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Preface

We statisticians, especially those of us who work with randomized clinical tri-
als within a regulatory environment, typically operate within the constraints
of careful prespecification of analyses. We worry lest ad hoc response to data
that we see affect the integrity of our inference. When we are involved in
interim monitoring of clinical trials, however, we must have the latitude to
respond with intellectual agility to unexpected findings. Perhaps that very
mixture of careful prespecification—to protect the scientific integrity of the
study—and data-driven modifications—to protect the interest of the partici-
pants in the trial—explains why so many of us enjoy the challenge of interim
monitoring of clinical trials. Of course we must, even in that context, carefully
describe the analyses we plan to conduct and the nature of the inference to
which various outcomes will lead us; on the other hand, if our analyses lead
to a premature—in contrast to an early—stopping of the clinical trial, there
is no putting the train back on the track. The past half century has seen
an explosion of methods for statistical monitoring of ongoing clinical trials
with the view toward stopping the trial if the interim data show unequivocal
evidence of benefit, worrisome evidence of harm, or a strong indication that
the completed trial will likely show equivocal results. The methods appear
to come from a variety of different underlying statistical frameworks. In this
book we stress that a common mathematical unifying formulation—Brownian
motion—underlies most of the basic methods. We aim to show when and how
the statistician can use that framework and when the statistician must mod-
ify it to produce valid inference. We hope that our presentation will help
the reader understand the relationships among commonly used methods of
group-sequential analysis, conditional power, and futility analysis. The level
of the book is appropriate to graduate students in biostatistics and to statisti-
cians involved in clinical trials. One of our goals is to provide biostatisticians
with tools not only to perform the necessary calculations but to be able to
explain the methodology to our clinical colleagues. When the process of sta-
tistical decision-making becomes too opaque, the clinicians with whom we
work tune out and leave important parts of the discussion to the statisticians.



VIII

We believe the stark separation of clinical and biostatistical thinking cannot
be healthy to intelligent, thoughtful decision-making, especially when it oc-
curs in the middle of a trial. The book represents our distillation of years of
collaboration with many colleagues, both from the clinical and biostatistical
worlds. All three of us spent formative years at the National Heart, Lung,
and Blood Institute where Claude Lenfant, Director, encouraged the growth
of biostatistics. We learned much from the many lively discussions we had
there with coworkers as we grappled collectively with issues related to on-
going monitoring of clinical trials. Especially useful was the opportunity we
had to attend as many Data Safety Monitoring Board meetings as we desired;
those experiences formed the basis for our view of data monitoring. We hope
that the next generation of biostatisticians will find themselves in an organi-
zation that recognizes the value of training by apprenticeship. We particularly
want to acknowledge the insights we gained from other members of the bio-
statistics group—Kent Bailey, Erica Brittain, Dave DeMets, Dean Follmann,
Max Halperin, Marian Fisher, Nancy Geller, Ed Lakatos, Joel Verter, Mar-
garet Wu, and David Zucker. Physician colleagues who, while they were at
NHBLI and in later years, have been especially influential have been the two
Bills (William Friedewald and William Harlan), as well as Larry Friedman,
Curt Furberg (who pointed out to us the distinction between premature and
early stopping of trials), Gene Passamani, and Salim Yusuf. One of us (it is not
hard to guess which one) is especially indebted to insights gained from Robert
Wittes, who for four decades has provided thoughtful balanced judgment to
a variety of issues related to clinical trials (and many other topics). And then
there have been so many others with whom we have had fruitful discussions
about monitoring trials over the years. Of particular note are Jonas Ellenberg,
Susan Ellenberg, Tom Fleming, Genell Knatterud, and Scott Emerson. Dave
DeMets has kindly agreed to maintain a constant free version of his software
so that readers of this book would have access to it. We thank Mary Foulkes,
Tony Lachenbruch, Jon Turk, and Joe Shih for their helpful comments on
earlier versions of the book. Their suggestions helped strengthen the presen-
tations. It goes without saying that any errors or lapses of clarity remaining
are our fault. Without further ado, we stop this preface early.

Michael A. Proschan
K.K. Gordon Lan

Janet Turk Wittes
Washington D.C.

3/2006
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1

Introduction

Advancement of clinical medicine depends on accurate assessment of the safety
and efficacy of new therapeutic interventions. Relevant data come from a va-
riety of sources—theoretical biology, in vitro experimentation, animal studies,
epidemiologic data—but the ultimate test of the effect of an intervention de-
rives from randomized clinical trials. In the simplest case, a new treatment is
compared to a control in an experiment designed so that some participants re-
ceive the new treatment and others receive the control. A random mechanism
governs allocation to the two groups. Well-designed, carefully conducted ran-
domized clinical trials are generally considered the most valid tests of the effect
of medical interventions for reasons both related and unrelated to randomiza-
tion. Randomization produces comparable treatment groups and eliminates
selection bias that could occur if the investigator subjectively decided which
patients received the experimental treatment. Clinical trials often use double
blinding whereby neither the patient nor the investigator/physician knows
which treatment the patient is receiving. Blinding the patient equalizes the
placebo effect—feeling better because one thinks one is receiving a beneficial
treatment—across arms. Blinding the investigator/physician protects against
the possibility of differential background treatment across arms that might
result from “feeling sorry” for the patient who received what was perceived,
rightly or wrongly, as the inferior treatment. Determination of whether a pa-
tient had an event is based on unambiguous criteria prespecified in the trial’s
protocol and applied blinded to the patient’s treatment assignment whenever
possible. Because the experimental units are humans, and because random-
ization and blinding are used, these trials require a formal process of informed
consent as well as assurance that the safety of the participants is monitored
during the course of the study.

Ethical principles mandate that such a clinical trial begin with uncertainty
about which treatment under study is better. Uncertainty must obtain even
during the study, for if interim data were sufficiently compelling, ethics would
demand that the trial stop and the results be made public. But who decides
whether the interim data have erased uncertainty and what are the criteria
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for deciding? As George Eliot said in Daniel Deronda, “We can do nothing
safely without some judgment as to where we are to stop.”

Evaluating ongoing data is often the job of the Data and Safety Monitor-
ing Board (DSMB), a committee composed of experts not otherwise affiliated
with the trial, who advise the sponsor—typically a government body such
as the National Institutes of Health or a pharmaceutical company—whether
to stop the trial and declare that the experimental treatment is beneficial or
harmful. Such boards often struggle between two sometimes conflicting con-
siderations: the welfare of patients in the trial (so-called “individualethics”)
and the welfare of future patients whose care will be impacted by the results of
the trial (so-called “collective ethics”). Stopping a trial too late means need-
lessly delaying the study participant from receiving the better treatment. On
the other hand, stopping before the evidence is sufficiently strong may fail to
convince the medical community to change its practice or to persuade regu-
latory bodies to approve the product, thus depriving future patients of the
better treatment.

The Cardiac Arrhythmia Suppression Trial (CAST) [CAST89] provides a
classic example of the conflict between individual and collective ethics. CAST
aimed to see whether suppression of cardiac arrhythmias in patients with a
prior heart attack would prevent cardiac arrest and sudden death. Arrhyth-
mias are known to predispose such patients to cardiac arrest and sudden death,
so it seemed biologically reasonable that suppressing arrhythmias should pre-
vent these events. Each prospective participant in CAST received antiarrhyth-
mic drugs in a predetermined order until a drug was found that suppressed
at least 80 percent of the person’s arrhythmias. If such a drug was found, the
patient was randomized to receive either that drug or its matching placebo. If
none was found, the patient was not enrolled in the study. When the study was
designed, many in the medical community believed that arrhythmia suppres-
sion would help prevent cardiac arrest and sudden death; few believed that
suppression could be harmful. Indeed, some experts in the field felt strongly
that the trial was unethical because half of the patients with suppressible
arrhythmias were being denied medication that would suppress their arrhyth-
mias (Moore, 1995 [M95], page 217). The trial was originally designed using
a one-tailed statistical test of benefit. In other words, the possibility of harm
was not even entertained statistically. Before they examined any data, how-
ever, the members of the DSMB recommended including a symmetric lower
boundary for harm.

The DSMB chose to remain blinded to treatment arm when they reviewed
outcome data for the first time on September 16, 1988; that is, they saw the
data separated by arm (antiarrhythmic drug or placebo), but they did not
know which arm was which. All they knew was that three sudden deaths or
cardiac arrests occurred in arm A and 19 in arm B (Table 1.1); they did not
know whether arm A represented the antiarrhythmic drugs or the placebo.

The board reviewed the data and concluded that regardless of the direc-
tion of the results, the board would not stop the trial. If arm A were the
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Table 1.1. Number of arrhythmic deaths/cardiac arrests in CAST as of 9/16/88

Event
Yes No

Arm A 3 573 576
Arm B 19 552 571

22 1125 1147

antiarrhythmic arm, which the board believed, the data were not sufficiently
compelling to conclude benefit. They argued that even if arm A were the
placebo, it was still so early in the life of the trial that the results might not
be convincing enough to change medical practice. Over time, the difference
between arms A and B grew larger. In April 1989, the DSMB unblinded itself
at the request of the unblinded coordinating center. The board discovered
to its surprise and alarm that arm A was indeed the placebo. That is, these
early data indicated that using a drug to suppress arrhythmias was harmful.
The decision to recommend stopping was still difficult. Many in the medical
community “knew” that antiarrhythmic therapy was beneficial (although the
fact that many physicians were willing to randomize patients suggested that
the evidence of benefit was not strong). Some members of the board argued
that the problem was not that too many people were dying on the drugs, but
that too few people were dying on placebo! But the board worried that the
number of events seen thus far, about 5 percent of the number expected by
trial’s end, was unlikely to sway physicians who had been convinced of the
benefit of suppressing arrhythmias. The lower than expected placebo mortal-
ity rate, a common phenomenon in clinical trials, highlights the folly of relying
on historical controls in lieu of conducting a clinical trial like CAST. Though
the DSMB considered the impact on medical practice of stopping the trial,
its primary responsibility was the welfare of the patients in the trial. In April
1989, the board recommended discontinuing encainide and flecainide, the two
drugs that appeared to be associated with the excess events. Two years later,
they recommended stopping the third drug, moricizine [CAST92]. A detailed
account of the DSMB’s deliberations may be found in Friedman et al. (1993)
[FBH93].

Should the CAST DSMB have recommended stopping the trial earlier?
Did they stop too early? In 1989 the board was accused of both errors, but
virtually everyone now agrees that both the decision to stop and the time of
stopping were appropriate.

A second example comes from the Multicenter Unsustained Tachycardia
Trial (MUSTT) (Buxton et al., 1999 [BLF99]), another trial using antiarrhyth-
mic drugs to treat patients with cardiac arrhythmias. The major difference
between CAST and MUSTT was that MUSTT used electrophysiologic (EP)
testing to guide antiarrhythmic treatment. Patients for whom drug therapy
was not successful received an implantable cardiac defibrillator (ICD). Figure
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Fig. 1.1. Early results of the Multicenter Unsustained Tachycardia Trial (MUSTT).
Xs represent deaths and circles represent cardiac arrests.

1.1 shows the early results of MUSTT. Nine of the first 12 events occurred in
the EP-guided arm. The specter of CAST loomed over the DSMB’s deliber-
ations. There were tense discussions, but the DSMB decided the trial should
continue. Ultimately, the DSMB’s decision was vindicated; despite the early
negative trend, by trial’s end the data showed a statistically significant treat-
ment benefit. Had the trial stopped early, both the participants in the trial
and future patients would have received the less beneficial treatment.

Our third example is from the estrogen/progesterone replacement therapy
(PERT) trial of the Women’s Health Initiative (WHI) [WHI02], which com-
pared PERT to placebo in post-menopausal women who still had their uterus
(i.e., women without a hysterectomy). The study was designed as a 12-year
trial. A DSMB charged with monitoring the trial met twice yearly to review
the safety and efficacy of PERT. The trial had a number of endpoints and
hypotheses—the most important being that PERT would decrease the rate of
heart attack, hip fracture, and colorectal cancer while it would increase the
rate of pulmonary embolism, invasive breast cancer, and endometrial cancer.
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The DSMB made no prior hypothesis about the effect of PERT on stroke, al-
though it monitored its occurrence. During the course of the trial, the DSMB
noted that most interim findings were consistent with the hypotheses; how-
ever, the rates of heart attack and stroke in the PERT arm were higher than in
the placebo arm. The DSMB recommended stopping the study 3 years before
the planned end when it judged that the overall risks of therapy outweighed
the overall benefits.

How does one determine whether emerging trends are real or merely reflect
the play of chance? Repeated examination of accumulating data increases the
probability of declaring a treatment difference even if there is none. Just as our
confidence in a dart thrower who hits the bull’s-eye is eroded if we learn he had
many attempts, so too is our confidence about a true treatment effect when
the test statistic has had many “attempts.” How to take this into account
through the construction of statistical boundaries is the topic of this book.

All three of the introductory examples have dealt with harm—in the case of
CAST and WHI, the treatments led to worse outcomes than did the placebo.
In the MUSTT trial, the early interim data suggested harm, but the DSMB—
not convinced by the apparent trend—allowed the trial to continue and ulti-
mately the treatment showed benefit. In designing a trial, we hope and expect
that the treatment under study provides benefit, but we must be alert to the
possibility of harm. This asymmetrical tension between harm and benefit un-
derlies much of the discussion in the subsequent chapters. We will be describ-
ing methods for creating statistical boundaries that correct for the multiple
looks at the data. In considering these methods, the reader needs to recognize
intellectually and emotionally that emerging data differ from data at the end
of a trial. Emerging data form the basis of decisions about whether to continue
a trial; data at the end of a trial form the basis of inference about the effect of
the treatment. The considerations about emerging data for safety and efficacy
differ fundamentally. For efficacy, a clinical trial needs to show, to a degree
consistent with the prespecified type 1 error rate, that the treatment under
study is beneficial. In other words, the trial aims to “prove” efficacy. On the
other hand, trials do not aim to “prove” harm; few people would agree to
enter a trial if they knew its purpose was to demonstrate that a new therapy
was harmful.

This difference between benefit and harm has direct bearing on the way to
regard the “upper” and “lower” monitoring boundaries. Crossing the upper
boundary demonstrates benefit while crossing the lower boundary suggests,
but does not usually demonstrate, harm. The difference also bears on whether
to perform one-sided or two-sided tests. Consider for a moment the typical
nonsequential scientific experiment. Sound scientific principles dictate two-
sided statistical testing in such cases, for the experimenter would be embar-
rassed to produce data showing the experimental arm worse than the control
but being forced by a one-sided test to conclude that the two treatments do
not differ from each other. Thus, the typical nonsequential experiment uses a
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symmetrical two-sided test of the null hypothesis that the two treatments are
the same against the alternative that they differ.

In a prototypical sequential randomized clinical trial, on the other hand,
the DSMB looks at the data several times during the course of the study. The
trial compares a new treatment to placebo (or often, a new treatment plus
standard of care to placebo plus standard of care). The participant, before
enrolling in the trial, signs an informed consent document that describes the
risks and potential benefits of the new therapy. The document states that while
physicians do not know whether the experimental treatment is beneficial, data
from previous studies provide hope that it may be. The document lists the
known risks the participant might incur by virtue of entering the study. In a
trial with a DSMB, the informed consent document states that if data during
the course of the trial emerge that change the balance of risk to benefit, the
study leadership will so inform the participants.

The informed consent document represents an agreement between the
participant and the trial management whereby the participant volunteers to
show whether the treatment under study is beneficial. For statisticians, this
informed consent document provides the basis for the development of our
technical approaches to monitoring the emerging data. Therefore, the up-
per boundary of our sequential plans must be consistent with demonstrating
benefit. Throughout this book, we stress the need for statistical rigor in cre-
ating this upper boundary. Note that the fact of interim monitoring forces the
boundary to be one-sided; we stop if we show benefit, not merely if we show
a difference.

The lower boundary dealing with harm is also one-sided, but its shape
will often differ considerably from that of its upper partner’s. It is designed
not to prove harm, but to prevent participants in the trial from incurring
unacceptable risk. In fact, a given trial may have many lower boundaries, some
explicit but some undefined. One can regard a clinical trial that compares a
new treatment to placebo or to an old treatment as having one clearly defined
upper one-sided boundary—the one whose crossing demonstrates benefit—
and a number of less well defined one-sided lower boundaries, the ones whose
crossing worries the DSMB.

Most of this book deals with the upper boundary, for it reflects the statis-
tical goals of the study and allows formal statistical inference. But the reader
needs to recognize that considerations for building the lower boundary (or
for monitoring safety in a study without a boundary) differ importantly from
the approaches to the upper boundary. The preceding discussion has assumed
that the trial under consideration is comparing a new therapy to an old, or to
a standard, therapy. Some trials are designed for other purposes where sym-
metric monitoring boundaries are appropriate. A trial may be comparing two
or more therapies, all of which are known to be effective, to determine which
is best. Equivalence or non-inferiority trials aim to show that a new treatment
is not very different from an old (the “equivalence trial”) or not unacceptably
worse than the old (the “noninferiority trial”).
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The sequential techniques discussed in subsequent chapters have sprung
from a long history of a methodology originally developed with no thought to
clinical trials. The underlying theoretical basis of sequential analysis rests on
Brownian motion, a phenomenon discovered in 1827 by the English botanist
Robert Brown, who saw under the microscope that pollen grains suspended
in water jiggled in a zigzag path. In 1905 Albert Einstein developed the first
mathematical theory of Brownian motion, a contribution for which he received
the Nobel prize. As the reader will see, Brownian motion is the unifying math-
ematical theme of this book.

The methods of sequential analysis in statistics date from World War II
when the United States military was looking for methods to reduce the sample
size of tests of munitions. Wald’s classic text on sequential analysis led to
the application of sequential methods to many fields (Wald, 1947 [W47]).
Sequential methods moved to clinical trials in the 1960s. The early methods,
introduced by Armitage in 1960 and in a later edition in 1975 (Armitage,
1975 [A75]), required monitoring results on a patient-by-patient basis. These
methods were, in many cases, cumbersome to apply. In 1977, Pocock [P77]
proposed looking at data from clinical trials not one observation at a time,
but rather in groups. This so-called group-sequential approach spawned many
techniques for clinical trials. This book presents a unified treatment of group-
sequential methods.
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A General Framework

A randomized clinical trial asks questions about the effect of an interven-
tion on an outcome defined by a continuous, dichotomous, or time-to-failure
variable. While the test statistics associated with these outcomes may appear
quite disparate, they share a common thread—all behave like standardized
sums of independent random variables. In fact, they all have the same asymp-
totic joint distribution over time, provided that we define the time parameter
appropriately. Understanding the distribution of the test statistic over time
is essential because typically we monitor data several times throughout the
course of a trial, with an eye toward stopping if data show convincing evi-
dence of benefit or harm. In clinical trials, the term “monitoring” often refers
to a procedure for visiting clinical sites and checking that the investigators
are carrying out the protocol faithfully and recording the data accurately. In
statistics, and in this book, “monitoring” refers to the statistical process of
assessing the strength of emerging data for making inferences or for estimating
the treatment effect.

This chapter distinguishes between hypothesis testing (Section 2.1) and
parameter estimation (Section 2.2). We begin with simple settings in which
the test statistic and treatment effect estimator are a sum and mean, respec-
tively, of independent and identically distributed (i.i.d.) random variables. We
show that in less simple settings, the test statistic and treatment effect esti-
mator behave as if they were a sum and mean, respectively, of i.i.d. random
variables. This leads naturally to the concept of a sum process (S-process)
behaving like a sum and an estimation process (E-process) behaving like a
sample mean. Following the approach of Lan and Zucker (1993) [LZ93] and
Lan and Wittes (1988) [LW88], we show the connection between S-processes,
E-processes, and Brownian motion. We use Brownian motion to approximate
the joint distribution of repeatedly computed test statistics over time for many
different trial settings, including comparisons of means, proportions, and sur-
vival times, with or without adjustment for covariates. Because of our exten-
sive use of Brownian motion, we were tempted to subtitle this chapter “Brown
v. the Board of Data Monitoring.”
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This chapter, which presents the general framework for the rest of the
book, is necessarily long. The reader may prefer to read the first three sec-
tions containing the essential ideas applied to tests of means, proportions, and
survival, and then proceed to the next chapter showing how to apply Brow-
nian motion to compute conditional power. The reader may then return to
this chapter to see how to use the same ideas in more complicated settings
such as maximum likelihood or minimum variance estimation, or even mixed
models. While digesting the next sections, the reader should keep in mind the
essential idea throughout this chapter—test statistics and estimators behave
like sums and sample means, respectively, of i.i.d. random variables.

Lest the reader get the wrong impression that Brownian motion, like grav-
ity, always works, we close the chapter with an example in which Brownian
motion fails to provide a good approximation to the joint distribution of a
test statistic over time.

2.1 Hypothesis Testing: The Null Distribution of Test
Statistics Over Time

This section focuses on the null distribution of test statistics over time, while
the next section deals with the distribution under an alternative hypothesis.
We begin with paired data assuming the paired differences are independent
and identically distributed normals with known variance. Because this ideal
setting rarely holds in clinical trials, we then back away from these assump-
tions, one by one, to see which are really necessary.

2.1.1 Continuous Outcomes

Imagine a trial with a continuous outcome, and suppose first that the data are
paired. For example, the data might come from a crossover trial studying the
effects of two diets on blood pressure, or from a trial comparing two different
treatments applied directly to the eyes, one to the left eye and the other to the
right. Let Xi and Yi be the control and treatment observations, respectively,
for patient i and letDi = Yi−Xi. Assume that theDi are normally distributed
with mean δ and known variance σ2. We wish to test whether δ = 0.

At the end of the trial the z-score is

ZN = vN
−1/2

N∑

i=1

Di, (2.1)

where SN =
∑N

i=1Di and vN = var(SN ) = Nvar(D1). Treatment is declared
beneficial if ZN > zα/2, where za, for 0 < a < 1, denotes the 100(1 − a)th
percentile of a standard normal distribution.

Now imagine an interim analysis after n of the planned N observations in
each arm have been evaluated. Note that



2.1 Hypothesis Testing: The Null Distribution of Test Statistics Over Time 11

ZN = {Sn + SN − Sn}/
√
vN

= Sn/
√
vN + (SN − Sn)/

√
vN (2.2)

is the sum of two independent components. We call the first term of (2.2) the
B-value because of its connection to Brownian motion established later in this
chapter. We term the ratio

t = vn/vN = var(Sn)/var(SN ) (2.3)

the trial fraction because it measures how far through the trial we are. In
this simple case, t simplifies to n/N , the fraction of participants evaluated
thus far; t = 0 and t = 1 correspond to the beginning and end of the trial,
respectively.

Denote the interim z-score Sn/v
1/2
n at trial fraction t by Z(t). Define the

B-value B(t) at trial fraction t by

B(t) =
Sn√
vN

(2.4)

=
√
tZ(t). (2.5)

We could monitor using either the z-score or the B-value; in this book we use
both. We use z-scores for setting boundaries (i.e., calculations assuming the
null hypothesis is true), whereas for deciding whether observed results follow
the expected trend (i.e., calculations assuming the alternative hypothesis is
true), we find it advantageous to think in terms of B-values.

At the end of the trial, B(1) = Z(1) = SN/v
1/2
N , so (2.2) becomes

B(1) = B(t) + {B(1) −B(t)}. (2.6)

The decomposition (2.2) leading to (2.6) clearly implies that B(t) and B(1)−
B(t) are independent (note, however, that the forthcoming derivation of the
covariance structure of B(t) is valid even when B(t) and B(1) − B(t) are
uncorrelated, but not independent). At trial fraction t, B(t) reflects the past
while B(1) −B(t) lies in the future.

More generally, let t0 = 0, t1 = n1/N, . . . , tk = nk/N and let B(t0) =
0, B(t1) = Sn1/v

1/2
N , . . . , B(tk) = Snk/v

1/2
N be interim B-values at trial frac-

tions t0 = 0, t1, . . . , tk. Then the successive increments B(t1) − B(t0) =
Sn1/v

1/2
N , B(t2) − B(t1) = (Sn2 − Sn1)/v

1/2
N , . . . , B(tk) − B(tk−1) = (Snk −

Snk−1)/v
1/2
N are independent because they involve nonoverlapping sums. Fur-

ther, (2.5) implies that

var{B(t)} = t var{Z(t)} = t.

For ti ≤ tj ,
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cov{B(ti), B(tj)} = cov{Sni/v
1/2
N , Snj/v

1/2
N }

= v−1
N cov{Sni , Sni + Snj − Sni}

= v−1
N {cov(Sni , Sni) + cov(Sni , Snj − Sni)}

= v−1
N {var(Sni) + 0} = vni/vN = ti. (2.7)

Thus, the distribution of B(t) has the following structure:

• B1: B(t1), B(t2), . . . , B(tk) have a multivariate normal distribution.
• B2: E{B(t)} = 0.
• B3: cov{B(ti), B(tj)} = ti for ti ≤ tj.

Properties B1-B3 and relationship (2.5) confer the following properties to
z-scores:

• Z1: Z(t1), Z(t2), . . . , Z(tk) have a multivariate normal distribution.
• Z2: E{Z(t)} = 0.
• Z3: cov{Z(ti), Z(tj)} = (ti/tj)1/2 for ti ≤ tj.

We have been somewhat loose in that we have defined B(t) only at trial
fraction values t = 0, 1/N, . . . , N/N = 1. That the set of points at which we
defined the B-value depends on N suggests that we really should use the no-
tation BN (t). The natural way to extend the definition of BN (t) to the entire
unit interval is by linear interpolation: if t = λ(i/N ) + (1 − λ){(i + 1)/N},
we define BN (t) to be λBN (i/N ) + (1 − λ)BN{(i + 1)/N}. This makes
BN (t) continuous on t ∈ (0, 1) but nondifferentiable at the “sharp” points
t = 0, 1/N, . . . , N/N = 1. As N → ∞, the set of t at which BN (t) is non-
differentiable becomes more and more dense. In the limit, we get standard
Brownian motion, a random, continuous, but nondifferentiable, function B(t)
satisfying B1-B3 (Figure 2.1).

The approach we take throughout the book is first to transform a probabil-
ity involving z-scores ZN (t) to one involving B-values BN (t) = t1/2ZN (t), and
then to approximate that probability by one involving the limiting Brownian
motion process, B(t) = limN→∞BN (t). A major advantage to this approach
is that properties and formulas involving Brownian motion are well known,
having been studied extensively by mathematicians and physicists. The fol-
lowing example demonstrates in detail the process of using Brownian motion
to approximate probabilities of interest. In the future, we jump right to B(t),
eliminating the intermediate step of arguing that probabilities involvingBN (t)
can be approximated by those of B(t).

Example 2.1. Consider a trial comparing two different treatments for the
eye. Each volunteer receives treatment 1 in one randomly selected eye and
treatment 2 in the other. The outcome for each volunteer is the difference
between the results from the eye treated with treatment 1 and the eye
treated with treatment 2. Suppose we take an interim analysis after 50 of
the 100 planned patients are evaluated, and the paired t-statistic is 1.44.
The sample size is sufficiently large to regard the t-statistic as a z-score.
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Fig. 2.1. Top panel: The B-value BN (t) for a trial with N = 8 pairs; B8(t) is
defined by linear interpolation for t other than i/8, i = 0, . . . , 8. The resulting
random function is continuous everywhere but not differentiable at the “sharp”
points t = i/8, i = 0, . . . , 8. Bottom panel: As the sample size N increases, the set
of points at which BN (t) is not differentiable becomes denser. The limiting case of
BN(t) as N → ∞ is Brownian motion, a random function continuous everywhere
but differentiable nowhere, satisfying B1-B3. This nondifferentiability reflects the
zigzagging Brown noted when he looked at pollen through his microscope (see the
end of Chapter 1).

The trial fraction is t = 50/100 = 0.50, so Z(0.50) = 1.44. The B-value is
B(0.50) = (0.50)1/2(1.44) = 1.018. We can approximate the joint distribution
of the interim and final B-values, B100(0.50) and B100(1), by those of B(0.50)
and B(1), where B(t) is Brownian motion. For example, we could compute
boundaries a1 and a2 such that Pr(B(0.50) ≥ a1) = 0.01 and Pr(B(0.50) ≥
a1 ∪B(1) ≥ a2) = 0.05 (equivalently, z-score boundaries c1 and c2 such that
Pr(Z(0.50) ≥ c1) = 0.01 and Pr(Z(0.50) ≥ c1 ∪ Z(1) ≥ c2) = 0.05). We
can also use Brownian motion to compute more complicated probabilities
such as the effect on type 1 error rate of monitoring continuously from now
to the end of the trial without adjusting for multiple looks (i.e., using criti-

t

0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1

-.5

0

.5

1

B
8
(t

)

t

B
(t

)

0 1

-.5

0

.5

1



14 2 A General Framework

cal value 1.96). The actual type 1 error rate, Pr(Z100(i/N ) ≥ 1.96 for some
i = 50, 51, . . ., 100), can be approximated by Pr(B(t)/t1/2 ≥ 1.96 for some
1/2 ≤ t ≤ 1).

Our next step is to show that Brownian motion approximates the null
distribution over t for many other testing scenarios. We reexamine the as-
sumptions in Section 2.1.1 to see which ones we can relax.

First, the differences need not be normally distributed. Even if D is not
normally distributed, the increments are independent and, by the central limit
theorem (CLT), each increment is approximately normally distributed. Con-
sequently, the joint distribution of partial sums is approximately multivariate
normal even if the individual observations are not normally distributed.

Second, the sample variance need not be known. As we argued in the ex-
ample above, Brownian motion holds approximately even if vn is a consistent
estimate of var(Sn) (that is, var(Sn)/vn tends to 1 in probability—see Section
2.9.1 for a formal proof).

Third, we do not need paired observations, as we illustrate in the next
section.

2.1.2 Dichotomous Outcomes

Consider a parallel arm trial with a dichotomous outcome such as 28-day
mortality. Denote by I(A) the indicator function taking the value 1 if the
event A occurs and 0 otherwise. Although the data are not paired differences,
we can view the difference in proportions after n patients per arm as Sn/n,
where Sn is the sum of n paired differences (we get the same difference in
proportions irrespective of how we pair treatment and control observations).
The observations Di = I(patient i of treatment arm has an event)− I(patient
i of control arm has an event), i = 1, . . . , N are i.i.d. with null mean 0 and
variance 2p(1 − p), where p is the null probability that a randomly selected
patient has an event. The z-statistic at the end of the trial is given by (2.1),
where vN = var(SN ) = 2Np(1 − p) is the null variance of SN . As the true p
is unknown, to compute the z-score one replaces p by the sample proportion
of all patients with events. The result is the usual (unpaired) z-statistic for a
test of proportions. Decomposition (2.2) still holds. Define t by (2.3), which
again simplifies to n/N . Brownian motion is again a good approximation for
B(t) defined by (2.4). Also, the joint distribution of z-scores is asymptotically
the same for a dichotomous outcome trial as for a continuous outcome trial.
We can use the same boundaries to monitor either type of trial.

Of course, we do not actually pair the data from a parallel arm trial. In
fact, it is unusual for the control and treatment sample sizes to be exactly the
same even at the end of a trial, let alone at all interim analyses. Later we will
see how to use Brownian motion even in the unequal sample size setting.

Example 2.2. Suppose we design a trial of 200 breast cancer patients randomly
assigned in a 1:1 ratio to the standard treatment plus a new treatment or to
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the standard treatment plus placebo. We want to compare the proportion of
patients whose tumor regresses by 3 months after randomization. Interim anal-
yses occur after 50, 75, and 100 patients per arm have been evaluated. The
corresponding trial fractions are t1 = 50/100 = 0.50, t2 = 75/100 = 0.75,
and t3 = 100/100 = 1. If the z-scores for the usual test of proportions
are Z(0.50) = 0.55, Z(0.75) = −0.20, and Z(1) = 0.23, the B-values are
B(0.50) = (0.50)1/2(0.55) = 0.389, B(0.75) = (0.75)1/2(−0.20) = −0.173,
and B(1) = (1)1/2(0.23) = 0.230. The joint distribution of B(0.50), B(0.75),
and B(1), and therefore the joint distribution of Z(0.50), Z(0.75), and Z(1),
is the same as for a trial with a continuous outcome monitored at those trial
fractions. Any boundary developed for continuous outcome trials would be
valid for this dichotomous outcome trial as well. For any z-score bound-
ary c1, c2, and c3 we could compute the probability of crossing at various
times. For example, suppose the upper boundary is c1 = 2.963, c2 = 2.359,
and c3 = 2.014. The probability of crossing the boundary at t = 0.50 is
Pr(Z(0.50) ≥ 2.963) = 1 − Φ(2.963) = 0.0015. The cumulative probability
of crossing by the second look depends on the joint distribution of Z(0.50)
and Z(0.75), which by properties Z1-Z3 is bivariate normal with zero means,
unit variances, and covariance (0.50/0.75)1/2 = 0.816. We can use numerical
integration (described in Section 4.7) to show that the cumulative crossing
probability by t = 0.75 is Pr[{Z(0.50) ≥ 2.963}∪{Z(0.75)≥ 2.359}] = 0.0097.
Similarly, for the cumulative crossing probability by t = 1, we use the fact
that

cov{Z(0.50), Z(0.75)} = 0.816
cov{Z(0.50), Z(1)} = (0.50/1)1/2 = 0.707
cov{Z(0.75), Z(1)} = (0.75/1)1/2 = 0.866.

The cumulative crossing probability by t = 1 is Pr[{Z(0.50) ≥ 2.963} ∪
{Z(0.75) ≥ 2.359} ∪ {Z(1) ≥ 2.014}] = 0.025.

We next relax the assumption of independent observations. Notice that the
steps leading to (2.7) remain valid even if the Dis are merely uncorrelated.
Thus, even when the observations are uncorrelated but not independent, the
B-values have the same correlation structure as Brownian motion. If we are
willing to accept that the joint distribution of the B-values is asymptotically
multivariate normal, then it must be that of Brownian motion. In the next
section, we apply this idea to comparison of survival curves using the logrank
statistic.

2.1.3 Survival Outcomes

In many clinical trials, the outcome is the time to some event. For simplicity,
assume the event is death so that each person can only have one event; the
same ideas apply for events that can recur, but in those cases we restrict
attention to the first event for each patient. We use the logrank statistic to
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compare the treatment and control arms. Assume for now that all patients
are randomized simultaneously. We show that the logrank statistic is also
of the form (2.1) for uncorrelated, mean 0 random variables Di. Brownian
motion can approximate its null joint distribution at different analysis times.
See Chapter 13 for further discussion of the logrank and related tests.

Let N be the total number of deaths at the end of the trial instead of
the per-arm sample size. The numerator of the logrank statistic at the end
of the trial is

∑N
i=1Di, where Di = Oi − Ei, Oi is the indicator that the ith

death occurred in a treatment patient, and Ei = m1i/(m0i +m1i) is the null
expectation of Oi given the respective numbers, m0i and m1i, of control and
treatment patients at risk just prior to the ith death. Conditioned on m0i and
m1i, Oi has a Bernoulli distribution with parameter Ei. The null conditional
mean and variance of Di are 0 and Vi = Ei(1 −Ei), respectively.

We show in Section 2.9.3 that, unconditionally, the Di are uncorrelated,
mean 0 random variables with variance E(Vi) under the null hypothesis.
Thus, conditioned on N , vN = var(SN ) =

∑N
i=1 var(Di) =

∑N
i=1 E(Vi) =

E(
∑N

i=1 Vi). The logrank statistic is given by (2.1), where vN is replaced by
its estimate

∑N
i=1 Vi.

In the setting of survival, we should define the trial fraction in terms of
patients with events rather than patients evaluated. Suppose we examine the
data after n deaths. If we condition on N and n and define the trial fraction
by (2.3), the covariance structure of Brownian motion holds. For now, assume
that the joint distribution of B(t1), . . . , B(tk) is approximately multivariate
normal. Then Brownian motion is again a good approximation to the process
B(t). A practical problem is that at the interim analysis, we would not know
vN even if we knew with certainty the number, N , of patients with an event
by the end of the trial. We can, however, approximate vN as follows. Under
the null hypothesis, E(Vi) = E{Ei(1 − Ei)} ≈ (1/2)(1 − 1/2) = 1/4. We
find this result quite remarkable—without making any assumption about the
form of the survival curve, this simple argument shows that the variance of
Di is approximately 1/4. It follows that vN ≈ N/4. This calculation leads to
the familar estimate t = n/N . In other words, for the logrank test, the trial
fraction is the ratio of the number of patients with an event thus far to the
number expected by trial’s end.

Example 2.3. Consider a trial comparing mortality of lung cancer patients on
a new treatment plus the standard treatment compared to placebo plus the
standard treatment. Assume 200 deaths expected over the 2-year trial, and
monitoring every 6 months. The total numbers of deaths at the first three looks
were 20, 50, and 122, so the estimated trial fractions were t1 = 20/200 = 0.10,
t2 = 50/200 = 0.25, and t3 = 122/200 = 0.61. The values of the lo-
grank statistic at these looks were Z(0.10) = −0.162, Z(0.25) = 0.258,
and Z(0.61) = 1.384, so the B-values were (0.10)1/2(−0.162) = −0.051,
B(0.25) = (0.25)1/2(0.258) = 0.129, and B(0.61) = (0.61)1/2(1.384) = 1.081.
Under the null hypothesis, these B-values behave like Brownian motion. Sup-
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pose we constructed boundaries c1, c2, and c3 such that

Pr(Z(0.10) ≥ c1 ∪ Z(0.25) ≥ c2 ∪ Z(0.61) ≥ c3) = 0.01.

But imagine that when we reached the end of the trial, we had 190 in-
stead of the expected 200 deaths. Thus, the “right” trial fractions at ear-
lier looks should have been t1 = 20/190 = 0.105, t2 = 50/190 = 0.263, and
t3 = 122/190 = 0.642. The actual probability of crossing at least one earlier
boundary should have been

Pr(Z(0.105) ≥ c1 ∪ Z(0.263) ≥ c2 ∪ Z(0.642) ≥ c3). (2.8)

Fortunately, this discrepancy does not present a problem because the null
joint distribution of Z(t1), Z(t2), Z(t3) is multivariate normal with marginal
mean 0 and variance 1, and cov{Z(ti)/Z(tj)} = (ti/tj)1/2. This distribution
depends on the trial fractions only through their ratios. The ratio of trial
fractions is invariant to how many events we thought there would be at the
end; e.g., (20/200)/(50/200) = (20/190)/(50/190) = 20/50. Thus, the correct
probability of crossing an earlier boundary, (2.8), is also 0.01. We will see this
invariance property many more times.

We used some sleight of hand in concluding that (B(t1), . . . , B(tk)) is ap-
proximately multivariate normal in the survival setting. Because

∑N
i=1Di is a

sum of uncorrelated but not independent observations, we can no longer rely
on the central limit theorem to conclude that the asymptotic marginal dis-
tribution of

∑N
i=1Di is normal. Furthermore, asymptotic marginal normality

of
∑N

i=1Di does not necessarily imply asymptotic multivariate normality of
(
∑n1

i=1Di, . . . ,
∑nk

i=1Di), as it did in the clinical trial scenarios in which the
Dis were independent. Things get even more complicated if we account for
the fact that in most trials participants are recruited over time (staggered
entry) instead of all at once. A more rigorous treatment accounting for these
factors requires a stochastic process formulation. Using such a formulation,
one can show that the simple result obtained above holds under staggered
entry as well. That is, B(t) = t1/2Z(t) behaves asymptotically like Brownian
motion, where the trial fraction t is the ratio of the number of patients with an
event thus far to the number expected by trial’s end, and Z(t) is the logrank
statistic at trial fraction t.

2.1.4 Summary of Sums

In the clinical trial scenarios considered thus far, the test statistic was a sum
of either independent or uncorrelated observations. In either case, we adopted
the following approach to convert the statistic to a B-value:

Approach 1. We transform a sum of independent or uncorrelated random
variables to a B-value B(t) having the same correlation structure as Brownian
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motion by dividing the current sum Sn by the standard deviation of the sum
SN at the end of the trial. The time parameter t of B(t) is the trial fraction
t = var(Sn)/var(SN ).

If the random variables are i.i.d., the same force that causes the z-statistic to
be asymptotically standard normal—namely the central limit theorem—also
causes the asymptotic joint distribution of B-values to be that of Brownian
motion. In fact, the result holds even if the random variables are independent
but not identically distributed (proof in Section 2.9.2).

Result 2.1 Let SN be a sum of independent (not necessarily identically dis-
tributed) random variables with mean 0, and let ni → ∞ and N → ∞ such
that vni/vN → ti, i = 1, . . . , k. Then the joint distribution of the B-values
from Approach 1 is asymptotically that of Brownian motion if and only if the
marginal distribution of the z-statistic is asymptotically standard normal.

2.2 An Estimation Perspective

2.2.1 Information

In each scenario above, we were able to write the test statistic in terms of a
sum Sn =

∑n
i=1Di, but testing whether the treatment effect is 0 is only one

facet of inference; we are also interested in estimating the size of the treat-
ment effect. Thus, we must determine the joint distribution of the treatment
effect estimator δ̂ across different interim analyses. In the simplest setting,
which involves paired data D1, . . . , Dn, the treatment effect estimator δ̂ is a
sample mean D̄. The joint distribution of δ̂1, . . . , δ̂k with n1, . . . , nk pairs is
multivariate normal with marginal mean δ and covariance

cov(δ̂i, δ̂j) = (ninj)−1cov

(
ni∑

r=1

Dr,

nj∑

r=1

Dr

)

= (ninj)−1cov

(
ni∑

r=1

Dr,

ni∑

r=1

Dr +
nj∑

r=ni+1

Dr

)

= (ninj)−1

{
cov

(
ni∑

r=1

Dr ,

ni∑

r=1

Dr

)
+ cov

(
ni∑

r=1

Dr ,

nj∑

r=ni+1

Dr

)}

= (ninj)−1

{
var

(
ni∑

r=1

Dr

)
+ 0

}

= (ninj)−1niσ
2 = σ2/nj

= var(δ̂j). (2.9)

Equation (2.9) shows the covariance of δ̂ over time when δ̂ is a sample mean;
however, when the treatment and control sample sizes differ, the treatment
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effect estimator δ̂ = ȲT − X̄T is not a sample mean. Can we nonetheless view
δ̂ as being like a sample mean even when the numbers nT and nC of treatment
and control observations differ? If so, then a mean of how many observations?
Let us assume that δ̂ behaves like a sample mean of, say, I i.i.d. observations
with mean δ and variance 1. Then E(δ̂) = δ and var(δ̂) = 1/I. Solving for I
yields

I = 1/var(δ̂). (2.10)

Think of δ̂ as a sample mean and I as its sample size, even though I need not
be an integer. Note that δ̂ has the same expectation and variance as a sample
mean of I i.i.d. observations with mean δ and variance 1. We will show later
that δ̂ computed at different interim analyses also has the same covariance as
a sample mean computed at those analysis times. I defined by (2.10) is called
the information contained in δ̂, which can be interpreted as the number of
independent observations with expectation δ and variance 1 whose sample
mean has the same precision as δ̂.

In the continuous outcome scenario with treatment and control sample
sizes nT and nC , the information contained in δ̂ = Ȳ − X̄ is

I = {σ2(1/nT + 1/nC)}−1 = nTnC/{(nT + nC)σ2}.

I decreases as σ2 increases, and for a fixed total sample size nT + nC , I
increases as the disparity between nT and nC decreases.

Although information is interesting in its own right, we return to our goal
of showing that δ̂ behaves like a sample mean of I i.i.d. random variables with
mean δ and variance 1. We showed that this holds marginally, but we now
show that the covariance over time of δ̂ is also that of a sample mean. The
covariance over time for a sample mean was given by (2.9), which in view of
(2.10) may be rewritten as

cov(δ̂i, δ̂j) = 1/Ij. (2.11)

That is, the covariance between sample means at two different times is the
inverse of the information at the later time.

Returning to the estimator δ̂ = Ȳ − X̄ , let (nTi, nCi) and Ii be the
(Treatment, Control) sample sizes and information, respectively, at the ith
interim analysis. Then for i ≤ j,

cov(δ̂i, δ̂j) = cov

{
1
nTi

nT i∑

r=1

Yr −
1
nCi

nCi∑

r=1

Xr ,
1
nTj

nT j∑

r=1

Yr −
1
nCj

nCj∑

r=1

Xr

}

=
1

nTinTj
cov

{
nTi∑

r=1

Yr ,

nTj∑

r=1

Yr

}
− 1
nTinCj

cov

{
nT i∑

r=1

Yr ,

nCj∑

r=1

Xr

}

− 1
nCinTj

cov

{
nCi∑

r=1

Xr ,

nTj∑

r=1

Yr

}
+

1
nCinCj

cov

{
nCi∑

r=1

Xr ,

nCj∑

r=1

Xr

}
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=
nTiσ

2

nTinTj
− 0 − 0 +

nCiσ
2

nCinCj

= σ2

(
1
nTj

+
1
nCj

)

= var(δ̂j)
= 1/Ij. (2.12)

Equation (2.12) shows that, just as with a sample mean, the covariance of δ̂
computed at different times is the inverse of the information at the later time.

The same thing happens with binary data (Section 2.1.2), where the
information in δ̂ = p̂T − p̂C is {pT (1 − pT )/nT + pC(1 − pC)/nC}−1 =
nTnC/{nCpT (1 − pT ) + nTpC(1 − pC)}. Again, (2.11) holds.

No estimator was immediately apparent for survival data (Section 2.1.3),
but one was actually lurking in the background. For each i, (Oi−Ei)/Vi is an
estimate of the log hazard ratio (see the Statistical Appendix of Yusuf et al.,
1985 [YPL85] for a heuristic justification of a closely related odds ratio esti-
mate) with estimated variance 1/Vi. We combine these uncorrelated estimates
by weighting inversely proportionally to their variance:

δ̂ =
∑n

r=1 Vr{(Or −Er)/Vr}∑n
r=1 Vr

= Sn/v̂n,

where Sn =
∑

r(Or − Er) and v̂n =
∑n

r=1 Vr is an estimate of vn =∑n
r=1 E(Vr). It can be shown that v̂n/n converges to a constant just as in

Sections 2.1.1 and 2.1.2. Thus, we can treat v̂n as if it were vn;

var(δ̂) ≈ v−2
n var(Sn) = v−2

n vn = 1/vn,

and information is approximately I = vn, estimated by v̂n. Again δ̂ behaves
like a mean of I i.i.d. observations with expectation δ and variance 1; δ̂ has
mean δ and variance 1/I. Furthermore, for Ii = vni ≤ Ij = vnj ,

cov(δ̂i, δ̂j) = cov

(
(1/Ii)

ni∑

r=1

Dr , (1/Ij)
nj∑

r=1

Dr

)

= (IiIj)−1cov

(
ni∑

r=1

Dr ,

ni∑

r=1

Dr +
nj∑

r=ni+1

Dr

)

= (IiIj)−1

{
var

(
ni∑

r=1

Dr

)
+ cov

(
ni∑

r=1

Dr ,

nj∑

r=ni+1

Dr

)}

≈ (IiIj)−1{vni + 0}
= (IiIj)−1Ii
= 1/Ij. (2.13)

Equation (2.13) shows that the covariance of log hazard ratio estimators com-
puted at two different times is the same as for a sample mean, namely the
inverse of the information at the later time.
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The reason for the ≈ in the fourth line of the derivation of (2.13) is that
we are no longer assuming the null hypothesis, and the Dr are not uncorre-
lated under the alternative hypothesis. Still, under a local alternative (loosely
speaking, an alternative “near” the null hypothesis—see Section 2.9.4), the
Dr are approximately uncorrelated.

2.2.2 Summary of Treatment Effect Estimators

With the t-test, the test of proportions, or the logrank test, the treatment
effect estimator computed at k different interim analyses behaves just like
cumulative sample means. It is cumbersome and vague to repeat each time
we discuss estimation that the treatment effect estimator “behaves like” a
sample mean of i.i.d. observations with expectation δ and variance 1. Instead,
we follow the approach of Lan and Zucker (1993) [LZ93], spelling out precisely
what we mean by “behaves like” a sample mean, and attaching a name to
processes with these properties. Let τ be any measure of how far through the
trial we are, scaled such that τ = 0 and τ = 1 at the beginning and end of
the trial, respectively. For example, τ may be the calendar fraction (e.g., the
6-month point of a 5-year trial corresponds to τ = 1/10). Let the increasing
function I(τ ) denote the information at time τ . What we mean when we
say that δ̂(τ ) “behaves like” a sample mean of I(τ ) random variables with
expectation δand variance 1 is that δ̂(τ ) satisfies—at least asymptotically—
the following properties:

• E1: δ̂(τ1), . . . , δ̂(τk) have a multivariate normal distribution,
• E2: E{δ̂(τ )} = δ, and
• E3: cov{δ̂(τi), δ̂(τj)} = var{δ̂(τj)} = 1/I(τj) for i ≤ j.

Lan and Zucker called an estimator satisfying E1-E3 an E-process (E stand-
ing for estimator or estimation) with parameter δ and information function
I(τ ). An arguably better term might be sample mean process because prop-
erties E1-E3 are those of cumulative sample means of I(τ1), . . . , I(τk) obser-
vations. We will soon see that many other estimators are also E-processes.

2.3 Connection Between Estimators, Sums, Z-Scores,
and Brownian Motion

Because the treatment effect estimator for the comparison of means, pro-
portions, or log hazard ratios behaves like a sample mean of I i.i.d. random
variables with expectation δ and variance 1, it stands to reason that Iδ̂ should
behave like a sum of I i.i.d. observations with expectation δ and variance 1.
That is, if δ̂(τ ) is an E-process, then S(τ ) = I(τ )δ̂(τ ) “behaves like” a sum of
I(τ ) i.i.d. random variables with expectation δ and variance 1. By “behaves
like” a sum of I(τ ) i.i.d. random variables with expectation δ and variance 1,
we mean that S(τ ) satisfies—at least asymptotically—
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• S1: S(τ1), . . . , S(τk) have a multivariate normal distribution.
• S2: E{S(τ )} = I(τ )δ.
• S3: For τi ≤ τj, cov{S(τi), S(τj )} = var{S(τi)} = I(τi).

Lan and Zucker (1993) [LZ93] termed S(τ ) an S-Process because it behaves
like a sum. The following result formalizes the notion that the estimator δ̂(τ )
behaves like a sample mean if and only if I(τ )δ̂(τ ) behaves like a sum. We
omit the straightforward proof.

Result 2.2 If δ̂ is an unbiased estimator with information 0 < I(τ ) <∞ for
τ > 0, then δ̂ is an E-process iff I(τ )δ̂ is an S-process.

To emphasize that Iδ̂(τ ) behaves like a sum of I(τ ) random variables, we
use the more suggestive notation SI(τ) for I(τ )δ̂(τ ). Because SI(τ) behaves
like a sum, we try to use Approach 1 to convert to Brownian motion, where
I(τ ) plays the role of the sample size. In Approach 1 we divide the current
“sum” SI(τ) = I(τ )δ̂(τ ) by the standard deviation of the “sum” SI(1) at the
end of the trial: {var(SI(1))}1/2 = {I(1)}1/2. The trial fraction and B-value
are

t = var{SI(τ)}/var{SI(1)}
= I(τ )/I(1) (2.14)

and
B(t) = I(τ )δ̂(τ )/{I(1)}1/2. (2.15)

We call expression (2.14) the information fraction or information time. It
is a generalization of the trial fraction, which was defined only for actual sums,
not S-processes. Henceforth, we dispense with the notion of trial fraction in
favor of the more general information fraction.

We next show that B(t) defined by (2.15) has the properties of Brownian
motion, except that its mean is not 0under the alternative hypothesis. To
see that B(t) has the covariance structure of Brownian motion, note that for
ti = I(τi)/I(1) ≤ tj = I(τj)/I(1),

cov{B(ti), B(tj)} = cov[SI(τi)/{I(1)}1/2, SI(τj )/{I(1)}1/2]
= {I(1)}−1cov(SI(τi), SI(τj ))
= {I(1)}−1I(τi)
= ti.

The mean of B(t) is different from the mean under the null hypothesis. Under
the alternative hypothesis,

E{B(t)} = E[I(τ )δ̂(τ )/{I(1)}1/2]
= I(τ )δ/{I(1)}1/2

= [{I(1)}1/2δ]{I(τ )/I(1)}
= θt,
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where θ = {I(1)}1/2δ is the expected value of the z-score δ̂(1)/[var{δ̂(1)}]1/2 =
{I(1)}1/2δ̂(1) at the end of the trial. B(t) is said to be a Brownian motion
with drift θ. The standard Brownian motion has drift 0.

Instead of beginning with the estimator δ̂(τ ), transforming to a sum,
then transforming to Brownian motion, we could have begun with the z-
score Z(t) = δ̂(τ )/[var{δ̂(τ )}]1/2 = {I(τ )}1/2δ̂(τ ) and multiplied by t1/2 =
{I(τ )/I(1)}1/2 to obtain (2.15). We have essentially proven the following re-
sult.

Result 2.3 (Summary) Let I(τ )/I(1) be the information fraction. We can
convert an E-process, S-process, or Z-process to Brownian motion with drift
θ, the expected value of the z-score at the end of the trial, as follows:

E to B : B(t) = I(τ )δ̂(τ )/{I(1)}1/2

S to B : B(t) = S(τ )/{I(1)}1/2

Z to B : B(t) = t1/2Z(t).

I(τ)δ̂(τ)

S(τ)/{I(1)}1/2 {I(τ)}1/2δ̂(τ)

t1/2Z(t)

Estimator δ̂(τ)

Z-score Z(t)B-value B(t)

Sum S(τ)

Fig. 2.2. Relationship between S-processes, E-processes, z-scores, and Brownian
motion with drift θ, where θ is the expected value of the z-score at the end of the
trial, I(τ) is the information function, and t is the information fraction I(τ)/I(1).

Figure 2.2 summarizes the relationships between S-processes, E-processes,
z-scores, and Brownian motion.

Now that we are not restricting ourselves to the null hypothesis, we see
the advantage of using the B-value instead of the z-score to monitor data.
Because E{B(t)} = θt, it follows that B(t)/t estimates the drift parameter, a
simple transformation of the treatment effect estimate. Geometrically, B(t)/t
is the slope of the line joining the origin to (t, B(t)) (Figure 2.3). We can
easily see whether the treatment effect estimate increases from one interim
look to the next by seeing whether the slope of the line increases. Chapter 3
on conditional power uses the B-value approach extensively.
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Fig. 2.3. Summarizing data with B(t) instead of Z(t) makes it easy to see whether
results are improving over time. The slope of the line segment connecting the origin
to (t,B(t)) is the drift parameter estimate, which is a simple transformation of the
treatment effect estimate; the treatment effect estimate is larger at ti+1 than at tiif
and only if the slope of the line connecting the origin to (ti+1, B(ti+1)) is larger than
the slope of the line connecting the origin to (ti, B(ti)). For the data shown in this
graph, the line segments joining the origin to the circle at (0.50, B(0.50)) and the
origin to the circle at (0.25, B(0.25)) have the same slope, so the treatment effect
estimate at t = 0.50 is the same as at t = 0.25. Deducing this information from the
z-scores (squares) is more difficult.

2.4 Maximum Likelihood Estimation

As discussed previously, many clinical trials use a difference in means or pro-
portions to compare treatments; in other trials, the treatment effect is esti-
mated by maximum likelihood in a model that adjusts for covariates. Analysis
of covariance and logistic regression are the covariate-adjusted analogs of dif-
ferences in means or proportions. To deal with these situations, assume that
we have independent observations X1, . . . , Xn from a distribution with den-
sity f(x, δ). We will show that that the maximum likelihood estimator (MLE)
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δ̂ of the treatment effect is asymptotically an E-process, and therefore can be
converted to Brownian motion. This allows us to apply the results of Sections
2.1 through 2.3. In fact, as we shall demonstrate below, for the same set of
information times, the monitoring boundaries for a trial that uses an MLE as
the outcome are the same as the boundaries of the t-test, a test of proportions,
or the logrank test.

First we review the arguments leading to asymptotic normality of an MLE
at a single time point. Let L(δ) be the log likelihood function:

L(δ) =
n∑

i=1

(∂/∂δ){ln f(Xi, δ)}.

Using a familiar technique, we expand the log likelihood in a Taylor series:

0 = L(δ̂) ≈ L(δ) + L′(δ)(δ̂ − δ)

= L(δ) +
n∑

i=1

(∂2/∂δ2){ln f(Xi, δ)}(δ̂ − δ),

and hence

δ̂ − δ ≈
−L(δ)∑n

i=1(∂2/∂δ2){ln f(Xi , δ)}

=
∑n

i=1(∂/∂δ){ln f(Xi , δ)}∑n
i=1 −(∂2/∂δ2){ln f(Xi, δ)}

≈
∑n

i=1(∂/∂δ){ln f(Xi, δ)}
In

. (2.16)

In the last step, we replaced the denominator by its expectation, In =
−nE[(∂2/∂δ2){ln f(X, δ)}], the Fisher information contained in X1, . . . , Xn.
Multiplying both sides of (2.16) by In results in

In(δ̂ − δ) = Sn +Rn, (2.17)

where Sn = L(δ) =
∑n

i=1(∂/∂δ){ln f(Xi, δ)} is a sum of i.i.d. mean 0 random
variables and Rn is a remainder term. It is not difficult to show that, under
mild conditions, var(Sn) = In. Thus, from (2.17),

In(δ̂ − δ)

I1/2
n

=
Sn

I1/2
n

+
Rn

I1/2
n

I1/2
n (δ̂ − δ) =

Sn√
var(Sn)

+ I−1/2
n Rn. (2.18)

The first term on the right side of (2.18) is asymptotically standard normal
by the central limit theorem, while the second term tends to 0 in probability
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under regularity conditions, so I1/2
n (δ̂ − δ) is asymptotically standard nor-

mal. In other words, δ̂ is asymptotically normal with mean δ and variance
1/In. Marginally at least, δ̂ and Inδ̂ behave like an E-process and S-process,
respectively, with mean δ and information In = In.

Now consider the MLE monitored over time. Equation (2.17) shows that
In(δ̂ − δ) is essentially a sum, and Approach 1 suggests we can convert it to
Brownian motion by dividing by the standard deviation of the sum at the end
of the trial, I1/2

N = {var(SN )}1/2. Let δ̂i denote the MLE at look i, i = 1, . . . , k.
By (2.17),

Ini(δ̂i − δ)

I
1/2
N

=
Sni√

var(SN )
+ I

−1/2
N Rni. (2.19)

Now let ni → ∞ and N → ∞ such that ni/N → ti, i = 1, . . . , k. Each
remainder term I

−1/2
N Rni of (2.19) converges to 0 in probability because

I
−1/2
N Rni = (Ini/IN )1/2I−1/2

ni
Rn

= (ni/N )1/2I−1/2
ni

Rni

→ (t1/2
i )(0) = 0

in probability. Thus, In1(δ̂1−δ)/I
1/2
N , . . . , Ink(δ̂k−δ)/I

1/2
N behaves asymptot-

ically like Sn1/{var(SN )}1/2, . . . , Snk/{var(SN )}1/2, which, in turn, behaves
asymptotically like standard Brownian motion by Result 2.1 and the central
limit theorem. Note that we can rewrite Ini(δ̂i − δ)/I1/2

N as t1/2
i (δ̂i − δ)/σ̂δ̂i

.
In summary:

Result 2.4 (Brownian motion for MLEs with i.i.d. data) Let Xj be i.i.d.
with density f(xj ; δ), and let δ̂i and σ̂δ̂i

denote the MLE and its estimated
standard error, respectively, after ni patients are evaluated, i = 1, . . . , k.
Suppose that ni → ∞ and N → ∞ such that ni/N → ti. Under the
same regularity conditions that imply marginal asymptotic normality of the
MLE, t1/2

1 (δ̂1 − δ)/σ̂δ̂1
, . . . , t

1/2
k (δ̂k − δ)/σ̂δ̂k

have the asymptotic distribu-
tion of standard Brownian motion at t1, . . . , tk. Equivalently, the B-values
B(ti) = t

1/2
i δ̂i/σ̂δ̂i

behave approximately like Brownian motion with drift θ,

where θ = I
1/2
N δ is the expected z-score at the end of the trial.

Essentially the same arguments leading to Result 2.4 can be used even if
the underlying observationsXi are independent but not identically distributed
because Result 2.1 does not require identical distributions. A result analogous
to Result 2.4 holds when the parameter is a vector (Jennison and Turnbull,
1997 [JT97]or Jennison and Turnbull, 2000 [JT00]).

Example 2.4. Consider a trial in which the outcome was the presence of at
least one episode of cardiac ischemia on a Holter monitor—a device recording
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the electrical activity of the heart over a 24-hour period—12 weeks following
randomization. Patients were also monitored with the Holter at baseline, and
investigators wanted to use logistic regression to adjust the 12-week results
for differences in the baseline number of ischemic episodes. The model is

ln{p/(1 − p)} = α+ βu+ δx,

where p is the probability of having ischemia at 12 weeks, u is the baseline
number of epsiodes, and x is the treatment indicator. We parameterize such
that positive z-scores indicate that the treatment is beneficial, so we take x = 1
to mean the control condition. We are interested in testing whether δ = 0 (no
treatment effect). After 200 of the planned 600 patients are evaluated, the es-
timated information fraction is t = 200/600 = 1/3. For simplicity, rather than
using two different time scales τ and t for calendar fraction and information
fraction, we use only information fraction. Thus, we denote the current treat-
ment effect estimator and its estimated standard error by δ̂(1/3) and σ̂δ̂(1/3).

Suppose that δ̂(1/3) = 0.180 and σ̂δ̂(1/3) = 0.153. The z-score and B-value
are Z(1/3) = 0.180/0.153 = 1.176 and B(1/3) = (1/3)1/2(1.176) = 0.679. Be-
cause Z(1/3) has a standard normal distribution under the null hypothesis, we
can easily determine a critical value c1 such that P0{|Z(1/3)| ≥ c1)} = 0.01,
where P0 denotes a probability computed under the null hypothesis. We find
that c1 = 2.576. Suppose that at the end of the trial, the estimated slope
and standard error are δ̂(1) = 0.120 and σ̂δ̂(1) = 0.095. The approximate
joint distribution of the interim and final B-values under true log odds ra-
tio δ is that of B(1/3) and B(1), where B(t) is Brownian motion with drift
θ = E{Z(1)} = δ/σδ̂(1). We estimate θ by δ/0.095, where δ is the true log
odds ratio.

Having reached the end of the trial, we can obtain a more precise estimate
of the information fraction at the first look: t1 = {var(δ̂(1

3
)}−1/{var(δ̂(1)}−1 =

(0.153)−2/(0.095)−2 = 0.386 rather than 1/3. Thus, the approximate joint dis-
tribution of the interim and final B-values is that of B(0.386) and B(1), where
B(t) is Brownian motion with drift θ. As we have seen before, this correcting
of information fractions does not cause a problem for previous boundaries be-
cause the z-score at previous analyses has the same null distribution whether
or not we correct the information times. Thus, the correct null probability
of crossing the boundary at the first look, P0{|Z(0.386)| ≥ 2.576)} = 0.01,
is the same as P0{|Z(1/3)| ≥ 2.576)}. The advantage of using the slightly
more accurate estimate t1 = 0.386 lies in computation of the boundary at the
next look at the end of the trial. We determine c2 such that P0{(|Z(0.386)| ≥
2.576) ∪ (|Z(1)| ≥ c2)} = 0.05. Numerical integration can be used to obtain
c2 = 2.014.

Importantly, the boundaries c1 = 2.576 and c2 = 2.014 for the z-scores
associated with the MLE are the same as for a t-test, test of proportions, or
logrank test at information fractions t1 = 0.386 and t2 = 1.
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2.5 Other Settings Leading to E-Processes and Brownian
Motion

We have seen that many estimators frequently used in clinical trials are E-
processes when monitored over time. Other broad classes of estimators mon-
itored over time are also E-processes, and can therefore be transformed to
Brownian motion using Result 2.3. Sometimes it is possible to argue directly
that δ̂(τ ) satisfies E3, as we now show.

2.5.1 Minimum Variance Unbiased Estimators

Consider a minimum variance unbiased estimator δ̂ in a nonmonitoring setting
(i.e., δ̂ has the smallest variance among all unbiased estimators of δ). Let δ̂(τ )
denote the corresponding minimum variance unbiased estimator monitored
over time τ , 0 ≤ τ ≤ 1. Jennison and Turnbull (1997) [JT97] gave a simple
argument by contradiction that δ̂ must satisfy E3. Note first that condition
E3 can be written in the equivalent way

0 = 1/I(τj) − cov{δ̂(τj), δ̂(τi)}
= var{δ̂(τj)} − cov{δ̂(τj), δ̂(τi)}
= cov{δ̂(τj), δ̂(τj)} − cov{δ̂(τj), δ̂(τi)}
= cov{δ̂(τj), δ̂(τj) − δ̂(τi)}. (2.20)

Thus, E3 is equivalent to

E3′ : cov{δ̂(τj), δ̂(τj) − δ̂(τi)} = 0.

Suppose E3′ did not hold for a minimum variance unbiased estimator δ̂ mon-
itored over time. For example, suppose that cov{δ̂(τj), δ̂(τj) − δ̂(τi)} > 0.
Jennison and Turnbull argued that for small ε > 0, the estimator δ̃ε(τj) =
δ̂(τj)− ε{δ̂(τj)− δ̂(τi)} has smaller variance than δ̂(τj). To see this, note that
var{δ̃ε(τj)} = var{δ̂(τj)} + ε2var{δ̂(τj) − δ̂(τi)} − 2ε cov{δ̂(τj), δ̂(τj) − δ̂(τi)},
so

lim
ε→0

[var{δ̃ε(τj)} − var{δ̂(τj)}]/ε

= lim
ε→0

ε var{δ̂(τj) − δ̂(τi)} − 2 lim
ε→0

cov{δ̂(τj), δ̂(τj) − δ̂(τi)}

= 0 − 2 cov{δ̂(τj), δ̂(τj) − δ̂(τi)}
= −2 cov{δ̂(τj), δ̂(τj) − δ̂(τi)}
< 0.

But this implies that var{δ̃ε(τj)} < var{δ̂(τj)} for sufficiently small ε, which
contradicts the fact that δ̂(τj) is a minimum variance unbiased estimator. Sim-
ilarly, if we had begun with the assumption that cov{δ̂(τj), δ̂(τj)− δ̂(τi)} < 0,
we could show that the estimator δ̂(τj)+ ε{δ̂(τj)− δ̂(τi)} has smaller variance
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than the minimum variance unbiased estimator δ̂(τj) for sufficiently small ε.
This would again be a contradiction. In other words, we can find a contradic-
tion whenever cov{δ̂(τj), δ̂(τj)− δ̂(τi)} 6= 0. Thus, property E3′, and therefore
E3, must hold.

Implicit in the above argument is the assumption that cov{δ̂(τi), δ̂(τj)}
does not depend on the parameter δ. If it did, then δ̃ε(τj) would depend on δ.
The fact that it has smaller variance than δ̂(τj) would not cause a contradic-
tion because δ̃ε(τj) would not be a bona-fide estimator. The arguments above
prove the following result.

Result 2.5 Let δ̂ be a minimum variance unbiased estimator of δ in a non-
monitoring setting, and let δ̂(τ ) denote δ̂ monitored at time τ , 0 ≤ τ ≤ 1. If
cov{δ̂(τi), δ̂(τj)} does not depend on δ for any τi < τj, then δ̂(τ ) satisfies E3.

While Result 2.5 does not establish condition E1 (multivariate normality) for a
minimum variance unbiased estimator δ̂(τ ) over time, it does show that δ̂(τ )
must have the same mean and covariance structure of an E-process. Thus,
if we can establish through other arguments that δ̂(τ ) has an approximate
multivariate normal distribution, we can convert to Brownian motion as we
did for other estimators.

2.5.2 Complete Sufficient Statistics

This subsection concerns complete sufficient statistics, so we we briefly review
the concepts of sufficiency and completeness. If a vector (X1, . . . , Xn) of obser-
vations has distribution function F (x1, . . . , xn; δ) depending on a parameter
δ, a statistic S(X1, . . . , Xn) (which could be a vector) is called sufficient if
the conditional distribution of the data X1, . . . , Xn given S = s does not de-
pend on δ. We could generate data X1, . . . , Xn from F (x1, . . . , xn; δ) by first
generating a value of S from its distribution—which depends on δ—and then
generating (X1, . . . , Xn) from its conditional distribution given S = s. The
latter generation is a random draw of n numbers from a distribution that has
nothing to do with δ. In that sense, once we condition on the value of the
sufficient statistic S, no further information about δ can be gleaned from the
data.

A statistic S is called complete if the condition E{f(S)} = 0 for all δ
implies that f(S) = 0 with probability 1 for all δ. Completeness is typically
used to show that there is at most one unbiased function of S, for if both
g1(S) and g2(S) were unbiased for δ, then E{g2(S)−g1(S)} = 0, which would
mean that g2(S) − g1(S) = 0; i.e., g2(S) = g1(S) with probability 1 for all δ.

We now consider condition E3 of an E-process and relate it to a complete
sufficient statistic. By (2.20), we can consider the equivalent condition E3′.
Note that condition E3′ would be satisfied if δ̂(τj) and δ̂(τj) − δ̂(τi) were
independent. Moreover, under E1, E3′ is equivalent to δ̂(τj) being independent
of δ̂(τj) − δ̂(τi). Independence of δ̂(τj) and δ̂(τj) − δ̂(τi) is in some sense
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natural. Think of the comparison of means: δ̂(τj) is complete and sufficient
for δ, whereas δ̂(τj)− δ̂(τi) is ancillary, meaning that its distribution does not
depend on δ. In a sense, δ̂j and δ̂j − δ̂i contain all of the information and none
of the information, respectively, about δ. Not surprisingly, δ̂(τj) is independent
of δ̂(τj) − δ̂(τi). In fact, this is a special case of a beautiful theorem due to
Basu (1955) [B55]. Basu’s theorem states that if δ̂ is sufficient and complete
and A is ancillary, then δ̂ and A are independent (see Section 2.9.5 for proof).
Thus, condition E3 will hold for any complete sufficient statistic such that
δ̂(τj) − δ̂(τi) is ancillary.

Result 2.6 Let δ̂ be a complete sufficient statistic in a nonmonitoring setting,
and let δ̂(τ ) denote δ̂ monitored over time, 0 ≤ τ ≤ 1. If δ̂(τj) − δ̂(τi) is
ancillary for every τi ≤ τj , then

1. E3 holds.
2. E1 holds iff δ̂ is marginally normal.
3. E1 holds asymptotically iff δ̂ is asymptotically marginally normal.

2.6 The Normal Linear and Mixed Models

2.6.1 The Linear Model

Some clinical trials analyze results using a normal linear model. For example,
in the nonmonitoring setting, the analysis of covariance model that adjusts the
end of study blood pressure Y for baseline blood pressure x may be written
as

Y =




1 0 x1
...

...
...

1 0 xn

1 1 xn+1

...
...

...
1 1 x2n






αC

δ
λ


 + ε,

where αC is the intercept in the control arm, δ = αT − αC is the difference
between treatment and control intercepts (i.e., δ is the treatment effect), and
λ is the slope—assumed the same in the treatment and control arms—of the
relationship between baseline and end of study blood pressure. (Y1, . . . , Yn

and Yn+1, . . . , Y2n are end-of-study blood pressures for control and treatment
patients, respectively.) More generally, the normal linear model may be writ-
ten as Y = Xβ + ε, where X is a design matrix of dimension n × p, β is
a p-dimensional parameter vector, and ε is an n-dimensional vector of i.i.d.
N(0, σ2) errors.

Now consider monitoring. At the first interim analysis with n1 observations
per arm, the dimension of Y and the number of rows of the design matrix is
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2n1. At future interim analyses, Y will be appended by additional observations
and the design matrix will be appended by additional rows; each new patient
contributes a new Y and a new row to the design matrix.

We now argue that the treatment effect estimator is an E-process. To see
this, assume for the moment that σ2 is known. The least squares estimators
at different interim analyses are linear combinations of the Y s, and therefore
have a multivariate normal distribution. Furthermore, in a nonmonitoring
setting, the least squares estimator β̂ is complete and sufficient (Arnold, 1981
[A81] contains a similar result when σ2 is unknown). Moreover, if β̂(τi) and
β̂(τj) denote the least squares estimators at interim analyses at times τi and τj ,
then β̂(τj)−β̂(τi) is ancillary because it has a multivariate normal distribution
with zero mean vector (because both estimators are unbiased) and covariance
matrix not depending on β. It follows from Basu’s theorem that β̂(τj) and
β̂(τj) − β̂(τi) are independent.

Now consider the case when σ2 is unknown. The least squares estimator
β̂ is exactly the same as in the case of known σ2. It follows that β̂(τj) and
β̂(τj)− β̂(τi) are independent in the case of unknown σ2 as well. In summary:

Result 2.7 In the normal linear model, β̂(τ1), . . . , β̂(τk) are multivariate nor-
mal and β̂(τj) is independent of β̂(τj)− β̂(τi), i = 2, . . . , k. Consequently, the
treatment effect estimator, its associated z-score, and its associated B-value
behave like E-, Z-, and B-processes, respectively.

A consequence of Result 2.7 is that we may use the same boundaries for the
z-scores (treatment effect estimators divided by their standard errors) from a
linear model that we used for the t-test.

2.6.2 The Mixed Model

Thus far we have dealt with either independent or uncorrelated observations
Y , but sometimes data from clinical trials are correlated. Common examples
are trials with continuous, longitudinal data reflecting each patient’s progres-
sion of disease over time. For example, the model for an observation Yij at
time xj for patient i might be

Yij = αC + βCxj + (γ + δxj)ui + ai + bixj + εij, (2.21)

where αC and βC are the mean intercept and slope in the control arm, ui = 0, 1
is the treatment indicator, γ = αT − αC and δ = βT − βC are differences
between treatment and control mean intercepts and slopes, respectively, and ai

and bi are random, patient-specific intercepts and slopes. The patient-specific
intercepts reflect the fact that patients have different baseline values, whereas
the patient-specific slopes measure the patients’ improvement or deterioration
over time. The quantity γ = αT − αC reflects the between-arm difference in
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baseline values. The parameter on which we gauge the success of the treatment
is the between-arm difference in slopes, δ = βT − βC .

More generally, for an arbitrary mixed model, the observation vector Y is
normally distributed with mean vector Xβ , where β = (β1, . . . , βp)T is the
vector of fixed effects and X its design matrix. The design matrix is similar to
that of the linear model of the preceding subsection except that each patient
contributes multiple rows. Each additional time point for a patient contributes
a new row to the design matrix.

Now consider monitoring. Both the number of patients and the number
of time points per patient may differ from one interim analysis to the next.
The effect of incorporating data between successive analyses is to append
observations to the Y vector and rows to the design matrix. Observations
from one patient to the next are independent, but observations on the same
patient over time are correlated. Nonetheless, we shall see that the Brownian
motion paradigm still holds if the covariance matrix of Y is known.

In the known Σ case, we can transform to the model of the preceding
subsection:

Σ−1/2Y = Σ−1/2β +Σ−1/2ε

Y ′ = X ′β + ε′,

where ε′ = Σ−1/2ε has covariance matrix Σ−1/2ΣΣ−1/2 = I (Arnold, 1981
[A81]). As noted earlier, the least squares estimator in this transformed model
is complete and sufficient. The arguments of the preceding subsection imply
that β̂(τj) and β̂(τj) − β̂(τi) are independent.

Result 2.8 Result 2.7 holds for the mixed model if the covariance between
every pair of Y observations is known.

A similar result holds in the unknown covariance case provided that the
number of distinct covariances to be estimated is small compared to the num-
ber of participants.

Result 2.8 means that the null joint distribution of z-statistics (treatment
effect estimates divided by their estimated standard errors) at different infor-
mation fractions ti = [var{δ̂(τi)}]−1/[var{δ̂(1)}]−1 in a trial analyzed with a
mixed model is the same as for a simple t-test. Therefore, any z-score bound-
aries developed for continuous outcome trials can be applied to trials employ-
ing a mixed model. We have not yet addressed how to estimate var{δ̂(1)}, but
as we saw for other clinical trial scenarios, accurate estimation of var{δ̂(1)} is
not important for calculating probabilities under the null hypothesis. Accurate
estimation of var{δ̂(1)} does become important for probability calculations as-
suming the alternative hypothesis.

Because tests of treatment effects from mixed models are more complicated
than t-tests and tests of proportions, we give a more detailed explanation of
probability calculations assuming the alternative hypothesis is true. To use
Brownian motion we must know the drift parameter θ = E{Z(1)}, which
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means we must have a representation for the z-statistic at the end of the trial,
Z(1). Suppose participant i has observations at Mi time points xi1, . . . , xiMi

by the time the trial ends, and let x̄i(1) = (1/Mi)
∑Mi

j=1 xij. Assuming the
Mi are similar across participants (which they typically are in trials that use
longitudinal models), the z-statistic using the mixed model is approximately
the same as the z-statistic for a test of means applied to participants’ end of
study least squares slope estimates bi(1),

b̂i(1) = SSXYi(1)/SSXi(1),

where SSXYi(1) =
∑Mi

j=1(xij − x̄i(1))(Yij − Ȳi(1)) and SSXi(1) =
∑

(xij −
x̄i(1))2. The expected z-score at the end of the trial is roughly E{Z(1)} =
δ/[2var{b̂i(1)}/N ]1/2, where δ is the difference between treatment and control
population mean slopes. We can determine the variance of b̂i(1) by first con-
ditioning on the patient’s true intercept and slope, ai and bi, and then using
the formula var(U |V ) = E{var(U |V )}+var{E(U |V )}, valid for any random
variable U (with finite variance) and random vector V . The conditional vari-
ance of b̂i(1) given the patient-specific intercept and slope is σ2

e/SSXi(1). The
unconditional variance of b̂i(1) is E{var(b̂i(1) | ai, bi)}+var{E(b̂i(1) | ai, bi)} =
σ2

e/SSXi+σ2
b , where σ2

e is the within-patient residual variability about his/her
regression line and σ2

b is the variability of the patient-specific true slopes bi.
We can estimate σ2

e and σ2
b from the data at an interim analysis. For example,

suppose at an interim analysis at information fraction t (we will show how
to estimate the information fraction shortly) there are n patients, patient i
having measurements at times xi1, . . . , xim, and let x̄i(t) = (1/mi)

∑mi

j=1 xij.
Then var{b̂i(t)} = σ2

e/SSXi(t) + σ2
b . Averaging over the number of patients

gives us an estimate of var{b̂(t)} for a randomly selected patient:

var{b̂(t)} = σ2
e(1/n)

n∑

i=1

1/SSXi(t) + σ2
b . (2.22)

We can estimate σ2
e as follows. For patient i, we perform least squares regres-

sion and compute the residual sum of squares RSSi(t) =
∑mi

j=1{Yij − (âi +
b̂ixij)}2. We estimate σ2

e by pooling over patients:

σ̂2
e =

∑n
i=1RSSi(t)∑n
i=1(mi − 2)

. (2.23)

We can substitute this σ̂2
e into the right side of (2.22) and the sample variance

of the b̂ipooled across arms into the left side. We estimate σ2
b by subtraction:

pooled var(b̂i)−σ̂2
e (1/n)

∑n
i=1 1/SSXi. Because this estimate can be negative,

we take the maximum of this estimate and 0:

σ̂2
b = max

(
0, pooled var(b̂i) − σ̂2

e(1/n)
n∑

i=1

1/SSXi(t)

)
, (2.24)
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where σ̂2
e is given by (2.23). We use σ̂2

e and σ̂2
b to estimate var{b̂(1)}. Once we

have var{b̂(1)}, we estimate var{δ̂(1)} and I(1) by

v̂ar{δ̂(1)} = 2var{b̂(1)}/N, I(1) = 1/v̂ar{δ̂(1)}

The current information is much easier. It is simply the inverse of the
variance of the treatment effect estimator at the interim analysis, which we
can compute from the standard output of a mixed model program. Specific
details of these calculations are given in the following example:

Example 2.5. Consider a trial randomizing overweight patients to an advice-
only control arm versus a treatment arm with advice plus an exercise program.
Each patient is followed for 7 weeks. Weights are recorded at baseline and
weekly thereafter (eight weights total). Data are analyzed according to the
mixed model (2.21), where Yij is the weight of participant i at week xij (week
0 denotes the baseline period). The planned sample size is 80 patients, 40 in
each treatment group.

The interim analysis is to include data from the first 4 weeks of follow-up
for the first 20 patients randomized. Table 2.1 shows the data for this cohort.
The weights y

i
for participant i are regressed on the participant’s times xi, and

a least squares line is fit. The table shows, for each participant’s data xi, yi
,

the slope estimate b̂i, the residual sum of squares RSSi, 1/SSXi = [
∑

j{xij−
(1/mi)

∑mi

r=1 xir}2]−1, and the degrees of freedom mi − 2. We estimate σ2
e

by
∑20

i=1RSSi/
∑20

i=1(mi − 2). From Table 2.1,
∑20

i=1RSSi = 45.6373 and∑20
i=1(mi − 2) = 42, so

σ̂2
e = 45.6373/42 = 1.0866.

The sample variances of the slopes in column 5 for control and treat-
ment patients are 1.1628 and 1.4957, for a pooled variance of {9(1.1628) +
9(1.4957)}/18 = 1.3293. From (2.24), we estimate σ2

b by

σ̂2
b = 1.3293− 1.0866(1/20)(2.2666) = 1.2062.

At the end of the trial, participants will have data for a maximum of 8
weeks, though some data may be missing. At the interim analysis, everyone
had a baseline value, but 18 of the 80 possible follow-up weights for the 20
participants were missing (22.5 percent). If we assume the same percentage
missing for the seven follow-up weights by the end of the trial as for the
follow-up weights thus far, participants will have an average of 0.225(7) =
1.575 missing observations among the 7 follow-up weeks. Thus, the average
participant will have one baseline measurement and 7− 1.575 = 5.425 follow-
up measurements, for a total of 6.425 measurements. The variance of x values
(using M instead of M − 1 in the denominator) for a participant with no
missing data will be (1/8)

∑7
j=0{j − (0 + 1 + . . .+ 7)/8}2 = 5.25. We expect
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Table 2.1. Interim data from a trial using a mixed model. Twenty patients have
been randomized, and up to five measurements (the baseline and first four follow-up
measurements) are available. For participant i, vector xi is the number of weeks
since randomization and y

i
contains the weights at weeks xi. Ordinary least squares

regression is used for each participant’s data, and the intercept âi and slope b̂i are
computed. Shown are the slope estimate b̂i, RSSi =

∑
j
(yij − ai − bixij)

2, and

SSXi =
∑

j
(xij − (1/mi)

∑mi

j=1
xi)

2, where mi is the number of observations per
participant. Also shown are the degrees of freedom for each participant, namely
dfi = mi − 2.

Patient Arm xi y
i

b̂i RSSi 1/SSXi mi − 2

1 C (0, 2, 3, 4) (248, 250, 251, 251) 0.8000 0.4000 0.1143 2
2 C (0, 1, 2, 3, 4) (216, 214, 215, 214, 213) −0.6000 1.6000 0.1000 3
3 C (0, 1, 2, 3, 4) (217, 218, 220, 217, 216) −0.3000 8.3000 0.1000 3
4 C (0, 1, 4) (195, 195, 191) −1.0769 0.6154 0.1154 1
5 C (0, 2, 3, 4) (197, 200, 200, 199) 0.5714 3.1429 0.1143 2
6 C (0, 1, 2, 3, 4) (251, 250, 252, 253, 254) 0.9000 1.9000 0.1000 3
7 C (0, 1, 2, 3, 4) (187, 187, 187, 188, 186) −0.1000 1.9000 0.1000 3
8 C (0, 1, 2, 4) (208, 208, 207, 206) −0.5429 0.1714 0.1143 2
9 C (0, 1, 3) (231, 234, 239) 2.6429 0.0714 0.2143 1
10 C (0, 1, 3, 4) (188, 190, 191, 192) 0.9000 0.6500 0.1000 2

11 T (0, 1, 3, 4) (231, 228, 224, 222) −2.2000 0.3500 0.1000 2
12 T (0, 1, 2, 4) (200, 200, 202, 203) 0.8286 0.7429 0.1143 2
13 T (0, 1, 2, 3, 4) (271, 269, 267, 262, 261) −2.7000 3.1000 0.1000 3
14 T (0, 1, 2, 3, 4) (226, 227, 225, 222, 226) −0.5000 12.3000 0.1000 3
15 T (0, 1, 2, 3, 4) (182, 178, 176, 175, 170) −2.7000 3.9000 0.1000 3
16 T (0, 2, 4) (212, 213, 213) 0.2500 0.1667 0.1250 1
17 T (0, 1, 2, 4) (208, 203, 201, 198) −2.3429 4.9714 0.1143 2
18 T (0, 3, 4) (178, 174, 173) −1.2692 0.0385 0.1154 1
19 T (0, 2, 4) (257, 255, 252) −1.2500 0.1667 0.1250 1
20 T (0, 1, 3, 4) (203, 200, 198, 196) −1.6000 1.1500 0.1000 2

45.6373 2.2666 42

the variance for a patient with missing data to be similar. Thus, a typical
participant’s SSX at the end of the trial will be

SSX(1) = 6.425(5.25) = 33.7313.

Thus, we estimate the variance of b̂(1) for a typical participant to be

var{b̂(1)} = σ̂2
e/33.7313 + σ̂2

b = 1.0866/33.7313+ 1.2062 = 1.2384.

We estimate the variance of the treatment effect estimate at the end of the
trial with 40 participants per arm by

var{δ̂(1)} = 2(1.2384)/40 = 0.0619.

From this we calculate the information at the end of the trial to be
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I(1) = 1/0.0619 = 16.1551.

The fitted linear model using SAS’s Proc Mixed is y = 214.0587+2.5513u+
(0.3008− 1.6544u)x, where u is 1 for a treatment patient and 0 for a control
patient. Thus, the control slope minus the treatment slope is estimated to
be δ̂ = 1.6544, with an estimated standard error of 0.5078. We estimate the
current information and information fraction to be

I(t) = 1/(0.5078)2 = 3.8781, t = 3.8781/16.1551 = 0.24.

The current z-score and B-value are Z(0.24) = 1.6544/0.5078 = 3.258 and
B(0.24) = (0.24)1/2(3.258) = 1.596.

Calculations like these are useful for computing the conditional probability
that the final z-score will be at least 1.96. This probability, called conditional
power, is very useful for deciding whether there is any hope of seeing a signif-
icant treatment benefit by trial’s end (see Chapter 3).

This example was instructive because although the interim analysis oc-
curred with data from only one quarter of the patients, each with only between
three and five of the eight observations expected by trial’s end, the estimated
information fraction was 0.24. In other words, the information fraction was
almost the same as the fraction of participants evaluated, even though partic-
ipants had data for only about half the total number of weeks. This occurred
because the variance of δ̂(t) depends on, in addition to the sample size, 1)
the number of observations per participant (reflected through SSXi) and 2)
the random effects variance of the true slopes of different participants. If the
random effects variance is large enough, it will dominate, and we will not ap-
preciably decrease the variance of δ̂(t) regardless of the number of weeks of
data. That is what occurred in this example. If the random effects variance
had been very small, then the number of weeks of data would have contributed
mightily to the amount of information.

2.7 When Is Brownian Motion Not Appropriate?

Sometimes observations in clinical trials are not i.i.d. For example, early in
a trial clinicians or laboratories may not completely understand the proto-
col. Early patients may differ from later patients because once certain patient
sources (e.g., a catheterization laboratory) are exhausted, other sources for
patients must be used. These changes could make the drift nonlinear in t.
Nonlinear drift also occurs with survival analysis when the proportional haz-
ards model does not hold. Nonetheless, these things have little to no effect
on the null distribution of the test statistic over time. Clinical trialists are
most concerned about threats to type 1 error rate, so they do not worry much
about the effect of drift.
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In almost all realistic settings, we must estimate standard errors from the
data. When the sample size is large, we can treat estimated standard errors
as though they were constants (see Section 2.9.1). We cannot do this with a
small sample size even in a nonmonitoring setting. For example, we know that
the t-distribution differs substantially from the standard normal distribution
if the number of degrees of freedom is small. Generally speaking, we need large
sample sizes to use Brownian motion, although Chapter 8 shows that applying
boundaries to p-values instead of z-scores works well unless the sample size is
extremely small.

It is not immediately clear what a large sample size means in a complicated
mixed model. Consider Example 2.5. Does the number of patients or the
number of observations per patient need to be large? Suppose we had only
two observations per patient, one at baseline and one at the end. Then each
patient’s slope would essentially reduce to a change in score from baseline
to end of study. With enough patients, the Brownian motion paradigm would
still apply. On the other hand, suppose the trial included only two patients per
arm, each with a huge number of observations. We would be very confident
about slopes of the four individuals in the study, but not at all about the mean
slopes in the entire populations. Because we aim to make inferences about all
patients in the population, we need a large number of patients, not a large
number of observations per patient.

Another way to determine what must be large in Example 2.5 is to examine
the expression for the variance of the treatment effect estimate. The variance
contains parameters such as σ2

e and σ2
b that must be estimated from the

data. The weakest link is the random effect variance σ2
b . Consider a best case

scenario with an infinite number of observations per participant, so we could
estimate each participant’s slope perfectly. In that case the best estimate of
σ2

b would be the sample variance of those n patient-specific slopes. If n were
small, that sample variance would be a very poor estimate of σ2

b , and so the
Brownian motion approximation would also be poor.

Example 2.6. The Rapid Early Action for Coronary Treatment (REACT)
[LRO00] was a trial that randomized communities instead of individual pa-
tients. The intervention consisted of a media campaign intended to reduce the
delay time between the onset of symptoms of a heart attack and the patient’s
arrival at the hospital emergency room. Control communities received no in-
tervention. The data within each community consisted of delay times as a
function of calendar time, and the slope of the relationship between calendar
time and the logarithm of delay time time summarized the trend in a given
community.

This example is similar to Example 2.5 in certain respects. Both involved
multiple correlated observations on the same randomized unit. The difference
is that the number of randomized units is necessarily small in a community
randomized trial. The primary analysis in REACT was a paired t-test with
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only 9 degrees of freedom. Brownian motion provides a very poor approxi-
mation to the joint distribution of this paired t-statistic over time. Indeed,
the Brownian motion approximation would treat the B-value B(1) at the end
of the trial as a standard normal deviate instead of a t-deviate with only 9
degrees of freedom.

2.8 Summary

This chapter showed that commonly used test statistics of the form δ̂/{var(δ̂)} 1
2

behave like standardized sums of independent random variables with mean δ
and variance 1. In these settings we measure the proportion of the trial com-
pleted in terms of information rather than chronological time. Information,
the inverse of the variance of the treatment effect estimator δ̂, can be inter-
preted as the number of i.i.d. observations with expectation δ and variance
1 whose average has the same variance as δ̂. The information fraction t, the
ratio of the current information to that at the end of the trial, is used to define
the B-value B(t) = t1/2Z(t). The B-value is used to monitor the trial. Tables
2.2 and 2.3 summarize the B-value approach to monitoring.

Table 2.2. Brownian motion framework for four testing scenarios. For survival, n
and N are the numbers of patients with an event at calendar fraction τ and the
end of the trial (τ = 1), respectively. For the other three scenarios, they are the
numbers of patients evaluated at those times. The expressions given for information
and information fraction assume equal per-arm sample sizes for means, proportions,
and survival.

Means Proportions Survival MLE

Parameter δ µT − µC pT − pC ln(λT /λC) arbitrary

Estimator δ̂(τ) ȲT − ȲC p̂T − p̂C

∑n

i=1
(Oi−Ei)∑

n

i=1
Vi

MLE

I(τ) = [var{δ̂(τ)}]−1 n
2σ2

n
2p(1−p)

∑n

i=1
Vi Fisher info.

Info. fraction t n/N n/N ≈ n/N ≈ n/N

Z(t) {I(τ)}1/2 δ̂(τ) {I(τ)}1/2δ̂(τ) {I(τ)}1/2 δ̂(τ) {I(τ)}1/2δ̂(τ)

Drift θ = E{Z(1)} {I(1)}1/2δ {I(1)}1/2δ {I(1)}1/2δ {I(1)}1/2δ

The advantage of monitoring the trial using the B-value instead of the
more commonly used z-score is that its mean is a linear function of t. In fact,
E{B(t)} = θt, where θ = E{Z(1)} is the expected z-score at the end of the
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Table 2.3. Distribution and relationship between B(t) and Z(t).

B-value Relationship Z-score
E{B(t)} cov{B(s), B(t)} between B(t) and Z(t) E{Z(t)} cov{Z(s), Z(t)}

s ≤ t s ≤ t

θt s B(t) = t1/2Z(t) θt1/2 (s/t)1/2

trial. Plotting the B-value against θt makes it very easy to see whether, and to
what degree, the current trend in the data is better or worse than expected.

2.9 Appendix

2.9.1 Asymptotic Validity of Using Estimated Standard Errors

In Section 2.1.1, the variance of δ̂ depended on σ2, which we treated as known.
In practice we estimate σ2 by the sample variance s2. We know that in a
nonmonitoring setting, we can substitute s2 for σ2 and treat it as fixed if
the sample size is large because δ̂/(2s2/N )1/2 = ZN + RN , where ZN =
δ̂/(2σ2/N )1/2 converges in distribution to a standard normal deviate Z and
RN = {δ̂/(2σ2/N )1/2}(σ/s − 1) converges in probability to 0. Similarly, in a
nonmonitoring situation we treat the standard error of the MLE as if it were
a fixed constant instead of being estimated from the data because δ̂/σ̂δ̂ =
ZN + RN , where ZN = δ̂/σδ̂ converges in distribution to a standard normal
deviate and RN = (δ̂/σδ̂)(σδ̂/σ̂δ̂ −1) converges in probability to 0. Both these
cases relied on Slutsky’s theorem (Cramér, 1946 [C46]), which says that if
ZN converges in distribution to Z and RN converges in probability to 0, then
ZN +RN converges in distribution to Z.

With monitoring, we know that (δ̂1/σδ̂1
, . . . , δ̂k/σδ̂k

) converges in distribu-
tion, and we want to show that (δ̂1/σ̂δ̂1

, . . . , δ̂k/σ̂δ̂k
) converges in distribution

to the same thing. We need the following generalization of Slutsky’s theorem.

Result 2.9 Suppose that Xn = (Xn1, . . . , Xnp) converges in distribution to
X = (X1, . . .Xp).

1. If Y n = (Yn1, . . . , Ynp) converges to 0 in probability, then Xn + Y n con-
verges in distribution to X.

2. If An is an m×p dimensional matrix of random variables, each converging
in probability to the corresponding element of the constant matrix A, then
AnXn converges in distribution to AX .

Proof of 1: By the Cramer-Wold device (see, for example, page 18 of Serfling,
1980 [S80]), it suffices to prove that a · (Xn + Y n) converges in distribution
to a ·X for every p-dimensional nonrandom vector a. But a ·Xn converges in
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distribution to a · X, and a · Y n converges to 0 in probability. By Slutsky’s
theorem for one-dimensional random variables, a · (Xn + Y n) converges in
distribution to a ·X, completing the proof of 1. ||
Proof of 2: AnXn = AXn + (An − A)Xn. It is clear that AXn converges in
distribution to AX because f(x) = Ax is a continuous function of x. Further-
more, because each element of the matrix An −A converges in probability to
0 and Xn converges in distribution, (An − A)Xn converges in probability to
the m-dimensional zero vector. It follows from part 1 that AnXn converges
in distribution to AX . ||

Result 2.9 shows that when the sample sizes are large, we can treat the
estimated standard errors of δ̂1, . . . , δ̂k as if they were exact because
(
δ̂1
σ̂δ̂1

, . . . ,
δ̂k
σ̂δ̂k

)
=

(
δ̂1
σδ̂1

, . . . ,
δ̂k
σδ̂k

)(
σδ̂1

σ̂δ̂1

− 1, . . . ,
σδ̂k

σ̂δ̂k

− 1

)
+

(
δ̂1
σδ̂1

, . . . ,
δ̂k
σδ̂k

)

(2.25)
and each σδ̂i

/σ̂δ̂i
− 1 converges to 0 in probability.

2.9.2 Proof of Result 2.1

One direction is obvious, so we prove that if SN/v
1/2
N is asymptotically stan-

dard normal, then the asymptotic distribution of (Sn1/v
1/2
N , . . . , Snk/v

1/2
N ) is

that of B(t1), . . . , B(tk).
We first prove that the asymptotic distribution of (SM −Sm)/(vM−vm)1/2

is standard normal form < M ,m → ∞,M → ∞ such that vm/vM → t. Write

(SM/v
1/2
M )

(
vM

vM − vm

)1/2

=
SM − Sm

(vM − vm)1/2
+ (Sm/v

1/2
m )

(
vm

vM − vm

)1/2

Wm,M = Um,M + Vm,M ,

where Um,M and Vm,M are independent, Wm,M converges in distribution to
N(0, (1− t)−1) and Vm,M converges in distribution to N(0, t/(1− t)). Because
Um,M is independent of Vm,M ,

E(eisWm,M ) = E(eisUm,M )E(eisVm,M ). (2.26)

The left side of (2.26) converges to exp[−s2/{2(1 − t)}], while E(eisVm,M )
converges to exp[−s2t/{2(1 − t)}]. It follows that E(eisUm,M ) converges to
exp[(−s2/2){1/(1−t)−t/(1−t)}] = exp(−s2/2), the characteristic function of
a standard normal deviate. Hence, (SM −Sm)/(vM −vm)1/2 is asymptotically
standard normal as m → ∞, M → ∞, vm/vM → t.

Let n = 10n1 + . . . + 10nk, so that each (n1, . . . , nk) corresponds to a
unique integer n. Let ZT

n = (Sn1/vn1 , (Sn2 − Sn1)/(vn2 − vn1)1/2, . . . , (Snk −
Snk−1)/(vnk − vnk−1 )1/2). The Zni are independent, and we have shown that
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each converges in distribution to a standard normal, so the asymptotic distri-
bution of Zn is that of i.i.d. standard normals Z = (Z1, . . . , Zk)T . Moreover,
(Sn1/v

1/2
N , . . .Snk/v

1/2
N )T = AnZn, where the (i, j)th element of the k × k

matrix An is {(vnj −vnj−1 )/vN}1/2 if j ≤ i and 0 if j > i, where vn0 = 0. The
(i, j)th element ofAn converges toAij = (tj−tj−1)1/2 for j ≤ i and 0 for j > i,
where t0 = 0, so by Result 2.9, (Sn1/v

1/2
N , . . .Snk/v

1/2
N )T converges in distri-

bution to AZ . The joint distribution of AZ is multivariate normal with zero
means and covariance matrix AAT . Direct calculation shows that (i, j)th com-
ponent of AAT is tj for j ≤ i and ti for j > i. Thus, (Sn1/v

1/2
N , . . .Snk/v

1/2
N )

converges in distribution to (B(t1), . . . , B(tk)). ||

2.9.3 Proof that for the Logrank Test, Di = Oi − Ei Are
Uncorrelated Under H0

To show that the Di are uncorrelated, mean 0 random variables, we use
the identity var(Y ) = E{var(Y |X)} + var{E(Y |X)} for a random vari-
able Y with finite variance and a random vector X . The unconditional
mean and variance of Di are E(Di) = E{E(Di |m0i,m1i)} = E(0) = 0
and var(Di) = E{var(Di |m0i,m1i)} + var{E(Di |m0i,m1i)} = E(Vi) +
var(0) = E(Vi). The Di are uncorrelated because cov(Di, Dj) = E(DiDj) =
E{E(DiDj |Di,m0j,m1j)} = E{DiE(Dj |Di,m0j,m1j)}.

Now consider E{DiE(Dj |Di,m0j,m1j)}. Just prior to the jth death, Di

is relevant only in that it provides information about the numbers m0j and
m1j of patients at risk at that time. Therefore, once we condition on m0j and
m1j, the additional variable Di becomes irrelevant so E(Dj |Di,m0j,m1j) =
E(Dj |m0j,m1j) = 0.

2.9.4 A Rigorous Justification of Brownian Motion with Drift:
Local Alternatives

Up to now we have not been completely rigorous in our use of Brownian motion
with drift. Consider the t-test for a continuous outcome trial. Ordinarily, we
think of the treatment effect δ as a fixed constant (e.g., a 3 mm Hg blood
pressure difference between the treatment and control arms). But then the
expected final z-score,

θ =
δ√

2σ2/N
,

would tend to ∞ as N → ∞, reflecting the obvious fact that power tends to
1 as the sample size tends to ∞. To avoid having the power tend to 1, we
must consider local alternatives (i.e., treatment effects δN that approach 0
as N → ∞). The situation is analogous to the Poisson approximation to the
binomial (n, p) distribution; for fixed p, the number of successes tends to ∞ as
n→ ∞, but if p = pn tends to 0 such that npn → λ, the number of successes
has an approximate Poisson distribution with mean λ.
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Returning to the t-test, consider the location shift setting in which the
2N observations at the end of the trial in the control and treatment arms are
i.i.d. F (x) and i.i.d. F (x − δN ), respectively, for some distribution function
F (x) and location parameter δN . We can imagine generating such data by
generating 2N i.i.d. observations Y1, . . . , Y2N from F and adding δN to the
first N . The interim z-statistic after n observations/arm is

Zn =
∑n

i=1(Yi + δN ) −
∑n

i=1 YN+i√
2nσ2

=
∑n

i=1 Yi −
∑n

i=1 YN+i√
2nσ2

+
√

n

2σ2
δN .

Converting to B-values gives

Bn =
∑n

i=1 Yi −
∑n

i=1 YN+i√
2Nσ2

+

√
N

2σ2
δN (n/N ) (2.27)

The first term of (2.27) is the B-value under the null hypothesis, whose joint
distribution over information time is asymptotically standard Brownian mo-
tion. Let θN = {N/(2σ2)}1/2δN and suppose that as N → ∞, n/N → t and
δN → 0 such that θN → θ for some constant θ. The rightmost term of the
right side of (2.27) converges in probability to θt, so the multivariate version
of Slutsky’s theorem implies that the joint distribution of Bn1 , . . . , Bnk is that
of a Brownian motion with drift θ.

A similar technique can be used with dichotomous outcome trials. A rigor-
ous justification of local alternatives in survival analysis is beyond the scope
of this book. An excellent reference for the required martingale approach is
Helland (1982) [H82].

2.9.5 Basu’s Theorem

Result 2.10 Basu (1955) [B55]. If δ̂ = (δ̂1, . . . , δ̂p) is a complete sufficient
statistic for (δ1, . . . , δp) and A = (A1, . . . , Am) is ancillary, then δ̂ and A are
independent.

Proof: Let f(A) be any function with finite expectation, and let ψ(δ̂) =
E{f(A) | δ̂}. Then E{ψ(δ̂)} = E{f(A)}, so E[ψ(δ̂)−E{f(A)}] = 0. Because A
is ancillary, E{f(A)} does not depend on δ, so ψ(δ̂) − E{f(A)} is a statistic
and a function of δ̂. Completeness of δ̂ implies that ψ(δ̂) = E{f(A)}. Thus,
E{f(A) | δ̂} = E{f(A)} for any function f with finite expectation. Taking
f(A) = I(A1 ≤ a1, . . . , Am ≤ am) shows that A and δ̂ are independent. ||
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Power: Conditional, Unconditional, and

Predictive

Having developed a unified statistical framework for the monitoring of trials
involving different kinds of endpoints, we apply it to the calculation of differ-
ent types of power. We focus primarily on trials not designed to allow early
stopping for benefit. For example, in a short-term feeding trial in people with
mild hypertension, we do not feel ethically compelled to stop early for benefit
even if the intervention is superior to the control. On the other hand, if it be-
comes clear that the new diet is not worthwhile, we may not want to continue
the expensive feeding. Thus, stopping for futility may still be important.

3.1 Unconditional Power

Adequate sample size and power are essential for a well-designed clinical trial.
The necessary calculations are easy for any of the z-statistics discussed in the
previous chapter, for all are asymptotically normal with mean θ and variance
1 (Figure 3.1).

We equate θ, the expected z-score of Table 2.2, to zα/2 + zβ and solve for
either the sample size or power. For example, power is obtained as follows:

θ = zα/2 + zβ (3.1)
⇒ Φ(θ − zα/2) = 1 − β = power (3.2)

Hence, for a two-sided level .05 test with 80 percent power, the expected z-
score is 1.96+0.84 = 2.80; its associated two-sided p-value is 2{1−Φ(2.80)} =
.005. With 90 percent power, the expected z-score and associated two-sided
p-value are 1.96+ 1.28 = 3.24 and 2{1−Φ(3.24)} = .001, respectively. The p-
value corresponding to the expected z-score for a study with 50 percent power
(zβ = 0) is .05. Often when we statisticians present the results of a sample size
calculation, the clinicians with whom we work protest that they have been
able to find statistical significance with much smaller sample sizes. Although
they do not conceptualize their argument in terms of power, we believe their



44 3 Power: Conditional, Unconditional, and Predictive

Fig. 3.1. The null (left curve) and alternative (right curve) distributions of the
z-statistic are normal with variance 1 and respective means 0 and θ. The areas of
the crosshatched regions correspond to type 1 error rate and power. Power 1 − β is
achieved when zα/2 is the βth percentile of the distribution on the right. Because
the distribution on the right is a shift (by θ units) of the standard normal density
on the left, its βth percentile is a shift (by θ units) of −zβ, the βth percentile of the
standard normal density. In summary, zα/2 = θ − zβ . That is, θ = zα/2 + zβ .

experience comes from an intuitive feel for 50 percent power. We have found
that showing them Equation (3.1) and explaining its consequences in terms of
sample size and power helps them understand the risk of small sample sizes
and the fact that a large sample size buys them the ability to declare a small
observed treatment effect statistically significant. In some cases a treatment
may be onerous enough that only if it had a relatively large effect would it
be considered viable. Ninety percent power to detect a very large effect might
equate to roughly 50 percent power for a more traditional effect size.

Example 3.1. Consider a trial with a short-term dichotomous outcome such
as 28-day mortality analyzed using a test of proportions. The proportion of
deaths in the control arm is expected to be 0.60, and we wish to have 85

|||

zα/20 θ
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percent power to detect a 25 percent reduction (from 0.60 to 0.45) in the
treatment arm.

The expected z-score with N per arm is θ = δ/{2p(1 − p)/N}1/2, where
δ = 0.60 − 0.45 = 0.15 and p = (0.60 + 0.45)/2 = 0.525. A sample size of
N = 150 per arm yields θ = 2.60 and power Φ(2.60− 1.96) = Φ(0.64) = 0.74.
To achieve 85 percent power, we set θ = 1.96 + 1.04 = 3 and solve for N ,
which yields N = 2p(1 − p)(1.96 + 1.04)2/δ2 ≈ 200 per treatment arm.

3.2 Conditional Power for Futility

Power tells whether a clinical trial is likely to yield useful, interpretable data
given the available sample size. Very low power means the trial is futile, that
is, unlikely to reach statistical significance even if the alternative hypothesis is
true. One should not begin a trial believed to be futile. But sometimes futility
becomes apparent only after a trial is well under way.

Suppose the interim data in example 3.1 with 191 and 193 patients eval-
uated in the control and treatment arms were as given in Table 3.1.

Table 3.1. Interim data for Example 3.1.

Event
Yes No

Control 75 116 191
Treatment 75 118 193

150 234 384

Even if all nine remaining control patients had events and all 7 remaining
treatment patients were event-free, the final results would not show a sta-
tistically significant benefit: p̂C = 84/200, p̂T = 75/200, Z = 0.92. If our
aim for that trial were simply to declare, or not declare, statistical signifi-
cance, we could choose to stop now. Stopping a trial because the final result
is completely determined at an interim analysis is called curtailment. As in
this example, curtailment can only happen near the end of the trial.

Though the result was completely determined only very close to the end
of the trial, it must have been “almost” determined earlier. For example,
suppose that after 180 patients per arm, the results had been as shown in
Table 3.2. A statistically significant benefit at the end is possible only if all
20 remaining control patients have events and all 20 remaining treatment
patients are event-free. This is extremely unlikely given that about 39 percent
of all patients have had events thus far. In fact, we can quantify how unlikely
a statistically significant final result is by computing conditional power, the
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Table 3.2. Data for Example 3.1 at an earlier time.

Event
Yes No

Control 71 109 180
Treatment 71 109 180

142 218 360

conditional probability of a statistically significant benefit at the end given
the current data. In this example, because the only way to get a statistically
significant benefit is for all 20 remaining control patients to have an event
and all 20 remaining treatment patients not to have one, conditional power is
p20

C (1− pT )20 ≈ 0 to several decimal places under any reasonable assumption
about the event probabilities pC and pT for future patients in the control
and treatment arms. Thus, we might stop the trial because the final result is
known with high probability. This stochastic version of curtailment is called
stochastic curtailment.

We are able to compute exact conditional power in this example because
only one outcome leads to a statistically significant final result. Usually, how-
ever, many possible outcomes lead to a significant result, and we approximate
conditional power using the B-value formulation of the previous chapter. Con-
ditional power is the conditional probability that B(1) > zα/2 given that
B(t) = b. Write B(1) as B(t) + B(1) − B(t). The increment B(1) − B(t) is
independent of B(t) and has mean and variance

E{B(1) − B(t)} = θ · 1 − θ · t = θ(1 − t)

var{B(1) − B(t)} = var{B(1)} + var{B(t)} − 2cov{B(1), B(t)}
= 1 + t− 2t = 1 − t.

Thus, given B(t) = b, the quantity B(1) = b + B(1) − B(t) is normally
distributed with variance 1 − t and mean:

Eθ{B(1) |B(t) = b} = b+ θ(1 − t), (3.3)

where the drift parameter θ is the expected z-score at the end of the trial. It
follows that conditional power for a two-tailed test at level α (or one-tailed
test at level α/2) is

CPθ(t) = 1 − Φ

(
zα/2 − Eθ{B(1) |B(t) = b)}

√
1 − t

)
, (3.4)

where Eθ{B(1) |B(t) = b} is given by (3.3).
The conditional mean of B(1) given B(t) = b may be viewed geometrically

as the endpoint of a line segment beginning at (t, b) with slope θ. If we super-
impose a N (b+ θ(1− t), 1− t) distribution “on its side,” conditional power is
the area above the point (1, zα/2) (Figure 3.2).
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Under the null hypothesis θ = 0, Equation (3.3) simplifies to

E0{B(1) |B(t) = b} = b. (3.5)

The empirical estimate for θ is θ̂ = B(t)/t = b/t. Under this “current trend”
hypothesis, Equation (3.3) becomes

Eθ̂{B(1) |B(t) = b} = b/t = θ̂. (3.6)

Formula (3.4) applies to any of the testing situations we considered in
Chapter 2, and it shows that conditional power increases as the drift parameter
increases. We illustrate the use of formula (3.4) with several examples.

Fig. 3.2. Given B(t) = b, B(1) is normal with mean b + θ(1− t) and variance 1− t.
Conditional power is the crosshatched area above 1.96 for a two-tailed test at level
.05.

Example 3.2. We initiate a feeding trial to compare the effects of two diets on
diastolic blood pressure change from baseline to 8 weeks. We anticipate the

t0 1

0

b

1.96

b+ θ(1-t)



48 3 Power: Conditional, Unconditional, and Predictive

standard deviation of change scores to be approximately 5 mm Hg, and we
want 90 percent power to detect an effect of 2 mm Hg. Equating the expected
z-score, θ = δ/(2σ2/N )1/2, to zα/2 + zβ = 1.96 + 1.28 = 3.24 and solving for
N yields a per-arm sample size of N = 2(25)(3.24)2/22 ≈ 132 (rounding up
to be conservative).

Suppose after 98 and 102 participants are evaluated in the control and
treatment diets, the treatment effect and pooled standard deviation are δ̂ =
0.683 and σ̂ = 7.750. The current information and information expected by
trial’s end are {σ2(1/98+1/102)}−1 = (98)(102)/(200σ2) and (2σ2/132)−1 =
66/σ2, respectively. The information fraction is (98)(102)/{(200)(66)} =
0.757, virtually the same as if we had used the average sample size (98 +
102)/2 = 100 and approximated the information fraction by 100/132. The
z-score and B-value are

Z(0.757) = 0.683/{(7.750)2(1/98 + 1/102)}1/2 = 0.623,

B(0.757) = (0.757)1/2Z(0.757) = 0.542.

The expected B-value under the originally assumed treatment effect and stan-
dard deviation is E{B(t)} = 3.24t, so the current results are poorer than ex-
pected (Figure 3.3). Is there so little benefit of treatment thus far that we
should stop the trial?

We first compute conditional power under the originally hypothesized
treatment effect of δ = 2 mm Hg and standard deviation of σ = 5 mm
Hg. Because our sample size N = 132 was based on 90 percent power, the
expected z-score at the end of the trial under the original assumptions is
θ = 1.96 + 1.28 = 3.24. That is, if our hypothesized effect size is true, we
would expect the two-sided p-value to be .001. Graphically, we form a line
segment at (t, B(t)) = (0.757, 0.542) with slope 3.24 (Figure 3.3). The condi-
tional mean of B(1) given B(0.757) = 0.542 is the value of the line segment
at t = 1, namely 0.542 + 3.24(1− 0.757) = 1.329. The variance of B(1) given
B(0.757) = 0.542 is 1 − 0.757 = 0.243. Conditional power is

CP3.24(0.757) = 1 − Φ
{
(1.96− 1.329)/(0.243)1/2

}

= 1 − Φ(1.28) = 0.10.

That is, conditional power is only 10 percent under the original assumptions
about the treatment effect and standard deviation.

The original assumptions appear very optimistic because the observed
standard deviation is larger than expected (7.750 instead of 5) and the ob-
served treatment effect is smaller than expected (0.683 instead of 2). We could
incorporate these estimates by computing conditional power under the em-
pirical (i.e., observed) drift parameter θ̂ = B(t)/t = 0.542/0.757 = 0.716. We
form a line segment beginning at (0.757, 0.542) with slope 0.716. This amounts
to extending the line segment joining (0, 0) and (t, B(t)) to (1, 0.716) (Figure
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Fig. 3.3. Conditional power (CP) in Example 3.2. The solid line joining the origin
to (1, 3.24) shows the expected value of B(t) under the original assumptions. The
current B-value (circle) lies below that line, indicating poorer than expected results.
Conditional power is computed under 1) the original assumptions (CP = 0.10), 2)
the original treatment effect but the empirical standard deviation (CP=0.03), and
3) the empirical treatment effect and standard deviation (CP=0.006).

3.3). Conditional power under the empirical treatment effect and standard
deviation is

CP0.716(0.757) = 1 − Φ{(1.96− 0.716)/(0.243)1/2}
= 1 − Φ(2.52) = 0.006.

Thus, if the empirical trend is true, then we have less than a 1 percent chance
of a statistically significant benefit at the end of the trial.

Another reasonable choice for the drift parameter is to use the empirical
standard deviation estimate 7.750, but maintain the original treatment effect,
δ = 2. After all, the study was powered to detect a treatment effect of 2. The
drift parameter is θ = 2/{2(7.75)2/132}1/2 = 2.097. The conditional mean of
B(1) is 0.542 + 2.097(1− 0.757) = 1.052. Conditional power is
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CP2.097(0.757) = 1 − Φ{(1.96− 1.052)/(0.243)1/2}
= 1 − Φ(1.84) = 0.03

(Figure 3.3). Conditional power is less than 5 percent under this realistic
standard deviation estimate and the original treatment effect.

In this example, any reasonable assumption yields very low conditional
power. Whether we should stop a trial that has low conditional power de-
pends on whether the precision at the end would be sufficient to exclude the
originally hypothesized treatment effect. We determine that by computing
the unconditional power to detect the originally hypothesized treatment effect
δ = 2 using the revised standard deviation estimate σ = 7.75. The expected
z-score is 2.097 instead of 3.24. Plugging θ = 2.097 into the unconditional
power formula (3.2) yields Φ(2.097 − 1.96) = 0.55. This low unconditional
power lends more support for abandoning the trial for futility. Not only is
there a high probability of reaching a nonsignificant result at the end, but a
nonsignificant result will not rule out the originally hypothesized treatment
effect because unconditional power is so low.

Suppose instead the interim results had been δ̂ = 0.441, σ̂ = 5.000. The
current z-statistic would still have been Z(0.757) = 0.623, so conditional power
under δ = 2 and σ = 5 would be 0.10 as above, but unconditional power would

now be UP = Φ

(
2√

2(5)2/132
− 1.96

)
= 0.90. In this case a null result would

be meaningful because it would exclude a treatment benefit of 2. Depending
on the context of the trial, one might want to continue the trial to demonstrate
that treatment is ineffective. For example, in a National Institutes of Health
(NIH)-sponsored trial comparing diets designed to lower cholesterol, it might
be important to demonstrate that a popular diet does not work.

Example 3.3. Returning to Example 3.1, suppose that at the first interim anal-
ysis, 22 of 44 control patients and 24 of 48 treatment patients have events,
as shown in Table 3.3. The information fraction is t = {p(1 − p)(1/44 +
1/48)}−1/{p(1 − p)(2/200)}−1 = 0.230.

Table 3.3. Interim data for Example 3.1.

Event
Yes No

Control 22 22 44
Treatment 24 24 48

46 46 92

Because p̂T = p̂C = 0.5, it follows that Z(0.230) = B(0.230) = 0. Under the
original event probability assumptions in the two arms, the drift parameter is



3.2 Conditional Power for Futility 51

θ = 1.96 + 1.04 = 3, so the conditional mean of B(1) given B(0.230) = 0 is
0 + 3(1 − 0.230) = 2.310.

Conditional power under the original assumptions is

CP3(0.230) = 1 − Φ
{
(1.96 − 2.310)/(1− .230)1/2

}

= 1 − Φ(−0.40) = 0.66.

Conditional power is not dismally low even though the observed treatment
effect is zero because we are still relatively early in the trial (t = 0.230).

Using the empirical estimates of event probabilities in the two arms cor-
responds to using the empirical drift parameter estimate B(t)/t = 0. The
conditional mean of B(1) given B(0.230) = 0 is 0 + 0(1 − 0.230) = 0, so
conditional power is

CP0(0.230) = 1 − Φ{(1.96− 0)/(1 − 0.230)1/2}
= 1 − Φ(2.23) = 0.01.

There is a huge discrepancy between this conditional power value and the
one computed under the original assumptions. The empirical estimates of
event probabilities and the drift parameter are poor at this early stage, so we
should not give too much weight to conditional power under those estimates.
Conditional power under empirical estimates becomes more important later
in a trial.

For the continuous outcome case in Example 3.2, one of our conditional
power calculations assumed the original treatment effect but used the em-
pirical standard deviation estimate. The standard deviation is a nuisance
parameter statistically independent of the sample treatment difference. In
the dichotomous outcome case, the empirical combined event proportion
p̂ = (nT p̂T + nC p̂C)/(nT + nC) is a nuisance parameter uncorrelated with,
and asymptotically independent of, the sample treatment difference p̂C − p̂T .
The analogous conditional power calculation assumes the original treatment
reduction (25 percent) but uses the empirical combined event probability
p̂ = (22 + 24)/(44 + 48) = 0.50 to estimate (pC + pT )/2. Solving the two
equations

(pC + pT )/2 = 0.50
pT/pC = 0.75

yields pC = 0.571, pT = 0.429. The drift parameter and conditional mean of
B(1) given B(0.230) = 0 are θ = (0.571− 0.429)/{2(0.5)(1− 0.5)/200}1/2 =
2.840 and E{B(1) |B(0.230) = 0} = 0+2.840(1−0.230) = 2.187. Conditional
power is

CP2.840(0.230) = 1 − Φ{(1.96− 2.187)/(1− 0.230)1/2}
= 1 − Φ(−0.26) = 0.60.

If conditional power had been very low, say under 20 percent, then it
would have made sense to compute unconditional power under the empirical
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estimate of the combined event probability and the original 25 percent treat-
ment reduction. As in the continuous outcome case, low conditional power but
high unconditional power might justify continuing a trial, if ethically feasible,
to demonstrate that the treatment does not work.

Example 3.4. Suppose we compare survival for bypass surgery (treatment)
versus medicine (control) for patients with coronary artery disease. We expect
the control hazard rate to be 0.05/year over an average follow-up of 5 years,
and we want 80 percent power to detect a 30 percent lower hazard in the
treatment arm. Recall from Chapter 2 that the logrank statistic is

Z =
∑N

i=1(Oi − Ei)√∑N
i=1 Vi

=

{
N∑

i=1

Vi

}1/2{∑N
i=1(Oi −Ei)∑N

i=1 Vi

}

≈ (N/4)1/2δ̂,

where N is the total number of deaths and δ̂ =
∑

(Oi − Ei)/
∑
Vi estimates

δ, the log hazard ratio. The expected z-score is

θ = (N/4)1/2δ.

Note that in this parameterization of the logrank statistic, negative values
for δ and Z indicate that treatment is beneficial. We prefer to make positive
values correspond to treatment benefit, so we reverse the treatment labels.
The hazard ratio we want to detect then becomes 1/0.7 instead of 0.7. We
obtain the sample size for 80 percent power by first determining the required
number of deaths. Equating the expected z-score to 1.96 + 0.84 and solving
for N gives N = 4(1.96 + 0.84)2/{ln(1/0.7)}2 = 247 deaths.

The next step is to estimate the number of patients needed to produce 247
deaths. For purposes of sample size calculation only, we assume exponential
survival, so the 5-year mortality in control and treatment arms is expected
to be 1 − exp{−5(0.05)} = 0.221 and 1 − exp{−5(0.7)(0.05)} = 0.161. The
combined 5-year mortality is (0.221 + 0.161)/2 = 0.191. To have 247 events,
we need 247/0.191 ≈ 1300 people.

Suppose that at an interim analysis after an average follow-up of 2.6 years,
everyone is randomized and we find that 35 of 654 control patients and 25 of
646 treatment patients have died.

We originally expected 247 deaths by the end of the study, but now such a
high mortality rate seems unrealistic. We therefore compute conditional power
assuming a more realistic figure of, say, 120 deaths by the end of the trial.
The current information fraction is t = (35 + 25)/120 = 0.50. Suppose the
log hazard ratio estimate and logrank statistic are δ̂ = ln(1.20) = 0.182 and
Z(0.50) = 0.706. The B-value is B(0.50) = (0.50)1/2(0.706) = 0.499.
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The empirical estimate of the drift parameter is B(0.50)/0.50 = 0.998.
The expected value of B(1) given B(0.50) = 0.499 is also 0.998, so conditional
power is

CP0.998(0.50) = 1 − Φ{(1.96− 0.998)/(1− 0.50)1/2}
= 1 − Φ(1.36) = 0.09.

Conditional power computed under the empirical drift parameter is quite low.
Under the originally assumed log hazard ratio, the drift parameter is θ =

(N/4)1/2δ = (120/4)1/2 ln(1/0.7) = 1.954, and the expected B-value at the
end of the trial is 0.499 + 1.954(1− 0.50) = 1.476. Conditional power is

CP1.954(0.50) = 1 − Φ{(1.96− 1.476)/(1− 0.50)1/2}
= 1 − Φ(0.68) = 0.25,

higher than CP under the empirical drift, but still fairly low.
Conditional power is low in this example because the total number of

deaths is markedly lower than expected. Unless the mortality rate increases
dramatically, there is a fairly high probability of failing to reach a statistically
significant result at the end of the trial. An aggravating factor is the low
unconditional power Φ(1.954−1.96) = 0.50. This means that a nonsignificant
final result will not rule out the originally hypothesized 30 percent benefit. The
decision whether to stop will likely incorporate conditional and unconditional
power, as well as the mitigating factor that all patients have already been
randomized and received treatment, so only follow-up remains.

3.3 Varied Uses of Conditional Power

Conditional power has been used to justify stopping several trials. For exam-
ple, the decision to stop the Cardiac Arrhythmia Suppression Trial (CAST)
II because of excess mortality in the two-week drug-titration phase compared
to placebo titration was bolstered by conditional power calculations showing
little chance (conditional power< 0.08) of establishing longer term benefit.

The estrogen and progesterone trial (PERT) of the Women’s Health Ini-
tiative stopped early because the treated arm showed an excess of invasive
breast cancer and an overall unfavorable balance of risk to benefit. In terms
of inference regarding the effect of estrogen/progesterone on the heart, con-
ditional power calculations under a wide variety of scenarios showed a very
small chance of ever demonstrating benefit.

Conditional power is also a convenient tool for evaluating the impact of
missing or unadjudicated observations.

Example 3.5. The Asymptomatic Cardiac Ischemia Pilot (ACIP) [KBP94]
study evaluated three treatment strategies for patients with cardiac ischemia:



54 3 Power: Conditional, Unconditional, and Predictive

1) an angina-guided arm in which patients received medication when they
experienced angina, 2) an ischemia-guided arm in which patients received
medicine when they experienced angina or when 24-hour ambulatory elec-
trocardiograms (AECGs) administered 4 and 8 weeks after randomization
detected silent ischemia, and 3) a revascularization arm in which patients
received either angioplasty or bypass surgery, at the discretion of the treat-
ing physician. The primary outcome measure was absence of ischemia on an
AECG administered 12 weeks after randomization. A Bonferroni adjustment
was made to account for the three paired comparisons. Because ACIP was a
pilot study, the overall type 1 error rate was set at .10, meaning that each
pairwise comparison required p < .033, (|Z| > 2.13).

Table 3.4. ACIP data.

Ischemia-free?
Yes No

Angina-guided 75 118 193+11 missing=204
Ischemia-guided 78 111 189+13 missing=202

Revascularization 105 87 192+20 missing=212
258 316 574+44 missing=618

Table 3.4 shows that ACIP had 11 and 20 missing observations in the
angina-guided and revascularization arms, respectively. The comparison of
nonmissing data in these arms is statistically significant (Z = 3.112, p = .002).
Might the results be biased? There are, after all, more missing data in the
revascularization arm.

One way to assess the impact of missing data is to try to predict what the
results would have been had all data been observed. We could treat the num-
bers of ischemia-free patients among missing data in the angina-guided and
revascularization arms as binomials with respective parameters (11, p0) and
(20, p1). We make conservative assumptions about p0 and p1 and calculate the
conditional probability of a statistically significant result if all the data were
observed. For example, Proschan et al. (2001) [PMS01] showed that under
the quite pessimistic case that p0 and p1 equaled the observed proportions
ischemia-free in the opposite arms, the conditional probability of a significant
result would be about 0.99.

Though their calculations were based on binomial (11, p0) and binomial
(20, p1) distributions, the B-value approximation gives nearly the same an-
swer. The information fraction and B-value are

t = (1/193 + 1/192)−1/(1/204 + 1/212)−1 = 0.926

and
B(0.926) = (0.926)1/2(3.112) = 2.995.
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The opposite arm imputation scheme assumes p0 = 105/192 = 0.547 and
p1 = 75/193 = 0.389, so p = (p0 + p1)/2 = 0.468 and the drift parameter is

θ = (0.389− 0.547)/{(0.468)(1− 0.468)(1/204 + 1/212)}1/2 = −3.229.

The conditional mean of B(1) given B(0.926) = 2.995 is 2.995 − 3.229(1 −
0.926) = 2.756. Conditional power is approximately

CP−3.229(0.926) = 1 − Φ{(2.13− 2.756)/(1− 0.926)1/2}
= 1 − Φ(−2.30) ≈ 0.99.

This analysis reinforces the conclusion that revascularization is superior to
angina-guided therapy.

A similar idea can be applied at an interim analysis when some potential
events have not yet been officially classified. A data monitoring committee
faced with such uncertainty is usually concerned that it might recommend
stopping a trial because the z-score for the adjudicated data crosses a pre-
specified stopping boundary, only to find that the z-score drops under the
boundary once all the data have been adjudicated.

The Multicenter Study of Hydroxyurea in Sickle Cell Anemia (MSH) trial
[CTM95] compared the rates of painful crises during 2 years of follow-up in 299
patients assigned randomly to hydroxyurea or placebo. A participant’s crisis
rate was defined as the number of painful crises divided by the participant’s
follow-up time. Because of the expected skewed distribution of rates of crises
(some people experience very many crises, while others experience none), the
primary analysis used a rank test, the van der Waerden normal scores test.
The combined (treatment and control) crisis rates were ranked, the actual data
were replaced by the corresponding expected order statistics from a standard
normal distribution, and a t-test was performed on these “normal scores.”
Another advantage of the normal scores test is that deaths were used in the
analysis by assigning them the worst ranks, with earlier deaths given a worse
rank than later deaths.

Because the trial used a rank test whose joint distribution over time was
not known, a simple method known as the Haybittle-Peto procedure (see
Chapter 4) was used to monitor over four interim looks and one final look.
Statistically significant benefit could be declared if the p-value at any of the
first four looks were .001 or less, while the p-value at the last look would have
to be .05− 4(.001) = .046 or less to be declared significant.

Ascertaining whether a patient actually had a painful crisis required time-
consuming adjudication by the Crisis Review Committee. Though the bound-
ary for efficacy was crossed at the third interim analysis, approximately 22
percent of episodes had not yet been classified. The Data and Safety Monitor-
ing Board (DSMB) wanted to know whether results would change once these
episodes were classified, and whether results at the planned end of the trial
with all current and future episodes classified would change. Therefore, the
board asked for conditional power calculations at the fourth interim analysis.
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Conditional power was complicated by the nonstandard rank test, so sim-
ulation was used. The study was divided by calendar time into three periods:
Period I, at which time documentation and classification of medical contacts
was complete; Period II, the time between the end of Period I and the last
interim analysis (approximately 7 months); and Period III, the time between
the last interim analysis and the planned end of the trial (approximately 7
months). Pooled data from Period I were used to estimate the probability
that an episode would be classified as a crisis, as well as the future number
of crises. Using pooled data to estimate these parameters assumes the null
hypothesis for the remaining data. To account for patient differences in event
rates, contact and crisis rates in Period I were stratified by the number of
crises reported in the year prior to study entry. Thus, for a given patient, a
number of crises was assigned as follows. Any past crises that had been classi-
fied were counted. For the n episodes not yet classified, the number that would
ultimately be declared crises was simulated from a binomial distribution. The
number of future episodes was simulated using a Poisson distribution. Thus,
if the remaining follow-up time for a given patient were t, the number of fu-
ture episodes was simulated from a Poisson distribution with mean λt (with
the binomial again being used to simulate the number of those episodes that
would be declared crises). Once each patient’s data was simulated, the nor-
mal scores statistic and its p-value were computed. This process of simulating
the rest of the trial was repeated 2, 000 times, and the proportion of trials
reaching a p-value of .046 or less was computed. Approximately 99.9 percent
of simulated trials produced p < .046. The mean p-value was .007, leading
the DSMB to feel comfortable about recommending stopping the trial at the
fourth interim analaysis. See [MWG97] for further details of the conditional
power calculations used.

The applications of conditional power in ACIP and MSH differed markedly
from previous applications in that conditional power was very high even un-
der pessimistic assumptions. Just as low conditional power under optimistic
assumptions might justify stopping a trial for futility, high conditional power
under pessimistic assumptions might justify stopping for benefit. For example,
we could compute conditional power under the null hypothesis. If conditional
power computed under the null hypothesis is sufficiently high, one can be
confident that the current statistically significant benefit will be sustained at
the end of the trial. Stochastic curtailment for benefit means stopping the
trial when conditional power computed under the null hypothesis exceeds a
prespecified threshold.

Example 3.6. A trial comparing two treatments for opiate addiction admin-
isters a drug test 60 days postrandomization. Participants who fail to take
the test are counted as positive (i.e., on drugs). The outcome is binary, but
investigators want to use logistic regression to adjust for baseline covariates
such as number of years of drug use. The sample size is set at 70 per arm.
At an interim analysis after 55 arm A participants and 57 arm B participants
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are evaluted, the treatment effect estimate and estimated standard error are
δ̂ = 0.693 (arm A to arm B odds ratio of exp(0.693) = 2.0) and σ̂δ̂ = 0.212,
respectively.

The information fraction, z-score, and B-value are t = ( 1
55+ 1

57)−1/( 2
70)−1 =

0.800, Z(t) = 0.693/0.212 = 3.269, and B(t) = (0.800)1/2(3.269) = 2.924. If
we very conservatively assume the null hypothesis, then E{B(1) |B(0.800) =
2.924} = 2.924 and conditional power is

CP0(0.800) = 1 − Φ{(1.96− 2.924)/(1− 0.800)1/2}
= 1 − Φ(−2.16) ≈ 0.98.

Conditional power is overwhelming even under a very pessimistic assumption
(the null hypothesis) that is completely unsupported by the data. We can stop
the study and declare with confidence the superiority of arm B.

3.4 Properties of Conditional Power

It is instructive to rewrite the conditional power formula (3.4) as

CPθ(t) = Φ

(
Eθ{Z(1) |B(t) = b} − zα/2√

1 − t

)
(3.7)

because it facilitates comparison of conditional power and unconditional
power. Conditional power formula (3.7) is just like unconditional power for-
mula (3.2) except that 1) the unconditional mean of Z(1) is replaced by its
conditional mean given B(t) = b and 2) there is a (1 − t)1/2 term in the
denominator. At the start of a trial, t = 0 and the conditional and uncondi-
tional means of Z(1) are the same. Thus, conditional power at the beginning
of the trial equals its unconditional power. If results proceed as expected (i.e.,
the empirical drift parameter estimate equals the prior hypothesized value
θ = zα/2 + zβ), the conditional mean of Z(1) will equal its unconditional
mean, so the only difference between conditional and unconditional power will
be the term (1 − t)1/2 in the denominator of conditional power. The result is
that conditional power will increase over time if the originally hypothesized
treatment effect is observed.

Because conditional and unconditional power are equal at t = 0, condi-
tional power under the originally hypothesized treatment effect will be high
near the beginning of the trial even if early results are negative. This makes
it nearly impossible to use conditional power to stop for futility very early
in a trial. In fact, one can sometimes stop for harm without demonstrat-
ing futility. An example of this apparent paradox comes from CAST. Re-
call that the early results of CAST showed three of 576 placebo patients
and 19 of 571 treated patients with events. Because 425 events were ex-
pected by trial’s end, the information fraction was 22/425 = 0.052. The
logrank statistic and B-value were approximately Z(0.052) = −3.47 and
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B(0.052) = (0.052)1/2Z(0.052) = −0.79, respectively. Suppose we assume,
contrary to the observed data, that treatment reduces the hazard by 30 per-
cent relative to placebo. The drift parameter assuming 425 events by the end
of the trial is approximately ln(1/0.70)(425/4)1/2 = 3.68. The conditional
mean of B(1) given B(0.052) = −0.79 is −0.79 + 3.68(1 − 0.052) = 2.70.
Conditional power is therefore

CP3.68(0.052) = 1 − Φ{(1.96− 2.70)/(1− 0.052)1/2}
= 1 − Φ(−0.76) = 0.78.

Thus, even in the face of strong evidence of harm, conditional power assuming
a 30 percent benefit is almost 80 percent because it is so early in the trial.

Table 3.5. Conditional power boundaries for Z(t) for five equally spaced looks.
The interim z-score must exceed the tabled value to stop early for benefit using
stochastic curtailment.

Info. Time CP0 = 0.50 CP0 = 0.80

0.20 4.38 6.06
0.40 3.10 4.13
0.60 2.53 3.22
0.80 2.19 2.61
1.00 1.96 1.96

α = 0.031 α = 0.026

Table 3.5 quantifies the difficulty of stopping early using stochastic curtail-
ment for benefit. It shows the interim z-score necessary for conditional power
to drop under a 50 percent or 80 percent threshold at each of five equally
spaced looks. Note that even the 50 percent boundaries are quite high early
in the trial.

As always, there is no such thing as a free lunch. We must pay for stochas-
tic curtailment through the increased probability of a type 1 error if used
for benefit, or increased probability of a type 2 error if used for futility. Sur-
prisingly, the effects on the type 1 and 2 error rates are not very large. We
prove the following result due to Lan, Simon, and Halperin (1982) [LSH82] in
Section 3.7.1.

Result 3.1 (Lan, Simon, and Halperin, 1982 [LSH82]).

1. If a trial with no monitoring has type 1 error rate α, and stochastic cur-
tailment is used to stop for benefit if conditional power under the null
hypothesis exceeds 1 − ε, the type 1 error rate is at most α/(1 − ε) irre-
spective of the number of interim analyses. It is exactly α/(1 − ε) under
continuous monitoring.
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2. If a trial with no monitoring has type 2 error rate β, and stochastic cur-
tailment is used to stop for futility if conditional power under the origi-
nally hypothesized treatment effect falls below ε, the type 2 error rate is at
most β/(1−ε) irrespective of the number of interim analyses. It is exactly
β/(1 − ε) under continuous monitoring.

Fig. 3.4. Conditional power as a function of information fraction and observed z-
score under the null (top panel) and alternative (bottom panel) hypotheses. Note
that conditional power under a given hypothesis need not be a monotone function of
the information fraction t. Furthemore, for z-scores close to zα/2, conditional power
near t = 1 is highly sensitive to small changes in the z-score.

Conditional power sometimes has unusual properties. Figure 3.4 shows
conditional power as a function of the information fraction for different z-
scores. We see that for some z-scores, conditional power is not a monotone
function of information fraction. Furthermore, if the current z-score is close to
zα/2, conditional power for t close to 1 is very sensitive to small changes in the
z-score. This makes sense; for fixed z > zα/2, conditional power approaches 1
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as t → 1, whereas it approaches 0 as t → 1 for fixed z < zα/2. One role of a
statistician on a DSMB using conditional power is to explain this nonmono-
tonicity to other members of the board; otherwise, the results at successive
meetings can be confusing to the nonstatistician members.

3.5 A Bayesian Alternative: Predictive Power

We have seen that conditional power is quite sensitive to the drift parameter,
which is not well estimated at interim analyses. This has prompted some
to suggest a Bayesian alternative (Spiegelhalter, Freedman, and Blackburn,
1986 [SFB86]) to conditional power. Before the trial begins one specifies a
prior distribution for the treatment effect, or equivalently, a prior distribution
for the drift parameter, θ. At an interim analysis, conditional power CPθ(t)
is averaged over the posterior distribution π(θ |B(t)) of θ given the B-value.
This average conditional power is called predictive power PP(t),

PP (t) =
∫
CPθ(t)π{θ |B(t) = b}dθ

=
∫ ∞

−∞
Φ

(
b+ θ(1 − t) − zα/2√

1 − t

)
π{θ |B(t) = b}dθ. (3.8)

Predictive power accounts for the current data B(t) through both CP (t) and
π(θ |B(t) = b). The difference between PP (t) and PP (0) is used to decide
whether to recommend stopping a trial.

We illustrate predictive power when the prior distribution π(θ) is normal
with mean θ0 and variance σ2

0. The posterior distribution of θ given B(t) = b
is normal with mean a weighted combination of the prior mean θ0 and the
data estimate B(t)/t:

E(θ |B(t) = b) =
(1/σ2

0)θ0 + t(b/t)
1/σ2

0 + t

=
θ0 + bσ2

0

1 + tσ2
0

. (3.9)

The variance of the posterior distribution is σ2
0(1 − ρ2), where ρ is the corre-

lation between B(t) and θ. As seen in Section 3.7.2, ρ = t1/2σ0/(1 + tσ2
0)1/2,

var(θ |B(t) = b) = σ2
0/(1 + tσ2

0), and predictive power is

PP (t) = Φ

[
(b− zα/2)(1 + tσ2

0) + (1 − t)(θ0 + bσ2
0)√

(1 − t)(1 + σ2
0)(1 + tσ2

0)

]
. (3.10)

Note that for σ2
0 = 0, predictive power reduces to conditional power under

the originally hypothesized treatment effect (3.4). At the beginning of the
trial, b = 0 and t = 0, so predictive power reduces to
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PP (0) = Φ

(
θ0 − zα/2√

1 + σ2
0

)
. (3.11)

Here is an appealing way to choose the mean and variance of the normal
prior distribution. Take prior mean θ0 to be the treatment effect upon which
the sample size calculation was based. Determination of the prior variance is
based on how much weight we choose to give the prior treatment estimate
relative to the estimate from the trial. Recall that the posterior mean of θ at
the end of the trial is a weighted combination {(1/σ2

0)θ0+B(1)}/{1/σ2
0+1} of

the two drift parameter estimates θ0 and B(1). If we feel that our prior opinion
should carry about 20 percent weight, we choose σ2

0 such that (1/σ2
0)/(1/σ

2
0 +

1) = 0.20. In other words, σ2
0 = 4.

We return to Example 3.2, a feeding trial in which we expected the blood
pressure difference between arms to be 2 mm Hg. We compute predictive
power assuming a normal prior distribution for δ with mean 2. This translates
to a prior distribution for θ that has mean 3.24. Suppose we want the prior
information to carry about 10 percent weight compared to the data at the
end of the current trial. Then we set (1/σ2

0)/(1/σ2
0 + 1) = 0.10 and solve for

σ2
0, yielding σ2

0 = 9.
Before the trial begins, predictive power is, from (3.11):

PP (0) = Φ

(
3.24− 1.96√

1 + 9

)
= Φ(0.405) = 0.66. (3.12)

Recall that the unconditional power when δ = 2 was 0.90; however, here
the predictive power at the beginning of the trial is only 0.66. Predictive power
is the average conditional power over the posterior distribution of θ given the
data; at the beginning of the trial, we have no data, so the posterior distribu-
tion of θ is the prior distribution of θ, and conditional power is the same as
unconditional power. Thus, at the beginning of the trial, predictive power is
unconditional power averaged over the prior distribution for θ. Because our
prior information was worth so little (recall that we selected the prior variance
to give our prior information about 10 percent weight relative to the data at
the end of the trial), the prior distribution was quite diffuse. The more diffuse
the prior, the more predictive power reflects averaging over a uniform distri-
bution on the entire line (see Figure 3.5). As σ0 → ∞, predictive power tends
to 0.50.

Suppose the results at the interim analysis after evaluating 52 and 50 pa-
tients in the treatment and control arms were δ̂ = 1 and σ̂ = 6.1. The informa-
tion fraction, z-score, and B-value are t = (1/52+1/50)−1/(2/132)−1 = 0.386
Z(t) = 1/{6.12(1/50 + 1/52)}1/2 = 0.828, B(t) = (0.386)1/2(0.828) = 0.514.
From (3.10), predictive power is

PP (0.386) = Φ

[
(0.514− 1.96)(1 + 0.386(9)) + (1 − 0.386)(3.24 + 0.514(9))√

(1 − 0.386)(1 + 9)(1 + 0.386(9))
.

]
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Fig. 3.5. Predictive power at the beginning of the trial as a function of the variance
σ2

0 of the normal prior distribution. The prior mean θ0 is such that power under θ0

is 0.90. When σ2
0 = 0, the prior distribution is a point mass at θ0, and predictive

power is 0.90. When σ2
0 is very large, predictive power has an asymptote at 0.50.

= Φ(−0.313) = 0.38.

Thus, predictive power has dropped from 66 percent at the beginning of
the trial to 38 percent now. The drop is a result of two factors: 1) the current
B-value is lower than expected, so we need a steeper trajectory from now
to the end to reach statistical significance; and 2) the poorer than expected
results have caused us to revise our opinion about the likely value of the drift
parameter. The first factor would apply to both conditional and predictive
power, but the second factor is unique to predictive power. Proponents of
predictive power base the decision of whether to stop a trial on the change in
predictive power from the beginning of the trial to the interim analysis.
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3.6 Summary

Conditional power, the conditional probability of a significant result at the end
of the trial given the data observed thus far, is a useful tool when considering
whether to stop a trial for futility. Low conditional power means that a null re-
sult is likely. Whether that null result is meaningful depends on unconditional
power revised to incorporate the current estimate of the overall probability of
event or the variance for a continuous outcome trial. If both conditional and
revised unconditional power are low, the trial is doomed because a null result
is both likely and uninformative. On the other hand, if conditional power is
low but revised unconditional power high, continuing the trial might provide
an estimate of effect precise enough to rule out the originally hypothesized
value.

Conditional power has other uses, including assessing the likely impact of
missing or unadjudicated data on results.

Conditional power is usually computed under different hypotheses that
translate into different values of the drift parameter θ (see Table 3.6). Geo-
metrically, having observed B-value B(t) at current information time t, we
draw a line segment with slope θ beginning at (t, B(t)); its ordinate at infor-
mation time 1 is the conditional mean of the z-score at the end of the trial
given the current data (Figure 3.6). The best estimate of θ from the data itself
is θ̂ = B(t)/t, which is the slope of the line connecting the origin to (t, B(t)).

Table 3.6. Some hypotheses under which to compute conditional power. “Origi-
nal” denotes the original assumptions for both the treatment effect and nuisance
parameters such as the variance or overall treatment effect, whereas “Original trt”
denotes the original assumption for the treatment effect but the empirical estimate
of nuisance parameters. For a survival outcome, “HR” stands for hazard ratio and
N is the total number of patients with events.

Assumptions Continuous Outcome Dichotomous Outcome Survival Outcome

Original θ = zα/2 + zβ θ = zα/2 + zβ θ = zα/2 + zβ

Original trt. δ = δ0, σ = s RR= RR0, p = p̂ HR = HR0, N = N̂
Empirical θ = B(t)/t θ = B(t)/t θ = B(t)/t
Null θ = 0 θ = 0 θ = 0

Stopping a trial when conditional power under the originally assumed
treatment effect falls below a fixed threshold (typically 0.10− 0.15), or when
conditional power under the null hypothesis exceeds a fixed threshold (typ-
ically at least 0.80), is called stochastic curtailment for futility or benefit,
respectively. Though stochastic curtailment increases error rates, the magni-
tude of increase is relatively small even if we monitor the data continuously.
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Fig. 3.6. The geometry of conditional power. The best estimate of the treatment
effect at information time t is B(t)/t, the slope of the line segment joining the origin
to (t,B(t)). To compute conditional power under drift θ, append a line segment with
slope θ to (t,B(t)); its ordinate at information time 1 is E{Z(1) |B(t)}, which deter-
mines conditional power. To calculate conditional power under the null hypothesis,
use a flat line from now until the end of the trial. To calculate conditional power
under the current trend, extend, to the end of the trial, the segment joining the
origin to (t,B(t)).

Predictive power, a Bayesian alternative to conditional power, averages
conditional power over the posterior distribution of the drift parameter given
the data.

3.7 Appendix

3.7.1 Proof of Result 3.1

We prove part 2 because stochastic curtailment is used most often for futility.
The proof of part 1 is very similar. Consider a worst case scenario—continuous

0 1

0

1

(t,B(t))
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monitoring. Let A = {Z(1) < zα/2} be the event that a type 2 error is made
at the end of the trial. If A occurs, there must be some t for which CP (t) < ε
because CP (t) is continuous, CP (0) = 1−β, and CP (1) = 0 ifA occurs. Let τ
be the first time conditional power drops below ε; τ = inf{t ≤ 1 : CP (t) < ε},
and set τ = 2 if CP(t) ≥ ε for all t ≤ 1. Let F (t) be the distribution function
for τ . Then

β = Pr{B(1) < zα/2}

=
∫

(0,1]

Pr{B(1) < zα/2|τ = t}dF (t)

=
∫

(0,1]

(1 − ε) dF (t)

= (1 − ε) Pr(τ ≤ 1)
= (1 − ε) Pr(type 2 error),

from which Pr(type 2 error) = β/(1 − ε).
The heuristic reasoning behind the third step is as follows. The event τ = t

depends only on B(s), s ≤ t, and it implies B(t) = bε(t), where bε(t) is the
value such that CP (t) = ε. Once we know B(t) = bε(t), the implication of
τ = t on B(s) for s < t becomes irrelevant. Thus Pr(B(1) < zα/2 | τ = t) =
1−CP (t) = 1− ε. A more careful treatment partitions the interval (0, 1] into
Im = ((m−1)/M,m/M ], m = 1, . . . ,M and replaces

∫
(0,1] by

∑M
m=1, and the

event {τ = t} by τ ∈ Im. We can then take the limit as M → ∞ and use the
uniform continuity of CP (t) on [0, 1].

3.7.2 Formula for corr{B(t), θ} and var{θ | B(t) = b}

Note that

E{B(t)θ} = E[E{B(t)θ | θ}] = E[θE{B(t) | θ}]
= E{θ(θt)} = tE(θ2)
= t[var(θ) + {E(θ)}2]
= t(σ2

0 + θ20),

E{B(t)} = E[E{B(t) | θ}] = tE(θ) = tθ0,

and E(θ) = θ0, so

cov{B(t), θ} = E{B(t)θ} − E{B(t)}E(θ)
= t(σ2

0 + θ20) − tθ20 = tσ2
0.

Also,

var{B(t)} = E[var{B(t) | θ}] + var[E{B(t) | θ}]
= E(t) + var(θt) = t + t2σ2

0

= t(1 + tσ2
0)
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and var(θ) = σ2
0, so

ρ =
cov{B(t), θ}√
var{B(t)}var(θ)

=
tσ2

0√
t(1 + tσ2

0)σ2
0

=
t1/2σ0√
1 + tσ2

0

.

Finally, because B(t) and θ have a bivariate normal distribution,

var(θ |B(t) = b) = var(θ)(1 − ρ2) = σ2
0

(
1 − tσ2

0

1 + tσ2
0

)

=
σ2

0

1 + tσ2
0

.

3.7.3 Simplification of Formula (3.8)

To simplify (3.8), let Z be a standard normal deviate independent of (B(t), θ).
Note that Pr[Z ≤ {B(t) + θ(1 − t) − zα/2}/(1 − t)1/2 |B(t) = b] is given
by (3.8). In other words, (3.8) is equivalent to Pr{(1 − t)1/2Z − θ(1 − t) ≤
B(t) − zα/2 |B(t) = b}. Conditioned on B(t) = b, (1 − t)1/2Z − θ(1 − t) is
normally distributed with mean

E{(1 − t)1/2Z − θ(1 − t) |B(t) = b} = −(1 − t)E{θ |B(t) = b}

= −(1 − t)
(
θ0 + bσ2

0

1 + tσ2
0

)

(the last step used Equation (3.9)) and variance

var{(1− t)1/2Z − θ(1 − t) |B(t) = b} = 1 − t+ (1 − t)2var{θ |B(t) = b}

= 1 − t+
(1 − t)2σ2

0

1 + tσ2
0

= (1 − t)
{

1 +
(1 − t)σ2

0

1 + tσ2
0

}
.

Thus

PP (t) = Φ



b− zα/2 + (1−t)(θ0+bσ2

0)

(1+tσ2
0)√

(1 − t)
{

1 + (1−t)σ2
0

(1+tσ2
0 )

}




= Φ

[
(b− zα/2)(1 + tσ2

0) + (1 − t)(θ0 + bσ2
0)√

(1 − t)(1 + σ2
0)(1 + tσ2

0)

]
.
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Historical Monitoring Boundaries

The last chapter focused primarily on stopping a trial for futility, but in many
trials we have an ethical obligation to stop if evidence for benefit of treatment
becomes unequivocal. A statistical naif might compute the z-score at each
interim analysis and declare benefit if it ever exceeds 1.96. But just as our
confidence in a dart thrower’s ability is eroded if he takes 10 throws to hit
the target, so too is our confidence when one of many z-scores reaches the
targeted 1.96. The probability of eventually hitting the target is high even for
an unskilled dart thrower. So too is the probability of eventually reaching a
z-score of 1.96 even if the treatment has no real effect.

4.1 How Bad Can the Naive Approach Be?

First consider interim analyses with equally spaced information. The probabil-
ity that the absolute value of at least one z-score exceeds 1.96 can be estimated
either through simulation or by numerical integration. Section 4.7 gives the
numerical integration approach of Armitage, McPherson, and Rowe (1969)
[AMR69]. The second and fourth columns of Table 4.1 show the type 1 error
rate rejecting the null hypothesis when |Z(i/k)| > zα for some i = 1, . . . , k
and α = .01 and .05. With only five equally spaced looks, the type 1 error rate
has already reached .142 instead of .05. As the number of looks approaches
∞, the type 1 error rate very slowly approaches 1.

The situation can worsen with unequally spaced interim analyses. To
bound the worst case type 1 error rate we note that for t1 < . . . < tk, the
z-scores Z(t1), . . . , Z(tk) are multivariate normal with corr{Z(ti), Z(tj)} =
(ti/tj)1/2 > 0. Intuitively, these z-statistics are more likely all to be large
or all small than if they were independent. The same is true if we replace
Z(ti) by |Z(ti)|. In fact, Hochberg and Tamhane (1987) [HT87] show that
Pr (∩iZti ≤ ci) ≥

∏
i Pr{Z(ti) ≤ ci} and Pr (∩i|Zti| ≤ ci) ≥

∏
i Pr{|Z(ti)| ≤

ci}. It follows that
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Pr(∪k
i=1Z(ti) > zα) ≤ 1 − (1 − α)k and

Pr(∪k
i=1|Z(ti)| > zα2) ≤ 1 − (1 − α)k. (4.1)

The worst case sequence of information times t1, . . . , tk is as follows. Let ε be a
small positive number and suppose that t1 = εk−1, t2 = εk−2, . . . , tk = ε0 = 1.
Then corr{Z(ti), Z(tj)} = (ti/tj)1/2 ≤ ε1/2 for each i, j. In other words,
Z(t1), . . . , Z(tk) are arbitrarily close to being independent, so the bound (4.1)
is approached as ε → 0 (Proschan, Follmann, and Waclawiw, 1992 [PFW92]).

The third and fifth columns of Table 4.1 give the worst case type 1 error
rate for two-tailed tests at α = 0.01 and α = 0.05. With only five looks the
type 1 error rate can be nearly 0.226 instead of 0.05. Note how much more
quickly the type 1 error rate approaches 1 under the worst case timing of looks
than under equal spacing.

Table 4.1. Type 1 error rate by the number and timing of looks for a two-tailed
test at α = 0.01 and α = 0.05 obtained by numerical integration for k ≤ 20 and
simulation of a million trials for k > 20.

α = 0.01 α = 0.05

# Looks (k) Equally Spaced Worst Case Equally Spaced Worst Case

2 .018 .020 .083 .098
3 .024 .030 .107 .143
4 .029 .039 .126 .185
5 .033 .049 .142 .226
6 .036 .059 .155 .265
7 .040 .068 .166 .302
8 .042 .077 .176 .337
9 .045 .086 .185 .370
10 .047 .096 .193 .401
11 .050 .105 .201 .431
12 .052 .114 .207 .460
13 .053 .122 .214 .487
14 .055 .131 .220 .512
15 .057 .140 .225 .537
16 .058 .149 .230 .560
17 .060 .157 .235 .582
18 .061 .165 .239 .603
19 .063 .174 .244 .623
20 .064 .182 .248 .642
50 .088 .395 .319 .923
100 .107 .634 .373 .994
1000 .172 1 .531 1
∞ 1 1 1 1
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What causes most of the trouble is very early monitoring. In fact, because
the joint distribution of the z-statistics depends only on ratios of information
fractions, the type 1 error rate for k equally spaced looks on the unit interval
is exactly the same as for k equally spaced looks on [0, ε] for arbitrarily small ε.
Thus, for example, the type 1 error rate used during the first half of an eight-
look trial is the same as over the entire duration of a four-look trial. This is
another way of seeing that the type 1 error rate for continuous monitoring
using a constant z-score boundary is 1; it is clear that Pr(Z(t) > c for some
t ≤ 1) must be strictly greater than Pr(Z(t) > c for some t ≤ ε) unless
Pr(Z(t) > c for some t ≤ ε) = 1. Thus, continuous monitoring for any length of
time beginning at time 0 produces a type 1 error rate of 1 if we use a constant z-
score boundary. If we agree to refrain from monitoring before, say, information
fraction 0.20, the type 1 error rate is not nearly so inflated. Delong (1981) [D81]
developed formulas and presented a table for Pr(Z(t) > c for some t ≥ γ) for
different values of γ.

4.2 The Pocock Procedure

A natural solution to the problem of inflation of the type 1 error rate is to
monitor at equally spaced information times and “raise the bar” for the z-
statistics. For a two-tailed test, the Pocock procedure (Pocock, 1977 [P77])
rejects at the ith of k interim looks if |Z(i/k)| > cP (k), where cP (k) is such
that Pr(∪k

i=1|Z(i/k)| > cP (k)) = α.
Table 4.2 gives the constants cP (k) for a two-tailed test at level 0.01, 0.05,

and 0.10. For example, with α = 0.05 and five analyses, the absolute value
of the z-score at a given analysis would have to exceed 2.413 to be declared
significant. That includes the final analysis, and therein lies the practical prob-
lem. The use of 2.413 instead of 1.96 at the end of the trial is a high price
to pay for monitoring. A z-score of 2.413 translates to a two-tailed “nominal
p-value” of 2{1 − Φ(2.413)} = 0.016. That is, we require the nominal p-value
at the end of the trial to be 0.016 or less to reject the null hypothesis. As
k → ∞, cP (k) → ∞, albeit slowly. The problem arises from the fact that the
Pocock procedure requires the same level of evidence for early and late looks
at the data. Clinical trialists prefer to require a greater level of evidence early
in a trial. A less serious drawback to Pocock’s procedure is that it requires
equally spaced looks. Pocock himself now cautions against using his proce-
dure, though some people use the method for monitoring safety (see Chapter
9).

4.3 The Haybittle Procedure and Variants

An even earlier approach than Pocock’s was less well known to statisticians
because it first appeared in a radiology journal rather than a statistics journal.
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Table 4.2. Two-tailed boundaries for the Pocock procedure

# Looks (k) α = 0.01 α = 0.05 α = 0.10

1 2.576 1.960 1.645
2 2.772 2.178 1.875
3 2.873 2.289 1.992
4 2.939 2.361 2.067
5 2.986 2.413 2.122
6 3.023 2.453 2.164
7 3.053 2.485 2.197
8 3.078 2.512 2.225
9 3.099 2.535 2.249
10 3.117 2.555 2.270
11 3.133 2.572 2.288
12 3.147 2.588 2.304
13 3.160 2.602 2.319
14 3.172 2.614 2.332
15 3.182 2.626 2.344
16 3.192 2.637 2.355
17 3.201 2.646 2.365
18 3.210 2.656 2.375
19 3.217 2.664 2.384
20 3.225 2.672 2.392
∞ ∞ ∞ ∞

Haybittle (1971) [H71] suggested using a z-score boundary of 3 at interim
analyses and retaining 1.96 at the final analysis. Because the boundary at
interim analyses is so high, the degree of inflation of the type 1 error rate is
small unless the number of analyses is large.

The Haybittle procedure is simple to implement. The test it uses at the
end of the trial is identical to the one that would have been used without
monitoring. These two advantages make the procedure attractive; however,
the second advantage is not quite fair to claim because the procedure in fact
does inflate the type 1 error rate slightly. We could eliminate the inflation
through a Bonferroni adjustment. In this modified Haybittle procedure, we
would require p < .001 to declare significance at all but the final analysis,
but at the final analysis we would require p < .05 − .001(k − 1). Here p is
the “nominal p-value” computed the usual way without taking monitoring
into consideration. For example, with 5 looks we require p < .001 at any
of the first 4 looks, and p < .05 − 4(.001) = .046 at the final look. The
Bonferroni fix, like Pocock’s procedure, requires prespecification of the number
of analyses. Unlike Pocock’s procedure, the Bonferroni fix does not require
them to be equally spaced in terms of information. It also is valid regardless
of the joint distribution of Z(t1), . . . , Z(tk). Thus, we can use the Bonferroni-
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adjusted Haybittle method for any test statistic, not just for those that can
be transformed to Brownian motion.

Some users of Haybittle-type procedures informally deal with inflation of
type 1 error rate by modifying the boundary in other ways. They may demand
a z-score of 4 for the first half of the study and 3 thereafter or they may require
crossing the boundary at two successive looks.

One problem with the Haybittle procedure and its various fixes is the
precipitous drop in the boundary at the end of the study, or, for those mod-
ifications that change the boundary from 4 to 3, at the halfway point. This
can lead to a logical inconsistency. For example, suppose in a study with five
equally spaced looks, the z-score at the fourth look is 2.8. Suppose the trend
is completely reversed between the fourth and fifth analyses so that the z-
score for the incremental data is (1/5)1/2{B(5/5) − B(4/5)} = −1. Then the
cumulative z-score at the final analysis, (4/5)1/2(2.8) + (1/5)1/2(−1) = 2.06,
is now significant. In other words, the evidence was not deemed sufficient at
the fourth analysis with a z-score of 2.8, but the observed subsequent negative
trend convinces us that the effect is real. That does not make sense.

4.4 The O’Brien-Fleming Procedure

That the Haybittle boundary is high very early and close to 1.96 at the end is
an asset. We want to resist stopping early when there is large variability, both
statistical and nonstatistical (e.g., it may take clinicians some time to learn
the protocol). We also do not want to pay as high a price at the end as the
Pocock procedure does. Thus, we would like to retain these two properties
while avoiding the logical inconsistency encountered at the end of the last
section.

Assume our looks are equally spaced with respect to information, and let
a1, . . . , ak denote the boundary for the B-value process. We wish to avoid the
possibility that B(i/k) < ai, B((i + 1)/k) − B(i/k) < 0, and B((i + 1)/k) >
ai+1. This clearly requires a1 ≥ a2 ≥ . . . ≥ ak. Among all such boundaries
that avoid the logical inconsistency, the one that makes it the most difficult to
stop early is ai+1 = ai, i = 1, . . . , k − 1. O’Brien and Fleming (1979) [OF79]
proposed this constant boundary for the B-value process.

Table 4.3 gives the O’Brien-Fleming boundary a(k) for the B-value for
a two-tailed test at α = .01, .05, and .10 and different numbers of looks.
The O’Brien-Fleming z-value boundary cO−F (i/k) at the ith analysis is
a(k)/(i/k)1/2. For example, the tabled value for five looks and α = .05
is a(5) = 2.040. Accordingly, the boundaries for Z(1/k), . . . , Z(5/5) are
2.040/(1/5)1/2 = 4.562, 2.040/(2/5)1/2 = 3.226, . . . , 2.040/(5/5)1/2 = 2.040.

We can look at the O’Brien-Fleming boundary in a different way. Think
of a one-tailed test. We saw at the end of the last chapter that conditional
power for benefit also makes it very difficult to stop early. In fact, the boundary
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Table 4.3. Two-tailed B-value boundaries a(k) for the O’Brien-Fleming procedure.
Boundaries for the z-score Z(i/k) are a(k)/(i/k)1/2.

# Looks (k) α = .01 α = .05 α = .10

1 2.576 1.960 1.645
2 2.580 1.977 1.678
3 2.595 2.004 1.710
4 2.609 2.024 1.733
5 2.621 2.040 1.751
6 2.631 2.053 1.765
7 2.640 2.063 1.776
8 2.648 2.072 1.786
9 2.654 2.080 1.794
10 2.660 2.087 1.801
11 2.665 2.092 1.807
12 2.670 2.098 1.813
13 2.674 2.103 1.818
14 2.677 2.106 1.822
15 2.681 2.110 1.826
16 2.684 2.114 1.830
17 2.687 2.117 1.834
18 2.690 2.120 1.837
19 2.693 2.123 1.840
20 2.695 2.126 1.842
∞ 2.807 2.241 1.960

based on 50 percent conditional power under the null hypothesis is very close
to the O’Brien-Fleming boundary except that its type 1 error rate exceeds
0.05. We can correct the 50 percent conditional power boundary by using a
slightly larger boundary for the final z-score instead of 1.96. Thus, we reject
at the end if B(1) > a, and we reject earlier if conditional power under the
null hypothesis is at least 0.50. But that means we reject at the ith analysis
if B(i/k) > a. In other words, this corrected conditional power boundary is
a constant boundary for the B-value process; in fact, it is identical to the
O’Brien-Fleming boundary.

4.5 A Comparison of the Pocock and O’Brien-Fleming
Boundaries

Both Pocock and O’Brien-Fleming proposed constant boundaries, Pocock for
the z-process and O’Brien-Fleming for the B-process. The two boundaries
are, in a sense, the two practical extremes in terms of steepness of z-score
boundaries. On the one hand, we want the z-score boundaries to decrease with
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t; a z-score of 3 at the end of the trial should be more compelling than a z-score
of 3 at the midway point, for example. Thus, Pocock’s flat z-score boundary
is the smallest descent we would like in a boundary. On the other hand, a
B-value boundary that decreases with t might have the logical inconsistency
pointed out with the Haybittle procedure. That is, we could see a B-value
below the boundary at t1, observe a negative trend from t1 to t2, and have
B(t2) above its boundary (Figure 4.1). Thus, O’Brien-Fleming’s flat B-value
boundary is the steepest descent we would like in a boundary.

Fig. 4.1. If the B-value boundary decreases from t = t1 to t = t2, we could encounter
a logical inconsistency whereby B(t1) is below its boundary, a negative trend is
observed between t1 and t2, yet B(t2) is above its boundary.

The Pocock and O’Brien-Fleming z-value boundaries cP and cO−F are
contrasted in Figure 4.2 for a trial with four equally spaced looks. The
O’Brien-Fleming boundary makes it much more difficult to stop early than
the Pocock boundary. Accordingly, the O’Brien-Fleming boundary extracts a
much smaller price at the end.
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Fig. 4.2. Pocock (circles) and O’Brien-Fleming (squares) z-score boundaries for
four looks.

Another way to compare the Pocock and O’Brien-Fleming boundaries is
to contrast the cumulative type 1 error rate used up at the different looks.
For both boundaries, interim analyses occur at equally spaced information
fractions 0/k = 0, 1/k, . . ., k/k = 1. The cumulative type 1 error rate used
by information fraction j/k is the probability of rejection at or before j/k,
Pr(∪j

i=1|Z(ti)| > ci). For both boundaries, the amount of type 1 error rate
used by information fractions 0 and 1 is 0 and α, respectively. The cumulative
type 1 error rate functions for the Pocock and O’Brien-Fleming boundaries
with four looks are shown in Figure 4.3. The Pocock cumulative type 1 error
rate increases sharply at first, but much less so toward the end. The O’Brien-
Fleming cumulative type 1 error rate function behaves in just the opposite
way; it increases very slowly early on, and jumps precipitously at the end.
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Fig. 4.3. Cumulative type 1 error rate used by the Pocock (circles) and O’Brien-
Fleming (squares) procedures with four looks.

4.6 Effect of Monitoring on Power

It is clear that monitoring must decrease power compared to conducting a
single test at the end of the trial. After all, the sufficient statistic in a trial
without monitoring is the final z-score; conditioned on it, the interim z-scores
are ancillary. The flexibility gained by allowing early stopping must therefore
cost power, but how much?

We can calculate bounds on power as follows. For a one-tailed test,

Pθ(Z(1) ≥ ck) ≤ Power = Pθ(∪k
i=1Z(ti) ≥ ci) ≤ Pθ(Z(1) ≥ zα).

That is,
1 − Φ(ck − θ) ≤ Power ≤ 1 − Φ(zα − θ).

Equivalently,
Φ(θ − ck) ≤ Power ≤ Φ(θ − zα). (4.2)

For boundaries such as those of O’Brien-Fleming, the final critical value
ck is very close to zα, so the left and right sides of (4.2) are almost equal.
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For other boundaries, the left and right sides of (4.2) may not be close.
For example, even for two looks, the Pocock boundary at the end of the trial
is c2 = 2.18, which differs substantially from 1.96. Fortunately, it is easy
to calculate power even using a program that computes boundary crossing
probabilities only under the null hypothesis. We can generate a Brownian
motion with drift θ byB(t)+θt, where B(t) is a standard (zero-drift) Brownian
motion. Thus, power is

Pr(∪k
i=1B(ti) + θti ≥ ai) = Pr(∪k

i=1B(ti) > ai − θti). (4.3)

We can use a computer program that computes boundary crossing probabili-
ties for standard Brownian motion, and supply the boundary ai − θti.

We can also use free software at www.medsch.wisc.edu/landemets/ to com-
pute the effect of monitoring on power. A complete demonstration of the fea-
tures of version 2.1 of the program is presented in Chapter 14. For now we
show how to compute the power we lose by monitoring a trial. In a clinical
trial with no monitoring, to achieve power 1 − β in a one-tailed test at level
α/2 or a two-tailed test at level α, we equate the expected z-score to zα/2+zβ

(see Chapter 3). For example, for 85 percent power and a two-tailed test at
level 0.05, the expected z-score must be 1.96 + 1.04 = 3. Suppose we monitor
using the Pocock boundary with two looks.

We begin by opening the program winld.exe and clicking on the title page,
making it disappear. We then go to the “Compute” menu and select “Proba-
bility.” From the “Analysis Parameters” area we go to “Interim Analyses,”
type 2, and hit enter. (With this program, one must hit enter after making a
choice, otherwise the choice will not register.) The program then shows 0.50
and 1.00 in the “Time” column of the data table at the upper right of the
screen. We want to enter our own boundaries, so we go to “Probability Pa-
rameters,” “Determine Bounds,” and select “User Input” followed by enter.
We then go to the “Upper” column of the data table at the upper right of
the screen, and we type the two-look Pocock bounds 2.178 and 2.178. The
program automatically supplies symmetrical lower bounds. If we wanted to
use a one-tailed test instead, we would have gone to “Analysis Parame-
ters,” “Test Boundaries,” and selected “One-Sided.” We then enter 3 under
“Probability Parameters,” “Drift.” When we click “Calculate,” we see the
cumulative exit probabilities 0.47741 and 0.81296 in the last column of the
data table at the upper right of the screen. This means that the probability
of exceeding the boundary at the first look is 0.47741, while the probability of
exceeding the boundary at either the first or second look is 0.81296. In other
words, the power drops from about 85 percent in a trial with no monitoring
to about 81 percent using the Pocock boundary with only two looks. The loss
in power is fairly dramatic considering we took only one interim look and a
final look.

Another way of assessing the loss in power using the Pocock boundary is to
see how much the drift parameter must be increased to maintain 85 percent
power. This time we choose “Drift” from the “Compute” menu. Again we
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select 2 from the “Analysis Parameters,” “Interim Analyses,” and “User
Input” from the “Determine Bounds” box of “Probability Parameters.”
We again enter 2.178, 2.178 under the “Upper” column of the data table at
the upper right of the screen. We then go to “Power” from “Power and
Bounds Parameters” and type 0.85 followed by enter. When we click on
“Calculate,” we see 3.1503 under Drift. In other words, the drift parameter
required to maintain 85 percent power increases from 3 with no monitoring
to 3.1503 using the Pocok boundary with only two looks. Putting it another
way, the relative sample sizes for a two-look trial monitoring using the Pocock
boundary and a trial with no monitoring is (3.1503/3)2 = 1.10. We must
increase the sample size by 10 percent to maintain 85 percent power, even
though we are taking only one interim and one final look.

We can repeat this exercise using the O’Brien-Fleming boundary. We find
that a much smaller increase in sample size is required to maintain the same
power with the O’Brien-Fleming boundary. Tables 4.4 and 4.5 show the per-
centage increase for a trial monitoring using the Pocock and O’Brien-Fleming
boundaries compared to a trial with no monitoring

Table 4.4. Drift parameter to achieve 80, 85, and 90 percent power using the Pocock
boundary for a two-tailed test at α = 0.05. The percentage increase in sample size
compared to a trial with no monitoring is shown in parentheses.

# Looks (k) Power= 0.80 Power= 0.85 Power= 0.90

2 2.952 (11) 3.150 (11) 3.399 (10)
3 3.025 (17) 3.225 (16) 3.477 (15)
4 3.072 (20) 3.273 (19) 3.526 (18)
5 3.105 (23) 3.307 (22) 3.561 (21)
6 3.131 (25) 3.334 (24) 3.588 (22)
7 3.151 (26) 3.354 (25) 3.609 (24)
8 3.168 (28) 3.372 (27) 3.627 (25)
9 3.183 (29) 3.387 (28) 3.642 (26)
10 3.196 (30) 3.400 (29) 3.656 (27)
∞ ∞ ∞ ∞

4.7 Appendix: Computation of Boundaries Using
Numerical Integration

Armitage, McPherson, and Rowe (1969) [AMR69] showed how to integrate
numerically to compute probabilities like Pr(Z(t1) ≤ c1, . . . , Z(tk) ≤ ck). The
k = 1 case is simple; Pr(Z(t1) ≤ c1) = Φ(c1). Now consider k = 2. Note that
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Table 4.5. Drift parameter to achieve 80, 85, and 90 percent power using the
O’Brien-Fleming boundary for a two-tailed test at α = 0.05. The percentage increase
in sample size compared to a trial with no monitoring is shown in parentheses.

# Looks (k) Power= 0.80 Power= 0.85 Power= 0.90

2 2.812 (1) 3.007 (1) 3.253 (1)
3 2.826 (2) 3.022 (2) 3.268 (2)
4 2.835 (2) 3.031 (2) 3.277 (2)
5 2.841 (3) 3.037 (3) 3.284 (3)
6 2.846 (3) 3.043 (3) 3.290 (3)
7 2.849 (3) 3.046 (3) 3.293 (3)
8 2.852 (4) 3.049 (4) 3.297 (3)
9 2.855 (4) 3.052 (4) 3.300 (4)
10 2.858 (4) 3.055 (4) 3.302 (4)
∞ ∞ ∞ ∞

Pr(Z(t1) ≤ c1, Z(t2) ≤ c2)

=
∫ c1

−∞
Pr{Z(t2) ≤ c2 |Z(t1) ∈ (x, x+ dx)}Pr{Z(t1) ∈ (x, x+ dx)}

=
∫ c1

−∞
Pr{B(t2) ≤ c2t

1/2
2 |Z(t1) ∈ (x, x+ dx)}Pr{Z(t1) ∈ (x, x+ dx)}

× Pr{Z(t1) ∈ (x, x+ dx)}

=
∫ c1

−∞
Pr{B(t2) − B(t1) ≤ c2t

1/2
2 − xt

1/2
1 |Z(t1) ∈ (x, x+ dx)}

× Pr{Z(t1) ∈ (x, x+ dx)}

=
∫ c1

−∞
Φ

(
c2t

1/2
2 − xt

1/2
1√

t2 − t1

)
φ(x)dx, (4.4)

Now think of c1 as fixed and consider (4.4) as a function Fc1(c2). Note
that Fc1(c2) is like a distribution function except that Fc1(∞) = Pr(Z(t1) ≤
c1) < 1. The derivative

dFc1(c2)
dc2

= fc1(c2) =
∫ c1

−∞

√
t2

t2 − t1
φ

(
c2t

1/2
2 − xt

1/2
1√

t2 − t1

)
φ(x)dx (4.5)

behaves like a density in that Fc1(c2) =
∫ c2

−∞ fc1 (x)dx. Loosely speaking,
fc1(x) is Pr{Z(t1) ≤ c1, Z(t2) = x}, meaning that fc1(x)dx is Pr{Z(t1) ≤
c1, Z(t2) ∈ (x, x+ dx)}.

For k = 3,

Fc1,c2(c3) = Pr(Z(t1) ≤ c1, Z(t2) ≤ c2, Z(t3) ≤ c3)
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=
∫ c2

−∞
Pr{Z(t3) ≤ c3 |Z(t1) ≤ c1, Z(t2) ∈ (x, x+ dx)}

× Pr{Z(t1) ≤ c1, Z(t2) ∈ (x, x+ dx)}

=
∫ c2

−∞
Φ

(
c3t

1/2
3 − xt

1/2
2√

t3 − t2

)
fc1 (x)dx, and (4.6)

dFc1,c2(c3)
dc3

= fc1,c2(c3) =
∫ c2

−∞

√
t3

t3 − t2
φ

(
c3t

1/2
3 − xt

1/2
2√

t3 − t2

)
fc1(x)dx (4.7)

Continuing in this fashion, we obtain the iterative relationship

fc1,...,ck−1 (ck) =
∫ ck−1

−∞

√
tk

tk − tk−1
φ

(
ckt

1/2
k − xt

1/2
k−1√

tk − tk−1

)
fc1,...,ck−2 (x)dx

(4.8)
for k ≥ 2, where fc1,...,ck−2 (x) is defined to be φ(x) when k = 2.

One simple iterative procedure for computing Pr(Z(t1) ≤ c1, . . . , Z(tk) ≤
ck) is as follows. Create a grid of say 100 equally spaced points between −7
and 7 and use Simpson’s rule to evaluate fc1(x) of (4.5) for each grid point
x, where we replace −∞ by −7. Then use Simpson’s rule again to compute
fc1,c2(x) of (4.7) for each grid point x, where again we replace −∞ by 7. We
continue this process and obtain fc1,...,ck−1(ck) at each grid point x. One final
application of Simpson’s rule approximates

Pr(Z(t1) ≤ c1, . . . , Z(tk) ≤ ck) =
∫ ck

−∞
fc1,...,ck−1(x)dx.
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Spending Functions

5.1 Upper Boundaries

The classical Pocock and O’Brien-Fleming boundaries introduced in Chap-
ter 4 require a prespecified number of equally spaced looks, but Data and
Safety Monitoring Boards typically want more flexibility. A DSMB may have
to postpone a meeting for logistical reasons, or members may want to look at
the data more frequently in response to concerns they have. Lan and DeMets
(1983) [LD83] showed how to construct boundaries that do not require pre-
specification of the number or timing of looks. For simplicity, we first consider
upper boundaries, deferring discussion of upper and lower boundaries to Sec-
tion 5.2.

Table 5.1. Cumulative type 1 error rate used by the O’Brien-Fleming procedure
with four and eight looks and one-tailed α = .025.

t
.125 .25 .375 .5 .625 .75 .875 1

4 Looks .0000 .0021 .0105 .0250
8 Looks .0000 .0000 .0004 .0018 .0050 .0101 .0168 .0250

The idea introduced in Section 4.5 of considering the cumulative type 1
error rate used by different information times is the key to making boundaries
more flexible. Rows 1 and 2 of Table 5.1 show the cumulative type 1 error rate
for one-tailed O’Brien-Fleming boundaries with α = .025 and four and eight
looks, respectively. Notice that the type 1 error rate used by the informa-
tion fractions common to four and eight looks, namely t = 0, 1/4, 2/4,3/4,1,
are almost the same for row 1 and row 2. Thus, doubling the number of
looks doubles the number of points at which the cumulative type 1 error rate
function is defined but does not appreciably change its value at previously
existing support points. Imagine doubling the number of looks ad infinitum.
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The O’Brien-Fleming B-value boundary ak approaches a as k → ∞, where a
is such that Pr(B(s) > a for some s ≤ 1) = α. The probability of crossing the
boundary by time t is

α∗
1(t) = Pr(B(s) > a for some s ≤ t). (5.1)

Later we will derive a formula for the cumulative crossing probability α∗
1(t)

Fig. 5.1. Cumulative type 1 error rate used by the one-tailed O’Brien-Fleming
boundary with α = 0.025 for eight (circles) versus infinitely many (curve) equally
spaced looks. The curve with infinitely many looks is the O’Brien-Fleming-like
spending function.

of (5.1); for now note that α∗
1(t) is an increasing function defined on all of

[0, 1] with α∗
1(0) = 0 and α∗(1) = α (Figure 5.1). A function satisfying these

conditions is called a spending function. Instead of specifying the number and
timing of looks, we can specify a spending function telling how much alpha
to use by information time t.

We illustrate the spending function approach using the linear spending
function
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α∗
2(t) = αt

with α = 0.025 and one-tailed testing. Suppose the first look occurs at in-
formation fraction t = 0.20. We spend α∗

2(0.20) = 0.025(0.20) = 0.005
at the first interim analysis and therefore determine a critical value c1
such that Pr(Z(t1) > c1) = 0.005. The corresponding boundary is c1 =
Φ−1(0.995) = 2.576. We reject the null hypothesis at the first analysis if
Z(0.20) > 2.576. Suppose this does not happen, and the next interim analy-
sis occurs at information fraction t = 0.5. The cumulative type 1 error rate
by t = 0.50 is α∗

2(0.5) = 0.025(0.5) = 0.0125. We determine the bound-
ary c2 such that Pr(Z(0.20) > 2.576 ∪ Z(0.5) > c2) = 0.0125. This re-
quires numerical integration described in the appendix of Chapter 4. For-
tunately, free software for computing boundaries can be downloaded from
www.medsch.wisc.edu/landemets/. Chapter 14 contains complete details of
how to use version 2.1 of the menu-driven program. Briefly, we specify that
we want 1) to compute bounds, 2) two interim analyses, 3) a one-tailed test
at α = 0.025, 4) to supply information times as user input, and 5) the lin-
ear spending function, which the program denotes as a power function with
Phi=1. We enter the information times 0.20 and 0.50 at the upper right and
find that c2 = 2.377. Thus, we reject the null hypothesis at the second anal-
ysis if Z(0.50) > 2.377. Suppose this does not happen either and the next
analysis occurs at the end of the trial, t = 1. The cumulative type 1 er-
ror rate at t = 1 is 0.025(1) = 0.025. We determine the value c3 such that
Pr(Z(0.20) > 2.576 ∪ Z(0.5) > 2.377 ∪ Z(1) > c3) = 0.025. Another appli-
cation of the program, this time with three interim analyses at user-specified
information times 0.20, 0.50, and 1, yields c3 = 2.141. Thus, we reject the null
hypothesis at the end of the trial if Z(1) > 2.141.

In this example we found ci iteratively such that

Pr(∪j
i=1Z(ti) > ci) = α∗(tj), j = 1, . . . , k. (5.2)

Most computer programs, including the one that can be downloaded from
www.medsch.wisc.edu/landemets/, compute boundaries using the slightly eas-
ier, but equivalent, first exit formulation rather than the cumulative type
1 error rate formulation. The event ∪j

i=1Z(ti) > ci is equivalent to {if <
j} ∪ {if = j}, where if denotes the first index i such that Z(ti) > ci;
{if < j} = ∪j−1

i=1Z(ti) > ci and {if = j} = {(∩j−1
i=1Z(ti) ≤ ci) ∩ Z(tj) > cj}.

Thus,

α∗(tj) = Pr(∪j
i=1Z(ti) > ci)

= α∗(tj−1) + Pr{(∩j−1
i=1Z(ti) ≤ ci) ∩ Z(tj) > cj}.

It follows that 5.2 is equivalent to 5.3 below.

Pr{(∩j−1
i=1Z(ti) ≤ ci) ∩ Z(tj) > cj} = α∗(tj) − α∗(tj−1), j = 1, . . . , k. (5.3)
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Note that in the above example neither the number nor the timing of the
looks needed to be specified in advance. This added flexibility is the advan-
tage of the spending function approach. The example used a linear spending
function, but we could have used any other spending function.

We now return to the spending function (5.1) motivated by endlessly dou-
bling the number of looks for the O’Brien-Fleming procedure. The following
result is proven in the appendix using Result 3.1 of Chapter 3.

Result 5.1 The probability that standard Brownian motion crosses the hori-
zontal boundary a by time t is twice the probability that it crosses at time t;
i.e., Pr{B(s) > a for some s ≤ t} = 2 Pr{B(t) > a} = 2{1− Φ(a/t1/2)}.

If we select a such that Pr(B(s) > a for some s ≤ 1) = α, Result 5.1 applied
to t = 1 implies that a = zα/2. Thus,

α∗
1(t) = Pr(B(s) > zα/2 for some s ≤ t).

Another application of Result 5.1 shows that

α∗
1(t) = 2{1 − Φ(zα/2/t

1/2)} (5.4)

(see Figure 5.1). Spending function α∗
1(t) of (5.4) mimics the O’Brien-Fleming

boundary when the looks are equally spaced, but we can use it even when looks
are not equally spaced.

Next we try to find a spending function that mimics the Pocock boundary
for equally spaced looks. We begin as before, looking at the boundaries for
the Pocock procedure with a fixed number of looks, k, and letting k become
large. But there is a problem; the z-score boundary ck for the Pocock procedure
tends to ∞ as k → ∞. Consequently, the cumulative α spent by information
fraction t converges to α as k → ∞ for each t > 0. To see this, let Ak (resp.
Bk) denote the event that Z(i/k) > ck for some i such that i/k ≤ t (resp., for
some i such that i/k > t). Note that

P (Bk) ≤ Pr( sup
0≤s≤1

B(s)/t1/2 > ck)

= Pr( sup
0≤s≤1

B(s) > ckt
1/2).

Because sup0≤s≤1B(s) converges in distribution and ck → ∞, Pr(Bk) → 0 as
k → ∞. Thus,

α = Pr(Ak ∪Bk) ≤ Pr(Ak) + Pr(Bk)
Pr(Ak) ≥ α− Pr(Bk) → α− 0 = α as k → ∞.

In other words, the cumulative type 1 error function resulting from this
limiting process spends all of the α by information time t for any t > 0. The
trial is over at the first look regardless of when the look occurs. This is not a
reasonable spending function. We cannot hope to mimic Pocock boundaries
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Fig. 5.2. Cumulative type 1 error rate used by the Pocock procedure with a one-
tailed test at α = 0.025 and eight looks (circles), together with the Pocock-like
spending function 0.025 ln{1 + (e − 1)t} (curve).

for large k. The best we can hope for is a spending function that mimics the
Pocock boundaries for a reasonable number of looks (Table 5.2).

Figure 5.2 shows the cumulative type 1 error rate used by information
fraction t for the Pocock procedure at one-tailed α = .025 and eight looks.
Lan and DeMets (1983) [LD83] noted that its shape is similar to a logarithmic
curve, except that it must lie between 0 and α for 0 ≤ t ≤ 1. Their approach
was first to change the location and scale to force the log function to lie
between 0 and 1 for 0 ≤ t ≤ 1: ln{1 + (e − 1)t}, and then multiply by α to
obtain a spending function yielding boundaries similar to Pocock’s:

α∗
3(t) = α ln{1 + (e − 1)t}.

The three spending functions discussed so far are plotted in Figure 5.3. The
O’Brien-Fleming-like spending function is convex, spending very little of the
α early, but rising steeply at the end. As a result, the critical value at the end
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Fig. 5.3. Cumulative type 1 error rate used by the O’Brien-Fleming-like, linear, and
Pocock-like spending functions at one-tailed α = 0.025, as well as the two extreme
spending functions 0.025I(t > 0) and 0.025I(t = 1).

Table 5.2. Three spending functions.

O’Brien-Fleming-like Linear Pocock-like

α∗
1(t) = 2{1 − Φ(zα/2/t1/2)} α∗

2(t) = αt α∗
3(t) = α ln{1 + (e − 1)t}

of the study is close to what it would have been with no monitoring. Table 5.3
shows that the final critical value is 1.969, only a slight increase from the 1.96
figure with no monitoring. The concave Pocock-like spending function spends
a considerable amount of α early. Consequently, using it incurs a much larger
penalty at the end of the trial. Table 5.3 shows that the final critical value is
2.225. The linear spending function (which is both concave and convex) lies
between the O’Brien-Fleming-like and Pocock-like spending functions. Hence,
its final critical value of 2.141 (see Table 5.3) lies between that of the O’Brien-
Fleming-like and Pocock-like spending functions. Also shown in Figure 5.3 is
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the spending function α∗(t) = αI(t > 0) derived as the limiting cumulative
type 1 error rate of the Pocock procedure as the number of looks tends to ∞.
It can be viewed as a limit of increasingly concave functions; because it spends
all of the type 1 error rate immediately, the final critical value is ∞ unless it
is the only look at the data. At the other extreme is α∗(t) = αI(t = 1), the
limit of increasingly convex spending functions. Because none of the type 1
error rate is spent before the last look, all interim boundaries are ∞ and the
final boundary is exactly the same as without monitoring.

Table 5.3. Boundaries for the O-Brien-Fleming-like, linear, and Pocock-like spend-
ing functions for a one-tailed test at α = 0.025 when looks occur at t1 = 0.20,
t2 = 0.50, and t3 = 1.

Information time O’Brien-Fleming-like Linear Pocock-like

t1 = 0.20 4.877 2.576 2.438
t2 = 0.50 2.963 2.377 2.333
t3 = 1.00 1.969 2.141 2.225

5.1.1 Using a Different Time Scale for Spending

As we have described the spending function approach, the amount of type 1
error rate to spend at a given interim analysis depends on the information
fraction t. In a trial measuring survival or time to failure, the information
fraction depends on how many patients will have events by trial’s end, a
quantity that must be estimated. If the estimate turns out to be too small,
then we will reach information fraction 1 and spend all of the α before the end
of the trial. To avoid this problem, we can spend α according to a different
time scale such as calendar fraction (Lan and DeMets, 1989a [LD89a]).

For example, suppose we expect 100 deaths by the end of a trial with 2
years of recruitment and 4 years minimum follow-up. We monitor using the
O’Brien-Fleming-like spending function α∗

1. The first interim analysis after 1
year corresponds to a calendar fraction of s = 1/6. Thus, we are allowed to
spend α∗

1(1/6), which is 0 to 4 decimal places. The critical value is 5.36. Sup-
pose 25 deaths have occurred. The estimated information fraction at calendar
fraction s = 1/6 is t = 25/100. We stop the trial if Z(25/100) > 5.36. Note
that the null distribution of Z(25/100) is standard normal whether or not we
estimated the number of deaths by trial’s end correctly.

Suppose by the second look at 2 years there are 60 deaths. The calendar
fraction and estimated information fraction are s = 2/6 and t = 60/100,
respectively. Because we are spending alpha according to calendar fraction,
the cumulative type 1 error rate is α∗

1(2/6) = 0.0001. Thus, we determine c2
such that
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Pr(Z(25/100) > 5.36∪ Z(60/100) > c2) = α∗
1(0.333) = 0.0001.

If our initial estimate of 100 deaths by the end of the trial were correct, the
null distribution of (Z(25/100), Z(60/100)) would be bivariate normal with 0
means, unit variances, and correlation {(25/100)/(60/100)}1/2 = (25/60)1/2,
but by now it is clear that we underestimated the final number of deaths. Sup-
pose we now expect 150 deaths by trial’s end, so that the actual information
fractions at the first and second looks were 25/150 and 60/150. The correlation
between Z(25/150) and Z(60/150) is {(25/150)/(60/150)}1/2 = {(25/60)1/2}.
Because the correlation depends on the information fractions only through
their ratio, the expected information by trial’s end cancels out and the joint
distribution of the z-statistics does not depend on the future number of deaths.

We can determine c2 using the program in the appendix at the end of the
chapter, which computes upper boundaries for a one-tailed test. Because we
want the one-tailed cumulative type 1 error rate to be 0.0001, we go to the
end of the program and change the highlighted portion beginning with “#
Input” to:

# Input
#############################################################
tcur<-0.60 # Current value of t.
tprev<-c(.25) # Previous values of t go in parentheses.
cprev<-c(5.36) # Previous boundary values go in parentheses.
cumulal<-.0001 # Cumulative alpha up to current look,

# alpha_*(tcur).
#############################################################

This tells the program that our current look is at t2 = 0.60; there was only
one previous look, at t1 = 0.25, at which time we used boundary c1 = 5.36;
and the cumulative type 1 error rate to spend by the current information time
t2 = 0.60 is 0.0001. The program then tells us that c2 = 3.72.

Suppose the next look is at the end of the trial, t = 1. We then change the
highlighted portion at the end of the program, beginning with “# Input,” to

# Input
#############################################################
tcur<-1 # Current value of t.
tprev<-c(.25,.60) # Previous values of t go in parentheses.
cprev<-c(5.36,3.72) # Previous boundary values go in

# parentheses.
cumulal<-.025 # Cumulative alpha up to current look,

# alpha_*(tcur).
#############################################################

The program then tells us that c3 = 1.96 to two decimal places (the first two
looks used such large boundaries that there is essentially no price to pay for
monitoring).
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This example used calendar fraction as a surrogate for information frac-
tion, but we could have used a different surrogate. For example, suppose all
patients are randomized at the beginning of the trial and their survival times
have an exponential distribution. Clearly their survival times remain exponen-
tially distributed if we use calendar fraction. The expected number of patients
with an event by calendar fraction t is N{1−exp(−γt)}. Thus, of the expected
N{1− exp(−γ)} patients with events by trial’s end, the fraction occurring by
calendar fraction t is expected to be {1 − exp(−γt)}/{1 − exp(−γ)}. Thus,
spending linearly with respect to the expected information fraction at calendar
fraction t yields the spending function

α∗
4(t) = α

{
1 − exp(−γt)
1 − exp(−γ)

}
. (5.5)

Hwang, Shih, and DeCani (1990) [HSD90] proposed class (5.5), but allowed
γ to be negative. Note that α∗

4(t) has limit αI(t = 1) as γ → −∞, αt as
γ → 0, and αI(t 6= 0) as γ → ∞. Thus, considering different values of γ
allows consideration of a wide variety of spending functions.

5.1.2 Data-Driven Looks

As described above, the big advantage of spending functions is their flexibility,
for they do not require advance specification of the number or timing of looks.
On the other hand, the timing of the looks is assumed independent of the B-
value process. In practice, the timing of looks might depend on the outcome.
If the test statistic is close to a boundary, the Data and Safety Monitoring
Board may decide to meet earlier than originally anticipated. Conversely, in
a trial where the test statistic is far from the boundary, the board may opt
to delay a meeting. Ethics and practicality tend to trump statistical purity.
Fortunately, even with data-driven timing and number of looks, the degree of
type 1 error rate inflation is relatively small.

Lan and DeMets (1989b) [LD89b] investigated the impact of increased
monitoring when the results were close to reaching a boundary. They looked
at both the Pocock- and O’Brien-Fleming-like spending functions with a one-
tailed test at α = 0.025 and originally planned looks at t = 0.25, 0.5, 0.75, and
1. If 0.8c(t) < Z(t) < c(t), where c(t) is the boundary at information fraction t,
they doubled the number of future looks. Thus, if 0.8c(0.5) < Z(0.5) < c(0.5),
future looks would occur at 0.625, 0.75, 0.875, and 1 instead of just 0.75 and
1. Power and type 1 error rate were virtually unchanged.

Proschan, Follmann, and Waclawiw (1992) [PFW92] considered the impact
of a more nefarious attempt to inflate the type 1 error rate. With three looks,
they fixed the information fractions of the first and last looks at δ and 1,
respectively, and then used a grid search to find the information fraction t
at the second look that maximized the conditional probability of rejection
at the second or third looks. With more than three looks they used a less
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computationally intensive method that still went beyond realistic data-driven
looks. Even under this “intention to cheat” approach they were unable to
cause more than about a 10 percent inflation of the type 1 error rate.

Some members of data monitoring committees express the concern that
the boundaries may become unpredictable for look times very close together.
For example, let L and cL be the information fraction and boundary at the
last look. Because α∗(L+∆)−α∗(L) is very tiny as ∆ becomes tiny, it seems
the boundary at L +∆ must be very large if ∆ is small. On the other hand,
given that no rejection has occurred by L, we know that Z(L) ≤ cL. The
critical value at L+∆ may only need to be slightly larger than cL. Which of
these two lines of reasoning is correct?

Result 5.2 (Proschan, 1999 [P99]). Fix the times of the previous looks
t1, . . . , L. Suppose the z-value boundary at the last look L was cL, and the
next look is at information fraction L+∆ with z-value boundary c(L+∆). If
0 < α∗′(L) < ∞, then cL+∆ → cL as ∆ ↓ 0.

Result 5.2 reassures us that the critical value does not become highly
unpredictable if the next look time is very close to the last. Table 5.4 illustrates
Result 5.2 in a trial whose first three looks occur at information fractions
t1 = 0.20, t2 = 0.40 and t3 = 0.60, and whose fourth look occurs at t4 = 0.61,
t4 = 0.601, or t4 = 0.6001. For each of the three spending functions, the
boundary c4 at information fraction t4 is close to the boundary c3 at the
previous look. For example, for the O’Brien-Fleming-like spending function
and t4 = 0.6001, the boundary at t4 is 2.71, virtually the same as c3 = 2.68.

Table 5.4. Boundaries when the first three looks are at t = 0.20, 0.40, and 0.60
and the fourth look is very close to the third.

Information Time O’Brien-Fleming-Like Linear Pocock-Like

t1 = 0.20 4.88 2.58 2.44
t2 = 0.40 3.36 2.49 2.43
t3 = 0.60 2.68 2.41 2.41

t4 = 0.61 2.73 2.51 2.52
t4 = 0.601 2.73 2.47 2.47
t4 = 0.6001 2.71 2.44 2.44

5.2 Upper and Lower Boundaries

Most clinical trials aim to show that a new treatment is superior to either
a placebo or a standard treatment. It is nonetheless possible that treatment
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causes harm, as was the case in the Cardiac Arrhythmia Suppression Trial
(CAST) (see Chapter 1). Some have interpreted these unexpected findings
as mandating two-tailed testing with a fixed overall type 1 error rate. But
for a treatment that really has no effect, the two types of errors—concluding
the treatment is effective or concluding the treatment is harmful—are quite
different. It is more natural to separate the cases, especially if we want to allow
different error rates for the two types of errors. The CAST II investigators
wanted to make it easier to conclude harm for the remaining antiarrhythmic
drug in light of the CAST I evidence of harm for the other two antiarrhythmic
drugs. Thus, the investigators set a lower boundary for harm using a spending
function with α = 0.05 and an autonomous upper boundary for benefit using
a spending function with α = 0.025. They were not concerned that the overall
type 1 error rate exceeded 0.05 because that overall rate mixes apples (benefit)
and oranges (harm).

Another reason for separating the two types of error rates is that many tri-
als would stop for futility before crossing a boundary for harm. We ordinarily
would not continue a trial to prove that treatment is harmful. The exception
would be if the treatment were already in widespread use, in which case it
might be important to prove harm to change clinical practice.

A natural question is whether the upper boundary for benefit should ac-
count for the fact that we could have stopped for futility, or should the upper
and lower boundaries be autonomous? For example, suppose we construct
an α = 0.025 monitoring boundary for benefit without considering futility
monitoring. The actual probability of a false-positive benefit is Pr(cross up-
per boundary before crossing futility boundary) < 0.025. The problem with
accounting for the lower boundary when calculating the upper boundary is
that once one incorporates this probability, one can no longer overrule the
lower boundary. Thus, crossing the lower futility boundary requires stopping
the trial and accepting the null hypothesis. If not, then the probability of a
false declaration of treatment benefit will exceed 0.025. Our experience is that
Data and Safety Monitoring Boards treat futility boundaries as more advi-
sory than upper boundaries. Furthermore, if the results of a trial do not cross
the futility boundary, one can never know what the DSMB would have done
had the boundary been crossed. Because the calculation of boundary-crossing
probability depends on this contrafactual event, we cannot be certain how to
calculate the probability. In summary, we strongly prefer to give the DSMB
flexibility by not accounting for the lower boundary when constructing the
upper boundary.

When it does make sense to combine the two types of errors, such as when
the two arms are both active treatments and we use symmetric upper and
lower boundaries, we can still very closely approximate—unless α is unusually
large— the two-tailed boundary at level α by separate one-tailed boundaries
at level α/2. The “proper” symmetric two-tailed boundary ±c1, ±c2, . . . at
level α satisfies
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Pr(|Z(t1)| > c1) = α∗(t1)
Pr(|Z(t1)| > c1 ∪ |Z(t2)| > c2) = α∗(t2)

.... (5.6)

Nonetheless, if we construct upper boundaries c′1, c′2, . . . using the same
spending function but at level α/2, and then use −c′1, −c′2, . . . for the lower
boundary, then c′i and ci will be virtually identical unless α is unusually large
(Proschan, 1999 [P99]). The reader may verify this using the software de-
scribed in Chapter 14 (see Section 14.3.1).

5.3 Summary

The spending function, which specifies the cumulative type 1 error rate to use
by information fraction t, allows monitoring without the need to prespecify
the number or timing of interim looks. This is important to data monitoring
boards, which often try to meet at regular intervals such as every 6 months,
but whose actual schedule is dictated by member availability and sometimes
by the data themselves. The practical reality is that a board may increase the
frequency of monitoring when the data are close to a boundary for efficacy
or harm despite protestations from their statisticians about the invalidity of
such a procedure.

We can choose a spending function to produce the type of boundary we
want. Spending little alpha until near the end gives us O’Brien-Fleming-like
boundaries that are very stringent early and close to zα/2 at the end. Spending
alpha much more rapidly can produce Pocock-like boundaries. Other spending
functions lead to intermediate boundaries.

5.4 Appendix

5.4.1 Proof of Result 5.1

First consider t = 1. Note that continuously monitoring a trial and stopping
as soon as B(s) > a is the same as using a critical value of a at the end
and stopping early as soon as conditional power computed under H0 exceeds
1/2 (conditional power under H0 exceeds 1/2 at time s iff B(s) > a). By
Result 3.1, the probability that conditional power ever exceeds 1/2 is twice
the probability that B(1) exceeds a. Thus, Result 5.1 holds when t = 1.

For t < 1, note that

Pr
{

sup
0≤s≤t

B(s) > a

}
= Pr

{
sup

0≤s≤t
B(s)/t1/2 > a/t1/2

}

= Pr
{

sup
0≤u≤1

B(tu)/t1/2 > a/t1/2

}
. (5.7)
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It is an elementary exercise to show that if B(s) is a standard Brownian
motion, then B∗(u) = B(tu)/t1/2 is also a standard Brownian motion for
any positive t, so (5.7) equals Pr{sup0≤s≤1B(s) > a/t1/2}. Because we have
already shown that Result 5.1 holds when t = 1, this latter probability is
2 Pr{B(1) > a/t1/2} = 2{1 − Φ(a/t1/2)}, completing the proof. ||

5.4.2 Proof of Result 5.2

Suppose first that cL+∆ converged to a limit c < cL. Then α∗(L+∆)−α∗(L)
would tend to the nonzero limit Pr(B(t1) ≤ c1, . . . , c < B(L) ≤ cL). Thus,
α∗(t) would have to be discontinuous at t = L, contradicting the fact that
α∗(t) is differentiable at t = L. Similarly, if α∗(t) is continuous at t = L, there
can be no subsequence ∆i such that cL+∆i → c < cL.

If we could establish that there cannot be a subsequence ∆i such that
cL+∆i → c > cL, then clearly cL+∆ → cL as ∆ ↓ 0. The probability of
rejecting at time L + ∆i, given that no rejection has occurred by L, is no
larger than

Pr
{
B(L +∆i) >

√
L +∆icL+∆i |B(L) =

√
LcL

}

= 1 − Φ

{√
L +∆i cL+∆i −

√
L cL√

∆i

}

≤ 1 − Φ

{√
L

(
cL+∆i − cL√

∆i

)}
.

Thus,

(1/∆i)
{
α∗(L+∆i) − α∗(L)

1 − α∗(L)

}
≤ (1/∆i)

[
1 − Φ

{√
L

(
cL+∆i − cL√

∆i

)}]
.

(5.8)
Suppose that α∗(t) has finite, nonzero derivative α∗′(L) at t = L. As ∆ ↓ 0,

the left side of (5.8) tends to α∗′(L)/{1−α∗(L)}. Suppose cL+∆i → c > cL as
i → ∞. Then x(∆i) = (L/∆i)1/2{c(L +∆i) − c(L)} → ∞ and the right side
of (5.8) tends to 0 because of the well-known inequality 1 − Φ(x) ≤ φ(x)/x,
whose proof is simple:

∫∞
x
φ(u)du =

∫∞
x

(1/u)uφ(u)du ≤ (1/x)
∫∞
x
uφ(u)du =

φ(x)/x. Thus, if cL+∆i → c > cL, then α∗′(L) = 0. We have established that
if 0 < α∗′(L) < ∞, then for no subsequence ∆i ↓ 0 can α∗(L + ∆i) have a
limit smaller or larger than cL. In other words, α∗(L+∆) → cL as ∆ ↓ 0. ||

5.4.3 An S-Plus or R Program to Compute Boundaries

The following S-Plus or R program, which computes boundary values itera-
tively, is helpful when using a nonstandard spending function or when using
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one time scale for spending and another for computing the joint distribution
of test statistics (see Section 5.1.1).

For given values of the previous boundaries c1, . . . , ck−1 and time points
t1, . . . , tk−1, the program finds the current boundary ck such that the cumula-
tive crossing probability Pr(Z(t1) ≥ c1 ∪ . . .∪Z(tk) ≥ ck) is a specified value,
“cumulal.” To use the program, go to the end and supply the information
highlighted under “Input.” Following the program is a short example.

simpson<-function(f,dx){
# Approximates integrals using Simpson’s rule.
# f is a vector of function values at 2m+1 equally spaced x
# values (comprising 2m intervals of length dx).

m<-(length(f)-1)/2
evens<-2*(1:m); odds<-2*(1:m)+1; last<-2*m+1
int<-(4*sum(f[evens])+2*sum(f[odds])+f[1]-f[last])*(dx/3)
return(int)

}

updt<-function(datavec){
# updt gives P(Z_1\le c_1,...,ldots,Z_prev\le c_prev,
# Zcur=zcur);
# datavec consists of:
# First dim1 components contain fprev=P(Z_1\le c_1,\ldots,
# Z_{prev-1}\le c_{prev-1},Z_prev=zprev) for a vector
# prevgrid.
# Next dim1 components contain the vector prevgrid.
# Next 2 components contain information times of previous and
# current looks.
# The last component contains zcur.
dimmy<-length(datavec); dim1<-(dimmy-3)/2; dim1p<-dim1+1
dim2<-2*dim1
dim2p<-dim2+1; dim2pp<-dim2+2; dim2ppp<-dim2+3
fprev<-datavec[1:dim1]; prevgrid<-datavec[dim1p:dim2]
tprev<-datavec[dim2p]
tcur<-datavec[dim2pp]; zcur<-datavec[dim2ppp]
temp<-(zcur*sqrt(tcur)-prevgrid*sqrt(tprev))/sqrt(tcur-tprev)
y<-sqrt(tcur/(tcur-tprev))*exp(-temp^2/2)/sqrt(2*pi)*fprev
dx<-prevgrid[2]-prevgrid[1]
return(simpson(y,dx))
}

distrib<-function(tt,cc){
# Gives P(Z(t_1)\le c_1,...Z(t_k)\le c_k), where
# cc=(c_1,\ldots,c_k),
# tt=(t_1,\ldots,t_k)
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if(length(tt)!=length(cc)){return("dimensions of t and c do
not match")}
if(max(tt)>1 | min(tt)<=0){return("t_i not in (0,1] for
all i")}
if(min(cc)< -7){return(0)}
k<-length(tt)
numint<-50
lengthz<-numint+1
if(k==1){return(pnorm(cc[1],0,1))}
zgrid<-seq(-7,cc[1],length=lengthz)
tprev<-tt[1]
fprev<-exp(-zgrid^2/2)/sqrt(2*pi)
for(i in 2:k){
zcur<-seq(-7,cc[i],length=lengthz)
tprev<-tt[i-1]
tcur<-tt[i]
datmat<-matrix(rep(c(fprev,zgrid,tprev,tcur),lengthz),
nrow=lengthz, byrow=T)
datmat<-cbind(datmat,zcur)
ww<-apply(datmat,MARGIN=1,updt)
fprev<-ww
zgrid<-zcur
}
dz<-zcur[2]-zcur[1]
ans<-simpson(ww,dz)
return(ans)
}

#############################################################

rename<-function(cccur,otherstuff){
# Re-parameterizes the distribution function P(Z(t_1)\le c_1,
# \ldots,Z(t_k)\le c_k) so that first variable is c_k and the
# last variable is the cumulative alpha spent.
kminus1<-(length(otherstuff)-2)/2
i1<-kminus1+1; i2<-kminus1+2;i3<-2*kminus1+1; i4<-2*kminus1+2
ttcur<-otherstuff[1]; ttprev<-otherstuff[2:i1]
ccprev<-otherstuff[i2:i3]
alphacum<-otherstuff[i4]
return(distrib(c(ttprev,ttcur),c(ccprev,cccur))-(1-alphacum))
}

findroot<-function(f,low,high,otherstuff){
# Finds root in interval (low,high) for the increasing (in x)
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# function f(x,otherstuff).
lower<-low; higher<-high
if(f(lower,otherstuff)>0 | f(higher,otherstuff)<0){return(
"findroot can’t find the root")}
for(i in 1:20){
midpoint<-(lower+higher)/2
if(f(midpoint,otherstuff) > 0){higher<-midpoint}
else{lower<-midpoint}
}
return((lower+higher)/2)
}

# Input
#############################################################
tcur<-.80 # Current value of t
tprev<-c(.20,.45,.65) # Previous values of t go in

# parentheses.
cprev<-c(3.5,2.75,2.50) # Previous boundary values go in

# parentheses.
cumulal<-.015 # Cumulative alpha up to current look,

# alpha_*(tcur)
#############################################################

other<-c(tcur,tprev,cprev,cumulal)
answer<-findroot(rename,-7,7,other)
print(round(answer,digits=4))

With the “Input” settings shown, the program will compute the upper
boundary at the fourth look at information time 0.80 such that the cumulative
type 1 error rate is 0.015, given that the previous boundaries were c1 = 3.5,
c2 = 2.75, and c3 = 2.50 at information times t = 0.20, t = 0.45, and t = 0.65,
respectively. When we run the program, we get c4 = 2.26

If the next look were at the end of the trial (t = 1), so we wanted the
cumulative type 1 error rate to be 0.05, we would replace the above input
values with:

# Input
############################################################
tcur<-1 # Current value of t
tprev<-c(.20,.45,.65,.80,1) # Previous values of t go in

# parentheses.

#
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cprev<-c(3.5,2.75,2.50,2.26) # Previous boundary values go in
# parentheses.

cumulal<-.025 # Cumulative alpha up to current
# look, alpha_*(tcur)

When we run the program, we find that the final critical value is c5 = 2.08.

#############################################################



6

Practical Survival Monitoring

6.1 Introduction

Methodology for sequential monitoring of survival data and its applications
became popular after several seminal publications in the 1980s (see Ander-
sen et al. 1993 [ABG93]). The stochastic process formulation of sequential
monitoring of survival data is analogous to that developed through partial
sums of i.i.d. random variables and application of the functional central limit
theorem (Billingsley, 1968 [B68]). Partial sum processes are special cases of
martingales, as are stochastic processes related to survival monitoring. In the
1980s, the theory of counting processes and the martingale central limit the-
orem provided us with powerful tools to demonstrate that many stochastic
processes other than partial sums approach Brownian motion for large sam-
ple sizes. These tools provide a unified approach to monitoring interim data
from clinical trials, including trials comparing 1) two means or 2) two survival
distributions under the proportional hazards assumption. In this chapter we
discuss the similarities between comparing means and comparing survival dis-
tributions using the logrank statistic under the proportional hazards assump-
tion. We then consider survival monitoring when the proportional hazards
assumption does not hold.

6.2 Survival Trials with Staggered Entry

In Chapter 2, we showed that the joint distribution of sequentially-computed
logrank statistics was the same as that of sequentially computed t-statistics,
but there we assumed all patients were randomized at the beginning of the
trial. In most practical situations, patients do not arrive simultaneously. To
see the impact of this “staggered entry,” suppose a trial randomizes patient P1

to treatment (T) and P2 to control (C) at the very beginning of recruitment,
and patient P3 to T 30 days later. Patients P1 and P2 die at respective follow-
up times 7 and 9, while patient P3 survives the entire trial. The trial has two
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different natural time scales: calendar time from the beginning of the trial and
each patient’s follow-up time from time of randomization. Suppose the first
two looks at the data occur at calendar times 20 and 40 days (Figure 6.1).

Fig. 6.1. Hypothetical data from a small trial whose first two looks occur at calendar
times 20 and 40 days. Each x indicates a death.

By the time of the first interim analysis at calendar time 20 days, patient P3

has not yet been randomized, so the 2 × 2 tables at calendar time 20 days
are as shown in Table 6.1. The logrank statistic at the first interim analysis is
{(1− 1/2) + (0 − 0)}/{(1/2)(1− 1/2) + (0)(1 − 0)}1/2 = 1. Now suppose the
second interim analysis occurs at calendar time tc = 40 days. By that time
the third patient has arrived and survived 10 days. Now patient P3 is included
in the risk sets at the first and second death times. The 2 × 2 tables at the
second interim analysis are as shown in Table 6.2.
The logrank statistic is now {(1−2/3)+(0−1/2)}/{(2/3)(1−2/3)+(1/2)(1−
1/2)}1/2 = −0.243. Even though no additional death occurred between the
first and second interim analyses, the logrank statistic has changed because the
risk sets changed. Thus, to represent the logrank statistic and other survival

Calendar Time (Days)

0 10 20 30 40

x

x

Patient 1 (T)

Patient 2 (C)

Patient 3 (T)
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Table 6.1. 2×2 tables at interim analysis at calendar time 20 days, follow-up times
7 and 9 days, respectively (first and second death times).

D D
T 1 1 T 0 0
C 1 C 1

Table 6.2. 2×2 tables at interim analysis at calendar time 40 days, follow-up times
7 and 9 days, respectively (first and second death times).

D D
T 1 2 T 0 1
C 1 C 1

tests as a stochastic process, we must somehow account for both time scales:
calendar time of the entire trial and follow-up time of individual patients.

6.3 Stochastic Process Formulation and Linear Trends

Tsiatis (1982) [T82] accounted for both time scales as follows. Let Yi denote
the calendar time when patient i is randomized; Vi and Wi denote the time
from randomization to death and time from randomization to censoring, re-
spectively; and Xi(tc) denote the follow-up time observed for patient i at
calendar time tc: Xi(tc) = max{min(V,W, tc−Y ), 0}. For example, at tc = 40
in the small example, Xi(40) is 7, 9, and 10 for i = 1, 2, 3. If ∆i(tc) is the
indicator that patient i has died (and not been censored) by calendar time tc,
we can write the numerator of the logrank statistic at calendar time tc as

Sn(tc) =
n∑

i=1

∆i(tc)



Zi −

∑

j∈R(tc,Xi(tc))

Zj

n(tc, Xi(tc))



 ,

where Zi is the indicator that patient i is assigned to the treatment, and
R(tc, Xi(tc)) and n(tc, Xi(tc)) are the risk set and its cardinality at calendar
time tc and follow-up time Xi(tc). The term

∑
j∈R(tc,Xi(tc))

Zj/n(tc, Xi(tc)) is
analogous to a sample mean; it converges to, and may be replaced by, its ex-
pectation for large sample sizes. Replacing

∑
j∈R(tc,Xi(tc))

Zj/n(t,Xi(tc)) by
its expectation allows us to write Sn(tc) as a sum of i.i.d. stochastic processes.
We can then prove that asymptotically, S(tc) has independent increments and
is marginally normal with mean {D(tc)/4} ln(r) and variance D(tc)/4, where
r is the hazard ratio—assumed constant—and D(tc) is the combined proba-
bility of an observed death by calendar time tc; i.e., D(tc) is the probability
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that a randomly selected trial participant will enter the trial and die (without
being censored) by calendar time tc. The denominator of the logrank statis-
tic is approximately {D(tc)/4}1/2, so the logrank statistic at calendar time
tc is approximately normally distributed with mean {D(tc)/4}1/2 ln(r) and
variance 1. The independent increments property of Sn(tc) means that we
can transform the stochastic process Sn(tc) to a Brownian motion process by
using information time instead of calendar time (see Chapter 2). Define the
information time at calendar time tc to be t = D(tc)/Dend, where Dend is
the probability of death by trial’s end. If Z(t) denotes the logrank statistic at
information time t,

B(t) = t1/2Z(t)

behaves like a Brownian motion with drift θ = (Dend/4)1/2 ln(r), which is the
expected value of the logrank statistic at the end of the trial. We can approx-
imate the information time t by the ratio of the number of deaths observed
by calendar time tc to the number expected by the end of the trial. This is
the same result we obtained in Chapter 2 under the much more restrictive
condition that everyone was randomized at the very beginning of the trial.

The analogy between monitoring survival and monitoring the t-statistic
is striking. Recall that when the treatment and control sample sizes were
both n, we wrote the numerator of the t-statistic as Sn, a sum of n i.i.d.
differences between treatment and control observations (see Chapter 2); its
mean is nµD, where µD = µT − µC . The mean of Sn is a linear function of
the number of observations. Now consider monitoring survival. Recall that
under the proportional hazards assumption, the ratio of the treatment to
control hazard functions is constant over time. Under proportional hazards,
the mean of the numerator Sn(tc) of the logrank statistic at calendar time tc is
a linear function of the expected number of deaths. The t-statistic and logrank
statistic are both approximately normal with variance 1. As the number of
observations increases, the expected value and power of the t-statistic increase.
As the expected number of expected deaths increases, the expected value and
power of the logrank statistic increase, provided that the proportional hazards
assumption holds.

6.4 A Real Example

The Beta-Blocker Heart Attack Trial (BHAT) compared survival of patients
randomized to the beta-blocker propranolol to that of patients randomized to
placebo. The study, begun in 1977, was anticipated to stop in 1982. At the
sixth interim look on October 2, 1981, the DSMB recommended termination
of BHAT for efficacy, 9 months earlier than scheduled. Many of the calcula-
tions for BHAT were made in September 1981. At that time there were 318
deaths, 183 and 135 in the placebo and treatment arms, respectively. Several
methods were used to extrapolate the survival curves and estimate the num-
ber of deaths by trial’s end had it not stopped early; the best estimate was
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398 deaths. The information fraction at the sixth look was estimated to be
318/398 = 0.80. The logrank statistic and B-value were Z(0.80) = 2.82 and
B(0.80) = (0.80)1/2(2.82) = 2.52. Under the proportional hazards assumption
and the current trend, the final z-score was expected to be 2.52/0.80 = 3.15.
Conditional power under the current trend was estimated to be

CP3.15(0.80) = 1 − Φ

(
1.96− 2.52− 3.15(1− 0.80)√

1 − 0.80

)

= 1 − Φ(−2.66) > 0.99.

Similarly, conditional power assuming the null hypothesis of identical survival
curves was

CP0(0.80) = 1 − Φ

(
1.96− 2.52− 0(1 − 0.80)√

1 − 0.80

)

= 1 − Φ(−1.25) ≈ 0.89.

The first conditional power calculation was predicated on the proportional
hazards assumption. The second assumed the null hypothesis, which auto-
matically conforms to the proportional hazards assumption. Sometimes the
proportional hazards assumption may not be realistic. For example, a surgi-
cal procedure entails certain immediate risks, but the long-term benefit may
outweigh those risks.

6.5 Nonlinear Trends of the Statistics: Analogy with
Monitoring a t-Test

Consider a t-test comparing two means with equal sample sizes in the two
arms. We saw that under the usual assumption of i.i.d. observations across
time in a given arm, the expected value of the numerator of the t-statistic is a
linear function of the sample size. But suppose that midway through the trial,
in response to lagging recruitment, we change the entry criteria to make more
patients eligible. If the newly recruited patients differ from those previously
recruited, the mean difference δ∗ = µ∗

T − µ∗
C of new patients may differ from

δ. Consequently, the expected value of the numerator of the t-statistic is no
longer linear in the number of patients. Sometimes this effort to increase power
by changing the entry criteria and increasing enrollment can actually decrease
power. For example, with m and n−m patients per arm satisfying the older
and newer criteria, respectively, the expected z-score in the known-variance
scenario is {mδ+(n−m)δ∗}/(2nσ2)1/2; if δ∗ < {(mn)1/2 −m}δ/(n−m), the
expected z-score is smaller than if we had only the m original patients!

Now consider the logrank test when the hazard ratio is not constant. Sup-
pose all patients enter at calendar time tc = 0, with half of them assigned
to treatment and half control. Suppose that the hazard ratio is greater than
1 during the first 6 months, equal to 1 at 6 months, and less than 1 after
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6 months. Then E(S(tc)) increases, reaching its peak at 6 months, and then
decreases thereafter. The behavior of E(S(tc)) is similar to that described
for the comparison of two means. Add staggered entry. If we do not restrict
ourselves to the proportional hazards assumption, the trend of the numerator
S(tc) of the logrank statistic is difficult to describe because of the staggered
entry of patients. Analogous to the t-test setting, the expected value of S(tc),
and even of Z(tc), may not be increasing in tc. To get an approximate idea
of the trend, we can divide the follow-up time into subintervals and estimate
the average hazard within each. In other words, we approximate the two sur-
vival distributions by two piecewise exponential distributions. Within each
subinterval, the hazard ratio is constant and the trend of S(tc) will be linear.
With staggered entry of patients, the trend of S(tc) is a mixture of trends by
different cohorts of patients categorized by entry times. If the hazard ratio
were constant over time, even with staggered entry the trend of S(tc) would
be linear.

6.6 Considerations for Early Termination

Suppose a trial is conducted to compare survival for treatments A and B for
4 years. To simplify matters, assume that investigators recruit 2, 000 patients
simultaneously into the trial. Imagine that 2 years later, one treatment’s sur-
vival appears to be so much better than the other’s that early termination is
considered. What do we lose by stopping the trial early? If we are interested
in the comparison of survival curves throughout the interval 0 to 4 years,
stopping at 2 years precludes the ability to estimate survival from 2 years to
4 years. If we assume proportional hazards, then the data from years 0 to
2 can be used to estimate the hazard ratio r, and by assumption, this will
provide an estimate of the hazard ratio at 3 or 4 years. Continuation of the
trial to 4 years will provide a better estimate of r, but if we believe the pro-
portional hazards assumption, a sufficiently large hazard ratio will ethically
compel us to stop the trial at year 2. If we do not believe the proportional
hazards assumption—because, for example, it does not even appear to hold
over the subinterval 0 to 2 years—we may be justified in continuing the trial
to compare longer term survival. For instance, as indicated earlier, a surgical
treatment may show initial harm because of complications, but longer term
benefit. Stopping early would preclude us from seeing that benefit. The sec-
ond Cardiac Arrhythmia Suppression Trial (CAST-II) was stopped when it
became clear that the evidence of harm in the 2-week titration phase was not
offset by potential longer term benefit.

In trying to determine whether long-term and short-term treatment effects
differ, the DSMB has a difficult task; what may appear to be a long-term effect
may actually be a consequence of “survival of the fittest.” To understand this,
suppose that treatment has no benefit and is actually toxic to some patients.
For example, it may kill the sickest 10 percent of patients within 30 days. In the
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control arm, no one may die within the first 30 days. The patients remaining
alive after 30 days in the treatment arm are not comparable to those remaining
alive after 30 days in the control arm; the 30-day treatment survivors are the
healthiest 90 percent of patients, whereas the 30-day control survivors are
all patients. Accordingly, it would not be surprising to see the next death
occur in the control arm (assuming patients who do not experience toxicity
within 30 days will not experience it later). This “survival of the fittest”
phenomenon would tend to bring survival curves back together after initial
separation. A similar phenomenon can occur if the treatment is beneficial: the
patients remaining alive in the control arm after a specified period of time may
have stronger constitutions than those in the treatment arm. A very effective
treatment may be able to overcome the unfair advantage afforded control
survivors attributable to survival of the fittest. If not, we may erroneously
conclude that treatment has long-term harm that offsets initial benefit.

Thus far we have said that we must exercise care in monitoring survival
because proportional hazards may not hold, yet we must not overreact in
explaining the reason for the appearance of nonproportional hazards. How
can we tell whether the appearance of a nonconstant hazard ratio is due to
actual short- versus long-term treatment benefit or an artifact caused by sur-
vival of the fittest? Statistical techniques can help, but the first and foremost
tool is biological judgment. Is there a bonafide biological reason to suspect
short-term toxicity or complications but long-term benefit? Conversely, is it
reasonable biologically for short-term benefit but toxicity with prolonged use
of a drug? Epidemiological and even animal studies might produce corrobo-
rative evidence. As far as analyses on data from the trial to try to unveil the
mystery, one technique would be to stratify the logrank test by baseline fac-
tors such as age or previous heart attack, or to adjust for baseline differences
between the arms using a Cox proportional hazards model. The idea is sim-
ple: if survivors in one arm are healthier than those in another arm, but that
health difference can be explained by differences in baseline factors, we may
be able to adjust them away. If, contrary to the logrank analysis, the stratified
logrank or Cox model analyses show a consistent treatment effect over time,
we would feel more comfortable attributing the apparent diminution of effect
over time for the unstratified logrank analysis to survival of the fittest. On the
other hand, adjusted analyses that showed a similar diminution of effect over
time lend credence to the idea of differential short- and long-term treatment
effects.

6.7 The Information Fraction with Survival Data

What determines the power for survival methods such as the logrank test
or Cox model is the number of events by trial’s end. In fact, many stan-
dard methods of calculating sample size actually first calculate the number of
events and then, from that, the number of participants required, e.g., George
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and Desu (1974) [GD74]; Schoenfeld (1981) [S81]; Freedman (1982) [F82];
Lakatos (1988) [L88]. It is therefore appealing to use an event-driven trial
that continues until a fixed number, d, of events have occurred in the two
arms combined. The information fraction at the kth look with dk events is
unambiguously determined as tk = dk/d because d is fixed. The EPHESUS
trial (Pitt, Remme, Zannad et al., 2003 [PRZ03]) exemplifies this approach.
The trial studied a new drug, eplerenone, in patients with heart failure follow-
ing a myocardial infarction (heart attack). The study had a pair of co-primary
endpoints: (1) time to death from any cause with a type 1 error rate of 0.04 and
(2) time to death from heart disease or hospitalization for worsening heart fail-
ure with a type 1 error rate of 0.01. The statistical monitoring plan called for
formal statistical monitoring only for mortality. The trial randomized 6, 632
patients, assigning half to eplerenone and half to placebo. Recruitment lasted
24 months. The protocol specified that the trial would end when 1,012 deaths
had occurred. The DSMB calculated the information fraction at each of its
looks as dk/1, 012.

Although event-driven trials are ideal from a statistical standpoint, trials
are budgeted for a given number of patients and length of follow-up. Thus,
many trials are designed to end at a fixed calendar time irrespective of whether
the desired number of events occurred. This makes it hard to determine the
information fraction at an interim analysis. For example, suppose that instead
of being an event-driven trial, EPHESUS had been designed to enroll 6,632
people and to continue for 32 months. At the kth look, the DSMB would have
observed dk deaths, but it would not have known how many events would
occur in the future. The DSMB would have had two choices—it could have
projected the number of deaths it expected and used that projected number to
calculate the information fraction or it could have based the spending function
on the calendar fraction as detailed in Section 5.1.1.

Basing the calculation on events forces the spending function one has cho-
sen to be identical to one’s actual spending; basing the calculation on cal-
endar fraction distorts the desired rate of spending. The degree of distortion
depends on how closely the timing of deaths approximates a uniform func-
tion over time. In a trial with a very low event rate, exponential survival,
and rapid enrollment, calendar fraction and event fraction will be very sim-
ilar; therefore, if calculation of calendar fraction is easy and calculation of
event fraction difficult because of the inevitable uncertainty in the number
of future events, we recommend calendar fraction. For example, imagine a
trial studying mortality in early-stage breast cancer in which all women are
randomized within a 4-month period and the trial is planned to continue for
28 months. Suppose reliable previous data indicate an approximate exponen-
tial expected survival distribution. The expected proportion of women dying
within the study period is small enough that the number of deaths can be
assumed nearly uniform. Therefore, calendar fraction provides a reasonable
approximation to information fraction.
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The most difficult choices in practice arise in trials in which mortality is
expected to follow a pattern markedly different from an exponential distri-
bution. Use of calendar fraction in such cases may be quite inefficient, for it
may force spending an undesirable amount of the type 1 error rate in peri-
ods of time in which few deaths occur, reducing the efficiency of the trial.
The Randomized Aldactone Evaluation Study (RALES) [PZW99], a trial of
spironolactone (Aldactone) in New York Heart Association (NYHA) class III
and IV heart failure patients, was designed to randomize 1, 663 patients. The
trial was scheduled to end 45 months after the first patient was randomized.
The endpoint was all-cause mortality. The death rate in these heart failure
patients is very high. Class III patients breathe comfortably only when they
are at rest. Class IV patients are confined to a bed or chair and even there
do not breathe comfortably. The hazard function was expected to increase
rapidly over time. An O’Brien-Fleming-like spending function was specified
as the statistical monitoring plan. Basing the spending function on calendar
fraction would almost certainly squander type 1 error rate during a period
with relatively few deaths. At each of its meetings, the DSMB instead pro-
jected the expected number of deaths on the basis of the experience in the
trial thus far. Therefore, the expected number of total deaths at the kth look
was Dk +rk, the fixed number of deaths dk that had already occurred plus the
variable number rk expected to occur in the remainder of the study. Clearly,
at any of its looks the DSMB might be over- or underestimating the total
number of deaths that would occur in the study; however, as time passed and
the observed survival curves matured, the DSMB regarded its projections as
more and more accurate. At the time of the DSMB’s fifth look, 620 partici-
pants had died, 269 in the treated group and 351 in the placebo group. The
estimated hazard ratio was 0.78 and the logrank z-score was 3.75, giving a
nominal two-tailed p-value of p = .00018. To determine whether this value
crossed the O’Brien-Fleming-like spending function boundary, the DSMB cal-
culated that the expected number of events would be 1, 088; therefore, the
estimated information fraction was 0.57 and the critical value was c = 2.79.
Given the uncertainty in the expected number of events, the DSMB also cal-
culated the z-score boundary if calendar fraction had been adopted, as well
as the z-score boundary under a variety of reasonable assumptions about the
future course of the survival curves. The observed z-score of 3.75 crossed all
of these boundaries, assuring the DSMB of the appropriateness of its recom-
mendation to stop the trial and conclude that the data had shown the efficacy
of spironolactone in reducing mortality in patients with class III or IV heart
failure.

Some caution is in order regarding the updating of information fraction
on the basis of new estimates of the number of events by trial’s end. First, we
must realize that estimates of mortality obtained early in the trial are highly
variable, so we should not be concerned if early estimates do not match the
originally expected number of deaths. Over-reacting by dramatically changing
the expected number of events by trial’s end subjects us to the criticism that
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we deliberately tried to “doctor” the information fraction to stop the trial
early. For example, suppose we observed an interim z-score of 2.5 that did not
exceed the boundary if we used the originally projected number of events to
calculate the current information fraction. By revising the number of events
downward, we can increase the current information fraction, changing the
current boundary such that 2.5 may now exceed it. To avoid this criticism, we
recommend not making dramatic changes in the projected number of events
on the basis of early, “noisy” data.

If there are only small differences between originally hypothesized and ac-
tual numbers of deaths, we can continue to spend according to the originally
projected number of deaths until the very end of the trial, at which time we
spend the remainder of the alpha. For example, suppose we used the power
spending function 0.025t1.5 for a one-tailed test at level 0.025, and we initially
projected 100 deaths. Suppose that the two interim looks and one final look oc-
curred after 28, 54, and 85 deaths, respectively (in other words, 15 fewer deaths
occurred than expected). The information fractions at the first two looks were
estimated to be 28/100 = 0.28 and 54/100 = 0.54. The boundary at the first
look was determined by setting Pr(Z1 > c1) = 0.025(0.28)1.5 = 0.0037, where
Z1, the logrank statistic after 28 deaths, has a standard normal distribution
under the null hypothesis. We find that c1 = 2.678. At the second look, we se-
lected c2 such that Pr(Z1 > 2.678∪ Z2 > c2) = 0.025(0.54)1.5 = 0.0099. Note
that under the null hypothesis, Z1 and Z2 are marginally standard normal and
have correlation (t1/t2)1/2, where t1 and t2 are the actual information fractions
28/85 and 54/85 at the first two looks rather than our initially estimated infor-
mation fractions 28/100 and 54/100. But the joint distribution of Z1 and Z2

depends on information fractions only through their ratio/indexinformation
fraction/time!invariance to incorrect guess of final information, 28/54. The
number of deaths expected by the end of the trial is completely irrelevant.
Thus, inputing information fractions 0.28 and 0.54 will yield the correct value
of c2 = 2.433.

At the final look with 85 deaths, we “fix up” the information frac-
tion. That is, we specify information fraction 1. We determine c3 such that
Pr(Z1 > 2.678 ∪ Z2 > 2.433 ∪ Z3 > c3) = 0.025(1)1.5 = 0.025. Computation
of c3 now becomes tricky. If we specify t3 = 1, the program will compute
boundaries assuming that the correlation between Z1 and Z3 is (0.28/1)1/2

and (0.54/1)1/2, whereas the correct correlations should be (28/85)1/2 and
(54/85)1/2. On the other hand, if we tell the program that t1 = 28/85 and
t2 = 54/85, it will spend 0.025(28/85)1.5 at the first look instead of what we
actually spent, which was 0.025(0.28)1.5. We can get around the problem by
using the S-Plus or R program in the appendix of Chapter 5, replacing the
lines beginning with “# Input” (near the end of the program) with

# Input
###########################################################
tcur<-1 # Current value of t.
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tprev<-c(28/85,54/85) # Previous values of t go in
# parentheses.

cprev<-c(2.678,2.433) # Previous boundary values go in
# parentheses.

cumulal<-.025 # Cumulative alpha up to current look,
# alpha_*(tcur).

############################################################

This yields c3 = 2.056.
The problem is more difficult to fix if we have grossly underestimated

the number of deaths by trial’s end. If we continue to spend according to the
original projections, we will spend all of the alpha before the trial is completed.
Try explaining to a DSMB that any additional events between now and the
scheduled end of the trial in one year do not count because we have spent all
our alpha already! It is best to avoid this problem by trying to overestimate
the number of deaths by trial’s end during the design phase. If it becomes clear
after the analysis at look i that we have underestimated the number of deaths,
we could adopt the following procedure. Let αi denote the cumulative alpha
spent up to and including look i. We now compute the new number of deaths
we expect by trial’s end, and from it we compute the information fraction ti at
the ith look. For t ≥ ti, we modify the spending function as follows. We make
the ratio of the incremental alpha spent between now (information fraction ti)
and future information fraction t to the incremental alpha spent between now
and the end of the trial (t = 1) the same as for the original spending function.
For the original spending function α∗(·), the ratio of these incremental alphas
is

α∗(t) − α∗(ti)
α− α∗(ti)

. (6.1)

For the new spending function α′
∗(·), the ratio of incremental alphas is

α′
∗(t) − αi

α− αi
. (6.2)

Equating (6.2) to (6.1) results in

α′
∗(t) = αi +

(
α− αi

α− α∗(ti)

)
{α∗(t) − α∗(ti)}. (6.3)

for t ≥ ti.
For example, suppose we use the power spending function 0.025t1.5 for a

trial originally expecting 80 deaths and using one-tailed α = .025. Suppose the
first look occurs after 20 deaths, so the information fraction is estimated to be
20/80 = 0.25. We spend 0.025(0.25)1.5 = 0.003125, which, using the software
at www.medsch.wisc.edu/landemets/, results in a boundary of c1 = 2.7344. At
the next look, with 47 deaths, we spend 0.025(47/80)1.5 = 0.01126, yielding
boundary c2 = 2.3612. At this point we realize that the final number of
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deaths is likely to be 95 instead of 80. To be somewhat conservative, we now
assume 100 deaths by the end of the trial. In the notation above, i = 2 and
t2 is the new estimate of the information fraction at the last look, namely
t2 = 47/100 = 0.47. We have already spent α2 = 0.01126, so from now on the
spending function is, from (6.3),

α′
∗(t) = 0.01126 +

(
0.025− 0.01126

0.025− (0.025)(0.47)1.5

)
{0.025t1.5 − 0.025(0.47)1.5}

= 0.0047 + 0.0203t1.5

Fig. 6.2. Fixing the spending function when the number of events has been under-
estimated (we originally estimated 80 deaths, but now we estimate 100 deaths). The
actual information fraction at the last look was t = 0.47, so instead of spending the
amount indicated by the solid curve at t = 0.47, we have spent 0.01126 (indicated
by the x). The “fixed-up” spending function is the original function before t = 0.47,
and the dotted line from t = 0.47 to t = 1.

(see Figure 6.2). If the next look occurs after 71 deaths, the information
fraction is 71/100 = 0.71, so we will choose boundary value c3 such that
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Pr(Z1 ≥ 2.7344∪Z2 ≥ 2.3612∪Z3 ≥ c3) = 0.0047+0.0203(0.71)1.5 = 0.0168.
We use the S-Plus or R computer program in the appendix of Chapter 5,
changing the lines beginning with “# Input” to

# Input
###########################################################
tcur<-.71 # Current value of t.
tprev<-c(20/100,47/100) # Previous values of t go in

# parentheses.
cprev<-c(2.7344,2.3612) # Previous boundary values go in

# parentheses.
cumulal<-.0168 # Cumulative alpha up to current look,

# alpha_*(tcur).
###########################################################

to find that c3 = 2.3549.



7

Inference Following a Group-Sequential Trial

7.1 Likelihood, Sufficiency, and (Lack of) Completeness

Sequential and group-sequential procedures were designed to test hypotheses.
Their adoption in clinical trials for the purpose of speeding drug development
(or minimizing the number of patients on the inferior arm of a trial) empha-
sized their ability to select the better treatment, not their ability to provide
a measure of strength of evidence or to produce an estimate of the size of
effect. Nonetheless, in a clinical trial, simply concluding that one treatment
is better than another as demonstrated by rejecting a hypothesis tested at a
type 1 error rate of α leaves the interpretation hanging. Without an estimate
of the size of the effect and an assessment of how compelling the conclusion,
the interpretation of the results of the trial is incomplete. An article summa-
rizing data on 143 randomized clinical trials that stopped early for benefit
between 1990 and 2004 reported that 129 of them did not adjust the treat-
ment effect estimate to account for interim monitoring and truncation. They
conclude that many of these trials report implausibly large treatment effects
and recommend that “clinicians should view the results of such trials with
skepticism” (Montori, Devereaux, Adhikari, et al., 2005 [MDA05]).

In fixed sample size trials, the test statistic, α-level, p-value, and esti-
mated size of effect flow naturally from the same theory. Group-sequential
trials cleave these relationships. Generally, as this chapter will show, the p-
value and estimated treatment effect reported in the literature from most
sequential trials are more extreme than the data support. Experientially, we
have attended DSMB meetings where a boundary has been crossed and the
committee discusses the p-value. Some statisticians argue, “The p-value is
simply the value that would have been calculated had this been a fixed sam-
ple size study” (see, for example, Dupont, 1983 [D83]). Others demur, “No,
it’s different. We need to account for the fact that this was a sequential trial.
I don’t know what the p-value is, but it is not what it appears.” This type
of statement is hardly music to the ears of the clinician members who want
an unambiguous answer to “what is the p-value?” Unfortunately, there is no
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unique p-value in the sequential setting; rather, one must decide what criteria
to use to define it. Consequently, we urge that in sequential or group-sequential
clinical trials—especially phase III trials aimed at regulatory registration—
the designers should select not only the sequential boundaries, but also the
algorithm by which they intend to calculate their p-values.

Similarly, most statisticians acknowledge that the observed effect from a
trial that is stopped early overestimates the true value, but may recommend
using the observed estimate for simiplicity (see, for example, Pocock, 2005
[Po05]). This chapter points to methods for unbiased estimation.

Consider a trial with scheduled looks at information fractions (t1, . . . , tk).
We observe the summary data (τ, Z(t1), . . . , Z(τ )), where τ is the infor-
mation fraction when we stop. For example, with scheduled looks at t =
0.20, 0.50,0.70, and 1, stopping at the third look means we observe (τ =
0.70, Z(0.20), Z(0.50), Z(0.70)). Equivalently, we can view the data in terms
of increments: (τ = 0.70, B(0.20), B(0.50) − B(0.20), B(0.70) − B(0.50)). If
θ denotes the drift parameter, the likelihood of observing (τ = tj, B(t1) =
b1, B(t2) − B(t1) = b2 − b1, . . . , B(tj) −B(tj−1) = bj − bj−1) is

L(θ) =

[
j∏

i=1

{2π(ti − ti−1)}−1/2

]
exp

[
−

j∑

i=1

{bi − bi−1 − θ(ti − ti−1)}2

2(ti − ti−1)

]
,

where t0 = b0 = 0. It is slightly easier to work with the likelihood ratio
L(θ)/L(0), which, as a function of θ, is a constant multiple of L(θ).

L(θ)/L(0) = exp

[
j∑

i=1

(bi − bi−1)2 − {bi − bi−1 − θ(ti − ti−1)}2

2(ti − ti−1)

]
.

Now apply the identity x2 − y2 = (x − y)(x + y) to x = bi − bi−1 and y =
bi − bi−1 − θ(ti − ti−1) to deduce that

L(θ)/L(0) = exp

{
θ

j∑

i=1

(bi − bi−1) − (θ2/2)
j∑

i=1

(ti − ti−1)

}

= exp{θbj − (θ2/2)tj} (because the sums telescope)

= exp{θB(τ ) − (θ2/2)τ}. (7.1)

The factorization theorem implies that (τ, B(τ )) or, equivalently, (τ, Z(τ )),
is a sufficient statistic; therefore, the search for estimators or tests concerning
θ should be confined to those based on (τ, Z(τ )). One such estimator is the
MLE θ̂, obtained by differentiating the logarithm of (7.1) with respect to θ

and equating to 0. This results in θ̂ = B(τ )/τ (Chang, 1989 [C89]).
Completeness, another important concept in inference, guarantees the

uniqueness of certain statistical procedures that are based on the sufficient
statistic. Recall from section 2.5.2 that a random vector X with distribution
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function F (X, θ) is said to be complete if there is no nontrivial unbiased es-
timator of 0; i.e., the only function h(X) such that Eθ{h(X)} = 0 for all θ
is h(X) ≡ 0 (more precisely, h(X) = 0 except on a set whose probability is
0 irrespective of θ). Completeness ensures that there cannot be more than
one function of X that is unbiased for θ because if h1(X) and h2(X) were
unbiased for θ, then h1(X) − h2(X) would be an unbiased estimator of 0, so
h1(X) − h2(X) ≡ 0.

In a nonmonitoring setting, the N (θ, 1) distribution of the z-score is
complete, so the only function of Z that is unbiased for θ is Z. Here we
show that (τ, Z(τ )) is not complete in a group-sequential trial. To demon-
strate this, we must consider the distribution function of (τ, Z(τ )), or equiv-
alently, the distribution function of (τ, B(τ )). In the following, we define
fθ(t, b) = Pθ(τ = t, B(τ ) = b); that is, fθ(t, b) is the density function such that
Pr(τ = t, B(τ ) ∈ A | θ) =

∫
A fθ(t, b)db (note that we assume a finite number

of looks at fixed times, so the distribution of τ is discrete). Then

fθ(tj, bj) =
∫
. . .

∫
L(θ; b1, . . . , bj)db1 . . . dbj−1

=
∫
. . .

∫
L(θ; b1, . . . , bj)
L(0; b1, . . . , bj)

L(0; b1, . . . , bj)db1 . . .dbj−1

= exp{θbj − (θ2/2)tj}
∫
. . .

∫
L(0; b1, . . . , bj)db1 . . . dbj−1

= exp{θbj − (θ2/2)tj} f0(tj , bj), (7.2)

where the range of integration is the continuation region. For example, for a
two-tailed, symmetric z-score boundary of ±ci at look i, the range of the ith
integral of Equation (7.2) is −ci to ci.

Equation (7.2) shows the relationship between the density functions for
(τ, B(τ )) for arbitrary θ and for θ = 0. Liu and Hall (1999) [LH99] used rep-
resentation (7.2) and the theory of Laplace transforms to prove that (τ, B(τ ))
is not complete and to characterize the set of nontrivial functions h(τ, B(τ ))
with zero expectation. We content ourselves with finding a nontrivial unbiased
estimator of 0 when k = 2 and looks are at t = t1 and t = 1.

The simplest function we can try is constant on t = t1; h(t1, b1) = λ for
all b1. Then

Eθ{h(τ, B(τ ))} = λPθ(τ = t1) +
∫ ∞

−∞
h(1, b)fθ(1, b)db. (7.3)

Even though stopping at t = t1 precludes us from seeing B(1), we can still
imagine B(1) and the probability density gθ(t1, b) corresponding to τ = t1
and B(1) = b; that is,

∫
A
gθ(t1, b)db = Pθ(τ = t1, B(1) ∈ A). If we take

h(1, b) = −λgθ(t1, b)/fθ(1, b), then the fθ(1, b) terms cancel out and

Eθ{h(τ, B(τ ))} = λPθ(τ = t1) − λ

∫ ∞

−∞
{gθ(t1, b)/fθ(1, b)}fθ(1, b)db
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= λPθ(τ = t1) − λ

∫ ∞

−∞
gθ(t1, b)db

= λPθ(τ = t1) − λPr(τ = t1,−∞ < B(1) < ∞)
= λPθ(τ = t1) − λPθ(τ = t1) = 0. (7.4)

But h(τ, b) is supposed to be a statistic; however, h(1, b) = −λgθ(t1, b)/
fθ(1, b) seems to depend on θ. To see that it does not, write gθ(t1, b)/fθ(1, b)
as Pθ(τ = t1 |B(1) = b)/Pθ(τ = 1 |B(1) = b). Imagine a trial in which we
proceed to the second look regardless of the first stage result; then B(1) is
sufficient, so Pr(τ = t1 |B(1) = b) and Pr(τ = 1 |B(1) = b) are both free of
θ. Thus, if we define

h(t, b) =
{
λ if t = t1
−λg0(t1, b)/f0(1, b) if t = 1, (7.5)

then

Eθ{h(τ, B(τ ))} = λPθ(τ = t1) − λ

∫ ∞

−∞
{g0(t1, b)/f0(1, b)}fθ(1, b)db

= λPθ(τ = t1) − λ

∫ ∞

−∞
{gθ(t1, b)/fθ(1, b)}fθ(1, b)db

= λPθ(τ = t1) − λ

∫ ∞

−∞
gθ(t1, b)db = 0

by the same arguments leading to (7.4). Because h(τ, B(τ )) has zero expec-
tation for all θ, (τ, B(τ )) is not complete. Therefore, there is more than one
unbiased function of the sufficent statistic.

7.2 One-Tailed p-Values

7.2.1 Definitions of a p-Value

The fact that unadjusted monitoring causes inflation of the type 1 error rate
implies that an unadjusted, or nominal, p-value will tend to overstate the evi-
dence against the null hypothesis. The same forces driving us to raise bound-
aries to account for monitoring also drive us to adjust p-values, though, as
described at the beginning of this chapter, not everyone agrees that this is
necessary (Dupont, 1983 [D83]).

A trial with no monitoring has two equivalent definitions of a p-value:
1) the smallest α level for which the observed result would be statistically
significant, and 2) the null probability of obtaining a test statistic value at
least as extreme as that observed. We now try to extend these definitions
to group-sequential trials. The first definition requires us to consider a class
of similar boundaries with different alpha levels, e.g., O-Fk,α, the class of
O’Brien-Fleming boundaries with k equally spaced looks and type 1 error
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rate α. On the other hand, the second definition requires us to specify what
“at least as extreme” means; i.e., we must specify how to order different
outcomes. We shall see that if we order outcomes in a manner consistent with
the ordering implied by the class of boundaries specified in definition 1), the
two definitions are equivalent.

This section considers one-tailed testing with rejection for large values of
the z-statistic. Consider the first definition of p-value, the smallest α level
for which the observed result would be statistically significant. The following
example illustrates a subtle technical difficulty with what seems like a natural
approach.

Fig. 7.1. The p-value when (τ = 0.6, B(0.6) = 2.28) in a five-look trial with O’Brien-
Fleming boundaries. We raise the O’Brien-Fleming boundary until the observed
result barely reaches it (dotted line in upper panel); however, the boundary actually
used precludes outcomes such as B(0.2) = 1.90, B(0.4) = 2.15 (pluses in upper
panel), which would have caused the trial to stop at t = 0.4. Thus, the p-value is the
sum of probabilities of paths that remain within the boundary until termination, at
which time the B-value equals or exceeds 2.28. Each broken line in the lower panel
shows one such outcome with termination at t = 0.2, 0.4, 0.6, 0.8, or 1. The p-value
is p = .010.
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Example 7.1. Suppose a five-look trial with the O’Brien-Fleming constant B-
value boundary 2.04 terminates at the third look with B(3/5) = 2.28. Typi-
cally, investigators report the p-value in this case as .002, the nominal p-value
corresponding to the associated z-score of 2.28/(3/5)1/2 = 2.94. Clearly, such
a calculation overstates the evidence against the null hypothesis. Instead, we
ask, “At what level of α would we have just barely rejected the null hypoth-
esis?” We raise the B-value boundary from 2.04 to 2.28, as shown in Figure
7.1. It appears that the smallest α level at which we would reject the null
hypothesis is α = Pr(∪5

i=1B(i/5) ≥ 2.28) = 0.013, and therefore the p-value
appears to be .013. This is not quite correct, however. Using a constant B-
value boundary of 2.28 would yield a one-tailed type 1 error rate of 0.013 had
all outcomes leading to B(i/5) ≥ 2.28 for some 1 = 1, . . . , 5 been possible,
but the boundaries actually used preclude certain outcomes. For example, we
cannot observe the outcome B(1/5) = 1.90, B(2/5) = 2.15 (shown as pluses
in the upper panel of Figure 7.1), B(3/5) = 2.28 because the trial would have
have terminated at the second look. When we add the probabilities of paths
remaining within the original boundaries until the trial is stopped and then
equaling or exceeding 2.28, we get p = .010 (a detailed calculation is provided
in Example 7.3). Thus, the actual p-value is .010.

We can do an analogous computation for the class of Pocock boundaries.

Example 7.2. Consider a two-look trial using the Pocock constant z-score
boundary of 2.18. The trial continues until the end, with Z(1) = 2.30.
The one-sided p-value associated with a nonsequential test would have been
.011. To obtain the p-value in this sequential setting, we raise the Pocock
boundary to 2.30 as shown in Figure 7.2. Once again, the p-value is not
Pr(Z(1/2) ≥ 2.30∪Z(1) ≥ 2.30), but rather Pr(Z(1/2) ≥ 2.30)+Pr(Z(1/2) <
2.18∩Z(1) ≥ 2.30) = .018.

The reader should, as an exercise, compute the p-value if the observed
z-score had instead been Z(1) = 1.5. The correct answer is Pr(Z(1/2) ≥
2.18) + Pr(Z(1/2) < 2.18 ∩ Z(1) ≥ 1.5) because we would not have stopped
at the first stage unless Z(1/2) ≥ 2.18.

The second definition of the p-value was the null probability of a result at
least as extreme as that observed. But it is not obvious what is more extreme
when the outcome is the pair (τ, Z(τ )). In Example 7.2, would the evidence
have been stronger or weaker if the trial had stopped at the first look with
Z(1/2) = 2.40? Equation (7.1) shows that the log likelihood ratio for testing
θ = 0 against θ = θ1 is θ1B(τ )− (θ21/2)τ = θ1τ

1/2Z(τ )− (θ21/2)τ . Suppose the
alternative hypothesis were θ1 = 1. Then the log likelihood ratio would have
been τ1/2Z(τ )− τ/2. A z-score of 2.40 at τ = 1/2 yields a log likelihood ratio
of (1/2)1/22.40− (1/2)/2 = 1.447, whereas a z-score of 2.30 at τ = 1 yields a
log likelihood ratio of 11/22.30−1/2 = 1.80. Thus, for deciding whether θ = 0
versus θ = 1, a z-score of 2.30 at τ = 1 is more compelling than a z-score of
2.40 at τ = 1/2. On the other hand, suppose the alternative hypothesis were
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Fig. 7.2. The p-value when (τ = 1, Z(1) = 2.30) for a two-look trial using the
Pocock boundary. We raise the Pocock boundary until the observed result barely
reaches it. The p-value is the sum of probabilities of paths remaining within the
boundary until termination, at which time the z-score equals or exceeds 2.30. The
broken lines show two such outcomes.

θ1 = 3. Now the log likelihood ratio, 3τ1/2Z(τ )−4.5τ , would have been 2.841
for τ = 1/2 and Z(1/2) = 2.40, and 2.400 for τ = 1 and Z(1) = 2.30. In this
case a z-score of 2.40 at τ = 1/2 is more compelling than a z-score of 2.30 at
τ = 1. Thus, there is no best way to order the sample outcomes even when
there are only two looks (Table 7.1).

It may seem strange to consider likelihood ratio tests when, after all, the
boundaries ci already define an α-level test. Nonetheless, we may think about
constructing a test on the sample space S of possible outcomes for this trial:
S = {(tj, Z(tj)) : Z(t1) < c1, . . . , Z(tj−1) < cj−1, Z(tj) ≥ cj}. Because the
log likelihood ratio

ln{L(θ1)/L(0)} = θ1{B(τ ) − (θ1/2)τ} (7.6)

is very close to θ1B(τ ) for θ1 close to 0, the likelihood ratio test, the most
powerful test defined on S, of θ = 0 versus θ = θ1, orders outcomes essentially
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Table 7.1. Likelihood ratio for testing H0 : θ = 0 against two different alternative
hypotheses under two different stopping scenarios. When the alternative hypothesis
is θ = 1, stopping when τ = 1 and Z(1) = 2.30 is more compelling evidence than
stopping when τ = 1/2 and Z(1/2) = 2.40, but when the alternative hypothesis is
θ = 3, stopping when τ = 1/2 and Z(1/2) = 2.40 is more compelling evidence than
stopping when τ = 1 and Z(1) = 2.30.

τ = 1/2 τ = 1
Z(1/2) = 2.40 Z(1) = 2.30

H1 : θ = 1 1.447 1.800
H1 : θ = 3 2.841 2.400

by the B-value, B(τ ) for small θ1. Another way to see that ordering outcomes
by their B-values is optimal for small θ1 is to consider the locally most powerful
test, obtained by differentiating (7.6) with respect to θ and evaluating at θ = 0.
This yields the score statistic B(τ ) (Rosner and Tsiatis, 1988 [RT88]).

The B-value (partial) ordering, also called the score test ordering, defines
(τ2, Z(τ2)) to be at least as extreme as (τ1, Z(τ1)), written (τ2, Z(τ2)) �
(τ1, Z(τ1)) or (τ1, Z(τ1)) � (τ2, Z(τ2)), iff the B-value associated with the
pair (τ2, Z(τ2)) is at least as large as the B-value associated with the pair
(τ1, Z(τ1)). That is, for the B-value ordering,

B-value ordering: (τ2, B(τ2)) � (τ1, B(τ1)) ⇔ τ
1/2
2 Z(τ2) ≥ τ

1/2
1 Z(τ1).

If bobs = τ1/2zobs denotes the observed B-value, the p-value using the B-value
ordering is Pr(B(τ ) ≥ bobs) =

∑k
i=1 Pr(τ = ti ∩ B(ti) ≥ bobs). We saw in

Example 7.1 that this p-value arises naturally when the boundaries ci are
those of O’Brien-Fleming, but it can be computed for any boundaries.

We have seen that the B-value ordering arises from consideration of testing
θ = 0 against θ = θ1 for small θ1. We could also look at the maximum
likelihood ratio test over all alternatives θ1 > 0 instead of just over small
values. Assuming that the data are consistent with θ > 0 (i.e., Z(τ ) > 0), the
maximum likelihood estimator (MLE) for θ is θ̂ = B(τ )/τ . Substituting this
value into (7.6) gives (1/2){B(τ )}2/τ = (1/2){Z(τ )}2. In other words, the
maximum likelihood ratio test orders nonnegative outcomes by the z-score.

The z-score (partial) ordering, also called the likelihood ratio ordering,
orders by the magnitude of the z-score:

z-score ordering: (τ2, Z(τ2)) � (τ1, Z(τ1)) ⇔ Z(τ2) ≥ Z(τ1).

The p-value using the z-score ordering for an observed z-score of zobs is
Pr(Z(τ ) ≥ zobs) =

∑k
i=1 Pr(τ = ti ∩ Z(ti) ≥ zobs). It arose naturally in

Example 7.2 with the Pocock boundary, but like the p-value based on the B-
value ordering, it can be used with any boundaries (see Example 7.3 below).
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Thus, with k equally spaced looks, we can achieve equivalence of the two
definitions of the p-value if we use the B-value ordering for the O’Brien-
Fleming boundaries and the z-score ordering for Pocock boundaries.

One could also order outcomes in terms of the MLE θ̂ for the drift pa-
rameter. The MLE(partial) ordering orders by the magnitude of the MLE
B(τ )/τ :

MLE ordering: (τ2, Z(τ2)) � (τ1, Z(τ1)) ⇔ B(τ2)/τ2 ≥ B(τ1)/τ1,

where B(τi) = τ
1/2
i Z(τi). The p-value using the MLE ordering is Pr(θ̂ ≥

θ̂obs) =
∑k

i=1 Pr(τ = ti ∩ θ̂ ≥ θ̂obs).
We would like to view � and � the same way we view ≤ and ≥ for

numbers. One important similarity of � and � to ≤ and ≥ for any of the three
(partial) orderings is that any two outcome pairs (τ1, Z(τ1)) and (τ2, Z(τ2)) are
comparable in the sense that either (τ1, Z(τ1)) � (τ2, Z(τ2)) or (τ2, Z(τ2)) �
(τ1, Z(τ1)) or both.

An important difference between �,� and ≤,≥ is that for numbers a and
b, if a ≤ b and b ≤ a, then a = b. This immediately implies that Pr(Z ≥ z) =
1 − Pr(Z ≤ z) for any number z because 1 = Pr(Z ≤ z ∪ Z ≥ z) = Pr(Z ≤
z) + Pr(Z ≥ z) − Pr(Z = z), and Pr(Z = z) = 0. But (τ, Z(τ )) � (t, z) and
(τ, Z(τ )) � (t, z) together do not imply that (τ, Z(τ )) = (t, z). For example,
for the B-value ordering, (τ = 0.25, Z(0.25) = 3) � (τ = 1, Z(1) = 1.5)
and (τ = 1, Z(1) = 1.5) � (τ = 0.25, Z(0.25) = 3); for the z-score ordering,
(τ = 0.25, Z(0.25) = 3) � (τ = 1, Z(1) = 3) and (τ = 1, Z(1) = 3) � (τ =
0.25, Z(0.25) = 3); for the MLE ordering, (τ = 0.25, Z(0.25) = 2) � (τ =
1, Z(1) = 4) and (τ = 1, Z(1) = 4) � (τ = 0.25, Z(0.25) = 2). Nonetheless,
it is clear that for each of these orderings, Pr{(τ, Z(τ )) � (t, z) ∩ (τ, Z(τ )) �
(t, z)} = 0, and therefore that Pr{(τ, Z(τ )) � (t, z)} = 1 − Pr{(τ, Z(τ )) �
(t, z)}.

Example 7.3. We return to Example 7.1 and provide a detailed calculation of
the p-values under the B-value, z-score, and MLE orderings. Recall that the
trial stopped at the third look with a B-value of 2.28.

For the B-value ordering, the important quantity is the observed B-value
bobs = 2.28. The p-value is

p = Pr(B(τ ) ≥ 2.28) = Pr{∪5
i=1τ = ti ∩B(ti) ≥ 2.28}

= Pr(B(.2) ≥ 2.28)
+ Pr(B(.2) < 2.04, B(.4) ≥ 2.28)
+ Pr(B(.2) < 2.04, B(.4) < 2.04, B(.6) ≥ 2.28)
+ Pr(B(.2) < 2.04, B(.4) < 2.04, B(.6) < 2.04, B(.8) ≥ 2.28)
+ Pr(B(.2) < 2.04, B(.4) < 2.04, B(.6) < 2.04, B(.8) < 2.04, B(1) ≥ 2.28)
= 0.010.

We obtained the final answer by converting each probability involving B-
values to a first exit probability involving the z-scores and then using read-
ily available, free software (www.medsch.wisc.edu/landemets/). For example,
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Pr(B(0.2) < 2.04, B(0.4) ≥ 2.28) = Pr(Z(0.2) < 2.04/(0.2)1/2, Z(0.4) ≥
2.28/(0.4)1/2).

For the z-score ordering, the important quantity is the z-score Z(τ ) =
2.28/(0.6)1/2 = 2.94 at the time the trial was stopped. The z-score bound-
aries for the O’Brien-Fleming procedure with five looks are 2.040/(i/5)1/2 =
(4.56, 3.23,2.63,2.28, 2.04). The p-value using the z-score ordering is

p = Pr(Z(τ ) ≥ 2.94) = Pr{∪5
i=1τ = ti ∩Z(ti) ≥ 2.94}

= Pr(Z(.2) ≥ 4.56)
+ Pr(Z(.2) < 4.56, Z(.4) ≥ 3.23)
+ Pr(Z(.2) < 4.56, Z(.4)< 3.23, Z(.6) ≥ 2.94)
+ Pr(Z(.2) < 4.56, Z(.4)< 3.23, Z(.6) < 2.63, Z(.8) ≥ 2.94)
+ Pr(Z(.2) < 4.56, Z(.4)< 3.23, Z(.6) < 2.63, Z(.8)< 2.28, Z(1) ≥ 2.94)
= 0.003.

For the MLE ordering, the important quantity is the MLE at the time the
trial was stopped, θ̂ = B(0.6)/(0.6) = Z(0.6)/(0.6)1/2 = 2.94/(0.6)1/2 = 3.80.
We first convert the z-score boundaries to boundaries for the MLE θ̂(t) =
B(t)/t = Z(t)/t1/2. The MLE boundaries are (10.20, 5.10, 3.40,2.55,2.04).

The p-value using the MLE ordering is

p = Pr(θ̂(τ ) ≥ 3.80) = Pr{∪5
i=1τ = ti ∩ θ̂(ti) ≥ 3.80}

= Pr(θ̂(.2) ≥ 10.20)
+ Pr(θ̂(.2) < 10.20, θ̂(.4) ≥ 5.10)
+ Pr(θ̂(.2) < 10.20, θ̂(.4) < 5.10, θ̂(.6) ≥ 3.80)
+ Pr(θ̂(.2) < 10.20, θ̂(.4) < 5.10, θ̂(.6) < 3.40, θ̂(.8) ≥ 3.80)
+ Pr(θ̂(.2) < 10.20, θ̂(.4) < 5.10, θ̂(.6) < 3.40, θ̂(.8) < 2.55, θ̂(1) ≥ 3.80)
= 0.002

We obtained the final answer by converting each probability involving θ̂(t) to
a first exit probability involving the z-scores. For example, because θ̂(t) =
B(t)/t = Z(t)/t1/2, Pr(θ̂(0.2) < 10.20, θ̂(0.4) ≥ 5.10) = Pr(Z(0.2) <
10.20(0.2)1/2, Z(0.4) ≥ 5.10(0.4)1/2).

7.2.2 Stagewise Ordering

The calculations in Example 7.3 clearly show that the p-values for the z-score,
B-value, and MLE orderings depend not only on the data observed thus far,
but also on future plans. Even though we stopped at the third look, we needed
to know the boundaries at the fourth and fifth looks. But future look times
may be unpredictable. Why should the degree of evidence observed thus far
depend on the number and times of looks in the future? This violates the
likelihood principle.

A way to avoid this drawback is to order outcomes in terms of the stage at
which the trial was stopped, with earlier stopping providing more compelling
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Fig. 7.3. The stagewise p-value for observed outcome (τ = 0.6, Z(0.6) = 2.94) is
the probability of either stopping earlier than t = 0.6 or stopping at t = 0.6 with a
z-score of 2.94 or more. The paths shown correspond to (τ = 0.2), (τ = 0.4), and
(τ = 0.6, Z(0.6) ≥ 2.94), respectively.

evidence of treatment differences than later stopping. For two trials stopping
at the same time t, the one with the larger z-score is more extreme. Thus,
(τ2, Z(τ2)) is at least as extreme as (τ1, Z(τ1)) in the stagewise ordering iff
τ2 < τ1 or τ2 = τ1 and Z(τ2) ≥ Z(τ1). The so-called stagewise ordering assigns
to the outcome (τ = tj , Z(tj) = z) the p-value

p = Pr(∪j−1
i=1Z(ti) ≥ ci) + Pr(∩j−1

i=1Z(ti) < ci, Z(tj) ≥ zj)

= Pr(∪j−1
i=1Z(ti) ≥ ci ∪ Z(tj) ≥ zj).

It is easy to compute the stagewise p-value in a one-tailed setting using soft-
ware that computes cumulative crossing probabilities. We simply compute
the cumulative crossing probability using boundaries c1, . . . , cj−1 at looks
1, . . . , j − 1 and zj at the jth look.

For the trial of Example 7.1, the z-score boundaries are 4.56, 3.23, 2.63,
2.28, and 2.04. The p-value using the stagewise ordering after observing τ =

t
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0.6 and Z(0.6) = 2.94 is Pr(Z(0.2) ≥ 4.56∪Z(0.4) ≥ 3.23∪ Z(0.6) ≥ 2.94) =
0.002 (Figure 7.3).

Table 7.2 summarizes the p-values calculated for this example. In this
particular case, the p-value for the B-value ordering differs markedly from the
other four, which are quite similar.

Table 7.2. p-values using different approaches.

Method p-value
Unadjusted Pr(Z(3/5) ≥ 2.94) 0.002
B-value ordering 0.010
z-score ordering 0.003
MLE ordering 0.002
Stagewise ordering 0.002

Example 7.4. Suppose a trial with unpredictable look times uses the O’Brien-
Fleming-like spending function. The z-score at the first look at information
fraction 0.15 is Z(0.15) = 1.5, well below the boundary of 5.67. The second
look at information fraction 0.37 produces a z-score of Z(0.37) = 3.60, which
exceeds the boundary of 3.50. The one-tailed p-value using the stagewise or-
dering is Pr(Z(0.15) ≥ 5.67 ∪ Z(0.37) ≥ 3.60) = 0.00016, which is virtually
the same as the unadjusted value. The p-value for the other three orderings
cannot even be computed without knowing the number of future looks and
their information fractions.

Unlike the previous three orderings, the stagewise ordering is a linear or-
dering, meaning that if (τ1, Z(τ1)) � (τ2, Z(τ2)) and (τ2, Z(τ2)) � (τ1, Z(τ1)),
then (τ1, Z(τ1)) = (τ2, Z(τ2)).

7.2.3 Two-Tailed p-Values

We can extend the definition of p-values to two-tailed testing with arbitrary
upper and lower z-score boundaries Ui and Li, respectively. Again let τ be
the first exit time, τ = min{ti : Z(ti) ≥ Ui or Z(ti) ≤ Li}. We modify
the stagewise ordering to account for the fact that either the upper or lower
boundary may be crossed: (τ2, z2) is more extreme than (τ1, z1) iff either 1)
τ1 = τ2 and z1 ≤ z2, or 2) τ1 < τ2 and z1 crossed the lower boundary, or 3)
τ1 > τ2 and z2 crossed the upper boundary. The other orderings require no
modification. For observed result (τobs, zobs) we compute upper and lower p-
values pU = P0{(τ, Z(τ )) � (τobs, zobs) and pL = P0{(τ, Z(τ )) � (τobs, zobs)}.
The two-tailed p-value is 2 min(pL, pU).

It is easy to see that when the upper and lower boundaries are symmetric
about 0, the two-tailed p-value is the one-tailed p-value of the previous section
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applied to |Zi|. For example, the two-tailed p-value for the stagewise ordering
with upper and lower z-score boundaries ci and −ci is

p = Pr(∪j−1
i=1 |Z(ti)| ≥ ci) + Pr(∩j−1

i=1 |Z(ti)| < ci, |Z(tj)| ≥ zj)

= Pr(∪j−1
i=1 |Z(ti)| ≥ ci ∪ |Z(tj)| ≥ zj)

A word of caution is in order about upper and lower boundaries. As men-
tioned in Chapter 1 and Section 5.2, lower boundaries are sometimes regarded
as more advisory than binding. This is particularly true if they are futility
boundaries. One may include futility boundaries for, say, 10 percent condi-
tional power and 20 percent conditional power, but the trial might continue
even if one or both of these boundaries are crossed. In other cases, the lower
boundary might be considered more binding. One should carefully consider
which of these situations applies to the current trial. If the lower boundary is
advisory, it may be best to ignore it and compute a one-tailed p-value. If it is
considered binding, one may wish to compute a two-tailed p-value as outlined
in this section.

7.3 Properties of p-Values

The stagewise one-and two-tailed p-values have desirable properties. For ex-
ample, suppose that the stagewise p-value is less than α. Then we must have
either crossed the boundary before the scheduled end of the trial or continued
to the end and crossed it. If not, then Z(t1) < c1, . . . , Z(1) < ck in a one-
tailed testing setting, so the p-value would have been p = Pr(∪j−1

i=1Z(ti) ≥
ci ∪Z(tj) ≥ zj) > Pr(∪j

i=1Z(ti) ≥ ci) = α. Thus, if the p-value is less than α,
the boundary was crossed. Similarly, if we cross the boundary, the stagewise
p-value must be α or less. In other words, the group-sequential boundary is
crossed if and only if the stagewise p-value is α or less. The other orderings
sometimes lack this property.

Example 7.5. Consider a one-tailed, two-look trial with a z-score boundary
of 1.9600 at t = 0.5 and, say, 10 at t = 1. The trial is stopped at t = 0.5
because Z(0.5) = 1.9601. With the z-score ordering, the p-value is Pr(Z(τ ) ≥
1.9601) = Pr(Z(0.5) ≥ 1.9601) + Pr(Z(0.5) < 1.9600, Z(1) ≥ 1.9601) ≈
Pr(Z(0.5) ≥ 1.96 ∪ Z(1) ≥ 1.96) = .042. Although we crossed the α = .025
boundary, the p-value using the z-score ordering is greater than .025.

Although Example 7.5 was extreme in the sense that the final bound-
ary was huge, it illustrates the possibility of inconsistent results between the
boundaries and p-value when the stagewise ordering is not used.

In a nonmonitoring setting, the p-value has a uniform distribution when
the test statistic has a continuous distribution. Is this true under monitoring?
Consider the one-tailed p-value using the B-value ordering: Pr{B(τ ) ≥ bobs),
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where bobs is the observed B-value. As b increases from −∞ to ∞, Pr(B(τ ) >
b) decreases from 1 to 0, attaining every value in between. It follows that
for any u ∈ (0, 1), there exists a bu with Pr(B(τ ) ≥ bu) = u. The p-value
associated with the observed outcome (τobs, zobs) is u or less if and only if
bobs ≥ bu. The null probability of this event is Pr(B(τ ) ≥ bu) = u. Thus, the
p-value is uniformly distributed. A similar argument works for the z-score and
MLE orderings. For the stagewise ordering, a similar argument works, where
for each u we find an outcome (tu, zu) such that Pr(τ, Z(τ )) � (tu, zu)) = u.
Two-tailed p-values are also uniformly distributed.

Desirable p-value properties are:

1. The p-value is uniformly distributed.
2. The p-value is consistent with the boundaries (i.e., the p-value is α or less

iff the boundary is crossed).
3. The p-value does not depend on the number or timing of future looks.
4. If the trial is stopped at the first look, the p-value is the same as for a

trial with no monitoring.

All four orderings have the first property; the stagewise ordering has each of
the other three, whereas the other orderings have none of the other three. The
stagewise ordering is therefore our ordering of choice. Unless otherwise stated,
we confine attention to the stagewise ordering for the remainder of the book.

With no monitoring, if the z-score barely exceeds the critical value, the
p-value will be close to α. This need not hold with monitoring, as illustrated
with the stagewise ordering in a five-look trial using the O’Brien-Fleming
boundary; Z(0.2) = 4.57 barely crosses the boundary at the first look, yet the
one-tailed p-value using the stagewise ordering is Pr(Z(0.2) ≥ 4.57) ≤ .0001.

7.4 Confidence Intervals

One way to obtain a confidence interval in a nonmonitoring situation is as
follows. Having observed Z = zobs, we determine the value θL such that
PθL(Z ≥ zobs) = α/2, where Z is the z-score for testing whether θ = 0 (Figure
7.4). This leads to (θ̂ − θL)/{var(θ̂)}1/2 = zα/2. The resulting value for θL is
θ̂−zα/2{var(θ̂)}1/2. Similarly,we determine θU such that PθU (Z < zobs) = α/2
(Figure 7.4). Then (θ̂− θU )/{var(θ̂)}1/2 = −zα/2. The resulting value of θU is
θ̂+ zα/2{var(θ̂)}1/2. The confidence interval is (θL, θU ). The rationale behind
this method is depicted in Figure 7.5.

The monitoring analog of the above method is as follows. Having observed
(τobs, zobs), we choose the value θL such that PθL{(τ, Z(τ )) � (τobs, zobs)} =
α/2, where � is with respect to the stagewise ordering. Similarly, we choose
θU such that PθU{(τ, Z(τ )) � (τobs, zobs)} = α/2. Equivalently, θU satisfies
PθU{(τ, Z(τ )) � (τobs, zobs)} = 1−α/2. We emphasize that (τ, Z(τ )) represent
the z-statistic and stopping time associated with the test of θ = 0.
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Fig. 7.4. Method of constructing confidence intervals in the nonmonitoring setting:
Find θL and θU such that PθL(Z > zobs) = α/2 and PθU (Z ≤ zobs) = α/2.

Fig. 7.5. Why the method of Figure 7.4 works. We chose θL such that the area
to the right of zobs is α/2 (top panel). The bottom panel shows θ < θL. Note that
{θ < θL} ⇔ Pθ(Z ≥ zobs) < α/2 ⇔ zobs > zθ,α/2, where zθ,α/2 is the 1 − α/2th
percentile of a normal distribution with mean θ and variance 1. Thus, Pθ(θ < θL) =
Pθ(Zobs ≥ zθ,α/2) = α/2. Similarly, Pθ(θ > θU ) = α/2, so Pθ(θL < θ < θU ) = 1−α.

Implicit in the above formulation is that Pr(τ, Z(τ ) � (t, z)) is an increas-
ing function of θ for the stagewise ordering. This monotonicity property clearly

z obsθ θL U

zobs

zobsz
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holds for the stagewise ordering because we can obtain a Brownian motion
with drift θ2 from one with drift θ1 < θ2 by adding the nonnegative quantity
(θ2 − θ1)t; Bθ2 (t) = Bθ1 (t) + (θ2 − θ1)t. If (τ, Z(τ )) � (t, z) for the Brownian
motion with drift θ1, then the same must hold for B(t) + (θ2 − θ1)t.

An equivalent way to obtain a confidence interval in the nonmonitoring
setting is to invert a test of θ = θL versus θ > θL and similarly for θU . That is,
we could have started by forming the test statistic Z(θL) = (θ̂−θL)/σ̂θ̂L

. The
z-score at which we would have just rejected the null hypothesis is zα/2. Setting
(θ̂ − θL)/σ̂θ̂L

= zα/2 and solving for θL gives θL = θ̂ − zα/2{var(θ̂)}1/2. Simi-
larly, setting Z(θU ) = −zα/2 and solving for θU gives θU = θ̂+zα/2{var(θ̂)}1/2.
This confidence interval coincides with that of the first method.

Although not obvious, this alternative method of constructing confidence
intervals, when extended to monitoring, is equivalent to the first. When we
extend the second method to monitoring, the outcome is a pair (τ, Z(τ )). If we
had been testing θ = θL from the beginning, the boundaries would have been
different from those of testing θ = 0, and therefore the stopping time τ may
have been different. Nonetheless, the monotonicity property of the stagewise
ordering means we can regard the boundaries actually used as a test of θ = θL

versus θ > θL and θ = θU versus θ < θU . Thus, we can also regard the first
method of constructing confidence intervals as inverting tests ot θ = θL versus
θ > θL and θ = θU versus θ < θU .

Example 7.6. In a cancer trial we wish to compare a new treatment with an
active control with respect to the proportion of patients whose tumors show
substantial regression from baseline to 30 days after randomization. The plan
is to examine the data after approximately 60, 120, and 180 patients per arm
have been evaluated using the O’Brien-Fleming-like spending function for a
two-tailed test at α = 0.05.

As it turns out, the first analysis takes place with 62 control and 64
treatment participants evaluated, the second analysis with 111 control and
115 treatment patients evaluated, and the third with 173 control and 176
treatment patients evaluated. If we had been clairvoyant, we would have
known that the information fractions at the first two looks were really
t1 = (1/62 + 1/64)−1/(1/173 + 1/176)−1 = 0.361 and t2 = (1/111 +
1/115)−1/(1/173+1/176)−1 = 0.647. Because we thought there would be 180
patients per arm at the end, we thought the information fractions were t1 =
(1/62+1/64)−1/(2/180)−1 = 0.350 and t2 = (1/111+1/115)−1/(2/180)−1 =
0.628. Remember that the null joint distribution of (Z(t1), Z(t2)) depends
only on the ratio t1/t2, which is invariant to misspecification of the informa-
tion at the end of the trial. Thus, the boundaries are exactly the same whether
or not we correctly specify the total information. For the purpose of p-values
and confidence intervals, we can pretend the total sample sizes 173 and 176
had been fixed in advance. We can treat the information fractions and drift
parameter as t1 = 0.361, t2 = 0.647, t3 = 1 and



7.4 Confidence Intervals 129

θ =
δ√

pC(1 − pC)/173 + pT (1 − pT )/176
, (7.7)

where δ = pT − pC . Note that just as in the nonmonitoring case, we do not
assume that pT = pC when we construct confidence intervals; we do so only
when we test whether pC = pT = 0. The boundaries using the O’Brien-
Fleming-like spending function are c1 = 3.552, c2 = 2.558, c3 = 1.989. No
z-score was close to reaching statistical significance. At the end of the trial,
the proportions of patients with substantial tumor regression in the control
and treatment arms are p̂C = 41/173 and p̂T = 45/176. The final z-score is
Z(1) = 0.405. The sufficient statistic is (τ = 1, Z(τ ) = 0.405); the interim
z-scores are no longer important. The set of outcomes at least as extreme as
the observed outcome (τ = 1, Z(τ ) = 0.405) is

A = {τ = .361, Z(.361) ≥ 3.552}∪ {τ = .647, Z(.647) ≥ 2.558}
∪ {τ = 1, Z(1) ≥ .405}

We can express this set in terms of events involving the three z-scores. For
example, the event {τ = 1, Z(1) ≥ 0.405} may be written as {|Z(0.361)| <
3.552, |Z(0.647)| < 2.558, Z(1) ≥ 0.405}. The two-tailed p-value is twice the
null probability of A. Because the boundaries are symmetric about 0, the p-
value is equivalent to P0(|Z(0.361)| ≥ 3.552 ∪ |Z(0.647)| ≥ 2.558 ∪ |Z(1)| ≥
0.405) = 0.69.

For the confidence interval, we determine through numerical integration
and a grid search the values θL and θU such that PθL(A) = 0.025 and
PθU (A) = 0.975. This yields θL = −1.555, θU = 2.366. We translate this
interval into one for the natural parameter δ = pT − pC . The denominator
of (7.7) is 0.046, so the confidence interval for the difference in proportions,
δ, is (−1.555(0.046), 2.366(0.046)) = (−0.072, 0.109). Thus, we are 95 percent
confident that pT − pC is between −0.072 and 0.109.

Example 7.7. A trial comparing two diets with respect to weight change over
3 months in 200 participants per arm uses the O’Brien-Fleming-like spend-
ing function with four planned looks after roughly equal increments of in-
formation. At the third look, the mean weight loss is 8.1 kg among the 152
active diet participants compared to 6.0 kg among the 144 control partici-
pants. The current information fraction is (1/152 + 1/144)−1/(2/200)−1 =
0.74. The pooled standard deviation estimate is 4.8 kg, so the t-statistic is
(8.1− 6.0)/{4.82(1/152 + 1/144)}1/2 = 3.76 with 294 degrees of freedom. We
can treat it as a z-statistic because of the large number of degrees of freedom.
Because the first two looks were at estimated information fractions t1 = 0.22
and t2 = 0.55, the z-score boundary at the third look at information fraction
t3 = 0.74 is 2.39. Thus, the outcome for this trial is (τ = 0.74, Z(0.74) = 3.76).

For the stagewise ordering, the set of outcomes at least as extreme as that
observed is

A = {τ = .22, Z(.22) ≥ 4.64} ∪ {τ = .55, Z(.55) ≥ 2.81}
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∪ {τ = .74, Z(.74) ≥ 3.76}

The two-tailed p-value is twice the probability of A, which is equivalent
to P0(|Z(0.22)| ≥ 4.64 ∪ |Z(0.55)| > 2.81 ∪ |Z(0.74)| ≥ 3.76) = 0.005. Note
that the p-value calculated without accounting for the sequential nature of
the trial would have been .0002.

We obtain the confidence interval by determining through numerical inte-
gration the values θL and θU such that PθL(A) = 0.025 and PθU (A) = 0.975.
The resulting values are θL = 1.134 and θU = 6.211. We translate this into
a confidence interval for the natural parameter δ = µT − µC . The drift and
natural parameters are related by

θ =
δ√

2σ2/200
, δ = θ{2σ2/200}1/2.

Substituting the current pooled standard deviation estimate, 4.8, for σ yields
δ = 0.48θ. Multiplying the lower and upper limits of the confidence interval
for θ by 0.48 yields the confidence interval (0.544, 2.981). Thus, the new diet
reduces weight by between roughly half a kilogram to almost 3 kilograms.

One quirk of confidence intervals using the stagewise ordering is that the
confidence interval could exclude the MLE B(τ )/τ in certain extreme settings
(Rosner and Tsiatis, 1988 [RT88]), as we see in the following example.

Example 7.8. Suppose a two-look trial with one-tailed α = 0.025 uses the
Pocock z-score boundary c = 2.18 for its planned looks at t = 0.5 and t = 1.
The trial is stopped at the second look with a very large z-score, zobs. The set
of outcomes at least as extreme as the observed outcome, (τ = 1, Z(1) = zobs),
is {τ = 0.5}∪ {τ = 1, Z(1) ≥ zobs} = {Z(1/2) ≥ 2.18}∪ {τ = 1, Z(1) ≥ zobs}.
The upper limit θU of the 95 percent confidence interval, obtained by setting

Pθ(Z(1/2) ≥ 2.18) + Pθ(τ = 1∩ Z(1) ≥ zobs) = 0.975 (7.8)

and solving for θ, requires numerical integration. We can get an upper
bound on θU without numerical integration by solving the simpler equation
Pθ(Z(1/2) ≥ 2.18) = 0.975:

0.975 = Pθ(Z(1/2) ≥ 2.18) = Pθ

(
B(1/2) ≥ 2.18

√
1/2
)

= 1 − Φ

(
2.18

√
1/2− (1/2)θ√

1/2

)
= 1 − Φ

(
2.18−

√
1/2 θ

)

so

Φ
(
2.18−

√
1/2 θ

)
= 0.025

2.18−
√

1/2 θ = Φ−1(0.025) = −1.96
(2.18 + 1.96)

√
2 = θ = 5.855.
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Thus, the upper limit of the confidence interval can be no greater than
5.855 irrespective of the observed z-score at the final look. Because the MLE
is B(1)/1 = Z(1) = zobs, if zobs > 5.855, the confidence interval will exclude
the MLE.

Though we showed that θU < 5.885, θU is actually quite close to 5.885 for
very large values of zobs. For example, when zobs = 6, the confidence interval
for θ is (0.311, 5.850). The reason that θU is so close to our upper bound is
that θU satisfies (7.8), and Pθ(τ = 1∩Z(1) ≥ zobs) ≤ Pr(Z(1) ≥ zobs) ≈ 0 for
very large zobs.

Example 7.8 was extreme; the first stage z-score had to fall within its
boundary of 2.18, but the second stage z-score had to be close to 6. Such an
outcome has microscopically low probability. If we lower the confidence level,
then less extreme z-scores could produce confidence intervals that exclude the
MLE. For example, Rosner and Tsiatis (1988) [RT88] give an example based
on a 90 percent confidence interval and the Pocock boundary with five looks
and two-tailed α = 0.05. The 90 percent confidence interval excluded the MLE
when the z-score at the fifth look was 2.

7.5 Estimation

Estimation of the drift parameter θ following a group-sequential trial is prob-
lematic because of the possibility of stopping on a random high. For exam-
ple, consider one-tailed testing with two looks. We know that if we agreed
to continue to the end of the trial regardless of the interim results, both
θ̂(t1) = B(t1)/t1 and θ̂(1) = B(1)/1 would be unbiased estimates of θ. With
monitoring, however, we will stop early if θ̂(t1) is large enough. Clearly θ̂(t1)
will tend to overestimate θ (see Section 7.7 for a proof for an arbitrary number
of looks).

How can we adjust the MLE to make it unbiased? Suppose we knew, for
each value of θ, the bias β(θ) of the MLE when the true value of the drift is
θ. Note that

E(θ̂) = θ + β(θ). (7.9)

A method of moments approach is to substitute θ̂ for its expectation on the
left side of (7.9) and determine θ̃ such that

θ̂ = θ̃ + β(θ̃) (7.10)

(Whitehead, 1997 [W97]). We iterate to solve (7.10) for θ̃, beginning by esti-
mating θ̃ by the MLE

θ̃0 = B(τ )/τ.

We adjust θ̃0 by subtracting its bias β(θ̃0):

θ̃1 = θ̃0 − β(θ̃0).
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We now treat the revised estimate θ̃1 as the true θ for the purpose of re-
evaluating the bias of the MLE. We compute

θ̃2 = θ̃0 − β(θ̃1).

Continuing in this fashion, we find at the i + 1st step

θ̃i+1 = θ̃0 − β(θ̃i). (7.11)

Suppose θ̃i converges to some number θ∗ as i → ∞. Then from 7.11, θ∗ =
θ̃0 − β(θ∗), so

θ̃0 = θ∗ = θ̃0 + β(θ∗). (7.12)

In other words, θ∗ is the solution to (7.10). In practice, we might have to
estimate β(θ), as in the following example.

Example 7.9. A trial comparing two diets with respect to change in diastolic
blood pressure (DBP) from baseline to the end of the study uses a t-test with
planned looks after 30, 50, 80, 140, and 200 participants per arm are evaluated.
Thus, the information fractions are t1 = 0.15, t2 = 0.25, t3 = 0.40, t4 = 0.70,
and t5 = 1. Applying the O’Brien-Fleming-like spending function yields the
B-value and z-score boundaries in Table 7.3.

Table 7.3. Boundaries ai and ci for B(ti) and Z(ti), respectively.

ti ai ci

0.15 2.20 5.67
0.25 2.17 4.33
0.40 2.13 3.36
0.70 2.04 2.44
1.00 2.00 2.00

Suppose we observe B-values of 1.00, 1.40, and 2.20 at the first three looks.
At the third look, the boundary is crossed and the MLE for θ isB(0.40)/0.40 =
2.2/0.40 = 5.50. The drift parameter θ is related to the natural parameter
δ = µT − µC through

θ =
δ√

2σ2/N
, δ = θ

√
2σ2/N,

where N = 200. Substituting the pooled standard deviation estimate σ̂ = 5.00
produces an estimated δ of 2.75 mm Hg.

To estimate the bias of the MLE, we generate 10,000 five-dimensional
vectors {B∗(t1), . . .B∗(t5)}1, . . . , {B∗(t1), . . . , B∗(t5)}10,000 with drift 0, each
representing a single clinical trial generated under the null hypothesis. We add
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5.5(t1, t2, t3, t4, t5) to each five-vector to simulate a trial under drift 5.5 corre-
sponding to the MLE. For the ith simulated trial we use the same boundaries
as for the actual trial, and we compute: (τ∗i, B∗i); θ∗i = B∗i/τ∗i; and esti-
mated bias θ∗i − θ̃0, where θ̃0 = 5.5 The average of these 10, 000 biases gives
our estimate of the bias function, β̂(5.5), evaluated at the MLE 5.5. Suppose
that β̂(5.5) = 0.3.

The next step is to calculate a new drift parameter estimate θ̃1 =
5.5 − β̂(5.5) = 5.5 − 0.3 = 5.2 and generate 10, 000 trials with drift 5.2.
No new random number generation is needed; we use the original 10, 000 tri-
als generated under the null hypothesis but this time add 5.2(t1, . . . , t5). We
use the same stopping boundaries, compute the MLE and bias estimate for
each simulated trial, and average the biases to get the best estimate, β̂(5.2),
of the bias evaluated at θ̃1 = 5.2. Suppose β̂(5.2) = 0.2.

We next compute θ̃2 = 5.5 − 0.2 and continue in this way until the esti-
mated drift changes very little from one iteration to the next. The resulting
drift parameter and natural parameter estimates were 5.17 and 2.59 mm Hg
(recall that the MLE for the natural parameter was 2.75 mm Hg).

Of course there is no reason to assume that this bias-corrected estimate
based on the MLE is necessarily the optimal estimator. Kim’s (Kim, 1989
[K89]) median unbiased estimator is more directly tied to p-values and confi-
dence intervals; one determines the value θ0.50 such that the one-tailed p-value
for testing θ = θ0.50 versus θ > θ0.50 is .50. Interestingly, the median unbiased
estimate for θ in Example 7.9 is the MLE value, 5.5.

We close this section by searching for the minimum variance unbiased
estimate of θ. We could improve any unbiased estimator θ̂ (not necessarily
based on the sufficient statistic) by computing its conditional expectation
given the sufficient statistic (τ, B(τ )). The new estimator θ̃ = E{θ̂ | (τ, B(τ ))}
is an unbiased function of the sufficient statistic having variance no greater
than that of θ̂ because of the familiar argument

var(θ̂) = E(θ̂ − θ̃ + θ̃ − θ)2

= E(θ̂ − θ̃)2 + E(θ̃ − θ)2 + 2E{(θ̂ − θ̃)(θ̃ − θ)}
= E(θ̂ − θ̃)2 + var(θ̃)
≥ var(θ̃).

Line 3 follows from line 2 because E{(θ̂ − θ̃)(θ̃ − θ)} = 0 by the following
argument: first compute the conditional expectation of (θ̂ − θ̃)(θ̃ − θ) given
(τ, B(τ )); the term (θ̃−θ) is already a function of (τ, B(τ )) and may be pulled
out of the conditional expectation, while E{θ̂ − θ̃ | (τ, B(τ ))} = θ̃ − θ̃ = 0.

Emerson and Fleming used this tack (Emerson and Fleming, 1990 [EF90])
to improve the first stage MLE θ̂(t1) by θ̃ = E{θ̂1 | (τ, B(τ ))}; however, they
mistakenly claimed that θ̃ is the minimum variance unbiased estimator for θ.
This would be true if (τ, B(τ )) were complete; in that case there would be
only one function of the sufficient statistic that was unbiased for θ. But as
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we saw in Section 7.1, (τ, B(τ )) is not complete. In fact, Liu and Hall (1999)
[LH99] showed that there is no minimum variance unbiased estimator.

Even though it is not a minimum variance unbiased estimator—because
there is none in the group-sequential setting—Emerson and Fleming’s esti-
mator is appealing. Only the first stage data is guaranteed to be observed,
and the best estimator for a one-stage design is the MLE θ̂1 = B(t1)/t1.
Thus, θ̃ = E{θ̂1 | (τ, B(τ ))} seems as if it should be optimal in some sense.
Liu and Hall (1999) [LH99] formalized this idea by considering the class
of truncation-adaptive unbiased estimators, unbiased estimators whose value
given (τ = tj , B(τ ) = b) does not depend on the number or timing of
future looks. They showed that only one unbiased function of the suffi-
cient statistic (τ, B(τ )) is truncation-adaptive, so there is a unique mini-
mum variance truncation-adaptive unbiased estimator—Emerson and Flem-
ing’s θ̃ = E{B(t1)/t1 | (τ, B(τ ))}. Because (τ, B(τ )) is sufficient, this condi-
tional expectation does not depend on θ. Thus, we can compute it assuming
θ = 0.

For example, suppose a trial terminates at the second look with a B-
value of b2. To compute the Emerson-Fleming estimator E{B(t1)/t1 | (τ =
t2, B(t2) = b2)}, we need the conditional distribution of B(t1) given (τ =
t2, B(t2) = b2). Because (τ, B(τ )) is sufficient, this conditional distribution
is the same for all θ, so we can assume θ = 0. In the following, P0(B(t1) =
b1 | τ = t2, B(t2) = b2) denotes the conditional density of B(t1) (evaluated at
b1) given τ = t2, B(t2) = b2, and similarly for the other expressions.

P0(B(t1) = b1 | τ = t2, B(t2) = b2)

=
P0(B(t1) = b1, B(t2) − B(t1) = b2 − b1, τ = t2)

P0(τ = t2, B(t2) = b2)

=
φt1(b1)φt2−t1(b2 − b1)

f0(t2, b2)
,

for b1 < c1t
1/2
1 (boundary for the B-value), where φt(x) denotes the nor-

mal density with mean 0 and variance t evaluated at x while f0(t2, b2)
denotes P0(τ = t2, B(t2) = b2). Thus, the expectation of B(t1)/t1 given
(τ = t2, B(t2) = b2) is

ψ(t2, b2) =

∫ c1

−∞(b1/t1)φt1(b1)φt2−t1(b2 − b1)
f0(t2, b2)

.

After considerable simplification,

ψ(t2, b2) =
exp

(
−b2

2t2

)

2πt1t
1/2
2 f0(t2, b2)

[
t1b2

√
2π

t2
Φ


 c1 − t1b2

t2√
t1
t2

(t2 − t1)




−
√
t1(t2 − t1)/t2 exp

{
−(c1 − t1b2/t2)2

2(t1/t2)(t2 − t1)

}]
.
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7.6 Summary

Inference following a group-sequential trial is problematic because p-values,
confidence intervals, and point estimates are biased if monitoring is not taken
into account. The p-values cited in the medical literature when a trial stops
early often fail to account for the sequential monitoring that took place. Often
the corrected and uncorrected p-values are nearly the same, but sometimes
the difference can be large enough so that the uncorrected value produces an
overly optimistic view of the strength of the evidence for a treatment effect.
The magnitude of the difference between the two p-values depends on the
nature of the monitoring boundary and the look at which the trial is stopped.
The fact that the sufficient statistic is the pair (τ, Z(τ )) causes problems
because the likelihood ratio cannot be written as a monotone function of a
statistic as it can in the nonmonitoring setting. Each way (B-value, z-score,
MLE, or stagewise ordering) to order outcomes yields a different p-value. We
strongly recommend the stagewise ordering because its p-value depends only
on what has happened thus far, not on future plans. The stagewise ordering
is also consistent in the sense that the p-value is α or less iff the boundary
was crossed.

A confidence interval for the drift parameter θ may be constructed us-
ing the stagewise ordering by finding θL and θU such that PθL{(τ, Z(τ )) �
(τobs, zobs)} = α/2 and PθU{(τ, Z(τ )) � (τobs, zobs)} = α/2. This method’s
only drawback is that in some cases the confidence interval can exclude the
MLE θ̂ = B(t)/t; however, this potential is less disconcerting than it sounds
because the MLE produces a biased estimator of the drift parameter.

Whitehead (1997) [W97] proposed a method of correcting for the bias,
while others have searched for the minimum variance unbiased estimate of
θ. Emerson and Fleming [EF90] proposed starting with the best first-stage
estimate (the first stage is the only one guaranteed to occur) B(t1)/t1 and
computing its conditional expectation given the sufficient statistic (τ, Z(τ )).
Although (τ, Z(τ )) is not complete and no minimum variance unbiased esti-
mate exists, Emerson and Fleming’s estimator is the best among those esti-
mators that do not depend on future monitoring plans (Liu and Hall, 1999)
[LH99].

7.7 Appendix: Proof that B(τ )/τ Overestimates θ in the
One-Tailed Setting

Note that

B(τ )/τ − θ =
k∑

i=1

(1/τ ){B(ti) −B(ti−1) − θ(ti − ti−1)}I(τ ≥ i)

=
k∑

i=1

(1/τ )YiI(τ ≥ i), (7.13)
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where Yi = B(ti)−B(ti−1)−θ(ti−ti−1). The bias is the expectation of (7.13).
To find the expectation of the ith term of the sum on the right side of (7.13),
we first compute its conditional expectation given F−i where F−i = B(t1) −
B(t0), . . . , B(ti−1)−B(ti−2), B(ti+1)−B(ti), . . . , B(tk)−B(tk−1) includes all
but the ith increment. Note that I(τ ≥ i), being a function of the first i − 1
increments, becomes constant once we condition on F−i. Pulling I(τ ≥ i) out
of the conditional expectation, we get I(τ ≥ i)E{(1/τ )Yi | F−i}.

We claim that E{(1/τ )Yi | F−i} = cov(1/τ, Yi | F−i). To see this, note first
that the independent increments property of Brownian motion ensures the
independence of Yi and F−i, so E{Yi | F−i} = E(Yi) = 0. This means that

E{(1/τ )Yi | F−i} = E{(1/τ )Yi | F−i} − E(1/τ | F−i)E(Yi | F−i)
= cov{1/τ, Yi | F−i}.

The conditional expectation of the ith term of (7.13) given F−i is therefore

I(τ ≥ i)cov{1/τ, Yi | F−i}. (7.14)

Note that 1/τ and Yi are both increasing functions of B(ti) − B(ti−1) for
fixed values of the other increments. Thus, cov(1/τ, Yi | F−i) is nonnegative
with probability 1. That means E{(1/τ )YiI(τ ≥ i)} = E[E{(1/τ )YiI(τ ≥
i) | Fi−1}] ≥ 0. Because every term of the right side of (7.13) has nonnegative
expectation, E{B(τ )/τ − θ} ≥ 0, so E{B(τ )/τ} ≥ θ.
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Options When Brownian Motion Does Not

Hold

Thus far we have considered trials we can monitor using Brownian motion.
Brownian motion breaks down if 1) the sample size is so small that the variance
is estimated very poorly; 2) the test statistic is not normally distributed; or
3) the increments are not independent. In this chapter, we explore options for
dealing with these scenarios.

With normally distributed data, failure to account for the fact that we
have estimated the variance inflates the type 1 error rate in a monitoring
context, just as using the standard normal distribution to approximate the
t-distribution does in a nonmonitoring context. We demonstrate how large
the sample size must be to produce negligible inflation. We also present one
approximate and two exact solutions to the problem of type 1 error rate
inflation when the sample size is small.

When the data are not normally distributed and the sample size is small,
a permutation test provides an attractive alternative, yielding a valid p-value
in diverse settings. We demonstrate how to apply a permutation test with
continuous or dichotomous outcomes. With dichotomous outcomes, the per-
mutation approach amounts to combining 2 × 2 tables using Fisher’s exact
test.

When the increments are not independent and we opt not to use a per-
mutation test, we can combine the Bonferroni inequality with a spending
function to obtain a conservative test irrespective of the true joint distribu-
tion of the test statistic over information time. We show through examples
that the degree of conservatism increases with the number of looks and is
more pronounced with Pocock than with O’Brien-Fleming boundaries.

8.1 Small Sample Sizes

In either a monitoring or nonmonitoring situation, the accuracy of treating t-
statistics as if they were standard normal depends on whether the sample size
is large enough. We assess the accuracy of the Brownian motion approximation
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assuming the underlying observations are normally distributed. Without loss
of generality, we take σ2 = 1.

The appendix details a parsimonious method for simulating repeated t-
statistics. Because the method considers the joint distribution of the sufficient
statistics

∑
Xi and

∑
X2

i rather than the individual observations, simulations
need only generate two statistics in each arm for each of the k looks, irrespec-
tive of the sample sizes.

Table 8.1. Simulated type 1 error rate and power applying the six-look, one-tailed
α = 0.025 O’Brien-Fleming and Pocock boundaries to t-statistics with m observa-
tions per arm between successive looks. The noncentrality parameter selected yields
90 percent power when the variance is known. For each m, we simulated 1/2 million
clinical trials.

O-F Pocock

m Type 1 Error Rate Power Type 1 Error Rate Power

2 .057 .905 .098 .913
3 .037 .901 .062 .906
4 .033 .900 .049 .904
5 .030 .900 .043 .902
10 .027 .900 .033 .902
20 .026 .900 .028 .900
50 .025 .900 .026 .900

Table 8.1 shows the type 1 error rate and power applying the O’Brien-
Fleming and Pocock six-look, one-tailed α = 0.025 boundaries to repeatedly
computed t-statistics. As we might expect, the type 1 error rate is unac-
ceptably high when the sample sizes are very small. For example, the type 1
error rate with two participants per arm between successive looks (a total of
2 × 2 × 6 = 24 participants) is 0.057 and 0.098 for the O’Brien-Fleming and
Pocock α = 0.025 boundaries. The Pocock boundary leads to high type 1 er-
ror rate inflation because early stopping is more likely than with the O’Brien-
Fleming boundary, and approximating the t-distribution by a standard normal
is particularly inaccurate with few degrees of freedom. The inflation remains
high for the Pocock boundary until each arm has about 20 observations be-
tween successive looks (a total sample size of 2 × 20 × 6 = 240), whereas
the inflation for the O’Brien-Fleming boundary becomes acceptable with only
about 10 per arm between successive looks.

Interestingly, power remains close to 0.90 even with only two observations
per arm between successive looks.

Fortunately, there is a very simple method that largely fixes the problem
of inflation of the type 1 error rate. We illustrate the approach using the
two-tailed O’Brien-Fleming boundary with α = 0.05 and m observations per
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arm between each of six looks. The upper z-score boundaries are ci = 5.029,
3.556, 2.903, 2.514, 2.249, and 2.053 with corresponding nominal two-tailed
p-values 2{1− Φ(ci)} = 5.0× 10−7, .0004, .0037, .0119, .0245, and .0401 (but
remember from Chapter 7 that we should not cite these p-values if we cross
the boundary). At the first look, we compute the two-tailed p-value using
the t-distribution with 2(m − 1) degrees of freedom, and we reject if that
p-value is 5 × 10−7 or less. At looks i = 2, 3, 4, 5 and 6, we reject the null
hypothesis if the two-tailed p-value based on the t-distribution with 2(im−1)
degrees of freedom is less than or equal to .0004, .0037, .0119, .0245, and
.0401, respectively. This process of converting z-score boundaries to p-value
boundaries and applying them to p-values from the t-distribution is called the
nominal p-value approach.

Equivalently, we can convert the z-score boundaries to two-tailed p-values
as above, and then convert to t-score boundaries. For example, with a six-look
trial and three observations per arm between looks, there are 2(3 − 1) = 4
degrees of freedom at the first look; Pr(|T4| > 59.035) = 5×10−7, so the first t-
score boundary is 59.035. At the second look, there are 2(6− 1) = 10 degrees
of freedom; Pr(|T10| ≥ 5.244) = 0.0004, so the second t-score boundary is
5.244. The degrees of freedom and the t-score boundaries at the six looks are
(4, 10, 16, 22, 28, 34) and (59.035, 5.244,3.395,2.741,2.377,2.135), respectively.

Reformulating the nominal p-value approach to t-score boundaries facili-
tates calculation of approximate power. Recall that although the type 1 er-
ror rate could be profoundly affected by treating the standard deviation as
known for small sample sizes per arm between successive looks, power was
not. Thus, a good method of approximating power under drift θ is to com-
pute Pθ(Z(t1) > c′1, . . . , Z(tk) > c′k), where (c′1, . . . , c

′
k) are the t-score bound-

aries and Z(t) = B(t)/t1/2
1 , where B(t) is Brownian motion with drift θ. This

probability can be computed using standard group-sequential software.
For example, in the six-look example with three observations per arm

between successive looks, assume the true treatment difference and standard
deviation are δ = 2 and σ = 1.8. The drift parameter is the expected z-score at
the end, θ = δ/{2σ2/18}1/2 = 3.333. Using the Windows version (winld.exe)
of the free software available at www.medsch.wisc.edu/landemets/, we enter
the “Compute” menu and select “Probability.” From “Analysis Parame-
ters” we type 6 in the “Interim Analyses” box. When we press enter, the
six equally spaced times appear in the “Time” portion of the table at the
upper right. We then go to “Determine bounds” under “Probability Pa-
rameters” and select “User input.” We type the upper bounds 9.9, 5.244,
3.395, 2.741, 2.377, 2.135 in the “Upper” portion of the table at the top right.
Note that we replaced the first boundary, 59.035, with the smaller but still
practically unreachable value 9.9 to prevent the program from bogging down.
We then move to the “Drift” box under “Probability Parameters” and
type 3.333. Clicking on “Calculate” and hitting the enter button gives the
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cumulative exit probability 0.89060 at the final look, meaning that power is
approximately 0.89.

Table 8.2 illustrates the remarkable accuracy of the nominal p-value ap-
proach for a six-look trial using the O’Brien-Fleming or Pocock one-tailed
α = 0.025 boundaries with m observations per arm between successive looks.
The simulated type 1 error rate for O’Brien-Fleming was 0.025 or 0.026 ir-
respective of the number of looks, while for Pocock it was at most 0.028,
occurring when m = 2. Power in all cases is extremely close to 0.90.

Table 8.2. Simulated type 1 error rate and power for the nominal p-value approach
for the O’Brien-Fleming and Pocock boundaries with six looks and m observations
per arm between successive looks. We simulated 1/2 million trials for each scenario.

m Type 1 Error Rate Power, drift θ

2 .026 .898
O-F 3 .026 .898

4 .025 .899
5 .025 .900

2 .028 .900
Pocock 3 .027 .902

4 .026 .902
5 .026 .902

Jennison and Turnbull (1991) [JT91] used numerical integration to fix the
nominal p-value approach so it has type 1 error rate exactly α. They considered
the one-sample problem with r observations between looks, which translates
to degrees of freedom r − 1, 2(r − 1), . . . , k(r − 1) at looks (1, . . . , k). But in
the two-sample setting with m per arm between successive looks, the degrees
of freedom for the pooled variance are 2(m− 1), 2(2m− 1), . . . , 2(km− 1), so
the tables of Jennison and Turnbull do not strictly apply. Fortunately, as can
be deduced from Table 8.2, the nominal p-value approach needs very little
adjustment to make it exact.

Another way to make the Brownian motion approximation exact when the
data are normally distributed with unknown variance is to apply the inverse
normal method, first proposed by Stouffer et al. (1949) [SSD49] and used
in other contexts such as meta-analysis (pages 39-40 of Hedges and Olkin,
1985 [HO85]) and adaptive sample size estimation (Lehmacher and Wassmer,
1999 [LW99]). The idea is simple: the t-statistics Ti−1,i computed on the
incremental data between looks i − 1 and i are independent t-deviates, so
their associated one-tailed p-values pi−1,i are independent uniforms under
H0. The transformation Yi = Φ−1(1 − pi−1,i) converts these p-values to i.i.d.
standard normals under the null hypothesis. If the incremental sample sizes
between successive looks are equal, we take simple averages of the Y s to form
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our cumulative z-statistics: Z1 = Y1, Z2 = (Y1 + Y2)/21/2, . . . , Zk = (Y1 +
. . .+Yk)/k1/2. For unequal incremental sample sizes, a weighted combination
(Mosteller and Bush, 1954 [MB54]) can be used. Let Vi−1,i be the variance of
the treatment effect estimator δ̂i−1,i based on the incremental data between
looks i− 1 and i, and let Ii−1,i = 1/Vi−1,i be the information associated with
δ̂i−1,i. At look j, we form the cumulative z-score

Z(tj) =
j∑

r=1

√
Ir−1,r/Ij Yr , (8.1)

where Ij =
∑j

r=1 Ir−1,r and tj = Ij/Ik. The unknown variance σ2 cancels out
in the numerator and denominator of (8.1) and in the definition of tj. It is
easy to see that Z(t1), . . . , Z(tk) have a multivariate normal distribution with
zero means under the null hypothesis, unit variances, and covariances

cov{Z(ti), Z(tj)} = I
−1/2
i I

−1/2
j

i∑

r=1

Ir−1,r

= I
−1/2
i I

−1/2
j Ii

= (Ii/Ij)1/2 = (ti/tj)1/2

for i ≤ j. Thus, t1/2
j Z(tj) behaves like Brownian motion. Therefore, we can

apply standard z-score boundaries to the z-statistics (8.1).
To illustrate the inverse normal method, consider a three-look, continu-

ous endpoint trial using a two-tailed test with the linear spending function
α∗(t) = 0.05t and 19 observations per arm at the end of the trial. Suppose
there are five control and six treatment observations at the first look, so the
variance of the treatment effect estimate is V0,1 = σ2(1/5 + 1/6) = 11σ2/30.
The information is I1 = I0,1 = 30/(11σ2). Note that the treatment and con-
trol sample sizes differed slightly so that the information at the end of the
trial, I0,1 + I1,2 + I2,3, is slightly less than (2σ2/19)−1 because we lose in-
formation when the sample sizes are unequal. Without knowing the sample
sizes at future looks we cannot know I3 = I0,1 + I1,2 + I2,3, and therefore
we cannot know the current information fraction precisely. Still, (2σ2/19)−1

is a good estimate (if the incremental data between successive looks were
balanced across arms, it would be exact). Furthermore, we only need to es-
timate I3 to determine how much type 1 error rate to spend at each of the
three looks; as in the discussion of spending functions, the joint distribution
of Z(t1), Z(t2), Z(t3) depends only on ratios of information fractions and is
therefore invariant to erroneous guesses of I3. The estimated current infor-
mation fraction is t1 = {30/(11σ2)}/{2σ2/19}−1 = 0.287. We are allowed
to spend α∗(0.287) = (0.05)(0.287) = 0.0144, which from a standard normal
table corresponds to a two-tailed z-score boundary of ±2.447.
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We compute the z-score at look 1 by converting the one-tailed p-value
based on the t-distribution to a z-score. Suppose the observed one-tailed p-
value at the first look is 0.14. The 1−0.14th percentile of the standard normal
distribution is Y1 = 1.080, which is within the z-score boundaries ±2.447.
Therefore, we continue to the second look.

Suppose there are six observations per arm between the first and second
looks, so V1,2 = 2σ2/6, I1,2 = 6/(2σ2) = 3/σ2, I2 = I0,1 + I1,2 = 30/(11σ2) +
3/σ2, I0,1/I2 = (30/11)/(30/11 + 3) = 0.4762, and I1,2/I2 = 3/(30/11 + 3) =
0.5238. The information fraction is I2/(2σ2/19)−1 = 0.603. The cumulative
type 1 error rate we are allowed to spend is α∗(0.603) = (0.05)(0.603) = 0.030.
Using the program winld.exe at www.medsch.wisc.edu/landemets/, we enter
the “Compute” menu and choose “Bounds.” Under “Analysis Parameters,
Interim Analyses,” we type 3 and hit the enter button. From the “Information
times” box under “Analysis Parameters” we select “User Input” and hit
enter. Moving to the “Time” column of the table at the upper right we enter
0.287, 0.603, and 1, making sure to hit enter after each. We then enter the
“Spending Function” area, select “Power Family,” and then type 1 under
the “Phi” box to indicate that we want the linear spending function. Clicking
on “Calculate” makes the z-score boundaries appear. The boundary at the
second look is ±2.33.

We next compute Y2, the z-score on the 12 incremental observations be-
tween the first and second looks. If the one-tailed p-value for those 12 obser-
vations (using the t-distribution) is p1,2 = 0.05, we compute the 1 − 0.05 =
0.95 quantile of a standard normal distribution: Y2 = 1.645. From (8.1),
the cumulative z-score at the second look is Z(t2) = (0.4762)1/2(1.080) +
(0.5238)1/2(1.645) = 1.936. Because −2.33 ≤ 1.936 ≤ 2.33, we continue to the
last look.

Between the second and third look, there are seven control and eight
treatment observations, so I2,3 = {σ2(1/7 + 1/8)}−1 = 56/(15σ2), I3 =
(30/11+6/2+56/15)/σ2, I0,1/I3 = 0.2883, I1,2/I3 = 0.3171, I2,3/I3 = 0.3946.
The program winld.exe gives the z-score boundary of 2.18 at the final look.

We next compute Y3, the z-score associated with the 15 incremental ob-
servations between the second and third looks. Suppose the observed one-
tailed p-value (using the t-distribution) applied to these 15 observations is
p2,3 = .002. The 1 − 0.002 = 0.998 quantile of the standard normal distribu-
tion is 2.878. Thus, (8.1) becomes (0.2883)1/2(1.080) + (0.3171)1/2(1.645) +
(0.3946)1/2(2.878) = 3.314. Because 3.314 ≥ 2.18, we reject the null hypothe-
sis.

The inverse normal method is not attractive when the sample size is small
because it is less powerful than the nominal p-value approach. As seen in
Table 8.3, the nominal p-value method has substantially higher power than
the inverse normal method when m is small. This comparison is slightly unfair
because the inverse normal method has type 1 error rate exactly α whereas
the nominal p-value method does not. Still, even if we correct the nominal
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p-value approach to yield type 1 error rate exactly α, its power is superior to
that of the inverse normal method.

Table 8.3. Simulated power for the inverse normal approach compared to the nom-
inal p-value approach for the O’Brien-Fleming and Pocock boundaries with six looks
and m observations per arm between successive looks. The noncentrality parameter
was selected to give 90 percent power if the variance were known.

O-F Pocock
m Inverse Normal Nominal p Inverse Normal Nominal p

2 .789 .870 .740 .850
3 .843 .882 .822 .868
4 .863 .887 .850 .878
5 .873 .889 .862 .883

8.2 Permutation Tests

We now address the problem of nonnormally distributed data. Even in the
nonmonitoring setting, strikingly non-normal data can invalidate the t-test
unless the sample size is large. A permutation test provides one solution. In a
nonmonitoring setting, a permutation test treats the aggregate data as fixed;
the only stochastic component is the random reordering of the treatment
labels. A similar idea can be applied in a monitoring setting. This time we
consider the aggregate data at each look fixed so that the random relabeling
of treatments induces a joint distribution of the treatment effect estimate over
time. We illustrate with two small examples, one from a continuous outcome
and one from a binary outcome.

8.2.1 Continuous Outcomes

Consider a continuous outcome trial designed to have 12 observations per arm
at the end and a single interim look at roughly the halfway point. We use the
spending function α∗(t) = 0.05t3 and a two-tailed test at α = 0.05. At the
interim analysis there are five treatment and six control observations, so the
information fraction is {σ2(1/5 + 1/6)}−1/(2σ2/12)−1 = 0.455. Thus, we can
spend a type 1 error rate of 0.05(0.455)3 = 0.0047.

The interim data are as follows: Control: −6, −3, −1, −1, 0, 1; Treatment:
−10, −8, −4, −4, −2. First we combine and order the treatment and control
data: −10, −8, −6, −4, −4, −3, −2, −1, −1, 0, 1. We treat the data as
fixed but the treatment labels as random, with each of the

(
11
5

)
= 462 ways of

selecting five people to label as treatment observations being equally likely. For
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each such labeling, we compute the sum ST1 of the treatment observations,
generating the permutation distribution of ST1 (Table 8.4), which can be
converted to a permutation distribution for the mean difference δ̂1 = x̄T1 −
x̄C1 = ST1/5 − (−38 − ST1)/6 = 11ST1/30 + 38/6 (Figure 8.1).

Table 8.4. Permutations of first-stage data. Treatment numbers in bold.

Permutation ST1 Probability

-10,-8,-6,-4,-4,-3,-2,-1,-1,0,1 -32 1/462
...

...
...

...
...

...
-10,-8,-6,-4,-4,-3,-2,-1,-1,0,1 -3 1/462

Fig. 8.1. The permutation distribution of x̄T − x̄C at the interim analysis with five
treatment and six control observations.

The most extreme permutations in which the largest five or smallest five
observations all occur in the treatment arm each have probability 1/

(
11
5

)
=

1/462, so Pr(ST1 = −32 or ST1 = −3) = 2/462 = 0.0043. Because 0.0043 is
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barely smaller than the spending allotment of α∗(0.455) = 0.0047, we reject
at the first interim analysis only if either ST1 = −32 or ST1 = −3.

The actual result was ST1 = −28, so we proceed to the end of the trial and
observe the following second-stage data: Control: −7,−6,−4,−1, 0, 3; Treat-
ment: −9,−7,−6,−3, 0, 1,3. Consider the joint permutation distribution of
(ST1, ST1 + ST2), where ST2 is the sum of the seven treatment observations
among the 13 total observations in stage 2. The total number of ways to
select five of 11 in the first-stage data and seven of 13 in the second stage
to label as treatment observations is

(
11
5

)(
13
7

)
= 792, 792. The probability of

rejecting at the first stage was Pr(ST1 = −3 or −32) = 0.0043 (recall we
could not achieve 0.0047), and we want the cumulative probability of reject-
ing by the end of the study to be 0.05. Thus, we want Pr(do not reject at
stage 1, reject at stage 2) to be 0.05 − 0.0043 = 0.0457. In other words, we
want Pr(−32 < ST1 < −3, reject at stage 2) = 0.0457. Enumerating all the
possibilities yields

Pr(−32 < ST1 < −3, ST1 + ST2 ≤ −55) = 0.0251
Pr(−32 < ST1 < −3, ST1 + ST2 ≥ −18) = 0.0225.

Thus, if we set rejection region {ST1 + ST2 ≤ −55}∪ {ST1 + ST2 ≥ −18},
the incremental type 1 error rate spent will be 0.0251+0.0225 = 0.0476. This
slightly exceeds the allotment of 0.05 − 0.0043 = 0.0457, and yields a total
type 1 error rate of 0.0043+0.0476 = 0.0519. Because this exceeds 0.05 (albeit
slightly), we choose the lower boundary −56 instead of −55. In that case

Pr(−32 < ST1 < −3, ST1 + ST2 ≤ −56) = 0.0190
Pr(−32 < ST1 < −3, ST1 + ST2 ≥ −18) = 0.0225,

so the incremental and total type 1 error rates are 0.0190 + 0.0225 = 0.0415
and 0.0043 + 0.0415 = 0.0458, respectively.

Suppose the observed data produced ST1 + ST2 = −28 + −21 = −49.
Because −56 < −49 < −18, we do not reject the null hypothesis. We obtain
the two-tailed p-value by doubling the smaller of the one-tailed p-values. For
the stagewise ordering, the smaller of the one-tailed p-values is the probability
of stopping earlier with a smaller value of ST1 or not stopping at the first look
but seeing a smaller value of ST1 + ST2. Thus, the p-value is

2{Pr(ST1 = −32) + Pr(−32 < ST1 < −3, ST1 + ST2 ≤ −49)} = 0.20.

8.2.2 Binary Outcomes

Consider next the application of permutation testing in the binary outcome
setting. We illustrate with a small example. This time we use the O’Brien-
Fleming spending function with looks at the data after each of the first 3
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Table 8.5. Data at the first interim analysis in a binary outcome trial.

Event
Yes No

Control 5 8 13
Treatment 1 14 15

6 22 28

years and a one-tailed test at α = 0.025. We spend according to calendar
time. Suppose the data at the first look are as shown in Table 8.5.

At year 1, we are allowed to spend α∗(0.33) = 0.0001. We consider all
possible ways to select 15 of the 28 participants to label as treatment ob-
servations. For each such relabeling, the total number of events remains 6.
Furthermore, each 2×2 table with a fixed total number of events corresponds
to one or more relabelings of the treatment assignments. Thus, the permuta-
tion distribution of X1, the number of control events, is the hypergeometric
distribution

Pr(X1 = i) =

(
13
i

)(
15
6−i

)
(
28
6

) .

We must determine c1 such that Pr(X1 ≥ c1) ≤ 0.0001. Table 8.6 shows
the most extreme result possible. The null probability for this table is(
13
6

)(
15
0

)
/
(
28
6

)
= 0.005. Because this probability exceeds the O’Brien-Fleming

limit of 0.0001, c1 = ∞. Thus, there is no way to stop at the first analysis and
we spend no alpha.

Table 8.6. The only table more extreme than that observed.

Event
Yes No

Control 6 7 13
Treatment 0 15 15

6 22 28

The additional data from the first to second analyses are presented in
Table 8.7.

We must now determine c2 such that Pr{(X1 ≥ ∞) ∪ (X1 + X2 ≥ c2)} =
α∗(0.67) = 0.006. Thus, we determine c2 that makes

6∑

i=0

6∑

j=0

Pr(X1 = i) Pr(X2 = j)I(X1 +X2 ≥ c2) (8.2)
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Table 8.7. Incremental data between the first and second analyses.

Event
Yes No

Control 5 14 19
Treatment 1 16 17

6 30 36

equal to 0.006, where Pr(X2 = j) =
(
19
j

)(
17

6−j

)
/
(
36
6

)
. We find that with c2 = 11,

(8.2) is 0.0012, whereas with c2 = 10, (8.2) is 0.0104. Because the cumulative
type 1 error rate is less than 0.006 for c2 = 11 and greater than 0.006 for
c2 = 10, we select c2 = 11. That is, we stop at the second look if the cumulative
number of control events is 11 or more. Because the actual number (Tables
8.5 and 8.7) was 5 + 5 = 10, we continue to the final look at the data.

The data accruing between the second and third interim analyses are pre-
sented in Table 8.8.

Table 8.8. Incremental data between the second and third looks.

Event
Yes No

Control 4 11 15
Treatment 0 15 15

4 26 30

We must now determine c3 such that Pr{(X1 ≥ ∞)∪ (X1 +X2 ≥ 11)∪ (X1 +
X2 +X3 > c3)} = 0.025. We must therefore find c3 making

6∑

i=0

6∑

j=0

4∑

k=0

[ Pr(X1 = i) Pr(X2 = j) Pr(X3 = k)

× I{(X1 +X2 ≥ 11) ∪ (X1 +X2 +X3 ≥ c3)}] (8.3)

equal to 0.025. Critical values c3 = 12 and c3 = 13 make (8.3) equal to 0.0253
and 0.006, respectively. Although c3 = 12 results in a type 1 error rate slightly
exceeding the desired 0.025, c3 = 13 results in a very conservative procedure
with type 1 error rate 0.006, so we select c3 = 12. The actual number of
control events is x1 + x2 + x3 = 5 + 5 + 4 = 14, which is at least as large as
c3, so we reject the null hypothesis and declare the treatment beneficial.

We next compute the one-tailed p-value using the stagewise ordering. Out-
comes at least as extreme as observed are those for which we would have
stopped earlier, or those for which we would not have stopped earlier but
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would have seen X1 +X2 +X3 ≥ 14, the observed value. Remember we had
no chance of stopping at the first look, so the null probability of stopping
earlier is

Pr(X1+X2 ≥ 11) =
6∑

i=0

6∑

j=0

Pr(X1 = i) Pr(X2 = j)I(X1+X2 ≥ 11) = 0.0012.

The probability of not stopping earlier but having X1 +X2 +X3 ≥ 14 is

6∑

i=0

6∑

j=0

4∑

k=0

Pr(X1 = i) Pr(X2 = j) Pr(X3 = k)I(X1 +X2 ≤ 10,

X1 +X2 +X3 ≥ 14) = 0.0005,

so the p-value is .0012 + .0005 = .0017.
We can obtain a one-sided confidence interval as follows. At look 1, the dis-

tribution ofX1 under the alternative hypothesis that the control-to-treatment
odds ratio {pC/(1 − pC)}/{pT/(1 − pT )} is λ can be obtained from the non-
central hypergeometric distribution (see appendix to this chapter):

Pλ(X1 = i) =

(
13
i

)(
15
6−i

)
λi

∑6
j=0

(
13
j

)(
15

6−j

)
λj
,

and similarly for the second and third looks. Thus, the probability under the
alternative of obtaining a result at least as extreme as that observed is

6∑

i=0

6∑

j=0

Pλ( X1 = i)Pλ(X2 = j)I(X1 +X2 ≥ 11)+

6∑

i=0

6∑

j=0

4∑

k=0

{ Pλ( X1 = i)Pλ(X2 = j)Pλ(X3 = k)

× I(X1 +X2 ≤ 10, X1 +X2 +X3 ≥ 14)}. (8.4)

Equating (8.4) to 0.025 and solving for λ yields λ = 1.79. Thus, we can be 97.5
percent confident that the control-to-treatment odds ratio is at least 1.79.

The above examples demonstrated the use of the permutation approach in
both continuous and binary data. It is applicable in more complicated settings
as well. Pawitan and Hallstrom (1990) [PH90] used it in a survival setting
with the Cardiac Arrhythmia Suppression Trial. The examples we gave were
sufficiently tractable that we could enumerate the outcomes and compute the
exact permutation distribution. When this is not possible, one can simulate
by generating a huge number of permutations and obtaining the empirical
distribution of the treatment effect estimate.

A disadvantage of the permutation approach is that, technically speak-
ing, the conclusions apply only to the participants of the trial. Conditioning
on the aggregate data answers the question of whether the observed results
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demonstrate conclusively that treatment is effective in these specific patients.
Generalization to a broader population is, to some degree, speculative. We
contend that such generalization is always somewhat difficult in clinical tri-
als. Clinical trial participants never really comprise a random sample from the
patients about whom we intend to generalize. People who agree to participate
in a clinical trial often differ considerably from those who do not, making
generalization always somewhat speculative.

8.3 The Bonferroni Method

The Bonferroni method is another choice when we do not trust the Brown-
ian motion approximation because of small sample sizes, nonindependence of
increments—as with some survival statistics such as the Gehan (see Chapter
13)— or other reasons. All we need is the null marginal distribution of the
test statistic at each look; nothing is assumed about the joint distribution
over time.

We have already seen an example of the Bonferroni method, namely the
Haybittle-Peto boundary, one variant of which rejects at the ith look if the
p-value is less than .001 for i < k, and rejects at the end if the p-value is less
than α − (k − 1)(.001). By the Bonferroni inequality, the total type 1 error
rate is no greater than (k − 1)(.001) + {α− (k − 1)(.001)} = α.

To apply the Bonferroni method in conjunction with a spending func-
tion α∗(t), assume that the marginal distribution of the test statistic at any
look is continuous, so its p-value has a uniform distribution under the null
hypothesis. At the first look at information fraction t1, the trial is stopped
if the p-value is less than α∗(t1). Denote the p-value based on the cumula-
tive data up to the second look by p2. We reject the null hypothesis at the
second look if p2 ≤ α∗(t2) − α∗(t1). By the Bonferroni inequality, the cu-
mulative probability of rejecting by the second analysis is no greater than
Pr(reject at t1) + Pr(reject at t2) = α∗(t1) + α∗(t2) − α∗(t1) = α∗(t2). Sim-
ilarly, we reject at look j if pj ≤ α∗(tj) − α∗(tj−1). Again the Bonferroni
inequality implies that the cumulative type 1 error rate used by look j is no
greater than

∑j
i=1{α∗(ti)−α∗(ti−1)} = α∗(tj), j = 1, . . . , k. In particular, the

type 1 error rate used by the end of the trial is no greater than α irrespective
of the true null joint distribution of the test statistics over (information) time.

The degree of conservatism of the Bonferroni method depends on the num-
ber of looks and how rapidly alpha is spent. For example, with the Haybittle-
Peto method and five looks, the final test statistic requires a nominal p-value
of .045 instead of .05. The difference in power between not monitoring at all
and monitoring using the Haybittle-Peto boundary will be small. Similarly,
with the O’Brien-Fleming-like spending function and not too many looks, the
Bonferroni method will not be overly conservative. It is more conservative for
the Pocock-like spending function and other methods that spend alpha more
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rapidly. For any spending function, the degree of conservatism increases with
the number of looks.

Table 8.9 shows the actual type 1 error rate used by the Bonferroni method
in conjunction with the Pocock and O’Brien-Fleming boundaries with equally
spaced looks when the data are normally distributed with known variance. We
see that with only two or three looks, we lose very little power compared to
using Brownian motion to compute boundaries with the O’Brien-Fleming-like
spending function. The loss in power becomes more pronounced with a larger
number of looks. On the other hand, for the Pocock-like spending function,
the loss in power using the Bonferroni boundary instead of the one based on
Brownian motion is noticeable even with only two or three looks.

Table 8.9. The conservatism of the Bonferroni inequality used in conjunction with
the O’Brien-Fleming-like and Pocock-like spending functions when the Brownian
motion paradigm holds and looks are equally spaced. The null hypothesis is rejected
at look j if the p-value is less than α∗(j/k) − α∗{(j − 1)/k}. Shown are the actual
type 1 error rate and power. The noncentrality parameter was selected to yield 90
percent power under Brownian motion.

O-F Pocock
Number of Looks Type 1 Error Rate Power Type 1 Error Rate Power

2 .024 .897 .022 .877
3 .021 .886 .020 .862
4 .019 .874 .018 .850
5 .017 .864 .017 .839
6 .015 .854 .016 .831
7 .014 .845 .015 .822
8 .013 .838 .015 .815
9 .012 .830 .014 .808
10 .012 .823 .014 .802

8.4 Summary

Appealing to Brownian motion may be inappropriate if the sample size is too
small, the test statistic is not normally distributed, or the increments are not
independent. Of these problems, a small sample size is the least troubling
because sample sizes in clinical trials are usually large enough for Brownian
motion to be a good approximation, and there is a relatively easy fix if the
sample size is too small. The problem of nonindependent increments is more
difficult. It can arise with certain survival statistics like the Gehan statistic, or
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when the short-term outcome of interest differs from the long-term outcome.
For example, even though ultimate interest might be in comparing time to
fatal/nonfatal stroke using the logrank test, if one treatment is a risky surgery,
at an interim analysis we might want to monitor 30-day mortality using a
test of proportions. We cannot assume independent increments if a different
outcome and test statistic are used at different monitoring times.

If the sample size is too small for Brownian motion to hold, the nomi-
nal p-value approach converting z-score boundaries to p-value boundaries and
applying them to p-values computed using the t-distribution is highly accu-
rate, yielding type 1 error rate and power very close to the desired levels.
The inverse normal method preserves the type 1 error rate exactly, but loses
considerable power.

When the test statistic is not normally distributed and the sample size is
small, a permutation test can be applied. Permutation tests, which are appli-
cable in continuous, binary, or other outcome trials, provide valid inference
under minimal assumptions. They may be computationally intensive, however.

When only the marginal distribution of the test statistic is known, a con-
servative approach is to use the Bonferroni inequality in conjuction with a
spending function. The overall type 1 error rate will be α or less irrespective
of the true null joint distribution of the test statistic over time; however, if
the number of looks is large, the method entails a noticeable loss in power.

8.5 Appendix

8.5.1 Simulating the Distribution of t-Statistics Over Information
Time

Without loss of generality, assume that σ2 = 1, and consider the joint distri-
bution of (Uj , Vj)k

j=1, where Uj =
∑nj

i=1Xi and Vj =
∑nj

i=1X
2
i are the sums

of the nj control observations and their squares, respectively, accumulated by
look j. Observe that

{Uj , Vj} =
{
Uj−1 +

∑
Xi; Vj−1 +

∑
X2

i

}

=
{
Uj−1 +

∑
Xi; Vj−1 +

∑
X2

i − (
∑
Xi)2

nj − nj−1
+

(
∑
Xi)2

nj − nj−1

}

=
{
Uj−1 +

∑
Xi; Vj−1 +

∑
(Xi − X̄j−1,j)2 +

(
∑
Xi)2

nj − nj−1

}

=
{
Uj−1 + (nj − nj−1)1/2Zj−1,j; Vj−1 + χ2

j−1,j + Z2
j−1,j

}
, (8.5)

where
Zj−1,j = (nj − nj−1)−1/2

∑
Xi (8.6)

χ2
j−1,j =

∑
(Xi − X̄j−1,j)2, (8.7)
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X̄j−1,j is the mean of the nj−nj−1 observations between looks j−1 and j, and
the range of the sums of (8.5), (8.6), and (8.7) is from nj−1+1 to nj. Note that
Zj−1,j has a standard normal distribution. Because Zj−1,j/(nj−nj−1)1/2 and
χ2

j−1,j/(nj−nj−1−1) are the sample mean and variance of Xnj−1+1, . . . , Xnj ,
χ2

j−1,j has a chi-squared distribution with nj − nj−1 − 1 degrees of freedom
and is independent of Z.

The sample variance of all nj control observations by look j is

σ̂2
j =

Vj − U2
j /nj

nj − 1
. (8.8)

A similar decomposition holds in the treatment arm, the only difference
being the mean of Zj−1,j of (8.6). The control and treatment observations
have mean 0 and µT , respectively, so the mean of the Z-score comparing the
two treatments at the end of the trial is θ = (µT − 0)/

√
2/nk. It follows that

µT = θ
√

2/nk. Thus, in the treatment arm, (8.6) has mean

E



(nj − nj−1)−1/2

nj∑

i=nj−1+1

Xi



 = (nj − nj−1)−1/2(nj − nj−1)µT

= {2(nj − nj−1)/nk}1/2θ.

The pooled variance, assuming equal sample sizes in the two arms, is just
the average of the two sample variances.

In summary, we 1) simulate (Uj , Vj) using (8.5), (8.6), (8.7), 2) form the
sample variances using (8.8), and 3) form the t-statistics

Tj =
UjT − UjC√
nj{σ̂2

jC + σ̂2
jT}

.

8.5.2 The Noncentral Hypergeometric Distribution

In a trial with an immediate-response outcome, we are sometimes interested
in the conditional distribution of X, the number of control events, given the
number m and n of treatment and control patients and the total number of
events k (Table 8.10).
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Table 8.10. Data from an immediate-response outcome trial with m control pa-
tients, n treatment patients, and a total of k patients with events across both arms.

Event
Yes No

Control X m
Treatment Y n

k

Unconditionally, X and Y are independent binomials with parameters
(m, pC) and (n, pT ), respectively. Thus,

Pr(X = x, Y = y) =
(
m

x

)
px

C(1 − pC)m−x

(
n

y

)
py

T (1 − pT )n−y.

The conditional probability that X = x given X + Y = k is

Pr(X = x |X + Y = k) = Pr(X = x, Y = k − x)/Pr(X + Y = k)

=

(
m
x

)(
n

k−x

)
px

C(1 − pC)m−xpk−x
T (1 − pT )n−(k−x)

∑k
j=0 Pr(X = j, Y = k − j)

=

(
m
x

)(
n

k−x

)
px

C(1 − pC)m−xpk−x
T (1 − pT )n−(k−x)

∑k
j=0

(
m
j

)(
n

k−j

)
pj

C(1 − pC)m−jpk−j
T (1 − pT )n−(k−j)

=
(1 − pC)mpk

T (1 − pT )n−k
(
m
x

)(
n

k−x

)
λx

(1 − pC)mpk
T (1 − pT )n−k

∑k
j=0

(
m
j

)(
n

k−j

)
λj

=

(
m
x

)(
n

k−x

)
λx

∑k
j=0

(
m
j

)(
n

k−j

)
λj
, (8.9)

where λ is the control-to-treatment odds ratio {pC/(1− pC)}/{pT/(1− pT )}.
This is the noncentral hypergeometric distribution with parameter λ. If pC =
pT , then λ = 1 and (8.9) reduces to the central hypergeometric distribution

(
m
x

)(
n

k−x

)
(
m+n

k

) .
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Monitoring for Safety

9.1 Example: Inference from a Sample Size of One

On June 4, 1998, the National Institute of Diabetes and Digestive and Kid-
ney Diseases (NIDDK) announced the discontinuation of the troglitazone
(Rezulin) arm of its four-arm Diabetes Prevention Program (DPP). The press
release explained:

One of the 585 recipients of troglitazone in the DPP, a multi-center
controlled clinical trial, died on May 17 following liver failure and a
liver transplant. The clinical course and ultimate death of the patient
were complex. However, a three member panel of experts concluded
that drug-induced liver toxicity was probably the cause of liver failure.
Largely in view of this report and because the DPP is a prevention
study, the [Data Safety Monitoring] Board recommended to the Insti-
tute discontinuation of the troglitazone arm of the study.

From a purely statistical point of view, the action may appear to have been
premature. After all, conditional on the occurrence of this single event, the
p-value for the tragedy is identically one—the event, having happened, had
to have occurred in one of the four arms. Even if one defines a one-sided p-
value as the probability that the event would have occurred in the troglitazone
arm, the p-value value would be .25, hardly a surprising happening. Obviously,
the internal statistical data alone could not have provided the basis for the
decision to stop; instead, the action was based on data external to the trial
as well as the experts’ judgment of the causal linkage of troglitazone usage to
fatal liver failure in this specific case.

The study had begun randomizing participants in 1997. On November 19,
1997, the Food and Drug Administration (FDA) added a new warning to its
label for troglitazone, “Rare cases of severe idiosyncratic hepatocellular [liver]
injury have been reported during marketed use. The hepatic injury is usually
reversible, but very rare cases of hepatic failure, including death, have been
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reported. Injury has occurred after both short- and long-term troglitazone
treatment” (www.fda.gov/medwatch/SAFETY/1997/nov97.htm). Thus, the
decision to stop the study arm was governed by extra-statistical thinking.

9.2 Example: Inference from Multiple Endpoints

Cyclooxygenase-2 (Cox-2) inhibitors relieve the pain of arthritis with theoret-
ical reasons to believe, supported by some data from clinical trials, that they
cause less gastric disturbance than does aspirin. Moreover, some members of
this class of drug have shown promise in prevention of cancer and other dis-
eases. At the end of September 2004, however, the manufacturer of one drug
in the class removed its drug rofecoxib (Vioxx) from the market because a
randomized trial had shown more serious cardiovascular events in patients on
rofecoxib than on placebo (Bresalier, 2005 [B05]). In the wake of that recall,
the DSMB for a trial of celecoxib (Celebrex), another member of the class,
asked for a special review of cardiovascular events that had occurred in the
trial it was monitoring. The trial was designed to show whether prophylactic
treatment with celecoxib for people with adenomatous colon polyps—which
sometimes become malignant—could prevent the growth of further polyps.
The study randomized participants into one of three groups: low- or high-
dose celecoxib, or placebo.

The DSMB established a committee consisting of a blinded Endpoints Re-
view Subcommittee that classified each serious adverse event as cardiovascular
or not and, if cardiovascular, categorized it into one of several specific diag-
noses (myocardial infarction, stroke, congestive heart failure, etc.). The DSMB
also convened an unblinded Safety Subcommittee to interpret the data. The
committee established a hierarchical classification of events such that each
successive event added to the hierarchy was considered less clearly in the pu-
tative pathophysiologic pathway: 1) cardiovascular (CV) death; 2) CV death
or myocardial infarction (MI); 3) CV death or MI or stroke;... 6) CV death or
MI or stroke or heart failure or angina or CV procedure. The committee hy-
pothesized that if celecoxib truly adversely affected the cardiovascular system,
the hazard ratio of celecoxib to placebo, as estimated in a Cox model, would
decrease monotonically over this classification. They did not expect the statis-
tical significance of the results to reflect this monotonicity because statistical
significance is a function both of effect size and of sample size. They predicted
that the most statistically significant of the endpoints would be one of the
composites in the middle of the hierarchy. The results were consistent with
the prior hypotheses. For both the high- and the low-dose celecoxib groups,
the relative risks showed a clear trend—the relative risk was elevated for each
endpoint in the hierarchy, with the level of relative risk highest at the top of
the classification and lowest at the bottom. The most statistically significant
composite was the endpoint CV death, MI, stroke, or congestive heart fail-
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ure. Table 9.1 shows the data for the high-dose celecoxib and placebo groups
(Solomon, 2005 [SMP05]).

Table 9.1. Hierarchical classification of safety endpoints for a study of celecoxib.
The data shown come from the high dose and placebo groups as reported by Solomon
(2005) [SMP05]. CHF is congestive heart failure and MI is myocardial infarction.

Number of Events Hazard
Endpoint Placebo Celecoxib Ratio 95% CI p-value

Cardiovascular (CV) death 1 6 6.1 (0.7, 50.3) .10

CV death or MI 4 15 3.8 (1.3, 11.5) .015

CV death, MI, or stroke 6 20 3.4 (1.4, 8.5) .007

CV death, MI, stroke, or CHF 7 23 3.4 (1.4, 7.8) .006

CV death, MI, stroke, CHF,
or angina 11 25 2.3 (1.1, 4.7) .027

CV death, MI, stroke, CHF,
angina, or CV procedure 17 31 1.9 (1.0, 3.3) .05

In light of this analysis and other data from the trial, the DSMB recom-
mended stopping the trial.

In contrast to the troglitazone example, the inference about safety in this
trial relied heavily on statistical thinking.

9.3 General Considerations

While earlier chapters have presented a unified approach to monitoring data
for efficacy, this chapter presents some nonunified stances for safety. The pur-
pose of most clinical trials is to show efficacy, or at least non-inferiority, of
a new treatment or to demonstrate that a treatment already in use provides
benefit for a new indication. Only under unusual circumstances will patients
enroll in a trial to show that an experimental treatment is harmful; rather,
rational participants who understand the informed consent document they
have signed trust that the investigator will inform them if the ongoing data
show more risks than anticipated at the time they agreed to enter the study.
In trials during which the investigators are blinded to the ongoing data and
therefore remain ignorant of emerging risks, the DSMB must evaluate the
risks and benefits on an ongoing basis with the view toward informing the
participants, or even stopping the trial, should the balance between risk and
benefit change materially.

A well-designed protocol specifies the endpoints measuring efficacy; in
safety monitoring, on the other hand, often the most important endpoints are
still unknown. A taxonomy of safety endpoints provides a structure for think-
ing about how to monitor for safety. A drug or other intervention has some
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risks that are known, some that are unexpected but nonserious, others that
are unexpected but serious, some that are unexpected and life-threatening,
and some that, though not biologically credible, are frightening if true. A
physician friend of ours once pointed out, only somewhat facetiously, that a
drug without adverse effects is probably inert (J. Cedarbaum; personal com-
munication). This section introduces some general considerations related to
safety; later sections parse the above taxonomy addressing each type of safety
signal in turn.

Monitoring for safety presents statistically difficult problems. In looking
for safety signals, the DSMB searches for the unknown, the rare unexpected
event. Problems of multiplicity abound, for many endpoints and many looks
conspire to muddle the sample space and therefore make probabilities ill-
defined. While one can, and should, specify precisely the number of end-
points to be evaluated for efficacy, by definition, one cannot specify the num-
ber of hypotheses relevant to safety. Instead, the DSMB must remain alert
to react to surprises, turning a fundamentally hypothesis-generating (“data-
dredging”) exercise into somewhat of a hypothesis-testing framework. Taking
as our marching order Good’s aphorism, “I make no mockery of honest ad
hockery” (Good, 1965 [Go65]), we now suggest approaches for a DSMB when
it monitors safety.

Complicating the decisions of the DSMB is the fact that data on safety
frequently arrive at different times than do data on efficacy. In many cases,
safety data appear earlier than efficacy data. In a trial studying the long-term
effects of a new therapy for diabetes, the adverse experiences are likely to
emerge long before the data can show a decreased probability of occurrence
of the long-term sequelae of the disease. Similarly, cancer chemotherapeutic
agents will declare their toxicity before data have accrued that can address
whether the treatment is beneficial (Wittes, 1996 [W96]). On the other hand,
in some cases the adverse effects become manifest late. For example, devel-
opment of gastric ulcers in trials of analgesia may occur only after relatively
long-term use of the drug when benefit on pain is already clear to the DSMB.

The DSMB has several tools for monitoring safety. For adverse events that
the drug under study is known to cause, the DMSB can use the emerging
data to estimate the rates with the purpose of ensuring that the rate is not
unacceptably higher than previously thought. For example, tetrabenazine, a
drug used in Europe for the treatment of chorea, is known to cause drowsiness
in some patients (Jankovic and Beach, 1997 [JB97]). In a randomized, blinded
study comparing tetrabenazine to placebo for the treatment of the chorea of
Huntington’s disease, therefore, one expects some participants to complain
of drowsiness. The appropriate statistical assessment is not a test of the null
hypothesis of no effect; rather, the DSMB should be estimating the incidence
rate of drowsiness. For an event whose relationship to the drug is unknown but
hypothesized, the DSMB can operate under the unified structure described in
the earlier chapters. By analogy with the approach it takes for efficacy, it can
set a statistical boundary for safety. Crossing the boundary means that, with
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respect to this endpoint, the data have shown convincing evidence of harm,
or convincing evidence of an incidence rate higher than expected. Under this
situation, the safety endpoint would be as clearly defined, standardized, and
well-documented as the efficacy endpoint. Later in this chapter we shall discuss
how to select such boundaries.

DSMBs take a variety of stances with respect to safety. Some DSMBs use
futility bounds for efficacy as ersatz safety bounds. Other DSMBs adopt a
bound that is symmetric with respect to the efficacy bounds; that is, one de-
clares excess risk if the evidence for harm is as strong as the evidence for ben-
efit would have been. Another approach used by some DSMBs is to establish
a boundary more extreme than futility but less extreme than the symmetric
bound. Still another approach is to define an a priori balance of risk and ben-
efit; if the ongoing data show that the balance has changed importantly in
the direction of excess risk, the DSMB may recommend stopping the trial for
lack of safety (Freedman, Anderson, and Kipnis, 1996 [FAK96]). If the event
had previously been unreported in connection with the drug under study, the
DSMB may formulate an hypothesis of excess risk and use the remainder of
the trial to test whether the excess is real (Lachenbruch and Wittes, 2005
[LW05]).

To fix ideas, consider a two-armed trial in which the treatment group is
showing a slight excess in pulmonary emboli, a blood clot that enters the
lung. This extremely dangerous condition is sometimes fatal. If the excess is
real, then at the very least the DSMB should inform the investigators of the
excess risk; if it is not real, then a warning sends an unnecessarily worrisome
message. The difference between type 1 and type 2 errors emerges starkly in
the decision-making process. Committing a type 1 error—declaring an adverse
event so bad that the study should stop when in fact the excess occurred by
chance—can destroy a promising drug. On the other hand, a DSMB that
commits a type 2 error—failing to react to a serious adverse event—can harm
the participants in the trial.

Confronted with what seems like a signal—in this case an excess rate of
pulmonary embolism—the DSMB should first take measures to enhance that
signal. Summarizing all thrombotic (clotting) events would increase the num-
ber of events; observing more total thrombotic events in the treated group
provides biological evidence that the observed excess in pulmonary embolism
reflects a real effect. On the other hand, if biologically related events occurred
more frequently in the control group, then the increase in pulmonary em-
boli might be simply noise. Next, any laboratory data—for instance, clotting
time—that provide insight into the causal mechanism of the event should be
examined. Think of the observation as a mystery that the DSMB must solve in
real time. The board should identify an adverse event if it is real but not point
to one if that is not real. Before discussing some methods for distinguishing
these two types of events, we first discuss some practical considerations in
dealing with data on safety.



160 9 Monitoring for Safety

9.4 What Safety Data Look Like

Most information on safety in clinical trials arrives as spontaneous reports.
Such unstructured data are notoriously ambiguous. The investigator writes a
description of the event on a case report form (Figure 9.1). The form arrives
at the data center where a person or a computer algorithm codes the events
using a standard dictionary of adverse events. [The system currently accepted
by drug regulatory authorities, the MedDRA dictionary (Brown, 2004 [B04]),
has thousands of unique terms.]

Study xx-xxx Adverse Events Page AE1-__

Subject ID:

Case Report Form

Stop DateRelated to
Study M ed ***

Intensity* Outcom e**

*codes for intensity
1 = Easily tolerated by the subject, causing m inim al discom fort and not interfering with
everyday activities.
2 = Sufficiently discom forting to interfere with norm al everyday activities.
3 = Prevents norm al, everyday activities. Such an adverse event would, for exam ple, prevent 
attendance at work/school and would require the adm inistration of corrective therapy.

*** codes for relatedness
A:Definite
B: Probable
C:Possible
D:Unlikely
E:Not Related

** codes for outcom e
1 = Recovered
2 = Recovered with sequelae
3 = Ongoing at participant study conclusion
4 = Died
5 = Unknown

1-3 1-5 dd m m yyyyA-E

Description of Event Body System

Preferred Term

Date of Onset

dd m m yyyy

Fig. 9.1. Case report form for adverse events

These individual reports become the basis for a summary table showing
the number of adverse events by body system in the study groups (Table 9.2).
Typically, the table does not summarize the data by time of exposure; it sim-
ply lists the events and their frequency. The table may extend for many pages.
Closely related events of interest may be distributed within a body system
using different names (e.g., angina pectoris, angina pectoris aggravated, and
unstable angina) or even across body systems (e.g., strokes are listed in the
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nervous system as cerebral vascular accident, hemorrhagic stroke, and stroke;
in this example, one is listed in the vascular system termed “cerebral infarc-
tion.”) During the course of the study, the DSMB is responsible for looking
at such tables and identifying potential problems the drug may be causing.
Clearly, if the DSMB is to perform its task adequately, the statistician prepar-
ing the safety report should work closely with a physician to reclassify events
in a way that is more useful to interpret.

One cannot expect classification systems for events as complicated, varied,
and idiosyncratic as the possible collective of adverse events to be ideal, but
some methods can enhance the quality of these data. For certain events, di-
aries provide a systematic approach to collection. In many randomized trials
that study vaccines, the participant fills out a daily diary card with a list of
expected adverse events that occur in the immediate days after immunization.

More generally, the study team may develop specialized case report forms
to collect data on known or suspected risks. Codifying the collection can
increase the accuracy and completeness of the data. For example, early studies
of bevacizumab, a monoclonal antibody against vascular endothelial growth
factor, showed evidence of hypertension, thrombosis, serious bleeding, and
severe diarrhea. During the course of a study of bevacizumab in metastatic
colorectal cancer, Genentech, the sponsor, collected data on specially designed
case report forms for each of these events. The DSMB reviewed summaries
of these data every 2 weeks during the course of the trial (Hurwitz et al.,
2004 [HFN04]). Such a systematic approach to data collection enhances the
reliability and interpretability of the data.

For specified serious adverse events of special interest, a blinded endpoint
committee may review the investigators’ reports. If, for instance, the drug un-
der study is suspected of causing thrombotic events, an endpoint committee
can review spontaneously reported events that could potentially be throm-
botic.

A DSMB should not rely solely on coding systems; rather, it should feel free
to classify and reclassify to identify clusters of similar events. Conventional
categorization by body system may underemphasize certain events that occur
across systems, for example bleeding or thrombotic events or pain. Further,
some events, like stroke, have many synonyms. The problem is even more
serious in multinational trials where differences in language and medical ter-
minology can have a large impact on the reporting and coding of adverse
events. Listing them as separate types of events makes them appear less fre-
quent than they really are. In Section 9.5, we discuss methods for looking
at a single type (or cluster) of adverse events, and in Section 9.6 we discuss
approaches for evaluating the collective set of events.
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Table 9.2. A typical table of serious adverse events from a randomized clinical
trial—number of events by body system.

Preferred term Treated Control
N=576 N=582

Blood and lymph system 5 3
Anemia NOS1 4 1
Iron deficiency anemia 1 2
Cardiac 45 28
angina pectoris 4 1
angina pectoris aggravated 1 2
arrhythmia NOS 1 0
atrial flutter 2 1
cardiac failure 9 6
cardiac failure left 8 2
cardiac failure right 3 0
.
.
.
unstable angina 6 3
ventricular tachycardia 4 2
.
.
.
Infections and infestations 6 8
abscess NOS 1 0
cellulitis 0 2
.
.
.
Nervous system disorders 8 1
Cerebral vascular accident 2 0
.
.
.
hemorrhagic stroke 1 0
.
.
.
stroke 3 1
.
.
.
Vascular disorders 8 6
.
.
.
cerebral infarction 2 0
.
.
.

1 NOS, not otherwise specified.
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9.5 Looking for a Single Adverse Event

Suppose a DSMB sets out to determine whether a single type of adverse event
E (e.g., itchiness) or a prespecified cluster of events (e.g., bleeding) is occurring
at a higher rate in the treated than in the control group. How does the DSMB
decide that it is interested in E and, once it becomes interested, how does it
decide whether the rate of occurrence of E is higher in the treated than in the
control group? Finally, having established that the rate in the treated group is
indeed higher—or at least probably higher—than in the control group, what
action does the DSMB take?

Now obviously, not all Es are equal; as George Orwell said in another con-
text, “Some are more equal than others” [O45]. A minor irritant (drowsiness
or itchiness) is less important than death or than a life-threatening event like
major bleeding or stroke. Moreover, the importance of a specific event E de-
pends not only on the severity of E itself but also on the disease under study.
Healthy people in a study of a drug to alleviate minor muscle aches might
be unwilling to tolerate drowsiness because it would interfere with their daily
lives, but patients hospitalized with metastatic cancer may willingly accept
considerable drowsiness if the treatment has the potential to prolong life. Even
life-threatening adverse events weigh differently depending on the disease be-
ing studied. A small, but real, increase in the risk of breast cancer may be
unacceptable to a patient with coronary heart disease whose life expectancy is
measured in decades, but it may be irrelevant to someone with class IV heart
failure who is unlikely to survive another year. In the example of troglitazone
that began this chapter, one important factor leading to stopping the study
arm was the fact that the participants in the trial were reasonably healthy—
the purpose of the study was to identify an intervention to prevent or delay
the onset of diabetes, not to treat existing disease. The threshold for harm
in a prevention study is much lower than in a trial studying people with a
disease. Thus, as we consider statistical approaches to monitoring a specific
event E, we need to bear in mind not only what we know a priori about the
causal relationship of the drug under study to E, but we need to weigh the
seriousness of E in the context of the disease under study.

In considering how to monitor a single event (or a single cluster of events
like bleeding), we distinguish three situations. In the first case, the event
signaling a problem with safety is the same as the event showing efficacy.
The CAST study that began this book is an example of such a situation—
the study was designed to show that suppressing arrhythmias reduced sud-
den deaths/cardiac arrests in patients with cardiac arrhythmias and a prior
heart attack; the study showed that the drugs used actually increased sudden
deaths/cardiac arrests. Section 9.5.1 below describes methods for monitoring
this type of event, which we term the flip-side of the efficacy endpoint. Obvi-
ously, if the data show a real increase in the event rate, then the study should
be stopped, for the drug has not achieved its aim.
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In the second case, the safety endpoint is serious or frequent enough to
warrant stopping the study even if the experimental therapy is showing ben-
efit. The troglitazone study that began this chapter is an extreme example
of such a situation. Often, as discussed in Section 9.5.2, the balance between
efficacy and safety in this situation is more difficult to weigh.

The third situation is more difficult—the DSMB becomes aware of an event
not already known to be caused by the drug (or not sufficiently described in
the informed consent document), but it judges the event to be not serious
enough to stop the study. In such a case, as described in Section 9.5.3, the
DSMB may inform the investigators of the new adverse event.

These three types of examples are statistically very different—the first is
amenable to the methods of this book; the second often requires nonstatistical
judgment; the third involves statistical thinking different from that related to
monitoring for efficacy.

9.5.1 Monitoring for the Flip-Side of the Efficacy Endpoint

The conceptually easiest type of event to consider is the negative of the efficacy
endpoint. Consider a study that aims to show that the test drug prevents or
cures E. For safety, a reasonable approach is to assume pessimistically that
the drug may cause or worsen E. If the endpoint is a major event (e.g., death,
kidney failure, heart attack, stroke) or even a very bothersome symptom (e.g.,
pain or joint immobility), a DSMB may establish two one-sided boundaries.
It sets the upper, or efficacy, boundary according to the principles enunciated
in earlier chapters; generally, it sets the safety boundary to be less extreme
than the efficacy boundary.

As an example, consider a clinical trial studying sepsis. The standard end-
point in sepsis is 28-day mortality. Suppose the study drug is anticipated to
reduce mortality by 25 percent; specifically, suppose the anticipated percent
mortality is 24 percent and 18 percent in the treated and control groups, re-
spectively. A trial with a one-sided type 1 error rate of 0.025 and a power of
0.90 requires approximately 1000 patients per group. Imagine that the DSMB
plans to meet four times over the course of the trial leading to a total of five
looks at the data—four during the course of the trial and one at the end. For
simplicity, suppose the looks are to occur 28 days after each successive group
of 400 patients is randomized. (Of course, in practice, one cannot look so soon
after the 400th person’s 28th day, for the data are highly likely to lag consid-
erably.) The DSMB plans to monitor efficacy with an O’Brien-Fleming-like
spending function (see the upper bound in Figure 9.2). In such a design, the
study would stop at the first look for efficacy if the z-value were at least 4.88.
If the observed event rate in the control group were 0.20, the mortality rate
in the treated group would have to be no greater than 0.041 to exceed this
boundary. If the boundary were not crossed at any of the first four looks and
the observed event rate in the control group remained at 0.20, the event rate
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Fig. 9.2. Examples of safety bounds.

would have to be 0.165 in the treated group at the end of the study to show
statistically significant benefit.

While in the past we have sometimes advocated not establishing a safety
boundary, we have come to believe that a prespecified safety boundary helps
a DSMB make judgments about the endpoint of interest when the data are
showing harm. So let us consider some safety bounds. Suppose the safety
bound were symmetric with respect to the efficacy bound. Then at the first
look if the observed mortality rate in the control arm were 0.20, the boundary
would not be crossed unless the observed event rate in the treated group were
over 0.426 (Figure 9.3). In other words, a DSMB that acted symmetrically
with respect to the upper and lower bounds would not stop the trial for safety
concerns at the first look unless the event rate in the treated group were at
least double that in the control (again, assuming an observed proportion of
0.20 in the control group). We believe few DSMBs would stomach such a large
increase in mortality.

Some DSMBs use a less extreme O’Brien-Fleming-like spending function
boundary for safety, say a one-sided 0.05 rather than a one-sided 0.025. Many
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Fig. 9.3. Safety boundaries expressed in terms of the observed treatment proportion
if the observed control proportion is 0.20.

use instead a Pocock-like spending function boundary. The advantage of such
a boundary in the setting of safety is that it allows earlier termination of
the study with a statistically based conclusion of harm. At the first look, an
observed rate of 0.306 or 0.294 in the treated group would cross the Pocock
0.025 or 0.05, respectively, one-sided boundary if the observed control rate
were 0.20 (Figure 9.3). We believe that a DSMB could feel ethically comfort-
able with such a boundary early in the study. What leaves us uncomfortable
with the Pocock boundary is its persistence at high values toward the end of
the study; however, in reality, a DSMB would probably recommend stopping
a trial if the z were more than two standard deviations below zero late in the
trial.

If an O’Brien-Fleming-like spending function boundary for an adverse
event that is life threatening is too conservative early in the trial while a
Pocock-like spending function boundary is too conservative late, a boundary
that preserves alpha but is somewhat between the two is one that employs a
spending function proportional to t1.5. For a one-sided 0.05 alpha-level test,
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the five successive points on the boundary are 2.61, 2.33, 2.14, 1.99, and 1.85
(Figure 9.4).

Because no alpha-preserving boundary has an ideal shape for safety, the
sponsor and investigators must be aware that whatever boundary the DSMB
agrees to, it may ask the study to pause, it may recommend a change in
the informed consent document, or it may recommend stopping the study for
harm before the data cross the boundary.

Fig. 9.4. The power spending function 0.05t1.5 safety boundary compared to the
Pocock 0.025 and Pocock 0.05 safety boundaries.

9.5.2 Monitoring for Unexpected Serious Adverse Events that
Would Stop a Study

Unknown, but serious, risks that emerge during the course of a study may
lead to anxious discussion within the DSMB. If the signal is real, does the
possible—as yet undemonstrated—benefit outweigh the risks? Even more
troubling are unexpected serious adverse events with dire consequences. For
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example, in a trial studying a drug to prevent myocardial infarction, a DSMB
that observes a small excess of stroke in the treated arm may take immediate
action. It may ask for an expert on stroke to join the committee; it may ask
for a special data collection instrument to enhance the accuracy of sponta-
neously reported stroke. Or, if the risk seems unacceptably high compared to
the benefit seen or hypothesized in myocardial infarction, it may recommend
stopping the trial.

Perhaps the most vexing problem for a DSMB is the observation of an
excess rate of an unexpected life-threatening event. Sometimes an event of
this type occurs where the relationship to the drug under study is medically
not credible, but, if true, devastating. Even a very low rate (a single event,
perhaps) of fatal liver failure may lead to stopping the trial. Here judgment
of the clinician members of the board often guides decision-making.

Two examples, both somewhat modified from their respective actual trials,
point to the problem and provide some suggestions of approaches to dealing
with such data. The first comes from an unblinded trial on heart failure testing
whether the new treatment decreased mortality relative to standard therapy.
Early in the trial, the DSMB observed excess mortality in the treated group.
The board, although scheduled to meet every 6 months, asked for a safety
update 3 months after its first meeting. At that time, the excess mortality
in the treated group had become even more pronounced. Worried lest the
unblinded nature of the study might have led the investigators to follow the
treated group more intensively and therefore be more quickly aware of the
deaths in the treated group, the board asked the investigators to determine
the vital status of each participant on a specific date. To preserve the integrity
of the study, the board did not describe why it wanted the data—it simply
said that responsible monitoring required timely and accurate information on
mortality. The investigators then reported many more deaths; in fact, more
deaths overall had already occurred in the control than in the treated group.
The DSMB, reassured about safety, recommended continuation of the trial.
This DSMB had reacted quickly to an apparent risk but it recognized the
potential for biased reporting arising from the unblinded nature of the trial.
Rather than stop the trial prematurely, it asked for rapid collection of relevant
data.

In another example, a DSMB was monitoring a study on quality of life in
patients with breast cancer. The treatment was showing clear benefit on symp-
toms but excess early mortality in the treated group (20 deaths in the treated
group and eight in the control group; nominal p-value: .025). The DSMB, rec-
ognizing that this difference in mortality could have occurred by chance, asked
for more information to help explain the excess mortality. Because the sponsor
was unable to give the DSMB the rapid accurate information it required, the
DSMB felt it had no choice but to recommend stopping the study.
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9.5.3 Monitoring for Adverse Events that the DSMB Should
Report

One important role of the DSMB is to report its ongoing findings when the
data are strong enough to warrant a change in protocol or a modification in the
informed consent document. The threshold differs depending on whether the
adverse event is already known and the data suggest that the rate is higher
than previously thought or whether the event represents a newly identified
risk.

For known risks, the role of safety monitoring is to ensure that during the
course of the trial the balance of risk and benefit continues to favor benefit.
Even if the known risks are quite serious, the DSMB may recommend con-
tinuation of the trial if it is convinced that the participants are being well
cared for and that they have been adequately informed of the risks they are
incurring. For example, in a trial of cardiovascular disease where the drug
under study causes serious bleeding, the DSMB may examine the data to see
whether mortality is higher in the treated or the control group and whether
the physicians treated the serious bleeds effectively. As long as the excess
bleeding does not translate into excess mortality, the DSMB may not ask for
any change in protocol or any modification to the process of informed con-
sent. Appealing to statistical significance in this type of situation is rather
silly, for the treatment is known to cause the events. We have been involved
in trials studying drugs with known risk and seen DSMBs not worry about an
emerging risk because it was not “statistically significant.” Remember that
statistical significance is the probability, under the null hypothesis, that the
observed result or something more extreme would have occurred by chance.
If we already know that a treatment causes some adverse event, we do not
need to accumulate data to reject an artificial null hypothesis. The reason
that statistical thinking was unnecessary in the troglitazone case was that the
relationship between the drug and liver failure had already been established
in diabetic populations. A single event with laboratory evidence relating the
event to the drug confirmed that the event could also occur in individuals at
high risk for diabetes.

Lack of statistical evidence of effect within a particular trial in the case
of an adverse event known to be related to the activity of the drug is not
convincing evidence of no effect; it may simply be the consequence of testing
the wrong hypothesis (the null) with inadequate power. We have seen many
DSMBs lull themselves into complacency by improperly monitoring against
a null hypothesis. The danger is especially important when the event is rare,
but serious. Suppose one is studying a drug known to increase the probability
of developing a clot and imagine that after 2000 patients have been followed
for 3 months, five strokes have occurred in the treatment arm and none in the
control. We have seen DSMBs argue as follows: “The two-sided probability
of a five to zero split is .06, not even reaching the conventional level of sta-
tistical significance. Because we are observing the data on multiple occasions,
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a difference this large may well occur by chance. Therefore, while we shall
continue to monitor stroke, this finding has not raised our level of concern.”
Instead, we believe that a five to zero split in the situation of a drug known
to cause clots is strong evidence of harm. Whether the harm is sufficient to
lead to action is a different question.

An important role for the statistician on a DSMB is to point to areas
where statistical arguments are irrelevant or not particularly useful. For ex-
ample, heparin is known to cause bleeding. The probability of a major bleed
depends on the dose, the medical indication, the individual’s condition, and
the definition of “major bleed.” If a DSMB is monitoring data from a study
that is testing heparin, it should start with the knowledge that heparin causes
bleeding; the DSMB’s goal is not to test that hypothesis, but to estimate
the proportion of major bleeds and to establish whether specific subgroups
of the population are at unacceptable risk. If the physicians discount data
on known adverse events because the excess in the treated group has not yet
reached statistical significance, the statistician needs to remind the rest of the
board that its role is not to establish whether bleeding is a risk of therapy,
but to provide an estimated rate. If that rate is too high, then the board may
recommend stopping the study or modifying the protocol.

Boards often find themselves faced with the question of deciding what
rate is unacceptably high. If the ongoing data reject the hypothesis that the
difference between treated and control is above some “too high” level, then the
board may recommend stopping the trial or informing the study leadership
of the risk. The methods of this book can apply when the null hypothesis is
that the difference between the two groups is ∆; in this case, we reject the
hypothesis if the data show a statistically significant difference above ∆. To
fix ideas, suppose a study of emergency balloon angioplasty (a method that
breaks clots in an artery supplying blood to the heart) is comparing heparin
to placebo; the endpoint is the number of meters walked on a treadmill at
6 months (dead people scored as zero). Clinically, the investigators would
be comfortable using heparin if the excess number of people experiencing
serious bleeds were below, say, 15 percent. The board may establish for itself
a guideline that would reject the hypothesis if the data crossed the boundary
defined by a null hypothesis of 15 percent. Note that the threshold for an
acceptable ∆ depends on the efficacy endpoint of the study. If the study were
designed to show a decrease in mortality, the investigators might well allow a
larger ∆. On the other hand, if the study were to prevent events in a healthy
population, the DSMB might select a small ∆.

While arguments from biological plausibility aid in the interpretation of
known risks and of risks associated with known mechanisms of action of the
drug, observed unexpected events in the treated arm are more difficult to inter-
pret. From a regulatory standpoint, in the United States a sponsor of a clinical
trial is required by law to report quickly to the FDA every adverse event that
has the three attributes of “serious,” “related,” and “unanticipated.”
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“Serious” in the regulatory context usually means that the event led to
hospitalization or to an increased length of hospital stay, or that the event
was life-threatening or caused death.

“Related” means that the investigator deemed the drug at least proba-
bly related to the event (in some settings, the definition is “at least possibly”;
sometimes the event must be “definitely” related). While each trial has its own
definition of “possibly,” “probably,” and “definitely” related to study drug,
much of the decision is up to the judgment of the investigator. Often, the
placebo group has as many “related” events as does the treated group. Inves-
tigators tend to classify as “related” an event that is known to be associated
with use of the drug. Thus, if a drug is known to cause headache, the investi-
gator will often check “related.” On the other hand, if the event is not known
to be associated with the use of the drug and it occurs after many months
of use, the investigator is unlikely to declare it related. It will appear to the
investigator as part of the underlying medical condition of the patient. In par-
ticular, heart attacks, strokes, and other major events are often not attributed
to the drug, especially in studies that include many elderly participants. For
these reasons, in randomized trials, DSMBs usually disregard the attribution
of relatedness and consider, instead, the totality of all reported events. It relies
on randomization to produce treatment groups at equivalent risk. Therefore,
an excess of a particular type of event in the treated arm—whether or not the
investigators attributed the event to the treatment—becomes evidence that
the treatment is leading to the occurrence of the event.

An “unanticipated” event is one not known to be related either to the
process of the disease or to the therapy under study. It is these latter events
that the DSMB regards with particular scrutiny because they may lead to a
change in protocol or in the informed consent document.

Unanticipated but not serious risks pose uncomfortable questions to the
DSMB, but usually a DSMB assumes that the benefits of the drug, while
perhaps not yet manifest, will outweigh these risks. Often nonserious adverse
events emerge early in the treatment while evidence for benefit occurs later.
Suppose, for example, a drug is anticipated to reduce the incidence of myocar-
dial infarction. When patients start taking the drug, many experience some
gastrointestinal discomfort. The DSMB may rationally judge that the poten-
tial benefit on reduction of risk of heart attack is worth some mild nausea.
It may recommend continuing the trial with no change in protocol or it may
report nausea as a new adverse event.

In studies of an injected vaccine, adverse events like soreness, headache,
sniffles, and fever may frequently occur within a few days of immunization.
The effect of the vaccine on preventing disease will not be known for months or
even years. The DSMB must make a judgment about the acceptibility of the
adverse events under an assumption of the degree of efficacy of the vaccine.

In some special cases a DSMB may recommend early stopping because
of an increase in nonserious events. An example, slightly modified from an
actual trial, comes from a study of a rapidly fatal neurologic disease that
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used mortality as its primary endpoint. The DSMB’s charter unambiguously
specified that it should recommend stopping only for excess mortality in the
treated group. After all patients had enrolled and two-thirds of the data were
available, the board saw an almost identical proportion of deaths in the two
groups (28 percent in the treated group; 29 percent in control). On the other
hand, the data were showing an increase in nonserious but bothersome events
like “agitation” and “confusion.” The board, judging that the balance of risk
and benefit no longer favored benefit, recommended stopping the trial. Its
thinking stemmed partly from its opinion that the patients did not have long
to live. The board could not justify increasing the participants’ discomfort
in the absence of evidence of benefit. This example points to the inappropri-
ateness of limiting a board’s flexibility—if the data are inconsistent with the
anticipated scenarios, the board may well ignore its charter, substituting its
own judgment to make recommendations.

We have punted the question of what constitutes “statistical significance”
in the case of these unanticipated events. Some people use naive uncorrected
p-values; some use z-scores; some choose an arbitrary, but low, value (say
p=.01) as an informal correction for multiplicity. The actual decisions often
must rely on medical judgment enhanced by statistical thinking. Lachenbruch
and Wittes (2005) [LW05] suggest sentinel event methods for identifying sta-
tistical analysis of unexpected adverse events. For individual unexpected se-
rious adverse events, we may consider a) the number of nonevents until the
kth event or b) the time until the next (or kth event). For groups of pa-
tients in whom the sentinel “event” is an unexpectedly high rate, we can use
c) the event rate in the future patients. Various statistical models suggest
themselves: for individual events the negative binomial model or a binomial
sequential probability ratio test is natural for problem a), while the exponen-
tial or gamma distribution is appropriate for problem b). Normal models lend
themselves to problem c).

9.6 Looking for Multiple Adverse Events

Sometimes a drug causes not a single adverse event but many. All in all, the
patients in the treated group seem to be doing worse than the patients in
the control group. Such a finding is hardly surprising, for a drug may have
effects on many organs. In a trial of prevention of renal failure in type 2
diabetics, no particular adverse event occurred statistically significantly more
frequently in the treated than in the control group, but overall, participants in
the treated group experienced more pulmonary, renal, hepatic, and coronary
adverse events than did those in the control group. The DSMB informally
weighed the overall adverse impact of the drug against the potential gain and,
after several years of monitoring, recommended stopping the trial because it
judged that a drug that led to so many adverse events would not be useful.
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If the adverse events are related to each other, a more formal approach
useful in large trials is the method described in the celecoxib example of Sec-
tion 9.2. Having noted a sentinel event, the DSMB concentrates not on the
conventionally presented tables of adverse events, but rather it may create a
special targeted hierarchical classification. The pinnacle of the hierarchy is the
most specific event, where specificity is defined in terms of biological pathway,
seriousness of the event, and low likelihood of misclassification. For the Cox-2
example, cardiovascular death sat at the pinnacle; for thromboembolic events,
pulmonary embolism might constitute the pinnacle; for chemotherapy-induced
febrile neutropenia, sepsis might serve that role. Let E1 denote the pinnacle
event and suppose there are k events (A1 = E1, A2, A3, . . .Ak) within the
pathway of interest. Define E2 = E1 ∪A2 and, successively, Ej = Ej−1 ∪ Aj

(j = 3, 4, . . .k). Thus each person with a cardiovascular event within the hi-
erarchy enters the pyramid at the highest level consistent with that person’s
events. Often, the frequency of the event Aj increases as we move down the
hierarchy but the relative risk decreases. Thus, in the Cox-2 example where
k = 6, only six cardiovascular deaths (A1) occurred, but 12 people had a car-
diovascular procedure (A6) as their only cardiovascular event. As one moves
down the hierarchy, one adds events that are successively less likely to be
related to the putative mechanism of action or that by their nature include
events that are likely to be misclassified in a clinical trial. Thus, as one moves
down the hierarchy, the power may first increase but then decrease with the
addition of more noisy events.

9.7 Summary

The statistical issues posed by monitoring for safety differ considerably from
the issues posed by monitoring for efficacy. In the latter case, prior hypothe-
ses govern both the design of the study and the consequent boundaries for
monitoring data. For safety monitoring, however, the hypotheses are often
data-driven. For anticipated adverse events, the DSMB’s role should be to
estimate the rates of events with the view to taking some action if they be-
come unacceptably high. For unanticipated events, a DSMB risks reacting
to a falsely “discovered” endpoint [MH4], for the event may have occurred
in the treatment arm purely by chance. Therefore, DSMBs typically wish to
dampen a rush to judgment about the product or intervention. In preven-
tion trials among healthy volunteers or in trials of diseases or conditions not
usually accompanied by many types of serious adverse events (e.g., relief of
minor headache pain), one analysis might compare the total number of ad-
verse events to a standard rate known from historical data or to the control.
Identification of sentinel events during the course of the trial coupled with
nimble statistical guidelines for subsequent monitoring afford a DSMB the
opportunity to react to unanticipated events at the same time as protecting
against overzealous worry.
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Especially for safety, purely statistical considerations should not unduly
constrain a DSMB. It should not fear what our friend Dr. Rick Ferris terms the
“alpha-police.” It may recommend termination of a study when no statistical
difference in safety can be shown because of the medical implications of an
adverse event. On the other hand, it may recommend continuation of a study,
even when it is reasonably sure that the experimental treatment is causing
serious adverse events, if it believes the benefit outweighs the risk.
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Bayesian Monitoring

10.1 Introduction

Classical procedures that focus on the type 1 error rate necessarily punish
us for taking interim looks at the data; the more we look, the higher the
boundaries become. Meier (1975) [M75] puzzled over this: “...it seems hard
indeed to accept the notion that I should be influenced in my judgment by
how frequently he peeked at the data while he was collecting it.” It also seems
strange that conclusions should depend on how the data were collected; for
example, different p-values will obtain for the same trial results depending
on whether the trial was designed for a specified number of patients or a
specified number of events. This led Berger and Berry (1988) [BB88] to quip,
“Indeed, if the investigator died after reporting the data but before reporting
the design of the experiment, it would be impossible to calculate the p-value
or other standard measures of evidence.” Also, frequentists do not have a
universally accepted method of incorporating unplanned data, such as would
occur if investigators decided to extend a trial on the basis of promising but
not statistically significant results.

Bayesian methodology offers a way of overcoming these obstacles by focus-
ing not on controlling the error rate under a single point null hypothesis θ = 0,
but on the trade-off between type 1 and type 2 errors, using prior opinion to
help decide how likely each is. A major advantage is that Bayesian monitoring
boundaries do not depend at all on how many looks have been taken or how
the data were sampled (e.g., whether the trial continued until a fixed number
of patients was reached or until a fixed number of events occurred). Bayesian
methods also offer a formal way of incorporating information from outside
the trial. Their major disadvantage is that they require us to formalize our
prior opinion of the treatment effect through a prior distribution, and different
priors lead to different conclusions for the same data.
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10.2 The Bayesian Paradigm Applied to B-Values

Recall that for many testing scenarios, the B-value B(t) is approximately
normally distributed with mean θt and variance t. That is, the conditional
distribution of B(t) given the drift parameter θ is normal with mean θt and
variance t. We may regard θ as the treatment effect expressed in standardized
form.

If we acted like a Bayesian, we would quantify our uncertainty about θ
through a probability distribution, the prior distribution. We would still re-
gard the treatment effect as a fixed constant; the prior distribution reflects our
uncertainty about that fixed constant. Having specified a prior distribution,
we update it after observing data. Specifically, we compute the conditional
distribution of θ given the observed data, which is called the posterior distri-
bution of θ.

The most critical aspect of Bayesian methods is specification of the prior
distribution for θ. One mathematically convenient method is to specify a con-
jugate prior, i.e., a prior distribution resulting in a posterior distribution in
the same family. The conjugate family for normally distributed B-values are
normal with mean θ0 and variance σ2

0. Mathematical convenience is not a com-
pelling reason for choosing a prior, but we shall see that the class of normal
priors is sufficiently rich to include a wide spectrum of prior opinion ranging
from absolute certainty (σ2

0 = 0) to absolute uncertainty (σ2
0 = ∞).

As outlined in the discussion of predictive power in Chapter 3, the posterior
distribution of θ given the data observed thus far depends only on the current
B-value B(t) = b. B(t) is normal with posterior mean a weighted combination
of the prior estimate θ0 and the empirical estimate B(t)/t:

E{θ |B(t) = b} =
(1/σ2

0)θ0 + [1/var{B(t)/t}](b/t)
1/σ2

0 + 1/var{B(t)/t}

=
(1/σ2

0)θ0 + t(b/t)
1/σ2

0 + t

=
θ0 + bσ2

0

1 + tσ2
0

. (10.1)

The variance of the posterior distribution is

var{θ |B(t) = b} =
σ2

0

1 + tσ2
0

. (10.2)

Note that the posterior distribution does not depend on the number or timing
of previous looks at the data.

Bayesians tend to emphasize estimation rather than testing a single point
null hypothesis θ = 0. They use the posterior distribution to compute a cred-
ibility interval for θ. For example, the posterior probability is 1−α that θ lies
in the interval
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(
θ0 + bσ2
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1 + tσ2
0

− zα/2

√
σ2

0

1 + tσ2
0

,
θ0 + bσ2

0

1 + tσ2
0

+ zα/2

√
σ2

0

1 + tσ2
0

)
. (10.3)

A Bayesian might stop at an interim analysis if the credibility interval lies
entirely to the right of a “worthwhile” threshold θW “which explicitly trades
off benefit against possible side effects” (Spiegelhalter and Freedman, 1988
[SF88]); the greater the risk of side effects, the larger θW must be to justify
using the treatment. Given that regulatory agencies approve or disapprove
drugs on the basis of whether the null hypothesis θ = 0 has been rejected
in favor of θ > 0, it might also be reasonable to choose θW = 0. This was
the approach taken in Freedman and Spiegelhalter (1989) [FS89], Grossman,
et al. (1994) [GPS94], and Fayers, Ashby, and Parmar (1997) [FAP97]. The
resulting stopping boundary for efficacy, obtained by requiring the lower limit
of (10.3) to be greater than 0, is

(θ0 + bσ2
0)/(1 + tσ2

0)√
σ2

0/(1 + tσ2
0)

> zα/2.

Expressing this boundary in terms of the B-value and z-score yields

B(t) >
zα/2σ0

√
1 + tσ2

0 − θ0

σ2
0

(10.4)

Z(t) >
zα/2σ0

√
1 + tσ2

0 − θ0

σ2
0

√
t

. (10.5)

The symmetric boundary for the flip-side of efficacy is obtained by requir-
ing the upper limit of (10.3) to be less than 0, resulting in:

B(t) <
−zα/2σ0

√
1 + tσ2

0 − θ0

σ2
0

Z(t) <
−zα/2σ0

√
1 + tσ2

0 − θ0

σ2
0

√
t

.

10.3 The Need for a Skeptical Prior

The stopping boundary at the end of the preceding section has a provocative
interpretation. Let N be the sample size per arm if the trial is not stopped
early. Suppose at an interim analysis we augment our clinical trial data with
N/σ2

0 “imaginary” observations per arm such that the difference between the
treatment and control sample means of the imaginary observations is δ0, where
δ0/(2σ2/N )1/2 = θ0. The frequentist drift parameter estimate using the actual
plus imaginary observations would be (10.1). In the case of known σ2, adding
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N/σ2
0 imaginary observations to each arm reduces the variance of the drift

parameter estimate by a factor of n/(n + N/σ2
0) = tσ2

0/(1 + tσ2
0), where n is

the sample size per arm at the interim analysis without including imaginary
observations and t = n/N . Thus, the variance of the drift parameter estimate
using actual plus imaginary observations is

tσ2
0

1 + tσ2
0

var(B(t)/t) =
σ2

0

1 + tσ2
0

.

The mean and variance of the frequentist drift parameter estimate using actual
plus imaginary observations are identical to (10.1) and (10.2). In other words,
a frequentist who simply added N/σ2

0 imaginary observations, computed a
z-score, and rejected the null hypothesis if it exceeded zα/2 would arrive at
exactly the same conclusion as a Bayesian who uses a normal prior with mean
θ0 and variance σ2

0.
The disturbing connection between Bayesian methodology using the conju-

gate prior and fabricating data suggests that Bayesian methods are potentially
subject to abuse unless a skeptical value is selected for θ0. An investigator who
made up data that supported a treatment benefit would be fired, so trying to
accomplish the same end using Bayesian machinery should be strongly dis-
couraged. Selecting θ0 = 0 avoids this criticism. In effect, we are forcing the
results of the clinical trial to overcome a handicap caused by saddling the ac-
tual data with imaginary data forced to follow the null hypothesis. Grossman,
et al. (1994) [GPS94] point out that this rule is intuitively appealing even
without regarding it formally as a Bayesian method. The smaller σ2

0 is, the
larger the handicap.

Choosing a skeptical prior distribution also counters the criticism that
Bayesian methods might depend heavily on the prior distribution. We are
more confident in our findings if results are promising even assuming a skep-
tical prior distribution.

When θ0 = 0, the posterior mean (10.1), credibility interval (10.3), B-value
boundary (10.4), and z-score boundary (10.5) reduce to

E(θ |B(t) = b) =
{

σ2
0

σ2
0 + 1/t

}
(b/t), (10.6)
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B(t) >
zα/2

√
1 + tσ2

0

σ0
, and (10.8)

Z(t) >
zα/2

√
1 + tσ2

0

σ0

√
t

. (10.9)

Estimator (10.6) shrinks the empirical estimate b/t toward the mean 0 of the
prior distribution (Figure 10.1). The degree of shrinkage depends on the vari-
ance σ2

0 of the prior distribution. As σ2
0 → 0, the posterior mean approaches
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0 irrespective of the empirical estimate. This makes sense; we choose a very
small value for σ2

0 only if we are very confident that θ is near 0. In that case it
takes overwhelming evidence (i.e., a very large value for the empirical estimate
b/t) to convince us otherwise. As σ2

0 → ∞, the posterior mean approaches the
empirical estimate b/t, and the stopping rule becomes equivalent to rejecting
the null hypothesis at an interim analysis if the z-score exceeds zα/2. We have
seen in Section 4.1 that such a rule causes substantial inflation of the type 1
error rate.

Fig. 10.1. Top panel: The posterior distribution of θ given B(t)/t = 2 for t = 0.5
and t = 1. The prior distribution is standard normal. The posterior mean shrinks the
empirical estimate, B(t)/t = 2, toward the prior mean 0. The degree of shrinkage is
greater earlier in the study (t = 0.5) when there is less empirical data to overrule the
prior. At the end of the trial (t = 1.0) the posterior mean is closer to the empirical
estimate and the posterior variance becomes smaller. Bottom panel: The posterior
distribution of θ given B(1)/1 = 2 for a normal prior with mean 0 and variance
σ2

0 = 1 or σ2
0 = 1/4. Again the posterior mean shrinks the empirical estimate toward

the prior mean 0. The degree of shrinkage decreases and the posterior variance
increases as the prior variance increases.

20
(prior mean) (empirical estimate)

t=0.5

t=1.0

20
(prior mean) (empirical estimate)

prior variance 1

prior variance 1/4
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A closer look reveals the folly of choosing a huge value of σ2
0. Though

on the surface a diffuse prior seems desirable because it appears to reflect
complete uncertainty, it in fact reflects certainty that the treatment effect is
either very positive or very negative. That is, as σ2

0 → ∞, the prior probability
that |θ| ≤ B tends to 0 for every B. How often do we feel that the treatment
effect is either extremely large and positive or extremely large and negative,
but not moderate?

10.4 A Comparison of Bayesian and Frequentist
Boundaries

The preceding section showed that injudicious choice of the prior variance can
lead to monitoring boundaries with a very low or very high type 1 error rate.
Like Goldilocks, we can select a value of σ2

0 that is “just right,” i.e., has type
1 error rate exactly equal to a desired level. The corresponding boundaries lie
between those of Pocock and O’Brien-Fleming (Freedman and Spiegelhalter,
1989 [FS89]; Grossman et al. 1994 [GPS94]). For example, Grossman et al.
(1994) [GPS94] express the z-score boundary (10.9) and its symmetric lower
boundary in terms of f = 1/σ2

0, which they call the handicap. The resulting
two-tailed boundary is

|Z(t)| > zα/2

√
f + t

t
, (10.10)

where f is chosen to yield type 1 error rate 0.05 or 0.01 (Table 10.1).

Table 10.1. The handicap f = 1/σ2
0 ensuring that the Bayesian two-tailed boundary

for equally-spaced looks has type 1 error rate 0.01 or 0.05 (Grossman et al., 1994
[GPS94]).

Handicap (f)

k α = 0.05 α = 0.01.

1 0 0

2 0.16 0.11

3 0.22 0.15

4 0.25 0.17

5 0.27 0.18

6 0.29 0.20

7 0.30 0.21

8 0.32 0.22

9 0.33 0.22

10 0.33 0.23
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Fig. 10.2. A comparison of Bayesian and frequentist boundaries for a trial with two
equally spaced looks (upper panel) and eight equally spaced looks (lower panel). The
prior distribution is normal with mean 0 and variance chosen to yield type 1 error
rate 0.05.

For example, in a trial with four looks equally spaced in terms of informa-
tion, selecting f = 0.25 and applying boundary (10.10) produces an α = 0.05
level procedure. Recall that a normal prior with mean 0 and variance σ2

0

is like augmenting the trial data with N/σ2
0 = Nf observations such that

X̄T − X̄C = 0. Thus, f may be interpreted as a proportion: f = 0.25 is like
combining our trial with another trial, one fourth the final size of our trial,
with sample mean difference 0.

Figure 10.2 compares Bayesian boundaries with those of O’Brien-Fleming
and Pocock for two and eight equally spaced looks. With only two looks,
the Bayesian boundary looks very similar to the Pocock boundary. As the
number of looks increases, the Bayesian boundary becomes more intermediate
between O’Brien-Fleming and Pocock boundaries. As the number of looks
tends to infinity, the Bayesian boundary becomes more similar to the O’Brien-
Fleming boundary. To see this, note that from (10.10), the boundary for B(t)
is ct = zα/2(f+t)1/2. The ratio of B-value boundaries at information fractions
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t1 and t2 is ct1/ct2 = {(f+t1)/(f+t2)}1/2. As the number of looks tends to ∞,
f tends to ∞ (albeit very slowly) and ct1/ct2 tends to 1. In other words, the
Bayesian boundary approaches a constant boundary for the B-value, which
is the O’Brien-Fleming boundary. Still, the convergence is so slow that, from
a practical standpoint, the most we can say is that the Bayesian boundary
lies between the Pocock and O’Brien-Fleming boundaries, and is closer to the
Pocock boundary when the number of looks is quite small.

Some Bayesians might scoff at the idea of choosing σ2
0 to achieve a given

type 1 error rate. After all, narrowly focusing on type 1 error rate is the reason
we had to punish ourselves for peeking at data. Moreover, pure Bayesians
feel that the prior distribution should reflect actual prior opinion, which has
nothing to do with type 1 error rate. Nonetheless, there are advantages of
adopting a middle ground between frequentist and Bayesian monitoring. One
such middle ground might be to specify initially the number of equally spaced
looks we plan to take and select σ2

0 to yield type 1 error rate 0.05. If the looks
turn out not to be equally spaced or we decide to take additional looks, we
still use the Bayesian boundary obtained by seeing if the posterior credibility
interval lies to the right of 0. This may slightly inflate the type 1 error rate,
but this drawback is partially offset by the ease of estimation at the end of
the trial; we simply use the posterior credibility interval.

We have thus far considered only the normal prior distribution. Green-
house and Wasserman (1995) [GW95] investigated how sensitive Bayesian
methods are to the prior distribution selected. They considered mixtures of
the form (1 − ε)π0 + εq, where π0 denotes the prior actually selected and q
is an arbitrary distribution. They showed that in many cases the conclusions
are rather insensitive to the prior.

10.5 Example

This example shows how a non-Bayesian who wishes to avoid the unpleas-
antries of frequentist inference can use Bayesian methodology to monitor a
trial and still protect the type 1 error rate. We warn the reader that pure
Bayesians might criticize our mixture of Bayesian and frequentist components
(e.g., using a prior distribution to determine boundaries, but then computing
conditional, rather than predictive, power).

Consider a trial comparing hormone replacement therapy to placebo with
respect to change from baseline to 3 years in minimum lumen diameter of coro-
nary arteries measured on an angiogram. The standard deviation of change is
expected to be 0.35 mm, and we are trying to detect a treatment difference
of 0.12 mm. Recruitment will occur over the first 3 years, so the first and last
woman recruited will have their end of study angiograms 3 and 6 years after
the trial begins, respectively. Looks at the primary endpoint are scheduled
at the end of years 4, 5, and 6 (the final analysis). Because recruitment is
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expected to occur uniformly over the first 3 years, the fraction of women with
outcome data at analysis i is expected to be i/3, i = 1, 2, 3.

To monitor using Bayesian boundaries while still paying attention to the
type 1 error rate, we specify a normal prior with mean 0 and “handicap”
(determined from Table 10.1) f = 0.22 (prior variance σ2

0 = 1/f = 4.55).
From (10.10), the boundaries at the three looks are expected to be 1.96{(0.22+
1/3)/(1/3)}1/2 = 2.525, 1.96{(0.22+2/3)/(2/3)}1/2 = 2.260, and 1.96{(0.22+
1)/1}1/2 = 2.165, respectively.

Our first step is to use the software at www.medsch.wisc.edu/landemets/
to compute the required sample size assuming equally spaced looks. We specify
that we want to compute the drift parameter, and we enter these boundaries
after selecting “User Input” from the “Power and Bounds Parameters,
Determine Bounds” box. Clicking on “Calculate,” we find the drift parameter
to be 3.381. Equating the drift parameter δ/(2σ2/N )1/2 to 3.381 and solving
yields N = 2σ2(3.381)2/δ2 = 2(0.35)2(3.381)2/(0.12)2 = 195. We round up to
200 participants per arm.

Suppose the first analysis occurs after 71 and 68 women are evaluated in
the treatment and control arms; i.e., the information fraction is t = (1/71 +
1/68)−1/(2/200)−1 = 0.347. From (10.10), the boundary at the first look is
1.96{(0.22 + 0.347)/(0.347)}1/2 = 2.505. Suppose that the actual z-score is
−0.5. We proceed to the next look.

At the second look, with 122 and 120 women per arm, the information
fraction is (1/122 + 1/120)−1/(2/200)−1 = 0.605. From (10.10), the bound-
ary is 1.96{(0.22 + 0.605)/0.605)}1/2 = 2.289. Suppose the actual z-score
is −0.75. At this point it is clear that the expected benefit from hormone
replacement therapy has not materialized. The conditional probability that
θ > 0 given the observed data can be computed as follows. The current B-
value is (0.605)1/2(−0.75) = −0.583, so from (10.1) and (10.2), the posterior
distribution of θ given B(0.605) = −0.583 is normal with mean and variance

E{θ |B(0.605) = −0.583} =
0 − 0.583(4.55)
1 + 0.605(4.55)

= −0.707, (10.11)

var{θ |B(0.605) = −0.583} =
4.55

1 + 0.605(4.55)
= 1.212. (10.12)

The conditional probability that θ > 0 given the observed data is only
1 − Φ{(0 + 0.707)/(1.212)1/2} = 0.26. Thus, the probability that θ > 0 has
dropped from 0.50 at the outset of the trial (because the prior distribution
had mean 0) to 0.26 now.

A closet frequentist might also compute conditional power under the orig-
inal alternative hypothesis to help decide whether continuation is futile. The
drift parameter under the original hypothesis is θ = 3.381, and the boundary
at the end of the trial will be 1.96{(0.22 + 1)/1}1/2 = 2.165, so conditional
power given B(0.605) = −0.583 is



184 10 Bayesian Monitoring

CP3.381(0.605) = 1 − Φ

{
2.165− (−0.583) − 3.381(1− 0.605)√

1 − 0.605

}
= 0.012.

Even assuming the original hypothesis, which appears quite optimistic in light
of the data, conditional power is about 1 percent. After considering both the
posterior probability that θ > 0 and conditional power, the Data and Safety
Monitoring Board recommends termination of the trial for futility.

The Bayesian has an easy time estimating the drift parameter following
the trial. From (10.11), the posterior mean is −0.707. From (10.7), the cred-
ibility interval for θ = δ/(2σ2/200)1/2 is (−0.707 − 2.158,−0.707 + 2.158) =
(−2.865, 1.451). The final step is to express the drift parameter estimate and
its credibility interval in terms of the natural parameter δ, the difference
in mean baseline to end-of-study changes in the treatment and control arms.
Substituting the current pooled estimate of the standard deviation of changes,
σ̂ = 0.15, for σ and solving for δ gives

δ̂ = (−0.707){2(0.15)2/200}1/2 = −0.011.

In other words, the minimum lumen diameter decreased by an estimated 0.011
mm more in the treatment arm than in the control arm. The credibility in-
terval for δ becomes

(−2.865{2(0.15)2/200}1/2, 1.451{2(0.15)2/200}1/2) = (−0.043, 0.022).

10.6 Summary

Bayesian monitoring of clinical trials has advantages and disadvantages over
classical monitoring. The boundaries depend only on the current data, not
on how many looks have been taken or how the data arose. The Bayesian
approach also provides a natural way to incorporate external data; point and
interval estimation following the trial are easy and natural. By far the biggest
disadvantage is the dependence of conclusions on the prior distribution se-
lected. The Data and Safety Monitoring Board may choose a prior different
from what most practicing physicians might chose, and therefore might stop
the trial when the data would not convince most physicians. Choosing a prior
distribution that puts high probability on the alternative hypothesis creates a
self-fulfilling prophecy, i.e., one is likely to conclude there is a treatment effect
even if there is none. That is why it is wise to choose a skeptical prior with
mean 0.

An appealing option is to choose a normal prior with mean 0 and variance
selected to yield an alpha level procedure if the originally planned number
and spacings of the looks is maintained. This produces a boundary interme-
diate between the Pocock and O’Brien-Fleming boundaries. If the originally
scheduled looks are altered, the procedure will have type 1 error rate close to
the target level unless the number of looks is increased dramatically or the
spacings are markedly different from those originally anticipated.
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Adaptive Sample Size Methods

11.1 Introduction

Thus far we have focused on clinical trials with either a fixed number of
patients or a fixed number of events at the end, but recent advances have
spawned the development of methods for changing the sample size on the
basis of accumulating data. These so-called adaptive methods allow greater
flexibility than group-sequential monitoring with a fixed maximum sample
size. The idea is simple: the parameters needed for calculating sample size are
better estimated from a subset of the data from the current trial than from
observational data or from other trials enrolling less similar patients.

Adaptive methods are of two very different types: those incorporating data
about a nuisance parameter only (such as the variance in a continuous out-
come setting or the control event probability or overall event probability in
a dichotomous outcome setting) and those also incorporating data about the
treatment effect. Accurate estimation of nuisance parameters is crucial lest
the sample size be too large or too small. For example, if the true standard
deviation is 20 percent larger than anticipated, the sample size for a two-tailed
t-test with 90 percent power must be increased by 44 percent. Similarly, in
a dichotomous outcome trial, overestimation of the control event rate in a
trial powered to detect a fixed relative risk produces an underpowered trial.
The role of the treatment effect in sample size calculations differs from that
of the nuisance parameter; accurate estimation of the treatment effect is less
important than appropriate specification of the treatment effect based partly
on clinical relevance and partly on results from similar trials. For example,
it may be that, unbeknownst to us, the true systolic blood pressure lower-
ing effect of a drug is only 1 mm Hg, yet no one would power a drug trial
to detect such a clinically insignificant blood pressure reduction. One might
instead assume the smallest clinically relevant difference—perhaps 3 or 4 mm
Hg—that would justify the use of medication. On the other hand, if other
trials or other evidence led us to believe that the true effect was likely to be
at least 10 mm Hg, we would probably not power the trial using the minimal
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clinically relevant difference because that would result in a sample size much
larger than needed.

In this book we focus more on sample size modification based on a nui-
sance parameter rather than on the treatment effect for two primary reasons.
First, we would ordinarily not undertake a clinical trial if we could not spec-
ify either a minimally relevant or an expected treatment difference. Second,
adaptive methods based on the treatment effect are much more controver-
sial than those based on a nuisance parameter. Criticisms have focused on
both specific methodology and larger issues such as the necessity of unblind-
ing and its potential bias, and the possibility of increasing the sample size to
detect clinically meaningless differences. Nonetheless, in trials designed with
only very limited information about the treatment effect, some allowance for
sample size modification is desirable.

Before proceeding, we shall use a different notational convention than what
we have followed thus far. In previous chapters, we have used n1, . . . , nk and
Z1, . . . , Zk to denote cumulative sample sizes and z-scores. In this chapter,
unless otherwise stated, these stand for stagewise quantities. Thus, ni and Zi

are the sample size per arm and z-score corresponding to the data in stage
i only. We use no subscript when we refer to a quantity computed over the
entire trial. Thus, n and Z refer to the sample size per arm and z-score for all
data in the trial.

11.2 Methods Using Nuisance Parameter Estimates: The
Continuous Outcome Case

We closely follow the review paper of Proschan (2005) [Pr05].
The approximate sample size formula to achieve power 1 − β to detect a

mean difference δ using a two-tailed t-test at level α was obtained in Chapter
3 by equating the expected z-score to zα/2 + zβ and solving for the per-arm
sample size n:

n =
2σ2(zα/2 + zβ)2

δ2
. (11.1)

We now consider two-stage methods where we use the first stage to estimate
σ2, and apply that estimate to determine the total sample size.

A central question is whether the first stage variance estimate gives any
information about the current or future treatment effect estimate. Intuition
suggests that it does not because in a one-sample setting with normally dis-
tributed observations X1, . . . , Xn, the sample mean and variance are indepen-
dent (Mood, Graybill, and Boes, 1974 [MGB74], page 243). Logically, a future
sample mean should likewise be independent of the current sample variance.
An indirect way to see this uses Basu’s theorem; for normally distributed data
X1, . . . , Xn+r with known variance, X̄n+r is complete and sufficient, while s2n
is ancillary with respect to µ, so X̄n+r and s2n are independent. A more direct
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proof uses the fact that (X̄n+r , X1 − X̄n, . . . , Xn − X̄n) are jointly multivari-
ate normal with cov(X̄n+r , Xi − X̄n) = 0 for each i, so X̄n+r is independent
of (X1 − X̄n, . . . , Xn − X̄n), and therefore of any function (e.g., the sample
variance) of the latter set. In fact, a similar approach shows that the set of all
past and present sample variances is independent of the set of all present and
future treatment effect estimates. A similar result holds in the two-sample
setting:

Result 11.1
a) In a one-sample setting, the set of past and present cumulative vari-
ances (s22, . . . , s

2
n) is independent of the set of present and future cumula-

tive sample means (X̄n, X̄n+1, . . .) and cumulative z-scores (n1/2X̄n/σ, (n +
1)1/2X̄n+1/σ, . . .).

b) In a two-sample setting, the set of past and present cumulative pooled vari-
ances is independent of the set of present and future cumulative treatment
effect estimates and cumulative z-scores.

Result 11.1 is comforting because it shows that peeking at sample variances
gives no information about the current or future treatment effect. It suggests
that we may be able to analyze the data at the end of an adaptive trial as if
the sample size had been fixed in advance.

11.2.1 Stein’s Method

Stein (1945) [S45] devised a two-stage procedure to construct a t-test in a one-
sample setting with power at least a specified value irrespective of the true
variance. We devote considerable attention to his method because the way he
achieved this remarkable feat is instructive. We can apply his method in a two-
sample clinical trial as follows. At the first stage with n1 participants per arm,
we calculate the pooled variance s21 with 2(n1 − 1) degrees of freedom. Wittes
and Brittain (1990) [WB90] called the first stage of a two-stage design an
internal pilot study. Let ta,m denote the upper ath quantile of a t-distribution
with m degrees of freedom. For power 1 − β, we determine the final sample
size n per arm using Equation (11.1) but replace σ2 by s21 and the standard
normal critical points by those of a t-distribution with 2(n1 − 1) degrees of
freedom. If the resulting sample size is smaller than n1, we take no additional
observations. Thus, the final sample size per arm is

n = max{n1, 2s21(tα/2,2(n1−1) + tβ,2(n1−1))2/δ2}. (11.2)

After randomizing n2 = n− n1 additional patients per arm, we compute the
Stein t-statistic tS :

tS =
X̄T − X̄C√

2s21/n
, (11.3)

where X̄T and X̄C are the sample means of all n patients per arm. (If the
treatment and control internal pilot sample sizes nT1 and nC1 differ, replace
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2s21/n in the denominator of (11.3) with s21(1/nT1 + 1/nC1), and use nC1 +
nT1 − 2 degrees of freedom instead of 2(n1 − 1) in (11.2). Notice that the
pooled variance estimate s21 in the denominator is that of the internal pilot
study only. We shall soon see that this crucial difference between the Stein
and usual t-statistics is what allows us to achieve any given power irrespective
of the true variance σ2.

We know that in a nonadaptive setting, the numerator and denominator
of the t-statistic are independent; we now show that independence holds for
TS in the adaptive setting as well. For added clarity, we write X̄Tn and X̄Cnto
emphasize the per-arm sample sizes upon which they are based.

Pr

(
X̄Tn − X̄Cn√

2σ2/n
≤ z, s21 ≤ u

)
=

∞∑

r=n1

Pr

(
X̄Tn − X̄Cn√

2σ2/n
≤ z, s21 ≤ u, n = r

)

=
∞∑

r=n1

Pr

(
X̄Tr − X̄Cr√

2σ2/r
≤ z, s21 ≤ u, n = r

)

=
∞∑

r=n1

Pr

(
X̄Tr − X̄Cr√

2σ2/r
≤ z

)
Pr(s21 ≤ u, n = r)

= Φ(z)
∞∑

r=n1

Pr(s21 ≤ u, n = r)

= Φ(z) Pr(s21 ≤ u).

The third line follows from Result 11.1. Because the joint distribution of
(X̄Tn − X̄Cn)/(2σ2/n)1/2 and s21 factors into the product of the marginal
distributions, they are independent. Also, the null distributions of Z and
2(n1 − 1)s21/σ2 are standard normal and chi-squared with 2(n1 − 1) degrees
of freedom, respectively. Thus, the null distribution of tS is t with 2(n1 − 1)
degrees of freedom.

To show that we can obtain power 1 − β irrespective of σ2, we need to
consider the distribution of tS under the alternative hypothesis, µT −µC = δ.
Subtract µT and µC from the infinite pool of potential treatment and control
observations, respectively, and apply Stein’s t-test to the transformed data set
(X ′

T , X
′
C). Denote the t-statistic applied to the transformed data by t′S . The

numerator of t′S is X̄T −X̄C−δ, where X̄T and X̄C are the sample means of the
untransformed data. The pooled variance of the transformed data is that of
the untransformed data because the sample variance in each arm is unaffected
by location shifts. Thus, t′S = (X̄T − X̄C − δ)/(2s21/n)1/2 = tS − δ/(2s21/n)1/2.
Because the transformed data have equal population means (both are 0) in
the treatment and control arms, t′S has a t-distribution with 2(n1−1) degrees
of freedom. Power is

PµC,µT (tS > tα/2,2(n1−1)) = PµC,µT

{
tS − δ√

2s21/n
> tα/2,2(n1−1) −

δ√
2s21/n

}
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= PµC,µT

{
t′S > tα/2,2(n1−1) −

δ√
2s21/n

}

≥ PµC,µT (t′S > −tβ,2(n1−1))
= P0,0(tS > −tβ,2(n1−1)) = 1 − β. (11.4)

The inequality in the second to last line follows from the fact δ/(2s21/n)1/2 ≥
tα/2,2(n1−1) + tβ,2(n1−1) [see Equation (11.2)]. This remarkable result means
that power is at least 1 − β irrespective of the true variance σ2.

A slight modification of Stein’s procedure allows one to obtain confidence
intevals of a given length, again using the pivotal fact that after the first stage,
s21 is fixed. The above argument that t′S has a t-distribution with 2(n1 − 1)
degrees of freedom is valid for any sample size rule n(s21) based on the variance,
not just the one defined by (11.2). It follows that

X̄T − X̄C ± tα/2,2(n1−1)

√
2s21/n (11.5)

provides a 100(1 − α) percent confidence interval for δ for any sample size
function n(s21) based on the variance. We can therefore select n to make
the half-width of the confidence interval (11.5) any desired value. We sim-
ply equate tα/2,2(n1−1)(2s21/n)1/2 to a desired width w and solve for n, which
yields n = 2t2α/2,2(n1−1)s

2
1/w

2.

Example 11.1. Consider a trial comparing glucosamine to placebo for the re-
lief of pain in patients with osteoarthritis of the knee. The primary outcome
is the change from baseline to 6 months in a visual analog scale (VAS) re-
flecting pain; patients indicate their degree of pain on a scale from 0 (no
pain) to 100 (worst possible pain). A t-test is used to compare the treat-
ment arms. Suppose that prior to the trial, little is known about the standard
deviation of such changes. The best guess is that it should be 15 or less.
Investigators wish to detect a difference of 5 points between the treatment
arms. The sample size for 80 percent power to detect a 5-point decrease in
VAS score in the glucosamine arm compared to placebo is approximately
2(15)2(1.96 + .84)2/52 = 142 per arm (rounding up). An internal pilot study
is conducted at the planned halfway point, and the pooled variance of the
70 control and 72 glucosamine patients is s21 = 144. The estimated standard
deviation of (144)1/2 = 12 is smaller than the initial estimate of 15, giving
us hope of decreasing the sample size. To use (11.2), we must compute the
tail points t0.025,140 and t0.20,140 of the t-distribution with 70 + 72 − 2 = 140
degrees of freedom; t0.025,140 = 1.977 and t0.20,140 = 0.844. The resulting cal-
culated sample size per arm is 2(12)2(1.977+ 0.844)2/52 = 92. Thus, we need
22 more control and 20 more glucosamine patients. Of course, it is often diffi-
cult to recruit precisely the number of participants required. Suppose in this
case the final sample size turns out to be slightly larger, 95 and 94 patients in
the placebo and glucosamine arms. The means and pooled variance at the end
of the trial are X̄T = −3, X̄C = +1, and s2 = 174, so the standard deviation

11.2 Methods Using Nuisance Parameter Estimates
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estimate at the end of the trial is (174)1/2 = 13.191. The data from this trial
are summarized in Table 11.1. Even though the pooled standard deviation of
the 95 control and 94 glucosamine patients is 13.191, Stein’s t-statistic uses
the interim standard deviation estimate s1 = 12:

tS =
−3 − 1√

122(1/95 + 1/94)
= −2.291.

By referring −2.291 to a t-distribution with 70 + 72 − 2 = 140 degrees of
freedom corresponding to the interim variance, we calculate p = 0.023.

Table 11.1. Summary of data from the example.

Control Glucosamine

Interim nC1 = 70 nT1 = 72
s1 = 12

nC = 95 nT = 94
End X̄C = +1 X̄T = −3

s = 13.191

Suppose that at stage 1 we had selected n not on the basis of achieving
a given power, but on the basis of obtaining a confidence interval with half
width no larger than 3. The confidence interval at the end of the trial is given
by equation (11.5) with 2(n1 − 1) replaced by 72 + 70 − 2 = 140:

X̄T − X̄C ± 1.977{2(144)/n}1/2. (11.6)

Equating the half width 1.977{2(144)/n}1/2 to 3 and solving for n yields
(1.977)2{2(144)}/32 = 126. Thus, we would need 126 patients per arm. The
final confidence interval would again use (11.6) (i.e., 1.977 standard errors
corresponding to a t with 140 degrees of freedom) even though the total
sample size is 2(126) = 252.

Stein’s method is seldom used in clinical trials for several reasons. First
is the perceived inefficiency and undesirability of not using all of the data
to estimate the variance. Second is the fact that the variance might actually
change over the course of the trial. Patients may initially be plentiful and
later sparse; patients may have to be recruited from different sources later
in the trial, and they might have a different variance. In this setting, using
the first stage variance can be anticonservative and increase the type 1 error
rate (Proschan and Wittes, 2000 [PW00]). A third criticism is that Stein’s
method controls the type 1 error rate unconditionally, but not conditioned
on the sample size actually selected (Zucker et al., 1999 [ZWS99]). The final
sample size is independent of the treatment effect, so it is almost as if the
sample size had been determined by a completely random mechanism such as
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a coin flip, in which case we would make inferences conditional on the sample
size actually selected. But the conditional distribution of tS given N = n is
no longer t with 2(n1 − 1) degrees of freedom.

To elaborate on the conditional type 1 error rate of Stein’s t-test, let
σ = 1, and suppose that we are trying to detect a treatment effect of δ = 1
with 80 percent power. Suppose also that the first-stage sample size is only
5 per arm; t0.025,8 = 2.306 and t0.20,8 = 0.889. If 2s21(2.306 + 0.889)2/12 ≤ 5,
then (11.2) implies that we require no additional observations. Thus, if s1 ≤
[5/{2(3.195)2}]1/2 = 0.495, we will not take any additional observations. The
resulting Stein t-statistic has unconditional type 1 error rate 0.05, but the
conditional type 1 error rate given that n = 5 is

Pr

(
|δ̂1| > 2.306

√
2s21
5

∣∣∣ s1 ≤ .495

)
≥ Pr

(
|δ̂1| > 2.306

√
2(.495)2

5

∣∣∣ s1 ≤ .495

)

= Pr

(
|δ̂1|√
2/5

> 2.306(0.495)

)

= 2{1 − Φ(1.141)} = 0.25.

It is of little consolation that the type 1 error rate averaged over all possi-
ble sample sizes is 0.05 if the type 1 error rate given the sample size actu-
ally selected is 0.25. The problem is ameliorated if we use restricted designs
with sample size at least as large as originally planned (Wittes et al., 1999
[WSZ99]).

11.2.2 The Naive t-Test

A more natural procedure is to compute the usual pooled t-statistic and refer it
to a t-distribution with 2n−2 degrees of freedom as if n had been determined
before the trial. Thus, in Example 11.1, the final t-statistic would be t =
(−3−1)/{(13.191)2(1/95+1/94)}1/2 = −2.084, and we would refer this value
to a t-distribution with 95+94−2 = 187 degrees of freedom; the two-tailed p-
value would be .039. Wittes and Brittain (1990) [WB90] proposed this “naive”
t-statistic. Its advantage is that it uses all of the data for the variance estimate.
Its disadvantage is that it uses all of the data for the variance estimate! That
is, unlike with Stein’s method, the final variance of the naive method cannot
be predicted perfectly at the first stage, so there is no way to guarantee a
given power level. Still, several papers have shown that this naive method
controls type 1 and type 2 error rates near the desired levels. Wittes and
Brittain (1990) [WB90] evaluated error rates by simulation in the context of
an example. They considered restricted designs with final sample size at least
as great as originally planned. Birkett and Day (1994) [BD94] extended this
work by allowing an unrestricted design. Numerical integration confirms that
error rates are close to target levels (Wittes et al., 1999 [WSZ99]).

11.2 Methods Using Nuisance Parameter Estimates
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A closer inspection of the naive method is revealing. It is not difficult to
show that under the null hypothesis, δ̂/

√
2σ2/n has a standard normal dis-

tribution and is independent of the pooled variance s2 of all 2n observations.
Thus, if (2n− 2)s2/σ2 had a chi-squared distribution with 2n− 2 degrees of
freedom, the naive t-statistic would have a t-distribution with 2n− 2 degrees
of freedom. But if (2n − 2)s2/σ2 really were chi-squared with 2n− 2 degrees
of freedom, then s2 would be an unbiased estimate of σ2. On the contrary,
s2 tends to underestimate σ2. A rigorous proof may be found in Wittes et al.
(1999) [WSZ99] or Proschan (2005) [Pr05]. Here we give the following heuris-
tic argument. Consider a simpler adaptive sample size setting in which we
choose from only two possible sample sizes, either n = n1 per arm or n = 2n1

per arm. Denote the pooled variance under these two scenarios by σ̂2
1 and

σ̂2
2, respectively. Of course σ̂2

1 is the first-stage pooled variance. Both σ̂2
1 and

σ̂2
2 are unbiased for σ2, but σ̂2

1 is used to determine whether we choose σ̂2
1

or σ̂2
2; if σ̂2

1 is small, we choose it, but if σ̂2
1 is large, we dilute it with more

observations, resulting in σ̂2
2. Clearly, this process will tend to underestimate

σ2. Nonetheless, Wittes et al. (1999) [WSZ99] showed that the bias is small
and the type 1 error rate and power are quite close to the target values under
both restricted and unrestricted designs. See Tables 11.2-11.4.

11.2.3 A Restricted t-Test

Proschan and Wittes (2000) [PW00] considered restricted designs requiring
the final sample size per arm to be at least as large as initially planned, n0. The
idea is that, because the second stage will have at least n0 − n1 observations
per arm, we could randomly select n0 − n1 second-stage observations per
arm to include in the final variance estimate. That way, the final variance
estimate will be unbiased and should be more accurate than s21. Furthermore,
the resulting t-statistic will have an exact t-distribution with 2n0 − 2 degrees
of freedom under the null hypothesis. But of course different selections of the
n0−n1 second-stage observations per arm could result in different inferences.
Proschan and Wittes (2000) [PW00] essentially averaged over all possible
random selections of n0 − n1 observations per arm from the second stage,
resulting in the variance estimate

σ̃2 =
(
n1 − 1
n0 − 1

)
s21 +

(
n0 − n1

n0 − 1

){
(n− 1)s2 − (n1 − 1)s21

n − n1

}
.

They showed that referring their t-statistic to a t-distribution with 2n0 − 2
degrees of freedom is more robust than Stein’s method to drifts over time in
the population variance. They also proved that the type 1 error rate is no
greater than α.

Had we used the restricted test in Example 11.1, we would have continued
to 142 per arm instead of reducing the sample size. Suppose that with n =
142/arm, the pooled standard variance had been 169. We use the average first
stage sample size (70 + 72)/2 = 71 for n1 in the calculation of σ̃2
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Table 11.2. Type 1 error rate of the naive, nominal 0.05 level t-test for a restricted
design with sample size recalculation after fraction π (n1 observations per arm) of
the originally planned sample size. The original sample size yields 90 percent power
to detect an effect size of e0 = δ/σ0, where δ is the treatment effect and σ0 is the
guessed value of the standard deviation σ (Wittes et al., 1999 [WSZ99]).

1/e2
0 π n1 τ2 = σ2

0/σ2

.25 .50 1 2 4

1 .10 3 .0528 .0522 .0514 .0503 .0500
1 .25 6 .0518 .0528 .0515 .0501 .0500
1 .50 11 .0517 .0532 .0515 .0500 .0500
1 .75 17 .0516 .0533 .0514 .0500 .0500
1 .90 20 .0517 .0532 .0503 .0499 .0499

2 .10 5 .0497 .0512 .0508 .0501 .0500
2 .25 11 .0508 .0515 .0509 .0500 .0500
2 .50 22 .0507 .0515 .0509 .0500 .0500
2 .75 33 .0507 .0515 .0508 .0500 .0500
2 .90 39 .0504 .0519 .0513 .0493 .0502

5 .10 11 .0511 .0507 .0504 .0500 .0500
5 .25 27 .0504 .0506 .0504 .0500 .0500
5 .50 53 .0503 .0506 .0504 .0500 .0500
5 .75 80 .0503 .0506 .0504 .0500 .0500
5 .90 96 .0514 .0511 .0506 .0505 .0497

10 .10 22 .0516 .0505 .0502 .0500 .0496
10 .25 53 .0499 .0503 .0502 .0500 .0499
10 .50 106 .0502 .0503 .0502 .0500 .0500
10 .75 159 .0500 .0503 .0502 .0500 .0499
10 .90 190 .0512 .0504 .0497 .0504 .0492

σ̃2 =
(

71 − 1
142− 1

)
(122) +

(
142− 71
142− 1

){
(142− 1)(13)2 − (71 − 1)(12)2

142− 71

}

= 71.4894 + 97.5106 = 169 = s2.

Not surprisingly, because the sample size did not change from the original
plan, the restricted variance estimate is the usual pooled variance. Thus, the
t-test at the end of the trial is identical to the fixed sample t-test with 142/arm.
This would not have been the case had we increased the sample size.

11.2.4 Variance Shmariance?

Other variance estimates have also been proposed (Kieser and Friede, 2000
[KF00]), but does it really matter which variance is used? Results of Zucker

11.2 Methods Using Nuisance Parameter Estimates
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Table 11.3. Type 1 error rate of the naive, nominal 0.05 level t-test for an unre-
stricted design with sample size recalculation after fraction π (n1 observations per
arm) of the originally planned sample size. The original sample size yields 90 percent
power to detect an effect size of e0 = δ/σ0, where δ is the treatment effect and σ0 is
the guessed value of the standard deviation σ (Wittes et al., 1999 [WSZ99]).

1/e2
0 π n1 τ2 = σ2

0/σ2

.25 .50 1 2 4

1 .10 3 .0551 .0604 .0714 .0790 .0690
1 .25 6 .0520 .0547 .0607 .0625 .0527
1 .50 11 .0517 .0537 .0572 .0523 .0500
1 .75 17 .0516 .0535 .0540 .0500 .0500
1 .90 20 .0517 .0533 .0520 .0495 .0505

2 .10 5 .0510 .0522 .0551 .0615 .0665
2 .25 11 .0508 .0517 .0537 .0567 .0523
2 .50 22 .0507 .0516 .0533 .0510 .0500
2 .75 33 .0507 .0515 .0524 .0500 .0500
2 .90 39 .0504 .0519 .0520 .0505 .0500

5 .10 11 .0503 .0506 .0513 .0528 .0565
5 .25 27 .0503 .0506 .0512 .0519 .0511
5 .50 53 .0503 .0506 .0512 .0496 .0500
5 .75 80 .0503 .0506 .0510 .0500 .0500
5 .90 96 .0514 .0511 .0503 .0505 .0501

10 .10 22 .0501 .0503 .0506 .0512 .0527
10 .25 53 .0501 .0503 .0506 .0511 .0506
10 .50 106 .0502 .0503 .0506 .0485 .0500
10 .75 159 .0500 .0503 .0505 .0500 .0500
10 .90 190 .0512 .0504 .0503 .0515 .0496

et al. (1999) [ZWS99] show that in terms of unconditional type 1 error rate
and power, the original Stein procedure does at least as well as more contem-
porary variants. They compared the naive t-test to the following hypothetical
procedure: at the end of the trial God reveals the population variance, σ2,
and we mortals use it to form the z-score Z = (X̄T − X̄C )/(2σ2/n)1/2. That
z-score has a standard normal distribution under the null hypothesis. Stein’s
test outpowered the hypothetical z-test in most of the scenarios considered!
In other words, it was better from a power standpoint to use the first-stage
variance than the population variance. This confirms our earlier observation
that a disadvantage of the naive test is that it uses more data than Stein’s
to estimate the variance; using more data makes the final variance less pre-
dictable. Even if the Stein variance estimate is inaccurate, it is 100 percent
predictable after the first stage, ensuring the desired level of power or greater
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Table 11.4. Power for the naive t-tests described in Tables 11.2 and 11.3 (Wittes
et al., 1999 [WSZ99]).

Design 1/e2
0 τ2 = σ2

0/σ2 π
.10 .25 050 .75 .90

Restricted 1 .25 .79 .84 .87 .88 .89
.50 .83 .86 .88 .89 .89
1 .93 .93 .93 .94 .94
2 1 1 1 1 1
4 1 1 1 1 1

Unrestricted 1 .25 .77 .84 .87 .88 .89
.50 .78 .85 .88 .89 .89
1 .80 .86 .89 .90 .91
2 .81 .87 .92 .98 .99
4 .85 .93 .99 1 1

Restricted 10 .25 .90 .89 .90 .90 .90
.50 .89 .89 .90 .90 .90
1 .92 .91 .91 .91 .91
2 1 1 1 1 1
4 .99 1 1 1 1

Unrestricted 10 .25 .88 .89 .90 .90 .90
.50 .88 .89 .90 .90 .90
1 .88 .89 .90 .90 .90
2 .89 .90 .87 .98 .99
4 .89 .91 1 1 1

by (11.4). Zucker et al. (1999) [ZWS99] show by simulation that the naive
t-test lies between Stein’s t and the hypothetical z-test, and often is closer to
the hypothetical z-test.

The strongest argument against Stein’s method is that the population
standard deviation could change over the course of the trial because earlier
patients might differ from later ones. The variance estimate of the naive t-test
is more robust; if the second-stage variance estimate is larger than the first,
the naive variance will essentially be a weighted average of the two variances,
with weights proportional to the sample sizes of the two stages. Stein’s t-test
will use an anticonservative variance that results in inflation of the type 1
error rate (Proschan and Wittes, 2000 [PW00]).

11.2.5 Incorporating Monitoring

We next consider incorporating both sample size modification and monitoring.
The simplest way is to monitor only after modifying the sample size. Suppose

11.2 Methods Using Nuisance Parameter Estimates
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we reassess the sample size after n1 = n0/2 observations per arm, where n0

is the originally planned, per-arm sample size. We determine a new sample
size n(s21) based on the pooled variance. A simple modification of Stein’s
procedure is to use the internal pilot variance estimate s21 in all future t-
scores (Denne and Jennison 2000 [DJ00]). The t-score at the end of the trial
is Y/(s21/σ

2)1/2, where Y = (X̄T − X̄C)/(2σ2/n)1/2 is the z-statistic using
the population variance in the denominator. Similarly, we may write the t-
statistics at looks 1, . . . , k as (Y1, . . . , Yk)/(s21/σ2)1/2, where Yi is the z-statistic
on all data up to and including look i. By Result 11.1, the vector (Y1, . . . , Yk) is
independent of s21. Thus, the conditional distribution function of (Y1, . . . , Yk)
given s21 is its unconditional distribution function F (y1, . . . , yk), which is that
of B(t1)/t

1/2
1 , . . . , B(tk)/t1/2

k . That is, F (y1, . . . , yk) is multivariate normal
with zero mean vector and correlation matrix cov(Yi, Yj) = (ti/tj)1/2. Also,
2(n1−1)s21/σ2 has a chi-square distribution G2(n1−1)(x) with 2(n1−1) degrees
of freedom. The distribution of the cumulative t-statistics is therefore

Pr{(Y1, . . . , Yk)/(s21/σ
2)1/2 ≤ (u1, . . . , uk)}

=
∫ ∞

0

F

(
u1

√
x

2(n1 − 1)
, . . . , uk

√
x

2(n1 − 1)

)
G2(n1−1)(x)dx.

We can compute boundaries using this joint distribution.
This generalization of Stein’s method has the same drawback as Stein’s

method, namely the variance estimate does not use all of the observations.
A more appealing method is to use, at each stage, the variance of all avail-
able observations. We describe a method that works well when the sample
size is large. For small sample sizes, see the method of Denne and Jennison
(2000) (DJ00). We first determine the per-arm sample size n(s21) based on the
pooled variance s21. Once n is fixed, we can convert group-sequential z-score
boundaries to p-value boundaries as in Chapter 8, as shown in Example 11.2
below.

Example 11.2. A pilot study is undertaken to compare a structured diet and
exercise program to advice only with respect to lowering hemoglobin A1c
(HbA1c) among people with impaired glucose tolerance, a risk factor for de-
velopment of diabetes. The primary outcome is the change in HbA1c from
baseline to end of study. Suppose that the little information available about
the variance σ2 of such changes indicates that σ2 ≈ 1. We would like to detect
an HbA1c difference between treatment arms of 0.4. We determine an initial
sample size and use part of that sample to determine a new sample size n(s21)
based on the internal pilot pooled variance s21. We will then take interim
looks after (1/2)n, (3/4)n, and n observations per arm using the O’Brien-
Fleming spending function. Before the trial begins, we use the Lan-DeMets
software to calculate the needed sample size taking monitoring into account.
We choose “Drift” from the “Compute” menu, enter “3” for “Interim Analy-
ses,” choose “User Input” under “Information times,” and enter 0.50, 0.75, and
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1 in the “Time” column of the matrix at the upper right of the screen. Making
sure to select “Two-Sided Symmetric” under “Test Boundaries,” “Spending
Function” under “Determine Bounds,” and “O’Brien-Fleming” from “Func-
tion,” we set power and alpha at 0.90 and 0.05 and hit enter to find that
the drift parameter θ, the expected value of the final z-score, is 3.2711. Be-
cause we expect a treatment difference of 0.4 and a variance of 1, it fol-
lows that θ = 0.4/(2/N )1/2. Equating θ to 3.2711 and solving for N yields
N = 2(3.2711)2/(0.4)2 = 134 per arm. This produces our original calculated
sample size. We plan to reassess the necessary sample size after 50 per arm.

Suppose that after 50 observations per arm, the pooled variance is 1.69.
With a standard deviation of 1.3 instead of 1, the expected z-score with n ob-
servations per arm at the end is 0.4/{2(1.3)2/n}1/2. Equating this to 3.2711
and solving for n yields n = 2(1.3)2(3.2711)2/0.42 = 227 per arm, or 454 total,
a substantial increase from the originally planned 268 participants. Suppose
cost and other factors lead us to to a sample size of 175 per arm, 350 to-
tal. If we take the efficacy looks after 87, 131, and 175 per arm, the z-score
boundaries are 2.9626, 2.3590, and 2.0140, respectively. Converting these to
p-value boundaries yields 2{1 − Φ(2.9626)} = .003, 2{1 − Φ(2.3590)} = .018,
and 2{1 − Φ(2.0140)} = .044. After 87 participants per arm, we compute the
nominal p-value using the t-distribution with 2(87− 1) = 172 degrees of free-
dom; if it is .003 or less, we stop the trial and reject the null hypothesis. If the
p-value exceeds .003, we proceed to the next analysis with 131 per arm and
compute the nominal p-value using the t-distribution with 2(131 − 1) = 260
degrees of freedom. We will stop the trial and reject the null hypothesis if
that p-value is .018 or less. If the p-value exceeds .018, we proceed to the final
analysis with 175 per arm. We reject the null hypothesis at the end of the
trial if the p-value using the t-distribution with 2(175 − 1) = 348 degrees of
freedom is .044 or less.

11.2.6 Blinded Sample Size Reassessment

Decisions about whether to stop a trial are often left to the unblinded DSMB,
but sometimes the investigators themselves want to increase the sample size of
a trial. Unblinding them can compromise the trial’s integrity in many possible
ways. Suppose, for example, that the investigator is aware of interim data from
the trial indicating an apparently large treatment effect. An investigator who
believes that a particular participant is on placebo may try to compensate
by making exercise and dietary recommendations that might not be made if
the patient is thought to be on the active drug. An investigator who believes,
rightly or wrongly, that the answer is already in might recruit future patients
less aggressively (investigators are often less likely than a DSMB to appreciate
the fact that repeated looks at the data diminish the strength of evidence of
a nominally significant treatment difference). For these and other reasons,
investigators should remain blinded yet still be able to make an informed
decision about whether to increase the sample size.

11.2 Methods Using Nuisance Parameter Estimates
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It may seem innocuous enough to reveal the pooled variance or even the
variances in each arm to a blinded investigator. After all, variances are a
far cry from treatment differences. Still, a clever investigator will be able to
deduce the treatment effect as follows. First compute the “lumped” variance
of the 2n1 observations in the internal pilot study:

s2L1 =
1

2n1 − 1

2n1∑

i=1

(Xi − X̄1)2,

where X̄1 is the mean of all 2n1 observations in stage 1. Even blinded inves-
tigators can compute this quantity if they have access to outcome data for
individual participants. Note that

(2n1 − 1)s2L1

=
∑

i∈T

(Xi − X̄T1 + X̄T1 − X̄1)2 +
∑

i∈C

(Xi − X̄C1 + X̄C1 − X̄1)2

= n1{(X̄T1 − X̄1)2 + (X̄C1 − X̄1)2} +
∑

i∈T

(Xi − X̄T1)2 +
∑

i∈C

(Xi − X̄C1)2

= n1(X̄T1 − X̄C1)2/2 +
∑

i∈T

(Xi − X̄T1)2 +
∑

i∈C

(Xi − X̄C1)2

= n1δ̂
2
1/2 + 2(n1 − 1)s21. (11.7)

The third line follows from the fact that (X̄T1 + X̄C1)/2 = X̄1. Equation
(11.7) shows that we can write the first-stage treatment effect estimate δ̂1
as a function of the lumped and pooled variances. Thus, a mathematically
clever investigator can deduce the treatment effect from knowledge of these
two variances.

Gould and Shih (1992) [GS92] and Gould (1995) [G95] proposed ways
to adjust the sample size using only blinded data. One can avoid unblind-
ing by making sample size decisions based on the lumped variance s2L1 and
the originally hypothesized treatment effect δ0. If the originally hypothesized
treatment effect is accurate, we can estimate the pooled variance from the
lumped variance using (11.7):

ŝ2 =
(2n1 − 1)s2L1 − n1δ

2
0/2

2(n1 − 1)
. (11.8)

We could substitute (11.8) for σ2 in the approximate sample size formula
(11.1). If the assumed treatment effect is overly optimistic, the variance es-
timate (11.8) will be too small. One could instead substitute s2L1 for s21 in
(11.1). We use these variance estimates only to determine the final sample
size; we use the usual fixed-sample t-statistic at the end of the trial.

The lumped variance seems overly conservative because if the treatment
effect is much larger than expected, the lumped variance will also be large.
From (11.7) and the fact that δ̂1 will be close to δ as n1 → ∞, the lumped
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variance tends to ∞ as δ → ∞. Of course, in realistic settings the treatment
effect is rarely huge. From (11.7), the ratio of lumped to pooled variances is

s2L1

s21
=

n1ê
2
1

2(2n1 − 1)
+

2(n1 − 1)
2n1 − 1

≈ 1 + ê21/4, (11.9)

where ê1 = δ̂1/s1 is the estimated effect size. The effect size in a typical clinical
trial might be on the order of one quarter or one third. Equation (11.9) shows
that if e = 1/3, the lumped variance is less than 3 percent larger, on average,
than the pooled variance; the lumped standard deviation is less than 1.5
percent larger than the pooled variance. Even if the effect size is one half, the
lumped standard deviation is only 3 percent larger than the pooled standard
deviation.

Gould and Shih (1992) [GS92] and Gould (1995) [G95] used the expec-
tation maximization (EM) algorithm to obtain a more complicated variance
estimator, but it does not appear to offer substantial improvement over the
lumped variance. It has also been the source of some recent controversy (Friede
and Kieser, 2002 [FK02]; Gould and Shih, 2005 [GS05]).

We emphasize that although the lumped variance is used to compute the
sample size, the usual fixed-sample t-test is used at the end of the trial. The
distribution of the fixed-sample t-test using adaptive sample size modification
based on the lumped variance is not exactly t, just as the distribution of the
naive t-test using sample size modification based on the pooled variance was
not exactly t. Those who prefer an exact p-value can consult Kieser and Friede
(2003) [KF03], who computed the exact distribution of the fixed sample t-test
under adaptive sample size modification based on the lumped variance.

Govindarajulu (2003) [G03] considered a different final test statistic more
akin to Stein’s method. Just as Stein’s method uses the first-stage pooled vari-
ance in the final t-statistic, Govindarajulu (2003) used the first-stage lumped
variance in the final t-statistic, and proved that the procedure was asymptot-
ically valid even for nonnormal data.

11.3 Methods Using Nuisance Parameter Estimates: The
Binary Outcome Case

We can obtain an approximate sample size formula for trials with a dichoto-
mous endpoint by using formula (11.1) with δ = pC − pT . The variance σ2 is
p(1 − p), where p = (pT + pC)/2 is the event probability among all patients
in the trial. Because p(1 − p) increases in p for p ≤ 0.50, it might seem that
overestimation of p leads to overestimation of the variance when p is small,
which ought to be conservative. This is true for a fixed value of δ = pC − pT ,
but we often express treatment effects for a binary outcome trial in terms of a
percentage reduction. For example, a 20 percent treatment reduction means
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that pT = 0.80pC; the size of the absolute treatment difference, pC − 0.80pC,
increases as pC increases. If we think the control rate will be 0.30 when in
fact it is 0.20, the overestimate of the absolute treatment difference makes the
trial underpowered even though σ2 = p(1 − p) may be overestimated. We il-
lustrate using the slightly more accurate and commonly used per-arm sample
size formula

n =

{
zα/2

√
2p(1 − p) + zβ

√
pC(1 − pC) + pT (1 − pT )

}2

(pC − pT )2
, (11.10)

where again p = (pC + pT )/2 is the event probability among all patients in
the trial. Suppose the control probability is expected to be 0.25. A 20 per-
cent treatment reduction gives pC = 0.25 and pT = (0.80)(0.25) = 0.20. The
sample size from (11.10) under this scenario is 1464 per arm. Sample size
calculation is very sensitive to the control probability. For example, if the
true control probability is 0.22 instead of 0.25, the sample size would be 1722
per arm; the total sample size increases by more than 500 even though the
control event probability was overestimated by a fairly small amount. Over-
estimation of the control probability is common; it can result from different
sources. Control event rates may be estimated from observational studies; pa-
tients volunteering for clinical trials are typically healthier than the general
population. Patients in clinical trials may receive better background care than
they would if they were not in the trial. Furthermore, data used to estimate
the control event probability may be a few years or even a few decades old.
Medical care is likely to have improved since then, resulting in lower event
rates. Less commonly, the event probability is underestimated, resulting in a
trial that is larger, and therefore more expensive, than necessary.

We might be able to avoid these problems by changing the sample size
on the basis of an estimate of the control probability derived from an inter-
nal pilot study. For example, suppose that the control proportion after 500
patients turned out to be 105/500 = 0.21. If we continued to assume a 20
percent reduction, then pT = (0.80)(0.21) = 0.168, so the sample size us-
ing (11.10) would be 1824 per arm. Because we peeked only at the control
event proportion, maintaining the originally hypothesized treatment effect,
the situation seems analogous to the continuous outcome setting whereby
the pooled variance gave us no information about the treatment effect. A
closer examination reveals a potential problem. The first-stage control pro-
portion p̂C1 and treatment effect estimate δ̂1 = p̂C1 − p̂T1 are correlated:
cov(p̂C1, p̂C1 − p̂T1) = var(p̂C1) = pC(1 − pC)/n1. For a fixed percentage
treatment reduction, the final sample size decreases as the first-stage con-
trol proportion p̂C1 increases, and because p̂C1 is positively correlated with
δ̂1 = p̂C1 − p̂T1, a larger than expected first-stage treatment effect estimate
means a smaller than expected final sample size. In an extreme situation, a
huge interim control proportion might require no additional observations. But
a huge control event proportion probably also means a large treatment effect
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estimate (because of the positive correlation between p̂C1 and p̂C1 − p̂T1), so
the trial might stop precisely when the treatment effect is large. That sug-
gests the possibility of inflating the type 1 error rate when the sample size is
increased on the basis of the control event proportion.

Fortunately, simulation studies have not borne out the theoretical possi-
bility of type 1 error rate inflation, and asymptotic arguments support the
validity of modifying the sample size on the basis of the control event propor-
tion.

11.3.1 Blinded Sample Size Reassessment

For binary outcome trials without an independent DSMB, maintaining the
blind is highly desirable for the same reasons as in continuous outcome trials.
Gould (1992) [G92] showed how to maintain the blind and still make an in-
formed sample size choice (see also Gould, 1995 [G95]). He considered three
different ways to express the treatment effect: a difference in proportions, a
ratio of proportions, or an odds ratio. The approach is the same whichever
way we express the treatment effect; instead of peeking at the control pro-
portion, we look at the overall event proportion among all trial participants.
From the overall event proportion and the originally assumed treatment ef-
fect we deduce the event probabilities in each arm, from which we compute
the sample size. We illustrate using the ratio of proportions approach, which
corresponds to a treatment effect expressed as a fixed percentage reduction.

Recall that in the example above we expected the control probability to be
0.25, so we originally anticipated a sample size of 1464 per arm. But suppose
after 496 and 502 control and treatment participants have been evaluated,
the overall event proportion is 320/998 = 0.321. We use this as an estimate
of (pC + pT )/2. We continue to assume the same treatment effect, namely
pT/pC = 0.80. Simultaneously solving (pC + pT )/2 = and pT/pC = 0.80 re-
sults in pC = 0.357 and pT = 0.285. Substituting these values into formula
(11.10) results in a sample size of 882 per arm. More generally, if the first-stage
overall event proportion is p̂1 = (nC1p̂C1+nT1p̂T1)/(nC1 +nT1) and the orig-
inally hypothesized relative treatment effect is R, we solve the simultaneous
equations

pT/pC = R and
pC + pT

2
= p̂1

to find
pC =

2p̂1

1 + R
and pT =

2Rp̂1

1 +R
.

We substitute these values into (11.10) to obtain the per-arm sample size.
Compare sample size recalculation based on the overall event propor-

tion to that based on the control proportion. The overall proportion, p̂1 =
(nC1p̂C1 + nT1p̂T1)/(nC1 + nT1), is uncorrelated with the treatment effect
estimate, p̂C1 − p̂T1: cov(p̂1, p̂C1 − p̂T1) = (nC1 + nT1)−1{cov(nC1p̂C1, p̂C1) +
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0 + 0 − cov(nT1p̂T1, p̂T1)} = (nC1 + nT1)−1{pC(1 − pC) − pT (1 − pT )}. Un-
der the null hypothesis, pC = pT , so p̂1 is uncorrelated with the treatment
effect estimate. This lack of correlation does not imply independence of δ̂1
and p̂C1 − p̂T1. Indeed, they cannot be independent, as the following simple
argument shows: if p̂1 = 0 or p̂1 = 1, then p̂C1 and p̂T1 are both 0 or both
1, respectively. Thus, knowledge that p̂1 = 0 or p̂1 = 1 gives us complete
knowledge of p̂C1 and p̂T1, and therefore of δ̂1. Nonetheless, the fact that p̂1

and p̂C1 − p̂T1 are asymptotically bivariate normal and uncorrelated means
that they are asymptotically independent. By contrast, recall that the con-
trol event proportion was correlated with the treatment effect estimate. The
following result is analogous to Result 11.1.

Result 11.2 If the ratio of the treatment to control sample sizes remains con-
stant throughout a trial, the set of current and past overall event proportions
is uncorrelated with, and asymptotically independent of, the set of current and
future treatment effect estimates.

There is nothing to preclude folding in evidence from other sources in
the sample size decision. Gould (1992) [G92] suggests a Bayesian strategy
quantifying prior information using a beta prior density f(p) = pa−1(1 −
p)b−1/{B(a, b)} for the overall event probability p. One appealing way to do
this is analogous to the method outlined in Chapter 10 for a normal prior
distribution for the drift parameter in that it involves specification of a prior
estimate and the number of observations that estimate is worth. Let X and p
be the total number of events and the overall probability of event, respectively.
Under the null hypothesis, the conditional distribution ofX given p is binomial
(n, p). The posterior distribution of p given X = x is beta with parameters
x + a and n − x + b. It is as if the prior information were comparable to
observing a+ b patients, a of whom had an event; when we put together this
prior “pseudo data” with the actual data consisting of x patients with and
n − x patients without an event, we get x + a patients with and n − x + b
patients without an event, hence the parameters of the posterior distribution.
With this interpretation in mind, we choose a + b on the basis of how many
patients we feel our prior opinion is worth. We then equate a/(a + b) to our
estimate of the overall event probability. For example, if we expect the overall
event probability to be 0.25, and we deem the prior information to be worth
50 patients, we set a+ b = 50 and a/(a+ b) = 0.25. This yields a = 12.5 and
b = 37.5.

We saw that the variance estimator at the end of an adaptive continuous
outcome trial is slightly too small. The nuisance parameter estimate at the end
of a binary outcome trial is slightly too large. For example, consider sample
size recalculation based on the interim control proportion. Conditioned on
p̂C1, the expected value of the control event proportion at the end of the trial
is
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E(p̂C | p̂C1) = E

{
(1/n)

(
n1p̂C1 +

n∑

i=n1+1

Xi

) ∣∣∣ p̂C1

}

=
n1p̂C1 + (n− n1)pC

n

= pC +
n1(p̂C1 − pC)

n

and therefore the unconditional expectation of p̂C is

E(p̂C) = pC + n1E{(p̂C1 − pC)(1/n)}
= pC + n1cov(p̂C1, 1/n).

For a trial powered to detect a given percentage reduction, n decreases as p̂C1

increases. Thus, 1/n is an increasing function of p̂C1, so the above covariance
is positive. Thus, p̂C slightly overestimates pC .

11.4 Adaptive Methods Based on the Treatment Effect

11.4.1 Methods

In our experience, most trials do not require adaptive methods to change
the sample size on the basis of the treatment effect, but once in a while
trials start with virtually no information about the treatment effect. This
has led to the development of extremely flexible methods allowing changes in
sample size, or even other features such as the primary endpoint, after seeing
accumulating data. Flexibility is good, but it is not without cost. Indeed,
monitoring itself was developed because of the need for flexibility; we would
have more statistical power if we examined the data only at the end, but
ethics and practicality demand interim monitoring.

Example 11.3. Consider a trial comparing the change in LDL cholesterol from
baseline to end of study in a control and intervention diet. Before the trial
begins, we expect the standard deviation of change to be 12 mg/dl, and we
want to detect a difference of 6 mg/dl between the diets. The sample size for
90 percent power is about 84/arm. For simplicity, assume that we are very
confident that the standard deviation is 12, so we will treat it as known. After
42/arm, the estimated treatment effect is smaller than expected. Is it valid
to increase the sample size, from 84/arm to, say, 100/arm and analyze the
results as if the sample size of 100/arm had been fixed in advance?

The final treatment effect estimate is δ̂ = (n1δ̂1 + n2δ̂2)/(n1 + n2) =
w1δ̂1 +w2δ̂2, where wi = ni/(n1 + n2) and δi is the treatment effect estimate
using only data from stage i, i = 1, 2. We have seen this scenario before
(Section 7.5); δ̂1 and δ̂2 are both unbiased estimators, but the weight attached
to each depends on the size of δ̂1. In fact, if δ̂1 is large enough, we will not
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even proceed to the second stage, so δ̂1 will receive full weight. Similarly, the
final z-score

Z =
√
n1Z1 +

√
n2Z2√

n1 + n2

is the weighted combination w
1/2
1 Z1 + w

1/2
2 Z2 of the stage-specific z-scores

Z1 and Z2. It is as if we had data from two different studies, but hid the
data from the second study if the first study’s results showed a strong benefit.
Clearly, this tack must yield an overly optimistic picture of the treatment’s
effectiveness. Proschan and Hunsberger (1995) [PH95] showed that for a one-
tailed test at level α, the actual type 1 error rate can be as high as α +
exp(−z2

α/2)/4. The actual type 1 error rate is more than doubled for a one-
tailed test at level 0.05.

How can we solve this problem? One way is to weight the first- and second-
stage z-scores as originally intended. We originally planned to have 84 obser-
vations per arm, so the originally planned first- and second-stage weights were
w1 = w2 = 1/2. Suppose we agree to use the z-score

Z =
Z1 + Z2√

2
(11.11)

irrespective of the actual second-stage sample size. We will show that even
when the second-stage sample size is changed on the basis of the first-stage
results, Z1 and Z2 are independent standard normals under the null hypothe-
sis. To see this, consider the conditional distribution of Z2 given Z1. The only
information Z1 gives is the second-stage sample size n2 = n2(Z1); given n2,
Z2 has a standard normal distribution under H0. Because the null conditional
distribution of Z2 given Z1 is standard normal irrespective of the value of Z1,
it follows that Z1 and Z2 are independent under H0 (note: if we stop at stage
1, we could artificially generate Z2 from a standard normal distribution; it
would not be used anyway). Thus, the null distribution of Z = (Z1 +Z2)/21/2

is standard normal even if the second-stage sample size changes on the basis of
Z1. One adaptive two-stage procedure would examine the first-stage z-score
Z1, determine the second-stage sample size n2(Z1), and then refer (11.11)
to a standard normal distribution at the end of the trial. We will call this
the equally weighted z-method because it weights the stage 1 and 2 z-scores
equally regardless of the sample sizes.

Once again, we have good news and bad news. The good news is that we
can refer (11.11) to a standard normal distribution irrespective of the second-
stage sample size. The bad news is that we refer (11.11) to a standard normal
distribution irrespective of the second-stage sample size! That is, we weight the
two z-scores equally even if the second stage is much larger than the first, and
herein lies the controversy over adaptive methods. If the second-stage sample
size changes too drastically, the adaptive procedure has very poor operating
characteristics. For example, if Z1 = 0 and Z2 = 2.5, then (Z1 + Z2)/

√
2 =

1.77 < 1.96 is not statistically significant even if n2 is astronomically large.
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Worse yet, it is possible to reject the null hypothesis H0 : µ = 0 in favor
of H1 : µ > 0 when the usual fixed-sample z-score is negative (Proschan and
Hunsberger, 1995 [PH95]). Thus, adaptive methods perform poorly in extreme
circumstances. We return to these controversies after we briefly review the
history of adaptive methods based on the treatment effect.

For simplicity, we assumed that the variance is known, but we can avoid
this by using the inverse normal method outlined in Chapter 8: we first com-
pute the p-value pi corresponding to the t-statistic applied only to the data
of stage i, i = 1, 2, and then compute Zi = Φ−1(1 − pi). We apply adaptive
methods to the i.i.d. standard normals Z1 and Z2. This method was proposed
for adaptive designs by Lehmacher and Wassmer (1999) [LW99], though its
history in nonadaptive settings dates much further back (Hedges and Olkin,
1985 [HO85]).

One of the earliest papers on adaptive methods using the treatment effect,
Bauer and Köhne (1994) [BK94], worked directly with the p-values p1 and p2

rather than transforming them to i.i.d. normals. They noted that p1 and p2

are i.i.d. uniforms under the null hypothesis even if the second-stage sample
size is changed. The argument is essentially the same as above: given p1, the
second-stage sample size is fixed, and the conditional distribution of p2 given
p1 is uniform. Because the conditional distribution of p2 given p1 is the same
for all values of p1, p1 and p2 are independent. Bauer and Köhne (1994) [BK94]
proposed using Fisher’s combination of p-values

−2 ln(p1p2),

whose null distribution is chi-squared with 4 degrees of freedom. The two-stage
procedure uses the first-stage p-value to determine the second-stage sample
size, and then rejects the null hypothesis at the end of the second stage if
−2 ln(p1p2) ≥ χ2

4,α, where χ2
4,α is the 1−αth percentile of a chi-squared distri-

bution with 4 degrees of freedom. Note that if −2 ln(p1) ≥ χ2
4,α, then rejection

at the end of the second stage is assured, so we can stop at the first stage.
We will call Bauer and Köhne’s procedure the equally weighted p-method be-
cause it equally weights the first- and second-stage p-values. This method is
very flexible because it can accommodate more drastic design changes. For
example, one could conceivably change the primary outcome halfway through
the trial; under mild conditions, the p-values from the first and second stages
are still independent uniforms under the null hypothesis. Of course, drastic
adaptations may not be readily accepted by the clinical trial community.

Proschan and Hunsberger (1995) [PH95] looked at two-stage adaptive
methods from a different perspective. They were interested in increasing the
sample size to achieve a given conditional power. For example, for the equally
weighted z-method, we can compute conditional power by fixing z1 and de-
termining the values of Z2 leading to rejection of the null hypothesis. That is,
we re-express the rejection region (Z1 + Z2)/21/2 > zα as Z2 > 21/2zα − z1
(Figure 11.1). Conditioned on Z1 = z1, it is as if we conducted a test on the
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second-stage data only, using the boundary
√

2zα − z1. The type 1 error rate
for a test using boundary

√
2zα − z1 is

A(z1) = P0(Z2 ≥
√

2zα − z1)
= 1 − Φ(

√
2zα − z1).

Think of the “A” in A(z1) as signifying the “alpha” to use on the second-
stage data. Proschan and Hunsberger called A(z1) a conditional error function
because it dictates the amount of conditional type 1 error rate to use given
z1. Thus, the equally weighted z-method is fully equivalent to the following:
determine, on the basis of the observed first-stage z-score z1, the alpha level
A(z1) to use for the second-stage z-score Z2. Reject at the second stage if
Z2 ≥ zA, where zA is the standard normal deviate exceeded with probability
A(z1).

Fig. 11.1. The boundary of a rejection region in the plane (top panel). Having
observed Z1 = z1, we can express the rejection region for Z2 as Z2 ≥ c2(z1); the
associated (conditional) type 1 error rate is A(z1) = 1 − Φ(c2(z1)). Thus, we may
also express c2(z1) as zA, the point on the standard normal curve whose area to the
right is A = A(z1) (bottom panel).

z A

z1

0
zA

z2
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This equivalent formulation makes it very easy to compute conditional
power. With second-stage sample size n2, Z2 is N(δ/(2σ2/n2)1/2, 1), and con-
ditional power is

CP(n2, δ) = 1 − Φ

(
zA − δ√

2σ2/n2

)
. (11.12)

To achieve conditional power 1 − β, we equate (11.12) to 1 − β and solve for
n2. The solution is

n2 = 2σ2(zA + zβ)2/δ2. (11.13)

Notice that formulas (11.12) and (11.13) are unconditional power and sample
size formulas for a z-test conducted at alpha level A(z1).

Consider the common elements of the equally weighted z- and p-methods.
Both use a rejection region in the (z1, z2)-plane. For the equally weighted z-
method, the region is (z1 + z2)/21/2 ≥ zα; for the equally weighted p-method,
the region can be expressed as −2 ln[{1 − Φ(z1)}{1 − Φ(z2)}] ≥ χ2

4,α. Both
methods use the rejection region even if the second-stage sample size changes.
In both cases, we can express the rejection region in the equivalent form Z2 ≥
zA, where A = A(z1) is the conditional error function, a function satisfying

0 ≤ A(z1) and
∫
A(z1)φ(z1)dz1 = α.

Conditional power depends on the adaptive method selected only through zA.
These common features hold for more general adaptive methods. The basic

idea of most adaptive procedures is to apply an alpha-level rejection region
in the plane even if the second-stage sample size changes. The properties of
the procedure depend on zA, where A(z1) is its induced conditional error
function. Thus, a two-stage adaptive procedure can be described either by its
rejection region in the plane or, equivalently, by the conditional error function
it induces.

We now present heuristic reasoning behind the choice of rejection region
(z1, z2) ∈ R. Notice that the mean of Z1 is n1/2

1 δ/(2σ2)1/2, and the con-
ditional mean of Z2 given n2 is n1/2

2 δ/(2σ2)1/2. We don’t know n2 in ad-
vance, so we don’t know {E(Z1),E(Z2 |n2)} in advance. All we know is that
{E(Z1),E(Z2 |n2)} should lie in the positive quadrant if the treatment is ef-
fective; as n2 ranges from 0 to ∞, {E(Z1),E(Z2 |n2)} ranges over the positive
quadrant under the hypothesis that δ > 0. This property makes positive
quadrant tests attractive (Proschan, 2004 [P04]). To protect ourself against
possibly large departures of n2 from its original target, we could consider the
likelihood ratio test for alternatives in the positive quadrant, leading to the
rejection region Z2

1 +Z2
2 ≥ k2. The boundary of this rejection region is a quar-

ter circle; the associated conditional error function satisfying z2
1 + z2

A = k2 is
called the “circular” conditional error function. If we took a more local view,
we would protect ourselves against smaller increases or decreases of sample
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size. If n2 = n1 were fixed, the most powerful test would be Z > zα, where
Z is the equally weighted z-score (11.11). Thus, we would expect the equally
weighted z-method to behave well when n2 does not change much from its
original target. This is equivalent to using a “linear” conditional error func-
tion A(z1) such that zA = 21/2zα−z1. An important advantage of the equally
weighted z-method is that we pay no penalty if we do not change the second-
stage sample size. That is, when σ is known, the test at the end is identical
to the fixed sample z-test if n2 does not change. For these reasons, we focus
on the equally weighted z-method.

Adaptive methods can also also incorporate stopping at stage 1 if Z1 is
quite small (stopping for futility). Lan and Trost (1997) [LT97] proposed the
following rule for stopping early for futility. If conditional power a) drops below
a lower limit l, stop for futility; b) if it exceeds an upper limit u, continue to
the originally planned sample size; c) if it lies between l and u, extend the
trial to achieve conditional power u. The authors showed that with the interim
look at the planned halfway point, and l = 0.1, u = 0.85, and α = 0.025, the
type 1 error rate estimated from a million simulations was 0.022.

We could combine adaptive sample size methods with early stopping for
benefit. For example, to extend the equally weighted z-method to incorpo-
rate early stopping, we could apply standard monitoring boundaries to the
equally weighted z-scores irrespective of n2. Lehmacher and Wassmer (1999)
[LW99] and Cui, Hung, and Wang (1999) [CHW99] independently proposed
the same k-stage analog incorporating monitoring. Suppose we plan k looks
after equal increments of information, and we specify the monitoring bound-
aries c1, . . . , ck. That is, we plan to reject the null hypothesis at stage i if

z1 + . . .+ zi√
i

≥ ci. (11.14)

At a fixed interim analysis (at the planned halfway point, for example) we may
decide to increase the sample size and therefore to change the future stage
sizes. As long as we continue to weight the z-scores equally as in (11.14),
the procedure maintains level α. Similarly, if the planned look times were
not equally spaced, as long as we use the original weighted combination of
z-scores, the procedure maintains its type 1 error rate. In fact, Fisher (1998)
[F98] proved that as long as the weight attached to the z-score at the current
stage depends only on previous z-scores, not the current one, these “self-
designing” trials maintain the correct type 1 error rate (see also Shen and
Fisher, 1999 [SF99]). We will restrict attention to methods maintaining the
originally planned weights.

Example 11.4. Consider a trial with three planned looks, after 100, 150, and
200 observations per arm and using the O’Brien-Fleming-like spending func-
tion. The boundaries using the O’Brien-Fleming-like spending function and in-
formation fractions 1/2, 3/4, and 1 are 2.9626, 2.3590, and 2.0140. We use the
first-stage z-score to reevaluate the second- and third-stage sample sizes. Even



11.4 Adaptive Methods Based on the Treatment Effect 209

if we decide to change the second- and third-stage sample sizes, the weights
attached to the stagewise z-scores are those corresponding to fixed sample
sizes 100, 50, and 50. For example, suppose the first-stage z-score is smaller
than expected, say Z1 = 0.20. As a result, we decide to increase each of the
second- and third-stage looks to 100 per arm. If the z-score for the second-stage
data were Z2 = 0.55, then the cumulative z-score at the second stage would
be
√

100/150Z1 +
√

50/150Z2 = (0.8165)(0.20) + (0.5774)(0.55) = 0.481
(even though the second-stage sample size is the same as the first), just as
it would be with fixed first- and second-stage sample sizes of 100 and 50.
Because this cumulative z-score is less than the boundary value 2.3590, we
proceed to the third look. The cumulative z-score at the third look will be√

100/200Z1 +
√

50/200Z2 +
√

50/200Z3, just as with fixed sample sizes of
100, 50, and 50. We compare this cumulative z-score to the boundary 2.0140.

11.4.2 Pros and Cons

Adaptive methods offer great flexibility in clinical trials. For example, con-
sider two-stage methods. Having observed z1, we may select the second-stage
sample size based on conditional power under various assumptions about the
treatment effect and other factors. We need not specify in advance a rule
n(z1) dictating what we would do for every conceivable value of z1; instead
we consider only the value z1 actually observed, making the mild assump-
tion that the human mind behaves like a measurable function of z1. With the
equally weighted z-method, if we decide to maintain the original sample size,
the analysis is the same as for a fixed sample size test.

Flexibility has a price; the downside of adaptive methods is that if the
sample size is changed, the weights attached to the z-scores are suboptimal.
Another way to express the problem is to say that that because inference is
not based on the sufficient statistic, these methods lose efficiency (Jennison
and Turnbull, 2003 [JT03]). In that regard, Tsiatis and Mehta (2003) [TM03]
proved that a two-look adaptive method in which the final sample size could
take one of K possible values is less efficient than a group-sequential method
with looks at each of the possible sample sizes of the adaptive method. Thus,
if the final sample size of the adaptive design could take on any of 200 dif-
ferent values, the group-sequential design would require 200 looks, which is
generally not practical. The comparison also assumes a fixed maximum sam-
ple size, whereas the point of adaptive designs is that one need not prespecify
a maximum sample size.

One can make adaptive designs look either bad or good depending on one’s
perspective. Given an adaptive design and a fixed maximum sample size, one
can find a more powerful group-sequential design (with possibly an imprac-
tical number of look times). On the other hand, given that group-sequential
design, one can make it more powerful by increasing the sample size and using
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the same boundaries, as in Example 11.4. This endless one-upsmanship is rem-
iniscent of an exchange between the federal government and Frank Proschan
(Michael Proschan’s father), who was seeking employment (Hollander, 1995
[H95]). The government issued a craftily worded letter asking, “Would you
accept, if offered, a position as statistician at a salary of...” Proschan recog-
nized that it was not an offer, but rather an attempt to gain the upper hand
by assessing his willingness to accept such an offer. Not to be outdone, he con-
templated responding with, “Would you offer, if I were to accept, if offered,
a position as statistician at a salary of ...” The specification of a maximum
sample size might seem at first very practical. But is it reasonable to spec-
ify that one is entirely willing to entertain sample sizes up to and including
1, 000, but entirely unwilling to consider a sample size of 1, 001 under any
circumstances? The debate over adaptive methods is likely to continue, and
in the process, spawn improved methods.

In some situations there is no substitute for adaptive methods (Mehta,
2005 [M05]). For example, suppose a pharmaceutical company initially powers
a trial to detect a 25 percent benefit, but is then bought by another company
that would be satisfied to show a 20 percent reduction. Halfway through the
trial, the company wants to consider increasing the sample size. But whether
it should increase the sample size surely depends on whether interim results
are promising. The new company would want to make sure that conditional
power to detect a 20 percent benefit is high. Only adaptive methods allow an
increase in sample size under such circumstances (Shih, 2005 [S05]). As Lan
and Soo (2005) [LS05] point out, the sample size choice might be made on
the basis of either conditional or unconditional power, depending on the goal
and the interim results of the trial.

11.5 Summary

Adaptive methods recalculate sample size using data from an internal pilot
study. The methods come in two flavors: those estimating nuisance parameters
only, and those estimating both the treatment effect and nuisance parameters.
The former, which are less controversial, are of two types: those breaking the
blind and those maintaining the blind. In either case, one can usually analyze
the final data as if the sample size had been fixed in advance. Table 11.5
summarizes adaptive methods based on a nuisance parameter. Coffey and
Muller (1999) [CM99] show how to calculate exact test size and power under
various scenarios.

Adaptive methods that estimate the treatment effect are very flexible but
controversial. One concern is that they could be used to try to detect effects
that are smaller than the minimally clinically relevant difference. Another is
their lack of efficiency. If the sample size is changed greatly from what was orig-
inally planned, adaptive methods can be quite inefficient. Nonetheless, when
used correctly, some adaptive methods based on the treatment effect (namely
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Table 11.5. Comparison of sample size recalculation methods based on the nuisance
parameter for trials with a continuous or dichotomous outcome.

Continuous Dichotomous

Unblinded Method

nuisance parameter σ2 pC

nuisance par. estimator pooled variance control proportion

(δ̂1, n) independent negatively correlated

method at end Stein & variants, naive t naive proportions test

asymptotically valid? yes yes

Blinded Method

nuisance parameter σ2 overall p

nuisance par. estimator lumped variance combined event proportion

method at end naive t naive proportions test

asymptotically valid? yes yes

the equally weighted z-method) allow small increases in sample size and power
at no additional cost in the sense that if the sample size is not changed, the
test at the end is the same as a fixed-sample t-test. Furthermore, in some
situations it is important to have high conditional, rather than unconditional,
power. In such cases there is no substitute for adaptive methods. Sample size
methods based on the treatment effect are like antidepressants: it is best not
to need them, but if you do, they work reasonably well.
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Topics Not Covered

12.1 Introduction

Our goal in writing this book has been to present a unified approach to data
monitoring. The methods we describe allow the statistician to create moni-
toring boundaries for efficacy, safety, and futility to provide a DSMB with a
firm probabilistic structure as well as flexibility in its response to data. More-
over, we hope that the mathematical foundations developed in the previous
chapters will give the reader enough tools to derive boundaries for situations
not identical to the ones we have described.

The methods in this book are not, however, the only techniques available
in the literature for use in clinical trials. This chapter introduces some other
approaches one can take in establishing monitoring boundaries. We briefly
describe in Sections 12.2 and 12.3 some of these other methods with comments
on why they are not the methods we prefer. In our view, the strength of the
methods described in earlier chapters is that they allow the boundaries to be
guidelines without sacrificing statistical rigor.

Another subject we have not addressed is so-called reverse stochastic cur-
tailing. Section 12.4 points to the literature on this topic.

Nearly all the examples in this book thus far have considered two-arm
studies that aim to show that a new treatment is better than placebo or better
than an active control already in use. Many trials, however, study more than
two arms. We indicate in Section 12.5 how to adapt the methods of this book
to such trials, but we warn that the more arms in a study, the more caution a
DSMB should take before recommending a major change in the protocol, the
dropping of a study arm, or the stopping of the entire study.

The problem of monitoring a trial that aims to show equivalence or non-
inferiority of two therapies is another topic not yet addressed. In 12.6 we
provide some tentative guidance to those who try to monitor such trials.

Although we have discussed confidence intervals computed after a group-
sequential trial is stopped, we have not discussed repeated confidence intervals
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(RCIs) computed throughout a trial. Section 12.7 touches on RCIs and ex-
plains why we did not cover them extensively.

For a comprehensive review of sequential methods and their application
to medicine as well as other fields, see Lai (2001) [L01] and the discussions
following the paper.

12.2 Continuous Sequential Boundaries

We have concentrated on group-sequential methods, that is, boundaries de-
rived under the assumption that the DSMB will look at the data not one
observation at a time, but rather at intervals. The looks may be defined by
calendar time, by number of participants randomized, by information time, or
according to some other preference of the DSMB. The first sequential methods
developed, however, looked at data not in groups but as individual observa-
tions (Wald, 1947 [W47]) or as pairs (Armitage, 1975 [A75]) accrued.

Wald’s (1947) [W47] sequential probability ratio test took one observa-
tion at a time, plotted the result against the prespecified boundaries, and if
the trajectory did not cross a boundary, took another observation. The study
ended when the trajectory crossed a boundary. The sequence could theoret-
ically continue infinitely, although the probability of very large sample sizes
under either the null or alternative hypotheses is very small. Armitage (1957)
[A57] developed methods, called restricted designs, that fixed the maximum
sample size. These methods are of great interest historically for clinical tri-
als because they paved the way for the methods of sequential analysis we
use today. They are still applicable in many fields, including in some special-
ized medical settings where recruitment is slow and the outcome determined
quickly after randomization. We have not found these designs useful in the
types of trials with which we have experience. Part of the reason is practical:
data are often not available in the order in which patients have been accrued.
For paired designs, the pairings artificially link two patients who happen to
enter the study close in time but who otherwise may differ considerably from
each other. Another practical concern is that few DSMBs like to be involved
in a trial on a day-to-day basis in the way these methods require. A more
statistical concern is that, as we amplify below, these boundaries indeed act
as boundaries and not as guidelines; failure to stop a study when it crosses a
boundary invalidates their probabilistic interpretation.

Since those early days, a considerable literature has developed regarding
these methods. These modern continuous sequential boundaries have many
variant designs whose names reflect the shape of the boundaries—e.g., trian-
gular, wedge, and Christmas tree. Their mathematical foundation is the same
as those of the methods of this book—they all rely on Brownian motion. In
fact, the group-sequential methods are the discretized versions of continuous
monitoring. As described by Whitehead (1997) [W97], many of these newer
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continuous designs no longer require determining the outcome of each obser-
vation prior to entering the next patient. Some trials, even large ones, have
adopted these plans. See, for example, Moss et al., (1996) [MHC96], who de-
scribe early stopping of a trial with an implanted defibrillator. Some argue
that they are superior to the types of boundaries we recommend in this book
because they allow acceptance of the null hypothesis during the course of the
trial. Again, we see this property not as an advantage, but a disadvantage,
because of the constraints it puts on the DSMB to obey a crossing (see 12.3).

12.3 Other Types of Group-Sequential Boundaries

The methods of this book address upper bounds (efficacy) and lower bounds
(futility and safety) separately, regarding the monitoring as two one-sided ac-
tivities. This separation of the top and bottom boundaries reflect, we believe,
the actual behavior of DSMBs—they think about efficacy, futility, and safety
in different ways. An example is the Clopidogrel in Unstable Angina to Prevent
Recurrent Events (CURE) Trial, a trial comparing clopidogrel to placebo in
patients with unstable angina. The primary endpoint in CURE was a compos-
ite of cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke
[CLOP91]. At the last DSMB meeting before the trial was due to end, the
data crossed the boundary that allowed declaration of efficacy of clopidogrel.
Nonetheless, the DSMB did not recommend stopping the trial because the
data were showing that patients on the treatment arm were experiencing a
high incidence of serious bleeding. Because the mortality in the two arms was
nearly equal with most of the endpoints being nonfatal myocardial infarction,
the board believed that more complete data on serious bleeding would provide
practicing clinicians with useful assessment of risks and benefits.

As we have seen in Chapter 3, the data from a trial may cross a futility
boundary but the DSMB may decide not to recommend stopping because it
views the potential additional information useful. Conversely, the data may
fail to cross a safety boundary (see Chapter 9) but the DSMB may recom-
mend stopping anyway because, in the face of the observed data, it judges
its prespecified safety boundary too extreme for ethical comfort. Because the
methods of the previous chapters separate the upper and lower boundary,
failing to behave as the lower boundary would guide a DSMB does not affect
the probability structure of the upper, or efficacy, boundary.

Many of the methods to which we now refer do not separate the upper and
lower boundaries. Instead, they exploit the fact that a random walk could—
albeit with low probability—first cross a lower boundary and then later an
upper boundary. This allows lowering of the upper boundary, thus increasing
the efficiency of the trial. For example, imagine a trial with a single interim
analysis at t = 1/4 to stop for futility if Z(1/4) < 0; otherwise the trial
proceeds to the end and uses upper boundary c. Its actual type 1 error rate
is Pr[{Z(1/4) ≥ 0} ∩ {Z(1) ≥ c}]. Using c = 1.96 results in a one-tailed type
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1 error rate of 0.0227. We can lower the final critical value to 1.916 for a
one-tailed type 1 error rate of 0.025. We view this gain in efficiency a price
too high to pay for the loss in flexibility, for it forces a DSMB to stop when
the data cross the lower boundary.

12.4 Reverse Stochastic Curtailing

One criticism leveled against sequential analysis is that it provides no guaran-
tee that a study with data that cross a boundary at an interim look would be
statistically significant had the trial continued to its planned end. While such
paths are unlikely, they can occur and standard methods do not explicitly
limit such events. A criticism leveled against stochastic curtailing is that it is
extremely conservative, especially in the beginning of a trial, for it relies on
estimates of the drift parameter that may be highly unlikely given the data
observed thus far. Reverse stochastic curtailing addresses both these issues
(Tan, Xiong, and Kutner, 1998 [TXK98]).

Recall from Chapter 3 that the conditional power (CP), which forms the
basis for stochastic curtailing, is the probability conditional on the data ob-
served thus far of rejecting the null hypothesis given the drift parameter θ. In
practice, we calculate conditional power for a range of values of θ and make a
judgment regarding what action to recommend. Reverse conditional power,
on the other hand, asks for the distribution of the data at time t conditional on
being at the edge of the rejection region at the end of the trial. The advantage
is that this conditional distribution does not depend on the drift parameter θ
because the statistic at the end of the trial is sufficient for θ (recall that, by
definition, the conditional distribution of the data given a sufficient statistic
does not depend on the parameter). Thus, reverse conditional power does not
require us to specify values of θ.

To construct monitoring boundaries based on reverse conditional power,
one specifies not only the type 1 and type 2 error rates, but also the value ρ,
the maximum conditional probability of a discordant result, that is, the prob-
ability of crossing a boundary at an interim analysis for a study that would
not reject the null hypothesis if it were to continue to the planned end of the
trial. Under these conditions, one can construct either continuous or group-
sequential boundaries. Tan et al. (1998) [TXK98] present examples showing
boundaries based on reverse conditional power with considerably lower prob-
abilities of discordant results than either O’Brien-Fleming or Pocock bound-
aries.

This method can apply to studies that end for administrative reasons. For
example, Thompson et al. (2001) [TLC01] describe a study of the neurocog-
nitive effects of methylphenidate on learning-impaired survivors of childhood
cancer. The study, which stopped early because of slow recruitment, found
a statistically significant benefit of treatment. The authors calculated the re-
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verse conditional probability “to estimate the probability of discordant find-
ings if the trial had been completed as planned.”

12.5 Monitoring Studies with More Than Two Arms

Some trials have more than two arms. They may, for instance, compare two
different doses of a drug to placebo, they may compare more than one drug
to an active control (e.g., ALLHAT [A02]) or to each other, or they may use a
factorial design to evaluate the effect of two or more treatments. Monitoring
such trials is more complex than monitoring a two-arm study. In the simplest
approach, a DSMB might regard each arm separately, comparing each to
the control with the boundary of its choice. More complicated methods are
available under certain specific alternatives (e.g., Lin and Liu, 1992 [LL92]). In
general, the more complicated the design, the more difficult it is to prespecify
the possible outcomes of the trial; therefore, an experienced DSMB will place
strong reliance in these cases on its judgment to augment the inference coming
directly from the prespecified boundaries.

Suppose, for example, a trial has three arms: a placebo, a low-dose, and a
high-dose group. The DSMB might opt for six looks at the data employing an
O’Brien-Fleming-like spending function with a type 1 error rate of α/2 for each
active arm compared to placebo. This approach applies sequential boundaries
to deal with the multiple looks and a Bonferroni correction to adjust for
the two primary comparisons. In practice, monitoring a three-arm study is
more complicated than monitoring two two-arm studies. Certain outcomes
will cause a DSMB to pause in making a recommendation about changing the
course of a trial. Stopping the low-dose arm of a study that is indicating futility
of that arm is intuitively sensible, but it may risk unblinding the results. On
the other hand, a trial for which the data cross the monitoring boundary for
efficacy in the low-dose arm but not in the high-dose arm may lead a DSMB
to question whether stopping the low-dose arm for efficacy is premature.

The situation becomes even more complicated with factorial studies, whose
purpose may be not only to estimate the main effect of two treatments, but to
evaluate the effect of the combination. Early stopping with a conclusion about
the main effect of one treatment, or even both, may jeopardize the ability to
make accurate inference about the combination.

In general, we recommend that a DSMB faced with monitoring a multi-
arm study consider at the outset of the study the contrasts of most interest as
well as outcomes that would appear potentially inconsistent and thus would
caution against early stopping of an arm either for futility or efficacy, and,
even, perhaps for safety. The methods of this book should allow the statistician
to create a monitoring plan reasonably in harmony with these considerations,
but all involved—the DSMB, the sponsor, and the investigators—should rec-
ognize that a responsible DSMB might well decide to make a recommendation
that contradicts the monitoring plan.
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12.6 Monitoring for Equivalence and Noninferiority

Over the last several years, partly in response to the reluctance of many
to use placebo or standard of care controls, a number of trials have been
designed to show equivalence or noninferiority of a new intervention to one
already available. “Equivalence” here means “not very different from,” while
“noninferiority” means “not unacceptably worse than.” These trials establish
an equivalence or noninferiority margin δ with the view toward declaring
success if the confidence limit for the estimated treatment effect falls within
the interval ±δ for equivalence or if the lower bound of the confidence interval
falls above -δ for noninferiority.

The literature contains methods for sequential monitoring of such trials
(e.g., Brannath et al. [BBM03]), but we find a DSMB’s subjective judgment
more important than statistical methods. For example, there is controversy
over whether one can claim superiority of one treatment over the other if the
trial was designed to show equivalence or noninferiority. Nonetheless, if one
treatment appears clearly superior to the other, the DSMB has an ethical
obligation to stop the trial and inform patients and clinicians of this finding.
Less controversial is when the DSMB is contemplating early stopping because
the treatments appear very similar. Still, only in rare settings would interim
results be sufficiently compelling to demonstrate equivalence of two treatments
because usually the interim sample size is too small to produce sufficiently
tight confidence intervals. Given that there would be no ethical imperative to
stop early in such a case—because the participant should be indifferent to the
treatment received—it may be best to continue to the planned end.

12.7 Repeated Confidence Intervals

Another topic we have not discussed is repeated confidence intervals (RCIs).
Repeated confidence intervals provide simultaneous coverage probability of
confidence intervals computed throughout a trial. For example, suppose we
use the Pocock two-tailed boundary ci = ±2.361 with four equally spaced
looks. If we simply compute 95 percent confidence intervals at each look, the
probability that at least one interval will exclude the true parameter value is
much higher than .05, just as the probability of at least one type 1 error using
four level .05 tests is much higher than .05. To achieve simultaneous coverage
probability .95, we would replace 1.96 in the formula ȲT −ȲC±1.96(2σ2/ni)1/2

at look i with the Pocock constant ci = 2.361. This means that the confidence
interval is wider than a nominal 95 percent confidence interval. The advantage
of using this more conservative confidence interval is that we can be very
confident that all of the intervals computed throughout the trial cover the true
parameter value. Thus, we can use them as a monitoring tool to help aid the
decision about whether to stop a trial. The problem is that stopping decisions
are usually based on whether boundaries are crossed and other factors such
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as consistency of results across subgroups or similar endpoints, and not so
much on confidence intervals. One important reason for this is that interim
confidence intervals can be so wide as to be almost uninformative, even if no
account of monitoring is taken. In a trial with no monitoring, the confidence
interval at the end will have width 1.96σδ̂N

, where σδ̂N
is the standard error

of the treatment effect estimate with N observations per arm. If the trial has
90 percent power to detect the treatment effect δ0, then N was selected so
that δ0/σδ̂N

= 1.96 + 1.28 = 3.24, and thus σδ̂N
= δ0/3.24. The lower limit

of a 95 percent confidence interval is δ̂N − 1.96δ0/3.24. Even if δ̂N exactly
equals its expectation, δ0, the lower limit of the confidence interval will be
1.28δ0/3.24 = 0.40δ0. In other words, we would not be able to rule out a
treatment effect less than half of what was originally expected. Now consider
the confidence interval at an interim analysis after one fourth of the data are
evaluated. Even if we make no adjustment for monitoring, the standard error
of the treatment effect estimate and the width of the confidence interval are
increased twofold. Further compound the problem by adjusting for monitoring
using repeated confidence intervals. We must use 2.361 standard errors instead
of 1.96 standard errors. The repeated confidence interval will be very wide.
The problem is even worse with more conservative early boundaries such as
those of O’Brien-Fleming. With O’Brien-Fleming, we would have to use 4.048
standard errors at the first of four equally spaced interim analyses.

Another potential problem with RCIs is that they do not match the confi-
dence intervals of Chapter 7 computed when a group-sequential trial is termi-
nated. In particular, the center of the RCI is the difference in sample means,
which we saw in Chapter 7 is biased when the trial is stopped. Moreover,
the RCI is usually wider than the confidence interval upon termination. We
know we will want to compute a confidence interval when the trial ends, so
using RCIs to aid the stopping decision may be confusing. It might be dif-
ficult to explain to a DSMB that now that they stopped the trial—in part
because of the RCI—they must use a different confidence interval to report
the final result. We believe it is more helpful to make the stopping decision
on the basis of whether the boundary has been crossed. If it has, we stop
the trial and compute the terminal confidence interval as in Chapter 7. If
we are contemplating continuing the trial even though we crossed an efficacy
boundary, again it seems preferable to use the terminal confidence interval
computed as in Chapter 7 than an RCI to help decide whether to stop. Af-
ter all, the crucial question is whether the confidence interval reported when
the trial is stopped will be convincing to the medical community. If we are
contemplating stopping a trial for futility, again we would not want to use a
conservative interval such as an RCI. Instead we might look at an unadjusted
confidence interval, arguing that even under the best possible circumstances
(i.e., not adjusting for multiple looks), the trial has effectively no chance of
demonstrating a treatment benefit.
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Appendix I: The Logrank and Related Tests

We speak of “survival analysis” where the survival time refers to the period
before the event of interest. In the most natural language, if we define “death”
as the “failure” of interest, then a person who dies at time T has survived up
to time T . When failure is an event other than death, “survival” is a handy
misnomer. For an excellent introductory text, see Miller (1998) [M98].

To begin our discussion, assume that 1,000 participants enter a clinical
trial simultaneously, and let T denote the survival time of a random patient.
Table 13.1, called a life table, summarizes the observed survival data. During
the first month, 50 of the 1, 000 patients die, with an observed probability of
dying equal to q1 = 50/1000 = 0.05 for Pr(T ≤ 1). The observed probability
of surviving the first month is therefore p1 = 1− q1 = 0.95. At the end of the
first month, Ŝ1 = 0.95; that is, 95 percent of the patients survive. Assuming no
loss to follow-up, 950 patients enter the second time interval. Suppose another
38 patients die during that interval. We estimate the conditional probability
Pr(T ≤ 2 |T > 1) by the observed q2 = 38/950 = 0.04. Then p2 = 0.96
estimates Pr(T > 2 |T > 1). At the end of month 2, Ŝ2 = 0.95 × 0.96 =
0.912, or 91.2 percent of the patients survive. Of the 912 patients alive at
the beginning of the third time interval, 30 die. The p, q, and Ŝ values of
the third interval are evaluated in a similar manner. The p and q values
are the observed conditional probabilities while Ŝ is the observed cumulative
probability of survival. This type of presentation, called an actuarial life table,
is common in demography and in actuarial mathematics.

In clinical trials, however, we rarely analyze data within fixed intervals of
time; instead, we typically use intervals defined by the actual times of failure.
We illustrate using an artificial example of a five-person trial studying death as
the endpoint. If the times of death in years are 0.8, 1.3, 2.5, 3.0, and 3.7, then
the estimated probability Ŝ(t) of surviving t years is 1 for t < 0.8, (1)(4/5) =
4/5 for 0.8 ≤ t < 1.3, (1)(4/5)(3/4) = 3/5 for 1.3 ≤ t < 2.5, etc. Denote the
sample cumulative distribution function by F̂ (t). Then, Ŝ(t) = 1 − F̂ (t).

Now suppose that the data point 2.5 represents not a death, but a cen-
sored observation, meaning that we only know that the time to event was



222 13 Appendix I: The Logrank and Related Tests

Table 13.1. A life table. Notes: t = the time, in months, at the beginning of the
interval; N = the number alive at the beginning of the interval; d = the number
of deaths in the interval [t, t + 1); q = d/N , the probability of dying in the interval
conditional on being alive at the beginning of the interval; p = 1−q, the conditional
probability of surviving to the subsequent interval; Ŝ(t) = the estimated cumulative
probability of surviving to t.

t N d q p Ŝ

0 1000 50 0.05 0.95 0.95

1 950 38 0.04 0.96 0.912

2 912 30 0.0329 0.9671 0.882

3 882 . . . . . . . . . . . .
...

at least 2.5 years. For example, suppose the patient moved away and was
not heard from again after 2.5 years. The estimated survival probabilities at
t = 0.8 and t = 1.3 remain unchanged; however, the probability of surviving
2.5 years is estimated by Pr(survive 1.3 years) Pr(survive 2.5 years | survive
1.3 years). Because all three people who survived 1.3 years survived at least
2.5 years (including the person with the censored observation), the estimated
probability of surviving 2.5 years is (3/5)(3/3) = 3/5. On the other hand,
because we know nothing about what happened after 2.5 years to the person
with the censored observation, that person cannot enter into future calcula-
tions of conditional probabilities. Therefore, we estimate the probability of
surviving 3.0 years by Pr(survive 2.5 years) Pr(survive 3.0 years | survive 2.5
years) = (3/5)(1/2) = 3/10. Here we used 1/2 for the conditional probability
of surviving 3 years given survival of 2.5 years because, of the two people who
survived 2.5 years and had known vital status at 3 years, one survived. The
estimated survival probability at 3.7 years is (3/10)(0/1) = 0.

The resulting survival plot, called a Kaplan-Meier curve, is shown in the
top panel of Figure 13.1. The curve is clearly discontinuous, for it drops each
time a death occurs. The bottom panel shows a Kaplan-Meier curve for a
clinical trial with many more participants and many more deaths. In this
case, the size of each drop is so small that the curve looks almost continuous.

13.1 Hazard Functions

As described above, a life table provides a discrete summary of survival times,
whereas in clinical trials we usually assume that the survival time T is a
continuous variable with distribution function F (t), density function f(t), and
survival function S(t) = 1−F (t). The Ŝ column in the life table estimates the
survival function at times t = 1, 2, . . .. The q column of the life table on the
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Fig. 13.1. Top panel: Kaplan-Meier survival plot for a small study with only five
people, four of whom died (Xs) and one was censored at 2.5 years (circle). Bottom
panel: Kaplan-Meier survival plot for a study with 500 people, all of whom died.

(t+1)st interval estimates the conditional probability Pr(t < T ≤ t+1 |T > t),
which can be considered the discrete hazard rate during the time interval from
t to t + 1. The continuous version of this concept is expressed as λ(t)∆t ≈
Pr(t < T ≤ t+∆t |T > t), where the hazard function λ(t) is defined as

λ(t) = lim
∆t→0

Pr(t < T ≤ t+∆t |T > t)
∆t

. (13.1)

A useful alternative expression for the hazard function is obtained by
rewriting (13.1) as

{
lim

∆t→0

Pr(t < T ≤ t+∆t)
∆t

}/
Pr(T > t) = f(t)/S(t).

This expression leads to:

λ(t) =
f(t)
S(t)

=
dF (t)/dt
S(t)

= −dS(t)/dt
S(t)

= −d[ln{S(t)}]
dt
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Thus, because S(0) = 1, it follows that ln{S(0)} = 0, ln{S(t)} = −
∫ t

0
λ(u)du,

and S(t) = exp{−Γ (t)}, where

Γ (t) =
∫ t

0

λ(u)du

is called the cumulative hazard function.
An interesting special case occurs when λ(t) = λ, a positive constant over

time. In this case, the survival time T follows an exponential distribution with
parameter λ. Symbolically,T ∼Exp(λ). The distribution and density functions
are F (t) = 1 − exp(−λt) and f(t) = λ exp(−λt), respectively, and the mean
time to death is 1/λ. An important feature of the exponential distribution is
its “memoryless” property:

Result 13.1 If T ∼Exp(λ), then conditioned on T > t, the residual life T − t
also has an exponential distribution with parameter λ.

While the exponential distribution is strictly valid for very few actual
settings, it plays a role in survival analysis similar to the role played by the
assumption of linearity in many areas of both physics and mathematics. The
mathematical simplicity of the exponential distribution and the elegance of
its memoryless property means that whenever we can appeal to it, we do so.
Usually, it provides a good enough approximation to reality, at least for short
intervals of time, just as the assumption of linearity plays a good enough
approximation to many curves, at least for a narrow enough interval on the
x-axis. Moreover, as we shall see below, in many cases a simple transformation
of the true distribution can yield an exponential.

Consider a clinical trial comparing a new experimental treatment to the
standard, or control, treatment. The new treatment is expected to reduce
mortality. The phrase “reduce mortality” lacks a unique interpretation. One
possible meaning is that the new treatment reduces the hazard function from
λC(t) to λE(t), where λE(t) ≤ λC(t) for all t ≥ 0. Unfortunately, there is no
uniformly most efficient test statistic under this general assumption of hazard
reduction. Instead, we often assume that reducing mortality means that the
hazard is reduced by a constant proportion over time, so λE(t)/λC(t) = R for
all t ≥ 0. This common assumption leads to the proportional hazards model
(PHM). The constant R is less than 1 when the treatment is beneficial, and
is greater than 1 if the treatment is harmful. If the survival times TE and TC

for the experimental and control treatment patients both follow exponential
distributions, then the PHM is satisfied. Conversely, if λE(t) = RλC(t) for
all t ≥ 0, we are going to show that after a monotone transformation of time
from t to t∗, the survival times are exponentially distributed.

Let U ∼ U (0, 1) denote that the random variable U is distributed uni-
formly on the unit interval, or equivalently, that the density function for U is
f(u) = 1, 0 < u < 1. We exploit the following useful result several times in
this book.
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Result 13.2 If X is a continuous random variable with distribution function
G, then G(X) ∼ U (0, 1). Conversely, if U ∼ U (0, 1) then G−1(U ) ∼ X.
(Even if G is not invertible, the result is true if we define G−1(u) to be inf{x :
G(x) ≥ u}.)

Suppose the survival times follow the distributions TC ∼ FC and TE ∼ FE .
Under the PHM, λE(t)/λC(t) = R, SE (t) = exp{−ΓE(t)} = exp{−RΓC(t)} =
{SC(t)}R.

Let Gλ(t) = 1 − exp(−λt) be the distribution function for an exponential
variable with parameter λ. Note that the inverse function G−1

λ (w) = − ln(1−
w)/λ.

To transform TC to an exponential random variable, we first transform
it to a uniform, U = FC(T ), and then transform U to an exponential with
parameter 1 by G−1

1 (U ). Thus, the transformation is G−1
1 (FC). Now apply

the analogous transformation to TE :

G−1
1 {FC(TE)} = − ln{SC(TE )} = − ln[{SE(TE)}1/R]

= − ln{SE (TE)}/R = G−1
R {FE(TE)}

which is exponential with parameter R because FE(TE) is uniformly dis-
tributed. In other words, after the monotone transformation G−1

1 {FC}, TC

and TE follow exponential distributions with parameters 1 and R, respec-
tively. This result is important because many statistics commonly used in
survival analysis depend only on the order of the deaths, that is, on their
ranks, not on the actual times of death.

The following sections discuss three different nonparametric approaches
to survival analysis: linear rank statistics, U-statistics, and Mantel-Haenszel
statistics. In the context of clinical trials, Mantel-Haenszel statistics are usu-
ally called logrank statistics. We first introduce these methods for complete
observations, and then modify them for censored data.

13.2 Linear Rank Statistics

To introduce linear rank statistics, we appeal to an artificial setting—a video
game for teenagers—as a didactive device, which we then apply to survival
analysis in clinical trials. The purpose of thinking in terms of the game is to
elucidate the relationship between scores and payments, which should help
clarify the welter of statistical tests available in the survival setting. In par-
ticular, the example allows an easy metaphor for disentangling time to events
from censoring. Lan and Wittes (1985) [LW85] use the video game example to
introduce linear rank tests. Their paper includes citations giving the histori-
cal references to the various names of tests and scoring schemes described in
this chapter. A thorough advanced mathematical treatment of rank statistics
was given in Hajek and Sidak (1967) [HS67]. An intermediate version of the
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subject may be found in Randles and Wolfe (1979) [RW79], which we highly
recommend for interested readers.

13.2.1 Complete Survival Times: Which Group Is Better?

Consider first the special class of two-sample rank statistics. Imagine two
teams of teenagers, two boys and three girls, competing in a 5 = 2 + 3 round
video game contest where the players operate as airplane pilots in front of
their video monitors. Missiles are fired randomly. Each player uses a joystick
to control the plane and dodge the missiles. Skill is evaluated by the amount
of time the player survives the game. Each player pays one dollar to enter the
game. The game is fair in that all five dollars will be distributed to the players
by the end of the fifth round.

The five players start the first round simultaneously. The first player whose
plane is shot down is declared the first loser and is disqualified from further
play. The game continues to the second and subsequent rounds, continuing
until the missiles have shot down all five planes. Table 13.2 shows the observed
survival times of these five players in seconds.

Table 13.2. Survival times in seconds of players in the video game.

Player Pam Gordon Becky Bill Mary

Survival Time 67 121 254 517 795

These survival times clearly show that Pam performed the worst, Gordon
the second worst,. . ., and Mary the best. But which team, the girls’ (Pam,
Becky, and Mary) or the boys’ (Gordon and Bill) did better? The answer
depends on how we define “better.” Suppose that before the game started, we
had specified the winning prizes for the players as indicated in Table 13.3: the
second row, from left to right, shows the prizes for the first to the fifth loser.
The last row of Table 13.3 is the net gain of the five players.

Table 13.3. Prizes, entry fees, and net gains of players in the video game.

Player Pam Gordon Becky Bill Mary

Prize (score) 0.00 0.45 0.80 1.25 2.50

Entry fee 1.00 1.00 1.00 1.00 1.00

Net gain (centered score) −1.00 −0.55 −0.20 0.25 1.50

Under the described scheme for prizes and fees, the girl’s team has a total
net gain of −1.00− 0.20 + 1.50 = 0.30, which, because the game is fair, is the
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same as the loss of the boys’ team. Therefore, we conclude that the girls’ team
played better. Of course, a different set of prizes could have led to a different
conclusion.

More generally, to determine which team did better, we start with a set
of scores and use the statistic S =

∑
(centered scores of the girls) to deter-

mine the winning team. When S > 0, the girls’ team wins. To complicate
matters somewhat, even if the two teams have equal skill, a team may win
just by chance. Therefore, we use a test statistic Z = S/V 1/2, where V is the
variance or estimated variance of S, to determine whether one team performs
“significantly” better than the other. Note that multiplying one set of scores
by a nonzero constant changes S accordingly, but Z remains the same. The
statistic S is called a linear rank statistic. It is linear because it is a sum of
scores; it is a rank statistic because it is based not on the actual times of
failures but on their orders, or ranks.

13.2.2 Ratings, Score Functions, and Payments

We now apply the notions just introduced to more general linear rank statis-
tics. First, we shall rate each player in the game, or each participant in a
clinical trial, on a scale from 0 to 1. We then apply a score to each rating.
This score allows us to compare two or more teams in the video game example
or two or more treatments (one of which may be a control) in the context of
a clinical trial. For simplicity, the example continues with two groups.

We now show how to define payments and their association with scores.
This device, while natural in the setting of games, is unusual for clinical trials.
Nonetheless, we demonstrate that thinking in terms of payments, rather than
in terms of scores, allows a natural bridge to censoring.

First, let U1, . . . , UN be i.i.d. uniform random variables and denote the
ordered observations by U [N, 1] < U [N, 2] < . . . < U [N,N ]. We need double
indices because, for samples of sizes m and n, the kth order statistics U [m, k]
and U [n, k] follow different distributions. Similarly, let T [N, i] denote the order
statistics from an exponential distribution with parameter 1.

Result 13.3 The expected values of U [N, i] and T [N, i] are:
a) E{U [N, i]} = i/(N + 1) and
b) E{T [N, i]} = 1/N + 1/(N − 1) + . . .+ 1/(N − i + 1), i = 1, . . . , N .

We give a heuristic argument for this well-known result. For part (a), the
uniform order statistics U [N, 1], . . ., U [N,N ] partition the unit interval into
N + 1 comparable spacings, (0, U [N, 1]), (U [N, 1], U [N, 2]), . . ., (U [N,N ], 1),
each of which has expectation 1/(N + 1). Thus, E(U [N, i]) = E{U [N, 1] −
0}+ . . .+ E{U [N, i]− U [N, i− 1]} = i/(N + 1).

For part (b), note that the smallest order statistic has an exponential
distribution with parameter N because

Pr(min(T1, . . . , TN ) > t) = Pr(T1 > t) . . .Pr(TN > t) = exp(−Nt).
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Therefore, E{T [N, 1]} = 1/N .
Given T [N, 1] = t1, we may think of the time T [N, 2]−t1 to the next order

statistic as the minimum of the remaining N − 1 lifetimes. The memoryless
property of the exponential distribution (Result 13.2) implies that each re-
maining person has survival time distribution Exp(1). Thus, T [N, 2]−t1, being
the minimum ofN−1 Exp(1)s, is Exp(N−1). The expected value of the second
order statistic is therefore E{T [N, 1]}+E{T [N, 2]−T [N, 1]} = 1/N+1/(N−1).
Continuing in this fashion yields part (b). ||

Part (a) of this result gives a natural way to rate i.i.d. observations on a
scale from 0 to 1. Assume T1, . . . , TN are i.i.d. random variables with distribu-
tion function F . The order statistics are T [N, 1] < T [N, 2] < . . . < T [N,N ].
The rating of T [N, i], defined to be i/(N + 1), is expressed as F̂ (T |N, i) =
i/(N +1). F̂ may be viewed as the empirical distribution function. This func-
tion differs slightly from the one introduced in almost all textbooks in statistics
which typically use i/N rather than i/(N + 1).

A score function φ is a monotone continuous function on (0, 1) usually
assumed to be square integrable. Associated with a given score function φ is
a simple way to assign scores to the ordered statistics through the ratings:
assign the observation T [N, i] a score of b[N, i] = φ{i/(N + 1)}, i = 1, . . . , N .
These scores can be rewritten as

b[N, i] = φ{i/(N + 1)} = φ{E(U [N, i])}, i = 1, 2, . . . , N.

Alternatively, we could define scores through φ by reversing the order of φ
and E and giving T [N, i] a score of

a[N, i] = E{φ(U [N, i])}.

In linear rank statistics, for a given score function φ, the quantities
{a[N, i], i = 1, . . . , N} and {b[N, i], i = 1, . . . , N} are called the exact and
approximate scores, respectively. The centered scores are obtained by sub-
tracting the average of all the scores. The score function provides a useful
tool to define a test statistic for comparing two distributions.

For two random variables X ∼ F and Y ∼ G, we often want to know
whether H0 : X ∼ Y or Ha : Y is “larger” than X. This question arises in
many situations, not only in the setting of survival. Consider some possible
ways to define the concept of “larger”:

Definition 1. A random variable Y ∼ G is stochastically larger than
X ∼ F if Pr(Y > t) ≥ Pr(X > t) for all t.

While this is probably the most intuitively natural candidate to define
“larger,” it is unfortunately impossible to find an optimal test under such a
broad alternative space. One common strategy to deal with this difficulty is
to consider a more limited alternative space.

Definition 2. A random variable Y is larger than X in the shift sense if
Y has the same distribution as X + a for some positive constant a.
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This alternative definition is called a location shift. Optimal linear rank
statistics can be derived for some specific parametric forms of F . This defini-
tion, while commonly used for normal distributions, is not usually applicable
to survival settings because Y > 0.

Definition 3. A random variable Y is larger than X in the Lehmann
sense if, for all t, 1−G(t) = {1−F (t)}R for some 0 < R < 1. These Lehmann
alternatives correspond to the proportional hazards model for survival times
X and Y .

Note that if Y is larger than X under definitions 2 or 3, Y is stochastically
larger than X.

To test whether Y ∼ G is larger than X ∼ F , we take m i.i.d. observations
X1, . . . , Xm from F and n i.i.d. observations Y1, . . . , Yn from G. We pool the
two samples and rewrite the N = m + n observations as T1, . . . , Tm, . . . , TN ,
and the order statistics as T [N, 1], T [N, 2], . . ., T [N,N ]. Under H0 : F = G,
the T s are i.i.d.

Let c[N, 1], . . ., c[N,N ] be a set of constants summing to 0. A statistic of
the form ∑

c[N, i]I(T [N, i] is a Y ),

where I{·} denotes the indicator function, is called a linear rank statistic.
The scores {c[N, i]} are usually taken to be the approximate or exact scores
derived from a score function φ, centered so that they sum to 0. When chosen
appropriately, a linear rank statistic based on the exact scores will provide
an optimal test (locally most powerful rank test) for two-sample comparisons
under specific alternatives, and is asymptotically equivalent to the test based
on the approximate scores. See Chapter 9 of Randles and Wolfe (1979) [RW79]
for a nice description of optimal score functions.

We consider two important choices of score function φ.
Location: φ(w) = w is optimal for location shifts of a logistic distribution.
The exact scores a[N, i] equal the approximate scores b[N, i] = i/(N + 1).
These two sets of scores are proportional to the rank score c[N, i] = i. The
corresponding linear rank test is the Wilcoxon test.
Scale: φ(w) = − ln(1−w) is optimal for Lehmann alternatives. This function
gives rise to several sets of scores.

(a) Note that − ln(1 −w) is the inverse function of w = 1− exp(−t), so if
U is uniform, − ln(1−U ) is Exp(1). The exact scores, which are known as the
Savage scores, are the expected order statistics from an Exp(1) distribution:

a[N, i] = 1/N + 1/(N − 1) + . . .+ 1/(N − i+ 1)i = 1, . . . , N.

(b) The centered Savage scores are a∗[N, i] = 1/N + 1/(N − 1) + . . . +
1/(N − i+ 1) − 1, i = 1, . . . , N .

(c) The approximate scores b[N, i] = − ln{1− i/(N +1)}, i = 1, . . . , N are
called the logrank scores.
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The Savage and logrank scores produce asymptotically equivalent tests.
We consider only the Savage scores for the rest of this chapter because they
are easier to handle mathematically than are the logrank scores.

We now present these two statistics, the Wilcoxon and the logrank, in
terms of the video game and introduce the concept of payments by the losers
as a way to determine the winning team. In linear rank statistics the payments
and the scores have a natural connection which we shall exploit in connection
with censoring.

Payment plan 1) The Savage payment: The ith loser pays Pi = 1 dollar
to be divided equally among all players still competing at the end of the ith
round. For instance, the first loser pays 1 dollar and each player, including
the first loser, receives 1/N dollar. Therefore, the net gain of the first loser is
c[N, 1] = 1/N − 1. In general, the ith loser receives 1/N from the first loser,
1/(N−1) from the second loser, . . ., and 1/(N−i+1) from the ith loser; the ith
loser’s net gain is c[N, i] = 1/N+1/(N−1)+. . .+1/(N−i+1)−1, i = 1, . . . , N .
From above, these are the centered Savage scores; the corresponding statistic
S =

∑
(centered scores of the girls) is the Savage statistic. The censored

version of the Savage statistic is commonly known as the logrank statistic.
Payment plan 2) The Wilcoxon payment: The ith loser pays P1 = 1 dollar

to each player competing at the end of the ith round. Thus, the first player
pays N dollars, and each player, including the first loser, receives 1 dollar.
Therefore, the net gain of the first loser is 1 − N . In general, the ith loser
receives 1 dollar from the first loser, 1 dollar from the second loser,. . . , 1
dollar from the ith loser, and pays N − i+1 dollars. Therefore, the ith loser’s
net gain is

c[N, i] = i − (N − i+ 1) = 2i− (N + 1) = 2{i− (N + 1)/2}, i = 1, . . . , N.

These are twice the centered Wilcoxon scores.
Table 13.4 summarizes the survival times, scores, and payments for the

centered Savage and Wilcoxon payment plans.

Table 13.4. Survival times, scores, and payments of players in the video game.

Savage Wilcoxon

Player Time Rating Score (Prize) Payment Score (Prize) Payment

Pam 67 1/6 1/5 −1 1 −5
Gordon 121 1/5 1/5 + 1/4 −1 2 −4
Becky 254 1/4 1/5 + 1/4 + 1/3 −1 3 −3
Bill 517 1/3 1/5 + 1/4 + 1/3 + 1/2 −1 4 −2
Mary 795 1/2 1/5 + 1/4 + 1/3 + 1/2 + 1/1 −1 5 −1
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Under the Savage payment plan, the net gain of the boys’ team is (1/5 +
1/4− 1) + (1/5 + 1/4 + 1/3 + 1/2− 1) = −0.27, and the net gain of the girl’s
team is +0.27; i.e., the Savage statistic is 0.27.

Under the Wilcoxon payment plan, the net gain of the girls’ team is (1 −
5) + (3 − 3) + (5 − 1) = 0, so the Wilcoxon statistic is 0.

In summary, the Savage statistic declares the girls’ team the winner,
whereas the Wilcoxon statistic declares the teams tied.

13.3 Payment Functions and Score Functions

Before moving to clinical trials, we explore the relationship between score
functions and payment functions assuming no censoring. Once more we refer
to the video game example to give us a natural way to think about pay-
ments. Prentice (1978) [P78] conjectured and Cuzick(1985) [C85] confirmed
the equivalence of the score function and Mantel-Haenszel formulations of a
test. A heuristic exploration of the two formulations was given in Lan and
Wittes (1990) [LW90].

Because F (T ) is uniformly distributed for any survival time T with dis-
tribution function F , we may replace T by F (T ) and consider survival times
only in the unit interval. Under this setting, the survival time T reflects the
skill of a player in the population on a scale from 0 to 1. Imagine a video game
with N players. At time t, 0 < t < 1, each remaining player has the same
amount of money, namely the average of all future scores. Thus, each player
has, in dollars,

(1/Nt)
N∑

i=1

φ(T(i))I{T(i) > t}, (13.2)

where Nt denotes the number of players still alive at time t. Rewrite (13.2) as

(Nt/N )−1(1/N )
N∑

i=1

φ(T(i))I{T(i) > t} → {1− F (t)}−1E{φ(T )I(T > t)}

= E{φ(T ) |T > t} =
1

1 − t

∫ 1

t

φ(u)du.

A player whose plane is shot down at time t and pays p(t) has a net gain of

φ(t) =
1

1 − t

∫ 1

t

φ(u)du− p(t).

Equivalently, the payment function is

p(t) =
1

1 − t

∫ 1

t

φ(u)du− φ(t). (13.3)
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It is also possible to derive the score function for an arbitrary payment
plan. For a given payment function p(t), each surviving player at time t has
received N−1p(t1) dollars from the first loser at time T(1) = t1, (N −1)−1p(t2)
dollars from the second loser at time T(2) = t2, etc. The amount received from
loser i is (N − i + 1)−1p(ti), which can be written as

(1/N ){(N − i+ 1)/N}−1p(ti) = (1/N ){Ŝ(ti)}−1p(ti),

where Ŝ(ti) is the estimated survival function at time ti. Because Ŝ(ti) will
be very close to the true survival function 1− ti when N is large, the amount
received from loser i is very close to (1/N )(1 − ti)−1p(ti). The total amount
received from all losers by time t is therefore very close to

∑

ti≤t

p(ti)
1 − ti

(1/N ) ≈
∫ t

0

P (u)
1 − u

du.

This amount must equal Φ(t) = p(t) + φ(t), so

φ(t) =
∫ t

0

P (u)du
1 − u

− p(t). (13.4)

We can apply equations (13.3) and (13.4) to obtain the Savage and
Wilcoxon statistics. For the Savage statistic, take score function φ(w) =
− ln(1 − w) − 1 (we subtract 1 to make the expectation 0). From (13.3),
the payment function is

p(t) =
1

1 − t

∫ 1

t

{− ln(1 − u)du− 1} − {− ln(1 − t) − 1}

= ln(1 − t) +
1

1 − t

{
(1 − u) ln(1 − u) − (1 − u)

∣∣∣
1

t

}

= 1.

Thus, in the setting of the video game, each loser would pay 1 dollar to be
divided equally among the survivors.

Conversely, if the payment function is 1, equation (13.4) yields a score
function of

∫ t

0
(1 − u)−1du− 1 = − ln(1 − t) − 1.

To obtain the Wilcoxon statistic, take φ(u) = 2N (u − 1/2). From (13.3),
the payment function is

p(t) =
1

1 − t

∫ 1

t

{2N (u− 1/2)}du− 2N (t− 1/2) = N (1 − t).

Because the number of surviving players at time t is approximately N (1− t),
a loser pays each survivor 1 dollar.

Conversely, if the payment function is N (1 − t), equation (13.4) yields a
score function of
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φ(t) =
∫ t

0

Ndu− N (1 − t) = 2N (t− 1/2).

In a clinical trial, of course, the participants do not actually pay to enroll, but
the relationships articulated in this section hold there as well.

13.4 Censored Survival Data

In many clinical trials, the time to event for some participants is unknown at
the end of the trial because their data are censored. Some people may have
moved before the end of the trial and their clinical status is unknown at the
time they move. Frequently, the trial ends before all participants have expe-
rienced the event of interest. Again, the future time when these participants
will experience the event, if ever, is unknown. This type of censoring is called
noninformative because the failure to know the time of event is unrelated to
the probability of the event (unless, of course, the person moves in response to
becoming healthier or sicker). To allow censoring in our video game example,
we add a twist to the game. Suppose Becky’s mother called at t = 254 and
demanded that she come home immediately. At the time of the call, Becky’s
plane was still operative. How can we modify the rules of the game to adjust
for this type of censoring? Assume that the occurrence of the phone call had
nothing to do with what was happening in the video game. In other words, her
mother did not know whether Becky’s plane was still aloft. Thus, her time of
being shot down would be noninformatively censored. We denote Becky’s sur-
vival time as 254+ to reflect that her plane would have survived at least 254
seconds. Then we must modify the centered scores (net gains) for the players.
Because the censoring does not affect either Pam’s or Gordon’s ranks, their
centered scores should remain the same and their loss under the Savage pay-
ment plan remains (1−1/5)+(1−1/5−1/4) = 1.35. Becky deserves to receive
one third of this amount (because she is one of three remaining players), and
that is her net gain (centered score). It is not immediately clear how the re-
maining two players, Bill and Mary, should share the remaining two thirds of
1.35, but Mary certainly deserves to receive more than Bill.

Obviously, the analogous situation is much more complicated in a clinical
trial where there may be hundreds or thousands of participants and dozens or
even many hundreds of censored survival times. We can simplify this messy
situation if, instead of thinking of scores, we think in terms of payments.
Players need not pay a fee in advance to participate in the contest. Instead,
they pay when their planes are shot down. When Pam’s plane is shot down,
she pays 1 (dollar), shared by all the competing players at t = 67. At that
time, everyone, including Pam, receives 1/5. At t = 121, Gordon’s plane is
shot down and he pays 1; everyone competing at that moment receives 1/4.
When her mother calls, Becky leaves with 1/5+1/4, the amount she received
from Pam and Gordon; however, she does not pay 1 (dollar) because her
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survival time is censored and she deserves to have the same amount of money
as Bill and Mary have at that time. Finally, Bill pays 1, which he and Mary
share, and Mary pays herself 1. The centered scores (net gains) of the players
are summarized in Table 13.5.

Table 13.5. Survival times, scores, and payments of players in a video game with
censoring.

Savage Wilcoxon

Player Time Rating Score (Prize) Payment Score (Prize) Payment

Pam 67 1/6 1/5 −1 1 −5
Gordon 121 1/5 1/5 + 1/4 −1 2 −4
Becky 254+ 1/4 1/5 + 1/4 + 1/3 0 3 0
Bill 517 1/3 1/5 + 1/4 + 1/3 + 1/2 −1 4 −2
Mary 795 1/2 1/5 + 1/4 + 1/3 + 1/2 + 1/1 −1 5 −1

Under the Savage scores, the net gain of the girls’ team is (1/5 − 1) +
(1/5 + 1/4 − 0) + (1/5 + 1/4 + 1/2 + 1/1 − 1) = 0.60. As we shall soon see,
this is the logrank statistic with censoring.

Under the Wilcoxon payments applied to the same censored survival times,
the net gain of the girls’ team becomes SG = (1 − 5) + (2 − 0) + (4 − 1) = 1.
This censored version of the Wilcoxon statistic is called the Gehan statistic
(Gehan, 1965 [Ge65]), discussed in the next section.

It is not surprising that the change of Becky’s survival time from 254 to
254+ favors the girls’ team. For the Savage payment plan, it increases their
net gain from 0.27 to 0.60; for the Wilcoxon payment plan, it breaks the tie
and makes the girls’ team the winner.

Note that the under the Gehan payment plan, the adjustment for censored
data depends heavily on the censoring times. A losing player pays each remain-
ing player 1; if Becky’s mother had called at time 120 instead of 254, Gordon
would have had to pay only 2 instead of 3 dollars. With the Savage payment
plan, Gordon would have paid 1 dollar irrespective of when Becky’s mother
called. In clinical trials, it is undesirable for inference to depend heavily on
censoring times because we are interested in comparing survival functions, not
censoring distributions.

13.5 The U-Statistic Approach to the Wilcoxon Statistic

After Wilcoxon (1945) [W45] introduced rank scores and the Wilcoxon statis-
tic, Mann and Whitney (1947) [MW47] proposed an equivalent statistic which
they called the U-statistic. They used a very natural approach to compare
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whether one variable is stochastically larger than the other. Again assume m
Xs and n Y s, all continuous with no ties. Mann and Whitney (1947) consid-
ered the statistic U(X < Y ) = the number of (X,Y ) pairs such that X < Y .
(Earlier in the chapter we used U to denote the uniform distribution; this
section uses U for the Mann-Whitney statistic.) Assume the variables are
continuous and no tie occurs. Because there are mn pairs, the mean of U is
mn/2 under H0. We define

U = U (X,Y ) −mn/2

which has mean 0. If we define U(X > Y ) to be the number of (X,Y ) pairs
such that X > Y , then U(X < Y ) + U(X > Y ) = mn and

2U = U (X < Y ) − U (X > Y ).

This result led Gehan to suggest ignoring the (X,Y ) pairs when censoring
causes uncertainty in the ordering of X and Y ; this generalization of the
Mann-Whitney U statistic is called the Gehan statistic G [Ge65]. When we
employ the Wilcoxon payments in the video game, the net gain of the girls’
team is the amount of money the boys pay the girls minus the amount of
money the girls pay the boys, which is U(X < Y )−U(X > Y ) = 2U. In other
words, the Wilcoxon payment plan produces a statistic equal to 2U. With
censoring, there will be no payment between a boy and a girl when the order
of the survival times X and Y cannot be determined; this scheme results in
the Gehan statistic G. Although this generalization of the Wilcoxon statistic
for censored data seems very natural, it has a crucial pitfall alluded to earlier
and elaborated on in the next section.

13.6 The Logrank and Weighted Mantel-Haenszel
Statistics

The original Mantel-Haenszel (1959) [MH59] procedure dealt with the problem
of pooling 2×2 tables to evaluate the association of exposure and disease after
adjusting the effects of covariates. Mantel (1966) [M66] suggested applying the
procedure to survival analysis. Previous sections of this chapter describe the
relationship between Savage scores and the logrank statistic. Here we briefly
summarize Mantel’s development of the logrank statistic, again referring at
times to the video game for insight. For now, we consider only the numerator
of the various statistics. Later we will see how to standardize them to obtain
test statistics that are asymptotically standard normal.

Assume N = m+ n survival times, m Xs and n Y s. Denote the combined
sample by T1, . . . , Tm, . . . , TN and the order statistics by T [N, 1], . . ., T [N,N ].
With censored observations, some survival times will not be observable. Let
T(i) denote the time of the ith observed event, and assume no tied observations
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Table 13.6. A 2 × 2 table at the time of the ith death.

D A
X Oi = I(T(i) is an X) mi

Y ni

1 Ni − 1 mi + ni = Ni

occur. Just before T (i), suppose mi Xs and ni Y s are still alive (Table 13.6).
The Mantel-Haenszel statistic at time t is

SMH(t) =
∑

T(i)≤t

(Oi −Ei),

where Ei = mi/Ni.
In the context of our video game example, X denotes a boy; under the

Savage payment plan, at time T(i) the boys’ team pays a total of Oi and
receives Ei = mi/Ni from the loser. Therefore, Oi − Ei is the net gain of
the girls’ team at T(i). Summing over time, SMH(∞) is the logrank statistic
presented earlier.

More generally, if the payment is pi at time T(i), the boys’ team pays a
total of piOi and receives (pi/Ni)mi = piEi from the loser. Thus, the net gain
of the girls’ team is

S =
∑

T(i)

pi(Oi −Ei). (13.5)

S is called a weighted Mantel-Haenszel statistic with weights pi. The Wilcoxon
and Gehan statistics described earlier are examples of weighted Mantel-
Haenszel statistics; the Wilcoxon applies to trials without censoring while
the Gehan statistic is used when there is censoring.

When there is no censoring, we can divide the Wilcoxon payment N−i+1
at time T(i) by N + 1 to produce the Wilcoxon weights pWi = (N − i +
1)/(N + 1), which estimate the survival function 1−F at T(i). When there is
censoring, the Gehan payment reduces by 1 not only at each event, but also at
each censoring. This Gehan adjusted payment estimates the survival function
of M = min{T,C} at T(i), where C is the censoring variable. Therefore, the
Gehan statistic does not follow the spirit of the original Wilcoxon statistic,
even though it reduces to the Wilcoxon statistic when there is no censoring.

A natural remedy for the Gehan statistic is to replace the Gehan pay-
ment by the Kaplan-Meier estimate. This new adjustment results in the Peto-
Prentice statistic.

We can standardize weighted Mantel-Haenszel statistics by dividing by
their estimated standard error, {

∑
T(i)

p2
iEi(1 −Ei)}1/2. This results in

Z =

∑
T(i)

pi(Oi − Ei)√
p2

iEi(1 − Ei)
, (13.6)
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where pi is

Logrank : pi = 1
Wilcoxon (no censoring) : pi = N − i+ 1

Gehan : pi = Ni

Peto − Prentice : pi = Ŝ(T(i)), (13.7)

where Ŝ(T(i)) denotes the Kaplan-Meier estimate of the probability of surviv-
ing time T(i). For further discussion see Lan and Wittes (1985) [LW85] and
the references therein. Throughout the book, when we speak of these survival
statistics, we mean the standardized form given by (13.6).

13.7 Monitoring Survival Trials

For clinical trials comparing survival distributions, the most commonly used
statistical approaches come from the family of weighted Maentel-Haenszel
tests described in Section 13.6. The test most commonly used is the logrank
test, but other weightings are sometimes employed. For example, the Women’s
Health Initiative [WHI02] used weighted logrank tests downweighting events
that occurred early after randomization because of the investigators’ hypoth-
esis that the effect of hormone therapy would not become fully manifest im-
mediately after initiation of therapy.

In selecting weights, one should be careful to choose a scheme that disen-
tangles the survival and censoring distributions, with the former providing the
basis of inference regarding the effect of treatment. Provided one follows this
advice (e.g., uses the logrank or Peto-Prentice statistic), one can use Brownian
motion to monitor the trial. One cannot use Brownian motion if the weighting
scheme does not disentangle the censoring and survival distributions (e.g., the
Gehan statistic).
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Appendix II: Group-Sequential Software

14.1 Introduction

At least four commercial packages are available for calculating monitor-
ing boundaries—East (Cytel Software Corporation), PEST (University of
Reading, England), S+SeqTrial (Insightful Corporation), and PASS (Number
Cruncher Statistical Systems; Ogden, Utah). The first two are fully stand-
alone packages; the third integrates with S+, and the last is primarily a
program to calculate sample size, but it has modules that calculate various
sequential boundaries.

Free Windows or DOS software for computing boundaries, cumulative
boundary crossing probabilities, drift parameters, and confidence intervals in
a group-sequential trial can be downloaded from

www.medsch.wisc.edu/landemets/.

We use version 2.1 of this program in this book. (The developers of this
software have generously agreed to include version 2.1 on their website even if
they develop a newer version.) We illustrate features of the Windows version
of the program in the context of a trial comparing two diets with respect to
cholesterol change from baseline to end of study using a two-tailed test at
level 0.05. We plan to monitor at four equally spaced looks using the linear
spending function.

When we open the program, a title page explaining the program’s features
appears. Simply click on it to make it disappear. We are now ready to use the
program. The following sections provide detailed information about the use
of this program.

14.2 Before the Trial Begins: Power and Sample Size

Before the trial starts, we compute the sample size required to achieve 90
percent power, taking monitoring into account. To do so, we compute the drift
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parameter required for 90 percent power and then transform to the sample
size. The drift parameter for a continuous outcome trial trial using the t-test
is

θ =
δ√

2σ2/N
, (14.1)

where δ is the difference, µT −µC , in mean cholesterol level between treatment
and control, σ2 is the variance of the outcome measure, and N is the per-arm
sample size at the end of the trial.

To calculate the required sample size, we go to the “Compute” menu at
the upper left, which presents the options “Bounds,” “Drift,” “Probability,”
and “Confidence.” We select “Drift,” and hit enter (in this program we must
remember to hit enter, otherwise our actions are not registered). Under the
“Interim Analyses” box of “Analysis Parameters,” we type 4. The default
is to use equally spaced looks, which is what we want, so when we hit enter, we
see 0.25, 0.50, 0.75, and 1.00 under the “Time” column of the data matrix at
the upper right of the screen. The default value for “Test Boundaries” is Two-
Sided Symmetric, which is also what we want. We next move to “Power and
Bounds Parameters.” The default for “Determine bounds” is “Spending
Function” and the default power is 0.90, which again are what we want. We
move to “Spending Function.” The default value for “Overall Alpha” is
0.05, so we move to the “Function” box. The program allows several different
types of spending functions for a two-tailed test at level α:

1. The O’Brien-Fleming-like spending function α∗(t) = 4{1−Φ(zα/4/t
1/2)}.

2. The Pocock-like spending function α∗(t) = α ln{1 + (e− 1)t}.
3. The power familyα∗(t) = αtφ (Phi of 1 gives the linear spending function).
4. The Hwang, Shi, DeCani family α∗(t) = α{1− exp(−φt)}/{1− exp(−φ)}.

We select “Power Family” and type 1 in the “Phi” box to get the linear
spending function.

When we click on “Calculate,” we see several things, the most important
of which is 3.4376 under “Drift” just above the graph. This means that to
achieve 90 percent power, we need a drift parameter of 3.4376 instead of
1.96 + 1.28 = 3.24 for a trial with no monitoring. The ratio of the sample
size to achieve 90 percent power when monitoring with the linear spending
function and that with no monitoring is (3.4376/3.24)2 = 1.126. That means
the sample size must be 12.6 percent larger than a trial with no monitoring.

The table at the upper right of the screen gives other output. The lower
and upper boundaries ±2.4977, ±2.4071, ±2.3208, and ±2.2448 are given for
four equally spaced looks. Of course, when we begin monitoring we will use
the actual information fractions and the boundaries will change somewhat.
Also shown are the nominal upper alpha and cumulative exit probabilities at
the different looks. For example, the nominal upper alpha at the third look is
the null probability that Z(0.75) > 2.3208, which is 0.01015. The cumulative
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exit probability by the third look is P3.4376(|Z(0.25)| > 2.4977∪ |Z(0.50)| >
2.4071 ∪ |Z(0.75)| ≥ 2.3208) = 0.76854. In other words, the probability of
rejecting by the third look, assuming a drift parameter of 3.4376, is about 77
percent. We see that the cumulative exit probability by the last look is 0.90,
as it should be.

14.3 During the Trial: Computation of Boundaries

As mentioned above, once the trial begins, we use the actual information frac-
tions to compute boundaries. For example, suppose that the first of the four
planned interim looks occurs at information fraction 0.18 instead of 0.25. We
can easily use the normal distribution function to calculate the first boundary
of a trial, but we can also use the program to compute it. Because the current
boundary does not depend on the number or timing of future looks, we could,
without loss of generality, assume that future looks will occur as originally
scheduled, namely at t = 0.50, t = 0.75, and t = 1.

Open the “Compute” menu and choose “Bounds.” Then go to “Analysis
Parameters” and type 4 in the “Interim analyses” box, remembering to hit
enter. The default is to make the analyses equally spaced, so to make the first
analysis at information fraction 0.18, go to the “Information times” box and
select “User input.” Then go to the “Time” column of the matrix at the upper
right and type 0.18, 0.50, 0.75, and 1, remembering to hit enter after each.
Then select “Power Family” from the “Spending Function,” “Function” box
and type 1 followed by enter for the “Phi” parameter. Click on “Calculate”
to obtain the first boundary 2.6121. Thus, we reject at the first analysis if the
z-score is less than or equal to −2.6121 or greater than or equal to 2.6121. (To
see that the current boundary does not depend on future plans, try repeating
the steps above but specify only two looks, one at t = 0.18 and the other at
t = 1. The boundary at t = 0.18 remains 2.6121.)

Because the first look is not too far from its scheduled time, the effect
on power of taking the first look at time 0.18 instead of 0.25 is likely to
be minimal. To check that, compute the cumulative exit probability under
drift 3.4376. Go to the “Compute” menu and choose “Probability.” Again
type 4 under the “Interim Analyses” box and choose “User Input” under
“Information times.” Type the information times 0.18, 0.50, 0.75, and 1 in the
“Time” column of the matrix at the upper right. From “Spending Function”
again choose “Power Family” and type 1 for “Phi.” Go to “Probability
Parameters” and type 3.4376 followed by enter in the “Drift” box. Click
on “Calculate” to see that the cumulative exit probability by the last look is
0.90; taking the first look at t = 0.18 instead of t = 0.25 gives only a trivial
change in power.

Suppose the second look actually takes place at t = 0.60. Repeat the
bound computation process with the only difference being that the second
look is at t = 0.60 instead of 0.50. After clicking on “Calculate,” we find that
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the boundary at the second look is 2.2746. Thus, we reject at the second look
if |Z(0.60)| > 2.2746.

The program also displays a graph of the boundaries. Go to “Z-score,”
“Observed Z,” and choose “Yes.” An “Observed Z” column is created in the
table at the top right of the screen. Then type in the observed z-scores at the
first two looks, hit enter, and click on “Calculate.” The z-scores and boundaries
are plotted.

Repeat the “Compute Bounds” steps for the third look, which takes place
at t = 0.80. The boundary at the third look is 2.3110 (of course the first two
boundaries, which are in the past, remain unchanged).

14.3.1 A Note on Upper and Lower Boundaries

If we request “Two-Sided Symmetric” boundaries, the program takes the
lower boundary into account when constructing the upper boundary. On
the other hand, if we request “Two-Sided Asymmetric” boundaries from the
“Analysis Parameters Test Boundaries” box, the program computes au-
tonomous upper and lower boundaries. The reader will not notice any differ-
ence for conventional alpha levels, but try computing “Two-Sided Symmet-
ric” boundaries at level α = 0.40 versus “Two-Sided Asymmetric” bound-
aries using α = 0.20 for the lower boundary and α = 0.20 for the upper
boundary. For four equally spaced looks and the linear spending function,
the “Two-Sided Symmetric” boundaries at level 0.40 versus the “Two-Sided
Asymmetric” boundaries with α = 0.20 for the lower and upper boundaries
are (1.6449, 1.4368, 1.2533, 1.0875) and (1.6449, 1.4368,1.2540,1.0906), respec-
tively. The “Two-Sided Symmetric” boundaries are slightly smaller because
the program accounts for the lower boundary when constructing the upper
boundary. See Section 5.2 for further discussion.

14.4 After the Trial: p-Value, Parameter Estimate, and
Confidence Interval

Suppose that the above trial is stopped at the third look because Z(0.80) =
2.66 > 2.3110. Now that the trial is over, we want to compute a p-value. For
the stagewise ordering, the two-tailed p-value with symmetric boundaries is

Pr(|Z(0.18)| ≥ 2.4376∪ |Z(0.60)| ≥ 2.2746| ∪ |Z(0.80)| ≥ 2.66),

which is computed under the null hypothesis. To compute the p-value, choose
“Probability” from the “Compute” menu. Type 4 for “Interim Analyses” and
choose “User Input” for “Information times.” Then enter the times 0.18, 0.60,
0.80, and 1 under the “Time” column of the data at the upper right of the
screen. For “Determine Bounds” in the “Probability Parameters” area
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select “User Input” to change the third boundary to 2.66. Type the bounds
2.4376, 2.2746, 2.66, and then any value for the last bound, e.g., 1. Click
on “Calculate.” The cumulative exit probability by the third look is .03719.
Thus, the two-tailed p-value is approximately .037. No matter what value we
use for the boundary at t = 1, the cumulative exit probability at the third
look remains .03719.

We also would like a monitoring-adjusted estimate of the parameter. First
we get a monitoring-adjusted estimate of the unitless drift parameter θ, which
we then translate to the more natural parameter δ = (µT − µC) mg/dl.
The naive drift parameter estimate B(0.80)/0.80 = Z(0.80)/(0.80)1/2 =
2.66/(0.80)1/2 = 2.974 is biased. As suggested by Kim (1989) [K89], one
simple way to correct for bias is to determine the drift parameter value θ
such that the one-tailed probability of results at least as extreme as those
observed is 0.50. Under the stagewise ordering, outcomes at least as extreme
as those observed are E = {Z(0.18) ≥ 2.4376} ∪ {τ = 0.60 ∩ Z(0.60) >
2.2746} ∪ {τ = 0.80 ∩ Z > 2.66}. Note that Pθ(E) ≈ Pθ(A), where
A = {Z(0.18) ≥ 2.4376} ∪ {Z(0.60) ≥ 2.2746} ∪ {Z(0.80) ≥ 2.66}, because
the event A ∩ EC implies that both the lower and upper boundaries were
crossed by time 0.80, an event with vanishingly low probability. Thus, we will
determine θ such that

Pθ{Z(0.18) > 2.4376∪ Z(0.60) > 2.2746∪ Z(0.80) ≥ 2.66} = 0.50. (14.2)

Select “Drift” from the “Compute” menu and enter 4 for the number of
looks (even though we stopped after only three looks). After hitting enter,
choose “User Input” from “Information times,” and enter the times 0.18,
0.60, 0.80, and 1 under the “Time” column of the matrix at the upper right of
the screen. Choose “One-Sided” from the “Test Boundaries” box of “Anal-
ysis Parameters.” For “Power and Bounds Parameters,” “Determine
Bounds,” select “User Input.” Enter the upper bounds 2.4376, 2.2746, 2.66
for the first three looks. For the last look, simply enter a huge bound such
as 25. Then go to the “Power” box of “Power and Bounds Parameters”
and enter 0.50. Click on “Calculate.” The program will determine the value θ
such that

Pθ(Z(0.18) ≥ 2.4376∪Z(0.60) ≥ 2.2746∪Z(0.80) ≥ 2.66∪Z(1) ≥ 25) = 0.50.
(14.3)

It is now apparent why we chose such a large final boundary: there is essen-
tially no chance that Z(1) ≥ 25, so the probability on the left side of (14.3) is
virtually identical to that of (14.2). The drift parameter value printed at the
lower left of the screen is 2.6655. Note that this estimate is smaller than the
naive estimate B(0.80)/0.80 = 2.974.

Having obtained the drift parameter estimate, convert it to an estimate
for the natural parameter δ = µT − µC using (14.1). This yields
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δ̂ = θ̂
√

2σ2/N,

where N is the originally planned sample size per arm. Substitute the
pooled sample variance for σ2. For example, if the planned sample size at
the end of the trial is N = 100 per arm and the pooled variance at the
time the trial is stopped is (10.54 mg/dl)2, the estimated treatment effect is
2.6655{2(10.54)2/100}1/2 = 3.97 mg/dl. Thus, the estimated cholesterol dif-
ference between the two diets is about 4 mg/dl. Had we used the naive drift
parameter estimate 2.974, the estimated difference would have been about 4.4
mg/dl.

To compute a confidence interval for the drift parameter at the time the
trial was stopped, go to the “Compute” menu and select “Confidence.” Go
to “Analysis Parameters” and this time type 3 under “Interim Analyses”
because the trial was stopped at the third look. This is the only time we must
enter the number of looks that actually occurred rather than the number
planned. Go to “Information times,” select “User Input,” move to the matrix
at the upper right, and enter the information fractions 0.18, 0.60, and 0.80
under “Time.” Choose “Power Family” from “Spending Function,” and enter 1
for the power parameter “Phi.” Under “Confidence Interval Parameters”
enter 2.66 followed by enter under the “Standardized Statistic” box. It was
crucial to enter 3 instead of 4 for “Interim Analyses,” because the value in
the “Standardized Statistic” box is applied to the last look. The default level
for the confidence interval is 95 percent. If that is what we want, click on
“Calculate” and see the confidence interval (0.2432, 4.9763).

We must now translate this interval into an interval for the natural pa-
rameter, δ = µT − µC , as we did for the parameter estimate. Because the
planned sample size at the end of the trial is N = 100 participants per
arm and the sample standard deviation is 10.54, the confidence interval for δ
is (0.2432{2(10.54)2/100}1/2, 4.9763{2(10.54)2/100}1/2) = (0.36, 7.42). Thus,
we can be 95 percent confident that the cholesterol difference between the two
diets is between 0.36 mg/dl and 7.42 mg/dl.

Note that the confidence interval for the drift parameter did not depend
on the sample size. Sample size played a role only in transforming from the
drift parameter to the natural parameter. For example, if the sample size per
arm had been 200 instead of 100, the confidence interval for δ would have
been (0.2432{2(10.54)2/200}1/2, 4.9763{2(10.54)2/200}1/2) = (0.26, 5.25) in-
stead of (0.36, 7.42) when N = 100.

14.5 Other Features of the Program

One feature of the program we have not yet discussed is truncation of very
large boundaries. For example, consider the O’Brien-Fleming-like spending
function with five equally spaced looks. When we select “Bounds” from the
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“Compute” menu, enter 5 for “Interim Analyses,” use the default “Equally
Spaced” for “Information times,” select the O’Brien-Fleming spending func-
tion, and click on “Calculate,” we get the boundaries 4.8769, 3.3569, 2.6803,
2.2898, and 2.0310. If we do not feel comfortable with the very large first two
boundaries, we can elect to truncate them at, say, 3.

We can truncate boundaries by moving to the “Truncate bounds” box of
“Spending Functions” and choosing “Yes.” Then specify 3 under “Trun-
cation Pt” and hit enter. Clicking on “Calculate,” we find the truncated
boundaries ±3.0000, ±3.0000, ±2.8968, ±2.3156, and ±2.0399. To maintain
an overall alpha of 0.05, the program had to increase the third, fourth, and
fifth boundaries to compensate for the decrease in the first two boundaries. In
fact, as can be seen from the cumulative alpha portion of the output, the last
three boundaries were modified to make the cumulative type 1 error rates by
those times the same as with untruncated boundaries, 0.00762, 0.02442, and
0.05000.

Output from the program, including the graph, can be exported to a Word
file by choosing “Send to Word” from the “File” menu.

A DOS version of the program is also available. The options are largely
the same, though the DOS version allows the use of two time scales, one to
determine how much alpha to spend and the other to calculate covariances of
the test statistics and boundaries.

For example, suppose we monitor using the linear spending function ap-
plied to calendar time, and we monitor the trial every year for 4 years. That
is, we have four equally spaced looks in terms of calendar time. At the first
look, t = 1/4 = 0.25, but suppose only about 16 percent of expected events
have occurred.

The program begins with the question:
Is this an interactive session (1=yes, 0=no).
When we type 1 and hit enter, the program responds:
interactive=1
Enter number for your option:

1. Compute bounds using a spending function.
2. Compute drift given power and bounds.
3. Compute probabilities given bounds and drift.
4. Compute confidence interval.

When we type 1 and hit enter, the program responds:
Option 1. You will be prompted for a spending function.
Number of interim analyses?
When we type 4 and hit enter, the program responds:
4 interim analyses.
Equally spaced times between 0 and 1? (1=yes, 0=no).
We type 1 and hit enter. The response is
Analysis times: 0.250, 0.500, 0.750, 1.000
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Do you wish to specify a second time/information scale? (e.g. the
inverse of parameter variance or number of events, as in Lan &
DeMets 89?) (1=yes, 0=no)
We type 1 and hit enter. The program responds:
First time scale will be used in the spending function. Second time
scale will estimate covariances. Information:
We type in 0.16 for the first information fraction and then specify arbitrary
numbers for the future information fractions (except that the last number is
1). For example, we might enter 0.16, 0.44, 0.66, and 1. The program responds
with
Information: 0.160 0.440, 0.660, 1.000.
Overall significance level? (> 0 and <= 1).
When we type 0.05 and hit enter, we see
alpha=0.050
One(1), two(2)-sided symmetric, or asymmetric(3) bounds?
We type 2 and hit enter, at which time the same spending function options
are presented. We choose 1 and hit enter. The program responds with
Use function alpha-star 1
Do you want to truncate the standardized bounds (1 =yes, 0 =no).

We select 0 and hit enter. The program shows the first time scale (the one
used to spend alpha, e.g., calendar time), the second (e.g., information) time
scale, the lower and upper bounds, the incremental alpha, and the cumulative
alpha. Note that the incremental alpha is not the same as the “nominal upper
alpha” presented with the Windows version of the program. The incremental
alpha is the probability of remaining within the boundary at previous looks
but exceeding the boundary at the current look (i.e., it is a first exit prob-
ability), whereas the nominal upper alpha is simply 1 − Φ(c), where c is the
current boundary.
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