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Preface

This volume gathers together a set of extensions of the Rasch model, one of
the most prominent models for measurement in educational research and so-
cial science developed by Danish mathematician Georg Rasch. The idea for
this volume emerged during a meeting of the Psychometric Society in Mon-
terey, CA. At that meeting, friends and colleagues discussed news about the
impending retirement of Dr. Jürgen Rost, an important innovator and men-
tor in this field. To recognize Jürgen’s contributions, we decided to produce
a collection of research on extending the Rasch model as well as embedding
the Rasch model in more complex statistical models, an area that is receiving
broad interest in many fields of social sciences at the current time.

This collection contains 22 chapters by recognized international experts in
the field. The contributions cover topics ranging from general model extensions
to application in fields as diverse as cognition, personality, organizational and
sports psychology, and health sciences and education.

The Rasch model is designed for categorical data, often collected as exam-
inees’ responses to multiple tasks such as cognitive items from psychological
tests or from educational assessments. The Rasch model’s elegant mathemati-
cal form is suitable for extensions that allow for greater flexibility in handling
complex samples of examinees and collections of tasks from different domains.
In these extensions, the Rasch model is enhanced by additional structural el-
ements that account either for differences between diverse populations or for
differences among observed variables.

Research on extending well-known statistical tools such as regression, mix-
ture distribution, and hierarchical linear models has led to the adoption of
Rasch model features to handle categorical observed variables. We maintain
both perspectives in the volume and show how these merged models—Rasch
models with a more complex item or population structure—are derived either
from the Rasch model or from a structural model, how they are estimated,
and where they are applied.

This volume is centered on extensions of the Rasch model to multiple di-
mensions and complex samples of examinees and/or item responses. Therefore,



VI

applications of the unidimensional Rasch model for simple random samples
are not specifically mentioned. Such cases can be found in volumes geared
toward applying the Rasch model. More importantly, simple data collection
designs can be treated as special cases of the extensions presented here, so that
data suitable for the ordinary Rasch model can be analyzed with virtually all
the extensions presented in this volume.

Thanks goes to our respective families, who helped us a lot with their
encouragement and support: thank you Alina, Barbara, Thomas, and Luis!
We are also deeply grateful to our academic teacher, Jürgen Rost, who in-
troduced us to the fascinating field of extended Rasch models. We would
also like to thank our professional affiliations and colleagues for making this
project possible by providing resources and support. We thank Daniel Eignor
for the excellent help on clarifying and better organizing a lot of our writing,
and thanks go to Kim Fryer for the superb editorial support and to Henning
Voigtländer for helping to convert and typeset many contributed chapters.
Most of all, the diversity and coverage of topics presented in this volume
would not have been possible without the excellent contributors in their roles
as authors and reviewers for this volume.

Matthias von Davier
Princeton, NJ, USA

Claus H. Carstensen
Kiel, Germany

March 2006
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Introduction: Extending the Rasch Model

Matthias von Davier1, Jürgen Rost2, and Claus H. Carstensen2

1 Educational Testing Service
2 Leibniz Institute for Science Education, Kiel

1.1 Introduction

The present volume is a collection of chapters on research and development
work on extensions of the Rasch model (RM; Rasch, 1960) that have focused
on relaxing some fundamental constraints of the original RM, while preserv-
ing many of the unique features of the model. More specifically, the volume
presents extensions of the RM in which certain homogeneity assumptions on
the item level and the population level have been relaxed. With these two
types of assumption intact, the original RM decomposes the probability of
item responses in two independent components: an item-specific difficulty pa-
rameter that is constant across all examinees in the population, and one abil-
ity parameter for each examinee that is the same across all items in a given
assessment.

These homogeneity assumptions, however, are the ones not met in many
practical applications of the RM, since either some or all of the items may
function differently in different subpopulations, or the responses of subjects
to these items may depend on more than one latent trait. This turns out to
be an issue, for example, if item types are mixed, if the content of items varies
somewhat, and/or if items are assessed in complex populations of examinees
that come from different backgrounds such as different educational systems.

The volume addresses these issues in two ways, first by presenting chapters
on recent extensions to the RM and second by providing chapters on applica-
tions of these extensions in educational or psychological contexts. The model
extensions presented here have been actively developed and studied by vari-
ous researchers, who have contributed to pioneering theoretical developments
on extending the RM to multiple populations and multidimensional abilities.
These researchers are often long-term advocates of applying these models to
substantial research questions in the social sciences. Many researchers with
backgrounds in other well-established statistical fields likewise took the RM
as a basis for extending “their” models, frequently with a specific substan-
tive question in mind. Several chapters in this volume are contributed by the
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original developers of such model extensions, who took a mathematical model
and made it more flexible to suit applied research questions.

This direction of development—from a theory-driven substantive research
question or a hypothesis to a model extension that reflects this theory—is
guiding the structure of most contributions in this volume. The different
chapters describe this process by referring to exemplary theories or research
questions under investigation, then outline the required features of the model
extension used to investigate these questions, and finally describe the path
taken to extend or choose a model and to plan and carry out the analysis. To
reflect this interplay between substantive theory and model development, the
first part of this volume includes papers presenting work on extending MRMs
and multiple group RMs—relaxing the person homogeneity assumptions—as
well as multivariate RMs that relax the item homogeneity assumption to fit
typical questions arising in applied research. The second part of this volume
consists of chapters that present the models developed in the first part in a
variety of applications in empirical educational research and a number of areas
of psychological research.

1.1.1 The Rasch Model

This section introduces a basic set of assumptions and a general framework
for latent variable models for item response data. The conventions introduced
here can be found in most subsequent chapters, except where the extensions
developed in subsequent chapters are more easily derived using a different
notation.

Assume there are n examinees, E1, . . . , En, drawn randomly from a popu-
lation, who respond to a set of I test items. Let xvi ∈ {0, 1, . . . ,mi} denote the
integer-coded response of examinee v to item i, that is, the actual behavioral
response is mapped to an element of a set of successive integers starting from
0.

If the responses to item i take on only the two values 0 and 1, we speak
of dichotomous data and refer to the dichotomous RM; if the responses can
take on more than two integer values, say x·i ∈ {0, 1, 2, 3, 4}, the RM has
to be specified for polytomous ordinal data to model responses of this type
appropriately. In this volume, both the dichotomous RM and the RM for poly-
tomous data will be used frequently, and it will often not be explicitly specified
whether item responses are assumed to be dichotomous or polytomous. We
ensure that this will not lead to ambiguities by using a specific method of
introducing the RM in a mathematical form that can be used for both di-
chotomous and polytomous data while meeting certain common foundational
assumptions of the RM.

Given the above definitions, denote the observed item responses of an
examinee v by xv = (xv1, . . . , xvI), that is, a vector with integer components in
the finite space Ωx =

∏I
i=1 {0, . . . ,mi} of possible response patterns for these

I test items. The RM is derived by assuming certain unobserved quantities in
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addition to the observed quantities xv1, . . . , xvI for each examinee v and each
item i, and by specifying certain assumptions about the relation of these,
yet to be specified, unobserved quantities to the probability of observing a
response pattern x ∈ Ωx.

The dichotomous RM assumes that there is a real-valued parameter θv

for each examinee, referred to as person parameter, and real-valued βi for
each item, subsequently referred to as item difficulty. For the probability of a
response xvi, the RM assumes

Pvi(X = xvi) = P (xvi|θv, βi) =
exp(xvi(θv − βi))
1 + exp(θv − βi)

(1.1)

for all examinees v = 1, . . . , N and all items i = 1, . . . , I.
This equation can easily be extended to polytomous responses by writing

the model as

P (xvi|θv, βi·) =
exp (xviθv − βixvi)

1 +
∑mi

x=1 exp (xθv − βix)
(1.2)

with real-valued βix for i = 1, . . . , I and x = 1, . . . ,mi and θv real-valued as
above. The model as defined in Equation 1.2 is suitable for observed variables
xvi ∈ {0, . . . ,mi} with an integer mi > 0.

The definition of the RM ensures that the probability of responding with
category x rather than with x− 1 is strictly increasing with increasing person
parameter θ. For the item parameters, strictly decreasing monotonicity holds,
with increasing difficulty threshold γix, a response in the upper (x) of two
adjacent categories (x, x − 1) decreases in probability. These monotonicity
properties (MO) are among the defining characteristics of the RM.

For the second defining characteristic, it is convenient to write

α(θv, βi·) = − ln

(
1 +

mi∑
x=1

exp(xθv − βix)

)

and to write the RM as

P (X = xvi|θv, βi·) = exp (xviθv − βixiv
+ α(θv, βi·)) . (1.3)

In addition to the monotonicity in item and person parameters, the RM
assumes local independence (LI), i.e., it is assumed that, for an examinee
with person parameter θ, the responses x = (x1, . . . , xI) are independently
distributed given θ. That is,

P (x|θ) =
I∏

i=1

P (X = xi|θ, βi)

for all θ. This, with the above definitions, yields after some elementary trans-
formations
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P (x|θ) = exp(tvθ) exp(ααα(θ,βββ))exp

(
I∑

i=1

βixiv

)
(1.4)

with tv =
∑I

i=1 xvi and ααα(θv,βββ) =
∑I

i=1 α(θv, βi·).
Note that in Equation 1.4, the probability of a response pattern x in the

RM has been written as a product of three terms. Note that one of the terms,
exp(α(θ, β)), does not depend on the observed data, and another one is the
same for all response patterns that share the same total score t. This property
will be used in the next section, which talks about conditional inferences in
the RM.

To estimate parameters, maximum likelihood methods can be applied. Ini-
tial approaches to the estimation problem have been based on maximizing a
likelihood function for the observed data matrix (xvi)i=1...I,v=1...N jointly for
the θv and the βix parameters. To avoid undesirable properties of the joint
estimation (Neyman & Scott, 1948), later approaches applied modified likeli-
hood equations that eliminated the person parameter θ and thus allow one to
maximize for the item parameters only. By eliminating the “nuisance” param-
eters θv, which are increasing in number with sample size N , the consistency
of item parameter estimates can be ensured. This is done either by assuming a
distribution for the person parameter θ and integrating over this distribution
(marginal maximum likelihood—MML) or by conditioning on some available
observed quantity, a sufficient statistic (Bickel & Doksum, 1977) that allows
one to eliminate the nuisance parameters.

MML estimation is prevalent in more general IRT models since these often
do not have simple sufficient statistics. However, the specific form of the RM
as given in Equations 1.1 and 1.2 ensures that the total score tv is a sufficient
statistic for the person parameter θv, and similarly for the item-category to-
tals. This property of the RM, the sufficiency of total (ST) scores for the
item and person parameters, is the third defining characteristic of RMs. The
impact of this sufficiency is elaborated on in the following subsection on the
conditional (on total score) form used in the conditional maximum likelihood
estimation (CML) of the RM.

1.1.2 Conditional Inferences in the Rasch Model

The sufficiency of the total score (ST) ensures that the RM can be written in a
conditional form, based on the observed distribution of the sufficient statistic.
The conditional form of the RM no longer contains the person parameter
and can be used to draw conditional inferences about model data fit and
to estimate item parameters without assumptions about the distribution of
person parameters in the population by plugging in the observed counts of
the total score.

The derivation of the RM in conditional form is based on Equation 1.4.
For a given θ, the probability of observing a total score t is
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P (t|θ) =
∑
x|t

P (x|θ),

which is the sum over all conditional probabilities of response patterns x with
the same total score t. As it is easily seen in Equation 1.4, all probabilities in
the above sum share the terms exp(tθ) and exp(ααα(θ,βββ)), since these do not
depend on the specific response pattern x, but only on θ and t (and β, which
is of lesser concern at this point).

Conditional inference in the RM uses the specific form of P (x|θ) from
Equation 1.4, which separates terms that depend on the observed data x
from terms that depend only on the total score t or do not at all depend on
the observed data. Then, after some algebra, we may write

P (x|t, θ) =
P (x|θ)
P (t|θ) =

exp(−∑I
i=1 βixi

)∑
x′|t exp(−∑I

i=1 βix′
i
)
.

The right-hand side of the above expression is independent of θ and con-
tains only the response vector x and the item parameters βββ. Integrating over
the person parameter distribution using P (x|t) =

∫
θ
P (x|t, θ)p(θ)dθ yields

P (x|t) =
exp(−∑I

i=1 βixi)∑
x′|t exp(−∑I

i=1 βix′
i
)
, (1.5)

which is the probability of a response vector x in the conditional form of the
RM. This is not to be confused with the integration over the ability distribu-
tion commonly used for more general IRT models in conjunction with MML
estimation methods (Bock & Aitkin, 1981). In contrast to MML estimation,
the integration mentioned above to arrive at the expression in Equation 1.5
does not actually take place during estimation; it is utilized as an algebraic
equivalence to get rid of the θ on the left side of the expression.

In this conditional form of the RM, we have an expression for the prob-
ability of a response pattern x, given total score t that is independent of
θ. This eliminates the need either to estimate the ability θ for each exami-
nee or to assume a specific form of ability distribution when estimating item
parameters.

The conditional form of the RM is quite useful when item parameters have
to be estimated from observed data. The independence of specific assumptions
about the ability distribution is ensured in the conditional estimation of pa-
rameters. This sets the RM apart from other models for item response data,
since most other models such as the two- and three-parameter item response
theory (IRT) models need additional assumptions about the distribution of
person parameters for estimating item parameters.

Conditional inferences play an important role in the RM (Fischer & Mole-
naar, 1995) and in many of the extensions of the RM presented in this volume.
These extensions preserve the defining characteristics of the RM in a way that
enables one to use the RM (or its extensions) in conditional form.
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1.1.3 Some Notation for Extended Rasch Models

This section introduces notation that allows one to specify the RM in the
presence of multiple populations and for multiple scales simultaneously. Using
this approach, many extensions presented in this volume can be viewed as
models that assume that the RM holds, with the qualifying condition that
it holds with a different set of parameters in different populations or with a
different ability (person) parameter for each of a set of distinguishable subsets
(scales) of test items.

Assume that there is a many-to-one classification g that maps the person
index v to v → g(v) = c ∈ {1, . . . , C}, so that each examinee v is member of
exactly one of C populations (classes, groups). In the ordinary RM, C = 1,
and therefore, the population index c is not needed. Also, assume that there
is a real-valued θvk for all v and multiple scales k = 1, . . . ,K, and let θθθv =
(θv1, . . . , θvK) be the k-dimensional person parameter.

Let xv = (xv1, . . . , xvI) be the vector of observed responses for examinee
v ∈ {1, . . . , N}. As above, the categorical responses xvi may be dichotomous
or polytomous ordinal responses, i.e., assume xvi ∈ {0, . . . ,mi}. Note that we
keep most of the notation intact; v denotes the examinee index, and N is the
total number of observations. Since there is more than one set of items, the
index k denotes the scale, and the items i = 1, . . . , I are mapped onto the k
scales.

One additional constructive element has to be included. Each item may
belong to exactly one component of ability, say the kth component of θθθ, or
it may be considered an item that taps into one or more of the K-person
parameter components. In the case that the items belong to more than one
ability component k, we speak about within-item multidimensionality. Oth-
erwise, if each item belongs to exactly one ability component, we talk about
between-item multidimensionality (compare also Chapter 4 in this volume).

Within-item multidimensionality refers to the assumption that responses
to each item may require multiple ability components (more than one skill or
ability component is required for each item) while between-item multidimen-
sionality refers to the assumption that each item can be solved using only one
skill, but different subsets of items may require different skills.

For the case of within-item multidimensionality, each item i is character-
ized by a vector qi = (qi1, . . . , qiK) that represents the load of each scale on
the ith item. The collection of these vectors into a matrix Q represents the
design of the assessment instrument. The matrix Q determines which items
load on which scales. In the RMs presented here, this design matrix consists
of zeros and ones, predetermined by the researcher. More specifically, the Q-
matrix entries are a hypothesized structure of relationships between required
skills and items, and the matrix entries (loadings) are fixed, not estimated.

Therefore, we may write for the case of within-item multidimensionality

Pi(x|θθθv, c = g(v)) =
exp
(
x(qT

i θθθv) − βixc

)
1 +
∑mi

y=1 exp
(
y(qT

i θθθv) − βiyc

)
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with qT
i θθθ =

∑
k qikθk.

For the case of between-item multidimensionality (each item “loads” on
one scale only), we can define the probability of a response x to item i in scale
k by an examinee v with c = g(v) as

Pi(x|θθθv, c = g(v)) =
exp(xθvk − βixc)

1 +
∑mi

y=1 exp(yθvk − βiyc)

with real-valued βixc for x = 1, . . . ,mi, and βi0c = 0. The two definitions
above are compatible, since the between-item multidimensionality is a special
case of the within-item multidimensionality. If each item loads on only one
scale, the cross product qT

i θθθ reduces to the one term θ·k for which qik = 1,
since all other qik′ are equal to 0.

Obviously, if c and k were not present, the above equation would resemble
the ordinary RM from the previous section. Many of the extensions treated
in this volume can be expressed in ways that add a population index (like c),
or a scale index (like k) to the ordinary RM.

In the equations, the probability of the outcome depends on v only through
θθθv and through c = g(v), so that we may write

Pi(x|θθθ, c) =
exp
(
x(qT

i θθθ) − βixc

)
1 +
∑mi

y=1 exp
(
y(qT

i θθθ) − βiyc

) (1.6)

by omitting the v in the equation. This holds, since all examinees v, v′ with
identical θθθv = θθθv′ and c = g(v) = g(v′) have the same response probabilities
in the model above.

For a response vector x = (x1, . . . , xI), the probability of this variable is
defined by Equation 1.6 above and the usual assumption of local independence,
that is,

P (x|θθθ, c) =
I∏

i=1

Pi(xi|θθθ, c)

with the same definitions as before, i.e, θθθ = (θ1, . . . , θK) and c ∈ {1, . . . , C},
and Pi(xi|θθθ, c) as defined above.

For between-item multidimensionality, the conditional form of the RM is
easily derived in this framework as well, but it will be obviously dependent on
the scale k and the population c. In that case, the conditional RM becomes

P (xk|tk, c) =
exp(−∑i|k(i)=k βixic)∑

x′
k|tk

exp(−∑i|k(i)=k βkix′
kic

)
(1.7)

with xk denoting the projection of the response vector that contains only items
of scale k. The total scale score tk is the corresponding sum over only those
items belonging to the kth scale. The conditional RM for scale k in population
c allows one to estimate item parameters for this scale in this population, using
conditional maximum likelihood estimation methods (Fischer & Molenaar,
1995; von Davier & Rost, 1995).



8 Matthias von Davier, Jürgen Rost, and Claus H. Carstensen

1.1.4 Are These Extensions Still Rasch Models?

Critics of extensions such as the ones presented in this volume may argue
that these models are no longer RMs, since some basic assumptions of the
original model are modified. Even within the group of researchers who use
the original RM, there are arguments as to what is the right way to do so. In
this volume, the majority of extensions of the RM are based on the assumption
that the original RM holds in exhaustive and mutually exclusive subsets of the
item universe and the examinee population. This means that each examinee
belongs to one subpopulation where the RM holds, possibly with a unique set
of item parameters. The same is true for most extensions presented here for
each item; that is, it is assumed that each of the items belongs to one subset
(subscale) for which the original RM holds, but there may be more than
one subscale. A Rasch purist could still analyze these subscales separately,
or analyze subpopulations separately in this case. Such an approach would
retain all the assumptions of the RM by using a more constrained definition
of the target population and/or the item universe. However, if a joint analysis
is desired, an extended model that accommodates differences between items
and subpopulations is required.

The first rule of statistical modeling is that no model ever “really”’ fits the
data. This is true and can be shown empirically by rigorously testing models
in sufficiently large samples. Still, there is hope in the sense that some models
provide useful summaries of data, so that these summaries are predictive
for some outside variable that was assessed concurrently or even some future
outcome. Model extensions are aimed at improving these capabilities; they are
aimed at improving predictions by including a more complex description of
the observed variables (that is, the item responses), the examinees involved, or
both. This more complex description relates to an increased number of model
parameters that often make either items’ response functions or population
distributions more flexible.

Which of these extensions are legitimate? And for whom? This may often
depend on which group (or subpopulation) the researcher who judges these
extensions belongs in (von Davier, 2006). There are, of course, common sta-
tistical issues that pose problems for any model extension, such as a lack of
identifiability, which all professional groups would agree disqualifies a model
from further consideration. Apart from these, the selection of which exten-
sions are permissible, and which catapult the specific model outside of the
group of “extended” RMs stays somewhat subjective.

As mentioned above, most extensions in this volume maintain basic fea-
tures of the RM such as the conditional sufficiency of raw scores (either in
subpopulations, or as subscores based on subsets of items), the conditional
independence assumption, and the monotonicity assumption. Conditional in-
dependence is given up in only one of the chapters, mainly to account for dif-
ferences in point-biserial correlations among items, which would otherwise be
modeled by allowing a discrimination parameter. Monotone increasing charac-



1 Extending the Rasch Model 9

teristic functions, in both item easiness (negative difficulty) and in the person
parameter, are the basis for all the models presented in this volume.

Maybe more interesting than the question whether the extensions pre-
sented here may still be called (extended) RMs is whether these models add
value to the statistical analysis of item response data. In many cases, adding
parameters to a model and increasing model-data fit is easy to do, but the
added value of doing so has to be well established in order to justify the
added complexity for the given purpose of the analysis. Molenaar (1997) has
expressed this in very understandable terms that may be paraphrased as “IRT
models are great, even if they never fit the data. But does it matter?” The RM
(and its extensions) set the stage for answering Molenaar’s question. However,
the question whether it matters has to be qualified as, “Does it matter for the
specific purpose one has in mind?”

Applications aimed at variance decomposition using background variables
ask a different question, and therefore may require consideration of a different
type of model extension, than applications aimed at deriving a rank order
of students applying to a higher-education facility. The former purpose is ex-
planatory and tests hypotheses about relationships between variables, whereas
the latter classifies students as admitted versus not admitted. One application
is concerned with the best possible representation of variance components,
whereas the other is concerned with the best possible point estimate for each
student in order to provide the most accurate classification, given data and
model. The chapters in this volume derive extensions of the RM with specific
purposes in mind. The reader is kindly asked to view the chapters with that
in mind, in order to see the scope of applicability of the specific extensions
and to explore the different fields in which the simple and elegant form of the
RM has proven useful as the foundational basis for a more complex statistical
model.

1.2 Overview and Structure of This Volume

Most if not all extensions presented in this volume were created after encoun-
tering the need to model data that are more complex than the RM in its
“pure” form can handle. Some extensions address specific questions and were
driven by some specific research context, whereas other extensions address
more general considerations as to which model assumptions may limit the
applicability of the RM to more complex assessment data.

The chapters within this volume introduce specific extensions or applica-
tions and cross reference to other appropriate chapters. References to work
published outside this volume are also provided to encourage further reading
and to provide a broader view of this area of research as consisting of inter-
connected fields. In this view, it is less important whether a statistical tool
such as hierarchical linear models uses the RM for categorical dependent vari-
ables or whether the RM adopts a more complex population structure that
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reminds one of a hierarchical linear model. We hope that it becomes evident
that no matter what prompted a particular development, the merger of the
RM with other statistical methods creates interesting, useful, and rigorously
testable models with applications in a variety of fields. This approach should
provide some guidance for readers and help them to build a cognitive map of
the different extensions of the RM.

This format is applied to the more general chapters as well as to the more
applied chapters, which either contain an overview of relevant applications
or illustrate certain extensions using exemplary studies from various areas of
research.

1.2.1 General Rasch Model Extensions

The first part of this volume covers the ideas guiding these model extensions
and tries to create a framework that helps the reader understand the specific
tools these model extensions provide for researchers. These more conceptual
chapters are an attempt to showcase more generally some ways to think about
deriving model extensions from demands that cannot be fulfilled by a model
that assumes a very strict structure. This part also contains a chapter that
provides some insight into how the expected payoff of extending the RM can
be tested.

The first chapter in this part (Chapter 2) is the most conceptual in the
sense that it lays out what kind of inferences require models that include
strong homogeneity assumptions. Chapter 3 outlines how evidence for the
need for more complex models can be collected and evaluated statistically.
This chapter introduces procedures for testing whether the added complexity
of extended RMs actually helps to describe and understand the data better.
This, in our understanding, is a fundamental requirement of analysis with
complex statistical models, since the added complexity requires more resources
for reporting as well as additional effort for researchers who want to make
sense of the results or who want to use the outcomes in subsequent analysis.
Chapter 4 presents an overview of flexible families of multivariate RMs. These
multivariate RMs are based on the assumption that there is a hypothesis about
the dimensional structure of each observed variable, i.e., each item is related to
one or more of the multiple abilities through a design matrix defined a priori.
This design matrix is often referred to as a Q-matrix in models for student
profiles (Tatsuoka, 1983) and resembles the structural basis for a confirmatory
analysis of a multivariate model. Chapter 5 introduces a very useful way to
specify, estimate, and study extensions of RMs. This chapter shows how RMs
and their extensions can be framed in terms of loglinear models and how these
models can be estimated using software for loglinear models. The final chapter
(Chapter 6) in the first part of this volume describes the family of discrete
mixture distribution RMs (mixed Rasch models, [MRMs]; Rost, 1990; von
Davier & Rost, 1995) and HYBRID RMs. This chapter provides an outline of
the basis for these models as derived from IRT and the RM and as integrated
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with latent class analysis (LCA). This unique way of modeling offers tools
to, among other things, handle differential item functioning (DIF) as well as
to test for multidimensionality in the context of discrete mixture distribution
models.

1.2.2 Model Extensions for Specific Purposes

The second part of the volume covers models that were created in response to
a specific problem or research question. Overlap with the first part is inten-
tional, since some of the extensions treated here, even if originally developed
for a specific research question, grew into a broader class of models with ap-
plications in a variety of fields.

The first chapter in this part (Chapter 7) describes a model that allows
one to study developmental processes using repeated measures. This chapter
introduces the saltus model, an extension of the RM that allows one to study
changes in difficulty of tasks over different developmental stages. Chapter 8 in
this part introduces stochastically ordered MRMs for identifying diagnostic
cutscores. Chapter 9 is dedicated to an extension of the HYBRID model that
allows one to study speededness phenomena in detail. This chapter modifies
mixture distribution RMs introduced in the first part of the volume by im-
posing complex equality constraints on them to model the switch between
systematic and random response at a certain point in the response process.
Chapter 10 is a specialization of the multidimensional approach also already
introduced in the first part of the volume. This chapter covers different types
of potential applications of these multidimensional RMs. The fifth chapter in
Part II, Chapter 11, relates the RM and the MRM to discrete latent trait mod-
els, namely to located latent-class models, and compares parameter estimates
from these different latent-variable models.

The following chapter (Chapter 12) introduces MRMs for longitudinal
data. Interestingly, several contributions in this volume use loglinear models,
initially described in Chapter 5, as the common language to describe devel-
opments based on multivariate or mixture-distribution Rasch models. These
loglinear models with unobserved grouping variables are a useful tool that
lends itself nicely to treating this kind of missing-data problem. Chapter 13
extends the RM to allow for differences in discriminations across the range of
items by introducing an interaction rather than a slope parameter. In contrast
to the two-parameter logistic model, the interaction model used in Chapter
13 retains some of the conditional inference features of the RM. The final
chapter in Part II (Chapter 14) is an extension of the RM to complex sam-
ples from hierarchically organized populations that do not lend themselves
easily to drawing simple random samples. This situation is often encountered
in large-scale educational assessments and other survey assessments. Here we
might also assume the development from the other side of the statistical tool-
box, namely that the model basis was a hierarchical linear model that was
extended by a Rasch-type measurement model.
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1.2.3 Applications of Extended Rasch Models

The third part of this volume is dedicated to chapters that provide insight
into exemplary applications of extended RMs in various fields of research.
There is a strong link between these chapters and the previous parts, since
the applied work shows how statistical tools that are based on the RM can
help to pose and answer specific questions on data from complex assessments
and or populations.

The first chapter in this part (Chapter 15) presents a variety of applications
of extended RMs such as mixture distribution RMs in the area of cognitive
psychology. Chapter 16 applies mixture RMs to the task of detecting faking
and response distortions with the aim of identifying candidates who try to
present themselves in a specific way. Chapter 17 talks about applications of
multidimensional RMs in an international educational survey assessment.

Chapter 18 talks about applications of RMs and extensions of RMs to
studying developmental issues. This chapter presents an overview of areas of
application and the limitations of these approaches. Chapter 19 compares an
item response model that uses a parsimonious way to account for guessing by
estimating a constrained three-parameter logistic model with the application
of mixture-distribution RMs to identify and correct for guessing behavior.

Chapter 20 covers extended RMs developed for modeling strategy shifts.
This chapter extends previous work on strategy differences and helps one to
understand how such complex models can be conveniently specified in the
framework of loglinear models. Chapter 21 integrates principles of graphical
models and mixture distribution RMs and presents an application to health
science data. The last chapter in this volume (Chapter 22) presents some
applications of RMs and extensions of RMs to data from sports science and
applied psychology in the motor domains.
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Measurement Models as Narrative Structures
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2.1 Introduction

An active area in psychometric research has been developing models that
address strategies by which examinees respond to tasks. One purpose of this
chapter is to describe some of these models and the relationships among them.
The other is to lay out a framework for discussing topics of this sort, fore-
grounding the interplay between the technical affordances of the probability-
based psychometric models and the substantive arguments they are meant to
support.

The framework consists of a narrative structure overlaid by a model that
supports probability-based reasoning. The narrative component is a special-
ization of Toulmin’s (1958) general argument structure to assessment argu-
ments (Mislevy, 2003). The component that supports probability-based rea-
soning is the measurement model (Mislevy, 1994; Mislevy & Gitomer, 1996).
It is through the narrative structure connecting them to real-world phenomena
that the formal variables and conditional distributions in measurement mod-
els acquire situated meanings. The key feature of the measurement models we
discuss is that the narrative space has been extended beyond the measurement
theme that characterizes trait/differential psychology, to include relationships
among the ways people process information and features of tasks that interact
with their problem-solving—themes that have emerged from the information-
processing research in cognitive psychology in the tradition of Newell and
Simon’s (1972) classic Human Problem Solving.

Section 2.2 reviews Toulmin’s structure for arguments and its application
to educational and psychological testing. Section 2.3 describes the extension
to probability-based models and illustrates with the basic Rasch model (RM)
for dichotomous items (Rasch, 1960). Section 2.4 describes themes that are the
basis of extensions from basic measurement models such as the RM, including
mixtures, differential item functioning (DIF), multiple groups of examinees,
and covariates for tasks based on theories of problem-solving. Section 2.5 de-
scribes a number of these models and relates the structures of the probability
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models to the structures of the narratives they embody. Section 2.6 concludes
with a comment about contrasting aims of psychometric modeling.

2.2 Assessment Arguments and Measurement Models

Toulmin (1958) proposed a schema for how we use substantive theories and
accumulated experience to reason from particular data to particular claims.
Figure 2.1 outlines the structure of a simple argument. The claim (C) is a
proposition we wish to support with data (D). The arrow represents inference,
which is justified by a warrant (W), a generalization that justifies the inference
from the particular data to the particular claim. Theory and experience—both
personal and formal, such as empirical studies and prior research findings—
provide backing (B) for the warrant. In any particular case we reason back
through the warrant, so we may need to qualify our conclusions because there
may be alternative explanations (A) for the data, which may in turn be sup-
ported or uncut by rebuttal data (R).

C

D

W

B

A

R

since

so
on

account
of

unless

supports

Fig. 2.1. Toulmin’s structure for arguments. Reasoning flows from data (D) to
claim (C) by justification of a warrant (W), which in turn is supported by backing
(B). The inference may need to be qualified by alternative explanations (A), which
may have rebuttal evidence (R) to support them.

The foundation of an educational or psychological assessment argument is
a concept of the nature of proficiency (e.g., knowledge, ability, propensity to
act in certain ways in certain situations). It determines the nature of every
element in the argument structure and the rationale that orchestrates them
as a coherent argument. As Messick (1994) asks, what kinds of things might
one wish say about persons? What kinds of things does one need to see an
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examinee say or do in what kinds of situations? How are they related? The
answers to these questions become claims, data, and warrants respectively in
assessment arguments.

In particular, there are myriad aspects of persons, situations, and per-
sons’ actions within situations to which we might attend, and ways in which
we might characterize them. The conception of proficiency shapes which of
these will constitute data. An assessment argument generally includes three
classes of data: aspects of the circumstances in which the person is acting,
over which an assessment designer generally has principal influence; aspects
of the person’s behavior in the situations, over which the person has principal
influence; and additional knowledge about the person’s history or relationship
to the observational situation that may be further required. These latter fac-
tors are essential to assessment in practice, even though they are often tacit,
embedded in forms and practices.

To illustrate, consider a kind of task often used to assess spatial rotation
(Cooper & Shepard, 1973). A subject is first shown a target figure, in this case
a nonisosceles right triangle with a certain angle, then a second version of the
target, rotated by a specified number of degrees from the target (Figure 2.2).
The subject must indicate whether the stimulus is identical to the target or
a mirror image of it. Lower response latencies are usually taken as evidence
of higher proficiency for tasks like these, but we will use correctness: More-
proficient subjects are posited to be more likely to make correct responses than
less-proficient subjects. The Toulmin diagram for an assessment argument
based on Sue’s correct response to an item of this type is shown in Figure
2.3. Data about the item are each triangle’s acute angle, the rotation from
the target, and whether the stimulus is the same or different. Data about the
subject, such as gender and ethnicity, may not be available to the analyst but
are not relevant in the basic measurement models illustrated here. Reasoning
back through the warrant, the claim is that Sue has a high level of proficiency
in spatial rotation, based on the observation of this item response. We will
address alternative explanations in the next section.

Of course a single item provides meager information, so spatial rotation
tests generally consists of many items of the same kind. As such, the same
warrant applies in each case, as shown in Figure 2.4. Reasoning back through
the same substantive warrant is called for, of course, and it is clear that more
information is available. How is the evidence contained in the data across
tasks to be synthesized, and how might we use this richer body of evidence to
phrase more refined claims? This is where probability-based models come in.

2.3 The Role of Probability Models

2.3.1 From Arguments to Probability Models

Recognizing assessment as an evidentiary argument, one would like a mech-
anism to reason back up through the warrant, from data about what ex-
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TargetStimulus

Fig. 2.2. A spatial rotation item

C: Sue has a high value
of spatial visualization 
ability.

W: Students who are high on
Spatial Visualization tend to do
well on mental rotation tasks.

B: (1) Empirical studies show
high correlations between  
mental rotation tasks and
other spatial visualization 
tasks. (2) These tasks are 
constructed so that they 
can be solved using a 
mental rotation strategy.

A: Sue answered
correctly using a strategy 
that did not require  
spatial visualizationsince

so

on
account

of

unless

D1: Sue
answered the
triangle item
correctly.

D2: Logical
structure and
contents of this
triangle item.

and

Fig. 2.3. Toulmin diagram for one assessment task. Note that the warrant requires
a conjunction of data about the nature of Sue’s performance and the nature of the
performance situation.

aminees say, do, or make, to claims about their knowledge and proficiencies
more broadly conceived. Probability-based reasoning supports coherent re-
verse reasoning, specifically through Bayes’s theorem. We construct a proba-
bility model that approximates key features of the situation in terms of vari-
ables and their interrelationships. Figure 2.5 shows the structure of an IRT
model for the similar-tasks example described earlier. Details appear in the
following section; we first address features illustrated here that are common
to, and characteristic of, psychometric models more generally.
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C: Sue has a high value
of spatial visualization.

W: Students who are high on
spatial visualization tend to do
well on mental rotation items.

B: ...

A: ...

since

so

on
account

of

unless

supports

R: ...

D11: Sue's
answer to 
 Item 1

D21 structure
and contents 
of Item 1

and

D1n: Sue's
answer to 
 Item n

...
D2n structure
and contents 
of Item n

... 

Fig. 2.4. Toulmin diagram for several tasks of the same kind. The same general
warrant is employed, as adapted to the particulars of each piece of data as they fit
into the same scheme.
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Fig. 2.5. Graph for an item response theory (IRT) model

There is an important difference between the variables in a probability
model and the corresponding entities, claims, and data in a Toulmin diagram.
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A claim in a Toulmin diagram is a particular proposition that one seeks to
support; a datum is a particular proposition about an aspect of an observation.
A variable addresses not only the particular claim or observation, but also
other claims or observations that could be entertained. As a datum in an
argument, one might say that the response to Item j is correct. As a value of
the item response variable Xj , we would say that the value of Xj is “correct”
or 1 as opposed to “incorrect” or 0. If you know what the value of the variable
is, you also know what it is not.

Whereas a claim in a Toulmin diagram is a particular proposition, a pro-
ficiency variable γ in a psychometric model characterizes ranges or potential
values for selected aspects of proficiency. The possible values of the unobserv-
able, possibly vector-valued, γ correspond to different states, levels, or config-
urations of proficiency. In Figure 2.1, the generic γ takes the particular form
of a real-valued scalar θ that characterizes an examinee’s propensity to make
correct rather than incorrect responses. As formal entities, these variables can
correspond to aspects of proficiency cast in trait, behavioral, information-
processing, developmental, sociocultural, or any psychological perspective;
that same perspective will drive the nature of observations and the relation-
ships between them (Mislevy, 2003)—that is, the view of proficiency in the
space of narratives a given probability model is constructed to support. A
probability distribution over γ indicates knowledge at a given point in time
about what the value of γ might be. The prior probability distribution p(γ)
expresses what is known about a person’s value of γ before responses or values
of covariates are known.

A possibly vector-valued observable variable X characterizes selected as-
pects of a person’s response. X’s are modeled as depending in probability
on the person variables through conditional probabilities p(x|γ). In this for-
mulation the direction of reasoning flows, like the substantive warrant, in a
deductive direction, that is, expectations for what observables might be if
person variables were known.

The support for a substantive claim is expressed in terms of a probability
distribution that represents a degree of belief about corresponding values of γ.
The situated meaning of such a claim arises from the nature of the observations
that it is posited to affect and the substantive grounding of the model. Once
such a model is fit and parameters have been estimated from initial data
(pretest data, or “calibration” data), Bayes’s theorem can be used to update
belief about person variables in light of task performances:

p (γ |x ) =
p (x |γ ) p (γ)

p (x)
.

The probability model becomes an additional component of a warrant that
permits a quantitative expression of support for claims, and affords the calcu-
lus of probability to synthesize multiple, possibly conflicting, possibly overlap-
ping, pieces of evidence. These advantages do not come for free. Additional
backing is required for the probability-based aspects of the warrant, in the
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form of the pretest data. Additional alternative explanations for good or poor
performance are introduced in connection with model misspecification and
data errors.

Shafer (1976) defines a “frame of discernment” as all of the possible subsets
of combinations of values that the variables in an inferential problem at a
given point in time might take. The term “frame” emphasizes how a frame of
discernment circumscribes the universe in which inference will take place. The
term “discernment” emphasizes how a frame of discernment reflects purposive
choices about what is important to recognize in the inferential situation, how
to categorize observations, and from what perspective and at what level of
detail variables should be defined.

Powerful methods are available for reasoning in probability models, for
example, coherent updating of belief about any subset of variables, given new
information about any other subset, clear expression of degree of support for
claims expressed in terms of values of γ’s or X’s, and the capability to express
relationships of considerable subtlety and complexity (Schum, 1994), as might
arise in simulation-based assessments tapping many aspects of knowledge and
producing complex performances with sequential dependencies. These advan-
tages obtain only for inferences that can be expressed in terms of a model’s
frame of discernment, however. The structure of the relationships embodied in
a model may be quite flexible, but they effectively lay out the narrative space
of stories that can be told, in terms of all the possible values that the variables
might take. Questions concerning features of situations or patterns of interac-
tions outside this universe of discourse cannot be asked, let alone answered.
And to the extent that unmodeled patterns do exist in the real-world setting,
they can distort inferences made through the model. We return to this issue
in Section 2.5 in connection with multiple problem-solving strategies.

Model criticism tools do help deal with these problems. Tests of overall
model fit are available. Even more useful are tests for particular suspected
departures, such as adequacy across subsets of the data partitioned by features
not in the model. Some patterns of observables—for example, a given person’s
pattern of responses—may be so improbable under the model as to cast doubt
on using the model for that individual, even if the model fits well in general.

2.3.2 Example: The Rasch Model for Dichotomous Items

The Rasch IRT model for dichotomous items (RM: Rasch, 1960) posits that
a probability of response to Item j given θ takes the following form:

P (Xj = 1|θ, bj) = Ψ (θ − bj) , (2.1)

where Ψ (·) ≡ exp (·)/[1 + exp (·)] is the cumulative logistic probability dis-
tribution, θ is a one-dimensional measure of proficiency, bj is a difficulty
parameter for Item j, and xj is 1 if right and 0 if wrong. Under the usual
IRT assumption of conditional independence, the probability of a vector of
responses to n items is
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P(x1, . . . , xn|θ, β1, . . . , βn) =
n∏

i=1

P (xj |θ, βj) . (2.2)

The RM corresponds to a narrative space in which persons may differ as to
their probability of answering items correctly, specified by θ; items may differ
as to their probabilities of being answered correctly, specified by βj ; and the
probability of the outcome when a person with proficiency θ attempts Item
j is given by (2.1). Exactly the same difference in log odds (i.e., ln(p/(1 −
p)) obtains when we compute differences between two given persons for any
item across the collection for which the model is presumed to hold. The only
difference among persons that can be expressed in the model is as to their
overall propensity; all persons with the same evidence about the their θ’s (in
the case of a test, all persons with the same total score) are indistinguishable
through the lens of the RM.

These main-effects patterns for comparing persons and similarly for com-
paring items render the RM a probabilistic version of a fundamental measure-
ment model (Campbell, 1920), specifically, a conjoint measurement model as
described by Luce & Tukey (1964) (see Perline et al., 1979, Fischer, 1968,
Keats, 1971; Michell, 1997, 1999, and Roskam & Jansen, 1984). Although
high-θ persons sometimes answer low-β items incorrectly and vice versa, pat-
terns in which some items are systematically easier for some people than
others lie outside the narrative space of the RM. The narrative theme of fun-
damental measurement accords well with the trait or differential-psychological
perspective.

Model criticism tools such as item fit and person fit indices (e.g., Meijer
& Sijtsma, 2001) allow the analyst to detect situations in which items do not
appear to be equally difficult given overall proficiency for different groups of
persons, or a person’s response patterns are so unlike those of most people with
similar overall proficiencies that the same substantive interpretation is not
supported. In this way the item-level probabilistic framework grounds much
stronger inference than the still-widespread practice of treating all examinees
with the same total score as equivalent, without regard for systematic patterns
within the data that would argue otherwise.

The basic RM does not encompass covariates qj for items or wi for persons.
It is not an explanatory model, in the sense of De Boeck & Wilson (2004):
Considerations of correlates of person proficiency and item difficulty, and thus
substantive explanations of its character and probabilistic tests of conjectures
to this effect, lie outside the model. Tests of whether β’s are invariant across
distinguishable groups of students and examinations of the relationships be-
tween item difficulties and item features are starting points for some of the
extensions we discuss in Section 2.5. Such issues are there incorporated into
measurement models, and the larger universe of inference that can be ad-
dressed in them supports a correspondingly larger narrative space.
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2.4 Modeling Solution Processes

The “cognitive revolution” of the 1960s and 1970s, exemplified by Human In-
formation Processing (Newell & Simon, 1972), called attention to the nature
of knowledge, and how people acquire and use it. How do people represent
the information in a situation? What operations and strategies do they use
to solve problems? What aspects of problems make them difficult, or call for
various knowledge or processes? Strong parallels to computation and artificial
intelligence appear in the use of rules, production systems, task decomposi-
tions, and means–ends analyses. The key insight is modeling problem-solving
in these terms in light of the capabilities and the limitations of human thought
and memory that are revealed by psychological experiments.

Among the tools developed to study cognitive processes is cognitive task
analysis (CTA). CTA is a disciplined process of investigating the knowledge
structures and strategies that individuals at targeted levels of ability use to
solve specific types of tasks, through observable evidence of those structures
and strategies. A CTA seeks to expose (a) essential features of task situations
for eliciting certain behaviors; (b) internal representations of task situations;
(c) the relationship between problem-solving behavior and internal represen-
tation; (d) processes used to solve problems; and (e) task characteristics that
impact problem-solving processes and task difficulty (Newell & Simon, 1972).

In the 1970s, researchers such as Carroll (1976) and Sternberg (1977) stud-
ied test items in these terms as psychological tasks. Others, including Whitely
(1976) and Tatsuoka (Klein et al., 1981), designed aptitude- and achievement-
test items around features motivated by theories of knowledge and perfor-
mance in a given domain. For example, the cognitive model for processing
documents (Mosenthal & Kirsch, 1991) indicates that the difficulty of a task
will be driven by (a) features of the document in question, such as the num-
ber of organizing categories, (b) features of the directive, such the number
of features that must be matched, and (c) the correspondence between the
two, as determined by the degree to which the document has been designed
to facilitate the inference that must be drawn. In the third edition of the
influential volume Educational Measurement (Linn, 1989), Snow & Lohman
(1989) assert that

Summary test scores, and factors based on them, have often been
thought of as “signs” indicating the presence of underlying, latent
traits. . . . An alternative interpretation of test scores as samples of
cognitive processes and contents, and of correlations as indicating the
similarity or overlap of this sampling, is equally justifiable and could
be theoretically more useful. The evidence from cognitive psychology
suggests that test performances are comprised of complex assemblies
of component information-processing actions that are adapted to task
requirements during performance (p. 317).
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Even when considering performances on familiar tasks, the cognitive per-
spective entails a new narrative space, in order to cast claims about persons,
to characterize relevant features of tasks, and to express conjectures about re-
lationships between task features and person performances. A new narrative
space in turn entails a new frame of discernment, to bring into the probabilis-
tic model those features and relationships that are central to the discourse of
cognitive explanation but were irrelevant for the strict purpose of measuring
traits.

We may distinguish five cases for modeling strategy use (extending a list
given by Junker, 1999):

Case 0: No explicit modeling of strategies (basic IRT models)
Case 1: Common strategy presumed across persons.
Case 2: Strategy may differ between persons
Case 3: Strategy may differ between tasks, within persons
Case 4: Strategy may change within task, within persons

The RM discussed in Section 3.2 is an example of Case 0. Models below
include Case 1 (the linear logistic test model, or LLTM), Case 2 (mixtures of
RMs, mixtures of LLTMs), and Case 3 (the Andersen/RM).

2.5 A Space of Models

This section describes a number of cognitively motivated extensions of IRT.
Enough research has been done along these lines that a comprehensive review
is beyond the scope of this chapter presentation. We confine attention to tasks
with single right/wrong responses, for example, and to extensions of the RM.
We will illustrate three notable extensions of the narrative space: Story lines
that reflect aspects of how persons solve tasks, how features of tasks influence
their difficulty under a given approach, and that an observer may or may
not know about the approach a person is taking for a given task. Interest
lies in how these themes are incorporated into parameters and structures of
conditional probability distributions. The models described below are ordered
approximately in terms of increasing complexity. A strict linear order does not
exist, but cases in which one model can be viewed as an extension of models
discussed previously will be noted.

2.5.1 Differential Item Functioning (DIF)

As noted in Section 2.3.2, it is a common practice in educational and psy-
chological testing to sum over item responses and treat all examinees with
the same total score as interchangeable with respect to whatever the test
is purported to “measure.” It is a matter of some importance that similar
scores for students of different demographic groups based on, say, gender and
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race/ethnicity reflect similar performances on the items that comprise a test.
Also as noted in Section 3.2, probability-based IRT models, such as the RM,
make it possible to test whether the patterns in a given data set support
this interpretation (Thissen et al., 1993). Differential item functioning (DIF)
means that typical performance on certain items varies substantially across
groups among students with similar overall proficiency. That is, the difficulties
of items vary across known groups of students.

A model that incorporates DIF with respect to manifest groups of students
thus incorporates an observed student covariate w into the probability model:

P (Xj = 1|θ, w, b·j) = Ψ (θ − bwj) , (2.3)

where the item difficulty now depends on group membership, as indicated
by the group index w on group-specific item parameters bwj . It may be the
case that only certain items exhibit DIF across groups. Nevertheless, sub-
stantive interpretations of examinees’ performances, and by extension their
proficiencies, are incomplete without taking their group membership into ac-
count. Equation 2.3 affords no substantive explanation for these differences.
It is compelling to examine the items that differentiate the groups. Is it that
background knowledge differs among different groups of people? Are different
people using different strategies to solve items? Conjectures about patterns
suggested by substantive knowledge about items can be incorporated using
the approach discussed in Section 2.5.3.

It may be found that the RM fits well within the classes determined by
partitioning persons and responses on the basis of w. In these circumstances
one again obtains measurement models in the sense of probabilistic versions
of conjoint measurement.

2.5.2 Mixtures of Rasch Models

The not-uncommon finding of DIF among manifest groups raises the possi-
bility that this phenomenon may be occurring even when the analyst does
not happen to know persons’ values on the appropriate grouping variable.
Mixture distribution of RMs (e.g., Kelderman & Macready, 1990; Rost, 1990)
incorporate an unobserved student covariate φ into the probability model:

P (Xj = 1|θ, φ, bj) = Ψ (θ − bφj) , (2.4)

where the interpretation is the same as in the DIF model (2.3) except that
now which group a given student belongs to is not known with certainty.
Equation 2.4 can be described in terms of latent trait models within a latent
class model. Given a student’s pattern of observed responses and estimates of
the group-specific item parameters, one uses Bayes’s theorem to compute the
posterior probability that the student belongs to each of the possible latent
groups. A mixture IRT model obtains when patterns of relative difficulty for
certain items appear to differ in a consistent manner in subsets of a data set.



26 Robert Mislevy and Chun-Wei Huang

As with DIF models, it is compelling to examine the items that differentiate
the groups discovered in an application of a mixture model.

Although the probabilistic version of conjoint measurement would hold
within groups, and this narrative theme could be used in discussing results,
the mixture model of (2.4) is not itself a measurement model in this strict
sense. Whether such models ought to be called measurement models is an
open question.

Glück et al. (2002) provide an interesting example of a mixture RM to
study the effects of strategy training for spatial rotation tasks. Pretest and
posttest subsets of data are distinguished, and within time points propor-
tions of students using a true rotational strategy and a less-effective pattern-
matching strategy. The efficacy of each strategy as applied to three kinds
of tasks could be predicted, so that when unrestricted-mixture Rasch models
were fit it was possible to identify resulting classes with strategies. They found
that almost all of the students who used the pattern strategy at the pretest
had switched to a spatial strategy at the posttest, after receiving training to
that effect.

2.5.3 The LLTM

In the linear logistic test model (LLTM; Scheiblechner, 1972; Fischer, 1983),
cognitively based features of items and persons’ probabilities of response are
related through a so-called Q-matrix (Tatsuoka, 1983): qjk indicates the degree
to which feature k applies to item j. In simple cases, qjk is 1 if feature k is
present in item j and 0 if not. The LLTM extends the Rasch model by positing
a linear structure for the βj ’s:

βj =
∑

k

qjkηk = q′
jη, (2.5)

where ηk is a contribution to item difficulty entailed by feature k. Features
can refer to a requirement for applying a particular skill, using a particular
piece of information, carrying out a procedure, or some surface feature of an
item—exactly the kinds of elements that Newell & Simon (1972) sought to
uncover in cognitive task analysis as correlates of task difficulty.

The LLTM supports probability-based reasoning for a narrative space that
addresses conjectures about the reasons that items are difficult and the na-
ture of proficiency. In particular, any given value of θ can now be interpreted
in terms of expected performance in situations described by their theoreti-
cally relevant features. The LLTM is a measurement model in the sense of
probabilistic conjoint measurement, so it supports the narrative theme of fun-
damental measurement in the comparison of persons.

As an example, Fischer (1983) used the LLTM to model the difficulty
of multistep calculus items, as a function of how many times each of seven
differentiation formulas had to be applied. He used statistical tests to deter-
mine how well the smaller set of features accounted for empirical patterns of



2 Measurement Models as Narrative Structures 27

difficulty, and whether repeated applications of a rule contribute additional
increments to difficulty (they didn’t). A relaxed version of (2.4), the random-
weights LLTM (RW-LLTM; Rijmen & De Boeck, 2002), allows items with
the same features to differ in difficulty, presumably due to nonmodeled item
features. Sheehan & Mislevy (1990) fit the RW-LLTM to a data set using fea-
tures based on the Mosenthal & Kirsch (1991) cognitive analysis of document
literacy tasks described in Section 2.4.

One can argue that models such as the LLTM marked a realization of
the call for the synthesis of the “two disciplines” of psychology (Cronbach,
1957), the experimental and the correlational, for they bring substantive the-
ory, task design, and measurement modeling into a unified framework (Em-
bretson, 1985a, 1998). When items are generated in accordance with theory
and patterns among responses can be predicted and tested against that the-
ory, every item provides a new test of the theory (Bejar, 2002). Note that the
reach of the basic LLTM extends only to final responses, not the identities or
the sequences of processes that persons may carry out during the course of
solution.

Behavior at this more detailed level is central to cognitive task analysis,
and inferences at this level are required in many intelligent tutoring systems to
provide feedback or select instruction (e.g., Martin & van Lehn, 1995). This so-
called model tracing lies below the level that can be addressed in the narrative
space supported by the LLTM, but in favorable cases the patterns LLTM can
address will appear as emergent phenomena in overall performance. Steps in
the direction of model tracing are seen, for example, in the Embretson (1985b)
model for multistep problems: Each step produces a result to be modeled in
terms of RM or LLTM-like structures, and the final product is a stochastic
outcome of step-level outcomes.

2.5.4 Multiple-Group LLTM

By combining elements of the DIF model (2.3) and the LLTM (2.5), one ob-
tains a model that supports narratives about how items with different features
are differentially difficult to members of different manifest groups:

P (Xj = 1|θ, w, bj) = Ψ (θ − bwj) ,

where
βwj =

∑
k

qwjkηwk = q′
jηw. (2.6)

Equation 2.6 shows that the both codings of item covariates, qwjk, and
contributions to item difficulty, ηwk, can differ across groups. That is, both
which features of items are relevant and how they are relevant can differ, pre-
sumably in accordance with a substantive theory that underlies the intended
narrative space. Spada & McGaw (1985), for example, define groups in terms
of educational treatments and pre- and posttest occasions, and item features
in terms of curricular elements.
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2.5.5 Multivariate Structured Models

Providing theoretically derived multidimensional characterizations of persons’
knowledge and skills is called cognitive diagnosis (Nichols et al., 1995). Three
features of cognitive diagnostic models are of interest here: First, the model
space, hence the supported narrative space, supports qualified claims about
persons, i.e., claims that have the word “but” in them; for example, “Steven is
familiar with the strategy of space-splitting but he is not sufficiently familiar
with the canopy system to apply it there.” Rather than claims about overall
proficiency in a domain, a multidimensional model accounts for persons’ per-
formance in terms of profiles of knowledge and skill. Second, the tasks used
to provide observations can be complex in that each depends on one or more
of these dimensions of proficiency, and different tasks may impose different
profiles of demand on them. Third, as with task design under the LLTM,
substantive theory guides the construction of both the tasks themselves and
the probability model for analyzing the ensuing performances. The narrative
depends on a conception of how persons with different levels or configura-
tions of proficiency are likely to act in different ways in settings with different
cognitively relevant features.

Most cognitively based multidimensional IRT models posit compensatory
or conjunctive combinations of proficiencies to determine response probabil-
ities. The reader interested in conjunctive models is referred to Junker &
Sijtsma (2001). In compensatory models, proficiencies combine so that a lack
in one proficiency can be made up with an excess in another proficiency, that
is, a′

jθ = aj1θ 1+· · ·+ ajDθD, where θ is a D-dimensional vector. The ajd’s
indicate the extent to which proficiency d is required to succeed on item j.
The A-matrix indicating examinee proficiency requirements is analogous to a
Q-matrix specification of task features. A is estimated in some models (Ack-
erman, 1994), but in applications more strongly grounded in cognitive theory
the a’s are treated as known, their values depending on the knowledge and
skill requirements that have been designed into each item. As an example, the
Adams, Wilson, & Wang (1997) multidimensional random coefficients multi-
nomial logit model (MRCMLM, Chapter 4 in this volume) is a multivariate
generalization of the LLTM. Under the MRCMLM, the probability of a correct
response is modeled as

Pr (Xj = 1 |θ, η, aj , qj ) = Ψ
(
a′

jθ + q′
jη
)
. (2.7)

De Boeck and his colleagues (e.g., Hoskins & De Boeck, 1995; Janssen & De
Boeck, 1997; Rijmen & De Boeck, 2002) have carried out an active program of
research using such models to investigate hypotheses about the psychological
processes underlying item performance. In the extension of the MRCMLM
to polytomous responses, each response category has its own a and q vectors
to indicate which aspects of proficiency are evidenced in that response and
which features of the category context contribute to its occurrence. Different
aspects of proficiency may be involved in different responses to a given item,
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and different item features can be associated with different combinations of
proficiencies.

Structured multivariate models such as the MRCMLM provide the means
to solve a thorny problem in task-based language assessment (Mislevy, Stein-
berg, & Almond, 2002). Real-world language use draws simultaneously on sev-
eral aspects of competence: from phonemic and morphological, through lexical
and syntactic, to pragmatic, substantive, and cultural (Bachman, 1990). Re-
search has shed light on factors that increase challenge in each aspect, such as
the complexity of sentence structures and the familiarity of the content. The
challenge a task presents to a given person depends on both of what Robinson
(1984) calls “complexity factors” and “difficulty factors.” The former is asso-
ciated with features such as syntactic complexity and time pressure, though
information-processing arguments increase the load for most people. The lat-
ter he associates with features by which a task is rendered differentially hard
or easy for particular persons, such as familiarity with content and prior ex-
perience with the genre.

Tasks differ from one to another with regard to the mix of demands they
offer and the degree to which these demands interact with persons. How might
one make sense of such complex data? The frame of discernment of multivari-
ate structured models can support claims of the desired structure: Within
the probability model, one can (a) characterize task demands with respect
to complexity factors via a Q-matrix, (b) define a multivariate θ in terms of
aspects of proficiency along which persons may differ with respect to planned
variations in tasks tapping Robinson’s “difficulty factors,” and (c) indicate
through an A-matrix which dimensions of θ are involved to what degrees for
each observable variable. A model so constructed embodies generalizations
about how persons with different profiles of language proficiencies are likely
to act in situations with specified features—again, the direction of reasoning
that accords with a warrant. From patterns of performance across tasks with
different profiles of demand, the analyst applies Bayes’ theorem to infer a
person’s profile of proficiency. We have argued elsewhere that the key to ap-
plying such models is defining from the beginning a joint narrative space for
desired inferences, a design space for tasks to support claims so framed, and
a structured probability model for responses that accords with the narrative
and design spaces (Mislevy, Steinberg, Breyer, et al., 2002).

2.5.6 Structured Mixture Models

Cognitive task analyses reveal that different subjects apply different strate-
gies to the same problems (Simon, 1975), including familiar item types from
educational and psychological testing (Kyllonen, Lohman, & Snow, 1984).
Further, comparisons of experts’ and novices’ problem-solving suggest that
the sophistication with which one chooses and monitors strategy use develops
as expertise grows. Strategy use is therefore a potential target for inference
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in assessment. This section considers Case 2 models for solution strategies, or
structured mixture models.

The narrative themes embodied in mixed strategy models (e.g., Wilson,
1989; Mislevy & Verhelst, 1990) are these: Different persons may use different
strategies but are presumed to use the same strategy for all items. It is not
known which strategy a person is using. Features of tasks that render them
difficult are posited for each strategy.

Structured mixture models incorporate multiple Q-matrices to differen-
tiate the strategies that may be used to solve the test items. Consider the
case of M strategies; each person applies one of them to all items, and item
difficulty under strategy m depends on features of the task that are relevant
under this strategy in accordance with an LLTM structure. Specifically, the
difficulty of item j under strategy m is bjm =

∑
k qjmkηmk. Define for each

person the vector parameter φi = (φi1, . . . , φiM ), where φim = 1 if person
i uses strategy m and 0 if not, and denote the proficiency of person i under
strategy m as θim. The probability of a correct response under such a model
takes the form

Pr (Xij = 1 |θi, φi, qj , η ) =
∏
m

[
Ψ

(
θim −

∑
k

qjmkηmk

)]φi

. (2.8)

As a first example, the Wilson (1989) saltus model (Chapter 7 in this vol-
ume) addresses developing proficiency that occurs in Piagetian stages. Bal-
ance beam tasks are a familiar example (Siegler, 1981). Movement to a new
stage involves the acquisition of a new rule, so that certain classes of tasks
becomes relatively easier. The saltus model posits that an RM holds across all
items for persons at a given stage, but that these models may differ from one
stage to another by shift parameters that depend on stage membership and
its effect on items in each item class. Figure 2.6 illustrates a saltus model for
three stages, and Table 2.1 shows one way of parameterizing the Q-matrices
and η’s. (The illustrated model is a special case of the saltus model in which
each group of tasks becomes easier by a given amount once a student reaches
a particular stage, and the shifts for that task group are zero before that stage
and constrained to equality across groups thereafter. In an unrestricted saltus
model, the shift parameters for a group of tasks may vary from stage to stage.)

As a second example, consider the finding that subjects may solve putative
mental rotation items such as the one shown as Figure 2.2 either by the an-
ticipated rotation strategy or by a feature-based analytic strategy (Hochberg
& Gellman, 1977). Mislevy et al. (1991) modeled response times in this situa-
tion in terms of a mixture of the two strategies. The analytic strategy checks
which direction, clockwise or counterclockwise from the right angle, one finds
the sharper angle in the stimulus and target triangles. Difficulty is posited to
increase linearly with degree of rotation under the rotational strategy (Shep-
ard & Meltzer, 1971), but to depend mainly on the acuteness of the angle
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Ability/difficulty
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θ

η8
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Fig. 2.6. Three saltus RMs

under the analytic strategy. The task in Figure 2.2 would thus be relatively
difficult under the rotational strategy but easy under the analytic strategy.

As a third and final example, cognitive analysis by Tatsuoka and her col-
leagues (Klein et al., 1981) found that the 530 middle-school students she
studied characteristically solved mixed-number subtraction problems using
one of two strategies:

Method A: Convert mixed numbers to improper fractions, subtract, then
reduce if necessary.

Method B: Separate mixed numbers into whole-number and fractional
parts, subtract as two subproblems, borrowing one from the minuend whole
number if necessary, and then reduce if necessary.

Tatsuoka (1983) further detailed the subprocesses required for solution
under each method, and identified the attributes of items that called for the
use of subprocesses under each strategy. An item like 7 2

3 − 5 1
3 is hard under

Method A but easy under Method B; an item like 21
3 − 1 2

3 is the opposite.
A response vector with most of the first kind of item right and the second
kind wrong shifts belief toward Method B. The opposite pattern shifts belief
toward the use of Method A. Note that these response patterns constitute
noise, in the form of conflicting evidence, in an overall proficiency model,
but constitute evidence about strategy usage under the mixture model. The
narrative space of how students might be solving problems differently, and
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Table 2.1. Saltus Q-matrices and η’s for an example with seven items and three
stages

Q-matrix for Class 1 Item η1 η2 η3 η4 η5 η6 η7 η8 η9

1 1 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0
5 0 0 0 0 1 0 0 0 0
6 0 0 0 0 0 1 0 0 0
7 0 0 0 0 0 0 1 0 0

Q-matrix for Class 2 Item η1 η2 η3 η4 η5 η6 η7 η8 η9

1 1 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 0
4 0 0 0 1 0 0 0 1 0
5 0 0 0 0 1 0 0 1 0
6 0 0 0 0 0 1 0 0 0
7 0 0 0 0 0 0 1 0 0

Q-matrix for Class 3 Item η1 η2 η3 η4 η5 η6 η7 η8 η9

1 1 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 0
4 0 0 0 1 0 0 0 1 0
5 0 0 0 0 1 0 0 1 0
6 0 0 0 0 0 1 0 0 1
7 0 0 0 0 0 0 1 0 1

η1: Difficulty parameter for Item 1 in Class 1
η2: Difficulty parameter for Item 2 in Class 1
η3: Difficulty parameter for Item 3 in Class 1
η4: Difficulty parameter for Item 4 in Class 1
η5: Difficulty parameter for Item 5 in Class 1
η6: Difficulty parameter for Item 6 in Class 1
η7: Difficulty parameter for Item 7 in Class 1
η8: Shift for Items 4 and 5 for examinees in Classes 2 and 3
η9: Shift for Items 6 and 7 for examinees in Class 3

how an observer might see patterns that suggest which, ground a conjecture
that cannot be framed within the overall proficiency model.

2.5.7 A Model for Within-Person Mixtures of Strategy Use

The final model we discuss concerns a Case 3 instance of modeling strategy
use. The narrative themes are these: A known fixed set of strategies exists to
solve tasks in a given domain. A person may be using any of the strategies to
solve a given task, although persons differ in their propensities to use different
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strategies, and tasks differ, by virtue of their features, to provoke the use of
different strategies. It is observed which strategy a person uses to solve each
task. The inference of interest is, for each person, their propensities to use
each of the strategies.

Examples of domains of tasks in which this narrative space applies can be
found in science, where strategies correspond to conceptions and misconcep-
tions in the domain that have been revealed by cognitive research (McCloskey,
1983). Researchers have developed assessments in which tasks present situa-
tions, and multiple-choice options for predictions or explanations correspond
to particular misconceptions. The Hestenes et al. (1992) force concept in-
ventory (FCI) is an example. Figure 2.5.7 gives two examples of the kind of
items found on the FCI, both based on Newton’s third law: “For every action,
there is an equal and opposite reaction.” The first tends to evoke the Newto-
nian response because it is a paradigmatic third-law situation. The second is
equivalent to an expert, but tends to evoke the response based on a common
misconception, namely that the truck exerts more force than the fly because
it has a greater mass.

C.-W. Huang (2003) used an RM studied by Andersen (1973a) to analyze
responses to the FCI, for which responses could all be classified into three
approaches to force and motion problems: Newtonian, impetus theory, and
nonscientific response. The response of Examinee i to Item j is coded as 1,
2, or 3, for the approach used. Each examinee is characterized by three pa-
rameters θik indicating propensities to use each approach, and each item is
characterized by three parameters indicating propensities to evoke each ap-
proach. Strategy choice is modeled as

Pr (Xij = k |θi, βj ) =
exp (θik − βjk)

3∑
m=1

exp (θim − βjm)
. (2.9)

We may note that this model assumes that strategy use can be ascertained
as an observable for each task, and that the categorization of strategies is
exhaustive. Note also that the model addresses strategy approach only, not
proficiency in using a given strategy. Were proficiency within strategy also a
target of inference, then data concerning strategy application, such as cor-
rectness, would additionally be required. It would be modeled jointly with
strategy choice, through a model such as the RM where the proficiency for
a given strategy applied only to tasks in which the student was observed to
have used that strategy. Further, if task features related to difficulty under the
various strategies were available, then the within-strategy proficiency models
could feature LLTM-like structures for task difficulties, or MRCMLM-like
structures if the models were multivariate.
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A. The truck exerts the same amount of force on

the car as the car exerts on the truck.

B. The car exerts more force on the truck than the

truck exerts on the car.

C. The truck exerts more force on the car than the

car exerts on the truck.

D. There's no force because they both stop.

What are the forces at the instant of impact?

20 mph 20 mph

A. The truck exerts the same amount of force on 
the fly as the fly exerts on the truck.  

B. The fly exerts more force on the truck than the 
truck exerts on the fly
.C. The truck exerts more force on the fly than the 
fly exerts on the truck.  

D. There's no force because they both stop.  

What are the forces at the instant of impact?

20 mph 1 mph 

Fig. 2.7. Two items testing misconceptions about Newton’s third law

2.6 Closing Comment

Before the advent of item response theory, total scores on putatively similar
tasks were taken a fortiori to be operationally defined measures—of what,
and in what sense of measurement to be determined partially through the
thinking that led to the construction of the items and partly through correla-
tions with other scores. Both issues lie outside the scope of the classical test
theoretic model generally used to model uncertainty associated with persons’
scores. Michell (2000) argues that this practice constitutes an abrogation of
responsibility on the part of those who wish to contend that test scores are
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measures of quantitative psychological traits, where “measurement” is meant
in the classical sense of the term (Campbell, 1920).

Developments in psychometric models and in cognitive research have
moved the debate forward in ways both anticipated and unanticipated. A
case can be made that the family of RMs does embody the axioms of fun-
damental measure in a falsifiable probabilistic model. Hence the claim of a
quantitative measured trait can be put to the test in any given data set.
The question is becoming not so much whether scores reflect fundamentally
measured attributes as whether the measurement narrative is sufficiently well
approximated to ground applied work. As research provides insight into the
nature of human capabilities, extensions of psychometric models bring hy-
pothesized data patterns into the probabilistic models where they too can be
put to the test. The methodological tools to address the question whether
psychological attributes are quantitative, and to explore their nature with ex-
periments and statistical tests. But the same research reveals that much that
is important in the acquisition and use of knowledge is better expressed in
terms other than common measured attributes. Now that tools have at last
been developed to address the fundamental questions of trait psychology, a
future may lie in using those tools for inferences that lie beyond its narrative
space.
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3.1 Introduction

Item response theory (IRT) models provide a useful and well-founded frame-
work for measurement in the social sciences. The family of IRT models is still
expanding (see, for instance, De Boeck & Wilson, 2004; Skrondal & Rabe-
Hesketh, 2004), so characterization of the family of IRT models is not easy.
But to provide some demarcation, IRT models can be defined as stochastic
models for multiway data, usually two-way data consisting of responses of
persons to items. An essential feature in this definition of IRT models is pa-
rameter separation, that is, the influences of the various factors, say items
and persons, on the responses are modeled by distinct sets of parameters. (It
must be mentioned here that some authors define IRT more broadly to in-
clude models that are not necessarily based on parameter separation, such as
the distance model by Lazarsfeld (1950b), and the BTL model by Bradley &
Terry (1952), but these models are beyond the scope of this chapter.)

The Rasch model (RM, Rasch, 1960) is just one of many IRT models.
However, the RM has a special place in the family of IRT models because
it represents an approach to measurement in the social sciences that sets it
apart from the rest of IRT. The two approaches can be labeled the measure-
ment approach (for the RM) and the model-fitting approach (for the rest of
IRT). The idea of the model-fitting approach is that the test is a given entity
constructed by experts in some educational, psychological, or sociological do-
main, and the role of the psychometrician is to find a statistical model that
is acceptable for making inferences about the students’ proficiencies and to
attach some measure of reliability to these inferences. The approach is well
documented by Lord (1980). The measurement approach starts with a the-
oretical construct and a set of measurement desiderata, and a measurement
instrument is constructed that fits the measurement model. The measurement
desiderata usually lead to the RM (see, for instance, Fischer, 1995a).

The RM is a quite strict model, so evaluation of model fit has a long
tradition (Andersen, 1973c; Martin-Löf, 1970; Molenaar, 1983; Kelderman,
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1984, 1989; Glas, 1988; Glas & Verhelst, 1989, 1995; Klauer, 1989; Ponocny,
2000, 2001). The aim of the present chapter is to present a general framework
for testing the class of models that is the topic of this volume: the class of
generalized RMs. Therefore, we will start with a definition of this class. A
generalized RM is a model in which the likelihood function given the response
patterns xv (v = 1, . . . , N) can be written as

L(θ, β, λ, φ) =
∏
v

p(xv|θv, β)g(θv|λ,yv)h(β|φ, z)

=
∏
v

exp(xt
vAθv − xt

vBβ)c(θv, β)g(θv|λ,yv)h(β|φ, z), (3.1)

where θv = (θv1, . . . , θvQ) is a vector of the person’s ability parameters, β
is a vector of item parameters, and A and B are matrices of fixed integer
scoring weights. Further, c(θv, β) is a function of the parameters θv, β and
independent of xv, and g(θv|λ,yv) and h(β|φ, z) are the (possibly degener-
ate) densities of the person and item parameters, with parameters λ and φ.
These densities might depend on covariates yv and z. In this chapter, the
factor p(xv|θv, β) will be called the Rasch measurement model and the fac-
tor g(θv|λ,yv)h(β|φ, z) the structural model. It is assumed that persons are
independent, so the complete likelihood is the product over persons. Local
independence between the person’s responses is not assumed to include some
interesting models by Jannarone (1986) that lack this assumption. Further,
no assumption about the format of the responses has been made yet, so the
RM for speed tests (Rasch, 1960) and other models for continuous responses
(Mellenbergh, 1994) are also included in this definition.

A general approach to testing this model will be worked out in three esti-
mation settings: the conditional maximum likelihood (CML) framework, the
marginal maximum likelihood (MML) framework, and a Bayesian framework
that will be labeled the MCMC framework (the Markov chain Monte Carlo
framework) for reasons that will become apparent below. The reason for con-
sidering three estimation frameworks is that all three have their specific ranges
of application. In the CML framework, the structural model does not play a
role in the analyses, so this approach is especially suited to evaluate the ap-
propriateness of the measurement model. In MML, the structural model does
play a role, so this approach is suited for testing hypotheses concerning the
measurement and structural model simultaneously. Below, it will be explained
that the feasibility of the MML approach is limited by the dimensionality of
the structural model. If the dimensionality becomes too high, Bayesian meth-
ods based on MCMC become important.

Most hypotheses concerning the structural model can be easily tested us-
ing likelihood ratio tests and their Bayesian analogues. These tests are om-
nipresent in this volume, and they will not be treated in this chapter. In this
chapter, the focus is on the fit of the measurement model, with and with-
out the presence of a structural model. Fit of the measurement model can
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be viewed from two perspectives: the items and the respondents. In the first
case, for every item, residuals (differences between predictions from the esti-
mated model and observations) and item-fit statistics are computed to assess
whether the item violates the model. In the second case, residuals and person-
fit statistics are computed for every person to assess whether the responses to
the items follow the model.

The most important assumptions evaluated from the perspective of item
fit are subpopulation invariance (the violation is often labeled differential item
functioning, or DIF), the form of the item response function, and local stochas-
tic independence. The first assumption entails that the item responses can be
described by the same parameters in all possible subpopulations. Subpopu-
lations are defined on the basis of background variables that should not be
relevant in a specific testing situation. One might think of gender, race, age,
or socioeconomic status. The second assumption addressed is the form of the
item response function that describes the relation between the latent variable
and the observable responses to items. Evaluation of the appropriateness of the
item response function is usually done by comparing observed and expected
item response frequencies given some measure of the latent trait level. The
third assumption targeted is local stochastic independence. The assumption
entails that responses to different items are independent given the latent trait
value. Then, the proposed latent variables completely describe the responses
and no additional variables are necessary to describe the responses. The most
important assumption evaluated from the perspective of person fit is the in-
variance of the ability parameter over subtests, but also local independence
can be evaluated using person-fit tests.

A final remark in this introduction pertains to the relation between formal
tests of model fit and residual analyses. A well-known problem with formal
tests of model fit is that they tend to reject the model too often even for
moderate sample sizes. That is, their power (the probability of rejection when
the model is violated) grows very fast as a function of the sample size. As
a result, small deviations from the IRT model may cause a rejection of the
model, while these deviations may hardly have practical consequences in the
foreseen application of the model. Inspection of the magnitude of the residuals
can shed light on the severity of the model violation. The reason for addressing
the problem of evaluation of model fit in the framework of formal model tests
is that the alternative hypotheses in these model tests clarify which model
assumptions are exactly targeted by the residuals. This will be explained
further below.

3.2 A Basic Example in a CML Framework

As an introduction, consider a test of model fit for the standard unidimensional
RM for dichotomously scored items. The test focuses on the appropriateness
of the item characteristic curve (ICC), that is, on the probability of a correct
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response as a function of a unidimensional ability parameter θ. The idea of the
test is to partition the latent ability continuum into a number of segments,
and to evaluate whether an item’s ICC conforms to the form predicted by
the RM. A problem with this idea is that it requires the partitioning of the
sample of respondents based on their ability estimates. The derivation of the
asymptotic distribution of a test statistic with a partitioning of respondents
based on estimates of θ proves very difficult. Therefore, the partitioning of the
sample of respondents will be based on the number-correct scores, which are
sufficient statistics for the ability parameters. Several statistics can be used
to evaluate whether the responses in the subgroups match the predictions
derived from the RM. For instance, Andersen (1973c) proposed a likelihood
ratio test, where the CML value obtained in the total sample is compared
with CML values obtained in the subgroups. In the present chapter, we will
outline an approach that is based on the difference between the expected and
observed frequencies in the subgroups g = 1, . . . , G. The test is based on the
residuals

dgi = ngi − E(Ngi | r, β̂), (3.2)

where ngi is the count of the number of persons belonging to score level g

and giving a correct response to item i, and E(Ngi | r, β̂) is the expected
value given the respondents’ sum scores r and the CML estimates of the item
parameters. The test statistic is defined as

Si = dt
i W−1

i di, (3.3)

where di is the vector of elements dgi, for g = 1, . . . , G − 1, and W−1
i is the

inverse of the estimated covariance matrix of di. The fact that one of the
subgroups is not included in di will be explained below. The Si test has an
asymptotic χ2 distribution with df = G − 1 (Glas & Verhelst, 1995).

The exact covariance matrix of di, which is Wi, is needed to derive the
asymptotic distribution of the statistic. Often, this matrix is replaced by a di-
agonal matrix where only the diagonal elements of Wi are included as nonzero
elements. In that case, the statistic simplifies to a Pearson’s X2 statistic. Ex-
amples in the CML framework for the RM are the tests proposed by van den
Wollenberg (1982). Although replacing Wi by a covariance matrix slightly
simplifies the computations, claims about the distribution of the statistic are
completely based on simulation studies and the generalization to statistics for
more complicated IRT models is problematic.

The approach sketched in this section has two advantages over using a
likelihood ratio test. First, the parameters need not be estimated in every
subgroup. And, second, the approach can be generalized to other model vi-
olations and estimation frameworks. In the next section, the principle of the
approach will be outlined.
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3.3 Lagrange Multiplier Tests for Evaluating the Fit of
IRT Models

IRT models are based on a number of assumptions. The most important are
parameter invariance and local independence. Testing these two assumptions
for all items and persons using likelihood ratio statistics is problematic because
every alternative model for every model violation for every person and each
item would have to be estimated. A simple alternative is to estimate the model
only once and to produce a number of tables of residuals that are informative
with respect to specific model violations. The LM test provides a rationale for
the choice of the residuals.

The LM test is grounded as follows. Consider some general parametrized
model, and a special case of the general model, the so-called restricted model.
The restricted model was derived from the general model by imposing con-
straints on the parameter space. In many instances, this was accomplished
by setting one or more parameters of the general model to constants. The
LM test is based on the evaluation of the first–order partial derivatives of the
log-likelihood function of the general model, evaluated using the maximum
likelihood estimates of the restricted model. The unrestricted elements of the
vector of first-order derivatives are equal to zero, because their values originate
from solving the likelihood equations. The magnitudes of the elements of the
vector of first-order partial derivatives corresponding to restricted parameters
determine the value of the statistic: the closer they are to zero, the better the
model fit.

More formally, the principle can be described as follows. Consider a general
model with parameters ηηη. In the applications presented below, the special
model was derived from the general model by setting one or more parameters
to zero. So if the vector of the parameters of the general model, say ηηη, is
partitioned ηηη = (ηηη1, ηηη2), the null hypothesis entails ηηη2 = 0. Let h(ηηη) be the
first-order partial derivatives of the log-likelihood of the general model, that is,
h(ηηη) = ∂ logL(ηηη)/∂ηηη. This vector of partial derivatives gauges the change of
the log-likelihood as a function of local changes in ηηη. Let the vector of partial
derivatives h(ηηη) be partitioned as (h(ηηη1),h(ηηη2)). Then the test is based on
the statistic

LM = h(ηηη2)
′Σ−1h(η2), (3.4)

where
Σ = Σ22 − Σ21Σ−1

11 Σ12 (3.5)

and

Σpq = −∂2 logL(ηηη)
∂ηp∂ηηη′

q

,

for p = 1, 2 and q = 1, 2. The matrix Σ in (3.5) can be viewed as the asymp-
totic covariance matrix of h(ηηη2) with ηηη1 estimated and the matrix Σ22 is the
asymptotic covariance matrix of h(ηηη2) with ηηη1 known. Further, Σ−1

11 is the
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asymptotic covariance matrix of the estimate of ηηη1, so the term Σ21Σ−1
11 Σ12

accounts for the influence of the estimation of ηηη1 on the covariance matrix
of h(ηηη2). The LM statistic has an asymptotic χ2-distribution with degrees of
freedom equal to the number of parameters in ηηη2 (Aitchison & Silvey, 1958).

In the next section, the LM test will first be applied to the evaluation
of person fit. Then, in the following two sections, LM item-fit tests will be
presented in the CML and MML frameworks, respectively. Then, in the last
section before the discussion section, it will be shown how the basic idea of
the LM test can be generalized to a Bayesian framework.

3.4 An LM Test for Person Fit

Smith (1985, 1986) introduced a Pearson-type test statistic for the RM for
evaluating the constancy of the ability parameter across subtests. To perform
the test, the set of test items is divided into S nonoverlapping subtests denoted
by As (s = 1, . . . , S). Then the hypothesis that the same ability parameter θv

accounts for the responses in all subsets can be tested with a statistic defined
by

UB =
1

S − 1

S∑
s=1

[∑
i∈As

[xvi − Pi(θv)]
]2∑

i∈As
Pi(θv) [1 − Pi(θv)]

, (3.6)

where Pi(θv) is the probability of a correct response in the RM.
Dagohoy (2005) proposes an LM statistic that is closely related to the UB

statistic. It can be derived by assuming an alternative model where the ability
parameter differs across the test, that is, for s > 1, it is assumed that

Pi(θv) = P (Xvi = 1 | θv, i ∈ As) =
exp[θv + θvs − βi]

1 + exp[θv + θvs − βi]
. (3.7)

For s = 1, we assume the RM, so the responses on the first subtest are used
as a base line for θ. In practice, a response pattern is too short to test whether
more than two ability parameters are involved. Therefore, the response pattern
is usually partitioned into two parts, that is, S = 2. Further, assume that the
item parameters are known. Then the log-likelihood is given by

logL =
k∑

i=1

xvi logPi(θv) + (1 − xvi) log(1 − Pi(θv)). (3.8)

Taking the first-order derivative of the likelihood of the response pattern with
respect to θs results in

h =
∂ logL

∂θs
=
∑
i∈As

[xvi − Pi(θ)].

For the second-order derivatives of the log-likelihood we obtain
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σ11 = −∂2 logL

∂θ2 =
k∑

i=1

Pi(θ) [1 − Pi(θ)] ,

σ22 = −∂2 logL

∂θ2
s

=
∑
i∈As

Pi(θ) [1 − Pi(θ)] ,

σ12 = −∂2 logL

∂θ∂θs
= −

∑
i∈As

Pi(θ) [1 − Pi(θ)] .

Inserting these formulas into (3.4) and (3.5) gives an LM statistic for testing
the constancy of the ability parameter over the two partial response patterns
as

LM =
h2

σ22 − σ2
12/σ11

. (3.9)

This LM statistic has an asymptotic χ2-distribution with one degree of free-
dom. Note that (3.9) is equivalent to (3.6), except for the term −σ2

12/σ11 in
the denominator. It is exactly this term that represents the loss in the variance
of h caused by the estimation of θ.

3.5 The CML Framework

In this section, it will be shown how the test given by Equation 3.3 fits the LM-
test framework. But first, it will be sketched how the LM and CML frameworks
connect in general.

3.5.1 The General Formulation

In the definition of generalized RMs given in (3.1), no assumptions about
local independence and about the format of the responses have been made.
However, most models do make the assumption of local independence and as-
sume that the items are scored in discrete categories. In these cases, the mea-
surement model exp(xt

vAθv − xt
vBβ)c(θθθv, β) in (3.1) specializes to a product

over items, and xv is defined as the concatenation of item response vectors
xvi with entries xvij , j = 1, . . . ,mi, which are equal to one if the response
was in category j and zero otherwise. Note that the measurement model
exp(xt

vAθv − xt
vBβ)c(θθθv, β) is an exponential family model with sufficient

statistics rv and sv defined by rt
v = xt

vA and st
v = xt

vB, respectively. Let
B(r) stand for the set of all possible response patterns xv resulting in a value
r for the sufficient statistic for θ. Conditioning on the sufficient statistic for
the ability parameters results in a conditional response probability given by
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p(xv|rv, β) =
p(xv|θv, β)g(θv|λ,yv)h(β|φ, z)∑

B(r) p(xv|θv, β)g(θv|λ,yv)h(β|φ, z)

=
exp(−xt

vBβ)∑
B(r) exp(−xt

vBβ)
, (3.10)

which does not depend on the ability parameters θ and the structural models
g(θv|λ,yv) and h(β|φ, z). The denominator is usually called an elementary
symmetric function. Also, the conditional likelihood is an exponential family
model, and estimation of the item parameters β amounts to equating the
observed values of the sufficient statistics with their expected values (see, for
instance, Andersen, 1980). So the estimation equations are given by

sij = E(Sij |r, β),

for i = 1, . . . , I and j = 1, . . . ,mi, with

E(Sij |r, β) =
∑

v

E(Xij |rv, β)

=
∑

v

∑
B(r,ij) exp(−xt

vBβ)∑
B(r) exp(−xt

vBβ)
, (3.11)

where B(r,ij) is the set of all possible response patterns resulting in a score r
with xij = 1.

An LM test for the appropriateness of the ICCs can be derived by posing
an alternative measurement model

exp(xt
vAθv − xt

vBβ + xt
vDδ)c(θv, β, δ) (3.12)

such that the additional parameters δ represent some model violation, and
introduce the null hypothesis δ = 0.

3.5.2 Some Examples Pertaining to the Rasch Model

In 3.2, an example of an LM test for the appropriateness of the ICCs was
given. The alternative model underlying the test is given by

P (Xvi = 1|g(r(i)
v ) = g) =

exp(θv − βi + δgi)
1 + exp(θv − βi + δgi)

, (3.13)

where r
(i)
v stands for the number-correct score ignoring item i, and g(r(i)

v )
stands for the score-level group to which person v belongs. Note that δgi can
be seen as a shift either of the item parameter or in the ability parameter.
This shift is a function of the score level. So the additional parameters gauge
the extent to which the ICC given in (3.13) is appropriate for all subgroups g.
The fact that only G− 1 parameters δgi are present in the model entails that
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group G is used as a base line. In fact, the alternative model would not be
identified if it had G parameters δgi. The connection between the alternative
model (3.13) and the residuals (3.2) can be established by evaluating the first
order derivatives of the likelihood function with respect to δgi. However, the
derivation is straightforward after we note that the model defined by (3.12)
and the model derived from it by conditioning on xt

vAθv are also exponential
family models. Therefore, here too the first-order derivative has the form of
the difference between an observed value and an expectation of a sufficient
statistic. Since δgi can be seen as an additional item parameter, analogous to
(3.11), it immediately follows that

E(Nig|r, β) =
∑

v|g(r(i)
v )=g

E(Xvi|rv, β),

where the summation is over all persons with a partial sum score such that
g(r(i)

v ) = g. For a derivation of the covariance matrix W, one is referred to
Glas (1988) (see also Glas & Verhelst, 1995).

Using the same rationale, test statistics can also be derived for DIF and
local stochastic independence. DIF can be defined as a difference in item re-
sponses between equally proficient members of two or more groups. If the
groups are labeled g = 1, . . . , G, and indicator variables yvg are defined as
equal to one if the person belongs to subgroup g and zero otherwise, an alter-
native model can be defined as

P (Xvi = 1|yvg = 1) =
exp(θv − βi + δgi)

1 + exp(θv − βi + δgi)
. (3.14)

Again, one of the groups must be used as a base line.
Local independence can be evaluated by posing an alternative model in

which the response on item i depends on the response on some other item k.
So we have

P (Xvi = 1|Xvk = xvk) =
exp(θv − βi + xvkδ)

1 + exp(θv − βi + xvkδ)
. (3.15)

Also, the tests with these two alternative models can be based on LM-
statistics that are differences between observed and expected frequencies. The
test for DIF is based on the observed frequencies of correct item responses in
the subgroups g, and the test for local independence is based on the number
of simultaneous correct responses to the two items. For further details, refer
to Glas (1988) (see also Glas & Verhelst, 1995).

Interestingly, the model given by (3.15) is a special case of a family of
models proposed by Jannarone (1986) and Kelderman (1984) in which local
independence can be violated. Since all the models in that family are expo-
nential family models of the form given by (3.10), special versions such as
(3.15) can be tested against more general versions using an LM test in a CML
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framework. One could, for instance, test the hypothesis that the probability
of a correct response depends on the responses on a set of items rather than
on the response to one item, say the previous item.

A final remark pertains to the practical application of the test. If the test
length is k items, there are potentially k(k − 1)/2 combinations of items that
can be tested for dependence. Huge output can be avoided by defining a lim-
ited number of pairs on theoretical grounds. However, usually these theoretical
grounds are not available, and in these cases it is a reasonable choice to test
for dependence in pairs of consecutive items.

3.6 The MML framework

3.6.1 The General Formulation

Marginal maximum likelihood (MML) is probably the most frequently used
method for the estimation of the parameters of IRT models. For the 1PL,
2PL, and 3PL models, the theory was developed by such authors as Bock
& Aitkin (1981) and Mislevy (1984, 1986). Under the label “full information
factor analysis,” a multidimensional version of the 2PL and 3PL normal ogive
model was developed by Bock, Gibbons, & Muraki (1988).

MML estimation derives its name from maximizing a log-likelihood that is
marginalized with respect to θ, rather than maximizing the joint log-likelihood
of all model parameters. Let ηηη be a vector of all item parameters β and φ and
population parameters λ. Then the marginal likelihood of ηηη is given by

L(ηηη) = h(β|φ, z)
∏
v

∫
· · ·
∫

p(xv|θv, β)g(θv|λ,yv)dθv .

= h(β|φ, z)
∏
v

∫
· · ·
∫

exp(xt
vAθv − xt

vBβ)c(θv, β)g(θv|λ,yv)dθv .

The reason for maximizing the marginal rather than the joint likelihood is that
maximizing the latter does not lead to consistent estimates. This is related
to the fact that the number of person parameters grows in proportion to the
number of observations, and in general, this leads to inconsistency (Neyman
& Scott, 1948). Simulation studies by Fischer & Scheiblechner (1970) show
that these inconsistencies can indeed occur in IRT models. One way to deal
with the problem is removing the person parameters by conditioning on their
sufficient statistics. The result is the CML framework sketched above. The
other approach is marginalizing over the person parameters. The marginal
likelihood equations for ηηη can be easily derived using Fisher’s identity (Glas,
1992, 1999). The first-order derivatives with respect to ηηη can be written as

h(ηηη) =
∂

∂ηηη
logL(η) =

∑
v

E(ωv(ηηη) | xv, ηηη) , (3.16)
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with
ωv(ηηη) =

∂

∂ηηη
log p(xv, θv | ηηη), (3.17)

where the expectation is with respect to the posterior distribution p(θv |
xv, ηηη). The identities in (3.16) and (3.17) are closely related to the EM-
algorithm (Dempster et al., 1977), which is an algorithm for finding the max-
imum of a likelihood marginalized over unobserved data. The present appli-
cation fits this framework when the response patterns are viewed as observed
data and the ability parameters as unobserved data. Together they are re-
ferred to as the complete data. The EM algorithm is applicable in situations
in which direct inference based on the marginal likelihood is complicated, and
the complete data likelihood equations, i.e., equations based on ωv(ηηη), are
easily solved. The core of the algorithm is that given some estimate of ηηη, say
ηηη∗, the estimate can be improved by solving

∑
v E(ωv(ηηη) | xv, ηηη

∗) = 0 with
respect to ηηη. Then this new estimate becomes ηηη∗ and the process is iterated un-
til convergence. Also the standard errors are easily derived in this framework:
Mislevy (1986) points out that the information matrix can be approximated
as

H( ηηη, ηηη) ≈
∑

v

E(ωv(ηηη) | xv, ηηη )E(ωv(η) | xv, ηηη )t, (3.18)

and the standard errors are the diagonal elements of the inverse of this matrix.

3.6.2 An Example Pertaining to the Partial Credit Model

Application of this framework to the derivation of estimation equations will
be clarified using the partial credit model (PCM; Masters, 1982), extended
with the assumption that the person parameters have a normal distribution
mean µ and standard deviation σ.

In the PCM, the probability of answering in a certain category is dependent
on the latent ability of the respondent θv and the item parameters βij , j =
1, . . . ,mi. The item category response function is given by

Pij(θv) = P (Xvij = 1 | θv, βi) =
exp(jθv − βij)

1 +
∑mi

h=1 exp(hθv − βih)
. (3.19)

The item parameters defined by ηij = βij − βi(j−1) are sometimes called step
parameters (Masters, 1982). The ηij are the points on the θ scale at which
the curves of Pi,j−1(θ) and Pij(θ) intersect. These two curves intersect only
once, and the intersection can occur anywhere along the θ scale.

The likelihood equations are obtained by equating (3.16) to zero. Since
the PCM is an exponential family model, the expressions for (3.17) again are
the difference between the observed values of the sufficient statistics and the
expected values of the sufficient statistics, so we have

ωv(βij) = −xvij + Pij(θv),
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and inserting the expressions into (3.16) and equating the resulting expressions
to zero results in

sij =
∑

v

E (Pij(θv) | xv, ηηη ) .

To derive the likelihood equations for the population parameters, the first-
order derivatives of the log of the density of the ability parameters g(θ;µ,σ)
are needed. In the present case, g(θ;µ,σ) is the well-known expression for the
normal distribution with mean µ and standard deviation σ, so it is easily
verified that these derivatives are given by

ωv(µ) =
(θv − µ)

σ2

and

ωv(σ) =
(θv − µ)2 − σ2

σ3 .

The likelihood equations are again found upon inserting these expressions in
(3.16) and equating the resulting expressions to zero. Usually, the location of
the latent scale is identified by setting µ to zero, in which case the associated
estimation equation is not relevant.

Glas (1999) proposed an LM test for the PCM to evaluate the appropri-
ateness of the item response functions. Also in this case, this could in principle
be done by estimating the respondents’ latent variables θ, ordering them ac-
cording to size, and evaluating the difference between manifest item response
proportions and the theoretical response probabilities. However, test statistics
based on partitioning the sample of respondents using estimates rather than
of observable statistics have very poor properties (see, for instance, Orlando
& Thissen, 2000, or Glas & Suarez-Falcon, 2003). Therefore, here we consider
a test based on a partitioning of the respondents on the basis of their total
scores. The test is performed for every item. Let the item of interest be labeled
i, while the other items are labeled k = 1, . . . , i−1, i+1, . . . , I. Let x(i) be the
response pattern without item i, and let r

(i)
v be the sum score on this partial

response pattern, that is,

r(i)
v =

∑
k �=i

∑
j

jxvgj .

The possible scores will be partitioned into Gi disjoint subtests, according to
the score level. The index i indicates that the partitioning can be different for
each item. As an alternative to the model under the null hypothesis, that is,
the PCM, we consider a model in which the probability of scoring in category
j of item i, conditional on a partial sums score in subset g (g = 1, . . . , Gi) is
given by

P (Xvij = 1 | g, θv, βi, δgi) =
exp(jθv + jδgi − βij)

1 +
∑mi

h=1 exp(hθv + hδgi − βih)
, (3.20)
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for j = 1, . . . ,mi. Under the null model, the additional parameter δgi is equal
to zero. Notice that parameter δgi is multiplied by j, so the term jδgi has a
function that is analogous to the function of jθv. Therefore, the alternative
model entails that the latent parameter θ is insufficient to describe the re-
sponses, and some shift related to the response level must be incorporated.
The first-order derivatives with respect to δgi are given by

−
∑
v|g

∑
j

jxvij +
∑
v|g

∑
j

jE(Pij(θ) | xv, βi), (3.21)

for i = 1, . . . , k, and g = 1, . . . , Gi. So if both terms in (3.21) are divided by
the number of respondents in group g it can be seen that the test is based
on the difference between the observed average score on item i in score level
group g, and its posterior expectation. The expected value is computed using
the PCM without the additional parameters, that is, using the null model.
If the difference between the observed and expected values is large, it means
that the PCM model did not fit the data. The additional parameter δgi is
necessary to fit the model, so the null hypothesis, δgi = 0, is rejected. An
important detail is that the alternative model has to be identified. This can
be accomplished by setting the first additional parameters, say δ1g, equal to
zero. So the LM statistic given by (3.4) is based on Gi − 1 residuals, and it
has an asymptotic χ2-distribution with gi −1 degrees of freedom (Glas, 1999).

It should be noted that it is essentially the residuals that give insight into
the model fit. The associated formal test of model fit based on a statistic
with a known (asymptotic) distribution is relevant only for moderate sample
sizes. For large sample sizes, these tests become less interesting, because their
power then becomes so large that even the smallest deviations from the model
become significant. In these cases, the effect size becomes more important than
the significance probability of the test.

The testing procedure is illustrated with a small example from a Belgian
school effectiveness study. In this survey, the achievement on mathematics
and Dutch language ability were measured along with academic self esteem,
well-being at school, and concentration during lessons. The example presented
here pertains to the scale for “academic self esteem.” The scale consisted of 9
questions, such as “If I may choose, I would rather go to another school,” “My
fellow pupils can learn better than I can,” and “In the classroom I am often
thinking about things that are not related to the subject matter” (these items
are translated from Dutch). Each item of the three scales had five response
categories: “strongly disagree,” “disagree,” “neutral,” “agree,” and “strongly
agree.” The analysis presented pertains to the responses of 1942 pupils on the
second time point. For more details, refer to Marvelde et al. (2006).

First, MML estimates were computed. Then, for every item, an LM statis-
tic was computed to evaluate the fit of the ICCs. To compute the statistics,
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Table 3.1. Evaluation of fit of item response functions

Group 1 Group 2 Group 3 Group 4
i LM Pr. Obs Exp Obs Exp Obs Exp Obs Exp
1 6.5 .09 1.30 1.28 1.69 1.71 1.90 1.93 2.29 2.24
2 5.3 .15 0.37 0.37 0.67 0.69 1.05 1.00 1.53 1.57
3 2.3 .50 0.71 0.72 1.16 1.18 1.56 1.54 2.07 2.06
4 0.5 .92 0.86 0.87 1.28 1.26 1.58 1.57 2.03 2.05
5 12.8 .01 0.39 0.38 0.76 0.78 1.08 1.05 1.41 1.45
6 5.1 .16 0.35 0.36 0.74 0.72 0.98 0.98 1.36 1.38
7 8.5 .04 0.68 0.71 1.21 1.17 1.47 1.46 1.83 1.86
8 1.1 .77 0.77 0.77 1.15 1.14 1.42 1.42 1.90 1.92
9 10.1 .02 1.62 1.60 1.90 1.87 2.02 2.03 2.18 2.23

the sample of respondents was divided into four subgroups of approximately
equal sample size. Subgroup 1 contained respondents with a score r

(i)
v ≤ 7,

respondents in subgroup 2 had 8 ≤ r
(i)
v ≤ 10, group 3 had respondents who

obtained scores 11 ≤ r
(i)
v ≤ 13, and respondents of group 4 had r

(i)
v ≥ 14. The

results are given in Table 3.1. Note that 3 of the 9 LM tests were significant
at a 5% significance level. The observed and the expected average item scores
in the subgroups are shown under the headings “Obs” and “Exp,” respec-
tively. Note that the observed average scores increased with the score level
of the group. Further, it can be seen that the observed and expected values
were quite close: the largest absolute difference was .05 and the mean absolute
difference was approximately .02. So, even though the number of significant
tests was larger than should be expected given the significance level, the fit
between the expected and observed scores is such that the conclusion that the
data fit the model is justified.

3.7 The MCMC Framework

In the introduction of this chapter, it was indicated that CML has its main
application in the evaluation of the measurement model, while MML has its
main application in the evaluation of the measurement model in the presence
of a structural model. However, the computation of MML estimates becomes
quite difficult when the dimensionality of the latent parameter space becomes
high. For instance, consider a multidimensional version of the RM given by

P (Xvi = 1 | θv, βi) =
exp(

∑Q
q=1 aiqθvq − βi)

1 + exp(
∑Q

q=1 aiqθvq − βi)
, (3.22)

where θv is a Q-dimensional vector with entries θvq and where the parame-
ters aiq are so-called factor-loadings. Often, the parameters aij are estimated,
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but they can also be seen as fixed weights with values chosen on theoretical
grounds (see, for instance, Glas, 1997). Further, it is often assumed that θv

has a Q-variate normal distribution with a covariance matrix Σθ. Takane &
Leeuw (1987) have shown that multidimensional IRT models are equivalent
with full-information factor-analysis models (Bock, Gibbons, & Muraki, 1988).
Computation of MML estimates is not unproblematic because, as can be seen
in Section 3.6.1, it requires the evaluation of a Q-dimensional integral. At
this moment, the maximum number of factors is approximately 10 with adap-
tive quadrature, approximately 5 with nonadaptive quadrature, and approxi-
mately 15 with Monte Carlo integration (see, for instance, Bock & Schilling,
1997). In the framework of the two-parameter normal ogive model, an al-
ternative Bayesian procedure using a MCMC algorithm, that is, the Gibbs
sampler (Gelman et al., 1995), was suggested by Albert (1992). Recently, the
Bayesian approach has been adopted to the estimation of IRT models with
multiple raters, multiple item types, missing data (Patz & Junker, 1999b),
testlet structures (Bradlow et al., 1999), latent classes (Hoijtink & Molenaar,
1997), models with a multilevel structure on the ability parameters (Fox &
Glas, 2001) and the item parameters (Janssen et al., 2000), and multidimen-
sional IRT models (Béguin & Glas, 2001).

In a Bayesian framework, prior distributions are defined for all parameters,
and the inferences are based on the posterior distributions of the parameters.
An MCMC procedure is used to generate the posterior distributions. These
distributions are simulated in an iterative process using the Gibbs sampler
(Gelfand & Smith, 1990). To implement the Gibbs sampler, the parameter
vector is divided into a number of components, and each successive compo-
nent is sampled from its conditional distribution given sampled values for all
other components. This sampling scheme is repeated until the sampled values
form stable posterior distributions. For application of the Gibbs sampler, it
is important to create a set of partial posterior distributions that are easy to
sample from. This has two consequences. First, it proves convenient that all
the components of the model are based on normal distributions. Therefore,
the logistic form of the measurement model is replaced by a normal ogive
representation. Second, the step from discrete observations to continuous nor-
mally distributed variables requires a so-called data augmentation step, that
is, the introduction of additional latent variables that lead to a simple set of
posterior distributions.

As an example, consider the multidimensional RM given by (3.22). First,
the probability of a correct response is replaced by P (Xvi = 1 | θθθv, βi) =
Φ(ηij), where Φ(.) is the standard normal ogive and ηvi = αααt

iθθθv −βi. The nor-
mal ogive representation and the logistic representation are very close (Lord,
1980) Second, the data augmentation step is derived using a rationale that
is analogous to a rationale often used as a justification of the two-parameter
normal ogive model (see, for instance, Lord, 1980, Section 3.2). In this moti-
vation, it is assumed that if person v is presented an item i, a latent variable
Zvi is drawn from a normal distribution with mean ηvi and a variance equal
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to one. A correct response xvi = 1 is given when the drawn value is positive.
So the distribution of Zij is given by

Zvi |Xvi = xvi ∼
{

N(ηvi,1) truncated at the left by 0
N(ηvi,1) truncated at the right by 0

if xvi = 1,
if xvi = 0. (3.23)

In terms of the general model given by (3.1), the aim of the MCMC procedure
is to simulate samples from the joint posterior distribution of the parameters
θ, β, λ, and φ and the augmented data. In the present example λ consists
of the mean µθ,and covariance matrix Σθ of the ability distribution. So the
posterior distribution given the data x is given by

p(θ, β, µθ,Σθ, z |x ) = p(z |x ;β, θ,)p(θ|µθ,Σθ)p(µθ,Σθ)p(β), (3.24)

where p(µθ,Σθ) and p(β) are prior distributions. The prior for µθ, and Σθ is
a normal-inverse-Wishart distribution (see, for instance, Box & Tiao, 1973).
In RMs, an uninformative prior usually suffices for the item parameters β.

Although the distribution given by (3.24) has an intractable form, as a re-
sult of the data augmentation step, the conditional distributions of β, θ, µθ,Σθ

and z are now each tractable and easy to sample from. A draw from the full
conditional distribution can be obtained in the following steps:

1. Draw z conditional on θ, β, and x;
2. Draw µθ and Σθ conditional on θ;
3. Draw θ conditional on z, β,Σθ, and µθ;
4. Draw β conditional on z and θ.

The first step that maps the discrete responses to a continuous variable
amounts to sampling from the distribution defined in (3.23). The next three
steps are the standard steps for sampling in the normal model; for details,
refer to Gelman et al. (1995).

In the Bayesian framework, model fit can be evaluated using posterior
predictive checks (PPC; see, for instance, Gelman et al., 1995, Chapter 6;
Hoijtink & Molenaar, 1997; Sinharay & Johnson, 2003). A PPC results in a
“posterior predictive p-value,” the Bayesian analogue of the significance prob-
ability in a frequentist framework. The general idea of a posterior predictive
check is to simulate data under the model and compare these data with the
observed data. This is done as follows. First the posterior distribution of the
parameters, say p(ξ|x), is simulated using an MCMC method. The PPC is
based on an index T (x, ξ).When the Markov chain has converged, draws from
the posterior distribution can be used to generate model-conforming data xrep

and to compute a so-called Bayesian p-value defined by

Pr(T (xrep, ξ) ≥ T (x, ξ) | x). (3.25)

So model fit is evaluated by computing the relative proportion of replications,
that is, draws of ξ from p(ξ|x), where the fit index computed using the data,



3 Testing Generalized Rasch Models 53

T (x, ξ), has a smaller value than the analogous index computed using data
generated to conform to the IRT model, that is, T (xrep, ξ). So after the burn-
in period, the fit index T (x, ξ) is computed using the current draw of the item,
person, and population parameters, a new model-conforming response pattern
is generated, and a value T (xrep, ξ) is computed. Finally, a Bayesian p-value
is computed as the proportion of iterations where T (xrep, ξ) ≥ T (x, ξ).

For the evaluation of item fit, T (x, ξ) can be based on test statistics that
are defined analogously to the fit statistics for the CML and MML frame-
work. For instance, tests for the appropriateness of the ICCs, DIF, and local
independence for the RM can be based on the alternative models defined by
(3.13), (3.14), and (3.15), respectively. The alternative models provide the
motivation for the indices, that is, they provide the connection between the
model violation and T (x, ξ). Then the sufficient statistics for the δ-parameters
are derived. For the first two model violations, these are the number of correct
scores in the subgroups g, and simultaneous realizations of pairs of items i
and k for violation of local independence, respectively. The index T (x, ξ) can
then be defined as a Pearson-type statistic, that is, as the squared difference
between the sufficient statistics and their expectations given θθθ and βββ, divided
by the standard deviations of the difference. The approach is outlined in detail
by Hoijtink (2001) and Sinharay (2003).

One of the advantages of PPCs is that there is no need to derive the distri-
bution of the test statistics under the null model. The distribution is implicitly
generated when the MCMC procedure is run. This is also the explanation for
the fact that there is no need to implicate a covariance matrix such as the co-
variance matrix W in the LM-statistic, where accounting for the dependence
between the vectors d is essential for the derivation of the asymptotic distri-
bution of the statistics. However, as shown above, for item-oriented statistics
the definition of test statistics such that the asymptotic distribution is known
is not complicated. For person–fit statistics the matter is more complicated.
Snijders (2001) derives correction formulas that account for the estimation of
θ for a class of person-fit statistics for the RM, but this approach has not yet
been generalized to a broader class of models. As an alternative approach,
Glas & Meijer (2003) suggest to impute a number of well-known person-fit
statistics with an unknown distribution as indices T (x, ξ) in a PPC. As an
example pertaining to the RM, they consider the UB-statistic given by (3.6).
The correction by Snijders (2001) is needed to derive the asymptotic distri-
bution of UB. To take into account the uncertainty about both the item and
ability parameters, Glas & Meijer (2003) propose to use UB as a PPC. So after
every replication of the MCMC procedure, UB is computed using the current
draw of θ and β, a new response vector is generated and UB is computed for
the new response vector, again using the current draw of θ and β. Simulation
studies show that the control of Type I error rate is acceptable. However,
as for all person-fit indices, the power to detect aberrant persons is not very
large. This is, of course, attributable to the fact that for every person, only a
very limited number of item responses are available to test person-fit.
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3.8 Discussion

In this chapter, it was shown that evaluation of fit to IRT measurement mod-
els can be based on residual analyses. It was shown that the residuals can
be seen as part of LM statistics. However, acceptance or rejection of a model
should not only be based on a strict formal test of model fit but should always
also take the sample size, the size of the residuals, and the application into
account. For instance, if the sample size is large (say 5,000 students), an aver-
age difference of 0.01 across five score levels between the observed proportion
correct and the model-based estimate of the probability of a correct response
might already result in a significant test of item fit, but for a concrete appli-
cation, say test equating, this model violation might be of little importance.
So tests of model fit should always be interpreted with a sense of reality.

The overview that was given does not have the pretention of being ex-
haustive. For instance, we did not discuss the use of so-called uniformly most
powerful (UMP) tests, which have some interesting connections to LM tests.
Also in the UMP approach, a general model and a special case are compared.
Ponocny (2000, 2001) proposed UMP item fit tests that have (3.14) and (3.15)
as alternatives to the RM, and Klauer (1989) proposed a UMP person-fit test
with (3.7) as an alternative model. Since both the RM and these more general
alternative models are all exponential family models, a UMP test can be con-
structed for testing the hypothesis that an parameter additional to the RM,
say δ, equals zero (Lehman, 1986, Chapter 3). The test is based on the suffi-
cient statistic for δ, say T. The test is nonparametric: if we condition on the
observed values of the sufficient statistics for the item and person parameters,
all these parameters vanish from the likelihood. That is, all possible data ma-
trices with these marginals are equally likely given the marginals. Ponocny &
Ponocny-Seliger (1999) implemented a Monte Carlo algorithm for generating
all matrices with the same marginals. For every generated matrix a value of
the sufficient statistic T is computed and the test is then based on the position
of the observed value of T in this generated distribution.

Although UMP tests are certainly statistically optimal, the application to
more complex response formats, such as the format of polytomously scored
items, is hampered by as yet unsolved numerical problems. The LM approach,
on the other hand, can be applied to most, if not all, of the commonly used
response formats. In fact, M. G. H. Jansen & Glas (2001) show how the test
can be applied to detect DIF in Rasch’s model for speed tests.

The final remark in this discussion concerns the question what to do if the
model does not hold. To make the discussion specific, assume that the RM
does not fit a data set consisting of responses to dichotomously scored items.
Several approaches to solving the problem are available. The first approach
to obtaining model fit is to remove persons or items from the data set that
have been flagged as misfits. In some instances this approach is appropriate
and well founded. Rasch (1960) (also see Fischer, 1995a) showed that the RM
can be derived from a measurement criterion known as specific objectivity.
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From that point of view, the RM plays an important role in psychological
research, where items can be selected to measure some theoretical construct.
In other situations, such as in much educational research, however, items and
sampled respondents cannot be discarded without threatening the validity of
the inferences made via IRT. This leads to the second approach to obtain
model fit: trying to find an IRT model that does fit. Several alternatives to
the RM are available. For instance, Glas (1992) and Béguin & Glas (2001)
suggest to divide the test into a number of unidimensional subscales and to
introduce the assumption that the ability parameters of the subscales have
a joint multivariate normal distribution. This is a special case of the model
defined by (3.22) in which each item loads on one of the ability dimensions
only. Further, the covariance matrix of the multivariate ability distribution
models the relation between the subscales. The advantage of this approach
is that the covariance between the ability dimensions provides information
about the structure of the test. On the other hand, it entails the introduction
of an assumption about the distribution of the ability parameters that may in
itself be another source of a model violation. Another approach, discussed by
Verhelst & Glas (1995), is to retain a unidimensional model but to introduce
positive integer scoring weights to the items. The model is a unidimensional
special case of the model defined in (3.1) in which the entries in the matrix A
consist of positive integers ai for all items i = 1, . . . , k. So the model has the
same functional form as the two-parameter logistic model (see, for instance,
Lord, 1980) except that the item-discrimination parameters are confined to
be positive integers. As can be verified in Section 3.5 of this chapter, this
approach supports CML estimation of the item parameters that do not rely
on any assumption about the ability distribution. The bottom line is that
several approaches to the choice of an alternative model in case of misfit are
open and the choice can best be made with the application in mind.
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4.1 Introduction

Since Rasch’s introduction of his item response models (Rasch, 1960), there
has been a proliferation of extensions and alternatives, each of which has a
different name and different matching software package. As Adams, Wilson,
& Wang (1997) pointed out, the proliferation of models has, in some ways,
been a hindrance to practitioners. This paper presents a generalized item
response model that provides a unifying framework for a large class of Rasch-
type models. The advantages of a single framework include mathematical
elegance, generality in a single software package, and a facilitation of the
development, testing, and comparison of new models. The unified model is a
multidimensional item response model, the specification of which is achieved
through the use of design matrices chosen to represent the parametrization of
the model. In the paper we discuss the estimation of the parameters of the
model, the testing of model fit, and we illustrate how standard models (such
as the simple logistic, the rating scale, and facets models) and alternative
user-defined models are specified.

Over the past 30 years, a proliferation of item response models has
emerged. In the logistic item response model family, notably, the simple logis-
tic model (Rasch, 1980), the partial-credit model (Masters, 1982), the rating-
scale model (Andrich, 1978), the facets model (Linacre, 1989), and the linear
logistic model (Fischer, 1973) have all played an important role in the analysis
of item response data. Typically, the development of the estimation procedures
of parameters for each item response model was specific to the model, as was
the development of dedicated software programs for each model. Surveying the
family of RMs, Adams & Wilson (1996) developed a unified approach to spec-
ifying the models and then consequentially estimating the parameters. There
are at least two advantages to developing one single framework to encompass
a family of models. First, the development of the estimation procedures and
associated software for the implementation of the models can be streamlined
within a single framework of models. That is, one needs to develop only one
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set of estimation procedures and one software program to carry out the es-
timation of the parameters in the models. Second, a generalized framework
provides an opportunity for the development of new models that fit in the
framework. This allows for the flexible application of item response models to
suit users’ requirements.

This paper describes a generalized framework for specifying a family of
logistic item response models through the specification of design matrices.
The estimation procedures are also described. The idea of the use of design
matrices is extended to the construction of a family of goodness-of-fit tests.
Flexibility in the construction of fit tests allows the users to target specific
hypotheses regarding the fit of the items to the model, such as the violation
of local independence between subsets of items.

4.2 The Mixed-Coefficients Multinomial Logit Model

The mixed-coefficients multinomial logit model (MCML) is a categorical re-
sponse model, and in most applications, the response patterns to a set of
test items (the categorical outcomes) are modeled as the dependent variable.
Under the model, the response patterns are predicted by logistic regression,
where the independent variables are item difficulty and person abilities.1

The model is referred to as a mixed-coefficients model because items are
described by a fixed set of unknown parameters, ξ, while the student ability
(the latent variable), θ, is a random effect.

The model is specified as follows. Assume that there are I items and they
are indexed i = 1, . . . , I with each item admitting Ki + 1 response categories
indexed k = 0, 1, . . . ,Ki. That is, a response to item i by a student can be
allocated to one of Ki + 1 response categories. The vector-valued random
variable Xi = (Xi1, Xi2, . . . , XiKi

)T
, where for k = 1, . . . ,Ki,

Xik =
{

1 if response to item i is in category k,
0 otherwise, (4.1)

is used to indicate the Ki + 1 possible responses to item i. A vector
of zeros denotes a response in category zero, making the zero category a
reference category, which is necessary for model identification. Using this as
the reference category is arbitrary, and does not affect the generality of the
model.

Each Xi consists of a sequence of 0’s and possibly one 1, indicating the
student’s response category for that item. For example, if the response cate-
gory is 0 for an item with four categories (0, 1, 2, 3), then XT

i = (0, 0, 0). If
the response category is 2, then XT

i = (0, 1, 0).

1 Throughout this article the term “ability” is used as a generic placeholder to refer
to the latent variable being measured. The term “difficulty” refers to parameters
that characterize the items.
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The Xi can also be collected together into the single vector XT =(
XT

1 ,XT
2 , . . . ,XT

I

)
, called the response vector. Particular instances of each

of these random variables are indicated by their lowercase equivalents, x, xi,
and xik.

Items are described through a vector ξT = (ξ1, ξ2, . . . , ξp), of p pa-
rameters. Linear combinations of these are used in the response probabil-
ity model to describe the empirical characteristics of the response cate-
gories of each item. These linear combinations are defined by design vectors
aik (i = 1, . . . , I; k = 1, . . .Ki), each of length p, which can be collected to
form a design matrix AT = (a11,a12, . . . ,a1K1 ,a21, . . . ,a2K2 , . . . ,aIKI

).
The multidimensional form of the model assumes that a set of D traits un-

derlies the individuals’ responses. The D latent traits define a D-dimensional
latent space. The vector θθθ = (θ1, θ2, . . . , θD)T represents an individual’s posi-
tion in the D-dimensional latent space.

The model also introduces a scoring function that allows the specification
of the score or performance level assigned to each possible response category
to each item. To do so, the notion of a response score bikd is introduced, which
gives the performance level of an observed response in category k, item i, di-
mension d. The scores across D dimensions can be collected into a column
vector bik = (bik1, bik2, . . . , bikD)T , and again collected into the scoring sub-
matrix for item i, Bi = (bi1,bi2, . . . ,biki)

T and then into a scoring matrix
B =

(
BT

1 ,BT
2 , . . . ,BT

I

)T for the entire test. (The score for a response in the
zero category is zero, but other responses may also be scored zero.)

The regression of the response vector on the item and person parameters
is

f (x; ξ|θ) = Ψ (θ, ξ) exp
[
xT (Bθ + Aξ)

]
, (4.2)

with

Ψ (θ, ξ) =

{∑
z∈Ω

exp
[
zT (Bθ + Aξ)

]}−1

, (4.3)

where Ω is the set of all possible response vectors.

4.2.1 Simple Logistic Model (SLM) Example

Equations (4.2) and (4.3) can be illustrated with some simple cases. Consider
a simple logistic model for dichotomous data. This model would normally be
written (in the notation of Wright & Stone, 1979) as

Pr (Xi1 = 1, δi|θ) =
exp (θ + δi)

1 + exp (θ + δi)
. (4.4)

For three dichotomous items, the probability of the response vector, xT =
(x11, x21, x31), is then
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Pr (X = x, δ1, δ2, δ3|θ) =
3∏

i=1

exp {xi1 (θ + δi)}
1 + exp (θ + δi)

=
exp
{

3∑
i=1

xi1 (θ + δi)
}

3∏
i=1

{1 + exp (θ + δi)}
(4.5)

=
exp (rθ + x11δ1 + x21δ2 + x31δ3)

D
,

where

D = 1 + exp (θ + δ1) + exp (θ + δ2) + exp (θ + δ3)
+ exp (2θ + δ1 + δ2) + exp (2θ + δ2 + δ3)
+ exp (2θ + δ1 + δ3) + exp (3θ + δ1 + δ2 + δ3) ,

and

r =
3∑

i=1

xi1.

To show how (4.2) and (4.5) can be made equivalent, consider the following
choices of A, B and ξ:

A =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ , B =

⎡
⎣ 1

1
1

⎤
⎦ , and ξ =

⎡
⎣ δ1

δ2
δ3

⎤
⎦ , (4.6)

where the first row of A corresponds to item one category one; the second row
corresponds to item two category one; the third row corresponds to item three
category one. The rows of B correspond to the same item and category as for
the rows of A. The elements of ξ correspond to the item difficulty parameters
of items one to three respectively. Note that with three dichotomous items
there are eight different response patterns.

4.2.2 Partial-Credit Example

As a second example, consider a partial-credit item with three categories: 0,
1, and 2. Using the notation of Wright & Masters (1982), (4.2) and (4.3) can
be written as

Pr
(
XT

i = (0, 0) ; δi1, δi2|θ
)

= Pr (category 0;A,B, ξ|θ)

=
1

1 + exp (θ + δi1) + exp (2θ + δi1 + δi2)
,
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Pr
(
XT

i = (1, 0) ; δi1, δi2|θ
)

= Pr (category 1;A,B, ξ|θ)

=
exp (θ + δi1)

1 + exp (θ + δi1) + exp (2θ + δi1 + δi2)
, (4.7)

Pr
(
XT

i = (0, 1) ; δi1, δi2|θ
)

= Pr (category 2;A,B, ξ|θ)

=
exp (2θ + δi1 + δi2)

1 + exp (θ + δi1) + exp (2θ + δi1 + δi2)
.

For two three-category partial-credit items, the probability of the response
vector x is then

Pr (X = x; δ11, δ12, δ21, δ22|θ) =
2∏

i=1

exp
(

siθ +
si∑

k=1
δik

)
1 + exp (θ + δi1) + exp (2θ + δi1 + δi2)

, (4.8)

where si is the observed response category for item i and
0∑

i=1
u ≡ 0 for all

possible values of u.
To show how (4.2) and (4.8) can be made equivalent, consider the following

choices of A, B, and ξ:

A =

⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
0 0 1 0
0 0 1 1

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

1
2
1
2

⎤
⎥⎥⎦ , and ξ =

⎡
⎢⎢⎣

δ11
δ12
δ21
δ22

⎤
⎥⎥⎦ , (4.9)

where the first row of A corresponds to item one category one; the second
row corresponds to item one category two; the third row corresponds to item
two category one; and the fourth row corresponds to item two category two.
The same row referencing applies to the matrix B.

4.2.3 Facet Example

Consider an example of a facets model (Linacre, 1989) in which there are three
raters, each rater rating the same two dichotomous items. This is modeled as
six generalized items. A generalized item is defined for each of the possible
combinations of a rater and an actual item. Generalized item one is the re-
sponse category given by rater one on item one. Generalized item two is the
response category given by rater one on item two, and so on. The following
choices of A, B, and ξ will give this facets model:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0
1 0 0 0 1
0 1 0 1 0
0 1 0 0 1
0 0 1 1 0
0 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎦

, and ξ =

⎡
⎢⎢⎢⎢⎣

ρ1
ρ2
ρ3
δ1
δ2

⎤
⎥⎥⎥⎥⎦ , (4.10)
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where the first row of A corresponds to category one of generalized item one
(rater one, item one); the second row corresponds to category one of general-
ized item two (rater one, item two); the third row corresponds to category one
of generalized item three (rater two, item one); the fourth row corresponds to
category one of generalized item four (rater two, item two), and so on. The
same row referencing applies to the matrix B. The first three elements (ρ1,
ρ2, ρ3) of ξ are the severity parameters of raters one to three respectively.
The fourth and fifth element, (δ1, δ2) of ξ are the item-difficulty parameters
for the two dichotomous items.

4.2.4 Multidimensional Examples

Finally, Figure 4.1 shows two possible multidimensional models: a between-
item multidimensionality model and a within-item multidimensionality model
(Adams, Wilson, & Wang, 1997). In each case, a hypothetical nine-item test is
considered. In the between-item multidimensional case (the left-hand side of
Figure 4.1), each item is associated with a single dimension, but the collection
of items covers three dimensions: three items are associated with each of the
three latent dimensions. In the within-item case (the right-hand side of Figure
4.1), some items are associated with more than one dimension. For example,
item two is associated with both dimensions one and two.

1

8
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3

2 1

3

2

ITEMS LA TENT 
 DIMENSIONS 

9

7

6

4

1

3

2

1

9

8

7

6

5

4

3

2

ITEMS LA TENT 
 DIMENSIONS 

Between- item
Multidimensionality

Within -item 
Multidimensionality

Fig. 4.1. Between- and within-item multidimensionality
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If the items shown in Figure 4.1 are all dichotomous, then the matrices A,
B, and ξ, as given in (4.11) and (4.12), if substituted into (4.2), will yield the
between- and within-item multidimensional models respectively as shown in
Figure 4.1.

Note that the only difference between (4.11) and (4.12) is the B matrix.
This matrix is called the score matrix and is used to indicate the scores of the
items on each of the three dimensions. Note also that the B matrices (4.11)
and (4.12) have three columns, one for each of the three dimensions that are
modeled:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and ξ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ1

δ2

δ3

δ4

δ5

δ6

δ7

δ8

δ9

,

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.11)

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
1 1 0
1 0 1
1 1 0
0 1 0
0 1 0
1 1 1
0 0 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and ξ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ1

δ2

δ3

δ4

δ5

δ6

δ7

δ8

δ9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.12)

4.2.5 The Population Model

The item response model (4.2) is a conditional model, in the sense that it
describes the process of generating item responses conditional on the latent
variable, θθθ. The complete definition of the model, therefore, requires the spec-
ification of a density, fθθθ (θθθ;ααα), for the latent variable, θθθ. Let ααα symbolize a
set of parameters that characterize the distribution of θ. The most common
practice in specifying unidimensional marginal item response models is to as-
sume that students have been sampled from a normal population with mean
µ and variance σ2. That is,

fθ (θ;α) ≡ fθ

(
θ;µ, σ2) =

(
2πσ2)− 1

2 exp

[
− (θ − µ)2

2σ2

]
, (4.13)

or equivalently θ = µ + E, where E ∼ N
(
0, σ2

)
.

Adams, Wilson, & Wu (1997) discuss how a natural extension of (4.13) is
to replace the mean, µ, with the regression model, YT

n β where Yn is a vector
of u fixed and known values for student n, and β is the corresponding vector
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of regression coefficients. For example, Yn could be constituted of student
variables such as gender or socioeconomic status. Then the population model
for student n becomes,

θθθn = YT
n β + En, (4.14)

where the En are assumed to be independently and identically normally dis-
tributed with mean zero and variance σ2, so that (4.13) can be generalized
to

fθθθ

(
θθθn;Yn, β, σ2) =

(
2πσ2)− 1

2 exp
[
− 1

2σ2

(
θθθn − YT

n β
)T (

θθθn − YT
n β
)]

,

(4.15)

a normal distribution with mean YT
n β and variance σ2. The generalization

needs to be taken one step further to apply it to the vector-valued θθθ (of length
d) rather than the scalar-valued θθθ. The extension results in the multivariate
population model

fθθθ (θθθn;Wn, γ,Σ) = (2π)− d
2 |Σ|− 1

2 (4.16)

exp
[
−1

2
(θθθn − γWn)T

Σ−1 (θθθn − γWn)
]
,

where γ is a d×u matrix of regression coefficients, a d×d variance–covariance
matrix Σ, and Wn is a u×1 vector of fixed variables.

While in most cases, the multivariate normal distribution (4.16) is assumed
as the population distribution, other forms of the population distribution can
also be considered. For example, Adams, Wilson, & Wang (1997) considered a
step distribution defined on a prespecified set of nodes. They argued that this
could be used as an opportunity to approximate an arbitrary continuous-trait
distribution.

4.2.6 Combined Model

The conditional item response model (4.2) and the population model (4.16)
are combined to obtain the unconditional, or marginal, item response model:

fx (x; ξ, γ,Σ) =
∫
θ

fx (x; ξ|θ) fθ (θ; γ,Σ) dθ. (4.17)

It is important to recognize that under this model, the locations of individuals
on the latent variables are not estimated. The parameters of the model are
γ, Σ, and ξ, where γ, Σ are the population parameters and ξ are the item
parameters.
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4.3 Identification

For the purposes of the identification of (4.17), certain constraints must be
placed on the design matrices A and B.2 Volodin & Adams (1995) show that
the following are necessary and sufficient conditions for the identification of
(4.17).

Proposition One: If D is the number of latent dimensions, P is the length
of the parameter vector ξ, Ki +1 is the number of response categories for item
i, and K =

∑
i∈I Ki, then model (4.17), if applied to the set of items I, can

be identified only if P + D � K.
Proposition Two: If D is the number of latent dimensions and P is the

length of the parameter vector ξ, then model (4.17) can only be identified if
rank(A) = P , rank(B) = D and rank([BA]) = P + D.

Proposition Three: If D is the number of latent dimensions, P is the length
of the parameter vector ξ, Ki +1 is the number of response categories for item
i, and K =

∑
i∈I Ki, then model (4.17), if applied to the set of items I, can

be identified only if and only if rank([BA]) = P + D � K.

4.4 Estimation

In the following section, a maximum likelihood approach to estimating the
parameters is sketched (Adams, Wilson, & Wu, 1997), and the possibility of
using a conditional maximum likelihood (Andersen, 1970) approach is dis-
cussed.

4.4.1 Maximum Likelihood

The maximum likelihood approach to estimating the parameters of (4.17)
proceeds as follows. Let xn be the response pattern of person n and assume
independent observations are made for n = 1, . . . , N persons.3 It follows that
the likelihood for the N sampled students is

Λ =
N∏

n=1

fx (xn; ξ, γ,Σ). (4.18)

Differentiating with respect to each of the parameters and defining the
marginal posterior as

hθ (θn;Wn, ξ, γ,Σ|xn) =
fx (xn; ξ|θn) fθ (θn;Wn, γ,Σ)

fx (xn;Wn, ξ, γ,Σ)
, (4.19)

2 In fact, the design matrices as used in the examples do not yield identified models.
3 For notational convenience, the symbol xn is used here to denote the full response

pattern for person n, and not just the response vector for a particular item as
defined in (4.1).
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the following system of likelihood equations is derived (see Adams, Wilson, &
Wu, 1997):

AT
N∑

n=1

⎡
⎣xn −

∫
θn

Ez (z|θn) hθ (θn;Yn, ξ, γ,Σ|xn) dθn

⎤
⎦ = 0, (4.20)

γ̂ =

(
N∑

n=1

θnWT
n

)(
N∑

n=1

WnWT
n

)−1

, (4.21)

Σ̂ =
1
N

N∑
n=1

∫
θn

(θn − γWn) (θn − γWn)T
hθ (θn;Yn, ξ, γ,Σ|xn)dθn, (4.22)

where

Ez (z|θn) = Ψ (θn, ξ)
∑
z∈Ω

z exp
[
zT (bθn + Aξ)

]
(4.23)

and

θ̄n =
∫
θn

θnhθ (θn;Yn, ξ, γ,Σ|xn) dθn. (4.24)

The system of equations is solved using an EM algorithm (Dempster et
al., 1977) following the approach of Bock & Aitkin (1981).

Quadrature and Monte Carlo Approximations

The integrals in (4.20) to (4.24) are approximated numerically using either
quadrature or Monte Carlo methods. Each case proceeds by defining (Θq),
q = 1, . . . , Q , a set of Q D-dimensional vectors (referred to as nodes), and for
each node defining a corresponding weight (Wq(γ,Σ)). The vector response
probability (4.17) is then approximated using

fx (x; ξ, γ,Σ) =
Q∑

p=1

fx (x; ξ|Θp) Wp (γ,Σ) , (4.25)

and the marginal posterior (4.18) is approximated using

hΘ (Θq;Wn, ξ, γ,Σ|xn) =
fx (xn; ξ|Θq) Wq (γ,Σ)

Q∑
p=1

fx (xn; ξ|Θp)Wp (γ,Σ)
(4.26)
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for q=1,. . . ,Q.
The EM algorithm then proceeds as follows:
Step 1. Prepare a set of nodes and weights depending upon γ(t) and Σ(t),

which are the estimates of γ and Σ at iteration t.
Step 2. Calculate the discrete approximation of the marginal posterior

density of θn, given xn at iteration t, using

hΘ

(
Θq;Wn, ξ

(t), γ(t), Σ(t)|xn

)
=

fx
(
xn; ξ(t)|Θq

)
Wq

(
γ(t), Σ(t)

)
Q∑

p=1
fx
(
xn; ξ(t)|Θp

)
Wp

(
γ(t), Σ(t)

) ,
(4.27)

where ξ(t), γ(t), and Σ(t) are estimates of ξ(t), γ(t), and Σ(t) at iteration t.
Step 3. Use the Newton–Raphson method to solve the following to produce

estimates of ξ̂(t+1):

A′
N∑

n=1

[
xn −

Q∑
r=1

Ez (z|Θr) hΘ

(
Θr;Wn, ξ

(t), γ(t), Σ(t)|xn

)]
= 0 . (4.28)

Step 4. Estimate γ(t+1) and Σ(t+1), using

γ̂(t+1) =

(
N∑

n=1

ΘnWT
n

)(
N∑

n=1

WnWT
n

)−1

(4.29)

and

Σ̂(t+1) =
1
N

N∑
n=1

Q∑
r=1

(
Θr − γ(t+1)Wn

)
(
Θr − γ(t+1)Wn

)T

hΘ

(
Θr;Yn, ξ

(t), γ(t), Σ(t)|xn

)
,

(4.30)

where

Θ̄n =
Q∑

r=1

Θr hΘ

(
Θr;Wn, ξ

(t), γ(t), Σ(t)|xn

)
. (4.31)

Step 5. Return to step 1.
The difference between the quadrature and Monte Carlo methods lies in

the way the nodes and weights are prepared. For the quadrature case, begin by
choosing a fixed set of Q points, (Qd1, Qd2, . . . , QdQ), for each latent dimension
d and then define a set of QD nodes that are indexed r = 1, . . . , QD and are
given by the Cartesian coordinates

Qr = (Q1j1 , Q2j2 , . . . , Qdjd
) with j1 = 1, . . . , Q; j2 = 1, . . . , Q; . . . ; jd = 1, . . . , Q.
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The weights are then chosen to approximate the continuous multivariate latent
population density (4.16). That is,

Wr = K (2π)−d/2 |Σ|−1/2 exp
[
−1

2
(Θr − γWn)′

Σ−1 (Θr − γWn)
]

, (4.32)

where K is a scaling factor to ensure that the sum of the weights is 1.
In the Monte Carlo case, the nodes are drawn at random from the stan-

dard multivariate normal distribution; and at each iteration, the nodes are
rotated, using standard methods, so that they become random draws from a
multivariate normal distribution with mean γWn and covariance Σ. In the
Monte Carlo case, the weight for all nodes is 1/Q.

For further information on the quadrature approach to estimating the
model, see Adams, Wilson, & Wang (1997); and for further information on
the Monte Carlo estimation method, see Volodin & Adams (1995).

4.4.2 Conditional Maximum Likelihood

The first step in the derivation of the conditional maximum likelihood (CML)
estimators is to compute the probability of a response pattern conditional on
that pattern yielding a specific score. More formally, let R be a vector-valued
random variable that is the vector of scores of a response pattern. Then a
realization of this variable is r = x

T

B, where xT and B are as defined in
(4.2), and the probability of a response pattern conditional on R taking the
value r is given by

f (x; ξ, γ,Σ|R = r) =
f (x;ξ,γ,Σ,R = r)∑

z∈Ωr

f (z;ξ,γ,Σ,R = r)

=
∫

fx (x; ξ,R = r|θ) fθ (θ; γ,Σ) dθ∑
z∈Ωr

∫
fx (z; ξ,R = r|θ) fθ (θ; γ,Σ) dθ

(4.33)

=

∫
Ψ (θ, ξ) exp

(
rθ + xT Aξ

)
fθ (θ; γ,Σ) dθ∑

z∈Ωr

∫
Ψ (θ, ξ) exp (rθ + zT Aξ) fθ (θ; γ,Σ) dθ

=
exp
(
xT Aξ

) ∫
Ψ (θ, ξ) exp (rθ) fθ (θ; γ,Σ) dθ∑

z∈Ωr

exp (zT Aξ)
∫

Ψ (θ, ξ) exp (rθ) fθ (θ; γ,Σ) dθ

=
exp
(
xT Aξ

)∑
z∈Ωr

exp (zT Aξ)
,

where Ωr is the set of response patterns where the vector of scores is r.
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Equation (4.33) shows that the probability of a response pattern condi-
tional on R taking the value r is not dependent on the ability θ or its distri-
bution. The consequential advantage of the CML approach is that it provides
the same estimates for the item parameters regardless of the choice of the
population distribution. As such, the CML item parameter estimator is not
influenced by any assumption about the population distribution. The disad-
vantage is that the population parameters are not estimated. If, as is often
the case, the population parameters are of interest, they must be estimated
in a second step. The second step involves solving the system of equations
(4.21) and (4.22) while assuming that the item parameters are known. Apart
from underestimating the uncertainty in the population parameter estimates,
the consequences of using the CML item-parameter estimates, in this second
step, as if they were true values, are not clear.

In contrast, the maximum likelihood approach provides direct estimates
of both item parameters and population parameters. However, it suffers from
the risk that if the population distributional assumption is incorrect, the item
parameters may be biased.

4.4.3 Estimating Standard Errors

Asymptotic standard errors for the parameter estimates are estimated using
the observed Fisher’s information. For the unidimensional case, a derivation
of the formulae for the observed information is provided in Adams, Wilson,
& Wu (1997).

The estimation of asymptotic standard errors using the observed informa-
tion can be very time-consuming. The matrix that is computed is of dimension
p + r+2, where p is the number of item parameters and r is the number of
regression variables; and the computation of each element requires integra-
tion over the posterior distribution of each case. The time taken is therefore
quadratic in the number of parameters and linear in the number of cases and
nodes. Because the estimation of these errors can take considerable time, the
following approximations for the error variances are often used:

var
(
ξ̂i

)
=

N∑
n=1

⎧⎨
⎩diag

⎡
⎣A′

⎛
⎝∫

θn

Ez (zz′|θn)hθ

(
θn;Yn, ξ̂, β̂, σ̂2|xn

)
dθn

−
∫
θn

Ez (z|θn)Ez (z′|θn)hθ

(
θn;Yn, ξ̂, β̂, σ̂2|xn

)
dθn

⎞
⎠A

⎤
⎦
⎫⎬
⎭

−1

,

(4.34)

var
(
β̂i

)
= σ̂2

(
N∑

n=1

YnYT
n

)−1

, (4.35)
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var
(
σ̂2) =

2σ̂4

N
. (4.36)

These approximations ignore all of the covariances in the parameter estimates.
The approximations of the item parameters will generally underestimate the
sampling error, particularly for parameters associated with facets that have
few levels for the step parameters in multicategory items. The accuracy of
(4.35) and (4.36) depends on the magnitude of the measurement error, since
it is reflected in the variances of the individual’s posterior distributions.

4.4.4 Latent Ability Estimation and Prediction

The marginal item response model (4.17) does not include parameters for
the latent values θn; and hence the estimation algorithm does not result in
estimates of the latent values for persons. While this may not be of concern
when the modeling is undertaken for the purposes of estimating population
parameters, that is, the elements of γ and Σ, it does cause inconveniences
when there is an interest in estimates of the latent values for individuals.

There are a number of standard approaches that can be applied to pro-
vide estimates, or perhaps, more accurately, predictions, of the latent values.
Perhaps the most common approach is to use expectation of the posterior
distribution of θn, the so-called expected a posteriori (EAP) (Bock & Aitkin,
1981). The EAP prediction of the latent quantity for case n is

θEAP
n =

Q∑
r=1

Θr hΘ

(
Θr;Wn, ξ̂, γ̂, Σ̂|xn

)
. (4.37)

Variance estimates for these predictions can be estimated using

var
(
θEAP

n

)
=

Q∑
r=1

(
Θr − θEAP

n

) (
Θr − θEAP

n

)′
hΘ

(
Θr;Wn, ξ̂, γ̂, Σ̂|xn

)
.

(4.38)
An alternative to the EAP is the maximum a posteriori (MAP) (Bock &
Aitkin, 1981), which requires finding the modes, rather than the expectations
(means), of the posterior distributions.

A maximum likelihood approach to the estimation of the ability estimates
can also be used. Following the weighted likelihood approach of Warm (1985,
1989), this is achieved by solving the equations

∑
i∈Ω

⎛
⎜⎜⎜⎝
(
bixni

+
Jni

2Ini

)
−

Ki∑
j=1

bij exp
(
bijθn + a′

ij ξ̂
)

Ki∑
k=1

exp
(
bikθn + a′

ik ξ̂
)
⎞
⎟⎟⎟⎠ = 0 (4.39)
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for each case, where ξ̂ is the vector of item parameter estimates, Ini is the
information function evaluated for item i, and Jni is the derivative of Ini with
respect to θn. These equations can be readily solved using a routine based on
the Newton–Raphson method.

Drawing Plausible Values

The model presented in (4.17) provides estimates of the γ and Σ parameters
of the population, but of course there are many other characteristics of the
population that may be of interest. In most measurement applications, these
parameters would be estimated from point estimates of the θn parameters.
It is well known, however, that the use of point estimates such as the EAP,
MLE, and WLE in a two-step approach to estimating population parameters
is fraught with challenges.

As an alternative to using point estimates, Mislevy (see Mislevy, 1991,
and Mislevy, Beaton, et al., 1992) proposed an approach based on the use of
random draws from the marginal posterior, (4.19), for each student. These
random draws have become widely known as plausible values.

The following describes a method for drawing plausible values from the
posterior distributions. Unlike previously described methods for drawing plau-
sible values (Beaton, 1987; Mislevy, Beaton, et al., 1992), the method de-
scribed here does not assume normality of the marginal posterior distribu-
tions. Recall from (4.19) that the marginal posterior is given by

hθ (θn;Wn, ξ, γ,Σ|xn) =
fx (xn; ξ|θn) fθ (θn;Wn, γ,Σ)∫
θ

fx (x; ξ|θ) fθ (θ;Wn, γ,Σ) dθ
. (4.40)

First draw M vector-valued random deviates, {jmn}M
m=1, from the multivari-

ate normal distribution, fθ (θn;Wn, γ,Σ), for each case n. These vectors are
used to compute an approximation to the integral in the denominator of (4.40),
using the Monte Carlo integration

∫
θ

fx (x; ξ|θ) fθ (θ, ;Wn, γ,Σ) dθ ≈ 1
M

M∑
m=1

fx(x; ξ|ϕmn) ≡ � . (4.41)

At the same time, the values

pmn = fx (xn; ξ|ϕmn) fθ (ϕmn;Wn, γ,Σ) (4.42)

are calculated, and the set of pairs (ϕmn, pmn/�)M
m=1 is obtained. This set of

pairs can be used as an approximation of the posterior density (4.34); and the
probability that ϕnj could be drawn from this density is given by

qnj =
pmn

M∑
m=1

pmn

. (4.43)
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At this point, L uniformly distributed random numbers, {ηi}L
i=1, are generated

and for each random draw, the vector, ϕni0 , that satisfies the condition

i0−1∑
s=1

qsn < ηi �
i0∑

s=1

qsn (4.44)

is selected as a plausible vector.

4.5 Generalized Fit Test

A convenient way to assess the fit of the model is to follow the residual-based
approach of Wright & Stone (1979) and Wright & Masters (1982). Wu (1997)
extended this approach for application with the marginal model used here,
and more recently Adams & Wu (2004) generalized the approach so that a
range of tests of specific hypotheses could be tested.

If Ap is used to indicate the pth column of the design matrix A, the Wu
fit statistic is based on the standardized residual

znp (θn) =
(
AT

p xn − Enp

)/√
Vnp , (4.45)

where AT
p xn is the contribution of person n to the sufficient statistic for

parameter p, and Enp and Vnp are, respectively, the conditional expectation
and the variance of AT

p xn.
To construct an unweighted fit statistic,4 the square of this residual is aver-

aged over the cases and then integrated over the posterior ability distributions
to obtain

Fitout,p =
∫
θ1

∫
θ2

. . .

∫
θN

[
1
N

N∑
n=1

ẑ2
np (θn)

]

N∏
n=1

hθ

(
θn;Yn, x̂, b̂, σ̂

2|xn

)
dθNdθN−1 · · · dθ1.

(4.46)

For the weighted fit,5 a weighted average of the squared residuals is used as
follows:

Fitin,p =
∫
θ1

∫
θ2

. . .

∫
θN

⎡
⎢⎢⎣

N∑
n=1

ẑ2
np (θn) Vnp (θn)

N∑
n=1

Vnp (θn)

⎤
⎥⎥⎦

N∏
n=1

hθ

(
θn;Yn, ξ̂, β̂, σ̂2|xn

)
dθNdθN−1 · · · dθ1.

(4.47)

4 Often referred to as outfit.
5 Often referred to as infit.
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It is convenient to use the Monte Carlo method to approximate the integrals in
(4.46) and (4.47). Wu (1997) has shown that the statistics produced by (4.46)
and (4.47) have approximate scaled chi-squared distributions. These statistics
are transformed to approximate normal deviates using the Wilson–Hilferty
transformations

tout,p =
(
Fit

1/3
out,p

− 1 + 2/(9rN)
)/

(2/(9rN))1/2 (4.48)

and

tin,p =
[
Fit

1/3
in,p

− 1
]

× 3√
Var (Fitin,p)

+

√
Var (Fitin,p)

3
, (4.49)

where r is the number of draws used in the Monte Carlo approximation of the
integrals in (4.40) and (4.41) and

Var(Fitin, p) =

⎛
⎝ 1∑

n
Vnp

⎞
⎠

2(∑
n

(
E
((

AT
p Xn − Enp

)4)− V 2
np

))
. (4.50)

The derivation and justification for these transformations is given in Wu
(1997).

The fit-testing approach described here works at the parameter level; that
is, it provides a fit statistic for each of the estimated item parameters. A more
general approach was introduced by Adams & Wu (2004), who suggested
that the matrix A that is used in (4.39) could be replaced with an alternative
matrix, F which they called a fit matrix.

Since the derivation of the fit statistics described in the previous section is
based on the comparison of a linear combination of item responses, AT

p xn, and
its expectation and variance, the fit statistics can be generalized to include
any linear combinations of the item responses, and not necessarily be limited
to AT

p xn, where Ap is the design vector for the parameter ξp. If Fu is any
vector of the same length as Ap, then FT

u xn is a linear combination of the
item responses of person n. One can compute the expectation and variance
of FT

u xn, and construct a fit statistic in exactly the same way as for AT
p xn.

The following is an example for constructing user-defined fit tests for a simple
dichotomous RM.

Consider a test consisting of 10 dichotomous items; the design matrix, A,
for the simple logistic model for such a test would be a 10 by 10 identity
matrix.

Using the notation defined earlier, the first column of A is AT
1 =(

1 0 0 0 0 0 0 0 0 0
)
. The product AT

1 xn gives the item response of person
n on item 1. This is the contribution of person n to the sufficient statistic for
the first item parameter.

Similarly, AT
2 =

(
0 1 0 0 0 0 0 0 0 0

)
, and AT

2 xn is the contribution of
person n to the sufficient statistic for the second item parameter, and so on.
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For a user-defined fit test, the design vector Ap can be replaced by any
arbitrary vector Fu. Consider the fit design matrix

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.51)

If F1 and F2 are the first and second columns of F, then the product FT
1 xn

gives the total score on the first five items for person n. Similarly, FT
2 xn gives

the total score on the last five items for person n.
Adams & Wu (2004) showed how the fit statistics based on F1 and F2

worked well as a test of the hypothesis that the first and second five items
were tapping into two different latent dimensions, whereas the fit tests given
in (4.46) and (4.47) failed to identify the multidimensionality of the test items.

As a second possible set of fit tests, consider the matrix in (4.52). A fit
test based on the first column of this matrix tests whether items one and six
are both answered correctly as often as would be expected under the model.
Similarly, the second column provides a test of whether items two and seven
are both answered correctly as often as would be expected under the model.
As such, these are tests of the local independence of items one and six, and
two and seven respectively.

The third column compares the score on the first five items with its expec-
tation, that is, whether the subtest consisting of the first five items fits with
the rest of the items as predicted by the model:

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
0 1 1
0 0 1
0 0 1
0 0 1
1 0 0
0 1 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.52)
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4.6 Conclusion

This paper has demonstrated the flexibility of using design matrices to specify
a family of item response models. Not only can standard item response models
such as the partial-credit, the rating-scale, and the facets models be included
under one single framework of models, but many other models can be specified
through user-defined design matrices.

The estimation procedures described in this paper allow for a joint (or
one-step) calibration of both item parameters and population parameters, as
opposed to a two-step process in which individual student abilities are first
estimated and then aggregated to form population parameter estimates. The
advantages of a joint calibration of parameters include more accurate standard
errors for the estimates of the population parameters and less bias of some
population parameter estimates.

Similarly, user-defined fit-design matrices allow for more focused testing of
goodness-of-fit of the data to the model. In many cases, such focused fit tests
are statistically more powerful in detecting misfit in the data.

However, the theoretical elegance of the use of design matrices can be over-
shadowed by the tediousness of the construction of these matrices in practice.
A software package, ConQuest (Wu et al., 1997), has been developed in which
users can specify various item response models through a command language.
The design matrices are then automatically built by ConQuest. ConQuest
also allows users to import a design matrix should the need arise. Thus the
advantages of a unified framework of item response models can be easily im-
plemented in practice for the analysis of a vast range of data sets.
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5.1 Introduction

In this chapter, Rasch models (RMs) are derived from a stochastic subject
model. Fixed-effects RMs are shown to be equivalent to loglinear models with
raw-score variables; random-effects RMs are equivalent to loglinear models
with latent class variables. Within the larger framework of loglinear models,
various extensions of the RM can be formulated. We discuss loglinear RMs
for polytomous items, loglinear multidimensional RMs, RMs violating mea-
surement invariance, mixture-distribution RMs, mixture-measurement RMs,
RMs in which item responses are conditionally dependent, and RMs with la-
tent responses. We also give some software scripts to compute ML estimates
and fit statistics.

In the early eighties, Mellenbergh and Vijn Mellenbergh & Vijn (1981)
recognized the connection between the Rasch model (RM) and the loglinear
model (LLM). They showed that an LLM for the item × raw-score × item
response contingency table yields the same model equations as the RM. The
model was later shown to yield unconditional maximum likelihood (UML) es-
timates for the parameters (Blackwood & Bradley, 1989). However, because
the cell entries of the table are not independent, the distribution is not multi-
nomial, so that the usual statistical theory does not hold for this model. Kel-
derman (1984) removed this dependence by specifying a quasi-independence
model for the incomplete item response 1 × . . .× item response I × raw-score
contingency table and showed that this model yields conditional maximum
likelihood (CML) estimates if the raw score is considered fixed.

This fixed-effects RM (FERM) can be extended with a multinomial prob-
ability distribution for the raw scores. This random-effects-of-raw-scores RM
model is known as the extended RM (ERM) (Cressie & Holland, 1983; Dun-
can, 1984; Duncan & Stenbeck, 1987; Tjur, 1982). However, the model is not
necessarily consistent with a model with an underlying latent-trait distribu-
tion. For the case of the dichotomous RM, Cressie & Holland (1983) and Hout
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et al. (1987) have shown that they are equivalent if the raw-score distribu-
tion satisfies a complex set of inequality constraints on its moments. These
constraints are violated if there are gross differences in the probabilities of
consecutive raw-score values. So, to be consistent with an underlying latent
trait, the raw-score distribution should be smooth.

The FERM is a fixed-effects model and thus in line with Rasch’s original
intentions to have a model for individual measurement. However, the (F)ERM
has the disadvantage that for complicated RMs, the number of fixed raw-score
parameters quickly becomes very large. Models in which the latent trait is as-
sumed to follow a parametric distribution, on the other hand, have many fewer
parameters to be estimated. For example, a simple fixed-effects (F)ERM for 40
dichotomous items produces 41 raw-score categories with corresponding fixed
parameters, whereas a random-effects RM in which the subjects’ latent-trait
values are assumed to follow a normal distribution has only two parameters:
the mean and the variance. Heinen (1993; 1996) formulated such a random-
effects RM as an LLM including discrete latent variables (latent classes). In
Heinen’s models the continuous latent trait variable is approximated by a la-
tent class variable. If this latent variable approximates a normal distribution,
Heinen’s method is equivalent to the marginal maximum likelihood estimation
method (Bock & Aitkin, 1981; Rigdon & Tsutakawa, 1983; Thissen, 1982).

Unfortunately, in test-construction research, random samples from a well-
defined population are rare, and it is not always defensible that the sample
comes from some synthetic population that follows a normal distribution. One
solution to this problem is to specify a nonparametric distribution for the
latent trait. As Follmann (1988) and Leeuw & Verhelst (1986) have shown,
such a model is asymptotically equivalent to the ERM. Another solution is
to specify a normal mixture distribution for the latent trait. See for example
Kreiner’s chapter in this volume. The methodology developed by Vermunt is
flexible enough to deal with these cases as well.

In what follows we review the theory of LLMs and derive fixed-effects and
random-effects RMs as LLMs. The models are then generalized and extended.
Because the computer programs LOGIMO or LEM contain algorithms that
can handle LLMs for real-sized tests, we have limited our discussion to the type
of models that can easily be specified within these programs. The examples
are rather small, but the scripts we give can, with some slight modifications,
be used for longer tests.

5.2 Loglinear Models

Loglinear models (Agresti, 1990) are models for a set H of discrete vari-
ables. A single variable h ∈ H can take possible values zh ∈ MZh

. Sim-
ilarly, a subset a ⊆ H of variables h ∈ a can take a vector of val-
ues za ∈ Mza . The vector z ∈ M denotes a joint value of all variables
in H. Thus, M = {z} defines the full contingency table with cells z.
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For example, if H = {1, 2, 3} and a = {1, 2}, we have z = (z1, z2, z3)′

and za = (z1, z2)′. If z1, z2, and z3 can each take values 1, 2, we have
MZ1 = MZ2 = MZ3 = {1, 2}, Mza = {(1, 1), (1, 2), (2, 1), (2, 2)}, and
M = {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)}.

The counts in the cell z and in marginal cell za are written as fz and fza

respectively. See Table 5.1 for an example. Marginal counts fza can be ob-
tained by summing the counts in the full contingency table over the variables,
b = H\a, that are not in the marginal table, that is,

fza =
∑

zb∈Mzb

fza,zb
=
∑
zb

fz.

The variables in H may be random or fixed. Let P (za | zb) denote the con-
ditional probability that the random variable Za takes the value za given fixed
variables zb. The expected counts under this probability model are denoted
by Fz, which, from elementary theory of expectations, are equal to

Fz = E(fz) = fzb
P (za | zb). (5.1)

Loglinear models further parametrize the logarithm of the expected counts
as a sum of a set K of model terms k:

logFz =
∑
k∈K

qk(z)φk, (5.2)

where φk is a model parameter and qk(z) the corresponding weight. If qk(z)
depends on one or more random variables, it generates a random variable and
its corresponding parameter φk is random; if not, qk(z) and φk are considered
fixed. “Fixed” parameters correspond to fixed variables but are functions of
the random parameters. They ensure that fzb

= Fzb
in (5.1). It is easily seen

that this is the case, because P (za | zb) sums to one over za for all zb. Thus,
fixed parameters are related to proportionality constants. Let φr denote the
vector of random parameters in φ = (φk; k ∈ K).

If the response vectors za are independently drawn given zb, the probability
of the data is equal to the product of the (conditional) probabilities of each
of the observed response vectors. The likelihood function L expresses this
probability as a function of the parameters φr = (φk; k ∈ r):

L(φr) =
∏

zb∈Mzb

fzb
!∏

za∈Mza
fza,zb

!

∏
za∈Mza

P (za | zb; φr)
fza,zb .

The kernel of the likelihood is that part of the likelihood that depends on the
parameters φ. Taking the logarithm, this kernel can be written as

� =
∑
z∈M

fz logFz =
∑
k∈K

∑
z∈M

fzqk(z)φk =
∑
k∈K

f (k)φk, (5.3)
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where f (k) =
∑

z∈M qk(z)fz. If all variables are observed, the maximum like-
lihood estimates φ̂r of the parameters can be obtained by solving

max
φr

�

and computing the fixed parameters φ̂K\r from φ̂r. For (5.3), � has a unique
maximum, so we can obtain the maximum likelihood estimates at the point
where the likelihood neither increases nor decreases, that is, for

∂�

∂φ r

= 0, (5.4)

from which the equations

f (k) = F (k), k ∈ K, (5.5)

can be derived. Solving (5.5) for φ yields the maximum likelihood estimates φ̂
of the loglinear parameters. The solution can be obtained with some numeri-
cal algorithm such as iterative proportional fitting (IPF; Deming & Stephan,
1940) or the Newton–Raphson (NERA) algorithm or modifications thereof.
Note that the estimation equations (5.5) are the same whether the param-
eters are fixed or random. Therefore, the maximum likelihood estimates of
the random parameters are not affected by the probability model. However,
it does affect their variances.

The parameter estimates φ̂r have an asymptotic normal distribution with
mean φr and covariance matrix equal to the negative expectation of the matrix
of second derivatives,

−E

(
∂2�

∂φr∂φT
r

)
,

of which an estimate can be obtained using φ̂r for φr.
Overall goodness-of-fit tests for this model are the Pearson statistic

X2 =
∑
z∈M

(fz − F̂z)2

F̂z
(5.6)

and the likelihood ratio statistic

G2 = 2
∑
z∈M

fz log
fz

F̂z
. (5.7)

Both statistics are asymptotically distributed as chi square (χ2), with degrees
of freedom equal to the difference between the number of cells, #(M), and
the number of estimable parameters. The approximation of X2 and G2 to
χ2 tends to become bad if one or more F̂z are close to zero. In that case
it is better obtain an estimate of the distribution of the statistic through
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parametric bootstrapping. That is, the distribution of X2 and G2 is obtained
by repeatedly drawing data from the probability distribution P̂ (za | zb) of the
estimated model.

The likelihood-ratio statistic can be used to compare two models. If one
model, say Model a, is a special case of another model, say Model b, Model a
can be tested against Model b by the statistic


G2 = G2
a − G2

b = −2(�a − �b).

Under model b, 
G2 converges to the χ2-distribution if N becomes large.
To compare the fit of two models with the same probability space but

where one model is not a special case of the other or the larger model does
not fit, the Akaike information criterion (AIC) and the Bayesian informa-
tion criterion (BIC) are particularly useful. The AIC (Akaike, 1981, 1983)
and BIC statistics (Schwarz, 1978) are model-selection criteria that take into
account both the model fit and the number of parameters that are used to
achieve that fit. The criteria take the form of the penalized likelihood functions

AIC = −2� + 2 × npar (5.8)

and
BIC = −2� + npar × logN, (5.9)

where npar denotes the number of independent parameters. The model with
the smallest value is chosen as the best-fitting model. The BIC statistic im-
poses a heavier penalty on the number of parameters than AIC for logN > 2.
Consequently, BIC tends to favor more restrictive models. Note that these fit
statistics are unaffected by the probability model as the likelihood equations
(5.5) are.

5.2.1 Loglinear Models with Nominal Effects

As an example of an LLM with nominal effects, consider three variables,
z1 = 1, 2, 3, z2 = 1, 2, and z3 = 1, 2 from H = {1, 2, 3}, where {2, 3} are
random and {1} is fixed. Define functions l such that

z1 =

⎧⎪⎨
⎪⎩

0 : l
(1)
z1 = 0, l

(2)
z1 = 0,

1 : l
(1)
z1 = 1, l

(2)
z1 = 0,

2 : l
(1)
z1 = 0, l

(2)
z1 = 1,

lz2 = z2 − 1, and lz3 = z3 − 1. Suppose we have

q1(z) = 1, q2(z) = l
(1)
z1 , q3(z) = l

(2)
z1 , q4(z) = lz2 ,

q5(z) = lz3 , q6(z) = l
(1)
z1 lz2 , q7(z) = l

(2)
z1 lz2 ,

q8(z) = l
(1)
z1 lz3 , q9(z) = l

(2)
z1 lz3 ,

so that (5.2) becomes
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logFz1z2lz3 = φ1 + φ2l
(1)
z1

+ φ3l
(2)
z1

+ φ4lz2 + φ5lz3 + φ6l
(1)
z1

lz2 (5.10)

+ φ7l
(2)
z1

lz2 + φ8l
(1)
z1

lz3 + φ9l
(2)
z1

lz3 .

Applying (5.3), the log-likelihood of this model becomes

� =
∑
k∈K

∑
z∈M

fzqk(z)φk (5.11)

= φ1N + φ2fz1=2 + φ3fz1=3 + φ4fz2=2 + φ5fz3=2

+ φ6fz1=2,z2=2 + φ7fz1=3,z2=2 + φ8fz1=2,z3=2 + φ9fz1=3,z3=2

=
∑
k∈K

f (k)φk.

In (5.11), only φ4 through φ9 are random parameters because only the func-
tions q4 through q9 are functions of random variables. Note that the marginal
frequency tables {fz1z2} and {fz1,z3} suffice to estimate the parameters. Thus,
to estimate an LLM, one does not need to deal with the full table {fz}.

If the effects are nominal, it is customary to write model (5.10) as

logFz1z2z3 = λ + λZ1
z1

+ λZ2
z2

+ λZ3
z3

+ λZ1Z2
z1z2

+ λZ1Z3
z1z3

, (5.12)

where the terms’ superscripts denote the variables involved and the subscripts
their values. Note that there is an indeterminacy in this model. Adding a
constant to one model term and subtracting it from another does not change
the model. To remove this indeterminacy the λ parameters are constrained
to be zero if one or more of the indices are at their lowest values so that in
this case the nonzero parameters of model (5.12) are exactly equal to the φ
parameters in model (5.10). That is,

φ1 = λ, φ2 = λZ1
2 , φ3 = λZ1

3 , φ4 = λZ2
2 ,

φ5 = λZ3
2 , φ6 = λZ1Z2

22 , φ7 = λZ1Z2
32 , φ8 = λZ1Z3

22 ,

and φ9 = λZ1Z3
32 .

The nominal-effects model (5.12) is a hierarchical LLM. In hierarchical
models, effects are defined as deviations from lower-order effects. Thus, in
these models it is assumed that once an interaction term is in the model, all
lower-order (interaction) terms are also in the model. Because of this property,
hierarchical models can simply be denoted by the sets of variables that define
their highest-order effects. For example, model (5.12) can be written as

logFz1z2z3 = ΛZ1Z2
z1z2

+ ΛZ1Z3
z1z3

, (5.13)

where the Λ-parameters denote the sums of the corresponding lower-order
terms that precede them and that are not already absorbed by previous higher-
order terms. Note that it does not matter how the parameters that constitute
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ΛZ1Z2
z1z2

are constrained; one might as well leave it at estimating ΛZ1Z2
z1z2

if the
lower-order terms are not of interest. A convenient syntax for the specification
of a nominal linear model is proposed by Wilkinson & Rogers (1973). For
model (5.13) it is z1.z2 + z1.z3, where the dot denotes an interaction. This
notation is especially useful if the number of variables is high and/or there
are complicated higher-order terms. For example, the model z1 + z2 + · · · +
z19+z20.z21.z22 would be hard to represent in the form (5.12). We will also use
this notation to write the interaction structure of models with metric effects.

5.2.2 Loglinear Models with Metric Effects

In the previous section, the q-functions are used to designate response cat-
egories of nominal z-variables. If one or more of the z variables, say z1 is
assumed to have metric scale properties, one can use this property to restrict
the interaction with other variables accordingly (Haberman, 1978a). For ex-
ample, if z1 is measured on an interval scale we can take lz1 = z1 − 1 and
write

logFz1z2z3 = φ1 + φ2l
(1)
z1

+ φ3l
(2)
z1

+ φ4lz2 + φ5lz3 + φ6lz1 lz2 (5.14)
+ φ7lz1 lz3 .

In standard loglinear notation this becomes

logFz1z2z3 = λ + λZ1
z1

+ λZ2
z2

+ λZ3
z3

+ lz1λ
Z1Z2
z2

+ lz1λ
Z1Z3
z3

, (5.15)

where, as before, the parameters are constrained to be zero if one of its indices
is zero. In model (5.15) the parameter λZ1Z2

2 can be interpreted as the effect
of a change of one point on the variable z1 given that z2 = 2 and λZ1Z2

1 is set
to zero.

If two variables in an interaction have metric properties, we have the log-
bilinear model (Goodman, 1979, 1991; Clogg & Goodman, 1984; Xie, 1992):

logFz1z2z3 = λ + λZ1
z1

+ λZ2
z2

+ λZ3
z3

+ lz1λ
Z1Z2
z2

+ lz1 lz3λ
Z1Z3 , (5.16)

where λZ1Z3 is a parameter describing the strength of the interaction between
z1 and z3. Note that in this example, models (5.16) and (5.15) are equivalent
since z3 is dichotomous.

5.2.3 Loglinear Models with Latent Variables

Loglinear models with discrete latent variables are described by Haberman
(1979). In fact, they are generalizations of latent class models (Lazarsfeld &
Henry, 1968), where each latent class corresponds to the value of a vector of
latent variables. Latent class models, in turn, can be seen as an example of
nonnormal mixtures (McLachlan & Peel, 2000, p. 166).
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If u (o) denotes the set of unobserved (observed) variables, with u∪o = H
(u ∩ o = ∅), the observed table is fzo =

∑
zu

fz and the expected observed
table is Fzo =

∑
zu

Fz, so that the kernel of the observed data likelihood
becomes

�o =
∑

zo∈Mzo

fzo
logFzo

.

One way to estimate the model parameters if one or more of the variables
is unobserved is to use the EM algorithm (Dempster et al., 1977). The EM
algorithm can help find a solution to problems that can be cast as a missing-
data problem. Starting with a guess φ̃ of φ, the algorithm maximizes �o by
repeatedly applying an E-step (expectation step),

f̃z = E(fz | fzo , φ̃) = fzo P̃ (zu | zo) = fzo

P̃ (z)
P̃ (zo)

= fzo

F̃z

F̃zo

, (5.17)

and, using f̃z, an M-step (maximization step),

max
φr

�̃, (5.18)

using (5.5), to compute a new φ̃. The E and M steps are alternated until φ̃
converges to an estimate φ̌. In (5.17), F̃z denotes the expected frequencies
computed from (5.2) using φ̃. In (5.18), �̃ denotes the log-likelihood, where
the estimated frequencies f̃z of the full table are used in (5.3). Since for loglin-
ear models with unobserved variables, �o does not necessarily have a unique
maximum, the EM algorithm must be repeated a sufficient number of times
until the set of distinct estimates {φ̌} does not become larger. The estimate
φ̂ ∈ {φ̌} for which �o is largest is then taken as the maximum likelihood esti-
mate. In general, #{φ̌} as well as the number of EM steps needed to obtain
each φ̌ tends to increase if the number of latent variables become large relative
to the number of observed variables.

Note that the E-step does not require the full observed contingency table.
Equation (5.17) need be applied only if fzo > 0 and #{fzo > 0} ≤ N . A
similar reduction in computations can be achieved for the fit statistics (5.6)
through (5.9), or, for loglinear models with latent variables, (5.6) through
(5.9), where fz is replaced by fzo .

Finally, note that one can approximate the continuous distribution to any
degree of precision by taking more-discrete categories, and there is no need to
take more categories than the number of moments of the distribution of the
observed variables, which is at most #M for discrete data (Stroud & Sechrest,
1966). For RMs, however, their number is usually much less. For example for a
61-item dichotomously-scored test, the RM requires at most 30 support points
to describe the latent trait distribution (Follmann, 1988).
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5.3 The Rasch Model as a Loglinear Model

Let x = 1, . . . ,mi denote nominal item response categories and let six denote
a score that is assigned to response x of item i. If the number of response
categories is mi = 2, and six = x − 1, we have the dichotomous RM Rasch
(1960):

P (xi | θ, βi) =
exp[sixi(θ − βi)]∑mi

x=1 exp[six(θ − βi)]
. (5.19)

For arbitrary discrete category scores six this model was studied by Verhelst
& Glas (1995) and implemented in their computer program OPLM.

For mi > 2 and six = x−1, we have a unidimensional RM for polytomously
scored items

P (xi | θ, βi) =
exp[sixi(θ − βixi)]∑mi
x=1 exp[six(θ − βix)]

=
exp[

∑xi
x=2(θ − βix)]

1 +
∑mi

x=2 exp[
∑x

k=2(θ − βik)]
, (5.20)

where βi1 = 0. The second equation of (5.20) is known as the partial-credit
model (Andrich, 1988; Masters, 1982). Note that the formulation in the first
equation of (5.20) is more general because it allows the category scores six

to be arbitrary functions of x. An alternative interpretation of the category
scores six is to consider them as fixed discrimination parameters, that is, a
parameter that describes the degree to which the item response probability
varies with θ.

Note that there is an indeterminacy in these models. Adding a constant
to both θ and β does not change the model. Usually a linear restriction is
imposed on the β’s to fix the location of the θ scale.

The RM must be valid for all subjects in the population Π to which it is
to be applied. The fit of the RM is studied for a sample of subjects Q ⊆ Π.
Although Q should be representative of Π, it need not be an independent
random sample of Π; Q can be an arbitrary ensemble of subjects. The RM is
a stochastic subject model (Holland, 1990b), that is, it describes the probability
that a fixed subject gives the response xi rather than the probability that a
subject with response xi is randomly drawn from a population. The RM states
that these response probabilities are the same for all subjects in Π with a
latent trait value θ. Thus, the response probabilities depend only on θ, that is,
given θ, each item response is independent of all other variables. In particular,
it does not depend on responses to other items (x1, . . . , xi−1, xi+1, . . . , xI) nor
on any covariates (y1, . . . , yJ) (Lord & Novick, 1968, p. 538):

P (xi | θ, βi) = P (xi | θ, βi, x1, . . . , xi−1, xi+1, . . . , xI , y1, . . . , yJ). (5.21)

From elementary probability calculus it follows from (5.21) that

P (x1, . . . , xI | θ, β1, . . . , βI , y1, . . . , yJ) =
I∏

i=1

P (xi | θ, βi, y1, . . . , yJ) , (5.22)

which is the assumption of local independence, and also
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P (xi | θ, βi, y1, . . . , yJ) = P (xi | θ, βi) , (5.23)

which is the assumption of measurement invariance (Mellenbergh, 1989; Mill-
sap, 1997). Denoting (x1, . . . , xI) by x, (β1, . . . , βI) by β, and (y1, . . . , yJ) by
y and substituting (5.19) in (5.23) and the result in (5.22), we have

P (x | θ,β,y) = P (x | θ,β) = c(θ,β)−1exp

(
θr −

I∑
i=1

sixβi

)
, (5.24)

where r =
∑I

i=1 six is the raw score corresponding to response pattern x and

c(θ,β) =
I∏

i=1

mi∑
x=1

exp[six(θ − βi)].

Maximizing the likelihood of model (5.24) for (θ,β) gives the unconditional
maximum likelihood (UML) estimates. Unfortunately, the UML estimates
tend to be inconsistent because the number of subject parameters grows with
the number of subjects in the sample (Andersen, 1973b). However, there are
alternative estimation methods that provide better estimates of the item pa-
rameters. All these methods are based on models that are slightly different
from the original RM, and they can all be formulated as LLMs.

5.3.1 Fixed Effects

A feature that distinguishes the RM from other item response models is that
the category scores six are known in advance. As a result, r is function of
observed data only. The first approach depends on a defining property of the
RM, the sufficiency of the raw score for the subject parameter (Andersen,
1973b; Fischer, 1974). It means that the raw score contains all information
about θ that is in the data. As a result, the RM can be written as

P (x | θ,β) = P (x | r; β)P (r | θ,β) , (5.25)

where, from (5.24),

P (r | θ,β) = exp(θr)c(θ,β)−1γr

and

P (x | r; θ,β) = γ−1
r exp

(
−

I∑
i=1

sixβi

)
= P (x | r; β) , (5.26)

with

γr =
∑

x∈MX.r

exp

(
−

I∑
i=1

sixβi

)
,
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Table 5.1. Lazarsfeld & Stouffer data: observed and expected frequencies

Model
Response (F)ERM EDRM4 EDRM3 EDRM2 NDRM MNDRM2a Indep.

x1 x2 x3 x4 fx Estimated expected frequencies (F̂x)

1 1 1 1 299 299.00 299.00 297.10 296.46 286.66 298.98 153.14
1 1 1 2 16 20.67 20.67 21.22 21.49 23.15 20.68 47.67
1 1 2 1 25 27.95 27.95 28.67 28.84 31.67 27.96 59.67
1 1 2 2 10 6.42 6.42 6.22 6.14 6.44 6.41 18.57
1 2 1 1 52 43.76 43.76 44.97 45.07 49.94 43.78 82.29
1 2 1 2 8 10.05 10.05 9.75 9.59 10.15 10.04 25.62
1 2 2 1 16 13.59 13.59 13.18 12.87 13.89 13.58 32.06
1 2 2 2 3 7.56 7.56 7.88 8.54 7.11 7.57 9.98
2 1 1 1 199 199.60 199.62 203.41 203.29 214.36 199.72 228.82
2 1 1 2 45 45.85 45.85 44.12 43.25 43.58 45.80 71.23
2 1 2 1 60 62.01 62.01 59.61 58.05 59.62 61.94 89.15
2 1 2 2 42 34.48 34.48 35.67 38.50 30.53 34.52 27.75
2 2 1 1 96 97.07 97.08 93.50 90.70 94.02 96.97 122.96
2 2 1 2 55 53.97 53.97 55.94 60.16 48.14 54.04 38.27
2 2 2 1 69 72.99 72.99 75.58 80.74 65.85 73.08 47.91
2 2 2 2 75 75.00 75.00 73.19 66.32 84.90 74.93 14.91

Fit statistics

X2 10.48 10.48 11.05 14.19 17.14 10.48 515.28
p 0.23 0.16 0.20 0.12 0.07 0.23 0.00

G2 10.93 10.93 11.66 15.12 17.48 10.93 388.88
p 0.21 0.14 0.17 0.09 0.06 0.21 0.00
df 8 7 8 9 10 8 11

BIC −44.87 −37.90 −44.14 −47.66 −52.27 −44.87 312.15
AIC −5.07 −3.07 −4.34 −2.88 −2.52 −5.07 366.88

wherein MX.r is the set of response patters x consistent with r. For example,
for I = 3 dichotomous item responses x=1, 2, scored six = x − 1, we have for
r = 1, MX.1 = {(2, 1, 1), (1, 2, 1), (1, 1, 2)}. Note that γr is the proportionality
constant of P (x | r; θ,β) and from (5.26) that this conditional probability
does not depend on θ.

This RM is equivalent to the nominal-effects LLM (Section 5.2.1)

logFx = λ + λR
r +

I∑
i=1

λXi
xi

, (5.27)

where for the FERM we have logFx = frP (x | r; θ,β), so that

λ + λR
r = log fr − log γ(r) (fixed) and λXi

xi
= −sixβi (random),

and for the ERM we have logFx = NP (xr | θ,β), so that
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λ = logN (fixed) λR
r = log πR

r − log γ(r) λXi
xi

= −sixβi (random),

where {πR
r } is the probability distribution of r. Note again that whether r is

considered random or fixed does not affect the fit of the model nor the point
estimates of the parameters (Section 5.2).

In (5.27) there is an overparametrization resulting from the linear depen-
dence of the item responses and the score: adding a constant to each of the
item parameters λXi

2 and subtracting it from ΛR
r = λ + λR

r does not change
the model. To eliminate the indeterminacy we can set a linear constraint on
the item parameters, e.g., λX1

2 = 0. The number of degrees of freedom is equal
to #(M) minus the number of ΛR

r -parameters, I + 1, minus the number of
estimable λXi

2 -parameters, I − 1, which equals #(M) − 2I. For example, if
there are four dichotomous items we have #(M) = 24 = 16 cells and 2I = 8
parameters, resulting in eight degrees of freedom. The shorthand notation for
this model is (F)ERM(X1 + · · · + XI + R). This model yields conditional
maximum likelihood (CML) estimates of the parameters.

Table 5.1 shows the observed frequencies of response patterns by noncom-
missioned officers responding to four dichotomous items on attitudes toward
the army (Lazarsfeld, 1950a). The next column shows the estimated expected
frequencies under the (F)ERM (5.27). Table 5.2 gives the LOGIMO script for
this model. LOGIMO (keyword NORM) automatically determines the rank of

Table 5.2. LOGIMO script for ERM

TITLE Data from Lazarsfeld & Stouffer (1950);
DATAFILE LASTOU.DAT; NINPVAR 4; WEIGHT 3;

COMMENT free format data file with three-digit frequency
followed by the response pattern;

POSITIONS 1 4 5 6 7; MODEL 5 [1][2][3][4][5];
COMMENT LOGIMO wants to know the number of model terms.
Main effects are default and need not be specified;

NSCORVAR 1; SCORING [1..4] 5 [2] 1;
COMMENT defines the
score r as the fifth variable. Default value is 0.
For each response 2 the value 1 is added to the score r;

IPF STOPCRIT 0.00001000; MAXITER 5000 NORM;
COMMENT Iterative Proportional Fitting until convergence;

NERA STOPCRIT 0.00001000; MAXITER 10 FIT;
COMMENT Finally, Newton Raphson iterations;

FINISH

the model and aliases parameters that are functions of previous parameters.
This ensures that the solution is unique and degrees of freedom are correct.
So this LOGIMO script restricts λXi

2 (i = 1, 2, 3) as well as λX4
x to zero. Table

5.1 gives the fit statistics for various models. The (F)ERM fits the data quite
well.
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5.3.2 Random Effects

If the subjects, Q, are independently drawn from population Π, the fixed
subject-effect parameter θ can be treated as a random variable T taking values
t ∈ MT . Bock & Aitkin (1981) and Mislevy (1984) suggested estimating the
distribution of T by estimating the probability histogram for a fixed set of
values of t. In this section we formulate this random-effects RM as an LLM
model with discrete latent variables for t (Section 5.2.3).

Let MT ◦ = {t◦} be a sufficiently large bounded set of known discrete
values of t◦. Let {t∗} be an equally large set with t∗ = a + bt◦, where a > 0
and b > 0 are unknown. Furthermore, let πT ◦

t◦ denote the probability that
a randomly selected subject from Π has latent trait score t closest to t◦

(MT ◦ ⊂ MT ). Note that since t∗ = a + bt◦ is a one-to-one transformation, we
have {πT ∗

t∗ } = {πT ◦
t◦ }. Replacing θ by t∗ in (5.24) , we can derive

P
(
x, t∗ | β, {πT ∗

t∗ }
)

= P (x | t∗; β)P
(
t∗ | {πT ∗

t∗ }
)

(5.28)

= πT ∗
t∗ c(t∗,β)−1exp

(
t∗r −

I∑
i=1

sixβi

)

= πT ◦
t◦ c(t◦, a, b,β)−1exp

(
ar + bt◦r −

I∑
i=1

sixβi

)
,

where c(t◦, a, b,β) = c(a+bt◦,β) = c(t∗,β). The model can be seen as a finite
mixture of joint-RMs models (5.24), where the probabilities {πT ∗

t∗ } = {πT ◦
t◦ }

are the mixture weights (McLachlan & Peel, 2000).
The expected frequencies under this model are

Fx,t∗ = NP (x, t∗ | β, {πT ∗
t∗ })

(Section 5.2). Model (5.28) is equivalent to a metric-effects LLM for (x1, . . . ,
xI , t∗), where t∗ is unobserved (Section 5.2.3). To see this let

λX
2 = λR = a, λXT ◦

2 = λRT ◦
= b, λX

1 = λXT ◦
1 = 0,

so that we have

logFx,t∗ = λ + λT ◦
t◦ + rλR + rt◦λRT ◦

+
I∑

i=1

λXi
xi

(5.29)

= λ + λT ◦
t◦ +

I∑
i=1

sixiλ
R +

I∑
i=1

sixit
◦λRT ◦

+
I∑

i=1

λXi
xi

= λ + λT ◦
t◦ +

I∑
i=1

(
λX

xi
+ t◦λT ◦X

xi
+ λXi

xi

)
,
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where

λ = logN,

λT ◦
t◦ = log πT ◦

t◦ − log c(t◦, a, b,β), and
λXi

xi
= −sixβi.

Note that the first equation of (5.29) is a log-bilinear model (Section 5.2.2)
and the last equation an ordinary loglinear model.

To remove the indeterminacy between item parameters, λXi
2 , and the lo-

cation of the latent trait scale, λX
1 (= a), one of the item parameters, say

λX1
x1

, can be set to zero. We will call model (5.29) the empirical distribution
random-effects RM (EDRM). The shorthand notation for an EDRM with
#(MT ∗) = 3 is EDRM3(X1T + · · · + XIT ).

For the dichotomous RM, Leeuw & Verhelst (1986) and Follmann (1988)
have shown that, under an EDRM with at most (I + 2)/2 support points,
the ERM (5.27) and the EDRM model are asymptotically equivalent (see also
Section 5.2.3).

Table 5.3 gives the LEM script for an EDRM with #(MT ◦) = 4. In Table
5.1 it is seen that the (F)ERM fits better than EDRM2 and EDRM3. Further-
more, for EDRM4 the χ2-statistics and expected frequencies are the same as
for (F)ERM, but EDRM4 has one degree of freedom fewer than (F)ERM. As
a result, BIC and AIC favor (F)ERM. The EDRM2 fits worse than the other
EDRMs except on BIC, which favors parsimonious models (Section 5.2).

Table 5.3. LEM script for the EDRM4 estimation

* Data from Lazarsfeld & Stouffer (1950)
latent_variables 1; manifest_variables 4
dimensions 4 2 2 2 2; labels T X1 X2 X3 X4
model {T,X2,X3,X4}
all {special(T.X1,T.X2,T.X3,T.X4,1b), * a

special(X1,X2,X3,X4,1b)} * b
dummy 1 1 1 1 1
data [299 016 025 010 052 008 016 003 199

045 060 042 096 055 069 075]

If one is willing to assume a parametric distribution for the latent trait,
πT ∗

t∗ may be restricted to be consistent with such a distribution. If #(MT ∗) is
chosen large enough, the continuous normal distribution P (t) = N(0, 1) can be
approximated to any degree of precision by πT ∗

t∗ . Gain in precision is obtained
using Gauss–Hermite quadrature (Bock & Aitkin, 1981). The t∗-points are
then chosen not as equidistant, but as quadrature points with corresponding
quadrature weights πT ∗

t∗ (Stroud & Sechrest, 1966). This normal distribution
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RM (NDRM) yields estimates that are known as marginal maximum like-
lihood (MML) estimates. The difference with EDRM is that in NDRM the
probabilities πT ∗

t∗ are known in advance. The shorthand notation for this model
is NDRM(X1T + · · ·+XIT ). Note that if πt◦ is chosen such that t◦ is approx-
imately distributed as N(0, 1), the distribution of t∗ approximates N(a, b2).
Thus, estimates of the loglinear parameters λX

2 and |λXT ◦
2 | are estimates of

the mean and standard deviation of the latent trait distribution. The absolute
value of λXT ◦

2 should be taken because its sign depends on the direction of the
latent scale, which is essentially indeterminate. Table 5.4 gives the LEM script
for the NDRM. Table 5.1 gives the estimated expected frequencies under the

Table 5.4. LEM script for the NDRM

* Data from Lazarsfeld & Stouffer (1950)
latent_variables 1; manifest_variables 4
dimensions 21 2 2 2 2; labels T X1 X2 X3 X4
model {weighted(T),X2,X3,X4}
all {special(X1,X2,X3,X4,1b), * a

special(T.X1,T.X2,T.X3,T.X4,1b)} * b
dummy 1 1 1 1 1
starting_values weight(T) normal_distribution(1,10)
* starting_values fixes pi_t to follow a standard
* normal distribution which range from -10 to 10
* approximated via re-scaled densities
data [...]

NDRM. Comparing the X2 and G2 statistics with their degrees of freedom, the
NDRM, like the (F)ERM, cannot be rejected. The information statistics show
an inconsistent picture in which BIC favors the more-restrictive NDRM and
AIC the least-restrictive (F)ERM. Under NDRM, the latent-trait variance is
estimated as 0.23, suggesting that the RM fits because of near independence
of the item responses, which is equivalent to small variance of θ (Wood, 1978).
However, Table 5.1 shows that the independence model fits very badly.

One way to relax the normality assumption of the latent trait is to assume
a mixture of normal distributions. To do this, we extend the model with an
unobserved random grouping variable C taking values c. It is then assumed
that the parameters a and b depend on c, that is, we have ac and bc. For
example, for MC = 2 the distribution of t is a mixture of two normal distribu-
tions, N(a1, b

2
1) and N(a2, b

2
2). The model can be formulated as a mixture of

NDRMs in which the probabilities {πC
c } can be seen as the mixture weights

(McLachlan & Peel, 2000):

Fx,t∗,c = πC
c exp

(
λ + λT ◦

t◦ + rλRC
c + rt◦λRT ◦C

c +
I∑

i=1

λXi
xi

)
.
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In its loglinear form it becomes a metric log-bilinear (Section 5.2.2) or loglinear
model with latent variables (Anderson & Vermunt, 2000), Section 5.2.3)

logFx,t∗,c = λ + λT ◦
t◦ + λC

c + rλRC
c + rt◦λRT ◦C

c +
I∑

i=1

λXi
xi

(5.30)

= λ + λT ◦
t◦ + λC

c +
I∑

i=1

(λXC
xic + t◦λXT ◦C

xic + λXi
xi

),

where

λC
1 = 0, λXC

2c = λRC
c = ac, λXT ◦C

2c = λRT ◦C
c = bc, λXC

1c = λXT ◦C
1c = 0.

The shorthand notation for this model is MNDRM(CT + X1T + · · · + XIT ).
The LEM script obtains by replacing the specials in Table 5.4 by

all {special(X1,X2,X3,X4,1b,C,c), * for ’a_c’
special(T.X1,T.X2,T.X3,T.X4,1b,C,c)} * for ’b_c’

* ’C,c’ means that the (equal) interactions may vary over C.

For two mixture components, the MNDRM, say MNDRM-2, has three pa-
rameters more than the NDRM. We have λC

2 , λXC
21 , λXC

22 , λXT ◦C
21 , and λXT ◦C

22 ,
rather than λX

2 and t◦λT ◦X
2 , so we have 10 − 3 = 7 degrees of freedom, which

is the same as for the EDRM4. For the Lazarsfeld & Stouffer data, the model
has the same fit as the EDRM4 but was almost underidentified for this small
example. To restrict the variances b2c to be equal over mixture components we
replace λXT ◦C

xic by λXT ◦
xi

in model (5.30) and specify

special(T.X1,T.X2,T.X3,T.X4,1b) * for ’b’.

This model, say MNDRM2a, has eight degrees of freedom and has the same
fit as the EDRM4. The parameter estimates of MNDRM2a along with those
of NDRM and EDRM4 are shown in Table 5.5. The lack of fit of NDRM,
the difference between the locations of the mixture components on the t scale,
λ̂XC

21 = 1.75 of MNDRM2a as well as the distribution {π̂T ◦
t◦ } of EDRM suggests

that the latent-trait distribution is bimodal. It is seen that item-parameter
estimates of the misfitting NDRM are different from the well-fitting models,
MNDRM2a and EDRM4. The item parameters of the (F)ERM, not shown
here, have the same values.

5.3.3 Speeding Up Computations

If the number of items is large, the number of cells in the full contingency
table becomes unmanageable. There are two ways to avoid this.

Firstly, Kelderman (1992) describes modified versions of the iterative pro-
portional fitting and Newton–Raphson algorithms for (F)ERMs that work on
the minimal sufficient statistics rather than on the counts in the full con-
tingency table. In the case of the (F)ERM these can be obtained from the
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Table 5.5. Parameter estimates for the EDRM4, MNDRM2a, and NDRM

EDRM4 MNDRM2a NDRM
Param. Est. (s.e.) Param. Est. (s.e.) Param. Est. (s.e.)

λ 3.00 λ 1.02 λ 2.96
λX2

2 −1.52 (0.12) λX2
2 −1.52 (0.12) λX2

2 −1.46 (0.12)
λX3

2 −1.97 (0.12) λX3
2 −1.97 (0.12) λX3

2 −1.91 (0.12)
λX4

2 −2.27 (0.13) λX4
2 −2.27 (0.13) λX4

2 −2.23 (0.13)
λX

2 0.92 (1.49) λX
2 0.67 (0.32) λX

2 1.09 (0.78)
λXT ◦

2 1.42 (0.82) λXT ◦
2 0.72 (0.23) λXT ◦

2 0.48 (1.57)
πT ◦

t◦
1

0.12 λC
2 1.88 (1.61)

πT ◦
t◦
2

0.36 λXC
21 1.75 (0.38)

πT ◦
t◦
3

0.20
πT ◦

t◦
4

0.31 (t◦
1 < · · · < t◦

4)

one-variable marginal tables for each item and for a vector or raw scores that
are arbitrary functions of the item responses onto the natural numbers. To
calculate the expected sufficient statistics and other expected marginal sums
of the table, a method is implemented that avoids summing large numbers of
elementary cell frequencies by formulating them as sums of products of multi-
plicative model parameters and applying the distributive law of multiplication
over summation. In this algorithm, the raw-score functions are handled dy-
namically. This algorithm is implemented in LOGIMO (Kelderman & Steen,
1993).

Secondly, random-effects latent-variable models often have the advantage
that the full probability can be collapsed into a product of a series of con-
ditional probabilities. For example, suppressing the model parameters, (5.29)
can be written as

P (x, t∗) =
I∏

i=1

P (xi | t∗)P (t∗) . (5.31)

Vermunt (1997b) describes an expectation-maximization (EM) algorithm in
which each conditional probability satisfies a (restrictive) loglinear or log-
bilinear model. To obtain this for (5.29), the model formula script in Table
5.4 should be replaced by

model T {weight(T)} X1|T {} X2|T {X2} X3|T {X3} X4|T {X4},

where the loglinear model specification is between braces. The algorithm has
been implemented in the program LEM (Vermunt, 1997b,a). With Vermunt’s
work the estimation problem has largely been solved for random-effects mod-
els.
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5.4 Other Loglinear Rasch Models

5.4.1 Loglinear Rasch Models for Polytomous Items

It is easily seen that the LLRMs described above are also valid for polytomous
arbitrary category scores (Kelderman, 1996). Consider the following example,
in which van Kuyk (1988) collected data in an observation program for 4-
to 6.5-year-old children. The aim of the program was to test skills that are
prerequisite for arithmetic abilities. The subtest analyzed here measures the
application of size concepts such as long–short, high–low, thick–thin, wide–
narrow, etc. Answers are rated correct if the right size concept (e.g., long–
short) is given and is correctly applied (e.g. short(er) rather than long(er)).
Children may be unable to produce the correct specific concept (e.g. long–
short), but use the general size concept “big–small” instead. If “big–small”
is correctly applied (e.g., the skirt is small(er)), the answer is rated partially
correct.

Suppose we expect these three responses (xi = 1, 2, 3) to be related to a
single latent trait and score the responses as six = x− 1. For these scores the
LLM (5.27) is equivalent to the partial-credit model (5.20), where λXi

x = −βix

(Kelderman, 1996). The LOGIMO script differs but little from that in Table
5.2. The main difference is that the scoring keywords now become

SCORING [1..5] 6 [2] 1
SCORING [1..5] 6 [3] 2

where 6 is the variable number of the latent trait and category score [2] gets
the score 1 and so on. In Table 5.6 it is seen that (F)ERM(R+X1 + · · ·+X4)
does not fit very well compared to other models. The model specifications of
the random-effect version of the partial-credit model are identical to those of
the dichotomous RM except that the interactions with xi become metric. For
brevity we limit ourselves mainly to the (F)ERM case.

Table 5.6. Fit statistics for van Kuyk data

(F)ERM Model G2 df AIC BIC

R1.R2 + X1 + · · · + X4 256.52 36.00 184.52 55.92
R + X1 + · · · + X4 274.99 46.00 182.99 18.67
Z.R1.R2 + Z.X1 + · · · + Z.X4 225.25 185.00 −144.75 −805.60
Z.R1.R2 + X1 + · · · + X4 256.52 198.00 −139.48 −846.77
Z.R + Z.X1 + · · · + Z.X4 293.05 199.00 −104.95 −815.81
Z.R + X1 + · · · + X4 383.79 213.00 −42.21 −803.08

5.4.2 Loglinear Multidimensional Rasch Models

If it is expected that giving the correct specific concept requires a different
latent trait than giving the general concept, we may define multiple latent-trait
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variables. The loglinear multidimensional RM can be obtained by generalizing
(5.27) and (5.29). Denote the multidimensional scoring functions and raw
scores by

six = (s1ix, . . . , sdix, . . . , sDix)′ and r = (r1, . . . , rd, . . . , rD)′

and similarly for βix,θ, t,a, and b. For some t◦d we have t∗d = ad + bdt
◦
d and

P (x, t∗) = πt◦c(t◦,a,b, β)−1exp

[
D∑

d=1

(adrd + bdt◦
drd −

I∑
i=1

βdix)

]
, (5.32)

where βdix is the parameter of response x on item i with respect to dimen-
sion d and {πt◦} is a D-dimensional histogram. Note that the βdix are not
identifiable if an item response xi pertains to two or more dimensions. There-
fore, without loss of generality, we sum these parameters over dimensions. In
loglinear notation this model becomes

logFx,t◦ = λ + λ◦
t +

D∑
d=1

rdλ
Rd +

D∑
d=1

rdt
◦
dλ

RdT ◦
d +

I∑
i=1

λXi
xi

. (5.33)

The loglinear formulation of the multidimensional NDRM is obtained by tak-
ing πt∗ so that the distribution of t∗ approximates N(0, I) and linear trans-
formations t∗ = a+bt◦. This model can more easily be specified in LOGIMO,
so we return to the (F)ERM case.

Suppose that we have

r = (r1, r2) =

(
I∑

i=1

s1ixi ,

I∑
i=1

s2ixi

)
,

where

xi =

⎧⎨
⎩

1 : s1ixi = 0, s2ixi = 0,
2 : s1ixi = 1, s2ixi = 0,
3 : s1ixi = 0, s2ixi = 1.

In fact, this LLRM is the multidimensional RM described by Andersen
(1973b). In LOGIMO this model is easily specified. The LOGIMO specifi-
cation for (F)ERM(R1.R2 + X1 + · · · + XI) now changes by

NSCORVAR 2
SCORING [1..5] 6 [2] 1
SCORING [1..5] 7 [3] 1

The AIC and BIC statistics in Table 5.6 indicate that the one-dimensional
fixed-effects model R + X1 + · · · + X4 fits somewhat better than the two-
dimensional model R1.R2 + X1 + · · · + X4, although the overall fit of neither
model seems very good. Note that if we want the correct answer x = 3 to
pertain to the general size concept as well, we must specify

SCORING [1..5] 6 [2,3] 1,

which is the multidimensional partial credit model (Kelderman, 1996).
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5.4.3 Rasch Models Violating Measurement Invariance

Models that violate the assumption of measurement invariance are easily
specified by adding one or more interactions between a grouping variable
and an item response. For a fixed-effects model, uniform bias is specified as
C.T+C.X1+X2+· · ·+XI and nonuniform bias as C.T+C.T.X1+X2+· · ·+XI .
In this case ordinary nominal interaction parameters are added. For random
effects we have for uniform bias C.T +C.X1 +X1.T + . . .+XI .T , where [CT ]
denotes the addition of C terms as in model (5.30). For nonuniform bias we
have in this case C.T +C.X1+CX1.T + · · ·+XI .T , where [CX1T ] denotes the
addition of a nominal interaction term λX1C

x1c and a metric interaction term
t◦λX1T ◦C

x1c to the model. In fact, the parameter λX1T ◦C
x1c specifies a different

slope of the item characteristic curve in each subgroup c. If all items are bi-
ased with respect to C, we have the mixture RM (Gitomer & Yamamoto,
1991; Kelderman & Macready, 1990; Mislevy & Verhelst, 1990; Rost, 1990,
1991; Rost et al., 1997; Wilson, 1989).

Models with an observed grouping variable are specified by replacing C
by Z. In van Kuyk’s testing program, the children’s ages were known with
z = 1 (ages 4 to 5), 2 (ages 5 to 5.5), 3 (ages 5.5 to 6). From the AIC
and BIC statistics in Table 5.6 it can be seen that two-dimensional fixed-
effects model, where the raw score distributions are different in each age group,
Z.R1.R2 +X1 + · · ·+X4, fits markedly better than the one-dimensional model
Z.R + X1 + · · · + X4. To see whether the first item in this two-dimensional
model deviates from measurement invariance, we compare the fit of model
Z.R1.R2 + X1 + · · · + X4 with that of model Z.R1.R2 + Z.X1 + · · · + Z.X4.
From Table 5.6 it is seen that the AIC and BIC statistics give contradictory
results. The likelihood ratio statistic indicates that, given Z.R1.R2 + Z.X1 +
· · · + Z.X4, the hypothesis that the item1×age interaction are zero must be
rejected (
G2

3 = 31.27, p = 0.00).

5.4.4 Locally Dependent Rasch Models

Locally dependent RM are easily specified by adding an item interaction ef-
fect λ

XiXi′
xixi′ (i �= i) to the model. For example, suppose we specify model

(F)ERM(X1X4 + X2 + X3 + R). We must replace the LOGIMO model spec-
ification in Table 5.2 by

MODEL 4
[1,4][2][3][5].

For the Lazarsfeld & Stouffer data, adding this interaction to the (F)ERM
gives a very good fit indeed (X2

7= 8.63, p=0.32, L2
7= 8.21, p=0.30), but there

is no significant difference with the (F)ERM (
L2
1=2.72, p=0.10). Its infor-

mation statistics give an inconsistent picture (BIC = −40.62, AIC = −5.79),
where AIC favors this model as the best fitting (see Table 5.1). A similar
result was obtained for other interactions.
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Note that in the LEM specification the interaction should be specified
between items whose parameters are not fixed to zero. So in the case of
NDRM(X1X2 + X1T + · · · + X4T ) models we must set another item-main-
effect parameter to zero to fix the scale. The model is specified by replacing
the first line of the model specification by

model
{weighted(T),X1,X3,X4,X1.X4}.

Allowing Items 1 and 4 to interact improves the χ2 fit of the NDRM
somewhat (X2

9= 13.86, p=0.12, L2
9= 13.25, p=0.15). However, the difference

between both models is not significant (
L2
1=17.48-13.86=3.62, p=0.06) and

the AIC and BIC statistics of both models are identical.

5.4.5 Rasch Models with Latent Responses

The RM assumes that the probability of a positive (correct, agree) response
approaches zero if the latent trait decreases. However, educational and psy-
chological tests often contain multiple-choice items in which it is possible that
the subject obtains a positive answer through guessing. Similarly, a negative
response may accidentally be given by a subject that has a high latent-trait
value. To account for these response errors the RMs discussed above may be
modified to describe such effects.

Let xi be the observed response on item i and let this response depend
on a latent response ui that satisfies an RM. The shorthand notation of this
part of the model is X1.U1 + · · · + XI .UI . The complete model is specified
by adding this to an RM where the X’s are replaced by U ’s. For example,
Z.R1.R2 + X1 + · · · + X4 becomes X1.U1 + · · · + X4.U4 + Z.R1.R2. For the
Lazarsfeld & Stouffer data we specify a latent response RM in which item
difficulties are assumed to be equal. The fit of the model is quite bad (X2

3=
511.48, p=0.00, L2

3 = 496.48, p = 0.00). A more realistic example of latent
response RMs can be found in Chapter 20.

5.5 Discussion

In this section the basics of loglinear Rasch modeling are discussed as well as
some possible generalizations based on the LLRM. One advantage of formu-
lating the RM as an LLM is that the estimation equations and other statistical
properties need not be derived separately for each new model. Furthermore,
existing programs can be used for computations.

Some easy generalizations that go beyond the actual RM have been left
undiscussed. One that falls beyond the scope of this book is the estimation of
discrimination parameters such as in the Birnbaum model and Bock’s nominal
response model (Birnbaum, 1968; Bock, 1972). This can be done by relaxing
the assumption of λXT ◦

x that the item trait associations are the same across
items (Smit et al., 2000, 2003).
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Mixture-Distribution and HYBRID Rasch
Models

Matthias von Davier and Kentaro Yamamoto

Educational Testing Service

6.1 Introduction

This chapter provides an overview of mixture-distribution Rasch models
(RMs) and HYBRID RMs and their extensions. Discrete mixture-distribution
IRT models assume that the observed data were drawn from an unobservable
mixture of populations. Within each of these populations, a different item
response model may hold (HYBRID models), or models with different sets of
item parameters and different ability distributions may hold (mixture Rasch
models, or more generally, mixture IRT models). A rationale for these models,
drawing on the introductory chapters in this volume, will be given. Among
other things, mixture IRT models can be regarded as a tool to test ordinary
IRT models for parameter invariance across populations.

Early work on the HYBRID model (Yamamoto, 1989) as well as the mixed
RM (Rost, 1990, von Davier & Rost, 1995) are reviewed in this chapter, as
well as more recent work that incorporates covariates (Smit et al., 2000) and
research that generalizes the treatment of missing grouping variables (von
Davier & Yamamoto, 2004b). Relationships to discrete mixture models using
other IRT models (see Mislevy & Verhelst, 1990, and Kelderman & Macready,
1990) are outlined. Finally, extensions of multidimensional Rasch-type IRT
models, sometimes referred to as diagnostic models (von Davier & Yamamoto,
2004a; von Davier, 2005), to mixture-distribution models are discussed.

6.2 Mixture-Distribution Rasch Models

Haberman (1979) and Kelderman (1984) laid out important building blocks
for loglinear models with unobserved (latent) variables and loglinear RMs.
This research was used by Kelderman & Macready (1990) in order to extend
Rasch-type loglinear models by employing an unobserved discrete variable.
IRT models with both a continuous ability variable and a discrete “strategy”
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or “skill” variable were developed in the late eighties and independently pub-
lished by a number of researchers in 1990 (Kelderman & Macready, 1990;
Mislevy & Verhelst, 1990; Rost, 1990). Rost (1990) integrated RMs into la-
tent class analysis (LCA) (Lazarsfeld & Henry, 1968) and derived the mixed
Rasch model. Mislevy & Verhelst (1990) derived a mixture IRT model ex-
tending previous work of Yamamoto (1987, 1989).

mixture-distribution RMs are a special case of discrete mixture-distribu-
tion models (McLachlan & Basford, 1988; McLachlan & Peel, 2000) with
multivariate, categorical observed variables. The following section (6.2.1) de-
scribes discrete mixture distributions in general terms. Section 6.2.2 gives an
overview of the dichotomous mixed RM, and Section 6.2.3 describes polyto-
mous mixed RMs.

6.2.1 Discrete Mixture Distributions

The underlying concept of discrete mixture distributions is that an I-dimen-
sional vector of random variables x = (x1, . . . , xI) ∈ Ω may be viewed as
a projection of an (I + 1)-dimensional random vector (x1, . . . , xI , c), with
discrete random variable c, and a marginal density

f(x) =
C∑

c=1

πcf(x | c) =
C∑

c=1

f(x, c), (6.1)

where the πc = P (c) denote the relative class sizes or mixing proportions, and
f(x | c) is the conditional distribution of x given c.

More specifically, assume that (xv1, . . . , xvI) are the observed variables for
each of v = 1, . . . , N examinees, and that there is an unobserved classification
c = c(v) with c(v) ∈ {1, . . . , C}. The different discrete values c takes on are
referred to as latent classes, subpopulations, or mixing components. The in-
dividual outcomes cv = c(v) will be referred to as class-membership outcomes
throughout this chapter, since many initial developments concerning mixture
Rasch and more generally mixture IRT models were made in the context of
extensions of latent class analysis. If the values cv are observed for all exam-
inees v in the sample, discrete mixture models do not pose any additional
estimation problem, since this case can be treated as a multigroup analysis, a
common type of analysis in IRT.

If we use discrete mixture distributions for modeling item response data,
we may assume that x is an I-dimensional vector of binary or polytomous
variables xi for i = 1, . . . , I. Below, we will assume that an item response
model such as the RM will be used to model the conditional distributions f(x |
c), while the mixture distribution will be defined as given in Equation 6.1.
However, there is a less-complex alternative for modeling item response data
with a mixture-distribution approach. We may assume that item responses
are locally independent given the outcome of the mixing variable c, without
assuming an additional continuous person variable θ. Then we have
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f(x) =
C∑

c=1

πc

I∏
i=1

p(xi | c) (6.2)

with probabilities p(c) = πc representing the class sizes, sometimes also re-
ferred to as mixing proportions.

Equation 6.2 is the model equation for LCA. Local independence given
unobserved latent traits (the classification c in LCA, the ability θ in the RM
and more general IRT models) is an important defining feature of many latent-
trait models. Therefore, LCA can be viewed as a latent-trait model with a
nominal latent-trait variable c.

Figure 6.1 presents a graph of fictitious conditional probabilities for a
model that contains three latent classes C ∈ {1, 2, 3} based on data from six
dichotomous items.
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Fig. 6.1. Profiles of conditional probabilities in three latent classes for six dichoto-
mous items

In most of the cases treated in this chapter, the cv will be unobserved for all
examinees, and thus have to be inferred using model assumptions and calcu-
lations involving some form of assigning classifications to individual response
vectors, often involving the application of Bayes’s theorem. These assumptions
impose restrictions on the conditional distributions f(x | c) and in some cases
introduce covariates z and additional assumptions to derive an expression for
determining the posterior distribution p(c | x, z). The posterior distribution
can be determined using the assumption that all functional dependency in
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the item response functions is mediated through the person variable, either
a discrete classification variable c or a continuous latent-trait variable θ, and
item parameters. More formally, item response models assume

f(x|θ, z) = f(x|θ, z′) = p(x|θ)
for all z, z′, so that the distribution of the observed responses x depends on
the latent-trait θ only, while the distribution of θ depends on z, that is,

p(θ|z) �= p(θ|z′) for z �= z′.

The impact of the covariates z can be assumed to operate only through a
conditional distribution p(θ|z), or p(c|z) in the discrete case.

Putting these building blocks together results in a general expression that
subsumes many of the models treated in this and some other chapters of this
volume. We then have

f(x|z) =
C∑

c=1

p(c | z)f(x | c) (6.3)

with observed variables x, and covariates z of the classification variable c. If
no covariates are available, the expression reduces to the original definition of
the mixture distribution given in (6.2). For continuous variables θ instead of
a discrete classification c, this expression becomes

f(x|z) =
∫

θ

h(θ | z)f(x | θ)dθ.

This marginalization is very common in latent-trait models with covariates.
It is also found in Chapter 4 in this volume on latent regression models as
well as in models using covariates and multiparameter IRT models (Mislevy,
1985, 1991).

6.2.2 Dichotomous Mixed Rasch Models

Discrete mixtures of RMs (Rost, 1990) assume a more complex structure
within each mixing component than does LCA. More specifically, in addi-
tion to the discrete classification variable c, the complete data also include a
continuous latent variable θ. Then the complete data becomes a concatena-
tion of observed variables x, the classification variable c, and the continuous
latent-trait variable θ, that is, (x, c, θ).

In order to extend the RM to a mixture-distribution model, the model
equation of the ordinary RM needs to be modified. The RM contains the con-
tinuous latent variable θv, reflecting the ability of examinee v, and an item
difficulty parameter βi, which reflects the location of the item characteristic
curve for item i. Missing is a representation of the discrete mixture assump-
tion, the dependency on a discrete unobserved classification variable c. In the
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case of a latent variable (θ, c) and without assuming any specific functional
form we have

f(x) =
C∑

c=1

πc

∫
θ

h(θ | c)P (x | θ, c)dθ,

where h(θ | c) denotes the conditional density of θ given c, which may be of
a specific parametric form such as the normal density or some more flexible
parametric family of densities.

The assumptions governing the conditional probabilities P (x | θ, c) of the
observed variable x given latent variable (θ, c) are yet to be specified. The
dichotomous mixed RM defines this as

p(x | θ, c) =
I∏

i=1

exp(xi(θ − βic))
1 + exp(θ − βic)

, (6.4)

where the item parameters are denoted by βic and therefore depend on the
discrete class variable c. Restrictions to remove the indeterminacy of the scale
are applied conditionally by class, i.e.,

∑
i βic = 0 for all c.

The dichotomous mixed RM was described by Rost (1990) and Rost & von
Davier (1993, 1995). This model can be viewed as an extension of the RM that
relaxes item-parameter invariance and allows different ability distributions
in different subpopulations. The subpopulations need not be known and are
identified during the course of parameter estimation. The mixed RM contains
LCA, the RM, and the saltus model (compare Chapter 7 in this volume) for
dichotomous data as special cases. Therefore, one obvious application of the
mixed RM is testing the fit of the ordinary (nonmixed) RM (Rost & von
Davier, 1995).

6.2.3 Polytomous Mixed Rasch Models

A straightforward extension of the dichotomous mixed RM allows one to spec-
ify a mixture RM for polytomous data (Rost, 1991). The model equation for
a response vector x = (x1, . . . , xI) with xi ∈ {0, . . . ,mi} is

p(x | θ, c) =
I∏

i=1

exp(xiθ − βixic)

1 +
∑Xi

y=1 exp(yθ − βiyc)
,

where βixc =
∑x

y=1 αiyc are the class-dependent cumulative item parameters.
Without the classification index c, this model is equivalent to the partial-credit
model (Masters, 1982).

The development of estimation equations and algorithms for the necessary
calculations of symmetric functions in conditional maximum likelihood (CML)
estimation for polytomous (mixed) RMs with and without constraints on the
α parameters is outlined in von Davier & Rost (1995). This allows one to
estimate more parsimonious models than the partial-credit mixed RM, such as
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mixture-distribution versions of Andrich’s rating-scale model (Andrich, 1978)
and Rost’s successive-intervals model (Rost, 1988) originally formulated for
LCA for ordinal data.

Note that each latent class c = 1, . . . , C has its unique set of item pa-
rameters in the unconstrained mixed RM. This means that the number of
parameters to be estimated in these models grows linearly with the number
of latent classes C.

As an example, the number of item parameters for ten items with four
response categories each is equal to 30 for the partial-credit model, since the
four response categories x ∈ {0, . . . , 3} require three threshold parameters βix

for x = 1, 2, 3 in this model. If the mixed partial-credit model is assumed
to hold in a discrete mixture RM with four latent classes, this increases the
number to a total of 120 item parameters that have to be estimated. Note that,
in addition to these item parameters, mixture-distribution models also model
the joint distribution of the unobserved (θ, c), for which additional parameters
have to be estimated for each outcome c = 1, . . . , C. This means that the
sample size required for an unconstrained mixture model to be estimable with
the same accuracy as a one-population model should at least be multiplied by
the number of classes C in the model. Note that this does not mean that the
model parameter cannot be estimated with smaller samples, but the standard
errors of parameter estimates will increase when the number of classes is
increased, since the same number of observations are distributed across more
classes, and hence class-specific parameter estimates rely on fewer observations
in each class c.

However, for moderate numbers of classes and appropriate sample sizes,
mixed RMs for dichotomous and polytomous data can be estimated efficiently
with the EM-algorithm (von Davier, 1994, 2001). Parsimonious ways to con-
strain the conditional ability distributions using a two-parameter loglinear
smoothing were developed that can be used to save parameters (von Davier,
1994). These smoothed score distributions are described in the next section
together with the conditional maximum likelihood (CML) framework for mix-
ture-distribution RMs.

6.2.4 Conditional Mixed Rasch Models and Latent Score
Distributions

Rewriting the RM in its conditional form is useful both for estimation as well
as for studying similarities with other models. The conditional form of the RM
makes use of the fact that the total score r =

∑
i xi is a sufficient statistic for

the person parameter θ.

The Conditional Framework for Rasch Models

The conditional form of the RM has been mentioned in the introduction to
this volume as well as in other chapters. Here, we state the mixed RM in



6 Mixture-Distribution and HYBRID Rasch Models 105

conditional form, which allows us to rewrite the conditional probabilities of a
response vector x given class membership c and observed total score r as

p(x | θ, c, r) =
p(x, r | θ, c)
p(r | θ, c) =

exp(−∑βixic)∑
y|r exp(−∑βiyic)

,

since the term rθ can be eliminated in this fraction. The sum in the de-
nominator includes all possible response vectors y with the same raw score
r(y) = r(x) =

∑
i xi.

The denominator γrc(β..) =
∑

y|r exp(−∑βiyic) is the class-c-specific
form of an expression that is commonly referred to as a symmetric function of
order r in the context of the conditional RM. These symmetric functions exist
for each of the possible raw scores r = 0, . . . , Rmax where Rmax =

∑
i mi is the

maximum raw score for the set of items under consideration. Andersen (1972)
and Gustafsson (1980) present accurate and fast summation algorithms to
compute the symmetric functions for the RM, and von Davier & Rost (1995)
provide an efficient algorithm for calculating these functions for a variety
of constrained and unconstrained polytomous RMs and polytomous mixture
RMs.

Let πr|c denote the probability of raw score r in class c. Then we may
write

p(x | c) = p(x, r | c) = πr|c
exp(−∑βixic)

γrc(β..)
, (6.5)

since p(x, r(x)) = p(x) and p(x, s) = 0 if s �= r(x). The above expression
does not contain the person parameter θ. Eliminating the θ parameter using
the conditional formulation of the RM enables one to estimate the item pa-
rameters without having to jointly estimate the N person parameters. One
of the advantages of conditional estimation is that it avoids a problem en-
countered when the number of parameters increases with sample size (see
Kiefer & Wolfowitz, 1956; Neyman & Scott, 1948). By eliminating the “nui-
sance” parameters θv, which increase with sample size N , the consistency of
item-parameter estimates can be ensured.

Rost & von Davier (1995) outlined the conditional estimation of the di-
chotomous mixed Rasch model using the EM algorithm. In von Davier & Rost
(1995), estimation equations are developed for the conditional estimation of
polytomous mixed RMs, i.e., the conditional mixed partial-credit model and
other ordinal RMs for polytomous data such as the rating-scale model (An-
drich, 1978).

Kelderman (1984, 1995) described loglinear (mixed) RMs; see also Chapter
5 in this volume. The conditional RM is closely related to a loglinear model
log nx1,...,xI ,r = λ + λr − ∑i βxi

that incorporates a term λr for the raw
score r =

∑
i xi into the model (Kelderman & Macready, 1990). The reader

is referred to Chapter 5 for information and examples of how to estimate
extended RMs with general loglinear modeling software, for example, the LEM
software (Vermunt, 1997a).
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Latent Score Distributions

In the ordinary RM, the raw-score probabilities πr may be written without
the index c, since there is only one population and since no latent class index
is required. Then, these proportions may be directly estimated by

π̂r =
n(r)
N

,

where n(r) refers to the observed sample frequency of score r and N is the
total sample size.

In the mixed RM, the estimation of πr|c cannot be carried out in the
same direct manner, since the frequency of score r in class c is not directly
observable. Let n(r | c) denote this frequency in the following equations. The
πr|c for r = 0, . . . , Rmax have to be treated as latent score distributions in
each class c and need to be replaced by estimates. For example, in the EM
algorithm the π̂r|c are aggregated as a part of the generation of expected
counts in the E-step.

The πr|c quickly amount to a large number of parameters (depending on
the number of classes C and the maximum total score Rmax), which have to
be estimated in addition to the item parameters βixc. This is especially true
if mixed RMs for polytomous data are considered. For r ∈ {0, . . . , Rmax}
there are Rmax independent πr|c’s. The maximum raw score is given by
Rmax =

∑
i mi assuming that mi is the maximum category for item i and

xi ∈ {0, . . . ,mi}. As an example, for ten items with four categories (0, 1, 2, 3)
each, there are Rmax = 30 = 10 × 3 parameters necessary for estimating the
latent score distribution, that is, 30 in each latent class.

A simple loglinear smoothing approach is used by von Davier (1994), and
described in more detail in Rost & von Davier (1995), to parametrize the
πr|c more parsimoniously. In this model for the latent score distributions, it
is assumed that

π̂r|c =
exp
(
τc × r

Rmax
+ δc × g(r,Rmax)

)
∑

s exp
(
τc × s

Rmax
+ δc × g(s,Rmax)

) (6.6)

holds with g(r,Rmax) = 4r(Rmax−r)
R2

max
with location parameter τc and dispersion

parameter δc.
Obviously, this can be also written as a loglinear model

ln
πr|c
π0|c

= τc × r

Rmax
+ δc × g(r,Rmax)

of the log-odds ratio of πr against π0. This approach utilizes only 2 instead of
Rmax parameters to model the latent score distributions by introducing a para-
metric family of discrete distributions. Holland & Thayer (2000) demonstrated
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the use of loglinear models for discrete score distributions in the context of
presmoothing for test-equating purposes (Moses et al., 2004).

The most striking advantage of using loglinear smoothing of score distribu-
tions lies in the fact that the number of score-distribution parameters can be
greatly reduced. This is especially true if there are multiple score distributions
that are indirectly observed, as is the case in mixture RMs. In these cases, this
loglinear restriction enables one to use a parametric family of discrete score
distributions that is quite flexible in fitting a variety of shapes, and in many
cases adds a positive side effect of making parameter estimation more stable.
This is partly due to the fact that unobserved score distributions in multiple
populations may contain very small counts (especially for the smaller latent
classes), and a loglinear smoothing like the one introduced earlier ensures
that the counts stay positive and ensures that the model avoids zero counts.
As with all smoothing techniques, the main drawback is that the observed
marginal distribution of raw scores is not fitted perfectly. When using this
approach with mixture RMs, however, the marginal raw score distribution is
fitted by a mixture of loglinear smoothed distributions, which makes for a
rather flexible family of distributions.

6.3 HYBRID Mixture Rasch Models

The HYBRID model (Yamamoto, 1989) represents a discrete mixture-dis-
tribution model that allows different item response models to hold in the
different components of the mixture. This is a deviation from the population
homogeneity assumption that goes somewhat further than assuming that dif-
ferent parameter sets may hold in different subpopulations. In this sense, the
HYBRID model is unlike most mixture-distribution models treated in the lit-
erature. This is one way to look at HYBRID models, but in this generality,
the previous statement seems true and false at the same time, since concrete
realizations of the HYBRID model can often be expressed in the following
way: HYBRID models may more accurately be represented as discrete mix-
ture models for item response data with mixture components that contain
different degrees of constraints in the different mixture components. As an
example, consider a model that combines a latent-class-type component and
a Rasch-type mixture component. These two mixture components may be
represented either as two different models, or as a mixture of two Rasch-type
classes, where one of the classes is constrained such that there is no ability
variation in that class.

More formally, a HYBRID model may be written as

P (x = x1, . . . , xI) =
C∑

c=1

πcPMo(c)(x|c),
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where PMo(c) represents the notion that different mixture components may
include different parameter constraints representing the qualitatively different
ways members of the respective classes are responding to the items.

A typical application of the HYBRID model is to fit data where one portion
of the respondents are assumed to respond in “random” mode, maybe due to
a lack of motivation, whereas another portion of the sample are assumed to
respond in a way that can be modeled using an RM. This “Rasch” portion
may be viewed as the sample that follows the instructions and tries to respond
to the test items according to their ability.

In a case like this, the HYBRID RM for dichotomous data assumes that

P (x) = πraschπr|rasch
exp(−∑βixi

)
γr(β..)

+ πlca

I∏
i=1

p(xi | lca),

where the πrasch = 1 − πlca denotes the proportion of the subpopulation
conforming to the RM, and πlca is the relative size of the latent class type
subpopulation.

The question whether a model with a HYBRID structure is appropriate to
fit a data set can be answered only in connection with a substantive research
hypothesis. If there is indeed a very specific hypothesis for why a certain sub-
sample might respond completely randomly to all items, the HYBRID model
proves to be a useful tool in identifying this portion of the sample (Yamamoto,
1989). If noncognitive factors are considered to play a role, assuming that one
part of the sample may in fact drop out from responding systematically seems
quite plausible. Measures of goodness-of-fit allow one to check the need for
assuming additional random-response classes, so that models employing a po-
tentially unnecessary high level of complexity can be identified.

6.3.1 Extensions of HYBRID Rasch Models

The HYBRID model was extended to a model for polytomous data, where
mixtures of Rasch models and latent-class models with more than one com-
ponent in each model category as well as with different polytomous RMs may
be combined (von Davier, 1994, 1996). Moreover, the different RM mixture
components may differ with respect to their parameter restrictions both in
the latent-class components and the RM components.

Applications of polytomous HYBRID RMs and polytomous mixed RMs
are presented in von Davier (1997) and Rost et al. (1997). Eid & Rauber
(2000) identify a small set of random responders in organizational surveys
using mixtures of RMs.

6.3.2 The Speededness Model

Yamamoto & Everson (1997) described the speededness model, a HYBRID
model (Yamamoto, 1989) with a complex set of constraints that describe the
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switch from an ability-driven response behavior to a series of random responses
under speeded testing conditions. For recent extensions and applications of
this model, see Chapter 9 in this volume.

The speededness model assumes that each observation may be classified
according to a switching point, where response behavior is no longer guided
by the person’s ability and may no longer be described by an IRT model
with a quantitative ability variable. Beyond this switching point, response be-
havior follows a random process, which is assumed to be independent of the
person’s ability parameter and to be sufficiently described by item-specific re-
sponse probabilities, independent of latent ability level or class membership.
For small and moderately sized samples, the speededness model may be esti-
mated using MCMC (Gilks et al., 1996). Bolt et al. (2002) as well as Boughton
& Yamamoto (2004) estimated the model using the general MCMC software
WINBUGS (Spiegelhalter et al., 2003). For larger samples, computationally
more efficient algorithms should be considered.

Yamamoto & Everson (1997) (see Chapter 9 in this volume) use an EM
algorithm based on the HYBIL software (Yamamoto, 1987) to estimate the
speededness model. This implementation has been used to detect and model
speededness for data sets from operational large-scale testing programs.

6.4 Borrowing Information About the Mixture

Borrowing information about the latent ability distribution from background
data is a useful technique if information from the item responses is insufficient.
This is, for example, the case in large-scale educational survey assessments,
where individual ability estimates are not the focus of inference (Mislevy,
1987). In such cases, individual item response vectors are often very sparse,
since each student responds to one of a number of test booklets that contain
only a small selection of items. However, additional noncognitive variables on
the student level may be available in abundance through school databases
and background questionnaires that do not impose high cognitive demands
on students.

The general idea is straightforward: The conditional distribution of the
latent cognitive proficiency variable can be assumed to be more concentrated
(e.g., of smaller variance in the case of normally distributed, continuous abil-
ity variables) given the different levels of student background data than the
marginal distribution across all students. This holds if student background
data are related to the proficiency variable. Examples may include back-
ground variables such as socioeconomic status (SES) of students’ parents as
well as number of hours spent in front of the TV. More specifically, if an
IRT model distinguishes between groups defined by a background variable
(example: three levels of SES) that correlates with the proficiency variable,
the conditional proficiency distributions defined by the grouping variable can
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be expected to be less variable than the marginal distribution across the dif-
ferent levels of the background data. This observation can then be used to
define a more appropriate prior distribution of student proficiency in order to
improve estimation of subgroup proficiency averages and variances. Methods
drawing on similar arguments are in operational use in several national and
international educational surveys such as the National Assessment of Edu-
cational Progress (NAEP), the Programme for International Student Assess-
ment (PISA), and the Trends in Mathematics and Science Study (TIMSS).
See Chapter 4 in this volume for details on how an approach using covariates
to determine conditional ability distributions is implemented in large-scale
survey assessments.

The same idea of conditioning on available background data may be ap-
plied to a categorical latent variable, in our case a variable that represents
latent-class memberships in a mixture model. Given one or more conditioning
background variables, the multinomial distribution of the class variable will
be more concentrated around certain latent classes as compared to the overall
distribution, assuming that class membership and background variables are
not independently distributed.

More formally, assume we have a latent categorical variable C and a co-
variate Z with P (c) =

∑
z P (z)P (c | z). Let x denote the item responses as

before. If Z and C and not independent, we have P (c ∩ z) �= P (c)P (z) for at
least some pairs (c, z) and it follows that

P (c | x, z) =
p(x | c)p(c | z)∑
c′ p(x | c′)p(c′ | z) �= P (c | x).

In which cases do we expect that this inequality can be utilized for our
purpose of predicting the class membership c more appropriately? Obviously,
we gain accuracy if the true class membership is c, where p(c | x, z) > p(c | x)
for this c and p(c | x, z) > p(c′ | x, z) for all c′ �= c. In plain words, the
posterior distribution given (x, z) should be more concentrated than given x
alone. In this case, we actually improve accuracy when predicting the class
membership using both x and z as compared to using x alone.

6.4.1 Covariates of Mixture Components and Partial Knowledge
of Class Membership

In order to increase the precision of posterior classification probabilities, Smit
and colleagues (Smit et al., 1999) used collateral background information to-
gether with item responses to estimate class memberships. Smit et al. (1999)
and Smit et al. (2000) developed a dichotomous mixture IRT model in which
the posterior probabilities of class membership are calculated using back-
ground variables. They showed that the knowledge about background vari-
ables can substantially improve correct classification rates in cases in which
class membership and background data are correlated.
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von Davier & Yamamoto (2004b) developed a mixture-distribution gen-
eralized partial-credit model (GPCM; Muraki, 1992) and extended the esti-
mation of mixture IRT models by developing a general method for incorpo-
rating class or group membership into these models. In latent-class models,
class membership is treated as an unobserved variable, whereas multiple-group
models treat class or group membership as observed without error.

The approach developed by von Davier & Yamamoto (2004b) allows one
to treat class membership as a random variable with partially missing ob-
servations, or observed with error. Technically, this is handled by assuming
different prior distributions for each observation, one that is based on the
class sizes πc for observations with unknown class membership and another
one that is deterministic, i.e., π∗

c = 1 if the class membership g is known and
equals c and π∗

c′ = 0 for c′ �= g.
This approach provides a general way of incorporating covariate infor-

mation on the classification variables. Instead of defining only two distinct
priors, this allows one to use covariate information to define examinee-level
prior distributions for the classification into the mixture components.

6.4.2 Mixtures of Diagnostic Rasch Models

von Davier & Yamamoto (2004a) and von Davier (2005) developed a frame-
work for a general diagnostic model (GDM) that allows one to test hypotheses
about skill requirements or item attributes using a design matrix.

The central building block of most, if not all, diagnostic models is a design
matrix that is often referred to as a Q-matrix (Tatsuoka, 1983), an I × K
matrix that relates the I items to K skills/attributes/dimensions. The entries
qik are integers in most cases, often qik ∈ {0, 1}. The Q-matrix can be under-
stood as the structural component of the model defining a hypothesis as to
which items require which combination of skills.

von Davier (2005) presented a general diagnostic model that utilizes a
multidimensional discrete version of the (mixture) generalized partial-credit
model. This model, pGDM, is suitable for dichotomous and ordinal responses
x ∈ {0, 1, 2, . . . ,mi}. The model equation for a mixture Rasch version of the
pGDM is

P (X = x | βi··, a·, qi·, c) =
exp
[
βxic +

∑K
k=1 xγkqikak

]
1 +
∑mi

y=1 exp
[
βyic +

∑K
k=1 yγkqikak

] (6.7)

with K attributes (discrete latent traits) a = (a1, . . . , aK), latent class c and a
design Q-matrix (qik)i=1,...,I,k=1,...,K . The βixc are difficulty parameters, the
γk are skill or attribute specific slope parameters. This parametrization makes
use of the fact that the RM can be viewed as a two-parameter IRT model with
one common slope parameter for all items. The GDM allows one common
slope per skill, so that it coincides with the RM if only one skill variable
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with a limited set of ordinal levels is assumed (see Chapter 11 by Formann
in this volume). The ak are discrete scores determined before estimation and
can be chosen by the user. These scores are used to assign real numbers to
the skill levels, for example a(0) = −1.0 and a(1) = +1.0 may be chosen for
dichotomous skills. For ordinal skills with sk levels, the ak may be defined
using a(x) = x for x = 0, . . . , (sk − 1) or a(0) = −sk/2, . . . , a(sk − 1) = sk/2.

The RM variant of the GDM does not estimate slope parameters for each
item by skill combination, and treats the Q matrix as fixed and known. The
mixture-distribution version of this constrained Rasch GDM already contains
LCA, the mixed RM, as well as multiple-classification latent-class models
(Maris, 1999) as special cases. This class of constrained GDMs can be viewed
as discrete multidimensional mixture IRT models. The estimation algorithm
used in mdltm was validated in a parameter recovery study using simulated
data and through a comparison of diagnostic modeling approaches based on
real data (von Davier, 2005). Xu & von Davier (2006) apply the GDM to
sparse-matrix samples of item responses, and have presented a successful
parameter-recovery study for such data. In that study, the GDM was used to
analyze data from the National Assessment of Educational Progress (NAEP),
and the authors described how to aggregate results for policy-relevant sub-
groups using this diagnostic mixture model. von Davier et al., 2006 present a
shortlist of models for cognitive diagnosis ranging from the rule space method-
ology (Tatsuoka, 1983) to current research and applications of the GDM.

The GDM as implemented in the mdltm software (von Davier, 2005) can
be used to estimate mixture versions of the RM and the partial-credit model,
as well multidimensional mixture versions of this model.

6.5 Estimation

For conditional and marginal maximum likelihood (CML and MML) estima-
tion, the estimation maximization (EM) algorithm (Bock & Aitkin, 1981) has
proven to be very useful in the context of estimating RMs and mixture RMs.
Markov-chain Monte Carlo (MCMC) estimation of IRT models has been sug-
gested (Patz & Junker, 1999b,a) as an alternative to ML techniques. MCMC
methods claim to allow estimation of more complex extensions of IRT mod-
els, since the implementation of models using MCMC does not require finding
roots of likelihood functions and implementing estimation equations. Bolt et
al. (2001, 2002) have used MCMC methods as implemented in BUGS or Win-
BUGS (Spiegelhalter et al., 1996, 2003) for estimating mixed RMs (Rost,
1990) and variants of the HYBRID model (Yamamoto, 1989; Yamamoto &
Everson, 1995). The downside of using MCMC is computational cost, since
MCMC calculations to estimate parameters for models using moderately sized
data structures (tens of items and a few thousands of examinees) may take
hours even on modern computer hardware as compared to minutes or seconds
using customary methods like the EM algorithm.
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Recently, ways of estimating RMs and extensions of RMs, as well as more
general IRT models with general-purpose statistical software packages such as
STATA, SAS, as well as R and SPLUS, have been explored (De Boeck & Wil-
son, 2004; Skrondal & Rabe-Hesketh, 2004). This approach is a useful line of
research, for example in cases in which several different versions of models are
experimented with or analysis output needs to be embedded or reintegrated
into a larger database using standard software for statistical analysis.

Estimating multivariate or mixture-distribution latent-variable models
with standard statistical software and/or MCMC methods is a useful way
to prototype new models or to try out extensions of existing models, but
operational needs may require the implementation of computationally more
efficient estimation methods once the different components of the model ex-
tensions are understood.

The mixed RMs can be estimated using conditional maximum likelihood
techniques with WINMIRA 2001 (von Davier, 2001). HYBRID IRT models
can be estimated using HYBIL II (Yamamoto, 1993) and HYBRID RMs can
be estimated using WINMIRA 2001. Log-linear (mixed) RMs can be estimated
using LOGIMO (Kelderman & Steen, 1993) and LEM (Vermunt, 1997a). Mix-
ture versions of the general diagnostic RM (GDM) can be estimated using
marginal maximum likelihood as implemented in the mdltm software (von
Davier, 2005).

6.6 Areas of Applications and Outlook

Examples of the use of Rasch-type mixture models are given in the appli-
cations chapters of this volume. The reader is referred to these chapters for
details on these applications. Here, domains of application, rather than exam-
ples in which the mixed RM has a proven record of utility, will be surveyed.
These domains include goodness of fit, assessment of strategy differences and
strategy shifts, testing for multidimensionality, and a general approach to as-
sess differential item functioning (DIF) for single items or groups of items.

Goodness-of-Fit Testing: Rost & von Davier (1995) suggested testing the
ordinary RM versus the 2-class mixture RM. This procedure allows one to
check whether the sample for which the RM is assumed can be viewed as
homogeneous, or whether subgroups with different sets of item parame-
ters need to be distinguished. Based on work by Efron (1979) on bootstrap
resimulation methods and applications of these methods by Langeheine et
al. (1996), von Davier (1997) developed a framework for testing mixture-
distribution item response models using resimulation methods. Testing
ordinary item response theory models by means of comparisons with mix-
ture IRT models can be viewed as a generalized approach for testing for
differential item functioning (DIF; Holland & Wainer, 1993). Discrete mix-
tures of IRT models do not require the formation of focus and comparison
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groups, since mixture models optimize the group allocations by finding
maximally homogeneous subpopulations for a given number of mixture
components.

Strategy Differences and Strategy Shifts: The application of different
strategies by different subpopulations in solving a set of cognitive items
may be viewed as the foundational example for mixture IRT models and
mixed RMs. In 1990, three independently published papers addressed the
problem of observing differential profiles of item difficulties given certain
strategy differences in solving items. Rost (1990), Mislevy & Verhelst
(1990), and Kelderman & Macready (1990) all addressed this issue by
devising mixture-distribution versions of commonly used models for item
response data. Prior to that, Yamamoto (1987) developed a model that
combined an IRT mixture component for students who solve the items
using their skills with an independence class for examinees who show a
random response pattern instead of using a more promising strategy to
solve the items. Since then, many applications of mixture Rasch and IRT
models have been used to model and identify differences in response be-
havior that may be attributed to strategy differences. See Chapter 20 in
this volume for further examples.

Multidimensionality: Modeling response processes involves decisions about
where to attribute response variance. Common questions involve whether
different testing modes or situational effects lead to systematic differences
in responses or whether more than one skill or ability is involved in pro-
ducing differences in response probabilities that cannot be explained by a
unidimensional variable. The underlying question is whether within-item
multidimensionality of abilities or population heterogeneity with respect
to item difficulties (or a combination of both) is the reason for observed
deviations from unidimensionality. In multidimensional IRT (MIRT), the
conditional probability of an item response depends on more than one con-
tinuous person (ability) variable. In most mixture IRT models, the con-
ditional probabilities depend on one continuous person (ability) variable,
along with a categorical person (type or strategy) variable. In diagnostic
mixture IRT models (von Davier, 2005) such distinctions become some-
what obsolete, since the general diagnostic model allows much greater
flexibility in defining categorical, located, ordinal, and (pseudo) contin-
uous person variables. Nevertheless, observing the need for a categorical
mixing variable may be viewed as a discrete realization of multidimen-
sionality, since the different outcomes of the mixing variable moderate the
conditional response variable in addition to one or more continuous person
variables.

Mixture-distribution models for item response data range from LCA to
mixture versions of diagnostic item response models with multiple skill vari-
ables. RMs play an important part in defining the model that holds within
all or some of the mixture components. Common to all mixture-distribution
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item response models is the assumption that the observed data stem from
a composite population with an unknown number of mixture components.
The aim of mixture IRT models is therefore twofold: to identify homogeneous
(sub-)populations in which the class-specific model assumptions are met, and
to unmix the sample into these unobserved homogeneous components of the
population.

The increasing complexity of models that are available within the mix-
ing component may counteract the necessity for mixtures to some extent.
For example, the mixed RM accounts for ability differences within the mix-
ture components, whereas LCA assumes no differences in conditional response
probabilities within each class. A multiparameter IRT model such as the 2PL
will allow even more flexibility and may remove the need for more than one
mixture component at the cost of losing some of the unique mathematical
properties of RMs. This may be desirable from the perspective of flexibility,
but it may prove less desirable from the perspective of model selection, and
from the perspective of studying how different examinees solve the items using
different strategies, or using no strategies at all. The reasoning attributed to
Ben Wright, “The items are not guessing, the examinees are,” illustrates this
dilemma. It may seem useful to model guessing in terms of a more flexible
item-characteristic curve, but it does not allow for the identification of those
examinees who actually are guessing on the majority of the items. In contrast,
applying the HYBRID model allows exactly this by assuming a comparably
more constrained item response function in the Rasch mixing component, and
assuming complete random responses for the guessing class. This enables one
to estimate the proportion in the sample that produces responses indistin-
guishable from a random process.

While a greater flexibility in choosing among different model assumptions
can be viewed as desirable, the reality is that substantive research seldom
provides hypotheses that are specific enough to suggest which model is most
appropriate. Therefore, many different alternatives may be chosen, estimated,
and checked. Among these, several models may provide comparable model–
data fit and thus challenge the researcher in making a final choice. Parsimony
and the requirements of the specific application provide some guidance here,
so that the number of models that will actually be carried to the next level
of consideration will hopefully be small. Measures of model–data fit can only
guide one so far, since a comparison based on observed and expected responses
relies only on comparisons within the set of observed variables on which the
models are based. Advisable are comparisons using cross validation or exter-
nal validation techniques, so that predictions based on more- or less-complex
models are compared with respect to their utility in predicting behavior out-
side of the testing situation or at least outside of the sample used for parameter
estimation and model selection.
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Application of the Saltus Model to Stagelike
Data: Some Applications and Current
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7.1 Background of the Saltus Model

The saltus model was developed in dichotomous form by Wilson (1989), and
expanded to polytomous form by Draney (1996) as a method for detecting
and analyzing discontinuities in performance that are hypothesized to occur
as a result of rapidly occurring person growth (e.g.,Fischer, Pipp, & Bullock,
1984). Such discontinuities are often theorized to occur as the result of pro-
gression through developmental stages or levels. The most influential such
theory was developed by Jean Piaget (e.g., Piaget, 1950; Inhelder & Piaget,
1958). Although Piagetian theory has been somewhat controversial of late
(e.g., Lourenço & Machado, 1996), there is still a strong interest in stage-
like development in a number of areas, including moral and ethical reasoning
(e.g., Dawson, 2002; Kohlberg & Candee, 1984), evaluative reasoning (e.g.,
Dawson-Tunik, 2002; Armon, 1984), adult development (e.g., Commons et
al., 1998; Fischer, Hand, & Russel, 1984), and cognitive development (e.g.,
Bond, 1995b,a; Bond & Bunting, 1995; Demetriou & Efklides, 1989, 1994;
Hiele, 1986).

The work of Piaget describes the cognitive developmental stages through
which children progress as they grow. In particular, school-age children
progress from the preoperational stage, through the concrete operational
stage, to the formal operational stage. In the preoperational stage, children
are able for the first time to produce mental representations of objects and
events, but unable to consistently perform logical mental operations with these
representations. In the concrete operational stage, children are able to per-
form logical operations, but only on representations of concrete objects. In
the formal operational stage, which starts to occur around the beginning of
adolescence, children are able to perform abstract operations on abstractions
as well as concrete objects.

According to Piaget, progress from stage to stage is characterized by more
than simple linear growth in reasoning ability. The transition from one stage
to another involves a major reorganization of the thinking processes used by
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children to solve various sorts of problems. Theories with similar structure, but
perhaps different substantive focus, are described by the many neo-Piagetian
researchers, and by other researchers who use stage-based theories.

Researchers in the Piagetian tradition are using increasingly complex sta-
tistical and psychometric models to analyze their data. Béland & Mislevy
(1996) analyze proportional reasoning tasks using Bayesian inference net-
works. Noelting et al. (1995) discuss the advantages of Rasch scaling for the
understanding of Piagetian tasks. Bond (1995b,a) discusses the implications
of RMs for Piagetian theory and philosophy.

In addition, researchers in psychometrics have begun wrestling with the
problem of developing and applying models with sufficient complexity to ad-
dress such substantive issues. For example, the three-parameter model has
been used diagnostically by researchers such as Yen (1985). She describes pat-
terns of problematic item fit that are sometimes observed in analyzing complex
data and asserts that these may be indicators for increasing item complex-
ity. Differences in item complexity such as she describes could potentially be
indicative of a set of items that represent more than one developmental stage.

Another approach to the problem of incorporating different response pat-
terns and their associations with classes is given by latent-class modeling. For
example, Dayton & Macready (1976) applied this approach to behavioral hier-
archies of the type often seen in developmental theories. In this approach, each
underlying class is represented by a set of response probabilities to the items
in question. Whereas Yen’s (1985) research might be considered exploratory,
latent-class theory can be used in a more confirmatory way. Additional exam-
ples of such models and their uses are given in Rijmen & De Boeck (2003),
Formann (1992), and Croon (1990),

However, Rost (1988) states that the defining feature of latent-class mod-
els is the characteristic that all persons within a latent class have the same
probabilities of answering a set of items correctly, and thus (if considered in
an educational context) the same ability or proficiency. It is plausible that
children within a given developmental stage might vary in overall proficiency
within that stage.

The saltus model was developed to combine the advantages of the RM,
including varying person proficiency, and latent-class modeling, including dif-
fering patterns of response probability across different latent subgroups of
persons. In this way, it is similar in its origins to the HYBRID model (Ya-
mamoto, 1989; compare also Chapter 4 in this volume), a latent-class model
that included as one of the classes a “catch-all” latent-trait model for those
persons who did not fit well into one of the other classes. However, unlike the
HYBRID model, the saltus model provides a latent-trait model within each
of the latent classes identified.
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7.2 The Saltus Model

The saltus model is based on the assumption that there are C classes, repre-
senting developmental stages or levels. Each level is represented by a set of
items, which are constructed such that only persons at or above the develop-
mental stage represented by those items are fully equipped to answer them
correctly, and once persons enter that developmental stage, they should gain
a substantial advantage in answering those items.

In the discussion to follow, the terms “person class” and “item group”
will be used. This is merely a device used for clarity when it is necessary to
differentiate between classes of persons and groups of items, and does not have
any particular substantive significance.

The saltus model assumes that all persons in class c answer all items in a
manner consistent with membership in that class. However, persons within a
class may differ by proficiency. In a Piagetian context, this means that a child
in, say, the concrete operational stage is always in that stage, and answers all
items accordingly. The child does not show formal operational development for
some items and concrete operational development for others. However, some
concrete operational children may be more proficient at answering items than
are other concrete operational children.

In the saltus model, two parameters describe a person v: a unidimensional
proficiency parameter θv, and an indicator vector for class membership φv.
If there are C latent person classes, then φv = (φvl, . . . , φvC), where φvc

takes the value of 1 if person v is in class c and 0 if not. Note that only one
φvc is theoretically nonzero; however, since it is a latent parameter, it must
in practice be estimated.

Just as persons are members of only one class, items are associated with
one and only one group. In a developmental context, an item’s group would
be said to be the first developmental stage at which a child would have all of
the skills necessary to perform that item correctly. It is, of course, possible for
children at lower developmental stages to perform items correctly from time to
time; however, this usually occurs because of guessing or a poorly developed
strategy that happens to produce the correct answer in some cases. Unlike
person-class membership, however, which is unknown and must be estimated,
item-group membership is known a priori, based on the theory that was used
to produce the items. It will be useful to denote item-group membership by
the indicator vector bi. As with person classes indicated by the φv, we assume
that there are C item groups, and each item is member of exactly one group,
i.e., bi = (bil, . . . , biC), when bic takes the value of 1 if item i belongs to
item class k, and 0 otherwise. The set of all bi is denoted by b.
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The equation

P (Xvij = j|θv, φvc = 1, βi, τck) =
exp

j∑
s=0

(θv − βis + τck)

mi∑
t=0

exp
t∑

s=0
(θv − βis + τck)

(7.1)

defines the probability of response j to item i, with step difficulty βij . This
defines a polytomous item response model that has been augmented by the
introduction of the saltus parameter τck as an additive element of the logis-
tic argument. The saltus parameter describes the additive effect—positive or
negative—for people in class c on the item parameters of all items in group k.
Typically, in developmental contexts involving stages, this has taken the form
of an increase in probability of success at higher levels as the person achieves
the stage at which an item is located, indicated by τck > 0 when c ≥ k (al-
though this need not be the case). The saltus parameters can be represented
as a C x C matrix T.

The probability that a person with parameters φv and θv will respond in
category j to item i is given by

P (Xvij = j|θv, φv, bi, βi, T ) =
∏
h

∏
k

P (Xvij = j|θv, φnh = 1, bi, τhk)φvhbik .

(7.2)
Note that for only one combination of c and k do the product terms have a

nonzero exponent φvcbik. Since item responses are assumed to be independent
given θv, φv, and all of the item and saltus parameters, the model-based
probability of a response vector is

P (Xv =v |θv, fv, bi, βi, T ) =
∏
h

∏
k

∏
i

P (Xvij = xij |θv, φvh = 1, bi, τhk)φvhbik .

(7.3)
The saltus model requires a number of constraints on the parameters. For

item-step parameters, we use two traditional constraints: first, βi0 = 0 for
every item, and second, the sum of all the βij across all items is set equal to
zero. Some constraints are also necessary on the saltus parameters. This could
be accomplished in several ways, but once parameters have been estimated
with one set of restrictions, they can be translated to corresponding values
under another set. The set of constraints we have chosen is the same as that
used by Mislevy & Wilson (1996), and will allow us to interpret the saltus
parameters as changes relative to the first (lowest) developmental stage. Two
sets of constraints are used. First τc1 = 0; thus, the difficulty of the first
(lowest) group of items is held constant for all person classes; changes in the
difficulty of groups of items for k > 1 are interpreted with respect to this
first group of items for all person classes. Also τ1k = 0; thus, items as seen by
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person classes with c > 1 will be interpreted relative to the difficulty of those
items as seen by person class 1.

The saltus model is a special case of the more general mixed RM described
by Rost (1990, compare also Chapter 6 in this volume). The estimation of
polytomous mixed RMs with and without constraints using conditional max-
imum likelihood methods is discussed in von Davier & Rost (1995). This
model is itself a member of the class of finite mixture-distribution models
(e.g.,Titterington et al., 1985; Everitt & Hand, 1981). Perhaps the most gen-
eral of such models to have been discussed in an educational context is the
mixture multidimensional random coefficients multinomial logit (M2RCML)
model described by Pirolli & Wilson (1998).

7.3 An Example Application

An example of the application of the saltus model will be based on a set of
responses to Noelting’s (1980a; 1980b) orange juice mixtures test for assessing
proportional reasoning. The items in this test consist of pictures of a certain
number of glasses of juice and glasses of water, representing a mixture. In
each item, the child is shown two such mixtures and asked which would taste
more strongly of juice, or if they would taste the same. A representation of
such an item is shown in Figure 7.1.

versus

Fig. 7.1. Representation of Noelting juice mixture item. Dark indicates juice, light
indicates water.

Noelting postulates a Piagetian stage hierarchy consisting of three stages—
the intuitive, the concrete operational, and the formal operational—for per-
sons solving these items. Noelting develops juice mixture problems to repre-
sent the skills that differentiate between each developmental stage.

In the intuitive stage, the child can additively compare the relative quan-
tity of an attribute (e.g., more glasses of juice or more glasses of water), but
tends to pay attention only to one attribute or the other. In the concrete
operational stage, the child begins to learn the concept of ratio and propor-
tionality. Rather than simply comparing the number of glasses of juice or
water between the two mixtures, the child is able to recognize the concept
of “one glass of juice for every glass of water” or “twice as much juice as
water.” In the formal operational stage, the child learns to deal formally with
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fractions, ratios, and percentages. Here, the child begins to master the formal
mathematical rules for comparing two arbitrary mixtures. For this example,
we will consider the items developed for the first two stages (the intuitive and
the concrete operational).

Noelting postulates three problem types (representing ordered substages)
within a stage and develops between one and four replications of each of these
substage problem types. These problem types and replications are described
in Table 7.1. The items were administered to a sample of 460 subjects ranging
in age from 5 to 17 years. The number of persons at each age is given in Table
7.2.

Table 7.1. Noelting items

Item Stage Mixture 1 Mixture 2
1 intuitive 4 Juice, 1 Water 1 Juice, 4 Water
2 intuitive 1 Juice, 2 Water 2 Juice, 1 Water
3 intuitive 1 Juice, 0 Water 1 Juice, 1 Water
4 intuitive 1 Juice, 2 Water 1 Juice, 3 Water
5 intuitive 2 Juice, 3 Water 1 Juice, 1 Water
6 intuitive 2 Juice, 1 Water 3 Juice, 4 Water
7 concrete 1 Juice, 1 Water 2 Juice, 2 Water
8 concrete 2 Juice, 2 Water 3 Juice, 3 Water
9 concrete 1 Juice, 2 Water 2 Juice, 4 Water
10 concrete 2 Juice, 4 Water 3 Juice, 6 Water
11 concrete 4 Juice, 3 Water 8 Juice, 6 Water
12 concrete 3 Juice, 1 Water 6 Juice, 2 Water
13 formal 3 Juice, 1 Water 5 Juice, 2 Water
14 formal 8 Juice, 3 Water 3 Juice, 1 Water
15 formal 5 Juice, 2 Water 7 Juice, 3 Water
16 formal 3 Juice, 5 Water 5 Juice, 8 Water
17 formal 1 40 %, 0 10 %, 1 Water 0 40 %, 2 10 %, 0 Water
18 formal 0 40 %, 2 10 %, 1 Water 2 40 %, 0 10 %, 4 Water
19 formal 1 40 %, 1 10 %, 1 Water 1 40 %, 0 10 %, 2 Water
20 formal 1 40 %, 1 10 %, 1 Water 2 40 %, 1 10 %, 2 Water

The saltus model to be fit to these data will be a two-stage model, compar-
ing the intuitive and the concrete items. In this model, saltus class 1 should
include the youngest children in the intuitive stage, saltus class 2 should in-
clude middle-aged children in the concrete operational stage, as well as the
oldest children in the formal operational stage. In this model, there will be
one between-class saltus parameter, for the older children taking the concrete
operational items. This parameter is expected to be positive.

Parameter estimates and standard errors for this model are given in Table
7.3. Approximately 60% of the sample is classified into saltus class 1, and
40% into class 2. Class 1 is lower in mean proficiency than class 2. This is
not surprising, since older children are in general higher in proficiency on the
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Table 7.2. Ages of subjects in the Noelting sample

Age Frequency Percent
5 3 0,01
6 26 0,06
7 40 0,09
8 53 0,12
9 45 0,10
10 51 0,11
11 60 0,13
12 40 0,09
13 48 0,10
14 26 0,06
15 29 0,06
16 28 0,06
17 11 0,02

Total 460

intuitive items (i.e., less prone to errors) than are younger children, in addition
to having the skills necessary to solve developmentally more complex groups
of items. Also as predicted, the saltus parameter τ22 is statistically different
from zero (with magnitude more than twice its standard error), indicating
that there is some systematic effect of class membership on item performance
for concrete operational items.

Recall that item difficulties as shown in Table 7.3 are interpreted relative
to the lowest person class. The following is an example of how the τ parameter
may be interpreted. For the lowest person class, intuitive item 1 has difficulty
parameter –7.08, while concrete item 1 has difficulty parameters 1.89. For
person class 2, intuitive item 1 retains the same difficulty parameter (although
the mean proficiency of person class 2 is higher than for class 1, and thus the
probability of correct responses to the intuitive items is higher for person class
2). However, the difficulty parameter for concrete item 1 is adjusted by τ when
seen by person class 2, and thus becomes 1.89 – 5.66 = –3.77. Not only are
persons in class 2 more likely to answer items correctly than are persons in
class 1 (because of the higher average proficiency of class 2), the difference
between the difficulties of intuitive and concrete items is greater for persons in
class 1 than it is for persons in class 2. In probability terms, this means that
an average person in class 1 has a .10 probability of scoring 1 on concrete item
1. If τ had been zero (and the difficulties of concrete items had been the same
for person class 2 as for person class 1), an average person in class 2 would
have scored 1 with a probability of approximately .58. However, because of the
size of τ , the average person scores 2 on this item with a probability greater
than .99.

The interpretation of item difficulties and mean abilities for classes is often
easier when these parameters are displayed in a graphical form sometimes
referred to as a Wright map (Wilson, 2005) in honor of its creator, Benjamin
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Table 7.3. Parameter estimates and standard errors

Parameter Estimate S. E.
β1 –7.08 0.532
β2 –6.61 0.446
β3 –4.10 0.232
β4 –3.75 0.218
β5 –1.97 0.168
β6 –2.38 0.177
β7 1.89 0.183
β8 1.49 0.179
β9 5.30 0.181
β10 5.89 0.164
β11 5.66 0.171
β12 5.66 0.171

τ22 5.66 0.131

µ1 –0.26
σ1 2.61
π1 0.59

µ2 2.21
σ2 1.72
π2 0.41

D. Wright, of the University of Chicago. Maps have long been used with
RMs such as the partial-credit and rating-scale models, and are incorporated
into many estimation software packages for these models. These maps are
not meant to decide whether a particular model fits the item response data,
but they are very useful in describing which persons (here which classes) and
which groups of items are close when comparing (average) ability estimate
and item difficulty.

A Wright map of the mean class abilities and the item difficulties as seen
by each class is given in Figure 7.2. In this figure, the units of the logit scale
(the scale in which parameters for this model are estimated) are shown on
the extreme left side of the page. The column to the right of this contains the
mean abilities of the person classes, with a range of one standard deviation
on either side of each class mean. The mean of each class is represented by
the letter M followed by the class number (e.g., M1 for the mean of class
1). Similarly, the upper and lower limits of the standard deviation range are
represented by the letter S and the class number; these limits are connected
by dashed lines to the class mean.

The difficulty levels for the various item steps as seen by each class are
shown in the remaining columns. The difficulty levels for the items as seen by
class 1 are shown in the column labeled “Item difficulty,” under the heading
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Group 1 Group 2

Logits proficiency item difficulty proficiency item difficulty

6.5
6.0 C4
5.5 C3, C5, C6
5.0
4.5
4.0 S2
3.5 |
3.0 |
2.5 |
2.0 S1 C1 M2
1.5 | C2 |
1.0 | |
0.5 | | C4
0.0 | S2 C3, C5, C6
–0.5 M1
–1.0 |
–1.5 |
–2.0 | I5 I5
–2.5 | I6 I6
–3.0 S1
–3.5 I4 I4,C1
–4.0 I3 I3, C2
–4.5
–5.0
–5.5
–6.0
–6.5 I2 I2
–7.0 I1 I1
–7.5

Fig. 7.2. Wright map of person distributions and item difficulties for two groups

for class 1, and similarly for class 2. More-difficult item steps and more able
persons are toward the top of the page, and less-difficult item steps and less
able persons are toward the bottom of the page.

The effect of the saltus parameters can be seen quite clearly in this figure:
The gap between the difficulties of the intuitive items and the concrete items
is substantial for class 1. While the difficulty of the intuitive items is held
fixed for both classes, the difficulty of the concrete items drops for class 2,
such that the easier of the concrete items are nearly identical in difficulty to
the harder intuitive items for this class.

Model-based response probabilities by a person whose proficiency was
equal to the mean of each class, using the estimated parameter values, are
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given in Table 7.4. For the intuitive items, both classes are most likely to
score 1. Response probabilities for the concrete items are quite different for
the two classes, with Class 1 most likely to answer incorrectly to all of the
items, while Class 2 is most likely to answer correctly. Even class 2, however,
has about a 10% chance of answering all but the first two concrete items
incorrectly.

Table 7.4. Item difficulty and probability of correct response by item for the average
ability level of two saltus groups

Group 1 Group 2

Item Difficulty P(X = 1) Difficulty P(X = 1)

I1 –7.08 1.00 –7.08 1.00
I2 –6.61 1.00 –6.61 1.00
I3 –4.10 0.98 –4.10 1.00
I4 –3.75 0.97 –3.75 1.00
I5 –1.97 0.85 –1.97 0.98
I6 –2.38 0.89 –2.38 0.99
C1 1.89 0.10 –3.77 1.00
C2 1.49 0.15 –4.17 1.00
C3 5.30 0.00 –0.36 0.93
C4 5.89 0.00 0.23 0.88
C5 5.66 0.00 0.00 0.90
C6 5.66 0.00 0.00 0.90

An example set of person-response vectors, classification probabilities, abil-
ity estimates, and standard errors is given in Table 7.5. Classification proba-
bilities are in fact estimates of the person-class-indicator parameters φc, which
range from zero to one, and which sum to one for c = 1, . . . , C, and thus are
interpretable as probabilities. Persons such as A and B, who respond correctly
only to intuitive items, are classified solidly into class 1. Even persons such
as C and D, who respond correctly to all of the intuitive items, and one or
two of the easier concrete items, are still most likely to be in class 1, although
person D has a small probability of being in class 2. Persons such as G and H,
who respond correctly to all of the intuitive items and most of the concrete
items, including some of the most difficult of these, are classified into class 2,
although person G, who misses two of the concrete items, still has nearly a 1
in 5 probability of being in class 1.

Persons such as E and F are more difficult to classify. These persons answer
some but not all of the concrete items, including some of the more difficult
ones. In addition, person F misses one of the intuitive items. These persons
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Table 7.5. Example person-response strings with proficiency and classification

Group 1 Group 2

Person Responses Probability Ability SE Probability Ability SE

A 111000 000000 1.00 –3.60 .99 .00 –3.50 .76
B 111111 000000 1.00 –0.15 1.17 .00 –1.78 .76
C 111111 010000 1.00 1.23 1.17 .00 –1.19 .77
D 111111 110000 .93 2.56 .08 .08 – .59 .79
E 111111 010101 .58 3.76 1.04 .43 0.06 .82
F 110111 000110 .43 1.23 1.17 .57 –1.19 .77
G 111111 110011 .18 4.67 .64 .82 .79 .90
H 111111 111110 .03 5.24 .65 .97 1.74 1.06

have probabilities between .4 and .6 of being in either of the two classes;
essentially, they do not fall clearly into either class.1

The response vectors given in this table are typical of most of the response
vectors in the data set; in particular, most of the persons classified as intuitive
responded either like person B (responding correctly to all of the intuitive
items and to none of the concrete items), or by missing only one or two of
the intuitive items and still missing all of the concrete items—a total of 136
persons, or about 30%. Most of the persons classified as concrete responded
like persons F and G, responding correctly to all of the intuitive and all or
nearly all of the concrete items. Such persons accounted for 170, or about 37%.
Relatively few persons (19 in all, or 4%) missed one or more of the intuitive
items while responding correctly to some of the concrete items—persons such
as F. The remaining persons either solved all of the intuitive, and one to three
of the concrete items, correctly (99, or about 22% of the data set), or solved
only a small number of the intuitive, and none of the concrete, items correctly
(36, or about 7% of the data set).

7.4 Discussion

The use of the saltus model has allowed us to learn some interesting things
about the example data set. For instance, it would seem that the saltus model
is more suitable for use with these data than a latent-class model. Latent-
class models are similar to mixture IRT models such as the saltus model
and the mixed RM, in that they assume that the observed population is
composed of latent subpopulations; however, in contrast to the latter, latent-
class models include no quantitative person parameters. In latent-class models;
1 In order to determine whether persons such as E and F can be fitted by the model

appropriately, fit diagnostics (Molenaar, 1983) such as person-fit statistics may
be used. von Davier & Molenaar (2003) present person-fit statistics that can be
used with latent-class and discrete-mixture RMs.
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class membership accounts for all explained variation between persons, and
within-class variation is considered random variation. However, as seen in
Table 7.3, person classes have relatively large standard deviations (between
1.7 and 2.6 logits), indicating that there is substantial and more importantly,
systematic, within-class variability in these data.

Various types of fit analysis might prove useful. For example, it might be
useful to develop a saltus-like model with variable item slopes, since models
with equal slopes for all items are often too restrictive to fit well. In addition,
it might be the case that models that included saltus parameters indexed
by individual item (and perhaps by step in polytomous items), rather than
simply associating saltus parameters with items as a whole, and estimating a
single parameter across all items within an item class, might yield interesting
differences by item and/or step.

One promising method for estimating parameters for such models is
through their expression as generalized nonlinear mixed models. Statistical
software packages are being developed that can estimate a wide variety of
such models. An example of how this could be done using SAS was given by
Fieuws et al. (2004); other software packages could also be used.

The saltus model has shown potential for aiding researchers, especially in
the fields of cognitive science and Piagetian or neo-Piagetian theory, as do
other extended models able to reflect the complexities of polytomous data
and latent classes. For example, Commons and his colleagues have begun in-
vestigating the use of the saltus model for Commons’s general stage theory of
development (see, for example, Dawson et al., 1997). Other promising applica-
tions should follow as researchers in psychometrics continue their collaboration
with educational and psychological researchers.
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8.1 Introduction

Diagnostic tests aim to discriminate between clinically normal and clinically
abnormal cases. When raw scores summarizing responses to items in psy-
chiatric or health related scales are used for diagnostic purposes, it is re-
quired that measurements are both valid and reliable. Diagnostic tests are
also supposed to be simple to use with either markedly higher or lower scores
among persons with the specific target disorder than among normal individ-
uals. When diagnostic tests are used for screening in large populations, the
requirement of simplicity is of course of utmost importance.

One very useful way to address a diagnostic classification problem is to
treat it as a latent-class problem. In particularly simple cases, the latent classes
of normal and abnormal cases may in particularly simple cases define a mixed
distribution of the latent trait being measured. In most cases, it is reasonable
to assume that response behavior differs qualitatively between normal and
abnormal cases. Mixed IRT models, and in particular mixed RMs (Rost, 1990;
Rost & von Davier, 1995), are natural modeling frameworks for this kind of
analysis.

If we adopt the mixed Rasch model (RM) for these purposes, it follows that
conventional definitions of validity and reliability have to be extended to fit the
notion of this type of mixture distribution model. Diagnostic construct validity
should insist that item responses fit a mixed IRT and preferably a mixed RM
with two latent classes. Diagnostic criterion validity becomes a question of
whether the estimate of the latent class to which a person belongs is associated
with the presence of the target disorder and all variables known to depend
on the disorder. Finally, diagnostic reliability is a question of satisfactory
sensitivity and specificity of the diagnoses.

Simplicity and feasibility are other requirements of diagnostic procedures.
A natural diagnostic procedure based on mixed RMs use estimates of the
posterior conditional distribution of the latent-class variable given the vector
of item responses. Although such a procedure is definitely feasible using results
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provided by WINMIRA (von Davier, 1994), it can hardly be described as a
simple procedure when the diagnostic test contains a large or even moderate
number of items. Diagnoses by item response vectors will therefore not be
practical in most applications.

If the latent class of patients with the target disorder is characterized not
only by qualitatively different response behavior and correspondingly differ-
ent item parameters, but also by extremely low or high test scores, we have a
case of a stochastically ordered (to be defined in section 3 below) mixed RM
where a simple diagnostic procedure comparing scores to an appropriately
chosen cut-point may suffice. Analysis of local homogeneity in stochastically
ordered mixed RMs were introduced by Kreiner et al. (1990) and further
discussed and developed in Kreiner et al. (2006). An analysis of local homo-
geneity comparing item parameter estimates in pairs of score groups will both
identify the appropriate cut-points and—together with conventional analyses
by mixed RMs—provide additional evidence for or against diagnostic validity
as described above.

The Mini-Mental State Examination (MMSE) developed by Folstein et
al. (1975) is one of the most widely used screening scales for detection of
cognitive impairment. It contains 14 dichotomous and 5 polytomous items.
The summated rating scale counts the number of correct responses leading
to a score of 30 when all items have been correctly responded. A cut-point
equal to 24 has generally been accepted as a practical cut-point for MMSE.
Scores less than 24 indicate cognitive impairment, while scores greater than or
equal to 24 indicate normal cognitive function. Many studies report moderate
to high degree of both sensitivity and specificity for this cut-point. Several
studies raise questions concerning the construct validity of MMSE because
items and factor analyses suggest that the assumption of unidimensionality
has been violated. A recent Danish study of 1189 elderly (Schultz-Larsen et
al., 2005a,b) comes to the same conclusion but also reports disturbingly low
sensitivity. This finding motivated renewed analyses aimed at determining
cut-points with a higher sensitivity than those conventionally used. The com-
plete analysis is documented in Schultz-Larsen et al. (2005a,b), which contains
additional MMSE related references. In this chapter, we illustrate the analysis
by stochastically ordered mixed RMs by analysis of responses to a subset of
nine dichotomized MMSE items.

Section 8.2 describes some key properties required of diagnostic tests. Sec-
tions 8.3 and 8.4 summarize the definition of stochastically ordered mixed
RMs and analysis of local homogeneity. Section 8.5 discusses a few technical
issues connected with analysis by stochastically ordered mixed RMs. Finally,
the MMSE items are analyzed in Section 8.6.



8 Stochastically Ordered Mixed Rasch Models 133

8.2 Properties of Diagnostic Tests

The required properties of diagnostic tests are described by Streiner (2003).
Suppose that D is a variable indicating whether a specific disorder is present
and that T is the outcome of a diagnostic procedure for the disease. Table 8.1
illustrates the situation classifying results from a hypothetical study where it
has been possible to compare the diagnosis, T , with the gold standard, D.
Both variables are coded 0 for absent and 1 for present

Table 8.1. Classification of different results of comparison of the diagnostic results
with a gold standard

Gold Standard
Result of diagnosis Target disorder is absent Target disorder is present
Negative True negative False negative
Positive False positive True positive

The quality of a diagnostic procedure is usually described by a number of
conditional probabilities. The sensitivity is the probability P (T = 1|D = 1)
of a true positive result. The specificity is the probability P (T = 0|D = 0)
of a true negative result. The positive predictive value (PPP) is the prob-
ability, P (D = 1|T = 1), that a person with a positive diagnosis has the
disease in question. The negative predictive value (NPP) is the probability,
P (D = 0|T = 0), that a person with a negative diagnosis does not have the
disease. PPP and NPP depend on the prevalence P (D = 1) of the disease in
the population, whereas sensitivity and prevalence are not influenced by the
prevalence.

All four diagnostic criteria should be as high as possible, but deciding on
a specific diagnostic procedure often requires some kind of trade-off between
sensitivity and PPP on one hand and specificity and NPP on the other. In
connection with large-scale population screening, economic considerations will
always insist that specificity has to be very high, in which case the evalua-
tion of the diagnostic procedure becomes a question of whether a satisfactory
sensitivity is obtainable.

8.3 Mixed RMs with Stochastically Ordered Classes

Here, we only consider RMs for dichotomous items. Everything extends, how-
ever, to RMs for polytomous ordinal items without problems.

8.3.1 Conventional Mixed Rasch Models

A mixed RM adds a latent-class variable, K, to a conventional RM and as-
sumes that item parameters depend on K,
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P (Y1 = y1, . . . , Yk = yk|Θ = θ,K = κ,X = x) =
exp(sθ −∑i yiβκ,i)∏
i (1 + exp(θ − βκ,i))

(8.1)
where Y = (Y1, . . . , Yk) are items and X is a vector of exogenous covariates.
Mixed RMs usually assume that the effect of K is more than just a question
of differential functioning of a few items; in other words, that item responses
are fundamentally heterogeneous across the latent classes. One consequence
of this is that comparisons of scores across groups are meaningless because
they depend on qualitatively different types of latent traits; the two latent
classes define two different frames of reference for measurement. X is added
to the model to remind the reader that disregarding K will lead to evidence
of differential item functioning relative to all exogenous variables statistically
associated with K.

In addition to the conditional probabilities (8.1), a mixed RM also con-
tains marginal probabilities —class sizes— πκ, and conditional densities of
the latent trait in each class, f(θ|κ).

Rost & von Davier (1995) give details on item analysis by mixed RMs.
Inference in these models is conditional in the sense that item parameters are
estimated from the conditional distribution of item responses given the raw
score,

P (Y1 = y1, . . . , Yk = yk|S = s, κ) =
exp(

∑
i yiβκ,i)

γs(κ)
(8.2)

where (γs(κ))s=0,...,k are the symmetrical functions of the parameters in the
κ’th class. Instead of imposing assumptions on the latent trait distribution in
each class, Rost & von Davier (1995) use a smooth two-parameter power series
model for the conditional distributions of the score in each class. This model
is equivalent to a model first discussed by Leunbach (1976). The probability
of a specific score is given by

P (S = s|κ) =
exp(τκs + δκs

2)
K(τκ, δκ)

(8.3)

where K(τκ,δκ) is a normalizing constant needed to insure that probabilities
add up to 1.

Item parameters, class sizes πκ, and score distribution parameters, τκ and
δκ, can be estimated by an extended EM algorithm implemented by von Davier
(1994). The classification problem of assigning persons to latent classes is
best approached using Bayes’s theorem. Given estimates of class sizes, item
parameters and parameters of the conditional score distributions, posterior
class probabilities can be estimated by

P (κ|Y1 = y1, . . . , Yk = yk) =
P (Y1 = y1, . . . , Yk = yk|κ)πκ

P (Y1 = y1, . . . , Yk = yk)
(8.4)

=
P (Y1 = y1, . . . , Yk = yk|S = s, κ)P (S = s|κ)πκ

P (Y1 = y1, . . . , Yk = yk)
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The posterior class probabilities depend on the marginal distribution
P(Y1=y1,. . . , Yk=yk). Posterior probabilities are needed if one wishes to es-
timate the latent class to which a specific person belongs. For this purpose,
the denominator of (8.4) can be disregarded. We estimate κ by the class with
the largest posterior probability given an observed vector of item responses,
that is by the class, λ, satisfying

P (Y1 = y1, . . . , Yk = yk|S = s, λ)P (S = s|λ)πλ >

P (Y1 = y1, . . . , Yk = yk|S = s, κ)P (S = s|κ)πκ

⇔ P (Y1 = y1, . . . , Yk = yk|S = s, κ)P (S = s|κ)
P (Y1 = y1, . . . , Yk = yk|S = s, λ)P (S = s|λ)

<
πλ

πκ
(8.5)

for all κ �= λ.
Equation (8.5) shows that the Bayesian posterior estimate of latent

classes depends on both the distribution of scores and on the conditional
distribution of item responses given scores in the different latent classes.
P (Y1, . . . , Yk |S, κ) does not depend on the latent trait, Φ, but the distri-
bution of Φ has an effect on posterior estimates through the conditional score
distribution.

A simple diagnostic procedure requires that we estimate the latent class
using nothing but the raw scores. The posterior estimates would in this case
be

P (κ|S = s) =
P (S = s, κ)
P (S = s)

=
P (S = s|κ)πκ

P (S = s)
(8.6)

with the estimate, λ, of the latent class satisfying

P (S = s|κ)
P (S = s|λ)

<
πλ

πκ
(8.7)

for all κ �= λ.
From a practical point of view, (8.7) is a more attractive estimate than

(8.5) because it does not require estimates of the conditional probabilities,
P (Y1 = y1, . . . , Yk = yk|S = s). In general (8.7) will, however, be an inferior
estimate with too high a risk of misclassification and therefore not worthy
of serious consideration. The one exception to this rule may be the case of
stochastically ordered classes, where comparison of scores across groups is
reintroduced.

8.3.2 Stochastically Ordered Classes

Suppose that items in a test require a specific type of performance, that one
class, κ1, consists of persons who for some reason are not able to perform,
and that the second class, κ2, contains persons who function well. This is
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similar to the situation that inspired Yamamoto (1987) to develop the HY-
BRID model, in which one class is unable to perform the tasks and produces
essentially random responses, and the other class of examinees functions as
intended by the test authors. If this is the case, and the members of the “not
able to perform” class have very low success probabilities, the two classes
will be stochastically ordered in the sense that expected scores are relatively
low in the first class and relatively higher in the second. The following def-
inition of stochastically ordered classes where P1(s) = P(S=s|κ1) and P2(s)
= P(S=s|κ2) are the probabilities of the score distributions in the two latent
classes formalizes this situation.

Definition 1. The two classes are stochastically ordered if ω(s) = P2(s)/
P1(s) is an increasing function of s.

Let π2|s be the posterior probability that a person belongs to κ2 given an
observed score equal to s. It follows from Definition 1 and Bayes’s theorem
that π2|sis an increasing function of s if, and only if, the two classes are
stochastically ordered, because π2|s depends on the marginal class sizes π1
and π2 in the following way,

π2|s =
P2(s)π2

P1(s)π1 + P2(s)π2
=

ω(s)
(

π2
π1

)
1 + ω(s)

(
π2
π1

) (8.8)

When latent classes of mixed RMs are stochastically ordered, diagnosis by
cut-points becomes promising. Cut-points are usually defined by studies where
both test scores and gold standards are available. In studies where gold stan-
dards are not available, cut-points can be identified by the probabilities of
the joint distribution, P(S,K), of the test score and the latent-class variable
obtained during analysis by mixed RMs where the latent-class variable adopts
the role of the missing gold standard.

There are (at least1) two different ways to select the diagnostic cut-point,
sd, so that a score satisfying S ≤ sd indicates that the target disorder is
present. The likelihood principle (Royall, 1997) would select the largest score
as the cut-point for which ω(s) = P2(s)/P1(s) is less than one. From a
Bayesian point of view, the cut-point should be the largest score for which
π2|s is less than one.

Both cut-points are uniquely identifiable if the two classes are stochasti-
cally ordered according to Definition 1, but the two cut-points need not agree.
The Bayesian cut-point depends on the prevalence of the disorder, whereas the
likelihood cut-point is independent of the prevalence. Both cut-points may be
determined from the estimates of P (S,K) obtained during analysis by mixed
RMs.
1 A more complex loss function could be defined that accounts for differential risks

associated with assigning a class at different score points or regions.
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8.4 Analysis of Local Homogeneity

Equation (8.8) shows that negatively skewed score distributions in κ2 together
with strong positive skewness in κ1 will generate data where persons with high
scores almost exclusively will consist of persons from κ2, while persons with
low scores belong to κ1. On the other hand, extreme class sizes will tend to
generate data where persons at one end of the score range consist of persons
from one class, while persons at the other end will tend to be a mixture of
persons of both classes. This means, as long as one only compares score groups
belonging to the same end of the score range, that one may expect little
or no evidence against homogeneity of item parameters estimated in score
groups at one or maybe both extreme ends of the score range. This motivates
the following definitions of local homogeneity and the simple procedure for
identification of score groups suggested by Kreiner et al. (1990).

Definition 2. Let [1, s1], [s1 + 1, s2], . . . , [sr−1 + 1, k − 1] be a partitioning
of the range of the score of k dichotomous items into r score intervals. We
assume that at least one score interval contains more than one score value.
The set of items is locally homogenous if there is no evidence against hypothe-
ses of equal item parameters across different score groups within the r score
intervals. Intervals containing more than one score value are referred to as the
homogenous score intervals.

Definition 3. Consider a partition, [1, s1], [s1 +1, s2], . . . , [sr−1 +1, k − 1],
of the score range, [1, k − 1] into r score intervals so that item responses
appear to be homogeneous within score intervals. If concatenation of adjacent
score intervals results in score intervals where item responses appear to be
heterogeneous, we then refer to the set of score intervals as a maximally locally
homogeneous (MLH) set of score intervals.

Note that local homogeneity is defined in terms of empirical findings during
item analysis by RMs. These findings suggest, but do not in themselves define
a stochastically ordered mixed RM. Note also that the definition permits
both situations where homogeneity is found in just one extreme score interval,
situations where homogeneity are found in two extreme score intervals, and
situations with several homogeneous score intervals are spread across the score
range.

When evidence against a conventional RM has surfaced, analysis of local
homogeneity attempts to identify a set of MLH score intervals. Analysis of
local homogeneity is thus supposed to be a protected procedure in the sense
that it should only be performed when initial tests of the RM have rejected the
model, and only if the possibility of a stochastically ordered mixed RMs makes
sense. Under these conditions, the following stepwise procedure is suggested:

Initialization

Select an initial set of m0 disjoint score intervals, J0 = {J0
1 , J

0
2 , . . . , J

0
m0

}, so
that [1, k − 1] =

⋃
i

J0
i . Ideally, the initial score intervals should be the elemen-
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tary score groups, but larger score intervals may be warranted if the number
of cases in each score group is too small for estimation of item parameters to
make sense.

Iterative Step

Compare item parameters in adjacent score groups using Andersen’s (1973a;
1973c) conditional likelihood ratio test.

Let L(β̂[s,t];Y[s,t]) be the conditional likelihood function evaluated for the
data, Y[s,t], of the [s, t] where β̂[s,t] are the conditional maximum estimates.
The conditional likelihood ratio test comparing item parameter estimates in
all score intervals is equal to

G2
1,t1,...,tm−1,k−1 = 2

(
m∑

i=1

ln
(
L

(
β̂[ti−1,ti]; Y[ti−1,ti]

))
− ln

(
L

(
β̂[1,k−1]; Y[1,k−1]

)))

(8.9)
where we assume that t0 = 1 and tm = k − 1.

We refer to (8.9) as a test of global homogeneity. It generalizes without
problems to tests for local homogeneity comparing item parameters in score
groups not adding up to the complete set of informative scores. We consider
here a partition of a score interval H[a,b] ⊂ H[1,k−1] into m disjoint score
intervals by m − 1 thresholds t0 = a < t1 < t2 < . . . , tm−1 < tm = b
and a conditional likelihood ratio test, G2

a,t1,...,tm−1,b, of homogeneity of item
parameters within the [a, b] score interval, where G2

a,t1,...,tm−1,b is defined as
in (8.9) with t0 = a and tm = b. It is shown in Andersen (1973a, Corollary
4.5, p. 127) that the arguments proving the asymptotic χ2 distribution for
the test of global homogeneity extends without problems to the test for local
homogeneity. G2

a,t1,...,tm−1,b therefore is also approximately χ2 distributed with
(m − 1) · (k − 1) degrees of freedom.

If all test statistics are significant, the search for local homogeneity stops. If
some test statistics are insignificant, two or more homogeneous score intervals
are merged into larger score intervals followed by a new iterative step.

Several procedures for joining score intervals may be considered. Let G2
i (t)

be the conditional likelihood ratio test for comparison of score intervals i and
i+1 during the tth step of the procedure. One conventional procedure would
be to merge score intervals i and i+1 if G2

i (t)is insignificant and smaller than
all other test statistics calculated during the jth step. The score intervals for
the (t+1)st step will then be

J t+1
j = J t

j for j = 1, . . . , i − 1

J t+1
i = J t

i ∪ J t
i+1

J t+1
j = J t

j+1 for = i + 1, . . .,mt+1
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where mt+1 = mt-1.
Another procedure, referred to as “shrinking,” collapses the extreme score

intervals, J t
1 and J t

2 and/or J t
mt−1 and J t

mt
before mid-range intervals are

merged. Arguments supporting this strategy are discussed in the next section.
The result of a search for local homogeneity agrees with a stochastically

ordered mixed RM with two latent classes if the end result is two homoge-
neous score intervals at extreme ends of the score range. The results of local
homogeneity are particularly favorable if the end result consists of two locally
homogeneous score intervals, J t

1 ∪ J t
2 = [1, k − 1]. When this happens, the

upper limit of the first interval may be used as a diagnostic cut-point distin-
guishing persons from one latent class from persons from the other class. In
most cases, things will not turn out so conveniently. One or more score inter-
vals between the two extreme intervals comprising a mixture of persons from
both classes may exist so that classification by scores in practice is doubtful
or close to impossible. Even when end results appear to be unambiguous, the
risk of misclassification should be acknowledged. In order to both check the
adequacy of a stochastically ordered latent-class model and to evaluate the
risk of misclassification, analysis of local homogeneity should be succeeded by
an analysis by mixed RMs providing not only a check of the adequacy of the
model but also proper estimates of class sizes and the risk of misclassification
if cut-points separating homogeneous score intervals are used for classification.

8.5 Issues in Analysis by Stochastically Ordered Mixed
Rasch Models

There are technical issues to be addressed before both types of analysis.

8.5.1 Analysis by Mixed Rasch Models

Analysis by mixed RMs is documented in Rost (1990) and Rost & von Davier
(1995) and implemented by von Davier (1994, 2001). Results include estimates
of the number of classes, estimates of class sizes, item parameters and con-
ditional score distributions, from which it is possible to estimate sensitivity
and specificity of diagnostic procedures using posterior class estimates. All is
well documented and easily accessible in the references mentioned above. Two
issues, however, requires deliberation.

Firstly, the estimate of the number of classes is based on Akaike infor-
mation criterion (AIC) and Bayesian information criterion (BIC) that do not
always provide the same answer,2 Which is the better information criterion
2 Other methods, like the parametric bootstrap (von Davier, 1997) or posterior pre-

dictive model checking (Sinharay, 2004), are available for latent-class and item
response models but are computationally intensive and therefore used less fre-
quently in practice.
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therefore has to be examined. Secondly, estimates of score distribution may be
either smooth, fitting a two-parameter power series distribution, or “rough,”
satisfying no restrictions at all except those imposed by the estimation equa-
tions. The problem is that the choice between smooth and rough distributions
will have an effect, not only on the estimates of score distributions, but also on
estimates of the number of classes and class sizes. Simulation results reported
by Kreiner et al. (2006) unequivocally recommend the following:

1. Estimates of the number of classes should be based upon rough estimates
using AIC statistics. If smooth estimates are used, the analysis will be
influenced by mixtures on the latent trait scale and consequently report
that more than one class is present even though item responses fit per-
fectly to a conventional RM. Using BIC with rough estimates of score
distributions underestimate the number of classes whereas AIC always
capture the correct number of classes.

2. After the number of classes has been decided upon, one should use smooth
score distributions for estimation of both class sizes and score distribu-
tions.

The results of analysis by mixed RMs presented in Tables 8.4 and 8.5
below follow these recommendations.

8.5.2 Analysis of Local Homogeneity

The stepwise analysis of local homogeneity is similar to stepwise model search.
The adopted strategy is a backwards model search procedure starting with the
most complex situation where all score groups are assumed to have different
item parameters. The search for local homogeneity then proceeds toward a
simpler model where item parameters may be assumed to be the same in
some score groups. Score groups will be collapsed if conditional likelihood
ratio tests are insignificant. Conventional model search procedures using tests
of significance to decide how to proceed would usually take the path of least
resistance, by selecting the next model motivated by the test statistic with
the highest p-value. It is well known, however, that such procedures lead to
too complicated models because test statistics calculated at the later stages
of model searching are related to test statistics calculated at the beginning of
the analysis.

The situation is illustrated in Figure 8.1, describing a comparative analysis
of three different groups, A, B, C. The stepwise analysis starts at the top
where all groups are different and then tries to get to the bottom, where there
is no dissimilarity among the groups. On the way, different likelihood ratio
statistics are calculated. The test, LR1, is thus a test of ((A = B) �= C) against
(A �= B �= C). The negative association between test statistics evaluated at
the beginning of the model search procedure and test statistics calculated
later is due to the fact that the likelihood ratio test of (A = B = C) against
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(A �= B �= C) is equal to both LR1 + LR4, LR2 + LR5, and LR3 + LR6.
If the ((A = B) �= C) model is selected at the first step of the procedure
because LR1 is smaller than LR2 and LR3, the next step will depend on
a test statistic known to have a larger value than the test statistic to be
considered if another path had been chosen. Consequently, the conventional
p-value driven procedure has an inherent risk of stopping to soon.

A ≠ B ≠ C

(A=B) ≠ C (B=C) ≠ A(A=C) ≠ B

A=B=C  

LR1 LR2 LR3

LR4 LR5 LR6

Fig. 8.1. Models and test statistics for comparison of three different score groups

We recommend using strategies that take subject matter considerations
into account. Such strategies are in most cases difficult to implement and
test, because subject matter considerations by nature have to be different
from analysis to analysis. Analysis of stochastically ordered mixed RMs is,
however, an exception to this rule. Local homogeneity is to be found at the
extreme ends of the score range. It therefore makes sense to use a shrinking
model search strategy, where extreme score groups collapse if test results
are insignificant, even when test results relating to nonextreme score groups
are more insignificant. The simulation studies referred to above suggest the
conjecture that this strategy works more satisfactorily than conventional p-
value driven strategies.

Another concern is the large number of significance tests calculated during
analysis of local homogeneity. Some kind of p-value adjustment has to be in-
voked. We routinely use Benjamini & Hochberg (1995) procedures controlling
the False Discovery Rate at FDR = 0.05 during analysis of local homogeneity
and other analyses relying on large number of p-values.
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8.6 The Mini-Mental State Examination

We illustrate the analyses of local homogeneity and mixed RMs with data
on the Mini-Mental State Examination (MMSE) collected in connection with
a survey among Danish elderly. Information on the study may be found in
Schultz-Larsen et al. (2005a,b). The analysis reported in these papers sug-
gested a two-dimensional latent structure underlying the responses to the
items of which only one appeared to be related to age. In the example here,
we only consider the subscale of nine items loading on the latent variable that
was independent of age.

Complete responses to the MMSE items were obtained from 1148 persons.
Neuropsychological assessment was completed for a total of 242 elderly, some
of whom were suspected of suffering from dementia. The examination showed
that 69 patients suffered from dementia to some degree. Out of these, only 25
had total MMSE scores less than 25 leading to an estimate of the sensitivity
equal to 36.2%. Given this result, one is forced to conclude that MMSE would
be an ineffective instrument when screening for dementia.

Table 8.2 shows the items and the frequencies of correct responses on
the items in the subscale described here. The score distribution is strongly
negatively skewed.

Table 8.2. The nine MMSE items included in the subscale that does not correlate
with age. All items are treated as dichotomous items in this chapter.

Frequency of Correct
Item/Question Sub Item Responses
Where are we now? Name some nearby streets 0.97

County 0.96
Town/City 0.99
Address 0.99
Floor 0.99

Recognize and name three 0.99
unrelated objects

Remember the three objects 0.33
Follow written instruction 0.99
Draw a copy of a picture 0.61

Out of the 1148 persons, 258 responded correctly to all items. Chron-
bach’s α is equal to 0.38, which indicates very poor reliability. Loevinger’s
H is equal to 0.34, which also tells us that, whether or not it fits a Rasch
model, MMSE is close to useless as a measure of cognitive function. Measur-
ing cognitive function is, however, not what MMSE is meant for. Instead, the
objective is to screen for cognitive impairment, and perhaps—if the cogni-
tive function appears to be impaired—to measure the degree of impairment.
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The level of cognitive function among persons without impairments is a com-
pletely different problem, and the poor performance of MMSE according to
conventional psychometric requirements of good quantitative measurement of
persons without impairments is less relevant here.

The RM does not fit the item responses. Table 8.3 presents Andersen’s
(1973c) conditional likelihood ratio test comparing parameter estimates in
different groups. Differential item functioning relative to both education and
gender is suggested. Departures from the RM are, however, diffuse. Tests of
conditional independence of items and exogenous variables given the total
score and tests of local independence as suggested by Kreiner & Christensen
(2004) disclose no evidence of biased or locally dependent items. Which, by
the way, is exactly what is to be expected from items fitting a mixed RM?

Table 8.3. Conditional likelihood ratio tests of homogeneity of item parameters in
subpopulations. Results presented for the RM and for the graphical loglinear RM.

Variable Defining Subpopulations CLR df p
Score groups (1–6,7,8) 32.6 16 0.008
Level of education—three categories 33.1 16 0.007
Gender 20.6 8 0.008
Age—five categories 28.0 32 0.669

8.6.1 Analysis of Local Homogeneity

Table 8.4 shows the analysis of local homogeneity. Prior to the analysis, score
groups 1–5 were collapsed because the numbers of cases in these groups were
so small that testing hypotheses concerning equivalence of item parameters
was infeasible. Item responses are locally homogeneous within score groups
1–6 and 7–8, but heterogeneous across the score groups.

Next, item parameters estimated in groups defined by different levels of
education, gender, and age are compared separately in each of the two score
groups. The evidence of differences depending on gender disappears in both
score groups as does the evidence of differences related to education among
persons with scores equal to 7 or 8. There is still marginal evidence, however,
that item parameters depend on the level of education for persons with scores
between 1 and 5.

8.6.2 Analysis by Mixed Rasch Models

Analysis by mixed RMs suggests two latent classes as shown in Table 8.5. Fig-
ure 2 and Table 8.6 show the estimated score distribution in the two classes.
Posterior class probabilities calculated conditionally given the score are in-
cluded in Table 8.6. Basically, the analysis agrees with the results of the
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Table 8.4. Analysis of local inhomogeneity of nine MMSE items

Comparison of G2 df1 p

Comparisons of Adjacent Score Groups
1–5 and 6 6.6 7 0.522
6 and 7 18.1 8 0.021+

7 and 8 13.1 7 0.070

Tests for Combined Score Groups
1–6 and 7–8 19.5 8 0.012∗

1: Degrees of freedom have been adjusted when items have responses
in both score groups.
+: Not significant after Benjamini–Hochberg adjustment.
∗: Significant after Benjamini–Hochberg adjustment.

analysis of local homogeneity. Yet it raises some questions concerning what
the cut-point should be. The likelihood principle selects the same cut-point
as the analysis of local homogeneity, whereas the Bayesian principle prefers a
cut-point one point lower.

Table 8.5. Information statistics and class size estimates of mixed RMs

Number of Classes Class Sizes AIC
1 1.000 4255.3
2 0.973 4125.4

0.027
3 0.491 4140.9

0.483
0.026

The sensitivity and specificity of diagnoses using different cut-points are
easily calculated from the score distributions in Table 8.6. Table 8.7 presents
the results. The results favor the 6/7 cut-point suggested by the likelihood
principle and the analysis of local homogeneity because the sensitivity with
this cut-point is much higher than the sensitivity obtained by the Bayesian
cut-point. Table 8.7 also shows standard estimates of sensitivity and speci-
ficity in the subsample of elderly where neuropsychological examinations pro-
vided proper gold standards for the MMSE results. The similarity of estimates
obtained by analysis by mixed models without gold standards and the con-
ventional estimates is notable, but of course also to be expected, because
sensitivity and specificity do not depend on the prevalence of demented per-
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Table 8.6. Fitted smooth score distributions and posterior class probabilities

Score Class 1 Class 2 P(Class2|Score)
0 0 0.15 1.00
1 0 0.50 1.00
2 0 1.32 1.00
3 0 2.75 1.00
4 0.04 4.53 0.99
5 1.89 5.91 0.76
6 44.59 6.11 0.012
7 290.26 5.00 0.017
8 521.49 3.24 0.006
9 258.62 1.67 0.006
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Fig. 8.2. Estimated score probabilities in two latent classes

sons. The estimates of specificity according to the mixed RM appear to be
somewhat optimistic.

8.7 Discussion

Stochastically ordered mixed RMs provide a natural framework for analysis
of diagnostic tests while raising a number of issues concerning conventional
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Table 8.7. Comparison of estimates of sensitivity and specificity using different
cut-points

Analysis by Mixed Elderly with Neuropsychological
RMs examination1,2

Cut-point Sensitivity Specificity Sensitivity Specificity

6/7 68.2 % 95.8% 71.0 % (59.4–80.6) 88.4 % (82.9–92.4)
5/6 48.6 % 99.8 % 44.9 % (33.8–56.7) 95.4 % (91.3–97.7)

1: The subsample consisted of 69 cases with and 173 elderly without dementia.
2: Parentheses contain 95% confidence intervals.

requirements of valid, well-targeted, and reliable measurements. In particu-
lar, these issues become inevitable in connection with measurements used for
screening in populations containing both abnormal and normal cases. In such
situations, measurements cannot be construct valid in the traditional sense
because they depend on more than one quantitative latent trait variable, and
sensitivity and specificity increases if items are ill-targeted for both types of
cases, such that score distributions are strongly skewed in opposite directions
in the two subpopulations.

Analysis of local homogeneity is a simple approach for initial analysis
prior to analysis by mixed RMs aiming specifically at definition of the cut-
points required for simple diagnostic procedures. One advantage of analysis
of local homogeneity is that it is easily generalized to more complicated types
of RMs, e.g., the family of graphical loglinear RMs (Kreiner & Christensen,
2002), which are discussed elsewhere in this volume.

Analysis by mixed RMs and analysis of local homogeneity as two different
procedures validate the results of each other. Analysis by local homogeneity
suggests, but does not actually fit a latent-class model. Results from analyses
of local homogeneity therefore require confirmation by mixed RMs. On the
other hand, results by mixed RMs resulting in score distributions that separate
latent classes with scores that are higher in one class than the other should
of course reappear during analysis of local homogeneity. If estimates of item
parameters are not the same when calculated in score groups that, according
to the analysis, are dominated by one of the latent classes, then, of course,
the model cannot be a mixed RM.

The results on MMSE presented here are only a small part of the full
analysis of these data. Schultz-Larsen et al. (2005a,b) tells the complete story
discussing different cut-points for the complete MMSE scores, cut-points for a
subscale summarizing responses to the items loading on the other MMSE di-
mension, and cut-points for scores using polytomous rather than dichotomous
items.
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9.1 Introduction

Assessing speededness by simple approaches such as counting the number
of missing responses near the end of a test is often inadequate because many
examinees switch to a guessing or random response strategy as the testing time
limit approaches. Parameter estimation within item response theory (IRT)
can be greatly impacted by speededness; thus, it is crucial to assess how much
speededness a test may possess (Oshima, 1994). It is also critical to correct
the item-parameter estimates that may have been affected by this end-of-test
speededness. Examinees who switch to random responses at the end of the
test, in terms of the underlying response processes, expose a very different
behavior when responding to an item when compared to examinees who try
to solve the item using their cognitive skill set. In order to account for these
different types of response behaviors, a HYBRID model was proposed by
Yamamoto (1989) and later extended to assess test speededness more directly
(Yamamoto, 1990, 1995).

It is important to note that there are many reasons why one of the key
assumptions of IRT, namely that of conditional independence, may fail. Speed-
edness is one such case, and in particular, this application of the HYBRID
model addresses a specific type of speededness that will be later elaborated
on. This research will show how the HYBRID model can detect examinees
who have switched to a random response strategy, thereby eliminating the
noise caused by end-of-test speededness, which should result in more accurate
IRT parameter estimates for those end-of-test items.

9.2 Purpose and Method

This chapter will first explicate the HYBRID model, its development, and
parameter estimation. The second section will demonstrate, using real data
with quasi-experimental controls, the HYBRID model’s accuracy and efficacy
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for assessing the amount of speededness and reducing its effects on item-
parameter estimation. A writing assessment with 45 multiple-choice items
was shortened to 38 items due to known end-of-test speededness and then
readministered. The last five items of the 45-item test were placed in the
middle of the shortened 38-item version, thus creating a quasi-experimental
condition in which the item parameters from the middle of the 38-item test,
which should not have been affected by speededness, will be used as the esti-
mated “true” parameters. The HYBRID model item-parameter estimates for
the last five items of the longer 45-item version will be compared to these
“true” parameters.

9.3 The HYBRID Model

The original HYBRID model, proposed by Yamamoto (1987, 1989), was
specifically developed in order to incorporate cognitive structure into the IRT
methodology of that time, which up to that point, was mostly used for the
scaling and reporting of scores from large-scale assessments. Yamamoto (1989)
acknowledges that a multidimensional IRT (MIRT) model could be employed;
however, he cautions against the use of the compensatory MIRT model, since
assessments may not involve compensatory abilities. He also points out that,
“the notion of single-event learning cannot be incorporated easily into a purely
continuous model” (p. 4).

Yamamoto (1990) later extended the HYBRID model for diagnosing test
speededness. This psychometric approach to speededness has made significant
advances in this area by combining a latent-class (LC) model with an IRT
model strategy. This HYBRID model has been studied through several simu-
lations (Boughton & Yamamoto, 2004; Yamamoto, 1990, 1995; Yamamoto &
Everson, 1995, 1997). As with any model, however, more research is needed
in order to securely support and demonstrate its appropriateness and utility,
especially with the use of real data, since simulations cannot model actual
human response behavior.

Classical test theory (CTT) and item response theory (IRT) each describe
the behavior of examinees based on a single model, whereas the HYBRID psy-
chometric approach (Yamamoto, 1989) utilizes two models in the detection
of speededness. That is, subsets of examinee response patterns are modeled
by a discrete latent-class model (i.e., multinomial independent class), with
the remaining responses modeled by an IRT model (Yamamoto & Everson,
1995, 1997). In contrast to finite-mixture-distribution IRT models that as-
sume the same parametric model—with different parameter vectors—in each
of the mixing components, HYBRID models assume different model struc-
tures in each mixture component. It is important to note that the HYBRID
model does not necessarily have only two classes, but is implemented by as-
suming many classes with restrictions imposed across classes, each defined by
a switch point in the item sequence. The HYBRID model can estimate the
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point in an assessment at which each examinee has switched from an ability-
based response strategy to a guessing or random-response strategy. Thus, the
HYBRID model provides an index to help set test lengths appropriate to the
time-constraint allocations, as well as to ascertain the differential speededness
for any subgroup population (Boughton et al., 2004; Yamamoto & Everson,
1995).

9.4 HYBRID Model and Parameter Estimation

The HYBRID model estimates both person and item parameters along with
the parameters that define the distribution of examinees switching from an
ability-based to a random-response strategy. The HYBRID model assumes
that any examinee who switches to a random response strategy has conditional
probabilities that are independent of their proficiency level for the remaining
items. Every examinee’s response can be modeled either by a continuous uni-
dimensional IRT model or an LC model, and conditional independence holds,
given an examinee’s proficiency and strategy. The following function expresses
the likelihood of a correct response on an item i given the three assumptions
above:

p (xi = 1| θ, βi, k) = (1 + exp (θ − bi))
mik cmik+1

i , (9.1)

where k indicates the last item answered under the IRT model; Mik = −1,
when i ≤ k and Mik = 0, when i > k. xi is a dichotomous response (i.e.,
0/1) on item i; βi represents the item difficulty parameter; θ is the examinee
ability parameter; and ci is the expected proportion correct under a patterned
or random response strategy. Equation 9.1 gives the conditional probability
of a response xi, given θ, item parameters βi, and strategy switch point k.
Specifically, this function specifies that an IRT model holds until a random
response occurs, with a constant conditional probability holding for the re-
maining random responses (Yamamoto, 1995).

The likelihood of observing a response vector xv, given θv, when switching
from an ability-based solution to a random-response strategy on item kv is

P (xv| θv, B, kv) =
kv∏
i=1

P (θv, βi)
xiv Q (θv, βi)

1−xiv

I∏
i=kv+1

cxiv
i (1 − ci)

1−xiv .

(9.2)
The marginal probability of observing xv given model parameters B is

P (xv|B) =
L∑
k

∫
θ

P (xv |θ,B, k)f(θ |k)dθf(k) , (9.3)

where f(θ |k) is the conditional probability of θ given a switch point k,
and f(k) is the marginal distribution of the strategy-switching population.
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The joint likelihood of parameters given the observed response matrix X =
(x1, x2, . . . , xv) from a total of V examinees is

L (B |X ) =
V∏

v=1

P (xv |B ) .

The IRT item parameters can be estimated to maximize the above marginal-
ized likelihood function using an iterative method, such as the Newton–
Raphson (N-R) method. The N-R method can be described as Pn+1 =
Pn − D−1

2 ∗ D1, where Pn+1 is a vector of parameters updated from Pn

by a certain amount designated by the function D2 (matrix of second deriva-
tives) and D1 (vector of first derivatives). However, D2 can be quite large and
the off-diagonal elements need not be zero. Consequently, a full implementa-
tion of the N-R method would be too great a computational burden. Bock &
Aitkin (1981) advanced the idea of using the EM algorithm (Dempster et al.,
1977) in the area of IRT parameter estimation. Within the EM algorithm, the
continuous distribution of theta (i.e., the ability parameter) is approximated
by a discrete distribution, in order to facilitate the numerical integration over
the range of the latent-variable theta. With respect to u, a model parame-
ter including either an item parameter or a probability of the discrete ability
density, the first derivative of the log-likelihood of the above function can be
expressed as

∂ lnL (B |X )
∂u

=
V∑

v=1

I∑
k=1

∫
θ

∂P (xv |θ,B, k )
∂u

f (θ |k ) f (k)
P (xi |B )

dθ.

Followed by the application of the empirical Bayes method and approximation
of integration by summation denoted by q-quadrature points and A (θq |k ) as
defined as conditional weights approximating f (θq |k ) , the above equation for
a parameter ui can be written as

∂ lnL

∂ui
=
∑

k

∑
q

A (θq |k )
Pik (θq)Qik (θq)

∂Pik (θq)
∂ui

V∑
v=1

[xiv − Piv (θq)]f (k)Pi (θq |xv, k ) .

The right side of the above equation can be rewritten as follows, since xiv is
either 1 or 0:∑

k

∑
q

1
Pik (θq)Qik (θq)

∂Pik (θq)
∂ui

f (k) (Riqk − Pik (θq)Niqk) ,

where

Riqk =
∑

v

xiv
P (xv |θq, B, k )A (θq |k )

P (xv, B)
,

Niqk =
∑

v

P (xv |θq, B, k )A (θq |k )
P (xv, B)

,
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and

∂Pik (θq)
∂ai

= D (θq − bi)Pik (θq)Qik (θq) ,

∂Pik (θq)
∂bi

= −DaPik (θq)Qik (θq) .

The matrix of second-order derivatives can be expressed as follows:

∂2 lnL

∂a2
i

= D2
∑

k

∑
q

f (k) (θq − bi)
2
NiqkPik (θq)Qik (θq) ,

∂2 lnL

∂b2i
= −b2

∑
k

∑
q

a2
i NiqkPik (θq)Qik (θq) ,

∂2 lnL

∂ai∂bi
= D2

∑
k

∑
q

ai (θq − bi)
2
NiqkPik (θq)Qik (θq) .

Once item parameters are estimated, estimation of an examinee’s proficiency
can be carried out using one of several existing methods, such as the maxi-
mum likelihood method (MLE), Bayes modal estimates (MAP), or expected
a posteriori (EAP). The MLE ability estimation is described by Lord (1980),
and MAP and EAP are both described by Bock & Aitkin (1981).

Prior distributions for the item parameters, proficiency, and switching pop-
ulation distributions can be used during the maximization phase. For example,
item parameters can be assumed to be drawn from a particular distribution,
and, therefore, updating parameters would be constrained to meet that par-
ticular distribution. Likewise, the proficiency distribution may be assumed as
a normal distribution at each switching point, including the last item. In addi-
tion, E (θ |k ) may be constrained to have a specific functional form in relation
to the value of k (Yamamoto, 1995). The HYBRID model parameters for the
speededness model can be estimated using the HYBILm software program
(Yamamoto, 1990).

9.5 Results

The 44-item writing assessment was shortened to 38 items after the last five
items were found to be greatly impacted by speededness (i.e., student reported
speededness). These five items were then repositioned into the middle of the
38-item form, giving us the opportunity to demonstrate how well the HYBRID
Rasch model (RM) can recover the “true” parameters (i.e., the parameter
estimates obtained when calibrated in the unaffected portion of the shortened
38-item test). The parameters of the five items in the middle of the shortened
38-item test will be considered the “true” parameters, and the comparisons
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Fig. 9.1. Cumulative switching proportions across items 26–43 in the 44-item test

will be made between these five-item-parameter estimates and the estimates
obtained from the end of the 44-item calibration.

Figure 9.1 displays the cumulative proportion of examinees switching from
an ability-based strategy to a random-response strategy across the last 18
items. The x-axis represents the item number and the y-axis is the cumula-
tive proportion of examinees switching strategies. As seen from the figure, this
test is speeded, with over 50% switching to a random-response strategy start-
ing at item 37. Figure 9.2 displays the cumulative proportion switching across
the last 17 items of the shortened 38-item form. The proportion of switchers is
considerably lower. However, there is still over 20% switching over the last four
items. The HYBRID model can be used as a tool to help identify how short a
test needs to be in order to give all examinees the opportunity to show their
true abilities fairly. Given the switching information from Figure 9.1, it would
seem reasonable to shorten the test to a length of 35 items; however, the test
was only shortened to a length of 38 items, given reliability predictions and
time-per-item estimations. Note that the switching proportions would suggest
that the test should be shortened to 35 items, since we observe approximately
20% switching on that item. Although the 20% criterion is a somewhat ar-
bitrary bound, given the authors’ experiences with speeded assessments and
their effects on item-parameter estimation, it seems a good rule of thumb.
Of course, it would be more desirable to have 0%, at least for assessments
in which speed of answering is not the intended construct; however, this may
not be realistic. Thus, it is the impact on the item-parameter estimates that
will be the defining factor in this research. It can be seen in Figure 9.2 that
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Fig. 9.2. Cumulative switching proportions across items 21–37 in the 38-item test

the shortened test was not short enough, and had it been shortened to 35
items, as the HYBRID model suggests, then the 20% criterion would most
likely have been met when the test was readministered. However, it could be
that, no matter how short an assessment is, there will always be examinees
who cannot estimate how much time it will take to complete the test.

Figure 9.3 shows the item-characteristic curves for the five items that
were removed from the end of the 44-item test and moved to the middle of
the 38-item test. The actual position of item 39 in the 38-item version is
(22), 40 (23), 42 (24), 43 (25), and 44 (26). Each of the five graphs has three
ICCs; the “true” ICCs (i.e., recalibrated in the middle of the 38-item test),
the Rasch ICCs, and the HYBRID ICCs, both calibrated in the 44-item-test
version and then scaled using a Stocking & Lord (1983) transformation to
the 38-item-test scale, using the first 21 nonspeeded items in both tests. All
items, except for item 22, were biased when the Rasch model was used alone
(i.e., items appeared more difficult). However, the HYBRID RM produced
corrected item parameters that were consistent with the “true” parameters,
with a slight overcorrection for items 24, 25, and 26 (i.e., the item appeared
slightly easier).

Figure 9.4 displays the speeded characteristic curves. The x-axis is the
ability metric, with the y-axis being the expected true score for the five items
presumed speeded. The impact of the bias in the expected score would be
about 0.5 for the middle of the ability range. The “Rasch-only” model is
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Fig. 9.3. Item characteristic curves for “true,” Rasch-only, and HYBRID-Rasch for
Items 22, 23, 24, 25, and 26, from left to right and down

biased and would result in a lower-ability expected score. The HYBRID model
recovered the “true” five item parameters.

Figure 9.5 displays the entire 38-item-test test characteristic curve TCC,
for the “true,” the Rasch-only, and the HYBRID TCC. The TCC is recovered
when the HYBRID model is used, while the Rasch-only is biased.
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HYBRID-Rasch
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9.6 Discussion and Conclusion

The purpose of this study was to examine an estimation method that incorpo-
rates two distinct models for each examinee in the detection and then modeling
of speededness. This research has demonstrated the HYBRID model’s utility
and appropriateness using real data with quasi-experimental controls.

The 44-item test was found to be speeded, with over 20% switching to a
random response pattern on item 36. However, even the shortened 38-item ver-
sion shows over 20% switching behavior before reaching the last item. These
results suggest that even when examinees are given more time per item, some
examinees do not pace themselves appropriately and thus fail to reach the
end of the test using an ability-based response strategy. When not account-
ing for speededness, parameter-estimation bias was found in four of the five
items studied, with the Rasch-only model overestimating the difficulty of the
items. The HYBRID RM corrected all of the parameter estimates, although it
slightly underestimates the item difficulty for some of the items. However, at
the TCC level, the HYBRID RM matches the “true” TCC, while the Rasch-
only model results in a biased TCC. These results suggest that the HYBRID
model improves item-parameter estimation for speeded items located near the
end of a test. These improvements coincide with the proportion of examinees
switching to a random-response strategy on each form.

The HYBRID model provides a method that can reduce the effects
of speededness on IRT item and ability parameters, while also mapping
item/examinee switch behavior for tests with speededness. However, the HY-
BRID model does not work well for all testing situations. For example, if
examinees responded randomly at the beginning of a test, then the current
model would not be appropriate. The HYBRID model also does not work
well for tests that have items ordered from easiest to most difficult, because
low-ability examinees will have response patterns similar to examinees switch-
ing to a random-response strategy (Yamamoto & Everson, 1995). The tests
presented in this study did not have any of these limitations. Ironically, as is
the case for many studies, this research’s strength is also its weakness. The
application to real-world data with quasi-experimental controls is paramount
in illustrating the HYBRID model’s utility and appropriateness. However, the
accuracy of the parameter estimates are judged in comparison with parame-
ters that are estimates in and of themselves. In addition, position effects may
hamper direct comparison between the long and shortened test length item
parameters, although this was not apparent with these results. It is extremely
important to ensure that test length or time is appropriate when a test’s con-
struct of interest does not include the speed with which each student answers.
Searching for not-reached items at the end of a test, especially for exami-
nees who randomly fill in unanswered responses, may not prove beneficial. In
these cases, the HYBRID RM proposed here can aid test developers in set-
ting appropriate test lengths (i.e., using the cumulative proportion switching),
and/or correct any speededness-induced bias for end-of-test items.
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Multidimensional Three-Mode Rasch Models
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10.1 Introduction

Rasch’s measurements model has been generalized in many different ways
(see Chapter 1, this volume). One direction of generalizing the Rasch model
is to consider not only two factors of the response probability, i.e., persons
and items, but an additional third factor. This means to extend the two-
dimensional data matrix to a three-dimensional data cube and extending
the RM accordingly. Those extensions have been proposed in various con-
texts, e.g., in the context of measuring change, where the third factor or
“mode” is time (Rost & Spada, 1983, Spiel, 1994), in the context of multitrait-
multimethod measurement, where the third factor or “mode” is the method
(Rost & Walter, 2005), in the context of assessing inter-rater agreement, where
the third factor or mode is the rater or judge (Linacre, 1989), and in the con-
text of facet-designed tests, where the item factor is split up into two facets
like content domain knowledge and cognitive processes (Rost & Carstensen,
2002).

All these examples have in common that the data structure is not a matrix,
but a cube. Many analyses can be done with those data by an “intelligent
application” of the ordinary RM. In contrast, the ordinary RM is not capable
of explicitly modeling all ways of looking at such a three-factor data structure.
For example, in the context of measuring change, the “slices” of the data cube
that relate to the time points of measurement can be treated as new (virtual)
persons responding to the same items or as if the same persons respond to
new (virtual) items at each point of time. In either of these cases, the ordinary
RM can be applied to a reorganized data matrix with tN persons or tk items,
respectively, with t being the number of time points (Glück & Spiel, 1997).

In other cases it is necessary to apply a multidimensional RM in order to
analyze such a data cube according to the aim and hypotheses of the inves-
tigation. The present contribution describes the family of RMs that emerges
from a systematic generalization of the RM to a three-factor data structure.
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We refer to this family of models as “three-mode” RMs (in analogy to three-
mode factor analysis), because other terms like factor, dimension, or facet
are preoccupied by other connotations. Most of the models in this family of
three-mode models are multidimensional in the sense that more than one per-
son parameter will be assigned to each person. The models of this family are
special cases of the mixed-coefficients multinomial logit model presented in
Chapter 4. Unidimensional three-mode models are special applications of the
linear logistic test model (LLTM; Fischer, 1973). The three-mode structure
of the models has its implications on the identification and estimation of its
parameters (which will be discussed here). The models will be discussed and
illustrated in the context of three different applications.

10.2 The Family of Three-Mode Rasch Models

Ordinary item response theory (IRT) refers to the situation where a number
of persons have responded to a number of items. The resulting data can be
organized in a data matrix and hence be considered as a two-dimensional data
structure. However, in order to avoid confusion with the concept of multidi-
mensionality of the trait variable to be measured, a simple data matrix is
called a two-way or two-mode data structure. The generalization of two-mode
IRT to a three-mode data structure emerges in many different contexts.

The most prominent context of such a generalization is measurement of
change, where a test has been administered repeatedly to the same sample of
persons. In this case, the data matrices obtained for each time point can be
considered as slices of a three-mode data structure, where time is the third
mode beside persons and items. Despite some—very common—anomalies of
the data structure resulting from incomplete designs, the data structure can
be represented as a cube. Rost & Spada (1983) developed the system of eight
different models for measuring change by means of uni- and multidimensional
RMs for this data cube (Rost, 2004; Spiel, 1994). The same system can be
applied to any three-mode data structure regardless whether the third mode
is to model time or any other aspect of the response process.

The present chapter focuses on facet designed tests as a special case of sys-
tematically constructed tests that produce three-mode data structures. When
modeling the response process, typically the respondents and some item fea-
tures will be considered to have an impact on the response process. Additional
facets such as the item format, the judgments from different raters, or several
measurement occasions may be taken into account, to name some examples
for additional facets of the response process. An appropriate item response
model parametrizes the facets that are assumed to significantly impact the
response process. Mellenbergh (2001) provides a systematic approach to re-
sponse process facets and appropriate response models. In this chapter, we
address models with a subject facet, an item facet, and a third one that may
be related to one of both, subjects or items. Considering a test with two item
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facets, each item represents a combination of the components of two facets
like content and cognitive process or subject area and context. The set of
components described by a facet may be used to construct tests where each
item corresponds to exactly one component of the two facets. For each unique
combination of components from these two facets, one or more items may be
constructed.

One of the three examples considered in this chapter is an intelligence test,
where each item refers to a representational mode with verbal, numeric or fig-
ural tasks and a process mode separating fluency, memory, analytical thinking
and creativity (Jäger et al., 1997). The data structure can be organized as a
cube with persons, representations and processes as the three modes. The test
encloses three to five items per combination of these two modes.

Another example is a science test with each item constructed according to
one content and one cognitive operation, which yields a matrix structure of
i contents by j cognitive operations. In contrast to the intelligence test, only
one item for each combination of these two modes is administered. We will
refer to the different combinations of components as item types (Carstensen,
2000). Tests can be distinguished according to the number of items per item
type, one or more than one.

The second and third mode from both examples above, representations
and process or content and operation, respectively, will be modeled as per-
son abilities in multidimensional models. The third example is a mathematics
test again constructed according to a two-mode structure, resulting in a three-
mode data cube. Unlike the other two examples, the modes will be modeled
as item-difficulty modes and the response models employed will be unidimen-
sional.

In the following, a system of generalized RMs for three-mode data struc-
tures is presented and discussed with respect to the situation of facet-designed
tests. The system is shown in Fig. 10.1, where in each box a different decom-
position of the exponent λ of the logistic function

p (xvij = 1 |λvij ) =
exp (λvij)

1 + exp (λvij)

for a three-mode data structure is shown. p (xvij ∈ X) is the response proba-
bility of person v with respect to an item that is composed by component i of
the second mode and component j of the third. In the notation of Fig. 10.1,
θv is an ability parameter of person v, which may have a second index, i or
j, in the case of multidimensionality. σi or δj are difficulty parameters of the
components of the two facets, which may be double indexed as σij in the case
that the item difficulties are not modeled according to the facet structure of
the test. Doubly indexed delta parameters, δvj , are multidimensional ability
parameters.

The hierarchy of models depicted in Fig. 10.1 has four levels, the lowest and
the highest represented by a single model each. Model (1) is the main effects
model, i.e., a straightforward generalization of the two-mode RM. The third



160 Claus H. Carstensen and Jürgen Rost

(8)

(6) θ  +  δ 
vi vj

(1)

vjiq+d+s
(7)(5) θ  +  σ

vi ij

(3) θ  +  σ
v ij

(4)(2) θ  +  δ vi j

θ  +  δ  +  σ

θ  +  δ  +  σ

δ  +  σ

δ  +  σ

vi

v

ij

ij

i

i

vj

vj

vj

j

Fig. 10.1. Hierarchy of the eight three-mode RMs

mode is represented by a third parameter δj . Modeling the third mode like
this consequently follows Rasch’s idea of separating the influence of different
modes on the response behavior assuming no interactions between the modes
and their parameters. This assumption yields a unidimensional model.

Model (3) separates the influence of persons and items, in contrast to
model (1), which does not assume the item difficulties are to be explained
by the two facets. This is reflected in the doubly indexed item-parameters
σij . Models (3) and (1) are the only unidimensional model in the hierarchy,
all other models are multidimensional. Both unidimensional models will be
discussed and illustrated using the mathematics achievement data presented
in Section 10.2.

Models (2), (4), and (6) assume the impact of the latter two modes to be
either on item difficulty or on person ability. The parameters are not doubly
indexed with respect to the two modes, i and j. Models (2) and (4) are multi-
dimensional by assuming ability parameters to be specific for the components
of one of the facets, whereas model (6) assumes a latent ability for each item
type. These models will be discussed in context of the science test in Section
3.

The three remaining models, (5), (7), and (8), specify the same multi-
dimensionality as models (2), (4), and (6), but do not differentiate between
the modes on the level of item difficulties. Hence these models have double
indexed σij parameters and are generalizations of models (2), (4), and (6).
These three models will be considered with respect to the intelligence test,
the Berlin Intelligence Structure Test in Section 10.4.
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10.3 Unidimensional Three-Mode RMs

In model (1), the main effects model, the probability of observing a dichoto-
mous (correct/incorrect) response xvij from person v on an item that repre-
sents component i of the first facet and component j of the second, is

Model (1) P (X = x|λvij) = exp[x(θv+δj+σi)]
1+exp(θv+δj+σi)

.

Using the notation of Fig. 10.1 for model (1), the exponent in the logistic
function is

Model (1) λvij = (θv + δj + σi).

In contrast, model (3) does not decompose the item parameters according
to the facet structure, the exponent in the logistic function for a correct re-
sponse (in the case of 0 or 1 scored data) is given by

Model (3) λvij = (θv + σij).

Model (1) is a special case of model (3), because it assumes that each item
difficulty can be predicted by the specific combination of the two facets main
effects in each item, i.e., σij = δj +σi.

1 In the case of a test with one item per
item type (i.e., combination of modes i and j), each item is parametrized with
its own parameters σij and model (3) becomes equivalent to the dichotomous
RM. In a test with more than one item for each item type, specifying only
one difficulty parameter σij for item type obviously is a restriction, compared
to a RM.

The mathematics test of the German extension to the PISA 2003 study
(Prenzel et al., 2004) is guided by the distinction between different topics and
cognitive processes. For each of three topics (arithmetic, algebra, and geom-
etry2), items were developed that require the students either to do technical
processing (of things that they should have rehearsed), to do numerical anal-
ysis (solutions with numbers), or formal modeling (solutions with abstract or
formal thinking).

The test consists of 124 items in four by three item types. For the anal-
yses presented here, 18 items from one booklet of the data collections were
selected in order to have two items from each of three by three2 item types.
Consequently, model (3) is a restriction of the RM specifying nine item pa-
rameters σij for 18 items. This, however, is a typical situation, because one
observation per facet combination may not be sufficient information for esti-
mating the trait parameters of some multidimensional models. It is important
1 If two or more components are assumed for each facet
2 A fourth topic—stochastics—was dropped from the analyses because only very

few items were administered in the booklet selected here (only 2 out of 66 items
in book 9, PISA 2003 main study 2nd day).



162 Claus H. Carstensen and Jürgen Rost

to note that within the family of three-mode RMs, models (1) and (3) actu-
ally constrain the parameter space and can be viewed as restricted versions of
the unidimensional RM with model (1) allowing only main effects of the two
item modes and model (3) allowing interactions. The other models in contrast
extend the parameter space by allowing multidimensionality. It follows that
models (1) and (3) will be identified whenever the RM is identified, whereas
this is not necessarily the case for the other models. The notation chosen in
Fig. 10.1 does not take into account more than one item in each item type.
Thus, adding a third index k to the item-parameter σijkindicates more than
one item in each item type.

Table 10.1. Design matrix of model (1) for the German mathematics test PISA
2003 and parameter estimates
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1 1 1 −1.02 −1.15 −0.13 0.10
2 1 1 −0.20 0.07 0.27 0.09
3 1 1 −0.19 −0.43 −0.24 0.09
4 1 1 −0.05 −0.06 −0.01 0.09
5 1 1 0.78 0.65 −0.12 0.09
6 1 1 0.78 0.69 −0.09 0.09
7 1 1 −0.41 −0.14 0.26 0.09
8 1 1 0.42 0.09 −0.33 0.09
9 1 1 0.43 0.58 0.15 0.09
10 1 1 −1.02 −1.19 −0.17 0.10
11 1 1 −0.20 0.41 0.61 0.09
12 1 1 −0.19 −0.60 −0.41 0.09
13 1 1 −0.05 −0.20 −0.15 0.09
14 1 1 0.78 0.73 −0.05 0.09
15 1 1 0.78 1.28 0.50 0.10
16 1 1 −0.41 −0.27 0.14 0.09
17 1 1 0.42 0.05 −0.37 0.09
18 1 1 0.43 0.59 0.16 0.09

parameter −0.47 0.50 0.15 −0.55 0.27 0.28

Models (1) and (3) are represented by design matrices in Tables 10.1 and
10.2, respectively. In these design matrices, the rows correspond to the items
and the columns to the facets components. In both tables, two items corre-
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spond to each of the nine different item types, represented by nine rows with
different entries. The main effects model (1) in Table 10.1 predicts the item
difficulties by six difficulty parameters3 only, one for each component of both
facets.

In order to estimate the parameters of model (1), the item or subject
parameters have to be constrained; one way to do this is to constrain the mean
of the latent trait distribution. Alternatively, the mean of the item difficulties,
or one item parameter can be constrained (set to some constant, often zero)
in order to remove the indeterminacy of the scale. In addition to the design
matrix, eight model parameters are specified, six item-component parameters,
a population mean and a population variance. The mean was set to zero and
seven parameters were estimated using the software package ConQuest (Wu
et al., 1997) assuming a Gaussian distribution for the latent trait parameters.

The estimates of the six facets parameters are given in the last column
of Table 10.1. In the fourth last column the combined item parameters are
printed, the parameters of a RM on these items are given in the third last
row and the differences between the two with standard error are given in the
second last and last column. The arithmetic and technical processing items
are the easiest ones, the items combining algebra and formal modeling are
the hardest. Looking at the differences between parameter estimates, that is,
the RM item difficulties minus the model (1) difficulties in the last column,
we find that some item difficulties are not predicted very well by model (1).
Items 11 and 15 are showing the largest differences indicating the worst fit.

However, it cannot be concluded from these numbers whether these residu-
als are due to the facets structure being invalid for these items or to differences
between the difficulties of two items within each facet. This question can be
answered by applying model (3). Table 10.2 shows the design matrix of this
model and provides some parameter estimates.

The differences between the parameter estimates are much smaller than for
the first model, however, two items still show a poor fit, in this case item 6 and
15. Both represent formal modeling processes in algebra tasks and have the
same predicted difficulty of 0.97 whereas the difference between their difficul-
ties is about 0.6. Tasks of this type may vary in their difficulty, independently
of their facets structure. The reason of the misfit of item 11 under the first
model (see above) may be explained by the facets decomposition, because by
model (3), the RM difficulties are predicted more accurately than by model
(1).

Table 10.3 shows the fit statistics for all three models under consideration.
The log-likelihood for the first model is −9461.7; six component parameters
were estimated and a population variance, the population mean was set to
zero. With a sample size of 882, the consistent Akaike information criterion
(CAIC) value comes to 18978. In model (3), 9-item-component parameters

3 We write easiness parameters in the model equations; however item-parameter
estimates will reflect difficulty.
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Table 10.2. Design matrix of model (3) for the German mathematics test PISA
2003 and parameters estimates
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1 1 −1.17 −1.15 0.02 0.10
2 1 0.24 0.07 −0.17 0.09
3 1 −0.51 −0.43 0.08 0.10
4 1 −0.13 −0.06 0.07 0.10
5 1 0.69 0.65 −0.04 0.10
6 1 0.97 0.69 −0.28 0.10
7 1 −0.20 −0.14 0.06 0.09
8 1 0.07 0.09 0.02 0.10
9 1 0.58 0.58 −0.01 0.10
10 1 −1.17 −1.19 −0.02 0.10
11 1 0.24 0.41 0.17 0.10
12 1 −0.51 −0.60 −0.09 0.10
13 1 −0.13 −0.20 −0.07 0.10
14 1 0.69 0.73 0.04 0.10
15 1 0.97 1.28 0.31 0.10
16 1 −0.20 −0.27 −0.06 0.10
17 1 0.07 0.05 −0.02 0.10
18 1 0.58 0.59 0.01 0.10

parameter −1.17 0.24 −0.51 −0.13 0.69 0.97 −0.20 0.07 0.58

Table 10.3. Fit statistics for models (1), (3), and the RM

Model ln L # Parameters BIC CAIC
Model (1) (θv + δj + σi) -9462 7 18971 18978
Model (3) (θv + σij) -9371 10 18810 18820
RM (θv + σijk) -9350 19 18829 18848

and a population variance were estimated. For the RM, 18 item difficulties
and a variance were estimated. According to these results, model (3) shows
a better fit to the data than model (1). As compared with the unrestricted
RM, model (3) is sufficient to describe the item difficulties (the Bayesian
information criterion [BIC] and CAIC information criteria are smallest for
this model). It may be concluded that the distinction of topics and modeling
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types does help to model the item difficulties of mathematics tasks in the sense
of model (3), except for formal modeling in algebra. However, the prediction
of item difficulties by simply adding facet-specific difficulties in terms of model
(1) does not fit the data well.

Models (1) and (3) were estimated with ConQuest (Wu et al., 1997). Al-
ternatively, the program LPCM-Win (Fischer, 1989) may be used for param-
eter estimation and model control, because both models are linear logistic
test models (Fischer, 1973). For estimation with other software packages, the
reader is referred to Kelderman’s Chapter 5 in this volume on loglinear mul-
tivariate and mixture distribution RMs.

10.4 Multidimensional Models Separating the Two
Facets

The models in this group are based on the assumption of multidimensional
abilities. Either one or both of the latter two facets of the response process
may be modeled as ability modes or difficulty modes. A second assumption is
restricting the impact of the facets either on ability or on item difficulty. The
models, according to the notation introduced in Fig. 10.1, are

Model (2) λvij = (θvi + δj),

defining I abilities and assuming J basic parameters to build up the item
difficulties.

Model (4) λvij = (θvj + σi)

defining in contrast to model (2) J abilities and I basic parameters for the
item difficulties

Model (6) λvij = (θvi + δvj)

specifies I plus J abilities and has no (explicit) difficulty parameter. How-
ever, difficulty parameters may be specified for each component within the
facets if appropriate model identification constraints are chosen. In general,
not defining item parameters for one or two modes is equivalent to assuming
the according item difficulties to be equal and setting them to zero. With
model (2), it is assumed that items do not differ in their difficulty between
the components of the second facet (indicated with i’s); with model (4), no
differences between the components of the third facet are assumed. Model
(6) defines all item difficulties to be equal and zero. These constraints will be
discussed again in the context of the example presented below.

The models of this section will be illustrated by means of the German
national science data of the PISA 2003 study (Rost et al., 2004). In this test,
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which has been constructed by a German science expert group, two facets
are completely crossed, i.e., seven cognitive operations and nine content areas
from the school subjects physics, chemistry, and biology. Hence, the test covers
63 items, of which only one third are used for the present example. We have
chosen one content domain from each science subject, labeled “breathing and
photosynthesis” from biology, “in the pool” from chemistry, and “everyday
electricity” from physics.

The seven cognitive operations have been derived from an in depth analy-
sis of the German science framework and assessment instruments used in the
PISA 2000 study. A task analysis revealed five different cognitive processes
necessary for solving the tasks (Prenzel et al., 2002). These cognitive opera-
tions had been extended (Rost, 2004) by the operations “divergent thinking,”
which is the counterpart of analytical (convergent) thinking and related to
tasks that do not ask for the only correct solution but for the production of
several possible solutions. The second new operation is “evaluation,” where
again not the single correct solution is asked for, but some good reasons have
to be given for the position selected by the student.

The focus of analyzing this test was on the question, whether the cognitive
operations (facet one) or the content topics (facet two) require a multidimen-
sional test model for representing the students differences in ability. Let the
cognitive operations be the second facet of the response process and the con-
tent areas the third facet. Then model (2) assumes multidimensionality for
the cognitive operations only, model (4) for the contents only, and model (6)
for both facets. Consequently, model (2) specifies seven abilities and three
basic item-difficulty parameters, model (4) assumes seven basic parameters
and three abilities, and model (6) defines ten abilities and no item-difficulty
parameters.

The design matrix specifying the ability dimensions of model (6) and the
parameter estimates of all three models are presented in Table 10.4. For the
abilities, univariate and multivariate normal distributions were assumed. The
last three rows of Table 10.4 give the parameter estimates according to the
three models. For model (2), the means of seven ability distributions and two
basic parameters were estimated (basic parameters are written in italics); the
third basic parameter was constrained to be the negative sum of the other
two as identification constraint. The ability means were not restricted, but
note that for each item a basic parameter is identified and estimated in the
third mode. For model (4), six basic parameters were estimated with the
seventh being the negative sum of the other six, and three ability means
were estimated without further restriction. For model (6), ten ability means
are estimated without further restriction. As noted above, implicitly all item
difficulties are assumed to be zero. Alternatively and equivalently, the ability
means may be restricted to be zero, and a basic parameter may be estimated
for each component of the facets, i.e., according to the design matrix in Table
10.4.
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Another constraint is necessary to uniquely specify model (6). The design
matrix defines ten dimensions but is only of rank nine, allowing parameter es-
timation for nine independent dimensions. For the estimation the last column
of the design was omitted, fixing these parameters to be zero. In order to have
person parameters for all ten dimensions, parameters for ten dimensions may
be recomputed from the estimated parameters introducing another constraint
on the ten dependent parameters for each subject (see Carstensen, 2000). The
mean parameters in the last row of Table 10.4 were computed by constraining
the mean of the cognitive operation parameters to be equal to the mean of
the content area parameters for every subject.

The last six columns at the right-hand side of the table give the difficulties
for each item composed through the design matrix and the standard errors of
the difference between models (2) and (4). The item parameters of the three
models are very close. This has to be expected, because both ways of modeling
a facet, as item-difficulty mode or as ability mode, results in assuming all
items from one component, cognitive operation or content area, to have the
same difficulty. These difficulties are modeled through one parameter for each
component, ability mean or a basic parameter. However, the basic parameter
for number processing in model (4) does not fit into the number processing
difficulty according to the other models.

From the parameter estimates, the cognitive operations “convergent think-
ing,” “mental modeling,” and “number processing” are rather difficult ones,
whereas “verbalizing” and “divergent thinking” are easier to perform. The
content areas do not contribute much to the variation of the task difficulties.

The question which of the facets calls for a multidimensional model can be
answered by means of the fit statistics shown in Table 10.5. Comparing the
models through the CAIC index, model (2) seems best in explaining the data.
In particular, it is not necessary to differentiate students’ science achievement
with respect to the content domains as indicated by poorer fit and the lower
contribution of the according parameters to the item difficulties.

The models (2), (4), and (6) seem rather restrictive in composing all item
difficulties from one parameter for each component, either a mean or a basic
parameter. The appropriateness of (one of) these models obviously depends
on a systematic item construction with one item for each combination of the
second and the third facet of the response process. More, the impact of a com-
ponent of a facet has to be assumed to be the same on all items constructed.
The science test presented is constructed in this way. However, how well the
item construction succeeded can be evaluated in comparing models (2), (4),
or (6) to a more general model defining a specific difficulty for each item. Such
models are discussed in the following section.
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Table 10.4. Design matrix for the German science test PISA 2003
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13 1 1 −0.38 −0.36 −0.37 0.06
14 1 1 0.56 0.32 0.57 0.10
15 1 1 0.28 0.25 0.26 0.07
16 1 1 −0.13 −0.11 −0.14 0.05
17 1 1 0.59 0.53 0.57 0.07
18 1 1 1.57 1.50 1.54 0.06
19 1 1 1.21 1.21 1.19 0.06
20 1 1 0.03 0.00 0.01 0.07
21 1 1 0.97 0.69 0.96 0.11
Par.
M2*

0.06 -0.36 0.37 1.34 0.98 -0.19 0.74 -0.04 -0.19 (0.23)

Par.
M4*

-0.33 -0.69 -0.05 0.92 0.63 -0.58 (0.11) 0.34 0.21 0.58

Par.
M6*

-0.24 -0.64 0.07 1.04 0.68 -0.49 0.46 0.26 0.12 (0.50)

*Note: Basic parameters (printed in italics) and negative means of latent dimensions, pa-

rameters set in brackets are constrained and not estimated; for details on the constraint in

M6, see text.

10.5 Multidimensional Models with Unrestricted Item
Parameters

This group of three multidimensional models shares the assumption of an
ability parameter for each component of the second or the third mode or both
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Table 10.5. Fit statistics for models (2), (4), and (6)

Model ln L Number of Parameters* BIC CAIC
Model (2) (θvi + δj) -10045 21+7+7+2 20340 20377
Model (4) (θvj + σi) -10158 3+3+3+6 20418 20433
Model (6) (θvi + δvj) -10035 36+9+9+0 20434 20488

*Note: Printed are the numbers of covariance + variance + mean + basic.

with the previous group of models. In contrast, the item parameters of the
models in this group are unrestricted with respect to the mode structure, i.e.,
the σij parameters are not decomposed. The models, according to the nota-
tion introduced in Fig. 10.1, are

Model (5) λvij = (θvi + σij),

defining I abilities and different difficulties in each combination of compo-
nents of the second and the third facet.

Model (7) λvij = (δvj + σij)

defines J abilities in contrast and I × J difficulties, whereas

Model (8) λvij = (θvi + δvj + σij)

specifies I + J abilities and I x J difficulties. In these equations, the same
difficulty is assumed for any item within each item type, i.e., combination of
facets I and J. If more than one item response is to be modeled within an item
type, the models may be generalized further by introducing separate item pa-
rameters for each item within an item type. The item parameters shall then
be indexed with k. Complete model equations are printed below for the data
set analyzed.

Leaving the item parameters unrestricted implies for a given test that
the difficulties of the items are not assumed to be determined by the mode
structure. This situation is given in the German intelligence test developed
by Jäger et al. (1997), the Berlin Intelligence Structure test BIS T4. The
test is based on a structural model of human intelligence, according to which
each higher cognitive process has to be performed in some representational
mode, like verbal, numerical, or figural. Moreover, intelligence tasks can be
classified with respect to the kind of cognitive process to be performed in
a representational mode. The most central processes are creativity, memory,
speed, and capacity.

The BIS model obviously is influenced by older intelligence models, like
Thurstone’s primary mental abilities (1941) or the structural model by Guil-
ford (1967). In contrast to these theories, the BIS model focuses on the most
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relevant processes and representational modes and explicitly states that each
intelligence task has to refer to both facets: the type of cognitive process and
the medium in which the process takes place. The theory states that any
cognitive process can only be observed when it is performed in some content
or representation. In the other direction, the ability to solve tasks in some
content area can only be assessed if a cognitive process is induced.

It is a basic assumption of the BIS-test (Jäger et al., 1997) that two intel-
ligence traits are involved in determining the probability of each response in
the BIS, one trait related to the content and one trait related to the process
to be performed in a task. Hence, the seven dimensions, i.e., three content
related and four process related abilities, of the BIS are organized in two
modes (see Fig. 10.2). For each of the 12 cells in this model, three, four, or
five subtests have been constructed, each covering a series of items of the same
type. The BIS-test includes 45 subtests in total. According to the BIS model,
these tests contribute to a global measure of intelligence (g-factor), which is,
however, not part of the formalized model. It is just the reason for expecting
substantial correlations among the seven abilities, what is different from, e.g.,
Thurstone’s theory. In the design matrix in Table 10.6, the rows correspond
to the item types (the twelve combinations of processes and representation),
the columns correspond to the abilities. The second column gives the number
of items for each item type.

g-factor  

creativity

speed

cognitive capacity

verbal

figural

numerical

memory

operation

content

Fig. 10.2. Intelligence structure model underlying the BIS T4 intelligence test
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In the following, results of a study will be presented that tries to validate
the assumed psychometric structure of the BIS. Carstensen (2000) analyzed a
set of data that is combined from the original data of the test authors and some
data from own data collections, 650 cases in total. Multidimensional models
were estimated using joint maximum likelihood (JML) procedures employing
the software MULTIRA (Carstensen & Rost, 2001). In this section, however,
results gained by marginal maximum likelihood (MML) procedures using the
software ConQuest (Wu et al., 1997) are presented. In the MML approach,
the ability distributions are assumed to be multivariate normal, so that much
less parameters have to be estimated as compared to the JML method.

The tasks for the 12 types of subtests consist of more or less traditional
intelligence tasks. The four cognitive processes have been assessed by means
of solving analogies (cognitive capacity or reasoning), trying to find as many
stimuli with a certain quality as possible in a given time (speed), reproduc-
ing stimuli after a short exposition (memory), or trying to produce as many
solutions as possible according to given instruction (creativity). As the total
number of item responses across subtests is quite large, the number of re-
sponses in the subtest quite different, it might be difficult to fit a response
model on the item level. Because the responses within subtests are expected
to be more homogeneous (locally dependent) than across subtests, the multi-
dimensional model has not been specified on the level of single item responses
but on the subtest scores. That means, the 45 subtests are treated as “items,”
As Andrich (1985) has proposed for locally dependent subtest responses, the
equidistance RM is used on the level of subtest scores. A higher homogeneity
among the items within a subtest will result in a narrower dispersion indicated
by a higher dispersion parameter value.

Table 10.6. Design matrix for the BIS-T4 with 4 operations and three contents

Parameter/
Item Types*

N. of Items of
This Type

Cognitive
Capacity

Speed Memory Creativity Verbal Numerical Figural

1 5 1 1
2 3 1 1
3 3 1 1
4 4 1 1
5 5 1 1
6 3 1 1
7 3 1 1
8 4 1 1
9 5 1 1
10 3 1 1
11 3 1 1
12 4 1 1

*note: (3 to 5 items from each item type in the BIS-T4).
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The BIS-T4 has been analyzed with the models (5), (7), and (8) of the
hierarchical system of three-mode RMs from Fig. 10.1. The assumption of
model (5) is that the operations (response facet I) are related to different
traits whereas the content areas (response facet J) are not. In addition to
equation in Fig. 10.1, the model for the BIS data has to take into account
the subtest scores for more than one subtest from each item type. The sub-
test scores are modeled by the equidistance model Andrich (1982), specifying
a location parameter β and a dispersion parameter τ for each subtest. The
subtests are indexed with k within each item type ij, and the probability of
subject v getting xvijk correct responses in subtest ijk then is a function of

Model (5a) λvijk = exp (xθvi + xσijk)

with xσijk = (xβijk + x (hijk − x) τijk), and where Xijk denotes the observed
count of correct solutions and hijk the maximum number of correct solutions
for subtest ijk with βijk and τijk being a difficulty and a threshold parameter
for this subtest.

If in contrast the assumption of model (7) is made, i.e., the content areas
correspond to latent traits and the operations do not, the probability for a
BIS subtest score xvijk is given by

Model (7a) λvijk = exp (xδvj + xσijk)

with xσijk as above. Defining the operations as well as the contents as la-
tent traits and allowing the item difficulties to vary without respect to the
item type yields model (8), the BIS model. The probability of having xvijk

correct response from on subtest ijk is then a function of

Model (8a) λvijk = exp (xθvi + xδvj + xσijk)

with xσijk as above. For estimation, the means of the ability distributions
were fixed to zero for all three models, whereas the item locations and dis-
persions were not further restricted. As a consequence, the subtest locations
represent the difficulty of the subtests for each item type. The location pa-
rameters will be presented below. In analogy to the additional constraint for
model (6), only six of the seven dimensions are estimated for model (8), fixing
the parameters of the seventh dimension to zero. A set of seven parameters
for each person may be obtained by introducing the same constraint as for
model (6), i.e., fixing the sum of the operation parameters to equal the sum
of the content parameters for each subject. The correlation matrix of person
parameters computed according to this constraint is presented in Table 10.7.

Item dispersion certainly is also a relevant feature of subtest scores and
is related to test length and subtest homogeneity. For the present data anal-
ysis, the sum scores of the subtests were grouped into six categories. These
modifications of the raw data destroy the benefits of the dispersion param-
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eters, which have no threshold interpretation with a psychological meaning
any more. In the presented analysis, they are just a tool to fit the models to
the data.

Table 10.8 shows the likelihoods the number of parameters and BIC and
CAIC indices for model fit comparisons. The results confirm the assumptions
of the BIS-T4, because model (8) with both types of traits, process and content
traits, shows the closest fit to the data.

Table 10.7. Fit statistics for models (5), (7), and (8)

Model Number of ln L BIC CAIC
Independent Parameters*

Model (5) operation dimensions 6+4+0+45+45 −40612 81872 81972
Model (7) content dimensions 3+3+0+45+45 −41028 82678 82774
Model (8) BIS model 15 + 6 + 0 + 45+45 −40326 81372 81483

*Note: The numbers of covariance + variance + mean + location + dispersion

parameters are printed in this order.

For model fit testing reasons, model (8) should be compared to a more
general model, specifying twelve dimensions, one for each item type. In the
MML approach, the estimation of this 12-dimensional model did not converge
properly and thus no results are available. This may be due to the small sample
size of 650 subjects only, compared to the complexity of the model. However,
Carstensen (2000) reports a likelihood comparison of these two models from
the JML approach. He uses empirically constructed distributions of the test
statistic obtained from resampling methods. According to his results, model
(8) is sufficient to explain the data.

Turning to the ability distributions, Table 10.8 gives the matrix of latent
correlations among the seven dimensions (see paragraph on constraints above).
The general ability dimension is computed as the sum of either four operation
or three content parameters for each subject. The correlations among the
cognitive operations are close to zero. For example, creativity and speed show
a low positive correlation, which may be due to the nature of the creativity
tasks. In these tasks, respondents are asked to produce as many solutions as
possible in a given time.

Note that the operation parameters for each subject add to the general
ability as the content parameters do. Both sets of ability parameters, therefore,
are ipsative measures and their correlations are artificially distorted in the
negative direction. The content parameters show somewhat higher correlations
among each other and with the general ability as the operation parameters do.
Taking into account, that the artificial distortion due to ipsative measurement
is higher for three ipsative variables (content) than for four (operation), the
results may have a substantial interpretation: the abilities related to the four
cognitive processes are easier to distinguish as the abilities related to content
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areas or representational modes. The correlations between operations and
contents are generally positive and of medium strength, a result that may be
explained by the fact that each operation can only be measured in the context
of a content and vice versa.

Table 10.8. Correlation coefficients among the abilities on model (8) for the re-
computed seven dimensional parameters and general ability

Correlations Capacity Speed Memory Creativity Verbal Numerical Figural
Speed 0.00
Memory 0.12 0.02
Creativity −0.22 0.25 −0.28
Verbal 0.26 0.50 0.38 0.28
Numerical 0.38 0.45 0.36 0.26 0.23
Figural 0.38 0.37 0.22 0.39 0.21 0.43
General 0.46 0.61 0.45 0.42 0.72 0.75 0.70

In earlier analyses, Rost & Carstensen (2002) have shown that the corre-
lations among sum scores are quite different from, and generally higher than
the correlations among the ability parameters of a multidimensional model.
However, the problems of ipsative measurement are neither solved in the latter
case.

10.6 Conclusion

In this chapter, a system of three-mode item response models has been intro-
duced. A three-mode model may be applied to response data if three facets of
the response process are to be modeled. The three-mode structure of the mod-
els covered in this chapter is based on extensions to the simple logistic model
by Rasch (1960). The resulting system of models covers the LLTM, special
cases of the RM, and multidimensional generalizations. Not in every model
of the system is the separation between person abilities and item difficulties
maintained. In other words, the person and item facets of the response process
are not modeled independently in every model. In model (4) for example, the
difficulty of items with regard to components of the third facet (indicated by
j) cannot be estimated independently of the person abilities with regard to
the different dimensions associated with the components of this facet.

Facet designed response data may be obtained in a variety of data collec-
tion designs and facets may be due to numerous conditions in the response
process. As suggested in this chapter, the family of different three-mode mod-
els may be particularly useful for modeling different facets of the response
process by assuming a multidimensional ability concept. This may include
cognitive processes related to different contents. Rost & Carstensen (2002)
analyzed an interest questionnaire that investigated the interest of students
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in different topic areas of science conditionally on different activities related
to science.

A system of models like the family of three-mode models provides a frame-
work for testing model-data fit. Different hypotheses on the mode structure,
i.e., about the adequate way of relating the facets in the responses to modes
in the response model, can be empirically evaluated. These questions may
be addressed by likelihood comparisons as likelihood ratio tests or informa-
tion indices (AIC, BIC, CAIC). Different software packages are available that
produce estimates for three-mode models. In the framework of marginal max-
imum likelihood, the software ConQuest estimating the Mixed-Coefficients
Multinomial Logit Model is capable of estimating all three-mode models.
Conditional maximum likelihood estimates are available through the Soft-
ware LPCM (Fischer) for LLTM models and MULTIRA (Carstensen & Rost,
2001) for multidimensional three-mode RMs.
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(Almost) Equivalence Between Conditional and
Mixture Maximum Likelihood Estimates for
Some Models of the Rasch Type

Anton K. Formann

University of Vienna, Department of Psychological Basic Research

11.1 Introduction

It has been known for several years that conditional and mixture maximum
likelihood estimates do agree for the dichotomous Rasch model (RM). This
equivalence may be attained by a sufficient number of mixing components
in a specifically restricted latent-class model. Because the principle of such
a semiparametric approach is a general one (Kiefer & Wolfowitz, 1956), it
also applies to some other models of the Rasch type having simple sufficient
statistics. Exact equivalence regarding the parameter estimates can be shown,
for example, for the linear logistic test model, a RM with linearly constrained
item parameters, and for the polytomous RM; only almost equivalence is
found for the mixed RM. As formal proofs of these results are difficult, the
presentation focuses on numerical examples demonstrating the said (almost)
equivalence.

Neyman & Scott (1948) investigated problems of consistent estimates
based on partially consistent observations. The general situation can be char-
acterized as follows. “Let xi stand for a (possibly multivariate) random vari-
able and assume that the variables of the sequence x1, x2, . . . , xn, . . . are mu-
tually independent” (p. 1). “. . . the set of unknown parameters involved in
the totality of probability laws of the random variables {xi} is infinite and
can be split into two parts. The first part is composed of a finite number of
parameters, say ξ1, ξ2, . . . , ξν , each of which appears in the probability laws
of an infinity of random variables of the sequence {xi}. . . . The second part of
the set of unknown parameters is infinite and is composed of parameters θm

each of which appears in the probability law of only a finite number of random
variables considered. . . . the parameters ξ1, ξ2, . . . , ξν will be called structural.
All the other parameters θ1, θ2. . . . will be called incidental” (p. 2). As their
main result, Neyman and Scott stated that “maximum-likelihood estimates of
the structural parameters relating to a partially consistent series of observa-
tions need not be consistent” (p. 7), and that “even if the maximum-likelihood
estimate of a structural parameter is consistent . . . the maximum-likelihood
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estimate need not possess the property of asymptotic efficiency” (p. 8). The
further considerations in Neyman and Scott regarding a systematic method of
obtaining consistent estimates end in the statement, “... that, thus far, there
does not seem to exist a systematic method of solving the ... problem” (p.
19).

Some years later, Kiefer & Wolfowitz (1956) presented such a method ac-
cording to which the structural parameters have to be estimated together with
the distribution of the incidental parameters. They proved for their approach
“that, under usual regularity conditions, the maximum likelihood estimator
of a structural parameter is strongly consistent, when the (infinitely many)
incidental parameters are independently distributed chance variables with a
common unknown distribution function. The latter is also consistently esti-
mated although it is not assumed to belong to a parametric class” (p. 887).

Four years later, the book by Rasch (1960) was published, containing,
among others, his famous item response model for dichotomous data. As is
well-known now, the probability of answer xvi (xvi = 1 if subject Sv solved
item Ii, xvi = 0 otherwise), v = 1, . . . , N, i = 1, . . . , k, is governed by two
parameters, the first one, θv, characterizing subject Sv, and the other one, σi,
the item Ii :

pvi = p(Xvi = 1|σi, θv) =
exp(θv + σi)

1 + exp(θv + σi)
. (11.1)

As the number of items, k, is fixed, but N increases with increasing sam-
ple size, the situation corresponds exactly to that of structural vs. incident
parameters where the maximum likelihood (ML) estimates of the structural
parameters need not be consistent. And in fact, they are not consistent when
estimated together with the incidental person parameters (unconditional or
joint ML method). It seems to be unknown whether Rasch was aware of
the Kiefer–Wolfowitz approach or not, but it is sure that his solution to the
problem of parameter estimation was another one, in some sense related to
proposals derived by Neyman & Scott (1948). Rasch’s favorite was the condi-
tional ML (CML) method, which substitutes the incidental person parameters
by their sufficient statistics, the raw scores, and conditions the person param-
eters out of the likelihood.

Another way of eliminating the subjects parameters is to integrate them
out. This was done by the marginal ML (MML) method of parameter estima-
tion in the RM. This method assumes that subjects stem from a population
with continuous ability distribution G(θ), so that the marginal probability of
response pattern xv = (xv1, . . . , xvk) is given by

p(xv) =

∞∫
−∞

p(xv|θ)dG(θ) (11.2)

and the whole likelihood may be written as
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L = p{(X)} =
N∏

v=1

∞∫
−∞

p(xv|θ)dG(θ). (11.3)

The item parameters are then estimated by applying the ML method to
this marginal likelihood. Originally, the ability distribution G(θ) was assumed
to be known or at least to belong to a certain family of distributions (for exam-
ple, normal; cf. Bock and Lieberman, 1970). Later on, the continuous ability
distribution was approximated by a discrete distribution, with an arbitrary
number of support points θj , j = 1, . . . ,m, with corresponding masses wj ,
j = 1, . . . ,m, 0 < wj ≤ 1,

∑m
j=1 wj = 1, resulting in the (nowadays called

semi- or nonparametric) likelihood

L∗ =
N∏

v=1

m∑
j=1

wjp(xv|θj). (11.4)

The discrete ability distribution, that is, their support points and corre-
sponding masses, has to be estimated along with the item parameters; see
Bock & Aitkin (1981) for the normal ogive model, and Thissen (1982) and
Mislevy (1984) for the RM.

For an arbitrary number of support points, this method comes close to
the Kiefer–Wolfowitz (1956) approach. That it becomes the Kiefer–Wolfowitz
approach and, as a consequence, that it leads to the same item-parameter esti-
mates as obtained with the CML method, was shown independently by Leeuw
& Verhelst (1986), Follmann (1988), and Lindsay et al. (1991). They derived
that, apart from degenerate data, the equivalence between conditional and
semiparametric ML can be attained for the dichotomous RM if the number
of support points, m∗, at least is

m∗ =
{

(k + 1)/2 for k odd,
k/2 + 1 for k even. (11.5)

Then, the observed score distribution equals the expected one, and the
item- parameter estimates agree perfectly. If k is odd, usually all parame-
ters (support points and their masses, item parameters) are identifiable. If
k is even, one parameter will be unidentifiable, and one restriction has to
be imposed, see the example in Formann (1989). If m, the number of sup-
port points, is chosen to be greater than m∗, the number of unidentifiable
parameters increases, and no improvement of fit is possible.

As pointed out by Formann (1989) for the dichotomous RM, the semipara-
metric ML approach can easily be realized by specifically restricted models
within the framework of linear logistic latent-class analysis (Formann, 1982,
1985). Thereby, the individual response vectors xv = (xv1, . . . , xvk) can be
represented by the multinominal distribution of the 2k response patterns xs

and their observed frequencies ns. Because of the assumption of local inde-
pendence, the likelihood results in
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L∗ =
2k∏

s=1

⎡
⎣ m∑

j=1

wj

k∏
i=1

pxsi

i|j (1 − pi|j)1−xsi

⎤
⎦

ns

, (11.6)

with pi|j denoting the probability of a positive response, given membership to
class Cj . Linear logistic latent-class analysis constrains the pi|j according to

ln[pi|j/(1 − pi|j)] =
u∑

t=1

qijtηt, (11.7)

so that for models analogous to the dichotomous RM,

ln[pi|j/(1 − pi|j)] = θj + σi (11.8)

has to be chosen.
In the following, three numerical examples are given. The first one demon-

strates that the CML and the semiparametric ML methods with a certain
number of latent classes are equivalent for the linear logistic test model
(LLTM). Unsurprisingly, this is the case for the same saturation point as
found for the RM: both the RM and the LLTM have in common the suf-
ficient statistic for the person parameters; they differ only regarding their
structural parameters. The second example demonstrates the equivalence of
the CML and semiparametric ML approaches for the polytomous RM. This
example differs from the first one regarding the dimensionality of parame-
ters. In the polytomous RM, the parameters are vectorial, but the principle
of the Kiefer–Wolfowitz approach remains applicable. The third example, in
contrast, referring to the mixture RM for dichotomous data, shows that an
approximate solution, lying near to the CML solution, can be found even in
cases where the Kiefer–Wolfowitz method does not apply: in the mixture RM,
the parameters do not stem from a common distribution, but are recruited
from a mixture distribution.

11.2 Example 1: The Linear Logistic Test Model

The linear logistic test model (LLTM) is a RM with linearly restricted item
parameters σi,

pvi =
exp(θv +

∑t
r=1 qirηr)

1 + exp(θv +
∑t

r=1 qirηr)
, (11.9)

with the weights qir, i = 1, . . . , k, r = 1, . . . , t, being known constants. The
qir state a specific structural hypothesis regarding the item parameters σi of
the RM. Such structural hypotheses may be derived from the experimental
setting under which the data have been collected (e.g., in the measurement of
change when the same items were presented repeatedly to the same subjects),
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or they may be inferred from the items themselves (e.g., when different types
of cognitive operations are involved in solving the items of an intelligence
test).

When the N person parameters θv, v = 1, . . . , N, of the LLTM are re-
placed by only m parameters θj , j = 1, . . . ,m, describing the ability of the
classes C1, . . . , Cm, then one gets the latent-class/linear logistic test model
(LC/LLTM) with its specification equation

pi|j =
exp(θj +

∑t
r=1 qirλr)

1 + exp(θj +
∑t

r=1 qirλr)
. (11.10)

To estimate its parameters, linear logistic LCA for dichotomous data (For-
mann, 1982, 1985, 1989) is appropriate. Increasing the number of classes has
the same effect as it has in the case of the LC/RM: the larger the number
of classes, the better the fit of the expected raw score distribution to the ob-
served raw score distribution, but only up to a certain saturation point; this
saturation point is the same as it is in the LC/RM. When it is reached, the
CML estimates of the parameters ηr of the LLTM and those of the parameters
λr of the LC/LLTM agree perfectly. Knowing the analogue result for the RM,
these findings are not surprising because both the RM and the LLTM have
the raw score as the sufficient statistic for the person parameter.

As an example, consider six items of a nonverbal intelligence test similar
to Raven’s progressive matrices. Each item consists of a 3-by-3 scheme in
which eight figures are arranged following certain rules. The ninth, missing
figure has to be found out from a given set of alternatives by the examinee.
The matrices possess varying difficulty due to different types and, within each
type, different numbers of cognitive operations required for their solution.
The six items chosen for our example contain two cognitive operations each,
whereby three different types of them were distinguished (A, B, C).

To illustrate the specification of the LC/RM and the LC/LLTM in the
sense of linear logistic LCA for dichotomous data, the weights correspond-
ing to these models with two classes each can be seen in Table 11.1. In the
parametrization of the LC/LLTM, the cognitive operation of type A is used
as the reference operation with difficulty equal to 0, and the weights for pa-
rameters λ1 and λ2 describe the increase in the item difficulty in the presence
of one additional cognitive operation of type B or C.

Table 11.2 shows the behavior of the expected raw score distribution for in-
creasing number of latent classes under the LC/LLTM. As under the LC/RM,
for four classes the raw score distribution is fitted perfectly and the estimates
of the structural parameters λ coincide with those under the CML approach
for the LLTM. The corresponding goodness-of-fit statistics, see Table 11.3, in-
dicate bad fit. As increasing the number of classes does not lead to better fit,
it is to be concluded that the hypothesized structure of items cannot explain
their difficulty to a statistically sufficient amount.
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Table 11.1. Matrices items—Weights for the LC/RM and the LC/LLTM assuming
two classes

LC/RM LC/LLTM
σ θ λ θ

Class Item 1 2 3 4 5 1 2 B C 1 2
1 1 1 1 1 1 1

2 1 1 0 0 1
3 1 1 2 0 1
4 1 1 1 0 1
5 1 1 0 2 1
6 −1 −1 −1 −1 −1 1 0 1 1

2 1 1 1 1 1 1
2 1 1 0 0 1
3 1 1 2 0 1
4 1 1 1 0 1
5 1 1 0 2 1
6 −1 −1 −1 −1 −1 1 0 1 1

Table 11.2. Matrices items—Observed frequencies of the raw scores and their ex-
pectations for increasing number of classes (m = 1, . . . , 4) under the LC/LLTM

Score Observed Expected Frequencies
r Frequency m = 1 m = 2 m = 3 m = 4
0 37 7.1 23.8 36.2 37.0
1 118 72.0 132.2 121.0 118.0
2 238 251.1 252.9 231.6 238.0
3 300 398.2 276.5 308.3 300.0
4 259 308.5 256.1 253.3 259.0
5 148 111.4 172.9 150.3 148.0
6 63 14.7 48.6 62.4 63.0

Table 11.3. Matrices items—Goodness-of-fit statistics for the LC/LLTM with in-
creasing number of classes (X2 = Pearson’s chi-squared statistic, G2 = likelihood
ratio statistic)

Classes X2 G2 df χ2
95

1 453.8 342.0 60 79.1
2 118.7 118.7 58 76.8
3 101.6 100.7 56 74.5
4 101.2 100.0 54 72.2

11.3 Example 2: The Polytomous Rasch Model

The sufficient statistic for the person parameter is scalar in both in the di-
chotomous RM and the LLTM. It is shown in the following for the polyto-
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mous RM that the semiparametric ML method may also become equivalent
to the CML method in the case of vectorial incidental parameters. In this
model, each subject Sv is characterized by its vectorial person parameter
θv = (θv1, . . . , θvg), expressing the tendency for showing reactions in each one
of the categories K1, . . . ,Kg, and each item Ii is represented by its vectorial
parameter σi = (σi1, . . . , σig), reflecting the amount to which it provokes an-
swers in each one of the categories. The probability for observing an answer
of subject Sv at item Ii in category Kh, derived by Rasch (1961) from the
principle of specific objectivity, is

pvih =
exp(θvh + σih)∑g
l=1 exp(θvl + σil)

, (11.11)

with the normalization conditions
∑

h σih = 0 for i = 1, . . . , k (items),∑
i σih = 0 for h = 1, . . . , g (categories),

∑
h θvh = 0 for v = 1, . . . , n

(subjects).
The semiparametric or latent-class equivalent of this model, call it the

polytomous latent-class/RM (P-LC/RM), assumes the subject parameters to
be concentrated on a few location parameters θj , j = 1, . . . ,m, referring to the
response behavior of latent classes C1, . . . , Cm. Hence, θj together with their
prevalence rates πj , j = 1, . . . ,m, replace the subjects parameters θv, v =
1, . . . , n, of the polytomous RM, while the item parameters σi, i = 1, . . . , k,
have the same meaning as they have in the polytomous RM. In this sense, the
class specific probability pih|j for observing an answer at item Ii in category
Kh is given by

pih|j =
exp(θjh + σih)∑g
l=1 exp(θjl + σil)

, (11.12)

with normalization conditions analogous to those above.
As will be shown by example of the life-satisfaction data, given in Table

11.4 and previously analyzed by Clogg (1979), among others, the P-LC/RM
becomes equivalent to the polytomous RM, in that for more than a certain
number of classes, the P-LC/RM estimates of the item parameters equal the
CML estimates in the polytomous RM.

Considering all side conditions, for k items each having g categories, there
are (k−1)(g−1) item parameters σ to be estimated by the CML method in the
polytomous RM. Assuming m classes, under the P-LC/RM the same number
of item parameters plus m(g − 1) class parameters θ plus (m − 1) class sizes,
in total (k−1)(g−1)+mg−1 parameters, are to be estimated. Conditioning
on the persons’ raw scores (which are the sufficient statistics for the persons’
parameters) in the CML method for the polytomous RM is tantamount to
fitting perfectly the raw score distribution by the P-LC/RM. Because the
item parameters are common under both approaches, the location parameters
and class sizes of the P-LC/RM are free to fit the raw score distribution. In
order to be able to do that, the number of the location parameters plus the
number of class sizes, mg − 1, must at least be equal to the number, say o,
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Table 11.4. Life-satisfaction—Response patterns and their observed frequencies;
N = 1472. Satisfaction with hobbies (item 1), residence (item 2), and family (item
3); categories: positive (1), neutral (2), and negative (3)

Response Observed Response Observed Response Observed
Pattern Frequency Pattern Frequency Pattern Frequency

111 466 211 126 311 54
112 27 212 31 312 12
113 16 213 5 313 7
121 191 221 117 321 49
122 38 222 58 322 26
123 14 223 12 323 11
131 64 231 45 331 23
132 18 232 23 332 16
133 5 233 3 333 15

of (independent) elements of the (vectorial) raw score distribution. From this
inequality, m ≥ (o + 1)/g, the minimal number of classes for the P-LC/RM
necessary to fit the raw score distribution can be derived (cf. Table 11.5).
While for dichotomous data o is simply equal to the number of items, for
polytomous data it depends in a more complicated way upon the number of
items and the number of categories.

Table 11.5. Number of parameters in the polytomous RM (CML) and in the P-
LC/RM

m Classes m Classes
Model Number of k Items k = 3

g Categories g = 3
RM, P-LC/RM Item Parameters (k − 1)(g − 1) 4
P-LC/RM Location parameters m(g − 1) 2m

Class sizes m − 1 m − 1
Loc. par. + Class sizes mg − 1 3m − 1

RM, P-LC/RM indep. elements of the
Raw score distribution o 9

Raw score distribution can be fitted mg − 1 ≥ o 3m − 1 ≥ 9
by the P-LC/RM if m ≥ (o + 1)/g m ≥ 4

For k = g = 3, which is the case for the life-satisfaction data, the following
raw scores (r1, r2, r3) are observable, whereby r1 denotes the number of an-
swers in category K1 given by a single subject, summed over the items, and
so on: (3, 0, 0), (0, 3, 0), (0, 0, 3), (2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 0, 2), (0, 2, 1),
(0, 1, 2), and (1, 1, 1). Therefore, the raw score distribution consists of 9 inde-
pendent elements, from which it follows that m, the number of classes, at least
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must be four. Because for m = 4 the number of location parameters θ plus the
number of class sizes equals 11, the model will be overparameterized by two
parameters; in other words, two parameters will be unidentifiable, so that the
number of degrees of freedom for the goodness-of-fit tests will be 13 instead
of 11 = (gk −1)−{(k−1)(g−1)+mg−1} = 33 −2 ·2−4 ·3. If m is chosen to
be greater than four, the number of unidentifiable parameters increases such
that the number of degrees of freedom remains 13, and no improvement of fit
can be reached.

Table 11.6. Life-satisfaction—Goodness-of-fit tests for some P-LC/RMs (X2 =
Pearson’s chi-squared statistic, G2 = likelihood ratio statistic)

Number of Parameters
Model Classes For classes For items Total X2 G2 df χ2

95

P-LC/RM(2) 2 1 8 9 40.72 36.91 17 27.59
P-LC/RM(3) 3 2 10 12 18.00 18.99 14 23.68
P-LC/RM(4) 4 3 10 13a 17.96 18.96 13 22.36
P-LC/RM(5) 5 4 9 13b 17.96 18.96 13 22.36

Notes:
a Two parameters not identifiable.
b Five parameters not identifiable.

Numerical results are given for the data on life-satisfaction, with respect
to the goodness-of-fit statistics in Table 11.6, and with respect to the raw
score distributions in Table 11.7. The latter ones illustrate that for an in-
creasing number of classes, the expected raw score distribution comes closer
to the observed one. For four classes, both are identical, while this is not true
with respect to the expected and the observed distribution of the response
patterns. Estimating the item parameters according to the CML method, and
estimating them by linear logistic LCA for polytomous data Formann (1992),
assuming P-LC/RM with four or more classes, leads to the same numeri-
cal results for the item parameters: σ1 = (−.23, .00, .23), σ2 = (−.43, .21,
.22), σ3 = (−.66, −.21, −.45).

11.4 Example 3: The Mixed Rasch Model

The models in the two previous examples are based on the assumption that the
sample has been drawn from a population that is heterogeneous with respect
to the subjects’ abilities but is homogeneous with respect to the scaling model
and its parameters. In contrast, the mixed RM (MRM; Rost, 1990), in the
following considered for dichotomous data only, assumes that the population
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Table 11.7. Life-satisfaction—Observed and expected frequencies of the scores for
increasing number of classes (m = 1, . . . , 4) under the P-LC/RM

Score Observed Expected Frequencies
Frequency m = 1 m = 2 m = 3 m = 4

300 466 327.0 464.5 466.0 466.0
030 58 24.9 51.9 57.4 58.0
003 15 1.8 5.2 15.0 15.0
210 344 462.2 351.2 343.8 344.0
201 134 201.5 130.1 134.2 134.0
120 186 199.2 171.5 186.9 186.0
102 35 37.3 35.6 35.1 35.0
021 61 31.7 73.2 61.7 61.0
012 30 13.3 34.1 29.9 30.0
111 143 173.1 154.7 142.0 143.0

under investigation comprises two or more subpopulations in each of which
the RM holds for a given set of items. Across subpopulations, the items are
allowed to have different parameters.

Comparable models can be formulated within the latent-class framework.
Such latent-class/mixed RMs (LC/MRM) can be stated by assuming that
subjects are located at a few discrete points on the latent continuum. However,
instead of postulating the same item parameters for all classes as was in the
LC/RM and LC/LLTM, two or more sets of item parameters are provided
corresponding to the Rasch homogeneous subpopulations of the MRM (in the
following called item difficulty types). For each item difficulty type, two or
more ability parameters are allowed (in the following called ability levels). In
contrast to the LC/RM and the LC/LLTM, where the possible heterogeneity
of the persons is caught by ability levels only (for all persons, the same set of
item parameters is assumed to be valid), the LC/RM considers the possible
heterogeneity in two ways: by allowing more than one item difficulty type and
by allowing more than one ability level within each item difficulty type. In this
sense, the specification equation of the LC/MRM can be stated as follows:

pi|j(L) =
exp{θj(L) + σi(L)}

1 + exp{θj(L) + σi(L)} , (11.13)

where σi(L) is the parameter of item Ii for the L-th item difficulty type, and
θj(L) is the ability parameter of the j -th ability level within the L-th item
difficulty type. As an example, Table 11.8 gives the weights of linear logistic
LCA for the LC/MRM assuming six items, two item difficulty types, and
two ability levels within each item difficulty type, resulting in altogether four
classes.

As for the six matrices items in this analysis, the observed and expected
score distributions shown in Table 11.9 for increasing number of classes illus-
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Table 11.8. Matrices items—Weights for the LC/MRM (two item difficulty types,
two ability levels) in linear logistic LCA

Diff. σ1 θ1 σ2 θ2

Type Class Item 1 2 3 4 5 1 2 1 2 3 4 5 1 2
I 1 1 1 1

2 1 1
3 1 1
4 1 1
5 1 1
6 −1 −1 −1 −1 −1 1

2 1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 −1 −1 −1 −1 −1 1

II 3 1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 −1 −1 −1 −1 −1 1

4 1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 −1 −1 −1 −1 −1 1

trate that the LC/MRMs does not allow fixing the score distribution as is the
case under the LC/RM and the LC/LLTM. As a result, the LC/MRM can
only approximate the observed score distribution, and with it, the estimates
of the item parameters for the two difficulty types. Under the LC/MRM, they
come close to their CML estimates obtained for the MRM. Note that this al-
most equivalence regarding the item-parameter estimates is already met when
assuming two ability levels for each one of the two difficulty types; see Table
11.10.

The five-classes LC/MRM (one item difficulty type with two ability levels,
another item difficulty type with three ability levels) is nearly equivalent to the
two-classes MRM with respect to fit. More than five classes of the LC/MRM
are not identifiable. This can be concluded from the result that increasing
the number of classes up to eight does not improve the fit statistics and from
analyzing the matrix of second-order partial derivatives of the log-likelihood
function; regarding identifiability in latent-class models, see Goodman (1974),
Formann (1985, 1992, 2003), and G.-H. Huang & Bandeen-Roche (2004). Fi-



188 Anton K. Formann

Table 11.9. Matrices items—Observed score frequencies as well as expected score
frequencies under the LC/MRM and the MRM assuming two item difficulty types

Expected Frequencies
LC/MRM MRM

Score Observed Ability Levels per Item Difficulty Type
r frequency 1 + 1 2 + 2 2 + 3
0 37 26.0 34.7 37.0 37.0
1 118 131.6 120.8 118.0 118.0
2 238 247.9 238.4 238.2 238.0
3 300 276.3 300.2 300.1 300.0
4 259 260.8 257.2 258.2 259.0
5 148 174.1 148.9 148.5 148.0
6 63 46.3 62.8 63.0 63.0

Table 11.10. Matrices items—Item-parameter estimates under the LC/MRM and
the MRM assuming two item difficulty types

LC/MRM
Ability Levels per Item Difficulty Type

Type Item 1 + 1 2 + 2 2 + 3∗ MRM
Item-parameter I 1 −1.15 −1.24 −1.26 −1.22

estimates 2 3.26 4.12 11.37 3.92
3 −.38 3.96 20.49 4.87
4 1.50 2.85 10.02 2.66
5 −1.79 −2.09 −2.12 −2.07

6# 0 0 0 0
II 1 −.94 −1.05 −1.05 −1.05

2 1.05 1.06 1.14 1.10
3 −.61 −1.22 −1.14 −1.25
4 .12 .12 .16 .14
5 −1.81 −1.87 −1.85 −1.86

6# 0 0 0 0
Prevalence type I .420 .238 .181 .239

Notes: ∗ More parameters not identifiable.
# Normalized to 0.

nally, Table 11.11 displays the statistics of the goodness-of-fit tests for the
LC/MRM and the MRM. In contrast to the LC/LLTM, the four- and five-
classes LC/MRMs fit the data on the six matrices items well.
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Table 11.11. Matrices items—Goodness-of-fit statistics for the LC/MRM for in-
creasing number of ability levels and for the MRM, in both cases assuming two item
difficulty types

Ability Levels Number
per Item Diffi- of X2 G2 df χ2

95

culty Type Classes
1 + 1 2 79.9 81.4 50 67.5
2 + 2 4 48.2 54.5 46 62.8
2 + 3 5 45.8 51.5 44 60.5
MRM 2 46.4 51.8 42 58.1

11.5 Final Remarks

Linear logistic latent-class analysis for dichotomous (Formann, 1982, 1985) as
well as for polytomous data (Formann, 1992) provides a very general frame-
work for modeling item latent probabilities and class sizes. In addition to
the models explicitly mentioned above, most of the classic latent-class models
and most of item response models that have been formulated previously for
dichotomous and polytomous data, e.g., threshold models, but also more gen-
eral models, such as hybrid models, can be restated in terms of linear logistic
latent-class analysis; see Formann & Kohlmann (1998). Therefore, it would be
rather easily possible to search for further types of models for which (almost)
equivalence of CML and semiparametric ML is attainable, and to investigate
empirically under which conditions this equivalence is attained. But doing
this will be of theoretical importance only. From the practical point of view of
parameter estimation, the semiparametric ML method must be rated inferior
as compared to the CML method. Estimating the item parameters according
to the CML method involves computing the symmetric functions, a task that
in the early days of the RM (and similar models) was demanding: The “dif-
ference algorithm” (Fischer & Allerup, 1968) proved very prone to numerical
errors and, thus, usually worked well for rather small numbers of items only.
However, the more recent “summation method” (Andersen, 1972; Gustafs-
son, 1980) is numerically stable and remains applicable even in the presence
of large numbers of items. So, getting the CML parameter estimates has be-
come routine, whereas parameter estimation according to the mixture ML
method, e.g., via restricted latent-class models, is more involved. In contrast,
employing the mixture approach seems to be more promising when thinking
of multivariate extensions of the Rasch model. Especially, when there do not
exist simple sufficient statistics—as they do, for example, in the polytomous
RM-, the CML approach may prove difficult or even impossible to be made
applicable. In such situations, the semiparametric ML-method promises to be
quite useful having in mind the possible disadvantages of existing alternatives,
particularly of the unconditional ML method and the marginal ML method
with prespecified latent-ability distribution.
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12.1 Introduction

The chapter gives an overview of Rasch models for the measurement of change
across repeated observations of the same individuals and items. The models
described herein include extensions of the original Rasch model that allow one
to analyze multidimensional latent constructs and to incorporate heterogene-
ity of change across individuals. In particular, the use of mixture-distribution
Rasch models in longitudinal research allows one to model quantitative in-
terindividual differences in a latent trait at each occasion, together with quali-
tative interindividual differences in the course of development. A mover–stayer
mixed-Rasch model can be specified as a special case that reflects the assump-
tion that change over time occurs for some latent subpopulation but not for
another. An empirical example illustrates that the mover–stayer mixed-Rasch
model can provide a parsimonious and viable account of observed heterogene-
ity of change.

12.2 Rasch Models for Repeated Observations

The Rasch model (RM, Rasch, 1968, 1980) is usually applied to the responses
of individuals to items observed at one point in time. However, the RM can
also be used in situations in which a set of items is repeatedly administered to
the same sample of individuals. In those longitudinal designs, the RM specifies
the probability that item i, i = 1, . . . , I, is solved by person v, v = 1, . . . , N ,
at occasion t, t = 1, . . . , T :

P (Xvit = 1|θvt, βit) =
exp(θvt − βit)

1 + exp(θvt − βit)
. (12.1)

The parameter θvt denotes person v’s latent ability at occasion t, and βit

denotes item i’s difficulty at occasion t.
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Modeling changes in ability or item difficulty over time is the aim of ex-
tensions of the RM and other IRT models, such as those by Fischer (1983,
1995d), Wilson (1989), and Embretson (1991). This chapter gives an overview
of RMs for modeling change and presents an application of some of the pre-
sented models to a longitudinal data set. Additional applications of this class
of models can be found in the chapters by Draney and Wilson, and Glück and
Spiel in this volume.

12.2.1 Modeling Homogeneous and Person-Specific Change

Aside from specifying the probability of solving an item at a particular mea-
surement occasion t in terms of Equation 12.1, the RM and its extensions
allow one to measure change from one occasion to another and to test hy-
potheses about the latent course of development. In the simplest case, one
may assume that the person and item parameters are invariant over time,
that is, θvt = θv and βit = βi for all occasions t, which means that no change
occurs at all. Alternatively, one can specify the hypothesis that all individuals
exhibit the same amount of change on the latent continuum by introducing a
change parameter λt that is constant across individuals and items:

P (Xvit = 1|θv, βi, λt) =
exp(θv + λt − βi)

1 + exp(θv + λt − βi)
. (12.2)

The model in Equation 12.2 represents a linear logistic test model (LLTM;
Fischer, 1983, 1995d,b; Spada & McGaw, 1985) that decomposes the item
parameter βit into basic parameters that capture the item’s initial difficulty
βi and the change λt that has occurred until occasion t, βit = βi − λt with
λ1 = 0. Technically, the person parameter θv is considered constant over time
in the linear logistic model, so that the relative position of person v is preserved
across the measurement occasions. Because change in overall item difficulty is
equivalent to global change in latent-person ability, however, the model reflects
the assumptions that change may occur and that change is homogeneous
across persons. Accordingly, λt can be interpreted as the average increase (or
decrease) in ability from the first measurement occasion until occasion t for
all individuals. Due to the additive decomposition of βit into item difficulty βi

and the change effect λt, the relative positions of the items are also maintained
over time. The latter assumption can be dropped by allowing for time-specific
item parameters.

The linear logistic RM in Equation 12.2 is based on a unidimensional latent
space. That is, the position of person v on the one latent trait θ underlies her
or his responses to all items i at all occasions t, although the person’s absolute
position on the latent continuum may shift from one occasion to another.

In many applications, however, it may be plausible to assume that dif-
ferent items measure different latent constructs, such as distinct aspects of
a syndrome in clinical research or specific cognitive abilities in educational
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assessment. To measure time or treatment effects across repeated observa-
tions in such cases, the linear logistic test model with relaxed assumptions
(LLRA; Fischer, 1983, 1995c) accommodates multidimensionality of items.
This model allows for item-specific latent traits by specifying interactions be-
tween persons and items, θiv. To measure time or treatment effects, the model
contains change parameters that are considered constant across the items and
their latent dimensions. Although such generalizations of the RM to incor-
porate multidimensionality in an item set are suitable specifications in many
instances, the remainder of this chapter will largely focus on the issue of ho-
mogeneity versus heterogeneity of change across individuals, which can also be
addressed by modeling and testing for particular types of multidimensionality
in longitudinal RMs.

The RM in Equation 12.2 contains the rather restrictive assumption that
change is homogeneous across persons, that is, that the amount of change λt

is supposed to be the same for all persons v. This restrictive assumption can
be dropped by specifying a multidimensional latent space that contains one
latent-trait continuum for each measurement occasion (e.g., Andersen, 1985).
The resulting model reflects the concept of person-specific change that can be
written as

P (Xvit = 1|θvt, βi) =
exp(θvt − βi)

1 + exp(θvt − βi)
. (12.3)

Formally, the parameter θvt represents an interaction between person v
and measurement occasion t, which implies that change in the latent ability
θ may be person-specific rather than homogeneous, whereas item difficulty
βi is assumed to remain constant over time. In contrast to the linear logistic
RM (12.2), the relative position of person v may therefore change from one
occasion to another in Equation 12.3, so that the amount of change cannot
be measured by means of a global change parameter λt. The model of person-
specific change in Equation 12.3 is appropriate in longitudinal research designs
in which the items form a unidimensional scale at each occasion with station-
ary item parameters, and in which the speed or direction of development
may vary between persons, for example because individuals profit to different
degrees from training or intervention programs.

The models of homogeneous change in Equation 12.2 and of person-specific
change in Equation 12.3 result from particular restrictions of the person pa-
rameters θvt and the item parameters βit in the general RM for repeated obser-
vations as defined in Equation 12.1. Alternative restrictions are also possible,
including the decomposition of the item parameters βit into linear combina-
tions of specific treatment effects and general trends (e.g., Fischer, 1995c).

12.2.2 Loglinear Rasch Models for Measuring Change

The loglinear representation of RMs (Cressie & Holland, 1983; Kelderman,
1984; see also the chapter by Kelderman in this volume) forms a suitable
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framework for the specification and test of hypotheses about change in lon-
gitudinal data. In the loglinear notation of the conditional RM, the expected
probabilities of response vectors are reparameterized as linear combinations
of item parameters and of parameters representing the total scores of the
response vectors. This notation facilitates the specification of theoretical as-
sumptions concerning latent change and affords straightforward statistical
tests especially for small item sets (Meiser, 1996; Meiser et al., 1998).

To illustrate, let a set of I items be administered to a sample of individuals
at T = 2 measurement occasions. Because the total score Rv =

∑
t

∑
i xvit

forms the sufficient statistic for person parameter θv under the unidimen-
sional RM of homogeneous change in Equation 12.2, the probability of a
given response vector x = (x11, . . . , xI1, x12, . . . , xI2) with total score R can
be expressed without latent-person parameter θv. In the loglinear reparame-
terization of the RM of homogeneous change, the logarithm of the expected
probability of response vector x can therefore be written as

lnP (x = (x11, . . . , xI1, x12, . . . , xI2)) = u −
2∑

t=1

I∑
i=1

xitβi +
I∑

i=1

xi2λ2 + uR.

(12.4)
Likewise, the sufficient statistic of the two-dimensional latent-ability vector

(θv1, θv2) in the model of person-specific change (12.3), for two occasions is
given by the pair of total scores (Rv1, Rv2), with Rv1 =

∑
i xi1 being the

total score at the first occasion and Rv2 =
∑

i xi2 being the total score at the
second occasion. The conditional RM of person-specific change can therefore
be specified by the following loglinear model for the expected probability of
response vector x with the two total scores R1 and R2:

lnP (x = (x11, . . . , xI1, x12, . . . , xI2)) = u −
2∑

t=1

I∑
i=1

xitβi + u(R1,R2) (12.5)

To achieve identifiability of the loglinear RMs in (12.4) and (12.5), some
parameter restrictions need to be imposed. The usual restrictions include the
constraints that the set of item parameters and the set of total score parame-
ters sum to zero, that is,

∑
i βi = 0,

∑
R uR = 0, and

∑
R1

∑
R2

u(R1,R2) = 0.
The loglinear framework facilitates straightforward specifications and tests

of hypotheses about change, such as stationarity of the change parameters or
invariance of item parameters across measurement occasions. Stationarity of
latent change is reflected by the constraints λt = λ for all t > 1 in Equation
12.4. Invariance of the item parameters can be tested by introducing time-
specific difficulty parameters βit in Equations 12.4 and 12.5 and by comparing
the resulting more-general model variants with the models assuming constant
item parameters.

For model-testing purposes, it is of particular importance to note that the
loglinear model of homogeneous change in (12.4) can be derived as a special
case from the loglinear model of person-specific change in Equation 12.5. That
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is, imposing the restrictions u(R1,R2) = u(R1+R2) + R2λ2 in Equation 12.5
yields Equation 12.4. This hierarchical relation between the loglinear models
(12.4) and (12.5) allows one to test for homogeneity of change across persons
by means of a statistical model comparison.

12.2.3 Extensions to Multiple Response Categories and
Multidimensional Latent Traits

Linear logistic RMs for the measurement of change have been extended from
the analysis of dichotomous items to the analysis of items with several re-
sponse categories (Fischer & Parzer, 1991; Fischer & Ponocny, 1994, 1995).
For that purpose, the item and category parameters in the rating-scale model
(Andrich, 1978) or the partial-credit model (Masters, 1982) for polytomous
items are specified with regard to different points in time, analogous to the
item parameter in Equation 12.1. The item and category parameters are then
decomposed into basic parameters that reflect item and category difficulty on
the one hand and change or treatment effects over time on the other hand.

Moreover, longitudinal RMs can be extended to include more than one la-
tent trait at each occasion, as in the linear logistic model with relaxed assump-
tions. Generalizing the concepts of homogeneous and person-specific change
from unidimensional RMs, change can be specified to be homogeneous across
persons or person-specific within each of the latent traits of a multidimensional
latent-trait model.

In very general terms, the probability to observe response category x in
item i with m + 1 response categories 0, . . . ,m at occasion t can be specified
by a longitudinal RM with D latent traits at each measurement occasion:

P (Xvit = x|θvt, τist) =

exp(
∑D

d=1
∑x

s=1 wisdθvtd −∑D
d=1
∑x

s=1 wisdτistd)∑m
y=0 exp(

∑D
d=1
∑y

s=1 wisdθvtd −∑D
d=1
∑y

s=1 wisdτistd)
. (12.6)

In Equation 12.6, θvtd denotes the latent-ability parameter of person v at
occasion t on the latent dimension d, and τistd represents the difficulty of the
threshold between categories s−1 and s for item i at occasion t on dimension d.
The values wisd are weights that reflect the degree to which the latent-ability
dimensions are involved in reaching the various response categories.

These weights are determined a priori by the researcher and are thus part
of the model specification. Usually, the weights are restricted to the binary
values of zero and one, indicating whether a particular trait is involved in
reaching a category or not (see Meiser, 1996; Meiser et al., 1998).

The polytomous multidimensional latent-trait model for longitudinal data
in Equation 12.6 serves as a superordinate framework, or metastructure, to
derive more specific models by sets of parameter constraints. For example, a
multidimensional model of homogeneous change within each latent trait can be
specified by setting θvtd = θvd and by decomposing the threshold parameters
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into their initial difficulty and change parameters, τistd = τisd − λtd. The
resulting model reflects global change with persisting relative positions of the
persons and items on each of the D latent traits (Meiser, 1996; Meiser &
Rudinger, 1997). Together with a theory-based and parsimonious selection
of the weights wisd, such parameter constraints are often necessary to yield
identifiable submodels of the superordinate framework in Equation 12.6 for a
given data set.

12.3 Mixture-Distribution Rasch Models for the
Analysis of Change

The aforementioned distinction between change that is completely homoge-
neous across persons versus change that is purely person-specific marks two
extremes of homogeneity and heterogeneity, respectively. In a given popu-
lation, a limited number of latent-developmental trajectories may coexist, so
that change is neither completely homogeneous nor completely person-specific.
Instead, the direction and the amount of change may be rather homogeneous
within each of several subpopulations, whereas the course of change may differ
between the subpopulations.

In some cases, relevant subpopulations can be defined by manifest extra-
neous grouping variables, such as gender, socioeconomic status, or treatment
group, so that differences in the developmental trajectories can be analyzed by
parameter comparisons between groups (e.g., Fischer, 1983, 1995d). In other
cases, either extraneous grouping variables may either not be available, or they
may not account for observed heterogeneity of change in the population (e.g.,
Wilson, 1989). Then, the subpopulations are latent and have to be identi-
fied by statistical modeling techniques in order to separate the developmental
patterns that are mixed in the total population.

The goal to identify latent subpopulations and to measure change within
each subpopulation can be pursued by means of finite mixture-distribution
models (McLachlan & Peel, 2000; Titterington et al., 1985). Finite mixture-
distribution models characterize the probabilities of events in terms of a
weighted sum of component distributions. Each component distribution is
specified to hold within a subpopulation c, c = 1, . . . , C, and the weights cor-
respond to the proportions of the subpopulations in the entire population,
πc.

12.3.1 Class-Specific Homogeneous Change

Applying the notion of finite mixture-distribution models to longitudinal RMs,
one may assume that a population consists of C latent subpopulations and
that change is homogeneous within each subpopulation. This assumption can
be specified by a mixed RM (Rost, 1990, 1991; von Davier & Rost, 1995; see
also the chapter by von Davier & Yamamoto in this volume) of the form
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P (Xvit = 1) =
C∑

c=1

πcP (Xvit = 1 | c)

with component probabilities

P (Xvit = 1|c, θv|c, βi|c) =
exp(θv|c + λt|c − βi|c)

1 + exp(θv|c + λt|c − βi|c)
. (12.7)

The mixed RM for longitudinal data in Equation 12.7 combines the unidi-
mensional RM, which allows for quantitative differences among persons while
implying homogeneity of change, and the latent-class approach, which allows
for qualitatively distinct patterns of change (see Meiser et al., 1995, for a
discussion of Rasch and latent-class models in longitudinal research).

More specifically, in contrast to the model of homogeneous change in Equa-
tion 12.2, the parameters of the mixed RM in Equation 12.7 are specified
conditional on latent class c that contains a proportion πc of the entire pop-
ulation. By introducing class-specific change parameters λt|c, the model ac-
counts for qualitative differences in change. In contrast to usual latent-class
models, however, the mixed RM also allows for quantitative differences be-
tween individuals of the same subpopulation in terms of the person parameter
θv|c. Together, the mixed longitudinal RM (12.7) integrates interindividual
differences and homogeneous change within each latent subpopulation with
qualitative differences in change between subpopulations.

12.3.2 A Mover–Stayer Mixed-Rasch Model

With appropriate parameter restrictions, mixed RMs can be used to disen-
tangle latent subpopulations of “movers” and “stayers” within a latent-trait
framework that incorporates quantitative interindividual differences as well
as differences in change over time.

The distinction between a latent subpopulation that exhibits change over
time, the “movers,” and a latent subpopulation that shows invariant response
behavior over time, the “stayers,” has been incorporated into mixed Markov
chain models (e.g., Langeheine & van de Pol, 1994; van de Pol & Langeheine,
1990) to express the idea that observed heterogeneity of change may reflect
the coexistence of two simple mechanisms in a given population: change and
no change. The distinction between a latent class of movers and a latent class
of stayers can easily be transferred to the mixed longitudinal RM in Equa-
tion 12.7 by setting C = 2 and imposing the restriction λt|2 = 0 for all t.
Thereby, the change parameters for the first subpopulation λt|1 are free to
differ from zero, which means that the latent class c = 1 may exhibit global
change in the latent ability across the measurement occasions. Thus, class 1
represents a subpopulation of movers. By restricting λt|2 to zero, the latent
ability is constrained to be invariant over time in class c = 2. Thereby, class
2 forms a subpopulation of stayers. Extending mover–stayer models in the
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framework of mixed Markov models, the mover–stayer mixed RM admits per-
sisting interindividual differences in latent ability within both subpopulations
of movers and stayers.

Mover–stayer mixed RMs were successfully applied to longitudinal data
concerning the development of observed activity in childhood (Meiser &
Rudinger, 1997) and concerning the development of mathematical problem-
solving skills in primary school (Meiser et al., 1998). The latter analysis is
briefly summarized in the following section in order to illustrate the various
RMs for the measurement of change that were discussed throughout this chap-
ter. For further applications of RMs to longitudinal data, see the chapters by
Draney and Wilson and by Glück and Spiel in this volume.

12.4 An Empirical Illustration

In an analysis of mathematical problem-solving skills in primary-school chil-
dren, Meiser et al. (1998) applied a series of longitudinal RMs to investigate
the course of latent development. The empirical data were taken from a large-
scale longitudinal study on the cognitive abilities and achievements of school
children in Germany (Weinert & Helmke, 1997). The selected items encom-
passed three arithmetic word problems that were administered to a sample of
1030 children in the second and third grades. The series of models was spec-
ified as conditional RMs in their loglinear representation, and the analyses
were run with the software LEM (Vermunt, 1997a). This software facilitates
loglinear model specification in terms of design matrices (see Meiser, 2005;
Rindskopf, 1990) and allows the inclusion of latent-class variables in the log-
linear modeling framework.

In a first step, we applied the conditional RM of homogeneous change in
its loglinear representation (see Equation 12.4) to the three items at the two
occasions. This model was rejected on grounds of a poor overall goodness of fit,
as revealed by the likelihood ratio statistic of G2(54) = 72.53, p = .047. The
loglinear RM of person-specific change (see Equation 12.5), in contrast, showed
a satisfactory goodness of fit with G2(46) = 54.84, p = .175. As delineated
above, the two loglinear models are hierarchically related. A model comparison
by means of the conditional likelihood ratio statistic therefore yields a focused
test of homogeneity of change across persons. The model comparison showed a
significant difference in model fit, ∆G2(8) = 17.69, p = .024, which indicated
that the homogeneity assumption was violated for the given data set.

To analyze the structure of developmental heterogeneity further, we spec-
ified a mover–stayer mixed RM that follows from Equation 12.7 with the
specification of two latent subpopulations and with the restriction λt|2 = 0
for the stayer class c = 2. In addition, we imposed equality restrictions on the
item parameters across the latent classes c = 1 and c = 2, βi|1 = βi|2, which
reflect the assumption that the items form an invariant scale not only across
time but also across the different latent subpopulations. The resulting model
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provided an acceptable overall goodness of fit to the data, G2(49) = 64.79,
p = .065. The latent subpopulation of movers comprised an estimated pro-
portion of π̂1 = .43 of the children, and the latent subpopulation of stayers
comprised the complementary estimated proportion of π̂2 = .57.

The mover–stayer mixed RM cannot be compared with the models of
global change and person-specific change by means of a conditional likelihood
ratio test using the chi-square distribution. This is due to the fact that the
mover–stayer mixed RM is not hierarchically related to the other models,
so that the regularity conditions for a statistical model comparison are not
met. Therefore, a descriptive comparison between the model of person-specific
change and the mover–stayer mixed RM was conducted with the information
criterion CAIC (Burnham & Anderson, 2002). This model comparison demon-
strated that the mover–stayer mixed RM provided a better balance between
model fit and model parsimony, CAIC=7740.27, than did the model of person-
specific change, CAIC=7442.36.

Together, the empirical results of the Rasch analysis of the given data set
on arithmetic problem-solving highlight that the mover–stayer mixed RM may
offer a parsimonious account of observed heterogeneity in change by specifying
the two simple underlying mechanisms of change and no change in a given
population. In fact, the subpopulation of movers, c = 1, showed an estimated
change parameter of λ̂2|1 = 1.19 that was significantly larger than zero, as
indicated by a z-value of 4.01. In terms of the expected probabilities to solve
the arithmetic problems, the movers improved their chances to provide the
correct responses to the three items from an average of .47, .35, and .43 at
second grade to an average of .72, .61, and .69 at third grade. Because the
change parameter was fixed to zero for the subpopulation of stayers, c = 2
with λ2|2 = 0, the expected probabilities of successful item solution did not
differ between the two assessment occasions for stayers. Children in this latent
subpopulation had average chances of .41, .34, and .38 to solve the three items
at both second grade and third grade.

The mover–stayer mixed RM allows for differences in item difficulty and
person ability at each measurement occasion, and it separates qualitatively
different patterns of development. In the school data analyzed by Meiser et al.
(1998), a latent subpopulation of children who improved performance from one
grade to the next could be distinguished from another latent subpopulation
of children whose performance remained unchanged. The separation of latent
subpopulations with different developmental trajectories by mixed RMs can
also be used to investigate possible associations between qualitative patterns
of development and external variables such as gender and socioeconomic in-
dices (e.g., Meiser et al., 1995). The combination of RMs for measuring change
in a (sub)population and finite-mixture models for analyzing heterogeneity be-
tween latent subpopulations thus provides a flexible framework for specifying
and testing hypotheses about change in longitudinal data.
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The Interaction Model

Shelby J. Haberman

Educational Testing Service

13.1 Introduction

The interaction model, a generalization of the Rasch model (RM) for binary
responses, retains many of the attractive features of the RM but does not
assume local independence. Like the RM, the interaction model has simple
sufficient statistics and a relatively straightforward interpretation. Compu-
tation of conditional maximum-likelihood estimates is a task of comparable
difficulty to the corresponding computation for the Rasch model.

The interaction model can be used to test the validity of the RM (Rasch,
1960) by use of conventional conditional likelihood-ratio tests, and the inter-
action model can also be used to examine the size of the error of the RM in an
information-theoretic sense (Gilula & Haberman, 1994, 1995). The interaction
model has interest in its own right as an alternative to the 2PL model, which
requires much less computation in large samples.

In Section 13.2, the interaction model is defined, and its relationship to the
RM and to common loglinear models is discussed. In Section 13.3, computa-
tional methods are considered for the interaction model. Section 13.4 examines
use of the interaction model to test the RM. Section 13.5 illustrates results by
use of a multiple-choice examination with 45 items and 8,686 examinees. The
examination is from the Praxis series of examinations for teacher training and
certification.

13.2 Basic Properties of the Interaction Model

To define the interaction model, consider a test with I ≥ 3 items and N ≥ I
examinees. For examinee v, 1 ≤ v ≤ N , and item i, 1 ≤ i ≤ I, let xvi be 1
if the response to item i is correct, and let xvi be 0 otherwise. Let xv be the
I-dimensional response vector with coordinates xvi, 1 ≤ i ≤ I. Let θv be a
one-dimensional measure of the ability of examinee v, and assume that the θv

are random variables and the xv are random vectors. Let the pairs (xv, θv),
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1 ≤ v ≤ N , be independent and identically distributed. Let the common
distribution function of θv be F , let p(x) be the probability that xv = x for x
in the set Γ of I-dimensional vectors with coordinates 0 or 1, and let p(x|θ) be
the conditional probability that xv = x given that θv = θ. Let xv· =

∑I
i=1 xvi

be the number of items correctly answered by examinee v, and for 0 ≤ r ≤ I,
let Γ (r) be the set of x in Γ such that x· =

∑I
i=1 xi = r, so that xv is in Γ (r)

if rv = xv· = r. For 0 ≤ r ≤ I, let pR(r) be the probability that rv = r, and
let pj be the probability that xvi = 1 for 1 ≤ i ≤ I. For I-dimensional vectors
a and b with respective coordinates ai and bi, 1 ≤ i ≤ I, let

a′b =
I∑

i=1

aibi.

In the RM, for unknown real βi, 1 ≤ i ≤ I, it is assumed that the condi-
tional probability that xvi = 1 given that θv = u is [1 + exp(−u+ βi)]−1, and
it is assumed that the xvi, 1 ≤ i ≤ I, are conditionally independent given θv.
It follows that

log pθ(x) = α(β, θ) +
I∑

i=1

xi(θ − βi) = α(β, θ) + x·θ − (β′x), (13.1)

where β is the I-dimensional vector with coordinates βi, 1 ≤ i ≤ I, and

α(β, θ) = −
I∑

i=1

log[1 + exp(θ − βi)]. (13.2)

To identify parameters, the convention may be adopted that β1 = 0. As is
well known, if, for any I-dimensional vector a,

sr(a) =
∑

x∈Γ (r)

exp(−a′x),

then the conditional probability that xv = x in Γ (r) given that rv = r and
θv = θ is

p(x|r) = p(x)/pR(r) =
exp(−β′x)

sr(β)
,

so that xv and θv are conditionally independent given rv (Andersen, 1972).
In the interaction model, an additive interaction term is added for each

pair of items, so that for unknown βi and γi, 1 ≤ i ≤ I,

log pθ(x) = α(β,γ, θ) +
I∑

i=1

xi(θ − βi) +
I∑

i=2

i−1∑
j=1

(γi + γj)xixj

= α(β,γ, θ) + x·θ − β′x + (x· − 1)γ′x, (13.3)

where γ is the I-dimensional vector of γi, 1 ≤ i ≤ I, and
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α(β,γ, θ) = − log

[
I∑

r=0

exp(rθ)sr(−β + (r − 1)γ)

]
. (13.4)

To identify parameters, the convention is adopted that β1 and γ1 are 0. Thus
the RM holds if the interaction model holds and γ is the zero vector 0.

The interaction model is not a conventional item response model, for the
local independence assumption does not hold; that is, the xvi, 1 ≤ i ≤ I, are
not assumed conditionally independent given the latent variable θv. Nonethe-
less, the interaction model retains the conditioning properties of the RM. The
conditional probability that xi = x in Γ (r) given that rv = r and θv = θ is

p(x|r) =
exp[−β′x + (r − 1)γ′x]

sr(β − (r − 1)γ)
, (13.5)

so that xv and θv are conditionally independent given rv.
The interaction model implies that the loglinear-interaction model

log p(x) = τr − β′x + (r − 1)γ′x (13.6)

holds for x in Γ (r) and 0 ≤ r ≤ I for some (I + 1)-dimensional vector τ
with coordinates τr, 0 ≤ r ≤ I, and some I-dimensional vectors β and γ with
β1 = γ1 = 0. It is readily seen that under (13.3) and (13.4),

τr = log
∫

exp(rθ) exp[α(β,γ, θ)]dF (θ).

The interaction model is equivalent to the model that (13.6) holds and the
vector τ satisfies the condition that exp(τr −τ0) is E(Zr), 0 ≤ r ≤ I, for some
positive random variable Z (Cressie & Holland, 1983).

13.2.1 The Interaction Model as an Approximation

Even if the loglinear-interaction model does not hold, this model can be used
to approximate the common distribution of the xv (Gilula & Haberman, 2000).
Let S be the population of probability arrays p with elements p(x) > 0, x
in Γ , such that

∑
x∈Γ p(x) = 1 and (13.6) holds for some τr, β, and γ with

β1 = γ1 = 0. Consider the actual probability vector p such that p(x) is the
probability that xv = x for x in Γ . For a probability array q with nonnegative
coordinates q(x), x in Γ , with sum 1, let

H(q) = −I−1E(log q(xv))

be the expected penalty per item if a probability prediction q is employed and
a penalty of − log q(x) is incurred whenever xv = x. The minimum achievable
value H∗ of H(q) for a probability prediction q in the set S is attained by the
unique p∗ in S such that
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p∗j =
∑
x∈Γ

xip∗(x) = pj ,

pR
∗ (r) =

∑
x∈Γ

p∗(x) = pR(r),

and
I∑

r=0

∑
x∈Γ (r)

rxip∗(x) =
I∑

r=0

∑
x∈Γ (r)

rxip(x).

If x∗ is a random vector with values in Γ such that x∗ = x in Γ with prob-
ability p∗(x), if coordinate i of x∗ is xj∗, and if r∗ =

∑I
i=1 xi∗, then xi∗ and

xvi have the same distribution for each integer i from 1 to I, r∗ and rv have
the same distribution, and the point-biserial correlation of xi∗ and r∗ is the
same as the point-biserial correlation of xvi and rv for each integer i from 1
to I. Unique τr, 0 ≤ r ≤ I, βi, 1 ≤ i ≤ I, and γi, 1 ≤ i ≤ I, exist such that
β1 = γ1 = 0 and

log p∗(x) = τr − β′x + (r − 1)γ′x (13.7)

holds for x in Γ (r) and 0 ≤ r ≤ I.
By the information inequality, it is always true that

H∗ ≥ HM = I−1E(− log p(xv)),

where HM is the Shannon entropy per item associated with xv (Shannon,
1948), and H∗ = HM if and only if p is in S, so that the loglinear-interaction
model holds. Thus ∆ = H∗ − HM is a measure of model error per item.

This information-theoretic argument can also be applied to the RM. The
RM can hold only if the loglinear model holds in which (13.6) holds and γ is
the zero vector. Let SR be the population of probability arrays p with elements
p(x) > 0, x in Γ , such that

∑
x∈Γ p(x) = 1 and (13.6) holds for some τr, β,

and γ with β1 = 0 and γ the zero vector. Let HR be the minimum of H(q) for
q in SR. Because SR is obviously a subset of S, HR ≥ H∗, and ∆R = HR −H∗
provides a measure of the improvement of the loglinear-interaction model over
the loglinear RM.

It is of particular note that the loglinear-interaction model provides an
approximation to a 2PL model (Holland, 1990a). Consider the case of xvi

conditionally independent given θv for 1 ≤ i ≤ k. For each item i, 1 ≤ i ≤ i,
let real βi+ and positive real ai be defined such that

Pi(θ) = [1 + exp(−aiθ + βi+)]−1

is the conditional probability that xvi = 1 given that θv = θ, and let P(θ) be
the vector with coordinates Pi(θ) for 1 ≤ i ≤ I. Let a be the I-dimensional
vector of ai, 1 ≤ i ≤ I, and let Av = a′xv be the weighted sum of the xvi that
corresponds to the ai. Let ρR be the correlation of Av and rv, let µA and σA

be the respective mean and standard deviation of the Av, and let µR and σR



13 The Interaction Model 205

be the respective mean and standard deviation of the rv. Let α = σAρR/σR

be the slope of the linear regression of Av on rv, let ζ = µA − αµR, let σd be
the standard deviation of the residual

dv = Av − ζ − αrv

that results from regression of the weighted sum Av on the unweighted sum
rv, let δi = ai − α, and let δ be the I-dimensional vector with coordinates δi

for 1 ≤ i ≤ I. Note that each δi is 0 and σd = 0 if the item discriminations
ai are all equal, as is the case for an RM. The quality of the approximation
of the 2PL model by the interaction model may be measured by ∆. Results
depend on the distribution of the ability parameter θv.

The initial case to consider is one in which the Dutch identity is very easily
applied (Holland, 1990a). For some real µ, some real σ2 > 0, and some y in Γ ,
let the conditional distribution of θv given xv = y be normal with mean µ and
variance σ2. By Bayes’s theorem, for x in Γ , the conditional distribution of θv

given xv is normal with mean µ + σ2a′(x − y) and variance σ2 (Cornfield et
al., 1967). In the desired approximation, let γ be the vector with coordinates
γi = ασ2δi for 1 ≤ i ≤ I. Then real τr, 0 ≤ r ≤ I, and βi, 1 ≤ i ≤ I, can be
defined such that

log p(x) = τr − β′x + (r − 1)γ′x + σ2[δ′x − ζ]2/2

for x in Γ (r) and 0 ≤ r ≤ I. It is readily verified that

∆ ≤ σ2σ2
d/(2I). (13.8)

Thus the 2PL model in this case is increasingly well approximated by the
loglinear model as the variability of the item discriminations ai decreases or
as the variance σ2 of the conditional distribution of θv given xv = y decreases.

The pattern for the conditional normal case is also observed if the number
of items is large (Holland, 1990a). Assume that θ has a mean µθ, a variance σ2

θ ,
and a continuous distribution with a density that is positive and continuous
at µ. Let positive real constants c1, c2, and c3 exist such that c1 < ai < c3
and |βi+| < c3 for all i. Let

J =
I∑

i=1

a2
i Pi(µ)[1 − Pi(µ)],

and let y be selected such that a′y is as close as possible to a′P(µ). Then the
distribution of J1/2(θ − µ) given y is readily shown to converge in distribu-
tion to a standard normal random variable. It can also be shown that (13.8)
remains approximately true in the sense that the conditional variance σ2 is
approximately J−1 and, for any real c > 1, ∆ ≤ cσ2

d/(2IJ) for I sufficiently
large.

A variety of bounds on σ2
d may be established. For example, let
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α0 =
∑I

i=1 aiPi(µ)∑I
i=1 Pi(µ)

.

Then Taylor’s theorem and standard arguments from probability theory may
be used to show that

σ2
d ≤ (16)−1σ2

θ

(
I∑

i=1

|ai − α0|ai

)2

+ 4−1
I∑

i=1

a2
i .

Thus ∆ can be forced to be arbitrarily small for sufficiently large I if the vari-
ance of the ability parameter θ is sufficiently small, if all item discriminations
ai are sufficiently small, or if the variability of the ai is sufficiently small.

13.2.2 Maximum Likelihood

Under the loglinear model (13.6), the log-likelihood

� =
N∑

v=1

log p(xv)

is readily decomposed into a conditional log-likelihood

�C =
N∑

v=1

log p(x|xv·)

and a marginal log-likelihood

�U =
N∑

v=1

log pR(rv),

for
� = �C + �U .

Let fri be the number of examinees v for whom rv = r and xvi = 1, let nr

be the number of examinees v with rv = r, let f·i be the number of v with
xvi = 1, and let

gi =
I∑

r=0

rfri

be the total number of correct responses provided on all items by examinees
who answered item i correctly. Then

�C =
I∑

i=1

[−(βi − γi)f·i + γigi] −
I∑

r=0

nr log sr(β − (r − 1)γ)
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and

�U =
I∑

r=0

nr log pR(r).

Thus the conditional log-likelihood �C , the marginal log likelihood �U , and
the log-likelihood � are determined by the sufficient statistics nr, 0 ≤ r ≤ I,
f·i, 1 ≤ i ≤ I, and gi, 1 ≤ i ≤ I. Under the loglinear model, maximization of
� is achieved by independent maximization of �C and �U (Haberman, 1973).
Thus if �̂, �̂U , and �̂C denote the respective maxima of �, �C , and �U under
the loglinear-interaction model, then �̂ is �̂C + �̂U . It is easily verified that

�̂U =
I∑

r=0

nr log p̂R(r),

where p̂R(r) = nr/N . If a maximum-likelihood estimate p̂ of p exists, then

p̂(x) = p̂R(r)p̂(x|r)
for x in Γ (r) and 0 ≤ r ≤ I, where p̂(x|r) is the conditional maximum-
likelihood estimate of p(x|r) under (13.5) and nr > 0 for 0 ≤ r ≤ I.

To determine p̂(x|r), some preliminary definitions are helpful. For any I-
dimensional vector a, let

sri(a) =
∑

x∈Γ (r)

ai exp(−a′x)

and
mri(a) = sri(a)/sr(a)

for 1 ≤ i ≤ I, and let

srij(a) =
∑

x∈Γ (r)

aiaj exp(−a′x)

and
crij(a) = srij(a)/sr(a) − mri(a)mrj(a)

for 1 ≤ i ≤ I and 1 ≤ j ≤ I. Then mri(β − (r − 1)γ) is the conditional
expectation of xvi given rv = r, and crij(β − (r − 1)γ) is the conditional
covariance of xvi and xvj given rv = r. Let R+ be the set of integers r,
0 ≤ r ≤ I, such that nr > 0. Standard arguments for loglinear models may
be employed to show that if the conditional maximum-likelihood estimates
p̂(x|r) exist for x in Γ (r) and 0 ≤ r ≤ I, then, for some I-dimensional vectors
β̂ and γ̂ such that β̂1 = γ̂1 = 0,

I∑
r=0

nrmri(β̂ − (r − 1))γ̂) = f·i (13.9)
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for 1 ≤ i ≤ I,
I∑

r=0

rnrmri(β̂ − (r − 1))γ̂) = gi (13.10)

for 1 ≤ i ≤ I, and

p̂(x|r) =
exp{[−β̂ + (r − 1)γ̂]′x}

sr(β̂ − (r − 1)γ̂)
(13.11)

for x in Γ (r) and 0 ≤ r ≤ I (Haberman, 1973). The estimates p̂(x|r) are
uniquely determined by (13.9) to (13.11). If n0 + nI < N , then (13.9) to
(13.11) also uniquely determine β̂ and γ̂.

It is possible but not necessarily true that p̂, if it exists, is also the
maximum-likelihood estimate of p under the interaction model as well as
under the loglinear model. Consider

τ̂r = log(nr/N) − log[sr(β̂ − (r − 1)γ̂)].

Then
log p̂(x) = τ̂r − β̂

′
x + (r − 1)γ̂′x

for x in Γ (r) and 0 ≤ r ≤ I. If a positive random variable Z exists such
that exp(τ̂r − τ̂0) is E(Zr) for each integer r from 0 to I, then p̂ is also the
maximum-likelihood estimate of p under the interaction model. In practice,
it is convenient to employ p̂ even if it is not the maximum-likelihood esti-
mate of p under the interaction model, for computations are simplified, and
asymptotic results for p̂ are rather satisfactory.

Interpretation of the equations for the maximum-likelihood estimates is
straightforward. Equation 13.9 implies that the estimated expected number
of examinees who correctly answer item i is equal to the observed number
f·i of examinees who correctly answer item i. Given (13.9), (13.10) implies
that the estimated point-biserial correlation of xvi and xv· is equal to the
sample point-biserial correlation of xvi and xv·. Under the loglinear model,
the estimated marginal distribution of xv· is the sample marginal distribution
of the xv·. In contrast, in the case of the RM, the corresponding loglinear
model requires that (13.6) hold for γ = 0. Under this loglinear model, the
maximum-likelihood estimate p̂R of p, if it exists, satisfies

I∑
r=0

nrmri(β̂R) = f·i (13.12)

for 1 ≤ i ≤ I, β̂R1 = 0, and

p̂R(x|r) =
exp(−β̂

′
Rx)

sr(β̂R)
(13.13)
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and
p̂R(x) = (nr/N)p̂R(x|r) (13.14)

for x in Γ (r) and 0 ≤ r ≤ I. The estimates p̂R(x|r) and p̂R(x) are uniquely
determined by (13.12) to (13.14). If n0 + nI < N , then (13.12) to (13.13)
also uniquely determine β̂R. Thus the loglinear model corresponding to the
interaction model involves a fit of the point-biserial correlation that is not
found in the loglinear model corresponding to the RM.

Given results for maximum-likelihood estimation, the minimum expected
log penalty H∗ for the loglinear interaction model may be estimated by Ĥ∗ =
−�̂/(NI). If �̂R denotes the maximum of � under the loglinear RM, then HR

may be estimated by ĤR = −(NI)−1�̂R, so that the difference ∆R in expected
penalty per item may be estimated by ∆̂R = ĤR − Ĥ∗. No fully satisfactory
estimate of ∆ or HM exists unless I is quite small.

For a given examinee v, θv may be estimated by θ̂v, where θ̂v maximizes

log p̂θ(x) = α(β̂, γ̂, θ) + x·θ − β̂
′
x + (x·)γ̂

′x

over θ for x = xv. Provided that 0 < rv < I and n0 +nI < N , θ̂v is the unique
solution of ∑

x∈Γ

x·p̂θ̂v
(x) = rv.

13.2.3 Large-Sample Approximations

For fixed I and large N , large-sample properties of maximum-likelihood esti-
mates can be derived quite readily from standard results for loglinear models.
Results are straightforward whether or not the model holds. Results are some-
what more challenging to derive if both I and N are large (Haberman, 1977b).

To begin, consider the case of I fixed, (13.6) true, and N large. To simplify
numerical and asymptotic work, let η be the 2(I −1)-dimensional vector with
coordinates ηi = βi+1 − (I/2 − 1)γi+1 and ηI+i−1 = −Iγi+1 for 1 ≤ i ≤ I − 1.
Let η̂ be the maximum-likelihood estimate of η, so that η̂i = β̂i+1−(I/2−1)γ̂i

and η̂I+i−1 = −Iγ̂i+1 for 1 ≤ i ≤ I − 1. Let νr be the I-dimensional vector
with elements νir = 0 for i = 1 and νir = ηi−1 + (r/I − 1/2)ηi+I−2 for i > 1.
Thus, conditional on rv = r, the probability is mri(µr) that xvi = 1. Thus
νir can be regarded as the relative difficulty of item i + 1 compared to item
1 given that the total score rv equals r. Let ν̂r be the I-dimensional vector
with elements ν̂ir = 0 for i = 1 and ν̂ir = η̂i−1 + (r/I − 1/2)η̂i+I−2 for i > 1.
Let C be the 2(I − 1) × 2(I − 1) matrix with elements

Cij = E(crvij(νrv
)),

C(I−1+i)j = Cj(I−1+i) = E(I−1(rv − I/2)crvij(νrv )),

and
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C(I−1+i)(I−1+j) = E(I−2(rv − I/2)2crvij(νrv
)).

Then the probability that η̂ is defined approaches 1, and N1/2(η̂−η) converges
in distribution to a normal random vector with zero mean and with covariance
matrix C−1 (Haberman, 1977b). For a nonzero vector w of dimension 2(I−1),
let

σ(w′η̂) = [w′C−1w]1/2.

Then

z(w′η̂) =
N1/2(w′η̂ − w′η)

σ(w′η̂)

converges in distribution to a standard normal random variable.
Let Ĉ be the 2(I − 1) × 2(I − 1) matrix with elements

Ĉij = N−1
I∑

r=0

nrcrij(ν̂r)),

Ĉ(I−1+i)j = Ĉj(I−1+i) = N−1
I∑

r=0

nrI
−1(r − I/2)crij(ν̂r)),

and

Ĉ(I−1+i)(I−1+j) = N−1
I∑

r=0

nr(I−2(r − I/2)2crij(ν̂r)).

Then Ĉ−1 converges in probability to C−1. If

σ̂(w′η̂) = [w′Ĉ−1w]1/2,

then σ̂(w′η̂) converges in probability to σ(w′η̂) and

ẑw′η̂ =
N1/2(w′η̂ − w′η)

σ̂(w′η̂)

converges in distribution to a standard normal random variable. Thus approxi-
mate confidence intervals for w′η are readily obtained. The term σ̂(w′η̂)/N1/2

may be termed the estimated asymptotic standard deviation of w′η̂ (Haber-
man, 1978b).

If I is increasing, (13.6) is true, and N is large, then arguments for the
RM can be used to show that η̂ continues to behave well, although results
must be changed to treat the variable dimension of η̂ (Haberman, 1977b,
2004). It is simplest to assume that, for a fixed positive constant c, |βi| and
I|γi|, 2 ≤ i ≤ k, never exceed c. This assumption on γi is reasonable if one
notes results for the 2PL approximation. The probability approaches 1 that
η̂ is defined. If ti and ui are fixed real constants for 1 ≤ i ≤ s for an integer
s ≥ 1, if some ti or ui is not zero, and if w is the 2(I − 1)-dimensional vector
such that wi = 0 if s + 1 ≤ i ≤ I − 1 or I + s ≤ i ≤ 2(I − 1), wi = ti for
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1 ≤ i ≤ s, and wI+i−1 = ui for 1 ≤ i ≤ s, then z(w′η̂) and ẑ(w′η̂) converge
in distribution to a standard normal random variable, and σ̂(w′η̂) converges
in probability to σ(w′η̂). Again confidence intervals for parameters may be
obtained.

Asymptotic results remain available even if the model does not hold. The
simplest case is for I fixed. Let C+ be the covariance matrix of the 2(I − 1)-
dimensional vector dv with coordinates dvi = xv(i+1) and dv(I−1+i) = (rv −
I/2)xvi for 1 ≤ i ≤ I − 1. Then N1/2(η̂ − η) converges in distribution to a
normal random variable with zero mean and covariance matrix C−1C+C−1.
A similar result can be obtained for I large under quite mild conditions.

In all cases under study, ∆̂R − ∆R converges in probability to 0. Normal
approximations and asymptotic confidence intervals for Ĥ∗, ĤR, and ∆̂R are
available (Gilula & Haberman, 1994, 1995).

Normal approximations for θ̂v are available only if I increases. Let

σ̂(θ̂v) =

[∑
x∈Γ

(x· − rv)2p̂θ̂v
(x)

]1/2

.

If the interaction model holds and N and I are large, then

ẑ(θ̂v) =
I1/2(θ̂v − θv)

σ̂(θ̂v)

has an approximate standard normal distribution. This result is easily applied
to asymptotic confidence intervals.

13.3 Computation of Conditional
Maximum-Likelihood Estimates

The Newton–Raphson algorithm is readily applied to computation of η̂. Given
an initial starting value η0, a sequence of ηt, t ≥ 1, is generated from the
equations

νirt =
{

0, i = 1,
η(i−1)t + (r − I/2)η(i+I−2)t, : 2 ≤ i ≤ I,

ndit =

⎧⎨
⎩

fi· −∑I
r=0 nrmr(i+1)(νrt), 1 ≤ i ≤ I − 1,

gi−I+1/I − f(i−I+1)·/2−∑I
r=0(r/I − 1/2)nrmr(i−I+2)(νrt), I ≤ i ≤ 2(I − 1),

nCijt =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑I
r=0 nrcr(i+1)(j+1)(νrt), 1 ≤ i ≤ I − 1, 1 ≤ j ≤ I − 1,∑I
r=0 nrI

−1(r − I/2)
·cr(i−I+2)j(νrt)), I ≤ i ≤ 2(I − 1), 1 ≤ j ≤ I − 1,
nCjit, 1 ≤ i ≤ I − 1, I ≤ j ≤ 2(I − 1),∑I

r=0 nr(I−2(r − I/2)2

·cr(i−I+2)(j−I+2)(νrt)),
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and
2(I−1)∑

j=1

Cijt(ηj(t+1) − ηjt) = dit, : 1 ≤ i ≤ 2(I − 1).

Computation of the crij(νrt) is performed as in the RM (Liou, 1994).
In cases in which the loglinear interaction model is examined after the RM

is examined, it is reasonable to let ηi0 be the maximum-likelihood estimate
of βi+1 under the RM for i < I and to let other ηi0 be 0. An alternative
approach is to consider the number hrij , 1 ≤ i ≤ I, 1 ≤ j ≤ I, 1 ≤ r ≤ I − 1,
of observations with xvi = 1, xvj = 0, and rv = r. Then it is readily verified
that log[(hrij +0.5)/(hrji +0.5)] provides an estimate of νrj −νri. Use of these
estimates for all j > 1, for i = 1, and for at least two values of r suffices to
construct starting values.

The Newton–Raphson algorithm may also be employed to obtain θ̂v for
each examinee v. In practice, no more than I − 1 distinct finite values of θ̂v

exist, for θ̂v depends on rv, and θ̂v is defined only for 1 ≤ rv ≤ I − 1. One
may let θ̂v be −∞ for rv = 0 and ∞ for rv = ∞.

13.4 Tests of Fit

The likelihood-ratio chi-square statistic

L2 = 2NI∆̂R

provides a formal test of the RM. If the RM holds and I is fixed, then a
straightforward application of general results for loglinear models permits a
demonstration that L2 converges in distribution to a chi-square random vari-
able with I−1 degrees of freedom (Haberman, 1974, Chapter 4). A more com-
plicated case has I increasing but I2/N approaching 0. In this case, one may
show that (L2 − I + 1)/[2(I − 1)]1/2 converges in distribution to a standard
normal random variable (Haberman, 1977a,b; Portney, 1988). The normal
approximation supports use of the chi-square approximation, for a chi-square
random variable χ2

ν with ν degrees of freedom satisfies the condition that
(χ2

ν − ν)/(2ν)1/2 converges in distribution to a standard normal random vari-
able as ν approaches ∞.

The proposed likelihood-ratio chi-square is similar in spirit to the likelihood-
ratio chi-square statistic for the RM in which the alternative hypothesis is that

p(x|r) = p(x)/pR(r) =
exp(−β′

rx)
sr(βr)

for x in Γ (r) and 0 ≤ r ≤ I for some I-dimensional βr, 0 ≤ r ≤ I, with
initial coordinates 0 (Andersen, 1973c); however, the proposed test has the
potential advantage, especially for large I, that far fewer degrees of freedom
are involved.
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Tests of the interaction model may be based on a model that includes both
two-factor and three-factor interactions. Analysis may also employ generalized
residuals based on comparison of the counts fri and fitted expected counts
nrmri(ν̂r), 1 ≤ r ≤ I − 1, 1 ≤ i ≤ I (Haberman, 1978a, 2004). In this
comparison, for dri = fri−nrmri(ν̂r), the estimated standard deviation σ̂(dri)
of dri is computed and the generalized residual ẑri = dri/σ̂(dri) is examined.
In large samples, if the loglinear-interaction model holds, then each ẑri has
an approximate standard normal distribution.

13.5 An Application to a Writing Test

For the example under study, results for item parameters are summarized in
Tables 13.1. The location value is η̂i−1, and the slope value is η̂I+i−2 for item
i > 0. The RM comparison uses β̂i. Estimated asymptotic standard deviations
are in parentheses. Corresponding values of η̂i−1 and β̂i are reasonably close;
however, the values of η̂I+i−2 are rather large, rather variable, and relatively
well determined. Conditional on the total score rv, the relative difficulty of
items varies considerably.

Results for ability parameters are summarized in Table 13.2 for the total
scores observed in the sample. The results are rather strikingly different in
terms of range of parameters and in terms of the estimated asymptotic stan-
dard deviations shown in parentheses. A significant issue appears to be that
the behavior of θ̂v is somewhat sensitive to which item is designated the first
item. For example, an interchange of the first and third items leads to values of
θ̂v much more similar to those found with the RM. The general issue involved
is a difference between the effects of changes in parameters in the interaction
and RMs. In the Rasch model, if the restraint that β1 = 0 is replaced by a
constraint that βi = 0 for some i > 1, then each θ̂v is changed by a constant
amount. In the interaction model, if the restraints that β1 = γ1 = 0 are re-
placed by restraints that βi = γi = 0 for some i > 1, then the change in θ̂v is
a function of the score total rv rather than a constant. In general, estimates
of θv more similar to those in the RM are likely if the constraint γ1 = 0 is
replaced by the constraint that

∑I
i=1 γi = 0.

To study predictive power, observe that the interaction model yields an
estimated expected log penalty per item of Ĥ∗ = 0.591, while the loglinear
RM yields 0.596. The normal 2PL model yields 0.592, so that the the loglinear
interaction model is quite competitive with the standard 2PL model. The value
of ∆̂R is 0.005, so that the difference between the Rasch and interaction models
appears fairly small. Nonetheless, L2 = 3, 905 on 44 degrees of freedom, so
that overwhelming evidence exists that the RM does not hold.

Some perspective on model comparisons may be obtained by examination
of the trivial model that all responses xvi are independent, 1 ≤ i ≤ I, for each
examinee v. In this case, the estimated expected log penalty per item is
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Table 13.1. Item-parameter estimates for a writing test

Rasch location Interaction Interaction
Item difficulty location slope
2 −0.374 (0.033) −0.359 (0.033) 0.484 (0.208)
3 −0.755 (0.033) −0.609 (0.033) −3.304 (0.151)
4 −1.326 (0.033) −1.206 (0.034) −4.091 (0.151)
5 −0.395 (0.033) −0.233 (0.034) −3.316 (0.151)
6 −2.352 (0.037) −2.316 (0.040) −4.522 (0.151)
7 −0.055 (0.034) −0.071 (0.033) 0.478 (0.151)
8 0.800 (0.037) 0.818 (0.039) −1.109 (0.151)
9 −0.297 (0.033) −0.130 (0.035) −3.332 (0.151)
10 −1.778 (0.035) −1.687 (0.036) −4.079 (0.151)
11 −1.686 (0.034) −1.549 (0.034) −1.837 (0.151)
12 −0.083 (0.034) 0.119 (0.036) −3.755 (0.151)
13 −1.299 (0.033) −1.171 (0.033) −2.747 (0.151)
14 0.566 (0.036) 0.682 (0.039) −2.241 (0.151)
15 −1.897 (0.035) −1.744 (0.035) −0.988 (0.151)
16 −3.190 (0.045) −3.461 (0.060) −7.379 (0.151)
17 −0.886 (0.033) −0.800 (0.032) −0.337 (0.151)
18 −0.438 (0.033) −0.352 (0.033) −1.323 (0.151)
19 −1.251 (0.033) −1.138 (0.035) −5.934 (0.151)
20 −1.151 (0.033) −1.036 (0.033) −0.944 (0.151)
21 −1.249 (0.033) −1.123 (0.033) −1.707 (0.151)
22 −0.009 (0.034) 0.135 (0.035) −2.711 (0.151)
23 −2.597 (0.039) −2.571 (0.043) −4.465 (0.151)
24 −1.525 (0.034) −1.390 (0.033) −1.224 (0.151)
25 −1.553 (0.034) −1.430 (0.034) −2.918 (0.151)
26 0.168 (0.034) 0.395 (0.037) −3.856 (0.151)
27 −0.989 (0.033) −0.883 (0.033) −1.001 (0.151)
28 −1.003 (0.033) −0.855 (0.034) −4.650 (0.151)
29 0.040 (0.034) 0.029 (0.034) 0.154 (0.151)
30 −0.753 (0.033) −0.662 (0.033) −0.946 (0.151)
31 −2.064 (0.036) −2.003 (0.038) −4.384 (0.151)
32 −2.191 (0.036) −2.068 (0.037) −2.666 (0.151)
33 −1.857 (0.035) −1.761 (0.036) −3.727 (0.151)
34 −0.844 (0.033) −0.697 (0.033) −3.522 (0.151)
35 0.413 (0.035) 0.550 (0.038) −2.518 (0.151)
36 −0.553 (0.033) −0.361 (0.034) −4.456 (0.151)
37 −0.222 (0.033) −0.127 (0.034) −1.736 (0.151)
38 −2.028 (0.036) −2.018 (0.038) −5.610 (0.151)
39 −0.434 (0.033) −0.218 (0.035) −4.735 (0.151)
40 −1.206 (0.033) −1.077 (0.034) −3.869 (0.151)
41 0.329 (0.035) 0.375 (0.036) −1.218 (0.151)
42 −0.843 (0.033) −0.717 (0.033) −2.378 (0.151)
43 −0.273 (0.033) −0.182 (0.034) −1.622 (0.151)
44 −0.358 (0.033) −0.209 (0.034) −2.937 (0.151)
45 −0.567 (0.033) −0.423 (0.034) −2.968 (0.151)
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Table 13.2. Ability-parameter estimates for a writing test

Total Rasch Interaction
score ability ability
4 −3.538 (0.545) −2.571 (0.400)
5 −3.268 (0.497) −2.447 (0.302)
6 −3.038 (0.462) −2.380 (0.216)
7 −2.837 (0.436) −2.380 (0.216)
8 −2.656 (0.415) −2.322 (0.137)
9 −2.491 (0.398) −2.306 (0.119)
10 −2.339 (0.384) −2.293 (0.107)
11 −2.195 (0.373) −2.283 (0.098)
12 −2.060 (0.363) −2.273 (0.092)
13 −1.931 (0.355) −2.265 (0.087)
14 −1.808 (0.348) −2.258 (0.084)
15 −1.689 (0.342) −2.251 (0.081)
16 −1.573 (0.338) −2.245 (0.078)
17 −1.460 (0.334) −2.239 (0.077)
18 −1.350 (0.330) −2.233 (0.075)
19 −1.242 (0.328) −2.228 (0.075)
20 −1.135 (0.326) −2.222 (0.074)
21 −1.030 (0.324) −2.217 (0.074)
22 −0.925 (0.323) −2.211 (0.074)
23 −0.821 (0.323) −2.206 (0.074)
24 −0.716 (0.323) −2.200 (0.075)
25 −0.611 (0.324) −2.194 (0.076)
26 −0.506 (0.326) −2.188 (0.078)
27 −0.399 (0.328) −2.182 (0.080)
28 −0.290 (0.331) −2.176 (0.083)
29 −0.180 (0.334) −2.168 (0.087)
30 −0.067 (0.339) −2.160 (0.091)
31 0.050 (0.344) −2.152 (0.097)
32 0.170 (0.350) −2.141 (0.105)
33 0.295 (0.358) −2.129 (0.116)
34 0.426 (0.367) −2.114 (0.131)
35 0.565 (0.378) −2.094 (0.155)
36 0.713 (0.391) −2.064 (0.191)
37 0.872 (0.408) −2.017 (0.245)
38 1.047 (0.428) −1.942 (0.303)
39 1.241 (0.455) −1.833 (0.355)
40 1.463 (0.489) −1.833 (0.355)
41 1.725 (0.537) −1.495 (0.472)
42 2.052 (0.610) −1.232 (0.559)
43 2.495 (0.733) −0.844 (0.697)
44 3.226 (1.018) −0.162 (0.996)
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ĤI = −(NI)−1
I∑

i=1

f·i log(f·i) = 0.625,

and the estimated difference in expected log penalty per item between the
Rasch and independence models is 0.028, so that the RM accounts for about
85% of the change in estimated log penalty from use of the interaction model
rather than the independence model.

The interaction model does not appear to be true, although it is not
clear that major improvement is readily achieved. The generalization of the
loglinear-interaction model to include additive three-factor interactions results
in only a very small improvement in estimated expected log penalty, but the
likelihood-ratio chi-square that compares the two models is 263 on 44 degrees
of freedom, so that clear evidence against the interaction model does exist.
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14.1 Introduction

Over the past few years, several studies have investigated and demonstrated
the relationships between generalized linear mixed models (GLIMM) and item
response modeling. Some benefits associated with this GLIMM-based mod-
eling framework include the modeling of nested structure of data, such as
examinees nested within schools (Kamata, 2001), of multidimensional mea-
sures (Cheong & Raudenbush, 2000), and of wider class of item response
models, such as 2PL item response model (Rijmen et al., 2003). Applications
of this modeling approach include the detection and investigation of differ-
ential item functioning (e.g., Cheong, 2006), item-parameter drift (Pastor &
Beretvas, 2006), and test equating (Chu & Kamata, 2005). In this chapter, we
describe how researchers can use GLIMM to estimate multilevel, multidimen-
sional RMs. We first provide a modeling framework for the Rasch based on
the general GLIMM framework. We then discuss how the GLIMM based RM
can be applied to study multidimensional constructs in multilevel settings.
To illustrate the modeling approach, we analyze data collected by a statewide
testing program on mathematics and reading proficiencies. Implications of the
approach are discussed.

14.2 Background

Multilevel RMs can be considered as a special case of generalized RMs. How-
ever, it is distinct from other generalizations of the RM to the extent that the
multilevel RM allows researchers to treat person abilities as randomly varying
parameters and accommodate the nested structure often found in data in the
social sciences. One typical example is data from educational surveys where
primary sampling units are schools, and students are sampled from within
these units.
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Also, the multilevel formulation of item response models, here the Rasch
model, can be viewed from several different perspectives. The first perspective
is characterized by the treatment of person abilities as random effects (e.g.,
Adams, Wilson, & Wu, 1997; Hedeker & Gibbons, 1993; Spiegelhalter et al.,
1996). One view of the original intention of this treatment was to facilitate
maximum marginal likelihood estimation (MMLE) of item parameters (Bock
& Lieberman, 1981; Bock & Aitkin, 1981). This approach avoids the so-called
“Neyman-Scott problem” (Neyman & Scott, 1948); namely, the inconsistency
of estimators that occurs when item and person parameters are estimated
simultaneously. However, this treatment also gives rise to an interpretation of
the item response model as a mixed-effects model formulation because, in this
framework, item parameters are fixed effects and person abilities are random
effects.

When person parameters are considered to randomly vary, they may be
decomposed into a linear combination of fixed and random effects, in the
same framework as is seen with mixed-effects and multilevel generalized linear
models. This approach, which enables one to perform a one-step analysis of
person characteristic variables on test data, can be considered as the second
perspective on multilevel IRT formulation. For example, Zwinderman (1991)
and Hoijtink & Boomsma (1996) demonstrated a decomposition of a random
person ability into a linear combination of fixed person-characteristic variables
and a random effect.

More recently, Adams & Wilson (1996) proposed a more general model, the
random coefficient multinomial logit model (RCMLM), which subsequently
was further generalized to its multidimensional form (MRCMLM) (Adams,
Wilson, & Wang, 1997). Similar to Zwinderman’s approach, both the RCMLM
and the MRCMLM are formulated so that person parameters are random
variables. They also allow person-characteristic variables to be included in
the model as predictors. These models are general enough to include different
classes of RMs, including those with dichotomous and polytomous outcomes,
and have been implemented in ConQuest software (Wu et al., 1997). The
models, however, are applicable only to a hierarchical data structure with two
levels of random variation (items nested within persons) and could include
only random effects at the person level.

The third perspective on multilevel formulation of IRT models is repre-
sented by the multiple-group IRT model (Bock & Zimowski, 1997). A multiple-
group IRT model assumes that individuals are grouped by a common char-
acteristic, such as ethnic group or school attended. Operationally, the model
assumes separate latent distributions for groups in estimating item parame-
ters. One special case of the model is the group-level IRT model (Mislevy,
1983; Mislevy & Bock, 1989), used in instances when the primary purpose is
to estimate group-level abilities rather than individual-level abilities. Duplex
design (Bock & Mislevy, 1989) can similarly be considered a special case of
the multiple-group IRT in which individual- and school-level abilities are esti-
mated simultaneously using multiple-matrix sampling. Yet another variation
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on the multiple-group IRT model is the item-parameter drift model (Bock,
Muraki, & Pfeiffenberger, 1988), which models changes of item-parameter val-
ues over time. In this model, people that were given a test at the same time
are considered to be in the same group. Differential item functioning (DIF)
analysis can be thought of as a special case of multiple-group IRT (Thissen et
al., 1993) in which individuals are grouped by gender and race/ethnicity. The
mixed RMs (Rost, 1990; von Davier & Rost, 1995) and mixture IRT models
(Mislevy & Verhelst, 1990) are also multiple-group models in which the out-
comes of the grouping variable are unknown. Models following this approach
can be viewed as examples of hierarchical IRT models with missing values on
higher-level variables (see von Davier & Yamamoto, 2004b).

The decomposition of item parameters into more than one component
parameter in IRT modeling represents the fourth perspective on multilevel
formulation of IRT models. Fischer’s (1973; 1983; 1995d) linear logistic test
model (LLTM) can be classified under this perspective. Fischer generalized
the standard binary RM by decomposing an item-difficulty parameter into
linear combinations of more than one item-component parameter. This mod-
eling approach allows the inclusion of multiple item-characteristic variables;
as such, models of this type are multilevel in items rather than in persons.
Accordingly, it is possible to estimate the effect of item characteristics on the
probability of correct responses. Swanson et al. (2002) used a similar idea in
their development of a two-level hierarchical framework to study differential
item functioning.

Adopting one or several of these perspectives, researchers have demon-
strated the relationships between generalized linear mixed models (GLIMM)
and item response modeling. Kamata (2001), for example, formulated the RM
as a two-level hierarchical generalized linear model (HGLM) and extended it to
a three-level model by incorporating between and within cluster variations at
the student and school level, thus a multilevel RM. This three-level extension
has been demonstrated to include person- and group- characteristic variables
embedded into a RM. Also, Raudenbush & Sampson (1999) and Cheong &
Raudenbush (2000) described and illustrated how a multidimensional RM can
be embedded in a hierarchical model, such that more than one latent trait can
be modeled. Raudenbush and Sampson incorporated item response models in
measuring and modeling two social organization aspects of neighborhoods:
physical and social disorder. In their study, an item response model that con-
stituted the level-1 model was used to describe the log-odds of finding disorder
on individual items measuring the organizational aspects. This item response
model was cast as a within-face-block model, where a face-block was defined
as the block segment on one side of the street. The item response/within-face-
block model was then combined with a between-face-block (level-2) model and
a between neighborhood cluster (level-3) model that investigated the variabil-
ity among face-blocks and among neighborhood clusters, and the correlates
of the level of physical and social order.
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Multilevel RMs offer several advantages over models that do not account
for clustered data when analyzing complex samples. First, multilevel RMing
has the ability to incorporate hierarchically structured (clustered) data, such
as students nested within schools. Similar to the models developed and dis-
cussed in Zwinderman (1991) and Hoijtink & Boomsma (1996), a multilevel
RM allows modeling latent variable(s) as dependent variable(s). Second, this
approach potentially improves estimates of the relationships between latent
traits and predictors, by considering both between and within cluster vari-
ations. Technically, observations from clustered samples may show smaller
within cluster variance than between cluster variance. Third, multilevel RMs
have the flexibility to include covariates, as well as random effects at the mea-
surement units (for example, students), and social units/cluster (for example,
schools) levels.

14.3 Model

14.3.1 The Rasch Model as an HGLM

Let
τiv = θv − δi, (14.1)

where τiv = logit (µiv) with µiv = P (Yiv = 1|θv, δi), θv is the ability of person
v, δi is the difficulty of item i, and Yiv is a dichotomous response of person
v on item i. It is the RM and can be expressed as a special case of HGLM
with different formulations. Kamata (2001), for instance, has postulated the
following formulation of a two-level RM. The level-1 model is an item-level
model

τiv = π0v +
I−1∑
q=1

πqvXqv, (14.2)

and the level-2 models are person-level models{
π0v = β00 + u0v

πqv = βq0 ,
(14.3)

where Xqv is the qth item-indicator dummy variable for person v, with values
of 1 when i = q, and 0 otherwise. The coefficient π0v is an intercept term,
and πqv is a coefficient associated with Xqv, where q = 1, . . . , I − 1. Here,
there are I items in the test, but a dummy variable is not assigned for the
Ith item in order to achieve a “full rank” of the design matrix, because of the
presence of the intercept term. It is possible to parameterize by not including
the intercept term, but with all item-dummy variables (e.g., Rijmen et al.,
2003). Also, u0v is a random component of π0v and distributed as N(0, σ2),
that is, u0v is normally distributed with zero mean and the variance of σ2.
Here, the random effect u0v is a latent variable. When the level-1 and level-2
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models are combined for a specific person v and a specific item i (where i = q),
the model becomes

τiv = β00 + βq0 + u0v. (14.4)

This is equivalent to the RM, where u0v = θv, and δi = −(β00 +βq0) for i = q.
One can further include person characteristic variables in the level-2 model,

similar to the two-level IRT model with covariates suggested by Adams, Wil-
son, & Wu (1997). Whereas main effects of person characteristic variables
could be investigated with the level-2 model for π0v, as given in Equation
14.3, item-by-person interaction effects could be studied using the model for
the appropriate πqv, as specified in the same equation.

14.3.2 Extension to a Three-Level Model

The above framework can be extended to a three-level model by adding an ad-
ditional level in the data structure. The level-1 and level-2 models are identical
to the two-level model, except additional subscripts are needed to represent
the level-3 unit. Here, we use s for the level-3 unit (s = 1, . . . , S). Then, the
level-1 and level-2 models are written as

τivs = π0vs +
I−1∑
q=1

πqvsXqvs, (14.5)

and {
π0vs = β00s + u0vs

πqvs = βq0s ,
(14.6)

where uvs ∼ N(0, ω). The level-3 model is{
β00s = γ000 + υ00s

βq0s = γq00 ,
(14.7)

where υ00s ∼ N(0, ξ). For a specific person v in a specific level-3 unit s, for
a specific item i (where i = q), the combined model can be written as

τivs = γ000 + γq00 + u0vs + υ00s. (14.8)

Again, this is equivalent to the RM, where υ00s+u0vs = θv, and δi = −(γ000+
γq00) for i = q. Group-characteristic variables, as well as person characteristic
variables, can be included in the models as expressed in Equations 14.6 and
14.7. To ensure identifiability, the mean of the ability parameter is constrained
to be zero with this formulation.

Alternatively, researchers can formulate the three-level RM with each Xqvs

centered around the grand mean of the indicators, or equivalently, the recip-
rocal of the number of items or 1/I (e.g., Cheong & Raudenbush, 2000). For
example, if there are 10 items in the test or I = 10, Xqvs will be centered
around 1/10 = 0.2; consequently, Xqvs = 0 − .2 = −.2 when i �= q and
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Xqvs = 1− .2 = .8 when i = q. If this centering is employed, the intercept γ000
is interpreted as the overall mean ability, and u0vs and υ00s as the deviations
in ability for person v in level-3 unit s, and for level-3 unit s, from the overall
mean, respectively. In this formulation, with reference to Equation 14.1, the
ability of person v in level-3 unit s is γ000 +u0vs, and the difficulty of item i, δi

is a function of γq00.3 To ensure identifiability, the mean of the item difficulties
is constrained to be zero with this parametrization. This formulation allows
researchers to estimate and directly model the mean latent ability.

14.3.3 Multidimensional Model

The two models introduced above assume that test items measure only one
latent trait. However, it is possible that a test consists of items that measure
more than one latent trait. To illustrate, we assume a case where one group of
items is measuring a particular trait, and another is measuring a different one.
An example is subscales in an academic test, such as in a mathematics test
and a science test. This type of multidimensional structure, where each item
is associated with only one dimension, is known as a form of between-item
multidimensionality (Adams, Wilson, & Wang, 1997).

For K dimensions,

τiv =
K∑

k=1

π0kv +
K∑

k=1

Ik−1∑
qk=1

πqkvXqkv, (14.9)

and {
π0kv = β0k0 + u0kv

πqkv = βqk0 .
(14.10)

This multidimensional version can be also extended to a three-level model in a
similar manner that is described above. Also, person-characteristic and group-
characteristic variables can be included in the level-2 and level-3 models.

14.4 Data Analysis

The data in our example are from reading and mathematics assessments in
one grade level of a state-wide testing program, and we will use the Refer-
ence/Research and Measurement subscales of the assessments. We first set up

3 Specifically, the item difficulty for item i, δi can be shown to be equal to, for i =
q,

δi = −I − 1
I

γq00 − 1
I

∑
of all q′

γq′00,

where I is equal to the number of test items and q′ �= q. For more details, see
Cheong (2006).
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a psychometric model to simultaneously study the two proficiencies. Then,
with a structural model, we investigate whether there is a contextual effect of
school poverty on both skills and whether the two effects, if any, are similar.

14.4.1 Data

Data used in the following illustrative analyses were sampled from the 2003
administration of reading and mathematics assessment for 4th graders in
a statewide testing program in a southeastern state in the United States.
The reading test consisted of 45 items based on 4 subscales of skills, includ-
ing Reading Content Words/Phrases, Main Idea/Purpose, Comparisons, and
Reference/Research. The mathematics test consisted of 40 items based on
5 subscales of skills, including Number Sense, Measurement, Geometry, Al-
gebraic Thinking, and Data Analysis. A majority of the items in the tests
were in multiple-choice format and scored dichotomously. All nonresponded
items were scored as incorrect answers. Here, only two subscales, Refer-
ence/Research and Measurement, were used for data analysis. With the Ref-
erence/Research subscale, skills and knowledge in organization and interpre-
tation of presented information were measured. With the Measurement sub-
scale, skills to recognize measurements and units of measure, as well as skills
to compare, contrast, and convert measurements were measured. All items in
these two subscales were scored dichotomously. There were a total of 3,166
examinees from 30 schools. Table 14.1 summarizes the descriptive statistics
for the sample. Fifty-seven percent of the sampled students were enrolled in
free or subsidized lunch programs. The sampled schools had an average of
59% of theirs students enrolled in free or reduced-lunch programs.

Table 14.1. Descriptive statistics for student- and school-level variables

Variable Range M SD

Student-Level Measure (N = 3,166)
Student Disadvantage* 0 = no, 1 = yes .57 .49

School-Level Measure (No. of Schools = 30)
School Disadvantage** (.20, 1.00) .59 .29

*Enrolled in a free or subsidized lunch program.
**Proportion of students enrolled in free or subsidized lunch programs.

14.4.2 Modeling Procedure

In our illustrative analysis, we adopt a three-level extension of the multidimen-
sional model as specified in Equations 14.9 and 14.10 with the number of di-
mensions K = 2. The baseline model constitutes an unconditional three-level
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hierarchical logistic regression. The level-1 units are item responses within
students, the level-2 units are students, and the level-3 units are schools. The
model is unconditional as it does not include any student or school-level ex-
planatory variables. To investigate the relationships of the factors to various
individual and contextual factors and covariates, we then add the relevant ex-
planatory variables to the unconditional model and evaluate their associations
with the two measures.

14.4.3 Unconditional Model

Level-1 Model

The level-1 model represents predictable and random variation among item
responses within each child. This is a one-parameter item response model and
might be termed a RM (Rasch, 1960) with random effects.

Let Yivs = 1 if the ith response is correct for student v of school s, otherwise
let Yivs = 0. Let µivs denote the probability of Yivs = 1. This probability varies
randomly over students. However, conditioning on this probability, we have

Yivs|µivs ∼ Bernoulli,

E (Yivs|µivs) = µivs, and

V ar (Yivs|µivs) = µivs (1 − µivs) . (14.11)

As is standard in logistic regression, we define τivs as the log-odds of the proba-
bility of the ith response being correct for student v in school s. Thus, we have
τivs = log

(
µivs

1−µivs

)
. The structural model at level 1 accounts for predictable

variation within student across responses. It views the log-odds of correct re-
sponse i as depending on which subscale is of interest (Reference/Research or
Measurement) and which specific item is involved. Let DRRivs take on a value
of 1 if the ith response is to an item-measuring reference and research skills
and 0 otherwise and let DMEASivs = 1 − DRRivs similarly indicate whether
that response is to an item-measuring measurement skills. The D matrices
may be viewed as dummy coded design matrices that define which item was
responded to and to which scale this item belongs. Then we have

τivs = DRRivs

(
πRRvs +

3∑
q=1

πRRqvsXivs

)

+DMEASivs

(
πMEASvs +

5∑
q=1

πMEASqvsZivs

)
,

where Xivs and Zivs are indicator variables representing the items in the
scales. As we are interested in estimating the mean latent scores and how
they are related to covariates at the student- and school-level, we center Xivs
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and Zivs around the mean of these indicator variables or equivalently, the
reciprocal of the number of the items of each corresponding scale, i.e., 1/I
(1/4 or 0.25 for the Reference/Research subscale and 1/6 or 0.17 for the
Measurement subscale).4 Consequently, πRRvs and πMEASvs are “Reference/
Research” and “Measurement” proficiencies defined as the adjusted log-odds
of the correct response to a “typical item” for respective skills for student v
of school s. The “difficulty” of item i is a function of πRRqvs and πMEASqvs

within each subscale. Given the constraint of the mean of the item difficulties
to be zero, the “typical item” will have an item difficulty of 0. Note that 3
item indicators represent the 4 items in the Reference/Research subscale and
5 item indicators represent 6 items in the Measurement subscale.

Level-2 Model

The level-2 model accounts for variation between students within schools on
the latent reference/research and measurement skills. The level-2 model is

πRRvs = βRRs + uRRvs, and

πMEASvs = βMEASs + uMEASvs, (14.12)

where βRRs and βMEASs are the intercepts for school s on the two latent skills,
respectively. The random effects uRRvs and uMEASvs are assumed bivariate
normally distributed with zero means, with student-level variances ωRR and
ωMEAS , and covariance ωRR•MEAS . We constrain the item effects, the values
πRRqvs and πMEASqvs to be invariant across the students and across schools,
πRRqvs = πRRq and πMEASqvs = πMEASq for all v and s. As Raudenbush and
Bryk (2002) indicate, this constraint reflects the belief that for a “good” test,
an item should have the same difficulty for different groups of examinees that
have the same ability. With these constraints in place, the model is similar
to a multigroup Rasch model in the sense that item difficulties are the same
across groups. By lifting this constraint, researchers can investigate whether
4 We implemented the following procedure to assess the fit of the RM to the data for

each subscale. We began by fitting two full-information one-factor factor analytic
models with factor loadings allowed to vary across items in the first but not
the second one. We then used Akaike’s information criteria (AIC) and Bayesian
information criteria (BIC) to compare the fit of the two models. The results
showed that both AIC and BIC were smaller for the model with varying factor
loadings, indicating the RM did not fit well. We then proceeded to identify which
items displayed different magnitudes of factor loadings. We re-ran and compared
the fit of another two full-information factor-analytic models with the flagged
items removed, one with varying factor loadings and one without. One item from
the Reference/Research subscale and two items from Measurement subscale were
flagged. After excluding the flagged items, AIC and BIC became smaller for the
model with uniform factor loadings, indicating a good fit of the RM. Consequently,
those three items were excluded from our illustrative analyses.
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individual item difficulty varies at the child and/or school-level and can study
its correlates. Similarly, the items should function the same for all schools
after holding constant the performance level. By lifting the constraint and
modeling it as a function of school factor allows one to investigate the effects
of school-level factors on item effects. Such variation is known as differential
item functioning (DIF) in the literature of educational testing (e.g., Cheong,
2006; van der Linden & Hambleton, 1997).

Level-3 Model

The level-3 model accounts for variation between schools on the latent mea-
sures of the two abilities:

βRRs = γRR + υRRs, and

βMEASs = γMEAS + υMEASs, (14.13)

where γRR and γMEAS are the grand mean levels of the two latent scores on
reference/research and measurement skills in schools. The random effects υRRs

and υMEASs are assumed bivariate normally distributed with zero means,
school-level variances ξRR and ξMEAS and covariance ξRR•MEAS .

Combined Model

The above models can be combined through substitutions of terms and ex-
pressed as

τivs = DRRivs

(
γRR +

3∑
q=1

γRRqXivs + uRRvs + υRRs

)

+DMEASivs

(
γMEAS +

5∑
q=1

γMEASqZivs + uMEASvs + υMEASs

)
.

(14.14)

This equation shows that the log-odds of a correct response to an item for a
particular subscale depends on item effects plus individual student and school
contributions to the reference/research and measurement skills.

14.4.4 Estimation Approach and Algorithm

The analysis uses a sixth order approximation to the likelihood for the model
based on a Laplace transform (Raudenbush et al., 2000). Simulations by Rau-
denbush et al. show that this approach, when compared with approximations
based on penalized quasi-likelihood, Gauss-Hermite quadrature, and adaptive
Gauss-Hermite quadrature, produced remarkably accurate approximation to
maximum likelihood, and therefore provides efficient (or nearly efficient) es-
timates in terms of mean squared errors of all parameters (see also Breslow,
2003).
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Table 14.2. Results for the unconditional model

a. Fixed effect estimates—Reference/Research
Coefficient se t Approx. df

Intercept 0.08 0.11 0.78 29

b. Fixed effect estimates—Measurement
Coefficient se t Approx. df

Intercept 0.27 0.14 1.94 29

c. Variance estimates of random effects
Reference/Research Measurement

Within School 0.87 (se = 0.13) 0.77 (se = 0.06)
Between School 0.12 (se = 0.06) 0.19 (se = 0.08)

d. Correlation estimates
Coefficient

Between student (within schools) 0.83
Inter-scale at School level 0.98

e. Reliability estimates
Reference/Research Measurement

Between student (average) 0.42 0.43
Between school (average) 0.83 0.90

14.4.5 Results for the Unconditional Model

Results for the unconditional model are summarized in Table 14.2. The results
show that the expected logit of a correct response to a typical reference and
research item for a typical student is 0.08, which is not statistically significant
from 0. The logit of a correct response to a typical measurement skill item
is 0.27, which is also not statistically significant. A log odds of 0 could be
translated to an odds of answering a typical item in both scales of exp(0) =
1.

The results of two multivariate tests comparing model deviances (–2 log
likelihood at convergence) indicate that the models with the random effects
υRRs and υMEASs provided a better fit than the ones without either of them.
The results for the multivariate test associated with the Reference/Research
subscale were χ2

(2,N=3,166) = 123.81, p < 0.001 (with υRRs deleted). The re-
sults for the Measurement subscale χ2

(2,N=3,166) = 242.90, p < 0.001 (with
υMEASs deleted). Note that each test simultaneously assessed whether there
was significant variation in each skill and whether the two latent skills covar-
ied at the school level. The estimates of the variation as well as covariation
(expressed as correlations) are given in Table 14.2. The two skills manifest
high intercorrelation at the between-student and between-school level, .83,
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and .98. These correlations capture the associations between the latent scores
at the student (between πRRvs and πMEASvs) and school level (between βRRs

and βMEASs) and thus are adjusted for measurement errors specified in the
level-1 sampling model. Furthermore, between student (within schools), the
average reliabilities for the Reference/Research and Measurement subscales
are .42 and .48 respectively.5 These indicate the reliability with which we can
discriminate between students within a school. Between schools, the corre-
sponding average reliabilities are .83 and .90. The results suggest that one
can distinguish among schools in the general level of reference and research
and measurement skills with high reliability.6

14.4.6 Conditional Model

To study the relationship between the scales and student- and school-level fac-
tors, we add relevant explanatory variables to the unconditional model and
evaluate their association with the scales. In the illustrative analysis, we study
whether there are compositional effects due to the socioeconomic composition
of the body of the student. Such effects exist when there is a significant re-
lationship between the aggregate of a student-level characteristic with the
outcome, controlling for the effect of the characteristics at the student level
(Raudenbush & Bryk, 2002). As Harker & Tymms (2003) summarized from
a review of literature, such effects may arise through differences in peer-peer
5 An approximate formula for computing the reliabilities for the reference/research

skill measure at the student level is

λRRvs =
ξRR + ωRR

ξRR + ωRR + (nvswvs)−1 ,

whereλRRvs is the internal consistency of the reference/research measure for stu-
dent v in school s, nvsis the number of items on reference/research skill attempted
by student v in school s, andwvs is the average within student v in school s of
µivs (1 − µivs) on reference/research items. Thus, the reliability depends on the
proportion of intra-school correlation but also on the number of items per scale,
and the item effects. Our summary measure of reliability is the average of the
student-level reliabilities.

6 An approximate formula for computing the reliabilities for the reference/research
skill measure at the student level is

λRRs =
ωRR

ξRR + ωRRJ−1
s + (nsJsws)−1

,

where λRRs is the internal consistency of the reference/research measure for stu-
dent v in school s, ns is the average number of items on reference/ research skills
per student in school s, Js is the number of student sampled within school s, and
ws is the average within school s of pivs(1 − pivs) on reference/research items.
Thus, the reliability depends on the intra-school correlation but also on the num-
ber of students sampled, the number of items per scale, and the item effects. The
summary measure of reliability is the average of the school-specific reliabilities.
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and student-teacher interactions and resources among schools with different
compositions. The effects could be phantom ones or are merely results of mis-
leading statistical procedures. The characteristic considered in this analysis
is student disadvantage, as defined by enrollment in free or subsidized school
lunch programs.

Level-1 Model

The level-1 model remains the same as given in Equation 14.12. It models
the log-odds of a correct response to item i as a function of the type of skill,
reference and research and measurement, and the specific item involved.

Level-2 Model

At the student level, student disadvantage is entered as a dichotomous covari-
ate, centered around its sample mean or the overall proportion of students en-
rolled in a free-lunch program. The level-2 model for latent reference/research
skill,πRRvs, and latent measurement skill, πMEASvs, are:

πRRvs = βRRs + θRR1s(Student Disadvantage)vs + uRRvs, and

πMEASvs = βMEASs + θMEAS1s(Student Disadvantage)vs + uMEASvs,
(14.15)

where βRRs and βMEASs are the intercepts for school s on the two latent abil-
ities, respectively, adjusted for student disadvantage, and θRR1s and θMEAS1s

capture the relationship between student disadvantage and the latent refer-
ence/research and measurement abilities of student v within school s. Fol-
lowing the model specifications of Raudenbush and Bryk (2002) for composi-
tional effects, we constrain these regression coefficients to be invariant across
the schools, θRR1s = θRR1 and θMEAS1s = θMEAS1 for all s to investigate
school compositional effects in this illustrative analysis.7 The random effects
uRRvs and uMEASvs are assumed bivariate normally distributed with zero
means, and residual student-level variances ωRR and ωMEAS , and covariance
ωRR•MEAS .

Level-3 Model

To assess school compositional effect, we enter school poverty as a continuous
variable, again centered around the overall sample mean, into the model to
study if and how the school characteristic relates to the subscales. For the
intercepts, βRRs and βMEASs,

βRRs = γRR + γRR1(School Disadvantage)s + υRRs, and

7 Results of exploratory analyses suggested that the two coefficients for student
disadvantage as well as the variance for the measurement scale did not randomly
vary over schools.
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βMEASs = γMEAS + γMEAS1(School Disadvantage)s + υMEASs. (14.16)

Here, γRR and γMEAS are the grand mean levels of the two latent scores
on reference/research and measurement skills in school. γRR1 and γMEAS1
capture the compositional effects associated with the socioeconomic compo-
sition of the student body in schools. The random effects υRRs and υMEASs

are assumed bivariate normally distributed with zero means, and school-level
variances ξRR and ξMEAS and covariance ξRR•MEAS .

Combined Model

The combined model now becomes

τivs = DRRivs[γRR + θRR1(Student Disadvantage)vs

+γRR1(School Disadvantage)s +
3∑

q=1
πRRqXivs + uRRvs + υRRs]

+DMEASivs[γMEAS + θMEAS1(Student Disadvantage)vs

+γMEAS1(School Disadvantage)s +
5∑

q=1
πMEASqZivs + uMEASvs + υMEASs].

(14.17)
The above equation shows that the log odds of a correct response to an item
for a particular subscale depends on item difficulties and student and school
disadvantage plus individual student and school contributions to the refer-
ence/research and measurement skills.

Table 14.3. Results for the conditional model

a. Fixed effect estimates—Reference/Research
Coefficient se t Approx. df

Predictor of Level-1 Intercept
Intercept 0.10* 0.03 3.05 28
School disadvantage −0.57* 0.24 −2.44 28
Predictor of student disadvantage slope
Intercept −0.46* 0.15 −4.97 3164
*p < 0.05

b. Fixed effect estimates—Measurement
Coefficient se t Approx. df

Predictor of Level-1 Intercept
Intercept 0.29* 0.08 3.48 28
School disadvantage −0.63 0.34 −1.85 28
Predictor of student disadvantage slope
Intercept −0.58* 0.10 −5.55 3164
*p < 0.05
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14.4.7 Results for the Conditional Model

Results for the fixed effects that allow us to assess the associations between
student and school disadvantage and the two proficiency scales are summa-
rized in Table 14.3. The results suggests that there is a compositional effect
for reference/research (γ̂RR1 = −.57, se = .24), but not measurement skills
(γ̂MEAS1 = −.63, se = .34). After controlling for the effects of student disad-
vantage, a one standard deviation increase in school disadvantage, which is
reported to be equal to .29 in Table 14.1, reduces the odds of a correct response
to a typical reference/research item by exp(−.57 × .29) = .85 times. There
is evidence that the magnitude of the school-level disadvantage-achievement
relationship, as captured by γRR1, differs significantly from the student-level
disadvantage-achievement effect, as captured by θRR1 (Raudenbush & Bryk,
2002). Being enrolled in a free-lunch program reduces the odds of correctly
answering a typical measurement item by exp(−0.46) = 0.63 times.

The fact that school disadvantage is related significantly to reference/re-
search skill but not measurement skill does not imply that the estimates of the
corresponding coefficients for each subscale (γRR1and γMEAS1) in Equation
14.17 are significantly different from each other. We therefore tested the null
hypothesis that there was no difference in the school disadvantage effects for
reference/research and measurement skills. Specifically, H0 : γRR1−γMEAS1 =
0. The result indicated that one failed to reject the null hypothesis that there
was no difference in the effects of school disadvantage for the two subscales;
χ2

(1,N=3,166) = .16, p > 0.05.

14.5 Summary

In this chapter, we provided a brief discussion on how the HGLM framework
of the RM is related to the development of other item response models. We
outlined and illustrated with a statewide assessment data set on reading and
mathematics a general approach to study testing in multilevel settings and
with multidimensional latent traits. To begin, the item response model is re-
cast as a three-level logistic regression model that embeds its item response
portion within a hierarchical structure in which the secondary units of mea-
surement, the student, are nested within the schools. The combined model
extends the usual item response model in allowing for multiple abilities to be
measured. In our illustrative example case, we studied reference/research and
measurement skills simultaneously, rather than investigating either of them
as a single, unidimensional proficiency. The model also allows researchers to
gauge the variability of the latent traits at the student and school level. It
provides information on how those abilities correlate with one another and es-
timates of useful psychometric properties such as reliabilities for the subscales
as well.

The framework accommodates the nested data structure present in most
large-scale data and thus the design effects in the estimation of the standard
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errors of the fixed effects. It also allows the use of an integrated approach for
studying measurement properties as well as structural relationships. In our
illustrative example, we showed how researchers can build on the psychometric
model to study how covariates at different levels are related to the constructs
of interests. Specifically, we investigated whether there was a compositional
effect due to school disadvantage. We found a significant contextual effect
for the reference and research but not the measurement skills, even though
there did not seem to be a difference in the effects. The approach could be
useful to studies of school effects and evaluations of systemic reform efforts or
social programs, in which there are multiple components as well as multiple
outcomes.
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To apply standard unidimensional IRT models to ability measurement, it must
be assumed that individuals at the same level of performance are in fact
comparable. That is, individuals with the same estimate on the latent trait
are interchangeable and thus can have identical interpretations given to their
scores. Such interpretations, of course, depend on the construct validity of the
trait measure, which includes both the construct representation and nomo-
thetic span aspects (Embretson, 1983). The construct representation aspect
of validity involves the meaning of the construct, in terms of the processes,
strategies, and knowledge that are directly involved in performance. Con-
struct representation is an aspect of internal validity. The nomothetic span
aspect concerns the significance of the trait, which includes the relationship
of trait scores to other measures, demographics and criteria. Nomothetic span
is primarily the external validity of the measure.

It is well known in cognitive psychology that individuals at the same level
of performance may differ qualitatively in the mechanisms underlying their
performance. In the 1980s, Sternberg (1985), for example, elaborated several
sources of individual differences that lead to incomparable performances, in-
cluding different strategies for solving the problems and different patterns of
component strengths. As applied to intelligence and ability measures, qual-
itative differences between examinees implies that construct representation
differs. Further, since nomothetic span depends on construct representation,
differences in the external relationships for test scores may be expected as
well.

Differing patterns of item difficulty can be indicative of differences in the
underlying mechanisms of performance. For example, items that are relatively
hard under one strategy may be much easier under another strategy. Mixture-
distribution-measurement models, such as the mixed Rasch model (Rost, 1990,
1991), can identify latent classes in which item difficulties have different orders.
The individuals within a class have response patterns that are consistent with
the same ordering of item difficulty, while individuals in other classes have
response patterns that are consistent with different orders of item difficulty.
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Mixed RMs have been developed for both binary (see Rost & von Davier,
1995) and polytomous (see von Davier & Rost, 1995) data.

Both aspects of construct validity, construct representation, and nomo-
thetic span (Embretson, 1983), are relevant to the latent-class structure of
item responses. First, if only one class exists, then a single meaning is sup-
ported for construct representation. The uniform order of item difficulty across
persons supports performance as involving the same strategies, components,
or knowledge structures. However, if more than one latent class exists, the un-
derlying basis of performance may no longer be uniform. That is, the different
orders of item difficulties may result from different strategies, components,
and knowledge structures being involved in performance. In this case, the
nature of the construct depends on the class to which the person belongs.
Second, when two or more latent classes exist, nomothetic span may differ by
class. That is, the test may be differentially correlated with other measures
and hence constitute a moderator variable.

As yet, little research has concerned the impact of multiple latent classes
on the construct validity of an ability test. In this chapter, two illustrative
applications of mixture RMs for ability measurement will be presented. An
application to spatial ability and to abstract reasoning will be presented. The
implications of latent classes for both construct representation and nomothetic
span will be explored.

In the studies described below, the mixed RM for binary data was used
to examine the latent class structure of the ability measurements (see Rost &
von Davier, 1995). The mixed RM is given as follows:

Pi (x = 1|θs) =
∑

g

Bg
exp (θs − βig)

1 + exp (θs − βig)
, (15.1)

where θs is the trait level for person s, βig is the difficulty for item i in group
g, and Bg is the class size parameter or mixing proportion. Thus, the primary
estimates from the model are the class proportions and the item difficulties
within each class. Class membership for individual response patterns are es-
timated post hoc from their relative likelihood in the different classes.

15.1 Spatial Ability

Spatial ability often is assumed to be an analogue process. That is, the men-
tal activities mirror the physical activities in manipulating the objects. Typ-
ical spatial tasks include figure manipulations, such as figure rotation, cube-
folding, and comparisons. As stated by McGee (1979), spatial visualization
encompasses “the ability to mentally manipulate, rotate, twist, or invert a
pictorially presented stimulus object.” However, for some individuals, spa-
tial ability tasks are not solved by spatial methods. These individuals em-
ploy problem-solving methods that have been described as verbal-analytic
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processes (Barratt, 1953; Just & Carpenter, 1985). That is, the individual de-
velops an orientation-free verbal description of the figures and then verbalizes
their altered appearance under varying degrees of rotation. Even the spatial
strategy is not necessarily homogeneous. According to Just and Carpenter’s
theory (1985), the folding and rotation process may follow traditional trajec-
tories, folded first in the plane represented in the two-dimensional view, fol-
lowed by folding in a perpendicular plane. Some individuals, however, appear
to employ unique trajectories that lessen the burden of the folding process.

Despite the long-standing interest in strategies as applied to spatial tasks,
little research has concerned the systematic impact on construct validity. The
purpose of the study reported below (see also Embretson, 2004) is to explicate
the role of strategies on the construct validity of a spatial ability test by
examining the latent class structure of item responses. Impact of the latent
classes on both the construct representation and the nomothetic span aspects
of validity will be assessed.

15.1.1 Methods

Instrument

The Spatial Learning Ability Test (SLAT; Embretson, 1994) was developed
to measure spatial ability. SLAT consists of a large item bank that was scaled
with the RM. The form of SLAT that was used in this study consists of 28
cube-folding items (see Figure 15.1).

Fig. 15.1.
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The examinee is instructed to fold the stem down and then find the three-
dimensional view of the cube that is obtained. A cognitive model of spatial
processing, the attached folding model, was developed for the SLAT items
(Embretson, 1994). The examinee is postulated to mentally overlay two sides
of the unfolded stem on the response alternative and then fold down the re-
maining side. Items vary in the difficulty of the rotation and folding processes,
which are reflected, respectively, by (1) the degrees of rotation to mentally at-
tach the stem to the response alternative and (2) the number of surfaces
carried in folding the third side. For example, the item shown in Figure 15.1
has 90 degrees of rotation to align the stem and three surfaces to be carried.

Participants

SLAT was administered to 748 Air Force recruits in a computer laboratory
at Lackland Air Force base. Data on demographics, as well as scores on the
Armed Services Vocational Aptitude Battery (ASVAB), were also available
for the sample.

15.1.2 Results

Construct Representation on SLAT

The mixed RM was applied to the SLAT item response data. The number of
classes was determined by comparing the data log-likelihood of solutions with
varying numbers of latent classes. For model comparisons, the AIC (Akaike,
1973) was used to decide upon the necessary number of latent classes for
the mixed Rasch model. The relatively best solution, according to AIC, was
the four-class solution, since only a trivial change in the AIC (i.e., 3.22) was
observed from the four-class to the five-class solution. Further, the five-class
solution had a class with approximately 30 participants, which would be too
small to obtain stable estimates of item difficulty.

Thus, the four-class solution was accepted as appropriate for the data, and
the proportions in each class were as follows: Class 1, .342; Class 2, .293; Class
3, .205; and Class 4, .160.

The nature of the latent classes was further examined by the psychomet-
ric properties of scores. Individuals were assigned to the latent class in which
their response pattern had the highest relative likelihood. Table 15.1 shows
the mean ability estimates, standard deviations, mean raw scores and relia-
bilities obtained for each class. The ability estimates differed between classes,
which were statistically significant (F = 225.594, df = 3, 744, p < 0.001). The
reliability estimates also differed between classes. Class 1 and Class 4 had
reliabilities that exceeded .70, the traditional cutoff for a research instrument.
The reliability of Class 2 fell somewhat below .70, while Class 3 had an ex-
tremely low reliability. Last, mean item response times (not shown in Table
1) were also available for the four classes. The classes differed significantly on
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mean item response time (F3,744 = 13.929, p < 0.001) as well, with Class 3
lower than the other classes. The item-difficulty orders were relatively distinct
between classes, since their intercorrelations ranged from .246 to .627.

Table 15.1. Descriptive statistics in four latent classes on SLAT

Class
1 2 3 4

Mean Ability 1.20 .05 −.86 1.14
SD Ability 1.34 .70 .51 1.08
Mean Score 19.48 14.19 8.66 19.54
Reliability .80 .62 .26 .74

To interpret the meaning of the pattern differences, the linear logistic
test model (LLTM; Fischer, 1973) was applied separately within each class,
using the two variables that were available to characterize processing on SLAT
items, namely, the degrees of rotation of the stem and the number of surfaces
carried. In addition to these two variables, their first-order interaction was
also included in the LLTM analysis. The results indicated that the cognitive
model provided moderately strong prediction of item difficulty for all classes
except Class 3, which had a likelihood ratio model fit index (Embretson, 1997)
of only .481. This index is similar in magnitude to a multiple correlation. For
the other classes the fit indices were moderately high: Class 1, .664; Class 2,
.716; and Class 4, .723. The LLTM parameter estimates are shown on Table
15.2.

Table 15.2. LLTM weights, standard errors, and t values for SLAT.

Class1 Class2 Class3 Class4
Weight SE t Weight SE t Weight SE t Weight SE t

Surfaces .80 .04 18.14 .93 .04 22.53 .22 .05 4.51 .70 .06 11.25
Degrees .01 .04 .24 .09 .04 2.70 .13 .04 3.04 .60 .06 10.77
SurfXDeg .14 .06 2.43 −.32 .05 −5.88 −.23 .06 −3.70 .49 .08 5.90

For all classes, the weights for the number of surfaces carried and the
degrees of rotation were positive. However, their magnitude and significance
varied by class. Further, the nature of the interaction varied substantially by
class. In Class 3, where the model fit poorly, although all model variables
reached statistical significance, the weights were relatively small. A plot of
predicted item difficulty by the model revealed that degrees of rotation and
surfaces carried mattered only for the easiest items. In Class 1, although the
number of surfaces carried and the interaction were significant, the degrees
of rotation were not significant. The small positive weight for the interaction
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indicated a slightly increasing impact of the number of surfaces carried with
greater degrees of rotation. In Class 2, all model variables reached significance.
The interaction was negative, such that the impact of a model variable (i.e.,
degrees or surfaces) mattered less with increasing levels of the other variable.
Last, in Class 4, all variables in the model had a significant and positive
impact on item difficulty. Degrees of rotation had a much larger weight in this
class as compared to the other classes. Further, the large positive interaction
meant increasing impact of a model variable as the other increased.

Nomothetic Span Analysis of Latent Classes

Demographic data and Armed Services Vocational Aptitude Battery (ASVAB)
test scores were available on 702 individuals in the sample. As in other stud-
ies in spatial ability, men scored slightly more than a half standard deviation
higher than women (F = 26.55, df = 1, 700p < 0.001). Mean total response
times were equal for men and women, however. Men and women were also
differentially represented in the latent classes. A Gender (2) X Class (4) con-
tingency analysis was significant (χ2 = 17.43, df = 3, p < 0.001), indicating
that gender and class were significantly associated. Women were relatively
more represented in Class 2 and Class 3.

Class membership was also related to scores on the ASVAB. A multivariate
analysis of variance indicated that the four classes differed significantly on
the ten subtests of the ASVAB (FWilks = 7.13; df = 30, 2005, p < 0.001).
The pattern of differences between classes was consistent with their pattern
of differences on SLAT; Class 1 and Class 4 were significantly higher than
Class 2 and Class 3, and Class 2 was significantly higher than Class 3.

Structural equation modeling (SEM) was employed to examine the pos-
sible differential validity of SLAT for predicting ASVAB scores in the four
classes. Moreno et al. (1984) found that four factors adequately reproduce the
covariances between the ASVAB subtests, as follows: (1) verbal ability, with
loadings for paragraph comprehension, word knowledge and general science;
(2) math/reasoning, with loadings for mathematical knowledge, arithmetic
reasoning and mechanical comprehension; (3) speed, with loadings for coding
speed and numerical operations; and (4) technical, with loadings for mechani-
cal comprehension, electrical information, auto and shop and general science.

With the pattern of factor loadings defined as above, each of the four
ASVAB factors was regressed on SLAT in a multisample analyzes defined by
the four latent classes. The first SEM was most constrained, with the factor
loadings and the regression of the factors on SLAT fully constrained across
classes. The covariance matrix of residuals for the ASVAB subtests and the
variance of SLAT were free to vary across classes, to allow for the different
variances. The model did not fit (χ2 = 320.72, df = 170, p < 0.001) and the
comparative fit index was .920. A second SEM model, with the regression of
the factors on SLAT free to vary across classes, led to significantly better fit
(χ2 = 39.01, df = 12, p < 0.01). Although the data still departed significantly
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from the model (χ2 = 281.71, df = 158, p < 0.001), the comparative fit index
was higher (CFI = .934). Further empirical fitting of the model would have
involved changing the factor structure across classes, which would lead to
incomparable factors across classes.

SLAT

Verbal Ability Math/Reasoning SpeedTechnical

C1 1.0 (.2)
C1 1.7 (.2)
C2 1.3 (.6)
C4 2.0 (.6)

C1 1.9 (.3)
C2 3.2 (.8)

Fig. 15.2.

Figure 15.2 shows the regression of the ASVAB factors on SLAT. In Figure
15.2, the significant unstandardized regression coefficients and their standard
errors are shown by class. No paths to the speed factor or from the SLAT scores
in Class 3 are shown, since none of these relationships reached significance
(p > 0.05). SLAT significantly predicted mathematical reasoning in all other
classes and the weight was largest for Class 4. However, SLAT in Class 4 was
not related to any other ASVAB factor. SLAT was a significant predictor of
verbal ability only for Class 1. Last, technical competency was significantly
related to SLAT for both Class 1 and Class 2.

15.1.3 Discussion

The mixed RM analysis indicated four large latent classes for SLAT item
responses. The item difficulties were only modestly correlated across classes,
which indicates substantial differences in response patterns. Most importantly,
construct validity also varied by class, since differences for both construct
representation and nomothetic span were observed.

The spatial ability construct does not appear to be measured for Class 3
examinees. The low mean on SLAT combined with a low reliability is indica-
tive of random responding. Further, the weak relationships to the cognitive
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model variables in the LLTM analysis indicates that examinees are perform-
ing less systematically on more cognitively challenging items. Further, unlike
the other classes, the SLAT scores in Class 3 are unrelated to the external
variables, the ASVAB factors.

In contrast, spatial ability appears to be well measured in Class 1 and
Class 4. These classes are characterized by high ability and acceptable levels
of reliability. However, these classes differ from each other in both construct
representation and nomothetic span. In Class 1, the degrees of rotation vari-
able was not significantly related to item difficulty. Instead, item difficulty
was related to the number of surfaces carried, where the number of changes in
appearance of the markers becoming increasingly complex when folded. These
results are consistent with Class 1 as involving verbal-analytic processing. The
nomothetic span results are also consistent with verbal-analytic processing for
Class 1 examinees. That is, unlike any other class, the SLAT scores in Class
1 were related to verbal ability. In contrast, Class 4 appears to contain indi-
viduals who employ analogue spatial processes. The LLTM results indicated
that item difficulties were strongly related to both degrees of rotation and
the number of surfaces carried, as would be expected in an analogue process.
The nomothetic span results were also consistent with analogue processing.
Although SLAT scores in Class 4 were unrelated to verbal ability, they were
strongly related to mathematical reasoning.

Last, in Class 2, ability is somewhat lower than in Class 1 and Class 4.
The LLTM results indicated that although the number of surfaces carried
was strongly related to item difficulty, the impact of degrees of rotation was
weak. Further, a significant interaction of the model variables indicated that
degree of rotation became a weaker predictor with successive number of sur-
faces carried. Hence, items became more similar in difficulty at two or more
surfaces carried. Nomothetic span results indicated that SLAT scores had a
relatively weak relationship to mathematical reasoning but a strong relation-
ship to technical ability. The technical-ability subtests on the ASVAB consist
of primarily two-dimensional figures and diagrams. The interpretation of the
class seems unclear, but it may consist of individuals who employ analogue
processing methods successfully only to two-dimensional items.

In summary, the construct validity of the spatial ability scores depended on
the latent classes. For one class, spatial ability appeared to be interpretable as
spatial analogue processing and was related only to mathematical reasoning.
For another class, spatial ability was related to both verbal and mathemat-
ical reasoning but was less related to technical competency. The other two
classes had yet different patterns of construct representation and nomothetic
span. Thus, one must conclude that spatial ability scores are not interpretable
without reference to the latent class.
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15.2 Abstract Reasoning

Abstract reasoning, also described as fluid intelligence (e.g., Horn & Cattell,
1966), is the ability to make inferences relatively independently of specific
knowledge. Matrix-completion problems have a long history in the measure-
ment of abstract reasoning. Raven (1938) introduced the item type early in the
history of measurement. Matrix-completion problems were well connected to
both Spearman’s cognitive theory (1923) and his psychometric theory (1927).

Although Spearman’s cognitive theory did not stand the test of time, con-
temporary approaches in cognitive psychology permit empirical support to
establish a theory. Carpenter et al. (1990) developed a theory of abstract
reasoning, using the Raven’s Advanced Progressive Matrices (APM) as the
target task in their studies. They applied a variety of methods to examine
the plausibility of their theory, including computer simulation, response-time
analysis and eye-tracker studies.

Figure 15.3 shows the stem of a matrix-completion item.

Fig. 15.3. A stem of a matrix-completion item

Carpenter et al. (1990) postulated that rules were attempted successively
for each object or attribute that changes in the matrix. Carpenter et al. (1990)
postulated a specific order in which various types of rules were attempted by
the examinee. Their rule hierarchy consisted of the following relationships:
(1) constant in a row, where the same figure appears in every column of
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a particular row; (2) pairwise progression, where the value of an attribute
changes across columns of a particular row; (3) figure addition, where figures
are added (or subtracted) across the columns in a particular row; (4) distri-
bution of three, where an object (or attribute) occurs once and only once in
each row and column; and (5) distribution of two, where object (or attribute)
changes have a null value and hence only two of three appear in the matrix.
According to their theory, an examinee attempts to explain changes in the
matrix with lower-level rules prior to progressing to higher-level rules. The
highest-level rule, distribution of two, demanded the most abstraction. Table
15.3 shows the relationship of item difficulty to the rule hierarchy, based on
Embretson’s (1998) matrix-completion-item data on the Abstract Reasoning
Test (ART).

Table 15.3. Item difficulty by relationship type

Item Difficulty
N Mean Std. Deviation

Pairwise 25 −.5154 1.37065
Figure addition 35 −.9201 1.11620
Distribution of three 60 .2132 1.15391
Distribution of two 30 1.5409 .90191
Total 150 .0929 1.41545

Like many contemporary views of intelligence (Ackerman et al., 2005; Kyl-
lonen & Christal, 1990), Carpenter et al.’s (1990) theory gave a primary role to
working-memory capacity. The demand of a specific item on working-memory
capacity was theorized to result from the number of relationships required
to solve it, as well as the position of the relationships in the rule hierarchy.
However, to quantify working-memory demand in an item, Carpenter et al.
(1990) scored only the number of relationships. The position of the rule in the
hierarchy was important in a second aspect of processing, abstraction capac-
ity. The demand for abstraction was primarily defined on the distribution of
two relationships.

Embretson (2002) adapted the Carpenter et al. (1990) theory to develop
variables for a cognitive model of item difficulty. Embretson (1998, 2002) mod-
eled item difficulty on a large bank of matrix-completion problems. Two mod-
els were developed. In both models, variables were added to reflect encoding
differences between items. The first model reflected the Carpenter et al. (1990)
theory by including their two predictors of rule-processing difficulty, number
of relationships and abstraction level, as well as the new encoding variables. A
second model was developed to reflect inference difficulty in a single variable:
memory load. Embretson (2002) hypothesized that including both the num-
ber of rules and the position of the rules in the hierarchy in a single variable
would more adequately reflect working-memory demands. Embretson’s (1998;
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2002) memory-load variable is the sum of the rule positions (i.e., 1 through
5) of all the rules in the problem. Although both models provided the same
moderately high prediction of item difficulty, the memory-load variable was
the single strongest predictor.

Carpenter et al. (1990) noted an interesting ambiguity in rule hierarchy.
Although figure-addition relationships seemed to reflect low-level holistic pro-
cesses, they also could be solved by high-level analytic relationships, namely,
distribution of two. Consider the item in Figure 15.3. It can be solved readily
by simply mentally overlaying the elements. Duplicate parts cancel out and
unique parts add up. This is the essence of a Figure addition/subtraction re-
lationship. However, it also is a distribution of two relationship because there
are two of every unique element in each row and column. Rather than mentally
overlaying the objects, one counts up the number of each element.

If some examinees do not apply the figure addition/subtraction relation-
ship in their problem solution, then the much-harder distribution of two rule
would be required. Both construct representation and nomothetic span would
be impacted for such examinees. For construct representation, the item would
be much more difficult, since it would demand high levels of working-memory
capacity and abstraction. As a consequence, the estimated abilities for such
an examinee would be lowered. For nomothetic span, if scores are artificially
lowered, then the test would be expected to be a less-valid predictor.

In this study, the latent class structure of item responses on a matrix-
completion test is examined to determine whether figure addition problems
are solved by different methods for different examinees. The potential impact
of these latent classes on both construct representation and nomothetic span
is also examined.

15.2.1 Methods

Participants

The participants were 801 Air Force recruits at Lackland Air Force Base. Data
on demographics, as well as scores on the Armed Services Vocational Aptitude
Battery (ASVAB), were also available for the sample.

Instruments

A fixed-content form ART (Embretson, 1995b) was administered. The ART
consisted of 34 matrix-completion problems (as shown in Figure 15.3), with
a multiple-choice format of eight response alternatives. A measure of the big
5 personality factors (see Digman, 1990) was also administered. The big 5
personality factors include neuroticism, extroversion, intellect, agreeableness,
and conscientiousness. The test consisted of adjectives in which the examinee
evaluated appropriateness in a continuous response format.
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Procedure

ART and the big 5 personality factors were administered on Lackland Air
Force Base in a large computer laboratory. A laboratory supervisor monitored
all examinees.

15.2.2 Results

Construct Representation

The mixed RM was applied to the ART item response data. The data log-
likelihoods of solutions with successively larger numbers of classes were com-
pared in the same manner as for Study 1. According to the AIC, the two-class
solution fits better than the one-class solution. The AIC index dropped by
328.33. The correlation of item difficulties between the classes was moderate
(r = .737, p < .01), indicating substantial differentiation between the classes.
The proportions in each class were .64 for Class 1 and .36 for Class 2. Accord-
ing to the AIC, the three-class solution fit the data better than the two-class
solution. Note that the change in AIC was smaller, dropping by 50.70. No
further extraction of classes was attempted, since the BIC index increased
from the two-class to the three-class solution. The proportions in each class
were .365, .323, and .313, respectively, for Class 1, Class 2, and Class 3.

The correlations of item difficulties in the three-class solution are shown
in Table 15.4.

Table 15.4. Correlations of item difficulties in two- and three-class solutions

2-Class 2-Class 3-Class 3-Class 3-Class
Class1 Class2 Class1 Class2 Class3

2-Class: Class1 1 .737∗∗ .969∗∗ .957∗∗ .693∗∗

2-Class: Class2 .737∗∗ 1∗∗ .767∗∗ .678∗∗ .996∗∗

3-Class: Class1 .969∗∗ .767∗∗ 1 ∗∗ .862∗∗ .736∗∗

3-Class: Class2 .957∗∗ .678∗∗ .862∗∗ 1 .622∗∗

2-Class: Class1 .693∗∗ .996∗∗ .736∗∗ .622∗∗ 1

∗∗Correlation is significant at the 0.01 level (2-tailed).

Class 1 and Class 2 of the three-class solution had a relatively high corre-
lation and appeared to be a subdivision of Class 1 of the two-class solution,
since the intercorrelations were high. A scatter-plot of the regression of Class
2 on Class 1 in the three-class solution revealed that only one item fell outside
a 95% confidence interval, namely, an extremely easy item with a large stan-
dard error. Thus, the three-class solution, although better in fit by the AIC
but not the BIC, led to only trivial pattern differences between two of the
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three classes. Thus, the two-class solution was deemed the most appropriate
for the data.

Figure 15.4 is a scatter-plot of the item difficulties in the two-class solu-
tion. Items are designated by type of relationship: figure addition/subtraction
versus analytic relationships (i.e., all other types). It can be seen that items
with figure addition/subtraction relationships are relatively harder in Class 2
than in Class 1.

The latent classes were further studied by examining the psychometric
properties of ART scores. Individuals were assigned to the latent class in
which their response pattern had the highest relative likelihood. Table 15.5
shows that Class 1 had a substantially higher mean ability than Class 2. This
difference was statistically significant (F = 519.166, df = 1, 799, p < .001).
The internal consistency reliabilities, also shown in Table 15.5, are reasonably
high for both latent classes.

Table 15.5 also presents results on response-time differences between
classes. Overall response time on the items differed significantly (F = 73.311,
df = 1, 799, p < .001), with the Class 1 mean higher than the Class 2 mean.
However, these results do not necessarily indicate that Class 1 processed the
items more slowly, because total response time includes both correct and in-
correct items. In fact, examinees with lower ability may spend less time on
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Table 15.5. Descriptive statistics for latent classes on the Abstract Reasoning Test

Class 1 Class 2
Trait Mean 1.17 −.42
Trait SD .91 .97
Reliability .77 .84
Total RT Mean 35.01 26.77
Total RD SD 12.36 13.67
Correct RT Mean 28.86 21.23
Correct RT SD 9.98 10.88

difficult items due to the perceived difficulty (Schnipke & Scrams, 1997). Thus,
correct response time is a better indicator of processing than total response
time. It can be seen in Table 15.5 that correct response time also differed be-
tween classes (F = 95.421, df = 1, 799, p < .001), with the Class 1 mean again
higher than the Class 2 mean. However, since Class 1 members solved more
items, due to their higher ability, their mean on correct response time is based
not only on more items, but on more difficult items than the Class 2 mean.
Thus, correct response times were further analyzed by using the number of
items solved as a covariate in a repeated-measures ANOVA. A type (figure
addition versus analytic items) by class analysis of correct response time was
performed with the number of analytic items and the number of figure addition
items solved as covariates. The data did not meet the assumption of sphericity
(χ2 = 444.649, df = 2, p < .001), but the use of single-degree-of-freedom tests
in the current design minimized the impact of the assumption on error (see
Judd & McClelland, 1989). In the repeated-measures ANOVA, the class main
effect was not significant (F = 2.617, df = 1, 797, p < .001), but the interaction
of class with type was statistically significant (F = 4.776, df = 1, 797, p < .05).

Figure 15.5 plots the residualized correct response times by type and class.
It can be seen that when residualized, Class 2 had somewhat longer response
times than Class 1. Further, although the analytic items differed little between
classes, the figure addition items are associated with increased response time
for Class 2, which is the basis of the significant interaction.

To further elucidate construct representation, cognitive models were fit
separately within each class. Memory load, as defined above, and three en-
coding variables—distortion, fusion, and number of unique elements—were
scored for each item. this variable is the weighted sum of the relationships in
an item, where the weights reflect the position of the relationship in the hier-
archy described above. Thus, figure-addition relationship were scored with the
second-lowest weight, according to the hierarchy, indicating that less memory
load was required to process these relationships. LLTM was applied separately
within each class, using memory load and three variables to reflect encoding
difficulty, distortion, fusion, and number of unique elements in the stem.
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Fig. 15.5.

The LLTM parameter estimates are shown in Table 15.6. The overall model
fit was quite similar in the two classes, .681 and .708, respectively in Class 1
and Class 2. Further, in both classes, memory load, distortion, and number of
unique elements had positive and significant weights in the cognitive model.
However, the weights for two variables differed significantly in magnitude be-
tween the classes. Memory load had a significantly smaller weight in Class 2,
while number of unique elements had a significantly greater weight in Class
2.

15.2.3 Nomothetic Span

The relationship of ART scores to external variables was examined using SEM.
A multisample model was specified for the regression of the ASVAB factors on
ART. In the most-constrained model, the regressions of the ASVAB factors on
ART were fully constrained across classes. The prediction residual variances
for the factors and their intercorrelations were free to vary across classes.
The data departed significantly from this model (χ2 = 18.432, df = 4, p < .01,
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Table 15.6. LLTM Weights and standard errors for cognitive models of ART in
two latent classes

Class 1 Class 1 Class 2 Class 2
Variable Weight SE Weight SE t Value
Memory Load .197 .004 .119 .007 9.78
Distortion .115 .052 .233 .073 −1.32
Fusion −.029 .018 .110 .063 −1.75
Unique Elements .102 .012 .196 .015 −4.94

CFI = .929) and the comparative fit index was moderately high. The Lagrange
multiplier test indicated that releasing two constraints across the latent classes
would significantly improve fit; namely, the relationship of ART with both
verbal reasoning and mathematical reasoning. A second SEM model, with the
regression of the factors on ART free to vary across classes, led to significantly
better fit (χ2 = 8.792, df = 2, p < .01). The data did not depart significantly
from the model (χ2 = .294, df = 2, p = .863) and the comparative fit index
was at the boundary (CFI = 1.000).

Figure 15.6 shows the unstandardized regression coefficients and their stan-
dard errors (in parentheses) for the ASVAB factors on ART. All four factors
were significantly predicted by ART.

ART

Verbal Ability Math/Reasoning SpeedTechnical

.22 (.04) 

.04 (.05)

.37 (.03)

.20 (.04).17(.03)
.07(.03)

Fig. 15.6.
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For the two factors technical and speed, only one set of coefficients is shown
since these coefficients did not differ significantly across classes. However,
for the other two factors, verbal reasoning and mathematical reasoning, the
regression coefficients for both classes, Class 1 followed by Class 2, are shown.
For mathematical reasoning, the estimated regression coefficients were .37 and
.20, respectively. For verbal reasoning, the estimated regression coefficients
were .22 and .04, respectively.

Since the distribution of ART scores in the classes varied substantially,
class differences in the regression estimates may have been biased by the
scant information at the opposite extremes within the two classes. Thus, for
comparison, estimates were obtained by employing a common range on ART
for both classes, from −1.00 to 2.00, which resulted in 429 and 197 cases,
respectively, available from Class 1 and Class 2. For mathematical reasoning,
the estimated regression coefficients were close to the full sample results for
both Class 1 (b = .34) and for Class 2 (b = .24) and within the range of
their respective standard errors shown in Figure 15.6. Similarly, for verbal
reasoning, the common range on ART yielded regression coefficients of .15
and .03, respectively, for Class 1 and Class 2. The regression coefficient was
nearly identical for Class 2, but the regression coefficient for Class 1 appeared
to decline. However, the Class 2 regression coefficient was still within two
standard-error units of the full class estimate.

The relationship of ART to the personality measures was also examined
in a multisample SEM. In the most constrained model, only the regression
of the personality factors on ART was fully constrained across classes. The
residual variances for the factors and their intercorrelations, as well as the ART
variances, were free to vary across classes. The data departed significantly
from this model (χ2 = 12.118, df = 5, p < .05, CFI = .991) although the
comparative fit index was high. Since the Lagrange multiplier test indicated
that releasing the constraint for the regression of intellect on ART would
significantly improve fit, a second SEM model, with this constraint released,
was run. This model fit significantly better (χ2 = 8.067, df = 1, p < .01). The
data did not depart significantly from the model (χ2 = 3.854, df = 4, p = .426)
and the comparative fit index was at the boundary (CFI = 1.000).

Figure 15.7 shows the unstandardized regression coefficients and their stan-
dard errors for the two classes. Both neuroticism and intellect were signif-
icantly related to ART scores. However, the relationship of intellect varied
by class; a strong positive relationship was observed for Class 1, while an
insignificant negative relationship was observed for Class 2.

15.2.4 Discussion

The results generally supported the hypothesis that processing differences
between examinees in solving abstract reasoning items had impact on the
construct validity of scores. Both construct representation and nomothetic
span were impacted.
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Fig. 15.7.

The rule hierarchy is central to Carpenter et al.’s theory of processing
abstract-reasoning items because it determines the working-memory load of a
particular item. However, items that involved a low-level holistic relationship,
figure addition, also could be solved by a high-level abstract relationship with
null values. It was hypothesized that some examinees may not apply the low-
level rule and consequently could solve items only by applying the high-level
abstract rule. Since presumably easy items become more difficult for these
examinees, their estimated abilities would be expected to be lower, since they
would be less likely to solve the items. Further, for those items that are solved,
more-extended processing time is expected since they must progress up the
rule hierarchy to reach the more abstract relationship. Last, the relationship
of test scores to other variables is expected to be lowered for these examinees
since their processing strategy is artificially lowering their scores.

The diverse results presented above on construct representation supported
the hypothesized differences between examinees. First, the application of the
mixed RM supported two latent classes. As predicted, these classes were dif-
ferentiated by the relative difficulty of the items that could be solved by either
figure addition or abstract analytic relationships. For the smaller class (Class
2), the items were more difficult. Further, the estimated abilities for Class 2
were substantially lower on average, also as expected. Second, the cognitive
modeling of item difficulty within the classes, using LLTM, indicated differ-
ential impact of the underlying sources of cognitive complexity. In particular,
the weight of memory load in item difficulty was lower in Class 2. This could
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be expected also, because the memory-load factor depends on the position of
the relationships in the rule hierarchy. Some items were inappropriately char-
acterized by the rule hierarchy for Class 2 because they apparently were solved
by the abstract high-level rule rather than the simple holistic rule. Third, the
results on correct response time indicated that Class 2 spent relatively more
time on items that could be solved by simple holistic relationships. That is,
Class 2 examinees generally solved only the easiest of these items and when
they were solved, they spent longer on the items than did Class 1 examinees.

In conclusion, the impact of the latent classes on both construct represen-
tation and nomothetic span indicates that the construct differs qualitatively
between classes. In general, the construct appears to be only weakly measured
for Class 2 examinees, due to their failure to apply a relatively simple type
of relationship to the items. There are several approaches to resolving this is-
sue. One approach would be to include both ability estimates and latent-class
membership in the interpretation and use of the ability scores. This approach
is certainly feasible, since currently available programs for the mixed RM
provides the appropriate indices. However, for this particular source of class
differences, there may be a more parsimonious solution. Now that the latent
classes have been identified, perhaps some intervention can be undertaken to
ensure that the construct is uniform across examinees. Perhaps processing
can be equalized for all examinees by more extensive test preparation. It may
be only that an example or two of the low-level rule is needed to ensure the
appropriate application of it. In any case, however, the utility of the mixed
Rasch for construct validity is clearly indicated by the results of this study.

General Conclusion

The applications of the mixed RM to spatial ability and to abstract reasoning
indicated that construct validity is impacted by latent classes. Thus, the same
construct is not measured uniformly for all examinees and the same interpre-
tations do not apply. This creates a problem for traditional test use, since the
interpretations based on a single class are not appropriate for all examinees.

The solution to handling ability tests for multiple latent classes may de-
pend on the particular ability and the nature of the latent classes. For spatial
ability, the classes had substantive meaning. Thus, classifying examinees prior
to interpreting test results would be appropriate. Then, interpretations could
be developed separately for each latent class. For abstract reasoning, how-
ever, removing the source of the second class may be more feasible. That is,
if the basis of the class differentiation could be removed, application of an
easy relationship, a single class may then be appropriate. In any case, further
research is needed on other abilities to determine whether uniform construct
interpretations are appropriate.
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16.1 Introduction

Mixture IRT models such as the mixed Rasch model (RM) have the potential
to illuminate conflicting findings in the analysis of responses to organizational
assessments of noncognitive abilities such as personality inventories and at-
titude assessments. The preponderance of psychometric work (especially in
the early history of test analysis) has been done in the realm of cognitive
abilities, where data are presumably much more ordered than in the person-
ality or noncognitive ability domains (see Zickar, 2001). One key difference
between personality and ability assessment is that in personality measure-
ment, respondents often know what the “correct” or socially desirable answer
is even if that answer does not apply to their own personality. Given this,
responses to personality items depend not only on the respondent’s true per-
sonality but also his or her motivation to respond favorably (or unfavorably
in certain situations). This can create problems because in a given sample
of job applicants there may be a diversity of faking styles present. Some or
most respondents may reply honestly out of ethical or religious reasons or
for fear of getting caught. Other respondents may feel no compunction about
distorting and will choose answers that they believe will result in their best
chance of being hired. Finally, others, perhaps worried about getting caught
but still motivated to get hired, might slightly exaggerate their personality
characteristics to increase their chances of being hired.

Response distortion has been studied extensively throughout the last half-
century. Researchers have examined faking positively (McFarland & Ryan,
2000), social desirability (Edwards, 1957; Paulhus, 1984), and even faking
negatively or malingering (Gillis et al., 1990; Lim & Butcher, 1996). In ad-
dition, others have examined the role of response sets or response tendencies
on personality and attitude scales (Graham, 2000; Messick & Jackson, 1961).
For example, some respondents may have an acquiescence tendency and agree
passively with personality items regardless of the items’ content. Other re-
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spondents may have a central tendency style and be more likely to choose
options that are in the middle of the scale. Moreover, the number of cate-
gories that are appropriate for expressing one’s opinion might differ between
individuals. There might be individuals who prefer simple judgments such
as yes versus no and might be overwhelmed by more response categories,
whereas others would prefer a response scale with many categories to express
their opinions appropriately and would consider a binary response scale as
insufficient. Individual preferences for the number of response categories can
produce structural differences in category use if all respondents have to re-
spond to the same response scales (Eid & Rauber, 2000).

Given the diversity of response styles, motivations, and sets, mixed RMs
seem particularly appropriate for analyzing data from personality tests and
attitude surveys. It seems possible that the complexity of these types of data
lends itself well to being modeled by mixture-distribution IRT. In addition,
the number and nature of classes may depend on the types of samples that are
completing the personality inventory or attitude survey. For example, telling
research participants that they should answer as honestly as possible may
result in a simpler solution (i.e., fewer classes) than a sample that includes
job applicants with a wide variety of motivations. In the case of attitude sur-
veys, having someone sign their name may provide different types of responses
than if the survey were anonymous. The aim of this chapter is to illustrate
how mixed RMs can be used in personality and organizational research to
detect structural differences in response processes that may be caused by
response styles, social desirability, faking, and structural differences in the
construct under consideration. Moreover, the chapter aims at reviewing the
major results of previous studies that have applied mixed Rasch models in this
context. Because response scales with two categories differ in many ways from
response scales with more than two categories, the topics mentioned above
will be discussed separately for binary and polytomous response variables.

16.2 Binary Response Scales

Binary response scales have many advantages. They are simple and economi-
cal, and everybody can understand the meaning of response categories such as
yes and no. Binary response scales prevent many of the individual differences
in category use that are caused by individual differences in understanding
category labels and that are due to response styles such as preferences for the
middle category. Nevertheless, binary response scales are prone to response
styles (e.g., yea- and nay-saying), faking, and other influences that can cause
structural differences between individuals. Some of these response styles and
structural differences will be discussed and illustrated in this section.
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16.2.1 Yea- and Nay-saying

Classical response styles that are typically discussed when binary response
categories are under consideration are yea-saying and nay-saying. Respon-
dents who have either of these two response styles tend to use one of the two
categories regardless of the content of the item. What are the consequences
of these response styles for modeling binary item responses, and what are the
advantages of mixed modeling in this domain? Response styles such as yea- or
nay-saying make it likely that the population consists of latent subpopulations
that differ structurally in the item parameters of the IRT model considered.
For example, in analyzing a personality inventory consisting of binary items,
there may be three separate classes of respondents: a yea-saying class, a nay-
saying class, and a class with neither of these tendencies. Mixed RMs can help
to detect these subgroups in different ways.

In order to detect yea- and nay-saying, it is important to have positively
and negatively keyed items to separate these response patterns from those that
can be expected for individuals with high and low trait values. There are at
least two ways to detect these response tendencies. First, person-fit indices can
be used to detect individuals with unexpected response patterns (e.g., Meijer,
2003; von Davier & Molenaar, 2003). If the items measure a one-dimensional
trait, response patterns of yea- and nay-saying are response patterns that are
unlikely, and individuals showing these response patterns would be detected
as outliers. Consequently, these individuals could be removed from the total
sample and treated as a special subsample. HYBRID models (Yamamoto,
1989) would be a model-based alternative to the person-fit approach. If there
are yea- and nay-sayers, we would expect two latent classes in addition to
a latent Rasch homogeneous class. One class would comprise the yea-sayers
with high probabilities for choosing the yes category independently of the
(positively or negatively keyed) content of the item, and one latent class would
consist of nay-sayers with high probabilities for the category no. In order to
test the existence of yea- and nay-saying response styles, the fit of a HYBRID
model with three classes (one Rasch homogeneous class, one yea-saying class,
one nay-saying class) can be compared with a one-class RM, and it can be
analyzed to determine whether the probabilities of the responses in the latent
classes are in line with the expectations.

16.2.2 Social Desirability and Faking

It is more difficult to detect social desirability and faking patterns. Social
desirability and faking produce response patterns that are in line with the de-
sirability of specific behavioral acts. If a questionnaire measuring a trait that
is socially desirable (e.g., emotional stability) contains both negatively and
positively keyed items, a response pattern with high probabilities of the yes-
categories of positively keyed items and high probabilities of the no-categories
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of the negatively keyed items would be in line with a social desirability pat-
tern. This response pattern would be clearly different from a response pattern
of yea- and nay-saying. However, it would be hard to distinguish a socially
desirable or faking response pattern from a pattern produced by an individual
with a high trait value who responds honestly or accurately. Even including
behavioral acts that are very difficult to show (e.g., items that have very rare
frequencies) would not solve this problem perfectly. It seems to be easier to
detect the response styles of social desirability and faking with polytomous
response categories because it is much more unlikely that individuals always
choose the highest categories when items vary in their difficulties and highly
difficult items are included. Moreover, it would be important to research the
influence of different instructions on item parameter estimates under mixed
RMs. We will explain such a research program and its results when we describe
models for polytomous items.

16.2.3 Structural Differences in Item Difficulties

One-dimensional IRT models assume that all items can be ordered on a single
latent continuum, and that this ordering of items is identical for all individuals.
However, this assumption is very restrictive. If the trait of conscientiousness
is measured, for example, by items indicating several behavioral acts, it is
likely that for some individuals one behavioral act (e.g., to keep to schedule)
is easier than another (e.g., always cleaning the recreation room) whereas for
others, cleaning the recreation room would be easier than keeping to sched-
ule. If structural differences exist, a one-dimensional model would not fit the
data, and the mixed RM allowing structural differences in item parameters be-
tween subpopulations and individual differences within subpopulations would
be superior (see also Embretson’s chapter in this volume).

These structural differences are not due to response styles and faking.
Instead, they represent true differences that exist between individuals. That
means that the mixed RM not only is useful for detecting response patterns
that indicate invalid responses but also enables the researcher to scrutinize
valid structural differences between individuals in a more appropriate way.

In empirical applications it is often not known whether there are structural
differences between individuals that are due to response styles, faking, or valid
differences. In the following section we will present an empirical application
of the mixed RM to binary items and we will show how the comparison of
different models and the interpretation of the best-fitting model can help one
to understand whether structural differences between individuals are valid or
caused by response styles or faking.

16.2.4 An Example

In order to illustrate the usefulness of mixed RMs for personality assessment
we selected six items from a scale measuring social orientation, a subscale of
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the Freiburg Personality Inventory (Fahrenberg et al., 1984), a widely applied
German personality questionnaire. The wording of the six items was translated
and is given in Table 16.1.

Table 16.1. Response probabilities and item parameters for the HYBRID model
with two Rasch classes and one latent class
Item Class 1 (size: 41%) Class 2 (38%) Class 3 (21%)

Item Item
Probabilities Parameters Probabilities Parameters Probabilities

The probabilities and item parameters refer to the category yes

1. I often think that I should .71 −.08 .14 2.65 .36
reduce my spending in
order to give it to
disadvantaged people
2. I often feel guilty .81 −.98 .36 1.10 .65
when I see how bad
off other people are
3. I occasionally give money .42 1.95 .37 1.05 .99
and donations to emergency
services, charitable
organizations, and other
collections.

The probabilities and item parameters refer to the category no

4. I think that people in .75 −.43 .86 −1.77 .56
developing countries
should first of all help
themselves.
5. I think everybody should .66 .24 .89 −2.09 .48
make sure by him- or herself
to have enough
6. Because the government .78 −.70 .75 −.94 .66
provides welfare aid I do not
have to care for others in a
particular case

Each item has to be answered by choosing the response category yes or
no. Three items are positively keyed, and three items are negatively keyed.
The negatively keyed items were recoded in order to apply a Rasch model
with the computer program WINMIRA (von Davier, 2001). The sample con-
sisted of 500 individuals who responded to the FPI. In order to find the most
appropriate model and in order to find out whether there are response styles,
we applied several models:

1. The RM that assumes that all items are indicators of one latent variable
representing individual differences in social orientation. According to this
model all individuals use the items in the same way and there are no
structural differences.

2. A HYBRID model with one Rasch homogeneous class and two latent
classes comprising yea- and nay-sayers. The basic idea of this model has
been described above.
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3. A HYBRID model with one Rasch homogeneous class and one latent
class. Whereas the Rasch homogeneous class can represent valid individual
differences, the latent class could cover a response style such as social
desirability (high probabilities for the yes categories of the positively keyed
items and high probabilities for the no categories of the negatively keyed
items).

4. Mixed RMs with several latent classes representing the idea that there
might be valid structural differences between subgroups. Because we have
not a specific hypothesis about the number of the latent classes, we aug-
mented the number of latent classes until the fit of the model could not
be improved.

5. Because there could be valid structurally different classes as well as re-
sponse style classes we also tested a HYBRID model with two Rasch
classes and a latent class.

The fit coefficients are given in Table 16.2. The fit of the models can be
tested by the Pearson test, the likelihood ratio test, and the Cressie–Read
test (von Davier, 2001). All three test statistics show that the RM does not
fit the data well but that all extensions of the RM fit the data quite well. To
find the (relatively) best fitting model among the ones compared, information
indices such as the AIC and CAIC can be used. According to these criteria,
the best-fitting model is the model with the lowest value for a particular index.
According to the AIC coefficient, the HYBRID model with three classes (two
Rasch classes, one latent class) shows the best fit. This model is also quite
competitive when one looks at the other fit coefficients. We chose the AIC
coefficient for selecting the best model because we have only a small number
of possible response patterns (26 = 64) and a reasonable expected cell count
given the sample size compared to table size (Rost, 2004).

The response probabilities characterizing the three classes are given in
Table 16.1. These response probabilities describe the classes in general. They
are also the individual response probabilities in Class 3 because this is a
traditional latent class. The individual response probabilities in the Classes
1 and 2 vary, since an RM explains individual differences in these classes. In
the first two classes, item parameters can also be estimated, indicating the
location of the items on the latent continuum.

The table shows that the first class may be labeled the “high social orien-
tation class” because the response probabilities of all categories indicating a
positive social orientation are high. Members of the second class agree in gen-
eral that there is a responsibility to care for disadvantaged people but they do
not feel guilty, they do not want to change their life and they do not give money
to charitable organizations. The differences between the first two classes are
also reflected in the item parameters. The item parameters are very different
in the two classes. Some items that are rather easy in Class 1 (negative item
parameters) are rather difficult in Class 2 (positive item parameters) and vice
versa. In Class 1 the item parameters are more homogeneous than in Class
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Table 16.2. Goodness-of-fit of different models
Likelihood Cressie–

Model AIC CAIC df Pearson p Ratio p Read p
RM 3642.32 3678.82 56 118.86 < .01 108.55 < .01 112.50 < .01

HYBRID models

2 classes: 3611.27 3684.28 49 59.97 .14 63.50 .08 60.20 .08
1 Rasch class
1 latent class
3 classes: 3601.02 3715.74 41 35.47 .71 37.25 .64 35.33 .72
2 Rasch classes
1 latent class
3 classes: 3606.82 3716.33 42 43.60 .40 45.05 .35 43.25 .42
1 Rasch class
2 latent classes

Mixed RMs

2 classes 3610.61 3688.83 48 56.68 .18 60.84 .10 57.20 .17
3 classes 3606.39 3726.33 40 37.61 .58 40.62 .44 37.88 .57
4 classes 3609.38 3771.03 32 25.05 .79 27.61 .69 25.29 .79

2. The only item that is comparatively difficult in Class 1 is Item 3 concern-
ing the donation of money. In Class 2, there are stronger differences between
the positively and negatively keyed items. In this class, the negatively keyed
items, indicating a general responsibility for the disadvantaged, have negative
item parameters, indicating that they are more likely to be endorsed, whereas
the items measuring individual feelings and behaviors are more difficult and
less likely to be endorsed.

In each class the raw score of an individual can be estimated. The raw score
is the number of items that has been answered according to social orientation
(possible range: 0 to 6). In the first class, the mean score of the raw score
is 4.12 and the standard deviations of the raw scores is 1.85, indicating a
generally high social orientation in this class but also substantive individual
differences. In Class 2, the mean raw score is 3.36 and the standard deviation is
1.29, indicating that the mean social orientation and the degree of individual
differences are smaller in the second class. The third class is characterized
by a large probability to give money to charitable organizations, whereas all
other probabilities vary around .50, particularly considering the negatively
keyed items. This means that members of this class give money but they have
an uncertain attitude toward the responsibility of supporting disadvantaged
people.

What do the results tell us about structural differences between subpop-
ulations and response styles? First of all, the results show that mixture-
distribution extensions of the RM are more appropriate than the one-dimen-
sional RM for this sample. The results show that we have not found a model
with one latent class of yea-sayers and one latent class of nay-sayers. At first
glance, the general response probabilities of the first class is consistent with
a social desirability pattern, and the pattern of general response probabil-
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ities of the second class resembles a nay-saying response set. However, the
two classes are not homogeneous with respect to the response probabilities,
since there are individual differences between individuals in each class and
the item parameters differ between items. These differences show that there
is not a clear homogeneous pattern that would be consistent with yea-saying
and nay-saying and social desirability response styles.

In the case of response styles one would have expected classes in which
the item parameters do not differ because the response probabilities of all
items (and therefore their difficulties) should be the same. Moreover, in the
case of response styles the individuals should not differ because each and every
individual should have answered all categories with high probabilities. Instead,
the different latent classes indicate substantial structural differences in item
parameters. There are differences in the difficulties of the item parameters
between the first two classes that are reasonable from a substantive point of
view. Moreover, the third class includes a group of people that give money, but
are generally more uncertain concerning their attitude toward disadvantaged
people. These results demonstrate that typological differences have to be taken
into consideration if we intend to measure personality traits. The fact that we
have not found response style classes might be due to the anonymity of the
study and that every participant was free to decide whether to participate.

16.3 Polytomous Response Scales

In addition to research on binary response scales in noncognitive ability as-
sessment, it is important to consider research on polytomous scales, given that
many tests include such formats. This section gives an overview of previous
studies that have used mixture-distribution IRT to model polytomous data
and discusses the implications of these studies for future research.

16.3.1 Analysis of Unmotivated Personality Data (Rost et al.,
1997)

Rost et al. (1997) report the analysis of two scales (extraversion and con-
scientiousness) of a German-language version of the five-factor personality
inventory (NEO-FFI; Costa & McRae, 1992). They found that, while a four-
class solution fits the extraversion scale, the conscientiousness scale could be
fitted with a two-class solution. Even though the four-class solution fit best
statistically (using the CAIC criterion), for the extraversion scale they pre-
ferred to interpret the two-class solution for both scales, since the two-class
solution seemed more interpretable. For the extraversion scale, the two classes
corresponded to two subdimensions of the extraversion scale: sociability and
impulsivity. The two classes separated the sample into those who were more
sociable relative to other components of extraversion, and those who shared
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all of the extraverted components equally. In a sense, the two-class struc-
ture of the extraversion scale is due to construct heterogeneity, not response
tendencies.

The different classes in the conscientiousness scale, however, were at-
tributed to different usages of the response scale. Class one had a tendency
to extreme ratings (people in that class avoid the middle categories), whereas
class two has a tendency for more moderate ratings. Upon further investiga-
tion (e.g., they analyzed dimensions of the extraversion scale separately to
eliminate construct heterogeneity), Rost et al. (1997) found the same class
structure within the extraversion scale in which separate extreme responding
and moderate responding classes were identified. They also found moderate
concordance between class memberships across scales. Individuals who were in
the moderate responding class for the conscientiousness scale were more likely
to be in the moderate responding class for the extraversion scale as well.

Rost et al. (1997) point out that by using mixture-distribution IRT to es-
timate latent traits, there is an automatic correction used to compare people
with different response sets. In a sense, people with the same overall score for
the scale may get assigned different latent-trait scores if they are in different
classes. People in the moderate responding class who receive an overall low
score will be assigned a lower latent-trait score compared to those who are in
the extreme responding class who receive the same overall score. Of course,
there are difficulties in comparing latent-trait scores of individuals from dif-
ferent classes. It is important to ensure that the structure of the traits does
not differ substantially across the classes. In this analysis, the main difference,
especially for the conscientiousness scale, appears to be in how people react
to the response scales. In this case, the comparison seems useful; estimat-
ing person parameters within classes may help control for different response
styles.

The Rost et al. (1997) analysis provides a useful first step in demonstrat-
ing how mixture-distribution IRT can help us to better understand response
styles in personality data. However, the respondents from that sample were
predominantly students who were filling out the personality inventory for
research purposes. It might be expected that the differences in motivation be-
tween the respondents would be less than in other scenarios. In the following
we summarize three studies applying mixed RMs to nonstudent samples, two
from organizational psychology (Eid & Rauber, 2000; Zickar et al., 2004), and
one from clinical psychology (Gollwitzer et al., 2005).

16.3.2 Detecting Measurement Invariance in Organizational
Assessment: Eid & Rauber (2000)

Eid & Rauber (2000) investigated whether judgments of satisfaction with ones
superior can be compared across the divisions of an organization. For example,
if one wishes to create a ranking of all superiors of a company with respect to
their leadership behavior it is necessary that all employees use the response
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scales similarly to obtain fair comparisons. Moreover, the benchmarking of
different companies is possible only if the employees of the companies do not
differ in how they use the categories. Eid & Rauber (2000) applied mixed
RMs to six satisfaction ratings with a six-point response scale (not at all true,
mainly not true, rather not true, rather true, mainly true, exactly true). Their
results revealed that not all employees of the organization used the response
scale in the same way. Instead, two latent classes were identified. Threshold
parameters are used to model the amount of difficulty of particular options.
With scales that are working normally, the least-extreme or easiest option
should have a lower threshold compared to an option that is more extreme.
In this data set, for the majority of employees (71%) a model with ordered
thresholds held, indicating that these employees made use of all response cat-
egories in a comparable way using the order implied by the category labels;
about one-third of employees preferred the most extreme response categories
to express their attitudes. That means that members of the latter group were
overwhelmed by a six-point response scale and evaluated their superiors more
in a binary way. Most interestingly, class membership differed across job cate-
gories and demographic variables (e.g., gender, tenure, and age). Women were
more extreme responders compared to men, and those who were in their po-
sitions longer and who held leadership positions were more likely to be in the
extreme responding class than employees with short tenures and low levels of
leadership.

The results of this study show that measurement invariance might not be
the rule in organizational surveys, and that the assumption of measurement
invariance should be routinely checked in organizational surveys, particularly
when different divisions or organizations are to be compared. But even in the
case of lack of measurement invariance, ratings can be compared across divi-
sions and companies with the help of mixture-distribution models. Employees
can be assigned to the subgroup to which they most likely belong, and the di-
visions and companies can be compared within each subgroup. Hence, taking
class differences into account could be much more informative than ignoring
the problems that are caused by measurement invariance in organizational
surveys.

16.3.3 Analysis of Faking Data: Zickar et al. (2004)

The motivation to fake may influence the class structure for personality inven-
tories. There has been extensive research to demonstrate that faking influences
responses to personality inventories and modifies the factor structure. For ex-
ample, Schmitt & Ryan (1993) found that the factor structure of a big five
personality inventory differed across applicant and nonapplicant samples; in
the applicant sample, an additional factor (an “ideal employee” factor) was
needed that was not present in the nonapplicant sample. Using traditional
IRT methods (the graded response model), Zickar & Robie (1999) also found
that the factor structure changed across samples.
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Zickar et al. (2004) reanalyzed faking study data from two different sam-
ples using a mixture-distribution IRT. The first data set was an experimental
faking sample in which some respondents (military recruits) were told to re-
spond honestly whereas other respondents were told to fake positively. There
were two conditions within the faking group; the ad lib faking group was
given no instructions about how to fake, whereas the coached faking group
was given explicit instructions on how to fake. The other sample had appli-
cants to a middle-management sales position for a large retail organization;
another group of job incumbents also completed the inventory. With both of
these samples, Zickar et al. (2004) examined the class structure and differences
in class membership across context. It should be noted that the personality
inventories used in both analyses were different. The inventory used in the
experimentally induced faking study was designed by the military as part of
its massive personnel research effort Project A (see White et al., 1993). The
other inventory used in the analysis of applicants versus incumbents was a
proprietary instrument designed by a private consulting company (Personnel
Decisions International, 1997).
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Fig. 16.1. Threshold parameter estimates for the honest class

In the experimentally induced faking samples, a two-class solution fit the
data best across five different personality traits (work orientation, conscien-
tiousness, nondelinquency, cooperativeness, and emotional stability). One of
the classes appeared to be an honestly responding class, whereas the other
appeared to be a faking class. The honestly responding group had much lower
item-level scores than the faking class. In addition, the category threshold
parameters were ordered properly for the honestly responding class whereas
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the thresholds were less ordered for the faking class. Figures 16.1 and 16.2 il-
lustrate this effect. The first threshold parameter estimate corresponds to the

Fig. 16.2. Threshold parameter estimates for the faking class

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Item

-2

-1

0

1

2

3

T
h
re
s
h
o
ld

Item Parameters in Class 2 with size 0.42590

threshold 1 threshold 2

level of the latent trait at which the probability of choosing option 2 becomes
larger than the probability of choosing option 1. The second threshold param-
eter estimate corresponds to the same probability difference between option 3
and option 2. Therefore, in Figure 16.1, which shows the honest class, it makes
sense that the first threshold parameter estimate is lower than the second pa-
rameter estimate. In addition, the difference between the two thresholds is
roughly equal for most items in the scale. For the faking class, however, the
pattern of thresholds is much less orderly. As can be seen in Figure 16.2, the
difference between the first threshold estimate and the second threshold is
much smaller than the difference for the first class. In addition, for fourteen of
the items, the second threshold is lower than the first threshold. This suggests
that in the faking class, few individuals choose the first and second options.
Similar results were found across all five of the personality traits.

A three-class solution was chosen based on information criteria for the
applicant-incumbent sample. Among the three classes, one was labeled an
honestly responding class; in that class, thresholds were ordered properly as
in Figure 16.1. Another class was identified as a slightly faking class. Item
scores were higher than those for the honestly responding group. Thresholds
were less orderly than those in Figure 16.1. Finally, the third class appeared
to be related to extreme faking.

One of the interesting findings from these analyses was that there was
substantial overlap among conditions in class membership. For example, 27.6%
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of the applicants were in the extreme faking class for the agreeableness scale,
which makes sense since applicants would be motivated to fake their responses
to get hired; however, 13.7% of incumbents were also in the extreme faking
class. Conversely, 26.5% of the applicants were in the honestly responding
class. Similar results were found in the experimental samples. In those samples,
some people in the honest responding condition were classified in the faking
class, whereas some participants in the faking conditions were also classified
in the honest class. Although classification error is a possibility, it is also likely
that there was significant overlap across the groups. People who were expected
to fake did not necessarily do so.

This mixture-distribution IRT analysis provided several insights into fak-
ing on personality inventories. First, much of the research has assumed that
there is little variability in types of faking strategies and methods. In the
typical applicant-incumbents comparison, it is assumed that applicants are
faking and incumbents are responding honestly. This research demonstrated
that there is an overlap of strategies and motivations among groups that
might have previously been assumed to be distinct. In addition, it has been
extremely difficult to ascertain the prevalence of faking using traditional meth-
ods (see Donovan et al., 2003). For fear of reprisal, applicants are reluctant to
admit that they distorted their responses. Mixture-distribution IRT provides
another way to assess the number of individuals who fit the profile of fakers.
In short, mixture-distribution IRT can help illuminate faking research.

16.3.4 Analysis of Response Styles in Anger Expression:
Gollwitzer et al. (2005)

Detecting response styles and faking with respect to personality question-
naires is important not only for organizational but also for clinical psychology.
The application of personality questionnaires has a long tradition in clinical
psychology. Response tendencies such as the simulation and dissimulation of
symptoms are well known (Franke, 2002; Linden et al., 1986). Gollwitzer et al.
analyzed the three expression subscales of the State-Trait Anger Expression
Inventory (STAXI) in a clinical sample of 4,497 patients with the mixed RM.
Their results revealed that there were different response styles that were ro-
bust across two randomly selected subsamples of the total sample. They found
response styles that reflect psychologically meaningful biases (i.e., social de-
sirability) as well as nonmeaningful response-category preferences. Moreover,
they detected gender differences. In the female sample they found three latent
classes for anger-in and anger-out, and two latent classes for anger-control. In
the male sample, however, a two-class solution was appropriate for each scale.
In all samples and gender groups the largest class showed a response pattern
with equally distant and ordered thresholds. Individuals with high member-
ship for this first class for one scale also had high membership probabilities for
the first class of all other scales. That means that individuals generally differ
in the appropriate use of response categories. The second latent class seemed
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to reflect social desirability. The threshold parameters in this class were partly
unordered and narrowly located. Moreover, frankness measured by a subscale
of the Freiburg Personality Inventory (Fahrenberg et al., 1984) discriminated
between Classes 1 and 2 for anger-in and anger-out. In the third class in the
group of women the threshold parameters were ordered in almost all cases,
demonstrating the adequate use of response categories. In contrast to the first
class, the mean sum scores in this class were elevated, indicating the display
of anger-expression styles to a higher degree. The authors of this study found
some clues that this pattern might be due to symptom aggravation, and sug-
gested further studies to advance this result. Several personality variables were
able to separate the latent classes, but the effect sizes were generally small,
showing that response styles have their own quality and structure and cannot
be simply explained by personality variables.

16.3.5 Future Research Directions

We believe that mixture-distribution IRT is an important psychometric tool
that can help integrate latent-class analysis with item response theory. In each
of the research studies presented in this chapter, single-class solutions result
in worse fit compared to more-complex solutions. In each of the examples, the
explanation given for the additional classes differs. In some cases, the classes
can be attributed to yea-saying or nay-saying. Other cases can be attributed
to socially desirable responses and structural differences in perceptions of how
behavioral acts fit into latent-construct structures. Below are some thoughts
that we have on how mixture-distribution IRT can help advance research and
practice.

Better Trait Estimation

Mixture-distribution IRT provides the potential for better trait estimation.
As Rost et al. (1997) suggest, in certain cases trait estimates from a mixture
distribution might be used to correct for response sets or even faking. For the
faking research, it may be possible that the latent traits estimated by mixture-
distribution IRT are much better estimates of personality traits compared to
latent traits estimated by a traditional psychometric technique. In order to
determine whether traits estimated using mixture-distribution IRT are indeed
more useful statistics, it is important to evaluate the predictive validity of
those trait estimates compared to other types of trait estimates.

Better Understanding of Subgroups

Mixed-group IRT is in a way similar to differential item functioning (DIF)
methods developed by item response theorists to model how items func-
tion across known groups (Raju et al., 1995). With mixed-group IRT it is
possible to identify groups for which the items function differently; mixture-
distribution IRT could be thought of as an exploratory DIF technique.
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16.3.6 Limitations of Mixture-Distribution IRT

Reliance on Rasch-Related Models

Mixture-distribution item response theory, as currently operationalized in
WINMIRA, relies on item response models derived from the Rasch family. For
example, WINMIRA currently allows for estimation of the RM, the partial-
credit extension of the RM for ordinal polytomous data (Masters, 1982) and
several other Rasch-based models. Although it is beyond the scope of this
chapter to reiterate all of the points in support of or against the RM, it is
important to note that the item response models currently assume that all
items have equal discrimination. This may be an assumption that could be
hard to justify in models that allow for differences in discrimination. Note,
however, that recently von Davier & Yamamoto (2004b) developed an EM
algorithm for estimating more general mixture IRT models, namely the two-
parameter logistic model and the generalized partial-mixture IRT models. For
researchers who are worried about discriminations, another strategy would be
to pay close attention to item-level fit statistics; it may be possible that only
one or two items may emerge as misfit by the RM. It could be simple to either
eliminate those items or tolerate a small amount of misfit. In Zickar et al.’s
(2004) mixed-group IRT analysis, we found that fewer items were misfits than
would even be expected given the alpha .05 error rate.

What Do the Groups Mean?

Another challenge associated with mixed-group IRT methods is determin-
ing the substantive grounding of individual classes. An analysis may indicate
that there is significant statistical evidence to warrant consideration of a la-
tent class; that evidence, however, reveals little about what are the particular
characteristics that distinguish that particular class from the other latent
classes.

There are several ways to interpret the meaning of class membership. Rost
et al. (1997) and Zickar et al. (2004) analyzed the pattern of item (and op-
tion) parameter estimates and item scores to gain a better understanding of
the meaning of class membership. In Rost et al.’s (1997) analysis, the interpre-
tation based on the dimensionality of the extraversion scale and based on the
different threshold parameter estimates allowed them to conclude that some
classes related to construct heterogeneity and others related to response sets.
In Zickar et al. (2004), a similar analysis of response patterns along with an
investigation of how class membership differed across experimental condition
and applicant-incumbent status allowed the investigators to establish meaning
to the statistical classes.

To better interpret class membership, however, we believe that it is impor-
tant to consider ancillary information. The studies of Eid & Rauber (2000)
and Gollwitzer et al. (2005) showed how ancillary information can be used to
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learn more about the differences between classes. Also, Gibby (2004) used an-
cillary information to better understand some of the faking research findings
previously discussed. In a student sample, he found two classes that corre-
sponded to the honestly responding class and the slightly faking class found
in Zickar et al. (2004). Respondents in the faking class had higher social in-
telligence scores (i.e., a higher skill for faking) and also reported at a higher
rate after the experiment that they had indeed faked their responses.

16.3.7 Conclusions

We believe that mixture-distribution IRT has a great potential for personality
assessment and its application in several fields of applied psychology such as
organizational and clinical psychology. The mixture-distribution approach in
general, and the development of further mixture-distribution IRT models over-
coming some limits of the mixed RM will have a strong impact on personality
assessment. This approach allows a more complete view of structural differ-
ences that can be caused by interindividual differences in item difficulties but
also by response styles and distortions due to faking, simulation, and dissim-
ulation. Several empirical applications reviewed in this chapter demonstrated
the power of this modeling approach for psychological assessment.
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17.1 Introduction

In large-scale educational assessments, such as the Programme for Interna-
tional Student Assessment (PISA) and the Trends in Mathematics and Science
Study (TIMSS), a primary concern is with the estimation of the population-
level characteristics of a number of latent variables and the relationships be-
tween latent variables and other variables. Typically these studies are under-
taken in contexts in which there are constraints on sample size and individual
student response time, yet there are high expectations with regard to the
breadth of content coverage. These demands and constraints have resulted in
such studies using rotated-booklet designs, with each student responding to a
limited number of items on each of a number of scales. This paper describes
the techniques that have been employed in such studies to enable the reliable
estimation of population characteristics when there is considerable unrelia-
bility at the student level. It also discusses the methodology that is used to
make the data sets produced in such studies amenable for use by data analysts
undertaking secondary analyses using standard analytic tools.

A primary concern in large-scale educational assessments is with the es-
timation of the population-level characteristics of a number of latent vari-
ables and their relationships with other variables. Such characteristics are, for
example, the mean, variance, and percentiles of latent-ability distributions;
correlations between latent variables; the relative performances of subpopu-
lations (e.g., males and females); correlations between latent variables and
other variables (e.g., indices of socioeconomic status); and variance decompo-
sitions such as the relative proportions of within- and between-school variance
in latent variables. This interest in population characteristics is in contrast to
many other educational measurement contexts in which the primary concern
is the reliable measurement of the abilities of individual students.

Large-scale assessments also have a number of other distinguishing, if not
unique, features. Due to a desire to meet the needs of many stakeholders, they
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typically attempt to simultaneously assess a large number of latent variables.
Second, they need to report their results as simple, summarized outcomes,
and third, they need to produce data products that can be used in secondary
analyses using standard statistical software tools such as SPSS (2003) or SAS
(The SAS Institute, 2002).

At the same time, such studies have to deal with a range of constraints.
First, there are cost-imposed limits on the student and school sample size.
Second, there are limits to the amount of testing time that is available for each
sampled student. The consequences of a desire to cover many latent variables
with a limited sample and a limited amount of testing time are complexity in
the study design and in the analytic techniques that are necessary to analyze
the data, summarize the data, and prepare a database suitable for secondary
analyses using standard tools.

In the following, we use PISA as an example to show how these demands
and constraints have resulted in such studies using rotated booklet designs,
with each student responding to a limited number of items on each of a number
of scales. The chapter then describes the techniques that have been employed
in such studies to enable the reliable estimation of the population charac-
teristics when there is considerable unreliability at the student level. It also
discusses the methodology that is used to make the data sets produced in
such studies amenable for use by data analysts undertaking secondary analy-
ses using standard analytic tools.

17.2 The PISA Design

PISA is a cyclical study with data collections occurring every three years
(OECD, 2001, 2004). Here we discuss the second cycle of PISA: PISA 2003.
In PISA 2003, four subject domains were tested, with mathematics as the ma-
jor domain, and reading, science and cross-curricular problem solving compe-
tencies as minor domains. Student achievement in mathematics was assessed
using 85 test items representing approximately 210 minutes of testing time.
The problem-solving assessment consisted of 19 items, the reading assess-
ment consisted of 28 items, and the science assessment consisted of 35 items,
representing approximately 60 minutes of testing time for each of the minor
domains.

The major domain of mathematics was made up of four subscales: space
and shape, quantity, change and relationships, and uncertainty. In total, there-
fore, PISA 2003 used seven latent reporting scales.

The 167 main study items were arranged into thirteen item clusters (seven
mathematics clusters, and two clusters in each of the other domains), with
each cluster representing 30 minutes of test time. The items were presented
to students in thirteen test booklets, with each booklet being composed of
four clusters according to the rotation design shown in Table 17.1. M1 to M7
denote the mathematics clusters, R1 and R2 denote the reading clusters, S1
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and S2 denote the science clusters, and PS1 and PS2 denote the problem-
solving clusters. Each cluster appears in each of the four possible positions
within a booklet exactly once and each cluster occurs once in conjunction
with each other cluster. Each test item, therefore, appeared in four of the test
booklets. This linked design enabled standard measurement techniques to be
applied to the resulting student response data to estimate item difficulties and
student abilities (OECD, 2004).

The sampled students were randomly assigned one of the booklets, which
meant that each student undertook two hours of testing.

Table 17.1. Cluster rotation design used to form test booklets for PISA 2003

Booklet Block 1 Block 2 Block 3 Block 4
1 M1 M2 M4 R1
2 M2 M3 M5 R2
3 M3 M4 M6 PS1
4 M4 M5 M7 PS2
5 M5 M6 S1 M1
6 M6 M7 S2 M2
7 M7 S1 R1 M3
8 S1 S2 R2 M4
9 S2 R1 PS1 M5
10 R1 R2 PS2 M6
11 R2 PS1 M1 M7
12 PS1 PS2 M2 S1
13 PS2 M1 M3 S2

The two-hour test booklets were arranged in two one-hour parts, each
made up of two of the 30-minute time blocks from the columns in Table 17.1.
PISA’s procedures provided for a short break one hour after the start of the
test, and a longer break to be taken between administration of the test and a
student questionnaire.

17.3 Steps in Scaling the Data

The PISA data were scaled with the mixed-coefficients multinomial logit
(MCML) model as described by Adams, Wilson and Wang (1997) and Adams
and Wu (Chapter 4 in this volume). The scaling was undertaken using the
ConQuest software (Wu et al., 1997).

A total of 42 countries participated in PISA 2003. The first step in the
scaling was to undertake a set of separate national calibrations. The outcomes
of the national calibrations were used to make a decision about how to treat
each item in each country. The possible treatments of items were as follows:
an item may be deleted from PISA altogether if it has poor psychometric
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characteristics in more than ten countries (a dodgy item); it may be regarded
as not administered in particular countries if it has poor psychometric char-
acteristics in those countries but functions well in the vast majority of others;
or an item with sound characteristics in each country but that shows sub-
stantial item-by-country interactions may be regarded as a different item (for
scaling purposes) in each country (or in some subset of countries), that is, the
difficulty parameter will be free to vary across countries.

In reviewing the national calibrations, particular attention was paid to the
fit of the items to the scaling model, item discrimination, and item-by-country
interactions (see OECD, 2004).

17.3.1 International Calibration

International item parameters were set by applying the MCML model, to a
subsample of 15,000 students. The model was specified so that dichotomously
scored items were scaled with Rasch’s simple logistic model (Rasch, 1960)
and items with multiple score categories were scaled with Masters’s partial-
credit model (Masters, 1982). This subsample of students, referred to as the
international calibration sample, consisted of 15,000 students comprising 500
students drawn at random from each of the 30 participating OECD countries.3

17.3.2 Student Score Generation

As with all item response scaling models, student proficiencies (or measures)
are not observed; they are missing data that must be inferred from the ob-
served item responses. There are several possible alternative approaches for
making this inference.

Plausible Values

PISA uses the imputation methodology usually referred to as plausible values
(PVs). It is very important to recognize that plausible values are not test
scores and should not be treated as such. They are random numbers drawn
from the distribution of scores that could be reasonably assigned to each indi-
vidual. As such, plausible values contain random-error variance components
and are not optimal as scores for individuals. Plausible values, as a set, are
better suited to describing the performance of the population. This approach,
developed by Mislevy & Sheehan (1989) and based on the imputation theory
of Rubin (1987), produces consistent estimators of population parameters.
Plausible values are perhaps best viewed as intermediate values that are pro-
vided to obtain consistent estimates of population parameters using standard
3 While 42 countries participated in PISA 2003, 30 of them were OECD member

countries and data from the OECD countries were used in the calibration sample.
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statistical analysis software such as SPSS and SAS. As an alternative, some
analyses can be completed using ConQuest (Wu et al., 1997).

Using the notation of Adams and Wu (this volume), Equation 17.1 gives
the posterior distribution from which the plausible values are drawn as

hθ (θn;Wn, x, γ,Σ|xn) =
fx (xn;x|θn) fθ (θn;Wn, γ,Σ)

fx (xn;Wn, x, γ,Σ)
, (17.1)

where the vector θn is the (multidimensional) latent ability for student n, ξ
is a vector of estimated item response parameters, Wn is a set of background
characteristics for student n, γ are the estimated regression coefficients of θn

onto Wn, and Σ is the estimated conditional covariance matrix. fx (xn; ξ|θn),
is the conditional item response model, fθ (θn;Wn, γ,Σ) is distribution of the
latent variables (see Equations 4.2 and 4.16 in Adams & Wu, this volume)
and fx (xn;Wn, ξ, γ,Σ) is the marginal item response model (see (4.17) in
Adams & Wu, this volume).

In PISA, the plausible values are drawn from the marginal posterior dis-
tribution (17.1) as follows:

M vector-valued random deviates, are drawn at random from {ϕmn}M
m=1,

the multivariate normal distribution, fθ (θn;Wn, γ,Σ), for each case n.4 These
vectors are used to approximate the integral in the denominator of (17.1),
using the Monte Carlo integration

∫
θ

fx (x; ξ|θ) fθ (θ, γ,Σ) dθ ≈ 1
M

M∑
m=1

fx(x; ξ|ϕmn) ≡ � . (17.2)

At the same time, the values

pmn = fx (xn; ξ|ϕmn) fθ (ϕmn;Wn, γ,Σ) (17.3)

are calculated, so that the set of pairs (ϕmn, pmn/�)M
m=1, which can be used

as an approximation of the posterior density (17.1) is obtained; and the prob-
ability that ϕnj could be drawn from this density is given by

qnj =
pmn

M∑
m=1

pmn

. (17.4)

At this point, L uniformly distributed random numbers {ηi}L
i=1 are generated,

and for each random draw, the vector ϕni0 that satisfies the condition

i0−1∑
s=1

qsn < ηi ≤
i0∑

s=1

qsn (17.5)

4 The value M should be large. For PISA, M = 2000.



276 Raymond J. Adams, Margaret L. Wu, and Claus H. Carstensen

is selected as a plausible vector.
Note, importantly, that this procedure does not assume normality of the

marginal posterior (17.1), as is the case for the procedures that have been
applied in the U.S. National Assessment of Educational Progress (NAEP)
(Beaton, 1987; Mislevy, Beaton, Kaplan, & Sheehan 1992).

Model Estimation

Before the plausible values can be drawn from the estimated marginal pos-
terior distributions it is first necessary to estimate the regression parameters
γ and Σ for each country. This is done by fitting the MCML model on a
country-by-country basis with the item parameters anchored at the values
that were estimated in the international calibration.

Before this model can be estimated it is also necessary to select the fixed
Wn variables that will be used in each country. In NAEP and PISA, these
variables are referred to as conditioning variables. The steps used to prepare
the conditioning variables are based on those used in NAEP (Beaton, 1987)
and in TIMSS (Macaskill et al., 1998). The steps involved in this process are
as follows:

• Step 1. Five variables (booklet ID, gender, mother’s occupation, father’s
occupation, and school mean mathematics score) were prepared to be di-
rectly used as conditioning variables. For mother’s and father’s occupation,
the SEI index was used. For each student the mean mathematics achieve-
ment for that student’s school was estimated using the mean of weighted
likelihood estimates for mathematics for each of the students that also
attended that student’s school.

• Step 2. Each variable in the student questionnaire was dummy coded. The
details of this dummy coding are provided in the PISA 2003 Technical
Report (OECD, 2005).

• Step 3. For each country, a principal-components analysis of the dummy-
coded variables was performed, and component scores were produced for
each student (a sufficient number of components to account for 95 per cent
of the variance in the original variables).

• Step 4. The item response model was fit to each national data set and
the national population parameters were estimated using item parameters
anchored at their international location and conditioning variables derived
from the national principal-components analysis and from Step 1.

• Step 5. Five vectors of plausible values were drawn using the method de-
scribed above. The vectors were of length seven, one for each of the PISA
2003 reporting scales.

Weighted Likelihood Estimates

The PISA 2003 study did not provide maximum likelihood estimates of stu-
dents’ proficiencies. For the purposes of this study, in which we wish to illus-
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trate the differences between results obtained from the analysis of plausible
values and point estimates, such as maximum likelihood estimates, we have
rescaled the original PISA data for one country (Australia) and produced
weighted likelihood estimates (WLEs; Warm, 1989; Adams & Wu, this vol-
ume).

17.4 Analysis of PISA 2003 Plausible Values

To illustrate the use of plausible values, we now report the results of sev-
eral analyses of the Australian PISA 2003 data set (PISA, 2003) using both
plausible values and weighted maximum likelihood estimates.

Note that in the estimation of all of the following models, a number of pro-
cedures had to be implemented. First, all of the results are based on weighted
data, using the replicate student weights provided in the PISA database. Sec-
ond, the balanced repeated replication BRR method had to be used (Judkins,
1990) to estimate the sampling variance of the various parameter estimates.
Third, in the case of plausible values, the analysis had to be computed five
times—once using each plausible vector—and then aggregated to obtain the
various parameter estimates. Finally, in the case of plausible values, the sam-
pling variances had to be enlarged to incorporate the presence of measurement
error. The procedures involved in each of these steps are described in the PISA
technical reports (Adams & Wu, 2002; OECD, 2005).

Regression Results

Table 17.2 shows the results of a regression of mathematics achievement onto
the PISA socioeconomic status index ESCS. The estimates of the constant
are very similar, but note that the slope estimate for the WLE is less than
that for the plausible value. This is to be expected, since the WLE estimate
is attenuated by the unreliability of the mathematics scale.

Table 17.2. Regression of Mathematics Achievement onto socioeconomic Status∗

Regression Plausible Value-Based Estimate WLE-Based Estimate and
Parameter and Standard Error Standard Error
Constant 515.58 (2.0) 513.99 (2.0)
Slope 42.50 (2.2) 38.29 (2.0)
R-squared 13.7 10.9

∗ The socioeconomic status index used was ESCS (OECD, 2005) .
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Correlations Between the Mathematics Subscales

The estimates of the correlation between the four mathematics domains are
shown in Table 17.3. The values above the diagonal are estimates that are
based on plausible values and the values below the diagonal are based on the
weighted likelihood estimates. The correlations estimated with the WLEs are
substantially less than those estimated with the plausible values. The WLE-
based estimates are biased toward zero due to unreliability. Later we shall
show that this bias can be corrected for by means of reliability estimates.

Table 17.3. Estimated correlations between mathematics subscales: plausible-
values based estimates above the diagonal and WLE-based estimates below the
diagonal

Space & Change &
Shape Relationships Uncertainty Quantity

Space & Shape 0.90 (.003) 0.89 (.004) 0.91 (.003)
Change &Relationships 0.54 (.010) 0.95 (.002) 0.93 (.002)
Uncertainty 0.53 (.009) 0.60 (.009) 0.93 (.002)
Quantity 0.53 (.008) 0.58 (.009) 0.55 (.007)

To illustrate the bias in correlations computed using WLEs, the results
of a simulation study are shown. Table 17.4 shows the correlations from two-
dimensional models, generated with 15 dichotomous items for each dimension
and 500 subjects. Two hundred data sets were generated according to a set
of generated true person abilities for each row of the table. The correlations
printed in the table are from the generated abilities and averaged over the
replications for WLEs, for disattenuated WLE correlations and for the av-
erage of five plausible values. The disattenution was computed by dividing
the correlation by the square roots of the reliabilities, which were estimated
as the ratio of the variance of the plausible values (an estimate for the true
variance) divided by the variance of the WLEs (see the observed measures;
Walter, 2005; Wang, 1999).

From the results it is apparent that the uncorrected WLE-based correla-
tions are biased toward zero, due to measurement error. Correcting the WLE
correlations seem to solve the measurement-error question quite well except
for very high true correlations.

Regression of SES and Gender onto the Mathematics Subscales

In the case of multiple regression, it is well known that simple disattenuation
formulae are not available to correct for the bias in regression-parameter esti-
mates and R-squared estimates that is caused by unreliability (Fuller, 1987).

In Table 17.5, we show the results of four multiple regressions that were
undertaken with plausible values and WLEs. In each case the ESCS effect
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Table 17.4. Mean correlation estimates from simulated data, n = 1000, 200 repli-
cations, two subscales with 15 dichotomous items each

WLE-Based Wle-Based Corrected Plausible Value-Based
Generating Estimate and Estimate and Estimate and

Value Standard Error Standard Error Standard Error
0.52 0.37 (0.02) 0.51 (0.03) 0.52 (0.03)
0.61 0.44 (0.02) 0.61 (0.03) 0.62 (0.03)
0.71 0.51 (0.02) 0.71 (0.03) 0.71 (0.03)
0.81 0.58 (0.02) 0.80 (0.03) 0.81 (0.03)
0.90 0.63 (0.03) 0.81 (0.05) 0.90 (0.02)

estimated with plausible values exceeds the same value when estimated with
WLEs. The gender differences, however, are not consistently higher or lower
in one analysis when compared to the other. A variety of simulations that
show the superiority of the estimates derived using plausible values are shown
in Monseur & Adams (2002) and Wu & Adams (2002).

Table 17.5. Regression of SES and gender onto the mathematic subscales, based
on plausible values and WLEs

PV-Based Estimates WLE-Based Estimates
Constant ESCS Gender Constant ESCS Gender

Space & Shape 518 (2.8) 43 (2.2) −12.1 (2.9) 514 (2.2) 34 (1.5) −8.9 (2.7)
Change &
Relationships 519 (2.9) 42 (2.3) −4.7 (3.0) 520 (2.8) 35 (2.1) −4.9 (3.0)
Uncertainty 525 (2.6) 47 (2.2) −7.6 (2.8) 523 (2.4) 36 (2.3) −3.3 (3.0)
Quantitiy 510 (2.5) 40 (2.1) −1.6 (2.8) 504 (2.3) 31 (2.0) −1.8 (2.7)

17.5 Conclusion

Large-scale assessment studies focus on population-level results rather than
on individual-level results. Due to constraints on testing time and content
coverage, individual-level results might not be reliable enough for reporting.
We have shown how multidimensional item response models and latent regres-
sion may be used to provide estimates of population parameters even when
individuals cannot be measured reliably.

Ideally this would be achieved by estimating population characteristics
directly from student responses to items via an appropriate multilevel item
response model. See, for example, Adams, Wilson, & Wu (1997) and Gold-
stein et al. (2005). In the absence, however, of readily accessible software and
methods for easily estimating a full range of population parameters; an al-
ternative is to provide the secondary data analyst, with imputations for the
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missing student abilities, so-called plausible values. Plausible values are best
viewed as intermediate values that are provided to obtain estimates of pop-
ulation parameters using standard statistical-analysis software such as SPSS
and SAS.

The key advantage of the plausible-values methodology is that it enables
secondary analysts to use widely available tools to replicate the results that
would be obtained from the use of more-sophisticated direct-estimation tools.
The disadvantage is that plausible values are imputed on the basis of certain
modeling assumptions, and if the imputation model assumptions are different
from the analytic model assumptions then the results may be misleading.

There are a number of common differences between the imputation model
and analytic model. One is that the current imputation models do not take
into account the often hierarchical structure of educational data. Some meth-
ods for dealing with this and their effectiveness are discussed by Monseur
& Adams (2002). Second, secondary analysts are from time to time inter-
ested in using variables in their models that were not used in the imputation
model. Third, the assumption of conditional multivariate normality for the
latent variables may not hold. These issues and the biases that may result are
discussed by Thomas (2000). In general, it appears that the bias introduced
by differences between the imputation and analysis are deemed to be of less
concern than the bias that would be otherwise introduced if likelihood-based
ability estimates were used and measurement error were ignored.
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Studying Development via Item Response
Models: A Wide Range of Potential Uses
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18.1 Introduction

In this chapter, we illustrate the spectrum of developmental questions that
can be investigated using Rasch models (RMs). We structure the chapter by
different types of developmental research questions. RMs are recommended
as method of choice (1) for cross-sectional as well as longitudinal designs, and
(2) for exploratory as well as theory-guided research questions. All aspects
are illustrated by examples from a variety of constructs and life phases. At
the end, we discuss the advantages and limitations of Rasch-based approaches
for studying development. We hope to show that the focus of these models
on the item level allows for a highly differentiated, substantively informative
perspective on change.

18.1.1 Methods of Studying Development

There are several ways of studying psychological development, and several
issues that researchers need to consider. We structure our exposition according
to two aspects: cross-sectional vs. longitudinal designs and exploratory vs.
hypothesis-testing research.

Methodologically, developmental psychologists distinguish cross-sectional
and longitudinal studies. While longitudinal studies are clearly superior to
cross-sectional studies when individual trajectories of change are of inter-
est, and when cohort effects are likely, systematic dropout may make inter-
pretations difficult, and effort and time required are clearly larger than in
cross-sectional designs. A special type of longitudinal designs are intervention
studies with pre- and posttest designs. RMs are available both for comparing
age groups in cross-sectional designs and for analyzing change in longitudinal
designs. Of course, they are also applicable to more complex cohort-sequential
designs that allow for controlling some of the problems in cross-sectional and
longitudinal studies.
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A more conceptual distinction is between different levels of “theory-
guidedness” in developmental research. In some cases, researchers have clear
hypotheses about the changes they expect to occur. In the most differenti-
ated case, these hypotheses are formulated on the item level. For example, a
researcher may assume that acquisition of a new strategy increases partici-
pants’ probability to solve one particular type of test items, but not the other
items. In other cases, researchers expect changes in sum scores on the scale
level, and want to test if these changes generalize across all items. In the most
exploratory case, researchers may just generally want to know whether there
are subgroups of individuals with different item difficulties in the sample, and
they want to test whether subgroup membership is related to age (in cross-
sectional designs) or time point (in longitudinal designs). RMs can be used for
all these types of research questions. It is important to distinguish between
the degree of theory-guidedness of a researcher’s hypotheses and the degree of
theory-guidedness that a particular statistical model requires. For example,
classical Mixed RMs are exploratory in that number of latent classes, class
membership probabilities, and class-specific item and person parameters are
all determined from the data. In some applications, however, such as the one
we present below, researchers have relatively clear ideas about which latent
classes they expect.

This chapter is structured according to the degrees of theory-guidedness
of the statistical models we use. We give examples of the use of RMs, first,
for cross-sectional designs, and then for longitudinal designs. Within each
section, we start from the exploratory case where subgroups of participants
are to be identified. Then, we present methods for testing the generalizability
of scale-level hypotheses across items, and then, methods for testing item-level
hypotheses. For reasons of simplicity, we limit our presentation to applications
to dichotomous data. However, models for polytomous indicators are available
for all approaches presented.

18.2 Rasch-Based Methods for Cross-Sectional Designs

Technically, the application of RMs in cross-sectional designs is straightfor-
ward, as any standard methods that identify or compare subsamples of par-
ticipants can be used to compare age groups.

18.2.1 Exploratory Research Questions

The most exploratory case of using RMs in cross-sectional research is the
following: a researcher has tested a group of participants heterogeneous in
age with a set of items, and wants to test whether there are subgroups of
participants with different item difficulty patterns. If such subgroups exist,
she could then test whether subgroup membership probability is related to
age.
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Mixed RMs (Rost, 1990, 1991, 1996; Rost & von Davier, 1995; see also von
Davier & Yamamoto, this volume) can be used to identify such subgroups, and
group membership can later be related to age. For example, Spiel et al. (2001,
2004); see also Spiel et al. (1997), presented students aged 12 to 18 years with
a set of 24 syllogism items measuring deductive reasoning. Each item consisted
of a premise and a question (inference), followed by three possible answers:
“yes” (correct answer for modus ponens items),“no” (correct answer for modus
tollens items), or “maybe” (correct answer for negation of antecedent and
affirmation of consequent items). Table 18.1 gives examples of all item types.

Table 18.1. Illustration of four syllogistic item types (concrete content)

Premise: If the sun shines, Tina wears a red skirt.

Correct Biconditional
Item Type Example Solution Response
Affirmation The sun is shining.
of Antecedent Is Tina wearing a red skirt?

Yes Yes

Affirmation Tina is wearing a red skirt.
of Consequent Is the sun shining?

Maybe Yes

Negation It is raining.
of Antecedent Is Tina wearing a red skirt?

Maybe No

Negation Tina is wearing a blue skirt.
of Consequent Is the sun shining?

No No

The 24 items of the scale were developed according to construction rules.
There were six different premises. The premises differed in content (concrete,
abstract, and counterfactual), and in whether the premise contained a negation
or not. For each premise, there were four items corresponding to the four item
types in Table 18.1. Based on theory and on previous studies, we expected
concrete-content items to be easier than abstract or counterfactual items, and
we expected those items whose solution was “maybe” to be more difficult than
the others. The typical mistake in these items (also referred to as “fallacies”)
is to draw a biconditional conclusion, that is, to assume that “if A, then B”
implies “if B, then A” (see Table 18.1).

We collected data from a total of 418 7th- to 12th-grade students (39% were
females). Applying Mixed RMs, we used the BIC to determine the number
of latent classes that best described the data following a recommendation
by Rost (1996). Both the BIC and the CAIC had a minimum for the three-
classes solution, so we settled for three classes. (Bootstrap analyses will be
reported by Spiel, Gössler, & Glück, in preparation.). Figure 18.1 illustrates
the solution frequencies for the different types of items in the three classes.
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Fig. 18.1. Solution frequencies in three latent classes by syllogism item type

The three classes correspond quite well to theories about the development
of deductive reasoning. We have labeled them concrete operational, intermedi-
ate, and advanced intermediate. Concrete-operational participants generally
drew biconditional conclusions. Thus, these participants had a high probabil-
ity to solve the nonfallacies, but systematically gave incorrect responses to
the fallacies. Intermediate participants showed a similar response pattern for
the abstract and the counterfactual tasks, but for the concrete items, they
showed a higher probability to solve the fallacies than the nonfallacies. Ad-
vanced intermediate participants generally performed better in the fallacies
than in the nonfallacies. There were a few participants in the sample who had
almost perfect scores, that is, who had reached the formal-operational stage,
but they were too few to form a latent class of their own.

Do these latent classes really reflect different stages of development? In
addition to the theoretical plausibility of this interpretation, the classes differ
significantly in average age, F (2, 415) = 9.021, p < .001. There is, how-
ever, considerable overlap of the three classes with respect to age: 18% of
the concrete operational, but also 12% of the advanced intermediate partici-
pants were only 12 years old. At the other end of the age range, 14% of the
concrete-operational and 32% of the advanced intermediate participants were
at least 17 years old. Thus, deductive-reasoning performance is only partly
age-dependent.

This example shows how development can manifest in qualitative changes
in the pattern of item difficulties within a scale. Interestingly, while for the
fallacy items, correct responses were more probable in the more advanced
latent classes, the nonfallacies were actually more difficult. This makes sense
as participants in the more advanced classes probably think about the items
in a more complex way. Thus, they have a larger probability to commit errors
in those items that are actually relatively easy.
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More conceptually, the syllogistic-reasoning data are a good illustration of
qualitative changes in the structure of a scale. As the scale is measuring sub-
stantively different latent dimensions in the different latent classes, it makes
no sense to quantitatively compare sum scores of participants in different la-
tent classes. Such qualitative changes in scale meaning may be a frequent
phenomenon that is not necessarily reflected in classical measures such as
reliability (see, e.g., Glück & Indurkhya, 2001).

18.2.2 Scale-Level Hypotheses

Very often, substantive researchers assume age group differences on the scale
level without looking into such differences at the item level. Scale-level changes
(or stability) can, however, be largely meaningless if they are the result of
subgroups of items changing in different ways. For example, if one part of the
items becomes easier while others become more difficult, the overall result
would be “no change,” which would not be true for a single item of the scale.
Differences between items can be relevant for the interpretation of age group
differences, and they can provide interesting substantive information. Test
developers quite routinely test for such differential item functioning (DIF)
across age groups, but, for example, attitude or personality questionnaires
are seldom evaluated using Rasch-based methods such as mixed RMs.

The question whether age differences are the same across all items can
routinely be tested using Andersen’s (1973c) likelihood ratio test, a goodness-
of-fit test for the RM that examines whether item difficulty patterns differ
across groups of participants. The following example illustrates the procedure.

The European Study of Adult Well-Being (ESAW) is a cross-sectional
study of individuals aged 50 to 90 years that was conducted in six European
countries, involving representative samples of around 2000 participants per
country (see http://www.bangor.ac.uk/esaw). The main goal was to study the
influences of five factors—material resources, health, social support, activity,
and self variables—on well-being. In the self-variables section, among other
scales, participants filled out Paulhus’ (1983) personal-control scale. For reli-
ability issues, only five of the originally ten items of this scale were used in
the data analyses.

For the analyses presented here, data from the Austrian ESAW sample
(Weber et al., 2005) were used. Participants were divided into two age groups:
50 to 69 (N = 1516) and 70 to 90 years (N = 599). On the scale level, the
younger age group had a significantly higher mean in personal control (M =
.68 on a 0-to-1 scale, SD = .29) than the older age group (M = .60, SD =
.30), t(2102) = 5.897, p < .001. To test whether this result really reflects quan-
titative overall changes, we compared the item difficulty patterns in the two
age groups using Andersen’s test. The original item responses were recoded
from a seven-point scale to a dichotomous format. As is typical with control
scales, agreement rates to the items were quite high. Therefore, categories 1 to
5 (“strongly disagree” to “slightly agree” were coded as 0), and only categories
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6 and 7 (“agree” and “strongly agree”) were coded as 1. Note, however, that
such post-hoc reductions of response categories have been critically discussed
in the literature (Andrich, 1995b,a; Andrich et al., 1997; P. G. W. Jansen &
Roskam, 1986; Müller, 1995; Roskam, 1995; Roskam & Jansen, 1989). For a
complete analysis of polytomous data, RMs for polytomous item responses
such as the partial-credit model or the rating-scale model should additionally
be used in order to identify potential (age) group differences in use of the
response categories. Such analyses were difficult to perform with the present
data because of the unequal response distributions.

In our analysis, the Andersen likelihood ratio test was significant, χ2 (4)
= 65.97, p < .001. Figure 18.2 shows the agreement frequencies for each item
in the two age groups. The items are sorted by size of age difference.
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Fig. 18.2. Age-group differences in agreement frequencies in the ESAW control
scale

As the figure shows, the first two items show almost no age differences in
agreement rates. The first item clearly refers to past accomplishments, the
second can also be interpreted as past-related. The next three items are more
future-oriented—knowing ones standing in a competition is useful mostly for
future instances, making plans confidently and learning things are clearly
oriented towards improving ones future. It makes sense that the older partic-
ipants show less agreement to these items.

What do such results mean substantively? If a 60-year-old has agreed to
one item in this scale, it most likely was “When I make plans, I am confident
to make them work.” An 80-year-old with the same score has more probably
agreed to “My most important accomplishments are almost entirely due to
my work and abilities.” Thus, though numerically identical, these two scores
reflect different views about control. It would be incorrect to say that the two
participants do not differ in perceived personal control, and the same goes
for any other numerical score. As a basic assumption of the RM states, score
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comparisons make conceptual sense only if there are no (age) differences in
item difficulty patterns. In addition to this “technical” issue, however, the
pattern reflected in these data is substantively interesting. Older participants
show the same level of agreement as younger ones to items that refer to
the past, and lower levels of agreement with respect to current and future-
related control. This result speaks to the necessity of differential analyses of
relationships of these two control aspects to other variables.

18.2.3 Item-Level Hypotheses

In some cases, researchers have clear hypotheses about age differences in dif-
ferent item types. For example, Draney and Wilson (see chapter 7 in this
volume) report a study on using the saltus model (Wilson, 1989) to study
children’s propositional reasoning. The items used in this study were system-
atically constructed so as to reflect different levels of cognitive development:
On each level, children should be able to solve a new type of items and all
items from previous levels. The results, obtained by using constrained versions
of mixture RMs, largely confirmed the expectations. As in the syllogisms ex-
ample given above, class membership was related to age. Other applications
of the saltus model were reported by Demetriou et al. (1993), with respect
to the development of causal experimental thought in adolescence, and by
Wilson (1989).

In other cases, a researcher may want to directly test hypotheses about
differences between specific age groups in item difficulty patterns. Such hy-
potheses about age group differences in certain items or groups of items can
be directly tested using a new nonparametric family of RM tests (Ponocny,
2001), or by using multidimensional models such as MULTIRA (Carstensen
& Rost, 2001) or the multidimensional random coefficient multinomial logit
model (Adams, Wilson, & Wang, 1997) with the corresponding software Con-
quest (Wu et al., 1997).

18.3 Longitudinal Designs

18.3.1 Data Structures

Longitudinal designs have the clear advantage that changes in item difficulty
can be observed within the same sample of individuals over time. Technically,
the situation is somewhat complicated by the fact that the underlying struc-
ture of the data is three-dimensional (n participants by k items by t time
points) while common item response models are designed for two-dimensional
participants by items matrices. Various ways of dealing with this problem have
been suggested. One is to treat the different time points as independent data,
thus obtaining a data set that has t x n virtual persons (Rost, 1989; Rost &
Spada, 1983; Spada & McGaw, 1985). Especially when using mixture models,
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this approach has the advantage that sample size is technically increased, and
class membership probabilities for each individual at each time point can be
directly estimated. Therefore, changes in class membership are easy to analyze
(see, e.g., Glück & Spiel, 1997). The disadvantage of this method is that local
dependencies between responses to the same item are ignored, which violates
a basic assumption of the RM. The effect of this violation in practice has not
yet been systematically studied.

A second way of dealing with three-dimensional data structures is treating
each item as a test of its own, with t virtual items reflecting participants’ item
responses to the test at each time point. This approach is used in the linear
logistic model with relaxed assumptions (Fischer, 1976, 1983, 1989, 1995d,b;
Fischer & Formann, 1982). This model can be used in a very flexible way
because it allows researchers to test hypotheses about differences in changes
between items as well as between individuals (see below). Meiser et al. (1995)
used a longitudinal mixture RM on this type of data structure, thus directly
identifying subgroups of participants with different trajectories of change.

The third possibility is to treat the data from each time point as different
items in one long test. Thus, the data set has N persons and t x k items.
Because of the increased number of items, this approach can run into tech-
nical problems with larger sets of items, and restrictions are necessary for
parameter estimations: item parameters from later time points are modeled
as item parameters from t1 plus some change parameters that can be specific
to person and item groups. Fischer’s linear logistic test model for longitudinal
data (see, e.g., Fischer, 1995d,b) as well as related models such as Andersen’s
(1985; 1991) model and Embretson’s (1991) model fall into this category. The
one practical disadvantage of this approach is that it requires that the RM
holds for the pretest data, which is often not the case.

Loglinear representations of RMs for longitudinal data (Meiser, this vol-
ume; see also Meiser, 1996) use the same data structure, but are more flexible
in the hypotheses they can test. This very general approach incorporates all
hypothesis-testing approaches that we describe in this chapter and allows for
flexible modeling of many types of hypotheses about change. Its only disad-
vantages are the size and complexity of the design matrices that need to be
specified and, in longitudinal cases, the above mentioned sample size issue.

Exploratory Research Questions

A typical exploratory case would be a researcher who, similar to the case
for cross-sectional data, is interested in whether there are subgroups of par-
ticipants in a sample that differ in item difficulty patterns. As the data are
longitudinal, one interesting question is whether subgroup membership is con-
stant over time, and if not, whether changes in membership are systematic.
Meiser (this volume) gives an example of a mover-stayer mixed RM formulated
and tested in the longitudinal mixed RM context; the analysis is described in
more detail by Meiser et al. (1998).



18 Studying Development via Item Response Models 289

Another example is the following. Glück et al. (2002) studied the effects
of a mental rotation training on solution strategies in a cube comparison test
(IST). A total of 205 participants, divided into a control group and a training
group, participated; the training group had about five hours of training be-
tween pre- and posttest. Previous studies had identified three types of cube
comparison items in the IST: (1) items that could be solved using a non-
spatial strategy (i.e., assuming that two cubes are identical if they show the
same three patterns on their faces, independent of the patterns’ positions), (2)
items that could be solved by this strategy plus additional considerations to
decide between two remaining distractors, and (3) items that required spatial
cognition. In addition to testing specific hypotheses about item-level changes
(which will be described below), we used mixed RMs to test for the pres-
ence of distinguishable subgroups of participants at pretest. As the sample
was relatively small, we only analyzed the responses to a subset of five items,
which contained at least one item of each type. In addition, we evaluated the
stability of our solution using bootstrap analyses.

Both information criteria and chi-square statistics suggested that the two-
classes solution fit the pretest data best. One class had a very high solution
probability for the items that did not require spatial cognition. For items that
did require spatial cognition, solution probabilities were relatively low. Thus,
we assumed that these participants indeed used a nonspatial strategy. The
other class had intermediate solution probabilities for both types of items,
and we assumed that they used spatial cognition for all items. The question
now was whether the same two classes would be found after the training,
and if yes, whether training participants had predominantly shifted from the
nonspatial to the spatial strategy. However, the posttest data were better de-
scribed by a one-class solution than by two classes. The item difficulties in the
one-class model were similar, but not identical, to those of the second latent
class at pretest. Thus, the data suggested that independent of training, most
participants had shifted to the spatial-cognition strategy. However, the result
was not quite convincing because the posttest item difficulties were not identi-
cal to those at pretest. We then used a direct theory-guided class assignment
to clarify this question: In other cases, however, restricted-mixture models,
directly testing whether the same latent classes hold across time points, may
be more useful.

As mentioned above, another exploratory approach is to directly look for
subgroups showing different longitudinal patterns within items. Meiser et al.
(1998) analyzed such longitudinal trajectories for two personality variables
(activity and adjustment) measured in about 600 children when they were 10,
11, and 12 years old. Mixed rating scale models resulted in two classes for both
variables: one class with largely stable responses, the other class showing a
peak at the second time point. With respect to activity, there was a tendency
for boys to be more often in the latter class than girls, and with respect to
adjustment, there was a significant effect in the opposite direction.
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A different exploratory approach could directly look for differences in the
amount of change between items. In such a case, a linear logistic model with
relaxed assumptions (LLRA) could be specified that assumes one change pa-
rameter per item and (if necessary) per predefined person group. Such models
are often used as base models against which more restricted models can be
tested (see below for an example). However, in some cases (and with suffi-
ciently large samples) it may make sense to directly interpret the item-specific
change parameters. To check whether two parameters are significantly differ-
ent, a more restricted model in which the two parameters are set equal can be
tested. Glück & Spiel (in press) present an analysis of changes in personality
scales in very old age using a more exploratory approach.

Scale-Level Hypotheses

There are two types of hypotheses in this group. On the one hand, a researcher
may want to test whether longitudinal changes in scores are generalizable
across all items. The most straightforward test of this assumption is using the
linear logistic model with relaxed assumptions (LLRA).

Glück & Indurkhya (2001) used the LLRA to analyze changes and poten-
tial gender differences in aggressive behavior in children. A total of 219 chil-
dren were rated by their teachers with respect to aggressive behavior when
they were 8, 10, and 13 years old. An Andersen test comparing boys and girls
at t1 showed that there might be a dissociation between physical (e.g., harm-
ing others, fighting) and nonphysical (e.g., being stubborn, teasing classmates)
aggressive behaviors. The former was more frequent in boys, the latter in girls.
Thus, we tested a series of LLRA models starting from a quasi-saturated model
distinguishing the two types of aggressive behavior, boys, girls, and t1-t2 and
t2-t3 changes. We then tested a number of more restrictive models against this
base model. None of these more restrictive models—assuming equal changes
in the two groups of items, assuming equal changes across boys and girls—fit
the data. Thus, the first model provided the relatively best data description.
Physical aggression decreased in both boys and girls from age 8 to 10, and
increased again afterward in girls; nonphysically aggressive behavior increased
in boys between age 10 and 13. This example again shows that in order to
interpret a change in scores as a change in the underlying dimension, the sta-
bility of item difficulty patterns needs to be proved: Even if a child’s score in
the aggression scale stays the same over time, the child’s way of expressing
aggression may have dramatically changed.

On the other hand, there are cases where the RM holds for a test or
questionnaire, and the researcher does not expect differences between groups
of items, but wants to test whether predefined subgroups of participants differ
in change, e.g., due to some interventions. For example, Gittler & Glück (1998)
used the linear logistic test model to analyze changes in spatial ability in
secondary school students who took descriptive geometry (DG) classes. They
used the three-dimensional cubes test (3DC), a spatial ability test that had
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been constructed using the RM (Gittler, 1990). Over a period of about 20
months, a control group who did not take DG classes did not show any changes
in 3DC performance, but DG participants improved significantly, and girls
improved more than boys.

Other examples of this type come from Embretson’s (1991; 1995a; 2000)
work on dynamic testing. In these approaches, items are presented to partic-
ipants under different conditions (e.g., before vs. after an intervention, under
presence vs. absence of stressors). Performance levels in the different con-
ditions are compared using RMs. These methods allow for quantifying the
effects of different conditions on performance both on the group and on the
individual level. These approaches are interesting in the context of develop-
mental research because they may allow for examining the “limits” of a per-
son’s current performance level, in the sense of Wygotsky’s zone of proximal
development (see Embretson, 2000).

Item-Level Hypotheses

Researchers may have explicit hypotheses about differences in change between
different types of items. In the training study on spatial ability by Glück et al.
(2002) described above, we derived specific hypotheses about change for the
three item types of the IST. Used the LLRA, we tested a number of models
against a “quasi-saturated” model containing two parameters per item: one
for the control group and one for the training group. Models assuming no
differences in change between control and training group and no differences
across items were rejected. A model assuming no change in the control group
and item-type-specific change in the training group fit the data well, and even
better when only two item types were distinguished: items requiring and not
requiring spatial cognition. Both change parameters in the training group were
significantly different from zero, but the training effect for the items requiring
spatial cognition was three times as large as for the other items.

18.4 Discussion and Conclusions

The main aim of this chapter was to show the wide spectrum of possible ap-
plications of Rasch-based methods in developmental psychology. We consider
the use of this methodology to be an important and informative tool. In our
view, any cross-sectional or longitudinal comparison of test scores should be
accompanied by tests of equivalence of item difficulty patterns, for example
by means of analyses with longitudinal versions of the mixed RM. If there is
no such equivalence, comparison of scores is misleading.

As this type of equivalence is hardly ever tested, an interesting question is
how often such a lack of equivalence would occur. Fischer (2003) stated that
such changes should be an exception because tests should be constructed so
as to measure the same latent trait for anybody. Our own experience shows



292 Judith Glück and Christiane Spiel

that violations of item difficulty invariance occurs relatively often both in
intelligence tests, especially if they were not constructed using IRT or RMs,
and in questionnaires (which are hardly ever IRT-based). While completely
agreeing with Fischer that the careful construction of tests is very important to
guarantee test fairness, we also want to emphasize that age differences in item
difficulty patterns may be more than just “noise” that needs to be removed in
test development. They may reflect interesting processes of change that can
contribute to our understanding of development. In the current, computer-
based version of the syllogism test that was described above (Spiel et al., 2001,
2004), examinees are not just described by a score, but their response patterns
are used to assign them to one of the latent classes described above. Thus,
their current qualitative level of development, as well as their quantitative
standing within that level, can be diagnosed. Similarly, it may make sense to
compare a 60-year-old’s response pattern in a questionnaire to those of 60-,
70-, and 80-year-olds—if he or she responds more like an 80-year-old, this is
of importance and of potential diagnostic value.

18.4.1 Potential Problems

Although extensions of RMs for longitudinal data allow for important insights
about the substantive nature of change, practical problems may sometimes
limit their applicability. One important problem with longitudinal approaches
is that no good way of dealing with missing values has been developed yet (see,
however, von Davier & Yamamoto, 2004b). In most cases, analyses are limited
to participants with complete data, thus, when study dropout is systematically
related to variables of interest, these analyses will be biased (as are any other
analyses that require complete data).

Another potential problem is that RMs require relatively large sample
sizes. This is especially problematic in longitudinal approaches that model t x
k items, and less of a problem in those approaches that model t virtual items
(i.e., each item as a test of its own). As the problems result from the number
of possible response patterns, they are the more severe the larger the number
of items, the larger the number of categories, and the smaller the sample.
Therefore, selecting representative items and recoding to a smaller number of
categories may sometimes help. Some software programs, such as WINMIRA
(von Davier, 2001), allow for bootstrap analyses of goodness of fit statistics
to evaluate the stability of results in smaller samples.

A third issue concerns the exploratory models we have presented. As
with any exploratory approach, especially when patterns are identified, cross-
validation is very important, but not always easy to accomplish. Softwares
that allow for setting restrictions in mixture models are very helpful here.

In spite of these difficulties, which will hopefully be overcome by future
software generations, we hope to have shown that RMs are an important tool
for developmental research. Analyses on the item level may help to explain
many seemingly surprising findings on the scale level.
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19.1 Introduction

This paper provides an application of a generalization of the dichotomous
Rasch model (RM) to the study of guessing behavior of respondents to typical
achievement tests. One of the models applied is a constrained version of the
3PL model where a lower asymptote parameter is assumed in order to account
for guessing behavior, but no variation of item discrimination is modeled.
In addition, an application of mixture-distribution RMs aimed at modeling
guessing effects and a comparison of the two approaches is presented. If such a
constrained 3PL model is applied, in particular, to tests consisting of multiple-
choice formatted items, the lower asymptote parameter can be interpreted
as a guessing parameter. Therefore, the model is called the difficulty plus
guessing PL (DGPL) model. An empirical example shows that a multiple-
choice item pool only fits the Rasch model after a large number of items have
been deleted, while the DGPL model can save most of those deleted items
as it takes the severe but item-specific guessing effects into consideration.
Furthermore, multiclass mixed RM analyses show — in comparison to the
Rasch model — a good fit of the data and confirm item-specific guessing
effects.

Since the first publication of the model now known as the Rasch model in
1960 (cf. Rasch, 1980; often called 1PL model — PL for parameter logistic),
several psychological tests have been constructed using this model. Although
there are various concurrent IRT (item response theory) models, the RM is
often — in particular, for European applications — preferred for two reasons.
Firstly due to the simplicity of the model. As it is based on just a single item
parameter, the parameter estimation doesn’t need as large sample sizes as is
necessary for the well-known 2PL or 3PL model (Birnbaum, 1968). Further-
more, we have simple sufficient statistics and the possibility of a specific ob-
jective parameter estimation, which is the well-known conditional maximum
likelihood method (CML). Thus, we can carry out a conditional likelihood ra-
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tio test (Andersen, 1973c) to check the model assumption of statistically equal
item-parameter estimates obtained from different subpopulations. Secondly, a
mathematical proof (cf. Fischer, 1995a) shows that the RM has a particularly
useful property. An examinees number of correct responses to a set of items
can be considered as a sufficient statistic for a latent trait parameter (per-
son parameter), which is an adequate and fair representation of the empirical
relations of proficiency of this examinees of test performance and any other
examinees’, if and only if the dichotomous RM or a monotone transformation
of it) holds for the set of items under consideration.

Perhaps the best known psychological tests calibrated according to the RM
are the BAS II (British Ability Scales II; Elliot et al., 1996) and its American
edition DAS (Differential Ability Scales; Elliot, 1990), the K-ABC (Kaufman
Assessment-Battery for children; Kaufman & Kaufman, 1983), and, within
German speaking countries, the AID 2 (Adaptive Intelligence Diagnosticum
— version 2.1; Kubinger & Wurst, 2000).

There are several tests that have been constructed using the RM, even
though they are administered in a multiple-choice format. In such a case,
the examinees guessing strategies have to be taken into account. All the tests
cited above, however, use a free response format. In the case of multiple-choice
responses, an RM fit seems less likely for an item pool because the model ob-
viously postulates the probability of a correct response of examinee v on item
i depending on the person parameter θv of v and an item-difficulty parame-
ter βi of i. The lower asymptote of the item-characteristic curve approaches
zero for θv→ −∞. Thus, there is no effect modeled to (lucky or systematic)
guessing. Therefore, if such tests are found to fit the RM, it might be due to
two reasons — in case the actual severe guessing effects are not all exactly the
same: There are either enough distractors and, thus, guessing effects are al-
most negligible or, a lot of items have been deleted as pertinent model checks
have proved that they explicitly do not fit the RM. Those items probably
consist of distractors of number or content, which establish severe guessing
effects.

In this paper, we analyze an example of such a test with respect to the
problem of misfit due to guessing. The question is whether it is possible to
retain items that would have otherwise been deleted in an RM analysis by
applying a more general model with an additional item-guessing parameter or
a mixture-distribution model. Such a model can also be used as a tool to detect
items where guessing occurs in order to give the researcher an indication as
to which item and/or which distractors of the multiple-choice format need to
be modified. Although a number of alternative models for guessing do exist,
we propose to consider a model for the construction of multiple-choice tests
as a special case of the 3PL model, where the item discrimination parameter
is set to be equal for all items. In addition, we will compare the proposed
constrained 3PL to two alternative models further on in this paper, which
provide us with the opportunity to model the existence of guessing, but to
us seem less suitable for constructing unidimensional psychological measures.



19 Mixed Rasch Models and Constrained IRT Models 295

These are the mixed RM (Rost, 1990) and a HYBRID model (Yamamoto,
1989).

19.2 Birnbaum’s 3PL Model

As it is well-known, the 3PL model provides, in addition to the real valued
person parameter θv of examinee v and the real valued item-difficulty param-
eter βi of item i, a positive real valued item discrimination parameter αi and
an item-guessing parameter ci of item i. Let Xvi be a Bernoulli distributed
response variable with realizations Xvi = xvi = 1 for a correct response of v to
item i and Xvi = xvi = 0 for an incorrect response. According to the model,
the probability of a correct response to item i for examinee v amounts to

P (Xvi = 1|θv;αi, βi, ci) = ci + (1 − ci)
exp[αi(θv − βi)]

1 + exp[αi(θv − βi)]
(19.1)

with αi > 0 and 0 ≤ ci ≤ 1.
The probability of an incorrect response decreases with ci, that is,

lim
θ→−∞

P (Xvi = 0/θv;αi, βi, ci) = 1 − ci.

In the case that all ci = 0 the model is reduced to the 2PL model. When,
in addition, all αi are set to be equal, the RM (1PL model) is obtained. What
is of interest now, however, is the case where all αi are set to be equal but
the ci are not constrained to zero. This results in a model that, like the RM,
assumes equal discrimination for all items.

However, by introducing a guessing parameter, we get rid of all the con-
venient properties of the RM. No sufficient statistic for the person parameter
exists any more. Hence, we forsake the possibility of separating the parameters
and applying the CML method. Consequently, we cannot assess the goodness
of fit of the model with Andersen’s conditional likelihood ratio test. Loosely
speaking, these statistical properties are the justification for talking about
“Rasch models.” Thus, it would probably be better not to call this model
a “RM with a guessing parameter” (cf. Puchhammer, 1989). We prefer to
call the model “difficulty plus guessing PL model” (DGPL). Although such a
model sounds trivial, it has hardly ever been taken into account before.

19.3 Parameter Estimation in the Difficulty Plus
Guessing PL Model

Because a sufficient statistic does not exist for the DGPL model and thus the
CML method is not applicable, the model parameters have to be estimated
either jointly (JML) or by the marginal maximum likelihood method (MML).
As far as the former is concerned, there are relevant results from simulation
studies conducted by Puchhammer (1989). He showed that the estimation of



296 Klaus D. Kubinger and Clemens Draxler

the item-guessing parameters becomes rather inaccurate when the number of
examinees is less than 500. In such a case, even the item-difficulty parameters
are biased. Furthermore, the distribution of the person parameters has to be
of a great variance otherwise item-parameter estimates will not be accurate
enough. At any rate, the person parameter estimation becomes less reliable as
the ability of the testees decreases. As a matter of fact, Puchhammer (1989)
also showed that item pools that have been simulated according to the diffi-
culty plus guessing 1PL model do not actually fit the RM.

More generally, for instance, Andersen (1971, 1973a) and Haberman
(1977b) have shown that JML estimates are inconsistent for the number of
fixed items k but n → ∞. This is because the incidental person parame-
ters cannot be conditioned out of the likelihood function and the number of
person parameters increases with n → ∞. However, to achieve consistency
of ML (maximum likelihood) estimates the number of unknown parameters
must be finite when n → ∞ (cf. Fischer, 1974). This is obviously not the case
concerning the person parameters. Due to the inconsistency of the parameter
estimates and the results of the simulation studies from Puchhammer (1989)
as well as the fact that most computer programs use the MML method (e.g.,
BILOG-MG 3, Zimowski et al. (2003) — which is also used for our analyses),
we will avoid the JML method.

The MML method (Bock & Aitkin, 1981), however, requires the estima-
tion or an assumption of the form of the latent trait distribution, that is the
distribution of the θv. It is assumed that the sample of examinees is ran-
domly drawn from this distribution. For this it is convenient to write our
DGPL model as a continuous mixture-distribution model with θ as the (con-
tinuous) mixing variable (see von Davier & Rost, 1995). When doing so the
unconditional or marginal probability of an observed response vector xv =
(xv1,. . . ,xvi,. . . ,xvk) is given by

P (Xv = xv/φ(θ);βββ, c) =

+∞∫
−∞

k∏
i=1

fi(θ)xvi [1 − fi(θ)]1−xviφ(θ)dθ,

where

fi(θ) =
ci + exp(θ − βi)
1 + exp(θ − βi)

. (19.2)

φ(θ) is the probability distribution of the latent variable θ. β and c are the
vectors of the difficulty and guessing parameters, respectively. The observed
stochastic response variable Xvi is described by conditional probability func-
tions, whereby the variable on which the probabilities are conditioned is the
mixing variable θ. In other words, the probability of a correct response to item
i is considered under the condition (of all values) of the density of the latent
trait, φ(θ).

The marginal likelihood of a response pattern xv1 is obtained by integrat-
ing the conditional pattern probability over the ability distribution φ(θ). The
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total likelihood of the the data is obtained by assuming independence of obser-
vations and multiplying the marginal response patterns across all examinees.
Equation 19.2 is a function of the item parameters (βi, ci) only and of the
parameters of the assumed latent density φ(θ). Often, a normal distribution
of the latent trait θ is assumed and its parameters, the mean and variance, are
estimated jointly with the item parameters. This ensures that the number of
unknown parameters is fixed when n → ∞ so that the statistical information
for an accurate estimation of those parameters can arbitrarily be increased.
For more details for the MML method and the numerical solutions for the
MML equations by appropriate algorithms, such as the Newton–Raphson pro-
cedure or the EM-algorithm, see Andersen (1977), Sanathanan & Blumenthal
(1978), and Bock & Aitkin (1981).

In the program BILOG MG 3, the Gaussian quadrature formula is ap-
plied to approximate the marginal probability 19.2 as accurately as required
(see Zimowski et al., 2003). Thus, the integral structure is reduced to a sum
whereby the number of summands or quadrature points has to be specified
by the user.

It is well known that the scales of the parameters of IRT models are, in the
first instance, undetermined. The unit and the origin of the scale have to be
fixed by appropriate constraints. In the RM, the indeterminacy of the model
parameters (in the case of CML estimation) is solved by restricting the item-
difficulty parameters to the sum of zero — and to set the item discrimination
parameter αi in 19.1 as equal to one for all items. For our DGPL model,
however, we use another widely accepted approach. Due to the fact that the
MML estimation requires an assumption of the latent trait distribution, we
fix the location of the scale by setting the mean of the latent distribution to
zero and we also fix the unit of the scale by setting the standard deviation
as equal to one. In this case the common discrimination of all items amounts
to αi= α for i = 1, . . . k, (which is referred to as the scale parameter) and
has to be estimated additionally to the item difficulty and the item-guessing
parameters. Thus, the marginal probability 19.2 is a function of the item
parameters only.

However, in order to achieve a simpler model the scale parameter may
also be fixed at an arbitrary value. In order to obtain a concrete value for the
common discrimination of all items (which can then be fixed for the DGPL
model analyses) one can use the mean of the unconstrained estimated item
discrimination parameters of the 3PL model.

Finally, we will also place a constraint distribution on one set of item
parameters. For keeping the item-guessing parameter estimates within the
admissible interval 0 ≤ ci ≤ 1 BILOG MG 3 assumes a beta prior distribu-
tion for the ci. The choice of the parameters of the assumed beta distribution
depends on the number of response alternatives of the (multiple-choice for-
matted) items. For more details, see Zimowski et al. (2003).

The disadvantage of the MML method is, however, that it does not provide
estimates for the person parameters θv. Perhaps the most promising method
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for obtaining these estimates is the Bayes or EAP (expected a posteriori)
estimator (see Bock & Aitkin, 1981), which is, amongst another Bayes and a
ML estimator, also implemented in BILOG MG 3.

19.4 Method

In order to calibrate a given item pool, we use the following strategy:
Firstly, we analyze the item pool using the RM by applying the software

LPCM-WIN 1.0 (Fischer & Ponocny-Seliger, 1998). The CML method will
be applied in order to obtain item-difficulty parameter estimates and a model
fit will be assessed using Andersen’s conditional likelihood ratio test.1 The
partition of the sample will be carried out with respect to three criteria: “ex-
aminees with low vs. high score”; “male vs. female examinees”; “younger vs.
older examinees.” We are aware of a higher factual than nominal type-I-risk
in doing so, therefore we use a nominal type-I-risk of α = 0.01. We are aware
that the quite large sample (n = 4153) is an advantage for parameter esti-
mation but at the same time a disadvantage for testing the goodness of fit of
the model. Because the power of a statistical test increases with sample size,
even irrelevant differences of item-parameter estimates in the two subsamples
may become significant when applying a likelihood ratio test. However, the
chosen significance level of α = 0.01 is a way to counteract that effect, at
least to some degree. The decision as to which items are to be deleted is based
on Rasch’s graphical model check, whereby item-parameter estimates of the
first subsample of examinees are contrasted to item-parameter estimates from
the second subsample, as well as on the zi-values from Fischer & Scheiblech-
ner (1970), where the difference of the item-parameter estimates (per item)
obtained from two subsamples is divided by the square root of the sum of
the error variances from the corresponding parameter estimates. The latter
yields an asymptotically normally distributed test statistic. Items are deleted
stepwise until we obtain insignificant likelihood ratio test with respect to all
partition criteria or until certain fit indices disclose a satisfying model fit. The
statistic that will be applied is the conditional item fit index (Q-index) from
Rost & von Davier (1994).

Secondly, we analyze the item pool according to the DGPL model using
BILOG MG 3 (Zimowski et al., 2003). To assess model fit we apply a likelihood
ratio χ2-fit statistic for every item that is incorporated in BILOG MG 3. The
significance level will again be α = 0.01. To compute this statistic the latent
1 Since the very beginning of RM applications and the establishment of Andersen’s

LRT, many different model checks have been proposed. Kubinger (1989), as well
as Glas & Verhelst (1995), give an overview; for more recent ones see Waldherr
(2001). From the latter, the model check from Verguts & De Boeck (2001), a
generalization of the Mantel–Haenszel χ2-statistic, is of major importance because
it offers the possibility of testing several more RM presuppositions other than
those discussed in this paper.
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continuum is divided into a number of intervals. Each examinee is assigned
to an interval on the basis of the EAP estimates of the person parameters θv.
The following statistic may be used to compare the observed frequency rhi

of correct responses to item i in interval h with the probability or expected
proportion Pi(θ̄h) of correct responses to i at the point θ̄h, which is the average
ability of examinees belonging to interval h:

G2
i = 2

ng∑
h=1

[
rhi ln

rhi

NhPi(θ̄h)
+ (Nh − rhi) ln

Nh − rhi

Nh[1 − Pi(θ̄h)]

]
, (19.3)

where ng is the number of intervals and Nh is the number of examinees as-
signed to interval h. If necessary, adjacent intervals are merged to avoid ex-
pected values Nh · Pi(θ̄h) less than 5. The number of degrees of freedom is
equal to the number of remaining intervals. Unfortunately, an overall goodness
of fit test is only available for very short tests (k ≤ 10; cf. Zimowski et al.,
2003 ) with the presupposition that (nearly) all 2k possible response patterns
have been observed — and this requires large sample sizes.

Thirdly, we have to decide whether the DGPL model does indeed explain
the data better than the RM. For this, we proceed with the following two
stages. If the model fit according to the fit statistics is almost equal for both
models then, the first stage involves the question as to whether more items
fit the DGPL model than the RM. The second stage only concerns the items
that fit the RM. We apply a likelihood ratio test based on the maxima of the
marginal likelihoods of the data X for both models

G2 = −2 ln
mL(α̂, β̂ββ, µ, σ; X)

mL(α̂, β̂ββ, ĉ, µ, σ; X)
, (19.4)

where β̂ββ= (β̂1, ...β̂i, ...β̂k) and ĉ= (ĉ1, ...ĉi, ...ĉk) are the vectors of the ML
estimates of the item-difficulty and item-guessing parameters, and α̂ is the
estimate of the scale parameter or the common discrimination of all items.2

As mentioned above, µ = 0 and σ = 1 are the parameters of the assumed
(standard) normal density. The null hypothesis of the validity of the RM can
be tested against the more general alternative of the DGPL model, if the
latter model is assumed to be true. Although no formal proof exists of the
distributional properties of the test statistic (19.4) of this special likelihood
ratio test under the null hypothesis, we assume an asymptotic χ2-distribution
(cf. Glas & Verhelst, 1995, p. 86, and the references there) with degrees of
freedom equal to the difference of the number of parameters estimated in the
2 The scale parameter α must be estimated for the RM if using a prior standard

normal density for θ. Thus, the number of independent parameters is equal to
k+1. In the DGPL model, we set α equal to the mean of the estimated discrim-
ination parameters of an unconstrained 3PL model. The number of estimated
or independent parameters will then be equal to 2k (the sum of the number of
item-difficulty and item-guessing parameters).
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DGPL model and the number of estimated parameters in the RM. The aim of
this likelihood ratio test is to decide whether the DGPL model can explain the
data based on the Rasch conform items even (significantly) better than the
RM itself. If this happens to be true, it would imply that scoring according
to the RM would no longer be the most proper measurement of a examinee’s
ability.

Fourthly, we carry out the same procedure, that being the application of
the likelihood ratio test (Equation 19.4) with respect to those items that fit
the DGPL model — in the case that there are actually more items that fit the
DGPL model than the RM. If the likelihood ratio test (19.4) then indicates
that the DGPL model can (significantly) explain the data better than the
RM, then the guessing effect is confirmed: the item pool is not sufficiently
utilized by the RM with regard to the item pool’s psychometric potential.

Lastly, as already indicated we estimate alternative models, namely ex-
tensions of the RM that provide an alternative for modeling the existence of
guessing. That is to say, we use the mixed RM and a HYBRID model, both
of which can be estimated using the software WINMIRA (von Davier, 2001).

19.5 Applications

To illustrate an application of the DGPL model, we analyze data from 4153
examinees who took an intelligence test battery.3 For our analyses we chose the
first subtest (verbal comprehension), which consists of 20 items. The response
format is multiple choice with 5 response alternatives (the correct answer plus
4 distractors).

Some results from the Rasch analyses of the 20 items are given in Ta-
ble 19.1. Andersen’s likelihood ratio test with a partition of the sample ac-
cording to the criterion “examinees with low vs. high score” is significant
(χ2 = 318.8071, df = 19; the critical χ2 at α = 0.01 is 36.216). The like-
lihood ratio test carried out with respect to the criteria “male vs. female
examinees” and “younger vs. older examinees” are also significant. After the
stepwise deletion of 9 misfitting items according to Rasch’s graphical model
check and the described zi-values, we obtained an insignificant likelihood ratio
test with respect to the criterion score (χ2 = 21.9095, df = 10; the critical χ2

at α = 0.01 is 23.239). However, the two likelihood ratio test with respect to
the criteria gender and age are still significant (gender: χ2 = 46.3723, df = 10;
age: χ2 = 211.3766, df = 10). Of course, this indicates, in the first instance,
some amount of differential item functioning, but in view of the large sample
size and particularly in view of the graphical model check (see Figure 19.1),

3 We want to thank Harcourt Test Services and its general manager, Dr. Ralf Horn,
for placing the data at our disposal. The test battery has been in practical use
for years but was removed from the market because of issues regarding item
copyright. However, the data copyright is by Harcourt Test Services.
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we conclude that the 9 item reduced data set fits the RM well enough — the
graphical model check discloses that differences of item-parameter estimates in
the two respective subgroups are rather negligible. Moreover, the conditional
item fit statistic from Rost and von Davier (1994; Qi-index) also discloses
an acceptable fit of the reduced item pool (cf. Table 19.2). The 9 deleted
items may, therefore, establish either severe guessing effects or discrimination
effects.
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Fig. 19.1. Graphical goodness-of-fit tests of the reduced item set for the two external
partition criteria age and gender

The results of the analyses of the total data set with the DGPL model are
as follows. The fixed scale parameter resulted as α = 1.427. The estimates
of the item-difficulty and the item-guessing parameters as well as the special
likelihood ratio test χ2 fit statistics are given in Table 19.3. Unfortunately, a
global goodness of fit test is not possible because the number of unobserved
response patterns is too high, even though the sample size is quite large.

Both the special likelihood ratio test χ2 statistics based on 15 ability in-
tervals (given in the Table 19.3) and the zi-values computed for the criterion
score (given in the Tables 19.1 and 19.2) are sensitive to differences of the
observed and the expected proportions of correct responses — expected in
the sense that the respective model is assumed to be valid. If, for instance,
the number of correct responses for an item i is higher than expected in the
low-scoring group — as happens when guessing effects occur — this item will
be easier than in the high-scoring group: That is to say, a negative zi-value
has resulted.4 Table 19.1 shows that every item with a large negative zi-value
4 Note that another reason for a negative zi-value of an item might simply be a too

low discriminatory power of the item. The number of correct responses is higher
than expected in the low-scoring group and thus the item-parameter estimate is
smaller than for the total sample, whereas in the high-scoring group, the number
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Table 19.1. CML item-parameter estimates (and standard errors in parenthesis)
of the RM for the total of 20 items and the total sample of n = 4153 examinees,
the (according to the score median) low-scoring sample n = 1811, the high-scoring
sample n = 2342; the corresponding zi-values are given as well. Significant values at
the level α = 0.01 are typed in bold.

Item Cml Estimates Cml Estimates Cml Estimates
No. Total Sample Low Scorer High Scorer zi-Values

1 −2.4016 (0.0587) −2.2998 (0.0634) −2.7762 (0.1539) 2.8625
2 −1.3078 (0.0401) −1.2905 (0.0343) −1.3034 (0.0780) 0.1504
3 −1.8299 (0.0490) −1.7024 (0.0383) −2.2334 (0.1166) 4.3267
4 −0.5578 (0.0191) −0.5553 (0.0282) −0.5229 (0.0349) −0.7209
5 −0.9173 (0.0232) −0.9797 (0.0333) −0.7650 (0.0391) −4.1786
6 −0.9029 (0.0230) −0.9947 (0.0336) −0.7033 (0.0416) −5.4440
7 −0.5817 (0.0191) −0.5599 (0.0283) −0.5768 (0.0321) 0.3948
8 −0.4641 (0.0189) −0.3346 (0.0289) −0.6253 (0.0364) 6.2593
9 −0.7456 (0.0202) −0.6927 (0.0302) −0.7991 (0.0517) 1.7777

10 −0.3506 (0.0187) −0.3713 (0.0267) −0.2859 (0.0459) −1.6070
11 −0.2648 (0.0191) −0.1501 (0.0357) −0.3788 (0.0409) 4.2138
12 −0.2035 (0.0198) −0.5137 (0.0266) 0.1752 (0.0432) −13.5735
13 0.2742 (0.0223) 0.0741 (0.0372) 0.4800 (0.0319) −8.2832
14 0.7005 (0.0182) 0.9525 (0.0460) 0.5810 (0.0325) 6.5924
15 0.5694 (0.0170) 0.4361 (0.0441) 0.6966 (0.0304) −4.8614
16 0.9506 (0.0222) 1.0638 (0.0570) 0.9245 (0.0375) 2.0416
17 0.9326 (0.0220) 1.1996 (0.0592) 0.8315 (0.0303) 5.5366
18 1.6757 (0.0301) 1.8186 (0.0763) 1.6627 (0.0415) 1.7951
19 2.1979 (0.0338) 2.3448 (0.0929) 2.1955 (0.0430) 1.4591
20 3.2269 (0.0552) 2.5551 (0.1013) 3.4232 (0.0522) −7.6149

Table 19.2. CML item-parameter estimates (and standard errors in parenthesis)
of the RM for the 9 item reduced test; the Qi-indices as well as their corresponding
standard normal distributed test statistic ZQ

Item CML Estimates
No. Total Sample Qi-Indices ZQ

2 −1.4791 (0.0416) 0.1723 0.9310
3 −2.0150 (0.0484) 0.1225 −1.7936
4 −0.7042 (0.0275) 0.1715 1.5160
7 −0.7290 (0.0263) 0.1624 0.7872
9 −0.8989 (0.0284) 0.1578 0.1233

11 −0.3992 (0.0307) 0.1470 −0.3423
14 0.6156 (0.0204) 0.1491 −0.1775
16 0.8807 (0.0227) 0.1472 0.0574
17 0.8616 (0.0225) 0.1329 −1.2898
18 1.6536 (0.0352) 0.1488 −0.0517
19 2.2139 (0.0421) 0.1609 0.2111
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Table 19.3. MML estimates of item-difficulty and item-guessing parameters (and
standard errors in parenthesis) of the DGPL model for the total of 20 items and
the total sample of 4153 examinees; the χ2 fit statistics based on 15 ability intervals
with corresponding degrees of freedom and the p-values are given as well

Item Item-Difficulty Item-Guessing
No. Parameters Parameters χ2 df p-Values

1 −2.202 (0.123) 0.156 (0.072) 15.2 11.0 0.1727
2 −1.186 (0.109) 0.158 (0.063) 17.1 12.0 0.1444
3 −1.641 (0.101) 0.122 (0.057) 35.0 12.0 0.0005
4 −0.827 (0.106) 0.165 (0.058) 16.9 14.0 0.2614
5 −0.831 (0.128) 0.273 (0.066) 20.0 14.0 0.1316
6 −0.696 (0.131) 0.305 (0.063) 19.1 14.0 0.1600
7 −0.745 (0.125) 0.255 (0.064) 8.2 14.0 0.8812
8 −0.624 (0.078) 0.081 (0.035) 33.7 14.0 0.0023
9 −0.860 (0.105) 0.164 (0.058) 8.4 14.0 0.8672

10 −0.495 (0.092) 0.129 (0.045) 29.6 15.0 0.0135
11 −0.462 (0.080) 0.088 (0.036) 23.7 15.0 0.0703
12 0.493 (0.144) 0.433 (0.035) 13.6 14.0 0.4818
13 0.289 (0.103) 0.209 (0.036) 19.1 15.0 0.2097
14 0.394 (0.078) 0.079 (0.024) 32.3 15.0 0.0058
15 0.554 (0.096) 0.146 (0.030) 16.1 15.0 0.3768
16 0.557 (0.079) 0.069 (0.022) 19.3 13.0 0.1130
17 0.571 (0.066) 0.036 (0.016) 29.9 12.0 0.0029
18 1.132 (0.087) 0.058 (0.017) 24.4 13.0 0.0277
19 1.401 (0.089) 0.051 (0.014) 25.6 13.0 0.0195
20 2.918 (0.224) 0.064 (0.011) 11.7 12.0 0.4709

— that therefore does not fit the RM (especially the items number 5, 6, 12,
13, 15, and 20) — can actually be fitted using the DGPL model: as is seen,
insignificant χ2 statistics were obtained. The estimated guessing parameters
of the items under consideration, except item 20, disclose that high-guessing
effects occur especially with these items in particular. Thus, one of the most
likely reasons for a nonfit to the RM is indeed guessing effects.

On the other hand, the items that do not even fit the DGPL model (items
3, 8, 14, and 17 — according to the χ2 statistic) are not affected by guessing.
Their estimated item-guessing parameters are barely higher than zero. The
zi-values of these items, with respect to the RM, are high, but positive, which
may indicate a discriminatory power that is too high. This is because in the
low-score group the number of correct responses is even lower than expected
according to the estimated item-difficulty parameters from the RM, whereas
in the high-score group this number is higher than expected. At least, this is

of correct responses is lower than expected and thus the item-parameter estimate
is larger than for the total sample. This result may also be due to the case that
the item-characteristic curve is very flat.



304 Klaus D. Kubinger and Clemens Draxler

a good explanation for the fact that those items do not fit either the DGPL
model nor the RM.

The result creates the a posteriori hypothesis of an even more general
model, that being the unconstrained 3PL model.5 However, there are only
4 out of 20 items that indicate a different discrimination parameter. This
should be interpreted here as a matter of chance; of course, the 3PL model
is always applicable for dichotomously scored items. This paper, however,
aims to highlight a valid approach for saving an item pool that is designed
to fit the RM but suffers from guessing effects caused by the multiple-choice
format. Because the model fit analyses disclose that both models, the RM
and the DGPL model cannot explain the data sufficiently enough as a whole,
a comparison of the two models by means of the special likelihood ratio test
(19.4) does not really pay off. Of course, if the more general model does not fit,
then an insignificant result from a likelihood ratio test will not support a more
restrictive model. On the other hand, there is the chance of a significant result
in favor of the DGPL model. Therefore, we have computed the respective
test χ2 statistic (19.4) for just this reason: Indeed, the result is significant
(χ2 = 83.8502, df = 19) and thus indicates once more a superior fit of the
DGPL model in comparison to the RM.

Furthermore, a comparison of the goodness of model fit of these two models
can be carried out by using the information criterion AIC (Akaike information
criterion; Akaike, 1973). For this, the logarithmic function of the respective
marginal likelihood times −2 and plus twice the number of estimated parame-
ters has to be calculated. Table 19.4 gives the results. The AIC for the DGPL
model is lower than the AIC for the RM. Hence, the additional item-guessing
parameter of the DGPL model contributes to a descriptively important in-
crease of the likelihood in comparison to the RM. This again confirms the
superiority of the DGPL model for the given item pool as a whole.

Table 19.4. Comparison of the goodness of model fit for the RM and the DGPL
(D+G PL) model

Model Log Marginal Number of
Likelihood Parameter Estimates AIC

RM −12751.5672 21 25545.13
D+G PL model −12709.6421 40 25499.28

The χ2-fit statistics of the items 3, 8, 14, and 17 indicate an unacceptable
fit with respect to the difficulty plus guessing PL model. We have concluded
above that these items may discriminate too much in contrast to the rest
of items because their estimated guessing parameter is negligibly low and be-
5 Although this is beyond the focus of this paper, an analysis of the data according

to the 3PL model indeed showed an acceptable fit with respect to all items.
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cause of the positive sign of the zi-values in Table 19.1 with respect to the RM.
The items with a high negative zi-value in Table 19.1, on the other hand, fit
the DGPL model because obviously these items are affected by guessing. Thus,
a comparison of the goodness of fit of the two models in question with respect
to the reduced item set, where items 3, 8, 14, and 17 have been discarded,
may confirm our conclusions above. With this in mind, we have computed the
likelihood ratio test statistic (19.4). The logarithmic function of the marginal
likelihood of the RM (log mL = −10303.28) is lower than the logarithmic
function of the marginal likelihood of the difficulty plus guessing PL model
(log mL = −10281.87). The difference according to the likelihood ratio test
(19.4) is significant (χ2 = 42.83, df = 15; the critical χ2 at α = 0.01 is 30.58)
and thus clearly shows a better fit of the DGPL model for the reduced item
pool under consideration.

There still remains the question as to whether the DGPL model explains
the data, with respect to the 11 RM fitting items, even significantly better
than the RM itself. In order to answer this question, we again used the special
likelihood ratio test (19.4). Therefore, we have to estimate the item parame-
ters of the RM applying the MML method once more as described above (cf.
footnote 4): In particular, the common discrimination of all items α has to be
estimated in addition to the item-difficulty parameters. The logarithmic func-
tion of the marginal likelihood of the DGPL model (log mL = −7181.0895) is
now just slightly higher than the logarithmic function of the marginal likeli-
hood of the RM (log mL = −7183.6911) so that the difference is, according
to the χ2 statistic (19.4), not statistically significant (χ2 = 5.2032, df = 10).
That is to say, the 11 items in question not only fit the RM to a satisfac-
tory extent but also do not need an additional guessing parameter in order to
improve the fitting of the data.

Although the application of the DGPL model saves most of the items that
would have otherwise been deleted using the RM, obviously because of guess-
ing effects (at least for some items), there are a number of other possibilities
of modeling such a data structure. In the following, we will consider exten-
sions of the RM to discrete mixture-distribution models, that being the mixed
RM and a HYBRID model. The hypothesis might arise that guessing leads to
random responses to some or even all items for a subgroup of examinees, for
instance, for examinees with low proficiency. Then the data would consist of
a mixture of persons who respond according to an item response model such
as the RM and another subgroup that displays a random response behavior
to some or all items, so that no item response model would actually provide
an adequate explanation of the data. Thus we would have to assume an unre-
stricted multinomial distribution for this subgroup’s responses. Such assump-
tions can be specified using a HYBRID model where one latent class assumes
the RM and the other class a one-class latent-class model. Another possibil-
ity of untangling different kinds of mixture distributions and thus identifying
latent subgroups of examinees for whom different item-difficulty parameters
exist is the application of the mixed RM. Different subgroups of examinees
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that show different intensities of guessing may be reflected in different but
class specific item-parameter estimations. To compare the goodness of fit of
the competing models with each other and with the RM, we again use the
AIC and a likelihood ratio test that is based on a marginal form of the con-
ditional likelihood. Following Rost (2004) we call it the “score distribution
likelihood” because the conditional response patterns are multiplied by their
corresponding “score parameters,” that is to say, the relative frequencies with
which the different scores are observed in the sample of examinees. However,
the estimation equations are equivalent to the CML method because the score
parameters appear as additive constants in the log likelihood and thus become
zero when taking the partial derivatives with respect to the difficulty param-
eters. Table 19.5 summarizes the results. It shows the logarithmic function of
the score distribution likelihoods and the AIC indices for the RM, for the 2-
and 3-class solution of the mixed RM as well as for a 2- and 3-class HYBRID
model. The HYBRID models have been specified in each case with one of the
classes so as to fit the RM.

Table 19.5. Comparison of the goodness of fit of the 2- and 3-class solution of the
mixed RM (MRM), of the 2- and 3-class HYBRID model, and of the RM

Rasch 2-Class 3-Class 2-Class 3-Class
Model MRM MRM HYBRID HYBRID

Log Likelihood −43563.3 −43347.2 −43218.9 −43419.6 −43298.9
AIC 87204.6 86848.5 86667.1 86959.2 86759.8

It is not surprising that all the models discussed here show a better fit to
the data than the RM. According to the AIC, the 3-class mixed RM has the
best relative fit.

The likelihood ratio test confirms the superior fit of the 3-class solution
in comparison to the RM (χ2 = 688.7, df = 76) as well as in comparison to
the 2-class mixed RM (χ2 = 256.52, df = 38). Furthermore, the likelihood
ratio test comparing the RM with the 2-class model is also significant (χ2 =
432.18, df = 38) and thus indicates that a parameter restriction that yields the
RM is statistically not admissible. (For all tests we have chosen a significance
level of α = 0.01, again).

Although the two HYBRID models also show a better fit in comparison to
the RM they are clearly empirically inferior to the respective solutions of the
mixed RM. This is the reason why we will not take these models into further
consideration. Instead, we take a closer look at the two mixed-RM solutions.

First, let us consider the 2-class solution. According to the Q-index, which
assesses the fit of the items within a latent class, the following occurs: The
examinees of the first latent class, consisting of approximately half of the
total number of examinees (48.98%), exhibit an RM conform response be-
havior. Thus, we will consequently call it the Rasch class. The other latent
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class reflects a response behavior that deviates from the RM, according to
the Q-index. Because we have shown that by analyzing the data with the
DGPL model severe guessing effects occur, it is plausible to conclude that
this class consists of examinees that, to a certain extent, use guessing as their
predominant response strategy. We will refer to this class as the guessing class.
Another reliable indicator for the plausibility of the above interpretation is the
fact that the Rasch class more or less consists solely of examinees with a high
score whereas the guessing class is predominantly constituted by low scorers.
And of course, it is highly feasible that people with a low-test performance
are more likely to guess when responding to the items.

The results of the analyses with the DGPL model disclosed severe guessing
effects especially with regard to item number 5, 6, 12, 13, and 15. As can be
seen in Figure 19.2, these items in particular are clearly easier in the guessing
class of the 2-class mixed RM than in the Rasch class, whereas for most of
the other items it is the other way round — or they have approximately the
same difficulty estimation in both classes. Given the fit of the DGPL model,
in relation to the RM — irrespective of the more discriminating powerful four
items — this is exactly what we would have to expect if a subgroup of guessing
examinees actually exists. A constant guessing parameter for all examinees
and a valid partition into two subgroups of examinees is only possible if the
partition takes place according to the level of performance. That is to say, the
chance of guessing is of almost no relevance for the high scorer, but actually
is of relevance for low scorers, especially with regard to those items that are
easier than others to guess correctly.

When considering the 3-class solution of the mixed RM, the above conclu-
sions can be retained. The Rasch class of the 2-class solution is maintained.
The class size is nearly exactly the same as in the 2-class model (48.189%) and
the Pearson correlation of the two sets of parameter estimations is 0.999. The
other two classes, with class sizes 29.61% and 22.20% respectively, have been
split from the guessing class of the 2-class model and can be interpreted as
a kind of differentiation among the guessing examinees with respect to their
intensity of guessing; in other words, one class with a high level of guessing
and the other with a lower level. Once again, both guessing classes show that
items 5, 6, 12, 13, and 15 are easier than in the Rasch class.

19.6 Discussion

Although our results are not really surprising, they definitely contribute to
the practice of test calibration. The DGPL model discussed here is a special
case of the 3PL model that has so far not been applied frequently. However,
as demonstrated here, it is indeed of practical importance. If a multiple-choice
response format is used, often with five response choices, of which only one
represents a correct response to the item, then conventional RM analyses
may actually be carried out — after deleting some of the items — with a
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Fig. 19.2. Item-parameter patterns of the 2-class solution of the mixed RM

reduced item pool where the RM holds. However, more items can most likely
be retained if an additional item-guessing parameter is taken into account.
From a certain point of view, this is of great importance.

There is no doubt that using an additional item-guessing parameter en-
tails severe measurement and psychometric problems as one is not only faced
with the problems of parameter estimation, but also with the loss of specific
objectivity and the lack of a variety of powerful methods for model checks
available for Rasch-based models (see, for example the chapter by Glas in this
volume). Above all, choosing the DGPL model involves the loss of the exis-
tence of a sufficient statistic for the person parameter sought after. One could
argue that because all these psychometric problems arise, would it not be
more preferable to use an additional item discrimination parameter, that be-
ing the 3PL model, or to use an additional parameter right from the beginning
instead of an additional guessing parameter, that being the 2PL model. This
argument is of course justified from a psychometric point of view — although
three types of item parameters mean additional problems for parameter esti-
mation than only two types. This argument, however, goes beyond practical
requirements. Even if test calibration in practice does not favor estimating the
person parameter instead of calculating the score as a respectively sufficient
statistic, analyses according to the DGPL model would almost always disclose
that some of the items show unacceptably high-guessing effects — which could
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ultimately be repaired by altering the distractors or the like. We doubt that
every test that fits the RM and that uses a multiple-choice response format is
actually free from (item-specific) guessing effects. And if indeed so, any such
effects would probably have occurred before the respective items were deleted.
Our empirical example proves this suggestion: The stepwise deletion of items
within the RM analysis leads to a reduced item pool in which there was no
item that had an item-guessing parameter of relevance; however, there were
an additional 5 items from the total of 16 items that fitted the DGPL model
that could have been used for the final test. As that amounts to more than
31%, using the RM to fit this data is obviously not very economical.

From a methodological point of view, we conclude that the mixed RM
serves not only to check the RM fit of an item pool but can also give an
indication of guessing effects. The latter being in the case that at least two
classes split the examinees into high and low scorers and furthermore discloses
lower item-parameter estimations for the low scorers in comparison to the
high scorers for some of the items. However, from a test-construction point of
view, the DGPL model seems preferable for establishing a psychometrically
sound instrument for pertinent psychological assessment: Examinees’ ability
can then be estimated in a comparable fashion for all respondents as they
are characterized by one ability estimate only, and not by different types of
guessing behavior in addition to an ability estimate.
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20.1 Introduction

In this chapter, the problem of strategy shifts in problem-solving is discussed
within the framework an extended Rasch model (RM) theory. A strategy-shift
model is formulated that is similar to the (generalized) solution-error response-
error model of Westers & Kelderman (1991). Modeling of strategy shifts is
illustrated by means of the balance-beam task of Siegler (1981), which was
administered to 484 Dutch 12-to-13-year-old children. Different hypotheses
regarding the strategy shifts of subjects based on Siegler’s theory concerning
the balance task are specified and empirically tested.

We present ways to deal with testing hypotheses on strategy shifts in
problem-solving processes within the framework of loglinear RMs. Strategy
shift is a phenomenon that frequently occurs when subjects solve test items.
Siegler (1991) reports multiple-strategy use by children in domains such as
arithmetic, causal reasoning, judgments of plausibility, reading and spelling,
referential communications, serial recall, and spatial reasoning. Also, Siegler
(1987) and Siegler & McGilly (1989) report frequent strategy shifts when chil-
dren are presented identical problems on two successive days. In a study of
spatial intelligence, Kyllonen, Lohman, and Woltz found that different sub-
jects used different strategies for accomplishing the same goal in various spatial
tasks, and that subjects shifted strategies depending on the demands of the
task. The phenomenon of strategy shift seems to be an important aspect of
intelligent behavior. It enables a person to “ . . . flexibly adapt to problems to
maximize performance” (Kyllonen, Lohman, & Woltz, 1984, p. 1343). Siegler
& Campbell (1989) noted that:

Good reasons exist for us to know and to use multiple strategies.
Strategies differ in their accuracy, in the amounts of time needed for
execution, in their memory demands, and in the range of problems
to which they apply. Strategy choices involve trade-offs among these
properties; people try to choose strategies that enable them to cope
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with cognitive and situational constraints. The broader the range of
strategies we know, the more we can shape our approaches to the
demands of particular circumstances.

Two kinds of strategy shifts can be distinguished in problem-solving: (1)
shifts that primarily originate in the person, and (2) strategy shifts that are
induced by the items. A strategy shift originates primarily in the person when
the task characteristics of the items do not influence the strategy shift. For
example, when a subject shifts strategy between two parallel items with the
same difficulty, this is a person-dependent strategy shift. A strategy shift
between two items is item-induced when the strategy shift depends only on
task characteristics and is independent of the ability of the subjects. This
would, for example, probably be the case when all subjects in a population
solve one item using strategy 1 and solve an other item using strategy 2.

Usually, a person-dependent strategy shift cannot be distinguished from an
item-induced strategy shift when they both can occur at the same time. The
strategy-shift model that is presented in this paper can distinguish between
the two types of shifts only on the basis of additional theory. The theory
should describe which items have identical task characteristics. Item-induced
strategy shifts are not expected to occur between structurally parallel items
with the same difficulty, and the strategy-shift model of this paper can test
this assumption.

In cognitive psychology, linear regression models were used to study strat-
egy shifts of subjects in problem-solving by Ippel & Beem (1987) and Kyllo-
nen, Lohman, & Woltz (1984). In IRT, a number of psychometric models have
been formulated that can account for different strategies. Important references
are Embretson et al. (1986), Kelderman & Macready (1990), Kelderman &
Rijkes (1994), Mislevy & Verhelst (1990), Paulson (1986), Rost (1990), Same-
jima (1983), Tatsuoka et al. (1988), and Wilson (1989). However, most of
these models focus on the case of consistent strategy use of subjects during
the test and do not take strategy shifts into account.

In this chapter, the use of a strategy-shift model will be illustrated by
means of its application to the balance (beam) task of Inhelder & Piaget
(1958). The balance task is well known in developmental psychology, e.g.,
Case (1985), Inhelder & Piaget (1958), Klahr (1978), Siegler (1981), Wilkening
& Anderson (1982). The task is used in this field to assess the knowledge
structures and solution strategies of children in the context of a stagewise
cognitive development. In this paper, a specific version of the balance task of
Siegler (1981) will be used.

A number of measurement models have been formulated to model the sub-
ject’s response behavior on the balance task (Mislevy, Yamamoto, & Anacker,
1992; Kempf, 1983; Spada & Kluwe, 1980; van Maanen et al., 1989; Wilson,
1989). The balance task is an intriguing problem for psychometricians due to a
number of characteristics revealed in Siegler’s theory (Mislevy, Yamamoto, &
Anacker, 1992). First of all, according to Siegler, differences in understanding
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of the balance beam will lead to different strategy use of the subjects. Sec-
ond, the response patterns of the various solution strategies differ from those
normally expected on the basis of a latent-trait model. And third, the proba-
bility of a correct response is not monotone increasing with the latent ability
of the subjects due to the fact that subjects with little understanding of the
behavior of the balance task may arrive at the correct response category for a
wrong reason, whereas subjects of a higher ability may arrive at an incorrect
response category for the same item. This chapter focuses on the strategy
shifts of subjects in the balance task, based on Siegler’s theory. In the next
section, a short description of the balance task and the theoretical assump-
tions by Siegler will be given. Following this section, a strategy-shift model
will be discussed and hypotheses regarding the strategy shifts of subjects in
the balance task formulated. In the last part of this paper, the hypotheses
will be formalized using an IRT model and then empirically tested.

20.2 The Balance Task

The balance task was used by Inhelder & Piaget (1958) to investigate the
proportional reasoning ability of children. There are a number of variants of
the balance task, and one example of a task using the balance scale apparatus
can be seen in Figure 20.1.

Fig. 20.1. An example of a balance scale

In the balance task, a number of disks of the same weight are placed on
two sides of the balance beam, and subjects have to predict on which side
the balance beam will fall. Possible responses are left down, balance, and
right down. To make the scoring procedures objective, Siegler (1981) used a
forced-choice version of the balance-scale task.

The behavior of the balance beam can be explained by the concept of
torque. Torque is the outcome of total weight times the distance of the weights
to the tilting point. The balance beam will stay in balance when for each side
the products are equal, or else fall to the side with the greater torque.

According to Siegler there are four strategies (or “rules”) that subjects
use to solve the balance task. In the following, strategies will be indicated by
the random variable C taking values c ∈ Mc. Although Siegler describes the
strategies using a decision tree, in essence they correspond with the descrip-
tions below.
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The first strategy is random guessing (c = 1). This strategy is used by
children who do not know how to solve the problem. The second strategy of a
child is to focus only on weight (c = 2), and respond by stating that the side
with the greater amount of weight will go down. In the third strategy a child
focuses on weight and distance (c = 3). If the distance of the weights to the
tilting point is the same on both sides, then the side with the greater amount
of weight will go down. If the weights are equal, then the side will go down
where the weights are farther away from the tilting point. The last strategy
consists in computing the torques (c = 4), where the side with the greater
torque is reported to fall down.

To detect the different strategies, Siegler classified different balance tasks
in a number of problem types according to dimensional changes. “Balance”
items are problems in which there is no difference in the weight and distance
dimension. “Weight” items only differ in the weight dimension. “Distance”
items only differ in the distance dimension. “Conflict” items have two con-
flicting dimensions because there is more weight on one side but more distance
on the other side. The relation between the different solution strategies and
problem types is specified in Table 20.1, where (3:2)←→(1:3) means that
there are two weights at the third position of the left arm and three weights
at the first position of the right arm. For example, the balance in Figure 20.1
is represented by (3:2)←→(4:1) in this notation.

According to Siegler, when there are no conflicting dimensions, only the
first three strategies specified in Table 20.1 will be used. That is, subjects will
compute the torques only when there is no other way of solving the item. When
there are conflicting dimensions, the weight-and-distance strategy (c = 2)
cannot be applied to solve the item, and according to Siegler this strategy
will not be used by subjects for conflict items.

Siegler makes the strong assumption that the concept of understanding
the balance task develops along a number of progressive stages, where the
level of understanding is related to the age of the subject. In the first stage,
subjects do not focus on any relevant problem dimension; they will guess at
random. In the second stage, subjects focus only on the weight dimension. In
the third stage, subjects focus also on the distance dimension, but only when
there is no difference in the weight dimension (thus only for the distance item
types). So these subjects switch from the weight-and-distance strategy (c = 3)
for the distance items to the weight strategy (c = 2) on conflict items. In the
fourth stage subjects always focus on the weight and distance dimension, but
they do not know the right rule. These subjects will shift their weight-and-
distance strategy (c = 3) on the no-conflict items to the random-guessing
strategy (c = 1) on the conflict items. In the last stage, subjects always focus
on both dimensions and apply the multiplicative rule of computing torques.
These subjects will switch their weight-and-distance strategy (c = 3) for the
no-conflict items to the torques strategy (c = 4) for the conflict items.
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Table 20.1. Theoretical Probabilities of the Different Strategies for the Response
Alternatives L, B, R, of the Different Problem Types

Strategies
Weight Buggy

Item Problem Response Guessing Weight and Dist. Torques Rule

Balance L 0.33 0.00 0.00 - -
1 (3:3)←→(3:3) B 0.33 1.00 1.00 - -

R 0.33 0.00 0.00 - -

Weight L 0.33 1.00 1.00 - -
2 (3:3)←→(3:1) B 0.33 0.00 0.00 - -

R 0.33 0.00 0.00 - -

Distance L 0.33 0.00 1.00 - -
3 (3:3)←→(2:3) B 0.33 1.00 0.00 - -

R 0.33 0.00 0.00 - -

Conflict Weight L 0.33 1.00 - 1.00 0.00
4 (3:2)←→(4:1) B 0.33 0.00 - 0.00 1.00

R 0.33 0.00 - 0.00 0.00

Conflict Distance L 0.33 0.00 - 1.00 0.00
5 (2:2)←→(1:3) B 0.33 0.00 - 0.00 1.00

R 0.33 1.00 - 0.00 0.00

Conflict Balance L 0.33 0.00 - 0.00 0.00
6 (3:2)←→(2:3) B 0.33 0.00 - 1.00 1.00

R 0.33 1.00 - 0.00 0.00

van Maanen et al. (1989) found another strategy that subjects applied in
solving conflict items, and called it a buggy rule in the tradition of “mind
bugs” of Brown & van Lehn (1980). The rule is described as follows:

If side X has more weights and the weights of side X have the smaller
distance to the tilting point then shift the weights on side X away
from the tilting point until the distances on both sides are equal and
remove for every shift on side X one weight on side X (van Maanen et
al., 1989, p. 272).

The relation between the buggy-rule strategy (c = 5) and item types is
specified in the last column of Table 20.1.

Wilkening & Anderson (1982) criticized Siegler’s work for its lack of theory
on response error. The conditional probabilities in Table 20.1 between item
types and solution strategies assume that subjects make no errors in applying
a solution strategy. In the next section, a measurement model is described that
takes this concern into account and allows for response errors in the balance
task. First the model is described and then an example is given to illustrate
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the model. The section ends with the formulation of testable hypotheses on
strategy shifts in the balance task.

20.3 A Strategy-Shift Model

The strategy-shift model of this paper consists of two connected parts describ-
ing two sequential processes in problem-solving. In the first process, a subject
chooses a solution strategy from a number of available strategies to solve the
problem. In the second process, a subject executes the chosen solution strategy
and arrives at an observed response category.

In the first process, the relation between ability and solution strategies is
described by an RM. In this model, both the latent ability of a person and the
easiness of solving an item with a certain strategy determines the probability
that an available strategy is chosen to solve a given item. For a given problem,
each strategy has a certain probability of occurring. The same type of strategy
may be more readily employed in one item than in another. Different subjects
may use different strategies for accomplishing the same goal in various tasks,
and subjects may shift strategies depending on the demands of the task.

In describing the strategy-shift model, let an item be indicated by i (i =
1, . . . , I), and let θ be the value that describes the subject’s proportional-
reasoning ability. Let Mci

⊆ {1, 2, 3, 4, 5} be the set of strategies that can be
applied to item i, let ci ∈ Mci be the strategy the subject uses for solving item
i, and let c = (c1, . . . , cI) be the subject’s strategy vector for the complete
test. Note that the set Mci of possible strategies for solving item i may vary for
different types of items. The first part of the strategy-shift model describes
the probability that a subject uses strategy ci for item i given his subject
parameter θ:

P (ci|θ) =
exp(θsici + φici)∑

c∈Mci
exp(θsic + φic)

, (20.1)

where sici
is a strategy-weight specifying the relation between strategy ci and

ability θ, and φici a location parameter describing the easiness of strategy ci

for item i. In solving the items of a test, it is assumed that the strategies ci

of the subjects are locally independent given ability θ. This assumption holds
if the process of strategy choice for an item is not influenced by the choices
made on previous items.

The second process describes the execution of the chosen solution strategy
and arrival at an observed response category by conditional probabilities. If a
certain strategy can yield a particular response, the corresponding conditional
probability of that response under that strategy is larger than zero. These
probabilities may be known or estimated from the data. This part of the
model can account for response errors, by allowing for deviations from the
ideal conditional probabilities, as for example given in Table 20.1. The second
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part of the strategy-shift model describes the probability of a response xi

given the latent strategy ci for item i as

P (xi|ci) = πXiCi
xici

. (20.2)

Model (20.2) assumes that the conditional probabilities of an observed re-
sponse xi are the same for all subjects using the same latent strategy ci.

Combining (20.1) and (20.2) under the assumption that xi depends only
on ci, and ci only on θ, gives

P (xi|θ) =
∑

ci∈Mci

πXiCi
xici

exp(θsici
+ φici

)∑
c∈Mci

exp(θsic + φic)
. (20.3)

Model (20.3) is similar in structure to the (generalized) solution-error
response-error (GSERE) model of Kelderman (1988) and Westers & Kelder-
man (1991). The general structure of this model is that of a discrete mixture
of conditional strategy-specific response probabilities over the set of available
strategies for a particular item. The main difference between the strategy-shift
model and the GSERE model is the interpretation of the model parameters.
Also, in this study different constraints are imposed on the model parameters.

20.3.1 An Example

A key assumption of the strategy-shift model is that there is a relation between
the strategy a subject uses and the subject’s latent ability. In the strategy-
shift model, this relation is described by the strategy-weights (sici) in (20.3).
These strategy-weights are constants that must be specified before the model
is fitted. No a priori rules are given for specifying the strategy-weights.

If we assume that older or smarter children use better strategies than
younger or less-intelligent children, the solution strategies of the balance task
can be scored using strategy-weights expressing a monotonically increasing
relation between the strategies and θ. For example, in scoring the solution
strategies for a distance item, a strategy-weight specification could be as fol-
lows: random guessing (c = 1) gets a strategy-weight of 0 and serves as the
reference strategy. The weight strategy (c = 2) gets a strategy-weight of 1,
and the weight-and-distance strategy (c = 3) a strategy-weight of 2. In this
specification, it is assumed that subjects applying the weight-and-distance
strategy tend to have a higher proportional-reasoning ability than subjects
applying the weight strategy or random guessers. And also, subjects applying
the weight strategy have in general a higher ability than random guessers.
Note that for other items, other strategy-weights can be specified, depending
on the relation between ability and the solution strategies. Substituting the
strategy-weights (φic) as specified above in (20.1) gives the following model
equations for a conflict item:
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P (ci = 2|θ) = c−1
i exp(θ + φi2),

P (ci = 3|θ) = c−1
i exp(2θ + φi3), (20.4)

P (ci = 1θ) = [1 + exp(θ + φi2) + exp(2θ + φi3)]−1 = c−1
i .

In these equations, the location parameter φi1 for the weight strategy is fixed
at zero as a reference point. If, for example, the strategy-location parameters
have the values φi2 = −1.5 and φi3 = −4, the item-characteristic curves for
the strategies will look like the ones in Figure 20.2.

Fig. 20.2. Estimated item-characteristic curve of conflict weight item (20.4)

In Figure 20.2, the probability of applying a strategy changes with differ-
ent values of θ. The probability of using the strategy random guessing (the
solid line in Figure 20.2) decreases as θ increases. The probability of using
the weight-and-distance strategy (the line of dots and bars) increases as θ
increases. The probability of using the weight strategy (the dotted line) first
increases and then decreases as θ increases.

The points in Figure 20.2 where the item-characteristic curves intersect can
be called “strategy-shift” points. At these points, the probability of applying
one strategy equals the probability of applying the other strategy. So, for
example in Figure 20.2, the probability of using the random guessing strategy
equals the probability of using the weight strategy at strategy-shift point
θ = 1.5.

Notice that when the value of φi varies between items, then, given a fixed
value of θ, the probability of applying a given strategy will also vary. So sub-
jects may shift their strategies depending on the easiness of applying available
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strategies in a given task. Notice also that the probability of applying a strat-
egy can be influenced by the strategy-weights, which may vary for different
items.

20.3.2 Hypotheses

Four hypotheses will be specified with regard to the problem-solving processes
in the balance task. They will be denoted by, for example, H10 and H1A
standing for the first null and alternative hypotheses, respectively.

The first hypothesis is on the relation between the latent ability θ and the
solution strategies. Siegler (1981) assumes that proportional-reasoning ability
develops along a number of progressive stages, where each stage has a different
relation with the solution strategies, as described in the balance-task section.
However, Siegler’s theory does not say anything about the relation between the
buggy-rule strategy and the latent ability θ. On the basis of Siegler’s theory it
seems plausible that subjects who only randomly guess on conflict items have
approximately the same developmental level as subjects using the buggy-rule
strategy. In that case, giving both strategies an equal strategy-weight would
be appropriate. Therefore, the null hypothesis H10 assumes that the slopes
of the regression function of the buggy-rule strategy (c = 5) and random
guessing (c = 1) on the latent ability are the same on conflict items. The
null hypothesis will be compared with the alternative hypothesis H1A, which
assumes that the slopes of the regression functions of the two strategies on
the latent ability are different.

The next two hypotheses are on strategy shifts in the balance task. Ac-
cording to Siegler, the easiness of applying a strategy for solving an item does
not change within an item of the same type. This implies that between items
of the same type, there will only be person-dependent strategy shifts. The null
hypothesis H20 therefore assumes that the location parameters of strategies
for solving items of the same type are equal, and will be compared with the
alternative hypothesis H2A stating that they differ.

The third hypothesis concerns strategy shifts in conflict-weight, conflict-
distance, and conflict-balance items. According to Siegler, the easiness of ap-
plying a strategy to solve an item does not change within the set of conflict
items. This fact implies also for conflict items that there will only be person-
dependent strategy shifts. For this reason, the null hypothesis H30 postulates
that the location parameters of the strategies on conflict items are equal, and
will be compared with the alternative hypothesis H3A, stating that they differ.

The fourth hypothesis deals with the conditional probabilities in the second
part of the model. The conditional probabilities in the strategy-shift model
are specified on the basis of Siegler’s theory. The fourth null hypothesis H40
assumes that the conditional probabilities as specified in Siegler’s theory lead
to an adequate fit of the strategy-shift model to the data. This hypothesis
will be tested against the alternative hypothesis H4A stating that a fitting
strategy-shift model cannot be found. Because Siegler’s work lacks a theory
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on response errors, a small arbitrary response-error value of 0.05 is chosen. In
testing hypothesis H40 this value was allowed to vary between 0.00 and 0.10.

In the next section it will be described how the different hypotheses were
tested for an empirical data set.

20.4 Method

20.4.1 Subjects

In this study, an empirical data set from (van Maanen et al., 1989) was used.
The sample consisted of 235 children in grade seven and 249 children in grade
eight about 12–13 years old. In total, there were 484 children from twelve
primary schools in the northern region of the Netherlands participating in the
study.

20.4.2 Instruments

(van Maanen et al., 1989)constructed a paper-and-pencil version of Siegler’s
balance task consisting of five weight items, five distance items, five conflict-
weight items, five conflict-distance items, and five conflict-balance items (see
Table 20.1). The 25 items were presented in random order to each subject, to
prevent systematic learning and fatiguing effects from occurring across sub-
jects. The items were scored dichotomously in correct and incorrect responses.
Unfortunately, the original data on the trichotomous responses were lost, so
that the dichotomous responses were used in this study. The computer pro-
gram LEM of Vermunt (1997a) was used to fit the models. The estimation
procedure of LEM is based on maximum likelihood.

20.4.3 Analysis

In this study, a subset of items of the test of (van Maanen et al., 1989) was
reanalyzed. Their findings, based on cluster analysis, suggested that in their
sample only the following four of the five strategies specified in Table 20.1
were used: random guessing (c = 1), the weight strategy (c = 2), the weight-
and-distance strategy (c = 3), and the buggy-rule strategy (c = 5). They
also found that random guessing occurred only at conflict items. The fact
that random guessing did not occur at no-conflict items, and that the torque
strategy (c = 4) was not used, might be caused by a restriction of range in
ability levels; only subjects in the age range of about 12–13 years old parti-
cipated in the study. The item analysis of van Maanen et al. showed that the
items of the balance test did not conform to an RM. After the data set was
divided into four separate strategy-homogeneous populations, a linear logistic
test model (Fischer, 1973; Scheiblechner, 1972) fitting the data matrix of one
of the subpopulations was found.
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In the following, it was assumed that only the four strategies found by (van
Maanen et al., 1989) occurred in the sample. In this study, two parallel subsets
of four items were selected from the test of van Maanen et al., each consisting
of two distance items (items 1 and 2), one conflict weight item (item 3),
and one conflict-balance item (item 4). Differences in predicted conditional
probabilities between the strategies of van Maanen et al. (all strategies in
Table 20.1 except torques) made it possible to distinguish the strategies from
one another.

Two distance items were included in each subset of items to allow for
testing hypothesis H2 on strategy shifts between items of the same type.

The first subset of four items was used to test the different specified hy-
potheses. The second parallel subset of four items was used to cross-validate
the best-fitting model.

Standard errors for model parameters were computed using a bootstrap
procedure described by Efron (1982). In this procedure, the empirical data set
of this study was used as an estimate of an unknown empirical distribution.
Given the empirical data, 250 bootstrap samples were drawn. In each sample
drawn, the model parameters were estimated. An estimate of the standard er-
rors was then obtained by computing the standard deviation of the estimated
model parameters over the 250 data sets.

In the GSERE model, which is similar in structure to the strategy-shift
model, there is a trade-off between the item parameters in the first and second
layers of the model, which leads to unstable parameter estimates (Verhelst,
1992). The instability of the parameter estimates due to this trade-off can
be removed by fixing the conditional probabilities in the second layer of the
strategy-shift model. In this study, the conditional probabilities were fixed to
values corresponding with Siegler’s theory (see Table 20.1).

Note that the conditional probabilities of Siegler given in Table 20.1 do not
take response errors into account. Response errors refer to random deviations
from the ideal strategy response due to interfering factors in the response
process such as loss of concentration, ambient noise, and casual writing errors.
In the following, it was assumed that the probabilities of response errors were
equal for the different strategies and did not vary across items. Because the
actual tendency to produce response errors in solving balance-task items was
unknown, a small value equal to 0.05 was chosen. This meant that, on average,
once in every twenty times a random deviance of the ideal strategy response
would be ascribed to response errors. In Table 20.2, the values at which the
conditional probabilities were fixed for three items of the first item set are
given. In Table 20.2, the correct response is indicated as 1 and the incorrect
as 0. In Table 20.2, only the four strategies that occurred in the sample of
(van Maanen et al., 1989) are described.

To test the hypotheses, different models were compared for goodness of fit.
When models were nested, the likelihood-ratio statistic (L2) was used. The
difference between the likelihood-ratio statistics related to two nested models
is asymptotically chi-square distributed, with degrees of freedom equal to
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Table 20.2. Predicted probabilities of the different strategies c for the response
alternatives X (1=correct, 2=incorrrect) for problem types of the empirical data set

Strategies
Problem Response Guessing Weight Weight and Dist. Buggy Rule
Distance 1 - 0.05 0.95 -

(3:3)←→(2:3) 0 - 0.95 0.05 -

Conflict Weight 1 0.33 0.95 - 0.05
(3:2)←→(4:1) 0 0.66 0.05 - 0.95

Conflict Balance 1 0.33 0.05 - 0.95
(3:2)←→(2:3) 0 0.66 0.95 - 0.05

the difference in numbers of linearly independent parameters between both
models (e.g., Fienberg, 1980). When models were not nested, the Bayesian
information criterion (Schwarz, 1978, BIC) was used. The overall goodness of
fit of a model was determined by means of Pearson’s chi-square statistic (X2)
and standardized residuals (STR).

To identify the specified models, the strategy-location parameters of the
weight strategy (c = 2), and the first category of the weight-sum parameter
of the proportional-reasoning ability θ were fixed at zero. Furthermore, the
strategy-location parameter of the weight-and-distance strategy (c = 3) was
fixed at zero.

20.4.4 Specification of Hypotheses Using Probability Models

Hypotheses H1 through H4 were tested by the fit of the corresponding
strategy-shift model to the data. The first hypothesis, H10, states that the
slopes of the regression functions of the buggy-rule strategy (c = 5) and ran-
dom guessing (c = 1) on the latent ability are the same on conflict items. To
test this hypothesis, the following values for the weights were specified for the
strategies of Table 20.2: the weight strategy (c = 2) 0, the weight-and-distance
strategy (c = 3) 1, random guessing (c = 1) 1, and the buggy rule (c = 5) 1.
These sic weights result for the distance items in a decrease in probability of
choosing the weight strategy, and an increase in probability of choosing the
weight-and-distance strategy, when θ increases. These sic weights result for
the conflict items in a decrease in probability of choosing the weight strategy,
and an increase in probability of choosing the strategies random guessing and
the buggy rule, when θ increases. The probability for a correct and incorrect
response, respectively, for a distance item is given by

P (xi = 1|θ) = 0.05c−1
i + 0.95c−1

i exp(θ + φi3),
P (xi = 0|θ) = 0.95c−1

i + 0.05c−1
i exp(θ + φi3),

where c−1
i = 1 + exp(θ + φi3)

−1, for a conflict-weight item by
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P (xi = 1|θ) = 0.95c−1
i + 0.33c−1

i exp(θ + φi1) + 0.05c−1
i exp(θ + φi5),

P (xi = 0|θ) = 0.05c−1
i + 0.66c−1

i exp(θ + φi1) + 0.95c−1
i exp(θ + φi5),

where c−1
i = 1 + exp(θ + φi1) + exp(θ + φi5)

−1, and for a conflict-balance
item by

P (xi = 1|θ) = 0.05c−1
i + 0.33c−1

i exp(θ + φi1) + 0.95c−1
i exp(θ + φi5),

P (xi = 0|θ) = 0.95c−1
i + 0.66c−1

i exp(θ + φi1) + 0.05c−1
i exp(θ + φi5),

where c−1
i = 1 + exp(θ + φi1) + exp(θ + φi5)

−1. The above model equations
were obtained by substituting the strategy probabilities of Table 20.2 in Equa-
tion 20.3, where for each response category a sum of the strategies is given.
The terms of the sum in the model equations for a conflict-balance item, for
example, are related to the weight, the random-guessing, and the buggy-rule
strategies, respectively.

The above model equations of equal strategy-weights for random guessing
and the buggy rule (model a), were compared with the following two weight
specifications: (1) random guessing 1 and the buggy rule 2 (model b); and (2)
random guessing 2 and the buggy rule 1 (model c). In model b, the slope of
the regression function for the buggy rule is steeper than for random guessing,
where for model c the reverse is true. These strategy-weight specifications are
likely to be more appropriate when subjects differ in developmental ability
levels.

The second hypothesis, H20, assumes that the location parameters of the
strategies for solving items of the same type do not differ. This hypothesis
was tested by restricting the strategy-location parameters φic for the distance
items in the above model equations to be equal (model d).

The third hypothesis, H30, assumes that the location parameters of the
strategies on conflict items do not differ. This hypothesis was tested by re-
stricting the strategy-location parameter φic to be equal in the above model
equations for the conflict items (model e).

The fourth null hypothesis, H40, assumes that the conditional probabilities
as specified in Siegler’s theory lead to an adequate fit of the strategy-shift
model to the data. This hypothesis was tested by considering the overall
goodness of fit of the best-fitting model. If a fitting strategy-shift model could
be found, then hypothesis H40 would not be rejected.

20.5 Results

Table 20.3 lists the number of model parameters (NPAR), the degrees of
freedom (DF), and the values of goodness-of-fit statistics for the different
models. In model a in Table 20.3, the strategies random guessing and the
buggy rule get an equal strategy-weight of 1, whereas in models b and c the
strategy-weights differ (model b: random guessing 1, buggy rule 2; model c:
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random guessing 2’ buggy rule 1). The BIC values of the non-nested models a,
b, and c showed that model a fits better than models b and c. Therefore, the
null hypothesis H10 could not be rejected. The null hypothesis H10 postulated
that the slopes of the regression functions of the buggy-rule strategy (c = 5)
and random guessing (c = 1) on the latent ability are the same on conflict
items.

Table 20.3. Values of goodness-of-fit statistics for different models of balance prob-
lems

NPAR DF L2 X2 BIC
a 10.00 6.00 14.89 14.07 34.89
b 12.00 4.00 14.84 13.92 38.84
c 12.00 4.00 14.91 14.22 38.91
d 9.00 7.00 15.90 14.30 33.90
e 7.00 9.00 - - -
d3 9.00 7.00 12.91 13.19 30.91
d3 9.00 7.00 9.27 9.42 27.27

Model d in Table 20.3 is a special case of model a, in which the strategy-
location parameter for the weight-and-distance strategy (c = 3) are con-
strained to be equal. Model d has therefore one degree of freedom more than
model a. The difference between the values of the likelihood-ratio statistics
of models a and d indicate that the constrained model d fits not significantly
worse than model a (
L2

1 = 1.01, p = 0.31). The null hypothesis H20 can
therefore not be rejected, and we assume that the location parameter of the
strategies to solve a problem do not differ within the set of distance items.

Model e is a constrained version of model d in which the strategy-location
parameters for random guessing and the buggy-rule strategies are constrained
to be equal for items 3 and 4. So model e has two free parameters fewer than
model d. In the estimation process, model e did not converge, and we must
conclude that model e is not a good representation of the empirical data set.
The null hypothesis H30 is tentatively rejected in favor of the alternative
hypothesis H3A of varying strategy difficulties in the conflict items.

The goodness-of-fit statistics of models a through d indicate a bad fit to
the data. In columns four through seven in Table 20.4, the observed (fx)
and expected (Fx) frequencies, and standardized residuals (STR) of model
d indicate that frequency cell x = (1, 1, 2, 2) is not fitting very well (STR =
−2.00, p = 0.046). There are fewer subjects than expected with item responses
x1 and x2 wrong and x3 and x4 right.

The expected cell frequency of cell x = (1, 1, 2, 2) can be changed by means
of adjusting the conditional probabilities of a strategy that is involved in all
the items, namely the weight strategy (c = 2). If the conditional probabilities
for a correct response for the weight strategy are increased for items 1 and 2
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Table 20.4. Observed and expected cell frequencies and standardized residuals for
item set 1 and 2 of balance problems

Response Item Set 1 Item Set 2

Pattern Model d Model d3 Model d3

x1 x2 x3 x4 fx Fx STR. Fx STR. fx Fx STR.

1 1 1 1 6 6.45 −0.18 9.53 −1.14 13 8.60 1.50
1 1 1 2 2 0.76 1.43 0.66 1.66 1 0.55 0.61
1 1 2 1 104 99.87 0.41 100.23 0.38 90 94.03 −0.42
1 1 2 2 1 5.83 −2.00 2.64 −1.01 2 2.23 −0.16

1 2 1 1 10 8.66 0.46 8.57 0.49 4 6.25 −0.90
1 2 1 2 4 6.09 −0.85 6.10 −0.85 7 6.27 0.29
1 2 2 1 13 19.28 −1.43 19.08 −1.39 11 17.53 −1.56
1 2 2 2 6 3.74 1.17 3.95 1.03 4 3.51 0.26

2 1 1 1 7 8.66 −0.56 8.57 −0.54 8 6.25 0.70
2 1 1 2 5 6.09 −0.44 6.10 −0.45 5 6.27 −0.51
2 1 2 1 26 19.28 1.53 19.08 1.58 24 17.53 1.55
2 1 2 2 2 3.74 −0.90 3.95 −0.98 3 3.51 −0.27

2 2 1 1 97 96.79 0.02 96.87 0.01 62 61.83 0.02
2 2 1 2 113 110.47 0.24 110.52 0.24 114 113.74 0.02
2 2 2 1 63 63.22 −0.03 63.17 −0.02 106 105.90 0.01
2 2 2 2 25 25.08 −0.02 25.00 0.00 30 29.98 0.00

(distance) and decreased for items 3 (conflict weight) and 4 (conflict balance),
then the expected frequency of items 1 and 2 incorrect and items 3 and 4
correct will decrease.

In Table 20.5, the goodness-of-fit statistics of different models are depicted
in which the conditional probabilities for model d are slightly changed. Notice
that now the assumption of constant-response errors over the items and the
strategies is dropped for the weight strategy. The value 0.05 of the response
errors also changes. Model d3 in Table 20.4 has the lowest BIC value, and
should be preferred. The standardized residual (STR) for cell x = (1, 1, 2, 2)
has dropped from −2.00 to −1.01, and the standardized residuals for the
other cells in the frequency table (see Table 20.4) show no misfit. The Pearson
X2-statistic shows that model d3 fits at a right-tail significance level of 0.05
under a chi-square distribution. It must therefore be concluded that the overall
goodness of fit of model d3 is satisfactory. Therefore, the null hypothesis H40,
stating that the conditional probabilities as specified in Siegler’s theory lead
to an adequate fit of the strategy-shift model to the data, cannot be rejected.
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20.5.1 Results from Cross Validation

Model d3 was cross-validated using a parallel set of four items. Pearson’s
X2-statistic in Table 20.3 showed a good fit for model d3, and also the stan-
dardized residuals (STR) in Table 20.4 showed no signs of misfit for model
d3. It might be concluded therefore that model d3 was rightly accepted as
a well-fitting model. A peculiar fact was that model d3 of the parallel set of
items seemed to fit even better than in the original set of items. The reason
for this fact is unknown to the authors, and is ascribed to chance.

20.5.2 Estimated Model Parameters

In Table 20.5, the estimated location parameter for the following four strate-
gies are given: weight (c = 2), weight and distance (c = 3), random guessing
(c = 1), and buggy rule (c = 5). as a reference point, the parameters for
the weight strategy were constrained to a value of zero. To fix the scale, the
parameter of item 1 for the weight-and distance strategy was fixed at zero.
Because the parameters of items 1 and 2 were constrained to be equal for
the weight-and-distance strategy, the parameter for the weight-and distance
strategy was also equal to zero.

Table 20.5. Estimated values of strategy-location parameters and standard errors
(S.E.) for model d3 of first item set of balance problems

Strategy

Item Weight Weight and Dist. Guessing Buggy Rule
1 0.00* 0.00*
2 0.00* 0.00*
3 0.00* −43.63 (0.98) −43.42 (0.62)
4 0.00* −42.67 (0.81) −43.33 (0.60)

In Figure 20.3, a plot of the item-characteristic curve of the conflict-weight
item 3 is depicted. The solid line describes the probability that a subject with
proportional reasoning ability θ applies the weight strategy. The line with
bars and dots indicates the probability of applying the buggy-rule, and the
dotted line the probability of applying the random-guessing strategy. Because
the curves of the buggy-rule and random-guessing strategies do not inter-
sect, there were only two strategy-shift points: at θ= 3.42, the probability of
applying the weight strategy equaled the probability of applying the buggy-
rule strategy, and at θ= 3.63, the probability of applying the weight strategy
equaled the probability of applying the random-guessing strategy. In general,
the probability of using the weight strategy for item 3 was high for low values
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of θ, and decreased for high values of θ. The probability of using the random-
guessing or buggy-rule strategy was low for low values of θ, and increased for
high values of θ.

Fig. 20.3. Estimated item-characteristic curve of conflict weight item 3

In Figure 20.4, the estimated frequency distribution of the sum of the
strategy-weights is depicted. Although in the strategy-shift model a subject
might choose between the available strategies at a every ability level, Figure
20.4 suggests a stagewise development as predicted by Siegler’s theory.

20.5.3 Conclusion

The aim of this study was to illustrate the use of a strategy-shift model,
and how the model could be used to formalize existing theories of cognitive
development. As an example, Siegler’s theory of the balance task was used.
By formalizing Siegler’s methodology within an IRT framework, criticism of
Wilkening & Anderson (1982) regarding the lack of handling response error in
Siegler’s theory was removed. Within the IRT framework different hypotheses
regarding the strategy shifts of subjects in the balance task could be tested.
Strategy shifts that are induced by the items could be distinguished from
person-dependent strategy shifts. Furthermore, a fitting strategy-shift model
could be found in correspondence with the specified probabilities of Siegler’s
theory.
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Fig. 20.4. Estimated distribution of the score variable

20.5.4 Discussion

Siegler made the assumption that for a given developmental level, a subject
consistently sticks to a certain solution strategy, and switches to another only
on the basis of task characteristics. That is, according to Siegler, no person-
dependent strategy shifts occur in solving the balance task. This assumption
is inconsistent with the strategy-shift model in Equation 20.3, because for any
level of θ, a subject has a probability of choosing between various strategies.
The fact that a fitting strategy-shift model was found showed that problem-
solving is probably not the fixed process Siegler originally assumed, and that
his theory might need some modifications. Siegler’s later work, as mentioned
in the first section, confirms this point. Still, it might be very useful to con-
sider the development of proportional reasoning as a stagewise process, but
in a less-rigid way than first considered: “In the process of acquiring a more
sophisticated rule individuals use the sophisticated rule they are acquiring
and the set of rules they previously mastered alternately in an unpredictable
way” (van Maanen et al., 1989, p. 270).

Finally, two points with respect to modeling problem-solving with the
strategy-shift model can be made. The strategy-shift model in this paper
describes only strategy shifting between items. Strategy shifting within items
is not allowed for, although it is likely that these also occur in problem-solving.
The second point regards the relation between the conditional probabilities
and the latent ability θ in the strategy-shift model. In the strategy-shift model,
the conditional probabilities are specified independent of the abilities of the
subjects. A model in which the conditional probabilities depend on the latent
ability θ seems more realistic.
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21.1 Introduction

The total score of items fitting a Rasch model (RM) satisfies assumptions
relating to validity and a number of technical requirements. For this reason,
the RM is often used as a “gold standard” expressing ideal measurement
requirements.

Most summated rating scales in health research that we have worked with
have shown evidence of differential item functioning (DIF) and local depen-
dence (LD), thus violating the assumptions of the RM, even though items
appear to be face valid. In this situation, Rasch analysis is a destructive pro-
cess: a large number of face valid items are rejected in order to obtain fit to
the model. This can seem unacceptable when items are face valid. Data from
a large health survey in Copenhagen County in 1995 is used for illustration
focusing on responses to items measuring physical functioning in the SF-36
questionnaire (Ware Jr. et al., 1993).

This chapter views Rasch analysis as an examination of the items given
the requirements of ideal measurements, yielding a summary of problems and
an evaluation of their relevance. Graphical loglinear RMs (GLLRM) incor-
porating uniform DIF and uniform LD (Kreiner & Christensen, 2002, 2004)
are used for this. This leads to reflection on measurement requirements: We
suggest that DIF is more serious than LD, and that sufficiency and reliability
are more important than specific objectivity. Items fitting a GLLRM pro-
vide measurement that is essentially valid and objective and the total score is
sufficient.

Section 21.2 describes the PF subscale of the SF-36. Section 21.3 describes
conditional-independence and chain-graph models and their global Markov
properties. Section 21.4 introduces Criterion-related construct validity. Sec-
tion 21.5 defines graphical RMs (Kreiner & Christensen, 2002) describing
the latent-trait variable, the set of items, and the exogenous variables in the
framework of graphical models (Lauritzen, 1996). Section 21.6 extends these
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by allowing uniform DIF and uniform LD in the well-known manner of loglin-
ear RMs (Kelderman, 1984, 1992, 1995). This yields graphical loglinear RMs
(GLLRM). Section 21.7 presents the analysis of the SF-36 data and the mea-
surement implications of the departures from the RM. Section 21.8 discusses
essential objectivity and validity, and section 21.9 presents a summary and
discussion.

Items are denoted by Y=(Y1,. . . ,Yk), the total score by S =
∑

iYi, the
latent variable by Θ, and exogenous variables by X=(X1,. . . ,Xm). We assume,
without loss of generality, that all items have c+1 ordinal categories coded
0,1, . . . , c. Exogenous variables may include response variables depending
on Θ, criterion variables known to be monotonously related to Θ, covariates
with a potential effect on Θ or simply variables that may be associated with
Θ and/or items.

21.2 The Physical Functioning SubScale of the SF-36

The SF-36 (Ware Jr. et al., 1993) is a widely used questionnaire measuring
aspects of general health status. It contains 36 items summarized into eight
subscales. The physical functioning (PF) subscale summarizes responses to
ten items under the common heading “Does your health now limit you in
these activities? If so, how much?”

• Vigorous activities, e.g., running, heavy lifting, strenuous sport (PF1)
• Moderate activities (PF2)
• Lifting or carrying groceries (PF3)
• Climbing several fligths of stairs (PF4)
• Climbing one flight of stairs (PF5)
• Bending, kneeling, or stooping (PF6)
• Walking more than a mile (PF7)
• Walking several blocks (PF8)
• Walking one block (PF9)
• Bathing or dressing yourself (PF10)

Three ordinal response categories (“Not limited,” “Limited a little,” “Lim-
ited a lot”) are used. The developers claim that “Studies to date have yielded
content, concurrent, criterion, construct, and predictive evidence of valid-
ity” (Ware, J.E. (undated): SF-36 r© Health Survey Update. http://www.sf-
36.org/tools/sf36.shtml). Scrutinizing the items will show that LD between
PF4 and PF5 and between PF7, PF8, and PF9 must be expected if responses
are rational and consistent. Whether the reported analyses of construct valid-
ity may have overlooked this is not the focus of the present chapter. Problems
of this kind are not unusual in health scales, often while items are highly face
valid.
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21.3 Conditional-Independence and
Chain-Graph Models

Conditional independence is the unifying concept of importance for item re-
sponse models and chain-graph models. We write X⊥Y|Z to indicate that
two sets of variables, X = (X1,. . . ,Xa) and Y = (Y1,. . . ,Yb), are condi-
tionally independent given a third set, Z = (Z1,. . . ,Zc), in the sense that
P(X|Y,Z) = P(X|Z). Chain-graph models are multidimensional block recur-
sive statistical models defined by pairwise conditional independence of vari-
ables in the following way. Let V =

⋃
i

Vi be a partitioning of the vari-

ables into ordered subsets, V1 ← · · · ← Vr defining a block recursive
statistical model P (V ) =

∏
i

P (Vi|Vi+1, . . . , Vr). Assume that X and Y are

variables belonging to block numbers a and b, respectively, where a≤b. Set
Zrest(X,Y ) =

⋃r
i=a Vi\{X,Y} such that Zrest(X,Y) contains all variables that

are concurrent or prior to X according to the recursive structure of the model.
A chain-graph model is defined by a set of assumptions concerning pairwise
conditional independence, {Xi⊥Yi|Zrest(Xi,Yi) : i = 1,. . . ,m}.

Graphical models are characterized by Markov independence graphs: net-
works where variables are represented by nodes. Nodes are disconnected if
the variables are conditionally independent given all concurrent or prior vari-
ables Variables in the same recursive block are connected by undirected edges,
whereas variables in different blocks are connected by arrows representing tem-
poral and/or causal direction. The Markov graphs of graphical models are used
both as visual diagrams illustrating the structure of the statistical model and
as mathematical models—mathematical graphs—where mathematical graph
theory may reveal properties of the statistical model that may be helpful both
during the analysis of data and for interpretation of what the model conveys
about the distribution of the variables. Examples of Markov graphs are shown
in Figures 21.1 to 21.4 below. A comprehensive introduction to the theory of
graphical models and the way the properties of the Markov graphs correspond
to properties of the statistical model may be found in Lauritzen (1996).

21.3.1 Global Markov Properties of Chain-Graph Models

The global Markov properties of chain-graph models are of particular interest
here. The global Markov properties tells us that conditional independence be-
tween two variables, X and Y, in a chain-graph model sometimes applies under
conditioning with respect to subsets of Zrest(X,Y ). To find such subsets, we
have to examine the moral graph defined by replacing arrows by (undirected)
edges and linking “parents” (see Figure 21.4).

The global Markov properties are linked to the concept of separation in
undirected graphs. To subsets, A and B, of nodes in an undirected graph are
separated by a subset of nodes, S, if every path from a node in A to a node
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in B contains at least on node in S. The global Markov property of chain-
graph models (Lauritzen, 1996, p. 55) implies that two set of variables, A and
B, in a chain-graph model are conditionally independent given any subset of
variables, S, that separates A and B in the moral graph.

21.4 Criterion-Related Construct Validity

Criterion-related construct validity requires unidimensionality, monotonicity,
local independence, and the absence of DIF (Rosenbaum, 1989). The last as-
sumption requires the relation between the latent trait and the items to be
the same in any subpopulation and implies criterion validity, which thus is a
necessary, but not sufficient condition for construct validity. These assump-
tions also define nonparametric item response models (Sijtsma & Molenaar,
2002).

The requirement of no DIF in this definition is somewhat vague. We assume
that it refers to meaningful and relevant partitions of the persons defined by an
exogenous variable, but notice that in most studies a limited number of such
variables will be available. Absence of DIF can be stated as the requirement,
Y ⊥ X | Θ, of conditional independence and because local independence
implies pairwise conditional independence criterion-related construct validity
defines a chain-graph model.

21.5 Graphical Rasch Models

The RM for ordinal items (Andersen, 1977; Andrich, 1978; Masters, 1982)

P (Yi = y|Θ = θ) = exp(αi0 + θy + αiy) (21.1)

where αi0 = − ln

(
c∑

y=0
exp(θy + αiy)

)
satisfies the first three requirements of

criterion related construct validity. The joint conditional distribution

P (Y1 = y1, . . . , Yk = yk|Θ = θ) = exp

(
α0 +

k∑
i=1

(θyi + αiyi)

)
(21.2)

is a loglinear model for a multivariate contingency table with main effects
depending on the latent variable and no interaction parameters. Restrictions
are needed for parameters to be identifiable. These are imposed by setting
αi0 = 0 for all items and

∑
i αic = 0.

Different data generating processes may lead to this model. Reparameter-
ization replacing item parameters with thresholds,τij = αi(j−1) −αij , yielding
a partial credit interpretation (Masters, 1982) where P (Yi = y|Θ = θ) =
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exp(
∑y

j=1 (θ − τij) / Γi can be useful, even though it may not be a valid de-
scription of the response behavior to the type of questions included in SF-36.

The total score, S =
∑

i Yi, is sufficient for θ in the conditional distribution
of items given Θ = θ This implies Bayesian sufficiency, (Kolmogoroff, 1942;
Arnold, 1988) and conditional independence of items and Θ given S.

The distribution of S is given by

P (S = s|Θ = θ) =
exp(θs + ϕs)

Φ
(21.3)

where γs = exp(ϕs) are referred to as elementary symmetric functions (An-
dersen, 1973, Fischer, 1974; 1995). We refer to the ϕ-parameters in (21.3)
as score parameters. The probabilities (21.3) can be expressed in terms of
threshold parameters in the same way as (21.1).

The RM satisfies construct validity requirements and provides objective
measurement by sufficient raw scores. DIF and criterion validity can not be
addressed in formal terms within the framework of RMs, but in a larger frame-
work including exogenous variables. One way to do this is to assume that the
joint distribution of (Y1, . . . , Yk, Θ,X1, . . . , Xm) is a graphical RM.

A graphical RM is a chain-graph model characterized by two Markov
graphs (Figure 21.1): (1) an IRT graph expressing construct validity (items
are conditionally independent of each other and of exogenous variables), and
(2) A Rasch graph adding the score S separating items from Θ. Note that
edges between items are added because items are not conditionally indepen-
dent given the score. The only requirement of construct validity that is not
an explicit part of the IRT graph is that the relationship between the la-
tent variable and items must be monotonous. The IRT graph also describes
relationships among exogenous variables.

It follows from the Markov properties of the IRT and Rasch graphs that the
distribution (21.2) reappears as the conditional distribution of item responses
given Θ and X,

P (Y1 = y1, . . . , Yk = yk|Θθ,X1 = x1, . . . , Xm = xm) = (21.4)

exp

(
α0 +

k∑
i=1

(θyi + αiyi)

)
(21.5)

Marginalizing over Θ in the Rasch graphs results in a marginal Rasch graph
(not shown) defining a chain-graph model for the manifest variables (Whit-
taker, 1990, p. 395). The marginal Rasch graph contains edges or arrows
between any pair of variables connected to Θ by an arrow originating from Θ.

The IRT and Rasch graphs (Figure 21.1) define the model and provide
a visual display of the model structure. The moralized Rasch graph (Figure
21.2) provides information on conditional independencies among the mani-
fest variables of the model. The moral Rasch graph is an undirected graph
defined by the marginal Rasch graph where separation implies conditional
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Fig. 21.1. The IRT and Rasch graphs defining the graphical RM for the ten PF
items. The IRT describes relationships among exogenous variables: sex and age are
marginally independent, smoking and sex are conditionally independent given age,
SRH and sex are conditionally independent given Θ, BMI, smoking, and age.

independence due to the global Markov properties of chain-graph models. It
follows from this that all pairs of items and exogenous variables are condi-
tionally independent given S. This result lies behind the Mantel–Haenszel test
for DIF (Holland & Thayer, 1988) and the global Markov properties of the
Rasch graph shows that the result applies to all types of items and exogenous
variables in graphical RMs.
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Fig. 21.2. The moral Rasch graph of the graphical model for the ten PF items

DIF is absent in graphical RMs in two ways: items and exogenous variables
are conditionally independent given Θ and given S. This property appears to
be unique to the RMs. We refer to Kreiner & Christensen (2002, 2004) for
further discussions of properties of graphical RMs derived from the global
Markov properties of Rasch graphs.

21.5.1 Inference in Graphical Rasch Models

Graphical RMs address two problems: (1) the quality of measurement (re-
garded as optimal if item responses fit the graphical RM) and (2) latent re-
gression analysis

θ = X1β1 + · · · + Xmβm + ε, ε ∼ N(0, σ2)

describing the association between the latent variable and covariates X1, . . . ,
Xm. Since the pioneering work of Andersen & Madsen (1977), models of this
kind have been studied extensively (Zwinderman, 1991, 1997; Andersen, 1994;
Hoijtink, 1995; Kamata, 2001; Maier, 2001 Christensen et al, 2004; De Boeck
& Wilson, 2004; Adams & Wu, this volume).

In this chapter, item analysis is separated from latent regression and we
are thus able to distinguish between lack of fit of the measurement model
and misspecified latent structure (Zwinderman & van den Wollenberg, 1990;
Christensen et al., 2004). This means conditional item analysis is used, because
marginal inference relies on assumptions about the distribution of the latent
variable.
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Conditional inference in graphical RMs may be carried out in two ways.
The first is a parametric approach fitting the conditional distribution of item
responses given the total score, comparing item parameters in different sub-
populations and calculating item-fit statistics. The presence of exogenous vari-
ables in the graphical RM defines explicit requirements of groups to be com-
pared during the analysis. The second approach is nonparametric, testing
the assumptions expressed by the moral Rasch graph. Mantel–Haenszel tests
(Holland & Thayer, 1988) can be used for testing conditional independence
for pairs of dichotomous items and dichotomous exogenous variables. Partial
gamma coefficients (Agresti, 1984, p. 171) may be used when items or exoge-
nous variables are ordinal. The tests of conditional independence will often
be tests in large sparse tables and and Monte Carlo tests (Kreiner, 1987; von
Davier, 1997) can be used to avoid the problem of inadequate approximation
of p-values by conventional asymptotic methods.

The RM applies for any subset of items and therefore LD between an item,
Yi, and the other items can be tested as conditional independence given the
rest score, Ri = S−Yi (Kreiner & Christensen, 2004). This test is one example
of a less than conventional approach suggested by the graphical structure of
these models.

A starting point for the latent structure analysis can be obtained by non-
parametric analysis of manifest variables based on the moral graphs. For the
SF-36, analysis of the effect of a covariate on physical disability may be per-
formed as a test of conditional independence in a multi-way table containing
these two variables together with the variables separating the two in the moral
graph. If conditional independence is rejected the covariate should be included
in the latent-regression model.

21.6 Graphical Loglinear Rasch Models

A graphical loglinear RM (GLLRM) adds interaction parameters to the con-
ditional distribution of item responses (21.4): DIF parameters describing in-
teraction between an item and an exogenous variable and LD parameters de-
scribe interactions between two items. It is convenient to distinguish between
second-order DIF and LD parameters and general higher order interaction
parameters. The only restriction imposed on the interaction parameters in
GLLRMs is that they must not depend on the latent-trait variable. To sim-
plify the discussion of validity and objectivity in GLLRMs, we first consider
models with DIF parameters and present three ways to look at these models.
Following this, we then consider models with LD parameters and finally the
general family of GLLRM.

21.6.1 Uniform DIF

The model (21.6) adds interaction between items Ya and Xb
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P (Y1 = y1, . . . , Yk = yk|Θ = θ,X1 = x1, . . . , Xm = xm)

= exp

(
α0 +

k∑
i=1

((θyi + αiyi) + δab(ya, xb)

)
(21.6)

For the parameters to be identifiable, we must impose additional restrictions
on the δ-parameters in addition to those already imposed on the item main
effect parameters. One convenient way to do so is to assume that δab(0,x) =
0 and δab(y,1) = 0 where we assume that categories of exogenous variables
are integer coded from 1 to the number of categories of the variables. We
regard the model defined by (21.6) as a model describing uniform DIF, where
item parameter of Ya in the subpopulation given by Xa = x is equal to
αa(y)+δab(y,x). Alternatively, Yb can be interpreted as a set of “virtual” items
given only in a subpopulation (Tennant et al., 2004). Finally, of course, (21.6)
is an example of a mixed RM. The mixture is manifest, but apart from that,
the model satisfies all assumptions underlying the mixed RM.

21.6.2 Uniform LD

Adding interaction between two items, Ya and Yb, to (21.4) leads to a model
with LD between the items:

P (Y1 = y1, . . . , Yk = yk|Θ = θ,X1 = x1, . . . , Xm = xm)

= exp

(
α0 +

k∑
i=1

((θyi + αiyi
) + λab(ya, yb)

)
(21.7)

We once again assume that the interaction parameter do not depend on θ and
set λab(0,y) = λab(y,0) = 0. If we remove Yb from the score and treat it as an
exogenous variable it follows from (21.7) that the conditional distribution of
the items remaining in the rest score follows a loglinear RMs similar to (21.6)
with uniform DIF of Ya relative to Yb. We have therefore coined the term
uniform LD to cover the kind of local dependence implied by the interaction
parameter in (21.7).

21.6.3 Graphical Loglinear Rasch Models

Expanding model (21.6) and (21.7) to models with several cases of uniform
DIF and LD as well as higher order interactions terms is straightforward.
A general GLLRM is defined by three types of loglinear generators. First,
DIF generators, D = (D1,. . . ,Dr), where Di= (Ai,Zi) with Ai ∈{Y1,. . . ,Yk}
and Zi ∈{X1,. . . ,Xm}. Second, LD generators, L = (L1,. . . ,Ls) consisting
of pairs of items Li = (Ui,Vi) where {Ui,Vi}⊂ {Y1,. . . ,Yk}. Finally higher
order interactions, G = (G1,. . . ,Gs), where each Gi ⊂ {Y1,. . . ,Yk,X1,. . . ,Xm}
contains at least three variables one of which has to be an item. The GLLRM
defined by these generators is given by
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P (Y1 = y1, . . . , Yk = yk|Θ = θ,X1 = x1, . . . , Xm = xm)
=

exp
(
α0 +

k∑
i=1

(θyi + αiyi) +
∑
i

δi(ai, zi) +
∑
i

λi(ui, vi) +
∑
i

µi(gi)
)

=

exp
(
α0 + sθ +

k∑
i=1

αiyi +
∑
i

δi(ai, zi) +
∑
i

λi(ui, vi) +
∑
i

µi(gi)
)

(21.8)

where s = Σiyi and (ai,zi), (ui,vi) and gi is the observed outcomes of the
variables in the generators. It is usually assumed that the model is hierarchical.
We refer to the δ and λ parameters as DIF and LD parameters, respectively,
even though the interpretation in these terms is questionable when G is not
empty. Note that while the main effects, θy+αiy, are increasing functions
of θ, not all marginal relationships between Θ and items are monotonously
increasing when items may be negatively locally dependent. Items fitting a
general GLLRM violate all but one of the assumptions of criterion related
construct validity and conventional psychometric considerations would reject
the scale as invalid. The measurement properties of items fitting a GLLRM
models are discussed below based on the example.

21.6.4 Inference in GLLRMs

GLLRM’s have moral Rasch graphs that may be used as a starting point for
the same kind of tests as for the GRMs. The separation properties are a little
more complicated in moral Rasch graphs from GLLRMs but graph theoretical
algorithms exist that will take care of these problems.

Item, DIF, LD, and interaction parameters can be estimated by condi-
tional maximum likelihood estimates evaluated by item-fit statistics compar-
ing observed and expected item-characteristic curves and tested by conditional
likelihood ratio tests (Kelderman, 1984, 1992, 1995). The Martin-Löf test of
unidimenisonality (Martin-Löf, 1970; Glas & Verhelst, 1995; Verhelst, 2001;
Christensen et al., 2002) generalize with few problems to GLLRMs (Kreiner
& Christensen, 2004).

In a GLLRM the distribution of S given Θ is a power-series distribution
similar to (21.3) with score parameters depending on item, DIF, LD, and
interaction parameters. Estimation of person parameters and latent regression
where estimates of score parameters are inserted can be done in the same way
as in conventional models.

21.7 SF-36 Analysis

Data for this example originated in a Danish health survey including 2334
persons responding to the SF-36 items and the five exogenous variables (self-
reported health, BMI, smoking status, sex, and age) included in the analysis.
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All variables are potential sources of DIF and self-reported health is also used
as a criterion variable. The primary purpose of the study is not validation of
the measurement instrument, but rather to examine the effect of BMI on phys-
ical functioning. This is done using latent regression analysis (Christensen et
al., 2004) controlling for the confounding effect of the other variables. Rather
than a pure validity study the item analysis is meant to check that the result
of the latent regression analysis is not confounded by systematic measurement
errors.

The item “vigorous activities” (PF01) discriminates very poorly, U =
−5.94, p < 0.001 (Molenaar, 1983) and is excluded. Presumably this has
to do with problems responding when one does not participate in vigorous
activities for other reasons than poor health (Fayers & Machin, 2000, p. 19).
The complete analysis leading to the model will not be documented here, but
evidence against the conventional RM and results supporting the adequacy of
the GLLRM for the remaining nine items model is presented.

Conditional likelihood ratio tests (Andersen, 1973c), comparing item pa-
rameters in different groups, show evidence against the model (Table 21.1,
columns marked RM). The reason for the discrepancy between model and
data is not clear from overall test statistics.

Table 21.1. Conditional likelihood ratio tests of homogeneity of item parameters in
subpopulations. Results presented for the RM and for the graphical loglinear RM.

RM GLLRM
Variable Defining Subpopulations CLR df P CLR df P
Score groups (1-17, 18-19) 105.1 19 < 0.0005 70.0 67 0.379
SRH—five categories 261.2 76 < 0.0005 212.4 208 0.402
BMI—six categories 125.0 95 0.021 309.3 285 0.154
Smoking—three categories 50.5 38 0.085 168.6 134 0.023
Sex 72.5 19 < 0.0005 70.3 65 0.304
Age—six categories 179.0 95 < 0.0005 311.0 285 0.139

The risk of type I error is inherent in testing for LD of 36 item pairs and
for DIF with 45 combinations of items and exogenous variables, and the level
of significance is adjusted in order to control the false discovery rate at a 5%
level (Benjamini & Hochberg, 1995). Moreover DIF or LD can lead to spurious
evidence of DIF and/or LD for other items and/or exogenous variables and
subsequent analyses are needed.

Partial gamma coefficients (Agresti, 1984, p. 171) showed strong evidence
of LD for the item pairs (PF1, PF2), (PF2, PF3), (PF4, PF5), (PF7, PF8), and
(PF8, PF9). Two-sided Monte Carlo estimates of exact conditional p-values
were used. Table 21.2 shows evidence of DIF, only evidence from analysis
taking several potential DIF sources into account are shown.
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Table 21.2. Evidence of DIF disclosed by partial gamma coefficients. p-values are
two-sided Monte Carlo estimates of exact conditional p-values. The false discovery
rate has been controlled at 5% and only evidence from analysis taking several po-
tential DIF sources into account support the evidence of DIF relative to variables
written with bold letters.

Exogenous
Item Variable Gamma p
Vigourous activities (PF1) Sex 0.23 0.012
Moderate activities (PF2) BMI 0.31 0.000
Lifting groceries (PF3) Sex −0.45 0.000
Stairs—2+ flights (PF4) Smoking 0.23 0.013
Stairs—1 flight (PF5) Age −0.24 0.008
Bending (PF6) BMI −0.17 0.012

Fig. 21.3. The IRT graph of the final GLLRM for items PF2-PF10

All significant interactions were added to yielding a relatively simple
GLLRM for the nine PF items. Figures 21.3 and 21.4 show the IRT graph and
moral Rasch graph of this model. Significance levels are shown in Table 21.3.
Conditional likelihood ratio tests comparing parameter estimates in subpopu-
lations shows that this model fits the data better (Table 21.1, columns marked
GLLRM). Observed and expected item-mean scores in each score group were
compared and this also showed a good model fit.
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Fig. 21.4. The moral Rasch graph of the final GLLRM for items PF2-PF10

Table 21.3. Tests of vanishing DIF and LD parameters

Type of Interaction Variables CLR df p
Local dependence PF2 & PF3 168.2 4 < 0.00005

PF4 & PF5 116.5 4 < 0.00005
PF7 & PF8 77.8 4 < 0.00005
PF8 & PF9 203.5 4 < 0.00005

DIF PF2 & BMI 34.9 10 0.00001
PF3 & SRH 22.4 8 0.00430
PF3 & Sex 20.1 2 < 0.00005
PF8 & Age 27.6 10 0.00210

PF10 & SRH 23.7 8 0.00260

21.7.1 Interpretation of Parameters

One item, “Bending and kneeling” (PF6), behaves like an ordinary RM item.
Threshold parameters, for a partial-credit interpretation, are −1.83 and 0.11,
implying a range of latent-trait values where each response is the most prob-
able.

The items PF4 and PF5 concerning stair walking are locally dependent,
but function in the same way relative to all other variables. Locally dependent
items can be grouped together as a composite item defined as the sum of item
scores. If there is no DIF composite items are distributed as items from an RM.
Item parameters for the composite item PF4+5 = PF4+PF5 can be computed
from the item and LD parameters, α4y4+α5y5+λ45(y4, y5). Reparametrization,
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for a partial interpretation, thresholds show that thresholds are nicely ordered
(−1.75,−0.61,−0.09, 1.39).

DIF can be presented as loglinear-item and DIF parameters, but the effect
is easier to interpret in terms of virtual items. The item “bathing” (PF10)
is biased relative to self-reported health, but no evidence of LD was found.
Partial credit thresholds of five “virtual” items in the subpopulations defined
by self-reported health are shown in Table 21.4. Apart from some response
categories not being used in the healthiest groups these appear to present a
consistent picture with decreasing thresholds with failing health.

Table 21.4. Estimated thresholds of five virtual PF10-items in groups defined by
self-reported health

Thresholds
SRH 1 2
Very good 0.93 + inf.
Good 0.92 0.80
Fair 0.82 4.26
Bad −0.21 1.92
Very bad −0.27 2.48

For items with both DIF and LD, the situation is complicated and “vir-
tual composite items” do not present an easy interpretation. As an example,
consider PF2+3 = PF2+PF3 with DIF of PF2 (relative to BMI) and of PF3
(relative to SRH and sex): thresholds would have to be calculated for 60 vir-
tual items to get a comprehensive description. The items relating to walking
are a simpler example: the composite item, PF7+8+9, is biased relative to age
because DIF was disclosed for one of the three items. Disordered thresholds
are common for “virtual composite items” and while the GLLRM appears to
provide adequate description of the relationship between the variables of the
model. An easy interpretation is not at hand.

21.7.2 The Effect of DIF on the Score

The score distribution (21.3) applies in GLLRM with the reservation that the
score parameters depend on the exogenous variable (the sources of DIF)

P (S = s|Θ = θ,X = x) =
exp(θs + ϕs(x))

Φ(x)
(21.9)

The score parameters are functions of item, DIF, and LD parameters and can
be used to calculate estimates of θ or of the parameters of the distribution of
Θ in the same way as for RMs.

Person parameters and their distribution can be compared on the latent-
trait scale and this is preferable to the raw scores because the latent-trait scale
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may be regarded as an interval scale. It can, however, be difficult to decide
whether a difference on the latent-trait scale is relevant. DIF equation of true
scores between groups can be useful: Let T0(θ) = E(S | Θ = θ, X =ref)
be the true score of a person from the reference group and let θ̂(s, x) be the
estimate of θ for a person with S=s in the group defined by X=x. The DIF
equated score of this person is equal to T0

(
θ̂(s, x)

)
.

Figure 21.5 illustrates the effect of DIF w.r.t BMI of the item “Moderate
activities” (PF2): persons with high BMI underestimate the degree of physical
disability due to health. This is probably of minor consequence for those with
BMI = 22.5−25.0, where the largest adjustment by DIF equation adds about
.2 points to low scores, but of some consequence for those with BMI > 30
where DIF equation adds 0.44–0.65 point to scores between 2 and 13.
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Fig. 21.5. DIF equated adjustment of scores for two groups of 18-to-29-year-old
males with very good health (x = BMI = 22.5–25.0, o = BMI = 30+. The reference
group consists of 18-to-29-year-old males with very good health and BMI ≤ 20.
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21.7.3 Latent Regression

We now examine the effect of BMI on physical disability. Tests of conditional
independence of the score and exogenous variables given the separators of
the moral Rasch graph (Figure 21.4) yields a list of covariates that should
be included. These show strong effects for all variables except smoking and
can be seen as a stronger requirement of criterion validity (insisting that the
association does not disappear when covariates related to both variables are
taken into account—a requirement that is obviously met here). The estimated
score parameters in (21.9) are used for latent regression (Christensen et al.,
2004) using SAS (Christensen & Bjorner, 2003): A significant effect of BMI
on physical functioning when controlling for sex, age, and self-reported health
was found (LRT = 12.5, df = 5, p = 0.03).

Table 21.5. Difference between BMI groups controlled for sex, age, and self-
reported health

BMI Group Difference 95% CI
≤ 20 0.02 (−0.25, 0.30)

20.1–22.5 0.06 (−0.17, 0.29)
22.6–25.0 0 -
25.1–27.5 0.21 (−0.02, 0.44)
27.6–30.0 0.14 (−0,15, 0.43)
30.1 + 0.45 ( 0.18, 0.72)

Table 21.5 shows the estimated differences at the latent-trait scale between
the six BMI groups. Physical disability appears to be at a minimum in the
reference groups (BMI = 22.5–25.0) with a marked increase in physical dis-
ability when BMI is larger than 30. The evidence of increased disability in
groups with BMI less than 22.5 is of course not significant.

21.8 Essential Validity and Objectivity

The previous section illustrates how LD and DIF may be dealt with if item
responses fit a GLLRM. Latent-trait parameters can be estimated and com-
pared as in the RMs. The question remains, however, whether measurement
by these items can be regarded as valid and objective: All assumptions defin-
ing criterion-related construct validity except unidimensionality has been vi-
olated. We claim that validity and objectivity essentially has been preserved
in GLLRMs. We return to the simple models given by (21.6) and (21.7) for
the arguments supporting these claims and notice that the arguments carry
over without problems to the general class of GLLRM.

The model defined by (21.7) includes one pair of uniformly locally de-
pendent items, Ya and Yb. Replacing these two items by the composite item
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Ya+b = Ya + Yb however results in a set of items satisfying all requirements
of ideal scales except, perhaps, monotonicity of the composite item. Given
the fact that the total scores are the same it is difficult to argument that Ya

and Yb violates validity in any important way. The total score is sufficient
for θ such that person and item parameters—among which we include the
LD interaction parameters—may be separated during the analysis. The fun-
damental property of RMs supporting claims of objectivity therefore survives
intact in (21.7), with one restriction compared to Rasch’s definition of specific
objectivity: we can not select items in a completely arbitrary way. One has
to either include or exclude both items because an item subset including but
one of the two dependent items does not fit an RM. This is, in our mind,
a small price to pay during construction of a summary scale. Measurement
may not be construct valid and objective according to conventional psycho-
metric thinking, but it makes no sense to claim that measurement is invalid
and biased or prone to systematic errors due to some arbitrary decision by
the person constructing the test.

The model (21.6) with uniform DIF of Yi relative to Xj , is a little more
complicated. One may of course eliminate Yi to obtain a smaller set of items
satisfying requirements of ideal measurement. The set of items therefore is
inherently valid and objective. When addressing problems relating to one of
the groups defined by Xj , one would prefer to keep Yi to increase reliabil-
ity, because measurements are valid and objective in this specific population.
From the point of view of the virtual Yi we may also claim that test equat-
ing actually satisfies the requirements of specific objectivity because missing
item responses is no hindrance to validity and objectivity. Regarding DIF
parameters as item rather than incidental person parameters implies that
conditioning with respect to the total score separates item parameters from
the latent-trait parameters; the technicalities of objective analysis thus sur-
vives. Again a restriction applies: we are no longer free to make completely
arbitrary choices during the design of the study. If we decide to include Yi,
we also have to include data on Xj , but apart from this measurements are
essentially valid and essentially objective.

All arguments relating to models (21.6) and (21.7) apply without restric-
tion to the general family of GLLRMs. The model may, of course, turn up
to be so complicated that we prefer to reject the scale either because it is
not practical to work with or because it is so far away from a conventional
RM that we may be concerned that the substantive arguments behind the
items do not hold water. If the GLLRM appears to fit the data, we should
use these arguments and not arguments that measurements are invalid and
systematically biased.
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21.9 Discussion

This chapter discussed validity assumptions arguing from the point of view
of a GLLRM fitting responses to the nine PF items. The SF-36 items vio-
late conventional requirements of validity and objectivity due to unfortunate
item-writing. Rather than rejecting the scale, we have taken a second look at
requirements of valid and objective scales, partly because the items of SF-36
have a certain degree of face validity, but also because most scales we have
worked with in health research suffer from similar problems. Our conclusion is
that most requirements can be relaxed and that GLLRMs provide a sensible
framework where all but a few properties of valid and objective measurements
survive. Of the two types of departures from construct validity permitted by
GLLRMs, the presence of uniform local dependency seems to be the least
problematic. Regarding two locally dependent items as one composite item is
a very small price to pay for the added reliability of the total score compared
to the rest score without the items. Uniform DIF is a little more problematic.
We may deal with uniform DIF, but it requires that all sources of DIF have
to be included among the observations. The results of the analysis presented
in this chapter implies that measurements of physical disability by the PF
items will to some extent be confounded if sex, age, BMI, and SRH is not
observed and taken into account. In addition, interpretation of the DIF of
items relating to SRH is difficult. Is self-reported health worse because the
person has problems bathing and/or carrying groceries home, or do these two
tasks appear particular difficult because health as such is perceived as poor.

Quality of measurement is important and may be the only purpose of
analysis. The widespread use of SF-36 is sufficient reason to examine validity,
objectivity, and reliability. Often the measurement problem is subordinate to
latent-structure analysis, as illustrated by analysis of the effect of BMI on
physical disability. In this analysis, the evidence against the Rasch model is
inescapable, even though four items fit an RM. The price to pay in terms of
reliability is unacceptable because items appear to be face valid. The nine
PF items provide essentially valid and objective measurements of physical
disability. We base latent regression analysis on these nine items, taking DIF
and LD into account and argue that this is better than using four items, even
though these provide valid and objective measurements in the strict sense.
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22.1 Introduction

This chapter provides an overview of the applications of Rasch models (RMs)
and their generalizations in the sport, exercise, and motor domains. More
specifically, it covers the main areas where Rasch analyses advanced the knowl-
edge base on issues such as (1) examining and developing state and trait-type
measures such as motivation for physical activity, anxiety and precompetition
anxiety, flow, goal orientation, and running discomfort, or other measures
like self-concept or fan identification, (2) testing the stability of introspective
and actual measures, (3) testing accumulation of perceived exertion during
gradual effort increase, and (4) examining motor abilities, detecting motor
components, and strategies used in motor control and development. Based on
the current use of generalized RMs in the sport, exercise, and motor domains,
the chapter outlines the potential areas where applications of the RMs can be
used by both scientists and practitioners.

Research in the field of sport psychology has often ignored probabilistic test
models (see Strauss, 1999; Tenenbaum, 1999), even though they reveal sev-
eral advantages over classical test theory (see Lord & Novick, 1968). Though
Duda’s (1998) edited book on measurement in sport psychology does mention
some applications of probabilistic models, its primary focus is on classical
approaches. In addition, the few sport psychological studies applying proba-
bilistic models usually refer to the unidimensional RM in its original form.

This chapter provides a short overview of studies that have used RMs in
sport, exercise, and motor domains. For illustrative reasons, some studies are
described in more detail. However, because the structure of the chapter is
domain-oriented, the probabilistic models are not presented in a logically de-
rived order. The sections cover studies on (1) running discomfort, (2) anxiety
and precompetition anxiety, (3) flow experience, (4) goal orientation, (5) con-
trasting actual and retrospective measures of introspection, (6) aspects of the
self-concept, (7) perceived exertion, and (8) examining motor abilities, and
detecting motor components and strategies.
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22.2 Perceived Discomfort in Running

The running discomfort scale (RDS) has been developed by Tenenbaum, Foga-
rty, Stewart, et al. (1999). The RDS integrates facets of the three-dimensional
construct of pain (i.e., sensory-discriminative, motivational-affective, and
cognitive-affective; Melzack & Wall, 1965) and the perceptions of runners dur-
ing practice and competitive events. The first version of the RDS consisted
of 36 items and was administered to 142 male and 29 female runners in nine
different races during a competitive road-running season.

The 36 items was then subjected to principal component analysis, result-
ing in nine factors, which accounted for 66.6% of the total discomfort variance.
Oblique rotation has reduced the number of dimensions to eight, with low to
moderate correlations among them. The eight dimensions were propriocep-
tive symptoms, leg symptoms, respiratory difficulties, disorientation, dryness
and heat, task completion thoughts, mental toughness, and head or stomach
symptoms. Of the remaining 32 items, 10 items loaded on the first factor
(proprioceptive symptoms) and accounted for about 50% of the total vari-
ance because most of the designated original symptoms were of this nature.
Because the sample size in this study was very small, we present here only
the results for the scale that was established by the first factor. The follow-
ing analyses will therefore focus on the 10 items that were best represented
by the first factor. A Rasch rating scale analysis was performed for the scale
using the ASCORE program (Andrich et al., 1991). This RDS dimension was
regarded as unidimensional, and item parameters were estimated to examine
the spread of the items on the latent continuum, and item-fit statistics were
computed to indicate how well each item response vector was represented by
the expected responses given that the RM holds. The most easily endorsed
item was “looking forward to finish,” a psychological symptom, while the most
difficult to endorse item was “ringing in the ears,” a proprioceptive symptom
that was hardly ever experienced by the subjects in the sample. It appears
that physically demanding effort that is believed to elicit more physiological
awareness, by activating the “neural gating circuits” in the dorsal horns of
the spinal cord as suggested by GCT (Melzack & Wall, 1965; Pinel, 1990),
affects most psychological experiences in the form of completion thoughts and
coping strategies. However, all symptoms intensify as physical effort becomes
extremely demanding. Separate item-difficulty estimates for male and female
runners used for the graphical model test suggested by Rasch showed that
the vast majority of the items were located within confidence bounds of the
identity line.

22.3 Evaluation of Trait-State Anxiety Scales

Anxiety is one of the most essential and most researched areas in psychology.
It attracted most of the research attention in the sport psychology domain for
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many years (Tenenbaum & Bar-Eli, 1995). However, a very common measure-
ment tool, i.e., the State-Trait Anxiety Inventory (STAI; Spielberger et al.,
1970), used in these studies was subjected mainly to classical item-analyses
methods. Tenenbaum et al. (1985) were the first to use the rating scale RM
(Andrich, 1988; Wright & Masters, 1982) to evaluate whether the items of the
STAI can reliably measure anxiety trait and state in athletes. One hundred
young students-athletes responded to the trait scales and 55 high-level athletes
responded to the state scales within 30 minutes prior to a competition.

Rasch estimates of both person and item parameters for the trait-anxiety
scale indicated that the item parameters were clustered and not equally spread
across the latent dimension of the trait-anxiety measure. A sufficient number
of items exist to differentiate high trait-anxious athletes but not low trait-
anxious athlete; 6 of the 20 items showed insufficient item-fit values; several
items had almost identical locations on the latent continuum. A similar anal-
ysis performed on the state anxiety scale uncovered similar concerns. Item
parameters were clustered with insufficient coverages of the low anxiety re-
gion of the latent continuum; 15 of the 20 items were located within less than
one logit range, thus limiting the discrimination between athletes high and
low on state anxiety; six items did not fit the RM. Rasch analysis indicates
that the STAI scales need further work in order to be suitable for measuring
trait and state anxiety in athletes.

Fig. 22.1. X–Y plot for anxiety items’ actual and retrospective estimates
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22.4 The Multidimensional Process of the Flow
Experience

Flow is an optimal psychological state that has been described by Csik-
szentmihalyi (1993) and adapted to sport and physical activity (see Jackson,
1996a,b). Nine areas of flow were operationally defined: challenge-skill balance,
action-awareness merging, clear goals, concentration on task at hand, loss of
self-consciousness, transformation of time, and autotelic experience. Jackson
(1996b) as well as Jackson (1996a) supported these areas using both qualita-
tive and quantitative methods using a 36 items scale; Each of the nine areas
is represented by 4 items (i.e., flow-state scale; FSS). Exploratory and confir-
matory factor analyses was used to establish the nine-dimensional structure.
However, the scale developers reported low communalities of the transfor-
mation of time and self-consciousness factors within the sport domain, and
moderate loading of the autotelic experience on the second-order first factor.

Rasch analysis was applied to the FSS in order to examine whether such
a high-dimensional structure is necessary to describe the response behavior of
examinees in the FSS in the sports domain (Tenenbaum, Fogarty, & Jackson,
1999).

A sample of 394 athletes (264 males and 130 females) from 41 sports
disciplines was combined with a sample of 398 participants in the World Mas-
ter games competition. All athletes were administered the FSS, a 36 items
scale with 5-Likert type response format. These data was subjected to rating
scale Rasch analysis using ASCORE package (Andrich et al., 1991). Person
fit statistics resulted in eliminating 62 cases from the final analysis because
of response patterns that were very unlikely under a unidimensional model.
This may be a first indication that the construct is not unidimensional or
homogeneous in this sample, i.e., that the sample consists of more than one
population of respondents. The unidimensional analysis revealed that the most
easy to endorse item (δ = -1.16 logits) was “I found the experience extremely
rewarding,” while the most difficult to endorse item was “I was worried about
my performance during the event” (δ = 1.24 logits). The other items were
spread along the latent continuum between these two items without apparent
clusters of items.

Four out of the 5 misfit items resulted from the Rasch analysis were located
in the upper end of the latent dimension. The flow experiences they repre-
sent were felt only rarely by the sample of athletes in their respective sport
experiences. The fifth misfit item was also located within the upper region of
the continuum. This misfit results when athletes who differ in their responses
to flow experience items at the same time respond in similar ways to items
talking about states they have not experienced. Estimates of item difficulties
based on separate calibrations of the elite and the nonelite subsamples were
used in Rasch’s graphical-model test and revealed that item parameters are
invariant across the two samples. More importantly, some aspects of flow are
more frequently experienced than others or occur at different periods of the
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entire flow experience. Autotelic experiences, which capture enjoyment, are
extensively felt. This would follow by clear goals, competency in meeting de-
mands, total concentration, total control, knowledge of what a person is doing,
and focus on the task. Loss of consciousness and transformation of time were
less experienced though they are indicators of the “deep” flow experience; one
that is almost unfelt, automatic, fluent, and uncontrolled.

22.5 Goal (Task and Ego) Orientation within
Motivational Theory

One of the most frequently used questionnaires for measuring goal orientation
in sport and exercise is the “task and ego orientation in sport” questionnaire
(TEOSQ; Duda & Nicholls, 1992). It consists of 13 items; 7 items comprise
a task orientation and 6 comprise an ego orientation. The item response for-
mat is a 5-point Likert-type rating scale. Goal orientation is believed to be a
strong determinant of motivational orientation, and thus was, and still is, a
major concern in the sport and exercise sciences. The TEOSQ was analyzed
frequently with respect to its reliability and validity using classical methods.
This scale was first subjected to an analysis with the RM by Tenenbaum &
Fogarty (1996). The sample used consisted of 1,591 adolescents who partici-
pated in sport and fitness activities in Australia, New Zealand, and the United
States.

The assumption that the two scales are independent was verified by the
moderate correlation between them. A CFA analysis has indicated that the
two-factor model fits the data very well; thus, the assumption that the items
define their respective dimension was tenable. Also, the item-total correlations
were in a magnitude that indicated sufficient homogeneity within the task and
ego dimensions. Rating scale Rasch analyses (Andrich, 1988) for the items
were performed separately for males and females samples as well as for the
entire sample to check for the stability of item parameters estimates across
different samples.

The item parameters locations on their respective linear dimension indicate
how “easy” and “hard” it was to rate each item highly, but more importantly,
the spacing among the items also indicate how narrow or wide is the scale.
The spread of item parameters for the ego subscale is comparably narrow (δ
range: −.34 − .69 logits). The spread of parameters for the task-orientation
scale is also very narrow (δ range: −.44− .27 logits). Whereas ego-orientation
items did not misfit, the task-orientation scale included three items with un-
acceptable item misfit, though some were more prominent in one gender than
the other one. The raw score distributions further indicated that task scale
was negatively skewed, especially for the female-athletes subsample.
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22.6 Self-Concept

The self-concept of a person refers to those opinions, attitudes, or beliefs
that individuals have about themselves. Shavelson et al. (1976), for example,
have proposed that an individual’s self-concept may be broken down into an
academic part and a nonacademic component. In the nonacademic part of
the self-concept, they further distinguish among social, emotional, and phys-
ical domains. It is precisely this final aspect that is of particular interest for
sport. It refers to how individuals rate themselves in physical terms. Marsh
and Redmayne’s (1994) hierarchic concept of the physical self-concept distin-
guishes between a global component, namely, general physical ability, and
further specific components such as stamina, power, coordination, and so
forth. Marsh et al. (1994) developed a measurement instrument for assess-
ing these components. Their physical self-description questionnaire (PSDQ)
is a reliable and valid instrument that is applied frequently. It consists of 11
subscales composed of 70 items, each rated on 6-point scales.

Fletcher & Hattie (2004) (see also Fletcher, 1999) used the graded-response
model (Samejima, 1969) to study the item structure and the goodness of fit
of the PSDQ items. They administered the PSDQ to 868 examinees aged 13–
17 years. Applying this polytomous IRT model enabled them to show which
items were more or less representative of the underlying latent variable, and
also that the PSDQ discriminated better between (1) persons with a low
physical self-concept than between (2) persons with a high self-concept. This
meant that fewer items were needed to assess the former compared with the
latter.

Another aspect of the self-concept—the self-concept of sport spectators
—was studied by Wann & Branscombe (1993) and by Strauss (1994, 1995).
Wann & Branscombe (1993) have proposed a 7-item scale to measure sport
spectators’ identification with their team. This can be viewed as part of a
person’s social self-concept. Wann & Branscombe (1993) only used classical
methods such as factor analysis to demonstrate the unidimensionality of the
scale. Strauss (1995) translated Wann and Branscombe’s identification scale
into German. Each item in the German version was rated on a 5-point scale
with the poles minimum (1) and maximum (5). These were presented to
a random sample of 404 citizens of the German city Kiel. Whereas classical
analyses confirmed Wann and Branscombe’s (1993) results, unidimensionality
was also tested with RMs for ordered responses using the mixed RM (MRM)
framework (Rost, 1990, 1991). As described in other chapters, if the assump-
tion of unidimensionality holds for the entire sample, the analysis with the
MRM should indicate a satisfactory fit for the ordinary RM (one class MRM)
and not require a two-class MRM. Using information indices (Akaike, 1973;
Schwarz, 1978) as well as bootstrapping procedures for goodness of fit statis-
tics (von Davier, 1997), it was established that a mixture distribution RM did
not provide better fit than the ordinary RM for of the German identification
scale.
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22.7 Motor Abilities and Motor Strategies

22.7.1 Gross-Motor Coordination

Motor abilities in sport, that is, particularly coordination, strength, and en-
durance, represent a major field of motor research. However, despite the long
tradition in this field, coordinative abilities still remain very controversial.
The discussion ranges from one extreme assuming that motor abilities in sport
are factors determining performance on several motor skills (Fleishman, 1972;
Mechling, 1999) to the opposite extreme that rejects the ability construct com-
pletely on the basis of insufficient evidence (i.e., the low correlations between
the items, the dependence of the number of abilities operationalized on the
researchers examining them, and the preference for carrying out exploratory
factor analyses (Burton & Miller, 1998; Büsch & Strauss, 2005; Cratty, 1973;
Magill, 2003; Schmidt & Lee, 1999; Singer, 1980).

Spray (1987) has argued that IRT models should not be viewed as an
alternative in motor research but as a meaningful extension of classical test
theory. She pointed out that even though IRT models have been neglected
almost completely up to now, they “might hold the future of measurement
research in physical education” (p. 208; see, also, Safrit et al., 1989). This led
Zhu & Kurz (1994), for example, to use the partial-credit model (Masters,
1982) to develop a test of motor competence in children 3 to 9 years olds. In
addition, Hands & Larkin (2001) used Andrich’s (1988) rating-scale model to
study general motor abilities in children. They gathered data on 24 different
motor tasks from 332 children aged 5–6 years. These tasks covered fundamen-
tal movement skills such as running, jumping, or balancing. Results produced
two separate unidimensional scales for boys and girls. In German-language
motor research, Bös & Roth (1978) were the first to explicate the potentials,
special features, and advantages of applying probabilistic models. Roth (1982)
applied Fischer’s (1974) linear-logistic test model (LLTM) to test the unidi-
mensionality of his factors. In this study, 482 children aged 9–14 years also
performed different fundamental movement skills. Roth supposed two factors:
the ability to coordinate under time pressure and the ability to control move-
ments precisely. For the dichotomized raw data, he was able to confirm Rasch
homogeneity for the ability to control movements precisely (see also Bös &
Mechling, 1983). However, he was only able to confirm the unidimensionality
of the ability to coordinate under time pressure in the obstacle races used in
his study after eliminating the movement task of “dynamic balancing.”

Büsch & Strauss (2005) reanalyzed Roth’s (1982) coordination model,
which postulated the ability to control movements precisely and the ability
to coordinate under time pressure. Five-hundred and three participants (249
women and 254 men) with a mean age of 24.5 years (SD = 4.0) were asked to
perform fundamental movement skills. The raw data were analyzed by means
of the mixed RM (MRM; Rost, 1991) and latent-class analysis (LCA) using
the WINMIRA 2001 program (von Davier, 2001). The analyses confirmed
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Fig. 22.2. Expected values for the two-class solution: (1) latent-class analysis (LCA)
and (2) mixed-Rasch analysis (MRM). Class 1 represents the speed strategy (S
strategy), and class 2 represents the speed-accuracy strategy (SA strategy)
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two-class solutions; this did not correspond to Roth’s (1982) model (see Fig-
ure 22.2). In contrast to the Roth‘s (1982) ability concept, these results could
be interpreted as indicating that persons performing gross-motor tasks may
be differentiated according to which coordination strategy or movement tactic
they apply. This interpretation corresponds with the assumption that gross-
motor tasks should probably be viewed as multidimensional on the ability level
(Spray, 1990). From this perspective, precision tasks are mastered with one
strategy (see also Bös & Mechling, 1983; Roth, 1982), whereas time-pressure
tasks are mastered with two different strategies—either a speed strategy (S)
or a speed-accuracy strategy (SA; see Büsch & Strauss, 2005).

22.7.2 Ball Coordination

In a study of 704 Spanish boys aged 7–14 years, Sanchez–Banuelos and Roth
(as cited in Bös & Roth, 1978) applied Fischer’s (1974) linear-logistic test
model to the dichotomized data from 18 different ball tasks assessing move-
ment skills such as throwing, catching, bouncing, or rolling. They found
that the latent variable “ball coordination” could be scaled most successfully
through the movement tasks containing successive or simultaneous combi-
nations of the movement skills throwing and catching. A further study on
ball coordination tested whether movement tasks with and without a ball
are determined by different skill levels (Büsch et al., 2001) or by different
coordination strategies (Büsch & Strauss, 2005). Should the former be true,
one would expect a unidimensional RM; for the latter, two latent classes in
which Rasch homogeneity holds could be anticipated. A total of 305 partic-
ipants (155 ball-game athletes and 150 non-ball-game athletes) with a mean
age of 24.6 years (SD = 3.9) performed three time-pressure tasks with no ball
and three time-pressure tasks with a ball. The tasks with a ball involved the
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movement skill of dribbling. The raw scores were analyzed with the mixed
RM (Rost, 1990) and the latent-class analysis (Lazarsfeld & Henry, 1968) us-
ing the WINMIRA 2001 program (von Davier, 2001). Acceptable model fit
was obtained for both the latent-class and the mixed-Rasch analyses. From a
formal perspective, however, it was not possible to decide unequivocally be-
tween a Rasch-homogeneous one-class solution and a latent two-class solution.
From a theoretical perspective, the two-class solution would seem preferable,
because the classes are not associated with the skill level but rather with two
different coordination strategies (Büsch, 2004).

22.7.3 Motor Development

Zhu & Cole (1996) examined the advantages and potential applications of the
many-facet RM by analyzing performance on the much-evaluated and repeat-
edly applied Test of Gross Motor Development (TGMD; Ulrich, 1985). They
administered the TGMD to 909 children (451 boys) aged 3–10 years. This
test battery contains two motor categories: “locomotion” and “object con-
trol.” The former contains seven subtests assessed through four performance
criteria, and the latter five subtests assessed through three performance crite-
ria. To calibrate the TGMD over the many-facet RM (Linacre, 1994a,b), eight
facets were defined; that is, five examinee-related facets (disability status, eth-
nicity group, age, gender, examinee) and three item-related facets (subtest,
item, category). Results showed a clear age (δ = −2.77 logits for 3-year-olds
to δ = 2.28 logits for 10-year-olds) and gender effect (δ = 0.81 logits for males
and δ = 0.65 logits for females). Furthermore, the fundamental movement
skills in the object-control category were more difficult (δ = −0.04 logits)
than those in the locomotion category (δ = 0.04 logits). The authors used
these analyses to formulate a recalibrated new scoring form for the TGMD
that provides the experimenter with information on which is the easiest and
the most difficult item for a certain child, and how this skill-oriented infor-
mation should be judged in relation to (gross-motor) coordination ability in
motor development.

22.7.4 Motor Tests

Further applications of the RM, particularly for test construction and test
validation, can be found, e.g., in research on adapted physical education (Cole
et al., 1991) and rehabilitation (Dickson & Köhler, 1996; Fisher, Jr., 1993;
Fisher, 1993). Another example is a study reported by Safrit et al. (1992).
They used the Rasch Poisson counts model to examine how difficulty varied
in 18 different sit-ups tests for training abdominal muscles. A total of 426
college students performed the 18 tests within an 8-week period. The number
of attempts within 1 min was recorded, and data were analyzed with the
FACETS program (Linacre, 1994a,b). The simplest item was performance
with hands on thighs and feet anchored (δ = −4.02 logits), whereas the most
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difficult item was performance with hands clasped behind the neck and feet
not anchored, and elbows pointed forward (δ = −3.57 logits). An example of
a useful application of sit-ups tests of varying difficulty is adaptive testing in
the clinical domain.

22.8 Final Remark

Probabilistic measurement models in sport psychology were devoted mainly
for testing properties of questionnaires and on several research questions in the
motor domain. However, the use of these models is rare but very fruitful from
both a methodological and a content-related perspective in sport sciences.
The studies presented in this chapter underline this very clearly. Recently, von
Davier & Strauss (2003) provided an overview on new developments in testing
probabilistic models that will further enhance the measurement of constructs
in sport psychology and in movement science. Despite the advantages that
the RMs offer to scientists and practitioners, their use is not widely spread. It
remains to be seen to what extent scholars in the field will apply the valuable
concept and methodology in the future.
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european study of adult well-being: Main results with a special focus on the
austrian situation. Vienna: WUV.

Weinert, F. E., & Helmke, A.(1997). Entwicklung im grundschulalter [Devel-
opment in primary school. Weinheim: FRG: Psychologie Verlags Union.

Westers, P., & Kelderman, H.(1991). Examining differential item functioning
due to item difficulty and alternative attractiveness. Psychometrika, 57,
107-118.

White, L. A., Nord, R. D., Mael, F. A., & Young, M. C.(1993). The assessment
of background and life experiences (able). In T. H. Trent Laurence (Ed.),
Adaptability screening for the armed forces (pp. 101–162). Washington, DC:
Office of the Assistant Secretary of Defense.

Whitely, S. E. (1976). Solving verbal analogies: Some cognitive components
of intelligence test items. Journal of Educational Psychology, 68, 234-242.

Wilkening, F., & Anderson, N. H.(1982). Comparison of two rule-assessment
methodologies for studying cognitive development and cognitive structure.
Psychological Bulletin, 92, 215–237.

Wilkinson, G. N., & Rogers, C. E. (1973). Symbolic descriptions of factorial
models in analysis of variance. Applied Statistics, 22, 392–399.

Wilson, M. R.(1989). Saltus: a psychometric model of discontinuity in cogni-
tive development. Psychological Bulletin, 105, 276–289.

Wilson, M. R. (2005). Constructing measures: An item response modeling
approach. Mahwah, NJ: Lawrence Erlbaum Associates.

Wood, R. (1978). Fitting the Rasch model–a heady tale. British Journal of
Mathematical and Statistical Psychology, 31, 27–32.

Wright, B. D., & Masters, G. N.(1982). Rating scale analysis. Chicago: MESA
Press.

Wright, B. D., & Stone, M. H.(1979). Best test design. Chicago: MESA Press.
Wu, M. L. (1997). The development and application of a fit test for use

with marginal maximum likelihood estimation and generalised item response
models. Melbourne: Unpublished Masters thesis, University of Melbourne.

Wu, M. L., & Adams, R. J.(2002). Plausible values–Why are they important.
Paper presented at the International Objective Measurement Workshop,
New Orleans, LA.

Wu, M. L., Adams, R. J., & Wilson, M. R. (1997). ConQuest: Multi-Aspect
Test Software. Camberwell, Australian: Australian Council for Educational
Research.

Xie, Y.(1992). The log-multiplicative layer effect model for comparing mobil-
ity tables. American Sociological Review, 57, 380–395.

Xu, X., & von Davier, M.(2006). Appying the general diagnostic model to data
from large scale educational surveys (ETS Research Report No. RR-06-08).
Princeton, NJ: Educational Testing Service.



390 References

Yamamoto, K. Y. (1987). A model that combines IRT and latent class
models. Unpublished doctoral dissertation, University of Illinois Urbana-
Champaign.

Yamamoto, K. Y. (1989). HYBRID model of IRT and latent class models
(ETS Research Report No. RR-89-41). Princeton, NJ: Educational Testing
Service.

Yamamoto, K. Y.(1990). HYBILm: A computer program to estimate HYBRID
model parameters. Princeton, NJ: Educational Testing Service.

Yamamoto, K. Y.(1995). Estimating the effects of test length and test time on
parameter estimation using the HYBRID model (TOEFL Technical Report
No. TOEFL-TR-10). Princeton, NJ: Educational Testing Service.

Yamamoto, K. Y., & Everson, H. T.(1995). Modeling the mixture of IRT and
pattern responses by a modified HYBRID model (ETS Research Rep. No.
RR-95-16). Princeton, NJ: Educational Testing Service.

Yamamoto, K. Y., & Everson, H. T.(1997). Modeling the effects of test length
and test time on parameter estimation using the HYBRID model. In J. Rost
& R. Langeheine (Eds.), Applications of latent trait and latent class models
in the social sciences (pp. 89–98). Münster, Germany: Waxmann.

Yen, W.(1985). Increasing item complexity: A possible cause of scale shrinkage
for unidimensional item response theory. Psychometrika, 50, 399–410.

Zhu, W., & Cole, E. L. (1996). Many-faceted Rasch calibration of a gross
motor instrument. Research Quarterly for Exercise and Sport, 67, 24–34.

Zhu, W., & Kurz, K. A. (1994). Rasch partial credit analysis of gross motor
competence. Perceptual and Motor Skills, 79, 947–961.

Zickar, M. J.(2001). Conquering the next frontier: Modeling personality data
with item response theory. In B. R. &. R. Hogan (Ed.), Applied personality
psychology: The intersection of personality and i/o psychology. Washington,
DC: American Psychological Association.

Zickar, M. J., Gibby, R. E., & Robie, C.(2004). Uncovering faking samples in
applicant, incumbent, and experimental data sets: An application of mixed
model item response theory. Organizational Research Methods, 7, 168–190.

Zickar, M. J., & Robie, C.(1999). Modeling faking good on personality items:
An item-level analysis. Journal of Applied Psychology, 84, 551–563.

Zimowski, M. F., Muraki, E., Mislevy, R. J., & Bock, R. D.(2003). Bilog mg
3rd manual. Lincolnwood: Scientific Software International.

Zwinderman, A. H.(1991). A generalized Rasch model for manifest predictors.
Psychometrika, 56, 589–600.

Zwinderman, A. H., & van den Wollenberg, A. L. (1990). Robustness of
marginal maximum likelihood estimation in the Rasch model. Applied Psy-
chological Measurement, 14, 73–81.



Author Index

Ackerman, P. L., 244, 357
Ackerman, T. A., 28, 357
Adams, R. J., 28, 57, 62–65, 68, 69,

72–74, 217, 218, 221, 222,
277–280, 287, 357, 374, 377,
387, 389

Agresti, A., 78, 335, 339, 357
Aitchison, J., 41, 357
Aitkin, M., 5, 46, 66, 70, 78, 88, 90,

112, 150, 151, 179, 217, 296,
297, 360

Akaike, H., 81, 238, 304, 352, 357,
358

Albert, J. H., 50, 358
Allerup, P., 188, 366
Almond, R. G., 29, 377
Anacker, S., 312, 377
Andersen, E. B., 33, 37, 39, 44, 65,

86, 95, 105, 143, 188, 193, 202,
212, 293, 296, 332, 335, 339,
358

Anderson, C. J., 91, 358
Anderson, D. R., 199, 361
Anderson, N. H., 312, 315, 327, 389
Andrich, D., 57, 85, 103, 105, 171,

195, 285, 332, 348, 350, 351,
358, 359

Armon, C., 119, 359
Arnold, S. F., 332, 359

Bachman, L. F., 29, 359
Bandeen-Roche, K., 187, 370
Bar-Eli, M., 348, 386
Barratt, E. S., 236, 359
Basford, K., 100, 375
Baumert, J., 379
Beaton, A. E., 71, 275, 276, 359,

377
Beauducel, A., 371
Beem, A. L., 312, 371
Been, P., 387
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