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PREFACE

This volume is a collection of exercises with their solutions in Design and Analysis
of Experiments. At present there is not a single book which collects such exercises.
These exercises have been collected by the authors during the last four decades during
their student and teaching years. They should prove useful to graduate students and
research workers in Statistics.

In Chapter 1, theoretical results that are needed for understanding the material
in this book, are given. Chapter 2 lists the exercises which have been collected by the
authors. The solutions of these problems are given in Chapter 3. Finally an index is
provided for quick reference.

Grateful appreciation for financial support for Dr. Kabe’s research at St. Mary’s
University is extended to National Research Council of Canada and St. May’s Uni-
versity Senate Research Committee. For his visit to the Department of Mathematics
and Statistics the authors are thankful to the Bowling Green State University.

The authors are thankful to all the graduate students who contributed to this
collection. They would like to thank Keshav Jagannathan for his technical assistance
with the computer graphics included here. They are also indebted to Cynthia Patterson
for the excellent word processing for the final version of the book. She did a wonderful
job not only in this but also in correcting errors and patiently going through the book
over and over again, carrying out the changes. We are sure there are still many errors
left in this book and of course they are our sole responsibility. Finally, we would like
to convey our gratitude to the Springer editor John Kimmel, for his counsel on matters
of design, form, and style.

March, 2006 D. G. Kabe
A. K. Gupta
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CHAPTER 1

THEORETICAL RESULTS

This chapter is devoted to an exposition of the basic results which are used throughout
the book. The material from matrix theory, estimation, testing of hypothesis and
design of experiments has been summarized. The proofs have been omitted since
these topics have been well studied elsewhere e.g. see John (1998), Anderson and
McLean (1974), Montgomery (2005), and Winer (1971), and other references given
in the bibliography.

1.1 LINEAR ESTIMATION AND TESTING OF HYPOTHESIS

1. Definition. A generalized inverse (g-inverse) of any n X m matrix A is an
m x n matrix A~ which satisfies the relation AA"A = A.

2. Let A be any n x m matrix of rank r, and A~ be its any g-inverse. Let
H=A"Aand T = AA™. Then
(i) H and T are idempotent matrices

(i1) rank (H) = rank (T) = rank (A)
(i11) rank(I—H)=m—-randrank I —T)=n-—r.

3. Definition. If A is any n x m matrix, then its Moore-Penrose inverse will
be defined to be the m x n matrix A* which satisfies the following four
conditions:

(1) AATA =A

(i1) ATAAT = At
(iii) (AATY = AAY
(iv) (ATA)Y = ATA

4. Let A be any n x n symmetric matrix of rank r (<n). Suppose A j, Az, ..., A
arc the non-zero characteristic roots of A and &, &, ..., & are the corre-
sponding unit and mutually orthogonal characteristic vectors. Then

A=PAP,
At =PA7'P,
where P=[§,,&,,....&]and A =diag A\, A2, ..., \p).
S. Let A be any n x m matrix. Then

AT =(A'A)TA
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The Moore-Penrose inverse of al, + bEy,, fora # Oand a + nb = Ois given
by (%)In + (ﬁ)E,m, where I, is the n x n identity matrix and E,, is the
n x n matrix with unit elements.

If the equations Ax = b are consistent, then a general solution of Ax = b
is given by x = A"b + (I — A~ A)z, where A is any g-inverse of A and z
any arbitrary vector.

Consider the linear model
y=A0+e, Ee) =0, Zee)=0c",

where y is an n x1 vector, A is an n x m matrix of known numbers, § =
(81, ...,0,) isam x 1 vector of unknown parameters, e is an n x 1 vector
of random errors, and rank (A) = rank(A’A) = m. Then the BLUE of 0 is
6 = (A’A)~'A’y and var(8) = 02(A’A)~". Further, the BLUE of b'8 is b’
and var(b'8) = oZb(A’A)"'b.

Consider the linear model

y=A0+e, He)=0, Hee)=0c,,

where y is an n x 1 vector, A is an n X m matrix of known numbers, 8 is an
m x 1 vector of unknown parameters, and e is an n x 1 vector of random
errors. Further it is assumed that A’A is singular.

(1) A necessary and sufficient condition that b’ is estimable is that

rank (A") = rank (A’, b),
or rank(A’A) =rank(A’A, b).

(ii) If b0 is estimable, then its BLUE is given by b'6, where § = GA'y
is any solution of A'y = A’A®, and G is any g-inverse of A’A.
Further, var(b'§) = ob'Gb.

(iii) Let b’ and d'0 be two estimable parametric functions. Let § =
GA'y be any solution of A’y = A’A@, where G is any g-inverse of
A’A. Then,

cov(b',d'8) = o?b'Gd.

(iv) A'y = A’A0 are called normal equations.

V) T(A'y) = A’A0.

(vi)  var(A'y) = g2AA.

(vi1) The sum of squares due to regression when 8y, 6, . . ., 0y, are fitted
is given by

SSR(0) = §'A’y, withrd.f.

where @ is any solution of the normal equations, A’y = A’A® and
r = rank (A’A) = number of independent normal equations.
(viii))  The error sum of squares is given by

SSE = y'y — A’y with (n — 1) d.I.
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(ix)

(x)
(xi)

(xii)
(xiii)

(xiv)

(xv)

(xvi)

(xvii)

(xvii1)

(xix)

The unbiased estimator of ¢ is given by

., SSE
g = .
n—r

ESSR(0)) = E(O'A’y) = ro? + 0’A’A0.

0 is distributed as N(GA'A®, 02GA’AG), where 0= GA'y is any
solution of A’y = A’A®, and G is any g-inverse of A’A.

6 and SSE are independent.

SSE
—- is distributed as x* (n —1).

a
SSR(0
2( ) is distributed independently of SSE and has a non-central
c
0'A’A0

202

chi-square distribution y "2 (r,

SSR(0)/r
SSE/(n—1)

), where r = rank (A'A).

follows a non-central F distribution with r and

0'A’A0

. . 202 -~ .

For testing b'0 = by, where b'® is an estimable function, the t
statistic is

(b’ — bg)/,/ var(b')/c2
‘= JSSE/(n — 1)

with (n — 1) d.f. or equivalently, the F statistic is

(n — r) d.f. and non-centrality parameter

(b6 —bo)?/var(b'§)/0?
B SSE/(n —r1)

with | and (n — r)d.f.
The 100(] — a)% confidence limits for b’® are given by

F

var(b’®)  SSE
a? (n—r)

b0+ to/2(n — r)\/

where to/2 (n ~ r) is the value of t distribution with (n — r) d.f. such
that the probability of a t value exceeding it is 3.
To test @ = 0, the appropriate F statistic is

_ SSR(®)/r

"~ SSE/(n—r)
withr and (n — r) d.f.
To test 8, = 0, where 8" = (8}, 8), the appropriate F statistic is
given by

[SSR(8) — SSR(8)]/(r —5)
SSE/(n —1)
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with (r — s) and (n — r) d.f., where r = rank (A’A) and s = rank
(A1A)), A = (A, Ay), and A consists of columns corresponding
to 0;.

Consider the linear model

y=A0+e,

where, y is an n X 1 vector of observations, A is an n X m matrix of known
numbers, 0 is an m x 1 vector of unknown constants, e is an n x 1 vector
of random errors distributed as N (0, V), with V a positive definite matrix.

0
(ii)

(iii)
(iv)

v)
(vi)
(vii)

(viii)

(ix)
x)
(xi)
(xii)
(xiii)

(xiv)

(xv)

(xvi)

A necessary and sufficient condition for the estimability of b’ is
that rank (A’'V™'A) = rank (A’V~'A, b).

The BLUE of an estimable parametric function b’® is given
by b', where © is any solution of the normal equations
A'V-ly = A'V-1AD.

var(h'8) = b'Gb, where & = GA’V~'y, G being any g-inverse of
AVTIA

Suppose (A’A) is non-singular. Then

0=@AVvV'a)'AVly

var(§) = (A'V'A),

and 9 is estimable.
A'V™ly = A’V AD are called normal equations.
FHA'V-ly) = A'V-IA0.
var(A'V-ly) = A'V7IA
SSR(8) = §’A’V-ly, with r d.f.

SSE=yV-'y — #A’'V-'y, with (n — 1) d.f. where r =
rank (A’A).
HSSE) = (n —1).
HSSR(B)) = r + 6'A’V~!A0.
0 is distributed as N(GA’V™'A0, GA'V-'AG'), where § =
GA'V~'y, G being any g-inverse of A’'V!A,
SSE is distributed as x% (n — r).
0 and SSE are independent.
SSR(9) is distributed independently of SSE and has non-central
chi-square distribution x "(r, w).
To test b’ = by, the t statistic is given by

(b'9 — bg)/+/ (varb' )
T /SSE/(n-n

with (n —r)d.f.
To test 0, = 0, where 8" = (0, 0,'), the F statistic is given by
_AVTly - 8/A V)G —5)
- SSE/(n —r1)

where A = (A}, Ay), r =rank(A’A), s =rank (A{’A;), and A,
consists of columns corresponding to 0.

F
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1.

12.

(xvit) Totest @ = 0, we use F statistic, where
Fo AV y/r
[yV-ly - &'AV-lyl/(n —1)
withr and (n — r) d.f.

1.2 GENERAL PROPERTIES OF BLOCK DESIGNS

Notations

n = number of plots in a block design

b = number of blocks

v = number of treatments

nj = number of times the i-th treatment occurs in the j-th block,
i=1,2,...,v,;j=12,...,b

K = (k;, ks, .. .. ky) = the vector of block sizes

r = (r), 12, ..., 1,) = the vector of numbers of replications of treatments

K= diag(kl, kz, ey kb)

R =diag(ry, 12, ...,1y)

N = (njj) = a v x b matrix, called the incidence matrix of the design

Epq = a p x q matrix with all elements unity

I; = an identity matrix of order t

Nii’ = number of times a pair of treatments i’ and i’ occur together in a block,
Li'=12,...,v

)\ii :ri,i: 1,2,...,V

£ = number of common treatments between the j-th and j'-th block,
Lj=12,...,b

i=k,j=12,...,b

B’ = (B, B, ..., By) = the vector of block totals

T = (Ty, Ty, ..., Ty) = the vector of treatment totals

G = total yield of all plots

B'’K™'B — (G?/n) = unadjusted block sum of squares

T'R™!'T — (G?/n) = unadjusted treatment sum of squares

C =R — NK~!N’ = the C-matrix of the design

D=K-NR"'N

Q = T — NK~'B = the vector of adjusted treatment totals

P = B — N'R™'T = the vector of adjusted block totals

|S| = determinant of a square matrix S and also the cardinality of a set S.

Relations

b v
Z 0N =L, Z nj = kj, E]bk = Elvl‘ =N
j=! i=1

NEbl =T, ElvN = k/, EIVNEM =n
KEbl =k, REV] =r

KEp,K = kk', RE\\R = rr’

KK™' =E;p, KK'k =n

R~ =E,,,FR'r=n
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EwB=E,I=G
EfwQ=0,Ep,P =0
EwC=0,Ep,D=10
Definitions

(i) Complete block design: A block design will be called a complete
block design if k; = vforallj=1,2,...,b.

(ii) Incomplete block design: A block design will be called an incom-
plete block design ifkj < vforj=1,2,...,b.

(iii) Regular design: A block design will be called proper or regular if
ki=kforallj=1,2,...,b.

(iv) Equi-replicate design: A block design will be called equi-replicate
if;=rforalli=12,...,v.

v) Binary design: A block design will be called binary if nj; = 0 or
nj=1lforalli=1,2,...,vandj=1,2,...,b.

For binary designs,

b
Znijnyj = )\ii’, i, i = 1,2, vy V¥
j=I

> gy = 8y, df = 1,2,...,b
=1

NN = (\ir), N'N = ().
For any block design,
v + rank (D) = b + rank (C)

Definitions

1)) Treatment contrast: A linear function £t = £,t; + £ty + -+ +
4,1, is said to be a treatment contrast if E;,£ = 0. It will be said to
be an elementary treatment contrast if £ contains only two non-zero
elements +1 and —1.

(i) Normalized treatment contrast: A treatment contrast £'t, E{,£ = 0,
where £'€ = 1, will be called a normalized treatment contrast.

(iii) Connected design: A design is said to be connected if every el-
ementary treatment contrast is estimable. Otherwise it is called a
disconnected design.

Another definition: A design will be called connected if for any
two given treatments 6 and ¢, it is possible to construct a chain of
treatments 8 = 6y, 0y, ..., 8, = ¢ such that every consecutive pair
of treatments in the chain occurs together in a block.

(iv) Pairwise balanced design: A design is said to be a pairwise balanced
design of index \ if every pair of treatments occurs together in
exactly A blocks.
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v)

(vi)
(vii)

(viii)

Variance balanced or simply balanced design: A design will be
said to be balanced if the BLUE of every normalized estimable
treatment contrast has the same variance.

A connected balanced design: A connected design is balanced if
the BLUE of every elementary contrast has the same variance.
Orthogonal design: A design is said to be orthogonal if the BLUE of
every estimable treatment contrast is uncorrelated with the BLUE
of every estimable block contrast.

Efficiencey of a design: Let V denote the average variance of the
intrablock BLUEs of estimable elementary treatment contrasts in
a given design and Vg denote the corresponding quantity in a ran-
domized block design with the same number of treatments and
experimental blocks, V and Vi being computed on the assumption
that the intrablock error variance a2 per plot remains the same in
both designs. Then the efficiency E of the given design is defined
as

(3%

20
T
v

where T = ) _r;/v = average number of replications of treatments

E=

<||

)

<

1
in the given design.

Results about Connectedness, Balancedness and Orthogonality

(M

(i)

(iii)

(iv)

(v)

(vi)

A necessary and sufficient condition for £'t to be estimable is that
rank (C) = rank (C, £).

A necessary conditon for £'t to be estimable is that

E£=0.

A necessary and sufficient condition for a design to be connected
is that

rank (C) =v — 1.

In a block design, the number of estimable linearly independent
treatment contrasts is equal to the rank of the matrix C.

The average variance of the BLUEs of elementary treatment con-
trasts in a connected design is

207 & 202
oD ;(l/e,) =
where 0, 6, ..., 6,_; are the (v — 1) non-zero characteristic roots
of the matrix C and H is their harmonic mean.

A necessary and sufficient condition for a connected design to be
balanced is that all the (v — 1) non-zero characteristic roots of the
matrix C are equal.
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(vii)

(viit)

(ix)
(x)
(xi)

(xii)

(xiii)
(xiv)

(xv)
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A necessary and sufficient condition for a design to be a connected
balanced design is that its C matrix is given by

C = a[Iv - (I/V)Evv]»

for some positive constant a.
The C matrix of a connected balanced design is given by

C=0[L, — (1/V)Eu],

where 0 is the non-zero characteristic root of the matrix C.

A necessary and sufficient condition for a disconnected design to
be balanced is that the non-zero characteristic roots of the matrix
C are all equal.

For a binary design, tr C =n —b.

The efficiency E of any binary connected design satisfies the
inequality

vin—>b
Es< nEv - 1;'
The efficiency E of a binary connected balanced design is given by
_ v(n — b)
n(v—1)

For a balanced equi-replicated incomplete block design, b > v.

A necessary and sufficient condition for a design to be orthogonal
is that CR™'N = 0 or equivalently DK~'N’ = 0.

A necessary and sufficient condition for a connected design to be
orthogonal is that nj; = rikj/n,i=1,2,...,v,j=1,2,...,b.

Results about Intrablock Analysis

(@

(i)

Assumptions: Let yy;; be the yield of the x-th plot among the
njj plots of the j-th block to which i-th treatment is applied,
x=0,1,...,m,i=1,2,...,vandj = 1,2, ..., b. We assume,

yXij:u+aj+ti+exij, X=0,1,..‘,nij
i=l,2,...,V, j=l,2,‘-.,b

where ., o; and t; represent respectively the general mean effect,
the effect of the j-th block and the effect of the i-th treatment and
¢’s are independent random errors normally distributed with mean
0 and variance o2. The effects ., a’s and t’s are assumed to be
fixed effects.

Normal Equations:

G nl, kK r i
B|=|k K N||a
T r N R t
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(i)

(iv)

)

(vi)

(vii)

(viii)

(ix)

Reduced Normal Equations:
Q=Ct P=Da.
A set of solutions:

/n,
K™ 'B ~ (G/n)Ey; — K™'N't,
.

Lo R B
o
Q 9]

Error Sum of Squares:
SSE = (yy — G*/n) — B'’K™'B — G*/n) — {Q,

with d.f. (n — b — v + g), where rank(C) = v — g.
Adjusted Treatment Sum of Squares:

SST(ad)) = tQ,  withd.f.(v—g).
Adjusted Block Sum of Squares:
SSB(ad;.) = (y'y — C*/n) — (TR™'T ~ G*/n) — SSE

withd.f. (b — g).
F-tests:

For testing the significance of treatment differences, the F statis-
tic is given by

_ SST(adj.)/(v — g)
" SSE/(n—b—v+g)

with d.f. (v — g) and (n — b — v + g). For testing significance of
block differences, the F statistic is given by

_ _SSB(adj.)/(b—g)

T SSE/(n—b—-v+g)

withd.f.(b—g)and(n —b— v+ g).
Variance and Covariances:

G nI, kK r 7%
ElBl=!k K N||a
T r N R t
G n;, kK r
var| B| =0k K N
T r N R
var (Q) = a*C
var (P) = o2D

cov (Q,P) = —0’CR™'N = —o’NK~'D.
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(x)

(xi)

(xii)
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Method For Solving Q = Cf :

Suppose rank C =v —g. Take ag x v matrix H such that
Ht = 0 and rank [C, H] = v, and rank (H) = g. Then, there exists
av x g matrix M such that CM = 0, and rank (M) = g. Then

(a) (C+H'H)~!is a g-inverse of C, and
(b) (C+HH)™' — MM'H'HM)~'M' is a g-inverse of C

The BLUE of an Estimable Treatment Contrast:
The BLUE of an estimable treatment contrast £'t is given by

i=¢C+HH'Q
and
var(€'t) = ¢*€[(C + HH)™! - MM'H'HM)"'M'1¢

Expected Values of Sum of Squares In Intrablock Analysis of
Variance:

(a) Expected Value of Total SS:

Hy'y — G*/n] = (n — 1)o? + a'Ka + tRt + 2t Na

—n'(Ka +r't)}

(b) Expected Value of Unadjusted Block SS:

EHB'K™'B - G*/n] = (b — 1)o? + a’Ka + 2¢'Na

+tNK™'N't — n”'(K'a + r't)>.

(c) Expected Value of Adjusted Block SS:

Ha&'P] = (b — g)o’ + a'Da,

where g = v — rank (C).
(d) Expected Value of Unadjusted Treatment SS:

HIQl = (v — g)o? + tCax,
(e) Expected Value of Intrablock Error SS:
HIntrablock Error SS] =(n—b— v+ g)oz.

19. Results In the Analysis with Recovery of Interblock Information

@)

Interblock Treatment Estimates: We assume that blocks are of the
same size k, and the design is connected

E®B)) =kp + Znij[i

i=1
var(B)) = k(o2 + ko), j=1,2,...,b
cov(B;,B)=0,j#j=12,...,b.
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(i)

(iii)

The normal equations are given by

kG| _[bk* kr' |[i
NB] - [kr NN []| €|
The reduced normal equations for t are Q; = C,t, where
Q) = (1/k)NB — (G/bk)r and C; = (1/k)NN’ — (1/bk)rr’.
The solutions of t obtained by solving the above normal equa-
tions are called interblock treatment estimates.
Letwy, = O'ez, + kof, wy = 1/wy,w)' =c2, w = 1/w/. Then
from the above normal equations, we get

£[KC | _ bk* kr' |[p
NB| [kr NN|[|t
war| X6 1 = o bk? kr'
NB |~ "2|kr NN[|°
If £'t is any estimable treatment contrast, then £'t is called its
interblock estimator, where t is any solution of the above normal
equations.

With Recovery of Interblock Information:
Here, the normal equations are

w,G | wabk wor }1
W|Q+(W2/k)NB - Wwok W|C+(W2/k)NN/ ;{ ’

The reduced normal equations for t are

wiQ + wQy = (wiC+ WZC]);.

The solutions of ¢ obtained by solving the above normal equations
are known as the combined intra and interblock treatment estimates.
From the above normal equations, we obtain

E ch . ngk Wzl'/ i
W|Q+(W2/k)NB - wor W|C+(W2/k)NN, t
var WzG _ Wzbk Wzl',
wiQ+ (wa/KINB |~ | war  w C+ (wy/kK)NN' [°
The F test:
The F statistic for testing t = 0 is given by

_ twWiQ+ wkT'NB)/(v— 1)
- W]Ee
with (v — 1)and (bk — b — v + 1) d.f. where E. = mean intrablock

error SS. However to apply the above F test, we must know w
and w;. Since w, and w; are unknown, we use their estimates to

F
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20.

21.

(iv)

)
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calculate the above F statistic. The estimates of w, and w, are
obtained as

w1 = 1/Ee, Wy = (bk — v)/[k(b — DEp — (v — K)Ec]

where E, = mean adjusted intrablock SS. For a connected resolv-
able design, the weights w; and w, are estimated by

Wi = 1/Ee, Wy = (r — 1)/(tEp — E),

where rE, = mean adjusted intrablock with replications block SS.
Variance and Covariances

var(Q) = (rezC =C/w,

var(Q)) = Cy/wy

cov(G,K))=0

var (w1Q + w2Qy) = wiC + woC

cov(Q, Q) =0

cov(G, w;Q +w,Q;) = 0.
Expected Values of Sums of Squares in the Analysis with Recovery
of Interblock Information:

£(Total SS) = (bk — 1)a? + k(b — 1)of + Rt — (bk)~' (r't)?

Z(unadj. Treatment 8S) = (v — 1)03 +(v- k)crg

+tRt — (bk) ™' ('t)?
£ (unadj. BlockSS) = (b — 1)(a? + ko) — t'Ct
+ t'Rt — (bk)~' (r't)’

£ (adj. Treatment SS) = (v — 1)a? + t'Ct

£ (Intrablock Error SS) = g(bk —b— v+ 1)

£(adj. Block SS) = (b — )62 + (bk — V).

1.3 STANDARD DESIGNS

For a RBD with b Blocks and v Treatments

(i)
(it)
(iii)
(iv)
V)

(vi)

(vit)
BIBD

N = Ew, C =b[l, — %Evv]

D = v[Ip — {Ep)

Q=I- %Evl

A solution of Q = Ct is taken as t = Q/b

rank(C) = v — 1. The characteristic roots of C are o with multi-
plicity 1, and b with multiplicity (v — 1).

The BLUE of t; —t; is given by (Q; — Q;)/b = (T; — T;)/b with
variance 2a2/b.

The design is connected, balanced and orthogonal.

An incomplete block design with v treatments in b blocks of k plots each is
called a BIBD if (i) each treatment occurs at most once in a block, (ii) each
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treatment occurs in exactly r blocks and (iii) every pair of treatments occurs
in exactly A blocks. For a BIBD (c, b, r, k, M), we have the following resuits:

(1) NN’ = (r — M), + AE,,

(ii) INN'| = rk(r — N)"~!

(1i1) rank (N) = rank (NN’) = rank (N'N) = v

(iv) bk = vr,1(k — 1) = A(v — 1), b > v (Fisher’s inequality)

A
NN~ = I, — E.v
vV NN = T ook
. Av A

(vi) C= TIV — EEW, rank(C)=v —1

(vit)  The characteristic roots of C are o with multiplicity 1 and Av/k
with multiplicity (v — 1).

(viii) A solution of Q = Ct is given by t = kQ/\v. The adj. treatment
SS = kQ'Q/Av.

1 1

(ix) Q=T- ENB’ Q=T - EB(“ , where B(;, = sum of block totals
in which the i-th treatment occurs.

(x) The BLUE of (4; — tj) is k(Qi — Qj)/Av , with variance 202k /\v.

A

(xi) The efficiency factor E is given by E = k_v

r

(xii) For a SBIBD (b = v), N'N = NN'. Hence, there are A treatments
common between any two blocks of a SBIBD.

(xiii)  For a SBIBD with even number of treatments (r — \) is a perfect
square.

(xiv) A BIBD is called resolvable if the blocks can be arranged in r sets
such that every treatment occurs exactly once in each set. For a
resolvable BIBD,b > v+ r — 1.If b = v +r — 1, then the resolv-
able BIBD is called affine. In an affine resolvable BIBD, k*/v is
an integer, and two blocks in different replications contain k?/v
treatments in common.

(xv) The intrablock analysis of variance table is as follows:

SOURCE SS d.f. SS SOURCE
I G’
Blocks (unadj.) EB/B ~ b—1 i Blocks (adj.)
. k ., 1, G?
Treatments (adj.) | —Q'Q v—1 —T'T — — | Treatments
Av r bk )
(unadj.)
Error (intrablock) | { bk—b—v+1|— Error
(intrablock)
GZ
Total yy— ren bk — | - Total

Note: 1 means obtained by subtraction; — means carried forward.

(xvi)

The expected values of sums of squares of the intrablock analysis
of variance table is given below:
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SOURCE SS E(SS) E(SS) SS SOURCE
1 G?
Blocks EB’B ~ 1 |®- ol |b- 1o+ |b—DE, [Blocks (adj.)
(unadj.) +ka'a a’'Da
+ 2t'Na
+ K '¢NN't
~(bk)~!
(k + rxt)?
k 1 G?
Trc(:z:;r;ents X—Q’Q (v—-Da?  |(v—1Do? -T'T- o Treatments
! v +t'Ct +1t't r (adj.)
+2¢Na
+rla'N'Na
— (bk)™
kZa +rrt)?
Error (bk — b — v+i(bk — b — v+{(bk — b — v+ [(bk — b — v+|Error
DE, Ho? o2 DE, (interblock)

Note: E, and E, are respectively the mean intrablock adjusted block SS and the mean

intrablock error SS.

(xvii)

Analysis with Recovery of Interblock Information:

(a) The equations for combined intra and interblock treatment esti-
mates are given by

wiQ + wiQp = (W C+ w,Ci)t

where

1

-Ewl, Cl =
A\

r—A

Q=T--NB,Q

1
k

I
= —NB -
k

[I, — —Ew], W, = 1/02, and wp = 1/a.

G

v

Av
Evi, C= 'E'[Iv_

The combined intra and interblock treatment estimates are
given by

k[w;Q + w2Qq]

*
t=

WAV 4 (r — M)w;

and its variance by var (t*) =

kll, —

vEwl

[WiAV + (r = Mw,]

The combined intra and interblock BLUE of a treatment con-
trast £'t is given by

and its variance is var (£'t*) =

o — L[kw,T - (w; — wy)NB]

WAV + (r — AW

k't

WAV + (T — Mwy
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22.

PBIBD
(1)

(b)

(©)

The approximate F statistic for testing the significance of treat-
ment differences is given by

G2
FE(Ti4+6w)’ — —/(v—1)

F= il bk
= B ,

<

with (v — 1) and (bk — b — v + 1) d.f. and where
o (b — 1)(Ey — Ee)
~ vk — 1)(b— DEy + (b — v)(v — k)E,
Wi :(V—k)Ti—(V— l)B(i)'f‘(k— 1)G,l= 1,2,...,V

E, =[1 + (v — k)BJE,

E. = mean intrablock error SS,

E, = mean intrablock adjusted block SS,

T; = total yield for the i-th treatment,

By = Sum of blocks in which the i-th treatment occurs.

If Ey < E,, then 0 is taken to be zero.

The standard error of §; — { is given by S.E. (i, — i) = 2E_/r.
If the design is resolvable BIBD, then the approximate F statis-

tic for testing the significance of treatment differences is given
by

Lot rowgt - & /( )
~ . N v —
ri ' bk
E,
with (v — 1) and (bk — b — v+ 1) d.f. and where
B r(Ey — Ee)
~ vi(k — DEy + k(b — v — k+ DE,
E, =[1+(v-k9]E,
E. = mean intrablock error SS
E, = mean intrablock adjusted block SS within replications.

F=

Definition. Given v treatments 1,2, ..., v, a relation satisfy-
ing the following conditions is said to be an m-class association
scheme:

(a) Any two treatments are either Ist, 2nd, ..., or m-th associates,

the relation of association being symmetrical, i.e., if the treat-
ment « is the i-th association of the treatment B, then the treat-
ment @ is the i-th associate of the treatment .

(b) Each treatment a has n; i-th associates, the number n; being

independent of the treatment o, i = 1,2, ..., m.
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(c) If the treatments a and B are i-th associates, then the number
of treatments which are both the j-th associates of o and the
k-th associates of B is p' and is independent of the pair of the
i-th associatesa and 3, 1,j,k=1,2,...,m.

The numbers v, n;, pjki, i,j,k=1,2,...,m are called the pa-
rameters of the m-class association scheme. The parameters pj!
are written in the form of m matrices P;,i = 1,2, ..., m, which
has pj' as the element in the j-th row and the k-th column.

Definition. An arrangement of v treatments in b blocks of
k (< v) plots each will be called a partially balanced incomplete
block design (PBIBD) with m-associate classes if

(a) the v treatments satisfy an m-class association scheme;

(b) each block contains k different treatments,

(c) each treatment occurs in exactly r blocks;

(d) if two treatments o and B are i-th associates, then they occur
together in exactly \; blocks, the number A; being independent
of the pair of the i-th associates e and B,i =1,2,...,m.

The parameters v, ni,pjki,i,j,k =1,2,...,m are called the
parameters of the first kind, while the parameters b,r,k, \j,
i=1,2,..., mare called the parameters of the second kind.

Definition. The m v x v matrices B; = (bLB),i =12,...,m,
where
LB = (a, B) -th element of B;
=1, if o and B are i-th associates,

= 0, otherwise
are called association matrices. Further, we define
B0=IV,n0= 1,)\0=[‘
pj=m ifj=i
=0, ifj#£i
pok' =1, ifi=k
=0, ifi #k.
Properties:
m
(a) Z Bi = Evv
i=0
m N
BjBk = ijk'Bi,j, k= 0, l, 2, e, M
i=0

Y ¢iBi =oy, iffci=0,i=0,1,2,...,m,...,m

i=0

where c¢; are scalar numbers, and BBy = BiB;, j, k=0,
1,2,...,m.
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(iii)

(b) If N is the incidence matrix of a PBIBD, then

m
= Z N
i=0

(¢) If v,b,r,k,nj, \j,i=0,1,2,..., m are the parameters of a
PBIBD, then

vr = bk, }Il_‘:ni =v, ini)\i =rk.
i=0 i=0

(d) The parameters pjki, 1,j,k=0,1,2,...m of a PBIBD satisty
the following relations:

m
Pik' = Pxj'» Z pi' = n;, and mpj' = mpa) = ngp;i.

k=0

(e) Let Si(ty) denote the sum of treatments which are i-th

associates of the treatment t,,i=0,1,2,..., m, that is,
Si(la) = Y_,_ bauty. Further, let §;Si(ty) denotes the sum of
treatments which are j-th associates of the i-th associates of t,,,
that is, $;Si(ta) = Zl':l ba'y Si(ty ). Then, we have

m
$iSita) = nita + »_ pi*Sulte), ifj =1

u=|
m
= piSulta). if j # .
u=1

Intrablock Analysis of a PBIBD: Let A = (a;y) be anm x m matrix,
whose (j, u)-th element a;, is defined as

aj =k — D)+ m\j — Z Aipji
izt

Ay = Ny Z)\,pj,,HéU]u_IZ

Let A~ = (al") be a g-inverse of A. Further let S;(Qs) denote the

sum of Q’s over treatments which are j-th associates of t;. Then,
the solutions of the normal equations Q = Ct are given by

N k m m N
’ i, B
[S_r(k—]){QS_{_;Z)“E‘SJ(QS{'! s=12,...,v.

= i=]

The adjusted treatment sum of squares is given by

Q :r(k_l)[ZQ2+XV:[Xm:Zm:AaS(Qs ] ]

s=1 | j=1 i=I
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with (v — 1) d.f. Also,
var (i) = o%k/rk — 1),s = 1,2, ...,v

m
cov s, fy) = a7k ) Neali/r(k — 1),
£=1

if t; and ty are i-th associates, s #s' = 1,2, ..., v.
Further, if t; and ty are i-th associates, then

P 202k /i
var (i, — ) = ——— o |:1—Z}\ga:|

(iv) Intrablock Analysis of a 2-Associate Class PBIBD:
The intrablock treatment estimates are given by

ES = k[DQS - BSI(QS)]/A9S = 192’ ey V
where A = AD — BC and

A=rk—1)+x,B=N\ =\,
C=02-A)p®,D=A+B@p,' —pi?).

The adjusted treatment sum of squares is given by

Y Q= [D Y (kQ)’ -B Z(st)Sn(st)] /KA.
s=1 s=1 s=1

Further,

var(y) = 0’kD/A,s = 1,2,...,v

cov(iy, ty) = —a’kB/A, if t; and ty are first associates
=0, it t; and ty are second associates
PO 2ko*(B +D) . )
var(t; — ty) = ——-(T—-z if t; and ty are first associates
2kDo? | .
= N if t; and ty are second associates.
V) Analysis of PBIBD with Recovery of Interblock Information:

Let
| 1
Ps = WITS - E(W| bt Wz)B(s) el l—('WzG, s=12,...,v
where Ts = total yield for the s-th treatment, B; = Sum of

blocks in which the s-th treatment occurs, and G = Grand
total.
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Let H = (h;,) be an m x m matrix with elements h;, defined by

m
hj = tw + (W) — wp)nj — (W) — wp) Z"ipjiJ

i=1

u
hy = (wy — wa)njj — (wy — Wz)z)\ipji",j Fu
i=1
jbu=1,2,...,m.

Let H- = (h®) be a generalized inverse of H. Then the combined
intra and interblock treatment estimates are given by

i k m m i
= =[P+ (W = wa) ,; ; NihIS;(Py)],
s=1,2,...,v
where w = (k — )w; + w,.
The adjusted treatment sum of squares is given by Zt;Ps, with

(v — 1)d.f., assuming that the design is a connected one. For testing
the significance of treatment differences, the F statistic is given by

g ZEP/(V-D)
W]Ee

with (v — 1) and (bk — b —b + 1) d.f.
Since w; and w; are unknown, they are estimated by

vI\Vl = I/Ee,
Wy = (bk — v)/[k(b — DEp — (v — K)E],

where E. = mean intrablock error SS and E, = mean intrablock
adjusted block SS. Then, the approximate F statistic is given by

v
F=) P/(v—1).
s=]
Further,
var(ty) = k/wr

k(w) — wp) Y Ajh¥

i=1

cov(ty, ty) = ,if ty and ty are j-th associates.
wr
Hence,
gy K 1 Y AihY '
Var([s_ts')—_\;v—; "(WI_WZ); ih}.s#s

if tg and t;’ are j-th associates.
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Analysis of a 2-associate Class PBIBD with Recovery of Interblock
Information:

The combined intra and inter block treatment estimates are given
by

t; = k[DP; — BSi(P)l/A,s =1,2,...,v
where A = AD — BC,and A = w + A\y(w| — w,)

B = (wi —w2)(\2 — M), C = Bpi2”,
D=A+B(P;' —pj).

Then the approximate F statistic is given by

_ DXE(kP,)? — BE(KP;)S;(kP;)
- k(v—- DA ’

wherein the expressions are calculated by replacing w; and w, by
their estimates W, and W,. Also,

var(t}) = kD/A

kB . .
cov(ty, ty) = e it t; and ty are first associates
=0, if t; and ty are second associates.
2kB +D) . .
var(t; — ) = (—A~), if ts and ty are first associates

D . .
= N if t; and ty are second associates.

Further Results in PBIBD: The characteristic roots of NN’ of a
2-associate class PBIBD are given by

0, = rk, with multiplicity 1
1 1 -
b =r—S0u + M)+ S0+ M)l + (—DvVal,
with multiplicity

=My [(n — ny) +1(n + ny)]
1 2 2\/_A_

wherer = pip> — pio', B=pi2! +pi2fand A =r* + 2B + L.

The 2-associate class PBIBD designs are classified into five
types: (1) Group divisible, (2) Simple, (3) Triangular, (4) Latin
square type (L;) and, (5) Cyclic.

=12

(1) Group divisible design: A 2-associate class PBIBD is called group
divisible if there are v = mn treatments and the treatments can be divided
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into m groups of n treatments each, such that any two treatments of the
same group are first associates and two treatments from differenct groups
are second associates.

The parameters of the GD design are v,b,r,k,nj=n-1, n; =
n(m — 1), Ay, Ay and

n-2 0 0 n-lI
P‘z[ 0 n(m—])]’ Pz:[n—l n(m—Z)}'

The characteristic roots of NN’ of a GD design are

8y = rk, with multiplicity 1,
0, = r — A\, with multiplicity m(n — 1)
6, = rk — vA,, with multiplicity (m — I).

A GD desgin is called singular it r — N\ = 0; it is called semi-regular if
r—A; >0 and tk — v\, = 0; and it is called regular if r—X\; > 0 and
tk — v\, > 0.

(2) Simple: A PBIB design with two associate classes is called simple if ei-
ther @) \; # 0, Az = 0,0r(b)\; = 0, Az # 0. A simple PBIBD may belong
to group divisible, triangular, Latin square type or cyclic.

(3) Triangular: A PBIB design with 2-associate classes is called triangular

if there are v = n(n — 1)/2 treatments and the association scheme is an array
of n rows and n columns with the following properties:

(a) the positions in the principal diagonal are left blank;

(b) the n(n — 1)/2 positions above the principal diagonal are filled by
the numbers 1, 2, ..., n(n — 1)/2 corresponding treatments;

(c) the n(n — 1)/2 positions below the principal diagonal are filled so
that the array is symmetrical about the principal diagonal,

(d) the first associates of any treatment i are those that occur in the

same row (or in the same column) as i.

The parameters of a triangular PBIBD are

v=n(n-—1)/2,b,r,k,n; =2(n—2),n; = (n—2)n—3)/2, \;, \2, and
n-—2 n—-3 4 2n —8
= —3)(n—-4 = - -5 1.
Pi= _, =30-4). P=, o (0-40-5)
2 2
The characteristic roots of NN’ of a triangular design are
6y = rk, with multiplicity 1,

6; = r — 2\ + \,, with multiplicity n(n — 3)/2,
0, =1+ (n —4\; — (n — 3)A3, with multiplicity (n — 1).
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(4) Latin square type (L;): A PBIB design with two associate classes is
called a Latin square type with i constraints (L;) if there are v = s? treat-
ments and the treatments are arranged in a s X s square and i — 2 mutually
orthogonal Latin squares are superimposed and two treatments are first as-
sociates if they occur in the same row or column or correspond to the same
letter in any Latin square.

The parameters of a L; design are

v=stb,r,k,n =i(s—1),n =(s—i+ 1)(s— 1), A, Ay, and

p _[(=D=2)+s-2 s—i+DGE=1
=1 =i+ -1  G—-i+Ds—1i)

p. — [iG=D i(s — i)
27 lis—1i) (s—-is—i—-D4+s—2]

The characteristic roots of NN’ of a L; design are

6y = rk, with multiplicity 1,
0, = r — i\ + N\y(i — 1), with multiplicity (s — 1)(s —i1 4+ 1),
6 =1+ \(s — i) — \p(s — i + 1), with multiplicity i(s — 1).

(5) Cyclic design: A non-group divisible PBIB design with two associate
classes is called cyclic if the set of first associates of the i-th treatment is
(t+d),i+ds,...,14+dy,) mod v, where the d elements satisfy the follow-
ing conditions:

(a) the d elements are all different and 0 < dj <vforj=1,2,...,
ng.

(b) among the ni(n; — 1) differences d; — dj , each of the d;, d, .. .,
dy, elements occurs py; ! times and each of ey, €5, . . ., e,, elements
occurs py;? times, where d;, d, ..., dy, and e, €y, .. ., €, are all
distinct non-zero elements of module M of v elements 0, 1,2, ...,
v — 1 corresponding to the v treatments.

(©) the set D =(d;,d;,...,dy,,) is such that D = (—d;, —=d,,...,
~dy).

The cyclic association scheme has parameters v =4t 4+ 1,n; =np; =21,

t—1 t ot
P'_[t t]’ PZ’[t l—ll

(6) Rectangular Design: A rectangular design is a PBIBD with 3 associate
classes in which v = mn treatments are arranged in b blocks of k plots each
such that each treatment occurs in exactly r blocks and the v treatments are
arranged in a rectangle of m rows and n columns. The first associates of
any treatment are the other (n — 1) treatments of the same row; its second
associates are the other (m — 1) treatments of the same column and the
remaining treatments are its third associates.
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Thus, the parameters of a rectangular design are v=mn, b, r,k,n; =

n—1l,np=m-—1,n3 =(m— 1)}n—1),\, X2, A3 and

P =

P, =

Py =

The characteristic roots of NN’ of a rectangular design are given by

-

[(n—2 0 0
0 0 m— |
L 0 m— | (m—l)(n—2)_
[0 0 n—1 ]
0 m—2 0
| n—1 0 (m —2)(n—1) |
0 | n—2 ]
1 0 m-—2

6 = rk, with multiplicity 1,

0 =

6,

r— Ay +{m — 1)(A; — A3), with multiplicity (n — 1)
r— A2 +(n — )N} — A3), with multiplicity (m — 1)
6 = r — Ay — A2 + A3, with multiplicity (n — 1)}m — 1).

23. Split-plot design
It consists of r randomized blocks and each block contains v main plots to
which v main treatments are assigned at random. Further, each main plot of
a block is split up into s sub-plots to which s sub-treatments are alloted at
random. Let y;jx denote the yield of a sub-plot to which the k-th sub-treatment
is assigned and the j-th main treatment is assigned and which occursin the i-th
block,i=1,2,...,15j=1,2,...,v,k=1,2,...,s. The assumed model

1S

Yijk = B+ & + 4 + pi + i + eiji

with usual meanings for the different symbols, and

2 2
var (€)= g, cov (Ejjk, &rjx) = po~,

fori =1, j =j,k # k' and 0, otherwise.

The intra-block solutions of the normal equations are

L=y....&4=y,. -y ,i=12, .1,
i=yj—-y...i=012...v

ﬁk:y--k—y...,kzl,Z,...,s

Sk =yk—Yj—Yk+Yy.... i=12..,v;k=12...,5

For testing the significance of block difference, the F statistic is

vs Y (yi. —y. P/c—1)
i=l

[n—2 m-2 (n—2)(m—2)_.

F=

$2. 2 (i — ¥y +y.)/r—Dlv=1)

i=1j=1
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with(r— Dand(r— 1) (v —1)d.f.
For testing the significance of differences among main treatments, the F
statistic is given by

rsY(y; —y. )/ (v—=1)
F= =1

$ Zr: i()’ij. =Y. =Y HY P =Dv=1)

i=l1 j=1

with(v—Dand -1 (v—-1df.
For testing the significance of differences among the subtreatments, the
F statistic is given by

S
v k;(y"k -y /=D

T TIE(yik — Yk — ¥i Y02 /vE = D(s — 1)

with(s — Dand v(r — 1) (s — 1) d.f.
For testing the significance of the interaction between the main and sub-
treatments, the F statistic is given by

Fo IZZ(yx— Yy — Yk +y. ) /(v=Ds=1)
TET(Yik — Yk — Yii. T Y5 2/vE = D(s — 1)

with(v—1(s—Dandv(r — 1) (s — 1)d.f.
The analysis of variance table of a split-plot design is as follows.

F

Analysis of Variance Table of a Split-Plot Design

SOURCE SS d.f.
r
Blocks vs Y (yi. —y..) r—1
i=1
Main Treatments sy (v —y..) v—1
j=1
Error (a) s Z(Yij. —yi. =y +y.)? r-H-1
Sub-treatments vy (yx—y.) s—1
k
Interaction between o 2 _ _
main and subtreatments) rzj: §(y4k TYi T Yacty) v=De=1b
Error (b) Y Sk — Yk — Vi Y [ ve =D =1)
T3 K
Total LIXyj, —rvsy” rvs — |

The different standard errors are given below.

() SE.(y.x —y.x) = +2Ep/rv
(i) SE.(y; —yj.) = +2Ey/rs
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(i)  S.E(yj —yj) = +2E/r
(iv)  S.E.yj —Yyjx) = V2[Es + (s — DEy]/rs
(v) S.E.(yjx — ¥jx) = ~/2[Ea + (s — DEp]/1s

where E, is the mean SS for Error (a) and E, is the mean SS for
Error (b).

1.4 Two-WAY DESIGNS

(i) Notations: We consider a two-way design in which uv’ plots are arranged
in u rows and v’ columns. Let there be v treatments, the i-th treatment
being replicated r; times, i = I, 2, ..., v. Let the i-th treatment occur ¢;
times in the j-th row and my times in the k-th column,i=1,2,...,v;j =
1.2,...,w;k=1,2,...,u. Let

L = (¢;) = a v x u matrix of elements £;

M = (my) = a v x u’ matrix of elements my,

Epq = ap x q matrix with all elements unity

I, = an identity matrix of order p
r=1[r,r,...1],

oj = effect of the j-throw,j=1,2,...,u

a' = [a), 0,..., 0]

Bx = effect of the k-th column, k = 1,2, ..., v

B =1[Bi.B2.....Bv]

t; = effect of the i-th treatment, i = 1,2, ..., v.

t =[t.t,...,t]

F=diag(r).r2,.... 1) — LLL' = MM’ + Lrv’
R’ = [R,, R,,...R,] = row vector of row totals

C' =[C,, C,,...Cy] =row vector of column totals
T = [T, Ts, ..., T,] = row vector of treatment totals
G = Grand total

Q=T-ILR-IMC+ Er.

One can easily verify the following results:

LEul = MEu/l =r
LE,w = ME,y
LE,, = ME,,

u u

b= mg=r
j=I1 k=1

v v

Zlij =u/,Zmik =u

i=1 i=I
E.L = ulEluy E;\M = uE;y,
EIVQ =0, EIVF - 0lv
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(ii) Analysis: The normal equations are
G=w'A+VvE,é&+ ElurA[A} +rt
R =u'{E, +ué& +Ewp+ L7
C =upEy; +Ewné +up + M't
T=jir+ L& + MB +diag(r;, 13, ..., 1y)t.
The reduced normal equations for treatment effects are
Q=Ft.
A particular solution of the normal equations is taken as
= G/uu’
& =R - ¢E, -Lpp
B= (C- —Eu n—Mi/u
Q=Fi.
Adjusted treatment SS is given by t'Q with (v — g) d.f., where

(v — g) = rank (F).
The error SS is given by

GZ R G2
SSE = (yy———)—(— R-—) (- lec- —)—tQ
withu— D@ —1)—(v—g)df
For testing the significance of treatment differences, the F statistic is given
by

_ tQ/(v—g)
SSE/[(u— D(v' — 1) — (v — g)]

with(v—gland(u—1)(u' — 1) — (v - g)d.f.
The analysis of variance table is given below.

Analysis of Variance Table For a Two-way Design

SOURCE SS df.

GZ

1
Rows —,R’R - u—1

uy’
G2

Columns

Treatments (adjusted)

Error

—C’C v —1

tQ

uu’

by subtraction

v—§8
@-DW -D-(v-g)

Total

G2

y_._

uy’

ud’ — 1
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The expected values of sums of squares appearing in the above analysis
of variance table are given in the following table.

Analysis of Variance Table For a Two-way Design

SOURCE SS E(SS)
1/ 02 2 T ! 1 l
Rows SRR - — (w— o +uv(a’'a - —a'Ea
uu
1 1
+2(a’'Lt — —a'E,,L't) + —
{ u u
(YLL't - —t’LEuuL’t)
1 ,. G
Columns -CC~-— (' — DHo? +u(BB———BEuuB)
u uu
+2(B’Mt - —B Evw M )+
l
—(t’MM’ - —tME,,M't)
u u
Treatments | ., R
(adjusted) t'Q (v —g)o° + t'Ft
Error y——R’r——CC—tQ+ [(u— 1 —1) = (v —g)o?
Gz/uu
25. Latin Square Design:

A Latin square design (LSD) is an arrangement of v plots in v rows and
v columns and v treatments are assigned to them such that each treatment
occurs once in each row and once in each column. For a LSD,

L=M=E,,F=vl, —E,,

Q=T-(G/v)Ey

A particular solution for t is

t=(T - v 'GE,))/v

The analysis of variance table of a LSD is given below.

Analysis of Vaniance Table of a LSD

SOURCE SS d.f.

Rows v 'R'R - v2G? v—1
Columns v iC'C - v2G2 v—1
Treatments vaIT'T — v 2G? v—1

Error by subtraction (v—=1)v—2)
Total Yy - v*G* vi—1
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The expected values of sums of squares in the above table are given in
the following table.
Expected Values of Sums of Squares in the Analysis of Variance Table of a
LSD
SOURCE SS ESS)
1 G’
Rows -RR - ey (v—1o?+va'a — a’E,a
v
1 G? ‘
Columns ;C'C - (v—1o*+vg'8 - BE.B
v
1 G?
Treatments | ~T'T - — (v — Do+ vt't — tEt
v v
1 1 |
Error yy—--RR—-C'C—-TT | (v—1(v—2)o?
v v v
2G?
+;T
The efficiency of a LD relative to a RBD with blocks as columns of a
LSDis
(Er + (v — DEe]/VE.,
and the efficiency of a LSD relative to a RBD with blocks as rows of aLSD is
[Ec + (v — DEc]/VEk,
where E;, E., and E, denote respectively the mean row SS, the mean column
SS, and the mean error SS.
26. Cross-over Design

A cross-over design may be regarded as a repetition of a Latin square design.
Let us consider a crosss-over design which is obtained by s repetitions of
av x v LSD. Then, for this design

L =5sEw,M =Eyq,
F=svly —sE,y, rank (F) = v — |
Q=T-(G/v)Ey.
A solution of t is given by
t = (sv)7'I, — (G/sv*)Ey,.

The analysis of variance of table of a cross-over design is given below.

Analysis of Variance Table of a Cross-over Design

SOURCE SS d.f.

Rows (sv) TRR — (sv»)'G? v—1

Columns vIC'C — (sv)~IG? sv—1
Treatments (sv)7'T'T — (sv?)~'G? v—1

Error by subtraction v—D@sv-1)
Total Yy — (sv¥)~'G? svi—1
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27.

28.

Graeco-Latin Square Design

Two Latin squares of the same side s and same letters are said to be
orthogonal, if when one Latin square is superimposed on the another, then
each letter of the former square coincides exactly once with each letter of
the second square.

A set of Latin squares of the same side s and the same letters is said to
be a set of mutually orthogonal Latin squares (MOLS), if any two of them
are orthogonal.

A complete set of MOLS of side s consists of atmost (s — 1) Latin
squares. If s is a prime or a power prime, then the complete set of MOLS
of side s consists of (s — 1) Latin squares.

If two Latin squares of side s are orthogonal and if the letters of one are
written in Latin letters and those of the second are written in Greek letters
and if one is superimposed on the other, then the composite square is called
Graeco-Latin square.

A Graeco-Latin Square Design (GLSD) is an arrangement of v treatments
inav x v Latin square such that each treatment occurs exactly once in each
row, exactly once in each column and exactly once with each letter of the
Latin square.

The analysis of variance of a GLSD is given in the following table.

Analysis of Variance Table of a GLSD

SOURCE SS d.f.

Rows v TER? — v72G? v—1
Columns vo! ECj2 —v72G? v—1

Letters vIZAl - vIG? v—1
Treatments vIET? — v2G? v—1

Error by subtraction (v—=1)v—-3)
Total Ty — v72G? vi—1

Youden Square Design
A Youden square design is a rectangular arrangement of v treatments in
r = k rows and b = v columns such that each treatment occurs exactly
once in each row and the columns constitute the blocks of a symmetrically
balanced incomplete block design (v = b, r =k, \).
(i) Intrablock analysis: Here u =r, v’ = v, = E,;, M = N, where N is
the incidence matrix of a SBIBD (v = b, r =k, A).

Also

F= v/, —v'E,] =C,

1
=T- -NB
Q k
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where C is the c-matrix of the corresponding SBIBD. Clearly, rank
F=v-1
The intrablock treatment estimates are given by

t= (r/Av)Q.

The intrablock analysis of variance table of a Youden square design is given
in the following table.

Intrablock Analysis of Variance Table of a Youden Square Design

SOURCE SS d.f. SS SOURCE
IR G°
Rows —_—— r—1 - Rows
2\1’32 (v;rz b
Blocks § y ;
(unadj.) r v v-1 subtraction Blocks (adj.)
IT? G?
Treatments iEQi2 v—1 — — — | Treatments
Av r vr
(adj.) (unadj.)
Error by v=-Dr-2) | —» Error
(intrablock) | subtraction (intrablock)
GZ
Total Ty - — vr — 1 - Total
VI

Note: “—”" means carried forward.
The expected values of sums of squares in the intrablock analysis of variance table
of a Youden Square are given in the following table.

Expected Values of Sums of Squares In the Intrablock Analysis of Variance
Table of a Youden Square Design

SOURCE SS E(SS)
TR} G’
Rows —L (r—1Do? +va'a — X(Ea)z
v, v r
: EBj G 2 ’ N
Blocks (unadj.) - (v—Do*+1f'B+2p'N't
A%

Treatments —r—ZQ,-2 (v—1Da? +1tCt
v
Error (v — D —2)E. (v — 1)(r — 2)a?

1
+-¢NN't — 5(23 + T0?
r

Note: E, = mean intrablock error SS

(ii) Analysis with recovery of interblock information. This analysis
is exactly similar to that of a SBIBD except for the fact that the sum of
squares due to rows is separated out from the error sum of squares. The
approximate F statistic for testing the significance of treatment differences is
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given by
2

1 G
F= [_>:(Ti +OW) — —
r vr

] /(v — 1E;

with (v — 1) and (v — 1)}(r — 2) d.f., where

0 = (Ey — E)/v(r — DEy
Wi=(rv-nTi—-(v-DBg+ - DG
E. = mean intrablock error SS

E, = mean intrablock adjusted block SS
E, =[1+4(v-18]E,

Lattice Design

In an m-ple lattice design, there are y = k? treatments, arranged in b = mk
blocks of k plots each such that each treatment is replicated r = m times
and a pair of treatments either do not occur together in a block or occurs
together once in a block.

An m-ple lattice design is constructed as follows. The v = k? treatments
are arranged in a k x k square. The first set of k blocks is formed by taking
k rows as blocks. The second set of k blocks is formed by taking k columns
as blocks. We now take (m —2) MOLS of side k,(m —2 <k —1). We
superimpose these Latin squares, in succession on the square of treatments
and form blocks by taking treatments which correspond to the same letters
of a Latin square. We thus get (m — 2) sets of k blocks each. Thus, we get
mk blocks.

When the lattice design is obtained by taking the first two replicates, i.e.,
rows as blocks and columns as blocks, the lattice design is called a simple
lattice design. A simple lattice design is a PBIBD with 2 associate classes,
where the first associates of a treatment are treatments in the same row or
the same column.

When m =k + 1, the lattice design is called the balanced lattice
design.

The intrablock treatment estimates are given by

o _ km — DQ, + 5r(Q) + 5:(Q) + 377 Si(Q)
ST mk(m — 1) ’

s=1,2,...,v

where

Sr(Qs) = sum of Q's over treatments in the same row as t,

Sc(Qs) = sum of Q’s over treatments in the same column as t;

Si(Qs) = sum of Q’s over treatments which correspond to the
same letter as t; in the i — th Latin square.

The intrablock analysis of variance table is given below.
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Analysis of Variance Table of an m-ple Lattice Design
SOURCE SS d.f. SS SOURCE
1 G’
Replications EZR? ol | - Replications
Blocks within | ** mk—1) *%k Blocks
replications within
(unadj.) replications
(adj.)

1., G .

Blocks (unadj.) | -¥£B; — — [ mk -1 * Blocks (adj.)
k! mk? | .
Treatments Qs k-1 —ZT? — — | Treatments
) m mk?
(adj.) (unadj.)
Error * k-=1) — Error
(mk—k-1)
GZ
Total 2o — |mk’-1 - Total
mk?

30.

Note: *obtained by subtraction, **obtained by subtraction, — carried forward

If ty and ty occur together in a block, then
var (f, — &) = 20%(k + 1)/mk,

and if t; and t¢ do not occur together in a block, then

+ k(m—-1)

When the lattice design is balanced, then every pair of treatment occurs
once in a block and in this case

PR 1 1
var (i, — iy) = 202 [— ]
m

var (f, — ty) = 20%/k.

For a balanced lattice design, the intrablock treatment estimate is given by
t; = Qs/k and the adjusted treatment SS is given by £i;Qs = ZQ?/k.

1.5 FACTORIAL DESIGNS

Factorial design

Let there be m factors denoted by F), Fs, ..., Fy. The factor F; occurs
ats; levels, 1=1,2,...,m. The s; levels of the factor F; are denoted
by 0,1,2,...,8—1,i=1,2,...,m. The treatments consist of all com-
binations of levels of all the m factors. The treatment combination in
which F; occurs at x;-th level, F; at x,-th level,...,Fy at xu-th level
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is denoted by f}'f3* .. . fi, xi = 0,1,...,8; — 1,i=1,2,..., m. The total
number of treatments is N = s ... sy, and this factorial design is called
§1 X 83 X -+ - X 8y factorial design. If s; = 8 = - - - = s, = s, then the fac-
torial design is called symmetrical.

Treatment contrast. A linear function

L= ) c(x;,%xa..., xm)f’l“f;2 ..., where the coefficients are not
X]ueeen Xm

all zero, will be called a treatment contrast, if £c(x(, X2, ..., Xy) = 0, the
summation being taken over all values of x,, ..., Xp.

The following convention is followed in the the selection of coefficients
C(Xq1, X2, ..., Xpp):
(1) C(X, X25 -+ v Xm) = €(X3).6(X2) . . . C(Xpn)
(i1) c(x;) will correspond to the orthogonal polynomials of various de-

grees based on s; points, i = 1, 2, ..., m. There will be (s; — 1) sets

of coefficients for c(x;); the t-th set of coefficients will be denoted
by c(x;) and will correspond to the orthogonal polynomial of t-th
degree,t =1,2,...,5 — I

The factorial experiment is assumed to be carried out in r random-
ized blocks. Let T(xj, x3,...,Xn) denote the total yield of the treat-
ment f}'f?...f%. Then, the BLUE of an estimable treatment contrast
L = Ze(xy, X2, ..., x5 .. . 50 is given by

L= Xcx1, X2, -, Xe)T(X1, X2, - - ., Xm)/T

with var[L = 62 Zc(x|, X, . . ., Xm)/r. Further, the SS due to L (i.e., for
testing L = 0) is given by
SS(L) = a*L?/var(L)
(B, xg, - X)) T - - X))

rZc(x), X2, ..., X)

and it will have 1 d.f.
Orthogonal treatment contrasts. Two treatment contrasts

L) = Ze(xy, Xg, ..., xp)f) 57 L. £

L, = Zd(xy, xa, ..., Xm)f’l"f;2 C t)r(nm
are said to be orthogonal if
2e(Xy, X2, -, Xpd(Xy, X2, .., Xm) = 0,

the summation being taken over all values of x;, x2, ..., Xp.

A set of treatment contrasts will be said to be mutually orthogonal if
every pair of them is orthogonal.

IfL;, Ly, ..., Lk be a set of v mutually orthogonal treatment contrasts,
then the sum of squaresdueto L, L,, . . ., Ly is equal to sum of squares due
toLy, Ly, ..., LY and it will have k d.f.
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k-factor interaction. A treatment contrast

L = Zc(xi, X2, ..., x)f} ' 15 . 30,
with Xc(xy, X2, - . ., Xm) = 0, will be said to belong the k-factor interaction
F,F,...F if
®) the coefficients c(X), X, ...Xm) depend only on the levels

Xi;s Xi,» - - - » Xi, Of the factors F;, F;,, .. ., and F;,, that is

c{X1, X2, oo, Xm) = C(Xj, ) c(xi,) . . . c(x;,)
(ii) the sum of coefficients c(x;, ), c(X,), . . ., ¢(x;, ) over each arguments

Xijs Xiys .- Xiy 1S zero, ie., inl c(x;,) =0, inz c(x;,) =
0,..., inkc(xik) =0.

An expression for a treatment contrast L belonging to the k-factor interaction
F, F, ...F can be taken as

L= M [2 c(xil)fiil] [E C(Xiz)f;:z] e [E C(xik)f::k]

T
where
G=0+6+...+67"i=1,2,...,m
The selection of coefficients c(xj,), ¢(x;,), . .., c(x;,) is done by using or-
thogonal polynomials of different degrees based on s;, sj,, ..., s, points

respectively. Since, there are (s; — 1) sets of coefficients available for the
selection of c(x;), the total number of contrasts belonging to the k-factor
interaction F; F, .. . F;, isequal to (s;, — 1)(si, — 1)...(si, — D).

2™ design

There are m factors each at 2 levels called as the upper and lower levels. The
factors are denoted by capital letters A, B, C, ... etc. The lower level of a
factor is denoted by unity, while its upper level by its small letter. The 2™
treatments are written down as

(H c d cd etc.
a ac ad acd
b bc bd bed
ab abc abd abcd

The rules for writing down any factorial effect are as follows:
Rule 1: Let Z be any factorial effect in a 2™ design. Then, Z is given by

|
Z:2—m_—l(a:t:l)(b:i:l)...,

there being m brackets on the right hand side of Z, and the sign in each bracket
is determined as follows. The sign in a bracket is + , if the corresponding
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letter is absent in Z and is —, if the corresponding letter is present
inZ.
Rule 2: Let Z be any factorial effect in a 2™ design. Then, Z is given by

1
Z= Er—“_—l[:i:(l)j:a:tbi(ab)i....],
where the signs of treatments are determined as follows. If Z contains an
odd (even) number of letters, then treatments having odd (even) number of
letters in common with Z will have + sign and other treatments will have —
sign.
Let [Z], denoted for Z, be obtained by substituting treatment yields for
treatments in the expression for Z, except the divisor 2™~!. Then, the BLUE
of any factorial effect Z in a 2™ design is given by

Z=(Z]/2"'r
and the SS due to Z is given by
SS(Z) = [Z)*/2™ .x

with 1 d.f.

The sum of squares due to treatments is obtained by summing the sums
of squares due to all factorial effects. The analysis of variance table for a 2™
design carried out in r randomized blocks is given below.

ANOVA Table For a 2™ Design

SOURCE SS d.f.
1 5 G’
Blocks 2—mZBj T
1 G?
Treatments -XTi — 7 2m — |
r .
A [A/2™ ¢ I
B [B)?/2™ - r 1
Error by subtraction r—DNR™"-1)
Total Ty’ - G*/2" - r r-2m—|

Yates’ method for estimating all factorial effects in a 2™ design. It con-
sists of constructing (m + 1) columns cg, ¢, . .. cm. The column ¢q is con-
structed by writing down treatment yields in the standard form. The column
¢, i=1,2,...,m,is constructed from the column c;_; as follows. The up-
per half of the column c; is constructed by taking sums of pairs of values
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of the column ¢;_,; while its lower half is constructed by taking differences
(lower minus upper) of pairs of values of the column c;_;. The column ¢y,
gives the grand total G, and the totals for all factorial effects in a 2™ design
in the standard form. The columns cg, ¢y, ..., Cm constitute Yates® table.
Dividing the entries of column ¢, by 2™ - 1, we obtain the correction term
and the sums of squares due to all factorial effects.
3™ design
There are m factors A|, A,, ..., A, each at 3 levels. The three levels of the
factor A; will be denoted by a? =1, a, aiz, i=1,2,...,m The 3™ treat-
ments will be denoted by
(1 a a3 etc.
a aja  aal
a) ayay aya’

A contrast belonging to k-factor interaction between k factors A,
Aiz, . ..,Aik is

2 2 2
Z=| ) ca)fy | D o) | | D et
Xil =0 Xi2 =0 xik =0
The set of coefficients c(x;) corresponding to the factor Aj,j=1,2,...,k

can be selected in two different ways: one based on the orthogonal polyno-
mial of first degree and the second based on the orthogonal polynomial of
the second degree. The two sets of coefficients c(x;,) based on the orthogobal
polynomials of first and second degree are

linear c(x;): —1,0,1
quadratic c(xy): —1,-2,1

The k-factor interaction is said to be linear or quadratic in the factor
Ay, j=1,2,..., kaccording as the corresponding set of coefficients c(x;;)
is based on the orthogonal polynomial of the first degree or the second de-
gree. There are 2¥ contrasts belonging to the k-factor interaction between k
factors, A1, Ai, .. ., Ajx. For example, the 2-factor interaction linear in A
and quadratic in A in a 3* design is given by

AnpAgg = (a) — 1)(a3 — 2a + I)(a3 + a° + 1).
The sum of squares due to any contrast Z is obtained by
$S(2) = [ZI*/1S(2),

where [Z) = total for the contrast obtained by substituting treatment yields
for treatments in the expression for Z and S(Z) = sum of squares of the
coefficients which occur in the expression for Z.
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1.6 CONSTRUCTION OF DESIGNS

Construction of MOLS
When s is a prime or a power prime, the complete set of (s — 1) mutually-
orthogonal Latin Squares of side s is construced as follows:

(i) Write down the elements of GF(S) as u, =0,u; =1, u; =x,
w3 = x%, ..., us_; = x*72, where x is a primitive root of GF(S).

(it) The rows and columns are numberedas 0, 1,2, ...,s — 1.

(i11) The (s — 1) Latin Squares are denoted by L, Lo, ..., L.

@iv) L, is called the key Latin Square and is constructed as follows:

(a) Write down the O-throwof L, as0,1,2,...,(s — 1)

(b) The first row of L, is constructed by filling its (1, B)-th
cell by the subscript of the element ujujug =1+ ug,
B=0,1,2,....(s=1).

(c) The cells in the upper triangle of L, are filled by the following
rule: if the cell (o, B) contains 0, then write O in the cell (o +
1, B + 1); if the cell (o, B) containsj, (j = 1,2,...,s — 2),then
write j + 1 in the cell (w + 1, B + 1), if the cell (o, B) contains
(s — 1), then write | inthe cell (w + 1,B + 1).

(d) The cells in the lower triangle of L, are filled by noting the
symmetry from the cells of the upper triangle of L,.

(v) The Latin square Li, i = 2,3, ..., (s — 1), is constructed from the
Latin square L;_, as follows.

(a) The O-throw of L; istakenas 0, 1,2, ..,(s — 1)

(b) The 1Ist,2nd,...,{(s —2)th rows of Li are obtained from
the 2nd, 3rd, ..., (s — I)th rows of L;_, by moving them one
step up. The last row of L is taken as the first row of Li_.

If s is neither a prime nor a power prime, then exactly n(s) MOLS of side
s can be constructd where

€1
1

n(s) = min(p}', p5’, .... pim) — I,

ands = p{'p5, ...ptn, where py, pa, . . ., pm are distinct prime numbers and
er, ey, ..., ey are positive integers. We now describe the construction of n(s)
MOLS in this case.

(1) Denote the elements of GF(p"),i = 1,2, ..., mby

go=0,g1=lgo=a,gn=o,...,gp" " =api ™,

where o is a primitive root of GF (p{")
(i) Form the set {w} of elements w defined by

W = (Z1¢,> 8220 - - - » Bmey )
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where 81e, € GF(p?' )s 82, € GF(I);2 ) AP gme, € GF(pﬁT)

(iii) Define the operations of addition and multiplication among the
elements of the set {w} as follows:
wi + W2 = (e, + 81j;» 826, + 82jz» -+ - » Emew T Emj)
wiwy = (&1, - &ij> 826, * L2pr - - - + Emlmn * Bmijm)
where Wy = (gie,, 826, - - - » 8me,,) and W2 = (gyj,, 82jp5 - - - » Bmi)
are any two elements of the set {w}.
(iv) Number of elements of the set {w} such that the first n(s) + 1
elements of the set {w} are
Wi = (81}, 82> ---» 8m)» ) = 0, 1,2, ..., n(s)
while the remaining elements of the set {w} are numbered arbi-
trarily.
) The j-th Latin Square Lj; = 1, 2, ..., n(s) is constructed by filling
its (a, B)-th cell by the element (or its subscript)
ija-i—WB,(x,B =0,1,2,...,s—1,j=1,2,...,n(s).
Construction of BIBDs

(1) Use of PG (m, s). Identify a point of PG (m, s) with a treatment and a
g-flat (1 < g <m — 1) of PG (m, s) with a block. Then, a BIBD with the
following parameters is constructed,

where

v= ("= 1/s - 1),
b= ¢(m, g, )
r=dm—1,g—1,s)
k=(#"' = 1)/s=1)
A=d(m—-2,g-2,5),

™ = D)™~ 1)...s™E ~ 1)
T —DEE—1)...(s— 1)

d(m, g, s) =

(2) Use of EG (m, s). Consider EG (m, s). Identify the points of EG (m,
s) with the treatments and g-flats (1 < g < m — 1) of EG (m, s) as blocks.
Then, a BIBD with the following parameters is constructed.

v=sg"
b=d(m,g,s)—dm—1,g,s)
r=d(m—-1,g—-1,5s)

k=s8
A=d(m—-2,g—-2,5).

(3) Use of a complementary design of a BIBD. Let D,aBIBD (v, b, r, k, A),
be known to exist. Then, taking its complementary design, we construct a
BIBD with the following parameters:

Vi=v,b*=br*=b-rk*=v—-k N =b—-2r+A\.
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(4) Use of a residual design of a SBIBD. Let D, a SBIBD (v=b,
r =k, N\), be known to exist. Then, omitting one block and all its treat-
ments from the remaining blocks, we obtain its residual design which is a
BIBD with the following parameters:

V|=V—k,b|=b—l,r|:l‘, k|=r—)\,)\|:)\.

(5) Use of a derived design of a SBIBD. Let D, a SBIBD (v = b, r =k, ),
be known to exist. Then, omitting one block and retaining its treatments in
the remaining blocks, we obtain a derived design which is a BIBD with the
following parameters:

v2=k,b2=b—l,r2=r—l, kz:)\,)\2=)\—l.

(6) Orthogonal Series of Yates. The two series of BIBDs due to Yates are
as follows:

OSl:v=stb=st+s,r=s+ 1, k=sA=1
082: v=b=s’4+s+I,r=k=s+1,A=1

where s is a prime or a power prime.

(1) Construction of OS 1. Construct a complete set of MOLS of
side s: Ly, Ly, ...,Le_). The v =s? treatments are arranged in
a s X s square L, say. Take rows and columns of L as blocks.
We thus get 2s blocks, each of size s. The blocks from rows and
columns form two separate replications. Now take the Latin square
Li,i=1,2,...,s— | and superimpose it on L and form blocks
by taking treatments which correspond to the same letters of L.
Thus, each Latin square will give s blocks forming one replica-
tion. Then, we get inallb=2s4s(s — |) = s2 + s blocks with
k=sr=s+land\=1.

(i) Construction of OS 2. Out of the v=s>+s+ 1 treat-
ments, take s? treatments and construct s +s blocks as in
OS 1. To the blocks of each replication, add one treatment
from the remaining treatments. Thus we get a BIBD with
v=b=s’+s+l,r=k=s+1,A=1.

It may be noted that OS 1 can be constructed by using EG(2, s) and that

OS 2 can be constructed by using PG(2, s).

(7) The first fundamental theorem of symmetric differences. Let M be

a module of m elements and there be v = mn treatments. Suppose that n

treatments are associated with each element of M. The treatments associated

with an element a of M are denoted by ay, az, ..., a,. Suppose that it is

possible to find a set of t blocks By, B,, ..., By which satisfy the following

conditions:

(1) Each block contains k treatments.
(it) Of the tk treatments occuring in t blocks, exactly r belong to each
class, thus tk = nr.
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The differences arising from the t blocks are symmetrically re-
peated, each occurring A times.

If a; is any treatment and 6 any element of M, then we define
a; + 6 = (a+ 0);. From each block B;,i=1,2,...,t, we form another
block Bjy by adding the element 8 to the treatments of B;. Form all mt
blocks Bjp by taking all values of i and 0. Then, these mt blocks form a
BIBD with parameters

v=mnb=mtr,k,A.

As an application of the above theorem, we get the following BIBDs.

)

(1)

(iii)

Bose T, Series.Consider a module M consisting of residues mod
(2s+ 1). Thus, m =2s + 1. To each element of M, associate
3 treatments, thus n = 3, and hence v = mn = 6s + 3. Take the
following t = 3s 4 1 blocks as the initial blocks:

<«— first, s blocks —>

(11, 2s)1,02), [21, 25 — 1)1, 02], ..., [s1, (s + 1)1, 021,

<— second s blocks —

[12, (25)2, 03], [12, (25 - 1)29 03], ey [829 (S + 1)2v O3]a

«— third s blocks —>

(13, (28)3,01), [13, (25 — 1)3, 011, ..., [s3, (s + D)3, 0y]
last block [0y, 0y, 03].

Then, adding the elements of M in succession, to the treatments of
the above initial blocks, we get a BIBD with parameters

v=6s+3,b=0Bs+ DRs+1),r=2s+1, k=3, A=1.

Bose T, Series. Let s = 6t + 1, where t is a positive integer and
s is a prime or a power prime. To each element of GF(s), as-
sociate one treatment. Thus m =s and n = 1. Let x be a prim-
itive root of GF(s). Take the following t blocks as the initial
blocks;

4 — -1 -1
[XO, th, X4t], [X, x2t+|, X t+|]’ e, [xt l’ x3l , XSI ].

Then, adding the elements of GF(s) successively, to the treatments
of the above initial blocks, we get a BIBD with parameters

v=6t+1L,b=t6t+ 1), r=3,k=3 =1

Let s = 4t 4+ 3 be a prime or a power prime, where t is any positive
integer. To each element of GF(s), associate one treatment so that
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m=s and n = 1. Let x be a primitive root of GF(s). Take the
following block as the initial block:

OOk xR
Then, adding the elements of GF(s) successively to the treatments
of the above initial block, we get a BIBD with parameters

v=b=4t+3r=k=2t+ 1, A=t

(iv) Let s = 4t + 1 be a prime or a power prime, where t is any positive
integer. Associate one treatment with each element of GF(s), so that
m = s, n = |. Let x be a primitive root of GF(s). Take the following
2 blocks as initial blocks:

0 (2 4 K42

Jx3x4 L
JxAxS, L xeT

X
X
Then, adding the elements of GF(s) successively to the treatments
of the above two initial blocks, we get a BIBD with parameters

v=4t+1,b=8t+2,r=4,k=2(, A =2t - L.

(8) The second fundamental theorem of symmetric differences. Let
M be a module of m elements and let there be v = mn treatments. As-
sociate n treatments with each element of M. The treatments associated
with an element a of M are denoted by a,, a, ..., a,. These v = mn treat-
ments are called finite treatments. We add a new treatment called an in-
finite treatment which will be donoted by oo. Suppose that it is possible
to find ¢ 4+ s blocks By, B,, ..., B, B}, B}, ..., B satisfying the following

conditions:

(i) Each block of the set B, B», .. ., B, contains k different finite treat-
ments, and each block of the set B}, B3, ..., B contains (k — 1)
distinct finite treatments and the infinite treatment co.

(1) Of the m finite treatments of the i-th class, 1 =1, 2, ..., n, exactly
(ms — \) treatments occur in blocks By, B, ..., B, and A\ treat-
ments occur in the blocks B}, B3, ..., B}. Thus kt = (ms — Mn
and s(k — 1) = n\.

(iii) The differences among the finite treatments arising from the t + s

blocks are symmetrically repeated, each occurring A times.

The addition of an element 6 of the module M to the treatments of the
blocks is defined as; a; + 0 = (a + 0);. Also we define o0 + 6 = oc. The
blocks By, B,, ..., Byand B}, B3, ..., B are called the initial blocks. Then,
adding the elements of M, one by one, to the treatments of the above (t + s)
blocks, we get a BIBD with parameters

v=mn+ I,b=m{t+s),r=ms,Kk,NA.
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As an application of the above result, we construct the following BIBD.
Lets = 4t + 1 be a prime or a power prime, where t is a positive integer.

To each element of GF(s), associate 3 treatments. We also take one more

infinite treatment denoted by oo. Let x be a primitive root of GF(s). Take the

following (3t + 1) blocks as the initial blocks.
[X%i, X%H-Zi, x%i+a, x§t+2i+m]’

2% 2421 2t 2421+
(x5, x5, x37%, x3 “1,

2% 242 2ita L 26+2i+a .
(X35, X377, X770, Xy 1, 1i=0,1,2,...,(t=1)

[Oo, 0l ) 02! O3]v

where « is chosen so that i:f: = x%,q = 1(mod2). Then, by adding the
elements of GF(s), one by one, to the treatments of the above initial blocks,

we get a BIBD with parameters

v=12t4+4,b=0Ct+ D@t+ 1), r=4+1,k=4r=1.

Construction of a Youden Square.

Take a SBIBD with parameters v = b, r = k, A. Denote the v treatments by
v integers 1, 2, .., v, and write the blocks of the SBIBD as columns. Let S =
the set of treatments and S|, S,, ..., Sy, the columns (blocks) of the SBIBD
be the subsets of S. The columns Sy, S, ..., S, possess a SDR, which is a
permutation of integers 1,2, ..., v. Take this SDR as the first row. Delete
this row from S, S5, ..., S,. Denote the new columns by S}, S3, ..., S;.
Then, these columns S}, S3, ..., S} possess a SDR. Take this SDR as the
second row. Proceeding in this way, we get r = k SDRs, which are taken as
rows. These r = k rows form a Youden Square.

Construction of PBIBD Designs.

(1) Use of PG(m, s). Consider a finite projective geometry PG(m, s). Omit
one point P, say, from this geometry and take the remaining points as treat-
ments. Take g-flats (I < g < m — 1), not passing through the omitted point
P as blocks. Then two treatments will be called first associates if they occur
together in the same block, if they do not occur together in the same block,
they will be called second associates. Then, we get a PBIBD with parameters

v=sE"—-1)/s— 1),
b=d(m,gs)—dm—-1,g—1,s)
r=dm—1,g—1,s)—dm—-2,g-2,s)
k= (st = 1)/s~1)
n =™ - 1)/Gs - 1),

n = (s—1),
A =d(m—2,g—2,8)—d(m~3,g—3,5s)
A\ =

_ n1—n2—1 np _im 0
P"[ n, o]'P2—[o nz—l]'
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Another PBIBD can be constructed by using PG(m, s) as follows. Select a
point P and choose t lines passing through it. Take points on these t lines
other than P as treatments. Take (m — 1)-flats not passing through the point P
as blocks.Two treatments are first associates if they lie on one of the chosen
lines through P, otherwise they are second associates. Then, we get a PBIBD
with parameters

v=st,b=s"r=s"! k=t
np=s—1,n=s(t—1),\ 20,)\2=Sm—2,

o n|—1 0 _ 0 ng
P'_[ 0 nz]’Pzw[nl n2—n|—1]'

(2) Use of EG(m, s). Consider a finite Euclidean Geometry E(m, s). Omit one
point P, say, and all g-flats (1 < g < m — 1) through P. take the remaining
points as treatments and the g-flats, not containing the point P as blocks.
Two treatments are first associates if they occur together in the same block,
otherwise they are called second associates. Then, we get a PBIBD with the
parameters

v=s"—1,

b=d¢(m, g s)—dm—-1,g-1,5)—dm-1,g,5s),
r=dm—-1,g—1,8)—d(m—-2,g—-2,5)

k =s8

n=s"—-sn=s-2

AN =dm—2,g—2,8)—d(m—3,g2-3,5)

A =0,

C[mmm-1 m L 0
G B

3) Other methods.

() Consider a double triangle as shown below.
1
/\s
4 10
5 7
6
8 9
Denote the vertices by numbers 1,2, ..., 10 and take them as

treatments. Take lines as blocks. Two treatments are first associates
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if they lie on the same line, if they do not lie on the same line,
they are second associates. Then, we get a PBIBD with parameters
v=10,b=5,r=2,k=4,nm =6, =3,y =1,\, =0,

3 2 4 2
P‘=[2 1}’1)2:[2 0]'

(i1) Consider a parallelopiped as shown below
8 7
6
S
3
4
1 2
Denote the vertices of the parallelopiped by numbers 1, 2, ... . , 8,
and take them as treatments. Take faces as blocks. Two treat-
ments which lie in the same face but not on the same edges
are first associates; two treatments on the same edges are sec-
ond associates; two treatments whichn lie on the diagonals of the
parallelepiped are third associates. Then, we get a PBIBD with
parameters
v=8,b=6r=3k=4,
ny =3,l12 =3,l‘13 = ],
MN=LNn=2,0,=0,
200 0 2 1 0 30
PP=10 2 1],Pb=(|2 0 0|,P3=(3 0 O
010 1 00 0 00
(iii) Let v = pq. Arrange the v = pq treatments in an array of p rows

and q columns. Blocks are formed by taking each treatment and
treatments in the same row and the same column as that treat-
ment. Two treatments are first associates if they lie in the same
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(iv)

(v)

row; they are second associates if they lie in the same column;
otherwise they are third associates. Then, we get a PBIBD with
parameters

v=b=pqgr=k=p+q-1,

n=q-tm=p-—lLn=(p-1)q-1),
M=qh=p =2

[q=2 © 0 i
P=| 0 0 p—1 ,
L 0 p—1 (p—-1q—-2) ]
[0 0 q-1 ]
=] 0 p-2 0 ,
a1 0 (p-2@-1 ]
[0 1 q-2 ]
P3= 1 0 p—2 .
[a-2 p-2 (p—2q-2) |

Let v = pq. Arrange the v = pq treatments in an array of p rows
and q columns. Blocks are formed taking treatments that occur in
the same row and the same column as each treatment but excluding
that treatment. Two treatments are first associates if they occur in
the same row; they are second associates if they occur in the same
column; otherwise they are third associates. Then we get a PBIBD
with parameters

v=b=pgqr=k=p+q-1,
n=q-l,m=p—l,m=(p-g-1),
)\1=q—2,)\2=p—2,)\3:2,

and P, P, and P; are same as in (iii).

Letv = p?. Arrange the v = p’ treatments inap x p square. Blocks
are formed by taking treatments that occur in the same row, the same
column and which correspond to the same letter of a p x p Latin
square as each treatment. Two treatments are first associates if they
occur in the same row; they are second associates if they occur in
the same column; they are third associates if they correspond to
the same letter of the p x p Latin square; otherwise they are fourth
associates. Then we get a PBIBD with parameters

v=b=pir=k=0C3p-2),
n=m=m=p-—ln=0p-—1)p-2)
)\|=)\2=)\3=p+2,)\4=6.
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[p~2 0 0 0 ]
0 0 1 -2
P]= P ’
0 1 0 p—2
[ 0 p-2 p-2 (p~-2(p-3)]
[ 0 0 1 p—2 T
P, = 0 p-2 0 0 ’
1 0 0 p—2
[p-2 0 p=2 (p—2(p-3)
[ 0 1 0 p—2
1 0 0 p—2
Py = ,
0 0 p-—-2 0
[p=2 p-2 0 (p-22p-3)]
[0 1 1 p—3
1 1 -3
Py = 0 P
t 1 0 p-3
| p-3 p-3 p-3 p*—6p+10
Confounded 2™ Design.

(1) To confound one interaction X. The two blocks are constructed as
follows. The first block is formed by taking treatments having even number
of letters in common with X. The second block is constructed by taking
treatments obtained by multiplying the treatments of the first block with a
treatment not included in the first block and replacing the square of any letter
in the product by unity.

(2) To confound two interactions X and Y. Construct the key block B
by taking treatments which have even number of letters in common with X
and Y. The block B;, i = 2, 3, 4 is constructed by taking the products of a
treatment not included in the blocks By, B,, ..., B;_| with treatments of the
key block B, and replacing the square of any letter in the products by unity.
The interactions X, Y and XY are confounded.

(3) To confound k independent interactions. We construct 2% blocks as
follows. The key block B, is constructed by taking treatments which have
even number of letters in common with the k independent interactions
X1, Xa, ..., Xk. The block B;, i = 2,3, ..., 2% is constructed by taking the
products of a treatment not included in the blocks By, B,, ..., Bj_; with the
treatments of the key block B, and replacing the square of any letter in the
products by unity. Each block will contain 2™ * treatments. The following
interactions are confounded:

() the k interactions X;,i=1,2,...,k
(ii) the (12() 2-factor interactions X;Xj,i#j=1,2,...,k
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39.

(1) the (;() 3-factor interactions XiX;Xy, i #j#k=1,2,..., kand
so on, the last interaction being the k-factor interaction X X5 . . . Xi.

Confounded s™ Design.

The treatments are identified by the points of EG(m, s). The interactions are
identified by the pencils P(aj, az, ..., ap). The pencils are written so that
the first non-zero element is 1. We assume that s is a prime or a power prime.

(1) To confound the (s — 1) d.f. carried by the pencil P(a;, a3, ..., ay):
Consider the equations

Xy +ax,+...tapXp=0a;,1=0,1,2,...,s—1

of the pencil P(a;, a, . . ., a,). The treatments lying on each equation form a
block. Thus, we get s blocks between which the (s — 1) d.f. carried by the pen-
cil P(aj, as, . .., am) are confounded. Each block contains s™ ' treatments.
A simple method of writing these s blocks is as follows. Write the key block
B, by taking treatments which are the solutions of the equation

arxX; + Xy + ... 45X, = 0.

The other s — | blocks are obtained by adding the non-null elements to the
first co-ordinates of the treatments of the key block B;.

(2) To confound the d.f. belonging to the k independend pencils
P(ai, ap, ..., am), i = 1,2, ...,k : The s* blocks are cosntructed by tak-
ing treatments which satisfy k equations, one being taken from each of
the sets of the equations defining those k pencils. The d.f. carried by the
(s¥ — 1)/(s — 1) generalized pencils

K K X
P <Z Niayp, Z Niap, . . ., Z Naim)
1 1 ]

where \y, N2, .. ., A are elements of GF(s), not all zero, are confounded with
the s¥ blocks. Each block contains s™* treatments. The above construction
of s blocks is simplified as follows. The key block By is constructed by
taking treatments which satisfy the equations

X +apx,+ ...+ amxm=0,1i=1,2,..., k.

Write down k coordinates (x;x; ... xy) in all possible s ways by assign-
ing s values of the elements of GF(s) to each of x|, X,, ..., Xk. Omit the
combination (0 0 ...0). The remaining (s* — 1) combinations are used to
obtain the remaining (s* — 1) blocks as follows. To the first k coordinates
of the treatments of the key block B, add the above (s¥ — 1) combinations,
one by one, and obtain the remaining (s* — 1) blocks. These (s* — 1) blocks
together with the key block form all the s* blocks.

Construction of (s — 1)™~! replications of a (s™, s) design achieving com-
plete balance over the highest order interaction,
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We write down (s — 1)™! pencils P(aj, a3, . .., ap) belonging to the m-
factor interaction, where the a|, ay, ..., ay, are non-null elements of GF(s).
We confound each of these pencils in one replication to construct a (s™, s)
design. Since, there are (s — 1)™~! pencils, there will be (s — 1)™! replica-
tions. Each pencil belonging to the m-factor interaction is thus confounded
in one replication and is unconfounded in the (s — 1)™! — 1 replications
and hence the m-factor interaction is completely balanced and the relative
loss of information on each d.f. belonging to the m-factor interaction is
1/(s — ™1,

To construct (s — 1)™~! replications of a (s™,s™!) design, achieving
complete balance over all order interaction from 1st to (m — 1)-th.
Write down distinct (s — 1)™! vertices of the type (ay, ay, ..., ay) in
which each aj,i=1,2,...,m is non-null element of the GF(s). Cor-
responding to each vertex (o, oy, ..., o) , take (m — 1) independent
pencils P(ajj, aiz, ..., aim), i = 1,2, ..., m — I suchthat ) " oa; = 0,1 =
1,2,...,m— 1, and construct one replication of a (s™, s™') design by
confounding these (m - 1) pencils P(a;;, a2, ..., am),i=1,2,...,m— 1.
Then we get (s — 1)™! replications of (s™, s™!') in which no main effect
is confounded and there is complete balance on st order, 2nd order, ...,
(m — 1)-th order interactions. The relative loss of information on the (k —
1)-th order interaction is

[s— DM = (=D)*"]/s(s — D!

Construction of a Fractional Replicate of a Design.

(1) To construct a half replicate of a 2™ design: Let the defining interaction
be X. If X contains an odd (even) number of letters, then the half replicate of
a 2™ design is formed by taking treatments which have an odd (even) number
of letters in common with X. The alias of any interaction Y is the generalized
interaction XY, in which the square of a letter is replicated by unity.

(2) To construct (1/2P)-th replicate of a 2™ design: Let X, X5, ..., X be
p independent interactions selected as defining interactions. The (1/2P)-th
replicate of a 2™ design is constructed by taking treatments which have
an odd (even) number of letters in common with Xj,i=1,2,...,p, if
X; contains odd (even) number of letters. The generalized interactions of
X1, X3, ..., X}, are also the defining interactions, and their number will be
(2P — 1). The aliases of any interaction Y are obtained by multiplying Y
with each of the (2° — 1) defining interactions and replacing the square of
any letter by unity in the products.

(3) To construct the (1/s)-th replicate of a s™ design: We assume s is a prime
or a power prime. Identify the points of an EG(m, s) with the treatments of a
s™ design. Let the pencil P(a;, ay, . . ., ap) be the defining pencil. The (1/s)-th
replicate of a s™ design is constructed by taking treatments which satisfy

X +aXx2 + ...+ amXm =0,
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The constrasts belonging to the pencil P(a(, a,, ..., ay) are not estimable.
The aliases of any other pencil P(b;, by, ..., by) are its generalized pencils
with the defining pencil P(a;, ay, .., ay), that is, are the pencils

P(b; + Aa;, by + Aay, ..., by + Aay),

where \ is a non-null element of GF(s). Thus each alias set consists of s
pencils and there will be (s™~! — 1)/(s — 1) alias sets.

(4) To construct (1/sP)-th replicate of a s™ design: Let us select p
independent pencils P(aj;, aip, . . ., aim), 1 = 1, 2, ..., p as defining pencils.
Their generalized pencils

P P P
P (Z )\iail, Z )\iaiz, ey Z)\iaim>,
1 1 1

where \’s are elements of GF(s), not all zero are also defining pencils
and information on the d.f. carried by these pencils is lost. The (1/sP)-th
replicate is formed by taking treatments which satisfy the equations

apx)+apx2+ ...+ anxa=0,1=1,2,...,p.

The aliases of any other pencil P(by, b, ..., by) are the pencils

p p p
P (bl + Z)\iail.bz + Z)\iaiz, N Z’\iaim)
1 1 ]

where \’s are elements of GF(s) not all zero.

There will be (s — 1) alias pencils of a given pencil and hence each
set of alias pencils will consist of sP pencils. The number of alias sets of
pencils will be (s™ P — 1)/(s — 1).

Confounded Fractional Replicate Designs

(1) To confound k independent interactions in a half replicate of a 2™
design: Let the interaction X be the defining interaction. The information
on X is lost. Suppose, we wish to confound k independent interactions
Y;, Y2, ..., Yx. The generalized interactions of Y, Y5, ..., Y and their
aliases will also be confounded. The number of generalized interactions
of Y|, Y, ..., Y is 28 — 1. Hence, there will be (2* — 1) alias sets, each
consisting of 2 interactions, which will be confounded. The construction for
confounding Y|, Y, .... Yk in a half replicate of a 2™ design obtained by
selecting X as the defining interaction is as follows. We construct the half
replicate by selecting treatments which have odd (even) number of letters
in common with X if X contains odd (even) number of letters. Suppress
one letter in these treatments so as to express them as treatments of a 2™
design in the standard form. Express the k interactions Y;, Yy, ..., Yi so
that they contain letters of the factors of a 2™~! design. Then, using the
construction described above in 37(3), we construct 2% blocks confounding
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the interactions Y;, Yy, . . ., Y. Each block will contain 2™ %! treatments.
Introduce the suppressed letter in the treatments in which it was suppressed.

(2) To confound k independent interactions in a (1/2P)-th replicate
of a 2™ design: Let X,,X;,..., X, be p independent interactions to be
used as the defining interactions for constructing the (1/2P)-th replicate.
Let Y,,Y,..., Yy be the k independent interactions which are to be
confounded. Using the construction described above in 41 (2), we select
the treatments of the (1/2P)-th replicate. Suppress p suitably chosen letters
in these treatments so that they become treatments of a 2P design in the
standard form. If any Y;,i=1,2,...,k contains the suppressed letters,
we take its alias which does not contain the suppressed letters. Thus, we
express Yy, Yz, ..., Yi so that they contain letters of the factors of a 2™7P
design. Then, using the construction described in 37 (3), we construct
2% blocks confounding the interactions Y, Yo, ..., Yx. Each block will
contain 2™P~K treatments.

Information on X, X3, ..., X, and their generalized interactions is lost.
Thus information on 2P — 1 d.f. is lost.
Interactions Y, Ys,..., Y and their generalized interactions and

their aliases are confounded. Thus, there will be (2¥ — 1) alias sets of 2P
interactions each, that will be confounded.

(3) To confound k independent pencils in a (1/sP)-th replicate of
a s™ design: We assume here that s is a prime or a power prime.
Let P(ay,ap,...,an),i=1,2,...,p be p independent pencils
used as the defining pencils for the construction of a (1/sP)-th
replicate. Suppose we wish to confound k independent pencils
P(bj;, bjz, ..., bjm),j =1,2,...,k, none of which belongs to the
set of the generalized pencils P(a,ap, ..., am),i=1,2,...,p. Let
S(ayy, aip, . . ., o) denote the set of treatments which satisfy the equations

anx; +apxy+ ...+ a4nxp =0,i=1,2,...,p
bj1X|+bj2X2+...,bjmxm=aj,j=l,2,...,k

where a’s are elements of GE(s).
The number of equations in the above system is (p + k) and hence

they determine a (m — p — k)-flat and the set S(a;j, o2, . . ., aik) contains
s™ Pk treatments. Take the set S(ayy, o, . . ., o) as a block. Since each
o1, %z, . . . , Gk can be selected in s ways, we get sk blocks.

The contrasts carried by the pencils

k k k
P (Z \ibji, Z Abj, - z )\jbjm)v
1 T 1

where \’s are elements of GF(s) not all zero, and their aliases are con-
founded. The number of these pencils is (s — 1)/(s — 1). Hence there will
be (s — 1)/(s — 1) alias sets of sP pencils each, which will be confounded.
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1.7 MISSING PLOT TECHNIQUE

43, (1) Missing yields: Let y,,y2,...,y, be the observed yields and
X1, X2, ..., Xk be the missing yields. Further, let

E(y) = AB, E(x) = BO.

The estimates of the missing yields are obtained by minimizing the error
sum of squares

SAy.x) =yy +xx— @A’y +B'x)
and are given by
&% =B,
where 6 is any solution of the normal equations
Ay +B'x=(A'A+B'B)8.
The actual error SS is given by

Se(y) = min SX(y. %).

For testing the hypothesis 01| = 8p42 = ... = 6y, = 0, we apply the usual
F test, using the estimated SS due to the hypothesis, which is calculated as
follows:

Est. SS due to the hypothesis
= [Est. conditional error SS] — [min. value of error SS]
If the F value is insignificant, no correction for bias is necessary. If the F
value is significant, the bias is calculated as follows:
Bias in the estimated SS due to hypothesis
= [Est. conditional error SS]—[min. value of conditional error SS}.
(2) Mixed-up yields: If some yields are mixed up so that their total yield
is only known then the mixed-up yields, are estimated by minimizing the
error SS subject to the condition that their total yield is equal to the given
total yield. The bias in the estimated SS due to hypothesis is calculated as
follows:
Bias = [Est. conditional error SS]
— [min. value of conditional error SS subject to the
condition that their total yield is equal to the given
total yield].

1.8 WEIGHING DESIGNS

44, Chemical-Balance Weighing Design.
Here we consider a chemical-balance weighing design. Let there be p
objects to be weighed in n weighings. Define the matrix X = (x;)) as
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follows.
xjj = 1, if the j-th object is kept in the left pan in the i-th weighing,
= —1, if the j-th object is kept in the right pan in the i-th weighing,
= 0, if the j-th object is not included in the i-th weighing
1=1,2,...,n;)=12,...,p.

The nxp matrix X is called the weighing design matrix. Let

w = [w}, wa, ..., wp] be the vector of the true weights of p objects and

Y =1[yi,¥2, ..., Yp] be the vector of readings of the scales in n weighings.
We assume that

y=Xw+e

and e ~ N(0, a).
The least square estimates of true weights are given by (X'X)W = X'y.
If (X'X) is non-singular, then

W= (XX)"'Xy
with variance-covariance matrix given by
var(w) = o 2(X'X)".
The following results have been established:
) For any weighting design X,

var(W;) > o%/n,i=1,2,...,p.

(ii) For any weighing design X, the variances of all the estimated
weights are minimum if and only if X'X = nlj,.
(iii) If a Hadmard matrix H, of order n exists, then by choosing any p

columns of it, we can form an optimum weighing design matrix to
weigh p objects.
The following three definitions of efficiency are in use.
Definition 1: Of the class of all n x p weighing designs, a weighing design
X is optimal, if the average variance of all the estimated weights is minimum
and the efficiency of any weighing design X is defined by

p/ntr (X'X)™".

Definition2: Ofthe classofall n x p weighing design, a weighing design X
is optimal if the generalized variance of the estimated weights, i.e. [X'X| ™! is
minimum, that is, | X’ X | is maximum. The efficiency of any weighing design
X is defined by

min-X'X|"!  |X'X|
XX~ max|X'X|

Definition 3: Of the class of all n x p weighing design, a weighing design
X is optimal if it has the least value of Apax, where Apax is the maximum
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45.

characteristic root of (X'X)~! and the efficiency of any weighing design X
is defined by

min Agax

xI\'lil)(
where Angx is the maximum characteristic root of (X'X)~".
Spring-Balance Weighing Design.
In this case, the weighing design matrix X = (x;;) is defined as
xij = 1, if the j-th object is included in the i-th weighing
= 0, if the j-th object is not included in the i-th weighing.
If bias is present it can be assumed to be one object and its value is estimated
by taking x;; = 1,
i=12,....,n;j=12,...,p.
The incidence matrix N of block design in which a treatment can occur
at most once in a block may be employed to construct a weighing design
with a spring balance by identifying objects with treatments and blocks
with weighings and N’ with X. Let there be v objects to be weighed and
suppose k objects are weighed in each weighing. Suppose the total number
of weighings is equal to b. Further, the weighings are such that each object

is weighed exactly r times and every pair is weighed A times. Then, we have
X = N/, where N is the incidence matrix of a BIBD. Therefore

X'X = NN’ = (r — M, + AE,y,
and
| A
I, - E,,.
r—\ " rk(r—\) "
Hence, the variance-covariance matrix of the estimated weights is given by

XX =

. 2 A
var (W) = o°[l, — _Evv)/(r - M.

rk
Also,
. k—-»N
= ,i=1,2,...,
var (W) =k \

Applying Definition | of Result 44, it is seen that the efficiency of the above
weighing design is k2(r — \)/(rk — \).

When a Hadamard matrix H,y, of order n 4 | exists, a spring balance
weighing design of maximum efficiency involving n weighings of n objects
can be constructed as follows. H,, is written so that the elements in its
first row and first column are all 4-1. Subtract the first row from each of
the remaining rows and multiply the 2nd, 3rd, ..., (n + 1)-st rows by —y,.
Omit the first row and first column. Then, the resulting matrix is the matrix
of spring balance weighing design having the maximum efficiency.
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1.9 SOME USEFUL MATHEMATICAL RESULTS

46. Galois Fields
(1) The number of elements in a Galois field is p", where p is a prime number
and n a positive integer. A Galois field consisting of p" elements is denoted
by GF(p").
(2) If t is the smallest positive integer such that o' = 1, where a # 0 is any
element of GF(p"), then t is called the order of a.
(3) An element of a GF(p") having an order p" — 1 is called a primitive root
of GF(p"). The primitive roots of GF(p) for various values of p are given in
the following table.
Primitive Roots of GF(p)
P 3 5 7 i1 13 17 19 23
primitive root 2 2 3 2 2 3 2 5
(4) If p is a prime number, then residues mod p constitute a GF(p).
(5) If F(x) is an irreducible polynomial of degree n in GF(p), then the residues
mod F(x) constitute the GF(p").
(6) The residues mod a minimum function of a GF(p") constitute the GF(p").
Minimum functions of GF(p") for various values of p and n are given in the
following table.
Minimum Functions of GF(p")
p n minimum functions
2 2 x“+x+1
3 X3+x2+1, 3 +x+1
4 P+ A Ex+
5 S+ x2+1
3 2 xP+x+2, x2+2x+2
3 X +2x+1
4 x4 2x 42
5 2 x* 42
7 2 X2+ 1
(7) The roots of a minimum function of a GF(p") are primitive roots of
GF(p").
(8) If « is a primitive root of GF(p"), then the elements of GF(p") are taken
as0,1,a,02,..., 00" 2,
47. Finite projective Geometry PG(m, s).

Let s = p", where p is a prime number and n a positive integer.
(1) A point in PG(m, s) is taken as (Xg, X1, ..., Xm), Where Xg, X1, ..., Xm
are elements of GF(s), not all zero. Two points (g, X1, ..., Xm) and



THEORETICAL RESULTS 55

48.

{(pXo, PXy, ..., pXm) represent the same point, where p is a non-null ele-
ment of GF(s).

(2) The total number of points in PG(m, s) is equal to (s™! — 1)/(s — ).
(3) g-flat: All points of PG(m, s) which satisfy a set of (m — g) linear
independent homogeneous equations

aioxo-i-a“xl+--~+aimxm=0,i:l,2,...,m—g

will be said to form a g-flat. Alternatively, a g-flat is determined by a set
of (g + 1) linearly independent points of PG(m, s). A O-flat is a point in
PG(m, s). An 1-flat is a line in PG(m, s).

(4) The number of points on a g-flat of a PG(m, s) is equal to
&Y~ 1D/(s ~ ).

(5) The number of g-flats contained in a PG(m, s) is equal to

™ - ™ = Dt - )
dm, g,s) = (s —D(sE=1)...(s= 1

(6)(i) &(m, g, s)=d¢m,m—g—1,s)

(i) od(m,g,s)=1, ifg=—1

=0, ifg<-2.

(7) The number of g-flats in a PG(m, s) which contain a given t-flat
O<t<g<m)isequaltoPp(m—t—1,g—t—1,s).
(8) The number of g-flats in a PG(m, s) which contain a given point is equal
tod(m—1,g—1,s).
(9) The number of g-flats in a PG(m, s) which contain a given pair of points
is equal tob(m — 2, g — 2, 5).

Finite Euclidean Geometry EG(m, s)
Let s = p", where p is a prime number and n a positive integer.

(1) A point in EG(m, s) is taken as (x, X3, ..., Xyp), where X;, X2, ..., Xq
are elements of GF(s). Two points (x{, X2, ..., Xm) and (x’,, x’z, ..., Xp) are
same if and only if x; = x{ fori =1,2,... . m.

(2) The total number of points in an EG(m, s) is s™.
(3) g-flat: All points of EG(m, s) which satisfy the m — g consistent and
independent equations

aip+ aux; +apX2o+ ...+ amXm=0,i—1,2,... . m—g

will be said to form a g-flat.
(4) The number of points on a g-flat of EG(m, s) is s8.
(5) The number of g-flats in an EG(m, s) is

d(m, g, s) —d(m — 1, g,s).

(6) The number of g-flats of an EG(m, s) which contain a given point is

dm—1,g—1,5)
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(7) The number of g-flats of an EG(m, s) which contain a given pair of points
is

d(m—2,g—2,5s).

Hadamard Matrix

(1) Definition: A square matrix of order n, H, will be called a hadamard
matrix if it has the elements +1 and —1 and is such that H H, = nl,,.

(2) A Hadamard matrix of order 2 is

11
w=[! 1]

(3) If Hy, and H,, are Hadamard matrices of orders m and n respectively, then
their Kronecker product Hy, ® H, is a Hadamard matrix of order mn.

(4) A Hadamard matrix or order 2" can always be constructed.

(5) A Hadamard matrix can be written so that the elements in its first row
and first column are all +1.

(6) Let H,, be a Hadamard matrix of order n, written so that all elements in
its first row and first column are +1. Let D be the matrix of order (n — 1)
obtained from H, by omitting its first row and first column. If the elements — 1
in D are replaced by 0, then we get the incidence matrix of a SBIBD with
parameters

n n
=b=n-1,y=k=—-—-—1,A=--—1.
v nmh 2 2

(7) If we subtract the first row from the other rows of H,,, and multiply the
2nd, 3rd, . . ., nth rows by —y3, and omit the first row and first column, then
we get the incidence matrix of a SBIBD. Equivalently, if we subtract the
first row from the other rows of H, and omit the first row and first column
and replace the non-zero element by 41, then the resulting matrix is the
incidence matrix of a SBIBD.

Systems of Distinct Representatives (SDR)

(1) Definition : LetSbeasetof velements 1,2, ...,v.LetT, T,,..., T,
be anon-null subsets of S, not necessarily disjoint. Then, aset(ay, az, .. ., a,)
where a; # T; forevery i and a; # a; for every i # }, is defined to be a system
of distinct representatives (SDR) for the sets Ty, T, ..., Ty.

(2) A necessary and sufficient condition for the existence of a SDR for
the sets Ty, Tz, ..., T, is that for every integral k, iy, iy, . . ., ik satisfying
l<k<nandl <ij<ip;<...<ig<n,

|T;, UT, U...UT;| >k,

where |T| denotes the cardinality of the set T.
(3) Let |T| denote the cardinality of the set T and Ry (T, T, ..., T,) denote
the number of SDRs for the sets Ty, Ts, ..., Ty. If |Tj| > s for every i, then

Ru(T), Ty, ..., Ty) > si, ifs<n
> s!/(s—n)!, ifs>n
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Symmetrically Repeated Differences

Let M be a module containing exactly m elements. We associate exactly n
symbols with each element of M. The symbols corresponding to an element a
of M are denoted by a,, az, . . ., a,. There will be mn symbols in all. Symbols
with the same subscript i will be said to belong tothe classi,i=1,2,...,n.
There will be n classes.

Consider a set S containing k symbols. Let S contain p; symbols from
thei-thclass, i =1,2,...,n. Thus,k = } 7, pi. Let p; symbols contained
in the set S from the i-th class be donoted by a!, a, ..., al", i = 1,2,...,n.
The pi(p; — 1) differences a;* —a¥, u#w=1,2,...,p; are called pure
differences of the type [i, i]. Clearly, there are n types of dif-
ferent pure differences. Let the p; symbols contained in the set S
from the j-th class be donoted by b;', b ..., b;)j. The pip; differ-

encesa’ —b¥,i#j=12,....,n, u=1,2,...,p, w=1,2,...,njare
called the mixed differences of the type [i, j]. Clearly, there are n(n — 1)types
of mixed differences. Let §, S, ..., S; be t sets satisfying the following
conditions:

(i) Each set contains k symbols.

(ii) Let p;¢ denote the number of symbols from the i-th class contained

in the £-th sett.

(1ii) Amongthe Y pif(pi€ — 1) pure differences of the type [i, i}, arising
=1
from the t sets, every non-zero clement of M is repeated exactly A

times independently of i.
t
(iv) Among the ) pifpj€ mixed differences of the type [i, j], arising

=1
from the t sets, every element of M is repeated exactly A times,

independently of i and .
Then, we say that in the tsets Sy, S,, ..., S;, the differences are symmet-
rically repeated, each occuring A\ times.
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EXERCISES

For the model E(y) = A@, var(y) = oI, show that the parametric functions
(i) £'A0, (ii) £’ A’A0 and (iii) £GA’A0, where G is a g-inverse of A’A, are
estimable for any vector £ of appropriate order. Find their BLUEs and their
variances.

Show that a necessary and sufficient condition for the estimability of £'0 is
that

rank (A'A) = rank (A’A, 0),

where it is assumed that £(y) = A0.

Let y;, y2, and y3 be indepenent random variables with a common vari-
ance o and expectations given by E(y|) = 0, + 63, E(y2) = 6, + 63 and
Z(y3) = 6, + 6;. Prove that b; + by6, + b36; is estimable if and only if
b; = b + b,. If b16; + by6, + ba s is estimable, find its BLUE and its vari-
ance. Find an unbiased estimator of o'2.

Let y;,i=1,2,...,6, be independent random variables with a com-
mon variance o2 and E(y;) = 0, + 05, E(y2) =6, + 65, E(y3) =6+
05, E(ys) =04+ 05, E(ys)= 0, + 05, and E(ys) = 6, + 6. Show that
0, — 0, is estimable and find its BLUE and its variance. Find an unbiased
estimator of o2. Show that 8, + 8, is not estimable.

Let y;,i=1,2,...,6 be independent observations with a common vari-
ance o2 and expectations given by E(y;) = 6;cos(2mi/6) + 6,sin(2mi/6),
i=1,2,...,6. Find the BLUES of 6, and 8, and their variances and the
covariance between them.

Let x;, yi and z;,i =1,2,...,n be 3n independent observations with a
common variance o> and expectations given by

EX) =0, E(y) =0, E(z)=06+6,i=12,...,n
Find the BLUES of 6; and 6, and their variance-covariance matrix. Find the

unbiased estimator of o2 based on the total available degrees of freedom.

Let x;, y;, and z; be 3n independent observation with a common variance
o? and expectations given by E(x;) = 0;, E(y;) = 0y, E(z;)) = 0, — 6y, i =
1,2,..., n. Find the BLUES of 6; and 6, and their variance-covariance



EXERCISES 59

10.

12.

13.

14.

matrix. Find the unbiased extimator o> based on the total variable degrees
of freedom.

Letyij,j=1,2,...,n,i=1,2,3be independent observations with a com-
mon variance o' and expectations given by E(y, i) =0y + 0 + 03, E(ygy) =
8 + 0s; and E(y3j) = —26, 4+ 05,j=1,2,..., n. Find the BLUEs of 6,, 6,,
and 65 and their variance-covariance matrix. Find the unbiased estimator of
a? based on the total available degrees of freedom.

At a post office, three parcels are weighed singly, in pairs and all together.
All the weighings are independent and have equal accuracy. The weights are
denoted by y100, Yo10, Yoo1, Y110, Yio1, Yoi1 and Y11, where the suffix 1 indi-
cates the presence of a particular parcel and the suffix O indicates its absence.
Obtain the BLUES of the weights of the parcels and their variance-covariance
matrix. Find the unbiased estimator of o2, where o2 is the variance of each
observation.

Let yi,j=1,2,...,m;i=1,2,3 be independent observations with
a common variance o> and expectations given by E(yy) =0 +
26, + 365, ‘Z:(y2j) =20, +36,+6; and ‘E(y3j) =30, + 6, +265;) =
1,2, ..., n. Find the BLUEs of 8, 8 and & and their variance-covariance
matrix. Also, find the unbiased estimator of o2 based on the total available
degrees of freedom.

Assuming normality of observations, derive suitable test statistics for testing
the following hypotheses

(i) Hg: 6, = 6, in Exercise 6.

(i) Hg: 6, = ab, in Exercise 7, where a is a known constant.

(iit) Hg: 6; = 0 in Exercise 8.

(iv) Hg: 6, + 6, + 6; = 0 in Exercise 10.

(v) Hy: 6, = 63 = 0 in Exercise 10.

Lety;,i =1,2,..., nbe independent normal variates with a common vari-
ance o2 and expectations given by E(y;) = a+B(x; —X),i=1,2,...,n,
where a and 8 are unknown constants and X = X x;/n. Obtain the BLUEs of
o and B and their variance-covariance matrix. Derive appropriate statistics
for testing (i) « = 0 and (i) = 0.

Let yi,i=1,2,...,n be independent normal variates with a com-
mon variance o and expectations given by Z(y;) = a + Bi(x); — X;) +
Baxyi = Xo) 4+ ... + B — %) i=1,2,..., n, where a, By, B2, ... Bk
are unknown parameters and x;;’s are known constants and X, = Lxpi/n, p =
1,2,...,k. Obtain the BLUEs of «, By, B,,..., B« and their variance-
covariance matrix. Derive tests for testing (i) B; = 0, (ii) B = B, i #j =
1,2,...k

Let y;,j=1,2,...,m; i=1,2,...,k be independent normal variates
with a common variance o2 and expectations given by Eyj)=p+t,j=
1,2,....,m, i=1,2,..., k, where p and t’s are unknown parameters.
Derive tests for testing (i) nu + Znjt; =0, (i) =t =... =ty =0 and
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(iii) t; =t = ... = t. Show that the test statistics in (ii) and (iii) are
same.
Letyj, i=1,2,...,r,j=1,2,..., s be independent normal observations

with a common variance ¢ and expectations given by £(y;) = p + o +
Bj,i=1,2,...,randj=1,2,...,s. Derive appropriate statistics for test-
ing(ioy =0,i=1,2,...,rand i) Bj=0,j=12,..., 5.
Letyy,j=1,2,...,mand i=1,2,...,k be independent normal obser-
vations with a common variance o and expectations given by E(y;) =
M+ti+BXij,j =1,2,....,n,j=1,2,...,k, where p, t;, t2,..., t and
B are unknown numbers and x;;’s are known constants. Derive suitable statis-
tics for testing () B =O0and (it =t =... =t =0.
Lety;,i=1,2,...,55j=1,2,..., s be independent normal observations
with a common variance o and expectations given by E(y;) = p + o +
i+ Bxj,i=1,2,...,s, where u, o’s, t's and B are unknown parameters
and x;j’s are known numbers. Derive statistics for testing (i) § = 0 and
ity=t=... =t =0

Given that £(y) = A8, var(y) = o’I,and A’A isa3 x 3 non-singular matrix
and the following

62=200,0,=3,8,=5,0;=2,
3 3 2 1
var(0) = T 2 4 2
100 2 3
Show that the value of the F-statitsic for testing 0; = 6, = 3 = 0isF = 65/9.
Let vy;,i=1,2,...,n be independent random variables with
Ey)=a+Bx,i=1,2,...,n and var(y)=diag(d;,ds,...,dy),
where a and B are unknown parameters and x's, dj, dy, . .., d, are known

numbers. Find the BLUEs of o and B and their variance-covariance
matrix. Discuss the cases when (i) x; =i and d; = ¢, (ii) x; =i and
d=¢c%%i=12,...,n

Lety), y, and y3 be 3 observations with E(y;) = 0; + a;02, E(y2) = 6, and
E(y3) = 6, + a36, and variance-covariance matrix

3
20

,and a; = —/3/2, ay = /3/2.

\

— N W
[ NS I S 8
W N =

Find the BLUEs of 8, and 0, and their variance-covariance matrix.

Let y;,i=1,2,...,n be n independent random observations with
Z(y;) = | and variance-covariance matrix V given by V = [o? J(N = 1)].
[NI, — Epq], where Ep, is ann x n matrix with all elements unity. Obtain
the BLUE of p and its variance. Also, obtain an estimator of the variance
of the BLUE of p.
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Let y;,i=1,2,...,n be n independent random variables with
E(y;)) =+ 0x;,i=1,2,..., n where p. and 0 are unknown parameters
and x; = «/§(Zi —n—1)/n+1),i=1,2,...,n, and variance-covariance

matrix V = o2(a;), where aj = 12i(n — j+ 1)/(n + 1)*(n +2) for i <.
Show that the BLUEs of p and 0 are given by {i = (y; +y,)/2 and
0 =0+ )y, — y,)/2«/§(n — 1). Further, show that

var (i) = 66%/(n + 1)(n +2)
var() = 202/(n — 1)(n + 2)
cov (fi, ) = 0.

2 -1 0 0 ...0 O
-1 2 =10 0 0
0 -1 2 -1 0 0
Himzv—lzw
1202
0 0 0 0 ... -1 2]

Given that £(y) = A0, var(y) = V, V being a non-singular matrix, A is an
n x 3 matrix with rank 3 and the following,

/

[SSE/(n — 3)] = 100, 8 = (6, 10, 4)
o3 2
var()=—12 4 2
200y 2 3

Show that the value of F for testing 6; = 6, = 6; = Ois givenby F = 1.73

In Exercise 20, find the F statistic for testing the hypothesis 6, = 0. Also
give the F statistic for testing the hypothesis 6, = 6, = 0.

In Exercise 22, obtain the values of F statistic for testing the hypotheses
()p=06=0and (i) 8 = 0.

Given below is the incidence matrix of a block design. Find its C matrix, the

degrees of freedom associated with the adjusted treatment sum of squares
and the degrees of freedom for the error sum of squares.

O = - OO0
—_—_—— 0 OO

OO O o =
SO = = O

L .

Determine which of the following designs are connected.
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Design Blocks

1 2 3 4 5 6 7 8
I C,A,B|C,B,DIA,C,D|{A,B,D|D,EG |E,FEG [D,E,F|D,E,G
I A,B,G|A,EG|A,E,F (A,D,E|(A,C,D|A,B,C
11 B,E,G|A,FEG|CEF |AD,E|C,D,G|B,D,F|A,B,C
28. Below is the incidence matrix of a design. Show that the design is not

29.

30.

connected but is balanced.

10
0 1
N=1lo01
Lo
Hint: Here
1000
2 0 0100
K‘[o 2]’R:()01o
000 1

Hence

1 000 12 0 0 172
o1 oo 0 172 1/2 0
“]lJoo 1o} |0 1/2 12 0

000 1 12 0 0 12

/2 0 0 -12
0 12 -1/2 0
0o -1/2 12 0
| -1/2 0 0 172

The fourth column of C is —1 times its first column and its third column is
—1 times its second column. Hence

rank (C) = 2.

Thus, rank (C) # v — 1 = 3. Hence the design is not connected.
We now find the characteristic roots of the C matrix. We have
IC — Al = N2\ = 1)%,
Hence the two non-zero characteristic roots of C are each equal to 1. There-
fore the design is balanced.

Show that the design with incidence matrix N = aE,p, where a is some
positive integer, is connected, balanced and orthogonal.

If N is the incidence matrix of an equi-replicate binary regular design and

*
N = E,; — N, then show that the design whose incidence matrix is N is an
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31.

32.

33.

34.

35.

36.

37.

38.

equi-replicate binary regular design. Determine the C matrix of the design
KI in terms of the C matrix of design N. Further if the design N is connected
balanced, show that the design IiI is also connected balanced.

Let N be the incidence matrix of an orthogonal design (v, b, r, k) with v =
2k. Consider ItI = E,» — N. Then show that the design I:I is orthogonal.

For a connected balanced design, show that its C-matrix is given by
1
C= e(IV - VEVV)7

where 0 is the non-zero characteristic root of the matrix C.

Let N be the incidence matrix of an equi-replicate, regular connected bal-
anced design. Show that

NN, = k[(r - e)Iv + (G/V)Evv]s

where 6 is the non-zero characteristic root of its C-matrix, k is the block
size and r is the number of replications of a treatment, that is, show that the
characteristic roots of NN’ are rk and k(r — 6) with respective multiplicities
landv — 1.

Show that the average variance of BLUES of elementary treatment constrasts
in a connected design is

207
T ;U/ei),

where 8;, 6,, ..., 6,_, are the (v — 1) non-zero characteristic roots of the
matrix C.

Prove that the average variance of the BLUEs of the elementary treatment
contrasts in a connected design lies between 2062 /0min and 202 /6.x Where
Bimin and O, are respectively the minimum and the maximum characteristic
roots of the C-matrix of the design.

Consider a connected design and let £'t be any treatment contrast. Show that
the variance of the BLUE of £'t lies between £'€ 62 /04 and €£ 62 /0in,
where O,,x and By, are respectively the maximum and the minimum non-
zero characteristic roots of the matrix C of the design.

Prove that the efficiency of a binary connected design is given by
< v(n — b),
“n(v—1)

where n = total number of plots in the design.

Show that the non-zero characteristic roots of the C-matrix of a connected
balanced design is (n — b)/(v — 1), where n = total number of plots in the
design.
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For a binary connected equi-replicated incomplete block design, show that
b>v.

Show that the incidence matrix N of an equi-replicated regular connected
balanced design satisfies the relation

NN’ = (r = NI, + AE,y,
where A\(v — 1) =r(k — 1).
Prove that the most efficient connected design is balanced.
Prove that the average variance of the BLUEs of elementary treatment con-
trasts in a connected balanced design is given by

V =20%v —1)/(n ~b)

and that its efficiency is E = v(n — b)/n(v — 1).
Let the incidence matrix of a design be

1 0
01
N= I 1
11

—_ O =

1
1
1
0

Show that (i) the design is connected balanced, and (ii) its efficiency factor
is E = (8/9).
Suppose mk treatments are divided into m sets of k each and the treatments

of each set are assigned to blocks of size k. Further, let there be r repetitions
of these m blocks. Show that the design so obtained is orthogonal.

Show that

C =N
N K

’ =k|k2...kb.rll‘2...rv

Show that the following designs are connected balanced. Find the non-zero
characteristic root of the C matrix in each case. Find also the variance of the
BLUE of an elementary contrast in each case.

(i) N=Ey (i) C=al—(a/V)Ew.

Show that in a one-way design, the BLUE of an estimable treatment con-
trast £'t is given by p’Q, where Cp = £ and that its variance is given by
a?p'L. Hence show that if C = al — (a/v) E,y, the BLUE of a treatment
contrast £'t is £'Q/a with variance o2£'¢/a. As a particular case, when
C = al, — (a/v)E,,, deduce that the BLUE of an elementary treatment con-
trast t; — t; is (Qi — Q;)/a with variance 20?/a.

Show that in a connected design C+ rr//n is non-singular and that
(C+rr'/n)"'r =E,,wherer = (1,12, ..., 1y)andn = FE,;. Also prove
that (C + rr'/n)~! is a g-inverse of C.
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Prove that in a connected design, a set of solutions of normal equations in
the intrablock analysis is given by

fL=G/n
& =K™'B — (G/n)Ey; — K™'N'[C+rr'/n]"'Q
t=[C+rr'/n]"'Q

Also show that

(i) var(t) = ¢?[(C + rr'/n)~! — E,y/n}
(ii) if €'t is any treatment contrast, then its intrablock estimate is
£(C + rr'/n)~'Q, with variance 0*¢'(C + rr'/n)~'¢.

Show that in the intrablock analysis of variance of a one-way design, the
adjusted block sum of squares is obtained as

Adj. Block SS = (Total SS) — (Error SS) — (Unadj. Treatment SS).
Derive the expected values of different sums of squares which occur in the
intrablock analysis of variance of a one-way design.

In the intrablock analysis of variance of a one-way design, show that the
variance-covariance matrices of Q and P are given by

var(Q) = a’C
var(P) = ¢’D
cov(Q,P) = ~o’CR™'N = —o’NK~'D.

Show that the equations for obtaining t,,s = 1,2, ..., v in the combined
inter and intrablock analysis of an equiblock-size one-way design can be
obtained from the corresponding equations in the intrablock analysis by
replacing Q,, r, and Ay, (s #s' =1,2,...,v) by P, R, and Ay, where
w
Po=wiQ+wQ, Q=T Q- (G/bK)r,Ry=r,w +——,

R-1
Ay = (W) — W2)A,y and setting r't, = 0.

Show that, in the analysis with recovery of interblock information,
var(Q) = C/wy, var(Q) = C,/w>
cov(Q, Q) =0
var(w;Q + w2Q)) = w,C + w,C;
where w; = 1/57 and w, = 1/(a? + ko).
Show that in a connected design in which each block is of the same size k

and NN’ is non-singular, the intrablock, interblock and the combined intra
and inter block estimates of a treatment contrast £'t are respectively given by

(i) £(C + rr'/n)~'Q with variance w £(C + rr'/n)~'¢
(ii) £(NN)"!N B with variance (k/w,) £'(NN')~'¢

Gi)  £w,C+ %NN’)“'(WIQ ¥ %NB) with variance £(w,C+

ZINNYe
R
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Obtain the linear combination of the estimates (i) and (ii) which has the least
variance and show that it is equal to the estimate (iii) if

rr
(C+ —)"'Q = (NN')"'NB.
n
Show that in a connected design with equal block size, the average variance
of the combined intra and inter block estimates of elementary treatment

contrasts is

2 v tr(w,C + %NN’)" — B (wC + ‘—NEZ-NN’)"EV,
viv—1)

STANDARD DESIGNS

Derive the analysis of variance of a design whose incidence matrix is
N = aE,}; where a is some positive integer and compare its efficiency with
that of a design with incidence matrix N = E,4.

Suppose v = pq treatments t;j,i = 1,2, ...,p,j=1,2,..., q are arranged
at random in b blocks of k plots each such that (i) every treatment occurs
at most once in each block, (ii) every treatment occurs in exactly r blocks
and (iii) a pair of treatments t;; and tyy occurs in exactly Agjyij) blocks,
where

Nipip =n ifi=1, j=]
=Ny ifi=T1, j:,aé]/
—Noifi£i, j=]
=y ifi#i, j#§

Prove that
® ik — 1) =(q— Dhot +( — Dhio +(p — 1) — DAt
(ii) an intrablock solution of t;; is given by

R k
tij = ;[Qij +BQi. +CQ;l, where
Qj = the adjusted total for t;j ,

q p
Q.= ZQU’ , Q= ZQU ,
=1 i=1

B = (hoi — Ai)/[a—qtor — Al S
C=Mp—Mp)/la—phpo—A)],
a=rk— 1)+ Aos + Ao — A1
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q 4 P P
(iii) the BLUEs of Z tij — Z tij o Z, tij — Z, tij and G — by —tyj +
j=1 j=1 i=1
tyj are respectively given by

k(Qi — Qv.)/[a — q(ho1 — M1,

k(Qj —Qy)/[a—pAio —Ai1)], and

k(Qy — Qy — Qij + Qiy)/a

with respective variances

2kqo®(1 4+ qB)/a, 2kpa*(l +pC)/a, and 4ka?/a .
where a, B and C are defined in (ii).

i=1

Let there be v treatments and n = n; + n; + ... + ny plots, there being n;
plots receiving the i-th treatment. The yields are assumed to be independent
normal variates with a common variance o2 and expected values given by
the effect of the treatment applied to the plot. Derive the analysis of variance
for testing the hypothesis of equality of treatment effects. Prove that the test
is most sensitive whenn; =n/v, i=1,2,...,v.

In a randomized block experiment originally planned with v treatments and
r replications, it was later on found that there was not enough material of
treatment 1 and there was excess of material of treatment 2. Hence treatment
1 was applied once only in blocks I, 2, ... , r; and treatment 2 was applied
once in blocks 1,2, ... , r; and twice in blocksr; + 1,1, 4+ 2, ..., r. De-
rive the analysis of variance for this modified design. Obtain variances of
the BLUE:s of different elementary treatment comparisons and the loss of
efficiency due to the above modification of the design.

In a randomized block design, with v treatments and r blocks, treatment 2
in Block 1 was interchanged with treatment 1 in Block 2 through mistake.
Further, if the design is equi-replicate, then show that the above expression
of the average variance becomes

W2 N1 1
2[tr(w;C+ —NNY' — —]/(v = 1).
k Wor

In a randomized experiment, treatment 1 was used twice in the first two
blocks and consequently treatment 2 was not used in these blocks. Show
that

(i) the sum of squares for testing t = 0 is

k >
Z[(r — 2)(rk — 2)Q] + (r + 2)(rk + 2)Q; — 4(r — 2)Q, Q1]

+iQi’2/r,
3

(ii) var(f, — t;) = 2ko?r(rk + 2)/A
k(r — 2)(rk — 2) +1] ,

(iit) var(t; — ;) = o2 [ A »
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k
_____(r+2)(rk+2)+1] ,1=3,4,...,v
A r

(v) var(fi —§) =202/r,i#j=3,4,...,v

where A = (r — 2)(°k* + 2rk* — 8).
For testing v new varieties, an experimenter divides his field into v blocks
and each block into (gv + 1) plots. Each new variety is replicated g times in
each block and a standard variety is assigned to the (gv + 1)st plot in each
block. Derive an appropriate analysis of variance for this design.

For a SBIBD, show that NN’ = N'N.

If N is the incidence matrix of a BIBD, then show that

(i) the characteristic roots of NN’ are rk and r — A with multiplicities
1 and v — 1 respectively and the characteristic roots of N'N are 0,
tk and r — A with multiplicities b — v, 1, and v — 1 respectively.

(i) [N'N| = 0, when the BIBD is non-symmetrical

(iii) tr (N'N) = vr.

If in a BIBD, b = 4(r — \), then prove that 2k = v & \/v.

Show that the parameters of an affine resolvable BIBD with v = nk,
b = nr, r, k, A can be expressed as

(iv) var(, — t;,) = o2 [

v=n*(nt—t+1),b=n@*+n+1),
r=n*t+n+ 1, k=nnt—t+ 1),
A=nt+1,

wheren > 2 andt > 0.

In a BIBD with parameters v, b, 1, k, A , a control treatment is added to each
block, so that the block size is now (k + 1). Derive the analysis of variance,
the BLUEs of various treatment comparisons and their variances.

Show that in a BIBD, the necessary and sufficient condition that there be the
same number of treatments common between any two blocks is that b = v.

Show that in a BIBD, (b > v + 2), x, the number of common treatments
between any two blocks satisfies the inequality

—(r—N—Kk) <x <[2Ak+1r(r — N = k)}/r.

Show that in a BIBD, x, the number of common treatments between any two
blocks satisfies the inequality

—Jr=-1D=-Thb-1]<x<
(b—l)[(r ) —T( r)]._x_(b_l)
where T = [(b — 2)(b — v)/b(v — 1)]'/2,
Let M be the matrix obtained from the incidence matrix
N of a BIBD (v,b,r,k,A) by replacing O by 1. Prove that
MM’ = 4(r — ML, + [b — 4(r — N)]E,y.

[(r=D+T(b-n),
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A BIBD (v,b,r,k,\) is said to belong to a family A of designs
if b=4(r—\). Let N; and N, be the incidence matrices of BIBDs
(v, by, 11, Ky, Ay) and (v,, by, 13, ka, A») belonging to the family A. Prove
that the design whose incidence matrix N is given by

N =N, ® No+ N ® N»

isa BIBD belonging to the family A and find its parameters, where @ denotes
the Kronecker product, N; and N2 denote the complementary designs of
N; and N».

An incomplete block design is said to be a Linked Block design if (i) each
block has the same number k of plots, (ii) each treatment occurs in exactly
the same number r of blocks and (iii) any two blocks have the same number
of treatments in common. Show that the design obtained by interchanging

the roles of treatments and blocks in a BIBD (5, {‘, ? lt ;\) is a Linked block
design. Obtain the parameters of this new design. Obtain the C and D matrices
of this design, and find the rank and characteristic roots of the D matrix.

Derive the expected values of different sums of squares in the intrablock
analysis of variance of a BIBD.

A BIBD with parameters v,b=v(v —1)/2, k=2, r=v—land A = lis
formed by taking v(v — 1)/2 combinations of v treatments taken 2 at a time
as blocks. Interchange the roles of blocks and treatments in this design. Show
that this new design is a PBIBD and obtain the parameters of this design.
Let v = mk treatments be arranged in m sets of k each and each set be taken
as a block. There are r such repetitions, so that the total number of blocks
is equal to b = mr. Show that this design is a PBIBD with two associate
classes and obtain the parameters of this design. Show that this design is

not connected and that by selecting r suitably, the number of blocks can be
made equal to, greater than or less than the number of treatments.

The association matrices of the asssociation scheme of an m-associate class
PBIBD are defined by v x v matrices B; = (beg"),i = 1,2, ..., m, where
bug', the element in the cell (o, B) of B; is defined by

beg' = 1, if @ and B are i-th associates
= 0, otherwise.
Further, every treatment is defined to be the o-th associate of itself, so that
Bo =1y,n = 1, Ao =1, pi° = iy}, pok' = ik

where ; is that Kronecker delta, which is defined to be 1, if i = jand 0, if
i # j. Show that

(1 EivBi = niEyy, BiEy =niE,,,1=0,1,2,...,m
m

(ii) > Bi=E,
i=0

(iii) Bo, By, ..., By, are linearly independent
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m N
(iV) BjBk = ijlei y BjBk = BkBj s j, k= 0, 1, 2, [P { | B
i=0
v) Y PP’ = X Pij"Puk’
u u
Define P;, i=0,1,2,... , m matrices of a PBIBD as follows:

—poio F’oil coo Poit )
pi® pi' o P
p—|- . e
B pmio pmil Pmi" a
Show that
(n, n, ... ng |
ny n A | ]
& n n, ... np
M ) P=|"
o . . e
[ My Ny ... Dy
(ii) Po, Py, ..., Py matrices are linearly independent
m
(i)  PPe=) pi'Pi,jk=0,1,2,..., m
i=0
Pij = PkP',
(iv) Po, Py, ..., Py matrices provide a regular representation in

(m + 1) x (m 4 1) matrices of the algebra given by B-matrices
of the association scheme of a PBIBD, which are v x v matices.

Show that NN’ of an m-associate class of a PBIBD is given by

m
NN =) " AB;.
i=0
With the help of Bij-matrices of the association scheme of an m-associate
class of a PBIBD, show that

@) ini =V, (i) i mA; = 1k,
i=0

i=0
@) Y pi'=m, () nipy =npy
=0

m
The distinct characteristic roots of B = ) ¢;B; are the same. Hence deduce
i=0
that the distinct characteri%tic roots of NN’ of an m-associate class PBIBD are

the same as those of P = Y \;P;. Hence, prove that the distinct characteristic
i=0
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roots of NN’ are given by rk and the distinct characteristic roots of the matrix
L = (&), where

m
Gi=r—nh+) Apli=12.....m

t=i

m
eijzz)\tpitj—ni)\i. i#Zj=12,..., m
t=i

If NN’ of an incomplete block design (v, b, r, k) has only one zero charac-
teristic root with multiplicity u, show that b > v — u. Further if this design
is resolvable with v = nk, b = nr, then show thatb > v+ (r— 1) — u.

Show that the distinct characteristic roots of NN of a 2-associate class
PBIBD are given by

8, = rk, with multiplicity 1
1 1 )
6 =r— >0 +M)+ 500 —halp+ (—1)VA],

with multiplicity

L S [(m — ) +r(ny +n2)]’ iZ 12
2 2/A

wherer =p2 —pia', B=pp' +pfand A =r*+2B + 1.

Show that the values and the multiplicities of the distinct characteristic roots
of NN’ of a group divisible design are

8, = rk, with multiplicity 1

0, = r — \;, with multiplicity m(n — 1)

0, = rk — v\, with multiplicity (m — 1)
Show that the values of the multiplicities of the distinct characteristic roots
of NN’ of an L; (Latin square type design with i constraints) design are given
by

0, = rk with multiplicity 1

6 =r—ih; + Ap(i — 1) with multiplicity (s — I}s —i+ 1)

0, =+ A(s — 1) — Aa(s — i + 1) with multiplicity i(s — 1).

Show that the values and the multiplicities of the distinct characteristic roots
of NN’ of a triangular design are given by

0, = rk, with multiplicity 1
0 =r — 2\ + N\, with multiplicity n(n — 3)/2
6 =r+ (n— 4)A; — (n — 3)A,, with multiplicity (n — 1).
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Prove that in an m-associate class PBIBD withk > r, |(€;)| = 0, where
m .
&; =Z)\tPitJ—ni)\i, i#j=12,..., m
t=i

m
Zi;=r+2)\tpnj—ni)\i, i=1,2,..., m

t=i

Hence, deduce that for a 2-associate class PBIBD withk > r,
= A)E = A+ O\ = M)’ = N) = pr' = N)] =0

Prove that a given block in a BIBD (v, b, 1, k, \) can never have more than
b—1—[(r— 1)’k/(r — A — k + k\)] blocks disjoint with it and if some
block has that many, then (r — A — k + kA)/(r — 1) is a positive integer and
each of the non-disjoint blocks has (r — A — k + k\)/(r — 1) treatments in
common with it.

Show that by replacing each treatment of a BIBD (v*, b*, r*, k*, A*) by a
group of n treatments, we get a singular group divisible design with param-
eters v=nv*,b=b*, r=r,k=nk*, np=n—-1, ;p =n(v*-1),
)\] “—-"I'*, )\2=)\*,

n—2 0 0 n—1
P‘=[ 0 n(v*—l)]’Pz:[n—l n(v*—Z)]'

Prove that in a singular group divisible design, a given block cannot have
more than

b_l_[ k(A — 1)? ]
nA — D+ E&=-n—1)

blocks disjoint with it and if some block has that many disjoint blocks, then
n + [(k — n)(A2 — 1)/(A\; — 1)] is an integer and each non-disjoint block has
n+ [(k — n)(A2 — 1)/(A\; — 1)] treatments common with that block.

Prove that in a singular group divisible design, the necessary and sufficient
condition that a block will have the same number of treatments in common
with each of the remaining blocks is that (i) b = m, and (ii) k(r — 1)/(m —
1) is an integer.

Prove that for a resolvable singular group divisible design,b>m+r—1.
Further, prove that a necessary and sufficient condition for a resolvable sin-
gular group divisible design to be affine resolvable is that i) b=m +r— 1,
and (i) k?/v is an integer.

Prove that for a singular group divisible design, b > m, and further if it is
resolvable, thenb > m+r— 1.

Prove that for a semi-regular GD(group divisible) design, b > v —m + 1
and further if it is resolvable, thenb > v —m +r.

Prove that in a semi-regular GD design, k is divisible by m and every block
contains (k/m) treatments from each group.
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Prove that a given block of a semi-regular group divisible design cannot
have more than

v(v — m)(r — 1)?
(V=K -1 —(v—rk)(v—m)
blocks disjoint with it and if some block has that many disjoint blocks, then
k[(v — k)(b —1) — (v — rk)(v — m)]
viv—m)}r—1)
is an integer and each non-disjoint block has
k[(v —Kk)(b — 1) — (v — 1k)(v — m)]
viv—-m)(r—1)

treatments common with that block.

Prove that in a semi-regular group divisible design, the necessary and suf-
ficient condition that a block will have the same number of treatments in
common with each of the remaining blocks is that (i) b =v —m + 1, and
(ii) k(r — 1)/(v — m) is an integer.
Prove that for a resolvable semi-regular group divisible design,
b > v —m 4 r and that the necessary and sufficient condition for it to be
affine resolvable then is that (i) b = v — m +r, and (ii) k?/v is an integer.
Prove that in a triangular design,
i) if r — 2Ny + A2 = 0, then b > n and further if the design is resolv-
ableb>n+r—1.;
(i1) ifr+m—4HA —(n—3)A; =0, thenb > v —n + 1, and further
if the design is resolvable, thenb > v —n+4r.
Prove that if in a triangular design r + (n — 4)A; — (n — 3)\; = 0, then 2k
is divisible by n, and every block contains 2k/n treatments from each of the
n rows of the association scheme.
Prove that in a triangular design withr 4+ (n — 4)\; — (n — 3)A, = 0, agiven
block cannot have more than
v(v —n)(r — 1)?
[(b—r1)(v —k) — (v —rk)}(v —n)]
blocks disjoint with it and if some block has that many disjoint blocks, then
k[(b — r)}(v —k) — (v — 1k)}(v — n)]/v(v — n)(r — 1) is an integer and each
non-disjoint block has kf(b — r)(v — k) — (v — rk)(v — m)}/n(v — n)(r — 1)
treatments in common with that block.

b—1

Prove that in a triangular design with r+ (n — 4)A; —(n — 3)\, = 0, the
necessary and sufficient condition that a block will have the same num-
ber of treatments in common with each of the remaining blocks is that
(1) b=v —n+1and (i) k(r — 1)/(v — n) is an integer.

Prove that for a  resolvable triangular  design  with
r+m—4\ —(n—=3)A2 =0, b>v—n+r and that the necessary
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and sufficient condition for it to be affine resolvable isthat (i)b=v —n+r

and (ii) k? /v is an integer.

Prove that in a Latin-square type design with i constraints (L;)

@) ifr—iNj +N(i—1)=0,thenb > 1 +i(s — 1) and further if the
design is resolvable, then b > r + i(s — 1)

(ii) if r+ME—i)—Ns—i+1)=0, then b>14+(—-1)
(s—i+1) and further if the design is resolvable, then
b>r+(s—1)s—i+ 1)

Prove thatina L, design, ifr 4 (s — 2)A; — (s — 1)A, = 0, thenk is divisible

by s and every block contains k/s treatments from each of the s rows (or

columns) of the association scheme.

Prove that in a L, design with r + (s — 2)\; — (s — 1)\, = 0, a given block

cannot have more than

B v(r — DA(s — 1)?
(b—r)v—k)— (v —rk)s — 1)

b—1

blocks disjoint with it and if some block has that many, then
k[(b — r)(v — k) — (v — rk)(s — 1)2]/v(r — 1)(s — 1) is an integer and each
non-disjoint block has k[(b — r)(v — k)— (v — rk)(s — 1)?]/v(r — 1)(s — 1)?
treatments in common with that given block.

Prove that in a L, design with r + (s — 2)A\; — (s — 1)Ay = 0, the necessary
and sufficient condition that a block will have the same number of treatments
in common with each of the remaining blocks is that (i) b =14 (s — 1)?
and (i) k(r — 1)/(s — D?is an integer.

Prove that for a resolvable L, design with r+ (s —2)A\; — (s — DAy =
0,b > r+ (s — 1)? and that the necessary and sufficient condition for it to
be affine resolvable is that (i) b = r + (s — 1) and (i) k?/v is an integer.
Ifrk > po > py > -+ > pp be the distinct non-zero characteristic roots of
NN’ of anincomplete block design (v, b, r, k), then x, the number of common
treatments between any two blocks of this design satisfies the inequality

max[0, 2k — v, k — po] < X < min[k, po — k + 2(rk — po)b™']

Using Exercise 108, prove that x, the number of common treatments between
any two blocks of a BIBD satisfies the inequality

max[0, 2k — v,k —r+ A] < x < minfk, r — X\ — k 4+ 2(Ak/r)].

Prove that in a singular group divisible design, x, the number of common
treatments between any two blocks satisfies the inequality

max[0,2k —v, =k(b—m —r+ 1)/(m — 1)} <x
< minfk, k{n(b —m —r — 1) + 2k}/(v — n)].
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Prove that in a semi-regular group divisible design, x, the number of common

treatments between any two blocks satisfies the inequality
max[0,2k — v, -k(b—v+m—r1)/(v—m)] <X
< minfk, k{{b — r)(b — 2) — (v — m)}(b — 2r)}/b(v — m)].

Prove that in a triangular design,

(i) if r4+ (n —4)\; — (n — 3)\; = 0, then x, the number of common
treatments between any two blocks satisfies the inequality
max[0,2k — v, —k(b—v —r+n)/(v—n)] <x
< min[k, k{(b —r)}(b —2) — (v —n}(b — 2r)}/b(v — n)]

and

(i1) if r4+ (n — 4)\; — (n — 3)\; = 0, then x, the number of common
treatments between any two blocks satisfies the inequality
max[0, 2k — v, —k(b —v —r+n)/(v —n)] < x
< min(k, k{(b — r)(b — 2) — (v — n)}(b — 2r)}/b(v — n)]

In a triangular design, prove that x, the nubmer of common treatments be-
tween any two blocks satisfies the inequality

max[0, 2k — v,k — 6;] < x < min[k, 6, — k + 2(rk — 6,)b™'],

where i=1if \y >Ny and i =2, if Ay <Xy, and 6; =r+ (n — 4\ —
(n—3))\2,62=r—2)\1+)\2.

In a L; design, prove that x, the number of common treatments between any
two blocks satisfies the inequality

max[0, 2k — v,k — 6,] < x < min[k, 8, —k + 2(rk — 6,)b™'],
wherep=1if\; > M andp=2if\; < \; and
Oh=r+(—DN\ —(s~i+ DN\, G =r—i\+({- D

In a L, design with r 4 (s — 2)A\; — (s — 1)A; = 0, prove that x, the number
of common treatments between any two blocks satisfies the inequality
max[0, 2k — v, —k{(b —r) — (s — 1)2}/(s -1’1 <x
k{(b —r)(b —2) — (s — 1)*(b — 2r))
b(s — 1)?

< min [k,
Prove that in a semi-regular group divisible design, x, the number of common
treatments between any two blocks satisfies the inequality

fk(r—1)— A] <x< (k(r— 1)+ A]

(b-1) b-1)
where A2 = k?(b — 2)(b — r}(v — k)(b — v+ m — 1)/v(v — m).

)
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Prove that in a triangular design with r4+(n —4)A\; — (n —3)A\, =0, x,
the number of common treatments between any two blocks satisfies the
inequality

kr—1)—A k(r— 1)+ A

<x<

b—1 b-1)

’

where A2 = k(b — 2)(b — 1)(v — k)(b — v+ n — 1)/v(v — n).

Prove that in a L, design withr 4+ (s — 2)A\; — (s — 1)A; = 0, the number of
common treatments between any two blocks satisfies the inequality
k(r—1)—A k(r— 1)+ A

<x<

b-1 b-1) ~

K2(b — 2)(b —1)(v — k){b— 1 — (s — 1)?}
v(s — 1)?

Prove that a necessary condition for the existence of a group divisible design

is that 1k — vA, > 0.

where A2 =

Prove that a necessary condition for the existence of a triangular design is
that rk — vA| < n(r — \y)/2.
Prove that a necessary condition for the existence of a L, design is that
k — VA <s(r— ).
Inav x v Latin square, the v treatments represented by thenumbers 1, 2, . . .,
v occur in the first row in their natural order. Suppose, now, due to accident,
treatments 1 and 2 get interchanged. Obtain the BLUE:s of the various ele-
mentary treatment comparisons and their variances. Also obtain the loss in
efficiency due to this interchange.
Show that the efficiency of an m-ple Lattice design, using intrablock analysis
is given by
) m

(m—-1DEk+D+m’

Deduce that, if the Lattice design is balanced, then E = k/(k + 1).

Show that the efficiency of an m-ple Lattice design utilizing the analysis
with recovery of interblock information is given by

E=

-1- m(w; — w3)
(k + D{(m — D)w; + w} + m(w; — wp)’

Deduce that if the Lattice design is balanced, then E =kw;/
[k + Dw; — wa].
S —1

Let Xo(x) = 1, Xj(x) = x — 7

(t = (s} = (t = D*}Xi-a(x)
42t — 12t - 3)

Xi(x) = X1 (x)X_1(x) —
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be orthogonal polynomials for the set of values x =0, 1,...,s; — 1. For
t=1,2,...,8 — 1, define

s1—1
Fi = [Zf? xmx)} 3. . . dim
x=0

as the linear, quadratic, cubic, ... effect of F;, where

(h:fil+fi2+"' +ﬁl—lqi:ls2y-"9m

1

Prove that the sum of squares due to the above effect in a randomized block
experiment with r replications is

B [slsz...sm(t!)‘*(sf ~ 1.3~ 1)
It 2012t + 1! ’

where F.t denotes the estimate of Fy, obtained by replacing treatments in F,
by their mean yields.

In a 2™ factorial design, denote the factors by A;, A,, ..., An. The upper
level of A, is denoted by a; and its lower level by 1,i =1,2, ..., m. Let

Si=(a+ @i+ 1)...a + 1),
Xo=1,X =[X_a&X_li=12....m

HO:I,Hi:[I_{E:_I g:],izl,z,...,m
YO=1,Y§=[§221—3 z:::],izl,&...,m.
Prove that
O Xi=(18(, 18 .8 ]
(ii) Yi=[2::t}]®[a“+ll® ®[Z:f:],

(iii) Hi=H ®&H ®...9H|,
where ® denotes Kronecker product and hence establish Yates’ method,
i=1,2,..., m. Further, prove that

H'=H{/2,i=1,2,...m

and hence establish inverse Yates’ method.
Consider a 3™ factorial design The factors are denoted by A, A,, ..., Ap
and three levels of A; by 1,a;,a7,i=1,2,...,m. Let

Si = (ai' +a + 1)(ai_| +ai_; + 1). ..(af +a +1

Xo=1,X| =[la a]]

X = [X_, aX_, a¥X_,l,i=1,2,.

H, =1
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1 1 1
H=|-1 0 1
I -2 1
Hi- Hi_; Hi,
Hi=| —H;_, 0 H_ |,i=1,2,...,m
Hi_y -2Hi, Hi
af+a1 +1
Yo=1, Y = al—1
af - 281 +1
@ +a; + DYiy
Yi=| @-1Y |,i=12,...,m

(a2 ~ 2a; + 1)Yi

Provethatfori=1,2,...,m

1 1 i
® Xi=|a | ®] ai_ ®...8 | a
a’ a? — 1 a?
a’ +a;+ 1 a? | +a_+1
Y = a’ — 1 ® al | -1 ®...
(“) ai2 - 2ai +1 aiz—-l—Zai_l + 1
a% +a +1
® ai —1
al —2a; + 1

(iii) H=H®H ®... ®H,.
Hence, establish (extended Yates’ rule) HiX; = Y;.

130. In a randomized block experiment with v treatments and b replications, the
yield corresponding to ith treatment in the jth blocks is missing. Show that

(a) the estimate of the missing yield is given by

(b Bj +vT; — G)?'
b-Dv-1

X =
(b) the bias in estimated treatment sum of square is given by

bias = (Bj + v T; — G)*/v(b — D*(v — 1)
() the loss in efficiency due to missing yieldis [1 + (v — 1)}(b — DI

131. In a BIBD (v, b, 1, k, A), the yield corresponding to the ith treatment in the
jth block is missing. Show that
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(a) the estimate of the missing yield is given by
. AVB; — kQJf +K2Q
(k — )Y(Av — k)
where ij is the sum of Q’s over treatments of the jth block,
(b) the bias in the estimated adjusted treatment sum of squares is given
by

k(B; — Q| + kQ;)°
k—DAv—k? "~

In a binary block design with parameters v, k|, ko, ... ky, 1y, 12,..., Ty, the
yield corresponding to the ith treatment in the jth block is missing. Show
that the estimate of the missing yield is given by

Bj - Z Z npjhpst + kj E hisz
s=1

p=1 s=1

v v ] v
kj -1- kjhii + Z hisnsj + Z Np; (hpi — I(— Z hpsnsj)
s=1 p=l\ ) s=l

and that the bias in the estimated adjusted treatment sum of squares is given
by

bias =

=

. ki—D. B, ?
bias = -
1as j X : 1

where N = [n;;] is the incidence matrix of the design and (h;;) is any g-inverse
of the C-matrix of the design. Hence deduce the corresponding results for a
RBD and BIBD.

Suppose the yield corresponding to the ith treatment in the jth row and k-th
column in a v X v Latin square is missing. Show that

(a) the estimate of the missing yield is given by

. VRj +vCy + vT; — 2G

X =

(v-I)v-2)
(b) bias in the estimated treatment SS is given by
. [Rj + Cx + (v — DT; — GJ?
bias = >
(v=2)v—-1)

(c) the loss of efficiency due to the missing yield is

[14+ v —=Dv=2)]"

Consider a Youden Square design whose columns form blocks of a SBIBD
(v =b, r =k, ). Suppose the yield xjj = x corresponding to the ith treat-
ment in the jth row and kth column is missing. Show that
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(a) the estimate of the missing yield is given by
% = )\(I'Rj + VCk — G) + eri - TQ;(
B r(r— 1)(r —2) ’
(b) the bias in the estimated adjusted treatment SS is given by

(v — DIAIR; + vCx — G) + r(r — D(rQi — QI

bias =
1as vid(r — 13 (r—2)?

whenR;, Cx, G, Q; have usual meaning and Q, = sum of Q’s over treatments
in the kth column.

In a v x v Latin square design, the first row contains treatments in such way
that the ith treatment occurs in the ith column, i = 1,2, ..., v, and the first
row is missing. Showing that the yields in the first row are estimated by

. v+ T)—-2G .
{i=———m1i=12,...,v
v(v —2)

and that the bias in the estimated treatment sum of squares is given by
bias = [c; + (v — DT; — G]>/v(v — 1)(v = 2)%.

In a randomized block design with r blocks and v treatments, the yields of
treatments 1 and 2 in the first block are mixed up and their total yield u
is only known, Estimate the mixed up yields and show that the bias in the
estimated treatment SS is given by

bias = (T, — T»)?/2(r — 1)?
and that the loss in efficiency due to mixing of the yields is
[14v—=1)r-D

Obtain the efficiencies of the following designs, the efficiency being defined
by p/n t(X’X)~!, where p = no. of objects to be weighted, n = no. of
weighings and X is the weighing design matrix:

1

:1 1110
1101

(@ X={1 11, b X=
Lo 1011
| 01 1 1

-1

Let Hy_; be the matrix of (n — 1) rows and p columns with elements +1
or —1 such that H,_,Hy_; = (n — 1)I;. Prove that the efficiency of design
E .
X = [H‘P l]ls(n— I)(n — 1 +p)/n(n — 2+ p).
ne
Let H,_; be the matrix of (n — 1) rows and p columns with elements +1
or —1 such that H,_|H,_, = (n — DI,. Prove that the efficiencies of the
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weighing design

o) x=[§':_l] and (i) X=[f{‘f’l]

are respectively given by

(m=DHo-1+p)/—1+nn—1-r+pr)
and

p(n — D)/[p(n — 1) + r(p — D].
For any weighing design X involving n weighings of p objects, prove that
var(w;) > oz/n.
For a weighing design X involving n weighings of p objects, prove that the
variances of all the estimated weights are minimum if and only if X’X = nl,,

In a spring-balance weighing design X, there are v objects and the number of
weighings are b. Let k objects weighed in each weighing so that each object
is exactly included r times and each pair of objects is included A times. Show
that the variance-covariance matrix of the estimated weights is given by

W) = S S S ] P
var (W) = (r—)\)v (r— Mk w |0

Defining the efficiency of a weighing design X as p/n tr(X'X)~!, where
p = no. of objects weighed, n = no. of weighings, show that the efficiency
of the above design is Ki(r — N)/(k — \).

A weighing design X is said to be optimal, i.e., one having the maximum
efficiency if the value of |X'X| is maximum. Show how to construct a spring-
balance weighing design involving n weighings of n objects of maximum
efficiency in the above sense with the help of a Hadamard matrix H,,; of
order n + 1. Hence, construct a spring-balance design involving 3 weighings
of 3 objects of maximum efficiency.

Consider a spring-balance weighing design X = N’ , where N is the inci-

dence matrix of a BIBD (v, b, r, k, A\). Show that the variance of the best

linear unbiased estimate of the total weight of all objects is o%v/rk.

Let s=p", where p is a prime and n a positive integer and de-

note the elements of GF (s) by u, = 0, u; = l,u3 = x%, ..., uy_| = x*72,

where x is a primitive root of GF (s). Construct the square

Li,i=1,2,...,s — | by filling its (a, B)th cell by the subscript of the ele-

ment uiu, +ug,a, B =0,1,2,...,s — 1. Prove that

(i) L; is a Latin square,i=1,2,...,s— 1, and

(i1) the Latin squares Liand L, i #j = 1,2, ..., s — 1 are orthogonal.

(Continuation). Prove that

(i) the a-th row of Ly, is the same as the (a + 1)-st row of
L; and the last row of Ly, is the same as the first row of
L,i=12,.,s—2,a=1,2,...,s 2.
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(ii) If in the Latin square Li,i=1,2,...,s — 1 the subscript in the
cell (o, B), 1 < a, B <s— 1isj, then the subscript in the cell (a +

1,B+1)is
0, ifj=0

i+l ifj=1,2,...,5s-2
1, ifj=s— L.

147. Construct the key Latin squares in the set of mutually orthogonal Latin
Squares of sides (i) 5, (ii) 7, (iii) 8, (iv) 9, (v) 16, (vi) 25.

m
148. Let s =[] pi¥, where pi,pa,...,pm are distinct prime numbers and
i=1

er, €, ..., ey are positive integers. Let n(s) = min(p;*', po%2, ..., pm©™).
Show that exactly n(s) mutually orthogonal Latin squares of side s can be
constructed.

149. Construct 2 mutually orthogonal Latin Squares of side 12.

150. Prove that a BIBD with the following values of parameters can always be
constructed:

v=E"" -1/ - 1)
s ™ - 1), (sET - 1)
(set! — IXst = 1)...(s ~ 1)
(s™ = DE™ ! =1, (s - 1)
T EDEET D). G-1)
k=6 = 1)/s = 1)
™! = DE™2 - 1)L (s™EH — 1)
TS )21 =)

1]

where s is a prime or a power prime and m and g are positive integers and
I<g<m-1.
151. Construct a BIBD with parametersv=b=13,r=k=4,A = 1.

152. Prove that a BIBD with the following values of the parameters can always
be constructed:

v=s"

b sTTEGS™ — DE™ ! — 1)L (s™ET — 1)
(s8—1)s&-t—=1)...s— 1)

k=st

M= )™ =)L (™ — 1)
T (sE—IXsEl = D)...(s— 1)
(s™ ! — (™2 = 1), .. (s™EH — 1)
(sl — 1)t 2=1)...(s = 1)




EXERCISES 83

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

where s is a prime or a power prime and m and g are positive integers and
I<g<m-1

LetB;,i = 1,2, ..., bdenote the blocks of a BIBD (v, b, r, k, A). Form the
blocks B}, i=1,2,...,b such that B;‘ contains treatments which do not
occur in B;. Show that the design formed by the blocks BY,i=1,2,...,b
is a BIBD with parameters

Vi=v,b*=b,rf=b—-rk*=v—-k,A=b—-2r+A.

Let D be the given SBIBD with parameters v = b, r = k, A. Consider the
residual design D, obtained from D by omitting one block from D and all
its treatments from the remaining blocks of D. Show that D; is BIBD with
parameters

V]=V—k,b1——‘b—1,r|:r,k1=k—)\,)\l=)\.

Let D be the given SBIBD with parameters v = b, r = k, A. Consider the
derived design D, obtained from D by omitting one block from D and
retaining all its treatments in the remaining blocks of D. Show that D, is a
BIBD with parametersv, =k, b, =b—- 1, n=r—-lLkx =AM =A- 1
Give the constructions of the following BIBDs:

(i) v=st,b=s’+sr=s+ 1, k=sA=1,

(ii) v=b=¢+s+Lr=k=s+1,A=1,

where s is a prime or a power prime.

Prove that a BIBD with parameters v =06s+3,b= (3s+ 1)(2s+ 1),
r=3s+ 1,k =3,A =1 can always be constructed where s is any posi-
tive integer.

Prove that a BIBD with parameters v ==6t+ 1,b=1t(6t+ 1),
r=3tk=3,A=1, where 6t+ 1 is a prime or a power prime and t
a positive integer, can always be constructed.

Prove that a BIBD with parametersv=b=4t+3,r=k=2t+ 1, A =1,
where 4t + 3 is a prime or a power prime and t a positive integer, can always
be constructed.

Prove that a BIBD with parameters v =4t+ 1,b=8t+2,r=4t,
k = 2t, A\ = 2t — 1, where 4t + | is a prime or a power prime and t a positive
integer, can always be constructed.

Prove that a BIBD with parameters v = 12t+4,b = (3t + 1)(4t + 1),
r=4t4+1,k=4,A =1, where 4t + 1 is a prime or a power prime and
t a positive integer, can always be constructed.

Construct the following BIBDs:

(1) v=9b=12,r=4k=3,A=1

(i) v=b=13r=k=4,A=1

(iii) v=b=6lr=k=5A=2

(iv) v=15b=35r=7k=3A=1
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) v=13,b=26r=12,k=6,A=5

(vi) v=8b=14r=7k=4A=3

(vii) v=28,b=63,r=9k=4,Ar=1

Prove that a Youden square can always be constructed from a SBIBD.

Prove that the number of Youden squares that can be constructed from
a SBIBD with parameters v =b,r =k, \, is greater than or equal to
kitk — Do 12

Prove that a PBIBD with the following values of the parameters can always
be constructed:

v=[6E"" =D/ = DI-1=s6" - D/is— 1)
b=¢(m,gs)—Pm-—-1,g—1,s)
r=dm-1,g—1,s)—db(m-2,g—2,5s)
k= (s = /(s — 1)
n =s*G""—s—Dm=s—1,
AM=dm—2,g-2,5)—d{m—3,g—3,5),
A =0
n—m-—1 n n 0
Pl:[l n22 02]’ P2=[0' nz—l]
where s is a prime or a power prime and m and g are positive integers with
I<g<m-1L
Prove that a PBIBD with the following values of the parameters can always
be constructed.
v=st,b=s"r=s"" k=t
M=0A=s"Zn=s~1,m=st—1)

_ nl—l 0 _ 0 m
Pl_[ 0 nz]’ Pz_[nl nz—-nl—l]

where s is a prime or a power prime and m and t are positive integers and
1<t<(s"=1/s=1).

Prove that PBIBD with the following values of the parameters can always
be constructed:

v=s"-1,
b=d¢(m,gs)—dm—-1,g—-1,s)—dm—1,g,5)
k=58

r=dm—-1,g—1,8)—db(m—2,g—2,s)
n=s"—-sn=s-2
M=¢m—-2,g-2,5)—d(m—3,g-3,5)
AM=0
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_ n—m-—1 m _lm 0
Pl—[ 15] 0], Pz_[O ng—l]

where s is a prime or a power prime and m and g are positive integers with
l<g<m-1

168. Prove that a PBIBD with the following values of the parameters can always
be constructed.

v=b=pq,r=k=p+q—-1.
n=q-lm=p-—lLn=p-)g-1
M=qgh=p =2,

[q—-2 0 0 ]
Pp=| 0 0 p-1

L 0 p-1 (p—1@-2)]

0 0 g-1 ]
P, = 0 p—-2 0

lg—-1 0 (p—2)q—-1)

[ 0o 1 q—-2
P3= 1 0 p-—2

14—2 p—-2 (p—2)q-2) ]

where p and q are integers greater than 2.

169. Prove that a PBIBD with the following values of the parameters can always
be constructed.

v=b=pqr=k=p+q-2
n=q-lm=p—-1lm=(@p-0@q-1)
)\,——-q—2,)\2=p~2,)\3:2

P, P,, P; having the same values as in Exercise 165, where p and q are
integers greater than 2.

170. Prove that a PBIBD with the following values of the parameters can always
be constructed.

v=p=pir=k=3p-2
n=m=m=p-—lm=0p-(p-2)
7\1=)\2=)\3=p+2,)\4=6.

p—2 0 0 0
_ 0 0 1 p—2
Pi=1 9 1 0 p—2 ’
0 p-2 p=-2 (p=2(pp-3)
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0 0 1 p—2
P, = 0 p—-2 O 0
270 0 0 p—2
(p-2 0 p-2 (p—-2p-3)]
0 1 0 p—2 ]
poo| 1 0 0 p—2
T1 o0 0 p-2 0 '
p—2 p-2 0 (p—2(p-—-3)]
0 1 1 p—-3
_ 1 0 1 p—3
Pe=1 4 1 0 p—3
[ p—-3 p-3 p-3 p?—6p+10

171. Construct the following PBIBDs:

®

(i)

(iii)

(iv)

V)

v=10,b=5,r=2k =4,
n1=6,n2=3,)\|=1)\2—0
3 2 4 2
b P2=l ]
v=8b=6,r=3k=4
n=3m=3n=1
M=LAN=2,M=0

o -
, Pp=

v=12,b=9,r=3,k=4.
n1=9 n2=2,)\1=1,)\2=0

6 2 90
Pi=[, b P=[y |]

P, =

P =

- O
SO N
[

|

Py =

SO o= O

0
2
1
3
0
0

1
SWwWo OO0

v=b=8r=k=3,n =6,
n2=1,)\|=1,)\2:0,

4 1 6 0
v=b=9%r=k=5n=2,nm=2,
n3=4,)\1=3,)\2=3,)\3=2.

100 002
Pp=1|0 ,Pb=]010], Py=
0 202

P

0
1
1

[\ B ww]
[ (SIS ]

1
0
1

1
1
1

CHAPTER 2

].
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172.

173.

174.
175.

176.

177.

178.

179.

180.

181.

182.

(Vl) v:b=9,r=k=4,n1:n2=2,n3:4,
A = Ay =1, A3 =2 and Py, P, P; same as in (v).

(vii) v=b=9r=k=7,n=ny=n;=n =2,
)\[:)\22)\3=S,>\4=6aﬂd

1 000 0 0 1 1
00 1 1 0100
Pe=lo 7000 P=|1 00 1
(01 1 0] (101 0
01 0 1] [0 1 1 0]
1 0 0 1t 1 01 0
Pi=loo 10" ®=|1 100
(11 0 0] (0 0 0 1

Construct 8 blocks of 4 plots each confounding the interactions ACB,
BCE and ABDE in a 2° design. Which other interactions are also con-
founded?

Construct 3 blocks of 9 plots each confonding the interaction AB*C? in a 3°
design.

Construct a (3%, 3%) design confounding the interactions AB and BC.

Construct a (3%, 3) design achieving a complete balance over the 2-factor
interaction.

Construct 4 replications of (3%, 3%) design achieving complete balance over
first order and second order interactions.

Construct a (1/4)-th replicate of a 25 design with factors A, B, C, D and E.
Write down the different alias sets of factorial effects. Take ABC and ACDE
as defining interactions.

Construct a half replicate of a2* design in blocks of 4 plots each, confounding
the interaction AD and using ABCD as the defining interaction.

Construct a half replicate of a 2° design in blocks of 4 plots each, confound-

ing the interactions BE and CDE and using ABCDE as the defining inter-
action.

Construct (1/4)-th replicate of a 2° design, confounding the interactions
ACE and ACDF and taking the interactions ABC and ADE as the defining
interactions.

Construct a (1/3)-rd replicate of a 3 design, taking P(111) as the defining
pencil. Write down all the alias sets of pencils.

Construct (1/3%)-th replicate of a 3° design, using P(11111) and P(10011)
as the defining pencils. Write down the pencils on which information is lost.
Write down the aliases of the pencil P(11101).
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Construct a (1/3)-rd replicate of a 3* design in blocks of 9 plots each, using
P(1112) as the defining pencil and confounding the pencil P(1011). Which
other pencils are confounded?

Construct a (1/3)-rd replicate of a 3* design in blocks of 3 plots each, using
P(1110) as the defining pencil and confounding the pencils P(1011) and
P(1101). Write down the alias sets of pencils which are also confounded.
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SOLUTIONS

Consider £y, £'A'y, £ GA'y. Since
HL'y) = £ A0,
(L A'y) = £A'A0,
HEGA'y) = £GA'AS,
it follows that £ A0, £A’AB and £ GA’A0 are estimable.
Let 0 be any solution of
Ay = A'A0,

then the BLUEs of £'A0, £'A’A0 and £'GA’A® are given by A0, £AAD
and £'GA’A@ respectively. Let 8 = GA'y, where G is a g-inverse of A'A.
Then,

(1) The BLUE of £ A0 is £ AGA'y.

var(£' AGA'y) = o2l AGA'. AG'A'L
= g20/(AGA')?£, since AGA' is symmetric
= g2¢'AGA'L, since AGA’ is idempotent.

(i) The BLUE of £A’A0 is £/A’'AGA’y = £'A’y, since AG is a g-
inverse of A, and var (£'A’y) = 02€'A’A£. Note here £isanm x 1
vector.

(iii) The BLUE of £GA’A0 is £GA’AGA’y = £'GAy, since AG is a
g-inverse of A’, and var (£’GA’y) = 020 GA’AG'L.

Clearly,
rank (A’A) < rank (A’A, £). ¢}

Now,

rank (A'A, £) = rank (A, £) [g 0] < rank (A', £) )

I

But, a necessary and sufficient condition for the estimability of £ is that
rank (A") = rank (A’, £). Thus from (2), we get

rank (A’A, £) < rank (A') = rank (A’A). 3

Then, the result follows from (1) and (3).

89
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3. Here Z(y) = A0, where
1 01 1
A=]10 1 1], and 06=1}2
1 01 3

Now b; 6, + by6; + b36; is estimable iff
rank (A") = rank (A’, b),
i.e., there exists k' = (k;, ka, k3) such that b = A’k, i.e. iff

1 0 1 k;
b=]10 1 0]}k
1 1 1 ks

i.e.iff b, = k; + k3, by = ks, b3 = k; + ky + ks, i.e. iff by = b; + by. Sup-
pose by 0; + by8, + b36s is estimable. Then its BLUE is given by

blél + bzéz + b363,

where él, 62, and 63 are any solutions of A’y = A’ Ad. Now,

1 0 17y 2 0 271

01 0||lyl=]011}}2

11 1]y 2 1 3|3

yi +ys =20, +20;
)’2=62+63

yi+y2+y3 =26, + 0, +30;
A solution of the above equation is
B3 =0, 0=y, 0, =(y1 +y3)/2.

Hence, the BLUE of the estimable b, 6, + b,6; + b38s is (byy; + 2byy>+
biy3)/2 and its variance is o%(b? + 2b3)/2.
An unbiased estimator of o2 is given by (y'y — &’A’y)/(n — r), wherer =
rank (A). Here n = 3, r = 2; hence an unbiased estimator of o2 is given by
yy— Ay
3 o yit+y3
=Z¥i2—(91,92, 63) y2
! yit+ty2tys
= Zyg ~Bi(y1 +y3) — B2y, , since B3 =0
(y1 +y3)?
RIS AR R L LA
=y + 23+ 23—y~ 203 — ¥ — 2y3)/2
= (7 = 2y1y3 +¥3)/2 = (yi = ¥3)*/2.
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4.

If we can find a vector ¢ such that b = A’c, then b’ is estimable and
¢’y is an unbiased estimator of b’@. Consider b0 = 6, — 6,, i.e. b’ =
(1,-1,0,0,0,0). Hence from b = A’c, we get

1 [ ¢ +cs
€2 +Ce
C3
cr+cr+cy
C3+c¢y
L O ] L ¢ +¢e

—

cooc o |

This gives¢) +¢5 = 1,¢3 =0,c4 =0,¢) = —cp,¢5 = —cg,and ¢y + Cg =
—1. Thus, we get a solution ¢c; =k,cp = —=k,c3 =0,¢c4 =0,c5 =1 — Kk,
c¢ = k — I, where k is any constant. Incidently we see that there are many
unbiased estimators of 6; — 6,. Thus an unbiased estimator of 6, — 6, is
given by

ky; —ky: + (1 —k) ys + (k = 1) yg,
for any constant k. The variance of this estimator is given by

V = c?[2k* + 2k — D}
= 20%(2k* = 2k + ).

Then,

dv
* = 2044k — 2) = 0, which gives k = 2.

) d’v 5 . . .
Since el =8c° >0, V is minimum at k = 2. Thus, the BLUE of

6; — 0, s given by
2y1 =2y2—ys+ys

and its variance is 1002
Now let us consider 0; + 6, = b'9, where b’ = (1, 1,0, 0, 0, 0). Here
0, + 6, will be estimable if we can find ¢ such thatb = A'c, i.e.

¢)+¢s
¢y + Cq
€3
ci+crtes |’
Cc3+Cq
C5 + Cq

SO O DO e

e, cp+cs=1,co+ce=1,¢3=0,c4=0,¢c5+¢c,=0,and ¢, +¢; =
0. We then get

cp+cs=1
—C)—cs=1
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i.e., c; + ¢s = —1, which is not possible. Hence, we cannot find ¢ such that
b = A’c. Thus 9, + 6, is not estimable.
Here

—_0 0O -
===
co~co
O — O - -
S = —o o
—_-—_ o oo

0 0 00

Denote the column vectors of A by e}, o, a3, a4, &5 and ag. Then, we
can easily see that @) + oy + a5 = a3 + a4 + ag. Hence rank of A is 5.
Further A’y = A’A@ gives

Y1+y5=2@1+é4+66 (1)
Y2+Yye = 20, + 64 + B )

ys = 03 + 05 A3)
)’I+Y2+Y4=61+@2+364+65 (4)
yitys= é3+ 64—}-265 (5)
ys+Ye = B, + 6, + 28. (©6)

Put 8¢ = 0, then from (1), (2) and (6), we get

b1 = (y1 — y2 +3ys + ye)/4
2=(=y1 +y2+ys+3ys)/4.

Substituting the values of 8, in (1), we get

[==)

s = (y1 +y2— ys — ¥6)/2.
From (3) and (5), we get y4 = 84 + 85, which gives
Bs = (—y1 — y2 + 2ya + ys + ¥6)/2.

Further, from (3), we get

B3 = (y1 +y2 +2y3 — 2y4 — y5 — ¥6)/2.
Then, SS due to regression when 0’s are fitted is equal to

SSR = B1(y1 +ys) + 02(y2 + y6) + O3y
+ 84(y1 + y2 + ya) + Bs(y3 + ya) + B6(ys + o)
= (y1 —y2 +3ys + ye)(y1 + ys)/4
+(=y1 +y2+ys + 3ys)(y2 + y6)/4
+(y1 +y2+2y3 = 2ys — y5 — ye)y3/2
+(+y2—ys —¥e) (Y1 +y2 +y4)/2
+(=y1 —y2+2ys+ys +¥6) (¥3 + ya)/2
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= [3y? + 3y2 4+ 4y2 + 4y2 + 3y2 + 3y2 + 2y1y2 + 2y1ys
—2y1y6—2y2ys + 2y2ys + 2ysyel/4.

Hence an unbiased estimator of ¢ is given by

(T y? —SSR)/(6 —5) = £ y* — SSR
= (=y1 +y2+ys — y6) /4.

5. Here
r 2w . 2w
€Oos —  SIn —
6 6
47 . 4w
= | cos — sin—
L cos2w sin2mw |
Hence
- Y 2w . 2%
cos—6—---cos21'r Ccos — sm?
AA = :
. 2w . ) |
sin —= -+ -sin 2w cos2m  sin2mw
2 2
Z cos? __TE Z cos? ll sin %
= 2 2 2
Zcos——msmﬂ ZS‘" ll
L I 6 6
_[3 V3
= 3 3 ,
and
_ 1 [V3 -1
WA = — :
23 -1 V3
Also,
i
2 yi cos il
Ay = 6
271

2y sm—g—
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Thus, the BLUE of 0 is given by

5 2mi
R 1 3 -1 Yi €08 =~
b =(AA)"AYy = 7 [‘/; ﬁ} 26_
W3- . Zy; sinll
6
27 2
o «/_Ey,cos7—2y,sin—%
- 2mi 2mi
23 V3x ¥ sinll—)lyi cos—’IE
6 6
Further,
A - I [V3 -1
var (0) = c*(A’A l:oz—[ ]
9 (A'A) WE J3

Hence, var (8,) = var (8,) = 62/2 and cov (8, ;) = —a2/2/3.
Let X' = {X;,X2, ..., X}, ¥ = {y1,¥2, ..., yn} and 2’ ={z;, 2y, ..., 2,}.

Then
X Enl 0
0y
ElYy|= 0 Enl [ ] s
2 6,
nl nl
so that A = |: m . Hence,
=n|:1 2j|,rank(AA)
and

l —l_1 2 -1
(A’'A) “37.[—1 2].

Therefore the BLUE of 0 is given by

R X
0=@A)'A |y
z
10 2 -1][Bw 0 En]|}
“am[-1 2] 0 EBn Eu]|]
_17 2 -1[x+2
T3n|-1 2] Y+Z
_ 1 [X-Y+zZ
T 3n | -X+2Y+2Z
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where X = Z xi, Y = X y;, Z = X 7. The variance-covariance matrix of 0
is given by

2
A _ 2 ’ —1_9-_ 2 —1
var(0) = oc*(A'A) = n [—l 2].

Now,

X
N 1

SSR=0'A'}y ::{;[(2X~Y+Z)—X+2Y+Z)][)Y(i§:|
z :

1
= Tn[(ZX Y +2)X+2D)+ (=X +2Y +Z)Y + Z)]

]
= T[ZXZ—YX+ZX+2XZ—YZ+ZZ-XY+2Y2
an

+ZY - XZ +2YZ + 7%

1
= T[zxz +2Y2 4272 — 2XY 4+ 2XZ + 2YZ)
an

2
= T[X2+Y2+ZZ—XY+YZ+XZ],
an

2
SSE = Z x}+Z y}+X z?—;;(X2+Y2+ZZ—XY +YZ + XZ),

and an unbiased estimator of o is given by

52 — SSE
T 3n-2 )
Zx2+Zy?+XT ZZ—T(X2+Y2 + 2> XY +YZ + XZ)]
_ 3n
- 3n—2 ‘
7. Let X' = {x1,%X2, ..., X%}, ¥ ={yi.y2,....yn} and 2" = {zy, 25, ..., 2,}.
Then
X Enl 0 0
ElYy | = 0 En [9;]
z En  —Eun
Hence
Eni 0
A= 0 E.i R
Enl _Enl

2 - ol T2
N Y IRa Ly
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and rank (A’A) = 2. Therefore

. X
0=@A"A |y
z

172 17[Ew 0 En]|%

Tt 2J[ 0 Ew Euf|?

1 [2X+Y+Z
X+2Y-Z|

" 3n
where X = Tx;, Y = Xy;, and Z = Tz. Further,

var (6") = cX(A’A)™!

_dif2 1
BETYREAR

X
. 1
SSR= 0'A’ | y =T[2X—Y+Z,X+2Y+Z][§+§]
an -
z

2
= E[X2+Y2+ZZ+XY—YZ+XZ]
and
SSE=ZXx!+Zy;+ X7 —SSR.

Hence, an unbiased estimator of o2 is given by

2
[Zx?+Zy?+5 ziz——%H(X2+Y2+ 724+ XY -YZ + XZ)]

2
7= Gn—-2)
8. Lety, = {yi. Y12, .- - Yinh¥s = {y21.¥22, ... Yuhiy3 = {y31, y32, ...,
Yan}, and 2’ = {y|, 2, y3}. Then, we have
Hz) = A0,
where
Enl Enl En[ 9|
A= Ey 0 En »0: 6,
0 -2E; Eu 03
We find
2 1 2 i 14 -5 -1t
AA=n|l1 5 —-1|,AA'=~-| =5 2 4
2 -1 3 M1 4 9
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and

Yi+ Y,
Az = Y, - 2Y3
Y, + Y+ Ys

where Y| = X yjj, Y2 = Zyy;, and Y3 = Lyy;. Therefore, the BLUE of 0
is given by
2Y, +3Y, - Y;
0=AA)"Az=- MERE
D12y, —2Y,+Y;

and the variance-covariance matrix of 0 is

. o2 14 -5 —11i
var() = — | -5 2 4
Rl 4 9

Further,
A ]
SSR = §'A'z = E(SY% + Y24+ Y3 44Y,Y)
and
2 | 2 2 2
SSE = BX yj — —(SY{ + Y3 + Y3 +4Y1Y2).
Hence an unbiased estimator of o2 is
6% = SSE/(3n — 3)
|
=[ZTy; - ;(SYf + Y24+ Y2 44Y,Y)1/30n = 1),

since rank (A'A) = 3.

9. Let y denote the vector of observations. Then clearly
[1 0 0]
010
0 0 1 0,
A=t 1 0}, and®=| 6
I 0 1 t
01 1
e
Then, we find
2 11 | 3 -1 -1
AA=2|1 2 1|, AN "'==|-1 3 -l
L1 2 811 -1 3
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and rank (A'A) = 3. Hence, the BLUE of 0 is given by

A 1'3 -1 -1

b=-|-1 3 —1]|AYy
8l-1 -1 3
1'33{,—3(2—3(3
=-| =Y +3Y2-Y;3 |,
SL-Yi- Y243y,

i i 1
where Y; = Y yij, Y2= Y Yij, and Y3 = ) yiir.
1.j=0 ij=0 i.j=0

Also, the variance-covariance matrix of 9 is given by

X o2 3 -1 -1
var(0)=—8— -1 3 -1
-1 -1 3

Further,

“ 1
SSR=60"A'y = §[3Y| -Y2—-Y3, Y, +3Y, - Y3,

Y,
=Y -Y,+3Y3]| Y,
Y3

= %[3Yf +3Y5 +3Y: —2Y,Y2 — 2Y,Y; — 2Y,Y3]
and
SSE = (Yoo + Yg10 + Yoor + Y110 + Yior +¥in)
- %(3Yf +3Y5 4+ 3Y3 - 2Y, Y, — 2Y, Y3 — 2Y,Ys).
Therefore, an unbiased estimator of o is
6% = [yioo + Yo10 + Yoo + Yiro + Yior + You + ¥

1
- g(3Yf +3Y3 +3Y3 — 2Y, Y2 — 2Y, Y, — 2Y,Y3))/4.

10. Lety, ={yi,¥12, ... Y Yo ={y21, ¥22, - . ., Y} and y3 = {ys1, y32, . . .,
yan). Then

Yi A
Ely:2 | =1]A2 10,
y3 Az
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where
1 2 3] 2 3 17 3 1
1 23 2 3 1 31
A= A= Ay =
|12 3] (2 3 1] |3 1
Then,
A'A = AlA) + AJA; + AjA,
12 3 4 6 2 9 3 6
=nl|l2 4 6{+n|6 9 3|+n}3 | 2
13 6 9 2 3 1 6 2 4
(14 11 11
=n{ 1l 14 11 | =n[3]5+ 11Es].
L1114
Hence,

1 11
(A’A)~! = —[I3 — —Es3], and rank (A’A) = 3.
3n 36
LetY), =E\y, Y, = Einy2 and Y3 = E;,y3. Also
Ay = Aly) + Aby: + Ajys

Y, 2Y, 3Y; Y +2Y; +3Y3
=[2Y, |+}{3Y,|+]| Y3 [=]2Y)1+3Y,+ Y3
3Y| Y2 2Y3 3Y| + Y2 + 2Y3

Hence, the BLUE of 0 is given by
6 =(A'A) Ay
1 Y, +2Y,+3Y;

1
= %—[13 — 3_6E33] 2Y, +3Y, + Y3
on : 3Y, + Y, +2Y;

i (Y, + 2Y, +3Y;
=—12Y,4+3Y24+ Y3 -—TgGEy,
[ 31+ Y2 +2Y;

where G = Y| + Y, + Y3. Hence

11
Y;+2Y2+3Y3———6-G

N 11
0=— 2Y|+3Y2+Yz—FG

11
3Y|+Y2+2Y3——6—G
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The variance-covariance matrix of 0 is

2
Vaf(9)=0—|:13 11E33]

36
Also
AT 1 11
SSR=0'A y= :’;_l; (Y] + 2Y2 + 3Y3)(Y|+ 2Y2 +3Y3 - FG)
11
+Q2Y, +3Y2+ Y3)QY, +3Y2+ Y3 — ?G)
11
+By1+ Yo +2Y3)BY + Yo +2Y5 — FG)]
1
= ﬁ[(Y. +2Y; +3Y3)2 + QY + 3Y, + Y3)?
+(3Y1 = Y2 +2Y3)% - 11G?],
and

3 n
X 1

SSE = Zzyﬁ - E[(Yl +2Y, +3Y)7 + (Y, +3Y, + Y?
i=1 j=I =

+ @Y + Y2 +2Y3)? — 11G?).

Therefore, an unbiased estimator of o2 is given by

1
A2 2
6° = =D E E yIJ (Yl +2Y, 4+ 3Y3)

+ QY1 +3Y2+ Y3) + (3Y) + Y2 + 2Y3)* — 11G?].

1 T 1
= T Ty (Y24+Y2+YY].
el Yij n( 1+ Y2+ Y3)

Li=1 j=I

11. (i) Let ¢/ be an estimable parametric function. Let ¢’ be the BLUE of ¢0.
To test '@ = k, where k is any constant, we use t test, where
€0-K
= ——o—-——withn—rd.f,
6/ (A’A) ¢

where r = rank (A’A) and Ey) =
Consider (i) Hg : 8; — 6, = 0. Thus ¢ = (1, —1) and k = 0. Also, from
Exercise 6, we have

1 2 -1
[N S ! _
(A'A) =3 [_1 2], rank (A'A) =
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and, ¢/(A’A)~'¢ = 2/n. Then from Exercise 6, we have
2 1/2
x4+ Ty 482 — EH(><2+Y2+zz+x3(+xz+YZ)

6= ,
3n—-2

where X = £ x,Y = L y,and Z = T z. Thus for testing 6; = 6,, we use

t= M with 3n — 2 d.f.,
62/n

where 8, = 2X — Y +Z)/3n, 8, = (=X +2Y + Z)/3n.
Consider (il) Hy : 0, = a6,,1.e. 6; —at, = 0.
Hence ¢ = [1, —a], k = 0. Also, from Exercise 7, we have

(AA)™ = 1 [2 l] ,rank (A'A) =2

Infl 2
C(A’A) e =2@a%—a+ 1)/3n
6—-1— X+Y+7Z

Tl x+2vy-2z |

where X =X x, Y =X y,and Z = ¥ z. From Exercise 7, we have
) 12
Ex2+2y2+)3zz—%—(X2+Y2+ZZ+XY+XZ+YZ)
3n

6’ = ’

3n-2)

Hence for testing 6, = ab,, we use
_ (B —aby
6/2@ —a+1)/3n

Consider (iii) Hg : 6; = 0. We have, from Exercise 8,

t with3n —2d.f,

83 = 2Y; = 2Y; + Y3)/n,

var (83) = a(9/n),
1 , 1/2
(ZTy; - H(SY%) + Y3+ Y3 +4Y1Y2)

3n—-1)

G =

where Y; = Z yjj, Y2 = X yj5,and Y3 = T y3;. Hence for testing 6; = 0,
we use

0
= ——  withd.f.3(n—2).

6(3/V/n)
Consider (iv)Hp : 0, + 6, + 0; = 0. Here ¢’ = [111], k = 0.
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We have from Exercise 10,
1

11
(A'A)7!' = e [13 - %533] , rank (A’A) =3

d(A'A)'e=1/12n
11
Y +2Y, +3Y; — —6—G

A 11
b=— ~ 26|,
S| 43+ s - =G
I
31+ Y2 +2Y3 — G

where Y, =X Yijs Y, =X yzj,Y3 =X Y3 Hence 61 + 62 + 63 = G/6n.
Also form Exercise 10, we have

1 1/2
zzﬁ—#ﬁ+ﬁ+ﬁ)

3n—-1)

G =

Hence for testing 6; + 6, + 6; = 0, we use
. _(G/6n
NIV

Consider (v) Hp: 8, = 6; = 0. In Exercise 10, we have found that

with d.f. 3(n — 1).

1
SSR(0,, 6, 683) = ;(Yf + Y3 + Y?) with d.f. 3 and

3 n
1
SSE=) ) yvi- ;(Yf + Y3 + Y3) with d.f. 3(n — 1).
i=1 j=1

Now, we shall find SS due to regression when 6, is fitted. Then under the
hypothesis 6, = 6; = 0, we have

i Enl
Ely2 | =| 2En |0 = A6y,
y3 3Enl
Enl
where A = | 2E,; [. Hence
3Enl
, el | I 1
AA=14nAA) "' =—, 0= — ;1 +2Y,+3Y3)
14n 14n

and

1
SSR(8)) = m(Y. +2Y, +3Y3)? with d.f. 1.
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Therefore SS for testing 8, = 8; = 0 is given by
SSH = SSR(8y, 8;, 8;) — SSR(8;)
1 1
= (Y +Y5+Y) - (i 22+ 3Y3)? with d.f. 2.
0 2

Hence to test 6, = 6; = 0, we use F-statistic, where

1 |
—(Y} + Y3+ Y3) — — (Y, +2Y, +3Y3)* | /2
Fo n 14n

[SSE]/3(n — 1)
with d.f. 2 and 3(n — 1).

12. Letx; — X =u;. Then £ u; = 0. Lety = {y;,y2,...,ya},and 0' = {a, B}.
Then E(y) = A9, where

I
I w
A=
1w
Clearly
AA = [“ 02], rank (A’A) = 2,
0 Xy
and
wn =[5 2] Av= ()
Hence,

=@ "'Ay= y :
(AA)TAY [Eui)'i/zuiz]
Thus,& =7, 8 = T ujyi/ T uiz, and their variance-covariance matrix is

24 aN-1 _ 2| 1/n 0
o (A'A) —0[0 l/Zuiz]'

Further,
SSE = T y* —ny? — BE uy;
=T(i-y -y
with (n — 2) d.f. Hence,

SSE 1

SE(&) = =2 gy
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and for testing a = 0, we use the statistic t, where

& av/n .
t= SE@) = NS CE) with d.f. (n — 2).

Similarly,

- | SSE 1
SE(B) = (n——_2—) . \/E—le

Hence for testing B = 0, we use t-statistic, where

B B/ T v?

t= SEB) = SSE/(n—2) with (n — 2) d.f.

Letxij—ii:uij,iz1,2,...,k;j=1,2,...,n.

0 = (o, B, B2, ..., Bx), and Yy = (y1,y2, ...
Then, E(y) = A8, where
(1w ouy e ug ]
1 Uy Up ... Uk
A=
|1 upm uy Ukn |
Therefore
™ n 0 0 ... 0
0 z uizj z Uity ... z UyjUgj
T 2 Tk
A/A — 0 Zuyuy; X uy oo T upjuy
_0 z ukju,j Eukjqu . X u,z(j

and rank (A’A) =k + 1.

We can write A’A as A’'A = {8 g] and hence,

S BV
(A'A) _[O S"]’

9)’n)~

CHAPTER 3
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where
> u%i z U|jU2j D)) uljukj_
= Uil z U%j ... Z uzjukj
S =
L Y UgjUyj z Uiy ... z ulz(j B
Then,
0 =(A'A)'Aly
— > )7 -
h)) uijyj
_J1/m 0 . _ y
10 s . S~'z
RN

where 2/ = (Z uyjyj, T ugyj,..., I uyy;). Hence & =y, and B =S~'z.
The variance-covariance matrix of 0 is

e 1 0
G2(A'A) lzoz[o/n s—l}

Hence
var (&) = oz/n, cov (&, ﬁ) =0,
var (ﬁ) =027
To test B; = 0, we use t-statistic, where
t= B
SE(B;)
The SE (B;) is given by
SE(f;) = 6 /i, where S~! = (cy), and
& = {2 Y - (@, ﬁ)["zy]] /n—k=1)
=[Zy?—ny* - @F2)/n—k—1)
=[(Zy? - ng>) —2S'zl/(n —k - 1.
To test B; = B, we use t-statistic, where
(= (—B——B’)— with (n —k — 1) d.f.
SE(B; — By
The SE (B — §)) is given by
SE (B — B) = & /cii + cjj — 2¢ij,

where 6 = [(Z y2 —ny?) —z'S7'z]/(n —k — I).

, with(n—k - 1)d.f.
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This is an example of analysis of variance for one-way classification.
Let

U]
Tizzyij, i=12,..,k andG=ZXy;=ZT.
j=1

The normal equations are obtained by minimizing X (y;j — p — t)? and
are found to be

G:ml+2nifi
Ti=n”1+nifi,i=1,2,...,k

where n = X n;. Then a set of solutions is obtained by setting T n;f; = 0.
Hence, we obtain

}1 = G/n,fi = Ti/ni - G/n.

Thus, SSR = T T?/n;. Clearly the number of independent normal equations
is k. The error SS is

SSE = T y;? — T T?/n; with (n — k) d.f.

and SSR has k d.f.
To test np. + Z n;f; = 0, we find nfi + = nit; = G. Also
2

var (G) = no”.
Therefore,
12
SE(G)=n6=nl:SSE:| .
n—k
Hence to test np. + X njt; = 0, we use t-statistic, where
G G
t= = with (n — k) d.f.
SE(G) n./SSE/(n—k)
Totestty =t; = ... =ty = 0, we proceed as follows.
Under the hypothesis t; =t = ... =ty = 0, E(y;;) = \.. We then have

the following normal equation
G =nj,

which gives L*Lz G/n. Thus,
SSR(p) = G*/n with 1 d.f.

Hence, for testing t; = t; = ... = tp = 0, we use F-statistic, where

[SSR — SSR(W)1/(k — 1)
- SSE/(n — k)

_ [ET}/ni - G¥nl/(k— 1)
T [ETy? - ET/ml/(n -k

with (k — 1) and (n — k) d.f.
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We now consider the testing of t; = t; = ... = tx. Write the model as
Hyjy)=wn+t=a+t, wheret; =t —fLi=Xti/k,a=p+L

The hypothesis t; =t = ... = is then equivalent to the hypothesis
t =0,i=1,2,...,k Thus, this case reduces to the case (ii), and hence
we get the same test statistic as in (ii).

S r
15. LetT; = Zyij, Tj = zyij’ andG=XT, =X Yij-
j=1 i=l
The normal equations are obtained by minimizing XX (yj; — p—
o; — Bj)? and are found to be as
G =r1sf. +sZd; +rZf
T, =sfi+s&+2B,i=1.2,...,r
Tj=rp+Zd&+rf, j=1,2.....s.

Clearly, the number of independent normal equations isr +s — 1.
Hence,

2 T, @

T
SSR(p. o, B) = =t + —3I — = withr+s— 1d.f.
S T rs

and

IT? T, @

SSE=ZZTy? - b 4 = with (r — I)(s — 1)d.f.
i r Is
Solution 1s obtained by setting X & =0, EQJ- =0. Thus, we
obtain
R . T G, T; G
L=G/rs,dj=———,fj=——-—.
s rs r IS
To test ay =z =... =a; =0, we take Ely;) = pn+8,i=12,...,r
and j=1,2,...,s. A set of solutions for p and B’s is obtained as
T. G
p* = G/rs, Bj* = —1 — — and hence
r rs
TT;
SSR(p, B) = with s d.f.
r
Therefore for testing o) = oy = ... = oy = 0, we use F-statistic, where

_ [SSR(p, @, B) — SSR(e, B)}/(r— 1)
N SSE/(r—1)s — 1)

with (r — 1) and (r — 1) (s — 1) d.f. Clearly, the above F can be written as

IT? G?
c—— /=D
F S rs
SSE/(r— ) (s—1)

F




108

16.

CHAPTER 3

Similarly, we can easily verify that the F-statistic for testing $; =, =
... =Bs = 0is given by

¥ T2 2
[ i_ —G—] Js—1)
r IS

SSE/(r— (s - 1)

with (s — 1)and (r — 1)(s — 1) d.f.
The above results can be represented by the following analysis of variance
table.

Analysis of Variance Table

SOURCE SS d.f.
IT? G?
dueto a’s - — r—1
$ rs
T} @
duetoP’s 1_— s—1
r IS
Error * r—Des—-1
G2
Total Ty’ — — s — |
rs

* obtained by subtraction

The normal equations for estimation of ., t; and 8 are obtained by minimiz-
ing Z;Zj(yij — 1 — t — Bx;)? and are found to be
(1) Y =nj+ Z ol + BX
@) Yi=nd+nt+pBX;,1=1,2,....k
(3) ZX xyij = XL + ZiZjxjt; + BZ X Xizj,
where Y = XX Yij» X=X Xij YL = Zj Yij» and Xi, = Zj Xij-
Clearly, the number of independent equationsis 1 +k—1+1=k+ 1.
A set of solutions is obtained by setting 3 n;f; = 0. Multiply equations (2)
i
by X;./n; and add over the subscript i and subtract from (3). Then we get
X XijYij — EiYi,Xi./ni = B[):}: Xﬁ - X Xﬁ/ni].
Thus, we obtain
8 X xjj yij — Zi Xi. Yi/n;i
DD x?j - X2/

Then, from (1) and (2), we get
p=Y. -BX.
=Y -Y +BX. -X),
i} ) I >R )
where X = ZX xjj/n, Y. = EX y;/n, X;, = %, and Yi = ) _yij/ni.
j

1
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Then, we obtain
SSR(w, t, B) = Zi Y;/n; + B[ x§ — T X} /mj]
with (k + 1) d.f. and
SSE=XZy; - XY /n—B[ZEx — X[ /nj]

with(n —k — 1) d.f.

We now find the regression sum of squares where p. and 3 are fitted. In this
case the normal equations are obtained by minimizing £ (yij — . — Bx;j)°
and are found to be

Y = np +B*X
and

pID)) XijYij = XK+ B Xﬁ
The solutions are

h=Y -BX

and

Hence,

| |
SSR(p, B) = ;Yz + BT xyyy — ~CX)

| , X2
==Y +B¥(ZZx; - —)
n n

with 2 d.f.
Therefore sum of squares for testing t; =t = ... = tx = 0 is given by

SSR(p, t, B) — SSR(i, B) = T Y?/n,

I X2
+BY=x Xi2j -¥ Xf/ni] - -Y - B*2(22 xﬁ - —)
n n

with (k — 1) d.f.
We can present the above results in the form of analysis of covariance
table as follows. We note that

IZ (- Y =E Y /m—nY?) +(Zy; — T Y] /n)
X (xj— X = (T X{/m — X))+ (ZT %} — = X7/m)
LY (xj— X))y — Y)=(EX.Yi/n—nX Y )

+(ZX x5y — 2 X Y. /m).
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Let

T Y /m —nY? =Cp, I y;‘; — 2 Y?/n; = Cpe

X}/ —nX? = Ciyp, BE 2 ~ £ X2 /m; = Cyye

X Yi/ni—nX Y. =Cix T x; ¥ —  Xi.Yi./ni = Cipe.
Then one can easily verify that

s Cie

B: Clle

B* = (Ciac 4 Ci2e)/(Ciit + Ciie).
C2
SSE = Cpe — C'2e.

Ile

The SS due to the hypothesis for testing t; = t; = ... =ty = O is given by
C? C C2e)?
SSH=C22t+ 12¢ _( 12t+ IZe) )
Cie  Cin+Crie)
Hence, the F statistic for testingt) =tz = ... =ty =0is
SSH/(k - 1)

= ——— withk — 1 —k-1Ddf
SSE/n—k—1) wi and (n )d.f

Thus, we get the following table of analysis of covariance.

Analysis of Covariance Table

(one-way classification)

SOURCE [£y?> Ixy I x? due to B d.f.
Treatments |Cyy, Cioy  Ciyq
C2
Error Cye Cie Ciie C%,./Ciie Caze — C‘ZC =E|ln-k-1
l1e
(Cize + Ci2e)?
Total Cxx Cix Cin M (Cat + Caze) n—2

(Treatment |+ Cxpe  +Ci2e  +Ciie
+ Error) =

—(Cix + Ci2e)?
(Ciie + Cire)
=T

SS for testing significance of T—-E k-1
treatment differences

F for testing significance of
treatment differences

po T-B/k-1
T E/n—-k-1)

Before applying the analysis of variance, we would like to test § = 0. We
shall find in this case SS due to regression when p and ty, tp, . . ., t are fitted.
For this the normal equations are obtained by minimizing £ X (yjj — p — t)?
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and are found to be as
Y = nﬁ.+ z nifi
Y. =ni+nt,i=1,2,....k

Clearly, only k equations are independent. A set of solutions is obtained by
putting T n;t; = 0. Thus, the solutions are obtained as

p= Yn. and § = (Yi./ny) — Y
Hence, we find
SSR (1, t) = £ Y?/mi, with k d.f.

Therefore, the sum of squares for testing B = 0 is obtained as

SSR (k. t, B) — SSR(k. t) = B'[EExZ ~ £ XP/n] = C,/Cite. with
1df.
Hence, for testing B = 0, we use the F statistic where

Ch/Cie

ClZe ’
Clle)/(r1 -k—1)

with [ and (n — k — 1) d.f.

F=

(Coze —

s r
LetY =X Yij» Y, = Zyij, Y.j = Zyij, X =XX Xij»
_]=| i=1

r

S
Xi_ = Z Xij» X_j = Z Xij, )_( = X__/I‘S, Y = Y"/I‘S.
=1 i

i=}

The normal equations for fitting all the parameters ., oy, 0, ..., s,
t, t2, ..., &, B are obtained by minimizing TX (y; —p — o5 —  — Bx;j)2
and are found to be

() Y. =rfi +r2& + =F + BX_

) Y.j = rfx—i—r&j + Efi + [}X_j,j =1,2,...,8

3 Y, = Sll + E&j + st + BXi, .

“4) X Xij¥ij = X +z X.j&j + XX+ BXZX Xizj

The number of independent equations isequalto 1 +s—14+r—141 =
r + s. To obtain one set of solutions we put £&; = 0 and X1 = 0. Then we
obtain

(5) Y. =rsp+ BX,

(6) Y =rp+r&+ BX;

(D Yi. =sp + st + BXi.

(®) TT xjyij=pX + T X;G+EX G+ BEX]

Multiply (5) by X /rs, and add to (8). Multiply (6) by X ;/r and sum over
J and then subtract from (8). Multiply (7) by X;./s and sum over i and then
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subtract from (8). We then obtain

1 1 1
ZX Xij ¥ij — ;)3 XiY;j—-ZX.Yi + r_X"Y"
s S
R 1 I 1
=BIZEx - -Z X, - -Z X} +=X’].
O R
Thus, we get
1 1 1
XXy — B XY - -R XY+ XY
B = r s Is

1 1 1
TE--EX--ZX 4+ =X

r s Is
Then from (5), (6) and (7), we obtain

a =

- BX.

¢

J

=
il
- — 'r-<|

Y- p—BXy/r

A I,
ti= ;Yi. - f - BX/s.

Then the sum of squares due to regression when w, a’s, t’s and B are fitted
is obtained as
1

1 1
SSR (., @,t,B) = - Y;+-Z Y] - —Y?
r k S : s -

N | 1 1
+BAZT X - - X} - -E X} + =X,
r s ors
with (r + s) d.f. Further, the error sum of squares is obtained as

1 1 1
SSE=>:>:y§.—;zY§—-zY§+—Y%
S IS

- 1 1 1
-PIZZ K - -Z X~ - X} +=X7),
r 1o R ¢
=E, (say)
with(r—1)}s—1)—1df.
To test B = 0, we fit the parameters p, oy, 0, ..., 05 and tj, tp, ..., t.

The normal equations for fitting these parameters are obtained by minimiz-
ing T (y;j — . — o — ;)* and are found to be as

Y. =rs}1+r2aj*+sz t
Yi=rh4r+S¢, =125
Y, =sh 4o+ i=1,2,...,1

The number of independent equations is (r +s — 1). A set of solutions is
obtained by putting Eaj* = Oand Z tf = 0 and is given by

* 1 *
u=Y.,aj*_—.;Y,j-— mj=12,...,s,

Yi—pi=12...,r

@ | —

=
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Thus, the sum of squares due to regression when ., oy, 0, ..., O, t,
ta, ..., t; are fitted is given by

I I 1
SSR (p, &, ) = -X Y;+-Z Y] - —Y’
r : S : s -

with (r + s — 1) d.f. Hence sum of squares for testing 3 = 0 is obtained as
SSR(p, &, t, B) — SSR(n. @, t)
R I .
=Bz~ -2 X - -Z X} +15X’]
" iTy ) .
with | d.f. Now for testing § = 0, we apply F test, where
. 1 1 -
BASE X~ -2 X - -2 X} + 15X
- r TS . .
SSE/[(r— )(s — 1) — 1]

withland(r— I)(s—1)— 1 d.f.

Next we proceed to test t; =tp = ... =t = 0. We fit the parameters
M, Qp, 0y, ..., o and B. The normal equations for fitting these parameters
are obtained by minimizing £ (y; — p. — o — Bx;)? and are found to be.

Y. =r1s i+ I& + BX,
Y.j :rﬂ+r&j+§X,j,j =1,2,...,8
£ x; ¥y = pX. + 5 X5+ TS k.
The number of independent equations isequal to 1 + (s — 1)+ 1 =s+ 1

and hence a set of solutions is obtained by substituting Za;* = 0. We then
have

©) Y. =r1sfi+pX. _

(10) Y,j = I'}I-}-T&]‘ + BX.j’j = l,22~...,S

(1) X xjy5 = @X. + T X;& +BEZE x;

Multiply (10) by X j/r and sum over j and then subtract from (11). We get

1 ~ I
[ZX xyi — —Z XY 1 =B[EZ X} - - X]]
r I ‘
and consequently

]
LT Xiyij — ;Z X;Y;

B= i
TE X} - -ZX]
1 T b
p=Y -BX.
~ _ 1 - & -
4 =Y - - PBXj/rj=12..s

Hence, the sum of squares due to regression when ., oy, o, ..., 0y and B
are fitted is

I I
SSR(k, @, B) = - % Y;+BIZE X - -X X3
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with (s + 1) d.f. Therefore, the sum of squares for testingt, =t = ... =
tr = O is given by

SSR(p, &, t, B) — SSR(p, &, B)
1 A 1 1
=% Yi—1s Y2+ BUIE xiyij — > X% - " X2 + 15 X°)
1
~BIZT xyyi — —Z Xj1 =T, (say)
with (r — 1) d.f. Hence for testing t; =t; = ... = t, = 0, we apply F test,
where
_ T/c—-1)
E/lc-Ds-D-17

with (r — 1) and (r — 1)(s — 1) — 1 d.f. We shall now present the above test
by the analysis of covariance table. We can easily verify that

_ 1 1 _
STy - V) =3y - _EYi-I Y+ Y
1 _ 1 _
+ILEY - rsY7] + (- Y}- sY7)
= Cpe + Con + Conp
_ 1 1 _
X (xj—X.) =[x - - X/ - > X% + 15X’
S
1 _ 1 B}
+(<Z X2, —rsX?] + [£Z X? —r1sX?]
1 _
+-X X3 —rsX?]
=Cite + Ciie + Crip
D)) (ij - )_(..)(yij — Y)
1 1 o
=[ZX XijYij — ;E XY — ';2 X‘jY,j + 1S XY]
1 - 1 o
+ [;2 Xi.Yi_ — IS XY] + [;E X.jY.j — IS XY]
= Cize + Cize + Cip.

Then, we see that

B= g:?:’ and B = (Cize + C120)/(Cric + Cio)-
Hence

SSE=E=c22€_%,

T=[Cont Co - S22y, Gy

Cine+Cie Cite



SOLUTIONS 115

The analysis of covariance table is given below.

Analysis of Covariance Table
(Two-way classification)

SOURCE |[Zy? Txy X x* |duetof d.f.
Blocks C22b C|2b C|1b s—1
Treatment {Cay, Ciae Gy r—1
CZ
Error Cne Cie Ciie {Che/Cite Cope - Clze =E IS—r—s
lle
C Cl2e)?
Treatment |Cone Cie Ciy Crat Crae)” (Coa + Caze) rs—s—1
Cii +Cie c oy
12t + Croe
E C C Ciie et e
ron| +Ex FChe +4u (Ciit+Ciie)
SS for testing the significance of T=R—-E r—1
treatment differences
T/r—1

F for testing the significance of treatment
differences

F= ——m—
E/(ts —1r—5s)

18. We know that

var (§) = c2(A’A)™! = 200(A’A)™

3 3
=—12
10 i

(NS N G|

1
2
3

Hence

A
>
>
=
L
]
‘,)

—_ N

(RN Y
[\

[N RS
[—,

>
>
I

N AN
Y
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Now
2 -1 0 3
N 00
Ay=AAd=—"|-1 2 —1]|]|5
0 -1 2|2
[ 1
500
=55 |
_—1
and
) 500 | !
SSR(B):OA’y=[352]T 5
- —1
_ 13000
=
Therefore
£ SSR(B)/3 _ 13000 _ 65
T g2 92000 97

Here Z(y) = A0, where 0 = {a, B},
X}
X2
A= . . },and V =diag(d,,ds,...,d,).
I x,
The BLUE of 0 is given by
0=@AVIA)'AVy.
We find that

AV-IA = [ (/) X (xi/di)]‘

T (xi/di) T (x}/dy)
Hence, we get

, _ 1 =@x/d) -% (Xi/di)]
ABVA =3 [—z (xi/d) = (1/dy)

where A = T (1/d;) — T (x?/di) — (T (xi/d;))>. Further we have
noly — | B (i/di)
AVy= [z(xiyi/do]'
Hence,

YL [73 (x}/di) - Z (yi/d) — T (xi/d) - £ (xi)'i/di)]
T A | T (1/d) - T (xyi/di) — T (xi/di) - Z (yi/di)
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and variance-covariance matrix of 8 is given by

s L[ Zed/d) -2 (x/dy)
Va‘(ﬂ)—z[—z(xi/di) Z(/d) |

case (). x; =i, & =c%,i=1,2,..., n
Here

T (x/di) = n/c?, T x}/di = n(n+ 1)/207,
T yi/di = X (yi/i)/0?,
T (1/d) = T (1/i)/o?, T xiyi/di = T yi/o?

Hence
n{m+1) .
A:—4[ 5 E(l/l)—n]
b ! ["("; D% (/- nx yi}
n [";— l T (1/i) - n] Z(A/DZy; —nZyi/i
and
2 n(n+ 1)
var(0) = _HU [ 2 -n . }
n["—2-2 (l/i)—n] -n X/
case(ii). x; =1, d; = %%, i=1,2,...,n.
Here,
T (1/d) = T (1/i%)/a?,
T (xi/di) = = (1/i)/a?,
T (x}/d;) = n/o?,
T (yi/d) = T (yi/i®)/0?,
T (xiyi/d) = T (yi/i)/a>.
Hence
A= ——lz[nE (1715 = (T 1/i)*).
g
I i
. | NS (yi/i) — (T )L
0= i i

i2) — i I i 1 i
nZ (/) (L 1/i¥ | (g i—2>(2y7>— (= D)(E i%—)

A 0'2
O = n - [

n — (1/i)
—-T(1/i) /i
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20. Here, we have E(y) = A0, where 8’ = {0, 6,}, and

1 aj
A=([1 0
1 a3

One can easily verify that

2 -1 0
5

v-‘=§ -1 2 -
o -1 2

Also, one obtains

5\[2 O
-IA — | 2
wvn=(3)[ 5]

+y3
AVl =(—) 3 ,
Y73 [ﬁ(ya—yl)

a1 _ 30
(A'V7IA) '_(1/10)[0 2].

and

Thus, the BLUE of 0 is given by

A 3(y1 +y3)
0=01/6 |:\2/§()’3 _YI):I '

Hence,
0 = (y1 +y3)/2, 6, =V3(ys —y1)/3.

Also, the variance-covariance matrix of @ is given by

var (0) = (A'V'A)"! = [3/10 0 ]

0 15
21. Here, we have E(y) = Ap., A = E,;. Further, one can easily verify that
o (N=1D 1
v = Enm |-
Ng? [I" tNTh ]
Hence,one obtains
av-ia= MDD
o%(N —n)’
AVA)T = o*(N —n)
aN-1)"’
and
AV ly = N =1

" %N -n)
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Therefor, the BLUE of p is given by
A=@AV'ATAV!y=Zymn=y
The variance of i is given by
. et ant_ OA(N =)
var (L) = (A'VTAY " = m,
and
SEE=yV !y —6¢'AVly

—(N_”E]. y°.

Now E(SEE) = (n — 1), which gives
o (N-D

g =
N(h—-1)
Hence, the estimator of var (ji) is given by

N—n) T (yi =9

= (yi— Y

Est. var (i) = ( ~ a—1

22. Here, we have E(y) = A0, where 8’ = {{i, o} and

A’:[l | I I l],
X1 X2 X3 ... Xjp
where x; = \/—(2i —n—1)/(n+1). Then, we get
AV-! _+Din+2) 0 0 ... 0 1’
1202 a a2 a ... Q- Qap

where
a; = 2x; — X,
iy = —X + 2%+ — Xi42,1=1,2,...,n =2
8y = —Xn—t + 2Xp

Substituting the values of x; in a’s, we find that

aj=—v3a4=0i=1,2,...,n=-2
a, = V3.
Hence
Ay (n 1)(n+2)[ 1 00 ... 0 l]
1202 -3 00 ... 0 V3]
A’V"A-(n+1)(n+2) 3 _]) ’
n+ 1

- ? 3(n—1) 0
(VAT (—1)(n+2)(n+1)[ 0 (n+1)]’
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and
i
_ n+Dm+2) [ Y2
S S FEE X
¥n
DO+ yi+ya
T 120 [ V3. ")'l):].
Therefore
6 =@Av'ATh)AvTly
_ | 3(n — 1)(y1 + yn)
‘ﬁ[ﬁ(nwxyn—yo]
and

b= +yn)/2,8 =0+ Dya—y1)/2¥3 0 —1).

Further, the variance-covariance matrix of 0 is given by

Ay g=lay=1 _ 202 3(11—1) 0
var@®) = (AVA) _(n—l)(n+2)(n+1)[ 0 ("“)]

Hence

var () = 66%/(n+ (n + 2)
var (&) = 202/(n — 1)(n + 2)
cov (fi, &) =0.

We know that the value of F statistic for testing 8; = 6, = 6; = 0 is given
by

_(OAvVTyyr
~ SSE/(n—r)

Now, we are given the value of the denominator in the above value of F. We
must find the numerator. Now, from the normal equations we have

AVTly = (A'VT'A)d.
Hence,

AV 'y = 0(A'V'A)0.
We find the value of A’V~! A from

. 1
H=AV'A)' = —
var (0) = ( ) %0

— N W
N BN
W N =
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24.

We get

3 -

AVT'A=20]2
I

1 2 -1 0
2 =5|-1 2 -1
3 0 -1 2

BN

Therefore

A 2 -1 0][6
dAv'ab=[6 10 4].5| -1 2 —1|]10]=520.
0 -1 2|4

Hence, sincer = 3,

F = (520/3)/100 = 1.73.

In Exercise 20, we have obtained

. 3(y1 +y3)
8 = (1/6) ,
/ [2~/§(y3—yu)]
_ (y1 +y3)
A'Vly = (5/3) .
y=0/ 1:«/5()/3"}’1)}

Hence SS due to regression when 8, and 8, are fitted is given by

SSR(6,, 6,) = 0'A'V 'y
= 5(3y; +3y; — 2y1y3)/6

with 2 d.f. Also, the error SS is given by
SSE = y'V'y — SSR(6,, 6,)
= §<2y% +2y3 + 23 — 2y1y2 — 2y2y3) — SSR(®), 62)
=5(y; — 2y2 + y3)*/6.
with 1 d.f. Now under the hypothesis 8, = 0, we have
Hyi)=6,,i=1,2,3
so that A = Ej3;. The normal equation is then given by
AV ly = (A'VTA),.
Now A'V~ly = 5(y; +y3)/3
A'VT'A =10/3.
Hence, we obtain 6] = (y3 + y;)/2. Therefore

SSR(8)) = 6;A'V ™y = 5(y, +y3)2/6
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with 1 d.f. Hence SS for testing 8, = 0 is given by
SSR(8y, 6) ~ SSR(8) = 5(y3 — y1)*/3
with 1 d.f. Therefore, the F statistics for testing 8, = O is obtained as
__2Ays—yi)
01 —2y2+y3)

with 1 and 1 d.f.
If we wish to test the hypothesis 6; = 6,, then the F statistic is given by

SSR(6y, 6,)/2
~ T SSE/I
By +3y3 - 2y3y1)
2y —2y2+y3)?
with 2 and 1 d.f.
In Exercise 22, we have obtained

oo [yt (n+1)(yn~y|)}'
27 23— 7
and
-ty 0+ DM+2) 1 (yi +ya)
AV Y="7n [ﬁ(yn—yn)]'

Hence SS due to regression when p and « are fitted is given by

- - (n+1)}n+2)
SSR(w, @) = ¥A'V !y = T~
(b, @) Y= 22—

with 2 d.f. We now find the error SS. The error SS is

[n(y} +y2) = 2y1yal,

SSE = y'V™'y — SSR(i., a).

Now

+ D{n+2
y/V—.l =()’h)’2v---~)/n)‘u_2

122
[ 2 -1 0 0 0]
-1 2 —1 (V]
0 -1 2 0 0
X
0 0 0 ... -1 2]
(n+1)(n+2)
= —[a[, az, saey an]a

1202
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where

a =2y -y
iy = —ay; + 2¥ip1 — Yir2, 1 = 1.2,...,n =2
ap = 2)’n ~ ¥Yn-1

Hence

n—2

+n+2
@ DOF Dty + auyn +> a+lyi+ 1]
1

1202

_(+Dn+2) (n+2)
120_2 [ZYI),H-I]

yVily=

and

+Dn+2) [ & ol
SSE = ———F— Y ¥ vivin

] 1

M+DO+D) 5,
—m[n(y,ﬂn) 2y1¥nl

BEVCEI) PRI I ST
= oo | X0 ')(Xl:ya Zy,ym)

= n(y} +¥3) + 2y1¥a]
with (n — 2) d.f. Therefore, the value of F statistic for testing p = a = 0is
given by
_ [n(y] + y2) = 2y1yal/2
{20 — (T y? — T yiyir1) — 00y} + y2) + 2y1yal/(n — 2)

with 2 and (n — 2) d.f.
We now obtain the value of F statistic for testing oo = 0.
Under o = 0, we have

Hy) =E
Hence A = E,,;. We then obtain

(0 +2
AV B (1%[1,0,0,...,0,1]-

Therefore,

_ 2 1 2
AV'A=E, V'E, = 2n+ hin+2)
1202

and

-1 (n+Dn+2)
AVTy = ———""(yi +yw).
120
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Hence, from A’V—ly = (A’V—'A)L*L we get ;1 = (y1 +yn)/2.
Therefore SS due to regression when . is fitted is given by

(n+ 1)(n+2)

SSR(W) = — 5

¥ +yn)
with 1 d.f. Hence SS for testing a = 0 is given by

SSR(p, ) — SSR(.)
_@+D0+2)
T 1202(n-1)
(4 1)n+2)
T 2462(n—1)

(n+ D +2)

SaeT 01y’

In(y} +y2) — 2y,ya] —

v = yn)®
with 1 d.f. The F statistic for testing o = 0 is given by

F= ()H - )/n)2
2[2(n = IXZ y? — T yiyir1) — n(y? + y2) + 2y,yal/(n — 2)

with 1 and (n — 2) d.f.
We are given

S — -0 OO
—_——— o OO

OO D = em
SO = =0

. =

Then the C matrix is given by
C=R-NK'N

The column totals of N give k; = 3, k, = 2, k3 = 2 and k4 = 3, while row
totalsof Ngiver; = 1,1, =2, 13 = 2,14 = 2,r5s = 2 and rg = 1. Thus

R =diag(1,2,2,2,2, 1)and K = diag(3, 2, 2, 3).

Hence,

(13 1/3 1/3 0 0 0
1/3 5/6 5/6 0 0 O
1/3 5/6 5/6 0 0 O
0 0 0 5/6 5/6 1/3
0 0 0 5/6 5/6 1/3
0 0 0 1/3 1/3 1/3]

NK™'N' =
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[ 2/3 —1/3 -1/3 0 0 0 ]
—1/3 7/6 =5/6 0 0 0
co |13 =3/6 /6 0 0 0 _[x 0]
1o 0 0 7/6 -5/6 —173| |0 Y|
0 0 0 -5/6 17/6 -—1/3
.0 0 0 —1/3 -1/3 2/3 |

and rank (C) = rank (X) 4 rank (Y).
Now, since the columns in X and Y are null columns, the ranks of X and
Y are 2 each. Hence rank (C) = 4. Therefore

d.tf. associated with adj. treatment SS = 4,
d.f. associated with error SS = n — b — rank (C) = 2.

27. Consider the first design. We write its incidence matrix as follows.

w
B
+
T ¥
=
<
(=
=

o 0
;J
- o

Lo
P o
)
N

Moving from the cell (A, 1) in the direction of the arrow, we arrive at the
cell (E, 6), encountering all but one treatment in the cell (D, 2). Since all
treatments are not encountered, the design is not connected.

Consider the second design. We write its incidence matrix as follows.

1 2 3 4 5 6

Moving from the cell (A, 1) in the direction of the arrow, we arrive at the cell
(B, 1), encountering all the treatments and hence the design is connected.
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Consider the third design. We write its incidence matrix as follows.

>
<
=
=
=
—

v o w
=]
=}
-
=
-

Moving from the cell (A, 2) in the direction of the arrow, we arrive at the cell
(E, 4) encountering all but two treatments, namely those in the cells (F, 6)
and (G, 5). Hence the design is not connected.

28. See the Hint given after Exercise 28 on page 62.
29. We have
N = aE,,.
Hence

R=abl,, andK =av .
Therefore
C=R-NK"'N
=abl, —abE (aivlb) ab Ey,

b 1
=ably, — =F,, = ab (Iv _ —EW) .
A\ \'%

Hence, the design is connected balanced. We now show that it is orthogonal.
Consider CR™!N.

CR™'N = ab I, — (1/v)E,,(1/ab)L,(a)Eyp
= aEvb—Evb =0.

Hence the design is orthogonal. Since the design is connected, we can also
apply the condition

T kj

n; =
! n

for showing it to be orthogonal. Since njj = a, r; = ab, kj = av, and n = aby,
the above condition is satisfied.

30. We are given N* = E,;, — N.
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3L

The design is equi-replicate and regular. Hence

R=rl,, K=k, E;yN =kEj;,, NE, =1E,;.
Therefore,

C=R-NK'N

=rl, — (1/k)NN".

Consider

EWN* = Ejv(Ew —N)=vE;p —kEj

= (v—=KkEp =k"Ej.

Hence each block of N* contains k* = v — k treatments, and the design N*
is regular. Further,

N*Ep; = (Evp — N)Ey; = bE,; —rEy; =r"E,,

where 1* = b — r. Thus, every treatment occurs r* = b — r times in the de-
sign N*. Hence the design N* is equi-replicate. Now,

C* = R* — N*K* ~'N*
= 1" I, — (Eyy — N)(1/k")(Epy — N')
=r*1, - (1/k*)[bE,, —rE,, — rE,y + NN’]
=" 1, — (1/k)[(b — 2r)E,, + NN'].
But NN’ = —k C + kr I,. Consequently
C'=rL - (/k)0b-20E,—-kC+krl,]
b—2r
k*
Now suppose N is a connected balanced design. Then
C=ally - (1/v)Ewl,

VV .

-+ Ke
= ——)i —_— -
e T e

for some positive integer a and

(K =k ka b—2r

C* Iv T Iv_ 1 Evv "———Evv
+ (= (1/VEw) = —

k*
*k* —~rk + k |
_wk okt k) vt ka)E
k* k*v
(bv — 2rv + ka)
= _W——[Iv — (1/v)Ew].

Thus, the design N* is a connected balanced.
We are given that the design N is orthogonal. Hence

CR'N=0
Now R =r1,, K =k I,. Hence, CR™'N = 0 gives
CN =0.

Now, in Exercise 30, we have shown that the C-matrix of the design N* is
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given by
r*k* —rk b—2r k
= I, — E, + —C.
k* k* + k*
Sincev = 2k,andb = 2r,hencer* = b — r = r,andk* = v — k = k. There-
fore, we get r*k* = rk. Hence
C*=C,
and R* =r* I, =r I, = R. Therefore,
C*R*'N* =CR7'(Ey, - N)
=rC Evb -0
=1(CE)E;p, — 0
=0-0=0

C*

Hence, the design N* is orthogonal.
For a connected balanced design, its C-matrix is given by

C= a[Iv - (I/V) Evv],

where a is some positive constant. Now, the characteristic roots of C are
given by the roots of

IC—A}=0
i.e., by
ICa~ N —(a/v)E,| =0

i.e., by aa— N1 =0.
Hence, the non-zero characteristic of C is given by A = a = 0, say. Hence

C=6[l, — (1/V)Ewl.

Since the design is connected balanced, we have, by Exercise 32,
C=1L-@®/v)E..

But, we know that
C=R-NK'N

=rl, — (1/k) NN

Hence equating the above two expressions for C, we get
NN =k[r—0)1, +(0/v) Ew].

The characteristic roots of N N’ are given by the roots of
INN' =\l =0

i.e., by
(kr = N[k(r —8) —A]""' =0.
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34.

Hence the characteristic roots of N N’ are given by
A = kr, repeated once
= k(r — 9), repeated (v — 1) times.

Since, the design is connected, rank (C) = v — 1. We put the side restriction
Ei.t = 0. Consider the matrix

C Evl
Ey O

Clearly, the rank of the above matrix is v + 1 and hence it is non-singular.

Let
C Eu]" _ | B Bn
Enw O " | By B’

Then, we obtain
CBy +Ey By =L, CB+E, By =0,
EiwB =0, EwBp =1,
Solving these, one obtains
By =E}y/v. By = 0.
CByy =1, —(1/v)Ew, EivBy =0.
Hence,
CB;;C=¢C,

which shows that B; is a g-inverse of C. Also, we can show that
B;;C B, = By;. Hence, the solution of Q = ct can be taken as t = B, Q.
Hence,

var (1) = By, (¢*C)B,; = o> B),.

Let the elements of By, be donoted by b;;. The BLUE of an elementary
treatment contrast t; — {; is given by {; — {j with variance given by
var (t; — EJ) = O'z(bii + by — 2by)
Hence, the average variance of the BLUEs of elementary treatment contrasts
is,
2

v =T 55 (it by = 2by)
o?
o 1)[2(v Du(Byy) 22‘#2]1 bij]
o2
= [2(v — Dir(By)) — 2(EZ by — tr Byy)]
viv—1) ij

2

g
= V(V—— 1)[2V tr B”].
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Since E{yBy; = 0, the characteristic roots of C B); = I, — (1/V)E,y are 0
and 1 repeated v — 1 times. Hence, the if 0 is a non-zero characteristic root of
C, then 67! is a non-zero characteristic root of By;. Thus, if 6;, 6,, ..., 6,_;
are the (v — 1) non-zero characteristic roots of C, then 0! , 0, Lo, 6, !

v—1
are the non-zero characteristic roots of Bj; and hence tr (By;) = Y Gi".
i=1
Hence, the average variance of BLUEs of elementary treatment contrasts
202
becomes 0!,
(V —_— 1) Z 1

i=1

The average variance of BLUEs of elementary treatment contrasts in a con-
nected design is

202
] +
D ;‘ /6)

where 0y, 0,, ..., 0,_; are the non-zero characteristic roots of the C matrix
of the design. Now

Omin < 6, i=1,2,...,v—1.
Hence

1/0min=1/6,i=1,2,..., v—=1

- 1 v—1
=D Sasm
i=1

202 202 =
e ;U/ei).

Further,

Hence,
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Since, the design is connected, rank (C) = v — 1. Let the v — | non-zero
characteristic roots of C be 6;,6,,....6,_. Let §,,&,,..., §,_, be the
associated orthogonal characteristic vectors of C. Then, the (v — 1) linearly
independent estimable treatment constrasts are given by

gt i=1,2....,v—1
and its BLUE is given by &,t, where t is any solution of Q = Ct.

Now

Cgi =9i§i, l: 1,2,..., vV - 1
Hence £/Q = £Ct = 6,&t and £/t = £,Q/6,. Thus, £/Q/6; is the BLUE of
£t Also
var (§f) = var (§/Q/8) = £[(0”C)%;/6]
=02/6, i=1,2,....,v—1.

Now £'t is an estimable treatment contrast. Therefore the vector £ lies in the
space generated by the orthogonal vectors &, i = 1,2,...,v — 1. Hence,

£ = VX_I:ai gi’
i=1

v=—1
where a;’s are constants not all zero. Further, note that £€ = " a?. Then
1

v—1
the BLUE of £'tis given by £t = Y a;£t = ¥ ai(£/Q)/8;, and its variance
is given by -
var (€'t = var (T a(£Q)/6)

= T a’var (£]Q/6)

v—1
=0’ al/6.
1

Now 6 < 80y, i=1,2,..., v— 1. Hence,
’

L
Tal/8 > T a]/Ona =

emax

)

and
var (£1) > 0°0'€/Opmax.
Similarly 6 > Opin, i=1,2,..., v— 1, and
T al/6 < T a7 /Opin = L2 [Onin.
Hence

var (£'1) < 620 /0.
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Thus

29 p! 209
L ey < DL
'max in

The efficiency of a binary design is defined as

po 2 2
V TV

where Vg = 202/ the average variance of BLUEs of elementary contrasts
in a randomized design, T = Z r;/v = average number of replications in a
randomized block design, V = average variance of BLUEs of elementary
treatment contrasts in the given binary design.

Now I = X r;/v = n/v. Further, since the given binary design is con-
nected, we have

202 i 20?2
(v=1 T H
where H is the harmonic mean of the non-zero characteristic roots
6, 6, .., 8,—; of the C matrix of the design. Let A be the arithmetic mean
of 6,,0,,...,0,_;. Thatis
A=Z6/(v—-1)
=tr C/(v—1).

V=

Now C = diag (1], 13, ..., 1y) — NK™'N/, hence

v b
wC=Xr5~) > ni/kj

i=l j=I
b
=n-) (k/k)=n—b,
j=1

A=(m-b)/(v-1)
262 v2¢2H H

andE = = = 1207 = T.ButHsA; and hence
E < ﬂ _ v(n—b)‘
T n niv—1)

Since the design is connected balanced, the non-zero characteristic roots of
its C matrix are all equal. Let 0 be its non-zero characteristic root. Then

Zh=(v-Do=trC.

But in Exercise 37, we have proved that
trC=n-—b.

Hence 6 = (n — b)/(v — 1).
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40.

We have
C=R-NK'N
=rl, -NK™'N

since the design is equi-replicated. Next, since the design is connected bal-
anced, we have

1
C=696 |:Iv - _Evv]-
\Y

Equating the above two expressions of C, we get
1
NK'N =(—-6)1, + ~E,.
v
Hence
NK'N'=r-c-0)".

But for a connected balanced design, it is shown in Exercise 38 that

n—b vr—b
9 =

v—1 v-—1'
since n = vr. Hence
r—0=(0b-n/(v-1)#£0,

since the design is incomplete block design. Therefore,

INK™'N'| #0,
and

rank (NK™'N') = v,
that is,

rank N = v = min (v, b).
Hence b > v.

In Exercise 33, we have proved that the incidence matrix N of an equi-
replicated regular connected balanced design satisfies the relation

NN = k[(r— )], + (B/V) Ewl

where 0 is the non-zero characteristic root of the matrix C. Now, in Exercise
38, we have proved that

o170
v—1
But n = bk, and hence 6 = b(k — 1)/(v — ). Let

r(k — 1)

A =k0/v=bkk — I)/v(v—1)= .
v—-1D
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Then
k(r—0) =kr — Av.

Butsince A(v — 1) = r(k — 1), we get tk — Av =1 — \. Hence
kr—0)=r—A\.

Thus,
NN = (r — NI, + AE,y.

Consider a connected design. The average variance of the BLUEs of ele-
mentary treatment contrasts in this design is

v g2 1
- &e
i=1
where 81, 6,, ..., 0, are the non-zero characteristic roots of the matrix C.

Further,
v—1
trC=ZGi =n—b.
i=1

We minimize V subject to the restriction £ 6; = n — b for getting the most
efficient design. So, we minimize

d):Eélf—)\(n—b—E&)

with respect to 9y, 0, ..., 6,_,. Equating the partial derivative of ¢ with
respect to 6; to zero, we get

-672+N=0

e =1/V/Ni=12...,v-1

Hence, all 8’s are equal. Thus, the most efficient design is balanced. There-
fore, the criterion that a connected design may have maximum efficiency
is that it must be balanced, i.e. all the non-zero characteristic roots of
its C matrix must be equal. From ¥ 6 = n —b, we get the equal root
6 =(m-b)/(v—1).

The average variance of BLUEs of elementary treatment contrasts in a con-
nected design is given by

2 v—l
g S /6.
i=1

(v-1
Now, if the connected design is balanced, then
—-b
B=0=o =12 .. (v—=1).

v—1
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Hence, for a connected balanced design,

g2 _ 2D
80 (-b
Therefore the efficiency of a connected balanced design is given by

20°  2va*(n—b)  v(n—b)

E="= = = .
V. n-20%v—=1) n(v-1
43, Here,
v=b:4,r]:r2=r3:r4=3,k,=k2:k3=k4=3,
32 2 2
12 3 2 2]
NN = 2 9 3 2 =14 +2E4y.
2 2 2 3
Hence

C=R-NK'N
=3l — %NN’ =3l — %(14 +2E4)
= (8/3)ls — (2/3)Ess.
= (8/3)[1s — (1/4)Ea].

Therefore, the design is connected balanced. We have proved in Exercise
42, that the efficiency factor E of a connected design is given by

v(n — b)
Tav=1)
Substituting v =b =4, and n = 12, we get E = 8/9.
44. Clearly the incidence matrix of the design is

-

N=[AA,... Al
where

A = diag (Ex;, Exi, - - ., Ex1).
Hence

NN’ = r-AA’ =rdiag (B, B, ..., B) =1D,
where D = diag (Eyy, Exk, - . . » Exk). Next consider CR™! N,

CR !N = -CN

1

T

1

= —[R—NK™'N'IN
r

1 1

—[rl = =DJN
r[r . ]

|
=N--DN
k
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Now
DN = diag (Ekk, Ekks ey Ekk)[A, A, ey A]
=[DA,DA,...,DA],
and
DA = diag (B, Exk, - -, Exw)diag (B, Exa, - - -, Ea)
= kdiag (Exi, Exi, ..., Exr)
= kA.
Hence
DN =k[A,A,...,A] =kN,
and, we get

CRTIN=N-N=0.

Therefore, the design is orthogonal.
One can verify that

C -N I 0] [C+NK'N -N
N K —K'N' 1|~ 0 K

o ]

= |R| . |K| = (l‘| rz...rv)(kl kz...kb).

Taking determinants, we get

C -N
N K

Consider (i) N = E,,. For this design one can easily prove that
C=blly - (1/V) En].

The characteristic roots of this C matrix are 0 with multiplicity 1 and b with
multiplicity (v — 1). Hence the design is connected balanced. The variance
of the BLUE of an elementary treatment contrast is 202 /b.

Consider the design (ii) C = a[l, — (1/v)Ey,]. The characteristic roots of
this matrix are 0 with multiplicity 1 and a with multiplicity v — 1. Hence
this design is connected balanced. Also the variance of the BLUE of an
elementary treatment contrast in this case is 20%/a.

We know that in a one-way design the BLUE of an estimable treatment
contrast £'t is given by £'t where t is any solution of
Q=Ct

Let C™ be any g-inverse of C. Then a solution of Q = Ct can be taken as

A

t=CQ.
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The BLUE of €'t is therefore £'C~Q. Now let Cp = £. Then p = C™£, and
p' = £C~. Thus,
£CTQ=pQ
Hence the BLUE of £'Q can be taken as p'Q, where Cp = £. Further the
variance of p’Q is given by
var(p'Q) = p’ - Var(Q)p
= p'(c’Cp
=o2p'Cp
= o2p'L.
Let C = al, — (1/v)E,y. Then, every treatment contrast is estimable, since
rank C = v — 1. The BLUE of a treatment contrast £t is therefore given by

PQ
where Cp = £.ie.,ap — (a/V)Ewp = £.

Since rank C = v — 1, we put one side restriction E;,p = 0, for finding a
solution of Cp = £. Hence, we get

ap=4£ or p=£/a

Thus, the BLUE is given by
PQ=£Q/a

The variance of p'Q = £'Q/a is then given by
var(£'Q/a) = o*€'¢/a.

As a particular case, take

i ]
£=1{0,0,...,1,0,0,...,—1,0,...,0),
Then £t =t — 4, £Q=0Q; - Q. and e=2.
Hence the results follow.

Here rank (C) = v — 1. So we put one side contrast as r't = 0. Hence rank
of [C r/./n] = v. Thus the rank of the (v + 1) x (v 4 1) matrix

W[ ¢
/a0
is v + 1 and this matrix is non-singular. Let its inverse be
By Eu/vr
Elv/\/r_1 0 ’
Then, upon multiplication, we see that
CB]] + l'Elv/n =1,
l'/ B]] =0.
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This gives CBy, = I, — r E;y/n. Now consider the matrix B, + E,,/n. We
have

[C—}—rr’/n][B“ +Ew/n] = CB“ +rE|V/n
=1,.
Also,
[Bll + Evv/n][c+ rr’/n] = BIIC 'i'EvllJ/n
= [.

Since C By; +r E},/n =1, we see that C + rr’/n is non-singular and its
inverse is By, + E,,/n, where B); is given by C By; =1, — r E;y/n, and
r B“ =0

Further,

[C+r'/n]"'r = [By; + Ey/nlr = Eyr/n = By,

since YBy; = 0 and By, is symmetric. Now we have
C-[C+rr'/n]”'C = C[By; + Ew/n]C
= CB;,C
= [Iy — rE\y/n]C
=C

since E;,C = 0. Hence [C + rr//n]~! is a g-inverse of C.

We know that a set of solutions of normal equations in any block design is
given by

fL==G/n
& =K 'B —(G/n)E,; — KNt
Q=Ct

Now in Exercise 48 we have proved that (C + rr//n)”" is a g-inverse of C
and that

(C+rr'/n)" =By +Eyw/n,
where By, is given by

CBy, =1, —rE,/nandr'B;; = 0.
Hence a solution of t is given by

t=(C+rr'/n'Q.

Therefore a set of solutions of normal equations in the intrablock analysis
is given by

f =G/n
& =K 'B— (G/n)Ey; — K~'N(C+rr'/n)"'Q
t=(C+rr/n"'Q.
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50.

Further, clearly

var () = (C+rr'/n)"" - var (Q)C+rr'/n)”’
=oXC+rr'/n)”'CC+rr/n)”"
= oX(C+rr'/n) ' C(By; + Ew/n)
= 02(C+rr’/n)_lCB”
= o’[By; +Ey/n]CBy,
= ¢°B,CB,
= o’Bufly —rEy/nl
=0o’By).
since r' B;; = 0. Now

[C+rr'/n]”" =By +En/n.
Hence
By =[C+rr'/n)”" —Eu/n,
and
var () = 0*[(C +rr'/n)~" — Ew/n].
The intrablock estimate of €'t is £t = £(C + rr'/n)”' Q.

Now
var (£t) = € -var(t) - £
= g2l [(C+rr'/n)~' —E,/n]e
= o2 (C+rr/n)'e,
since E;, £ = 0.

Consider the following solution of normal equations in the intrablock anal-
ysis of variance of a one-way design.

f=G/n, & =K 'B - (G/nEy — KNt
Q=Ct

Then the sum of squares due to regression when all parameters are fitted is
given by

SSR (p, &, t) = BK™'B + Q.

Next, we consider another solution of normal equations in the intrablock
analysis of variance of a one-way design as

p* =G/n, t* =Rl - (G/n)Ey; —R'Na*
P=Da*.

Then the sum of squares due to regression when all parameters are fitted is
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given by
SSR (1, @, t) = nw*(G) + a”B + t*1
=TR'T+ a"P
Now since the sum of squares due to regression when all parameters are

fitted remains the same no matter which solution of normal equations we
take, we get equating the above two sums of squares

a”P =BK 'B+{Q—TR™'T
= (yy - G*/n) ~ [(¥'y — G/n) - (B’K™'B — G/n) - tQ]
—(T'’K™'T - G*/n)
= Total SS — Error SS — Unadj. Treatment SS.
Total SS = y'y — G*/n =y'(I, — n"'Enn)y
Now in the intrablock analysis of variance, we have Z(y) = A0 and var (y) =
o1, , where ' = (., o’, t') and

_ A
Ay
E, - diag (Bx, 1, By, 1, ..., Ei, 1)

and A; is a k; x v matrix such that its s-th row has a unit element in the
column corresponding to the treatment applied to the s-th plot in the j-th
block and zero elsewhere. Then,
Hy'y — G*/n] = o’u{(I, — n™'Enn)la] + 0'A’(l, — n7'E,n)A0
=(n— Do’ + 0'[A’A —n"'A’E,,Al0.

Now Ej,A = [n, K/, r'] and

n k r
AA=|k K N
r N R

Noting A’EpyA = (Ep,A) (EjnA), we obtain
EHy'y — G*/n] = (n - 1)o? + o/Ka + tRt + 2t Na
—n"'Ka +r't).
Now, the unadjusted block SS is given by
B'K'B-n"'G* =B (K™ —n"'Ep)B.
Next from the normal equations, one gets

HB) = pk+ Ka + Nt =180,
var (B) = ¢%K,
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where L = [k, K, N'] and 8’ = [, @', t']. Hence
ZIB'K™'B — G*/n] = ¢’u[(K™' — n~'Eyp)K]
+0'L'[K™" = n"'Ep]L0.
Now
O'L'’K™'LO = (uk' + «'K + tN)K~'(uk + Ko + N't)
= np? + 2pa’k + 2pt’r + a'Ka + 2t Na
+tNK™'N't
0'L'Ep, L0 = (0'L'Ey )(E(,L0)
= (p +a'k+tr)?
Hence upon substitution and after some simplification, we get
EB'K™'B-G?/n] = (b - )¢’ + a’Ka + 2t'Nax
+¢NK™'Nt—n~'(Ka + Ft)>.
Clearly,
HIntrablock Error SS) = (n—b—-v + g)oz.
Further, the unadjusted treatment sum of squares is given by
TR'T-n'GE=TR"' -n'E,T.
Now from the normal equations, one obtains
ET) = r+ Na + Rt = NO,
var (T) = o”R,
where M = [r, N, t] and @' = [, &', t']. Hence
HTR™'T —n"'G*] = o’tr[(R™' — n™'E,\)R]
+60'M'[R™' —n7'E,,]M6.
Now
0M'R™'MO = (ur + a'N + tR)R™!(ur + Na + Rt)
= np? + 2pa’k 4 2ut'r + t'Rt + 2t Nax
+a/NR™'Na
0'N'E,\M0 = (6'M'E,, )(E,,\M0)
=(p+ o'k + t'r)z.
Hence upon substitution and after simplication, we get
HTR'T - G*/n] = (v— Do? + Rt + 2tN a
+a'NR™'Na —n'(K'a +r't)>.
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Now adjusted treatment SS is given by
f’Q = (Total SS) — (Unadj. Block SS) — (Error SS).

Taking expectation and substitution the expected values of total SS, unad-
justed block SS and error SS, we get

Q) =(v-gol+1tCt.
Lastly the adjusted block SS is obtained as
(adj. block SS) = (Total SS)—(Error SS)—(Unadj. treatment SS).

Taking expectation and substituting the expected values of total SS, unad-
justed treatment SS and error SS, we get

E[adj. block $S] = (b — g)o? + a'Da.

From the normal equations of the intrablock analysis of variance one obtains

G n kK r
var| Bi=c¢?|k K N
T r N R
G
Now pre-multiply [ B | by the matrix
T
n~! 0 0
L=] 0 Iy —NR7' |.
0 -NK! I,
Then, we get
G G/n
L=|B|= P
T Q |
Hence
G/n K¢
var P |=Lvar| B |L
Q | T
n kK r
=c¢?L|k K N |L
r N R
n~! 0 0
=c?| 0 D -DK-!N' |,

0 -CRIN C
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which shows that

var (P) = ¢?D, var(Q) = o2 C
cov(Q, P) = —¢>CR™'N, cov(P,Q) = —¢’DK™' N’

Now, one can easily prove that (D K™' N’) = CR™' N.
53. The equations for obtaining s in the itnrablock analysis are

Q=Ct

1 1
where Q =T — EN B,C=R- -];N N'. The elements of Q are denoted
by Qi, Qa, ..., Q. The elements of C are given by

Css = rs(k - l)/k
1

Cy = —E)\ssr, s#£s.

k-1 A sl Y
Qs_—.rsuts————n....,——tv, s=1,2,...,v.

k k k

The normal equations in the combined inter and intrablock analysis are

WzG _ Wzbk wor [
W]Q+(W2/k)NB - wWor W|C+(W2/k)NNl t |

Setting r't = 0, we get L = G/bk and

1 G Wo /1A
wiQ+wy (TNB- =[w.C—+—TNN]t.

1 G
The s-th element in w;Q + w3 (EN B — BEr) is

WIQS + WZQ;9

1 G
where Q, = EB(S) TR and B, = sum of blocks in which the s-th treat-
ment occurs. One can verify that

Q; =Ts — Qs — (G/bk) ;.

Denote the elements of the matrix wiC + (w,/k)N N’ by W, Then we see

that
k=1 w (k—1) W)
Wss = Wl I + ']'(Ers =TI k Wy K—1
w w Wi — W
Wy = __‘I')\ss’ + —2)\55’ = _£_]—-—2))‘55" S F s

k k k
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Hence, the equations in the combined inter and intrablock analysis are
given by

k k-

(W) — wp) (W —wy)
_“%)\sl t) _"'_'%)\svtw

s=1,2,...,v.

k—1
w; Qs +W2Q; = I's( ) [Wl + ki :|ts

Comparing these equations with those in the intrablock analysis, we see
that these equations are obtained from those in the itnrablock analysis
by replacing Qs, 15, Ay by Py = w1 Qs + w2 Q[, Ry = 1¢ [w1 + EWLI]’ and
Ay = (W1 — WAy

(i) To show var (Q) = C/w,:
Consider the model,

Vi =Rk tot+ti+eg, x=01,...,n5
i=12...,v;j=12,...,b.

Summing over x and j, we get
Ti=rn+  mijoy + riti + T exij-
X

Summing over x and i, we get

Bj = kp + koy + T njjt; + X ey
i Xt

Multiplying this by % and summing over j, we get

|

1
=EmBj=rnp+ Injoy+ -2 nizjli + X Djjeyij
k J J L} X,hj

ki,

1 1
=ri+2nijaj+E2ni ti+k—§;nijexij.
} 1 x, L)

Hence,
1 1 1
Q=T - EE n;Bj = rit; — EE rit; + x}:, €xij — X X‘Fij njj xij.

We thus see that Q;,i=1,2, ..., v is independent of o; and hence is
the same function of random variables ¢’s both in the intrablock and the
combined inter and intrablock analyses. Hence var(Q) is the same in both
types of analyses. But var(Q) = oez C in the intrablock analysis. Hence in
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the combined inter and intrablock analysis,
var (Q) = 0 C = C/w;.

(ii) To show that var (Q;) = C,/wa:

1 G
We have Q; = EN B - ™ r. Hence

1 1
var (Qp) = EEN' var (B)N' + Gmr. var (G) r

2
—BFN cov (B, G)r'.

Now, since B; = kp + kaj +  njjt; + T eyjs
] X.1
var (B)) = kzob2 + kcez = k(ce2 + koez) = k/ws,
and cov (Bj, Bj;) = 0. Hence var (B) = (k/w3)l,. Also G = E;,B. Hence

var (G) = Ej, var (B) Ey,
= (bk/w2),
cov(B',G) =cov (B, E;; B)
= cov (B, B)E;,
= (k/w2) Ep;.

and

/ 2 ’
rr — —NE;; r

] 1
var (Q) = NN+ oo bkwa

1 ]
= —-—NN/— / =
[sz bsz”] Ci/wa,
1 ' 1 !
whereC,:ENN—-——rr.

(iit) To show that var (Q;) = C;/w;:
From the normal equations in the analysis with recovery of interblock in-
formation, we get

WzG Wo bk Wo r
var w7 = Wa ,
W|Q+TNB wor W1C+T(—NN

Now

| W, G
11 ’IV = )
[ bk ] w Qi+ 2ng | TWATWMQ
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1 1
where Q) = ~N B — —rr’. Hence

k bk
1 WZG
var (w; Q +w2Q) = [_B—Er’ IV] var w,Q + Y
1,
x| "ok "
I,
= w;C+ w,y,Cy,

I
where C; = ENN - Bl—(r r.

(iv) To show that var (Q, Q) =0:
We have shown that var (w; Q + w, Q) = w; C+ w, C,. Hence

wi var (Q) + w} var (Q)) + 2w, w; cov (Q, Q1)
= w,;C + wyC,.

But var (Q) = C/w), and var (Q;) = C;/w», hence, we get
wi C+wCi+2wiwacov(Q, Qi)=w; C+wy Cy,

which gives cov (Q, Q;) = 0.

55. For (i), see Exercise 49.
We consider (ii). The normal equations in the interblock analysis are given

by
~ow]= [ (]
N B |[kr NN||[t |
A solution of the above equations is obtained as
p=0, NB=NNK
Since (N N) is non-singular, we obtain
t=(NN)'NB.
Hence, the interblock estimate of a treatment contrast £'t is
Z(NN)'NB.

Also, from the above normal equations, we get var (N B) = (k/w,)NN'.
Hence the variance of the interblock estimate of £'t is given by £'(N N)~!
(k/w2)NN' - (NN)~1£ = (k/wr )l (NN')~1e.

We now consider (iii). The combined intra and interblock normal equations

are
WzG Wzbk Wzl', ﬁ-'
W) = wo , .
le-l-—k—NB W T w1C+—]—(—NN t
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A solution of the above equations is taken as p. = 0 and

w, Q+ %NB: (wl C+ %NN')%.
Hence,

w3 A W)
Thus the combined intra and interblock estimate of £ t is given by
; ') , —! w3

¢(wc+ - NN) (wiQ+ NB).
Also from the above normal equations, we get

var (w. Q+ Xvk—zN B) = (wI C+ %N N’).
Hence,

var [e (wic+ ———N N B (wiQ+ NB)]

1

=e(w.c+ NN’) (w,c+ NN’)

(w1C+—NN) !

= Z’(w|C+—k-NN/) ‘e

If T} and T, are independent unbiased estimators of 8, with variances 0,2 and
0'22, then the linear combination of T, and T, which has the least variance is

(0FT) 4 0lTy)/(a? + o).

Hence using this result, the linear combination of estimates (i) and (ii),
having the least variance is

k ' '
—E(NNY'£-£(C+ )7 Q+wit(C+ Z0) e (NN)IN B
2
e\ k
A [w, (c + ——) + —(NN’)"] £
n W3

N —1
<C+fni> Q= (NN)NB = p, say.

Now let

Then

Q= (C+2)pandNB=(NN')p,
n
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and
rr
EnQ =Ey, (C + T) p=(EC+r)p.
But, since E|,Q = 0, and E;,C = 0, we get r'p = 0. Hence
Q=Cp.
Thus
(s 3m) = ()
-1
and, p = (i C + %N N) T (wiQ+ leEN B).

We now consider the linear combination of estimates (i) and (ii) having the
least variance which is

k / '
—SL(NN)e-£(C+ fl-:-)"Q +wl(C+ %)"KE’(NN’)”‘N B
2
!
¢ [w, (c ¥ i) + L(NN')“‘] ¢
n Wy
k / IN—1 / l'l‘, - /
2NNy e+ wl (Cc+ =) elep
W2 n
oy
/ k
r [Wl (C + 2) + —(NN’)_‘] £
n Wy
-1
4 |:w1 (C + 5'1) + —k-(NN’)“] L-£p
n W
, — |
Vi [wl (c+ Er—) + —k—(NN’)-‘]z
n ')

fp=1. (w. C+ %N N’)_l (w1 Q+ %N B)

= estimate (iii).
56. The combined intra and interblock estimate of t is given by (see Exercise 55)
R -1
i=(wC+ %NN’) (wiQ+ %NB).
Also
- wiuN) . ¥
var(t)_(w1C+ kNN) var(w1Q+ kNB)

X (w. C+ —V{—EN N')_1
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Wo ; ~1 Wj ;
=(wC+ TNN) (wic+ -k—NN)
W2 ,
x (wi €+ 2NN
Wy , -1
= (wc+NN)
k
The average of the combined intra and interblock estimates of all elementary
treatment contrast is given by
V =Z svar (4 —fj)/vv—1)
i
X x[var(t;) + var (i) — 2 cov (i;, §j)]
i#]

viv—1)
2zv=1 T var (%) — ¥ 2cov (i, §)
i i

viv—1)

2 [v%var ) — {E var (t;) + T cov (fi,fj)”
=1 i i]

v(v — 1)
W3 IN—1 w2 y—1
2 [v tr(wi € + 22NN — Epy(wiC + 2NN Evl]

viv—1)

which proves the result.
Now

W ; Wwo f
(wiC+ TNN JEv = ?N(EWN)
w !
=~ NGEyp)
= WzNEbl = W) .
If the design is equireplicate then, r = r E,;. Hence
W3 —1
Eyi = wa r(w,C+ ?)NN) E.i,
and
wWs N1
En Eyi = w2 rEp(w;C + TNN) E..

Therefore, under this case,
W» In—1 1
2|tr(wiC+ —NN) ' — —
_ k Wor
V=
(v—1)
57. Here N = a E;. Hence, E;y, N =a v E;;, and N E;,; = a b E,;. Therefore

ki=avandrp=ab,fori=1,2,...,v,j=1,2,...,b. Thenn=abyv,
and NN’ = (a Eyp)(a Epy) = a’b E,,.
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a’b
Thus C = R™! = NK~IN’ = a b I, — —E,,. The normal equations for t
v
are given by Q = Ct. Hence

b_ .
Q=(abl, - EV—Evv)t

Taking E;, t = 0, we get a solution for t as

t=0Q/ab.
Clearly,

Q:T—NK”B:T—<9>&L
v

Then sum of squares for testing t = 0 is given by
fQ = QQ/ab
= [T' = (G/VE,IIT - (G/v)Ey ]/ab
= [T'T — G*/v]/ab.

Clearly rank (C) = v — 1. Hence the d.f. for £Q is v — 1. From the struc-

ture of the matrix C, it follows that the design b is connected balanced.
b v
Since nj=a, n, =) nj=ab,n;=) nj=av,n=abyv, it follows
j=1 i=1
that n;; = n; n;/n. Hence the design is also orthogonal. The analysis of vari-
ance table is given below.

Analysis of Variance Table

SOURCE S.S. d.f.
G2
Blocks [(B’B — —6-] Jav b—1
GZ
Treatments [T’T - ———] Jab v—1
v
Error * abv —b~v+1
G2
Total yy— — abv — 1
abv

* obtained by subtractions.

Further,
var (f]) = 0‘2/3 b, cov (ii, fj) =0.

Hence var (f; — i;) = 20%/a b.For the design N = E,, the variance of (; — 1)
will be obtained by taking a = 1 in the corresponding result for the design
N = aE,;. Hence for the design N = E,,

var ({j — §j) = 20%/b.
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58.

Thus, the efficiency of the design N = a E,;, in comparison with the design
N = E, is given by

202/b
= (20%/ab)
Thus the design N = aE,, is a times efficient than the design N = E,y.
For any block design, we have

Eiv N =(ki, ko, ..., kp)
and

NEy = (11,12, ..., Iy).
Hence in the present case, we get

EjyNN' = (E;y N)N' =k E;; N' = k (NEjp)’
= k(l’ Evl)/ = l‘kE]V.

Now, clearly each row of NN’ will contain r in the diagonal, Aoj(q — 1)
times, Ajo(p — 1) times and Ay (p — 1)(q — 1) times. Hence

EWNN' =[r+(q— DAot +(p = Do+ (p — 1)@ — DAi1] Eyy.
Therefore
rk=r+(q— DA+ (p— Dhio+(p— 1)Xq = DAy,
which gives
@— Drr +(p— DAo+(p—1(g— DAy =rk - 1).
Now, the normal equations for t are given by
Q=Ct, whereC =R™' —NK™'N’.
In the present case,
C=rIV—%NN’,Q=T—i1(-NB

Let Q;; be adjusted total for the treatment t;;. Then, the solution of ¢;; is given
by

1
Qj=rty— Z Z Nty
- ")t" - Z)\(U)(u)tu

i#

+ 2 Napiotis + Y D Mgty

' i# j#

:—r(kk_l—)tij_%zﬁj'_%z o ZZ“’J

J# '#i V# J#)
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Let Z [jj =1, Z tij = t_j, and Z Z tij =t_. Then, we get
i i i

Ao
T(t.j — ;)

r(kk l)tij - )\T(()l'(ti. —tj) —
Ay

- T(t" =t —tj+ )

r(k — 1)+ Ao + Mo — Ay (o — o = M)

= m ij K i.

(Mo—Ai) A

Qi =

We take the side condition t. = 0. Now let Q; = ZQij, Q= ) Qjj, and
j i

Q. =Y Q. Adding the equations over j we get
i

k Qi =at, —qor ~ A,
= [a — qAo1 — Mt

where a = r(k — 1) + Ag; + Ao — Aq1. Hence
fi. =k Qi./[a = q(or — i)l
Similarly adding over i, we get
t; =k Qj/la—phio — Ml
Thus,

_ Qoi =Mk Qi- o — Mk Q;
a—qhor —A1)  a—po—Ap)
Hence, a solution for ;; is given by
o k - A ; Aig— A i
= o [Qij+ (ol 1)Qi. + (Ao — M1)Q; ],
a a—qo — A1) a—pAio—An)
i=L2,...,pj=12,...,q

k Qjj = atj

Also -
. ko? Xoi — A Ao — A
var(tij)=i{l+ Mo1 — M) (Mo — An) ]
a a—qAor = A1) a—pQo— M)
. ka? (No1 — A1)
cov (&, tj) = — - —————
" a a—qQo —Ap)
N ko? (o1 — A i)
cov (G, i) = — + —————
>t a—qo — A1)
and

cov (fij, fi'jf) =0.
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9 q
Now consider Y t; — Y tij, i # i" Its BLUE is given by
=t =

S =Sy =i -, = Q=
=1 ’ =1 YT T a—qor =)

Also,
var ( — &) = var () + var (&) — 2 cov (i, &)
Now
q
var (f,) = var Zfij
j=I1
q
Z var (t,J) +2 Z Zcov (tu, t,J
J:
k 2
~ 149 kg
a
= L] py
where
Aot — A ANo— A
A=14B4+CB= ol N co 10— A
a—qor — Ajp) a—p(Ajo— A1)
and
cov (i, ty ) = cov (Z tij, Z tj)
j J
q
= Z cov (t, tiy) + ZCOV (tj» tj)
= i
=qka’C/a+0=kqo’C/a.
Hence
“ A 2qka? 2qkoC
var (. — ) = 2 (A (q— nB) - — 12T =
a
2 ka?
1% A+@-1B-C]
2qko 2
= " (1 +gB).

p P
Next consider )" t; — ) tiy = tj —tj. Its BLUE is
i=1 i'=l
PN k(Q; —Qy)
t.j - [.jf = ———
a—phio —App)
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Further
var (tj — i) = var (i;) + var (i) — 2cov i, ij).

As before, we can easily prove that

. kpo? )
var (i) = pa" A+(p-DCLi=1,2,....q
and
cov (i, 17) =k po® B/a.
Hence
. oA kpo?
var (tj — ty) = " [A+(p-1C-B]
2kpo?
:ngln+m1

Lastly consider t; — tjy — t;j + tyy. Its BLUE is given by

A A A A k
tj — by — tij + ty = ;[Qij = Qi — Qij + Qiyl.
And its variance is given by
var (t — ty — tj + tiy)
_ 4k02A_ 2ko’B 2kaZC_ 2k02C_ 2ka?
a a a a a
_ 4k o2

a
4k a?

B

(A-B-C)

a

Let the yield of the j-th plot receiving the i-th treatment be donoted by
vibd=12,...,m, i=1,2,..., v. Let the treatment effects be denoted by

1 < -
t,t, ..., t,. Let E = —Zt{, and t; = t; — t = t’; — w, where p has been
\'Z
1
written for t. Now
Z(yij)=ti/=p,+ti,j= L2,...,m, i=1,2,...,v.

Testing the hypothesis t} =t, = ... =1, is equivalent to testing the
hypothesis t; = 0,i=1,2,...,v. We minimize )_ )" (y; — t)%. The nor-
mal equations are

v
G=nu+Zniti
1

and

Ti=mp+nti,i=1,2,...,v.
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Note that the number of independent equations is v. Hence putting one side

condition Y n;t; = 0, we getasetof solutions as L. = G/nand{, = _——
n; n
Hence sum of squares due to regression when p and t;, to, . . ., t, are fitted

1S
AG+ ) BTi=) T/ with vd.f.

The error sum of squares is given by
SSE = Z Z vi - Z T2 /n; with (n — v)d.f.
i i i

Now if the hypothesis t; =0,i=1,2,...,v is true, then E(y;) = u,
i=L2,...,m, i=1,2,...,v. We minimize }_ Y (y; — p)*. The nor-

mal equation is G = np.. Hence the solution is ﬁ = G/n. Then the sum of
squares when p is fitted is G?/n with | d.f. Hence, the sum of squares for
testing t; = 0 is obtained as

Y T/ — G/,
with (v — 1) d.f. Thus, the F statistic for testing t; =0, i=1,2,...,vis
given by
po X T/mi—G/n)/(v—1)
Xy - X T/ml/(n =)
P

with (v — 1) and (n — v) d.f. The BLUE of an elementary treatment contrast
t; — t; is given by

t — § = (Ti/n;) — (Tj/my)

with variance given by

A 1 ]
var (I; — =g’ (—- - —).
n; nj

The average variance of BLUESs of all elementary treatment contrasts is

V=Y var(i — G)/vv—1

i
:ozzz(%r ;})/v(v— 1
i ion
=o? [ZZ%ZZH Vv =1
i i
= 20%(v — 1)2%/\/@ -1

= 2022:%/\/.
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We minimize V with respect to n; subject to Y n; = n. Thus we minimize

¢=%ani-x(n~2ni)

i.e. n2 = 1/Av, n; = 1/+/Av = constant. Now Y n; = n gives L)\ =n,
v

n ) .
hence — = —. Thusn; = —,i =1, 2, ..., v. Hence the test is most sen-

VAV

sitive when n; are all equal.

<=

Here, the incidence matrix of the design is given by

Eir, 0
N= Eir, 2Ey, |,wherer, =r1—ry.
Ewv-2yr, Ep-2r
Hence
I Iy nEiy-2
NN' = I (ry +4ry) (r+ 2n0Eiy-2

nEw-21 (11 +2r2)Ew-2y tEy—2(v—2)
Therefore the C matrix of the design is give by

1
C = diag [ry, (r; +2r2),1,1,...,1] — =NN’
v

Iy I )
Ny -5 ——Eiv-2
I r +4r, I+ 2
= - 1 +2r, — - Eiv-2
I rn + 21‘2 r
—;‘E(v—zn - Ev—oy 1tho— ;E(v-z)(v—z)

We now write the reduced normal equations for t as

r ry
Q=@ ~=-
v

ry
ts — —Ejwv-nts.
\"

r 1 +4r r +2r
Q2=—¢t1+(r1+2r2— : ” 2ty — 2 2

v

Eiv-2t3

rn +2r2

I 2
Q= _VE(V—Z)ltl - Ev_atz + [rly_2 — ":E(v—2)(v—2)]t3-

Next, we put the side restriction )_r;t; = 0. i.e.
it 4 (4 2ty + 1Ejv—pts = 0.
Then, we obtain

vrQ) = ri(vr — )ty + 111285
viQy = ryrpty + [vr(r +12) — 2]ty
Q: =rts,
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where Q3 = {Q3,Q4, ....Qv} and t3 = {3, ty, ..., t,}'. Hence, we get the
solutions as

~

t) = [vr(r + r)Qy — rira(Qr + Q2)1/A
b = [—rr(Q + Qo) + v Qo1/A
t: = Qs/r,

where A = rry(vr + vr; — 21p)
Hence sum of squares due to treatments is

3 Qi = tiQ +1Qe+ Y Q¥/r with(v— 1) d.f.
1 i=3

The Block SS and Error SS are obtained as usual and the analysis of variance
will be completed as usual. Further, we obtain

var (1) = o - Coefficient of Q, in the equation of {,
= o’[vi(r + 1) — /A,
var () = o1 (vr — 1)/ A,
var(§) = a?/r.i=3,4,...,v
cov (i1, ) = —a’nr/A,
cov (i, ) =0,i#j=1,2,...,vexcepti = I,
i=2andi=2j=L.

Hence

var (1) — ) = o22vi?/A,
PO 1 -
var (t; — [j) = 0-2 |:_ + M] ,
r A

A 1 ry(vr— .
var(tg—tj).—_(rz[—ﬁ—L—@], i=3,4,...,V.
r A ;

Let V be equal to the average variance of the BLUEs of all elementary
treatment contrasts. Then
1 2. 2vi’g?
viv—1) A

V=

+2(v=2)5? {l+ yeletro) —nin }
r A

+2v — 2)0? H + r‘—(v—r_—ml +(v—2)(v—3)20-]

A r
2r[vri(v — 1) — rlrz]:l

2

_ L[(v—— DV —2) +

rv(v— 1)

207 . mnRv—23)
- ]

A

A Av(v—1)
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Hence, the efficiency relative to the original randomized block design is

1
rr% + rr rn(2v —3)
A Av(v-1)
The loss in efficiency is given by

1-E=L/(1+L),

E=
I+

where L = ﬁ + M___}_)
A Av(v—1)

Here the incidence matrix of the modified design is given by

N = 2l Exe—
Ev-22 Eu-2¢-2 |

Hence,
NN = 4, + (r — 2)Ex rEyv—2)
tEq -2 tEwv_2)v-2)
Thus,
1
C=r1l,— -NN
v
4 (r—2) r
(f - —> I - Ex» —=Epy-2
_ v v v
r r
—;E(v—m I, —~ ;E(v—2)(v—-2)

Then the reduced normal equations Q = Ct give

4 r—2 2 r 2
Ql —_ [(r — —) L, — ———Ezz] t — —E2(v—-2)t2
v v v

r R r R
Q= ~;E(V—z)ztl + [rIv—Z - ;E(V—Z)(v—2)] t,

where Q, = {Q]’ Q2}v Q2 = {Q3’ Q41 e QV}7 il = {th tz} and té\ = {t39
t4, ..., ty}. We put one side restriction E;,t = 0, i.e. Ej2t; + Ej-2t2 = 0.
Then, we obtain the following normal equations

Q= [(r - %) I + %Ezz] t
Q, =rt;.

Hence, we obtain
i = [(vr — 2)Q — 2Qu]/r(vr — 4)
ty = [—2Q; + (vr = 2)Qy)/r(vr — 4)
t, = Qy/r.
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Thus the sum of squares due to treatments is obtained as

SST=1,Q +bQ + ) Q//r

i=3
with (v — 1) d.f. The block SS and the errorr SS are obtained as usual and
the analysis of variance table is completed. Now
var (i}) = o2 - coefficient of Q; in the equation of 1,
= a?(vr — 2)/r(vr — 4)
var (1) = o2(vr — 2)/r(vr — 4).
var (i) = o?/r,i=3,4,....v.
cov (t), &) = o - coefficient of Q, in the equation of
= =2¢%/r(vr — 4).
cov (i, §)=0,i#j=1,2,...,vexcepti=1,j =2 and

i=2,j=1.
Then, we get
PO 202 [ 4
var(ty —t)) = — | | +
r | vr—4]

PO 202 [ 1]
Val‘(l|-t_|)=— l+ ,J:3749 v
r {  vr—4]

FON 202 T 1]
var( —§) = — |1+ ,i=3,4,...,b
r | vr—4

o2

PO 200 . .
var(ti—tj)zT,I¢J=3,4,...,v.

Hence the average variance of the BLUEs of all elementary treatment con-
trasts is given by

_ 202 8
V= 2+ +4(v—2)
vr — 4

v(v—1)

X [1+—]——}+(v—2)(v—3)]

vr — 4

_ 2, _4_]
o [+(v—l)(vr—4) '

Hence the efficiency of the modified design is given by
Eo 0%/t 1

T 202 T1+A
-(-:—[1+A]

L

where A = 4/(v — 1)(vr — 4). The loss of efficiency is given by
1—E=A/(1+A)=4/[4+ (v— D)(vr—4)]
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Here the incidence matrix of the design is
2Ep Ei¢—2
N= 0 El(r—2)
Ev-22 Ewv—2-2)
Hence
r+2 r—2 (I' + 2)E|(V_2)
NN, = r—2 r—2 (I' - 2)E1(V._2)
(r+2Ew—21 (—2Euy-2n 1En-2w-2
Therefore
- (r+2)k—1) _(r—2) _(r+2)E T
K k kK o2
(r—-2) r-2)k=-1) (r-2)
c=| =2 LZ2xm) g
k k kK D
(r+2) (r—2) 1
t T Ewoyn — m Ev-2n r(lo— ‘l'('E(v—Z)(v—Z)) 1

Hence, the normal equations for t are

kQ = (r +2)(k — Dy — (r = 2)iy — (r + 2)Eyv—n)ts
kQy = —(r — )i + (r — 2k — Db — (r — 2)Ejv—n)ts
kQ; = —(r + 2)Ey—_2ty = (r — 2)E-2)1 1

1 N
+r((Iv-2) — EE(V—2)(V—2))t3
Where t/ = (t39 [4y R ] tV) and Q3 = (Q3! Q4’ LR ] QV)'
We now set r't =0, i.e. (r + 2)t; + (r — 2)tr + rE;—nts = 0. Hence
1
Eiv—ots = —;[(r + 2 — (= 2)).
Substituting this in the above equations, we get
rkQp |  [G+2)tk+2) 2(r—2) t
rkQ, | 2(r—12) T-20k-2) ||
Q; =r1t3.
Hence we get

t) = k(r — 2)[(tk — 2)Q; — 2Qu1/A
t = k[(r + 2k + 2)Q; — 2(r — 2)Qi1/A
ts = Qa/r

where A = (r — 2)(r*k?> + 2rk® — 8). Let B; + B, = G|,B3 + B4+ - - -

B; = Gj, and G = G; + G,. Then from

1
=T - =-NB,
Q k



SOLUTIONS 161
we get

1

Q+T - E(Gl +G)
1

Q=T - EGZ
1

Qi =Ti—EG,i=3,4,...,v.

Hence the sum of squares for testing t =0 is
v
1Q +0Q + ZQi
i=3

[ —2)(rk ~2)QF + (r + 2)(tk + 2)Q3 — 4(r — 2)Q1Q;]

+ XVJQ?/r-
3

D=

Further

var (i)) = o2 .coefficient of Q; in the equation of t,
= o’k(r — 2)(tk — 2)/A,

var (1) = o %k(r 4 2)(rk + 2)/A,

var(§) =o?/r, i=3,4,...,v

cov (4, &) = —202k(r — 2)/A

cov(t,,t)=0,i=3,4...,v

cov(l,§)=0,i=3.4,...,v.

Hence,
var (f, — t) = 2ka?r(rk + 2)/A
noa k(r—2)rk -2 1
var (t; —ti):o2 [(r—)(_r_)_‘__]’ i=3,4,...,v
A r
. oA ki 2)(rk + 2 1
var(lz—ti)=02[—(—r—t—-&—j—_—-—)+—}, 1=3,4,...,v,
A r
var (i — ) = 20%/r, i#j=3,4,...,V.
63. Let the new varieties be denoted by t;, t,, .. ., t, and the standard variety by
to. Then, the incidence matrix of the design is seen to be
_ -gEvv
N- | ] |
Also

_Jel, 0 _
R=|% VII],K_(gV+1)IV.
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Hence, the C matrix of the design is obtained as

C=R-NK'N
2
ngv_ & E - M vl
_ gv+1 gv+1
gv
- E;v I, - —E
v+l 1 1 v 1

For solving the normal equations Q = C t, we impose the restrictions
Y rit; = 0, which gives
i
gEth = _t()y

wheret’ = (ty, tp, ..., ty). Further, let Q' = (Q, Q, ..., Q,) and Qg be the
adjusted treatment total for ty. Then we have

1
G,
gv+1

8
=T-———G,Q=T-
Q gv+1 Q

where T = (T}, Ta, ..., Ty) = vector of totals of the new varieties and
To = total of the standard variety ty , and G = grand total. Thus, we have
the following equations

2

gl, - —2_E __& g
[Q]z viy gv+1 Vv gv+1 vl [t]
Q ~ & Eyy vl - : Ey ©
gv+1 gv+1

The above equations give

2
8y gv
= VIV_ Evvt— Ev,
Q= gv+1 ) gv+1t0 !
2
gv gy
= - E;. t .
Qo el +gv+lt0

Now taking into account the fact that g E;,t = —tp, we see that
Q=gvt and Qy=vt

Hence
t=Q/gv andto = Qp/v.

Thus, the SS for testing the significance of varieties is
(QQ/gv) + (Q§/V)

withd.f. v.
The block SS, total SS and error SS are obtained as usual and the analysis
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of variance table is completed. Further,
var () = o%/gv,i=1,2,...,v
var () = o?/v,
cov(ii,§) =0 1#j=12,....v
cov(l,fp)=0 i=12,...,v.
Hence,
var(f — ) = 20%/gv, i #£j=1,2,...,v
var(t — i) = oX(g + )/gv, i=1,2,...,v.
64. For a SBIBD, N, N’, NN’, and N'N are all non-singular. Further,
NN’ = (r — M), + AE,y.

Hence
=1 1 A
- Iv - Evv
(NN) (r—)\)[ r— A+ Av ]
1 A
= (r__—)\_)[lv - ;_'z'Evv]~
Hence,
1 A
N, -l 'N_l - Iv_ _Evv
(N) ol B
()" = < (N= 3E.N]
(r—2X\) r2

1
_ [N- EE]
r—A r

Premultiply by N, we get

-1 [N'N )\N’E]
T (r=N\) ro

v

= [N,N — NEw],
(r—»n)

which gives
N'N = (r — NI, + AE,, = NN'.
65. (i) For a BIBD, we have
NN’ = (r — M), + AE,.
The characteristic roots of N N’ are given by the roots of the equation
INN" —01,| = 0,
i.e. by the roots of

[(r =\ —0)I, +AE\| = 0.
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Now,

r=A=0)L +AEn|=(—-A—0)""-t=A=04+AV)
=@ —\—0)"1(k - 0).

Hence, we have
r—-r—0)""Tak-0)=0.
Thus, we obtain the characteristic roots of NN’ as

6 = rk, repeated once
0 = r — \, repeated (v — 1) times.

The non-zero characteristic roots of N'N and NN’ are same. Hence the
characteristic roots of NN arer k, and r — A.
(i1) We know that

INN'| = rk(r — M\)*~' #0.
Hence,
rank (NN') = rank (NN) = v < b.

Since, the design is non-symmetrical, v < b. Hence, N'N is singular. There-
fore IN'N| = 0.
(iii) We have
r(N'N) = tr(NN')
= tr[(r — NI, + AE/]

= VI.

We have bk = vr. But b = 4(r — A), hence we get

4k(r — A) = vr,
ie. 4k [(r - (rtk — 1)] = vr,
v—1

ie. (v=2kP =v

ie.  v-—2k==.v, which gives 2k = v+ /v.

For an affine resolvable BIBD, v = nk, b = nr, wg knowthatb=v+4r—1

and k2/v is a positive integer. Hence we get — = -=8 where g is a
v

positive integer. Now

_(k——l)_r(k—l)‘_k—l_ng—l_ g—1

A = = = =
v—1 b—-r n—1 n—1 g+

n—1

Hence, (g — 1)/(n — 1) = tisOorapositive integer. Thus,g = (n — )t + 1,
and A\ = (n — )t + 1 +t = nt + 1. Further, k = ng = n(nt — t 4+ 1). Hence
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v = nk = n?(nt — t + 1), also

LMD @+ D Delt+nt D

2
= = nt 1.
k=1 (n— D(at+ 1) mhndt
Then, b = nr = n(n®t +n + 1).
68. Let Ny be the incidence matrix of the new design. Then

N
No = [Elb]’

where N is the incidence matrix of the original BIBD. Then

NN’ NEb,] B [(r =ML, +AE,, fE, ]

NONO = [E|bN/ bE“ - rEl\, bE“

Also,

Ko = (k + Dly, Ry = [rf) b%]'

Therefore, C matrix of the new design denoted by Cy is seen to be

Co = Ry — NoK;; 'Ny
r 1

IV— _)\Iv )\Evv - EV
) r k+l{(r )+ } pariat
- b
__ T E,, b —
L k+1 k+1
[tk + A A r
v Evv - Ev
| kF1 Y ke k+1 "
o r bk
i k+1 " k+1

Let the treatments of the original BIBD be donoted by tj, t,...,t,
and t' = [t;,t5,...,t,]. Let ty be the control treatments. Let Q; = T;—
Boy/(k+1D,i=1,2,...,v,Q =Ty - G/tk+ Dand Q' =[Q,,Qa, ...,
Q.]. Then, the reduced normal equations for treatments are given by

rk+ A A r

——Iy — ——E,, ———E,
Q] _| k+1 7 k+1 k+1 " (Tt
Q| r bk to |
~——E,} -
r+1 k+ 1
Thus, we get
rk +\ A r
=|——I, — —E, [t—- —E,
Q [k-i—l k+1 '] k1o
r b
QO= Elvt+ to-

k1 k+1
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As usual, we take X rit; =0, i.e. r(t; +tp 4+ --- +t,) + bty = 0. Hence,
b b
rEyt = —bty, and Qp = (—— + —) to = btg. Thus, f = Qo /b, and

k+1  k+1
rk + A A r r

=|——=1,— ——Ey [t+ ——Ey - — - Ept.

Q [k+1 k+1 ]+k+1 Py

K+1 "' k+1 bk+1)
= [va+qEvv] t,

where p = (tk + \)/(k + 1), and q = (> — bA)/b(k + 1). One can easily
show that

k 4+ A A 2
=[r+1v— By + — E]t

2 vr
2-bh TN rak-w)  r-

YT 5k+D bkt D bkk+D  vk+ 1)
Now
[ply +qEw] ™' = lI -—3 g
v w e et
and
_rk+A =M
PHY=1TT T i
Hence
_ k+1 r—Mk+1)
Pl +aBwl™ = i~ S D) g
k+1 (Y
Tkt vkt
R k+1 r—»\)
t= lirk-l—)\lv - vr(rk+)\)EW] Q
Therefore,

. k+1 r—2X\)
t. . I
"k + x itk + N) Z Q

and the adjusted treatment SS is

2
) ~ 0\ L9
FQ+iQ = k+)\ZQ vr(rk-H\) (ZQ‘) T

Now Y~ Qi + Qo = 0, hence Y Q; = —Qp, and
1 i

. R pk + 1 24 —_—
tQ+1%Qo = kTN ZQ [B bk(rk+>\)]QO
- £+_1in+ 5Q<2>
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with v d.f. The other sum of squares are obtained as usual. Further,

~ .~ (k+D .

G-t = ——(Qi — Qi), =1,2,...,
i (rk+)\)(Q Q_]) 1#] v

A oA k+1

i—1=

rk+)\ B vr(rk—i—)\)ZQ'
k+1 Y I
TS [bk(yk+)\) B E]Q"
k41
Ttk A

A
Qi——Qo, i=1,2,...,V
r

Also

Y

k+1 r—A 12
tk+X vtk +)\) oo

=N .
m], 1#1_1,2,...,v

var () = o? [

cov (i, ) = o2 [—

var (fo) = a2/b
cov(ijip)=0,i=1,2,...,v.

Hence,

var (4, f-)—2o2[k+l r-A ] 20%— )
17— Y4) =

tk+ N vr(rk + ) vr(rk + \)
204k + 1)/ak+N), i#j=1,2,...,v

and therefore

k+l_ r—x |
rk+Xx  vrtk+MN)b

k+1 A
=g? + +~1,1=1,2,...,v.
rk+X r

var (i — ip) = o [

69. One can easily prove that E|,N'N = rkE,;. Also

N'NN'N = N'[(r — M)I, + AE,IN
= (r — MN'N + ME\yN)'(E;\N)
= (r = MN'N + Ak*Epp.
Let the blocks be denoted by B, B, ..., By and let ¢; denote the number
of common treatments between B, and B, j = 1,2, 3, ..., b. Then, clearly

£, = k. Then the elements of 1% row of N'N are £;, £, . .., &,. Then from
the above two relation, we find that

b

b
Y og=rk. Y £ =kir—N+rk2
1
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Hence ZE =k(r — 1), and le—k(r—)\ k + Ak). Define £ = Ze/
(b-1). Then

(K3~ 1)?

VY — k(r — \ _
zzj(ej 0% =k(r—\—-k+ k) -

=K (b= = A — k4 AR — k(= 1]

(b—1)
__k _[®&-bp o
_<b—1)[<v—1)“v D(r k) +r(k — 1)’} — k(r 1)]
2
:m[(b—l)(b—v+1+rk—2r)

= (= DXv=1)]
2
[(b = Db = v) = 2t(b — V) +1(y ~ k)]

T -Dv-1D
2 2
RCEICED [(b‘ ”(b—V>—2r(b—v)+;(b—v)]
Kb = b — 1

Thb-Dv-1)

Thus the necessary and sufficient condition that there will be the same num-
ber of treatments common between any two blocks of a BIBD is thatb = v
or b =r. But b = r gives a RBD, hence is inadmissible. Hence, b = v.

70. Let N be the incidence matrix of the BIBD and let N be partitioned as
N = [N;; Nj2], so that Ny, is the v x 2 incidence matrix of the first two
blocks between which it is assumed that there are x treatments in common.
Now consider N as

_|Nit Np
o[ ]

NN Nj,
NON{’:[NH' Iz]’

Then

and
INoNg| = INN'[ - [I; = Ny '(NN') !Ny .

Now for a BIBD

N' = (r = NI, + \Ey,
and

1 A

(r— x) IRTESY) rkEW
INN'| = rk@r — N7\,

(NN)™' =
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Thus,
|
Ni/(NN)INjy = ——N;/N); — Ni/EwNy,.
11 (NN)7'Ny N 11" Ny =k 1 1
Now N“lN” = [l; ])z], and E]VN” = kElg.Hence,
1 A
I, — ——N;;'N;; — ———N;,E\N
2 T N == " n{
1 k
= |- ——N,/'Nyy - ——E
(I, o N = e
_r =k = M)? = (rx — Ak)*)
- r2(r — A\)? ’
and
k(r — )"
lNoNé)l=-Lr———)—-[(r—k)z(r—k)z—(rx—kk)Z].
r

Now Np is (v + 2) x b matrix of real elements and b > v + 2. Hence, it is
well known that |[Ng N¢| > 0. Hence, we get
(r =k — N — (rx —A\k)> > 0
iLe. (x —Ak)? < (r— k)’ (r — \)?
ie. frx — Ak| < (r—k){r —A)
< 2)\k+r(r—)\—k)'

te.—r—A—k) <x

r

71. Let the blocks be denoted by B|, Bs, ..., By, and let £; denote the number
of common treatments between By and Bj,j=1,2,...,b. Then clearly
£, = k. Suppose £, = x. Then, from Exercise 69, we have

b
Y g=ktr—1)—x,
3

and

b
Y € =kir—A—k+xk) —x2
3

b 2

)

Now E} (ff—% > 0, from which we get
[kr— 1) — x]?

Kr—AN—k+Ak) —x} - —2 " >

(r +Ak) —x b2 =

ie.

2
K(r—1)? o b—1 [X_k(r—l)] .

K(r— A — Kk + k) —
@ R A S b—1
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In Exercise 69, we have shown that

k-1  K(b-r’b-v)

K —A =k N = — = = = Ty

Hence, we get
[ _k(x=1) 2 _ b= 2)k%(b — (b — v)
T | ST a1 o)
- k3(b — 1)*T?
- b-1?2 "
since T = [(b — 2)(b — v)/b(v — 1)]. Thus, we get

| ke—1)|  k(b—nT
X — <
b—1 |17 (b-1)

from which we get the required result.
Clearly M = 2N — E,;. Hence,

NM' = (2N — Ey)(2N" — Epy)
= 4NN’ — 2E,;,N' — 2nEy, + bE,,
= 4(r — NIy + 4NEyy — 2E,1(NEy))’ — 2(NEp1 )Ery + bEwy
= 4(r — M) + 4\Eyy — 2Ey(tEy1)' — 2(tE1)E)y + bEyy
=4(r— N+ [b~4(r — N)]E.

Clearly the elements of N are 0 and 1, and N is v; v, X b;b; matrix. Further

* *
EmywvivpN = (Erv, X (Epy, )Ny X N2+ Ni X Ny)
* *
=E|v,Ni X Ei,,N2 +Ejyi Ni X Eqy, N2

Now Ellel = klElprlV, I*\I|= (V] - k])EIb,y and 51m11arly E]V2N2 =
kz Elbz’ and

Eiv, N2 = (v2 = ko)Ep,.
Hence

Ei(viv2)N = kiEp, X k2Ep, + (vi —ki)Ep, X (v2 — k2)Epp,
= kik2E(p,p,) + (vi — ki)(v2 — k2)Ej 0,
= [kiky + (vi = k1)(v2 — k2)]E1,p,)-

Similarly, it can be proved that

N Ep,op1 = [rir2 + (b — 1)(by — 12)]E(y,v)1-
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Writing b = biby, v = v vy, k = kiky +(v) —k))(vo —kp), and r = rjra+
(b — 11 )}(bz — 1p), we get

E,N = kEp, NEy, = rEy,.
Further
NN =N, x N, + 1:11 X I*‘IZ)(NIX Iill X ltlz)/
= (N) x Na+ Ny x No)(N| x N} + N, x N})
= NiN, x NoNj + N1 N x Mo Ny 4+ N1 NG x N N
+ ltI:N*’, X Iilzl‘}g
Now

NN, x NN}
= [(r) = ALy, + MiEyy, ] x [ = )Ly, + NoEoyy, ]
= (r; — A2 — M)k + Ny (2 — M)Eyy, x T,
+ ho(ry = Ay, x Eyy, + MNEy

Ni Nix Na Nj = (Eyp, — Nj) x N} % (Eygpy — NN
= [rEvy, — (1 = AL, — MEyy,]
x [Ey,y, — (12 — M)y, — A2Ey,0, ]
= (1 = A)(r2 = A)[(Bv, = L) X (Bupyy — L))
= (1 — \)(r2 = A)[Ewy — Ly X Bypey — Bypy, X Ly + 1]

N; N} x N2 Nj = Ny(Ey,p, — N1)’ X No(Eyp, — NoY'
= Ni(Ep,v, — N}) X No(Ep,v, — NY)
= [rEyv, ~ (r = ADL, — MEy ]
X [12Ev,v, — (12 — M)y, — NaEy,y, ]
= (r; — A )2 = M)[(Eyyy, — 1) X (Evyy, — Iyy)]
= (r; = A2 = M)(Ew — L, X Ey,y, —Eyy, x 1y, + 1))

* ! x k!

NIN, x N2N,
= (Ev,b, — Ni)(Ep)v, — N}) X (Ev,p, — Na)(Ep,y, — N3)
= [biEy,v, —1Eyy, —1Eyy, + (1 — AL, + M Eyy ]
x [(by — 2ry + A))Ey v, +(v2 — ML, ]
= (by = 2r; + N )(b2 — 2r; + \2)Eyy
+(r; — M)(by — 212 + ALy, X Ey,y,
+(r; — M)(by — 2ry + N)Ey,y, x 1,
+(ry — A2 — M)l
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Hence
NN = 4(r; — \)(r2 — D)L,
= l—:*Iv + M2 +2(r — M)z — A2)
+(by — 2r1 + A1 )(b2 — 2r2 + A)]Eyy

+ (rl - )\l)(bZ - 4r2 + 4x2)IV| X EV]V]
+(r2 — A2)(by — 4 + 4N Ey,y, X 14,

b
= ZIV + M A+ 30 = A ) — M)

+(b; — )by —13) — (11 — A )by — 1)
- (r2 - x2)(bl - rl)]Evv-

The term in the bracket of the second term is

3bb, b b
o~ g = 2 ~n)

16
3b b b birn by
o = M) = Aot = N o = — o 2 g 220
r—ri(r2 — A2) — Aa(ry — M) + 6 1 2 + 2 2
r.bz )\2b1 3b b b]l'z b2l'1

== — = —— e ——— o —= 4

4 4 16 24 4 4
b](rz - )\2) 3b b

r—nr+ Mh+

T3 62
4 b +3b b
16 16 2
—r+b b
T4 02
b
Hence
b b
NNI='-IV - vV
) +(r 4)E

=@r—-NL+ AE,,
b
whereA =1 — T Thus N is the incidence matrix of a BIBD, with parameters

v=vivy, b=byby, r=r1ir; +(by — 11 )(b2 — 12)

b
k=kikp+(vi =ki)va—ky), A=1r— Z

74. Consider the BIBD (\*/, ;), ;, ]2, )*\) and let I:I be the incidence matrix. We
interchange the role of treatments and blocks and get a new design. The
incidence matrix of this new design is N = N’. This operation is know as
dualization. Let v, b, respectively denote the number of treatments and the
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number of blocks in the new design. Then
v = no. of treatments in the new design
= no. of blocks in the BIBD = b
b = no. of blocks in the new design
= no. of treatments in the BIBD = v
Now every treatment in the BIBD occurs exactly in r blocks, hence every
block in the new design contains exactly r plots. Hence,

k = size of block in the new design = r.

*
Now every block in the BIBD contains k treatments, hence every treatment

in the new design will occur exactly in ]*( blocks. Thus
r=k
Further every pair of treatments in the BIBD occurs exactly ;\ blocks. Hence,

*
every pair of blocks in the new design has \ treatments in common. Thus

n =;\ and the new design is a linked block design with parameters

* * * *

v=b, b=v, r=k, k=r, L =\.

N=N.
Now the C-matrix of the new design is defined as
1 1
C = diag (r|,ra,...,r,) — Ndiag{ —,..., — | N’
ki kp
1
=rl, — -NN’
k
L~ L NN
=rl, — —
k
The D matrix of the new design is given by
1 1
D = diag (k;,kz,...,kb)—N’diag<—, e —)N
Iy Iy
1
=kl — -N'N
r
1 = *
= kI, — — NN
r

l % * X * ¥
=kl — ;[(l‘ - ML — AEw]
1
=kl — ;[(k — W)y + pEps]

ko= D+
SNSRI o N N
r r
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The characteristic roots of a matrix a I, + dE,, are given by a+ nd and
a with multiplicities 1 and (n — 1), respectively. Hence, the characteristic

roots of D are
kr—D+p ko kr—D—pb-1)
r r r
k==X - Fk=D-XE =D
B r B r
= 0, repeated once,

kir—1
and Je—Dtp

, with multiplicity (b — 1). Hence, clearly the rank of

r
Dis(b—1).

75. In Exercise 51, we have derived the expected values of the sum of squares
which occur in the intrablock analysis of variance in the case of a one-way
design. The expected values of sums of squares of the intrablock analysis
of variance table of a BIBD are obtained as a particular case of the general
results derived in Exercise 51, by taking

K =kl, R =1l,,
k' =kEj,
r =rE,, n=bk.

Hence, we derive fro%n Exercise 51,

. G
() Z[y’y - a{-] = (bk — )o? + ka'a +rt't+ 2t'Na

~kZa+rZt’/bk

(i) E lB’B - 9i = (b - o’ + ka'a + 2t Na

k bk

1
+ Et’NN't —(kZa+r1X t)’/bk

1 / Gz 2 / /
(ii1) T _TT_EE =(v-Do*+rt't+ 2t Ne

r

1
+-a/N'Na — (k T a+r 2 t)’/bk
r

(iv) E{@Q)=(v— Do+t Ct
v) £ (adj. block SS) = (b — 1)0? + a'De
(vi) £ (Intrablock Error SS) = (bk — b — v+ 1) o2

76. We denote the parameters of the new design by putting asterisk over the
symbols. Clearly when the role of blocks and treatments are interchanged,

. . * kK o X
we get the new design with parameters v, b, r, k, where

Ve=b=v(v—1)/2, b=v,f=k =2, k=r = v—1.
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In the old design, given one block, we divide the other blocks in two groups,
the first group having blocks which have one treatment in common with the
given block and the second group having blocks which have no treatment
in common with the given block. For example consider one block as (a, 9),
where a and 6 are two treatments. Thus

First Group Second Group

@o. [] [ ]

The number of blocks in the first group is equal to the sum of

(1) number of blocks in which one treatment is « and the other is
different from 6 = v — 2
(i) number of blocks in which one treatment is 6 and the other is

different froma = v — 2
Thus, the number of blocks in the first group is

n = 2(V it 2)

The number n; of blocks in the second group is equal to the number of blocks
obtained by taking a pair of treatments from the set of treatments except o
and 0, which is clearly (v — 2)(v — 3)/2. Thus

np = (v—=2)v-—3)2.

So, when the role of blocks and treatments is interchanged, in the new design,
given a treatment, the other treatments can be divided into two groups, the
first group containing treatment, which occur once with the given treatment
in a block, while the second group containing treatments, which do not occur
with the given treatment in a block, and

np =2(v—2), np=(v—2}v—-3)/2
M=1, =0

Clearly, ny + ny = (v —2)(v+1)/2 =V —1,and

A+ Ay = 2(v — 2) =t (k — 1),
Now, let us find the parameters of

Pn] ]912l pn2 Plz2
P = , Pr=

1 1 2 2
p21 P22 p2i P2

Consider a pair of blocks, which have one treatment in common, say (a, 9)
and (o, 8), and their first associate groups, the number of blocks common
between the first associate groups of («, 6) and (a, 3) are the blocks which
have one treatment o and the other not equal to 6 or 8 and the block (a, 8).
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Clearly this number is (v — 3) + | = v — 2. Thus,
p}l =(v—2).

Now consider the first associate group of (a, 8) and the second associate
group of (e, 8). The blocks common between these two groups are the blocks
which have one treatment 8 and the other treatment different from a and 3.
Clearly this number is v — 3. Thus,

p}2=V_3.

Consider the second associate group of («a, 6) and the first associate group
of (a, 8). The blocks which are common between these two groups are the
blocks which have one treatment 8 and the other different from « and 6.
Clearly this number is v — 3. Thus,

pélzv——3.

Lastly, consider the second associate groups of (o, 6) and (o, 8). The blocks
common between these two groups are the blocks which contain a pair of
treatments taken from (v — 3) treatments from the set except o, 0 and 3.
Clearly this number is (v — 3)(v — 4)/2. Hence,

P%z =v-—-4

We can verify that
pli4+p,=2v—5=n—1,
3 + Py = (v — 3)(v — 2)/2 = n,.

Let us now find P,. Consider a pair of blocks (w, 8) and (7, 3) and their
first associates. Clearly the blocks common between these two groups are
(o, ¥), (a, 8), (8, v), (0, 8). Hence

p?l =4,

Next consider the first associate group of (a, 9) and the second associate
group of (a, 3). The blocks common between these two groups are

) the blocks which contain one treatment « and the other treatment
different from 6, vy, 8. Hence their number is (v — 4); and

(i) the blocks which contain one treatment 6 and the other treatment
different from «, -y, 8. Hence their number is (v — 4).

Hence,
pl, = 2(v —4).

Similarly, one can easily verify that p3, = 2(v — 4).

Now consider the second associate groups of (a, 0) and (ty, 8). The blocks
common between these two groups are those which contain a pair of treat-
ments from the set of (v —4) treatments, obtained by deleting «, 8, v, 8
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77.

from the complete set. Hence their number is (v — 4)(v — 5)/2. Thus
Py = (v —4)(v = 5)/2.

We can verify that
Ph+PL=20v=2)=m
PP =0 - Dv-42=n-1

Thus, interchanging the role of blocks and treatments, we get a 2-associate
PBIBD with parameters

V=vv=1)/2, b=v,1=2, k=v—1
ny = 2(V - 2)! np = (V - 2)(V - 3)/29

AMN=LA=0
v—2 v—3
P1=l: (V—3)(V—4)]
v—3 —
2
4 2v —4)
P2=|:2(v—4) (V—4)2(V—5)].

Here clearly v = mk, b = mr. We define a pair of treatments to be first
associates if they belong to the same set and second associates if they belong
to different sets. Then, clearly

n=k—1,n=k(m-1).

Further two treatments belonging to the set occur together in a block r times.
Hence A, = r. While two treatments belonging to two different sets do not
occur together in a block. Hence Ay = 0. We can easily verify that
np+n=mk—1=v—-1
A +mA; =rk—1).
Consider now a pair of first associates o and 3, and their first asssociates.

The treatments common to their first associates are clearly the (k — 2) other
treatments belonging to their set. Hence

P =k-2.

The treatments common between the first associates of a and the second
associates of . Clearly no treatments are common. Hence,

Piz =0

Similarly p}, = 0. Consider the second associate classes of « and B. Clearly
the treatments common between these two classes are the treatments of the
remaining (m — 1) sets. Hence,

py, = k(m — 1).
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We easily verify that
PiitPip=k-2=n -1
Py + Py =k(m—1) = n,.

Now consider a pair of second associates, a and 8, say. They belong to
different sets, and clearly there are no treatments common between their
first associates, and hence

2
py, =0.
The treatments common between the first associate class of a and the second

associate class of 8 are the (k — 1) treatments of the first associate class of
a, and hence

ph=k-1.
Similarly, p, = k — 1. Now consider the second associate classes of a and

9. The treatments common to the second associate classes of o and 3 are the
treatments of the other (m — 2) sets, and hence

pgz = (m — 2)k.
We may easily verify that
Ph +pp =k=1=n,
and
p3, +ph=mk—k—1=ny—1.
Thus the design is a PBIBD with two associate classes with the parameters
v=mk,b=mrr,k.
n=k—1,nm=k(m-1),
AN=rA=0

k-2 0
Bi= [ 0 k(m-— 1)]’
0 k-1

Fo= [k— ! k(m—2)]'
Consider a pair of treatments « and § belonging to two different sets, then it
is not possible to find a chain of treatments «, 6, 65, ..., 6 = B, such that
consecutive treatments will occur together in a block. Hence, the design is
not connected. Now v=mk, b=mr. Soif r <k, then b > v. Hence by

taking r greater than, equal to or less than k, we can make b greater than,
equal to or less than v.

() Note that B; matrices are symmetrical. Consider the sum of ele-
ments in the ath row of B;, which is

o+ b, .. b, a=1,2,...,v.
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(iii)

(i)
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Since, there are n; ith associates of «;, there will be n; elements in
the above sum which are 1 and the rest of the elements zero. Hence,
the above sum is n;.
Hence the sum of elements in each row is equal to n;. Thus B;
Ey; = nE,,. Taking traspose, we get E;,B; = nEj,.
m m

Consider Y _ B;. The (a, B) th element in )_ B; is given by
i=0 i=0

0 1
b%g + big + - + bl.

Now since a and B are either Oth, 1st, ..., or the mth associates,
only one of the elements bgﬂ, blg, ..., bEB is 1, hence the (a, B) th
element of B isequal 1 fora, B = 1,2,..., v. Therefore

m
Z Bi = Evv

i=0

m
Consider }_ ¢;B;. The (a, B) th element in T ¢;B; is
i=0

Cobgg + c.b(‘,B + ... +cmbgg = ¢i.

If o and B are i-th associates, then X ¢;B; = 0 gives ¢; = 0. Se-

lecting o and 8 as Oth, 1st, 2nd, ..., mth associates, we get
Co =Cj = ... =cy = 0. This implies that B’s are linearly inde-
pendent

Consider B;jBy. The (o, B) th element in B;By is given by
i 1k

2 biabls.

i=0

Now, b’;ﬂbg‘B = 1, if i occurs in the j-th associate class of
a and the kth associate class of 3.

= 0, otherwise.

Hence,

% bl;bjy = no. of common treatments between the jth
associate class of a and the kth associate class
of B.

= p}k, if o and B are ith associates
=0, otherwise.

Therefore,

m
BjBk = Z p_]ikBi'
i=0
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Further,
B;By = BB, = (BiB))’
= (2 pjBi) = T piyB;
= B;B;.
We have
BiB;By = Bi(BjBi) = Y _ py(BiB.) = Y _ pipi,Be.
u u,t

Further,
BiB;B = (B;B;))Bx = ) piBuBx = Y _pj piyBe.
u u,t

Thus,

Z [Z p_]k plu Z p|_| puk]
In view of (iii), i.e. the linear independence of B;-matrices, we get

Z Pfk Piy = Z Pﬁ Puk-
u u

m m
Consider Y P;. The (a, B)th element of ) _ P; is given by
i=0 i=0

m
P50+Pgl+-~-+Pgm=ZP5j=“a-

Hence the '{‘esu]t follows.

Consider Y ¢iPi = Opn+1)x(m+1)-
i=0

m
The (o, B)th element in )_ ¢;P; is clearly
i=0

copgo—|~c1pgl +...4+Cm pgm.
Hence X ¢;P; = 0, gives
copgo + clpE, +...+ cmpgm =0

for every « and 3. Selecting =0anda =0, 1,2, ..., min suc-
cession, we get

cg=C=...=Cn=0.

Hence the result follows.
The (o, B)th element of P;Py is given by

m

i B

ap = Z Py Pik-
i=0
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Now by the result (v) proved in Exercise 78, we get

m m .
3 ek =l Pl
i=0 i=0

Hence,
m . B
g = Z P}k Pai
i=0

m .
Now, (a, B)th element in ) pcPi is given by
i=0

m
P{kPRo + PiPa + -+ Pipln = D pjepls = 2ep-
i=0

Hence the result follows.

m m
Also, Pij = Z p_IikPi = Z PL,'Pi = PkPj.

i=0 i=0

(iv) From (ii) and (iii), we see that the P;-matrices are linearly indepen-

dent and combine in the same way as Bj-matrices. Thus they form
the basis of a vector space. Hence, they provide regular represen-
tation in (m + 1) x (m + 1) matrices of the algebra given by the
B;-matrices which are v x v matrices.

Consider NN'. The diagonal element of NN' are all r.

m
Now the diagonal element in the ath row and ath column of )_ A\iB; is
=0
given by

Mobl 4+ Nibl, AN =N =1
sinceb! =b2 =...=b" =0,b =1,and\g =T.

* Maa

Thus, the diagonal elements of ) \;B; are all r. Now consider the (a, 8)th
element of NN'. Clearly this is equal to

b
Z Ngjnjg = no. of times the pair of treatments a and B occur

i=I
together in the block
= \;, if & and B are ith associates.
The (o, B)th element of Y \iB; is given by
Noblg + Nibg + .. + Amby = N,

if a and  are ith assoicates. Hence, the (a, B)th elements of NN and T A;B;
are equal and

m
NN = Z ABi.
i=0
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m
In Exercise 78 (ii), we have proved that }_ B; = E,,
i=0
m
Hence Y E;,B; = VE,,. But E;,B; = n;E,y. Hence, we get

i=0
m
Z nEjy = vEy,.
i=0

m
This gives ) _n; = v.
i=0

m
In Exercise 80, we have proved that NN’ = Y \;B;.
i=0

m
Hence E;,NN" = )" \E,,B; gives
i=0

m
I‘kE]v = <Z n; )\,) E]v.
i=0

m
Therefore, we get 3 m\; =rk.
i=0

m
In Exercise 78 (iv), we have proved that BjBy = p}kB(.
=0

m m m
Hence B; }_ By = ), (Z p}k> B, and
k

=0 t=0 \k=0

m m
Bj-Ev =) ( p}k) B..
0

t=0

But BEy| = njE,,. Hence B|E,, = njE,,. Thus, we get

m m
nE,, = Z ( p}k) B..
k=0

=
Let o and B be ith associates, then the (o, B)th element in

m m
3 (Z pj?k) B, is equal to
t=0 \k=0

m m m .
>0 Pibhs = ) Pi
k=0

k=0 t=0

i

since b,g = O for all t # 1 and bLB = 1. Thus, we get

m .
_ i
nj = § :ij-
k=0
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(iv) In Exercise 78 (v), we have proved that

m m

U t u .t
ijk Piy = Z PikPuk-
u=0 u=0

Put t = 0, in the above equation. Since pj, = n;, if i = u and 0,
otherwise, we see that the left hand side of the above equation is
equal to n;pj, . Further p)) = ny if u = k and 0, otherwise, we see
that the right hand side of the above equation becomes nkpi'} Thus
we get

nip}k = nkp;‘i.
Writing n; p}k as n; p}(j and applying the above result we get
“iP}k = “jPJki = "jP!k-

The minimal polynomial of the square matrix A, is the monic scalar poly-
nomial,

M) = x"+ax™' + ... +an
of least degree such that
M(A) = A" + A" + ..+ aply = Opq.

It can be easily verified that the distinct characteristic roots of A are the
solutions of its minimal polynomial. Now let f(x) and g(x) be the minimal
polynomials of B and P respectively. Then,

f(B)=B'+aB™'+...+a
= ZdiBi,
i=0

Since the multiplication of B;-matrices is closed in the set of linear functions
OfBOv B], L) Bm-
Next consider the representation of f(B) in P; matrices,

f(P) =) dP;.
i=0
Since f(x) is the minimal polynomial of B, we have f(B) = O.x,, which
implies thatdg = d; =dy = ... = d,, = 0, for B;-matrices are linearly in-

dependent. Thus, we get
f(P) = Ogma+-1)x(m+1)-

Since g(x) is the minimal polynomial of P, it follows that g(x) is polynomial
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of lowest degree such that g(P) = Oim+1yx(m+1)- Hence g(x) divides f(x). Sim-
ilarly, we can show that f(x) divides g(x). Thus, we have f(x) = g(x). Hence
the distinct characteristic roots of B and P, being the roots of f(x) = g(x) =
are the same.

Selecting c; = \; in the definition of B, we note that the distinct characteristic

m
roots of NN" and Y \P; are the same.

i=0
m
Now let A =) NPi. Then the (o, B)th element of A is given by
i=0
Bop = Z Atpl,. We see that Z ap = Z A me = Z Ay = 1k, for ev-

a=0
ery B. Now the characteristic roots of A are glven by

A—01 =0
Note that
ap—0 ay ap ... Am
ao an—0 a3y ... Am
|IA—-01 =
amo Am| Am2 agm — 0

Adding the rows to the first row and taking (rk — 6) as a factor and subtracting
the first column from the remaining columns, we get

A-0L=@k—-9)

ajp—ap—0 app — aj am —ay
a—ayxy ap-—ap—0 ... am — ayp
X
Ami — Amo A —8m0 ... Aum — 3o — 0
—(tk—0)L—01|

where L = (€;), & = a; — ajp, and £ = a5 — 3,1 #j = 1,2,...,m
Hence the distinct characteristic roots of A = X A;P; are r k and the distinct
characteristic roots of L. Now

4i = & —a = Z Aepj, — Z oDy
t t

m
= hopjg + Z Apj, — M.

t=1
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Since pl, = 1 and Ao = r, we see that

m
Eii:r—ni)\i+2)\,pgt,i= 1,2,...,m.

t=1

Also fori#j=1,2,...,m, we have, since ajp = n; A;,
m .
4 = aj — ayp = Z Al — miki,
=0

. m .
= hoply + Z NP, — Mk,
t=1
m .
= Z)\tpjn —n )\i’
t=1

for p{o =0fori #].
m
Thus, we see that the distinct characteristic roots of > AP, are rk and the

i=0
distinct characteristic roots of the matrix L = (£;;), where

m
Kii=r—ni)\i+2)\[p§l,i= 1,2,...,m

t=1
L= Mpi—nNi#j=12....m
t=1

Hence, the distinct characteristic roots of N N are r k and the distinct char-
acteristic roots of the matrix L = (£;;), where £; are defined as above.

83. We know that the rank of a matrix is equal to the number of its non-zero
charateristic roots. Since NN’ has one characteristic root 0 with multiplicity
u, the number of non-zero characteristic roots of NN’ is equal to v — u.
Hence

rank (NN') = v — u = rank (N'N).

Hence it follows that b > v — u.
When the design is resolvable, N consists of r sets of (b/r) columns each,
such that 1 occurs only once in each row of the set. By adding the Ist,

2nd, ..., [ - — r) th columns to the (b/r)th column of a set, we get a column
r

consisting of 1 only. As there are r sets in N, we have
rank(N) <b—(r—1).

But rank(N) = rank(NN') = v — u. Hence
v—u<b-(a-1).

Thus, we getb>v —u+( —1).
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The distinct characteristic roots of NN’ are given by rk and the distinct
characteristic roots of L = (£;), (see Exercise 82)

£ =r=mA +Ap} +Apl =1 — N — (A — Ay,
£ =r1—mA + N3 +Napy =1 — A — (M — \)pi,
£ = =0\ +Miply + Xaphy = (N = \)p},

£31 = —mhy + Niph; + Mapy = (A — A)pj,.

The distinct characteristic roots of L are given by

IL — 0L, = 0.
Now
IL — 0L
_|r=N =i =xopl, -0 —(\1 — A)p, l
(1 — \)p, r— A+ (A — A)ph, — 0
|r=-n—8 r—A\—9 ‘
(A1 =A)ply r—Aa+ (A —A)pl, — 0
_ r— }\1 -9 )\1 - )\2
T a =P, F= A =84+ —A)p

where p = p?, — p},. Thus

L—-0L]=0C—N\N—0)(F—A—0)
(T — A = B)(Ar — A2)p — (A1 — A2)?pi,
=62 —0Q2r— A — M)+ (T = A — )
+(r = M)A — A)p — Oph; — A2) ~ (A — A2)pi
= 62 — 0[A + p(A1 — M1+ Q4 (r — M)A — M)
=0

where
A=2r—N =g, Q= (1= M) —A) — (M = \2)?pl,.
Hence the roots of |[L — 61| = 0 are given by
6 = %{A +p(\i = M)+ (= 1)'[A7 + 2pA(N; — M)
+P7 0 — A)” —4Q — 4(r = M)\ = Mo)p)' )i = 1,2
Now, we can easily verify that

A% —4Q = (\; — \)*(1 +4py)
2D AN — A2) — 40t — N\ — A2)p = 2\ — Np)
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Hence
A2 £ 2p AN — N\g) + PP\ — Ag)* = 4Q — 4(r — N\))(A| — N\2)p
= (A = \)X(p* + 1+ 4p}, + 2p)
=\ = NPT +2B+ D)= (A — N)*A.

where A = p? + 2B + 1, and B = 2p;, + p. Therefore,

I I .
6 =1 — SO+ M)+ 3p0 = o)+ S(= 1 - AMVA,
i=1,2.

We now determine the multiplicities of 8; and 6,. Denote by o; the multi-
plicity of 6,1 = 1, 2. Clearly

l4+a)4+op=v,

and hence, o + ay = v — |. Further, since the trace of a matrix is equal to
the sum of its characteristic roots, we get

tr(NN') = rk + o, 0; + a6,.
But tr(NN) = vr, Hence
a0 + a0 = (v — k).
Then o} and «; are found by solving the equations
aj+a=v—1
o0 + by = r(v — k).

Multiplying the first by 6, and subtracting from the second we get
r(v—Kk)—0(v—-1)

- 6 — 0,

Now from the values of 8, and 0,, we find

8, — 0, = —(\; — M)VA.

Qy

Also,

(v—Kk)—6(v—-1
=r(v—1)—rtk—1) = 0y(v — 1)
=(v— 1)r—0) — nA; — mAy

1 1 1
= (0 + ny) [50\. +2) = 500 = )p — S\ - mJZ]
—n|)\] - nz)\g

—1 |
= —2—(111 —m)A —A2) — E(m + m)(A; — \)p

1
5@+ m)h ~ MVA.
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Hence,
n +ny;  [(m —nz)+ (n; + ny)pl
o) = +
2 /A

and

=(V-D—-—o=n+mn-aq
_mtmn [(ny = nz) + (n; + ny)p}]

2 2J/A

Hence the result.

The parameters of a Group Divisible design are
v=mn,b,r,k
np=n—1,mp=nm-1)=v—n,
A, A

n—2 0 0 n—1
P‘=[ 0 n(m—l)]’P2=[n—1 n(m—2)]'

Hence, we get
P=pPh—Pp=n-1LB=p+p,=n-1,

and therefore A = (p + 1)*> = n%. Hence, the characteristic roots of NN’ of
a GD design are

6 =rk
1 1 :
6 =r1— 0 +X)+ 700 = M)lp+ (—-D'VA]
=r— %()\1 +A2)+ %()\1 —\)[n— 1+ (=1)n),i=1,2.

Thus,
1 1
6 =r— '2'()\1 + M)+ -2-0\1 M= =r—-X)\

b= 1= 300 +X)+ 500 ~M)2n - D)
=r—N +nA; —\)
=1+ A(n—1)—n\,.
Now since nj Ay + np\y = r(k — 1), we get
r+(m— DA\ +(v—nh, =1k
r+(n— D\ —nh\y =1k — VA,
Hence 6, = rk — vA,. The multiplicities are given by

™ +m (—1y [(ﬂl —m) + p(ny +n2)]
1 2\/Z

2
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2 2n
_ v—1 _(_l)i(v—2m+l)

2 2
| A
== 1-(Dv=2m+DLi=12

_ v—1 _(_])i[(2n~v—l)+(n—l)(v—1)]

and therefore

ap=(v—m)=mn—1), a=(m-—1).

86. The parameters of an L; design are
v=sb,rk
nm=is—D,m=GE—-i+s—1
AN

Here

Hence

s—i+DGi-1) (G=i+Ds=-1

p. _[ii=D i(s — i)
27 lis=1) G=Ds—i=D+s=2]|"

Pl=[(i—l)(i—2)+s—2 (s—i+1)(i—l)]

p=is—1)—(—i+D>E-1)
=s—2i+1
=is—D+GE—i+Di-1
=2i(s — 1) —p.

A=p*+2p+1=p*+4is—)—2p+1
=(p— 1’ +4is — i)
= (s — 2i)’ + 4i(s — i) = s%.

Therefore, the distinct characteristic roots of NN of L; design are

where

6 = rk, with muitiplicity |
1 1 . R
0, =r1r— .2_()\] + )+ E()\, — \2)[p — v/A], with multiplicity a,

I 1
b =r= s +h)+ 50 —Mlp+ V/A], with multiplicity o,

n +m + (ny — n2) + p(n; + ny)

2 2VA
m+n (0 —m)+pn +n)

2 2V/A

o) =

Qy =
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Thus
1 | .
91 =r—§()\1+)\2)+-2-()\1 —)\2)(8—21+1—S)

1 1

=r— 5()\1 +N\) + 5()\. —MX=2141)

=r—A—i(A; —A2)

=r—iANj+M0E-1).
1 1 .

b =r— 5()" +N)+ E(M —N)(2s —2i+ 1)
=r—A+(—DA; =)
=r+MES—1)—N(s—i+1).

Also,
v—1 M —-m)+G=-2i+v-1

o = +

2 2s
_v—1 3 G-DE=2i+D+E-2i+1)v-1)
T2 2s

v=1) (=2i+D(-s+1+v-1)

= +

2 2s
(- D, 6=D6s=2+D
) 2
=(@6-DEs—-i+1

and

Qy = (V - 1) — Q)
=2~ —(@—-I)s—i+1)
=i(s—1).

87. The parameters of a triangular design are

v=n(n—1)/2,b,r, k

n =2(n-2),m =(n~-2)n-3)/2

ApLAg,

n—2 n—3
P] = (n—3)(n—4) ’
n-3 —m
2
4 2n — 8
P, = o — 8 n-4)(n-5) |.
2
Hence

p=n0-5 B=3n-11, A=(-2)
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The characteristic roots are 8y = rk with multiplicity 1 and

| 1 .
B =r—~(\ +X\2)+ =\ = \)[p + (=1)'VA]

2 2
=r- %o\. +\)+ %(m =)0 — s+ (=1)'(n - 2)],
i=1,2
Hence
0 =r—2\ + N\,

h =1+ A\(n—4)— N\(n —3).

The multiplicities of 6, and 6, are given by o; and a;, where

o = n+np (—1y [(n; — ng) + p(n; + ny)]
2 NN
_v-l _(_1);[(111 —nm2) + p(n —5)]

2 2(n —2)
_ (n=2n+1) _(_l)i(n2—5n+2)
4 4

o = En(n— 3), 0 = (n—1).

88. Since k > r, we have b < v. Hence N N’ will be singular and therefore NN’
will have zero as a characteristic root. Now in Exercise 82 we have proved
that the distinct characteristic roots of N N other than r k are given by the
characteristic roots of the matrix L = (£;;), where

m .
6= AMph—nN i#j=12...m
t=1
m .
eii:r‘*‘z)\tph—ni?\i, i=12,...,m

t=1

Hence, the matrix L will have zero as a characteristic root. Hence |L| = 0.
For a 2-associate class PBIBD, where k > r, we have

2 2
H’Z)\tP:t"“l)‘l Z)\tpi'“l)‘l
t=1

t=I

=0.
Z )\tpét —mh; r+ Z )\tp%t —m;

Now

r+\ipj; + A2pl, — mAp =1 — N(ny — py;) + A2py,
=r1—\ — P\ — M),
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and
MNP + Aoply — mihp = —ph(A\ — M),
MiPa; + APy — mahs = P (A — Np),
r+ Np3; + Aapd, = mohy =1 — Ay 4 ph,(\ — \).
Thus, we get
r—XA —pl(Ai =) —ph,(\ — \2) —0
P\ — A) r=A+phhi—N)|

Adding the second row to the first row, we get

r— )\1 r— )\2
PaM = A2) 1= A+ ph(\ —\9)

ie. (= M) — A2) + (A1 = M)IpL T — Np) — pp(r — A)] = 0.

Let the blocks of the given BIBD be denoted by By, B», . .., By. Let B, have
ddisjointblocks By, B3, ..., B4y and theblock Bi(i=d+2,d +3,...,b)
have x; treatments in common with B;. Then, we have

b
Z x =k — 1),

i=d+2
b

Z xi(x — 1) =k(k — (= 1).

i=d+2

=0

Then, we get

Tx}=k(r—A—k+k\)

- k(r—1)
’dﬁ =X i —-d-1 = —,
Now, define X xj/(b—d ) P
k*(y — 1)?
Txi—X?=k(r—=A—Kk+Kk\) - ———.
(xi —%)? = k(r ) -
Since T (x; — X)? > 0, we get
k(r — 2
dsb_l-#'
r—A—k+k\N)
k('Y_l)2 2
Ifd=b-1-———— % - =0,
or—ktky Z® Y
and hence

k(r—1) (—-A-—k+k\)
b—d—1 (r=1 ’

sinced =b— 1 —[k(y — 1)>/(t = A —k + \\)].

Xiz)_(z



SOLUTIONS 193

90.

91.

X % k%

When each treatment of a BIBD ((1, b.T, k, \) is replaced by a group of n
treatments, clearly we get a design with

* * * *
v=nVv,b=bH, r=r, k=nk.

Now, in the new design with respect to any treatment, we can divide the
remaining treatments into two classes, (i) those which are in the same group
as the given one and (ii) those which are not in the* same group as the given
treatment. Then we have n; = n — 1, and n = n(v-1).

A treatment in the given BIBD occurs in r blocks, so when it is replaced
by a group gf n treatments, then any pair in this group will obviously occur
together in r blocks. Hence A =r.

Consider a pair of treatments o and {8 of the given BIBD. They occur
together in \ blocks. Now denote the groups of n treatments, which replace
Q and B by [«a] and [B]. Then these groups [a] and [B] occur together in
\ blocks. Hence any pair of treatments, one belonging to [a] and the other
belonging to [B] occur together in A blocks. Thus A, = X as is evident, two
treatments in the same group are st associates, while two treatments in
different groups are 2nd associates. Consider a pair of treatments belonging
to the group [a]. Clearly, the number of treatments common to the 1st as-
sociates of them is p], = n — 2. The number of treatments common to the
first associates of one and the second associates of the second is p}, = 0.
Also, the*number of treatments common between their second associates is
p, = n(v—1).

Now, consider a pair of treatments one belonging to the group [a] and
the other to [B]. The number of treatments common to their 1st associates
is p7, = 0. The number of treatments common to the first associates of
the first and the second associates of the second p?, = n — 1. The num-
ber of treatments common between their second as§0ciates are the treat-
ments of the remaining (v —2) groups, hence p3, = n(v —2). Thus, we get P,
and P,.

Let the blocks of the given singular group divisible design be denoted by
Bi. By, ..., By, and let B, have B,, B3, ..., Bgy disjoint blocks and let

Bi(i =d+2,...,b) have x; treatments common with B;. Then clearly
b
Y xi=kir—1).
i=d+2

Now, we consider*th*e ﬁiyeg singular group divisible design as obtained
from the BIBD (v,b,r,k, \) by replacing each of its treatments by a
group of n treatments. Hence, the block B, contains k groups of n treat-
ments each. Hence, considering pairs of treatments obtained from B, we
get

T xi(xi—1) = l*cn(n— D — DA+ [kk ~ 1)—]zn(n—— DI = 1)
=kl(n— DA\ = D+ (k—nm; — D]
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Thus,

Tx2=k[(n— DA~ D+ k- — D) +k(y = 1)
=k[n(\; — D+ (k — n)(A; — D],

since y = A; in a singular group divisible design. Define X = X x;/
(b—d— 1), weget

2 _1)2
£ (x — % = Kin(y = D+ (k= mhg — 1)] — =1
b—d—1
Since T (x; — X)? > 0, we get
—1\2
d§b~1—[ kv -1 }
nA - D4+ k—-nA—1)
—1\2
Ifd=b-1- ki~ D ,then X (x; — X)?> = 0, hence
n\ —~D+&—-n)~-1)
. _ku-D
Ry
a0y = D+ (k= )\ — 1)
- N —-1)

=n+ [k —n)2 — D/ — DI

Let the blocks of a singular group divisible design be denoted by B,
B,, ..., By. Let B, have x; treatments in common with the block B;, 1 = 2,
3,..., b. Then, as in Exercise 91, we can prove that

b
Y xi=ke-1)
i=2

T x2 =k[n(\ — D+ (k —n)(A2 — 1)]

kr—-1
@« 7 ). Then, we obtain

DefineXx = X x;/(b— 1) =

b—
k
T (x; — %) = b= 1)[n()\| — (b — 1)+ K —n)A, — Db — 1)
_k(r___ 1)2]

— (A — D= D}l
Note r = A;. Now for the singular group divisible design, nj =n —1,
ny; = v —n, and r = A\, hence njA; + nmaAy =r(k — 1) gives
Nk —
Ay = i n),
(v—n)



SOLUTIONS 195

and \; — Ay = A\ (v — K)/(v — n). Also,

M=Db-1—-ON-Dr-1)
_ Mik—n)
C(v-n)
_Mlv=R-nb-n)] _

(v—n)
(b—r)k—nr)
T v-m
=(b—-r)k —nr—v+n)/(v—n).

b-D=-Ne—=-D=b+r

(b—r)

b-1

Hence

5 (6 — 27 k [)\ln(b—l)(v——k)

T -1
k(b —r)k —nr —v+n)
e
_ kr(v = k)(nb — nr — v+ k)
- (b—1)(v—n)
k(v — k)b — r)}{(nr — k)
- (v—n) ’

(v—n)

Now v = mn, hence nr — k = k(b — m)/m and

_ (K*(v = k)b —r)(b—m)

a2
T (x; — X) ——

Thus, if all x; are equal, then T (x; — X)> = 0, which gives b = m. Con-
versely if b=m, T (x; — X)*> = 0, which gives all x; are equal. Since
X =k(-1)/(b—=1)=k(—1)/(m — 1), the second condition follows.

93. Consider a resolvable singular group divisible design with b =tr,
v=mn=tk. Let Bj denote the jth block in the ith replication,
i=1,2,...,t,i=1,2,...,rand x;; denote the number of common treat-
ments between By and B;;,1i=2,3,..., r,j=1,2,...,t Then as in Ex-
ercise 91, we have

r t
Z Xjj = k(l‘ - 1)
i=2 j=I1

r t

5 =K\ — D+ (k=g = 1],

]

=1

Define X = T x;/t(r — 1) = k/t = k*/v. Then

2 —
T (x5~ 02 = kin\y — 1)+ (k= )k ~ 1)] = & (rt s

k
= -t—[nt()\l — M)+ k{th = 1) —r+ 1}].
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Now we have shown in Exercise 92, that
_ Ak —n) _ A(v—k)
v—n ~ (v—=n)

and remembering that r = \|, and v = mn, we get

LT (xj— X = [ntr(v — k) + nk(t — 1)(1 —m —71)]
t(v —n)
_ k¥ (t—Db-m-r+1)
- t(v — n) ‘

Since, £ (x;; —X)* >0, we getb >m+r1— L.

If the resolvable singular group divisible design is affine, then all x;;
are equal to X, and hence X (xjj — x)? = 0, which gives b=m+r — 1.
Conversely if b=m +r— 1, then L (x;i — %)? = 0 and hence all Xjj are
equal, and the design is affine resolvable. Since X = k?/v, the second con-
dition follows.

The characteristic roots of NN’ of a group divisible design are (see Exercise
85) given by

6y = rk, with multiplicity 1
6; = r — Ay, with multiplicity v — m
6, =r+ A(n — 1) — n\y, with multiplicity m — 1.

Now for a singular group divisible design, 6; = r — A; = 0. Hence,

rank(NN) = no. of non-zero characteristic roots
=14+m-—1
=m.

Hence,
m = rank(NN') = rank(N'N) < b,
and b > m. Further if the singular group divisible is resolvable, then
m = rank (NN') = rank NW'N) <b —(r — 1).
Hence, we getb>m+r— 1.
The characteristic roots of NN’ of a GD design (see Exercise 85) are given

8y = rk, with multiplicity 1,
0 = r — A, with multiplicity v - m
6, =r+ A (n — 1) — n\,, with multiplicty m — 1.

Now, for a semi-regular GD design, 6, =r+ \j(n— 1) —nA; = 0.
Therefore,

rank (NN’) = no. of its non-zero characteristic roots
=14+v—-—m



SOLUTIONS 197

96.

Hence
v—m+ 1 =rank (NN) =rank (N'N) < b
i.e., b > v —m + 1. Further, if the semi-regular GD design is resolvable,
then
v—m+1=rank (NN)=rank (NN) <b—-(r—1)
Hence, for a resolvable semi-regular GD design, we have

b>v—m+r.

Let the blocks be denoted by By, B, . .., By,. Suppose B; contains x;; treat-
ments from the jth group of the association scheme, i=1,2,...,b and
j=1,2,...,m. Then, we get for any j,

b

Z Xij = nr

i=1

b

Y xixj = D =n(n— X\

Hence

Z X§ = n{(n — DA, +1].

i=1

Define X; = ¥ x;;/b = nr/b = k/m. Then
1

b b 2
Y (= %)* =nln— DA +1] — —
i=I m

nrk

=n[(n— DA +1] - —
n m

= —[m(n — DAy + mr — rk].
m

But (n— DAy +n(m — DA, =r(k — 1) and hence (n — DA; =k — 1)—
n(m — 1)X,. Thus

T (x5 — ) %[mr(k — 1) = v(m — DAy + mr — 1k]

_ n(m— D(rk — vA3)
- m

=0,
since tk —vA, =0 for semi-regular GD design. Thus x;=X; =

k . .
constant = — for each i, and therefore k/m is an integer and each block

m

contains k/m treatments from jth block. But since this result is independent
of the jth block, it follows that each block contains k/m treatments from
each group.
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Let the blocks be denoted by Bj,B,,...,B,. Suppose B; has B,,
B, ..., B4y blocks disjoint with it and has x; treatments common with
the block Bj,i =d+2,d+3,...,b. Then we get

b
Z Xi =k(r—1).

d+2

Now, in Exercise 95, we have proved that each block contains k/m treatments
from each group of the association scheme. Thus, B contains k/m treatments
from each group, which form pairs of first associates. Thus, we get
X xi(x; — 1) = m(k/m)(k/m — D\ — 1)
+[kk — 1) — k(k/m — D)J(Ap — 1).
Hence,
b k
Y k= —[(k—m)\ — D)+kim — DO, — 1)+ m(@ — 1)]
i=d+2 m

= ;I;—[k()\l ~N\2) + m(r — Ny) + mk(A2 — D)].

Now, for a semi-regular GD design, rk — vA; = 0. Hence
k
A=,
v

and
(n— DA +n(m— 1Ay =1k — 1),
which gives A\ = r(k — m)/(v — m). Thus

r—A =rv—-k)/(v—-m)=k(b—-r1)/(v-—m)
A — A =m(k — v)/(v— m)v.

Hence

. E[mk(k—v)mk(b—r)

+ mk(A; — 1)]
m

(v—m)v (v—m)
2

= [(k = v) 4+ v(b—r)4+ (v —m)(VA; — V)]
v(v — m)

2

= k [b=r)(v—k)—(v—m)(v-— rk)] .

T v(v—m)

Hence, defining X = X x;/(b —d — 1), we get

KT Ky — 1)?

L= 7Y — -
%) —V(v—m) b—d-—1"
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where T = (b — r)(v — k) — (v — m)(v — k). Since T (x; — X)* > 0, we get
v(v —m)( — 1)
—T

v(v — m)(r — 1)?

d<b-1-

Furtherifd=b—1 — ,then T (x; — X)2 = 0 and hence

~ kir—1) k(r— DT
Xi = X = =
b—d—1 v(v—m)r—I)?

_ kT

T ov(v—m)r—1)’
which must be an integer.
Let the blocks be denoted by By, B,, ..., By, and let B} have x; treatments
in common with B;,i =2, 3, ..., b. Then as in Exercise 97, we get

Zb: xi=k(r—1)
i=2

and
v = K*[(b — r)(v = k) — (v — m)(v — k)]
P v(v—m) '
Define X = ——l—- Xj = EE;—I—) Then, we get
(b-1 (b-1)

Kb ==k - (v—m—rk)] K~ 1)

% (5 = %)’ V(v —m) ®-1)
K2[(b — 1)(b — r)(v — k) = (v = m)(b — r)}(v — k)]
- viv—m)b— 1) '
k(r—1) _ k(r—1)

Hence, the result follows. Since X = the second con-

b—1  v—-m
dition follows.

Consider a resolvable GD design, with b =1tr, and v =mn = tk. Let

B;j denote the jth block in the ith replication, i=1,2,...,r and
J=12,...,t Let the number of treatments common between B;; and
Bjjbe x,i=2,3,...,nj=1,2,..., t. Then, as in Exercise 97, we can
prove that
r t

Z Y xj=kr—1)

i=2 j=I
and

‘ Y= K[ — r)(v — k) = (v = m)(v — 1K)]

ij —
i=2 j=1 V(V m)
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3 Xij k k2

Define X = ———— = — = —. Then

tr—1) t v

Kb - -k = (v-m)(v=r1k)] k(=1)

%) —
EE (=% v(v —m) t(—1)
k2
= ——[t(b —r)}(v — k) — (v —m){t(v — 1k)
vt(v — m)
+v(r— D}]

_ K3(t — Dtr(v = k) — (v — m)v]
N vt(v —m)
_ k3(t — D[b(v — k) — v(v — m)]
- vi(v — m)
_ K(t—-1Db-v+m—r)
- t(v —m) '

Since L (x;; — %)? > 0, we get b > v — m + r. The other part of the exer-
cise also follows from the consideration of

_K-Db-v+m-1)

. %)
¥ (xj — X) v —m)

In Exercise 87, we have proved that the characteristic roots of NN’ of a
triangular design are given by

@)

(i)

6 = rk, with multiplicity 1

8, = r — 2\; + \,, with multiplicity n (n — 3)/2

6, =r+ (n — 4)\; — (n — 3)\;, with multiplicity (n — 1).
Letr —2\; + A2 = 0, then rank (NN') = 1 + n — 1 = n. Thus,
n = rank (NN’) = rank (N'N) < b.

Hence b > n. Further if the design is resolvable, then

n=rank (NN) =rank (N'N) <b—(r—1).

Therefore, we getb>n+4r1— 1.
Letr+ (n —4)A\; — (n — 3)\, = 0. Then

rank NN)=14+nn—-3)2=14+v—n.
Hence,
1 4+ v — n = rank (NN') = rank (N'N) <b.

Therefore, we get b > v —n+ 1. If in addition, the design is
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resolvable, then
l+v—n=rank NN)Y=rank NN) < b—( - 1).
Hence, we get

b>v—n+r.

Let the ith block contain x;; treatments fromt he jth row of the association
scheme,i=1,2,...,b; j=1,2,..., n. Then for any j, we get

b
Z Xjj = (n — Dr
i=1

and
b

Y i — 1) = (n = 1)(n = DA,.

i=1
Hence,
b

Y k=@ — D~ 2\ +1l.

—1
(n )r‘ Then

b
Define %; = ) x;j/b =
[

(n — 1)’r?

b
2% = %)* = (0 = Dl = DAy +1) = —
i=]

Now, b = vr/k = n(n — 1)r/2 k, hence

b
Z(Xij - )'(j)2 = (o - l)[n (n — 2)\; + nr — 2rk].
i=

Now, njA; +nh2 =1 (k — 1), n; = 2(n — 2), and n; = (n — 2)(n — 3)/2,
gives

2rk = 2r+4(n — 2)A; + (n — 2)(n — 3)A,.

Hence,

b — —
> = %) = (“——':1("—% +( =\ = (0= 3]
i=1
=0,

since r+ (n — 4)A; — (n — 3)\, = 0. Therefore, the ith block contains
Xij = X; = (n — ) /b = 2k/n treatments from the jth row of the associ-
ation scheme. Since this does not depend on i and j, it follows that every
block contains 2 k/n treatments from every row of the association scheme.
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Since n; =2(n—2),n; = (n—2)n —3)/2, and njA; + Ay =1k — 1)
we get

4(n—2)A\ +(n—2)n—3)\; =2rk — 1).
Further, we are givenr + (n — 4)A; — (n — 3)\, = 0. Solving the above two
equations for \; and \,, we get

A =r(2k — n)/n(n — 2)

Az = 2 r(nk 4+ n — 4k)/n(n — 2)(n — 3).
Now, let the blocks be denoted by By, B,, ..., By and let B; have d blocks

B,, Bs, ..., By, disjoint with it. Let B; have x; treatments common with
Bi,i=d+2,d+3,...b. Then, we get

b
Z x=k@—1).

i=d+2

Since B, contains 2 k/n treatments from each row of the association scheme,
we get

b

Y xitxi = 1) =@ k/m)2 k/n = DA — 1)
i=d+2
+[k(k— 1) = n@2 k/n)2 k/n — DJ(A, = 1).

Hence,

= x? = (k/n)[2(2k — n)(\; — D) + {nk — 1) — 22k — n)}(A, — 1)
+k(r— 1)]

= ;[2 Ck—n)A;—A)+nk—-DA2—D+n@-1)].

Substituting the values of A, and \,, and simplifying, we get

b
Z 2 k?2-T
Xl_ y
v(v—n)

i=d+2
- Xx;
where T = (v — k}(b — 1) — (v — rk)(v — n). Therefore X = P — =
k(r—1)
——— _ Then,
b—g—1 hen

Since T (x; — X)* > 0, we get

v(v—n)r—1)?

d<b-1-
- T
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v (v—n)r—1)?

Ifd=b-1- , then X (x; — X)* = 0, which gives

k(e—1) kT
b—d—=1" v(v—n)r-1)

Xi=7—(=

Hence the result.

Let the blocks be denoted by By, Bs, ..., By. Suppose B has x; treatments
in common with B;,i = 2,3, ..., b. Then as in Exercise 102, we can prove
that

ixi =k@r—-1
i=2

b
2

2 _ Kb —n(v—k) = (v —rk)(v —n)]
Y= .

v(v—n)

Define X = X x;/(b— 1) = k(r — 1)/(b — 1). Hence, we get

_ Kb —n(v -k —(v—rk)(v—n)] B kK2 (@r—1)?

X (xi —X) v(v—n) b-D
k2
B m—_l—)[(b_ D{(b —r)(v —k) — (v — rk)(v — n)}
—v(v—n)r— 1)
k2
= o e ® - De-nv =k

—(v—n)(b—r)(v—k)]
_Kb-—n(v—Kkb-v+n-1)
- viv—n)b-1)

Hence, the result follows.

Consider a resolvable triangular design withr+ (n —4)A\; —(n —3)A, =0
and b=1tr, v=n(n—1)=1tk, where t is a positive integer |. Let
Bjj denote the jth block in the ith replication, i=1,2,...,r and
j=1,2,....t Let the number of common treatments between B,; and
Bjjbex;,i=2,3,...,r5j=1,2,...,t Then, as in Exercise 102, we can
prove that

t

szijzk(r—l)

i=2 j=1

e B K2[(b — r)(v — k) — (v — 1K)(v — n)]

Py v(v—n)

-
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Define X = L x;j/t(r — 1) =k/t = k?/v. Then, we get
_Kb—n(v—k) - (v-rk)(v-n)] B Kr-1)

T (xj — %) o t
k2
= ——fttb—n)(v—-k) — v(v—n)t—1)]
vit(v—n)
_ Kt = Dltr(v —k) — v(v — )]
B vi(v—n)
_ kX (t=Dv(b—1) — v(v —n)]
N vi(v—n)
_ (K- Db-r—v+n)
- t(v—n) '

Since X (xi — %)? > 0, we get b > v — n + r. The other part of the exer-
cise follows from the consideration of
Kt—1)b-—v—r+n)

t(v—n) '

LT (xj— XY =

105.  In Exercise 86, we have proved that the distinct characteristic roots of NN’
of a L; design are given by
8y = r k, with multiplicity 1
0 =1 — i\ + N\(i — 1), with multiplicity (s — 1) (s —i— 1)
0 =1+ N\i(s —1) — Aa(s — i+ 1), with multiplicity i (s — 1).

6)) Let r +iX{ + X\2(i — 1) = 0. Then, since the rank of a matrix is
equal to the number of its non-zero characteristic roots, we get

rank (NN") =1 +i(s — 1).

Hence,

1 +i(s — 1) = rank (NN') = rank (N'N) < b.

Thus, b > 1 4 i(s — 1). Further, if the design is resolvable, then
l1+is—1)=rank NN)<b—(r—1).

Therefore, b > r +i(s — 1).
(ii) Letr + Aj(s —i— Aa(s —i+ 1) = 0. Then arguing as in (i), we get

1+ (¢ —1D(s—i+1)=rank (NN
=rank (N'N) < b.

Hence, we get b > 1 + (s — 1)(s — i + 1). If the design is resolv-
able, then

1+(s—1)s—i+1)=rank (NN) <b—(r—1).

Hence,b>r+ (G — 1D —i+ 1)
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Let the ith block contain x;; treatments from the jth row (or column) of the
association scheme,i=1,2,...,b; j=1,2,...,s. Then

b

b
Xjj = s T, and inj(xij — 1) =s(s— DA;.
1 i=l

Hence,

foj:s(s— DA +sT.

i=1

k
-, j=12,...,b, we get
s

Therefore, defining X; = Zb:Ixij/b = ST){ =
i=
Xb:(xij —%) =s(s— DA\ +sr— %
. =s{s— DA +sr—rk.
Now, from r(k — 1) = nj A} + nyh,, we get
r(k—1)=2(s— D\ +(s = 1)\
Hence, rk = r 4 2(s — DAy + (s — 1)*\,. Then, we get

T (xj— %) =8~ DA +r(s—1)=2(s — DA — (s = 1)2\,
=(s—DIr+ (s —=2)A; — (s — DAz}
=0,
since r+ (s — 2)Ay — (s — DAy = 0. Therefore, x;j = X = k/s for all i and
j- Hence the result.
Let the blocks be denoted by By, B», . .., By. Let the block B| have d blocks

Bj, Bs, ..., By disjoint with it and have x; treatments in common with the
block Bi,i=d+2,d+3,...,b. Then, we get
b
Z xi=k(@—1).
i=d+2

Since B contains k/s treatments from each row (column) of the association
scheme, we get

b k\ [k
Z xi(xi——l)=2~s-(—> (——1)@,—1)
S S

i=d+2
+[k(k— ])—2S<E> (E - l)]()\z— 1)
s/ \s

k
= -S-[?-(k —8)(A — A2) + stk — DA — D]
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Hence,

w

b
Y xE==[2k — s)A — A2) +s(k — DAz + st — K)].

i=d+2 5
Now, we have

T+ =2\ —(s— DA, =
r(k—1)=2(s— DA\ + (s = )2\,

Solving these two equations for \| and A, we get

_ r(k—s)
TS0
o = r(s+ sk —2k)
P PRTY)
and hence \| — \» = _:—Zg:—’]—l)'(zz' Substituting these values in X xiz, we
obtain
ﬁi k[ 2k=—s)r(v—Kk  rsk = 1)(s + sk — 2k)
i=d+2"i s s(s — 1)2 s(s — 1)2
_k [_ (k — s)r(v —k) B k —s)r(v—Kk)
s s(s— 1) s(s—1)2
rsck—D(s—k) rkk—-1
s(s—1) s—1 +S(r_k)]
k[ (k—skb-1  rs?—k})  rkk-1)
‘E[_ SG-D2 " sG-D ' s—1 +*“_k4
E [_(k (b—r)k—s) k{—rk+rsk—rs+bs—vs+ v}]
s s(s— 1) s(s—1)
__K ———[—(b -k —s) — (v —1k)(s — 1)’
=617 r s) — (v —1k)(s
+(v—s)b-r)]
_ K2T
v =1
b
where T=(b-n(v—k)—(v—rk)(s—1)’.. Define x= Y x/
i=d+2
kar-1)
(b—d—l)—b T . Then

KT K3(r — 1)?

th TVGe-12 b—d-1

i=d+2
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Since T (x; — X)? > 0, we get

v(s— 1?2 —-1)?

d<b-1-
- T

v(s— 1P —1)?

Ifd=b—-1- T , then T (x; — X)2 = 0. This gives
=% — kir—1
T T b—d- 1
kT

Tovr =D =12’

i=d+2,d+3,...,b. Hence the result.

108. Let the blocks be denoted by By, B,, ..., By, and let B; have x; treatments
incommon withB;, i =2,3, ..., b. Then, as in Exercise 107, we can prove
that

where T = (b —r)(v —k) — (v — r k)(s — 1)%.

k(r—1
Now, definex = Z x;/(b—1) = l()r l)

. Then, we get

KT  Ke-1y
v(s—1)? b-1
k2
= m[(b- DT — v(s — D2 — 1)?]
](2
= mz(b——l)[(b_ Db —-r}v—-k)
—(s— D¥(b - DH(v—rk)+ v(r— D]
_ Kb = Db —r)(v—k) = (s = D*(b —)(v — k)]
vis— 12b-1)
_Kb-—nDv-k{b-1)—(s—1)}
vis— D3b-1)

T (% - %)=

Consideration of I (x; — X)*> = 0 proves the result.

109. Consider a resolvable L, design with r+ (s — 2)A\; + (s — 1)A\; = 0 and
b=tr,v=s®=tk, where t is a positive integer greater than 1. Let Bi;
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denote the jth block in the ith replicationj = 1, 2, ..
By have x;; treatments in common with B;;, 1= 2,3, ...

Then, as in Exercise 107, we can prove that

Define

Then

are jo > g > ...

r t
Y D xj=ka-1

i=2 j=I
r t

2% = v(s-—l)2

i=2 j=1

_ szij k k2
X ———— = - = —,
td—-1) t v

K3¥(r — 1)?

i=2 j=

KT
ZZ(XU—X) = s—1)2_

b—t
r—1

T
— 2 _
=k [v(s—l)2 t

_ k2[t T — v(s — 1)*(r — 1)]

]

CHAPTER 3

LLi=12...,
=12t

vis— D
_ Kb —)(v — k) — v(t — 1)(s — 1)?]
B vi(s — 1)?
KAt = DIr (v —k) — v(s — 1)?]
- vi(s — 1)?
K- Db (v — k) —v(s — 1)]
- vi(s — 1)?
K= Dyv[b-r—(s—1)]
. vi(s — 1)2

r.Let

Since 2T (x; — X)? > 0, itfollows thatb > r + (s — 1)°. The necessary and
sufficient condition for it to be affine resolvable follows from the consider-
ation of £ (x;; — X)> = 0.
We renumber the blocks so that the two given blocks occupy the first and
second positions. Then, the distinct non-zero characteristic roots of N'N
are alsork > wo > py >

..., p. Then it is easy to verify that the distinct

non-zero characteristic roots of the matrix

A=NN- KTk

Epb

0<yAy<mo

> Wp. Then, if y is any real b x 1 vector,
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rk

0<y [N'N - ; pLOEbb] y < o

Selecty’ = [1/v/2, —1/4/2,0,0, ..., 0], then we get
0<k—x=<po,

which gives

k—po <x.
Next, selecty’ = [l/ﬁ, 1/«/5, 0,0,...,0]. Then, we get
20rk —
k+x— (r—bﬂ = Ko,

which gives
X<po—k+20k—pobl
Thus, we get
k—po<x<po—k+20rk—poh".
Since x <k, and 0 < x, one gets

max[0, k — wol < x < min[k, wo — k + 2(rk — puo)b~'1.

Also, consider I:I= Ev, — N. Then N’ ltl = N'N+ (v — 2k)E,. Since, the

elements of I:I’Iil are non-negative, we obtain
x>2k—v.
Hence, we get
max[0, 2k — v,k — po] < x < min[k, po — k + 2(rk — po)b~'1.

In Exercise 65, we have proved that the characteristic roots of NN’ of a
BIBD are r k and r — X. Thus, in the notations of Exercise 110, we have
ko = r — \. Then, applying Exercise 110, one easily obtains the required
result.

In a singular group divisible design, the characteristic roots of NN’ are
rk,r—A; =0and rk — v A, > 0. Thus, in the notation of Exercise 110,
po =1k — vhy. Now, from nA; 4+ nph2 = r(k — 1), and r = \;, we get

_ rk —n)

A2 .
v—n

Hence,

po =1tk —vhy =k(b—r)/(m— 1),
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since v=m n. Then

k—pp=~k(b—m=r+1)/(m—1).
2rk—po) kib-m-—r+1) 2vh

o —k+ ———=—""—3 b
kb—m—-r+1) 2vr(k—n)
- (m—1) +b(v—n)
k

= [n(b —m —r — 1)+ 2k].
(v—n)

Applying Exercise 110, we get
max[0,2k —v,—k(b—m —r+ 1)/(m — 1)]
< x < minfk,k{n(b —m —r— 1)+ 2 k}/(v—n)].

113. In a semi-regular group divisible design, the characteristic roots of NN’ are
rk,r—\; > 0,rk — vA; = 0. Hence, in the notation of Exercise 110, we
have pg =r — ;. Now, since rk — vA; = 0, we have A\, = rk/v. Hence
from nyAj + mAy =rk—1),n; =n—1,n; = n(m — 1), and Ay = rk/v,
we get

A =1k — m)/(v—~m)
and,
Mo =1 — A = k(b —1)/(v —m).
Therefore, we get
k=w=-k(b—v+m-—r)/(v—m).

Further,

2(rk — kb — — 2k b—
o — k + (tk —po) _ k(b—v+m r)—f—-—[r— r]

b v—m b vV—m

Hence, using Exercise 110, we get
max [0, 2k — v, —k(b — v+ m —1)/(v — m)]
< x < min[k, k{(b — r)}(b — 2) — (v — m)(b — 2r)}/b(v — m)].
114. In a triangular design, the characteristic roots of NN" are r k, r — 2\ + Ay,
and r + (n — 4)\; — (n — 3)\,, (see Exercise 87).
@) Consider r — 2\; + A\, = 0. Then in the notation of Exercise 110,
we have
po =1+ (n—4N —(n— 3)As.
=1—2N1 + A+ (0 —=2)(\; — A\p)
=(n—2)(\; —\2)
=(n—=2)(r— Ay,
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sincer—2A; + A =0.Nowfromr—2\A; + A = 0,andn\; +
mAy =1k — 1), and n; =2(n —2),n; = (n — 2)(n — 3)/2, we

obtain

\ _rf(n = 2)(n = 3) + 2k — 1)}

a 2n— (n - 2) '

Hence,

= ri(n+ 1)(n—2) -2k — 1]
a 2(n — 1)(n - 2)
__1tln(n - 1) — 2k]
T 2n-D(n=2)
_ 2r(v — k) _ k(b—r)
T 2n-DM=2) (-1 -=2)
_ kib—r1) _kib—r)

== " o)
and

k—po=kin—1—-b+r)/(n—1).

Also

o — k4 2(rkt;— Ko) _ k(b+nl_—]n—r) N _2Fk !r— ::”
=t l)[b(b+ [=n-n+2{rh -1 - (b-n}]
kY. l)[(b—f)(b— 2)—(n = 1)b - 2n)].

Hence, applying Exercise 110, we get

max [0, 2k — v, =k(b —n —r+ 1)/(n — 1}]
< x < min[k, k{(b —r)}(b—2) — (n — I)(b —2r)}/b(n — D].

(i) Now consider r + (n — 4)\; — (n — 3)A; = 0. Hence, in the nota-
tion of Exercise 110, we have

po =r1—2\; + As.

Butsincer+ (n — 4)\; — (n — 3)\, = 0, we have
r—2N+M+M=2)A = 2)=0.

Hence

r=2N+5=—(0-2)A = \p),

and

po = —(n = 2)(\; — M2).
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Now, from mA +mAh=rk—1), and r+{n-—4)N\ -
(n — 3)A; = 0, we get

A1 =12k — n)/n(n — 2)

A = 2r(nk+ n—4k)/n(n — 2)(n — 3).

Therefore
fn—3)2k —n)—2(nk+n—4Xk)}
a(n — 2)(n — 3)
_ r2k—n(n—1)] _ 21k - v)
T nn-2)n—3)  n(n—2)n-3)
_ 2k(b—r1)
~ nn-2)n-3)

N A=

and

_2kb—1)  2kb-01

" nn-3) 2v-—2n
k(b—1)

v—n

ko

K — __k(b—v—r+n)
o = ——_—(v—n)

and

2(rk —
,Lo_k+‘_(£b_W

=k(b—v—-r~+—n)_|_§{r_ (b——r)]

v—n b (v—n)

= k [bb—v—r+n)4+2r(v—n)—2(b-r)}
b(v — n)

= sl 0=~ (v —nb-2n].

Hence, using Exercise 110, we get
max[0,2k — v, —k(b — v —1r+ n)/(v — n)]
< x < min[k, k{(b — 2 r)(b — 2) — (v — n)(b — 2 r)}/b(v — n)]

In a triangular design, the characteristic roots of NN’ are 6 =rk, 6; =
I+ (n—4)\; — (n —3)\,, 6, =r — 2\, + \,. Now, we can easily verify
that

0 — 6, = (n—2)(A; — A2).

Now if A\{ > Ay, then §; > 0,. Hence in the notation of Exercise 110,
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o = 6. Applying Exercise 110, we get
max[0,2k — v,k — 6;] < x < min[k, 6; —k +2(rk — 6,)b™"].

Further, if A; < XAy, then 0; < 6,. Hence in the notation of Exercise 110,
o = 6. Then, we get

max[0,2k — v,k — 8] < x < min[k, 6 —k + 2(r k — 6)b™'].

116. In an L; design, the characteristic roots of NN’ are 0y =rk, 0, =
r+(—1DA —(s—i+ 1)\, and 6, =r —i\; + (1 — 1)\,. Therefore, we
find

6 — 6 =s(\) — A2)

Thus, if A > A\, , then 0, > 0, and hence in the notation of Exercise 110,
o = 0;. If \; < Ay, then 0, < 6, and hene in the notation of Exercise 110,
o = 6. Therefore using Exercise 110, we get the required result.

117. In an L, design, the characteristic roots of NN’ are rk,r+ (s — 2)A; —
(s— DAzandr —2N\; 4+ Ay Since r+ (s — 2)A — (s — 1)A; = 0, we get

r—2N 4+ +sh—N)=0

r—2XN + A =—s(A\} — Ap).
Now, in the notation of Exercise 110, we have
po=T1—2N + Ay = =s(A; —\p)
and in Exercise 107, we have proved that
r(v—k) _ kb —r)

M=he = _s(s— 1)? B _s(s—— 1)?

Hence,
_kb-r)

P«o—(-s__—l)z-,
and

ko= 6= D~ —n)

(s—17?
Also
2
mo —k+ %(rk— ho) = k{(b—(:):l()sz— D) + 2—:{r— (::rl)z}

ok
—b(s—I)Q[(b (b —2)— (s —1)"(b—2n)].

Hence using Exercise 110, we get the requird result.
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Let us renumber the blocks so that the first two blocks B; and B, have x
treatments in common. The other blocks are denoted by B3, By, ..., Bp. Let
B, have x; treatments common with the block B;,i = 3,4, ..., b. Then, as
in Exercise 96, we can prove that

b
x+in =k(r—1)
=3

b 2
kT
2 2 _
X +; Xi T v(v—m)’

where T = (b — r)(v — k) — (v — m)(v — r k). Then, we get

KT k@t —1)—x]?
Z(x X) = [v(v m) X ] b-2 '

Since T (x; — X)? > 0, we get

2 —
X2b—-1)—=2xkr—1D+K@— 1)2—M <
v(v —m)
i.e.
k(r—1) k¥(b—2) )
[x—— o ]5 v — I)Z[T(b——l)——v(v—m)(r—l) 1.
Now
T(b— 1) — v(v — m)(r — 1)?
=(b—1)b—r)(v—k) — (v—m)[(b— I)v—rk)+ v(r — 1)*]
=b-nv-kb-1)—(v-—m)b-r)(v-k)
=b-nv-kb-v+m-1).
Hence

_ kr—1) < Kb-2)b—-n(v-kb—v+m-1)
T V(v —m)(b — 12
A2
< —_—
where A2 = k?(b — 2)(b — r)(v — k)(b — v+ m — 1)/v(v — m). Therefore,
we get
kt—1)—A kr— 1D+ A

=Xx=

b—1 b-1

Let us renumber the blocks as B, B,, . .., By, so that the first two Byand B,
have x treatments in common. Further let B;and B;(i = 3, 4, ..., b) have x;
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treatments in common. Then, as in Exercise 102, we can prove that

where T = (b — r)(v — k) — (v — n)(v — r k). Therefore, we get

I
P ' ~{v(v—n) b-2 '

Since T (x; — X)> > 0, we get

2 —_—
X*(b— 1) = 2k(r = Dx + K*(r — 1)* — KTb-2) <0
v(v —n)
ie.
k(r—- l) 2 k2(b—2) :
[X* b—1 } = oo e = D= vy = = 1]
Now

T(b — 1) — v(v — n)r — 1)?
=b-Db-nv-k—(v-nlb-)v-rk) —vir— 1}
= (b~ 1)b-r)v-k —(v—n)b-r)v-k)
=b-Nv-kd-v+n—1)

and therefore

k=17 A?
X — < .
b—1 ~(b-1)2
where A2 =k*(b—2)(b—r)(v—k}b—Vv+n— )/v(v —n).
Hence, the result follows.
120. Let us renumber the blocks as By, B,, . .., By, so that the first two blocks B,

and B; have x treatments in common. Let B, and Bi(i = 3,4, ..., b) have
Xi treatments in common. Then, as in Exercise 107, we can prove that

x+le_k(r— 1)

K2T

b
2
X +Zx _v(s——l)z

i=
where T = (b — r)(v — k) — (v — r k)(s — 1)2. Then from the above, we get
KT 5 [k(r—1) —x]?

P )
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Since T (x; — X)* > 0, we get
2 —
v(s — 1)?
ie.
[x_ k(r— 1)]2< k(b —2) [Tb— 1) — v(s— 16— 1]
b—-1 - V(S_I)Z(b_l)2 V(s r .
Now

T(b — 1) — v(s — 1*(r — 1)?
=(b-Db-nv-k —(—DXb-Dv-rk+v(r— 1)}
=0b-Db-—1v-k —(—-1*b-1)v-k)
=b-v-Kkb-1-(s—1?%.

Therefore, we get
[x _ kir— 1)]2 A
b-1] ~ G-
K2 (b —2)(b—~1)(v—-Kk)}{b—1—(s=1)?}
v(s — 1)?

where A2 =

follows.

Let the blocks of a group divisible design be denoted by By, B2, ..., By.
Let B; contain x; treatments from jth group of treatments, i =1,
.,b,j=1,2,..., m. Then we have shown in Exercise 96 that

. Hence, the result

i(x.. —x)2 = n(m — 1)k — vA3)
ij = .

m

b
Since ) (xjj — )'(j)z >0,wegetrk — vy > 0.
i=1

Let the ith block contain x;j treatments from the jth row of the associa-
tion scheme,i=1,2,...,b,and j = 1,2, ..., n. In Exercise 101, we have
proved that

1 2
Z(X‘J % ——ﬁ’——)[r+(n—4m—(n—3)m

Now njA; + o\ =r(k — 1), n; = 2(n — 2), n; = (n — 2)(n — 3)/2, give

2tk - 1)
n—-

(n - 3))\2 = — 4)\1.
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123.

Hence
r+(m—4\ — (=3 =1+ — 4\ — E% +4Nn
1
= - 2)[r(n —2)+n(n =2\ —2r(k — 1)]
1
= - 2)[rn 4+ n(n — 1)\ — nA; — 2rk]
1
= 31— M) = 2k = )]
and

b
-1
Y0 -7 =& - inr - ) - 26k = vAy)l
i=1

Since T (xj; — )'(j)2 > 0, it follows that a necessary condition for the existence
of a triangular design is

n(r — \y) > 2(rk — vA)

1e.tk — vA; < n(r — Ay)/2.
Equivalently, the condition can be stated as

r+(n—4)A —(n—3)\; > 0.

Let the ith block contain x;; treatments from the jth row of the associa-
tionscheme,i =1,2,...,b,j=1,2,...,s. Then, in Exercise 106, we have
proved that

T (% — %)* = (s — DIr+ (s =2\ — (s — DA,l.
Now, mi\; +moh =1k — 1), n; = 2(s — 1), and np = (s — 1), give

k=D 2
2T -2 -1y
Hence,
f+(S—2)M—(S“l)K2=r+(s—2))\|-—r(sk__ll)+2)\|
= S—lT[r(S— D+s(s— DA —rk—1))
1
= ——[s(r — \y) — (rk — vA})]
s—1
and

T (xij — %;)* = s(r = \y) — (rk — VA)).

Since T (x;j ~ )‘(j)2 > 0, itfollows that a necessary condition for the existence
of a L, design is that rk — vA; < s(r — ). Equivalently, the condition can
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be stated as

r+(—2)M —(— DA > 0.

Due to the interchange treatment 2 occurs twice in the first column and
treatment 1 does not occur in the first column, and also treatment 2 does not
occur int he second column while treatment 1 occurs twice in the second
column. Hence

L = EVVs

-_—N O
— o N
—_

| SR |
M= | . _{2En—2L  Ex-p
Ev-22  Eyv-2v-2 |

1 11 ... 1

Let the vector ¢ = {c;, ¢y, ..., ¢y} be partitioned as ¢ = {A, B}, where
A ={c1, ¢z} and B = {¢3,¢4,...,¢y}. Also the vector of treatment ef-
fects t={t,,...,t,} is partitioned as t = {a, b}, where a = {t;, t,} and
b ={ts,44,...,t,}. Then, we have

1 1 I
Q =T~ -LR- —MC+ "ELE‘,]G
v v v

G 1[2Ep» -2,  Eyv-y } [A] G
—1-2g, -1 2E,
T vE =y [ | Y Ev—2v-2 | | B + v

_p_ L[2GEx —2A
- v} GEqg—n |’

Hence, we have

2G 2
Q=Ti—-—+-¢

v v

2G 2

Q=T-—+-¢
v v
G
Qj=Tj——,j=3,4,...,V.
v

Further,

1 Lo
-MM' + SLE,L
v v

= VIV - Evv - % [412 + (V B 2)E22 VE2(V_2) ] + EVV

1
F = diag(r,1,...,r)— -LL' -
v

VEw 22 VE(v_2)v-2)
412 + (V - 2)E22 E
=vl, — v 2(v—2) .
Ew-2p Ev-2v-2)



SOLUTIONS 219

Hence, the equations for estimating t are given by
Q=Ft
1
v [ ~@h+(v-2En)  Exo } [a]
= v bl
Ewv-_2) Eq_2v-2)

We assume E;,t = 0. Hence, the above equations can be written as

vi—4 2
Q= Sat ;(EIZa)EZI

vb

Thus, we get

vi—4,

2. .
ty + ;(l] +t3)

Q=
\"
vi—4, 2. .
Q= t+ =t + 1)
v \%

Q=vij.j=34....v.
Solving these equations, we get

t=[(v* = 2)Qi — 2Qa)/v(v* — 4)
= [(v* = 2)Qy — 2Qi1/v(v* — 4)
fj :Qj/V,j=3,4,...,b.

Hence, we get

var () = 62(v2 = 2)/v(v? — 4),i= 1,2
var ) = o?/v,i=3,4,...,v

cov (i), ) = —202/v(v? — 4)

cov (i) =0,i=1,2,j=3.4,...,v
cov (@ t) =0,i%j=34.....v.

Then, we obtain

var (i, — ) = 20%/v

var (I; — 1) = 202(v = 3)/v(v* — 4),i=3,4,...,v
var (f, — &) = 20%(v2 = 3)/v(v* — 4),i=3,4,...,v
var (i — ) =20%/v,i#j=3,4,...,v.

When the treatments 1 and 2 are not interchanged,

var (i —§) =20%/v,i#j=1,2,...,v.
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When the treatment 1 and 2 are interchanged, the average variance of BLUEs
of elementary treatment contrasts is given by

2 - 2 _
\‘/=ZL[2+“(V_2)_(_X__‘3_2+(V_2)(v—3)]/v(V—I)
V2 —4)

v
=202V  + V2 = v + 4)/VP(v — D(V+2).

Hence, the efficiency of the modified Latin square design relative to the
original Latin square is given by

E=v(v—1DV+2)/(V + v —2v+4).
The loss in efficiency is

I —E=4/(V*+V2 = 2v+4).

125.  In an m-ple lattice design, the solutions for t; are given by
mn
i = [QS + ) Si(Qu)/k(m — 1)} frs=1,2,...,v
i=l1

where v = k? and

S1(Qs) = sum Q’s over treatments which occur in the same
row as ;.

$2(Qs) = sum of Q’s over treatments which occur in the same
column as t,.

Si(Qs) = sum of Q’s over treatments which correspond to the
same letter as t; in the (i — 2)-th Latin Square,
i=3,4,...,m

Then, we have
2

N m
var(ts)z%—[l+m],s=l,2,...,v

cov (t,1y) = o /rk (m — 1), if the treatments t; and ty occur
together in a block,

= 0, if the treatments t; and ty do not occur
together in a block.

Hence,
U 202 m .
var (t, — ty) = — | k+ —— |, if the treatments t; and ty do
kr m— 1
not occur together in a block
_ 202k +1)

kr
together in a block.

, if the treatments ty and ty occur
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Now let us find the number of pairs of treatments which occur together as
a block. From each row of treatments, we can form k(k — 1) pairs, from
each column of treatments, we can form k (k — 1) pairs, from the treatments
which correspond to the same letter in the (i — 2)th Latin square, we can
form k (k — 1) pairs. Thus, the total number of pairs of treatments which
occur together in a block is

k(k — Dk + k + (m — 2)k] = k*(k — Dm.
Then, the number of pairs of treatments which do not occur together in a
block is
Kk =1 —mk*k — 1) =KXk — Dk + 1 —m).
Hence, the average variance of the BLUE’s of elementary treatment contrasts
is given by
2

_ 20
V= ————
krk2k2 -1

[k + Dmk3(k — 1) + <k+ ﬂ—)
m — |
Kk — Dk +1—m)]
202[(m — 1)(k + 1) + m]

T tm- DK+ D)

Now the efficiency of this design relative to RBD is given by
E=(m-Iik+ H/[(m— Dk+1)+m]
=1 —-m/[(m— I)k+ 1)+ m]

When the lattice design is balanced, then m = k + 1, and in this case

1
E=1—-——=k/tk+1).
k+1 /ke+ D)

126. The normal equations for estimating t, in the intrablock analysis are given by

1\. I & "
Q=r (1 - E) (- r ZS{(ts), where
1

S.(t;) = sum of treatments in the same row as t; but excluding t;,

S5(ts) = sum of treatments in the same column as t; but
excluding t; and

Si(t;) = sum of treatments which correspond to the same letter
as t; in the (i — 2)-th Latin Square, i = 3,4, ..., m.

Applying the result of Exercise 53, we find that the normal equations for
estimating t, in the analysis with recovery of interblock information are

given by
w2 1 (W) —W2) o ) e
= 1] (1 - E)ts - _k—zsi(tS)’

Ps=r[w|+k
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Thus

. W — W
P, = rw;t — lk Zzsi(ts)

*
since r = m. Hence, summing over the treatments in the group Si(t), Y, we
get

SiP) = wiSil) - ==Y Y " Sicl)
i=l

wp —

2 kSi) + @ = DY 1]
= [(r = Dw; + w1Si (),

= 1w Si(ls) —

since Y_ 1; = 0. Thus, we get
Si(ts) = Si(Ps)/[(m — Dw, + wa],

for r = m. Hence

A (Wi —wp) -
s = IWylg K{(m — Dw, + w3} i§:1 i(Ps)

—

(w1 —w2) 3~ Si(Py)
= — | P+ !

™w) k{(m — Dw; + w}

and

m(w; — wy) }
{(m— Dw; +wy} |
If t; and t¢ occur together in a block, then

" 1 T
var(t) = — | 1 +
rwy | k

(W) —wa)
rwy k{(m — Dw; +wy}’
If t; and ty do not occur together in a block, then
cov (I, iy) = 0.

Hence, if t; and ty occur together in a block, then

cov (ts, ty) =

~ 2 [ (m — 1)(W1 —W2) 7]
s —ty) = —|1 .
varls =t) = o | 1 m = wy 1wl |
If t; and t¢ do not occur together in a block, then
n 2 T m(w; — W)
ts —ty)=—|1 .
var (=t = o | K = hwr + wa) |

The number of pairs of treatments which occur together in a block (see
Exercise 125) is m k?(k — 1). Hence, the average variance of BLUEs of
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elementary treatment contrasts is given by

V=

I s 2 (m — D)(W; — w))
e = 1)[ k(k“)r—»vT{1+k<m—1)w,+wZ)}

+kAk — Ik + 1 -m)ﬁ. { + M”
k(m — Dw; +w,

__ 2 [H I+ M]
rwikk+1) (m—Dw, +w, |
Hence the efficiency is given by

2/rw,
2 [k 14 M]
rwik+ 1) (m — Dw; + w;
_ {(m — hwi + wa)(k + 1)
= Dwi + walk+ 1)+ m(w; — w))
B m(w; — wa)

(k+ D{(m — Dw + wa} + m(w) — wy)’
When the lattice design is balanced, then m = k + 1 and then

E=

Eei— Wi —wy k w,

mw, —wy, (k4 Dw —wy
127. Clearly, the sum of squares due to Fy is given by

L oo 1
B’/ {Z X?(x)] +$:83...Sn

x=0

We now find SIZ_:I Xf(x). Note that X(x) are orthogonal polynomials. Hence
> X,(x)Xtr(x;=:O 0 for t # t'. Therefore, we obtain, by multiplying the rela-
tixon about X, by X,_; and summing

T XAx) =  X00X ()X (). (1)
Also, multiplying the relation about X, by X,_, and summing gives

(t— DS —(t— 1)%}

0= 2 X (X)Xt (X)Xe=2(x) — PTE TSI T X2, (x).
@
Replacing t by (t — 1) in (1), we get
T X7 (0 = T X 00X (0Xi-a(x). 3)
From (2) and (3), we get
pxt, = DB Wgye ) @

42t — 1)(2t —3)
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Replacing (t — 1) by t in (4), we get

{82 - 12}

2 —
EX0 = D=

X2 (%)
Repeated application of the above relation gives

Bt—172... 138 -1)...(83-13) W
QU+ DR-1)... 32— D2t—3)... 1} ;X"(")
WA -1)ST-2Y)...(8] =) - S,

4t{(2t+1)!}!_(_2i)!_

¥ X3(x) =

24t!) 24(t)
WS —1)SI-2)... (5] - 1) - S
- 2+ DHIR2Y! ’

Hence, the sum of squares due to Fy, is given by

[ﬁlt]z/ [SISZ . Sm(t')“(S% - l) e (S% — t2)] '
2012t + 1)!
128. We have
- Xi-1 . 1 .
Xi = I:aiXi—l] - I:ai:| ® Xi-i

- [;i]tgliail_.]@“‘@{all:l’i:1,2,...,m

= column vector of treatments in a 2' design.

Similarly

@+ DYig | _[a+1 .
Yi= [(ai = 1)Yi_1] = [ai - 1] ® Yi-t

_ a+1 a + 1 aj+ 1
-[an]elnni]e e [a1]
= column vector of S; and all factorial effects in a 2' design.

Also, note that

and
Hi=H, ®H.,=H;® H ® H.,=H, ® H ®...®H,.

Yates’ method aims at obtaining Y; from X; and inversely X; from Y;.
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Consider H;X;,i=1,2,...,m.

ax—meme..on[!]e],! Jo.o[]]
wfJen[i]e on]:]
-[ahe[i]e-e 0]

Note the operator H;. When H; is applied on a pair of values, it is equivalent
to taking the sum and difference (lower minus upper) of the two values of
the pair. We thus note that H; X is thus equivalent to repeating i times in
succession the operation of taking the sum and difference of pairs of the
treatments in X;.

We now prove the inverse Yates’ method which obtains X; from Y;.
Consider

HH =[H ® H ®...@ HJ[H, ®H ®...®H,)
=HH ® HH, ®...® HH,
=2 ® 2L ®...0 2l
=21 =HH,

Hence,
H'=H/2, i=1,2,....m.
From HiX; = Y;, we then get

X; = H'Y,
1

= —HY,
2i

- , , a+ 1 a+ 1
_Eﬂh®&®L“®HJKm_l>®m®<m_lﬂ
—l ,{a+ 1 ,a;_|+l A+ 1
—5[“'(ai~l)®‘*'(ai-n—1)®‘“®H‘(an—1 |

Note the operator H/I . When H/l is applied to a pair of values, it is equivalent
to taking the difference (upper minus lower) and the sum of the pair of
values. Thus, X; is obtained by repeating i times in succession the operation
of taking the difference (upper minues lower) and the sum of pair of values

in the column vector of Y; and dividing by 2. This establishes the inverse
method of Yates.
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129. We have
[ X 1
Xi=1aXi_) | =| a | ® Xi—y
x| e
1 1 1
=13 | ®@ a1 | ®... 8] a
| af a, aj

= column vector of treatments in a 3' design

Also
al+a+1
Y = a? — ® Yi
L 12 —2a+1
_ai2+ai+l ai2_|+ai—l+1 a%+al+1
= aiz—l ® aiz_,—l ®...® af—l
a7 —2a;+ 1] |al |, — 23, +1 a? —2a; + 1
= column vector consisting of S; and contrasts belonging to
factorial effects in a 3' design.
Also
Hi_, Hi.; Hi,
H; = | —Hi, 0 Hi_; | =H; ® Hi_;
Hi.y, -2Hi., Hi,
=H, ®H, ®...®H,
Hence
1 1 1
HXi=H®oH &..8H}{|a|®|a-|®...® |3
a| [a, af
1 |
=1{H | & |®...QH; | a;
a? al
ai2+ai+1 af+a1+1
=| a-1 ®...Q a? —1
ai2—2ai+l af—2a1+1

=Y,

This establishes extended Yates’ rule. In order to obtain Y, in a 3™ design
we proceed as follows. We write the column vector X,, of treatments as
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under
2 2 2 2 2,2
Xm = {1, ay, a], az, aja2, ajay, @3, 4, a3, a2,
2 2,2
.., @m, a13m, )8y, ..., a735am, . ..
2 2 2,2 202,2 2
ag,aja;, aja;, ..., ajaa; _ay

We repeat the following operation m times in succession on tripiets of X:

) add three values
(i1) subtract the first from third
(1i1) subtract two times the second value from the sum of the first and

third values.

130.  Consider a RBD with v treatments and b replications. Let the missing yield
be denoted by x. Now

BX) =k + o+
Hence x is estimated by

X=p0+8+1
Now for a RBD,

i = (G + x)/bv
oo BtR G+x)

! v bv
A__(Ti-*-X) G+x
T b bv

We have assumed that By, By, ..., By, T1, T2, ..., T\, and G denote respec-
tively the actual block totals, treatments totals and the total yield. Hence, we

get
‘= G-+—x+ (Bj +x) B (G+x)+T;+x 3 G+x
bv v bv b bv
Solving for x, we get the estimate of x as
. (BB +VvTi-G)
T o-nv-n

Now bias in estimated treatment SS is given by
bias (est. treatment SS)
= [Est. conditional error SS with estimated missing yield]
— [minimum value of conditional error SS}
The conditional (t;, =t, = ... =t, = 0) error SS is
(Total SS) — (Block SS)
= [2 y +x - (G:vx)z]
_[M+U=Hm+nkw”+3;_@+mq

\% bv
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Hence estimated conditional error SS is
G $\2
[E g2 - SH ]
bv

_[B$+...+(B,~+i)2+...+B§_(G+i)2]

v bv

where & = (bB; + vT; — G)/(b — I)(v — 1).

Now, we shall find the minimum value of conditional error SS. We equate
to zero the derivative of conditional error SS with repeat to x. We then obtain
the estimate of x as

Xp = Bj/(v — 1)
Hence, minimum value of conditional error SS is

BI+...+Bj+x)*+...+B]
v

Ty x5

and the bias in the estimated treatment SS is

R _x (Bj + %)? — (Bj + xo)?

A%

_ B 43
= (X — Xq) ()A(+X0)_(2 J+VX+XO)}

F& + x0)(v — 1) — 2B,-]

= (X — Xp) ”
R [(X + xo}(v — 1) = 2xg(v = 1)
= (X — x¢) v

s _ 2 . l
G2 D g vr - 6Py — Db — 12
Since Bj contains (v — 1) yields, T; contains (b — 1) yields and G contains
(bv — 1) yields, we get
var (Bj) = o%(v — 1)
var (Tj)) = g2(b— 1)
var (G) = a%(bv — 1)
cov(B;, Tj) =0
cov (Bj, G) = a*(v— 1)
cov (T, G) = o2(b — 1).
Hence
(@*(v+b-1)
v-=Db-1)
Consider an elementary treatment contrast tj — t5, i # s. This contrast is
estimated by

i — 1 = (Ti + & — Ty)/b.

var (X) =
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Hence,
" A a? v+b—1
t—t)=—I|(b-1)+ ——————+b
=l =1 [( e The-n T
2cov (T;,X)  2cov(Ti, Ty) 2cov (X, T)
+ 2 - 2 - 2 :
o o o]

Now, one can easily verify that

cov (X, T;) = o2
cov(X,T) =0
cov (T, Ts) = 0.

Hence, we obtain

. f_202[1 —V__]
var(.—s)—T +2(v—1)(b—1)-

For any other elementary treatment contrast not involving missing yield,
such as t; — ty, we get

var (t, — 1y) = 202 /b.

Hence, the average variance V of the estimates of elementary treatment
contrasts is given by

20° ]2(v—1)+

——[1+ v (v—l)(v—2)‘2_oi
b 2v=Db-1)

2 b

<

e ——
T b {(v=Db=-D]

If there was no missing yield, the variance of the BLUE of an elementary
treatment contrastis 202 /b. Hence, the efficiency of RBD with one missing
yield relative to that of RBD with no missing yield is given by

202/b | -
== 55 = o)

Hence, the loss in efficiency is

viv—1)

1—E=[l+(v—-1db-D"

131. Consider a BIBD (v, b, v, k, \) and suppose the yield x = x;; corresponding
to the ith treatment in the jth block is missing. Then x is estimated by

X=[+ (ij + fi.
Solving the above equation for x and denoting the solution by X, we get
& = (\ vBj — kQ, + k?Q)/(k — D(A v — k).

We shall now find the bias in the estimated adjusted treatment SS.
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The conditional error SS is

_G+x?* Bi+...+Bj+x’+...+B
bk k

2f+ﬁ
(G + x)?
bk
Hence estimated conditional error SS is
B2+...+(B;+%)?*+...+B}
k ,
where & = (A vB;j — kQJf + K2Qi)?/(k — D(\v — k).

We shall now find the minimum value of the conditional error SS. Equat-
ing the derivative of the conditional error SS to zero, we get

Tyt 4+ 82—

x = Bj/(k — 1) = xg, say,
and, the minimum value of the conditional error SS is

B +...+(Bj+x0)*+...+ B}
k

Hence, bias in the estimated adjusted treatment SS is given by

Ty +xg-

Bias = [estimated conditional error SS] — [minimum
conditional error SS}
B; + %)? — (B + X0)?
22— xg _ ( ] ) ( i 0)
k
Q&+i+mq
k

= (X — xo) [fH—Xo—

=(xlxwuk—nm+x@—2m]

_ (X —kXO) [(k — 1R + x0) — 2(k — D)xg]

(& —xplk—1)
k
kB~ Q +kQ)
T k-DAv—-kp’
Now for a BIBD,
i =(G+x)/bk

. 1 . "
o= E(Bj+X)— n— Eanjtp
p=1

Lk,
h=Qp=12....v,
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when for p # i,

1
=T, ~ ans s Enpj(Bj+x)

S#J
X
B~ 2o
—Qp_‘"m
and
Q' =T; +x_'z nps s nu(B +x)
i
1 I
:Ti—E;HPSBS+X I—E
1
—Qi+X(]—E).
Hence
. k X - N
vl e L
k

Thus, x is estimated by

1
R=0+ ( +x)—f-- anjtp |:Q|+X( k)]

|
(B +x) — X é‘: L [Qp “X“pj]

_l_]E_[Q+ (]_l)] k . ] 1
ko | U +:; Q‘“(_E)]
|
:E(BH_X)_ anQp e pZ#:nm

X
kD e kD

1 1, X X
*E(Bj+x)———Q-+—x;(k——l)—m(k——1)

. k—1
)\Q+—(—)

1 ) X(k— D
= Bj+x)— ;\-;Qj +1 Q|
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The missing yield corresponding to the ith treatment in the jth block is
denoted by x;j = x. This will be estimated by

x=fi+&+ t;.
Now for a binary block design,
i =(G+x)/n

=@B;+x/k-0-— Z“m‘p
ki o=

t=hQ} +hoQ +... +hQ

where [h;;] = a g-inverse of the C-matrix and

B: +
Z"pq ao/kq — 2B + )

(#J k
Ny X

Z“pq o/Kg = —— pJ

—Qp npjx/kyp:iél

Q. - T Fx— Z nquq/kq _ nlj(B )

q#J J

X
=T, +x—Zniqu/kq— c
q=1 ]

1

1
tp - Z hpSQ Z hps (Qs - ﬂs_‘ ) -+ hpi (Ql +x (] — EJ.))

s#i

Hence

X
=E hPSQS_FE nghps + xhyi, p=12,...,v
s=1 ) s=1

and x is estimated by

1
X = ‘1+E(B"+X)— f
i)
1 v v 1 A\
= Y ngi [ D hpQs — X > nghgs + xhy,
i) p=1 s=1 |
v 1 v
+ Zl hisQs — k—jx Xl: ngihis + xh;.
s= §==
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Denoting the solution of x by X, we get

v

Z Z Np; pst + k Z hisQs

p=1s=I
v v 1 .
kj -1 - kjhii + Z nsjhis + Z Np; (hpi - k_ Z nsjhps)
s=1 p=1 ) s=1

Under t = 0, the conditional error SS is given by

8%y, x) = Sy? +x* ~B/k, — Bi/ky — ... — (Bj + x)*/k;
~...— B}/ky.

Hence, the estimated conditional error SS is given by
SH(y.R) = Zy*+ 8> —Bi/k — ... — (Bj+ 0¥k — ... — Bi/kp

where X is given as above.
Now the minimum value of the conditional error SS is the actual condi-
tional error SS. Hence,

min Sy, x) = £ y* —Bi/ki —... = B}/(kj — 1) — ... = B{ /ks.
X
Hence bias in the estimated treatment SS is given by

Bias = [Estimated Conditional Error SS] — [Min. value of

Conditional Error SS]
=% — (B + %) /k + B}/ — 1)
ki—1
=( )[x— J/(k—l)]

]

l
For a RBD, kj =v for all j, and hy, = 5 for all p and hy =0 for
p # s, g = 1, for all p and q. Hence

| 1
_BZQP+V'EQ'
p

k 1
—l=—=+-40
v b+b+

>
il

bBj +vQi  bB;+vIi -G
k=Db-D  ®b-hHv-1

For a BIBD, k; =k for all j and hy, = k/Av for all p and hy, = 0 for
p # s. Hence

Since ZQp =0, wegetk =

k / 2
_ Bj_x_VQj+k Q;/)\v
k—1—-kIYAv+k/Av+0
\ VB; —kQj + K°Q;
T k=DAv—Kk)

>
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where Q; = X nyQp = sum of Q’s over treatments of the jth block. For a
RBD, the bias in the estimated treatment SS is given by
v—-1[bBj+vT,-G B T

b-Hv—-1) v—1
= [B; + vTi — GI*/v(v — 1)(b — 1)%.

Bias =
v

For a BIBD, the bias in the estimated adjusted treatment SS is given by

k—1) [R vB—kQ +KQ B T

Bias = == | Tk-Dov_n k-1
= k(B; —kQ; + KQi)?/(k — DA\ v — k)%

Suppose in a v x v Latin square the yield x;x = x corresponding to the ith
treatment in the jth row and k-th collumn is missing. Then x is estimated by

x=f+6+ B +i
In a Latin square, the estimates of ., o, By and t; are given by
h=@G+x)/V
L ] .
(lj = ;(RJ+X)— [0
A |
By = ;(Ck‘l‘x)‘ P
. 1
ti=—(Ti +x) - .
v
Hence x is estimated by
1 1 1
X = ;1+;(Rj+x)— ﬂ‘*‘;(Ck‘FX)— fl+;(Ti+X)— 0

1 1 1 G+x
- -(Rj+x)+—(Ck+x)+—(Ti+x)—2( 3 )
\' v A\ v

Denoting the solution of the above equation by &, we obtain
VR; + vCy + vT; — 2G
(v—1)}v-2)
We shall now find the bias in the estimated treatment SS. Under t = 0, the
conditional error SS in a Latin square design is given by

(G + x)?
Sgo(y, X) = [E y2+X2— —
[R24+ ...+ Rj+x)*+...+ R _(G+x)2]
v v2

r C2 4+ (Xy + x)?
;k ¢ _G+x?

v v2

=
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Hence, the estimated conditional error is given by

YRy + R+ %)
_ b#j

SH(y.%) = Zy? + & -

C; + (Ck + &)

v V‘

Now, equating the derivative of conditional error SS to zero, we get

2(G + X)

2x———(R +x)—-(Ck+ X) + =0.

Denoting the solution of the above equation by xg, we get

_VRj'i'VCk—G
T (v=1p

Hence, the minimum balue of the conditional error SS is

Ty +x0——[ZR2+(R +x0)] - [ZC§+(Ck+xO)2]

p#i £#k
N (G +2x0)2
\'%

and bias in treatment SS is given by
Bias = S2(y, %) — min S2,(y, X)
=& —xj— —[(R + 2 — (R + x0)] — —[(ck + %)?
—(Cx +x0)'1 + 5[((} +8)? = (G + x0)’]

[ 1 1
=R —xg) | (X+x0) — ;(2Rj+)A(+X())— ;(2Ck+ﬁ+X0)

1
+—2(2G+ﬁ+X0)jI
v
. [ . 11 2
= (X — Xq) (x+x0)(l——;+$>—$(ij+ka—0)]

i -1 2
=X —x0) | X+ xp) — v > ) - —2-X0(V - 1)2]
v v

—_ 132
= w0
V

_ [Ry+ G+ (v— DT — G
B (v = Dv —2)?
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We shall now find the loss in efficiency. Since R;, C, T; and G contain
(v-D,(v=1),v=1Dand (v* = 1) yields respectively, we can easily ver-
ify that
var (R)) = a(v—=1), var (Cy) = (v — 1),
var (T;) = o2(v — 1), var (G) = o2(v* - 1)
cov (R, G) = o%(v — 1), cov (R}, Cx) = 0,
cov (Rj, G) = a*(v — 1), cov (R;, Cx) = 0,
cov (Cy, Ti) = 0, cov (T, G) = o*(v — 1).
Hence, we can find
a*(3v —2)
v—Dv-=-2)

Consider an elementary contrast between two treatments, one containing the
missing yield, t; — t;; say. This is estimated by 1§ — iy = (T; + x — T;)/v.
Hence

var (X) =

. .. o2 Bv -2
var ( — t;) = ﬁ[(v -+ m
2cov (T;, %)  2c0ov(Ti, Ts) 2cov (T, X)
+ o? B o? B o?

Now, we can verify that

cov(T;, %) = a2, cov (T, ) =0
cov (T;, Ty) = 0.

Hence,
2

-ty = 2 1+——V——]
varthi =) == 2v—Dv=2 |

Furtherift; — t¢ is an elementary contrast between treatments not containing
the missing yield, then
var (I; — &) = 202 /v.

Therefore, the average variance V of the estimates of all elementary treatment
contrasts is given by

202 14 202
v

\Y
) A s

viv—-1)

_20'2 [+ 1 ]
_T[ v-Dv=-2|

Hence, the efficiency of the Latin square design with one missing yield

<
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relative to that of the Latin square design with no missing yield is

2
2°V/V = (1 +{(v— v =217

And the loss of efficiency is
= +{v=Dv =21 =+ (= Div=2)]"

134. Consider a Youden square in which the columns form the blocks of a SBIBD
(v =b, r =k, \). Each row is a complete replication of all treatments. Sup-
pose that the yield xjjx = x corresponding to the ith treatment in the jth row
and the kth column is missing. Then x is estimated by

x = fi+ 6+ By + 1.
where

= (G + x)/vk
& = Estimate of the jth row effect

|
:—(Rj+x)— 1
v

B, = Esstimate of the kth column effect
= Estimate of kth block of a SBIBD

1 I N
:E(Ck‘f'x)_u_‘k‘p;npk[p

i, = Estimate of pth treatment effect

k %
- Est
where for p # i,

_-T — —anq npk(Ck—}-x)
a7k
Z npq npkx

1
= Qp - Enpkx

and

1
QG=Ti-x—- Zn.q = £ (Cy + x)

k=

1 ]
_Ezq:nich+x<l —'l'(')

ZQi+X(1—%>.
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Hence,

N 1 |
By = E(Ck +x)—p— Z Npklp — ikl
p#l

k 1

(Q+D—u——§;whw<%—i%u)
1 k x(k—l)

‘E'TWQ

. x(k — 1)
ZE(Ck+x) ;L—-—Z“kap v kzp“ Avk

1 . /
=E(Ck+x)—M—A—va*’m(k—l)—m(k—l)

1 1
= —(C S /.
k( k+x)— [ x va
Therefore, x is estimated by

G+x

1 1
X=ﬁ+%R+H—ﬁ+—@Hﬂ%-vk

x(k - 1)}

U
_.X_V.Qk

+ I [QI
Denoting the solution of the above equation by X, we obtain

Mk R; + vCi — G) — kQ; + K*Q;
k(k — 1)k - 2)

s

X =

Since r = k, the above result can be also written in terms of r by replacing
k by r as follows.
. MrRj + vCx — G) — rQ} + r*Q;
N r(r — 1)(r - 2)

We shall now find the bias in the estimated treatment SS. Under t = 0, the
conditional error SS adjusted is given by

X Y RZ+ (R +x) )
G+x i G+x
S2(y, x) = [g y2+xz_( ) ]_ p#i _( )
vr \' vr
ZC%+(Ck+X)2
ik _(G-&—x)2

r vr
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Hence, the estimated conditional error is given by
SR+ (R + &)

S3(y. %) = Ty? + £ — 22 -
> C}+ (Cx + &)
iz " (G + %)
—_— + .
T vr

Equating the derivative of the conditional error SS to zero, we get
2% - Z(Rj“}‘i)— -2—(Ck+f()+—2—(G+x)=0.
v vr vr
Denoting the solution of the above equation by xq, we obtain
rRj+vCi—G  ArRj+vC~G)
EWIDE-D -1y

since A(v — 1) = AM(r — 1). Hence, the minimum balue of the conditional
error SS is given by

Y R+ (Rj + o)’

min S2(y, x) = Zy? + x3 — p7)
X v
Y CE 4+ (Ci+ x0) ,
t#k G+
_ +( Xo)”
r vr

Hence, the bias in the estimated adjusted treatment SS is given by

Bias = [estimated conditional error SS]
— [minimum value of conditional error SS]
_2_ 2 R+ %) — Rj+x0)*  (Cx + 8)> = (Cy + xo)?
-t T e v B r

+(G+i)2—(G+xo)2

vr

2R + % %
=(i—xo>[(i+xo)—( i tXt %) QG+ x)

v r
+(20+f(+x0)]
vr

(X—x0), .
= - [(R = xo)(v = I)(r = 1) = 2(r Rj + v C; — G)]

(X—xo) .
— [(R + Xo)(v — I)(r — 1) = 2(v — 1)(r — D)x¢]
_ (v—1)(r— l)(f(—xo)z

vr

_ (v=DIMr R + v Cx = G) +1(r = D)(r Qi — Q)
N vidr— D3 —2)? '
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135. The missing yields in the first row are denoted by x,, Xz, ..., X,. Note that

x; corresponds to the ith treatment and the ith column, i = 1,2, ..., v. Here
x;’s are estimated by

Xi=p+a+F+t, i=12,...,v
where i = (G+X)/v?, X =Y x;,
1

& = estimate of the effect of the first row

=-X-§,
v
B; = estimate of the effect of the ith column
1 .
=-(Ci+x)— 0,
v
f; = estimate of the ith treatment effect
1 .
= ~(Ti+x) — .
\
Hence, we get
Ci+T)-2G
vxi—qu-,iz 1,2,...v.
(v—2)

The above equations can be written as
Ax=h
where A is a v X v matrix with elements

as,=v—1, ifi=s
= —1 ifi # s

and X' = [x(,X3,..., Xy, =[h;,hy, ..., h], when hj = (vC; + v Ti—
2 G)/(v — 2). The matrix A can be written as

A=vl, —E,,
which is singular. The Moore-Penrose inverse of A is seen to be
A* = 1/, = (1/v)Bw.
Hence, a solution of Ax = h is obtained as
&= A*h =[(1/V), — (1/v))En]h
1
= ~h,
v
since E;yh = 0. Hence, we get

{[i=h/v=(vC+vTi-2G)v(v—-2),i=1,2,...,v.
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We shall now find the bias in the estimated treatment SS. Under t = 0, the
conditional error SS is given by

S%(¥. x) = {2 Y+ % -G+ X>2/v2}
|

v

X +) R Y (Ci+x)
1

B A (GHX | _G+X)

v v2 v v2

Hence, the estimated conditional error SS is given by

X2+) R?
i E(C+%) + (G + &)
v v v2

v
Sy =Ty + ) & -
I

v l l v
=X y2 + Zﬁiz — ; ZRjz - ;Z(C, +)’Ei)2 +G/V2,
I i#1 i
since X = 0.
Equating the derivative of the conditional error SS to zero, we get
vC, -G

Li=1,2,...,v.
v—1

v, — X =

These equations can be written as Ax = b, where A has the same meanings as
in Ax=hand b = [b;, by, ..., by], where b; = (vC; — G)/(v — ). Then
a solution of Ax = b is given by

x=A"b
and hence we obtain

;i =(vGC-G)/v(v-1),i=1,2,...,v.
Hence, the minimum value of conditional error SS is given by

S’y ) =Ty’ + Z X7 — % ,2;1 R - % ij(ci +X)’ + GV

Thus, the bias in the estimated treatment SS is given by

Bias = [estimated conditional error SS]
— [min. value of conditional error SS]

Y - %) - %2[(& + %) = (i + X))
i=1

1 v * *
= - D & =XV = D + %) - 2C)]
i=1
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But [v(v — 1)X; + G]/v = C;. Hence,

Bias = % igl:(f(i ) [(V — D& +x) — 2(v — DX — ?]

= Log -t [(v - D& —X) — E]
\' v

—_ *
= v-1 Z()‘q —x;)%, since T x; = ;=0
v f=1 l

=Y [Ci+ (v— DT; = GI*/v(v — I)(v = 2)%.
i=1

136. Let the yields corresponding to treatments 1 and 2 in the first block which are
mixed up be denoted by x; and x,. Their sum is x; + X, = u. We estimate
x; and X, by minimizing the error SS subject to the condition x; 4+ x> = u.
Thus we consider the minimization of

1
¢ = ):y2+x%+x§—;[(Bl+u)2+ZBj2]

j#t
1 G 2
—— [(Tl + Xl)2 + (T + )(2)2 + Z T‘21| + ﬂ
! i# 1.2 vr

+ 2X(u — x| — X3),
where \ is the Lagrangian Multiplier. Then
) 2
—(b =2X1 ——(T|+X|)—2)\=O
d X, T

3 2
3% = ATyt x) -2 =0,
8x2 r

We then obtain the equations
x.(r— ]) = T] + 1\
Xo(r — 1) =Ty +rA.
Adding these two equations, we obtain

Cur—1) Ti+T,
T 2r 2r

Denoting the solutions of x; and x, by X, and X, we obtain

i_(Tn—Tz) u ﬁz(Tz_T') u
= c—-1n 20 T 21 2

These provide the estimates of the mixed up yields. To find the bias in the

A
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treatment sum of squares, we consider the conditional error SS. Undert = 0.

l r
Conditional Error SS = T y2 + x% + x% - - |:(B1 +u)? + Z Bf]
v 4
=2
The estimated conditional error SS is
1 r
Ty R R I:(Bl +u)2+ZZ:Bf}.
J:

Now we shall find the minimum value of the conditional error SS subject to
X| + X2 = u. We minimize

l T
f:2y2+xf+x§—;l:(B,+u)2+ZBj2j|+2)\(u—x| — X2)
2

Then,
of
— =2 -2A=0
8X1 X
of
— =2x—-2A=0.
3X2

Hence, we get x; = X, = \. Since x; + X2 = u, we obtain the solutions of
Xy and x; as

;I = ;2 = U/2
and the minimum value of the conditional error SS is
* 1 -
Tyl +x2+x2—-|(B 2 B?
y I 275 By +u+ ; j
Thus, the bias in the treatment sum of squares is given by

Bias = (£} — x}) + (3 — x})

(T =Ty [(Tl —T>) +u] + (T, - Ty) [(Tz - T)) +u]

T 2e=1) | 20=1) 20=1) | 20— 1)
_(Ty—=Ty) [(Tl —Tz)}

T 2= | =1

(T =Ty

T o2r—12

Now we shall find the loss in efficiency. Clearly,

var (X)) = var[Tl ~ T2 + E] = ro’
2r—1) 2 2r—1)

N Tz—T] u I'()'2
var(x2)=var[2(r_ T + 5] = =1

(r—2)a?

cov ()’i|, )/iz) = 2—“-_——1—)—
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The different types of elementary treatment contrasts are
() t—b,h—y

(i) ty—t,te—4,£=3,4,...,v

(iii) th—te,te—~1,£=3,4,...,v

(iv) ti—tj,tj—-ti,i#j=3,4,...,v

One can easily verify that

(i) var () — ) = var(i; — 1)) = 20%/(r - 1)

~ A € t 2 1
(ii) var (t — t¢) = var(ty — ;) = _(rT— [1 ¥ 4(r — 1)]

A ~ 2 2 g 1
(iii) var(tz—te>=va'@“2)=%[“4«_1)]

(iv) var (I — §j) = var(i; — ;) = 20?/r.
Hence, the average variance V of the estimates of all elementary treatment
contrasts is given by

262 2
v=i[—i+4(v—2)l1+
r [(r—1

_202 [1+ 1 ]
T or v=Dr=-1D]

Therefore the efficiency of the RBD with mixed up yields relative to that of
the RBD without mixed up yields is

1 -1
[1 * (v— D - 1)]

And the loss in efficiency is [1 + (v — D)@ — 1)]7".
(a) Here,p=2,n=5and

|
4 —1)

l + (v—=2)v—=3)/v(v — 1)]

~ |5 1
o[ 1)
1 T5 -1
A6 St TR
(X'X) —24[1 5},
and

tr (X'X)™! = 10/24.
Hence, efficiency of this weighing design is
p/n tf(X'’X)~! = 24/25.
b) Herep=4,n=4and

3.2 2
3 2
23
2 23

X'X)™' =1 - (2/9)Eas

XX =

NN
N NN

=14+ 2Eq4y4

[\
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138. Here

Hence,

245

and
tr (X'’X)™' =4 -8/9 =28/9.
Hence, efficiency of this design is

p/ntr(X'X)~! =9/28
X'X = (N — DI, + Ep,.

1 I
X'X) ! = I- E,p.
XX =3 (N-DIN—-1+p) ™

Therefore, tr (X'X)™' = p(N =2+ p)/(N — D(N — 1 + p).

139. (1)

(i)

Hence, the efficiency of this weighing design is

, _l_(N—l)(N—1-+-p)
p/nur(X'X)" = NN-—21p)

Here no. of objects to be weighed is equal to p and the no. of
weighings is equal to N — | + r. Hence, the efficiency of this
design is

p/(N—1+1)tr(X'X)™".

Now,

X'X = (N - DI, +E,.

Hence,

r

/ -1 __ _
XX =x=h (N—l)(N——1+pr)Epp'

Therefore, tr (X'X)™' =p(N~ 1 —r+pr)/(N~ (N — | + pr),
and

(N-D(N-1+pr)
(N—=14+0)(N—1~r4pr)
For this design, the number of objects to be weighed is p and the

number of weighings is equal to (N — 1 4-r). Hence, the efficiency
of this design is

efficiency =

p/(N—14r1)tr (X'X)~".
We now find tr (X'X)™". Clearly,

rE O1p-1) ]
+ (N - DI
Op-nr - Op-1yp-1 o

= diagfN— 141, (N—1),...,(N= D].

X'X:[
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Hence,
XX) "' =diag{N- 1+ ,(N=-D",...,(N= D]
and
N-1 -
(XX = p( )+ip—1

TN=-D(N-1+1"
Therefore, the efficiency of the design is
p(N—1)/[p(N - 1) +r(p — D].
We know that
w=XX)"'XYy.
Denote the ith column of X by x;,i =1,2,...,b and the jth collumn of
X(X'X)"' by ¢j,j =1,2,...,p. Hence, we see that
Wi=qyi=12,...,p
and
var(W;) = o’cle;.

Now, since (X’X)_'(X’X) = I,, we have ¢x; = &, where &; = 1ifi=jand
& =0ifi#j.
By Schwarz inequality we have

(xx;)(cje) > (xj;)* = 1
, 1 1
Hence, ¢cj¢i > — > —.
X;Xo n
Since x; is a column vector consisting of +1, —1 or 0, we have
var(w;) > az/n, fori=1,2,...,p.
Suppose the variances of all the estimated weights are minimum, i.e.
var(W)) = a%/n,i=1,2,...,p.

Definingx;,i=1,2,...,pand ¢, j = 1, 2,...pas in Exercise 140, we see
that

var(w;) = o%¢jc;.

By Schwarz inequality, we get
(xpxi)(eie) = (xjei)* =1,

since ¢;x; = &;, the Kronecker delta, in view of (X’X)_I(X’ X) =1,,. Hence
¢ > 1/x;x; > 1/n

since x; is a vector of +1, —1 or 0. Thus,

var(%;) > o%/n.
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142.

143.

Further equality occurs if and only if ¢; = kx; for some constant k, and
xxi =n fori=1,2,...,n. Since ¢x; = 0 for i # j we immediately get
x;x; = 0. Hence

- -
X
!
X
XX=| [|[x.%X2....%)]
x/
_*p
x;x; O 0
1
0 xix 0
N2
/
L 0 0 X,Xp |
= nl
p

1
Conversely, if X'X = n1,, then (X’X)"l = -1, and hence
n

var(W)) = o?/n, i=1,2,....p.
This proves the sufficiency.
In a spring-balance design, the weighing matrix X = [x;] is defined as:

xij = 1, if the jth object is weighed in the ith weighing

= 0, if the jth object is not weighed in the ith weighing

Let there be v objects and suppose k objects are weighed in each weighing.
The total number of weighings is b and each object is weighed r times.
Hence, by identifying the object with treatments and weighings by objects,
we see that X = N, where N is the incidence matrix of aBIBD (v, b, 1, k, \).
Hence, X'X = NN’ = (r — M)I, + AE,, and

X'X)™ = (1/(r = ML = \/(r = Mrk)Ew.
The variance-covariance matrix of the estimated weights is given by

var(W) = ¢ [ ! I, — A EW] .
(r=»\) (r— Nk

Defining the efficiency of a weighing design as p/ntr(X’X)™", where p =
no. of objects to be weighed, n = no. of weighings, we see that the efficiency
of the above design is k*(r — \)/(rk — \). Hence, the efficiency is maximum
if (rk — \)/K*(r — \) is minimum.

Consider a Hadamard matrix H,,; of order (n 4+ 1) which is assumed to
exist. A Hadamard matrix remains as Hadamard matrix if any of its rows
(or columns) are multiplied by —I. Hence without loss of generality we
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can assume H,,, as the matrix whose first row and first column contain
the element 4+ 1. Now subtract the first row from each of the other rows
and multiply 2nd, 3rd, .. ., (n + 1)-st rows by —1/2. Then we shall get the

0 Lan
The matrix L is easily seen to be the incidence matrix of a SBIBD with
parameters

v=b=n,r=k=(-1)/2, A = (n—3)/4.

following matrix. : E'(")].

Now, clearly
[Hopi = (=" - L]

Since H, . has the maximum value of |H,.|, it follows that L has maximum
value of |L|. Thus, L is the weighing design of the spring-balance type
involving n weighings of n objects and having maximum efficiency. Now

S

R B -1 1 -l
H4=H2®H2=[1 _1]8’[1 —1]‘ 1 -1 -l
R

Subtracting the first row from the other rows, we get the matrix

!
0 2 0 -2
0 0 —2 -2
0 -2 -2 0

Multiplying the 2nd, 3rd and 4th rows by —1/2, we get the matrix

(1 I 11
01 01
0 0 1 1
| 01 10
Hence the design

1 0 1
0 1 1

1 10

is the required weighing design.

We know that the variance-covariance matrix of the BLUEs of the weights
is given by (see Exercise 142)

1 A
A 2
= I, — Ew|.
var®) = o [(r N Tk ]
The BLUE of total weight of all objects is given by
W = E; W.
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Hence,
var(W) = E;,var(W)E,,
A
= 0’Ep[Ly — —Ew]E,/(r — )
rk

o’ [v - —)\ﬁ] /(t —\)
rk

ov(rk — \v)/(r — Mrk

= ozv/rk.

Clearly L; consists of s subscripts 0, 1, 2,..., s — 1. We shall now prove
that each subscript occurs exactly once in each row and exactly once in each
column.

Suppose, if possible, the same subscript occurs more than once, say twice
in the ath row, that is, it occurs in the cells (o, B) and («, v), say. Hence

Uil + Ug = Uiy + Uy,

which givesug = uy. Thus § = . Hence each subscript occurs exactly once
in each row. Further, suppose the same subscript occurs twice in the same
column, say in the cells (o, ) and (7y, B). Then we get

WU, + Ug = ujuy +up
which gives
uj (U —uy) =0.

Since u; # 0, it follows that u, = uy. Thus a = vy. Hence each element
occurs exactly once in each column. Thus,L;i=1,2,...,s — l is a Latin
Square. We now prove that Ljand L, i # j = 1,2,..., s — | are orthogonal
Latin squares.

Let the (x, y)th cell of L; and L; contain respectively the subscripts m
and n. Hence, when L; is superimposed upon L;, we get an ordered pair
(m, n) in the cell (x, y). We have now to prove that the ordered pair (m, n)
occurs exactly once. If possible, suppose the pair (m, n) occurs in another
cell (a, B). Then, we get

Ujux + Uy = Uil + Ug
Ujux + Uy = Ujuy + ug

Subtracting the second equation from the first, we get
(Ui — yjux = (Uj — Yj)ug.

Since i # j; u; # uj, hence uy = u,, that is x = a. Then from the first equa-
tion we get uy = ug, that is, y = B. Hence the cell (a, B) is the same as the
cell (x, y). Thus, the pair (m, n) occurs exactly once. Hence L; and L; are
orthogonal.
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Consider the cell (o, B) of Ly, a=1,2,...,s — 2. It contains
the subscript of element

Uiyl +Ug = xiteh 4 up

Now consider the cell (o« + 1, B) of L;. It contains the subscript of
the element

Uillg 41 +Uug = xitet ug

Thus, we see that the subscript in the cell (a, B) of Li; is the same
as the subscript in the cell (o + 1, B) of L;. Thus, we see that the
ath row of L;; is the same as the (o + 1)-st row of L;. Consider
the cell (s — 1, B) of Li4. It contains the subscript of the element

Ui Ug—| + ug = XH—S‘Z + ug

=x"!+ ug,
since x* =1
Now consider the cell (1, B) of L;. It contains the subscript of the
element
uu; +ug = x4 ug.
Thus, we see that the subscript in the cell (s — 1, ) of Li4; is equal
to the subscript of the cell (1, ) of L;, =0, 1,2, ..., s — 1. Hence,
the last row of Li;, is the same as the first row of L;.
Since, the subscript in the cell (a, B) of L; is j, we get
Uj = Uity + up = x T2 4 xP71
Now, consider the cell (o + 1, B + 1). It will contain the subscript
of the element

Ujlg+1 + U1

Then,

Uillgs + Upyp = X771 4 xB
— (xe-2 4 xB1)
= uu,

since  u; = xT*72 + xB~!. Clearly

U5 = Uy, if j=0
=uy if j=1,2,...,8-2
=u if j=s—1.

Hence, the results follow.

Side 5. The Oth row is constructed by writing the subscripts O,
1, 2, 3, 4. The first row is constructed by filling its (1, 8) cell
by the subscript of the element wju; +ug = 14+ug, B =0,1,
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2,3, 4. Now the elements of GF (5) are ug =0, u; = 1, up =X,
u3 = x?, where x = 2. Therefore, the elements of GF (5) are given
by up =0,u; =1,u; =2,u3 =4,uy = 3. Thus, the subscripts
in the first row of L, are the subscripts of elements 1 + uy = uy,
l+u1 = Uy, 1+U2= 1+2=3:U4, 1+U3= 1+4=5=U0,
1 4+uy =1 +3 =4 = uy, thus the first row of L; is

1,2,4,0,3

Hence L, is

01 2 3 4
1 2 4 0 3
2 43 10
301 41
4 30 2 0

Side 7. The elements of GF (7) are uyg = 0,u; = 1,u; =X, u3 =
x2, us = X%, us = x*, ug = x°, where x = 3. Thus the elements are
up=0,uy=1Lu=3,u3=2,u3 =6,us =4,us = 5. The Oth
row of L, is 0, 1, 2, 3, 4, 5, 6. The first row of L, is con-
structed by filling its (1,$)-th cell by the subscript of
vy +u=uy +u For B=0,1,23,4,56, the elements
u; +ug are utw=Il=u,u+uyy=2=u3,u;+u; =
I143=u, 0+ m=14+2=3=wp,u+wy=14+6=7=
U, Uy +us=14+4=ug,u;+us=1+5=6=u4 Thus, the
first row of L, is

1, 3, 5 2, 0, 6, 4,

Hence, we obtain L, as

01 2 3 4 56
1 35 2 0 6 4
2546 3 01
3265140
4 0 31 6 25
56 0 4 2 1 3
6 4105 3 2

Side 8. The elements of GF (8) are ug=0,u;=1,u =
X,Ug:XZ,U4=x3:x+],u5:x4:x2+x’u6___x5:
XX+x+1Lw=xb=x2+1.

The Oth row of L, is
0,1,2,3,4,5,6,7.

The first row of L; is constructed by filling its (1, 8)-th cell by the
subscript of the element u; + ug. Now forp =0, 1,2,3,4,5,6,7,
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the elements uy + ug are

U tug=ug,u;+u; =ug,u; +u=14x=uy,
ytwm=1+x>=uwu+u=1+x+1=x=uy,
u1+U5:1+x2+x=u6,
ytu=1+x>+x+1=x+x=us,
utuw=14x4+1=x>=u;.

Hence the 1st row of L, is
1,0,4,7,2,6,5,3.

Thus, L; is
2

NN B RN e O
W UnANNNPEO -
AW - O
Ll S NS e S JRS R RV
N W2 O =N~
A= O N NWS W
N O =Wk N
O N B L — W

(iv) Side 9. The element of GF (32) are

U()=0,U|=1,U2=X,U3=X2=2X+1,
U =x>=2x+2,us =x*=2,ug = x> = 2x,

w=x0=x+2ug=x"=x+1.

The Oth row of L, is
012 3 456 738

The first row of L, is constructed by filling its (1, B)th
cell by the subscript of the element u; +ug. Now for B =
0,1,2,3,4,5,6,7, 8, the elements u; + ug are

utuy=u,u+uy =2=us,uy +uy=14x=ug,
U tu=14+2x+1=u4,u +uy =14 2x+2 = u,
uyt+us=14+2=upu +ug=14+2x=u;

wHuw=1l+x+2=u,uy+ug=14+2x4+1=uy.

Hence, the first row of L, is

1 58 46 0327
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Thus, L; is

01 2 3 456 78
1 58 46 03 27
2 86 15 7 0 4 3
3417 2 6 8 035
4 6 52 83710
507 6 3 1 4 8 2
6 308 7 4 2 51
7 2 4 01 8 5 36
8 73 50 21 6 4

(v) Side 16. The elements of GF (2%) are

w=0,u = l,UQ:X,U3=X2,U4:X3,
us=x*=x+Lu=x=x>+x,u; =x* +x%,
ug =X+ x4+ Lu=x>+1,u0=x"+x,

uyg =x2+x+l,u,2=x3+x2+x,
us=x+x>+x+Lus=x>+x2+1,

U]5=X3+l.
The Oth row of L is
01234567389 1011 12 13 14 15 16

The first row of L, is constructed by filling its (1, B)-th cell by the
subscript of the element u; +u. Now for =0,1,2,3,4,5,6,7,
8,9,10, 11, 12, 13, 14, 15, the elements u; + ug are

up+ug=u,u+u =ug,u +uy =1+x=us,
u|+U3:1+x2:u9,u|+U4=l+x3=u.5,
Fus=1+x+1=uu +u=14+x>+x=uy,
u,+U7=1+x3+x2:u|4,u|+u8=1+x3+x+1=u10
u|+u«;=l+x2+1=u3,u‘+u10=l+x3+x=u8,
u1+u1|=l+x2+x+l=u(,,
wtup=1+x3+2+x=up;,

yAus =1+ +x3+x+1=up,,
u|+u14=l+x3+x2+l=U7,

wHus=l+x +1=u,.

Hence, the first row of L; is

I 059 15 2 1t 14 103 8 6 13 12 7 4
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andL; is
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 5 9 15 2 11 14 10 3 6 13 12 7 4
2 5 0 6 101 3 12 15 1 4 9 7 14 13 8
3 9 6 0 7 11 2 4 13 1 12 5 10 8 15 14
4 15 10 7 O 8 12 3 5 14 2 13 6 11 9 1
5 2 1 it 8 0 9 13 4 6 15 3 14 7 12 10
6 11 3 2 12 9 0 10 14 5 1 4 15 8 13
7 14 12 4 3 13 10 0 11 15 6 8 2 5 1 9
g 10 15 135 4 14 11 0 121 7 9 3 6 2
9 3 11 1 14 6 5 15 12 0 13 2 8 10 4 17
10 8 4 12 2 15 7 6 1 130 14 3 9 11 5
1r 6 9 5 133 1 8 7 2 14 0 15 4 10 12
12 13 7 10 6 14 4 2 9 8 3 15 0 1 5 1
13 12 14 8 117 155 3 10 9 4 1 0 2 6
4 7 13 15 9 12 8 1 6 4 11 10 5 2 0O 3
15 4 8 14 1 10 139 2 7 5 12 1 6 3 0

(vi) Side 25. The elements of GF (25) are
u =0,u = 1,u2=x,U3=x2=2x+2,
w=x+4us=x+2,us =4x+2,u; =3,
ug =3x,ug =x+ 1,u;g=3x+2,u;; =3x+ 1,
up=2x+Lusz =4,uj4 =4x, 415 = 3x+ 3,
ug =4x+ 1, u;y =4x+3,u3 =x+3,
Ujg = 2, Uy = 2X, Up; = 4x + 4, up = 2x + 3,
Uy =2x+4,upy =3x+4
The Oth row of L, is

01 2 3 4 5 6 7 8 91011 12 13 14 15
16 17 18 19 20 21 22 23 24.

The first row of L; is constructed by filling its (1, B)-th
element by the subscript of the element u; +u. Now B =
0,1,2,3,4,5,6,7,8,9,10,11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21,22, 23, 24, and the elements u; + u are

U 4u=u, 44U =2=1ug,u +up=1+x=u,
uyFu=1+2x+2=up,uy+u=1+x+4 =uy,
yHus=1+x+2=ugu +u=1+4x+2=uyy,
utur=14+3=uj3,u+ug=14+3x=uy,
uytu=1+x+1=us,u+up=14+3x+2=us,
uy+u;=1+3x+1=up,u +up=14+2x+1=us,
uy+uz=1+4=uyu +uy=1+4x=up,
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WHus=1+3x+3=uy,uy+ug=1+4x+1=ug,
wHur=14+4x+3=uy,u +tug=1+x+3=uy,
uytug=14+2=u,u +upy=14+2x=uj,

U +uy =14+4x+4=u,u+up=1+2x+3=uy
W tua=14+2x+4=uy,u +uy=1+3x+4 =ug.

Hence the first row of L is

191 9222 18 17 13 11 5 15 10 3 0 16 24
6 21 47 12 14 23 20 8

andL, is

I 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23 24
19 922 21817 13 11 51510 3 01624 621 4 7 12 14 23 20 8
9201023 319 181412 61611 4 017 1 722 5 813 15 24 21
22 10 21 11 24 420191513 71712 5 018 2 823 6 9 14 16 |
12 v 521201614 81813 6 019 3 924 71015 17
18 324122313 2 622211715 91914 7 02 410 1 81l l6
1719 4 1132414 3 723221816 102015 8 021 51 2 9 12
131820 5 214 115 4 82423 1917112116 9 022 612 310
1114192t 6 315 216 5 9 12420 1812221710 023 713 4
22 7 416 317 610 2 121191323 18 (1 024 8 14
210023 8 517 418 711 3 2222142419142 0 1 9
172224 9 618 519 812 4 3232115 {2013 0 2
151823 110 719 620 913 5 424 2216 221 14 0
9161924 211 820 721 1014 6 5 12317 32215
1910 17 20 1 312 921 B 22 11 15 7 6 224 18 4 23
14 20 11 18 21 2 4 131022 923 1216 8 7 3 119 5
71521121922 3 514 1 2310241317 9 8 4 22
0 81622132023 4 615122411 1 141810 9 5 3
20 0 917 23 142124 5 71613 112 21519 11 10 6
421 010 18241522 1 6 817 14 2 13 3 16 20 12 11
10 522 01119 11623 2 7 91815 3 14 4 17 21 13
1 1t 623 01220 21724 3 8101916 415 5 18 22
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2223151410 8 212 724 01321 318 1 4 9112017 516 6 19
232024161511 9 313 8 1 01422 419 2 5101221 18 6 17 7
24 821 117161210 414 9 2 01523 520 3 611 132219 7 18

148.  Denote the elements of GF(p"),i = 1,2, ..., m by
g0=0, g1 =1,g0=q, ga = o, LGP = p — 2,

where o; is a primitive root of GF(p;"). Consider the set of s = p{'p5 - - - p»
elements

W =811, 82125 - - -5 Bl

where gj;, € GF(pie‘), 1=1,2,..., m. We donote the set of elements by {w}.
Define the addition and multiplication among the elements of this set {w)



256

CHAPTER 3
as follows. If wy = (gii,, 82y, - - - » &mi,,) and W2 = (&4, &2jy+ - - - » Emjy) ATE
two elements of the set {w}, then

wi + wa = (g1, + &ij,» &0, + &25s - - - » By T Emmjy)
WiW2 = (13, * 81, 820 - L2jpr - - - » Emiy * Emij)
The set {w} is not a field, since for instance, the element (0, 1, 1, ..., 1) has

no multiplicative inverse. All elements of {w} that have no 0 among their
coordinates possess inverses.

Now, we number the elements of the set {w} such that the first n(s) + 1
elements of the set {w} are

W = (gij» 824 -+ -» Emj)» ] =0, 1,2,...,n(s)

while the rest of the elements of {w} are numbered arbitrarily. Note that
the elements wy, wy, ... Wy posses inverses and so do their differences
wi—wj,i#Fj=12,...,n()

We construct the jth Latin square L;,j=1,2,...,n(s) by filling its
(o, B)th cell by the element

wiwg +wg,a, B=0,1,...,s—1, 1=12,...,n(s).

We now prove that (i) L;,j = 1,2, ..., n(s) is a Latin square and (ii) L; and
L; are orthogonal, i #j=1,2,...,n(s).

To prove that L; is a Latin square, suppose that the same element occurs
twice in the jth row, say in the cells (o, B) and (e, B’). Then we have

WijWo + Wg = WjWy + W,

which shows that wg = wg. Hence each element occurs exactly once in each
row. Suppose now that the same element occurs twice in the jth column, say
in the cells (a, B) and (o, B). Then we get

WijWqy + Wp = WjWy + Wg.

Then we get wjw, = wjwy. Since w; possesses an inverse, we get
w, = Wy. Thus each element occurs exactly once in each column. Thus
L;,j=1,2,...,n(s) is a Latin Square.

ConsidernowLjandL;,i # j=1,2,..., n(s). Suppose the same ordered
pair of elements obtained by superimposing L; on L; occurs in twocells (a, B)
and (v, 8). Then we get

WiW + Wg = WjWy + Ws

WiWq + wg = WjWy + Ws,
which on subtaction gives

(W) — W)Wy = (W; — Wj)wy
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Since w; —w;,i#j=12,...,n(s), possesses an inverse, we get
Wo = Wy. And hence from the first equation we get wg = ws. Thus, when
L; is superimposed on L;, then each ordered pair of elements occurs only
once. Hence L; and L; are orthogonal.

Here s = 22 - 3!, and n(s) = min(22, 3') — | = 2. The elements of GF (22)
and GF (3) are as follows:

GF2):gi=0,gn=lgn=a,g3=0f =a +1
G3):go=0,g =1gp=2

Consider the set of elements

w=(g1,, &21,)

where g;;, € GF(2?) and 221, € GF(3). The set {w} contains 12 elements.
We number the first n(s) + 1 = 3 elements of the set {w} as

wo = (0,0), w; = (1, 1), wp = (e, 2),
while the other elements of the set {w} are numbered arbitrarily as

wi = (0, 1), wy = (0, 2), ws = (1,0),
we = (1, 2), w7 =(a1,0), wg={(ay, 1),
wo = (o) + 1, 0), wio = (oy + L, 1),

wi = (o + 1, 2).

The Latin square L, is constructed by filling its (a, $)th cell by the ele-
ment wiw, +wg =W, +wg,a, 3 =0,1,2,...,11. Thus L, is obtained
as

o 1 2 3 4 5 6 7 8 9 10 11
1 4 9 6 5 3 0 10 11 8 2 7
2 9 3 7 8 11 104 0 6 5 1
I 6 7 4 0 1 S5 8 2 1011 9
4 5 8 0 3 6 1 2 7 i1 9 10
53 111 6 0 4 9 107 8 2
6 0 105 1 4 3 11 9 2 7 8
7 10 4 8 2 9 1 0 3 5 1 6
g8 11 0o 2 7 109 3 4 1 6 5
9 8 6 10 I 7 2 5 1 0 3 4
102 5 119 8 7 1 6 3 4 0
7 1 9 102 8 6 5 4 0 3

The second Latin square L is constructed by filling its (a, f)th cell by the
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element wow,, + wg. Thus L, is obtained as
0O 1 2 3 4 5 6 7 8 9 10 11
2 9 3 7 8 11 104 0 6 5 1
102 5 1 9 8 7 1 6 3 4 0
4 5 8 0 3 6 1 2 7 11 9 10
3 6 7 4 0 1 5 8 2 10 11 9
7 104 8 2 9 11 0 3 5 1 6
g 11 0 2 7 109 3 4 1 6 5
9 8 6 1011 7 2 5 1 0 3 4
1m 7 1 9 102 8 6 5 4 0 3
5 3 111 6 0 4 9 10 7 8 2
6 0 105 1 4 3 11 9 2 7 8
1 4 9 6 5 3 0 10 11 8 2 7

Consider the finite projective geometry PG (m,s). Identify the points of
PG(m,s) with the treatments and the g-flats (1 < g <m — 1) of PG(m,s)
with the blocks.

Since there are (s™*! — 1)/(s — 1) points in PG (m, s) , we see that the
number of treatments is given by

v=6" -1/ -1).

Now, the number of g-flats of PG (m, s) is ¢ (m, g, s). Hence, the number
of blocks is given by
G — 1) (™ —1)... ™8 — 1)

(st —1)(st—1)...(s=1)

b=d(m,g,s)=
The number of points in a g-flat of PG (m, s) is (s#*! — 1)/(s — 1). Hence,
the number of treatments in a block will be given by

k=6 = 1)/(s = D).

In the PG (m, s), a given point (i.e. a o-flat) is containedind (m — 1, g — 1, s)

g-flats. Hence, a given treatment will occur in

™= 1™ = 1)... (s B 1)
(sE—-1(s&!'=1)...s— 1)

r=¢(m-—-1,g—1,8)=

blocks. Also in PG (m, s), a given pair of points (i.e., a 1-flat) is contained in
¢ (m — 2, g — 2, s) g-flats. Hence, a given pair of treatments will occur in

A=db(m-2,g—2,5)

™= DE™2-1... s —1)
(s&=! =Dt 2=1)...(s = 1)

blocks.
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151.

152.

We consider a PG (2, 3). The points of PG (2, 3) are

p=001), p=@010), pi=@011),
ps=012), ps=(00), pe=(101),
pr=0102), pg=(110), po=(111),
po=(12), pu=(20), pp=021),
p13=(1 22)

Note that we have written the points so that the first non-zero coordinate
is always 1. We take the points as treatments and 1-flats as blocks. The 1-
flat is determined by a pair of points. The 1-flat passing through the points
p1 and p; consists of points p; + A\p2, where X is 0, 1 or 2, in addition to
the points p; and p,. Thus, the [-flat through p; and p, consists of points
PP, pi+p2=01 1) =psandp; +2p, =(021)=(012) =ps. The
I-flats through p; and ps, p; and p4, p> and p3, p; and py, and p3 and p4
are all the same. We now take the pair of points p; and ps. The 1-flat
through p; and ps consists of points py, ps, p1 +ps = (10 1) = ps and
p1 +2ps =(201)=(102) =py. The 1-flats through p, and ps, p; and
Ps, pi and p7, ps and pe, ps and p7, and pe and p; are all the same. In this
way we go on determining the l-flats. The 13 1-flats so determined are
obtained as

1 pop2 p3 ps 8 p3 Ps Ps P13
2 ppps pPs P 9 p3 pPs Pio P
3 p P8 P9 Pio 10 ps po ps  Ppi2
4 p Py P12 Pi3 Il ps ps pwo pi2
5 p2 ps PpPs  Pil 12 ps ps ps  Ppiz
6 P2 Ps Py P2 13 ps p7 pe  Pn
7 p2 P7 Pio P13

Consider the finite Euclidean Geometry EG (m,s). Identify the points of this
geometry with treatments and the g-flats (I < g < m — 1) with blocks. Now,
there are s™ points in EG (m,s). Hence, the number of treatments is given by

vV=S§".

The number of g-flats in EG (m,s) is equal to ¢ (m, g,8) ~ b (m — 1, g, ).
Hence the number of blocks is given by

b=¢(m’g’5)_¢(m— l,g,S)
SR — (s — 1)L (s — )
(8- 1)t ' =D...s= 1D

The number of points on a g-flat of EG (m, s) is s8. Hence, the number of
treatments in a block is given by k = s2. Further in EG (m, s), the number of
g-flats containing a given o-flat (i.e. a point) is & (m — 1, g — 1, s). Hence,
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the number of blocks containing a given treatment is given by

(s™ = DE™ = 1)... (st~ 1)
(sE—1)sel=1)...(s=1)

Finally in EG (m, s), the number of g-flats containing a given 1-flat (i.e. a pair

of points) is ¢ (m — 2, g — 2, s). Hence, the number of blocks containing a

given pair of treatments is given by

(™ = I)s™ 2= 1)...(sm Bt — 1)
&l =1)sE2-1)...s—1)

r=d(m-—-1,g-1,8)=

A=db(m—-2,g-2,5)=

Clearly the incidence matrix of new design is ItI =Eyw — N, where N is the
incidence matrix of the given BIBD. Further, it is easy to see that the new
design has v treatments, and b blocks and each block of the new design
contains v — k treatments. Thus for the new design, its parameters are given
by

Now

NN’ = (Ev, — N)(Eyp — NY
=bE,, — 2tE,yw + NN’
= (b — 20y + [(t — VL, + AE]
=(r— ML+ (b —-2r+MNEy,

= (F — WL + X B,

where ;\ =b—2r+ A and r= b — r. Thus, we see that ItI is the incidence
matrix of a BIBD with parameters

:rzv, B:b, ;—_-b—r, ﬂ:v«-k and ;\=b~2r+)\.

Let the blocks of D be denoted by By, By, ..., By. Without any loss of
generality, assume that D, is obtained by omitting the block B; and all
its treatments from the B,, ..., By. Clearly, for the design, D;, we have
vi =v—k,b; =b— 1. Since Dis a SBIBD, the number of common treat-
ments between B; and B;, i = 2,3, ..., bis . Hence, each block of Dy will
contain k — A treatments. Thus, k; = k — . Consider a treatment which
does not belong to the block B;. It occurs exactly in r blocks of the set
B,, ..., By of D. Hence, it will also occur in exactly r blocks of D;, and
ry = r. Further, consider a pair of treatments which do not belong to the
block Bj. This pair of treatments will occur together in exactly A blocks of
the set B, Bs, ..., By. Hence this pair of treatments will occur together in
exactly \ blocks of D;. Thus, \; = \. Hence D, is BIBD with parameters
Vi :V—-k,b1 =b- 1,1‘1 =l‘,k1 :k—)\,)\l =\
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Let the blocks of D be denoted by B, B,, .. ., By. Without loss of generality,
assume that B, is omitted and that its treatments are only retamed in the

blocks Bj, Bs, ..., By. These new blocks, are denoted by Bz, Bz, .. Bb
and they form the design D;. Clearly, the number of treatments in Dz is
v, = k and the number of blocks in D; is b, = b — 1. Since D is a SBIBD,
there are A treatments common between B, and B;, 1 = 2, 3, ..., band these

are retained in ﬁi, i=2,3,...,b. Thus each block of D; contains k, =
treatments. Each treatment of B, occurs in exactly r — 1 blocks of the
set By, B3, ..., Bp. Hence each treatment in D; occurs exactly inr — 1
blocks of D;. Thus we get r; = r = 1. Further, each pair of the treatments
of By occurs together in exactly N\ — 1 blocks of the set B,, Bs, ..., By.
Hence each pair of treatments in D, will occur together in exactly A — 1
blocks in D;. Thus, A = A — 1. Hence, D, is a BIBD with parameters
V2=k,b2=b—], Ip=r1— 1, kgz)\, )\2=)\—].
Q) We construct a complete set of (s — 1) mutally orthogonal Latin
Squares of side s. Denote these Latin squares by Ly, Lo, ..., Ls_;.
The v = s? treatments are arranged in a s x s square and call this
square as L. Take rows and columns of L as blocks. We get thus
2s blocks. The blocks obtained from rows and columns thus form
two replications.
Now take the Latin square L;,i=1,2,...,s — 1 and super-
impose on L, and form blocks by taking treatments which cor-
respond to the same letters (numbers) of L;. Since L; contains s
letters (numbers), we get s blocks. Thus from each Latin square,
we get s blocks and they form one replication. Hence we get in all
2s + s(s — 1) = s? + s blocks. Clearly each block has s treatments.
Alsor =2+ s — 1 = s + 1. Consider any pair of treatments \ and
f3. Then one of the following situations occurs:

(i) a and B occur in the same row of L,
(i1) aand B occur indifferent rows of L but not in the same column
of L, or
(ii1) o and B occur in different rows of L and in the same column
of L.

Consider the situation (i). Here, a and 8 occur together only in
one block they cannot occur together in blocks obtained from the
columns of L. Also since these two treatments cannot correspond to
the same letter when L, L, ..., Ly_;, they cannot occur together
in blocks obtained when L, L, ..., Ly_; are superimposed on L.
Thus a and B occur together only in one block, Hence A = 1.

Consider the situation (ii). Clearly o and B cannot occur to-
gether in blocks obtained from rows and columns of L. Since,
Li,La, ..., Ls_; are mutally orthogonal Latin squares, « and 8
will correspond to the same letter of only one Latin Square, and the
o and B will occur together only in one block. Hence, A = 1.
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Consider the situation (iii). Since a and B occur in the same
column, they occur together in exactly one block from among
blocks obtained from columns of L and cannot occur together
in blocks obtained from rows of L. Since a and B occur in
the same column, they cannot correspond to the same letter,

when L;,L,, ..., L are superimposed on L. Hence a and B8
cannot occur together in blocks obtained from superimposing
Li,Ly, ..., Ls—; on L. Thus a and 3 occur together in exactly one

block, and therefore A = 1. Thus we get a BIBD with parameters
v=st, b=sl+s, r=s+1, k=s, A=1.

(i) Out of s? + s+ | treatments, we take s’ treatments and arrange
them in a s x s square and construct s?> 4+ 2 blocks as in (i). To
the blocks of each replication, add one treatment from the re-
maining s + 1 treatments. The remaining s + 1 treatments are
also taken to form a block. Thus, we get a BIBD with parameters
v=b=s’4+s+1l,r=k=s+land\=1.

Alternatively we can use EG (2, s) to construct the BIBD
v=s?, b=s+s, r=s+1, k=s,A=1and PG (2, s)tocon-
struct the BIBD v=b=s?4s+1, r=k=s+41, A=1. See
Exercises 152 and 150 respectively.

Let M be amodule consisting of residues mod (2s + 1). Clearly the number of
residues mod (2s + 1) is 2s + 1. To each element of M, associate 3 treatments.
Thus, the total number of treatments is v = 3(2s + 1). Now consider the
following set of 3s + 1 blocks.

first s blocks

{119 (25)11 02}9 {2|s (28_ 1)17 02}7 feey {S],(S+ 1)1902}
second s blocks

{12, (28)2, 03}, {22, 25 —1)2, O3},...., {s2, (s + 1)2, 03}
third s blocks

{13, (28)3, 01}, {23, 2s—1)3, O1},...., {s3, (s 4+ 1)3,0¢}

last block
{Ols 02’ 03}'

The pure differences will arise from the first two treatments in the first 3s
blocks. Consider the pure differences of type {1, 1}, which will arise from
the first s blocks. There will be 2s such differences which are as follows.
1-2s=2,2—-2s—1)=4,3-(2s—-2)=6
yoe s 8S—(8+1)=2s, 25— 1, 25 -3,
2s—5,...,8s+1—-s=1.
Thus, we see that each non-zero element of M occurs exactly A = 1 time

among the pure differences of the type [1, 1]. The pure differences of the
types [2, 2] and [3, 3] will respectively arise from the second s and third s
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blocks, and we can as above verify that each non-zero element of M will
occur exactly A = 1 time among the pure differences of the types [2, 2] and
(3,3].

We now consider the mixed differences of the type {1, 2]. These will arise
from the treatments of the first s blocks and the last block. These are

1-0=1, 2-0=2,...,s—0=s,
28—0=2s,2s—1-0=2s—-1,...,8+1 -0=s+1,
and0-0=0.

Thus, we see that each element of M occurs exactly A = 1 times among
the mixed differences of the type [1, 2]. The mixed differences of the type
[2, 1] will arise from the treatments of the first s blocks and the last block
and it can be easily verified that each element of M will occur exactly A = 1
times among the mixed differences of the type [2, 1}.

The mixed differences of the types [1, 3] and [3, 1] will arise from the
treatments from the third s blocks and the last block. The mixed differences
of the type [2, 3] and [3, 2] will arise from the treatments of the second s
blocks and the last block. We can easily verify that each element of M occurs
exactly A = 1 time among the mixed differences of the types [, 3], [3, 1],
[2, 3] and [3, 2].

Thus, it follows that the differences arising from the above 3s + 1 blocks
are symmetrically repeated, each occuring A = [ time. Further one can easily
verify that of the v = 6s + 3 treatments of the above 3s + 1 blocks, exactly
r = 2s 4 1 belong to each class. Hence, by the first fundamental theorem
of symmetric differences of Bose (see Exercise 34) the blocks obtained by
adding the elements of M in succession to the treatments of the above 3s + 1
blocks will form a BIBD with parameters

v=6s+3, b=0Cs+ DR2s+ 1), r=2s+1, k=3, A=1.

Let elements of GF(s), where s = 6t + 1, represent the 6t + 1 treatments.
Let x be a primitive element of GF(s). Take the initial set of t blocks as

- 31 St—
[XO, X2[, X4t], [X, x2[+l,x4t+l],...,[x[ l’ xt , xt l].

Since x is a primitive element of GF(s), we have X% = 1 and hence x* = —1.
Since one treatment is associate with each element of GF(s), we see that all
differences among them are pure differences. Each block of the above set
of t blocks will give 6 differences which are non-null elements of GF(s).
The t blocks willgive 6t pure differences, which will be all the non-null
elements of GF(s). Thus, each non-null element of GF(s) will occur ex-
actly A = | time among the pure differences that will arise from the above
t blocks, and hence they are symmetrically repeated. Further r = 3t treat-
ments of the t blocks belong the class of 6t + 1 treatments. Thus we apply
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the first fundamental theorem of symmetric differences. Hence by adding el-
ements of GF(s) in succession to the treatments of the above tblocks, we get
t (6t + 1) blocks which form a BIBD with parameters

v=6t+ 1, b=t6t+1), r=3t k=3, A=1

Consider the elements of GF(s) and associate one treatment with
each element of GF(s). The elements of GF(s) are denoted by
0,x% = 1,x,x%, ..., x**2 where x is a primitive element of GF(s). Consider
the following block as the initial block:

B =1[x% x% x* ..., x".

The differences arising from B are all pure differences. B contains k = 2t + 1
elements and hence from b, we shall get k (k — 1) = 2t(2t + 1) differences.
We can arrange these differences in t sets of 2(t 4+ 1) differences each as

+ (P =x0, £ —xY,.. ., 2P xY, i=1,2,...,t

Now, let x3 — x, = xP!, then the above differences become

xpi, xpa+2, e Xpi+4l, xpi+2t+l , xpi+2t+3’ ey xp;+6t+1’
i=12,...,¢t
since x**! = —1. The differences in each set are the 4t 4+ 2 non-null ele-

ments. Thus, each non-null element of GF (s) occurs exactly A = t times
among the differences of the block B and hence are symmetrically repeated.
Hence by adding elements of GF(s) in succession to the treatments of B, we
get 4t + 3 blocks which form a BIBD with parameters

v=b=4t4+3, r=k=2t+1, A=t

Consider GF(s), where s = 4t + 1. Associate one treatment with each ele-
ment of GF(s). Let x be a primitive element of GF(s). Take the initial set of
2 blocks as

B, =[x &2 x4, ... x"7%)

By =[x, x}, x°,...,x*"].
Each block contains k = 2t treatments. The differences arising from B,
and B, are pure differences and their number is 2k(k — 1) = 4t(2t — 1). The

2t(2 — 1) differences arising from B, are arranged in (2t — 1) sets of 2 teach
as under

+ (x2i _ xO)’ + (x2i+2 s X2), e + (X2i+4t—2 _ X4t—2),

i=12,...,2t- 1.

The 2t(2t — 1) differences arising from B, are arranged in (2t — 1) sets of
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2t each as

2+l _ 243 3 didd—1 _ _di—]
+ (x X), £ (x x'), ..., (x 7Y,

i=12,...,2t-1

Since X4t = [, we have )(2t = —1. Take X2i —x°= i« Hence the above dif-
P
ferences can be written as

+2’ ., Xpi+4t—-2

+2t42
’

xPi , xPi

+2t +6t—2

, xP
i+3
+l, Xp,+

xPi Lo, xP

e, ij+4t-—|

A3 Pl =2, 2t

xPi

+2t+1 , xPi

xPi
Thus, we see that the differences in each set i are all the 4t non-null elements
of GF(s). Hence, each non-null element of GS(s) occurs A = 2t — 1 times
among the differences obtained from B, and B; and hence the differences
are symmetrically repeated. Further r = number of treatments in B, and
B, = 4t. Therefore the first fundamental theorem of symmetric differences
of Bose can be applied. Hence by adding the elements of GF(s) to the
treatments of B, and B,, we get 2(4t + 1) blocks which form a BIBD, with
parameters

v=4t+1, b=24t+1), r=4t k=2t, AN=2t—1.

Consider the elements of GF(s), where s = 4t + 1. To each element of GF(s),
associate 3 treatments, thus we get 3s = 12t + 3 finite treatments. We
also introduce one additional infinite treatment denoted by co. Thus we get
v = 12t + 4 treatments. We take the following (3t + 1) blocks as the initial
blocks.

[x%l’ x%t+2|’ X§l+l , X§t+2]+‘],

2 2420 2+ t+2i+]
[x2 ’ x2 ’ x3 ’ x3 ]’

[X:%‘, X§t+2|, X%H—I, X%H—ZI-H]’ i = O, l, 2, = 1
and [00, 0y, 02, 03]

«

1
where a is chosen so that x4 [ = x%, q = 1 (mod 2). Each block contains
X* —
k = 4 treatments. From each class (there are three classes) of finite treat-

ments, 4t finite treatments occur in the first 3t blocks and 1 finite treatment
occurs in the last block. Hence r = 4t + 1, and A = 1. We now consider
differences arising from the finite treatments. There will be 3 different types
of pure differences, namely [1, 1], [2, 2 ] and [3, 3]. There will be 6 types
of mixed differences; [1, 2], [2, 1], [1, 3], [3, 1], [2, 3] and [3, 2]. One can
verify that in each type of pure differences, there are 4t differences, which
are non-null elements of GF(s) and that in each type of mixed differences
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arising from the first 3t blocks, each non-null element of GF(s) occurs once
and 0 occurs in the mixed differences arising from the last block. Thus, the
differences arising from the finite treatments of the initial blocks are sym-
metrically repeated, each occurring A = 1 time. Hence, the conditions of the
second fundamental theorem of symmetric differences, see Exercise 34, are
satisfied. And by adding the elements of GF(s) successively to the treatments
of the initial blocks, we get (3t + 1) x (4t 4 1) blocks which form a BIBD
with parameters

v=12t4+4, b=CGt+ @t+ 1), r=4t+1, k=4, A= 1.
(i) Consider EG (2, 3). The pointes of EG (2,3) are

pp=00), pp=@©01), p3=(0 2),
pa=(10), ps=11), ps=(1 2),
pr=@20), pp=@2 1), p=Q2 2.

We take these 9 points as 9 treatments. The 1-flats are taken as
blocks. Hence,

b = no. of blocks
= no. of 1-flats in EG(2, 3)
=33 -1)/3G-1)=12.

Also,

k = no. of points on a 1-flat of EG (2, 3) = 3,

r = no. of 1-flats through a given point
=$(1,0,3)=3"-1)/3-1)=4

N\ = no. of 1-flats through a given pair of points
=6(0,-1,3)=1.

We now construct 1-flats. The equation of a 1-flat in EG(2,3) is
given by

X t+axy=a

where aj, a2, a3 are elements of GF(s) and (a;azaz) # (0 0 0),
(0 0 1),(0 0 2). Hence there will be 27 — 3 = 24 choices for
(a; a; a3),butthechoices(a; a; a3)and(2a; 2a, 2aj3)are iden-
tical. Hence the number of different choices are 24/2 = 12. Thus,
there will be 12 1-flats (blocks). These 12 blocks and the points
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(treatments) lying on them are given below:

a; a a3 Eq. of a 1-flat Block

100 xi=0 Pi P2 p3
agon x=I Pa Ps Pe
(102 X) =2 P7 Ps P9
110  xi+x=0 Pi Ps P8
(120 X1 +2x2 =0 P P5 Py
arn x+x=l P2 Ps Py
(112 X{+x2 =2 p3 ps p7
120D x+2x=I P3 P4 Ps
(122 x1+2x2=2  p2ps p7
010 xx=0 P1 Pa P7
©11) x=I P2 Ps Ps
012 xx=2 P3 Ps Py
(i1) This is a particular case of orthogonal series of Yates

v=b=s’4+s+1, r=k=s+1, A=1

Here s = 3. Then write v = s*> = 9 treatments in the form of a3 x 3
square as follows

h b i
L: ty t5 ¢t
t; tg to

The two mutually orthogonal Latin Squares of side 3 are

Lz:

SN -
_— N

0
L]Z i
2

_ N O
N O -
S =N

We now form blocks by taking (a) rows of L, (b) columns of
L, treatments corresponding to the same numbers of L; and L,,
when L, and L, are superimposed on L. Thus, we get blocks as

follows

From rows From cols. From L, From L,
h t i3 ty 4y ty t e (g th 5 b
gy ts tg h ts5 tg th 4 b p g U
7 g fy i o o i 5 4 3 4 13

We now add treatment t,q to the blocks obtained from rows, treat-
ments t;; to the blocks obtained from columns, treatment t;, to the
blocks obtained from L; and treatment t;3 to the blocks obtained
from L, and take one additional block consisting of t;0, t;1, tj2, t;3.
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Hence the 13 blocks are obtained as
th b B3 o 4t oty tr g 8 12
tsy 5 g tyo h ts tg fg b 4 b ty
t7 8 b b t3 6 o t ta ts5 t7 tp
iy 5 o {3
th 6 7 I3 to tn L2 U3

t3 4 tg I3

We apply the construction of Exercise 159. Consider GF(11).
Clearly x = 2 is a primitive element of GF(11). Hence, the ini-
tial block is taken as (x°, x2, x*, x8, x®) = (1, 3,4, 5, 9). The other
blocks are writen down by adding the elements of GF(11) in suc-
cession. Thus, the 11 blocks are obtained as

1 345 9 7 9 10 0 4
2 45 6 10 g8 10 0 15
3567 0 9 0 1 26
4 6 78 1 001 2 37
5789 2 0 2 3 48
6 8 9 10 3

We apply the construction given in Exercise 157 by taking s = 2.
We take the module M consisting of 2s + 1 = 5 elements 0, 1, 2,
3, 4 and associate 3 treatments with each element of M. Thus, the
15 treatments are

0 I 2y 3 4

0 Iz 22 3 4

03 13 23 33 4;

Then following Exercise 157, the initial set of 7 blocks is

(1,41,07), (21, 34,02), (12,47,03),
(22,32, 03), (13,43,01), (23, 33,0y),
(01, 0y, 03).

We now write down the other blocks by adding the elements 1, 2,
3, 4 to the above blocks in succession. Thus we shall get in all 35
blocks. The writing of 35 blocks is left as an exercise to the reader.
This is constructed by applying Exercise 160 and taking t = 3. The
elements of GF(13)are 0, 1, 2,3,4,5,6,7,8,9,10, 11, 12 and 2
is a primitive root of GF(13). Hence the initial two blocks are

1,3,4,9,10,12)and (2,5,6,7, 8, 11).

By adding the elements of GF(13) in succession to the above 2
blocks, we get all the 26 blocks.

This BIBD is constructed by the application of second fundamental
theorem of symmetrical differences. We consider the module M
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consisting of residues mod 7, i.e. 0f 0, 1, 2, 3,4, 5, 6. We associate
one treatment with each element of M. We also take one additional
infinite treatment as oc. Then there are 8 treatments. Consider the
following 2 blocks.

B, =(0,1,3,6), By=(0,0,1,3).

The differences among finite treatments arising from B, are

0-1=6, 0-3=4, 0-6=1, 1-0=1,
1-3=5 1-6=2, 3-0=3, 3-1=2,
-6=4 6-0=6 6-1=5 6-3=3.

*
The differences among finite treatments arising from B; are

0—-1=6, 0-3=4. I1-0=1, 1-3=5

Among all the 18 differences among the finite treatments, we see
thateach non-zero element of M occurs exactly A = 3 times. Hence,
the differences among the finite treatments are symmetrically re-
peated, each occurring A = 3 times. Further, out of 7 finite treat-

*
ments, 4 occur in By and N\ = 3 occur in By. Thus the conditions
of the second fundamental theorem of symmetric differences are

satisfied by the blocks B, and }31. Hence, by adding the elements

of M in auccession to the treatments of B, and é], we get the 14
blocks, which are as follows

0,1,3,6) (00,0, 1,3)
(1,2,4,0) (00, 1,2,4)
2,3,5, 1) (00,2,3,5)
(3,4,6,2) (00, 3,4,6)
4,5,0,3) (00,4,5,0)
(5,6,1,4) (00,5,6,1)
(6,0,2,5) (00,6,0,2)

This BIBD is constructed by applying Exercise 161 and taking
t = 2. Consider the GF(9), and let x be a primitive root of GF(9).
Hence x® = 1 and x* = —1. To each element of GF(9), we asso-
ciate 3 treatments and we take one additional infinite treatment as
00. Thus we get 27 finite and | infinite treatment. The elements
are

0,1,x, xt=2

X = 2x,

X =(2x+2),
x! = (x+1).

X2 =02x+1),
X =(x+2),
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x+1 X
= — =X
x—1 xb

Note that the elements x” = x + 1 and x® = x — 1. Thus we take
a = |. Then the initial set of 3t + 1 = 7 blocks is

2 J2i+4 21+l 2145
XU, XL x5 T, x5 ]

2 244 2+ 245
[x2 ’ xz ’ X3 ’ x3 ]

2i 244 2i+1 21457
[X3],X3 9x| yx] ]a1=0!17

[00, 01, 02, O3].

Taking i = 0 and 1, we get in all 7 blocks as

[x{, x1, x5, 53] = [14, 21, X2, (2x)2],

[x3, X3, X3, X31 = [12, 22, X3, (2x)3],

[x3, x3, X1, X1 = [13, 23, %1, 2],

[x3, x5, %3, x31 = [(2x + Dy, (x+ 21, @x+2)2, (x + D2,

[x3, x5, x3, xJ1 = [(2x + 1), (x + 1)z, 2% + 2)3, (x + 1)3],

[x3, x§, x3, x]1, = [(2x + D3, (x +2)3, 2% + 21, (x+ Dul,
[00, 01, 02, 03].

By adding the elements of GF(9) to the treatments of the above

7 blocks successfully, we get 63 blocks.

Let D be the given SBIBD with parameters v = b, r = k, and \. The treat-
ments of D are denoted by integers 1,2,...,v. We write the blocks as
columns. Let S = set of all v treatments and S;, S,, ..., Sy be the subsets
of S, representing the columns (blocks) of D. Each column contains r = k
different treatments. Take any h columns §; . S;,, . . ., S;,, of D . Then, these
h columns contain between them hr = hk treatments. Now every treatment
can occur at most r times in these h columns, hence the number of distinct
elements in these h columns is at least h, that is

1S;, US;,, U...US; | =h

for every h and i}, 13, ..., in, where |T| denotes the cardinality of the set
T. Hence, from Exercise 50, the columns S,, S5, ..., S, possess a SDR.
This SDR is a permutation of integers 1,2, ..., v. Take this SDR as the
first row. Delete this row from S, S,, ..., S,. Denote the new columns

byé.,gz,...,gv.Eachgi,i =1,2,...,vwill containr — 1 =k — 1 treat-
ments. Take any h columns §-,1, §i2, e §ih' These h columns contain be-

tween them h(r — 1) treatments. Now every treatment can occur at most
(r — 1) times in these h column, hence the number of distinct treatmsnts in
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these h columns is at least h, that is
* * *
IS, USi, U...US;, | >h

for every h and iy, iy, ..., iy. Thus, the columns §1, §2, §V possess an SDR.
Take this SDR as the second row. Proceeding in this way, we get r = k
systems of distinct representatives for the columns Sy, S5, ..., S, which are
taken as r = k rows. These r = k rows have a property that each treatment
occurs exactly once in each row. Hence these r = k rows form a Youden
Square.

Let D be the given SBIBD (v = b, r = k, ), whose blocks are denoted by
columns Sy, S,, ..., S,. Clearly S,,S,, ..., S, are subsets of S, the set of
all treatments. Each S;,i = 1,2, ..., v contains r = k treatments (k < v).
Consider the construction of firstrow, i. e., the first SDR. Then, from Exercise
50, the number of ways of constructing the first row is > k!. Consider the
construction of the j-th row (j = 1,2,...,k). At this stage, each column
contains (k — j + 1) treatments, hence using this result, it follows that the
number of ways of constructing the jthrow is (k — j + 1)!. Hence, the number
of ways of constructing the k rows, i.e., the number of ways constructing
the Youden squares is greater then or equal to Z}‘:l (k—j+ DL

Consider the finite projective geometry PG (m,s). Omit one point P,
say, from this geometry and take the remaining points as treatments.
Thus, we get v=[(s™"' = 1)/is— 1] — 1 =s("— 1)/(s — 1). Take g-
flats (1 < g <m — 1), not passing through the omitted point P as blocks.
Thus, the number of blocks is obtained as
b = no. of g-flats not passing through P
= [no. of g-flats in PG (m, s)]
— [no. of g-flats in PG (m, s) throught the point P]
=¢(m,gs)—dbm—1,g—Ls).

Further, the number of treatments in a block is obtained as

k = no. of points on a g-flat
= (& — /(s — 1.
Also, the number of times each treatment is replicated is obtained as
r = no. of g-flats containing the given point but not containing
the omitted point P
= [no. of g-flats containing the given point]
— [no. of g-flats containing the given point and the point P]

=¢(m-1,g—L,s)—db(m—-2,g—-2,5s).
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Two treatments will be called first associates if they occur together is the
same block, if they do not occur together in the same block, then they are
called second associates. Clearly, two treatments will not occur together in
a block, if the line joining them passes throught the omitted point P. Hence,
the second associates of a treatment are the points lying on the line (1-flat)
joining that point and the omitted point P, excluding that point and the point P.
Thus, nm=(+1)—2=s—1. Therefore, nj=(v-—-1)—m=
s2(s™! — 1)/(s — 1). Now let q and f be a pair of first associates. Then,

A\ = no. of g-flats containing 6 and ¢ but not the omitted

point P

= no. of g-flats containing 6 and ¢ but not the omitted
point P

= (no. of g-flats containing 0 and )
— (no. of g-flats containing 0, ¢ and P).

=¢(m-2,g-2,s)—b(m—3,g—-3,5s).

Clearly, A\, = 0.

Now, let 8 and ¢ be a pair of second associates, i.e., the line joining them
passes through the omitted point P. Then, clearly the number of treatments
common between the second associates of 6 and ¢ are the other treatments
lying on the line joining them and the point P. Hence

ph=6+1D)—-3=s-2=n-1
Now
Phtpn=n—1
and therefore
Ph=m~—1-p3=0
and, p%l = 0. Also, pfl + pfz = ny, hence pf, = n;. Thus, we get

0
nz—l

n
Pr=1[ ]

Again, n;p}, = nop?, = 0. Therefore, p}, = 0, and from pj, + p}, = ny,
we get p), =n,=pl,. Further, from p) +pj,=n—1, we get

pl, =n; —ny — 1. Hence, we get

Consider PG (m,s). Select one point P, say, and choose t lines passing
through it and take points on these lines other than P as treatments. Since,
the number of points on each line, excluding the point P iss, we get v = st
treatments. Take the (m — 1)—flats not passing through P as blocks. Thus,
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the number of blocks is obtained as

b = no. of (m — 1) - flats not passing through P
= [no. of (m — 1) - flats]
— [no. of (m — 1) - flats passing through P]
=b(mm-1,8)—d(m—1I,m—2s)+s™

The number of times each treatment is replicated is obtained as

r = no. of (m — 1) - flats containing a given point but not
containing the point P
= (no. of (m — 1) - flats containing a given point)
— (no. of (m — 1) - flats containing the given point and P)
=b(m—-1,m—-2,8)—db(m—2, m-3,s)

and hence k = vr/b =1t.

Two treatments are first associates if they lie on one of the chosen lines
through the point P, otherwise they are called second associates. Hence, we
getnp =s—1,m =(v—1)—n; =s(t— ). Clearly \} = 0 and A, can be
found from the relation n;A; + npA\; = r(k — 1). Hence A\, = s™ 2. Let 0
and ¢ be a pair of first associates. Then the treatments common between
their first associates are the other treatments on the line joining them and
P Hencep}I =(s+ 1) —3=s—2 =n; — 1. The values of P; and P, then
follow from the properties of p}k and are found to be
np — 1 0 0 n

I, Py =] 1.

Pr=I 0 np ny n2~n|—1

167. Consider a finite Euclidian Geometry EG(m, s). Omit one point P, say and
all the g-flats (1 < g <m — 1) through P. Take the remaining points as
treatments and the g-flats not containing P as blocks. Then we get

v=s"—1,
b = no. of g-flats not containing P
= [no. of g-flats in EG(m, s)]
— [no. of g-flats in EG(m, s) containing P]
=[dmgs)—¢(m—-1,gs)]—db(m-1,g—1,s).
r = no. of g-flats in EG(m, s) containing a given point but not
the point P
= [no. of g-flats in EG(m, s) containing a given point]
— [no. of g-flats in EG(m, s) containing the given point
and P]
=¢(m—-1l,g—1,8)—db(m—-2,g-2,53),
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and
k = no. of points on a g-flat in EG(m, s) = s,

Two treatments are first associates if they occur together in the same block,
otherwise they are called second associates. Now. two treatments will not
occur together in a block, if the line joining them passes through P. Hence
np=s—2and\; =0.Thenn; = v —1—n; =s™ —s. Further if 6 and ¢
are a pair of first associates, then

A1 = no. of blocks which contain 6 and ¢
= no. of g-flats containing 6 and ¢ but not P
= [no. of g-flats containing 6 and ]
— [no. of g-flats containing 6 and ¢ and P]

=d(m—-2,g—2,8)—b(m—3,g—3,s).

Let 6 and ¢ be a pair of second associates. Hence the line joining them passes
through P. Then the treatments common between their second associates are
the other treatments lying on the line joining them and P. Hence we get
p, = s —3 = np — 1. Then using the preperties of p}k, we obtain P; and P,
as

0
n; — 1

nl—nz-—l ny

P = n 0

R )
Arrange the v = pq treatments in an array of p rows and q columns.
Blocks are formed by taking a treatment and treatments in the same
row and the same column as that treatment. Thus we get b = pq and
k=14+(p-1D+@-D=p+q—-1.Clearlyr=p+q— 1.

Two treatments are called first associates if they lie in the same row, and
second associates if they lie in the same column; otherwise they are called
third associates. Wethenhaven; =q— 1, my=p—-L,nm3=(p—-1)(q—1).
Clearly \; = q, A2 = p and A3 = 2. Further, one can easily verify that the
values of the P-matrices are given by

-

[q—2 0 0
P]= 0 0 p—l
| 0 p-1 (p—1)q—-2)]
0 0 q—1 ]
P2= 0 p—2 0
lg—-1 0 (p—-2@q-1
0 1 q-2 ]
P; = 1 0 p—2 .
1 9—2 p—2 (p—2)q—2)

We arrange the v = pq treatments in an array of p rows and q columns.
Blocks are formed by taking all treatments that occur in the same row and
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column as each treatment but excluding that treatment. Thus, we getb = pq,
andr=k=p+q—-2.

Two treatments are first associates if they occur in the same row; and
second associates if they occur in the same column, otherwise they are third
associates. Thus, wehaven; =q—1,nm;=p—1,nm3 =(p—1)(q — 1). We
can easily verify that Ay = q — 2, \; = p — 2, A3 = 2. Also one can easily
verify that the matrices Py, P, P3 are the same as given in Exercise 168.

The v = p? treatments are arranged in a p x p square. Blocks are formed by
taking all treatments in the same row, the same column and which correspond
to the same letter of a p x p Latin square as each treatment. Clearly we have
b=ptandr=k=14+(p-D+@p-D+(p-1)=3p—2.

Two treatments are first associates if they occur in the same row; second
associates if they occur in the same column; and third associates if they
correspond to the same letter of a p x p Latin square; otherwise they are
fourth associates. Then we obtain

m=m=m=p-1 ng=(p-Dp-2)
AMN=Nh=M=p+2, M=6.

Further one can easily verify the values of P-matrices.

(1) Consider the double triangle as shown in Chapter 1, Result 36(3)(i)
on page 43.

The vertices are denoted by the numbers from 1 to 10, and
take them as the 10 treatments. The blocks are fromed by taking
treatments on the same lines. There are 5 lines and so we get the 5
blocks as

(1258), (86910), (42310),
4567), (1397).

Clearly k = 4. Since there are two lines through a vertex, we get
r = 2. The first associates of any treatment are the treatments lying
on the lines passing through that treatment. Thus we get n; = 6.
The second associates of a treatment are the treatments which do
not lie on the lines passing through that treatment. Thus, n, = 3,
clearly \; = 1, and A\, = 0.

Consider treatments 2 and 3, which are first associates. The first
associates of 2 are 4, 3, 10, 1, 5, 8. The first associates of 3 are
4,2,10, 1,9, 7. Hence, the treatments common between the first
associates of 2 and 3 are 4, 10, 1. Thus we get p}, = 3. The other
values of the matrices P, and P»can be determined similarly or from
the properties of pjik and we obtain P, and P, as

32 4 2
Pi=, |} P=[, ol

(i) Consider the parallelepiped as shown in Chapter 1, Result 36(3)(ii)
on page 44.
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The vertices of the parallelepiped are denoted by numbers from
1 to 8 and are taken as the v = 8 treatments. The 6 faces of the
parallelepiped are taken as blocks. Thus we get b = 6 and clearly
k = 4. Since 3 faces pass through a vertex, we get r = 3. The first
associates of a treatment are defined as those treatments which lie
on the same faces as that treatment but not on the same edges as that
treatment, its second associates are those treatments which lie on the
same edges as that treatment; and its third associates are treatments
diagonally opposite to that treatment. Thus the first, second and
third associates of the treatment 1 are respectively 3, 8, 6; 2, 4, 5;
7.Hencen, =3,np =3,n3 = lL,andA; = 1,A\y =2,A3 =0.0ne
can easily verify that the P-matrices are given by

2 00 0 21 030
Pb=|0 2 1}, P,=|2 0 0|, P3=|3 0 0
010 1 00 000

This PBIBD will be constructed by applying the method of Exercise
165. Consider PG (2, 3). The 13 points are

p=0001, p,=(10), ps=011),

pa=012), ps=(100), pe=(101),

pp=(102), pg=(110), po=(111),

po=(012), pu=0120), p2=(121),

piz=(0122).

We omit the point ps and take the remaining 12 points

as the 12 treatments. Thus we get v =12 treatments as

P1: P2, P3. P4. P6> P7- P> P9 P10» Pi1» P12, P13. In Exercise 151, we
have listed the 1-flats of PG (2, 3). We omit the 1-flats which pass

through ps, and take the remaining 1-flats as blocks. Thus, we ob-
tain b = 9 blocks as

(1 P2 P3 P4)  (P3 Ps Pio Pu1)
(Pt ps P9 Pio)  (P3 P7 Ps Pi13)
(p1 P P12 P13) (P4 Ps P8 Pi3)
(P2 Ps Po P12) (P4 P71 P9 P11)
(P2 P7 P10 P13)

Clearly k =4 andr = 3.

Two treatments are first associates, if they occur together
in a block, and are second associates if they do not oc-
cur together in a block. Thus the first associates of p,
and p, are respectively pz, ps, P4, P8, P9, P10s P11, P12, P13, and

Pt, P3, P4, Ps» P9, P12, P7. Pio» P13. Thus we get n; = 9 and hence
ny, = 2. Also the common treatments between the first associates of

pi and p; are ps3, ps, P9, P10, P12, P13. Hence p}l = 6. Alsop; and p,
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occur together or_lly in one block, hence A\ = 1. Then Ay = 0. The
other values of p;, can be obtained similarly from the properties of

P}k‘ Thus one can easily verify.

6 2
This PBIBD can be constructed by applying the method of Exercise
167. Consider the EG(2,3). The points and 1-flats in EG (2, 3) are

Points: p; =(00), po=©1), p3=(02),
pa=(10), ps=(1), ps=(12),
pr=Q20), ps=(@21), py=(22).

I-flats:  (pr p2 p3), (P4 Ps Pe)s (P7 P8 P9)
(1 P4+ P7), (P2 Ps P8),  (P3 Ps Po)s
(p1 ps Po)s (P2 Pe Po). (P3 Pa Ps)s
(p1 ps p8), (P2 Pa Po), (P3 Ps p7).

Omit the point p, and take the remaining points as treatments. Thus,
we get v = 8 treatments as pa, p3, P4, Ps, P, P7, P8, Po- Omit the
1-flats passing through p; and take the remaining 1-flats as blocks.
Thus, we get b = 8 blocks as

(ps ps ps)» (P2 Ps P8). (P2 Ps Po)s
(p2 ps P9). (P7 Ps Po)»  (P3 Po Po)s
(p3 ps p8). (p3 Ps P7)-

Clearlyk =3 and r = 3.

Two treatments are first associates if they occur together in
a block; they are second associates if they do not occur to-
gether in a block. Thus, the first and second associates of p, are
Ps, Pe» P3» Ps, P9 and p7. Hence ny = 6 and n; = 1. Clearly A\, = |
and N\, = 0. Consider p; and ps which are first associates. The first
associates of p; and ps are respectively ps, ps. P3, Ps. P2, Py and
P4, Pé»> P2, P8 P3, p7. The common treatments between the first as-
sociates of ps and ps are pe, ps, p3, p2. Hence p}, = 4. The other
values of p}k can be similarly determined or from the properties of

p}k. Thus one can easily verify that

4 1 6 0

This PBIBD can be constructed by applying the method of Exer-
cise 168. We arrange the 9 treatments in an array of 3 rows and
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3 columns as

ty th t3
4 ts5 tg
t7 tg to

The blocks are formed by taking each treatment and treatments in
the same row, the same column as that treatment. Thus we get 9
blocks as

thblatgty tgtyts 31t
thtt3ts5tg t71t8 19t iy
Bttt fgty gt ts
tg t5 16 4 &7 1o 47 I3 t3 tg
ts g4 tg tH tg.

Clearly k =5andr =5.

Two treatments are first associates if they are in the same row;
they are second associates if they are in the same column; otherwise
they are third associates. Thus, the first, the second and the third
associates of t| are respectively

{2, t3; t4, t7; ts, ts, i3, t9.

Hencen; =n; =2 andny = 4.

Consider t; and t, which are first associates. They occur together
in 3 blocks. Hence A = 3. Consider treatments t; and t4 which are
second associates. They occur together in 3 blocks, hence A\, = 3.
Consider treatments t; and t; which are third associates. They occur
together in 2 blocks. Hence A3 = 2. Now, consider

Treatment First Second Third
Associate Associate Associate
ty t, t3 t4, t7 ts, g, tg, to
ty 4,3 ts, tg t4, s, U7, by
t4 ts, t6 ty, t7 t, 13, t3, ty
ts t4, ts ta, tg t1, 43,17, by

Here, t; and t, are first associates, hence by finding the common
treatments between their different associates, we find

1 00
pi=|0 0 2
02 2

Next, t; and t4 are second associates hence, by finding the common
treatments between their different associates, we obtain P; as

00 2
pp=|0 1 0
2 0 2
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Lastly, consider t; and ts which are third associates. Hence, by
finding the common treatments between their different associates,
we obtain p3 as

11
01
1 1

0
ps=| 1
1
This PBIBD can be constructed by applying the method of Exericse

169. We arrange the v = 9 treatments in an array of 3 rows and 3
columns as under

L L &3
4 ts 1t
7 13 U

The blocks are formed by taking treatments in the same row and
column as each treatment, but excluding that treatment. Thus, we
obtain 9 blocks as under

(a4 ty), (4 315 1g)
(i bt tg), (t5 tsty t7)
(ta t6 1 1g), {13 t5 13 to)
(tg to t tg), (t7 to 13 t5)
(t7 g3 t6).

Clearly k = 4 and r = 4. Two treatments are first associates if they
occur in the same row; they are second associates if they occur in
the same column, otherwise they are third associates. Thus, we can
easily get the following:

Treatment First Second Third
Associate Associate Associate
t SR t4 47 ts tg tg to
t ty &3 5 tg tatg ty tg
tq {5 tg ISR & tai3tg by
ts5 i3t trtg a3ty tg

Therefore, we get n, = n, = 2 and n3 = 4. Since t; and t, occur
together only in one block, Ay = 1. Now t, and t4 occur togehter
only in one block, hence Ay = |. Moreover t; and ts occur together
in 2 blocks, and hence Ay = 2. The above table of treatments and
their associates is the same as found in (v), and hence we find the
P-matrices same as found in (v).

This PBIBD can be constructed by applying the method of Exericse
170. We arrange the v = 9 treatments in an array of 3 rows and 3
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columns as under

ty tr 5!
ty ts te
ty tg ty

We also take a Latin square of side 3 as

The blocks are formed by taking treatments in the same row, the
same column and those which correspond to the same letter of a
3 x 3 Latin square as each treatment. Thus, we obtain 9 blocks as
under

(th o t3 44 t7 13 t9), (6 L4 t5 B3 bo ) fg),
Lt tstgtlyly) (t7igtt tytzts),
(34 gty ts t7), (g ty &gty t5 t7 tg),
(ttsts t) t7 12 o), (o 17 tg B3 tgly Ly),
(ts 4 ts 2 tg t3 t7).

Clearly k =7 and r = 7. Two treatments are first associates if
they occur in the same row; they are second associates if they
occur in the same column; they are third associates if they cor-
respond to the same letter of the 3 x 3 Latin square; otherwise
they are fourth associates. Thus one can easily verify the following
table.

Treatment  First Second Third Fourth
Associate  Associate  Associate  Associate
£ t 13 ty t7 te g ts to
5] ty t3 ts tg 4 to ts 17
t4 ts g i by ty to B 1g
te ty ts t3 tg t tg by
ts t4 lg tatg t3 t7 ity

By considering t; and t, which are first associates and by finding
the common treatments between their different associates, we find
Py as

P

I

0 0
0 1
10
1 1

SO O -
[ =)

Consider t; and t; which are second associates. By finding
the common treatments between their different associates we
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1
0
1
0

oo - O

Next consider t; and tg which are third associates. By finding the
common treatments between their different associates, we find P; as

0

0
Py = :
0

—_ oo -
SO0 = =

0
1
0
1

Lastly, consider t; and ts which are fourth associates. By finding
the common treatments between their different associates, we find
P, as

0
0
P, = 0
1

1
1
0
0

S - — O
o —= O -

172. The key block B is constructed by taking all treatments having even num-
ber of letters in common with ABC, BCE, and ABDE. The treatments in
the key block B, are: (1), ace, bed, abde. The block B; (i =2,3,...,7)is
constructed by taking treatments obtained by multiplying a treatment not
included in the previous blocks By, B,, ..., B;_, with the treatments of the
block B, and replacing the square of any letter by unity. Thus the 8 blocks
are obtained as

Block Treatments Block Treatments
1 (1), ace, bed, abde 5 d, acde, be, abe
2 a, ce, abed, bde 6 e, ac, bede, abd
3 b, abce, cd, ade 7 ab, bce, acd, de
4 ¢, ae, bd, abede 8 ad, cde, abc, be

The other interactions that are confounded are:

(ABC)BCE) = AE
(ABCYABDE) = CDE
(BCE)(ABDE) = ACD
(ABC)(BCE)ABDE) = BD.

173. The pencil corresponding to the interaction AB2C2isP(1 2 2). Theequa-
tions of P(1 2 2)are

X1 +2x2+2x3=0,1,2.



282

174.

CHAPTER 3

We construct the blocks by taking treatments satisfying each equation. Con-
sider the equation

X+ 2X2 + 2X3 =0.
We can write this equation as
X] = X2 + Xa.

Thus, the solutions of this equation are obtained by writing down all possible
combinations of x and x3 and then taking x, to be their sum. Thus, the 9
treatments satisfying the above equation and forming the first block are

Block1: (0 0 0), (1 0 1), 2 0 2),
a1 0, 21 D, O 1 2,
2 20, @G 2 D, (1 2 2.

Consider the second equation
X) +2x3 + 2x3 = 1
which can be written as
X] =X+ x3+ L.

We write all combinations of x; and x5 and take x; to be their sum plus 1.
Thus, we get the second block as

Block2: (1 0 0), 2 0 1), (0 0 2),
@10, O11 112,
© 2 0 d2 D, 2 2 2.

Solving the third equation as x; = X3 + X3 + 2, we obtain the third block as

Block3: 2 0 0), (0 0 1), (1 0 2),
o100 (01D, @21 2,
ar 20, @21, 0 2 2.

It may be noted that the blocks 2 and 3 are obtained from block 1 by adding 1
and 2 successively to any coordinate of the treatments of block 1. The order
of blocks is immaterial.

The pencils corresponding to the interactions AB and BC are respectively
P 1 0)and PO 1 1). The blocks are obtained by solving pairs of
equations one belonging to P(1 1 0) and the other to P(O 1 1). The
key block is obtained by solving the equations

X1+ X2 =0, Xo + x3 =0,

which give x; = x3 and x, = 2x3. Taking x3 = 0, 1, 2, we obtain the solu-
tionsas(0 0 0),(1 2 1),(2 1 2).Thus the key block is

Blockt: (0 0 0, (1 2 1), 2 1 2).
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The other blocks can be similarly obtained by solving pairs of equations
X1+ X =1and xo + X3 =, 1,j=0,1,2excludingi =j = 0.

However we shall give a short-cut method of writing down other blocks from
the key block. We select the first two coordinates in all possible ways as

00 OH O, 00D 02,220,210, 22).

We omit the combination (0 (). Add these combinations to the first two
coordinates of the treatments of the key block in succession. We then get the
other 8 blocks. The key block and the other 8 blocks so obtained are given
below.

Block | Treatments Block | Treatments
11 0 0),(1 2 1,2 1 2 610 2 0,2 | DO 02
210 1 0,0 0 D2 2 2 712 0 0,0 2 D, 1 2
3100 2 0),(1 1 1)@2 0 2 812 1 0,00 0 D 2 2
410 0 0,2 2 DO 1 2 912 2 00 I DA 0 2
5001 0,2 0 DO 2 2

175.  The pencils belonging to the 2-factor interactions in a 3% design are P(1 1)

and P(I  2). Then, we get two replications, confounding P(1 1) in the first
replication and P(1  2) in the second replication. The key block in the first
replication in which P(1 1) is confounded is obtained by solving

X; +x; =0, e x; = 2x,

and is obtained as (0 0), (I  2),(2 1). By adding 1 and 2 to the first co-
ordinates of these treatments, we get the other blocks of the first replication.

The key block in the second replication in which P(1  2) is confounded
is obtained by solving

X] +2X2 = 0, ie. X = X2

and is obtained as (0 0), (I 1), (2 2). By adding | and 2 to the first
coordinates of these treatments, we obtain the other blocks of the second
replication.

The replications I and II are given below.

Replication I Replication II

O 0,0 2,2 D O 0,d D2 2
(1 0,2 2,0 1 (r o,2 Do 2
2 0,0 2,1 D 2 0,0 D, 2).

Interaction P(1 1) is confounded in Replication I and is unconfounded in
Replication II. Thus, there is a loss of % on each d.f. belonging to P(1  1).
Similar remark applies to the interaction P(1  2).
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We select 4 vertices (a;, ap, a3) where each a is a non-null element of GF(3)
as

a1 Ha 1 20 2 Ha 2 2.

Each replication is constructed by taking one vertex and two pencils orthog-
onal to that vertex. The vertices and the corresponding orthogonal pencils
for different replications are given below.

Replication Vertex Pencils
1 a1y P(1 2 0), P(1 0 2)
2 a1 2 P(1 2 0), PO 1 1)
3 (a2 nmn P11 0), PO 1 1)
4 (1 2 2) P1 1 0, PO 0 1)

The key block in Replication 1 is obtained by solving the equations
X1 +2x, =0, X) +2x3 =0,

that is, X; = X, = x3. Similarly we find the key blocks in other replications.
The key blocks in the 4 replications are given below.

Replication Key Block
1 © o0 (1D @222
2 © 00 (112, 221
3 © 00 20N 212
4 © 00, (122, 211

The other blocks in each replication are obtained from the key blocks by the
short-cut method described in Exercise 174, that is, by adding

on ©O02 Qo0 an Q22 20 21, 22

to the first coordinates of the treatments of the key blocks. The blocks in
different replications are given below.

Replication 1 Replication 2
0, 0 11, 2 22 © 00, (112, 221
0, (1 2 1, 2 0 2 ©© 10, 22, 201
0, 4 01, 212 @20, 002 @110
0, @21 1, 02 2 ao0o0, 212, © 21
0, @ 2 1), (002 a1o0, @222, © 01
0, 2 011 012 a2a0, 2 02, 011
0O, ©1 1, (1 22 200, 01t 2, d 21
0, © 2 D, (1 0 2 210, © 22, do0o1mn
0, © 01, (112 220 ©O02 (111
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B s O = O N = O

Replication 3 Replication 4
0, 1 2 1H, 212 © 00, 22, 211D
0, 4 0 222 O 10, (1 02, 2210
0, 1 1 1 20 2 O 2 0, 112, 201
0, 2 2 1, 0O 1 2 (1 00, 222, O 11
0, 2 01 O 22 (10, @202, O 21
0, 21 1), (00 2 (120, 212, (001
0, © 2 b, (1 2 200, (022, 11
0, O 0 1), (1 2 2 210, © 0 2, (1 21
0, (0 1 1, (1 02 220 O12, 01D

The interactions confounded in each replication are given below.

Replication Confounded Interactions
| AB®, AC* ABC, BC®
2 AB?, BC, AC, ABC?
3 AB, BC, AB’C, AC?
4 AB, AC, AB*C?, BC?

The first order interactions are AB, ABZ, AC, AC2, BC, BCZ. From the above
table, we see that each first order interaction is confounded in 2 replications
and is unconfounded in the other two replications. Thus, there is uniform
loss of information of % on each d.f. belonging to the first order interaction.
The second order interactions are ABC, AB2C, ABC?, AB?C2. From the
above table, we see that each second order interaction is confounded in one
replication and is unconfounded in the other three replications. Hence, there
is a uniform loss of information of % on each d.f. belonging to the second
order interaction.

ABC and ACDE are defining interactions. Hence, their generalized interac-
tion BDE is also defining interaction. We write down the %th replicate by
taking treatments that have odd number of letters in common with BDE and
even number letters in common with ACDE. Thus the ith replicate of a 2°
design consists of the following treatments:

b, ad, cd, ae, ce, bde, abc, abcde.

Note that if we suppress letters a and b in the above set of 8 treatments, we
obtain the 8 treatements in a 2° design with factors C, D, E. The 7 alias sets
correspond to the 7 factorial effects of this 2* design and are obtained as
below.

C = AB = ADE = BCDE

D = ABCD = ACE = BE

CD = ABD = AE = BCE

E = ABCE = ACD = BD
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CE = ABE = AD =BCD

DE = ABCDE = AC =B

CDE = ABDE = A =BC
The defining interaction ABCD contains even number of letters, hence the
half replicate of a 2* design will consist of treatments which have even

number of letters in common with ABCD. Thus, the half replicate consists
of the following 8 treatments

(1), ab, ac, be, ad, bd, cd, abed.
If we suppress letter d, then the treatments become
(1), (d)a, (d)b, ab, (d)c, ac, be, abe(d)

which are the treatments of a 2 design with factors A, B, C. Now we want
to confound AD = BC. The first block is written down by taking treatments
that have even number of letters in common with BC. The second block is
written down by taking treatments obtained by multiplying a treatment not
included in the first block with the treatments of the first block and replacing
the square of any letter by unit. Thus the two blocks are:

Block 1: (1), a(d), bc, abe(d)
Block 2 : (d)b, ab, (d)c, ac.

We now introduce the suppressed letter, so that the blocks now become

Block 1 : (1), ad, bc, abed
Block 2: bd, ab, cd, ac.

Here ABCDE contains odd number of letters; hence we select in the half
replicate only those treatments which have odd number of letters in common
with ABCDE. Further, we suppress the letter ¢ and write down these 16
treatments as 16 treatments of a 24 design as under

(1)(e), a, b, ab(e), ¢, ac(e), be(e), abe, d, ad(e), bd(e),
abd, cd(e), acd, bed, abcd(e).

We wish to confound the interactions BE and CDE. Now we write these
interactions so that they contain only letters from A, B, C and D. Thus,
BE = ACD and CDE = AB. So we confound ACD and AB. We write
the first block B; by writing the treatments having even number of letters in
common with ACD and AB. Then, the block B;, i = 2, 3, 4 is constructed by
taking a treatment not included in blocks By, B,, ..., Bi_; and multiplying
it with the treatments of the block B, and replacing the square of any letter
by unit. Thus, the 4 blocks are

Block B; : (1)(c), abc, abd, cd(e)
Block B; : a, be(e), bd(e), acd
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Block B3 : b, ac(e), ad(e), bed
Block B4 : ¢, ab(e), abed(e), d.

The final blocks are written down after removing the brackets enclosing the
letter e.

Note that the generalized interaction of BE and CDE, namely BCD is
also confounded, and their aliases are confounded. Thus, the alias sets BE =
ACD, CDE = AB, BCD = AE are confounded.

The defining interactions ABC and ADE contain odd number of letters and
hence the (%)th replicate will consist of treatments which have odd number

of letters in common with ABC and ADE. Thus, the (4 )th replicate consists
of the following treatments in which we have suppressed two letters a and
b, so that they become treatments of a 24 design with factors C, D, E and F.

(a)(1), (ab)c, (b)d, cd, (b)e, ce, (a)de, (ab)cde, (a)f,

(ab)ct, (b)df, cef, (a)def, (ab)cdef.
The generalized interaction of ABC and ADE, that is, BCDE is also the
defining contrast.

The generalized interaction of ACE and ACDF, that is, DEF and their
aliases will also be confounded. Thus, the following alias sets will be con-
founded.

ACE = BE =CD = ABD

ACDF = BDF = CEF = ABEF

DEF = ABCDEF = AF = BCF.
Now ACE and ACDF contain the suppressed letters; hence for confounding
we shall take their such aliases which do not contain the suppressed letters.
Thus, we select CD in place of ACE and CEF in place of ACDF. Thus, we
confounded interactions CD and CEF. We construct block B by writing
the treatments having even number of letters in common with CD and CEF.
The block By, 1 = 2, 3, 4is constructed by taking a treatment not included in
blocks By, B, ..., Bij_; and multiplying it with the treatments of the block
B,. Thus, the 4 blocks are found as

Block By: (a)(1), (b)ef, cdf, (ab)cde

Block B,: (ab)c, cef, (b)df, (a)de

Block B;: (b)d, (a)def, (ab)cf, ce

Block By4: (a)f, (b)e, cd, (ab)cdef.
The final blocks are written down after removing the brackets which enclose
letters a and b.
The (%)rd replicate of a 3* design, when the pencil P(I 1 I)isusedasa
defining pencil will consist of treatments which satisfy

X1 +X4+x3=0
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and are given by

© 00, 12, 021D @02,

200n (120 210 Q11

2 2 2.
In a 33design, there are 13 indepedent pencils, one of which is used for
constructing the (1)rd replicate. The remaining 12 will be divided into 4

alias sets of 3 pencils each. The alias set corresponding to a pencil P(b; b, bs)
will consist of pencils

P(b) + a;, by + az, b3 + a3)
where A = 0, 1, 2. Hence the following 4 alias sets:
P1 0 O)=P(1 2 2)=P0O0 1 1)
PO 1 O)=P1 2 1)=P1 0 1)
PO 0 )=P1 1 2)=P(1 1 O
Pl 2 0O)=P1 0 2)=P0O 1 2)
The treatments of the (3)rd replicate of a 3° design, when P(1 1 1 1
I)andP(1 0 O 1 1)are used as the defining pencils are obtained by
solving the equations
xi+x+x3+x4+x=0
X1 + X4 +x5 =0.
The above equations can be reduced to
X = 2X4 + 2X5
Xy = 2X3.

We allow x3, x4 and x5 to take all possible values and determine x; and x;
by the above two equations. Thus, we obtain the following treatments for
the (3 )th replicate.

© 0 0 00 O 2100 ©O© 1200
200001 22101 2120010
100 0 2 12102 a120 2
20010 22110 21210
aoo1mn a21110n a1211
© 001 2 o 211 2 01212
a00 20 az2120 11220
© 0020 © 2120 O 1221
2 00 2 2 2 21 2 2 212 272

We lose information on the pencils

POV 4 A, ML AL A+ A, A+ A),
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where A, A, are elements of GF(3) not all zero. Taking independent com-
binations of (A, A2) as (1,0), (0,1), (1,1), (1,2), we obtain the following 4
pencils on which information is lost.

P(I 1 1 1 1, PO O 0 1 D,

P2 1 1 2 2)=P(1 2 2 | 1),

PO 1 1 0 0.

The aliases of any pencil P(b;b,bsbsbs) are the pencils
Py 4+ A+ N, by 4+ A, b+ A by N+ Mg, bs + A + Ay)

where \j and \, are elements of GF(3), not all zero. Taking P(b, babsbsbs) =
P(11101) and (A, A2) =(1,0), (1, 1),(1,2),(2,0),(2,1),(2,2),(0, 1),
(0, 2), we obtain the following aliases of P(1 1 10 1):

PO 1 1 21) PO 11 1 0),
P01 2201 PO OO 1 0),
PO OOOTD PI OO 2 1),
PO 2221 PO 112 0).

The blocks are constructed by taking treatments which satisfy the equations
Xi+Xx2+x3+2x4=0
X| + X3+ X3 =q,
where a can be 0, 1 or 2. The above equations can be written as
X1 =2x3+2x4 +
X2 = 2X4 + 2a.

We allow x3 and x4 to take all possible values of GF(3) and determine x, and
xz by the above equations. Taking o = 0, 1, 2, we get 3 blocks as follows.

Block 1: O 000 2200 102,
2010 (1211 OI1F112),
(020, 0221 @E@1122).

o
(o)

Block 2: (1200, (01 01, 2
© 0, @2 1 1y, A
2220, (121, ©

2),
2),
2).

[\
(=]

[
[\

Block 3: 2100, (1 001, (0202,
a 110, @011 2212,
O 120 021 (1222).

The aliases of P(1 0 | 1) are also confounded. The aliases of P(1 0
1 1) are the pencils

P(14+MNNTHNT+2N)
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where A =1 or 2. Hence, the aliasess of P(1 0 1 DareP2 1 2
0)=P(1 2 1 O)andPO 2 0 2)=P(O 1 0 1).Hence,thealias
set

PO 01 H=Pt 2 1 O)=PO 1 0 1)

is confounded.
The blocks are obtained by taking treatmenets which satisfy the equations

X|+X2+X3=0
X1+x3+x4=a
X1+x+x4=8

where o and {3 are 0, 1 or 2. Taking all possible combinations of o and 8,
we shall get 9 blocks. For any particular combination of o and B, the above
equations can be reduced to

XI=xs+a+p
X2 = X4 + 2a
X3 = X4+ ZB.
We allow x4 to take the values 0, 1, 2 and determine x;, X, and x3 by the

above equations. Taking (a, B) = (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2),
(2,0), (2, 1) and (2,2), we get 9 blocks as

Block 1 Block 2 Block 3
O 000 (1 0 2 0 2 010
a1 1 0n 21 01 O 1rz20n
2 2 2 2 © 21 2 12 0 2

Block 4 Block 5 Block 6
a2 00 2 2 2 0 © 21 0
2 010D O 000D aoz2nmn
o1 2 2 a11 2 21 0 2

Block 7 Block 8 Block 9
21 0 0 O 1 2 0 (1 11 0
o 21D (12 00D 2 220D
a o0 2 2 2 01 2 © 0 0 2

1 0 1)are

The generalized pencils of P(1 0 1
aliases are confounded. The generalized pencils of P(l

PO\ + A2, Ao, ML A+ A)

2 2 1)and PO

DandP(1 1 O

where (A, A\2) = (1,0), (1, 1), (1, 2), (0, 1). Hence the pencils P(1

D,P1 1 0 1) Pl 1 2 0) are confounded.
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The alias sets of these pencils are also confounded. Thus, the following alias
sets are confounded:

P00 1 D=P1 2 1 2)=P0O 1| 0 2
P01 0 H=P1 1 2 2)=P0O 0 1 2)
P02 2 H=P0 0 0 2)=PO 1 1 1)
PO 1 2 0)=P1 2 0 0)=P(1 0 2 0)
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cross-over, 28
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