤mom Y . In particular, if X ≤icx Y (or if
X ≤st Y ), then X ≤mom Y .

Proof. Denote x[i] = x(x − 1) · · · (x − i + 1). The result will follow once we
have shown that

xi =
i∑

k=1

α
(i)
k x[k], i = 1, 2, . . . , (5.C.5)

where the α
(i)
k ’s are some nonnegative constants. The expression (5.C.5) can

be found on page 4 of Johnson and Kotz [263]. The α
(i)
k ’s in (5.C.5) are the

Stirling numbers of the second kind, which are known to be positive. 
�

In order to obtain a Laplace transform characterization of the order ≤mom
we first prove the following result.

Theorem 5.C.10. Let X1 and X2 be two nonnegative random variables, and
let Nλ(X1) and Nλ(X2) be as described in Theorem 1.A.13. Then

X1 ≤mom X2 =⇒ Nλ(X1) ≤fm Nλ(X2) for all λ > 0.
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Proof. For k = 1, 2, let Fk denote the distribution function of Xk. By (2.A.15)
we have

E[Nλ(Xk)(Nλ(Xk) − 1)(Nλ(Xk) − 2) · · · (Nλ(Xk) − i + 1)]

=
∞∑

n=0

n(n − 1)(n − 2) · · · (n − i + 1)
∫ ∞

0
e−λx (λx)n

n!
dFk(x)

=
∫ ∞

0

[ ∞∑
n=0

n(n − 1)(n − 2) · · · (n − i + 1)e−λx (λx)n

n!

]
dFk(x).

It is not difficult to verify that the ith factorial moment of a Poisson random
variable with mean λx is given by

∞∑
n=0

n(n − 1)(n − 2) · · · (n − i + 1)e−λx (λx)n

n!
= (λx)i.

Therefore

E[Nλ(X1)(Nλ(X1) − 1)(Nλ(X1) − 2) · · · (Nλ(X1) − i + 1)]

= λi

∫ ∞

0
xidF1(x) ≤ λi

∫ ∞

0
xidF2(x)

= E[Nλ(X2)(Nλ(X2) − 1)(Nλ(X2) − 2) · · · (Nλ(X2) − i + 1)],

where the inequality follows from X1 ≤mom X2. Thus Nλ(X1) ≤fm Nλ(X2).

�

A Laplace transform characterization of the order ≤mom is given next. It
may be compared to Theorems 1.A.13, 1.B.18, 1.B.53, 1.C.25, 2.A.16, 2.B.14,
4.A.21, and 5.A.6.

Theorem 5.C.11. Let X1 and X2 be two nonnegative random variables, and
let Nλ(X1) and Nλ(X2) be as described in Theorem 1.A.13. Then

X1 ≤mom X2 ⇐⇒ Nλ(X1) ≤mom Nλ(X2) for all λ > 0.

Proof. If X1 ≤mom X2, then from Theorem 5.C.10 we get that Nλ(X1) ≤fm
Nλ(X2), and from Theorem 5.C.9 we get that Nλ(X1) ≤mom Nλ(X2).

Now suppose that Nλ(X1) ≤mom Nλ(X2) for all λ > 0. Then E(Nλ(X1))i

≤ E(Nλ(X2))i, i = 1, 2, . . . . In particular, E[Nλ(X1)] ≤ E[Nλ(X2)], there-
fore, by (2.A.16),

E[X1] = E[Nλ(X1)]/λ ≤ E[Nλ(X2)]/λ = E[X2].

Let the induction hypothesis be

E[Xi
1] ≤ E[Xi

2], i = 1, 2, . . . , m.
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Now observe the following. From (2.A.15) it is seen that

E
[
(Nλ(Xk))m+1] =

∞∑
n=0

nm+1
∫ ∞

0
e−λx (λx)n

n!
dFk(x)

=
∫ ∞

0

[ ∞∑
n=0

nm+1e−λx (λx)n

n!

]
dFk(x), k = 1, 2.

The quantity
[∑∞

n=0 nm+1e−λx (λx)n

n!

]
is the (m + 1)st moment of a Poisson

random variable with mean λx. It is not difficult to verify that

∞∑
n=0

nm+1e−λx (λx)n

n!
= am+1(λx)m+1 + am(λx)m + · · · + a1(λx) + a0,

where aj > 0, j = 0, 1, 2, . . . , m + 1. Therefore

E
[
(Nλ(Xk))m+1] =

m+1∑
j=0

ajλ
j

∫ ∞

0
xjdFk(x), k = 1, 2.

We know that E
[
(Nλ(X1))m+1

]
≤ E

[
(Nλ(X2))m+1

]
and therefore,

m+1∑
j=0

ajλ
j

∫ ∞

0
xjdF1(x) ≤

m+1∑
j=0

ajλ
j

∫ ∞

0
xjdF2(x)

for some a0, a1, . . . , am+1 > 0 and all λ > 0. Rewrite the inequality as

am+1λ
m+1 {E [Xm+1

1

]
− E

[
Xm+1

2

]}
≤

m∑
j=1

ajλ
j
{
E
[
Xj

1

]
− E

[
Xj

2

]}
.

The right-hand side is nonnegative by the induction hypothesis. If

E
[
Xm+1

1

]
− E

[
Xm+1

2

]
> 0,

then, by choosing sufficiently large λ, the left-hand side would be greater than
the right-hand side, a contradiction. Thus we must have

E
[
Xm+1

1

]
− E

[
Xm+1

2

]
≤ 0.

The result now follows by induction. 
�

The next result describes a relationship between the orders ≤mom and
≤r-Lt-r; we omit its proof.

Theorem 5.C.12. Let X and Y be two nonnegative random variables. Then

X ≤r-Lt-r Y =⇒ 1
Y

≤mom
1
X

.
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Finally we mention a related order. Let X and Y be two nonnegative
random variables such that

E[Y n]
E[Xn]

is increasing in n ∈ N+, (5.C.6)

where, by convention, E[X0] = E[Y 0] = 1. Then X is said to be smaller than
Y in the moments ratio order (denoted as X ≤mom-r Y ).

From (5.C.6) it is seen that E[Y n]
E[Xn] ≥ E[Y 0]

E[X0] = 1. Thus we see that

X ≤mom-r Y =⇒ X ≤mom Y. (5.C.7)

From (2.A.10) it is seen that

X ≤mrl Y =⇒ X ≤mom-r Y.

Therefore, by Theorem 2.A.1, we also have that

X ≤hr Y =⇒ X ≤mom-r Y. (5.C.8)

In the proof of Theorem 5.B.12 it is essentially shown that for nonnegative
random variables X and Y with bounded support [0, b] we have

X ≤mom-r Y =⇒ b − Y ≤Lt-r b − X.

This may be contrasted with (5.C.9) below (recall that X ≤Lt-r Y =⇒ X ≤Lt
Y ; see Theorem 5.B.10).

The following result is obvious.

Theorem 5.C.13. Let X and Y be two nonnegative random variables. If X
≤mom-r Y , then kX ≤mom-r kY for every k ≥ 0.

The next result describes a relationship between the orders ≤mom-r and
≤Lt-r; we omit its proof.

Theorem 5.C.14. Let X and Y be two nonnegative random variables. Then

X ≤Lt-r Y =⇒ 1
Y

≤mom-r
1
X

.

From (5.C.7) and Theorem 5.C.14 it is seen that if X and Y are nonneg-
ative random variables, then

X ≤Lt-r Y =⇒ 1
Y

≤mom
1
X

.
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5.C.3 The moment generating function order

Let X and Y be two nonnegative random variables such that Ees0Y < ∞ for
some s0 > 0, and

EesX ≤ EesY , for all s > 0.

Then X is said to be smaller than Y in the moment generating function order
(denoted by X ≤mgf Y ).

A simple integration by parts shows that X ≤mgf Y if, and only if,∫ ∞

0
esxF (x)dx ≤

∫ ∞

0
esxG(x)dx for all s > 0,

where F and G are the survival functions of X and of Y , respectively.
The following theorem is an analog of Theorem 5.A.5; its proof is similar

to the proof of that result.

Theorem 5.C.15. Let X and Y be two nonnegative random variables. Then
X ≤mgf Y if, and only if,

∞∑
i=0

si

(i + 1)!
EXi+1 ≤

∞∑
i=0

si

(i + 1)!
EY i+1 for all s > 0.

It follows from Theorem 5.C.15 that

X ≤mom Y =⇒ X ≤mgf Y.

Some closure properties of the order ≤mgf are given below (recall from
Section 1.A.3 that for any random variable Z and any event A we denote by
[Z
∣∣A] any random variable whose distribution is the conditional distribution

of Z given A.)

Theorem 5.C.16. Let X and Y be two nonnegative random variables.

(a) If X ≤mgf Y , then X + k ≤mgf Y + k for every k > 0.
(b) If X ≤mgf Y , then kX ≤mgf kY for every k > 0.
(c) Let X, Y , and Θ be random variables such that [X

∣∣Θ = θ] ≤mgf [Y
∣∣Θ = θ]

for all θ in the support of Θ. Then X ≤mgf Y . That is, the moment
generating function order is closed under mixtures.

(d) Let X1, X2, . . . , Xm be a set of independent random variables and let
Y1, Y2, . . . , Ym be another set of independent random variables. If Xi ≤mgf
Yi for i = 1, 2, . . . , m, then

m∑
i=1

Xi ≤mgf

m∑
i=1

Yi;

that is, the moment generating function order is closed under convolutions.
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The next result is an analog of Theorems 5.A.9 and 5.C.7.

Theorem 5.C.17. Let X1, X2, . . . and Y1, Y2, . . . each be a sequence of non-
negative independent and identically distributed random variables such that
Xi ≤mgf Yi, i = 1, 2, . . .. Let M and N be integer-valued nonnegative random
variables that are independent of the {Xi} and the {Yi} sequences, respectively,
such that M ≤mgf N . Then

M∑
j=1

Xj ≤mgf

N∑
j=1

Yj .

The following result is an analog of Theorem 3.A.36; similar results are
Theorems 5.A.14 and 5.C.8.

Theorem 5.C.18. Let X1, X2, . . . , Xn and Y be n + 1 random variables. If
Xi ≤mgf Y , i = 1, 2, . . . , n, then

n∑
i=1

aiXi ≤mgf Y,

whenever ai ≥ 0, i = 1, 2, . . . , n and
∑n

i=1 ai = 1.

The next result is an analog of Theorem 5.C.5; it describes a relationship
between the orders ≤mgf and ≤Lt.

Theorem 5.C.19. Let X and Y be two nonnegative random variables with
bounded support [0, b]. Then X ≤mgf Y if, and only if, b − Y ≤Lt b − X.

In particular, for random variables as in Theorem 5.C.19,

X ≤mom Y =⇒ b − Y ≤Lt b − X. (5.C.9)

5.D Complements

Section 5.A: We used three main sources in order to collect the results re-
garding the Laplace transform order. These are Stoyan [540, Section 1.8],
Kim and Proschan [294], and Alzaid, Kim, and Proschan [11]. The char-
acterization (5.A.4) is taken from Denuit [141]. The characterization of
the order ≤Lt in terms of exponential mixtures, given in Remark 5.A.2, is
taken from Bartoszewicz [50]. The characterization described in Theorem
5.A.4 can be found in Bhattacharjee [84]. The Laplace transform char-
acterization of the order ≤Lt given in Theorem 5.A.6 is essentially taken
from Alzaid, Kim, and Proschan [11]. Some further characterizations of
the Laplace transform order by means of infinitely divisible distributions
are given in Bartoszewicz [48]. The closure property of the order ≤Lt un-
der random sums (Theorem 5.A.8) is taken from Bhattacharjee [86]. The
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extensions of the closure property of the order ≤Lt under random sums
(Theorems 5.A.10–5.A.12) can be found in Pellerey [450]. The majoriza-
tion result (Theorem 5.A.13) is taken from Ma [375]. The result which
gives the closure of the Laplace transform order under linear convex com-
binations (Theorem 5.A.14) can be found in Pellerey [452]. The condition
which implies stochastic equality (in Theorem 5.A.15) is a combination of
results in Cai and Wu [116] and in Bhattacharjee [84], where some gener-
alizations of this condition can also be found. The characterization of the
Laplace transform order by means of the order ≤∞-icv (Theorem 5.A.17)
is taken from Thistle [548]; see also Fishburn and Lavalle [204] and fur-
ther references in that paper. The implication of the order ≤Lt from the
order ≤p− (Theorem 5.A.18) is essentially taken from Bhattacharjee [83];
see also Cai and Wu [116]. The closure property of the order ≤Lt under
the operation of taking minima (Theorem 5.A.19) is taken from Alzaid,
Kim, and Proschan [11]. Alzaid, Kim, and Proschan [11] also have a ver-
sion of Theorem 5.A.19 which gives conditions under which the order ≤Lt
is closed under the operation of taking maxima, however their condition
must be wrong, since it postulates that the Fi’s and the Gi’s (of Theorem
5.A.19) are completely monotone — but these functions are increasing,
whereas all completely monotone functions must be decreasing. Looking
over their proof it is seen that a sufficient condition, for the closure of the
order ≤Lt under the operation of taking maxima, is that e−txFi(x) and
e−txGi(x) be completely monotone in x for each t ≥ 0, i = 1, 2, . . . , m. We
are not aware of any study of the latter condition. The class of random
lifetimes, defined by (5.A.11), is studied in Klefsjö [302]. The equivalence
of the Laplace transform ordering of nonnegative random variables with
equal means, and their corresponding asymptotic equilibrium ages, given
in (5.A.12), is taken from Denuit [141]. The lower bound in (5.A.13), in
the sense of ≤Lt, when the mean and the variance are given, can be found
in Stoyan [540, page 23], who credited it to Rolski. The characterization
of the order ≤hr by means of the order ≤Lt (Theorem 5.A.22) is given
in Belzunce, Gao, Hu, and Pellerey [67]. The results about the stochastic
comparisons of random minima and maxima (Example 5.A.24) are taken
from Shaked and Wong [526]. The hazard rate order comparison of two
nonnegative random variables with random hazard rate functions (Exam-
ple 5.A.25) is a special case of Theorem 3 of Di Crescenzo and Pellerey
[166].

Section 5.B: Most of the results in this section can be found in Shaked
and Wong [525]. The characterizations of the orders ≤Lt-r and ≤r-Lt-r in
terms of exponential mixtures, given in Remark 5.B.1, are taken from
Bartoszewicz [50]. Di Crescenzo and Shaked [167] used (5.B.3) in order
to obtain Laplace transform ratio order comparisons of many pairs of
random variables. The relationship between the orders ≤mrl and ≤Lt-r
(Theorem 5.B.12) is essentially proven in Fagiuoli and Pellerey [187]. The
relationship between the orders ≤Lt-r and ≤conv, given in (5.B.5), was
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noted in Shaked and Suarez-Llorens [520]. Extensions of the implications
(5.B.6) and (5.B.7) to order statistics other than the minimum can be
found in Nanda, Misra, Paul, and Singh [427]. The likelihood ratio order
comparison of two nonnegative random variables with random hazard rate
functions (Example 5.B.14) is essentially Remark 3 of Di Crescenzo and
Pellerey [166].

Section 5.C: Many of the results in this section are taken from Lefèvre and
Picard [338]. A discussion about other related orders can also be found in
Lefèvre and Picard [338]. The closure properties of the order ≤fm (The-
orem 5.C.2), as well as the simple proof of Theorem 5.C.9, have been
communicated to us by Lefèvre [335]. The results that give the closure
under random convolutions property of the factorial moments order (The-
orem 5.C.3) and of the moments order (Theorem 5.C.7) are taken from
Jean-Marie and Liu [254]. Lefèvre and Utev [339] have noticed that for
finite random variables with support {0, 1, . . . , b} the discrete versions of
the orders ≤m-icx, m = 2, 3, . . . , b (see Section 4.A.7), together with some
conditions on the factorial moments, imply the order ≤fm; thus they gen-
eralized Theorem 5.C.5. The result which gives the closure of the moments
order under linear convex combinations (Theorem 5.C.8) can be found in
Pellerey [452]. The Laplace transform characterizations of the order ≤mom
(Theorems 5.C.10 and 5.C.11) are taken from Shaked and Wong [524]. The
relationship between the orders ≤mom and ≤r-Lt-r (Theorem 5.C.12) can
be found in Bartoszewicz [47]. The moments ratio order has been intro-
duced by Whitt [565] who has also obtained the implications (5.C.7) and
(5.C.8). The relationship between the orders ≤mom-r and ≤Lt-r (Theo-
rem 5.C.14) can be found in Bartoszewicz [47]. The moment generating
function order is called the exponential order in Kaas, Heerwaarden, and
Goovaerts [269]. Most of the results in Section 5.C.3 can be found in Klar
and Müller [301]. The result that gives the closure of the order ≤mgf under
linear convex combinations (Theorem 5.C.18) is taken from Li [352].
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Multivariate Stochastic Orders

In this chapter we describe various extensions, of the univariate stochastic
orders in Chapters 1 and 2, to the multivariate case. The most important
common orders that are studied in this chapter are the multivariate stochastic
orders ≤st and ≤lr. Multivariate extensions of the orders ≤hr and ≤mrl are also
studied in this chapter. Also, we review here further analogs of the univariate
order ≤st, such as the upper and lower orthants orders. In addition, some
other related orders are investigated in this chapter as well.

6.A Notations and Preliminaries

In this chapter we will be concerned with random vectors that take on values
in R

n ≡ (−∞,∞)n. When we say that the random vectors are nonnegative
we mean that they take on values in R

n
+ = [0,∞)n. Elements in R

n will be
denoted by x, y, and so forth, or, more explicitly, as x = (x1, x2, . . . , xn),
y = (y1, y2, . . . , yn), and so on.

The space R
n is endowed with the usual componentwise partial order,

which is defined as follows. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)
be two vectors in R

n; then we denote x ≤ y if xi ≤ yi for i = 1, 2, . . . , n. Let
x be a vector in R

n and let I = {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n}; then we denote

xI = (xi1 , xi2 , . . . , xik
). (6.A.1)

For a random vector X that takes on values in R
n, the interpretation of XI is

similar. The complement of I in {1, 2, . . . , n} is denoted by I ≡ {1, 2, . . . , n}−
I. The vector of ones will be denoted by e, that is, e = (1, 1, . . . , 1). The
dimension of e may vary from one formula to another, but it is always possible
to determine it from the expression in which it appears. For example, if we
write xI ≥ te, then it is obvious that the dimension of e is |I|, that is, the
cardinality of I.
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Let φ be a univariate or a multivariate function with domain in R
n. If

φ(x) ≤ [≥] φ(y) whenever x ≤ y, then we say that the function φ is increas-
ing [decreasing]. A set U ⊆ R

n is called increasing or upper [decreasing or
lower] if y ∈ U whenever y ≥ [≤] x and x ∈ U . If U is Borel measurable,
then it is increasing [decreasing] if, and only if, its indicator function IU is
increasing [decreasing]. In this chapter, and later in the book, when we con-
sider increasing and decreasing sets, they are implicitly assumed to be Borel
measurable.

6.B The Usual Multivariate Stochastic Order

6.B.1 Definition and equivalent conditions

Let X and Y be two random vectors such that

P{X ∈ U} ≤ P{Y ∈ U} for all upper sets U ⊆ R
n. (6.B.1)

Then X is said to be smaller than Y in the usual stochastic order (denoted
by X ≤st Y ). Roughly speaking, (6.B.1) says that X is less likely than Y to
take on large values, where “large” means any value in an increasing set U for
any increasing set U .

Another way of rewriting (6.B.1) is the following:

E[IU (X)] ≤ E[IU (Y )] for all upper sets U ⊆ R
n, (6.B.2)

where IU denotes the indicator function of U . From (6.B.2) it follows that if
X ≤st Y , then

E
[ m∑

i=1

aiIUi
(X)

]
− b ≤ E

[ m∑
i=1

aiIUi
(Y )
]

− b (6.B.3)

for all ai ≥ 0, i = 1, 2, . . . , m, b ∈ R
n, and m ≥ 0. Given an increasing real

function φ on R
n, it is possible, for each m, to define a sequence of Ui’s, and

a sequence of ai’s, and a b (all of which may depend on m), such that as
m → ∞, then (6.B.3) converges to

E[φ(X)] ≤ E[φ(Y )], (6.B.4)

provided the expectations exist. It follows that X ≤st Y if, and only if, (6.B.4)
holds for all increasing functions φ for which the expectations exist.

6.B.2 A characterization by construction on the same probability
space

As in the univariate case, the usual multivariate stochastic order can be char-
acterized as follows:
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Theorem 6.B.1. The random vectors X and Y satisfy X ≤st Y if, and only
if, there exist two random vectors X̂ and Ŷ , defined on the same probability
space, such that

X̂ =st X, (6.B.5)

Ŷ =st Y , (6.B.6)

and
P{X̂ ≤ Ŷ } = 1. (6.B.7)

Obviously, if (6.B.5)–(6.B.7) hold, then X ≤st Y . We will not give the
proof of Theorem 6.B.1 here; however, in the next subsection we point out
an important special case in which the construction of X̂ and of Ŷ can be
described explicitly.

As in the univariate case (see Theorem 1.A.2) Theorem 6.B.1 can be re-
stated as follows.

Theorem 6.B.2. The n-dimensional random vectors X and Y satisfy X ≤st
Y if, and only if, there exist a random variable Z and R

n-valued functions
ψ1 and ψ2 such that ψ1(z) ≤ ψ2(z) for all z ∈ R, and X =st ψ1(Z) and
Y =st ψ2(Z).

In light of Theorem 6.B.1, the following question arises. Let {X(θ), θ ∈ Θ}
be a collection of n-dimensional random vectors indexed by θ, where Θ is a
subset of R

m for some m (see the beginning of Chapter 8 for a discussion
about the meaning of this notation). Suppose that X(θ) ≤st X(θ′) whenever
θ ≤ θ′; that is, that X(θ) is stochastically increasing in θ. Is it possible
then to construct, on some probability space, a family {X̂(θ), θ ∈ Θ} such
that X̂(θ) =st X(θ) for all θ ∈ Θ, and such that P{X̂(θ) ≤ X̂(θ′)} = 1
whenever θ ≤ θ′? It turns out that if Θ ∈ R (that is, m = 1) the answer is in
the affirmative. However, when m ≥ 2 this need not be the case; see Fill and
Machida [200] for a counterexample and a further discussion.

6.B.3 Conditions that lead to the multivariate usual stochastic
order

The first basic result described in this subsection gives sufficient conditions
for the usual multivariate stochastic order by means of the usual univari-
ate stochastic order. The proof is based on the well-known standard con-
struction: Suppose that we are given a distribution of a random vector
X = (X1, X2, . . . , Xn) and we want to construct a random vector X̂ =
(X̂1, X̂2, . . . , X̂n) such that X̂ =st X. The interest in such constructions is in
simulation theory as well as in other areas of applications. In order to do it
let U1, U2, . . . , Un be independent uniform [0, 1] random variables and define

X̂1 = inf{x1 : P{X1 ≤ x1} ≥ U1},



268 6 Multivariate Stochastic Orders

X̂k = inf{xk : P{Xk ≤ xk

∣∣X1 = X̂1, . . . , Xk−1 = X̂k−1} ≥ Uk},

k = 2, 3, . . . , n.

Then X̂ =st X.
The conditions given in the next result are natural for a construction of

X̂ and Ŷ , as needed in Theorem 6.B.1, using the standard construction. The
result then follows from Theorem 6.B.1. Recall from Section 1.A.3 that for
any random vector Z and an event A we denote by [Z

∣∣A] any random vector
that has as its distribution the conditional distribution of Z given A.

Theorem 6.B.3. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two
n-dimensional random vectors. If

X1 ≤st Y1, (6.B.8)

[X2
∣∣X1 = x1] ≤st [Y2

∣∣Y1 = y1] whenever x1 ≤ y1, (6.B.9)

and in general, for i = 2, 3, . . . , n,

[Xi

∣∣X1 = x1, . . . , Xi−1 = xi−1] ≤st [Yi

∣∣Y1 = y1, . . . , Yi−1 = yi−1]
whenever xj ≤ yj , j = 1, 2, . . . , i − 1, (6.B.10)

then X ≤st Y .

Proof. First we construct X̂1 and Ŷ1 on some probability space as described,
for example, in Section 1.A.2. This is possible by (6.B.8). Any possible real-
ization (x1, y1) of (X̂1, Ŷ1) must satisfy x1 ≤ y1. Conditioned on every such
possible realization (x1, y1) we next construct X̂2 and Ŷ2 on the same prob-
ability space again as described, for example, in Section 1.A.2. This, again,
is possible by (6.B.9). We thus have constructed so far (X̂1, X̂2) and (Ŷ1, Ŷ2).
Any possible realization ((x1, x2), (y1, y2)) of ((X̂1, X̂2), (Ŷ1, Ŷ2)) must satisfy
xj ≤ yj , j = 1, 2. Therefore, conditioned on every such possible realization
((x1, x2), (y1, y2)) we next can construct X̂3 and Ŷ3 on the same probability
space and so on. Continuing this procedure we finally arrive at random vec-
tors X̂ and Ŷ , which satisfy (6.B.7). By the standard construction they also
satisfy (6.B.5) and (6.B.6). Therefore X ≤st Y by Theorem 6.B.1. 
�

Conditions (6.B.8)–(6.B.10) can be used to define a new stochastic or-
der. More explicitly, if X and Y satisfy (6.B.8)–(6.B.10), then X is said to
be smaller than Y in the strong stochastic order (denoted by X ≤sst Y ).
Theorem 6.B.3 simply says that

X ≤sst Y =⇒ X ≤st Y .

The order ≤sst is not an order in the usual sense; see Remark 6.B.5 below.
Suppose that X = (X1, X2, . . . , Xn) satisfies, for i = 2, 3, . . . , n, that
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[Xi

∣∣X1 = x1, . . . , Xi−1 = xi−1] ≤st [Xi

∣∣X1 = x′
1, . . . , Xi−1 = x′

i−1]
whenever xj ≤ x′

j , j = 1, 2, . . . , i − 1. (6.B.11)

Then X is said to be conditionally increasing in sequence (CIS). It is easy to
see that if X is CIS and if

[Xi

∣∣X1 = x1, . . . , Xi−1 = xi−1] ≤st [Yi

∣∣Y1 = x1, . . . , Yi−1 = xi−1]
for all xj , j = 1, 2, . . . , i − 1, (6.B.12)

then (6.B.10) holds. Similarly, if Y is CIS and (6.B.12) holds, then (6.B.10)
holds. We thus have proved the following result.

Theorem 6.B.4. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be
two n-dimensional random vectors. If either X or Y is CIS and (6.B.8) and
(6.B.12) hold, then X ≤st Y .

Remark 6.B.5. The order ≤sst is not an order in the usual sense. In fact, it is
obvious that

X ≤sst X ⇐⇒ X is CIS.

Remark 6.B.6. Let (U1, U2) be a bivariate random vector with uniform[0, 1]
margins, and with an absolutely continuous distribution function F . Then, as
can easily be verified, (U1, U2) is CIS if, and only if, F (u1, u2) is a concave
function of u1 ∈ [0, 1] for any u2 ∈ [0, 1].

A random vector X = (X1, X2, . . . , Xn) is said to be weak conditionally
increasing in sequence (WCIS) if, for i = 2, 3, . . . , n, we have

[(Xi, . . . , Xn)
∣∣X1 = x1, . . . , Xi−2 = xi−2, Xi−1 = xi−1]

≤st [(Xi, . . . , Xn)
∣∣X1 = x1, . . . , Xi−2 = xi−2, Xi−1 = x′

i−1]
for all xj , j = 1, 2, . . . , i − 2, and xi−1 ≤ x′

i−1.

It can be shown that if a random vector is CIS, then it is WCIS. The next
result thus strengthens Theorem 6.B.4. We do not give its proof here.

Theorem 6.B.7. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two
n-dimensional random vectors. If either X or Y is WCIS and (6.B.8) and
(6.B.12) hold, then X ≤st Y .

The second basic result of this subsection is a multivariate analog of the
univariate implication X ≤lr Y =⇒ X ≤st Y (the latter follows from The-
orems 1.C.1 and 1.B.1). (Another multivariate analog is given in Theorem
6.E.8.) Recall the definition of association given in (3.A.53). Association, along
with the notions of CIS and WCIS, are concepts that indicate positive depen-
dence among the random variables X1, X2, . . . , Xn.
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Theorem 6.B.8. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two
n-dimensional random vectors with density functions f and g, respectively. If
X is associated, and if g(x)/f(x) is increasing in x, then X ≤st Y .

Proof. Let φ be an increasing function for which E[φ(Y )] exists. Then

E[φ(Y )] =
∫

φ(y)g(y)dy

=
∫

φ(y)
g(y)
f(y)

f(y)dy

≥
∫

φ(y)f(y)dy

∫
g(y)
f(y)

f(y)dy

= E[φ(X)],

where the inequality follows from (3.A.53) and from the monotonicity of φ(x)
and of g(x)/f(x) in x. The stated result now follows from (6.B.4). 
�

In order to motivate the third basic result of this subsection, consider m in-
dependent random variables X1, X2, . . . , Xm and an increasing m-dimensional
function φ. It seems reasonable to expect that [(X1, X2, . . . , Xm)

∣∣φ(X1, X2,
. . . , Xm) = s] is stochastically increasing in s. This is not always true, but the
next result indicates an important instance in which this is the case. We omit
the proof.

Theorem 6.B.9. Let X1, X2, . . . , Xm be independent random variables, each
with a logconcave density (that is, Polya frequency of order 2 (PF2); see The-
orem 1.C.52). Then[

(X1, X2, . . . , Xm)
∣∣∣ m∑

i=1

Xi = s
]

≤st

[
(X1, X2, . . . , Xm)

∣∣∣ m∑
i=1

Xi = s′
]

whenever s ≤ s′.

A variation of Theorem 6.B.9 is stated next. In stating the conditions
of Theorem 6.B.10 below we use the discrete analog of the univariate down
shifted likelihood ratio order (see Section 1.C.4). Explicitly, let X and Y be
univariate discrete random variables, each with support N+. Then we denote
X ≤lr↓ Y if

P{Y = m + l}
P{X = m} is increasing in m ≥ 0 for all l ≥ 0. (6.B.13)

Note that (6.B.13) is a discrete analog of (1.C.21).

Theorem 6.B.10. Let X1, X2, . . . , Xm be independent random variables, each
with support N+. Denote Si =

∑i
j=1 Xj, i = 1, 2, . . . , m. If

Xi ≤lr↓ Si, i = 2, 3, . . . , m,
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and if
Si ≤lr↓ Si+1, i = 1, 2, . . . , m − 1,

then [
(X1, X2, . . . , Xm)

∣∣∣ m∑
i=1

Xi = s
]

≤st

[
(X1, X2, . . . , Xm)

∣∣∣ m∑
i=1

Xi = s′
]

whenever s ≤ s′ ∈ N+.

In Theorem 6.B.9, the function φ which is mentioned just before that
theorem, is φ(x1, x2, . . . , xm) =

∑m
i=1 xi. Another case of interest is when

φ(x1, x2, . . . , xm) = x(i), for some i ∈ {1, 2, . . . , m}, where x(i) is the ith
smallest xj . In fact we have the following result, whose proof we do not give.
Note that it is not necessary to assume logconcavity in the next theorem.

Theorem 6.B.11. Let X1, X2, . . . , Xm be independent and identically distri-
buted random variables with a continuous distribution function. Let X(1) ≤
X(2) ≤ · · · ≤ X(m) denote the corresponding order statistics. Let 1 ≤ r ≤ m.
Then

(a) for 1 ≤ k1 < k2 < · · · < kr ≤ m, one has that [(X1, X2, . . . , Xm)
∣∣X(k1) =

s1, X(k2) = s2, . . . , X(kr) = sr] is stochastically increasing in s1 ≤ s2 ≤
· · · ≤ sr;

(b) for s1 ≤ s2 ≤ · · · ≤ sr, one has that [(X1, X2, . . . , Xm)
∣∣X(k1) =

s1, X(k2) = s2, . . . , X(kr) = sr] is stochastically decreasing in 1 ≤ k1 <
k2 < · · · < kr ≤ m.

A related result is given in the following theorem.

Theorem 6.B.12. Let X1, X2, . . . , Xm be independent and identically dis-
tributed random variables with a continuous distribution function. Let X(1) ≤
X(2) ≤ · · · ≤ X(m) denote the corresponding order statistics. Let 1 ≤ r ≤ m.
Then for 1 ≤ k ≤ m, and s ∈ R, one has that

[
(X1, X2, . . . , Xm)

∣∣X(k−1) <

s < X(k)
]

is stochastically increasing in s, and is stochastically decreasing in
k.

Another result that is related to Theorem 6.B.11 is the following.

Theorem 6.B.13. Let X1, X2, . . . , Xm be independent exponential random
variables with possibly different parameters. Let X(1) ≤ X(2) ≤ · · · ≤ X(m)

denote the corresponding order statistics. Then [(X(1), X(2), . . . , X(m))
∣∣X(1) =

s1] is stochastically increasing in s1.

The proof of Theorem 6.B.13 uses ideas involving the total hazard con-
struction which is described in Section 6.C.2. Therefore we defer the proof of
this theorem to Remark 6.C.2.

For the next result we need the definition of a copula. Let F be an n-
dimensional distribution function with univariate marginal distribution func-
tions F1, F2, . . . , , Fn. Then there exists an n-dimensional distribution function
C, with uniform[0, 1] marginal distributions, such that
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F (x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)), (x1, x2, . . . , xn) ∈ R
n.

(6.B.14)
The function C is a copula associated with F . If F is continuous, then C is
unique and can be obtained by

C(u1, u2, . . . , un) = F (F−1
1 (u1), F−1

2 (u2), . . . , F−1
n (un)),

(u1, u2, . . . , un) ∈ [0, 1]n; (6.B.15)

see, for example, Nelsen [431]. Note that if (U1, U2, . . . , Un) has the distribu-
tion function C, then from (6.B.15) it follows that

(F−1
1 (U1), F−1

2 (U2), . . . , F−1
n (Un)) =st (X1, X2, . . . , Xn). (6.B.16)

Theorem 6.B.14. Let the random vectors X = (X1, X2, . . . , Xn) and Y =
(Y1, Y2, . . . , Yn) have a common copula. If Xi ≤st Yi, i = 1, 2, . . . , n, then
X ≤st Y .

Proof. We only give the proof for the continuous case. Let C be the common
copula, and let (U1, U2, . . . , Un) be distributed according to C. Furthermore,
let Fi and Gi denote the univariate distribution functions of Xi and Yi, respec-
tively, i = 1, 2, . . . , n. From Xi ≤st Yi and (1.A.12) we get F−1

i (ui) ≤ G−1
i (ui)

for all ui ∈ [0, 1], i = 1, 2, . . . , n. Hence

(F−1
1 (U1), F−1

2 (U2), . . . , F−1
n (Un)) ≤a.s. (G−1

1 (U1), G−1
2 (U2), . . . , G−1

n (Un)).

The stated result now follows from (6.B.16). 
�

Theorem 6.B.14 may be compared with Theorem 7.A.38.
An interesting result, which gives conditions under which one can stochas-

tically compare vectors of partial sums of independent random variables, is
stated next.

Theorem 6.B.15. Let {Zi}n
i=1 be a sequence of independent random vari-

ables. If
Z1 ≤lr Z2 ≤lr · · · ≤lr Zn

then (
Z1, Z1 + Z2, . . . ,

n∑
i=1

Zi

)
≤st

(
Zπ1 , Zπ1 + Zπ2 , . . . ,

n∑
i=1

Zπi

)
≤st

(
Zn, Zn + Zn−1, . . . ,

n∑
i=1

Zi

)
,

for every permutation (π1, π2, . . . , πn) of (1, 2, . . . , n).
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In particular it follows from Theorem 6.B.15 that if the random variables
X and Y are such that X ≤lr Y , then

(X, X + Y ) ≤st (Y, X + Y ). (6.B.17)

Conclusion (6.B.17) does not necessarily follow from merely assuming that
X ≤st Y . This can be shown by a counterexample.

The proof of (6.B.17) can be obtained from Theorem 1.C.20 as follows.
Let ψ be a bivariate increasing function. Then the function φ, defined by
φ(x, y) = ψ(x, x + y), belongs to Glr. Therefore, from (1.C.11) one sees that
ψ(X, X + Y ) ≤st ψ(Y, X + Y ) and this gives (6.B.17). The proof of Theorem
6.B.15 uses the same idea together with a conditioning argument.

6.B.4 Closure properties

Using (6.B.1) through (6.B.7) it is easy to prove each of the following closure
results (note that parts (a) and (c) are special cases of part (b) in the next
theorem).

Theorem 6.B.16. (a) Let X and Y be two n-dimensional random vectors.
If X ≤st Y and g : R

n → R
k is any k-dimensional increasing [decreasing ]

function, for any positive integer k, then the k-dimensional vectors g(X)
and g(Y ) satisfy g(X) ≤st [≥st] g(Y ).

(b) Let X1,X2, . . . ,Xm be a set of independent random vectors where the
dimension of Xi is ki, i = 1, 2, . . . , m. Let Y 1,Y 2, . . . ,Y m be another
set of independent random vectors where the dimension of Y i is ki, i =
1, 2, . . . , m. Denote k = k1+k2+· · ·+km. If Xi ≤st Y i for i = 1, 2, . . . , m,
then, for any increasing function ψ : R

k → R, one has

ψ(X1,X2, . . . ,Xm) ≤st ψ(Y 1,Y 2, . . . ,Y m).

That is, the usual multivariate stochastic order is closed under conjunc-
tions. In particular, the usual multivariate stochastic order is closed under
convolutions.

(c) Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two n-dimensional
random vectors. If X ≤st Y , then XI ≤st Y I for each I ⊆ {1, 2, . . . , n}.
That is, the usual multivariate stochastic order is closed under marginal-
ization.

(d) Let {Xj , j = 1, 2, . . . } and {Y j , j = 1, 2, . . . } be two sequences of random
vectors such that Xj →st X and Y j →st Y as j → ∞, where →st denotes
convergence in distribution. If Xj ≤st Y j, j = 1, 2, . . ., then X ≤st Y .

(e) Let X, Y , and Θ be random vectors such that [X
∣∣Θ = θ] ≤st [Y

∣∣Θ = θ]
for all θ in the support of Θ. Then X ≤st Y . That is, the usual stochastic
order is closed under mixtures.

In (6.B.1) the random vectors X and Y can be taken to be of countable
infinite dimension; that is, each of X and Y may correspond to an infinite
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sequence of random variables. In such a case, if (6.B.1) holds for all upper sets
in R

∞, then we still say that X is smaller than Y in the usual stochastic order
(denoted as X ≤st Y ). A generalization of this idea is described in Section
6.B.7. The inequality (6.B.4), as well as Theorem 6.B.1, are still valid when
X and Y have countable infinite dimension. We thus get the following result
which involves multivariate random sums. Below, an empty sum is understood
to be 0.

Theorem 6.B.17. Let X1,X2, . . . ,Xm be m countably infinite vectors of
nonnegative random variables, and let Y 1,Y 2, . . . ,Y m be other m such vec-
tors. Let M = (M1, M2, . . . , Mm) and N = (N1, N2, . . . , Nm) be two vectors
of nonnegative integers such that M is independent of X1,X2, . . . ,Xm, and
N is independent of Y 1,Y 2, . . . ,Y m. Denote by Xj,i [Yj,i] the ith element of
Xj [Y j ]. If (X1,X2, . . . ,Xm) ≤st (Y 1,Y 2, . . . ,Y m), and if M ≤st N , then

( M1∑
i=1

X1,i,

M2∑
i=1

X2,i, . . . ,

Mm∑
i=1

Xm,i

)
≤st

( N1∑
i=1

Y1,i,

N2∑
i=1

Y2,i, . . . ,

Nm∑
i=1

Ym,i

)
.

Consider now n families of univariate distribution functions {G
(i)
θ , θ ∈ Xi}

where Xi is a subset of the real line R, i = 1, 2, . . . , n. Let Xi(θ) de-
note a random variable with distribution function G

(i)
θ , i = 1, 2, . . . , n. Let

Θ = (Θ1, Θ2, . . . , Θn) be a random vector with support in
∏n

i=1 Xi, and with
distribution function F . Consider the n-dimensional distribution function H
given by

H(y1, y2, . . . , yn) =
∫

X1

∫
X2

. . .

∫
Xn

n∏
i=1

G
(i)
θi

(yi)dF (θ1, θ2, . . . , θn),

(y1, y2, . . . , yn) ∈ R
n. (6.B.18)

The following result is a generalization of Theorem 6.B.16(e), and is a multi-
variate extension of Theorem 1.A.6; see Theorems 6.G.8, 7.A.37, 9.A.7, and
9.A.15 for related results.

Theorem 6.B.18. Let {G
(i)
θ , θ ∈ Xi}, i = 1, 2, . . . , n, be n families of uni-

variate distribution functions as above. Let Θ1 and Θ2 be two random vectors
with supports in

∏n
i=1 Xi and distribution functions F1 and F2, respectively.

Let Y 1 and Y 2 be two random vectors with distribution functions H1 and H2
given by

Hj(y1, y2, . . . , yn) =
∫

X1

∫
X2

. . .

∫
Xn

n∏
i=1

G
(i)
θi

(yi)dFj(θ1, θ2, . . . , θn),

(y1, y2, . . . , yn) ∈ R
n, j = 1, 2.

If
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Xi(θ) ≤st Xi(θ′) whenever θ ≤ θ′, i = 1, 2, . . . , n,

and if
Θ1 ≤st Θ2,

then
Y 1 ≤st Y 2.

6.B.5 Further properties

Clearly if X ≤st Y , then EX ≤ EY . However, similar to the univariate case,
if two random vectors are ordered in the usual multivariate stochastic order
and have the same expected values, then they must have the same distribution.
This is shown in the following result, which is a multivariate generalization of
Theorem 1.A.8. Similar results are given in Theorems 3.A.43, 3.A.60, 4.A.69,
5.A.15, 6.G.12, and 7.A.14–7.A.16.

Theorem 6.B.19. Let X = (X1, X2, . . . , Xm) and Y = (Y1, Y2, . . . , Ym) be
two random vectors. If X ≤st Y and if E[hi(Xi)] = E[hi(Yi)] for some strictly
increasing function hi, i = 1, 2, . . . , m, then X =st Y .

We will not give the complete proof of Theorem 6.B.19 here, but we will
show a simple argument that proves it when X and Y are nonnegative random
vectors. From the assumption X ≤st Y and from Theorem 6.B.16(c) it follows
that Xi ≤st Yi. Since E[hi(Xi)] = E[hi(Yi)] it follows from Theorem 1.A.8
that Xi =st Yi, and thus, in particular, EXi = EYi for i = 1, 2, . . . , m.
Therefore

E
[ m∑

i=1

αiXi

]
=

m∑
i=1

αiE[Xi] =
m∑

i=1

αiE[Yi] = E
[ m∑

i=1

αiYi

]
whenever αi ≥ 0, i = 1, 2, . . . , m. Also, from X ≤st Y it follows that

m∑
i=1

αiXi ≤st

m∑
i=1

αiYi whenever αi ≥ 0, i = 1, 2, . . . , m.

Therefore, again by Theorem 1.A.8, we have that

m∑
i=1

αiXi =st

m∑
i=1

αiYi whenever αi ≥ 0, i = 1, 2, . . . , m.

Thus

E
[
exp
{

−
m∑

i=1

αiXi

}]
= E

[
exp
{

−
m∑

i=1

αiYi

}]
whenever αi ≥ 0, i = 1, 2, . . . , m. From the unicity property of the Laplace
transform we obtain X =st Y .
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A straightforward analog of Theorem 1.A.15 is in general not true in the
multivariate case. That is, if X is any random vector and if U1 and U2 are
any increasing sets such that U1 ⊇ U2, then it is not necessarily true that
[X
∣∣U1] ≤st [X

∣∣U2]; some property of positive dependence is needed to be
imposed on X in order for this result to hold. We do not give the details here.

Recall from (6.B.4) that X = (X1, X2, . . . , Xm) ≤st Y = (Y1, Y2, . . . , Ym)
if, and only if, E[φ(X)] ≤ E[φ(Y )] for all increasing functions φ, and that
(6.B.2) says that X ≤st Y if, and only if, E[φ(X)] ≤ E[φ(Y )] for all increas-
ing indicator functions φ. When m = 2 we have a further similar characteri-
zation of the multivariate order ≤st, as is stated next. The proof is omitted.

Theorem 6.B.20. Let (X1, X2) and (Y1, Y2) be two random vectors. Then
(X1, X2) ≤st (Y1, Y2) if, and only if,

φ1(X1) + φ2(X2) ≤st φ1(Y1) + φ2(Y2)

for all increasing functions φ1 and φ2.

A random vector (X1, X2, . . . , Xm) or its distribution is said to be permu-
tation symmetric or exchangeable if

(X1, X2, . . . , Xm) =st (Xπ1 , Xπ2 , . . . , Xπm)

for every permutation π of (1, 2, . . . , m). A set U is said to be symmetric if

(x1, x2, . . . , xm) ∈ U =⇒ (xπ1 , xπ2 , . . . , xπm) ∈ U

for every permutation π of (1, 2, . . . , m). For permutation symmetric random
vectors the result in the following theorem holds. The proof uses symmetry
arguments and is omitted.

Theorem 6.B.21. Let X = (X1, X2, . . . , Xm) and Y = (Y1, Y2, . . . , Ym) be
two permutation symmetric random vectors. Then X ≤st Y if, and only if,
P{X ∈ U} ≤ P{Y ∈ U} for all symmetric upper sets U ⊆ R

m.

In the next result we obtain a comparison of order statistics with respect
to ≤st, but first we need a lemma. Let z1, z2, . . . be a sequence of constants or
of random variables. Denote by z(i:m) the ith smallest value among the first
m zi’s.

Lemma 6.B.22. For any sequence of constants z1, z2, . . . the following in-
equalities hold:

z(i:m) ≤ z(i+1:m), 1 ≤ i ≤ m − 1. (6.B.19)
z(i:m+1) ≤ z(i:m), 1 ≤ i ≤ m. (6.B.20)

z(i:m) ≤ z(i+1:m+1), 1 ≤ i ≤ m. (6.B.21)
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Proof. The proof of (6.B.19) is obvious from the definition of the z(i:m)’s. The
proof of (6.B.20) is also quite simple—just note that if zm+1 ≤ z(i:m), then
z(i:m+1) ≤ z(i:m), whereas if zm+1 > z(i:m), then z(i:m+1) = z(i:m). Finally, in
order to prove (6.B.21), note that if zm+1 ≤ z(i:m), then z(i+1:m+1) = z(i:m),
whereas if zm+1 > z(i:m), then z(i:m) ≤ z(i+1:m+1). 
�

Theorem 6.B.23. Let {X1, X2, . . . } and {Y1, Y2, . . . } be two sequences of
random variables such that

(X1, X2, . . . , Xk) ≤st (Y1, Y2, . . . , Yk), k ≥ 1. (6.B.22)

Then

X(i:m) ≤st Y(j:n) whenever i ≤ j and m − i ≥ n − j. (6.B.23)

Proof. First note that from (6.B.22) it follows that

X(i:m) ≤st Y(i:m), 1 ≤ i ≤ m. (6.B.24)

Now, if m ≥ n, then

X(i:m) ≤a.s. X(i:n) (by (6.B.20) and m ≥ n)
≤st Y(i:n) (by (6.B.24))
≤a.s. Y(j:n) (by (6.B.19) and i ≤ j).

And if m < n, then

X(i:m) ≤st Y(i:m) (by (6.B.24))
≤a.s. Y(i+n−m:n) (by (6.B.21) and m < n)
≤a.s. Y(j:n) (by (6.B.19) and j ≥ i + n − m).

Since the almost sure relation ≤a.s. implies the relation ≤st, we obtain (6.B.23)
from the above inequalities. 
�

If in Theorem 6.B.23 we take Yi = Xi, i = 1, 2, . . ., then obviously (6.B.22)
holds. Thus we obtain the following corollary.

Corollary 6.B.24. Let {X1, X2, . . . } be a sequence of (not necessarily inde-
pendent) random variables. Then

X(i:m) ≤st X(j:n) whenever i ≤ j and m − i ≥ n − j.

The next example shows that if two random variables are ordered in the
dispersive order, then the corresponding vectors of spacings are ordered in the
usual stochastic order. Related results can be found in Theorems 1.C.45 and
4.B.17, and in Example 6.E.15.
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Example 6.B.25. Let X and Y be two random variables. Let X(1) ≤ X(2) ≤
· · · ≤ X(n) denote the order statistics from a sample X1, X2, . . . , Xn of in-
dependent and identically distributed random variables that have the same
distribution as X. Similarly, let Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) denote the or-
der statistics from another sample Y1, Y2, . . . , Yn of independent and iden-
tically distributed random variables that have the same distribution as Y .
The corresponding spacings are defined by U(i) ≡ X(i) − X(i−1) and V(i) ≡
Y(i) − Y(i−1), i = 2, 3, . . . , n. Denote U = (U(2), U(3), . . . , U(n)) and V =
(V(2), V(3), . . . , V(n)). We will now show that if X ≤disp Y , then U ≤st V .
Let F and G denote the distribution functions of X and Y , respectively.
Define Ŷ(i) = G−1(F (X(i))), i = 1, 2, . . . , n, and V̂(i) = Ŷ(i) − Ŷ(i−1),
i = 2, 3, . . . , n. Clearly, (V(2), V(3), . . . , V(n)) =st (V̂(2), V̂(3), . . . , V̂(n)). Further-
more, from (3.B.10) we have that

V̂(i) = G−1(F (X(i))) − G−1(F (X(i−1))) ≥ X(i) − X(i−1) = U(i) a.s.,
i = 2, 3, . . . , n.

Thus, it follows from Theorem 6.B.1 that U ≤st V . In particular, from The-
orem 6.B.16(c) we get that U(i) ≤st V(i) for i = 2, 3, . . . , n, and this proves
Theorem 3.B.31.

For the next two examples recall from page 2 the definition of the ma-
jorization order a ≺ b among n-dimensional vectors.

Example 6.B.26. Let X1, X2, . . . , Xn, Y1, Y2, . . . , Yn be independent Gamma
random variables where Xi has the density function fi defined by

fi(x) =
λα

i

Γ (α)
xα−1e−λix, x ≥ 0,

where α > 0 and λi > 0, i = 1, 2, . . . , n, and Yi has the density function gi

defined by

gi(x) =
µα

i

Γ (α)
xα−1e−µix, x ≥ 0,

where α > 0 is as above, and µi > 0, i = 1, 2, . . . , n. Denote the corresponding
order statistics by X(1) ≤ X(2) ≤ · · · ≤ X(n) and Y(1) ≤ Y(2) ≤ · · · ≤ Y(n).
Suppose that (λ1, λ2, . . . , λn) ≺ (µ1, µ2, . . . , µn). If α ≤ 1, then

(X(1), X(2), . . . , X(n)) ≤st (Y(1), Y(2), . . . , Y(n)),

and if α ≥ 1, then

X(1) ≥st Y(1) and X(n) ≤st Y(n).

In particular, by taking α = 1, it is seen that the above inequalities hold for
heterogeneous exponential random variables.
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Example 6.B.27. Let X1, X2, . . . , Xn, Y1, Y2, . . . , Yn be independent Weibull
random variables where Xi has the survival function F i defined by

F i(x) = e−(λix)α

, x ≥ 0,

where α > 0 and λi > 0, i = 1, 2, . . . , n, and Yi has the survival function Gi

defined by
Gi(x) = e−(µix)α

, x ≥ 0,

where α > 0 is as above, and µi > 0, i = 1, 2, . . . , n. Denote the corresponding
order statistics by X(1) ≤ X(2) ≤ · · · ≤ X(n) and Y(1) ≤ Y(2) ≤ · · · ≤ Y(n).
Suppose that (λ1, λ2, . . . , λn) ≺ (µ1, µ2, . . . , µn). If α ≤ 1, then

(X(1), X(2), . . . , X(n)) ≤st (Y(1), Y(2), . . . , Y(n)).

Again, by taking α = 1, it is seen that the above inequalities hold for hetero-
geneous exponential random variables.

Example 6.B.28. Let X = (X1, X2, . . . , Xm) and Y = (Y1, Y2, . . . , Ym) be in-
finitely divisible random vectors with Lèvy measures νX and νY , respectively;
that is, νX and νY satisfy

∫
Rm(1∧|x|)νX(dx) < ∞ and

∫
Rm(1∧|y|)νY (dy) <

∞, and the characteristic functions of X and of Y can be written in the form

ϕX(t) = exp
{∫

Rm\{0}
(ei(t·x) − 1)νX(dx) + i(t · bX)

}
and

ϕY (t) = exp
{∫

Rm\{0}
(ei(t·y) − 1)νY (dy) + i(t · bY )

}
,

respectively, for some bX , bY ∈ R
m. Assume that νX and νY are concentrated

on [0,∞)m. If νX(U) ≤ νY (U) for all Borel measurable upper sets in R
m, and

if bX ≤ bY , then X ≤st Y .

The following example gives necessary and sufficient conditions for the
comparison of multivariate normal random vectors. See Examples 6.G.11,
7.A.13, 7.A.26, 7.A.39, 7.B.5, and 9.A.20 for related results.

Example 6.B.29. Let X be a multivariate normal random vector with mean
vector µX and variance-covariance matrix ΣX , and let Y be a multivariate
normal random vector with mean vector µY and variance-covariance matrix
ΣY . Then X ≤st Y if, and only if, µX ≤ µY and ΣX = ΣY .

6.B.6 A property in reliability theory

In this subsection we show how the multivariate order ≤st can be used as a tool
for the purpose of defining aging properties for components whose lifetimes
are not necessarily independent. The notions and notations introduced in this
subsection will also be used in the rest of this chapter.
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Let T = (T1, T2, . . . , Tm) be a nonnegative random vector with an abso-
lutely continuous distribution function. In this subsection it is helpful to think
about T1, T2, . . . , Tm as the lifetimes of m components 1, 2, . . . , m that make
up some system. Suppose that an observer observes the system continuously
in time and records the failure times and the identities of the components that
fail as time passes. Thus, a typical “history” that the observer has observed
by time t ≥ 0 is of the form

ht = {T I = tI ,T I > te}, 0e ≤ tI ≤ te, I ⊆ {1, 2, . . . , m}. (6.B.25)

In (6.B.25) I is the set of components that have already failed by time t (with
failure times tI) and I is the set of components that are still alive at time t.

Let

h′
s = {T J = sJ ,T J > se}, 0e ≤ sJ ≤ se, J ⊆ {1, 2, . . . , m}, (6.B.26)

be another history. If t ≤ s and the histories ht and h′
s are such that each

component that failed in ht also failed in h′
s, and, for components that failed

in both histories, the failures in h′
s are earlier than the failures in ht, then we

say that the history ht is less severe or “more pleasant” than the history h′
s

and we denote it by ht ≤ h′
s. Note that if ht and h′

s are as in (6.B.25) and
(6.B.26), then ht ≤ h′

s if, and only if, I ⊆ J and sI ≤ tI .
For every vector a = (a1, a2, . . . , am) denote by a+ the vector

a+ = ((a1)+, (a2)+, . . . , (am)+).

Recalling Theorem 1.A.30 we can define a nonnegative random vector T as
multivariate IFR if for t ≤ s we have

[(T − te)+
∣∣ht] ≥st [(T − se)+

∣∣h′
s] whenever ht ≤ h′

s. (6.B.27)

Another possibility is to call the nonnegative random vector T multivariate
IFR if for t ≤ s we have

[(T − te)+
∣∣ht] ≥st [(T − se)+

∣∣h′
s] whenever ht and h′

s coincide on [0, t).
(6.B.28)

These two different definitions of multivariate IFR have some desirable
properties. For example, a vector consisting of independent IFR random vari-
ables is multivariate IFR according to either one of these two definitions.
However, perhaps the most important feature of these kinds of definitions
is their intuitive interpretation. In the univariate case these two definitions
coincide with the usual univariate definition of IFR.

Further notions of multivariate IFR are studied in Section 6.D.3.

6.B.7 Stochastic ordering of stochastic processes

In Section 1.A.1 we saw how to define the usual stochastic order between two
univariate random variables. In Section 6.B.1 we saw how this comparison can
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be defined for two multivariate random vectors. The next level of generaliza-
tion, then, is the stochastic comparison of two stochastic processes. In fact,
several levels of generalization can be studied. The stochastic processes can
be univariate (if their common state space S is a subset of R). Or they can
be multivariate (if their common state space S is a subset of R

m for some
m). Or, more generally, the common state space S can be any general space,
according to the requirements of the particular application in which the order
is to be used. In this subsection we consider only the case in which the random
processes are univariate. Section 6.H contains some references for the more
general results.

Let {X(t), t ∈ T } and {Y (t), t ∈ T } be two stochastic processes with state
space S ⊆ R and time parameter space T (usually T = [0,∞) or T = N+).
Suppose that, for all choices of an integer m and t1 < t2 < · · · < tm in T , it
holds that

(X(t1), X(t2), . . . , X(tm)) ≤st (Y (t1), Y (t2), . . . , Y (tm)),

where here ≤st is in the sense of Section 6.B.1. Then {X(t), t ∈ T } is said
to be smaller than {Y (t), t ∈ T } in the usual stochastic order (denoted by
{X(t), t ∈ T } ≤st {Y (t), t ∈ T }).

It can be shown that {X(t), t ∈ T } ≤st {Y (t), t ∈ T } if, and only if,

E{g({X(t), t ∈ T })} ≤ E{g({Y (t), t ∈ T })}, (6.B.29)

for every increasing functional g for which the expectations in (6.B.29) exist
(a functional g is called increasing if g({x(t), t ∈ T }) ≤ g({y(t), t ∈ T })
whenever x(t) ≤ y(t), t ∈ T ).

An analog of (6.B.1) can also be stated and proved, but it is not included
here. However, we do state the following important property of the order ≤st,
which is a generalization of Theorem 6.B.1.

Theorem 6.B.30. The random processes {X(t), t ∈ T } and {Y (t), t ∈ T }
satisfy {X(t), t ∈ T } ≤st {Y (t), t ∈ T } if, and only if, there exist two random
processes {X̂(t), t ∈ T } and {Ŷ (t), t ∈ T }, defined on the same probability
space, such that

{X̂(t), t ∈ T } =st {X(t), t ∈ T },
{Ŷ (t), t ∈ T } =st {Y (t), t ∈ T },

and
P{X̂(t) ≤ Ŷ (t), t ∈ T } = 1.

For discrete-time processes (T = N+), an analog of Theorem 6.B.3 is given
in Theorem 6.B.31. The proof of it is the same as the proof of Theorem 6.B.3,
except that Theorem 6.B.30 is applied at the end of the proof rather than
Theorem 6.B.1.
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Theorem 6.B.31. Let {X(n), n ∈ N+} = {X(0), X(1), X(2), . . . } and
{Y (n), n ∈ N+} = {Y (0), Y (1), Y (2), . . . } be two discrete-time stochastic
processes. If

X(0) ≤st Y (0),

and if

[X(i)
∣∣X(1) = x1, . . . , X(i − 1) = xi−1]

≤st [Y (i)
∣∣Y (1) = y1, . . . , Y (i − 1) = yi−1]

whenever xj ≤ yj , j = 1, 2, . . . , i − 1, i = 1, 2, 3, . . . ,

then {X(n), n ∈ N+} ≤st {Y (n), n ∈ N+}.
Theorems 6.B.2 and 6.B.4 also have straightforward analogs that we do

not state here.
The order ≤st for stochastic processes is closed under operations similar to

those described in Theorem 6.B.16. In particular, {X(t), t ∈ T } ≤st {Y (t), t ∈
T } =⇒ {g({X(t), t ∈ T })} ≤st {g({Y (t), t ∈ T })} for all increasing function-
als g. The order is also closed under mixtures.

To see an important application of these ideas, consider two discrete-time
homogeneous Markov processes {X1(n), n ∈ N+} and {X2(n), n ∈ N+} with
a common state space S ⊆ R. Denote YX1(x) =st [X1(n + 1)

∣∣X1(n) = x] and
YX2(x) =st [X2(n+1)

∣∣X2(n) = x], x ∈ S. The proof of the next result follows
directly from Theorem 6.B.31.

Theorem 6.B.32. Let {X1(n), n ∈ N+} and {X2(n), n ∈ N+} be two Markov
processes as described above. Suppose that X1(0) ≤st X2(0) and that

YX1(x) ≤st YX2(x
′) whenever x ≤ x′.

Then {X1(n), n ∈ N+} ≤st {X2(n), n ∈ N+}.
A variation of Theorem 6.B.32 for Markov chains (that is, discrete-time

homogeneous Markov process with state space in N) is given next. Recall that
a Markov chain is called skip-free positive if it does not have positive jumps
of magnitude more than one. For a Markov chain {X(n), n ∈ N+} with state
space S ⊆ N we denote YX(i) =st [X(n + 1)

∣∣X(n) = i], i ∈ S. The proof
of the following result is obtained by a straightforward construction of the
two underlying Markov chains on the same probability space, and then using
Theorem 6.B.30.

Theorem 6.B.33. Let {X1(n), n ∈ N+} and {X2(n), n ∈ N+} be two Markov
chains. Suppose that X1(0) ≤st X2(0), that

YX1(i) ≤st YX2(i) for all i,

and
YX2(i) ≥ i for all i, (6.B.30)

and that {X1(n), n ∈ N+} is skip-free positive. Then {X1(n), n ∈ N+} ≤st
{X2(n), n ∈ N+}.
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The discrete-time homogeneous Markov process {X(n), n ∈ N+} is said to
be stochastically monotone if YX(x) =st [X(n+1)

∣∣X(n) = x] is stochastically
increasing in x ∈ S. Note that stochastic monotonicity is a different condition
than the almost sure monotonicity condition (6.B.30) — none of these implies
the other. Denote by {X(x)(n), n ∈ N+} the process {X(n), n ∈ N+} under
the condition that X(0) = x. The following result is a direct consequence of
Theorem 6.B.32.

Theorem 6.B.34. Let {X(n), n ∈ N+} be a discrete-time homogeneous
Markov process that is stochastically monotone. Then

{X(x)(n), n ∈ N+} ≤st {X(x′)(n), n ∈ N+} (6.B.31)

whenever x ≤ x′.

For example, a discrete-time birth and death chain (with state space N)
with birth probabilities P{X(n + 1) = i + 1

∣∣X(n) = i} = pi and death
probabilities P{X(n + 1) = i − 1

∣∣X(n) = i} = 1 − pi, i ∈ N, is stochastically
monotone if pi increases in i ∈ N. Hence it satisfies (6.B.31).

If two processes {X(t), t ∈ T } and {Y (t), t ∈ T } satisfy {X(t), t ∈
T } ≤st {Y (t), t ∈ T }, then, by Theorem 6.B.30, the first passage times
TX(a) ≡ inf{t : X(t) > a} and TY (a) ≡ inf{t : Y (t) > a} (where inf ∅ = ∞)
satisfy TX(a) ≥st TY (a) for all a. The reverse implication need not be true.
By removing (6.B.30) from Theorem 6.B.33 we obtain the following result. Its
proof consists of a proper construction of the two underlying Markov chains
on the same probability space, and then using Theorem 6.B.30.

Theorem 6.B.35. Let {X1(n), n ∈ N+} and {X2(n), n ∈ N+} be two Markov
chains. Suppose that X1(0) ≤st X2(0), that

YX1(i) ≤st YX2(i) for all i,

and that {X1(n), n ∈ N+} is skip-free positive. Then TX(a) ≥st TY (a) for all
a.

Suppose now that the two processes that we want to compare are point
processes that, for distinction, we denote by {K(t), t ≥ 0} and {N(t), t ≥
0}. That is, for each t ≥ 0, K(t) and N(t) are the numbers of jumps that
the corresponding processes have experienced over the time interval (0, t]. In
addition to the possible relationship {K(t), t ≥ 0} ≤st {N(t), t ≥ 0} between
these processes, we will consider also two other stronger possible relationships.

For any positive integer m, let B1, B2, . . . , Bm be bounded Borel sets of
[0,∞). Let K(Bi) and N(Bi) denote the number of jumps of the corresponding
processes over the set Bi, i = 1, 2, . . . , m. Suppose that, for all choices of an
integer m and bounded Borel sets B1, B2, . . . , Bm, it holds that

(K(B1), K(B2), . . . , K(Bm)) ≤st (N(B1), N(B2), . . . , N(Bm)).
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Then {K(t), t ≥ 0} is said to be smaller than {N(t), t ≥ 0} in the usual
stochastic order over N (denoted by {K(t), t ≥ 0} ≤st-N {N(t), t ≥ 0}).
(Here N denotes the space of integer-valued Radon measures.) The usual
stochastic order over N gives a “global” comparison of the point processes
{K(t), t ≥ 0} and {N(t), t ≥ 0}.

Let X1 < X2 < · · · be the sequence of interpoint distances of the process
{K(t), t ≥ 0}, and let Y1 < Y2 < · · · be the sequence of interpoint distances
of the process {N(t), t ≥ 0}. We assume that the Xi’s and that the Yi’s are
almost surely positive. Also we assume that the processes are nonexplosive
in the sense that limn→∞

∑n
i=1 Xi = ∞ and limn→∞

∑n
i=1 Yi = ∞ almost

surely. Suppose that, for all choices of an integer m and indices i1, i2, . . . , im,
it holds that

(Xi1 , Xi2 , . . . , Xim) ≥st (Yi1 , Yi2 , . . . , Yim).

Then {K(t), t ≥ 0} is said to be smaller than {N(t), t ≥ 0} in the usual
stochastic order over R

∞ (denoted by {K(t), t ≥ 0} ≤st-∞ {N(t), t ≥ 0}).
The usual stochastic order over R

∞ gives a “local” comparison of the point
processes {K(t), t ≥ 0} and {N(t), t ≥ 0}.

Analogs of (6.B.29) can be stated and proven for the orders ≤st-N and
≤st-∞. Also, “almost sure” constructions, that are analogs of Theorem 6.B.30,
can be shown for these orders. We do not give the technical details here. We
note, however, that in such constructions the counterparts K̂ = {K̂(t), t ≥ 0}
and N̂ = {N̂(t), t ≥ 0} of {K(t), t ≥ 0} and {N(t), t ≥ 0}, respectively, satisfy
the following properties: The relationship {K(t), t ≥ 0} ≤st-N {N(t), t ≥ 0}
means that K̂ is a thinning of N̂ . The relationship {K(t), t ≥ 0} ≤st {N(t), t ≥
0} means that N̂ has a.s. earlier and more numerous points than K̂ before
each time instant t. The relationship {K(t), t ≥ 0} ≤st-∞ {N(t), t ≥ 0} means
that the corresponding interpoint distances are shorter for N̂ than for K̂ a.s.
From this it is immediate that

{K(t), t ≥ 0} ≤st-N {N(t), t ≥ 0} =⇒ {K(t), t ≥ 0} ≤st {N(t), t ≥ 0},

and that

{K(t), t ≥ 0} ≤st-∞ {N(t), t ≥ 0} =⇒ {K(t), t ≥ 0} ≤st {N(t), t ≥ 0}.
(6.B.32)

It can be shown that, in general, {K(t), t ≥ 0} ≤st-N {N(t), t ≥ 0}
�=⇒ {K(t), t ≥ 0} ≤st-∞ {N(t), t ≥ 0} and also that {K(t), t ≥ 0} ≤st-∞

{N(t), t ≥ 0} �=⇒ {K(t), t ≥ 0} ≤st-N {N(t), t ≥ 0}.
For renewal processes we have the following results.

Theorem 6.B.36. Consider two nondelayed renewal processes {K(t), t ≥ 0}
and {N(t), t ≥ 0} with generic interpoint distances X and Y , respectively.
The following three statements are equivalent.

(i) Y <st X,
(ii) {K(t), t ≥ 0} ≤st {N(t), t ≥ 0},
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(iii) {K(t), t ≥ 0} ≤st-∞ {N(t), t ≥ 0}.

Proof. Note that from the independence of the interpoint distances it follows
that (i)⇐⇒(iii). From (6.B.32) it follows that (iii)=⇒(ii). The implication
(ii)=⇒(i) is obvious. 
�

Theorem 6.B.37. Consider two nondelayed renewal processes {K(t), t ≥ 0}
and {N(t), t ≥ 0} with generic interpoint distances X and Y , respectively.
Let rX and rY denote the hazard rate functions corresponding to X and Y ,
respectively. If

rX(t) ≤ rY (s) for all 0 ≤ s ≤ t, (6.B.33)

then
{K(t), t ≥ 0} ≤st-N {N(t), t ≥ 0}.

Theorem 6.B.37 can be easily proven using the fact, mentioned above, that
K̂ is a thinning of N̂ . We do not give a detailed proof of it here.

Note that (6.B.33) holds if Y ≤hr X and if X is DFR or if Y is DFR.
The proofs of the next two theorems are similar to the proofs of Theorems

6.B.36 and 6.B.37, respectively.

Theorem 6.B.38. Consider two delayed renewal processes {Kd(t), t ≥ 0}
and {Nd(t), t ≥ 0}, with the corresponding delays Xd and Y d and with the
same interrenewal distribution after the delay. The following statements are
equivalent.

(i) Y d <st Xd,
(ii) {Kd(t), t ≥ 0} ≤st {Nd(t), t ≥ 0},
(iii) {Kd(t), t ≥ 0} ≤st-∞ {Nd(t), t ≥ 0}.

Theorem 6.B.39. Consider two delayed renewal processes {Kd(t), t ≥ 0}
and {Nd(t), t ≥ 0}, with the corresponding delays Xd and Y d and with the
same interrenewal distribution after the delay. Let rXd denote the hazard rate
function corresponding to Xd. If Y d ≤hr Xd and if

rXd(t) ≤ r(s) for all 0 ≤ s ≤ t, (6.B.34)

where r is the hazard rate function associated with the common interrenewal
distribution function, then

{Kd(t), t ≥ 0} ≤st-N {Nd(t), t ≥ 0}.

Note that (6.B.34) holds, for example, if X ≤hr Xd, and if X is DFR or if
Xd is DFR.

Finally we give conditions for two nonhomogeneous Poisson processes to
be ordered according to the above orders.

Theorem 6.B.40. Let {K(t), t ≥ 0} and {N(t), t ≥ 0} be two nonhomoge-
neous Poisson processes with mean functions MK and MN , respectively, and
with intensity functions λK and λN , respectively.
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(i) If MK(t) ≤ MN (t), t ≥ 0, then {K(t), t ≥ 0} ≤st {N(t), t ≥ 0}.
(ii) If λK(t) ≤ λN (t), t ≥ 0, then {K(t), t ≥ 0} ≤st-N {N(t), t ≥ 0}.
(iii) If M−1

K (MN (t)) − t is increasing in t ≥ 0, then {K(t), t ≥ 0} ≤st-∞
{N(t), t ≥ 0}.

In the following example, parts (i) and (iii) of Theorem 6.B.40 are restated
in the terminology of Examples 1.B.24, 1.C.48, 2.A.22, 3.B.38, 4.B.14, 6.D.8,
6.E.13, and 7.B.13.

Example 6.B.41. Let X and Y be two absolutely continuous nonnegative
random variables with survival functions F and G, respectively. Denote
Λ1 = − log F and Λ2 = − log G, i = 1, 2. Consider two nonhomogeneous
Poisson processes N1 = {N1(t), t ≥ 0} and N2 = {N2(t), t ≥ 0} with mean
functions Λ1 and Λ2 (see Example 1.B.13), respectively. Let Ti,1, Ti,2, . . . be
the successive epoch times of process Ni, i = 1, 2. Note that X =st T1,1 and
Y =st T2,1.

It turns out that the usual stochastic ordering of the first two epoch times
implies the multivariate usual stochastic ordering of all the corresponding
later epoch times. Explicitly, part (i) of Theorem 6.B.40 says that if X ≤st Y ,
then (T1,1, T1,2, . . . , T1,n) ≤st (T2,1, T2,2, . . . , T2,n), n ≥ 1.

Now let Xi,n ≡ Ti,n − Ti,n−1, n ≥ 1 (where Ti,0 ≡ 0), be the inter-epoch
times of the process Ni, i = 1, 2. Part (iii) of Theorem 6.B.40 says that if
X ≤disp Y , then (X1,1, X1,2, . . . , X1,n) ≤st (X2,1, X2,2, . . . , X2,n), n ≥ 1.

6.C The Cumulative Hazard Order

6.C.1 Definition

Let T = (T1, T2, . . . , Tm) be a nonnegative random vector with an absolutely
continuous distribution function. In this section, as in Section 6.B.6, it is help-
ful to think about T1, T2, . . . , Tm as the lifetimes of m components 1, 2, . . . , m
that make up some system. Consider a typical “history” of T at time t ≥ 0,
which is of the form (see (6.B.25))

ht = {T I = tI ,T I > te}, 0e ≤ tI ≤ te, I ⊆ {1, 2, . . . , m}. (6.C.1)

Given the history ht in (6.C.1), let i ∈ I be a component that is still alive
at time t. Its multivariate conditional hazard rate, at time t, is defined as
follows:

λi|I(t
∣∣tI) = lim

∆t↓0

1
∆t

P{t < Ti ≤ t + ∆t
∣∣T I = tI ,T I > te}, (6.C.2)

where, of course, 0e ≤ tI ≤ te, and I ⊆ {1, 2, . . . , m}. As long as the
item is alive it accumulates hazard at the rate of λi|I(t

∣∣tI) at time t. If
I = {i1, i2, . . . , ik} and
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ti1 ≤ ti2 ≤ · · · ≤ tik
,

then the cumulative hazard of component i ∈ I at time t is

Ψi|i1,i2,...,ik
(t
∣∣ti1 , ti2 , . . . , tik

)

=
∫ ti1

0
λi|∅(u

∣∣t∅)du +
k∑

j=2

∫ tij

tij−1

λi|i1,i2,...,ij−1(u
∣∣ti1 , ti2 , . . . , tij−1)du

+
∫ t

tik

λi|i1,i2,...,ik
(u
∣∣ti1 , ti2 , . . . , tik

)du. (6.C.3)

Let S = (S1, S2, . . . , Sm) be another nonnegative random vector with an
absolutely continuous distribution function and with cumulative hazard func-
tions Φ·|·(·

∣∣·), which are defined analogously to the Ψ ’s in (6.C.3). Select two
integers j and l such that j ≤ l ≤ m. Let t1, t2, . . . , tj and s1, . . . , sj , . . . , sl be
such that 0 ≤ t1 ≤ t2 ≤ · · · ≤ tj , and 0 ≤ si ≤ ti, i = 1, 2, . . . , j, and si ≥ 0,
i = j + 1, . . . , l. Let

sk1 ≤ sk2 ≤ · · · ≤ skl

be the ordered si’s. If for any integer α > l we have

Φα|k1,k2,...,kl
(u
∣∣sk1 , sk2 , . . . , skl

) ≥ Ψα|1,2,...,j(u
∣∣t1, t2, . . . , tj) (6.C.4)

whenever u ≥ max{tj , sj+1, sj+2, . . . , sl}, and if the same holds with 1, 2, . . . , l
replaced by π1, π2, . . . , πl for every permutation π of (1, 2, . . . , m), then S is
said to be smaller than T in the cumulative hazard order (denoted as S ≤ch
T ).

The order ≤ch is not an order in the usual sense; a comment, similar to
the comment in Remark 6.B.5, applies to this order too. Explicitly, X ≤ch X
means that X has the positive dependence property of “supporting lifetimes”
discussed in Norros [437] and in Shaked and Shanthikumar [511].

Condition (6.C.4) simply states that at any time t the cumulative hazard
of Sα is larger than the cumulative hazard of Tα whenever the history of
the components corresponding to S is more “severe” than the history of the
components corresponding to T . Thus (6.C.4) can be written as (see Section
6.B.6 for the definition of histories and for the definition of their comparison)

Φα(h′
u) ≥ Ψα(hu) whenever h′

u ≥ hu,

where α denotes a component that has not failed by time u in the history h′
u.

In the univariate case (that is, m = 1) condition (6.C.4) simply says that
− log P{S1 > u} ≥ − log P{T1 > u}. Therefore, in the univariate case

S1 ≤ch T1 ⇐⇒ S1 ≤st T1.

Thus, if the components of S are independent, and if the components of T
are independent, then S ≤ch T ⇐⇒ S ≤st T . In the general multivariate case
the two orders are not equivalent, but it will be shown below that if S ≤ch T ,
then S ≤st T .



288 6 Multivariate Stochastic Orders

6.C.2 The relationship between the cumulative hazard order and
the usual multivariate stochastic order

The total hazard accumulated by the failure time Ti, given that Ti was the time
of the kth failure and that the previous failure times were Tj1 , Tj2 , . . . , Tjk−1 ,
is Ψi|j1,j2,...,jk−1(Ti

∣∣Tj1 , Tj2 , . . . , Tjk−1). It can be shown that the total hazards
accumulated by the failure times Ti’s are independent standard (that is, mean
one) exponential random variables. This fact motivates the following total
hazard construction, which is of independent interest but we will use it here
in order to show that if S ≤ch T , then S ≤st T .

The idea of the construction is as follows. The components accumulate haz-
ard as long as they are alive with the rates given in (6.C.2). Each one of them
dies when its accumulated hazard crosses a random threshold. The random
thresholds are independent standard exponential random variables. Thus, by
continuously comparing the accumulated hazards to the independent expo-
nential random thresholds it is possible to determine the times in which the
accumulated hazards cross the respective thresholds, and these times have
the desired distribution. From this heuristic description it is seen that the
multivariate conditional cumulative hazard functions, given in (6.C.3), deter-
mine the distribution of the generated random variables. This, indeed, is well
known.

Let T = (T1, T2, . . . , Tm) be a nonnegative random vector with an ab-
solutely continuous distribution function. Given the functions Ψ·|·(·

∣∣·) that
are associated with T , as described in (6.C.3), we will describe now how
to generate a random vector T̂ = (T̂1, T̂2, . . . , T̂m) such that T̂ =st T . Let
X1, X2, . . . , Xm be independent standard exponential random variables. The
total hazard construction will be described in m steps.

Step 1. In this step we determine the identity i1 of the component that fails
first and its time of failure T̂i1 . This is determined by

T̂i1 = min{T̃1, T̃2, . . . , T̃m},

where
T̃j = min{t ≥ 0 : Ψj|∅(t

∣∣∅) ≥ Xj}, j = 1, 2, . . . , m,

and i1 is the index of the smallest T̃j .

Step k. (k = 2, 3, . . . , m). Suppose that Steps 1, 2, . . . , k − 1 have already
yielded

T̂i1 , T̂i2 , . . . , T̂ik−1 .

Let I = {i1, i2, . . . , ik−1} and denote I = {j1, j2, . . . , jm−k+1}. In this step we
determine the identity ik of the component that is the kth one to fail and its
failure time T̂ik

. This is determined by

T̂ik
= min{T̃j1 , T̃j2 , . . . , T̃jm−k+1},
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where here, for j ∈ I,

T̃j = min{t ≥ T̂ik−1 : Ψj|i1,i2,...,ik−1(t
∣∣T̂i1 , T̂i2 , . . . , T̂ik−1) ≥ Xj},

and ik is the index of the smallest T̃j , j ∈ I.

It can be shown that indeed T̂ =st T .
Let S = (S1, S2, . . . , Sm) be another nonnegative random vector with an

absolutely continuous distribution function and multivariate conditional cu-
mulative hazard functions Φ·|·(·

∣∣·). Using the same independent standard ex-
ponential random variables X1, X2, . . . , Xm, construct Ŝ = (Ŝ1, Ŝ2, . . . , Ŝm)
using the total hazard construction described above. Thus Ŝ and T̂ are con-
structed on the same probability space and they satisfy T̂ =st T and Ŝ =st S.
Also, if (6.C.4) holds, that is, if S ≤ch T , then it is clear that P{Ŝ ≤ T̂ } = 1.
Thus, from Theorem 6.B.1, we see that we have proved the following theorem.

Theorem 6.C.1. Let S and T be two nonnegative random vectors with ab-
solutely continuous distribution functions. If S ≤ch T , then S ≤st T .

It is worth mentioning that the total hazard construction is theoreti-
cally and practically different from the standard construction discussed in
Section 6.B.3. In the standard construction the uniform random variables
U1, U2, . . . , Un, which are used to generate the desired T̂1, T̂2, . . . , T̂n, can be
used sequentially, that is, Ui can be used to generate T̂i, once T̂1, T̂2, . . . , T̂i−1
have already been generated, i = 1, 2, . . . , n. On the other hand, in the total
hazard construction, the exponential random variables X1, X2, . . . , Xm are all
used simultaneously in the generation of each T̂i.

Remark 6.C.2. Looking at Step 1 of the total hazard construction it is seen
that it can be split into two substeps. First the value of first order statistic,
T̂(1) say, of the T̂j ’s is determined, and then the identity (index) of T̂(1) is
selected. Similarly Step k can be split into two substeps. Suppose now that
T = (T1, T2, . . . , Tm) is a vector of exponential random variables with possibly
different parameters. Then also T̂ = (T̂1, T̂2, . . . , T̂m) is such a vector. Further-
more, T̂(1) is also an exponential random variable. If it is known that T̂(1) = s1

say, and if the identity of the smallest T̂j is also known, then, conditionally, the
residual lives of the remaining m−1 components are independent exponential
random variables, and they do not depend on s1. If the identity of the smallest
T̂j is not known known, then the conditional distribution of the residual lives
of the remaining m−1 components is a mixture of distributions of independent
exponential random variables, and it still does not depend on s1 (notice that
the probabilities of the mixture do not depend on s1). Therefore the condi-
tional distribution of (T(2) − s1, T(3) − s1, . . . , T(m) − s1), given T̂(1) = s1, does
not depend on s1. It follows that [(T̂(1), T̂(2), . . . , T̂(m))

∣∣T̂(1) = s1] is stochasti-
cally increasing in s1. Since T =st T̂ we obtain a proof of Theorem 6.B.13.
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6.D Multivariate Hazard Rate Orders

6.D.1 Definitions and basic properties

The following notation will be used below. For any two real numbers x and y
we denote x ∨ y = max{x, y} and x ∧ y = min{x, y}. If x = (x1, x2, . . . , xn)
and y = (y1, y2, . . . , yn) are two vectors in R

n, then we denote x ∨ y =
(x1 ∨ y1, x2 ∨ y2, . . . , xn ∨ yn) and x ∧ y = (x1 ∧ y1, x2 ∧ y2, . . . , xn ∧ yn).

Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two random vec-
tors with respective survival functions F and G defined by F (x) = P{X > x}
and G(x) = P{Y > x}, x ∈ R

n. We say that X is smaller than Y in the
multivariate hazard rate order (denoted by X ≤hr Y ) if

F (x)G(y) ≤ F (x ∧ y)G(x ∨ y) for every x and y in R
n. (6.D.1)

We say that X is smaller than Y in the weak multivariate hazard rate order
(denoted by X ≤whr Y ) if

G(x)
F (x)

is increasing in x ∈ {x : G(x) > 0}, (6.D.2)

where in (6.D.2) we use the convention a/0 ≡ ∞ whenever a > 0. Note that
(6.D.2) can be written equivalently as

F (y)G(x) ≤ F (x)G(y) whenever x ≤ y. (6.D.3)

Thus, from (6.D.1) and (6.D.3) it follows that

X ≤hr Y =⇒ X ≤whr Y . (6.D.4)

Note that from (6.D.3) it follows that if y ∈ {x : G(x) = 0}, then y ∈
{x : F (x) = 0}. That is, if X ≤whr Y , then

{x : F (x) > 0} ⊆ {x : G(x) > 0}.

It can be shown that the implication (6.D.4) is strict. However, when at
least one of the survival functions of X and of Y is MTP2 (recall from Karlin
and Rinott [278] that a function K : R

n → R+ is said to be multivariate
totally positive of order 2 (MTP2) if K(x)K(y) ≤ K(x ∧ y)K(x ∨ y) for all
x,y ∈ R

n), then, under some regularity conditions, the orders ≤hr and ≤whr
are equivalent. This is shown next. Recall that a set S ⊆ R

n is called a lattice
if for all x,y in S we have that x ∧ y and x ∨ y are in S.

Theorem 6.D.1. Let X and Y be two random vectors with respective sur-
vival functions F and G, and with a common support S which is a lattice. If
F and/or G are/is MTP2, then

X ≤whr Y =⇒ X ≤hr Y . (6.D.5)
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Proof. Note that the left hand side of the implication (6.D.5) implies

F (x ∨ y)G(y) ≤ F (y)G(x ∨ y), x,y ∈ R
n,

and that the MTP2-ness of F implies

F (x)F (y) ≤ F (x ∧ y)F (x ∨ y), x,y ∈ R
n.

Multiplication of these two inequalities yields

F (x ∨ y)G(y)F (x)F (y) ≤ F (y)G(x ∨ y)F (x ∧ y)F (x ∨ y).

Now, from the assumption that S is a lattice it follows that if F (x)G(y) > 0,
then F (y) and F (x ∨ y) are positive. Canceling these we obtain that (6.D.1)
holds in this case. If F (x)G(y) = 0, then (6.D.1) obviously holds too. There-
fore X ≤hr Y . In a similar manner the implication (6.D.5) can be shown
when G is MTP2. 
�

The order ≤hr is not an order in the usual sense (that is, it is not reflexive)
because from (6.D.1) it follows that

X ≤hr X ⇐⇒ P{X > x} is MTP2.

Consider now a random vector X = (X1, X2, . . . , Xn) with a partially
differentiable survival function F . Let rX = (r(1)

X , r
(2)
X , . . . , r

(n)
X ) be its hazard

gradient as defined in (1.B.28). Let Y be another n-dimensional random vector
with hazard gradient rY = (r(1)

Y , r
(2)
Y , . . . , r

(n)
Y ). The following result, which

can be obtained by differentiation of (6.D.2), justifies the terminology “hazard
rate order” for the orders that were introduced in (6.D.1) and (6.D.2).

Theorem 6.D.2. Let X and Y be n-dimensional random vectors with hazard
gradients rX and rY , respectively. Then X ≤whr Y if, and only if,

r
(i)
X (x) ≥ r

(i)
Y (x), i = 1, 2, . . . , n, x ∈ R

n.

A useful inequality is described next; we omit its proof.

Theorem 6.D.3. Let X = (X1, X2, . . . , Xn) be a random vector, and let
XI = (Y1, Y2, . . . , Yn) be a vector of independent random variables such that
Xi =st Yi, i = 1, 2, . . . , n. If the survival function of X is MTP2, then

XI ≤hr X.

The relation X ≤hr Y does not necessarily imply X ≤st Y , where ≤st
denotes the usual multivariate stochastic order discussed in Section 6.B. How-
ever, a generalization of the univariate Theorem 1.B.1 is given in (6.G.10) in
Section 6.G.1. Theorem 6.G.9 is a multivariate generalization of (1.B.7).
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6.D.2 Preservation properties

The orders ≤hr and ≤whr are closed under some common operations.

Theorem 6.D.4. (a) Let (X1, X2, . . . , Xn) and (Y1, Y2, . . . , Yn) be two n-
dimensional random vectors. If (X1, X2, . . . , Xn) ≤hr [≤whr] (Y1, Y2, . . . ,
Yn), then

(g1(X1), g2(X2), . . . , gn(Xn)) ≤hr [≤whr] (g1(Y1), g2(Y2), . . . , gn(Yn))

whenever gi : R → R is an increasing function, i = 1, 2, . . . , n.
(b) Let X1,X2, . . . ,Xm be a set of independent random vectors where the

dimension of Xi is ki, i = 1, 2, . . . , m. Let Y 1,Y 2, . . . ,Y m be another
set of independent random vectors where the dimension of Y i is ki, i =
1, 2, . . . , m. If Xi ≤hr [≤whr] Y i for i = 1, 2, . . . , m, then

(X1,X2, . . . ,Xm) ≤hr [≤whr] (Y 1,Y 2, . . . ,Y m).

That is, the multivariate hazard rate orders are closed under conjunctions.
(c) Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two n-dimensional

random vectors. If X ≤hr [≤whr] Y , then XI ≤hr [≤whr] Y I for each
I ⊆ {1, 2, . . . , n}. That is, the multivariate hazard rate orders are closed
under marginalization.

(d) Let {Xj, j = 1, 2, . . . } and {Y j, j = 1, 2, . . . } be two sequences of random
vectors such that Xj →st X and Y j →st Y as j → ∞, where →st
denotes convergence in distribution. If Xj ≤hr [≤whr] Y j, j = 1, 2, . . .,
then X ≤hr [≤whr] Y .

We will now describe some preservation properties of the multivariate haz-
ard rate orders under random compositions.

Let
{
F θ, θ ∈ X

}
be a family of n-dimensional survival functions, where

X is a subset of the real line. Let X(θ) denote a random vector with survival
function F θ. For any random variable Θ with support in X , and with dis-
tribution function H, let us denote by X(Θ) a random vector with survival
function G given by

G(x) =
∫

X
F θ(x)dH(θ), x ∈ R

n.

Theorem 6.D.5. Let
{
F θ, θ ∈ X

}
be a family of n-dimensional survival

functions as above. Let Θ1 and Θ2 be two random variables with supports in
X and distribution functions H1 and H2, respectively. Let Y 1 and Y 2 be two
random vectors such that Y i =st X(Θi), i = 1, 2; that is, suppose that the
survival function of Y i is given by

Gi(x) =
∫

X
F θ(x)dHi(θ), x ∈ R

n, i = 1, 2.

If
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X(θ) ≤whr X(θ′) whenever θ ≤ θ′, (6.D.6)

and if Θ1 and Θ2 are ordered in the univariate hazard rate order; that is, if

Θ1 ≤hr Θ2, (6.D.7)

then
Y 1 ≤whr Y 2. (6.D.8)

Proof. Assumption (6.D.6) means that for each j ∈ {1, 2, . . . , n}, the function
F θ(x1, x2, . . . , xn) is TP2 (totally positive of order 2; that is, bivariate MTP2)
as a function of θ ∈ X and of xj ∈ R. Assumption (6.D.7) means that Hi(θ)
is TP2 as a function of i ∈ {1, 2} and of θ ∈ X . Therefore, by Theorem 2.1 of
Joag-Dev, Kochar, and Proschan [259], Gi(x1, x2, . . . , xn) is TP2 in i ∈ {1, 2}
and in xj ∈ R, j = 1, 2, . . . , n. That is,

G2(x1, x2, . . . , xn)
G1(x1, x2, . . . , xn)

is increasing in xj , j = 1, 2, . . . , n.

By (6.D.2), this yields the stated result. 
�

In the case where Y 1 and Y 2 in Theorem 6.D.5 are vectors of condition-
ally independent random variables, the conclusion (6.D.8) can be strength-
ened. For this purpose, consider n families of univariate survival functions{
F j,θ, θ ∈ X

}
, j = 1, 2, . . . , n, where X is a subset of the real line. Let

Xj(θ) denote a univariate random variable with survival function F j,θ. For
any random variable Θ with support in X , and with distribution function H,
let Xj(Θ) denote a univariate random variable with survival function given
by
∫

X F j,θ(x)dH(θ), x ∈ R, j = 1, 2, . . . , n.

Theorem 6.D.6. Let
{
F j,θ, θ ∈ X

}
be n families of univariate survival

functions as above, j = 1, 2, . . . , n. Assume that for each j = 1, 2, . . . , n,
the univariate supports corresponding to all the F j,θ’s are identical, Yj, say.
Let Θ1 and Θ2 be two random variables with supports in X and distribu-
tion functions H1 and H2, respectively. Let Y 1 = (Y11, Y12, . . . , Y1n) and
Y 2 = (Y21, Y22, . . . , Y2n) be two vectors of conditionally independent random
variables such that Yij =st Xj(Θi), i = 1, 2, j = 1, 2, . . . , n; that is, suppose
that the survival function of Y i is given by

Gi(x1, x2, . . . , xn) =
∫

X

n∏
j=1

F j,θ(xj)dHi(θ),

(x1, x2, . . . , xn) ∈ R
n, i = 1, 2. (6.D.9)

If
Xj(θ) ≤hr Xj(θ′) whenever θ ≤ θ′, j = 1, 2, . . . , n, (6.D.10)

and if
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Θ1 ≤hr Θ2,

then
Y 1 ≤hr Y 2.

Proof. Let θ ≤ θ′. From assumption (6.D.10), from the conditional indepen-
dence of the Xj(θ)’s, and from the conditional independence of the Xj(θ′)’s,
it follows by Theorem 6.D.4(b) that

(X1(θ), X2(θ), . . . , Xn(θ)) ≤hr (X1(θ′), X2(θ′), . . . , Xn(θ′)) whenever θ ≤ θ′.

Therefore, by Theorem 6.D.5 we get

Y 1 ≤whr Y 2. (6.D.11)

Next, it is easy to verify that Gi in (6.D.9) is TP2 in each pair of its
variables when the other variables are held fixed, i = 1, 2. Therefore Gi is
MTP2, i = 1, 2. Furthermore, from the assumption that for j = 1, 2, . . . , n,
all the F j,θ’s have a corresponding univariate common support Yj , it follows
that Y 1 and Y 2 have a common support which is a lattice. The stated result
now follows from (6.D.11) and Theorem 6.D.1. 
�

An interesting property of the order ≤whr, for nonnegative random vectors,
is given next; see Theorem 6.G.15 for a related result.

Theorem 6.D.7. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two
nonnegative random vectors. If X ≤whr Y , then

min{a1X1, . . . , anXn} ≤hr min{a1Y1, . . . , anYn}
whenever ai > 0, i = 1, 2, . . . , n. (6.D.12)

6.D.3 The dynamic multivariate hazard rate order

Let T = (T1, T2, . . . , Tm) be a nonnegative random vector with an absolutely
continuous distribution function. Denote the multivariate conditional hazard
rate functions of T by λ·|·(·

∣∣·) as defined in (6.C.2). Clearly, the higher the
multivariate conditional hazard rate functions are, the smaller T should be
stochastically. This is the motivation for the order discussed in this subsection.

Let S = (S1, S2, . . . , Sm) be another nonnegative random vector with an
absolutely continuous distribution function. Denote its multivariate condi-
tional hazard rate functions by η·|·(·

∣∣·), where the η’s are defined analogously
to the λ’s in (6.C.2). Suppose that

ηi|I∪J(u
∣∣sI , sJ) ≥ λi|I(u

∣∣tI)
whenever J ∩ I = ∅, sI ≤ tI ≤ ue, and sJ ≤ ue, (6.D.13)
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where i ∈ I ∪ J . Then S is said to be smaller than T in the dynamic multi-
variate hazard rate order (denoted as S ≤dyn-hr T ).

The order ≤dyn-hr is not an order in the usual sense; a comment, sim-
ilar to the comment in Remark 6.B.5, applies to this order too. Explicitly,
X ≤dyn-hr X means that X has the positive dependence property of “hazard
rate increasing upon failures” discussed in Shaked and Shanthikumar [511].

Note that (6.D.13) can be written as (see Section 6.B.6 for the definition
of histories and for the definition of their comparison)

ηi(h′
u) ≥ λi(hu) whenever h′

u ≥ hu,

where i denotes a component that has not failed by time u in the history h′
u.

The following example illustrates how the dynamic multivariate hazard
rate order can be verified. This example may be compared with Examples
1.B.24, 1.C.48, 2.A.22, 3.B.38, 6.B.41, 6.E.13, and 7.B.13.

Example 6.D.8. Let X and Y be two absolutely continuous nonnegative ran-
dom variables with survival functions F and G, respectively. Denote Λ1 =
− log F , Λ2 = − log G, and λi = Λ′

i, i = 1, 2. Consider two nonhomogeneous
Poisson processes N1 = {N1(t), t ≥ 0} and N2 = {N2(t), t ≥ 0} with mean
functions Λ1 and Λ2 (see Example 1.B.13), respectively. Let Ti,1, Ti,2, . . . be
the successive epoch times of process Ni, i = 1, 2. Note that X =st T1,1 and
Y =st T2,1.

It turns out that the univariate hazard rate ordering of the first two epoch
times implies the dynamic multivariate hazard rate ordering of the corre-
sponding vectors of the later epoch times. Explicitly, it will be shown below
that if X ≤hr Y , then (T1,1, T1,2, . . . , T1,n) ≤dyn-hr (T2,1, T2,2, . . . , T2,n) for
each n ≥ 1.

Fix an n ≥ 1. Let η·|·(·
∣∣·) be the multivariate conditional hazard rate func-

tions associated with (T1,1, T1,2, . . . , T1,n) and let ζ·|·(·
∣∣·) be the multivariate

conditional hazard rate functions associated with (T2,1, T2,2, . . . , T2,n).
First let us obtain an explicit expression for ζi|I(u

∣∣tI) under the restrictions
on t and u in (6.D.13). Since T2,1 ≤ T2,2 ≤ · · · ≤ T2,n a.s., it follows that tI in
(6.D.13) can be a realization (“history”) of observations up to time u only if
I is of the form I = {1, 2, . . . , m} for some m ≥ 1, or I = ∅ (that is, m = 0).
Then we have

ζi|I(u
∣∣tI) =

{
λ2(u), if i = m + 1;
0, if i > m + 1;

where I = {1, 2, . . . , m}.

Next, let us obtain an explicit expression for ηi|I∪J(u
∣∣sI∪J) under the

restrictions on s, t, and u in (6.D.13). Since T1,1 ≤ T1,2 ≤ · · · ≤ T1,n a.s., we
see that when I = {1, 2, . . . , m}, then sI∪J in (6.D.13) can be a realization of
observations up to time u only if J is of the form J = {m + 1, m + 2, . . . , k}
for some k ≥ m + 1, or J = ∅ (that is, k = m). Then we have
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ηi|I∪J(u
∣∣sI∪J) =

{
λ1(u), if i = k + 1;
0, if i > k + 1;

where I = {1, 2, . . . , m} and J = {m + 1, m + 2, . . . , k}.

Suppose that X ≤hr Y . Since i in (6.D.13) must satisfy i ∈ I ∪ J (that is,
i > k), we see that if k > m, then

ηi|I∪J(u
∣∣sI∪J) = λ1(u) ≥ 0 = ζi|I(u

∣∣tI) if i = k + 1;

ηi|I∪J(u
∣∣sI∪J) = 0 = ζi|I(u

∣∣tI) if i > k + 1;

so (6.D.13) holds with ζ·|·(·
∣∣·) replacing λ·|·(·

∣∣·). If k = m (that is, J = ∅),
then, using X ≤hr Y , we get

ηi|I∪J(u
∣∣sI∪J) = λ1(u) ≥ λ2(u) = ζi|I(u

∣∣tI) if i = k + 1;

ηi|I∪J(u
∣∣sI∪J) = 0 = ζi|I(u

∣∣tI) if i > k + 1;

so (6.D.13), with ζ·|·(·
∣∣·) replacing λ·|·(·

∣∣·), holds in this case too. Thus
(T1,1, T1,2, . . . , T1,n) ≤dyn-hr (T2,1, T2,2, . . . , T2,n).

It should be noted that in Example 1.B.24 it was shown that if X ≤hr Y ,
then we have the univariate stochastic inequality T1,n ≤hr T2,n for each n ≥ 1.
This stochastic inequality does not follow from the above result because the
dynamic multivariate hazard rate order is not closed under marginalization.

In the univariate case (m = 1) condition (6.D.13) reduces to (1.B.2) [with
a different notation]. We have already seen that in the univariate case

S1 ≤hr T1 =⇒ S1 ≤st T1.

This is also true in the general dynamic multivariate case. In order to see it,
note that if (6.D.13) holds, then (6.C.4) holds, where in (6.C.4) the functions
Ψ ’s are defined by means of the functions λ’s as in (6.C.3) and the functions
Φ’s are analogously defined by means of the functions η’s. We thus have proven
the following result.

Theorem 6.D.9. If S and T are two nonnegative random vectors such that
S ≤dyn-hr T , then S ≤ch T .

Let X(1) ≤ X(2) ≤ · · · ≤ X(n) be the order statistics corresponding to a
sample of independent and identically distributed nonnegative random vari-
ables X1, X2, . . . , Xn. Similarly, let Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) be the order
statistics corresponding to a sample of independent and identically distributed
nonnegative random variables Y1, Y2, . . . , Yn. In the next result, the vectors of
order statistics are compared in the order ≤dyn-hr; it may be compared with
Theorems 6.E.12, 7.B.4, and 7.B.12. The proof of the next result is similar to
the proof of the main result in Example 6.D.8.
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Theorem 6.D.10. Let X(1), X(2), . . . , X(n) and Y(1), Y(2), . . . , Y(n) be order
statistics as described above. If X1 ≤hr Y1, then

(X(1), X(2), . . . , X(n)) ≤dyn-hr (Y(1), Y(2), . . . , Y(n)).

We will now see a property of the order ≤dyn-hr in reliability theory. Recall
from Section 1.B.5 that a nonnegative random variable T is IFR if, and only
if, either one of the following equivalent conditions holds:

[T − t
∣∣T > t] ≥hr [T − t′

∣∣T > t′] whenever t ≤ t′, (6.D.14)

T ≥hr [T − t
∣∣T > t] for all t ≥ 0. (6.D.15)

With the dynamic multivariate analog of the order ≥hr, one can generalize
(6.D.14) and (6.D.15) to the multivariate case, thus introducing notions of
multivariate IFR distributions. This can be done in several ways. Below we
show that various generalizations of (6.D.14) and (6.D.15) actually yield the
same notion of multivariate IFR.

Let T be a nonnegative random vector. Recall from Section 6.B.6 the
definition, the notation ht, and the comparison of histories associated with
T . One possible multivariate analog of (6.D.14) is to require T to satisfy, for
t ≤ s and histories ht and h′

s,

[(T − te)+
∣∣ht] ≥dyn-hr [(T − se)+

∣∣h′
s] whenever ht ≤ h′

s. (6.D.16)

Still another possible multivariate analog of (6.D.14) is to require T to satisfy,
for t ≤ s,

[(T − te)+
∣∣ht] ≥dyn-hr [(T − te)+

∣∣h′
s] whenever ht and h′

s coincide on [0, t).
(6.D.17)

An analog of (6.D.15) is to require T to satisfy (6.D.16) or (6.D.17) with
t = 0; that is,

T ≥dyn-hr [(T − se)+
∣∣h′

s] for any history h′
s, s ≥ 0. (6.D.18)

It turns out that these three conditions are equivalent. If we say that the
nonnegative random T is multivariate IFR if it satisfies (6.D.16), then we
have the following result, the proof of which can be found elsewhere.

Theorem 6.D.11. Let T be a nonnegative random vector. The following three
statements are equivalent.

(i) T is multivariate IFR.
(ii) T satisfies (6.D.17).
(iii) T satisfies (6.D.18).

Note that if T is multivariate IFR in the sense of Theorem 6.D.11, it is
also multivariate IFR in the sense of both (6.B.27) and (6.B.28).
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6.E The Multivariate Likelihood Ratio Order

6.E.1 Definition

A multivariate analog of the univariate order ≤lr from Section 1.C will be
introduced in this subsection. This order is sometimes also called the TP2
order.

Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two n-dimensional
random vectors with absolutely continuous [or discrete] distribution functions
and let f and g denote their [continuous or discrete] density functions, respec-
tively. Suppose that

f(x)g(y) ≤ f(x ∧ y)g(x ∨ y) for every x and y in R
n. (6.E.1)

Then X is said to be smaller than Y in the multivariate likelihood ratio order
(denoted as X ≤lr Y ). Indeed, in the univariate case (n = 1), (6.E.1) reduces
to (1.C.2).

The order ≤lr is not an order in the usual sense; a comment, similar to
the comment in Remark 6.B.5, applies to this order too. Explicitly, X ≤lr X
means that X has the positive dependence property of “multivariate TP2”
discussed in Karlin and Rinott [278] and in Whitt [563]; see its definition in
Example 6.E.16 below.

In the slightly more general case, when X and Y are nonnegative, some
of the Xi’s may be identically zero and the joint distribution of the rest is
absolutely continuous or discrete. Suppose that X1, X2, . . . , Xm are those that
are identically zero for some 0 < m < n. Let f now denote the joint density
of (Xm+1, Xm+2, . . . , Xn). In that case we denote X ≤lr Y if

f(x)g(y) ≤ f(x ∧ (ym+1, ym+2, . . . , yn))
× g((y1, y2, . . . , ym),x ∨ (ym+1, ym+2, . . . , yn)) (6.E.2)

for every x = (xm+1, xm+2, . . . , xn) and y = (y1, y2, . . . , yn).
At a first glance (6.E.1) and (6.E.2) seem to be unintuitive technical con-

ditions. However, it turns out that in many situations they are very easy to
verify and this is one of the major reasons for the usefulness and importance
of the order ≤lr.

Another possible analog of (1.C.2) is to require that f(y)g(x) ≤ f(x)g(y)
whenever x ≤ y. However, this does not yield an intuitive notion; see Remark
6.E.10.

6.E.2 Some properties

The multivariate likelihood ratio order is preserved under conditioning on any
rectangular set A (that is, A of the form A = A1×A2×· · ·×An where Ai ⊆ R,
i = 1, 2, . . . , n). This is shown in the next result. The proof is quite trivial and
is omitted.



6.E The Multivariate Likelihood Ratio Order 299

Theorem 6.E.1. If X and Y are two n-dimensional random vectors such
that X ≤lr Y , then, for any measurable rectangular set A ⊆ R

n, we have that
[X
∣∣X ∈ A] ≤lr [Y

∣∣Y ∈ A].

The above theorem can be generalized as follows. For A, B ⊆ R
n we denote

A ∨ B = {x ∨ y : x ∈ A,y ∈ B} and A ∧ B = {x ∧ y : x ∈ A,y ∈ B}.

Theorem 6.E.2. Let A, B ⊆ R
n satisfy A ∨ B ⊆ B and A ∧ B ⊆ A. If X

and Y are two n-dimensional random vectors such that X ≤lr Y , then

[X
∣∣X ∈ A] ≤lr [Y

∣∣Y ∈ B].

Proof. Let f and g denote the density functions of X and Y , respectively.
For any set C, let IC denote its indicator function. The assumptions imply

IA(x)IB(y) ≤ IA(x ∧ y)IB(x ∨ y) and f(x)g(y) ≤ f(x ∧ y)g(x ∨ y).

Therefore

f(x)IA(x)
P{X ∈ A} · g(y)IB(y)

P{Y ∈ B} ≤ f(x ∧ y)IA(x ∧ y)
P{X ∈ A} · g(x ∨ y)IB(x ∨ y)

P{Y ∈ B} . 
�

The following result shows that the order ≤lr is preserved under strictly
monotone transformations of each individual coordinate of the underlying
random vectors. The proof follows the lines of the proof of Theorem 1.C.8
and is omitted.

Theorem 6.E.3. Let ψi be any increasing function, i = 1, 2, . . . , n. Let
X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two n-dimensional ran-
dom vectors. If X ≤lr Y , then

(ψ1(X1), ψ2(X2), . . . , ψn(Xn)) ≤lr (ψ1(Y1), ψ2(Y2), . . . , ψn(Yn)).

The order ≤lr is closed under marginalization and under conjunctions as
the following result shows. The first part of the theorem can easily be proven
from the definitions. The proof of the second part uses ideas from the theory
of total positivity and is not given here.

Theorem 6.E.4. (a) Let X1,X2, . . . ,Xm be a set of independent random
vectors where the dimension of Xi is ki, i = 1, 2, . . . , m. Let Y 1,Y 2, . . . ,
Y m be another set of independent random vectors where the dimension of
Y i is ki, i = 1, 2, . . . , m. If Xi ≤lr Y i for i = 1, 2, . . . , m, then

(X1,X2, . . . ,Xm) ≤lr (Y 1,Y 2, . . . ,Y m).

That is, the multivariate likelihood ratio order is closed under conjunc-
tions.

(b) Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two n-dimensional
random vectors. If X ≤lr Y , then XI ≤lr Y I for each I ⊆ {1, 2, . . . , n}.
That is, the multivariate likelihood ratio order is closed under marginal-
ization.
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A result which shows the preservation of the order ≤lr under random
summations is stated next. The proof is based on standard arguments from
the theory of total positivity, and is omitted.

Theorem 6.E.5. Let X1,X2, . . . ,Xm be m countably infinite vectors of in-
dependent nonnegative random variables. Assume that X1,X2, . . . ,Xm are
independent. Let M = (M1, M2, . . . , Mm) and N = (N1, N2, . . . , Nm) be two
vectors of nonnegative integers which are independent of X1,X2, . . . ,Xm.
Denote by Xj,i the ith element of Xj. If Xj,i has a logconcave density func-
tion for all j = 1, 2, . . . , m and i ≥ 1, and if M ≤lr N , then( M1∑

i=1

X1,i,

M2∑
i=1

X2,i, . . . ,

Mm∑
i=1

Xm,i

)
≤lr

( N1∑
i=1

X1,i,

N2∑
i=1

X2,i, . . . ,

Nm∑
i=1

Xm,i

)
.

In the univariate case the likelihood ratio order implies the hazard rate
order. It turns out that this is also the case in the multivariate case as the
following two results show.

Theorem 6.E.6. If X and Y are two n-dimensional random vectors such
that X ≤lr Y , then X ≤hr Y .

Proof. This result follows from Theorem 2.4 in Karlin and Rinott [278] with
the MTP2 kernel K defined by K(x,u) =

∏n
i=1 1(xi,∞)(ui). 
�

Theorem 6.E.7. If X and Y are two nonnegative n-dimensional random
vectors such that X ≤lr Y , then X ≤dyn-hr Y .

Proof. First suppose that X > 0e a.s. Split {1, 2, . . . , n} into three mutually
exclusive sets, I, J , and L (so that L = I ∪ J). Select xI , xJ , yI , and t such
that xI ≤ yI ≤ te and xJ ≤ te. Denote the densities of (XI ,XJ ,XL) and of
(Y I ,Y J ,Y L) by f̃ and g̃, respectively. The density of [XL

∣∣XI = xI ,XJ =
xJ ], with argument xL, is then f̃(xI ,xJ ,xL)/f̃I,J (xI ,xJ) where f̃I,J is the
marginal density of (XI ,XJ). The density of [Y L

∣∣Y I = yI ,Y J > te], with
argument yL, is then ∫

yJ>te
g̃(yI ,yJ ,yL)dyJ∫

yJ>te
g̃I,J (yI ,yJ)dyJ

,

where g̃I,J is the marginal density of (Y I ,Y J).
Now select a yJ > te. Since yJ > te and xJ ≤ te it follows that xJ ≤ yJ .

Also xI ≤ yI . Therefore, from the assumption that X ≤lr Y it follows that

f̃(xI ,xJ ,xL)g̃(yI ,yJ ,yL) ≤ f̃(xI ,xJ ,xL ∧ yL)g̃(yI ,yJ ,xL ∨ yL). (6.E.3)

Integration of (6.E.3) over the region {yJ : yJ > te} yields∫
yJ>te

f̃(xI ,xJ ,xL)g̃(yI ,yJ ,yL)dyJ

≤
∫

yJ>te

f̃(xI ,xJ ,xL ∧ yL)g̃(yI ,yJ ,xL ∨ yL)dyJ
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which, in turn, yields

f̃(xI ,xJ ,xL)
f̃I,J (xI ,xJ)

×
∫

yJ>te
g̃(yI ,yJ ,yL)dyJ∫

yJ>te
g̃I,J (yI ,yJ) dyJ

≤ f̃(xI ,xJ ,xL ∧ yL)
f̃I,J (xI ,xJ)

×
∫

yJ>te
g̃(yI ,yJ ,xL ∨ yL)dyJ∫

yJ>te
g̃I,J (yI ,yJ)dyJ

.

That is, we have shown so far that

[XL

∣∣XI = xI ,XJ = xJ ] ≤lr [Y L

∣∣Y I = yI ,Y J > te]. (6.E.4)

From Theorems 6.E.1 and 6.E.3 it now follows that

[XL − te
∣∣XI = xI ,XJ = xJ ,XL > te]

≤lr [Y L − te
∣∣Y I = yI ,Y J > te,Y L > te],

and from Theorem 6.E.4(b) it follows that, for k ∈ L, we have

[Xk − t
∣∣XI = xI ,XJ = xJ ,XL > te]

≤lr [Yk − t
∣∣Y I = yI ,Y J > te,Y L > te], (6.E.5)

where here ≤lr denotes the univariate likelihood ratio order discussed in Sec-
tion 1.C.

From (6.E.5) it follows that the density of [Xk − t
∣∣XI = xI ,XJ =

xJ ,XL > te] at zero is larger than the density of [Yk − t
∣∣Y I = yI ,Y J >

te,Y L > te] at zero. But the density of [Xk −t
∣∣XI = xI ,XJ = xJ ,XL > te]

at zero is ηk|I∪J(t
∣∣xI ,xJ) and the density of [Yk − t

∣∣Y I = yI ,Y J > te,Y L >

te] at zero is λk|I(t
∣∣yI), where λ·|·(·

∣∣·) and η·|·(·
∣∣·) denote the multivariate

conditional hazard rate functions of X and Y , respectively. We thus have
shown that X and Y satisfy (6.D.13) and this completes the proof of the
theorem when X > 0e a.s.

If X has some components that are identically zero a.s., then the above
arguments still apply after some simple modifications. 
�

A combination of Theorems 6.C.1, 6.D.9, and 6.E.7 shows that for non-
negative random vectors X and Y one has X ≤lr Y =⇒ X ≤st Y . But this
is true in general as is stated in the next result, the proof of which we omit.

Theorem 6.E.8. If X and Y are two n-dimensional random vectors such
that X ≤lr Y , then X ≤st Y .

Remark 6.E.9. A combination of Theorems 6.E.1 and 6.E.8 shows that

X ≤lr Y =⇒ [X
∣∣A] ≤st [Y

∣∣A] for all measurable rectangular sets A ⊆ R
n.

(6.E.6)
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The conclusion in (6.E.6) is a generalization of (1.C.6). However, the charac-
terization of the order ≤lr in the univariate case, given in (1.C.6), does not
generalize to the multivariate case. That is, X ≤lr Y does not necessarily
imply that [X

∣∣A] ≤st [Y
∣∣A] for all measurable sets A ∈ R

n.

Remark 6.E.10. Let X and Y be two n-dimensional random vectors with
(continuous or discrete) density functions f and g, respectively. If it is only
assumed that f(y)g(x) ≤ f(x)g(y) whenever x ≤ y (rather than (6.E.1)),
then it is not necessarily true that X ≤st Y ; counterexamples can be found
in the literature. Note, however, that, under some additional conditions, the
monotonicity of g(x)/f(x) in x implies that X ≤st Y ; see, for example,
Theorem 6.B.8.

A result that may be viewed as a generalization of Theorems 1.C.9 and
1.C.52 is stated next.

Theorem 6.E.11. Let X be an n-dimensional random vector.

(a) X ≤lr X +a for all a ≥ 0 if, and only if, X has independent components
with logconcave density functions.

(b) If X has independent components with logconcave density functions, then
X ≤lr X + Y for any random vector Y ≥ 0 independent of X.

In the next result, vectors of order statistics are compared in the multi-
variate order ≤lr. The result may be compared with Theorems 6.D.10, 7.B.4,
and 7.B.12.

Theorem 6.E.12. Let X(1), X(2), . . . , X(n) and Y(1), Y(2), . . . , Y(n) be order
statistics as in Theorem 6.D.10. If X1 ≤lr Y1, then

(X(1), X(2), . . . , X(n)) ≤lr (Y(1), Y(2), . . . , Y(n)).

The following example may be compared with Examples 1.B.24, 1.C.48,
2.A.22, 3.B.38, 6.B.41, 6.D.8, and 7.B.13.

Example 6.E.13. Let X and Y be two absolutely continuous nonnegative ran-
dom variables with survival functions F and G, and density functions f and
g, respectively. Denote Λ1 = − log F , Λ2 = − log G, and λi = Λ′

i, i = 1, 2.
Consider two nonhomogeneous Poisson processes N1 = {N1(t), t ≥ 0} and
N2 = {N2(t), t ≥ 0} with mean functions Λ1 and Λ2 (see Example 1.B.13),
respectively. Let Ti,1, Ti,2, . . . be the successive epoch times of process Ni,
i = 1, 2. Note that X =st T1,1 and Y =st T2,1.

It turns out that, under some conditions, the univariate likelihood ra-
tio ordering of the first two epoch times implies the multivariate likelihood
ratio ordering of the corresponding vectors of the later epoch times. Explic-
itly, it will be shown below that if X ≤hr Y , and if (1.B.25) holds, then
(T1,1, T1,2, . . . , T1,n) ≤lr (T2,1, T2,2, . . . , T2,n) for each n ≥ 1. (Note that the
condition X ≤hr Y , together with (1.B.25), is stronger than merely assuming
X ≤lr Y ; see Theorem 1.C.4.)
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As is mentioned above, the stated result is true for n = 1. So let n ≥ 2.
The density functions of (Ti,1, Ti,2, . . . , Ti,n), i = 1, 2, are given by

h1,n(x1, x2, . . . , xn) = λ1(x1)λ1(x2) · · ·λ1(xn−1)f(xn)
for x1 ≤ x2 ≤ · · · ≤ xn,

and

h2,n(x1, x2, . . . , xn) = λ2(x1)λ2(x2) · · ·λ2(xn−1)g(xn)
for x1 ≤ x2 ≤ · · · ≤ xn.

Consider now (x1, x2, . . . , xn) and (y1, y2, . . . , yn) such that x1 ≤ x2 ≤ · · · ≤
xn and y1 ≤ y2 ≤ · · · ≤ yn. We want to prove that

λ1(x1 ∧ y1)λ1(x2 ∧ y2) · · ·λ1(xn−1 ∧ yn−1)f(xn ∧ yn)
× λ2(x1 ∨ y1)λ2(x2 ∨ y2) · · ·λ2(xn−1 ∨ yn−1)g(xn ∨ yn)

≥ λ1(x1)λ1(x2) · · ·λ1(xn−1)f(xn)
× λ2(y1)λ2(y2) · · ·λ2(yn−1)g(yn). (6.E.7)

Let E = {i ≤ n − 1 : xi ≥ yi}. Then (6.E.7) reduces to(∏
i∈E

λ1(yi)λ2(xi)
)
f(xn ∧ yn)g(xn ∨ yn) ≥

(∏
i∈E

λ1(xi)λ2(yi)
)
f(xn)g(yn),

and this follows from (1.B.25) and X ≤lr Y .
From the above result, and the closure of the likelihood ratio order under

marginalization (Theorem 6.E.4(b)), it follows that if X ≤hr Y , and if (1.B.25)
holds, then T1,n ≤lr T2,n, n ≥ 1. However, a stronger result is given in Example
1.C.48—this is so because the conditions X ≤hr Y and (1.B.25), together,
imply the conditions X ≤lr Y and (1.C.15).

Now let Xi,n ≡ Ti,n − Ti,n−1, n ≥ 1 (where Ti,0 ≡ 0), be the inter-epoch
times of the process Ni, i = 1, 2. Again, note that X =st X1,1 and Y =st X2,1.
It turns out that, under some conditions, the univariate likelihood ratio order-
ing of the first two inter-epoch times implies the multivariate likelihood ratio
ordering of the corresponding vectors of the later inter-epoch times. Explicitly,
if X ≤hr Y , and if f and/or g are logconvex, and if λ1 and/or λ2 are logconvex,
and if (1.B.25) holds, then (X1,1, X1,2, . . . , X1,n) ≤lr (X2,1, X2,2, . . . , X2,n) for
each n ≥ 1. The proof of this statement will not be detailed here.

From the above result, and the closure of the likelihood ratio order under
marginalization (Theorem 6.E.4(b)), it follows that if X ≤hr Y , and if f
and/or g are logconvex, and if λ1 and/or λ2 are logconvex, and if (1.B.25)
holds, then X1,n ≤lr X2,n, n ≥ 1. This is a different set of conditions for the
last stochastic inequality than the set of conditions in Example 1.C.48.
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Example 6.E.14. Recall that the spacings that correspond to the nonnegative
random variables X1, X2, . . . , Xn are denoted by U(i) = X(i) − X(i−1), i =
1, 2, . . . , n, where the X(i)’s are the corresponding order statistics (here we
take X(0) ≡ 0). The normalized spacings are defined by D(i) = (n − i −
1)U(i), i = 1, 2, . . . , n. Now, let D(1), D(2), . . . , D(n) be the normalized spacings
associated with exponential random variables X1, X2, . . . , Xn, where Xi has
the hazard rate λi, i = 1, 2, . . . , n. Let D∗

(1), D
∗
(2), . . . , D

∗
(n) be the normalized

spacings associated with a sample of n independent and identically distributed
exponential random variables that have the hazard rate (1/n)

∑n
i=1 λi. Then

(D∗
(1), D

∗
(2), . . . , D

∗
(n)) ≤lr (D(1), D(2), . . . , D(n)).

The following example is similar to Example 6.B.25 except that under a
different assumption we obtain a stronger conclusion. Other results which give
related comparisons can be found in Theorems 1.C.45 and 4.B.17.

Example 6.E.15. Let X and Y be two random variables. Let X(1) ≤ X(2) ≤
· · · ≤ X(n) denote the order statistics from a sample X1, X2, . . . , Xn of in-
dependent and identically distributed random variables that have the same
distribution as X. Similarly, let Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) denote the or-
der statistics from another sample Y1, Y2, . . . , Yn of independent and iden-
tically distributed random variables that have the same distribution as Y .
The corresponding spacings are defined by U(i) ≡ X(i) − X(i−1) and V(i) ≡
Y(i) − Y(i−1), i = 2, 3, . . . , n. Denote U = (U(2), U(3), . . . , U(n)) and V =
(V(2), V(3), . . . , V(n)). Kochar [311] has shown that if X ≤lr Y , and if either X
or Y have logconvex densities, then

U ≤lr V .

The next example extends Example 1.C.57 to the multivariate likelihood
ratio order.

Example 6.E.16. Let X be an n-dimensional random vector whose distribu-
tion function depends on the m-dimensional parameter Θ. Denote the prior
density function of Θ by π(·), and denote the conditional density of X, given
Θ = θ, by f(·

∣∣θ). Suppose that the m-dimensional density function of Θ is
MTP2 (multivariate totally positive of order 2), that is, suppose that Θ ≤lr Θ,
or, equivalently (see (6.E.1)), that π(θ)π(θ′) ≤ π(θ ∧ θ′)π(θ ∨ θ′) for every θ
and θ′ in R

m. Then, if f(x
∣∣θ) is ((m + n)-dimensional) MTP2, then Θ is in-

creasing in X in the likelihood ratio sense (that is, [Θ
∣∣X = x] ≤lr [Θ

∣∣X = x′]
whenever x ≤ x′). The proof of this statement is similar to the proof of the
statement in Example 1.C.57 and is omitted.

6.E.3 A property in reliability theory

In Theorem 1.C.52 it was shown that a nonnegative random variable T has
a logconcave density if, and only if, either one of the following equivalent
conditions holds:
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[T − t
∣∣T > t] ≥lr [T − t′

∣∣T > t′] whenever t ≤ t′, (6.E.8)

T ≥lr [T − t
∣∣T > t] for all t ≥ 0. (6.E.9)

We commented there that logconcavity can thus be interpreted as an aging
notion in reliability theory. Having a multivariate analog of the order ≥lr one
can generalize (6.E.8) and (6.E.9) to the multivariate case, thus introducing
notions which can be considered as multivariate analogs of distributions with
logconcave densities. This can be done in several ways. In this subsection we
show that various generalizations of (6.E.8) and (6.E.9) actually yield the
same notion of multivariate PF2 distributions.

Let T be a nonnegative random vector. Recall from Section 6.B.6 the
definition, the notation ht, and the comparison of histories associated with T .
One possible multivariate analog of (6.E.8) is to require T to satisfy, for t ≤ s
and histories ht and h′

s,

[(T − te)+
∣∣ht] ≥lr [(T − se)+

∣∣h′
s] whenever ht ≤ h′

s. (6.E.10)

Still another possible multivariate analog of (6.E.8) is to require T to satisfy,
for t ≤ s,

[(T − te)+
∣∣ht] ≥lr [(T − se)+

∣∣h′
s] whenever ht and h′

s coincide on [0, t).
(6.E.11)

An analog of (6.E.9) is to require T to satisfy (6.E.10) or (6.E.11) with
t = 0, that is,

T ≥lr [(T − se)+
∣∣h′

s] for any history h′
s, s ≥ 0. (6.E.12)

It turns out that these three conditions are equivalent. If we say that the
nonnegative random vector T is multivariate PF2 if it satisfies (6.E.10), then
we have the following result, the proof of which is similar to the proof of
Theorem 6.D.11.

Theorem 6.E.17. Let T be a nonnegative random vector. The following three
statements are equivalent.

(i) T is multivariate PF2.
(ii) T satisfies (6.E.11).
(iii) T satisfies (6.E.12).

6.F The Multivariate Mean Residual Life Order

6.F.1 Definition

Let T = (T1, T2, . . . , Tm) be a nonnegative random vector with a finite mean
vector. Consider a typical history of T at time t ≥ 0, which is of the form (see
(6.B.25))
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ht = {T I = tI ,T I > te}, 0e ≤ tI ≤ te, I ⊆ {1, 2, . . . , m}. (6.F.1)

Given the history ht as in (6.F.1), let i ∈ I be a component that is still
alive at time t. Its multivariate mean residual life, at time t, is defined as
follows:

mi|I(t
∣∣tI) = E[Ti − t

∣∣T I = tI , T I > te], (6.F.2)

where, of course, 0e ≤ tI ≤ te and I ⊆ {1, 2, . . . , m}.
Clearly, the smaller the mrl function is, the smaller T should be in some

stochastic sense. This is the motivation for the order discussed in this section.
Let S be another nonnegative random vector with a finite mean vector.

Denote its multivariate mean residual life functions by l·|·(·
∣∣·), where the l’s

are defined analogously as the m’s in (6.F.2). Suppose that

li|I∪J(u
∣∣sI , sJ) ≤ mi|I(u

∣∣tI)
whenever J ∩ I = ∅, sI ≤ tI ≤ ue, and sJ ≤ ue, (6.F.3)

where i ∈ I ∪ J . Then S is said to be smaller than T in the multivariate mean
residual life order (denoted as S ≤mrl T ).

The order ≤mrl is not an order in the usual sense; a comment, similar to
the comment in Remark 6.B.5, applies to this order too. Explicitly, X ≤mrl X
means that X has the positive dependence property of “mrl decreasing upon
failure” discussed in Shaked and Shanthikumar [513].

Note that (6.F.3) can be written as

li(h′
u) ≤ mi(hu) whenever h′

u ≥ hu,

where i denotes a component that has not failed by time u in the history h′
u.

In the univariate case (m = 1) condition (6.F.3) reduces to (2.A.2) [with
a different notation]. We have already seen that in the univariate case

S1 ≤hr T1 =⇒ S1 ≤mrl T1.

This is also true in the general multivariate case as will be shown in the next
subsection.

6.F.2 The relation between the multivariate mean residual life and
the dynamic multivariate hazard rate orders

Theorem 6.F.1. If S and T are two nonnegative random vectors with finite
mean vectors such that S ≤dyn-hr T , then S ≤mrl T .

Proof. Select a t > 0 and two histories ht and h′
t such that ht ≤ h′

t. It is not
hard to verify that if S ≤dyn-hr T , then [(S − te)+

∣∣h′
t] ≤dyn-hr [(T − te)+

∣∣ht].
From Theorems 6.D.9 and 6.C.1 it is seen that if [(S − te)+

∣∣h′
t] ≤dyn-hr [(T −

te)+
∣∣ht], then [(S − te)+

∣∣h′
t] ≤st [(T − te)+

∣∣ht]. Therefore, for a component
i, which is still alive at time t in history h′

t, we have li(h′
t) = E[Si − t

∣∣h′
t] ≤

E[Ti − t
∣∣ht] = mi(ht), that is, S ≤mrl T . 
�
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6.F.3 A property in reliability theory

Recall from Section 2.A.4 that a nonnegative random variable T with a finite
mean is DMRL if, and only if, either one of the following equivalent conditions
holds:

[T − t
∣∣T > t] ≥mrl [T − t′

∣∣T > t′] whenever t ≤ t′, (6.F.4)

T ≥mrl [T − t
∣∣T > t] for all t ≥ 0. (6.F.5)

With the multivariate analog of the order ≥mrl one can generalize (6.F.4)
and (6.F.5) to the multivariate case, thus introducing notions of multivariate
DMRL distributions. This can be done in several ways. In this subsection
we show that various generalizations of (6.F.4) and (6.F.5) actually yield the
same notion of multivariate DMRL.

Let T be a nonnegative random vector with a finite mean vector. A possible
multivariate analog of (6.F.4) is to require, for t ≤ s and histories ht and h′

s,
that T satisfies

[(T − te)+
∣∣ht] ≥mrl [(T − se)+

∣∣h′
s] whenever ht ≤ h′

s. (6.F.6)

Still another possible multivariate analog of (6.F.4) is to require, for t ≤ s,
that T satisfies

[(T − te)+
∣∣ht] ≥mrl [(T − se)+

∣∣h′
s] whenever ht and h′

s coincide on [0, t).
(6.F.7)

An analog of (6.F.5) is to require that T satisfies (6.F.6) or (6.F.7) with t = 0,
that is,

T ≥mrl [(T − se)+
∣∣h′

s] for any history h′
s, s ≥ 0. (6.F.8)

It turns out that these three conditions are equivalent. If we say that the
nonnegative random vector T is multivariate DMRL if it satisfies (6.F.6),
then we have the following result, the proof of which is similar to the proof of
Theorem 6.D.11 and is omitted.

Theorem 6.F.2. Let T be a nonnegative random vector with a finite mean
vector. The following three statements are equivalent.

(i) T is multivariate DMRL.
(ii) T satisfies (6.F.7).
(iii) T satisfies (6.F.8).

6.G Other Multivariate Stochastic Orders

6.G.1 The orthant orders

The usual multivariate stochastic order, discussed in Section 6.B, is a possible
multivariate generalization of (1.A.4) or (1.A.7). In this section we discuss
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a few other possible generalizations of the univariate order ≤st which are
straightforward analogs of (1.A.1) and of (1.A.2). These generalizations yield
orders that are strictly weaker than the usual multivariate stochastic order.

For a random vector X = (X1, X2, . . . , Xn) with distribution function F ,
let F be the multivariate survival function of X, that is,

F (x1, x2, . . . , xn) ≡ P{X1 > x1, X2 > x2, . . . , Xn > xn} for all x.

Let Y be another n-dimensional random vector with distribution function G
and survival function G. If

F (x1, x2, . . . , xn) ≤ G(x1, x2, . . . , xn) for all x, (6.G.1)

then we say that X is smaller than Y in the upper orthant order (denoted
by X ≤uo Y ). If

F (x1, x2, . . . , xn) ≥ G(x1, x2, . . . , xn) for all x, (6.G.2)

then we say that X is smaller than Y in the lower orthant order (denoted
by X ≤lo Y ). The reason for this terminology is that sets of the form {x :
x1 > a1, x2 > a2, . . . , xn > an}, for some fixed a, are called upper orthants,
and sets of the form {x : x1 ≤ a1, x2 ≤ a2, . . . , xn ≤ an}, for some fixed a,
are called lower orthants.

Note that (6.G.1) can be written as

E[IU (X)] ≤ E[IU (Y )] for all upper orthants U. (6.G.3)

Similarly, (6.G.2) can be written as

E[IL(X)] ≥ E[IL(Y )] for all lower orthants L. (6.G.4)

Let ψ be an n-variate function of the form

ψ(x1, x2, . . . , xn) =
n∏

i=1

gi(xi), (x1, x2, . . . , xn) ∈ R
n,

where the gi’s are univariate nonnegative increasing functions. Every such
function can be approximated by positive linear combinations of indicator
functions of upper orthants. Therefore, using (6.G.3), we obtain the first part
of the next theorem. The other part can be obtained similarly using (6.G.4).

Theorem 6.G.1. Let X and Y be two n-dimensional random vectors. Then

(a) X ≤uo Y if, and only if,

E

[ n∏
i=1

gi(Xi)
]

≤ E

[ n∏
i=1

gi(Yi)
]

(6.G.5)

for every collection {g1, g2, . . . , gn} of univariate nonnegative increasing
functions.
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(b) X ≤lo Y if, and only if,

E

[ n∏
i=1

hi(Xi)
]

≥ E

[ n∏
i=1

hi(Yi)
]

(6.G.6)

for every collection {h1, h2, . . . , hn} of univariate nonnegative decreasing
functions.

For a real n-variate function g, the multivariate difference operator ∆ is
defined by

∆y
xg =

∑
(ε1,ε2,...,εn)∈{0,1}n

(−1)
∑n

i=1 εig(ε1x1 +(1− ε1)y1, . . . , εnxn +(1− εn)yn),

where x and y are elements of R
n. The function g is called ∆-monotone if

∆y
xg ≥ 0 whenever x ≤ y.

Let M be the set of all n-variate functions that are ∆-monotone in any of their
k coordinates when the other n − k coordinates are held fixed, 1 ≤ k ≤ n. It
can be shown that if ψ ∈ M and X ≤uo Y , then E[ψ(X)] ≤ E[ψ(Y )]. Every
distribution function is a member of M . Thus we have proven the first part
of the following theorem. The other part can be shown similarly.

Theorem 6.G.2. Let X and Y be two n-dimensional random vectors. Then

(a) X ≤uo Y if, and only if,

E[ψ(X)] ≤ E[ψ(Y )] for every distribution function ψ. (6.G.7)

(b) X ≤lo X if, and only if,

E[ψ(X)] ≥ E[ψ(Y )] for every survival function ψ. (6.G.8)

It is clear, for example from Theorem 6.G.2, that

X ≤st Y =⇒
(
X ≤uo Y and X ≤lo Y

)
. (6.G.9)

Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two random vec-
tors. Note that if X ≤uo Y , or if X ≤lo Y , then Xi ≤st Yi, i = 1, 2, . . . , n. It
follows that

X ≤uo Y =⇒ EX ≤ EY , and
X ≤lo Y =⇒ EX ≤ EY .

The following closure properties of the orthant orders can be easily verified
using (6.G.1)–(6.G.4).
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Theorem 6.G.3. (a) Let (X1, X2, . . . , Xn) and (Y1, Y2, . . . , Yn) be two n-
dimensional random vectors. If (X1, X2, . . . , Xn) ≤uo [≤lo] (Y1, Y2, . . . ,
Yn), then

(g1(X1), g2(X2), . . . , gn(Xn)) ≤uo [≤lo] (g1(Y1), g2(Y2), . . . , gn(Yn))

whenever gi : R → R is an increasing function, i = 1, 2, . . . , n.
(b) Let X1,X2, . . . ,Xm be a set of independent random vectors where the

dimension of Xi is ki, i = 1, 2, . . . , m. Let Y 1,Y 2, . . . ,Y m be another
set of independent random vectors where the dimension of Y i is ki, i =
1, 2, . . . , m. If Xi ≤uo [≤lo] Y i for i = 1, 2, . . . , m, then

(X1,X2, . . . ,Xm) ≤uo [≤lo] (Y 1,Y 2, . . . ,Y m).

That is, the orthant orders are closed under conjunctions.
(c) Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two n-dimensional

random vectors. If X ≤uo [≤lo] Y , then XI ≤uo [≤lo] Y I for each I ⊆
{1, 2, . . . , n}. That is, the orthant orders are closed under marginalization.

(d) Let {Xj , j = 1, 2, . . . } and {Y j , j = 1, 2, . . . } be two sequences of random
vectors such that Xj →st X and Y j →st Y as j → ∞, where →st
denotes convergence in distribution. If Xj ≤uo [≤lo] Y j, j = 1, 2, . . .,
then X ≤uo [≤lo] Y .

(e) Let X, Y , and Θ be random vectors such that [X
∣∣Θ = θ] ≤uo [≤lo]

[Y
∣∣Θ = θ] for all θ in the support of Θ. Then X ≤uo [≤lo] Y . That is,

the orthant orders are closed under mixtures.

From parts (a) and (e) of Theorem 6.G.3 we obtain the following corollary.

Corollary 6.G.4. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be
two random vectors such that X ≤uo [≤lo] Y , and let Z be an m-dimensional
random vector which is independent of X and Y . Then

(h1(X1,Z), h2(X2,Z), . . . , hn(Xn,Z))
≤uo [≤lo] (h1(Y1,Z), h2(Y2,Z), . . . , hn(Yn,Z)),

whenever hi(x,z), i = 1, 2, . . . , n, are increasing in x for every z.

By applying Corollary 6.G.4 twice (letting Z there be an n-dimensional
random vector, and letting each hi depend only on its first argument and
on the ith component of the second argument, i = 1, 2, . . . , n), we get the
following result. A strengthening of the following result is Theorem 6.G.18
below.

Theorem 6.G.5. Let X, Y , Z, and W be n-dimensional random vectors
such that X and Z are independent and Y and W are independent. Let
ci : [0,∞)2 → [0,∞) be a continuous increasing function, i = 1, 2, . . . , n. If
X ≤uo [≤lo] Y and Z ≤uo [≤lo] W , then

(c1(X1, Z1), c2(X2, Z2), . . . , cn(Xn, Zn))
≤uo [≤lo] (c1(Y1, W1), c2(Y2, W2), . . . , cn(Yn, Wn)).
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Example 6.G.6. Consider an n-dimensional Markov chain {Xk = (Xk,1, . . . ,
Xk,n), k ≥ 0} defined by X0 = (0, . . . , 0) and

Xk+1 = (g1(Xk,1, U
1
k,1, . . . , U

m
k,1), . . . , gn(Xk,n, U1

k,n, . . . , Um
k,n), n ≥ 1,

where, for each 1 ≤ l ≤ m, the random vectors U l
k = (U l

k,1, . . . , U
l
k,n), k =

1, 2, . . ., are independent and identically distributed, and the gi’s are some
deterministic (m + 1)-dimensional functions. Consider another n-dimensional
Markov chain {Y k = (Yk,1, . . . , Yk,n), k ≥ 0} similarly defined by Y 0 =
(0, . . . , 0) and

Y k+1 = (g1(Yk,1, V
1
k,1, . . . , V

m
k,1), . . . , gn(Yk,n, V 1

k,n, . . . , V m
k,n), n ≥ 1,

where, for each 1 ≤ l ≤ m, the random vectors V l
k = (V l

k,1, . . . , V
l
k,n), k =

1, 2, . . ., are independent and identically distributed. If the gi’s are increasing
in their m+1 arguments, if U l = {U l

k, k ≥ 0}, l = 1, . . . , m, are independent,
if V l = {V l

k, k ≥ 0}, l = 1, . . . , m, are independent, and if U l
k ≤uo [≤lo] V l

k,
l = 1, . . . , m, k ≥ 0, then, for each k ≥ 0 we have

(X0, . . . ,Xk) ≤uo [≤lo] (Y 0, . . . ,Y k).

The proof uses Theorem 6.G.5, Corollary 6.G.4, and Theorem 6.G.3(b). We
omit the details.

Another preservation property of the orthant orders is described in the
next theorem. In the following theorem we define

∑0
j=1 xj ≡ 0 for any se-

quence {xj , j = 1, 2, . . . }. Similar results are Theorems 9.A.6 and 9.A.14.

Theorem 6.G.7. Let Xj = (Xj,1, Xj,2, . . . , Xj,m), j = 1, 2, . . ., be a se-
quence of nonnegative random vectors, and let M = (M1, M2, . . . , Mm) and
N = (N1, N2, . . . , Nm) be two vectors of nonnegative integer-valued ran-
dom variables. Assume that both M and N are independent of the Xj’s.
If M ≤uo [≤lo] N , then

( M1∑
j=1

Xj,1,

M2∑
j=1

Xj,2, . . . ,

Mm∑
j=1

Xj,m

)

≤uo [≤lo]
( N1∑

j=1

Xj,1,

N2∑
j=1

Xj,2, . . . ,

Nm∑
j=1

Xj,m

)
.

Proof. We only give the proof for the upper orthant order; the proof for the
lower orthant order is similar. For t = (t1, t2, . . . , tm) we have

P

{ m⋂
i=1

{ Mi∑
j=1

Xj,i > ti

}}

=
∞∑

n1=0

∞∑
n2=0

· · ·
∞∑

nm=0

P

{ m⋂
i=1

{ ni∑
j=1

Xj,i ≤ ti <

ni+1∑
j=1

Xj,i

}}
× P{M > (n1, n2, . . . , nm)}
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≤
∞∑

n1=0

∞∑
n2=0

· · ·
∞∑

nm=0

P

{ m⋂
i=1

{ ni∑
j=1

Xj,i ≤ ti <

ni+1∑
j=1

Xj,i

}}
× P{N > (n1, n2, . . . , nm)}

= P

{ m⋂
i=1

{ Ni∑
j=1

Xj,i > ti

}}
. 
�

Consider now, as in Section 6.B.4, n families of univariate distribu-
tion functions {G

(i)
θ , θ ∈ Xi} where Xi is a subset of the real line R,

i = 1, 2, . . . , n. Let Xi(θ) denote a random variable with distribution func-
tion G

(i)
θ , i = 1, 2, . . . , n. Below we give a result which provides comparisons

of two random vectors, with distribution functions of the form (6.B.18), in
the upper and lower orthant orders. The following result is a generalization
of Theorem 6.G.3(e), and is a multivariate extension of Theorem 1.A.6 (an
extension that is different than Theorem 6.B.18); see Theorems 7.A.37, 9.A.7,
and 9.A.15 for related results.

Theorem 6.G.8. Let {G
(i)
θ , θ ∈ Xi}, i = 1, 2, . . . , n, be n families of univari-

ate distribution functions as above. Let Θ1 and Θ2 be two random vectors
with supports in

∏n
i=1 Xi and distribution functions F1 and F2, respectively.

Let Y 1 and Y 2 be two random vectors with distribution functions H1 and H2
given by

Hj(y1, y2, . . . , yn) =
∫

X1

∫
X2

. . .

∫
Xn

n∏
i=1

G
(i)
θi

(yi)dFj(θ1, θ2, . . . , θn),

(y1, y2, . . . , yn) ∈ R
n, j = 1, 2.

If
Xi(θ) ≤st Xi(θ′) whenever θ ≤ θ′, i = 1, 2, . . . , n,

and if
Θ1 ≤uo [≤lo] Θ2,

then
Y 1 ≤uo [≤lo] Y 2.

An interesting relationship between the orders ≤uo and ≤whr is stated
next; its proof follows easily from (6.D.3). Note that the following result is a
multivariate generalization of (1.B.7).

Theorem 6.G.9. Let X and Y be two n-dimensional random vectors. Then
X ≤whr Y if, and only if,

[X
∣∣X > x] ≤uo [Y

∣∣Y > x] for all x ∈ R
n,

for which these conditional random vectors are well defined.
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It follows from Theorem 6.G.9 that

X ≤whr Y =⇒ X ≤uo Y ; (6.G.10)

this is a multivariate generalization of Theorem 1.B.1.
An interesting relationship between the order ≤uo and the orders ≤S

m-cx
and ≤m-icx (defined in Sections 3.A.5 and 4.A.7, respectively) is given in the
next theorem.

Theorem 6.G.10. Let X = (X1, X2, . . . , Xm) and Y = (Y1, Y2, . . . , Ym) be
random vectors such that the (m − 1)st moment exists for each Xi and Yi,
i = 1, 2, . . . , m.

(a) If X ≤uo Y , and if E
(∑m

i=1 Xi

)k = E
(∑m

i=1 Yi

)k, k = 1, 2, . . . , m − 1,
then

∑m
i=1 Xi ≤S

m-cx
∑m

i=1 Yi, where S is the assumed common support of∑m
i=1 Xi and of

∑m
i=1 Yi, and S is also assumed to be an interval.

(b) If X ≤uo Y , and if X and Y are nonnegative, then
∑m

i=1 Xi ≤m-icx∑m
i=1 Yi.

It is of interest to compare Theorem 6.G.10 with Theorem 7.A.30 and with
implication (9.A.19).

The following example gives sufficient conditions for the comparison of
multivariate normal random vectors. See Examples 6.B.29, 7.A.13, 7.A.26,
7.A.39, 7.B.5, and 9.A.20 for related results.

Example 6.G.11. Let X be a multivariate normal random vector with mean
vector µX and variance-covariance matrix Σ, and let Y be a multivariate
normal random vector with mean vector µY and variance-covariance matrix
Σ + D, where D is a matrix with zero diagonal elements such that Σ + D is
nonnegative definite. If µx ≤ µY and D ≥ 0, then X ≤uo Y .

The following results give conditions that ensure stochastic equality; see
Theorems 1.A.8, 3.A.43, 3.A.60, 4.A.69, 5.A.15, 6.B.19, and 7.A.14–7.A.16 for
similar results.

First, in the bivariate case (n = 2) we have the following result; its proof
is not given here since it is a special case of Theorem 6.G.13.

Theorem 6.G.12. Let X = (X1, X2) and Y = (Y1, Y2) be two bivariate
random vectors. If X1 =st Y1, X2 =st Y2, X ≤uo Y , and X ≤lo Y , then
X =st Y .

Note that when n = 2, Theorem 6.B.19 is a special case of Theorem 6.G.12,
as can be seen from (6.G.9).

If n ≥ 3, then the conclusion of Theorem 6.G.12 need not hold. The
following theorem gives conditions under which the conclusion X =st Y holds.

Theorem 6.G.13. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be
two random vectors with distributions and survival functions F , F , G, and G,
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respectively. If the m-dimensional marginals of X and Y are equal (m ≤ n−1)
and if X ≤uo Y , that is,

F (x) ≤ G(x) for all x ∈ R
n, (6.G.11)

and if
(−1)nF (x) ≥ (−1)nG(x) for all x ∈ R

n, (6.G.12)

then X =st Y .

Proof. Write

F (x) = 1 −
∑

i

P{Xi ≤ xi} +
∑
i�=j

P{Xi ≤ xi, Xj ≤ xj} − · · · + (−1)nF (x)

≥ 1 −
∑

i

P{Yi ≤ xi} +
∑
i�=j

P{Yi ≤ xi, Yj ≤ xj} − · · · + (−1)nG(x)

= G(x), x ∈ R
n,

where the equality of the m-dimensional marginals and also assumption
(6.G.12) were used. Thus we get that for each x ∈ R

n, F (x) ≥ G(x). This,
together with (6.G.11), yields the stated result. 
�

An interesting relationship between the orders ≤lo and ≤Lt (see Section
5.A) is revealed in the following theorem.

Theorem 6.G.14. Let X and Y be two nonnegative random vectors. If
(X1, X2, . . . , Xn) ≤lo (Y1, Y2, . . . , Yn), then

n∑
i=1

aiXi ≤Lt

n∑
i=1

aiYi whenever ai ≥ 0, i = 1, 2, . . . , n.

Proof. Select an s ≥ 0 and ai ≥ 0, i = 1, 2, . . . , n. The function gi defined by
gi(x) = exp{−aisx} is decreasing and nonnegative. Therefore, from (6.G.6),
we obtain that

E
[
exp
(

− s

n∑
i=1

aiXi

)]
≥ E

[
exp
(

− s

n∑
i=1

aiYi

)]
for all s ≥ 0,

and this yields the stated result. 
�

6.G.2 The scaled order statistics orders

Consider now nonnegative random vectors X = (X1, X2, . . . , Xn) and Y =
(Y1, Y2, . . . , Yn). For any z = (z1, z2, . . . , zn) denote by z(k) = (z1, z2, . . . ,
zn)(k) the kth smallest zi in {z1, z2, . . . , zn}. Thus, for a random vector
Z = (Z1, Z2, . . . , Zn), the kth order statistic of Z1, Z2, . . . , Zn is Z(k) =
(Z1, Z2, . . . , Zn)(k). In particular, Z(1) = min{Z1, Z2, . . . , Zn} and Z(n) =
max{Z1, Z2, . . . , Zn}. The next result describes the orders ≤uo and ≤lo in a
new fashion when the underlying random vectors are nonnegative (see Theo-
rem 6.D.7 for a related result).
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Theorem 6.G.15. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be
two nonnegative random vectors. Then

(a) X ≤uo Y if, and only if,

min{a1X1, . . . , anXn} ≤st min{a1Y1, . . . , anYn} (6.G.13)

whenever ai > 0, i = 1, 2, . . . , n.
(b) X ≤lo Y if, and only if,

max{a1X1, . . . , anXn} ≤st max{a1Y1, . . . , anYn} (6.G.14)

whenever ai > 0, i = 1, 2, . . . , n.

Proof. Condition (6.G.13) is the same as

F (
t

a1
,

t

a2
, . . . ,

t

an
) ≤ G(

t

a1
,

t

a2
, . . . ,

t

an
)

whenever t ≥ 0, ai > 0, i = 1, 2, . . . , n, which is the same as

F (t1, t2, . . . , tn) ≤ G(t1, t2, . . . , tn) (6.G.15)

whenever ti > 0, i = 1, 2, . . . , n. Using standard limiting arguments it is seen
that (6.G.15) is the same as X ≤uo Y . This proves (a). The proof of (b) is
similar. 
�

Theorem 6.G.15 suggests the following class of orders which contains the
orders ≤uo and ≤lo as special cases. Let X = (X1, X2, . . . , Xn) and Y =
(Y1, Y2, . . . , Yn) be two nonnegative random vectors. Suppose that

(a1X1, a2X2, . . . , anXn)(k) ≤st (a1Y1, a2Y2, . . . , anYn)(k) (6.G.16)

whenever ai > 0, i = 1, 2, . . . , n. Then we say that X is smaller than Y in
the kth scaled order statistic order (denoted by X ≤(k) Y ), k = 1, 2, . . . , n.
So X ≤uo Y ⇐⇒ X ≤(1) Y and X ≤lo Y ⇐⇒ X ≤(n) Y .

The next theorem identifies a rich class of functions ψ such that E[ψ(X)] ≤
E[ψ(Y )] whenever X ≤(k) Y . First we need to introduce some notation. For
m ∈ {1, 2, . . . , n} let Am be the set of all subsets of {1, 2, . . . , n} of size m. As
in Section 6.A, for I = {i1, i2, . . . , im} ∈ Am and a vector x = (x1, x2, . . . , xn),
we denote

xI = (xi1 , xi2 , . . . , xim).

Let M1,n denote the class of all distribution functions corresponding to non-
negative finite measures on R

n
+. For x ∈ R

n
+, I ∈ Am, and ψ ∈ M1,n, we

denote
ψ̃(xI ,∞e) = lim

xI→∞e
ψ(x1, x2, . . . , xn).

For k ∈ {1, 2, . . . , n} let Mk,n be the class of functions φ : R
n
+ → R of the

form
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φ(x1, x2, . . . , xn) =
n∑

m=n−k+1

(−1)m−n+k−1
(

m − 1
n − k

) ∑
I∈Am

ψ̃(xI ,∞e),

for some ψ ∈ M1,n, where
∑

I∈Am
denotes the sum over all the

(
n
m

)
elements

of Am. Note that for k = 1 the two definitions of M1,n coincide. The proof of
the next result is not given here; it can be found elsewhere.

Theorem 6.G.16. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be
two nonnegative random vectors. Then X ≤(k) Y if, and only if,

E[φ(X)] ≤ E[φ(Y )]

for every φ ∈ Mk,n for which the expectations exist.

Note that both parts of Theorem 6.G.2 are special cases of Theorem
6.G.16.

The orders ≤(k) are closed under general monotone increasing transforma-
tions as the following theorem shows. The proof is easy and is omitted.

Theorem 6.G.17. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be
two nonnegative random vectors. Let bi : R+ → R+ be a right continuous
increasing function, i = 1, 2, . . . , n. If X ≤(k) Y , then(

b1(X1), b2(X2), . . . , bn(Xn)
)

≤(k)
(
b1(Y1), b2(Y2), . . . , bn(Yn)

)
.

The orders ≤(k) also satisfy the following general closure property, the
proof of which can be found elsewhere and is omitted.

Theorem 6.G.18. Let X, Y , Z, and W be n-dimensional nonnegative ran-
dom vectors such that X and Z are independent, and Y and W are in-
dependent. Let ci : R

2
+ → R+ be a right continuous increasing function,

i = 1, 2, . . . , n. If X ≤(k) Y and Z ≤(k) W , then(
c1(X1, Z1), c2(X2, Z2), . . . , cn(Xn, Zn)

)
≤(k)

(
c1(Y1, W1), c2(Y2, W2), . . . , cn(Yn, Wn)

)
.

From Theorem 6.G.18 we obtain the following two results as corollaries.

Theorem 6.G.19. Let X, Y , Z, and W be n-dimensional nonnegative ran-
dom vectors such that X and Z are independent and Y and W are indepen-
dent. If X ≤(k) Y and Z ≤(k) W , then

X + Z ≤(k) Y + W ;

that is, the orders ≤(k) are closed under convolutions.
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Theorem 6.G.20. Let X, Y , Z, and W be n-dimensional nonnegative ran-
dom vectors such that X and Z are independent and Y and W are indepen-
dent. If X ≤(k) Y and Z ≤(k) W , then

(min(X1, Z1), min(X2, Z2), . . . ,min(Xn, Zn))
≤(k) (min(Y1, W1), min(Y2, W2), . . . ,min(Yn, Wn))

and

(max(X1, Z1), max(X2, Z2), . . . ,max(Xn, Zn))
≤(k) (max(Y1, W1), max(Y2, W2), . . . ,max(Yn, Wn)).

The next result states a closure under marginalization property. In its
statement X(i) denotes (X1, . . . , Xi−1, Xi+1, . . . , Xn) and Y (i) denotes (Y1,
. . . , Yi−1, Yi+1, . . . , Yn), i = 1, 2, . . . , n.

Theorem 6.G.21. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be
two nonnegative random vectors. Suppose that X ≤(k) Y .

(a) If 1 < k ≤ n, then
X(i) ≤(k−1) Y (i).

(b) If X and Y are positive with probability one and if 1 ≤ k ≤ n − 1, then

X(i) ≤(k) Y (i).

It is clear from (6.G.16) that

X ≤st Y =⇒ X ≤(k) Y .

Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two random non-
negative vectors. By letting k−1 of the ai’s in (6.G.16) go to 0, and by letting
n − k of the other ai’s be ∞, it is seen that if X ≤(k) Y , then Xi ≤st Yi,
i = 1, 2, . . . , n (this fact can also be obtained from Theorem 6.G.21). It follows
that

X ≤(k) Y =⇒ EX ≤ EY .

6.H Complements

Section 6.B: Many of the results described in Section 6.B can be found, or
are alluded to, in Marshall and Olkin [383]. For example, the result given
in Theorem 6.B.2 can be found there. Some studies of so called inte-
gral stochastic orders, which have as their starting point relations such as
(6.B.4) or (6.G.7), can be found in Marshall [382], in Mosler and Scarsini
[400], in Müller [408], and in Dubra, Maccheroni, and Ok [172]. A proof
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of fact that the usual stochastic order is equivalent to an almost sure con-
struction (Theorem 6.B.1) can be found in Kamae, Krengel, and O’Brien
[272], where this result is obtained for spaces that are more general than
R

n. Theorem 6.B.3 was obtained originally in Veinott [556], but various
versions of it appear elsewhere and it is often rediscovered; Shanthiku-
mar [527] has identified a condition that is weaker than (6.B.8)–(6.B.10)
and which still implies X ≤st Y . A standard reference for notions of
positive dependence such as association and CIS is Barlow and Proschan
[36]. The condition under which CIS random vectors are stochastically
ordered (Theorem 6.B.4) can be found, for example, in Langberg [332].
An extension of Theorem 6.B.4 can be found in Shanthikumar [527]. The
notation ≤sst and the result in Remark 6.B.5 are taken from Li, Scarsini,
and Shaked [348]. The characterization of the CIS notion for bivariate
distribution functions with uniform[0, 1] margins (Remark 6.B.6) is taken
from Nelsen [431, Corollary 5.2.11], where this result is derived in the con-
text of copulas. The notion of positive dependence WCIS is introduced
in Cohen and Sackrowitz [131], from which Theorem 6.B.7 is taken. The
fact that association, together with the monotonicity of the ratio of the
densities, implies the multivariate usual stochastic order (Theorem 6.B.8),
is essentially proved in Proposition 2.6 of Perlman and Olkin [457]. The
stochastic monotonicity of a random vector conditioned on the sum of its
elements (Theorem 6.B.9) is taken from Efron [181], who credited it to
Karlin; extensions of it can be found in Shanthikumar [527] as well as in
Efron [181]. This theorem is put into the context of queuing theory in
Daduna and Szekli [137]. The result which gives conditions, by means of
the univariate down shifted likelihood ratio order, under which a random
vector is stochastically increasing in its given sum (Theorem 6.B.10) can
be found in Liggett [360]. The results that involve the stochastic mono-
tonicity of a random vector conditioned on some of its order statistics
(Theorems 6.B.11 and 6.B.12) are taken from Block, Bueno, Savits, and
Shaked [91] and from Shanthikumar [527]; related results can be found in
Bueno [113] and in Joag-Dev [257]. The stochastic monotonicity of the or-
der statistics, of heterogeneous exponential random variables, in the first
order statistic (Theorem 6.B.13), is a strengthening of a result of Kochar
and Korwar [314]; its conclusion also holds if it is merely assumed that
X1, X2, . . . , Xm have proportional hazard functions (rather than having
exponential distributions). The stochastic comparison of random vectors
with a common copula (Theorem 6.B.14) can be found in Scarsini [491]; an
extension of it is given in Li, Scarsini, and Shaked [348]. The result on the
comparison of the vector of partial sums (Theorem 6.B.15) is taken from
Boland, Proschan, and Tong [100], where the counterexample, mentioned
after the theorem, can also be found. Some extensions of this result are
given in Shaked, Shanthikumar, and Tong [519]. The result which com-
pares random sums (Theorem 6.B.17) is taken from Pellerey [451], whereas
the comparison of mixtures result (Theorem 6.B.18) is taken from Denuit
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and Müller [157]. The conditions for stochastic equality (Theorem 6.B.19)
can be found in Baccelli and Makowski [27]. The proof of Theorem 6.B.19
that is given in Section 6.B.5 follows the ideas of Scarsini and Shaked [494].
Lemma 2.1 of Costantini and Pasqualucci [135] is an interesting variation
of Theorem 6.B.19. The characterizations of the usual stochastic order
given in Theorems 6.B.20 and 6.B.21 are taken from Scarsini and Shaked
[495]. The comparisons of order statistics, given in Theorem 6.B.23 and
Corollary 6.B.24, can be found in Mi and Shaked [395]. These comparisons
extend some results of Nanda and Shaked [428] and of Belzunce, Franco,
Ruiz, and Ruiz [66, Corollary 3.2]; see a related result in Belzunce, Mer-
cader, and Ruiz [70]. The result that is given in Example 6.B.25 is stated
in Bartoszewicz [39], but without a detailed proof; an extension of it is
given in Belzunce, Mercader, and Ruiz [70]. The usual stochastic order
of vectors of order statistics of Gamma and Weibull random variables
with different scale parameters (Examples 6.B.26 and 6.B.27) are taken
from Hu [229] and from Sun and Zhang [543]. Several other examples of
this kind can be found in Hu [229], and a general method for identifying
such examples can be found in Hu [230]. The conditions under which in-
finitely divisible random vectors are comparable in the usual multivariate
stochastic order (Example 6.B.28) can be found in Samorodnitsky and
Taqqu [487]; see also Braverman [108] who has mistakenly confused the
usual stochastic order with the upper orthant order. The necessary and
sufficient conditions for the comparison of multivariate normal random
vectors (Example 6.B.29) can be found in Müller [413]; extensions of this
result to Kotz-type distributions are given in Ding and Zhang [168]. The
multivariate IFR notions described in Section 6.B.6 are taken from Shaked
and Shanthikumar [512]; however, the notion corresponding to (6.B.28)
is equivalent to a multivariate IFR notion of Arjas [18]. General results
concerning the usual stochastic comparison of stochastic processes (that
is, results that are more general than Theorems 6.B.30 and 6.B.31) can
be found in Kamae, Krengel, and O’Brien [272]; see also Block, Langberg,
and Savits [93] and Rolski and Szekli [474]. Versions of the results regard-
ing the usual stochastic comparison of Markov chains (Theorems 6.B.32
and 6.B.34) can be found in Stoyan [540, Chapter 4]. The comparison
of Markov chains, one of which is skip-free positive (Theorem 6.B.35),
is taken from Ferreira and Pacheco [199]; they obtained stronger results
than Theorem 6.B.33 although they use a different terminology than the
one used in this theorem. The discussion about the stochastic orders of
point processes is based on Shaked and Szekli [521] and Szekli [544], al-
though the definition of the orders ≤st and ≤st-N for point processes can
be found already in Ebrahimi [176]; see related results in Schöttl [497].
Kulik and Szekli [325] extended these orders to k-variate point processes.
The statements about the stochastic comparisons of the epoch and inter-
epoch times of two nonhomogeneous Poisson processes (Example 6.B.41)
are taken from Belzunce, Lillo, Ruiz, and Shaked [69].
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Section 6.C: The development in this section follows the works of Norros
[436, 437] and of Shaked and Shanthikumar [504]. A result that is similar
to Theorem 6.C.1, but that gives conditions under which two point pro-
cesses are stochastically ordered, can be found in Kwieciński and Szekli
[328]. The fact (which is mentioned in Section 6.C.2) that the cumulative
hazards of the components, by the time that they fail, are independent
standard exponential random variables, follows from more general results
of Aalen and Hoem [1, Section 4.5], Kurtz [326, Theorem 6.19(b)], and
Jacobsen [252, Proposition 2.2.11)].

Section 6.D: The development in Sections 6.D.1 and 6.D.2 follows the work
of Hu, Khaledi, and Shaked [235], although the definition of the order ≤whr
(with a different name), and its characterization by means of the hazard
gradients (Theorem 6.D.2) can be found in Jain and Nanda [253]. In Hu,
Khaledi, and Shaked [235] it is claimed that (6.D.12) in Theorem 6.D.7 is
equivalent to X ≤whr Y , but this is erroneous, as was communicated to
us by Antonio Colangelo. An order that is stronger than the order ≤whr
is mentioned in Collet, López, and Mart́ınez [134]. The development in
Section 6.D.3 follows the work of Shaked and Shanthikumar [505]. The
dynamic multivariate hazard rate order comparison of the epoch times
of two nonhomogeneous Poisson processes (Example 6.D.8) is taken from
Belzunce, Lillo, Ruiz, and Shaked [69]. The comparison, in the dynamic
hazard rate order, of vectors of order statistics (Theorem 6.D.10), can
be found in Belzunce, Ruiz, and Ruiz [75]; an extension of it is given
in Belzunce, Mercader, and Ruiz [70]. The multivariate IFR notions de-
scribed in Section 6.D.3 are taken from Shaked and Shanthikumar [512];
some related notion and results can be found in Bassan and Spizzichino
[56].

Section 6.E: The multivariate likelihood ratio order (though using a differ-
ent terminology) is studied in Karlin and Rinott [278] and in Whitt [563].
The preservation under conditioning result (Theorem 6.E.2) can be found
in Rinott and Scarsini [468]. The result which shows a preservation prop-
erty of the order ≤lr under random summations (Theorem 6.E.5) is taken
from Pellerey [451]. The result about the relationship between the multi-
variate likelihood ratio and the multivariate hazard rate order (Theorem
6.E.6) is taken from Hu, Khaledi, and Shaked [235]. The relationship be-
tween the multivariate likelihood ratio and the dynamic multivariate haz-
ard rate order (Theorem 6.E.7) can be found in Shaked and Shanthikumar
[511], whereas the notion of multivariate PF2 distributions is taken from
Shaked and Shanthikumar [512]. Theorem 6.E.8 has been proved in the
literature in various generalities; see, for example, Holley [226] or Pre-
ston [460]. For a proof of the present statement of Theorem 6.E.8 see
Karlin and Rinott [278]. The implication (6.E.6) can be found in Whitt
[563]. Shanthikumar and Koo [528] studied an order which is defined as in
(6.E.6), except that rather than requiring A there to be a rectangular set,
they require the right-hand side of (6.E.6) to hold for all planar regions
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A. The statement in Remark 6.E.9 that (1.C.6) does not generalize to the
multivariate case, follows from Rüschendorf [485, Theorem 8]. The order
mentioned in Remark 6.E.10 is studied in Whitt [563], where other orders,
related to the multivariate likelihood ratio order, are also studied. One of
the counterexamples, mentioned in Remark 6.E.10, can be found in Whitt
[563]. Other counterexamples can be found in Lehmann [341]; in that pa-
per it is also claimed that Theorem 6.B.2 is wrong, but that claim is based
on erroneous examples. The conditions for the monotonicity of the order
≤lr, given in Theorem 6.E.11, are taken from Rinott and Scarsini [468].
The comparison, in the multivariate likelihood ratio order, of vectors of or-
der statistics (Theorem 6.E.12), can be found in Belzunce, Ruiz, and Ruiz
[75]; an extension of it is given in Belzunce, Mercader, and Ruiz [70]. The
multivariate likelihood ratio comparisons of epoch and inter-epoch times
of nonhomogeneous Poisson processes (Example 6.E.13) can be found in
Belzunce, Lillo, Ruiz, and Shaked [69]; in that paper these results are also
extended to nonhomogeneous pure birth processes. The likelihood ratio
order comparison of the vectors of the normalized spacings associated with
exponential random variables (Example 6.E.14) is taken from Kochar and
Rojo [318]. The result about the likelihood ratio ordering of the posterior
distributions (Example 6.E.16) can be found in Fahmy, Pereira, Proschan,
and Shaked [189]; see also Purcaru and Denuit [462, Proposition 5.1]. A
modification of Example 6.E.16 is Theorem 3.61 of Spizzichino [539]. The
proof of the equivalence of the various notions of multivariate PF2 notions
(Theorem 6.E.17) is given in Shaked and Shanthikumar [512].

Section 6.F: The development in this section follows the work of Shaked and
Shanthikumar [513]. A notion that is related to the multivariate DMRL
concept in Section 6.F.3 can be found in Bassan, Kochar, and Spizzichino
[53].

Section 6.G: The orthant orders, which are already mentioned in Marshall
and Olkin [383], have been studied further by several authors. Some of
the results in Section 6.G.1 can be found in Tchen [547], Rüschendorf
[481], and Mosler [401]. Several extensions of these orders can be found in
Bergmann [82]. The closure results of the orthant orders given in Theo-
rem 6.G.5, and the application to Markov chains given in Example 6.G.6,
are taken from Li and Xu [350]. The result about the preservation of the
orthant orders under random sums (Theorem 6.G.7) is taken from Wong
[568]; this result also appeared in Denuit, Genest, and Marceau [145],
and in Pellerey [451] there is an equivalent result with an alternative
proof. The comparison of mixtures result (Theorem 6.G.8) can be found
in Denuit and Müller [157]. The relationship between the orders ≤uo and
≤whr, given in (6.G.10), can be found in Hu, Khaledi, and Shaked [235].
The relationship between the order ≤uo and the orders ≤S

m-cx and ≤m-icx
(Theorem 6.G.10) is taken from Boutsikas and Vaggelatou [107]. The suffi-
cient conditions for the comparison of multivariate normal random vectors
(Example 6.G.11) can be found in Müller [413]. Theorem 6.G.13 is taken
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from Scarsini and Shaked [494], whereas Theorem 6.G.14 is adopted from
Baccelli and Makowski [27]. Dyckerhoff and Mosler [173] introduced some
relatively easy conditions for verifying X ≤uo Y or X ≤lo Y when X
and Y have finite discrete supports. The development in Section 6.G.2
follows the work of Scarsini and Shaked [493]. Hennessy [220] considered
the order which is defined by taking all the ai’s in (6.G.16) to be equal
to 1; he obtained for this order a result which is analogous to Theorem
6.G.16.

A generalization of the order ≤uo is mentioned and studied in Daduna
and Szekli [138].
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Multivariate Variability and Related Orders

In this chapter we describe various extensions, of the univariate variability
orders in Chapters 3 and 4, to the multivariate case. The most important
common orders that are studied in this chapter are the increasing and the
directional convex and concave orders. Multivariate extensions of the order
≤disp are also studied in this chapter. Some multivariate extensions of the
transform orders, and of the Laplace transform order, are investigated in this
chapter as well.

7.A The Monotone Convex and Monotone Concave
Orders

7.A.1 Definitions

The multivariate orders ≤icx and ≤icv are defined in a similar fashion to their
univariate counterparts discussed in Section 4.A. Let X and Y be two n-
dimensional random vectors such that

E[φ(X)] ≤ E[φ(Y )]
for all increasing convex [concave] functions φ : R

n → R, (7.A.1)

provided the expectations exist. Then X is said to be smaller than Y in the
increasing convex [concave] order (denoted by X ≤icx Y [X ≤icv Y ]).

One can also define a decreasing convex [concave] order by requiring
(7.A.1) to hold for all decreasing convex [concave] functions φ. But the terms
“decreasing convex” and “decreasing concave” orders are counterintuitive be-
cause if X is smaller than Y in the sense of either of these two orders, then
X is “larger” than Y in some stochastic sense. These orders can easily be
characterized using the orders ≤icx and ≤icv. It is therefore not necessary to
have a separate discussion about these orders.
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For any i, i = 1, 2, . . . , n, the function φi, defined by φi(x) = φi(x1, x2, . . . ,
xn) = xi, is increasing and is both convex and concave. Therefore, from (7.A.1)
it easily follows that

X ≤icx Y =⇒ E[X] ≤ E[Y ] (7.A.2)

and that
X ≤icv Y =⇒ E[X] ≤ E[Y ], (7.A.3)

provided the expectations exist.
If the two n-dimensional random vectors X and Y are such that

E[φ(X)] ≤ E[φ(Y )] for all convex functions φ : R
n → R, (7.A.4)

provided the expectations exist, then X is said to be smaller than Y in the
convex order (denoted by X ≤cx Y ). For any i, i = 1, 2, . . . , n, the function φi,
defined as above, and the function ψi, defined by ψi(x) = ψi(x1, x2, . . . , xn) =
−xi, are both convex. Therefore, from (7.A.4) it follows that

X ≤cx Y =⇒ E[X] = E[Y ], (7.A.5)

provided the expectations exist.
The multivariate convex order can be characterized by construction on the

same probability space as the univariate convex order (see Theorem 3.A.4).
This is stated next.

Theorem 7.A.1. The random vectors X and Y satisfy X ≤cx Y if, and only
if, there exist two random vectors X̂ and Ŷ , defined on the same probability
space, such that

X̂ =st X, (7.A.6)

Ŷ =st Y , (7.A.7)

and {X̂, Ŷ } is a martingale, that is,

E[Ŷ
∣∣X̂] = X̂ a.s. (7.A.8)

Similarly, the multivariate extension of Theorem 4.A.5 is the following.

Theorem 7.A.2. Two random vectors X and Y satisfy X ≤icx Y [X ≤icv

Y ] if, and only if, there exist two random vectors X̂ and Ŷ , defined on the
same probability space, such that

X̂ =st X,

Ŷ =st Y ,

and {X̂, Ŷ } is a submartingale [{Ŷ , X̂} is a supermartingale], that is,

E[Ŷ
∣∣X̂] ≥ X̂ [E[X̂

∣∣Ŷ ] ≤ Ŷ ] a.s.
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The next theorem is a multivariate analog of Theorem 4.A.6. The proof
of the next theorem is similar to the proof of Theorem 4.A.6, and is therefore
omitted.

Theorem 7.A.3. (a) Two random vectors X and Y satisfy X ≤icx Y if,
and only if, there exists a random vector Z such that

X ≤st Z ≤cx Y .

(b) Two random vectors X and Y satisfy X ≤icx Y if, and only if, there
exists a random vector Z such that

X ≤cx Z ≤st Y .

The next result is similar to a result of Veinott that can be found in
Section 6.B.3. Veinott’s result deals with the multivariate usual stochastic
order (rather than the convex order) and does not assume independence of
either the Xj ’s or the Yj ’s. However, the convex order is harder to work with
as compared to the usual stochastic order. Thus we have the following result.

Theorem 7.A.4. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two
n-dimensional random vectors. If Y1, Y2, . . . , Yn are independent, and if

X1 ≤cx Y1, (7.A.9)

[X2
∣∣X1 = x1] ≤cx Y2 for all x1, (7.A.10)

and, in general, for i = 2, 3, . . . , n,

[Xi

∣∣X1 = x1, . . . , Xi−1 = xi−1] ≤cx Yi for all xj , j = 1, 2, . . . , i − 1,
(7.A.11)

then
X ≤cx Y . (7.A.12)

The proof consists of constructing X̂ and Ŷ on the same probability space
such that (7.A.6)–(7.A.8) hold. This can be done by first constructing inde-
pendent Ŷ1, Ŷ2, . . . , Ŷn such that Ŷ =st Y . To construct the X̂i’s, note that
by Theorem 3.A.4 (using (7.A.9)) it is possible to construct an X̂1 on the
same probability space such that E[Ŷ1

∣∣X̂1] = X̂1 a.s. Next, given X̂1 = x1,
it is possible to construct, again using Theorem 3.A.4 and (7.A.10), an X̂2
on the same probability space such that E[Ŷ2

∣∣X̂1, X̂2] = X̂2 a.s. Continuing
this way, using Theorem 3.A.4 and (7.A.11), the vector X̂ is constructed. The
vectors X̂ and Ŷ satisfy the conditions of Theorem 7.A.1, and thus (7.A.12)
follows.

Note that under the conditions of Theorem 7.A.4 one has
n∑

j=1

Xj ≤cx

n∑
j=1

Yj . (7.A.13)

This inequality gives a stronger result than Theorem 3.A.12(d).
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7.A.2 Closure properties

The proofs of the following closure properties are similar to the univariate
counterparts and are omitted.

Theorem 7.A.5. (a) Let X and Y be n-dimensional random vectors. If
X ≤icx Y [X ≤icv Y ] and g : R

n → R
m is any increasing convex [con-

cave] function, then g(X) ≤icx [≤icv] g(Y ).
(b) Let X, Y , and Θ be random vectors such that [X

∣∣Θ = θ] ≤icx [≤icv]
[Y
∣∣Θ = θ] for all θ in the support of Θ. Then X ≤icx [≤icv] Y . That is,

the increasing convex [concave] order is closed under mixtures.
(c) Let {Xj , j = 1, 2, . . . } and {Y j , j = 1, 2, . . . } be two sequences of random

vectors such that Xj →st X and Y j →st Y as j → ∞. Assume that
EXj → EX and that EY j → EY as j → ∞. If Xj ≤cx [≤icx,≤icv] Y j,
j = 1, 2, . . ., then X ≤cx [≤icx,≤icv] Y .

(d) Let X1,X2, . . . ,Xm be a set of independent random vectors and let
Y 1,Y 2, . . . ,Y m be another set of independent random vectors. If Xi ≤icx
[≤icv] Y i for i = 1, 2, . . . , m, then

m∑
j=1

Xj ≤icx [≤icv]
m∑

j=1

Y j .

That is, the increasing convex [concave] order is closed under convolu-
tions.

Parts (a) and (d) of Theorem 7.A.5 can be generalized as follows.

Theorem 7.A.6. Let X1,X2, . . . ,Xm be a set of independent random vec-
tors, let Y 1,Y 2, . . . ,Y m be another set of independent random vectors,
and assume that Xi and Y i have the same dimension, i = 1, 2, . . . , m. If
Xi ≤icx Y i for i = 1, 2, . . . , m, then

g(X1,X2, . . . ,Xm) ≤icx g(Y 1,Y 2, . . . ,Y m)

for every function g of a proper dimension that is increasing and convex in
each argument.

A generalization of Theorem 7.A.5(d) is the following result which deals
with vectors of random partial sums of random variables.

Theorem 7.A.7. Let {Xi} and {Yi} each be a sequence of independent ran-
dom variables. Also, let {Mi} and {Ni} each be a sequence of independent
positive integer-valued random variables, and suppose that the Xi’s and the
Mi’s are independent and also that Yi’s and the Ni’s are independent. Let

M̃j =
j∑

i=1

Mi, Ñj =
j∑

i=1

Ni, Uj =
M̃j∑
i=1

Xi, Vj =
Ñj∑
i=1

Yi, j = 1, 2, . . . , m.
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If
Yi ≥ 0 a.s., i = 1, 2, . . . , (7.A.14)

Mi ≤st Ni, i = 1, 2, . . . ,

and
Xi ≤icx Yi, i = 1, 2, . . . ,

then
(U1, U2, . . . , Um) ≤icx (V1, V2, . . . , Vm). (7.A.15)

Proof. According to Theorems 1.A.1 and 4.A.5 there exist sequences of ran-
dom variables {X̂i}, {Ŷi}, {M̂i}, and {N̂i} such that

X̂i =st Xi, Ŷi =st Yi, M̂i =st Mi, N̂i =st Ni, i = 1, 2, . . . ,

and
M̂i ≤ N̂i a.s., X̂i ≤ E[Ŷi

∣∣X̂i] a.s., i = 1, 2, . . . .

Define

˜̂
Mj =

j∑
i=1

M̂i,
˜̂
Nj =

j∑
i=1

N̂i, Ûj =

˜̂
Mj∑
i=1

X̂i, V̂j =

˜̂
Nj∑
i=1

Ŷi, j = 1, 2, . . . , m.

From (7.A.14) it is seen that

Ûj =

˜̂
Mj∑
i=1

X̂i ≤ E
[ ˜̂

Nj∑
i=1

Ŷi

∣∣{X̂k}
]

= E
[
V̂j

∣∣{X̂k}
]

a.s., j = 1, 2, . . . , m.

Let φ be an increasing convex real n-dimensional function. Then

E[φ(Û1, Û2, . . . , Ûm)] ≤ E[φ(E[(V̂1, V̂2, . . . , V̂m)
∣∣{X̂k}])]

≤ E[E[φ(V̂1, V̂2, . . . , V̂m)
∣∣{X̂k}]]

= E[φ(V̂1, V̂2, . . . , V̂m)],

where the second inequality follows from Jensen’s Inequality. Since (Û1, Û2,
. . . , Ûm) =st (U1, U2, . . . , Um) and (V̂1, V̂2, . . . , V̂m) =st (V1, V2, . . . , Vm) we
obtain (7.A.15). 
�

Let X1,X2, . . . ,Xm be m countably infinite vectors of independent
nonnegative random variables, and let M = (M1, M2, . . . , Mm) and N =
(N1, N2, . . . , Nm) be two vectors of nonnegative integers which are indepen-
dent of Xi’s. Denote by Xj,i the ith element of Xj . From Theorems 2.3 and 2.4
of Pellerey [451] it seems that if M ≤cx [≤icx] N , then

(∑M1
i=1 X1,i,

∑M2
i=1 X2,i,

. . . ,
∑Mm

i=1 Xm,i

)
≤cx [≤icx]

(∑N1
i=1 X1,i,

∑N2
i=1 X2,i, . . . ,

∑Nm

i=1 Xm,i

)
. However,

the proofs given in that paper yield somewhat different results; see Theorem
7.A.36 for the details.

The following two results can easily be proven using Theorem 7.A.1.
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Theorem 7.A.8. Let X1, X2, . . . , Xm be a set of independent random vari-
ables and let Y1, Y2, . . . , Ym be another set of independent random variables.
If Xi ≤cx Yi for i = 1, 2, . . . , m, then

(X1, X2, . . . , Xm) ≤cx (Y1, Y2, . . . , Ym).

A result that is slightly stronger than Theorem 7.A.8 is given in Theorem
7.A.24.

Theorem 7.A.9. Let the random vector X and the nonnegative random vari-
able U be independent. If E[U ] = 1, then X ≤cx UX.

From Theorem 3.B.15 [Theorem 4.B.23] and Theorem 7.A.8 we obtain the
following result.

Theorem 7.A.10. Let X1, X2, . . . , Xm be a set of nonnegative independent
random variables, let Y1, Y2, . . . , Ym be another set of nonnegative independent
random variables, and assume that EXi = EYi, i = 1, 2, . . . , m. If Xi ≤disp
[≤nbue] Yi for i = 1, 2, . . . , m, then

(X1, X2, . . . , Xm) ≤cx (Y1, Y2, . . . , Ym).

An application of Theorem 7.A.1 is illustrated in the following example
(which is, in fact, an extension of Example 3.A.29).

Example 7.A.11. Let X1,X2, . . . be independent and identically distributed
m-dimensional random variables. Denote by Xn the sample mean of X1,X2,
. . . ,Xn. That is, Xn = (X1 + X2 + · · · + Xn)/n. If the expectation of X1
exists, then for any choice of positive integers n ≤ n′ one has

Xn′ ≤cx Xn.

In order to see it note that by the symmetry of X1,X2, . . . ,Xn′ it follows
that E[Xi

∣∣Xn′ ] = Xn′ for all i ≤ n′. Therefore E[Xn

∣∣Xn′ ] = Xn′ . That is,
{Xn′ ,Xn} is a martingale. The result now follows from Theorem 7.A.1.

7.A.3 Further properties

Let X and Y be random vectors. If E[φ(X)] ≤ E[φ(Y )] for all increasing
functions φ, then (7.A.1) obviously holds. Thus we obtain the following result.

Theorem 7.A.12. Let X and Y be two random vectors. If X ≤st Y , then
X ≤icx Y and X ≤icv Y .

The following example gives necessary (and sufficient) conditions for the
comparison of multivariate normal random vectors. See Examples 6.B.29,
6.G.11, 7.A.26, 7.A.39, 7.B.5, and 9.A.20 for related results.
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Example 7.A.13. Let X be a multivariate normal random vector with mean
vector µX and variance-covariance matrix ΣX , and let Y be a multivariate
normal random vector with mean vector µY and variance-covariance matrix
ΣY .

(a) If µX ≤ µY and if ΣY − ΣX is positive semidefinite, then X ≤icx Y .
(b) X ≤cx Y if, and only if, µX = µY and ΣY −ΣX is positive semidefinite.

Using Theorem 4.A.48 we can obtain conditions under which two nonneg-
ative random vectors, that are comparable in the ≤icx or in the ≤icv orders,
have the same distribution; related results are Theorems 1.A.8, 3.A.43, 3.A.60,
4.A.69, 5.A.15, 6.B.19, 6.G.12, and 6.G.13.

Theorem 7.A.14. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be
two nonnegative random vectors.

(a) If X ≤icx Y , and if E[XiXj ] = E[YiYj ] for all i and j, then X =st Y .
(b) If X ≤icv Y , and if EX = EY , and if E[XiXj ] = E[YiYj ] for all i and

j, then X =st Y .

Proof. First we prove (a). From the assumption that X ≤icx Y it follows that∑n
i=1 aiXi ≤icx

∑n
i=1 aiYi for all ai ≥ 0, i = 1, 2, . . . , n. Also

E
( n∑

i=1

aiXi

)2
=

n∑
i=1

n∑
j=1

aiajE[XiXj ] =
n∑

i=1

n∑
j=1

aiajE[YiYj ] = E
( n∑

i=1

aiYi

)2
.

It then follows, from Theorem 4.A.48, that
∑n

i=1 aiXi =st
∑n

i=1 aiYi for
all ai ≥ 0, i = 1, 2, . . . , n. Thus we have that E[exp{−

∑n
i=1 aiXi}] =

E[exp{−
∑n

i=1 aiYi}] for all ai ≥ 0, i = 1, 2, . . . , n. From the unicity prop-
erty of the Laplace transform we obtain X =st Y .

The proof of part (b) follows from part (a) and from the observation that
if
∑n

i=1 aiXi ≤icv
∑n

i=1 aiYi and if E
[∑n

i=1 aiXi

]
= E

[∑n
i=1 aiYi

]
, then∑n

i=1 aiXi ≥icx
∑n

i=1 aiYi. 
�

In a similar manner, using now Theorem 3.A.42 rather than Theorem
4.A.48, we can obtain conditions under which two (not necessarily nonnega-
tive) random vectors, that are comparable in the ≤cx order, have the same
distribution.

Theorem 7.A.15. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn)
be two (not necessarily nonnegative) random vectors. If X ≤cx Y , and if
Var(Xi) = Var(Yi), i = 1, 2, . . . , n, then X =st Y .

Proof. From the assumption that X ≤cx Y it follows that for i �= j we have

a2
i EX2

i + a2
jEX2

j + aiajE[XiXj ] = E(aiXi + ajXj)2

≤ E(aiYi + ajYj)2 = a2
i EY 2

i + a2
jEY 2

j + aiajE[YiYj ],
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where ai and aj are any constants. Since, by assumption, EX2
i = EY 2

i and
EX2

j = EY 2
j , we have that aiajE[XiXj ] ≤ aiajE[YiYj ]. Since ai and aj are

arbitrary, we see that E[XiXj ] = E[YiYj ].
Now, again from the assumption that X ≤cx Y it follows that

∑n
i=1 aiXi

≤cx
∑n

i=1 aiYi for all ai, i = 1, 2, . . . , n. As in the proof of Theorem 7.A.14
we can show that E

(∑n
i=1 aiXi

)2 = E
(∑n

i=1 aiYi

)2. It then follows, from
Theorem 3.A.42, that

∑n
i=1 aiXi =st

∑n
i=1 aiYi for all ai, i = 1, 2, . . . , n.

Therefore the characteristic functions of X and of Y are identical. This implies
that X =st Y . 
�

An interesting application of the orthant order in the context of the in-
creasing convex and concave orders is given in the following result. The proof,
which can be found elsewhere (see Section 7.D), is not given here.

Theorem 7.A.16. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be
two random vectors. Suppose that X ≤lo Y [respectively, X ≤uo Y ] and that

−∞ < E[φi(Xi)] = E[φi(Yi)] < ∞, i = 1, 2, . . . , n,

for some nonnegative strictly increasing convex functions φi, i = 1, 2, . . . , n. If
X and Y are comparable in the order ≤icx [respectively, ≤icv], then X =st Y .

Two orders related to the multivariate monotone convex order are dis-
cussed in Sections 7.A.6 and 7.A.7 below.

7.A.4 Convex and concave ordering of stochastic processes

In Section 6.B.7 we showed that some of the results regarding the usual
stochastic ordering of random vectors can be extended to the usual stochastic
ordering of stochastic processes. It turns out that some of the results regard-
ing the monotone convex and concave orderings of random vectors can also be
extended to the analogous orderings of stochastic processes. In this subsection
we describe a basic result that formally states that two stochastic processes
are comparable in the sense of any of these orders if, and only if, any finite
dimensional marginals of them are comparable in the same sense.

Let {X(n), n ∈ N++} and {Y (n), n ∈ N++} be two discrete-time stochas-
tic processes with state space R. Suppose that, for all choices of an integer m,
it holds that

(X(1), X(2), . . . , X(m)) ≤cx [≤icx,≤icv] (Y (1), Y (2), . . . , Y (m)),

then {X(n), n ∈ N++} is said to be smaller than {Y (n) , n ∈ N++} in the
convex [increasing convex, increasing concave] order (denoted by {X(n), n ∈
N++} ≤cx [≤icx,≤icv] {Y (n), n ∈ N++}). Below, a functional g is called
convex [concave] if g({αx(n) + (1 − α)y(n), n ∈ N++}) ≤ [≥] αg({x(n), n ∈
N++}) + (1 − α)g({y(n), n ∈ N++}) for all α ∈ [0, 1] and {x(n), n ∈ N++}
and {y(n), n ∈ N++}.
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Theorem 7.A.17. Let {X(n), n ∈ N++} and {Y (n), n ∈ N++} be two
discrete-time stochastic processes with state space R. Then {X(n), n ∈
N++} ≤cx [≤icx,≤icv] {Y (n), n ∈ N++} if, and only if,

E{g({X(n), n ∈ N++})} ≤ E{g({Y (n), n ∈ N++})} (7.A.16)

for every continuous (with respect to the product topology in R
∞) convex [in-

creasing convex, increasing concave] functional g for which the expectations
in (7.A.16) exist.

Notice that the assumption of continuity with respect to the product topol-
ogy is quite restrictive, but, as far as we know, it is the best result available.

7.A.5 The (m1, m2)-icx orders

The multivariate ≤icx can be extended in a manner similar to the way in which
the univariate order ≤m-icx in Section 4.A.7 extends the univariate ≤icx order.
Only the bivariate extension will be described here.

Let (X1, X2) and (Y1, Y2) be two random vectors with a common sup-
port I × J , where I and J are finite, or half infinite, or infinite intervals
in R. If E[φ(X1, X2)] ≤ E[φ(Y1, Y2)] for all (m1 + m2)-differentiable func-
tions φ such that ∂k1+k2

∂x
k1
1 ∂x

k2
2

φ(x1, x2) ≥ 0 on I × J whenever 0 ≤ k1 ≤ m1,

0 ≤ k2 ≤ m2, and k1 + k2 ≥ 1, then (X1, X2) is said to be smaller than
(Y1, Y2) in the (m1, m2)-icx order (denoted by (X1, X2) ≤I×J

(m1,m2)-icx
(Y1, Y2)).

If E[φ(X1, X2)] ≤ E[φ(Y1, Y2)] for all (m1 + m2)-differentiable functions φ

such that (−1)k1+k2+1 ∂k1+k2

∂x
k1
1 ∂x

k2
2

φ(x1, x2) ≥ 0 on I × J whenever 0 ≤ k1 ≤ m1,

0 ≤ k2 ≤ m2, and k1+k2 ≥ 1, then (X1, X2) is said to be smaller than (Y1, Y2)
in the (m1, m2)-icv order (denoted by (X1, X2) ≤I×J

(m1,m2)-icv
(Y1, Y2)).

The (m1, m2)-icx and the (m1, m2)-icv orders are related as follows

(X1, X2) ≤[a1,b1]×[a2,b2]
(m1,m2)-icv

(Y1, Y2)

⇐⇒ (b1 − Y1, b2 − Y2) ≤[0,b1−a1]×[0,b2−a2]
(m1,m2)-icx

(b1 − X1, b2 − X2),

and

(X1, X2) ≤R
2

(m1,m2)-icv (Y1, Y2) ⇐⇒ −(Y1, Y2) ≤R
2

(m1,m2)-icx −(X1, X2).

Thus it suffices for most purposes to focus on the (m1, m2)-icx order only.
Note that the orders ≤R

2

(1,1)-icx and ≤R
2

(1,1)-icv are the orders ≤uo and ≤lo (see

Section 6.G.1). The orders ≤R
2

(2,2)-icx and ≤R
2

(2,2)-icv are the orders ≤uo-cx and

≤uo-cx which are discussed in Section 7.A.9 below. Also, the order ≤R
2

(m,m)-icv

is the order ≤2
m which is discussed in Section 7.A.9.

Some closure properties of the (m1, m2)-icx order are given in the next
theorem. Some of the results below are stated for simplicity only for the case
in which I = J = [0,∞), but they can be rewritten for the general case.
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Theorem 7.A.18. (a) Let (X1, X2) and (Y1, Y2) be two random vectors with
a common support I × J . Let K and L be two intervals in R, and let
φ1 : I → K and φ2 : J → L be two univariate functions with nonnegative
first m1 and m2 derivatives, respectively. If (X1, X2) ≤I×J

(m1,m2)-icx
(Y1, Y2),

then (φ1(X1), φ2(X2)) ≤K×L
(m1,m2)-icx

(φ1(Y1), φ2(Y2)).
(b) Let (X1, X2), (Y1, Y2), and Θ be random vectors such that [(X1, X2)

∣∣Θ =

θ] ≤[0,∞)2

(m1,m2)-icx
[(Y1, Y2)

∣∣Θ = θ] for all θ in the support of Θ. Then

(X1, X2) ≤[0,∞)2

(m1,m2)-icx
(Y1, Y2). That is, the (m1, m2)-icx order is closed

under mixtures.
(c) Let {(X11, X12), (X21, X22), . . . } be a sequence of independent random

vectors and let {(Y11, Y12), (Y21, Y22), . . . } be another set of independent
random vectors. Furthermore, let N be a positive integer-valued random
variable which is independent of the above random vectors. If (Xj1, Xj2)

≤[0,∞)2

(m1,m2)-icx
(Yj1, Yj2) for j = 1, 2, . . ., then

N∑
j=1

(Xj1, Xj2) ≤[0,∞)2

(m1,m2)-icx

N∑
j=1

(Yj1, Yj2).

In particular, the (m1, m2)-icx order is closed under convolutions.

Part (c) of Theorem 7.A.18 can be used, for example, to prove (9.A.11) in
Chapter 9.

The bivariate (m1, m2)-icx orders imply some interesting results on their
univariate components.

Theorem 7.A.19. Let (X1, X2) and (Y1, Y2) be two random vectors with
a common support [0,∞)2. Let φ be a bivariate function which satisfies

∂k1+k2

∂x
k1
1 ∂x

k2
2

φ(x1, x2) ≥ 0 on [0,∞)2 whenever 0 ≤ k1 ≤ m1, 0 ≤ k2 ≤ m2, and

k1 + k2 ≥ 1. If (X1, X2) ≤[0,∞)2

(m1,m2)-icx
(Y1, Y2), then φ(X1, X2) ≤(m1+m2)-icx

φ(Y1, Y2).

This result can be used, for example, to prove the second inequality in
Theorem 9.A.18 in Chapter 9.

Theorem 7.A.20. Let (X1, X2) and (Y1, Y2) be two random vectors, of inde-
pendent components, with a common support [0,∞)2. Then

(X1, X2) ≤[0,∞)2

(m1,m2)-icx
(Y1, Y2) ⇐⇒

(
X1 ≤m1-icx Y1 and X2 ≤m2-icx Y2

)
.

7.A.6 The symmetric convex order

Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two random vectors.
When X and Y have exchangeable (that is, permutation symmetric) distri-
bution functions, it is of interest to consider orders defined by the condition
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Eφ(X) ≤ Eφ(Y ) for all functions in a certain class of (permutation) sym-
metric functions. One such order is defined as follows.

Suppose that X and Y are such that

Eφ(X) ≤ Eφ(Y ) for all symmetric convex functions φ : R
n → R,

provided the expectations exist. Then X is said to be smaller than Y in the
symmetric convex order (denoted as X ≤symcx Y ).

The following relationship between the orders ≤cx and ≤symcx is obvious.

Theorem 7.A.21. Let X and Y be two random vectors. If X ≤cx Y , then
X ≤symcx Y .

A further discussion regarding the order ≤symcx can be found in Chapter 7
by Tong in [515].

7.A.7 The componentwise convex order

Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two random vectors.
Suppose that X and Y are such that

Eφ(X) ≤ Eφ(Y ) for all [increasing] functions φ : R
n → R

that are convex in each argument when
the other arguments are held fixed,

provided the expectations exist. Then X is said to be smaller than Y in the
[increasing ] componentwise convex order (denoted by X [≤iccx] ≤ccx Y ).

The following relationship between the orders ≤ccx [≤iccx] and ≤cx [≤icx]
is obvious.

Theorem 7.A.22. Let X and Y be two random vectors. If X ≤ccx [≤iccx] Y ,
then X ≤cx [≤icx] Y .

The functions φ1(x1, x2, . . . , xn) = xixj and φ2(x1, x2, . . . , xn) = −xixj

are both componentwise convex, 1 ≤ i < j ≤ n. The next result thus follows
from Theorem 7.A.22 and (7.A.5).

Theorem 7.A.23. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be
two random vectors. If X ≤ccx Y , then Cov(Xi, Xj) = Cov(Yi, Yj), 1 ≤ i <
j ≤ n.

Theorem 7.A.24. Let X1, X2, . . . , Xm be a set of independent random vari-
ables and let Y1, Y2, . . . , Ym be another set of independent random variables.
If Xi ≤cx [≤icx] Yi for i = 1, 2, . . . , m, then (X1, X2, . . . , Xn) ≤ccx [≤iccx]
(Y1, Y2, . . . , Yn).
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Proof. The parenthetical statement follows at once from Theorem 4.A.15.
The proof of the other statement is similar to the proof of that theorem. As
in there, we can assume, without loss of generality, that all the 2m random
variables are independent. The proof is by induction on m. For m = 1 the
result is obvious. Assume that the stated result is true for vectors of size m−1.
Let φ be a componentwise convex function. Then

E[φ(X1, X2, . . . , Xm)
∣∣X1 = x] = E[φ(x, X2, . . . , Xm)]

≤ E[φ(x, Y2, . . . , Ym)]

= E[φ(X1, Y2, . . . , Ym)
∣∣X1 = x],

where the equalities above follow from the independence assumption and the
inequality follows from the induction hypothesis. Taking expectations with
respect to X1, we obtain

E[φ(X1, X2, . . . , Xm)] ≤ E[φ(X1, Y2, . . . , Ym)].

Repeating the argument, but now conditioning on Y2, . . . , Ym and using
X1 ≤cx Y1, we see that

E[φ(X1, Y2, . . . , Ym)] ≤ E[φ(Y1, Y2, . . . , Ym)],

and this proves the result. 
�

It is not hard to show that if X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . ,
Yn) satisfy conditions (7.A.9)–(7.A.11) of Theorem 7.A.4, and if Y1, Y2, . . . , Yn

are independent, then, in fact, X ≤ccx Y . This observation provides an alter-
native proof for the ≤ccx case of Theorem 7.A.24

The following results may be compared with Theorem 6.B.17.

Theorem 7.A.25. Let X1,X2, . . . ,Xm be m countably infinite vectors of
independent nonnegative random variables. Let M = (M1, M2, . . . , Mm) and
N = (N1, N2, . . . , Nm) be two vectors of nonnegative integers which are in-
dependent of X1,X2, . . . ,Xm. Denote by Xj,i the ith element of Xj. If
Xj,i ≤cx [≤icx] Xj,i+1 for j = 1, 2, . . . , m, and i ≥ 1, and if M ≤ccx [≤iccx] N ,
then

( M1∑
i=1

X1,i,

M2∑
i=1

X2,i, . . . ,

Mm∑
i=1

Xm,i

)

≤ccx [≤iccx]
( N1∑

i=1

X1,i,

N2∑
i=1

X2,i, . . . ,

Nm∑
i=1

Xm,i

)
.

The following example gives sufficient conditions for the comparison of
multivariate normal random vectors. See Examples 6.B.29, 6.G.11, 7.A.13,
7.A.39, 7.B.5, and 9.A.20 for related results.
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Example 7.A.26. Let X be a multivariate normal random vector with mean
vector 0 and variance-covariance matrix Σ, and let Y be a multivariate nor-
mal random vector with mean vector 0 and variance-covariance matrix Σ+D,
where D is a nonnegative diagonal matrix. Then X ≤ccx Y .

7.A.8 The directional convex and concave orders

Let ≤ denote the coordinatewise ordering in R
n. For x,y,z ∈ R

n we use the
notation [x,y] ≤ z as a shorthand for x ≤ z and y ≤ z. Also, the notation
z ≤ [x,y] stands for z ≤ x and z ≤ y. A function φ : R

n → R is said to
be directionally convex [concave] if for any xi ∈ R

n, i = 1, 2, 3, 4, such that
x1 ≤ [x2,x3] ≤ x4 and x1 + x4 = x2 + x3, one has

φ(x2) + φ(x3) ≤ [≥] φ(x1) + φ(x4). (7.A.17)

A function φ : R
n → R

m is called directionally convex [concave] if the co-
ordinate functions φi, i = 1, 2, . . . , m, defined by φ(x) = (φ1(x), φ2(x), . . . ,
φn(x)), are directionally convex [concave].

Directional convexity neither implies, nor is implied by, conventional con-
vexity. However, a univariate function is directionally convex [concave] if, and
only if, it is convex [concave].

A function φ : R
n → R is said to be supermodular [submodular] if for any

x,y ∈ R
n it satisfies

φ(x) + φ(y) ≤ [≥] φ(x ∧ y) + φ(x ∨ y),

where the operators ∧ and ∨ denote coordinatewise minimum and maximum,
respectively. If φ : R

n → R has second partial derivatives, then it is supermod-
ular if, and only if, ∂2

∂xi∂xj
φ ≥ 0 for all i �= j. Many examples of supermodular

functions can be found in Marshall and Olkin [383, Chapter 6].

Proposition 7.A.27. The following statements are equivalent:

(a) The function φ is directionally convex [concave].
(b) The function φ is supermodular [submodular ] and coordinatewise convex

[concave].
(c) For any x1,x2,y ∈ R

n, such that x1 ≤ x2 and y ≥ 0, one has

φ(x1 + y) − φ(x1) ≤ [≥] φ(x2 + y) − φ(x2).

If φ is twice differentiable, then it is directionally convex [concave] if, and
only if, all its second derivatives are nonnegative [nonpositive]. Another useful
property of directionally convex [concave] functions is stated next.

Proposition 7.A.28. (a) If ψ : R
m → R

k is increasing and directionally
convex [concave] and φ : R

n → R
m is increasing and directionally con-

vex [concave], then the composition ψ(φ) is increasing and directionally
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convex [concave]. In particular, if ψ : R → R is increasing and convex
[concave] and φ : R

n → R is increasing and directionally convex [con-
cave], then the composition ψ(φ) is increasing and directionally convex
[concave].

(b) If ψ : R
m → R

k is increasing and directionally convex [concave] and
φ : R

n → R
m is decreasing and directionally convex [concave], then the

composition ψ(φ) is decreasing and directionally convex [concave]. In par-
ticular, if ψ : R → R is increasing and convex [concave] and φ : R

n → R is
decreasing and directionally convex [concave], then the composition ψ(φ)
is decreasing and directionally convex [concave].

Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two random vec-
tors. Suppose that X and Y are such that

Eφ(X) ≤ Eφ(Y ) for all [increasing] functions φ : R
n → R

that are directionally convex,

provided the expectations exist. Then X is said to be smaller than Y in the
[increasing ] directionally convex order (denoted by X [≤idir-cx] ≤dir-cx Y ).
The orders ≤dir-cv and ≤idir-cv are defined similarly.

The following relationships among the orders ≤dir-cx [≤idir-cx] and ≤ccx
[≤iccx] follow from Proposition 7.A.27. The last assertion in the next theorem
follows from the observation that −φ is directionally concave if, and only if,
φ is directionally convex.

Theorem 7.A.29. Let X and Y be two random vectors. If X ≤ccx [≤iccx] Y ,
then X ≤dir-cx [≤idir-cx] Y . Also, if X ≤dir-cx Y , then X ≤idir-cx Y and
X ≥dir-cv Y .

From Proposition 7.A.28 we obtain the following result (which may be
compared with Theorems 6.G.10 and 9.A.16).

Theorem 7.A.30. Let X and Y be two n-dimensional random vectors. If
X ≤idir-cx Y , then φ(X) ≤idir-cx φ(Y ) for any increasing and directionally
convex function φ : R

n → R
m. In particular, φ(X) ≤icx φ(Y ) for any in-

creasing and directionally convex function φ : R
n → R.

Theorem 7.A.31. Let {Xj , j = 1, 2, . . . } and {Y j , j = 1, 2, . . . } be two
sequences of random vectors such that Xj →st X and Y j →st Y as j → ∞.
Assume that EXj → EX and that EY j → EY as j → ∞. If Xj ≤dir-cx Y j,
j = 1, 2, . . ., then X ≤dir-cx Y .

From Theorems 7.A.24 and 7.A.29 we immediately obtain the next result.

Theorem 7.A.32. Let X1, X2, . . . , Xm be a set of independent random vari-
ables and let Y1, Y2, . . . , Ym be another set of independent random variables.
If Xi ≤cx [≤icx] Yi for i = 1, 2, . . . , m, then (X1, X2, . . . , Xn) ≤dir-cx [≤idir-cx]
(Y1, Y2, . . . , Yn).
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A stronger result than the ≤cx and ≤dir-cx part of Theorem 7.A.32 is
Theorem 7.A.38 below. Also, the ≤icx and ≤idir-cx part of Theorem 7.A.32
still holds if it is merely assumed that (Y1, Y2, . . . , Ym) is CIS (as defined in
(6.B.11)) rather than assuming that it consists of independent components.

The following result (which is a generalization of Theorem 7.A.32) shows
that the directionally convex orders are closed under conjunctions.

Theorem 7.A.33. Let X1,X2, . . . ,Xm be a set of independent random vec-
tors where the dimension of Xi is ki, i = 1, 2, . . . , m. Let Y 1,Y 2, . . . ,Y m be
another set of independent random vectors where the dimension of Y i is ki,
i = 1, 2, . . . , m. If Xi ≤dir-cx [≤idir-cx] Y i for i = 1, 2, . . . , m, then

(X1,X2, . . . ,Xm) ≤dir-cx [≤idir-cx] (Y 1,Y 2, . . . ,Y m).

Proof. It is enough to show that if X1 and Y 1 are of the same dimension
k1, and if Z is another random vector, of dimension k, which is independent
of X1 and Y 1, and if X1 ≤dir-cx [≤idir-cx] Y 1, then (X1,Z) ≤dir-cx [≤idir-cx]
(Y 1,Z). The rest of the proof can then be obtained by induction and pairwise
interchanges.

So let φ be a (k1+k)-dimensional [increasing] directionally convex function.
Note that φ(x,z) is [increasing] directionally convex in x for any z, where
the dimensions of x and z are k1 and k, respectively. Thus from X1 ≤dir-cx
[≤idir-cx] Y 1 and the independence assumption we obtain

Eφ(X1,Z) = E
[
Eφ(X1,Z)

∣∣Z] ≤ E
[
Eφ(Y 1,Z)

∣∣Z] = Eφ(Y 1,Z),

and the proof is complete. 
�

The next result shows that the directionally convex orders are closed under
convolutions.

Theorem 7.A.34. Let X1,X2, . . . ,Xm be a set of independent random vec-
tors and let Y 1,Y 2, . . . ,Y m be another set of independent random vectors,
all of the same dimension k. If Xi ≤dir-cx [≤idir-cx] Y i for i = 1, 2, . . . , m,
then

m∑
i=1

Xi ≤dir-cx [≤idir-cx]
m∑

i=1

Y i.

Proof. Let φ : R
k → R be any [increasing] directionally convex function. Then

the function ψ : R
km → R, defined by ψ(x1,x2, . . . ,xm) = φ

(∑m
i=1 xi

)
, is

[increasing] directionally convex function. The stated result now follows from
Theorem 7.A.33. (The idir-cx part also follows directly from Theorems 7.A.30
and 7.A.33.) 
�

A continuous analog of Theorem 7.A.34 (where the sums are replaced by
integrals) is the following result.
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Theorem 7.A.35. Let {X(t)}t∈Rd and {Y (t)}t∈Rd be two R-valued ran-
dom fields which are a.s. Riemann-integrable. Suppose that (X(t1), X(t2), . . . ,
X(tk)) ≤idir-cx (Y (t1), Y (t2), . . . , Y (tk)) for all t1, t2, . . . , tk ∈ R

d, k =
1, 2, . . .. Then(∫

B1

X(t)dt,

∫
B2

X(t)dt, . . . ,

∫
Bk

X(t)dt

)
≤idir-cx

(∫
B1

Y (t)dt,

∫
B2

Y (t)dt, . . . ,

∫
Bk

Y (t)dt

)
for any disjoint bounded Borel-measurable sets B1, B2, . . . , Bk in R

d, k =
1, 2, . . ..

The following result may be compared with Theorem 7.A.25.

Theorem 7.A.36. Let X1,X2, . . . ,Xm be m countably infinite vectors of
independent nonnegative random variables. Let M = (M1, M2, . . . , Mm) and
N = (N1, N2, . . . , Nm) be two vectors of nonnegative integers which are inde-
pendent of X1,X2, . . . ,Xm. Denote by Xj,i the ith element of Xj. If Xj,i ≤cx
[≤icx] Xj,i+1 for j = 1, 2, . . . , m, and i ≥ 1, and if M ≤dir-cx [≤idir-cx] N ,
then

( M1∑
i=1

X1,i,

M2∑
i=1

X2,i, . . . ,

Mm∑
i=1

Xm,i

)

≤dir-cx [≤idir-cx]
( N1∑

i=1

X1,i,

N2∑
i=1

X2,i, . . . ,

Nm∑
i=1

Xm,i

)
.

Consider now, as in Section 6.B.4, n families of univariate distribu-
tion functions {G

(i)
θ , θ ∈ Xi} where Xi is a subset of the real line R,

i = 1, 2, . . . , n. Let Xi(θ) denote a random variable with distribution func-
tion G

(i)
θ , i = 1, 2, . . . , n. Below we give a result which provides comparisons

of two random vectors, with distribution functions of the form (6.B.18), in the
[increasing] directionally convex order. The following result is a multivariate
extension of Theorems 3.A.21 and 4.A.18; see Theorems 6.B.17, 6.G.8, 9.A.7,
and 9.A.15 for related results.

Theorem 7.A.37. Let {G
(i)
θ , θ ∈ Xi}, i = 1, 2, . . . , n, be n families of uni-

variate distribution functions as above. Let Θ1 and Θ2 be two random vectors
with supports in

∏n
i=1 Xi and distribution functions F1 and F2, respectively.

Let Y 1 and Y 2 be two random vectors with distribution functions H1 and H2
given by

Hj(y1, y2, . . . , yn) =
∫

X1

∫
X2

. . .

∫
Xn

n∏
i=1

G
(i)
θi

(yi)dFj(θ1, θ2, . . . , θn),

(y1, y2, . . . , yn) ∈ R
n, j = 1, 2.
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If for every [increasing ] convex function φ,

E[φ(Xi(θ))] is [increasing ] convex in θ, i = 1, 2, . . . , n,

and if
Θ1 ≤dir-cx [≤idir-cx] Θ2,

then
Y 1 ≤dir-cx [≤idir-cx] Y 2.

The following result compares, with respect to ≤dir-cx, two random vectors
with the same dependence structure. Recall the definition of CIS given in
(6.B.11). If every permutation of the coordinates of a random vector is CIS,
then the vector is said to be conditionally increasing (CI). Recall also the
definition of a copula, given in (6.B.14).

Theorem 7.A.38. Let the random vectors X = (X1, X2, . . . , Xn) and Y =
(Y1, Y2, . . . , Yn) have a common copula that is CI. If Xi ≤cx Yi, i = 1, 2, . . . , n,
then X ≤dir-cx Y .

Theorem 7.A.38 may be compared with Theorems 6.B.14 and 7.A.32. A
result that is stronger than Theorem 7.A.38 is Theorem 9.A.25 in Section 9.A.

The following example gives necessary and sufficient conditions for the
comparison of multivariate normal random vectors. See Examples 6.B.29,
6.G.11, 7.A.13, 7.B.5, and 9.A.20 for related results.

Example 7.A.39. Let X be a multivariate normal random vector with mean
vector µX and variance-covariance matrix ΣX , and let Y be a multivariate
normal random vector with mean vector µY and variance-covariance matrix
ΣY . Then X ≤dir-cx Y if, and only if, µX = µY and ΣX ≤ ΣY .

It is worth mentioning that the result in Example 7.A.26 implies the suf-
ficiency part in Example 7.A.39.

In closing this subsection it is worthwhile to mention that a stochastic
order, which is defined by requiring Eφ(X) ≤ Eφ(Y ) to hold for all su-
permodular [rather than supermodular and componentwise convex, that is,
directionally convex] functions φ, is studied in Section 9.A.4.

7.A.9 The orthant convex and concave orders

Analogous to the orthant orders studied in Section 6.G.1, one can introduce
and study orthant convex and concave orders. This is done in this subsection.

Let X = (X1, X2, . . . , Xn) be a random vector with distribution function
F and multivariate survival function F (see the exact definition of a multi-
variate survival function in Section 6.G.1). Let Y be another n-dimensional
random vector with distribution function G and survival function G. If
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x1

∫ ∞

x2

. . .

∫ ∞

xn

F (u1, u2, . . . , un)du1du2 · · ·dun

≤
∫ ∞

x1

∫ ∞

x2

. . .

∫ ∞

xn

G(u1, u2, . . . , un)du1du2 · · ·dun for all x,

then we say that X is smaller than Y in the upper orthant-convex order
(denoted by X ≤uo-cx Y ). If∫ x1

−∞

∫ x2

−∞
. . .

∫ xn

−∞
F (u1, u2, . . . , un)du1du2 · · ·dun

≥
∫ x1

−∞

∫ x2

−∞
. . .

∫ xn

−∞
G(u1, u2, . . . , un)du1du2 · · ·dun for all x,

then we say that X is smaller than Y in the lower orthant-concave order
(denoted by X ≤lo-cv Y ).

In analogy with Theorem 6.G.1 it is not hard to obtain the following
characterizations of the orders ≤uo-cx and ≤lo-cv.

Theorem 7.A.40. Let X and Y be two n-dimensional random vectors. Then

(a) X ≤uo-cx Y if, and only if,

E
[ n∏

i=1

gi(Xi)
]

≤ E
[ n∏

i=1

gi(Yi)
]

for every collection {g1, g2, . . . , gn} of univariate nonnegative increasing
convex functions.

(b) X ≤lo-cv Y if, and only if,

E
[ n∏

i=1

hi(Xi)
]

≤ E
[ n∏

i=1

hi(Yi)
]

for every collection {h1, h2, . . . , hn} of univariate nonnegative increasing
functions such that hi is concave on the union of the supports of Xi and
Yi, i = 1, 2, . . . , n.

From Theorem 7.A.40 it is easy to obtain the following result which is an
extension of the fact that if the random variables X and Y satisfy X ≤icx Y ,
then φ(X) ≤icx φ(Y ) for all real increasing convex functions φ on R (see
Theorem 4.A.15).

Theorem 7.A.41. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be
two random vectors.

(a) If X ≤uo-cx Y , then (φ1(X1), φ2(X2), . . . , φn(Xn)) ≤uo-cx (φ1(Y1), φ2(Y2),
. . . , φn(Yn)) whenever φ1, φ2, . . . , φn are increasing convex functions.

(b) If X ≤lo-cv Y , then (φ1(X1), φ2(X2), . . . , φn(Xn)) ≤lo-cv (φ1(Y1), φ2(Y2),
. . . , φn(Yn)) whenever φ1, φ2, . . . , φn are increasing concave functions.
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From Theorems 7.A.40 and 6.G.1 it follows that

X ≤uo Y =⇒ X ≤uo-cx Y

and that
X ≤lo Y =⇒ X ≤lo-cv Y .

The following results may be compared with Theorems 7.A.25 and 7.A.36.

Theorem 7.A.42. Let X1,X2, . . . ,Xm be m countably infinite vectors of
independent nonnegative random variables. Let M = (M1, M2, . . . , Mm) and
N = (N1, N2, . . . , Nm) be two vectors of nonnegative integers which are in-
dependent of X1,X2, . . . ,Xm. Denote by Xj,i the ith element of Xj. If
Xj,i ≤icx [≥icv] Xj,i+1 for j = 1, 2, . . . , m, and i ≥ 1, and if M ≤uo-cx [≤lo-cv]
N , then

( M1∑
i=1

X1,i,

M2∑
i=1

X2,i, . . . ,

Mm∑
i=1

Xm,i

)

≤uo-cx [≤lo-cv]
( N1∑

i=1

X1,i,

N2∑
i=1

X2,i, . . . ,

Nm∑
i=1

Xm,i

)
.

Consider now the function φ : R
n → R which is defined by φ(x1, x2, . . . , xn)

=
∏n

i=1 gi(xi), where each gi : R → R is increasing and convex [concave]. It
is easy to verify that φ is increasing and directionally convex [concave]. Thus,
from Theorem 7.A.40 we obtain that

X ≤idir-cx Y =⇒ X ≤uo-cx Y

and
X ≤idir-cv Y =⇒ X ≤lo-cv Y .

It is worth mentioning that the supermodular order, studied in Section 9.A.4,
implies the orders ≤uo, ≤lo, and ≤idir-cx, mentioned above.

We now describe a multivariate extension of the univariate order ≤m-icv
(see Section 4.A.7). A special case of this extension is the order ≤R

2

(m,m)-icv
which is discussed in Section 7.A.5. A similar extension of the univariate
order ≤m-icx can also be defined and studied.

For x ∈ R
n, let L(x) = {y : y ≤ x}. For an n-dimensional distribution

function F define
F1(x) = F (x)

and
Fm(x) =

∫
L(x)

Fm−1(u)du.

For n-dimensional distribution functions F and G denote

F ≤n
m G ⇐⇒ Fm(x) ≥ Gm(x) for all x ∈ R

n.
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When m = 1 the above order is equivalent to the lower orthant order defined
in (6.G.2). When m = 2 the above order is a multivariate (left-sided) analog
of (4.A.5). If X and Y have the distribution functions F and G, respectively,
then (as can be easily seen by taking m = 2) the relationship F ≤n

2 G is
the same as X ≤lo-cv Y . Also, the order ≤2

m is the order ≤R
2

(m,m)-icv which is
discussed in Section 7.A.5.

For any n-dimensional distribution function F , its (n − 1)-dimensional
marginal distribution functions are defined by

F (i)(x1, . . . , xi−1, xi+1, . . . , xn) = F (x1, . . . , xi−1,∞, xi+1, . . . , xn),
i = 1, 2, . . . , n.

The next result shows that the order ≤n
m is preserved under marginalization.

Before stating the next result we need the following definition. The distri-
bution function F is said to be margin-regular for m > 1 and i ≤ n if for
each x(i) = (x1, . . . , xi−1, xi+1, . . . , xn) for which F (i)(x(i)) < ∞, there is an
xi ∈ R such that F (x1, x2, . . . , xn) < ∞.

Theorem 7.A.43. For n > 1, m > 1, and i ≤ n, let F and G be two n-
dimensional distribution functions such that F ≤n

m G and F is margin-regular
for m and i. Then F (i) ≤n−1

m G(i).

7.B Multivariate Dispersion Orders

Different characterizations of the univariate order ≤disp give rise to different
multivariate dispersive orders. In this section we describe some such orders.

7.B.1 A strong multivariate dispersion order

Recall from (3.B.13) that for univariate random variables we have that
X ≤disp Y if, and only if, Y =st φ(X) for some φ that satisfies φ(x′)−φ(x) ≥
x′ − x whenever x ≤ x′. An extension of this definition of the univariate dis-
persion order gives the multivariate dispersion order that is discussed in this
subsection.

A function φ : R
n → R

n is called an expansion if

‖φ(x) − φ(x′)‖ ≥ ‖x − x′‖ for all x and x′ in R
n.

Let X and Y be two n-dimensional random vectors. Suppose that

Y =st φ(X) for some expansion φ. (7.B.1)

Then we say that X is less than Y in the strong multivariate dispersive order
(denoted by X ≤SD Y ).

Let Jφ(x) denote the Jacobian matrix of φ at x, that is,
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Jφ(x) =
{∂φi

∂xj

}
.

It is useful to note that φ is an expansion if, and only if,

JT
φ(x)Jφ(x) − I is nonnegative definite,

where I is the identity matrix; see Giovagnoli and Wynn [211].
It is very easy to show that the strong multivariate dispersion order ≤SD

is closed under conjunctions as the following result states.

Theorem 7.B.1. Let X1,X2, . . . ,Xm be a set of independent random vec-
tors where the dimension of Xi is ki, i = 1, 2, . . . , m. Let Y 1,Y 2, . . . ,Y m be
another set of independent random vectors where the dimension of Y i is ki,
i = 1, 2, . . . , m. If Xi ≤SD Y i for i = 1, 2, . . . , m, then

(X1,X2, . . . ,Xm) ≤SD (Y 1,Y 2, . . . ,Y m).

The strong multivariate dispersion order ≤SD also satisfies the following
closure property, the proof of which is omitted.

Theorem 7.B.2. Let X and Y be two n-dimensional random vectors. Let
A be an n × n matrix such that for any orthogonal matrix Γ there exists an
orthogonal matrix Γ̃ such that ΓAΓ̃ = A. If X ≤SD Y , then AX ≤SD AY .

The following result compares, with respect to the order ≤SD, two random
vectors with the same dependence structure. Recall the definition of a copula,
given in (6.B.14).

Theorem 7.B.3. Let the random vectors X = (X1, X2, . . . , Xn) and Y =
(Y1, Y2, . . . , Yn) have a common copula. If Xi ≤disp Yi, i = 1, 2, . . . , n, then
X ≤SD Y .

An interesting application of Theorem 7.B.3 is the following result which
may be compared with Theorems 6.D.10, 6.E.12, and 7.B.12.

Theorem 7.B.4. Let X(1), X(2), . . . , X(n) and Y(1), Y(2), . . . , Y(n) be order sta-
tistics as in Theorem 6.D.10. If X1 ≤disp Y1, then

(X(1), X(2), . . . , X(n)) ≤SD (Y(1), Y(2), . . . , Y(n)).

Proof. The vectors (X(1), X(2), . . . , X(n)) and (Y(1), Y(2), . . . , Y(n)) have the
same copula. By Theorem 3.B.26, X1 ≤disp Y1 implies that X(i) ≤disp Y(i),
i = 1, 2, . . . , n. The stated result now follows from Theorem 7.B.3. 
�

An interesting example in which the order ≤SD arises naturally is the fol-
lowing. See also Examples 6.B.29, 6.G.11, 7.A.13, 7.A.26, 7.A.39, and 9.A.20.
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Example 7.B.5. Let X = (X1, X2, . . . , Xn) be a multivariate normal random
vector with mean vector µ1, and let Y = (Y1, Y2, . . . , Yn) be a multivariate
normal random vector with mean vector µ2. If X and Y have the same
correlation matrix, and if Var(Xi) ≤ Var(Yi), i = 1, 2, . . . , n, then X ≤SD Y .
This can be seen from Theorem 7.B.3 by noting that X and Y have the same
copula, and that Var(Xi) ≤ Var(Yi) implies Xi ≤disp Yi, i = 1, 2, . . . , n.

Arias-Nicolás, Fernández-Ponce, Luque-Calvo, and Suárez-Llorens [17] and
Fernández-Ponce and Rodŕıguez-Griñolo [196] compared, respectively, some
multivariate t and Wishart random vectors with respect to the order ≤SD.

According to Oja [441], an n-dimensional random vector Y is said to be
more scattered than another n-dimensional random vector X (denoted as
X ≤∆ Y ) if Y =st φ(X) for some function φ : R

n → R
n that has the

property that

∆(φ(x1),φ(x2), . . . ,φ(xn+1)) ≥ ∆(x1,x2, . . . ,xn+1) (7.B.2)

for all {x1,x2, . . . ,xn+1} ⊂ R
n, where ∆(x1,x2, . . . ,xn+1) is the volume of

the simplex with vertices x1,x2, . . . ,xn+1. It is useful to note that a function φ
satisfies (7.B.2) for all {x1,x2, . . . ,xn+1} ⊂ R

n if, and only if, the determinant
of the Jacobian matrix of φ satisfies

|Det(Jφ(x))| ≥ 1 for all x ∈ R
n.

The order ≤∆, as the order ≤SD, is a multivariate extension of the char-
acterization (3.B.13) of the univariate order ≤disp.

We have the following relationship between the orders ≤∆ and ≤SD:

X ≤SD Y =⇒ X ≤∆ Y .

Fernandez-Ponce and Suarez-Llorens [198] introduced a multivariate dis-
persion order that is even stronger than ≤SD. They did it by essentially re-
quiring (7.B.1) to hold for a particular expansion φ which is a multivariate
analog of the univariate function φ = G−1F in (3.B.13) in Section 3.B.

7.B.2 A weak multivariate dispersion order

The property (3.B.34) of the univariate dispersive order has an obvious multi-
variate analog, which is used in this subsection in order to define a multivariate
dispersion order.

Let X and Y be two n-dimensional random vectors. Let X ′ and Y ′ be
such that X =st X ′ and Y =st Y ′ and such that X and X ′ are independent
and Y and Y ′ are independent. Suppose that

‖X − X ′‖ ≤st ‖Y − Y ′‖,

where ‖ · ‖ is the Euclidean norm and ≤st is the usual univariate stochastic
order discussed in Section 1.A. Then we say that X is smaller than Y in the
multivariate dispersion order (denoted by X ≤D Y ).
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The multivariate dispersion order ≤D has the desirable property that the
traces of the corresponding covariance matrices are ordered as expected. This
multivariate analog of (3.B.25) is shown in the next theorem.

Theorem 7.B.6. Let X and Y be two n-dimensional random vectors. If
X ≤D Y , then

tr(Cov(X)) ≤ tr(Cov(Y )). (7.B.3)

Proof. Let X ′ and Y ′ be such that X =st X ′ and Y =st Y ′ and such that
X and X ′ are independent and Y and Y ′ are independent. Then Cov(X) =
1
2E[(X −X ′)T (X −X ′)], and Cov(Y ) = 1

2E[(Y −Y ′)T (Y −Y ′)]. Therefore

tr(Cov(X)) =
1
2
E
[
tr(X − X ′)(X − X ′)T

]
=

1
2
E
[
‖X − X ′‖2]

≤ 1
2
E
[
‖Y − Y ′‖2]

= tr(Cov(Y ))

and (7.B.3) is obtained. 
�

The multivariate dispersion order ≤D is location-free and rotation-free as
the next result shows. The proof is simple and is omitted.

Theorem 7.B.7. Let X and Y be two n-dimensional random vectors. If
X ≤D Y , then

ΓX + a ≤D ΛY + b,

for all orthogonal matrices Γ and Λ and for all vectors a and b.

The multivariate dispersion order ≤D is also closed under conjunctions as
the following result states.

Theorem 7.B.8. Let X1,X2, . . . ,Xm be a set of independent random vec-
tors where the dimension of Xi is ki, i = 1, 2, . . . , m. Let Y 1,Y 2, . . . ,Y m be
another set of independent random vectors where the dimension of Y i is ki,
i = 1, 2, . . . , m. If Xi ≤D Y i for i = 1, 2, . . . , m, then

(X1,X2, . . . ,Xm) ≤D (Y 1,Y 2, . . . ,Y m).

Proof. It is sufficient to prove the result when m = 2. Let X ′
1, X ′

2, Y ′
1, and

Y ′
2 be such that

X ′
1 =st X1, X ′

2 =st X2, Y ′
1 =st Y 1, and Y ′

2 =st Y 2.

Let

X = (X1,X2), X ′ = (X ′
1,X

′
2), Y = (Y 1,Y 2), and Y ′ = (Y ′

1,Y
′
2).
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Then

‖X − X ′‖2 = ‖X1 − X ′
1‖2 + ‖X2 − X ′

2‖2

≤st ‖Y 1 − Y ′
1‖2 + ‖Y 2 − Y ′

2‖2

= ‖Y − Y ′‖2.

That is, X ≤D Y . 
�

By construction on the same probability space (see Section 6.B.2), it is
easy to prove the following result.

Theorem 7.B.9. Let X and Y be two n-dimensional random vectors. Then

X ≤SD Y =⇒ X ≤D Y .

7.B.3 Dispersive orders based on constructions

The standard construction of an n-dimensional random vector X = (X1, X2,
. . . , Xn), from a vector (U1, U2, . . . , Un) of independent uniform[0, 1] random
variables, was described in Section 6.B.3. Here we first describe explicitly
the function that transforms (U1, U2, . . . , Un) into (X1, X2, . . . , Xn). Let F be
the distribution function of X. Denote by F1(·) the marginal distribution
function of X1, and denote by Fi+1|1,2,...,i(·

∣∣x1, x2, . . . , xi) the conditional
distribution function of Xi+1 given that X1 = x1, X2 = x2, . . . , Xi = xi,
i = 1, 2, . . . , n−1. The inverse of F1 will be denoted by F−1

1 (·) and the inverse
of Fi+1|1,2,...,i(·

∣∣x1, x2, . . . , xi) will be denoted by F−1
i+1|1,2,...,i(·

∣∣x1, x2, . . . , xi)
for every (x1, x2, . . . , xi) in the support of (X1, X2, . . . , Xi), i = 1, 2, . . . , n−1.
For (u1, u2, . . . , un) ∈ (0, 1)n denote

x1 = F−1
1 (u1), (7.B.4)

and, by induction,

xi = F−1
i|1,2,...,i−1(ui

∣∣x1, x2, . . . , xi−1), i = 2, 3, . . . , n. (7.B.5)

Denote the transformation (u1, u2, . . . , un) → (x1, x2, . . . , xn) described in
(7.B.4) and (7.B.5) by Ψ∗

F : (0, 1)n → R
n. It is well known that

Ψ∗
F (U1, U2, . . . , Un) =st (X1, X2, . . . , Xn).

Let Y = (Y1, Y2, . . . , Yn) be another random vector with distribution func-
tion G, and denote the corresponding transformation by Ψ∗

G. Note that Ψ∗
F

and Ψ∗
G can be thought of as “inverses” of F and of G, respectively. The

following order is a multivariate extension of the characterization (3.B.7) of
the univariate order ≤disp. Suppose that

Ψ∗
G(u) − Ψ∗

F (u) is increasing in u ∈ (0, 1)n.
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Then X is said to be smaller than Y in the multivariate dispersion order
(denoted by X ≤disp Y ).

It is easy to prove that the order ≤disp is closed under conjunctions as the
following result states.

Theorem 7.B.10. Let X1,X2, . . . ,Xm be a set of independent random vec-
tors where the dimension of Xi is ki, i = 1, 2, . . . , m. Let Y 1,Y 2, . . . ,Y m be
another set of independent random vectors where the dimension of Y i is ki,
i = 1, 2, . . . , m. If Xi ≤disp Y i for i = 1, 2, . . . , m, then

(X1,X2, . . . ,Xm) ≤disp (Y 1,Y 2, . . . ,Y m).

In particular, if the random variables X1, X2, . . . , Xn and Y1, Y2, . . . , Yn

are independent and satisfy Xi ≤disp Yi, i = 1, 2, . . . , n, then (X1, X2, . . . , Xn)
≤disp (Y1, Y2, . . . , Yn).

A useful property of the multivariate order ≤disp is given next. Recall
from Section 6.B.3 the definition of a CIS random vector, and recall from
Section 7.A.8 the definition of directionally convex functions. The proof of
the following result is not given here.

Theorem 7.B.11. Let X and Y be two nonnegative CIS random vectors. If
X ≤disp Y , then

Var[φ(X)] ≤ Var[φ(Y )] for all increasing directionally convex functions φ.

In particular, if (X1, X2, . . . , Xn) ≤disp (Y1, Y2, . . . , Yn), then

Var[X1 + X2 + · · · + Xn] ≤ Var[Y1 + Y2 + · · · + Yn].

The following result may be compared with Theorems 6.D.10, 6.E.12, and
7.B.4.

Theorem 7.B.12. Let X(1), X(2), . . . , X(n) and Y(1), Y(2), . . . , Y(n) be order
statistics as in Theorem 6.D.10. If X1 ≤disp Y1, then

(X(1), X(2), . . . , X(n)) ≤disp (Y(1), Y(2), . . . , Y(n)).

The following example may be compared with Examples 1.B.24, 1.C.48,
2.A.22, 3.B.38, 6.B.41, 6.D.8, and 6.E.13.

Example 7.B.13. Let X and Y be two absolutely continuous nonnegative
random variables with survival functions F and G, respectively. Denote
Λ1 = − log F and Λ2 = − log G. Consider two nonhomogeneous Poisson pro-
cesses N1 = {N1(t), t ≥ 0} and N2 = {N2(t), t ≥ 0} with mean functions Λ1
and Λ2 (see Example 1.B.13), respectively. Let Ti,1, Ti,2, . . . be the successive
epoch times of process Ni, i = 1, 2. Note that X =st T1,1 and Y =st T2,1.
If X ≤disp Y , then (T1,1, T1,2, . . . , T1,n) ≤disp (T2,1, T2,2, . . . , T2,n) for each
n ≥ 1.



348 7 Multivariate Variability and Related Orders

The total hazard construction of a nonnegative n-dimensional random
vector T = (T1, T2, . . . , Tn) with distribution function F , from a vector
(X1, X2, . . . , Xn) of independent standard exponential random variables, was
described in Section 6.C.2. The construction defines a transformation of
(X1, X2, . . . , Xn) to T̂ = (T̂1, T̂2, . . . , T̂n) such that T =st T̂ . Denote this
transformation from [0,∞)n to [0,∞)n by R∗

F . Thus

R∗
F (X1, X2, . . . , Xn) =st (T1, T2, . . . , Tn).

Let S = (S1, S2, . . . , Sn) be another nonnegative random vector with dis-
tribution function G, and denote the corresponding transformation by R∗

G.
Note that R∗

F and R∗
G can be thought of as “inverses” of the “total hazards”

− log F and − log G, respectively. The following order is a multivariate ex-
tension of the characterization (3.B.9) of the univariate order ≤disp. Suppose
that

R∗
G(x) − R∗

F (x) is increasing in x ∈ [0,∞)n.

Then T is said to be smaller than S in the dynamic multivariate dispersion
order (denoted by T ≤dyn-disp S).

The order ≤dyn-disp is closed under conjunctions as the following, easy to
prove, result states.

Theorem 7.B.14. Let T 1,T 2, . . . ,T m be a set of independent random vec-
tors where the dimension of T i is ki, i = 1, 2, . . . , m. Let S1,S2, . . . ,Sm be
another set of independent random vectors where the dimension of Si is ki,
i = 1, 2, . . . , m. If T i ≤dyn-disp Si for i = 1, 2, . . . , m, then

(T 1,T 2, . . . ,T m) ≤dyn-disp (S1,S2, . . . ,Sm).

A version of Theorem 7.B.11 holds for the order ≤dyn-disp, and is given
next. Recall from Section 6.C.1 that a nonnegative random vector T has the
positive dependence property of “supporting lifetimes” if T ≤ch T . The proof
of the following result is not given here.

Theorem 7.B.15. Let T and S be two nonnegative random vectors with the
supporting lifetimes property. If T ≤dyn-disp S, then

Var[φ(T )] ≤ Var[φ(S)] for all increasing directionally convex functions φ.

7.C Multivariate Transform Orders: Convex, Star, and
Superadditive Orders

In this section we review some extensions of the univariate orders ≤c, ≤∗, and
≤su, which were studied in Section 4.B.

Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two nonnegative
random vectors with survival functions F and G, respectively. Denote
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F i(x) =
F (x1, . . . , xi−1, xi, xi+1, . . . , xn)
F (x1, . . . , xi−1, 0, xi+1, . . . , xn)

, x ≥ 0,

and

Gi(x) =
G(x1, . . . , xi−1, xi, xi+1, . . . , xn)
G(x1, . . . , xi−1, 0, xi+1, . . . , xn)

, x ≥ 0.

For any (x1, x2, . . . , xn) ≥ 0 and for any i = 1, 2, . . . , n, let ui be the solution
of

Gi(x1, . . . , xi−1, ui, xi+1, . . . , xn) = F i(x1, . . . , xi−1, xi, xi+1, . . . , xn).

If, for every i = 1, 2, . . . , n and every (x1, . . . , xi−1, xi+1, . . . , xn), we have that
ui is convex in xi, then X is said to be smaller than Y in the multivariate
convex transform order (denoted as X ≤mc Y ). If, for every i = 1, 2, . . . , n and
every (x1, . . . , xi−1, xi+1, . . . , xn), we have that ui is starshaped in xi, then X
is said to be smaller than Y in the multivariate star order (denoted as X ≤m∗
Y ). Finally, if, for every i = 1, 2, . . . , n and every (x1, . . . , xi−1, xi+1, . . . , xn),
we have that ui is superadditive in xi, then X is said to be smaller than Y
in the multivariate superadditive order (denoted as X ≤msu Y ).

Obviously,

X ≤mc Y =⇒ X ≤m∗ Y =⇒ X ≤msu Y .

The above three orders are partial orders in the sense that each of them
is transitive and reflexive. They are also closed under marginalization:

Theorem 7.C.1. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be
two nonnegative n-dimensional random vectors. If X ≤mc [≤m∗,≤msu] Y ,
then XI ≤mc [≤m∗,≤msu] Y I for each I ⊆ {1, 2, . . . , n}.

In analogy with Theorem 4.B.11, the above three orders can be used to
define multivariate notions of the IFR, IFRA, and NBU aging notions.

7.D The Multivariate Laplace Transform and Related
Orders

The orders we studied in Section 5.A have multivariate extensions, which we
will briefly review in this section.

7.D.1 The multivariate Laplace transform order

Extending (5.A.1), we have the following definition of the multivariate Laplace
transform order. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two
nonnegative n-dimensional random vectors such that
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E
[
exp
{

−
n∑

i=1

siXi

}]
≥ E

[
exp
{

−
n∑

i=1

siYi

}]
for all s > 0. (7.D.1)

Then X is said to be smaller than Y in the Laplace transform order (denoted
as X ≤Lt Y ). Throughout this section we consider only nonnegative random
vectors.

As in the univariate case (see Theorem 5.A.7), the multivariate order ≤Lt
is closed under mixtures, limits in distribution, and convolutions. We do not
formally state and prove these closure properties here.

The following property of the multivariate Laplace transform order can be
verified easily. Recall the notation XI and Y I from (6.A.1).

Theorem 7.D.1. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two
nonnegative n-dimensional random vectors. If X ≤Lt Y , then XI ≤Lt Y I for
each I ⊆ {1, 2, . . . , n}. That is, the multivariate Laplace transform order is
closed under marginalization.

From Theorem 7.D.1 and (5.A.5) we see that

X ≤Lt Y =⇒ E[Xi] ≤ E[Yi], i = 1, 2, . . . , n, (7.D.2)

provided the expectations exist.
The following property is also easy to verify.

Theorem 7.D.2. Let X1,X2, . . . ,Xm be a set of independent random vec-
tors where the dimension of Xi is ki, i = 1, 2, . . . , m. Let Y 1,Y 2, . . . ,Y m be
another set of independent random vectors where the dimension of Y i is ki,
i = 1, 2, . . . , m. If Xi ≤Lt Y i for i = 1, 2, . . . , m, then

(X1,X2, . . . ,Xm) ≤Lt (Y 1,Y 2, . . . ,Y m).

That is, the multivariate Laplace transform order is closed under conjunctions.

Another closure property of the multivariate Laplace transform order is
given in Theorem 7.D.7.

Theorem 7.D.3. Let X and Y be two nonnegative random vectors. If X ≤lo
Y or X ≤icv Y or X ≥dir-cx Y , then X ≤Lt Y . In particular, if X ≤st Y ,
then X ≤Lt Y .

Proof. The function hi, defined by hi(x) = exp{−six}, is nonnegative and
decreasing for each si > 0, i = 1, 2, . . . , n. Therefore X ≤lo Y =⇒ X ≤Lt Y
by (6.G.6) and (7.D.1). The implication X ≤icv Y =⇒ X ≤Lt Y follows
from the fact that the function φ, defined by φ(x) = exp{−

∑n
i=1 sixi}, is

decreasing and convex for each s > 0 (and therefore −φ is increasing and
concave). Finally, the implication X ≥dir-cx Y =⇒ X ≤Lt Y follows from the
fact that the function φ above is directionally convex for each s > 0. 
�
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The following result is a multivariate analog of the right side of (5.A.13).
It can be obtained from Jensen’s Inequality.

Theorem 7.D.4. Let Y be a nonnegative random vector with mean vector
(µ1, µ2, . . . , µn). Let Z be a random vector degenerate at (µ1, µ2, . . . , µn).
Then

X ≤Lt Z.

The next result follows easily from (7.D.1).

Theorem 7.D.5. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two
nonnegative n-dimensional random vectors. If X ≤Lt Y , then

n∑
i=1

aiXi ≤Lt

n∑
i=1

aiYi, whenever ai ≥ 0, i = 1, 2, . . . , n.

A multivariate analog of Theorem 5.A.3 is the following result. Its proof
is similar to the proof of Theorem 5.A.3 and is therefore omitted.

Theorem 7.D.6. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two
nonnegative n-dimensional random vectors. Then X ≤Lt Y if, and only if,

E
[ n∏

i=1

φi(Xi)
]

≥ E
[ n∏

i=1

φi(Yi)
]

for all completely monotone functions φi, i = 1, 2, . . . , n, provided the expec-
tations exist.

When X and Y are vectors of nonnegative integer-valued random vari-
ables, it is customary and convenient to work with their probability generating
functions, rather than with their Laplace transforms. This suggests the fol-
lowing definition. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two
vectors, of nonnegative integer-valued random variables, such that

E
[ n∏

i=1

tXi
i

]
≥ E

[ n∏
i=1

tYi
i

]
for all t ∈ (0, 1)n. (7.D.3)

Then X is said to be smaller than Y in the multivariate probability generating
function order (denoted by X ≤pgf Y ).

It is easy to see that (7.D.3) holds if, and only if, (7.D.1) holds. That is,

X ≤pgf Y ⇐⇒ X ≤Lt Y .

A preservation property of the Laplace transform order is described in the
next theorem. It is a multivariate extension of Theorem 5.A.9.



352 7 Multivariate Variability and Related Orders

Theorem 7.D.7. For i = 1, 2, . . . , m, let {Xj,i, j = 1, 2, . . . } be a se-
quence of nonnegative identically distributed random vectors, and assume
that all the Xj,i’s are mutually independent. Let M = (M1, M2, . . . , Mm)
and N = (N1, N2, . . . , Nm) be two vectors of nonnegative integer-valued ran-
dom variables. Assume that both N and N are independent of the Xj,i’s. If
M ≤pgf N , then

( M1∑
j=1

Xj,1,

M2∑
j=1

Xj,2, . . . ,

Mm∑
j=1

Xj,m

)
≤Lt

( N1∑
j=1

Xj,1,

N2∑
j=1

Xj,2, . . . ,

Nm∑
j=1

Xj,m

)
.

Proof. For fixed (n1, n2, . . . , nm) and fixed bi > 0, i = 1, 2, . . . , m, we compute

E
[
e− ∑m

i=1 bi
∑ni

j=1 Xj,i
]

=
m∏

i=1

E
[
e−bi

∑ni
j=1 Xj,i

]
=

m∏
i=1

(
LX1,i(bi)

)ni
,

where LX1,i denotes the Laplace transform of X1,i, i = 1, 2, . . . , m. Therefore

E
[
e− ∑m

i=1 bi
∑Mi

j=1 Xj,i
]

= E

[ m∏
i=1

(
LX1,i

(bi)
)Mi

]

≥ E

[ m∏
i=1

(
LX1,i(bi)

)Ni

]
= E

[
e− ∑m

i=1 bi
∑Ni

j=1 Xj,i
]
. 
�

7.D.2 The multivariate factorial moments order

Let X and Y be two vectors of nonnegative integer-valued random variables
such that

E

[ n∏
i=1

(
Xi

ji

)]
≤ E

[ n∏
i=1

(
Yi

ji

)]
for all ji ∈ N+, i = 1, 2, . . . , n. (7.D.4)

Then X is said to be smaller than Y in the factorial moments order (denoted
by X ≤fm Y ).

It is easy to see that

X ≤fm Y =⇒ EX ≤ EY .

The proofs of the following three results are similar to the proofs of Theo-
rems 5.C.2, 5.C.4, and 5.C.5, respectively. We omit the straightforward details.

Theorem 7.D.8. (a) Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be
two vectors of nonnegative integer-valued random variables. If X ≤fm Y ,
then X + k ≤fm Y + k for every k ∈ N

n
+.
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(b) Let (X1, X2, . . . , Xn) and (Y1, Y2, . . . , Yn) be two vectors of nonnegative
integer-valued random variables. If (X1, X2, . . . , Xn) ≤fm (Y1, Y2, . . . , Yn),
then (k1X1, k2X2, . . . , knXn) ≤fm (k1Y1, k2Y2, . . . , knYn) for every (k1, k2,
. . . , kn) ∈ N

n
+.

(c) Let X1,X2, . . . ,Xm be a set of independent n-dimensional vectors of non-
negative integer-valued random variables. Let Y 1,Y 2, . . . ,Y m be another
set of independent n-dimensional vectors of nonnegative integer-valued
random variables. If Xi ≤fm Y i, i = 1, 2, . . . , m, then

m∑
i=1

Xi ≤fm

m∑
i=1

Y i.

Theorem 7.D.9. Let X and Y be two vectors of nonnegative integer-valued
random variables. If X ≤icx Y , then X ≤fm Y . In particular, if X ≤st Y ,
then X ≤fm Y .

Theorem 7.D.10. Let X and Y be two vectors of nonnegative integer-valued
random variables with bounded support

∏n
i=1{0, 1, 2, . . . , bi}. If X ≤fm Y ,

then b − Y ≤pgf b − X.

7.D.3 The multivariate moments order

Consider now two vectors, of general (that is, not necessarily integer-valued)
nonnegative random variables, X and Y such that

E

[ n∏
i=1

Xji

i

]
≤ E

[ n∏
i=1

Y ji

i

]
for all ji ∈ N+, i = 1, 2, . . . , n.

Then X is said to be smaller than Y in the moments order (denoted as
X ≤mom Y ).

Clearly,
X ≤mom Y =⇒ EX ≤ EY .

The following three results are analogs of Theorems 5.C.6, 5.C.9, and
5.C.19. We omit the straightforward proofs.

Theorem 7.D.11. (a) Let X and Y be two vectors of nonnegative random
variables. If X ≤mom Y , then X + k ≤mom Y + k for every k ≥ 0.

(b) Let (X1, X2, . . . , Xn) and (Y1, Y2, . . . , Yn) be two vectors of nonnega-
tive random variables. If (X1, X2, . . . , Xn) ≤mom (Y1, Y2, . . . , Yn), then
(k1X1, k2X2, . . . , knXn) ≤mom (k1Y1, k2Y2, . . . , knYn) for every (k1, k2,
. . . , kn) ≥ 0.

(c) Let X1,X2, . . . ,Xm be a set of independent n-dimensional vectors of
nonnegative random variables. Let Y 1,Y 2, . . . ,Y m be another set of
independent n-dimensional vectors of nonnegative random variables. If
Xi ≤mom Y i, i = 1, 2, . . . , m, then



354 7 Multivariate Variability and Related Orders

m∑
i=1

Xi ≤mom

m∑
i=1

Y i.

Theorem 7.D.12. Let X and Y be two vectors of nonnegative integer-valued
random variables. If X ≤fm Y , then X ≤mom Y . In particular, if X ≤icx Y
(or if X ≤st Y ), then X ≤mom Y .

Theorem 7.D.13. Let X and Y be two vectors of nonnegative random vari-
ables with bounded support

∏n
i=1[0, bi]. If X ≤mom Y , then b−Y ≤Lt b−X.

The ≤uo-cx order implies the multivariate moments order as it is described
in the following result. This result follows at once from Theorem 7.A.40.

Theorem 7.D.14. Let X and Y be two vectors of nonnegative random vari-
ables. If X ≤uo-cx Y , then X ≤mom Y .

7.E Complements

Section 7.A: The proofs of Theorems 7.A.1 and 7.A.2 can be derived from
results of Strassen [541]; see, for instance, Rüschendorf [482]. Elton and
Hill [183] derived a constructive proof of Theorem 7.A.1. Further refer-
ences regarding these theorems and several variations of them can be
found in Elton and Hill [182]. Most of the other results in this section are
easy to derive. The first characterization of the order ≤icx, given in The-
orem 7.A.3, can be found in Müller and Stoyan [419]. The result about
the convex order comparison of two sums (7.A.13) is taken from Berger
[79]. The comparisons of vectors of random partial sums of random vari-
ables (Theorem 7.A.7) is taken from Jean-Marie and Liu [254]. Theorems
7.A.8 and 7.A.9 can be found in Arnold [19]. Results similar to the con-
clusions of Theorem 7.A.10 can be found in Alzaid and Proschan [14].
The convex order comparison of multivariate means (Example 7.A.11) is
a variation of Lemma 1 of Bäuerle [59]. The necessary (and sufficient)
conditions for the comparison of multivariate normal random vectors
(Example 7.A.13) can be found in Müller [413]; some variations of the
results in this example are given in Ding and Zhang [168]. The condi-
tions which yield the stochastic equality of X and Y (Theorems 7.A.14
and 7.A.15) are taken from Li and Zhu [351] and from Scarsini [492],
whereas Theorem 7.A.16 is taken from Baccelli and Makowski [27]. Some
orders that are weaker than the multivariate convex order are studied
in Mosler [399, Chapter 8]; for example, he studies the order defined by
Eφ(a1X1 + a2X2 + · · · + anXn) ≤ Eφ(a1Y1 + a2Y2 + · · · + anYn) for all
univariate convex functions φ and constants a1, a2, . . . , an for which the
expectations exist. Fernández and Molchanov [194] studied related orders.
The material in Section 7.A.5 follows Denuit, Lefèvre, and Mesfioui [148];
a version of the (m1, m2)-icx order for discrete random vectors is studied
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in Denuit, Lefèvre, and Mesfioui [150]. A more general version of Theo-
rem 7.A.17 can be found in Bassan and Scarsini [54]. The order ≤symcx is
defined and studied in Marshall and Olkin [383, page 282]. The fact that
random vectors, that are comparable in the order ≤ccx, must have the
same covariance matrix (Theorem 7.A.23), can be found in Müller and
Stoyan [419]. The “preservation property” of the convex order under in-
dependence (Theorem 7.A.24) can be found in Müller and Scarsini [417].
The results which compare random sums (Theorem 7.A.25) are taken from
Pellerey [451]. The result about the ordering of multivariate normal ran-
dom vectors according to the ≤ccx order (Example 7.A.26) is taken from
Block and Sampson [94, Section 3]. The notion of directionally convex
functions is studied in Shaked and Shanthikumar [509], though Fan and
Lorentz [190], Marshall and Olkin [383, page 157], and Rüschendorf [483]
mentioned such functions earlier. Most of the results about the direction-
ally convex order (Section 7.A.8) are taken from Chang, Chao, Pinedo,
and Shanthikumar [125] and from Meester and Shanthikumar [387]. The
closure under limits property of the directionally convex order (Theorem
7.A.31) can be found in Müller and Stoyan [419]. The comparison of in-
tegrals result (Theorem 7.A.35) is taken from Miyoshi [397]. The results
which compare random sums (Theorem 7.A.36) are corrected versions of
Theorem 2.3 and a part of Theorem 2.4 of Pellerey [451]. The compar-
ison of mixtures result (Theorem 7.A.37) can be found in Denuit and
Müller [157], whereas the comparison of vectors with the same depen-
dence structure (Theorem 7.A.38) can be found in Müller and Scarsini
[417]. The necessary and sufficient conditions for the comparison of mul-
tivariate normal random vectors (Example 7.A.39) are taken from Müller
[413]; an extension of this result to Kotz-type distributions is given in
Ding and Zhang [168]. A discussion about the order ≤uo-cx can be found
in Bergmann [82], where other orders, related to several unimodality no-
tions, are also studied; the characterization given in Theorem 7.A.40(a)
is taken from that paper. The preservation property of the order ≤uo-cx
given in Theorem 7.A.41(a) can be found in Bergmann [80]. The results
which compare random sums (Theorem 7.A.42) are taken from Pellerey
[451]. Dyckerhoff and Mosler [173] introduced some relatively easy con-
ditions for verifying X ≤uo-cx Y or X ≤lo-cv Y when X and Y have
finite discrete supports. The material about the orders ≤n

m is taken from
O’Brien and Scarsini [438]. Scarsini [490] has studied the order ≤2

m in
some detail; in particular, he has identified a class U of functions such
that (X1, X2) ≤2

m (Y1, Y2) if, and only if, E[φ(X1, X2)] ≤ E[φ(Y1, Y2)] for
all φ ∈ U .

Müller [412] studied stochastic orders that are defined by requiring (7.A.1)
to hold for all quasiconcave or increasing quasiconcave functions.
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Arnold [20], building on previous ideas, introduced a multivariate Lorenz
order that is based on the characterization of the univariate Lorenz order
given in Theorem 3.A.11.

Section 7.B: The development in Sections 7.B.1 and 7.B.2 follows the work
of Giovagnoli and Wynn [211]. The comparison of vectors with the same
dependence structure (Theorem 7.B.3) can be found in Arias-Nicolás,
Fernández-Ponce, Luque-Calvo, and Suárez-Llorens [17]. The conditions
under which normal random vectors can be compared with respect to
the order ≤SD (Example 7.B.5) are taken from Arias-Nicolás, Fernández-
Ponce, Luque-Calvo, and Suárez-Llorens [17]. The comparison, in the or-
der ≤SD, of vectors of order statistics (Theorem 7.B.4), has been communi-
cated to us by Suárez-Llorens [542]. The orders that are studied in Section
7.B.3 were introduced in Shaked and Shanthikumar [518]; the properties
of these orders, given in Theorems 7.B.11 and 7.B.15, can be found in
that paper. The comparison, in the multivariate dispersive order, of vec-
tors of order statistics (Theorem 7.B.12), can be found in Belzunce, Ruiz,
and Ruiz [75]; an extension of it is given in Belzunce, Mercader, and Ruiz
[70]. The result that compares vectors of epoch times of nonhomogeneous
Poisson processes (Example 7.B.13) is taken from Belzunce and Ruiz [73];
an extension of it is given in Belzunce, Mercader, and Ruiz [70].

Khaledi and Kochar [290] and Belzunce, Ruiz, and Suárez-Llorens [76]
introduced and studied multivariate dispersive orders that are general-
izations, respectively, of characterizations (3.B.12) and (3.B.13) of the
univariate order ≤disp.

Section 7.C: The multivariate transform orders in this section were intro-
duced and studied in Roy [480].

Section 7.D: A basic paper on the multivariate Laplace transform order is
Denuit [141], where many of the results in Section 7.D.1 can be found.
The result about the preservation of the multivariate Laplace transform
order under random sums (Theorem 7.D.7) is taken from Wong [568]; see
also Pellerey [451]. The multivariate factorial moment order is studied
in Lefèvre and Picard [337], where Theorems 7.D.9 and 7.D.10 can be
found. That paper also mentions and studies the multivariate moments
order. The closure properties of the multivariate order ≤fm (Theorem
7.D.8) have been communicated to us by Lefèvre [335].
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Stochastic Convexity and Concavity

In this chapter we study stochastic monotonicities of parametric families of
distributions with respect to various stochastic orders. We have already en-
countered stochastic monotonicities earlier in this book. For example, condi-
tion (1.A.13) in Theorem 1.A.6, condition (3.A.47) in Theorem 3.A.21, and
condition (4.A.17) in Theorem 4.A.18 describe such monotonicities. In this
chapter a systematic study of such stochastic monotonicities is given. Various
notions of stochastic convexity and concavity are reviewed. A multivariate
extension of the notion of stochastic convexity, namely, stochastic directional
convexity, is investigated in this chapter as well.

Let {Pθ, θ ∈ Θ} be a family of univariate distributions. Throughout this
chapter Θ is a convex set (that is, an interval) of the real line R or of the set
N+. Let X(θ) denote a random variable with distribution Pθ. It is convenient
and intuitive to replace the notation {Pθ, θ ∈ Θ} by {X(θ), θ ∈ Θ}, which
we do throughout this chapter. Note that when we write {X(θ), θ ∈ Θ} we
do not assume (and often we are not concerned with) any dependence (or
independence) properties among the X(θ)’s. We are only interested in the
“marginal distributions” {Pθ, θ ∈ Θ} of {X(θ), θ ∈ Θ} even when in some
circumstances {X(θ), θ ∈ Θ} is a well-defined stochastic process. Note also
that X(θ) does not mean that X is a function of θ; it only indicates that the
distribution of X(θ) is Pθ.

8.A Regular Stochastic Convexity

We start our discussion with the weakest notion of stochastic convexity and
concavity and show its usefulness by a list of examples. Then, in the following
sections, we introduce stronger notions which provide a systematic way of
verifying the weak notion of this section.
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8.A.1 Definitions

In the following definitions SI, SCX, SCV, SICX, SIL, SD, SDCV, and so
forth, stand, respectively, for stochastically increasing, stochastically convex,
stochastically concave, stochastically increasing and convex, stochastically in-
creasing and linear, stochastically decreasing, stochastically decreasing and
concave, and so forth.

Let {X(θ), θ ∈ Θ} be a set of random variables. Denote

(a) {X(θ), θ ∈ Θ} ∈ SI [or SD] if Eφ(X(θ)) is increasing [or decreasing] for
all increasing functions φ,

(b) {X(θ), θ ∈ Θ} ∈ SCX [or SCV] if Eφ(X(θ)) is convex [or concave] for all
convex [or concave] functions φ,

(c) {X(θ), θ ∈ Θ} ∈ SICX [or SICV] if {X(θ), θ ∈ Θ} ∈ SI and Eφ(X(θ)) is
increasing convex [or concave] in θ for all increasing convex [or concave]
functions φ,

(d) {X(θ), θ ∈ Θ} ∈ SDCX [or SDCV] if {X(θ), θ ∈ Θ} ∈ SD and Eφ(X(θ))
is decreasing convex [or concave] in θ for all increasing convex [or concave]
functions φ,

(e) {X(θ), θ ∈ Θ} ∈ SIL if {X(θ), θ ∈ Θ} ∈ SI and Eφ(X(θ)) is increasing
convex in θ for all increasing convex functions φ, and is increasing concave
in θ for all increasing concave functions φ,

(f) {X(θ), θ ∈ Θ} ∈ SDL if {X(θ), θ ∈ Θ} ∈ SD and Eφ(X(θ)) is decreasing
convex in θ for all increasing convex functions φ, and is decreasing concave
in θ for all increasing concave functions φ.

Note that

{X(θ), θ ∈ Θ} ∈ SIL ⇐⇒ {X(θ), θ ∈ Θ} ∈ SICX ∩ SICV

and

{X(θ), θ ∈ Θ} ∈ SDL ⇐⇒ {X(θ), θ ∈ Θ} ∈ SDCX ∩ SDCV.

Also, since a function is convex if, and only if, its negative is concave, we see
that

{X(θ), θ ∈ Θ} ∈ SCX ⇐⇒ {X(θ), θ ∈ Θ} ∈ SCV.

Example 8.A.1. Let X(µ, σ) be a normal random variable with mean µ and
standard deviation σ. Then, for each σ > 0, one has {X(µ, σ), µ ∈ R} ∈ SIL.
This follows from Example 8.D.4 and Theorem 8.D.11 below.

Example 8.A.2. Let X(λ) be a Poisson random variable with mean λ. Then
{X(λ), λ ∈ [0,∞)} ∈ SIL. This follows from Example 8.A.7 below.

Equivalently, Example 8.A.2 shows that a homogeneous Poisson process
{K(t), t ≥ 0} is SIL.
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Lynch [370] has found conditions under which a stationary renewal process
{K(t), t ≥ 0} is SCX. Explicitly, let X2, X3, . . . be independent and identically
distributed interrenewal times with a distribution function F . Let the time
until the first renewal, X1, have the equilibrium distribution function G given
by G(x) =

∫ x
0 F (u)du

EX2
, x ≥ 0. Lynch [370] has shown that if X2 has a logconcave

density function, then {K(t), t ∈ [0,∞)} ∈ SCX.

Example 8.A.3. Let X(n, p) be a binomial random variable with mean np and
variance np(1−p). Then, for each p ∈ (0, 1), one has {X(n, p), n ∈ N++} ∈ SIL
and, for each n ∈ N++, one has {X(n, p), p ∈ (0, 1)} ∈ SIL. These follow from
Example 8.B.3 and Theorem 8.B.9 below.

Example 8.A.4. Let Y (n), n = 1, 2, . . ., be a sequence of nonnegative in-
dependent and identically distributed random variables with mean 1. For
µ > 0 define X(µ, n) = µ

∑n
k=1 Y (k), n ∈ N++. Then, for each n ∈ N++,

one has {X(µ, n), µ ∈ [0,∞)} ∈ SIL and, for each µ > 0, one has
{X(µ, n), n ∈ N++} ∈ SIL. The first result follows from Example 8.D.5
and Theorem 8.D.11 below. The second result follows from Example 8.B.4
and Theorem 8.B.9 below.

Specifically, when Y (n) in Example 8.A.4 is an exponential random vari-
able we have the following example.

Example 8.A.5. Let X(µ, n) be an Erlang-n random variable with mean nµ
and variance nµ2. Then, for each n ∈ N++, one has {X(µ, n), µ ∈ [0,∞)} ∈
SIL and, for each µ > 0, one has {X(µ, n), n ∈ N++} ∈ SIL.

By taking n = 1 in Example 8.A.4 we obtain the following result.

Example 8.A.6. Let Y be a nonnegative random variable. For µ > 0 define
X(µ) = µY . Then {X(µ), µ ∈ [0,∞)} ∈ SIL.

Example 8.A.7. Suppose that Θ is [0,∞) or N++. The family of nonnegative
random variables {X(θ), θ ∈ Θ} is said to have the semigroup property if, for
all θ1 and θ2 in Θ, one has

X(θ1 + θ2) =st X(θ1) + X(θ2), (8.A.1)

where X(θ1) and X(θ2) in (8.A.1) are independent. Note that {X(λ), λ ∈
[0,∞)} of Example 8.A.2 has the semigroup property. Also, for each µ > 0, it
is seen that {X(µ, n), n ∈ N++} of Example 8.A.4 has the semigroup property.
If {X(θ), θ ∈ Θ} has the semigroup property, then {X(θ), θ ∈ Θ} ∈ SIL. This
result follows from Example 8.B.7 and Theorem 8.B.9 below.

Example 8.A.8. The Beta distribution with parameters α > 0 and β > 0 is
the one that has the density function defined as

fα,β(x) =
1

B(α, β)
xα−1(1 − x)β−1, 0 < x < 1,
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where B(α, β) ≡
∫ 1
0 xα−1(1 − x)β−1dx. The beta distribution of the second

kind with parameters α > 0 and β > 0 is the one that has the density function
defined as

gα,β(x) =
1

B(α, β)
xα−1

(1 − x)α+β
, x > 0.

Fix a t > 0. Adell, Bad́ıa, and de la Cal [2] proved the following results:

(a) If X(θ) has the density function ftθ,t(1−θ), θ ∈ (0, 1), then {X(θ), θ ∈
(0, 1)} ∈ SICX.

(b) If Y (θ) has the density function ftθ+1,t(1−θ)+1, θ ∈ (0, 1), then {Y (θ), θ ∈
(0, 1)} ∈ SICX.

(c) If Z(θ) has the density function gtθ,t, θ > 0, then {Z(θ), θ > 0} ∈ SICX.

For a random variable Y , let FY and FY denote its distribution and sur-
vival functions, respectively. Similarly, for a random variable X(θ), let FX(·, θ)
and FX(·, θ) denote the corresponding distribution and survival functions.
Since the class of functions fa(x) = max{x − a, 0} [min{x − a, 0}] for all
a ∈ R generates all the increasing and convex [concave] functions, and since
E(max{X −a, 0}) =

∫∞
a

FX(x)dx [E(min{X −a, 0}) = −
∫ a

−∞ FX(x)dx] (see
Section 4.A.1), we have the following equivalences.

Theorem 8.A.9. (a) {X(θ), θ ∈ Θ} ∈ SICX [SICV] if, and only if, {X(θ),
θ ∈ Θ} ∈ SI and

∫∞
x

FX(y, θ)dy [
∫ x

−∞ FX(y, θ)dy] is increasing [decreas-
ing ] convex in θ for all x, and

(b) {X(θ), θ ∈ Θ} ∈ SDCX [SDCV] if, and only if, {X(θ), θ ∈ Θ} ∈ SD
and

∫∞
x

FX(y, θ)dy [
∫ x

−∞ FX(y, θ)dy] is decreasing [increasing ] convex in
θ for all x.

For discrete random variables we have the following analog of Theorem
8.A.9.

Theorem 8.A.10. Suppose that for each θ ∈ Θ, the support of X(θ) is in N.
Then

(a) {X(θ), θ ∈ Θ} ∈ SICX [SICV] if, and only if, {X(θ), θ ∈ Θ} ∈ SI
and

∑∞
l=k P{X(θ) ≥ l} [

∑k
l=−∞ P{X(θ) ≤ l}] is increasing [decreasing ]

convex in θ for all k ∈ N, and
(b) {X(θ), θ ∈ Θ} ∈ SDCX [SDCV] if, and only if, {X(θ), θ ∈ Θ} ∈ SD

and
∑∞

l=k P{X(θ) ≥ l} [
∑k

l=−∞ P{X(θ) ≤ l}] is decreasing [increasing ]
convex in θ for all k ∈ N.

Recall the following identity which holds for any random variable Z with
mean EZ:

EZ = −
∫ 0

−∞
F (u)du +

∫ ∞

0
F (u)du, (8.A.2)

where F and F are the distribution function and the survival function of Z,
respectively. From Theorem 8.A.9 and (8.A.2) we thus obtain the next result.
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Theorem 8.A.11. Suppose that EX(θ) is a linear function of θ.

(a) If {X(θ), θ ∈ Θ} ∈ SICX [SICV], then {X(θ), θ ∈ Θ} ∈ SICV [SICX],
and therefore {X(θ), θ ∈ Θ} ∈ SIL.

(b) If {X(θ), θ ∈ Θ} ∈ SDCX [SDCV], then {X(θ), θ ∈ Θ} ∈ SDCV [SDCX],
and therefore {X(θ), θ ∈ Θ} ∈ SDL.

From Example 8.A.6 it follows that if X(θ) is uniformly distributed on
[0, θ], then {X(θ), θ ∈ [0,∞)} ∈ SIL. However, in order to obtain the discrete
analog of this result we need to proceed in a different route as in the next
example.

Example 8.A.12. Let X(n) be uniformly distributed on {0, 1, . . . , n−1}. Then
{X(n), n ∈ N+} ∈ SIL. In order to see it first note that EX(n) is a linear
function of n. Thus, by Theorem 8.A.11 it is sufficient to show that {X(n), n ∈
N+} ∈ SICV. Clearly, {X(n), n ∈ N+} ∈ SI. Now we compute

k∑
l=0

P{X(n) ≤ l} =
1
n

· (k + 1)k
2

.

This is a decreasing convex function of n. Thus the stated result follows from
Theorem 8.A.10(a).

We will now present an application of these notions in establishing a
stochastic inequality.

Theorem 8.A.13. Let {Yk, k ∈ N++} be a sequence of independent and iden-
tically distributed nonnegative random variables independent of the two non-
negative discrete random variables M and N . Then

(a) M ≤icx [≤icv] N =⇒
∑M

k=1 Yk ≤icx [≤icv]
∑N

k=1 Yk, and
(b) M ≤cx N =⇒

∑M
k=1 Yk ≤cx

∑N
k=1 Yk.

Proof. Let φ be an increasing and convex [concave] function and define
ψ(n) = Eφ

(∑n
k=1 Yk

)
. Then ψ is an increasing and convex [concave] func-

tion (see Example 8.A.4). Therefore M ≤icx [≤icv] N implies that Eψ(M) =
Eφ
(∑M

k=1 Yk

)
≤ Eφ

(∑N
k=1 Yk

)
= Eψ(N). This establishes part (a). When

M ≤cx N one has E
(∑M

k=1 Yk

)
= E

(∑N
k=1 Yk

)
(see Theorem 4.A.35). This

observation combined with part (a) completes the proof for part (b). 
�

A stronger result than Theorem 8.A.13(b) is stated as Theorem 3.A.13
in Chapter 3. A stronger result than Theorem 8.A.13(a) is stated as Theo-
rem 4.A.9 in Chapter 4. Theorem 8.A.13 can also be obtained from Theorem
4.A.18. In fact, we next restate Theorems 3.A.21 and 4.A.18 in terms of the
terminology of this section (the assumption in Theorem 8.A.14(a) below is
slightly stronger than the assumption in Theorem 4.A.18; see a comment af-
ter Theorem 4.A.18).
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Theorem 8.A.14. Let {X(θ), θ ∈ X} be a collection of random variables,
and let Θ1 and Θ2 be two X -valued random variables that are independent of
{X(θ), θ ∈ X}.
(a) If {X(θ), θ ∈ X} ∈ SICX [SICV] and if Θ1 ≤icx [≤icv]Θ2, then X(Θ1) ≤icx

[≤icv] X(Θ2).
(b) If {X(θ), θ ∈ X} ∈ SCX and if Θ1 ≤cx Θ2, then X(Θ1) ≤cx X(Θ2).

8.A.2 Closure properties

Closure properties of the notions that were introduced in Section 8.A.1 serve
as the basis for studying the convexity and concavity properties of the per-
formance measures of stochastic systems. In this subsection we describe some
of these closure properties.

Theorem 8.A.15. Suppose that {X(θ), θ ∈ Θ} and {Y (θ), θ ∈ Θ} are two
collections of random variables such that X(θ) and Y (θ) are independent for
each θ. If {X(θ), θ ∈ Θ} ∈ SICX [or SICV] and {Y (θ), θ ∈ Θ} ∈ SICX [or
SICV], then {X(θ) + Y (θ), θ ∈ Θ} ∈ SICX [or SICV].

Proof. We prove the convex case only. The concave case can be similarly
proven. Let θi ∈ Θ, i = 1, 2, 3, 4, be such that θ1 ≤ θ2 = θ3 ≤ θ4 and
θ1 + θ4 = θ2 + θ3. The stochastic monotonicity of X(θ) and Y (θ) can be
used to construct four random variables X̂1, X̂4, Ŷ1, and Ŷ4 such that X̂i =st
X(θi), Ŷi =st Y (θi), i = 1, 4, X̂1 ≤ X̂4 a.s., and Ŷ1 ≤ Ŷ4 a.s. (see Theorem
1.A.1). Furthermore (X̂1, X̂4) and (Ŷ1, Ŷ4) can be constructed so that they are
independent. Let I1 and I2 be independent random variables, independent of
X̂1, X̂4, Ŷ1, and Ŷ4, such that P{I1 = 0} = P{I1 = 1} = P{I2 = 0} =
P{I2 = 1} = 1

2 . Define X̂2 = (1 − I1)X̂1 + I1X̂4, X̂3 = I1X̂1 + (1 − I1)X̂4,
Ŷ2 = (1 − I2)Ŷ1 + I2Ŷ4, and Ŷ3 = I2Ŷ1 + (1 − I2)Ŷ4. It is then not hard to see
that X̂2 =st X̂3, Ŷ2 =st Ŷ3,

(X̂1, Ŷ1) ≤
[
(X̂2, Ŷ2), (X̂3, Ŷ3)

]
≤ (X̂4, Ŷ4) a.s.

(where, for any four numbers a, b, c, and d, the notation a ≤ [b, c] ≤ d means
a ≤ min{b, c} and max{b, c} ≤ d), and

(X̂1 + Ŷ1) + (X̂4 + Ŷ4) = (X̂2 + Ŷ2) + (X̂3 + Ŷ3) a.s.

Then, for any increasing convex function φ, one has

Eφ(X̂1 + Ŷ1) + Eφ(X̂4 + Ŷ4) ≥ Eφ(X̂2 + Ŷ2) + Eφ(X̂3 + Ŷ3).

Observe that X̂2 ≥icx X(θ2) and Ŷ2 ≥icx Y (θ2). So by the preservation of the
order ≥icx under convolution (see Theorem 4.A.8) it follows that X̂2 + Ŷ2 ≥icx
X(θ2) + Y (θ2). That is, for any increasing convex function φ, one has

Eφ(X̂2 + Ŷ2) ≥ Eφ(X(θ2) + Y (θ2)).
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Similarly,
Eφ(X̂3 + Ŷ3) ≥ Eφ(X(θ3) + Y (θ3)).

Therefore,

Eφ(X(θ1) + Y (θ1)) + Eφ(X(θ4) + Y (θ4))
≥ Eφ(X(θ2) + Y (θ2)) + Eφ(X(θ3) + Y (θ3)).

Combining this with the preservation of stochastic monotonicity under con-
volution (see Theorem 1.A.3), one has {X(θ) + Y (θ), θ ∈ Θ} ∈ SICX. 
�

A combination of Example 8.A.4 and Theorem 8.A.15 yields the following
generalization of Example 8.A.4 which will be used later.

Example 8.A.16. Let Y (n), n = 1, 2, . . . , be a sequence of nonnegative inde-
pendent and identically distributed random variables with mean 1, and let Z
be a random variable which is independent of the Y (n)’s. For µ > 0 define
X(µ, n) = Z + µ

∑n
k=1 Y (k), n ∈ N++. Then, for each n ∈ N++, one has

{X(µ, n), µ ∈ R+} ∈ SIL and, for each µ > 0, one has {X(µ, n), n ∈ N++} ∈
SIL.

Theorem 8.A.17. Let {X(θ), θ ∈ Θ} be a family of Λ-valued random vari-
ables, where Λ ⊆ R is a convex set, and let {Y (λ), λ ∈ Λ} be another family
of random variables. Suppose that X(θ) and Y (λ) are independent for any
choice of θ ∈ Θ and λ ∈ Λ.

(a) If {X(θ), θ ∈ Θ} ∈ SICX [SICV, SIL] and {Y (λ), λ ∈ Λ} ∈ SICX [SICV,
SIL], then {Y (X(θ)), θ ∈ Θ} ∈ SICX [SICV, SIL].

(b) If {X(θ), θ ∈ Θ} ∈ SDCX [SDCV, SDL] and {Y (λ), λ ∈ Λ} ∈ SICX
[SICV, SIL], then {Y (X(θ)), θ ∈ Θ} ∈ SDCX [SDCV, SDL].

Proof. We will prove the increasing convex case only. The other cases can be
proven similarly. Using the construction in the proof of Theorem 1.A.1 for the
usual stochastic order, it is easily verified that {Y (X(θ)), θ ∈ Θ} ∈ SI. Let φ
be an increasing and convex function. Consider

Eφ(Y (X(θ))) = Eψ(X(θ)), (8.A.3)

where ψ(λ) = Eφ(Y (λ)). Since {Y (λ), λ ∈ Λ} ∈ SICX, we see that ψ is an
increasing and convex function. Therefore, since {X(θ), θ ∈ Θ} ∈ SICX, one
sees from (8.A.3) that Eφ(Y (X(θ))) is increasing and convex in θ. Therefore
{Y (X(θ)), θ ∈ Θ} ∈ SICX. 
�

Example 8.A.18. Let Y (n), n = 1, 2, . . . , be a sequence of nonnegative inde-
pendent and identically distributed random variables as in Example 8.A.4,
but here, since we are interested only in convexity properties with respect
to n, we let the common mean of the Y (n)’s be a fixed µ > 0. Denote
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X(n) =
∑n

k=1 Y (k), n ∈ N++, and let X̃(n) be the forward recurrence time
associated with X(n), that is, let X̃(n) have the survival function given by

P{X̃(n) > x} =

∫∞
x

P{X(n) > u}du

nµ
, x ≥ 0, n ∈ N++.

Then {X̃(n), n ∈ N++} ∈ SIL. This follows, by Examples 8.A.12 and 8.A.16,
and by Theorem 8.A.17, from the relation (proven below)

X̃(n) =st Ỹ +
U(n)∑
k=1

Y (k), (8.A.4)

where U(n) is a random variable which is uniformly distributed on {0, 1, . . . ,
n − 1}, and Ỹ is the forward recurrence time associated with Y (1), that is,

P{Ỹ > x} =

∫∞
x

P{Y (1) > u}du

µ
, x ≥ 0.

The relation (8.A.4) can be proven as follows: Consider n independent renewal
processes {Ni(t), t ≥ 0}, i = 1, 2, . . . , n, all with interrenewal times that are
distributed as Y (1), and consider the renewal process {N(t), t ≥ 0} with
interrenewal intervals which are the sums of the corresponding interrenewal
intervals of the n independent renewal processes {Ni(t), t ≥ 0}, i = 1, 2, . . . , n.
That is, the interrenewal times that are associated with {N(t), t ≥ 0} are dis-
tributed as X(n). Select a t > 0 and consider the associated forward recurrence
time in the process {N(t), t ≥ 0}. Clearly the value t falls in an interrenewal
interval which is the sum of the n interrenewal intervals corresponding to
{N1(t), t ≥ 0}, {N2(t), t ≥ 0}, . . . , {Nn(t), t ≥ 0}. With probability 1/n, t
falls in the interrenewal interval corresponding to the process {Ni(t), t ≥ 0},
i = 1, 2, . . . , n. Let U(n)+1 be the index of the process in whose interrenewal
interval t falls. Then U(n) is uniformly distributed on {0, 1, . . . , n−1}. If t falls
in an interval corresponding to {Ni(t), t ≥ 0} (that is, when U(n) = i − 1),
then its forward recurrence time is Ỹ +

∑n
k=i+1 Y (k) =st Ỹ +

∑n−i
k=1 Y (k).

Unconditioning with respect to the value i of U(n) + 1 we obtain

X̃(n) =st Ỹ +
n−U(n)−1∑

k=1

Y (k) =st Ỹ +
U(n)∑
k=1

Y (k),

and the proof of (8.A.4) is complete. In Example 8.B.12 of Section 8.B the
reader may find a related result.

Let {X(n), n ∈ N+} be a Markov chain with state space S (S = [0,∞)
or N+). Let Y (x) and Z(x) denote generic random variables representing
[X(n + 1)

∣∣X(n) = x] and [X(n + 1) − x
∣∣X(n) = x], respectively (recall that,

for a random variable U and an event A, we denote by [U
∣∣A] any random

variable whose distribution is the conditional distribution of U given A). Note
that Y (x) =st x + Z(x), x ∈ S.
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Theorem 8.A.19. Suppose that X(0) = 0 a.s. If {Z(x), x ∈ S} ∈ SD and
Z(x) ≥ 0 a.s. for each x ∈ S, then {X(n), n ∈ N+} ∈ SICV.

Proof. Since Z(x) ≥ 0 a.s. we have Y (x) ≥ x a.s., and therefore X(n) is
a.s. increasing in n. For any increasing and concave function φ we have that
φ(x+y)−φ(y) increasing in x and decreasing in y. Therefore, since {Z(y), y ∈
S} ∈ SD, we see that Eφ(Z(y) + y) − φ(y) is decreasing in y. Since X(n) is
a.s. increasing in n, we have

Eφ(Z(X(n + 1)) + X(n + 1)) − Eφ(X(n + 1))
≤ Eφ(Z(X(n)) + X(n)) − Eφ(X(n)).

Noting that X(n + 1) =st Z(X(n)) + X(n), from the above equation one
obtains

Eφ(X(n + 2)) + Eφ(X(n)) ≤ Eφ(X(n + 1)) + Eφ(X(n + 1)).

That is, {X(n), n ∈ N+} ∈ SICV. 
�

Let X(n) be the historical record value of a sequence of independent and
identically distributed random variables {Dn, n ∈ N++}. That is, X(n) =
max{X(n − 1), Dn} = max{X(0), D1, D2, . . . , Dn}, n ∈ N++.

Theorem 8.A.20. If X(0) = 0 a.s., then {X(n), n ∈ N+} ∈ SICV.

Proof. We apply Theorem 8.A.19. Here Y (x) =st max{Dn, x} and Z(x) =st
max{Dn − x, 0}. Clearly, {Z(x), x ≥ 0} satisfies the conditions of Theorem
8.A.19. 
�

8.A.3 Stochastic m-convexity

Let S be a subinterval of the real line. Recall from Section 3.A.5 the class
MS

m-cx of all functions φ : S → R whose mth derivative φ(m) exists and
satisfies φ(m)(x) ≥ 0, for all x ∈ S, or which are limits of sequences of functions
whose mth derivative is continuous and nonnegative on S, m = 1, 2, . . .. A
function φ : S → R is said to be m-increasing convex if φ ∈

⋂m
k=1 MS

k-cx. A
set of random variables {X(θ), θ ∈ Θ} (Θ is a subinterval of the real line)
is said to be stochastically m-increasing convex if Eφ(X(θ)) is m-increasing
convex in θ whenever φ is m-increasing convex. If Θ is a subinterval of N++,
then the definition of stochastic m-increasing convexity is similar; we do not
give the details here — they can be found in Denuit, Lefèvre, and Utev [155].

The proofs of most of the following examples, as well as many other ex-
amples, can be found in Denuit, Lefèvre, and Utev [155].

Example 8.A.21. Let X(λ) be a Poisson random variable with mean λ. Then
{X(λ), λ ∈ [0,∞)} is stochastically m-increasing convex for each m ∈ N++.
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Example 8.A.22. Let X(n, p) be a binomial random variable with mean np and
variance np(1−p). Then, for each p ∈ (0, 1), one has that {X(n, p), n ∈ N++}
is stochastically m-increasing convex, and for each n ∈ N++, one has that
{X(n, p), p ∈ (0, 1)} is stochastically m-increasing convex, for each m ∈ N++.

Example 8.A.23. Let Y (n), n = 1, 2, . . ., be a sequence of nonnegative inde-
pendent and identically distributed random variables with mean 1. For µ > 0
define X(µ, n) = µ

∑n
k=1 Y (k), n ∈ N++. Then, for each n ∈ N++, one has

that {X(µ, n), µ ∈ [0,∞)} is stochastically m-increasing convex, and for each
µ > 0, one has that {X(µ, n), n ∈ N++} is stochastically m-increasing convex,
for each m ∈ N++.

Specifically, when Y (n) in Example 8.A.23 is an exponential random vari-
able we have the following example.

Example 8.A.24. Let X(µ, n) be an Erlang-n random variable with mean nµ
and variance nµ2. Then, for each n ∈ N++, one has that {X(µ, n), µ ∈
[0,∞)} is stochastically m-increasing convex, and for each µ > 0, one has
{X(µ, n), n ∈ N++} is stochastically m-increasing convex, for each m ∈ N++.

By taking n = 1 in Example 8.A.23 we obtain the following result.

Example 8.A.25. Let Y be a nonnegative random variable. For µ > 0 define
X(µ) = µY . Then {X(µ), µ ∈ [0,∞)} is stochastically m-increasing convex
for each m ∈ N++.

When the set of random variables is parametrized by a location parameter
then we have:

Example 8.A.26. Let Y be a real random variable. For µ > 0 define X(µ) =
Y +µ. Then {X(µ), µ ∈ [0,∞)} is stochastically m-increasing convex for each
m ∈ N++.

Another example of interest is the following.

Example 8.A.27. Let X(n) be uniformly distributed on {0, 1, . . . , n−1}. Then
{X(n), n ∈ N+} is stochastically m-increasing convex for each m ∈ N++.

Since the composition of two m-increasing functions is m-increasing, we
obtain the following closure properties of stochastic m-convexity.

Theorem 8.A.28. (a) Let ϕ : S → R be an m-increasing convex function. If
{X(θ), θ ∈ Θ} is stochastically m-increasing convex, then {ϕ(X(θ)), θ ∈
Θ} is also stochastically m-increasing convex.

(b) Let ϑ : Θ → Θ be an m-increasing convex function. If {X(θ), θ ∈ Θ} is
stochastically m-increasing convex, then {X(ϑ(θ)), θ ∈ Θ} is also stochas-
tically m-increasing convex.

From Theorem 8.A.28(a) and Example 8.A.23 we obtain the following
result.
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Theorem 8.A.29. Let {Yn, n ≥ 1} be a sequence of nonnegative, independent
and identically distributed random variables. Let {N(θ), θ ∈ Θ} be a set of
nonnegative integer-valued random variables, independent of the Yn’s. Define
X(θ) =

∑N(θ)
n=1 Yn. If {N(θ), θ ∈ Θ} is stochastically m-increasing convex,

then {X(θ), θ ∈ Θ} is stochastically m-increasing convex.

8.B Sample Path Convexity

Sample path convexity is one powerful tool that can be used for the purpose of
obtaining the regular convexity notions presented in Section 8.A. Two other
related tools will be described in Sections 8.C and 8.D.

8.B.1 Definitions

Consider a family {X(θ), θ ∈ Θ} of random variables. Let θi ∈ Θ, i = 1, 2, 3, 4,
be any four values such that θ1 ≤ θ2 ≤ θ3 ≤ θ4 and θ1 + θ4 = θ2 + θ3.

If there exist four random variables X̂i, i = 1, 2, 3, 4, defined on a common
probability space, such that X̂i =st X(θi), i = 1, 2, 3, 4, and

(a) (i) max[X̂2, X̂3] ≤ X̂4 a.s. and (ii) X̂2+X̂3 ≤ X̂1+X̂4 a.s., then {X(θ), θ ∈
Θ} is said to be stochastically increasing and convex in the sample path
sense (denoted by {X(θ), θ ∈ Θ} ∈ SICX(sp));

(b) (i) X̂1 ≤ min[X̂2, X̂3] a.s. and (ii) X̂1+X̂4 ≤ X̂2+X̂3 a.s., then {X(θ), θ ∈
Θ} is said to be stochastically increasing and concave in the sample path
sense (denoted by {X(θ), θ ∈ Θ} ∈ SICV(sp));

(c) (i) X̂1 ≥ max[X̂2, X̂3] a.s. and (ii) X̂1+X̂4 ≥ X̂2+X̂3 a.s., then {X(θ), θ ∈
Θ} is said to be stochastically decreasing and convex in the sample path
sense (denoted by {X(θ), θ ∈ Θ} ∈ SDCX(sp));

(d) (i) X̂4 ≤ min[X̂2, X̂3] a.s. and (ii) X̂1+X̂4 ≤ X̂2+X̂3 a.s., then {X(θ), θ ∈
Θ} is said to be stochastically decreasing and concave in the sample path
sense (denoted by {X(θ), θ ∈ Θ} ∈ SDCV(sp));

(e) (i) max[X̂2, X̂3] ≤ X̂4 a.s. and (ii) X̂1+X̂4 = X̂2+X̂3 a.s., then {X(θ), θ ∈
Θ} is said to be stochastically increasing and linear in the sample path
sense (denoted by {X(θ), θ ∈ Θ} ∈ SIL(sp));

(f) (i) X̂1 ≥ max[X̂2, X̂3] a.s. and (ii) X̂1+X̂4 = X̂2+X̂3 a.s., then {X(θ), θ ∈
Θ} is said to be stochastically decreasing and linear in the sample path
sense (denoted by {X(θ), θ ∈ Θ} ∈ SDL(sp)).

Although Condition (i) in these definitions requires stochastic monotonicity
in Xi, i = 1, 2, 3, 4, we do not require the construction of X̂i, i = 2, 3, to
satisfy any a.s. monotonicity property (that is, we do not require that either
X̂2 ≥ X̂3 a.s. or X̂2 ≤ X̂3 a.s. be satisfied).

Example 8.B.1. Let X(µ, σ) be a normal random variable with mean µ and
standard deviation σ. Then, for each σ > 0, one has {X(µ, σ), µ ∈ R} ∈
SIL(sp). This follows from Example 8.D.4 and Theorem 8.D.11 below.
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Example 8.B.2. Let X(λ) be a Poisson random variable with mean λ. Then
{X(λ), λ ∈ R+} ∈ SIL(sp). This follows from Example 8.B.7 below.

Example 8.B.3. Let X(n, p) be a binomial random variable with mean np and
variance np(1 − p). Then, for each p ∈ (0, 1), one has {X(n, p), n ∈ N++} ∈
SIL(sp) and, for each n ∈ N++, one has {X(n, p), p ∈ (0, 1)} ∈ SIL(sp). The
first result follows from Example 8.B.4 below. In order to prove the second
result, first note that X(n, p) =st X1(p) + X2(p) + · · · + Xn(p), where Xj(p),
j = 1, 2, . . . , n, are independent and identically distributed Bernoulli random
variables with P{Xj(p)} = p. We will show that

{X1(p), p ∈ (0, 1)} ∈ SIL(sp). (8.B.1)

The second result above then follows from Theorem 8.B.10 below. To prove
(8.B.1) let pi, i = 1, 2, 3, 4, be such that 0 < p1 ≤ p2 ≤ p3 ≤ p4 < 1 and
p1 + p4 = p2 + p3. Let U be a uniform (0, 1) random variable. Let IA denote
the indicator function of A. Define

X̂1 = I{U≤p1}, X̂2 = I{U≤p2},

X̂3 = I{U≤p1} + I{p2≤U≤p4}, X̂4 = I{U≤p4}.

Then X̂i =st X1(p), i = 1, 2, 3, 4, and X̂i, i = 1, 2, 3, 4, satisfy the conditions
given in the definitions of SICX(sp) and SICV(sp). This proves (8.B.1).

Example 8.B.4. Let Y (n), n = 1, 2, . . . , be a sequence of nonnegative in-
dependent and identically distributed random variables with mean 1. For
µ > 0 define X(µ, n) = µ

∑n
k=1 Y (k), n ∈ N++. Then, for each n ∈ N++,

one has {X(µ, n), µ ∈ R+} ∈ SIL(sp) and, for each µ > 0, one has
{X(µ, n), n ∈ N++} ∈ SIL(sp). The first result follows from Example 8.D.5
and Theorem 8.D.11 below. The second result follows from Example 8.B.7
below.

Specifically, when Y (n) in Example 8.B.4 is an exponential random vari-
able we have the following example.

Example 8.B.5. Let X(µ, n) be an Erlang-n random variable with mean nµ
and variance nµ2. Then, for each n ∈ N++, one has {X(µ, n), µ ∈ R+} ∈
SIL(sp) and, for each µ > 0, one has {X(µ, n), n ∈ N++} ∈ SIL(sp).

By taking n = 1 in Example 8.B.4 we obtain the following result.

Example 8.B.6. Let Y be a nonnegative random variable. For µ > 0 define
X(µ) = µY . Then {X(µ), µ ∈ R+} ∈ SIL(sp).

Example 8.B.7. If {X(θ), θ ∈ Θ} has the semigroup property (see Example
8.A.7), then {X(θ), θ ∈ Θ} ∈ SIL(sp). In order to see it let θi ∈ Θ, = 1, 2, 3, 4,
be such that θ1 ≤ θ2 ≤ θ3 ≤ θ4 and θ1 + θ4 = θ2 + θ3. Let Zi, i = 1, 2, 3, 4, be
independent random variables such that
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Z1 =st X(θ1),
Z2 =st X(θ2 − θ1),
Z3 =st X(θ3 − θ2),

and

Z4 =st X(θ4 − θ3),

where, by convention, X(0) ≡ 0. Define

X̂1 = Z1,

X̂2 = Z1 + Z2,

X̂3 = Z1 + Z3 + Z4,

and

X̂4 = Z1 + Z2 + Z3 + Z4.

Then X̂i =st X(θi), i = 1, 2, 3, 4, and X̂i, i = 1, 2, 3, 4, satisfy the conditions
given in the definitions of SICX(sp) and SICV(sp). This proves the result
stated above.

The following theorem is obvious. A more general result is proven in The-
orem 8.B.13 (see Corollary 8.B.14).

Theorem 8.B.8. (a) If {X(θ), θ ∈ Θ} ∈ SICX(sp) [or SICV(sp)] and if φ
is an increasing convex [or concave] function, then {φ(X(θ)), θ ∈ Θ} ∈
SICX(sp) [or SICV(sp)].

(b) If {X(θ), θ ∈ Θ} ∈ SDCX(sp) [or SDCV(sp)] and if φ is an increasing
convex [or concave] function, then {φ(X(θ)), θ ∈ Θ} ∈ SDCX(sp) [or
SDCV(sp)].

Theorem 8.B.8 shows that the sample path notions imply the regular no-
tions of stochastic convexity/concavity. Counterexamples can be constructed
to show that the reverse need not be true. We have the following results.

Theorem 8.B.9.

SICX(sp) =⇒ SICX,

SICV(sp) =⇒ SICV,

SDCX(sp) =⇒ SDCX,

SDCV(sp) =⇒ SDCV.
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8.B.2 Closure properties

In this section we present some closure properties of the sample path convexity
notions.

Theorem 8.B.10. Let {X(θ), θ ∈ Θ} and {Y (θ), θ ∈ Θ} be two families of
random variables such that for each θ ∈ Θ, X(θ) and Y (θ) are independent.
Then

(a) {X(θ), θ ∈ Θ} ∈ SICX(sp) and {Y (θ), θ ∈ Θ} ∈ SICX(sp) =⇒ {X(θ) +
Y (θ), θ ∈ Θ} ∈ SICX(sp),

(b) {X(θ), θ ∈ Θ} ∈ SICV(sp) and {Y (θ), θ ∈ Θ} ∈ SICV(sp) =⇒ {X(θ) +
Y (θ), θ ∈ Θ} ∈ SICV(sp),

(c) {X(θ), θ ∈ Θ} ∈ SDCX(sp) and {X(θ), θ ∈ Θ} ∈ SDCX(sp) =⇒ {X(θ)+
Y (θ), θ ∈ Θ} ∈ SDCX(sp), and

(d) {X(θ), θ ∈ Θ} ∈ SDCV(sp) and {Y (θ), θ ∈ Θ} ∈ SDCV(sp) =⇒ {X(θ)+
Y (θ), θ ∈ Θ} ∈ SDCV(sp).

Proof. We will prove part (a) only, since the other parts can be similarly
proven. Let θi ∈ Θ, i = 1, 2, 3, 4, be any four values such that θ1 ≤ θ2 ≤
θ3 ≤ θ4 and θ1 + θ4 = θ2 + θ3. From the definition of SICX(sp) one sees that
there exist eight random variables X̂i, Ŷi, i = 1, 2, 3, 4, defined on a common
probability space, such that X̂i =st X(θi), Ŷi =st Y (θi), i = 1, 2, 3, 4, and

max[X̂2, X̂3] ≤ X̂4 a.s., max[Ŷ2, Ŷ3] ≤ Ŷ4 a.s.,

X̂2 + X̂3 ≤ X̂1 + X̂4 a.s., Ŷ2 + Ŷ3 ≤ Ŷ1 + Ŷ4 a.s.,

and X̂i and Ŷi are independent, i = 1, 2, 3, 4. Let Ẑi = X̂i + Ŷi, i = 1, 2, 3, 4.
Then Zi =st X(θi) + Y (θi), i = 1, 2, 3, 4, and

max[Ẑ2, Ẑ3] ≤ Ẑ4 a.s. and Ẑ2 + Ẑ3 ≤ Ẑ1 + Ẑ4 a.s.

Therefore, {X(θ) + Y (θ), θ ∈ Θ} ∈ SICX(sp). 
�

A combination of Example 8.B.4 and Theorem 8.B.10 yields the following
generalization of Example 8.B.4 which will be used later.

Example 8.B.11. Let Y (n), n = 1, 2, . . . , be a sequence of nonnegative in-
dependent and identically distributed random variables with mean 1, and
let Z be a random variable which is independent of the Y (n)’s. For µ > 0
define X(µ, n) = Z + µ

∑n
k=1 Y (k), n ∈ N++. Then, for each n ∈ N++,

one has {X(µ, n), µ ∈ R+} ∈ SIL(sp), and, for each µ > 0, one has
{X(µ, n), n ∈ N++} ∈ SIL(sp).

Example 8.B.12. Let Y (n), n = 1, 2, . . . , be a sequence of nonnegative inde-
pendent and identically distributed random variables with a common mean
µ > 0, as in Example 8.A.18. Let Y ∗ be the spread of the renewal pro-
cess generated by the Y (n)’s; that is, if f is the density function of Y (1),
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then the density function of Y ∗ is (1/µ)xf(x). Denote X(n) =
∑n

k=1 Y (k),
n ∈ N++, and let X∗(n) be the spread corresponding to X(n). Then
{X∗(n), n ∈ N++} ∈ SIL(sp). This follows, by Example 8.B.11, from the
relation

X∗(n) =st Y ∗ +
n−1∑
k=1

Y (k). (8.B.2)

The relation (8.B.2) can be proven as follows: Consider n independent renewal
processes {Ni(t), t ≥ 0}, i = 1, 2, . . . , n, all with interrenewal times that are
distributed as Y (1), and consider the renewal process {N(t), t ≥ 0} with
interrenewal intervals which are the sums of the corresponding interrenewal
intervals of the n independent renewal processes {Ni(t), t ≥ 0}, i = 1, 2, . . . , n.
That is, the interrenewal times that are associated with {N(t), t ≥ 0} are
distributed as X(n). Select a t > 0 and consider the spread corresponding
to the process {N(t), t ≥ 0}. Clearly the value t falls in an interrenewal
interval which is the sum of the n interrenewal intervals corresponding to
{N1(t), t ≥ 0}, {N2(t), t ≥ 0}, . . . , {Nn(t), t ≥ 0}. With probability 1/n, t
falls in the interrenewal interval corresponding to the process {Ni(t), t ≥ 0},
i = 1, 2, . . . , n. Let U(n) be the index of the process in whose interrenewal
interval t falls. Then U(n) is uniformly distributed on {1, 2, . . . , n}. If t falls
in an interval corresponding to {Ni(t), t ≥ 0} (that is, when U(n) = i), then
its spread is Y ∗ +

∑
k �=i Y (k) =st Y ∗ +

∑n−1
k=1 Y (k). Note that the distribution

of the spread is independent of i. Therefore, by unconditioning with respect
to the value i of U(n) we obtain (8.B.2).

Theorem 8.B.13. Let {X(θ), θ ∈ Θ} be a family of Λ-valued random vari-
ables, where Λ ⊂ R is a convex set. Also, let {Y (λ), λ ∈ Λ} be another family
of random variables. Suppose that X(θ) and Y (λ) are independent for any
choice of θ ∈ Θ and λ ∈ Λ.

(a) If {X(θ), θ ∈ Θ} ∈ SICX(sp) [SICV(sp)] and {Y (λ), λ ∈ Λ} ∈ SICX(sp)
[SICV(sp)], then {Y (X(θ)), θ ∈ Θ} ∈ SICX(sp) [SICV(sp)].

(b) If {X(θ), θ ∈ Θ} ∈ SDCX(sp) [SDCV(sp)] and {Y (λ), λ ∈ Λ} ∈ SICX(sp)
[SICV(sp)], then {Y (X(θ)), θ ∈ Θ} ∈ SDCX(sp) [SDCV(sp)].

Proof. We will prove the convex case of part (a) only, as the proofs of the
other cases are similar. Let θi ∈ Θ, i = 1, 2, 3, 4, be any four values such that
θ1 ≤ θ2 ≤ θ3 ≤ θ4 and θ1 + θ4 = θ2 + θ3. Since {X(θ), θ ∈ Θ} ∈ SICX(sp),
there exist four random variables X̂i, i = 1, 2, 3, 4, defined on a common
probability space, such that X̂i =st X(θi), i = 1, 2, 3, 4, and

[X̂2, X̂3] ≤ X̂4 a.s. and X̂2 + X̂3 ≤ X̂1 + X̂4 a.s.

Let
X∗

2 = min[X̂4, X̂1 + X̂4 − X̂3], (8.B.3)

and
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X∗
1 = X∗

2 + X̂3 − X̂4.

Clearly, X∗
1 and X∗

2 ∈ Λ a.s., and

X∗
1 ≤ X̂1 and X∗

2 ≥ X̂2. (8.B.4)

Also,
[X∗

2 , X̂3] ≤ X̂4 and X∗
1 + X̂4 = X∗

2 + X̂3.

Therefore, since {Y (λ), λ ∈ Λ} ∈ SICX(sp), there exist four random variables
Z∗

1 , Z∗
2 , Ẑ3, and Ẑ4, defined on a common probability space, such that Z∗

1 =st
Y (X∗

1 ), Z∗
2 =st Y (X∗

2 ), Ẑ3 =st Y (X̂3), Ẑ4 =st Y (X̂4), and

[Z∗
2 , Ẑ3] ≤ Ẑ4 a.s. and Z∗

2 + Ẑ3 ≤ Z∗
1 + Ẑ4 a.s. (8.B.5)

Since Y (λ) is stochastically increasing in λ, from (8.B.4) it is seen that there
exist random variables Ẑi, i = 1, 2, such that Ẑi =st Y (X̂i), i = 1, 2, and

Z∗
1 ≤ Ẑ1 and Z∗

2 ≥ Ẑ2.

Then from (8.B.5) one sees that

[Ẑ2, Ẑ3] ≤ Ẑ4 a.s. and Ẑ2 + Ẑ3 ≤ Ẑ1 + Ẑ4 a.s.

The proof is completed by observing that Y (X(θi)) =st Ẑi, i = 1, 2, 3, 4. 
�

By letting {Y (λ), λ ∈ Λ} of Theorem 8.B.13 be deterministic (we denote
it then as a real function φ : Λ → R) we obtain the following corollary.

Corollary 8.B.14. Let {X(θ), θ ∈ Θ} be a family of Λ-valued random vari-
ables, where Λ ⊂ R is a convex set, and let φ be a real function on Λ.

(a) If {X(θ), θ ∈ Θ} ∈ SICX(sp) [or SICV(sp)] and φ is increasing and
convex [or concave], then {φ(X(θ)), θ ∈ Θ} ∈ SICX(sp) [or SICV(sp)].

(b) If {X(θ), θ ∈ Θ} ∈ SDCX(sp) [or SDCV(sp)] and φ is increasing and
convex [or concave], then {φ(X(θ)), θ ∈ Θ} ∈ SDCX(sp) [or SDCV(sp)].

By letting {X(θ), θ ∈ Θ} of Theorem 8.B.13 be deterministic (we denote
it then as a real function φ : Θ → Λ) we obtain the following corollary.

Corollary 8.B.15. Let {Y (λ), λ ∈ Λ} be a family of real-valued random
variables, where Λ ⊂ R is a convex set, and let φ be a Λ-valued function on
Θ, where Θ ⊂ R is a convex set.

(a) If {Y (λ), λ ∈ Λ} ∈ SICX(sp) [or SICV(sp)] and φ is increasing and
convex [or concave], then {Y (φ(θ)), θ ∈ Θ} ∈ SICX(sp) [or SICV(sp)].

(b) If {Y (λ), λ ∈ Λ} ∈ SDCX(sp) [or SDCV(sp)] and φ is increasing and
convex [or concave], then {Y (φ(θ)), θ ∈ Θ} ∈ SDCX(sp) [or SDCV(sp)].

Let {X(n), n ∈ N+} be a Markov chain with state space S (S = R+ or
N+). Let Y (x) =st [X(n + 1)

∣∣X(n) = x] and Z(x) = Y (x) − x, x ∈ S.
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Theorem 8.B.16. Suppose X(0) = x0 a.s. If Z(x) ≥ 0 a.s. for each x ∈ S
and {Z(x), x ∈ S} ∈ SI, then {X(n), n ∈ N+} ∈ SICX(sp).

Proof. Since Z(x) ≥ 0 a.s., for n1 ≤ n2 we have X(n1) ≤ X(n2) a.s. Let
n3 and n4 be such that n1 ≤ n2 ≤ n3 ≤ n4 and n1 + n4 = n2 + n3. Define
m = n4 − n2 = n3 − n1 and Z(m)(x) =st [X(m) − x

∣∣X(0) = x]. Since Z(x) is
stochastically increasing in x, using sample path construction (as in the proof
of Theorem 6.B.3 when it applies to Theorem 6.B.34 through Theorems 6.B.32
and 6.B.31), it can be established that Z(m)(x) is also stochastically increasing
in x. Then there exist two random vectors (X̂1, Ẑ1) and (X̂2, Ẑ2) defined on
a common probability space such that (X̂i, Ẑi) =st (X(ni), Z(m)(X(ni))),
i = 1, 2, and

(X̂1, Ẑ1) ≤ (X̂2, Ẑ2) a.s. (8.B.6)

Set
X̂3 = X̂1 + Ẑ1 and X̂4 = X̂2 + Ẑ2.

Since Z(m)(x) ≥ 0 a.s., from (8.B.6) it follows that

max[X̂2, X̂3] ≤ X̂4 and X̂1 + X̂4 ≥ X̂2 + X̂3.

The proof is now completed by noting that X(ni) =st X̂i, i = 1, 2, 3, 4. 
�

Next consider a Galton-Watson branching process {X(n), n ∈ N+} in
discrete time. Let Di, i = 1, 2, . . ., be independent and identically distributed
random variables such that Di has the same distribution as the number of
offsprings of an ancestor. Then, for this process, Y (x) =st

∑x
i=1 Di, x ∈ N+.

Theorem 8.B.17. Suppose Di ≥ 1 a.s. and P{Di > 1} > 0. If X(0) ≥ 1
a.s., then {X(n), n ∈ N+} ∈ SICX(sp).

Proof. First, condition on X(0) = x0. Since Z(x) = Y (x)−x =st
∑x

i=1(Di−1)
and Di ≥ 1 a.s., one sees that Z(x) ≥ 0 a.s. Also, it is easily seen that
{Z(x), x ∈ N+} ∈ SI. Then, conditioned on X(0) = x0, the result of Theorem
8.B.17 follows immediately from Theorem 8.B.16. From the definition of sam-
ple path convexity, it is clear that by unconditioning with respect to X(0),
the sample path convexity of {X(n), n ∈ N+} is preserved. 
�

Now consider a nonhomogeneous Poisson process {N(t), t ≥ 0} with mean
value function M(t) = EN(t). To avoid trivialities we assume that M is
strictly increasing. Denote by Rn the nth epoch time of this process.

Theorem 8.B.18. If M is concave [convex ], then {Rn, n ∈ N++} ∈ SICX(sp)
[SICV(sp)].

Proof. Let {K(t), t ≥ 0} be a Poisson process with rate 1, and let Tn denote
the nth epoch time of this process. By Example 8.B.4 we have {Tn, n ∈
N++} ∈ SIL(sp). Now,
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{Rn, n ∈ N++} =st {M−1(Tn), n ∈ N++}.

Since M is increasing and concave [convex] it follows that M−1 is increasing
and convex [concave]. The result now follows from Corollary 8.B.14. 
�

Theorem 8.B.19. If M is convex [concave], then {N(t), t ∈ [0,∞)} ∈
SICX(sp) [SICV(sp)].

Proof. Let {K(t), t ≥ 0} be a Poisson process with rate 1. By Example 8.B.2
we have {K(t), t ∈ [0,∞)} ∈ SIL(sp). Now,

{N(t), t ∈ [0,∞)} =st {K(M(t)), t ∈ [0,∞)}.

The result now follows from Corollary 8.B.15. 
�

8.C Convexity in the Usual Stochastic Order

In some applications it is hard to find the construction needed to establish the
sample path convexity of Section 8.B. Then the stochastic convexity notions
of this section may be useful.

8.C.1 Definitions

Let {X(θ), θ ∈ Θ} be a family of random variables with survival func-
tions F θ(x) = P{X(θ) > x}, θ ∈ Θ. The family {X(θ), θ ∈ Θ} is said
to be stochastically increasing [decreasing ] and convex [concave, linear ] in
the sense of the usual stochastic ordering if Eφ(X(θ)) is increasing [decreas-
ing] and convex [concave, linear] for all increasing functions φ. We denote
this by {X(θ), θ ∈ Θ} ∈ SICX(st) [SICV(st), SIL(st), SDCX(st), SDCV(st),
SDL(st)].

It is easy to see the following characterization.

Theorem 8.C.1. The family {X(θ), θ ∈ Θ} satisfies {X(θ), θ ∈ Θ} ∈
SICX(st) [SICV(st), SDCX(st), SDCV(st)] if, and only if, F (x, θ) is increas-
ing and convex [increasing and concave, decreasing and convex, decreasing
and concave] in θ for each fixed x.

The following are other characterizations of these notions.

Theorem 8.C.2. The family {X(θ), θ ∈ Θ} satisfies {X(θ), θ ∈ Θ} ∈
SICX(st) [SICV(st), SDCX(st), SDCV(st)] if, and only if, for any θi ∈ Θ,
i = 1, 2, 3, 4, such that θ1 ≤ θ2 ≤ θ3 ≤ θ4 and θ1 + θ4 = θ2 + θ3, there
exist four random variables X̂i, i = 1, 2, 3, 4, defined on a common proba-
bility space, such that X̂i =st X(θi), i = 1, 2, 3, 4, and X̂1 ≤ [≤,≥,≥] X̂4
a.s., min{X̂1, X̂4} ≥ [≤,≥,≤] min{X̂2, X̂3} a.s., max{X̂1, X̂4} ≥ [≤,≥,≤]
max{X̂2, X̂3} a.s., and hence X̂1 + X̂4 ≥ [≤,≥,≤] X̂2 + X̂3 a.s.
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Proof. We prove the increasing convex case only since the other cases can be
proven similarly. Since X(θ) is stochastically increasing in θ there exist, on
a common probability space, random variables X̂1 and X̂4 such that X̂i =st
X(θi), i = 1, 4 and X̂1 ≤ X̂4 a.s. Let U be a uniform random variable on (0, 1)
and define

X∗
2 = I

{
U ≤ θ2 − θ1

θ4 − θ1

}
X̂4 +

[
1 − I

{
U ≤ θ2 − θ1

θ4 − θ1

}]
X̂1,

and

X∗
3 = I

{
U ≤ θ2 − θ1

θ4 − θ1

}
X̂1 +

[
1 − I

{
U ≤ θ2 − θ1

θ4 − θ1

}]
X̂4.

Then

min[X∗
2 , X∗

3 ] = min[X̂1, X̂4] (8.C.1)

and

max[X∗
2 , X∗

3 ] = max[X̂1, X̂4]. (8.C.2)

Also note that P{X∗
2 > x} = θ2−θ1

θ4−θ1
F (x, θ4) + θ4−θ2

θ4−θ1
F (x, θ1), and P{X∗

3 >

x} = θ2−θ1
θ4−θ1

F (x, θ1) + θ4−θ2
θ4−θ1

F (x, θ4). Since F (x, θ) is increasing and convex in
θ, it is then obvious that

X∗
2 ≥st X(θ2) and X∗

3 ≥st X(θ3).

Therefore, there exist X̂2 and X̂3 such that X̂i =st X(θi), i = 2, 3, and
X∗

i ≥ X̂i, i = 2, 3. Then, from (8.C.1) and (8.C.2), one sees that

min[X̂2, X̂3] ≤ min[X̂1, X̂4] and max[X̂2, X̂3] ≤ max[X̂1, X̂4].

The proof is now completed by observing that X(θi) =st X̂i, i = 1, 2, 3, 4. 
�
Example 8.C.3. Let X(p) be a geometric random variable with mean 1/(1−p).
Then {X(p), p ∈ (0, 1)} ∈ SICX(st).

Example 8.C.4. Let X(λ) be an exponential random variable with mean 1/λ.
Then {X(λ), λ ∈ (0,∞)} ∈ SDCX(st).

It is evident from Theorems 8.C.2 and 8.B.9 that one has the following
results.

Theorem 8.C.5.

SICX(st) =⇒ SICX(sp) =⇒ SICX,
SICV(st) =⇒ SICV(sp) =⇒ SICV,

SDCX(st) =⇒ SDCX(sp) =⇒ SDCX,
SDCV(st) =⇒ SDCV(sp) =⇒ SDCV.

Observing that {ψ(θ), θ ∈ Θ} ∈ SICX(sp) for any increasing convex func-
tion ψ, and that it is not SICX(st), it is clear that the implications in Theorem
8.C.5 are strict.
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8.C.2 Closure properties

Unlike the two previous notions, stochastic convexity in the usual stochastic
ordering does not have many closure properties. For example, there are no
counterparts to Theorems 8.A.15 and 8.A.17 or Theorems 8.B.10 and 8.B.13
for this stochastic convexity notion. Instead, we present some specialized clo-
sure properties under random summation.

Theorem 8.C.6. Let {N(θ), θ ∈ Θ} be a family of discrete random variables
on N+, let {X(n), n = 1, 2, . . . } be a sequence of independent and identically
distributed nonnegative random variables, and let X(0) = 0. Suppose that
{N(θ), θ ∈ Θ} and {X(n), n ∈ N+} are mutually independent. Set Y (θ) =∑N(θ)

n=0 X(n), θ ∈ Θ. If {N(θ), θ ∈ Θ} ∈ SICX(st) [SICV(st), SDCX(st),
SDCV(st)], then {Y (θ), θ ∈ Θ} ∈ SICX(st) [SICV(st), SDCX(st), SDCV(st)].

Proof. Consider the case {N(θ), θ ∈ Θ} ∈ SICX(st). The other three cases
can be similarly proven. From Theorem 8.C.2 one knows that for any θi ∈ Θ,
i = 1, 2, 3, 4, such that θ1 ≤ θ2 ≤ θ3 ≤ θ4, and θ1 + θ4 = θ2 + θ3, there
exist four random variables N̂i, i = 1, 2, 3, 4, defined on a common probability
space, such that N̂i =st N(θi), i = 1, 2, 3, 4, and

N̂4 ≥ N̂1 a.s., (8.C.3)

min{N̂1, N̂4} ≥ min{N̂2, N̂3} a.s., (8.C.4)

max{N̂1, N̂4} ≥ max{N̂2, N̂3} a.s., and hence (8.C.5)

N̂1 + N̂4 ≥ N̂2 + N̂3 a.s. (8.C.6)

Define Ŷi =
∑N̂i

n=0 X(n), i = 1, 2, 3, 4. Then, clearly, Ŷi =st Y (θi), i = 1, 2, 3, 4.
Furthermore, from (8.C.3)–(8.C.6), one sees that

Ŷ4 ≥ Ŷ1 a.s., (8.C.7)

min{Ŷ1, Ŷ4} ≥ min{Ŷ2, Ŷ3} a.s., (8.C.8)

max{Ŷ1, Ŷ4} ≥ max{Ŷ2, Ŷ3} a.s., and hence (8.C.9)

Ŷ1 + Ŷ4 ≥ Ŷ2 + Ŷ3 a.s. (8.C.10)

Theorem 8.C.6 then follows from Theorem 8.C.2. 
�

Theorem 8.C.7. Consider {X(θ), θ ∈ Θ} and {Y (θ), θ ∈ Θ} and suppose
that, for each θ, X(θ) and Y (θ) are independent. Define

V (θ) = max{X(θ), Y (θ)}

and
W (θ) = min{X(θ), Y (θ)}.

(i) If {X(θ), θ ∈ Θ} ∈ SICX(st) [SDCX(st)] and {Y (θ), θ ∈ Θ} ∈ SICX(st)
[SDCX(st)], then {W (θ), θ ∈ Θ} ∈ SICX(st) [SDCX(st)].
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(ii) If {X(θ), θ ∈ Θ} ∈ SICV(st) [SDCV(st)] and {Y (θ), θ ∈ Θ} ∈ SICV(st)
[SDCV(st)], then {V (θ), θ ∈ Θ} ∈ SICV(st) [SDCV(st)].

Proof. The stated results follow immediately from the observations that (i) the
survival function of W (θ) at x is equal to P{X(θ) > x}P{Y (θ) > x}, (ii) the
survival function of V (θ) at x is equal to 1−(1−P{X(θ) > x})(1−P{Y (θ) >
x}), and from Theorem 8.C.1. 
�

Consider the imperfect repair model. A new item with an absolutely con-
tinuous survival function F undergoes an imperfect repair each time it fails
before it is scrapped. With probability p the repair is unsuccessful and the
item is scrapped. With probability 1− p the repair is successful and minimal,
that is, after a successful repair at time t the item is as good as a working
item at age t. It is well known that if X(p) denotes the time to scrap, then
the survival function of X(p) is F

p
. Thus, the following result is apparent.

Theorem 8.C.8. Let F be an absolutely continuous survival function such
that F (0) = 1. Then {X(p), p ∈ (0, 1)} ∈ SDCX(st).

8.D Strong Stochastic Convexity

Another notion which is sometimes useful in verifying the sample path con-
vexity of Section 8.B is described in this section.

8.D.1 Definitions

Let {X(θ), θ ∈ Θ} be a family of random variables. The family {X(θ), θ ∈ Θ}
is said to be stochastically [increasing, decreasing ] and convex [concave, linear ]
almost everywhere if there exist {X̂(θ), θ ∈ Θ} such that X̂(θ) =st X(θ) for
each θ ∈ Θ and X̂(θ) is [increasing, decreasing] and convex [concave, linear] in
θ. We denote this by {X(θ), θ ∈ Θ} ∈ SCX(ae) [SCV(ae), SL(ae), SICX(ae),
SICV(ae), SIL(ae), SDCX(ae), SDCV(ae), SDL(ae)].

Although it appears that the definition of strong stochastic convexity/con-
cavity is restrictive, several families of random variables do satisfy the condi-
tions of this class of convexity/concavity. This is shown in the next theorem
and in the corollaries and examples which follow it.

Theorem 8.D.1. Suppose that X(θ) = φ(θ, Z), where φ is a real-valued de-
terministic function, and Z is a random vector. If φ is convex [concave,
linear, increasing convex, increasing concave, increasing linear, decreasing
convex, decreasing concave, decreasing linear ] in θ ∈ Θ, then {X(θ), θ ∈
Θ} ∈ SCX(ae) [SCV(ae), SL(ae), SICX(ae), SICV(ae), SIL(ae), SDCX(ae),
SDCV(ae), SDL(ae)].
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Corollary 8.D.2. Suppose that X(θ) = Z + ψ(θ), where ψ is a real-valued
deterministic function, and Z is a random variable. If ψ is convex [concave,
linear, increasing convex, increasing concave, increasing linear, decreasing
convex, decreasing concave, decreasing linear ] in θ ∈ Θ, then {X(θ), θ ∈
Θ} ∈ SCX(ae) [SCV(ae), SL(ae), SICX(ae), SICV(ae), SIL(ae), SDCX(ae),
SDCV(ae), SDL(ae)].

Corollary 8.D.3. Suppose that X(θ) = Z · ψ(θ), where ψ is a real-valued
deterministic function, and Z is a nonnegative random variable. If ψ is con-
vex [concave, linear, increasing convex, increasing concave, increasing lin-
ear, decreasing convex, decreasing concave, decreasing linear ] in θ ∈ Θ, then
{X(θ), θ ∈ Θ} ∈ SCX(ae) [SCV(ae), SL(ae), SICX(ae), SICV(ae), SIL(ae),
SDCX(ae), SDCV(ae), SDL(ae)].

Example 8.D.4. Let X(µ, σ) be a normal random variable with mean µ and
standard deviation σ. Since for a unit normal random variable N(0, 1), we
have X̂(µ, σ) = µ + σN(0, 1) =st X(µ, σ), µ ∈ R, σ ∈ R+, we see that, for
each σ > 0,

{X(µ, σ), µ ∈ R} ∈ SIL(ae),

and, for each µ ∈ R,

{X(µ, σ), σ ∈ R+} ∈ SL(ae).

Similarly one can prove the result in the next example.

Example 8.D.5. Let Y (n), n = 1, 2, . . . , be a sequence of nonnegative inde-
pendent and identically distributed random variables with mean 1. For µ > 0
define X(µ) = µ

∑n
k=1 Y (k), n ∈ N+. Then, for each n ∈ N++, one has

{X(µ), µ ∈ R+} ∈ SIL(ae).

Specifically, when Y (n) in Example 8.D.5 is an exponential random vari-
able we have the following example.

Example 8.D.6. Let X(µ, n) be an Erlang-n random variable with mean nµ
and variance nµ2. Then, for each n ∈ N++, one has {X(µ, n), µ ∈ R+} ∈
SIL(ae).

By taking n = 1 in Example 8.D.5 we obtain the following result.

Example 8.D.7. Let Y be a nonnegative random variable. For µ > 0 define
X(µ) = µY . Then {X(µ), µ ∈ R+} ∈ SIL(ae).

The following generalization of Example 8.D.5 is easily observed.

Example 8.D.8. Let Y (n), n = 1, 2, . . . , be a sequence of nonnegative inde-
pendent and identically distributed random variables with mean 1, and let
Z be a random variable which is independent of the Y (n)’s. For µ > 0 de-
fine X(µ) = Z + µ

∑n
k=1 Y (k), n ∈ N++. Then, for each n ∈ N++, one has

{X(µ), µ ∈ R+} ∈ SIL(ae).
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Another sufficient condition (in addition to Theorem 8.D.1 and Corollar-
ies 8.D.2 and 8.D.3) for strong convexity and concavity is described next.
Let {X(θ), θ ∈ Θ} be a family of random variables, and let Fθ denote the
distribution function of X(θ). If U is a uniform[0, 1] random variable, then
F−1

θ (U) =st X(θ). The following result follows at once from this observation.

Theorem 8.D.9. Suppose that F−1
θ (u) is convex [concave, linear, increasing

convex, increasing concave, increasing linear, decreasing convex, decreasing
concave, decreasing linear ] in θ ∈ Θ, for all u ∈ (0, 1), then {X(θ), θ ∈
Θ} ∈ SCX(ae) [SCV(ae), SL(ae), SICX(ae), SICV(ae), SIL(ae), SDCX(ae),
SDCV(ae), SDL(ae)].

A sufficient condition for strong convexity and concavity, which is stated
on Fθ (rather than on F−1

θ as in Theorem 8.D.9), is described next. Recall the
definition of supermodular and submodular functions given in Section 7.A.8.

Theorem 8.D.10. Let {X(θ), θ ∈ Θ} be a family of random variables, and
suppose that all the partial second derivatives of Fθ(x) exist.

(a) If Fθ(x) is concave and strictly increasing in x, and is decreasing and
concave in θ, and if Fθ(x) is submodular in (x, θ), then {X(θ), θ ∈ Θ} ∈
SICX(ae).

(b) If Fθ(x) is convex and strictly increasing in x, and is decreasing and con-
vex in θ, and if Fθ(x) is supermodular in (x, θ), then {X(θ), θ ∈ Θ} ∈
SICV(ae).

(c) If Fθ(x) is concave and strictly increasing in x, and is increasing and
concave in θ, and if Fθ(x) is supermodular in (x, θ), then {X(θ), θ ∈
Θ} ∈ SDCX(ae).

(d) If Fθ(x) is convex and strictly increasing in x, and is increasing and con-
vex in θ, and if Fθ(x) is submodular in (x, θ), then {X(θ), θ ∈ Θ} ∈
SDCV(ae).

Proof. Only the proof of part (a) is given; the proofs of the other parts are
similar. Let U be a uniform[0, 1] random variable and define X̂(θ) by

Fθ(X̂(θ)) = U. (8.D.1)

Differentiating (8.D.1) for a fixed value of U , we obtain

∂

∂x
F · ∂

∂θ
X̂ +

∂

∂θ
F = 0, (8.D.2)

and

∂

∂x
F · ∂2

∂θ2 X̂ +
(

∂2

∂x2 F

)(
∂

∂θ
X̂

)2

+ 2
∂2

∂x∂θ
F · ∂

∂θ
X̂ +

∂2

∂θ2 F = 0. (8.D.3)

The conditions stated in part (a) can be written as
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∂

∂x
F > 0,

∂

∂θ
F ≤ 0,

∂2

∂x2 F ≤ 0,
∂2

∂θ2 F ≤ 0, and
∂2

∂x∂θ
F ≤ 0.

(8.D.4)
From (8.D.2), (8.D.3), and (8.D.4) it is seen that ∂

∂θ X̂ ≥ 0 and ∂2

∂θ2 X̂ ≥ 0,
that is, {X(θ), θ ∈ Θ} ∈ SICX(ae). 
�

The following theorem is easily verified.

Theorem 8.D.11.

SICX(ae) =⇒ SICX(sp) =⇒ SICX,
SICV(ae) =⇒ SICV(sp) =⇒ SICV,

SDCX(ae) =⇒ SDCX(sp) =⇒ SDCX,
SDCV(ae) =⇒ SDCV(sp) =⇒ SDCV.

These are strict implications. It can be verified that the stochastic convex-
ity in the usual stochastic order neither implies nor is implied by the strong
stochastic convexity.

8.D.2 Closure properties

In this subsection we present some closure properties of the strong convexity
notions. These results trivially follow from the closure properties of determin-
istic functions. Thus we will not give the proofs here.

Theorem 8.D.12. Let {X(θ), θ ∈ Θ} and {Y (θ), θ ∈ Θ} be two families of
random variables such that for each θ ∈ Θ, X(θ) and Y (θ) are independent.

(a) {X(θ), θ ∈ Θ} ∈ SICX(ae) and {Y (θ), θ ∈ Θ} ∈ SICX(ae) imply that
{f(X(θ), Y (θ)), θ ∈ Θ} ∈ SICX(ae) for any increasing and convex func-
tion f .

(b) {X(θ), θ ∈ Θ} ∈ SICV(ae) and {Y (θ), θ ∈ Θ} ∈ SICV(ae) imply that
{f(X(θ), Y (θ)), θ ∈ Θ} ∈ SICV(ae) for any increasing and concave func-
tion f .

(c) {X(θ), θ ∈ Θ} ∈ SDCX(ae) and {X(θ), θ ∈ Θ} ∈ SDCX(ae) imply
that {f(X(θ), Y (θ)), θ ∈ Θ} ∈ SDCX(ae) for any increasing and convex
function f .

(d) {X(θ), θ ∈ Θ} ∈ SDCV(ae) and {Y (θ), θ ∈ Θ} ∈ SDCV(ae) imply
that {f(X(θ), Y (θ)), θ ∈ Θ} ∈ SDCV(ae) for any increasing and concave
function f .

Theorem 8.D.13. Let {X(θ), θ ∈ Θ} be a family of Λ-valued random vari-
ables, where Λ ⊂ R is a convex set. Also, let {Y (λ), λ ∈ Λ} be another family
of random variables. Suppose that X(θ) and Y (λ) are independent for any
choice of θ ∈ Θ and λ ∈ Λ.

(a) If {X(θ), θ ∈ Θ} ∈ SICX(ae) [SICV(ae)] and {Y (λ), λ ∈ Λ} ∈ SICX(ae)
[SICV(ae)], then {Y (X(θ)), θ ∈ Θ} ∈ SICX(ae) [SICV(ae)].

(b) If {X(θ), θ ∈ Θ} ∈ SDCX(ae) [SDCV(ae)] and {Y (λ), λ ∈ Λ} ∈ SICX(ae)
[SICV(ae)], then {Y (X(θ)), θ ∈ Θ} ∈ SDCX(ae) [SDCV(ae)].
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8.E Stochastic Directional Convexity

8.E.1 Definitions

In Sections 8.A–8.D of this chapter, the parameter space Θ, of the families
of random variables {X(θ), θ ∈ Θ} that we studied, was a subset of the real
line R. However, in some applications the parameter space is multidimen-
sional, that is, Θ is a subset of R

m for some positive integer m ≥ 2. In this
section we study such families of random variables or vectors. In such cases
one is interested in convexity [concavity] properties with respect to the vector
θ = (θ1, θ2, . . . , θm). Rather than studying convexity [concavity] properties
of {X(θ), θ ∈ Θ}, we will study here directional convexity [concavity] prop-
erties of such families of random variables or vectors. The reader may recall
the definition of directional convexity [concavity] given in (7.A.17) of Section
7.A.8. Below Θ will always be a sublattice of R

m.
Let {X(θ), θ ∈ Θ} be a family of random vectors. The family {X(θ), θ ∈

Θ} is said to be

(a) stochastically increasing and directionally convex [concave] if {X(θ), θ ∈
Θ} ∈ SI and if Eφ(X(θ)) is directionally convex [concave] in θ for
any increasing directionally convex [concave] function φ. We denote it
by {X(θ), θ ∈ Θ} ∈ SI-DIR-CX [SI-DIR-CV];

(b) stochastically increasing and directionally linear if {X(θ), θ ∈ Θ} ∈
SI-DIR-CX ∩ SI-DIR-CV. We denote it by {X(θ), θ ∈ Θ} ∈ SI-DIR-L;

(c) stochastically decreasing and directionally convex [concave] if {X(θ), θ ∈
Θ} ∈ SD and if Eφ(X(θ)) is directionally convex [concave] in θ for
any increasing directionally convex [concave] function φ. We denote it by
{X(θ), θ ∈ Θ} ∈ SD-DIR-CX [SD-DIR-CV];

(d) stochastically decreasing and directionally linear if {X(θ), θ ∈ Θ} ∈
SD-DIR-CX∩SD-DIR-CV. We denote it by {X(θ), θ ∈ Θ} ∈ SD-DIR-L.

In particular, if X(θ) is a univariate random variable for all θ ∈ Θ, then
{X(θ), θ ∈ Θ} ∈ SI-DIR-CX [SI-DIR-CV] if, and only if, {X(θ), θ ∈ Θ} ∈ SI
and Eφ(X(θ)) is directionally convex [concave] in θ for any increasing convex
[concave] function φ. Similarly, {X(θ), θ ∈ Θ} ∈ SD-DIR-CX [SD-DIR-CV]
if, and only if, {X(θ), θ ∈ Θ} ∈ SD and Eφ(X(θ)) is directionally convex
[concave] in θ for any increasing convex [concave] function φ. If both the pa-
rameter and the random variables are univariate, then the notions of SI-DIR-
CX, SI-DIR-CV, SI-DIR-L, SD-DIR-CX, SD-DIR-CV, and SD-DIR-L, reduce
to the notions of SICX, SICV, SIL, SDCX, SDCV, and SDL, respectively.

In order to define stochastic directional convexity [concavity] in the sample
path sense let {X(θ), θ ∈ Θ} be a family of random vectors as above. Let
θi ∈ Θ, i = 1, 2, 3, 4, be any four vectors such that θ1 ≤ [θ2,θ3] ≤ θ4 and
θ1 + θ4 = θ2 + θ3.

If there exist four random variables X̂i, i = 1, 2, 3, 4, defined on a common
probability space, such that X̂i =st X(θi), i = 1, 2, 3, 4, and
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(a) (i) [X̂2, X̂3] ≤ X̂4 a.s. and (ii) X̂2+X̂3 ≤ X̂1+X̂4 a.s., then {X(θ), θ ∈
Θ} is said to be stochastically increasing and directionally convex in the
sample path sense (denoted by {X(θ), θ ∈ Θ} ∈ SI-DIR-CX(sp));

(b) (i) X̂1 ≤ [X̂2, X̂3] a.s. and (ii) X̂1+X̂4 ≤ X̂2+X̂3 a.s., then {X(θ), θ ∈
Θ} is said to be stochastically increasing and directionally concave in the
sample path sense (denoted by {X(θ), θ ∈ Θ} ∈ SI-DIR-CV(sp));

(c) (i) X̂1 ≥ [X̂2, X̂3] a.s. and (ii) X̂1+X̂4 ≥ X̂2+X̂3 a.s., then {X(θ), θ ∈
Θ} is said to be stochastically decreasing and directionally convex in the
sample path sense (denoted by {X(θ), θ ∈ Θ} ∈ SD-DIR-CX(sp));

(d) (i) X̂4 ≤ [X̂2, X̂3] a.s. and (ii) X̂1+X̂4 ≤ X̂2+X̂3 a.s., then {X(θ), θ ∈
Θ} is said to be stochastically decreasing and directionally concave in the
sample path sense (denoted by {X(θ), θ ∈ Θ} ∈ SD-DIR-CV(sp));

(e) (i) [X̂2, X̂3] ≤ X̂4 a.s. and (ii) X̂2+X̂3 = X̂1+X̂4 a.s., then {X(θ), θ ∈
Θ} is said to be stochastically increasing and directionally linear in the
sample path sense (denoted by {X(θ), θ ∈ Θ} ∈ SI-DIR-L(sp));

(f) (i) X̂1 ≥ [X̂2, X̂3] a.s. and (ii) X̂1+X̂4 = X̂2+X̂3 a.s., then {X(θ), θ ∈
Θ} is said to be stochastically decreasing and directionally linear in the
sample path sense (denoted by {X(θ), θ ∈ Θ} ∈ SD-DIR-L(sp)).

If both the parameter and the random variables are univariate, then the
notions of SI-DIR-CX(sp), SI-DIR-CV(sp), SI-DIR-L(sp), SD-DIR-CX(sp),
SD-DIR-CV(sp), and SD-DIR-L(sp), reduce to the notions of SICX(sp),
SICV(sp), SIL(sp), SDCX(sp), SDCV(sp), and SDL(sp), respectively.

8.E.2 Closure properties

The following two results are extensions of Theorems 8.A.17 and 8.B.13 to
the stochastic directional convexity setting. The proof of Theorem 8.E.1 is
similar to the proof of Theorem 8.A.17, using Proposition 7.A.28. The proof of
Theorem 8.E.2 is similar to the proof of Theorem 8.B.13, where the minimum
in (8.B.3) is performed coordinatewise.

Theorem 8.E.1. Let {X(θ), θ ∈ Θ} be a family of Λ-valued random vectors,
and let {Y (λ), λ ∈ Λ} be another family of random vectors. Suppose that
X(θ) and Y (λ) are independent for any choice of θ ∈ Θ and λ ∈ Λ.

(a) If {X(θ), θ ∈ Θ} ∈ SI-DIR-CX [SI-DIR-CV, SI-DIR-L] and {Y (λ),λ ∈
Λ} ∈ SI-DIR-CX [SI-DIR-CV, SI-DIR-L], then {Y (X(θ)), θ ∈ Θ} ∈
SI-DIR-CX [SI-DIR-CV, SI-DIR-L].

(b) If {X(θ), θ ∈ Θ} ∈ SD-DIR-CX [SD-DIR-CV, SD-DIR-L] and {Y (λ),λ
∈ Λ} ∈ SI-DIR-CX [SI-DIR-CV, SI-DIR-L], then {Y (X(θ)), θ ∈ Θ} ∈
SD-DIR-CX [SD-DIR-CV, SD-DIR-L].

Theorem 8.E.2. Let {X(θ), θ ∈ Θ} be a family of Λ-valued random vectors,
and let {Y (λ), λ ∈ Λ} be another family of random vectors. Suppose that
X(θ) and Y (λ) are independent for any choice of θ ∈ Θ and λ ∈ Λ.
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(a) If {X(θ), θ ∈ Θ} ∈ SI-DIR-CX(sp) [SI-DIR-CV(sp), SI-DIR-L(sp)] and
{Y (λ), λ ∈ Λ} ∈ SI-DIR-CX(sp) [SI-DIR-CV(sp), SI-DIR-L(sp)], then
{Y (X(θ)), θ ∈ Θ} ∈ SI-DIR-CX(sp) [SI-DIR-CV(sp), SI-DIR-L(sp)].

(b) If {X(θ), θ ∈ Θ} ∈ SD-DIR-CX(sp) [SD-DIR-CV(sp), SD-DIR-L(sp)]
and {Y (λ), λ ∈ Λ} ∈ SI-DIR-CX(sp) [SI-DIR-CV(sp), SI-DIR-L(sp)],
then {Y (X(θ)), θ ∈ Θ} ∈ SD-DIR-CX(sp) [SD-DIR-CV(sp), SD-DIR-
L(sp)].

From Theorem 8.E.2 it is easy to verify the following results.

Theorem 8.E.3.

SI-DIR-CX(sp) =⇒ SI-DIR-CX,

SI-DIR-CV(sp) =⇒ SI-DIR-CV,

SD-DIR-CX(sp) =⇒ SD-DIR-CX,

SD-DIR-CV(sp) =⇒ SD-DIR-CV.

The next results will be stated only for the increasing convex cases, how-
ever, they have versions that apply to the decreasing convex, the increasing
concave, and the decreasing concave cases.

By combining independent SI-DIR-CX [SI-DIR-CX(sp)] families of ran-
dom vectors, one obtains a new SI-DIR-CX [SI-DIR-CX(sp)] family of random
vectors.

Theorem 8.E.4. Let {Xi(θi), θi ∈ Θi} ∈ SD-DIR-CX [SI-DIR-CX(sp)],
i = 1, 2, . . . , m, be mutually independent collections of random vectors. De-
fine X(θ) = (X1(θ1),X2(θ2), . . . ,Xm(θm)). Then {X(θ), θ ∈ ×m

i=1Θi} ∈
SD-DIR-CX [SI-DIR-CX(sp)].

The (sp) part of Theorem 8.E.4 can be proven by observing that, by inde-
pendence, the constructions required by the definition of the SI-DIR-CX(sp)
notion can be done coordinatewise. The other part of Theorem 8.E.4 can be
verified by noticing that an m-variate directionally convex function is also
directionally convex in any subset of the m coordinates, and again using the
independence assumption.

As a special case of Theorem 8.E.4 it is seen that if the families of ran-
dom variables {Xi(θi), θi ∈ Θi} ∈ SICX [SICX(sp)], i = 1, 2, . . . , m, then
{(X1(θ1), X2(θ2), . . . , Xm(θm)), (θ1, θ2, . . . , θm) ∈ ×m

i=1Θi} ∈ SD-DIR-CX
[SI-DIR-CX(sp)].

A version of Theorem 8.E.4, in which some or all of the parameters are
the same, can also be stated and proven. For example, if the families of ran-
dom variables {Xi(θ), θ ∈ Θ} ∈ SICX [SICX(sp)], i = 1, 2, . . . , m, then
{(X1(θ), X2(θ), . . . , Xm(θ)), θ ∈ Θ} ∈ SD-DIR-CX [SI-DIR-CX(sp)] (here
all the parameters are the same).

Example 8.E.5. Recall from Example 8.B.4 that if Y (n), n = 1, 2, . . . , are
nonnegative independent and identically distributed random variables, then



384 8 Stochastic Convexity and Concavity

{
∑n

k=1 Y (k), n ∈ N++} ∈ SIL(sp). Now, let {Yi(n), n = 1, 2, . . . }, i =
1, 2, . . . , m, be independent sequences of nonnegative independent and iden-
tically distributed random variables. Then

{(∑n1
k=1 Y1(k),

∑n2
k=1 Y2(k), . . . ,∑nm

k=1 Ym(k)
)
, (n1, n2, . . . , nm) ∈ N

m
++
}

∈ SI-DIR-CX(sp).

Similar examples can be constructed from the other examples in Section
8.B.

The following result illustrates the use of Theorems 8.E.1 and 8.E.2. For
each θ ∈ Θ (where Θ is a convex subset of R or N) let {X(n, θ), n ∈ N+}
be a Markov chain with state space S (S = [0,∞) or N+). Let Y (x, θ) =st
[X(n + 1, θ)

∣∣X(n, θ) = x], x ∈ S.

Theorem 8.E.6. Suppose that {Y (x, θ), (x, θ) ∈ S × Θ} ∈ SI-DIR-CX [SI-
DIR-CV, SI-DIR-CX(sp), SI-DIR-CV(sp)]. If {X(0, θ), θ ∈ Θ} ∈ SICX [SICV,
SICX(sp), SICV(sp)], then {X(n, θ), θ ∈ Θ} ∈ SICX [SICV, SICX(sp),
SICV(sp)] for each n ∈ N+.

Proof. As an induction hypothesis assume that for some n we have

{X(n, θ), θ ∈ Θ} ∈ SICX [SICV, SICX(sp), SICV(sp)]. (8.E.1)

Note that
X(n + 1, θ) =st Y (X(n, θ), θ). (8.E.2)

Now, from (8.E.1), (8.E.2), and from a straightforward extension of Theorem
8.E.2(a) (for the (sp) cases) [or of Theorem 8.E.1(a) (for the other cases)], one
obtains that

{X(n + 1, θ), θ ∈ Θ} ∈ SICX [SICV, SICX(sp), SICV(sp)]. 
�

8.F Complements

Section 8.A: The notion of (regular) stochastic convexity/concavity is in-
troduced in Shaked and Shanthikumar [508]. However, the condition
{X(θ), θ ∈ Θ} ∈ SCX was encountered earlier by Schweder [499] who de-
scribed it by saying that {X(θ), θ ∈ Θ} is “convexly parametrized.” The
basic closure properties (Theorems 8.A.15 and 8.A.17) are established in
Shaked and Shanthikumar [508]. As an example of the use of these results,
we note that Theorem 1(b) of Lefèvre and Malice [336] can be obtained
from a combination of Example 8.A.3 with Theorems 8.A.15 and 8.A.17.
A slightly weaker version of the example regarding the forward recurrence
times (Example 8.A.18) can be found in Makowski and Philips [380]. Tem-
poral convexity of Markov processes (Theorems 8.A.19 and 8.A.20) are
studied in Shaked and Shanthikumar [507, 509], Shanthikumar and Yao
[534], and Li and Shaked [349]. Extensions of these notions to random
vectors can be found in Chang, Chao, Pinedo, and Shanthikumar [125],
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and to arbitrary random variables can be found in Meester [385] and in
Meester and Shanthikumar [388]. A study of regular stochastic convex-
ity by means of operators is developed in Adell and Perez-Palomares [5].
The results about stochastic m-convexity (Section 8.A.3) are mostly taken
from Denuit, Lefèvre and Utev [155]. The stochastic m-increasing convex-
ity of a family with a location parameter (Example 8.A.26) can be found
in Denuit and Lefèvre [147].

“Derivatives” of stochastically convex and m-convex processes are intro-
duced and studied in Adell and Lekuona [4].

Section 8.B: The notion of (sample path) stochastic convexity/concavity is
introduced in Shaked and Shanthikumar [508]. A generalization of the
notion of the semigroup property can be found in Shaked, Shanthikumar,
and Tong [519]; Example 8.B.7 is a special case of a result due to them. The
closure properties (Theorems 8.B.10 and 8.B.13) are established in Shaked
and Shanthikumar [508]. The relation (8.B.2) between the spreads can be
found in Goldstein and Rinott [212]. Temporal sample path convexity of
Markov processes (Theorems 8.B.16 and 8.B.17) is studied in Shaked and
Shanthikumar [508, 509]. Extensions of these notions to random vectors
can be found in Chang, Chao, Pinedo, and Shanthikumar [125], and to
arbitrary random variables can be found in Meester [385] and in Meester
and Shanthikumar [388]. Theorem 8.B.18 is essentially proved in Kirmani
and Gupta [299].

Section 8.C: Stochastic convexity/concavity in the usual stochastic order-
ing is introduced in Shaked and Shanthikumar [510]. Theorem 8.C.6 is
established in Shaked and Shanthikumar [514], and Theorem 8.C.7 is es-
tablished in Shaked and Shanthikumar [510].

Some variations of the stochastic convexity notions in Section 8.C, and
also of the notions in Section 8.A, can be found in Atakan [24].

Section 8.D: The notion of strong stochastic convexity (in a different form)
is introduced in Shanthikumar and Yao [531, 533]. The definition pre-
sented here is given in Meester and Shanthikumar [386].

Section 8.E: The notion of multivariate stochastic directional convexity is
introduced in Meester and Shanthikumar [387]. Most of the results of this
section are taken from that paper. The results yielding the parametric
stochastic convexity and concavity of Markov processes (Theorem 8.E.6)
can be found in Shaked and Shanthikumar [509].

Yao [573] introduced notions of stochastic supermodularity and submodu-
larity that are weaker than the notions of stochastic directional convexity
and concavity, respectively.
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Positive Dependence Orders

Notions of positive dependence of two random variables X1 and X2 have
been introduced in the literature in an effort to mathematically describe the
property that “large (respectively, small) values of X1 tend to go together
with large (respectively, small) values of X2.” Many of the notions of positive
dependence are defined by means of some comparison of the joint distribution
of X1 and X2 with their distribution under the theoretical assumption that
X1 and X2 are independent. Often such a comparison can be extended to
general pairs of bivariate distributions with given marginals. This fact led
researchers to introduce various notions of positive dependence orders. These
orders are designed to compare the strength of the positive dependence of the
two underlying bivariate distributions. In this chapter we describe some such
notions.

In many sections of this chapter we first describe a positive dependence
order which compares two bivariate random vectors (or distributions). When
the order can be extended to general n-dimensional (n > 2) random vectors,
we will describe the extension in a later part of that section.

Most of the orders that we describe in this chapter are defined on
the Fréchet class M(F1, F2) of bivariate distributions with fixed marginals
F1 and F2. The upper bound of this class is the distribution defined by
min{F1(x1), F2(x2)} (whose probability mass is concentrated on the set
{(x1, x2) : F1(x1) = F2(x2)}). The lower bound of this class is the distri-
bution defined by max{F1(x1) + F2(x2) − 1, 0} (whose probability mass is
concentrated on the set {(x1, x2) : F1(x1) + F2(x2) = 1}).

9.A The PQD and the Supermodular Orders

9.A.1 Definition and basic properties: The bivariate case

Let the random vector (X1, X2) have the distribution function F , and let
F1 and F2 denote, respectively, the marginal distributions of X1 and X2.
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Lehmann [343] defined (X1, X2) (or F ) to be positive quadrant dependent
(PQD) if

F (x1, x2) ≥ F1(x1)F2(x2) for all x1 and x2. (9.A.1)

Note that (9.A.1) can be rewritten as

F (x1, x2) ≥ F I(x1, x2) for all x1 and x2, (9.A.2)

where F I(x1, x2) ≡ F1(x1)F2(x2) for all x1 and x2. This characterization of
the PQD notion leads naturally to the definition of the PQD order that is
described next.

For a random vector (X1, X2) with distribution function F , let F be the
bivariate survival function of (X1, X2), that is, F (x1, x2) ≡ P{X1 > x1, X2 >
x2} for all x1 and x2. Let (Y1, Y2) be another bivariate random vector with
distribution function G and survival function G. Suppose that F and G have
the same univariate marginals; that is, suppose that both belong to M(F1, F2)
for some univariate distribution functions F1 and F2. If

F (x1, x2) ≤ G(x1, x2) for all x1 and x2, (9.A.3)

then we say that (X1, X2) is smaller than (Y1, Y2) in the PQD order (de-
noted by (X1, X2) ≤PQD (Y1, Y2)). Sometimes it will be useful to write this
as F ≤PQD G. Using the assumption that F and G have the same univariate
marginals, it is easy to see that (9.A.3) is equivalent to

F (x1, x2) ≤ G(x1, x2) for all x1 and x2.

Note that for random vectors (X1, X2) and (Y1, Y2), with distribution func-
tions in M(F1, F2), we have

(X1, X2) ≤PQD (Y1, Y2) ⇐⇒ (X1, X2) ≤uo (Y1, Y2)

and
(X1, X2) ≤PQD (Y1, Y2) ⇐⇒ (X1, X2) ≥lo (Y1, Y2);

see (6.G.1) and (6.G.2) in Section 6.G.1. The reader should notice, however,
that in (6.G.1) and (6.G.2) it is not required that (X1, X2) and (Y1, Y2) have
the same marginals. Therefore, whereas the upper and lower orthant orders
measure the size (or the location) of the underlying random vectors, the PQD
order measures the amount of positive dependence of the underlying random
vectors.

From (9.A.2) it is seen that F is PQD if, and only if,

F I ≤PQD F.

By Hoeffding’s Lemma (see Lehmann [343, page 1139]) we see that if
(X1, X2) and (Y1, Y2) have distributions F and G in M(F1, F2), then
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Cov(X1, X2) =
∫ ∞

−∞

∫ ∞

−∞
[F (x1, x2) − F1(x1)F2(x2)]dx1dx2

and
Cov(Y1, Y2) =

∫ ∞

−∞

∫ ∞

−∞
[G(x1, x2) − F1(x1)F2(x2)]dx1dx2,

provided the covariances are well defined. It thus follows from (9.A.3) that if
(X1, X2) ≤PQD (Y1, Y2), then

Cov(X1, X2) ≤ Cov(Y1, Y2), (9.A.4)

and therefore, since Var(Xi) = Var(Yi), i = 1, 2, we have that

ρX1,X2 ≤ ρY1,Y2 ,

where ρX1,X2 and ρY1,Y2 denote the correlation coefficients associated with
(X1, X2) and (Y1, Y2), respectively, provided the underlying variances are well
defined. Yanagimoto and Okamoto [570] have shown that some other corre-
lation measures, such as Kendall’s τ , Spearman’s ρ, and Blomquist’s q, are
preserved under the PQD order. The inequality (9.A.4), and the monotonicity
of other correlation measures under the PQD order, can also be obtained as
corollaries from (9.A.17) below.

Let (X1, X2) and (Y1, Y2) be random vectors with distribution functions
F and G. If (X1, X2) ≤PQD (Y1, Y2), then

F (x1, x2) ≤ G(x1, x2) for all x1 and x2,

and

P{X1 > x1, X2 ≤ x2} ≥ P{Y1 > x1, Y2 ≤ x2} for all x1 and x2.

Therefore

P{X2 > x2
∣∣X1 > x1} ≤ P{Y2 > x2

∣∣Y1 > x1} for all x1 and x2,

and

P{X2 ≤ x2
∣∣X1 > x1} ≥ P{Y2 ≤ x2

∣∣Y1 > x1} for all x1 and x2.

Thus, for all x1 we have

E[X2
∣∣X1 > x1] = −

∫ 0

−∞
P{X2 ≤ x2

∣∣X1 > x1}dx2

+
∫ ∞

0
P{X2 > x2

∣∣X1 > x1}dx2

≤ −
∫ 0

−∞
P{Y2 ≤ x2

∣∣Y1 > x1}dx2

+
∫ ∞

0
P{Y2 > x2

∣∣Y1 > x1}dx2

= E[Y2
∣∣Y1 > x1].
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For random vectors (X1, X2) and (Y1, Y2) with distribution functions in
M(F1, F2), the condition

E[X2
∣∣X1 > x1] ≤ E[Y2

∣∣Y1 > x1] for all x1 (9.A.5)

can be used to define a positive dependence stochastic order. Such an order is
discussed in Muliere and Petrone [405]. We see that if (X1, X2) ≤PQD (Y1, Y2),
then (9.A.5) holds.

Let FL and FU denote the Fréchet lower and upper bounds in the class
M(F1, F2). Then, for every distribution F ∈ M(F1, F2) we have

FL ≤PQD F ≤PQD FU . (9.A.6)

9.A.2 Closure properties

A powerful closure property of the PQD order is given in the next theorem.

Theorem 9.A.1. Suppose that the four random vectors (X1, X2), (Y1, Y2),
(U1, U2), and (V1, V2) satisfy

(X1, X2) ≤PQD (Y1, Y2) and (U1, U2) ≤PQD (V1, V2), (9.A.7)

and suppose that (X1, X2) and (U1, U2) are independent, and also that (Y1, Y2)
and (V1, V2) are independent. Then

(φ(X1, U1), ψ(X2, U2)) ≤PQD (φ(Y1, V1), ψ(Y2, V2)),
for all increasing functions φ and ψ. (9.A.8)

Proof. From the monotonicity of φ and ψ it follows that the set {(u1, u2) :
φ(x1, u1) ≤ a1, ψ(x2, u2) ≤ a2} is a lower quadrant for all x1, x2, a1, and a2.
Therefore, for all a1 and a2 we have

P{φ(X1, U1) ≤ a1,ψ(X2, U2) ≤ a2}

=
∫∫

P{φ(X1, u1) ≤ a1, ψ(X2, u2) ≤ a2}dH(u1, u2)

≤
∫∫

P{φ(Y1, u1) ≤ a1, ψ(Y2, u2) ≤ a2}dH(u1, u2)

= P{φ(Y1, U1) ≤ a1, ψ(Y2, U2) ≤ a2},

where H is the distribution function of (U1, U2). Thus,

(φ(X1, U1), ψ(X2, U2)) ≤PQD (φ(Y1, U1), ψ(Y2, U2)),
for all increasing functions φ and ψ. (9.A.9)

In a similar manner one can show that

(φ(Y1, U1), ψ(Y2, U2)) ≤PQD (φ(Y1, V1), ψ(Y2, V2)),
for all increasing functions φ and ψ. (9.A.10)

From (9.A.9) and (9.A.10) one obtains (9.A.8). 
�
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In particular, if (9.A.7) holds, then

(X1 + U1, X2 + U2) ≤PQD (Y1 + V1, Y2 + V2), (9.A.11)

that is, the PQD order is closed under convolutions. From Theorem 9.A.1 it
also follows that

(X1, X2) ≤PQD (Y1, Y2) =⇒ (φ(X1), ψ(X2)) ≤PQD (φ(Y1), ψ(Y2)),

for all increasing functions φ and ψ.
The closure properties that are stated in the next theorem are easy to

verify.

Theorem 9.A.2. (a) Let {(X(j)
1 , X

(j)
2 ), j = 1, 2, . . . } and {(Y (j)

1 , Y
(j)
2 ), j =

1, 2, . . . } be two sequences of random vectors such that (X(j)
1 , X

(j)
2 ) →st

(X1, X2) and (Y (j)
1 , Y

(j)
2 ) →st (Y1, Y2) as j → ∞, where →st denotes con-

vergence in distribution. If (X(j)
1 , X

(j)
2 ) ≤PQD (Y (j)

1 , Y
(j)
2 ), j = 1, 2, . . .,

then (X1, X2) ≤PQD (Y1, Y2).
(b) Let (X1, X2), (Y1, Y2), and Θ be random vectors such that [(X1, X2)

∣∣Θ =
θ] ≤PQD [(Y1, Y2)

∣∣Θ = θ] for all θ in the support of Θ. Then (X1, X2)
≤PQD (Y1, Y2). That is, the PQD order is closed under mixtures.

Fang, Hu, and Joe [191] applied the idea of the PQD order to stationary
Markov chains and showed that, if the process is stochastically increasing,
then dependence (in the sense of the PQD order) is decreasing with the lag,
namely, if {X1, X2, . . . } is a Markov chain and Xi is distributed according to
F and if (X1, Xn) is distributed according to F1n, n = 2, 3, . . ., then

F12 ≥PQD F13 ≥PQD · · · ≥PQD F1n ≥PQD · · · ≥PQD F (2), (9.A.12)

where F (2)(x, y) = F (x)F (y). See also Remark 9.A.29 below.
Another example is the following.

Example 9.A.3. Let φ and ψ be two Laplace transforms of positive random
variables. Then F and G, defined by

F (x1, x2) = φ(φ−1(x1) + φ−1(x2)), (x1, x2) ∈ [0, 1]2,

and
G(y1, y2) = ψ(ψ−1(y1) + ψ−1(y2)), (y1, y2) ∈ [0, 1]2,

are bivariate distribution functions with uniform[0, 1] marginals (such F and
G are called Archimedean copulas). Let (X1, X2) and (Y1, Y2) be distributed
according to F and G, respectively. Then (X1, X2) ≤PQD (Y1, Y2) if, and
only if, ψ−1φ is superadditive (that is, ψ−1φ(x + y) ≥ ψ−1φ(x) + ψ−1φ(y)
for all x, y ≥ 0). Also, if φ−1ψ has a completely monotone derivative, then
(X1, X2) ≤PQD (Y1, Y2).
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9.A.3 The multivariate case

Let X = (X1, X2, . . . , Xn) be a random vector with distribution function F
and survival function F . Let Y = (Y1, Y2, . . . , Yn) be another random vector
with distribution function G and survival function G. If

F (x) ≤ G(x) for all x, (9.A.13)

and
F (x) ≤ G(x) for all x, (9.A.14)

then we say that X is smaller than Y in the PQD order (denoted by X ≤PQD
Y ). From (9.A.13) and (9.A.14) it follows that only random vectors with the
same univariate marginals can be compared in the PQD order.

From (9.A.13) and (9.A.14) it follows that

X ≤PQD Y ⇐⇒
{
X ≤uo Y and X ≥lo Y

}
. (9.A.15)

An extension of Theorem 9.A.1 to the general multivariate case is the
following. The proof of Theorem 9.A.4 is a straightforward extension of the
proof of Theorem 9.A.1, and therefore it is omitted.

Theorem 9.A.4. Suppose that the four random vectors X = (X1, X2, . . . ,
Xn), Y = (Y1, Y2, . . . , Yn), U = (U1, U2, . . . , Un), and V = (V1, V2, . . . , Vn)
satisfy

X ≤PQD Y and U ≤PQD V , (9.A.16)

and suppose that X and U are independent, and also that Y and V are
independent. Then

(φ1(X1, U1), φ2(X2, U2), . . . , φn(Xn, Un))
≤PQD (φ1(Y1, V1), φ2(Y2, V2), . . . , φn(Yn, Vn)),

for all increasing functions φi, i = 1, 2, . . . , n.

In particular, if (9.A.16) holds, then

X + U ≤PQD Y + V ,

that is, the PQD order is closed under convolutions. Also, from Theorem 9.A.4
it follows that

(X1, X2, . . . , Xn) ≤PQD (Y1, Y2, . . . , Yn)
=⇒ (φ1(X1), φ2(X2), . . . , φn(Xn)) ≤PQD (φ1(Y1), φ2(Y2), . . . , φn(Yn)),

for all increasing functions φi, i = 1, 2, . . . , n.
The closure properties that are stated in the next theorem are easy to

verify.
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Theorem 9.A.5. (a) Let X1,X2, . . . ,Xm be a set of independent random
vectors where the dimension of Xi is ki, i = 1, 2, . . . , m. Let Y 1,Y 2, . . . ,
Y m be another set of independent random vectors where the dimension of
Y i is ki, i = 1, 2, . . . , m. If Xi ≤PQD Y i for i = 1, 2, . . . , m, then

(X1,X2, . . . ,Xm) ≤PQD (Y 1,Y 2, . . . ,Y m).

That is, the PQD order is closed under conjunctions.
(b) Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two n-dimensional

random vectors. If X ≤PQD Y , then XI ≤PQD Y I for each I ⊆
{1, 2, . . . , n}. That is, the PQD order is closed under marginalization.

(c) Let {Xj , j = 1, 2, . . . } and {Y j , j = 1, 2, . . . } be two sequences of random
vectors such that Xj →st X and Y j →st Y as j → ∞, where →st
denotes convergence in distribution. If Xj ≤PQD Y j, j = 1, 2, . . ., then
X ≤PQD Y .

(d) Let X, Y , and Θ be random vectors such that [X
∣∣Θ = θ] ≤PQD [Y

∣∣Θ =
θ] for all θ in the support of Θ. Then X ≤PQD Y . That is, the PQD
order is closed under mixtures.

From Theorem 9.A.5(b) and (9.A.4) it follows that if (X1, X2, . . . , Xn)
≤PQD (Y1, Y2, . . . , Yn), then, for all i1 �= i2, we have that

Cov(Xi1 , Xi2) ≤ Cov(Yi1 , Yi2).

Since the univariate marginals of X and Y are equal, it also follows that

ρXi1 ,Xi2
≤ ρYi1 ,Yi2

,

where ρXi1 ,Xi2
and ρYi1 ,Yi2

denote the correlation coefficients associated with
(Xi1 , Xi2) and (Yi1 , Yi2), respectively, provided the underlying variances are
well defined. Joe [260] has shown that some multivariate versions of the corre-
lation measures Kendall’s τ , Spearman’s ρ, and Blomquist’s q, are monotone
with respect to the PQD order.

Another preservation property of the PQD order is described in the next
theorem. In the following theorem we define

∑0
j=1 xj ≡ 0 for any sequence

{xj , j = 1, 2, . . . }. Similar results are Theorems 6.G.7 and 9.A.15.

Theorem 9.A.6. Let Xj = (Xj,1, Xj,2, . . . , Xj,m), j = 1, 2, . . ., be a se-
quence of nonnegative random vectors, and let M = (M1, M2, . . . , Mm) and
N = (N1, N2, . . . , Nm) be two vectors of nonnegative integer-valued ran-
dom variables. Assume that both M and N are independent of the Xj’s.
If M ≤PQD N , then

( M1∑
j=1

Xj,1,

M2∑
j=1

Xj,2, . . . ,

Mm∑
j=1

Xj,m

)
≤PQD

( N1∑
j=1

Xj,1,

N2∑
j=1

Xj,2, . . . ,

Nm∑
j=1

Xj,m

)
.
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Consider now, as in Section 6.B.4, n families of univariate distribu-
tion functions {G

(i)
θ , θ ∈ Xi} where Xi is a subset of the real line R,

i = 1, 2, . . . , n. Let Xi(θ) denote a random variable with distribution func-
tion G

(i)
θ , i = 1, 2, . . . , n. Below we give a result which provides comparisons

of two random vectors, with distribution functions of the form (6.B.18), in
the PQD order. The following result is obtained easily from Theorem 6.G.8;
see Theorems 6.B.17, 7.A.37, and 9.A.15 for related results.

Theorem 9.A.7. Let {G
(i)
θ , θ ∈ Xi}, i = 1, 2, . . . , n, be n families of univari-

ate distribution functions as above. Let Θ1 and Θ2 be two random vectors
with supports in

∏n
i=1 Xi and distribution functions F1 and F2, respectively.

Let Y 1 and Y 2 be two random vectors with distribution functions H1 and H2
given by

Hj(y1, y2, . . . , yn) =
∫

X1

∫
X2

. . .

∫
Xn

n∏
i=1

G
(i)
θi

(yi)dFj(θ1, θ2, . . . , θn),

(y1, y2, . . . , yn) ∈ R
n, j = 1, 2.

If
Xi(θ) ≤st Xi(θ′) whenever θ ≤ θ′, i = 1, 2, . . . , n,

and if
Θ1 ≤PQD Θ2,

then
Y 1 ≤PQD Y 2.

Example 9.A.8. Let X be an n-dimensional random vector with a density
function f of the form

f(x) = |Σ|−1/2g(xΣ−1x),

where Σ = (σij) is a positive definite n × n matrix, and g satisfies
∫∞
0 rn−1

g(r2)dr < ∞. Such density functions are called elliptically contoured. Let Y
be an n-dimensional random vector with a density function h of the form

h(x) = |Λ|−1/2g(xΛ−1x),

where Λ = (λij) is a positive definite n×n matrix. If σii = λii, i = 1, 2, . . . , n,
and σij ≤ λij , 1 ≤ i < j ≤ n, then

X ≤PQD Y .

In particular, multivariate normal random vectors with mean 0 and the same
variances are ordered in the PQD order if their covariances are pointwise
ordered.
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9.A.4 The supermodular order

The supermodular order, which is described in this subsection, is a sufficient
condition that implies the PQD order, but it is also of independent interest.

Recall from Section 7.A.8 that a function φ : R
n → R is said to be super-

modular if for any x,y ∈ R
n it satisfies

φ(x) + φ(y) ≤ φ(x ∧ y) + φ(x ∨ y),

where the operators ∧ and ∨ denote coordinatewise minimum and maximum,
respectively. Note that if φ : R

n → R is supermodular, then the function
ψ, defined by ψ(x1, x2, . . . , xn) = φ(g1(x1), g2(x2), . . . , gn(xn)), is also super-
modular, whenever gi : R → R, i = 1, 2, . . . , n, are all increasing or are all
decreasing.

Let X and Y be two n-dimensional random vectors such that

E[φ(X)] ≤ E[φ(Y )] for all supermodular functions φ : R
n → R,

provided the expectations exist. Then X is said to be smaller than Y in the
supermodular order (denoted by X ≤sm Y ).

Since the functions φx = I{y:y>x} and ψx = I{y:y≤x} are supermodular
for each fixed x, it is immediate that

X ≤sm Y =⇒ X ≤PQD Y . (9.A.17)

These implications also follow from Theorem 6.G.2 and (9.A.15) since every
n-dimensional (n ≥ 2) distribution function, and any n-dimensional survival
function, are supermodular functions. In fact, when n = 2 we have that

(X1, X2) ≤sm (Y1, Y2) ⇐⇒ (X1, X2) ≤PQD (Y1, Y2); (9.A.18)

see, for example, Tchen [547]. From (9.A.17) it is seen that if X ≤sm Y , then
X and Y must have the same univariate marginals.

Some closure properties of the supermodular order are described in the
next theorem.

Theorem 9.A.9. (a) Let (X1, X2, . . . , Xn) and (Y1, Y2, . . . , Yn) be two n-
dimensional random vectors. If (X1, X2, . . . , Xn) ≤sm (Y1, Y2, . . . , Yn),
then

(g1(X1), g2(X2), . . . , gn(Xn)) ≤sm (g1(Y1), g2(Y2), . . . , gn(Yn))

whenever gi : R → R, i = 1, 2, . . . , n, are all increasing or are all decreas-
ing.

(b) Let X1,X2, . . . ,Xm be a set of independent random vectors where the
dimension of Xi is ki, i = 1, 2, . . . , m. Let Y 1,Y 2, . . . ,Y m be another
set of independent random vectors where the dimension of Y i is ki, i =
1, 2, . . . , m. If Xi ≤sm Y i for i = 1, 2, . . . , m, then

(X1,X2, . . . ,Xm) ≤sm (Y 1,Y 2, . . . ,Y m).

That is, the supermodular order is closed under conjunctions.
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(c) Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two n-dimensional
random vectors. If X ≤sm Y , then XI ≤sm Y I for each I ⊆ {1, 2, . . . , n}.
That is, the supermodular order is closed under marginalization.

(d) Let X, Y , and Θ be random vectors such that
[
X
∣∣Θ = θ

]
≤sm

[
Y
∣∣Θ =

θ
]

for all θ in the support of Θ. Then X ≤sm Y . That is, the supermod-
ular order is closed under mixtures.

(e) Let {Xj , j = 1, 2, . . . } and {Y j , j = 1, 2, . . . } be two sequences of random
vectors such that Xj →st X and Y j →st Y as j → ∞, where →st denotes
convergence in distribution. If Xj ≤sm Y j, j = 1, 2, . . ., then X ≤sm Y .

Proof. Part (a) follows from the fact that a composition of a supermodu-
lar function with coordinatewise functions, that are all increasing or are all
decreasing, is a supermodular function.

In order to see part (b) let X1 and X2 be two independent random vectors,
and let Y 1 and Y 2 be two other independent random vectors. Suppose that
X1 ≤sm Y 1 and that X2 ≤sm Y 2. Then, for any supermodular function φ
(of the proper dimension) we have that

Eφ(X1,X2) = E
[
Eφ(X1,X2)

∣∣X2
]

≤ E
[
Eφ(Y 1,X2)

∣∣X2
]

= Eφ(Y 1,X2)
≤ Eφ(Y 1,Y 2),

where the first inequality follows from the fact that φ(x1,x2) is supermodular
in x1 when x2 is fixed, and the second inequality follows in a similar manner.
Part (b) of Theorem 9.A.9 follows from the above by induction.

Parts (c) and (d) are easy to prove. A proof of part (e) can be found in
Müller and Scarsini [416]. 
�

From parts (a) and (d) of Theorem 9.A.9 we obtain the following corollary.

Corollary 9.A.10. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be
two random vectors such that X ≤sm Y , and let Z be an m-dimensional
random vector which is independent of X and Y . Then

(h1(X1,Z), h2(X2,Z), . . . , hn(Xn,Z))
≤sm (h1(Y1,Z), h2(Y2,Z), . . . , hn(Yn,Z)),

whenever hi(x,z), i = 1, 2, . . . , n, are all increasing or are all decreasing in x
for every z.

Example 9.A.11. Let X and Y be two n-dimensional random vectors such
that X ≤sm Y , and let Z be an n-dimensional random vector which is inde-
pendent of X and Y . Then from Corollary 9.A.10 it follows that

X ∧ Z ≤sm Y ∧ Z,

and that
X + Z ≤sm Y + Z.
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By applying Corollary 9.A.10 twice (letting Z there be an n-dimensional
random vector, and letting each hi depend only on its first argument and
on the ith component of the second argument, i = 1, 2, . . . , n), we get the
following result.

Theorem 9.A.12. Let X, Y , Z, and W be n-dimensional random vectors
such that X and Z are independent and Y and W are independent. Let
ci : [0,∞)2 → [0,∞) be a continuous increasing function, i = 1, 2, . . . , n. If
X ≤sm Y and Z ≤sm W , then

(c1(X1, Z1), c2(X2, Z2), . . . , cn(Xn, Zn))
≤sm (c1(Y1, W1), c2(Y2, W2), . . . , cn(Yn, Wn)).

Example 9.A.13. Let {Xk = (Xk,1, . . . , Xk,n), k ≥ 0} and {Y k = (Yk,1, . . . ,
Yk,n), k ≥ 0} be two Markov chains as described in Example 6.G.6. If the gi’s
are increasing in their m + 1 arguments, if U l = {U l

k, k ≥ 0}, l = 1, . . . , m,
are independent, if V l = {V l

k, k ≥ 0}, l = 1, . . . , m, are independent, and if
U l

k ≤sm V l
k, l = 1, . . . , m, k ≥ 0, then, for each k ≥ 0 we have

(X0, . . . ,Xk) ≤sm (Y 0, . . . ,Y k).

The proof uses Theorem 9.A.12, Corollary 9.A.10, and Theorem 9.A.9(b). We
omit the details.

Another preservation property of the supermodular order is described in
the next theorem. In the following theorem we define

∑0
j=1 xj ≡ 0 for any

sequence {xj , j = 1, 2, . . . }. Similar results are Theorems 6.G.7 and 9.A.6.

Theorem 9.A.14. Let Xj = (Xj,1, Xj,2, . . . , Xj,m), j = 1, 2, . . ., be a se-
quence of nonnegative random vectors, and let M = (M1, M2, . . . , Mm) and
N = (N1, N2, . . . , Nm) be two vectors of nonnegative integer-valued ran-
dom variables. Assume that both M and N are independent of the Xj’s.
If M ≤sm N , then

( M1∑
j=1

Xj,1,

M2∑
j=1

Xj,2, . . . ,

Mm∑
j=1

Xj,m

)
≤sm

( N1∑
j=1

Xj,1,

N2∑
j=1

Xj,2, . . . ,

Nm∑
j=1

Xj,m

)
.

Proof. Let φ be a supermodular function. Conditioning on the possible real-
izations of (X1,X2, . . . ) we can write

E

[
φ
( M1∑

j=1

Xj,1,

M2∑
j=1

Xj,2, . . . ,

Mm∑
j=1

Xj,m

)]

= E

{
E
[
φ
( M1∑

j=1

Xj,1,

M2∑
j=1

Xj,2, . . . ,

Mm∑
j=1

Xj,m

)∣∣∣(X1,X2, . . . )
]}

.
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Now, it is easy to see that for any realization (x1,x2, . . . ) of (X1,X2, . . . ),
the function ψ, defined by ψ(n1, n2, . . . , nm) = φ

(∑n1
j=1 xj,1,

∑n2
j=1 xj,2, . . . ,∑nm

j=1 xj,m

)
, is supermodular. Therefore, since M ≤sm N , we have that

E
[
φ
( M1∑

j=1

Xj,1,

M2∑
j=1

Xj,2, . . . ,

Mm∑
j=1

Xj,m

)∣∣∣(X1,X2, . . . ) = (x1,x2, . . . )
]

≤ E
[
φ
( N1∑

j=1

Xj,1,

N2∑
j=1

Xj,2, . . . ,

Nm∑
j=1

Xj,m

)∣∣∣(X1,X2, . . . ) = (x1,x2, . . . )
]
,

and thus

E
[
φ
( M1∑

j=1

Xj,1,

M2∑
j=1

Xj,2, . . . ,

Mm∑
j=1

Xj,m

)]

≤ E

{
E
[
φ
( N1∑

j=1

Xj,1,

N2∑
j=1

Xj,2, . . . ,

Nm∑
j=1

Xj,m

)∣∣∣(X1,X2, . . . )
]}

= E
[
φ
( N1∑

j=1

Xj,1,

N2∑
j=1

Xj,2, . . . ,

Nm∑
j=1

Xj,m

)]
. 
�

Consider now, as in Section 6.B.4, n families of univariate distribu-
tion functions {G

(i)
θ , θ ∈ Xi} where Xi is a subset of the real line R,

i = 1, 2, . . . , n. Let Xi(θ) denote a random variable with distribution func-
tion G

(i)
θ , i = 1, 2, . . . , n. Below we give a result which provides comparisons

of two random vectors, with distribution functions of the form (6.B.18), in
the supermodular order. The following result is a generalization of Theorem
9.A.9(d); see Theorems 6.B.17, 6.G.8, 7.A.37, and 9.A.7 for related results.

Theorem 9.A.15. Let {G
(i)
θ , θ ∈ Xi}, i = 1, 2, . . . , n, be n families of uni-

variate distribution functions as above. Let Θ1 and Θ2 be two random vectors
with supports in

∏n
i=1 Xi and distribution functions F1 and F2, respectively.

Let Y 1 and Y 2 be two random vectors with distribution functions H1 and H2
given by

Hj(y1, y2, . . . , yn) =
∫

X1

∫
X2

. . .

∫
Xn

n∏
i=1

G
(i)
θi

(yi)dFj(θ1, θ2, . . . , θn),

(y1, y2, . . . , yn) ∈ R
n, j = 1, 2.

If
Xi(θ) ≤st Xi(θ′) whenever θ ≤ θ′, i = 1, 2, . . . , n,

and if
Θ1 ≤sm Θ2,
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then
Y 1 ≤sm Y 2.

Before stating the next result, it is worthwhile to mention that from Propo-
sition 7.A.27 it follows that

X ≤sm Y =⇒ X ≤dir-cx Y .

The following result may be compared with Theorems 6.G.10 and 7.A.30.

Theorem 9.A.16. Let X and Y be two random vectors. If X ≤sm Y , then
φ(X) ≤icx φ(Y ) for any increasing supermodular function φ : R

n → R.

A consequence of Theorem 9.A.16, that is useful in queuing theory, is
described in the following example.

Example 9.A.17. Let {Ai}∞
i=0 be a sequence of random variables, and let c be

some constant. Define inductively

Q0 = q; Qi+1 = [Qi + Ai − c]+, i = 1, 2, . . . ,

for some fixed q. Similarly, let {A′
i}∞

i=0 be another sequence of random vari-
ables, and define inductively

Q′
0 = q; Q′

i+1 = [Q′
i + A′

i − c]+, i = 1, 2, . . . .

If (A0, A1, . . . , Ai) ≤sm (A′
0, A

′
1, . . . , A

′
i) for all i = 1, 2, . . ., then Qi ≤icx Q′

i

for all i = 1, 2, . . .. In fact, the above result holds even if Q0 and Q′
0 are

random variables satisfying Q0 ≤icx Q′
0.

As a particular case of Theorem 9.A.16 we have that

(X1, X2, . . . , Xn) ≤sm (Y1, Y2, . . . , Yn) =⇒
n∑

i=1

Xi ≤cx

n∑
i=1

Yi (9.A.19)

(since X ≤sm Y =⇒ EX = EY ).
A related result is the following. It shows that the larger in the supermod-

ular order a random vector is, the “closer” are its coordinates in the proper
stochastic sense.

Theorem 9.A.18. Let (X1, X2) and (Y1, Y2) be two random vectors. If (X1,
X2) ≤sm (Y1, Y2) (that is, (X1, X2) ≤PQD (Y1, Y2); see (9.A.18)), then

Y1 − Y2 ≤cx X1 − X2.

Proof. Let φ be a univariate convex function. Then the function ψ, defined
by

ψ(x1, x2) = −φ(x1 − x2),

is easily seen to be supermodular. Thus Eφ(Y1 − Y2) ≤ Eφ(X1 − X2). This
proves the inequality. 
�
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A consequence of Theorem 9.A.14 and (9.A.19) is described in the following
example.

Example 9.A.19. Let X1, X2, . . . and Y1, Y2, . . . be two sequences of random
variables. Let N1 and N2 be two independent and identically distributed pos-
itive integer-valued random variables independent of the Xi’s and of the Yi’s.
Then

N1∑
i=1

Xi +
N2∑
i=1

Yi ≤cx

N1∑
i=1

(Xi + Yi).

In order to see it, note that (N1, N2) ≤sm (N1, N1), and use Theorem 9.A.14
and (9.A.19). This proof was communicated to us by Taizhong Hu.

An interesting example in which the supermodular order arises naturally
is the following. See also Examples 6.B.29, 6.G.11, 7.A.13, 7.A.26, 7.A.39, and
7.B.5.

Example 9.A.20. Let X be a multivariate normal random vector with mean
vector 0 and variance-covariance matrix Σ, and let Y be a multivariate nor-
mal random vector with mean vector 0 and variance-covariance matrix Σ+D,
where D is a matrix with zero diagonal elements such that Σ + D is non-
negative definite. Then X ≤sm Y if, and only if, all the entries of D are
nonnegative.

The supermodular order can be used to bound some quite general random
vectors. This is shown in the next three theorems. The proofs of the these
theorems are omitted. Theorem 9.A.21 can be considered to be an extension
of the right-hand side of (9.A.6).

Theorem 9.A.21. Let X = (X1, X2, . . . , Xn) be a random vector and let FXi

be the marginal distribution of Xi, i = 1, 2, . . . , n. Then, for a uniform[0, 1]
random variable U we have that

X ≤sm (F−1
X1

(U), F−1
X2

(U), . . . , F−1
Xn

(U)),

and therefore

X ≤PQD (F−1
X1

(U), F−1
X2

(U), . . . , F−1
Xn

(U)).

In particular, if the Xi’s in Theorem 9.A.21, marginally, have the same
(univariate) distribution function, then

X ≤sm (X1, X1, . . . , X1),

and therefore
X ≤PQD (X1, X1, . . . , X1).

Combining (9.A.19) and Theorem 9.A.21 it is seen, using the notation of
Theorem 9.A.21, that
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X1 + X2 + · · · + Xn ≤cx F−1
X1

(U) + F−1
X2

(U) + · · · + F−1
Xn

(U). (9.A.20)

A more detailed result is described next. Let X1, X2, . . . , Xn, Z, and U be
random variables, where U has the uniform[0, 1] distribution. Let F−1

Xi|Z(U)
denote the random variable gi(U, Z), where gi is defined by gi(u, z) =
F−1

Xi|Z=z(u), i = 1, 2, . . . , n.

Proposition 9.A.22. Let X = (X1, X2, . . . , Xn) be a random vector, and let
FXi

be the marginal distribution of Xi, i = 1, 2, . . . , n. Let Z and U be two
other random variables, such that U has a uniform[0, 1] distribution, and is
independent of Z. Then

X1 + X2 + · · · + Xn ≤cx F−1
X1|Z(U) + F−1

X2|Z(U) + · · · + F−1
Xn|Z(U)

≤cx F−1
X1

(U) + F−1
X2

(U) + · · · + F−1
Xn

(U). (9.A.21)

Proof. From (9.A.20) it is seen that for any convex function φ we have (below
FZ denotes the distribution function of Z)

E[φ(X1 + · · · + Xn)]

=
∫ ∞

−∞
E[φ(X1 + · · · + Xn)

∣∣Z = z]dFZ(z)

≤
∫ ∞

−∞
E[φ(F−1

X1|Z=z(U) + · · · + F−1
Xn|Z=z(U))

∣∣Z = z]dFZ(z)

= E[φ(F−1
X1|Z(U) + · · · + F−1

Xn|Z(U))],

and the first inequality in (9.A.21) follows.
Next, note that the random vector (F−1

X1|Z(U), F−1
X2|Z(U), . . . , F−1

Xn|Z(U))
has the same marginals as (X1, X2, . . . , Xn) because

P (Xi ≤ x) =
∫ ∞

−∞
P (Xi ≤ x

∣∣Z = z)dFZ(z)

=
∫ ∞

−∞
P (F−1

Xi|Z=z(U) ≤ x)dFZ(z)

= P (F−1
Xi|Z(U) ≤ x), −∞ ≤ x ≤ ∞, i = 1, 2, . . . , n,

and the second inequality in (9.A.21) therefore follows from (9.A.20). 
�

The next result has been motivated by the desire to generalize and unify
Theorems 3.A.34 and 4.A.17. Recall the definition of negative association in
(3.A.54). If the inequality (3.A.54) is reversed, that is, if the random variables
X1, X2, . . . , Xn satisfy

Cov(h1(Xi1 , Xi2 , . . . , Xik
), h2(Xj1 , Xj2 , . . . , Xjn−k

)) ≥ 0 (9.A.22)

for all choices of disjoint subsets {i1, i2, . . . , ik} and {j1, j2, . . . , jn−k} of
{1, 2, . . . , n}, and for all increasing functions h1 and h2 for which the above
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covariance is defined, then X1, X2, . . . , Xn are said to be weakly positively
associated.

Theorem 9.A.23. Let X = (X1, X2, . . . , Xn) be a random vector, and let
Y = (Y1, Y2, . . . , Yn) be a vector of independent random variables such that,
marginally, Xi =st Yi, i = 1, 2, . . . , n.

(a) If X1, X2, . . . , Xn are weakly positively associated, then X ≥sm Y .
(b) If X1, X2, . . . , Xn are negatively associated, then X ≤sm Y .

A result that is stronger than Theorem 9.A.23 is given in Section 9.E
below; see details in Remark 9.E.9.

Combining Theorem 9.A.23 with Theorem 9.A.16 (and using the fact
that positive association implies weak positive association) one obtains The-
orems 3.A.34 and 4.A.17 (for the latter, note that the function φ(x) =
max1≤k≤n

∑k
i=1 xi is increasing and supermodular).

Theorem 9.A.24. Let X = (X1, X2, . . . , Xn) be a vector of nonnegative
random variables, and let Fi denote the marginal distribution of Xi, i =
1, 2, . . . , n. Suppose that

n∑
1

F i(0) ≤ 1.

Then there exists a unique random vector Y = (Y1, Y2, . . . , Yn) with marginal
distributions Fi, i = 1, 2, . . . , n, such that

P{Yi > 0, Yj > 0} = 0 for all i �= j, (9.A.23)

and this Y satisfies
Y ≤sm X.

The following result strengthens Theorem 7.A.38; the terminology that is
used there is also used in the theorem below.

Theorem 9.A.25. Let the random vectors X = (X1, X2, . . . , Xn) and Y =
(Y1, Y2, . . . , Yn) have the respective copulas CX and CY . Let UX and UY be
distributed according to CX and CY . If Xi ≤cx Yi, i = 1, 2, . . . , n, if UX ≤sm
UY , and if UY is CI, then X ≤dir-cx Y .

Example 9.A.26. Let Z1, Z2, . . . , Zn be a collection of independent and identi-
cally distributed random variables, let U1, U2, . . . , Un be another collection of
independent and identically distributed random variables, and let V be still
another random variable that is independent of the Ui’s. Consider the random
vectors Y and X defined as

(Y1, Y2, . . . , Yn) = (g1(Z1), g2(Z2), . . . , gn(Zn))
(X1, X2, . . . , Xn) = (g̃1(U1, V ), g̃2(U2, V ), . . . , g̃n(Un, V )),

where gi : R → R and g̃i : R
2 → R are measurable functions that satisfy
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gi(Zi) =st g̃i(Ui, V ), i = 1, 2, . . . , n.

If g̃i is increasing in its second variable, i = 1, 2, . . . , n, then it is known that for
fixed values u1, u2, . . . , un of U1, U2, . . . , Un we have that g̃1(u1, V ), g̃2(u2, V ),
. . . , g̃n(un, V ) are weakly positively associated. Thus, for a supermodular func-
tion φ : R

n → R we have (here V1, V2, . . . , Vn are independent copies of V )

Eφ(X1, X2, . . . , Xn)

= E
[
E
[
φ(g̃1(U1, V ), g̃2(U2, V ), . . . , g̃n(Un, V ))

∣∣U1, U2, . . . , Un

]]
≥ E

[
E
[
φ(g̃1(U1, V1), g̃2(U2, V2), . . . , g̃n(Un, Vn))

∣∣U1, U2, . . . , Un

]]
= Eφ(Y1, Y2, . . . , Yn),

where the inequality follows from Theorem 9.A.23. Thus Y ≤sm X.

Example 9.A.27. Let Ω = {a1, a2, . . . , aN} be a finite population. Let X1, X2,
. . . , Xn be a sample without replacement of size n ≤ N from Ω; that is,

P{(X1, X2, . . . , Xn) = (x1, x2, . . . , xn)} =
1

N(N − 1) · · · (N − n + 1)
,

(x1, x2, . . . , xn) ∈ Ωn,

provided all the xi’s comprise different elements of Ω. Let Y1, Y2, . . . , Yn be a
sample with replacement of size n from Ω; that is,

P{(Y1, Y2, . . . , Yn) = (x1, x2, . . . , xn)} =
1

Nn
, (x1, x2, . . . , xn) ∈ Ωn.

Then (X1, X2, . . . , Xn) ≤sm (Y1, Y2, . . . , Yn).

Example 9.A.28. Let φ and ψ be two Laplace transforms of positive random
variables. Then F and G, defined by

F (x1, x2, . . . , xn) = φ(φ−1(x1) + φ−1(x2) + · · · + φ−1(xn)),
(x1, x2, . . . , xn) ∈ [0, 1]n,

and

G(y1, y2, . . . , yn) = ψ(ψ−1(y1) + ψ−1(y2) + · · · + ψ−1(yn)),
(y1, y2, . . . , yn) ∈ [0, 1]n,

are multivariate distribution functions with uniform[0, 1] marginals (see Ex-
ample 9.A.3). Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be dis-
tributed according to F and G, respectively. If φ−1ψ has a completely mono-
tone derivative, then X ≤sm Y .

Hu, Xie, and Ruan [241] described various sets of conditions under which
two multivariate Bernoulli random vectors are ordered with respect to the
supermodular order.
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Remark 9.A.29. Hu and Pan [239] elegantly extended (9.A.12) to the super-
modular order. They also identified conditions under which any n correspond-
ing values of two stationary Markov chains are comparable in the order ≤sm.
See also Miyoshi and Rolski [398].

9.B The Orthant Ratio Orders

Some multivariate stochastic orders, that compare the “location” or “mag-
nitude” of two random vectors, may be thought of as stochastic orders of
positive dependence if the compared random vectors have the same univari-
ate marginal distributions. For example, in the bivariate case, when this is the
situation, the orthant orders ≤uo and ≤lo (see Section 6.G.1) become the or-
der ≤PQD, or, equivalently (see (9.A.18)), the order ≤sm. On the other hand,
some multivariate location orders do not give anything meaningful once the
marginals are held fixed. For instance, the usual multivariate stochastic or-
der ≤st can order two random vectors, with marginals that are stochastically
equal, only if they have the same distributions (see Theorem 6.B.19).

In this section we study, among other things, some stochastic orders of
positive dependence that arise when the underlying random vectors are or-
dered with respect to some multivariate hazard rate stochastic orders that
were discussed in Section 6.D, and have the same univariate marginal distri-
butions.

9.B.1 The (weak) orthant ratio orders

Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two random vectors
with respective distribution functions F and G, and with survival functions
F and G. We suppose that F and G belong to the same Fréchet class; that
is, have the same univariate marginals.

We say that X is smaller than Y in the lower orthant decreasing ratio
order (denoted by X ≤lodr Y or F ≤lodr G) if

F (y)G(x) ≥ F (x)G(y) whenever x ≤ y. (9.B.1)

This is equivalent to

G(x)
F (x)

is decreasing in x ∈ {x : G(x) > 0}, (9.B.2)

where in (9.B.2) we use the convention a/0 ≡ ∞ whenever a > 0. Note that
(9.B.2) can be written equivalently as

F (x − u)
F (x)

≤ G(x − u)
G(x)

, u ≥ 0, x ∈ {x : F (x) > 0} ∩ {x : G(x) > 0},

(9.B.3)
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and it is also equivalent to

[X − x
∣∣X ≤ x] ≥lo [Y − x

∣∣Y ≤ x], x ∈ {x : F (x) > 0} ∩ {x : G(x) > 0}.
(9.B.4)

Note that from (9.B.2) it follows that {x : F (x) > 0} ⊆ {x : G(x) > 0}.
Thus, in (9.B.3) and (9.B.4) we can formally replace the expression {x :
F (x) > 0} ∩ {x : G(x) > 0} by the simpler expression {x : F (x) > 0}.

We say that X is smaller than Y in the upper orthant increasing ratio
order (denoted by X ≤uoir Y or F ≤uoir G) if

F (y)G(x) ≤ F (x)G(y) whenever x ≤ y. (9.B.5)

This is equivalent to

G(x)
F (x)

is increasing in x ∈ {x : G(x) > 0},

where here, again, we use the convention a/0 ≡ ∞ whenever a > 0. Note that
the above can be written equivalently as

F (x + u)
F (x)

≤ G(x + u)
G(x)

, u ≥ 0, x ∈ {x : F (x) > 0} ∩ {x : G(x) > 0},

(9.B.6)
and it is also equivalent to

[X − x
∣∣X > x] ≤uo [Y − x

∣∣Y > x], x ∈ {x : F (x) > 0} ∩ {x : G(x) > 0}.
(9.B.7)

Formally the expression {x : F (x) > 0} ∩ {x : G(x) > 0} in (9.B.6) and
(9.B.7) can be replaced by the simpler expression {x : F (x) > 0}.

We note that if X and Y have the same marginals, then X ≤uoir Y if,
and only if, X ≤whr Y ; see (6.D.2).

The two orders ≤lodr and ≤uoir are closely related, as is indicated in the
next result.

Theorem 9.B.1. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two
random vectors in the same Fréchet class.

(a) If X ≤lodr Y , then (φ1(X1), φ2(X2), . . . , φn(Xn)) ≤uoir (φ1(Y1), φ2(Y2),
. . . , φn(Yn)) for any decreasing functions φ1, φ2, . . . , φn. Conversely, if
(φ1(X1), φ2(X2), . . . , φn(Xn)) ≤uoir (φ1(Y1), φ2(Y2), . . . , φn(Yn)) for some
strictly decreasing functions φ1, φ2, . . . , φn, then X ≤lodr Y .

(b) If X ≤uoir Y , then (φ1(X1), φ2(X2), . . . , φn(Xn)) ≤lodr (φ1(Y1), φ2(Y2),
. . . , φn(Yn)) for any decreasing functions φ1, φ2, . . . , φn. Conversely, if
(φ1(X1), φ2(X2), . . . , φn(Xn)) ≤lodr (φ1(Y1), φ2(Y2), . . . , φn(Yn)) for some
strictly decreasing functions φ1, φ2, . . . , φn, then X ≤uoir Y .

The next result is similar to Theorem 9.B.1, but it involves increasing,
rather than decreasing, functions. It shows that the orders ≤lodr and ≤uoir
are closed under componentwise increasing transformations.



406 9 Positive Dependence Orders

Theorem 9.B.2. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two
random vectors in the same Fréchet class.

(a) If X ≤lodr Y , then (φ1(X1), φ2(X2), . . . , φn(Xn)) ≤lodr (φ1(Y1), φ2(Y2),
. . . , φn(Yn)) for any increasing functions φ1, φ2, . . . , φn. Conversely, if
(φ1(X1), φ2(X2), . . . , φn(Xn)) ≤lodr (φ1(Y1), φ2(Y2), . . . , φn(Yn)) for some
strictly increasing functions φ1, φ2, . . . , φn, then X ≤lodr Y .

(b) If X ≤uoir Y , then (φ1(X1), φ2(X2), . . . , φn(Xn)) ≤uoir (φ1(Y1), φ2(Y2),
. . . , φn(Yn)) for any increasing functions φ1, φ2, . . . , φn. Conversely, if
(φ1(X1), φ2(X2), . . . , φn(Xn)) ≤uoir (φ1(Y1), φ2(Y2), . . . , φn(Yn)) for some
strictly increasing functions φ1, φ2, . . . , φn, then X ≤uoir Y .

Since the order ≤uoir is equivalent to the order ≤whr when the compared
random vectors have the same marginals, it follows from Theorem 6.D.4 that
the order ≤uoir is closed under conjunctions, marginalization, and convergence
in distribution. Using Theorem 9.B.1 it is seen that also the order ≤lodr is
closed under these operations.

If X ≤lodr Y , then from (9.B.4) it follows that [X
∣∣X ≤ x] ≥lo [Y

∣∣Y ≤ x]
for all relevant x. Letting x → −∞ it is seen that (9.A.13) holds (with F
and G being the distributions functions of X and Y , respectively). Similarly,
if X ≤uoir Y , then (9.A.14) holds. Thus we have that(

X ≤lodr Y and X ≤uoir Y
)

=⇒ X ≤PQD Y .

Example 9.B.3. Recall from page 387 the definition of the Fréchet class
M(F1, F2) and the Fréchet lower bound in that class which we denote here by
F−. Suppose that (X1, X2) has a distribution function in M(F1, F2). Then
F− ≤lodr F and F− ≤uoir F .

Example 9.B.4. Let X and Y be two n-dimensional random vectors with
Marshall-Olkin exponential distributions F and G with the survival functions
given, for x ≥ 0, by

F (x) = exp
{

−
n∑

i=1

λixi −
∑

1≤i1≤i2≤n

λi1i2(xi1 ∨ xi2)

− · · · − λ12···n(x1 ∨ x2 ∨ · · · ∨ xn)
}

,

and

G(x) = exp
{

−
n∑

i=1

θixi −
∑

1≤i1≤i2≤n

θi1i2(xi1 ∨ xi2)

− · · · − θ12···n(x1 ∨ x2 ∨ · · · ∨ xn)
}

,

where the λ’s and the θ’s are positive constants. Denote νA = λA − θA,
A ⊆ {1, 2, . . . , n}. Then X ≤uoir Y if, and only if,
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νi ≥ 0, i ∈ {1, 2, . . . , n},

νi1 + νi1i2 ≥ 0, {i1, i2} ∈ {1, 2, . . . , n},

νi1 + νi1i2 + νi1i3 + νi1i2i3 ≥ 0, {i1, i2, i3} ∈ {1, 2, . . . , n},

...

and ∑
A�i

A⊆{1,2,...,n}

νA = 0.

9.B.2 The strong orthant ratio orders

Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two random vectors
with respective distribution functions F and G, and with survival functions
F and G. As in Section 9.B.1, we suppose that F and G belong to the same
Fréchet class; that is, have the same univariate marginals.

We say that X is smaller than Y in the strong lower orthant decreasing
ratio order (denoted by X ≤slodr Y or F ≤slodr G) if

F (x)G(y) ≤ F (x ∨ y)G(y ∧ x), x,y ∈ R
n. (9.B.8)

We say that X is smaller than Y in the strong upper orthant increasing ratio
order (denoted by X ≤suoir Y or F ≤suoir G) if

F (x)G(y) ≤ F (x ∧ y)G(y ∨ x), x,y ∈ R
n. (9.B.9)

We note that if X and Y have the same marginals, then X ≤suoir Y if,
and only if, X ≤hr Y ; see (6.D.1).

By choosing x ≤ y in (9.B.8) we get (9.B.1), and by choosing x ≥ y in
(9.B.9) we get (9.B.5), that is,

X ≤slodr Y =⇒ X ≤lodr and X ≤suoir Y =⇒ X ≤uoir . (9.B.10)

Thus the orders ≤slodr and ≤suoir are often useful as a tool to identify random
vectors that are ordered with respect to the orders ≤lodr and ≤uoir.

The two orders ≤slodr and ≤suoir are closely related, and are preserved
under componentwise increasing transformations, as is indicated in the next
analog of Theorems 9.B.1 and 9.B.2.

Theorem 9.B.5. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two
random vectors in the same Fréchet class.

(a) If X ≤slodr Y , then (φ1(X1), φ2(X2), . . . , φn(Xn)) ≤suoir (φ1(Y1), φ2(Y2),
. . . , φn(Yn)) for any decreasing functions φ1, φ2, . . . , φn. On the other
hand, if (φ1(X1), φ2(X2), . . . , φn(Xn)) ≤suoir (φ1(Y1), φ2(Y2), . . . , φn(Yn))
for some strictly decreasing functions φ1, φ2, . . . , φn, then X ≤slodr Y .
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(b) If X ≤suoir Y , then (φ1(X1), φ2(X2), . . . , φn(Xn)) ≤slodr (φ1(Y1), φ2(Y2),
. . . , φn(Yn)) for any decreasing functions φ1, φ2, . . . , φn. On the other
hand, if (φ1(X1), φ2(X2), . . . , φn(Xn)) ≤slodr (φ1(Y1), φ2(Y2), . . . , φn(Yn))
for some strictly decreasing functions φ1, φ2, . . . , φn, then X ≤suoir Y .

(c) If X ≤slodr Y , then (φ1(X1), φ2(X2), . . . , φn(Xn)) ≤slodr (φ1(Y1), φ2(Y2),
. . . , φn(Yn)) for any increasing functions φ1, φ2, . . . , φn. On the other
hand, if (φ1(X1), φ2(X2), . . . , φn(Xn)) ≤slodr (φ1(Y1), φ2(Y2), . . . , φn(Yn))
for some strictly increasing functions φ1, φ2, . . . , φn, then X ≤slodr Y .

(d) If X ≤suoir Y , then (φ1(X1), φ2(X2), . . . , φn(Xn)) ≤suoir (φ1(Y1), φ2(Y2),
. . . , φn(Yn)) for any increasing functions φ1, φ2, . . . , φn. On the other
hand, if (φ1(X1), φ2(X2), . . . , φn(Xn)) ≤suoir (φ1(Y1), φ2(Y2), . . . , φn(Yn))
for some strictly increasing functions φ1, φ2, . . . , φn, then X ≤suoir Y .

Since the order ≤suoir is equivalent to the order ≤hr when the compared
random vectors have the same marginals, it follows from Theorem 6.D.4 that
the order ≤uoir is closed under conjunctions, marginalization, and convergence
in distribution. Using Theorem 9.B.5 it is seen that also the order ≤slodr is
closed under these operations.

The converses of the implications in (9.B.10) are not true in general. How-
ever, under an additional assumption they are valid; these are given in the
following theorem.

Theorem 9.B.6. Let X and Y be two random vectors in the same Fréchet
class with respective distribution functions F and G, and respective survival
functions F and G.

(a) If F and/or G are/is MTP2, then X ≤lodr Y =⇒ X ≤slodr Y .
(b) If F and/or G are/is MTP2, then X ≤uoir Y =⇒ X ≤suoir Y .

Part (b) of the above theorem is similar to Theorem 6.D.1. However, it
turns out that since the compared random vectors are in the same Fréchet
class, it is not needed, in Theorem 9.B.6(b), that they have a common support
which is a lattice.

9.C The LTD, RTI, and PRD Orders

For any random vector (X1, X2) with distribution function F ∈ M(F1, F2)
(see page 387 for the definition of M(F1, F2)) we define the conditional dis-
tribution function FL

x by

FL
x1

(x2) = P{X2 ≤ x2
∣∣X1 ≤ x1} (9.C.1)

for all x1 for which this conditional distribution is well defined. Barlow and
Proschan [36] defined F (or X1 and X2) to be left tail decreasing (LTD) if

FL
x1

(x2) ≥ FL
x′
1
(x2) for all x1 ≤ x′

1 and x2,
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or, equivalently, if

(FL
x1

)−1(u) ≤ (FL
x′
1
)−1(u) for all x1 ≤ x′

1 and u ∈ [0, 1]. (9.C.2)

Note that when (FL
x1

)−1(u) is continuous in u for all x1, then (9.C.2) can be
equivalently written as

FL
x′
1

[
(FL

x1
)−1(u)

]
≤ u for all x1 ≤ x′

1 and u ∈ [0, 1]. (9.C.3)

This notion leads to the following definition.
Let (X1, X2) be a bivariate random vector with distribution function

F ∈ M(F1, F2), and let (Y1, Y2) be another bivariate random vector with
distribution function G ∈ M(F1, F2). Suppose that for any x1 ≤ x′

1 we have

(FL
x1

)−1(u) ≤ (FL
x′
1
)−1(v) =⇒ (GL

x1
)−1(u) ≤ (GL

x′
1
)−1(v) for all u, v ∈ [0, 1].

(9.C.4)
Then we say that (X1, X2) is smaller than (Y1, Y2) in the LTD order (denoted
by (X1, X2) ≤LTD (Y1, Y2) or F ≤LTD G).

Note that (9.C.4) can be equivalently written as

GL
x′
1

[
(GL

x1
)−1(u)

]
≤ FL

x′
1

[
(FL

x1
)−1(u)

]
for all x1 ≤ x′

1 and u ∈ [0, 1]. (9.C.5)

It can be shown that if FL
x1

(x2) and GL
x1

(x2) are continuous in x2 for all
x1, then (X1, X2) ≤LTD (Y1, Y2) if, and only if, for any x1 ≤ x′

1,

FL
x1

(x2) ≥ GL
x1

(x′
2) =⇒ FL

x′
1
(x2) ≥ GL

x′
1
(x′

2) for any x2 and x′
2. (9.C.6)

Note that (9.C.6) can be equivalently written as

(GL
x1

)−1[FL
x1

(x2)
]

≤ (GL
x′
1
)−1[FL

x′
1
(x2)

]
for all x1 ≤ x′

1 and x2,

that is, (GL
x1

)−1
[
FL

x1
(x2)

]
is increasing in x1 for all x2.

In the continuous case, it is immediate from (9.C.3) and (9.C.5) that F is
LTD if, and only if,

F I ≤LTD F,

where F I is defined in Section 9.A, but this is true also when F is not con-
tinuous.

Theorem 9.C.1. Let (X1, X2) and (Y1, Y2) be two random vectors with dis-
tribution functions F, G ∈ M(F1, F2), such that FL

x1
(x2) and GL

x1
(x2) are

continuous in x2 for all x1. Then

(X1, X2) ≤LTD (Y1, Y2) =⇒ (X1, X2) ≤PQD (Y1, Y2).

Proof. Since F and G have the same marginals, we see from (9.C.6) that
(X1, X2) ≤LTD (Y1, Y2) if, and only if,
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F (x1, x2) ≥ G(x1, x
′
2) =⇒ F (x′

1, x2) ≥ G(x′
1, x

′
2)

for any x2, x′
2, and x1 ≤ x′

1. (9.C.7)

If (X1, X2) ≤PQD (Y1, Y2) did not hold, then there would have existed a point
(x0, y0) such that F (x0, y0) > G(x0, y0). Let y < y0 be such that F (x0, y0) >
F (x0, y) > G(x0, y0). Since F2(y) < F2(y0), one can then find an x such
that x > x0 and F (x, y) < G(x, y0). But then F (x0, y) > G(x0, y0) and
F (x, y) < G(x, y0) contradict (9.C.7). 
�

The LTD order is not symmetric in the sense that (X1, X2) ≤LTD (Y1, Y2)
does not necessarily imply that (X2, X1) ≤LTD (Y2, Y1). However, it satisfies
the following closure under monotone transformations property.

Theorem 9.C.2. Let (X1, X2) and (Y1, Y2) be two random vectors with dis-
tribution functions in the same Fréchet class. If (X1, X2) ≤LTD (Y1, Y2), then
(φ(X1), ψ(X2)) ≤LTD (φ(Y1), ψ(Y2)) for all increasing functions φ and ψ.

Example 9.C.3. Let φθ(t) ≡ (1−tθ)1/θ, t ∈ [0, 1], θ ∈ (0, 1). Then the function
Cθ, defined as

Cφθ
(x, y) = φ−1

θ {φθ(x) + φθ(y)}, x, y ∈ [0, 1],

is a bivariate distribution function with uniform[0, 1] marginals (it is a par-
ticular Archimedean copula). If θ1 ≤ θ2, then Cφθ2

≤LTD Cφθ1
.

An order that is similar to the LTD order, but which is based on condi-
tioning on right tails, rather than on left tails, is described next.

For any random vector (X1, X2) with distribution function F ∈ M(F1, F2)
we define the conditional distribution function FR

x by

FR
x1

(x2) = P{X2 ≤ x2
∣∣X1 > x1} (9.C.8)

for all x1 for which this conditional distribution is well defined. Barlow and
Proschan [36] defined F (or X1 and X2) to be right tail increasing (RTI) if

FR
x1

(x2) ≥ FR
x′
1
(x2) for all x1 ≤ x′

1 and x2,

or, equivalently, if

(FR
x1

)−1(u) ≤ (FR
x′
1
)−1(u) for all x1 ≤ x′

1 and u ∈ [0, 1]. (9.C.9)

When (FR
x1

)−1(u) is continuous in u for all x1 then (9.C.9) can be written as

FR
x′
1

[
(FR

x1
)−1(u)

]
≤ u for all x1 ≤ x′

1 and u ∈ [0, 1]. (9.C.10)

This notion leads to the following definition.
Let (X1, X2) be a bivariate random vector with distribution function

F ∈ M(F1, F2), and let (Y1, Y2) be another bivariate random vector with
distribution function G ∈ M(F1, F2). Suppose that for any x1 ≤ x′

1 we have
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(FR
x1

)−1(u) ≤ (FR
x′
1
)−1(v) =⇒ (GR

x1
)−1(u) ≤ (GR

x′
1
)−1(v) for all u, v ∈ [0, 1].

(9.C.11)
Then we say that (X1, X2) is smaller than (Y1, Y2) in the RTI order (denoted
by (X1, X2) ≤RTI (Y1, Y2) or F ≤RTI G).

In analogy to (9.C.5) we note that (9.C.11) can be written as

GR
x′
1

[
(GR

x1
)−1(u)

]
≤ FR

x′
1

[
(FR

x1
)−1(u)

]
for all x1 ≤ x′

1 and u ∈ [0, 1].
(9.C.12)

It can be shown that if FR
x1

(x2) and GR
x1

(x2) are continuous in x2 for all
x1, then (X1, X2) ≤RTI (Y1, Y2) if, and only if, for any x1 ≤ x′

1,

FR
x1

(x2) ≥ GR
x1

(x′
2) =⇒ FR

x′
1
(x2) ≥ GR

x′
1
(x′

2) for any x2 and x′
2. (9.C.13)

Note that (9.C.13) can be written as

(GR
x1

)−1[FR
x1

(x2)
]

≤ (GR
x′
1
)−1[FR

x′
1
(x2)

]
for all x1 ≤ x′

1 and x2,

that is, (GR
x1

)−1
[
FR

x1
(x2)

]
is increasing in x1 for all x2.

In the continuous case, it is immediate from (9.C.10) and (9.C.12) that F
is RTI if, and only if,

F I ≤RTI F,

where F I is defined in Section 9.A, but this is true also when F is not con-
tinuous.

The following result is an analog of Theorem 9.C.1; its proof is similar to
the proof of that theorem, and is therefore omitted.

Theorem 9.C.4. Let (X1, X2) and (Y1, Y2) be two random vectors with dis-
tribution functions F, G ∈ M(F1, F2), such that FR

x1
(x2) and GR

x1
(x2) are

continuous in x2 for all x1. Then

(X1, X2) ≤RTI (Y1, Y2) =⇒ (X1, X2) ≤PQD (Y1, Y2).

The RTI order is not symmetric in the sense that (X1, X2) ≤RTI (Y1, Y2)
does not necessarily imply that (X2, X1) ≤RTI (Y2, Y1). However, it satisfies
the following closure under monotone transformations property.

Theorem 9.C.5. Let (X1, X2) and (Y1, Y2) be two random vectors with dis-
tribution functions in the same Fréchet class. If (X1, X2) ≤RTI (Y1, Y2), then
(φ(X1), ψ(X2)) ≤RTI (φ(Y1), ψ(Y2)) for all increasing functions φ and ψ.

The LTD and RTI orders are related to each other as follows.

Theorem 9.C.6. Let (X1, X2) and (Y1, Y2) be two random vectors in the
same Fréchet class.

(a) If (X1, X2) ≤LTD (Y1, Y2), then (φ1(X1), φ2(X2))) ≤RTI (φ1(Y1), φ2(Y2))
for any decreasing functions φ1 and φ2. Conversely, if (φ1(X1), φ2(X2))
≤RTI (φ1(Y1), φ2(Y2)) for some strictly decreasing functions φ1 and φ2,
then (X1, X2) ≤LTD (Y1, Y2).
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(b) If (X1, X2) ≤RTI (Y1, Y2), then (φ1(X1), φ2(X2)) ≤LTD (φ1(Y1), φ2(Y2))
for any decreasing functions φ1 and φ2. Conversely, if (φ1(X1), φ2(X2))
≤LTD (φ1(Y1), φ2(Y2)) for some strictly decreasing functions φ1 and φ2,
then (X1, X2) ≤RTI (Y1, Y2).

The orders ≤slodr and ≤suoir imply the LTD and RTI orders under some
regularity conditions. This is shown in the next result.

Theorem 9.C.7. Let F and G be in the Fréchet class M(F1, F2). Assume
that, for every x, the conditional distributions FL

x and FR
x (see (9.C.1) and

(9.C.8)) are strictly increasing and continuous on their supports. Then

F ≤slodr G =⇒ F ≤LTD G and F ≤suoir G =⇒ F ≤RTI G.

Proof. It is enough to prove the first implication; the other implication then
follows from Theorems 9.B.5 and 9.C.6.

By (9.C.7), we need to show that for x ≤ x′, and for any y, y′, it holds
that

F (x, y) ≥ G(x, y′) =⇒ F (x′, y) ≥ G(x′, y′). (9.C.14)

Now assume that F ≤slodr G. So, for x ≤ x′ and y′ ≤ y we have

F (x, y)G(x′, y′) ≤ F (x′, y)G(x, y′). (9.C.15)

In the bivariate case, F ≤slodr G implies that F ≤PQD G. So the left-hand side
inequality in (9.C.14) can hold only for y′ ≤ y. If it does hold, then (9.C.15)
implies the inequality on the right-hand side of (9.C.14). 
�

In light of Theorem 9.C.7 it is of interest to note that the (weak) orthant
ratio orders ≤lodr and ≤uoir do not imply the orders ≤LTD and ≤RTI, respec-
tively. Counterexamples can be found in the literature.

An order that is of the same type as the LTD and RTI orders is the one that
we study next. For any random vector (X1, X2), with distribution function
F ∈ M(F1, F2), let Fx1 denote the conditional distribution of X2 given that
X1 = x1. Lehmann [343] defined F (or X1 and X2) to be positive regression
dependent (PRD) if X2 is stochastically increasing in X1, that is, if

Fx1(x2) ≥ Fx′
1
(x2) for all x1 ≤ x′

1 and x2,

or, equivalently, if

F−1
x1

(u) ≤ F−1
x′
1

(u) for all x1 ≤ x′
1 and u ∈ [0, 1]. (9.C.16)

Note that when F−1
x1

(u) is continuous in u for all x1, then (9.C.16) can be
written as

Fx′
1

(
F−1

x1
(u)
)

≤ u for all x1 ≤ x′
1 and u ∈ [0, 1]. (9.C.17)

This notion leads to the following definition.
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Let (X1, X2) be a bivariate random vector with distribution function
F ∈ M(F1, F2), and let (Y1, Y2) be another bivariate random vector with
distribution function G ∈ M(F1, F2). Suppose that for any x1 ≤ x′

1 we have

F−1
x1

(u) ≤ F−1
x′
1

(v) =⇒ G−1
x1

(u) ≤ G−1
x′
1
(v) for all u, v ∈ [0, 1]. (9.C.18)

Then we say that (X1, X2) is smaller than (Y1, Y2) in the PRD order (denoted
by (X1, X2) ≤PRD (Y1, Y2) or F ≤PRD G).

Note that (9.C.18) can be written as

Gx′
1

(
G−1

x1
(u)
)

≤ Fx′
1

(
F−1

x1
(u)
)

for all x1 ≤ x′
1 and u ∈ [0, 1]. (9.C.19)

It can be shown that if Fx1(x2) and Gx1(x2) are continuous in x2 for all
x1, then (X1, X2) ≤PRD (Y1, Y2) if, and only if, for any x1 ≤ x′

1,

Fx1(x2) ≥ Gx1(x
′
2) =⇒ Fx′

1
(x2) ≥ Gx′

1
(x′

2) for any x2 and x′
2. (9.C.20)

Note that (9.C.20) can be written as

G−1
x1

(
Fx1(x2)

)
≤ G−1

x′
1

(
Fx′

1
(x2)

)
for all x1 ≤ x′

1 and x2, (9.C.21)

that is, G−1
x1

(
Fx1(x2)

)
is increasing in x1 for all x2.

In the continuous case, it is immediate from (9.C.17) and (9.C.19) that F
is PRD if, and only if,

F I ≤PRD F,

where F I is defined in Section 9.A, but this is true also when F is not con-
tinuous.

The next result shows the relationship between the PRD, LTD, and RTI
orders. We do not give the proof of it here.

Theorem 9.C.8. Let (X1, X2) and (Y1, Y2) be two random vectors with ab-
solutely continuous distribution functions F, G ∈ M(F1, F2). Then

(X1, X2) ≤PRD (Y1, Y2) =⇒ (X1, X2) ≤LTD (Y1, Y2) and
(X1, X2) ≤PRD (Y1, Y2) =⇒ (X1, X2) ≤RTI (Y1, Y2).

The PRD order is not symmetric in the sense that (X1, X2) ≤PRD (Y1, Y2)
does not necessarily imply that (X2, X1) ≤PRD (Y2, Y1). However, it satisfies
the following closure under monotone transformations property.

Theorem 9.C.9. Let (X1, X2) and (Y1, Y2) be two random vectors. If (X1,
X2) ≤PRD (Y1, Y2), then (φ(X1), ψ(X2)) ≤PRD (φ(Y1), ψ(Y2)) for all increas-
ing functions φ and ψ.

Example 9.C.10. Let U and V be any independent random variables, each
having a continuous distribution. Define

X = U, Yρ = ρU + (1 − ρ2)1/2V, for − 1 ≤ ρ ≤ 1.

Then (X, Yρ1) ≤PRD (X, Yρ2) whenever ρ1 ≤ ρ2. A bivariate normal dis-
tribution is a particular case of this example when U and V are normally
distributed.
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Example 9.C.11. Let U and V be any independent random variables, each
having a continuous distribution. Define

X = U, Yα = αU + V, for − ∞ ≤ α ≤ ∞.

Then (X, Yα1) ≤PRD (X, Yα2) whenever α1 ≤ α2.

Example 9.C.12. Let U and V be any independent random variables, each
having a continuous distribution, such that U is distributed on (0, 1), while
V is nonnegative. Define

X = U, Yα = (1 + αU)V, for α ≥ −1.

Then (X, Yα1) ≤PRD (X, Yα2) whenever α1 ≤ α2.

9.D The PLRD Order

Let the random variables X1 and X2 have the joint distribution F . For any
two intervals I1 and I2 of the real line, let us denote I1 ≤ I2 if x1 ∈ I1
and x2 ∈ I2 imply that x1 ≤ x2. For any two intervals I and J of the real
line denote F (I, J) ≡ P{X1 ∈ I, X2 ∈ J}. Block, Savits, and Shaked [95]
essentially defined F (or X1 and X2) to be positive likelihood ratio dependent
if

F (I1, J1)F (I2, J2) ≥ F (I1, J2)F (I2, J1), whenever I1 ≤ I2 and J1 ≤ J2.
(9.D.1)

In fact, Block, Savits and Shaked [95] called F totally positive of order 2
(TP2) if (9.D.1) holds. When F has a (continuous or discrete) density f , then
(9.D.1) is equivalent to the condition that f is TP2, that is,

f(x1, y1)f(x2, y2) ≥ f(x1, y2)f(x2, y1), whenever x1 ≤ x2 and y1 ≤ y2.

Then (9.D.1) is the same as the condition for the positive dependence notion
that Lehmann [343] called positive likelihood ratio dependence (PLRD). This
notion leads naturally to the order that is described below.

Let (X1, X2) be a bivariate random vector with distribution function
F ∈ M(F1, F2), and let (Y1, Y2) be another bivariate random vector with
distribution function G ∈ M(F1, F2). Suppose that

F (I1, J1)F (I2, J2)G(I1, J2)G(I2, J1)
≤ F (I1, J2)F (I2, J1)G(I1, J1)G(I2, J2),

whenever I1 ≤ I2 and J1 ≤ J2. (9.D.2)

where the generic notation G(I, J) is obvious. Then we say that (X1, X2)
is smaller than (Y1, Y2) in the PLRD order (denoted by (X1, X2) ≤PLRD
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(Y1, Y2) or F ≤PLRD G). Since only random vectors with the same univariate
marginals can be compared in the PLRD order, we will implicitly assume this
fact throughout this section.

When F and G have (continuous or discrete) densities f and g, then (9.D.2)
is equivalent to

f(x1, y1)f(x2, y2)g(x1, y2)g(x2, y1) ≤ f(x1, y2)f(x2, y1)g(x1, y1)g(x2, y2),
whenever x1 ≤ x2 and y1 ≤ y2.

If ∂2

∂x∂y f and ∂2

∂x∂y g exist, then (9.D.2) is equivalent to

f2∆g − g2∆f ≥ 0,

where

∆f ≡ f
∂2f

∂x∂y
− ∂f

∂x
· ∂f

∂y
and ∆g ≡ g

∂2g

∂x∂y
− ∂g

∂x
· ∂g

∂y
.

Obviously F is PLRD if, and only if,

F I ≤PLRD F,

where F I is defined in Section 9.A.

Theorem 9.D.1. Let (X1, X2) and (Y1, Y2) be two random vectors with dis-
tribution functions F, G ∈ M(F1, F2). Then

(X1, X2) ≤PLRD (Y1, Y2) =⇒ (X1, X2) ≤PQD (Y1, Y2).

Proof. Assume (X1, X2) ≤PLRD (Y1, Y2) and suppose that (X1, X2) �≤PQD
(Y1, Y2). Then

F (x, y) > G(x, y) (9.D.3)

for some (x, y). Let I1 = (−∞, x], I2 = (x,∞), J1 = (−∞, y] and J2 = (y, ∞).
Then from (9.D.3), and from the fact that F and G have the same marginals,
it follows that

F (I1, J1) > G(I1, J1),
F (I2, J2) > G(I2, J2),
G(I1, J2) > F (I1, J2)

and

G(I2, J1) > F (I2, J1).

Multiplying these four inequalities we obtain a contradiction to (9.D.2). 
�
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We do not know whether (X1, X2) ≤PLRD (Y1, Y2) =⇒ (X1, X2) ≤PRD
(Y1, Y2).

The following closure properties of the PLRD order are easy to prove.

Theorem 9.D.2. (a) Let (X1, X2) and (Y1, Y2) be two random vectors such
that (X1, X2) ≤PLRD (Y1, Y2). Then (φ(X1), ψ(X2)) ≤PLRD (φ(Y1), ψ(Y2))
for all increasing functions φ and ψ.

(b) Let {(X(j)
1 , X

(j)
2 ), j = 1, 2, . . . } and {(Y (j)

1 , Y
(j)
2 ), j = 1, 2, . . . } be two

sequences of random vectors such that (X(j)
1 , X

(j)
2 ) →st (X1, X2) and

(Y (j)
1 , Y

(j)
2 ) →st (Y1, Y2) as j → ∞, where →st denotes convergence

in distribution. If (X(j)
1 , X

(j)
2 ) ≤PLRD (Y (j)

1 , Y
(j)
2 ), j = 1, 2, . . ., then

(X1, X2) ≤PLRD (Y1, Y2).

Let FL and FU denote the Fréchet lower and upper bounds in the class
M(F1, F2). Since FL assigns all its mass to some decreasing curve in R

2, and
FU assigns all its mass to some increasing curve in R

2, it follows that for every
distribution F ∈ M(F1, F2) we have

FL ≤PLRD F ≤PLRD FU .

By Theorem 9.D.1, this is a stronger result than (9.A.6).
The proof of the next result is similar to the proof of Theorem 9.D.1 and

is therefore omitted.

Theorem 9.D.3. Let (X1, X2) and (Y1, Y2) be two random vectors such that
(X1, X2) ≤PLRD (Y1, Y2) and (X1, X2) ≥PLRD (Y1, Y2). Then (X1, X2) =st
(Y1, Y2).

Example 9.D.4. Let H and K be two continuous univariate distribution func-
tions. For −1 ≤ α ≤ 1, define the following distribution function

Fα(x, y) = H(x)K(y){1 + α[1 − H(x)][1 − K(y)]}, for all x and y.

Then Fα1 ≤PLRD Fα2 whenever α1 ≤ α2.

Example 9.D.5. Let φ and ψ be two Laplace transforms of positive random
variables and let the random vectors (X1, X2) and (Y1, Y2) be distributed
according to F and G as in Example 9.A.3. If φ−1ψ has a completely monotone
derivative, then (X1, X2) ≤PLRD (Y1, Y2).

Example 9.D.6. Let (X1, X2) and (Y1, Y2) be bivariate normal random vec-
tors with the same marginals, and with correlation coefficients ρX and ρY ,
respectively. If ρX ≤ ρY , then (X1, X2) ≤PLRD (Y1, Y2).
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9.E Association Orders

The random variables X1 and X2 are said to be associated if

Cov(K(X1, X2), L(X1, X2)) ≥ 0

for all increasing functions K and L for which the covariance is well defined
(see (3.A.53)). This notion leads to the order that is described below.

Let (X1, X2) be a bivariate random vector with distribution function
F ∈ M(F1, F2), and let (Y1, Y2) be another bivariate random vector with
distribution function G ∈ M(F1, F2). Suppose that

(Y1, Y2) =st (K(X1, X2), L(X1, X2)), (9.E.1)

for some increasing functions K and L which satisfy

K(x1, y1) < K(x2, y2), L(x1, y1) > L(x2, y2) =⇒ x1 < x2, y1 > y2. (9.E.2)

Then we say that (X1, X2) is smaller than (Y1, Y2) in the association order
(denoted by (X1, X2) ≤assoc (Y1, Y2) or F ≤assoc G). Since only random vec-
tors with the same univariate marginals are compared in the association order,
we will implicitly assume this fact throughout this section.

The restriction (9.E.2) on the functions K and L is for the purpose of
making the association order applicable in situations which are not symmet-
ric in the X1 and X2 variables. [In case (9.E.2) is dropped, (X1, X2) ≥assoc
(X2, X1) ≥assoc (X1, X2).] If K and L are partially differentiable increasing
functions, then (9.E.2) is equivalent to

∂

∂x
K(x, y) · ∂

∂y
L(x, y) ≥ ∂

∂y
K(x, y) · ∂

∂x
L(x, y) for all x and y.

From the fact that increasing functions of independent random variables
are associated, it follows that if F I ≤assoc F , then F is the distribution func-
tion of associated random variables, where F I is defined in Section 9.A.

The following closure property is easy to prove.

Theorem 9.E.1. Let (X1, X2) and (Y1, Y2) be two random vectors. If (X1,
X2) ≤assoc (Y1, Y2), then (φ(X1), ψ(X2)) ≤assoc (φ(Y1), ψ(Y2)) for all strictly
increasing functions φ and ψ.

The relationship between the association and the PQD orders is described
in the next result.

Theorem 9.E.2. Let (X1, X2) and (Y1, Y2) be two random vectors with dis-
tribution functions F, G ∈ M(F1, F2). Then

(X1, X2) ≤assoc (Y1, Y2) =⇒ (X1, X2) ≤PQD (Y1, Y2).
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Proof. Denote by F and G the distribution functions of (X1, X2) and (Y1, Y2),
respectively. By assumption, (Y1, Y2) =st (K(X1, X2), L(X1, X2)) where K
and L are increasing and satisfy (9.E.2). Fix a pair (x1, x2). First suppose
that K(x1, x2) ≤ x1 and that L(x1, x2) ≤ x2. Then

P{Y1 ≤ x1, Y2 ≤ x2} ≥ P{Y1 ≤ K(x1, x2), Y2 ≤ L(x1, x2)}
= P{K(X1, X2) ≤ K(x1, x2), L(X1, X2) ≤ L(x1, x2)}
≥ P{X1 ≤ x1, X2 ≤ x2},

where the second inequality follows from the increasingness of K and of L.
Thus (9.A.3) holds in this case. Next suppose that K(x1, x2) ≤ x1 and that
L(x1, x2) > x2. Then

P{Y1 > x1, Y2 < x2} ≤ P{Y1 > K(x1, x2), Y2 < L(x1, x2)}
= P{K(X1, X2) > K(x1, x2), L(X1, X2) < L(x1, x2)}
≤ P{X1 > x1, X2 < x2},

where the second inequality follows from (9.E.2). From the fact that (X1, X2)
and (Y1, Y2) have the same univariate marginals it is seen that (9.A.3) holds
in this case too. For the remaining two cases the inequality (9.A.3) follows in
a similar way. 
�

The relationship between the association and the PRD orders is described
next.

Theorem 9.E.3. Let (X1, X2) and (Y1, Y2) be two random vectors with distri-
bution functions F, G ∈ M(F1, F2) such that FX2|X1(x2

∣∣x1) and GY2|Y1(x2
∣∣x1)

are continuous in x2 for all x1. Then

(X1, X2) ≤PRD (Y1, Y2) =⇒ (X1, X2) ≤assoc (Y1, Y2).

Proof. Suppose that (X1, X2) ≤PRD (Y1, Y2). Define K and L by K(x1, x2) ≡
x1 and L(x1, x2) ≡ G−1

Y2|Y1

[
FX2|X1(x2

∣∣x1)
∣∣∣x1

]
. Obviously K is an increas-

ing function. Also, obviously L(x1, x2) is increasing in x2. Furthermore, from
(9.C.21) it is seen that L(x1, x2) is also increasing in x1, and that (9.E.2) holds.
Now note that since X1 =st Y1, we have, using the continuity assumptions
stated, that

(Y1, Y2) =st L(X1, X2).

That is, (X1, X2) and (Y1, Y2) satisfy (9.E.1) and (9.E.2). 
�

Example 9.E.4. Let U and V be any independent random variables. Define

Xα = (1 − α)U + αV, Y = U, for α ∈ [0, 1].

Then (Xα1 , Y ) ≤assoc (Xα2 , Y ) whenever α1 ≤ α2.
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Example 9.E.5. Let U and V be any independent random variables. Define

Xα = (1 − α)U + αV, Y = αU + (1 − α)V, for α ∈ [0, 1
2 ].

Then (Xα1 , Y ) ≤assoc (Xα2 , Y ) whenever α1 ≤ α2.

Example 9.E.6. Let (X1, X2) and (Y1, Y2) have bivariate normal distributions
with correlation coefficients ρ1 and ρ2, respectively. Then (X1, X2) ≤assoc
(Y1, Y2) if, and only if, −1 ≤ ρ1 ≤ ρ2 ≤ 1.

Capéraà, Fougères, and Genest [119] introduced an order that is related
to the association order. In order to define it we need first to introduce some
notation. Let (X1, X2) be a random vector with a continuous distribution
function F ∈ M(F1, F2). Define

VF ≡ F (X1, X2),

and let KF denote the distribution function of VF . For example, if the dis-
tribution function of (X1, X2) is the Fréchet upper bound FU ∈ M(F1, F2)
(see page 387), then KFU

(v) = v, v ∈ [0, 1]. If the distribution function of
(X1, X2) is the Fréchet lower bound FL ∈ M(F1, F2), then KFL

(v) = 1,
v ∈ [0, 1]. Finally, if X1 and X2 are independent, with distribution function
F I ∈ M(F1, F2), then KF I (v) = v − v log v, v ∈ [0, 1]. These facts suggest
the following order. Let (X1, X2) and (Y1, Y2) be two random vectors with
continuous distribution functions F, G ∈ M(F1, F2). Suppose that

KF (v) ≥ KG(v), for all v ∈ [0, 1].

Then we say that (X1, X2) is smaller than (Y1, Y2) in the Capéraà-Fougères-
Genest order (denoted by (X1, X2) ≤CFG (Y1, Y2) or F ≤CFG G).

Capéraà, Fougères, and Genest [119] showed that for every continuous
distribution function F ∈ M(F1, F2) we have

FL ≤CFG F ≤CFG FU .

They also proved, under some regularity conditions, that

(X1, X2) ≤assoc (Y1, Y2) =⇒ (X1, X2) ≤CFG (Y1, Y2).

However, Capéraà, Fougères, and Genest [119] showed that ≤CFG �=⇒≤PQD,
whereas Nelsen, Quesada-Molina, Rodŕıguez-Lallena, and Úbeda-Flores [433]
showed that ≤PQD �=⇒≤CFG.

Nelsen, Quesada-Molina, Rodŕıguez-Lallena, and Úbeda-Flores [432] in-
troduced some generalizations of the order ≤CFG.

Another related order of interest is based on the notion of weak posi-
tive association which is defined in (9.A.22). Let X = (X1, X2, . . . , Xn) and
Y = (Y1, Y2, . . . , Yn) be two random vectors that have the same univariate
marginals, and that satisfy
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Cov(h1(Xi1 , Xi2 , . . . , Xik
), h2(Xj1 , Xj2 , . . . , Xjn−k

))
≤ Cov(h1(Yi1 , Yi2 , . . . , Yik

), h2(Yj1 , Yj2 , . . . , Yjn−k
))

for all choices of disjoint subsets {i1, i2, . . . , ik} and {j1, j2, . . . , jn−k} of
{1, 2, . . . , n}, and for all increasing functions h1 and h2 for which the above
covariances are defined. Then X is said to be smaller than Y in the weak
association order (denoted by X ≤w-assoc Y ).

Some closure properties of the weak association order are described in the
next theorem.

Theorem 9.E.7. (a) Let (X1, X2, . . . , Xn) and (Y1, Y2, . . . , Yn) be two n-
dimensional random vectors. If (X1, X2, . . . , Xn) ≤w-assoc (Y1, Y2, . . . , Yn),
then

(g1(X1), g2(X2), . . . , gn(Xn)) ≤w-assoc (g1(Y1), g2(Y2), . . . , gn(Yn))

whenever gi : R → R, i = 1, 2, . . . , n, are all increasing.
(b) Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two n-dimensional

random vectors. If X ≤w-assoc Y , then XI ≤w-assoc Y I for each I ⊆
{1, 2, . . . , n}. That is, the weak association order is closed under marginal-
ization.

An important useful property of the weak association order is the following.

Theorem 9.E.8. Let X and Y be two random vectors with the same uni-
variate marginals. Then

X ≤w-assoc Y =⇒ X ≤sm Y .

Remark 9.E.9. Note that if X = (X1, X2, . . . , Xn) is a vector of weakly
positively associated random variables, as defined in (9.A.22), and if Y =
(Y1, Y2, . . . , Yn) is a vector of independent random variables such that, margin-
ally, Xi =st Yi, i = 1, 2, . . . , n, then X ≥w-assoc Y . Similarly, if X is a vector
of negatively associated random variables, as defined in (3.A.54), and if Y is
a vector of independent random variables such that, marginally, Xi =st Yi,
i = 1, 2, . . . , n, then X ≤w-assoc Y . Thus it is seen that Theorem 9.E.7 is a
stronger result than Theorem 9.A.23.

9.F The PDD Order

Let the random variables X1 and X2 have the symmetric (or exchangeable,
or interchangeable) joint distribution F . Shaked [501] defines F (or X1 and
X2) to be positive definite dependent (PDD) if F is a positive definite kernel
on S × S, where S is the support of X1 (and therefore, by symmetry, S is also
the support of X2). Shaked [501] has shown that X1 and X2 are PDD if, and
only if,
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Cov(φ(X1), φ(X2)) ≥ 0 for every real function φ, (9.F.1)

provided the covariance is well defined. This notion naturally leads to the
order that is defined below.

Let (X1, X2) be a bivariate random vector with distribution function
F ∈ M(s)(F̂ ), where M(s)(F̂ ) is the class of all the bivariate symmetric
distributions with univariate marginals F̂ . Let (Y1, Y2) be another bivariate
random vector with distribution function G ∈ M(s)(F̂ ). Suppose that

Cov(φ(X1), φ(X2)) ≤ Cov(φ(Y1), φ(Y2)) for every real function φ, (9.F.2)

provided the covariances are well defined. Then we say that (X1, X2) is smaller
than (Y1, Y2) in the PDD order (denoted by (X1, X2) ≤PDD (Y1, Y2) or
F ≤PDD G). Since only symmetric random vectors with the same univari-
ate marginals are compared in the PDD order, we will implicitly assume this
fact throughout this section.

Since Eφ(X1) = Eφ(X2) = Eφ(Y1) = Eφ(Y2) for every real function φ, it
follows that (X1, X2) ≤PDD (Y1, Y2) if, and only if,

Eφ(X1)φ(X2) ≤ Eφ(Y1)φ(Y2) for every real function φ, (9.F.3)

provided the expectations exist. Thus, if (X1, X2) ≤PDD (Y1, Y2), then

P{X1 ∈ A, X2 ∈ A} ≤ P{Y1 ∈ A, Y2 ∈ A}

for all Borel-measurable sets A in R.
Another characterization of the PDD order is given in the next theorem.

Theorem 9.F.1. Let F and G be two symmetric bivariate distributions in
M(s)(F̂ ). Then F ≤PDD G if, and only if, G(x, y) − F (x, y) is a positive
definite kernel.

From (9.F.1) and (9.F.3) it is easily seen that F is PDD if, and only if,

F I ≤PDD F,

where F I is defined in Section 9.A.
A powerful closure property of the PDD order is described in the next

theorem.

Theorem 9.F.2. Suppose that the four random vectors (X1, X2), (Y1, Y2),
(U1, U2) and (V1, V2) satisfy

(X1, X2) ≤PDD (Y1, Y2) and (U1, U2) ≤PDD (V1, V2), (9.F.4)

and suppose that (X1, X2) and (U1, U2) are independent, and also that (Y1, Y2)
and (V1, V2) are independent. Then

(φ(X1, U1), φ(X2, U2)) ≤PDD (φ(Y1, V1), φ(Y2, V2)),
for every increasing function φ.
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In particular, if (9.F.4) holds, then the PDD order is closed under convo-
lutions, that is,

(X1 + U1, X2 + U2) ≤PDD (Y1 + V1, Y2 + V2).

Using (9.F.3) it is easy to verify the following closure properties.

Theorem 9.F.3. (a) Let {(X(j)
1 , X

(j)
2 ), j = 1, 2, . . . } and {(Y (j)

1 , Y
(j)
2 ), j =

1, 2, . . . } be two sequences of random vectors such that (X(j)
1 , X

(j)
2 ) →st

(X1, X2) and (Y (j)
1 , Y

(j)
2 ) →st (Y1, Y2) as j → ∞, where →st denotes con-

vergence in distribution. If (X(j)
1 , X

(j)
2 ) ≤PDD (Y (j)

1 , Y
(j)
2 ), j = 1, 2, . . .,

then (X1, X2) ≤PDD (Y1, Y2).
(b) Let (X1, X2), (Y1, Y2), and Θ be random vectors such that [(X1, X2)

∣∣Θ =
θ] ≤PDD [(Y1, Y2)

∣∣Θ = θ] for all θ in the support of Θ. Then (X1, X2)
≤PDD (Y1, Y2). That is, the PDD order is closed under mixtures.

Example 9.F.4. Let (X1, X2) and (Y1, Y2) have exchangeable bivariate normal
distributions with common marginals and correlation coefficients ρ1 and ρ2,
respectively. If 0 ≤ ρ1 ≤ ρ2 ≤ 1, then (X1, X2) ≤PDD (Y1, Y2).

If (X1, X2) and (Y1, Y2) have distributions F and G which are not symmet-
ric, but still have the same common marginals (that is, X1, X2, Y1, and Y2 are
all identically distributed), then the PDD order can still be defined on the sym-
metrizations F̃ (x, y) = 1

2 [F (x, y)+F (y, x)] and G̃(x, y) = 1
2 [G(x, y)+G(y, x)]

of F and G.
Hu and Joe [234] applied the idea of the PDD order to stationary reversible

Markov chains {X1, X2, . . . }. They showed for such chains that, if X1 and X2
are PDD (in the sense (9.F.1)), then dependence (in the sense of the PDD
order) is decreasing with the lag, namely,

F12 ≥PDD F13 ≥PDD · · · ≥PDD F1n ≥PDD · · · ≥PDD F (2),

where the F1j ’s and F (2) are as defined in (9.A.12).
An n-variate extension of the PDD order for the case when n ≥ 2

is suggested by (9.F.3). Explicitly, let X = (X1, X2, . . . , Xn) and Y =
(Y1, Y2, . . . , Yn) have distribution functions with common marginals. Then we
can say that X is less positively dependent than Y if

E

n∏
i=1

φ(Xi) ≤ E

n∏
i=1

φ(Yi) for every nonnegative real function φ. (9.F.5)

Note that for this definition it is not required that X and Y have exchange-
able distribution functions; it is only required that X and Y have the same
common marginals.

One reason for the usefulness of inequality (9.F.5) is that it implies that

P{X1 ∈ A, X2 ∈ A, . . . , Xn ∈ A} ≤ P{Y1 ∈ A, Y2 ∈ A, . . . , Yn ∈ A}

for all Borel-measurable sets A in R.
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9.G Ordering Exchangeable Distributions

Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two random vectors
with exchangeable distributions. Let X(1) ≤ X(2) ≤ · · · ≤ X(n) and Y(1) ≤
Y(2) ≤ · · · ≤ Y(n) be the corresponding order statistics. Intuitively, if Y is
“more positively dependent” than X (or, alternatively, Y is “less dispersed”
than X), then we can expect the Yi’s to “hang together” more than the Xi’s.
For example, we can expect quantities such as X(n) −X(1) or X(n) +X(n−1) −
X(2) −X(1) to be stochastically larger than Y(n) −Y(1) or Y(n) +Y(n−1) −Y(2) −
Y(1). This observation naturally leads to the following definitions.

Let X and Y be two n-dimensional random vectors with exchangeable
distribution functions and with the same common marginals. We will write
X ≤pd-1 Y if∣∣∣∣ n∑

i=1

ciX(i)

∣∣∣∣ ≥st

∣∣∣∣ n∑
i=1

ciY(i)

∣∣∣∣ whenever
n∑

i=1

ci = 0. (9.G.1)

When the interest is in the unordered components of the random vectors,
then the following definition is useful. We will write X ≤pd-2 Y if∣∣∣∣ n∑

i=1

ciXi

∣∣∣∣ ≥st

∣∣∣∣ n∑
i=1

ciYi

∣∣∣∣ whenever
n∑

i=1

ci = 0. (9.G.2)

Recall from page 2 the definition of the majorization order a ≺ b among
n-dimensional vectors. For any random variable W , let FW denote the distri-
bution function of W . We will write X ≤pd-3 Y if

(FX(1)(x), FX(2)(x), . . . , FX(n)(x))

� (FY(1)(x), FY(2)(x), . . . , FY(n)(x)) for all x. (9.G.3)

It is easy to verify that (9.G.3) is equivalent to

(Eφ(X(1)), Eφ(X(2)), . . . , Eφ(X(n))) � (Eφ(Y(1)), Eφ(Y(2)), . . . , Eφ(Y(n)))

for all monotone functions φ for which the expectations exist. A further insight
into the meaning of (9.G.3) can be obtained by rewriting it as the set of
inequalities

E

[ j∑
i=1

I(−∞,x](X(i))
]

≥ E

[ j∑
i=1

I(−∞,x](Y(i))
]
,

for j = 1, 2, . . . , n, and all x, (9.G.4)

with equality holding for j = n. That is, for each j, the expected value of the
number of order statistics which are less than or equal to x among the first k
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ordered Xi’s is at least as large as the corresponding expected value based on
the ordered Yi’s.

When one is concerned only with the expectations of the order statistics,
then the following stochastic order is useful. We will write X ≤pd-4 Y if

(EX(1), EX(2), . . . , EX(n)) � (EY(1), EY(2), . . . , EY(n)). (9.G.5)

The next result describes some interrelationships among the orders ≤pd-k,
k = 1, 2, 3, 4.

Theorem 9.G.1. Let X and Y be two n-dimensional random vectors with
exchangeable distribution functions and with the same common marginals.
Then

X ≤pd-1 Y ⇒ X ≤pd-2 Y
⇓

X ≤pd-3 Y ⇒ X ≤pd-4 Y

Proof. First suppose that X ≤pd-1 Y . Let π = (π1, π2, . . . , πn) denote a per-
mutation of {1, 2, . . . , n}, and let

∑
π denote a summation over all such permu-

tations. Then, by exchangeability, for any real z, and whenever
∑n

i=1 ci = 0,
we have

P

{∣∣∣∣ n∑
i=1

ciXi

∣∣∣∣ > z

}
=
∑
π

1
n!

P

{∣∣∣∣ n∑
i=1

ciXi

∣∣∣∣ > z
∣∣∣Xπ1 ≤ Xπ2 ≤ · · · ≤ Xπn

}

=
∑
π

1
n!

P

{∣∣∣∣ n∑
i=1

cπiX(i)i

∣∣∣∣ > z

}

≥
∑
π

1
n!

P

{∣∣∣∣ n∑
i=1

cπiY(i)i

∣∣∣∣ > z

}

= P

{∣∣∣∣ n∑
i=1

ciYi

∣∣∣∣ > z

}
,

and (9.G.2) follows.
If we denote ai = EX(i) and bi = EY(i), i = 1, 2, . . . , n, then from (9.G.1)

it follows that ai−ai−1 ≥ bi−bi−1, i = 1, 2, . . . , n−1. Also,
∑n

i=1 ai =
∑n

i=1 bi.
Now it is easily seen that a � b, and thus (9.G.5) holds.

The proof of X ≤pd-3 Y ⇒ X ≤pd-4 Y is easy (see, for example, Marshall
and Olkin [383, page 350]). 
�

Some closure properties of the above orders are described in the following
theorem.

Theorem 9.G.2. (a) For j = 1, 2, . . . , let X(j) and Y (j) be two random vec-
tors with exchangeable distribution functions and with the same common
marginals such that X(j) →st X and Y (j) →st Y as j → ∞, where →st
denotes convergence in distribution. If X(j) ≤pd-k Y (j), j = 1, 2, . . . , then
X ≤pd-k Y , k = 1, 2, 3.
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(b) Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two n-dimensional
random vectors with exchangeable distribution functions and with the same
common marginals. If X ≤pd-k Y , then XI ≤pd-k Y I for each I ⊆
{1, 2, . . . , n}. That is, the ≤pd-k order is closed under marginalization,
k = 1, 2, 3, 4.

(c) Let (X1, X2, . . . , Xn) and (Y1, Y2, . . . , Yn) be as in part (b). If (X1, X2, . . . ,
Xn) ≤pd-k (Y1, Y2, . . . , Yn), then (aX1 + b, aX2 + b, . . . , aXn + b) ≤pd-k
(aY1 + b, aY2 + b, . . . , aYn + b) for any constants a and b, k = 1, 2, 3, 4.

(d) Let X and Y be as in part (b), and let Θ be another random vector. If
[X
∣∣Θ = θ] ≤pd-k [Y

∣∣Θ = θ] for all θ in the support of Θ, then X ≤pd-k
Y . That is, the ≤pd-k order is closed under mixtures, k = 1, 2, 3, 4.

In the bivariate case we have the following relationship.

Theorem 9.G.3. Let (X1, X2) and (Y1, Y2) be two random vectors with ex-
changeable distribution functions with common marginals. Then

(X1, X2) ≤PDD (Y1, Y2) =⇒ (X1, X2) ≤pd-3 (Y1, Y2).

Proof. Suppose that (X1, X2) ≤PDD (Y1, Y2). Then, for any real z we have

FX(1)(z) = 1 − P{min(X1, X2) > z}
= 1 − EI(z,∞)(X1)I(z,∞)(X2)
≥ 1 − EI(z,∞)(Y1)I(z,∞)(Y2)
= FY(1)(z),

where the inequality follows from (9.F.3). Now, since FX(1)(z) + FX(2)(z) =
FY(1)(z) +FY(2)(z), it follows that (FX(1)(z), FX(2)(z)) � (FX(1)(z), FY(2)(z))
which is (9.G.3). 
�

A relationship between the star order (see Section 4.B) and the order ≤pd-4
is described next.

Theorem 9.G.4. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two
vectors, each consisting of independent and identically distributed nonnegative
random variables. If X1 ≤∗ Y1, and if EX1 = EY1, then X ≤pd-4 Y .

Example 9.G.5. If X1, X2, . . . , Xn are conditionally independent and identi-
cally distributed (then they are exchangeable), and if Y1, Y2, . . . , Yn are inde-
pendent and identically distributed, and if all the Xi’s and Yi’s have the same
marginal distribution, then X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn)
satisfy X ≤pd-3 Y and, of course, also X ≤pd-4 Y ; this is shown in Shaked
and Tong [523]. Hu and Hu [233] have shown that if X1, X2, . . . , Xn have some
other properties of positive or negative dependence, and if Y1, Y2, . . . , Yn are
independent, and if Xi =st Yi for i = 1, 2, . . . , n, then the above (that is,
X ≤pd-3 Y and X ≤pd-4 Y ) also hold. Ebrahimi and Spizzichino [178] ob-
tained conditions on the expected values of the order statistics that are as-
sociated with X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn), under which
X ≤pd-4 Y .
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Paul [442] gave conditions under which Xi ≤cx Yi, i = 1, 2 (where
(X1, X2) and (Y1, Y2) are some bivariate random vectors) imply (Y1, Y2) ≤pd-4
(X1, X2) (in fact the conclusion of Paul [442] is stated as E max{X1, X2} ≤
E max{Y1, Y2}, but since EXi = EYi, i = 1, 2, the stated conclusion is the
same as (Y1, Y2) ≤pd-4 (X1, X2)). Müller [414], however, noticed that in Paul
[442] there was a subtle mistake which invalidated his Theorem 1. Müller [414]
provided other conditions under which the conclusion above is valid.

9.H Complements

A good review of the theory of positive dependence orders is the survey by
Scarsini and Shaked [496]. Section 2.2 in Joe [262] contains many of the re-
sults that are mentioned in Sections 9.A–9.F, as well as many examples and
counterexamples.

Section 9.A: The PQD order is first defined in Yanagimoto and Okamoto
[570]; it also can be found in Tchen [547]. The general closure property
of the PQD order (Theorem 9.A.1) is taken from Kimeldorf and Sampson
[295]. The definition of the PQD order for general n-dimensional vec-
tors (n > 2) can be found in Joe [260]. The conditions under which
Archimedean copulas are ordered in the PQD sense (Example 9.A.3) can
be found in Joe [262]. Brown and Rinott [110] showed that some pairs of
multivariate infinitely divisible distributions are PQD-ordered. The PQD
comparisons of convolutions and of mixtures results (Theorems 9.A.6 and
9.A.7) are special cases of results of Belzunce and Semeraro [77]. The PQD
ordering of random vectors with elliptically contoured densities (Exam-
ple 9.A.8) follows from Theorem 5.1 of Das Gupta, Eaton, Olkin, Perl-
man, Savage, and Sobel [139]; see also Landsman and Tsanakas [331]. The
results about the supermodular order (Section 9.A.4) are mostly taken
from Meester and Shanthikumar [387] and from Shaked and Shanthiku-
mar [517]; see also Joe [260] and Szekli, Disney, and Hur [545]. The closure
results of the supermodular order given in Theorem 9.A.12, and the appli-
cation to Markov chains given in Example 9.A.13, are taken from Li and
Xu [350]. An extension of the result in Example 9.A.13 can be found in
Kulik and Szekli [325]. The closure property of the order ≤sm under ran-
dom sums (Theorem 9.A.14) can be found in Denuit, Genest, and Marceau
[145]; it generalizes some results of Hu and Pan [238]. Extensions of Theo-
rem 9.A.14 are given in Lillo, Pellerey, Semeraro, and Shaked [363], and in
Kulik and Szekli [325]. The supermodular comparison of mixtures result
(Theorem 9.A.15) is taken from Denuit and Müller [157]. The property
that is described in Theorem 9.A.16 can be found in Bäuerle [58] or in
Bäuerle and Rieder [61], and the property that is described in Theorem
9.A.18 can be found in Müller [411]. The inequality that is described in
Example 9.A.17 is taken from Vanichpun and Makowski [554, 555]; they
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credit it to Bäuerle [58]. The fact that sums of components of supermod-
ular ordered vectors are ordered according to ≤icx, described in (9.A.19),
is taken from Müller [409]. The convex order comparison of random sums
in Example 9.A.19 is a generalization of a result of O’Cinneide [439]. The
result about the ordering of multivariate normal random vectors accord-
ing to the ≤sm order (Example 9.A.20) can be found in Huffer [250]; see
also Müller and Scarsini [416] and Block and Sampson [94, Section 2],
though in the latter paper there is a mistake which is corrected in Müller
and Scarsini [416]. An extension of the result in Example 9.A.20 to Kotz-
type distributions is given in Ding and Zhang [168]. The bound on X,
which is described in Theorem 9.A.21, can be found in Tchen [547]. A
geometric proof of (9.A.20) is given in Kaas, Dhaene, Vyncke, Goovaerts,
and Denuit [268] and in Hoedemakers, Beirlant, Goovaerts, and Dhaene
[224]. The convex comparison of sums (Proposition 9.A.22) is taken from
Kaas, Dhaene, and Goovaerts [267]; some related results and extensions
can be found in Goovaerts and Kaas [213] and in Hoedemakers, Beirlant,
Goovaerts, and Dhaene [224]. The comparison of a vector of associated
random variables with its independence version (Theorem 9.A.23) can be
found in Christofides and Vaggelatou [130]; the first part of this theorem
strengthens a result in Shaked and Shanthikumar [517] which states the
same conclusion, but under the CIS condition (defined in (6.B.11)) which
is stronger than the weak positive association condition. The lower bound
on X by the so-called “mutually exclusive” random variables (that is,
that satisfy (9.A.23)), given in Theorem 9.A.24, is taken from Dhaene and
Denuit [162]; see related results in Frostig [207] and in references therein.
The sufficient condition by means of copulas, which imply the ≤dir-cx order
(Theorem 9.A.25), can be found in Juri [266]. Theorem 3.1 and Corollar-
ies 3.2 and 4.1 in Rüschendorf [486] are variants of Theorem 9.A.25. The
model that is described in Example 9.A.26 is a special case of a model dis-
cussed in Bäuerle [57]; in fact, her Theorem 3.1 can be obtained from the
stochastic inequality of Example 9.A.26 and the closure of the supermod-
ular order under mixtures (Theorem 9.A.9(d)). Rüschendorf [486] studied
various extensions of Example 9.A.26. The comparison of sampling plans
which is given in Example 9.A.27 was obtained in Karlin [276], and noted
by Frostig [206]. The comparison of multivariate Archimedean copulas
(Example 9.A.28), as well as further similar comparisons, can be found in
Wei and Hu [559].

If F and G of (9.A.3) are the distribution functions of bivariate vec-
tors with integer-valued components, then the comparison F ≤PQD G is
the same as a comparison of the partial sums of two matrices with non-
negative entries (which sum up to 1). Nguyen and Sampson [434] studied
the geometry of such matrices.

The PQD comparison can be used also to compare contingency tables
that have the same row and column sums. Nguyen and Sampson [435]
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obtained some results regarding the number of such contingency tables
that are more PQD than a given contingency table.

Block, Chhetry, Fang, and Sampson [92] found necessary and sufficient
conditions (by means of orders of permutations) for two bivariate empirical
distributions to be ordered according to the PQD order. Further results
in this vein are given in Metry and Sampson [392]. Examples of pairs
of bivariate distributions that are PQD-ordered can be found in de la
Horra and Ruiz-Rivas [227] and in Joe [261]. Bassan and Scarsini [55]
characterized the PQD order by means of the usual stochastic ordering of
some related stopping times.

Ebrahimi [175] discussed negatively dependent distributions that are or-
dered according to the PQD order.

Some positive dependence orders that are weaker than the PQD order
were introduced in Rodŕıguez-Lallena and Úbeda-Flores [470].

Lu and Yi [366] gave a definition of an order that generalizes the bivariate
PQD order to higher dimensions. However, this order does not have the
desirable properties of being closed under mixtures and concatenations
(this follows from the fact that parts (c) and (e) of Theorem 2.4 in Lu
and Yi [366] may be incorrect).

Section 9.B: Most of the results in this section can be found in Colangelo,
Scarsini, and Shaked [133].

Section 9.C: Most of the results in this section, about the LTD and RTI
orders, are taken from Averous and Dortet-Bernadet [25]. The relationship
between the strong orthant ratio orders and the LTD and RTI orders
(Theorem 9.C.7) can be found in Colangelo, Scarsini, and Shaked [133];
the counterexamples that are mentioned after Theorem 9.C.7 can also be
found in that paper. The results about the PRD order are taken from
Yanagimito and Okamoto [570] and from Fang and Joe [192]. In addition
to the characterizations (9.C.19)–(9.C.21) of the PRD order, the reader
may find another characterization in Rüschendorf [484]. In addition to
Examples 9.C.10–9.C.12, many other examples of pairs of random vectors
that are PRD-ordered can be found in Fang and Joe [192].

Hollander, Proschan, and Sconing [225] briefly considered some LTD and
RTI orders that are different than the ones in Section 9.C. Colangelo
[132] studied the relationships among these orders and the LTD and RTI
orders in Section 9.C, and Colangelo, Scarsini, and Shaked [133] studied
the relationships among these orders and the orthant ratio orders.

Block, Chhetry, Fang, and Sampson [92] found necessary and sufficient
conditions (by means of orders of permutations) for two bivariate empirical
distributions to be ordered according to the PRD order. Some variations
of the PRD order are discussed in Capéraà and Genest [120] and in Fang
and Joe [192].
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Avérous, Genest, and Kochar [26] introduced an extension of the PRD
order which compares bivariate random vectors that need not have the
same univariate marginals. Their order is equivalent to the requirement
that the corresponding copulas are ordered in the PRD order.

Hollander, Proschan, and Sconing [225] briefly discussed the order accord-
ing to which (X1, X2) is smaller than (Y1, Y2) if

GY2|Y1(x2
∣∣x1) − FX2|X1(x2

∣∣x1) is increasing in x1 for all x2.

Section 9.D: Most of the material in this section is taken from Kimeldorf
and Sampson [295]. The conditions under which Archimedean copulas are
ordered in the PLRD sense (Example 9.D.5) can be found in Joe [262].
The comparison of two bivariate normal random vectors in the PLRD
sense (Example 9.D.6) is taken from Genest and Verret [208].

Yanagimoto [569] introduced a collection of 16 orders based on the idea
of (9.D.2). He did it by requiring (9.D.2) to hold for special choices of
intervals I1, I2, J1, and J2. The PQD order is one of the 16 orders in
the collection of Yanagimoto. Metry and Sampson [391] extended Yanagi-
moto’s idea and presented a more general approach for generating positive
dependence orderings. That approach makes it fairly easy to study the
properties of the resulting orders and the interrelationships among them.
Yanagimoto [569] also introduced an order that is similar to the PLRD
order, and which applies to random vectors of dimension n ≥ 2.

Kemperman [284] and Karlin and Rinott [278] suggested an order accord-
ing to which the bivariate distribution F (with density f) is smaller than
the bivariate distribution G (with density g) if

f(x1, y1)g(x2, y2) ≥ f(x1, y2)g(x2, y1) whenever x1 ≤ x2 and y1 ≤ y2.

This order has not been studied in the literature as a positive dependence
order. In fact, Kimeldorf and Sampson [295] have noticed that it does not
satisfy some of the basic axioms that they introduced.

Section 9.E: The definition and many properties of associated random vari-
ables can be found in Esary, Proschan, and Walkup [184]. Most of the
results described in this section are taken from Schriever [498] and from
Fang and Joe [192]. In addition to Examples 9.E.4–9.E.6, many other ex-
amples of pairs of random vectors that are ordered by association can be
found in Fang and Joe [192]. Some variations of the association order are
also discussed in that paper.

Block, Chhetry, Fang, and Sampson [92] found necessary and sufficient
conditions (by means of orders of permutations) for two bivariate empirical
distributions to be ordered according to the association order.

The main result about the weak association order (Theorem 9.E.8) is
extracted from Rüschendorf [486]; see also Yi and Tongyu [574].
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Kimeldorf and Sampson [296] and Hollander, Proschan, and Sconing [225]
discuss briefly an order according to which (X1, X2) is smaller than
(Y1, Y2) if

Cov(K(X1, X2), L(X1, X2)) ≤ Cov(K(Y1, Y2), L(Y1, Y2)),

for all increasing functions K and L for which the covariance is well de-
fined. Kimeldorf and Sampson [296] showed that this order does not sat-
isfy one of their axioms. This order can clearly be extended to the case in
which the dimension is n ≥ 2.

Section 9.F: Most of the results in this section are taken from Shaked [501]
and from Rinott and Pollak [467]. One can prove Theorem 9.F.1 using
the method of proof of Theorem 3.1 in Shaked [501]. Tong [550] has listed
some examples of vectors X and Y that satisfy (9.F.5), and has shown
some applications of this order.

Rinott and Pollak [467] have essentially shown that if (X1, X2) ≤PDD
(Y1, Y2), then some of the first-passage times of related Gaussian processes
are ordered in the usual stochastic order.

Section 9.G: The results in this section are mostly taken from Shaked and
Tong [523]. Many examples of pairs of exchangeable vectors that satisfy
the orders ≤pd-k, k = 1, 2, 3, 4, are listed in that paper. Further examples
can be found in Shaked and Tong [522]. The relationship between the
star order and the order ≤pd-4 (Theorem 9.G.4) is taken from Barlow
and Proschan [35]; a slightly stronger result can be found in Shaked [502].
Gupta and Richards [218] have given examples of pairs of multivariate
Liouville distributions that are ordered according to ≤pd-1 and therefore
also according to ≤pd-2 and ≤pd-4.

Shaked and Tong [523] have noted that, intuitively, exchangeable random
vectors are “more positively dependent” if, and only if, they are “less
dispersed.” Thus they suggested to define orderings according to which
(X1, X2, . . . , Xn) is smaller than (Y1, Y2, . . . , Yn) if

Eφ(X1, X2, . . . , Xn) ≥ Eφ(Y1, Y2, . . . , Yn),

for every φ which belongs to some properly chosen class of permutation
symmetric functions. In addition to the classes defined in (9.G.1), (9.G.2)
and (9.G.4) [there exists also a class under which the above inequality
gives (9.G.5)], a natural choice of such a class is the class of all Schur-
convex functions. Chang [124] considered some orders that are defined by
the above inequality for several classes of permutation symmetric func-
tions. His paper contains a rich bibliography regarding several stochastic
majorization orders.

Mosler [399, Section 7.6] introduced some notions of positive dependence
orders that are based on volumes of central regions.



References

1. Aalen, O.O., Hoem, J.M.: Random time changes for multivariate counting
processes. Scandinavian Actuarial Journal, 81–101 (1978)

2. Adell, J.A., Bad́ıa, F.G., de la Cal, J.: Beta-type operators preserve shape
properties. Stochastic Processes and Their Applications 48, 1–8 (1993)

3. Adell, J.A., de la Cal, J.: Optimal Poisson approximation of uniform empirical
processes. Stochastic Processes and Their Applications 64, 135–142 (1996)

4. Adell, J.A., Lekuona, A.: Taylor’s formula and preservation of generalized con-
vexity for positive linear operators. Journal of Applied Probability 37, 765–777
(2000)

5. Adell, J.A., Perez-Palomares, A.: Stochastic orders in preservation properties
by Bernstein-type operators. Advances in Applied Probability 31, 492–507
(1999)

6. Ahmadi, J., Arghami, N.R.: Some univariate stochastic orders on record values.
Communications in Statistics—Theory and Methods 30, 69–74 (2001)

7. Ahmed, A.-H. N.: Preservation properties for the mean residual life ordering.
Statistical Papers 29, 143–150 (1988)

8. Ahmed, A.N., Alzaid, A., Bartoszewicz, J., Kochar, S.C.: Dispersive and su-
peradditive ordering. Advances in Applied Probability 18, 1019–1022 (1986)

9. Ahmed, A.N., Soliman, A.A., Khider, S.E.: On some partial ordering of interest
in reliability. Microelectronics Reliability 36, 1337–1346 (1996)

10. Ahmed, A.N., Soliman, A.A., Khider, S.E.: Preservation results for ordered
random variables, with applications to reliability theory. Microelectronics Re-
liability 37, 277–287 (1997)

11. Alzaid, A., Kim, J.S., Proschan, F.: Laplace ordering and its applications.
Journal of Applied Probability 28, 116–130 (1991)

12. Alzaid, A.A.: Mean residual life ordering. Statistical Papers 29, 35–43 (1988)
13. Alzaid, A.A.: Length-biased orderings with applications. Probability in the

Engineering and Informational Sciences 2, 329–341 (1988)
14. Alzaid, A.A., Proschan, F.: Dispersivity and stochastic majorization. Statistics

and Probability Letters 13, 275–278 (1992)
15. Arcones, M.A., Kvam, P.H., Samaniego, F.J.: Nonparametric estimation of

a distribution subject to a stochastic precedence constraint. Journal of the
American Statistical Association 97, 170–182 (2002)



432 References

16. Argon, N.T., Andradóttir, S.: Partial pooling in tandem lines with cooperation
and blocking. Queueing Systems 52, 5–30 (2006)

17. Arias-Nicolás, J.P., Fernández-Ponce, J.M., Luque-Calvo, P., Suárez-Llorens,
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134. Collet, P., López, F.J., Mart́ınez, S.: Order relations of measures when avoiding
decreasing sets. Statistics and Probability Letters 65, 165–175 (2003)

135. Costantini, C., Pasqualucci, D.: Monotonicity of Bayes sequential tests for mul-
tidimensional and censored observations. Journal of Statistical Planning and
Inference 75, 117-131 (1998)



438 References

136. Cramer, E., Kamps, U.: Sequential k-out-of-n systems. In: Balakrishnan, N.,
Rao, C.R. (ed) Handbook of Statistics 20: Advances in Reliability. Elsevier,
Amsterdam, 301–372 (2001)

137. Daduna, H., Szekli, R.: A queueing theoretical proof of increasing property
of Polya frequency functions. Statistics and Probability Letters 26, 233–242
(1996)

138. Daduna, H., Szekli, R.: Dependence structure of sojourn times via partition
separated ordering. Operations Research Letters 31, 462–472 (2003)

139. Das Gupta, S., Eaton, M.L., Olkin, I., Perlman, M., Savage, L.J., Sobel, M.: In-
equalities on the probability content of convex regions for elliptically contoured
distributions. In: LeCam, L.M., Neyman, J., Scott, E.L. (ed) Proceedings of
the Sixth Berkeley Symposium on Mathematical Statistics and Probability,
Volume II. University of California Press, Berkeley, 241–265 (1972)

140. Denuit, M.: Time stochastic s-convexity of claim processes. Insurance: Math-
ematics and Economics 26, 203–211 (2000)

141. Denuit, M.: Laplace transform ordering of actuarial quantities. Insurance:
Mathematics and Economics 29, 83–102 (2001)
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415. Müller, A., Rüschendorf, L.: On the optimal stopping values induced by general
dependence structures. Journal of Applied Probability 38, 672–684 (2001)

416. Müller, A., Scarsini, M.: Some remarks on the supermodular order. Journal of
Multivariate Analysis 73, 107–119 (2000)

417. Müller, A., Scarsini, M.: Stochastic comparison of random vectors with a com-
mon copula. Mathematics of Operations Research 26, 723–740 (2001)

418. Müller, A., Scarsini, M.: Stochastic order relations and lattices of probability
measures. SIAM Journal on Optimization 16, 1024–1043 (2006)

419. Müller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks.
Wiley, New York (2002)
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465. Raqab, M.Z., Amin, W.A.: Some ordering results on order statistics and record
values. IAPQR Transactions 21, 1–8 (1996)

466. Righter, R., Shanthikumar, J.G.: Extensions of the bivariate characterization
for stochastic orders. Advances in Applied Probability 24, 506–508 (1992)

467. Rinott, Y., Pollak, M.: A stochastic ordering induced by a concept of positive
dependence and monotonicity of asymptotic test sizes. Annals of Statistics 8,
190–198 (1980)

468. Rinott, Y., Scarsini, M.: Total positivity order and the normal distribution.
Journal of Multivariate Analysis 97, 1251–1261 (2006)

469. Rivest, L.-P.: Products of random variables and star-shaped ordering. Cana-
dian Journal of Statistics 10, 219–223 (1982)
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497. Schöttl, A.: A new ordering for point processes. Mathematical Methods of
Operations Research 43, 373–387 (1996)

498. Schriever, B.F.: An ordering for positive dependence. Annals of Statistics 15,
1208–1214 (1987)

499. Schweder, T.: On the dispersion of mixtures. Scandinavian Journal of Statistics
9, 165–169 (1982)



References 455

500. Sengupta, D., Deshpande, J.V.: Some results on relative ageing of two life
distributions. Journal of Applied Probability 31, 991–1003 (1994)

501. Shaked, M.: Some concepts of positive dependence for bivariate interchangeable
distributions. Annals of the Institute of Statistical Mathematics 31, 67–84
(1979)

502. Shaked, M.: On mixtures from exponential families. Journal of the Royal Sta-
tistical Society B 42, 192–198 (1980)

503. Shaked, M.: Dispersive ordering of distributions. Journal of Applied Probability
19, 310–320 (1982)

504. Shaked, M., Shanthikumar, J.G.: The multivariate hazard construction.
Stochastic Processes and Their Applications 24, 241–258 (1987)

505. Shaked, M., Shanthikumar, J.G.: Multivariate hazard rate and stochastic or-
dering. Advances in Applied Probability 19, 123–137 (1987)

506. Shaked, M., Shanthikumar, J.G.: Characterization of some first passage times
using log-concavity and log-convexity as aging notions. Probability in the En-
gineering and Informational Sciences 1, 279–291 (1987)

507. Shaked, M., Shanthikumar, J.G.: Temporal stochastic convexity and concavity.
Stochastic Processes and Their Applications 27, 1–20 (1988)

508. Shaked, M., Shanthikumar, J.G.: Stochastic convexity and its applications.
Advances in Applied Probability 20, 427–446 (1988)

509. Shaked, M., Shanthikumar, J.G.: Parametric stochastic convexity and concav-
ity of stochastic processes. Annals of the Institute of Statistical Mathematics
42, 509–531 (1990)

510. Shaked, M., Shanthikumar, J.G.: Convexity of a set of stochastically ordered
random variables. Advances in Applied Probability 22, 160–177 (1990)

511. Shaked, M., Shanthikumar, J.G.: Multivariate stochastic ordering and positive
dependence in reliability theory. Mathematics of Operations Research 15, 545–
552 (1990)

512. Shaked, M., Shanthikumar, J.G.: Dynamic multivariate aging notions in relia-
bility theory. Stochastic Processes and Their Applications 38, 85–97 (1991)

513. Shaked, M., Shanthikumar, J.G.: Dynamic multivariate mean residual life func-
tions. Journal of Applied Probability 28, 613–629 (1991)

514. Shaked, M., Shanthikumar, J.G.: Regular, sample path and strong stochastic
convexity: A review. In: Mosler, K., Scarsini, M. (ed) Stochastic Orders and
Decision under Risk. IMS Lecture Notes—Monograph Series 19. Hayward, Cal-
ifornia, 320–333 (1991)

515. Shaked, M., Shanthikumar, J.G.: Stochastic Orders and Their Applications.
Academic Press, Boston (1994)

516. Shaked, M., Shanthikumar, J.G.: Hazard rate ordering of k-out-of-n systems.
Statistics and Probability Letters 23, 1–8 (1995)

517. Shaked, M., Shanthikumar, J.G.: Supermodular stochastic orders and positive
dependence of random vectors. Journal of Multivariate Analysis 61, 86–101
(1997)

518. Shaked, M., Shanthikumar, J.G.: Two variability orders. Probability in the
Engineering and Informational Sciences 12, 1–23 (1998)

519. Shaked, M., Shanthikumar, J.G., Tong, Y.L.: Parametric Schur convexity and
arrangement monotonicity properties of partial sums. Journal of Multivariate
Analysis 53, 293–310 (1995)



456 References

520. Shaked, M., Suarez-Llorens, A.: On the comparison of reliability experiments
based on the convolution order. Journal of the American Statistical Association
98, 693–702 (2003)

521. Shaked, M., Szekli, R.: Comparison of replacement policies via point processes.
Advances in Applied Probability 27, 1079–1103 (1995)

522. Shaked, M., Tong, Y.L.: Stochastic ordering of spacings from dependent ran-
dom variables. In: Tong, Y.L. (ed) Inequalities in Statistics and Probability.
IMS Lecture Notes—Monograph Series 5. Hayward, California, 141–149 (1984)

523. Shaked, M., Tong, Y.L.: Some partial orderings of exchangeable random vari-
ables by positive dependence. Journal of Multivariate Analysis 17, 333–349
(1985)

524. Shaked, M., Wong, T.: Preservation of stochastic orderings under random map-
ping by point processes. Probability in the Engineering and Informational Sci-
ences 9, 563–580 (1995)

525. Shaked, M., Wong, T.: Stochastic orders based on ratios of Laplace transforms.
Journal of Applied Probability 34, 404–419 (1997)

526. Shaked, M., Wong, T.: Stochastic comparisons of random minima and maxima.
Journal of Applied Probability 34, 420–425 (1997)

527. Shanthikumar, J.G.: On stochastic comparison of random vectors. Journal of
Applied Probability 24, 123–136 (1987)

528. Shanthikumar, J.G., Koo, H.-W.: On uniform conditional stochastic order con-
ditioned on planar regions. Journal of Applied Probability 27, 115–123 (1990)

529. Shanthikumar, J.G., Yamazaki, G., Sakasegawa, H.: Characterization of opti-
mal order of servers in a tandem queue with blocking. Operations Research
Letters 10, 17–22 (1991)

530. Shanthikumar, J.G., Yao, D.D.: The preservation of likelihood ratio ordering
under convolution. Stochastic Processes and Their Applications 23, 259–267
(1986)

531. Shanthikumar, J.G., Yao, D.D.: Second-order stochastic properties in queueing
systems. Proceedings of the IEEE 77, 162–170 (1989)

532. Shanthikumar, J.G., Yao, D.D.: Bivariate characterization of some stochastic
order relations. Advances in Applied Probability 23, 642–659 (1991)

533. Shanthikumar, J.G., Yao, D.D.: Strong stochastic convexity: Closure properties
and applications. Journal of Applied Probability 28, 131–145 (1991)

534. Shanthikumar, J.G., Yao, D.D.: Spatiotemporal convexity of stochastic pro-
cesses and applications. Probability in the Engineering and Informational Sci-
ences 6, 1–16 (1992)

535. Shao, Q.-M.: A comparison theorem on moment inequalities between nega-
tively associated and independent random variables. Journal of Theoretical
Probability 13, 343–356 (2000)

536. Singh, H.: On partial orderings of life distributions. Naval Research Logistics
36, 103–110 (1989)

537. Singh, H., Vijayasree, G.: Preservation of partial orderings under the formation
of k-out-of-n:G systems of i.i.d. components. IEEE Transactions on Reliability
40, 273–276 (1991)

538. Sordo, M.A., Ramos, H.M.: Characterization of stochastic orders by L-
functionals. Statistical Papers, to appear (2006)

539. Spizzichino, F.: Subjective Probability Models for Lifetimes. Chapman and
Hall/CRC, Boca Raton (2001)



References 457

540. Stoyan, D.: Comparison Methods for Queues and Other Stochastic Models.
Wiley, New York (1983)

541. Strassen, V.: The existence of probability measures with given marginals. An-
nals of Mathematical Statistics 36, 423–439 (1965)
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moments ratio order (≤mom-r), 259
more informative, 132
more scattered (≤∆), 344
MTP2, see multivariate total

positivity of order 2
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multivariate convex transform order
(≤mc), 349

multivariate dispersion order (≤D),
344

multivariate star order (≤m∗), 349
multivariate superadditive order

(≤msu), 349
multivariate total positivity of

order 2 (MTP2), 290, 291,
293, 294, 300, 304, 408

NBU(2), 204
NBUE order (≤nbue), 222
new better than used (NBU), 1, 15,

156, 218, 349
new better than used in convex

ordering (NBUC), 16, 204
new better than used in expectation

(NBUE), 1, 15, 97, 99–101,
105, 106, 138, 139, 224, 241

new better than used in mean
(NBUM), 204

new worse than used (NWU), 1, 15,
156

new worse than used in expectation
(NWUE), 2, 15, 96, 138,
139, 241

normal, 14, 137, 202, 358, 367, 378
bivariate, 416, 419, 422
multivariate, 14, 32, 279, 313,

328, 334, 339, 344, 394
skew, 65

NWU(2), 204

order statistics, 12, 31, 41, 54, 63, 69,
71, 92, 136, 137, 156, 157,
219, 241, 271, 276, 296, 302,
343, 347

generalized, 60, 77, 159

p+ order (≤p+), 211
p− order (≤p−), 211
Pareto, 69
Pascal, 135
PDD order (≤PDD), 421

peakedness order (≤peak), 172
PLRD order (≤PLRD), 414
point process, 283
Poisson, 128, 135, 210, 358, 365, 368
Poisson process

compound, 244, 252
homogeneous, 358
nonhomogeneous, 29, 60, 93,

161, 219, 285, 286, 295, 302,
347, 373

Polya, 136
Polya frequency of order 2 (PF2), see

logconcave density
positive definite dependent (PDD),

420
positive likelihood ratio dependent

(PLRD), 414
positive quadrant dependent (PQD),

388
positive regression dependent (PRD),

412
posterior density, 64, 65
potential, 111
PQD order (≤PQD), 388, 392
PRD order (≤PRD), 413
precedence order, 73
prior density, 64, 65, 131, 304
probability generating function order

(≤pgf), 244, 351
probability transformation function,

116
pth order (≤p), 211

Q-addition, 150
quasiconcave function, 355
queuing theory, 399

record, 365
regular variation, 137, 159
renewal process, 284, 359, 364, 370
reverse Laplace transform ratio order

(≤r-Lt-r), 245
reverse regular of order 2 (RR2), 32
reversed hazard rate order (≤rh), 36
reversed residual lifetime, 107



472 Subject Index

right spread order, see excess wealth
order

right tail increasing (RTI), 410
RR2, see reverse regular of order 2
RTI order (≤RTI), 411

sample mean, 127, 173, 328
scaled order statistic orders (≤(k)),

315
Schur concave, 2
Schur convex, 2
SCV(ae), definition, 377
SCV, definition, 358
SCX, 124

definition, 358
SCX(ae), definition, 377
SD, definition, 358
SD-DIR-CV, definition, 381
SD-DIR-CX, definition, 381
SD-DIR-L, definition, 381
SDCV(ae), definition, 377
SDCV(sp), definition, 367
SDCV(st), definition, 374
SDCV, definition, 358
SDCX(ae), definition, 377
SDCX(sp), definition, 367
SDCX(st), definition, 374
SDCX, definition, 358
SDL(ae), definition, 377
SDL(sp), definition, 367
SDL(st), definition, 374
SDL, definition, 358
semigroup property, 199, 359, 368
SI, 8

definition, 11, 358
SI-DIR-CV, definition, 381
SI-DIR-CX, definition, 381
SI-DIR-L, definition, 381
SICV, 191

definition, 358
SICV(ae), definition, 377
SICV(sp), definition, 367
SICV(st), definition, 374
SICX, 191

definition, 358

SICX(ae), definition, 377
SICX(sp), definition, 367
SICX(st), definition, 374
sign changes, 10, 133–135, 138, 143,

144, 148, 155, 166, 172, 194,
209, 214, 215

SIL(ae), definition, 377
SIL(sp), definition, 367
SIL(st), definition, 374
SIL, definition, 358
skip-free positive, 282
SL(ae), definition, 377
spacings, 12, 33, 58, 93, 107, 157,

160, 171, 220, 278, 304
Spearman’s ρ, 389, 393
spread random variable, 28, 205, 370
star order (≤∗), 214
starshaped order (≤ss), 204
statistical experiment, 132
stochastic directional concavity, 381
stochastic directional convexity, 381
stochastic m-convexity, 365
stochastically monotone Markov

process, 283
strong lower orthant decreasing ratio

order (≤slodr), 407
strong multivariate dispersive order

(≤SD), 342
strong stochastic order (≤sst), 268
strong upper orthant increasing ratio

order (≤suoir), 407
submartingale, 183, 324
submodular function, 335
superadditive function, 391
superadditive order (≤su), 214
supermartingale, 183, 324
supermodular function, 335, 395
supermodular order (≤sm), 395
supporting lifetimes, 287, 348
symmetric convex order (≤symcx),

333

t-distribution, 162
Tchebycheff-type orders, 176
temporal convexity, 384, 385
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total hazard, see construction, total
hazard

total time on test (TTT), 14, 150,
163, 201, 217, 222, 224

totally positive
of order 2 (TP2), 25, 30, 46, 59,

61, 90, 91, 93, 195, 250,
293, 294, 298, 414

of order m, 210
TP2, see totally positive of order 2
TTT order (≤ttt), 224

uncertainty, 79
uniform distribution, 15, 43, 121,

135, 136, 160, 218, 219, 242,
269, 271, 361, 364, 366, 391,
400, 401, 410

uniformly less variable (≤uv), 137
up shifted likelihood ratio order

(≤lr↑), 66
upper orthant increasing ratio order

(≤uoir), 405
upper orthant order (≤uo), 308
upper orthant-convex order (≤uo-cx),

340
usual stochastic order (≤st), 3, 266,

281
usual stochastic order over R

∞

(≤st-∞), 284
usual stochastic order over N

(≤st-N ), 284

Vandermonde system, 145, 146
Veinott, 325

WCIS, 269
weak association order (≤w-assoc),

420
weak hazard rate order (≤whr), 290
weakly dispersive order, 178
Weibull, 279
weighted distribution, 28, 65, 162

multivariate, 78
Wishart, 344

Yaari functional, 116, 150, 165

zonoid, 119
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