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PREFACE
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authors. The solutions of these problems are given in Chapter 3. Finally an index is
provided for quick reference.

Grateful appreciation for financial support for Dr. Kabe's research at St. Mary's
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left in this book and of course they are our sole responsibility. Finally, we would like
to convey our gratitude to the Springer editor John Kimmel, for his counsel on matters
of design, form, and style.
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CHAPTER 1

THEORETICAL RESULTS

This chapter is devoted to an exposition of the basic results which are used throughout
the book . The material from matrix theory , estimation, testing of hypothesis and
design of experiments has been summarized. The proofs have been omitted since
these topics have been well studied elsewhere e.g . see John (1998), Anderson and
McLean (1974), Montgomery (2005 ), and Winer (1971), and other references given
in the bibliography.

1.1 LINEAR ESTIMATION AND TESTING OF HYPOTHESIS

I. Definition. A generalized inverse (g-inverse) of any n x m matrix A is an
m x n matrix A-which satisfies the relat ion AA- A = A.

2. Let A be any n x m matr ix of rank r, and A-be its any g-inverse. Let
H = A-A and T = AA- . Then

(i) Hand T are idempotent matrices
(ii) rank (H) = rank (T) = rank (A)
(iii) rank (I - H) = m - r and rank (I - T) = n - r.

3. Definition. If A is any n x m matrix, then its Moore-Penrose inverse will
be defined to be the m x n matr ix A+ which satisfies the following four
conditions:

(i) AA+A = A
(ii) A+AA+=A+
(iii) (AA+)' = AA +
(iv) (A+A )' = A+A

4. Let A be any n x n symmetric matrix of rank r (xn). Suppose AI, A2, . . . , Ar

are the non-zero characteristic roots of A and ~I , ~2, .. . , ~ are the corre­
sponding unit and mutually orthogonal characteristic vectors. Then

A=PAP' ,

A+ = PA -1p' ,

where P = [~I ' ~ 2 ' . ..• ~r] and A = diag (AI, A2, .. . • Ar).

5. Let A be any n x m matrix . Then

A+ = (A'A)+A' .
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6. TheMoore-Penrose inverse of al, + bEnn, for a :f:. 0 anda + nb = 0 isgiven
by (~)In + (~)Enn, where In is the n x n identity matrix and Enn is the
n x n matrixwith unit elements.

7. If the equations Ax = b are consistent, then a general solution of Ax = b
is given by x =A- h + (I - A- A)z, where A- is any g-inverse of A and z
any arbitrary vector.

8. Considerthe linear model

y = AO + e, f:(e) = 0, f:(ee') = (}'21n

where y is an n x I vector, A is an n x m matrix of known numbers, 9 =
(01, • •• , Om)' is a m x I vectorof unknown parameters, e is an n x 1 vector
of randomerrors, and rank (A) = rank(A'A) = m. Then the BLUE of 9 is
a= (A'A)-I A'y and var(fh = (}'2(A'A)-I. Further, the BLUEof h'9 is h'O
and var(h'O) = (}'2h(A'A)-lh.

9. Considerthe linear model

y = A9 + e, f:(e) = 0, f:(ee') = (}'2In,

wherey is an n x 1 vector, A is an n x m matrixof known numbers, 9 is an
m x 1 vector of unknown parameters, and e is an n x 1 vector of random
errors. Further it is assumed that A'A is singular.

(i) A necessary and sufficient condition that h'9 is estimable is that

rank(A') = rank(A', h),

or rank(A'A) = rank(A'A, h).

(ii) Ifb'9 isestimable, thenitsBLUEisgivenby b'O, wherea= GA'y
is any solution of A'y = A'A9, and G is any g-inverse of A'A.
Further, var(h'O) = (}'2b'Gb.

(iii) Let h'9 and d'9 be two estimable parametric functions. Let a=
GA'y be any solution of A'y = A'A9, whereG is any g-inverse of
A'A. Then,

cov(b'O, d'O) = (}'2b'Gd.

(iv) A'y = A'AO are called normalequations.
(v) f:(A'y) = A'A9.
(vi) var(A'y) = (}'2A'A.
(vii) The sumofsquares due to regression when01, ~, • • • , Om are fitted

is givenby

SSR(9) = a'A'y, with r d.f.

whereais any solution of the normal equations, A'y = A'AO and
r = rank (A'A) = numberof independent normal equations.

(viii) The errorsum ofsquares is given by
, AI I

SSE = YY- 9 A Ywith (n - r) d.f.
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(ix) The unbiased estimator of a 2 is given by

A2 SSE
a =-­

n-r

(x)
(xi)

(xii)

(xiii)

(xiv)

(xv)

(xvi)

'E(SSR{O» = 'E( OIA'y) = ra 2 + O'A'AO.
ois distributed as N{GA'AO , a 2GA'AG'), where 0 = GA'y is any
solution of A'y = A'AO, and G is any g-inverse of A'A.
oand SSE are independent.
SSE . . 2
- 2 IS distributed as X (n - r).
a

SSR{O ) . . . .
--2- IS distributed independently of SSE and has a non-central

a

(
OIAIAO)

chi-square distribution X '2 r, 2a
2

' where r = rank (A'A).

SSR{O)/ r ~ I . . .
follows a non-central F distribution with rand

SSE/{n - r)
O'A'AO

(n - r) d.f. and non-centrality parameter 2a 2 .

For testing b'O = bo, where b'O is an estimable function, the t
statistic is

(b' O- bo)/ ) var{b'O)/a2

t = --";"'S:;;;:;SE~/;:;:{n=-====7r)--

with (n - r) d.f, or equivalently, the F statistic is

(b' O- bof /v ar{b' O)/a 2

F = -----'----'---
SSE/ {n - r)

with I and (n - r) d.f.
(xvii) The I (){) ( I - ex)% confidence limits for b'8 are given by

IA var{b' O) SSE
b 0 ± ta /2{n - r) 2' --

a (n - r)

where ta /2 (n - r) is the valueoft distribution with (n - r) d.f. such
that the probability of a t value exceeding it is ~.

(xviii) To test 0 =0, the appropriate F statistic is

F = SSR{O)/ r
SSE/{n - r)

with r and (n - r) d.f.
(xix) To test 02 = 0, where 0' = (Oil' 0; ), the appropriate F statistic is

given by

F = _[S_SR_{_O_) -_SS_R_{O_I_»)/_{r_-_s)
SSE/{n - r)
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with (r - s) and (n - r) d.f., where r = rank (A'A) and s = rank
(A; At>, A = (AI, A2) , and AI consists of columns corresponding
to 0 1•

10. Consider the linear model

y = AO +e,

where, y is an n x I vector of observations, A is an n x m matrix of known
numbers, 0 is an m x I vector of unknown constants , e is an n x I vector
of random errors distributed as N (0, V), with V a positive definite matrix .

(i) A necessary and sufficient condition for the estimability of b'O is
that rank (A'V- I A) = rank (A'V- I A, b).

(ii) The BLUE of an estimable parametric function b'O is given
by b'O, where 0 is any solution of the normal equations
A'V-Iy = A'V - IAO.

(iii) var(b'O) = b'Gb, where 0= GA'V-1y, G being any g-inverse of
A'V -IA.

(iv) Suppose (A'A) is non-singular. Then

0= (A'V-'Ar'A'V-ly

var(O) = (A'V- IA)-I,

and e is estimable.
(v) A'V-'y = A'V- I AO are called normal equations.
(vi) 'Ef..N V- ly) = A'V-IAO.
(vii) var(A'V-ly) = A'V-IA.
(viii) SSR(O) = O'A'V-Iy, with r dJ.

SSE = y'V-ly - O'A'V-Iy, with (n - r) d.f. where r =
rank (A'A).

(ix) 'E(SSE) = (n - r).
(x) 'E(SSR(O» = r+ O'A'V-IAO.
(xi) 0 is distributed as N(GA'V- I AO, GA'V- IAG'), where 0=

GA'V-ly, G being any g-inverse of A'V- IA.
(xii) SSE is distributed as X2 (n - r).
(xiii) 0and SSE are independent.
(xiv) SSR(O) is distributed independently of SSE and has non-central

chi-square distribution X'2(r, 0'A',;-I AO).

(xv) To test b'O = bo, the t statistic is given by

(b'O - bo)/J(varb'O)
t = --..;r;;:S;:;;;:SE;;;:/:;;:(n=-===;:r)""--

with (n - r) d.f.
(xvi) To test O2 = 0, where 0' = (0 1' , O2'), the F statistic is given by

[O'A'V-Iy - OI'A, 'V-ly]/(r - s)
F =------------

SSE/(n - r)

where A = (AI , A2), r = rank (A'A), s = rank (A )'At>, and AI
consists of columns corresponding to 0 I.
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(xvii) To test 9 = 0, we use F statistic, where

9'A'y-' Y/r
F - ------:----=...:---

- [y'y-I y - 9'NY-' y] / (n - r)

with rand (n - r) d.f.

1.2 GENERAL PROPERTIES OF BLOCK DESIGNS

5

II. Notations

n = number of plots in a block design
b = number of blocks
v = number of treatments
nij = number of times the i-th treatment occurs in the j-th block,

i = 1,2, , v,j = 1,2, ... , b
k' = (kj , kz, , kb) = the vector of block sizes
r' = (r. , rz , rv) = the vector of numbers of replications of treatments
K = diag (k. , kz, . . . . kb)
R = diagtr. , rz , . . .• rv )

N = (nij) = a v x b matrix, called the incidence matrix of the design
Epq = a p x q matrix with all elements unity
It = an identity matrix of order t
Ajj' = number of times a pair of treatments i' and i' occur together in a block,

i, i' = I, 2, , V

Aji = rj, i = I, 2, v
ljj' = number of common treatments between the j-th and j'-th block,

j , j' = 1,2, , b
ljj=kj ,j= 1,2 . b
B' = (B I. Bz•. . . •Bb) = the vector of block totals
T' = (T1. Tz, . . . •Tv) = the vector of treatment totals
G = total yield of all plots
B'K-1B - (G zIn) = unadjusted block sum of squares
T'R-1T - (GZjn) = unadjusted treatment sum of squares
C = R - NK- 1N' = the C-matrix of the design
0= K- N'R-IN
Q = T - NK- 1B = the vector of adjusted treatment totals
P = B - N'R-I T = the vector of adjusted block totals
lSI = determinant of a square matrix S and also the cardinality of a set S.

12. Relations
b v

L nij = ri, L njj = kj, E1bk = E1 vr = n
j=1 j=1
NEbl = r, E1 vN = k' , ElvNEbl = n
KEbl = k, REvl = r
KEbbK = kk' , REvvR = rr'
k'K-1 = E1b, k'K-lk = n
r'R- 1 = Elv, r'R-lr = n
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ElbB = ElvI = G
ElvQ = 0, E1bP = 0
E1vC = 0, E1bD = 0

13. Definitions

(i) Complete blockdesign: A block design will be called a complete
block design if kj = v for all j = I, 2, .. . , b.

(ii) Incomplete blockdesign: A block design will becalled an incom­
plete block design if kj < v for j = I, 2, . . . , b.

(iii) Regular design: A block design will be called proper or regular if
kj = k for all j = 1, 2, ... , b.

(iv) Equi-replicate design:A block design will be called equi-replicate
if ri = rfor all i = 1,2, . . . , v.

(v) Binary design: A block design will be called binary if nij = 0 or
nij = 1 for all i = I, 2, . . . , v and j = 1, 2, . .. , b.

14. For binary designs,

b

Lnijni'j=Aii" i,i'= 1,2, . . . ,v
j=1

v

L nijnij' = £jj"j,j' = 1,2, ... , b
i=1

NN' = (Aii'), N'N = (ijj').

15. For any block design,

v + rank (D) = b + rank(C)

16. Definitions

(i) Treatment contrast: A linear function tt = l)t] + 12t2 + ...+
lvtv is said to bea treatment contrast ifE1v£ = O. It will be said to
be an elementary treatment contrast if l contains only two non-zero
elements +1and -1 .

(ii) Normalized treatment contrast:A treatmentcontrast tt,E1v£ = 0,
where r £ = 1, will be called a normalized treatment contrast.

(iii) Connected design: A design is said to be connected if every el­
ementary treatment contrast is estimable. Otherwise it is called a
disconnected design.

Another definition: A design will be called connected if for any
two given treatments 9 and <1>, it is possible to construct a chain of
treatments 9 = 90, 91, . . . , 9n = <I> such that every consecutivepair
of treatments in the chain occurs together in a block.

(iv) Pairwise balanceddesign:A design is said to bea pairwisebalanced
design of index A if every pair of treatments occurs together in
exactly Ablocks.
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(v) Variance balanced or simply balanced design: A design will be
said to be balanced if the BLUE of every normalized estimable
treatment contrast has the same variance.

(vi) A connected balanced design: A connected design is balanced if
the BLUE of everyelementarycontrast has the same variance.

(vii) Orthogonal design: A designis saidtobeorthogonal if the BLUEof
every estimable treatmentcontrast is uncorrelated with the BLUE
of everyestimableblock contrast.

(viii) Efficiencey of a design: Let V denote the average variance of the
intrablock BLUEs of estimable elementary treatment contrasts in
a givendesign and VR denote the corresponding quantity in a ran­
domized block design with the same number of treatments and
experimental blocks,V andVR beingcomputedon the assumption
that the intrablock error variance (12 per plot remains the same in
both designs. Then the efficiency E of the given design is defined
as

v

wheref = L r;/v = average numberof replicationsof treatments
I

in the givendesign.

17. Results about Connectedness, Balancedness and Orthogonality

(i) A necessary and sufficient condition for.e't to be estimable is that

rank(C) = rank(C, t).

(ii) A necessary conditon for.e't to be estimable is that

E1vi = O.

(iii) A necessary and sufficient condition for a design to be connected
is that

rank (C) = v-I.

(iv) In a block design, the number of estimable linearly independent
treatment contrasts is equal to the rank of the matrixC.

(v) The average variance of the BLUEs of elementary treatmentcon­
trasts in a connecteddesign is

2(12 v-I 2(12

(v - I) 8(1/6;) = H'

where61,°2, ••• , 6v- 1 are the (v - I) non-zerocharacteristic roots
of the matrixC and H is their harmonic mean.

(vi) A necessary and sufficient condition for a connected design to be
balanced is that all the (v - I) non-zerocharacteristic roots of the
matrix C are equal.
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(vii)
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A necessary and sufficient condition for a design to be a connected
balanceddesign is that its C matrix is given by

C = all, - (I/v)Ey y ] ,

for some positiveconstant a.
(viii) The C matrix of a connected balanceddesign is given by

C = 6[Iy - (I/v)Ey y ] ,

where 6 is the non-zerocharacteristic root of the matrix C.
(ix) A necessary and sufficient condition for a disconnected design to

be balanced is that the non-zero characteristic roots of the matrix
C are all equal.

(x) For a binary design, tr C = n - b.
(xi) The efficiency E of any binary connected design satisfies the

inequality

v(n - b)
E < .

- n(v - 1)

(xii) The efficiency E of a binaryconnected balanceddesign is givenby

v(n - b)
E= .

n(v - I)

(xiii) For a balancedequi-replicated incomplete block design, b ~ v.
(xiv) A necessary and sufficient condition for a design to beorthogonal

is that CR-1N = 0 or equivalently DK-'N' = O.
(xv) A necessary and sufficient condition for a connecteddesign to be

orthogonal is that nij = rikj/n, i = 1,2, . . . , v, j = 1,2, ... , b.

18. Results about Intrablock Analysis

(i) Assumptions: Let Yxij be the yield of the x-th plot among the
nij plots of the j-th block to which i-th treatment is applied,
x = 0, I, . . . , nij , i = 1,2, .. . , v and j = 1,2, ... , b. Weassume,

Yxij = j.t + aj + tj+ exij , x =0, 1, , nij

i = I, 2, , v, j = I, 2, ... , b

where j.t, aj and tj represent respectively the general mean effect,
the effect of the j-th block and the effect of the i-th treatmentand
e's are independent random errors normally distributed with mean
oand variance 0'2. The effects j.t, a's and t's are assumed to be
fixed effects.

(ii) Normal Equations:
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(iii) Reduced Normal Equations:

9

Q=ci p= Dd .

(iv) A set ofsolutions:

,1 = Gin .
a = K-'B - (G/n)EbJ - K-IN't.

Q=ci.

(v) Error Sum of Squares:

SSE = (y'y - G2In) - (B'K- 1B - G2In) - ro.
with dJ . (n - b - v + g), where rank(C) = v- g.

(vi) Adjusted Treatment Sum ofSquares:

SST(adj ) = ro. with dJ.(v - g).

(vii) Adjusted Block Sum of Squares:

SSB(adj .) = (y'y - C2In) - (TR-1T - G2In) - SSE

with d.f, (b - g) .
(viii) F-tests:

For testing the significance of treatment differences, the F stat is­
tic is given by

F = SST(adj ·)/ (v - g)

SSE/(n - b - v + g)

with d.f, (v - g) and (n - b - v + g). For testing significance of
block differences. the F statistic is given by

F = SSB(adj ·)/(b - g)

SSE/(n - b - v + g)

with d.f. (b - g) and (n - b - v + g).
(ix) Variance and Covariances:

[G] [nIl k' r'] [11-]'E B = k K N' €X

T r N R t

[G] [nIl k' r']
var ~ = (T2 ~ ~~'

var (Q) = (T2C

var (P) = (T20
COy (Q , P) = -(T2CR- 1N = - (T2NK- 10 .
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(x)

(xi)

CHAPTER I

Method For Solving Q =Ci :
Suppose rank C = v-g. Take a g x v matrix H such that

Ht =°and rank [C, H] = v , and rank (H) =g. Then, there exists
a v x g matrix M such that CM = 0, and rank (M) = g. Then

(a) (C + H'H)-I is a g-inverse of C, and
(b) (C + H'H) -I - M(M'H'HM)-I M' is a g-inverse of C

TheBLUEofan Estimable Treatment Contrast:
The BLUE of an estimable treatment contrast tt is given by

ti = r«: + H'H)-I Q

and

var(ti) = (T2t[(C + H'H)-I - M(M'H'HM)-IM']£

(xii) Expected Values of Sum of Squares In Intrablock Analysis of
Variance:

(a) Expected Value of Total SS:

'E[y'y - 0 2In] = (n - 1)(T2 + a'Ka + t'Rt + 2t'Na

- n-I(k'a + r't)2

(b) Expected Value of Unadjusted Block SS:

'E[B'K-1B - 0 2In] = (b - 1)(T2 + a'Ka + 2t'Na

+t'NK-'N't - n-I(k'a + r't)2 .

(c) Expected Value of Adjusted Block SS:

'E[a'p] = (b - g)(T2 + o 'De ,

where g = v - rank (C).
(d) Expected Value of Unadjusted Treatment SS:

'E[t'Q] = (v - g)(T2 + t'Ca,

(e) Expected Value of Intrablock Error SS:

'E[Intrablock Error SS] = (n - b - v + g)(T2.

19. Results In the Analysis with Recovery of Interblock Information

(i) Interblock Treatment Estimates: We assume that blocks are of the
same size k, and the design is connected

v

'E(Bj) = kp, + L nijtj

i=1

var(Bj ) = k((T; + k(T;),j = 1,2, . . . , b

Coy (B], Bj) =0, j #- j' = 1,2, ... , b.
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The nonnal equationsare given by

[ kG ] = [bk
2

kr'] [~]
NB kr NN' t'

II

The reduced normal equations for t are QI = Cit, where
QI = (l/k)NB - (G/bk)r and CI = (l/k)NN' - (l/bk)rr' .

The solutions of t obtained by solving the above normal equa­
tions are called interblock treatment estimates.

Let W2 ' =a; + ka~ , W2 = l/w2', WI ' = a;, WI = I/w; . Then
from the above normal equations, we get

~[~~] = [~~2 ~~,] [r]
[

kG ] ' [bk
2

kr']
var NB = w2 kr NN"

If rt is any estimable treatment contrast, then t t is called its
interblock estimator, where t is any solution of the above normal
equations.

(ii) With Recovery of Interblock Information :
Here, the normal equations are

The reduced normal equations for tare

*WIQ + W2QI = (w.C + W2CI) t.

The solutionsoft obtained by solving the above normalequations
are known as thecombinedintraand interblocktreatment estimates.
From the above normalequations, we obtain

~ [ WIQ +~~~/k)NB] = [:~~k WIC + 7~:'/k)NN'] [~ ]

var[wIQ+~~~/k)NB] = [:~~k wlc+7~:'/k)NN']'
(iii) The F test:

The F statistic for testing t = 0 is given by

*
t'(WIQ + W2k-INB)/(v - I)

F = -...:......:.=----=---~-~
wlEe

with(v - I) and(bk - b - v + I) d.f. whereE, = meanintrablock
error SS. However to apply the above F test, we must know WI
and W2 . Since WI and W2 are unknown, we use their estimates to
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calculate the above F statistic . The estimates of WI and Wz are
obtained as

WI = I/Ee, wz = (bk - v)/[k(b - I)Eb - (v - k)Eel

where Eb = mean adjusted intrablock SS.For a connected resolv­
able design, the weights WI and Wz are estimated by

WI = I/Ee, wz = (r - 1)/(rEb - Ee),

where rEb = mean adjusted intrablock with replications block SS.
(iv) Variance and Covariances

var(Q) = aezC = C/WI

var(Qd = C1/wz

cov(G, KI) = 0

var(wIQ + wzQd = w.C + wzC1

cov(Q, Qd = 0

Coy (G, WI Q +wzQd = O.

(v) Expected Values ofSums ofSquaresin the Analysiswith Recovery
ofInterblock Information:

'E(Total SS) = (bk - I)a; + k(b - l)a; + t'Rt - (bk)-I(r't)z

'E(unadj. Treatment SS) = (v - Ip; + (v - k)a;

+ t'Rt - (bk)-I(r't)z

'E(unadj . BlockSS) = (b - l)(a; + ka;) - t'Ct

+t'Rt - (bk)-I(r't)z

'E(adj. Treatment SS) = (v - Ip; + t'Ct

'E(lntrablock Error SS) = a;(bk - b - v + I)

'E(adj. Block SS) = (b - Ip; + (bk - v)a~.

1.3 STANDARD DESIGNS

20. For a RHD with b Blocks and v Treatments

(i) N = Evb, C = bll, - ~Evvl

(ii) D =v[lb - ~Ebbl

(iii) Q = I - ~Evi
(iv) A solution of Q = ct is taken as i = Q/b
(v) rank(C) = v - I. The characteristic roots of C are 0 with multi­

plicity 1, and b with multiplicity (v - I).
(vi) The BLUE of tj - tj is given by (Qj - Qi>/b = (T, - Tj)/b with

variance 2a z/b .

(vii) The design is connected, balanced and orthogonal.

21. HIBD
An incomplete block design with v treatments in b blocks of k plots each is
called a BIBD if (i) each treatment occurs at most once in a block, (ii) each
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treatmentoccurs in exactly r blocks and (iii) every pair of treatmentsoccurs
in exactly Ablocks.For a BIBD(c, b, r, k, A), we have the followingresults:

(i)

(ii)
(iii)
(iv)

(v)

(vi)

(vii)

(viii)

(ix)

(x)

(xi)

(xii)

(xiii)

(xiv)

(xv)

NN' = (r - A)lv + AEvv

INN'I = rk(r - A)V- I
rank(N) = rank(NN') = rank (N'N) = v
bk = vr, r(k - I) = Mv - I), b ::: v (Fisher's inequality)
NN' -I - _1_1 _ A E

( ) - (r - A) v (r _ A)rk vv
AV A

C = Tlv - kEvv, rank(C) = v - I

The characteristic roots of Care 0 with multiplicity I and Av/k
with multiplicity (v - I).
A solution of Q = ct is given by t = kQ/Av. The adj. treatment
SS = kQ'Q/Av.

I I
Q = T - kNB, Qi = T, - kB(i), whereBj, =sum of blocktotals

in which the i-th treatmentoccurs.
The BLUE of (ti - tj) is k(Qj - Qj)/Av , with variance2a 2k/ Av.

The efficiency factor E is given by E = Av.
kr

For a SBIBD (b = v), N'N = NN'. Hence, there are Atreatments
common between any two blocks of a SBIBD.
For a SBIBD with even number of treatments (r - A) is a perfect
square.
A BIBD is called resolvable if the blocks can be arranged in r sets
such that every treatment occurs exactly once in each sel. For a
resolvableBIBD, b ::: v + r - I . If b = v + r - 1,then the resolv­
able BIBD is called affine. In an affine resolvable BIBD, k2/v is
an integer, and two blocks in different replications contain k2/v

treatments in common.
The intrablockanalysis of variance table is as follows:

SOURCE SS dJ. SS SOURCE

1 G2
Blocks (unadj.) -B'B- - b-I t Blocks (adj.)

k bk

~Q'Q
1 G2

Treatments (adj.) v-I -T'T- - Treatments
AV r bk

(unadj.)
Error (intrablock) t bk - b - v + 1 ~ Error

(intrablock)

G2
Total y'y-- bk-I ~ Total

bk

Note: t means obtained bysubtraction: ..... means carried forward .

(xvi) The expected values of sums of squares of the intrablock analysis
of variance table is given below:
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SOURCE SS T.(SS) T.(SS) SS SOURCE

I G2
(b - 1)<1~ (b - 1)<1~+Blocks -B'B-- (b - I)Eb Blocks (adj.)

(unadj.) k bk +ka'a a 'Da
+2t'Na
+K-1t'NN't
-(bk)-I
(k + rI:t)2

Treatments~Q'Q (v - l)<12 (v - 1)<12 I o-
(adj)

-T'T-- Treatments
AV +t'Ct +rt't r bk (adj.)

+2t'Na
+r-1a'N'Na
- (bk)-I
(kI:a + rI:t)2

Error (bk - b - V+(bk - b - v+ (bk - b - v+ (bk - b - v+ Error
l)Ee 1)<12 1)<12 I)Ee (interblock)

Note: Eb andE., are respectively the meanintrablockadjustedblockSSandthe mean
intrablock error SS.

(xvii) Analysiswith Recovery ofInterblock Information:

(a) The equations for combined intra and interblocktreatmentesti­
mates are given by

*WIQ + W2QI = (wj C + W2CI)t

I I G AV
where Q = T - kNB, QI = k NB - ~Ev" C = T[Iv-
I r-A I 2 2
-Evvl. C1 = --[Iv - -Evvl, WI = 1/<1e • and W2 = l/<1b •
v vk v

The combined intra and interblock treatment estimates are
given by

* k[WIQ + W2QIl
t=------

WIAV + (r - A)W2

kll, - lEvvl
and its varianceby var (t") = v

[WIAV + (r - A)W2l
Thecombinedintraand interblockBLUEof a treatmentcon-

trast l't is given by

n: = l'[kwIT - (WI - w2)NBl
WIAV + (r - A)W2

kf'l
and its variance is var (f't*) =-----­

WIAV + (r - A)W2
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22. PBIBD

(i)

(b) The approximate F statistic for testing the significance of treat­
ment differences is given by

I 2 G2

F= rr(Ti+£Iwi) -biZ/(v-l)

E~

with (v - I) and (bk - b - v + 1)dJ. and where

8 = (b - I)(Eb - Ee)

v(k - I)(b - I)Eb + (b - v)(v - k)Eb

w, = (v - k)Ti - (v - I)B(il + (k - I)G, i = 1,2 , . . . , v

E~ = [I + (v - k)£I]Ee

E, = mean intrablockerror SS,
E, = mean intrablockadjusted block SS,
T, = total yield for the i-th treatment,
B(il = Sum of blocks in which the i-th treatmentoccurs.
If Eb < Ee, then 8 is taken to be zero.
The standarderror ofli - tj is given by S.E. eti - tj) = 2E~/r.

(c) If the design is resolvable BIBD, then the approximateF statis­
tic for testing the significance of treatmentdifferences is given
by

with (v - I) and (bk - b - v + I) dJ. and where

8 = r(_E..:..b_-_Ee~) _
vr(k - I)Eb + k(b - v - k + I)Ee

E~ = [I + (v - kW]Ee

E, = mean intrablockerror SS
Eb = mean intrablockadjusted block SS within replications.

Definition. Given v treatments 1,2 , . .. , v; a relation satisfy­
ing the following conditions is said to be an m-c1ass association
scheme:

(a) Any two treatmentsare either lst, 2nd, . . . , or m-thassociates,
the relation of association being symmetrical, i.e., if the treat­
menta is the i-thassociation of the treatment13, then the treat­
ment 13 is the i-th associateof the treatmenta .

(b) Each treatment a has n, i-th associates, the number nj being
independent of the treatmenta , i = I, 2, ... , m.
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(c) If the treatments 0: and (3 are i-th associates, then the number
of treatments which are both the j-th associates of 0: and the
k-th associates of (3 is Pjki and is independent of the pair of the
i-th associates 0: and (3, i, j , k = 1,2, , m.

The numbers v, n., Pjki , i.j, k = 1,2, , m are called the pa-
rameters of the m-c1ass association scheme. The parameters Pjki

are written in the form of m matrices Pi, i = I , 2, . . . , m, which
has Pjki as the element in the j-th row and the k-th column .

Definition. An arrangement of v treatments in b blocks of
k « v) plots each will be called a partially balanced incomplete
blockdesign (PBIBD) with m-associate classes if

(a) the v treatments satisfy an m-c1ass association scheme;
(b) each block contains k different treatments,
(c) each treatment occurs in exactly r blocks;
(d) if two treatments 0: and (3 are i-th associates, then they occur

together in exactly Ai blocks , the number Ai being independent
of the pair of the i-th associates 0: and (3, i = I, 2, . .. , m.

The parameters v,ni ,pjki,i,j,k= 1.2, . . . .rn are called the
parameters of the first kind, while the parameters b, r, k, Ai,
i = I, 2, ' . . , m are called the parameters ofthe secondkind.

Definition. The m v x v matrices Bi = (b~), i = 1,2, .. . , m,
where

b~1J = (0:, (3) -th element of B,

= 1, if 0: and 13 are i-th associates,

= 0, otherwise

are called association matrices. Further, we define

Bo = Iy , no = 1, Ao = r

o if iPij = nr, 1 J = 1

= 0, ifj # i

pok' = I , if i = k

= 0, ifi # k.

(i) Properties:
m

(a) L a, =s.,
;=0

m

BjBk = L PjkiBi ,j, k = 0, 1,2, . ,., m
i=O

m

L c.B, = Oyy, iff Ci = 0, i = 0,1, 2, . . . , m, . . . , m
i=O
where Ci are scalar numbers, and BjBk = BkBj,j, k =0,
1,2, . . . .rn .
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(b) If N is the incidence matrix of a PBIBO, then

m

NN'= LAiBi.
i=O

17

s = 1,2 , .. . , v.

(c) If v, b. r, k, n., Aj. i = 0, 1,2. . . . , m are the parameters of a
PBIBO, then

m m

vr = bk, L ni = v, L njAj = rk.
i= O i=O

(d) The parameters Pjk
j,

i, i. k = O. 1,2, . .. m of a PBIBO satisfy
the following relations:

m

Pjk i = pk/, L Pjk i = nj, and niPjk i = njPik
j

= nkp/ .
k=O

(e) Let Si(to) denote the sum of treatments which are i-th
associates of the treatment to, i = O. 1,2 •.. . ,m, that is,
Si(to) = L~= I boutu. Further, let SjSj(to) denotes the sum of
treatments which are j-th associates of the i-th associates of to'
that is, SjSi(to) = L~=I boixSi(tx)' Then, we have

m

SjSj(to) = nita + L PiiuSu(to), ifj = 1
u=1

m

=L pji"Su(to). ifj:/; i.
u= )

(iii) /ntrablockAnalysisofaPB/BD:LetA = (aju)beanm X mmatrix ,
whose (j, uj-th element aju is defined as

m

ajj = r(k - I) + njAj - L AiPjij

i=1
m

aju = njAj - L AiPji".j :/; u.j , u = 1,2, . . . , m
jee l

Let A- = (a'") be a g-inverse of A. Further let Sj(Qs) denote the
sum of Q's over treatments which are j-th qssociates of ts. Then.
the solutions of the normal equations Q = Ct are given by

~ ~ ~k ~ I) [ Q, + tot x,a;;s;(0,l
The adjusted treatment sum of squares is given by
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with (v - I) d.f Also,

var (ts) = <T2k/r(k - I), s = I, 2, . . . , v.

if t, and ts' are i-th associates, s =I s' = I, 2, .. . , v.
Further, if t, and ts' are i-th associates, then

(iv) Intrablock Analysis ofa 2-Associate Class PBIBD:
The intrablocktreatmentestimates are given by

ts = k[DQs - BSj(Qs)]f6-, S = 1,2, . . . , v

where 6- = AD - BC and

A = r(k - I) + A2, B = A2 - AI,

C = (A2 - AI)PI22, D = A + B(PII I _ PI1 2).

The adjusted treatmentsum of squares is given by

Further,

var(ts) = <T2kD/6-, s = 1,2, . . . , v

cov(ts, ts') = -<T2kB/ 6-, if ts and ts' are firstassociates

= 0, it ts and ts' are second associates

~ ~ 2k<T2(B + D) . .
var(t, - ts') = , If ts and ts' are firstassociates

6-
2kD<T2 .

= --, if ts and ts' are second associates.
6-

(v) Analysis ofPBIBD with Recovery ofInterblock Information:
Let

I I
Ps = WITs - k(w 1 - w2)B(s) - kW2G, s = 1,2, ... , v

where T, = total yield for the s-th treatment, B, = Sum of
blocks in which the s-th treatment occurs, and G = Grand
total.
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Let H = (hju) be an m x m matrix with elements hjudefined by

m

hjj = rw + (WI - wz)njj - (WI - wz) L ~iPjij
i=1

u

hju = (WI - wz)njj - (WI - wz)L ~iPl,j ;/; u
i=1

j ,u=I,2, . .. ,m. .

Let H- = (niU
) be a generalized inverse of H. Then the combined

intra and interblock treatment estimates are given by

k m m ..
t; = -[Ps + (WI - wz) L L ~ih'JSiCPs)],

wr j=1 i=)

S = 1,2, . . . , v

where w = (k - l jw, + Wz .
The adjusted treatment sum of squares is given by ~t:Ps, with

(v - I) d.f., assuming that thedesign is a connected one. For testing
the significance of treatment differences, the F statistic is given by

F = ~t:Ps/(v - I)
wlEe

with(v-I)and(bk-b-b+ l)dJ.
Since WI and Wz are unknown. they are estimated by

WI = I/Ee •

Wz = (bk - v)/[k(b - I)Eb - (v - k)Eel.

where E, = mean intrablock error SS and Eb = mean intrablock
adjusted block SS. Then, the approximate F statistic is given by

v

F = L t;Ps/(v - I) .
s=1

Further.

var(t;) = k/wr
m

ktw, - wz) L ~ihij

cov(t; . t;,) = i=l . if ts and ts' are j-th associates.
wr

Hence.

if ts and ts' are j-th associates.
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(vi)

CHAPTER 1

Analysisofa 2-associate Class PBIBD withRecovery ofInterblock
Information:

The combined intra and inter block treatment estimates are given
by

where ~ = AD - BC, and A = W+ ~dwi - wz)

B = (WI - wZ)(Az - AI), C = Bpl2z,

D=A+B(P1ll-pil)'

Then the approximate F statistic is given by

wherein the expressions are calculated by replacing WI and Wz by
their estimates WI and wz.Also,

var(t;) = kD/~

* * kB . first associcov(ts ' ts' ) = - ~' It ts and ts' are rst associates

= 0, if ts and ts' are second associates.

* 2k(B + D) .
var(t; - ts' ) ) = , If t, and ts' are first associates

~

2kD 'f= - , I ts and ts' are second associates.
/:).

(vii) Further Results in PBIBD: The characteristic roots of NN' of a
2-associate class PBIBD are given by

with multiplicity

where r = Pl2z - p,zI ,13 = P12 1 + PI/ and ~ = r2 + 213 + 1.
The 2-associate class PBIBD designs are classified into five

types: (1) Group divisible, (2) Simple, (3) Triangular, (4) Latin
square type (Li) and, (5) Cyclic.

(1) Group divisible design: A 2-associate class PBIBD is called group
divisible if there are v = mn treatments and the treatments can be divided
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into m groups of n treatments each, such that any two treatments of the
same group are first associates and two treatments from differenct groups
are second associates.

The parameters of the GD design are v, b, r, k, nI = n - I, nz =
n(m - I), ~q , hZ and

Pz = [ 0
n-I

n - I ]
n(m - 2) .

The characteristic roots of NN' of a GD design are

00 = rk , with multiplicity I ,

91 = r - h I, with multiplicity men - I)

8z = rk - Vhz, with multiplicity (m - I).

A GD desgin is called singular if r - hi = 0; it is called semi-regular if
r - hi > 0 and rk - Vhz = 0; and it is called regular if r - hi > 0 and
rk - Vhz > O.

(2) Simple: A PBIBdesign with two associateclasses is called simple if ei­
ther (a) hi =1= 0, hZ = 0, or (b) hi = 0, hZ =1= O. A simplePBIBDmaybelong
to group divisible, triangular, Latin square type or cyclic.

(3) Triangular: A PBIBdesignwith 2-associateclasses is called triangular
ifthere are v = n(n - I)/2 treatments and theassociation schemeis an array
of n rows and n columns with the following properties:

(a) the positions in the principal diagonal are left blank;
(b) the n(n - 1)/2positionsabove the principaldiagonal are filled by

the numbers 1,2, . .. , n(n - I)/2 corresponding treatments;
(c) the n(n - 1)/2positions below the principal diagonal are filled so

that the array is symmetrical about the principaldiagonal,
(d) the first associates of any treatment i are those that occur in the

same row (or in the same column) as i.

The parameters of a triangularPBIBDare

v = n(n - 1)/2, b, r, k, nl = 2(n - 2), nz = (n - 2)(n - 3)/2, hi, hZ, and

[
n - 2 n - 3] [4 2n - 8 ]

PI = n _ 3 (n - 3~n - 4) , Pz = 2n _ 8 (n - 4~n - 5) .

The characteristic roots of NN' of a triangulardesign are

00 = rk, with multiplicity I,

91 = r - 2hl + hZ, with multiplicity n(n - 3)/2 ,

8z = r + (n - 4)hl - (n - 3)hZ, with multiplicity (n - I).
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(4) Latin square type (Lr): A PBIB design with two associate classes is
called a Latin square type with i constraints (L) if there are v = S2 treat­
ments and the treatments are arranged in a s x s square and i - 2 mutually
orthogonal Latin squares are superimposed and two treatments are first as­
sociates if they occur in the same row or column or correspond to the same
letter in any Latin square.

The parameters of a L, design are

v = s2, b, r, k, n, = i(s - I) , n2 = (s - i + 1)(s - I), AI,A2, and

P _[(i-I)(i-2)+S-2 (S-i+I)(i-I)]
1- (s-i+I)(i-l) (s-i+l)(s-i)

P [i(i-I) i(s-i) ]
2 = i(s - i) (s - i)(s - i - 1) + s - 2 .

The characteristic roots of NN' of a L, design are

90 = rk, with multiplicity 1,

01 = r - iAI + A2(i - I), with multiplicity (s - 1)(s - i + I),

~ = r + Al (s - i) - A2(s - i + I), with multiplicity i(s - I).

(5) Cyclic design: A non-group divisible PBIB design with two associate
classes is called cyclic if the set of first associates of the i-th treatment is
(i + dI, i + d2, . . . , i + dn, ) mod v, where the d elements satisfy the follow­
ing conditions:

(a) the d elements are all different and 0 < dj < v for j = I, 2, .. . ,
nr.

(b) among the nl(nl - I) differences dj - dj' ,each of the d., d2, . . .,
dnl elements occurs Pill times and each of el, e2, . .. ,enl elements
occurs Pll2 times, where d. , d2, ..., dn, and eh e2, "" enl are all
distinct non-zero elements of module M of v elements 0, I, 2, . . . ,
v - I corresponding to the v treatments.

(c) the set D = (d, d2, .. . ,dnl ) is such that D = (-dl, -d2, .. . ,
-dnl ) ·

The cyclic association scheme has parameters v = 4t + I, nl = n2 = 2t,

[
t - I

PI =
t

(6) Rectangular Design: A rectangular design is a PBIBD with 3 associate
classes in which v =mn treatments are arranged in b blocks of k plots each
such that each treatment occurs in exactly r blocks and the v treatments are
arranged in a rectangle of m rows and n columns. The first associates of
any treatment are the other (n - I) treatments of the same row; its second
associates are the other (m - I) treatments of the same column and the
remaining treatments are its third associates.
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Thus, the parameters of a rectangular design arc v = mn, b, r , k, nl =
n - 1, n2 = m - I, n3 = (m - I)(n - I), >-1, >-2, >-3 and

PI = [n ~ 2 ~ m~ I ] ,
o m - 1 (m - 1)(n - 2)

P? = [~ m ~ 2 n ~ I ] ,
n - 1 ° (m - 2)(n - I)

P1 = [~ ~ ; ~ ; ] .
n - 2 m - 2 (n - 2)(m - 2)

The characteristic roots of NN' of a rectangular design are given by

Go = rk, with multiplicity I,

61 = r - >-1 + (m - 1)(>-2 - >-3) , with multiplicity (n - I)

~ = r - >-2 + (n - 1)(>- 1- >-3), with multiplicity (m - I)

6J = r - >-1 - >-2 + >-3 , with multiplicity (n - 1)(m - I).

23. Split-plot design
It consists of r randomized blocks and each block contains v main plots to
which v main treatmentsare assigned at random. Further, each main plot of
a block is split up into s sub-plots to which s sub-treatments are alloted at
random.Let Yijk denote theyieldof a sub-plotto whichthek-th sub-treatment
isassignedand thej-th maintreatmentisassignedand whichoccurs inthe i-th
block, i = 1,2, . .. , r; .i = I, 2, .. . , v, k = I, 2, . . . , s. The assumed model
is

Yijk = M- + <Xi + tj+ Pk + Sjk + eijk

with usual meanings for the different symbols, and

var(eijd = a 2
, cov(eijk, ei'j'k') = pa2

,

for i = i', j = j', k =1= k' and 0, otherwise.
The intra-blocksolutions of the normal equations are

f1 = y ... ,ai = Yi.. - Y..., i = 1,2, .. . r,

tj = Y.j. - Y .i = I, 2, , V

Pk = y-k - Y , k = 1,2, , S

~k = Y.jk - Y.j. - Y..k + Y. .. , .i = 1,2, . .. , v; k = 1,2 , ... , s

For testing the significance of block difference, the F statistic is
r

vs L(yi.. - y.j /(r - I)
i=1F = ~r---:-:u----------

S L L(Yij. - Y.j. + y..Y / (r - I)(v - I)
i=lj=1
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with (r - 1) and (r - I)(v - 1)d.f,
For testing the significanceof differences among main treatments, the F

statistic is given by

v

rs L (Y.j. - Y...f / (v - 1)
j=l

F = ---:r----:':v~------------

SL L (Yij. - Yi.. - Y.j. + y..Y /( r - I)(v - 1)
i=l j=1

with (v - 1) and (r - I)(v - 1) d.f.
For testing the significance of differences among the subtreatments, the

F statistic is given by

s
rv L (Y..k - Y..Y/(s - 1)

F = k=l
~~~(Y ijk - Y.jk - Yij. + Y.jY/v(r - 1)(s - 1)

with (s - 1)and v(r - 1) (s - 1) d.f
For testing the significance of the interaction between the main and sub­

treatments, the F statistic is given by

F = r~ ~ (Y.jk - Y.j. - Y..k+ Y...f / (v - 1)(s - 1)

~~~(Yijk - Y.jk - Yij. + Y.jY/v(r - I)(s - 1)

with (v - I)(s - 1) and v(r - I)(s - 1) d.f
The analysis of variance table of a split-plot design is as follows.

Analysis of Variance Tableof a Split-Plot Design

SOURCE SS d.f
r

Blocks VSL (yi.. - Y..Y r- 1
i=1
v

Main Treatments rs L (Y.j. - Y..Y v -I
j=l

Error (a) s L (Yij. - Yi.. - Y.j. + y...f (r - 1) (v - 1)
i

Sub-treatments rv L(Y..k - y,'y S- 1
k

Interaction between
r L L(Y .jk - Y.j. - Y..k+ Y..Y (v - 1) (s - 1)

main and subtreatments) j k
Error (b) L L L (Yijk - Y.jk - Yij. + Y.j,)2 v(r - l )(s - l )

i j k
Total ~~~Y~k - rvsy~ . rvs - 1

The different standard errors are given below.

(i) S·E.(Y..k - Y..k') = J2Eb/rv
(ii) S.E.(Y.j. - Y.j',) = J2Ea/rs
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(iii) S.E.(Y.jk - Y.jk') =J2Eb/r
(iv) S.E.(Y.jk - Y.j'k) = J"";2[n=E";-a-;'"+'(s----.1"')E......bl"/-rs
(v) S.E.(Y.jk - Y.j'k') = J2[Ea + (s - 1)Ebl/rs

25

where E, is the mean SS for Error (a) and Eb is the mean SS for
Error (b).

1.4 TWO-WAY DESIGNS

24. (i) Notations: Weconsider a two-way design in which uu' plots are arranged
in u rows and u' columns. Let there be v treatments, the i-th treatment
being replicated ri times, i = 1.2. . . .. v. Let the i-th treatment occur l ij
times in the j-th row and mik times in the k-th column, i = 1,2, . . . , v;j =
1.2, . . . . u; k = 1.2. .. . , u'. Let

L = (lij) = a v x u matrix of elements lij
M = (mid = a v x u' matrix of elements mik
Epq = a p x q matrix with all elements unity
Ip = an identity matrix of order p
r' = [rl . r2 •. .. rvl,
aj = effect of the j-th row,j = 1.2. . ... u
0(' = [oq, a 2• . . . • aul
13k = effect of the k-th column, k = 1,2 •. . .. u'
P' = [131 , 132 . ... . 13u'l
ti = effect of the i-th treatment, i = 1,2 . . . . •v.
t' = [tl. t2 . . . .. tvl
F = diag tr. , r2 •. . . , rv) - ~LL' - tMM' + u~,rr'
R' = [RI • Rz• . . . Rul = row vector of row totals
C' = [CI • Cz• . . . Cul = row vector of column totals
T' = [T 1. T2. . . . . Tvl = row vector of treatment totals
G = Grand total
Q = T - .!.LR - .!.MC + .Q.r .

u' u uu'

One can easily verify the following results:

LEul = MEu'l = r
LEuu' = MEu'u'
LEuu = MEu'u

u u'

L lij = L mik = ri
j=1 k=1

v v

Llij = u' , Lmik = u
i=1 i=1
E1vL = u'E lu, E1vM = uElu',
ElvQ = O. ElvF = Olv
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(ii) Analysis: The normal equationsare

0= uu' p.. + u'E1ua + E1u' P+ it
R ' AE ' A E Q. L,A= u IJ. ul + u a + uu'" + t
C = up..Eu'l + Eu'ua + up + M't
T = p..r+ La + MP -l-diag Irj , r2,' 0 0 ' rv)t.

The reduced normal equationsfor treatmenteffects are

Q=Ft.

A particularsolution of the normal equations is takenas

p.. = O/uu'
a = (R - ~EUI - L't)/u'

A G , AP= (C - -Eu'l - M t/u
A u

Q = Ft.

AdjustedtreatmentSS is given by ro with (v - g) d.f., where

(v - g) = rank(F).

The error SS is given by

, 0 2 I , 0 2 I, 0 2 A,
SSE = (yy - -)- (-RR- -)-(-CC- -) - tQ

uu' u' uu' u uu'

with (u - I) (u' - I) - (v - g) d.f.
For testingthesignificance of treatmentdifferences, theF statisticisgiven

by

F = t'Q/(v - g)
SSE/[(u - I)(u' - I) - (v - g)]

with (v - g) and (u - I) (u' - I) - (v - g) d.f,
The analysis of variance table is given below.

Analysisof Variance TableFor a Two-way Design

SOURCE SS d.f

I 0 2
Rows -R'R-- u - 1

u' uu'

1 0 2
Columns -C'C- - u' - 1

u uu'

Treatments (adjusted) ro v-g

Error by subtraction (u - I)(u' - I) - (v - g)

0 2
uu' - 1Total y'y - 1111'
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The expected values of sums of squares appearing in the above analysis
of variance table are given in the follow ing table.

Analysis of Variance Table For a Two-way Design

SOURCE SS E(SS)

Rows I I 0
2

? I I I,RR-- (U - I)a - + u (a'a - -a Euua
u UU' u

I I
+ 2(a 'Lt - - a'EuuL't) + -

u u'I
(tILL't - - tILEuuL't)

u
I 0 2

(u' - l)a2+ u(Il'Il - ~ Il'Eu'u' ll )Columns -C'C--
u UU' I u', I I

+2(1l Mt - -Il Eu'u,M t)+
1 ul
-(t'MM't - -tiME , Mit)I uu
U u

Treatments ro (v - g)a 2+ tiFt
(adjusted)

Error
I I , I I I [(u - I)(u' - I) - (v - g)](T2YY- - R r - - C C - t Q+

u U
0 2juu'

25. LatinSquare Design:
A Latin square design (LSD) is an arrangement of v2 plots in v rows and
v columns and v treatments are assigned to them such that each treatment
occurs once in each rowand once in each column. For a LSD,

L = M = Evv • F = vl, - Ev v

Q = T - (O/v)Ev l

A particular solution for t is

The analysis of variance table of a LSD is given below.

Analysis of Variance Table of a LSD

SOURCE SS d.f
Rows v -IR'R - v -20 2 v-I
Columns v-I C'C - v- 20 2 v-I
Treatments v-I T'T - v- 20 2 v -I
Error by subtraction (v -I )(v -2)
Total y'y - v -lOl vl

- 1
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The expected values of sums of squares in the above table are given in
the following table.

Expected Values of Sums of Squares in the Analysisof Variance Tableof a
LSD

SOURCE SS 'E(SS)
I G2

(v - 1)<12 +va'a - a/EvvaRows -R/R--
v v2

Columns ~C/C _ G
2

(v - l)a2 + vlJ/lJ - WEvvlJ
v v2
1 G2

(v - l)a2 + vt't - t/EvvtTreatments -T'T--
v v2

Error I 1 I 1 I I I (v - I(v - 2)<12yy- - R R - -CC- -TT
v v v

2G2

+ v 2

The efficiency of a LD relative to a RBD with blocks as columns of a
LSD is

[E, + (v - I)Eel/vEe,

andtheefficiency of aLSDrelativetoa RBDwithblocksas rowsofa LSDis

[E, + (v - I)Eel/vEe,

whereEr, Ee• andE, denoterespectively themeanrowSS. the meancolumn
SS. and the mean error SS.

26. Cross-over Design
A cross-over designmayberegarded as a repetition of a Latinsquaredesign.
Let us consider a crosss-over design which is obtained by s repetitions of
a v x v LSD. Then, for this design

L = s Evv, M = Ev(su)

F = svl, - sEvv, rank(F) = v-I

Q = T - (G/v)Evl.

A solutionof t is givenby
A _I 2
t = (sv) Iv - (G/sv )Evl.

The analysisof variance of table of a cross-overdesign is given below.

Analysisof Variance Tableof a Cross-overDesign

SOURCE SS d.f.
Rows (sv) -lR/R - (sv") -'GL v-I
Columns V-IC'C - (SV2)-IG2 sv - 1
Treatments (sv)-IT/T - (sv2r lG2 v - I
Error by subtraction (v - I)(sv - 1)

Total s'r - (sv2)-IG2 sv2 - 1
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27. Graeco-Latin Square Design
Two Latin squares of the same side s and same letters are said to be
orthogonal, if when one Latin square is superimposed on the another, then
each letter of the former square coincidesexactly once with each letter of
the second square.

A set of Latin squares of the same side s and the same letters is said to
be a set of mutually orthogonal Latin squares (MOLS), if any two of them
are orthogonal.

A complete set of MOLS of side s consists of atmost (s - I) Latin
squares. If s is a prime or a power prime, then the complete set of MOLS
of side s consistsof (s - I) Latin squares.

If two Latin squaresof side s are orthogonal and if the lettersof one are
written in Latin letters and those of the second are written in Greek letters
and if one is superimposed on the other, then the compositesquare is called
Graeco-Latin square.

AGraeco-Latin SquareDesign(GLSD)isanarrangement ofv treatments
in a v x v Latinsquaresuch that each treatment occursexactlyonce in each
row, exactly once in each column and exactly once with each letter of the
Latinsquare.

The analysisof variance of a GLSD is given in the following table.

Analysis of Variance Table of a GLSD

SOURCE SS d.f
Rows v - I ~Rf - v -LGL v-I

Columns v-I ~C2 _ v- 2G2 v-I
J

Letters V-I ~A~ - v- 2G2 v-I

Treatments V-I ~T2 v- 2G2 v-It-

Error by subtraction (v - I)(v - 3)

Total ~y2 _ v-2G2 v2 _ I

28. YoudenSquare Design
A Youden square design is a rectangular arrangement of v treatments in
r = k rows and b = v columns such that each treatment occurs exactly
once in each row and the columnsconstitute the blocksof a symmetrically
balanced incomplete blockdesign (v = b, r = k, A).
(i) Intrablock analysis: Here u = r. u' = v, L = Evr, M = N, where N is
the incidence matrix of a SBIBD(v = b, r = k, A) .

Also

F = (Av/r)[Iv - v-IEvv] = C,
I

Q=T--NB
k
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where C is the c-matrix of the corresponding SBIBD. Clearly, rank
(F) = v-I.

The intrablock treatmentestimatesare givenby

i = (r/Av)Q.

The intrablock analysisof variance table of a Youden squaredesign is given
in the following table.

Intrablock Analysisof Variance Tableof a Youden SquareDesign

SOURCE

Rows

Blocks
(unadj .)

Treatments

(adj.)
Error
(intrablock)

Total

SS
LRi _ G'

v vr
LB~ G2__J _ _

r vr
r 2

AV LQi

by
subtraction

2 G"
Ly - -

vr

d.f.

r-l

v-I

v-I

(v-l)(r-2)

vr- I

SS

by
subtraction
LT~ G2
__I __

r vr

SOURCE

Rows

Blocks(adj.)

Treatments

(unadj.)
Error
(intrablock)

Total

Note: "- " meanscarriedforward.
The expected values of sums of squaresin the intrablock analysis of variance table
of a Youden Squareare givenin the following table.

Expected Values of Sums of SquaresIn the Intrablock Analysisof Variance
Tableof a Youden SquareDesign

SOURCE

Rows

Blocks (unadj.)

Treatments

Error

SS
LRf G"__I __

V vr
LB~ G2__J _ _

r vr

r 2-LQ.
AV 1

(v - l)(r - 2)Ee

1:(SS)
v

(r - 1)0'2 + va'a - -(La)2
r

(v - 1)0'2 + rl3'~ + 2~'N't

I r
+ -t'NN't - -(L~ + Lt)2

r v
(v - 1)0'2 + t'Ct

(v - I)(r - 2)0'2

Note: E" = meanintrablock error SS

(ii) Analysis with recovery of interblock information. This analysis
is exactly similar to that of a SBIBD except for the fact that the sum of
squares due to rows is separated out from the error sum of squares. The
approximate F statisticfor testingthesignificance of treatmentdifferences is
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given by

[
I 2 G

2
] ,F = -I:(Tj + GW j ) - - / (v - I )E

r vr e

with (v - I) and (v - I)(r - 2) d.f., where

G= (E, - Ee)/v(r - I)Eb

Wi = (v - r)Ti - (v - I)B(o + (r - I)G
E, = mean intrablock error SS
Eb = mean intrablock adjusted block SS
E~ = [I + (v - r)G]Ee

31

29. Lattice Design
In an m-ple lattice design, there are y = k2 treatments, arranged in b = mk
blocks of k plots each such that each treatment is replicated r = m times
and a pair of treatments either do not occur together in a block or occurs
together once in a block.

An m-ple lattice design is constructed as follows.The v = k2 treatments
are arranged in a k x k square. The first set of k blocks is formed by taking
k rows as blocks. The second set of k blocks is formed by taking k columns
as blocks. We now take (m - 2) MOLS of side k, (m - 2 :s: k - I). We
superimpose these Latin squares, in succession on the square of treatments
and form blocks by taking treatments which correspond to the same letters
of a Latin square. We thus get (m - 2) sets of k blocks each. Thus, we get
mk blocks.

When the lattice design is obtained by taking the first two replicates, i.e.,
rows as blocks and columns as blocks, the lattice design is called a simple
lattice design. A simple lattice design is a PBIBD with 2 associate classes,
where the first associates of a treatment are treatments in the same row or
the same column.

When m = k + I, the lattice design is called the balanced lattice
design.

The intrablock treatment estimates are given by

s = 1,2, . .. , v

where

SR(Qs) = sum of Q's over treatments in the same row as t,

Sc(Qs) = sum of Q's over treatments in the same column as ts
Sj(Qs) = sum of Q's over treatments which correspond to the

same letter as ts in the i - th Latin square.

The intrablock analysis of variance table is given below.
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Analysis of Variance Table of an m-ple Lattice Design

SOURCE SS d.f. SS SOURCE

Replications
I 2 o-

m-l Replications-~R -- ---+
k I mk2

Blocks within ** m(k - I) ** Blocks
replications within
(unadj.) replicat ions

(adj.)

I G2
Blocks (unadj.) -~B~ - - mk-I * Blocks (adj .)

k J rnk?
I G2

Treatment s ~1sQs k2 - I -~T~-- Treatments
m I mk-

(adj .) (unadj .)
Error * (k - I) ---+ Error

(mk - k - I)

Total
2 Gl

mk2 - 1 Total~y -- ---+
mk?

Note: ' obtained by subtraction, "obtained by subtraction, -s-carried forward

If t, and ts' occur together in a block, then

var (i, - 1s) = 2<12(k + I)/mk,

and if ts and ts' do not occur together in a block, then

~ ~ 2 [ I I]var tt, - ts' ) = 2<1 - + .
m k(m - I)

When the lattice design is balanced, then every pair of treatment occurs
once in a block and in this case

var (is - 1s') = 2<12/ k.

For a balanced lattice design , the intrablock treatment estimate is given by
1s = Qs/k and the adjusted treatment SS is given by ~1sQs = ~Q; /k.

1.5 FACTORIAL DESIGNS

30. Factorial design
Let there be m factors denoted by F1, F2, .. . , Fm. The factor Fj occurs
at Sj levels, i = I, 2, . . . , m. The s, levels of the factor F; are denoted
by 0, I, 2, . .. , s, - I , i = I, 2, . . . , m. The treatments consis t of all com­
binations of levels of all the m factors. The treatment combination in
which F( occurs at x. -th level, F2 at x2-th level, . . . , Fm at xm-th level
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is denoted by f~' ~2 .. . r~ .Xi = O. I•.. .• Sj - I. i = I. 2• . .. •m. The total
number of treatments is N = SIS2 ... Sm. and this factorial design is called
Sl x S2 X • • . X Smfactorial design. Ifs l = S2 = . . . = Sm = S, then thefac­
torialdesign is called symmetrical.
Treatment contrast. A linear function

L = L C(XI, X2 •. . .• xm)f~' f~2 ... t~ , where the coefficients are not
x, .....xm

all zero, will be called a treatment contrast. if I:C(XI. X2, . . . • xm) = O. the
summation being taken over all valuesof XI • . . .• Xm.

The following convention is followed in the the selectionof coefficients
C(XI . X2 •. . . • xm):

(i) c(x,. X2 , ... . xm) = c(x, ).C(X2) ' . . c(xm)
(ii) c(Xj) will correspondto the orthogonal polynomials of variousde­

greesbasedon Sj points. i = I. 2•. .. , m.There willbe (s, - I) sets
of coefficients for c(Xj); the t-th set of coefficients will be denoted
by ctCxj) and will correspond to the orthogonal polynomial of t-th
degree. t = 1.2. ...• Sj - I.

The factorial experiment is assumed to be carried out in r random­
ized blocks. Let T(xi. X2 •. . . . xm) denote the total yield of the treat­
ment f~' f~2 . . . ~m. Then, the BLUE of an estimable treatment contrast
L = I:c(x,. X2 • . . . , xm)f~' f~2 ... ~n is given by

L = I:C(XI. X2• . . . • xm)T(x, . X2. . . . , xm)/r

with varL= <T2I:c2(XI.X2• .. .• Xm)/r. Further, the SS due to L (i.e.• for
testingL = 0) is given by

SS (L) = <T 2f,2 /var(L)

[I:C(XI. X2 • . . . , xm)T(xl •... xm)f
= rI:c 2(xl. X2 . . . .. x)

and it will have I d.f.
Orthogonal treatment contrasts. Two treatmentcontrasts

L, = I:C(XI . X2 • .. .. xm)f~' f~2 t~

L2 = I:d(xi . X2 . .. . . xm)f~'f~2 t~n

are said to be orthogonal if

I:c(x,. X2 . .... xm)d(x,. X2 ....• xm) = O.

the summation being taken over all valuesof XI. X2 • . .. • Xm.
A set of treatment contrasts will be said to be mutually orthogonal if

every pair of them is orthogonal.
If LI. L2 •. . . , Lkvk be a set of v mutuallyorthogonal treatmentcontrasts,

then the sum of squaresdue to LI, L2• . . . •Lk is equal to sum of squaresdue
to LI, L2 , • • . , q and it will have k d.f.
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k-factor interaction. A treatment contrast

with I:c(x" X2, . . • , xm) = 0, will be said to belong the k-factor interaction
Fi lFil ... F ik if

(i) the coefficients C(XI, X2, .. . xm) depend only on the levels
Xii ' Xil ' • •• , Xik of the factors Fi l ' Fil, . . . , and Fik, that is

(ii) thesum ofcoefficientsC(Xi 1 ) , C(Xi l) , .• . , C(Xik) overeacharguments
Xii' Xil , . . • Xik is zero, i.e., Lx C(Xi 1) = 0, Lx C(Xil) =

II 12

0, ... , Lx C(Xi k) = 0.
'k

Anexpression for a treatmentcontrastL belongingto the k-factor interaction
F i, F il . .. F ik can be taken as

where

~ = if+ fi + ... + ~i-I, i = 1,2, . .. , m.

The selection of coefficients C(Xi 1) , C(Xil), . . . , C( Xik) is done by using or­
thogonal polynomials of different degrees based on Si1 , Sil' .. • ,Sik points
respectively. Since, there are (Si j - I) sets of coefficients available for the
selection of C(Xi

j
) , the total number of contrasts belonging to the k-factor

interaction F i l Fil . . . Fik is equal to (s., - I )(sh - I) .. . (Si k - I).

31. 2m design
There are m factors each at 2 levelscalled as the upper and lower levels.The
factors are denoted by capital letters A, B, C, . . . etc. The lower level of a
factor is denoted by unity, while its upper level by its small letter. The 2m

treatments are written down as

(I) c d
a ac ad
b be bd
ab abe abd

cd
acd
bed
abed

etc.

The rules for writing down any factorial effect are as follows:
Rule I: Let Z be any factorial effect in a 2m design. Then, Z is given by

1
Z = -,(a ± I)(b ± I) .. .,2m-

therebeing m bracketson theright handside ofZ, and thesign ineach bracket
is determined as follows. The sign in a bracket is + , if the corresponding
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letter is absent in Z and is - , if the corresponding letter is present
inZ.

Rule 2: Let Z be any factorial effect in a 2m design . Then, Z is given by

I
Z =-I[±(I) ± a ± b ± (ab) ± .. . .] ,2m-

where the signs of treatments are determined as follows . If Z contains an
odd (even) number of letters, then treatments having odd (even) number of
letters in common with Z will have + sign and other treatments will have ­
sign.

Let [Z], denoted for Z, be obtained by substituting treatment yields for
treatments in the expression for Z, except the divisor 2m- I . Then, the BLUE
of any factorial effect Z in a 2m design is given by

Z= [Z]/2m
-

1r

and the SS due to Z is given by

SS(Z) = [Zf/2 m
• r

with I d.f
The sum of squares due to treatments is obtained by summing the sums

of squares due to all factorial effects . The analysis of variance table for a 2m

design carried out in r randomized blocks is given below.

ANaYA Table For a 2m Design

SOURCE SS dJ.

Blocks
I 1 G-
-~B~---
2m J 2m . r
I 0 2

Treatments -~Ti--- 2m -I
r 2m . r

A [Af/2m . r I
B [Bf/2m

. r I

Error by subtraction (r - 1)(2m - I)
Total ~yL _ GL/2m • r r· 2m - I

Yates' method for estimating all factorial effects in a 2m design. It con­
sists of constructing (m + I) columns co, CI .... cm• The column Co is con ­
structed by writing down treatment yields in the standard form. The column
c., i = 1,2, . .. , m, is constructed from the column Cj_1as follows. The up­
per half of the column Cj is constructed by taking sums of pairs of values
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of the columnCi-I; while its lower half is constructedby taking differences
(lower minus upper) of pairs of values of the column Ci-I. The column Cm
gives the grand total G, and the totals for all factorial effects in a 2mdesign
in the standard form. The columns co, CI , . .. , Cmconstitute Yates' table.
Dividing the entries of column Cmby 2m. r, we obtain the correction term
and the sums of squares due to all factorial effects.

32. 3m design
There are m factors AI, A2, ... , Am each at 3 levels. The three levelsof the
factor Ai will be denoted by a? = I, a., a?, i = 1, 2, . . . , m. The 3m treat­
ments will be denoted by

(I) a2 a2 etc.2

al a,a2 2ala2

a' I a1a2
2 a2a2 2 2

A contrast belonging to k-factor interaction between k factors Ai) ,
Ai2 ' • • • ,Ai k is

The set of coefficients C(Xi) corresponding to the factor Ai,j = 1,2, . . ., k
can be selected in two different ways: one based on the orthogonalpolyno­
mial of first degree and the second based on the orthogonal polynomial of
theseconddegree.The twosets of coefficients C(XiJ)basedon theorthogobal
polynomials of firstand seconddegree are

linear C(XiJ): -I , 0, I
quadratic C(Xij) : -I, -2, I

The k-factor interaction is said to be linear or quadratic in the factor
Aij ,j = 1,2, . . . , k accordingas the corresponding set of coefficients C(Xij)
is based on the orthogonal polynomial of the first degree or the second de­
gree. There are 2kcontrasts belonging to the k-factor interaction between k
factors, Ail, Ai2, .. . ,Aik. For example, the 2-factor interaction linear in Al
and quadratic in A2 in a 33 design is given by

A1 eA2q = (ai - I)(a~ - 2a2 + 1)(a3 + a3+ I).

The sum of squares due to any contrast Z is obtained by

SS(Z) = [Z]2/rS(Z),

where [Z] = total for the contrast obtained by substituting treatmentyields
for treatments in the expression for Z and S(Z) = sum of squares of the
coefficients which occur in the expression for Z.
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1.6 CONSTRUCTION OF DESIGNS

37

33. Construction of MOLS
When s is a prime or a power prime, the complete set of (s - I) mutually­
orthogonal Latin Squares of side s is construced as follows:

(i) Write down the elements of GF(S) as Uo = 0, UI = I, Uz = X,

U3 = xZ, • • • , Us-I = xs- z, where x is a primitive root ofGF(S) .
(ii) The rowsand columns are numbered as 0, 1,2, s - I.
(iii) The (s - I) Latin Squares are denoted by L1• Lz, , Ls- 1•

(iv) L1 is called the key Latin Square and is constructedas follows:

(a) Write down the O-th row of LI as 0, 1,2, ... , (s - I)
(b) The first row of LI is constructed by filling its (1, 13)-th

cell by the subscript of the element UIUItUJ3 = 1+ uJ3 .
13 = 0, 1,2, . .. . (s - I).

(c) The cells in the upper triangle of LI are filled by the following
rule: if the cell (a. 13) contains 0, then write 0 in the cell (a +
1,13+ I); if thecell (a , 13) containsj , (i = 1,2, .. . , s - 2), then
write j + 1 in the cell (a + 1. 13 + 1), if the cell (a . 13) contains
(s-I),thenwrite 1 inthecell(a+ 1.13+ I).

(d) The cells in the lower triangle of L1 are filled by noting the
symmetry from the cells of the upper triangleof L1•

(v) The Latin square Li . i = 2, 3. . . . , (s - I), is constructed from the
Latin square Li- I as follows.

(a) The O-th row of L, is taken as 0, I. 2, ... (s - I)
(b) The 1st,2nd, , (s - 2)th rows of Li are obtained from

the 2nd, 3rd , (s - I)th rows of Li-I by moving them one
step up. The last row of L; is taken as the first row of Li-I .

If s is neithera prime nor a powerprime, then exactly n(s) MOLSof side
s can be constructd where

n(s) = min(p~' , P~' , . .. , p~') - I,

ands = p~' p~2, . .. p~n, wherePI. Pz , . . . . Pmaredistinctprimenumbers and
el , ez, ... , em are positiveintegers. Wenowdescribetheconstruction of n(s)
MOLS in this case.

(i) Denote the elements of GF(pfi). i = 1,2, . . . •m by

wherea i is a primitive root of GF (pfi)
(ii) Form the set {w} of elements w definedby
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where gIll E GF(p~I) , g2l2 E GF(p;2), . ..• gmlrn E GF(p~).

Define the operations of addition and multiplication among the
elements of the set {w} as follows:

WI + W2 = (gill + gljl' gU2 + g2j2' ...• gmlrn + gmjrn)
W] W2 = (gIll' gijl' gU2 . g2j2 ' ... •gmlrn . gmjrn)

where WI = (gIll' gU2' ... , gmlrn) and W2 = (gljl' g2j2' .. . , gmjrn)
are any two elements of the set {w}.

(iv) Number of elements of the set {w} such that the first n(s) + I
elements of the set {w} are

Wj = (glj, g2j , .. . , gmj),j = 0, 1,2, . . . , n(s)

while the remaining elements of the set {w} are numbered arbi­
trarily.

(v) Thej-th Latin SquareLj,j = 1.2• ... , n(s) is constructedby filling
its (o, 13)-th cell by the element (or its subscript)

WjWa + wl3 ' o, 13 = 0. 1,2,. " . s - I,j = 1,2, . . . , n(s).

34. Construction of BIBDs
(l) Use of PG (m, s), Identify a point of PG (m, s) with a treatment and a
g-flat (I ~ g ~ m - 1) of PG (m, s) with a block. Then, a BIBD with the
following parameters is constructed,

v = (sm+1 - I)/(s - I),
b = <p(m, g, s)
r = <f>(m - I, g - I, s)
k = (sg+1 - I)/(s - I)
A= <f>(m - 2, g - 2, s),

where
(sm+l -I)(sm - 1) (sm-g+1 -1)

<f>(m,g,s)= (sg+l-I)(sg-I) (s-I)) .

(2) Use of EG (m, s). Consider EG (rn, s). Identify the points of EG (m,
s) with the treatments and g-flats (I ~ g ~ m - 1) of EG (m, s) as blocks.
Then, a BIBD with the following parameters is constructed.

v = s'"
b = <p(m, g, s) - <f>(m - 1, g, s)
r = <f>(m - I. g - 1.s)
k = sg
A= <f>(m - 2, g - 2, s).

(3) Useof a complementary design of a BIBD.LetD,a BIBD(v, b. r, k, A),
be known to exist. Then, taking its complementary design, we construct a
BIBD with the following parameters:

v* = v, b* =b, r" =b - r, k" = v - k, A* =b - 2r + A.
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(4) Use of a residual design of a SBIBD. Let D, a SBIBD (v = b,
r = k, X), be known to exist. Then, omitting one block and all its treat­
ments from the remaining blocks, we obtain its residual design which is a
BIBD with the following parameters:

VI = V- k, bl = b - I, rl = r, k) = r - A, AI = A.

(5) Use of a derived design of a SBIBD. Let D, a SBIBD(v = b, r = k, A),
be known to exist. Then, omitting one block and retaining its treatments in
the remainingblocks, we obtain a deriveddesign which is a BIBD with the
following parameters:

V2 = k, b2 = b - I , r2 = r - I , k2 = A, A2 = A- I .

(6) Orthogonal Series of Yates. The two series of BIBDsdue to Yates are
as follows:

as I : v = s2,b = S2+ s, r = s + I, k = s, A= I
OS2 : v = b = S2 + S+ I, r = k = s + I, A= I

where s is a prime or a powerprime.

(i) Construction of OS 1. Construct a complete set of MOLS of
side s : L1, L2, .. . ,Ls- I' The v = S2 treatments are arranged in
a s x s square L, say. Take rows and columns of L as blocks.
We thus get 2s blocks, each of size s. The blocks from rows and
columns formtwoseparatereplications. Nowtake the Latin square
L;, i = I, 2, . . . , s - I and superimpose it on L and form blocks
by taking treatments which correspond to the same letters of L .
Thus, each Latin square will give s blocks forming one replica­
tion. Then, we get in all b = 2s + s(s - I) = S2 + s blocks with
k = s, r = s + I and A= I .

(ii) Construction of OS 2. Out of the v = s2 + S + I treat­
ments, take S2 treatments and construct S2 + s blocks as in
as I . To the blocks of each replication, add one treatment
from the remaining treatments. Thus we get a BIBD with
v = b = s2 + S+ I , r = k = s + I, A= I.

It may be noted that as I can be constructed by using EG(2, s) and that
as 2 can be constructed by using PG(2, s).
(7) The first fundamental theorem of symmetric differences. Let M be
a module of m elements and there be v =mn treatments. Suppose that n
treatments are associatedwitheachelementofM . The treatments associated
with an element a of M are denoted by a. , a2, .. . , an, Suppose that it is
possible to find a set of t blocks B), B2, .. . , B, which satisfy the following
conditions:

(i) Each block contains k treatments.
(ii) Of the tk treatments occuring in t blocks,exactly r belong to each

class, thus tk = nr.
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The differences arising from the t blocks are symmetrically re­
peated, each occurring A times .

If a, is any treatment and 0 any element of M, then we define
aj + 0 = (a + O)j. From each block Bj, i = 1,2, .. . , t, we form another
block Bjo by adding the element 0 to the treatments of Bj. Form all mt
blocks Bjo by taking all values of i and 0. Then, these mt blocks form a
BIBD with parameters

v = mn, b = mt, r, k, A.

As an application of the above theorem, we get the following BIBDs.

(i) Bose T, Series.Consider a module M consisting of residues mod
(2s + I). Thus, m = 2s + I. To each element of M, associate
3 treatments, thus n = 3, and hence v = mn = 6s + 3. Take the
following t = 3s + 1 blocks as the initial blocks:

- first, s blocks ~
[II, (2sh, 02], [2(, (2s - 1)(,02], . .. , [s( , (s + 1)(,02],

- second s blocks~
[12, (2sh, 03], [12, (2s - Ih, 03], .·. , [S2, (s + Ih, 03],
_ third s blocks ~

[13, (2sh, Od, [13, (2s - Ih, Od, . . . , [S3, (s + Ih, Od
last block [0(,02,03].

Then , adding the elements of M in succession, to the treatments of
the above initial blocks, we get a BIBD with parameters

v = 6s + 3, b = (3s + 1)(2s + I) , r = 2s + 1, k = 3, A= 1.

(ii) Bose T2 Series. Let s = 6t + 1, where t is a positive integer and
s is a prime or a power prime. To each element of GF(s), as­
sociate one treatment. Thus m = sand n = 1. Let x be a prim­
itive root of GF(s). Take the following t blocks as the initial
blocks;

Then, adding the elements of GF(s) successively, to the treatments
of the above initial blocks, we get a BIBD with parameters

v = 6t + 1, b = t(6t + I), r = 3t, k = 3, A = 1.

(iii) Let s = 4t + 3 be a prime or a power prime, where t is any positive
integer. To each element of GF(s), associate one treatment so that



THEORETICAL RESULTS 41

m = sand n = I. Let x be a primitive root of GF(s). Take the
following block as the initial block:

Then, adding the elements of GF(s) successively to the treatments
of the above initial block, we get a BIBD with parameters

v = b = 4t + 3, r = k = 2t + I, X. = t.

(iv) Let s = 4t + I be a primeor a powerprime, where t is any positive
integer. Associateone treatmentwitheachelementofGF(s), so that
m = s, n = I. Let xbea primitiverootofGF(s).Takethe following
2 blocks as initial blocks:

o 2 4 41-2X ,x , x , , x
x, x3, xs, , x":".

Then, adding the elements of GF(s) successively to the treatments
of the above two initial blocks, we get a BIBD with parameters

v = 4t + I, b = 8t + 2, r = 4t, k = 2t, X. = 2t - I.

(8) The second fundamental theorem of symmetric differences. Let
M be a module of m elements and let there be v = mn treatments. As­
sociate n treatments with each element of M. The treatments associated
with an element a of M are denoted by a" a2, ... , an' These v = mn treat­
ments are called finite treatments. We add a new treatment called an in­
finite treatment which will be donoted by 00. Suppose that it is possible
to find t + s blocks BI, B2, ... , Br- Bi, Bi, . . . , B: satisfyingthe following
conditions:

(i) Eachblockofthe set BI , B2, . . . , BI containskdifferentfinite treat­
ments, and each block of the set Bi , Bi, .. . , B: contains (k - I)
distinct finite treatments and the infinite treatment 00.

(ii) Of the m finite treatments of the i-th class, i = 1,2, . . . , n, exactly
(ms - X.) treatments occur in blocks B), B2, . . . , B, and X. treat­
ments occur in the blocks Bi ,Bi , .. . , B:. Thus kt = (ms - X.)n
and s(k - I) = nx..

(iii) The differencesamong the finite treatments arising from the t + s
blocks are symmetrically repeated,each occurring X. times.

The addition of an element 0 of the module M to the treatments of the
blocks is defined as; aj + 0 = (a + O)j. Also we define 00 + 0 = 00. The
blocksBI , B2, . . . , B, andBi, Bi, .. . , B: are called the initialblocks. Then,
adding the elementsofM, one by one, to the treatments of the above (t + s)
blocks, we get a BIBD with parameters

v = mn+ I, b = m(t+ s), r = ms, k, x..
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As an applicationof the above result, we construct the following BIBD.
Let s = 4t + 1bea prime or a powerprime, where t is a positiveinteger.

To each element of GF(s), associate 3 treatments. We also take one more
infinitetreatmentdenoted by 00. Let x be a primitive root ofGF(s). Takethe
following (3t + 1) blocks as the initial blocks.

[X2i x2t+2i x2i+ll x2t+2i+ll]
I" '2 '2 '

[x2i x2t+2i x2i+ll x2t+2i+ll]
2' 2 '3 ' 3 '

[x2i x2t+2i x2i+ll X2t+2i+ll]
3' 3 '. '. '

i = 0,1 ,2, ... , (t - 1)

n2] [n l 0]o , P2 = 0 n2 - I .

where a is chosen so that ~::: = x2,q = l(mod2). Then, by adding the
elements of GF(s), one by one, to the treatments of the above initialblocks,
we get a BIBD with parameters

v = 12t+ 4, b = (3t + 1)(4t+ I), r = 4t + 1, k =4, A= I.

35. Construction of a Youden Square.
Takea SBIBD with parameters v = b, r = k, A. Denote the v treatmentsby
v integers 1,2, .., v, and write the blocks of the SBIBD as columns. Let S =
the set of treatments and SI, S2, . . . , Sy, the columns(blocks)of the SBIBD
be the subsets of S. The columns S., S2, . . . .S, possess a SDR, which is a
permutation of integers 1, 2, .. . , v. Take this SDR as the first row. Delete
this row from S" S2, .. . , Sc. Denote the new columns by Sj, Si, ...,S~.
Then, these columns Sj , Si, ...,S~ possess a SDR. Take this SDR as the
second row. Proceedingin this way, we get r = k SDRs, whichare taken as
rows. These r = k rows form a Youden Square.

36. Construction of PBIBD Designs.
(1) Use of PG(m, s). Consider a finite projectivegeometry PG(m, s). Omit
one point P,say, from this geometry and take the remainingpoints as treat­
ments.Takeg-flats (1 ::: g :::m - I), not passing through the omitted point
P as blocks. Then two treatments willbecalledfirstassociates if they occur
together in the same block, if they do not occur together in the same block,
theywillbecalledsecondassociates.Then, wegeta PBIBDwithparameters

v =s(sm - 1)/(s - 1),
b = q,(m, g, s) - q,(m - I, g - 1, s)
r = q,(m - 1,g - 1, s) - q,(m - 2, g - 2, s)
k = (sg+' - l)/(s - 1)

n. = s2(sm-1 - 1)/(s - 1),
n2 = (s - 1),
A( = q,(m - 2, g - 2, s) - q,(m - 3, g - 3, s)
A2 = 0

[
nl - n2 - IP,=

n2



THEORETICAL RESULTS 43

n2] P = [n l° , 2 °

Another PBIBD can be constructed by using PG(m, s) as follows. Select a
point P and choose t lines passing through it. Take points on these t lines
other than P as treatments.Take(m - I)-flatsnot passingthroughthe pointP
as blocks.Twotreatmentsare first associates if they lie on one of the chosen
lines through P, otherwisetheyare secondassociates.Then, weget a PBIBD
with parameters

v = st, b = s'" , r = sm-I, k = t
nl = s - I, n2 = set - I), ~I = 0, ~2 = Sm-2,

PI = [n
l~ I ~lp2 = [~ n2-~11 - I].

(2) UseofEG(m, s), Considera finite EuclideanGeometryE(m, s). Omitone
point P, say, and all g-flats (I ::: g ::: m - I) through P. take the remaining
points as treatments and the g-flats, not containing the point P as blocks.
Two treatmentsare first associates if they occur together in the same block,
otherwisethey are called secondassociates. Then, we get a PBIBD with the
parameters

v = sm - I ,
b=<!>(m,g,s)-<j>(m-I ,g-I ,s)-<j>(m -I ,g,s),

r = <j>(m - I, g - I, s) - <j>(m - 2, g - 2, s)
k = sg

nI = s'" - s, n2 = s - 2

}.q = <j>(m - 2, g - 2, s) - <!>(m - 3, g - 3, s)

~2 = 0,

[
nl - n2 - I

PI =
n2

(3) Other methods.

(i) Consider a double triangle as shown below.

4 10

8 9

Denote the vertices by numbers I, 2, . .. , 10 and take them as
treatments. Takelinesas blocks.Twotreatmentsarefirst associates



44 CHAPTER I

if they lie on the same line, if they do not lie on the same line,
they are secondassociates. Then, we get a PBIBD with parameters
v = 10, b = 5, r = 2, k = 4, nl = 6, n2 = 3, x,\ = 1, x'2 = 0,

PI = [~ 7]. P2 = [~ ~l
(ii) Consider a parallelopiped as shown below

8

')---------+----~6

5

Iot-------I--------'" 3
4

Denote the vertices of the parallelopiped by numbers I, 2, .. . , 8,
and take them as treatments. Take faces as blocks. Two treat­
ments which lie in the same face but not on the same edges
are first associates; two treatments on the same edges are sec­
ond associates; two treatments whichn lie on the diagonals of the
parallelepiped are third associates. Then, we get a PBIBD with
parameters

v = 8, b = 6, r = 3, k = 4,

nl = 3, n2 = 3, n3 = I,

x'i = I, x'2 = 2, x'3 = 0,

[2° 0] [0PI = ° 2 I ,P2 = 2
010 I

2 I] [0 30]° ° ,P3 = 3 ° ° .
° ° ° ° °

(iii) Let v = pq. Arrange the v = pq treatments in an array of prows
and q columns. Blocks are formed by taking each treatment and
treatments in the same row and the same column as that treat­
ment. Two treatments are first associates if they lie in the same
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row; they are second associates if they lie in the same column ;
otherwise they are third associates. Then, we get a PBIBD with
parameters

o ]p-l
(p-I)(q-2) ,

q -I ]
o ,

(p-2)(q-l)

q-2 ]
p- 2 .

(p - 2(q - 2»

o
p-2

o

I

o
p-2

v = b = pq, r = k = P + q - I,

nl = q - I, nz = p - I, n3 = (p - I)(q - I) ,

AI = q, AZ= p, A3 = 2.

PI = [q ~o 2 ~
p-I

Pz = [ ~
q-I

(iv) Let v = pq. Arrange the v = pq treatments in an array of prows
and q columns. Blocks are formed taking treatments that occur in
the same row and the same column as each treatment but excluding
that treatment. Two treatments are first associates if they occur in
the same row; they are second associates if they occur in the same
column; otherwise they are third associates. Then we get a PBIBD
with parameters

v = b = pq, r = k = p + q - I,

nl =q-I ,nz =p-l ,n3 =(p-I)(q-I),

AI = q - 2, AZ = P - 2, A3 = 2,

and P" Pz, and P3 are same as in (iii) .
(v) Let v = pZ. Arrange the v = pZ treatments in a p x p square. Blocks

are formed by taking treatments that occur in the same row, the same
column and which correspond to the same letter of a p x p Latin
square as each treatment. Two treatments are first associates if they
occur in the same row; they are second associates if they occur in
the same column ; they are third associates if they correspond to
the same letter of the p x p Latin square ; otherwise they are fourth
associates. Then we get a PBIBD with parameters

v = b = pZ, r = k = (3p - 2),

n, = nz = n3 = P - I, n4 = (p - I)(p - 2),

AI = AZ = A3 = P + 2, A4 = 6,
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[P~2
0 0

o ]0 I p-2
PI =

0 I 0 p-2 '

0 p-2 p-2 (p-2)(p-3)

P,= [ ~
0 I p-2 ]

p-2 0 0
0 0 p-2 '

p-2 0 p -2 (p - 2)(p - 3)

P, ~ [ ~
I 0 p-2 ]
0 0 p -2

. 0 0 p-2 o '
p-2 p-2 0 (p - 2)(p - 3)

PF[ :
I I p-3 ]
0 I p-3

I 0 p- 3 .

p -3 p-3 p-3 p2 _ 6p + 10

37. Confounded 2m Design.
(1) To confound one interaction X. The two blocks are constructed as
follows. The first block is formed by taking treatments having even number
of letters in common with X. The second block is constructed by taking
treatments obtained by multiplying the treatments of the first block with a
treatment not included in the first block and replacing the square of any letter
in the product by unity.

(2) To confound two interactions X and Y. Construct the key block B1

by taking treatments which have even number of letters in common with X
and Y. The block Bj, i = 2,3,4 is constructed by taking the products of a
treatment not included in the blocks B1, B2, .. . ,Bi-I with treatments of the
key block B I, and replacing the square of any letter in the products by unity.
The interactions X, Y and XY are confounded.

(3) To confound k independent interactions. We construct 2k blocks as
follows. The key block B I is constructed by taking treatments which have
even number of letters in common with the k independent interactions
XI , X2, .. . , Xk. The block Bi, i = 2,3, . .. , 2k is constructed by taking the
products of a treatment not included in the blocks BI, B2, . . . , Bj_1 with the
treatments of the key block B I and replacing the square of any letter in the
products by unity. Each block will contain 2m- k treatments. The following
interactions are confounded:

(i) the k interactions Xi, i = I, 2.. .. , k

(ii) the (~) 2-factor interactions XjXj, i =I- j = 1,2, . .. , k
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(iii) the (~) 3-factor interactions XjXjXk, i "1= j "1= k = 1,2, . .. , k and

soon, the lastinteraction beingthek-factorinteraction XIX2 . .. Xk.

38. Confounded s'" Design.
The treatments are identified by the pointsof EG(m,s). The interactionsare
identified by the pencils P(al, a2, . . . , am). The pencils are written so that
the firstnon-zeroelement is I . Weassumethat s is a primeor a powerprime.

(1) To confound the (s - 1) d.f. carried by the pencil P(al , a2, . . . , am):
Consider the equations

al XI + a2x2 + ...+ amxm= (Xj, i = 0, 1,2, . . . , s - I

of the pencilP(al, a2, . .. , am). The treatmentslyingoneachequationforma
block.Thus, wegets blocksbetween whichthe(s - I) d.f,carriedby thepen­
cil Pta,. a2 , . . . , am) are confounded. Each block contains sm-Itreatments .
A simplemethodof writingthese s blocks is as follows. Write the keyblock
BI by taking treatments which are the solutionsof the equation

a.x, + a2x2 + ...amxm= O.

The other s - I blocks are obtained by adding the non-null elements to the
first co-ordinatesof the treatments of the key block BI.

(2) To confound the d.f. belonging to the k independend pencils
P(aj), ai2, . . . , aim), i = 1,2, .. . , k : The Sk blocks are cosntructed by tak­
ing treatments which satisfy k equations, one being taken from each of
the sets of the equations defining those k pencils. The d.f. carried by the
(Sk - I )/( s - I) generalizedpencils

where>-1, >-2, . .. , >-k areelementsofGF(s), notall zero,areconfoundedwith
the Sk blocks.Each blockcontains sm-k treatments. The above construction
of Sk blocks is simplified as follows. The key block B I is constructed by
taking treatments whichsatisfy the equations

ajlXI + aj2X2 + .. .+ aimxm = 0, i = 1,2, . .. , k.

Write down k coordinates (XI X2 . . . x j ) in all possible Sk ways by assign­
ing s values of the elements of GF(s) to each of XI , X2, .. . , Xk . Omit the
combination (0 0 . . . 0). The remaining (sk - I) combinations are used to
obtain the remaining (Sk - I) blocks as follows. To the first k coordinates
of the treatments of the key block BI, add the above (sk - I) combinations,
one by one, and obtain the remaining(sk - I) blocks. These (Sk - I) blocks
together with the key block form all the sk blocks.

39. Construction of (s - 1)m-I replications of a (s'", s) design achieving com­
plete balance over the highest order interaction.
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We write down (s - l)m-I pencils P(al, az, ... , am) belonging to the m­
factor interaction, where the ai , az, .. . ,am are non-null elements of GF(s).
We confound each of these pencils in one replication to construct a (s'", s)
design. Since, there are (s - l)m-I pencils, there will be (s - l)m-I replica­
tions. Each pencil belonging to the m-factor interaction is thus confounded
in one replication and is unconfounded in the (s - l)m-I - I replications
and hence the m-factor interaction is completely balanced and the relative
loss of information on each d.f, belonging to the m-factor interaction is
I/(s - l)m-I .

40. To construct (s - l)m-1 replications of a (s'", sm-I) design, achieving
complete balance over all order interaction from 1st to (m - Ij-th,
Write down distinct (s - I )m-I vertices of the type (cq , az, .. . ,am) in
which each ai, i = 1,2, . . . , m is non-null element of the GF(s). Cor-
responding to each vertex (oq, az, ,am) , take (m - 1) independent
pencils P(aj), aiZ, . . . , aim), i = 1,2, , m - 1 such that L~ ajaij = 0, i =
I, 2, ... , m - 1, and construct one replication of a (s'", sm-I) design by
confounding these (m - 1) pencils P(ail, aiZ, ... , aim), i = 1,2, ... , m - 1.
Then we get (s':"" l)m-I replications of (s'", sm-I) in which no main effect

is confounded and there is complete balance on lst order, 2nd order, .. . ,
(m - I j-th order interactions. The relative loss of information on the (k ­
lj-th order interaction is

41. Construction of a Fractional Replicate of a Design.
(1) To construct a half replicate ofa 2m design: Let the defining interaction
be X. IfX contains an odd (even) number of letters, then the half replicate of
a 2mdesign is formed by taking treatments which have an odd (even) number
of letters in common with X. The alias of any interaction Y is the generalized
interaction XY, in which the square of a letter is replicated by unity.
(2) To construct (1/2P)-th replicate of a 2m design: Let XI, Xz, . . . , Xp be
P independent interactions selected as defining interactions. The (l/2P)-th
replicate of a 2m design is constructed by taking treatments which have
an odd (even) number of letters in common with Xi, i = 1,2, ... , p, if
Xi contains odd (even) number of letters, The generalized interactions of
XI, Xz, ... , X, are also the defining interactions, and their number will be
(2P - I) . The aliases of any interaction Yare obtained by multiplying Y
with each of the (2P - I) defining interactions and replacing the square of
any letter by unity in the products.

(3) To construct the (lis )-th replicate ofa s'" design: We assume s is a prime
or a power prime. Identify the points of an EG(m, s) with the treatments of a
s'" design. Let the pencil P(a" az , . .. , am)be the defining pencil. The (l/s)-th
replicate of a s'" design is constructed by taking treatments which satisfy
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The constrasts belonging to the pencil P(al , az, . .. , am) are not estimable.
The aliases of any other pencil P(b l , bz , ... , bm)are its generalized pencils
with the defining pencil P(a), az, .., am), that is, are the pencils

where A is a non-null element of GF(s). Thus each alias set consists of s
pencils and there will be (sm-I - I)/(s - I) alias sets.

(4) To construct (I/sP)·th replicate of a s'" design: Let us select p
independent pencils P(ail , aiZ , .. . , aim) , i = 1,2, . . . , p as defining pencils.
Their generalized pencils

where A'S are elements of GF(s), not all zero are also defining pencils
and information on the d.f. carried by these pencils is lost. The (I/sP)-th
replicate is formed by taking treatments which satisfy the equations

aiIXI+aiZXZ+ . . . +aimXm=O , i = 1,2, ... ,p.

The aliases of any other pencil P(b l , bz, . .. , bm) are the pencils

where A's are elements ofGF(s) not all zero.
There will be (s" - I) alias pencils of a given pencil and hence each

set of alias pencils will consist of sP pencils. The number of alias sets of
pencils will be (sm-p - I)/(s - I).

42. Confounded Fractional Replicate Designs

(1) To confound k independent interactions in a half replicate of a 2m

design: Let the interaction X be the defining interaction. The information
on X is lost. Suppose, we wish to confound k independent interactions
Y), Yz, .. . , Yj , The general ized interactions of Y1, Yz, . . . , Y, and their
aliases will also be confounded. The number of generalized interactions
of YI , Yz, . . . , Yk is 2k - I. Hence , there will be (2k - I) alias sets, each
consisting of2 interactions, which will be confounded. The construction for
confounding YI, Yz, . .. , Yk in a half replicate of a 2mdesign obtained by
selecting X as the defining interaction is as follows . We construct the half
replicate by selecting treatments which have odd (even) number of letters
in common with X if X contains odd (even) number of letters. Suppress
one letter in these treatments so as to express them as treatments of a 2m- I

design in the standard form. Express the k interactions YI, Yz, . . . , Yk so
that they contain letters of the factors of a 2m- I design. Then, using the
construction described above in 37(3), we construct 2k blocks confounding
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the interactions YI, Y2, . . . , Yk- Eachblock willcontain2m-k-1 treatments.
Introducethe suppressed letter in the treatments in whichit wassuppressed.

(2) To confound k independent interactions in a (1/2P)-th replicate
of a 2m design: Let XI, X2, . . . .X, be p independent interactions to be
used as the defining interactions for constructing the (I /2P)-th replicate.
Let YI, Y2, . . . , Yk be the k independent interactions which are to be
confounded. Using the construction described above in 41 (2), we select
the treatments of the (I /2P)-th replicate. Suppressp suitablychosen letters
in these treatments so that they become treatments of a 2m- p design in the
standard form. If any Yj, i = I, 2, . . . , k contains the suppressed letters,
we take its alias which does not contain the suppressed letters. Thus, we
express YI, Y2, . .. , Yk so that they contain letters of the factors of a 2m-p

design. Then, using the construction described in 37 (3), we construct
2k blocks confounding the interactions Y1, Y2, . . . , Yj, Each block will
contain 2m- p- k treatments.

Information on XI, X2, ... , X, and their generalized interactions is lost.
Thus information on 2P- I d.f. is lost.

Interactions YI , Y2, ... , Yk and their generalized interactions and
their aliases are confounded. Thus, there will be (2k - I) alias sets of 2P
interactions each, that will be confounded.

(3) To confound k independent pencils in a (l/sP)-th replicate of
a s'" design: We assume here that s is a prime or a power prime.
Let P(ail, ai2, . .. , aim), i = 1,2, . . . , p be p independent pencils
used as the defining pencils for the construction of a (l/sP)-th
replicate. Suppose we wish to confound k independent pencils
P(bjl , bj2, ... , bjm), j = 1,2, . . . , k, none of which belongs to the
set of the generalized pencils P(ail , ai2, ... , aim), i = 1,2, . . . ,p. Let
S(Uil, Ui2 , .. . , Uik) denote the set of treatments which satisfy the equations

ailXI + ai2X2 + + aimXm = 0, i = 1,2, , P

bjlXI + bj2x2 + ,bjmxm = oq.j = 1,2, , k

where« 's are elementsof GF(s).
The number of equations in the above system is (p + k) and hence

they determine a (m - p - k)-flat and the set S(Uil, Ui2, . .. , Uik) contains
sm-p-k treatments. Take the set S(Uil, Ui2 , ... ,Uik) as a block. Since each
Uil , Ui2, .. . , Uikcan be selected in s ways, we get Sk blocks.

The contrastscarriedby the pencils

where A's are elements of GF(s) not all zero, and their aliases are con­
founded. The numberof these pencils is (sk - I)/(s - I). Hence there will
be (Sk - I)/(s - I) alias sets of s'' pencilseach, which will be confounded.
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1.7 MISSING PLOT TECHNIQUE

51

43. (1) Missing yields: Let YI , Y2 , . .. , Yo be the observed yields and
XI, X2, . . • , Xk be the missing yields . Further, let

E(y) = AS , E(x) = BS.

The estimates of the missing yields are obtained by minimizing the error
sum of squares

S;(y, x) = y'y + x'x - e'(A'y + B'x)

and are given by

x= Be,

where 9 is any solution of the normal equations

A'y + B'x = (A'A + B'B)9'.

The actual error SS is given by

S;(y) = min S;(y, x).
x

For testing the hypothesis el+1 = el+ 2 = ... = em = 0, we apply the usual
F test, using the estimated SS due to the hypothesis, which is calculated as
follows :

Est. SS due to the hypothesis

= [Est. conditional error SS] - [min. value of error SS]

If the F value is insignificant, no correction for bias is necessary . If the F
value is significant, the bias is calculated as follows :

Bias in the estimated SS due to hypothesis

= [Est. conditional error SS]- [min. value of conditional error SS].

(2) Mixed-up yields: If some yields are mixed up so that their total yield
is only known then the mixed-up yields, are estimated by minimizing the
error SS subject to the condition that their total yield is equal to the given
total yield. The bias in the estimated SS due to hypothesis is calculated as
follows :

Bias = [Est. conditional error SS]

- [min. value of conditional error SS subject to the

condition that their total yield is equal to the given

total yield] .

1.8 WEIGHING DESIGNS

44. Chemical-Balance Weighing Design.
Here we consider a chemical-balance weighing design. Let there be p
objects to be weighed in n weighings. Define the matrix X = (Xij) as
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follows.

Xij = I , if the j-th object is kept in the left pan in the i-th weighing,

= -I , if thej-th object is kept in the right pan in the i-th weighing,

= 0 , if the j-th object is not includedin the i-th weighing

i = I, 2, .. . , n ; j = I, 2, . .. , p.

The n x p matrix X is called the weighing design matrix. Let
w' = [WI, W2 , , wpl be the vector of the true weights of p objects and
y' = [YI, Y2, , Ypl be the vectorof readings of the scales in n weighings.

We assumethat

y=Xw+e

and e '" N(O, a 2I ).
The least square estimates of true weights are given by (X'X)W = X'y.

If (X'X) is non-singular, then

w = (X'X)-IX'y

with variance-covariance matrixgiven by

var(w) = a 2(X'X)- I.

The following results havebeen established:

(i) For any weighting design X,

var(wi) :::: a2In, i = 1,2, . .. , p.

(ii) For any weighing design X, the variances of all the estimated
weightsare minimum if and only if X'X = nIp.

(iii) If a Hadmard matrix H, of order n exists, then by choosingany p
columnsof it, wecan form an optimumweighing design matrix to
weighp objects.

The following threedefinitions of efficiency are in use.
Definition 1: Of theclassof all n x p weighing designs,a weighing design
X is optimal,if theaveragevariance ofall theestimatedweightsis minimum
and the efficiency of any weighing design X is defined by

pin tr (X'X)-I .

Definition 2: Of theclassofall n x p weighing design, a weighing designX
isoptimalif thegeneralized variance of theestimatedweights, Le.IX'XI-1 is
minimum, that is, IX'XIis maximum. The efficiency of any weighing design
X is defined by

min·IX'XI-1 IX'XI
----'--=

IX'XI -I max·IX'XI

Definition 3: Of the class of all n x p weighing design,a weighing design
X is optimal if it has the least value of h.max, where h.max is the maximum
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characteristic root of (X'X)- I and the efficiency of any weighing design X
is defined by

min Amax

Amax

where Amax is the maximum characteristic root of (X'Xr '.
45. Spring-Balance Weighing Design.

In this case, the weighing design matrix X = (xij) is defined as

Xij = 1, if the j-th object is included in the i-th weighing

= 0, if the j-th object is not included in the i-th weighing.

Ifbias is present it can be assumed to be one object and its value is estimated
by taking Xij = I,

i = 1,2, ... , n;j = 1,2, ... , p.

The incidence matrix N of block design in which a treatment can occur
at most once in a block may be employed to construct a weighing design
with a spring balance by identifying objects with treatments and blocks
with weighings and N' with X. Let there be v objects to be weighed and
suppose k objects are weighed in each weighing. Suppose the total number
of weighings is equal to b. Further, the weighings are such that each object
is weighedexactly r times and every pair is weighed Atimes. Then, we have
X = N', where N is the incidence matrix of a BIBD. Therefore

X'X = NN' = (r - A)Iy+ AEyy,

and

'-I I A(X X) = --Iy - Eyy.
r - A rk(r - A)

Hence, the variance-covariance matrix of the estimated weights is given by

~ 2 Avar (w) = (J' [I, - -Eyy)/(r - A») .
rk

Also,

~ (rk - A) 2 .
var(wl) = (J',t=1,2, . . . ,v.

(r - A)rk

Applying Definition I of Result 44, it is seen that the efficiencyof the above
weighing design is k2(r - A)/(rk - A).

When a Hadamard matrix Hn+I of order n + I exists, a spring balance
weighingdesign of maximumefficiency involvingn weighingsof n objects
can be constructed as follows. Hn+1 is written so that the elements in its
first row and first column are all +I. Subtract the first row from each of
the remaining rows and multiply the 2nd, 3rd, .. . , (n + I)-st rows by -Y2.
Omit the first row and first column. Then, the resulting matrix is the matrix
of spring balance weighing design having the maximum efficiency.
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1.9 SOME USEFUL MATHEMATICAL RESULTS

CHAPTER 1

46. Galois Fields
(I) The numberofelementsina Galoisfieldis p", wherep isa primenumber
and n a positive integer. A Galois fieldconsistingof pO elements is denoted
by GF(pO).
(2) If t is the smallestpositive integersuch that ei = I, whereex i 0 is any
elementof GF(pO), then t is called the order of ex.
(3) An elementof a GF(pO) havingan order p" - I is called a primitive root
of GF(pO). The primitive roots of GF(p) for variousvalues of p are given in
the following table.

Primitive Roots of GF(p)

P 357
primitive root 2 2 3

II
2

13
2

17
3

19
2

23
5

(4) If P is a prime number, then residues mod p constitute a GF(p).
(5) IfF(x) isan irreducible polynomial ofdegreen inGF(p),thentheresidues
mod F(x) constitute the GF(pO).
(6) The residues moda minimum function of a GF(pO) constitutetheGF(pO).
Minimum functions of GF(pO) for variousvalues of p and n are given in the
following table.

Minimum Functionsof GF(pO)

p n minimum functions
2 2 x2 + X+ I

3 x3 + x2 + 1. x3 + X + I
4 x4 + x3 + I, x4 + X+ 1
5 x5 + x2 + I

3 2 x2 + X + 2. x2 + 2x + 2
3 x3 + 2x + I
4 x4 + x3 + x2 + 2x + 2

5 2 x2 + 2
7 2 x2 + I

(7) The roots of a minimum function of a GF(pO) are primitive roots of
GF(pO).
(8) If ex is a primitive root of GF(pO), then the elementsof GF(pO) are taken
as 0, I, ex, ex2, • .. • expn

- 2•

47. Finite projective Geometry PG(m, s).
Let s = p", wherep is a prime numberand n a positive integer.
(I) A point in PG(m, s) is taken as (xo. XI, • . • , xm), where xo. XI • •.• , Xm
are elements of GF(s), not all zero. Two points (xo. XI • • • • • xm) and
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(pXo, PX I, .. . , pxm) represent the same point, where p is a non-null ele­
ment of GF(s).
(2) The total numberof points in PG(m, s) is equal to (s'""' - I)/(s - I).
(3) g-ftat: All points of PG(m, s) which satisfy a set of (m - g) linear
independent homogeneous equations

aiOXO + ailXI + ...+ aimxm = 0, i = 1,2, .. . , m - g

will be said to form a g-flat. Alternatively, a g-flat is determined by a set
of (g + I) linearly independent points of PG(m, s). A O-flat is a point in
PG(m, s). An l-flat is a line in PG(m, s).
(4) The number of points on a g-flat of a PG(m, s) is equal to
(S(g+l) - I)/(s - I).
(5) The numberof g-flatscontained in a PG(m, s) is equal to

(sm+1 - I)(sm- I) (sm-g+1 - I)
<\>(m, g, s) = (sg+1 _ I)(sg - l) (s - I)

(6)(i) <f>(m , g, s) = <f>(m , m - g - I, s)
(ii) <f>(m , g, s) = I, if g = -I

= 0, ifg :::: -2.

(7) The number of g-flats in a PG(m, s) which contain a given t-flat
(0 :::: t < g :::: m) is equal to <f>(m - t - I, g - t - I, s).
(8) The numberof g-flats in a PG(m, s) whichcontain a givenpoint is equal
to <\>(m - I, g - I, s).
(9) The numberof g-flats in a PG(m,s) whichcontain a givenpair of points
is equal to <f>(m - 2, g - 2, s).

48. Finite Euclidean Geometry EG(m, s)
Let s = p", where p is a prime numberand n a positive integer.
(I) A point in EG(m, s) is taken as (XI, X2, , xm), where XI, X2, . .. , Xm
are elements ofGF(s). Twopoints (XI , X2, , xm) and (x'l' xl' ... , X~) are
same if and only if Xi = x( for i = 1,2, .. . , m.
(2) The total numberof points in an EG(m, s) is sm .
(3) g-flat: All points of EG(m, s) which satisfy the m - g consistent and
independent equations

aiO + ailXI + ai2X2 + .. .+ aimXm= 0, i-I , 2, . . . , m - g

will be said to form a g-flat.
(4) The numberof points on a g-flatof EG(m, s) is sg.
(5) The numberof g-flats in an EG(m, s) is

<f>(m, g, s) - <\>(m - I, g, s).

(6) The numberof g-flatsof an EG(m, s) whichcontain a given point is

<\>(m - I, g - I, s)
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(7) The numberof g-f1ats of an EG(m,s) whichcontaina givenpair of points
is

<f>(m - 2, g - 2, s).

49. Hadamard Matrix
(I) Definition: A square matrix of order n, H, will be called a hadamard
matrix if it has the elements +I and -I and is such that H~Hn = nino
(2) A Hadamard matrix of order 2 is

H2 = [~ ~I J.
(3) IfHm and H, are Hadamardmatricesof orders m and n respectively, then
their Kroneckerproduct Hm ® H, is a Hadamard matrix of order mn.
(4) A Hadamard matrix or order 2ncan always be constructed.
(5) A Hadamard matrix can be written so that the elements in its first row
and first column are all +I .
(6) Let H, be a Hadamard matrix of order n, written so that all elements in
its first row and first column are +I. Let D be the matrix of order (n - I)
obtainedfromH, byomittingits firstrowand firstcolumn. If theelements-I
in D are replaced by 0, then we get the incidence matrix of a SBIBD with
parameters

n n
v = b = n - I, 'Y = k = '2 - I, h = 4' - I.

(7) If we subtract the first row from the other rows of Hn, and multiply the
2nd, 3rd, .. . , nth rows by -Y2, and omit the first row and firstcolumn, then
we get the incidence matrix of a SBIBD. Equivalently, if we subtract the
first row from the other rows of H, and omit the first row and first column
and replace the non-zero element by +I, then the resulting matrix is the
incidence matrix of a SBIBD.

50. Systems of Distinct Representatives (SDR)
(I) Definition: Let S be a set of v elements 1,2, .. . , v. Let T" T2, . .. , Tn
bea non-nullsubsetsofS, notnecessarilydisjoint.Then,aset (a" a2 •. . . , an)
whereai i= T, for every i and aj i= aj for every i i= j, is definedto be a system
of distinct representatives (SDR) for the sets T1, T2, ... , Tn.
(2) A necessary and sufficient condition for the existence of a SDR for
the sets T1, T2• . . .• T, is that for every integral k, it. iz. . . . , ik satisfying
I ~ k ~ n and I ~ i, < i2 < . . . < ik ~ n,

ITil Ur, U . . . U Tiki::: k,

where ITI denotes the cardinality of the set T.
(3) Let ITI denote the cardinalityof the set T and Rn(T" T2, . .. , Tn)denote
the number of SDRs for the sets T1, T2.. ... Tn. If lTd::: s for every i, then

Rn(T1,T2, .. . , Tn) > s!,
::: s!j(s - n)!,

ifs ~ n
if s ::: n
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51. Symmetrically Repeated Differences
Let M be a module containing exactly m elements. We associate exactly n
symbols with each element ofM. The symbols corresponding to an element a
ofM are denoted by ai , az, .. . , an' There will be mn symbols in all. Symbols
with the same subscript i will be said to belong to the class i, i = 1,2, .. . , n.
There will be n classes .

Consider a set S containing k symbols. Let S contain Pi symbols from
the i-th class, i = 1,2, .. . , n. Thus , k = L~=I Pi. Let Pi symbols contained
in the set S from the i-th class be donoted by ail , ar, , aFi, i = I , 2, . . . , n.
The Pi(Pi - 1) differences aiu - a,w, u =1= w = I, 2, .p, are called pure
differences of the type [i, i]. Clearly, there are n types of dif­
ferent pure differences. Let the Pi symbols contained in the set S
from the j-th class be donoted by bj I, bjz, , br. The PiPj differ-
encesajU -bt,i=l=j= 1,2, . .. ,n, u= 1,2, ,pi , w = 1,2, .. . , nj are
called the mixed differences ofthe type [i,j]. Clearly, there are n(n - I )types
of mixed differences. Let SI , Sz, . .. , S, be t sets satisfying the following
conditions:

(i) Each set contains k symbols.
(ii) Let Pie denote the number of symbols from the i-th class contained

in the £-th set.
t

(iii) Among the L pi£(pi£ - 1)pure differences ofthe type [i, i], arising
l=1

from the t sets, every non-zero element of M is repeated exactly A
times independently of i.

t

(iv) Among the L pitpj£ mixed differences of the type [i, j] , arising
l=1

from the t sets, every element of M is repeated exactly A times,
independently of i and j.

Then , we say that in the t sets SI , Sz , . .. , S.. the differences are symmet­
rically repeated, each occuring A times .
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EXERCISES

1. For the model 'E(y) = AO, var(y) = (TZI, showthattheparametricfunctions
(i) tAO, (ii) tA'AO and (iii) tGA'AO, where G is a g-inverseof A'A, are
estimablefor any vector l of appropriateorder.Find their BLUEs and their
variances.

2. Show that a necessary and sufficient condition for the estimability of to is
that

rank (A'A) = rank (A'A, l),

where it is assumed that 'E(y) = AO.

3. Let YI, yz, and Y3 be indepenent random variables with a common vari­
ance (Tz and expectations given by 'E(YI) =8t +~, 'E(Yz) = Oz +~ and
'E(Y3) = 81+~. Prove that bl + bzOz + b3~ is estimable if and only if
b3 =bl + bz• If b, 81 + bz8z +b3~ is estimable,findits BLUEand its vari­
ance. Find an unbiasedestimatorof (Tz.

4. Let Yi, i = 1,2, . .. ,6, be independent random variables with a com­
mon variance (Tz and 'E(y\) = 81 + 84, 'E(Yz) = Oz + 84, 'E(Y3) = ~ +
85, 'E(Y4) = 84+ 85, 'E(Y5) = 81 + 86, and 'E(Y6) = 8z +~. Show that
81 - 8z is estimable and find its BLUE and its variance. Find an unbiased
estimatorof (Tz. Show that 81 + Oz is not estimable.

5. Let Yi. i = 1, 2, ... , 6 be independent observations with a common vari­
ance (Tz and expectations given by 'E(Yi) = 8Icos(2'il'ij6) + Ozsin(2'il'ij6),
i = I, 2, ... , 6. Find the BLUES of 81 and Oz and their variances and the
covariancebetween them.

6. Let Xi, Yj and zi, i = 1, 2, . .. ,n be 3n independent observations with a
common variance (Tz and expectations given by

Find the BLUESof 81 and Oz and their variance-covariance matrix.Find the
unbiasedestimatorof (J'z based on the total availabledegrees of freedom.

7. Let Xj, Yi. and Zj be 3n independent observation with a common variance
(Tz and expectations given by 'E(Xj) = 81, 'E(Yi) = Oz, 'E(Zi) = 81 - Oz, i =
I, 2, . .. , n. Find the BLUES of 81 and Oz and their variance-covariance

58
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matrix. Find the unbiased extimator (J2 based on the total variable degrees
of freedom.

8. Let Yij, j = 1,2, . . . , n, i = 1,2,3 be independentobservationswitha com­
mon variance(J2 and expectationsgivenby ~(YIj) = 01 + ~ + ~; ~(Y2j) =
01+~; and ~(Y3j) = -2~ + ~,j = 1,2, .. . , n. Find the BLUEsof 0" ~,

and ~ and their variance-covariance matrix. Find the unbiasedestimator of
(J2 based on the total availabledegrees of freedom.

9. At a post office, three parcels are weighed singly, in pairs and all together.
All the weighingsare independentand haveequal accuracy. The weightsare
denoted by YIOO, YOlO, YOOI , YIIO, YIOI , YOII and YI'I, where the suffix 1 indi­
cates thepresenceof a particularparceland the suffix 0 indicatesits absence.
ObtaintheBLUEsofthe weightsof theparcelsand theirvariance-covariance
matrix. Find the unbiasedestimator of (J2, where (J2 is the varianceof each
observation.

10. Let Yij, j = I, 2, . . . , n; i = I, 2, 3 be independent observations with
a common variance (J2 and expectations given by ~(Ylj) = 01 +
202+ 303, ~(Y2j) = 201+ 3~ + 03 and ~(Y3j) = 301 + ~ + 2~ ;j =
1, 2, .. . , n. Find the BLUEs of 0, , ~ and ~ and their variance-covariance
matrix. Also, find the unbiased estimator of (J2 based on the total available
degrees of freedom.

II. Assumingnormalityof observations,derivesuitabletest statisticsfor testing
the following hypotheses

(i) Ho: 01 = 02 in Exercise6.
(ii) Ho: 0, = a~ in Exercise 7, where a is a known constant.
(iii) Ho: 03 = 0 in Exercise 8.
(iv) Ho: 0, +~ + ~ = 0 in Exercise 10.
(v) Ho: ~ = 03 = 0 in Exercise 10.

12. Let Yi, i = 1,2, .. . , n be independentnormal variates with a common vari­
ance (J2 and expectations given by ~(Yj) = ex + l3(xj - x), i = I , 2, ... , n,
whereex and 13 are unknown constantsand x = }:xi!n. Obtain the BLUEsof
ex and 13 and their variance-covariancematrix. Derive appropriate statistics
for testing (i) ex = 0 and (ii) 13 = O.

13. Let Yi, i = 1,2 , . .. , n be independent normal variates with a com­
mon variance (J2 and expectations given by ~(Yi) = ex + 13, (Xli - XI) +
132(x2i - X2) + ... + I3k(xki - xd i = 1.2, ... , n, where ex, 131, 132, .. . 13k
are unknownparametersand Xij 's are knownconstantsandxp = }:Xpi/n, p =
1,2, ... , k. Obtain the BLUEs of ex, 13" 132 , . .. , 13k and their variance­
covariance matrix. Derive tests for testing (i) l3i = 0, (ii) l3i = I3j, i #- j =
1,2, .. . k.

14. Let Yij, j = 1,2, . .. .nr ; i = 1,2, ... . k be independent normal variates
with a common variance(J2and expectationsgiven by ~(Yij) = ~ + t., j =
I, 2, .. . , n., i = I , 2, . . . , k, where ~ and t's are unknown parameters.
Derive tests for testing (i) nu + }:niti = 0, (ii) t, = t2 = .. . = tk = 0 and
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(iii) t) = t2 = ... = tk. Show that the test statistics in (ii) and (iii) are
same.

15. Let Yij, i = 1,2, ... , r, j = 1,2, ... , s be independentnormalobservations
with a common variance (12 and expectations given by ~(Yij) = Il.+ ai +
13j , i = 1,2, ... , rand j = 1,2, . . . , s. Deriveappropriate statistics for test­
ing (i) ai = 0, i = I, 2, .. . , rand (ii) 13j = 0, j = I, 2, ... , s.

16. Let Yij,j = 1,2, ... , nj and i = 1,2, . . . , k be independent normal obser­
vations with a common variance (12 and expectations given by ~(Yij) =
Il. + tj+ 13xij,j = 1,2, . . . , nj, j = 1,2, .. . , k, where Il., tl, t2, . . . , tk and
13 are unknownnumbersand xij's are knownconstants. Derivesuitablestatis­
tics for testing (i) 13 = 0 and (ii) tl = t2 = ... = tk = O.

17. Let Yij, i = I, 2, ... , r; j = I, 2, ... , s be independentnormal observations
with a common variance (12 and expectations given by ~(Yjj) = Il.+ aj +
tj+ 13X jj, i = 1,2, ... , s, where Il., a's, t's and 13 are unknown parameters
and Xj/s are known numbers. Derive statistics for testing (i) 13 = 0 and
(ii) tl = t2 = ... = tr = O.

18. Giventhat ~(y) = A6, var(y) = (121, and A'A isa 3 x 3 non-singularmatrix
and the following

&2 = 200, 61 = 3, 62 =5,63 = 2,

3[3 2 I]var(6) = - 2 4 2 .
10 I 2 3

Showthatthe valueofthe F-statitsicfortesting 6. = ~= 6J = 0 isF = 65/9.

19. Let Yi, i = 1,2, . . . , n be independent random variables with
~(Yi) = a + 13Xj, i = 1,2, ... , nand var(y) =diag (dj , d2, ... , dn) ,

where a and 13 are unknown parameters and x's, d.. d2, .. . , dn are known
numbers. Find the BLUEs of a and 13 and their variance-covariance
matrix. Discuss the cases when (i) x, = i and d, = (12i, (ii) x, = i and
di = (12i2, i = 1,2, ... , n.

20. Let YI, Y2 and Y3 be 3 observationswith ~(y.> = 61 + al~, ~(Y2) = ~ and
~(Y3) = 61 + a3llz and variance-covariance matrix

3[3 2 I]V = - 2 4 2 ,andal = -J3i2, a2 = .)3/2.
20 I 2 3

Find the BLUEs of 61 and 62 and their variance-covariancematrix.

21. Let Yi, i = I, 2, .. . , n be n independent random observations with
~(Yi) = Il. and variance-covariance matrix V given by V = [(12/(N - 1)].
[Nl; - Enn] , where Enn is an n x n matrix with all elements unity. Obtain
the BLUE of Il. and its variance. Also, obtain an estimator of the variance
of the BLUE of Il..
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22. Let Yj, i = I, 2, ... ,n be n independent random variables with
'E(Yi) = J.L + 6Xi, i = 1,2, .. . , n where J.L and 6 are unknown parameters
and Xi = J3(2i - n - I)/(n + I), i = 1,2, .. . , n, and variance-covariance
matrix V = a 2(aij), where aij = 12i(n - j + I)/(n + I?(n + 2) for i ::: j.
Show that the BLUEs of J.L and 6 are given by 11 = (YI + Yn)/2 and
e= (n + I)(Yn - YI )/2J3(n - I). Further, show that

var (11) = 6a2/(n + I)(n + 2)
var(e) = 2a2/(n - I)(n + 2)
cov (11 , e) = o.

2 -I 0 0
-I 2 -I 0
0 -I 2 -I

Hint: V-I = (n+I)(n+2)

12a2

0 0 0 0

o 0
o 0
o 0

-I 2

23. Given that 'E(y) = A6 , var(y) = V, V being a non-singular matrix, A is an
n x 3 matrix with rank 3 and the following,

AI
[SSE/en - 3)] = 100,6 = (6, 10,4)

I [3 2 I]var (9) = - 2 4 2 .
20 I 2 3

Show that the value of F for testing 6\ = ~ = 6J = 0 is given by F = 1.73

24. In Exercise 20, find the F statistic for testing the hypothesis {h = O. Also
give the F statistic for testing the hypothesis 61 = ~ = O.

25. In Exercise 22, obtain the values of F statistic for testing the hypotheses
(i) J.L = 6 = 0 and (ii) 6 = O.

26. Given below is the incidence matrix of a block design. Find its C matrix, the
degrees of freedom associated with the adjusted treatment sum of squares
and the degrees of freedom for the error sum of squares .

N=

I 000
I 0 I 0
I 0 I 0
o I 0 I
o I 0 I
000 I

27. Determine which of the following designs are connected.
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Design Blocks
I 2 3 4 5 6 7 8

I C,A,B C,B,D A,C,D A,B,D D,F,G E,F,G D,E,F D,E,G
II A,B,G A,F,G A,E,F A,D,E A,C,D A,B,C
III B,E,G A,F,G C,E,F A,D,E C,D,G B,D,F A,B,C

28. Below is the incidence matrix of a design. Show that the design is not
connected but is balanced.

Hint: Here

K=[~ nR=[~ ~ !n
Hence

C

=

=

o
1/2
1/2
o

The fourth column of C is -I times its first column and its third column is
-I times its second column. Hence

rank (C) = 2.

Thus, rank (C) i= v-I = 3. Hence the design is not connected.
We now find the characteristic roots of the C matrix. We have

Hence the two non-zero characteristic roots of C are each equal to 1. There­
fore the design is balanced.

29. Show that the design with incidence matrix N = aEvb' where a is some
positive integer, is connected, balanced and orthogonal.

30. If N is the incidence matrix of an equi-replicate binary regular design and
* *N = Evb - N, then show that the design whose incidence matrix is N is an
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equi-replicate binary regular design. Determine the C matrix of the design
•
N in terms of the C matrix of design N. Further if the design N is connected

•
balanced, show that the design N is also connected balanced.

31. Let N be the incidence matrix of an orthogonal design (v, b, r, k) with v =
• •

2k. Consider N = Evb - N. Then show that the design N is orthogonal.

32. For a connected balanced design, show that its C-matrix is given by

I
C = 8(Iv - yEvv ),

where 8 is the non-zero characteristic root of the matrix C.

33. Let N be the incidence matrix of an equi -replicate, regular connected bal­
anced design. Show that

NN' = k[(r - 8)Iv + (8/v)Evv ],

where 8 is the non-zero characteristic root of its C-matrix, k is the block
size and r is the number of replications of a treatment, that is, show that the
characteristic roots ofNN' are rk and k(r - 8) with respective multiplicities
I and v - I .

34. Show that the average variance of BLUEs ofelementary treatment constrasts
in a connected design is

where 81,82, . .. ,ev-t are the (v - I) non-zero characteristic roots of the
matrix C.

35. Prove that the average variance of the BLUEs of the elementary treatment
contrasts in a connected design lies between 2(J2/8min and 2(J2/Gmax where
Gmin and 8max are respectively the minimum and the maximum characteristic
roots of the C-matrix of the design.

36. Consider a connected design and let £'t be any treatment contrast. Show that
the variance of the BLUE of £'t lies between i't (J2/8max and i't (J2/Gmin ,
where 8max and Gmin are respectively the maximum and the minimum non­
zero characteristic roots of the matrix C of the design .

37. Prove that the efficiency of a binary connected design is given by

v(n - b)
E < ,

- n(v - I)

where n = total number of plots in the design.

38. Show that the non-zero characteristic roots of the C-matrix of a connected
balanced design is (n - b)/(v - I), where n = total number of plots in the
design.
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39. For a binary connected equi-replicated incomplete block design, show that
b ?: v.

40. Show that the incidence matrix N of an equi-replicated regular connected
balanced design satisfies the relation

NN' = (r - X-)Iy + X-Evv •

where A(v - I) = r(k - I).

41. Prove that the most efficientconnected design is balanced.

42. Prove that the average variance of the BLUEs of elementary treatment con­
trasts in a connected balanced design is given by

and that its efficiency is E = v(n - b)/n(v - I).

43. Let the incidence matrix of a design be

[

I I I 0]I I 0 I
N= I 0 1 1 .

o I I 1

Show that (i) the design is connected balanced, and (ii) its efficiencyfactor
is E = (8/9).

44. Suppose mk treatments are divided into m sets of k each and the treatments
of each set are assigned to blocks of size k. Further, let there be r repetitions
of these m blocks. Show that the design so obtained is orthogonal.

45. Show that

I~, -~I=klk2 . . . kb.rlr2 . . . r,

46. Show that the following designs are connected balanced. Find the non-zero
characteristic root of the C matrix in each case. Find also the varianceof the
BLUE of an elementary contrast in each case.

(i) N = Evb (ii) C = aI - (a/v)Evy.

47. Show that in a one-way design, the BLUE of an estimable treatment con­
trast l't is given by p'Q, where Cp = .e and that its variance is given by
a 2p'.e. Hence show that if C = aI - (a/v) Evy, the BLUE of a treatment
contrast l't is l'Q/a with variance a 2l' .e/a. As a particular case, when
C = al, - (a/v)Evv, deduce that the BLUE of an elementary treatment con­
trast tj - tj is (Qj - Qj)/a with variance 2a2/ a.

48. Show that in a connected design C + rr' /n is non-singular and that
(C + rr' /n)-I r = EvJ, where r' = (r. , r2•.. .• ry)and n = r'EvI. Also prove
that (C + rr' /n)-I is a g-inverse ofC.
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49. Prove that in a connected design, a set of solutions of normal equations in
the intrablock analysis is given by

P- = G/n

eX = K-IB - (G/n)Ebl - K-1N'[C + rr'/nrIQ

t = [C + rr' /nrlQ

Also show that

(i) varti) = a 2[(C + rr'/n)-I - Evv/n]
(ii) if l't is any treatment contrast, then its intrablock estimate is

r«: + rr'/n)-'Q, with variance a 2l' (C + rr'/n)-'i.

50. Show that in the intrablock analysis of variance of a one-way design, the
adjusted block sum of squares is obtained as

Adj. Block SS = (Total SS) - (Error SS) - (Unadj . Treatment SS).

51. Oerive the expected values of different sums of squares which occur in the
intrablock analysis of variance of a one-way design .

52. In the intrablock analysis of variance of a one-way design, show that the
variance-covariance matrice s of Q and P are given by

var(Q) = a 2C

var(P) = a 20

cov(Q. P) = -a2CR-'N = -a2NK- IO.

53. Show that the equations for obtaining t" s = 1,2, .. . , v in the combined
inter and intrablock analysis of an equiblock-size one-way design can be
obtained from the corresponding equations in the intrablock analysis by
replacing Q" r, and Ass' . (s i= s' = 1,2, . .. . v) by P,. R, and Ass', where

P, = WIQ, + W2Q~, Q~ = T, - Q, - (Gybk) r, R, = r, WI + R~ I '

Ass' = (w, - w2)Ass' and setting r 't, = O.

54. Show that, in the analysis with recovery of interblock information,

var(Q ) = C/w\ , var(Qil = C\ / W2

cov(Q, Qil = 0

vartw.Q + w2Qil = wj C + W2CI

where WI = l/ae
2 and W2 = 1/(ae

2 + ka~).

55. Show that in a connected design in which each block is of the same size k
and NN' is non-singular, the intrablock, interblock and the combined intra
and inter block estimates of a treatment contrast l't are respectively given by

(i) r«: + rr' /n)-IQ with variance w e«: + rr'/n)-' i
(ii) l'(NN')-1 N B with variance (k/ W2) l'(NN')-1 i

W, w,
(iii) l'(w iC + --'::NN')-I(W,Q + --'::NB) with variance l'(wiC +

R R
WI NN')-li
R
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Obtain the linear combination of the estimates (i) and (ii) which has the least
variance and show that it is equal to the estimate (iii) if

56. Show that in a connected design with equal block size, the average variance
of the combined intra and inter block estimates of elementary treatment
contrasts is

Wz I I Wz I I
2 v tr(wl C + TNN)- - Elv(WIC + T NN)- Evl

v(v - I)

STANDARD DESIGNS

57. Derive the analysis of variance of a design whose incidence matrix is
N = aEvb; where a is some positive integer and compare its efficiency with
that of a design with incidence matrix N = Evb'

58. Suppose v = pq treatments tij, i = I , 2, . . . , p, j = I , 2, . . . , q are arranged
at random in b blocks of k plots each such that (i) every treatment occurs
at most once in each block, (ii) every treatment occurs in exactly r blocks
and (iii) a pair of treatments tij and tiT occurs in exactly h(ijXi'j') blocks,
where

h(ij)(i'j') = rl if i = i', j = j'

= hOI if i = i', j # j'
= hlO ifi # i' , j =j'

= hll ifi # i' , j #j'

Prove that

(i) r(k - I) = (q - I)hol + (p - l)hlO + (p - I)(q - I)hll'
(ii) an intrablock solution of tij is given by

A k
tij = -[Qij + BQi. + CQ.j] , where

a
Qij = the adjusted total for tij ,

q P

o. = LQij , Q.j = LQij,
j=1 i=1

B = (hOI - hll)f[a - q(hOI - hid] ,

C = (h lO - h ll)f[a - P(hlO - h Id] ,

a = r(k - l) + hOI + h lO - hll .
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(iii)
'I 'I P p

the BLUEs of L tij - L ti'j , L, tjj - L, tij' and tij - tij' - tj'j +
j=1 j=1 i=) j=1

ti'j' are respectively given by

k(Qi. - Qi'J/[a - q(Aol - All)] ,

k(Q.j - Q.j,)/[a - p(AIO - All)] , and

k(Qjj - Qij' - Qj'j + Qi'j,)/a

with respectivevariances

2kq<r2(l + qB)/a , 2kp<r2(l + pC)/a, and 4k<r2/a ,

where a, Band C are defined in (ii).

59. Let there be v treatments and n = n) + n2 + ... + n, plots, there being nj
plots receivingthe i-th treatment.The yields are assumed to be independent
normal variates with a common variance <r2 and expected values given by
the effectof the treatmentapplied to the plot. Derivethe analysisof variance
for testing the hypothesisof equality of treatmenteffects. Prove that the test
is most sensitive when nj = n/v , i = 1,2 , ... , v.

60. In a randomizedblock experimentoriginallyplanned with v treatmentsand
r replications, it was later on found that there was not enough material of
treatment I and there wasexcessof materialof treatment2. Hencetreatment
I was applied once only in blocks I, 2, .. . , rl and treatment2 was applied
once in blocks I, 2, . .. , rl and twice in blocks rl + I, rl + 2, .. . , r. De­
rive the analysis of variance for this modified design. Obtain variances of
the BLUEs of different elementary treatment comparisons and the loss of
efficiency due to the above modification of the design.

61. In a randomized block design, with v treatments and r blocks, treatment 2
in Block 1 was interchanged with treatment 1 in Block 2 through mistake,
Further, if the design is equi-replicate, then show that the above expression
of the average variancebecomes

W2 I I I
2[tr(wIC + -NN)- - -]/(v - 1).

k W2r

62. In a randomized experiment, treatment 1 was used twice in the first two
blocks and consequently treatment 2 was not used in these blocks. Show
that

(i) the sum of squares for testing t = 0 is

k ? 2
D. [(r - 2)(rk - 2)Qi + (r + 2)(rk + 2)Q2 - 4(r - 2)QIQ2]

(ii)

(iii)

v

+LQj,2/r,
3

var(tl - t2) = 2k<r2r(rk+ 2)/D.

vani, _ tj) = <r2 [k(r - 2~rk - 2) + ~ ] , i = 3,4, ... , v
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• i = 3.4, . . . •v(iv)

(v)

var(lz _ tj) = (1"2 [k(r + 2~rk + 2) + ~ ]

var (tj - tj) = 2(1"2/r. i =1= j = 3.4, . . . • v
where ~ = (r - 2)(r2k2 + 2rk2 - 8).

63. For testing v new varieties. an experimenter divides his field into v blocks
and each block into (gv + 1)plots. Each new variety is replicated g times in
each block and a standard variety is assigned to the (gv + 1)st plot in each
block. Derivean appropriate analysis of variance for this design.

64. For a SBIBD. show that NN' = N'N.

65. If N is the incidence matrix of a BIBD. then show that

(i) the characteristic roots of NN' are rk and r - Awith multiplicities
1 and v-I respectivelyand the characteristic roots of N'N are O.
rk and r - Awith multiplicities b - v.}, and v-I respectively.

(ii) IN'NI = O. when the BIBD is non-symmetrical
(iii) tr (N'N) = Yr.

66. If in a BIBD. b = 4(r - A). then prove that 2k = v ± .jV.
67. Show that the parameters of an affine resolvable BIBD with v = nk,

b = nr, r. k, Acan be expressed as

v = n2(nt - t + 1). b = n(n2t + n + 1) .

r = n2t + n + 1. k = n(nt - t + 1).

A= nt + 1,

where n :::: 2 and t :::: O.

68. In a BIBD with parameters v , b. r, k, A•a control treatment is added to each
block. so that the block size is now (k + 1). Derive the analysis of variance.
the BLUEs of various treatment comparisons and their variances.

69. Show that in a BIBD. the necessary and sufficientcondition that there be the
same number of treatments common between any two blocks is that b = v.

70. Show that in a BIBD. (b > v + 2). x, the number of common treatments
between any two blocks satisfies the inequality

-(r - A- k) S x S [2Ak + r(r - A- k)]/r.

71. Show that in a BIBD. x, the number of common treatments between any two
blocks satisfies the inequality

k k
(b_l)[(r-l)-T(b-r)] s x S (b_l)[(r-l)+T(b-r)] .

where T = [(b - 2)(b - v)/b(v - 1)]1/2.

72. Let M be the matrix obtained from the incidence matrix
N of a BIBD (v, b. r, k, A) by replacing 0 by 1. Prove that
MM' = 4(r - A)Iv + [b - 4(r - A)]Evv.
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73. A BIBD (v, b, r, k, A) is said to belong to a family A of designs
if b = 4(r - A). Let N1 and Nz be the incidence matrices of BIBDs
(VI. b. , rl , kj , Ad and (vz, bz, rz, kz, AZ) belonging to the family A. Prove
that the design whose incidence matrix N is given by

* *N=N1 ®Nz+NI ®Nz

is a BIBD belonging to thli family t-- and find its parameters, where ® denotes
the Kronecker product, NI and Nz denote the complementary designs of
N, and Nz.

74. An incomplete block design is said to be a Linked Block design if (i) each
block has the same number k of plots, (ii) each treatment occurs in exactly
the same number r of blocks and (iii) any two blocks have the same number
of treatments in common. Show that the design obtained by interchanging

* * * * *the roles of treatments and blocks in a BIBD (v , b, r . k, A) is a Linked block
design. Obtain the parameters ofthis new design. Obtain the C and D matrices
of this design, and find the rank and characteristic roots of the D matrix.

75. Derive the expected values of different sums of squares in the intrablock
analysis of variance of a BIBD.

76. A BIBD with parameters v;b = v(v - 1)/2, k = 2, r = v - I and A = I is
formed by taking v(v - 1)/2 combinations ofv treatments taken 2 at a time
as blocks. Interchange the roles of blocks and treatments in this design. Show
that this new design is a PBIBD and obtain the parameters of this design.

77. Let v = mk treatments be arranged in m sets of k each and each set be taken
as a block. There are r such repetitions, so that the total number of blocks
is equal to b = mr. Show that this design is a PBIBD with two associate
classes and obtain the parameters of this design. Show that this design is
not connected and that by selecting r suitably, the number of blocks can be
made equal to, greater than or less than the number of treatments.

78. The association matrices of the asssociation scheme of an m-associate class
PBIBD are defined by v x v matrices B, = (bn13 j), i = 1,2, .. . , m, where
bn l3 '. the element in the cell (a, 13) of B; is defined by

bn13 i = 1, if a and 13 are i-th associates

= 0, otherwise.

Further, every treatment is defined to be the o-th associate of itself, so that

B, = L. no = I, Ao = r, Pit = ni~j, Pok; = ~k

where ~j is that Kronecker delta, which is defined to be I, if i = j and 0, if
i =f j. Show that

(i) ElvBj = njE1v, BiEvl = niEvI, i = 0, 1,2 , ... , m
m

(ii) L B; = Evv
i= O

(iii) Bo, B 1, • • • , Bm are linearly independent
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(iv)

(v)

CHAPTER 2

79. Define Pi, i = 0, 1,2, . . . , m matricesof a PBIBD as follows:

PoiO Poi I

PliO PHI

Pi =

PmiO Pmi l

Show that
no no
nl n,

m
(i) LPi=

n2 n2

i=O

nm nm

(ii) Po, PI, .. . , Pmmatricesare linearly independent
m

(iii) PjPk = L Pjk iPi , j , k = 0,1,2, .. . , m
i=O

Plk = PkPj,

(iv) Po, PJ , • • • , Pm matrices provide a regular representation in
(m + I ) x (m + I) matrices of the algebra given by B-matrices
of the association scheme of a PBIBD, whichare v x v matices.

80. Show that NN' of an m-associateclass of a PBIBD is given by
m

NN'= LhiBi'
i=O

81. With the help of Bj-matrices of the association scheme of an m-associate
class of a PBIBD, show that

m m
(i) Lni=V, (ii) Lnihi =rk,

i=O i=O
m

(iii) LPjki = nj, (iv) niPjk i = njPik
j

k=O
m

82. The distinctcharacteristic roots of B = L c.B, are the same. Hencededuce
i=O

that thedistinctcharacteristic roots ofNN' ofan m-associateclassPBIBDare
m

thesame as thoseofP = L hiPi. Hence,provethat thedistinctcharacteristic
i=O
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roots of NN' are given by rk and the distinct characteristic roots of the matrix
L = (iij), where

m

iii = r- njhi + LhtPit i. i = I. 2. .. .. m
t=i

m

iij = L htPit
j

- nihi , i =/; j = I. 2.. . . . m
t=j

83. If NN' of an incomplete block design (v, b, r, k) has only one zero charac­
teristic root with multiplicity u, show that b ~ v - u. Further if this design
is resolvable with v = nk, b = nr, then show that b ~ v + (r - I) - u.

84. Show that the distinct characteristic roots of NN' of a 2-associate class
PBIBDare given by

eo = rk, with multiplicity I
I I . r:-

ei = r - '2(hl + h2) + '2(h l - h2)[P + (-I)'.....-~].

with multiplicity

(X._nl+n2_(_I)i[(nl-n2)+r(nl+n2)] i=12
I - 2 2J"i.·'

where r = Pl22 - Pl21
, 13 = Pl21 + Pl22 and ~ = r2 + 213 + 1.

85. Show that the values and the multiplicities of the distinct characteristic roots
of NN' of a group divisible design are

eo = rk, with multiplicity I

el = r - hi. with multiplicity m(n - I)

~ = rk - Vh2. with multiplicity (m - I)

86. Show that the values of the multiplicities of the distinct characteristic roots
ofNN' of an L, (Latin square type design with i constraints) design are given
by

eo = rk with multiplicity I

e l = r - ihl + h2(i - I) with multiplicity (s - I )(s - i + I)

~ = r + h i(s - i) - h2(S - i + I) with multiplicity i(s - I) .

87. Show that the values and the multiplicities of the distinct characteristic roots
of NN' of a triangular design are given by

eo = rk, with multiplicity I

el = r - 2hl + h2, with multiplicity n(n - 3)/2

~ = r + (n - 4)hl - (n - 3)h2 . with multiplicity (n - I) .
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88. Prove that in an m-associate class PBIBD with k > r , l(iij)1 = 0, where

m

iij = L AtPit
j

- niAi, i:l j = 1,2, .. . , m
l=i

m

iii = r+ LAtPilj - niAi, i = 1,2, . . . , m.
l=i

Hence, deduce that for a 2-associate class PBIBD with k > r,

(r - AI)(r - A2) + (AI - A2)[PI22(r - AI) - P12 1(r - A2)] = 0

89. Prove that a given block in a BIBD (v, b, r, k, A)can never have more than
b - 1 - [(r - 1)2k/(r - A- k + kA)] blocks disjoint with it and if some
block has that many, then (r - A- k + kA)/(r - I) is a positive integer and
each of the non-disjoint blocks has (r - A- k + kA)/(r - 1) treatments in
common with it.

90. Show that by replacing each treatment of a BIBD (v*, b*, r*, k*, A*) by a
group of n treatments, we get a singular group divisible design with param­
eters v = nv* , b = b* , r = r*, k = nk* , nl = n - I, n2 = n(v* - 1),
AI =r*, A2=A*,

PI = [ n ~ 2 n(v*O_ 1)] , P2 = [n ~ I n(~*-_12)l
91. Prove that in a singular group divisible design, a given block cannot have

more than

[
~AI-If ]b-l-

n(AI - 1) + (k - n)(A2 - 1)

blocks disjoint with it and if some block has that many disjoint blocks, then
n + [(k - n)(A2 - I)/(AI - I)] is an integer and each non-disjoint block has
n + [(k - n)(A2 - I)/(Al - I)] treatments common with that block.

92. Prove that in a singular group divisible design, the necessary and sufficient
condition that a block will have the same number of treatments in common
with each of the remaining blocks is that (i) b = m, and (ii) k(r - 1)/(m ­
I) is an integer.

93. Prove that for a resolvable singular group divisible design, b ?: m + r - 1.
Further, prove that a necessary and sufficient condition for a resolvable sin­
gular group divisible design to be affine resolvable is that (i) b = m + r - I,
and (ii) k2/v is an integer.

94. Prove that for a singular group divisible design, b ?: m, and further if it is
resolvable , then b ?: m + r - I.

95. Prove that for a semi-regular GD(group divisible) design, b ::: v - m + I
and further if it is resolvable, then b ?: v - m + r.

96. Prove that in a semi-regular GD design, k is divisible by m and every block
contains (kim) treatments from each group.
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97. Prove that a given block of a semi-regular group divisible design cannot
have more than

v(v - m)(r _ 1)2
b - I - -----------

(v - k)(b - r) - (v - rk)(v - m)

blocks disjoint with it and if some block has that many disjoint blocks, then

k[(v - k)(b - r) - (v - rk)(v - m)]

v(v - m)(r - I)

is an integer and each non-disjoint block has

k[(v - k)(b - r) - (v - rk)(v - m)]

v(v - m)(r - I)

treatments common with that block .

98. Prove that in a semi-regular group divisible design, the necessary and suf­
ficient condition that a block will have the same number of treatments in
common with each of the remaining blocks is that (i) b = v - m + I, and
(ii) k(r - I)/(v - m) is an integer.

99. Prove that for a resolvable semi-regular group divisible design,
b ~ v - m + r and that the necessary and sufficient condition for it to be
affine resolvable then is that (i) b = v - m + r, and (ii) k2/v is an integer.

100. Prove that in a triangular design,

(i) if r - 2>" + h2 = 0, then b ~ n and further if the design is resolv­
able b ~ n + r - I. ;

(ii) ifr + (n - 4)hl - (n - 3)h2 = 0, then b ~ v - n + I, and further
if the design is resolvable, then b ~ v - n + r.

101. Prove that if in a triangular design r + (n - 4)hl - (n - 3)h2 = 0, then 2k
is divisible by n, and every block contains 2k/n treatments from each of the
n rows of the association scheme.

102. Prove that in a triangular design with r + (n - 4)hl - (n - 3)h2 = 0, a given
block cannot have more than

v(v-n)(r-I)2
b - I - -----------

[(b - r)(v - k) - (v - rk)(v - n)]

blocks disjoint with it and if some block has that many disjoint blocks, then
k[(b - r)(v - k) - (v - rk)(v - n)]jv(v - n)(r - I) is an integer and each
non-disjoint block has k[(b - r)(v - k) - (v - rk)(v - n)]/n(v - n)(r - I)
treatments in common with that block.

103. Prove that in a triangular design with r + (n - 4)hl - (n - 3)h2 = 0, the
necessary and sufficient condition that a block will have the same num­
ber of treatments in common with each of the remaining blocks is that
(i) b = v - n + I and (ii) k(r - I)/(v - n) is an integer.

104. Prove that for a resolvable triangular design with
r + (n - 4)h) - (n - 3)h2 = 0, b 2: v - n + r and that the necessary
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and sufficient condition for it to be affine resolvable is that (i) b = v - n + r
and (ii) k2jv is an integer.

105. Prove that in a Latin-square type design with i constraints (L)

(i) if r - i>"t + >"2(i - I) = 0, then b :::: 1 + i(s - 1) and further if the
design is resolvable, then b :::: r + i(s - 1)

(ii) if r+>"t(s-i)->"2(s-i+I)=0, then b::::I+(s-1)
(s - i + 1) and further if the design is resolvable, then
b :::: r + (s - I)(s - i + 1).

106. Prove that in aL2design ,ifr + (s - 2)>", - (s - 1)>"2 = 0, then k is divisible
by s and every block contains k/s treatments from each of the s rows (or
columns) of the association scheme.

107. Prove that in a L2 design with r + (s - 2)>"J - (s - 1)>"2 = 0, a given block
cannot have more than

vCr - I)2(s - 1)2
b - I - ---------___=_

(b - r)(v - k) - (v - rk)(s - 1)2

blocks disjoint with it and if some block has that many, then
k[(b - r)(v - k) - (v - rk)(s - I)211v(r- I)(s - 1)2is an integer and each
non-disjoint block has k[(b - r)(v - k)- (v - rk)(s - 1)211v(r- I)(s - I?
treatments in common with that given block.

108. Prove that in a L2 design with r + (s - 2)>", - (s - 1)>"2 = 0, the necessary
and sufficient condition that a block will have the same number of treatments
in common with each of the remaining blocks is that (i) b = I + (s - I?
and (ii) k(r - 1)/(s - 1)2 is an integer.

109. Prove that for a resolvable L2 design with r + (s - 2)hl - (s - 1)>"2 =
0, b :::: r + (s - I? and that the necessary and sufficient condition for it to
be affine resolvable is that (i) b = r + (s - 1)2 and (ii) k2jv is an integer.

110. If rk > ~o > ~I > . . . > ~p be the distinct non-zero characteristic roots of
NN' of an incomplete block design (v, b, r, k), then x, the number of common
treatments between any two blocks of this design satisfies the inequality

max[O, 2k - v, k - ~o] ::: x ::: minlk, ~o - k + 2(rk - ~o)b-']

Ill . Using Exercise 108, prove that x, the number of common treatments between
any two blocks of a BlBD satisfies the inequality

max[O, 2k - v, k - r + >..] ::: x ::: minlk, r - >.. - k + 2(>"kjr)].

112. Prove that in a singular group divisible design, x, the number of common
treatments between any two blocks satisfies the inequality

max[O, 2k - v, -k(b - m - r + I)j(m - 1)] ::: x

::: minjk, k{n(b - m - r - 1) + 2k)j(v - n)].
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113. Prove that in a semi-regular group divisible design, x, the number of common
treatments between any two blocks satisfies the inequality

max[O, 2k - v, -k(b - v + m - r)j(v - m)] ::: x

::: min[k, k{(b - r)(b - 2) - (v - m)(b - 2r)}jb(v - m)].

114. Prove that in a triangular design,

(i) if r + (n - 4)}\1 - (n - 3)A2 = 0, then x, the number of common
treatments between any two blocks satisfies the inequality

max[O, 2k - v, -k(b - v - r + n)j(v - n)] ::: x

::: min[k, k{(b - r)(b - 2) - (v - n)(b - 2r)}jb(v - n)]

and
(ii) if r + (n - 4)AI - (n - 3)A2 = 0, then x, the number of common

treatments between any two blocks satisfies the inequality

max[O, 2k - v, -k(b - v - r + n)/(v - n)] ::: x

::: min[k, k{(b - r)(b - 2) - (v - n)(b - 2r)}jb(v - n)]

115. In a triangular design, prove that x, the nubmer of common treatments be­
tween any two blocks satisfies the inequality

max[O, 2k - v, k - 6il ::: x ::: min[k, 6j - k + 2(rk - 6j )b-I],

where i = 1 if AI > A2 and i = 2, if AI < A2, and 61 = r + (n - 4)AI­
(n - 3)A2,~ = r - 2AI + A2.

116. In a L, design, prove that x, the number of common treatments between any
two blocks satisfies the inequality

max[O, 2k - v, k - 9p] ::: x ::: min[k, 9p - k + 2(rk - 6p)b-
I],

where p = I if AI > A2 and p = 2 if AI < A2 and

117. In a L2design with r + (s - 2)AI - (s - 1)A2 = 0, prove that x, the number
of common treatments between any two blocks satisfies the inequality

max[O, 2k - v, -k{(b - r) - (s - I)2}j(s - 1)2] ::: x

. [ k{(b-r)(b-2)-(S-I)2(b-2r)}]
::: mm k, b(s _ 1)2

118. Prove that in a semi-regular group divisible design, x, the number of common
treatments between any two blocks satisfies the inequality

[k(r - I) - A] [k(r - I) + A]
----- < x < -----

(b - 1) - - (b - I) ,

where A2 = k2(b - 2)(b - r)(v - k)(b - v + m - 1)jv(v - m).
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119. Prove that in a triangular design with r + (n - 4)}q - (n - 3)A2 = 0, x,
the number of common treatments between any two blocks satisfies the
inequality

k(r - 1) - A k(r - I) + A
---- < x < ----

b - 1 - - (b - 1) ,

where A2 = k2(b - 2)(b - r)(v - k)(b - v + n - l)/v(v - n).

120. Prove that in a L2 design with r + (s - 2)AI - (s - I)A2 = 0, the number of
common treatments between any two blocks satisfies the inequality

k(r - 1) - A k(r - 1) + A
---- < x < ----

b - 1 - - (b - 1) ,

k2(b - 2)(b - r)(v - k){b - I - (s - l)2}
where A2 = .

v(s - 1)2

121. Prove that a necessary condition for the existence of a group divisible design
is that rk - vA2 2: O.

122. Prove that a necessary condition for the existence of a triangular design is
that rk - VAl::: n(r - Al )/2.

123. Prove that a necessary condition for the existence of a L2 design is that
rk - VAl::: s(r - AI).

124. In a v x v Latin square, the v treatments represented by the numbers I , 2, . .. ,
v occur in the first row in their natural order. Suppose , now, due to accident,
treatments I and 2 get interchanged. Obtain the BLUEs of the various ele­
mentary treatment comparisons and their variances . Also obtain the loss in
efficiency due to this interchange.

125. Show that the efficiency of an m-ple Lattice design , using intrablock analysis
is given by

m
E = I - -------

(m -I)(k+ I)+m

Deduce that, if the Lattice design is balanced, then E = k/(k + I) .

126. Show that the efficiency of an m-ple Lattice design utilizing the analysis
with recovery of interblock information is given by

mtw, - W2)
E = 1-------------

(k + I){(m - l jw, + W2} + mtw, - W2)

127.

Deduce that if the Lattice design is balanced, then E = kWI/
[(k + l)WI - W2] '

Sl - I
Let Xo(x) = I, X,(x) = x - -2-'

(t - 1)2{si - (t - 1)2}Xt_2(x)
Xt(x) = XI(x)Xt _ 1(x) - 4(2t _ 1)(2t _ 3)
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be orthogonal polynomials for the set of values x = 0, I, .. . , Sl - I. For
t= 1,2, ... ,s,-I,define

Fit = ['I: f~ Xr(x)] <1>2<1>3 •• . <Pm
x=o

as the linear, quadratic, cubic, . . . effect of FI, where

"'- fl f2 <"I-I. I 2'I'l = j + j + .. . + I j , I = , , . .. , m.

Prove that the sum of squares due to the above effect in a randomized block
experiment with r replications is

F 2/ [S IS2 ' " Sm(t!)\ST - 1
2)

. . . (ST - t
2

) ]

[ It] r(2t)!(2t + I)! '

where Fit denotes the estimate of F It obtained by replacing treatments in Fit
by their mean yields .

128. In a 2m factorial design, denote the factors by A" A2, ... , Am. The upper
level of A, is denoted by aj and its lower level by I, i = I, 2, . .. , m. Let

S, = (a, + I)(ai-I + I)... (a, + I),

X, = I, X; = [X;_lai X;_d, i = 1,2, . . . , m

H I H [
Hi- I Hi-I] . I 2

o = , j = -H. H. ' J = , , . .. , m
I-I I-I

Y Y' [(ai+l) Yi-I] .
0=1, i= (aj-I) Y

i
-

I
, 1= 1, 2. .. . .rn .

Prove that

(i) Xi = [I ] 0 [ I ] 0 . .. 0 r I ]
ai ai-I a l

(ii) Yi = [ai + I] 0 [ai-I + 1)0 ... 0 r" + I],
a, + I ai-I - 1 a, - 1

(iii) Hi = HI 0 HI 0 .. . 0 HI.

where 0 denotes Kronecker product and hence establish Yates' method,
i = I. 2, .. . , m. Further, prove that

Hi l =H:!i.i= 1.2, . . . m,

and hence establish inverse Yates' method.

129. Consider a 3mfactorial design . The factors are denoted by A I, A2, . . . , Am
and three levels of Ai by I , a., ar, i = 1,2, m. Let

S, = (ar + a, + I)(af-I + aj_1 + I) (aT + a l + I)

X, = I ,X~ = [I al ail
X; = [X;_I ajX;_1 arX;_d , i = 1,2, . . . , m

H, = I
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Prove that for i = 1,2, . . . , m

(i) Xi = [~j ]® [~i-I ] ® .. . ® [~I]
af a2 - I a2

JI ,
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. _ [ ar ~ : + I] [a
L ~ a~1 + 1]

Y, - aj I ® aj _ 1 I ® ...

(ii) ar - 2aj + 1 aL-2ai _ 1 + I

® [ ar ~ ~ -:- 1 ]

ar - 2al + I

(iii) H, = HI ® HI ® .. . ® HI.

Hence, establish (extended Yates' rule) HjX j = Y j.

130. In a randomized block experiment with v treatments and b replications, the
yield corresponding to ith treatment in the jth blocks is missing. Show that

(a) the estimate of the missing yield is given by

(b B· + vT - G)2x= J I

(b - I)(v - I)

(b) the bias in estimated treatment sum of square is given by

(c) the loss in efficiency due to missing yield is [I + (v - 1)(b - 1)r I.

131. In a BIBD (v, b, r, k, X,), the yield corresponding to the ith treatment in the
jth block is missing. Show that
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(a) the estimate of the missing yield is given by

~vB- - kQ' + k2Q.
X= J J J

(k - I)(~v - k)
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where Qj is the sum of Q's over treatments of the jth block,
(b) the bias in the estimated adjusted treatment sum of squares is given

by

. k(BJ - Qj + kQj)2
bias = ----"----:;:-

(k - I)(~v - k)2

132. In a binary block design with parameters v, k.. k2, . . . k.; r" r2, .. . , rb, the
yield corresponding to the ith treatment in the jth block is missing. Show
that the estimate of the missing yield is given by

v y y

Bj - L L npjhpsQs + kjL hisQs
p=l s=l s=1

and that the bias in the estimated adjusted treatment sum of squares is given
by

bias = (kj - I) [x _~]2
kj kj - I

where N = [nij]is the incidence matrix of the design and (hij) is any g-inverse
of the C-matrix of the design. Hence deduce the corresponding results for a
RBD and BIBD.

133. Suppose the yield corresponding to the ith treatment in the jth row and k-th
column in a v x v Latin square is missing. Show that

(a) the estimate of the missing yield is given by

A vRj + vCk + vTj - 2G
x=-"---------

(v - I )(v - 2)

(b) bias in the estimated treatment SS is given by

. [R+Ck+(v-I)Ti-Gfbias = -::J -::-_ _
(v - 2)(v - 1)2

(c) the loss of efficiency due to the missing yield is

[I + (v - I)(v - 2)]-1 .

134. Consider a Youden Square design whose columns form blocks of a SBIBD
(v = b, r = k, X), Suppose the yield Xjjk = x corresponding to the ith treat­
ment in the jth row and kth column is missing. Show that
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(a) the estimate of the missing yield is given by

A >..(rRj + vCk - G) + r2Qi - rQ~
x= ,

r(r - l)(r - 2)

CHAPTER 2

(b) the bias in the estimated adjusted treatment SS is given by

. (v - l)[>..(rRj + vCk - G) + r(r - 1)(rQi - Q~)f
bias = ---:..-..:.....----.,,....----..:....-..,....-:....:.--=---~

vr3(r - 1)3(r - 2)2

when Rj, Ck , G, Qi have usual meaning and Q~ =sum ofQ's over treatments
in the kth column.

135. In a v x v Latin square design, the first row contains treatments in such way
that the ith treatment occurs in the ith column, i = 1, 2, . .. , v, and the first
row is missing. Showing that the yields in the first row are estimated by

A v(Cj +Ti ) - 2G .
Xi = , I = 1, 2, ... , v

v(v -2)

and that the bias in the estimated treatment sum of squares is given by

bias = [Ci + (v - l)Ti - G]2jv(v - I)(v - 2t
136. In a randomized block design with r blocks and v treatments, the yields of

treatments 1 and 2 in the first block are mixed up and their total yield u
is only known. Estimate the mixed up yields and show that the bias in the
estimated treatment SS is given by

bias = (T I - T2)2 j2(r - 1)2

and that the loss in efficiency due to mixing of the yields is

[I + (v - 1)(r - l)r l
.

137. Obtain the efficiencies of the following designs, the efficiency being defined
by pjn tr(X'X)-I, where p = no. of objects to be weighted, n = no. of
weighings and X is the weighing design matrix:

(a) X =

1
1
1

-1
-I

110]101
o 1 1
1 1 1

138. Let Hn- I be the matrix of (n - 1) rows and p columns with elements + 1
or -I such that H~_IHn_1 = (n - I)Ip• Prove that the efficiency of design

X = [HElP ] is (n - 1)(n - 1 + p)jn(n - 2 + p).
n-I

139. Let Hn- 1 be the matrix of (n - I) rows and p columns with elements +1
or -1 such that H~_IHn-1 = (n - I)I p• Prove that the efficiencies of the
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weighing design

(i) X=[Erp ]
Hn- I

are respectively given by

(n - I)(n - I + p)/(n - I + r)(n - I - r + pr)

and

p(n - 1)/[p(n - I) + r(p - I)] .
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140. For any weighing design X involving n weighings of p objects, prove that
var(wi) ::: a2In.

14I. For a weighing design X involving n weighings of p objects, prove that the
variances of all the estimated weights are minimum if and only ifX'X = nIp.

142. In a spring-balance weighing design X, there are v objects and the number of
weighings are b. Let k objects weighed in each weighing so that each object
is exactly included r times and each pair of objects is included ~ times . Show
that the variance-covariance matrix of the estimated weights is given by

var (w) = [ _I-Iv - ~ Evv] a 2.
(r - ~) (r - ~)rk

Defining the efficiency of a weighing design X as pin tr(X'X)-I, where
p = no. of objects weighed, n = no. of weighings, show that the efficiency
of the above design is k2(r - ~)/(rk - ~) .

143. A weighing design X is said to be optimal, i.e., one having the maximum
efficiency if the value of IX'XI is maximum. Show how to construct a spring­
balance weighing design involving n weighings of n objects of maximum
efficiency in the above sense with the help of a Hadamard matrix Hn+1 of
order n + I. Hence, construct a spring-balance design involving 3 weighings
of 3 objects of maximum efficiency.

144. Consider a spring -balance weighing design X = N' , where N is the inci­
dence matrix of a HIBD (v, b, r, k, ~). Show that the variance of the best
linear unbiased estimate of the total weight of all objects is a 2v Irk.

145. Let s = p". where p is a prime and n a positive integer and de­
note the elements of GF (s) by Uo = 0, UI = I, U3 = x2 , ••• , Us-I = xS

-
2 ,

where x is a primitive root of GF (s). Construct the square
L;, i = I, 2, .. . • s - I by filling its (a, 13)th cell by the subscript of the ele­
ment UjU" + uf3. a, 13 = 0. I, 2. . . . , s - I. Prove that

(i) L, is a Latin square, i = I, 2. . . .. s - I, and
(ii) the Latin squares L; and Lj , i -:/= j = 1,2, ... , s - I are orthogonal.

146. (Continuation). Prove that

(i) the n-th row of Lj+1 is the same as the (a + 1)-st row of
L, and the last row of Li+I is the same as the first row of
L;, i = 1.2. .., s - 2. a = 1,2, . . . , s - 2.
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(ii)
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If in the Latin square Li , i = 1,2, . . . , s - I the subscript in the
cell (a, 13), 1 ~ a, 13 ~ s - I is j, then the subscript in the cell (a +
1,13+ I) is

0, ifj = °
j+I, ifj= 1,2, . .. , s-2

1, if j = s - I.

147. Construct the key Latin squares in the set of mutually orthogonal Latin
Squares of sides (i) 5, (ii) 7, (iii) 8, (iv) 9, (v) 16, (vi) 25.

m
148. Let s = nPie; , where PI, P2, ... , Pm are distinct prime numbers and

i=l

el, e2, . . . ,em are positive integers. Let n(s) = mirup.", P2e2, . . . ,Pm(em» .
Show that exactly n(s) mutually orthogonal Latin squares of side s can be
constructed.

149. Construct 2 mutually orthogonal Latin Squares of side 12.

ISO. Prove that a BIBD with the following values of parameters can always be
constructed:

v = (sm+1 - I)/(s - I)

sm+1 - I)(sm - I) . . . (sm-g+1 - 1)
b =------------

(sg+l - I)(sg - I) (s - I)

(sm - I)(sm-I - 1) (sm-g+l - 1)
r=

(sg - I)(sg-l - I) ... (s - 1)

k = (sg+l - I)/(s - I)

(sm-l _ I)(sm-2 - 1)... (sm-g+l - I)
A= ,

(sg-I - l)(sg-2 - 1)... (s - I)

where s is a prime or a power prime and m and g are positive integers and
I~g~m-1.

151. Construct a BIBDwith parameters v = b = 13, r = k = 4, A= l.

152. Prove that a BIBD with the following values of the parameters can always
be constructed:

v = s'",
sm-g(sm - I)(sm-l - I) ... (sm-g+1 - I)

b =--------:-------
(sg - I)(sg-l - I) ... (s - I)

k = sg
(s'" - I)(sm-l - I) ... (sm-g+l - I)

r =------------
(sg - 1)(sg-1 - 1) (s - 1)

(sm-l - l)(sm-2 - 1) (sm-g+l - 1)
A= -----.,.----"....-------

(sg-I - I)(sg-2 - I) . . . (s - 1)
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where s is a prime or a power prime and m and g are positive integers and
IsgSm-!.

153. Let Bj, i = I, 2, .. . , b denote the blocks of a BIBD (v, b, r, k, X). Form the
blocks B~, i = I, 2, . . . , b such that B~ contains treatments which do not
occur in Bj • Show that the design formed by the blocks B~, i = 1,2, . . . , b
is a BIBD with parameters

v* = v, b* = b, r" = b - r, k* = v - k, >. = b - 2r+ >. .

154. Let D be the given SBIBD with parameters v = b, r = k, >.. Consider the
residual design D, obtained from D by omitting one block from D and all
its treatments from the remaining blocks of D. Show that D1 is BIBD with
parameters

VI = V- k, b l = b - I , rl = r, k l = k - >., >'1 = >..

155. Let D be the given SBIBD with parameters v = b, r = k, >.. Consider the
derived design D2 obtained from D by omitting one block from D and
retaining all its treatments in the remaining blocks of D. Show that D2 is a
BIBD with parameters V2 = k, b2 = b - I, r2 = r - I, k2 = >., >'2 = >. - I.

156. Give the constructions of the following BIBDs:

(i) v = S2, b = S2 + s, r = s + I, k = s, >. = I,
(ii) v =b=s2+ s+I ,r=k=s+I,>.=I,

where s is a prime or a power prime.

157. Prove that a BIBD with parameters v = 6s + 3, b = (3s + I)(2s + I),
r = 3s + I, k = 3, >. = I can always be constructed where s is any posi­
tive integer.

158. Prove that a BIBD with parameters v = 6t + l .b = t(6t + I) ,
r = 3t k = 3, >. = I, where 6t + I is a prime or a power prime and t
a positive integer, can always be constructed.

159. Prove that a BIBD with parameters v = b = 4t + 3, r = k = 2t + I, >. = t,
where 4t + 3 is a prime or a power prime and t a positive integer, can always
be constructed.

160. Prove that a BIBD with parameters v = 4t + I, b = 8t + 2, r = 4t ,
k = 2t, >. = 2t - I, where 4t + I is a prime or a power prime and t a positive
integer, can always be constructed.

161. Prove that a BIBD with parameters v = 12t + 4, b = (3t + 1)(4t + I),
r = 4t + I, k = 4, >. = I, where 4t + I is a prime or a power prime and
t a positive integer, can always be constructed.

162. Construct the following BIBDs:

(i) v = 9, b = 12, r = 4 , k = 3, >. = I
(ii) v = b = 13, r = k = 4, >. = I
(iii) v = b = 61, r = k = 5, >. = 2
(iv) v=15.b=35,r=7,k=3,>'=1



P [n1 0]
2 = 0 n2 - I

84 CHAPTER 2

(v) v = 13,b = 26, r = 12, k = 6, A= 5
(vi) v=8,b=14,r=7,k=4,A=3
(vii) v = 28, b = 63, r = 9, k = 4, A= I

163. Prove that a Youden square can always be constructedfrom a SBIBD.

164. Prove that the number of Youden squares that can be constructed from
a SBIBD with parameters v = b, r = k, A, is greater than or equal to
k!(k - I)!. . . !21 I!

165. Prove that a PBIBD with the following valuesof the parameters can always
be constructed:

v = [(Sffi+l - 1)/(s - 1)] - 1 = S(Sffi - 1)/(s - 1)

b = <j>(m, g, s) - <j>(m - 1,g - 1, s)

r = <j>(m - 1, g - 1, s) - <!>(m - 2, g - 2, s)

k = (sg+l - 1)/(s - 1)

n, = S2(Sffi-l - 1)/(s - I), n2 = s - 1,

AI = <j>(m - 2, g - 2, s) - <!>(m - 3, g - 3, s),

A2 = 0

P _ [n I - n2 - I n2 ]
1- n2 0'

where s is a prime or a power prime and m and g are positive integers with
l::::g::::m-l.

166. Prove that a PBIBD with the following valuesof the parameterscan always
be constructed.

where s is a prime or a power prime and m and t are positive integers and
1 s t s (Sffi - 1)/(s - 1).

167. Prove that PBIBD with the following values of the parameters can always
be constructed:

v = s'" - 1,

b = <j>(m, g, s) - <j>(m - I , g - 1, s) - <!>(m - 1,g, s)

k = sg

r = <!>(m - 1,g - 1, s) - <!>(m - 2, g - 2, s)

n, = Sffi - s, n2 = s - 2

AI = <j>(m - 2, g - 2, s) - <!>(m - 3, g - 3, s)

A2 = 0
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P _ [n I - n2 - I n2 ]
1- n2 0'
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o ](p - I)
(p - 1)(q - 2)

q -1 ]

(p - 2~q - I)

q-2 ]
p-2

(p - 2)(q - 2)

where s is a prime or a power prime and m and g are positive integers with
l:;:g:;:m-1.

168. Prove that a PBIBD with the following valuesof the parameterscan always
be constructed.

v = b = pq, r = k = P+ q - I.

n, = q - I, n2 = P - 1, n3 = (p - I)(q - I)

X- I = q, X-2 = p, X-3 = 2,

[

q - 2 0
P, = 0 0

o p-I

[

0 0
P2 = 0 P - 2

q -I 0

[

0 I
P3 = I 0

q-2 p -2

where p and q are integers greater than 2.

169. Provethat a PBIBD with the following valuesof the parameterscan always
beconstructed.

v = b = pq, r = k = P+ q - 2

n, = q - I, n2 = P - 1, n3 = (p - I )(q - I)

X- 1= q - 2, X-2 = P - 2, X-3 = 2

PI, P2,P3 having the same values as in Exercise 165, where p and q are
integersgreater than 2.

170. Prove that a PBIBD with the following valuesof the parameterscan always
be constructed.

v = p = p2, r = k = 3p - 2

n, = n2 = n3 = P - I. n4 = (p - I)(p - 2)

X-, = X-2 = X-3 = P+ 2, X-4 = 6.

[

P- 2 0 0 0]o 0 I p-2
PI = 0 lOp- 2 '

o p - 2 P - 2 (p - 2)(p - 3)
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P, ~ [ ~
0 1

p -2 ]p - 2 0 0
0 0 p-2

p- 2 0 p-2 (p - 2)(p - 3)

P, ~ [ ! 1 0
p-2 ]0 0 p-2

0 p- 2 o '
p-2 p- 2 0 (p - 2)(p - 3)

P, = [ :

1 1
p-3 ]0 1 p- 3

1 0 p-3 .
p-3 p-3 p-3 pZ_ 6p + 10

171. Construct the following PBIBDs:

(i) v = 10, b = 5, r = 2, k = 4,

nl = 6, nz = 3, Al = I, AZ= 0
3 2 4 2]PI = [2 1], Pz = [2 0

(ii) v = 8, b = 6, r = 3, k = 4

n, = 3, nz = 3, n3 = 1

AI=I,Az=2,A3=0

P, ~ [~ ~ !l P, = [~ ~ ~l
P, ~ [~ ~ ~l

(iii) v = 12, b = 9, r = 3, k = 4.

n, = 9, nz = 2, Al = I, AZ= 0
6 2 9 0

PI = [2 0]' Pz = [0 1]

(iv) v = b = 8, r = k = 3, n, = 6,

nz = I, Al = I, AZ= 0,
4 1 6 0

PI = [I 0], Pz = [0 0]

(v) v = b = 9, r = k = 5, n, = 2, nz = 2,

n3 = 4, AI = 3, AZ= 3, A3 = 2.

[
I 0 0 ] [ 0 0 2] [0 1PI = 0 0 2 , Pz = 0 1 0 , P3 = 1 0
0 2 2 20 2 1 1
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(vi) v = b = 9, r = k = 4, nl = n2 = 2, n3 = 4,

hi = h2 = I, h3 = 2 and PI, P2, P3 same as in (v).

(vii) v = b = 9, r = k = 7, n I = n2 = n3 = n, = 2,

hi = h2 = h3 = 5, h4 = 6 and

P, = [t
0 0

Il P, = [~
0 I

!]0 I I 0
I 0 0 0
I I I 0 I

P, = [~
I 0

~J P4 = [:

I 1

~l
0 0 0 I

. 0 0 I 1 0
I I 0 0 0 0

172. Construct 8 blocks of 4 plots each confounding the interactions ACB,
BCE and ABDE in a 25 design. Which other interactions are also con­
founded?

173. Construct 3 blocks of 9 plots each confonding the interaction AB2C2 in a 33

design.

174. Construct a (33,32) design confounding the interactions AB and Be.

175. Construct a (32, 3) design achieving a complete balance over the 2-factor
interaction.

176. Construct 4 replications of (33,32) design achieving complete balance over
first order and second order interactions.

177. Construct a {1/4)-th replicate of a 25 design with factors A, B, C, D and E.
Write down the different alias sets of factorial effects. Take ABC and ACDE
as defining interactions.

178. Construct a half replicate of a 24design in blocks of 4 plots each, confounding
the interaction AD and using ABCD as the defining interaction.

179. Construct a half replicate of a 25 design in blocks of 4 plots each, confound­
ing the interactions BE and CDE and using ABCDE as the defining inter­
action.

180. Construct {1/4)-th replicate of a 26 design, confounding the interactions
ACE and ACDF and taking the interactions ABC and ADE as the defining
interactions.

181. Construct a {1 /3)-rd replicate of a 33 design, taking P(1II) as the defining
pencil. Write down all the alias sets of pencils.

182. Construct (1/32)-th replicate of a 35 design, using P( 11111) and P(100 11)
as the defining pencils. Write down the pencils on which information is lost.
Write down the aliases of the pencil P( 1110 I).
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183. Construct a (1/3)-rd replicate of a 34 design in blocks of 9 plots each, using
P(l112) as the defining pencil and confounding the pencil P(1011). Which
other pencils are confounded?

184. Construct a (1/3)-rd replicate of a 34 design in blocks of 3 plots each, using
P(lIIO) as the defining pencil and confounding the pencils P(IOll) and
P(lIOl). Write down the alias sets of pencils which are also confounded.
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SOLUTIONS

1. Considerr y, t'A'y, t'GA'y. Since

11..,t'y) = t'AO,

11..,t'A'y) = t'A'AO,

11..,t'GA'y) = e'GA'AO,

it follows thateAO , t'A'AO and t'GA'AO are estimable.
Let 0be any solutionof

A'y = A'AO,

then the BLUEsof t'AO , i 'A'AO and t'GA'AO are givenby r AO,t'A'A6
and t'GA'A6 respectively. Let 0 = GA'y, where G is a g-inverseof A'A.
Then,

(i) The BLUE of t'AO is t'AGA'y.

var(t'AGA'y) = ('J2t'AGA'. AGIA'i
=('J2t'(AGA')2i, since AGA' is symmetric
= ('J2t'AGA'i, since AGA' is idempotent.

(ii) The BLUE of t'A'AO is i 'A'AGA'y = t'A'y, since AG is a g­
inverse of A', and var (i'A'y) = ('J2t'A'Ai. Notehere i is an m x 1
vector.

(iii) The BLUE of t'GA'AO is t'GA'AGA'y = t'GA'y, since AG is a
g-inverseof A', and var (t'GA'y) = ('J2t'GA'AG'i.

2. Clearly,

rank (A'A) .s rank (A'A, i) . (I)

Now,

rank (A'A, i) = rank (A', i) [~ ~] s rank (A', i) (2)

But,a necessary and sufficient conditionfor theestimability of t'0 is that
rank (A') = rank (A', i). Thus from (2), we get

rank (A'A, i) ~ rank (A') = rank (A'A). (3)

Then, the result follows from (I) and (3).

89
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3. Here f".(y) = A9, where

A=[i!:]. and o=m
Now bl 61 + b2llz + b36:3 is estimable iff

rank (A') = rank (A', b),

i.e., thereexists k' = (k., k2, k3) such that b = A'k, i.e. iff

b = [~ ~ ~] [~~]
I I 1 k3

i.e. iff b, = k l + k3, b2 = k2, b, = k, + k2+ k3,i.e. iffb3 = bl + b2. Sup­
pose b,61 + b262 + b36:3 is estimable. Then its BLUE is givenby

bl 81 + b282+ b383,

where 81,82,and 83are any solutionsof A'y = A'AO. Now,

[ ~ ~ ~] [~~] = [~ ~ i] [~]
I I I Y3 2 I 3 3

YI +Y3 = 281 +283

Y2 = 82+ 83

YI + Y2 + Y3 = 261 + 62+ 363

A solutionof the aboveequation is

83 = 0, O2 = Y2, 01 = (Y, + Y3)/2.

Hence, the BLUE of the estimable b16, + b2llz + b36:3 is (blYI + 2b2Y2+
bl Y3)/2 and its variance is O'2(bi + 2b~)/2 .

An unbiased estimatorof 0'2 is given by (y'y - 0'A'y)/(n - r), wherer =
rank (A). Here n =3, r = 2; hencean unbiased estimatorof 0'2 is givenby

y'y - O'A'y

=t yr - (81, 02, 83) [ YI~Y3 ]

I YI+Y2+Y3
",",2 A A A= L..-Yi - 61(YI + Y3) - 62Y2, since 63 = 0

( 2+ 2+ 2) (YI + Y3)2 2
= Yl Y2 Y3 - 2 - Y2

= (2Yi + 2y~ + 2y~ - yi - 2YIY3 - Y~ - 2y~)/2

= (yi - 2YIY3 + y~)/2 = (Y' - Y3)2/2.
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4. If we can find a vector e such that b = A'e , then b'B is estimable and
e'y is an unbiased estimator of b'e. Consider b'e = 81-~, i.e. b' =
(1, -1 ,0,0,0,0). Hence from b = A'e, we get

I
-1

°
°°°

CI +C5
C2 + C6

C3= CI+C2+ C4
C3 + C4
Cs + C6

This givesCI + Cs = 1,C3 = 0, C4 = 0, CI = -C 2, C5 = -c6,andc2 + C6 =
-1. Thus, we get a solution CI = k, C2 = -k, C3 = 0, C4 = 0, Cs = 1- k,
C6 = k - I, where k is any constant. Incidently we see that there are many
unbiased estimators of 81 - ~. Thus an unbiased estimator of 8, - ~ is
given by

for any constant k. The variance of this estimator is given by

Y = a 2[2k2 + 2(k _ 1)2]

= 2a\2k2 - 2k + I ).

Then,

dY = 2a 2(4k _ 2) = 0, which gives k = 2.
dk

d
2
y 2 • • . f

Since dk2 = 8a > 0 , Y IS rmmmum at k = 2. Thus, the BLUE 0

81 - ~ is given by

2YI - 2Y2 - Y5 + Y6

and its variance is lOa2.
Now let us consider 8J + ~ = b'B, where b' = (I , 1,0,0,0,0). Here

81 + 82 will be estimable if we can find e such that b = A'e, i.e.

I
1

°°°°

=

CI + C5
C2 + C6

C3
CI + C2+ C4

C3+ C4
C5 + C6

i.e., CI + C5 = I , C2+ C6 = I , C3 = 0, C4 = 0, Cs + C6 = 0, and CI + C2 =
0. We then get

CJ + Cs = I
-CI - C5 = I
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i.e., CI + Cs = -I, whichis not possible. Hence,we cannot find c such that
b = A'e. Thus 61 + lh is not estimable.

Here

I 0 0 I 0 0
0 I 0 I 0 0

A=
0 0 I 0 I 0
0 0 0 I I 0
I 0 0 0 0 I
0 I 0 0 0 I

Denote the column vectors of A by (X I, (X2, (X3, (X4, (Xs and (X6. Then, we
can easily see that (XI + (X2 + (Xs = (X3 + (X4 + (X6. Hence rank of A is 5.
Further A'y = A'A6 gives

YI + Ys = 291 + 94+ 96

Y2 + Y6 = 292+ 94 + 96

Y3 = 93 + 9s

YI + Y2 + Y4 = 91 + 92 + 394 + 9s

Y3 + Y4 = 93 + 94+ 29s

Ys + Y6 = 91 + 92+ 296,

Put 96 = 0, then from (I), (2) and (6), we get

91 = (YI - Y2 + 3ys + Y6)/4

92 = (-YI + Y2 + Ys + 3Y6)/4.

Substituting the values of 6I in (I), we get

94 = (YI + Y2 - Ys - Y6)/2.

From (3) and (5), we get Y4 = 94 + 6s, whichgives

6s = (-YI - Y2 + 2Y4 + Ys + Y6)/2.

Further, from (3), we get

93 = (YI + Y2 + 2Y3 - 2Y4 - Ys - Y6)/2.

Then, SS due to regression when B's are fitted is equal to

SSR = 9I(YI + Ys) + 92(Y2 + Y6) + 93Y3

+ 94(YI + Y2 + Y4) + 9S(Y3 + Y4) + 96(Ys + Y6)

= (YI - Y2 + 3ys + Y6)(YI + Ys)/4

+ (-YI + Y2 + Ys + 3Y6)(Y2 + Y6)/4

+ (Y I + Y2 + 2Y3 - 2Y4 - Ys - Y6)Y3/2

+(YI + Y2 - Ys - Y6) (YI + Y2 + Y4)/2

+ (-YI - Y2 + 2Y4 + Ys + Y6) (Y3 + Y4)/2

(I)

(2)

(3)

(4)

(5)

(6)
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= [3yf + 3y~ + 4y~ + 4y~ + 3y~ + 3y~ + 2YIY2 + 2Y IY5

- 2YIY6-2Y2Y5 + 2Y2Y6 + 2Y5Y6l/4.

Hence an unbiased estimatorof (12 is given by

(~ y~ - SSR)/(6 - 5) = ~ y2
- SSR

= (-YI + Y2 + Y5 - yd /4.

5. Here

21T 21T
cos- sin-

6 6
41T 41T

A= cos- sin-
6 6

cos 21T sin 21T

Hence

[

21T ] [ 21T 21T ]cos - . . . cos 21T cos - sin-
6 6 6

A'A = . .

sin 2: .. . sin21T cos:21T sin:21T

[

21Ti 21Ti 21Ti]_ ~COS2 (; ~cos2(; sin(;

- 21Ti . 21Ti 2 21Ti
Lcos-sm- Lsin -

i 6 6 i 6

= [3 J3] ,
3 3

and

, - I 1[J3 -I]
(A A) = 2J3 -I J3 .

Also,

[

21Ti]I ~ Yi cos(;
Ay= .

21Ti
~ y' sin-

1 6

93
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Thus, the BLUE of I) is given by

9 = (A'A)- IA'y = _1_ [J3
2J3 -I [

21Ti]-I] E Yi COS~

J3 . 2m
E Yi sJn"6

[

J3 21Ti . 21Ti]3E y' cos - - E y. Sln-1 0 I 6 I 6

- 2J3 r: 21Ti 21Ti .
o v3Ey. sin--Ey· cos-

o I 6 I 6

Further,

var (9) = (12(A'A)-I = (12_
1_[J3 -I].

2J3 -I J3

Hence , var (6 1) = var (62) = (12/2 and coy (6 1,62) = -(12/2J3.
6. Let x' = {XI , x2, .. . , xnl. y' = {YI, Y2, . .. ,Yn} and z' = {ZI , Z2, ... , zn}.

Then

[
X] [Enl 0] [61]'E Y = 0 Enl ~ '
z Enl Enl

[

En( 0]
so that A = 0 Enl . Hence,

En l En l

A'A=n[~ ~] , rank (A'A)=2

and

(A 'A)-I = ~ [ 2 -I] .
3n -I 2

Therefore the BLUE of I) is given by

ii= (NAr'Nm
~31n[_~ -mE~, E~, ~::][~]

= 3
1
n [ _ ~ - ~] [~~ ~ ]

1 [2X - Y+z ]
= 3n -X+2Y +Z '
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whereX = 1: Xi, Y = 1: Yi, Z = 1: Zj . The variance-covariance matrixof 6
is givenby

A 2 I _I a
2

[ 2-I]var(O)=a (AA) = 3n _I 2 '

Now,

SSR = O'A'm = ,l"[(2X ~ Y + Z) ~ X + 2Y + Z)J[~~i]
1

= -[(2X - Y + Z)(X + Z) + (-X + 2Y + Z)(Y + Z)]
3n

= ~[2X2 - YX+ZX + 2XZ- YZ+ Z2 - XY + 2y2
3n
+ ZY - XZ + 2YZ + Z2]

= ~[2X2 + 2y2+ 2Z2 - 2XY+ 2XZ + 2YZ]
3n
2

= _[X2+Y2+Z2_XY+YZ+XZ],
3n

2
SSE = 1: x~+1: y~+1: z~__(X2+y2+Z2_XY + YZ+ XZ),

3n

and an unbiased estimatorof a 2 is given by

3n-2

7. Let x' = {XI, X2 , . . . , xn}, y' = {YI, Y2, . . . , Yn} and z' = {ZI, Z2,· ··, zn}.
Then

Hence

[

E nl 0]
A = 0 Enl ,

Enl -Enl

A'A=n[2 -I] (A'A)-I=~[2 2
1]

1 2' 3n 1
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and rank (A'A) = 2. Therefore

ii= (A'Ar 'A' [~]

<[~ ~W~" E~" ~::]m
I [2X+Y+Z]

= 3n X+2Y -Z '

where X = ~Xi , Y = ~Yi, and Z = ~Zi . Further,

var (9') = a 2(A'A )- 1

= ~~ [~ ~l
SSR ~ ii'A'm~ 3~[2X- Y+Z,X+2Y HI [~~~]

2= _[X2+ y 2+Z2 +XY - YZ+XZ]
3n

and

SSE= ~ xf + ~ Yf + ~ zf - SSR.

Hence, an unbiased estimator of a 2 is given by

8. Let Y~ = {YII, YI2 ,·· ·, Yln};Y; = {Y21, Y22,·· ·Y2n} ;Y; = {Y31, Y32, · ··,
Y3n}, and z' = {Yl, Y2, Y3} . Then, we have

1".(z) = A9,

where

We find
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and

97

A'z= [ ~1~2~3 ] .

Y1+Y2+Y3

where Y1 =L: Ylj. Y2=L:Y2j, and Y3=L:Y3j. Therefore, the BLUE of 9
is given by

and the variance-covariance matrix of 0 is

Further,

2 [ 14A a
var (9) = - -5

n -II -; -I~] .
4 9

and

Hencean unbiased estimatorof a 2 is

&2 = SSE/(3n - 3)

? I 2 2 ?= [L:L: Yij' - -(5Y 1 + Y2+ Y~ +4Y 1Y2)]j3(n -I),n -

since rank (A'A) = 3.

9. Let y denote the vector of observations. Then clearly

I 0 0
0 I 0
0 0 I

• and9~ [HA= I I 0
I 0 I
0 I I
I I I

Then, we find

~ :].(A'A)-J=~[-; -~
I 2 8 -1 -I

-I]-I
3
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and rank (A'A) = 3. Hence. the BLUE of 9 is given by

I I I

whereY, = L Ylij. Y2 = L Yilj. and Y3 = L Yijl.
i,j=O i,j=O i,j=O

Also. the variance-covariance matrix of {) is given by

CHAPTER 3

Further.

2 [ 3A (J'

var(9) = - -I
8 -1

-1 -1]
3 -1 .

-I 3

and

Therefore. an unbiasedestimatorof (J'2 is

10. Lety; = {YII. YI2• . , .• Yin}, y; = {Y21. Y22 • . . . •Y2n}. andY3 = {Y31. Y32 . ....
Y3n}. Then
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where

2 3 2 3 3
2 3 2 3 3

A1 = , A2 = , A3 =

2 3 2 3 3

2
2

2

99

Then,

Hence,

I I I II I

(A A)- = 3n[!J - 36 E33], and rank (A A) = 3.

Let YI = ElnYI, Y2 = E1nY2 and Y3 = E1nY3' Also

A'y = A;YI + A;Y2 + A;Y3

[
YI] [

2Y
2j [3Y3] [YI + 2Y

2
+ 3Y3]= 2Y1 + 3Y2 + Y3 = 2Y1 + 3Y2 + Y3 .

3Y, Y2 2Y3 3Y1 + Y2 + 2Y3

Hence, the BLUE of 8 is given by

6 = (AIA)- IA'y

I II [ YI +
2Y

2+
3Y

3]
= - [13 - - E33l 2Y I + 3Y2 + Y3

3n 36 3Y I +Y2 +2Y3

I [ YI + 2Y2+3Y3 ] I I
= - 2Y1 + 3Y2 + Y3 - - G E31,

3n 3Y 1 + Y2 + 2Y3 18

where G = Y1 + Y2 + Y3. Hence

~ I
8= ­

3n

I I
YI+ 2Y2 +3Y3-6"G

II
2YI + 3Y2+ Y3 - 6"G

II
3Y1+Y2 +2Y3 - 6"G
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The variance-covariance matrix of 0is

A (J"Z [ 11 ]var(O) =- 13 - -E33 .
3n 36

Also

AI I 1 ~ 11SSR = 0 Ay = - (Y, + 2Yz + 3Y3)(Y1+ 2Yz +3Y3 - -G)
3n 6

11
+ (2Y1 + 3Yz + Y3)(2Y1 + 3Yz + Y3 - 6G)

11 ]+ (3YI + Yz + 2Y3)(3Y1 + Yz + 2Y3 - 6 G)

1 Z Z
= 3n [(Y1 + 2Yz+ 3Y3) + (2Y1 + 3Yz+ Y3)

+ (3Y1 - Yz + 2Y3)z - 11Gz],

and

3 n 1
SSE = LL)ij - -[(Y1 + 2Yz + 3Y3)Z + (2YI + 3Yz + Yl

i=1 j=1 3n

+ (3Y1 + Yz+ 2Y3)Z - IIGZ] .

Therefore, an unbiased estimatorof (J"z is givenby

11. (i) Let c'O be an estimableparametric function . Let C/O be the BLUEof c/O .
To test c'O = k, where k is any constant, we use t test, where

(c/O - k) .
t = with n - r d.f.,

fTJc/(A'A)-I C

wherer = rank (A'A) and 'E(y) = AO .
Consider (i) Ho : 6, - 6z = O. Thus c' = (l, -I) and k = O. Also, from

Exercise6, we have

I _I 1[ 2-1] I(A A) = 3n -1 2' rank (A A) = 2,
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and, c'(A'A)-I C = 2/n. Then from Exercise 6, we have

101

whereX = 'E x, Y = 'E y, and Z = 'E z. Thus for testing 6, = 62, we use

(81-82) .
t = PfT.:' with 3n - 2 d.f.,a",2/n

where 8, = (2X - Y + Z)/3n, 82 = (-X + 2Y + Z)/3n .
Consider(ii) Ho : 6, = a~, i.e. 61 - a~ = O.

Hencec' = [I. -a], k = O. Also, from Exercise 7, we have

, -I I [2 I] k '(A A) = - I 2 .ran (A A) = 2
3n

c'(A'A)-I C = 2(a2 - a + 1)/3n

9 _ ~ [2X +Y+ Z]
- 3n X+2Y -z .

whereX = 'E x, Y = 'E y, and Z = 'E z. FromExercise7, we have

[

2 J1/2'E x2+ 'E y2 + 'E Z2 - _(X2+ y 2+ Z2 + XY + XZ + YZ)
0'= 3n

(3n - 2) ,

Hencefor testing 6, = a~ , we use

(81-a82) . .
t = , with 3n - 2 d.f. ,

O'J2(a2 - a + 1)/3n

Consider(iii) Ho : 6:1 = O. Wehave, from Exercise 8,

83 = (2Y1 - 2Y2+ Y3)/n,

var (83) = a 2(9/ n),

[

I Jln0'= ('E'E yij - -;;-(5Yi)+ Y~ + Y~ + 4Y,Y2)

3(n - I)

whereY1 = 'E Ylj. Y2 = 'E Y2j , and Y3 = 'E Y3j . Hencefor testing 63 = 0,
we use

t = 8jn with d.f. 3(n - 2).
0'(3/ n)

Consider(iv) Ho : 61 + ~ + 63 = O. Here c' = [III], k = O.
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We have from Exercise 10,

I 1 I [ II] ,(A A)- = - h - - E33 , rank (A A) = 3
3n 36

c'(A'Ar1c = 1/12 n
II

Y1+2Y2 +3Y3 - 6"0

A I II
9 = 3n 2Y1+ 3Y2 + Y3 - 6"0 ,

II
3Y1 + Y2 + 2Y3 - 6"0

where YI = ~ Ylj, Y2 = ~ Y2j , Y3 = ~ Y3j ' Hence 61 + 62 + 63 = 0/6n.
Also form Exercise 10, we have

[

I ]I~0- = ~ ~ yij - ~(Yi + Y~ + Y~)

3(n - I)

Hence for testing 61 + ~ + 6J = 0, we use

(0/6n) .
t = ~,wlth d.f. 3(n - I).o-v I/I2n

Consider (v) Ho:~ = 6J = 0. In Exercise 10, we have found that

I 2 2 2 .SSR(61, ~, ( 3) = -(Y I + Y2+ Y3) WIth d.f. 3 and
n

3 n I
SSE = L Lyij - -(Yi + Y~ + Y~) with d.f. 3(n - I).

i= 1 j=1 n

Now, we shall find SS due to regression when 61 is fitted. Then under the
hypothesis ~ = 6J = 0, we have

[
YI] [Enl]'E Y2 = 2Enl 61 = A6"
Y3 3Enl

[

Enl ]
where A = 2En1 . Hence

3Enl

, " I A I
A A = 14n, (A A)- = -,61 = -(Y I + 2Y2+ 3Y3)140 140

and

SSR(61) = _I_(Y I + 2Y2 + 3Y3i with d.f. 1.
14n
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ThereforeSS for testing~ = 63 = 0 is given by

SSH = SSR(6" 62, ( 3) - SSR(61)

= ~(YT + Y~ + Y~) - _1_(Y 1 + 2Y2+ 3Y3)2 with d.f. 2.
n . 14n

Hence to test O2 = ~ = 0, we use F-statistic, where

[
I 2 2 ~ I 2]-(Y1 + Y~ + Y~) - -(Y, + 2Y2+ 3Y3) 12n _ . 14n

F = -=----------------=--
[SSE]/3(n - I)

withd.f 2 and 3(n - I).

12. Let Xi - X = u.. Then I: u, = O. Let y' = {YI, Y2 , ... , Yn}, and 0' = {a , 13} .
Then 1:(y) = AO, where

A=

un

Clearly

A'A = [~ I:°u~l rank (A'A) = 2,

and

(A'A)_,=[l/n 0 2],A'y=[ n y].
o I II: ui I: y.n,

Hence,

Thus, & = y, ~ = I: uiYi/:E u~, and their variance-covariance matrix is

2(A'A)-1 = 2 [lin 0]
(J' (J' 0 I I:E u~ .

Further,

SSE = I: y2 - ny2 - ~I: u.y,

= I: (Yi - y)2 - ~2:E u~

with (n - 2) d.f, Hence,

SSE I
SE(&)= (n-2) '~'
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and for testing0. = 0, we use the statistic t, where

& &vrn .
t =-- = with d.f. (n - 2).

SE(&) JSSE/(n - 2)

Similarly,

~ ~SE ISE(~)= --'--.
(n - 2) J~ uf

Hence for testing ~ = 0, we use t-statistic, where

~ ~J~ uf
t = --~ = with (n - 2) d.f.

SE(~) SSE/(n - 2)

13. Letxjj-xj =uij,i= 1,2, . .. ,k; j= 1,2, .. . , n.

0' = (0., ~I , ~2 , .. . , ~k) , and y' = (YI , Y2, . .. , Yo).

Then, 'Ef...y) = AO, where

UII U2l Ukl
UI2 U22 Uk2

A=

Ulo U20 Ukn

Therefore

n 0 0 0

0 ~ uij ~ UljU2j ~ UljUkj

0 ~ U2jUlj ~ U~j ~ U2jUkj
A'A=

and rank (A'A) = k + 1.

Wecan write A'A as A'A = [~ ~J,and hence,

(A'A)- I = [I/n 0 ]
OS-I '

CHAPTER 3
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where

I: Ul jUkj
I: U2jUkj

105

Then,

S=

= [I/n 0]
OS-I

I: UkjYj

where z' = (I: UljYj , I: U2jYj, . . . , I: UkjYj)' Hence ei = y, and 13 = S-I Z•

The variance-covariance matrix of 0 is

2(A'A)-1 _ 2 [I/n 0 ]a - a 0 S-I '

Hence

var (ei) = a 2/n, cov (ei, (3) = 0,

var (13) = a 2S- I .

To test ~ = 0, we use t-statistic, where

t=~, with(n-k-l)dJ.
SE(~i)

The SE (~i) is given by
SE(~i) = aJCii, where S-I = (cij), and

a2 = [I: s'> (ei, (3) [ n
z
Y] ] /(n - k - I)

= [I: y2 - ny2 - ~'z]/(n - k - I)

= [(I: y2 - ny2) - z'S-lz]/(n - k - I).

To test ~i = ~j, we use t-statistic, where

(~;-~j) ith I k l j d.ft = • • WIt n - - . .
SE(~i - ~j)

The SE (~i - ~j) is given by

SE (~i - ~j) = aJc;;+ cli - 2c;j ,

wherea = [(I: y2 - ny2) - z'S-lz]/(n - k - I).
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14. This is an example of analysis of variance for one-way classification.
Let

OJ

Ti = LYij , i = I, 2, . . . .k, and G = ~ ~ Yij = ~ Ti.
j=(

The normal equations are obtained by minimizing ~ ~ (Yij - J.!.. - tif and
are found to be

G = nJl, + ~ niti

Ti = n,Jl, + ni~, i = 1,2, . . . , k

where n = ~ n.. Then a set of solutions is obtained by setting ~ niti = 0.
Hence, we obtain

Jl, = G/n, ti = Ti/ni - G]« .

Thus,SSR = ~ Tf/nj . Clearly the numberof independentnormalequations
is k. The error SS is

SSE = ~ ~ Yi/ - ~ Tf/n i with (n - k) d.f.

and SSR has k d.f,
To test nu + ~ njti = 0, we find nJl, + ~ niti = G. Also

var (G) = n(J"2 .

Therefore,

[
SSE ](/2

SE(G) = ncr = n -- .
n-k

Hence to test nJ.!.. + ~ niti = 0, we use t-statistic, where

t = _G_ = G with (n - k) d.f.
SE (G) nv'SSE/(n - k)

To test t( = t2 = ... = tk = 0, we proceed as follows.
Under the hypothesis t( = t2 = ... = tk = 0, 'E(Yij) = J.!... We then have

the following normal equation

*G = nl1 ,

*which gives J.!..= G/n. Thus,

SSR(J.!..) = G2/n with I d.f.

Hence, for testing t( = t2 = . .. = tk = 0, we use F-statistic, where

F = [SSR - SSR(J.1)]/(k - I) with (k - I) and (n - k) d.f.
SSE/(n - k)

[~ Tf/ni - G2/ n]/ (k - I)
= [~~ Yi/ - ~ Tf/nil/(n - k) .
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We now consider the testingof t) = t2 = ... = tk . Write the model as

T.(Yij) = J.1 + ti = 0: + t;, where t; = ti - t, t = ~ tilk , 0: = J.1 +t.

The hypothesis t) = t2 = ... = tk is then equivalent to the hypothesis
t; = 0, i = I, 2, . .. , k. Thus, this case reduces to the case (ii), and hence
we get the same test statisticas in (ii) .

s r

15. Let r, = LYij , r, = LYij, and G = ~ r, = ~~ Yij'
j=1 i= 1

The normal equations are obtained by minimizing ~ ~ (Yij - J.1 -
O:i - I3j)2 and are found to beas

G = rsfL + S~Ui + r~~j

Ti. = sfL + SUi + ~~ , i = 1,2, , r

T.j = rfL + ~Ui + r~j, j = I, 2, , s.

Clearly, the numberof independent normalequations is r + s - 1.
Hence,

~ T~ ~ T2. G2

SSR(J.1, lX, 13) = _ _I ' + _ _J - - with r + s - I d.f.
s r rs

and

~ T~ ~ T2 G2
SSE = ~~ vi> -_I. - __'J + - with (r - I)(s - l)dJ.

,) s r rs

Solution is obtained by setting ~&i = 0, ~~j = 0. Thus, we
obtain

r, G, T j G
fL = G/rs, Ui = - - -,13' =~ --.

s rs 1 r rs

To test 0:) = 0:2 = ... = O:r = 0, we take T.(Yij) = J.1 + I3j, i = 1,2, ... , r
and j = I, 2, . . . , s. A set of solutions for J.1 and I3's is obtained as

T · G
J.1* = GIrs, I3r = -.2. - - and hence

r rs

~ T2

SSR(J.1, 13) = __'J with s d.f.
r

Therefore for testing 0:1 = 0:2 = ... = U r = 0, we use F-statistic, where

F = [SSR(J.1, lX , 13) - SSR(o:, 13)]/(r - I)

SSE/(r-I)(s-l)

with (r - I) and (r - I) (s - I) d.f. Clearly, the above F can be writtenas

[ ~ T2 G2
]

--" - - I(r-I)
F = s rs

SSE/(r - I)(s - I)
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Similarly, we can easily verify that the F-statistic for testing 131 = 132 =
...= I3s = 0 is given by

[
_L T_1 _ G

2
] I(s _ 1)

r rs
F ==-----=----

SSE/(r - 1)(s - 1)

with (s - 1) and (r - 1)(s - 1) d.f
Theaboveresultscan be represented by the following analysisof variance

table.

Analysis of Variance Table

SOURCE

due to lX'S

due to I3's

Error

Total

SS

L T~ G2
__1. __

S rs

L T1 _ G2

r rs

*

d.f.

r - 1

s - 1

(r-I)(s-l)

rs - I

• obtainedby subtraction

16. The normalequationsforestimationof u, ti and 13 are obtainedby minimiz­
ing LiI:j(Yij - jJ, - ti - I3xijP and are found to be

(1) Y = njl + L niii + ~X
(2) Yi. = n, jl + niii + ~Xi., i = 1, 2, .. . , k

~ ~ ~ 2
(3) L L XjjYij = XjJ, + LiLjXijti + 13 L L xij'
where Y = LL Yij, X = LL Xij, Yi. = I:j Yij, and Xi. = Lj Xij '

Clearly, the number of independentequations is I +k - 1+ 1 = k + 1.
A set of solutions is obtained by setting L niii = O.Multiply equations (2)

i
by Xi.lnj and add over the subscript i and subtract from (3). Then we get

~ 2 2
LL XijYij - LiYi.Xi.lni = I3[LL Xij - L Xi.!nj).

Thus, we obtain

~ LL x, y" - L' X Y. In'13 - IJ 1J 1 I. I. 1

- L L x~ - Li XUni

Then, from (1) and (2), we get

jl = Y.. - ~X..
ii = Yi. - Y.. + ~(X.. - XL>,

_ _ - LjXij -
whereX.. = L L xij/n, Y.. = L L Yij/n, Xi. = --, and Yi. = LYij/n j.

n, j
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Then, we obtain

SSR(~, t, 13) = I:i YUni + 132[I:I: xij - I: XUnil

with (k + I) d.f. and

SSE = I: I: Y~ - I: Y~/ni -132.[I:I: x~ - I: X2/nil
I) I. I) I.

109

with (n - k - I) dJ.
Wenowfindthe regressionsumof squares where~ and 13 are fitted. In this

case the normalequations are obtained by minimizing I: I: (Yij - ~ - I3xij)2
and are found to be

*Y = n~+I3*X

and

* * ~
I: I: XijYij = X~ + 13I: I: xij.

The solutions are

* - * -
~ = Y..-13 X..

and

I
I: I: XijYij - -GX

13* = n
X2

I:I: x~ - -
I) n

Hence,

I 2 * I
SSR(~, 13) = - Y + 13 (I: I: XijYij - -GX)

n n

I 2 *2 2 X
2

= - Y + 13 (I: I: x.: - -)
nUn

with 2 d.f
Therefore sum of squares for testing tl = t2 = . . . = tk = 0 is given by

SSR(~ , t. 13) - SSR(~, 13) = I: YUni

2 2 2 I *2 ~ X
2

+13 [I: I: x·· - I: Xjnil- -Y -13 (I: I: X~ --)
I) 1 n I) n

with (k - I) d.f.
We can present the above results in the form of analysis of covariance

table as follows. We note that

- ~ ~ - 2 ~ 2
I: I: (Yij - Y ..t = (I: Y~/n i - nYJ + (I: I: Yij - I: Yjni)

- ~ 2 -2 ~ 2
I: I: (X ij - Xj = (I: Xi Ini - nXJ + (I: I: Xij - I: Xi.!ni)

I: I: (x, - X )(y. - y ) = (I: X Y. In' - nX Y )I) . . I) . . I . I. 1 .. . .

+ (I: I: Xij Yij - I: Xi.Yi./ni)·
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Let

L YUnj - nY~ = C22" LL y~ - L YUnj = C22e

L XUnj - nX~ = CII" LL x~ - L XUni = Clle

L XLYj.!nj - nX..v. = C121, LL Xjj Yij - L XLYj.!nj = C12e.

Then one can easily verify that

~ = CI2e
c.;

13* = (C121+ Cl2e)/(CIII + Clle).

S C Ci2e
SE= 22e--'c.,

The SS due to the hypothesis for testing tl = t2 = .. . = tk = 0 is given by

SSH = C221+ Ci2e _ (C121+ C12e?
c., (CIII + Clle)

Hence, the F statistic for testing t1 = t2 = . .. = tk = 0 is

SSH/(k - I) .
F = SSE k ' with k - I and (n - k - 1) d.f,

/(n - - I)

Thus, we get the following table of analysis of covariance.

Analysis of Covariance Table

(one-wayclassification)

SOURCE 1: y2 L xy L x2 due to 13 d.f,

Treatments C221 CI21 Cl lt

Error C22e CI2e c.; Ci2e/Clle
ci2e n-k-IC22e - - = E

(C121+ C12e)2
c.;

Total C221 CI21 C11t (C22t + C22e) n-2
(C12t + Clle)

-(CI2t + CI2e?(Treatment +C22e +C12e +C lle
(Cllt + Clle)

+ Error) =T

SS for testing significance of T-E k-I
treatmentdifferences

F for testing significance of F=
(T - E)/(k - 1)

treatmentdifferences E/(n - k - 1)

Before applying the analysis of variance, we would like to test 13 = O. We
shallfindin thiscaseSSdue to regressionwhen IJ. and tl, t2, ... , tkare fitted.
For this the normalequationsareobtainedby minimizing L L (Yij - IJ. - tj)2
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and are found to be as

Y = nfi + ~ nit;

Yi. = n;fi + niti , i = 1,2, . . . , k.

III

Clearly, only k equationsare independent. A set of solutions is obtained by
putting ~ niti = O. Thus, the solutionsare obtainedas

fi = y.., and ti = (Yi'/nj) - Y.. .

Hence, we find

SSR (u. , t) = ~ YUni, with k d.f.

Therefore, the sum of squares for testing 13 = 0 is obtainedas
A2 2 2 2 .

SSR (u., t, 13) - SSR(~ , t) = 13 [~~Xij - ~ Xi In;] = C,2e/Clle. with
I d.f.

Hence. for testing 13 = O. we use the F statistic where

F _ Ci2e/C"e
- CI~ ,

(C22e - -)/(n - k - I)c.,
with I and (n - k - I) d.f.

s r

17. Let Y.. = ~~ Yij, Yi. = LYij , Y.j = LYij , X.. = ~~ xij.
j=1 ;=1

s r

Xi. = L Xij , X.j = L Xij, X.. = X../rs. Y.. = Y../rs.
j=1 ;=1

The normal equations for fitting all the parameters u , oq , a2• . .. , as.
tl , t2, ... , t,. 13 are obtained by minimizing ~ ~ (Y;j - ~ - aj - t; - I3xi/
and are found to be

(I) Y.. = rp, + r~&j + ~ti + ~X..
(2) Y.j = rp, + r&j + ~t; + ~X.j ,j = 1,2, .. . , s
(3) Yi. = sp, + ~&j + Sti + ~Xj . ,
(4) ~~ XijYij = p,X..+ ~ X.A + ~ Xi.ti + ~~~ xij

The number of independent equations is equal to 1+ s - I + r - I + I =
r + s. To obtain one set of solutions we put ~&j = 0 and ~ti = O. Then we
obtain

(5) Y.. = rsjl, + ~X..
(6) Y.j = rp, + r&j + ~X.j

(7) Yi. = sp,+ sti + ~Xi.

(8) ~~ Xij Yij = ~X..+ ~ X.A + ~ Xi.t; + ~~~xij

Multiply (5) by X.{t«, and add to (8). Multiply (6) by X.j/r and sum over
j and then subtract from (8). Multiply (7) by Xi./s and sum over i and then
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subtractfrom (8). Wethen obtain
1 1 1

~~ Xij Yij - -~ X.jY.j - -~ Xi.Yi. + -X.X.
r s rs

A 2121212
= 13[~~ xz - -~ X · - -~ X + -X ].

IJ r .J s I. rs "
Thus, we get

I 1 1
~L XijYij - -~ X.jY.j - -~ Xi.Yi. + -X.X.

~= r s rs

~ ~ x~ - ~ ~ X~ - ~ ~ Xf + .!.X2
IJ r .J s I. rs "

Then from (5), (6) and (7), we obtain

fL = Y.. - ~X..
1 A

aj = -;Y.j - fL - I3X.j/r

_ 1 A

tj = -Yi. - fL - I3Xi.!s.
s

Then the sum of squaresdue to regression when I-L, a's, t's and 13 are fitted
is obtainedas

I 2 I 2 1 2SSR(I-L,a,t,I3)=-LY .+-LY --Yr .J s I . rs "

A 2 12 12 1 2+132[LLx,,--~X'--LX +-X],
IJ r .J s I. rs"

with (r + s) d.f. Further, the error sum of squares is obtained as

2 12 1 2 1 2SSE = L ~ y.. - - L y . - - ~ Y + - Y
IJ r .J s I. rs "

A 2 12 12 1 2-132[LL X.. - -L X · - -L X + -X ],
IJ r .J s I. rs"

= E, (say)

with (r - I)(s - I) - I d.f.
To test 13 = 0, we fit the parameters I-L , oq, a2 , . . . , as and t), t2, .. . , tr •

The normal equationsfor fitting theseparameters are obtainedby minimiz­
ing L L (Yij - I-L - aj - ti)2 and are found to be as

*Y.. = rs I-L +r~a;* + s~ t;

*Y.j = r I-L +r~* + ~ t;, j = 1,2, . . . , s

*Yi. =s I-L +~aj* +st;,i = 1,2, .. . ,r.

The number of independent equations is (r + s - 1). A set of solutions is
obtainedby putting Lar = °and L ti = °and is givenby

* - I *I-L= Y., aj* = - Y.j - I-L,j = 1,2, . . . , s,
r

I *
ti = - Yi.- I-L, i = I, 2, ... , r.

s
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Thus, the sum of squares due to regression when J..L, a" a2, . .. , as, tl,
t2 , . . . , tr are fitted is given by

I 2 I 2 I 2
SSR (J..L, a, t) = - 1: y . + - 1: Y - - Y

r .J s I. rs "

with (r + s - I) d.f. Hence sum of squares for testing 13 = 0 is obtainedas

SSR(J..L, a, t, 13) - SSR(J..L. a, t)

A2 1 I 2 I 1 -2
= 13 [1:1: X~ - - 1: X . - - 1: X~ + rs X ]

g r ~ s I. ..

with I dJ. Now for testing 13 = 0, we apply F test, where

~2[1:1: x~ - ~1: X2 - ~1: X2+rsX2]
IJ r J. s I. ..

F =----~--~-----
SSE/[(r - I)(s - I) - I]

with I and(r-I)(s-I)-I d.f.
Next we proceed to test t, = t2 = .. . = tr = O. We fit the parameters
J..L, ai, a2, . .. , as and 13. The normal equations for fitting these parameters
are obtainedby minimizing 1:1: (Yij - J..L - aj - 13xi/ and are found to be.

Y.. = rs 11 + 1:aj + ~X..

Y.j = r 11 + raj + ~X.j, j = I, 2, ... , s
_ - 1

1:1: Xij Yij = J..LX.. + 1: X.jaj + 131:1: xij.

The number of independent equations is equal to I + (s - I) + I = s + I
and hence a set of solutions is obtained by substituting 1:aj* = O. We then
have

(9) Y.. = rs 11 + 13X..
(10) Y.j = r 11 + raj + ~X.j,j = I. 2;..,,,, , s
(II) LL Xij Yij = jiX..+ L X.jaj+ 131:1: xij

Multiply(10) by X.j/r and sum overj and then subtract from (II). Weget

[1:1: X'y" - ~L XY] = O'[LL x2 - ~L X2]
'J IJ r .J .J I-' 1.1 r .J

and consequently

I
1:1: XijYij - ; 1: X.jY.j

13=
2 I 1

1:1: x: - -1: X~'.; r .J

ji = Y.- ~X ..
I -

aj = - Y.j - 11-13X.j/r,j = 1,2, .. . , s.
r

Hence, the sum of squares due to regression when J..L, a" a2, . . . , as and 13
are fitted is

I 2 1 1 I 2
SSR(J..L, a, 13) = -1: Y

J
' + 13-[1:1: XI~. ' - -L X

J
. ]

r ' I r .
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with (s + 1) d.f. Therefore, the sum of squares for testing tl = t2 = ... =
tr = °is givenby

SSR(~, a, t.B) - SSR(~, a, ~)

1 2 2 A 1 2 1 2 2= -~ Y .- rs Y + ~2[~~ XrYr - -~ X · - -~ X: + rs X ]s I . . J J r .J s I . . .

n2 I 2
- ~ [~~ XijYij - -;-~ X.j] = T, (say)

with (r - 1) d.f. Hence for testing t( = t2 = ...= tr = 0, we apply F test,
where

F= T/(r-I) ,
E/[(r - I)(s - I) - I]

with (r - 1)and (r - 1)(s - I) - I d.f. Weshall nowpresent the above test
by the analysisof covariance table. Wecan easily verifythat

~~ (YiJ' - yj = [~~ y21' - ~~ y21'~~ y 2
J. + rs y2]

J S . r' ..

I 2 -2 I 2 -2
+[-~Y -rsY]+[-~Y:-rsY·]sir J

= C22e + C22t + C22b
- 2 2 I 2 I 2 -2

~~ (XiJ' - X..) = [~~ XI·J· - -~ Xi - -~ XJ. + rsX ]sr ' ..

J 2 -2 1 2 -2
+ [;-~ Xi. - rsX..l + [;-~ Xi - rsX..l

I 2 - 2+ [- ~ X: - rsX ]r J ..

= CI1e + C11t + C11b

~ ~ (Xij - X..)(Yij - Yoo)

I I - -
= [~~ XijYij - -~ XLYi. - -~ X.jY.j + rs XooYoo]

s r
I - _ 1 - -

+ [-~ Xi.YL - rs Xc.Y. ,] + [-~ X.jY.j - rs X..Yoo]
s r

= C12e +c., + Cl2b .

Then, we see that

A CI2e -
~ =-, and ~ = (C12e + CI2t)/(Clle + C11t) .c.,

Hence
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The analysis of covariancetable is given below.

Analysis of CovarianceTable

(Two-way classification)

115

-I
2
-I

2 I]4 2
2 3

SOURCE I: y2 I: xy I: x2 due to 13 d.f.

Blocks C22b CI2b C\Ib S - I
Treatment C22t CI2t c.; r - I

Error C22e CI2e c., Ci2e/Clle C Ci2e - E rs-r-s22e - --

(C12t + C12e)2
c.;

Treatment C22t CI2t CII! (C22t + C22e) rs-s-I
CII! + c.,

(C12t + C12e)2
+ Error +C22 +C12e +C11e - =R

(CII!+ C11e)

SS for testing the significanceof T=R-E r - I
treatmentdifferences

F for testing the significance of treatment F=
T/r- I

differences E/(rs - r - s)

18. We know that

var (0) = d2(A'A)- 1 = 200(A'A)-1

3[3 2 I]=- 2 4 2 .
10 I 2 3

Hence

(A'A)-I =~ [;
2000 I

2000 [3 2 21]-I
A'A =---- 2 4

3 123

= 2000. ~ [~I
3 4 0

= 500 [~I ~I
3 0 _I
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Now
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500 [2 - 1
A'y=A'A9 = - -1 2

3 0 -1

~ 5~ [iJ
and

SSR(O) = 9A'y = [352] 500 [ ~]
3 -1

13000
=--

3

Therefore

SSR(O)j3 13000 65
F= A =--=-.

(12 9(200) 9

19. Here 'E/y) = AO, where 0 = {a, B],

XI
X2

A = , and y = diagtd., d2, . .. , dn) .

I Xn

The BLUE of 0 is given by

9 = (A'y-1Ar1A'y-l y.

We find that

A'y-I A = [ ~ (l jdj) ~ (x~jdj) ].
~ (xjjdj) ~ (xj jdj)

Hence, we get

(A'y A) = ..!.. [ ~ (Xf jdj) - ~ (Xjjdj)]
D. - ~ (xi/dj) ~ (l jdj)

where D. = ~ (ljdj) - ~ (Xf jdj) - (~ (xi/dj»2. Further we have

A'y-I y = [ ~ (Yijdj) ] .
~ (xjYjjdj)

Hence,
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and variance-covariance matrix of (} is given by

case (i). x, = i, d, = rr2i , i = 1,2, . . . , n
Here

~ (Xj/di) = n/rr 2, ~ x~ /d j = n(n+ 1)/2rr2,

~ Yi/di = ~ (Yi/i)/rr2,

~ (I/di) = ~ (I /i)/rr2, ~ XiYi/di = ~ Yi/rr2

Hence

n [en + 1) . ]/:). = - --~ (1/1) - n
rr4 2

[

n(n + I) ]
(} = 1 2 ~ (Yi/i) - n~ Yi

n[n;I~(I/i)_n] ~(I/i)~Yj-n~Y i/i

and

A rr2 [ n(n+ 1) -n ]
var(6) = [1 ] 2

n n; ~(I/i)-n -n ~(I/i)

case(ii). x, = i, dj = rr2i2, i = 1,2, . . . , n.
Here,

~ (I/dj) = ~ (l/i2)/rr2,

~ (Xi/dj) = ~ (I /i)/rr2,

~ (xf/di) = n/rr2,
~ (Yi/dj) = ~ (Yi/i2)/rr2,

~ (XiYi/dj) = ~ (y;/i)/rr2.

Hence

117
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20. Here, we have 'Ef..y) = AO, where 0' = {el, 9z}, and

A= [~ ci]
1 a3

One can easily verify that

V-I = ~ [!I ~
1

~21 ]
3 0 _I

Also, one obtains

and

(A'V-1A)-1 = (1/10) [~ ~l

Thus, the BLUE of 0 is given by

9 = (1/6) [ 2 3(Yl + Y3)] .
~(Y3 - YI)

Hence ,

II = (YI + Y3)/2, 92 = J'3(Y3 - yd/3.

Also, the variance-covariance matrix of 9 is given by

var(9) = (A'V-IA)-I = [3/dO 1~5l

21. Here, we have 'Ef..y) = AIJ., A = Enl • Further, one can easily verify that

_I (N-I)[ 1 ]
V = N(T2 In + N _ nEnn .

Hence ,one obtains

n(N - I)
A'V-1A = •

(T2(N - n)

(T2(N - n)
(A'V- I Ar l = ,

n(N - 1)

and

(N - 1)
A'V- I - ~Y- LJ y.

(T2(N - n)
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Therefor, the BLUE of j.L is given by

fL = (A'y-1A)-IA'y-l y = }: yin = y

The variance of fL is given by

a 2(N - n)
var (fL) = (A'y-I A)-I = ,

n(N - n)

and

SEE = y'y-I y - 6'A'y-l y

(N - I)~ - 1

= N 2 L)Yi- yt.
a 1

Now 'E(SEE) = (n - I), which gives

(N - I) -
&2 = }: ( 0_ y)2.

N(n - I) y,

Hence, the estimator of var (fL) is given by

A (N-n)}:(Yi-y)2
Est. var (j.L) = -- .

nN (n-I)

119

22. Here, we have 'E(y) = AO, where 0' = (fL,o] and

A'- [I I I ... I]
- Xl X2 X3 . . . Xn '

where Xi = J3(2i - n - 1)/(n + I). Then, we get

A'y- l = (n+ 1)(n+2) [I 0 0
12a 2 al a2 a3 . ..

where

al = 2XI - X2,

ai+1 = -Xi + 2Xi+1 - Xi+2 , i = 1,2, . . . , n - 2

an = -Xn-I + 2xn

Substituting the values of Xi in a's , we find that

al = -J3,ai+1 = 0, i = I, 2, . .. , n - 2

an = J3.
Hence

o

A'y-I = (n + I)(n + 2) [ I 0 0 0 I]
12a 2 -J3 0 0 0 J3 '

, _I _ (n+ 1)(n+2) [I ~(~ I)]A y A - 00 2 O. n ,
n+1

(A'y-1A)-I= 2a
2

[3(n-l) 0]
(n-I)(n+2)(n+ I) 0 (n+ I) ,
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and

Yl

A'y-I y = (n + I)(n + 2) [I 0 I ] Y2
120-2 .J3 0 .J3

Yn

= (n + I)(n + 2) [ YI + Yn ].
120-2 .J3(Yn - Yd

Therefore

0= (A'y-IA-I)-IA'y-l y

I [3(n - I)(YI + Yn) ]
= 6(n - I) .J3(n + 1)(Yn - YI)

and

p.. = (YI + Yn)/2, & = (n + l)(Yn - YI)/2.J3 (n - I).

Further, the variance-covariance matrix of 0 is given by

var(O) = (A'y-I A)-I = 20-
2

[3(n - I) 0]
(n-I)(n+2)(n+l) 0 (n+l)

Hence

var (jl.) = 60-2/(n + l)(n + 2)

var (o.) = 20-2/(n - I )(n + 2)

cov (jl., &) = O.

23. We know that the value of F statistic for testing 61 = ez = 6J = 0 is given
by

(0'A'y-I y)/r
F = -----:.--'-

SSE/en - r)

Now, we are given the value of the denominator in the above value of F.We
must find the numerator. Now, from the normal equations we have

A'y-I y = (A'y-IA)O.

Hence,

9'A'y-l y = 9(A'y-I A)9.

We find the value of A'y-I A from

A I [3var (9) = (A'y-I A)-I = - 2
20 I

; ;] .
2 3
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Weget

[

3 2 1] - 1 [2
A'y-I A = 20 2

1
4
2

2 = 5 -I
3 0

-I 0]
2 -I
-I 2
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Therefore

9'A'V~'A9 ~ [6 10 4]5H~~ -!] [~] ~ 520

Hence, since r =3,

F = (520/3)/ 100 = 1.73.

24. In Exercise20, we have obtained

A [3(YI + Y3) ]o= (1/6) ,
2J3(Y3 - yj)

A'y-I y = (5/3) [(YI + Y3) ] .
J3(Y3 - YI)

Hence SS due to regression when 61and 62are fitted is given by

, , - I
SSR(61, 62) = 0 A Y Y

= 5(3yf + 3y~ - 2YIY3)/6

with 2 dJ. Also, the error SS is given by

SSE = y'y-I y - SSR(61,~)

5 2 2 2
= ~(2YI + 2Y2 + 2Y3 - 2YIY2 - 2Y2Y3) - SSR(61 ,~)

= 5(YI - 2Y2 + Y3)2/6,

with I d.f. Now under the hypothesis ~ = 0, we have

'E(Yi) = 61, i = I , 2, 3

so that A = E31 . The normalequation is then given by

A'y-I y = (A'y-I AWl .

Now Ny-I y = 5(YI + Y3)/3

A'y-I A = 10/3.

Hence, we obtain 6~ = (Y3 + YI )/2. Therefore

SSR(61) = 6~A'y-Iy = 5(YI + Y3)2/6
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with I d.f. Hence SS for testing 62 = 0 is given by

SSR(61, ez) - SSR(6,) = 5(Y3 - YI)2 /3

CHAPTER 3

with I dJ. Therefore, the F statisticsfor testing 62 = 0 is obtainedas

F = 2(Y3 - Ylf
(YI - 2Y2 + Y3)2

with I and I d.f
If we wish to test the hypothesis61 = 62, then the F statistic is given by

F = SSR(61, ez)/2
SSE/I

(3YT + 3y~ - 2Y3Y I)
= 2(y, - 2Y2 + Y3)2

with 2 and 1 d.f

25. In Exercise22, we have obtained

and

Hence SS due to regression when j.L and a are fitted is given by

AI I -I (n+ 1)(n+2) 2 2
SSR(j.L, a) = 0 A V Y = 12(12(n _ I) [n(YI + Yn) - 2YIYn],

with 2 d.f. We now find the error SS. The error SS is

I -ISSE = y V Y - SSR(j.L, a).

Now

1 -1 (n+I)(n+2)
y V = (YI, Y2, .. . ,Yn) . 122

2 -I 0 0 0
-I 2 -I 0 0
o -I 2 0 0

x

000 -I 2

(n + 1)(n + 2)= 2 [a., a2, . .. , an],
12(1
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where

Hence

and

al = 2YI - Y2

ai+1 = -aYi + 2Yi+1 - Yi+2, i = 1,2, . . . , n - 2

an = 2Yn - Yn-I

123

(n+ 1)(n+2) [n 2 n-I ]
SSE = 6rr2 ~Yi - ~YiYi+1

(n+I)(n+2) 2 ?

- 12rr2(n-l) [n(YI +y~)-2YIYn]

(n + I)(n + 2) [ n 2 n-I
= 12rr2(n _ I) 2(n - 1)(~Yi - ~YiYi+l)

- n(YT+ y~) + 2YIYn]

with (n - 2) d.f. Therefore, the value of F statistic for testing I.L = a = °is
given by

F
_ [n(YT + y~) - 2YIYn]/2
- 2 ?

[2(n - I)(I: Yi - I: YiYi+d - n(Yi + y~) + 2YIYn]/(n - 2)

with 2 and (n - 2) d.f.
We now obtain the value of F statistic for testing a = 0.
Under a = 0, we have

'E(y) = Enl . fL·

Hence A = Enl. We then obtain

, _I _I (n + I)(n + 2)
A y = ElnY = ? [1 ,0,0, . . . , 0, 1].

12rr-

Therefore,

A'y-IA=E y-IE =2(n+I)(n+2)
In nl 12rr2

and

,-I (n+I)(n+2)
AY y= 12rr2 (YI+Yn) .
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I I * *Hence, from A'y- y = (A'Y- A) 11 we get 11 = (YI + Yn)/2.
Therefore SS due to regression when 11 is fitted is given by

SSR( ) = (n + I)(n + 2)( + )2
11 24cr2 YI Yn

with I d.f, Hence SS for testing a = 0 is given by

SSR(I1, a) - SSR(I1)
(n+ l)(n + 2) 2 2 (n+ I)(n+ 2) 2

= 12cr2(n _ I) [n(y, + Yn) - 2YIYn] - 24cr2 (YI + Yn)

(n + l)(n + 2) 2
= 24cr2(n _ I) (YI - Yn)

with I d.f. The F statistic for testing a = 0 is given by

F = (YI - Yn)2
2[2(n - I)(~ Yf - ~ YiYi+l) - n(yf + y~) + 2YIYn]/(n - 2)

with I and (n - 2) d.f.

26. We are given

I 0 0 0
I 0 I 0

N=
1 0 1 0
0 I 0 I
0 I 0 1
0 0 0 1

Then the C matrix is given by

C=R-NK-1N'

The column totals of N give k l = 3, k2 = 2, k3 = 2 and ~ = 3, while row
totals ofN give rl = I, r2 = 2, r3 = 2, r4 = 2, r5 = 2 and r6 = 1. Thus

R = diag(l , 2, 2, 2, 2, I) and K = diag(3, 2, 2, 3).

Hence,

1/3 1/3 1/3 0 0 0
1/3 5/6 5/6 0 0 0

NK-1N' = 1/3 5/6 5/6 0 0 0
0 0 0 5/6 5/6 1/3
0 0 0 5/6 5/6 1/3
0 0 0 1/3 1/3 1/3
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2/3 -1/3 -1 /3 0 0 0
-1/3 7/6 - 5/ 6 0 0 0

C= -1/3 -5/6 7/6 0 0 0
= [~ ~l0 0 0 7/6 -5/6 -1/3

0 0 0 -5/6 7/6 -1/3
0 0 0 -1/3 -1/3 2/3

and rank (C) = rank (X) + rank (Y).
Now, since the columns in X and Yare null columns, the ranks of X and

Yare 2 each. Hence rank (C) = 4. Therefore

d.f, associated with adj. treatment SS = 4,
d.f. associated with error SS = n - b - rank (C) = 2.

27. Consider the first design . We write its incidence matrix as follows.

2 4 5 6 7 8

B

o

o

o

o

o

o

o

o

c

D 0

o o o o o

G 0

E

F

o

o

o

o

o

o

o

o

o

o

o

o

Moving from the cell (A, I) in the direction of the arrow, we arrive at the
cell (E, 6), encountering all but one treatment in the cell (D, 2). Since all
treatments are not encountered, the design is not connected.

Consider the second design. We write its incidence matrix as follows.

A

B o

2

o

3

o

4

o

5

o

6

c

D

E

F

G

o

o

o

o

o

o

o

Moving from the cell (A, I) in the direction of the arrow, we arrive at the cell
(B, 1), encountering all the treatments and hence the design is connected.
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Consider the third design. We write its incidence matrixas follows.

2 3 4 5 6 7

A 0

B

c

D

E

F

G o

o

o

o

o

o

o

Movingfromthecell (A, 2) in thedirectionof thearrow, wearriveat thecell
(E, 4) encountering all but two treatments, namely those in the cells (F, 6)
and (G, 5). Hence the design is not connected.

28. See the Hint givenafter Exercise 28 on page 62.

29. Wehave

N = aEvb'

Hence

R = ab L, and K = av lb.

Therefore

C = R-NK-1N'

= ab Ib - ab Evb (a~ Ib) ab Ebv

= ab Ibv- a:Evv = ab (Iv - ~Evv) .

Hence,thedesign isconnectedbalanced. Wenowshowthat it is orthogonal.
ConsiderCR- 1N.

CR- 1N = ab I, - (I jv)EvvO jab)lv(a)Evb

= a Evb - EVb = O.

Hence the design is orthogonal. Since the design is connected, we can also
apply the condition

rjkjnjj=-
n

for showingit to be orthogonal. Since nij = a, rj = ab, kj = av,and n = abv,
the abovecondition is satisfied.

30. We are given N* = Evb - N.
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The design is equi-replicate and regular. Hence

R = r L, K = k Ib' E1 vN = k Elb' N Ebl = rEvl.

Therefore,

C=R -NK-IN'

= r I, - (I /k)NN'.

Consider

E1vN* = Elv(Evb - N) = V Elb- k Elb
= (v - k)E1b = k* Elb.
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Henceeach block of N*contains k* = v - k treatments, and the design N*
is regular. Further,

N*Ebl = (Evb - N)Ebl = b EVI - r EVI = r*Evl,

where r* = b - r. Thus, every treatment occurs r* = b - r limes in the de­
sign N*. Hence the design N* is equi-replicate. Now,

C* = R* - N*K* -IN*'

= r" I , - (Evb - N)(I /k*)(Ebv - N')

= r" I, - (I /k*)[b Evv - r Evv - r Evv+ NN']

= r* I, - (I /k*)[(b - 2r)Evv+ NN'].

BUl NN' = -k C + kr L. Consequently

C* = r* I, - (I /k*)[(b- 2r)Evv - k C + kr L]
* kr k b-2r

=(r -k*)Iv+k*C-~Evv.

Now suppose N is a connected balanceddesign. Then

C = a [I, - (I/v) Evv] ,

for some positive integera and

* (r*k* - kr) ka b - 2r
C = Iv + - (Iv - (I/v)Evv) - - -Evv

k* k* k*
(r*k* - rk + ka) I

= Iv - -(by - 2rv + ka) Evv
k* k*v

(bv - 2rv + ka)
= [I, - (I/v)Evv] .

k*v

Thus, the design N* is a connected balanced.

31. Weare given that the design N is orthogonal. Hence

CR-IN = 0

Now R = r Iv, K = k lb. Hence, CR-1N = 0 gives

CN=O.

Now, in Exercise 30, we have shown that the C-matrix of the design N* is
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given by

* r*k* - rk b - 2r k
C = Iv - --Evv+ -C.

k* k* k*

Since v = 2k, and b = 2r, hence r* = b - r = r, and k* = v - k = k.There­
fore, we get r*k* = rk. Hence

C* = C,

and R* = r* I, = r I, = R. Therefore ,

C*R*-IN* = C R-1(Evb - N)

= rC Evb - 0

= r(C Evl)E1b - 0

=0-0=0

Hence, the design N* is orthogonal.

32. For a connected balanced design, its C-matrix is given by

C = a [I, - (I/v) Evv],

where a is some positive constant. Now, the characteristic roots of Care
given by the roots of

IC - All = 0

i.e., by

IC a - AI - (a/v) Evvl = 0

i.e., by a(a - At-I = O.
Hence, the non-zero characteristic of C is given by A= a = e, say. Hence

C = euv - (I/v) Evv].

33. Since the design is connected balanced, we have, by Exercise 32,

C = I, - (e/v) Evv.

But, we know that

C=R-NK-1N'

= r I, - (I/k) NN'

Hence equating the above two expressions for C, we get

N N' = k [(r - e) I, + (e/v) Evv].

The characteristic roots of N N' are given by the roots of

INN' - All = 0

i.e., by

(kr - A)[k(r - e) - At-I = o.
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Hence the characteristic roots of N N' are given by

A= kr, repeated once

= k(r - 9), repeated (v - I) times.

34. Since, the design is connected, rank (C) = v - I. Weput the side restriction
Elvt = 0. Consider the matrix

[
C EVI]

Elv ° .
Clearly, the rank of the above matrix is v + I and hence it is non-singular.
Let

[E~v EOIrl

= [:~:
Then, we obtain

C BII + EVI B21 = L, C BI2 + EVI B22 = 0,

Elv BII = 0, Elv B12 = II.

Solving these, one obtains

B2I = E1v/v, B22 = O.

CBII = Iv-(l/v)Evv, ElvB11=0.

Hence,

which shows that BII is a g-inverse of C. Also, we can show that
BIIC BII = BII. Hence, the solution of Q = ci can be taken as t = BI1Q.
Hence,

var ti) = BII(O'2C)BII = 0' 2 BII.

Let the elements of BII be donoted by bij' The BLUE of an elementary
treatmentcontrast ti - tj is given by ti - tj with variancegiven by

var (ti - tj) = O' 2(bii + b.ii - 2bij)

Hence, theaveragevarianceof the BLUEsof elementarytreatmentcontrasts
is,

0' 2
--LL (b" + b · - 2b')v(v - I) iy!j II JJ IJ

0'2
---[2(v - l)tr(BII) - 2 LL bij]
v(v - I) iy!j

0' 2
= [2(v-l)tr(B II)-2(LL bij-trB 11)]

v(v - I) ij
0' 2

---[2v tr Bill .
v(v - I)
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Since ElvB ll = 0, the characteristic roots of C Bll = I, - O/v)Evv are 0
and I repeated v - I times. Hence, the if eis a non-zero characteristic root of
C, then e-I is a non-zero characteristic root of Bu- Thus, if eh ~, , ev- I

are the (v - I) non-zero characteristic roots of C, then ell, e;l, , ev-I- I

v-I

are the non-zero characteristic roots of BII and hence tr (B ll ) = L Ir'.
i=1

Hence, the average variance of BLUEs of elementary treatment contrasts
2a2 v-I

becomes ---L ei-
I

.
(v - 1) i=1

35. The average variance of BLUEs of elementary treatment contrasts in a con­
nected design is

2a2 v-I

(v - I) 8°/~)'
where el , e2, . .. , ev-I are the non-zero characteristic roots of the C matrix
of the design. Now

emin S~, i = 1,2, ... , v - I.

Hence

I/emin :::: I/ei, i = 1,2, . . . , v-I

( I) v-I

~::::L(l/~)
emin i=1

2a2 2a 2 v-I

- :::: --Lo/ei ) .
emin (v - I) i=1

Further,

emax::::~, i=I,2, . . . , v-I
I I .

-- S -,1= 1,2, . .. , v-I.
emax ~

Hence,

( I) v-I

~SL(l/~)
emax i=1

2a2 2a 2 v-I

- < -- "'(I/&.)emax - (v - I) ~ I •

Thus, we get

2a 2 2a2 v- I 2a2
- S -- L(l/~) S -.
emax (v - 1) i=1 emin
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36. Since, the design is connected, rank (C) = v - I. Let the v - I non-zero
characteristic roots of C be 8" Ih, .. . , 8v- l . Let ~ I ' ~2' . .. , ~(v-I) be the
associated orthogonal characteristic vectors of C. Then, the (v - I) linearly
independent estimabletreatmentconstrastsare givenby

~/t, i = I, 2, . . . , v - I .

and its BLUE is given by ~i 't , where t is any solution of Q = Ct.
Now

C~; = ~~;, i = I, 2, .. . , v - I.

Hence ~;Q = ~;Ct = ~~;t and ~;t = ~;Q/~ . Thus, ~;Q/~ is the BLUE of
~;t. Also

var (~;t) = var (~;Q/~) = ~;«J"2C)~J8?

= (J"2/8;, i= 1,2 ' 00" v-I.

Now.e't is an estimabletreatment contrast.Thereforethe vectori lies in the
space generated by the orthogonal vectors ~i, i = I, 2, .. . , v - I. Hence,

v- I

i= La;~;,
;=1

v-I
where ar's are constants not all zero. Further, note that.e'i = L ar. Then

I
v-I

the BLUEof.e't is given by.e't = L ai~;t = L a;(~;Q)/8i, and its variance
;=1

is given by

var (.e't = var (I: a;(~;Q)/8i)

= ~ a~var (~;Q/~)
v-I

= (J"2 La~/8;.
I

Now~ ::: 8max, i = 1,2, . . . , v-I. Hence,

2 2 iii
I: ai18; ?: ~ a; 18max = -,

8max
and

var (.e't) ?: (J"2.e'i I8max.

Similarly ~ ?: 8min, i = 1,2, ... , v - I, and

I: afI~ ::: ~ af18min = .e'l18min·

Hence
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Thus
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37. The efficiency of a binary design is defined as

VR 2cr2

E=-_-=--_,
V i' V

where VR = 2cr2/ i' the average variance of BLUEs of elementary contrasts
in a randomized design, f = ~ ri/v = average number of replications in a
randomized block design, V = average variance of BLUEs of elementary
treatment contrasts in the given binary design.

Now i' = ~ ti]» = n]», Further, since the given binary design is con­
nected, we have

_ 2cr2 2cr2

V = (v _ 1)~ (1/~) = II
where H is the harmonic mean of the non-zero characteristic roots
91, ~, .. , Ov-I of the C matrix of the des ign. Let A be the arithmetic mean
of 9" ~, ... , 9y+ That is

A = ~ ~/(v - 1)

= tr C/(v - 1).

Now C = diag (r. , r2, . . . , r.) - NK- 1N' , hence

y b

trC = ~ rj - LLnij/kj
i=1 j=1

b

= n - L(kj/kj) = n - b,
j=1

A=(n-b)/(v-l)

2cr2 v 2cr2 H vH
andE= -- = 2 = -.ButH <A;andhence

i'V n (2cr ) n -

v A v(n - b)
E<-= .

- n n(v - 1)

38. Since the design is connected balanced, the non-zero characteristic roots of
its C matrix are all equal. Let 9 be its non-zero characteristic root. Then

~ 9 = (v - 1)9 = tr C.

But in Exercise 37, we have proved that

trC = n - b.

Hence 9 = (n - b)/(v - 1).
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39. We have
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C=R-NK-'N'

=rIv-NK-'N'

since the design is equi-replicated. Next, since the design is connected bal­
anced, we have

C = S [Iv - ~Evvl
Equating the above two expressions of C, we get

-I I INK N =(r-S)Iv+-Evv.
v

Hence

N K-1N' = r· (r - Sr-'.

But for a connected balanced design , it is shown in Exercise 38 that

n - b vr - b
S=--= --,

v - I v-I

since n =Yr. Hence

r - S = (b - r)/(v - 1);6 0,

since the design is incomplete block design . Therefore,

IN K- 1 N'l ;6 0,

and

rank (NK- 1N') = v,

that is,

rank N = v = min (v, b).

Hence b :::: v.

40. In Exercise 33, we have proved that the incidence matrix N of an equi­
replicated regular connected balanced design satisfies the relation

N N' = k[(r - S)Iv + (S/v) Evvl.

where S is the non-zero characteristic root of the matrix C. Now, in Exercise
38, we have proved that

n-b
S=--.

v-I

But n = bk, and hence S = b(k - I)/(v - I). Let

r(k - I)
A = kS/v = bk(k - I)/v(v - I) = .

(v - I)
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Then

k(r-9)=kr-hV.

But since h(V - I) = r(k - 1), we get rk - hV = r - h. Hence

k(r - 9) = r - h.

Thus,

N N' = (r - h)I v + hEvv.

CHAPTER 3

41 . Consider a connected design. The average variance of the BLUEs of ele­
mentary treatment contrasts in this design is

_ (J"2 v-I 1
V--"-

- (v - I) ~ 9· '
1=1 1

where 91, ~, • • • , 9v- 1 are the non-zero characteristic roots of the matrix C.
Further,

v-I

tr C =L 9j = n - b.
i= 1

We minimize if subject to the restr iction ~ &. = n - b for getting the most
efficient design. So, we minimize

1
<!> = ~ - - hen - b - ~ &.)

OJ

with respect to 91, 92 , • • • , 9v- l • Equating the partial derivative of <!> with
respect to 9j to zero, we get

_0.-2 + h = 0
I

i.e. &. = I/~, i = I, 2, ... , v-I.
Hence, all 9's are equal. Thus , the most efficient design is balanced. There­
fore, the criterion that a connected design may have maximum efficiency
is that it must be balanced, i.e. all the non-zero characteristic roots of
its C matrix must be equal. From ~ &. = n - b, we get the equal root
9 =(n-b)/(v-I).

42. The average variance of BLUEs of elementary treatment contrasts in a con­
nected design is given by

_ 2(J"2 v-I

V =-- L(l/&').
(v - I) ;=1

Now, if the connected design is balanced, then

n-b
OJ = 9 = --, i = 1,2, . .. , (v - 1).

v - I
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Hence, for a connected balanced design,

_ 2a 2 2a2(v - I)
v=-= .o (n - b)

Therefore the efficiency of a connected balanced design is given by

2a 2 2va2(n - b) v(n - b)
E=-_-= = .

rV n ·2a2(v-l) n(v-I)

43. Here,
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v = b = 4, r, = r2 = r3 = r4 = 3, kl = k2 = k3 = k, = 3,

[

3 2 2 2], 2 3 2 2
N N = 2 2 3 2 = 14 + 2E44 •

2 2 2 3

Hence

C=R-NK-1N'
I , I

= 314 - -NN = 314 - -(14+ 2E44 )
3 3

= (8/3)14 - (2/3)E44 ·

= (8/3)[14 - (1/4)E44 ] .

Therefore, the design is connected balanced. We have proved in Exercise
42, that the efficiency factor E of a connected design is given by

E _ v(n - b)
- n(v - I) '

Substituting v = b = 4, and n = 12, we get E = 8/9.

44. Clearly the incidence matrix of the design is
<- r -->

N =[A, A, . .. , A]

where

A = diag (Ekl , Ekl' . . . , Ekl).

Hence

NN' = r · AA' = r diag (Ekk. Ekk. ... , Ekd = r D,

where D = diag (Ekk, Ekk, . .. , Ekk). Next consider CR-1N.

CR-1N = ~CN
r

= ~[R - NK-1N']N
r
I I

= -[rI - -D]N
r k

I
= N - -DN

k
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Now

D N = diag (Ekk, Ekk, ... , Ekd [A, A, . .. , A]

= [DA, DA, .. . , DA],

and

DA = diag (Ekk,Ekk, , Ekk)diag(Ekl, Ekl, ... , EkJ)

= kdiag (Ekl' Ekl, ,Ekd

=kA.

Hence

DN = k[A, A, . . . , A] = k N,

and, we get

CR-1N=N-N=O.

Therefore, the design is orthogonal.

45. One can verify that

[c -N][ I
N' K -K-1N'

Taking determinants, we get

46. Consider (i) N = Evb . For this design one can easily prove that

C = bll , - (I Iv) Evv].

The characteristic roots of this C matrix are 0 with multiplicity 1and b with
multiplicity (v - I). Hence the design is connected balanced. The variance
of the BLUE of an elementary treatment contrast is 2(12lb.
Consider the design (ii) C = all, - (I/v)Evv ] ' The characteristic roots of
this matrix are 0 with multiplicity I and a with multiplicity v-I. Hence
this design is connected balanced . Also the variance of the BLUE of an
elementary treatment contrast in this case is 2(12/a.

47 . We know that in a one-way design the BLUE of an estimable treatment
contrast i't is given by i'i where i is any solution of

Q=ci.

Let C- beany g-inverse of C. Then a solution of Q = ct can be taken as

i= C-Q.
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The BLUE of l't is therefore l'C-Q. Now let C p = t .Then p = C-t, and
p' = rc:' .Thus,

l'C-Q = p'Q .

Hence the BLUE of l'Q can be taken as p'Q, where Cp = t. Further the
variance of p'Q is given by

var(p'Q) = p' . Var(Q)p

= p'(a2C)p

? 'c=a-p p
2 10=ap<..

Let C = al, - (I Iv)Evv. Then, every treatment contrast is estimable, since
rank C = v - I . The BLUE of a treatment contrast l't is therefore given by

p'Q,

where Cp = t. i.e., a p - (a/v)Evvp = t.
Since rank C = v - I, we put one side restriction E1vp = 0, for finding a
solution of Cp = t . Hence, we get

a p = t or p = tf«.

Thus, the BLUE is given by

p'Q = l'Q/a.

The variance of p'Q = l'Q/a is then given by

var(t'Q/a) =a 2l' t l a.

As a particular case, take

j j ,
t = 10,0, . . . , 1,0,0, . . . , -1,0, .. . , OJ ,

Then l't = tj - tj, t 'Q = Qi - Qj, and l't = 2.
Hence the results follow.

48. Here rank (C) = v - I. So we put one side contrast as r't = 0. Hence rank
of [C r]Jii] = v. Thus the rank of the (v + I) x (v + I) matrix

A = [ C r/Jii]
r'IJii 0

is v + I and this matrix is non-singular. Let its inverse be

Then, upon multiplication, we see that

CB 11+ r Elvin = L.

r'Bll = O.



138 CHAPTER 3

ThisgivesC BII = I, - r Elvin. Nowconsider the matrixBII + Evv/n. We
have

[C + rr'/nHB II + Evv/n] = C BII + r Elvin

= L.

Also,

[BII + Evv/nHC + rr'/n] = BIIC + Evlr'In

= L.

Since C BII + r Elvin = L, we see that C + rr']« is non-singular and its
inverse is BII + Evv/n, where BII is given by C BII = I, - r Elvin, and
r'B lI =0.
Further,

C ' -I[ + rr In] r = [BII + Evv/n]r = Evvr/n = Evl,

since r'B lI = 0 and BII is symmetric. Now we have

C · [C + rr'/nrlC = C[BII + Evv/n]C

=CBIIC

= [I, - rElv/n]C

=C

since ElvC = O. Hence [C + r r'/nr l is a g-inverse of C.

49. We know that a set of solutionsof normal equations in any block design is
given by

~ = Gin
& = K-IB - (G/n)Ebl - K-IN'i

Q=ci.

Now in Exercise 48 we have proved that (C + r r'/n)-1 is a g-inverse of C
and that

, -I
(C+rr/n) =BII+Evv/n,

whereBII is given by

CB II = I, - rE1v/n and r'B lI = O.

Hencea solution of i is givenby

i = (C + rr'/n)-I Q.

Thereforea set of solutionsof normal equations in the intrablock analysis
is given by

~ = Gin
& = K-IB - (G/n)Ebl - K-IN'(C + rr'In)-I Q

A ,-I
t = (C + r r In) Q.
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Further, clearly

var (t) = (C + rr' In) -I . var (Q)(C + rr'/n)-1

= a 2(C + rr'/n)-l q C + rr'/n)-1

=a 2(C + rr'/n)-l q BII + Evv/n)
? ,-I=a-(C + rr In) CBII
?

=a-[B II +Evv/n ]CB II

= a2BIICBII

= a 2B
II[Iv - rElv/n]

= a 2B II,

since r' BII = O. Now

, -I
[C + rr In] = B II + Evv/n.

Hence

, -I
BII = [C + rr In] - Evv/n,

and

var (t) = a 2[(C + rr' Inr i - Evv/n].

The intrablock estimate of i't is i't = zrc + rr' In)-I Q.
Now

var (i't) = i' . var (t) . £

= a 2£'[ (C + rr'/n)-1 - Evv/n]£

=a 2i'(C+ r r ' In)-I £,
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since E lv£ = o.
50. Consider the following solution of normal equations in the intrablock anal­

ysis of variance of a one-way design.

J1 = Gin, & = K-IB - (G/n)Ebl - K-1N't

Q = Ct .

Then the sum of squares due to regression when all parameters are fitted is
given by

SSR (u , a , t) = B'K-1B + t'Q.

Next, we consider another solution of normal equations in the intrablock
analysis of variance of a one-way design as

j.L* = Gin, t" = R-1I - (G/n)Evl - R-IN a*

P = Do".

Then the sum of squares due to regression when all parameters are fitted is



140 CHAPTER 3

given by

SSR (J.L , a , t) = J.L*(G) + a '*B+ t'*I

= T'R-1T + a '*P

Now since the sum of squares due to regression when all parameters are
fitted remains the same no matter which solution of normal equations we
take, we get equating the above two sums of squares

a '*P = BK-1B + f'Q - T'R-1T

= (y'y - G2In) - [(y'y - G2/ n) - (B'K-1B - G2/ n) - t'Q]

-(T'K-1T - G2In)

= Total SS - Error SS - Unadj . Treatment SS.

51. Total SS = y'y - G2/n =y'(I, - n-1Enn)y
Nowinthe intrablock analysisof variance, wehavef:(y) = A9 andvar(y) =
(12In , where 9' = (J.L, a', t') and

A=

Ab

and Aj is a kj x v matrix such that its s-th row has a unit element in the
column corresponding to the treatment applied to the s-th plot in the j-th
blockand zero elsewhere. Then,

'E[y'y - G2In] = (12tr[(ln - n-1Enn)ln] + 9'A'(ln - n- 1E
nn)A9

= (n - 1)(12 + 9'[A'A - n- 1A'EnnA]9 .

NowElnA = [n, k', r'] and

A'A = [~ ~ ~,].
r N R

NotingA'EnnA = (EtnA)'(E1nA), we obtain

'E[y'y - G2In] = (n - 1)(12 + a'Ka + t'Rt + 2t'Na

- n-I(k'a + r't)2.

Now, the unadjusted block SS is given by

B'K-1B - n- 1G2 = B'(K- 1 - n-1Ebb)B.

Next from the normal equations, one gets

f:(B) = J.Lk + Ko + Nt = L9,
var (B) = (12K,
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where L = [k, K, N'] and 0' = [JJ., a ' , t'] . Hence

'E[B'K-1B - a2In] = (j2tr[(K- 1- n-IEbb)K]

+ O'L'[K-1- n-1Ebb]LO .

Now

O'L'K-ILO = (JJ.k' + a'K + t'N)K-'(JJ.k + Ko + N't)

= nJJ.2+ 2JJ.a 'k + 2JJ.t'r + a 'Ka + 2t'Na
+t'NK-IN't

O'L'EbbLO = (O'L'Ebl)(ElbLO)
'k ' ~= (nJJ.+a +trt.

Hence upon substitution and after some simplification, we get

'E[B'K-IB - a2In] = (b - I )(j2+ a 'Ka + 2t'Na

+t'NK- IN't - n-I(k'a + r't)2.

Clearly,

'E(Intrablock Error SS) = (n - b - v + g)(j2 .

Further, the unadjusted treatmentsum of squares is given by

T'R-1T - n- la2 = T'(R-1- n-1Evv)T.

Now from the normal equations,one obtains

'E(T) = r+ No + Rt = NO,

var (T) = (j2R,

whereM = [r, N, t] and 0' = [JJ. , a '. t'] . Hence

'E[T'R-1T - n- 1a2] = (j2tr[(R- 1 - n-IEvv)Rj

+ O'M'[R-1- n- 1Evv]MO.

Now

O'M'R-1MO = (JJ.r' + a'N + t'R)R-1(JJ.r + No + Rt)

= nJJ.2 + 2JJ.a 'k + 2JJ.t'r + t'Rt + 2t'Na
+a'N'R-INa

O'N'EvvMO = (O'M'Evl)(E1 vMO)

= (n JJ. + a 'k + t'r)2.

Hence upon substitution and after simplication, we get

'E[T'R-IT - a2In] = (v - I )(j2+ t'Rt + 2t'N a

+ a 'N'R-INa - n-I(k'a + r't)2,

141
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Nowadjusted treatmentSS is givenby

t'Q= (Total SS) - (Unadj. Block SS) - (ErrorSS).

Taking expectation and substitution the expected values of total SS, unad­
justed blockSS and error SS, we get

'Ef... t'Q) = (v - g)(J"2+ t'C t.

Lastly the adjustedblock SS is obtainedas

(adj. block SS) = (Total SS)-(Error SS)-(Unadj . treatmentSS).

Taking expectation and substituting the expected values of total SS, unad­
justed treatmentSS and error SS, we get

1:{adj. block SS] = (b - g)(J"2 +a'Da.

52. Fromthe normal equationsof the intrablock analysisof variance oneobtains

[G] [n k' r']
var ~ = (J"2 ~ ~ ~' .

Now pre-multiply [~] by tltematrix

[

-I

L = n~

Then, we get

Hence

V~ [Gf] ~LV~mL '

= u'L [;
k' r]K ~' L'
N

[ -I 0

-D~-INl= (J"2 n~ D
-CR-1N
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which shows that

var (P) = a 2D, var (Q) = a 2 C

COy (Q' , P) = -a2C R-IN, COy (P, Q) = -a2D K- 1 N' .

Now, one can easily prove that (D K- I N') = C R- 1 N.

53. The equations for obtaining ts in the itnrablockanalysis are

Q=Ct
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I I
where Q = T - -N B , C = R - - N N'. The elements of Q are denoted

k k
by QI, Q2 , ... , Qv. The elements of C are given by

Css = rs(k - I )/k
I ,

Css' = - k'Ass" s:j:. s.

(k - I) Asl sv
Qs = rs-k-ts - Ttl " '" k'tv, S = 1,2, ... , v.

The normal equations in the combined inter and intrablockanalysis are

Setting r't = 0, we get CL = G/bk and

. (I G) .The s-th element In WIQ + W2 k'N B - bkr IS

whereQ~ = ~B(s) - ~rs, and B(s) = sum of blocks in which the s-th treat­

ment occurs. One can verify that

Q~ = T, - Qs - (Gybk) rs·

Denotethe elementsof the matrix wjC + (w2/k)N N' by Wss" Then we see
that
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Hence, the equations in the combined inter and intrablock analysis are
givenby

I (k - 1) [ W2 ]
WIQs+ W2Qs = rs-k-

WI + k _ 1 t,

(WI - W2) (WI - W2)
- k Asl t) - , . , - k Asv tv,

s = 1,2 , ... , v.

Comparing these equations with those in the intrablock analysis, we see
that these equations are obtained from those in the itnrablock analysis

by replacingQs,rs, Ass· by Ps = WIQs + W2Q~, R, = rs [WI +~], and
k -l

Ass' = (WI - w2)Ass'.

54. (i) To show var (Q) = C/WI:
Considerthe model,

Yixj = I.L + <Xj + tj+ exij, x = 0,1, , nij

i = I, 2, , v; j = 1, 2, .. . , b.

Summingover x and j, we get

Summingover x and i, we get

Bj = kl.L + k<Xj + ~ nijti + 1:. eXij'
I X,I

n··
Multiplying this by ~ and summingoverj, we get

Hence,

We thus see that Qi, i = 1, 2, .. . , v is independent of <Xj and hence is
the same function of random variables e's both in the intrablock and the
combined inter and intrablock analyses. Hence var(Q) is the same in both
types of analyses. But var(Q) = (1; C in the intrablock analysis. Hence in



SOLUTIONS

the combined inter and intrablock analysis,

var(Q) = a; C = Cfw«.

(ii) To show that var (Q,) = C I/wz:
I G

We have Q, = -N B - - r. Hence
k bk

I , I ,
var (Q,) = kZN. var (B)N + G bZkz r . var (G) r

2 ,
- bkzN COy (B, G)r .

Now, since Bj = ku + kaj + L nijti + L exij,
I X.I
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var (Bj) = kZa; + kae
z = k(a; + ka;) = k/wz,

and coy (B], Bjl) = O. Hence var (B) = (k/WZ)lb. Also G = ElbB. Hence

var (G) = E'b var (B) Ebl

= (bk/w-),

COy (B', G) = COy (B, Elb B)

= COy (B, B)Eb,

= (k/wz) Ebl.

and

I , I , 2 ,
var(Q)) = -NN +--rr - --NEbl r

kwz bkw, bkw,

[
I , I ,]= -NN---rr =C,/W2,

kwz bkw,

I , I ,
where C) = -NN - -rr .

k bk
(iii) To show that var (Q )) = C, /WI:
From the normal equations in the analysis with recovery of interblock in­
formation, we get

Now
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I I,
where Q, = kNB- bkrr.Hence

var (WI Q + W2Q) = [__l_r, Iv] var [ W2 ~2 ]
bk wIQ+TNB

[

__I r']
x b k

Iv
= WIC+W2CI .

1 , 1 ,
where C, = -NN - -rr .

k bk
(iv) To show that var (Q, Qd = 0:
We have shown that var (WI Q + W2 QI) = WI C + W2 CI. Hence

wi var (Q) + w~ var (QI) + 2wI W2 COy (Q, QI)
= WIC+W2CI.

But var (Q) = C/w" and var (QI) = C1/W2, hence, we get

WI C + W2CI + 2 WIW2 COY (Q, QI) = WI C + W2 CI,

whichgivescoy (Q, QI) = O.

55. For (i), see Exercise49.
Weconsider (ii). The normalequations in the interblockanalysis are given
by

[
k G] = [b k

2
k r' ] [J1]

N B k r NN' t .

A solution of the aboveequations is obtainedas

f.L = 0, N B = (N N')i .

Since (N N') is non-singular, we obtain

i = (N N')-IN B.

Hence, the interblockestimate of a treatmentcontrastet is

l'(N N,)-I N B.

Also, from the above normal equations, we get var (N B) = (k/W2)NN'.
Hence the varianceof the interblockestimate of l't is given by t(N N')-I
(k/W2)N N' . (N N')-I£ = (k/W2)l'(N N'r l£.
We now consider(iii). The combinedintra and interblocknormalequations
are

[
W2 G ] [W2 bk

WI Q + :2 N B = W2 r
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A solution of the above equations is taken as f.l = 0 and

Hence,

A ( Wz ,)-1 ( WZ)t= wIC+TNN w,Q+TNB.

Thus the combined intra and interblock estimate of i' t is given by

1 ( Wz ')-I ( WZ)£ wIC+TNN wIQ+TN B.

Also from the above normal equations, we get

Hence,

147

[ ,( Wz ,) -1 ( WZ)]var £ WI C+ T N N WI Q+ TNB

,( WZ ,) -I ( WZ ,)
=£ wIC+TNN . wIC+TNN

x (WI C+ :ZNN'f' · £

= r (WI C + :Z N N') -I e.

IfT, and Tzare independent unbiased estimators ofO, with variances erf and
eri, then the linear combination ofT, and Tzwhich has the least variance is

(eriT I + erfT2)/(er,2 + er1) ·

Hence using this result, the linear combination of estimates (i) and (ii),
having the least variance is

Now let

( ')-1r r 1

C+~ Q=(NN)NB=p, say.

Then

( rr')Q = C + ~ p and N B = (N N')p,
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and

(
r r') IElvQ = Elv C + -;- p = (ElvC + r) p.

But, since E1vQ = 0, and ElvC = 0, we get rip = 0. Hence

Q=Cp.

Thus

(WI Q+ :2 N B) = (WI C+ :2 N N')P'

and,p= (WI C+ :2NNIrl (WI Q+ :2 N B) .

We now consider the linear combination of estimates (i) and (ii) having the
least variance which is

k rr' rr'
-i'(NN')-li· e«: + _)-IQ + wli'(C + _)-1 ii'(NN')-1 N B
W2 n n

t' [W, (C +:)-, + :,(NN'J-'] e

[:,t'(NN'J-'U WIt' (c+ r:) -I + 'p
= =-----,:-------------='=---

r [W, (c +r:r + :,(NN'J-}
t' [W' (C+:r+ :,<NN'J-} t'p

=---'=--::,...----------=--=--

t' [WI (c+ r:) -, +:,(NN')-I] e

I I ( W2 ') -I ( W2)=ip=i · wIC+TNN wIQ+TNB

= estimate (iii).

56. The combined intra and interblock estimate of t is given by (see Exercise 55)

Also

( Wz )-1 ( WZ)var (t) = wI C + TN N' . var WI Q +TN B

(
W2 )-1

X WI C+TNN'
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(
W2 ,) -I ( W2 ,)

= w,C+TNN w,C+TNN

(
W2 ,)

X wIC+TNN

(
W2 )-1

= WI C+TNN' .

The averageof thecombinedintraand interblockestimates of all elementary
treatmentcontrast is given by

v = ~ ~ var Oi - t·)/v(v - I)
i#j J

~ ~ [var(ti) + var (tj) - 2 COy (t tj)]
i#j

v(v - I)

2(v - I) ~ var (ti) - ~ 2 COy (ti, tj)
i i#j

v(v - I)

2 [vi: var (ti) - {~var (ti) + .~. COy (ti, tj)}]
1=1 I I#J

v(v - I)

[
W2, I W2 ' I ]2 v tr(wlC + TNN)- - Elv(wlC + TNN)- EVI

v(v - I)

which proves the result.
Now

W2 , W2 ,
(wj C + T NN )Evi = TN(E,vN)

W2 ,
= TN(kE1b)

= w2NEbi = W2 r.

If the design is equireplicate then, r = r Evi. Hence

W2 ' IEV1 = W2 rtw.C + T )NN)- Evl,

and
W2 , _I

ElvEV1 = W2 r Elv(wlC + TNN) Evl'

Therefore, under this case,

57. Here N = a Evb. Hence, Elv N = a v Elb and N Ebl = a b Evl. Therefore
kj = a v and rj = a b, for i = I , 2, ... , v, j = I, 2, ... , b. Then n = a b v,
and NN' = (a Evb)(a Ebv) = a2bEvv.
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a2b
Thus C = R-1 - NK-1N' = a b I, - -Evv. The normal equations for t

v
are given by Q = ct Hence

ab A

Q = (a b I, - -Evv)t.
v

Taking E1v t = 0, we get a solution for t as

t = Q/ab.

Clearly,

Q=T -NK-1B =T - (~)Evi'

Then sum of squares for testing t = 0 is given by

i'Q = Q'Q/a b

= [T' - (0/v)E1vUT - (O/v)Evd/a b

= [T'T - 0 2/v]/a b.

Clearly rank (C) = v - I. Hence the d.f for eo is v - I. From the struc­
ture of the matrix C, it follows that the design b is connected balanced.

b v

Since nij = a, ni. = L nij = ab, n.j = L nij = a v, n = a b v, it follows
j=l i=l

that nij = ni.n.j/n . Hence the design is also orthogonal. The analysis of vari­
ance table is given below.

Analysis of Variance Table

SOURCE S.S. d.f,

Blocks [(B IB _ ~2] lav b-I

Treatments [ T'T _ ~2] lab v-I

Error * abv - b - v+ 1

0 2
Total y'y-- abv - I

abv

• obtained by subtractions.

Further,

var (ii) = a 2/ab, Coy (ii, lj) = 0.

Hence var(li - tj) = 2a 2/ab. ForthedesignN = EVbthe variance of'(i, - tj)
will be obtained by taking a = I in the corresponding result for the design
N = aEvb. Hence for the design N = Evb,

A A 2
var (tj - tj) = 2a lb.
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Thus, the efficiency of the design N = a Evb in comparison with the design
N = EVb is givenby

2(12jb
E- -a- (2(12 jab) - .

Thus the design N = aEvb is a times efficient than the design N = Evb.

58. For any block design, we have

E1v N = (k. , k2, . . . , kb)

and

Hence in the present case, we get

E1v NN' = (E1vN) N' = k E1b N' = k (N E1b)'

= k(r Ev»' = r k Elv.

Now, clearly each row of NN' will contain r in the diagonal, AOI (q - I)
times, AIO(P - I) times and All (p - I)(q - I) times. Hence

E1vN N' = [r+ (q - I)AOI + (p - I)AIO + (p -I)(q -1)Ald Elv'

Therefore

rk=r+(q-I)Aol +(P-I)AIO+(p-I)(q-I)AII,

which gives

(q - I)AOI + (p - I)AIO + (p - I)(q - I)AII = r(k - I).

Now, the normalequations for t are given by

Q = C t, whereC = R- 1 - NK-1N'.

In the present case,

I , I
C = r t, - k N N , Q = T - kN B

Let Qij be adjustedtotal for the treatmenttij'Then, the solutionof tij is given
by

I
Qij = r tij - kL L A(ij)(i'nli'j'

I J

r I ~
= (r - -k )tij - -k [L.J A(ij)(inlif

j#j

+L A(ij)(i'j)ti'j + L L A(ij)(i'nli'j']
i'#i i#i j'#j

= r(k - I) tij _ AOI L tif - AIO L ti'j - ~L L tilj"
k k j'#j k i'#i k i'#i j'#j
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Let L tij = ti.. L tij = t.j. and L L tij = t... Then, we get
j i i j

r(k - 1) AOI AIO
Qij = k tij - T(ti. - tij) - T(t.j - tij)

All
- -(t - t· - t · + t··)k .. L ~ u

r(k - 1) + AOI + AIO - All (AOI - All)
= k tij - k ti.

(AIO-AII) All
- t · - -t .k .J k "

We take the side condition t.. = O. Now let Qi. = L Qij,Q.j = L Qij, and
j i

Q.. = L L Qij . Adding the equations over j we get
i j

k Qi. = a ti. - q(AOI - AII)ti.

= [a - q(AOI - AII)]ti.,

where a = r(k - 1)+ AOI + AIO - All. Hence

ii. = k Qi.l[a - q(AOI - Aldl.

Similarly adding over i, we get

i.j = k Q.j/[a - p(AIO - All )].

Thus,

(AOI - AII)kQj. (AIO - AII)kQ.j
kQij=atij- - .

a - q(AOI - Aid a - p(AIO - All)

Hence, a solution for tij is given by

~.. _ ~ [Q" + (AOI - AldQi. + (AIO - AII)Q.j ]
~ - u 'a a-q(AOI-AII) a-p(AIO-AII)

i = 1, 2, .. . , p, j = I, 2, . . . , q.

Also

and
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q q

Now consider I: tij - I: ti'j, i #- if. Its BLUE is given by
j=1 j=1

Also,

Now

var (ii.) = var(t tij)
J=I

q

= L var (iij) + 2L L COy (iij. tij' )
j=1 j j

k q a 2 k a 2

= --A+q(q -I)-B
a a

k q a 2
0

= --[A+(q-I)B].I= 1.2, . . .. p,
a

where

153

and

COy (ii.. tv.) = COy (L tij . L ti'j)
j j

q

= L COy (tij. ti'j) + L COy (tij. ti'j)
j=1 j~'

= q k a 2C/a + 0 = k q a 2C/a.

Hence

A A 2 q k a 2 2 q k a 2C
var (ti . - tj.) = [A + (q - I)B] - ---:_-

a a
2 q ka 2

=--[A+(q-I)B-C]
a

2 q k a 2

= (1 + qB).
a

p p

Next consider I: tij - I: ti'j' = toj - toj ' , Its BLUE is
i=1 i'=1

k(Q . - Q 0')t 0 _ t 0, _ oj oj
oj oj - (\ \) .a - p "-10 - "-II
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Further

var Ct.j - t.j') = var Ct.j)+ var (i.j') - 2cov t.j, t.j' ).

As before, we can easily prove that

A k p (12 .
var (t.j) = --[A + (p - 1)C],j = 1,2, . .. , q

a

and
a A 2

COY ~t.j, t.j') = k p (1 Bfa.

Hence

A A 2 k P (12
var(t.j - t.j') = [A + (p -I)C - B)

a
(2 k p (12

= [I + pC].
a

Lastly consider tij - tij' - ti'j + tiT ' Its BLUE is givenby

A A A A k
tij - tij' - tn + tiT = -[Qij - Qij' - Qi'j + Qi'j']'

a

And its varianceis given by

var (iij - tij' - ti'j + tiT)
4 k (12 2 k (12 B 2 k (12 2 k (12 2 k (12

=--A- ---C---C---B
a a a a a

4 k (12
= --(A-B-C)

a
4 k (12

=--
a

59. Let the yield of the j-th plot receiving the i-th treatment be donoted by
yij,j = I, 2, . . . , n., i = I, 2, . . . , v. Let the treatmenteffectsbedenotedby

I ~ I I - I
tr , t2, . . . , tv. Let E = - L ti, and ti = ti - t = t i - J..L, where J..L has been

v I

written for t. Now

'E(Yij) = t; = J..L + ti, j = 1,2, .. . , ni, i = 1,2, .. . , v.

Testing the hypothesis t; = t; = ... = t~ is equivalent to testing the
hypothesis ti =0, i = 1,2, ... , v. We minimize L L (Yij - ti)2. The nor­
mal equations are

and

Tj = niJ..L + niti, i = 1,2, . . . , v.
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Note that the number of independent equations is v. Hence putting one side
T G

condition L njtj = 0, weget a set of solutions as fL = Gin and tj = -.: - - .
nj n

Hence sum of squares due to regression when f.1 and tl, tz. ... , tv are fitted
is

fLG +L tjr, =LTfInj with v d.f.

The error sum of squares is given by

SSE = L Lyij - LTf/n j with (n - v)d.f.
j j

Now if the hypothesis tj =0, i = 1,2, . .. , v is true, then E(Yij) = u ,
j = 1,2, .. . , nj, i = 1,2, . .. , v. We minimize L L(Yjj - f.1)2. The nor-

*mal equation is G = nu. Hence the solution is f.1 = Gin. Then the sum of
squares when f.1 is fitted is G2/n with I d.f Hence, the sum of squares for
testing tj =°is obtained as

" 2 2L..- Tj /n j - Gin,

with (v - I) d.f. Thus, the F statistic for testing tj =0, i = 1,2, . .. , v is
given by

([LTf /nj - G2/n]j(v - I)
F = 2 2 '[L LYjj - LTj /nil/(n - v)

j j

with (v - I) and (n - v) d.f. The BLUE of an elementary treatment contrast
tj - tj is given by

tj - ~ = (Tj/nj) - (Tj/nj)

with variance given by

A A 2(1 I)var (tj - tj) = (1 - - - •
n, nj

The average variance of BLUEs of all elementary treatment contrasts is

V = L L var (tj - ~)/v(v - I)
j;6j
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We minimize V with respect to nj subject to L nj = n. Thus we minimize

I I
<!> = - " - - A(n - "nj)v L..J nj L..J

o<!> = __1_ + A= 0
onj v n~

I

i.e. nr = I/Av , nj = 1/.fi:V =constant. Now L n, = n gives ; = n,
vAv

Inn . h .
hence ~ = - . Thus nj = -, I = 1,2, ...• v. Hence t e test IS most sen-

vAv v v
sitive when nj are all equal.

60. Here, the incidence matrix of the design is given by

N = [~::: 2~)r2] • where r2 = r - rl .
E(v-2)r, E(v-2)r2

Hence

r)E)(v-2) ]
(r + 2r)E 1(v-2) .
rE(v_2)(V - 2)

NN' = [~: (r , ~ 4r2)
r)E(v-2») (r) + 2r2)E(v-2»)

Therefore the C matrix of the design is give by

. I ,
C = diag lri. (r, + 2r2), r, r, . ..• r] - -NN

v

-~E)(V-2) ]
r) + 2r2
---E)(v-2)

rIv- 2 _v~E(V-2)(V-2)
=

v
rl + 4r2

r) +2r2- ---
v v

rl rt+2r2E-~E(V-2») v (v-2)1

We now write the reduced normal equations for t as

rl rl rt
Q) = (r, - -)t) - -t2 - -El(v-2h·

v v v
r) r) + 4r2 r) + 2r2

Q2 = --tl + (r, + 2r2 - )t2 - E)(v-2)t3
v v v
r) r) + 2r2 2

Q3 = --E(v-2»)t,- E(v-2»)t2 + [rlv-2 - -E(v-2)(v-2)]t3.
v v v

Next, we put the side restriction L rjtj = O. i.e.

rltl + (r, + 2r2)t2 + rE'(v-2)t3 = O.

Then, we obtain

vrQ) = r)(vr - r2)t) + r)r2t2

vrQ2 = r)r2tl + [vr(r + r2) - r,r2]t2

Q3 = rt3.
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where Q3 = {Q3,Q4, . .. , Qv} ' and t3 = {t3,t4,"" tv}'. Hence , we get the
solutions as

tl = [vr(r + r2)QI - rl r2(QI + Q2)J!b.

t2 = [-rl r2(QI + Q2) + VITI Q2]/ b.

t3 = Q3/r,

where b. = ITI (vr + vr2 - 2r2)
Hence sum of squares due to treatments is

v v

LtiQi = t,Q , + hQ2 + L Q~ /r with(v - I) d.f.
, j=3

The Block SS and EITorSS are obtained as usual and the analysis of variance
will be completed as usual. Further, we obtain

var (t,) = a 2 . Coefficient of QI in the equation oft,

=a 2
[vr(r + r2) - rl r2]/ b. ,

var (t2) = a2rl (vr - r2)/ b.,

(A) 2/· 'l 4var tj = a r, 1 = .~, , .. ., v

COy (t" (2) = -a2rl r2/ s,
COy (tj, tj) = 0, j # j = I, 2, . . . , v except j = I,

j = 2, and i = 2, j = I.

Hence

A A 2 2
var (tl - t2) = a 2vr / b. ,

A A 2 [ I vr(r + r2) - rl r2]
var (tl - tj) = a - + ,

r b.

A A 2 [ I rl (vr - r2)] .
var (t2 - tj) = a -;: + b. ' J = 3,4, . .. , v.

Let V be equal to the average variance of the BLUEs of all elementary
treatment contrasts. Then

- I [2. 2vr2a 2 2 { I vr(r+r2) - rlr2}V = + 2(v-2)a -+ ~-.:.;......~....;.
v(v-I) b. r b.

2{1 rl(Vr-r2)} 2a
2

]+ 2(v - 2)a -;: + b. + (v - 2)(v - 3)-r-

2a 2
[ 2r[vr2(v - I) - r1r2]]

= (v-I)(v-2)+------
rv(v - I) b.

2a 2
[ IT~ rr,r2(2v - 3)]

=- 1+-+ .
r b. b.v(v - I)
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Hence, the efficiency relative to the original randomized block design is

I
E = --...."....------

r ~ r rl r2(2v - 3)
1+-+-----

D. D.v(v - I)

The loss in efficiency is given by

I - E =L/O + L),

r r~ r rtr2(2v - 3)
where L = - + --=----

D. D.v(v - 1)
61. Here the incidence matrix of the modified design is given by

N - [2h E2(r- 2) ]
- E(v-2)2 E(v-2)(r-2) .

Hence ,

NN' = [4h + (r - 2)E22 rE2(v-2)] .
rE(v-2)2 rE(v-2)(v-2)

Thus,

I ,
C = rl, - -NN

v

[
( 4) (r - 2)

= r- ~ :2 - -v-E22

--E(v-Z)Z
v

Then the reduced normal equations Q = ct give

[( 4) r - 2 ]A r A

QI = r - ~ Iz - -v-EZ2 tl - ~E2(V-2)t2

r A [ r JAQz = -~E(V-2)2tl + rIv- 2 - ~E(V-2)(V-2) t2,

where Q; ={QI,Q2}'Q2={Q3,Q4, . . . , Qv}, t l = {tl,t2} and t;={t3,
4, . . . , tv}. We put one side restriction Elvt = 0, i.e. EI2tl +E1(v-2)t2 = O.
Then, we obtain the following normal equations

QI = [ (r - ~) h + ~E22] tl

Q2 = rho
Hence, we obtain

tl = [(vr - 2)QI - 2Q2]/r(vr - 4)

t2 = [-2QI + (vr - 2)Q2]/r(vr - 4)

t2 = Q2/r.
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Thus the sum of squaresdue to treatments is obtainedas
v

SST = 1,QI + hQ2 +L Q~ Ir
i=3

159

with (v - 1) d.f. The block SS and the errorr SS are obtained as usual and
the analysisof variance table is completed. Now

var (1d = 0"2 . coefficient ofQ, in the equationoft,

= 0"2(vr - 2)/r(vr - 4)

var (h) =O"\vr - 2)/r(vr - 4).
A 2 ·,., 4var (ti) = 0" [t; I = .~, , ..., v.

COy (1, ,12)= 0"2 . coefficient of Q2 in the equationoft,

= -20"2/r(vr - 4) .

COy (1j, 1j) = 0, i :f:. j = I, 2, . . . , v except i = I, j = 2 and

i = 2,j = 1.

Then, we get

A A 20"2 [ 4]var (tl - t2) = - I +--
r vr - 4

A A 20"2 [ I]var (tl - tj) = - I +-- ,j = 3,4, . . . , v
r vr - 4

A A 20"2 [ I]var (t2 - tj) = - I + -- .i = 3,4, .. . , b
r vr - 4

A A 20"2 . .
var (ti - tj) = -, I :f:. J = 3,4, . . . , v.

r

Hence the average variance of the BLUEs of all elementary treatmentcon­
trasts is given by

_ 20"2 [ 8
V = 2 + -- + 4(v - 2)

rv(v - I) vr - 4

x {I + _I-}+ (v - 2)(v - 3)]
vr- 4

= 2;2 [I + (V-I)~Vr-4)l
Hence the efficiency of the modified design is given by

20"2/r I
E = 20"2 = I + 1::1 '

-[1+1::1]
r

where 1::1 = 41(v - 1)(vr - 4). The loss of efficiency is given by

I - E = 1::1 1(1 + 1::1) = 41[4 + (v - 1)(vr - 4)]
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62. Here the incidence matrix of the design is

[

2En EI(r-2)]
N = 0 E1(r-2) .

E(v-2)2 E(v-2)(r-2)

Hence

[

r+ 2
NN' = r-2

(r + 2)E(v-2)1

Therefore

r - 2 (r + 2)EI(V-2)]
r - 2 (r - 2)E1(v-2) .

(r - 2)E(v-2)1 rE(v-2)(v-2)

c=

(r + 2)(k-l)

k
(r-2)---

k
(r+2)

--k-E(~2)1

(r-2)
---

k
(r-2)(k-1)

k
(r - 2)

---E(v-2)1
k

(r+2)
--k-EI(~2)

(r-2)
--k-EI(~2)

1
r(I~2 - 'kE(~2)(~2»

Hence, the normal equations for t are

kQI = (r + 2)(k - 1)1] - (r - 2)h - (r + 2)E1(v-2)t3

kQ2 = -(r - 2)11 + (r - 2)(k - 1)h - (r - 2)E1(v-2)h

kQ3 = -(r + 2)E(v-2)I 11 - (r - 2)E(v-2)112
1 A

+ r«Iv-2) - 'kE(V-2)(V-2»t3

where t' = (t3, 4 , . .. , tv) and Q3 = (Q3, Q4, . . . , Qv).
We now set r't= 0, i.e. (r + 2)tl + (r - 2)t2+ rE1(v-2)t3 = 0. Hence

1
E1(v-2)t3 = - - [(r + 2)tl - (r - 2)t2]'

r

Substituting this in the above equations, we get

[
r k Q1] = [ (r + 2)(rk + 2) 2(r -2) ][11 ]
rkQ2 2(r - 2) (r - 2)(rk - 2) h

Q3 = rt3·

Hence we get

11 = k(r - 2)[(rk - 2)QI - 2Q2]/ t:;.

12 = k[(r + 2)(rk + 2)Q2 - 2(r - 2)QI]/ t:;.

t3 = Q3/r

where /). = (r - 2)(r2k2+ 2rk2 - 8). Let BI + B2 = G" B3 + B4 + . . . +
B, = G2, and G = G1+ G2. Then from

1
Q =T- 'kNB,
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we get

I
QI + T 1 - k"(GI +G)

I
Q2 = T2 - k"G2

I .
Qi = T, - kG, 1 = 3,4, . .. , v.

Hence the sum of squares for testing t =0 is

v

i,Q, +hQ2+ LQi
i=3

161

= ~ [(r -2)(rk -2)QT+ (r + 2)(rk + 2)Q~ - 4(r - 2)QIQ2]
/:).

v

+ LQ~/r.
3

Further

var (i l ) = a 2.coefficient of QI in the equation of tl

= a 2k(r - 2)(rk - 2)//:).,

var (h) = a 2k(r + 2)(rk + 2)//:).,

var (ii) = a 2/r, i = 3,4, ... , v

COY (ii , (2 ) = -2a2k(r - 2)//:).

COY (tl, ii) = 0, i = 3,4 , v

COY (i2, ii) = 0, i = 3,4, , v.

Hence,

var (i , - h) = 2ka2r(rk + 2)//:).

A A 2 [k(r - 2)(rk - 2) I ] .
var (tl - ti) = a /:). + ~ , I = 3,4, ... , V

A A 2 [k(r + 2)(rk + 2) I ] .
var (t2 - ti) = a /:). + ~ ,1 = 3,4, . . . , v,

var (ii - ii) = 2a 2/r, i #.i = 3,4, ... , v.

63. Let the new varieties be denoted by tl , t2, . . . , tv and the standard variety by
to. Then, the incidence matrix of the design is seen to be

N= [gEvv] .
E1v

Also



gv ]---Evl
gv + 1

vII - _ v_ Ell
gv+ I

162

Hence, the C matrix of the design is obtained as

C = R-NK-IN'

[

g~
= g.I, - gv + I Evv

gv
---Elv

gv+ I
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For solving the normal equations Q = C t, we impose the restrictions
I>itj = 0, which gives

j

gE1vt = -to,

where t' = (tl , t2, ... , tv). Further, let Q ' = (QI, Q2, ... ,Qv) and Qo be the
adjusted treatment total for to. Then we have

g I
Q = T - --G, Q = T - --G,

gv + I gv + I

where T' = (TI, T2, . .. , Tv) = vector of totals of the new varieties and
To = total of the standard variety to , and G = grand total. Thus , we have
the following equations

gv ]
- gv +; E

VI
[ ~ ]

vII - --Ell
gv+ 1

The above equations give

g~ gv
Q = (gvIv - --Evv)t - --to Ev1,

gv + 1 gv + I

gv g2
Qo = ---Elvt + __v-to.

gv+ I gv + I

Now taking into account the fact that g E lvt = -to, we see that

Q = g v t and Qo = v to

Hence

t = Q/gv and to = Qo/v.

Thus, the SS for testing the significance of varieties is

(Q'Q/gv) + (Q~/v)

with d.f, v.
The block SS, total SS and error SS are obtained as usual and the analysis
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of variancetable is completed. Further,

var(tj)=cr2/gv,i= 1,2, ... ,v

var (to) = cr2/ V,

COy (tj, tj) = 0 i # j = 1,2, .. . , v

COy (tj, to) = 0 i = 1,2, .. . , v .

Hence,

var(tj-tj)=2cr2/gv, i#j= 1,2, , v

var(tj-to)=cr\g+I)/gv, i= 1,2, , v.

64. For a SBIBD, N, N', NN', and N'N are all non-singular. Further,

NN' = (r - A)lv+ AEvv.

Hence

(N N,)-I - _I_ [I _ A E 1
- (r - A) v r - A+ Av vv

I A
= --[Iv - "2Evv1.

(r - A) r

Hence,

(N')-I . N- 1 = _I-[I - ~E 1
(r - A) v r2 vv

' I I A(N)- = --[N - -EvvNl
(r - A) r2

= _I [N - ~Evv] .
r - A r

Premultiply by N', we get

I , A ,
Iv = --[NN - -NEvvl

(r - A) r

I ,
= --[NN - AEvvl.

(r - A)

which gives

N'N = (r - A)lv+ AEvv = NN'.

65. (i) For a BIBD, we have

NN' = (r - A)lv+ AEvv.

The characteristic roots of N N' are given by the roots of the equation

INN' - elvl = 0,

i.e. by the roots of

l(r - A - e)lv+ AEvvl = o.

163
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Now,

I(r - h - O)Iv + hEvvl = (r - A - Or-I. (r - h - 0 + hV)

= (r - h - Or-1(rk - 0).

Hence, we have

(r - h - O)V-l(rk - 0) = o.
Thus , we obtain the characteristic roots of NN' as

o= rk, repeated once

o= r - h, repeated (v - 1) times.

The non-zero characteristic roots of N'N and NN' are same. Hence the
characteristic roots of N'N are r k, and r - h.
(ii) We know that

INN'I = rk(r - h)v- l i= O.

Hence,

rank (NN') = rank (N'N ) = v ~ b.

Since , the design is non-symmetrical, v < b. Hence, N'N is singular. There­
fore IN'NI = O.
(iii) We have

tr(N'N) = tr(NN')

= tr[(r - h)Iv + hEvv]

= vr.

i.e.

i.e.

i.e.

66. We have bk = vr. But b = 4(r - h), hence we get

4k(r - h) = vr,

4k [(r _ (r(k - I)] = vr,
v-I

(v-2k)2=v

v - 2k = ±.jV, which gives 2k = v ± .jV.

67. For an affine resolvable BIBD, v = nk, b = nr, we know that b = v + r - I
k2 k

and k2[v is a positive integer. Hence we get - = - = g, where g is a
v n

positive integer. Now

(k - I) r(k - I) k - I ng - I g - I
h=--I = b =--1 =--1 =g+--I'

v- -r n - n- n-

Hence, (g - I )/(n - I) = tis 0 or a positive integer. Thus, g = (n - l)t + 1,
and h = (n - I)t + I + t = nt + I. Further, k = ng = n(nt - t + 1). Hence
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v = nk = n2(nt - t + I), also

~(v -I) (nt+I)(n-I)(n2t+n+l) 2
r= = =nt+n+1.

k - I (n - I)(nt + I)

Then, b = nr = n(n2t + n + I).

68. Let No be the incidence matrix of the new design. Then

No = [E~J ,
where N is the incidence matrix of the original BIBD. Then

NoN' = [NN', NEbl] = [(r - ~)Iv + ~Evv rEvl]
o ElbN bEll rElv bEll

Also,
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Therefore, C matrix of the new design denoted by Co is seen to be

Co = Ro - NoKQINo'

[

rl - _I_{(r - ~)I + ~E I __r_E I ]
v k + I v vv k + I v

- -k~ I Elv (b- k: I)

= [r:: >v - k~ 1s., - k ~ lEVI]
r bk '

-k+ I
Elv

k+ 1

Let the treatments of the original BIBD be donoted by t. , t2, . . . , tv
and t' = [tj , t2, . .. , tv]. Let to be the control treatments . Let Qi = T j ­

B(i)/(k+ I), i = 1,2, .. . , v, Qo = To - G/(k + I) and Q' = [QI , Q2, . .. ,
Qvl. Then, the reduced normal equations for treatments are given by

[

rk + ~ ~

[~] ~ k + ~I. ~ : +1 I a.,

r+ I v

Thus, we get

-~k: lEo,] [~l
k+1

[
rk + ~ ~ ] r- --I ---E t---EQ- k+l v k+1 vi k+1 vito

r b
Qo = - k + I Elvt + k + I to·
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As usual, we take 1: nt, = 0, i.e. r(tl + t2 + . . . + tv) + bto = 0. Hence,

( b b) ArE1yt= -bto, and Qo = -- + -- to = bto. Thus, to = Qo/b, and
k-l- I k } 1

[
rk + ~ ~ ] r r

Q = k + 1 I, - k + I Eyy t + k + 1Eyl . b .E1yt.

[
rk + ~ x r

2]
- --I ---E E t
- k + 1 v k + I vv + b(k + I) vv

= [ply + q . Eyy] t.

where p = (rk + ~)/(k + I), and q = (r2 - b~)/b(k + I). One can easily
show that

2 vr
r2 - b~ r - k~ r(rk - v~) r - ~

q = b(k + I) = b(k + I) = bk(k + I) = v(k + I) .

Now

_ I 1 q
[ply + qEyy] = -Iy - Eyy,

P p(p + vq)

and

rk + ~ r - ~
p+ vq =-- +-- = r.

k+1 k+1

Hence
(k+l) (r-~)(k+l)

[ply + qEyyr l = I, - Eyy
(rk + ~) v(k + I) . r(rk + ~)

k + 1 (r -~)
= --Iy - Eyy,

rk + ~ vr(rk + ~)

A [ k + I (r - ~) ] Qt = --Iv - Eyy .
rk + ~ vr(rk + ~)

Therefore,

A k + I (r -~) v

ti = rk+~Qi - vr(rk+~) ~Qi '

and the adjusted treatment SS is

AI A k+1 ~ 2 (r-~) (~ )2 Q~
t Q+ toQo = rk + ~ -r Q, - vr(rk +~) ~ Qi + "b'

y y

Now L Qi + Qo = 0, hence L Qi = -Qo, and
1 I

A I A u.k+ I~ 2 [ 1 r - ~ ] 2
t Q + toQo = rk + ~ ~ Qi + b - bk(rk +~) Qo

= k+ 1 ~Q~+ ~Q2
rk+~ ~ I r 0

I
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with v d.f The other sum of squares are obtained as usual. Further,

A A (k + I) ..
ti - tj = (Qi - Qj), I ;f J = I, 2, 00 " v

(rk + A)

A A k + I (r - A) ~ Qo
ti - to = rk + AQi - vr(rk + A) ~ Qi - b

k+1 [r-A I]
= rk + AQi + bk(oyk + A) - b Qo

k+1 A .= - - Qi - -Qo, I = 1,2, . . . , v.
rk-l- A r

Also

A 2[k+1 r-A] .var (ti) = a - - - , ,= 1,2, 00 • , v
rk+A vr(rk+A)

A A 2 [ (r - A) ] . .
COy (ti' tj) = a , l;f J = 1,2 , . . . , v

vr(rk + A)

var (In) = a 2/b
COY (li, In) = 0, i = I, 2, 00 • , v.

Hence,

A A 2 [ k + I r - A ] 2a2(r - A)var (ti - t-) = 2a -- - + _.....:...._...:.
J rk + A vr(rk + A) vr(rk + A)

2a2(k+I)/(rk+A), i;fj= 1,2, oo.,v.

and therefore

A A 2[k+1 r-A I]var (ti - to) = (J" -- - -

rk + A vr(rk + A) b

= a 2[~ + ~], i = 1,2 , 00 • , v.
rk + A r

69. One can easily prove that E1bN'N = rkElb. Also

N' N N' N = N'[(r - A)Iv + AEvv]N

= (r - A)N'N + A(E1vN)'(E1vN)

= (r - A)N'N + Ak2E
bb.
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Let the blocks be denoted by B" B2, . . . , Bb and let £j denote the number
of common treatmentsbetween BI and Bj, j = I, 2, 3, , b. Then, clearly
£, = k. Then the elements of l" row of N'N are £" £2, , £b. Then from
the above two relation, we find that

b

L £} = k(r - A) + Ak2.

I
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2 2 2
Hence L i j = k(r - 1), and L iJ = k(r - A- k + Xk), Define l = L i j /

b b b
(b - I). Then,

b _ 2 (k2(r - 1)2
L(ij - i) = k(r - A- k + Xk) - b _ I

2

k
= --[(b - l)(r - A - k + Ak) - k(r - 1)2]

(b - I)

= _k_ [_(b_-_I) {(v _ I)(r _ k) + r(k _1)2} - k(r _ 1)2]
(b-I) (v-I)

k2

= [(b - I)(b - v + 1+ rk - 2r)
(b - I)(v - 1)

- (r - 1)2(v - I)]

k2

= (b _ I)(v _ I) [(b - I)(b - v) - 2r(b - v) + r('Y - k)]

~ [ ~ ]= (b _ 1)(v _ I) (b - l)(b - v) - 2r(b - v) + b (b - v)

k2(b - v)(b - r)2
= b(b - I)(v - l)

Thus the necessary and sufficient condition that there will be the same num­
ber of treatments common between any two blocks of a BIBD is that b = v
or b = r. But b = r gives a RBD, hence is inadmissible. Hence, b = v.

70. Let N be the incidence matrix of the BIBD and let N be partitioned as
N = [Nil N12], so that Nil is the v x 2 incidence matrix of the first two
blocks between which it is assumed that there are x treatments in common.
Now consider No as

No = [~~l N~2l
Then

NoN' = [NN' NIl] ,
o Nil ' Iz

and

INoN~1 = INN'I ·11z - N11'(NN,)-INld .

Now for a BIBD

NN' = (r ~ A)lv + AEvv

and

(N N')- I - _1_1 _ A E
- (r - A) v (r _ A)rk vv

IN N'I = rk(r - A)v- I .
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Thus,

/ I I I / X. /
Nil (NN)- Nil = --NIl Nil - Nil EvvN II.

(r - '11.) (r - '1I.)rk

Now Nil /NIl = [~ ~], and ElvNIl = kE12• Hence,

and
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k(r - '1I.t-3

INoN~I = .[(r - k)2(r - '11.)2 - (rx - '1I.k)2].
r

Now No is (v + 2) x b matrix of real elements and b > v + 2. Hence, it is
well known that INoNO' I ::: O. Hence, we get

(r - k)2(r - '11.)2 - (rx - '1I.k)2 ::: 0

i.e. (rx - '1I.k)2 :::: (r - k)2(r - '11.)2

i.e. [rx - '1I.kl :::: (r - k)(r - '11.)
2'11.k + r(r - X. - k)

i.e. -(r - X. - k) :::: x :::: .
r

71. Let the blocks be denoted by BI, B2, .. . , Bb and let t j denote the number
of common treatments between Bland Bj, j = I, 2, . . . , b. Then clearly
t l = k. Suppose t 2 = x. Then, from Exercise 69, we have

bL t j = k(r - I) - x,
3

and
b

L tf = k(r - X. - k + '1I.k) - x2.
3

b (Lt?
Now L tf - b _ J

2
::: 0, from which we get

3

2 [k(r - I) - x]2
k(r - X. - k + '1I.k) - x - > 0

(b - 2) -

i.e.

k2(r_I)2 b-I[ k(r-I)]2
k(r - X. - k + '1I.k) - > -- x - ---

(b-I) -b-2 b-I
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In Exercise 69. we have shown that

kZ(r - I? kZ(b - r?(b - v)
k(r - A- k + Ak) - b _ v = b b I( - )(v - I)

Hence. we get

[
k(x - I)]Z (b - 2)kz(b - r?(b - v)x - < ..:....-_:.....-..:.......,,....--;.-.,;,..-...;.

b - I - b(b - l)z(v - l)

kZ(b - r?TZ

< -(b---I)-=-z- ·

since T = [(b - 2)(b - v)jb(v - I)]. Thus. we get

I
k(r-I)! k(b-r)T

x- <---
b - I - (b - I)
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from which we get the required result.

72. Clearly M = 2N - Evb. Hence.

NM' = (2N - Evb)(2N' - Ebv)

= 4NN' - 2EvbN' - 2nEbv+ bEvv

= 4(r - A)Iv+ 4AEvv - 2Evi(NEbI)' - 2(NEbl )Elv+ bEvv
= 4(r - A)Iv+ 4AEvv - 2Evl(rEvl)' - 2(rEvl)Elv+ bEvv

= 4(r - A) + [b - 4(r - A)]Evv •

73. Clearly the elements of N are 0 and I. and N is VI vz X blbz matrix. Further

* *E(I)(VIV1)N = (Elv1 x (ElvJ(NI x Nz+ N1 x Nz)
* *= Elv,NI X EIV1Nz + Elvl NI X Elv1 Nz

*Now Elv,NI = klElbp Elv, NI= (VI - kt)Elbp and similarly EIV1NZ =
kz Elb). and

*Elv2Nz = (vz - kz)Elb2'

Hence

EI(V Ivz)N = klElbl x kzEIb) + (V I - kt)E1bl x (vz - kz)Elb2

= klkzEI(b,b2) + (VI - kl)(vz - kz)EI(blb)

= [k1kz+ (VI - kl)(vz - kz)]E1(blbl)'

Similarly. it can be proved that
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Writing b = b,bz, v = VIVZ, k = klkz + (v, - kj)(vz - kz), and r = r,rz+
(b, - rl )(bz - rz), we get

Further

* * * *NN' = (NI x Nz + NI X Nz)(Nlx N, x Nz)'

* * * *= (N, X Nz + N, x Nz)(N; x N; + N'I x N;)

* * * *= NIN; x NzN; + NI N'I X Nz N; + N, N'I X Nz N;

* * * *+ N,N 'I x NzN;.

Now

NIN; x NzN;

= [(r, - ~q )Iv, + }\JEv,v,] x [(rz - hZ)lv2+ hzEv2VJ
= (r. - hi )(rz - hz)lv + hi (rz - hz)EvlVI X IV2

+ hZ(r, - hl)lvi x EV2V2+ hlhzEvv
* *N, N; x Nz N; = (Ev,b, - N,) x N; x (EV2b2- Nz)N;

= [rIEv,v, - (r. - hl)lvi - h,EvIV,]

x [rZEV2V2- (rz - hz)Iv2- hzEv2V2]
= (r, - h,)(rZ- hz)[(EvIV, - Ivl) X (EV2V2- Iv2)]
= (r, - hj)(rZ - hz)[Evv - IVI x EV2V2- EVIV, X IV2+ L]

* *
NI N; x Nz N; = N,(Ev,bl - Nj)' X Nz(Ev2b2 - Nz)'

= N1(Eb,v, - N'I) X Nz(Eb2V2 - N;)

= [rIEv,V, - (r, - hj)Ivl - h,Evlvl]

x [rZEV2V2 - (rz - hz)lv2- hzEv2V2 ]

= (r, - hl)(rZ - hz)[(Ev2V2- Iv2) X (EV2V2- Iv2)]
= (r. - hl)(rZ - hz)(Evv - Iv, x EV2V2 - Ev,v, X IV2+ Iv)

* *' * *'NIN1 X NzNz
= (EV'bl - NI)(Eb,v, - N;) x (EV2b2- Nz)(Eb2V2- N;)

= [b,Evlvl - rlEvlvl - rlEvlv l + (r, - hj)Iv, + h,Evlv,]

X [(bz - 2rz + hz)Ev2V2+ ("Yz - hz)lv2]

= (b, - 2r, + hi )(bz - 2rz + hz)Evv

+ (r, - hi )(bz - 2rz + hz)lvi x EV2V2
+ (rz - hz)(b, - 2r, + hi )Ev,v, X IV2
+(rl -hl(rz-hz)Iv .
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Hence

NN' = 4(rl - ~d(r2 - ~2)Iv

b
= 4Iv + [~1~2 + 2(rl - ~d(r2 - ~2)

+(bl - 2rl + ~1)(b2 - 2r2 + ~2)]Evv

+ (r, - ~1)(b2 - 4r2 + 4~2)1v, x Ev1v1

+ (r2 - ~2)(bl - 4rl + 4~1 )Ev,VI X IV2
b

= 4Iv + [~1~2 + 3(r, - ~1)(r2 - ~2)

+ (bl - rl )(b2 - r2) - (r, - ~I )(b2 - r2)

- (r2 - ~2)(bl - rl )JEvv •

The term in the bracket of the second term is

3blb2 bl b2
r - rlr2 + ~1~2 + 16 - "4(b2 - r2) - "4(bl - rl)

3b b b blr2 b2rl
= r - rl (r2 - ~2) - ~2(rl - ~I) + 16 - 4 - 4 + 4 + 4

rtb2 ~2bl 3b b blr2 b2rl
=r- 4 - -4-+16 - 24 +4+4

bl(r2 - ~2) 3b b
= r+ 4 + 16 - '2

b 3b b
=r+-+--­

16 16 2
b b

=r+---
4 2
b

= (r - 4)'

Hence

, b b
NN = 4Iv + (r - 4)Evv

= (r - ~)Iv + ~Evv,

where ~ = r - ~. Thus N is the incidence matrix of a BIBD, with parameters

V=V'V2, b=blb2, r=rlr2+(bl-rl)(b2-r2)
b

k = klk2 + (VI - kl)(V2 - k2), ~ = r - 4 '

***** *Consider the BIBD (v, b. r, k, A) and let N be the incidence matrix. We
interchange the role of treatments and blockg and get a new design. The

incidence matrix of this new design is N = N'. This operation is know as
dualization . Let v, b, respectively denote the number of treatments and the
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numberof blocks in the newdesign. Then

v = no. of treatments in the newdesign
*= no. of blocks in the BIBD = b

b = no. of blocks in the newdesign

*= no. of treatments in the BIBD = v
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*Now every treatment in the BIBD occurs exactly in r blocks. hence every
*block in the newdesigncontainsexactly r plots. Hence.

*k = size of block in the newdesign = r.

*Noweveryblock in the BIBDcontains k treatments. hence every treatment
*in the newdesign will occurexactly in k blocks. Thus

*r=k

*Furthereverypairof treatments in the BIBDoccursexactlyh blocks. Hence.
*every pair of blocks in the new design has h treatments in common. Thus

*J.1 =h and the newdesign is a linked block design with parameters

* * * * *v = b. b =v. r =k, k =r. J.1 =h.

*
N=N'.

Now the C-matrix of the newdesign is defined as

. di (I 1) ,C=dlag(rl,r2, . .. ,rv)-N lag - . ... ,- N
k l kb

I ,
= rIv - kNN

I * *
= rlv - - N'N

k
The D matrix of the newdesign is given by

D = diag (k ., k2, . .. , kb) - N' diag(~ . .. . ,~) N
rl r,

I ,
= klb - -N N

r
I * *

= klb - - NN'
r
I * * * * **= klb - -[(r - h) Iv - hEvv]
r
1

= klb - -[(k - J.1)lb + J.1Ebb]
r

k(r - I) + J.1 J.1
= Ib - -Ebb.

r r
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The characteristic roots of a matrix a In + dEnn are given by a + nd and
a with multiplicities I and (n - I), respectively. Hence, the characteristic
roots of Dare

k(r - I) + IJ. _ b!: = _k(_r_-_I_)-_IJ._(b_-_I)
r r r

* * * * * *k(r - 1)- A(v -I) r (k -1)- A(v -I)
= =r r
= 0, repeated once,

k(r - I) + IJ. . hi ' I' . I I h fand , wit mu trp rcity (b - I). Hence, c ear y t e rank 0
r

Dis (b - I).

75. In Exercise 51, we have derived the expected values of the sum of squares
which occur in the intrablock analysis of variance in the case of a one-way
design. The expected values of sums of squares of the intrablock analysis
of variance table of a BIBD are obtained as a particular case of the general
results derived in Exercise 51, by taking

K = klb' R = rl. ;

k' = kElb

r' = rElv , n = b k.

Hence, we derive from Exercise 51,

(i) ~ [Y'Y - ~:] = (b k - 1)(12 + ka'a + rt't + 2t'Na

- (k ~ (X + r~ t)2/b k

(ii) ~UB'B- ~:] =(b-I)(12+ka'a+2t'Na

I
+ 'kt'NN't - (k ~ (X + r~ t)2/b k

(iii) ~ [~T'T - 0
2

] = (v - 1)(12 + rt't + 2t'Na
r bk

I
+ -a'N'Na - (k ~ (X + r ~ t)2/bk

r

(iv) ~(i'Q) = (v - 1)(12 + t'Ct
(v) ~ (adj. block SS) = (b - 1)(12 + oD«
(vi) ~ (Intrablock Error SS) = (b k - b - v + I) (12 .

76. We denote the parameters of the new design by putting asterisk over the
symbols. Clearly when the role of blocks and treatments are interchanged,

* * * *we get the new design with parameters v, b, r, k, where

* * * *v=b=v(v -I)/2, b=v, r=k = 2, k=r = v -I.
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In the old design, given one block, we divide the other blocks in two groups,
the first group having blocks which have one treatment in common with the
given block and the second group having blocks which have no treatment
in common with the given block. For example consider one block as (a , 9),
where a and 9 are two treatments. Thus

(a , 9),

First Group

c=J
Second Group

I I
The number of blocks in the first group is equal to the sum of

(i) number of blocks in which one treatment is a and the other is
different from 9 = v - 2

(ii) number of blocks in which one treatment is 9 and the other is
different from a = v - 2

Thus, the number of blocks in the first group is

nl = 2(v - 2).

The number n2of blocks in the secondgroup isequal to the numberof blocks
obtained by taking a pair of treatments from the set of treatments except a
and 9, which is clearly (v - 2)(v - 3)/2. Thus

n2 = (v - 2)(v - 3)/2.

So, whenthe roleof blocksand treatments is interchanged,in the newdesign,
given a treatment, the other treatments can be divided into two groups, the
first group containing treatment, which occur once with the given treatment
in a block, while the secondgroup containing treatments,whichdo notoccur
with the given treatment in a block, and

nl = 2(v - 2), n2 = (v - 2)(v - 3)/2

AI = I, A2 = O.

Clearly, n, + n2 = (v - 2)(v + I)/2 =~ -I, and

Now, let us find the parameters of

Consider a pair of blocks, which have one treatment in common, say (a, 9)
and (a , 8), and their first associate groups, the number of blocks common
between the first associate groups of (a , 9) and (a, 8) are the blocks which
have one treatment a and the other not equal to 9 or 8 and the block (a , 9).



176 CHAPTER 3

Clearly this number is (v - 3) + 1 = v - 2. Thus,

P:, =(v - 2).

Now consider the first associate group of (a , 6) and the second associate
groupof (a, 8).The blockscommonbetweenthese twogroupsare theblocks
which have one treatment 6 and the other treatmentdifferent from a and 8.
Clearly this number is v - 3. Thus,

P:2 = v - 3.

Consider the second associate group of (a, 6) and the first associate group
of (a, 8). The blocks which are common between these two groups are the
blocks which have one treatment 8 and the other different from a and 6.
Clearly this number is v - 3. Thus,

P~I = v - 3.

Lastly,consider the second associategroups of (a, 6) and (a, 8). The blocks
common between these two groups are the blocks which contain a pair of
treatments taken from (v - 3) treatments from the set except a, 6 and 8.
Clearly this number is (v - 3)(v - 4)/2. Hence,

P~2 = V - 4.

We can verify that

P:I + P:2 = 2v - 5 = nl - 1,

pL + P12 = (v - 3)(v - 2)/2 = n2·

Let us now find P2. Consider a pair of blocks (a, 6) and ('Y, 8) and their
first associates. Clearly the blocks common between these two groups are
(a, 'Y), (a, 8), (6, 'Y), (6 ,8). Hence

P~I =4.

Next consider the first associate group of (a, 6) and the second associate
group of (a , 8). The blocks common between these two groups are

(i) the blocks which contain one treatment a and the other treatment
different from 6, 'Y , 8. Hence their number is (v - 4); and

(ii) the blocks which contain one treatment 6 and the other treatment
different from a, 'Y, 8. Hence their number is (v - 4).

Hence,

P~2 = 2(v - 4).

Similarly, one can easily verify that P~I = 2(v - 4).
Nowconsider thesecondassociategroupsof (a, e) and ('Y, 8).The blocks

common between these two groups are those which contain a pair of treat­
ments from the set of (v - 4) treatments, obtained by deleting a, 6, 'Y, 8
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from the complete set. Hence their number is (v - 4)(v - 5)/2. Thus

P~2 = (v - 4)(v - 5)/2.

We can verify that

pil + pi2 = 2(v - 2) = nl

P~I + P~2 = (v - I)(v - 4)/2 = n2 - 1.

Thus, interchanging the role of blocks and treatments, we get a 2-associate
PBIBD with parameters

* * * *v = v(v - 1)/2, b = v; r = 2 , k = v - I

nl = 2(v - 2), n2 = (v - 2)(v - 3)/2,

AI = I,A2 =0

PI = [V-2 (V_~1)(~1_4)] ,
v -3. 2

[

4 2(v - 4) ]
P2 = (v - 4)(v - 5) .

2(v - 4) 2

77. Here clearly v = mk, b = mr. We define a pair of treatments to be first
associates if they belong to the same set and second associates if they belong
to different sets. Then, clearly

nl = k - I, n2 = k(m - I).

Further two treatments belonging to the set occur together in a block r times.
Hence AI = r. While two treatments belonging to two different sets do not
occur together in a block. Hence A2 = O. We can easily verify that

nl + n2 = mk - I = v - I

nlAI + n2A2 = r(k - I).

Consider now a pair of first associates a and 13, and their first asssociates.
The treatments common to their first associates are clearly the (k - 2) other
treatments belonging to their set. Hence

P:I = k - 2.

The treatments common between the first associates of a and the second
associates of 13. Clearly no treatments are common. Hence,

Pl2 = O.

Similarly P~I = O. Consider the second associate classes of a and 13. Clearly
the treatments common between these two classes are the treatments of the
remaining (m - I) sets. Hence,

P~2 = k(m - I).
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Weeasily verify that

pll + Pl2 = k - 2 = nl - I

P~I + P~2 = k(m - I) = n2 ·

Now consider a pair of second associates, a and 8, say. They belong to
different sets, and clearly there are no treatments common between their
first associates, and hence

pil = 0.

The treatments common between the firstassociateclassof a and thesecond
associate class of 8 are the (k - I) treatments of the first associateclass of
a, and hence

pi2 = k - I.

Similarly, P~I = k - I . Nowconsider the secondassociateclasses of a and
8. The treatments commonto the secondassociateclassesof a and 8 are the
treatments of the other (m - 2) sets, and hence

P~2 = (m - 2)k.

We may easily verifythat

pil + pi2 = k - I = n. ,

and

P~I + P~2 =mk - k - I = n2 - I.

Thus the design is a PBIBD with two associateclasses with the parameters

v = mk, b = mr, r, k.

nl = k - I, n2 = k(m - I),

AI = r, A2 =°
PI = [k ~ 2 k(m0_ 1)] ,
P2 = [k~ I k(~--12)l

Considera pairof treatments a and 13 belongingto twodifferentsets, then it
is not possible to find a chain of treatments a, 91, 92, . . . , 9j = 13, such that
consecutive treatments will occur together in a block. Hence, the design is
not connected. Now v = m k, b = m r. So if r ~ k, then b ::: v. Hence by
taking r greater than, equal to or less than k, we can make b greater than,
equal to or less than v.

78. (i) Note that B, matrices are symmetrical. Consider the sum of ele­
ments in the oth row of Bi, which is

b~o + b~1 + ... + b~v , a = 1,2, .. . , v.
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(ii)
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Since, there are n, ith associates of ai, there will be nj elements in
the abovesum whichare I and the rest of the elements zero. Hence,
the above sum is n..

Hence the sum of elements in each row is equal to n.. Thus B,
Evl = njEvl. Taking traspose, we get E1vBj = njE1v'

m m
Consider L a;The (a , (3) th element in L s, is given by

j=O i=O

b~~ +b~ + ...+ b~~ .

Now since a and (3 are either Oth, Isr, . . . , or the mth associates,
only one of the elements b~, b~~ , ... , b~~ is I, hence the (a, (3) th
element of B, is equal I for a, (3 = I , 2, .. . , v. Therefore

m

LB j = Evv.
i=O

m

(iii) Consider L c.B] . The (a, (3) th element in 1: cjBj is
i=O

cob~~ + clb~~ + ...+ cmb~ = Ci ·

If a and (3 are i-th associates, then 1: c.B, = 0 gives Ci = 0. Se­
lecting a and (3 as Oth, I st, 2nd, . . . , mth associates, we get
Co = CI = .. . = Cm= 0. This implies that B's are linearly inde­
pendent

(iv) Consider BjBk. The (a, (3) th element in BjBk is given by

Now, ~aj br~ = I, if i occurs in the j-th associate class of
a and the kth associate class of (3.

= 0, otherwise.

Hence,

1: ~ajbr~ = no. of common treatments between the jth
associate class of a and the kth associate class
of (3.

= PJk' if a and (3 are ith associates

= 0, otherwise.

Therefore,

m

BjBk = LPJkBi.
j=O
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Further,

BjBk = BjB~ = (BkBJ

= (I; p~jBj)' = I; p~jBj

= BkBj.

(v) We have

BjBjBk = Bj(BjBk) =L pjVBjBu) =L PJkP:uBt.
u u.t

Further,

BiBjBk = (BjBj)Bk =L pijBuBk =L pij p~kBt .
u u.t

Thus,

In viewof (iii), i.e. the linear independence of Bj-matrices, we get

,"" ut ,""ut
L..J Pjk Piu = L..J Pij Puk'

u u

79. (i)
m m

Consider L Pi.The (0:, 13)th element of L Pi is given by
j=O i=O

m

p~o + p~, + .. .+ P~m = L P~j = °a '
j=O

Hence the result follows.
m

(ii) Consider L c.P, = O(m+l)x(m+I) .
j=O

m

The (0:, 13)th element in L c.P, is clearly
i=O

Co p~o + C, p~, + ... + CmP~m'

Hence I; c.P, = 0, gives

cop~o + CIP~, + ...+ CmP~m = 0

for every 0: and 13. Selecting 13 = 0 and 0: = 0, 1, 2, .. . , m in suc­
cession, we get

Co = C, = ...=Cm= O.

Hence the result follows.
(iii) The (0:, 13)th element of PjPk is given by

m

'"" j ~aa~ = L..J Paj Pik'
i=O



SOLUTIONS

Now by the result (v) proved in Exercise78, we get

m m
'\'j 13 '\'i 13
£...J P"j Pik = £...J Pjk P"i·
i=O i=O

Hence,
m
'\' i 13

llnl3 = £...J Pjk P"j·
i=O

m

Now, (0:, (3)th element in L P]kPi is given by
i=O

Hence the result follows.
m m

Also, PjPk = L P]kPi = L P~li = PkPj .
i=O i=O
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(iv) From (ii) and (iii), we see that the Pi-matrices are linearly indepen­
dent and combine in the same wayas Bj-matrices. Thus they form
the basis of a vector space. Hence, they provide regular represen­
tation in (m + I) x (m + I) matrices of the algebra given by the
Bj-matrices which are v x v matrices.

80. ConsiderNN'. The diagonal element of NN' are all r.
m

Now the diagonal element in the nth row and oth column of L ~'iBi is
i=O

given by

Aob~" + Alb~" + ...+ Amb~" = AO = r

since b~" = b~" = ... = b~" = 0, b~" = I , and AO = r.
Thus, thediagonalelementsof L Ai B, are all r.Nowconsiderthe (0:, 13)th

elementof NN'. Clearly this is equal to

b

L n"jnjl3 = no. of times the pair of treatments 0: and 13 occur
j=1

together in the block

= Ai, if 0: and 13 are ith associates.

The (0:, (3)th element of L AjBi is given by

Aob~13 + Alb~13 + ... + Amb~b = Ai .

if 0: and 13 are ith assoicates. Hence, the (0:, (3)th elementsofNN' and I: AjBi
are equal and

m

NN'= LAiBi.
i=O
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81. (i)
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m

In Exercise78 (ii), we have proved that I: B, = Evv
j=O

m
Hence I: E1vBj = vElv. But E1vBj = njE1v. Hence, we get

j=O

m

L njE1v = vElv.
i=O

m

This gives I: n, = v.
i=O

m

(ii) In Exercise80, we have provedthat NN' = I: AjB j.
i=O

m

Hence E1vNN' = I: AjE1vB i gives
i=O

m
Therefore, we get I: njAj = r k.

i=O
m

(iii) In Exercise78 (iv), we have proved that BjBk = I: PJkB1'
1=0

Hence Bj f Bk = f (f plk) B1and
k=O 1=0 k=O

Let ex and ~ be ith associates, then the (ex, ~)th element in

f (f Plk) B1is equal to
1=0 k=O

since b~~ = 0 for all t i= i and b~~ = 1.Thus, we get

m

nj = :L>Jk'
k=O
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(iv)
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In Exercise78 (v), we haveproved that

m m
,",u t ,",ut
LJ Pjk Pju = LJ PjkPuk '
u=o u=o

Put t = 0, in the above equation. Since p?u = n., if i = u and 0.
otherwise, we see that the left hand side of the above equation is
equal to njpjk ' Further pek = nk if u = k and 0, otherwise. we see

that the right hand side of the aboveequation becomes nkPt. Thus
we get

j k
njPjk = nkPjj '

Writing nj Pjk as n,plj and applying the above result we get

82. The minimal polynomial of the square matrix An is the monic scalar poly­
nomial,

of leastdegree such that

M(A) = Am+ a lAm- 1 + .. . + amIn = On xn.

It can be easily verified that the distinct characteristic roots of A are the
solutions of its minimal polynomial. Now let f(x) and g(x) be the minimal
polynomials of Band P respectively. Then,

f(B) = Bt + a,B1
-

1 + .. . + at
m

='LdjBj.
j=O

Since the multiplication of Br-matrices is closed in theset of linearfunctions
ofBo, BI • .. . • Bm •

Next consider the representation of I(B) in P, matrices.

m

f(P) = L djPi .

j=O

Since f(x) is the minimal polynomial of B. we have f(B) = Ovxv. which
implies that do = d, = d2 = ... = dm = 0, for Bj-rnatrices are linearly in­
dependent. Thus. we get

f(P) = O(m+l)x(m+I) .

Sinceg(x) is the minimal polynomial of P, it follows thatg(x) is polynomial
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oflowestdegreesuchthatg(P) =O(m+1 )x(m+ I). Henceg(x)dividesf(x).Sim­
ilarly, wecan showthat f(x) dividesg(x). Thus, we havef(x) = g(x). Hence
thedistinctcharacteristic rootsofB andP,beingtherootsoff(x) = g(x) = 0,
are the same.
Selecting Cj = Ajinthedefinition ofB, we notethatthedistinctcharacteristic

m
roots of N N' and L AjPj are the same.

i=O
m

Now let A = L AjPj. Then the (0:, (3)th element of A is given by
i=O

m m
aat3 = L AtP~I' We see that L llal3 = L AI L P~I = L Alnl = rk, for ev-

1=0 0<=0 I 0< I

ery B. Now the characteristic roots of A are given by

IA - eII =0.

Note that

aoo - e aol aoz aom
alO all - e al2 aim

IA - eII =

amO amm - e

Addingtherowstothefirstrowandtaking(r k - e) asafactorandsubtracting
the first columnfrom the remaining columns, we get

IA - 6 II = (r k - 6)

all - alO - e
aZI - aZO

x

alZ - alO
aZZ - aZO - 6

= (r k - e)IL - eII

whereL = (iij), i ii = aji - aiO, and iij = ajj - aiO, i =f::. j = 1,2, ... , m.
Hencethe distinctcharacteristic rootsof A = ~ AjPj are r k and the distinct
characteristic roots of L. Now

,",i,",Oijj = ajj - ajO = L.. AtPit - L.. AIPj,
I I

m

= AoP:o + I>tp:1 - njAj .
1=1
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Since plo = I and Ao = r, we see that

m

iii = r - nj Aj + :~::>IP:1' i = I, 2, ... , m.
t=1

Also for i i= j = 1.2, ... , m, we have, since aiO = nj Ai,

m

iij = aij - aiO = L AI~I - niAj.
t=O

m

= AO~O +L At~t - niAi,
t=1

m

= L AIPlt - n, Ai,
1=1

for ~o =0 for i i= j.
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m

Thus, we see that the distinct characteristic roots of L AtPI are rk and the
j=O

distinct characteristic roots of the matrix L = (ijj). where

m

iii = r - njAj + LAtP:t . i = 1,2•. . . • m
1=1

m

iij = L AI~t - njAj, i i= j = 1,2, . ..• m.
t=1

Hence, the distinct characteristic roots of N N' are r k and the distinct char­
acteristic roots of the matrix L = (iij), where i jj are defined as above.

83. We know that the rank of a matrix is equal to the number of its non-zero
charateristic roots. Since NN' has one characteristic root 0 with multiplicity
u, the number of non-zero characteristic roots of NN' is equal to v - u.
Hence

rank (NN') = v - u = rank (N'N).

Hence it follows that b ~ v - u.
When the design is resolvable, N consists of r sets of (b/r) columns each,

such that I occurs only once in each row of the set. By adding the lst,

2nd, ... , (~ - r)th columns to the (b/r)th column of a set, we get a column

consisting of I only. As there are r sets in N, we have

rank(N) :s b - (r - I).

But rank(N) = rank(NN') = v - u. Hence

v - u :s b - (r - I).

Thus, we get b ~ v - u + (r - I).
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84. The distinct characteristic roots of NN' are given by rk and the distinct
characteristic roots of L = (iij), (see Exercise 82)

ill = r - nlAI + AlP: I + A2P:2 = r - Al - (AI - A2)pb

i 22 = r - n2A2 + AIP~I + A2P~2 = r - A2 - (AI - A2)pi2

i l2 = -niAI + AIPil + A2Pi2 = -(AI - A2)pi2

i 21= -n2A2 + AIP~I + A2P~2 = (AI - A2)P:2'

The distinct characteristic roots of L are given by

IL- 9hl =0.

Now

IL-9hl

_I r - Al - (AI - A2)pl2 - 9 -(AI - A2)pi2 I
- I 2(AI - A2)P12 r - A2 + (AI - A2)P12 - 9

I
r - Al - 9 r - A2 - 9 I= I 2(AI - A2)PJ2 r - A2 + (AI - A2)P1 2 - 9

I
r - Al - 9 Al - A2 I

= (AI - A2)P: 2 r - A2 - 9 + (AI - A2)P

where P = pi2 - pb· Thus

IL - 9121 = (r - Al - 9)(r - A2 - 9)

+(r - Al - 8)(AI - A2)P - (AI - Adpl2

= 82 - 8(2r - AI - A2) + (r - Ad(r - A2 )

+ (r - Al )(AI - A2)P - 9p(AI - A2) - (AI - Adp:2

= 82 - 8[A + p(AI - A2)] + Q + (r - Ad(AI - A2)P

=0

where

A = 2r - Al - A2, Q = (r - Al)(r - A2) - (AI - Adpl2 '

Hence the roots of IL- 9121 = 0 are given by

I . 2
~ = 2{A + p(AI - A2) + (-l)l[A + 2pA(Al - A2)

+p2(AI-Ad-4Q-4(r-Ad(AI -A2)p]1/2j,i= 1,2

Now, we can easily verify that

A2 - 4Q = (AI - Ado + 4P:2)

2pA(Al - A2) - 4(r - AI)(AI - A2)P = 2r(AI - A2i.
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Hence
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A2+ 2pAO'l - X-2)+ p2(X- 1 - X-2)2 - 4Q - 4(r - X- I)(X-1 - X-2)P

= (X-I - X-d(p2+ I + 4P:2+ 2p)

= (X- I - X-2)2(p2+ 213 + I) = (X-I - x-d~ .

where ~ = p2+ 213 + I, and 13 = 2P:2+ p. Therefore,

I I I · r:
~ = r - 2(X- 1 + X-2)+ 2 P(X- 1 - X-2)+ 2(-1 )'(X- 1 - X-2)V ~,

i = 1,2 .

We now determine the multiplicities of 01 and ~ . Denote by ai the multi­
plicity of~, i = 1,2. Clearly

I +al +a2 = v,

and hence, al + a2 = v - I. Further, since the trace of a matrix is equal to
the sum of its characteristic roots, we get

tr(NN') = rk + al 01 + a2~ '

But tr(NN') = vr. Hence

alOI + a202 = r(v - k).

Then al and a2 are found by solving the equations

al + a2 = v - I

alOI + a202 = r(v - k).

Multiplying the first by O2and subtracting from the second we get

r(v - k) - 02(V - I)
al =

01 - O2

Now from the valuesof 01and 02, we find

Also,

r(v - k) - ~(v - 1)

=r(v-I)-r(k-I) -02(v-l)

= (v - I)(r - 02) - nlX- 1 - n2X-2

[
I I I ]= (n, + n2) 2(X- 1 + X-2) - 2(X- 1 - X-2)p - 2(X- 1 - X-2).J"i.

-nlX-1 - n2X-2
-I I

= 2(nl - n2)(X- 1- X-2) - 2(nl + n2)(X-1 - X-2)P

I
-2(nl + n2)(X- 1 - X-2)Ji..
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Hence,

n\ + nz [(n\ - nz) + (n, + nz)p]
a\ =-- + -------:=-----::....

2 2~

and

nl + nz [(nl - nz)+ (nl + nz)p]
=---

2 2~

Hence the result.

85. The parameters of a Group Divisible design are

v = m n, b, r, k

Il] = n - 1, nz = n(m - I) = v - n,

>'1, AZ-

PI = [ n ~ 2 n(m0_ l)l Pz = [n ~ 1

Hence,we get

CHAPTER 3

n - I ]
n(m - 2) .

p = piz - P:z = n - 1,13 = piz + plz = n - I ,

and therefore D. = (p + l)z = nZ• Hence, the characteristic roots of NN' of
a GD design are

60 = rk
1 1 . r:-

6j = r - 2(AI + AZ) + 2(AI - AZ)[p + (-IY.v D.]

I Ii '= r - 2(AI + AZ) + 2(At - AZ)[n - 1 + (-1) n], \ = 1,2 .

Thus,

I I
61 = r - 2(AI + AZ) + 2(AI - A2)(-1) = r - AI

I I
6z = r - 2(AI + AZ) + 2(AI - Az)(2n - 1)

= r - Al + n(AI - AZ)

=r+AI(n-I) -nAz.

Now since nlAI + nZAZ = r(k - 1), we get

r + (n - l)AI + (v - n)A2 = rk

r+ (n - l)AI - nAz = rk - VA2 .

Hence 6z = rk - VAZ. The multiplicities are givenby

a. = nl + nz _ (_I)i [(nl - n2) + p(nl + nz)]
I 2 2~
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= _v_-_I _(_I)i [(2n-V -I)+(n-I)(V-I)]
2 2n

= _v_-_I _ (_I)i_(v_-_2m_+_I)
2 2

I .
= -[v-I-(-I)'(v-2m+ I)],i= 1,2,

2

and therefore

UI = (v - m) = m(n - I), U2 = (m - I).

86. The parameters of an L, design are

v = s2, b, r, k

n, =i(s-I),n2 =(s- i+ I)(s-I)

}"' , A2

P _ [(i - I)(i - 2) + s - 2 (s - i+ I)(i - I)]
,- (s-i+I)(i-l) (s-i+I)(s-l)

P [i(i - I) i(s - i) ]
2= i(s-I) (s-i)(s-i-I)+s-2 .

Here

p = i(s - i) - (s - i + I)(i - I)

= s - 2i + I

= i(s - i) + (s - i + I )(i - I)

= 2i(s - i) - p.

Hence

I::!>. = p2 + 2p + I = p2 + 4i(s - i) - 2p + I

= (p _ 1)2 + 4i(s - i)

= (s - 2i)2 + 4i(s - i) = S2 .
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Therefore, the distinct characteristic roots of NN' of L, design are

eo = rk, with multiplicity I

9, = r - ~(AI + A2) + ~(AI - A2)[P - ~], with multiplicity UI

I I
~ = r - 2(AI + A2) + 2(AI - A2)[P + ~], with multiplicity U2,

where
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Thus

Also,

and
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I I .
91 = r - -(AI + A2) + -(AI - A2)(S - 21 + 1 - s)

2 2
1 I .

= r - 2(AI + A2) + 2(AI - A2)( -21 + I)

= r - A2 - i(AI - A2)

= r - iAI + A2(i - 1).

1 1
~ = r - 2(AI + A2) + 2(AI - A2)(2s - 2i + I)

= r - A2 + (s - i)(AI - A2)

= r + Al(S- i) - A2(S - i + I) .

v - I (n, - n2) + (s - 2i + I)(v - I)
(XI = -- + ----'---'---------'-

2 2s
v-I (s-I)(s -2i+ 1)+(s-2i+ I)(v-I)

=---
2 2s

(v - I) (s - 2i + 1)(-s + I + v - I)
= -2-+ 2s

(S2 - 1) (s - I)(s - 2i + I)
= 2 + 2
=(s-I)(s-i+l)

(X2 = (v - I) - (XI

= (S2 - I) - (s - I)(s - i + I)

= i(s - I).

n-3 ]
(n-3~n-4) ,

2n - 8 ]
(n - 4~n - 5) .

87. The parameters of a triangular design are

v = n(n - 1)/2, b, r, k

nl = 2(n - 2), n2 = (n - 2)(n - 3)/2

AI, A2,

PI = [n-2
n -3

P2 = [ 4
2n - 8

Hence

p = n - 5, 13 = 3n - II , !:J. = (n - 2).
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The characteristic roots are eo = rk with multiplicity I and

I I "Ji.
~ = r - 20'1 + Ad + 2(AI - A2)[P + (-I)' ~]

I I "
= r - 2(AI + A2) + 2(AI - A2)[n - s + (-I )I(n - 2)],

i = 1,2

Hence

91 = r - 2AI + A2

~ = r+ Al(n - 4) - A2(n - 3).

The multiplicities of 91 and ~ are given by UI and U2, where

nl + n2 i[(nl - n2)+ p(nl + n2)]
Uj = -- - (-I) ----~---

2 2,,(i.
v - I d(nl - n2)+ p(n - 5)]

= -2- - (-I) 2(n - 2)

(n - 2)(n + I) i(n2 - 5n + 2)
4 - ( - I) 4

I
UI = 2n(n - 3), U2 = (n - I).
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88. Since k > r, we have b < v. Hence N N' will be singular and therefore N N'
will have zero as a characteristic root. Now in Exercise 82 we have proved
that the distinct characteristic roots of N N' other than r k are given by the
characteristic roots of the matrix L = (ljj), where

m

ijj = L At~l - njAj , i t= j = I , 2, . . . , ill

1=1

m

iij = r+ LAtpit - njAi , i = 1,2, ... , m.
t=1

Hence, the matrix L will have zero as a characteristic root. Hence ILl = O.
For a 2-associate class PBIBD, where k > r, we have

Now

2

r+ L AIP:t - n,AI
t=1

L AIP~1 - n2A2

2

L Atpit - nlAI
t=1 =0.

r + L AtP~1 - n2A2

r+AIP:I +A2P:2- nIAI =r-AI(nl-p:I)+A2P:2

= r - AI - P:2(AI - A2),
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AIPil + A2Pi2 - nlAI = -pi2(AI - A2),

AIP~I + A2P~2 - n2A2 = P:2(AI - A2),

r + AIP~I + A2P~2 - n2A2 = r - A2 + pi2(AI - A2).

Thus, we get

Ir - AI - pb(AI - A2) -pi2(AI - A2) 1- 0
P:2(A) - A2) r - A2 + piiAI - A2) - .

Adding the second row to the first row, we get

I
Ir - Al r -/2 I= 0

PI2(AI - A2) r - A2 + PI2(AI - A2)

i.e. (r - Al )(r - A2) + (AI - A2)[pi2(r - AI) - p:2(r - A2)] = O.

89. Let the blocksof thegivenBIBDbedenotedby B1, B2, . . . , Bb• Let B) have
ddisjointblocksBj, B3 , . .. , Bd+1 andthe blockBi(i = d + 2, d + 3, . . . , b)
have Xi treatments in common with BI. Then, we have

b

L Xi = k(r - 1),
i=d+2

b

L Xi(Xi - I) = k(k - I)(r - I).
i=d+2

Then, we get

L Xf = k(r - A- k + kx)

_ k(r-I)
Now, define X= L xi!(b - d - I) = ,

b-d-I

k2(y - I?
L (Xi - x)2 = k(r - A- k + kx) - .

b-d-I

Since L (Xi - x)2 :::0, we get

d<b-I- k(r-I)2
- (r - A- k + kA)

k(-y - 1)2 2
If d = b - 1 - , L (XI - x) = 0,

(r - A- k+ kA)
and hence

_ k(r-I) (r-A-k+kA)
Xj=x= =-----

b-d -I (r-I)

since d = b - I - [k(-y - 1)2 j(r - A- k + n)].
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90. * * * * *When each treatment of a BIBD (v, b, r, k.X) is replaced by a group of n
treatments, clearly we get a design with

* * * *v = nv, b = b, r = r, k = n k.

Now, in the new design with respect to any treatment, we can divide the
remaining treatments into twoclasses,(i) those whichare in the samegroup
as the givenone and (ii) those which are not in the same group as the given

*treatment. Then we haven) = n - I, and n2 = n(v -I).
A treatment in the given BIBDoccurs in ~ blocks, so when it is replaced

by a groupof n treatments, thenany pair in this group willobviously occur
* *together in r blocks. Hence ~I = r.

Consider a pair of treatments 0: and 13 of the given BIBD. They occur
*togetherin ~ blocks. Nowdenote the groups of n treatments, which replace

Cf and 13 by [0:] and [13] . Then these groups [0:] and [13] occur together in
~ blocks. Hence any pair of treatments, one belonging to [0:] and the other

* *belonging to [13] occur together in ~ blocks. Thus ~2 = ~ as is evident, two
treatments in the same group are Ist associates, while two treatments in
different groupsare 2nd associates. Considera pair of treatments belonging
to the group [0:] . Clearly, the numberof treatments common to the 1st as­
sociatesof them is pl I = n - 2. The numberof treatments common to the
first associates of one and the second associates of the second is pb = O.
Also, the numberof treatments common between their second associates is

I (*P22 = n v-I).
Now, consider a pair of treatments one belonging to the group [0:] and

the other to [13]. The numberof treatments common to their Ist associates
is PT) = O. The number of treatments common to the first associates of
the first and the second associates of the second PT2 = n - 1. The num­
ber of treatments common between their second associates are the treat­
mentsof the remaining (~-2) groups, henceP~2 = n(~ -2). Thus,wegetPI

and P2.

91. Let the blocks of the given singular group divisible design be denoted by
BI , B2, . . . , Bs. and let BI have B2, B3, ••• , Bd+1 disjoint blocks and let
Bj(i = d + 2, . .. , b) havex, treatments common with BI . Then clearly

b

L Xi = k(r-l) .
i=d+2

Now, we consider the ziven singular group divisible design as obtained
* * ,f' * *from the BIBD (v, b, r, k,~) by replacing each of its treatments by a

group of n treatments. Hence, the block BI contains k groups of n treat­
ments each. Hence, considering pairs of treatments obtained from BI, we
get

* *1:: Xi(Xj -I) = kn(n-I)(~I -1)+[k(k-I)-kn(n-I)](~2 -I)
= k[(n - I)(~I - I) + (k - n)(~2 - I)].
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Thus,

}; Xf = k[(n - 1)(AI - 1) + (k - n)(A2 - 1) + key - 1)
= k[n(AI - 1) + (k - n)(A2 - 1)],

since 'Y = AI in a singular group divisible design. Define x =}; xii
(b - d - I), we get

k2(A - 1)2
}; (Xi - x)2 = k[n(AI - 1) + (k - n)(A2 - 1)] - __1_­

b-d-l

Since ~ (Xi - X)2 :::: 0, we get

d<b-l-[ k(AI-l)2 ] .
- n(AI - 1) + (k - n)(A2 - 1)

k(AI - I?
If d = b - 1 - , then}; (Xi - x? = 0, hence

n(AI - I) + (k - n)(A2 - 1)

_ k(AI-l)
x· -x- --­
I- -b-d-l

n(AI - 1) + (k - n)(A2 - 1)
= (AI - I)

= n + [(k - n)(A2 - I)/(AI - 1)].

92. Let the blocks of a singular group divisible design be denoted by B I,
B2, , Bb• Let BI have Xi treatments in common with the block Br , i = 2,
3, , b. Then, as in Exercise 91, we can prove that

b

L Xi = k(r-l)
i=2

~ Xf = k[n(AI - I) + (k - n)(A2 - I)]

k(r-I) .
Define x = ~ xi/(b - I) = .Then, we obtain

b-I

2 k
}; (X, - x) = --[n(AI - 1)(b - I) + (k - n)(A2 - 1)(b - I)

1 (b - 1)

- k(r - I?]

k
= (b_I)[n(b-I)(AI - A2)+k{(A2-I)(b-l)

- (AI - I)(r - 1)}].

Note r = AI. Now for the singular group divisible design, ni = n - I,
n2 = v - n, and r = A(, hence nlAI + n2A2 = r(k - 1) gives

A(k-n)
A2 = ,

(v - n)
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and ~I - ~2 = ~ I(V - k)/(v - n). Also,

(~2 - I)(b - I) - (~I - I)(r - I)

~I(k-n)= (b -I)-~I(r-I)-b+r
(v - n)

~I {(v - k) - neb - r)}
= - (b - r)

(v - n)

(b - r)(k - or)= - (b - r)
(v - n)

= (b - r)(k - or - v + n)/(v - n).

Hence
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93.

_ 2 k [~In(b - I)(v - k)
}: (Xi - X) =--

(b - I) (v - n)

+ k(b - r)(k - or - v + n)]
(v - n)

kr(v - k)(nb - nr - v + k)
=

(b-I)(v-n)

k(v - k)(b - r)(nr - k)

(v - n)

Now v = mn, hence nr - k = k(b - m)/m and

_ 2 (k2(v - k)(b - r)(b - m)
}: (X, - X) = ----- ---

m(v - n)

Thus, if all Xi are equal, then }: (Xi - x)2 = 0, which gives b = m. Con­
versely if b = m, }: (Xi - x)2 = 0, which gives all Xi are equal. Since
i = k(-I )/(b - I) = k(-I )/(m - I), the second condition follows.

Consider a resolvable singular group divisible design with b = tr,
v = mn = tk. Let Bij denote the jth block in the ith replication,
j = I, 2, .. . , t, i = 1,2, . .. , rand Xij denote the number of common treat­
ments between B 11 and Bij, i = 2, 3, .. . , r.j = 1,2, . . . , t. Then as in Ex­
ercise 91, we have

r t

LL Xij = k(r-I)
i=2 j=1

r t

L L xij = k[n(~l - I) + (k - n)(~2 - I)].
i=2 j=1

Define x = }:}: xij/t(r - I) = kit = k2/v . Then

k2(r - I)
}:}: (Xij - x)2 = k[n(~1 - I) + (k - n)(~2 - I)] - ---

k t
= -[nt(~l - ~2) + k{t(~2 - I) - r + I}].

t
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Now we have shown in Exercise 92, that

AI(k - n) A,(v - k)
A2 = ,AI - A2 =---

V - n (v - n)

and remembering that r = AI, and v = mn, we get

k
(Xi" - x)2 = [ntr(v - k) + nk(t - 1)(1 - m - r)]

J t(v-n)

nk2(t - I)(b - m - r+ I)
= t(v - n)

Since, ~ ~ (Xij - x? ::: 0, we get b ::: m + r - l.
If the resolvable singular group divisible design is affine, then all Xij

are equal to x, and hence ~ ~ (xij - x)2 = 0, which gives b = m + r - I.
Conversely if b = m + r - I, then ~ ~ (xij - x)2 = 0 and hence all Xij are
equal, and the design is affine resolvable. Since x = k2[v, the second con­
dition follows.

94. The characteristic roots of NN' of a group divisibledesign are (see Exercise
85) given by

90 = rk, with multiplicity I
81 = r - AI,with multiplicity v - m
~ = r + AI (n - I) - nA2, with multiplicity m - I.

Now for a singular group divisible design, 8, = r - AI = O. Hence,

rank(NN') = no. of non-zero characteristic roots
=I+m-l
=m.

Hence,

m = rank(NN') = rank(N'N) ~ b,

and b ::: m. Further if the singular group divisible is resolvable, then

m = rank (NN') = rank (N'N) ~ b - (r - 1).

Hence, we get b ::: m + r - I.

95. The characteristic roots of NN' of a GD design (see Exercise 85) are given

90 = rk, with multiplicity I ,
81 = r - AI, with multiplicity v - m
82 = r + AI (n - I) - nA2, with multiplicty m - 1.

Now,for a semi-regularGD design, ~ = r + AI (n - I) - nA2 = O.
Therefore,

rank (NN') = no. of its non-zero characteristic roots
= I +v - m.
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Hence
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v - m + I = rank (NN') = rank (N'N) ::: b

i.e., b ::: v - m + I . Further, if the semi-regular GO design is resolvable,
then

v - m + I = rank (NN') = rank (N'N) ::: b - (r - I)

Hence, for a resolvable semi-regular GO design, we have

b:::v-m+r.

96. Let the blocks be denoted by BI, B2, . .. , Bb. Suppose B, contains xij treat­
ments from the jth group of the association scheme, i = I, 2, . . . , band
j = 1,2, . . . , m. Then, we get for any j,

b

L Xij = nr
i=1

b

L Xi/Xij - I) = n(n - I) AI ·
i= )

Hence
b

L xij = n[(n - I)AI + r].
i=l

Define Xj = ~ xij/b = nr/b = kim . Then
I

b b~
L(Xij - x/ = n[(n - I)AI +r] --2
~I m

nrk
= n[(n - I)AI +r] --

n m
= -[men - I)AI + m r - rk].

m
But (n - I)AI + n(m - I)A2 = r(k - I) and hence (n - I)AI = r(k - 1)­
n(m - I )A2. Thus

2 n
~ (Xij - Xj) = -[mr(k - I) - v(m - I)A2 + mr - rk]
i m

n(m - I)(rk - VA2)

m
=0,

since rk - VA2 = ° for semi-regular GO design. Thus xij = Xj =
k

constant = - for each i, and therefore kim is an integer and each block
m

contains kim treatments fromjth block. But since this result is independent
of the jth block, it follows that each block contains kim treatments from
each group.
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97. Let the blocks be denoted by BI, B2, . . . , Bj, Suppose BI has B2,
B3, .. •• Bd+1 blocks disjoint with it and has Xi treatments common with
the block Bi' i = d + 2, d + 3, . ... b. Then we get

b

L Xi = k(r-l).
d+2

Now, inExercise95, wehaveprovedthateachblockcontainskim treatments
fromeachgroupof theassociationscheme.Thus,B I containskim treatments
from each group, which form pairs of first associates. Thus, we get

I: Xi(Xi - 1) = m(k/m)(k/m - 1)(AI - 1)

+ [k(k - 1) - k(k/m - 1)](A2 - 1).

Hence,

b k
L xf = -[(k - m)(AI - 1)+ k(m - 1)(A2 - 1)+ mer- 1)]

i=d+2 m
k= -[k(AI - A2) + mer- AI) + mk(A2 - 1)].
m

Now, for a semi-regularGD design, rk - VA2 = O. Hence

rk
A2= -.

v

and

(n - I)AI + n(m - 1)A2 = r(k - I),

which gives AI = r(k - m)/(v - m). Thus

r - Al = rev- k)/(v - m) = k(b - r)/(v - m)

Al - A2 = m(k - v)/(v - m)v.

Hence

t Xf = ~ [mk(k - v) mk(b - r) + m k(A2 - 1)]
i=d+2 m (v - m)v (v - m)

k2

= [(k - v) + v(b - r) + (v - m)(vA2 - v)]
v(v - m)

= k
2

[(b _ r)(v - k) - (v - m)(v - rk)] .
v(v - m)

Hence, defining x= I: xi/(b - d - I), we get

k2T
I: (x, - x)2 = --­

v(v - m)
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where T = (b - r)(v - k) - (v - m)(v - rk). Since 1: (Xi - x)2 ::: 0, we get

v(v-m)(r- 1)2
d <b-I-------

- T

v(v - m)(r - 1)2
Further if d = b - I - , then I: (Xi - x)2 = 0 and hence

T

_ k(r-I) k(r-I)T
Xi = X = = ------;:-

b - d - I v(v - m)(r - 1)2

kT

- v(v - m)(r - I) '

which must bean integer.

98. Let the blocks be denoted by B 1, B 2, .. . , B b, and let B 1 have Xi treatments
in common with Bi, i = 2, 3, . .. , b. Then as in Exercise 97, we get

b

L Xi = k(r- I)
i=2

and

2 k2[(b - r)(v - k) - (v - m)(v - rk)]
1:~= .

I v(v - m)

_ I k(r - I)
Define X = --1: Xi = .Then, we get

(b - I) (b - I)

_ ? k2[(b - r)(v - k) - (v - m)(v - rkj] k2(r _ 1) 2
I: (Xi - x)- = --.::..:...----:...:.--..:...-..:...--..:...-..:...--..,;,.;:.

v(V - m) (b - I)

k2[(b - I)(b - r)(v - k) - (v - m)(b - r)(v - k»)
= v(v-m)(b-I)

. . k(r - I) k(r - I)
Hence, the result follows . Since x= = the second con-

b-I v-m
dit ion follows .

99. Consider a resolvable GD design, with b = tr, and v = mn = t k. Let
Bij denote the jth block in the ith replication, i = 1,2, . .. , rand
j = 1,2, . .. , 1. Let the number of treatments common between B11 and
Bij be Xij, i = 2, 3, . . . , r; j = 1,2, . . . , 1. Then, as in Exercise 97, we can
prove that

r I

L LXij = k(r-I)
i=2 j=1

and

t t xij = k
2[(b

- r)(v - k) - (v - m)(v - rk»).

i= 2 j = 1 v(v - m)
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~~ x·· k k2
Definex= __IJ = - = - .Then

t(r - I) t v

_ 2 k2[(b - r)(v - k) - (v - m)(v - rk)]
~ ~ (Xij - X) = ---=...:...----.:.....:..--v-(v---.:.--:.m-)-....:....;.-----:..:.

k2

= [t(b - r)(v - k) - (v - m){t(v - rk)
vt(v - m)

+v(r - l)}]

k2(t - l)[tr(v - k) - (v - m)v]
= vt(v - m)

k2(t - I)[b(v - k) - v(v - m)]
= vt(v - m)

k2(t - I)(b - v + m - r)
= t(v - m)

Since ~ ~ (xij - xi ::: 0, we get b ::: v - m+ r. The other part of the exer­
cise also follows from the consideration of

_ 2 k2(t - I)(b - v + m - r)
~~ (Xij - x) = ---t(-v---m-)---

100. In Exercise 87, we have proved that the characteristic roots of NN' of a
triangulardesign are givenby

eo = rk, with multiplicity I

8, = r - 2)'1 + >"2, with multiplicity n (n - 3)/2

8l = r + (n - 4)>"1 - (n - 3)>"2, with multiplicity (n - I).

(i) Let r - 2>"1 + >"2 = 0, then rank (NN') = 1+ n - I = n. Thus,

n = rank (NN') = rank (N'N) ::: b.

Hence b ::: n. Further if the design is resolvable, then

n = rank (NN') = rank (N'N) ::: b - (r - I).

Therefore, we get b ::: n+ r - I.
(ii) Let r +(n - 4)>"1 - (n - 3)>"2 = 0. Then

rank (N N') = I + n(n - 3)/2 = I + v - n.

Hence,

I + v - n = rank (NN') = rank (N'N) ::: b.

Therefore, we get b::: v - n + I. If in addition, the design is
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resolvable, then

I + v - n = rank (NN') = rank (N'N) S b - (r - I).

Hence, we get

b::v - n+ r.
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101. Let the ith block contain Xij treatments fromt he jth row of the association
scheme, i = 1.2, . . . , b; j = 1,2, .. . , n. Then for any j, we get

b

L Xij = (n - I)r
i=1

and

b

LXi/Xij - I) = (n - I)(n - 2)AI.
i=1

Hence,

b

L xij = (n - I)[(n - 2)A I + r].
i=1

_ b (n - I)r
Define Xj = L xij / b = .Then

I b

b (n_ I)2r2
L (x;j - Xj)2 = (n - I)[(n - 2)}q + r] - ---
i=1 b

Now, b = vr/k = n(n - l)r/ 2 k, hence

b 2 (n - I)
L (Xij - Xj) = --In (n - 2)AI + nr - 2rk].
;= 1 n

Now, nlAI + n2A2 = r (k - I), nl = 2(n - 2), and n2 = (n - 2)(n - 3)/2,
gives

2rk = 2r + 4(n - 2)A I + (n - 2)(n - 3)A2.

Hence,

~ 2 (n - I )(n - 2)
L)Xij - Xj) = [r + (n - 4)AI - (n - 3)A2]
i=1 n

= 0,

since r + (n - 4)A I - (n - 3)A2 = O. Therefore, the ith block contains
Xij = Xj = (n - I) r/b = 2k/ n treatments from the j th row of the associ­
ation scheme. Since this does not depend on i and j, it follows that every
block contains 2 k/n treatments from every row of the association scheme.
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102. Since nl = 2(n - 2), n2 = (n - 2)(n - 3)/2, and nlAI + n2A2 = r(k - 1)
we get

4 (n - 2)AI + (n - 2)(n - 3)A2 = 2r(k - I).

Further, wearegivenr + (n - 4)AI - (n - 3)A2 = 0. Solvingtheabovetwo
equationsfor AI and A2' we get

AI = r (2k - n)/n(n - 2)

A2 = 2 r(nk + n - 4k)/n(n - 2)(n - 3).

Now, let the blocks be denotedby BI, B2, . . . , Bb and let B) haved blocks
B2, B3, •• • ,Bd+1 disjoint with it. Let BI have Xi treatments common with
Bj, i = d + 2, d + 3, ... b. Then, we get

b

L Xi = k(r-I).
i= d+ 2

SinceBI contains2 kin treatments fromeach rowof theassociation scheme,
we get

b

L Xi(Xj - 1) = n(2 k/n)(2 k/n - I)(A) - I)
i=d+2

+ [k(k - I) - n(2 k/n)(2 k/n - 1)](A2 - 1).

Hence,

1: xf = (k/n)[2(2k - n)(A) - I) + (n(k - I) - 2(2k - n)}(A2 - I)

+k(r-I)]
k

= -[2 (2 k - n)(AI - A2) + n(k - 1)(A2 - I) + n (r - I)].
n

Substituting the valuesof AI and A2' and simplifying, we get

t xr = k
2

· T ,
i=d+2 v (v - n)

I:X'
where T = (v - k)(b - r) - (v - rk)(v - n). Therefore x= I

b-d-I
k(r - I)

b d . Then,- -I

Since 1: (Xi - x? ::: 0, we get

v (v - n)(r - I?
d<b-I- .- T
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v (v - n)(r _ 1)2
Ifd = b - I - T ' then L (Xi - x)2 = 0, which gives

_ k (r - I) k T
Xi = X= --- = -----

b - d - 1 v (v - n)(r - 1)
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Hence the result.

103. Let the blocks be denoted by BI , B2, • •• , Bj; Suppose BI has Xi treatments
in common with Br, i = 2, 3, ... , b. Then as in Exercise 102, we can prove
that

b

I>i =k(r-I)
i=2t xr = k2[(b - r)(v - k) - (v - rk)(v - n)].

i=2 V (v - n)

Define x= L xi/(b - I) = k(r - I)/(b - I). Hence, we get

_ J k2[(b - r)(v - k) - (v - rk)(v - n)]
L (Xi - x)- = --~~------­

v (v - n)

k2
= [(b-I){(b-r)(v-k)-(v-rk)(v-n)}

v (v - n)(b - I)

- v (v - n)(r _ 1)2]

k2
= [(b - I)(b - r)(v - k)

v (v - n)(b - I)
- (v - n)(b - r)(v - k)]

k2(b - r)(v - k)(b - v + n - I)
= v (v - n)(b - I)

Hence, the result follows.

104. Considera resolvabletriangulardesign with r + (n - 4)AI - (n - 3)A2 = 0
and b = tr, v = n(n - I) = tk, where t is a positive integer I. Let
Bij denote the jth block in the ith replication, i = I, 2, . .. , rand
j = I, 2, ... , t. Let the number of common treatments between BII and
Bij be xij, i = 2,3, ... , r; j = 1,2, . .. , t. Then, as in Exercise 102, we can
prove that

r I

LL>ij = k(r- I)
i=2 j=1t t xij = k2[(b - r)(v - k) - (v - rk)(v - n)].

i=2 j=1 V (v - n)
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DefineX= I; I; xij/t(r - I) = kit = k2[v , Then, we get

_ 2 k2[(b- r)(v - k) - (v - r k)(v - n)]
I; I; (Xij - x) = -----v-(v---n-)----

k2

= [t(b - r)(v - k) - v(v - n)(t - I)]
v t(v - n)

k2(t - I)[t rev - k) - v(v - n)]
= v t(v - n)

k2(t - I)[v(b - r) - v(v - n)]
= v t(v - n)

(k2(t - I )(b - r - v + n)
=

t(v - n)

Since I; I; (xij - x)2 :::: 0, we get b :::: v - n + r. The other part of the exer­
cise follows from the considerationof

_ 2 k2 (t - I)(b - v - r + n)
I; I; (Xij - x) =---t(-v---n-)---

105. In Exercise 86, we have provedthat the distinct characteristic roots of NN'
of a L, design are given by

eo = r k, with multiplicity I
9( = r - iA( + A2(i - I), with multiplicity (s - 1) (s - i - 1)
9z = r + AI(S - i) - A2(S - i + I), with multiplicity i (s - I).

(i) Let r + iA( + A2(i - I) = O. Then, since the rank of a matrix is
equal to the number of its non-zerocharacteristic roots, we get

rank (NN") = I + i(s - I).

Hence,

I + i(s - I) = rank (NN') = rank (N'N) :::: b.

Thus, b :::: I + i(s - I). Further, if the design is resolvable, then

I + i(s - I) = rank (N'N) :::: b - (r - I).

Therefore,b :::: r + i(s - I).
(ii) Let r + AI (s - i - A2(S - i + I) = O. Thenarguingas in (i), weget

1+ (s - I)(s - i + I) = rank (NN')

= rank (N'N) :::: b.

Hence, we get b :::: 1+ (s - I)(s - i + I). If the design is resolv­
able, then

I + (s - I)(s - i + I) = rank (N'N) :::: b - (r - I).

Hence, b :::: r + (s - 1)(s - i + I).
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106. Let the ith block contain Xij treatments from the jth row (or column) of the
association scheme, i = I, 2, . . . , b; j = I, 2, .. . , s. Then

b b

L Xij = Sr, and L Xi/Xij - I) = s (s - l)~".
i=1 ;=1

Hence,

b

L xij = s(s - I)}q + s r.
i=1

c fi . ~ sr k . bTherefore, de mng Xj = L xij/b = - = - , J = 1,2, . . . , ,we get
i=1 b s

b S2 r2
L(Xij - xi = s (s - I)~I + s r--
i=1 b

= s (s - I)~I + s r - r k.

Now, from r(k - I) = nl~1 + n2~2 , we get

r (k - I) = 2(s - 1)~1 + (s - 1)2~2 '

Hence, r k = r + 2(s - I)~ I + (s - I )2~2' Then, we get

L (xij - xi = s (s - I)~I + r(s - I) - 2(s - I)~I - (s - 1)2~2

= (s - I)[r+ (s - 2)~1 - (s - 1)~2]

=0,

since r + (s - 2)~1 - (s - I)~2 = 0. Therefore, Xij = x= k/s for all i and
j. Hence the result.

107. Let the blocks be denoted by B I , B2, ... , Bb.Let the block B I haved blocks
B2, B3, • . . , Bd+1disjoint with it and have Xi treatmentsin common with the
block Bj, i = d + 2, d + 3, . . . , b. Then, we get

b

L Xi = k(r- I).
i=d+2

Since BI contains k/s treatmentsfrom each row (column)of the association
scheme, we get

t Xi(Xi - I) = 2 · s · (~) (~ - I) (~ I - I)
i=d+2 S S

+ [k (k - I) - 2 s (~) (~ - I) ] (~2 - I)

k
= -[2(k - S)(AI - ~2) + s(k - 1)(~2 - I)].

s
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Hence,

b kL xr = -[2(k - S)(AI - A2) + s(k - I)A2 + s(r - k)].
i=d+2 S

Now, we have

r+(s-2)AI -(S-I)A2 =0

r (k - I) = 2(s - I)AI + (s - liA2.

Solving these two equations for AI and A2' we get

r (k - s)
AI=~-"':"

S (s - I)
r (s + sk - 2k)

A2 = ~---,-":"
s(s-I)2

b rev - k) bsti . hi' 2and hence Al - A2 = 2' Su sntutmg t ese va ues m :E Xi' we
s (s - I)

obtain

t X~ = ~ [_2(k - s)r(v - k) + rs(k - I)(s + sk - 2k)]
i=d+2 1 s s(s - 1)2 s(s - 1)2

= ~ [ (k - s)r(v - k) _ (k - s)r(v - k)
s s(s-I)2 s(s-I)2

rs(k-I)(s-k) rk(k-I) k]
+ s (s - 1)2 + (s _ I) + s(r - )

k [ (k - s)k(b - r) r(s2 - k2) rk (k - I) k]=- + + +$- )
s s(S-I)2 s(s-I) s-I

= ~ [ (k(b-r)(k-s) + k{-rk+rsk-rs+bs-vS+V}]
s s (s - 1)2 S (s - 1)

k2
= [-(b - r)(k - s) - (v - rk)(s - 1)2

v(s-I)2

+(v - s)(b - r)]

b
where T = (b - r)(v - k) - (v - rk)(s - I? Define x= L xii

i=d+2
k (r - 1)

(b - d - I) = b _ d _ l' Then

b k2T k2(r _ 1)2L (Xi - x)2 = - .
i=d+2 V(s - 1)2 b - d - 1
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Since I: (Xi - X)2 ::: 0, we get

v (s - I)2(r - If
d<b-I------- T

v (s - I)2(r _ 1)2 .
If d = b - I - T ' then I: (Xi - X)2 = O. This gives

_ k (r - I)
x·-x---­
1- -b-d-I

kT

- v (r - 1)(s - 1)2'
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i = d + 2, d + 3, ... , b. Hence the result.

108. Let the blocks be denoted by B I, B2, .. . , Bb, and let B I have Xi treatments
incommon with Bi, i = 2, 3, . .. , b. Then, as inExercise 107, we can prove
that

b

I>i = k(r- I)
i=2

where T = (b - r)(v - k) - (v - r k)(s _ 1)2 .
k (r - I)

Now, define x = I: Xj/(b - I) = . Then, we get
b-I

k2 T k2 (r _ 1)2
I: (Xi - x)2 = - ---

v(s-I)2 (b-l)

k2
= 2 [(b - I)T - v(s - 1)2(r - 1)2]

v(s-I) (b-I)

k2

= v(s_I)2(b_I)[(b-I)(b-r)(v-k)

_(s-I)2{(b-I)(v-rk)+v(r-I)2j]

k2[(b - I)(b - r)(v - k) - (s - 1)2(b - r)(v - k)]
= v(s-I)2(b-l)

k2(b - r)(v - k){(b - I) - (s - If}

v(s-I)2(b-l)

Consideration of I: (Xi - x)2 = 0 proves the result.

109. Consider a resolvable L2 design with r + (s - 2)AI + (s - 1)A2 = 0 and
b = t r, v = s2 = t k, where t is a positive integer greater than I. Let Bij
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denote thejth block in the ith replicationj = 1, 2, ... . t, i = I, 2, .. . , r. Let
BI I have Xij treatments in common with Bij , i = 2, 3, . .. , r, j = 1,2, .. . , t.
Then, as in Exercise 107, we can prove that

r I

LL>ij = k(r-1)
i=2 j=1

r I k2 T

L~xij = v(s-I)2
1=2 J=I

Define

Then

~~ x, kx= IJ =
t (r - 1) =

v

r I _ 2 k2T k2(r _ 1)2
~~(Xj'-X) = -~~6'£:1 J V(S -I)2 b-t

2 [T (r - 1)]
= k v (S - 1)2 - -t-

= k2[t . T - V(S - 1)2(r - I)]
v (S - 1)2t

k2[t(b - r)(v - k) - V(t - I)(s - 1)2]
=

vt(S-I)2
k2(t - I)[r t(V - k) - v(S _ 1)2]

V t(S - 1)2

k2(t - I)[b (v - k) - v(S - 1)2]
V t(S - 1)2

k2(t - I)v[b - r - (S - 1)2]
= Vt(S - 1)2

Since ~ ~ (Xij - x)2 2: 0, it followsthatb 2: r + (s - 1)2. The necessaryand
sufficientcondition for it to be affine resolvable follows from the consider­
ation of ~ ~ (xij - x)2 = O.

110. We renumber the blocks so that the two given blocks occupy the first and
second positions. Then, the distinct non-zero characteristic roots of N'N
are also r k > J.Lo > J.LI > . .. , J.Lp. Then it is easy to verify that the distinct
non-zero characteristic roots of the matrix

rk - 11.0

A = N'N - ,.. Ebb
b

are J.Lo > J.L I > ... > J.Lp. Then, if y is any real b x 1 vector,

O:s y'Ay:s J.Lo
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i.e.

,[ , rk-~o ]o::: y N N - b Ebb Y::: ~o ·

Selecty' = [I j J2.-I j J2.o.o. .. ..0]. then we get

o::: k - x ::: ~o.

which gives

k - ~o ::: x.

Next, select y' = [ljJ2. IjJ2. O, 0....• 0]. Then. we get

2(r k - ~o)
k+x- <"0b -,.. •

whichgives

x ::: ~o - k + 2(r k - ~O)b-I .

Thus. we get

k - ~o ::: x ::: ~o - k + 2(r k - ~O)b-I .

Since x ::: k, and 0 ::: x, one gets

maxlf), k - ~o] ::: x ::: minlk, ~o - k + 2(r k - ~O)b-I].
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• • •
Also. consider N= EVb - N. Then N' N = N'N + (v - 2k)Evb• Since. the

• •
elements of N'N are non-negative. we obtain

x::: 2 k - v.

Hence, we get

maxjf), 2k - v ; k - ~o] ::: x ::: minlk, ~o - k + 2(r k - ~O)b- I] .

III . In Exercise 65. we have proved that the characteristic roots of NN' of a
BIBD are r k and r - A. Thus. in the notations of Exercise 110. we have
~o = r - A. Then. applying Exercise 110, one easily obtains the required
result.

112. In a singular group divisible design, the characteristic roots of NN' are
r k, r - AI = 0 and r k - v A2 > O. Thus. in the notation of Exercise 110.
~o = r k - VA2. Now, from nlAI + n2A2 = r(k - I), and r = AI , we get

r(k - n)
A? = .

- v - n

Hence,

~O = r k - VA2 = k(b - r)j(m - I),



210

since v = m n. Then

CHAPTER 3

k - j.Lo = -k(b - m - r + I)/(m - I).
2(r k - j.Lo) k(b - m - r + 1) 2 VA2

j.Lo-k+ b = (m-I) +-b-

k(b - m - r + 1) 2 v r(k - n)
= +----

(m - 1) b(v - n)
k= --[n(b-m-r-I)+2k].

(v - n)

ApplyingExercise 110, we get

max[O,2 k - v, -k(b - m - r + I)/(m - 1)]

.::: x .::: min[k, k{n(b - m - r - I) + 2 k}/(v - n)].

113. In a semi-regulargroup divisibledesign, the characteristic roots of NN' are
r k, r - AI > 0, r k - VA2 = O. Hence, in the notation of Exercise 110, we
have j.Lo = r - AI . Now, since r k - VA2 = 0, we have A2 = rk/v. Hence
from nlAI + n2A2 = r(k - I), nl = n - I, n2 = n(m - 1), and A2 = rk/v ,
we get

AI = r(k - m)/(v - m)

and,

j.Lo = r - A( = k(b - r)/(v - m).

Therefore, we get

k = j.Lo = -k(b - v + m - r)/(v - m).

Further,

2(rk - j.Lo) k(b - v + m - r) 2k [ b - r ]
j.Lo-k+ = +- r---

b v-m b v-m
k= [(b - r)(b - 2) - (v - m)(b - 2r)].

b(v - m)

Hence, using Exercise 110,we get

max[0, 2k - v, -k(b - v + m - r)/(v - m)]

.::: x .::: min[k, k{(b - r)(b - 2) - (v - m)(b - 2r)}/b(v - m)].

114. In a triangulardesign, the characteristic roots of NN' are r k, r - 2A( + A2'
and r + (n - 4)AI - (n - 3)A2, (see Exercise 87).

(i) Consider r - 2A( + A2 = O. Then in the notation of Exercise 110,
we have

j.Lo = r + (n - 4)A( - (n - 3)A2.

= r - 2AI + A2 + (n - 2)(A( - A2)

= (n - 2)(AI - A2)

= (n - 2)(r - A(),
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sincer - 2 ~I + ~2 = 0. Now from r - 2 ~I + ~2 = 0, and nl ~I +
n2~2 = r(k - I), and nl = 2(n - 2), n2 = (n - 2)(n - 3)/2, we
obtain

r[(n - 2)(n - 3) + 2(k - I)]
~I = .

2(n - I)(n - 2)

Hence,

r[(n + 1)(n - 2) - 2(k - I)]
r - ~I = ---------

2(n - I)(n - 2)
r[n(n - I) - 2k]

= 2(n-I)(n-2)
2r(v - k) k(b - r)

=
2(n - I)(n - 2) (n - I)(n - 2)
k(b - r) k(b - r)

~o = = ,
(n-I) (n-I)

and

k - ~o = k(n - I - b + r)/(n - I).

Al so

2(r k - ~o) k(b + I - n - r) 2 k { b - r }
~o-k+ = +- r---

b n-I b n-I

k
--[b(b + I - n - r) + 2{r(n - I) - (b - r)}]
b(n - I)

k
= [(b - r)(b - 2) - (n - I)(b - 2r)] .

b(n - I)

Hence, applying Exercise 110,we get

max [0, 2k - v, -k(b - n - r + I)/(n - I)]

S x S minjk, k{(b - r)(b - 2) - (n - I)(b - 2 r)}/b(n - I)].

(ii) Now consider r + (n - 4)~ 1 - (n - 3)~2 = 0. Hence, in the nota­
tion of Exercise 110,we have

~o = r - 2~1 + ~2 .

But since r + (n - 4)~1 - (n - 3)~2 = 0, we have

r - 2 ~I + ~2 + (n - 2)(~1 - ~2) = 0.

Hence

r - 2 ~I + ~2 = -(n - 2)(~1 - ~2),

and

~o = -(n - 2)(~1 - ~2) '
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Now, from n,}" +n2A2 = r(k - 1), and r +(n - 4)Al ­
(n - 3)A2 = 0, we get

AI = r(2k - n)/n(n - 2)

A2 = 2 r(n k + n - 4k)/n(n - 2)(n - 3).

Therefore

r[(n - 3)(2 k - n) - 2(n k + n - 4 k)]
AI - A2 = ~-....;....;..---.-..;_--..:....---~

n(n - 2)(n - 3)
r[2 k - n(n - 1)] 2 r(k - v)

= =n(n - 2)(n - 3) n(n - 2)(n - 3)
2 k(b - r)

= - n(n - 2)(n - 3)'

and

2 k(b - r)
lJ-o = n(n - 3)

k(b - r)

v-n

Then

2 k(b - r)

2 v - 2 n

k(b - v - r + n)
k - lJ-o =-----­

(v - n)

and

k
2(r k - lJ-o)

lJ-o- + b

= k(b - v - r + n) + 2 k [r _ (b - r) ]
v - n b (v - n)

k= [b(b - v - r + n) + 2 rev - n) - 2(b - r)]
b(v - n)

k= [(b - r)(b - 2) - (v - n)(b - 2 r)].
b(v - n)

Hence, usingExercise 110,we get

max[0, 2 k - v, - k(b - v - r + n)/(v - n)]

:::: x :::: min[k, k{(b - 2 r)(b - 2) - (v - n)(b - 2 r)}/b(v - n)]

115. In a triangular design, the characteristic roots of NN' are It = r k, 91 =
r + (n - 4)AI - (n - 3)A2, ~ = r - 2Al + A2. Now, we can easily verify
that

Now if AI > A2, then 9, > ~. Hence in the notation of Exercise 110,



SOLUTIONS 213

110 = el. ApplyingExercise I 10, we get

max[O, 2 k - v, k - eil ::: x ::: min[k,el - k + 2(r k - el)b- I
] .

Further, if}\I < hz, then el < ez. Hence in the notation of Exercise 110,
110 = ez.Then, we get

max[0,2 k - v, k - ez] ::: x ::: min[k, ez - k + 2(r k - ez)b- I
] .

116. In an L, design, the characteristic roots of NN' are 80 = r k, el =
r + (s - i)~q - (s - i + I )hz and ez = r - ih, + (i - I )hz. Therefore, we
find

91 - ez = s(hl - hZ)

Thus, if hi > hz , then el > ez and hence in the notation of Exercise 110,
110 = e,. If hi < hZ, then el < ez and hene in the notation of Exercise 110,
110 = ez·Therefore using Exercise 110,we get the required result.

117. In an Lz design, the characteristic roots of NN' are r k, r + (s - 2)h I ­

(s - I)hz and r - 2h, + hZ. Since r + (s - 2)hl - (s - I)h z = 0, we get

r - 2 h, + hZ+ S(h, - hZ) = °
i.e.

Now, in the notation of Exercise 110,we have

and in Exercise 107, we haveproved that

k(b - r)

s(s _ I)z '

Hence,

k(b - r)
110= (s-I)Z'

and

k{(s - I)z - (b - r)]
k - "0 - ......:...:._-:..._.....:....-_~

... - (s - 1)2 .

Also

2 k{(b - r) - (s - I)z) 2k { (b - r)z}
110 - k + -(r k - 110) = + - r - --

b (s - I)z b s - I

k z
b(s _ I)z[(b - r)(b - 2) - (s - I) (b - 2r)].

Hence using Exercise 110, we get the requird result.
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118. Let us renumber the blocks so that the first two blocks B I and B2 have x
treatments in common. The other blocks are denoted by B3, B4 , .. . , Bb. Let
B, have Xi treatments common with the block Br, i = 3,4, .. . , b. Then, as
in Exercise 96, we can prove that

b

x+ LXi = k(r-I)
i=3

b k2T

x
2 +"" x~ = ,~ 1 v(v-m)

1=3

where T = (b - r)(v - k) - (v - m)(v - r k), Then, we get

~ _ 2 [k
2T

2] [k(r - I) - xf
L./Xi - x) = - x - .
i=3 v(v - m) b - 2

Since I; (Xi - x)2 :::: 0, we get

i.e.

[
k(r - I)] k2(b - 2)

x-::::: 2[T(b-I)-v(v-m)(r-1)2] .
b-I v(v-m)(b-I)

Now

T(b - I) - v(v - m)(r - 1)2

= (b - I)(b - r)(v - k) - (v - m)[(b - I)(v - r k) + v(r - 1)2]

= (b - r)(v - k)(b - I) - (v - m)(b - r)(v - k)

= (b - r)(v - k)(b - v + m - 1).

Hence

[
k(r-I)] k2(b-2)(b-r)(v-k)(b-v+m-l)

x - < ----------::----
b - I - v(v - m)(b - 1)2

A2
<--....,.
- (b - 1)2'

where A2 = k2(b - 2)(b - r)(v - k)(b - v + m - 1)/v(v - m). Therefore,
we get

k(r -I)-A k(r-I)+A
b-I ::::X:::: b-I .

119. Let us renumber the blocks as B I, B2, ... , Bb, so that the first two B I and B2
have x treatments in common. Further let Bland Bi(i = 3,4, . . . , b) have Xi



SOLUTIONS

treatments in common. Then, as in Exercise 102, we can prove that

b

x + L Xi = k(r - I)
i= 3

~ b k2T

x +"x~ = ,
~ I v(v - n)
1=3

where T = (b - r)(v - k) - (v - n)(v - r k). Therefore, we get

~ _ 2 [k
2T

2] [k(r - I) - xf
~(Xj - x) = - x - .:.......:.-~-=-
i=3 v(v - n) b - 2

Since ~ (Xi - x)2 ::: 0, we get

i.e.

215

[
k(r - 1)] 2 k2(b - 2)

x - ::: 2[T(b - I) - v(v - n)(r _ 1)2].
b - I v(v - n)(b - I )

Now

T(b - I ) - v(v - n)(r _ 1)2

= (b - I)(b - r)(v - k) - (v - n)[(b - I)(v - r k) - vCr _ 1)2]

= (b - 1)(b - r)(v - k) - (v - n)(b - r)(v - k)

= (b - r)(v - k)(b - v + n - I )

and therefore

[
k(r - 1)] 2 A2

x- < - - --=-
b - I - (b - 1)2'

where A2 = k2(b - 2)(b - r)(v - k)(b - v + n - I)/v( v - n).
Hence, the result follows.

120. Let us renumber the blocks as B I , B2, . .. , Bj, so that the first two blocks BI

and B2 have x treatments in common. Let BI and Bj(i = 3,4, . . . , b) have
Xi treatments in common. Then, as in Exercise 107. we can prove that

b

x+ L Xi = k(r- I )
i=3

b ~ k2T

x2 + " x· - --~6' i - v(s - 1)2'

where T = (b - r)(v - k) - (v - r k)(s - 1)2.Then from the above. we get

_ ~ k2T ~ [k(r - I ) - xf
~ (Xi - x)- = v(s _ 1)2 - X" - b _ 2
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Since :E (Xi - x)2 ~ 0, we get

i.e.

[
k(r_I)] 2 k2(b-2)

X - ::: 2 2[T(b - I) - v(s - 1)2(r- 1)2].
b - 1 v(s - I) (b - I)

Now

T(b - I) - v(s - 1)2(r- 1)2

= (b - I)(b - r)(v - k) - (s - 1)2[(b- I)(v - r k) + vCr - 1)2]

= (b - I)(b - r)(v - k) - (s - 1)2(b- r)(v - k)

= (b - r)(v - k)[b - 1 - (s - 1)2].

Therefore, we get

[
X - k(r_I)]2 < A

2

(b - I) - (b - 1)2'

k2(b - 2)(b - r)(v - k){b - 1 - (s - 1)2}
where A2 = 2 ' Hence, the result

v(s - I)
follows.

121. Let the blocks of a group divisible design be denoted by B 1• B2 ••• •• Bb •

Let B, contain Xij treatments from jth group of treatments, i = I,
2, .. .• b. j = I, 2, .. . , m. Then we have shown in Exercise 96 that

~ _ 2 n(m - I)(rk - VA2 )
L..,,(Xij - X) = .
i=1 m

b

Since L(Xij - xi ~ 0, we get r k - VA2 ~ O.
i=1

122. Let the ith block contain Xij treatments from the jth row of the associa­
tion scheme, i = I, 2, . . .• b, and j = I, 2, .. . , n. In Exercise 101 , we have
proved that

~ 2 (n - I)(n - 2)
L..,,(Xij - Xj) = [r + (n - 4)AI - (n - 3)A2]
i= 1 n

Now nlAI + n2A2 = r(k - I). nl = 2(n - 2), n2 = (n - 2)(n - 3)/2, give

2r(k - I)
(n - 3)A2 = - 4AI.

n-2
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Hence

and

217

2r(k - I)
r + (n - 4)~q - (n - 3)A2 = r + (n - 4)A I - + 4AI

n-2
I=--[r(n - 2) + n(n - 2)AI - 2r(k - I)]

(n - 2)
I

= --[rn + n(n - I)A I - nAI - 2rk]
(n - 2)

I=--[nCr - AI ) - 2(rk - VAl)]
(n - 2)

b 2 (n- I)
~)Xij - Xj ) = --[nCr - AI ) - 2(rk - VAl )].
i= 1 n

Since 1: (Xij - Xj)2 ~ 0, it follows thata necessarycondition for theexistence
of a triangular design is

nCr - Ad ~ 2(rk - VA d

i.e. rk - VAl :s nCr - AI )/ 2.
Equivalently, the condition can be stated as

r + (n - 4)A I - (n - 3)A2 ~ O.

123. Let the ith block contain Xij treatments from the jth row of the associa­
tion scheme, i = I , 2, . . .. b. j = I, 2, .. . , s.Then, in Exercise 106, we have
proved that

1: (Xij - xi = (s - I)[r + (s - 2)AI - (s - I)A2]'

Now, nlAI + n2A2 = r(k - I ), nl = 2(s - I ), and nz = (s - 1)2, give

r(k - I) 2AI
A2= ---.

(s- l)2 (s- I)

Hence,

r(k - I )
r+(s-2)AI- (s-I)A2 = r+(s- 2)AI - +2AI

s - I
1= -[r(s - I)+ s(s-I )AI -r(k-I)]

s - I
1

= - -[s(r - AI) - (rk - VAl)]
s - I

and

1: (Xij - xi = s(r - AI ) - (rk - VA l).

Since 1: (xij - xi ~ 0, it followsthat a necessarycondition for the existence
of a L2 design is that rk - VAl S s(r - AI). Equivalently, the condition can
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be stated as

r + (s - 2)AI - (s - I)A2 ::: O.
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124. Due to the interchange treatment 2 occurs twice in the first column and
treatment I does not occur in the firstcolumn, and also treatment2 does not
occur int he second column while treatment 1 occurs twice in the second
column. Hence

L = Evv,

0 2
2 0
1 I

M= [
2E22 - 21z E2(v-2)]

- E(v-2)2 E(v-2)(v-2)'

Let the vector c = {CI' C2, . . . , c.} be partitioned as c = {A, B}, where
A = {CI , C2} and B = {C3, C4, . . . , c.}. Also the vector of treatment ef­
fects t = {tl, "" tv} is partitioned as t = {a, b}, where a = {tl, t2} and
b = {t3, 4, . .. , tv}. Then, we have

I I I
Q = T- -LR- -MC+ -LEvIG

v v v2

_ T _ ~E I _ ~ [2E22- 21z E2(v-2)] [A] +~E I
- v v V E(v-2)2 E(v-2)(v-2) B v v

= T _ ~ [ 2GE21 - 2A] .
v GE(v-2)1

Hence, we have

2G 2
QI = TI - - + -CI

V v
2G 2

Q2 = T2 - - + -C2
V v

G . 3Qj = Tj - - , J = . ,4, . . . , v.
v

Further,

. I I I I 1 I

F = diaglr, r, . . . , r) - -LL - -MM + zLEvvL
v v v

- I - E - ~ [41z + (v - 2)E22 VE2(v-2) ] + E- v v vv E E vvv V (v-2)2 v (v-2)(v-2)

[

41z + (v - 2)E22 ]
- I _ E2(v-2)- v v V •

E(v-2)2 E(v-2)(v-2)
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Hence, the equations for estimating t are given by
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Q=Ft

= vt _ [~(4h + (v - 2)E22)

E(v-2)2

E2(v-2) ] [a]
E(v- 2)(v-2) b '

We assume Elvt = 0. Hence, the above equations can be written as

[

v2 - 4 2 ]
Q _ - -a + -(E I2a)E21- v v .

vb

Thus, we get

v2 - 4, 2 , ,
QI = --tl + -(tl + t2)

v v
v2 - 4, 2 , ,

Q2 = --t2 + -(tl + t2)
v v

Qj = vtj,j = 3,4, . . . , v.

Solving these equations, we get

'2 2t = [(v - 2)QI - 2Q2]/V(V - 4)
'2 2t2 = [(v - 2)Q2 - 2Qd/v(v - 4)

tj = Qj/v,j = 3,4, ... , b.

Hence, we get

var (li) = (12(v2 - 2)/v(v2 - 4) , i = 1,2

var (li) = (12/v, i = 3,4, . . . , v

COY (tl , t2) = -2(12/ v(v2 - 4)

COy (ti,tj) = 0, i = I, 2, j = 3, 4, .. . , v

COy (ti, tj) = 0, i i= j = 3,4, .. . , v.

Then, we obtain

" 2var (tl - (2) = 2(1 [v
" 2 2 2 .var (tl - ti) = 2(1 (v - 3)/v(v - 4),1 = 3,4, . . . , V
" 2 2 2 .var (t2 - ti) = 2(1 (v - 3)/v(v - 4), 1 = 3,4, ... , v

var (ti - tj) = 2(12/v, i i= j = 3,4, .. . , v.

When the treatments I and 2 are not interchanged,
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Whenthe treatment1and2 are interchanged, theaveragevariance ofBLUEs
of elementary treatmentcontrastsis givenby

_ 2(12 [ 4(v - 2)(v2 - 3) ]
V = ---;- 2 + (v2 _ 4) + (v - 2)(v - 3) Iv(v - 1)

= 2(12(v3 + v2 - 2v + 4)/v2(v - 1)(v+ 2).

Hence, the efficiency of the modified Latin square design relative to the
originalLatin square is givenby

E = v(v - I)(v + 2)/(v3 + v2 - 2v + 4).

The loss in efficiency is

I - E = 4/(v3 + v2 - 2v + 4).

125. In an m-ple latticedesign, the solutionsfor t, are givenby

is = [Qs + f Sj(Qs)/k(m - 1)] [t, s = 1,2•...• V

1=1

wherev = k2 and

S,(Qs) = sum Q's over treatments which occur in the same
rowas ts '

S2(Qs) = sum of Q's over treatments which occur in the same
column as ts.

Sj(Qs) = sum of Q' s over treatments whichcorrespond to the
same letter as ts in the (i - 2)-th Latin Square.
i =3.4, . ... m.

Then, we have

~ (12 [ m]var (ts) = - 1+ .s = 1,2, . ..• v
r k(m-I)

coy (1~ , 1s') = (12 Irk (m - 1), if the treatments ts and ts' occur
together in a block,

= 0, if the treatments ts and r, do not occur
together in a block.

Hence,

var (ts - 1s') = 2(12 [k +~], if the treatments t, and ts' do
kr m - 1

not occur together in a block
2(12(k + 1)= . if the treatments ts and ts' occur

kr
together in a block.
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Now let us find the number of pairs of treatments which occur together as
a block. From each row of treatments, we can form k(k - I) pairs, from
each column of treatments, we can form k (k - I) pairs, from the treatments
which correspond to the same letter in the (i - 2)th Latin square, we can
form k (k - I) pairs. Thus, the total number of pairs of treatments which
occur together in a block is

k(k - I)[k + k + (m - 2)k] = kZ(k - I)m.

Then, the number of pairs of treatments which do not occur together in a
block is

Hence,theaveragevariance ofthe BLUE's ofelementarytreatmentcontrasts
is given by

V = 2
20': [(k + l)mkZ(k _ I) + (k + _m_)

k r k (k - I) m - I

kZ(k - I)(k + I - m)]

2O'Z[(m - I)(k + I) + m]
= r(m - I)(k + I)

Now the efficiency of this design relative to RBD is given by

E = (m - I)(k + I)/[(m - I)(k + I) + m]

= I-m/[(m-I)(k+ I)+m].

When the lattice design is balanced, then m = k + I, and in this case

I
E = I - k + I = k/(k + I).

126. The normal equationsforestimatingts in the intrablock analysisare givenby

( I) ~ I~,~Qs = r I - - ts - - L.. Sj(ts), where
k k I

S~(ts) = sum of treatments in the same row as t, but excluding ts,

S;(ts) = sum of treatments in the same column as t, but
excluding ts and

S;(ts) = sum of treatments whichcorrespond to the same letter
as t, in the (i - 2)-th Latin Square, i = 3,4, .. . , m.

Applying the result of Exercise 53, we find that the normal equations for
estimating ts in the analysis with recovery of interblock information are
given by

Ps = r [WI + k~ I] (I - ~) ts - (wJ ~ wz)~ S;<ts),

s = 1,2, . . . , v.
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Thus

*
since r =m. Hence, summing over the treatments in the group Sj(is), :E, we
get

and

A I [ rruw, - W2) ]var (ts) = - I + .
r wI k{(m - l jw, + W2}

If t, and ts' occur together in a block, then

A A (WI - W2)
COy (ts , ts' ) = ---:--:---------:­

r WI k{(m - l)wl + W2}

If ts and ts' do not occur together in a block, then

coy (is , ts' ) = O.

Hence, if ts and ts' occur together in a block, then

A 2 [ (m - I)(wl - W2) ]
var (is - ts') = - I + .

r WI k{(m - I)w, + W2}

If t, and ts' do not occur together in a block, then

A A 2 [ mtw, - W2) ]
var (ts - ts' ) = - 1+ .

r WI k{(m - l)wl + W2}

The number of pairs of treatments which occur together in a block (see
Exercise 125) is m k2(k - I). Hence, the average variance of BLUEs of
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elementary treatment contrasts is given by

V= I [mk2(k _ 1)_2_ {I + (m - I)(wl - W2) }
k2(k2 - I) r WI k(m - l jw, + W2)

+k2(k _ I)(k + 1 _ m)_2_ {I + m(wl - W2) }]
r WI k(m - I)WI + W2

2 [ mtw, - W2) ]= k+l+ .
rw,(k+l) (m-l)wl+W2

Hence the efficiency is given by

2/rwl
E=-----...----'---'------=2 [k + 1+ m(wl - W2) ]

r WI (k + I) (m - I)WI + W2
(m - l)wl + w2}(k + I)

(m - ljw, + w2}(k + I) + rruw, - W2)
mtw, - W2)

= I - --------'---'------
(k + I)(m - l jw, + W2} + mtw, - W2)

When the lattice design is balanced, then m = k + 1 and then

WI - W2 k WI
E=I- =-----

mWI-w2 (k+I)WI- W2

127. Clearly, the sum of squares due to Fit is given by
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(I)

Sj-I

We now find L X~(x) . Note that X.(x) are orthogonal polynomials. Hence
x=O

L Xt(x)Xt'(x) = 0 for t =f: t' . Therefore, we obtain, by multiplying the rela-
x

tion about X, by Xt - I and summing

L X~(x) = L XI(x)Xt(x)Xt _ 1(x).

Also, multiplying the relation about X, by Xt- 2 and summing gives

(t - 1)2(Si - (t - 1)2} ?

0= L XI(x)Xt-I (x)Xt - 2(x) - L Xi_2(X).
4(2t - I)(2t - 3)

(2)

Replacing t by (t - I) in (I), we get

L X~_,(x) = L x.oox.; (x)XI_2(x).

From (2) and (3), we get

(t - 1)2(S2 - (t - 1)2}
L X2 (x) - I L X2 (x)I-I - 4(2t _ 1)(2t _ 3) 1-2 ·

(3)

(4)
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Replacing (t - I) by t in (4), we get

t2{S2 _ t2}
~ X2(x) - I ~ y2 (x)

t - 4(2t+ 1)(2t-l) '~-I .

Repeated application of the above relation gives

CHAPTER 3

Hence, the sum of squares due to Fit is given by

128. We have

Xi = [ Xi-I] = [ I] e Xi-I
aiXi-1 ai

= [ I ] ® [ I ] ® ... e [ I ] , i = I, 2, . . . , m
a, a,_1 al

= column vector of treatments in a 2i design.

Similarly

v, = [(ai + l)Yi-l] = [ai + I] ® Yi-I
(a, - I)Yi-1 aj - 1

= [ai + 1] e [ai-I + I] e ... e [al + I]
ai - I ai-I - I al - 1

= column vector of S, and all factorial effects in a 2i design.

Also, note that

and

Yates' method aims at obtaining Y, from Xi and inversely Xi from Yi.
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Consider HiXi , i = 1,2, . . . , m.
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= [:: ~ :] ~ [::=: ~ :] ~ ... ~ [:: ~ :]
=Yi

Note the operatorHI' When HI isappliedon a pairof values, it is equivalent
to taking the sum and difference (lower minus upper) of the two valuesof
the pair. We thus note that Hi Xi is thus equivalent to repeating i times in
succession the operation of taking the sum and difference of pairs of the
treatments in Xi.

We now prove the inverse Yates' method which obtains Xi from Yi.
Consider

HiH; = [HI ~ HI ~ . .. ~ Hd[H '1 ~ H'I ~ . . . ~ H'I]
= HIH'I ~ HIH'I ~ ... ~ HIH'I
= 212 ~ 2h ~ . . .~ 212

= 2il
2i = H;Hi

Hence,

Hi l = Hji, i = 1,2, .. . , m.

From HiXi = Yi , we then get

Xi = HilYj
I ,

= -,H.Yi2' ,

I I I I [(ai + I) (a l + I)]= 2i[H I ~ HI ~ . . .~ Hd a, - I ~ .. .~ a, _ I

= ~ fH, (ai + I) ~ H' (ai-I + I) ~ ... ~ H' (al + I)].
2' ~ I a, - I I ai- I - I I al - I

Note the operatorH'I' When H'I is applied to a pair of values, it is equivalent
to taking the difference (upper minus lower) and the sum of the pair of
values. Thus, Xi is obtained by repeating i times in succession the operation
of taking the difference(upper minues lower)and the sum of pair of values
in the column vector of Y, and dividing by 2i. This establishes the inverse
methodof Yates.
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129. We have

= [~~] e [a~~I] e .. . ® [:i]
ai ai_I a l

= column vector of treatments in a 3i design

Also

[

ar + ai + l ]
Y, = ar - I ® Yi - I

ar- 2ai+ 1

_ [ar~ai+l] [ar-Itai-I+I] [ai~a'+I]
- ai - I ® ai_I - I ® . .. ® a l - 1

ar - 2aj + I ar_1 - 2ai_1 + I ai - 2al + 1

= column vector consisting of S, and contrasts belonging to
factorial effects in a 3i design.

Also

[

Hi- I
Hi = -Hi-I

Hj_1

=H1 ®H1

Hi-I Hi-I]
o Hi-I = Hi

- 2Hi_1 Hi-I

® .. . ®H1

Hence

Hi XI ~ {HI @H, e ...@Hil {[~] @ [~~:J @. . . @ [:1]1

= {HI [~ ] e @H, [:1]1
_ [ ar ~ aj + 1 ] [ ai ~ al + 1 ]
- ai - I ® . . . ® at - 1

ar - 2ai + 1 ai - 2al + I

=Yj.

This establishes extended Yates' rule. In order to obtain Ym in a 3m design
we proceed as follows. We write the column vector Xm of treatments as
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under
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Werepeat the following operation m times in succession on triplets of Xm:

(i) add three values
(ii) subtract the first from third
(iii) subtract two times the second value from the sum of the first and

third values.

130. Consider a RBD with v treatments and b replications. Let the missing yield
bedenoted by x. Now

'E(x) = J.L + (Xi + tj

Hence x is estimated by

x = Il + elj + tj

Now for a RBD,

Il = (G + x)/bv

A (Bj + x) (G + x)
(Xj = v - bv

A (T, + x) G + X
tj= ---.

b bv
Wehave assumed that B" B2 , . . . , Bb , T1, T2, . .. , Tvand G denote respec­
tivelythe actual block totals, treatments totalsand the total yield. Hence, we
get

x = G + x + (Bj + x) _ (G + x) + Tj+ x _ G + x
bv v bv b bv

Solving for x, we get the estimate of x as

A (bBj + vTj - G)
x - --'------

- (b - 1)(v - I) .

Now bias in estimated treatmentSS is given by

bias (est. treatment SS)

= [Est. conditional error SS with estimated missing yield]

- [minimum value of conditional error SSj

The conditional (1, = t2 = . .. = tv = 0) error SS is

(Total SS) - (Block SS)

= [ ~ l + x2 _ (G~X)2]

_ [BT+ ...+ (Bj + x)2 + ... + B~ _ (G + X)2]
v bv
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Hence estimatedconditional error SS is

[ l: y2 + x2 _ (G:
v
xi]

_ [BT + ... + (Bj + xi + . .. + B~ _ (G + X)2]
v bv

where x = (bBj + vTj - G)/(b - I)(v - I).
Now,we shall findthe minimumvalueof conditionalerror SS. Weequate

to zero the derivativeof conditionalerror SS with repeat to x. Wethen obtain
the estimate of x as

Xo = Bj/(v - I).

Hence, minimum value of conditional error SS is

2 2 BT + . . . + (Bj + xi + ... + B~
l: Y + Xo - --'----......:...-----~

V

and the bias in the estimated treatment SS is

A2 2 (Bj + x)2 - (Bj + xo)2
x - X - ---=------'---o v

[
(2Bo+X+xo)]= (x - xo) (x + xo) - J v

A [(x+xo)(V-I)-2Bj]
= (x - xo)

v

A [(X + xo)(v - I) - 2xo(v - I)]
= (x - xo)

v

(x-xo)2(v-l) 2 2= = (Bj + vT, - G) /v(v - I)(b - I)
v

Since Bj contains (v - I) yields, T, contains (b - I) yields and G contains
(bv - I) yields, we get

var (Bj) = (T2(v - I)
var (Tj) = (T2(b - I)
var (G) = (T2(bv - I)
COy (Bj, Tr) = 0
COy (B], G) = (T2(v - I)
COy (Tr, G) = (T2(b - I).

Hence

A «T2(v+ b - I)
var(x) =----­

(v - I)(b - I)

Consider an elementary treatment contrast tj - ts, i # s. This contrast is
estimated by

ij - is = (T, + x- Ts)/b.
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Hence,

~ ~ a 2
[ v + b - I

var (tj - ts) = b2 (b - I) + (v _ 1)(b _ I) + b

2cov rr, x) 2cov (Ti , Ts) 2cov (x, Ts) ]+ - - ---,,.---
a 2 a 2 a 2 '

Now, one can easily verify that

COy (x, T j ) = a 2

COy (x, Ts) = 0
COy (Tj, Ts) = O.

Hence , we obtain
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~ ~ 2a
2

[ v]
var(tj-ts)=b 1+ 2(v_I)(b_I) '

For any other elementary treatment contrast not involving missing yield,
such as ts - ts', we get

var (ts - ts' ) = 2a 2lb .

Hence , the average variance V of the estimates of elementary treatment
contrasts is given by

2a 2
[ v J (v - 1)(v - 2) 2a2

_ b I + 2(v _ I)(b _ I) 2(v - I) + 2 . b
V=---::.----.:...--:...;,---:.::......----------

v(v - I)

= 2:2[(V - 1)I(b - 1)]-

If there was no missing yield, the variance of the BLUE of an elementary
treatment contrastis 2a2lb. Hence , the efficiency of RBD with one missing
yield relative to that of RBD with no missing yield is given by

2a
2/b [ I ]-1

E = -y = I + (v _ 1)(b _ I)

Hence, the loss in efficiency is

I-E= [I +(v-I)(b-l)r l
.

131 . Consider a BIBD (v, b, "y, k, >") and suppose the yield x = xij corresponding
to the ith treatment in the jth block is missing . Then x is estimated by

x = J1 + OJ + ti.

Solving the above equation for x and denoting the solution by x, we get

x= (>" vBj - kQ; + k2Qi)/(k - 1)(>" v - k).

We shall now find the bias in the estimated adjusted treatment SS.
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The conditional error SS is

b 2+ 2 (G + x)2
Y X - bk

(G + x)2
+ bk
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Bi + . . . + (Bj + xi + ... + B~

k

Henceestimatedconditional error SS is

2 ~2 Bi + .. . + (Bj + xi + .. . + B~
by+X- k '

where x = (~ vBj - kQ~ + k2Qi)2/(k - l)(~v - k).
Weshall nowfind the minimum valueof theconditional errorSS. Equat­

ing the derivative of the conditional error SS to zero, we get

x = Bj/(k - 1) = xo, say,

and, the minimum valueof the conditionalerror SS is

2 2 Br + .. . + (Bj + xoi + .. . + B~
by +xo - k

Hence,bias in the estimatedadjusted treatmentSS is givenby

Bias = [estimated conditional error SS] - [minimum
conditional error SS]
~2 2 (Bj + x)2 - (Bj + xoi

=x - xo -
k

[
(2Bj+X+xo)]= (x - xo) x + Xo - k

(x - xo) ~
= k [(k - l)(x + xo) - 2Bj]

(x - xo) ~
= k [(k - I)(x + xo) - 2(k - l)xo]

(x - xo)2(k - I)
=

k

k(Bj - Q~ + kQii
= (k - l)(~v - k)2 .

Now for a BIBD,

~ = (G + xj/bk

~ 1 B ) ~ 1~ ~
Clj = k"( j + x - 11 - k" £- npjtp

p=1

~ k *tp = -Qp' P = 1,2, . .. , v,
~v
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when for p # i,

and

* I~ 1Qi = Tj + x - - i-J npsBs - -nij(Bj + x)
k sij k

1b (I)=T--~nB+x I- -
I ki-J Ps S k

s=1

= Qi + X (I -{).
Hence

A k [ x . npj ] . .
t = - Q - -- If P .../.. I
P AV P k ' r

= :v [Qi + X (I - {)], ifP= i .

Thus, x is estimated by
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A A I A 1v A k[ (I)]x = II + - (B' + x) - II - - ~ n ·t + - Q. + x 1 - -
r- k J r- ki-JPJP hV I k

p=1

I I k [ I ]= -(B· + x) - - ~ n .- Q - -xn .k J k i-J PJ h v P k PJ
pil
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132. The missing yield corresponding to the ith treatment in the jth block is
denoted by Xjj = x. This will be estimated by

x = P-+Uj +tj.

Now for a binary block design,

P- = (G + x)/n
1 v

Uj = (B] + x)/kj - P- - k- L npjtp
J p=1

tj = hilQr + hi2Q~ + ... + hivQ:

where [hjj] = a g-inverse of the C-matrix and

Hence

v v

= LhpsQs - f Lnsjhps + Xhpi, P = 1,2, . . . , V

s=l J s=1

and x is estimated by
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Denoting the solutionof x by X, we get

x= -----...:....-------.,.--------:-

v v v

a, - L L npjhpsQs + kj L hisQs
p=1 s=1 s=1

v v ( I v )
kj - 1 - kjhii + L nsjhis + L npj hpi - ~L nsjhps

s=1 p=1 kJ s=1

Under t = 0, the conditional error SS is given by

2 2 Z Z Z ZSeO(Y' x) = 1: Y + x - BI/k l - BZ/kz - . . . - (Bj + x) /kj

- . .. - B~/kb '

Hence, the estimatedconditional error SS is given by

S~(y,x) = 1: yZ + XZ- Bf/k l - .. . - (Bj+ x)z/kj - ... - B~/kb

where x is given as above.
Now the minimum value of the conditionalerror SS is the actual condi­

tional error SS. Hence,

m}n S;o(Y, x) = 1: yZ - Bf/k , - . . . - Bf/(kj - I) - . .. - B~/kb'

Hence bias in the estimated treatmentSS is given by

Bias = [EstimatedConditional Error SS] - [Min. value of

Conditional Error SS]

= XZ- (Bj + x)z/kj + Bf/(kj - I)

= (kj; I) [x _ Bj/(kj - n]' .
J

. I
For a RBD, kj = v for all J, and hpp = b for all p and hps =0 for

p -# s, npq = I, for all p and q. Hence

1 1
Bj - bL Qp + v . bQi

x= p
k I

v-I--+-+O
b b

bE- + vQ- bBj + v'I] - G
Since L Q = 0 we get x = J I •

P p, (k-I)(b-I) (b-I)(v-l)
For a BIBD, kj = k for all .i and hpp = k/'A.v for all p and hps = 0 for

p -# s. Hence
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where Qj = 1:: npjQp = sum of Q's over treatments of the jth block. For a
RBD, the bias in the estimatedtreatmentSS is givenby

v - I [b B· + v T - G B.]2Bias = __ J I _ _ J_

v (b - I)(v - 1) v - I

= [Bj + vTj - G]2/V(V - 1)(b- If

For a BIBD, the bias in the estimatedadjusted treatment SS is givenby

. (k - I) [>" vBj - kQj+ k
2Qj

Bj]2
Blas=-- ---

k (k - 1)(>" v - k) k - I

= k(Bj - kQj+ k2Qi)2/(k - 1)(>" v - k)2 .

133. Suppose in a v x v Latin square the yield Xjjk = x corresponding to the ith
treatmentin thejth row and k-thcollumn is missing. Then x is estimatedby

x = P. + &j + ~k +ti
In a Latin square, the estimatesof /-L. (lj. 13k and tj are givenby

p. = (G + x)/v2

AI) A(lj = -(Rj + x - /-L
v

A I
13k = - (Ck+ x) - p.

V

A I A

tj = -(Tj+ x) - /-L.
v

Hence x is estimatedby

x = P. + ~(R + x) - p. + ~(Ck + x) - p. + ~(Tj + x) - p.
V J V v

1 I I (G + x)
= - (Rj + x) + -(Ck + x) + -(Tj + x) - 2 2

V V V v

Denoting the solutionof the above equationby X, we obtain

A vRj + VCk + vTj - 2G
x = .

(v-l)(v-2)

We shall now find the bias in the estimated treatmentSS. Under t = 0, the
conditional error SS in a Latin squaredesign is given by
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Hence, the estimated conditional error is given by

L R~ + (Rj + X)2

S2 ( ' ) ~ 2 + ,2 _b#..:..j _
eO y, X = £. Y x -

v

L C~ + (Ck + X)2 2
Nk (G + x)
------+ 1

v V-

Now, equating the derivative of conditionalerror SS to zero, we get

2 2 2(G+ x)
2x - -(Rj + x) - -(Ck + x) + 2 = O.

V v v

Denoting the solutionof the above equation by xo, we get

vRj + VCk - G
Xo =

(v - 1)2

Hence, the minimum balue of the conditionalerror SS is
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2 2 1 [" 2 2J I [" 2 2JL Y + Xo - - LJ Rp + (R,+ XO) - - LJ Ce+ (Ck + xo)
v p#j v l;o'k

(G + xO)2
+ 2

V

and bias in treatmentSS is given by

Bias = S;o(y, x) - minS~(y, x)
x

,2 2 1 , 2 2 I , 2= X - X - -[(R + x) - (R + xo) ] - -[(Ck + x)o V J J V

2 1 , 2 2
- (Ck + xo) ] + -:;[(G + x) - (G + xo) 1

v-

= (x - xo) [(X + xo) - ~(2Rj + x+ xo) - ~(2Ck + X+ xo)
v v

+ :2(2G + x+ xo)]

, [, ( I 1) 2 ]= (x - xo) (x + xo) I - ~ + v2 - v2 (vRj + VCk - G)

= (x - xo) [(X + xo) _ (v - 1)2 _ 2.xo(v _ 1)2]
v2 v2

( V 1)2- ( ' )1= x-xo-
v2

[Rj + Ck + (v - I)T; - Gf
=

(v - 1)2(v - 2)2
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We shall now find the loss in efficiency. Since Rj, Ck,Tj and G contain
(v - I), (v - I), (v - I) and (v2 - I) yields respectively, we can easily ver­
ify that

var (Rj) = (1"2(v - 1), var (Ck) = (1"2(v - 1),

var (Ti) = (1"2(v - I), var (G) = (1"2(v2 - 1)

COy (R], G) = (1"2(v - 1), COy (R], Ck) = 0,

COy (Rj , G) = (1"2(v - 1),COy (R], Ck) = 0,

COY (Ck,Tj ) = 0, COy (T}, G) = (1"2(v - 1).

Hence, we can find

(1"2(3v - 2)
var (x) =-~-~­

(v - 1)(v- 2)

Consideran elementarycontrastbetweentwotreatments, onecontainingthe
missing yield, tj - ts; say. This is estimated by ij - is = (T, + x - Ts)/v .
Hence

A A (1"2 [ (3 v - 2)
var (tj - ts) = - (v - 1)+ + V

v2 (v - 1)(v- 2)

2cov (Tj, x) 2cov (Tj, Ts) 2 COy rr; X)]
+ - ----:---(1"2 (1"2 (1"2

Now,we can verify that

coy (Tj, x) = (1"2, COY (Ts , x) =°
COy (Tj, Ts) = 0.

Hence,

2(1"2 [ v]
var (lj - is)= --;- 1+ 2(v _ 1)(v _ 2) .

Furtherif ts - ts' isanelementarycontrastbetweentreatmentsnotcontaining
the missing yield, then

var (is - is·) = 2(1"2 [v,

Therefore,theaveragevarianceVof theestimatesofall elementary treatment
contrasts is given by

2(1"2 [ v] 2(1"2- 1+ 2(v - 1)+ (v - I)(v - 2)-
'1= v 2(v-I)(v-2) v

v(v - I)

2(1"2 [ 1]
= --;- 1+ (v _ 1)(v- 2) .

Hence, the efficiency of the Latin square design with one missing yield
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relative to that of the Latin square design with no missing yield is

2a 2jv
-_- = [I + {(v - I)(v - 2)}-lj- l

V

And the loss of efficiency is

I - [I + {(v - I)(v - 2)}-lr 1 = [I + (v - I)(v - 2)r' .
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134. Consider a Youden square in which thecolumns form the blocks of a SBIBD
(v = b. r = k, A). Each row is a complete replication of all treatments. Sup­
pose that the yield Xijk = x corresponding to the ith treatment in the jth row
and the kth column is missing. Then x is estimated by

x = fl + O:j + ~k + ti.

where

fl = (G + x)jvk

O:j = Estimate of the jth row effect

I A= -(Rj + x) - J.L
V

~k = Esstimate of the kth column effect

= Estimate of kth block of a SBIBD
I I v

= -(Ck + x) - fl- - "n ktk kL.,P P
p= l

tp = Estimate of pth treatment effect

k *
= AV Qp'

where for pI-i.

* I" IQp = Tp - - L., npqCq - -npk(Ck + x)
k q,ok k

I I
= r, - k~ npqCq - knpkx

I
= Qp - knpkx

and

* II: IQ- = T - x - - n. C - -n-k(Ck+ x)
I I k rq q k I

q#

= T- ~ "n-C+ x (I - ~)
I k L., rq q k

q

=Qi+X(I-~).
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Hence,

Therefore, x is estimatedby

I I G+x I I

x = 11 + -(R + x) - 11 + -(Ck + x) - -- - -QkV J k vk AV

k { x(k - I)}
+AV Qj+ k .

Denoting the solutionof the aboveequationby X, we obtain

~ A(k Rj + VCk - G) - kQk+ k2Qi

x = k(k _ I)(k - 2) .

Since r = k, the above result can be also written in terms of r by replacing
k by r as follows.

~ A(r Rj + VCk - G) - r Qk+ r2Qj
x = ----::..---------'''----

r(r - I)(r - 2)

We shall now find the bias in the estimated treatmentSS. Under t = 0, the
conditional error SS adjusted is given by

[
L R~ + (Rj + x)2 ]

S2(y ,X)= [Ll+x2- (G+X)2] _ p;6j _ (G+x)2
~ vr v vr

[
L C~ + (Ck + x)2 ]
e;6k (G + x)2

- -
r v r
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Hence, the estimated conditional error is given by

I: R~ + (Rj + X)2

S2 ( ') _ ~ 2 + , 2 _ :...;.P#..:..j _
eOY' X -L.y X

V

I:q+(Ck+x? 2
e#j (G + x)
...:...:..-----+~_:....-

r v r
Equating the derivative of the conditional error SS to zero, we get

2 2 2
2x - ~(Rj + x) - ~(Ck + x) + ~(G + x) = O.

Denoting the solution of the above equation by Xo, we obtain

r Rj + v Ck - G A(r Rj + vCk - G)
Xo =

(v - 1)(r - I) r(r - 1)2

since A(v - I) = A(r - I). Hence, the minimum balue of the conditional
error SS is given by

L R~ + (Rj + xO)2

minS~(Y, x) = 'El + x6 - ..:..P#:...,:.j-----
x v

L C~ + (Ck + xO)2
e# (G + xO)2....;,...------ + ....;,...-~

r vr
Hence, the bias in the estimated adjusted treatment SS is given by

Bias = [estimated conditional error SS]

- [minimum value of conditional error SS]

, 2 2 (Rj + x)2 - (Rj + XO)2 (Ck+ x)2 - (Ck+ XO)2
= X -xo- v r

(G + x? - (G + XO)2
+..:..-_..:..-----:._--=:.:-

v r

(' ) [(' ) (2 Rj + x + xo) (2 c, + x + xo)
= X-Xo x+xo - ------

v r

+ (2 G + x + XO)]
vr

(x - xo)
---[(x- xo)(v-l)(r-I)-2(rRj+ v Ck- G)]

vr
(x - xo)

= [(x+xo)(v-I)(r-I)-2(v-I)(r-l)xo]
vr

(v-I)(r-I) , 2
= (x - xo)

v r
(v - I)[A(rRj + v Ck - G) + r(r - I)(r Qi - Qk)f

= v r3(r - 1)3(r- 2)2
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135. The missing yields in the first row are denoted by XI , X2, . .. , x., Note that
Xj corresponds to the ith treatmentand the ith column, i = I, 2, . . . , v. Here
Xj'S are estimated by

~ ~ 6:. ~ . I 2Xj = J..l. + ex + tJi + tj, 1 = , ,... ,v

v
where 11 = (G + X)/v2, X = L Xj ,

I

& = estimate of the effect of the first row
I ~= -X-J..l.,
v

I3i = estimate of the effectof the ith column

I ~
= -(Cj+ Xi) - J..l.,

v
tj = estimate of the ith treatmenteffect

I ~= -(Ti + Xi) - u.
v

Hence, we get

v(Cj + Tj) - 2G .
VXj - X = ,1 = I, 2, . .. v.

(v -2)

The aboveequations can be writtenas

Ax ee h

where A is a v x v matrix withelements

ais = v - I, ifi = s

= - I if i =J. s

and x' = [XI, X2 , . . . , xv], h' = [hj , h2, . . . , h.] , when hj = (v C, + v Tj­
2 G)/(v - 2). The matrixA can be written as

A = v Iy - Eyy,

which is singular. The Moore-Penrose inverseof A is seen to be

Hence, a solution of Ax = h is obtained as

x= A+h = [{l/v)Iy - {l/v2)Eyylh

I
= -h,

v

since Elyh = O. Hence, we get

Xj = hi/v = (v Cj + V Tj - 2 G)/v(v - 2), i = 1,2, . . . , v.
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We shall now find the bias in the estimated treatment SS. Under t = 0, the
conditional error SS is given by

S;'(y, x) ~ [E y' +t x~ - (G+ X)' /v']

[

X
2

+ LRf ] t(Ci+xi
j;61 (G + X)2 1 (G + X)2

- -
V ~ V ~

Hence, the estimated conditional error SS is given by

X2 +'" R
2

v ~ J ~(C A)2 (G A)2
S2 ( A) = ~ 2+ '" A.2 _ J;61 _ ~ i + Xi + + XeO y, X ~ Y ~ XI 2

1 V V V

2 ~ A2 I",? I~C A2 2
= ~ Y + ~ Xi - - ~ Rj - - ~ ( i + Xi) + GIV ,

I v W1 V I

since X= O.

Equating the derivative of the conditional error SS to zero, we get

vC -G
v Xi - X = I , i = 1,2, .. . , v.

v-I

TheseequationscanbewrittenasAx = b, whereAhasthesamemeaningsas
in Ax = hand b' = [b, , b2, . . . , by], where b, = (VCi - G)/(v - I). Then
a solution of Ax = b is given by

i = A+b

and hence we obtain

*Xi = (v Ci - G)/v(v - I), i = 1,2, .. . , v.

Hence, the minimum value of conditional error SS is given by

2 * 2 ~* 2 I", 2 I~ * 2 22SeO (y, x) = ~ y + ~ Xi - - ~ Rj - - ~(Ci + Xi) + G [v
I V WI V 1

Thus, the bias in the estimated treatment SS is given by

Bias = [estimated conditional error SS]

- [min. value of conditional error SS]

~A ? *2 I A2 *2= ~(Xi- - Xi ) - -~[(Cj + Xi) - (C, + Xi) ]
i=1 v

I ~ * *= - ~(Xj - Xi)[(V - 1)(Xj + Xi) - 2Cd
v i=1
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*But [v(v - l jx, + G]/v = Ci. Hence,

I~ * [ * * 2G]Bias = - ~(Xi - Xi) (v - 1)(Xi + Xi) - 2(v - I)xj - -
V i= 1 V

I * [ * 2G]= ~~(Xi - Xi) (v - I)(Xi - Xi) - ~

(v - I) ~ A * Z • *
= -- ~(Xi - Xi) , SInce ~ Xi = ~Xi = 0

V i=1

v

= L[Ci + (v - l)Tj - Gf Iv(v - l)(v - 2)z.
i=1

136. Let the yields corresponding to treatments I and 2 in the first block which are
mixed up be denoted by x, and Xz. Their sum is XI + Xz = u. We estimate
XI and Xz by minimizing the error SS subject to the condition XI + Xz = u.
Thus we consider the minimization of

<\> = ~ yZ + xi + x~ - ~ [(BI + u)z + L BI]
V i#1

I [ z z ~ z] (G + u?-- (TI +xd +(Tz+xz) + ~ Ti +---
r i# 1.2 v r

+ 2A(U - XI - xz),

where>. is the Lagrangian Multiplier. Then

a<\> 2
- =2XI--(T,+XI)-2A=OaXI r

a</>= 2 Xz - ~(Tz + xz) - 2>' = o.aXz r

We then obtain the equations

xl(r-I)=TI+rA

xz(r - I) =Tz + rA.

Adding these two equations, we obtain

A = u(r-I) _ T, +Tz.
2r 2 r

Denoting the solutions of XI and Xz by XI and xz, we obtain

A (T I - Tz) U

XI = 2(r-l) +2 '
A (Tz - Td u
Xz = 2(r _ I) + 2'

These provide the estimates of the mixed up yields. To find the bias in the
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treatmentsumof squares,weconsidertheconditionalerrorSS. Undert = O.

Conditional Error SS = :E / + xi + x~ - ~ [(BI + u)2 + t BI] .
v j= 2

The estimatedconditional error SS is

:E/+xi+x~-~[(B'+U)2+ tBI]'
V j=2

Now we shall find the minimum valueof theconditionalerror SS subject to
x, + X2 = u. We minimize

. 2? ? I [ 2 ~ 2]t = :E Y + XI + Xi - ~ (B1 + u) + Lz Bj + 2A(u - XI - X2)

Then,

of
- =2x, -2>'=0ax ,
of

- = 2X2 - 2>' = O.
aX2

Hence, we get XI = X2 = >. . Since XI + X2 = u, we obtain the solutions of
XI and X2as

* *XI = X2 = u/2

and the minimum valueof the conditional error SS is

~ y' + ~i + ~l- H(B, + u)' +~ Bf]
Thus, the bias in the treatmentsum of squares is given by

B· (A 2 *2) + (A2 *2)ias = XI - XI X2 - X2

(T, - T2) [(TI - T2) ] (T2 - TI) [(T2 - T)) ]
= +u + +u

2(r-l) 2(r-l) 2(r-l) 2(r-l)

= (T, - T2) [(TI - T2)]
2(r - I) (r - I)

(T1 - T2)2

2(r - 1)2 .

Now we shall find the loss in efficiency. Clearly,

[
TI -T2 u] ra2

var(xl) = var + - = ---
2(r-l) 2 2(r-l)

[
T? - T1 u] ra2

var(x2) = var - + - = ---
2(r-l) 2 2(r-l)

A A (r - 2)a 2

coy (XI , X2) = ~-­
2(r - I)
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The differenttypes of elementary treatmentcontrastsare

(i) t) - tz, tz - t)

(ii) t) - te, te - tj , e= 3,4, , v
(iii) tz - te , te - tz, e= 3,4, , v
(iv) tj - tj, tj - tj, i ::I j = 3,4, , v

One can easily verify that

(i) var (t) - iz) = var(tz - tl) = 2a 2/(r - I)

~ ~ a ~ 2a
Z

[ I]var (tl - te) = var\te - tl) = - 1+---
r 4(r - 1)

~ ~ a ~ 2a
Z

[ I]var (tz - te) = var\te - tz) = - I +---
r 4(r-l)

(iv) var (tj - tj) = var(tj - tj) = 2a Z/r.

Hence, the average variance V of the estimatesof all elementary treatment
contrasts is given by

V = _2a_
z

[_2_r_ + 4(v _ 2) {I + I } + (v - 2)(v - 3)/v(v - 1)]
r r-I 4(r-l)

= _2;_z [I + -(v---I;-(r---t-)l
Thereforethe efficiency of the RBO with mixedup yields relative to that of
the RBO withoutmixed up yields is

[
I ]-1

1+ (v-I)(r-I)

And the loss in efficiency is [I + (v - I)(r - I)r l
.

137. (a) Here, p =2, n =5 and

X'X = [~ ~l
(X'X)- I = ~ [5 -I]

24 I 5 '

and

tr (X'X)-I = 10/24.

Hence, efficiency of this weighing design is

p/n tr(X'X)-1 = 24/25.

(b) Here p =4, n =4 and

X'X - [~ ; ; ;] - 4 + 2E-2232- 44

2 2 2 3

(X'X)-I = 14 - (2/9)E44
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and

tr (X'X)-I = 4 - 8/9 = 28/9 .

Hence, efficiency of this design is

pin tr(X'X)-1 = 9/28

138. Here

X'X = (N - 1)lp + E pp.

Hence,

(X'X)- I - _1_1- I E
- N - I (N - I)(N - I + p) pp-

Therefore, tr (X'X)- I = peN - 2 + p)/(N - I )(N - I + p).
Hence, the efficiency of this weighing design is

In tr(X'X)- 1= (N - I)(N - I + p).
P N(N - 2 + p)
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139. (i) Here no. of objects to be weighed is equal to p and the no. of
weighings is equal to N - I + r. Hence, the efficiency of this
design is

p/(N - I + r) tr (X'X)-I .

Now,

X'X = (N - I)Ip + rEpp .

Hence,

X'X)-I - _1_1 _ r E
( - N - I p (N - I)(N - 1+ pr) pp-

Therefore, tr (X'X)-I = peN - I - r + pr)/(N - I)(N - I + pr),
and

. (N - I )(N - I + pr)
efficiency = -~-....;...,;-_---::....-.-

(N - I + r)(N - I - r + pr)

(ii) For this design, the number of objects to be weighed is p and the
numberof weighings is equal to (N - I + r) . Hence, theefficiency
of this design is

p/(N - I + r) tr (X'X)- I.

We now find tr (X'X)-I . Clearly,

X'X = [ rE11 OI(P-I)] + (N - nr,
O(p- I) I O(p_I)(p_l)

= diag[(N - I + r), (N - I), .. . , (N - I)].
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Hence,

(X/X)-I = diag[(N - I + r)-I, (N _I)-I, . . . , (N - I)-I]

and

tr (X /X)-I = p(N - I) + r(p - I).
(N - I)(N - I +r)

Therefore, the efficiency of the design is

p(N - 1)/[p(N - I) + r(p - I)] .

140. We knowthat

w= (X /X)-IX/y.

Denote the ith column of X by Xj, i = 1,2, . . . , b and the jth collumn of
X(X/X) -I by Cj, j = I, 2, . . . , p. Hence, we see that

Wj =c;y,i= 1,2, ... ,p

and

( A) 2 Ivar Wi = (]' CiCj.

Now, since (X/X)-l (XIX) = Ip, we haveC;Xj = ~j, where~j = I if i = j and
~j=Oifi#j.

By Schwarzinequality we have

(x;Xj)(c;Cj) ::: (X;Ci)2 = 1

I I 1
Hence,CjCj 2: -1- 2: -.

xjxo n
Since Xj is a column vectorconsisting of +1, -lor 0, we have

var(wj) ::: (]'2In, for i = 1,2, ... , p.

141. Suppose the variances of all the estimatedweights are minimum, i.e.

var(wj) = (]'2/n, i = 1,2 , . . . , p.

Defining Xj, i = 1,2, . . . , p and Cj,j = 1,2, .. . p as in Exercise 140, we see
that

By Schwarz inequality, we get

(x;Xj)(c;Cj) ::: (X;Ci)2 = I,

since CjXj = ~j, the Kronecker delta, in viewof (X/X)-I(X/X) = Ip. Hence

C;Cj 2: I/x;xj ::: lin

since Xj is a vectorof +I, -lor O. Thus,

var(wj) ::: (]'2In .
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Further equality occurs if and only if Cj = kx, for some constant k, and
X;Xj = n for i = 1,2, . .. , n. Since C;Xj = 0 for i "# j we immediately get
X;Xj = O. Hence

x'I
x'2

X'X= [x. , X2 , . .. , Xp]

X'
P

X;XI 0 0
0 X;X2 0

=

= nIp

o o

I
Conversely, ifX'X = nIp, then (X'X)-l = -Ip, and hence

n

var(Wj ) = a2In, i = 1,2, ... , p.

This proves the sufficiency.

142. In a spring-balance design, the weighing matrix X = [X ij] is defined as:

Xij = I, if the jth object is weighed in the ith weighing

= 0, if the jth object is not weighed in the ith weighing

Let there be v objects and suppose k objects are weighed in each weighing.
The total number of weighings is b and each object is weighed r times.
Hence, by identifying the object with treatments and weighings by objects,
we see that X = N', where N is the incidence matrix of a BIBD(v, b. r, k, A) .
Hence, X'X = NN' = (r - A)Iv+ AEvv and

(X'X)-l = (1/(r - A»Iv - (A/(r - A)rk)Evv.

The variance-covariance matrix of the estimated weights is given by

A 2[ I A]var(w) = a --Iv - Evv .
(r - A) (r - A)rk

Defining the efficiency of a weighing design as pin tr(X'X)-I , where p =
no. of objects to be weighed, n = no. of weighings, we see that the efficiency
of the above design is k2(r - A)/(rk - A). Hence, the efficiency is maximum
if (rk - A)/k2(r - A) is minimum.

143. Consider a Hadamard matrix Hn+1 of order (n + I) which is assumed to
exist. A Hadamard matrix remains as Hadamard matrix if any of its rows
(or columns) are multiplied by - I. Hence without loss of generality we
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can assume Hn+ 1 as the matrix whose first row and first column contain
the element + I . Now subtract the first row from each of the other rows
and multiply2nd, 3rd, . . ., (n + I )-st rows by -112. Then we shall get the

following matrix. [~ ~::~ ].

The matrix L is easily seen to be the incidence matrix of a SBIBD with
parameters

v = b = n, r = k = (n - 1)/2, A= (n - 3)/4.

Now, clearly

IHn+d = (_I)n . ILI

SinceHn+ 1 has themaximumvalueof IHn+J I, it follows thatL has maximum
value of ILl . Thus, L is the weighing design of the spring-balance type
involving n weighingsof n objects and having maximum efficiency. Now

[

1 I 1
I 1 1 I 1 -1 1

H4 =H2 @ H2 = [I -1] e [I -I] = 1 1 -1
I -I -I

Subtractingthe first row from the other rows, we get the matrix

[

I 1 1 1 ]o -2 0 -2
o 0 -2 -2 .
o -2 - 2 0

Multiplyingthe 2nd, 3rd and 4th rows by -1/2, we get the matrix

[~ ~ t 1J
Hence the design

[~ : i]
is the required weighing design.

144 We know that the variance-covariance matrix of the BLUEs of the weights
is given by (see Exercise 142)

A 2[ 1 A]var(w)= (J' --Iv - Evv .
(r - A) (r - A)rk

The BLUE of total weight of all objects is given by

W= Elvw.
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var(W) = E1 vvar(w)Evl
2 A

= a E1 v[Iv - -EvvlEvl/(r - A)
rk

= a 2 [v _ ~~2] /(r _ A)

=a 2v(rk - Av)/(r - A)rk

= a 2v/rk.

145. Clearly L, consists of s subscripts 0, I, 2,.. ", s - I. We shall now prove
that each subscriptoccursexactlyonce in each rowand exactlyonce in each
column.

Suppose,if possible,thesamesubscriptoccursmore thanonce, say twice
in the oth row, that is, it occurs in the cells (ex, (3) and (ex, -y), say. Hence

u.u, + ul3 = u.u, + u"Y'

whichgivesul3 = u"y' Thus 13 = -y.Henceeachsubscriptoccursexactlyonce
in each row. Further, suppose the same subscript occurs twice in the same
column, say in the cells (ex, (3) and (-y, (3). Then we get

whichgives

Uj(un - u.) = O.

Since u, 1= 0, it follows that u, = u"Y ' Thus ex = "t- Hence each element
occurs exactly once in each column. Thus, L, i = I, 2, ... , s - I is a Latin
Square. Wenowprovethat L, and Lj, i 1= j = 1.2, ... , s - I are orthogonal
Latin squares.

Let the (x, y)th cell of L, and Lj contain respectively the subscripts m
and n. Hence, when Lj is superimposed upon Lj , we get an ordered pair
(m, n) in the cell (x, y). We have now to prove that the ordered pair (m, n)
occurs exactly once. If possible, suppose the pair (m, n) occurs in another
cell (ex, (3). Then, we get

u.u, + uy = u.u, + ul3

UjUx + uy = UjUn + ul3

Subtractingthe secondequation from the first, we get

(u, - Uj)ux = (u, - Uj)un.

Since i 1= j; Uj 1= Uj, hence Ux = Un, that is x = ex. Then from the firstequa­
tion we get uy = ul3, that is, y = 13. Hence the cell (ex. (3) is the same as the
cell (x, y). Thus, the pair (m, n) occurs exactly once. Hence L, and Lj are
orthogonal.
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Consider the cell (0:, (3) of Li+l , 0: = 1,2, . .. •s - 2. It contains
the subscript of element

+ i+a- I +Ui+,Ua ul3 = x up

Now consider the cell (0:+ I , (3) of L. It contains the subscript of
the element

+ i+a-I +UiUa+1 ul3 = x ul3

Thus, we see that the subscript in the cell (0:, (3) of Lu., is the same
as the subscript in the cell (0:+ I, (3) of L. Thus, we see that the
n th row of Li+I is the same as the (0:+ I)-st row of L. Consider
the cell (s - I , (3) of Lj+I' It contains the subscript of the element

+ i+ s- Z +Uj+1 US-I ul3 = x UI3
i- I += x ul3'

since xs- I = 1.
Now consider the cell (1, (3) of Li. It contains the subscript of the
element

+ i- I +UiUI ul3 = x ul3 '

Thus, we see that the subscript in the cell (s - I, (3) ofLi+1 is equal
to the subscript of the cell (1, (3 ) of L , = 0, I. 2, ... , s - 1.Hence,
the last row of Li+I is the same as the first row of Li .

(ii) Since, the subscript in the cell (0:, (3) of L, is j , we get

Uj = u.u; + ul3 = xi+a
-

Z + x13- I.

Now,consider the cell (0:+ 1. 13 + 1). It will contain the subscript
of the element

UiUa+1 + ul3+l·

Then,

+ i+a- I + 13Uiua+1 ul3+1 = X X

=(xi+a - Z + x13 - I )

=UZUj,

since Uj = xi+a- Z + x13 - I • Clearly

UZUj = Uo.
= Uj+1
= UI

if j =°
if j = I, 2•. . .• s - 2
if j = s - I .

147. (i)

Hence, the results follow.

Side 5. The Oth row is constructed by writing the subscripts 0,
1, 2, 3,4. The first row is constructed by filling its (1, (3) cell
by the subscript of the element UIU, + u13 = I + ul3 ' 13 = 0, 1,
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2,3,4. Now the elements of OF (5) are uo = 0, u) = I, Uz = X,

U3 = xZ
, where x = 2. Therefore, the elementsof OF (5) are given

by Uo = 0, UI = 1, Uz = 2, U3 = 4, U4 = 3. Thus, the subscripts
in the first row of L1 are the subscripts of elements 1 + uo = U),
1+ UI = Uz, 1+ Uz = 1+ 2 = 3 = U4, 1+ U3 = 1+ 4 = 5 = uo,
1+ U4 = 1+ 3 = 4 = U3, thus the first row of L, is

1,2,4,0,3

HenceL) is

° I 2 3 4
1 2 4 ° 3
2 4 3 1 °3 ° I 4 1
4 3 ° 2 °

(ii) Side 7. The elements of OF (7) are Uo = 0, U) = 1,Uz = x, U3 =
xZ

, U4 = x' , Us = x", U6 = xS, wherex = 3. Thus the elementsare
Uo = 0, U) = 1, Uz = 3, U3 = 2, U4 = 6, Us = 4, U6 = 5. The Oth
row of L) is 0, 1, 2, 3, 4, 5, 6. The first row of L) is con­
structed by filling its (1, 13)-th cell by the subscript of
UIUI+U=UI+U. For 13=0,1,2,3,4,5,6, the elements
u, + ul3 are UI + Uo = 1 = U" U) + UI = 2 = U3, U) + Uz =
1 + 3 = us, U, + U3 = 1+ 2 = 3 = Uz, UI + U4 = I + 6 = 7 =
uo, U) + Us = 1+ 4 = U6, U) + U6 = 1+ 5 = 6 = U4. Thus, the
first row of L) is

1, 3, 5, 2, 0, 6, 4,

Hence, we obtain L, as

° 1 2 3 4 5 6
1 3 5 2 0 6 4
2 5 4 6 3 ° 1
3 2 6 5 1 4 °4 ° 3 1 6 2 5
5 6 0 4 2 1 3
6 4 1 0 5 3 2

(iii) Side 8. The elements of OF (8) are Uo = 0, UI = 1, Uz =
x, U3 = xZ

, U4 = x3 = x + 1, Us = x4 = xZ + x, U6 = xS =
xZ + x + 1, U7 = x6 = xZ + I.
The Oth row of L1 is

0,1,2,3,4,5,6,7.

The first rowof L, is constructed by filling its (1, J3)-th cell by the
subscriptof theelementu, + ul3' Nowfor 13 = 0, 1,2,3,4,5,6,7,
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the elements UI + uJl are

U, + Uo = UI , UI + UI = UO, UI + U2 = I + x = U4,

UI + u 3 = I + x2 = U7, UI + U4 = 1 + x + 1 = x = U2,

U, + U5 = I + x2 + X = U6,

UI + u 6 = 1 + x2 + X + I = x2 + X = u5 ,

UI + U7 = 1+ x2 + I = x2 = u 3.

Hence the 1st row ofL , is

1,0,4,7,2,6,5,3.

Thus, L1 is

0 I 2 3 4 5 6 7
I 0 4 7 2 6 5 3
2 4 0 5 I 3 7 6
3 7 5 0 6 2 4 I
4 2 I 6 0 7 3 5
5 6 3 2 7 0 I 4
6 5 7 4 3 1 0 2
7 3 6 1 5 4 2 0

(iv) Side 9. The element of OF (32) are

Uo = 0, UI = I, U2 = X, U3 = x2 = 2x + 1,

U4 = x3 = 2x + 2, U5 = x4 = 2, U6 = x5 = 2x,

U7 = x6 = X + 2, Us = X
7 = X + 1.

The Oth row of L1 is

o I 2 345 678

The first row of L I is constructed by filling its 0, J3)th
cell by the subscript of the element UI + uJl . Now for J3 =
0, 1,2,3,4,5,6,7,8, the elements u, + uJl are

U, + Uo = U" U, + UI = 2 = U5, UI + U2 = I + x = Us,

UI + U3 = I + 2x + 1 = U4, UI + U4 = 1 + 2x + 2 = U6,

UI + U5 = 1+2 = UO, UI + U6 = 1+ 2x = U3

UI + U7 = I + x + 2 = U2, UI + Us = I + 2x + 1 = U7·

Hence, the first row of L, is

1 584 603 2 7
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Thus, L1 is

0 I 2 3 4 5 6 7 8
I 5 8 4 6 0 3 2 7
2 8 6 I 5 7 0 4 3
3 4 I 7 2 6 8 0 5
4 6 5 2 8 3 7 I 0
5 0 7 6 3 I 4 8 2
6 3 0 8 7 4 2 5 I
7 2 4 0 I 8 5 3 6
8 7 3 5 0 2 I 6 4

Side 16. The elements of GF (24 ) are

UO=O,UI = I ,U2=X,U3=X
2
,U4=X

3
,

4 I 5 2 3 2
U5 = X = X + , U6 = X = X + X, U7 = X + X ,

Us = X
3 + X + I, U9 = X

2 + I,UIO = X
3 + X,

UII = X
2 + X + I,UI2 = X

3 + X
2 + X,

UI3 = X
3 + X

2 + X + I,UI4 = X
3 + X

2 + I,
UI5 = X

3 + I.

The Oth row of L1 is

o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16

The first row of L, is constructed by filling its (I , 13)-th cell by the
subscr ipt of the element UI + U. Now for 13 = 0, 1,2,3,4,5,6, 7,
8,9,10, II, 12, 13, 14, 15, the elements UI + u~ are

UI + Uo = UI , U, + UI = UO, UI + U2 = I + x = U5,

UI + U3 = I + x
2 = U9, UI + U4 = I + x

3
= U15,

UI + U5 = I + x + I = U2, U, + U6 = 1+ x
2 + X = UII ,

UI + U7 = I + x
3 + x

2
= U14, UI + Us = I + x

3 + X + I = UIO

UJ + U9 = 1+x
2 + I = u

3,
UI + UIO = 1+x

3 + X = u s,

UI + UII = 1+ x
2 + X + I = U6,

UI + UI 2 = I + x
3 + x

2 + X = UI3 ,

U, + UI3 = I + x
3 + x

2 + X + I = U12,

UI + UI4 = I + x
3 + x

2 + I = U7,

UI + UI5 = I + x
3 + I = U4.

Hence, the first row of L, is

I 0 5 9 15 2 II 14 10 3 8 6 13 12 7 4



254 CHAPTER 3

and LI is

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 5 9 15 2 11 14 10 3 8 6 13 12 7 4
2 5 0 6 10 1 3 12 15 11 4 9 7 14 13 8
3 9 6 0 7 11 2 4 13 1 12 5 10 8 15 14
4 15 10 7 0 8 12 3 5 14 2 13 6 11 9 1
5 2 1 11 8 0 9 13 4 6 15 3 14 7 12 10
6 11 3 2 12 9 0 10 14 5 7 1 4 15 8 13
7 14 12 4 3 13 10 0 11 15 6 8 2 5 1 9
8 10 15 13 5 4 14 11 0 12 1 7 9 3 6 2
9 3 11 1 14 6 5 15 12 0 13 2 8 10 4 7
10 8 4 12 2 15 7 6 1 13 0 14 3 9 11 5
11 6 9 5 13 3 1 8 7 2 14 0 15 4 10 12
12 13 7 10 6 14 4 2 9 8 3 15 0 1 5 11
13 12 14 8 11 7 15 5 3 10 9 4 1 0 2 6
14 7 13 15 9 12 8 1 6 4 11 10 5 2 0 3
15 4 8 14 1 10 13 9 2 7 5 12 11 6 3 0

(vi) Side 25. The elementsof GF (25) are

Uo = 0, UI = 1, U2 = X. U3 = x2 = 2x + 2.

U4 = X + 4. Us = x + 2, U6 = 4x + 2. U7 = 3,

Us = 3x, U9 = X + 1, UIO = 3x + 2, UII = 3x+ 1.

Ul2 = 2x + 1, UI3 = 4, UI4 = 4x, UlS = 3x+ 3,

UI6 = 4x + 1. UI7 = 4x + 3, UIS = X + 3,

UI9 = 2, U20 = 2x, U21 = 4x + 4. U22 = 2x + 3,

U23 = 2x +4. U24 = 3x + 4

The Oth row of L1 is

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24.

The first row of LI is constructed by filling its (1, (3)-th
element by the subscript of the element UI + U. Now [3 =
0,1,2,3,4.5,6.7,8.9, 10, 11 , 12, 13, 14, 15, 16, 17, 18,19,20,
21, 22. 23. 24. and the elements U1 + U are

UI + Uo = UI, UI + UI = 2 = U19, UI + U2 = 1+ x = U9,

UI + U3 = 1+ 2x + 2 = U22, UI + U4 = 1+ x + 4 = U2.

UI + Us = 1+ x + 2 = UI S. UI + U6 = 1+ 4x + 2 = UI7,

UI + U7 = 1+ 3 = UI3 , UI + Us = 1+ 3x = UIl ,

UI + U9 = 1+ x + 1 = Us , UI + UIO = 1+ 3x + 2 = UIS,

UI + UII = 1+ 3x + 1 = UIO, UI + Ul 2 = 1+ 2x + 1 = U3.

UI + UI 3 = I + 4 = Uo, UI + UI4 = I +4x = U16,
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UI + UI5 = 1 + 3x + 3 = U24, UI + UI6 = I + 4x + I = U6,

UI + UI7 = 1 + 4x + 3 = U21, UI + UIS = I + x + 3 = U4,

UI + UI9 = I + 2 = U7, UI + U20 = I + 2x = U1 2,

UI + U21 = I + 4x + 4 = U14, UI + U22 = I + 2x + 3 = U23

UI + U23 = I + 2x + 4 = U20, UI + UN = I + 3x + 4 = us.

Hence the first row of L I is

I 91 9 22 2 18 17 13 II 5 15 10 3 0 16 24

6 21 4 7 12 14 23 20 8

and L 1 is

0 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 2 1 22 23 24

I 19 9 22 2 18 17 13 II 5 15 10 3 0 16 24 6 21 4 7 12 14 23 20 8

2 9 20 10 23 3 19 18 14 12 6 16 II 4 0 17 I 7 22 5 8 13 15 24 21

3 22 10 21 II 24 4 20 19 15 13 7 17 12 5 0 18 2 8 23 6 9 14 16 I
4 2 23 II 22 12 I 5 21 20 16 14 8 18 13 6 0 19 3 9 24 7 10 15 17

5 18 3 24 12 23 13 2 6 22 21 17 15 9 19 14 7 0 20 4 10 I 8 II 16

6 17 19 4 I 13 24 14 3 7 23 22 18 16 10 20 15 8 0 21 5 II 2 9 12
7 13 18 20 5 2 14 I 15 4 8 24 23 19 17 II 21 16 9 0 22 6 12 3 10

8 II 14 19 21 6 3 15 2 16 5 9 I 24 20 18 12 22 17 10 0 23 7 13 4

9 5 12 15 20 22 7 4 16 3 17 6 10 2 I 21 19 13 23 18 II 0 24 8 14

10 15 6 13 16 21 23 8 5 17 4 18 7 II 3 2 22 20 14 24 19 12 0 I 9

II 10 16 7 14 17 22 24 9 6 18 5 19 8 12 4 3 23 21 15 I 20 13 0 2

12 3 II 17 8 15 18 23 I 10 7 19 6 20 9 13 5 4 24 22 16 2 21 14 0

13 0 4 12 18 9 16 19 24 2 II 8 20 7 21 10 14 6 5 I 23 17 3 22 15
14 16 0 5 13 19 10 17 20 I 3 12 9 21 8 22 II 15 7 6 2 24 18 4 23
15 24 17 0 6 14 20 II 18 21 2 4 13 10 22 9 23 12 16 8 7 3 I 19 5
16 6 1 18 0 7 15 21 12 19 22 3 5 14 II 23 10 24 13 17 9 8 4 2 20
17 21 7 2 19 0 8 16 22 13 20 23 4 6 15 12 24 II I 14 18 10 9 5 3
18 4 22 8 3 20 0 9 17 23 14 21 24 5 7 16 13 I 12 2 15 19 II 10 6
19 7 5 23 9 4 21 0 10 18 24 15 22 1 6 8 17 14 2 13 3 16 20 12 II
20 12 8 6 24 10 5 22 0 II 19 I 16 23 2 7 9 18 15 3 14 4 17 21 13
21 14 13 9 7 I II 6 23 o 12 20 2 17 24 3 8 10 19 16 4 15 5 18 22
22 23 15 14 10 8 2 12 7 24 0 13 21 3 18 I 4 9 II 20 17 5 16 6 19
23 20 24 16 15 I I 9 3 13 8 I 0 14 22 4 19 2 5 10 12 21 18 6 17 7
24 8 21 I 17 16 12 10 4 14 9 2 0 15 23 5 20 3 6 II 13 22 19 7 18

14 8 . D e no te the elements of GF(p~j ) , i = I, 2, ... , m by

o I 2 e, ei2giO = ,gil = ,gi2 = <Xi, gi3 = ex; , . .. , giPi = <XiPi - ,

where <Xi is a primitive root of GF(p~') . Consider the set of s = p~i p~2 . . . pem

elements

w = gil l ' g 21 2' · · · ' gml m'

where gil i E GF(p~i), i = I , 2, . .. , m. We donate the set of elements by {w} .

D e fine the addition and multiplication among the elements of this set Iwl
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as follows. If WI = (gli" gZi2"'" gmirn) and Wz = (glj" gZj2" ' " gmjrn) are
two elementsof the set (w}, then

WI + Wz = (gli, + glj" gZb + gZh, . . . , gmirn + gmjrn)

WI Wz = (gli, . glj" gZi2. gZj2' . .. , gmirn . gmjrn)

The set {w} is not a field, since for instance, the element (0, I, I, . . . , I) has
no multiplicative inverse. All elements of {w} that have no°among their
coordinates possess inverses.

Now, we number the elementsof the set (w} such that the first n(s) + 1
elementsof the set (w} are

W= (glj, gZj , ... , gmj), j = 0,1,2, . . . , n(s)

while the rest of the elements of (w} are numbered arbitrarily. Note that
the elements WI, Wz, wn(s) posses inverses and so do their differences
w, - Wj, i =j:. j = 1,2, , n(s).

We construct the jth Latin square Lj,j = 1,2, . . . , n(s) by filling its
(a, 13)th cell by the element

WjW" +wl3,a, 13 =0, 1, . . . ,s-l, j=I,2, ... ,n(s).

Wenow prove that (i) Lj, j = 1,2, . . . , n(s) is a Latin squareand (ii) L, and
Lj are orthogonal, i =j:. j = 1,2, ... , n(s).

To prove that Lj is a Latin square, suppose that the same elementoccurs
twice in thejth row, say in the cells (a, 13) and (a. 13'). Then we have

whichshowsthat wl3 = wl3" Henceeachelementoccursexactlyonceineach
row. Supposenowthat the sameelementoccurs twice in thejth column, say
in the cells (a, 13) and (a', 13). Then we get

WjW" + wl3 = WjW,,' + wl3 '

Then we get WjW" = WjW,," Since Wj possesses an inverse, we get
w" = W,,' . Thus each element occurs exactly once in each column. Thus
Lj,j = 1,2, .. . , n(s) is a Latin Square.

ConsidernowL,andLj, i =j:. j = 1,2, . .. , n(s).Supposethesameordered
pairofelementsobtainedbysuperimposing LjonL,occursin twocells(a, 13)
and ('Y, 8). Then we get

WjW" + wl3 = Wjw'Y + WI>

WjW" + wl3 = Wjw'Y + WI>,

whichon subtaction gives
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Since w, - Wj, i :j:. j = 1,2, . . . , n(s), possesses an inverse, we get
Wo. = w-y . And hence from the first equation we get w~ = ws, Thus, when
Lj is superimposed on L, then each ordered pair of elements occurs only
once. Hence L, and Lj are orthogonal.

149. Here s = 22 .31, and n(s) = min(22, 31) - I = 2. The elements ofGF (22)

and GF (3) are as follows:

GF(22) : glO = 0, gil = I , gl2 = ai , gl3 = af = al + I

G(3) : g20 = 0, g21 = I, g22 = 2.

Consider the set of elements

where gi ll E GF(22) and g21 l E GF(3). The set [w] contains 12 elements.
We number the first n(s)+ I = 3 elements of the set {wI as

Wo = (0,0), WI = (I, I), W2 = (oq , 2),

while the other elements of the set [w] are numbered arbitrarilyas

W3 = (0, I), W4 = (0,2), Ws = (1,0),

W6 = (1 ,2), W7 = (cq , 0), Ws = (oq, I) ,

W9 = (a, + 1,0), WIO = (al + I, I),

WI! = (al + 1,2).

The Latin square LI is constructed by filling its (a , l3)th cell by the ele-
ment WI Wo. + w~ = Wo. + w~, a , 13 = 0, 1,2, . . . , II. Thus L I is obtained
as

0 1 2 3 4 5 6 7 8 9 10 11
1 4 9 6 5 3 0 10 11 8 2 7
2 9 3 7 8 11 10 4 0 6 5 1
3 6 7 4 0 1 5 8 2 10 11 9
4 5 8 0 3 6 I 2 7 11 9 10
5 3 II I 6 0 4 9 10 7 8 2
6 0 10 5 I 4 3 11 9 2 7 8
7 10 4 8 2 9 II 0 3 5 I 6
8 II 0 2 7 10 9 3 4 I 6 5
9 8 6 10 II 7 2 5 I 0 3 4
10 2 5 II 9 8 7 I 6 3 4 0
II 7 I 9 10 2 8 6 5 4 0 3

The second Latin square L2 is constructed by filling its (a, l3)th cell by the
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element wzwo. + w~. Thus Lz is obtained as

0 I 2 3 4 5 6 7 8 9 10 II
2 9 3 7 8 II 10 4 0 6 5 I
10 2 5 II 9 8 7 I 6 3 4 0
4 5 8 0 3 6 I 2 7 II 9 10
3 6 7 4 0 1 5 8 2 10 II 9
7 10 4 8 2 9 II 0 3 5 I 6
8 II 0 2 7 10 9 3 4 I 6 5
9 8 6 10 II 7 2 5 I 0 3 4
II 7 I 9 10 2 8 6 5 4 0 3
5 3 II I 6 0 4 9 10 7 8 2
6 0 10 5 1 4 3 II 9 2 7 8
I 4 9 6 5 3 0 10 II 8 2 7

150. Consider the finite projective geometry PO (rn,s). Identify the points of
PO(m,s) with the treatments and the g-flats (l ::: g ::: m - I) of PO(m,s)
with the blocks.

Since there are (sm+1 - I)/(s - I) points in PO (m, s), we see that the
numberof treatments is given by

v = (sm+l - I)/(s - I).

Now, the number of g-flats of PO (m, s) is <I> (rn, g, s). Hence, the number
of blocks is given by

(Sm+1 -l)(sm - 1) (sm-g+1 - I)
b = <I> (m, g, s) = (sg+1 _ I)(sg _ I) (s _ I) .

The number of points in a g-flatof PO (m, s) is (sg+1 - I)/(s - I). Hence,
the numberof treatments in a block will be given by

k = (sg+1 - I)/(s - I).

In thePO (m,s), agivenpoint(i.e. ao-flat)iscontainedin <I> (m - I, g - I, s)
g-flats. Hence, a given treatmentwill occur in

(s'" -I)(sm-I -I) (sm-g+1 - I)
r = <I> (m - I, g - I, s) = (sg _ I)(sg-I _ I) (s - I)

blocks.Also in PO (m, s), a givenpair of points (i.e., a I-flat) is containedin
<I> (m - 2, g - 2, s) g-flats. Hence, a given pair of treatments will occur in

>.. = <I> (m - 2, g - 2, s)
(sm-l _I)(sm- z _1) ... (sm-g+1 - I)

= (sg-I - I)(sg- Z- I) .. . (s - I)

blocks.
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151. We consider a PG (2, 3). The points of PG (2, 3) are

259

PI = (0 0 I),
P4 = (0 I 2),
P7 = (1 0 2),
plO= (11 2),
PI3 = (1 22).

P2 = (0 I 0),
Ps = (1 0 0),
Ps = (I 10),
PII = (I 2 0),

P3 = (0 I I),
P6 = (1 0 I ),
P9 = (1 I I ),
PI2 = (I 2 I),

Note that we have written the points so that the first non-zero coordinate
is always I. We take the points as treatments and I-flats as blocks. The 1­
flat is determined by a pair of points. The l-flat passing through the points
PI and P2 consists of points PI + AP2, where A is 0, I or 2, in addition to
the points PI and P2. Thus, the I-flat through PI and P2 consists of points
PI , P2, PI + P2 = (0 I I) = P3 and PI + 2P2 = (0 2 I) = (0 I 2) = P4. The
I-flats through PI and P3 , PI and P4, P2 and P3 , P2 and P4, and P3 and P4
are all the same. We now take the pair of points PI and Ps. The I-flat
through PI and Ps consists of points PI, Ps, PI + Ps = (I 0 I) = P6 and
PI + 2ps = (2 0 I) = (102) = P7 . The I-flats through PI and Ps, PI and
P6, PI and P7 , Ps and P6, Ps and P7, and P6 and P7 are all the same. In this
way we go on determining the I-flats. The 13 I-flats so determined are
obtained as

I PI P2 P3 P4 8 P3 Ps P9 PI3
2 PI Ps P6 P7 9 P3 P6 PIO PII
3 PI Ps P9 PIO 10 P3 P9 Ps PI2
4 PI PII PI2 PI3 11 P4 Ps PIO PI2
5 P2 Ps ps PII 12 P4 P6 Ps PI3
6 P2 P6 P9 PI2 13 P4 P7 P9 P"
7 P2 P7 PIO PI3

152. Consider the finite Euclidean Geometry EG (rn,s). Identify the points of this
geometry with treatments and the g-flats ( I :s g :s m - 1) with blocks. Now,
there are s'" points in EG (m,s). Hence, the number of treatments is given by

v = sm .

The number of g-flats in EG (m,s) is equal to 4> (m, g, s) - 4> (m - I, g, s).
Hence the number of blocks is given by

b = 4> (m, g, s) - 4> (m - I , g, s)

sm-g(sm_ I)(sm-I - I) (sm-g+I - I)

(sg - I)(sg-I - I) (s - I)

The number of points on a g-flat of EG (m, s) is sg. Hence, the number of
treatments in a block is given by k = sg. Further in EG (m, s), the number of
g-flats containing a given o-flat (i.e. a point) is 4> (m - I, g - I, s). Hence,
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the numberof blockscontaining a given treatmentis givenby

(sm - I)(sm-I - I) (sm-g+1 - I)
r=<!>(m-I ,g-I ,s)= (sg-I)(sg-I-I) (s-I) .

FinallyinEG(m,s), thenumberofg-flatscontainingagiven l-flat (i.e.a pair
of points) is <!> (m - 2, g - 2, s). Hence, the numberof blockscontaininga
given pair of treatments is given by

(sm-l _1)(sm-2 -1) .. . (sm-g+1 -I)
A = "'(m - 2 g - 2 s) = ~-~~----,,......;-_.:.....-_-~

't' " (sg-I - 1)(sg-2 - I) ... (s - I) .

*153. Clearly the incidence matrixof newdesign is N = EYb - N, whereN is the
incidence matrix of the given BIBD. Further, it is easy to see that the new
design has v treatments, and b blocks and each block of the new design
containsv - k treatments. Thus for the newdesign, its parameters are given
by

* * *v = v, b = b, k = v - k.

Now

* *N N' = (EYb - N)(Evb - N)'

= bEvy - 2rEvv + NN'

= (b - 2r)Evv + [(r - A)Iy + AEy y ]

= (r - A)Iy + (b - 2r + A)Ey y

* * *= (r - A)Iy + AEvv ,

* * *where A= b - 2r + Aand r = b - r. Thus, we see that N is the incidence
matrixof a BIBD with parameters

* * * * *v = v, b = b, r = b - r, k = v - k and A= b - 2r+ A.

154. Let the blocks of D be denoted by BI, B2, .. . ,Bb. Without any loss of
generality, assume that D, is obtained by omitting the block BI and all
its treatments from the B2, ••• , Bb. Clearly, for the design, D1, we have
VI = V- k, b, = b - I. SinceD is a SBIBD, the numberof commontreat­
mentsbetween BI and Br, i = 2,3, ... , b is A. Hence,each blockof D, will
contain k - A treatments. Thus, k, = k - A. Consider a treatment which
does not belong to the block BI. It occurs exactly in r blocks of the set
B2, ••• , Bb of D. Hence, it will also occur in exactly r blocks of D1, and
rl = r. Further, consider a pair of treatments which do not belong to the
block BI. This pair of treatments will occur together in exactly Ablocksof
the set B2 , B3 , . . . , Bb. Hence this pair of treatments will occur together in
exactly Ablocks of D1• Thus, AI = A. Hence DI is BIBD with parameters
VI = V- k, b, = b - I, rl = r, k l = k - A, AI = A.
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155. Let theblocksofD bedenotedbyBI , B2, . . . , Bb. Withoutlossofgenerality,
assume that B) is omitted and that its treatments are only retained in the

* * *blocks B2, B3, . . . . Bj ; These new blocks, are denoted by B2' B3 ' . . . , Bb
and they form the design D2. Clearly, the number of treatments in D2 is
V2 = k and the numberof blocks in D2 is b2 = b - I. Since D is a SBIBD,
thereare h treatments commonbetween BI and Bi, i = 2, 3, . . . , b and these

*are retained in Bi, i = 2, 3, . . . , b. Thus each block of D2contains k2 = h
treatments. Each treatment of B) occurs in exactly r - I blocks of the
set B2, B3, . . . . Bj, Hence each treatment in D2 occurs exactly in r - I
blocks of D2. Thus we get r2 = r = I. Further, each pair of the treatments
of B1 occurs together in exactly h - I blocks of the set B2, B3, ... , Bb.
Hence each pair of treatments in D2 will occur together in exactly h - I
blocks in D2. Thus, h2 = h - I. Hence, D2 is a BIBD with parameters
V2 = k, b2 = b - I, r2 = r - I, k2 = h, },,2 = h - I.

156. (i) We construct a complete set of (s - I) mutally orthogonal Latin
Squaresof side s. Denote these Latin squaresby L1, L2, ... , Ls- 1'

The v = s2 treatments are arranged in a s x s square and call this
square as L. Take rows and columns of L as blocks. We get thus
2s blocks. The blocks obtained from rows and columns thus form
two replications.

Now take the Latin square L , i = I, 2, .. . , s - I and super­
impose on L, and form blocks by taking treatments which cor­
respond to the same letters (numbers) of L. Since L, contains s
letters (numbers), we get s blocks. Thus from each Latin square,
we get s blocks and they form one replication. Hence we get in all
2s + s(s - I) = s2+ s blocks. Clearlyeach block hass treatments.
Also r = 2 + s - I = s + I. Considerany pair of treatments hand
13. Then one of the following situationsoccurs:

(i) Ct and 13 occur in the same row of L,
(ii) Ct and 13 occur indifferentrowsofL butnot in thesamecolumn

ofL, or
(iii) Ct and 13 occur in different rows of L and in the same column

ofL.

Consider the situation (i). Here, Ct and 13 occur togetheronly in
one block they cannot occur together in blocks obtained from the
columnsofL. Alsosincethesetwo treatments cannotcorrespondto
the same letter when L1, L2, .. . , Ls- 1, they cannot occur together
in blocks obtained when L" L2, ... , LS-I are superimposed on L.
Thus Ct and 13 occur togetheronly in one block, Hence h = I.

Consider the situation (ii). Clearly Ct and 13 cannot occur to­
gether in blocks obtained from rows and columns of L. Since,
L1, L2, . . . , Ls- 1 are mutally orthogonal Latin squares, Ct and 13
willcorrespondto thesame letterof only one LatinSquare,and the
Ct and 13 will occur togetheronly in one block. Hence, h = 1.
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Cons ider the situation (iii). Since a and 13 occur in the same
column, they occur together in exactly one block from among
blocks obtained from columns of L and cannot occur together
in blocks obtained from rows of L. Since a and 13 occur in
the same column, they cannot correspond to the same letter,
when LI, L2, . .. , Ls- I are superimposed on L. Hence a and 13
cannot occur together in blocks obtained from superimposing
LI, L2, . .. ,Ls- I on L. Thus a and 13 occur together in exactly one
block, and therefore A= 1. Thus we get a BIBD with parameters
v = S2, b = S2 + s, r = s + I, k = s, A= 1.

(ii) Out of S2 + s + 1 treatments, we take S2 treatments and arrange
them in a s x s square and construct s2 + 2 blocks as in (i). To
the blocks of each replication, add one treatment from the re­
maining s + I treatments. The remaining s + 1 treatments are
also taken to form a block. Thus, we get a BIBD with parameters
v = b = S2 + s + 1, r = k = s + I and A= 1.

Alternatively we can use EG (2, s) to construct the BIBD
v = S2, b = S2 + s, r = s + 1, k = s, A= 1 and PG (2, s) to con­
struct the BIBD v = b = S2 + s + I , r = k = s + 1, A= 1. See
Exercises 152 and 150 respectively.

157. Let M be a module consisting ofresidues mod (2s + I). Clearly the number of
residues mod (2s + I) is 2s + I .To each element ofM, associate 3 treatments.
Thus, the total number of treatments is v = 3(2s + I). Now consider the
following set of 3s + I blocks.

first s blocks
{II , (2S)I, 02} , {21, (2s - 1)1, 02},"., {Sl , (s + 1)1, 02}

second s blocks
{1 2, (2sh, 03}, {22, (2s - Ih, 03}, · .. ., {S2, (s + Ih, 03}

third s blocks
{l3, (2sh, Or}, {23, (2s - Ih, Od,· .. ·, {S3, (s + Ih, 0d

last block

The pure differences will arise from the first two treatments in the first 3s
blocks . Consider the pure differences of type {I, I}, which will arise from
the first s blocks . There will be 2s such differences which are as follows.

1 - 2s = 2, 2 - (2s - I) = 4, 3 - (2s - 2) = 6

, .. . , s - (s + I) = 2s, 2s - 1, 2s - 3,

2s - 5, .. . , s + 1 - s = 1.

Thus, we see that each non-zero element of M occurs exactly h = 1 time
among the pure differences of the type [I , I] . The pure differences of the
types [2, 2] and [3, 3] will respectively arise from the second s and third s
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blocks, and we can as above verify that each non-zero element of M will
occur exactlyh = I time amongthe pure differences of the types [2, 2] and
[3,3] .

Wenowconsiderthe mixeddifferences of the type[1,2] . These willarise
from the treatments of the first s blocksand the last block.These are

I - 0 = 1, 2 - 0 = 2, ... , s - 0 = s,

2s - 0 = 2s, 2s - I - 0 = 2s - 1, . .. , s + I - 0 = s + 1,

and 0 - 0 = O.

Thus, we see that each element of M occurs exactly h = I times among
the mixeddifferences of the type [I , 2]. The mixed differences of the type
[2, 1] will arise from the treatments of the first s blocks and the last block
and it can be easilyverified thateach elementof M willoccurexactlyh = I
times amongthe mixeddifferences of the type [2, I}.

The mixeddifferences of the types [I, 3] and [3, I] will arise from the
treatments from the thirds blocksand the last block. The mixeddifferences
of the type [2, 3] and [3, 2] will arise from the treatments of the second s
blocksand the lastblock. Wecaneasilyverify thateachelementofM occurs
exactly h = I time among the mixeddifferences of the types [1, 3], [3, I],
[2, 3] and [3, 2].

Thus, it follows that the differences arising from the above3s + I blocks
aresymmetrically repeated, eachoccuringh = I time.Furtheronecaneasily
verify that of the v = 6s + 3 treatments of the above3s + I blocks, exactly
r = 2s + I belong to each class. Hence, by the first fundamental theorem
of symmetric differences of Bose (see Exercise 34) the blocks obtained by
addingtheelementsofM insuccession to the treatments of theabove3s + I
blockswill form a BIBD with parameters

v = 6s + 3, b = (3s + I)(2s+ I), r = 2 s + 1, k = 3, h = I.

158. Let elements of GF(s), where s = 6t + I, represent the 6t + I treatments.
Let x be a primitive elementof GF(s).Takethe initial set of t blocksas

Sincex isa primitive elementofGF(s), wehavex6t = I and hencex3t = -I .
Sinceone treatment is associatewitheach elementof GF(s), we see that all
differences among them are pure differences. Each block of the above set
of t blocks will give 6 differences which are non-null elements of GF(s).
The t blocks willgive 6t pure differences, which will be all the non-null
elements of GF(s). Thus, each non-null element of GF(s) will occur ex­
actly h = I time among the pure differences that will arise from the above
t blocks. and hence they are symmetrically repeated. Further r = 3t treat­
mentsof the t blocks belong the class of 6t + I treatments. Thus we apply
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thefirstfundamental theoremof symmetric differences. Hencebyaddingel­
ementsof GF(s) in succession to the treatmentsof the abovetblocks, we get
t (6t + I) blocks which form a BIBD with parameters

v = 6t + 1, b = t(6t+ I), r = 3t, k = 3, A= 1.

159. Consider the elements of GF(s) and associate one treatment with
each element of GF(s). The elements of GF(s) are denoted by
0, xO = 1, X, x2 , . . . , x4t+2, wherex isa primitiveelementofGF(s). Consider
the following blockas the initial block:

B = [xo, x2, x", .. . , x4t].

Thedifferences arisingfromBareallpuredifferences. Bcontainsk = 2t + 1
elementsand hencefrom b, we shall get k (k - 1) = 2t(2t+ 1)differences.
We can arrange these differences in t sets of2(t + 1)differences each as

± (x2i _ x'') , ± (x2i+2 _ x2), .. . , ± (x4t+2i - x4), i = 1,2, ... , 1.

Now, let x2i - Xo = xPi, then the above differences become

xPi , XPi+2, , XPi+4t, XPi+2t+', XPi+2t+3 , .. . , xPi+6t+1 ,

i = 1,2, , t

since x2t+1 = -1. The differences in each set are the 4t + 2 non-null ele­
ments. Thus, each non-null element of GF (s) occurs exactly A = t times
amongthedifferences of the blockB and henceare symmetrically repeated.
Henceby addingelementsofGF(s) in succession to the treatments ofB, we
get 4t + 3 blocks whichform a BIBD with parameters

v = b = 4t + 3, r = k = 2t + I , A= 1.

160. Consider GF(s), where s = 4t + 1. Associate one treatment with each ele­
ment of GF(s). Let x be a primitive elementof GF(s).Takethe initialset of
2 blocksas

B1 = [xo, x2, x", . .. , X4t-2]

B2 = [x, x3, x5
, • • • , X4t- I

] .

Each block contains k = 2t treatments. The differences arising from BI

and B2 are puredifferences and their numberis 2k(k - 1) = 4t(2t - 1). The
2t(2 - 1) differences arisingfromB, are arrangedin (2t - 1)setsof2 teach
as under

± (x2i _ XO ) , ± (x2i+2 _ x2), . .. , ± (x2i+4t-2 _ x4t-2),

i = 1, 2, . .. , 2t - I.

The 2t(2t - I) differences arising from B2 are arranged in (2t - I) sets of
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2t each as

± (x2i+1 _ x), ± (x2i+3 _ x'), . . . , ± (x2i+4t-l _ X4t- I) ,

i = 1,2 , . .. ,2t-l.

265

Since x" = I, we have x2t = -I. Takex2i - x" = Pi . Hence the above dif­
ferences can be writtenas

xPi, XPi+2, . . . , XPi+4t-2

XPi+2t , xPi+2t+2, . . . , Xp,+6t-2

XPi+l, XPi+3, . . . , XPi+4t-1

xPi+2t+l, xp,+2t-3, . . . , xp,+6t- l, i = 1,2, .. . , 2t - I.

Thus, we see that the differencesin each set i are all the 4t non-nullelements
of GF(s). Hence, each non-null element of GS(s) occurs A= 2t - I times
among the differences obtained from B I and B2 and hence the differences
are symmetrically repeated. Further r = number of treatments in Bland
B2 = 41. Therefore the first fundamental theorem of symmetric differences
of Bose can be applied. Hence by adding the elements of GF(s) to the
treatmentsof BI and B2,we get 2(4t + I) blocks which form a BIBD, with
parameters

v=4t+l, b=2(4t+I), r=4t, k=2t, A=2t-1.

161. ConsidertheelementsofGF(s), wheres = 4t + I. ToeachelementofGF(s),
associate 3 treatments, thus we get 3s = 12t + 3 finite treatments. We
also introduce one additional infinite treatmentdenoted by 00. Thus we get
v = 12t+ 4 treatments.We take the following (3t + I) blocks as the initial
blocks.

[X2i X2t+2i X2i+1 x2t+2i+l]
I ' I '2 ' 2 '

[x2i x2t+2i X2i+1 XI+2i+l ]
2' 2 '3 '3 '

[x~i, x~t+2i, x~i+l , x~t+2i+l], i = 0, 1,2, .. . , t - I

x" + 1
wherea is chosenso that-- = x", q == I (mod 2). Each blockcontains

x'" - I
k = 4 treatments. From each class (there are three classes) of finite treat-
ments, 4t finite treatmentsoccur in the first 3t blocks and I finite treatment
occurs in the last block. Hence r = 4t + I, and A= I. We now consider
differencesarising from the finitetreatments.There will be 3 different types
of pure differences, namely [I , I], [2, 2 ] and [3, 3]. There will be 6 types
of mixed differences; [I , 2], [2, I], [I, 3], [3, I], [2, 3] and [3, 2]. One can
verify that in each type of pure differences, there are 4t differences, which
are non-null elements of GF(s) and that in each type of mixed differences
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arising from the first 3t blocks, each non-null element of GF(s) occurs once
and 0 occurs in the mixed differences arising from the last block. Thus, the
differences arising from the finite treatments of the initial blocks are sym­
metrically repeated, each occurring A= 1 time . Hence, the conditions of the
second fundamental theorem of symmetric differences, see Exercise 34, are
satisfied. And by adding the elements ofGF(s) successively to the treatments
of the initial blocks, we get (3t + 1) x (4t + 1) blocks which form a BIBD
with parameters

v = 12t + 4, b = (3t + I)(4t + I), r = 4 t + 1, k = 4, A= 1.

162. (i) Consider EG (2, 3). The pointes of EG (2,3) are

PI = (0 0), P2 = (0 I), P3 = (0 2),
P4 = (1 0), Ps = (1 I), P6 = (I 2),
P7 = (2 0), PS = (2 I) , P9 = (2 2).

We take these 9 points as 9 treatments. The I-flats are taken as
blocks. Hence,

b = no. of blocks

= no. of l-flats in EG(2, 3)

= 3 (32 - 1)/(3 - I) = 12.

Also,

k = no. of points on a l-flat ofEG (2, 3) = 3,

r = no. of l-flats through a given point

= <I> (1, 0, 3) = (32 - 1)/(3 - I) = 4

A= no. of l-flats through a given pair of points

= <I> (0, -1 ,3) = I.

We now construct l-flats, The equation of a l-flat in EG(2,3) is

given by

where ar, a2, a, are elements of GF(s) and (a, a2a3) =I (0 0 0),
(0 0 I) , (0 0 2). Hence there will be 27 - 3 = 24 choices for
(a, az a3), but the choices (a, az a3) and (2al 2a2 2a3) are iden­
tical. Hence the number of different choices are 24/2 = 12. Thus,
there will be 12 l-flats (blocks). These 12 blocks and the points
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(treatments) lying on them are given below:

267

al a2 a,
(I 0 0)
(I 0 I)
(I 0 2)
(I I 0)
(I 2 0)
(I I I)
(I I 2)
(I 2 I)
(I 2 2)
(0 I 0)
(0 I I)
(0 I 2)

Eq. of a l-flat
XI =0
XI = I
XI = 2
XI + X2 = 0
XI + 2X2 = 0
XI + X2 = I
XI + X2 = 2
XI + 2X2 = I
XI + 2X2 = 2
X2 = 0
X2 = I
X2 = 2

Block

PI P2 P3
P4 P5 P6
P7 P8 P9
PI P6 P8
PI P5 P9
P2 P4 P9
P3 P5 P7
P3 P4 P8
P2 P6 P7
PI P4 P7
P2 P5 P8
P, P6 P9

(ii) This is a particular case of orthogonal series of Yates

v = b = s2 + s + I, r = k = s + I, }.. = I

Here s =3. Then write v = S2 = 9 treatmentsin the form of a 3 x 3
square as follows

tl t2 t3
L : t4 t5 t6

t7 t8 t9

The two mutually orthogonal Latin Squares of side 3 are

012
L1 : I 2 0

201

012
L2 : 2 0 I

120

We now form blocks by taking (a) rows of L, (b) columns of
L, treatments corresponding to the same numbers of L I and L2,
when LI and L2 are superimposed on L. Thus, we get blocks as
follows

From rows From cols. From LI From L2
tl t2 t3 tl 4 t7 tl t6 t8 tl t5 t9
t4 t5 t6 t2 t5 t8 t2 t4 t9 t2 t6 t7
t7 ts t9 t, l6 t9 t3 t5 t7 t3 4 lg

We now add treatment tlO to the blocks obtained from rows, treat­
ments til to the blocks obtained from columns, treatment tl2 to the
blocks obtained from LI and treatment tl3 to the blocks obtained
fromL2,and takeone additionalblockconsistingoftlO' til, t12, tl3.
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Hence the 13 blocks are obtai ned as

t, tz t3 tlO t) 4 t7 tll t, 16 ts tlz
t4 t5 l() tlO tz t5 ts tIl tz 4 t9 t)Z

t7 ts t9 tlO t3 16 t9 til t3 t5 t7 tl2
t) t5 t9 tl3
tz l() t7 tl3 tlO til t) Z tl3
t3 4 lg tl3

(iii) We apply the construction of Exercise 159. Consider GF(I}).
Clearly x = 2 is a primitive element of GF(I }). Hence, the ini­
tial block is taken as (x'', xZ, x", x6 , xS) = (1,3,4,5,9). The other
blocks are writen down by adding the elements of GF(I}) in suc­
cession. Thus, the II blocks are obtained as

I 3 4 5 9 7 9 10 0 4
2 4 5 6 10 8 10 0 I 5
3 5 6 7 0 9 0 I 2 6
4 6 7 8 I 10 I 2 3 7
5 7 8 9 2 0 2 3 4 8
6 8 9 10 3

(iv) We apply the construction given in Exercise 157 by taking s = 2.
We take the module M consisting of 2s + I = 5 elements 0, 1,2,
3, 4 and associate 3 treatments with each element of M. Thus, the
15 treatments are

01 I I 21 31 4 1

02 12 22 32 42
03 13 23 33 43

Then following Exercise 157, the initial set of 7 blocks is

(1, ,41, O2), (2" 3" O2), (12,42,03),

(22,32 ,03), (13,43,0,) , (23,33 ,0, ),

(0" O2, 03) ,

We now write down the other blocks by adding the elements 1, 2,
3, 4 to the above blocks in succession. Thus we shall get in all 35
blocks. The writing of 35 blocks is left as an exercise to the reader.

(v) This is constructed by applying Exercise 160 and taking t =3. The
elements of GF(l3) are 0, 1,2,3,4,5,6, 7, 8, 9, 10, 11, 12 and 2
is a primitive root of GF( 13). Hence the initial two blocks are

(1,3,4,9,10, 12)and(2,5,6,7,8, II).

By adding the elements of GF(13) in succession to the above 2
blocks , we get all the 26 blocks .

(vi) This BIBD is constructed by the application of second fundamental
theorem of symmetrical differences. We consider the module M
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consisting of residues mod 7, i.e. of 0, I, 2, 3,4, 5, 6. We associate
one treatment with each element of M. We also take one additional
infinite treatment as 00. Then there are 8 treatments. Consider the
following 2 blocks .

B I = (0, 1,3,6),
•
BI=(OO,O, 1,3).

The differences among finite treatments arising from B, are

0-1 = 6, 0 - 3 = 4, 0 - 6 = I, 1-0 = I ,
I - 3 = 5, I - 6 = 2, 3 - 0 = 3, 3 - I = 2,
3 - 6 = 4, 6 - 0 = 6, 6 - I = 5, 6 - 3 = 3.

•
The differences among finite treatments arising from BI are

0- I = 6, 0 - 3 = 4. 1-0 = I, 1-3 = 5
3 - 0 = 3. 3 - 1 = 2.

Among all the 18 differences among the finite treatments, we see
that each non-zero element ofM occurs exactly A = 3 times. Hence,
the differences among the finite treatments are symmetrically re­
peated, each occurring A = 3 times. Further, out of 7 finite treat-

•
ments, 4 occur in B I and A= 3 occur in B,. Thus the conditions
of the second fundamental theorem of symmetric differences are

•
satisfied by the blocks Bland BI. Hence, by adding the elements

•
of M in auccession to the treatments of BI and BI, we get the 14
blocks, which are as follows

(0, 1,3 ,6)
(1,2.4,0)
(2,3,5 , I)
(3,4,6,2)
(4,5, O.3)
(5,6.1.4)
(6,0,2,5)

(00,0,1 .3)
(00,1.2,4)
(00 ,2,3,5)
(00 ,3 ,4,6)
(00,4.5. 0)
(00,5.6. I)
(00,6,0,2)

(vii) This BIBD is constructed by applying Exercise 161 and taking
t = 2. Consider the GF(9), and let x be a primitive root of GF(9).
Hence x8 = I and x4 = -I. To each element of GF(9), we asso­
ciate 3 treatments and we take one additional infinite treatment as
00. Thus we get 27 finite and I infinite treatment. The elements
are

0, I, x, x2 = (2x + I),

x5 = 2x, x6 = (x + 2),

x3 = (2x + 2),

x7 = (x + I).
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Now

x + I x7

--=-=X
X - I x6 •

Note that the elements x7 = X+ I and x6 = x - I. Thus we take
0: = I . Then the initial set of 3t + I = 7 blocks is

[X2i x2i+4 x2i+1 x2i+5]
) ,) , 2 ' 2

[x2i x2i+4 x2i+1 X2i+5]
2 ' 2 ' 3 ' 3

[x2i x2i+4 x2i+1 x2i+5] I' - °I3' 3 ' I ' I , -"

[00,0, ,02,03] ,

Taking i =°and I , we get in all 7 blocks as

[x?,x~,x~ ,x~] = [1 "2,,x2,(2xh],

[x~ , xi. x~. x~] = [1 2,22, x3. (2xh]'

[x~ , xj , x:' xi] = [1 3.23. XI . (Zx)«],

[xi , x1 , x~ , x~] = [(2x + 1)1. (x + 2)1,(2x + 2h, (x + lh],

[x~, x~, x~ , xj] = [(2x + I h , (x + 1h , (2x + 2)3, (x + 1)3],

[x~ , xg, x~, xi], = [(2x + lh , (x + 2)3, (2x + 2»), (x + l)iJ ,

[00,0" O2, 03] ,

By adding the elements of GF(9) to the treatments of the above
7 blocks successfully, we get 63 blocks.

163. Let D be the given SBIBD with parameters v = b, r = k, and A. The treat­
ments of D are denoted by integers 1.2, .. . , v. We write the blocks as
columns. Let S = set of all v treatments and SI, S2, . . . , S, be the subsets
of S, representing the columns (blocks) of D. Each column contains r = k
different treatments. Takeany h columnsSit' Si2' .. . . Sih, of D . Then, these
h columns contain between them hr = hk treatments. Now every treatment
can occur at most r times in these h columns, hence the number of distinct
elements in these h columns is at least h, that is

ISi, USi2, U Us, I ~ h

for every h and i). i2, , ih, where ITI denotes the cardinality of the set
T. Hence, from Exercise 50, the columns SI, S2, . . . . S, possess a SDR.
This SDR is a permutation of integers I , 2, ... , v. Take this SDR as the
first row. Delete this row from S), S2, ... , Sy. Denote the new columns

* * * *by S), S2, . . . , Sv. Each Sr. i = 1,2, . . . , v will contain r - 1 = k - 1 treat-
* * *ments. Take any h columns Si.. Sip ... , Sih' These h columns contain be-

tween them her - 1) treatments. Now every treatment can occur at most
(r - 1) times in these h column, hence the number of distinct treatmsnts in
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these h columns is at least h, that is

* * *I s, U Si2 U . . . U s, I ::: h
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* * *for every h and i), iz. . . . , ih. Thus. the columns SI. S2.S, possessan SDR.
Take this SDR as the second row. Proceeding in this way. we get r = k
systemsof distinct representatives for the columnsSI. S2, . . .• S, whichare
taken as r = k rows. These r = k rows have a property that each treatment
occurs exactly once in each row. Hence these r = k rows form a Youden
Square.

164. Let D be the given SBIBD (v = b. r = k, A), whose blocks are denoted by
columns SI, S2•. . . , Sv. Clearly SI. S2, . .. , S, are subsets of S. the set of
all treatments. Each Si. i = 1,2, ... , v contains r = k treatments (k < v).
Considertheconstruction of first row, i.e., thefirstSDR.Then,fromExercise
50, the number of ways of constructing the first row is ::: kl. Consider the
construction of the j-th row (j = I. 2, . . . , k). At this stage, each column
contains (k - j + I) treatments, hence using this result, it follows that the
numberof ways ofconstructingthejthrow is(k - j + I)!. Hence, the number
of ways of constructing the k rows, i.e., the number of ways constructing
the Youden squares is greater then or equal to L~I (k - j + I)!.

165. Consider the finite projective geometry PG (rn.s). Omit one point P,
say, from this geometry and take the remaining points as treatments.
Thus, we get v = [(Snl+1 - I)/( s - 1)]- 1= sts'" - I)/ (s - I). Take g­
flats ( I :::: g :::: m - I), not passing through the omitted point P as blocks.
Thus, the numberof blocks is obtainedas

b = no. of g-flats not passing through P

= [no. of g-flats in PG (rn, s)]

- [no. of g-flats in PG (m, s) throught the point P]

= <I> (rn, g, s) - <I> (m - I. g - I, s).

Further, the numberof treatments in a block is obtained as

k = no. of points on a g-flat

= (sg+1 - I)/(s - I).

Also, the numberof times each treatment is replicated is obtainedas

r = no. of g-flats containing the given point but not containing

the omitted point P

= [no. of g-flats containing the given point]

- [no. of g-flats containing the given point and the point P]

= <I> (m - I. g - I, s) - <I> (m - 2, g - 2. s).
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Two treatments will be called first associates if they occur together is the
same block, if they do not occur together in the same block, then they are
called second associates. Clearly, two treatments will not occur together in
a block, if the linejoining them passes throught the omitted point P. Hence,
the second associates of a treatmentare the points lying on the line (I-flat)
joining thatpointand theomittedpointP,excludingthatpointand thepointP.

Thus, n2 = (s + I) - 2 = s - I. Therefore, nl = (v - I) - n2 =
s2(sm-1 - I)/(s - I). Now let q and fbe a pair of firstassociates. Then,

}.'1 = no. of g-f1ats containingeand <\> but not the omitted

point P

= no. of g-f1ats containingeand <\> but not the omitted

point P

= (no. of g-f1ats containingeand <\»

- (no. of g-f1ats containing e, <\> and P).

= <\> (m - 2, g - 2, s) - <\> (m - 3, g - 3, s).

Clearly, x'2 = O.
Now, let eand <\> be a pair of secondassociates, i.e., the linejoining them

passes through the omitted point P.Then, clearly the number of treatments
common between the second associatesof eand <\> are the other treatments
lying on the linejoining them and the point P. Hence

P~2 = (s + I) - 3 = s - 2 = n2 - I.

Now

pi2+ P~2 = n2 - I

and therefore

pi2 = n2 - I - P~2 = 0

and, P~I = O. Also, pil + pi2 = nl, hence pil = nj . Thus, we get

o ]
n2 - I .

Again, n1P~2 = n2pi2 = O. Therefore, P~2 = 0, and from P~I + P~2 = n2,
we get P~I = n2 = pb. Further, from P~I + pl2 = n - I, we get
pI I = nI - n2 - I. Hence, we get

166. Consider PG (m,s), Select one point P , say, and choose t lines passing
through it and take points on these lines other than P as treatments. Since,
the number of points on each line, excluding the point P iss, we get v = st
treatments. Take the (m - I)-flats not passing through P as blocks. Thus,
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the numberof blocks is obtainedas

b = no. of (m - I) - flats not passing through P

= [no. of(m - 1)- flats]

- [no. of (m - I) - flats passing through P]

= <l> (m, m - I , s) - <l> (m - I. m - 2, s) + sm.

The numberof times each treatment is replicated is obtained as

r = no. of (m - I) - flats containinga given point but not

containing the point P

= (no. of (m - 1)- flats containinga given point)

- (no. of (m - I) - flats containing the given point and P)

= <l> (m - 1,m - 2, s) - <l> (m - 2, m - 3, s)
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and hence k = vr/b = t.
Two treatments are first associates if they lie on one of the chosen lines

through the point P, otherwisethey are called secondassociates. Hence, we
get nl = s - 1, n2 = (v - 1) - n, = s(t - I). Clearly >q = 0 and >"2 can be
found from the relation nI>" I + n2>"2 = r(k - I). Hence >"2 = sm-2. Let e
and <l> be a pair of first associates. Then the treatments common between
their first associates are the other treatments on the line joining them and
P. Hencepl, = (s + I) - 3 = s - 2 = nl - I. The valuesofP, and P2then
follow from the properties of PJk and are found to be

o
P? = [- n,

167. Consider a finite Euclidian Geometry EG(m, s). Omit one point P, say and
all the g-f1ats (1 ~ g ~ m - 1) through P. Take the remaining points as
treatments and the g-f1ats not containing P as blocks.Then we get

v = s'" - I.

b = no. of g-f1ats not containing P

= [no. of g-f1ats in EG(m, s)]

- [no. of g-f1ats in EG(m, s) containingP]

= [<l> (rn, g. s) - <l> (m - I , g, s, )] - <l> (m - I, g - I, s).

r = no. of g-flats in EG(m, s) containinga given point but not

the point P

= [no. of g-f1ats in EG(m,s) containinga given point]

- [no. of g-f1ats in EG(m, s) containing the given point

and P]

= <l> (m - 1, g - 1, s) - <l> (m - 2, g - 2, s),
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and

k = no. of points on a g-flat in EG(m, s) = sg.

Twotreatments are firstassociates if they occur together in the same block,
otherwise they are called second associates. Now. two treatments will not
occur together in a block, if the line joining them passes through P. Hence
n2 = s - 2 and A2 = O. Then nl = v - I - n2 = s'" - s. Further if {) and <I>
are a pair of first associates, then

AI = no. of blocks whichcontain eand <I>

= no. of g-flatscontaining eand <I> but not P

= [no. of g-flatscontaining eand <1>]

- [no. of g-flatscontainingeand <I> and P]

= <I> (m - 2, g - 2, s) - <I> (m - 3, g - 3, s).

Leteand <I> bea pairof secondassociates.Hencethe linejoining thempasses
through P. Then the treatments commonbetweentheirsecondassociates are
the other treatments lying on the line joining them and P. Hence we get
P~2 = s - 3 = n2 - I. Then using the prepertiesof pJk' we obtainPI and P2
as

168. Arrange the v = pq treatments in an array of p rows and q columns.
Blocks are formed by taking a treatment and treatments in the same
row and the same column as that treatment. Thus we get b = pq and
k = 1+ (p - 1)+ (q - 1) = P+ q - 1. Clearlyr = p +q - 1.

Twotreatments are called firstassociates if they lie in the same row,and
second associates if they lie in the same column; otherwise they are called
thirdassociates.WethenhavenI = q - 1, n2 = P - 1, n3 = (p - 1)(q - 1).
Clearly AI = q, A2 = P and A3 = 2. Further, one can easily verify that the
values of the P-matrices are givenby

[q - 2
0

o ]
PI = ~ 0 p-l

P - 1 (p - 1)(q- 2)

P, ~ [ ~
0 q - I ]

p-2
(p - 2~q - 1)q-l 0

P, = [ ~
1 q-2 ]
0 p-2 .

q-2 p-2 (p - 2)(q - 2)

169. We arrange the v = pq treatments in an array of p rows and q columns.
Blocks are formed by taking all treatments that occur in the same row and
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column as each treatment but excluding that treatment. Thus, we get b = pq,
and r = k = p + q - 2.

Two treatments are first associates if they occur in the same row; and
second associates if they occur in the same column, otherwise they are third
associates. Thus, we have nl = q - I, n2 = P - I, n3 = (p - I)(q - I). We
can easily verify that AI = q - 2, A2 = P - 2, A3 = 2. Also one can easily
verify that the matrices PI, P2, P3 are the same as given in Exercise 168.

170. The v = p2 treatments are arranged in a p x p square. Blocks are formed by
taking all treatments in the same row, the same column and which correspond
to the same letter of a p x p Latin square as each treatment. Clearly we have
b = p2, and r = k = I + (p - I) + (p - I) + (p - I) = 3p - 2.

Two treatments are first associates if they occur in the same row; second
associates if they occur in the same column; and third associates if they
correspond to the same letter of a p x p Latin square; otherwise they are
fourth associates. Then we obtain

nl = n2 = n3 = P - I
AI = A2 = A3 = P + 2,

n4=(p-I)(p-2)
A4 = 6.

Further one can easily verify the values of P-matrices.

171. (i) Consider the double triangle as shown in Chapter I, Result 36(3)(i)
on page 43.

The vertices are denoted by the numbers from I to 10, and
take them as the 10 treatments. The blocks are fromed by taking
treatments on the same lines. There are 5 lines and so we get the 5
blocks as

(1258), (86910), (42310),
(4567), (I 397).

Clearly k = 4. Since there are two lines through a vertex, we get
r = 2. The first associates of any treatment are the treatments lying
on the lines passing through that treatment. Thus we get nl = 6.
The second associates of a treatment are the treatments which do
not lie on the lines passing through that treatment. Thus, n2 = 3,
clearly AI = I, and A2 = 0.

Consider treatments 2 and 3, which are first associates. The first
associates of 2 are 4, 3, 10, I, 5, 8. The first associates of 3 are
4, 2, 10, I, 9, 7. Hence, the treatments common between the first
associates of 2 and 3 are 4, 10, I . Thus we get P: I = 3. The other
values of the matrices PI and P2can be determined similarly or from
the properties of Pjk and we obtain PI and P2 as

(ii) Consider the parallelepiped as shown in Chapter I, Result 36(3)(ii)
on page 44.
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The verticesof the parallelepiped are denotedby numbers from
1 to 8 and are taken as the v = 8 treatments. The 6 faces of the
parallelepiped are taken as blocks. Thus we get b = 6 and clearly
k = 4. Since 3 faces pass through a vertex, we get r = 3. The first
associates of a treatmentare defined as those treatments which lie
on thesamefacesas thattreatmentbut noton thesameedgesas that
treatment, itssecondassociates arethosetreatments whichlieon the
sameedgesas that treatment; and its thirdassociates are treatments
diagonally opposite to that treatment. Thus the first, second and
third associates of the treatment I are respectively 3, 8, 6; 2, 4, 5;
7.Hencenl = 3, n2 = 3, n3 = I, and AI = I, A2 = 2, A3 = O. One
can easily verify that the P-matrices are givenby

[
20 0]

PI = 0 2 1 ,
o I 0 [

0 2 1]
P2 = 2 0 0 ,

100 [
030]

P3 = 3 0 0 .
000

(iii) ThisPBIBDwillbeconstructed byapplyingthemethodofExercise
165. ConsiderPG (2, 3). The 13points are

PI = (00 I),

P4 = (0 12),

1'7 = (l 02),

PIO = (1 12),

PI3 = (122).

P2 = (0 I 0),

P5 = (100),

Ps = (1 I 0),

PII = (1 20),

P3 = (01 I),

P6 = (1 0 I),

P9 = (1 1 I),

PI2 = (1 2 I),

(P3 P6 PIO PII)
(P3 1'7 ps PI3)

(P4 P6 Ps P1 3)

(P4 P7 P9 PI t>

We omit the point P5 and take the remaining 12 points
as the 12 treatments. Thus we get v = 12 treatments as
Pit P2, P3 , P4, P6, 1'7 , Ps. P9 , PIO, PI It PI2, Pl3· In Exercise lSI , we
have listed the I-flatsofPG (2,3). Weomit the l-flats whichpass
through P5, and take the remaining I-flats as blocks. Thus, we ob­
tain b = 9 blocksas

(PI P2 P3 P4)
(PI Ps P9 PIO)

(PI PII PI2 PI3)

(P2 P6 P9 PI2)

(P2 P7 PIO P13)

Clearly k = 4 and r = 3.
Two treatments are first associates, if they occur together

in a block, and are second associates if they do not oc­
cur together in a block. Thus the first associates of PI
and P2 are respectively P2, P3, P4, Ps, P9, PIO, PII, PI2 , Pl3, and
PI, P3 , P4, P6, P9, PI2 , P7, PIO, P13· Thus we get nl = 9 and hence
n2 = 2. Alsothecommontreatments between thefirstassociates of
PI andp- are pj, P4, P9 , PIO, PI2, P13 .Hencepll = 6.AlsoPI andp-



SOLUTIONS 277

occur togetheronly in one block, hence ~I = I. Then ~z = O. The
other valuesofpjk can be obtainedsimilarlyfrom the propertiesof

Pjk ' Thus one can easily verify.

(iv) This PBIBDcanbeconstructedbyapplyingthe methodof Exercise
167. Consider the EG(2,3). The pointsand l-flats in EG (2, 3) are

Points: PI = (00), pz = (0 I), P3 = (02),
p4=(10), PS = (I I), P6 = (I 2),
P7 = (20), Ps = (2 I), P9 = (22).

I-flats: (PI pz P3), (P4 Ps P6), (P7 Ps P9),
(PI P4 P7), (pz Ps Ps), (P3 P6 P9),
(PI Ps P9), (pz P6 P9), (P3 P4 Ps),
(PI P6 pg), (pz P4 P9), (P3 Ps P7).

OmitthepointPI andtaketheremaining pointsas treatments. Thus,
we get v = 8 treatments as Pz , P3 , P4, Ps, P6, P7, Ps, P9. Omit the
I-flatspassing throughPI and take the remaining I-flats as blocks.
Thus, we get b = 8 blocks as

(P4 Ps P6), (pz Ps ps). (pz P6 P9),
(pz P4 P9), (P7 Ps P9) , (P3 P6 P9),
(P3 P4 Ps), (P3 Ps P7) .

Clearly k = 3 and r = 3.
Two treatments are first associates if they occur together in

a block; they are second associates if they do not occur to­
gether in a block. Thus, the first and second associates of P4 are
Ps, P6 , P3 , Ps, P9 and P7 · Hence n, = 6 and nz = 1. Clearly ~I = I
and AZ = O. Consider P4 and Ps whichare firstassociates. The first
associates of P4 and Ps are respectively Ps, P6, P3 , Ps, Pz , P9 and
P4, P6 , Pz -Ps, P3, P7 . The common treatments between the first as­
sociates of P4 and Ps are P6, Ps, P3 , pz. Hence P: I = 4. The other
valuesof Pjk can besimilarlydeterminedor from the propertiesof

pk Thus one can easily verify that

(v) This PBIBD can be constructed by applying the method of Exer­
cise 168. We arrange the 9 treatments in an array of 3 rows and
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3 columns as

tl t2 t3
t4 t5 tt,
t7 ts t9

The blocks are formed by taking each treatmentand treatments in
the same row, the same column as that treatment. Thus we get 9
blocks as

t( t2 t3 4 t7 tt, 4 t5 t3 t9
t2 t( t3 t5 lg t7 Ig t9 t( t4
t3 t( t2 tt, t9 ts t7 t9 t2 t5
4 t5 t6 t, t7 t9 t7 ts t3 t6
ts t4 t6 t2 lg,

Clearly k =5 and r =5.
Two treatments are first associates if they are in the same row;

theyare secondassociatesif theyare in thesamecolumn;otherwise
they are third associates. Thus, the first, the second and the third
associatesof t( are respectively

Hence n( = n2 = 2 and n3 = 4.
Considert( and t2 whichare firstassociates. Theyoccur together

in 3 blocks. Hence >\1 = 3. Consider treatments t) and 4 whichare
second associates. They occur together in 3 blocks, hence A2 = 3.
Considertreatments t( and t5 whichare thirdassociates.Theyoccur
together in 2 blocks. Hence A3 = 2. Now, consider

Treatment First Second Third
Associate Associate Associate

t) t2, t3 4, t7 t5,ts Ig, t9
t2 t(, t3 t5, ts 4, tt" t7, t9
4 t5, tt, tj , t7 t2 , t3, Ig, t9
ts 4 ,tt, t2,tS t(,t3 ,t7,t9

Here, tl and t2, are first associates, hence by finding the common
treatments between their differentassociates, we find

[
I 0 0]

PI = 0 0 2 .
022

Next, t( and 4 are secondassociateshence,by finding thecommon
treatments between their differentassociates. we obtain P2 as

o 2]
1 0 .
o 2
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Lastly, consider t, and ts which are third associates. Hence, by
finding the common treatments between their different associates,
we obtain P3 as

[

0 I
P3 = 1 0

1 1 i]
(vi) This PBIBDcan be constructedbyapplyingthe methodof Exericse

169. We arrange the v = 9 treatments in an array of 3 rows and 3
columns as under

t) t2 t3
4 ts 1(,

t7 t8 t9

The blocks are formed by taking treatments in the same row and
column as each treatment, but excluding that treatment. Thus, we
obtain 9 blocks as under

(t2 t3 4 t7), (t, t3 ts t8)
(tl t2 1(, t9), (t5 1(, tl (7)
(t4 1(, t2 t8), (4 t5 t3 (9)
(t8 t9 t, t4), (t7 t9 t2 ts)
(t7 t8 t3 (6)'

Clearly k = 4 and r = 4. Two treatmentsare firstassociates if they
occur in the same row; they are second associates if they occur in
the same column, otherwise they are third associates.Thus, wecan
easily get the following:

Treatment First Second Third
Associate Associate Associate

t, t2 t3 4 t7 ts 1(, t8 t9
t2 t I t3 ts t8 t4 t6 t7 t9
t4 ts 1(, t, t7 t2 t3 t8 t9
ts t4 1(, t2 t8 l I t3 t7 t9

Therefore, we get n) = n2 = 2 and n3 = 4. Since t) and t2 occur
together only in one block, h, = I. Now t) and t4 occur togehter
only in one block, hence h2 = I. Moreovertl and t5 occur together
in 2 blocks, and hence h3 = 2. The above table of treatments and
their associates is the same as found in (v), and hence we find the
P-matricessame as found in (v).

(vii) This PBIBDcan beconstructedby applyingthemethodofExericse
170. We arrange the v = 9 treatments in an array of 3 rows and 3
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columns as under

Wealso take a Latin square of side 3 as

ABC
B C A
CAB

The blocks are formed by taking treatments in the same row, the
same column and those which correspond to the same letter of a
3 x 3 Latin square as each treatment. Thus, we obtain 9 blocks as
under

(t( t2 t3 4 t7 Ig t9), (l6 4 t5 t3 t9 t1 t8),
(t2 t( t3 t5 t8 t4 t9), (t7 t8 t9 t( t4 t3 t5),
(t3 t( t2 l6 t9 ts t7 ), (t8 t7 t9 t2 t5 t, l6),
(4 t5 l6 t( t7 t2 t9), (t9 t7 ts t3 l6 t2 u),
(t5 t4 l6 t2 t8 t3 t7 ).

Clearly k = 7 and r = 7. Two treatments are first associates if
they occur in the same row; they are second associates if they
occur in the same column; they are third associates if they cor­
respond to the same letter of the 3 x 3 Latin square; otherwise
theyare fourthassociates. Thus one can easily verifythe following
table.

Treatment First Second Third Fourth
Associate Associate Associate Associate

t( t2 t3 t4 t7 l6 t8 t5 ~
t2 t( t3 t5 Ig 4 t9 l6 t7
t4 t5 l6 t, t7 t2 t9 ts t8
t6 t4 t5 t3 t9 t( ts t2 t7
t5 t4 l6 t2 t8 t3 t7 tl t9

By considering t( and t2 which are first associates and by finding
the common treatments betweentheir differentassociates,we find
PI as

Consider t( and 4 which are second associates. By finding
the common treatments between their different associates we
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find P2 as

o I I]100
o 0 I .

010

Next consider t, and t{, which are third associates. By finding the
commontreatments betweentheirdifferentassociates, wefindP3 as

[
0 I 0 I]
I 0 0 I

P3 = 0 0 I 0 .

I I 0 0

Lastly, consider t, and t5 which are fourth associates. By finding
the common treatments between theirdifferentassociates, we find
P4 as

[
0 I I 0]
I 0 I 0

P4 = I I 0 0 .

000 I

172. The key block B, is constructedby takingall treatments havingeven num­
ber of letters in common with ABC, BCE, and ABDE. The treatments in
the key block BI are: (I), ace, bed, abde. The block B, (i = 2, 3, ... , 7) is
constructed by taking treatments obtained by multiplying a treatment not
included in the previousblocks BI , B2, . •• , Bi- I with the treatments of the
block BI and replacing the square of any letter by unity. Thus the 8 blocks
are obtainedas

Block Treatments Block Treatments
I (I), ace, bed, abde 5 d,acde, be,abe
2 a,ce,abcd, bde 6 e,ac,bcde,abd
3 b,abce,cd,ade 7 ab,bce,acd,de
4 c,ae, bd,abcde 8 ad, cdc, abc, be

The other interactions that are confoundedare:

(ABC)(BCE) = AE

(ABC)(ABDE) = CDE

(BCE)(ABDE) = ACD

(ABC)(BCE)(ABDE) = BD.

173. The pencilcorresponding to the interaction AB2C2 isP( I 2 2). Theequa­
tions of P( I 2 2) are

XI +2X2+2X3 =0,1 ,2.
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We construct the blocks by taking treatments satisfying each equation. Con­
sider the equation

XI + 2X2 + 2X3 = O.

We can write this equation as

XI = X2+ x3·

Thus, the solutions of this equation are obtained by writing down all poss ible
combinations of X2 and X3 and then taking XI to be their sum. Thus, the 9
treatments sati sfying the above equation and forming the first block are

Block I: (0 0 0), (l 0 I), (2 0 2),
(l I 0) , (2 1 I), (0 I 2),
(2 2 0), (0 2 I), (I 2 2).

Consider the second equation

XI + 2X2+ 2X3 = I

which can be written as

XI = X2+ X3+ 1.

We write all combinations of X2 and X3 and take XI to be their sum plus 1.
Thus, we get the second block as

Block 2: (l 0 0), (2 0 I), (0 0 2),
(2 I 0), (0 I I), (l I 2),
(0 2 0), (I 2 I), (2 2 2).

Solv ing the third equation as XI = X2+ X3 + 2, we obtain the third block as

Block 3 : (2 0 0), (0 0 I), (I 0 2),
(0 I 0), (l 1 I ), (2 1 2),
( I 2 0), (2 2 I ), (0 2 2).

It may benoted that the block s 2 and 3 are obtained from block 1 by adding 1
and 2 successively to any coordinate of the treatments of block 1. The order
of blocks is immaterial.

174. The pencils corresponding to the interactions AB and BC are respectively
P( I I 0) and P(O I I). The blocks are obtained by solving pairs of
equations one belonging to P(l I 0) and the other to P(O I I). The
key block is obtained by solving the equations

which give XI = X3 and X2 = 2X3. Taking X3 = 0, 1,2, we obtain the solu­
tions as (0 0 0), ( I 2 I), (2 1 2). Thu s the key block is

Block 1: (0 0 0), (I 2 I), (2 1 2).
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The other blockscan be similarlyobtained by solving pairs of equations

XI + X2 = i and X2 + X3 = j , i.j =0, 1,2 excluding i = j = O.

However weshallgivea short-cutmethodof writingdownother blocksfrom
the key block. Weselect the first two coordinates in all possible ways as

(0 0), (0 I), (0 2), (1 0), (I I), (I 2), (2 0), (2 I), (2 2).

We omit the combination (0 0). Add these combinations to the first two
coordinatesof the treatments of the keyblock in succession. Wethen get the
other 8 blocks. The key block and the other 8 blocks so obtained are given
below.

Block Treatments Block Treatments
I (0 0 0), (I 2 I), (2 I 2) 6 (I 2 0), (2 I I), (0 0 2)
2 (0 I 0), (I 0 I), (2 2 2) 7 (2 0 0), (0 2 I), (I I 2)
3 (0 2 0), (I I I), (2 0 2) 8 (2 I 0), (0 0 I), (I 2 2)
4 (I 0 0), (2 2 I), (0 I 2) 9 (2 2 0), (0 I I), (I 0 2)
5 (I I 0), (2 0 I), (0 2 2)

175. The pencils belongingto the 2-factor interactions in a 32design are P(I I)
and P(I 2). Then, weget tworeplications, confounding P(I I) in the first
replication and P(I 2) in the second replication . The key block in the first
replication in which P(I I) is confounded is obtained by solving

XI + X2 = 0, i.e. X2 = 2x)

and is obtainedas (0 0), (I 2), (2 I). By adding I and 2 to the firstco­
ordinatesof these treatments, we get the other blocksof the first replication.

The key block in the second replication in which P(I 2) is confounded
is obtained by solving

XI + 2X2 = 0, i.e. XI = X2

and is obtained as (0 0), (I I), (2 2). By adding I and 2 to the first
coordinates of these treatments, we obtain the other blocks of the second
replication.

The replications I and II are given below.

Replication I
(0 0), (1 2), (2 I)
(I 0), (2 2), (0 I)
(2 0), (0 2), (1 I)

Replication II
(0 0), (I I), (2 2)
(1 0), (2 I) , (0 2)
(2 0), (0 I), (I 2).

Interaction P(I I) is confounded in Replication I and is unconfounded in
Replication II. Thus, there is a loss of ~ on each d.f. belonging to P(I I).
Similar remarkapplies to the interactio-n P(I 2).
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176. We select 4 vertices (oq, a2, ( 3) where each a is a non-null element ofGF(3)
as

(l I I) , (l I 2), (l 2 I), (l 2 2).

Each repl ication is constructed by taking one vertex and two pencils orthog­
onal to that vertex . The vertices and the corresponding orthogonal penc ils
for different replications are given below.

Replication Vertex Pencils
I (l I I) P(l 2 0), P(l 0 2)
2 (l I 2) P(l 2 0), P(O I I)
3 (l 2 I) P(l I 0), P(O I 1)
4 (l 2 2) P(l I 0), P(l 0 I)

The key block in Replication I is obtain ed by solving the equations

Xl + 2X2 = 0, Xl + 2X3 = 0,

that is, Xl = X2 = X3. Similarly we find the key blocks in other replications.
The key blocks in the 4 replications are given below.

Replication Key Block
I (0 0 0), (l I I), (2 2 2)
2 (0 0 0), (I I 2), (2 2 1)

3 (0 0 0), (I 2 I), (2 I 2)
4 (0 0 0), (1 2 2), (2 I 1)

The other blocks in each replication are obtained from the key blocks by the
short-cut method described in Exercise 174, that is, by adding

(0 1), (0 2), (I 0), (l 1), (l 2), (2 0), (2 I), (2 2)

to the first coordinates of the treatments of the key blocks. The blocks in
different repl ications are given below.

Replication 1 Replication 2
(0 0 0), (l I I), (2 2 2) (0 0 0), (1 I 2), (2 2 I)
(0 1 0), (1 2 1), (2 0 2) (0 I 0) , (1 2 2), (2 0 I)
(0 2 0), (1 0 I), (2 I 2) (0 2 0), (1 0 2), (2 1 I)
(l 0 0), (2 1 1), (0 2 2) (1 0 0), (2 I 2), (0 2 1)
(l I 0), (2 2 1), (0 0 2) (1 I 0), (2 2 2), (0 0 I)
(I 2 0), (2 0 1), (0 I 2) (1 2 0), (2 0 2), (0 I I)
(2 0 0), (0 1 1), (l 2 2) (2 0 0), (0 I 2), (1 2 1)
(2 I 0), (0 2 1), (l 0 2) (2 I 0), (0 2 2), (1 0 I)
(2 2 0), (0 0 1), (l I 2) (2 2 0), (0 0 2), (1 1 1)
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Replication 3 Replication 4
(0 0 0), (1 2 1), (2 1 2) (0 0 0), (1 2 2), (2 1 1)
(0 1 0), (1 0 1), (2 2 2) (0 1 0), (I o 2), (2 2 1)
(0 2 0), (1 1 I), (2 0 2) (0 2 0), (I I 2), (2 0 I)
(I 0 0), (2 2 1), (0 1 2) ( 1 0 0), (2 2 2), (0 1 1)
(1 1 0), (2 0 I), (0 2 2) ( I 1 0), (2 0 2), (0 2 1)
(1 2 0), (2 1 I), (0 0 2) (I 2 0), (2 1 2), (0 0 I)
(2 0 0), (0 2 1), (1 1 2) (2 0 0), (0 2 2), (1 1 I)
(2 I 0), (0 0 I), (I 2 2) (2 1 0), (0 0 2), (I 2 I)
(2 2 0), (0 I 1), ( I 0 2) (2 2 0), (0 I 2), (1 0 I)

The interactions confounded in each replication are given below.

Replication
I
2
3
4

Confounded Interactions
AB2, AC2 ABC, BC2

AB2, BC, AC, ABC 2

AB, BC, AB2C, AC2

AB, AC, AB2C2, BC2

The first order interactions are AB, AB2, AC, AC2, BC, BC2• From the above
table, we see that each first order interaction is confounded in 2 replications
and is unconfounded in the other two replications. Thus, there is uniform
loss of information of ! on each d.f. belonging to the first order interaction.
The second order interactions are ABC, AB2C, ABC2, AB2C2. From the
above table, we see that each second order interaction is confounded in one
replication and is unconfounded in the other three replications. Hence, there
is a uniform loss of information of ~ on each d.f . belonging to the second
order interaction .

177. ABC and ACDE are defining interactions. Hence, their generalized interac­
tion BOE is also defining interaction. We write down the ith replicate by
taking treatments that have odd number of letters in common with BOE and
even number letters in common with ACDE . Thus the ~th replicate of a 25

design consists of the fol1owing treatments:

b, ad, cd, ae, ce, bde, abc, abcde .

Note that if we suppress letters a and b in the above set of 8 treatments, we
obtain the 8 treatements in a 23 design with factors C, 0, E. The 7 alias sets
correspond to the 7 factorial effects of this 23 design and are obtained as
below.

C = AB = ADE = BCDE

D = ABCD = ACE = BE

CD = ABD = AE = BCE

E = ABCE = ACD = BD
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CE = ABE = AD = BCD

DE = ABCDE = AC = B

CDE = ABDE = A = BC

CHAPTER 3

178. The defining interaction ABCD contains even numberof letters, hence the
half replicate of a 24 design will consist of treatments which have even
numberof letters in common with ABCD. Thus, the half replicateconsists
of the following 8 treatments

(I), ab, ac, be, ad, bd, cd, abed.

If we suppress letterd, then the treatments become

(I), (d)a, (d)b, ab, (d)c, ac, be, abe(d)

whichare the treatments of a 23 design with factors A, B, C. Now we want
to confoundAD =Be. The firstblockis written downby takingtreatments
that have even numberof letters in common with BC. The second block is
writtendown by taking treatments obtainedby multiplying a treatmentnot
included in the first blockwiththe treatments of the firstblockand replacing
the squareof any letterby unit.Thus the two blocksare:

Block I: (I), a(d), be, abc(d)

Block2 : (d)b, ab, (d)c, ac.

We now introduce the suppressed letter, so that the blocks nowbecome

Block I : (I) , ad, be, abed

Block2 : bd, ab, cd, ac.

179. Here ABCDE contains odd number of letters; hence we select in the half
replicateonly thosetreatments which haveodd numberofletters incommon
with ABCDE. Further, we suppress the letter e and write down these 16
treatments as 16 treatments of a 24 design as under

(I )(e), a, b, ab(e), c, ac(e), bc(e), abc, d, ad(e), bd(e),

abd, cd(e), acd, bed, abcd(e).

We wish to confound the interactions BE and CDE. Now we write these
interactions so that they contain only letters from A, B, C and D. Thus,
BE = ACD and CDE = AB. So we confound ACD and AB. We write
the firstblockB1 by writingthe treatments havingeven numberof lettersin
commonwithACDandAB. Then, theblockBj, i = 2, 3,4 isconstructed by
takinga treatmentnot included in blocks BI, B2, . .. ,B i-I and multiplying
it with the treatments of the block BI and replacing the squareof any letter
by unit.Thus, the 4 blocksare

Block BI : (I)(c), abc, abd, cd(e)

Block B2 : a, bc(e), bd(e), acd
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Block B3 : b, ac(e), ad(e), bed

Block B4 : c, ab(e), abcd(e), d.

287

The final blocksare writtendown after removing the bracketsenclosing the
letter e.

Note that the generalized interaction of BE and CDE, namely BCD is
also confounded, and theiraliasesare confounded. Thus, the alias sets BE =
ACD,CDE = AB, BCD = AE are confounded.

180. The defining interactions ABC and ADE contain odd numberof letters and
hence the (Uth replicatewill consist of treatments whichhaveodd number
of lettersin commonwith ABC and ADE. Thus, the U)th replicateconsists
of the following treatments in which we have suppressed two letters a and
b, so that they becometreatments of a 24 design with factorsC, D, E and F.

(a)(I) , (ab)c, (b)d, cd, (b)e, ceo (a)de, (ab)cde, (a)f,

(ab)cf, (b)df, cef, (a)def, (ab)cdef.

The generalized interaction of ABC and ADE, that is, BCDE is also the
defining contrast.

The generalized interaction of ACE and ACDF, that is, DEF and their
aliases will also be confounded. Thus, the following alias sets will be con­
founded.

ACE = BE = CD = ABD

ACDF = BDF = CEF = ABEF

DEF = ABCDEF = AF = BCF.

NowACEand ACDFcontain the suppressedletters; hence for confounding
we shall take their such aliases whichdo not contain the suppressed letters.
Thus, we select CD in place of ACEand CEF in place of ACDF. Thus, we
confounded interactions CD and CEF. We construct block B1 by writing
the treatments having even numberof letters in commonwithCD and CEF.
The blockBj, i = 2, 3,4 is constructedby takinga treatmentnot included in
blocks B1, B2, . .. , Bi-I and multiplying it with the treatments of the block
BI. Thus, the 4 blocks are found as

Block BI : (a)(I), (b)ef, cdr. (ab)cde

Block B2: (ab)c, cef, (b)df, (a)de

Block B3: (b)d, (a)def, (ab)cf, ce

Block B4: (a)f', (b)e, cd, (ab)cdef.

The final blocksare writtendownafter removing the bracketswhichenclose
letters a and b.

181 . The (* )rd replicateof a 33 design, when the pencil P(I I) is used as a
defining pencil will consist of treatments which satisfy

XI + X2 + X3 = 0
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and are givenby

(0 0 0), (0 I 2), (0 2 I), (l 0 2),

(2 0 I), (l 2 0), (2 I 0), (I I 1),

(2 2 2).

In a 33design, there are 13 indepedent pencils, one of which is used for
constructing the (~)rd replicate. The remaining 12 will be divided into 4
aliassetsof3 pencilseach.Thealiassetcorrespondingtoa pencil PCb) b2 b3)
will consist of pencils

PCb) + ai , b2 + a2, b3 + a3)

where A= 0, I, 2. Hence the following 4 alias sets:

P(I 0 0) = P(I 2 2) = P(O I I)

P(O I 0) = P(I 2 I) = P(I 0 I)

P(O 0 I) = P(I I 2) = P(I I 0)

P(I 2 0) = P(I 0 2) = P(O I 2).

182. The treatments of the (t)rd replicate of a 35 design, when P(l I I I
I) and P(I 0 0 I I) are used as the defining pencils are obtained by
solving the equations

XI + X2 + X3+ X4 + X5 = 0

XI + X4 + X5 = O.

The aboveequationscan be reduced to

XI = 2X4 + 2X5

X2 = 2X3 ·

We allow X3, X4 and X5 to take all possible valuesand determine X) and X2
by the above two equations. Thus, we obtain the following treatments for
the (!)th replicate.

(0 0 0 0 0) (0 2 0 0) (0 I 2 0 0)
(2 0 0 0 I) (2 2 0 1) (2 I 2 0 1)
(I 0 0 0 2) (l 2 0 2) (l I 2 0 2)
(2 0 0 I 0) (2 2 I 0) (2 I 2 I 0)
(l 0 0 I I) (l 2 I I) (l I 2 I I)
(0 0 0 I 2) (0 2 I 2) (0 I 2 1 2)
(l 0 0 2 0) (l 2 2 0) (l I 2 2 0)
(0 0 0 2 1) (0 2 2 1) (0 1 2 2 I)
(2 0 0 2 2) (2 2 2 2) (2 1 2 2 2)

We lose information on the pencils

P(AI + A2 , AI , AI, AI + A2, AI + A2),
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where >q, A2 are elements of GF(3) not all zero. Taking independent com­
binations of (A) , A2) as (1,0), (0,1), (1,1), (1,2), we obtain the following 4

pencils on which information is lost.

P( I I I I I), P(1 0 0 I I),

P(2 I I 2 2) = P(I 2 2 I I),

P(O I I 0 0).

The aliases of any pencil P(b, b2b3b4b5) are the pencils

P(b, + Al + A2 , b2+ AI, b2+ AI, b4+ Al + A2, b5+ AI + A2)

where AI and A2 are elements ofGF(3), not all zero. TakingP(b, b2b3b4b5) =
P(1IIOI) and (AI , A2) = (1,0), (1, I), (1,2), (2, 0), (2, I), (2, 2), (0, I),
(0, 2), we obtain the following aliases of P( I I I 0 I):

P(1 I I 2 I) P(O I I I 0),

P(1 2 2 0 I) P(O 0 0 I 0),

P(1 0 0 0 1) P(I 0 0 2 I),

P(1 2 2 2 I) P(O I I 2 0).

183. The blocks are constructed by taking treatments which satisfy the equations

XI + X2 + X3 + 2X4 = 0

XI + X3 + X4 = a ,

where a can be 0, I or 2. The above equations can be written as

XI = 2X3 + 2X4 + a

X2 = 2X4 + 2a.

Weallow X3 and X4 to take all possible valuesof GF(3) and determine x, and
X2 by the above equations. Taking a = 0, I, 2, we get 3 blocks as follows.

Block I : (0 0 0 0), (2 2 0 I), (I 0 2),
(2 0 I 0), (I 2 I I), (0 1 2),
(1 0 2 0), (0 2 2 I), (2 2 2).

Block 2 : (1 2 0 0), (0 0 I), (2 0 0 2),
(0 2 I 0), (2 I I), (I 0 I 2),
(2 2 2 0), ( I 2 I), (0 0 2 2).

Block 3: (2 0 0), ( I 0 0 I), (0 2 0 2),
(1 I 0), (0 0 I I), (2 2 I 2),
(0 2 0), (2 0 2 I), (1 2 2 2).

The aliases of P( I 0 I I) are also confounded. The aliases of P( I 0
I) are the pencils

P(1 + A, A, I + A, I + 2A)
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where >- = 1 or 2. Hence, the aliases of P(1 ° 1 1) are P(2 1 2
O)=P(1 2 1 O)andP(O 2 ° 2)=P(0 1 ° 1). Hence, the alias
set

P(1 ° 1 1) = P(1 2 1 0) = P(O 1 ° 1)

is confounded.

184 The blocks are obtained by taking treatmenets which satisfy the equations

XI + X2 + X3 = °
XI + X3 + X4 = a

XI + X2 + X4 = (3

where a and (3 are 0, 1 or 2. Taking all possible combinations of a and (3,
we shall get 9 blocks . For any particular combination of a and (3, the above
equations can be reduced to

XI = X4 + a + (3

X2 = X4 + 2a

X3 = X4 + 2(3.

We allow X4 to take the values 0, 1, 2 and determine XI, X2 and X3 by the
above equations. Taking (a, (3) = (0,0), (0,1), (0, 2), (1, 0), (1,1), (1, 2),
(2, 0), (2, 1) and (2,2), we get 9 blocks as

Block1 Block2 Block3
(0 0 0 0) (1 o 2 0) (2 0 1 0)
(1 1 1 I) (2 1 0 1) (0 1 2 I)
(2 2 2 2) (0 2 1 2) (1 2 0 2)

Block4 Block5 Block6
(1 2 0 0) (2 2 2 0) (0 2 1 0)
(2 0 1 I) (0 0 0 I) (1 o 2 I)
(0 1 2 2) (1 1 1 2) (2 1 o 2)

Block7 Block8 Block9
(2 1 o 0) (0 1 2 0) (1 1 1 0)
(0 2 1 1) (1 2 0 I) (2 2 2 I)
(1 o 2 2) (2 0 1 2) (0 0 0 2)

The generalized pencils of P(1 0 1 1) and P(1 1 0 1) and their
aliases are confounded. The generalized pencils of P(1 0 1 1) and
P(1 10 l)are

P(>-t + >-2, >-2, >-" >-1 + >-2)

where (>-1, >-2) = (1, 0), (1, 1), (1, 2), (0, 1). Hence the pencils P(1 0 1
1), P(1 1 0 1), P(I 2 2 1) and P(O I 2 0) are confounded.
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The alias sets of these pencilsare also confounded. Thus, the followingalias
sets are confounded:

P(I 0 I I) = P(I 2 I 2) = P(O I 0 2)

P(I 1 0 1) = P(I I 2 2) = P(O 0 I 2)

P(I 2 2 I) = P(I 0 0 2) = P(O I I I)

P(O I 2 0) = P(I 2 0 0) = P(I 0 2 0).
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Normalized treatment contrast, 6
Notations, 5, 25

Orthogonal design, 7
Orthogonal treatmentcontrast, 33
Orthogonality, 7
OS, 39

Pairwise balanced design, 6
Pukelsheim, 292
PBIBD, 15, 16, 17, 18, 191,276,277,

279
construction, 42
introblockanalysis, 17
simple, 21
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triangular, 21
Latin square type , 22
2-associate class , 18, 20
m-associate class, 70
with recovery of interblock
information, 18

RBD, 12,79, 168,227
Recovery of interblock

information, II , 12, 13, 18, 20, 30
Rectangular design, 22
Regular design , 6
Resolvable, 13

sm design , 47, 48
SBIBD, 13,39,79,83,84,260,261,

270,271
Semi-regular, 21
Simple lattice design, 31
Singular, 21
Split-plot design, 23
Spring balance design, 81, 247
Standard designs, 66
Sum of squares

due to regression, 2
of errors, 3
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Symmetric differences, 39,41
repeated , 57

2mdesign , 34, 35,48, 77
construction, 48

3mdesign, 36, 77
Treatment contrast, 33

orthogonal, 33
Treatment sum of squares

adjusted,9
Triangular, 21, 73, 76, 190,210,

212
T series, 40
Two-way design, 25

Variance balanced design, 7
Variance, 9, 12

Weighing design, 51, 81
efficiency, 52
spring balance, 53, 81, 247

Winer, 1, 292

Yates rule, 226
Youden square design, 29,42, 79, 237

construction, 42
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