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Preface

The 10th International Geostatistical Congress took place in Valencia on September

2016 following the traditional quadrennial gathering of theoreticians, engineers,

and practitioners on geostatistics. From September 5 until September 9, more than

200 experts discussed the latest developments on the many fields in which

geostatistics have found application. This book contains 66 technical papers

presented at the conference by those participants who chose to submit their paper

for the book of proceedings. All of them have been reviewed by at least two experts

in their field. The proceedings are divided in seven parts: Theory, Mining, Petro-

leum, Hydro(geo)logy, Environmental, Big Data, and Health, containing theoreti-

cal and applied papers on the subjects of matter. There is also a paper that has been

singled out containing a semblance of Professor Danie Krige, the person who gives

name to the technique on which geostatistics is built upon, who passed away on

March 2013, and on whose memory a special session took place on Wednesday,

September 7, 2016.
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ix



Scientific Committee

Rachid Ababou, Institut de Mecanique des Fluides de Toulouse, France

Petter Abrahamsen, Norwegian Computing Center, Norway

Denis Allard, BioSP, INRA, France
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Donato Posa, University of Salento, Italy

Michael Pyrcz, Chevron Energy Technology Company, USA

Philippe Renard, University of Neuchâtel, Switzerland

Jacques Rivoirard, MINES ParisTech, France

Javier Rodrigo-Ilarri, Universitat Politècnica de València, Spain
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Part I

In Honor of Professor Danie Krige



Professor Danie Krige’s First Memorial
Lecture: The Basic Tenets of Evaluating
the Mineral Resource Assets of Mining
Companies, as Observed in Professor Danie
Krige’s Pioneering Work Over Half
a Century

W. Assibey-Bonsu

Abstract This paper provides a write-up of the first Professor Danie Krige memo-

rial lecture in 2014, which was organised by the University of the Witwatersrand in

collaboration with the Southern African Institute of Mining and Metallurgy

(SAIMM) and the Geostatistical Association of Southern Africa, where his wife

Mrs Ansie Krige, the SAIMM and Professor R.C.A. Minnitt also spoke. The

memorial lecture was presented by his previous PhD graduate student, Dr Winfred

Assibey-Bonsu.

During that inaugural memorial lecture, the SAIMM highlighted three activities

that the institute would hold going forward, so as to remember this great

South African mining pioneer:

• The publication of a Danie Krige Commemorative Volume of the SAIMM

Journal

• An annual Danie Krige Memorial Lecture to be facilitated by the School of

Mining Engineering of the University of the Witwatersrand

• The annual award of a Danie Krige medal

What follows is both a tribute to his work and a testimony to the great man’s
deep personal integrity, belief in family, humility and faith in Christ, all of which

led him to become not only a giant in the South African mining industry but indeed

worldwide.

Figure 1 shows Professor Danie Gerhardus Krige.

The paper was first published by the Southern African Institute of Mining and Metallurgy during

the Danie Krige Geostatistical Conference, Johannesburg, 2015.

W. Assibey-Bonsu (*)

Gold Fields Limited, Perth Office, PO Box 628, West Perth 6872, Australia

e-mail: Winfred.AssibeyBonsu@goldfields.com.au
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J.J. Gómez-Hernández et al. (eds.), Geostatistics Valencia 2016, Quantitative
Geology and Geostatistics 19, DOI 10.1007/978-3-319-46819-8_1

3

mailto:Winfred.AssibeyBonsu@goldfields.com.au


1 Introduction

It has been said that ‘we make a living by what we receive, but we make a life by

what we give’. Professor Krige epitomised this in both thought and deed, where he

showed that true success in life does not revolve around material accomplishments

accrued as an individual but is defined by that which one does and leaves for others.

It has been the author’s privilege to have had an association with Professor Krige
for over 20 years, both initially as a student during a doctorate thesis at the

University of the Witwatersrand and later with him as mentor, counsellor and

‘father figure’ for the period that followed.

This paper will cover the two aspects that defined Professor Krige, firstly with

respect to his personal life and career, including the achievements of both, whilst

the second part will briefly touch on his immense contribution to industry and the

world for over half a century, through his pioneering work in ore evaluation,

economics and of course geostatistics. Indeed, his passing was recorded in

Wikipedia under notable persons, a distinction he shared with renowned persons

such as Margaret Thatcher.

2 The Great Man: Professor Danie Krige

2.1 Family and Faith

This memorial lecture would be incomplete without firstly throwing light on some

of the things Professor Krige held very dear in his life, taken from his interview in

2012 with Professor R.C.A. Minnitt of the University of the Witwatersrand.

Fig. 1 Professor Danie

Gerhardus Krige: 26 August

1919–2 March 2013
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Professor Krige was born in Bothaville in the Free State and was the youngest of

nine children born to a pastor.

Figure 2 shows a 1930 photograph of Professor Krige aged 11 with family.

Professor Krige was a devout Christian, who always emphasised that what made

a difference in his life was his belief in Jesus Christ. He also acknowledged that he

had been the recipient of gifts of grace from the Creator – ‘grace given to him’ –
drawing attention to six specific areas, in which he could identify the grace of the

Almighty at work in his life and career:

The first gift of grace:

It was a tribute to his parents for the practical application of a godly lifestyle, the

establishment of a firm foundation and a life philosophy that was modelled by

them in every area of life. An example being that even with the limited resources

at their disposal, they ensured that seven of the nine siblings received a tertiary

education.

The second gift of grace:

The second of the gifts of grace that he acknowledged was the support he had

received from his two spouses. He was happily married for 45 years to his first

wife (until her death) and thereafter for 20 years to Ansie.

The third gift of grace:

The third gift of grace was the way in which his career developed and the various

changes in direction that it took, as his research unfolded.

Fig. 2 A 1930 photograph of Professor Krige aged 11 ( front middle) with family
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The fourth gift of grace:

The fourth gift of grace was that when he returned to work at Anglovaal, they began

to apply his advanced methods of evaluation on their mines.

The fifth gift of grace:

The fifth gift of grace was that on retirement from Anglovaal at the age of 60, he

received the unexpected opportunity of taking up the Chair of Professor of

Mineral Economics at the University of the Witwatersrand, which he occupied

for the next 10 years. This enabled him to teach and undertake extensive

consulting work for mining companies both locally and internationally and

was, in his opinion, a great blessing.

The sixth gift of grace:

The final gift of grace was that after leaving the University of the Witwatersrand, he

was still able to undertake extensive national and international consulting work,

which kept him occupied and young for the following 20 years.

He also acknowledged with deep gratitude that whilst the opportunities

presented themselves to him, it was his responsibility to make good use of them

and that without these gifts of grace, his life’s work would not have been possible.

The photos that follow bear testimony to his strong belief in family values, those

same ones he was blessed with as a young boy.

Figure 3 shows Professor Krige and family.

Figure 4 shows Professor Krige with great-grandchildren.

Figure 5 shows Professor Krige celebrating his 90th birthday with Ansie.

2.2 Career, Achievements and Awards

Professor Krige matriculated from Monument High School at the age of 15 and, in

1938 at the age of 19, graduated as a Mining Engineer from the University of the

Witwatersrand. It was clear early on that he was destined for great achievements.

The two photos in Fig. 6 show the difference between the robe of a university

graduate and typical clothes of an underground miner. It provides a perfect illus-

tration of Professor Krige’s values regarding theoretical developments aimed at

solving practical problems.

Figure 6 shows Professor Krige as a university graduate and also learning the

trade, 1939.

2.2.1 Career

Professor Krige worked with Anglo Transvaal on a number of gold mines in the

Witwatersrand until 1943 and thereafter joined the Government Mining
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Fig. 3 Professor Krige and family

Fig. 4 Professor Krige with great-grandchildren
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Fig. 5 Professor Krige celebrating his 90th birthday with wife Ansie

Fig. 6 Shows Professor Krige as a university graduate and also learning the trade
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Engineering Department, where he worked for a further 8 years. He spent time

studying data and developing mathematical models. He returned to industry as

Group Financial Engineer of the Anglovaal Group until 1981, when he ‘retired’. He
then spent another 10 years (of his ‘retirement’) as Professor of Mineral Economics

at the University of the Witwatersrand.

Professor Krige’s seminal papers, published in the Journal of Chemical, Metal-

lurgical and Mining Society of South Africa, led to additional fundamental research

in France on ‘regionalised variables’ by Professor George Matheron and his team.

Professor Matheron named the new method of linear estimation of the regionalised

variables using a spatial model, ‘kriging’, in recognition of Professor Krige’s
distinguished pioneering work.

His 1951 paper, based on his MSc (Eng.) thesis at the University of the

Witwatersrand, expounded his pioneering work in geostatistics in more detail.

His research and paper covered and assisted with the statistical explanation of

conditional biases in block evaluation. It stimulated the use of regression correc-

tions for routine ore reserve evaluations by several mines, and the technique was

essentially the first elementary basis of what is now known as kriging. The paper

introduced, inter alia, the basic geostatistical concepts of support, spatial structure,

selective mining units and grade-tonnage curves. The concept of recoverable

resources/reserves in current use is based on what is known as ‘Krige’s
relationship’.

Kriging is currently applied worldwide in the fields of exploration, ore evalua-

tion, environment, petroleum, agriculture, fisheries and other disciplines. His out-

standing influence on the worldwide mining industry is visible every day, as shown

by the decision-making processes followed by international mining companies.

Over the course of his career, he published some 96 technical papers including

the Geostatistics Monograph, the first in the series of the SAIMM. A complete

record of all his publications is available in digital format from the SAIMM.

2.2.2 Dedicated Service

As a professional engineer, Professor Krige served for many years on the mining

committee of the Engineering Council of South Africa and on the Council of the

SAIMM; he was a co-founder of the International Association of Mathematical

Geology, Geostatistical Association of Southern Africa, Geostatistical Association

of Australia and the Statistical Association of South Africa.

He also served as a director of several companies, on the subcommittee of the

South African Prime Minister’s Economic Advisory Council during 1967/1968, as

well as on various committees of the South African Chamber of Mines. He was a

member of the SAMREC Working Committee for The South African Code for

Reporting of Exploration Assets, Mineral Resources and Mineral Reserves

(SAMREC Code) as first published in 2000.

Amongst all of this, he still managed to find time to (i) design the state aid

formula, which assisted a large number of gold mines to survive the period of low
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gold prices, (ii) establish the original South African uranium contracts and, (iii) in

1955 and in Afrikaans, published probably one of the first papers on risk analysis

for new mining investment. He also gave major inputs in the fields of financial

analysis and taxation.

Professor Krige was especially committed to the Application of Computers and

Operations Research in the Mineral Industry (APCOM). He was South Africa’s
representative on the International APCOM Council from its inception, served as

the Chairman of the International APCOM Council and was the first member,

outside of the United States, to be elected to this position. He initiated and was

directly involved with all arrangements for the symposia held in South Africa in

1972, 1987 and 2003 and is believed to have attended all APCOM symposia until he

was almost 90 years old. In 2003, 2 weeks after a major operation, he managed to

convince his medical doctors to allow him to attend the 2003 APCOM in Cape

Town, South Africa, where he was a keynote speaker and also presented two other

papers.

During his time as a Professor of Mineral Economics at the University of the

Witwatersrand, he was responsible for postgraduate courses in geostatistics and

mineral economics and supervised many masters and doctoral theses. Both whilst

there and afterwards, he presented courses in geostatistics and/or lectured at local

South African and also international universities in Australia, Germany, Taiwan,

Chile, Russia and China, to name but a few. He also still found the time to provide

valuable consultancy work both locally and internationally and also participated in

and contributed to many international congresses all over the world.

2.2.3 Achievements and Awards

Over his life time, he was the recipient of numerous awards locally and interna-

tionally, too many to mention all. His academic achievements and awards included:

– DSc (Eng.) 1963, University of the Witwatersrand

– DIng (HC) 1981, Honorary Degree, University of Pretoria

– Honorary Doctorate Degree from Moscow State Mining University

– Honorary Doctorate Degree from University of South Africa (UNISA)

– Order of Meritorious Service Class 1, Gold, by South African State President

– The highest award of the SAIMM, the Brigadier Stokes Award, 1984

– Many other merit awards from SAIMM including two gold medals in 1966 and

1980 and two silver medals in 1979 and 1993

– International Association of Mathematical geology – William Krumbein medal,

1984

– One of the highest awards from the American Society of Mining Engineers – the

Daniel Jackling Award

– Several awards from APCOM International Council, including the Distin-

guished Achievement Award, 1989
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– Elected as Foreign Associate of US National Academy of Engineers (NAE)

2010, the first South African to ever receive this award for his distinguished

contributions to Engineering

– Order of the Baobab in silver – awarded by President Jacob Zuma

Figure 7 shows him during the US NAE Award session (Professor Krige fifth

from left in front row).

Figure 8 shows him being awarded the Order of the Baobab in silver by the

South African State President Jacob Zuma.

Fig. 7 Professor Krige receiving the US NAE Award

Fig. 8 Professor Krige receiving the Order of the Baobab in silver
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3 Professor Danie Krige’s Work on Essential Tenets
in Evaluating the Mineral Resource Assets of Mining
Companies

Although impossible to provide a thorough list in this paper, the author will try to

detail at least some of the many principles that Professor Krige brought forth over

half a century.

3.1 Historical Background and Motivation: The Capital
Intensiveness of Mining

The mining industry requires very capital-intensive investments. Figure 9 provides

some examples in this regard.

The left graph in Fig. 9 shows that in 2007 Rio Tinto’s acquisition of a Canadian
aluminium company (Alcan) costs 38.1 billion US dollars. It further shows that the

estimated cost for Billiton’s Olympic Dam project in Australia was estimated at

27 billion US dollars.

The right graph in Fig. 9 illustrates that in 2007 Gold Fields Limited acquired the

South Deep Gold Mine in South Africa at a cost of 2.5 billion US dollars (the

equivalent of 22.2 billion rand at the respective 2007 exchange rate). It also shows

that in 2011 Newmont’s acquisition of Fronteer Gold Inc. costs 2.3 billion US

dollars and that Barrick’s ongoing development of the Pascua-Lama gold mine in

South America was estimated at 8.5 billion US dollars.

Mineral resources and mineral reserves are the fundamental assets of mining

companies, and capital-intensive investments are made with respect to these. The

Acquisi�on, mine development or expansion cost
(US$ billions)

Acquisi�on, mine development or Expansion cost
(US$ billions)

Rio Tinto
(2007)

Billiton
(2014)

Barrick
(2012)

Newmont
(2011)

Gold Fields Ltd
(2011)

Gold Fields Ltd
(F2007)

38.1

27.0

2.5

1.1

2.3

8.5

Fig. 9 Shows capital-intensive investments required in the mining industry
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strategic objective is to explore, acquire, develop and ultimately mine them, but one

critical risk exists in the uncertainty of the estimation of resources/reserves. If, after

intensive capital investments, it is subsequently found that the expected mineral

resources and mineral reserves were inefficiently estimated or valued, billions of

dollars may be lost. Professor Krige’s pioneering and research work provides

technical solutions to mitigate these technical and financial risks when evaluating

these fundamental assets.

3.2 Essential Tenets in Evaluating Mineral Resource Assets
of Mining Companies Based on Over Half a Century
of Professor Krige’s Pioneering Work

3.2.1 Data Integrity

Professor Krige emphasised the critical importance of data integrity as the lifeblood

of mineral resource and reserve evaluation. This includes data validation and

authorisation, use of standards and blanks with approved laboratories and also

database safety and security, which are all critical requirements of the Sarbanes-

Oxley Act of 2002 (SOX) that is necessary for compliance with the New York

Stock Exchange regulations.

3.2.2 Geology Models

Professor Krige highlighted geology as the foundation of mineral resource and

reserve modelling. He emphasised that different ore bodies behave differently and

that the main geological characteristics, including lithological and structural fea-

tures, mode of origin and formation as well as controls of mineralisation, are critical

inputs in ore body modelling.

He further highlighted the dangerous practice of subdividing ore bodies, not on

geological grounds but directly on grade only, as this can lead to serious biases,

particularly where data in one or more subdivisions are insufficient to allow proper

geostatistical analysis.

3.2.3 Geostatistics Technology: Technique Selection and Optimal
Application

In the field of mineral resource and reserve evaluation, geology and geostatistics are

two inseparable sides of the same coin. As highlighted above, on the one side,

geology concentrates on the physical features of the ore body, such as structures,

source, deposition and type of mineralisation. Geostatistics is the other side of the

coin and provides mathematical, statistical and geostatistical models for the
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analytical sampling data available, in order to introduce efficient evaluation tech-

niques for resource and reserves estimates and to attach confidence limits to these

estimates.

Uncertainty is fundamental to all branches of science and to human life itself. It

is the reason for the introduction of mathematical and statistical techniques in

geology and to the birth of geostatistics over half a century ago.

3.2.4 Frequency Distribution

The initial efforts in applying classical statistical procedures to ore evaluation in

South Africa date back to 1919 (Watermeyer) and 1929 (Truscott). It was only in

the late 1940s and early 1950s that Sichel (1947, 1952) introduced the lognormal

model for gold values and using this model developed the ‘t’ estimator. Departures

from the usual lognormal model were largely overcome with the introduction in

1960 (Krige 1960) of the three-parameter lognormal, which requires an additive

constant before taking logarithms. However, there were still cases which could not

be covered by the three-parameter lognormal, and Sichel et al. (1992) introduced

the more flexible compound lognormal distribution, originally developed by him

for diamond distributions.

3.3 Spatial Concepts and the Birth of Geostatistics
and Kriging

Geostatistics as such did not really originate until the basic concept of ore grades as

a spatial variable, with a spatial structure, was introduced in 1951/1952 by Profes-

sor Krige.

This arose firstly in his endeavour to explain the experience seen on the

South African gold mines for many decades, where ore reserve block estimates

consistently showed significant undervaluation in the lower-grade categories and

overvaluation for estimates in the higher-grade categories, during subsequent

mining, i.e. what is now known as conditional biases, and illustrated below in the

form of a simple diagram (Fig. 10). His pioneering work provided the geostatistical

explanation of conditional biases, as unavoidable errors resulting from the use of

limited data on the periphery of blocks, which were used in evaluating ore reserve

blocks. He proposed and implemented corrective measures to eliminate these

significant conditional biases. The regression corrections were applied routinely

to block estimates on several mines in the early 1950s and represented the actual

birth of kriging. The regressed estimate was, in effect, a weighted average of the

peripheral estimate and the global mean of the mine section; it was the first

application of kriging. It could be called ‘simple elementary kriging’, being based

on the spatial correlation between the peripheral values and the actual grades of the
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ore inside the blocks and giving proper weight to the data outside the block

periphery via the mean. In this way, the spatial concept and kriging were intro-

duced. The concept of ‘support’ is very basic to geostatistics and was first covered

by Ross (1950) and further developed by Krige (1951), including Krige’s variance
size of area relationship.

Figure 10 illustrates conditional biases.

3.4 Spatial Structure and Variograms

Professor Krige’s pioneering work in the early 1950s aroused interest worldwide,

particularly in France where, under Professor Allais, Professor Krige’s papers were
republished in French (Krige 1955). One of Professor Allais students, later to

become world renowned as Professor Matheron, started the development of the

Fig. 10 Conditional biases
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theory of regionalised variables. Matheron also then proposed the use of the

variogram to define the spatial structure. This model is an extension and refinement

of the concept covered by De Wijs (1951/1953). Professor Krige’s regressed

estimates were then still called ‘weighted moving averages’ until Matheron’s
insistence in the middle 1960s on the term ‘kriging’ in recognition of Professor

Krige’s pioneering work.

During 1963 to 1966 (Krige and Ueckermann 1963, 1966), the spatial patterns

were defined in far more detail. These studies covered the spatial correlations

between individual ‘point’ sample values, as well as those between regularised

data blocks. The corresponding correlograms or covariograms were used on a

simple kriging basis for block evaluations. Kriging on a routine basis for ore reserve

evaluation was, therefore, already in use on some Anglovaal gold mines more than

50 years ago.

3.5 Conditional Unbiasedness

It is instructive to observe that on the South African gold mines, the improvement in

the standard of block evaluations due to the elimination of conditional biases

accounts for some 70% of the total level of improvement achievable today, using

the most sophisticated geostatistical techniques. It is for this reason that Professor

Krige placed so much emphasis on the ‘proper’ implementation of the methods to

mitigate conditional biases. Thus, it is critical that the elimination of conditional

biases is not only the major contributor to the reduction of uncertainty in assessing

the mineral resources of mining companies but also an integral and fundamental

part of any kriging and mineral resource and reserve assessment process.

3.6 Conditional Biases

The elimination of these biases is basic to ore evaluation and all geostatistical

procedures. David, in his 1977 popular geostatistics book (‘Geostatistical Ore

Reserve Estimation’), emphasised that the elimination of these biases is basic to

ore evaluation and all geostatistical procedures. As per David, conditional unbi-

asedness is ‘the key point of Krige’s 1951 paper, one of the key points of his 1976

paper but even then, still appeared as a revelation to many people’.

3.6.1 What Contributes to Conditional Biases

Any increase in knowledge and available data relevant to any uncertainty being

studied will reduce the level of uncertainty, provided the knowledge is applied

properly. Knowledge will never be perfect and data never complete, and therefore
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uncertainty will never be entirely eliminated. However, any procedure or technique,

which does not use all relevant data in order to provide the ‘best’ perspective on the
remaining uncertainty, must not be accepted. Unfortunately, Professor Krige

reported that in his worldwide experience, he encountered many cases where

practitioners had erred in respect of this fundamental concept. In too many cases,

mineral resources and mineral reserves were estimated on limited data, and relevant

data was ignored. The use of insufficient data can still be a problem today. In 1950

only the peripheral data for each block was used, whilst now with the use of

geostatistics, the data search routine is still often inadequate, even with the com-

plete database available to the computer. This is compounded with often no

advanced analysis to determine the minimum search routine required to eliminate

the biases and no follow-up studies to record the presence of these biases and the

need to eliminate them.

3.6.2 Practical Examples of Outcomes of Conditional Biases

The graphs and tables that follow, some also taken from Professor Krige’s historical
and practical work, illustrate the effect and outcomes of conditional biases.

Figure 11 illustrates feasibility block estimates versus final production blast-hole

averages of an aluminium deposit, showing no correlation between the feasibility

block estimates and that observed during production, as demonstrated by the

regression trend, which could lead to significant risk in invested capital. Figure 12

illustrates similar conditional biases problems, demonstrates why they are impor-

tant and shows how they result in misclassification of ore blocks, which lead to

levels of profit well below what can be achieved. Figure 13 demonstrates the

improved estimates of Fig. 12 analysis that can be achieved through using ‘proper’
kriging with an adequate search.

More recent practical examples of conditional biases are included in the tables

and graphs that follow (Tables 1 and 2 and Fig. 14). Table 1, an open-pit historical

mined-out case study, demonstrates that even the latest sophisticated geostatistics

method used to estimate recoverable resources can suffer from inherent conditional

biases. Table 2 shows the effect of conditional biases over time, from a historically

mined-out case study, with consistently large negative percentage errors for tonnes

and positive ones for grade, over various time periods and cut-offs. Figure 14

illustrates the financial impact the errors would have, over the respective cut-offs

and time periods.

3.6.3 Conditional Biases: Testing Tools

Mineral resource estimation for a new or an existing mine covers two major stages:

– At the initial or first stage, the data is limited and is obtained either from a broad

drill hole grid or from an initial main development grid.
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– During the second or final stage, more data becomes available from grade

control or from stope faces and auxiliary developments.

Apart from providing a basis for short- and longer-term mine planning and

viability studies, evaluations are frequently required to provide resource and

reserve classification figures (measured/indicated/inferred and proven/probable)

and to substantiate a major capital investment and/or the raising of loans. At both

stages of evaluation, the evaluation technique should ensure minimum error

Fig. 11 Positively skewed, block estimates versus blast-hole averages

Fig. 12 Misclassification of blocks
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variances/uncertainty. These requirements are linked closely to the expected slopes

of regression of the eventual follow-up values on the original block estimates.

Slopes of less than unity indicate the presence of conditional biases, with blocks

in the upper-grade categories overvalued and low-grade blocks undervalued.

Fig. 13 Proper kriged estimates versus ‘actuals’

Table 1 Geostatistical estimate with conditional biases – grades (g/t)

Recoverable LUC SMU estimates of blocks for grade

categories

Corresponding average grade for

actual blocks

(g/t) (g/t)

12.0 3.0

6.0 2.3

0.3 1.7

Table 2 Geostatistical estimate with conditional biases – percentage errors

Percentage error of ore mined over respective time periods

Cut-off

6 months 1 year 3 years

Tonnes Grade Tonnes Grade Tonnes Grade

(g/t) (%) (%) (%) (%) (%) (%)

0.6 �15 31 �15 20 �15 16

0.7 �14 31 �16 22 �16 18

1.0 �3 27 �16 24 �17 19
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3.6.4 The Efficiency of Block Evaluations

Block evaluations subject to conditional biases have lower efficiencies. Professor

Krige in 1996 proposed to define and measure the efficiency, expressed as a

percentage, as follows:

Efficiency ¼ BV� KVð Þ=BV ð1Þ

where:

BV ¼ block variance (i.e. the variance of actual block values, calculated from a

variogram).

KV ¼ kriging variance (i.e. the error variance of respective block estimates).

For perfect evaluations, KV¼ 0, the dispersion variance (DV) of the estimates

(calculated from the observed kriged model) ¼ BV, and then:

Efficiency ¼ BV� 0ð Þ
BV

¼ 100% ð2Þ

where only a global estimate of all blocks is practical, all blocks will be valued at

the global mean, i.e.:

DV ¼ 0, KV ¼ BV, and Efficiency ¼ BV� BVð Þ=BV ¼ 0 %: ð3Þ

Usually blocks are valued imperfectly. With no conditional biases:

DV ¼ BV� KV, and Efficiency ¼ ðBV� KVÞ=BV ¼ DV=BV ð4Þ

Fig. 14 Financial impact measured on the basis of relative profit
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However, with conditional biases present, this relationship does not hold, and

then because of insufficient smoothing:

DV > BV� KVð Þ ð5Þ

and:

Efficiency ¼ BV� KVð Þ=BV < DV=BV ð6Þ

The efficiency of a block evaluation can even be negative if KV > BV. As

stressed by Professor Krige, such a situation is unacceptable, and the block evalu-

ations will be worthless; yet he encountered several such cases in practice, where

the data accessed per block was inadequate.

3.6.5 Critical Control Limit Test for Kriged Block Evaluations

In order to avoid this unacceptable negative efficiency for block estimates, the

following critical control limit test is proposed for the regression slope to test for

conditional biases (Assibey-Bonsu and Muller 2014):

The regression slope can be written as:

Regression slope ¼ ðBV� KVþ ξLMÞ=ðBV� KVþ 2ξLMÞ ð7Þ

where: ξ¼þ1 or�1 depending on the sign of LM (ie, the kriging system set-up) and:

LM ¼ respective Lagrange multiplier for ordinary kriging, and BV and KV are as

defined above.

Where only a global estimate of all blocks is practical, all blocks will be valued

at the global or subdomain mean, i.e. KV ¼ BV and Efficiency ¼ 0.

Substituting KV ¼ BV into Eq. 7:

Regression slope ¼ ξLM=2ξLM ¼ 0:5 ð8Þ

Thus, a regression slope of less than 0.5 will always lead to a negative block

efficiency estimate (i.e. worthless kriged estimates). This highlights the danger of

accepting block estimates that have a slope of regression less than 0.5.

The critical regression slope limit of 0.5 should only be used to identify blocks

that will result with negative kriging efficiencies. Ideal slopes of regression should

be greater than 0.95, as proposed by Krige (Krige 1996).

An extensive study of some 70 cases by Professor Krige covering a wide range

of spatial and data patterns used indicated a correlation between kriging efficiency

and the regression slope (actuals on estimates) of 87.5% (Krige 1996). Thus, the

slope (or the extent of conditional biases present) effectively incorporates all the

major factors affecting the efficiency of block evaluations.
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3.6.6 Smoothing Effect of Kriging

The absence of conditional biases is unavoidably accompanied by some smoothing,

and it is a fallacy to use the data search routine for block evaluation in an endeavour

to reduce or eliminate it. Smoothing is inevitable and essential for conditionally

unbiased estimates.

Explaining this in terms of a theoretical approach by reviewing the definition of

the slope of the line of regression of actuals (Y) on estimated block values (X):

Slope ¼ r σy=σx
� � ð9Þ

where σy and σx are the respective standard deviations of actuals and estimates,

respectively, and r is the correlation coefficient.

If the slope is to be unity (i.e. slope ¼ ~1) for unbiased block estimates and (r) is
less than unity, because estimates are never perfect, then:

σy=σx
� �

> 1 ð10Þ

i.e. the standard deviation (or variance) of the actual or real block values must be

larger than that of the estimated block values. The gap between these two variances

(the smoothing effect) can therefore only be reduced by increasing the correlation

(r) between block estimates and actual values, i.e. by improving the efficiency of

the estimation technique or by providing more data. No mathematical manoeuvring

can achieve this objective.

Various post-processing techniques are available to remove smoothing effects

(e.g. Assibey-Bonsu and Krige 1999; Journel et al. 2000) and should be applied

only to block estimates that are conditionally unbiased.

4 Conclusion

4.1 Professor Danie Krige’s Basic Points of Advice
for the Practitioner

(i) Ensure data integrity.

Disastrous errors and critical risks will result by using erroneous data.

Various processes that are usually set out in company or mineral resource

regulatory body standards and protocols should be followed to ensure overall

data integrity. The SAMREC Code, Table 1, provides good guidelines as to

those aspects that should be considered and reported on in the relevant

competent person reports.

(ii) Establish all the necessary geological and geostatistical models and

parameters.
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Geology should always be recognised as a vital element in deposit model-

ling. Experience has shown that geostatistical mineral resource and reserve

assessment, without proper geological input, can also be disastrous and con-

stitute a critical risk. A robust geological model is therefore a prerequisite, and

if the geostatistical model does not agree with the geological one, there are

grounds for serious concern. Either one or both models should be critically

re-examined, so as to establish the essential correlation and validation.

(iii) Technique selection and optimal application.

Choose an appropriate geostatistical technique, and determine the search

routine required to eliminate conditional biases and to ensure optimal

application.

Use effective tools, including slope of regression and block efficiencies in

this regard.

(iv) As blocks are mined out, do follow-up (reconciliation) studies to validate the

mineral resource estimates.

This is a further important aspect, not only to ensure that estimates have the

quality required and that no biases are present but also to timeously record the

differences and facilitate corrective action.

(v) Research new techniques and applications, but validate new techniques

properly by way of (follow-up) checks to confirm the absence of biases and

the practical advantages to be gained when they are applied in practice.

4.2 Final Thoughts

The industry seems to be going backwards in certain areas, with a widely spread

misunderstanding of the causes and consequences of conditional biases. The fol-

lowing are some of the possible causes:

– In certain universities, as well as training provided elsewhere in the industry,

geostatistics is taught using commercially available computer programmes, with

the emphasis being how to use the programmes.

– Unfortunately, this is what many mining companies expect: graduates or prac-

titioners who are good at operating programmes (‘black-box approach’). This
does not give much time to teaching the fundamentals of geostatistics and the

consequences of misusing the technology.

– What complicates matters is that, certain universities rarely have large databases

to demonstrate the strengths and weaknesses of various methods in different

environments and research is by its own nature geared towards only develop-

ment of theoretical geostatistics, often based on strong stationarity assumptions.

. . .after half a century of phenomenal developments in geostatistics, conditional biases

which gave birth to this subject, are still encountered in practical applications. . . the main

concern is that this record will be tarnished by the all too ready acceptance (in certain cases)

of estimates, which are still conditionally biased. For the future, I would like to see

geostatistics continue to grow from strength to strength with new models, techniques and
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applications, but where these are all validated properly by way of (follow-up) checks to

confirm the absence of biases and the practical advantages to be gained when they are

applied in practice. . . . Professor Danie Krige.

Professor D. Krige was indeed a pioneering giant, which the South African

mining industry was blessed to have had for his immense contributions. He always

gave willingly and unselfishly, with the rewards not gold, platinum and diamonds

but the tools for others to utilise in finding and evaluating mineral resources, so as to

achieve a positive financial return whilst minimising the associated risk. He took

the industry far along the road, but the journey is not over, and it now remains the

responsibility of those that follow, to both adhere to his principles and indeed

continue to build thereon, to ensure his legacy lives on.

Figure 15 shows Professor Danie Gerhardus Krige, who indeed made the world a

better place.
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Functional Decomposition Kriging
for Embedding Stochastic Anisotropy
Simulations

J.A. Vargas-Guzmán and B. Vargas-Murillo

Abstract Functional analysis of the kriging algorithm is accomplished with con-
secutive projections of vectors in Hilbert space. The innovation unveils “functional
decomposition kriging” (FDK), which can forecast fields on spatially continuous
domains without using blocks, cells, or elements. FDK assembles the random field

as a summation of field analytic functions, which are sample pivoted and

nonstationary. Furthermore, spatially variable uncertain anisotropy is represented

as a continuous tensor random field, which is formed from non-orthogonal mem-
bers. FDK predicts tensor members using physical data collected at sparse sample

locations. Particular interest is on structural anisotropy tensor fields representing
curvilinear and folded patterns of structural uncertainty. Therefore, spatially var-

iable eigenvector and eigenvalue tensor fields give continuously varying orientation
and range of principal stochastic anisotropy of covariances that are used as input to

stochastic functionals. FDK enables simulation of anisotropic properties (e.g.,

permeability, rock stiffness, or structural anisotropy), with stochastic covariance
parameter fields. Integration of field analytic functions delivers upscaled

multiresolution moments. Since FDK can be stopped, optimized, and updated

without repeating computations, it is suitable for inverse, adaptive, and real-time

modeling.

1 Introduction

Spatially variable and uncertain anisotropy can be represented as a tensor random
field related to gradients of a property. For example, normal vectors of hydraulic

potential or gradients of folded elevation can be converted into contour and
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streamline vectors (i.e., complex random fields). Consequently, structural uncer-

tainty studies involving curved patterns (e.g., sinuous sequences, meandering,

braiding channels, or folded structures) must use models that match measurable

local physical anisotropy data. Furthermore, spatially variable tensors can describe

orthogonal, monoclinic, or triclinic anisotropy that require careful modeling.

Forecasting properties that contain data about their spatially variable directional

gradients is a nontrivial problem. For example, kriging orientation tensors in

embedded spaces require isotropy assumptions (van den Boogaart and Schaeben

2002). If the tensors represent correlation anisotropy, the problem demands a way

to introduce variable anisotropy data into the estimation algorithm. A limitation of

the kriging estimator of probability parameters for random fields is its classic

formulation using constant anisotropy in a stationary and deterministic covariance

model, c hð Þ. Routinely, c hð Þ is defined on the domain of the Euclidean separation

distanceh, with deterministic range and variance parameters along the principal

axes of orthorhombic anisotropy. However, the single anisotropy condition is not

suitable for modeling random fields that should represent real patterns pertaining to

spatially variable tensor anisotropy data. Hence, embedding stochastic anisotropy

fields into geostatistical modeling through covariance functions with spatially

variable stochastic parameters is a sought-after option for simulated realizations

of random fields.

Various authors treat the curvature of spatial patterns by considering anisotropy

parameters that change with spatial locality. For example, kriging and simulations

with rotated anisotropic variograms for each local neighborhood were proposed

(Soares 1990), following a previously simulated angular direction of local anisot-

ropy, after conventional geostatistical facies modeling (Xu 1996). Kriging with a

local variogram in an elliptic neighborhood with rotated anisotropy orientations

was subsequently implemented (Horta et al. 2010). The data-versus-data covariance

for the same pairs of samples entering into estimation at two adjacent locations with

partially overlapping neighborhoods would conflictingly pertain to different rotated

local anisotropies. Furthermore, the approach is not flexible enough in higher

resolutions with sparse data because it requires all samples within the neighborhood

to share the same anisotropy parameters.

Assuming the curvilinear directions of meandering streamlines are known a

priori (Stroet and Snepvangers 2005), splitting a 2D simulation domain into a series

of 1D independent spectral simulations along the cells connected by each stream-

line was proposed (Yao et al. 2007). Spectral simulation does not use neighbor-

hoods, so it could reproduce the spatial continuity structure of simulations better

than sequential simulations; however, posterior conditioning to data is ad hoc in the

realizations (Gutjahr et al. 1997). Assuming independence of properties between

different streamlines is unrealistic due to essential lateral continuity (e.g., deposi-

tional accretions).

Straight distances between locations can be replaced by a sum of segments along

local directions (Boisvert et al. 2009). Curvilinear distances were computed

between each pair of locations using locally varying anisotropy directions and

produced contoured paths with guarded Newton optimization. Estimations were
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performed by taking the domain to a higher dimensional isotropic space, where the

covariance should yield positive definite matrices, by avoiding non-Euclidean

space (Curriero 2005). Although large computers may accelerate the

multidimensional scaling, the approach requires the input of deterministic ortho-

rhombic variogram anisotropy orientations, which must be known a priori at every

location.

Anisotropy of covariances is predictable using inverse methods. The anisotropy

field can be modified by correlating errors in the expected response attribute with

sensitive modifications in the predicted anisotropy parameters. An example is that

errors in predicted versus measured rock proportions in new drilled wells are used

to enhance knowledge about anisotropy directions (Dossary and Vargas-Guzmán

2011). Reservoir models are reported to be made better by changing the orientation

of geostatistical anisotropy (Caeiro et al. 2015).

Predictions of anisotropy tensors are known in computational fluid dynamics

(CFD), but the results do not match field samples in detail (e.g., storm patterns,

turbulence forecast, and sedimentary dynamics). Turbulent 3D flow models with

physically realistic streamlines are unavailable (Ladyzhenskaya 2003). Therefore,

forecasting components of non-orthogonal anisotropy tensors, with geostatistics

embedding variable anisotropy at non-sampled locations, is a necessary alternative

to vorticity prediction. Additionally, it is essential to embed the uncertainty of

anisotropy in geostatistical predictions, considering the observed parameters for the

directional covariances are spatially variable, uncertain, and usually continuous.

In this study, the spatially stationary single anisotropy constraint is circumvented

by developing a truly functional analysis of the kriging algorithm. The approach is

achieved via functional Hilbert space decompositions of the random field that yield

continuous field analytic functions. Vector components of tensors with uncertain

anisotropy are also predicted as non-orthogonal members. They enable stochastic

parameters for input covariance functions.

2 Theory

2.1 Functional Decomposition of the Random Field Z(x)

A set of random variables Z xið Þf g, each at a given physical location, xi, conforms a

spatial random field,Z xð Þ, which is defined in the probability space B;Ω; pf g, where
p is the probability measure. The sample space Ω and Borel algebra B conform a

measurable space. Each random variable is a vector Zi in L2 Hilbert space. The

random variables Zi¼q and Zi¼r are related pairwise by inner products Zq ∙Zr in L2.
A stationary and deterministic covariance function of a lag distance c hð Þ

(in general, a stationary co-cumulant function of higher-order κ h1, . . . hq
� �

) does

not exploit the possibility of spatially variable anisotropy parameters, as observed

in natural phenomena (Vargas-Guzmán 2011). This is due to the variable
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elongation and rotation of natural correlation structures, which complicate simple

mapping with stationary covariances. In order to handle these larger degrees of

freedom for anisotropy in covariance functions, each location must be disassembled

from the neighboring locations. The analysis follows.

Consider that the random field Z xð Þ is the sum of regionalized addible factor

fields. One option is to model each field component using a Fourier-Stieltjes

representation dZ1 ωð Þ, dZ2 ωð Þ� � �dZn ωð Þf g (Gutjahr et al. 1997) as a band in the

frequency domain ω. A question arises: can components be frequency and ampli-

tude modulated to handle spatially variable anisotropy? A powerful representation

for each factor can be a “conditional component field,” which removes any redun-

dancy due to non-orthogonal components. In this representation, Z xð Þ is a combi-

nation of conditionally independent random fields R1 xð Þ,R2 xð Þ, � � �,Rn xð Þf g termed

conditional components and their projections. Instead of the multiple independent

spectra, “conditional spectra” is computed in the frequency domain for individual

RjðxÞjj ¼ f1 . . . ng. Each conditional power spectrum is inverse Fourier

transformed into physical space to yield a valid covariance function, cRj
hð Þ, for

separate geostatistical modeling of each component (Vargas-Guzmán 2003).

A new contribution from our present study is to consider that the components

may be field analytic functions, and they add to a single scalar field with

nonstationary covariance that can be generalized with modulated stochastic func-

tionals depending on physical locality. The following analysis of a random field

develops such an additive model.

The standard deviation, σq, of a random variable Rj xq
� �

at location xq, where

Rj xq
� �2 Rj xð Þ, is the norm or vector modulus Rq

�� �� in L2, and the inner product is

Rq ∙Rr ¼ ρq, r σqσr, where ρq, r is the linear correlation. Subsequently, a field with a

stationary covariance function is represented as a sphere of vectors in L2, with the

norm supremum, sup Rj xð Þ�� ��, where Rj xð Þ2L2. A complete case is if

Rj xq
� ��� �� 6¼ Rj xrð Þ�� ��, which allows for an open ball with either smaller or larger

vectors among the neighboring random variables. Thus, the sphere can be deformed

with an irregular radius, but it requires prescribed smoothness and consistency.

Applying the representation theorem (Riesz 1907), a linear stochastic functional,

f α xð Þ for a single j ¼ k scalar component, is mapped in physical space from L2

relating a vector Rj¼k
α for Rj xi¼αð Þ to all other vectors, Rj¼k

i for Rj xið Þ, in L2. This
isomorphic mapping is abbreviated,

f α xð Þ : Rj¼α ! Rj ð1Þ

Hence, a single function _f α x� xαð Þ pertaining to f α xð Þ does not need to be

stationary in physical space, because it entails a vector Rj¼k
α at a fixed physical

location related to any other Rj¼k
i in a scalar random field, Rj xð Þ.

The bounded stochastic functional f α xð Þ is defined in a finite-dimensional

subspace S2 �L2, and can be extended toL2 as more information becomes available
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(e.g., samples and simulated values). This is similar to the Hahn-Banach extension

theorem.

Projection of a vectorRi¼α onto another neighboring vectorRi¼q is an application

of the orthogonal projection theorem. Furthermore, a projection in Hilbert space is

applied to comfortably minimize the residual norm. For example, k R2jα1ðxα2Þ k¼
k R1ðxα2Þ k �wα1,α2 k R1ðxα1Þ k, where R1 xα2ð Þ is the sampled random variable

from unconditional random field R1 xð Þ at location xα2 , and wα1,α2 is the cosine

between the vectors corresponding to variablesR1 xα1ð Þ andR1 xα2ð Þ. The projections
of R2jα1ðxα2Þ on the physical domain generate a new random field, termedR2 xð Þ,
which avoids any redundancy from a prior field analytic function based on R1 xα1ð Þ.
In general, a stochastic realization of the functional f αnðxÞ must optimize

k Rnjα...ðxÞ k.
Remark 1 The projection theorem is generalized as a consecutive process (Fig. 1),

where the component norm residual is from a domino effect, simplified in terms of

uncorrelated components

Fig. 1 Scheme of consecutive projections of norms to decompose normed space
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k Rnjα1���αn�1
ðxαnÞ k¼k RnðxαnÞ k �

�
wα1,αn k R1ðxα1Þ k þwα2,αn k R2jα1ðxα1Þ k

� � � þ wαn�1,αn k Rn�1jα1���αn�2
ðxαn�1

Þ k
� ð2Þ

Remark 2 An innovative stochastic functional f αn xð Þ is defined in the same fashion

as conditional components and is extended to the infinite space L2.
The innovative stochastic functionals are addible because they are orthogonal to

each other; therefore, they can hold embedded variable anisotropy parameters for

each bounded functional, provided that the total norm Rj xð Þ�� �� for an attribute con-

forms a Cauchy series, at each location.

Remark 3 The posterior random field, made of variables RnðxÞ, also has an

abstraction in Hilbert space, L2, as a new deformed ball surface (Fig. 1); regardless

of that starting Rn�1ðxÞ variables form or not a sphere in L2.

The space of the linear stochastic functional is the dual L*2 of L2; therefore, the
linear model explained for the consecutive projection of the norms is applicable to

the random variables as well as data. The fields Rn xð Þ and Rn�1 xð Þ are generated as

continuous projection of orthogonal residual data Rnjα1���αn�1
ðxαnÞ and

Rn�1jα1���αn�2
ðxn�1Þ. Each component follows a cosine function in Hilbert space

(see Fig. 1), or a weight function that needs to be expressed in physical spatial

coordinates, following Riesz representation.

The functions can also be formalized with addible spectral components, similar

to modulated Fourier-Stieltjes representations. They can be generalized as complex

components in frequency domain.

Remark 4 Stationarity of covariance is not a requirement of Hilbert space abstrac-

tion for the random field. The nonstationarity of innovative functionals for residual

components is evident. Figure 2 is a representation of analytic functions from five

successive functionals that can host stochastic parameters. A normed space is their

complete representation, which embeds all the component normed subspaces.

2.2 Functional Decomposition Kriging (FDK)

In the analytical functional decomposition kriging (FDK), as created in this paper,

sparse kriging weights are replaced by continuous functions of spatial coordinates

that relate each orthogonal sample component to all point locations in the field.

Consecutive projections on a continuous 3D domain or infinite set of point loca-

tions, x ¼ xmin, xmaxð Þ8x2D, lead to a summation of mappings. The weight

functions ϑiðxÞ : Rαi ! Ri yield the total estimate as a spatial series of field analytic

functions, which is
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ẑ ðxÞ ¼
�
_Rα1ðxα1Þ� � � _Rαnjαn�1��� ðxαnÞ

� ϑ1ðxÞ
⋮

ϑnðxÞ

0
@

1
A ð3Þ

Where _Rαijαi�1��� represents data values corresponding to the samples of random

variables with residual moduli, k RiðxÞ k, in dual space, as shown in Fig. 1. The

continuous weight functions,ϑ1 xð Þ, are cosine values of the angle between pairwise
vectors (i.e., equivalent to conditional correlation functions) used for estimation

with each sample.

ϑiðxÞ ¼ f ̇
ijαˇi

ðxÞ=f ̇
ijαˇ i

ðx
αˇi
Þ ð4Þ

Fig. 2 Example of analytic

functions for five

functionals corresponding

to consecutive planned

sampling locations 50, 150,

800, 650, and 250
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Although the second to nth functionals cannot be invariant functions upon

coordinate translation, they can be continuously rotated in 2D or 3D. Nevertheless,

these functions are computed without the use of actual sample values, but using

sampling locations. If these functions are known and anchored to all possible

sampling locations, then kriging is reduced to scaled weight functions with the

sample values. This operation yields each field analytic function component esti-

mate model:

R̂iðxÞ ¼ _R αijαi�1��� ðxαiÞϑiðxÞ ð5Þ

R̂iðxÞ is continuous in the spatial domainx. Note that _R αijαi�1��� ðxαiÞ is a new sample

residual datum after prior projections have been removed from the datum.

If instead of _R αijαi�1��� ðxαiÞ, the second-order covariance is used in Eq. 5, the result
would be the variance of estimates as a continuous spatial field analytic function

pertaining to one residual datum.

The weights are computed from the standardization of an anchored linear

innovation function, f ̇
ijα̌i

ðxÞ, as ϑiðxÞ, for i ¼ 1 . . . n, which represents a

nonstationary weight function, and can also be interpreted as a local hat function.

Equation 5 benefits from the fact that the cosine of the angle between vectors in L2,
is a bounded function, ϑiðxÞ, in the spatial domain, x, which has a Fourier transform
but is not stationary. This equation upgrades the estimation approach to an entirely

“functional” method based on large yet simple analytic expressions for weight

functions and estimates.

If the data values are replaced by simulated residuals (i.e., white noise scaled by

the residual norm), then the approach becomes a functional simulation of orthog-

onal nonstationary parametric field analytic functions.

The FDK approach follows the consecutive projection process described in the

previous section. The first functional, anchored at the first sample location, f ̇
1jα̌

1

ðxÞ,
is expressed on the physical space or domain x. The subindex 1jðα̌1Þ indicates that it
is the first component f 1functional, and the distances are offsets, e.g.,jx� xα̌

j
j. The

first datum is projected onto the entire field as an analytic function. Computing a

residual datum at the second sampling location removes bR1 xð Þ from the estimation,

which yields _R α2jα1ðxα2Þ ¼ _R α2ðxα2Þ� bR1 xα2ð Þ:Projecting the new nonredundant

datum _R α2jα1ðxα2Þ onto the entire field requires an updated weight function. When a

second sample is collected, the Hilbert space L2 would give

f ̇
2jðxjα̌

2
ÞðxÞ : Rα2jα1 ! R2j . A straightforward way to compute this function, as a

stepwise optimization, is to anchor a function, f ̇
2jðxjα̌

2
ÞðxÞ. At this stage, f ̇1jðxjα̌

2
ÞðxÞ

is defined as a hat function at location α2, which may not be stationary in relation to

f ̇
1jðxjα̌

1
ÞðxÞ, centered at the first sampled location; however a symmetry condition

exists, f ̇
1jðxjα̌

1
Þðxα2Þ ¼ f ̇

1jðxjα̌
2
Þðxα1Þ. Consequently, following Eq. 4, the component
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estimate function is R̂2ðxÞ ¼ R ̇
α2jα1ðxα2Þϑ2ðxÞ. A third sample is assimilated in the

same fashion. Hence, the innovative functional is generalized as

f
njðxjαˇmÞðxÞ ¼ f

n�1jðxjαˇmÞðxÞ � ϑn�1ðαmÞ f n�1jðxjαˇ
n�1

ÞðxÞ ð6Þ

Equation 6 enables all weight functions, ϑn xð Þ, and field analytic functions R̂iðxÞ,
estimated or simulated, to be stored in analytical form, provided that all the required

priors have been previously stored. Computer saving entire analytical models is

analogous to storing the algorithm parameters, but alternatively, a numerical

solution can also be stored at ultrahigh resolution, and it can contain upscaled

values. Nevertheless, updating models is easier if analytic weights are stored. This

analytic type of FDK and functional decomposition simulation (FDS) model can be

automatically updated by inputting new sample coordinates and a new realization

of stochastic covariance parameters. The developer has to decide if the computer

resources required are available to store all the produced field analytic functions or

alternatively target numerical realizations.

A specific analytical expression for the functional requires analytic consistency.

For example, using the exponential model for the covariance, the first function

serves as input in all consecutive functions. It is straightforward to replace second

stage component functionals to obtain third stage functionals and so forth.

FDK process is handled with a program loop in the implementation algorithm.

Note that instead of inputting range parameters a1;a2, and an into the equations, the
distances can be stretched or scaled in rotated coordinates, during numerical display

generation. The transformed coordinates have to remove the anisotropy, as in the

classic orthorhombic case, though separately for each field analytic function. The

monoclinic and triclinic deformations have been handled with Cartesian equivalent

coordinates.

2.3 Kriging Data from Functions

FDK, as introduced for the first time here, is the result of Riesz mapping on

continuous space and/or time after functionals pertaining a random field in normed

Hilbert space are analytically decomposed. FDK generates an explicit spatial

equation for a random field in an nth dimensional domain, which can be inferred

as a complete field analytic function. FDK enables the continuity of the field along

all spatial dimensions including time, but is quantized by the number of discrete

samples and simulated values introduced in the prediction. FDK avoids the use of

matrix algebra or systems of equations; thus, the number of samples that could be

potentially used is infinite, and there are no restrictions regarding their physical

proximity or resolution (i.e., a continuous resolution is theoretically claimed).

Practicality may require a representative elementary volume.
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FDK can be applied to multivariate attributes in a vector or tensor using an

unlimited number of conditional components. However, if the number of attributes

is a infinitely continuous function of time in nth dimension, FDK can also predict

spatial functions in multiple dimensions with sparse data from sampled functions of

time or space. In this case, the model gains an additional continuum (n+1)th dimen-

sion from the curve at each location. For example, note that a 2D map or contin-

uum random field where the point locations are random curves (i.e., a random field

of function variables), one at each location, is just a 3D field. Also note that weights

in FDK are continuous functions of space and not scalar numbers as in traditional

kriging of sparse functions.

Applying kriging to data curves that appear as functions of space (e.g., time) is a

desirable approach. For example, kriging when data values are numerical curves

that are correlated in a stationary manner was proposed (Giraldo et al. 2011). Their

spatial predictions are a simplification of cokriging, by replacing the large number

of time domain attributes by a single integral of the covariance on time domain.

Although such a simplified proposal may encounter reservations, their motivation

to generate an approach to krige numerical curves is commendable. Even though

the curves are linearly correlated, their aforementioned approach still requires to

show a proof on why cross correlations between elements across curves at different

times are eliminated. The estimates at a location appear to be made with uniform

“average” weights for all variable times and follow 1D numerical curves in

“discretized” blocks or cells, not continuous analytic functions in 3D space, as

expected from a “function” based approach.

Note that FDK transforms cokriging into consecutive kriging solutions with

conditional components. Each predicted attribute or member is made from field
analytic functions in 3D or higher dimension. FDK leads to a model that considers

stochastic covariance parameters and avoids systems of equations, the cumbersome

inversion of discrete covariance matrices and ad hoc integration averaging of

covariance functions prior to estimation or simulation.

2.4 Stochastic Models for Nonlinear Client Algorithms

An FDK model provides parameters for each conditional probability density func-

tion (PDF) at every spatial location in the continuum spatial domain. Functional

decomposition simulation (FDS) is the continued FDK using simulated input data.

FDS delivers the anisotropy tensor random fields and the scalar members of any

anisotropic scalar, vector, or tensor property. The random field models are used as

input to client algorithms (e.g., nonlinear transformations, flow equations, or

project optimization). There are two ways to conceptualize stochastic models:

1. A stochastic model can be made of PDFs that carry conditional parameters for

each location and attribute. In this case, the client algorithms use FDK predicted

moments as input to deliver response moments. That is a genuine parametric
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stochastic approach for the stochastic ensemble. Nonlinear stochastic client

algorithms may also demand higher moments to deliver unbiased outputs (Var-

gas-Guzmán 2004). Higher-order moments are computed through transforma-

tions. In the case of truly non-Gaussian PDFs, the higher-order moments are not

transformable from the Gaussian model parameters, and they require their own

prediction, using functionals in higher-order Banach space, Ln (Vargas-Guzmán

2011).

2. FDS is no other thing than continued FDK generation of field analytic functions

with countable simulated data, which can be generated infinitely. The numerical

approach for nonlinear transformations is to use Monte Carlo simulations, in

which case the client algorithms require numerical realizations from input

parameters or geostatistical predictions. Subsequently, geostatistical simulations

are performed to proceed with a continuous generation of realizations of func-

tions with stochastic anisotropy parameters. Furthermore, the limiting factor for

numerical generation is the computer storage volume and resolution. FDS

advantage is that the field analytic functions can be easily stored and updated

with new random values without recomputing the analytic weight functions. The

visiting path is controlled with locality parameters. Numerical generation can

handle unlimited number of cells and multiple resolutions in realizations,

because the numbers are not stored all at once.

3 Practical Modeling Accounting for Heterogeneous
Anisotropy

3.1 Geostatistics with Input Anisotropy Tensor Fields

An indicator probability field estimated with functional decomposition kriging

(FDK) by using local variable anisotropy parameters is shown in Fig. 3. The

model is an analytic series summation of field analytic functions from projections,

corresponding to 890 samples. Only 270 samples contain measured anisotropy

orientations and range ratios.

The FDK algorithm (e.g., FDIK, for functional decomposition indicator kriging)

also delivers second-order moments (not shown here). Note that the FDIK model

for Fig. 3 does not strictly require all the predicted anisotropy map in Fig. 5; though

if needed, the anisotropy in additional simulated samples is taken from predictions

to generate simulated realizations.

Each field analytic function is predicted using FDIK, with anisotropy orientation

and ranges input to the functional, from measured or predicted stochastic anisotropy

at sampled locations for the target attribute. The FDK algorithm requires treating

each field analytic function or consecutive component as a stationary anisotropic

field, as classically applied in geostatistics with a single sample. The direction

cosines for anisotropy orientation conform the basis for global coordinate rotation,
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before updating the conditional functional and performing each Hilbert space

projection. The approach must rotate and stretch the system of coordinates for

each weight function (i.e., to assimilate a new sample). Consequently, the spatial

model is updated with each new component. Note that due to the prior covariance

between two samples is in the initial system of coordinates, it could become

inconsistent, overestimated, or underestimated as the tensor principal components

rotate. Then, the ranges of the covariance must be made properly consistent to

match the required zero covariance with prior samples. This aspect is illustrated in

Fig. 4.

3.2 Predicted Stochastic Anisotropy Fields for Structural
Uncertainty

The idea of decomposing a random field can be intuitively extended to each of the

members of the anisotropy tensor, as seen in Fig. 1. Subsequently, the tensor data

representing anisotropy parameter random variables are continuously embedded

Fig. 3 Functional decomposition indicator kriging (FDIK) model for river channels in Lena

Delta, based on 890 predicted field analytic functions
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into the functional for generating a random field pertaining to each attribute of

anisotropy itself, at non-sampled locations. The process creates stochastic func-

tionals that are multivariate because they contain as many parameters as delivered

by the anisotropy tensor at each physical location. Furthermore, the functionals for

simulated data are stochastic because they use covariance parameters from the

simulated anisotropy tensors. Thus FDS is a very powerful approach because it

allows for spatially variable stochastic covariance parameters simulated in the form

of anisotropy tensor random fields.

Remark 5 As aforementioned, the anisotropy can be converted into vectors

describing surfaces or manifolds. In the simple case of a 2D topology, the anisot-

ropy streamlines are converted to normal vectors. These vectors represent the

gradient vector of the attribute. Therefore, one can consider that a new norm

becomes the sum of the norm for the attribute plus the norm for the gradient, this

is, Z xð Þk k þ ∇Z xð Þk k, a Sobolev space. One finding is that FDK with stochastic

anisotropy parameters in second-order covariances is a functional embedding that

can be used to model a field pertaining to a Sobolev space constructed from L2
spaces.

Case in point, uncertain anisotropy tensor members are estimated and simulated

using local orientations and ratios from anisotropy data, consecutively for each

vector or non-orthogonal component. Non-orthorhombic vectors are modeled in the

same fashion as non-orthogonal components (Vargas-Guzmán 2003). The differ-

ence is that simulated anisotropy values are introduced into the stochastic func-

tionals during simulation of each non-orthogonal scalar component.

Structural uncertainty is anisotropic and is represented with random variables in a

tensor random field. In 3D, the three vectors in the tensor require nine cosine directors

Fig. 4 Successive anisotropy. (a) Consistent classic. (b) Arbitrary. (c) Ranges consistent with

rotation. (d) FDK anisotropic example for three indicator samples
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and three modules. In the orthorhombic case, with one vector on the vertical modeling

plane, only three cosine directors and two anisotropy ratios are sufficient to handle the

symmetry; the procedure is simplified further for 2D. Hence, each component can be

predicted and simulated in the sameway as non-orthogonal attributes with conditional

components (Vargas-Guzmán 2003). However, FDK must be used to account for a

circumvented embedding of anisotropy through covariance functions. For composi-

tional reasons, it is convenient to handle cosine directors as components of unit

vectors. It is not a good practice to estimate angles; to assure resulting vectors have

unit modules and correct orientations, direction cosines must be estimated or simu-

lated. A separate model of scalar anisotropy magnitudes, conditional to the orienta-

tions, is made using measured data and expert inputs or analogs. Modeling of the

non-orthogonal scalar components must be performed with caution, as the anisotropy

range ratios and principal components of anisotropy may conform non-orthorhombic

tensor and components could hold third-order correlations.

A simplified example of FDK in 2D is presented in Fig. 5, where the vector

component of the tensor of anisotropy represents averaged pseudo-streamlines. The

Fig. 5 Functional decomposition kriging (FDK) model of anisotropy tensors, from 270 stream-

located samples from Lena Delta. Stream vector is a principal tensor component (the color blue in
the background represents streams and water)
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figure depicts FDK predicted orientations of anisotropy, compared to a sedimentary

image for a sector of Lena Delta. The cosine and sine components of the eigenvec-

tors were conditionally kriged by introducing the sample anisotropy (i.e., rotation

and coordinate stretching parameters) at each step, where the FDK algorithm was

used with 270 selectively gathered samples at channels. The predicted anisotropy

map can be easily continued with simulated residuals to produce realizations of

simulated stochastic anisotropy fields.

4 Discussion and Conclusion

Functional decomposition kriging (FDK) theory offers powerful solutions for

handling anisotropy in inverse, adaptive, multiresolution, and real-time methods.

Because anisotropy is uncertain at non-sampled locations, FDK must predict

anisotropy tensor fields before performing simulations for the target attribute.

Updating numerical model predictions with FDK geostatistics without changing

the weight functions, requires simply replacing data or simulated values in the field

analytic functions. Updating a specific weight function due to a change in anisot-

ropy parameters is a swift process. If new consistent anisotropy parameters are

provided for the field analytic function from a single sample location, the paramet-

ric weight function will automatically be modified without affecting previous

sample locations. The conditioning algorithm modifies the target function

pertaining to a single sample location, without repeating FDK computations at

previous samples, but posterior residual data may need to be adjusted for posterior

neighbor samples if the sequence uses the residual mode. The non-residual model is

not reported here.

Modeling at multiple resolutions with arbitrary shape and size of elements

requires integrating the function estimates within each element. The computational

operations can be parallelized, but they do not need to be performed in the entire

physical domain; instead they are applied in a selected sector of the model, as

required. In theory, each field analytic function extends to the complete domain.

The functional algorithm does not need to use neighborhoods, though the numerical

representation for integrations and upscaling of a specific layer can be eliminated

by ignoring regions pertaining to pivot locations that are significantly uncorrelated

to the integrated sector model.

As a conclusion, the consecutive projection of vectors on their neighbors in

functional Hilbert space leads to a powerful decomposition of a random field

enabling FDK and FDS. Furthermore, an infinite number of attributes is reduced

to a continuum FDK. In the context of countable attributes, vector and tensor

random fields are arrays of non-orthogonal scalar member random fields. There-

fore, FDK enables predictions of tensors of anisotropic attributes and structural

anisotropy parameters. The resulting fields with stochastic gradients pertain to

Sobolev space and may be useful for emulating turbulent flow and trans-

port. A practical example for predicting the anisotropy and proportion of facies
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for curvilinear bodies (e.g., braided and meandering channels in a fluvio-deltaic

environment) was illustrated. FDK anisotropy tensors fully describe truly complex

structural controls, which can serve for modeling uncertain tensors of permeability

of rocks and mineralization in rugose veins.
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Can Measurement Errors Be Characterized
from Replicates?

Chantal de Fouquet

Abstract Sample measurements (of grade, depth, etc.) are almost inevitably

affected by errors. Several error models were studied in the literature. But the

interest of replicates for selecting the error model received limited attention. If

measurement errors are supposed to be additive, homoscedastic, without correlation

between them, and spatially not correlated with the exact values, the variances of

the measurement errors are computable from the sample, simple, and cross-

variograms of replicate data sets, even if the variogram of the exact value is pepitic

(Aldworth W, Spatial prediction, spatial sampling, and measurement error. Retro-

spective Theses and Dissertations. Paper 11842. Iowa State University Digital

Repository @ Iowa State University, 1998; Faucheux et al. Characterisation of a

hydrocarbon polluted soil by an intensive multi-scale sampling. Geostats 2008,

proceedings of the 8th international geostatistics congress, 1–5 Dec. 2008, Santi-

ago, Chile. Ortiz J-M, Emery X (eds) for an example, 2008). But what about the

other cases? When the error is additive, its correlation with the exact value can

remain undetectable. The variance of the measurement errors is thus not always

computable. It’s the same for an error of multiplicative type. Except in some special

cases, keeping the different measurement values rather than their average improves

the precision of the estimation.

1 Introduction

Measurements of grades or concentrations, depth of geologic horizon or ground-

water table, etc. are inevitably spoiled by errors. Do repeated measurements at same

data points (replicates) allow characterizing the amplitude of the measurement

errors? How to best use replicates for the estimation?
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Models of measurement errors are proposed in the literature and used in the

estimation for a long time. In an instructive paper, Bourgault (1994) examines

several models of additive or multiplicative “noise” which take heteroscedasticity

(the amplitude of the error variance increases with the measured values) and

conditional bias into account. A case study based on a simulated image contami-

nated by noise shows that the performances of factorial kriging to reproduce the

spatial patterns of high signal values fall when the noise is correlated with the

signal. However, the paper does not examine how to select the error model from

the data. The literature remains poor on this practical matter.

In the literature, measurement errors are almost always supposed to be not

correlated with the exact values. Is this usual assumption made for lack of a better

option? To answer this question, three error models are revisited. Their properties

are examined so as to show if the error models can be characterized from

replicated data.

Kriging in the presence of replicates is then briefly examined in a practical

context: how to best use all the data for the estimation? Should replicates be

averaged or introduced individually in the kriging system? It is well known

(Rivoirard et al. 1993) that a model for measurement errors makes the kriging

matrix regular (not singular) when several data are available at the same data points.

On a toy example, the precision of kriging with replicates is compared to that with

their average.

In the following, the exact value is designated by “grade” and the measurement

values of replicates as the “observations.”

2 Three Models of Measurement Errors

Faucheux et al. (2008) showed on an example that simple and cross-variograms of

replicates distributed in two sets allow detecting the presence of measurement

errors. The error variances are computable, assuming that they are constant for

each set and that the measurement errors are not correlated between them and

spatially not correlated with the exact values. In the particular case where sample

variograms are pepitic at the scale of the sampled zone, the nugget effects can be

divided in two parts, the microstructure and the variance of measurement errors

(Aldworth 1998).

This error model explains the case where the sample variogram of the average of

the replicates is parallel to their cross-variogram and above it (Fig. 1a); another

model is needed to explain Fig. 1b, where the structured components of the sample

variogram of replicate averages and that of their cross-variogram appear to be

proportional.

Two other models are thus examined: the case where the measurement error is

additive and correlated with the exact value and the case where this error is of

multiplicative type.
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Let us consider a site sampled by soil cores. Each homogenized core constitutes

a sample, of which subsamples are extracted and analyzed. The grade at core

support is modeled by a random function Y(x), supposed to be stationary of order

two (in order to simplify the presentation) with mean (expectation) m and covari-

ance C(h). The grade variogram is denoted γ(h). Z1(x) and Z2(x) represent two

observation sets.

2.1 Additive Error, Not Correlated with Grade

In the case of an additive measurement error, observations are written

Zi xð Þ ¼ Y xð Þ þ Ri xð Þ with Ri xð Þ ¼ μi þ biTi xð Þ ð1Þ

where the random variable Ri(x) denotes the error of the measurement set i at
sample point x and Ti(x) the associated standardized variable. bi is supposed to be

constant for each set and positive.

In practice, the error expectation μi and the coefficients bi (and thus the error

variances) are unknown.

Let us first suppose that measurement errors R1 and R2 are mutually not

correlated and spatially not correlated with grade Y. The variance of the observa-

tions of the set i is
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Fig. 1 Variogram of the average on two replicate sets (upper curve) and their cross-variogram

(lower curve) for two measurement types and two sampling grids on the same polluted site.

Hydrocarbon grades. (a) Vertical variogram of pyrogram measurements and (b) horizontal

variogram of gas chromatography (Extracted from Faucheux and de Fouquet (2009))
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Var Zi xð Þ ¼ C 0ð Þ þ bi
2 ð2Þ

and the covariance between the observations of the two sets is

Cov Zi xð Þ, Zj xð Þ� � ¼ C 0ð Þ ð3Þ

The variances of the measurement errors σ2i are obtained from the difference

between the variance of each observation set and their covariance:

σ2i ¼ Var Zi xð Þ � Cov Z1 xð Þ, Z2 xð Þð Þ ð4Þ

The simple variogram of the observations per set and their cross-variogram are

γi hð Þ ¼ b2i þ γ hð Þ and γ12 hð Þ ¼ γ hð Þ ð5Þ

The cross-variogram coincides with the grade variogram (Aldworth 1998;

Faucheux et al. 2008). The simple variograms of the observations are parallel and

above their cross-variogram. The variances of the measurement error can also be

obtained from the difference between simple and cross-variogram:

σ2i ¼ γi hð Þ � γ12 hð Þ ð6Þ

When the variogram of the observations is pepitic at the scale of the sampled

domain, the previous calculation allows splitting the nugget effect between the

measurement error part σ2i and the microstructural part, given by the cross-

variogram.

In this model, the average of two observations per data point

ZA xð Þ ¼ 1

2
Z1 xð Þ þ Z2 xð Þð Þ ð7Þ

has the following variogram:

γA hð Þ ¼ b21 þ b22
4

þ γ hð Þ ð8Þ

which is parallel to the cross-variogram. The variogram of the difference

ZD xð Þ ¼ Z1 xð Þ � Z2 xð Þ ð9Þ

is pepitic:

γD hð Þ ¼ b21 þ b22 ð10Þ
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The variogram analysis shows that this measurement error model is not suited if

the simple variograms of the observations sets Zi or of their average ZA are not

parallel to the cross-variogram γ12(h) or if the variogram of the difference is not

pepitic.

Rivoirard (1983) has shown that the sample variance is equal to the average of

the variogram cloud (origin included) and thus to the average of variogram points at

all distances, weighted by their pair numbers. Thus, the “statistical” calculation of

the measurement error variance (from sample variance and covariance, Eq. 4) is

equivalent to its “geostatistical” calculation from weighted variogram and cross-

variogram points (Eq. 6). In practice, these two results can slightly differ because

only the first lags of the sample variograms and cross-variogram are computed.

2.2 Additive Error Correlated with Grade

The hypothesis of absence of correlation, at same point or spatially, between grade

and measurement error is not always verified. For example, when the granulometry

of the sample varies with grade, the loss of fine particles during the constitution of

subsamples can induce a correlation between grade and measurement error at the

same data point. In the case of soil coring, an insufficient cleaning of the auger

between successive cores can induce a mixing between samples and thus a spatial

correlation between grade and measurement errors (Bourgault 1994).

In order to describe the correlation between grade and measurement error, let us

denote the error

Ri xð Þ ¼ μi þ ai Y xð Þ � mð Þ þ biTi xð Þ ð11Þ

with the same hypotheses on the Ti(x) as previously. The link between grade and

observation

Zi xð Þ ¼ μi � aimþ 1þ aið ÞY xð Þ þ biTi xð Þ ð12Þ

is described by the model with orthogonal residuals (Rivoirard 1994; Chilès and

Delfiner 2012). The special case ai¼ 0 corresponds to the absence of spatial

correlation between measurement error and grade.

In practice, the error expectation μi and the coefficients ai and bi are unknown.
The covariance between measurement error and grade at same point is

Cov Ri xð Þ, Y xð Þð Þ ¼ aiC 0ð Þ. Their correlation coefficient (sgn denoting the sign)

ρ Y,Ri
¼ sgn aið Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2i

a2i C 0ð Þ

s
ð13Þ

increases with ai and C(0) and decreases with bi supposed to be positive.
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The expectation and the variance of the observations of set i are, respectively,
E Zi xð Þð Þ ¼ μi þ m and

Var Zi xð Þ ¼ 1þ aið Þ2C 0ð Þ þ b2i ð14Þ

and the covariance between the two observation sets is

Cov Z1 xð Þ,Z2 xð Þð Þ ¼ 1þ a1ð Þ 1þ a2ð ÞC 0ð Þ ð15Þ

The variance of the linear combination of observations at same data point

ZL xð Þ ¼ ‘1Z1 xð Þ þ ‘2Z2 xð Þ ð16Þ

is

Var ZL xð Þ ¼ ‘1 1þ a1ð Þ þ ‘2 1þ a2ð Þð Þ2 C 0ð Þ þ ‘21b
2
1 þ ‘22 b

2
2 ð17Þ

In the special case a1 ¼ a2 denoted a and b1 ¼ b2 denoted b, the two measurement

sets have same variance Var Zi xð Þ ¼ 1þ að Þ2C 0ð Þ þ b2, and their covariance is

Cov Z1 xð Þ,Z2 xð Þð Þ ¼ 1þ að Þ2C 0ð Þ, from which the coefficient b2 can be derived.

This is, for example, the case of two sets measured with the same device.

The simple variograms of observations are

γi hð Þ ¼ b2i þ 1þ aið Þ2γ hð Þ ð18Þ

and their cross-variogram is

γ12 hð Þ ¼ 1þ a1ð Þ 1þ a2ð Þγ hð Þ ð19Þ

When measurement errors and grade are correlated (with ai 6¼�1), the compo-

nent of the variogram of observations linked to the spatial variability of grades is no

longer equal to the variogram of grades but is proportional to it. In practice, the

proportionality factor is unknown.

The simple variograms of observations and their cross-variogram are no longer

parallel (unless a1 ¼ a2) but are proportional, up to a nugget component on the

simple variograms.

The variogram of the linear combination ZL(x) of observations is

γL hð Þ ¼ ‘1 1þ a1ð Þ þ ‘2 1þ a2ð Þð Þ2γ hð Þ þ ‘21b
2
1 þ ‘22b

2
2 ð20Þ

In particular, for the average of two replicates
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γA hð Þ ¼ b21 þ b22
4

þ 1þ a1ð Þ þ 1þ a2ð Þð Þ2
4

γ hð Þ ð21Þ

and for their difference

γD hð Þ ¼ b21 þ b22 þ a1 � a2ð Þ2γ hð Þ ð22Þ

When a1 6¼a2, the presence of a structured component on the variogram of the

difference Z1(x)�Z2(x) allows to detect the correlation between grade and mea-

surement error, in accordance with the proportionality of the structured parts of the

simple and cross-variograms of the observations.

When a1 ¼ a2 (denoted a), Eqs. 18 and 19 become

γi hð Þ ¼ b2i þ 1þ að Þ2γ hð Þ and γ12 hð Þ ¼ 1þ að Þ2γ hð Þ ð23Þ

that is exactly the same form as in the absence of correlation (a¼ 0) but with grade

variogram 1þ að Þ2γ hð Þ (Eq. 5). These two models are compatible with Fig. 1a.

Remark: when the error is additive and correlated with grade, all variances,

covariances, and simple and cross-variograms of the observations or of any of their

linear combination (Eqs. 14, 15 and 17, 18, 19, 20, 21, 22, and 23) are identical to

those obtained with the covariance C0(h) and the coefficients ai
0 such that

C0 hð Þ ¼ k2C hð Þ k > 0ð Þand 1þ a
0
i ¼ 1þ ai

k
ð24Þ

Thus, the grade covariance C(h) and the coefficients 1+ai are determined only up

to the factor k2 and 1/k, respectively, but they are not computable individually. As a

consequence, an additional hypothesis on the grade covariance is necessary to write

the kriging system for estimating the grade.

2.3 Measurement Error of Multiplicative Type

Let be an error of multiplicative type, possibly completed by an additive component

Zi xð Þ ¼ Ui xð Þ þ υi þ siTi xð Þð ÞY xð Þ ð25Þ

where vi denotes a deterministic parameter. The hypotheses on the standardized

variables Ti(x) are the same as previously. The variables Ui(x) with expectation mU
i

are supposed to be not correlated and without any spatial correlation with the grade

nor with the Ti.
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In practice, the coefficients υi and si are unknown, as well as the expectation and
the variance of the random variables Ui(x) and Ti(x) and those of the random

function Y(x).

The expectations of the observation sets are E Zi xð Þð Þ ¼ mU
i þ νim, and their

variances are

Var Zi xð Þ ¼ Var Ui xð Þ þ C 0ð Þ ν2
i
þ C 0ð Þ þ m2
� �

s2i ð26Þ

The covariance between the two measurements at same data point is

Cov Z1 xð Þ,Z2 xð Þð Þ ¼ C 0ð Þν1ν2 ð27Þ

When the two observation sets have same expectation and same variance, let us

put vi ¼ v and s2 ¼ si
2. With the additional hypothesis of no additive component

Ui(x) on the error, we obtain

Cov Z1 xð Þ, Z2 xð Þð Þ ¼ C 0ð Þν2 ð28Þ

and

C 0ð Þ þ m2
� �

s2 ¼ Var Zi xð Þ � Cov Z1 xð Þ,Z2 xð Þð Þ ð29Þ

The different parameters v, C(0), and s2 of the model cannot be separately

determined.

The simple variograms of observations and their cross-variograms are

γi hð Þ ¼ Var Ui xð Þ þ s2i C 0ð Þ þ m2
� �þ ν2i γ hð Þ and γ12 hð Þ ¼ ν1ν2γ hð Þ ð30Þ

The variogram of the linear combination ZL(x) of replicates is easily deduced

from Eq. 30, by introducing the standardized variable T(x) supposed to be without

spatial correlation with grade nor with the additive components U1(x) and U2(x) of
the measurement error:

ZL xð Þ ¼ ‘1U1 xð Þ þ ‘2U2 xð Þ þ ‘1ν1 þ ‘2ν2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘21s

2
1 þ ‘22s2

2

q
T xð Þ

� �
Y xð Þ ð31Þ

These expressions are analogous to those obtained in the case of an additive error

correlated with grade: Eqs. 18 and 19 have the same form as Eq. 30. These two

models are compatible with Fig. 1b.

The two cases are impossible to be distinguished in practice: if present, the

structured component is proportional to the simple and cross-variograms. The

difference is that in Eq. 12, the coefficient of proportionality is determinist, while

it is random in Eq. 25.
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2.4 Contribution and Limits of the Variogram Analysis

If the two measurement sets have same mean, the simplest is to assume that the

mean error of each set is zero. If the data sets have different means, additional

hypotheses are needed, for writing the non-biased condition for the estimation.

From now on, the error is supposed to be additive. As previously mentioned,

when the two simple variograms of the observations sets and their cross-variogram

are parallel, it is not possible to determine if the error is spatially correlated with

grade or not.

When the two simple variograms and the cross-variogram present a proportional

(but not parallel) structured component, Eqs. 18 and 19 are a special case of the

linear model of coregionalization, in which the correlation between the components

of Z1(x) and Z2(x) proportional to the grade variogram is maximal (equal to 1).

Indeed, if we note h > 0ð Þγi hð Þ ¼ C0
i þ C1

i γ hð Þ and γ12 hð Þ ¼ C1
12γ hð Þ, then

C1
12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
C1
1C

1
2

q
.

The previous relation can be written differently. Let us denote

R ¼ 1þ a2
1þ a1

ð32Þ

the square root of the ratio of the sills of the structured component (up to the same

factor k which disappears from the ratio). Equations 18 and 19 give

γ1 hð Þ ¼ b21 þ
1

R
γ12 hð Þ and γ2 hð Þ ¼ b22 þ Rγ12 hð Þ ð33Þ

On a practical point of view, it has been known for a long time that the absence

of nugget effect on the cross-variogram of the observations indicates its absence on

the grade variogram. The coefficients b2i can then be derived from the nugget

component of the simple variogram of the observations (Eq. 18). When the grade

variogram presents a microstructural nugget component, this component is present

on the cross-variogram too. The coefficient R can be computed from the structured

part of the simple and cross-variograms and then applied (Eq. 33) in order to

determine the microstructural part of the nugget component on the simple

variograms. The difference from the nugget component of each simple variogram

determines the coefficients b2i .
In practice, when the simple variograms of the observations are parallel and

parallel to their cross-variogram, the simplest model consists in assuming the error

of additive type and without correlation with grade, in order to determine the grade

variogram and the pseudo-cross-variogram between grade and observations. In

particular, this is the case if the simple and cross-variograms of the observations

are pepitic. However, this model does not necessary describe at best the reality.
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When the structured components of the simple and cross-variograms are pro-

portional, additional hypotheses are needed in order to write the kriging system, as

already mentioned.

The coefficients ai and, up to a factor, the grade variogram being unknown, the

pseudo-cross-variogram between observations and grade

gi hð Þ ¼ 1

2
E Zi xð Þ � Y xþ hð Þð Þ2

¼ 1

2
μ2i þ b2i þ a2i C 0ð Þ� �þ 1þ aið Þγ hð Þ

ð34Þ

or their cross-variogram remains unknown too.

The properties of the additive error models remain valid if the grade is an IRF-0.

3 Kriging Within a Model of Additive Error Not
Correlated with Grade

In the presence of replicates, a measurement error model makes the kriging matrix

regular (i.e., nonsingular). This property is known for quite a long time (Rivoirard

et al. 1993, cited in Aburto 2012; Bourgault 1994) and used, for example, in order to

map a variable surveyed on profiles (geophysics, measurements from ships) on

which the different values do not coincide at their intersections. An efficient model

consists in assuming an acquisition error constant by profile and independent

between profiles.

To precise the influence of the model of measurement error on the estimation, let

us examine the elementary case of the point estimation from only two observations

at the same data point. The errors are assumed to be additive, spatially not

correlated with grade, with mean equal to 0, and with respective variance σ2i .
The (pseudo)-variogram between observations and that between observation and

grade are

g12 0ð Þ ¼ 1

2
E Z1 xð Þ � Z2 xð Þð Þ2

¼ σ21 þ σ22
2

and
gi hð Þ ¼ 1

2
E Zi xð Þ � Y xþ hð Þð Þ2

¼ σ2i
2
þ γ hð Þ

ð35Þ

According to Eq. 5, the point kriging system of Y at x+h from two replicates at

point x is
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1� λð Þ σ
2
1 þ σ22
2

þ μ ¼ σ21
2
þ γ hð Þ

λ
σ21 þ σ22

2
þ μ ¼ σ22

2
þ γ hð Þ

8><
>: ð36Þ

The weights of the data with respective measurement error variance σ21 and σ22
are λ ¼ 1

1þσ2
1

σ2
2

and 1� λ ¼ 1

1þσ2
2

σ2
1

: they depend on the ratio of the measurement error

variances. At fixed σ21 þ σ22, the weight of a data decreases when its associated

measurement error variance increases. When one of these variances is zero, the

associated measurement is supposed to be exact, and its weight is equal to

1, whereas the weight of the other data, supposed to be affected by an error, is zero.

The Lagrange weight μ¼ γ(h) depends on the grade variogram between data and

quantity to be estimated. The point kriging variance

σ2K hð Þ ¼ 2γ hð Þ þ 1
1
σ2
1

þ 1
σ2
2

ð37Þ

increases with the measurement error variances.

The kriging estimator

YK xþ hð Þ ¼ 1

1þ σ2
1

σ2
2

Z1 xð Þ þ 1

1þ σ2
2

σ2
1

Z2 xð Þ ð38Þ

can be written

YK xþ hð Þ ¼ Y xð Þ þ 1

1þ σ2
1

σ2
2

R1 xð Þ þ 1

1þ σ2
2

σ2
1

R2 xð Þ ð39Þ

In this model, if the two variances of measurement errors are equal, the kriging

weights are equal, assuming the variogram is the same: it is equivalent to make the

estimation with all the replicates or with their average. But if the measurement error

variances are different, the average of replicate values is generally not optimal.

Indeed the estimation variance of Y(x+h) from the average of the two replicates is

σ2 ZA xð Þ, Y xþ hð Þð Þ ¼ σ21 þ σ22
4

þ 2γ hð Þ ð40Þ

The precision gain of kriging in regard to the estimation from the data average is

σ2
1
�σ2

2ð Þ2
4 σ2

1
þσ2

2ð Þ which is obviously null if the measurement errors have same variance. At

fixed σ21 þ σ22, the precision gain increases with the deviation between σ21 and σ22.
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This result, demonstrated in a particular case, is general: if replicates (at same

data point) have same measurement error variance, then it is equivalent for kriging

to take their average. The demonstration is obvious: the kriging system remains

unchanged by shifting the row and column associated with the replicates, assuming

the variogram is the same. If the measurement error variances are different, kriging

using all replicates is more precise.

4 Conclusion

Replicates are useful but they do not allow to fully characterizing the measurement

error.

First of all, the usual hypothesis that the error is not spatially correlated with the

grade appears to be somewhat conventional. When the two observation sets have

the same variogram, this hypothesis is the simplest one, but a correlation between

additive error and grade is also possible. Secondly, when the structured component

appears to be proportional on the simple variograms and on the cross-variogram,

the grade variogram is proportional to the cross-variogram, up to an unknown

factor.

If the variance of measurement errors varies according to the set, taking the

average of the replicate values is not optimal for the estimation. Realistic modeling

of measurement errors allows improving the precision of the estimation, using all

replicates.

In the presence of replicates, it is thus better to record all the data with the

measurement characteristics (laboratory, device, date, etc.) rather than only their

average per data point. Indeed, when they are numerous enough, the replicates can

allow specifying a model of measurement errors, even if some indeterminations

remain. Of course, if available, the precision given by the laboratory or the device

characteristics should be considered for building the error model.
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site 2. PRECODD LOQUAS, 9ème rapport d’avancement (D20). R2009-345CFCF. Rapport

d’étude. 72p
Faucheux C, Lefebvre E, de Fouquet C, Benoit Y, Fricaudet B, Carpentier C, Gourry J-C (2008)

Characterisation of a hydrocarbon polluted soil by an intensive multi-scale sampling. Geostats

2008, proceedings of the 8th international geostatistics congress, 1–5 Dec 2008, Santiago,

Chile. Ortiz J-M, Emery X (eds)

Rivoirard J (1983) Remarques pratiques �a propos des variances et du variogramme. Note de cours
C-75. Ecole des mines de Paris, Fontainebleau

Rivoirard J (1994) Introduction to disjunctive kriging and non linear geostatistics. Oxford Uni-

versity Press, Oxford
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Modelling Asymmetrical Facies Successions
Using Pluri-Gaussian Simulations

Thomas Le Blévec, Olivier Dubrule, Cédric M. John, and Gary J. Hampson

Abstract An approach to model spatial asymmetrical relations between indicators

is presented in a pluri-Gaussian framework. The underlying gaussian random

functions are modelled using the linear model of co-regionalization, and a spatial

shift is applied to them. Analytical relationships between the two underlying

gaussian variograms and the indicator covariances are developed for a truncation

rule with three facies and cut-off at 0. The application of this truncation rule

demonstrates that the spatial shift on the underlying gaussian functions produces

asymmetries in the modelled 1D facies sequences. For a general truncation rule, the

indicator covariances can be computed numerically, and a sensitivity study shows

that the spatial shift and the correlation coefficient between the gaussian functions

provide flexibility to model the asymmetry between facies. Finally, a case study is

presented of a Triassic vertical facies succession in the Latemar carbonate platform

(Dolomites, Northern Italy) composed of shallowing-upward cycles. The model is

flexible enough to capture the different transition probabilities between the envi-

ronments of deposition and to generate realistic facies successions.

1 Introduction

Variogram-based indicator simulation aims to distribute facies in space using first-

and second-order spatial statistics as a constraint. It is widely used for modelling

heterogeneous subsurface rock volumes such as hydrocarbon reservoirs and

groundwater aquifers, in which data are usually sparse and deterministic methods

are not appropriate. In standard oil industry practice, the facies represent regions of

the reservoir where petrophysical properties such as porosity and permeability can

be assumed to have statistically homogeneous distributions. Therefore, the spatial

distribution of facies has a great impact on the reservoir model predictions.
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J.J. Gómez-Hernández et al. (eds.), Geostatistics Valencia 2016, Quantitative
Geology and Geostatistics 19, DOI 10.1007/978-3-319-46819-8_4

59

mailto:t.le-blevec15@imperial.ac.uk
mailto:o.dubrule@imperial.ac.uk
mailto:cedric.john@imperial.ac.uk
mailto:g.j.hampson@imperial.ac.uk


While it is easy to constrain the models with the proportion and autocovariance

of each facies (Alabert 1989; Armstrong et al. 2011), it is more complex to model

the cross-indicator covariances between facies. For instance, SIS (sequence indi-

cator simulation) by modelling every facies independently (Alabert 1989) does not

reproduce cross-covariances between different facies, possibly resulting in

non-realistic geological models.

With the aim of modelling spatial relationships between different facies, Carle

and Fogg (1996) constrain cross-covariances using the parameters of a continuous-

time Markov chain. An important outcome of their method is the possibility to

model spatial asymmetry between the indicator variables. The probability of facies

A to be on top of facies B can be different from that of facies A being under B. Such

asymmetrical vertical stacking patterns of facies are common in the stratigraphic

record as sedimentological processes tend to create and preserve shallowing-

upward facies successions which are asymmetric (Burgess et al. 2001; Grotzinger

1986; Strasser 1988; Tucker 1985). However, the model used by Carle and Fogg

(1996) is memoryless and so prevents from using a hole-effect covariance and

reproducing cyclicity, which is another common feature of vertical facies succes-

sions (Burgess et al. 2001; Fischer 1964; Goldhammer et al. 1990; Grotzinger 1986;

Masetti et al. 1991). Another approach uses non-parametric indicator variograms

for bivariate probabilities to simulate facies with asymmetrical patterns (Allard

et al. 2011; D’Or et al. 2008). The approach presented in the current paper aims to

use parametric auto- and cross-covariance models that are “realizable”, that is

associated with valid random set models (Chilès and Delfiner 2012).

Pluri-Gaussian simulations (PGS) can handle facies interactions thanks to the

use of underlying continuous gaussian variables and truncation rules defining facies

ordering and geometries (Armstrong et al. 2011). Moreover, by construction, the

PGS formalism leads to a general cross-covariance model between facies that is

realizable (Chilès and Delfiner 2012). Developing a flexible multivariate gaussian

framework allows to increase the range of facies patterns. For instance, the original

linear model of co-regionalization (Wackernagel 2013), applied to the underlying

gaussian functions, provides flexibility in the resulting facies thicknesses and

distributions. However, the cross-correlations between the underlying gaussian

functions are symmetrical and so are the facies relations.

To overcome this limitation, some authors have proposed to use spatial shifts to

transform the cross-covariances between gaussian functions (Apanasovich and

Genton 2010; Li and Zhang 2011; Oliver 2003). Armstrong et al. (2011) proposed

to use a similar approach when defining the linear model of co-regionalization of

the underlying gaussian variables. Although it is natural to expect that an asym-

metrical cross-correlation between the gaussian functions should lead to asymmet-

rical relations between facies, this approach has not yet, to our knowledge, been

fully developed and tested. Moreover, the relation between the spatial shift, the

correlation and the facies asymmetry has not been studied explicitly.

In this article, we expand on the previous work described above to demonstrate

that a spatial shift applied to the underlying gaussian functions can be used to create

asymmetries in the vertical stacking of facies. The sensitivity of vertical facies
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stacking patterns to selected parameters is then investigated. Synthetic examples

are produced, and the usefulness of this method is demonstrated by modelling a real

facies succession from the Triassic Latemar carbonate platform (Dolomites, North-

ern Italy).

2 Methodology

In this section, we explain the basic principles of the pluri-Gaussian simulation

(PGS) methodology and its relation to indicator functions. We then describe the

shifted PGS model.

2.1 Context and Notations

We focus here on a simple example with three facies. The truncation rule that

defines the contacts between facies and their proportion, relative to their area, can

be drawn as follows (Fig. 1):

If I1, I2 and I3 are the indicators of the three facies, the truncation rule defines

them as follows for every location x on a vertical section:

I1 xð Þ ¼ 1, Z1 xð Þ < t1
0, else

�
ð1Þ

I2 xð Þ ¼ 1, Z1 xð Þ > t1, Z2 xð Þ > t2
0, else

�
ð2Þ

I3 xð Þ ¼ 1, Z1 xð Þ > t1, Z2 xð Þ < t2
0, else

�
ð3Þ

When the indicator of a facies equals 1, the corresponding facies is present at the

location x. The marginal gaussian cumulative function G applied to each gaussian

function Z1 and Z2 allows to have a truncation rule on which the area of a facies

equals its proportion. However, if there is a correlation between the two functions, it

affects the proportion as the points tend to be located along the transformation of

the correlation line ρ (Fig. 1) which is plotted in the axes (G(Z1),G(Z2)) and thus has
for equation

Y ¼ G ρ*G�1 X½ �� � ð4Þ

In the example of Fig. 1, a positive correlation increases the proportion of facies

2 over facies 3 as shown by the larger number of points generated in the domain of

facies 2. With a negative correlation, it would be the opposite. A uniform truncation
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rule could be obtained by applying the bi-normal gaussian cumulative function with

correlation ρ on Z1 and Z2, but its analytical expression is not known.

The truncation rule does not contain spatial information and so does not control

asymmetries. As the aim of this study is to model asymmetrical relations, the

transition probability from one facies i to another j should be different in opposite

directions h and �h:

tij hð Þ ¼ P Ii xð Þ ¼ 1, Ij xþ hð Þ ¼ 1
� �

P Ii xð Þ ¼ 1½ � 6¼ tij �hð Þ ð5Þ

Under the stationary hypothesis, the transition probability is independent of

location. This transition probability results from the gaussian function parameters:

correlation ρ, thresholds t1 and t2, gaussian correlation models ρz1 (h) and ρz2 (h)
and the cross-correlation ρz1z2 (h) that can be asymmetric.

2.2 Relation Between the Indicators and Gaussian Functions

Understanding the link between the facies transition probabilities and the parame-

ters of the underlying bi-gaussian function would help in inferring a pluri-Gaussian

model resulting in the correct asymmetrical transition probabilities. Armstrong

et al. (2011) show that the covariance of the facies indicator can be expressed as

a multivariable integral of the underlying bi-gaussian density. For instance, the

non-centred cross-covariance, between facies 2 and 3, C23(h), is defined as

Facies 1

Facies 2

Facies 3

G(Z1)

G(Z2)

G(t1)

G(t2)

0.0

0.0

0.2

0.
2

0.
4

0.
6

0.
8

1.
0

0.4 0.6 0.8 1.0

Fig. 1 Truncation rule defining three facies with two gaussian random functions Z1 and Z2. t1 and
t2 are the truncations associated with each gaussian functions and G is the gaussian cumulative

function. The red curve is defined by Eq. 4, with the correlation ρ¼ 0.7. One thousand random

generations with a correlation ρ¼ 0.7 are performed thanks to the R package MASS (Venables and

Ripley 2002) and displayed
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C23 hð Þ ¼ E I2 xð Þ I3 xþ hð Þ½ � ¼ P I2 xð Þ ¼ 1, I3 xþ hð Þ ¼ 1½ � ð6Þ

According to Eqs. 1, 2 and 3, we have

C23 hð Þ ¼ P Z1 xð Þ > t1,Z2 xð Þ > t2,Z1 xþ hð Þ > t1,Z2 xþ hð Þ < t2½ � ð7Þ

This is the joint probability of four gaussian events with their dependence

described by the correlation matrix:

X
hð Þ ¼

1 ρ ρZ1
hð Þ ρZ1Z2

hð Þ
ρ 1 ρZ1Z2

�hð Þ ρZ2
hð Þ

ρZ1
hð Þ ρZ1Z2

�hð Þ 1 ρ
ρZ1Z2

hð Þ ρZ2
hð Þ ρ 1

0
BB@

1
CCA ð8Þ

C23(h) can then be expressed as an integral of the quadri-variate gaussian density
gΣ(h)(u,v,w,z) with the covariance matrix previously described:

C23 hð Þ ¼
Z 1

t1

Z 1

t2

Z 1

t1

Z t2

�1
gX

hð Þ u; v;w; zð Þdu dv dw dz ð9Þ

As we work with three facies (Fig. 1), the covariance between facies 1 and facies

2 is expressed by a triple integral, while a double integral defines the

autocovariance of facies 1.

2.3 The Spatial Shift Applied to the Linear Model
of Co-regionalization

The linear model of co-regionalization presented by Wackernagel (2013) is a

flexible model for p-multivariate simulations and is chosen in this article. We

also incorporate a shift on the covariance matrix C as proposed by Li and Zhang

(2011). Armstrong et al. (2011) propose a way to simulate such a multivariate field

from two independent gaussian functions Y1 and Y2 with covariances ρY1(h) and
ρY2(h):

Z1 xð Þ ¼ Y1 xð Þ

Z2 xð Þ ¼ ρ

ρY1
að Þ Y1 xþ að Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

ρY1
að Þ2

s
Y2 xð Þ

8><
>: ð10Þ

The spatial shift, a, is the distance at which the correlation between the two

gaussian functions Z1 and Z2 is maximal, and ρ is the correlation between the two

simulated gaussian functions Z1 and Z2 at the same location. We can directly deduce

from the square root term in Eq. 10 the condition of validity of the model:
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�ρY1
að Þ < ρ < ρY1

að Þ ð11Þ

This condition originally results from the fact that the variance of the gaussian

functions Z1 and Z2 is one. It is now possible to relate the covariances ρZ1 and ρZ2 of
the gaussian fields Z1 and Z2 to the covariances of Y1 and Y2:

ρZ1
hð Þ ¼ ρY1

hð Þ
ρZ2

hð Þ ¼ ρ2

ρY1
að Þ2

ρY1
hð Þ þ 1� ρ2

ρY1
að Þ2

" #
ρY2

hð Þ
8<
: ð12Þ

and the cross-correlations between Z1 and Z2, which are asymmetric:

ρZ1Z2
h; að Þ ¼ ρρZ1

hþ aj jð Þ
ρZ1

að Þ
ρZ1Z2

�h, að Þ ¼ ρρZ h� aj jð Þ
ρZ1

að Þ

8>><
>>: ð13Þ

It is interesting to see that

ρZ1Z2
�h, � að Þ ¼ ρZ1Z2

h; að Þ ð14Þ

The different parameters of the model are summarized in Table 1.

Table 1 Symbols of the different parameters of the shifted pluri-Gaussian model

Signification Parameter

First gaussian field Z1
Second delayed gaussian field Z2
Upward transition probability from facies i to facies j as a function of distance h tij(h)

Proportion of facies i Pi

Covariance function of Z1 ρz1(h)

Covariance function of Z2 ρz2(h)

Correlation coefficient between Z1 and Z2 ρ

Cross-correlation between Z1 and Z2 at distance h ρz1z2(h)

Shift in the cross-correlation between Z1 and Z2 a

Range of the first gaussian function with a gaussian variogram, practical range

a1
ffiffiffi
3

p a1

Range of the second gaussian function with a gaussian variogram, practical range

a2
ffiffiffi
3

p a2
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3 Results

In this section, we study the indicator transiograms derived from the shifted linear

model of co-regionalization applied with PGS and with the truncation rule in Fig. 1.

We first express the analytical expressions for a special case and then develop a

sensitivity study in the general case thanks to numerical gaussian integrations.

Gaussian variograms for the gaussian functions are used in order to have a linear

behaviour at the origin on the indicator transiograms.

3.1 Analytical Study of the Asymmetry

We focus here on the special case where t1 ¼ t2¼ 0 as some analytical expressions

can be found between the pluri-Gaussian and the transition probabilities.

3.1.1 Behaviour of the Asymmetrical Transition Probability

With the truncation rule used in Fig. 1, the transition probability between facies

1 and 2 can be written as a triple integral. Its analytical expression, developed in the

appendix (Eqs. 25 and 26), is the following:

t12 hð Þ ¼ �1

4
þ 1

2π
arccos

ρρZ1
hþ aj jð Þ

ρZ1
að Þ

� �
þ arccos ρZ1

hð Þ� 	þ arcsin ρð Þ

 �

ð15Þ

Therefore, the shift a and the correlation ρmust be non-zero to bring asymmetry

(Fig. 2). We can also deduce the relation:

t12 �h, � að Þ ¼ t12 h; að Þ ð16Þ

which means that changing the sign of the shift allows the asymmetry between the

two facies to be switched.

We can see that if the correlation and shift are positive, and the transition

probability tends towards a facies with low proportions, the curve has a very high

concavity with a maximum before the range (Fig. 2, right). If the correlation is

negative and the transition probability tends towards a facies with high proportion,

the curve has an inflexion point (Fig. 2, left). In the opposite direction, the

behaviour is always different, highlighting the asymmetry. If there is no shift,

there is no asymmetry (Fig. 2).
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3.1.2 Asymmetry in Facies Contacts

The frequency of contacts between two given facies can be derived from the

derivative of the cross-transition probability at the origin, which is the rate of

transition from one facies to the other per unit length. We can express the rate of

transition upward T12
+ and downward T12

� in the case of a gaussian variogram by

differentiating Eq. 15:

Tþ
12 a; ρ; a1ð Þ ¼ limh!0t12

0 hð Þ ¼ 1

2π

ffiffiffi
2

p

a1
þ a

2 ρ

a21
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p
" #

ð17Þ

T�
12 a; ρ; a1ð Þ ¼ limh!0t12

0 �hð Þ ¼ 1

2π

ffiffiffi
2

p

a1
� a

2 ρ

a21
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p
" #

ð18Þ

From these equations, it is clear that if the correlation ρ and the shift a are

positive, the probability of having facies 2 on top of facies 1 is higher than of having

facies 1 on top of facies 2. It can be interesting to see for which shift the transition

rate is maximal; let’s take

Fig. 2 Influence of a positive shift on the transition probabilities from facies 1 to facies 2 with

different values of the proportion P2 of facies 2. The coefficient ρ is either 0.8 or �0.8. The

gaussian function has a gaussian variogram with range 8 (practical range ¼ 13.85) and the shift is

3. The upward and downward transitions are deduced from Eq. 15, such as the dotted line obtained
with a shift equal to 0, and the black tangents are obtained from Eqs. 17 to 18
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alim ¼ a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� ρ2ð Þp
2ρ

ð19Þ

In that case, we have

Tþ
12 alim; ρ; r1ð Þ ¼

ffiffiffi
2

p

a1π
T�
12 alim; ρ; r1ð Þ ¼ 0

8<
: ð20Þ

With this shift, facies 1 cannot make a transition to facies 2 going downwards as

the transition rate is 0. For the upward transition, it can be noticed that the

expression of the transition rate is the inverse of the mean length of facies

1 (Lantuéjoul 2002). This implies that the upward transition rate from facies 1 to

facies 3 is zero with the closing relations of the transition rate matrix Q:

Q ¼
�1=L1 1=L1 0

0 �1=L2 1=L2

�1=L3 0 �1=L3

0
@

1
A ð21Þ

with Li as the mean lengths of the different facies. Therefore, this shift gives the

maximum of asymmetry and allows to build perfect geologic asymmetrical

sequences. However, the shift is also bounded by Eq. 11, and consequently

Eqs. 19, 20 and 21 are not possible. As the transition rates increase linearly with

the shift, the maximum of asymmetry is obtained for the higher shift which is the

following according to Eq. 11:

amax ¼ a1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�log ρð Þ

p
ð22Þ

It can be noted that the expressions of alim and amax converge to each other when

ρ tends to one. Thus, for a correlation that tends to one, amax gives upward and

downward transition rates that tend, respectively, to 1/Li and 0, allowing to create

perfect asymmetrical sequences (Eq. 21). This limit case can also be obtained by

simulating only one gaussian function and use the shifted equivalent as the second

gaussian function.

The expressions of the multi-gaussian integrals have allowed asymmetries for a

truncation rule with cut-off at 0 to be analytically expressed. Lantuéjoul (2002)

gives a solution for a general truncation rule when the correlation tends to 1. This

might allow development of more general expressions with thresholds.

3.2 Sensitivity Analysis for a General Truncation Rule

The gaussian integral cannot be computed analytically in the general case with

cut-offs different from 0. However, it can be computed numerically (Genz 1992)
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using a code available on R (Genz et al. 2009; Renard et al. 2015). Consequently,

we have access to all the transition probabilities, and the correlation ρ can be

changed while keeping the proportions constant which is not possible analytically.

This is carried out by minimizing an objective function quantifying the differ-

ence between the targeted and simulated proportions computed with the gaussian

numerical integral (Genz 1992). It can also be done with a maximum likelihood

estimation of the target proportions by generating random correlated gaussian

values. Understanding the impacts of the correlation and the shift at constant

proportions is important for manually fitting transition probabilities (Fig. 3).

We can see in Fig. 3 that both the correlation and the shift have an impact on the

tangent at the origin which provides a flexibility to match the asymmetry between

facies contacts. The asymmetrical limit behaviour alim (Eq. 19) seems to have been

reached with ρ¼ 0.8 and a¼ 3 as the transition rate is close to 0 for these values.

The two parameters also affect differently the curvature of the transition probability

increasing the flexibility of the method.

Fig. 3 Comparison of the impact of the correlation and the shift on the transition probability from

facies 2 to facies 1 upwards. The step for the black curves is 0.1 for the correlation (left) and 0.3 for
the shift step (right). The range of the first gaussian variogram is 8, the proportion of facies 1 is 0.3

and facies 2 is 0.4
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4 Case Study

This section presents a case study for illustrating the method described earlier with

three facies and the truncation rule of Fig. 1. The geostatistical package RGeostats

is used for the simulation (Renard et al. 2015). The transiograms are studied for two

facies as the relation with the third can be automatically deduced from them.

4.1 The Latemar Data Set

Carbonate outcrops usually show significant vertical asymmetries in their facies

distribution, in part explained by a gradual lateral shift in environments of deposi-

tions during sea-level highstands, followed by nondeposition during sea-level

lowstands and the subsequent transgression (Catuneanu et al. 2011). For instance,

the intertidal environment tends to be on top of the subtidal environment in

shallowing-upward sequences (Sena and John 2013). The Latemar massif in the

Dolomites of Northern Italy shows well-documented examples of asymmetrical

vertical facies sequences in a carbonate platform. As reported by Egenhoff et al.

(1999), a typical asymmetrical, upward-shallowing succession is bounded by a

supratidal exposure surface at its top, which tends to cap intertidal-to-shallow-

subtidal grainstones that overlie subtidal wackestones (Fig. 4).

4.2 Constraining the Transition Probabilities

The transition probabilities of Fig. 5 were derived from the data shown in Fig. 4.

They can be fitted with the shifted linear model of co-regionalization manually

through a trial-and-error process, by maximum likelihood estimation or by mini-

mizing an objective function. In a more general context, a manual procedure is

preferred as transiogram modelling is a step where geological conceptual knowl-

edge can be incorporated. Therefore, we choose to fit manually the transition

probabilities of Fig. 5.

As seen in Fig. 5, the model fitted by trial and error honours the tangent at the

origin of the transition probabilities. This means that the transition rates are well

constrained. Moreover, a possible hole-effect is observed in the experimental

transition probabilities due to a low variance in the facies thicknesses. This effect

cannot be modelled with the current model, but a hole-effect variogram on the

gaussian function should be able to model it (Dubrule 2016).
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Fig. 4 Comparison between the vertical section of the Latemar section reported by Egenhoff et al.

(1999) and simulations with asymmetrical pluri-Gaussian simulations. The parameters for the

simulation are the same as described in Fig. 5

Fig. 5 Match between experimental transition probabilities (red) observed in Fig. 4 and the model

(blue). Facies 1 is subtidal and facies 2 intertidal. The parameters used for the model are 0.9 for the

range of the first gaussian, 0.52 for the range of the second gaussian, 0.13 for the shift and 0.8 for

the correlation
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4.3 Facies Asymmetrical Simulation with Pluri-Gaussian
Model

We build two gaussian fields, and then we apply the transformations described in

Eq. 10 on three simulations (see Fig. 4). The asymmetry is still preserved in the

simulations, with supratidal facies always on top of the intertidal facies and the

intertidal facies on top of the subtidal facies. However, the limit shift alim (Eq. 19)

has not been reached as the probability of having subtidal on top of supratidal is not

1, which is also observed on the data. To go further in the simulation analysis, the

experimental transiograms are computed on 50 simulated sections and compared to

the model variogram (Fig. 6).

Fig. 6 Comparison between transition probabilities model (blue) and simulated (grey) and mean

of the simulated (red) on 50 simulations of the Latemar section presented in Fig. 4. Facies 1 is

subtidal, and facies 2 is intertidal

Modelling Asymmetrical Facies Successions Using Pluri-Gaussian Simulations 71



This Monte Carlo study shows that the simulated transition probabilities seem to

match the model well at the origin and for other distances as the mean transiogram

of the simulations matches with the transiogram model (Fig. 6).

5 Discussion and Conclusion

This study has shown that the shifted linear model of co-regionalization seems well-

suited to model facies transitions asymmetries using PGS. For the case of modelling

three facies, the first two gaussian variograms allow to define facies mean thick-

nesses, while the shift and the correlation determine the asymmetrical patterns.

Therefore, every transition rate of the transiogram matrix can be inferred indepen-

dently making the method very flexible. Moreover, we saw analytically and numer-

ically that the maximum rate of transitions could be reached asymptotically, which

allows to build perfect asymmetrical sequences.

More precisely, the gaussian integral allows to fix the transition rates as with a

Markov process (Carle and Fogg 1996). However, if the number of facies is

increased, it would be more difficult to respect the different asymmetries, and

manual fitting of the different transition probabilities would be more complex.

Automatic procedures such as maximum likelihood estimations might address

that issue.

The advantage of PGS over continuous-time Markov chains is that it provides a

framework in which the resulting indicator variograms are automatically valid but

also quite flexible. Beyond just transition rates, the parametrical covariances can

lead to linear or fractal behaviour of the indicator variogram at the origin (Chilès

and Delfiner 2012; Dubrule 2016). Other models than the linear model of

co-regionalization would allow to select different behaviours for every facies. For

instance, the multivariate Matern model would allow cross-transition probabilities

to have different smoothness parameters for every facies (Gneiting et al. 2012), and

the spatial shift could be applied to it (Li and Zhang 2011) which would also result

in facies asymmetries. This is currently investigated by the authors.
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Appendix: Analytical Expression of the Triple Gaussian
Integral

In a similar fashion as Kendall et al. (1994), we consider three correlated gaussian

variates being in their respective intervals as a set of three dependent events. With

the truncation rule displayed in Fig. 1 and thresholds that equal 0, facies 1 at
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location x and facies 2 at location x+h correspond to one variate being negative and
two positive. The indicator covariance C12(h) quantifies the probability of the

intersection of these three events. The correlation matrix between the three gaussian

variates is the following:

X
hð Þ ¼

1 ρZ1
hð Þ ρρZ1

hþ aj jð Þ
ρZ1

að Þ
ρZ1

hð Þ 1 ρ
ρρZ1

hþ aj jð Þ
ρZ1

að Þ ρ 1

0
BBBB@

1
CCCCA ð23Þ

The probability can be written as a triple integral of the corresponding gaussian

density gΣ(h)(u,v,w):

C12 hð Þ ¼
Z 0

�1

Z þ1

0

Z þ1

0

gΣ hð Þ u; v;wð Þdudvdw ð24Þ

Thanks to the gaussian integral symmetry property, the probability of intersec-

tion of the events is the complementary of the probability of their union (Kendall

et al. 1994). Therefore, by definition of the union, the intersection of the three

events can be expressed as a sum of the corresponding single and pair events and so

the triple integral as a sum of the single integrals that equal to 0.5 and double

integrals with their respective correlation coefficient:

C12 hð Þ

¼ 1

2
1� 3*0:5þ

Z 0

�1

Z þ1

0

gρZ1 hð Þ u; vð Þdudvþ
Z 0

�1

Z þ1

0

gρρZ1
hþaj jð Þ

ρZ1
að Þ

u; vð Þdudv
 

þ
Z þ1

0

Z þ1

0

gρ u; vð Þdudv
!

ð25Þ

Sheppard (1899) gives then the solution of the double integral that allows to obtain

the final expression of the transition probability between facies 1 and 2 (Eq. 15):

Z þ1

0

Z þ1

0

gρ u; vð Þdudv ¼ 1

2
�
Z þ1

0

Z þ1

0

gρ u; vð Þdudv ¼ 1

4
þ 1

2π
arcsin ρð Þ

ð26Þ
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Considerations for the Use of Sequential
Sampling Techniques

J. Leguijt

Abstract Sequential sampling is a well-known and efficient method to generate

probabilistic realisations of models that are constrained by two-point statistics.

These two-point statistics consist of second-order moments that are defined by a

variogram. The statistics describe the lateral continuity behaviour of the models. It

can be shown that the sequential sampling method correctly generates samples from

a probability density function (pdf), when this pdf honours only the statistics that

define the lateral continuity constraints. In Bayesian statistics, this is named a prior

pdf. The sequential sampling method is also used to generate models from a

probability density function that is constrained by observations, similar to those

that are derived from seismic data. This is known as a posterior pdf. To justify this

approach, some assumptions have to be made that are not strictly valid and the

result is often a significant error. The errors will be investigated using a realistic

synthetic example. The probabilistic seismic inversion programme that has been

developed by Shell contains a module that is able to account for lateral continuity.

In this module, an alternative approach has been used to mitigate the problems with

the sequential sampling method. To realise this, each location needs to be visited

repeatedly.

1 Introduction

Sequential sampling is an efficient method to generate laterally continuous models

based on a variogram in a probabilistic manner. When two-point statistics are used

to define the lateral continuity of a model, the implicit assumption is that the

underlying probability density function (pdf) is Gaussian. For this reason, this

method is often called the sequential Gaussian sampling method.

The sequential sampling method is easy to implement. The present work inves-

tigated how well it performs in three different situations:
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1. The algorithm is used to generate geostatistical models that are not constrained

by measurements.

2. The algorithm is used to generate models that are only constrained by direct

perfect measurements of the properties that are modelled.

3. The algorithm is used in a situation where the measurements are contaminated

with noise.

First, an analysis of the sequential sampling method will be presented, using a

model that only consists of two locations. Second, a more realistic example will be

presented using a grid of 101� 101 locations.

An alternative for the sequential sampling method will be presented. This is able

to properly sample the posterior distribution that arises from the assimilation of

measurements that are contaminated with noise.

2 Sequential Sampling Method

To understand the principle of the sequential sampling method, a model that

consists of N locations is considered. The value of the modelled property at location

n is denoted by vn. Based on the available geostatistical information, a probability

density function (pdf) can be defined for the values of the modelled property, at all

locations (Deutsch 2002). This pdf is denoted by p(v) and can be decomposed as

follows:

p vð Þ ¼ p vN; vN�1; . . . ; v3; v2; v1ð Þ
¼ p vN , vN�1, . . . , v3, v2jv1ð Þp v1ð Þ
¼ p vN , vN�1, . . . , v3jv2, v1ð Þp v2

��v1� �
p v1ð Þ

¼ p vN
��vN�1, . . . , v3, v2, v1

� �
. . . p v3

��v2, v1� �
p v2

��v1� �
p v1ð Þ

ð1Þ

The variables vN, vN�1, . . ., v3, v2, v1 define a column vector:

v ¼ vN; vN�1; . . . ; v3; v2; v1ð ÞT ð2Þ

To generate a realisation, v0, from p(v), first a realisation v
0
1, from p(v1), is gener-

ated. Next, using v
0
1 as a hard constraint, a realisation v

0
2 from p v2

��v0
1

� �
is generated.

This process is repeated until for all the coefficients of

v
0 ¼ v

0
N; v

0
N�1; . . . ; v

0
3; v

0
2; v

0
1

� �T
a realisation has been generated. The order in

which the variables are visited is often chosen randomly, although theoretically

this is not necessary.

Now assume that precise, direct measurements d1, d2, . . ., dM of the values v1, v2,
. . ., vM are available, where M<N, and consider the following decomposition:
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p v dM; . . . ; d1jð Þ ¼ p vN , . . . , vM�1 vM; . . . ; v1jð Þp vM, . . . , v1 dM; . . . ; d1jð Þ ð3Þ

Sampling from p(vM, . . ., v1|dM, . . ., d1) is straightforward. Since the measurements

are precise, it is a matter of assigning the values of the measurements, dM, . . ., d1, to
the corresponding variables vM, . . ., v1. Samples of the remaining variables, vN, . . .,
vM�1, can be generated using the decomposition technique that was used for the

unconditional pdf.

In practice, the available measurements are not precise and are contaminated

with noise. Using the same decomposition that is used to generate geostatistical

models will produce incorrect results. This can be understood by examining a

geostatistical problem with only two locations. The variables that are involved in

this exercise are v1 and v2, and the corresponding measured values are d1 and d2
(Fig. 1).

The posterior pdf can be decomposed as follows:

p v2, v1 d2; d1jð Þ ¼ p v2 v1; d2; d1jð Þp v1 d2; d1jð Þ ð4Þ

The first term in the decompositions can be simplified to

p v2 v1; d2; d1jð Þ ¼ p v2 v1; d2jð Þ ð5Þ

When the value of v1 is known, a measurement, d1, thereof, does not add any extra

information and can be skipped from the list of conditions. It would be convenient if

the decomposition in Eq. 6 was valid, since then, Eq. 7 would be valid:

p v1 d2; d1jð Þ ¼ p v1 d1jð Þ ð6Þ
p v2, v1 d2; d1jð Þ ¼ p v2 v1; d2jð Þp v1 d1jð Þ: ð7Þ

With this decomposition, it would be possible to generate a sample for v1 and

subsequently for v2, also. This decomposition could easily be extended to any

number of locations, and sequential sampling would be correct, even in a situation

with imperfect measurements. This is done in many geostatistical packages, and it

is based on the implicit assumption that Eq. 7 is correct.

Unfortunately, the desired decomposition is wrong. This can be understood by

studying the influence diagram that is shown in Fig. 2, overleaf.

A measurement d2 of the value of v2 constrains the possible value of v2 and the

value of v2 constrains the possible value of v1. This means that a measurement d2 of
the value of v2 also constrains the possible value of v1. When a sequential sampling

algorithm is used, based on Eq. 6, the influence of d2 on v1 is neglected. The

assumption of Eq. 6 is only correct when v1 and v2 are completely independent.

Clearly, a model with two locations is primitive and expresses an oversimplified

description of a geostatistical problem. However, this line of argument can be

Fig. 1 Model with two locations
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extended to models with a realistic number of locations. It demonstrates that the

assumption of sequential sampling applicability is flawed. The question whether

this is a problem in practice can be answered with a few numerical examples.

Example 1

This example is based on the model with two locations, shown in Fig. 1. The prior

pdf that describes the relation between v1 and v2 is a Gaussian distribution, and its

parameters are shown in Table 1.

The observed values for v1 and v2 are d1 and d2. These measurements are

considered to be contaminated with noise, n1 and n2, such that

d1 ¼ v1 þ n1 and
d2 ¼ v2 þ n2

ð8Þ

It is assumed that the noise at location 1 is independent of the noise at location 2 and

that the values of v1 and v2 are dependent on each other.

The pdfs that describe the probabilistic behaviour of the noise realisations are

Gaussian distributions with an expectation value of 0.0 and a standard deviation of

2.0. The value of d1 is �10.0 and the value of d2 is 10.0.
The pdf that describes the probabilistic behaviour of v1 and v2 is a two-variable

Gaussian distribution. The parameters of which are specified in Table 1.

The prior pdf is updated with the measurements using Bayes’ rule, resulting in a
posterior distribution. This is a Gaussian distribution from which the expectation

values and the covariance matrix can be computed exactly. Samples from this

posterior distribution are drawn in three different ways, as shown in Fig. 3:

1. Samples are drawn directly from the two-dimensional Gaussian distribution,

using the Cholesky decomposition of the covariance matrix. This method is very

efficient and is described extensively in literature. These samples are indicated

with the label “Posterior 1”.

2. Samples are drawn using sequential sampling, starting with location 2. These

samples are indicated with the label “Posterior 2”.

3. Samples are drawn using sequential sampling, starting with location 1. These

samples are indicated with the label “Posterior 3”.

Fig. 2 Influence diagram

for model with two

locations
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Samples drawn from the prior pdf are indicated with the label “Prior”. The

picture on the left-hand side of Fig. 3 shows the actual samples. The right-hand

picture shows both the mean values of the samples that are obtained with each

algorithm and the ellipsoids that are derived from the covariance matrices of each

algorithm. The size of the ellipsoids is determined by the eigenvalues of the

covariance matrices and the orientation by the eigenvectors. This means that the

contours are one standard deviation away from the expectation value, in the

direction of the eigenvectors.

Comparison of the samples from the “Prior” group with samples from the

“Posterior” group clearly shows how strongly the samples are constrained by the

measurements. Comparison of the samples from the “Posterior 1” group with

samples from the “Posterior 2” group and the “Posterior 3” group shows the

deterioration caused by the sequential sampling algorithm. The ellipsoids

corresponding with the “Posterior 2” group and the “Posterior 3” group are shifted

away from the ellipsoid of the “Posterior 1” group and they are also larger. This

Table 1 Parameters of

Gaussian prior distribution
Statistic Value

<v1> 0.0

<v2> 0.0

Cov{v1, v1} 16.0

Cov{v1, v2} 14.4

Cov{v1, v2} 14.4

Cov{v1, v2} 16.0

Fig. 3 Sampling results for Example 1
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means that both the expectation values and the covariance matrices of the samples

that are obtained with the sequential sampling algorithm are incorrect. This first,

somewhat fictional example, has been specifically designed to show the problems

with sequential sampling with a very simple model.

Example 2

The second example is a more realistic scenario. It consists of a model that is

defined on a grid with 101 grid points in both x and y directions. The grid spacing

between the grid points is 50 m, in both directions. The correlation between the

variables at the grid nodes is defined with an isotropic exponential variogram with a

range of 2000 m, a sill of 2.0 and a nugget of 0.0. The quality of the samples is

inspected with χ2, ψ2 and φ2 statistics, each of which is described in the Appendix.

These statistics are different from those described by Leuangthong et al. (2004).

The χ2, ψ2 and φ2 statistics have the advantage that the statistical quality of the

whole ensemble of samples can be examined.

First, the quality of the sequential sampling algorithm has been tested by

sampling an ensemble of 100 realisations from the prior. Each location was

constrained by a maximum of 314 nearest neighbours. This is a rather large number

of neighbours, but it has been chosen such that the ensemble of samples that is

generated with the sequential sampling algorithm has the correct χ2, ψ2 and φ2

statistics. A map of typical realisation from this algorithm is shown in Fig. 4.

A variogram was estimated by using ten realisations, and a comparison was

made with the variogram that was used to define the prior pdf, in Fig. 5. There is

little discrepancy between the two variograms, which is one indication that the

algorithm performs well.

From the ensemble of 100 realisations, which are generated from the prior, the

average values of the diagnostic statistics, χ2, ψ2 and ϕ2, are computed and

compared with their expectation values. The results are listed in Table 2 and

show that the average values are within one standard deviation of the expectations.

This means that the sequential sampling algorithm does an excellent job when it is

used to sample the prior.

When the sequential sampling algorithm is used to sample a posterior pdf, the

results are not particularly encouraging. The observations that are used to constrain

the geostatistical model have been generated by sampling a prior pdf that has also

been defined with an isotropic, exponential variogram, with a range of 2000 m, a sill

of 2.0 and a nugget of 0.0. An observation is generated for each grid location, as

typical for seismic data. It is assumed that the observations are contaminated with

additive noise, with a standard deviation of 1.0, and that the noise is not correlated

between grid locations. These synthetic observations are shown in Fig. 6.

Realisations of the posterior distribution have been generated with the sequential

sampling method and with a method that directly draws samples from the posterior.

An example of a realisation from the sequential sampling algorithm is shown in

Fig. 7.

The imprint of the observations is clearly visible in this realisation, but a more

proper way to judge the validity of the realisations that are obtained from the

sequential sampling algorithm is to compare them with realisation that is generated
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Fig. 4 Grid with prior sample for realisation 0. The x and y axes are in metres

Fig. 5 Estimated variogram, prior, variogram of the prior; estimated, variogram estimated from

ten realisations
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with an algorithm that correctly generates samples from the posterior. This algo-

rithm is based on the Cholesky decomposition of the matrix of the true posterior

distribution. This will be denoted by direct sampling and should not be confused

with direct sequential sampling. With the chosen grid, the size of the covariance

matrix was such that this was still possible.

First, the mean of the realisations obtained with sequential sampling method,

shown in Fig. 8, is compared with the actual posterior expectation values, shown in

Fig. 9.

A map of the differences between the means of the realisations obtained with the

sequential sampling method and the actual posterior expectation values is shown in

Fig. 10. These differences are significant when they are compared with the values of

the observations and the standard deviation of the prior. The mean and the variance

of all the realisations that are generated with the direct sampling method and the

sequential sampling method are listed in Table 3.

Table 2 χ2-type diagnostic
statistics from sampling the

prior

Average Expected Difference StdDev

χ2 10,199.46 10,201.00 �1.54 14.28

ψ2 10,096.87 10,098.99 �2.12 14.21

φ2 102.60 102.01 0.59 1.44

Fig. 6 Observations generated with an exponential variogram, with a range of 2000 m. X and

Y axes are in metres
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This shows that both the mean and the variance differ considerably between the

two methods.

The prior variogram, the variogram estimated from the realisations that use the

direct sampling method and the variogram estimated from the realisations that use

the sequential sampling method are shown in Fig. 11. There is a remarkable

difference between the latter two variograms, especially at larger distances. Note

that the variogram that has been estimated from the realisations of the direct

sampling method does not coincide with the variogram of the prior, although

both the measurement and the prior are made with the same variogram. This

stems from the fact that the covariance matrix of the prior and the posterior is

different. A variogram that would have been estimated from the expectation value

of the posterior would coincide with the prior variogram in this situation, but a

realisation of the posterior also has a random component that is determined by the

covariance matrix of the posterior. A more objective method to inspect the validity

of a sampling method is to look at the values of the χ2, the ψ2 and the ϕ2 statistics.

Table 4 shows that their average values are far beyond the statistically feasible

range.

The difference between the expected diagnostic statistics and the actual values

of those differs by more than 100 standard deviations. This demonstrates that the

sequential sampling used in practice does not properly sample the posterior pdf.

Fig. 7 Realisation from the posterior, generated with the sequential sampling method. X and

Y axes are in metres
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Seismically constraint stochastic models with lateral constraints suffer the same

affliction. Seismic measurements are available at each location, but they are

contaminated with noise. For this reason, a different method has been developed

for seismically constrained stochastic modelling. In this method, each location is

revisited many times, after an initial assignment of values to the model parameters

at each location. The initial values can be obtained from the prior expectation

values from a sample of the prior pdf.

Every time that a location is revisited, a local posterior pdf is computed using a

local prior pdf that is constrained by the neighbourhood of that location. Subse-

quently a sample is generated from this local posterior pdf. This effectively creates

a Metropolis algorithm that only creates local updates. The convergence speed of

this algorithm is dependent on the type of the variogram that is used to construct the

prior pdf.

3 Conclusion

In geostatistical modelling, the sequential sampling method is an efficient and

reliable method to draw samples from a prior pdf. It also works well with the

posterior that occurs as a result from taking accurate measurements from a few

Fig. 8 Mean of realisations generated with sequential sampling
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locations into account. The sequential sampling method does not correctly sample a

posterior that results from taking inaccurate measurements into account from all of

the locations that are considered in the model.

Appendix: Diagnostic Statistics

To judge the statistical correctness of the realisations that are generated by a

geostatistical algorithm, different statistics can be used. These statistics are directly

derived from these realisations. The obvious statistic is the variogram that can be

estimated from the modelling results, but there are also statistics that reveal possible

problems in much greater detail. A well-known statistic is the value of χ2. This
statistic is computed using all the realisations in an ensemble and it has a known

expectation value and variance. This makes it suitable for such a test. It is also

possible to define statistics that are similar to χ2 but test different aspects of an

ensemble. Those are called the ψ2 and the φ2 statistics. All these statistics are

defined in next subsections.

Fig. 9 Posterior expectation values
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χ 2 Statistics

The χ2 test has been designed to test whether a realisation has been drawn from a

specific normal distribution. Consider a multidimensional normal distribution p(x)
with an expectation value of <x> and a covariance matrix Cx as given by

p xð Þ ¼ 1

2πð ÞD2 Cxj j12
exp �1

2
x� xh ið ÞTC�1

x x� xh ið Þ
� �

; ð9Þ

whereD is the dimension of vector x. Assume that the ensemble that has to be tested

consists of N realisations and is denoted by {x1, x1, . . ., xN}. The χ2 value of

realisation i is given by

χ2i ¼ xi � xh ið ÞTC�1
x xi � xh ið Þ ð10Þ

It can be shown that

Fig. 10 Mean of realisations minus posterior expectation. X and Y axes are in metres

Table 3 Mean and variance

from posterior sampling

methods

Direct Sequential

Variance 0.875 0.634

Mean 0.766 0.978
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χ2i
� � ¼D and

Var χ2i
	 
 ¼ 2D

ð11Þ

The average value of χ2, taken over the whole ensemble, is

χ2 ¼ 1

N

XN
i¼1

χ2i ð12Þ

Since all the χ2i values are independent, the expectation value and the variance of

the average are equal to

Fig. 11 Estimated variograms, prior, variogram of the prior; direct, variogram estimated from

samples that are directly generated from the true posterior; sequential, variogram estimated from

samples that are generated with sequential Gaussian simulation

Table 4 χ2-type diagnostics
for sequential samples of the

posterior

Average Expected Difference StdDev

χ2 14,174.93 10,201.00 3973.93 14.28

ψ2 12,285.45 10,098.99 2186.46 14.21

ϕ2 1889.48 102.01 1787.47 1.44
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χ2
D E

¼D and

Var χ2
n o

¼ 2D

N

ð13Þ

When the χ2i values and χ
2 deviate too much from the expected value, this indicates

that the vectors xi have not been properly sampled from p(x). This may have several

reasons. The samples may be generated with a bias, or the “shape” of the ensemble

does not match the “shape” that is described by the covariance matrix. To make a

distinction between these possibilities, two other statistics, ψ2 and φ2, have been

defined.

ψ2 Statistics

The ψ2 value of realisation i is given by

ψ2
i ¼ xi � �xð ÞTC�1

x xi � �xð Þ ð14Þ

where

�x ¼ 1

N

XN
i¼1

xi ð15Þ

The expectation value and the variance and the standard deviation of ψ2
i are

ψ2
i

� � ¼D
N � 1

N
and

Var ψ2
i

	 
 ¼ 2D
N � 1

N

ð16Þ

The ensemble average of ψ2
i is given by

ψ2 ¼ 1

N

XN
i¼1

ψ2
i ð17Þ

The expectation value and the variance of χ2 are

ψ2
D E

¼D
N � 1

N
and

Var ψ2
n o

¼ 2D
N � 1

N2

ð18Þ
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φ2 Statistics

While ψ2 is a good diagnostic for the “shape” of an ensemble, there is another

statistic that is suitable to diagnose a bias. This one is called φ2 and is defined by

φ2 ¼ �x� xh ið ÞTC�1
x �x� xh ið Þ ð19Þ

The expectation value, the variance and the standard deviation of φ2 are

φ2
� � ¼D

N
and

Var φ2
	 
 ¼ 2D

N2

ð20Þ

The following useful relation between χ2 , ψ2 and ϕ2 can be derived:

χ2 ¼ ψ2 þ φ2 ð21Þ
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A New High-Order, Nonstationary, and
Transformation Invariant Spatial Simulation
Approach

Amir Abbas Haji Abolhassani, Roussos Dimitrakopoulos,

and Frank P. Ferrie

Abstract This paper presents a new high-order, nonstationary sequential simula-

tion approach, aiming to deal with the typically complex, curvilinear structures and

high-order spatial connectivity of the attributes of natural phenomena. Similar to

multipoint methods, the proposed approach employs spatial templates and a group

of training images (TI). A coarse template with a fixed number of data points and a

missing value in the middle is used, where the missing value is simulated condi-

tional to a data event found in the neighborhood of the middle point of the template,

under a Markovian assumption. Sliding the template over the TI, a pattern database

is extracted. The parameters of the conditional distributions needed for the sequen-

tial simulation are inferred from the pattern database considering a set of weights of

contribution given for the patterns in the database. Weights are calculated based on

the similarity of the high-order statistics of the data event of the hard data compared

to those of the training image. The high-order similarity measure introduced herein

is effectively invariant under all linear spatial transformations.

Following the sequential simulation paradigm, the template chosen is sequen-

tially moved on a raster path until all missing points/nodes are simulated. The high-

order similarity measure allows the approach to be fast as well as robust to all

possible linear transformations of a training image. The approach respects the hard

data and its spatial statistics, because it only considers TI replicate data events with

similar high-order statistics. Results are promising.
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1 Introduction

Since the early 1990s (Guardiano and Srivastava 1993), several new approaches to

geostatistical simulation have been developed to move this area of research beyond

the second-order or two-point methods and their limits. These methods, well

developed to date, are placed under the term multipoint statistics (MPS). The

basic idea of MPS approaches is that the two-point statistical tools (variogram,

covariance, correlogram) of a given attribute of interest are replaced by a so-called

training image (TI). The TI is then used as a source to provide multiple point

statistics and spatial relations that are used along with the hard data to generate

simulated realizations for the attributes of interest. The first implemented

multipoint method is SNESIM (Strebelle 2002) and it is TI driven; thus, similar

to all conventional MPS methods, the simulated realizations reproduce the high-

order spatial relations in the TI. As a result, in applications with a dense set of hard

data, the complex spatial relations in the data are overridden by those in the TI and

do not assist with the application of MPS methods to applications with relatively

dense datasets.

Several MPS methods are well known to date; examples are discussed next.

FILTERSIM (Zhang et al. 2006) is based on the classification of both data and TIs

using linear filters; it is efficient and also sensitive to the shape and size of the spatial

template, and the number and form of the filters are employed. The direct sampling

method (Mariethoz et al. 2010), in the other hand, does not produce a pattern

database from the TIs like FIMTERSIM. Instead, in a multigrid simulation setup,

first coarser grid nodes are simulated, a template is chosen about a simulation point,

and the data event is extracted. This data event is then compared with the data event

of a randomly chosen TI pattern, in an L2-norm distance basis. If the distance is less

than a threshold, then the pattern is pasted onto the simulation grid; otherwise,

another TI pattern is randomly selected and compared, and so on. The direct

sampling simulation method is fast and effective in simulating based on sparse

data with a given TI set and is also TI driven. Mariethoz et al. (2010) show the

influence of data statistics on realizations generated from this method as a dataset

increases. Other pattern-basedMPSmethods include the one suggested byArpat and

Caers (2007); first, a pattern database is generated by sliding a fixed template over

the TIs. Then, the data event on the grid used for the simulation and at each location

is compared with the data event of the pattern database, and the one with the least

L2-norm distance is chosen and pasted on the grid nodes involved. Abdollahifard

and Faez (2012) first cluster the pattern database generated from the TI using a

Bayesian framework. Then each cluster is modeled by a set of simple linear features

and the extraction of features for each incomplete pattern on the simulated grid

follows. Honarkhah and Caers (2010), instead of building a raw pattern database,

classify TIs using some fixed simple features and compare them, using the L2-norm,

to the same features extracted from a point of the grid being simulated. The most

similar pattern is pasted onto the grid nodes, until all of them are visited.
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MPS simulations based on Markov methods are also available. An example in

this category is the Markov mesh model by Stien and Kolbjørnsen (2011). A

unilateral raster path is chosen for the data, visiting all of the points in a left-to-

right and up-to-down fashion. On a chosen spatial template, a joint distribution is

considered for the random field. The parameters of this distribution are then

estimated from the TIs. Sampling of the local distribution function generates the

realizations. These models in general are biased toward the chosen path, but are

vastly used for simulating attributes of petroleum reservoirs.

In a relatively recent approach to stochastic simulation, the high-order

sequential simulation extends the conventional second-order sequential simula-

tion methods to higher orders (Mustapha and Dimitrakopoulos 2010a, 2011).

The HOSIM approach first chooses a simulation point at random and considers

N-nearest conditioning data as data event. A special template is built by

connecting the data event to the simulation point. The conditional probability

distribution function (CPDF) of the simulated grid node given the data event is

then modeled by a series of weighted orthogonal functions called Legendre

polynomials. The weight of each Legendre term is calculated by matching a

set of particular spatial statistics, the so-called spatial cumulants that are gener-

ated from the available data. The TI is only used to complement the spatial

cumulants of the available data. Note that SNESIM is similar to HOSIM with a

main difference that the model used for the CPDF is much simpler and the

method is TI driven.

The present manuscript presents a new patch-based high-order method, which

utilizes high-order spatial statistics in the pattern’s structure. Two notable differ-

ences from past approaches are that (a) it is nonstationary and that (b) it utilizes a set

of TIs, rather than one, while it is data driven. Both the above address significant

topics. The proposed method follows a multigrid simulation process (coarser

simulation grid nodes are simulated first and become the conditioning data for

finer simulation grid points. A simulation point is randomly selected from the grid

to be simulated and an order N + 1 template is selected, based onN nearest hard data

points, i.e., the data event. In addition, a N-dimensional high-order statistical

feature vector, introduced herein, is calculated from the data event. By sliding the

template over the TI, a pattern database is produced and then mapped into a N-
dimensional high-order statistical feature space. The similarity measure of two

feature vectors is defined as the weighted Euclidean distance between two vectors.

The distribution of the simulated point is then estimated from the TIs using the

maximum likelihood estimate (MLE) considering the similarity of each pattern. A

sample is then drawn from the distribution as the realization of the simulation point.

This process is continued until all grid nodes are simulated. The feature vector

introduced in this paper is isotropic, that is, it is invariant to any linear transforma-

tion of the training image including rotation and transposition. This feature is also

fast to calculate enabling the simulator to incorporate a large amount of TIs. The

simulator is nonstationary and respects the hard data and its high-order statistics,

that is, only TI patterns with similar statistics are used for simulation. As a result,

the simulations are data driven.
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The following sections present the proposed simulation approach; then the

results of initial tests using known datasets follow. Conclusions and future work

complete the presentation.

2 The Proposed Method

2.1 Overview

The goal of the proposed method is to simulate a random field Z(x), in a sequential

multigrid process, given a grid with nodes x, a training image (TI),

z Yð Þ ¼ z y1ð Þ, . . . , z yMð Þf g; with nodes Y ¼ y1; . . . ; yMf g in the training image,

and a sparse set of N hard data z xið Þ, i2 1; . . . ;N½ � on a regular grid xi, i2 1; . . . ;N½ �.
The hierarchy of the sequential simulation is illustrated in Fig. 1. The blue nodes

represent the hard data (a). In the first sequence, each red node is conditioned on the

four closest blue nodes and simulated. The lines represent the conditions in (b). This

continues sequentially until all the nodes in the grid are simulated (Fig. 1c–e).

Unicolor lines in each figure represent the spatial templates, connecting the condi-

tioning data and a single node to be simulated. The size of the templates reduces

after each sequence to maintain the same number of conditioning nodes. This is the

natural representation of the multigrid approach for the simulation.

2.2 High-Order Transformation Invariant Simulation
(HOSTSIM)

At each sequence, the path is chosen randomly and saved into a vector containing

the indices of the visiting nodes. Each successive random variable Z(x) at node x is
conditioned to n-nearest neighbors, selected from the set of previously simulated

nodes and the hard data {x1, . . ., xn} (Goovaerts 1998). A template is formed

spatially by connecting each conditioning data, xi, to node x, presented by a lag

vector Lx ¼ h1; . . . ; hnf g ¼ x1 � x, . . . ,xn � xf g. Consequently, the neighbor-

hood of x is denoted by Nx ¼ xþ h1, . . . ,xþ hnf g and the data event is denoted

by dNx
¼ z x1ð Þ, . . . , z xnð Þf g. The goal is to estimate and draw a sample from the

probability, P Z xð ÞjdNx
, z Yð Þð Þ, of each successive Z(x) in the next visiting node on

the path given its data event dNx and the TI, z(Y). This probability is intractable for

continuous variables. Alternatively, a model with a set of parameters, θ 2 Θ, may

be chosen, to represent this probability independent from the data event and TI. The

parameter θ is optimized to express the data event and TI. Thus, this probability can

be decomposed using the Bayes product and sum rule:
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P Z xð ÞjdNx
, z Yð Þð Þ ¼

Z
θ2Θ

P Z xð Þjθð ÞP θjdNx
, z Yð Þð Þdθ: ð1Þ

Estimation of the integrand further simplifies Eq. 1. Figure 2 represents the term

P θjdNx
, z Yð Þð Þ as a function of θ. The contribution of this function is negligible

except for a narrow band near an optimal value for the parameter’s maximum

likelihood estimate, θMLE.

Consequently, Eq. 1 could be estimated as in Eq. 2:

P Z xð ÞjdNx
, z Yð Þð Þ � P Z xð ÞjθMLEð ÞP θMLEjdNx

, z Yð Þð ÞΔθ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{constant

¼ 1

CMLE
P Z xð ÞjθMLEð Þ: ð2Þ

In Eq. 2, CMLE can be regarded as the normalization factor to produce a valid

probability, CMLE ¼
Z
z2Z

P z θMLEjð Þdz.

Fig. 1 The hierarchy of the sequential multigrid simulation for n¼ 5, the connecting lines present
the conditioning dependencies. (a) The hard data. (b) Red nodes are simulated conditioned on their

four nearest neighbors. (c) Black nodes are simulated conditioned on both blue and red nodes from
previous sequence. (d) Oranges are simulated conditioned on previous simulated nodes and hard

data. (e) Greens are simulated in the last sequence. At each sequence the resolution of the grid

doubles
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Equation 2 implies the probability distribution function of the node x can

be calculated if θMLE is known. To estimate θMLE based on Fig. 2, θ ¼ θMLE

when P θjdNx
, z Yð Þð Þ is maximum for θ 2 Θ.

θMLE ¼ argmax

θ2Θ P θjdNx
, z Yð Þð Þ: ð3Þ

Using Bayes theorem:

θMLE ¼ argmax

θ2Θ
P z Yð Þjθ, dNx
ð Þ P θð Þ

zffl}|ffl{uniform prior

P z Yð Þð Þ|fflfflfflffl{zfflfflfflffl}
independant from θ

: ð4Þ

One assumes a uniform prior in parameters space Θ and note that the marginal

probability in TI, P(z(Y)), is independent from θ. Hence, Eq. 4 becomes

θMLE ¼ argmax
θ2Θ P z Yð Þjθ, dNx

ð Þ: ð5Þ

Each node in TI is only conditioned on its neighbors and the parameters set θ.
Hence, the joint distribution in Eq. 5 can be decomposed further.

θMLE ¼ argmax
θ2Θ

YM

i¼1
P z yið Þjθ, dNx

, dNyi

� �
: ð6Þ

Fig. 2 Presentation of

P θjdNx
, z Yð Þð Þ as a function

of θ. In practice this

probability is negligible

except at a narrow Δθ band

near θMLE
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A probability is maximized if the logarithm of that probability is maximized:

θMLE ¼ argmax
θ2Θ

XM

i¼1
logP z yið Þjθ, dNx

, dNyi

� �
: ð7Þ

At maximum the derivative with respect to θ should be zero:

∂
∂θ

XM

i¼1
logP z yið Þjθ, dNx

, dNyi

� �� �
¼ 0: ð8Þ

Equation 8 should be solved for θMLE. By choosing a model with a set of

parameters θ, solving Eq. 8 for θMLE is straightforward.

2.3 Simulation Model

The exponential family is used herein to model the likelihood function in Eq. 8 with

the parameter set θ ¼ {θ1, θ2}.

P z yið Þjθ, dNx
, dNyi

� �
¼ 1

c
exp �1

2
ω dNx

; dNyi
; σ20

� � z yið Þ � θ1ð Þ2
θ2

 !
: ð9Þ

ω dNx
; dNyi

; σ20

� �
is introduced as the similarity measure (SM) of the data event dNx

and dNyi. It ensures that the TI patterns with similar data events contribute more

toward building the likelihood function in Eq. 9. The SM is defined as

ω dNx
; dNyi

; σ20

� �
¼ exp �

1
2
D dNx

; dNyi

� �T
D dNx

; dNyi

� �
Σ dNx

; σ20
� �

0
B@

1
CA: ð10Þ

where D(dNx, dNyi) is introduced as the high-order statistics disparity vector.

Σ dNx
; σ20

� �
is the covariance matrix of the disparity vector and is calculated

using the calculus of variations.

2.4 High-Order Statistics Disparity Vector

In this paper, a particular form of disparity vector is presented, which is isotropic

and compares the high-order statistics of two data events. Most of the MP

simulation methods choose an L2-norm for the disparity measure (Arpat

and Caers 2007; Chatterjee and Dimitrakopoulos 2012; Honarkhah and Caers
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2010; Mariethoz et al. 2010, and Mustapha et al. 2013). When considering two

sets of data events dNx
¼ x1; . . . ; xnf g, dNy ¼ y1; . . . ; ynf g of order n, to develop

an isotropic L2-norm disparity measure, one must compare all possible ordering

of these two data events, which results in n� n! number of operations. For n¼ 5

the number of operations is 600. This is computationally expensive and can only

operate on small-size TIs. The following method is employed to reduce the

computing time.

First, Vieta’s formula (Funkhouser 1930) is used to calculate the coefficients of

two polynomials ps(X) and pt(Y) with the roots equal to the data events dNx and dNy,
respectively.

ps Xð Þ ¼ Xn þ s1X
n�1 þ . . .þ sn:

s1 ¼ x1 þ x2 þ . . .þ xn
s2 ¼ x1 x2 þ x3 þ . . .þ xnð Þ þ x2 x3 þ . . .þ xnð Þ þ xn�1xn

:
sn ¼ x1x2 . . . xn

8>><
>>: :

ð11Þ

pt Yð Þ ¼ Yn þ t1Y
n�1 þ . . .þ sn:

t1 ¼ y1 þ y2 þ . . .þ yn
t2 ¼ y1 y2 þ y3 þ . . .þ ynð Þ þ y2 y3 þ . . .þ ynð Þ þ yn�1yn

:
tn ¼ y1y2 . . . yn

8>><
>>: :

ð12Þ

These could be regarded as two mappings dNx ! s ¼ {s1,. . .sn} and dNy ! t ¼
{t1,. . .tn}. The advantage of these mappings is that they are invariant to the ordering

of the domain. This invariance results from the coefficients of a polynomial being

invariant to the order of the roots in a set due to Eqs. 11 and 12. s and t are in a

particular form of high-order moments:

sm ¼
X

k2KN kð Þm uð Þ kð Þ,
m uð Þ kð Þ ¼ 1

N kð Þ
XN kð Þ

j¼1
xj
Y

l2kxjþl;
ð13Þ

tm ¼
X

k2KN kð Þm uð Þ kð Þ,
m uð Þ kð Þ ¼ 1

N kð Þ
XN kð Þ

j¼1
yj
Y

l2kyjþl;
ð14Þ

where, k ¼ {k1,. . .,ku�1} and N(k) is the support for estimating the moment. The

high-order statistics disparity vector is defined as follows:

D dNx
; dNyi

� �
¼ sT � tT : ð15Þ

It is worth mentioning that the number of operations for this new disparity measure

is reduced dramatically to n� 2n�1 per simulation node versus n� n! for the

L2-norm. For n¼ 5, op(L2 � norm)¼ 600 and op(L2 � ord)¼ 80.
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3 Results from HOSTSIM and Comparisons

The dataset used in this section is the Stanford V Reservoir dataset (Mao and

Journel 1999). This exhaustive dataset consists of a 3D grid with porosity values.

The grid consists of 130� 100� 30 nodes, i.e., X � Y � Z. Here this dataset is

cropped into a grid of 100� 100� 30 in order to perform some linear transforma-

tion on the data, e.g., rotation. For each simulation, a layer, Z2 {1,. . .,30}, is
selected as the ground truth of the simulation, referred to as the original image.

This image is then down-sampled to produce the hard dataset, containing N points.

All layers except layer Z are considered as TI for each simulation. The results of the

simulation produced by HOSTISIM are compared, with an order 5 template, with

the ones produced by FILTERSIM, with a search grid size 11� 11 and inner patch

size 7� 7. Note that the TIs provided for HOSTISIM are rotated 90� clockwise. The
simulations are generated for layers z¼ {1,. . .,4}, from top to bottom in Figs. 3 and

4, first with N¼ 625 number of hard data points, 6.25% of the original data, in

Fig. 3, and second with N¼ 169 number of hard data points, 1.69% of the original

data, in Fig. 4. For each simulation on Figs. 3 and 4, from left to right, the original

image, HOSTISIM and FILTERSIM typical realizations are all presented. For each

set of results, the histogram of the original image and two simulations are also

plotted. As a robust quantitative comparison, for each simulation, ten realizations

are generated by HOSTISIM and FILTERSIMmethods, and for each one the PSNR

and SSIM scores (Wang et al. 2004) are calculated and averaged for each method

over all ten realizations and provided in Figs. 3 and 4. For every single case,

HOSTISIM outperforms FILTERSIM, visually by better representing the channels

and low-contrast structures of the original exhaustive image, with higher PSNR and

SSIM scores, and by better matching the histogram. Tables 1 and 2 are presenting

the average PSNR and SSIM for HOSTISIM and FILTERSIM.

4 Comparing the Computing Times

The current implementation of the method is in Matlab, using the GPU parallel

computation library. It has not been optimized nor developed in C, nor Python, as of

yet. On the other hand, FILTERSIM has been optimized and developed in Python

and is available in the SGEMS software platform. Despite this disparity in optimi-

zation, we ran some tests to compare them as is. The system used for the tests was a

Unix OS server with eight cores Xeon CPU, 3.500 GHz with 8 MB cache size and

64 GB DDR4 memory and Nvidia Tesla k40c GPU with 12 GB DDR5 memory

with 2880 cores.

For each method, two sets of tests were performed. Each set of tests consisted of

generating 10 separate simulations and averaging the computing time for each

simulation. The hard data used for all cases were 12� 12 real-valued data on a

regular grid. The goal was to generate a realization on a 100� 100 SG, for each
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Fig. 3 The results generated given 625 hard data (6.25%). From top to bottom, layers Z¼ 1,. . .4.
From left to right, original image, HOSTISIM and FILTERSIM simulations. On the bottom the

histograms of each set are presented (Red: Exhaustive, dark blue: HOSTISIM and light blue:
FILTERSIM)
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Fig. 4 The results generated given 169 hard data (1.69%). From top to bottom, layers Z¼ 1,. . .4.
From left to right, original image, HOSTISIM and FILTERSIM simulations. On the bottom the

histograms of each set are presented (Red: Exhaustive, dark blue: HOSTISIM and light blue:
FILTERSIM)
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case. Each TI was a 100� 100 real-valued image. In the first test, only 1 TI was

used and in the second test 29 TIs were used. The average computing times are

presented in Table 3.

5 Conclusions

A high-order, stochastic, and transformation invariant simulation method,

HOSTISIM, is introduced in this paper. This method sequentially simulates the

nodes in the grid to be simulated. At each sequence the previous simulated nodes

are also considered as conditioning data. Hence, the size of the template shrinks at

each new sequence. A high-order statistical disparity vector is introduced to

calculate the distance between the data event of a pattern in the grid with a pattern

in the TI. This disparity vector is designed to be isotropic and invariant against any

linear transformation of the TI patterns. The PDF of the simulating node is then

estimated using a likelihood function based on the disparity vector. This method is

easy to implement and fast in performance. Since the number of operations is

Table 1 Comparing average PSNR and SSIM for HOSTISIM and FILTERSIM methods with

N¼ 625 number of hard data points (6.25%)

PSNR SSIM

Z HOSTISIM FILTERSIM HOSTISIM FILTERSIM

1 24.94 23.10 0.61 0.50

2 24.31 22.77 0.60 0.47

3 23.84 22.42 0.57 0.44

4 23.10 21.29 0.56 0.42

Table 2 Comparing average PSNR and SSIM for HOSTISIM and FILTERSIM methods with

N¼ 169 number of hard data points (1.69%)

Z PSNR SSIM

Z HOSTISIM FILTERSIM HOSTISIM FILTERSIM

1 21.23 20.98 0.47 0.43

2 21.49 20.65 0.47 0.40

3 20.87 20.20 0.42 0.35

4 20.17 18.76 0.40 0.30

For more and higher-resolution results, please visit the link bellow: http://cim.mcgill.ca/~amir/

HOSTISIM.html

Table 3 Comparing average computation time for HOSTISIM and FILTERSIM methods

FILTERSIM HOSTISIM ***

Test#1 8 s 3 s +9 s GPU initialization in Matlab

Test#2 134 s 42 s +12 s GPU initialization in Matlab

*** Almost constant, overhead GPU initialization time in Matlab
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dramatically reduced compared to isotropic L2-norm distance measures, a large TI

set can be processed. This method is nonstationary, uses a disparity measure to

choose a pattern from the TI, never becomes biased from the TI, and always

respects the high-order statistics of the hard data’s inherent structure. This method

will be expanded to accommodate irregular data locations and implemented to

simulate in 3D.
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A Truly Multivariate Normal Score
Transform Based on Lagrangian Flow

Ute Mueller, K. Gerald van den Boogaart, and Raimon Tolosana-Delgado

Abstract In many geostatistical applications, a transformation to standard normal-

ity is a first step in order to apply standard algorithms in two-point geostatistics.

However, in the case of a set of collocated variables, marginal normality of each

variable does not imply multivariate normality of the set, and a joint transformation

is required. In addition, current methods are not affine equivariant, as should be

required for multivariate regionalized data sets without a unique, canonical repre-

sentation (e.g., vector-valued random fields, compositional random fields, layer

cake models). This contribution presents an affine equivariant method of Gaussian

anamorphosis based on a flow deformation of the joint sample space of the vari-

ables. The method numerically solves the differential equation of a continuous flow

deformation that would transform a kernel density estimate of the actual multivar-

iate density of the data into a standard multivariate normal distribution. Properties

of the flow anamorphosis are discussed for a synthetic application, and the imple-

mentation is illustrated via two data sets derived from Western Australian mining

contexts.

1 Introduction

Many of the standard geostatistical simulation algorithms for continuous data are

based on the assumption of Gaussianity. However, this assumption is often vio-

lated, and so prior to simulation, a transformation is required. Some notable

exceptions are direct sequential simulation and multiple indicator simulation. In
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particular, in the multivariate setting, the requirement of multivariate Gaussianity

poses a challenge. While it is straightforward to obtain marginal Gaussian distri-

butions, for example, via individual quantile matching, their univariate Gaussianity

does not imply multivariate Gaussianity. This observation is not new, for example,

the stepwise conditional transformation (Leuangthong and Deutsch 2003) and the

projection pursuit multivariate transform (Barnett et al. 2014) are methods designed

to overcome this limitation. However, for some applications, it is important that the

multivariate normal score transform is affine equivariant, that is, the anamorphosis

of any data set subjected to any affine transformation is an affine transformation of

the anamorphosis of the original data set. Examples of such data sets are compo-

sitional data and vectorial data where the information provided is relative. In these

cases there is no canonical representation of the data in real vector space, and the

introduction of a non-affine equivariant step into the analysis would break the

independence of the (geo)statistical workflow from the chosen representation.

However, the aforementioned methods are by construction not affine equivariant.

Van den Boogaart et al. (2015) introduced an affine equivariant multivariate

Gaussian anamorphosis which depends on two parameters. It has been shown in a

case study that the back transformation of normal random variables reproduces the

original distribution well.

The aim of this paper is to analyze the performance and choice of parameters of

the anamorphosis in relation to the normality properties of the resulting multivariate

distribution and spatial correlation structure. A synthetic example and two samples

drawn from mining contexts are used to illustrate the behavior.

The data considered here are compositional. These are common in the mining

industry, but also in geochemical surveys, where a whole suite of elements are

analyzed. The information on the samples provided is in relative terms; measure-

ments are positive and, if all constituents of the sample were analyzed, add to a

constant, usually 100%. Thus, the sample space is a D-dimensional simplex:

z1 uαð Þ, z2 uαð Þ, . . . , zD uαð Þð Þj
XD

i¼1
zi uαð Þ ¼ 100, zi uαð Þ > 0, uα2A

n o
ð1Þ

where zi denotes the i
th element that was analyzed and uα a sample location within

the study region A. Data of this nature cannot be modeled “raw,” and even before a

transformation to Gaussian space is performed, a log-ratio transform ought to be

performed to remove the positivity requirement as well as the constant sum

constraint (Aitchison 1986). Several transformations are available for that purpose,

one of which is the alr transformation, given as

xiðuαÞ ¼ alrD

�
ziðuαÞ

�
¼ ln

�
ziðuαÞ=zDðuαÞ

�
ð2Þ

for i¼ 1,. . .,D. The choice of the divisor is arbitrary, so that there are in fact

D distinct alr transformations, given a regionalized variable of D components. To

ensure independence of simulation results from the choice of log-ratio transforma-

tion, the transformation to normality should be affine equivariant, that is,
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equivariant under full-rank linear transformations and invariant under translations.

Transformations to multivariate normality that rely on quantile matching do not

have this property, and so simulation results based on a multi-Gaussian transform of

that type might depend on the log-ratio transform used. Therefore, a multivariate

normal score transform is required that does not rely on quantile matching and that

treats the vector as a whole and not as the Cartesian product of some individual

quantities.

2 The Flow Anamorphosis

The normal score transformation is achieved by means of a smooth deformation of

the underlying space transporting the probability mass from a kernel density

estimate of the original distribution to a multivariate standard Gaussian distribution.

The starting point is a set of vectors in D-dimensional space,

zα2ℝD
��α ¼ 1, . . . , n

� �
, which will be regarded as centers of smoothing Gaussian

kernels with spread σ0. A mass transport is created by moving and scaling each

kernel into the target distribution through an abstract time interval t2[0,1]. This
mass flow induces a flow field. Each point of the space is transported with this flow

field from its original position in raw space to its position in transformed space.

Specifically we assume that at time t, the center zα(t) of the α
th kernel is

zα tð Þ ¼ 1� tð Þzα ð3Þ

where t2[0,1] and the spread is given by

σ tð Þ ¼ 1� tð Þσ0 þ tσ1: ð4Þ

The spreads of all kernels evolve simultaneously according to Eq. 4. For each

location, time-dependent scores are defined relative to a decompositionM¼RRT of

the variance covariance matrix of the input data:

sα z; tð Þ ¼ 1

σ tð ÞR
�1 z� zα tð Þð Þ ð5Þ

The local position X of a mass point of the αth kernel, which is at time t at location

z as a function of time τ, is given by

X τ; z; α; tð Þ ¼ zα τð Þ þ Rsα z; tð Þσ τð Þ ð6Þ
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and its flow velocity is the derivative of X with respect to τ:

vα z; tð Þ ¼ �zα þ Rsα z; tð Þ σ1 � σ0ð Þ: ð7Þ

The average velocity of the total mass at z is defined as the weighted average:

v z; tð Þ ¼
Xn

α¼1
ωα z; tð Þvα z; tð Þ ð8Þ

where ωα(z,t) are weights derived from the time-dependent density of the αth kernel
at this location and time. The weights are functions of the Mahalanobis distance

between the vector z and the kernel center zα(t):

ωα z; tð Þ ¼
exp �ksα z; tð Þk2

� �

Xn

α¼1
exp �ksα z; tð Þk2

� � ð9Þ

The differential equation describing the motion of a parcel at time t is then

∂
∂t

pz tð Þ ¼ v pz tð Þ, tð Þ, pz 0ð Þ ¼ z; ð10Þ

where pz(t) denotes the position at time t of a vector starting at z at time 0.

The flow velocity v in Eq. 10 reflects the Eulerian formulation of the field. The

equation of motion in Eq. 10 describes the deformation of the space to Gaussian

space. The transformation is by construction affine equivariant (van den Boogaart

et al. 2015). For the weights in Eq. 9, this follows from a property of the

Mahalanobis distances established by Filzmoser and Hron (2008), and a straight-

forward calculation shows that if A is a full-rank matrix and b a vector, then

vα Azþ b, tð Þ ¼ Avα z; tð Þ � b, which in turn leads to the desired equivariance

property of the transformation. So in the context of compositions, the multivariate

anamorphosis constructed here provides a normal score transform which guarantees

that results do not depend on the choice of log-ratio transformation.

An example of the flow anamorphosis for a bivariate data set consisting of

100 samples is shown in Fig. 1 together with the marginal distributions of the

input (τ¼ 0) and output (τ¼ 1) data. The value of σ0 was set to 0.02 and that of σ1
was set to 1. The trajectories show that the motion is nonlinear. The application of

the anamorphosis proceeds by first moving points toward the origin and then

pushing them back out toward the periphery, resulting in a more circular scatter

plot.
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3 Some Properties of the Flow Anamorphosis

From the construction it is clear that the flow anamorphosis depends on the choice

of suitable values for σ0 and σ1. The initial spread σ0 controls the deformation of the

underlying space: the greater the value, the weaker the deformation. It thus exer-

cises the greatest influence over the shapes of the final marginal distributions and

multivariate normality of the normal scores. The ranges of the marginal increase

with decreasing σ0. Multivariate normality tests performed on test data indicate that

the choice of σ0 depends both on the number of variables and the sample size. In the

case of an initial distribution as shown in Fig. 1, the output distribution is bivariate

normal for values of σ0� 0.2. This was ascertained for 100 replicates generated

from this model (Fig. 2). Here an energy test was applied to determine multivariate

normality (Szekely and Rizzo 2013).

Note that the p-value of a test under the null hypothesis follows a uniform

distribution on the interval [0, 1]. Thus, the target behavior should be represented

by a broad, centered boxplot covering the whole range and not a constant value of

1.0 (which would imply overfitting).

Fig. 1 Trajectories of points under flow deformation: scatter diagrams of raw data (left) and
transformed data (right) with marginal distributions are superimposed in the bottom

A Truly Multivariate Normal Score Transform Based on Lagrangian Flow 111



The value of σ1 does not impact on multivariate normality but does influence the

ranges of the transformed distributions. A simplistic choice is σ1¼ 1, resulting in

marginal distributions with standard deviation less than unity. The relative change

in the ranges of the marginal distributions when σ1¼ f(σ0) for some suitably chosen

positive function f is f σ0ð Þ � 1 compared to those with σ1¼ 1. These properties are

illustrated in Table 1 for the case of the data shown in Fig. 1 with σ0¼ 0.8, 0.5, and

0.2 and σ1 ¼ 1, σ1 ¼ 1þ σ0, σ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ20

p
, respectively.

4 Application to Spatial Data

Here the application of the flow anamorphosis is illustrated with two examples from

Western Australian mining contexts. Both data come from a mining bench, so can

be deemed two-dimensional. The first set is derived from an iron ore mine, the

second from a manganese mine. The data configurations are shown in Fig. 3. For

both sets locations were transformed to maintain confidentiality.

4.1 Iron Ore Data Set

This data set consists of 400 samples, and the variables of interest are Fe, Al2O3,

and SiO2. Since the data are compositional, but the three elements considered only

form a sub-composition, a filler variable was introduced to achieve closure. The

Fig. 2 Boxplots of p-values of normality tests (left) and ranges (right) based on different values

of σ0
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data were then transformed to log-ratios relative to the filler variable via the

additive logistic transform (Aitchison 1986): alrX ¼ ln X
Filler

� 	
. Summary statistics

for the alr-transformed variables are shown in Table 2.

The data are not aln normal, since alrAl2O3 fails to follow a normal distribution,

and so a transformation to normal scores is required prior to any Gaussian-based

simulation. The flow anamorphosis was applied to the data with σ1¼ 0.3 and σ1¼ 1

+ σ0, resulting in variables that are not only multivariate normal but also

uncorrelated and thus statistically independent (Table 3). Several tests of multivar-

iate normality support the conclusion: the Henze-Zirkler, Royston, and energy tests

returned p-values of 0.9996, 0.4091, and 0.9530. The ranges of the transformed

variables were 6.7408, 6.0568, and 6.1574, respectively (van den Boogaart et al.

2016).

Scatter diagrams of the alr-transformed input data and the output normal scores

are shown in Fig. 4 and support the conclusion of independence of the output

scores. Further analysis shows the flow-transformed data to be spatially

decorrelated also, as shown by an average decorrelation efficiency (Tercan 1999)

of 0.9563 and a mean deviation from diagonality of 0.0393. Thus, any further work

including simulation can be done on the individual transformed variables.

Table 1 p-values for multivariate normality tests (Korkmaz et al. 2014) applied to the transforms

of the data shown, ranges of the variables and relative change in range compared to σ1¼ 1 for

selected values of σ0 and σ1

Statistic 0.80 0.50 0.20 0.80 0.50 0.20 0.80 0.50 0.20

σ1¼ 1 σ1 ¼ 1þ σ0 σ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ20

p

Mardia 0.00 0.00 0.10 0.00 0.00 0.09 0.00 0.00 0.10

Henze-Zirkler 0.00 0.02 0.90 0.00 0.02 0.89 0.00 0.02 0.90

Royston 0.00 0.03 0.64 0.00 0.03 0.64 0.00 0.03 0.64

Energy 0.00 0.01 0.90 0.00 0.01 0.90 0.00 0.02 0.92

R(V1) 3.26 3.69 4.28 5.86 5.53 5.14 4.17 4.12 4.37

R(V2) 3.13 3.48 3.98 5.63 5.21 4.77 4.00 3.89 4.06

Rel. change – – – 0.80 0.50 0.20 0.28 0.12 0.02

0

0
25 75 125

50

100

150

200

250

300

-50-100-200 -150-250

100

70

40

Fig. 3 Data configuration

for iron ore data (left) and
manganese data (right);
units are in meters
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4.2 Manganese Data Set

This data set consists of four variables, Mn3O4, Fe2O3, Al2O3, and SiO2, with

Mn3O4 as the commodity of interest. The sample size is 176. As in the case of

Table 2 Summary statistics

for alr-transformed iron ore

data (SW denotes Shapiro-

Wilk)

alrAl2O3 alrFe alrSiO2

Min. �5.614 0.476 �4.611

1st quartile �4.206 0.645 �3.571

Median �3.660 0.681 �3.080

Mean �3.535 0.679 �2.957

3rd quartile �2.880 0.715 �2.423

Max. �1.233 0.884 �1.065

SW statistic 7� 10�5 0.9943 0.9717

Table 3 Summary statistics

for data after flow

anamorphosis

FAV1 FAV2 FAV3

Min. �3.010 �2.994 �3.140

1st quartile �0.841 �0.795 �0.874

Median 0.039 �0.026 0.028

Mean �0.002 0.025 �0.011

3rd quartile 0.793 0.864 0.764

Max. 3.731 3.063 3.018

SW statistic 0.997 0.996 0.994
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Fig. 4 Scatter diagrams of alr-transformed variables (top) and normal scores (bottom)
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the previous data, the data will be treated as compositional. This required inclusion

of a filler variable followed by a transformation to log-ratios relative to that variable

(Table 4).

For this data set, a much stronger deformation is required to transform the data to

multivariate normality. For σ0¼ 0.02 and σ1¼ 1.02, the Henze-Zirkler and energy

tests support a conclusion of multivariate normality, but the Mardia and Royston

tests do not: the relevant p-values are 0.34, 0.005, 0.48, 0.003, and 0.05 for the

Mardia skewness, Mardia kurtosis, Henze-Zirkler, Royston, and energy tests. This

issue can be overcome by replacing a single transform by a pair of transforms,

requiring weaker deformations: the data are first transformed via a flow

anamorphosis with parameters σ0¼ 0.2 and σ1¼ 1.2, and then an anamorphosis

with parameters σ0¼ 0.2 and σ1¼ 1.2 is applied to the output of the first transfor-

mation. With this approach, all but the Mardia tests support a conclusion of

multivariate normality.

Summary statistics in Table 5 show that means are close to 0, and ranges of the

transformed data lie between 85% and 95% of those obtained from quantile

matching. Given that in the case of the flow anamorphosis, it is the underlying

space that is transformed, these ranges are satisfactory. The scatter diagrams in

Fig. 5 show that it is in essence the third variable of the single-step transform which

leads to a rejection of multivariate normality, and from correlation tests, it follows

that the two-step transformed data are statistically independent.

However, in this case, the spatial decorrelation is not as satisfactory. For the

two-step anamorphosis, the mean decorrelation efficiency is 0.99, but there is

evidence of remnant spatial correlation for distances of up to 15 m, which is clearly

Table 4 Summary statistics

for alr-transformed

manganese data

alrAl2O3 alrFe2O3 alrMn3O4 alrSiO2

Min. �5.5828 �4.0621 �3.3500 �4.5475

1st quartile �3.6665 �2.2347 1.1410 �1.0380

Median �3.0724 �0.8765 1.6010 �0.2190

Mean �2.8268 �0.6139 1.2560 0.06049

3rd quartile �2.2273 0.7268 1.7200 1.2259

Max. 0.9492 4.7110 2.6000 5.8141

SW 0.9457 0.9542 0.7168 0.9795

Table 5 Summary statistics

for data following two-stage

flow anamorphosis

FA2sV1 FA2sV2 FA2sV3 FA2sV4

Min. �2.4476 �2.6904 �2.5859 �2.5850

1st quartile �0.6873 �0.7979 �0.5852 �0.6693

Median 0.0043 0.0145 �0.0206 �0.0161

Mean 0.0014 0.0042 �0.0198 0.0098

3rd quartile 0.6421 0.7659 0.6128 0.7250

Max. 2.2276 2.5067 2.2152 2.7156

SW 0.9903 0.9937 0.9904 0.9949
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Fig. 5 Scatter diagrams of alr-transformed variables (left column), single-step transformed scores

(center), and two-step transformed scores (right column)
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visible in the plot of decorrelation efficiency against lag spacing in Fig. 6. This is

also evident from the mean deviation from diagonality whose value is 0.28.

Figure 6 also shows the corresponding plots for the single-stage anamorphosis

and the two-step anamorphosis followed by an application of MAF decomposition

(Bandarian and Mueller 2008) with lag value chosen to be 10 m. These indicate that

the overall best decorrelation is achieved by the single-step flow anamorphosis

although MAF achieves improvements in the mean deviation from diagonality

compared to the two-step transformation.

5 Conclusion

A truly vectorial Gaussian anamorphosis should be affine equivariant, to ensure that

results do not artificially depend on the particular choice of representation of those

vectors. In the case of compositional data, this means that methods should be

independent of the choice of log-ratio transformation, so in particular of the choice

of denominator for the alr scores. The flow deformation introduced here can be used

to build a bijection between the space of original vectorial observations and a

Gaussian space. Our implementation is based on kernel density estimation (KDE)

of the joint distribution and is affine equivariant.

The implementation has two scalar parameters, irrespective of the dimension of

the input data. The first parameter describes the spread of the kernels in the KDE on

the space of the observations and controls the goodness of the final fit to joint

normality. The second parameter controls the spread of the final scores, but not their

shape.

The examples suggest that the performance of the flow anamorphosis and its

ability to satisfactorily transform the given data to multivariate normality is

Fig. 6 Deviation from diagonality (left) and decorrelation efficiency (right) as functions of lag
spacing
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strongly dependent on the features of the input data. In the case of the iron ore data,

the sample data appeared to be reasonably simple with relatively high correlation

between the input variables, while the manganese data set showed much more

complex relationships. This impacts on the strength of deformation required to

successfully transform them to multivariate normality. A two-step approach might

provide a feasible alternative in such a scenario. The resulting data were statistically

independent, but in the case of the manganese data, a slight spatial correlation

remained and a postprocessing via MAF did not remove it.
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Using Samples of Unequal Length
for Estimation

Marcel Antonio Arcari Bassani and Jo~ao Felipe Coimbra Leite Costa

Abstract During mineral exploration, it is common to have multiple drilling

campaigns. Samples from these campaigns usually have distinct sampling lengths

or supports. All the available information should be incorporated when constructing

a grade model. However, the variations in length among the samples must be

considered during estimation. We propose to perform kriging using samples of

different lengths. The kriging system is built using average covariances to account

for the difference in support between the samples. The technique is applied in a

mining case study and the benefits are demonstrated.

1 Introduction

In various mineral deposits, it is common to have drill hole samples obtained from

different drilling campaigns. As each campaign has its own sampling protocol,

samples from different campaigns are usually taken with different nominal lengths

or supports. The construction of grade models would benefit if all available

information is used for estimation purpose. However, the difference in length

among samples must be considered during estimation.

One particular situation in which samples of different lengths occur is when the

mineralization consists of a thin seam or vein and the drill hole samples cross the

entire seam or vein. Each sample length corresponds to the seam thickness. In this

case, practitioners usually work with the variables accumulation (product of grade

and thickness) and thickness (Krige 1978; Bertoli et al. 2003; Marques et al. 2014).

The grade estimates are obtained by dividing the accumulation estimates by the

thickness estimates. This approach eliminates the vertical component (z), resulting

in a two-dimensional (2D) model. The problem with this method is that a 2D block

model may not be used directly for pit or stope optimization algorithms.
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When a 3D block model is required, the common workflow to estimate grades

using samples at different length involves the following steps: (1) compositing the

samples and (2) kriging using the composites. However, compositing is not trivial

when there are extreme variations among the lengths of the samples. In this case,

compositing to a large length causes loss of information. In contrast, compositing to

a short length breaks a large sample into pieces of equal grade, which is incorrect

and at the same time artificially reduces the short-scale variability.

The use of average covariances in the kriging system to deal with samples of

different support is well established in the literature (Deutsch et al. 1996; Yao and

Journel 2000; Tran et al. 2001; Kyriakidis 2004; Pardo-Igúzquiza et al. 2006;

Hansen and Mosegaard 2008; Liu and Journel 2009; Poggio and Gimona 2013).

However, this approach has rarely been applied in estimation of grades in mineral

deposits. Bassani et al. (2014) used average covariances in the kriging system to

consider data obtained from large mined-out volumes. This paper aims at showing

the applicability of kriging to estimate grades using drill hole samples of different

lengths in a mineral deposit. A major bauxite deposit is used to illustrate the

method. The grade model is validated by visual inspection, cross-validation and

swath plots.

2 Kriging with Samples of Different Support

Consider the problem of estimating the average value of a continuous attribute

z over the support V centred at location u, that is, zv(u). The data consist of set of

n discrete grade values defined on the supports vi z við Þ; i ¼ 1, . . . , nf g. Support
refers to the size (length, area or volume) in which the attribute z is measured. In our

example, the support V(u) refers to a selective mining unit (SMU) centred at

location u, and the support vi refers to the length of the ith drill hole sample. We

aim to estimate the average value of an SMU. A drill hole sample represents the

average grade along the sample length. In the geostatistical literature, average

values over certain support (length, area or volume) are termed block values

(Journel and Huijbregts 1978; Deutsch and Journel 1998; Goovaerts 1997). Equa-

tion 1 defines the ordinary kriging estimator for the block value zV(u):

z*V uð Þ ¼
Xn
i¼1

λiz við Þ ð1Þ

where λi is the ordinary kriging weight associated to the datum z(vi). The kriging

weights are the solution of the ordinary kriging system.

Equation 2 defines the ordinary kriging system accounting for the support of the

data (Journel and Huijbregts 1978; Isaaks and Srivastava 1989; Goovaerts 1997):
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Xn
j¼1

λj �C vi; vj
� �þ μ ¼ �C vi,V uð Þð Þ

Xn
j¼1

λj ¼ 1

i ¼ 1, . . . , n

8>>>><
>>>>:

ð2Þ

where μ is the Lagrange multiplier and �C vi; vj
� �

is the covariance block to block

between the block datum vi and the block datum vj. �C vi; vj
� �

is calculated as the

average of point covariances C(u
0
i, u

0
j) defined between any discretizing point u

0
i of

the block datum vi and any discretizing point u
0
j of the block datum vj:

�C vi; vj
� � ¼ 1

NiNj

XNi

i¼1

XNj

j¼1

C u
0
i, u

0
j

� �
ð3Þ

where Ni is the number of discretizing points of the block datum vi and Nj is the

number of discretizing points of the block datum vj. The term �C vi,V uð Þð Þ in Eq. 2 is
the covariance block to block (Eq. 3) between the block datum vi and the block to be
estimated V centred at location u.

3 Case Study

3.1 Dataset Presentation

The dataset derives from a bauxite deposit located in the northern portion of the

Brazilian Amazon basin. The dataset contains 686 drill holes located on a relatively

regular grid of 200� 200 m spacing along the east (X) and north (Y) directions. The

original Z coordinates were transformed into stratigraphic coordinates. The variable

of interest is the percentage of the total sample mass retained at the no. 14 sieve

aperture (REC14). As REC14 is an additive variable, similar to grades, the methods

presented here are also suitable for grades. In 343 out of the 686 drill holes, REC14

was sampled at the nominal length of 0.5 m (white points in Fig. 1). In the

remaining 343 drill holes (black points in Fig. 1), there is a single sample of

REC14 whose length corresponds to the ore thickness. The sample represents the

average value over the total ore thickness.

Figure 2a shows the histogram of REC14 weighted by the length of the samples

and summary statistics. The distribution is fairly symmetric around the mean with a

low coefficient of variation. As the drill holes are approximately regularly spaced,

these statistics are representative of the study area. Figure 2b shows the QQ plot

between the drill hole data (length weighted) and the declustered data (obtained

with a nearest neighbour estimate). The points in Fig. 2b are close to the line y¼ x,

showing that the two distributions are similar, as expected. Figure 2c shows the
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histogram of the length of the samples. The length of the samples varies from 0.25

to 7.88 m. Since roughly 80% of the samples are short, whose lengths are between

0.25 and 0.75 m, the geomodeler may feel tempted to retain only these short

samples for estimation. However, keeping only the short samples results in exces-

sive loss of information.

3.2 Variogram Analysis and Modelling

Equation 4 describes the variogram model of REC14:

γ hð Þ ¼ 0:15þ 0:50 � Sph NS

250m
;
EW

250m
;
vert

4:10m

� �

þ 0:35Sph
NS

4500m
;

EW

4500m
;
vert

4:20m

� �
ð4Þ

Only the samples with length between 0.25 and 0.5 m were used to calculate the

experimental variogram. As kriging with samples of different support needs a

variogram at a point scale to calculate the average covariances, long samples

were not used to calculate the experimental variogram.

Fig. 1 Location map of the drill hole collars
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3.3 Estimation

Ordinary kriging considering the different support in the data was used to estimate

REC14. The drill hole samples were discretized along the main direction of the

sample. The spacing of the discretization points corresponds to the length of the

small-scale data used to calculate the experimental variogram. These discretization

points of the samples were used to calculate the covariances block to block (Eq. 3)

between the samples. The estimation was performed at a block model with block

size of 50� 50� 0.5 m along X, Y and Z, respectively. The block discretization

was set to 5� 5� 1. The estimates were constrained to the blocks inside the

interpreted geological model.

Fig. 2 Histogram of REC14 (a), QQ plot between drill hole and declustered data (b), histogram of

the length of the samples (c)
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3.4 Model Validation

The grade model was checked with the following techniques: (1) visual inspection,

(2) swath plot and (3) cross-validation.

Visual inspection consists in comparing visually the grade model with the

samples. The grade model must be consistent with the data.

Swath plot consists in first defining a series of swaths or slices along the X, Y and

Z directions. Then, the average grade of the model and the declustered average

grade of the samples within the slices are compared. The samples were declustered

with a nearest neighbour estimate.

In the cross-validation, first one sample at a particular location is removed.

Second, the value is estimated at that location using the remaining samples. The

same estimation parameters used in the estimation of the block model were used in

the cross-validation. The estimation error (difference between the estimated and

true value) was calculated. Furthermore, the estimated and true values were com-

pared using a scatter plot.

4 Results and Discussion

Figure 3 shows a plan view of the block model together with the samples. The high-

grade areas of the block model are close to the high-grade samples, as expected.

The swath plots show that the block model reproduced the trend in the data along

the X, Y and Z directions (see Fig. 4a–c). The local mean of the block model is

similar to the local declustered mean for the three directions. In addition, the

estimates neither overestimate nor underestimate systematically the local mean

(see Fig. 4a–c; the local mean of the block model is not always either above or

below the local declustered mean).

Figure 5a shows the histogram of estimation errors weighted by the length. The

grade model is globally accurate, as the mean error is 0.14%, which is close to zero.

It represents a relative difference of 0.21% in comparison to the mean of the data,

which is 65.52% of REC14 (see summary statistics in Fig. 2a). The scatter plot

between the estimated and true values (Fig. 5b) shows that the regression line

y¼ ax + b (red line in Fig. 5b) is fairly close to the first bisector line. This diagram

indicates that the grade model does not suffer from a substantial conditional bias.

The results highlight the strength of kriging to deal with samples of different

support. Practitioners often overlook the fact that the kriging system handles data of

different support (Journel 1986). In this paper, we used kriging considering the

support of the data to estimate grades with samples of different lengths in a mineral

deposit.
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5 Conclusions

The study shows that kriging considering the support of the data is suitable to

estimate grades in a mineral deposit using drill hole samples of different lengths.

The methodology was applied to a bauxite deposit. The resultant grade model is

visually consistent with the data and reproduced the trend of the data. In addition,

the grade model is accurate and does not have significant conditional bias.

Fig. 3 Block model and samples. The lines represent the blocks while the points represent the

samples
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Fig. 4 Swath plots along

the X (a), Y (b) and Z (c)
directions
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New Approach to Recoverable Resource
Modelling: The Multivariate Case at
Olympic Dam

Colin Badenhorst, Shane O’Connell, and Mario Rossi

Abstract Traditional estimation techniques significantly under-call the true mon-

etary value of the resource on which mine plans and operations base their business.

At the Olympic Dam, this is worth billions of dollars. Realising this value requires

mine planning engineers to be supplied with an accurate recoverable resource

model that correctly estimates the tonnes and grade for a specified support and

timescale, at the time of mining.

Models estimated using linear methods and wide-spaced drilling typically fail to

accurately predict recoverable resources, mainly because of incorrectly accounting

for the change of support and information effect. The unavoidable smoothing

property of weighted averages is also a significant obstacle. These failures are

more significant in underground mining scenarios where higher cut-offs (with

respect to the average grades of mineralisation) are applied. This paper discusses

a different approach to recoverable resource estimation based on conditional

simulation methods.

The Olympic Dam deposit is one the world’s largest polymetallic deposits. The

resource estimation practices at the Olympic Dam are comprised of a combination

of linear and non-linear techniques to estimate 16 different grade variables critical

to mine planning. Measured resources are supported by 20 m-spaced underground

drilling fans where Kriged estimates perform well in terms of mine to mill recon-

ciliation. However, this not the case for resources classified as Indicated and

Inferred. Until infill drilling is undertaken, the accurate estimation of tonnes and

grade to the mill is not possible with the Kriged model. This has a significant impact

on life-of-mine economic valuations and ore reserve estimates of the Olympic Dam.
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Conditional simulation has been used to generate a recoverable resource esti-

mate from a single realisation. This conditional simulation model takes into account

both the change of support and the information effect, without the undesired

smoothing effect that classic methods introduce. This paper describes the signifi-

cant challenges faced in applying this approach, including issues such as which

realisation to choose, data conditioning in areas with little information, ensuring

that the multivariate relationships among variables are respected at a block level,

software and hardware challenges and defining benchmarks for ensuring that the

“correct” grade-tonnage curves are reproduced. These challenges have to be over-

come whilst ensuring that the resulting estimate is a JORC compliant and is also

acceptable under BHP Billiton’s corporate governance standards.

1 Introduction

The Olympic Dam is Australia’s largest underground sublevel open stoping mine

producing around 10 Mt of ore per annum. The Olympic Dam mine has been in

production since 1988 using a standard mining method of mechanised sublevel

longhole open stoping (SLOS), with cemented aggregate backfill. The processing

plant is a fully integrated circuit that consists of autogenous grinding mills, flotation

circuits to recover copper concentrate and tailings leach circuits to recover uranium.

The copper concentrate is treated in an on-site direct-to-blister-furnace (DBF) smelter,

whilst an onsite refinery produces copper cathode and recovers gold and silver.

The Olympic Dam is a very large iron oxide-hosted Cu-U-Au-Ag ore deposit.

The deposit is hosted entirely within the Olympic Dam Breccia Complex (ODBC)

and is unconformably overlain by approximately 300 m of unmineralised, flat-

lying, sedimentary rocks. The deposit was discovered in the late 1970s and the

geology has been studied and described by numerous authors (Roberts and Hudson

1983; Ehrig et al. 2012). A key feature of the deposit is a central core of haematite–

quartz breccia largely devoid of copper and uranium mineralisation. In general, the

host breccias are more haematite-rich towards the centre of the ODBC and more

granitic at the margins. Including the sulphide minerals, there are more than

100 identified ore and gangue minerals. The most common minerals include

haematite, quartz, sericite, feldspar, chlorite, barite, fluorite, siderite, pyrite, chal-

copyrite, bornite and chalcocite. The three primary uranium minerals account for

less than 0.1% of the total rock mass and occur as uraninite, coffinite and

brannerite.

The bulk of economic mineralisation is associated with sulphide-bearing hae-

matite-rich breccias. The majority of copper mineralisation occurs as chalcopyrite,

bornite and chalcocite and dominantly manifests as binary pairings of

chalcopyrite� bornite and bornite� chalcocite. Uranium, gold, silver and copper

minerals are all correlated to a statistically significant degree.
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2 Why Produce a Recoverable Resource Model?

The business case for recoverable resource modelling is simple: the true monetary

value of the Olympic Dam is highly leveraged to grade. For example, depending on

the specific mine plan, for every 10% increase in grade in the early part of the plan,

there is a 25% increase in annual cash flow. Around two thirds of the life-of-mine is

based on widely spaced drilling and is therefore a smoothed and under-

representative view of the grade that will be realised when close-spaced drilling

and high-resolution estimation is undertaken. Modelling the correct distribution of

grade is worth billions of dollars to the value of the Olympic Dam.

In the past 40 or so years, there have been many attempts at producing effective

recoverable resource models with varying degrees of success; some relevant dis-

cussions and case studies include (Journel and Huijbregts 1978; Journel and

Kyriakidis 2004; Assibey-Bonsu and Krige 1999; Rossi and Parker 1993; Abzalov

2006; Krige and Assibey-Bonsu 1999; Rossi and Deutsch 2014 and Roth and

Deraisme 2000).

In an environment of falling commodity prices, with a focus on reducing costs and

improving financial metrics of cash flow, IRR, NPV and capital efficiency, an equally

important consideration to costs is improving the revenue. The old adage, “grade is

king”, is never more true in this environment. For deposits that are relatively high

grade, and where the spatial continuity of that grade is amenable to selective mining,

increasing the grade for the same tonnage delivered to the mill is very effective in

increasing themargin on each unit ofmetal produced. Themining cost per tonne of ore

may increase but the cost per pound of copper can greatly decrease.

A common strategy at the Olympic Dam has been to increase metal production

by increasing process plant ore tonnage throughput. Unless there is latent capacity

in the plant, there is a large capital requirement in order to accommodate the

increase in tonnes. Alternatively, increasing metal throughput in the operation

can be achieved by raising the grade of the ore feed from the mine, which is

generally much less capital intensive since the plant is large and complex.

The Olympic Dam deposit is relatively high grade with contiguous zones of

2–4% copper grade. This continuity of high grade gives the operation an opportu-

nity in the planning and mining processes to increase the grade delivered to the

processing plant. Relatively close 20 m-spaced lines of Measured Resource drilling

are required to define these contiguous high-grade ore shoots. The Olympic Dam

Inferred Resource is defined by relatively wide-spaced drilling at 100–250 m

notional centres. Indicated Resource is defined by both wide-spaced surface and

wide-spaced underground drilling at 70–100 m centres. Comprehensive drill spac-

ing studies (see later section) have back-tested the effect of resampling Measured

Resource (20 m drill spacing) at Inferred and Indicated drill spacings in the deposit.

These studies have demonstrated that a traditional Ordinary Kriging (OK) linear

estimate using this wide-spaced drilling information is neither globally accurate in

terms of tonnes and grade nor locally spatially accurate in representing the orien-

tation of the high-grade zones which are to be mined (Fig. 1). This holds true for
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geological interpretations and models, estimated models and simulated models,

since these are a function of data spacing.

Over the longer term, how and when these higher-grade ores are exploited can

also have a direct impact on the life and the consequent NPV of the operation. Since

the life-of-mine has approximately two thirds of the resource at Indicated or

Inferred status, there is a poor conversion of resource to reserve, which understates

the overall value of the operation in the life-of-mine plans. In addition, experience

at the Olympic Dam and many other operations elsewhere has shown that for the

same volume of material mined, an increase in grade is realised with later infill

drilling. This is due to the high-grade mineralisation controls that exist at a smaller

scale, compounded by the well-documented support effect and the inherent smooth-

ing of linear estimators such as inverse distance weighting and Kriging methods.

The result is that estimates in areas with wide-spaced information under-call the

true tonnage and grade that are realised once close-spaced drilling and high-

resolution estimation is undertaken.

In the authors’ experience, at the Olympic Dam, the most practical solution to

overcoming this issue is to produce a recoverable resource model using a simulation

technique. Conditional simulations which comprehensively validate against the

drill hole data are the only technique that avoids smoothing by reproducing the

original data variance (high granularity models), estimates the tonnes and grade at

the time of mining for any drill spacing and produces a better local spatial model

that can be used for practical geological, mine planning and financial valuation

purposes.

Combined with traditional OK estimates of Measured Resource, estimates of

Inferred and Indicated Resource produced using conditional simulation are collec-

tively referred to as the recoverable resource model (RRM). This model is an

enabler to several other mine planning value-adding initiatives which unlock the

true value of the deposit. These initiatives are collectively referred to as the grade

focus strategy.

Fig. 1 Representative cross section through the Olympic Dam showing differences in copper
grade, modelled using Inferred (250 m spaced) drill hole information and Measured (20 m spaced)

drill hole information. Each model depicted above has a unique geological interpretation that is a

function of the data spacing
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3 The Grade Focus Strategy

The RRM is integral to the overall strategy to increase grade and value at the

Olympic Dam. This strategy is aimed at maximising the contribution of ore grade to

the value proposition for the operation. Higher ore grades have a direct impact on

the revenue stream and are very effective in lowering the unit cost of metal

production. This strategy is based on six key focus areas that all contribute to

improving the value contribution of ore grade:

1. Resource modelling. By using conditional simulation to estimate grade in model

areas supported by wide-spaced drilling, a higher grade from improved granu-

larity can be realised in the mine planning process.

2. Reserves. By using a more sophisticated automated stope generation technique,

a higher design grade can be realised through a more efficient capture of high-

grade resource.

3. Resource utilisation. By including all potential (pre-resource) mineralisation and

Inferred Resource in the mine plan, the full possible value of the underground

operation can be assessed, allowing a higher cut-off to be applied, and therefore

a higher grade to be realised.

4. Cut-off grade optimisation. Historically the operation has been valued on a fixed
cut-off grade. The future plan is to implement a variable cut-off strategy, where

the cut-off varies between stopes and over time. This change in stope design

practice will allow the optimisation process to add value by promoting grade in

time, beyond the level achieved using a fixed cut-off.

5. Rejection of subgrade material from the ore stream. Separate removal of below

cut-off material and low-grade development to the surface raises the average ore

grade and increases the proportion of high-grade stope material in the ore stream.

6. Stope sequencing and scheduling. Higher value mine plans can be achieved by

promoting higher-grade stopes forward in the schedule and deferring lower-

grade stopes in time.

Both the absolute and relative contribution of these areas to the value proposition

will depend on the context of the specific mine plan that is being evaluated. The key

point is that for the full value of the resource to be realised, all six areas are

necessary. No modelling technique alone can realise the full value.

4 Fundamental Challenges

The development of a recoverable resource model for the Olympic Dam has been a

significant challenge. Some of these challenges are purely technical in nature, but

there are also fundamental challenges that inhibit the acceptance of this modelling

technique.
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Ultimately, if recoverable resource models are not used to generate mine plans,

then they are of little practical use. One of the critical factors to success is the

support of mine planning engineers in understanding the value these models hold

and to use them for reserving. Without this, it is just another low-value, esoteric

exercise. To extract the maximum value from the model, the cultural inertia

manifests as conservatism and fear of failure and must change, or the upside in

grade will never be realised.

Gaining understanding and support from decision makers in the business has

been one of the single greatest challenges. Concepts that are basic to

geostatisticians and resource geologists (e.g. averaging, grade above cut-off,

change of support and volume variance) are obscure to decision makers and are

treated with suspicion and even derision. The lack of knowledge regarding these

elementary concepts in the industry, its leaders and some of the broader consultancy

community to which these leaders defer, are real and significant barriers to the

success of this work.

5 Technical Challenges

With regard to a deposit as large as the Olympic Dam, there are several technical

hurdles to overcome in attempting to produce a recoverable resource model using

conditional simulation.

The model covers an area of 6� 3 km and extends to a depth of 2 km. It is

comprised of 5� 10� 5 m block support, from estimates using a number of

techniques for different areas, elements and minerals in the deposit. All elements

and minerals in areas classified as Measured Resource are estimated using Ordinary

Kriging (OK). Within areas classified as Inferred and Indicated Resource, Cu,

U3O8, Au, Ag, S and SG are estimated using conditional simulation. The copper

mineralogy is stoichiometrically calculated from the simulated Cu and S estimates.

All other elements and minerals are estimated using OK.

The dimensions of the deposit present the foremost challenge. At a 2.5 m node

spacing, a single model covering the entire deposit comprising a minimum of

14 data variables would require ~1.5 billion nodes and constitute a model file

size in excess of 700GB. A single drill hole file used for this simulation would

comprise of ~950,000 2.5 m length samples. Working with these files is imprac-

tical, and there is no simulation software capable of handling such a large model

file. To deal with this challenge, the deposit is split into 16 individual sub-models

and corresponding drill hole files, based on gross geological differences and

also the ability of the simulation algorithm and software to perform the task in

a reasonable amount of time. Once these individual models are amalgamated

into one model and regularised, there are no boundary artefacts evident in the

combined model. The characteristics of these individual models are listed in

Table 1.
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Simulation is performed separately in the chalcopyrite� bornite (220) domain,

and the bornite� chalcocite (230) domain, to allow the unique grade relationships

observed in the drilling information (Fig. 2) to be honoured. The domains are

established by modelling the unique Cu to S ratios of these sulphides using a

combination of deterministic modelling and probabilistic (Indicator Kriging)

methods.

Table 1 Some characteristics of Olympic Dam simulation models

Model characteristics Group 1 models Group 2 models

No. of models 9 7

Model dimensions ~1� 1� 1 km ~2� 1� 1 km

Node size 2.5� 2.5� 2.5 m 2.5� 2.5� 2.5 m

No. of nodes ~64 million ~128 million

No. of simulated variables 6 6

No. of total variables 14 14

Model run time ~8 h ~16 h

Node model file size ~6.5GB ~12.4GB

Fig. 2 Scatter plots of Cu v S and Cu v U3O8 for the chalcopyrite� bornite (220) domain and the

bornite� chalcocite (230) domain for drilling information in Model 18_19 of the Olympic Dam
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6 What Has Been Tested

A significant amount of work has been undertaken over the last few years to

establish the foundations of the recoverable resource model at the Olympic Dam.

Significant improvements in deterministic modelling of the key sulphide domains,

and work on previous simulation models of the Olympic Dam, have also played a

prominent role in determining the most efficient path forward. The key attributes

required of techniques and software are the usability of models by mine planning,

the speed and stability of the algorithm and software, the honouring of multivariate

relationships between simulated variables and the ability to integrate several

models from several simultaneous sources.

In these authors’ experiences, conditional simulation is the preferred technique

for underground mine planning work rather than other techniques such as Uniform

Conditioning (UC) and Multiple Indicator Kriging (MIK), because they suffer from

the same smoothing effect evident in all forms of Kriging and also produce models

that are more suitable for input into open pit mine planning software.

Following extensive trials over several years, the resource team has settled on

sequential Gaussian simulation (Isaaks 1990) as the most appropriate algorithm to

use. Stepwise conditional transformations (Leuangthong and Deutsch 2003) are

applied to account for the correlation between metals. Other algorithms, including

co-simulation with Bayesian updating (Journel 1988; Rossi and Badenhorst 2010)

and projection pursuit multivariate transformation (Friedman and Tukey 1974;

Barnett et al. 2012), have been extensively trialled and rejected either because of

poor reproducibility of input statistics, difficulty in replicating multivariate rela-

tionships observed in the drilling information, poor spatial match to input data and

the inability to deal with large datasets or a combination of all of the above. SGS

point simulation rather than direct block simulation (DBS) is preferred since

validation against the input data of DBS shows issues caused by the proportional

effect present in the original data, which has been shown to introduce biases in the

final output (Leuangthong 2006).

Both commercially available and open source software have been used with

varying degrees of success. Significant issues which were encountered included

software errors introduced by inconsistently incorporating GSLib-based routines

(Deutsch and Journel 1998), very slow operation with large datasets, stability issues

and data corruption or problems with integration of models from multiple users

working simultaneously on different parts of the deposit. It is clear from almost a

decade of work on this topic at the Olympic Dam that it is unlikely that standard

commercially available software packages can be used to produce recoverable

resource estimates that meet the mine planning and the corporate governance

requirements. Therefore, a modified version of the GSLib programs has been

adopted to complete the work.

In order to overcome some of the known issues with SGS, including edge effects

and grade blowouts between drill holes and at the edges of data, as well as to

increase the program’s functionality, the original GSLib FORTRAN code was
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modified in-house. One of the key enhancements made to the code was the

implementation of multiple search passes with the ability to have different param-

eters for each pass. For this reason, the program has been named Dynamic Search

SGS or DS-SGS. Other enhancements include the addition of domain control, not

drawing from the global distribution, multiple coarse/fine grid redefined in terms of

user input of x, y, z grid spacing, independent soft nodes and hard data search with

assign to nodes selected and minimum number of soft nodes selection with assign to

nodes option.

7 Case Study

The aim of the case study was to examine the change in grade-tonnage information

for an existing well-drilled 20 m-spaced Measured Resource area (hereafter

referred to as “truth”), by estimating and simulating it using wider Indicated and

Inferred Resource drill spacings. The goal is to determine if the simulation param-

eters using the wide-spaced drilling yielded results that matched the 20 m-spaced

Measured Resource truth, thus providing a mechanism to calibrate and validate

simulation models in other areas of the deposit.

In order to do this, a conventional drill hole spacing-type approach was

followed, but with a few differences. The starting point was to take a vast area of

Measured Resource that has been drilled from underground on 20 m-spaced lines

and treat this as the “truth”. This area constitutes 1.3 billion tonnes of Mineral

Resource and 300 Mt of Proved Ore Reserve, of which 170 Mt has been mined over

the last 27 years (Fig. 3).

Fig. 3 Location of Measured Resource in relation to the life-of-mine stope set (Note the extensive

spatial coverage of Measured Resource across the deposit)
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This represents approximately 30% of the expected ultimate underground

reserve across the entire deposit and is representative of the material that will be

mined in future years. Mine to mill reconciliation results demonstrably show that

over a 3-year period (~30 Mt), the estimated tonnes and grade of Measured

Resource vary by less than 1% from that actually recovered. Thus, there is high

confidence that the Measured Resource volume is a good yardstick by which to

validate the simulation results.

One of the primary criteria for determining resource classification is drill hole

spacing and, for convenience, will be used in this discussion. Table 2 shows the

relative drill hole spacing applied at the Olympic Dam for Inferred through Mea-

sured Resource and the relationship to the estimation support.

8 Comparing Raw Drill Hole Data

A fixed volume of 20 m-spaced Measured Resource was originally drilled from the

surface on 70–100 m centres and is equivalent to Indicated Resource spacing. These

surface holes were resampled at 250 m-spaced centres to approximate the equiva-

lent Inferred Resource drill spacing. This resampling was undertaken 25 times by

randomly selecting holes at 250 m centres in order to capture the range of possible

outcomes from variations in the drilling grid. This process approximates a drilling

program that starts at 250 m spacing and is then progressively infill drilled to 100 m

and 20 m spacings. The outcome is a comparison of the nearest neighbour-

declustered drill hole data statistics and grade-tonnage curves of the different grid

spacings of 20 m and 100 m and the 25 iterations of the 250 m spacing. The

differences in results were alarming (Fig. 4).

There is considerable difference among the twenty-five 250 m iterations with

23 (92%) of them under-calling the actual tonnes and grade by a considerable

margin, whereas the 100 m-spaced drilling dataset is much closer to the 20 m-

spaced dataset. In classical geostatistics, this is termed the information effect or,

more precisely, in this case, the misinformation effect.

Table 2 Resource classification and drill spacing used at the Olympic Dam

Resource classification Drill hole spacing Model block size

Inferred Resource 250 m 120� 100� 5 m

Indicated Resource 100 m 60� 50� 5 m

Measured Resource 20 m 5� 10� 5 m
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9 Comparing the 100 m-Based and 25� 250 m-Based
Model Estimates

Each of the 250 m drilling datasets had its own geological model and domains and

was used to create 25 separate resource models that were estimated using Ordinary

Kriging into block sizes of 120� 100� 5m. The same process was applied using

the 100 m-spaced dataset to a model with unique geological and domain charac-

teristics and a 60� 50� 5m block size. The resource grade-tonnage results mir-

rored the differences observed in the drilling data noted previously. The

26 estimated models (25 Inferred and 1 Indicated) were then converted to reserves

by the mine planning engineers running each through an automated and

semiautomated stope design process.

The results from the reserve grade-tonnage curves mirrored that of the resource

models and also the underlying drill hole data. That is, if the drill hole dataset was

the lowest of the group on the grade-tonnage curve, then the corresponding resource

and reserve models were also the lowest (Fig. 5).

A sequential Gaussian simulation was then developed using 3 of the 25 Inferred

datasets by choosing a low, mid- and high iteration of drill hole data. An additional

simulation model was also generated using the single 100 m-spaced Indicated

dataset. The results mirrored those of the drill holes and resource and reserve

Fig. 4 Declustered sample grade-tonnage curves within the Measured Resource volume. The

differences in information for the 100 m dataset and 250 m resampled datasets are clearly

demonstrated. Cueq¼Cu+ (U3O8*2.44) + (Au*0.881) + (Ag*0.0048)� (S* 0.191)
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models discussed earlier. The results are very clear; the underlying data exerts the

strongest control on whether or not the 20 m-spaced Measured Resource grade-

tonnage result can be achieved from wide-spaced Inferred or Indicated Resource

datasets. The conclusion is that all resource and reserve models, be they estimated

or simulated, are strongly anchored to the starting drill hole data. Locally, different

mine areas typically behaved differently from iteration to iteration. Most of the

25 Inferred Resource datasets were low with respect to the 20 m-spaced Measured

Resource “truth”, but a few were higher. This is a random feature and is attributed

to chance interactions with geological influences.

10 Observations and Discussion

A critical observation is that there is a fundamental change to the drill hole

information from iteration to iteration for the same spacing, as well as when the

grid spacing decreases. The proportions of grades change above a cut-off and the

overall volume of mineralised material increases. This happens in 92% of the cases

described; however, there were a few 250 m-spaced iterations (8%) where the

proportion and grade of drill holes were higher than the 20 m-spaced Measured

Resource “truth”. Locally, the pattern of uplift or downgrade can differ significantly

from that observed globally.

Fig. 5 Comparison between ore reserve grade-tonnage curves using Measured Resource and

resampled Indicated and Inferred Resource models. Cueq¼Cu+ (U3O8*2.44) + (Au*0.881)

+ (Ag*0.0048)� (S* 0.191)
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These differences are due to imperfect information (including sampling and

estimation error), non-representativeness of data at a certain spacing and chance

interactions of drill holes with complex geology and geometry. There is natural

variation in the orebody which means certain drill spacing and orientation with

respect to orebody geometry are not adequate to fully sample the real distribution

and proportions of grades. This can lead to an over-representation of low values and

under-representation of high values and vice versa, which results in vast differences

in reserve stope shapes (Fig. 6). The misinformation effect is used in this case as a

collective term to describe all of the aforementioned errors and effects, which is

more encompassing than the traditionally used information effect. Whilst there is a

relationship between the two, the term misinformation has been chosen to avoid

pedanticism and confusion.

At the Olympic Dam, the misinformation effect in volumes informed by wide-

spaced data leads to underestimation of the actual tonnes and grades.

Regardless of the drill spacing, the best that can be done by the practitioner is to

honour the available drill hole data. This approach will not capture the range of

uncertainty, and therefore a different strategy is required to account for the

misinformation effect. The Olympic Dam Mine Planning Department will employ

the use of modifying factors based on reconciliation to account for the global upside

from the misinformation effect, allowing for local differences that may result in

downside.

Fig. 6 Comparison between reserve stopes in the Measured Resource volume at the same cut-off,

using (a) Measured Resource model and (b) one of the 25 resampled Inferred Resource models

(Note how poorly the resource estimate based on Inferred Resource drill spacing estimates the

mineable tonnes for the same mining area)
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11 Which Realisation to Choose?

Conditional simulation is commonly used for quantifying resource uncertainty.

Typically this approach involves generating numerous realisations and developing

probabilities and confidence intervals from these. The multiple realisations are

interpreted as values of the conditional cumulative distribution function (ccdf) of

each node:

Prob* Z xð Þ � zc
�
� nð Þ� � ¼ F x, z

�
� nð Þ� � ð1Þ

where “Prob*” represents the estimated probability at location x, Z(x) represents
the random variable at location x, zc represents an arbitrary cut-off, (n) represents
the conditioning data used to simulate node at location x and F represents the

conditional distribution function.

Unfortunately, when conditional simulation is used for recoverable resource

modelling, this same “many realisations” mindset is mistakenly also applied,

leading to questions about the number of realisations generated during simulation

and the decision processes used to select a single realisation for further processing.

What most practitioners do not realise, and most theoreticians ignore, is that the

change of support variance is much more significant than the variance of the

conditional distribution provided by simulation. A change in mindset is required

to accept that conditional simulation can be a valuable recoverable resource

technique.

As the overall volume of the simulation increases, the global difference between

the realisations becomes progressively smaller. For a large model area of ~1.6 bil-

lion tonnes of resource and ~270 Mt of reserve, the difference between realisations

is ~1%. Over the entire deposit of >10 billion tonnes, the difference is <0.5%,

whereas the difference between small blocks and big blocks is >20% for this

same area.

When examining simulation realisations at the small block scale, realisations

can exhibit significant local variation, leading to the erroneous conclusion that

selecting a meaningful single realisation for further work is difficult or problematic.

This erroneous conclusion is reached because of a failure to appreciate that during

recoverable resource modelling of large areas, the difference in the change of

support is an order of magnitude greater than the spread of realisations. In a

sense, the realisations converge to approximate the same solution when considering

large volumes. This change in variance is governed by the volume-variance rela-

tionship, which can be illustrated by examining the change in mean grade above a

cut-off for varying block sizes. The tabulation below shows this effect with 100 Cu

realisations for three different levels of support for a ~270 Mt parcel of material that

is expected to convert to ore reserves from the North Mine Area of the Olympic

Dam. The volume is a mixture of drill spacings that support Measured, Indicated

and Inferred Resource.
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The results clearly indicate that as the block size increases, the average grade

above the cut-off substantially decreases for the same tonnage of material. This

decrease in relative terms, which comes about solely from the change of support, is

an order of magnitude greater than the variability between individual simulation

realisations at the small block scale (Fig. 7, Table 3).

Thus, for recoverable resource modelling of this large deposit, the number of

realisations in a simulation is not critical. A single realisation, chosen at random

from a handful, is more than adequate to deal with the change of support problem.

However, to emphasise the difference between the realisations at the local scale, a

number of simulation models should be evaluated by the mine planning engineers.

Moreover, as the size and area of the simulation increase, there is no global low,

mid- or high realisation; this is a misnomer. One realisation that is lowest in one

particular area may be the highest in another. Globally, there is no difference

between realisations, so any realisation could be used to develop a mine plan as

well as the basis for Mineral Resource declaration purposes.

It should be noted that this local difference between simulation realisations does

not diminish the usefulness or applicability of the technique. Furthermore, the OK

version of the model is just as incorrect locally; it is just that it is almost always

overlooked. Inferred Resource is inferred because there is significant local uncer-

tainty, regardless of the modelling technique used. An estimation method sensu

Fig. 7 Grade curve for 100 realisations of 5� 10� 5m (red), 60� 50� 5m (blue) and

120� 100� 5m (green) resource blocks showing the change in average grade for different

supports. The E-type curve (orange) is the average of 100 realisations at the 5� 10� 5m support
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stricto does not significantly alter this fact. The only way to reduce the local

uncertainty is to gather more information through drilling.

The E-type estimate is often suggested as a suitable estimate for recoverable

resources. The E-type estimate of 5� 10� 5 blocks is very smooth and negates the

change of support correction that is sought (see Fig. 7). The variance of the E-type

under-calls the actual variance through the mere averaging process, and thus it is

inappropriate as a representation of the true grade-tonnage relationship.

The purpose of the recoverable resource modelling work is to produce a block

model suitable for life-of-mine underground mine planning and financial valuation,

public declaration of resource and reserves and drill targeting by mine geology. The

absolute accuracy of the spatial location of stopes in the RRM is not as important

for underground mine planning purposes as the representation of the spatial geom-

etry of ore and the grade architecture.

12 Conclusions and Recommendations

There is a strong and compelling business case for focussing on grade improve-

ments at the Olympic Dam operation. Two thirds of the life-of-mine reserves are

based on wide-spaced drilling, which under-calls the grade that will be realised

when close-spaced drilling and high-resolution estimation is undertaken. Modelling

the expected grade is worth billions of dollars to the operation.

Conditional simulation that exhaustively validate, both visually and statistically,

against the drill hole data is the only technique that:

• Avoids smoothing by reproducing the original data variance (high granularity

models)

• Estimates the tonnes and grade at the time of mining for any drill spacing

• Produces a better local spatial model that can be used for practical geological,

mine planning and financial valuation purposes

The recoverable resource model is the main element that underpins a six-point

strategy aimed at increasing the grade of the ore feed from the mine. The strategy

includes improvements to mine planning and mining practices which are all

required to realise the full impact of value improvement.

The development of a recoverable resource model has not been without chal-

lenges. The most significant is communicating the elementary resource concepts

and principles to decision makers whom lack the specialised technical skills

required to fully appreciate the importance of recoverable resource modelling.

This is possibly the single largest inhibitor to a successful recoverable resource

model.

Technical challenges for the Olympic Dam recoverable resource model are

mostly about the size of the orebody and the inability of available software to

address the large file sizes required. The only practical solution is to modify the

existing GSLib SGS routine and create a fit-for-purpose algorithm. Reproduction of
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the correlations among multiple metals pushes the limits of application of the

Stepwise Conditioning transform method employed.

The application of a single realisation for recoverable resources is outside the

usual scope for conditional simulation; see, for example, Goovaerts (1997),

Dimitrakopoulos (1999), Krige et al. (2004) and Van Brunt and Rossi (1999). It

is therefore important to realise that in this case, a single realisation provides the

additional value that the operation requires and why the usual objections to using a

single realisation are not applicable.

The drill hole spacing case study demonstrably shows the impact of the

misinformation effect, a term coined to describe all the unknowns in a resource

estimate. All estimates, regardless of whether they are performed using traditional

linear or non-linear techniques, are highly leveraged to the starting dataset. No

amount of “alternate modelling”, multiple simulation realisations or range analysis

can fully describe the uncertainty inherent in the starting dataset.

Regardless of the drilling dataset, the best that can be done by the practitioner is

to honour the available information. This approach will not capture the range of

uncertainty, and thus the Olympic DamMine Planning Department will employ the

use of modifying factors to account for the misinformation effect.

The most common applications of conditional simulation require many

realisations to be evaluated. This is not the case for change of support modelling

at the Olympic Dam, and perhaps on many other large deposits, since the global

differences between realisations are an order of magnitude less than the difference

between change of support models. However, there can be significant local differ-

ences between realisations and to quantify this impact; a handful of realisations

should be given to mine planning for evaluation.

The internal company governance requirements have made it harder to produce

a recoverable resource model as the basis for a Mineral Resource declaration. It is

expected that the nontechnical hurdles that these requirements bring about may be

overcome as management is further educated in the value of using a conditional

simulation for resource estimation.
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Comparison of Two Multivariate Grade
Simulation Approaches on an Iron Oxide
Copper-Gold Deposit

Antonio Cortes

Abstract Multivariate geostatistics takes advantage of the autocorrelation

observed between variables and is a valuable tool for mining applications. This

study presents a comparison of a traditional multivariate simulation technique

based on a model of coregionalization against another simulation in which

decorrelation is first achieved by “projection pursuit,” where independent variables

are simulated, then correlated back by the inverse of the decorrelation transform.

The deposit used for the comparison is an iron oxide copper-gold (IOCG) ore body

located in the Atacama Desert in the north of Chile. The project value is sensitive to

grade, and simulation would help in assessing the grade uncertainty. The correla-

tions observed among the different economic variables provide an opportunity to

improve the simulation results. This paper starts with a brief geological description

of the ore body including some of the significant geological risks. A short summary

of different multivariate simulation techniques is given. The process and results of

multivariate simulation of total copper, acid-soluble copper, gold, and iron within

the deposit using the two methodologies are presented. The focus is on the valida-

tion and comparison of processes and results to confirm whether projection pursuit

can be used as an alternative for comprehensive uncertainty analysis for resource

classification.

1 Introduction

Assessing the grade uncertainty through conditional simulation provides a sound

basis on which to evaluate mining projects by economic optimizations, mining

designs and planning, etc.

The deposit used for this study is an iron oxide copper-gold (IOCG) ore body

located in the Atacama Desert in the north of Chile. The main sector of the project is

currently evaluated to pass the pre-feasibility stage.
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The main mineralization control is lithology and was used to define the estima-

tion domains. Ordinary kriging was used to estimate the grades within interpreted

estimation domains. The estimated variables are total copper (CuT), acid-soluble

copper (CuS), iron (Fe), and gold (Au). These four variables were estimated

independently without considering the correlations among them. Mineral resources

were classified based on a drill hole spacing study that quantified relative confi-

dence intervals on production increment estimates versus drill hole spacing. Rea-

sonable prospects for economic extraction were obtained by restricting the

resources to within a reasonable open-pit shell. No particular work was done to

assess the geological and grade risk through conditional simulations.

This paper describes briefly both coregionalization and projection pursuit mul-

tivariate transform (PPMT) simulations and presents the results obtained from the

given data set including some validation focused on the correlations among the

variables. Correlations among simulated variables in the Gaussian space and raw

data are compared with the correlations of the input values. Finally, conclusions and

recommendations are presented.

The main objectives of the study are:

1. To describe briefly for both coregionalization and PPMT, the main practical

implementation steps on a multivariate database

2. To compare the two multivariate simulation approaches in terms of reproduction

of the correlations observed on the input data

3. Given the results, to discuss the usefulness of simulation in particular for this

project given the information available: heterotopic database, geological model-

ing and parameters used for a previous resource estimation, and some conceptual

information on the projected open pit

The paper does not take into account the geological uncertainty. Various

assumptions were made, and a deeper analysis and improvements are

recommended for future work that will contribute to the discussion that this

document aims to generate. The final comparisons in terms of reproduction of the

correlations (against the input data) are presented for an individual realization of

both approaches. However, consistency tests were performed for a set of

realizations.

2 Approaches Compared

The case study includes an initial approach using sequential Gaussian cosimulation

with a linear coregionalization model.
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3 Conditional Sequential Gaussian Cosimulation (SGCS)

Given a random function Z xð Þ : x2Rnf g; a (nonconditional) simulation is a

realization of Z(x), randomly selected from the set of all possible realizations. A

model of the spatial distribution is required, and realizations reproduce the histo-

gram of the input data. When the realization is conditioned to the data at data

locations, the simulation is called conditional. There is an extensive literature which

describes the theory of geostatistical simulations including:

1. Conditional simulations by turning bands algorithm (Journel 1974)

2. Simulation and coregionalization (Journel and Huijbregts 1978)

3. Sequential indicator simulation (Alabert 1987)

4. Sequential Gaussian simulation (Isaaks 1990)

5. Sequential Gaussian cosimulation (Gomez-Hernandez and Journel 1993)

6. Sequential Gaussian co-simulation (Verly 1993)

4 Projection Pursuit Multivariate Transform (PPMT)

In a multivariate case, the number and complexity of variables sometimes make it

difficult to obtain multivariate Gaussian transforms and consequently to build a

coregionalization model (with semi-positive definite covariance matrix). Various

alternatives are used to remove complexities including principal component anal-

ysis (PCA), minimum/maximum autocorrelation factors (MAF) for removing cor-

relation, stepwise, and PPMT (to remove nonlinearity and heteroscedasticity).

PPMT facilitates multiGaussian modeling and provides an alternative way of

simulating (or cosimulating) in Gaussian space and then back-transforming simu-

lated Gaussian realizations to the original space. The main validation following this

process is reproduction of the original multivariate structure as observed on the

input data.

The theory and its practical application (examples and software) are covered in

different documents including:

1. Guide to multivariate modeling with the PPMT, 2015 (Barnett and Deutsch

2015)

2. Projection pursuit multivariate transform (Barnett et.al. 2012)

3. Advances in the projection pursuit multivariate transform (Barnett et al. 2013)

5 Deposit Outline

The deposit is an iron oxide copper-gold (IOCG) ore body located in the Atacama

Desert in the north of Chile. The deposit extends approximately 1.5 km N-S,

0.75 km E-W, and 0.45 km vertically. The CuT and Fe mineralization is mainly
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controlled by irregular and semi-tabular bodies of specularite breccia (BES) in

which chalcopyrite (Cpy) and magnetite (Mt) are the main minerals. The database

includes 58,000 m (350 drill holes) with sample values of the different variables

(heterotopic). For estimation purpose, seven domains were defined, characterized

by a combination of mineral zones and lithology. The projected operational sce-

nario is an open pit with CuT as the main mined product.

6 EDA Envelope and Database

The database for the exercise includes 140 drill holes with assays values for CuT,

CuS, Fe, and Au. The database is heterotopic and has the maximum number of

samples for CuT and the lowest number of samples for Au. The exploratory data

analysis (EDA) envelope corresponds to the main mineralized domain which

corresponds to specularite breccia (BES) – usually hosted by the chalcopyrite

(Cpy) mineralization. Figure 1 shows this envelope. The sample values were

capped to limit the impact of outliers and then regularized (2 m composites).

7 Declustering

A nearest neighbor (NN) estimation was performed to obtain the declustering

weights prior to the Gaussian transformation and subsequent steps.

The variables have positively skewed lognormal distributions with low coeffi-

cients of variation (CV) ranging from 0.6 to 0.9 except for CuS with a CV of 1.6.

Table 1 gives the declustered basic statistics for the four variables considered in the

study.

8 Gaussian Transform and Correlations in Gaussian Space

The declustered data were transformed to standard Gaussian values using the

modeled transform function, one variable at a time. This function makes it possible

to transform grades (Z) to Gaussian values (Y) and vice versa. Once the variables

were transformed, basic statistics and scatterplots were produced to evaluate the

correlation coefficients and the shape of the clouds of points. At first sight the

scatterplots between Gaussian variables look reasonably bi-Gaussian with an ellip-

tic shape and only some outlier points related to domaining. Figure 2 shows some

examples of scatterplots of the input transformed data.

Two theoretical checks of by-Gaussianity were performed: h-scatterplots

between normal pairs Y xð Þ,Y xþ hð Þ½ �; and ratio of the square root of the semi-

variogram and the order 1 variogram (madogram). The h-scatterplots have shapes
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with poor correlation (tending to circular shapes). The ratios are constant for all

distances as showed in Fig. 3 for CuT and CuS as examples.

9 Gaussian Simulation

The sequential Gaussian simulation was performed over a grid restricted by the

EDA domain, while search parameters for conditioning data were based on the

parameters used in the resource estimation of this domain (search ellipsoid up to

200 m and a maximum number of samples of 20). A set of 100 realizations were run

and then validations performed.

Fig. 1 Orthogonal views of EDA envelope (BES domain) and CuT samples used in the study

Table 1 Basic statistics of capped raw data in the EDA envelope

Variable Count Unit Minimum Maximum Mean Std. dev CV

CuT 1386 % 0.006 5 0.77 0.74 0.96

CuS 1344 % 0.001 3 0.08 0.13 1.63

Fec 764 % 5.22 62 20.6 12.6 0.61

Au 944 g/t 0.005 1 0.11 0.10 0.90
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10 Variography

The single and cross-variograms of the Gaussian values were calculated and

modeled along the three main geological directions. The largest range (up to

200–250 m) and intermediate and shortest ranges were along the N-S, E-W, and

vertical directions, respectively.

Figure 4 shows the single and cross variogram models for the four variables.

Below the experimental curves, histograms of the number of pairs are presented.

Fig. 4 Experimental and modeled variograms of CuT, CuS, Fe, and Au Gaussian values
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11 Validation of Results

A set of validations in the Gaussian space were completed using the realizations.

Histograms and basic statistics of the simulated Gaussian values in general show

mean values very close to zero and variances slightly lower than 1.

Variograms of the simulated Gaussian values were also produced. As an exam-

ple, Fig. 5 shows the CuT and CuS (Gaussian values) experimental variograms;

brown denotes the variogram of the conditioning sample values, and blue denotes

the variogram for ten different realizations.

Figure 6 shows the means by slices (100 m along easting, 100 m along northing,

50 m along elevation) for samples, NN model, and the E-type (from the all

realizations) in the Gaussian space. The E-type has lower variance than the samples

and varies locally from the declustered NN grades. The simple kriging

(SK) algorithm used by the simulation could produce a portion of this due to the

attraction to the mean, especially where there are less data. An example is around

coordinate N7,079,700 where NN differs significantly from E-type; only 15 samples

were available in this 100 m slice.

12 Correlations of Simulated Gaussian Values

To assess the obtained correlations and check them against those of the input data,

scatterplots were produced for a number of realizations. Individually they show a

cloud that is more homogeneous than of the input data as can be seen in the example

in Fig. 7, which shows the scatterplots of the Gaussian values of the fifth realization.

This cloud of points shows a good correspondence with the input data presented

earlier in Fig. 2. A comparison of the simulated correlations in the Gaussian space

and real data space with the projection pursuit approach is presented later.
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13 Statistics of Back-Transformed Values

The simulated Gaussian values were back-transformed to the original space and

basic statistics calculated (particularly the mean grade and the standard deviation).

Table 2 shows the main statistics from back-transformed simulated values. These

are comparable with the statistics from the original data (showed previously in

Table 1).

14 Simulation by Projection Pursuit

14.1 Imputation of Data

The database used for this exercise is heterotopic as showed in Table 1. This is an

issue for the projection pursuit multivariate transform (PPMT), which can only be

applied on homotopic databases. The exclusion of incomplete observations is not

desirable because it means loss of information and an unfair comparison against the
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coregionalization model (which does not require a homotopic database). An impu-

tation process is required prior to applying the PPMT.

The imputation process used in this case study is described in the document

“Imputation of Geologic Data” (Barnett and Deutsch 2013). This process

reproduced multivariate and spatial features of the data, by producing realizations

in the normal space (the input data is a normal score heterotopic database). Once the

imputation is done, some checks on reproduction of spatial variability and repro-

duction of basic statistics can be made.

Tests on a set of ten realizations were done to check the consistency of the

imputed values with the original values. However, only one set of original plus

imputed values was used in the PPMT application, i.e., one set of isotopic data is
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Table 2 Statistics of back-transformed values

Variable Count Unit Minimum Maximum Mean Std. dev

CuT 10,175 % 0.006 5 0.78 0.56

CuS 10,175 % 0.001 3 0.08 0.07

Fe 10,175 % 5.22 62 21.9 9.92

Au 10,175 g/t 0.005 1 0.10 0.07
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transformed, simulated, and then back-transformed. Then the coregionalization and

PPMT results are compared, in terms of reproduction of original correlations

(between variables).

Figure 8 shows the scatterplots between variables for the original data plus the

imputed values (in Gaussian transformed space). The correlations observed are

comparable to the correlations in Fig. 2 (original data). Q-Q plots between imputed

and original values show close to 45� lines with some bias for the extreme values as

can be seen in Fig. 9.

Figure 10 shows the experimental variogram of the original data (red curve),

plus ten experimental variograms (in blue) of the original data and plus the imputed

values. The percentages of imputed values were 3%, 45%, and 32%, respectively,

for CuS, Fe, and Au.

14.2 PPMT

PPMT theory and its practical application (examples and software) are given in

publications referenced earlier. For this exercise, the methodology included the
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following steps: running the PPMT algorithm (ppmt.exe) whose input corresponds

to the input database (isotopic) and the output corresponds to the transformed

variables and a transformation table (binary) needed later when the back-

transformed algorithm is used. Transformed variables were then simulated by

sgsim (sgsim.exe). Finally, these simulated values are back-transformed using the

back-transformed PPMT algorithm (ppmt_b.exe).

Figure 11 shows the scatterplots between variables after 50 iterations of the

PPMT algorithm. The scatterplots show uncorrelated standard Gaussian variables.

Using this dataset with no correlation between the variables, one realization was
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performed, and then the back correlation algorithm was used to introduce the

correlation between the simulated variables.

14.3 Back Transformation and Comparison

Once the back transformation PPMT_B is performed, the results (simulated values

in the real space) can be checked against the original database, focusing on the

examination of the correlations between variables in real space. To consider the

spatial cross-correlations after back-transforming, some cross-variograms for data

and simulated values were calculated. In general, both methods, linear coregiona-

lization and PPMT, reproduce the spatial cross-correlations observed in the data.

Figures 12, 13, and 14 show scatterplots for the different approaches for CuT and

CuS, CuT and Fe, and CuT and Au, respectively. It can be seen that for CuT-CuS,

differences are small and both methods reproduce the primary data correlation. The

main difference is in CuS grades, where there is a difference between the clouds of

points around 2% CuT: the shape of the cloud of points seems better reproduced

using PPMT.

Fig. 11 Scatterplots of the PPMT transformed data (top left, CuT vs CuS; top right, CuT vs Fe;

below, CuT vs Au)
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For CuT-Fe, the cosimulation using coregionalization represents a shape closer

to the original samples, especially for samples with high CuT and low Fe and with

high Fe and low CuT (bottom right and top left corners, respectively).

For CuT-Au, the PPMT approach better represents the shape of the original

samples, capturing well the shape of the cloud for lower Au values where CuT

grades are around 2%.

15 Conclusions

The theory and implementation of both methods is well documented; coregiona-

lization is widely known and already included in commercial geostatistical software

packages. PPMT documentation and software is also available and can be used for

practitioners. The same applies for the imputation methodology required prior to

applying PPMT.
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Both methodologies reproduce the correlations between variables based on

original data and are attractive to implement on this project.

Future applications of both methodologies can be included in a comprehensive

uncertainty analysis for resource classification on this project.
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Complexities in the Geostatistical Estimation
of Besshi-Type Mineral Deposits
on the Northwest of Pinar del Rı́o, Cuba

Abdiel Dı́az-Carmona, José Quintı́n Cuador-Gil,

Fernando Giménez-Palomares, and Juan Antonio Monosoriu-Serra

Abstract Geostatistics resources estimation of the copper (Cu) grade values was

carried out in the “Hierro Mantua” mineral deposit, which is located at the north-

west of Pinar del Rı́o province, Cuba. The geologic complexities in the region of the

deposit indicate the nonexistence of homogeneity in the Cu values. The structural

analysis showed a high asymmetric distribution in the variable studied. The non-

existence of normality was verified by different mean and median values, a coef-

ficient of variability greater than one, and the moving windows statistics of the

mean was different. Under the previous conditions, the data was log transformed to

assure the necessary stationarity in them and consequently to achieve an adequate

accuracy in the resources estimation, using a rational selective mining unit (SMU).

The log-transformed data revealed a homogeneous behavior in Cu grade values,

demonstrated by better results in basic and moving windows statistics.

Semivariograms showed defined structures with anisotropy in the 0� and 90�

directions (considering 0 to the north). To apply the lognormal kriging estimation

is the main objective of this work, because of the complexities of the geology in the

studied area.
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1 Introduction

On the northwest of Cuba, at the province of “Pinar del Rı́o,” exists a group of

mineral deposits and other small accumulations that are classified as Besshi type.

The most important are “Hierro Mantua,” “Unión 1,” “Juan Manuel,” “Unión 2,”

and “Flanco Este.” Some of them are in the feasibility stage for future exploitation.

They associate to rocks of the Esperanza Formation (J3
ox – K1

ne), which is consti-

tuted by sequences of silts, carbonate, and volcanic rocks of basic composition

originated in a marginal basin. The rocks that prevail are calcareous, gritty,

argillites, concordant bodies, and diabases and gabbros sub-concordant representa-

tives of a submarine magmatism.

The mineral bodies form long lenses, which follow an NE direction, parallel to

the coast. The relief altitudes are between 60 and 75 m above sea level. These

bodies have many outcrops, concordant with the stockwork. Some secondary

enrichment processes have taken place in some of them, as a result of a process

of extreme oxidation, lixiviation, and concentration of cupper (Cu) in the primary

sulfurous mineralization of volcanogenic-sedimentary origin.

Historically, classic methods were used for resources estimation in those types of

mineral deposits. As it is known, these methods do not guarantee the necessary

precision, mainly because of the geological complexities in the region. In order to

achieve an appropriate accuracy of the resources estimation in “Hierro Mantua”

mineral deposit, two objectives are established: (1) to apply a methodology for the

rational SMU determination, which is used in quantifying the mineral resources in

the deposit studied, and (2) to apply a nonlinear geostatistics method, lognormal

kriging, for resources estimation because of the presence of Cu values asymmetric

distribution. Particularly, the occurrence of a few high Cu values in “Hierro

Mantua” mineral deposit makes it very difficult to handle data with lognormal

distribution. This mineral deposit was taken as an example in the present research.

Regarding lognormal kriging, there have been some publications related with

this estimator, classified as nonlinear. Some of the most important are Matheron

(1974), Marechal (1974), Rendu (1979), Journel (1980), Krige (1981), Dowd

(1982), Krige and Magri (1982), Thurston and Armstrong (1987), Armstrong and

Boufassa (1988), Rivoirard (1990), Marcotte and Groleau (1997), Lee and Ellis

(1997), Roth (1988), Clark (1998), Cressie (2006), Yamamoto (2007), Yamamoto

and Furuie (2010), and Paul and Cressie (2011).

Some ideas included in those works are “. . .the sensitivity of the experimental

semivariogram with regard to the few high values (Journel 1980).” High values

cause the deformity of the semivariograms that prevents the use of linear kriging.

According to Clark (1998), “. . .the potential problem in lognormal Kriging is in the

“back transformation” of the logarithmic estimates to the original sample values

scale, there appears to be some disagreement in the general geostatistical literature

as to how this back-transformation should be carried out.” In this sense, the

equation for back transformation of block kriging values is not easily found in the

literature. A review of lognormal estimators in an orderly way was presented in
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Rivoirard (1990), but he concluded that the equations of back transformation for the

block estimation are not theoretically optimal. Roth (1998) concluded that “. . .the
practitioner must decide whether the lognormal Kriging estimator is suitable for

local estimator.” Cressie (2006) stated “. . .data that exhibit skewness may be

successfully modeled as coming from a lognormal spatial process.” In a practical

way, back transformation is achieved by the exponential of the kriging estimate

plus a non-bias term (Yamamoto 2007). Finally, in this research, Cu values are

estimated following ideas presented by Rivoirard (1990), mainly the back-

transformation equation, Eq. 6 on page 218. The precision of this method has

been proved by some authors in different mineral deposits and other studies when

skewness distributions have been found.

2 Data Description

The quality of the primary information is one of the most important elements for the

resources estimation using kriging. This assumption determines the quality of the

results (Armstrong and Carignan 1997). The “Hierro Mantua” deposit database

used in the present research work was validated in 2008 by the Coffey Mining

Company, for request of RSG Global to the “Cobre Mantua S.A. Company” (Arce-

Blanco and Santana-Okamoto 2008). An initial exploration of the samples was

performed, whose lengths vary between 0.05 and 4.65 m, with an average of

1.22 m. A regularization of the data support was needed; 1 m length composites

inside the mineral body were calculated. Cu values from 318 wells, regularly

distributed, in two 50� 50 m and 100� 100 m sampling networks were analyzed,

creating 5,192 composites of 1 m length.

3 Exploratory Data Analysis

Table 1 shows the descriptive statistics of Cu values. The Cu mean and median

values are very different and very small compared with the maximum value; the

coefficient of variation is greater than 1. So, the data distribution is asymmetric,

which can be seen in the histogram (Fig. 1). The Kolmogorov-Smirnov normality

test value is 0.27, which is greater than 0.05. The result shows the non-normal

behavior of the Cu values. For this reason, the linear geostatistics procedures cannot

be applied; therefore, it is more appropriate to use nonlinear geostatistics methods

(Journel and Huijbregts 1978; Isaaks and Srivastava 1989; Rivoirard 1990).
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3.1 Lognormal Transformation Statistics

The lognormal transformation was performed for Cu values (LnCu ¼ Ln(Cu));

Table 2 shows the basic statistics and Fig. 2 the histogram of the transformed data.

It is observed that the transformed histogram is close to normal, with very similar

values for the mean and median. The Kolmogorov-Smirnov test value is 0.026,

which is less than 0.05 and assures the normal behavior in the LnCu values.

Previous analysis indicates the normality of the LnCu values. In addition, moving

windows statistics showed stable values of the mean. The range, computed by the

difference of the upper and lower limits of the mean from different moving

windows, is 1/5 of the range of the LnCu values. So, the data can be assumed as

Table 1 Descriptive

statistics of Cu values
Statistics CU %

Minimum 0.005

Maximum 34.660

Mean 2.334

Median 0.979

Standard deviation 3.486

Variance 12.152

Coefficient of variation 1.493

Skewness 3.220

Kurtosis 16.289

Kolmogorov-Smirnov 0.266
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stationary, and the lognormal kriging can be applied (Journel and Huijbregts 1978;

Isaaks and Srivastava 1989; Cressie 1993).

3.2 Variability Analysis

The maximum separation distance between the points of the data is 650 m in

deposit strike direction, 230 m in the dip direction, and 60 m in the downhole

direction. The lag and directions used for the semivariogram calculation are

presented in Table 3. The variability was studied approximately up to half of the

maximum distance for each direction.

The experimental semivariogram and the fitted models are shown in Fig. 3. All

semivariograms were computed in Gemcom software. Geometric anisotropy can be

observed. The fit of the experimental semivariograms was performed by an imbri-

cated model, composed by two spherical models with a small nugget effect. The

analytical expression of the spatial variability model is as followed:

γ hð Þ ¼ 0:1þ 1:21 Sph 26, 15, 11ð Þ þ 1:11 Sph 114, 90, 40ð Þ ð1Þ

where

0.10 ¼ nugget effect

Sph ¼ spherical model

1.22 ¼ sill for the first spherical structure

(25, 20, 10) ¼ ranges for the first structure in direction: strike, dip, and downhole

1.19 ¼ sill for the second spherical structure

(110, 90, 30) ¼ ranges for the second structure in direction: strike, dip, and

downhole

Table 2 Descriptive

statistics of the LnCu values
Statistics LnCu %

Minimum �5.298

Maximum 3.546

Mean �0.208

Median �0.262

Standard deviation 1.520

Variance 2.310

Coefficient of variation 0.001

Skewness �0.164

Kurtosis 2.865

Kolmogorov-Smirnov 0.026
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3.3 Validation of the Model

The spatial variability model obtained was validated using the cross validation

procedure. A high value was obtained for the correlation between estimated and

real values (Fig. 4); this figure shows a high concentration of values around the

slope 45�; the coefficient of Pearson is 0.92. These results show that the variability

model obtained in the structural analysis describes adequately the spatial variability

and correlation of the lognormal transformed data in the mineralized phenomenon

under study.

Furthermore, an analysis of the estimated error was performed. 94.34% of the

real data are included in the prediction interval Zi � 2*σ (Alfaro-Sironvalle 2007)

considering σ as the standard deviation of the estimated error, and 87.11% of the

real data are included in the prediction interval considering σ as the kriging standard
deviation (Szilágyi-kishné et al. 2003; De Oliveira et al. 1997).
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Table 3 Experimental semivariogram calculation parameters

Direction

Lag

(m)

Number of

points

Azimuth

(�)
Dip

(�)
Angular tolerance

(�) Bandwidth

Strike 35 10 0 0 45 140

Dip 10 10 270 �55 45 40

Down

hole

1 30 90 �42 10 10
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4 Mining Unit Size Determination

Geostatistics simulation was used to determine the rational SMU size. A realization

of the regionalized variable can be obtained by geostatistics simulations. The

sequential Gaussian simulation is a powerful technique (Gómez-Hernández and

Cassiraga 1994) and the most used method to simulate values. In this sense, as the

Cu values show extremely asymmetric distributions, the logarithmic transformed

values, LnCu, were simulated in a dense network in order to reproduce possible real

values. These values were computed by the average of simulated data inside of

blocks with different sizes of SMU.

The procedure consists in comparing values of the possible real values with the

ordinary kriging estimations for each SMU proposed. Next, the least mean squared

error (MSE) was used to obtain the rational size of the blocks for estimation. This

procedure guarantees a high precision for resources estimations in a local or global

scale. The rational SMU size obtained was 32� 40 m.

The procedure proposed was repeated with other realizations from sequential

Gaussian simulations, and the results were similar; the 32� 40 m SMU size was

obtained as the rational SMU size. Gómez-González and Cuador-Gil (2011) made a

similar research in nonmetallic deposits, based on the opinion that mining equip-

ment must not be the factor determining the SMU size but the results of applying

the right mathematics estimation methods, which take into account the natural

behavior of the phenomenon.

Finally, lognormal kriging is used for resources estimation with the rational

network obtained before. In future studies, multi-Gaussian kriging will be applied

for more accuracy of the estimations in this ore deposit and other mineral deposits

of the regions, when the logarithmic transformation does not guarantee normal

distribution and consequently stationary data. The simulation was performed using

“sgsim” program from GsLib (Deutsch and Journel 1998).

The sequential Gaussian simulation performed with transformed data, the LnCu,

is presented in Fig. 5, using the variability model represented by Eq. 1 and a

simulation network of (1� 1� 1 m). The simulation was verified by the basic

statistics between real and simulated values that were similar, and the histograms

and semivariograms between them show similar behavior (Fig. 6).

The simulation network was very dense in order to obtain possible real values

inside each SMU proposed (Table 4). Estimation values were obtained by ordinary

kriging for each SMU proposed. Then, errors were computed comparing the

possible real values with the estimated values for each SMU, which are shown in

Table 4 and Fig. 7. Mean squared error and relative errors were used for this

comparison. Figure 7 shows the nomograms of the mean squared errors and relative

errors vs the size of the SMU. The SMU was proposed in two forms: squared and

rectangular, to take into account the anisotropy.

The influence of the SMU form was verified (Fig. 7). The least SME is present

for 32� 40 m SMU size, which is the most precise for the resources estimation.

Using the rational SMU obtained before, the estimation was performed with
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lognormal kriging over the mineralized body (Fig. 5). The back transformation was

carried out by the following expression (Rivoirard 1990):

Z* vð Þ ¼ Exp L vð ÞKO þ σ2KO þ γ v; vð Þ� �
=2� μ

� �
ð2Þ

where

L(v)KO ¼ estimation of the transformed values by ordinary kriging

σ2KO ¼ kriging variance

γ(v,v) ¼ mean semivariogram block to block

μ ¼ Lagrange multiplier

Table 5 shows the basic statistics between original and estimated grade values

after back transformation. The mean values are close, and the variance has adequate

values, in correspondence with the smoothen characteristics of the interpolation. No

extreme values have been obtained in the estimations.
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Table 4 Estimation errors for USM

USM Mean squared error

Mean values

Differences (%) Relative errorEstimation Simulation

Squared network

5*5 1.61 �0.26 �0.02 69% 1.70

10*10 1.67 �0.50 �0.04 67% 1.69

15*15 1.43 �0.39 �0.05 61% 1.55

20*20 1.38 �0.42 �0.07 60% 1.46

25*25 1.56 �0.64 �0.08 57% 1.56

30*30 1.35 �0.46 �0.05 56% 1.62

35*35 1.46 �0.58 �0.05 46% 1.71

40*40 1.28 �0.46 �0.04 44% 1.66

45*45 1.32 �0.55 �0.08 41% 1.47

50*50 1.49 �0.75 �0.04 48% 1.80

Rectangular network

4*5 1.62 �0.25 �0.02 70% 1.73

8*10 1.69 �0.48 �0.04 68% 1.70

12*15 1.46 �0.37 �0.05 64% 1.54

16*20 1.46 �0.41 �0.05 61% 1.56

20*25 1.58 �0.65 �0.07 59% 1.63

24*30 1.38 �0.45 �0.05 51% 1.56

28*35 1.28 �0.52 �0.08 47% 1.44

32*40 1.20 �0.43 �0.07 49% 1.42

36*45 1.43 �0.55 �0.04 47% 1.72

40*50 1.46 �0.73 �0.03 49% 1.82

44*55 1.46 �0.59 �0.04 41% 1.73
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5 Conclusion

In this article, it is shown how to obtain adequate resources estimation when

datasets exhibit skewness distribution, which are very common in mining studies.

The geologic complexities in the region of the deposit studied indicate that linear

geostatistics cannot be applied. The non-stationarity of the Cu grade values in

“Hierro Mantua” mineral deposits was proved by descriptive statistics parameters,

Kolmogorov-Smirnov goodness of fit, and moving windows statistics. The lognor-

mal kriging has been successfully applied in several mining studies and other

geosciences problems.

Cu grade values were log transformed to a new variable, LnCu, in which the

basic and moving windows statistics show normality and stationarity. The structural

analysis of the transformed data shows geometric anisotropy in the N-S and E-W

directions. The model fitted is an imbricated structure, composed by a nugget effect

plus two spherical models, which was validated by cross validation.

The rational SMU size obtained showed the minimum values of mean squared

error when comparing estimated and real grade values, using different sizes of

SMU. This procedure was made based on the opinion that mining equipment must

not be the factor determining the SMU size but the results of applying the right

mathematics estimation methods, which take into account the natural behavior of

the phenomenon.

The estimation performed by lognormal kriging is adequate for the resources

estimation in the case study presented. Original grade vs estimated grade values

basic statistics show close values of the mean and adequate values of the variance.
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Definition of Operational Mining Unit
(OMU) Size

Cassio Diedrich, Joao Dirk Reuwsaat, Roberto Menin,

and Wellington F. De Paula

Abstract The estimation of recoverable mineral resources and reserve curves is

generally based on selective mining units (SMUs) represented by a block model.

The size or support of the block estimate is characterized by its volume, shape, and

orientation by which it is assigned a grade that directly impacts variance and

resulting confidence intervals. However, local geology variations associated with

operational mining configuration and production rates are commonly disregarded

when defining an SMU. This paper aims to present an operational practice for

defining mining recovery curves. A methodology to achieve realistic values through

an operational mining unit (OMU) that matches the expected production distribu-

tion of volumes and grades is proposed. This process computes expected actual

production by considering mining sequencing and production rates, applied to a

regular SMU using a common geostatistical resource estimation model. Planned

dilution is calculated and implemented for a range of block sizes, and one OMU is

selected that is a reasonable match to the actual production. Operational mining unit

size (or sizes, if variable) will yield tonnes, grades, and metal of ore at given cutoffs

(ore and waste) considering operating selectivity. Different orebody domains,

mining configurations, and production rates affecting the OMU are also described.

Examples are shown to illustrate the methodology using the Walker Lake public

dataset and a real (Cu-Au) operational mining case.
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1 Introduction

Operating processes need to be considered when constructing recoverable mineral

resources and reserves curves for mining projects and operations. Selective mining

unit (SMU) determination is a complex engineering decision and may have an

economic impact on the mining operation and will significantly affect the mine

planning process. The SMU is generally defined on a block model basis and is

commonly associated as the selective mining unit (SMU), the smallest volume of

material on which ore/waste classification is determined. In other words, the

dimensions of the SMU are supposed to be small enough to enable the mining

equipment to select and mine an individual SMU at the time of mining. Resource

modelers try to better understand and manage well-known problems such as change

of support, the information effect, and conditional bias involved in the block model

estimates. However, geostatistical estimates of mining recovery curves may be

somewhat optimistic as they do not take into account factors other than block

grades, commonly disregarding mining configuration (method and geometry),

local geology in the production environment, and production rates.

Some specialists have studied major aspects of different block support dimen-

sions, explained by the support effect Deraisme and Roth (2000) and simulations

process (Leuangthong et al. 2003; Jara et al. 2006; Isaaks 2004, 2005). The block

support is a fundamental parameter that will condition mining dilution and selec-

tivity affecting mining costs, economics, decision-making, and production pro-

cesses. The tonnes/grades of ore that the mill receives and tonnes/grades of waste

scheduled in the mining plans that are associated with mining block support

volumes are a result of a classification procedure with many subjective factors

and are never freely and perfectly selected in any case.

The purpose of this paper is to define an operational mining unit (OMU), which

is the block size(s) and orientation(s) that reasonably predicts the local and/or

global tonnes of ore, waste, and head grade of recoverable reserves, considering

local mining operating aspects (geology, mining configuration, and production

rates). The idea is not to forecast future short-term SMU grade distributions at the

time of mining and not questioning estimation methods for defining grades at SMU

scales but to determine a reasonable regular and/or irregular block support for a

chosen conventional SMU block model size that represents ore/waste proportions

derived from a real expected mining sequencing and grade control process. In the

OMU approach, there is no commitment that an individual block will be selectively

mined, but it will be contributing accordingly to the “real” expected global and/or

local mining recovery curves.
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2 Definition of Operational Aspects

The ore control model estimates should be classified by ore type and sent to the

correct destination (mill, stockpile, or dump). The problem of how to make the

mineral reserve grade-tonnage curves accurately and predict the tonnes and grades

above the cutoff that will be available at the time of mining still exists. Conven-

tional SMU selection processes try to account for the impact of support and

information effect on a short-term scale; however, they are insufficient to handle

conditionally unbiased estimations and disregard potential external factors in the

mining process. As a result, operations struggle to achieve the forecasted mining

production, or, if production is achieved, the mining plan and stockpile adherence is

compromised by changes in the mining configuration in order to achieve targeted

values. Block SMU size should not be selected to only attain the mill targets; they

also need to align with the operational process that will be implemented and to

facilitate stockpiling and waste dump targets.

The methodology proposed is to incorporate the estimated ore control model,

defined by mining operating practices, in the long-term mineral reserve estimations.

Assuming that a verified regular unbiased global grade and tonnage estimation is

used, the global proportions of planned dilution incorporated in the mining operat-

ing process can be assumed as representative in terms of block estimation. The

results of applying this methodology show that commonly defined SMU size does

not correspond directly with the smallest mineable volume chosen by the mining

professionals. As mining selectivity is understood as the process of separating ore

from waste, its global and local concept is strongly related to three functions that

affect operational results. These are:

1. Geology function (Fig. 1)

2. Production rates function (Fig. 2)

3. Mining configuration function (Fig. 3)

Each of these functions can result in different local mining recovery curves. The

geology function (1), at operating scale, is presented in Fig. 1a, b. For the planned

grade control polygons in Fig. 1a1, a2 that have the same SMU block size and

operating practices, the resulting operational ore and waste materials (b1 and b2)

are different. This clearly demonstrates the impact of different local geology under

real operating circumstances. The question that arises is, for identical mining

configuration and production rates, should the long-term SMU size be the same

where there is different local geology. The answer should be no. This scenario has

been verified many times in a real mining operation where different local mining

recoveries and dilution of the defined SMU have resulted in deviating from

forecasted local and global mining recovery curves.

Changes in the local mining recovery curves were verified for different produc-

tion rates considering the same geology and mining configuration in the operational

process. The production rate function (2) at operating scale is presented in Fig. 2a,

b. The planned grade control polygons in Fig. 2a1, a2, a3, a4, a5 have the same
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Fig. 1 Geology function operational aspect: (a) planned open pit grade control polygons (a1 and

a2) and its respective (b) executed open pit grade control (b1 and b2)

Fig. 2 Production rate function operational aspect: (a) planned open pit grade control

polygons (a1 and a2, a3, a4, a5) and its respective (b) executed open pit grade control (b1 and

b2, b3, b4, b5)
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SMU block size, geology, and mining configuration, but different production rates

and different resulting operational ore and waste proportions (b1 and b2, b3, b4,

b5). For different production rates and related grade control processes, different

mining recovery curves above cutoffs resulted. This demonstrates that SMUs used

to predict ore and waste proportions should not be the same.

Different mining configurations, applied to the same local geology and using the

production rates in the operational process, may change mining recovery curves as

well. The mining configuration function (3), at operating scale, is presented in

Fig. 3a, b. For planned grade control polygons in Fig. 3a1, a2 that have the same

SMU block size, geology, and production rates, but different mining configuration,

the resulting proportions of ore and waste (b1 and b2) are different. For different

mining configurations and related grade control processes, different resulting min-

ing recovery curves above cutoffs are obtained, and SMUs used to predict local

values should not be the same.

Long-term mine planning takes into account that each SMU will be selectively

mined as ore or waste. However, local operating particularities can result in poor

reconciliation of long-term block models, and the resulting mining recovery curves

will impact milling, stockpiling, and waste dump processes.

Fig. 3 Mining configuration function operational aspect: (a) planned open pit grade control

polygons (a1 and a2) and its respective (b) executed open pit grade control (b1 and b2)
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In addition to the grade control functions, external dilution factors (equipment

and field operating practices) should be considered in the process by applying a

factor based on operational mining experience or reconciliation. SMU should be a

back-to-front exercise starting with expected operational aspects.

3 Proposed Method for Definition of Operational Mining
Unit (OMU) Size

The proposed approach for OMU size(s) definition uses information from the

anticipated grade control procedure based on operational mining sequencing and

the use of the long-term resource model defined by a common SMU process. The

idea is to determine the OMU(s) by local and/or global ore and waste proportions

(tonnage and grades) calculations obtained from the resulting operational mining

sequencing and proposed grade control processes. The first step is to choose a

regular SMU size based on robust grade estimation practices and to define reason-

ably representative operating grade control process according to local geology,

production rates, and mining configuration.

There are two ways of determining OMU(s) block size(s):

• Global: where all individual grade control polygons are used to determine global

ore/waste proportions in the mining sequencing and the respective global OMU

(regular/constant) size (see Fig. 9[2]) and Fig. 9[3] of case study)

• Local: where each individual grade control polygon is used to determine local

ore/waste proportions in the mining sequencing and the respective local OMUs

(regular/constant or irregular) size(s) (see Fig. 9[4] of case study)

The procedure is as follows:

1. Compute reasonable mining sequencing A (e.g., blasting polygons) based on the

expected mining operating practices using a common regular SMU size.

2. Simulate the grade control practice to arrive at ore/waste dig limits. The idea is

to mimic the real grade control process (e.g., Figs. 1, 2, and 3) that will be

implemented in the mine for each operational mining sequencing (A).

3. Then, the ore/waste dig lines are used to calculate the expected local (A) and/or

global (sum of local A) tonnes of waste (Wt) and ore (Ot), grades of waste

(Wg) and ore (Og), and metal of waste (Wm) and ore (Om). The concept is to

determine local and/or global OMU size(s) that matches these resulting values.

4. Choose the possible OMU size (s) by simply calculating the proportions of ore

and waste and its respective targeted grade control tonnes (Wt and Ot), grades

(Wg and Og), and metal (Wm and Om) results.

5. Plot the results of both grade control and OMU approach in a series of graphs

containing (1) planned dilution (PD), (2) tonnes of waste and ore versus OMU

size, (3) average grades of waste and ore versus OMU size, and (4) metal tonnes

of waste and ore versus OMU size. In each graph, the OMU results are plotted to
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yield a functional relationship, while the grade control values provide a single

true value that plots as a horizontal line. The OMU size is the size of which these

grade control polygon (Wt, Ot, Wg, Og, Wm, and Om) lines intersect with its

respective class of material (i.e., waste and ore). Figures 4, 5, 6, and 7 present a

schematic illustration of the OMU process definition and resulting graphs.

6. When the resulting OMU size(s) is selected, which is (are) suitable to represent

the local and/or global ore/waste proportions, the mining sequencing should be

revisited through an iterative process. This is required to check the overall ore

recovery and planned dilution compared to the initial mining sequencing and

grade control based on a preliminary SMU size (step 1). Depending on the waste/

ore proportions and the deposit characteristics, the recovery of mineralization

can be significantly impacted. An adjustment of the mining sequence selectivity

(see case study) may be required to maximize ore recovery or to change mining

sequencing to better fit OMU block configuration. A detailed critical analysis

should be made by experienced professionals.

The concept of the OMU method is to add operational factors for determining

block size(s) through the calculation of planned dilution from mining and grade

control process. Global and local approaches can be applied in different ways or

purposes in the mining sequencing. The global approach provides ore/waste

Fig. 4 (a) Grade control polygon with 5� 5� 5 m SMU block size and its respective grades (b)
resulting operational grade control polygons based on (a) and (c) OMU block size that represents

the grade control execution (target)
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proportions of the overall grade control polygons applied to a regular (constant)

OMU size which will reasonably honor global and local recoverable proportions of

ore. The local approach provides a better cutoff distribution curve since it clearly

details the grade control process by local OMU definitions that take into consider-

ation local operating practices. So why are the local grade control polygons not used

to define different OMU sizes? This could be an option to better define and achieve

expected long-term recoverable proportions of ore but would result in a lack of

local block discretization and mining sequencing flexibility if changes occur in real

operational conditions.

A simple OMU approach application is presented in Figs. 4 and 6 for two

different local grade control configurations. In Figs. 5 and 7, it is possible to

determine how OMUmining recovery curves compare to regular SMU’s estimation

Fig. 5 Graphs of (1) tonnage and planned dilution of grade control polygons (target), SMUs, and

OMU (top left); (2) grades and planned dilution of grade control polygons (target), SMUs, and

OMU (top right); (3) ore metal and planned dilution of grade control polygons (target), SMUs, and

OMU (center left); (4) waste metal and planned dilution of grade control polygons (target), SMUs,

and OMU (center right); (5) and (6) SMU (5� 5 m) and OMU (23� 23 m) tonnages and grades

above the cutoff grade (bottom left and right)
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block support curves and how the ore and waste proportions with its respective

grades are achieved. In the mining operating process, resulting external waste

material incorporated as ore and ore defined as waste strongly affects the recover-

able proportions of material above and below cutoffs and may change its final

destination (mill, stockpile, waste dump, etc.). For these examples, an SMU size of

5� 5� 5 m, with a generic density of 2.8 t/m3, was chosen. Only tonnes and

contained metal within the polygon boundaries were considered. Tables 1 and 2

summarize the grade control polygons (target), SMUs, and OMU resulting values.

The results demonstrate how operating processes change the ore/waste proportions,

how the resulting OMU block size differs from the previously defined SMU size,

and how it is possible to achieve global and/or local operational ore and waste

targets.

In both examples presented in Figs. 4 and 6, the operational process and local

geological aspects are significant components of the ore/waste proportions in the

grade control polygons. This clearly demonstrates that operating aspects are fun-

damental in the block size definition for achieving reasonable global and local

expected mining recovery curves. Although OMU block size definition is a time-

consuming process, mining professionals should think about different ways of

better defining block volumes since there is no current definitive solution.

Fig. 6 (a) Grade control polygon with 5�5�5 m SMU block size and its respective grades (b)
resulting operational grade control polygons based on (a) and (c) OMU block size that represents

the grade control execution (target)
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Fig. 7 Graphs of (1) tonnage and planned dilution of grade control polygons (target), SMUs, and

OMU (top left); (2) grades and planned dilution of grade control polygons (target), SMUs, and

OMU (top right); (3) ore metal and planned dilution of grade control polygons (target), SMUs, and

OMU (center left); (4) waste metal and planned dilution of grade control polygons (target), SMUs,

and OMU (center right); (5) and (6) SMU (5� 5 m) and OMU (45� 23 m) tonnages and grades

above the cutoff grade (bottom left and right)

Table 1 Executed (target) grade control (Fig. 4 [b2]), diversified SMUs, and resulting OMU size

selection (Fig. 4 [c2])

Item Ot (t) Og (%) Om (t) Wt (t) Wg (%) Wm (t) PD (%)

Grade control polygon 75,600 1.11 837 0 – 0 36%

SMU 5� 5 m 55,650 1.45 805 19,950 0.16 32 0

SMU 10� 10 m 62,300 1.31 817 13,300 0.15 20 12%

SMU 15� 15 m 66,150 1.23 814 9,450 0.25 23 19%

SMU 20� 20 m 70,000 1.17 821 5,600 0.28 16 26%

OMU 23� 23 m 75,600 1.11 837 0 – 0 36%

188 C. Diedrich et al.



4 Walker Lake Example

A series of mining plans used for operational grade control, based on a block model

with an SMU size of 5� 5� 1 m and 1.0 t/m3 density, were compiled from the

Walker Lake dataset. A series of grade-tonnage curves were analyzed at the ore

definition cutoff (5%) to determine the ore/waste proportion changes due to regular

block support size and mining sequencing. Different production polygon configu-

rations based on a block model with an SMU size of 5� 5� 1 m were compiled as

follows:

• Production polygons ranging from 6 to 9 SMU blocks in cases 1, 4, and 7

• Production polygons ranging from 9 to 15 SMU blocks in cases 2, 5, and 8

• Production polygons ranging from 15 to 25 SMU blocks in cases 3, 6, and 9

These production polygons were then overlain (with minor adjustments) over

block models with SMU sizes of 15� 15� 1 and 25� 25� 1 to develop three

mining sequences and nine different mining scenarios. Figure 8 and Table 3 present

the grade-tonnage curves for the nine different mining scenarios. Cases 1–3 are

related to a 5� 5 m block size, cases 4–6 are related to a 15� 15 m block size, and

cases 7–9 are related to a 25� 25 m block size.

The mining recovery curves (Fig. 8 and Table 3) demonstrate how the ore/waste

(cutoff grade of 5%) proportions of the grade control polygons compare to the

relative block sizes of the mining sequences. In mining scenarios with high pro-

duction volumes, the 5� 5 m block mining recovery curves tend to deteriorate and

do not represent the waste that is incorporated to the system. When block support is

increased (reblocked to 15� 15 m or 25� 25 m), the resulting grade control mining

recovery curves tend to approximate the blocks and polygons (tonnes, grades, and

metal), and ore recovery is strongly impacted by external material that is incorpo-

rated within the reblocked volumes. This may lead to significant changes to mining

sequencing and proportions of ore and waste that were originally based on a 5� 5 m

block size plan. The original plan may not be realistic since the ore material could

be recovered even considering the waste blocks in the grade control polygons (cases

1–3).

Table 2 Executed (target) grade control (Fig. 6 [b1]), diversified SMUs, and resulting OMU size

selection (Fig. 6 [c1])

Item Ot (t) Og (%) Om (t) Wt (t) Wg (%) Wm (t) PD (%)

Grade control polygon 59,850 1.68 1,004 15,750 0.29 46 23%

SMU 5� 5 m 48,650 2.07 1,008 26,950 0.15 42 0%

SMU 10� 10 m 53,900 1.89 1,021 21,700 0.13 29 11%

SMU 15� 15 m 53,550 1.89 1,014 22,050 0.16 36 10%

SMU 23� 23 m 63,000 1.63 1,030 12,600 0.16 20 29%

OMU 45� 23 m 59,850 1.68 1,004 15,750 0.29 46 23%
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Case 1 (SMU 5� 5� 1 m on 6–9 SMU blocks production polygons) was chosen

for the definition of OMU size(s) (Fig. 9—top left). Three different OMU applica-

tions were applied as follows:

1. OMU REG (Fig. 9 top right): operational mining unit with regular 15� 15� 1 m

block size and regular block (centroid) position

2. OMU RSIP (Fig. 9 bottom left): operational mining unit with regular

15� 15� 1 m block size and irregular block (centroid) position

3. OMU ISIP (Fig. 9 bottom right): operational mining unit with irregular block

size and irregular block (centroid) position

Figure 9 illustrates case 1 production polygons (6–9 SMU blocks) and SMU

blocks (5� 5� 1 m) for the OMU definition case study. Table 4 presents recover-

able values at given cutoffs for grade control polygons, SMU, and OMUs.

Figure 10 illustrates the cutoff mining recovery curves for the resulting OMU

definition method. The comparison of SMU and resulting grade control polygons

shows how tonnages and metal vary at 5% and above. In fact, the operating process

is less selective as forecasted by the block size.

Fig. 8 Mining sequencing on 5� 5 m (left), 15� 15 m (center), and 25� 25 m (right) block sizes,
respectively

Table 3 Summary of mining sequences for different production rates (6–25 SMUs of 5� 5 m

block size) and block sizes (5� 5 m; 15�15 m; 25� 25 m) as described in the text above and its

respective block and polygon values at 5% cutoff grade

Item

Block

tonnage

(t)

Block

grade

(%)

Block

metal

(t)

Poly.

tonnage

(t)

Poly.

grade

(%)

Poly.

metal

(t)

Planned

dilution

(%)

%

Diff.

metal

Case1 12,184 6.8 827 13,389 6.4 852 9.9 3.1

Case2 12,410 6.8 841 13,991 6.3 878 12.7 4.4

Case3 10,604 7.0 740 14,003 6.0 837 32.1 13.1

Case4 10,646 6.5 692 10,682 6.4 680 0.3 �1.8

Case5 10,646 6.5 693 11,437 6.2 705 7.4 1.9

Case6 10,681 6.5 694 11,823 6.0 708 10.7 1.9

Case7 8,709 6.4 560 8,015 6.4 509 �8.0 �9.2

Case8 8,686 6.4 559 8,011 6.1 491 �7.8 �12.1

Case9 8,687 6.4 559 8,254 6.0 493 �5.0 �11.8
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The OMU REG (regular) approach (global) shows that a 15� 15 m block size

fits well to the grade control curves (blue line) based on a 15� 15 m regular block

size. The mining recovery curves are strongly impacted by external dilution mate-

rial if compared to the SMU grade control polygons, which are considered reason-

able for operations to mine according the Fig. 9(1). In the RSIP approach (global),

with a regular 15� 15 m block size and irregular centroid position, the recovery

issue is greatly improved, and its resulting block size curves provide a near-perfect

match with the initial SMU grade control polygon curves at 5% cutoff and above.

Fig. 9 (1) Case 1 production polygons (6–9 SMU blocks, bolded lines in all figures) and

5� 5� 1 m (top left); (2) OMU REG, regular 15� 15� 1 m block size and regular block

(centroid) position (top right); (3) OMU RSIP, regular 15� 15� 1 m block size and irregular

block (centroid) position (bottom left); (4) OMU ISIP, irregular block size and irregular block

(centroid) position (bottom right)
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Fig. 10 Mining recovery curves of SMU, OMU REG, OMU RSIP, and OMU ISIP, respectively,

from top to bottom
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In the ISIP approach (local), considering irregular block sizes and centroid,

arranged through each local sequencing polygon, a near-perfect match is achieved

for the entire initial SMU grade control distribution.

5 Copper Mine Case Study (Sulfide Cu-Au)
and Conclusions

A case study for a Brazilian sulfide Cu-Au mine is used to demonstrate applicability

of the method by comparing to actual operational results. The grade of waste is

assigned as “zero.” The cutoff grade of the deposit is 0.25% Cu. Figure 11 illus-

trates the 15� 15� 15 m SMU block estimates (left) and the actual grade control

polygons (right). Table 5 lists resulting mining recovery values above cutoffs

(Fig. 12).

The results demonstrate how mining recovery curves are improved using oper-

ational aspects for defining the mining unit size. For the real case study, the

operational OMUs near matched the operational grade control practice. The actual

values below and above cutoffs were considerably different than those from the

SMU. Also, it demonstrated that a 30� 30 m and 45� 45 m block sizes should be

applied to the material with grades below and above 1.3% Cu, respectively.

Operational aspects should be included in the mining unit block size definition

by mining professionals. Selection of the appropriate mining unit is a compromise

between getting the right mining recovery estimates for tonnages of ore and waste

and getting the right grade of these materials. This compromise depends on the

global and/or local ore and waste proportions for a predefined operational produc-

tion rates and mining configurations. The greatest impact of the support effect is

where the operational aspects are not included or checked against regular SMU

sizes defined by common geostatistical estimation practices. Significant differences

Fig. 11 SMU block size and sequencing (left), actual grade control polygons (right)
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between grade control and operating practices to define SMU may result in poor

mining, waste dumps, and stockpile plans and strongly impact financials.
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Optimizing Infill Drilling Decisions Using
Multi-armed Bandits: Application in a Long-
Term, Multi-element Stockpile

Rein Dirkx and Roussos Dimitrakopoulos

Abstract Every mining operation faces a decision regarding additional drilling at

some point during its lifetime. The two questions that always arise upon making this

decision are whether more drilling is required and, if so, where the additional drill

holes should be located. The method presented in this paper addresses both of these

questions through an optimization in a multi-armed bandit (MAB) framework. The

MAB optimizes for the best infill drilling pattern while taking geological uncer-

tainty into account by using multiple conditional simulations for the deposit under

consideration. MAB formulations are commonly used in many applications where

decisions have to be made between different alternatives with stochastic outcomes,

such as Internet advertising, clinical trials and others. The application of the

proposed method to a long-term, multi-element stockpile, which is a part of a

gold mining complex in Nevada, USA, demonstrates its practical aspects.

1 Introduction

The optimization of an infill drilling pattern can be linked to a more general

problem present in many different applications (e.g. stock markets, research effort

direction, project development, etc.). The more common term for this problem used

across these various industries is the valuation of future information (under uncer-

tainty). In terms of the economic utility theory, Schlee (1991) proves that perfect

information always has a positive value. However, the requirement of a payment to

retrieve this information might render the total value negative, causing a need to

properly valuate this future information. In the mineral industry, Chorn and Carr

(1997) assess the value of future information for decisions on additional capital
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investments and Prange et al. (2008) valuate information gathering campaigns on

the sealing capacity of a fault system.

In the aforementioned work, the value of future information is a monetary value.

This is very hard to quantify for a mineral deposit. Boucher et al. (2005) indirectly

do this via a misclassification cost of material. This misclassification refers to ore

versus waste based on a fixed cutoff grade and one processing stream. However,

this is usually not the case in a mining complex. Menabde et al. (2007) show that it

is optimal to use a variable cutoff grade that comes directly from the schedule

optimization. This makes it impossible to evaluate misclassification errors without

rescheduling the deposit. This effect is strengthened if multiple processing streams

are considered in combination with the blending of material from different sources,

as in the application presented below.

This paper considers additional information for a mineral deposit to be valuable

if the extraction schedule is influenced. Differences in extraction schedules are

often caused by a change in material types of various blocks. Therefore, value is

linked to material-type changes, the main driver of schedule changes. The definition

of the ‘best’ pattern is the one that adds the most value to the knowledge base.

According to this paper’s definition of value, the best infill drilling pattern is the one
that causes the most material-type changes, implicitly linked to schedule changes.

Diehl and David (1982), Gershon et al. (1988) and Barnes (1989) explore infill

drilling optimization by focussing on minimizing the total kriging variance or

trying to locate zones of high kriging variance as prime spots for additional drilling.

A flaw in using kriging variance as a measure of variability is that it only captures

the geometric part of the uncertainty for a drilled deposit and does not take the

variability of grades into account (Goovaerts 1997). Ravenscroft (1992) shows that

working with geological simulations is the best way to represent variability in a

deposit and that estimated orebody models give a flawed representation of the true

variability in a deposit. Therefore, simulations are used in this approach to infill

drilling optimization and the assessment of additional patterns under geological

grade uncertainty. Goria et al. (2001) also propose a method based on conditional

simulations to assess the value of additional drill holes. An important conclusion

from this work is that additional drilling does not necessarily reduce the variability

in the deposit. Boucher et al. (2005) propose a method for the optimization of infill

drilling that also makes use of simulated orebody models and compares the cost of

drilling additional drill holes to the misclassification cost of the material. The

aforementioned works give the additional drill holes a simulated grade, drawn

from simulations based on the initial exploration data. This is used as a possibly

‘true’ grade in the added-value calculations. A similar approach is taken herein.

The major contribution of the proposed method is the use of multi-armed bandits

(MAB) for the optimization. Their benefit is that they provide an elegant solution to

the requirement of testing every single simulation as possibly ‘true’ representation
multiple times in the previous work. The MAB framework finds its origin in the

world of casinos. The initial problem comes from playing a row of slot machines

(commonly referred to as an armed bandit) in a certain sequence in order to

maximize the total long-term reward from playing these machines. This provides
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an analogy for the well-known exploitation versus exploration trade-off present in

many other applications (e.g. clinical trials, Internet advertisements, etc.). The

exploration versus exploitation trade-off in infill drilling exists in the availability

of many possible locations for additional drill holes with each unknown outcome.

The case study below requires simulations of a multi-element stockpile. This

requires a simulation technique capable of dealing with multiple correlated vari-

ables. The simulations throughout the remainder of this work are all generated

using minimum/maximum autocorrelation factors (MAF) (Switzer and Green

1984). Desbarats and Dimitrakopoulos (2000) describe the regular MAF technique

in a mineral science context by applying it to the simulation of pore-size distribu-

tion. Boucher and Dimitrakopoulos (2009) apply it directly to the block support

level; it is this direct block method that is used below.

The next section briefly addresses the details of the proposed method. Once the

method is explained, the need for additional information for stockpiles is illustrated

by the variability present in the stockpile simulations. Then an application of the

infill drilling optimization for a long-term, multi-element stockpile is shown.

Finally, a conclusion and recommendation for future work are given.

2 Method

The proposed method selects the best infill drilling pattern from a predefined set of

patterns. The representation of each pattern for infill drilling will be called an arm in

the MAB framework. These arms will be played. When an arm is played, the

algorithm to assess the value for the pattern associated to that arm is set in motion.

The steps in this value assessment are the following (Fig. 1 demonstrates the

general flow of the algorithm):

• The grades in the drill holes of the selected pattern are drawn from an initial

simulation, which is set to be the possibly ‘true’ representation of the deposit.

• The drill holes of the pattern linked to the pulled arm are used as additional data

to the initial exploration data for the re-simulation of the deposit.

• After the re-simulation with additional data, the blocks of the re-simulation are

classified according to a material classification guide.

• The reward or contribution from pulling that arm is defined as the percentage of

blocks that have changed material classification in the re-simulation compared to

the possibly ‘true’ deposit. Optimizing for this reward is in line with the

definition of the best pattern given above.

• The Thompson sampling solution algorithm updates the current arm, and the

next arm is selected.

After convergence of the algorithm, the whole procedure is repeated for other

simulations of the deposit as a possibly ‘true’ deposit in order to test the sensitivity

of the method to this choice. The best pattern is then selected over the results of all

of these possibly ‘true’ deposits. By considering multiple simulations as possibly
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‘true’ deposits, the method is able to give an assessment of the performance of all

patterns under geological uncertainty, which leads to the quantification of the

upside potential and downside risk for each pattern.

All of the patterns in one MAB set-up are comparable in the sense that they

belong to what is called the same budget class, which means that they all have the

same amount of drill holes and thus represent a similar cost to be drilled. The

procedure is also repeated for different budget classes of patterns where each

budget class represents patterns with a different number of holes than in the other

classes. A separate MAB is required to optimize within each budget class, as the

rewards of patterns with more holes cannot be directly compared to the rewards of

patterns with fewer holes.

3 Multi-armed Bandits and Thompson Sampling

The classic and simplest MAB problem follows the four basic rules formulated

below, as in Mahajan and Teneketzis (2008). The state of an arm in a simple MAB

is the internal time, which is equal to the number of times the arm has been played.

1. Only one arm is played at each time step. The reward from this play is

uncontrolled.

2. Not played arms remain frozen, meaning they do not change state.

Fig. 1 High-level schematic representation of the MAB optimization algorithm
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3. A frozen arm will not give a reward.

4. All arms are independent.

There are many variants of MAB problems where one or many of these rules are

violated or altered, which makes them considerably more complicated to under-

stand and solve. Therefore, the focus of the following sections will only be on these

simple bandits, as these suffice to address infill drilling.

The mathematical objective function of the MAB problem, with arms, is given

below (Mahajan and Teneketzis 2008)

Jγ ¼ 
X1

t¼0
βt
X k

i¼1
Ri Xi Ni tð Þð Þ,Ui tð Þð Þ��Z 0ð Þ

h i
ð1Þ

with:

• Jγ, the objective function value under policy γ, defined by Ui(t).
• βt, the discount factor with time t, reflecting that earlier rewards are higher

valued than later rewards, like in an NPV calculation. The time t is a measure for

the number of iterations/plays.

• Ri(Xi(Ni(t)),Ui(t)), the reward of arm i depending on:

– Xi(Ni(t)), the state of arm i at time t, which depends on:

Ni(t), the local time of arm i at time t; the number of times arm i has been
played before time t.

– Ui(t), the policy decision, which determines whether or not arm i is played at

time t.

• Z(0), the initial state of all arms i.

The total objective function value is then found by taking the expected value

over the summations over time and the number of arms conditional to the initial

states of all arms. The goal is to find the optimal scheduling policy γ that determines

the values of Ui(t) for every arm i and time t in such a way that the total expected

reward is maximized. The MAB problem can also be used to find the best

performing arm, instead of a schedule of when each arm should be played. The

best arm is just the one that is scheduled for continuously.

The algorithm chosen to solve the MAB is Thompson sampling (Thompson

1933), which has demonstrated excellent performance for MAB optimization

(Agrawal and Goyal 2012; Scott 2010). The general idea of Thompson sampling

is always play the arm with the highest likelihood of being the best arm. This gives a
natural approach to the exploration versus exploitation trade-off in MAB problems.

In Thompson sampling each arm is represented by a distribution linked to its

reward. Usually, the prior distributions are uniform beta distributions, B

(α¼1,β¼1), which are updated each time an arm is played, and the reward is

observed. The reward percentage is used as the success probability of a Bernoulli
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trial. When the outcome of the Bernoulli trial is a success, the β parameter is

incremented with one; otherwise, the α parameter is incremented with one.

Thompson sampling is proven to converge for the MAB problem by Agrawal

and Goyal (2012) and May et al. (2012), but it has no predefined termination

moment. Therefore, it is required to define a convergence criterion that works for

the application in consideration. In this case a simple criterion is defined, which has

shown satisfactory results. That is, if in the last 20% of iterations one arm is

selected to be played more than 90% of the iterations, then this is the best arm.

4 Case Study: A Long-Term, Multi-element Stockpile

The case study presented below illustrates the optimization of the infill drilling

decision for a long-term, multi-element stockpile of a gold mining complex in

Nevada, USA. This complex consists of two open-pit mines, an underground mine

and several stockpiles. The downstream processing includes an autoclave, an oxide

mill and multiple heap leaches. Deleterious compounds are co-simulated with the

gold grade because of strict grade requirements on them to guarantee efficient

processing recoveries. Knowledge of the grade of these compounds can assure

blending of ore from different sources to meet the constraints at the processing

facilities. The compounds being considered are sulphide sulphur, organic carbon

and carbonate, next to gold as the paying metal.

For this case study, three classes of patterns are considered, each corresponding

to a different budget. The first budget class has patterns with 5 holes, the next class

has patterns with 10 holes and the last class has patterns with 15 holes. Eight

patterns, based on the ideas provided to us by the mine site, are considered for the

optimization in each class. For every class the procedure is repeated for 20 simula-

tions as possibly ‘true’ stockpiles to guarantee that the results are independent from
the selected possibly ‘true’ stockpile. This also assesses the performance of the

patterns under geological uncertainty. A validation step tests all patterns with

simulations not used in the optimization procedure and shows that the results are

independent of the simulations employed.

4.1 Stockpile Simulations

The exploration drilling is done on a regular grid with a 40 ft spacing. In total there

are 104 drill holes with one sample each. The height of the stockpile is 20 ft. The

size is � 200,000 m3, which corresponds to � 400 kton. Twenty simulations are

generated, each containing 204 blocks within the shape of the stockpile. The block

size is 30� 30� 20 ft. This is the same as in the mines feeding the stockpile

because the same mining selectivity is used for both the stockpiles and the mines.
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All simulations below are generated with the direct block MAF simulation method

by Boucher and Dimitrakopoulos (2009).

Figure 2 shows the material variability of three stockpile simulations at the block

level. The material is classified based on the material classification guide provided

by the mining complex. The mining complex flags the stockpile under consider-

ation as medium sulphide material, but Fig. 2 shows that high- and low-sulphide

material usually dominates the material distribution in the stockpile. This trend is

carried on in the remaining simulations.

Figure 2 also shows that there is a large amount of spatial material variability in

the stockpiles, within one simulation but also from one to another simulation. This

observation is the main motivation for the application of the proposed method to

stockpiles. It shows that more information is required to assess the local-scale

variability in stockpiles. This is especially true for the stockpile in this mining

complex because, in some periods, it is the main contributor to the processed blend

at the autoclave. This stream has tight constraints on the deleterious compounds like

a maximum organic carbon content and an upper and lower bound on the sulphide

sulphur–carbonate ratio. Figures 3, 4, 5 and 6 show the spatial material variability in

two simulations for the four variables of interest. All simulations show that the

same main features are respected between two simulations but that there is also

local-scale variability within each simulation.

4.2 Tested Patterns

Figures 7, 8, 9 and 10 below show the eight patterns that are considered in the

optimization. The figures always show all 15 additional drill holes for each pattern

on top of the initial exploration drill holes which are represented as black crosses.

However, if only the red squares (‘first five holes’) are considered, the patterns

represent the budget class with five holes per pattern. If the red squares and the

green triangles (‘second five holes’) are considered, the patterns represent the

budget class with ten holes per pattern. The patterns have the same numbering

Fig. 2 Spatial material variability of the stockpile simulations at the block level
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over the budget classes because they are always based on the same idea for the

location of the holes. For example, pattern 1 is designed as being equally spread and

pattern 2 to target the high-grade gold zone in the top of the stockpile.

Fig. 3 Gold grade variability in two simulations at the block level

Fig. 4 Sulphide sulphur content variability in two simulations at the block level

Fig. 5 Organic carbon content variability in two simulations at the block level
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Fig. 6 Carbonate content variability in two simulations at the block level

Fig. 7 Pattern 1 (left) and pattern 2 (right) with 15 additional drill holes

Fig. 8 Pattern 3 (left) and pattern 4 (right) with 15 additional drill holes. The black line indicates
that the green triangle below it belongs to pattern 3
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4.3 Case Study Results

Figure 11 shows the convergence results for the algorithm over all simulations for

every pattern in each budget class. Convergence results show how often the

algorithm has converged on that specific pattern in that budget class for the

20 simulations as a possibly ‘true’ deposit. The pattern that has been converged

upon the most is called the ‘winner’ of that budget class. For the 10- and 15-hole

budget classes, there is always a clear winner in pattern 1. However, for both budget

classes, it has to be noted that pattern 7 is also a strong performing pattern,

especially for the 15-hole budget class. The observation on a winner for the five-

hole budget class is much less clear. Pattern 2 has 30% convergence, but pattern

1, 4 and 5 each have 20% too. This is only a small difference, and no strong, clear

decision on the winner can be made from this.

Figure 12 shows the average reward over all 20 simulations for every pattern in

each budget class. For the 10- and 15-hole budget classes, it is pattern 1 that has the

Fig. 9 Pattern 5 (left) and pattern 6 (right) with 15 additional drill holes. The black line indicates
that the green triangles below it belong to pattern 5

Fig. 10 Pattern 7 (left) and pattern 8 (right) with 15 additional drill holes

206 R. Dirkx and R. Dimitrakopoulos



highest average reward, as is expected from the convergence results in Fig. 11.

However, the results for the five-hole budget class are not as expected in the sense

that pattern 2 does not have the highest average reward. Pattern 1 has the highest

average reward for the five-hole budget class. Therefore, it is concluded that pattern

1 is more robust against geological uncertainty than pattern 2. Figure 12 strengthens

the observation of no clear winner for the five-hole budget class by demonstrating

that the average rewards for all patterns are very close to each other. It is hard for

the MAB to distinguish between patterns with such similar rewards.

The differences between the running times observed in Table 1 can also be

explained by the observations in Figs. 11 and 12 mentioned above. Because the

five-hole patterns yield similar average rewards, the algorithm has a hard time

finding the winner, and therefore, it requires more iterations, and thus time, to

evaluate the patterns over all simulations. The number of iterations to evaluate all

patterns within one budget class for all simulations is very high. In fact, it is higher

than the brute-force approach, which tests every pattern 20 times for each simula-

tion and then takes the average. This brute-force tactic would result in

(8� 20� 20¼) 3200 iterations to evaluate each budget class. The numbers higher

than 3200 in Table 1 come from just a few simulations with hard convergence

problems that add a lot of iterations to the total count.

Table 1 also shows the number of times the algorithm did not converge for every

budget class. The number of non-converging simulations is low for every budget

class. To get it to zero, it requires unnecessary large amounts of iterations because it

Fig. 11 Convergence over all 20 simulations for all patterns and every budget class
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is always possible that two patterns perform very similarly for a certain simulation.

Therefore, it is not really seen as a problem because the algorithm still identifies the

two patterns that perform equally well in these cases. As a tiebreaker, the pattern

with the highest average reward is attributed the convergence. In most cases one of

the tied patterns is pattern 1. If ties are broken in the opposite way, the results

remain unchanged.

Figure 13 compares the performance of the patterns over the budget classes. This

graph demonstrates the profile (P10-P50-P90) on the best pattern’s reward over all

simulations compared to the average of the rewards of all patterns over all simu-

lations. The tenth percentile (P10) represents the downside risk, and the ninetieth

percentile (P90) represents the upside potential of the best pattern under geological

Fig. 12 Average reward over all simulations for all patterns and every budget class

Table 1 Overview of the statistics of the algorithm for each budget class

Budget class Running time Number of iterations Number of times not converged

5 holesa 24 h 24 min 46 s 25,465 3

10 holes 13 h 9 min 31 s 13,085 4

15 holes 8 h 41 min 31 s 9378 2
aA different set-up is used for the five-hole pattern optimization. This set-up allows for 5000

instead of 2000 iterations as the maximum iterations without convergence. Another addition to this

set-up is a forced exploration phase at the start of the algorithm forcing each pattern to be played

20 times before the algorithm starts doing its normal steps. Both measures are taken to overcome

convergence issues observed in initial tests
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uncertainty. Figure 13 shows that the five-hole budget class performs worse than the

other two budget classes. The five-hole best pattern average is lower than the

all-pattern average for both other budget classes. Also, the downside risk is much

higher, and the upside potential is much lower. Therefore, in combination with the

reasons mentioned above, it is not recommended by the author to drill a five-hole

pattern in this stockpile. Purely based on performance, pattern 1 with 15 holes is

better than pattern 1 with ten holes. However, the extra five holes also cost more to

drill. Another observation is that the downside risk for the 10- and 15-hole pattern

1 is almost equal. This means that they both guarantee similar results in the worst-

case scenario. This is an extra argument in favour of pattern 1 with ten holes,

especially if there are constraints on the budget that are more important than having

the best possible knowledge.

4.4 Validation of the Result

As a validation step, the performance of the patterns is tested on an alternate set of

20 simulations, which are not used in the optimization process. Every pattern is

tested 20 times for each simulation in the alternate set. One test is the same as the

Fig. 13 Profile of the best pattern for every budget class versus the all-pattern average for every

budget class
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evaluation procedure in the MAB described above; the stockpile is re-simulated

based on the pattern data from the possibly ‘true’ stockpile plus the original data

and the reward is calculated.

Figure 14 is the counterpart of Fig. 13. For ease of comparison, the results

presented in Fig. 13 are summarized with the black lines in Fig. 14. The black lines

are always very close to their counterpart from the tests on the alternate set of

simulations. The results of Fig. 14 lead to the same conclusion as made for Fig. 13

above. The validation demonstrates that the proposed optimization method pro-

duces results independent of the used simulations.

5 Conclusion and Future Work

The case study presented above shows that the proposed MAB algorithm works as

intended. It is able to select the best pattern within a set of patterns of the same

budget and provides a decision tool to select the best pattern between sets of a

different budget. Also, the case study demonstrates how the method successfully

quantifies the influence of geological uncertainty on the performance of an infill

Fig. 14 Profile of the best pattern for every budget class versus the all-pattern average for every

budget class based on the reward from the alternate set of simulations
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drilling pattern. Additional to the performance of the proposed infill drilling

optimization algorithm, it is demonstrated that stockpiles can be effectively simu-

lated and that their local-scale variability can be much higher than expected. The

method is applied to a stockpile in this case study, but its applicability is not limited

to stockpiles; an infill drilling for any deposit can be optimized using the proposed

method.

For future work, it would be interesting to look into updating the original

simulation after every play according to the infill drilling data, instead of

performing a re-simulation at every iteration. Two methods that are suitable for

this are conditional simulation by successive residuals (Jewbali and

Dimitrakopoulos 2011) and ensemble Kalman filters (Benndorf 2015). Another

improvement to the algorithm could be to let it choose the locations of the

additional drill holes independently, rather than to constrain it to a set of predefined

patterns. A different focus for future research is the application of the MAB

framework to other applications in the mining industry.
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Fixing Panel Artifacts in Localized Indicator
Kriging (LIK) Block Models

William Hardtke and Celeste Wilson

Abstract Three types of panel artifacts are created by the localized indicator

kriging (LIK) methodology. Two of these artifact types can be fixed (eliminated)

by a two-step process that consists of averaging models with different panel origins

and then performing a global re-localization. The first type of panel artifact, and

probably the most important, is caused by change-of-support transformations,

which are independent and applied on a panel-by-panel basis. The second type of

artifact is the most common but is usually undetectable. This artifact is caused by

the fact that there are several possible LIK models where the only difference is the

panel origin, and although each of the resulting models has the same global

distribution, the high-grade blocks change location. The third type of artifact is

caused by using a search ellipse that is too large (nonstationary), which is more

typical in areas where drill data is sparse. Unlike the first two artifact types, this type

needs to be fixed by adjusting search parameters. Artifacts should be eliminated

from LIK models whether they are obvious as in the case of those caused by large

change-of-support transformations or are simply the added spatial noise caused by

having more than one origin.

1 Introduction

The LIK methodology uses the histograms (probability distributions) from a mul-

tiple indicator kriging (MIK) estimation, which are created using a large block size

(panels), and localizes those distributions into smaller SMU-sized blocks using an

ordinary kriging (OK) model as a localizer (Hardtke et al. 2009). The concept of

using one model to localize the distribution of a second estimation that was done at

W. Hardtke (*)

WCH Consulting LLC, 9808 S. Rosewalk Dr., Highlands Ranch, CO 80129, USA

e-mail: william.hardtke@yahoo.ecom

C. Wilson

Newmont Mining Corp, Elko, NV, USA

e-mail: celeste.wilson@newmont.com

© Springer International Publishing AG 2017
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a different scale was first presented by Marat Abzalov for use with uniform

conditioning (Abzalov 2006). Although LIK typically yields resource models that

have both the desired global target distribution and excellent location for the block

values within the panels, there is always at least some degree of global imprecision

in the location of the values that is caused by the panels. Any change in a block

value that is due solely to the panel location can be referred to as an artifact, but

there is no reason why they should be accepted as an innate part of a LIK model.

There are three types of artifacts and the most common type is undetectable and

in most cases it does not have to be eliminated or even addressed. This type of

artifact, which can be referred to as a change of origin artifact, is found in every LIK

model and is simply the fact that a change of panel origin changes the value of every

block in the model. Unless the exact value of an individual block is important as

perhaps may be the case in a high-grade underground mine, this type of artifact can

be ignored.

The second type of artifact is caused by change-of-support transformations and

usually needs to be addressed because this type of artifact can be incredibly obvious

to the point that they make the model unacceptable. This type of artifact arises

because the transformations are done independently on a panel-by-panel basis.

Because the transformations cause all the block values within the panel to become

closer to the mean value of a panel, adjacent panels with dissimilar mean values can

suddenly become quite visible. In general, the greater the transformation (the

amount of variance reduction), the more pronounced the panel boundaries become.

The third type of artifact that is caused by having too large a search for the size of

the panel is referred to as a non-stationarity artifact. This type of artifact is much

more obvious in areas with sparse data and usually results in a pattern where each

panel has its highest-grade block in the same relative position. In most cases this

type of artifact is only cosmetic and unimportant because it generally occurs in

areas that will be classified as inferred.

In any LIK model, there is a defined number of possible panel origins that is

equal to the number of SMU-sized blocks per panel. Each of these possible panel

origins will result in a unique LIK model where the block values vary locally but

have a nearly identical global distribution. It is analogous to a simulation where all

of realizations are equally probable and none of them is better than the others.

However, because there are a finite number of panel origins for any LIK model,

they can easily be combined into a single “best” answer.

Two approaches for combining LIK models to eliminate artifacts were tested

during this study. In the first approach, the value for each block was randomly

selected from all the possible LIK models. This resulted in a final model that

eliminated all the artifacts while retaining the original global distribution, but it

added a degree of spatial variability that probably is not real. This approach was

abandoned early on and is not presented here.

The second approach was to average all the blocks from each of the LIK models

into a single block model. This resulted in a model that had a very good spatial

distribution for the gold, but the averaging of values lowered the variance of the

global distribution. Then in order to correct the smoothing, the original distribution
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was re-localized using the averaged block model as the localizer. The final

re-localized model had the best possible local distribution of gold combined with

the desired global distribution. This approach gave very good results and the

remainder of the paper assumes this methodology.

2 Panel Artifacts Caused by Origin

An LIK model with no change-of-support transformation typically shows little or

no edge effect at the panel boundaries but does have the change of origin artifacts.

Although there are no obvious grade changes at the panel boundaries, there is

definitely a spatial difference in LIK models that are identical except for the origin

of the panels. The LIK models in Figs. 1 and 2 have nearly identical global

distributions but are quite different at the local block scale.

This small-scale variation in the LIK models is also a type of panel artifact, and

although the model is pleasing to the eye, there is still some question about the true

location of the high-grade blocks. In many cases a single LIK model can be

arbitrarily selected and used as long as the mine design is not too sensitive to the

location of individual high-grade blocks. However, untransformed models are

seldom used because even a model at the SMU size is not normally mineable and

needs additional smoothing.

3 Panel Artifacts Caused by Change of Support

Change-of-support transformations create panel artifacts because they are applied

independently on panel-by-panel bases. The transformation changes all of the block

values inside a panel, moving them toward the mean grade of that panel (Hoerger

1999). These artifacts are not always obvious if the transformation (variance

reduction) is small and the grades of the adjacent panels are not too disparate.

Figure 3 shows an LIK model with a moderate amount of variance reduction

(k¼ 0.3), and artifacts are not very noticeable, but in Fig. 4 the variance reduction

factor is increased to k¼ 0.05, which was the target distribution for this deposit

causing the panel boundaries to become quite visible and the resulting model is

probably unacceptable. (The k factor referred to in this paper is from the Hoerger

paper and is the variance reduction factor that ranges from 1.0 to 0.0 where 1.0 is no

reduction and 0.0 is the maximum reduction.)

In Fig. 4, the increased amount of transformation within the panel with the mean

grade of 1.542 (upper row, second from the left) causes the low-grade (blue and

cyan) values to disappear at the expense of the high-grade magenta blocks. That
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change in the panel distribution results in a very obvious panel boundary where it

comes into contact with the low-grade panel directly below it. In a case as obvious

as this, the contact between ore and waste actually changes to the panel boundary,

which would be a real problem for an engineer trying to design a mine.

Fig. 1 Untransformed LIK model (no. 10)

Fig. 2 Untransformed LIK model (no. 17)
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4 Panel Artifacts Caused by Non-stationarity

LIK models are very sensitive to data density, and when the panel size is too small

or the search distance is too large, strange-looking typically repetitive artifacts are

usually created. This type of artifact is most common in low-grade areas where

panels should be totally low grade, but the search ellipse is large enough to include

high-grade composites that are well outside the panel being estimated.

In Fig. 5, large search distances result in high-grade blocks being estimated in an

area that is obviously low grade (solid blue squares are low-grade drill intercepts).

This is clearly a situation where the local search ellipse is nonstationary in nature

Fig. 3 LIK model (10) with a moderate amount of variance reduction

Fig. 4 LIK model (no. 10) with an extreme amount of variance reduction
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and can easily be fixed by changing the search parameters. The same sort of thing

happens all the time in OK models but is not easy to see because the effects of the

high-grade composites in the search are spread more evenly over all the blocks.

However, LIK partitions the misplaced high-grade values into one or two blocks per

Fig. 5 LIK model showing non-stationarity artifacts

Fig. 6 The same LIK model with an appropriate search ellipse
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panel making them very easy to see. In this example of an area that should be all

low grade (blue <0.2 g/t), the LIK model has created a few high-grade blocks (red

>1.0 g/t).

This type of artifact can usually be fixed by changing the kriging parameters in the

MIK model (panel size). In some cases, where the search cannot be shortened, the

panel size probably needs to be increased. The methodology of averaging and making

a global re-localization does not eliminate this type of artifact; it merely changes its

location. Figure 6 shows the same area with a more appropriate search ellipse.

5 Example of Artifact Removal

This example of artifact removal (approach 2) is in a low-grade, high-nugget, gold

deposit that requires a large change-of-support transformation. The appropriate

amount of smoothing was determined by matching the LIK model to a blasthole

block model (the target distribution). The blasthole model indicated that an extreme

amount of grade smoothing would be needed, so a variance reduction factor of 0.05

was selected.

The two LIK models shown in Figs. 7 and 8 are identical except that they have

different panel origins. Both of the models have obvious artifacts along the panel

Fig. 7 LIK model (10)
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boundaries that were created by the large change-of-support transform. These

artifacts take the form of the panels, which contain 16 blocks (4 by 4) and is most

noticeable in extremely low-grade (blue) and high-grade (red) panels. It should also

be noted that there are 14 other possible LIK models and that they all have almost

exactly the same global block distribution.

It is not always clear whether artifacts need to be removed from a model or not,

but in this example the answer is straightforward because the contacts between ore

and waste are not be square as these model shows in many areas. Artifact removal

always seems to improve the LIK models, and the only downside is the added work,

so if there is any doubt as to whether it is needed, it should probably be done.

Continuing on with this example, the 16 possible LIK models were averaged

together into a single block model. The idea being that the best value for any block

would be the average of all the values for that block. It is evident in the averaged

block model in Fig. 9 that the panel artifacts are gone and the blocks still respect the

drill data, but unfortunately the averaging of the block values has increased the

amount of smoothing. In short, the location of the gold is quite good but the

averaged model no longer has the desired global distribution.

Therefore, the final step is to “tweak” the model, so it has the correct global

distribution by doing a global re-localization using the averaged grid as the

localizer. In this step all the blocks are ordered from smallest to largest, and the

values for one of the original LIK distributions are substituted for the corresponding

Fig. 8 LIK model (17)
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Fig. 9 Averaged model from 16 LIK models

Fig. 10 The final re-localized LIK model with artifacts removed
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block in the averaged model. The target distribution can be any 1 of the 16 LIK

models because they have the almost exactly the same distribution. Then it is a

straightforward step of sorting the blocks in both models (common blocks only) and

replacing the averaged values with the corresponding target value.

Figure 10 contains an example of the final model. It has no panel artifacts; it has

the desired distribution, and the location of the blocks is probably as good as it can

be. It looks very much like the averaged model, but after close examination it

definitely has less smoothing like the target distribution.

Figure 11 shows the distribution of blocks before and after the artifact removal,

and there is very little difference between the original distribution with artifacts

(blue) and the final distribution after artifact removal (red).

6 Summary

All LIK models have panel artifacts but they are not always important enough to

need to be removed. In most cases artifacts are just cosmetic and do not affect the

quality of the model or the subsequent mine design, but when they need to be

eliminated, it can be done with a two-step process. The first step is to make a new

Fig. 11 Model distribution before and after fixing the artifacts
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localizer by averaging all of possible LIK models into a single model. The second

step is to adjust this new averaged model so it has the same global distribution as

any of the LIK models.
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Implications of Algorithm and Parameter
Choice: Impacts of Geological Uncertainty
Simulation Methods on Project Decision
Making

Arja Jewbali, Bruce Perry, Lawrence Allen, and Richard Inglis

Abstract Uncertainty in geological models and grade uncertainty are two major

contributors to the total resource uncertainty of a mining project. Previous attempts

at determining uncertainty in geological models using methods such as MPS

(multiple-point statistics), SIS (sequential indicator simulation), and multiple appli-

cations of RBF (radial basis functions) with different parameters have shown that it

is nontrivial; the uncertainty profiles are dependent on the method and the param-

eters selected. Most of the methods tested require additional information in the form

of either local probabilities or proportions derived from the existing geological

interpretation or a conceptual geological model in the form of a training image. This

makes some methods amenable to use in the early stages of a project because the

method allows for a more complete testing of different geological concepts. In later

stage projects where there is an increased level of confidence (due to the amount of

data collected) in the geologic interpretation, methods that achieve ranges of

uncertainty around the interpretation likely provide a more realistic assessment of

uncertainty. This paper details the continuation of research into geostatistical tools

suitable for the evaluation of geological uncertainty in order to further understand

the intricacies of the methods and the impact of the technique on the resulting

uncertainty profile. Suggestions of which methods to use based on the amount of

geological information available are provided.

A. Jewbali (*) • B. Perry • L. Allen • R. Inglis

Newmont Mining Corporation, Denver, CO, USA

e-mail: Arja.Jewbali@newmont.com; robert.perry@newmont.com;

Lawrence.Allen@newmont.com; Richard.Inglis@newmont.com

© Springer International Publishing AG 2017
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1 Introduction

Resource uncertainty analysis incorporating both grade and geological uncertainty

is done in various stages of project development to quantify the risk to the mine

design and the mine schedule and the impact on the financial parameters of the

project. The geology model is an important factor in determining the grade and

tonnage of the resource since it provides fundamental control over the resource

estimation process. For some projects uncertainty due to the geological interpreta-

tion forms a large component of the total resource uncertainty, and not taking this

into account likely underestimates the risk in the resource estimate.

Trials using geostatistical methods indicate that generating alternate geological

models is not trivial; uncertainty profiles depend on the method and parameters

chosen. In addition, most of the methods tested require additional information in the

form of rock-type proportions derived from the existing geological interpretation or

a conceptual geological model in the form of a training image. Before application of

the geostatistical tools, the practitioner must first decide how much confidence

should be placed in the existing geological model. What is the quality of the

geological model? Should the uncertainty interval for mineral content from simu-

lated models be centered on the geology model? Answers to these questions depend

on how much information has been collected, how well one understands the

geologic controls of the mineralization, and how much confidence one has in the

technical capability of the geologist who created the geology model. Blind appli-

cation of simulation methods and parameters can lead to simulated models of

geology with more or less mineralized volume when compared against the geology

model. Does this mean that the resource model incorporating all existing geological

knowledge is pessimistic or optimistic, or is this result a consequence of the

method? These questions should be considered during uncertainty quantification

since the results can have severe consequences for the project.

Moreover, other complications encountered by practitioners trying to build

simulated models of geology include:

• The nature of the data collection process. Mining companies tend to preferen-

tially collect more information in mineralized geological domains. It is not

uncommon for non-mineralized geological domains to have no or very

limited data.

• For methods that require a training image (multiple-point methods). A training

image is necessary to derive multiple-point statistics; however, developing

training images for a class of ore deposits is difficult because most ore deposits

tend to have nonstationary characteristics. The use of resource models as

training image is not recommended since the models are typically smooth and

nonstationary and are unlikely to have the right level of connectivity and

multiple-point statistics.

It will be demonstrated that some simulation methods are amenable to use in the

early stages of a project because the method allows for a more complete testing of
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different geological concepts. In later stage projects where there is an increased

level of confidence (due to the amount of data collected) in the geologic interpre-

tation, methods that achieve ranges of uncertainty around the interpretation likely

provide a more realistic assessment of uncertainty (Jewbali et al. 2014).

2 Categorical Simulation Methods

This section gives a brief description of the categorical methods applied. The

techniques were used to generate simulated models of the main mineralized domain

for two deposits. The geostatistical tools trialed include:

• Indicator-based methods (SIS-LVM) (Deutsch 2006).

• Methods based on distance functions (Munroe and Deutch 2008a, b; Wilde and

Deutsch 2012).

• Methods based on multiple-point statistics (snesim) (Strebelle 2002; Remy et al.

2009).

• Methods based on radial basis functions (Leapfrog®) (Stewart et al. 2014) using

different sets of parameters. While not a simulation method, Leapfrog® is

increasingly used to quickly build alternate models of geology and to determine

the impact of the geological interpretation on project financials.

2.1 Sequential Indicator Simulation with Local Varying
Mean (SIS-LVM)

To determine uncertainty related to the geological interpretation, a sequential

indicator simulation (SIS) approach was used. In SIS, each mutually exclusive

rock type (category) is expressed as an indicator variable. These indicators are

simulated, and for every location, a category is drawn according to the local

conditional distribution function determined through simple kriging. Drawbacks

of the SIS approach include the unstructured appearance of the simulations, the

inability to impose structural control over the simulations, and its inability to handle

the nonstationary nature of rock-type proportions. To partially account for these

drawbacks, a deterministic categorical variable model (usually the geologic domain

of interest) is filtered to calculate local varying probabilities near the boundaries of

the different categories, i.e., the contacts are uncertain (Deutsch 2006). The size of

the filter determines the width of the uncertainty region adjacent to the contact and

is usually related to drill spacing, since the region of uncertainty should decrease as

drill density increases. Next, simple kriging is used to derive the local conditional

distribution.
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I*LVM u; kð Þ � pk uð Þ ¼
X n

/¼1
μskα uα; kð Þ i uα; kð Þ � pk uαð Þ½ � ð1Þ

where

I�LVM(u; k) is the simple kriged estimate at location u for category k.
pk(u) is the probability of category k at location u.

μskα (uα; k) are the simple kriging weights for data at location uα for category k.
i(uα; k) are the indicators for category k at data location uα.
pk(uα) are the local probabilities for category k at location (uα)

The estimates for each category are performed independently which can lead to

order relations deviations. Due to the noisy nature of the simulations, a post-

processing step is usually applied to clean the simulations up (Deutsch 2006).

2.2 Categorical Simulation Using Distance Functions

This method is based on the interpolation of a signed distance function built using

conditioning data. The distance function can be seen as the distance between a data

point itself and the nearest sample belonging to another domain. Positive and

negative distances are used to distinguish between inside and outside a domain.

Distances depend on the orientation, geologic shape, and extension of the rock

types. The methodology is as follows (Munroe and Deutch 2008a, b; Wilde and

Deutsch 2012):

• Code all data points as either inside or outside the domain of interest.

i u/ð Þ ¼ 1 if inside domain of interest at u/
0 otherwise

�
/¼ 1, , n ð2Þ

where u is the location vector, / is the sample index, and n is the number of

samples.

• Next calculate the distance for each sample to the nearest sample located in

another domain. If u/ is inside the domain, the distance is set to negative or else

the distance is positive. A factor C is added (or subtracted) to the distance

function value which increases the difference between positive and negative

values. The C factor is calibrated using a jackknifing approach.

df u/ð Þ ¼ þ u/ � uβ
� �þ C if i u/ð Þ ¼ 0

� u/ � uβ
� �� C if i u/ð Þ ¼ 1

�
/6¼ β ð3Þ

• Interpolate the distance function on a regular grid using a global interpolator.

The boundary is located between the distance function estimates of �C and C.
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Simulate the boundary only for locations where the distance function estimates

lie between �C and C.

df l uð Þ ¼ 2CG�1 yl uð Þ� �� C ð4Þ

where dfl(u) is the simulated distance function value, yl(u) is a unconditionally
simulated standard normal value, and G�1 is the standard normal CDF value for

yl(u).
• Determine whether a location u is inside or outside a domain, by comparing the

simulated distance function value against the interpolated distance function

value.

i u/ð Þ ¼ inside if df l uð Þ > estimate

outside if df l uð Þ < estimate

�
ð5Þ

This methodology is geared toward binary systems (in and out a particular

domain) and does not handle multiple domains. The calculated distance function

is nonstationary which can make variogram inference challenging. Another

approach using distance functions can be found in Cáceres et al. 2011.

2.3 Multiple-Point Simulation (MPS)

A shortcoming of SIS and any two-point-based methods is that it fails to reproduce

complex nonlinear geological features as seen in mineral deposits. This is due to its

reliance on the variogram, which can only characterize the linear relationship

between data points. Multiple-point simulation (MPS) (Guardiano and Srivastava

1993; Strebelle 2002; Remy et al. 2009) is a technique which characterizes the

relationship between points with higher-order statistics. In doing so it is able to

reproduce complex patterns and domain interactions (Strebelle 2002). MPS

requires the use of a stationary training image (TI) to extract the higher-order

statistics at various scales. However, storing and deriving the multiple-point statis-

tics from the training image require additional RAM and CPU time. For this study,

snesim (Strebelle 2002; Lui 2006) is used to generate simulated models of the

different mineralized domains.

2.4 Leapfrog® Models

To build alternate models, an indicator approach utilizing radial basis functions

(RBF) was used to produce a range of results. The inputs to the RBF interpolant are

the categorical data in the form of a numerical indicator, the variogram, and a
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structural trend which is similar to locally varying anisotropy. The approach allows

for locally varying directions of continuity. Volumes were created at desired values

to represent probability shells. Leapfrog® software was used for this approach. The

RBF interpolant is similar to the general expression of dual kriging (Stewart et al.

2014).

s xð Þ ¼
X

i
ωiφ x� xij jð Þ þ

XK

k
ckqk xð Þ ð6Þ

where

xi are the data locations over which the interpolation is to be constrained.

ωi are RBF coefficients (weights).

φk(x) is a spatial distance function (the RBF – from which the method takes

its name).

The term on the right refers to the set of K drift functions (qk(x)), each having a

coefficient (ck) applied globally across all data.

3 Case Studies

This section details the use of the geostatistical tools described above to build

simulated models of the main mineralized domains for the Merian deposit located

in East Suriname and for the Subika deposit located in the Ahafo Region in Ghana.

It starts with a description of the geologic settings of the two deposits. While both

deposits are orogenic in genesis, each has different types of controls on minerali-

zation from which to assess uncertainty.

3.1 The Merian Deposit

The Merian deposit lies within lower Proterozoic-aged rocks of the Guiana Shield

in northeast Suriname, South America, approximately 100 km east of the capital

Paramaribo (Fig. 1). In Suriname the Guiana Shield is composed of distinct, east-

west trending belts of low-grade metamorphic rocks which are separated by large

areas of granitic rocks and gneisses. Gold mineralization within the Merian deposit

occurs as a vein-type Proterozoic lode-gold deposit; gold is found within and

immediately adjacent to quartz veins, quartz stockworks, and irregular quartz

breccia bodies. Host rocks are composed of highly folded sandstones and siltstones.

Gold mineralization at Merian occurs over a strike length of approximately 3.5 km,

elongate in a northwest-southeast direction, and over a width of 200–600 m.

The Merian geologic model was constructed using the following attributes

collected from drill core logging:
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• Stratigraphy, faults, and folds

• Oxidation states (saprolite, fresh rock, etc.)

• Quartz vein density

• Quartz breccia

Uncertainty analysis focused on the uncertainty in the interpretation of the

Quartz vein density shape which encompasses the main mineralized zone.

3.2 Simulation Methodology for Merian

Percent quartz vein content is recognized as the primary control on the geometry

and grade of gold mineralization at Merian. Figure 2 displays three sections of the

Merian mineralized envelope as coded in the Merian resource model. In tightly

drilled areas, the drillhole spacing is approximately 25 m across and 25 m along

sections.

In order to build simulated models of the quartz vein density shape and to assess

the uncertainty in its contained volume, categorical simulations were generated

using various techniques:

• Fifty simulations using the SIS-LVM approach with local varying probabilities

were calculated using the geological interpretation and moving window sizes of

12� 12 m (0.5 times the tightest drillhole spacing), 25� 25 m (the tightest

drillhole spacing), 50� 50 m (twice the tightest drillhole spacing), and

Fig. 1 Location of the Merian deposit
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75� 75 m (three times the tightest drillhole spacing) (Fig. 3). It is expected that

larger filter distances will yield wider bands of uncertainty. Besides the condition-

ing data, this method uses the geological interpretation (as per the resourcemodel).

• Fifty simulations were generated using the distance function approach. Three

C factors were used to determine the sensitivity of the uncertainty profile to the

C factor (C¼ 20, approximately equal to the tightest drillhole spacing; C¼ 50,

twice the tightest drillhole spacing; and C¼ 100, four times the tightest drillhole

spacing) (Fig. 4). It is expected that larger C factors will result in wider

Fig. 2 Main mineralized domain for the Merian deposit with drillhole data. The area within the

white boundary (right) is used for the study

Fig. 3 Local varying probabilities to be inside the mineralized domain derived from the resource

model (plan view) – high probabilities in warmer colors
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uncertainty intervals. The geological interpretation was initially used to code the

data as being inside or outside the mineralized domain. The logged information

from the drillholes could have been used instead; however, there was some

grouping of highly variable intervals into the geologic interpretation, which

would not have been accounted for.

• Fifty multiple-point simulations using snesim, where the resource model in

Fig. 2 was used as the training image (servo system factor of 0.5).

• Alternate models using Leapfrog®: in addition to the simulations, three volumes

were produced using RBF indicator probability shells derived from conditioning

data. Volumes were analyzed based on selecting volumes contoured from a range

of interpolated values (P30 to P50). Indicator statistics were analyzed to determine

the balanced shell (P38) which is the volume that includes as many indicator data

misclassified inside the shell as it excludes indicator data misclassified outside the

shell and to determine the Russian doll shell (P30) where the next larger volume

incrementally includes data where the indicator mean is less than the probability

of the shell. In order to produce a range of results, an arbitrary smaller (conser-

vative) volume was selected at P46 (Inglis 2013).

3.3 Volumetric Uncertainty for Merian

Plan views of the generated simulations for the various methods are shown in

Figs. 5 and 6. The figures show that the simulations generated by SIS-LVM are

Fig. 4 Interpolated distance function for different C factors (red represents distances between –C
and C (plan view)
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Fig. 5 Simulation results for SIS-LVM (plan view)

Fig. 6 Simulation results for snesim and the distance function approach (plan view)
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noisier compared to the model. This is especially so, when a large window is used to

generate the local probabilities. As shown in Fig. 3, this creates lower probabilities

in areas where the probability to be inside the mineralized shape was previously

high (with a smaller window size). This causes the simulations to have a dispersed

appearance. After cleanup, the simulations for the 25� 25, 50� 50, and 75� 75

still do not display the same level of continuity in the north-south direction seen in

the resource model. The snesim simulations also appear noisier compared to the

resource model. The distance function approach produces simulations that look

similar to the resource model. Some artifacts are visible especially with large

C factors which tend to create “donut holes” inside a mineralized volume.

Figure 7 displays the uncertainty profile for the mineralized volume. It shows the

smallest, largest, and average (over all 50 simulations) volume. It also shows the

width of the uncertainty interval (difference between the smallest and largest

volume). In general from these figures, the following can be derived:

• For most of the methods, the volumes fluctuate above or below the volume

defined by the resource model. Only three methods (SIS-LVM 75� 75 m with

post-processing clean, Leapfrog®, and distance function C50 and C100) contain

the volume defined by the resource model in their uncertainty interval. Whether

simulation volumes are above or below, the mineralized volume defined by the

resource model depends on the chosen parameters.

• As expected, for the SIS-LVM, the wider the uncertainty window used to

generate the local probabilities, the wider the uncertainty interval. The width

of the uncertainty interval for SIS-LVM (75� 75 m) is wider compared to that of

SI-LVM (50� 50 m). For this approach there appears to be a bias related to the

size of the window used to create the local probabilities. For larger windows the

simulations tend to generate more mineralized volume (i.e., also more

dispersed).

• For the distance function approach, the models derived from larger C factors also

tend to have wider uncertainty intervals. For smaller C factors, the simulated

models tend to filter out small pods of mineralization (zones that one can argue are

more uncertain), which is the main reason the mineralized volume of the simulated

Fig. 7 Uncertainty profile for mineralized volume (left) and width of the uncertainty interval for

mineralized volume (right)
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models is lower compared to the mineralized volume in the resource model. For

larger C factors, this effect is negated due to the large uncertainty window.

• For snesim the width of the uncertainty interval is approximately similar to

SIS-LVM 25� 25 m.

• The Leapfrog® approach delivers the widest uncertainty interval which none of

the other methods are able to match.

In general after simulation of the mineralized volume, simulations of grade are

generated in a hierarchical approach to derive the uncertainty interval for metal,

tonnes of ore, and average grade for annual/quarterly production volumes. If, for

example, the SIS-LVM 12� 12 m was chosen for the geological simulation, one

would tend to think that the resource model was too optimistic. The opposite can be

said for the use of SIS-LVM 50� 50 m, i.e., the model is too pessimistic. If a

distance function approach with C¼ 50 was chosen for the geology simulations,

one would possibly conclude that the resource model is reasonable in terms of

contained volume.

The generation of stochastic simulations of geology that quantify uncertainty

can be difficult, and the end result can be heavily influenced by the parameters and

method chosen. It is therefore imperative that one understands the impact the choice

of method and parameters will have on the uncertainty profile. Most of these

methods (except for Leapfrog®) are based on information derived from the existing

resource model whether through rock-type proportions or resource model as train-

ing image. By doing this there is an implicit assumption that there is some level of

confidence in the resource model. For pre-feasibility or feasibility stage projects

where there is a lot more data available, this assumption might be justified;

however, for early stage projects with far less data, these methods might not be

applicable.

3.4 The Subika Deposit

The Subika deposit is the southernmost of the known Ahafo deposits (Fig. 8) and is

hosted entirely within the granitoid package in the hanging wall of the Kenyase

Thrust. High-grade gold mineralization is focused in a dilatant fracture zone,

locally referred to as the magic fracture zone (MFZ). This zone ranges from 1 to

60 m wide with a halo of lower-grade mineralization extending out to 30 m. A

number of higher-grade ore shoots, which appear to be controlled by dilatant left-

lateral jogs in the MFZ, are recognized and plunge steeply to the southeast.

Quartz-sericite-pyrite and iron-carbonate (QSP-Fe) alteration is the dominant

alteration associated with high-grade mineralization. Alteration fluids appear to

have accessed the MFZ via a network of shallow angle, brittle fractures within an

overall steeply dipping shear zone. QSP alteration intensities are logged as 1, 2, or

3. The combined QSP 2/3 alteration forms the basis of the higher-grade population,

while QSP 1 alteration correlates well with the lower-grade population. These two

236 A. Jewbali et al.



alteration categories have been used to define the geologic framework used in the

resource estimates and are the main focus of this study.

3.5 Simulation Methodology for Subika

For quantification of volumetric uncertainty at Subika, four methods were used,

SIS-LVM, the distance function approach, snesim, and Leapfrog®. All the methods

except for Leapfrog® used the interpreted geologic model as input (Fig. 9) and

Fig. 8 Location of the Subika deposit in SouthWest Ghana

Fig. 9 Subika geology model (left) and block probabilities for alteration type (unaltered, QSP1

and QSP23) (right)
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attempted to reproduce the target input proportions. For these three methods, the

simulated volumes fluctuated slightly above the volume of the resource model, with

the exception of one MPS case. The following methods/parameters were employed:

• Fifty simulated models using SIS-LVM were constructed. The node spacing

was 2� 2� 2 m, and the window of influence applied to the LVM was based

on the average drill spacing (approximately 35 m) within the simulated area

(Fig. 9). This parameter is based on drill spacing which allows block proba-

bilities to be calculated within ranges equivalent to the spacing of hard

information, resulting in bands of uncertainty around geologic features at a

scale similar to the drill spacing. Large filter distances associated with wide-

spaced drilling will yield large bands of uncertainty around interpreted geo-

logic features, while small filter distances associated with close-spaced drilling

will yield tight bands of uncertainty around the same features. This coincides

with the idea that uncertainty should decrease as drilling density increases. In

addition, anisotropy derived from the variogram model was applied to the

calculation of the LVM in order to preserve the preferred orientation of the

structure and mineralization. The resulting SIS with the LVM used as control

is shown in Fig. 10.

• Fifty simulated models were generated using the distance function approach

(only applied to the QSP23 volume). The method being a binary approach

cannot facilitate more than one domain. Simulated models were developed

on 6� 12� 6 m blocks with C factors of 10, 20, and 50 (Fig. 11). Figure 11

also displays the simulated models in 3D, which clearly indicate areas where

the mineralization is quite thin (square box). Areas with limited data also

tend to show edge effects due to extrapolation of the distance function.

• Three alternate models were generated using Leapfrog®. Three volumes were

produced using RBF indicator probability shells derived from conditioning

data. Volumes were analyzed based on selecting volumes contoured from a

range of interpolated values (P30 to P50). Indicator statistics were analyzed to

determine the balanced shell which is the volume that includes as many

indicator data misclassified inside the shell as it excludes indicator data

misclassified outside the shell and to determine the Russian doll shell where

the next larger volume incrementally includes data where the indicator mean is

less than the probability of the shell. In order to produce a range of results, an

arbitrary smaller (conservative) volume was also selected (Inglis 2013).

• Fifty simulated models were generated using snesim. This case was developed

on 6� 12� 6 m blocks, using the interpreted geologic model as the training

image (Fig. 12). Three different scenarios were developed, where the servo

system factor was modified in each run (0.1, 0.5 and 0.9). This parameter

controls how snesim reproduces the target input proportions from the TI. The

higher the factor, the better the reproduction of the input target proportions. The

selection of this value is somewhat subjective and should be chosen with the

quality of the geologic model in mind. There are other parameters that have an

impact on the result, but they were not tested during this exercise.
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Fig. 10 Geologic model and SIS-LVM results (cleaning set to 1, mild)
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3.6 Volumetric Uncertainty for Subika (QSP1 and QSP23)

A summary of the uncertainty profiles for QSP1 and QSP23 is shown in Fig. 13.

Note that the SIS-LVM and MPS 0.5 show similar results, while MPS 0.1 results in

a wider range of uncertainty and more volume than any of the other techniques.

MPS 0.9 on the other hand has a much smaller range of uncertainty and appears to

be biased low on volume. It is understandable that the range of uncertainty would

diminish with an increasing servo system factor because reproduction of the input

target proportions is more strictly enforced; however, the reduction in volume is not

so easily explained.

Fig. 11 Interpolated distance function for different C factors (red) represents distances between –
C and C (plan view) and 3D view of simulated models (for QSP23) generated with the distance

function approach (different C factors). Notice edge effects (circle) where there is limited data

Fig. 12 Geologic model

and snesim (servo system

factors (SSF)¼ 0.1, 0.5, and

0.9)
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The results from the distance function approach show larger levels of uncertainty

with larger C factors. For smaller C factors, the simulated models tend to filter out

sections where the mineralization is thinner (zones that one can argue are more

uncertain), which is the main reason the mineralized volume of the simulated

models is lower compared to the mineralized volume in the resource model.

Figure 13 also illustrates the differences between the minimum and maximum

volumes of each technique. This shows the variability of ranges of uncertainty

depending on technique and parameter selection.

All the techniques yield promising results, and given that it is reasonable to put a

high level of confidence on the geologic interpretation, it seems acceptable to try to

achieve ranges of uncertainty that fluctuate around the interpretation. In earlier

stages of the Subika project, this would not have been the case. Over time tonnages

at Subika have shown large fluctuations caused by the wide-spaced drilling and

overall complexity of the geologic framework. With drill spacing at ~35 m and a

significant amount of thought and effort placed on the geologic interpretation,

Newmont is to the point of applying these results to the risk associated with the

mine plan.

4 Conclusions and Recommendations

The two case studies have shown that quantification of geological uncertainty for

purposes of defining project risk is not trivial. Uncertainty profiles are highly

dependent on method and parameter choice:

Fig. 13 Uncertainty profile for QSP1 and QSP23 (top) with the width of the uncertainty interval

(bottom)

Implications of Algorithm and Parameter Choice: Impacts of Geological. . . 241



• For the SIS-LVM approach, the size of the uncertainty window has an impact on

the width of the uncertainty profile, with wider profiles resulting in wider

uncertainty windows (not necessarily centered on the input resource model)

and more dispersed simulations.

• For MPS the servo system factor also appears to control the width of the

uncertainty interval with servo system factors closer to one delivering narrower

uncertainty intervals.

• For the distance function approach, the width of the uncertainty interval is a

function of the C factors; larger C factors result in wider uncertainty intervals.

For both deposits tested, lower C factors tended to filter out the thinner more

discontinuous mineralized zones generally resulting in tighter uncertainty inter-

vals and slightly less volume compared to the resource model.

• Models built using Leapfrog® showed wider bands of uncertainty.

Most of the methods (except Leapfrog®) require additional information (i.e.,

proportions of rock types, training image, etc.) derived from the resource model

which requires some confidence in the quality of the resource model. At early stages

of a project, when there is limited information, this might not be appropriate;

instead one might also try to incorporate the uncertainty in the rock-type pro-

portions/training image in the simulated models.

Leapfrog® appears to be a better tool at early stages of a project because it allows

for a more complete testing of different geological concepts. In later stage projects

where there is an increased level of confidence (due to the amount of data collected)

in the geologic interpretation, other methods that achieve ranges of uncertainty

around the interpretation likely provide a more realistic assessment of uncertainty.

The case studies have also shown that in order to get ranges of uncertainty that

fluctuate around the interpretation, the parameters for the various methods need to

be selected carefully.
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Approaching Simultaneous Local and Global

Accuracy

Daniel Jasper Kentwell

Abstract When estimating block grades for mining purposes, the currently available

methods allow us to maximize the accuracy of either global grade and tonnage curve

prediction or local block selection but not both at once. Locally accurate block

estimates provide the best result during actual selection and mining but can give

highly distorted global grades and tonnages at cutoffs above zero. Globally accurate

block estimates provide good prediction of grade and tonnage curves but perform

badly during actual selection giving much higher misclassification rates leading to

serious degradation of value of the material selected for processing. These statements

hold true in varying degrees for all scales and combinations of sample spacing and

block size. This paper puts forward a method that retains the properties of accurate

global estimation while simultaneously approaching maximum local accuracy.

The process is a simple application of rank and replace combining two estimates,

one that targets local block accuracy and one that targets actual block variability.

The method is empirically demonstrated using a case study using real data. The

conclusion, for this data set, is that local selection accuracy can be greatly improved

(but not maximized), in comparison to existing methods, while maintaining grade

and tonnage curve accuracy that results from true block variability.

Comparisons with ordinary kriging, sequential Gaussian simulation, turning

bands, local uniform conditioning, and ordinary kriging with reduced sample

numbers are presented.

1 Introduction

Themethod described in this paper is a remarkably simple one and it must surely have

been used or published previously; however the author cannot find any references to

anything similar. The underlying estimate is conventional ordinary kriging (OK) with

an optimized search neighborhood for the specified block size designed to maximize
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local block accuracy. The OK block grades are then ranked in grade order. A second

estimate, using any method that targets true block variability (global change of

support, simulation, degraded neighborhood kriging, etc.), is made and the block

grades also ranked. The grades from the second estimate are then assigned to the

locations defined by the OK estimate by rank order. This happens to be a direct

generalization of the LUC method proposed by (Abzalov 2006). For the purposes of

this paper, we will call the general method rank and replace (RR).

Some other methods of smoothing reduction and or correction that have been

proposed are (Journel et al. 2000) using spectral methods and (Richmond et al. 2009)

using an affine correction. Topical papers around the balance between the reproduc-

tion of global variability and the reproduction of local block accuracy required for

different stages of a project are Krige (1951, 1994, 1996) and Isaaks (2005).

It will be shown in the case study that the resulting block RR estimates now have

(our best estimate from available data of) the true block variability globally as well

as local selectivity very close to that obtainable by OK and are superior to that

obtainable by any simulation methods.

Hence, in the mining context, we now have a block model that can be used for

mine planning purposes that has (our best estimate from available data of) the actual

global block grade, tonnage, and conventional profit curves as well as (our best

estimate from available data of) local block accuracy.

2 Case Study

2.1 The Data Set

The data set is a real gold data set from a mined-out Australian opencut mine. It

consists of a widely spaced exploration drilling data set at approximately 12 m by

25 m by 1 m spacing and a corresponding close-spaced grade control data set at

approximately 2.5 m by 4.0 m by 2.5 m spacing. The results presented are block

models calculated from the wide-spaced exploration data with block models from

the grade control data as reference.

2.2 Questions of Scale

The typical mining rule of thumb is that, for good local estimates, block sizes should

approximate or be no less than half of the data spacing. This often results in blocks

that are much larger than the anticipated selective mining unit (SMU) block size.

Kentwell (2014) describes and quantifies some of the issues around ordinary kriging,

smoothing and block size related to this and how estimates of tonnage and grade at

higher cutoffs can significantly depart from the true tonnages and grades.

In order to evaluate the potential benefits of the RR method, block models at

both SMU scale, 2.5 m by 4 m by 2.5 m, and data scale, 10 m by 24 m by 10 m, were
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compared during the study. In the interest of brevity, only the results for the SMU

scale models are presented in detail here.

2.3 Process

For the SMU scale block model, the estimates as in Table 1 were produced. For the

sake of direct comparability of methods, the variogram used for all estimates was

that derived from the grade control data set with ranges and relatives nuggets/sills

held constant. Both the exploration and grade control data were composited to 3 m

intervals. De-clustering weights, top cutting, and restricted searches for high grades

were used as appropriate to ensure all estimates validated and that average grades

were within an acceptable tolerance at zero cutoff. Two RR estimates are calculated

and compared, one derived from a Gaussian anamorphosis with global change of

support and one derived from a single simulation.

For the RR estimate (Ana RR) derived from the global change of support, the

individual ranked block grades were calculated by the following procedure:

1. Calculate the block histogram via Gaussian anamorphosis and global change of

support using the exploration samples and the variogram.

2. Report the tonnage curve at 200 evenly spaced cutoffs across the full range of

grades.

3. Export the cutoffs and corresponding tonnages to a curve fitting software and fit

the data. In this case a Savitzky–Golay smoothing (Savitzky and Golay 1964)

(a form of moving window polynomial) fit was used.

Table 1 Estimation methods

Method Data set Abbreviation Comments

Ordinary kriging Exploration EXP 80 Optimal neighborhood to maximize regres-

sion slope and local accuracy – 80 samples

Ordinary kriging Exploration EXP 6 Degraded neighborhood to approximate true

block variability – 6 samples

Sequential

Gaussian

simulation

Exploration SGS Conditional simulation

Turning bands Exploration TB Conditional simulation – 400 bands

Local uniform

conditioning

Exploration LUC Localized using 10� 24� 10 m panels and

45 cutoffs localized with EXP 80

Rank and

replace

Exploration Ana RR From global change of support and EXP 80

Rank and

replace

Exploration SGS RR From SGS and EXP 80

Ordinary kriging Grade

control

GC 32 Optimal neighborhood to maximize regres-

sion slope and local accuracy – 32 samples

Ordinary kriging Grade

control

GC 4 Degraded neighborhood to approximate true

block variability – four samples
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4. Split the fitted curve into as many tonnage increments as there are blocks in the

model. The resulting ascending cutoffs become the new ranked block grades.

5. Import these ranked anamorphosis grades back to the underlying OK block

model using the OK rank identifier to locate each new anamorphosis grade of

the corresponding rank.

This process can also be completed using the local uniform conditioning (LUC)

tools in the Isatis software package but with the panel model being a single block

covering the entire domain. While not detailed in this paper, the author has

replicated the Ana RR results using single panel LUC in Isatis.

For the RR estimate, SGS RR derived from the sequential Gaussian simulation

(SGS) the SGS grades and underlying OK grades that are both ranked and then the

SGS grades that are assigned to the OK locations based in the rank identifier. The

problem with deriving the grades from a set of simulations is choosing which

individual simulation as they will all be a little different.

With the exception of the splitting and interpolation of the tonnage curve from

the change of support anamorphosis into block size increments, all calculations for

both the Ana RR and the SGS RR were performed in the Geovariances Isatis

software package.

2.3.1 What Is Reality?

Even though we have a close-spaced reference data set, in this case with approx-

imately one grade control sample within one SMU sized block and the blocks sizes

and data spacing are well inside the range of the variogram, we still need to estimate

the SMU model block grades. Even with this well-informed data and block con-

figuration, significant smoothing still occurs during OK. The question is then which

estimation parameters and/or method creates the closest approximation to reality to

use as our reference model? We have the same problem as the one we set out to

solve only at a smaller scale. At the risk of getting swamped with data, we will

examine two versions of “reality.” The first is the block model that results from

grade control data estimated by OK using a degraded estimation neighborhood

selecting only 4 (GC 4) surrounding samples and intended to reproduce global

block variability. The second is the block model that results from grade control data

estimated by OK with an optimum neighborhood selecting 32 (GC 32) surrounding

samples and intended to insure local block accuracy.

2.4 Results

2.4.1 Prediction vs Performance

In comparing the results of the different estimation methods, we will talk about both

prediction and performance. These terms are specifically defined here.
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Prediction is what the models say will happen, for example, tonnages and grades

at different cutoffs. This can be compared to the prediction of our reference model.

Prediction is inherently global.

Performance is the interaction with our reference “reality.” In other words if a

particular method’s block model was used to actually select/reject material at

specific cutoffs, then what grades and tonnages actually result by applying that

selection to the reference model? Performance is local in that it is a direct block-by-

block comparison albeit that the net result is expressed as a single correlation

coefficient or a cutoff curve.

In the normal case of events during planning and prior to mining, we only ever

have predictions. Only after the fact and after mining and processing do we get any

real information on performance.

2.4.2 Statistics

The block model statistics of the different estimation methods and correlations with

the two grade control reference models are shown in Table 2. The results are listed

in order of their correlation with the reference models. Note that the two RR

methods produce correlations with both reference models that are very close but

just less than the correlation resulting from optimal OK. As expected degraded OK,

Table 2 Statistics for SMU model estimates

Method Mean Variance

Correlation

with GC 32

Correlation

with GC 4 Min Max Comment

GC 4 1.72 3.75 0.88 1.00 0.00 38.56 Reference model 1

GC 32 1.70 2.17 1.00 0.88 0.00 18.25 Reference model 2

EXP 80 1.73 0.51 0.57 0.45 0.40 10.67 Best correlation

with reference

models 1 and 2

SGS

RR

1.73 1.66 0.56 0.45 0.01 19.12 Close to best

correlation with

reference

models 1 and 2

Ana

RR

1.76 2.50 0.56 0.44 0.15 27.96 Close to best

correlation with

reference

models 1 and 2

EXP 6 1.67 0.89 0.51 0.40 0.07 14.06

LUC 1.74 2.13 0.41 0.33 0.07 12.61

SGS

Sim

n15

1.70 1.57 0.27 0.22 0.01 19.12 n 15 (of 100)

selected for best

match to sample

mean

TB Sim

n82

1.70 2.69 0.26 0.21 0.00 23.92
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Table 3 Kriging regression slopes

Method Kriging regression slope Method Kriging regression slope

GC 4 0.75 EXP 6 0.47

GC 32 1.01 EXP 80 0.75
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Fig. 1 Scatterplots relative to GC 4
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SGS, and TB produce much lower correlations. Interestingly the LUC correlation is

in between optimal OK and the simulations but not as good as the RR methods.

Table 3 shows the kriging regression slope averages to put the relative qualities of

the kriging estimates in perspective.

Figure 1 shows the scatterplots of the correlations relative to GC 4 together with

the first bisector, conditional expectation, and one standard deviation from the

conditional expectation (dotted lines). Note that although the correlations for

EXP 80 and Ana RR are similar, Ana RR shows a much greater spread.

2.4.3 Prediction

Although difficult to see at the scale in this document, Figs. 2, 3, 4, and 5 show the

range of grade, tonnage, metal, and profit curves bounded by ordinary OK at one
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extreme and the GC 4 reference model at the other. For the grade and tonnage

curves, despite some crossovers, the order, getting closer and closer to GC 4, is as

follows: EXP 80, EXP 6, SGS, SGS RR, LUC, Ana RR, GC 32, and TB. The main

point to take from these results is that, as expected, every other method is a better

global predictor than optimal OK in that all other grade, tonnage, metal, and profit

curves are closer to those of GC 4 which is our proxy for reality.

The profit curve is calculated as:

Profit ¼ tonnage above cut off * grade above cut off � cut off gradeð Þ:
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3 Performance

This is where things get interesting. Performance here is with reference to GC

4 as our proxy for reality. The tonnage curves (Fig. 6) show OK EXP 80 to be the

worst performer and Ana RR and SGS RR to be close to the reference curves.

The grade curves (Fig. 7) show that Ana RR is the best performer up until

approximately the average of the model then EXP 80 takes over as the best

performer. Looking at the metal curves (Fig. 8), there is no clear best performer,

but TB appears to be the worst overall. Finally the profit curves (Fig. 9) show that

optimal OK 80 and Ana RR are almost exactly the same and are closest to the

two reference models.
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4 Texture

There is another attribute of block estimates that is difficult to capture in a

variogram or statistic or cutoff curve and that is the multipoint relationships or

the “texture” of the grade patterns. We expect smoothing from OK estimates and we

expect higher variability from simulations. Figures 10 and 11 show the textures for

a long section slice through the center of the model. Note that the RR method still

produces smooth textures and does not compare well with the GC 4 in terms of

texture reproduction.
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5 Conclusions

The RR method does not make small block estimation any more locally accurate

than OK estimates. Small block OK and RR estimates from widely spaced data

retain on average a similar level of confidence as measured by the kriging regres-

sion slope or kriging efficiency of the underlying OK estimate. A poor quality local

block OK estimate is still a poor quality local block RR estimate.

The advantage of the RR method is global grade, tonnage, and profit curves are

closer to reality compared to optimal OK estimates and that the estimate retains on

average a level of block selectivity performance comparable to optimal OK. Also a

Fig. 10 Texture long sections 1
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single model is available for mine planners to work with that therefore has the best

available estimate both locally and globally. The RR method is better adapted to

mine planning than either optimal OK or individual simulations. The RR method is

effectively an alternative implementation of LUC using a single panel. It gives

similar global predictions to multi-panel LUC and, for this case study, local

performance which is closer to reality than multi-panel LUC.

With RR estimates the spatial “texture” of the block grades is still smooth and

does not display the true texture at block scale. Approximations of true texture are

better estimated by simulations (SGS or TB for example) with the inherent loss of

local accuracy.

Fig. 11 Texture long sections 2
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Geostatistics for Variable Geometry Veins

Alfredo Marı́n Suárez

Abstract This paper presents the idea of applying a modified “moving trihedral”

borrowed from the abstract Theory of the Geometry of Riemann, allowing us to

model the random functions L2(Ω, σ, P) of geostatistics, in a special 2-D plane

within such trihedral, a feature not available in any software existing in the market.

Thus, from working in the R2 space in that trihedral plane, we obtain our results in

the R3 physical space, in which we can then derive the desired linear or nonlinear

geostatistical results. The method presented here therefore can be considered akin

to a kind of spatially adaptative geostatistics. And so, among other applications of

this method, it becomes possible to apply geostatistics simply, without the need for

a detailed, three-dimensional geological model of the mineralization, defining

instead its contours in a simple plane, a feature very useful when modelling

irregular veins.

1 Introduction

When it comes to performing geostatistical studies in vein-type deposits with

variable widths, building the three-dimensional geological model that defines the

domain for applying geostatistics is both difficult and potentially inaccurate. This is

due to the limited extent of channel sampling, generally limited to some galleries,

and all the more so when there are no exploration drillholes at all nor any type of

exploration of the mineralized zones.

To this must be added the problem of the erratic irregularity of the veins, with

abrupt changes of azimuth dip, and thickness, as observed when walking through

the narrow, polymetallic veins of copper, lead, zinc and silver mineralization at
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Casapalca, Yauliyacu, Morococha, San Cristobal, Yauricocha and Huarón, through

the filonian gold deposits of Marsa, Horizon, Powerful and Acari in Peru or through

the silver deposits of Navalmedio in Almadén-Spain. Even in cases where sufficient

information is available, the generally available software on the market is designed

for massive deposits and calls for the definition of three-dimensional blocks hardly

adaptable to the variable widths of narrow veins about 5–20 cm in lateral extent.

The geological framework of reference for this work has been that of the narrow

veins system of the following deposits:

• The Peruvian polymetallic deposits, where the stratigraphic sequence of the

district is made as much of sedimentary rocks as of interstratified volcanics,

with ages varying from late Cretaceous to Quaternary (Bateman 1982).

• The gold vein deposits of Marsa and Poderosa in the Pataz Batholith, North-

Central Peru and belonging to the late Paleozoic.

• The Navalmedio deposit in Spain, with galena mineralisation, and not much

silver. The host rocks are pre-Ordovician slates of the Schist-Graywacke Com-

plex. It is a complex vein deposit.

The general theoretical mathematical frame is shown in Annex 1 and the

proposed theoretical frame in Annex 2.

2 Methodology for Practical Application of Proposed
Trihedral

The previously presented version of the applied methodology, used in the veins of

Centro Peru 1983 and in the vein of Navalmedio de Minas Almadén-Espa~na 1984,
was programmed in Fortran and Assembler, with its respective graphic limitations.

Said version was presented at Fontainebleau’s Cycle of Formation Specialisée in

Geostatistics as a graduate course, in the presence of Dr. Georges Matheron, who

authorised its publication in 1986 (Marin 1986). The present version is based on the

use of modern graphic 3-D and 2-D software, available in the market.

This methodology was applied as a consequence of irregularities in the vein

thickness, strike, dip and local domains, resulting from existing geological controls

in use at the aforementioned deposits. This can be seen in Fig. 1.

Let us bear in mind that vein systems are very complex (Bateman 1982) and that

the construction of geological model (three-dimensional) is difficult, somewhat

inaccurate and often uncertain, due to the fact that its elaboration is subjective

and that it takes a lot of time, because of the unavailability of required drills,

necessary to identify what is happening between one section and the other, for

example, the events that take place between a geological section that corresponds to

a left chimney of a given cut and another geological section that passes through the

right chimney of the cut understudy.

Let us see Fig. 2.
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Sample channels and/or drill samples with its grades and real vein width,

resulting from mining activity, are identified and matched with points x, y, z,

corresponding to their gravity centre.

• Capping values are treated.

• “Decluster” to solve or prevent potential.

• Grouping/clustering of samples is made.

Fig. 1 A geological cross-section of a vein system with its frequent complexity, (Bateman 1982)

Fig. 2 Mining Stope
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• A provisional model block is created, to include all domain sample applications.

This model contains rotated and shifted coordinates in accordance with average

strike and dip of vein domain.

• A geological model or auxiliary wireframe is created, in line with the initial

block model, delimiting its perimeter by means of a desktop mouse and paying

attention to loopholes in channel data, drill samples, lithology, geological

controls and controls of structural type which must be assessed by the mine

geologist in charge.

• Sample points together with their grade and width vein are projected on a single

face of the predetermined geological or wireframe model

• We now have the samples on a flat surface that represent the proposed trihedral’s
tangent of the differentiated variable vein.

• Finally, we can work on this tangent plane with a R2 geostatistics, representing

regionalized variables of accumulated grades (grade by vein width) now totally

additive, also representing vein widths through random functions Z(x) in L2(Ω,
σ, P) applying linear or nonlinear geostatistics as the case may be.

We will now show a practical application as defined within the tangent plane of

the proposed trihedron. We want to estimate the gold grade of the ABCD block in a

mineralised vein; see Figs. 3 and 4, using ordinary kriging (Marı́n 1986; Guibal and

Remacre 1984; Maréchal et al. 1978; Chilès and Delfiner 2001).

Pi: Thickness of the vein in channel at location i is measured perpendicular to the

tangent plane.

li: Grade of the vein in channel at location i. The average thickness in the CDEF

block is estimated by:

P*
CDEF ¼ λ1P1 þ λ2P2 þ λ3P3

The average accumulation and the whole chapter (Marin 1986) (grade-thickness

product) in the CDEF block is estimated by

LPð Þ*CDEF ¼ λ
0
1P1l1 þ λ

0
2P2l2 þ λ

0
3P3l3

where {λ1, λ2, λ3} and {λ
0
1, λ

0
2, λ

0
3} are the weights calculated through the kriging

geostatistical technique.

Therefore, the estimated grade of the CDEF block (Marin 1986) is given by

L* ¼ LPð Þ*ABCD
P*
ABCD

In other words, we have estimated a block located in R3 from an estimation made in

R2.

• A way of transforming the kriging variance, as a percentage measurement of the

relative quality of the estimate of each unit block, is shown as follows:
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CM %qualityð Þ ¼ 100� 1� σ2

max σ2ð Þ
� �

where:

– σ2 is the estimated variance of a particular block.

– max(σ2)is the maximum value of the group of variances of the estimated

blocks.

thus making it possible to have relative quality planes of the estimate, expressed

percentage-wise: see Figs. 5 and 6.

3 Discussion and Conclusion

3.1 Practice

1. A new way of applying geostatistics is set forward, not in a fixed coordinate

system, as software that is designed for massive deposits usually works (addi-

tionally forming blocks in the same manner as in massive deposits) this is, that a

system of variable coordinate relative to the origin of the proposed trihedral,

with its tangent plan, that is to say, trihedrals that allow a follow-up of vein

inflexions, by continually changing the coordinate system – “pursuing” the veins

Fig. 5 Vein 11 estimated grade of Ag ppm, blocks 5� 5, Morococha and Argentum S.A. Peru,

deposits
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and their workings – with even better results when these are very thin veins as,

for example, veins that average 5 cm. or so.

2. It must be pointed out that the proposed trihedral is different from Frenet and

Serret standard trihedral of manifold geometry.

3. The use of the tangent plane with its proposed mobile trihedral precludes the

building of the geological model as conceived in its classical form by three-

dimensional software available in the market. In effect, building geological

models in veins, as conceived by three-dimensional software, is difficult and

inaccurate, since appropriate information for its construction is not readily

available. In this case, geological modelling is limited to defining, in the tangent

plane, the outline of a domain, or domains corresponding to the mineralized

zone, i.e. simple lines drawn with a standard “mouse” on the tangent plane, in

other words, in a simple, immediate and interactive way.

4. It must be noticed that, here, the condition is that the tangent plane contains, in

the best way possible, the surface part of the vein, calculated by vectors, by the

minimum square method, or with the help of block models in 3-D software

available in the market.

5. This way we have the design of the methodology that will help perform

paragenesis studies and estimate or simulate short- and midterm resources so

that the mining engineer may proceed to calculate the exploitable reserves, in the

same manner as the author of this publication, acting as a consultant, applied to

mining companies. Examples of the foregoing are polymetallic veins of Cu, Ag,

Zn and Pb at Morococha of the Cia Argentum S.A. and polymetallic veins of

Raura of Cia Minsur S.A. deposit, both located in the Peruvian Andes.

Fig. 6 Vein 11 percentage quality of the estimate of Ag ppm, blocks 5� 5 Morococha and

Argentum S.A. Peru
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3.2 Theory

With this work, we hope to open a field of research in theoretical and practical

applications in mining, GIS and other regionalised variable domains, reframing the

algorithms of current geostatistics with Riemannian geometry metrics and building

Riemannian geostatistics.

Acknowledgements The author would like to acknowledge Dr. Dominique François-Bongarçon,
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Annex 1: Frame Theory Riemannian Manifold

Differentiable Manifolds

A differentiable manifold is a type of manifold (In mathematics, a manifold is a

topological space that locally resembles Euclidean space each point. More pre-

cisely, each point of an n-dimensional manifold has a neighbourhood that is

homeomorphic to the Euclidean space of dimension n.) that is locally similar

enough to a linear space to allow one to do calculus. Any manifold can be described

by a collection of charts, also known as an atlas. One may then apply ideas from

calculus while working within the individual charts, since each chart lies within a

linear space to which the usual rules of calculus apply. If the charts are suitably

compatible (namely, the transition from one chart to another is differentiable), then

computations done in one chart are valid in any other differentiable chart (Warner

1983).

In other words a complex spatial feature can be represented by local, well-

behaved, simple patches, possibly of lower dimensions, and under certain mathe-

matical conditions (i.e. differentiability); they accurately describe the entirety of

that feature continuously in its space of origin.

Mathematical Definition A differentiable manifold of dimension n is a setM and

a family of bijective mappings

xα : Uα � ℝn ! M

of open sets Uα of ℝ
n into M such that

1. [αxα Uαð Þ ¼ M.

2. For any pair α, β with W ¼ xα Uαð Þ \ xβ Uβ

� � 6¼ ϕ, the sets x�1
α Wð Þ and x�1

β Wð Þ
are open in ℝn and the mappings x�1

α oxβ are differentiable (see Fig. 1).

3. The family [α; xαð Þf g is maximal relative to the conditions (1) and (2).
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Tangent Space on Manifolds

Definition Let M be a differentiable manifold, and let p be a point of M. A linear

map v : C1 Mð Þ ! ℝ is called a derivation at p if it satisfies the Leibniz rule:

v fgð Þ ¼ f pð Þvgþ g pð Þvf ; 8f , g2C1 Mð Þ

The set of all derivations ofC1 Mð Þ at p, denoted by TpM is called a tangent space to

M at p. An element of TpM is called a tangent vector at p.
A Riemannian metric on a differentiable manifold M is a correspondence which

associates to each point p of M, an inner product h, ip on the tangent space TpM,

which varies differentiably; this metric is also called the metric tensor.

A differentiable manifold with a given Riemannian metric will be called a

Riemannian manifold (Lee JM 2013; Do Carmo 1976).

Annex 2: Applying Methodology in Euclidean Space ℝ3

An example of Riemannian manifold in the Euclidean space ℝ3 is a surface of

dimension 2 with the usual metric ℝ3 and the tangent space here is a plane.
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Regular Surface

A subset S � ℝ3 is a regular surface if, for each p2S, there exists a neighbourhood

Vin ℝ3 and a map x : U ! V \ S of an open set U � ℝ2 onto V \ S � ℝ3 such that

(see Fig. 1):

1. x is differentiable.
2. x is homeomorphism.

3. 8q2U, dxq : ℝ2 ! ℝ3 is one-to-one.

The Tangent Plane

Definition Let v2ℝ3 be a tangent vector to S at a point p2S ; it exists a

differentiable parametrized curve α :� � ε, ε ! S½ with α
0
0ð Þ ¼ v and α 0ð Þ ¼ p.

The set of all tangent vectors to S at p will be called the tangent plane to p and

will be denoted by TpS (Do Carmo 1976) (see Fig. 2).

TpS ¼ v2ℝ3; v is tangent vector to S at p2S
� �
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Proposed Trihedron

Now let us build a trihedron, from a point on the surface and a tangent vector to the

surface at that point; this construction is a different wing of the trihedron Frenet-

Serret; in very specific cases of surface geometry, these may coincide.

Let S � ℝ3 a regular surface, parametrization (x,U ) at point p2S and a regular

parametrized curve α :� � ε, ε ! ℝ3
�

content in S such that α
0
0ð Þ ¼ v and α 0ð Þ ¼ p,

clearly v2TpS.
On the TpS tangent plane, rotate the vector v angle π/2 in a sense counterclock-

wise forming a basis for the tangent plane TpS (see figure). We now vector cross

product w ¼ v� u and form the proposed trihedron (see Fig. 3).
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Maréchal A, Deraisme J, Journel A, Matheron G (1978) Cours de Géostatistique non Linéaire.
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– Option Géostatistique, présentée �a L’école Nationale Supérieure des Mines de Paris
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Drilling Grid Analysis for Defining
Open-Pit and Underground Mineral
Resource Classification through
Production Data

Roberto Menin, Cassio Diedrich, Joao Dirk Reuwsaat,

and Wellington F. De Paula

Abstract The varied types of mineral deposits and geological features around the

world have led to the creation of a large number of techniques, methodologies, and

definitions for mineral resource classification. The most common methods used in

the mineral industry include kriging variance, drilling spacing, neighborhood

restriction, and conditional simulations. These methods generally do not use rec-

onciled production information, only long-term borehole information based on

personal judgment for defining confident intervals/limits on the mineral resource

classification. A drilling spacing back analysis study for defining mineral resource

classification was completed considering tonnages and grades confidence intervals

related to its respective production volumes, based on short-term production rec-

onciliation of analog deposits. The definition of adequate drill holes spacing and

detailed results for classifying mineral resources are demonstrated by both an open-

pit and an underground project adjacent to an existing mining operation. This study

has considered a Brazilian sulfide deposit (Cu-Au) operating mine as analog

information.
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1 Introduction

New methodologies for classifying mineral resources are proposed every year with

constant efforts for reducing ore deposits estimation uncertainties using new tech-

nologies. However, given different types of mineralization and its geological

characteristics, it becomes impractical to define a single standardized methodology

for mineral resource classification. In general the estimation classification process

is based on qualified/competent person’s (QP/CP) judgment. Whether or not the

confidence of estimates (drilling spacing, experience, back analysis, or

geostatistical methods) are based on this judgment, their validity is subject to

assumptions that should be tested and validated against actual production results

through reconciliation studies (Morley 2003).

Several authors have reported the major issues associated with mining operating

cases that have not achieved planned production targets in its first years of operation

(Burmeister 1988). The main reasons are inherent to the mineral resources and

reserve classification processes, including errors associated with an inadequate

sampling procedure and lack of local geological knowledge (Harquail 1991).

Some studies present approaches for drill hole spacing using conditional simulation

(Dimitrakopoulos et al. 2009) or estimation variance calculation (Verly et al. 2014)

from long-term (hard data) drill holes information. Also a number of authors have

published a series of recommendations for quantitative estimates of accuracy to

classify resources and reserves (Vallée 1992; Wober 1993; Stephenson 1998). A

summary used for resource classification, by compiling public disclosure of mineral

projects issued by companies listed on the Toronto Stock Exchange, presents the

most commonly applied resource classification practices (Silva 2013). In regard to

these, none of the proposed mineral resource classification methods presents a

connection to actual operating aspects or makes use of an operational reconciliation

process. Therefore, mining configuration, geological knowledge, and production

aspects can help in the decision for better defining mineral resources categories.

In this paper an operating mining case study (sulfide Cu-Au deposit) has been

developed for defining mineral resources classification by using actual production

reconciliation results. The idea is to determine drilling grid spacing that best

support mineral resource categories for both open-pit and underground operating

processes. Different production volumes related to its respective geology and

operating practices were compared to actual exhaustive values for determining

confidence levels of mineral resources categories.

Production information of a copper mine operation, based on blasting reverse

circulation drilling, was used for both an underground and an open-pit projects due

to its similarity in geological aspects and production scale.
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2 Copper Mine Case Study and Methodology

A Brazilian large copper mine was used as analog information for both an under-

ground and open-pit sulfide Cu-Au project. This analog deposit will be called as

CMC (copper mine complex) and will be divided into two data sets, CM1 and CM2.

CM1 is the one defined for the underground project (UGP). The open-pit project,

referred to as OPP in the paper, took into account the CM2 data set.

The complete database of the CMC contains over 100,000 blast holes 121
4
inch

� �

analysis ranging from approximately 5 to 6 m average drilling spacing. A series of

different drill hole spacing grids were created for each mining method using

production information. A new geological interpretation wireframe was constructed

for each new grid by vertical extrusion of interpreted horizontal sections. Ordinary

kriging routines were used to estimate block models of each drilling grid for both

case studies.

The nearest neighbor interpolation algorithm was used for the construction of

each regular drilling grid. For the selection of the drilling grid spacing (e.g.,

30� 30 m), a new block model was created with same expected drilling grid

dimensions. After running the nearest neighbor interpolation, only the closest

sample to the center of each block was selected and exported to create a new

regular drilling grid with approximate 30 m spacing based on original

production data.

Figure 1 illustrates how drilling grid selection was created and a sample selec-

tion was made for a regular sampling grid. The original geographic coordinates

(X, Y, and Z) of each sample was kept.

According to the geological interpretation for long-term operational assump-

tions, drilling grid supporting each production increment (global, annual, and

quarterly) was created according to long-term geological interpretation practices

and interpreted on both vertical and plan sections. Vertical section traverses were

created for supporting geological interpretation of plan sections without consider-

ing actual exhaustive information, only the information defined on the regular grids

by the sample selection procedure.

Fifty-three vertical sections striking N-S were interpreted with distance between

sections ranging from 10 to 40 m. A total of 21 plan sections, spaced at 16 m (bench

height) and between �128 and 192 m sea level, were interpreted in CM1. In the

same way, 21 vertical sections striking NE-SW were interpreted with distance

between sections ranging from 10 to 20 m. After modeling the vertical planes and

applying traverses for plan view interpretation, nine plan sections were interpreted

for CM2 considering 16 m bench height and elevation varying between 64 m and

192 msl (sea level). Figure 2 presents interpreted plan sections (1a and 2b) and

geological wireframes (1b and 2a) created for both CM1 and CM2 data sets.

The CMC operation long-term model (10� 10� 16 m block size) was used in

studied cases. Figure 3 presents the 20� 20 m (grid spacing) interpolation results at

CM1 taking into account the geological interpreted mineralization. When different

statistical domains or geological interpretations are considered, the final copper
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grades are defined by weighing the percent of each statistical domain within the

block.

A surface volumetric calculation for determining differences (tonnage, grades,

and metal) between drilling models in comparison with the production model was

Fig. 1 Sample selection procedure for a regular drilling grid

Fig. 2 Figures on top: (1) CM1 20� 20 m interpreted plan section (left); CM1 10� 10 m

geological wireframes (right); Figures on bottom: (2) CM2 30� 30 m geological wireframes

(left); CM2 20� 20 m interpreted plan section (right)
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executed. Monthly and yearly topographic surfaces provided by operational teams

were utilized for all study periods.

Figure 4 presents a 4-year period represented by each annual topographic

surface.

An analysis of the OPP drilling grid spacing for mineral resource categorization

was made considering seven different sampling grids based on the CM2 production

data. The analysis of UGP drilling grid spacing for mineral resource categorization

was made considering six different sampling grids. The difference between inter-

polated grids and production models CM1 and CM2 was measured for each

specified period. Table 1 shows all sampling grids created for each of the case

studies.

At OPP, drilling grids spaces larger than 80� 80 m were tested. However, these

provided poor results due to the nature (size and continuity) of mineralization and

were not included in this paper. At UGP, spaces larger than 100� 100 m were not

tested due to lack of enough information at given drilling spacing.

CM1 data production was applied to the UGP mineral resource classification at a

high-grade cutoff value (0.75% Cu) that supports the level of selectivity of an

underground mining operation.

As previously mentioned in the introduction, a number of authors have published

a series of recommendations for quantitative estimates of accuracy to classify

resources. Considering a systematic approach based on full operational knowledge

and geological features of both case studies, the following degree of confidence

limits will be applied to classifying mineral resources:

Fig. 3 Block model interpolation procedure
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• Inferred mineral resource: a level of confidence of �15% on the global recov-

erable metal content, tonnages, and grades

• Indicated mineral resource: a level of confidence of �15% on the recoverable

metal content, tonnages, and grades over an area or volume corresponding to the

footprint of 1 year of production for a given deposit type in a mine or project

• Measured mineral resource: a level of confidence of �15% on the recoverable

metal content, tonnages, and grades over an area or volume corresponding to the

footprint of one quarter of a year of production for a given deposit type in a mine

or project

3 Global Production Volume (Inferred Mineral Resources)

The level of confidence for the definition of inferred resources was applied in one

volume increment (global) for both CM2 and CM1. The tonnage produced in the

selected comparison period was obtained through volumetric calculation between

first and last year topographic surfaces. Figure 5 presents the percentage difference

Fig. 4 Annual comparison basis

Table 1 Drilling grids Drilling grids – CMC production data

CM1/UGP CM2/OPP

10� 10 m 10� 10 m

20� 20 m 20� 20 m

30� 30 m 30� 30 m

40� 40 m 30� 40 m

60� 60 m 40� 40 m

80� 80 m 40� 80 m

50� 50 m
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between metal content, tonnages, and grades for all drilling grids in comparison

with the CM1 and CM2 production actual models.

The resulting tonnages, grades, and contained metal obtained in the estimated

models, for each drilling grid, had acceptable values for inferred resource classifi-

cation in comparison with the production exhaustive models. Tables 2 and 3 present

the percentage of scenarios within acceptable stipulated limits previously men-

tioned for both CM1 and CM2:

In the CM1 case, only the 80� 80 m drilling spacing is not within acceptable

limits in terms of tonnages and metal content to the established production rate. In

the CM2 case, all drilling grids are within an acceptable range (percentage differ-

ences) for defining inferred mineral resources.
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Fig. 5 (1) Global difference in terms of metal content (light blue), grade (blue), and tonnages

(red) for CM1 (top); (2) global difference in terms of metal content (light blue), grade (blue), and
tonnages (red) for CM2 (bottom)
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4 Annual Production Volume (Indicated Mineral
Resources)

CM1 and CM2 global production were divided into five and four annual incre-

ments, respectively. This is in agreement with the annual production rates for both

open-pit (OPP) and underground (UGP) examples. The tonnage produced in the

selected comparison period was obtained through volumetric calculation between

the first and the last monthly topographic surfaces in the same year (January 1st–

December 31st).

The executed production rate on an annual basis ranged from 4.0–5.5 to

3.5–5.0 Mt for CM1 and CM2 open-pits, respectively. Figures 6, 7, and 8 present

a comparison of the percentage differences (grades, metal, and tonnages, respec-

tively) for each selected period for both CM1 (top) and CM2 (bottom), considering

the actual production information.

As commented, a level of confidence of �15% on the annual recoverable

contained metal, tonnage, and grades is needed to support an indicated mineral

resource category. Tables 4 and 5 present the percentage of scenarios within the

acceptable stipulated limits:

The high-grade portions could not be mapped for drilling grid spacing higher

than 80� 80 m in the CM1 case study. This reduced the tonnage of this material

significantly where only the grades were within acceptable threshold limits for

indicated mineral resources. Small differences in tonnages and grades were verified

in the 60� 60 m drill spacing. The metal content was above the stipulated threshold

limits in two of the five annual increments. However, for these two scenarios, the

grade and tonnages were within acceptable limits.

Table 2 Global percentage

of scenarios within acceptable

difference for CM1

Spacing (m) Metal (%) Tonnes (%) Grade (%)

10� 10 100 100 100

20� 20 100 100 100

30� 30 100 100 100

40� 40 100 100 100

60� 60 100 100 100

80� 80 0 0 0

Table 3 Global percentage

of scenarios within acceptable

difference for CM2

Spacing (m) Metal (%) Tonnes (%) Grade (%)

10� 10 100 100 100

20� 20 100 100 100

30� 30 100 100 100

30� 40 100 100 100

40� 40 100 100 100

40� 80 100 100 100

50� 50 100 100 100
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Fig. 6 (1) Annual difference in terms of grade for CM1 (top); (2) annual difference in terms of

grade for CM2 (bottom)
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Fig. 7 (1) Annual difference in terms of metal content for CM1 (top); (2) annual difference in

terms of metal content for CM2 (bottom)
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In the CM2 case study, for the 40� 40 m drilling spacing, slight differences in

the grade and tonnages than those stipulated were observed. However they reflected

a higher difference in the metal content compared to the values obtained by the

exhaustive production model. For two of the four annual production volumes, the
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Fig. 8 (1) Annual difference in terms of tonnages for CM1 (top); (2) annual difference in terms of

tonnages for CM2 (bottom)

Table 4 Annual percentage

of scenarios within acceptable

difference for CM1

Spacing (m) Metal (%) Tonnes (%) Grade (%)

10� 10 100 100 100

20� 20 100 100 100

30� 30 80 100 100

40� 40 40 80 80

60� 60 40 80 60

80� 80 0 0 60

Table 5 Annual percentage

of scenarios within acceptable

difference for CM2

Spacing (m) Metal (%) Tonnes (%) Grade (%)

10� 10 100 100 100

20� 20 100 100 100

30� 30 100 100 100

30� 40 100 50 100

40� 40 75 75 75

40� 80 25 75 50

50� 50 50 100 50
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30� 40 m drilling grid scenario obtained tonnages which were slightly above the

stipulated limits; however, for these two scenarios, the grade and the contained

metal were within acceptable values.

5 Quarterly Production Volume (Measured Mineral
Resources)

CM1 and CM2 global production were divided into quarterly increments (20 and

15, respectively) which are in agreement with the quarterly production rate exe-

cuted. The tonnage produced in the selected comparison period was obtained

through volumetric calculation between the first and the last monthly topographic

surface of the quarter.

A level of confidence of �15% on the quarterly recoverable tonnages, grades,

and metal content is required to support measured mineral resource categorization.

The quarterly production rates of CM1 case study ranged from 0.8 to 1.4 Mt. For

CM2 the ranges were from 0.75 to 1.5 Mt. The production period was divided into

actual monthly basis topography (short-term CMC) for the CM1 comparison.

Figures 9, 10, and 11 present a comparison of the percentage differences (grades,

metal, and tonnages, respectively) for each selected period for both CM1 (top) and

CM2 (bottom), considering the actual production information.

CM1 tonnages and metal content estimation results of 60� 60 m and 80� 80 m

drilling grid spacing are substantially different for the selected cutoff grade com-

pared to the exhaustive production model. It is more difficult to establish spatial

connectivity for the available samples when increasing drilling grid spacing, which

significantly reduces the volumes of certain portions of the deposit given the lack of

information for delineating mineralization. In the 30� 30 m drilling grid spacing

scenarios, only a few quarterly production intervals lied outside acceptable metal

content limits in support of measured mineral resources. In the 40� 40 m drilling

grid spacing scenario, there were several quarterly production intervals outside

acceptable tonnage and metal content threshold limits.

Minor differences in the tonnages and grades were observed in the CM2 case

study for a 30� 30 m drilling grid spacing. These were verified mainly in scenarios

with lower amount of production information. The results demonstrated that dril-

ling grid spacing larger than 40� 40 m does not predict within acceptable confi-

dence the production tonnages, grades, and metal content in a quarterly period.

Tables 6 and 7 summarize the percentage of scenarios within acceptable limits

defined for both cases studies.
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Fig. 9 (1) Quarterly difference in terms of grade for CM1 (top); (2) quarterly difference in terms

of grade for CM2 (bottom)

30.00%

15.00%

-15.00%

0.00%

30.00%

15.00%

-15.00%

-30.00%

0.00%

-30.00%

re
la

ti
ve

 d
if

fe
re

n
ce

re
la

ti
ve

 d
if

fe
re

n
ce

10x10 20x20 30x30

Quarterly difference on Contained Metal

Quarterly difference on Contained Metal

40x40 60x60 80x80

10x10 20x20 30x30 40x4030x40 40x80 50x50

-45.00%

45.00%

Fig. 10 (1) Quarterly difference in terms of metal content for CM1 (top); (2) quarterly difference
in terms of metal content for CM2 (bottom)
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Fig. 11 (1) Quarterly difference in terms of tonnages for CM1 (top); (2) quarterly difference in

terms of tonnages for CM2 (bottom)

Table 6 Quarterly

percentage of scenarios

within acceptable difference

for CM1

Spacing (m) Metal (%) Tonnes (%) Grade (%)

10� 10 100 100 100

20� 20 95 100 100

30� 30 70 85 80

40� 40 35 65 50

60� 60 45 70 70

80� 80 15 10 75

Table 7 Quarterly

percentage of scenarios

within acceptable difference

for CM2

Spacing (m) Metal (%) Tonnes (%) Grade (%)

10� 10 93 100 93

20� 20 79 100 86

30� 30 71 86 79

30� 40 50 43 71

40� 40 57 71 86

40� 80 36 79 64

50� 50 50 79 57

Drilling Grid Analysis for Defining Open-Pit and Underground Mineral. . . 283



6 Conclusions

CM1 (UGP) study indicates that drill holes spacing wider than 60� 60 m is

insufficient to adequately represent the mineralization and to reflect production

information due to lack of information at a given cutoff grade of 0.75% Cu. The

historic reconciliation between the executed CMC production model and the CM2

(OPP) long-term model is not within acceptable threshold limits in areas with

drilling grid spacing wider than 40� 40 m (measured + indicated).

Table 8 summarizes the drill hole spacing required to support mineral resource

categories for both CM1 and CM2 case studies using CMC production information.

The random selection of information can include waste information from neigh-

borhoods that are mostly mineralized. This randomness in the choice of information

can sometimes change the proportions of economic mineralization and waste in

some local portions of the model. This is part of the “real” variability of the deposit.

The mineralization characteristics of a deposit do not define the sample spacing

required for mineral resource categorization. A realistic production volume should

be considered in the evaluation of drill spacing for supporting mineral resource

categories. Realistic volumes are determined from analog deposits where produc-

tion information is available.

As mentioned in Diedrich et al. (2016), mining selectivity is understood as the

process of separating ore from waste, and its global and local concept is strongly

related to three mining functions such as geology, production rates, and mining

configuration that affect operational results. Operational aspects should be included

in a project or operation for better defining adequate drilling spacing and for

supporting mineral resources classification.
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A High-Order, Data-Driven Framework
for Joint Simulation of Categorical Variables

Ilnur Minniakhmetov and Roussos Dimitrakopoulos

Abstract Relatively recent techniques for categorical simulations are based on

multipoint statistical approaches where a training image (TI) is used to derive

complex spatial relationships using patterns. In these cases, simulated realizations

are driven by the TI utilized, while the spatial statistics of the hard data is not used.

This paper presents a data-driven, high-order simulation approach based upon the

approximation of high-order spatial indicator moments. The high-order spatial

statistics are expressed as functions of spatial distances similar to variogram models

for two-point methods. It is shown that the higher-order statistics are connected

with lower orders via boundary conditions. Using an advanced recursive B-spline

approximation algorithm, the high-order statistics are reconstructed from hard data.

Finally, conditional distribution is calculated using Bayes rule and random values

are simulated sequentially for all unsampled grid nodes. The main advantages of the

proposed technique are its ability to simulate without a training image, which

reproduces the high-order statistics of hard data, and to adopt the complexity of

the model to the information available in the hard data. The approach is tested with

a synthetic dataset and compared to a conventional second-order method, sisim, in
terms of cross-correlations and high-order spatial statistics.

1 Introduction

Stochastic, or geostatistical, simulations are often required in reservoir or mineral

deposit modeling and the quantification of geological uncertainty, pollutants in

contaminated areas, and other spatially dependent geologic and environmental

phenomena. During the past decades, Gaussian simulation techniques have been

used for geostatistical simulations (Matheron 1971; David 1977, 1988; Journel and

Huijbregts 1978; Cressie 1993; Kitanidis 1997; Goovaerts 1998; Webster and
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Oliver 2007; Remy et al. 2009; Chiles and Delfiner 2012; Pyrcz and Deutsch 2014).

The choice of the Gaussian distribution is driven by several factors. First of all, the

Gaussian variables can be fully described by a small amount of parameters, such as

the first-order statistics (i.e., average values) and the second-order statistics (i.e.,

covariance or variogram). Secondly, the small number of parameters allows one to

run simulations on grids with several million nodes.

Natural phenomena are known to exhibit non-Gaussian distributions and have

complex nonlinear spatial patterns (Guardiano and Srivastava 1993; Tjelmeland

and Besag 1998; Dimitrakopoulos et al. 2010), which cannot be adequately

described by second-order statistics. To overcome these limitations, multiple

point spatial simulation (MPS) methods were introduced in the 1990s (Guardiano

and Srivastava 1993; Journel 1993; Strebelle 2002; Journel 2003; Zhang et al. 2006;

Chuginova and Hu 2008; Straubhaar et al. 2011; Toftaker and Tjelmeland 2013;

Strebelle and Cavelius 2014; others). The additional information is taken into

account via training images (TI), which are not conditioned on the available data

but contain additional information about complex spatial relations of the attributes

to be simulated. To retrieve this information from the training image, the similarity

between the local neighborhood of an unsampled location and the training image is

calculated in explicit or implicit form. Based on this similarity measure, the value

of a node from the training image with the most similar neighborhood is assigned to

the unsampled location being simulated. Generally, most of the multipoint simula-

tion techniques are a Monte Carlo sampling of values from the TI in some form or

another. No spatial models are used and, importantly, no spatial information from

the hard data is retrieved. As a result, simulations of attributes reflect the TI. In

cases where there are relatively large datasets, conflict between the hard data and

TI’s statistics is clearly observed and the resulting simulations do not reproduce the

spatial statistics of the hard data (Dimitrakopoulos et al. 2010; Pyrcz and Deutsch

2014).

Several attempts have been made to incorporate more information from the hard

data. Some authors suggest using replicates from the hard data in addition to TI

(Mariethoz and Renard 2010); however, in practice, it is hard to find any replicates

for three-point relations when data is sparse. Others (Mariethoz and Kelly 2011)

apply affine transformations to better condition the hard data; however, TI is still

used as the main source of information. Another approach is to construct TI based

on the hard data (Yahya 2011), but the resulting simulations may be biased from the

method chosen for the TI construction.

Mustapha and Dimitrakopoulos (2010a, b) proposed to use the high-order spatial

cumulants as the extension of variogram models to capture complex multipoint

relations during the simulation of non-Gaussian random fields. The technique

estimates the third- and the fourth-order spatial statistics from hard data and

complements them with higher-order statistics from the TI. However, this tech-

nique is based on the approximation of conditional distribution using Legendre

polynomials, which are smooth functions and limited in generating adequate

approximation of the discrete distribution of categorical variables.
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The problem of describing complex multipoint relations of categorical variables

was discussed in Vargas-Guzmán (2011) and Vargas-Guzmán and Qassab (2006).

The author uses high-order indicator statistics to characterize spatially distributed

rock bodies. In this paper, this idea is developed by introducing the connection

between different orders into the mathematical model. For example, consider a

third-order spatial indicator moment of a stationary random field, which is a

function of two lags. When one of the lags is equal to zero, the third-order indicator

moment becomes the second-order indicator moment. Besides that, instead of

exponential functions, the B-spline functions are used to estimate high-order spatial

indicator moments. It is known (Evans et al. 2009; Babenko 1986) that B-spines

provide optimal estimation of equi-continuous functions defined on compacts.

Finally, a new recursive algorithm is proposed for better approximation of high-

order spatial statistics with nested boundary conditions of lower-level relations.

Then, the conditional distribution for the given neighborhood is calculated from

high-order indicator moments and the category is simulated. The proposed method

works without a TI; however, additional information from TI can be incorporated as

the secondary condition during the approximation step, for example, the conditions

on derivatives or the order of continuity. In this case, the high-order spatial

indicator moments are fully driven by the hard data.

The paper is organized as follows. First, high-order spatial indicator moments

are introduced, as a function of distances between points for two-point and

multipoint cases. Then, a mathematical model for recursive approximation of

high-order spatial indicator moments is proposed. Finally, the simulation algorithm

proposed is developed and tested on fully known datasets. Conclusions follow.

2 High-Order Spatial Indicator Moments

Let Ω, F, P be a probability space. Consider a stationary ergodic random vector

Z ¼ Z1,Z2, . . . ZNð ÞT ,Z : Ω ! SN; defined on a regular grid D ¼ x1, x2 . . . xNf g,
x2Rn, n ¼ 2, 3, where Ω is a space of all possible outcomes, F contains all

combinations of Ω, SN is a set of states represented by categories

S ¼ s1, s2, . . . sKf g, and P is the probability measure, or probability. For example,

probability of Z1 being at a state sk is defined as:

P Z1 ¼ skð Þ�P ω2Ω : Z ωð Þ2sk � SN�1
� �� �

: ð1Þ

Without loss of generality, assume that sk¼ k. It can be shown that the probability is
equivalent to spatial indicator moment (Vargas-Guzmán 2011):
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P Zi0 ¼ k0,Zi1 ¼ k1, . . .ð Þ ¼ E Ik0 Zi0ð Þ, Ik1 Zi1ð Þ, . . .ð Þ,
8i0, i1 . . . ¼ 1 . . .N,8k0, k1, . . . ¼ 1 . . .K

ð2Þ

where E is the expected value operator and Ik(Zi) is an indicator function:

Ik Zið Þ ¼ 1, Zi ¼ k
0, Zi 6¼ k0

�
: ð3Þ

From now on, indicator moments are denoted as:

Mk0k1, ... Zi0 ; Zi1 ; . . .ð Þ ¼ E Ik0 Zi0ð Þ, Ik1 Zi1ð Þ, . . .ð Þ: ð4Þ

2.1 Second-Order Spatial Indicator Moment

Consider two random variables Zi0 and Zi1 separated by the lag h1 ¼ xi1 � xi0 . Due

to the stationarity assumption, their second-order spatial indicator moment for

categories k0,k1 can be expressed as a function of the lag h1:

Mk0k1 Zi0 ; Zi1ð Þ ¼ Mk0k1 h1ð Þ: ð5Þ

For the sake of demonstration, consider data from the Stanford V reservoir case

study (Mao and Journel 1999) on Fig. 1a and its categorization on Fig. 1b, in which

the size of image is Nx�Ny pixels. LetWi,j be a value at pixel (i,j) of the categorized
image, where i¼ 1� � �Nx, j¼ 1� � �Ny. If the imageWi,j describes statistical properties

of the random vector Z, then the estimation of indicator moment M̂ k0k1 h1ð Þ on the

lag (h1¼(h,0) can be calculated using pairs {Wi,j,Wi+h,j}. From now on, consider

that the direction of h1 is e1¼(1,0) and fixed and then Mk0k1 h1ð Þ is the function of

distance h.
The sections of the function Mk0k1 hð Þ for fixed h equal to 0, 5, and 40 pixels

which are shown on Fig. 2a–c, respectively. Figure 2d presents the sections of the

function Mk0k1 hð Þ for fixed values k0,k1. Each line corresponds to one of the 3� 3

possible combinations of k0 and k1.
It is not hard to see that for h¼ 0 only diagonal elements are not equal to zero:

Mk0k1 0ð Þ ¼ P Zi0 ¼ k0,Zi0 ¼ k1ð Þ ¼ P Zi0 ¼ k0ð Þδk0,k1 ¼ Mk0δk0,k1 ; ð6Þ

where δk0,k1 is Kronecker delta and Mk0 is the marginal distribution. Additionally,

for two distant locations h!1, the values Zi0 and Zi1 can be considered as

independent random variables and the indicator moment can be factorized:
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Mk0k1 h ! 1ð Þ ¼ Mk0Mk1 : ð7Þ

That can be traced in the function behavior on Fig. 2d. These functions represent

two-point spatial cross-relations, similar to indicator covariances, and satisfy

boundary conditions (6) and (7).

Fig. 1 Image of (a) continuous field and (b) its categorization

Fig. 2 The estimation of the second-order spatial indicator moment M̂ k0k1 hð Þ: (a) zero-distance
h¼ 0 indicator moments; (b) indicator moments on the lag h¼ 5; (c) indicator moments for far

separated points h¼ 40; (d) the sections with different combinations of k0,k1 depends on h. Each
line on (d) corresponds to value in one of 3� 3 cells in (a), and its evolution across different lag

separation (b) and (c)
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2.2 High-Order Spatial Indicator Moments

In the multipoint case, consider n + 1 random variables Zi0 and Zil , l ¼ 1 . . . n, and
then, the spatial configuration is defined by vectors hl ¼ xil � xi0 , l ¼ 1 . . . n. From
now on, consider that directions of h1 are defined and fixed, and then the spatial

indicator moments are the functions of distances hl ¼ hlk k, l ¼ 1 . . . n. Therefore,
the high-order spatial indicator moment can be expressed as follows:

Mk0k1...kn Zi0 ,Zi1 , . . . Zinð Þ ¼ Mk0k1...kn h1, h2, . . . hnð Þ: ð8Þ

Hereafter, the following concise notation is used: k ¼ k0 . . . kn and h ¼ h1, . . . , hn.
Similar to the case of the second-order statistics, boundary conditions can be

expressed through lower order:

Mk h1, . . . , hp ¼ 0, . . . , hn
� � ¼ Mk\ kp h\ hp

� �
δk0,kp ,8p21 . . . n; ð9Þ

where h\hp denotes all the lags h excluding the lag hp. Similarly for k\kp.
If the directions are quite different, then additional boundary conditions are

valid:

Mk h1, . . . , hp ! 1, . . . , hn
� �

¼ Mk\ kp h\ hp
� �

Mkp , 8p21 . . . n:
ð10Þ

Thus, the high-order spatial indicator moments are bounded with lower-order

moments, and this information should be taken into account during simulation.

For example, in case of three-point relations, for the image Wi,j, the sampling

third-order spatial indicator moment M̂ k0k1k2 h1; h2ð Þ of random variables separated

by the vectors h1, h2 with directions e1¼(1,0) and e1¼(1,0) can be calculated using

triplets Wi, j;Wiþh1, j;Wi, jþh2

��
. The indicator moment M̂ 111 h1; h2ð Þ is shown on

Fig. 3. The values of the function M̂ 111 h1; h2ð Þon boundaries (h1,0), (h1,50), (0,h2),
and (50, h2) correspond to two-point statistics shown on Fig. 2d.

3 Mathematical Model

In this paper, multidimensional B-spline approximation under constrains (8) and (9)

is used to model the high-order spatial indicator momentsMk(h). Consider the fixed
categories k0,� � �kn; then, the function Mk(h) is a multidimensional function which

values are known at the limited number of points hd ¼ hd
1 ; . . . ; h

d
n

� �
, d ¼ 1 . . .m

estimated from the hard data. The calculation of sampling indicator moments M̂ k

hd
� �

is presented in the subsequent section. Then, the function Mk(h) can be

approximated using the following recursive model:
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Mk hð Þ ¼ M0
k hð Þ þ δMk hð Þ; ð11Þ

M0
k hð Þ ¼

1Xn
p¼1

e�ahpþe�a 1�hpð Þ
Xn
p¼1

Mk0...kn h1, . . . , hp ¼ 0 . . . , hn
� �

e�ahpþ
"

,

þ
Xn
p¼1

Mk0...kn h1, . . . , hp ! 1 . . . , hn
� �

e�a 1�hpð Þ
#
,8p ¼ 1 . . . n

ð12Þ

δMk hð Þ ¼
Xω
i1¼1

� � �
Xω
in¼1

αi1, ..., inBi1, r h1ð Þ . . .Bin, r hnð Þ; ð13Þ

where user-defined parameter a determines the influence of the boundary condi-

tions, αi1, ..., in are coefficients of B-spline approximation, and Bi,r(t) is i-th B-splines
of order r on uniformly divided knot sequence {t0, t1, t2, . . ., tp}, where knots are

separated by step dt ¼ tp � t0
� �

=p, t0¼ 0, and tp are equal to the minimal lag

distance at which the variables can be considered as independent.

The coefficients αi1, ..., in are found using least-square algorithm to fit points:

δMk hd
� � ¼ M̂ k hd

� ��M0
k hd
� �

, d ¼ 1 . . .m; ð14Þ

under zero-boundary constrains:

δMk h1, . . . , hp ¼ 0, . . . , hn
� � ¼ 0,

δMk h1, . . . , hp ! 1, . . . , hn
� � ¼ 0, 8p ¼ 1 . . . n:

ð15Þ

In this paper, the additional regularization condition of minimum curvature (Wang

et al. 2006) is used to avoid overfitting.

Fig. 3 The third-order

spatial indicator moment

M̂ 111 h1; h2ð Þ
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The high-order moments are recursively constructed by starting from the -

second-order indicator moments. First, second-order indicator moments Mk0kp

hp
� �

, p ¼ 1 . . . n are calculated from the basic variogram model (David 1977).

Then, the trend M0
k0,k1,k2

h1; h2ð Þ is calculated using Eq. 12 and relations to the

lower orders (9) and (10). Further, the residuals δMk0,k1,k2 hd
1 ; h

d
2

� �
can be

estimated from sampling indicator moments M̂ k0,k1,k2 hd
1 ; h

d
2

� �
and Eq. 14.

These residuals are used as points in the B-spline approximation (13) of the

multidimensional function δMk0,k1,k2 h1; h2ð Þ under zero-boundary constrains

(15). Finally, the third-order spatial indicator moments are retrieved using

equation (11). The same procedure is recursively repeated for fourth, fifth,

and higher orders until the desired order is achieved.

3.1 Calculation of Sampling Statistics

The octant model is used (Fig. 4) to estimate the sampling indicator moments M̂ k

hd
� �

from the hard data. The neighborhood area of each hard data sample is divided

into Nϕ¼ 8 sectors representing Nϕ directions. Then, each sector is divided into Nr

lags and forms an Nr�Nϕ bin template. Only one point within each bin is randomly

chosen to construct a replicate. Finally, the values M̂ k hd
� �

are estimated from

replicates using law of large numbers:

M̂ k hd
� � ¼ 1

Nhd

XNhd

j¼1

Ik0 z ji0

� �
. . . Ikn z jin

� �
, d ¼ 1 . . .m; ð16Þ

where the sum is taken over allNhd replicates with the spatial configuration h
d, data

samples z ji0 . . . z
j
in
in the replicate j are separated by lags hd, and d is the index of

different spatial configurations hd. It should be noted that replicates separated by at
least half the variogram range should be used for the law of the large numbers to be

applicable.

The amount of information about high-order statistics that can be retrieved from

data crucially depends on the number of categories K, the total number of data

samples N, and the level of correlation between values. It is not hard to see that the

higher order of statistics considered are the larger the number of samples available

should be. In order to have an adequate number of replicates for a particular order

m of statistics, the minimum number of replicates Nrepl mð Þ � Nhd ,8hd is set up by

the user. However, more advanced techniques based on an entropy or information

theory should be considered (Arndt 2004). Having a minimum number of replicates

Nrepl(m) for the given order of statistics m, the optimal number of lags Nopt
r is

calculated.
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4 Simulation Algorithm

Combining all of the above, the new data-driven algorithm is formulated as follows:

Algorithm A.1
1. Starting from two-point statistics m¼ 2 until stopping criteria is reached.

(a) Define the minimum number of replicates Nrepl(m) for given order m.
(b) Scan the hard data using the octant model (Fig. 4) with different Nr starting

with the number of the radial divisions Nr¼ 2 and find the higher Nr for

which the average number of replicates is bigger than Nrepl(m).
(c) If Nr¼ 2 and the average number of replicates is less than Nrepl, then exit

the loop.

(d) Save all the replicates for obtained Nr and the order of statistics m.
(e) Increase the order of statistics m¼m + 1.

2. Define a random path visiting all the unsampled nodes.

3. For each node xi0 in the path:

(a) Find the closest data samples xi1 , xi2 , . . . xin . The categories at these nodes
are denoted by k1,� � �kn.

(b) For all k0¼ 1� � �K, calculate the high-order spatial indicator moments M̂ k

hd
� �

using formula (15) from the replicates found in step 1 and recursive

model (11–13). Note that k1,� � �kn are fixed. For the orders higher than

maximum order m, consider δMk hð Þ�0.

(c) Calculate the conditional distribution from joint distribution:

P Zi0 ¼ k0
		Zi1 ¼ k1 . . . ,Zin ¼ kn


 � ¼ AMk hð Þ; ð17Þ

Fig. 4 Octant model for

calculation of the sampling

joint distribution M̂ k hd
� �
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where coefficient A is the normalization coefficient:

A ¼ 1=
XK
k0¼1

Mk hð Þ ð18Þ

(d) Draw a random value zi0 from this conditional distribution (17) and assign it

to the unsampled location xi0 .
(e) Add zi0 to the set of sample hard data and the previously simulated values.

4. Repeat Steps 3a–e for all the points along the random path defined in Step 2.

5 Simulation Results

The proposed approach is tested on the data set from the Stanford V reservoir case

study (Fig. 1a). This image is discretized on categories 0, 1, and 2 and is used as a

reference image (Fig. 5a). Hard data is randomly selected from the image and

shown in Fig. 5b. This represents 520 points (5% of the image points). The results

are compared with sequential indicator simulation algorithm (sisim; Journel and
Alabert 1990; Deutsch and Journel 1998).

The simulation results for the case with 520 data samples are shown in Fig. 6.

Neither the training image nor the reference image (Fig. 5a) is used during the

simulation and is presented herein only for the sake of comparison. Simulations are

done in two modes: using only boundary conditions (Fig. 6b) and using both

conditions (14) and (15) (Fig. 6c). In the case of using just boundary conditions,

the result is smooth and the width of channels is overestimated because all high-

order statistics are derived from the second-order statistics. However, sisim simu-

lation results (Fig. 6a) are less connected and the channels can be hardly detected.

The result obtained with the account of higher-order statistics from data (Fig. 6c)

reproduces the channels quite well with adequate dimensions of geometrical

bodies.

On Fig. 6c, the histograms for data samples, the reference image, sisim simula-

tion, and the simulation using the proposed technique are shown by blue, light blue,

yellow, and red bars, respectively. The deviations from the distribution in hard data

are small for both sisim and proposed algorithm simulations.

The second-order statistics are compared in Fig. 7a. The direction e1¼(1,0) is

used. The indicator moments M01(h1) of simulations using sisim and the proposed

algorithm are reproduced well. Nevertheless, the third-order statistics M012(h1,h2)
of the reference image (Fig. 7b), simulation using sisim algorithm (Fig. 7c), and the

result of the proposed technique (Fig. 7d) are quite different. The third-order spatial

indicator moments are calculated using directions e1¼(1,0) and e2¼(1,0). Some

similarities of patterns can be traced in the bottom part of Fig. 7b, d, which

correspond to statistics of the reference image and the simulation using the
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proposed algorithm. However, the point of interest is the reproduction of the high-

order spatial statistics of the hard data.

The surface on Fig. 8 is a 3D view of Fig. 7d. Dots represent the statistics

calculated from the hard data. Colors show the number of triplets used for the

calculation of the third-order spatial indicator momentM012(h1,h2). The higher the
number of triplets, the more reliable the value of the point is. The spatial indicator

Fig. 5 Case study with 520 data samples: (a) the reference image, (b) data samples

Fig. 6 Case study with 520 data samples: (a) sisim simulation result, (b) the simulation using

proposed algorithm with only boundary conditions, (c) the simulation result using both boundary

conditions and high-order statistics from data. Subfigure (d) shows histograms for data samples,

the reference image, sisim simulation, and the simulation using the proposed technique presented

by blue, light blue, yellow, and red bars, respectively
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moment M012(h1,h2) of the simulation using the proposed algorithm tends to fit

more reliable points and is consistent with the boundary conditions (Fig. 8).

6 Conclusions

This paper presented a new data-driven, high-order sequential method for the

simulation of categorical random fields. The sequential algorithm is based on the

B-spline approximation of high-order spatial indicator moments that are consistent

with each other. The main distinction from commonly used MPS methods is that, in

the proposed technique, conditional distributions are constructed using high-order

spatial indicator moments as the functions of distances based on hard data. The

simulations herein are generated without a TI. Note that in applications with

Fig. 7 Case study with 520 data samples. (a) Second-order spatial indicator moment M01(h1)
using directions e1¼(1,0) for data samples, the reference image, sisim simulation, and the

simulation using proposed technique are presented by black dots and green, blue, red lines,
respectively. The third-order spatial indicator moment M012(h1,h2) using directions e1¼(1,0) and

e1¼(1,0) for (b) the reference image, (c) sisim simulation result, (d) the simulation using both

boundary conditions and high-order statistics from data
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relatively large numbers of data, as in the simulation of mineral deposits, the

higher-order statistics are deduced from hard data. The option of adding a TI to a

dataset is available for sparser datasets.

The basic concept of the algorithm is to use recursive approximation models

with enclosed boundary conditions, which are derived from the nested nature of

high-order spatial indicator moments presented herein. To provide robust estima-

tion, the regularized B-splines are used.

Another important aspect is the different amount of information that can be

retrieved for different levels of relations. In the proposed method, each order of

spatial statistics is approximated using the appropriate number of B-splines to

provide robustness to the algorithm and to avoid overfitting. Thus, lower-order

statistics are estimated with higher resolution than the higher-order statistics.

The simulation algorithm is tested on the categorized data from the Stanford V

reservoir case study and compared with results of the sisim algorithm. No TI is used

during simulations. According to the results, the proposed method reproduces the

complex spatial patterns, such as channels, and preserves high-order statistics.

The proposed technique is fully data driven; however, the information from the

TI can be incorporated with the suggested model as a trend to capture high-

frequency features of the TI. Further research is concerned with the application to

3D models, improving the efficiency, testing for unbiasedness of the proposed

approximation model, and generalization to the continuous random fields.
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Fig. 8 The third-order

spatial indicator moment

M012(h1,h2) using directions

e1¼(1,0) and e2¼(1,0) for

the simulation using both

boundary conditions and

high-order statistics from

data. Colors show the

number of triplets found in

data using template on

Fig. 4
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Conditional Bias in Kriging: Let’s Keep It

M. Nowak and O. Leuangthong

Abstract Mineral resource estimation has long been plagued with the inherent

challenge of conditional bias. Estimation requires the specification of a number of

parameters such as block model block size, minimum and maximum number of

data used to estimate a block, and search ellipsoid radii. The choice of estimation

parameters is not an objective procedure that can be followed from one deposit to

the next. Several measures have been proposed to assist in the choice of kriging

estimation parameters to lower the conditional bias. These include the slope of

regression and kriging efficiency.

The objective of this paper is to demonstrate that both slope of regression and

kriging efficiency should be viewed with caution. Lowering conditional bias may

be an improper approach to estimating metal grades, especially in deposits for

which high cutoff grades are required for mining. A review of slope of regression

and kriging efficiency as tools for optimization of estimation parameters is

presented and followed by a case study of these metrics applied to an epithermal

gold deposit. The case study compares block estimated grades with uncertainty

distributions of global tonnes and grade at specified cutoffs. The estimated grades

are designed for different block sizes, different data sets, and different estimation

parameters, i.e., those geared toward lowering the conditional bias and those

designed for higher block grade variability with high conditional biases.
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1 Introduction

When resource modeling by kriging, a number of estimation parameters must be

established such as block model block size, minimum and maximum number of

data used to estimate a block, or search ellipsoid radii. Arik (1990) studied the

impact of search parameters in two case studies for gold and molybdenum and

considered the drill density, skewness of the grade distribution, and availability of a

suitable geology model. The studies involved estimating with drill hole data and

comparing against blasthole data. As Arik demonstrated and many resource mod-

elers know, the choice of the estimation parameters is by no means an objective

procedure that provides a simple recipe for all types of deposits.

This long-standing topic is not new and has been addressed by many authors. At

the center of the discussion is the issue of conditional bias, wherein the expected

value of the true grade conditioned on the estimates is not equal to the estimated

grade (Journel and Huijbregts 1978; Olea 1991):

E Z Z*
�� ¼ z

� �� z 6¼ 0

The discussion among both theoreticians and practitioners revolves around how

conditional bias affects the quality of the block grade estimates (McLennan and

Deutsch 2002). The first school of thought insists that the conditional bias should be

as small as possible and must be dealt with, and the second school of thought

believes that the conditional bias should be ignored and the variability of block

estimates should be as high as the variability of underlying true block grades.

Rivoirard (1987) suggested that the size of the kriging neighborhood should

consider the weight given to the mean. If the mean is given a large weight, then the

neighborhood should be expanded so as to increase the slope of regression and

thereby reduce conditional bias. Conversely, if the weight of the mean is low, then a

localized neighborhood is adequate. Krige introduced a metric called kriging

efficiency (Krige 1997) that correlates to the slope of regression. He contends

that one should never accept conditional bias in an effort to reduce the smoothing

effect of kriging (Krige 1997; Krige et al. 2005). Deutsch et al. (2014) further

expanded on potential sub-optimality of the estimates due to large conditional

biases reflected in slope of regression and in kriging efficiency measures. Deutsch

proposed a new expression of kriging efficiency to aid in the assessment of quality

of estimated block grades.

From a procedural perspective, Vann et al. (2003) introduced quantitative

kriging neighborhood analysis (QKNA) to optimize the estimation parameters for

selection of the minimum/maximum of number of samples, quadrant search, search

neighborhood, and block size. The proposed criteria for evaluating quality of block

grade estimates include slope of regression of true block grades on estimated block

grades, weight attached to the mean in simple kriging, distribution of kriging

weights, and kriging variance.
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All of the above contributors have focused on metrics and efforts to minimize

conditional bias. On the other end of the spectrum of this discussion, Isaaks (2005)

argued that estimates cannot be both conditionally unbiased and globally accurate

at the same time. The estimates may be close to conditionally unbiased but the

histogram of block estimates is smoothed, which results in inaccurate predictions of

the recoverable tonnes and grade above cutoff grades. He advocates that a condi-

tionally biased estimate is necessary to obtain a globally unbiased recoverable

resource above cutoff grade. There is support that during the early stages of project

feasibility assessments, it is more important to accurately predict the global recov-

erable reserves than to produce locally accurate estimates (Journel and Kyriakidis

2004).

Despite valid points on both ends of the spectrum, it appears that the first school

of thought has been winning the discussion in recent years. The authors noticed a

substantial increase in application of those measures for optimization of estimation

parameters. Some of the proposed measures for optimization of kriging estimates,

such as slope of regression and kriging efficiency, are currently readily available in

most commercial software. In some organizations, this quantitative approach has

become standard in the resource estimation process irrespective of the stage of

exploration and/or development of the mineral deposit.

It appears that Isaaks’ sound argument for recoverable resources above an

economic cutoff grade, particularly in early stage projects, appears to have been

forgotten in the popularization of a quantitative approach because of software

accessibility. In the wake of convenience, we seem to have lost the idea of a fit-

for-purpose model, including consideration for the stage of the project.

The objective of this paper is to demonstrate that both slope of regression and

kriging efficiency should be viewed with caution for optimizing estimation param-

eters. Lowering conditional bias may be an improper approach to estimating metal

grades. In fact, it might be outright wrong especially in deposits for which high

cutoff grades are required for mining.

This paper presents a summary of the two typical tools, suggested for optimiza-

tion of estimation parameters, slope of regression and kriging efficiency, followed

by application of these metrics applied to an epithermal gold deposit. The case

study compares block estimated grades with uncertainty distributions of global

tonnes and grade at specified cutoffs. The estimated grades are designed for

different block sizes, different data sets, and different estimation parameters, i.e.,

those geared toward lowering the conditional bias and those designed for higher

block grade variability with high conditional biases.
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2 Two Proposed Measures for Optimization of Estimation

Parameters

Block ordinary kriging is one of the most common estimation methods used for

resource modeling in the mining industry (Journel and Huijbregts 1978; Sinclair

and Blackwell 2002). Each block estimate can be written as:

Z* uð Þ ¼
Xn

i¼1

λiZ uið Þ

where Z*(u) represents the estimated block grade at location vector u, and λi is the
kriging weight assigned to sample Z(ui). The resource model, comprised of esti-

mated block grade at all relevant locations, forms the distribution of estimated

grades that is the basis for a mineral resource statement.

Among other considerations, such as geologic confidence, grade continuity, and

database quality, a cutoff grade is used to differentiate between those blocks that are

reported as a mineral resource (Sinclair and Blackwell 2002). This cutoff grade is

applied throughout a project, depending on the method of mineral extraction. The

smoothness of this estimated grade distribution, relative to the cutoff grade, is then

paramount to this discussion of accurately predicting the global mineral resource

for a project.

The smoothness of the estimated grade distribution depends not only on the

quantity and location of conditioning data and the modeled variogram but also on

the estimation parameters such as minimum/maximum number of samples, size of

search neighborhood, and type of search. While there are a number of suggested

measures for assistance in the choice of optimal kriging estimation parameters, such

as slope of regression, kriging efficiency, or weight of the mean from simple

kriging, this paper will only focus on the first two due to their prominent use in

the mineral resources sector.

2.1 Slope of Regression

When kriged estimated Z* block grades are plotted on X axis and unknown true

Z block grade are plotted on Y axis, then the regression of true values given the

estimates is an indication of the conditional bias in the estimate (Journel and

Huijbregts 1978) (Fig. 1). Conditional bias takes place when the expected value

of true block grade Z conditional to estimated block grade Z* is not equal to the

estimated grade. The slope of the regression b is often used to summarize the

conditional bias of the kriging estimate:
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E Z Z* ¼ z
��� � � aþ bz ð1Þ

Naturally, the block true values are unknown, but the slope b can be calculated

once a variogram model is known by the following formula:

b ¼ cov Z; Z*
� �

σ2
Z*

ð2Þ

To calculate the slope from formula (2), it is enough to know kriging weights

attached to samples used to estimate a block and to know covariances between

samples and samples and the block. Note that actual sample grades are not taken

into account in the calculation. The slope will be identical in both lower- and

higher-grade areas, although potentially higher conditional bias, and by extension

lower slope of regression, could be expected in the high-grade areas.

2.2 Kriging Efficiency

Kriging efficiency, introduced by Krige (1997), is considered a good measure of

effectiveness of kriging estimates. The kriging efficiency can be calculated from

two by-products of kriging procedure, block variance (σ2Bl) and kriging variance

(σ2kr):

Fig. 1 Schematic

illustration of conditional

bias (McLennan and

Deutsch 2002). The

estimates Z* are on the X

axis, and the true block

grades Z are on the Y axis
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KE ¼ σ2Bl � σ2kr
σ2Bl

ð3Þ

Kriging efficiency values can range from negative (poor estimates) to a maxi-

mum value of 1 (very good estimates). As with the slope of regression, actual assay

data do not get used in the calculation. The results are purely dependent on a

variogram model and on data locations used to estimate the blocks. Krige mentions

that based on a number of case studies he conducted there is a correlation between

the efficiency and the slope of regression (Krige 1997). For the increased slope

value, there is also an increase in kriging efficiency.

3 Case Study

This case study is based on an epithermal gold deposit in British Columbia,

localized along a major fault. Gold-bearing breccia, vein, and stockwork develop-

ment occurs along the fault and in subsidiary dilational structures. Gold minerali-

zation roughly parallels the fault. The deposit has been drilled out by more than

500 closely spaced holes drilled roughly on a 25� 25 m grid. At one time,

originally modeled from the full set of data, the lowest grade domain in the deposit

had an average grade close to 0.7 g/t and the highest grade domain had an average

gold grade more than 2 g/t with relatively low coefficient of variation at 1.3.

A portion of the deposit has been chosen for simulating gold grades on a dense

4� 4� 4 m grid. The chosen portion of the deposit does not differentiate between

different geological units. This simplified approach, considering closely spaced

large number of drill holes, is not considered detrimental to the results of the study.

A typical realization with average grades very similar to declustered assay grades

from the drill holes has been chosen for this study. Maximum range of gold

continuity is at 160� azimuth and is much shorter in vertical direction and at 70�

azimuth (Fig. 2). The relative nugget effect of 25% and ranges of continuity

spanning from 40 to 60 m are quite typical and encountered in many gold deposits.

Note that although the following analysis is based on simulated grades, considering

a large number of drill holes in a relatively small area from which the simulated

grades are derived, the simulated grades do represent a distribution that closely

resembles actual grades in this deposit.

The simulated deposit, with an average grade of 1.26 g/t, has been “drilled” with

“exploration” holes. The location of the “exploration” holes was essentially random

with some limitations on allowed distances between the holes and on generally

higher density of drilling in higher-grade areas. Two data sets were created: The

first set (large data set) represents 281 holes drilled at 30 m spacing outside of high-

grade mineralization and at down to 16 m spacing within higher-grade regions. The

second set (small data set) represents more typical case with 156 drill holes drilled

at 40 m distance in lower-grade areas and down to 20 m in higher-grade areas
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(Fig. 3). Drill hole spacing in the second data set is similar to what would be

typically expected in a gold deposit at the early stages of exploration.

The smaller data set was used for variogram modeling. As is common in

practice, the best continuity was modeled for directions slightly different than

those known from simulated grades. Moreover, the modeled variogram parameters

were different from those applied for the simulated reference data. Each data subset

was used to estimate gold grades by ordinary kriging for different block sizes and

different number of data allowed to estimate the blocks. Vertical block size was

kept constant at 8 m with increased sizes along easting and northing directions.
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For strongly conditionally biased estimates, a small number of data was used

with a minimum of 4 and a maximum of 12 composite assay grades (referred to as

the “sub-optimal” design). In an attempt to lower the conditional bias, blocks were

estimated with a large search ellipsoid with a minimum of 24 and maximum of

64 composite assays; this is referred to as the “optimal” design. For each estimated

block grade, a slope of regression and kriging efficiency was calculated. In addition,

the estimated block grades were compared to true block grades.

4 Results

Figure 4 shows how slope of regression and kriging efficiency change for different

block sizes, different data sets, and estimation parameters used. As discussed,

modification to the estimation parameters was limited to a number of data used

starting from “poorly designed” not optimal estimation procedure with small

number of data used for the estimation and ending with “well designed” optimal

process with large number of data used for the estimation. As expected, the optimal

Fig. 3 Plan view of true block grades and data locations: (a) large data set, (b) small, more

typical, data set
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estimation procedure results in higher slope of regression and increases kriging

efficiency.

It is interesting that for the small data set used in the estimation, the actual block

size did not have any effect on the slope of regression and kriging efficiency. On the

other hand, when the large data set was used there was gradual increase in kriging

Fig. 4 Slope of regression (a) and kriging efficiency (b) for blocks estimated from two data sets

for different block sizes and different estimation parameters
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efficiency with the increased block size. Note that kriging efficiency is quite low

regardless of the estimation type. As expected, using the large number of data

(optimal case) to estimate block grades resulted in a substantial increase in the slope

of regression, i.e., it resulted in substantial decrease of conditional bias. Not

surprisingly, the slope of regression is quite high for the large data set and large

number of data used for the estimation. These graphs clearly indicate that using a lot

of data during the estimation process lowers conditional bias and increases kriging

efficiency.

Now that it has been established that applying more data to the block estimates

increases slope of regression and by extension decreases conditional bias, the next

step involved comparisons of actual true block grades with the estimated grades for

different cutoffs. Figures 5 and 6 show relative tonnage and grade differences

between true and estimated block grades at the 1.0 g/t cutoff for optimal and not

optimal estimates from the small data and the large data sets, respectively. Both

figures show that despite high conditional bias in the sub-optimal design, the

estimated tonnes and grades are closer to reference tonnage and grade in the

deposit. This is also true for the estimates from the large data set, although here

the differences between the not optimal and optimal models are smaller. Note that,

as presented in Fig. 6, at 20 m block size estimated tonnes and grade are very

similar to reference tonnes and grade. At the same time, it would be misleading to

conclude that this block size produced superior estimates.

In fact, the reported tonnage and grade from different block sizes is quite similar

(Fig. 7). It just happens that the estimated tonnes and grade in this specific deposit

are comparable to recoverable tonnes and grade at the selective mining unit (SMU)

size higher than 20 m, roughly the size of half of drill hole spacing. This is an

important observation that suggests it does not matter what block size is used for

estimating resources. Reported resource at 8 m or 20 m block size will be similar,

but the 20 m block appears to approach the size that, if successfully applied during

mining operation, would result in actually recovered tonnes and grade very similar

to those estimated. As long as there is no connection made between a block size

used and actual SMU considered for mining, there is nothing particularly wrong

with estimates based on a small block size.

An important result of the optimization of the estimation process is high

smoothing of the estimated block grades. The smoothing effect may result in

large differences between estimated and actual metal content at higher cutoff

values. For block estimates from the typical (smaller) data set, the estimated

metal content at higher cutoffs may be as much as 70–80% lower than the actual

metal content (Fig. 8) for the “optimized” parameters, while the “sub-optimal”

model yields 50–60% less metal content relative to the reference. Similar conclu-

sions can be made for the larger data set, with percent differences ranging from

20 to 30% for the sub-optimal model and 30–50% for the optimal model. There-

fore, it is obvious that the lower the conditional bias the higher the smoothing effect

that can be expected when estimating from sparsely spaced data. The interesting

trend, however, is that for both the sparsely and densely sampled data sets, the
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sub-optimal set of parameters yield the closest estimate of contained metal for

cutoff grades above the 1.25 g/t mean grade.

The final task considered comparison of the estimation models with conditional

simulation of the small data set. The purpose of this exercise was to compare the

estimation model to a model constructed using a method that is considered to avoid

conditional bias altogether (McLennan and Deutsch 2002; Journel and Kyriakidis

2004). The reference distribution was obtained via p-field simulation wherein the

local distributions of uncertainty considered a local trend model. For this task,

sequential Gaussian simulation was performed with no consideration for any trends,

and variograms were calculated based on the small data set. As with the estimation

models, the continuity directions vary slightly from those of the reference model.

Fig. 5 Relative tonnage (a) and grade (b) differences between estimated and true block grades at

1.0 g/t cutoff. The blocks were estimated from typical, smaller data set
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Multiple realizations were then generated at a 2� 2� 2 m resolution and subse-

quently block averaged to various block sizes: 8, 12, 16, and 20 m.

The uncertainty in grades and tonnage at a series of different cutoff grades were

assessed, and the combined impact is summarized as contained metal at different

cutoff grades (Fig. 9). The corresponding sensitivity curves for the sub-optimal and

optimal estimation models, along with the reference model, are shown for compar-

ison. Three interesting observations are made. Firstly, at a cutoff grade up to the

mean grade of 1.25 g/t, there is no appreciable difference between the contained

metal estimated using the optimal or sub-optimal parameters. Secondly, for the four

block sizes considered, the sub-optimal parameters yield estimates closest to the

Fig. 6 Relative tonnage (a) and grade (b) differences between estimated and true block grades at

1.0 g/t cutoff. The blocks were estimated from large data set
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reference model at higher cutoff grades. Thirdly, the simulation approach, which is

considered to be a non-biased method, yields the distributions of uncertainty in

contained metal that encompasses the reference data. This latter observation is

important, particularly as a reference model is never available in practice for

benchmarking purposes. This indicates that a conditional simulation approach can

Fig. 7 Estimated from small data set grade and proportion of tonnage above 1.0 g/t cutoff for

different block sizes

Fig. 8 Relative metal losses in estimated block grade models for different cutoffs in 16 m block

models
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be used to validate the estimated tonnage, grades, and ultimately metal when

determining an appropriate set of estimation parameters.

5 Discussion

Both slope of regression and kriging efficiency assume global stationarity within a

specifically modeled domain. Mineral deposits are not stationary, even within a

specific estimation domain. In an estimation domain, there are always small regions

of high and small regions of very low grades. Slope of regression and kriging

efficiency formulas do not take into account the fact that true variance of estimation

errors depends on data values. In regions with higher grade or in regions with local

Fig. 9 Contained metal curves for estimated block models for different cutoff grades at 8 m, 12 m,

16 m, and 20 m block sizes
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data having more variance than in the whole domain, fluctuation of errors is larger.

Disregarding these local changes in variability may lead to estimated resources that

steer away from what would be expected of a typical resource estimate.

A resource block model should not be designed to produce an inventory of

recoverable resource that is based on SMU size much larger than would generally

be considered for mining, only because for this SMU size, when mined, the

resource model will turn out to be correct. A deposit is never mined according to

a resource block model. A decision on what will be mined will be based on grade

control drilling, necessary both in open-pit and underground mining. A resource

geologist should strive to produce a block model that predicts, reasonably well, the

tonnage and grade that a mine can expect to achieve over the life of the mine, once

it has sorted out its grade control procedures. In addition, the resource block models

are often used for dilution calculations or blending issues. A block model designed

from optimizing slope of regression, or block size, will not serve this purpose.

In short, optimizing kriged block estimates with slope of regression or kriging

efficiency measures may lead to block models that do not adequately reflect true

block grades. It is tempting and easy to use slope of regression and kriging

efficiency for validation of block estimated grades. Those measures are commonly

available in commercial software packages. Although theoretically high slope of

regression, i.e., low conditional bias, is considered necessary for good quality

estimates, in practice this approach may be outright harmful if the objective of

the study is to predict global resource quantities above an economic cutoff grade.

Both measures are a reflection of a modeled variogram and data locations and do

not take into account actual assay values or their variability in the vicinity of an

estimated block. Moreover, it is often quite difficult to construct a reliable

variogram model, particularly in early exploration stages, and relying on its metrics

to design “best” resource estimates cannot be considered best practice.

Based on the presented case study, there is strong indication that it is better to

have conditionally biased block estimates for global resource quantities required for

a potential investment decision, life-of-mine planning, and/or development deci-

sions. Once a cutoff is applied to block estimated grades for reporting or further

mining studies, it is better to have unsmoothed conditionally biased block esti-

mates. In this context of achieving globally accurate predictions, it looks like the

onus is back on a resource geologist to design estimation parameters that produce a

realistic block model that reflects the underlying true block grades the best way

possible.
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Operational SMU Definition of a Brazilian
Copper Operation

Joao Dirk Reuwsaat, Cassio Diedrich, Roberto Menin,
and Wellington F. De Paula

Abstract Achieving estimated mining recoverable grade and tonnage curves is a

common challenge in mining operations. One of the most impacting parameters in

the estimation process of these curves is the selective mining unit (SMU) size,

defined as the smallest volume of material that can be selectively extracted as ore or

waste. Such an important parameter as SMU is often defined by general practical

and theoretical rules based on sampling grid without taking into account aspects

such as local geology, mining configuration, and production rates. This paper

presents a short-term and production reconciliation application study for defining

block support size at a Brazilian copper and gold mining operation. Realistic

mining recoverable curve is expected as a result of an operational SMU definition.

The resulting operational SMU application demonstrates how more accurate esti-

mates are to the actual mining recoverable curves at given cutoffs compared to the

ones obtained using traditional SMU definition, commonly applied by the mining

industry.

1 Introduction

Estimated mineral resources models are made to predict the deposit tonnage and

grade distribution curves that will be extracted and fed into the plant (Rossi and

Deutsch 2014).

Geostatistical estimates of mining recovery curves may be somewhat optimistic,

as they do not take into account factors other than block grades, commonly

disregarding mining configuration (method and geometry), local geology in the

production environment, and production rates. Mining dilution (planned and/or
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unplanned) is an important driver in the operational process and generally impacts

the tonnage and grade distributions, ultimately affecting milling, stockpiling, and

waste dump processes. Models that try to predict these curves taking into consid-

eration mining dilution and ore losses are called recoverable models (David 1977;

Journel and Huijbregts 1978).

Operational (planned and/or unplanned) dilution is regularly accounted as global

factors in the mining plan by planning engineers. However, the SMU definition

should be a back-to-front exercise considering expected operational aspects, such as

dilution, that will result in a different (larger in general) SMU size, depending on

the level of operational selectivity.

A practical way to evaluate the operational dilution and to select the SMU size

that better fits the actual operational tonnage and grade curves is presented in this

paper. It is mainly based on the comparison of actual mined information (or from a

simulated/mimicked mining plans based on expected operational production rates)

to the commonly estimated block model provided by resource evaluators. The work

is illustrated using a Brazilian copper/gold mining operation database.

2 Dilution

Dilution can be split in more than one type (Rossi 2002):

• Support dilution

• Geological contact dilution

• Mining operational dilution

Support dilution is the change in the distribution due to the size of the support

being evaluated (Parker 1980). It is the type of dilution evaluated by selectivity

analysis: the understanding of the support impact on the spatial data distribution to

build a model that captures it.

Contact dilution is the dilution due to the mixture of materials of different

qualities inside each block, which should be properly weighed.

Operational (planned and unplanned) dilution is a mixture of material due to the

mining operation (grade control and equipment operation) itself. Planned dilution is

directly related to the production rate and the size of the grade control polygons

(ultimately defined as the operational selective size). Unplanned dilution is directly

related to the equipment operation of the grade control polygons (considering

already planned dilution) and its operational mining practices. This is generally

more variable and difficult to predict since it is related to operational issues (failing

to follow dig lines, blasting backbreak, topography errors, etc.).
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3 Copper Operation Case Study

The case study was based on a copper/gold operation mine in a massive deposit

with large production rate. Three block models are defined in the production

process:

1. Long-term model: used in the life of mine, 5Y, and annual mining plans

2. Short-term model: used in the quarterly and monthly plans

3. Grade control model: used in the daily mining operation

The long-term model uses only diamond drill hole (DDH) information. The

short-term and the grade control models use only blast holes data (approx. 6� 6 m).

The long-term and short-term models use a 15� 15� 15 m SMU size. The grade

control model corresponds to the estimated blasting polygons of the mining pro-

cess. Figure 1 shows long-term block model along with the mining polygons on a

specific level.

The tonnages and grades on this study are compared between models using all

mining blasting polygons and production data existing in the mine. Therefore, all

the tonnage and grade reports correspond only to the mined portion of the deposit.

The long-term block model was updated considering production reconciliation

information (geological contacts and short-term grade variations) for this study;

thus both long- and short-term models are practically the same in this operational

example. Hence, all comparisons in the study used the long-term model.

Support dilution is taken into account in the long-term model through ordinary

kriging estimation plans, ensuring that block distribution is coherent with the

change-of-support data analysis. Contact dilution is taken into account by tonnage

weighting of the materials inside each block.

In the mining scheduling process, long-term engineers compute tonnages and

grades based on the long-term model. Mining blasting polygons, however, are the

main drivers of the operational process. This is ultimately considered as the grade

control model and has “irregular” SMU size as a result of the local mining process

and its resulting quality values. As the models (long-term compared to the grade

control model) have distinct support, they have different tonnage and grade curves.

Comparing these curves, the differences due to operational configuration (mining in

polygons) is clear. Figure 2 shows these curves, where it shows how much is not

recovered for each cutoff. This difference is a measure of the planned dilution.

Long-term mine planning take into account that each SMU will be selectively

mined as ore or waste. However, mining operational process is based on blasting

polygons and local operating particularities, which can result in poor reconciliation

of long-term block models and the mining recovery curves, indicating lesser levels

of selectivity. Hence, the importance of acknowledging planned dilution is verified.

Planning engineers usually consider planned/unplanned dilution as a constant

factor. However, dilution is not constant and depends on the spatial distribution of

the deposit. Homogeneous regions should have less dilution than regions with more

contact variability. Therefore, if the production rate remains constant, without
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changing significantly the sizes of the ore polygons, it is logical to increase the

SMU size to account for the operational planned dilution instead of using factors.

4 Results

The SMU size definition that will better represent actual mining recovery curves

was based on an iterative long-term change-of-support process, keeping 15 m as

bench height. The models were reblocked based on the official 15� 15� 15 m

long-term block model. Figure 3 presents the comparison between 15� 15� 15

and 30� 30� 15 m models. Density was considered as a weighting factor in the

reblocking process. Figure 4 shows the tonnage and grade curves from all the

models. It can be observed that the grade control model (production polygons)

corresponds to a larger support size than the long-term model.

The impact of change of support is clear when computing the tonnage, grade,

and metal differences between long-term and the reblocked and grade control

models. Figure 5 presents the differences in tonnage, grade, and metal, respectively.

The grade control curve is presented by a thick black line.

The selection of the SMU size is made by a simple visual interpretation of the

metal recovery and difference curves, as it accounts for both tonnage and grade

0 50 100 150-50

Scale 1:3000

2.00 - 100.00
1.00 - 2.00
0.60 - 1.00
0.20 - 0.60
0.00 - 0.20

Fig. 1 Mining polygons with the long-term block model for a specific level
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results. Figure 5 shows that the grade control model near matches the

30� 30� 15 m long-term model for most of the distribution curve (between

0.2% Cu and 1.2% Cu). Figure 6 shows 15� 15� 15 m and 30� 30� 15 m

metal and grade mining recovery curves compared to the grade control model.

The results indicated that a near-perfect match to the actual distribution curve

(grade control) is unlikely, since no irregular SMU sizes are recognized and applied

in the mining industry for different mining configurations, production rates, and

local geology. As a consequence, impacts in mining companies’ downstream

processes such as milling, stockpiling, and financials are commonly verified.

Mineral resource evaluators and mining planners should start to apply different

mining concepts for “achieving” the expected operational mining recoverable

curves at given cutoffs. Irregular local SMU sizes could be an option.

Nevertheless, in this case study, the 30� 30� 15 m model would better fit

operational distribution curves than the 15� 15� 15 m as a result of the accounted

actual planned dilution, avoiding the use of a gross dilution factor.

Fig. 2 Grade control and long-term model tonnage and grade curves
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5 Discussion

A real operational database was used for the construction of the mining recoverable

curves and method definition. The method is simple and helpful in the selection of

the SMU size, accounting the planned operational dilution. Unplanned dilution was

not considered in this study; however it should be accounted as a full evaluation of

the mining process.

In cases where no actual production information is available, planning engineers

can simulate the grade control practice to arrive at ore/waste dig limits that will be

implemented in the mine for operational mining sequencing. Then engineers and

geostatisticians can verify the impact of the production scale on the dilution and

consequently on the recoverable model. Figure 7 shows the impact of the dilution

on metal distribution for several real production polygons. The difference of metal

in Fig. 7 is changed to positive for better graphic visualization. The metal loss is

higher for larger polygon sizes (larger production rate and mining configuration).

If the operational mining recovery curve does not match to any regular SMU

support, it could be the case of using irregular operational mining unit (OMU) sizes

(Diedrich et al. 2016) for defining local mining recoverable curves based on an

initial mining schedule. The idea is not to forecast future short-term SMU grade

distributions at the time of mining and not questioning estimation methods for

defining grades at SMU scales. However it is to determine a reasonable regular

and/or irregular block support for a chosen conventional SMU block model size that

represents ore/waste proportions derived from a real expected mining sequencing

and grade control process. In the OMU approach, there is no commitment that an

2.00 -100.00
1.00 - 2.00
0.60 - 1.00
0.20 - 0.60
0.00 - 0.20

Fig. 3 Reblocking example from 15� 15� 15 to 30� 30� 15 m block size
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individual block will be selectively mined, but it will be contributing accordingly to

the “real” expected global and/or local mining recovery curves.

As previously mentioned, unplanned dilution could also be accounted for on the

SMU selection process. However, an evaluation through reconciliation process

between grade control data and operational field execution (equipment operation,

processing results, etc.) is recommended. Therefore, the gains and losses can be

computed and a factor can be obtained for different operating mining configura-

tions, local geology, and production rates practices.

6 Conclusion

Recognizing the impact of operational dilution (planned and unplanned) and the

fact that it is not constant over the deposit, operational aspects should be included in

the mining unit block size definition and, consequently, on the resulting mining

Fig. 4 Tonnage and grade curves for several models
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recoverable models, instead of using global factors. Selection of the appropriate

mining unit is a compromise between getting the right mining recovery estimates

for tonnages of ore and waste and getting the right grade of these materials. This

Fig. 5 Tonnage, grade, and metal differences between the reblocked and the long-term models
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Fig. 6 Metal and grade curves of the 15� 15� 15 m long-term model, 30� 30� 15 m long-term

model, and the grade control model

Fig. 7 Dilution sensibilities as a function of the polygon size
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compromise depends on the global and/or local ore and waste proportions for

predefined operational production rates and mining configurations. Significant

differences between operational and long-term recovery curves may result in poor

mining, waste dumps, and stockpile plans and strongly impact financials.
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From the Spatial Sampling of a Deposit
to Mineral Resources Classification

Jacques Rivoirard, Didier Renard, Felipe Celhay, David Benado,

Celeste Queiroz, Leandro Jose Oliveira, and Diniz Ribeiro

Abstract In the mining industry, estimated mineral resources of a deposit are

classified into inferred, indicated, or measured resources, depending upon their

level of confidence. From a geostatistical point of view, this depends on the hole

spacing and continuity of the mineralization in the deposit or in the different parts

of the deposit. This also depends on some nominal volume on which level of

confidence is sought. This corresponds typically to an annual expected production

volume, not to the next week production block or to the whole deposit (unless it is

small). Here we propose a geostatistical classification of mineral resources in two

steps. The first step consists in measuring the spatial sampling density of the deposit

(or throughout the deposit when this density varies). This is done using a specific

volume, which is similar to the inverse of the classical density of sample points in

space (this density being a number of samples per volume, its inverse is a volume),

but which takes into account the variographic structure of the regionalized variable

of interest. This first step allows comparing objectively the spatial sampling density

of different deposits or parts of deposit. The second step first converts such a

specific volume into a coefficient of variation on the nominal production volume

resources. Then a mineral resource category is obtained by thresholding this

coefficient of variation. By choosing fixed thresholds for a given commodity and

type of deposit, this provides an objective classification of the resources from

different deposits or parts of deposits. The proposed method is illustrated on three

case studies.
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1 Introduction

Broadly speaking, the classification of the resources of a deposit depends on the

geological model, the quality of samples, and, from the geostatistical point of view

addressed here, on the hole spacing. The spatial sampling of a deposit is a time

process. At a given time, a deposit (or part of a deposit) will be classified as

inferred/indicated/measured upon the confidence of its resources (Rossi and

Deutsch 2014; Jorc 2012). While the confidence can be computed for the whole

domain or for each individual block from the block model, such volumes are

generally not appropriate in the middle and long-term view of the management.

The confidence to be sought is rather the confidence on the resources that corre-

spond to the production volume for a given period, typically the 1-year production

volume, even if this is not always precisely defined when classifying resources. An

additional difficulty comes from the fact that such 1-year production volumes may

not be finely delineated and could come from different places within the deposit. To

summarize, the classification of a deposit, or its partition into different classes,

should depend on the hole spacing as well as on expected production volumes.

Common geostatistical tools (linear geostatistics with variances, conditional

simulations) are able to provide the confidence on resources corresponding to

domains, but this necessitates such domains to be delineated. In the proposed

approach, we will first characterize the sampling density within the deposit with

appropriate tools (Rivoirard 2013; Rivoirard and Renard 2016). Then the resources

of the domain or of parts of it can be categorized, given expected production

volumes. In the following the methodology is presented first and then is illustrated

by three applications.

2 Tools

The tools which will be used are derived from the geostatistical concept of

estimation variance and have been developed to measure the sampling density,

either with a regular sampling design or an irregular one. A reminder of these tools

is presented here. More details are available in the above references.

Let Z(x) be the regionalized variable under study, assumed to be additive.

Consider a domain V, an estimation Z(V )* of Z(V ) by inner samples of V, and its

estimation variance σ2E(V ). By definition the “spatial sampling density variance”

(ssdv) associated to this estimation Z(V )* is (Rivoirard 2013):

χ Vð Þ ¼ σE
2 Vð Þ Vj j:

Suppose now that V is partitioned into vi informed by samples, with consistent

estimates:
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Z Vð Þ* ¼
X

i

vij j
Vj j Z við Þ*:

If the estimation errors are uncorrelated, then the estimation variances can be

combined as:

σ2E Vð Þ ¼
X

i

vij j2
Vj j2 σ

2
E við Þ

so that χ is additive:

χ Vð Þ ¼
X

i

vij j
Vj j χ við Þ:

This is exactly the case of random stratified sampling, where each stratum vi is
sampled by samples with random locations that are uniform and independent (note

that this is true for model-based geostatistics, but the same property exists in

random sampling theory, Cochran (1977)). In practice the correlation between

errors, if not zero, can often be neglected. Matheron (1971) has developed appro-

priate principles of approximation in order to compute estimation variances by

combination of variances in different situations. In the particular case of a

two-dimensional square regular grid and usual isotropic variogram models,

V being divided into N cells with same support v, we have:

σ2E Vð Þ Vj j ¼ σ2E vð Þ vj j;

that is, χ Vð Þ ¼ χ vð Þ. We can deduce that the ssdv of any union V of vi is the same:

the spatial sampling defined by the regular grid pattern is characterized by this ssdv.
As a consequence the estimation variance of any set V (even not connected) made

of such vi can be derived:

σ2E Vð Þ ¼ vj j
Vj j σ

2
E vð Þ ¼ χ

Vj j :

Remark 1: The non-correlation between errors is not general and can be tested by

simulations. Having disjoint volumes estimated by inner samples does not imply

that errors are uncorrelated, even approximately (example of elongated blocks

sampled by centered samples which are close to each other). On the contrary the

correlation between errors often tends to vanish when considering bigger blocks.

Remark 2: Because the estimates such as Z(V )* make use of inner samples only,

they are less precise than kriging and so σ2E(V ) that can be derived is pessimistic

compared to kriging variance σ2K(V ). This is particularly the case when V is

composed of a small number of v.
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Note that χ Vð Þ ¼ σ2E Vð Þ Vj j is homogeneous to the square variable times the

volume (or the area in two dimensions). Other expressions can be easier to

manipulate (Rivoirard and Renard 2016):

– The normalized specific volume, obtained by dividing ssdv by the variogram sill

(if any) or using the normalized variogram: v0 ¼ χ=C 0ð Þ (indeed this is a

volume).

– The specific volume, obtained by dividing ssdv by the squared mean of the

variable or using the relative variogram: V0 ¼ χ=M2. Just as ssdv can be used to

get σ2E(V ), the specific volume can be used to get the nominal coefficient of

variation (CoV) for the estimation of Z(V ):

CoV ¼ σE Vð Þ
M

¼
ffiffiffiffiffiffi
V0

Vj j

s
ð1Þ

Such specific volumes are similar to the inverse of the classical density of points

in space (number of points per unit volume). In irregular sampling pattern, when

there are variations of sampling in space (not due to known and distinctly sampled

areas), the ssdv or specific volume can be estimated and mapped just like the density

of points, that is, using a moving kernel, for instance, a parallelepiped (but similarly

the result will depend on this). In mining, this can be done by “superkriging,” that

is, kriging superblocks from inner samples only (Rivoirard and Renard 2016).

These superblocks are centered at every block of the block model (usually these

model blocks are small and most are not sampled).

In the following, the methodology is applied to different cases. The first case is

two-dimensional with a regular sampling. The deposit is divided into big blocks

which have the size of the cell and negligible errors correlation. The ssdv or the

specific volume, which measures the density of the sampling pattern, is derived

from the estimation variance of such a big block from its sample. Then they are

used to compute the coefficient of variation of the resources contained in a

production area of given size, which will fix the category of resources.

The two other cases are three dimensional with irregular sampling. A map of

ssdv or specific volume, which measures the density of the sampling pattern, is

derived from the kriging variance of a moving superblock from its samples. Then

this map can be used to make the distinction between differently sampled areas. It

also allows computing the coefficient of variation of the resources contained in a

production volume of given size, which will fix the category of resources in

each area.
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3 Application: Regular Sampling in Two Dimensions

The case of a large deposit studied in two dimensions and sampled with regular

grids is frequent and is presented here as a generic example. The two-dimensional

regionalized variable of interest can be the thickness of the deposit (typically when

the grade in metal presents small variations) or the metal accumulation.

Corresponding resources are either volumes or abundances. In the present case,

the resources will be volumes, and the variable of interest will be the thickness. It

has a mean of 10 m, a sample point variance of 10, and a variogram equal to

1nug hð Þ þ 9sph h=200 mð Þ.
The initial sampling grid is 100� 100 m. This has been progressively centered,

giving a regular grid of 71� 71 m, and finally tightened down to a pre-exploitation

grid of 50� 50 m. The specific volumes will be computed to measure the spatial

pattern corresponding to each grid. We first compute the extension variance of the

grid cell centered by a sample using the variogram and divide it by the squared

mean of the variable. Equivalently we can compute directly the estimation variance

using the relative variogram (i.e., divided by the squared mean), which is

0:01nug hð Þ þ 0:09sph h=200 mð Þ. The specific volume (actually a

two-dimensional area) is obtained by multiplying the result by the cell area. Each

grid is characterized by its specific area, which decreases when the grid is refined

(Table 1). This provides an objective way to quantify the sampling efficiency

corresponding to a given grid for a variable having given statistics. It enables

comparison between different grids for the same deposit, as well as comparison

between the sampling of different deposits of the same type.

Let us for instance consider a second deposit of the same type as the first one, but

with a thickness having a mean of 8 m and a variogram equal to

6nug hð Þ þ 6sph h=200 mð Þ. Note that it is less thick and more variable than the

first deposit. Its initial sampling grid is 70� 70 m, practically equal to the second

grid of the first deposit. However, because of its variability, this grid corresponds

here to a specific area of 502 m2, that is, a spatial sampling twice less good than the

100� 100 m grid of the first deposit (269 m2).

To convert specific volumes or areas V0 in resource category, we must have an

idea of the exploitation rate to be considered. Let us go back to the first deposit and

consider an annual exploited area of V¼ 100,000 m2 (i.e., 40 blocks with size

50� 50 m). This corresponds to a volume of ore around 1,000,000 m3. The CoV on

the average thickness, that is, on this ore volume in such an area V, depends on the

grid through its specific volume V0 and is given by Eq. 1 (Table 1). The classifica-

tion itself finally depends on the thresholds based on the CoV that the company has

chosen for this type of resources. Suppose that the CoV on annual resources must be

less than 2.5% for measured resources and less than 5% for indicated resources.

Then, the resources would be inferred where the grid is 100� 100 m, indicated
where it is 71� 71 m, and measured where it is 50� 50 m. But with a higher

production rate, resources where the grid is 100� 100 m could be upgraded from

inferred to indicated, while with a smaller production rate, resources where the grid
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is 50� 50 m could be downgraded from measured to indicated. Of course this is

only the geostatistical point of view on resources classification, since other criteria

than hole spacing should also be considered.

4 Application: Metal Grade in Three Dimensions
with Irregular Sampling Pattern

This case study corresponds to the underground mine of El Teniente porphyry

copper deposit, located all around its waste pipe (Fig. 1). A 520 m thick horizontal

section is considered here. The model is based on 20� 20� 20 m blocks. Several

estimation units had been distinguished and mapped manually (Fig. 2). Units 1 and

2 are poor and on the edges, and we are mainly interested in the rich units 3–6.

Individually these units look like spaghetti with a vertical continuity and have been

used for the estimation (Fig. 3). For the purpose of classification, we will consider

the set made by of all these units 3–6 and delimitated by units 1 and 2. The

resources correspond to copper abundance, and the regionalized variable of interest

is the copper grade. The sampling is made every 6 m along holes in various

directions within sections. The spacing between sections is 50 m, and the grid is

about 50� 50 m although the sampling is irregular.

The sample copper grades in units 3–6 have a mean of 1.097%, a variance of

0.236, a standard deviation of 0.486, and a coefficient of variation of 0.443. The

experimental variograms are horizontally isotropic but exhibit a strong quasi-zonal

anisotropy, with a high continuity observed vertically along holes (Fig. 4). The

variogram has been modeled by:

γ hð Þ ¼ 0:03nug hð Þ þ 0:053sph h=15ð Þ þ 0:06sph h=70ð Þ
þ 0:08sph h=220, 220, 4000ð Þ

where the very large vertical range is purely conventional. Because of the irregular

sampling, the specific volume corresponding to the spatial sampling has been

mapped using a superkriging at each block of the model. This superkriging consists

in kriging with its inner samples within a moving superblock centered at each block.

The superblock must be large enough to avoid irregularities, but small enough to

limit the smoothing. A superblock size of 150� 150� 50 m is chosen. At each

Table 1 Specific area V0 for different grids, corresponding to the relative variogram equal to

0:01nug hð Þ þ 0:09sph h=200 mð Þ. CoV represents the coefficient of variation that can be deduced

for an estimation of the target variable within an area of 100,000 m2

Grid Vo CoV

100� 100 269 m2 5.2%

71� 71 111 m2 3.3%

50� 50 46 m2 2.1%
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block the specific volume is obtained as the superkriging variance computed from

the relative variogram, multiplied by the size of the superblock (Fig. 5).

The map of specific volume provides a delineation of the deposit in terms of

sampling density. This can be compared to the current classification made on a

geometric criteria based on the presence of data close to each block (Fig. 6). Based

on the specific volume, measured resources would correspond to blocks in green:
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specific volume less than 15,000 m3 with an average specific volume of 5500 m3.

Indicated resources would correspond to specific volume between 15,000 and

50,000 m3, with mean specific volume 28,000 m3 (in yellow). Other resources

(red and gray) would be inferred.
The annual production is about 50 Mt, that is, V~20 Mm3with rock density

2.6, and the metal quantity should not deviate by more than r¼ 3%. The

coefficient of variation of this quantity depends on the specific volume (Eq. 1).

In a Gaussian framework, the probability that a random variable with given CoV

deviates by more than r from its expectation is given by 2G �r=CoVð Þwhere G is

the c.d.f. of a standard Gaussian. The CoV threshold for measured resources,

corresponding to V0¼ 15,000 m3, is 2.7% (probability of 1/4, i.e., 1 year out of

4, to deviate by more than 3%), while the CoV corresponding to the average

specific volume of measured resources (5500 m3) is 1.7 % (probability of 1/10 to

deviate by more than 3%). Concerning indicated resources, the threshold CoV,

corresponding to V0¼ 50,000 m3, would be 5% (probability of 1/1.8 to deviate

by more than 3%), and the CoV corresponding to the average specific volume of

indicated resources (28,000 m3) is 3.7% (probability of 1/2.4 to deviate by more

than 3%).

Compared to other porphyry copper deposits, the specific volumes in the best

sampled areas of El Teniente are low, which means that the spatial sampling is quite

good, probably because of a higher spatial continuity of grades.

5 Application: Iron Ore Proportion in Three Dimensions
with Irregular Sampling Pattern

This case study is a big iron ore deposit located in Brazil. The banded iron

formation from the Quadrilatero Ferrı́fero is called itabirite, a metasedimentary

rock. The iron enrichment is given mainly by weathering which dissolves carbonate

and siliceous bands, increasing the residual concentration of iron oxides, and

decreasing the cohesion between grains, bands becoming friable in most part of

economic ore body (Ribeiro and Carvalho 2000). A number of 15 lithotypes with

distinct lithochemical characteristics, either mineralized or waste, have been dis-

tinguished. Of particular interest here will be the group of uncontaminated facies
(denoted HC + HF + IF + IC), and the group of ore facies (HC + HF + IF + IC +

HAR + IAR + IFR + IMN). The deposit is sampled irregularly with vertical or

subvertical holes. Locally a base grid of about 70� 70 m exists, but the sampling

design is very often less dense and varies horizontally (Fig. 7) as well as vertically

(Fig. 8). The block sizes used in this deposit are 50� 50� 13m and 10� 10� 13m.

Sample data are 13 m composites, regularized by lithotype domain. Facies is

available for all samples, but this is not the case for chemical variables, in particular

for the Fe grade. This has a consequence on the estimation and classification. For

some blocks, it is possible to estimate the facies, but not the Fe grade. Classification
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of blocks is made on facies, but only blocks where Fe grade can be estimated are

considered.

The regionalized variables used to measure the spatial sampling of the deposit

are the facies indicators (at samples), regularized into facies proportions

(on blocks). In such deposits, the facies are numerous and many variograms are

not well known, so that some simplifications are commonly made. Facies indicators

are supposed to be in intrinsic correlation, that is, all facies indicators (whether

individual or grouped) obey to the same variogram model (up to its vertical scale).

This variogram is determined from the variogram of the indicator of

uncontaminated facies, which is well known and is further used for all ore facies.

The reference plane is dipping 25� to the east. The variogram is isotropic within the

reference plane. The variogram model, using the reference plane, is composed of a

nugget, a short isotropic 40 m component, and a large component with anisotropy

coefficient of 4 (Fig. 9):

γ hð Þ ¼ 0:13nug hð Þ þ 0:045sph h=40ð Þ þ 0:075sph h=640, 640, 160ð Þ:
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Fig. 7 Holes within a horizontal section in the middle of the deposit. In yellow, the area where Fe
grade is estimated
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The mean indicator is close to 0.5 and the sill or variance is 0.25. A normalized

variogram γ0(h) is obtained by dividing the variogram by 0.25:

γ0 hð Þ ¼ 0:52nug hð Þ þ 0:18sph h=40ð Þ þ 0:30sph h=640, 640, 160ð Þ:

The variogram of Fe grade is fitted by an isotropic variogram model (Fig. 10):

γ hð Þ ¼ 13nug hð Þ þ 35sph h=45ð Þ þ 60sph h=120ð Þ:
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Fig. 9 Variogram of iron ore indicator of uncontaminated facies
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Fig. 10 Variogram of Fe grade

From the Spatial Sampling of a Deposit to Mineral Resources Classification 339



Resources are estimated by kriging. The normalized variogram of facies is used

to krige the group of iron ore facies. Kriging is performed with an elliptic neigh-

borhood with radius (300 m, 300 m, 100 m), and a minimum number of samples of

10. Fe grade is kriged using the same neighborhood. Blocks where Fe is not

estimated contain a smaller proportion of ore than the other blocks. Kriged iron

ore proportion is represented in Fig. 11 for the case of 50� 50� 13 m blocks.

To compute the map of specific volume, a superkriging is performed at each

50� 50� 13 m block. This consists in kriging 350� 350� 39 m superblocks (i.e.,

five times the basic 70� 70 m grid) from inner samples. Because the size of

superblocks is smaller than the elliptical neighborhood (diameters 600 m,

600 m, 200 m) used for kriging the resources, this excludes some of the blocks

which are anyway poorly estimated. As all facies or groups of facies obey to the

same variogram model (up to its vertical scale), the normalized variogram is used

for superkriging. Multiplied by the size of the superblock, the superkriging

variance then gives the normalized specific volume at each block, valid for any

facies or group of facies (Fig. 12). Thresholds of 300,000 m3 and 1,200,000 m3

(four times the first one) are applied on normalized specific volume to distinguish

areas upon their sampling. In the best-known areas, the normalized specific

volume is less than 300,000 m3, with an average around 155,000 m3. Where the

normalized specific volume lies between 300,000 m3 and 1,200,000 m3, the

average is 658,000 m3, that is, a little more than four times larger (so this leads

to about twice larger CoV).

Such normalized specific volumes should be multiplied by

p 1� pð Þ=p2 ¼ 1=pð Þ � 1½ � (ratio between variance and squared mean of indicator)

to give specific volumes for a facies with mean proportion p. For the

uncontaminated facies ( p¼ 50% whether declustered or not), this factor is 1. For

the iron ore facies (declustered p¼ 63%), the factor is 1=0:63 � 1ð Þ ¼ 0:59.
Finally, for the iron ore, the thresholds on specific volume become 177,000 m3

and 708,000 m3, with averages of 91,000 m3 for specific volumes below 177,000 m3

and of 388,000 m3 for specific volumes between 177,000 and 708,000 m3.
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Fig. 11 Horizontal section in the middle of the deposit. Kriged iron ore proportion for

50� 50� 13 m blocks
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Consider a yearly production of 20,000,000 t, that is, 7,142,857 m3 at rock

density 2.8. With a mean ore proportion of 63%, the total annual volume to be

considered is V ¼ 7 142 857=0:63 ¼ 11 337 868 m3. In the best-known zones of

the deposit, where the iron ore specific volume is less than 177,000 m3 and is

91,000 m3 on average, the CoV of the iron ore proportion in this annual volume is

then
ffiffiffiffiffiffiffiffiffiffiffi
V0=V

p ¼ 9:0%.

In such iron ore deposits, resource classification is currently done using a Risk

Index, which combines resources and uncertainties as follows (Ribeiro et al. 2010):

RI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ind*
� �2 þ σ2IKð Þ2

q

where Ind* is the ore proportion of the block, obtained by kriging the iron ore

indicator, and σ2IK the normalized kriging variance (i.e., using the variogram

normalized by its sill). Typically, blocks are classified as measured when RI

<0.6, indicated when 0:6 < RI < 0:8, and inferred otherwise. This RI extends

the notion of confidence to risk, as a block with a proportion of ore less than 20%

corresponds to inferred resources, even if this proportion is perfectly known.

Another version of Risk Index can be derived using the specific volume V0 or the

normalized specific volume v0:

NewRI ¼ 1� Ind*
� �þ V0

W
¼ 1� Ind*

� �þ 1

p
� 1

� �
v0
W

where p is the global ore proportion (63%), andW is a constant. The classical RI is

sensitive to the size of blocks (e.g., 10� 10� 13 m or 50� 50� 13 m) through the

kriging variance. On the contrary both terms Ind* and V0 are additive, so that the

new RI does not depend on the size of blocks. It can provide the same service as

the classical one, with this additional advantage. By taking W¼ 10,000,000 m3

(practically the annual volume of reference V ), the new RI (Fig. 14) was observed
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Fig. 12 Horizontal section in the middle of the deposit. Specific volume computed from

350� 350� 39 m superblocks at 50� 50� 13 m blocks

From the Spatial Sampling of a Deposit to Mineral Resources Classification 341



to be similar to the RI for 50� 50� 13 m blocks (Fig. 13), less to RI for

10� 10� 13 m blocks.

6 Conclusion

To apply the proposed classification method, one must choose the regionalized

variable corresponding to the resources. In our two-dimensional application, the

thickness was used, but in other cases the metal accumulation would be more

appropriate. In cases where the target variable is not additive, but is the ratio of

additive variables, combining variances and specific volumes could be done using

reduced differences (Journel and Huijbregts 1978). More generally, the method

addresses in situ resources rather than recoverable ones. Geological cutoff grades

on sample values can be applied, but mining cutoffs on selection blocks would

require more sophisticated tools such as simulations.
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Fig. 13 Horizontal section in the middle of the deposit. RI for 50� 50� 13 m blocks

1000

-1000

0

0 1000 2000

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.0

-2000 -1000

Fig. 14 Horizontal section in the middle of the deposit. New RI for 50� 50� 13 m blocks

342 J. Rivoirard et al.



The originality of the method is in its two steps. The first step consists in

measuring (or mapping when it varies) the spatial sampling density in the deposit.

The tool which is used, the specific volume, can be seen as a generalization of the

density of sample points (Deustch et al. 2007), but it takes into account the

variographic structure. In the second step, the specific volume is converted into

coefficients of variation corresponding to large target volumes, typically the

expected annual volume to be mined.

The use of coefficients of variation on production units, rather than confidence

on individual blocks, is not original in resource classification, and it allows a

validation by actual production data when available. It is advocated in particular

by Dohm (2005). In her “logical approach,” she makes the link between the

coefficient of variation of “units representing likely production periods” and a

“typical coefficient of variation for blocks” through a “factor production period,”

which is determined by conditional simulations. Our approach via a specific volume

is different.

The method is simple and straightforward but it aims at giving orders of

magnitude rather than precise numbers. Coefficients of variation obtained from

the specific volume assume that the target volumes are estimated from their inner

samples only. This may lead to pessimistic values of coefficients of variation,

particularly for target volumes that are too small. The specific volume depends on

the variogram and so on its knowledge. At the early stage of systematic exploration,

when the hole spacing exceeds the variogram range and resources are expected to

be classified as inferred, a pure nugget effect may be considered as an approxima-

tion. Moreover the target volumes need not be precisely delineated, which makes

the method flexible with respect to expected production volumes. Of course the

method is not meant to replace the direct estimation of the resources that are

contained in delineated domains – such as the area that is to be mined, say, next

year – nor their confidence. Kriging and conditional simulations are the appropriate

tools for this, but are more demanding.
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Resource Model Dilution and Ore Loss:
A Change of Support Approach

Oscar Rondon

Abstract The estimation of ore dilution and ore loss factors is critical for the

evaluation of mining projects, with the proper estimation of these effects essential

for Ore Reserve Estimation. Unplanned ore dilution occurs when excessive

amounts of waste are mined with ore, and such dilution may result in the processing

of lower than economic cut-off grade material with the ore. Unplanned ore loss

occurs when material that is above the economical cut-off grade is hauled to waste

stockpiles, due to poor mining practices and/or poor information regarding the local

grade of the critical components.

The sources of dilution and ore loss in mining operations are many. This study

focuses on the assessment of the ore dilution and loss in a Mineral Resource model,

specifically, the proportion and average grade of blocks that are misclassified as ore

and waste, which can be referred to as Resource Model Ore Dilution and Model Ore

Loss, respectively. Unlike the well-established geostatistical conditional simulation

approach for assessing model dilution and loss, in this study analytical expressions

are derived that are defined under the theoretical framework of the discrete Gauss-

ian method for change of support to quantify the expected model dilution and ore

loss. Practical application of this method is demonstrated through a case study from

an Iron Ore deposit in Australia.

1 Introduction

Mineral Resource estimates are reported above an economic cut-off grade on the

basis of model estimated grades and not according to the real grade values. The

effect of this is that all Mineral Resource models will certainly incur misclassi-

fication of mining blocks as ore or waste.
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Misclassification results in the mine plan including tonnages of what will be

found in the future to be material that is below the economic cut-off grade, which

increases the planned processed or saleable tonnage compared to estimates in

production forecasts. Additionally, misclassified blocks that will be found in the

future to be above cut-off grade, but present as waste from the resource model,

represent unplanned ore loss in the mine plan which also results in tonnages and

grades discrepancies.

This study focuses on the assessment of the ore dilution and loss in a Mineral

Resource model, specifically, the proportion and average grade of blocks that are

misclassified as ore and waste, which can be referred to as resource model ore

dilution and model ore loss, respectively.

Assessment of the Resource Model Ore Dilution and Loss calls for modelling the

relationship between estimated and true block grade values. This leads to study in

detail (Huijbregts 1976):

1. The distribution of true block grades

2. The distribution of estimated block grades

3. The joint distribution of true and estimated block grades

The discrete Gaussian method for change of support (Matheron 1976) provides a

theoretical framework to model all these distributions (Roth and Deraisme 2000)

which allows the derivation of analytical expressions to quantify the expected

model dilution and ore loss as shown in this study.

Importantly, the determination of the distribution of block grades is an

undetermined problem even if the point support distribution is considered known.

Therefore, the choice of an appropriate change of support model is of crucial

importance (Lantuejoul 1988). In this study, it is assumed that the discrete Gaussian

is a plausible model for approximating the univariate and joint distributions of true

and estimated block grades and as such, the results presented here are limited by the

suitability of the discrete Gaussian model to the data being modelled.

2 The Discrete Gaussian Method

Let Z(x) and Z(v) be the grade at point x and block support v, respectively. The
discrete Gaussian method (Matheron 1976) expresses Z(x) and Z(v) as function of

two standard Gaussian variables Y and Yv as

Z xð Þ ¼ ϕ Y xð Þð Þ ¼
X

n
ϕnHn Y xð Þð Þ ð1Þ

where ϕ is the point support anamorphosis function derived from the point support

data, Hn n � 0 are the normalised Hermite polynomials, ϕn n � 0 are the coeffi-

cients of the expansion of ϕ in terms of Hermite polynomials and
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Z vð Þ ¼ ϕv Yvð Þ ¼
X

n
ϕnr

nHn Yvð Þ ð2Þ

where ϕv is the block anamorphosis function which is derived via Cartier’s relation
by assuming that the two Gaussian variables Y(x) and Yv have joint Gaussian

distribution with correlation r > 0 (Rivoirard 1994).

The coefficient r corresponds to the variance or support correction factor from

point to block support and is chosen so as to respect the variance of Z(v) by

inverting:

VarðZðvÞÞ ¼
X

n
ϕ2
nr

2n ð3Þ

An alternative method has been proposed to compute the variance correction

factor (Emery 2007). The method is simpler and allows the extension of the discrete

Gaussian method to the problem of modelling the local block distribution. How-

ever, the method depends only on the variogram of Y and does not depend on the

anamorphosis function ϕ. Therefore, a correction factor derived with this approach

will not necessarily satisfy (3) which is an important aspect of the block distribution

(Chiles 2014).

After deriving the support correction factor, the distribution of real block grades

Z(v) can be modelled by using (2). Modelling of the distribution of the estimated

block grades Z*(v) is carried out similarly (Roth and Deraisme 2000) by assuming

that

Z* vð Þ ¼ ϕ*
v Y*

v

� � ¼ X
n
ϕns

nHn Y*
v

� � ð4Þ

where Y�v stands for a standard Gaussian variable and ϕ�
v is the corresponding

anamorphosis function but with correction factor s chosen so as to respect the

variance of Z*(v) by inverting:

VarðZ*ðvÞÞ ¼
X

n
ϕ2
ns

2n ð5Þ

The relation between Z(v) and Z*(v) is obtained using (2) and (4) and is given by

CovðZðvÞ,Z*ðvÞÞ ¼
X

n,m�1
ϕn ϕm r

nsm E
�
HnðYvÞHmðY*

vÞ
�

ð6Þ

A further assumption is that (Yv,Y
�
v) has bivariate Gaussian distribution with

correlation ρ, then E Hn Yvð ÞHm Y*
v

� �� � ¼ 0 for n 6¼ m and E Hn Yvð ÞHn Y*
v

� �� � ¼ ρn

(Rivoirard 1994) which implies that

CovðZðvÞ, Z*ðvÞÞ ¼
X

n�1
ϕ2
nr

nsnρn ð7Þ

After computing the correlation ρ by inverting (7), the bivariate Gaussian distri-

bution of (Yv,Y
�
v) is completely specified, and the joint distribution (Z(v), Z*(v))
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can be modelled. This is the key property for modelling the information effect

(Roth and Deraisme 2000) and for the development of the analytical expressions for

the assessment of model dilution and ore loss as discussed in this study.

3 Model Dilution and Ore Loss

For the modelling of dilution and ore loss, the focus is on the true block grade Z(v)
conditioned by whether the estimated block grade Z*(v) is above or below an

economical cut-off grade z.
The tonnage associated with model dilution is

P Z vð Þ < z=Z* vð Þ � z
� � ¼ P Yv < y,Y*

v � y*
� �

=P Y*
v � y*

� � ð8Þ

with y ¼ ϕ�1
v zð Þ and y* ¼ ϕ*�1

v zð Þ. Since (Yv, Y
�
v) has Gaussian distribution with

correlation ρ, it is possible to show that

P Yv < y, Y*
v � y*

� � ¼ 1� F y*
� �� Hρ y; y*

� � ð9Þ

where F denotes the standard Gaussian distribution function,

Hρðy, y*Þ ¼
Z þ1

y

Z þ1

y*
gρðs, tÞdtds ð10Þ

and gρ is the bivariate Gaussian density with correlation ρ. Therefore, the tonnage
associated with model dilution can be explicitly calculated as

P Z vð Þ < z=Z* vð Þ � z
� � ¼ 1� F y*

� �� Hρ y; y*
� �

= 1� F y*
� �� � ð11Þ

Similarly, tonnage associated with model ore loss can be obtained as

P Z vð Þ � z=Z* vð Þ < z
� � ¼ 1� F yð Þ � Hρ y; y*

� �
=F y*

� � ð12Þ

The expected metal associated with model dilution is

E Z vð Þ1Z vð Þ<z=Z
* vð Þ � z

� � ¼ 1

1� F y*ð ÞE Z vð Þ1Z vð Þ<z 1Z* vð Þ�z

� �

¼ 1

1� F y*ð ÞE ϕv Yvð Þ1Yv<y 1Y*
v�y*

� �
ð13Þ

Using the development into Hermite polynomials of ϕv given by (2)
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EðϕvðYvÞ1Yv<y 1Y*
v�y*Þ ¼

X
n
ϕnr

nEðHnðYvÞ1Yv<y 1Y*
v�y*Þ

¼
X

n
ϕnr

n

Z y

�1

Z þ1

y*
HnðuÞgρðu, tÞdtdu

ð14Þ

The function gρ can be expanded using the Hermite polynomials as

gρ u; tð Þ ¼
X

k
ρkHk uð ÞHk tð Þg uð Þg tð Þ ð15Þ

where g corresponds to the standard Gaussian density (Chiles and Delfiner 2008).

Substituting (15) in (14) and defining

Ui, jðxÞ ¼
Z þ1

x

HiðuÞHjðuÞgðuÞdu i, j � 0 ð16Þ

which when applying (14) becomes

X
n
ϕnr

n
X

k
ρk½δnk�Un, kðyÞ�U0, kðy*Þ ð17Þ

with δnk the Kronecker delta function representing the orthogonality property of the
Hermite polynomials

δnk ¼
Z þ1

�1
HnðuÞHkðuÞgðuÞdu ð18Þ

Therefore, the analytical expression for computing the expected metal associ-

ated with model dilution is

EðZðvÞ1ZðvÞ<z=Z
*ðvÞ � zÞ ¼ 1

1� Fðy*Þ
X

n
ϕnr

n
X

k
ρk½δnk � Un,kðyÞ�U0,kðy*Þ ð19Þ

The values Un,k �ð Þ can be computed recursively (Rivoirard 1994), and therefore

once the anamorphosis modelling is completed, the metal amount can be computed.

The expected average metal associated with model ore loss can be obtained

similarly and is given by

EðZðvÞ1ZðvÞ�z=Z
*ðvÞ < zÞ ¼ 1

Fðy*Þ
X

n
ϕnr

n
X

k
ρk½δnk � U0,kðy*Þ�Un,kðyÞ ð20Þ

Using the derived tonnage and metal, the average grade E½ZðvÞ=ZðvÞ < z, Z*ðvÞ
� z� and E½ZðvÞ=ZðvÞ > z,Z*ðvÞ � z� associated with model dilution and ore loss,

respectively, can be computed.

The tonnage and metal associated with blocks correctly classified as waste or ore

can also be obtained. These equations are provided in the Appendix.
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The derived analytical expressions can be used in two ways: for forecasting,

from sparse drilling data, the expected misclassification of blocks at the time of

having close-spaced drilling data and smaller block sizes, and for assessing the

expected model dilution and ore loss from a given resource model. Both applica-

tions are shown below.

3.1 Accepting Model Dilution or Ore Loss

Resource Model Dilution and Ore Loss will inevitably occur when selecting blocks

on the basis of whether their estimated grades are above an economical cut-off z or
not. Therefore, it is instructive to study the behaviour of both for a range of cut-off

values in order to decide, for instance, whether it is preferable to accept dilution or

ore loss. As a demonstration, consider the iron grades (Fe%) in an Iron Ore deposit

with a nominal drill hole sample spacing of 100 m by 100 m that have been used to

compute the tonnage associated with model dilution and ore loss with a block

support of 50 m by 50 m by 5 m (Fig. 1). The tonnage curves reveal that, with

increasing cut-off grades, the tonnage associated with model dilution increases

(Jara et al. 2006) and that by accepting more dilution ore loss is minimised

(Bertinshaw and Lipton 2007). The reverse effect occurs if the cut-off grade is

reduced (lower dilution but higher ore loss).

Analysis of the tonnage associated with model dilution for varying block sizes

and a fixed 54 Fe% cut-off (Fig. 2) shows that dilution increases with decreasing

block sizes and that small blocks are subject to more model ore losses (Jara et al.

2006). Furthermore, the results shown provide an alternative way to reemphasise

the dangers of estimating into small blocks from sparse drilling data (Ravenscroft

and Armstrong 1985).

4 A Grade Control Model

Iron grades Fe(%) from an Iron Ore deposit in the Pilbara region in Australia are

used to demonstrate the assessment of the model dilution and ore loss using the

method presented above.

The drill hole data are samples from Mineral Resource definition RC drill holes

within a mineralised domain with a nominal drill spacing of 25 m by 25 m which

are used to carry out a kriging estimation of Fe into a grade control block model

with blocks of dimension 12 m by 12 m by 6 m. Further to this, available Fe grades

from grade control blastholes at a nominal drill spacing of 6 m by 6 m are kriged

into the same grade control block model. These kriged grades are considered as the

true block Fe grades to be the benchmark in this practical application. Since the

blasthole data partially covers the domain under study, the comparison is limited to

blocks that are informed by both the RC and blastholes kriged estimates. In

addition, it is assumed to be no bias in either the drill hole or blasthole. The scatter
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plot between both estimates (Fig. 3) indicates that the model will incur in misclassi-

fication of blocks when reporting at the cut-off of 60 Fe%, which corresponds to

approximately the average Fe grade.

Using the RC drilling data, the discrete Gaussian method is used for modelling

the distribution of Z(v) and Z*(v). Some close-space RC data available was used to

fine-tune the values of Var(Z*(v)) and Cov(Z(v), Z*(v)) required to derive the

correction factors s and ρ for modelling the metal Q*(z), tonnage T*(z) and average

grade above cut-off M*(z) of Z*(v).
The amount of metal Q*(z) above cut-off is given by

Q* zð Þ ¼ E Z* vð Þ1Z* vð Þ�z

� �
¼

X
n
ϕn s

nU0,n y*
� � ð21Þ

and T* zð Þ ¼ P Z* vð Þ � z
� � ¼ 1� F y*

� �
which allows to compute the average

grade above cut-off M* zð Þ ¼ Q* zð Þ=T* zð Þ.
The modelled tonnage T*(z) and average grade M*(z) are compared to the

corresponding estimates reported from the grade control block model to assess

the adequateness of the distribution of Z*(v) to represent the distribution of the

kriging estimates obtained from the RC drill hole data (Fig. 4). The average grade

above cut-off is closely reproduced for all cut-offs with a maximum absolute

relative error of 0.75% at 60 Fe% cut-off. Tonnage is also reasonably reproduced

for all cut-offs with the exception being the tonnage at 60 Fe% where the absolute

relative error is approximately 20%. Nonetheless, the global average relative error
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is approximately 7%, and therefore the distribution of Z*(v) was considered

reasonably fit for purpose.

Tables 1 and 2 contain the comparison of true and estimated Resource Model

Dilution and Ore Loss using a 60 Fe% and 62 Fe% cut-offs, respectively. The

estimates of tonnage and average grade above cut-off are reasonably estimated by

the method proposed in this study, for both type of misclassification.

The results shown are presented for only the 60 Fe% and 62 Fe% cut-offs

because the model used had few blocks at high and low cut-off grades to implement

the method that relies on a reasonable amount of data for modelling accuracy.

Therefore, further assessment of the goodness of the proposed approach is desirable

with a full set of estimated and true block grades.

5 Conclusion

This study developed analytical equations to assess the proportion and average

grade of blocks misclassified as ore and waste and presented a case study with their

application to a grade control model from an Iron Ore deposit in the Pilbara region

of Australia. The method proposed provides only global estimates of the expected

tonnage and average grade associated with these types of misclassification of
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blocks. Therefore, it is not possible to know the spatial location of the blocks that

are potentially misclassified when selecting on the basis of an estimated grade.

Nonetheless, these global estimates could be used to anticipate the outcome of such

selection. More advanced approaches based on conditional simulations are required

to localise the blocks and classify them as ore or waste (Verly 2005) (Deutsch et al.

2000), but these approaches involve more time and effort.

The equations proposed in this paper are derived under the framework of the

discrete Gaussian method for change of support and modelling of the information

effect. Therefore, their practical application is largely limited by the assumptions

made in both of these techniques as well as the ability of the theoretical distribution

of the estimates to resemble the distribution of the Resource Model estimates.

Acknowledgements The author wishes to thank Mark Murphy for his help during the preparation

of the manuscript.

Appendix

The tonnage associated with blocks correctly classified as waste is

PðZðvÞ < z=Z*ðvÞ < zÞ ¼ ðFðyÞ þ Fðy*Þ þ Hρðy, y*Þ � 1Þ=Fðy*Þ

and corresponding expected metal is

EðZðvÞ1ZðvÞ<z=Z
*ðvÞ < zÞ ¼ 1

Fðy*Þ
X

n
ϕnr

n
X

k
ρk½δnk � Un,kðyÞ�½δ0k � U0,kðy*Þ�

The tonnage associated with blocks correctly classified as ore is

Table 1 Comparison of true and estimated model dilution and ore loss at a 60 Fe% cut-off

Misclassification type Tonnage (%) Grade Fe%

Model dilution True 6.16 58.40

Estimated 7.38 58.60

Model ore loss True 29.85 61.46

Estimated 28.36 61.18

Table 2 Comparison of true and estimated model dilution and ore loss at a 62 Fe% cut-off

Misclassification type Tonnage (%) Grade Fe%

Model dilution True 11.15 60.77

Estimated 12.6 61.04

Model ore loss True 20.96 63.85

Estimated 21.89 62.82
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P Z vð Þ � z=Z* vð Þ � z
� � ¼ Hρ y; y*

� �
= 1� F y*

� �� �

and corresponding expected metal is

E Z vð Þ1Z vð Þ�z= Z* vð Þ � z
� � ¼ 1

1� F y*ð Þ
X

n
ϕnr

n
X

k
ρk Un,k yð ÞU0,k y*

� �

Bibliography

Bertinshaw R, Lipton I (2007) Estimating mining factors (dilution and ore loss) in open pit mines,

vol 6, Sixth Large Open Pit Mining Conference. AusIMM, Perth, pp 13–17

Chiles J-P (2014) Validity range of the discrete Gaussian change of support and its variants. J

South Afr Inst Min Metall 114(3):231–235

Chiles J-P, Delfiner P (2008) Geostatistics. Modeling spatial uncertainty. Wiley, New York

Deutsch C, Magri E, Norrena K (2000) Optimal grade control using geostatistics and economics:

methodology and examples. Soc Min Metall Explor 308:43–52

Emery X (2007) On some consistency conditions for geostatistical change of support models.

Math Geol 39(2):205–223

Huijbregts C (1976) Selection and grade-tonnage relationships. Advanced geostatistics in the

mining industry, 24. D. Reidel Publishing Company, pp 113–135

Jara R, Couble A, Emery X, Magri E, Ortiz J (2006) Block size selection and its impact on open-pit

design and mine planning. S Afr Inst Min Metall 106:205–211

Lantuejoul C (1988) On the importance of choosing a change of support model for global reserves

estimation. Math Geol 20(8):1001–1019

Matheron G (1976) Forecasting block grade distributions: the transfer functions. In: David M,

Guarasico M (eds) Advanced geostatistics in the mining industry, vol 24. D. Reidel Publishing

Company, Dordrecht, pp 239–251

Ravenscroft P, Armstrong M (1985) Kriging of block models, the dangers reemphasised, vol

2. APCOM, Berlin, pp 577–587

Rivoirard J (1994) Introduction to disjuntive kriging and non-linear geostatistics. Oxford Press,

New York

Roth C, Deraisme J (2000) The information effect and estimating recoverable reserves. In:

Kleingeld W, Krige D (eds) Geostatistics 2000 proceedings of the sixth international

geostatistics congress. Geostatistical Association of Southern Africa, Cape Town, pp 776–787

Verly G (2005) Grade control classification of ore and waste: a critical review of estimation and

simulation based procedures. Math Geol 37(5):451–475

Resource Model Dilution and Ore Loss: A Change of Support Approach 355



Drill Holes and Blastholes

Serge Antoine Séguret and Sebastian De La Fuente

Abstract The following is a geostatistical study of copper measurements on

samples from diamond drill holes and blastholes. Both measurements are formally

compared, leading to a model where a blasthole can be considered a regularization

of the drill information up to a nugget effect characteristic of the blastholes. This

formal link makes it possible to build a cokriging system that takes into account the

different supports and leads to a block model based on blast- and drill holes. The

model is tested on a realistic simulation where the true block grades, which are

known, are compared to their estimate obtained by:

– Kriging using only drill holes

– Kriging using only blastholes

– Cokriging using drill and blastholes together

A preliminary conclusion is that the best estimates are obtained when only blasts

or, alternatively, blast- and drill holes are used; there is no significant difference

between the two, which is due to the great amount of blast information. This result

justifies the usual practice of basing short-term planning on blasts only. But another

conclusion may be drawn when kriging is compared to a moving average (another

common practice), both based on blasts: depending on the number of data used in

the neighborhood, the moving average produces a strong conditional bias. As a

byproduct, we also show how it is possible to filter the blast error by kriging and to

make a deconvolution to estimate point-support values using blast measurements.
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1 Introduction

Typically, in open-pit mines, geologists, mining engineers, and metallurgists have

at their disposal two types of grade measurements: those from drill holes and those

from blastholes. Because they are much more expensive, the drill holes (diamond

ones in our case) are fewer than the blastholes, and sampling rates ranging from

1 over 3 to 1 over 10 or worse are frequent. Another difference concerns the way the

measurements are used. Drill holes are used for medium- and long-term planning;

blastholes for short-term planning without any need for geostatistics; a simple

moving average is often used to estimate the block quantity of the metal. The use

of two types of measurements, that are supposed to represent the same thing, raises

questions about their relationship. In particular, would it not be possible to enrich

the short-term estimates, now based only on blastholes, by adding the drill holes’
measurement as they arrive? Another question, is it permitted to use a simple

moving average based on blastholes for the block estimation?

Finally, it is often said, without real justification, that the diamond drill holes are

much better than the blast ones. We ask: better in what way, better for what, and is it

true?

After having modeled this relationship, we present some linear systems that

make it possible to filter the nugget effect of the blastholes, removing their

regularization effect and using the blast and the drill holes together in a single

linear system. These are just demonstrative exercises; one can imagine other

possibilities resulting from the formal link between two types of measurements

known over two different supports.

2 Formal Link

The initial data (Fig. 1) are from an open-pit copper mine in Northern Chile where a

subdomain was chosen for analysis because it is almost homogeneously covered by

around 3000 drill hole samples (3 m long) and 13,000 blasthole samples (15 m

long). In this case study, the diameters of the drill holes and blastholes are

considered to be the same.

In a previous paper (Séguret 2015), the author showed that if we omit the

problem of the nugget effect, both blast- and drill holes can be considered a

regularization of the same phenomenon in accordance with their respective sup-

ports. But the drill holes have their own errors, independent of the blast ones, so that

they do not share the nugget effect and finally, we have

Yblast x; y; zð Þ ¼ Y x; y; zð Þ*p15m zð Þ þ R x; y; zð Þ ð1Þ

with
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Y(x,y,z), the point grade assumed to be isotropic and without any measurement

error;

“*” denotes a convolution product;

Y x; y; zð Þ*p15m zð Þ ¼
Zþ1

�1
Y x; y; uð Þp15m z� uð Þdu;

p15m zð Þ ¼ 1
15
1

0;15
2½ � zj jð Þ, the convolution function;

1
0;15

2½ � zj jð Þ the indicator function equal to 0 outside the interval [�7.5 m, 7.5 m] and

1 inside it;

R(x,y,z), a “white noise” residual, statistically and spatially independent of Y(x,y,z)
and representing the blast error

The variogram of Yblast(x,y,z) becomes

γblast hð Þ ¼ γ15m hð Þ þ γR hð Þ ð2Þ

with

γR(h), the nugget effect due to the blast error, with the variance σ2R;
γ15m hð Þ ¼ γ∗P15mð Þ hð Þ � γ∗P15mð Þ 0ð Þ, regularized variogram expressed as a con-

volution product;

γ, the point variogram, assumed to be isotropic;

P15m hð Þ ¼ p15m* _p 15mð Þ hð Þ ¼ 1
152

� hj j þ 15ð Þ1 0;15½ � hj jð Þ, function with “P” (upper

case) that regularizes the variogram, expressed as an auto-convolution product

of p15m (lower case) as previously defined by itself.

Similar equations can be established for the drill holes and the 3 m support. The

model assumes that the blast and the drill samples have the same average because

the independent residuals are of zero mean.

Fig. 1 Base maps of blast (black) and drill (red) measurements
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3 Resulting Linear Systems

From Eqs. (1) and (2), some linear systems can be deduced; in the following we

propose three of them that are tested on a conditional simulation.

3.1 Removing the Blast Error by Kriging

One can remove the blast error by “factorial kriging” estimation (Matheron 1982),

using a linear system applicable to each blast measurement and a local neighbor-

hood of surrounding blast samples. The system is presented symbolically by matrix

formalism:

γ15m þ γR 1

1 0

� �
λ
μ

� �
¼ γ15m þ σ2R

1

� �
ð3Þ

In this system, γR disappears from the second member of the linear system and is

replaced by σ2R, the value of the nugget effect. Thus, we remove, from the estima-

tion, the part associated with the measurement error. This does not mean that there

is no nugget effect in the remaining part γ15m; it means that only the “natural” part

remains. In our case, the complete nugget effect has to be removed because blasts

and drills do not share any microstructure.

The result of the estimation is the average value of the grade over the blast

support at blast sample locations with no measurement error.

3.2 Deconvolution by Kriging

It may be interesting to remove the effect on the blast of regularization by using a

kriging system which estimates, for each blast measurement, a “point” value while

simultaneously removing the part of the nugget effect associated with blast errors:

γ15m þ γR 1

1 0

� �
λ
μ

� �
¼ γ*p15m � γ*p15mð Þ 0ð Þ þ σ2R

1

� �
ð4Þ

The difference with the previous system is that in the second member, γ15m ¼ γ*
P15m � γ*P15mð Þ 0ð Þ (upper case P) is replaced by γ*p15mð Þ � γ*p15mð Þ 0ð Þ (lower

case p). Initially developed to improve microscopy images of thin plates in the

petroleum industry (Séguret1988; Le Loch 1990).
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3.3 Block Estimate by Cokriging Drill and Blast
Measurements

Finally, one can imagine renewing the mine planning block model locally by using

blast and drill samples together in a cokriging system with a linked mean (same

average for both measurements, Chilès and Delfiner 2012):

γ3m γ3m, 15m 1

γ3m, 15m γ15m þ γR 1

1 1 0

0
@

1
A λ

λ0

μ

0
@

1
A ¼

γ*p3m*pV � γ*p3m*pVð Þ 0ð Þ
γ*p15m*pV � γ*p3m*pVð Þ 0ð Þ þ σ2R

1

0
@

1
A
ð5Þ

As usual, the matrix on the left in the linear system concerns only the data; here, a

set of drill and blast measurements. As a consequence, it is composed on the

diagonal of submatrices where the variogram of the drill holes (regularization

over 3 m) and the variogram of the blastholes (regularization over 15 m) appear.

The cross submatrix, which concerns the link between blast- and drill holes, is

based on a regularization of the point-support variogram over both supports, which

is the reason why γ3m, 15m ¼ γ*p3m*p15m � γ*p3m*p15mð Þ 0ð Þ intervenes. Compared

to a usual cokriging system that one can find in the literature (Wackernagel 2003),

the linked mean constraints reduce to one line and one column, the submatrix

associated with the non-bias constraints. Without this simplification, there would

be two lines and two columns. In practice, the consequence is important because

here the drill and blast measurements play the same role, while in a normal

cokriging system, one of the measurement types would be considered auxiliary,

thus reducing its relative influence on the final result. In the right-hand vector, the

term pV appears because the objective is to estimate the average grade over a

v-sized block. This convolution is combined with previous regularizations.

4 Simulation

A refined simulation of point-support grades was made every meter horizontally

and every 20 cm vertically. It reproduces the data set properties. Then, 100 vertical

drill holes were created by averaging, every 50 m horizontally, all the values along

3 m vertically. In this way we obtained 4200 drill samples. Similarly, more than

13,000 vertical 15 m long blastholes were produced with a horizontal spacing of

12 m. The true 153 m3 block value is found by averaging more than 16,000 point-

support values contained in the block. The sampling ratio is approximately 1 drill

hole sample to 3 blasthole samples and the domain covered by the simulation is

500 by 500 m2 horizontally and 125 m vertically. The following figure summarizes

the grids involved (Fig. 2).
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For simplification, the drill samples have no errors. We add to the blast samples a

random noise with a nugget effect of 0.02, representing the blast sampling error.

The grades are realistic with a 0 minimum, 3.5% maximum; an average of 0.63%

as in the real deposit and the distribution is correctly skewed to the right. We verify

that the sills of the drill, blast, and block variograms obey the laws of regularization

by following the procedure presented in Séguret (2015) which is based on the charts

by Journel and Huijbregts (2003) pages 125–147. Figure 3 shows the result.

5 Removing the Blast Error by Kriging

In the first test, we propose to remove the blast error by using the linear system (3).

This filter can be applied to every blast measurement, using a local neighborhood of

surrounding blast samples. The neighborhood must contain the sample from which

the noise is to be removed; otherwise, the filtering is not efficient.

For comparison, the estimation is made by kriging with no filtering, using the

same neighborhood (but without the target sample, otherwise the kriging will

obviously give back the value of the data point).

We select, among all the simulated blasts, a subset of around 1000 samples on

which estimations will be conducted, using the additional samples in case of

ordinary kriging and all the samples in case of nugget filtering.

Fig. 2 Blast- and drill holes grid nodes involved in the simulation
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The reference is the “truth,” i.e., the blast without errors which we know because

we work on a simulation where everything is known. Figure 4 shows the results.

On these scatter diagrams, the horizontal axis represents the true blast value

without any sampling error. On the left-hand scatter diagram, the vertical axis is a

usual kriging. The correlation with the truth is 0.65. On the right-hand one, when

the filtering is activated, the correlation increases to 0.896. Why?

With filtering, the kriging neighborhood can incorporate the target point where

the filter is applied. This point takes a high kriging weight (more than 65%).

Although noisy, this point is closer to the truth than any average based on sur-

rounding points which explains why the filter estimate is closer to the truth.

Finally, the advantage of this linear system (3) is to enable the kriging neigh-

borhood to incorporate the target point information.

6 Deconvolution by Kriging

Now we propose a second test: removing the effect of regularization on the blast

with a kriging system that estimates a “point” value for each blast measurement,

while simultaneously removing the part of the nugget effect associated with blast

errors. By this procedure, we expect to restore the initial variability of the point-

support value judged to be too strongly smoothed by the regularization. The linear

system used is (4).

Fig. 3 From left to right, properties of point-support simulated grades, 3 m support, 15 m and

blocks. Upper figures are experimental histograms, bottom variograms
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A comparison is made with the true point value and with previous estimates

(estimating a blast with or without nugget effect). Figure 5 shows the results.

In the three scatter diagrams, the horizontal axis represents the true point-support

value. The upper left-hand scatter figure presents the result when a deconvolution is

made jointly with error filtering. The correlation with the true value is good at 0.85.

The upper right-hand figure presents the result of the error removal with no

deconvolution. It corresponds to the previously presented system but this time as

compared with the point-support value; this is the reason why the correlation is 0.78

and not 0.89 when compared to the blast values. In comparison with the left-hand

figure, the deconvolution increases significantly the accuracy of the estimation.

The bottom figure shows the results when neither filtering nor deconvolution is

done. The correlation is very low; it is 0.55.

As for nugget filtering, the deconvolution is efficient because the linear system

authorizes the use of the target points where the filter is applied.

7 Block Estimate by Cokriging of Drill and Blast
Measurements

The third test is made to renew the mine planning block model locally by using blast

and drill samples together. The system used is (5), a cokriging system with linked

mean because drill and blast samples have the same average, which is mandatory

for carrying out all these calculations.

Our objective is to estimate the average grade at the block scale, and we compare

it with two other systems: block grade estimate by kriging using only drill holes and

block grade estimate by kriging using only blastholes. Figure 6 shows the results.

Fig. 4 Scatter diagrams between the true values (horizontal axis) and estimations (vertical axis).
Left figure, ordinary kriging estimation; right figure, estimation where the blast error is removed by

kriging
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For the three previous scatter diagrams, the horizontal axis is the true block

grade. The upper left-hand diagram is the result obtained by ordinary kriging with

drill samples; the upper right-hand diagram is the result obtained with blast

samples. The jump by the correlation coefficient from 0.38 (OK using drills) to

0.88 (OK using blasts) is impressive. Even if the blast samples are regularized over

15 m, the fact that they are more numerous and respect the variogram (up to a

nugget effect) justifies their use when possible, in selections for mining operations,

instead of the drill samples.

The bottom diagram concerns cokriging using blast and drill samples together.

The performance is similar to ordinary kriging with blast samples only. In our case

cokriging is not useful because the blasts are so numerous that adding a drill

contribution does not improve the results. This does not mean that such a system

is not helpful, for example, in short-term planning to evaluate a domain to be

blasted where there are only drill holes.

Fig. 5 Scatter diagrams between the true values (horizontal axis) and estimations (vertical axis).
Upper left figure, deconvolution together with error filtering; upper right figure, error removal

without deconvolution; bottom figure, no deconvolution, no error filtering
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8 Moving Average or Kriging?

In our case, short-term planning is based on averages using the blast samples

included in the block, so the question is whether kriging can produce an improve-

ment. We are comparing three experiments:

• Ordinary kriging with 24 surrounding blast measurements (previous work)

• Moving average with the same 24 surrounding blast measurements

• Moving average with four blast measurements at the same elevation

Figure 7 shows the results.

Replacing ordinary kriging by an average reduces the correlation with the truth

from 0.88 to 0.74. This is a very large reduction which should encourage the

practitioners to use kriging instead of present practices in the company.

If practitioners do not want to change their habits, one can see that with only

4 points, the result is better than when 24 points are used because the smoothing is

weaker: the correlation with the truth increases from 0.74 to 0.84, a result still

Fig. 6 Scatter diagrams between the true values (horizontal axis) and estimations (vertical axis).
Upper left figure, estimation is kriging using drill holes; upper right figure, kriging using

blastholes; bottom figure, kriging using both blast and drill samples together
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below the one obtained with kriging but very close to it. Does this mean that we

recommend a moving average with only 4 points? NO! To use so few points is risky

for reasons of conditional bias. To illustrate this concept, consider again the

previous scatter diagram but this time, with the true block grade for the vertical

axis and the estimate on the horizontal axis (Fig. 8).

In the previous figures, red continuous curves represent the mathematical expec-

tations of the true values conditioned by different estimates. We focus on the most

representative [0.3%, 1%] range of grades.

When kriging is done with 24 points, the conditional expectation curve is close

to the first diagonal. Thus, when we select the block according to its estimation, we

obtain, on average, what we expect, with perhaps a slight tendency to underestimate

the high grades.

When we replace kriging by a moving average using 24 points, the red curve is

still close to the diagonal, with a slight tendency to overestimate the low grades and

underestimate the high ones.

Fig. 7 Scatter diagrams between the true values (horizontal axis) and estimations (vertical axis).
Upper left, ordinary kriging with 24 surrounding blast measurements; upper right, moving average

with the same 24 surrounding blast measurements; bottom, moving average with 4 blast measure-

ments of the same elevation
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When the moving average is done with only four points, the conditional bias

appears clearly: in the range of the low grades, we systematically underestimate the

average grade of the blocks and may decide to classify as “waste” blocks that are in

reality richer than expected. Conversely, in the range of the high grades, this

moving average with only four points systematically overestimates the average

grade of the block so that we classify as “rich” blocks which must be considered

“waste.”

It is for this reason that one must use enough points in the kriging neighborhood

for grade control, and reflect on the reason why kriging and geostatistics were

created (Matheron 1971).

Fig. 8 Scatter diagrams between the true values (vertical axis) and estimations (horizontal axis).
Upper left: the horizontal axis represents ordinary kriging with 24 surrounding blast measurements

(previous work); upper right: the horizontal axis represents a moving average with the same

24 surrounding blast measurements; bottom: the horizontal axis represents a moving average with

4 blast measurements at the same elevation
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9 Conclusion

The study of a porphyry copper deposit showed a formal link between blast- and

drill holes, leading to numerous linear systems able at least to filter blast errors,

make blast deconvolution, or build a block model using blasts and drills together,

techniques that could be used at different stages of the mining process.

Tested on a realistic simulation, these systems have proved their worth, as well

as the danger of replacing kriging by a moving average, especially with few points,

producing a strong conditional bias, and this is a useful reminder of the reason why

kriging was created.

Overall, a formal comparison between blast- and drill holes shows that in this

mine – and more generally, in this company – the quality of the blast values is as

good as the quality of the drill values, contrary to conventional wisdom.
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Building a Tonnage-Surface Function

for Metal Grades and Geological Dilution:

An Application to theMassive and Stockwork

Zambujal Ore Deposit, Neves–Corvo Mine,

Portugal

David Silva and José António Almeida

Abstract Classical metal tonnage cut-off curves are an important output of min-

eral deposit evaluation. However, such curves omit local morphological variations

such as those found in sulphide stockwork-type deposits, in which sulphides and

host rock exhibit variable proportions. This paper presents a methodology for

building a stochastic model of the massive and stockwork Zambujal ore deposit

with respect to both morphology and metal content. The model allows a metal

tonnage cut-off surface to be constructed conditional both to metal content and to

local proportions of sulphides relative to host rock. Two random variables are

modelled using stochastic simulation: (i) a variable (P(x)) that represents the

local proportion of sulphides within each mining block and (ii) an auxiliary variable

(Y(x)) representing the relative contents of metal, that is, the metal contents

recalculated for the matrix sulphides. The results are validated by comparing the

global quantities obtained using ordinary kriging of the effective grades with those

obtained by modelling the variables P(x) and Y(x).
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1 Introduction

The characterisation of mineral deposits combining geological information, bore-

hole logs, and analytical measurements precedes the decision to engage in mining

and usually involves the following steps (Gerst 2008; Almeida 2010; Rossi and

Deutsch 2014): (a) delimiting the volume under study, for example, from

digitalising sections and/or interpolating surfaces and then building a 3D represen-

tation; (b) constructing a high-resolution morphological model of the lithologies or

ore types within the studied volume; (c) constructing a model of metal grades

conditioned to the morphological model; and (d) parameterising the deposit in

terms of the quantities of ore and metal as a function of metal grades. In these

steps, geostatistical tools are usually used (Goovaerts 1997), either kriging estima-

tion or conditional simulation, to compute quantities and map the levels of uncer-

tainty. The particular type of mineral deposit under investigation affects the detail

of the procedures used within each of the steps.

The case study examined in the present study is the Zambujal deposit of metal

sulphides (Neves–Corvo Mine, Alentejo, Southern Portugal). The deposit is oper-

ated by the company Lundin Mining, who supplied the data for the study. The

Zambujal is a volcanogenic copper–zinc sulphide deposit located in the southern

Portuguese sector of the Iberian Pyrite Belt (Neves–Corvo mine). It encompasses

two regions, massive ores (RM) in the top part and stockwork ores (RS) (both

stringer and impregnation types) in the bottom part (Relvas et al. 2002). The

stockwork ores contain sulphide metals and host rock in variable proportions, and

it is important to note the extremely copper-rich ores, which reflect zone refining

and late enrichment by remobilisation processes.

When quantifying the resources of an ore deposit, the cut-off grade of the

primary metal is usually adopted as the unique reference. For the Zambujal deposit,

and because the morphological parameter P(x) (proportion of sulphides) was

assessed, it was decided to test the use of this morphological variable as a second

cut-off parameter; that is, a parameter that represents the resources using a combi-

nation of the metal content and the proportion of host rock. One of the reasons for

conducting this particular analysis is that it is possible to consider a lower metal

content in the case of ores with a significant volume of host rock, that is, a cut-off

grade that is also a function of variable P(x). For example, for two rock matrices

with the same copper content, the copper recovery would be higher in the sample

containing more host rock.

Two main issues constrain the proposed methodology. First, the stockwork ores

exhibit higher recoveries during mineral processing compared with massive ores

with equivalent grades. This higher recovery is because the contrast in physical

properties is higher between sulphides and host rock than between different sul-

phide minerals. Second, copper grades in the stockwork ore sulphides are approx-

imately double those in the massive ore sulphides. However, because of the

proportion of host rock, the effective copper grades are much lower in the
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stockwork ores than in the massive ores, but this issue increases the relevance of the

stockwork ores.

Therefore, a high-resolution morphological model was built to quantify the local

proportion of sulphides in each block of the block model (the variable P(x)),
followed by a model of relative grades (the variable Y(x)). By doing so, the metal

contents are recalculated for the sulphide fraction rather than modelling the total

metal content in the total volume. For instance, for the sample location xi with a

proportion of sulphide minerals P(xi) and effective grade of copper ZCu(xi), the
relative grade of copper YCu(xi) is expressed by:

YCu xið Þ ¼ ZCu xið Þ=P xið Þ ð1Þ

Both P(x) and YCu(x) are regionalised variables and can be modelled by using

geostatistical tools such as variograms, kriging, and stochastic simulation. The total

amounts of metals and ores can be calculated directly from the estimated or

simulated values of these variables. Also, with models of both these variables,

parametric surfaces relating the amount of copper to both the proportion of sul-

phides (morphological constraint) and the grade of metal (grade constraint) are

readily constructed. The ability to construct such surfaces in a straightforward way

is an important objective and outcome of this paper.

The proposed methodology contains the following steps:

1. Build a two-region 3D solid model of the Zambujal ore deposit that encompasses

the boundaries of the deposit and the transition between the massive ores in the

top part (RM) and the stockwork ores in the bottom part (RS). Convert the solid

model into a voxel model (mining blocks).

2. Using the densities and metal grades measured at the boreholes and knowledge

about the paragenesis of the Zambujal deposit, evaluate optimal solutions for the

sulphide proportion random variable P(x). In the present case, ten solutions were
selected for each sample.

3. Estimate local cumulative distribution functions (cdfs) of the random variable P
(x) for both region RM and region RS by using indicator kriging (IK). Build a

high-resolution morphological model of P(x) using Direct Sequential Simulation

(DSS) (Soares 2001) conditional to the computed local cdfs and thus conditional
to the low-resolution model.

4. Compute YCu(x) at the sample locations. Estimate local cdfs of YCu for both

region RM and region RS using IK. Simulate the relative grades using DSS for

regions RM and RS simultaneously.

5. Analyse the results involving an evaluation of ore and metal tonnages, and a

comparison of the tonnages with those obtained using ordinary kriging (OK).

Validate the variograms of the simulated images and histograms. Map the

uncertainty.

6. Build a global surface function of copper quantity conditional to the copper

grades and the local proportions of sulphides relative to host rock.
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It is important to note that variables P(x) and copper grades (both the relative and
effective grades) are not stationary within the entire deposit; rather, they are

constrained to the massive and stockwork ores. For this reason, it is essential to

delimit the two regions (massive and stockwork ores) and to constrain the simula-

tions with the cdfs of the studied variables. A modified version of DSS in which the

simulated values are resampled from the local distributions with local cdfs is used to
simulate the entire deposit (Charifo et al. 2013; Matias et al. 2015; Roxo et al.

2016).

2 Case Study

2.1 Low-Resolution 3D Morphological Model

The upper and lower limits of the massive and stockwork regions were digitised

according to the borehole data and expert information in several parallel cross

sections. Then, three surfaces were constructed using linear interpolation: the top of

the massive ore, the bottom of the massive ore/top of the stockwork ore, and the

bottom of the stockwork ore. The final step for building the low-resolution mor-

phological model was the conversion of the surfaces into a block model (block size

2� 2� 2 m) of the two major ore types (Fig. 1).

2.2 Building the Sulphide Proportion Variable P(x) at
Sample Locations

Before simulations were performed, the variable P(x) was evaluated for all samples

by combining the measured values of density D(x) and metal grade Z(x).
The evaluation of P(x) for core samples was made using a classification proce-

dure because this variable is not usually measured in the laboratory. To make this

estimate at the sample locations, the measured levels of the most abundant chemical

elements (Fe, Cu, Zn, Sn, Pb, and S) were used, as well as the densities of the

sampled cores and the paragenesis of the deposit (pyrite, chalcopyrite, galena,

blend, or host rock). It is important to emphasise the difference between the density

of the host rock (about 2.88 t/m3) and the densities of the minerals listed (all>4 t/m3).

A lookup table listing all admissible combinations of these minerals and the host

rock was made (with a resolution of 1% for proportions), and, for each combina-

tion, the theoretical values of the element grades (based on the chemical formulae)

and the composite density were computed. For example, considering a sample

comprising 30% host rock, 30% pyrite, and 40% chalcopyrite (P(x)¼ 0.7), the

theoretical key element grades and density should be Fe¼ 26.14%, S¼ 30.01%,

Cu¼ 13.85%, and D¼ 4.10 t/m3. Then, each laboratory-measured value of grade
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and density was compared with each item of the lookup table, and a set of the closest

combination of minerals plus host rock was extracted. Ten theoretical mixtures of

minerals plus host rock were considered sufficient to cover the uncertainty, and the

selected measurements were in the main very close to each other. Each selected set

of ten values constitutes the local cdf of P(x) at the locations of the boreholes. These
cdfs were then extended to the entire deposit using DSS (Soares 2001). The model of

P(x) is a detailed morphological model and must be used, in a second step, to

condition the construction of the model of metal grades.

In summary, at this point, a cdf of P(x) is constructed for each sample. Figure 2

shows a 3D view of a single realisation of P(x) at the locations of the boreholes

converted to the grid of blocks. In the next section, P(x) is simulated for the entire

deposit.

2.3 High-Resolution Simulation Model for the Sulphide
Proportion Variable P(x) and Copper Grades

The proportion of sulphide ore minerals P(x) was simulated using DSS for the two

regions (RM and RS) simultaneously (Ruben and Almeida 2010). Instead of using a

global cdf, the simulation of P(x) was performed using a modified version of DSS

that uses local cdfs for each region, P(x)|RM and P(x)|RS (Charifo et al. 2013). For

declustering purposes, P(x)|RM and P(x)|RS were estimated using IK of 20 P(x)

900m

700m

500m

350m

0m

Massive ores

Stockwork ores

Academic License. Not for commercial use 700m 600m

300m

0m

Fig. 1 Binary morphological model of the two regions RM (massive ores) and RS (stockwork ores)

in a voxel structure
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classes. Thirty realisations of P(x) were generated. Figure 3 shows the average

image of P(x) (top diagram) and the 10% of blocks with lowest uncertainty (bottom

diagram).

Higher values of P(x) are located at the top of the structure, and lower values at

the bottom (see Figs. 1 and 3), and the transition between the two regions is sharp.

Histograms are well reproduced by DSS, as are the variograms of the data (Silva

2015).

For simulating metal grades, the proportion of ore minerals (P(x)) was combined

with borehole grades to evaluate the relative metal grades (Y(x)). For instance, if a
sample had a grade of 2% copper and a value of P(x)¼ 0.7, then the relative grade

of copper would be equal to 2%/0.7¼ 2.86%. The simulation of Y(x) follows the
same approach as taken for P(x), namely, the use of IK to estimate conditional cdf
histograms of Y(x)|RM and Y(x)|RS and DSS with local histograms. Three

realisations of grades were generated conditional to each of the 30 realisations of

P(x), giving a total of 90 realisations for YCu(x). Again, histograms are well

reproduced by DSS, as are the variograms of the data (Silva 2015).

Figure 4 shows the average relative copper grades YCu(x) (top diagram) and the

actual copper grades (bottom diagram).

It is important to note that the values obtained for the relative grades of copper

and for the actual grades obtained through the quotient of the relative grades and

P(x) are theoretically valid. This theoretical validity is a good indicator that the

proposed methodology can be applied; for example, a maximum of 32% for

relative copper grades is plausible. Figure 4 also shows that the relative grades in

the stockwork ores are higher than those in the massive ores. The transition of

Fig. 2 3D view of a realisation of P(x) at the locations of the boreholes converted to the grid of

blocks. Red colours represent higher values of P(x) (massive ores), and blue-based colours refer to
lower values of P(x) (stockwork ores)
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grades between regions is smooth, which is in accordance with the variability of the

grades along the boreholes.

Finally, Table 1 compares the average of grades obtained using OK and DSS for

the massive ore region, the stockwork ore region, and the regions combined.

Deviations are minimal, confirming that DSS with local histograms generates

unbiased realisations.

Fig. 3 3D representation of (top) the average values of the sulphide proportion variable P(x);
(bottom) the 10% of mining blocks with the lowest uncertainty (in blue), also showing boreholes

(lines) and the bottom surface of the stockwork ores (in grey)
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2.4 Construction of the Tonnage-Surface Function
for Copper Grades and Geological Dilution

Using the simulated values of the variables P(x) and YCu(x), average estimates for

[P(xi)]*, [YCu(xi)]* and ZCu xið Þ½ �* ¼ P xið Þ½ �*: YCu xið Þ½ �* were computed for each

mine block xi. The tonnage of copper (TCu) within each mine block xi with volume

V and ore density ρ is given by

Fig. 4 (top) 3D representation of average relative copper grades (%). Higher relative grades are in

red, lower values in blue; (bottom) 3D representation of average copper grades. Higher grades are

in red, lower values in blue
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TCu xið Þ ¼ ρ:V: P xið Þ½ �*: YCu xið Þ½ �*=100 ð2Þ

A surface representing the total tonnage of copper as a function of the effective

grade of copper ZCu(x) and the morphological variable P(x) is now able to be

presented (see Fig. 5).

Moving from left to right in Fig. 5, the tonnage of copper is calculated for mine

blocks with increasingly higher grades; moving from bottom to top, the tonnage of

copper is calculated for mine blocks with increasingly higher proportions of

sulphides. The colour spectrum represents the varying tonnage of copper, indicating

a decrease in the amount of metal from warm (red) colours to cool (blue) colours.

The maximum value of 528,000 tonnes in the bottom left corner (the total copper

resource of the Zambujal ore deposit) corresponds to blocks with a grade of copper

above 0% and for any value of P(x). The solid black reference line shown in the

diagram corresponds to a threshold of 1.6% for copper. This prototype of repre-

sentation enables consideration not only of a fixed threshold but also of a variable

threshold function of P(x) such as those represented by dashed lines in Fig. 5.

3 Final Remarks

The proposed methodology highlights the importance of the stockwork ores in the

Zambujal deposit, and as mineral concentrations are more efficient in stockwork

ores, metal cut-offs should take into account the proportion of sulphides relative to

host rock. Modelling the proportion variable and the relative metal grades adds

detailed information to each mining block and enables metal tonnage cut-off

surfaces combining metal grades and the proportion of sulphides relative to host

rock (geological dilution) to be generated in a straightforward way.
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Table 1 The proportion of sulphide minerals and the relative grades of Cu for massive (RM) and

stockwork (RS) ores

RM RS RM + RS

Morphological model [P(x)] OK 0.755 0.184 0.350

DSS 0.768 0.176 0.348

% deviation 1.6 �4.7 �0.7

Copper [YCu(x)]
OK 1.465 3.289 2.763

[YCu(x)]
DSS 1.482 3.339 2.795

% deviation 1.1 1.5 1.1
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An Application of Direct Sequential

Simulation and Co-simulation for Evaluating

the Resource and Uncertainty of the Ncondezi

Coal Deposit, Mozambique

Sara Ferreira Sokhin, José António Almeida, and Sofia Barbosa

Abstract The main objective of this work is to develop a model of the morphology

and coal-quality variables of a sub-region of the Ncondezi coal deposit, Mozam-

bique, with data supplied by the Ncondezi Coal Company. This coal deposit is

characterized by a complex stratigraphy, with fine coal layers interleaved with

layers of shales and sandstones. The morphological model consists of the spatial

characterization of the random variable P(x) (proportion of coal). To model the

coal-quality variables and because of the large number of variables and given that

some pairs of variables exhibit high correlations, an approach involving simulation

of principal components as secondary variables is used. A set of selected principal

components are simulated using direct sequential simulation, and the coal-quality

variables are then co-simulated conditional to the previously simulated principal

component values. This approach works as a global co-regionalization model. The

results of the morphological model and of the model of the coal-quality variables

allow global coal reserves to be calculated as well as the quantities of coal to be

parameterized as a function of the coal-quality variables.

1 Introduction

Modelling coal deposits usually involves a two-step approach: first, the creation of

a model of the morphology and second, the construction of a model of the

properties or coal-quality variables (Cornah et al. 2013; Srivastava 2013). Coal
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resources are commonly estimated and classified based on drill-hole data, which are

often multivariate (Tercane et al. 2013). Kriging is the preferred geostatistical

method in the coal industry for estimating and assessing coal resources.

Regarding the construction of the morphological model, if coal seams have

considerable thicknesses, an indicator variable I(x) can be adopted and modelled

using geostatistical indicator kriging or indicator simulation (Almeida 2010a).

Where the coal seams are considerably thinner (only a few or tens of centimetres

thick), as in the present case study, it is not possible to use an indicator variable, but

it is possible to use a variable that quantifies the volumetric proportion of coal in

each block, P(x). This variable proportion of coal can be modelled by estimation

and/or simulation. However, for complex and heterogeneous deposits, kriging is

insufficient and should be complemented with stochastic simulation to provide

uncertainty assessment (Charifo et al. 2013; Cornah et al. 2013; Matias et al. 2015).

Of the various papers that have addressed the modelling of coal variables,

Tercan and Sohrabian (2013) used direct sequential simulation (DSS) (Soares

2001) to characterize the quality of a coal deposit in Turkey in a two-step approach.

In that work, principal component analysis (PCA) (Davis 1986) is applied first to

the three coal-quality variables (ash, calorific value, and inherent moisture). DSS is

then used to generate simulated images of the principal components, after which the

simulated values of the major principal components are transformed into the values

of the initial variables. Although this approach enables a multivariate set of linearly

correlated variables to be simulated and the multivariate matrix of correlations to be

generated, it does not impose both the histograms and the variograms of each

variable. Also, anomalous combinations of results (not observed in the borehole

data) can be obtained.

This paper presents a methodology to build a model of the morphology and coal-

quality variables of a sub-region of the Ncondezi coal deposit, based on data from

surveys conducted by the Ncondezi Coal Company. The deposit is located in the

sub-basin of Moatize-Minjova, Tete Province, Mozambique (Fig. 1) (Johnson et al.

1996).

The Ncondezi deposit is a stratified coal deposit that was developed under the

influence of tectonic process that played a major role in determining the strati-

graphic sequence of the basin and the quality of the coal. The extensional regime

experienced by the basin during its formation led to a fragmentation of blocks in a

horst-graben system, which greatly influenced the lateral extent of the coal seams.

This fragmentation and the resultant low levels of lateral continuity of strata would

appear to be the primary reason for the difficulty of correlating coal seams between

boreholes. Even between relatively close boreholes separated by distances of less

than 300 m, coal-seam correlation is weak. Moreover, the tectonic instability of the

basin caused variations in the depositional environment, particularly fluctuations in

the groundwater level, which explain, for example, the high levels of ash in

Ncondezi coal.

This coal deposit comprises a heterogeneous package of thin coal lenses, each

measuring a few tens of centimetres or less in thickness, interbedded with non-coal

lithologies. The total thickness of the deposit, where not eroded, is several tens of
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Fig. 1 Location of the three Zambezi River Valley Basins (Adapted from Fernandes et al. 2015)
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metres. Lakshminarayana (2015) described this type of coal deposit and the prac-

tical implications for their extraction and referred to such deposits as “barcode”

deposits.

2 Methods

Figure 2 summarizes the proposed methodology for the characterization and

resource evaluation of the Ncondezi Coal deposit. The morphological model and

the coal-quality data model are built independently, with the results being inte-

grated at the end and analysed together. The coal-quality data model uses seven

variables Ki(x): ash yield (Ash), inherent moisture (IM), volatile matter (VM), fixed

carbon (FC), calorific value (CV), total sulphur (TS), and apparent relative density

(ARD).

First, a statistical study of seven coal-quality variables was performed involving

univariate and bivariate analyses and multivariate PCA (Davis 1986; Isaaks and

Srivastava 1989). This initial step enabled the most correlated variables to be

selected in order to adopt the proposed co-regionalization simulation approach.

Then, estimates of the variable P(x) and the coal-quality variables Ki(x) were

generated for the entire set of boreholes in equal length samples. A grid of blocks

was also constructed.

The modelling of the deposit used an independent two-step approach: the

construction of a morphological model of the coal lithologies followed by the

generation of a model of the coal-quality variables. As it is not possible to create

a mesh of blocks at a centimetric scale because of grid size limitations, the

morphological model consisted of simulations by DSS of the random variable

proportion of coal P(x) within each grid block. Before the simulation, an estima-

tion of P(x) both by ordinary kriging and by indicator kriging was performed to

quantify the global resource and the global histogram of P(x) to be used within

the DSS.

Concerning the model of the coal-quality variables, it is essential to reproduce

the multivariate correlation metrics as observed in the available coal-quality data.

To avoid the calculation of cross variograms between a large number of variables

and fit a full multivariate co-regionalization model, the set of linear correlated

variables was modelled by using the first principal component (PC-1) as a second-

ary variable. Thus, PC-1 was simulated over the entire deposit using DSS, and then

each coal-quality variable was co-simulated using Co-DSS using the simulated

PC-1 as a secondary variable in a local co-regionalization approach via PCA

loadings. This simulation approach guarantees the reproduction of the linear cor-

relation metrics as observed in the borehole data as well as the variograms and

histograms of each quality variable (Almeida 2010b).

A relevant output of the simulated block models are curves of coal quantity

conditional to the coal-quality variables (Rossi and Deutsch 2014). The local
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uncertainty and the probability of occurrence of extreme values are tools of prime

importance for the planning and timing of resource exploitation with respect to

optimizing the proportion (mixture) of raw materials coming from different mining

stopes.

DATA: Drill holes and geological and coal-quality data

Statistical analysis of coal-quality data

Generation and georeferencing of morphological variable 
P(x) and quality variables Ki(x) into regular intervals

Construct 3D block model of the deposit 

Resource Evaluation and Uncertainty Analysis

Variogram and theoretical 
model of P(x) 

Kriging of P(x) and kriging  
of P(x) indicator for estima-
tion of the global histogram 

of P(x)  

Geostatistical simulation of 
P(x)using DSS  

Selection of coal-quality var-
iables with higher correl a-

tionsf rom PCA

Variograms of PC and coal- 
quality variables

PC Geostatistical simulation 
using DSS 

Geostatistical co-simulation
of quality variables using 

Co-DSS conditioned to PC

Coal-quality variables with 
no correlation from PCA 

Variograms of independent 
coal-quality variables 

Geostatistical simulation of 
independent coal-quality  

variables using DSS  

Morphological Model Coal-Quality Data Model

Fig. 2 Diagram of the proposed methodology used in this study
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3 Case Study

The data consist of assays from 43 georeferenced boreholes in a study area

measuring 6 km by 2.5 km and with a maximum depth of 370 m (see Fig. 7).

Coal-seam intersections in the boreholes are identified by top and bottom depths,

with some intersections having measurements of coal-quality variables. From a

total of 6,282 m of drilling, fractions with coal account for about 12.5% of the total

length sampled.

For the present study, coal intersections were not manually linked between

boreholes owing to the complexity of the deposit, the sparsity of boreholes, and

the enormous number of coal lenses. The deposit is thought to be a complex

interbedded horizon of carbonaceous mudstone and coal (coal zone), which in

aggregate represents a large amount of potential extractable resource.

A 3D mesh of blocks was generated to develop the models, and it was decided to

use a spacing of 30 m in the horizontal directions and of 1 m in the vertical

direction. The ratio of the dimensions of the blocks is justified because the coal

seams have a lenticular geometry and sub-horizontal orientation, and a vertical

resolution of 1 m is appropriate for mining assessment and planning purposes.

3.1 Statistical Analysis

The results of the univariate and bivariate statistical analysis of the studied vari-

ables are presented in Tables 1 and 2, respectively. In Table 2, the highest

correlations (greater than 0.6 or less than �0.6) are depicted in bold. This matrix

shows that the Pearson and Spearman correlations between the variables are of

similar magnitude and that the variables IM and TS are independent of the

remaining variables.

The loadings of PCA and the projection of observed individual values onto the

three main principal components PC-1/PC-2 and PC-1/PC-3 are presented in Fig. 3

and show the following:

Table 1 Basic statistics of the coal-quality variables

IM Ash VM FC CV TS ARD

Minimum 0.4 59.2 3.1 1.6 1.0 0,05 1.44

Maximum 6.9 90.6 37.0 65.5 25.9 4.22 2.75

Mean 1.6 59.2 16.8 22.4 11.3 0.96 1.95

Median 1.4 59.0 16.9 21.9 11.4 0.78 1.95

Variance 0.47 134.51 35.19 76.62 21.15 0.406 0.029

St. deviation 0.69 11.59 5.93 8.75 4.60 0.637 0.170

Skewness 2.13 0.07 �0.02 0.61 0.06 1.636 0.339
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Table 2 Correlation coefficient matrix for Pearson (bottom) and Spearman (top) of the coal-

quality variables

IM Ash VM FC CV TS ARD

IM 0.186 �0.275 �0.116 �0.217 �0.033 0.197

Ash 0.100 �0.717 �0.878 �0.976 �0.194 0.898

VM �0.230 �0.677 0.353 0.693 0.074 �0.628

FC �0.054 �0.873 0.238 0.877 0.261 �0.818

CV �0.153 �0.977 0.647 0.868 0.233 �0.909

TS �0.029 �0.173 0.067 0.187 0.201 �0.240

ARD 0.109 0.883 �0.574 �0.789 �0.881 �0.196

Fig. 3 (Top) Loadings between the PCA components PC-1/PC-2 and PC-1/PC-3 and the initial

coal-quality variables. (Bottom) Projection of observed individual values onto the three main

principal components PC-1/PC-2 and PC-1/PC-3
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1. The initial seven variables can be summarized in three PCs that account for

87.5% of the variation.

2. The variables Ash, FC, CV, and ARD are explained by PC-1, as is the variable

VM but to a lesser extent. The variables Ash and ARD lie on the positive axis of

PC-1 and the remaining variables on the negative axis. These results corroborate

the bivariate analysis, in which these five variables are correlated with each

other, some negatively.

3. The variables IM and TS are explained by PC-2 and PC-3, respectively, which

means that these variables have a very high degree of independence, both with

each other and with other variables. This result also confirms the results of the

bivariate analysis and also reflects that these two variables have a more asym-

metric distribution and are closer to lognormal type compared with the other five

variables.

4. The projection of observed individual values does not differentiate populations.

Some individual values are represented in dispersed patterns, which mean

abnormal records.

These results suggest that the set of four variables (Ash, CV, FC, and VM)

should be co-simulated with Co-DSS via the PC-1 axis and that the remaining

variables IM and TS should be simulated independently. ARD is redundant and

does not need to be simulated.

3.2 Variography

Before modelling by simulation, experimental standardized variograms were com-

puted in both the horizontal and vertical directions, and theoretical models were fit

for all variables involved: P(x), PC-1, Ash, CV, FC, VM, IM, and TS. Figure 4

illustrates the experimental variograms and models fitted for P(x), PC-1, and CV. It
is important to note that the ranges for the coal-quality variables are much higher

(about five times higher) than those for the P(x) variable, and this is more evident in

the vertical direction, meaning that the occurrence of coal is more erratic than its

quality, which appears to be relatively homogeneous.

3.3 Simulation Results

Simulations were performed by implementing the presented methodology. Because

of the high heterogeneity of the deposit and the lack of information, 500 realizations

for each variable were generated for each variable using DSS and Co-DSS (Nunes

and Almeida 2010). The average and the variance of the simulated values were

generated. The results are illustrated in Figs. 5 and 6 for section OX 18/63, which

intersects five boreholes. Figure 5 displays the results for P(x).
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The uncertainty is zero at the borehole locations and increases away from

boreholes depending on the distance to the nearest borehole and the heterogeneity

of the closest values. It should be noted that the variograms show a relatively low

range (spatial continuity) in the study area, and the spacing between boreholes

should be tightened to improve the quality of the estimation for the blocks with the

highest uncertainties.

Figure 6 shows the results for the CV variable for section OX 18/63, and Fig. 7

shows in 3D the locations of the best coal (CV>12.5 MJ/kg) for the whole deposit.

To validate the results of the multivariate co-simulation, including the repro-

duction of the correlations between variables as observed in the initial data,

calculations of the average Pearson correlation coefficient between homologous

Fig. 4 Horizontal (left) and vertical (right) experimental variograms of (top) P(x), (middle) PC-1,
and (bottom) calorific values (CV), together with the respective models (blue lines) and sills (red
lines)
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images (# 1/# 1, . . . # 105/# 105, and so on) were achieved by sampling. In all,

2,500 pairs of simulated images were selected from the set of all variables. The

results are shown in Table 3. Overall, the values of the correlation model are similar

to the observed data.

The results of the simulations enable the resource to be parameterized by coal

quality. For illustrative purposes, Fig. 8 presents the tonnages of coal conditional to

the variable CV. A density of 1.8 t/m3 for coal was used for the calculations.

Fig. 5 Representation of the results for P(x) in one section (OX 18/63): (a) one realization; (b)

another realization; (c) the average image of the simulated set of images of P(x); and (d) the image

of the local variance constructed with the 500 simulated images of P(x)
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4 Conclusions

The complex evolution of the sedimentary depositional environment associated

with the Ncondezi coal deposit has not allowed individual coal seams with a

reasonable thickness and lateral continuity to be formed. The morphology of the

Fig. 6 Results for the coal-quality variable CV in one section (OX 18/63): (a) one realization of

PC-1; (b) one realization of CV, co-simulated to the realization of PC-1; (c) the average image of

the simulated set of images of CV; and (d) the image of the local variance constructed with the

500 simulated images of CV
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Fig. 7 3D view of the locations of coal resource with CV values higher than 12.5 MJ/kg for the

whole deposit

Table 3 Correlation matrix of observed data (bottom) and simulated images (top) of coal-quality

variables

IM Ash VM FC CV TS

IM 0.005 �0.005 �0.005 �0.005 �0.001

Ash 0.100 �0.598 �0.865 �0.972 �0.010

VM �0.230 �0.677 0.317 0.602 0.015

FC �0.054 �0.873 0.238 0.864 0.013

CV �0.153 �0.977 0.647 0.868 0.010

TS �0.029 �0.173 0.067 0.187 0.201

Fig. 8 (Left) Curves of the tonnage of coal with respect to the coal-quality variable CV. (Right)
Moving average of CV calculated for a 1-m depth interval
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coal zones is typically characterized by cyclical sequences of centimetric layers of

coal, shales, and carbonaceous shales. Coal zones (stacks of thin coal lenses) range

from 10 to 60 m in thickness, in which the proportion of coal to other rock/material

is on average at least 50%.

The variograms of the studied coal-quality variables of the Ncondezi deposit

show high lateral variability in coal occurrence and quality, reflecting the fairly low

number of surveys and samples, which are insufficient to properly characterize the

deposit. For these reasons, the simulations showed a high degree of uncertainty.

Also, the majority of the coal resource exhibits high ash content and low calorific

value as well as a low yield of higher-quality products and would require improve-

ment in order to be marketed. In summary, the Ncondezi is a large deposit with high

tonnage, relatively low coal quality, poor spatial continuity of both morphology and

coal-quality variables, and a high degree of uncertainty that could be minimized

with new prospection campaigns, including new boreholes spaced more closely to

form a tighter mesh.

Concerning the multivariate simulation approach tested in the present case

study, it should be noted that the proposed methodology for the multivariate

simulation of co-located variables imposes the individual variograms and histo-

grams as well as the multivariate correlation metrics, providing a more straightfor-

ward methodology when compared with traditional full co-regionalization models.
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modelling and resource estimation in the coalfields of Western Anatolia. Int J Coal Geol

112:94–106

396 S.F. Sokhin et al.



Castelo de Sonhos: Geostatistical
Quantification of the Potential Size of a
Paleoproterozoic Conglomerate-Hosted Gold
Deposit

R. Mohan Srivastava, Nicholas Appleyard, and Elton Pereira

Abstract Castelo de Sonhos, a gold deposit in Pará State, Brazil, has seen several

phases of exploration since the mid-1990s. These programs have provided drill hole

data, surface mapping of outcrops, geophysical surveys, geochemical surveys of

soil samples, and preliminary metallurgical test work. All available data from these

exploration programs have been integrated with recent advances in paleo-plate

reconstructions, in modeling sedimentary depositional systems, in geostatistical

simulation, and in data mining. This integration of ideas and methods from petro-

leum geostatistics, from classical statistics, and from plate tectonics makes it

possible to predict the range of the project’s potential tonnage and grade and to

assess the project’s upside and downside risk. This leads to an exploration target

range that is probabilistically quantified, that is well grounded in data, in field

observations and science, and that is testable through drilling. Not only does this

quantitative risk assessment improve analysis of the project’s technical and eco-

nomic viability but also, importantly, it builds confidence among investors whose

support is critical for advancing the project.

R.M. Srivastava (*)

TriStar Gold Inc, Toronto, Ontario, Canada

e-mail: mosrivastava@tristargold.com

N. Appleyard

TriStar Gold Inc, Scottsdale, AZ, USA

e-mail: nappleyard@tristargold.com

E. Pereira
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1 Introduction

Rising several hundred meters above the cattle-grazing lands of southern Pará State

in Brazil (Fig. 1) is a plateau cut by a ravine (Fig. 2). In the 1970s and 1980s,

garimpeiros (artisanal miners) worked the alluvial deposits on the flanks and the toe

of the plateau, recovering hundreds of thousands of ounces of gold using manual

methods to excavate and concentrate ore.

In 1995, Barrick Gold, reasoned that the likely source of the alluvial gold was a

hard-rock deposit on top of the plateau. They launched an exploration program,

initially searching for a granite-hosted gold deposit, but quickly recognizing that

the host was a band of conglomerates that rims the plateau. After a small drill

program, an extensive soil geochemistry survey, and a trenching program, Barrick

closed the exploration program in 1996 and relinquished the mineral concessions.

Garimpeiros then moved onto the plateau, digging trenches and pits by hand

near Barrick’s trenches, and near the up-dip projection of the best intervals in

Barrick’s drill holes. Over the next decade, garimpeiros excavated near-surface

mineralization along strike for several kilometers, to a depth of 12–15 m. In places,

tunnels were dug into the face near the base of trenches, following well-mineralized

bands 50–70 m into the wall (Fig. 3). The garimpeiroworkings (garimpos) were not
limited by lack of gold but by the difficulty of extending hand-dug slots and tunnels

below the water table. The back-breaking and life-shortening work became phys-

ically impossible without access to explosives and mechanized equipment. By the

late 2000s, garimpeiro activity had dwindled to a few aging “hobby farmers” who

continued to be able to recover a few grams a day from the more prolific garimpos.
The past several years have been difficult for the mining industry. The price of

gold, which flirted with $1,800/oz in 2012, had dropped to barely $1,000/oz by late

2015. The collapse in commodity prices made many once-promising projects

unprofitable and caused funding for exploration to dry up. Mineral exploration is

Fig. 1 Location of the Castelo de Sonhos gold project
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a risky and costly business; with most mineral prospects never going into produc-

tion, exploration can be justified only when commodity prices are so strong that the

cost of the many misses is covered by the few hits.

By late 2015, the Castelo de Sonhos project was in jeopardy of being shut down a

second time. More than $1,000,000 was needed just to make the final land payments

that would secure TriStar 100% ownership of the project, and much more was

needed to continue exploration. Even though the drilling continued to show prom-

ising potential, lack of funding limited the areal extent of TriStar’s drilling; by

2014, the last year of drilling, only 25% of the 16 km of conglomerate outcrop and

soil anomaly had been drilled (Fig. 4).

Although there were good showings of gold throughout the 250–300 m thickness

of the conglomerate band, the drill holes targeted sweet spots, hunting for good

news that was necessary to feed a cash-starved project. Very few holes penetrated

Fig. 2 Perspective view of the plateau, facing northeast, with a 10:1 vertical exaggeration

Fig. 3 Tunnels at the base

of one of the garimpeiro
trenches
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the entire thickness of the conglomerate, leaving untested resource potential even in

the limited areas that had been drilled.

Attracting more funding was made more difficult by a 2014 technical report that

established a resource estimate of 180,000 oz of gold in indicated resources and

100,000 oz in inferred resources (Mello 2014). At this scale, the project became

regarded as small, likely too small to ever become a modern industrial mine at

current gold prices. It was difficult to communicate to weary and skeptical investors

that this first resource estimate was “just a start” and that the project had great

promise and potential.

The mining industry is littered with promises of pots of gold at the end of

rainbows, with tales of the discovery of El Dorado, the fabled city of gold that

the Spaniards never found. Mining promoters traffic in hyperbolic claims and

wishful thinking. This is, in fact, a necessary part of sustaining investment through

the high-risk phase of exploration. Many projects move forward only through sheer

optimism. Exploration geologists have a tendency to fall in love with their discov-

eries, always maintaining faith that their project has much more potential than

anyone has been able to document. Next year’s drilling will prove up that potential

and vindicate their faith . . . if only someone would fund the project.

Against this backdrop of boundless optimism, discussions of a project’s potential
are understandably met with a degree of cynicism and doubt. Arm-waving pro-

jections of blue-sky possibilities are rarely convincing to investors who have

Fig. 4 Map showing the conglomerate outcrop (hatched), the gold anomaly in soil samples (red-
orange-yellow), the location of drill hole collars (white dots), and the footprint of the 2014

resource estimate (blue)
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learned through experience to be suspicious of hype. This is where geostatistics

makes a difference. An important difference. A project-saving difference.

This paper begins with an explanation of why mineral resources are convention-

ally reported as a single “best estimate” and why securities regulations limit one’s
ability to present resource estimates in the probabilistic context that has become

familiar in other areas of applied geostatistics. It presents the concept of an

“exploration target range” and shows how this provides an opportunity to introduce

probabilistic analysis from geostatistical simulations, showing a space of uncer-

tainty that spans a range of possible grades and tonnages. The controls on gold

mineralization in the Castelo de Sonhos deposit are discussed, analyzing and

integrating all available information and data to support the view that this is

primarily an ancient placer deposit, with free gold grains being deposited in a bed

of gravels and pebbles that was later buried, cemented into solid rock, then uplifted

to its present position. A methodology for geostatistical simulations is presented,

one that draws on tools developed for oil and gas applications but relevant to this

mining problem because the gold accumulated in a sedimentary environment

similar to many petroleum reservoirs. Results of the conditional simulation study

are shown, leading to a P10–P90 range that provides strong technical support for the

belief that the preliminary resource estimate considerably understates the project’s
true potential.

2 Mineral Resource Reporting: The Single-Estimate
Tradition

Although the mining industry is the birthplace of applied geostatistics, mineral

resource estimation makes little use of the conditional simulation tools that now

dominate applied geostatistics in the many other areas where geostatistics is now

applied. In practice, mineral resource estimation is still based on interpolation

procedures that produce only a single estimate.

The vast majority of mining is conducted by public companies whose shares

trade on stock exchanges. Governments and securities regulators, who want pub-

licly traded companies to function with an accountability that builds public confi-

dence in the stock market, have introduced regulations that constrain how mining

companies report mineral resources. These securities regulations are intended to

improve the comparability of resource estimates, so that one company’s “apple” is
not another company’s “orange.” They also aim to make available to the public the

data, scientific and technical information that support companies’ claims about their

mineral resources.

Mining is becoming increasingly globalized. All of the world’s largest mining

companies operate in several countries, as do many midsize companies. By the time

they reach production, many mining projects involve partners from different coun-

tries. In order to facilitate reporting of a project’s mineral resources in the several
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jurisdictions where the partners are headquartered, and where they operate, the

rules that govern reporting of mineral resources have gravitated toward a global

norm. Although there are differences between the details of the securities regula-

tions in each country, these differences are becoming smaller as many countries

adopt rules that are similar to the JORC Code developed by the Australian Institute

of Mining and Metallurgy and to Canada’s National Instrument 43-101.

At the same time that securities regulators require adherence to specific rules and

definitions, they also encourage the use of best practice guidelines developed by

professional organizations. In Canada, for example, National Instrument 43-101

recommends that the best practice guidelines of the Canadian Institute of Mining

and Metallurgy (CIM) be followed.

Although the geostatistics community has developed many tools for building

stochastic models that span a space of uncertainty, these have not found broad use

in the mining industry because securities regulations for mineral resource reporting

do not embrace the possibility of different but equally likely versions of a deposit’s
grade and tonnage. National Instrument 43-101, for example, is unambiguous in its

requirement that when multiple versions of a deposit’s grade and tonnage are

presented, the report must make clear which of the alternatives is the single one

being presented as the mineral resource estimate.

The single-estimate tradition is reinforced by best practice guidelines that

present advice that focuses on the use of single-estimate interpolation procedures

like kriging and inverse distance weighting. With decades of effort having gone into

harmonizing regulations and guidelines in different countries, it is very unlikely

that the single-estimate tradition of the mining industry can be undone.

2.1 Classification

Classification is the one purpose for which conditional simulation has gained some

traction in mineral resource estimation. Regulations require that mineral resource

estimates be classified into three categories that reflect different levels of confi-

dence: “measured,” “indicated,” and “inferred,” from most confident to least.

Several mining companies and mining engineering consulting firms have devel-

oped a standard practice of classifying resources according to fluctuations in grade,

tonnage, and metal content observed in multiple realizations from a conditional

simulation study. But even when used for this purpose, conditional simulation is

very rarely the direct basis for the reported estimate of the mineral resource; it

informs only the choice of appropriate confidence categories for a resource estimate

developed using a single-estimate procedure.
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2.1.1 Exploration Target Range

Canadian and Australian regulations for the reporting of mineral resources explic-

itly permit the reporting of an “exploration target range.” Canada’s National

Instrument 43-101 does not define what this is, a puzzling omission in a document

that insists on adherence to standardized definitions and terminology. Fortunately,

Australia’s JORC Code does give a definition, one that captures the sense of the

term as it is generally understood throughout the mining world:

An Exploration Target is a statement or estimation of the exploration potential of a mineral
deposit in a defined geological setting where the statement or estimate, quoted as a range of
tonnes and a range of grade, relates to mineralization for which there has been insufficient
exploration to estimate a Mineral Resource.

The requirement that grade and tonnage of an exploration target be reported as a

range (and never as single estimates) makes conditional simulation ideal for the

analysis and reporting of an exploration target.

3 Controls on Mineralization at Castelo de Sonhos

Reliable models of grade and tonnage in a mineral deposit depend on a good

understanding of the controls on mineralization, the physical and chemical pro-

cesses that brought gold to certain location, and not to others. This understanding

informs models of spatial continuity, especially in the exploration stage, when the

hard data are too few to permit robust analysis of experimental variograms. It also

assists with the choice of appropriate trend models; quantification of an exploration

target range is completely unconvincing if it consists simply of filling a large

volume of rock with grades drawn from a homogenous distribution. Stationarity

is never a comfortable assumption for mineral deposits; although it eventually

becomes justifiable when the deposit is well drilled and local search neighborhoods

require only an assumption of local stationarity, stationarity is a very difficult

assumption to justify with sparse exploration drilling. This is largely the reason

that best practice guidelines encourage mineral resource estimates to be tightly

constrained to nearby drill holes. It is also the reason that the 2014 resource estimate

for Castelo de Sonhos is so low. When best practice guidelines are followed, the

resources (the blue areas in Fig. 4) tightly follow the available drilling. Establishing

the full exploration target requires extrapolating beyond the available drilling, and

this can be done well only when geologically sound trend models are used.

The existing exploration data from Castelo de Sonhos support two plausible

views for the controls on gold mineralization. The first is a “syngenetic” view in

which the gold arrived in the sedimentary host rock at the same time that the

sediments were accumulating. The second is an “epigenetic” view in which the gold

arrived long after the rocks were indurated, likely through mineralized fluids that

percolated through the rock.
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In the syngenetic view, free gold grains would have been moved by water and

settled to the bottom when the velocity of the current was not sufficient to keep

them in suspension, or to keep them as part of the bed load that rolls along the

bottom. The primary direction of continuity would be stratigraphically horizontal,

subparallel to bedding, and aligned with the current direction. Large-scale changes

in gold grade would follow lithology, tending to be higher where large pebbles are

more frequent and tending to be lower where the sediments are finer. These

lithologic trends are due to the fact that the hydrodynamic conditions that cause

gold grains to settle will also cause large pebbles to settle. The large-scale trends in

gold grade would go from high in the proximal direction (nearer the source of the

eroded gold grains) to low in the distal direction (further away from the source).

In the epigenetic view, gold would follow cracks and fissure, the high perme-

ability pathways through which mineralized fluids could travel. Directions of

maximum continuity would be aligned with these fractures; for near-surface

deposits, these would be subvertical because the lack of a confining load on the

top makes horizontal stress greater than vertical stress, and fractures tend to

propagate perpendicular to stress. Large-scale trends in gold grade would reflect

proximity to faults and fractures, with gold grades tending to be higher in brecciated

rocks in fracture zones and lower as one moves into less fractured rock away from

those zones.

There is geological evidence that supports both styles of mineralization. The

coincidence of the conglomerate outcrop with the soil anomaly (Fig. 4) supports the

syngenetic view because it suggests that the conglomerate was always the host rock

and not merely a convenient stopping point where gold later came out of solution

from mineralized fluids. Direct observations of thin gold films on fracture surfaces

are consistent with the epigenetic view, as is anecdotal commentary on the presence

of hematite alteration with high gold grades. Statistical analysis of the available

data, however, confirms that the primary controls on mineralization are those of

placer environment and that although gold was subsequently remobilized, it has

moved only a short distance from the location where it was originally deposited

among pebbles and gravels, likely in flowing water.

Figure 5 shows a schematic of the main lithologies in the Castelo de Sonhos

Formation, which is composed of a conglomeratic band, 250–300 m thick, that sits

between thicker units of arenite above and below. Within the main conglomerate

band, there is a mixture of pebble-supported conglomerates (mC1), matrix-

supported conglomerates (mC2), a micro-conglomerate (mC3), and conglomeratic

arenites (mAC). The conglomeratic arenites are sandstones in which the occasional

pebbles are so widely spaced that they don’t look like true conglomerates. In places

where the pebbles are very widely spaced, the conglomeratic arenite looks exactly

like the upper or lower arenite (mA).

Figure 6 shows side-by-side box plots of the gold grade distributions in the five

lithologies, with the progression from left to right being proximal to distal: pebble

conglomerates will occur closer to the source and the finer-grained arenites will

occur further from the source. The gradual progression from high grade in the

pebble-rich lithologies to low grade in the pebble-poor lithologies is consistent with
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the view that the hydrodynamic processes that caused pebbles to settle to the bottom

also caused gold grains to settle at the same time.

Recursive partitioning (Breiman et al. 1984) provides additional statistical

support for the view that the deposit is primarily an ancient placer. Figure 7

shows the recursive partitioning tree that separates high grade from low grade in

the drill hole intervals coded as mC3, which is referred to as a “micro” conglom-

erate because it is composed entirely of small particles of gravel. The single most

important factor in separating high-grade mC3 from low-grade mC3 is the thick-

ness of the mC3 layer. Layers of micro-conglomerate less than 2 m thick have much

higher gold grades (nearly 10�) than the thicker mC3 layers. This speaks to the

likelihood that the micro-conglomerate acted like a natural sluice box, trapping

gold that settled from the bed load above. When the same mass of gold grains is

distributed in a thick mC3 layer, the gold grade ends up being lower than it does in a

thin mC3 layer. For the thinner mC3 units, the next most important factor that

separates higher grade from lower grade is the lithology of the overlying layer. If it

is a matrix-supported conglomerate (mC2), the average grade is 3� that of the

micro-conglomerates that are not overlain by a matrix-supported conglomerate. In

order for bottom gravels to trap gold grains in a placer environment, the water

velocity has to be sufficient to carry gold grains in the bed load, but not so high that

the gold grains will be in suspension in the water column. Although the pebble-

supported conglomerates likely reflect a higher water velocity, it is the matrix-

supported conglomerates that would have been deposited in water that was flowing

quickly, but not so quickly that there was a minimal bed load rolling at the bottom

of the water column.

Other factors that support the syngenetic view include high recoveries of free

gold using gravity methods in the preliminary metallurgical test, no gold in the

lower arenite and very little gold in the upper arenite and only immediately above

the conglomeratic band, and low variance in field measurements of the azimuths of

paleo-current directions, typically from cross-bedding.

Fig. 5 Stratigraphic column of the Castelo de Sonhos Formation
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Although there are some factors that support the epigenetic view (visible gold on

fracture surfaces and association of gold with hematite alteration), there are several

factors that are inconsistent with an epigenetic explanation. There is no correlation

between gold grades and proximity to faults or fractures, and the deposit does not

contain any of the sulfide minerals, like pyrite and chalcopyrite that commonly

occur with epigenetic deposits.

Placer deposits can form in many different depositional environments, including

alluvial fans, braided streams, meandering rivers, fluvio-deltaic systems, and in

near-shore marine environments. There is not yet enough field evidence to provide

a strong opinion on the specific details of the depositional environment. Occasional

hematite rims on quartz pebbles are consistent with subaerial deposition commonly

seen in alluvial fans; but the low variance of paleo-current directions and the

statistical evidence of subaqueous deposition (Fig. 7) point to something other

than an alluvial fan. The lack of very fine-grained sediments is consistent with

the separation of silts that occurs in the surface layer in a near-shore marine

environment where fresh water from land meets salt water from the ocean.

Despite the lack of specific details on the depositional environment, several

broad characteristics remain clear. The direction of maximum continuity will be

Fig. 6 Side-by-side box plots of gold grade distributions in the five lithologies
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parallel to stratigraphy, subhorizontal to bedding, and will follow sinuous channels

of the type shown in Fig. 8. These types of channel geometries occur in all

sedimentary environments where heavy mineral deposits form and at all scales.

The other characteristics common to all of the possible depositional environ-

ments are trends that will cause proximal-to-distal decreases in the water velocity

and energy of environment, the frequency and size of pebbles, the proportions of

pebble and clast-supported conglomerates, and average gold grade.

The ability to model these trends well and to capture the sinuous channel

geometries in variogram models will significantly improve the realism of condi-

tional simulations. If these characteristics are not honored, simulations will lack

realism and will not inspire confidence in the attempt to quantify the exploration

target range.

4 Plate Tectonics and Depositional Environment

Figure 9 shows a reconstruction of the continental plates 2.05 billion years ago

(Eglington 2015), when a large supercontinent known as Nuna formed near the

South Pole. In the 2 billion years since, the continental crust of Nuna has separated

into four continental plates, two of which are now part of South America (the green

plates on Fig. 9) and two of which are now part of Africa (the blue plates). There are

Fig. 7 Recursive partitioning tree for gold grades in drill hole intervals coded as mC3
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several known lode gold deposits that date to 2.05 Ga or older and that can be traced

back through time to their locations on Nuna (the orange triangles). These formed

an arc that stretched across the continent, likely a ridge of volcanic mountains much

like the modern Andes.

Zircon dates from Castelo de Sonhos place the formation of the conglomerates at

2.0–2.1 billion years ago, approximately the same age as two other paleo-placer

gold deposits, Tarkwa in Ghana (2.1 Ga) and Jacobina in Brazil (2.0 Ga), both of

which are now large operating mines. At the time that all three of these quartz-

pebble conglomerates were forming, they sat near the shore, below lode gold

deposits at higher elevations. Streams and rivers carrying eroded gold grains

would have deposited their gold where the water velocity dropped, either in the

alluvial plains or in the fluvio-deltaic region where rivers meet the sea.

5 Structural Geology

From its original flat-lying configuration, the band of conglomerates has been

folded and faulted. The axial plane of the fold has been tilted to the northwest

(in current UTM coordinates), and the hinge line has been tilted so that it dips to the

Fig. 8 Photographs showing sinuous channel geometries at several scales. From left to right: at
the 10 km scale in the desert near Hamra Al Drooa in Oman (Kjell Lindgren, International Space

Station, NASA); at the 100 m scale in the Thjorsa River near the Hofsj€okull glacier, Iceland
(Olivier Grunewald); and at the meter scale in heavy minerals in sand at Ventry Beach, Ireland

(Jessica Winder)

Fig. 9 Paleo-reconstruction of Nuna, approximately 2.05 billion years ago, from data provided by

Bruce Eglinton (University of Saskatchewan)
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southwest. The approximate horseshoe shape of the conglomerate outcrop (Fig. 4)

is the result of the clipping of the folded conglomerate band against the current

topography. The southern limb of the outcrop appears wider than the northern limb

because of the tilt of the axial plane. The bedding has a shallow dip in the southern

limb but is nearly vertical on the northern limb; so the apparent width in the

southern limb is an oblique cut across the conglomerate band, while the apparent

width on the northern limb is very close to the true perpendicular width.

There are two major faults that offset the conglomerate band, creating a small

down-dropped block whose apparent shift to the east is due to the tilt of the fold.

A 3D model of the folding and faulting of the Castelo de Sonhos conglomerate

band was created. This model allows one to wind back the clock, restoring the

conglomerate band to its original depositional configuration by unfaulting,

untilting, and unfolding. The original depositional configuration is the proper

coordinate system for geostatistical analysis and simulation. Once conditional

simulations have been built, the clock can be run forward, with the conglomerate

band being folded, tilted, and faulted to bring it back to its configuration in current

UTM coordinates.

6 Conditional Simulation Methodology

The simulation of gold grades at Castelo de Sonhos begins with a sequential

indicator simulation (SIS) of the lithologies. This SIS procedure uses simple kriging

(SK), with the local means defined by the proportion curves shown in Fig. 10.

In the vertical direction, there is a clear non-stationarity in the lithology pro-

portions. In the oldest (deepest) layers of the conglomeratic band, there is very little

of the pebble-supported conglomerate (mC1), and a lot of the conglomeratic arenite

(mAC) and arenite (mA). Later during the period when the conglomerate was being

deposited, the proportion of pebble-supported conglomerate increased, reaching a

peak about 75% of the way from the base of the conglomerate to the top. The

vertical variation in lithology proportions is likely due to a combination of sea-level

changes and changes in the sediment supply caused by uplift and erosion on the

continental land mass of Nuna. Since the lithology proportions are not stationary,

the conglomerate band was divided into six domains or “sequences,” choosing

boundaries that were designed to create stationary lithology proportions within each

sequence, i.e., between each consecutive pair of boundaries.

The horizontal proportion curves shown on the right of Fig. 10 require an

assumption about the direction of sediment transport. Using lithologies observed

in drill holes, and maximum pebble sizes observed in outcrops, the assumption was

made that the paleo-current direction was northeast to southwest, approximately

aligned with the plunging direction of the fold, an assumption that is consistent with

the paleo-current direction implied by the paleo-plate reconstruction (Fig. 9). As

one moves down-dip (southwest) from the north-south limb of the conglomerate
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outcrop, the proportions of the high-energy lithologies (mC1 and mC2) will tend to

decrease, and the gold grades will also tend to decrease.

The SIS procedure is able to use locally varying directions of maximum conti-

nuity that are subparallel to simulated channel centerlines. These centerlines were

created by borrowing a tool developed for oil and gas applications. Srivastava et al.

(2013) presents a grid-less method for simulating the geometry of the centerlines of

sinuous fluvio-deltaic channels, conditioned by lithology observations in well

bores, with the conditioning data providing information on the proximity to sand

channels. For Castelo de Sonhos, lithologies in drill holes provide information on

the proximity of channels. The five lithologies were coded as integers from 1 to 5 in

proximal-to-distal order: mC1¼ 1, mC2¼ 2, mC3¼ 3, mAC¼ 4, and mA¼ 5.

Within each drill hole, within each sequence, the average of these integer codes

is a numerical summary of the energy of the environment. High-energy environ-

ments will have a low average, and low-energy environments will have a high

average. The spatial trends in these average lithologies provide clues to the prox-

imity to channels within each sequence.

Figure 11 shows simulated channel centerlines for the six sequences. The

colored dots on this figure show the average lithology indicator for each drill

hole, within the sequence boundaries. Red-to-yellow colors denote high-energy

environments (low values of the average lithology integer), while green-to-blue

colors denote low-energy environments (high values of the average lithology

integer).

Figure 12 shows an example of the SIS lithology simulation on a stratigra-

phically horizontal slice at the middle of the conglomerate band, using the propor-

tion curves (Fig. 10) for SK means, and using simulated channel centerlines

(Fig. 11) to define local directions of maximum continuity.

Once lithology simulations have been created, grade simulations are done with

SGS, using only the drill hole data that fall within the same lithology. Following the

grade simulation, SIS is used to simulate broad zones of weak, moderate, and

intense hematite alteration that slightly modify the gold grade. Figure 13 shows

Fig. 10 Vertical and horizontal proportion curves for the five lithologies
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an example of the grade simulation and the alteration simulation. The left frame in

Fig. 13 shows that the gold grades decrease in the down-dip (southwest) direction.

This is due to the linkage between the samples and the lithologies; when the grade

within the mAC region is estimated using only the mAC samples from nearby drill

holes, the fact that the gold grades are generally low in mAC (Fig. 6) entails that the

simulated gold grade will also be low.

Fig. 11 Simulated centerlines of channel, conditioned by a proxy for the distance to channels: the

average lithology indicator calculated from drill hole samples within each sequence

Fig. 12 An example of lithology simulation using SIS with proportion curves and locally varying

directions of maximum continuity
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7 Results

The procedure described in the previous section was used to create 100 realizations

of lithology, of gold grade and of hematite alteration. For each of these, the gold

that could be extracted profitably using open-pit mining methods was calculated.

Figure 14 shows the histogram of the metal content of the 100 realizations. Table 1

shows the exploration target range based on the realizations corresponding to the

10th percentile (P10) and 90th percentile (P90) of the distribution of metal content.

This conceptual exploration target range is not a mineral resource estimate.

Further drilling is required to calculate a mineral resource estimate that complies

with the requirements of National Instrument 43-101. If this additional drilling is

done, the eventual future resource may not fall within the range expressed in

Table 1.

Despite being conceptual in nature, the quantitative risk assessment (QRA) that

leads to the exploration target range was an important step in advancing the project.

In the months since the results of the QRA have been available, the project has been

able to inspire confidence in a large and growing group of people who have invested

several million dollars in the project. In the current market, when there is little

funding available for mineral exploration, a project like Castelo de Sonhos could

not have been advanced without the sound technical analysis of future potential that

geostatistical simulation provides.

Fig. 13 Simulated gold grades (left) and simulated intensity of hematite alteration (right)
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A Hybrid Model for Joint Simulation
of High-Dimensional Continuous
and Categorical Variables

Hassan Talebi, Johnny Lo, and Ute Mueller

Abstract It is a common challenge for the geosciences to jointly model the

uncertainty in continuous and categorical regionalised variables and to reproduce

observed spatial correlation and complex relationships in realisations. The demand

for computational efficiency in the case of high-dimensional data and large simu-

lation domains has led practitioners to utilise approaches based on decorrelation/

recorrelation and independent simulation. Among such approaches the method of

min/max autocorrelation factors (MAF) has proven to be a practical technique for

industrial purposes. This study presents a hybrid model for joint simulation of high-

dimensional continuous and categorical variables. Continuous variables are

transformed to Gaussian random functions (GRFs) via anamorphosis functions

and categorical variables are obtained by truncating one or more GRFs based on

the plurigaussian model. MAF factors are then derived from all GRFs. After

independent simulation of MAF factors, different realisations of continuous and

categorical variables are obtained via back-transformation of MAF factors followed

by back-transformation for continuous and truncation for categorical variables,

respectively. The proposed algorithm is illustrated through a case study.

1 Introduction

In many geoscience applications such as evaluation of mineral resources, charac-

terisation of oil reservoirs, or hydrology of groundwater, uncertainty modelling is a

common and challenging issue, as a set of multiple regionalised dependent vari-

ables from various sample spaces (e.g. continuous and categorical) need to be

predicted in the target area. A further challenge is often the compositional nature

of continuous data (positive values representing some part of a whole). In such data

the constant sum constraint forces at least one covariance to be negative and
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induces spurious correlations. Furthermore they carry just relative information

(Aitchison 1986). To transform compositional data into unbounded space and to

increase mathematical tractability, different log-ratio transformations can be

applied prior to using standard geostatistical techniques (Aitchison 1986; Mueller

et al. 2014; Pawlowsky-Glahn and Olea 2004). Although several geostatistical

models have been developed for spatial modelling of categorical or continuous

variables (Chilès and Delfiner 2012), little has been done to jointly model data of

different natures. As the spatial distributions of these multivariate data are often

interdependent, a separate modelling of them is insufficient (Emery and Silva 2009;

van den Boogaart et al. 2014).

The conventional approach to modelling multivariate data of different natures is

to use a deterministic model based on categorical data and predict continuous data

within each category separately. Although this approach is simple to apply, it does

not consider the uncertainty in the layout of different categories (e.g. geological

domains). In this approach geologists have to delineate the exact shape of each

layout based on experimental data and their interpretation of earth science pro-

cesses. Unfortunately, very few of these processes are understood well enough. As

experimental data become sparse and geology becomes more complex, the likeli-

hood of misclassification increases. Geostatistical simulation techniques for cate-

gorical data can be applied to define domains and quantify the uncertainty in the

exact location of geological boundaries by generating multiple realisations. Subse-

quently continuous variables can be predicted in each simulated domain indepen-

dently. This method is known as the cascade or hierarchical approach (Jones et al.

2013; Talebi et al. 2016). A substantial drawback of cascade simulation is that it

does not consider the spatial dependence of continuous data across domain bound-

aries and potentially generates abrupt transitions in realisations of continuous vari-

ables across geological boundaries which is not always the case in practice (Ortiz

and Emery 2006; Vargas-Guzmán 2008).

A more general approach is to combine multivariate Gaussian and plurigaussian

simulation (Emery and Silva 2009; Maleki and Emery 2015). In this approach

Gaussian data are derived by transforming continuous data to GRFs and categorical

data are related to one or more GRFs by truncation. This model assumes that all

GRFs are spatially cross-correlated so it can reproduce the dependencies between

the categorical and continuous data and spatial correlation of continuous data across

geological boundaries. An advantage of this approach is its ability to reproduce

gradual transition of continuous variables across geological boundaries. By con-

struction, this approach requires a co-simulation based on defining a linear model of

coregionalisation (LMC) to jointly simulate multivariate data. Simplicity of model-

ling and verification of the admissibility make the LMC a popular means for

defining the spatial relationships of multivariate data (Goulard and Voltz 1992).

However the construction of a “satisfactory” LMC becomes harder when high-

dimensional data need to be co-simulated due to restrictions on the allowed

semivariogram structures. Moreover as the number of variables and simulation

domains increases, co-simulation approaches based on an LMC will need
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considerably greater computer processing to solve large systems of equations per

simulated node.

An alternative technique for joint simulation of high-dimensional continuous

and categorical data is presented in this study. The plurigaussian model will be used

to associate categorical data with one or several GRFs (depending on the complex-

ity of the geological setting) through truncation, and continuous data will be

transformed to GRFs via anamorphosis functions. All GRFs from the previous

steps will be decomposed jointly into orthogonal factors via the MAF technique

(Switzer and Green 1984; Desbarats and Dimitrakopoulos 2000) which is based on

factors derived from the solution of a generalised eigenvalue problem (Bandarian

and Mueller 2008). These orthogonal factors can then be simulated independently.

Statistical and spatial relationships between variables are reimposed after the

simulation. This joint simulation approach offers better accuracy and computational

efficiency as the number of attributes being simulated increases and can be gener-

alised to simulate several continuous and categorical variables by adding more

GRFs. Although several approaches have been presented for decorrelating multiple

regionalised dependent variables, data-driven MAF has proven to be a practical

technique for industrial purposes.

The objective of this study is to discuss the methodology of the proposed joint

simulation technique and to apply the approach to a high-dimensional real mining

data set from a nickel laterite deposit in Western Australia. Finally the results will

be analysed and the performance of the method will be evaluated via different

statistical and geostatistical measures.

2 Methodology

2.1 Compositional Nature of Data and Log-Ratio
Transformation

Compositional data are multivariate data where the components represent some

part of a whole. They are measured on the same scale and are constrained by a

constant sum property. A compositional data set Z xαð Þ ¼ z1 xαð Þ, . . . , zD xαð Þ½ �f
zi xαð Þj � 0, i¼1, . . . , D;α¼1, . . . , k;g with D components and k observations can
be represented by the equation:

XD

i¼1
zi xαð Þ ¼ 100%, α ¼ 1, . . . , k: ð1Þ

Compositional data raise some challenges for statistical and geostatistical ana-

lyses. Firstly, they are relative values and not free to vary in �1, þ1ð Þ. Secondly,
the constant sum constraint forces at least one covariance to be negative, causing

spurious correlations (Aitchison 1986). Therefore they are often transformed via a

log-ratio transform (Aitchison 1986; Pawlowsky-Glahn and Olea 2004). Several
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transforms are available, including additive log-ratio (alr), centred log-ratio (clr),

and isometric log-ratio (ilr) (Egozcue et al. 2003). In this study the alr will be used.

The alr transformation is defined as

ζ xαð Þ ¼ alr Z xαð Þð Þ ¼ ln
z1 xαð Þ
zD xαð Þ , ln

z2 xαð Þ
zD xαð Þ , . . . , ln

zD�1 xαð Þ
zD xαð Þ

� �
ð2Þ

Its inverse, known as agl transformation, is able to recover Z(xα) from

ζ ¼ ζ
1
; ζ

2
; . . . ; ζD�1

� �
and is defined as

alr�1 ζð Þ ¼ agl ζð Þ ¼ 100
exp ζ1ð Þ, exp ζ2ð Þ, . . . , exp ζD�1ð Þ, 1½ �XD�1

j¼1
exp ζj

� �þ 1
: ð3Þ

2.2 Joint Simulation Algorithm

The proposed joint simulation algorithm provides a mechanism to simulate

regionalised dependent continuous and categorical variables simultaneously. It

uses the plurigaussian model (Armstrong et al. 2011; Emery 2007) to determine

GRFs corresponding to the categorical variables defining the domains. These GRFs

and the GRFs associated with the continuous data of interest (in the case of

compositions alr-transformed data) are then subjected to a MAF transformation to

derive uncorrelated factors. The latter are simulated independently via some

Gaussian simulation algorithm, here turning bands simulation. The simulation is

succeeded by recorrelation through the inverse MAF transform. After this back-

transformation step truncation is applied to obtain categorical realisations and

anamorphosis together with the alg transform in the case of compositions to obtain

realisations of the continuous variables. The detailed workflow is shown in the flow

chart in Fig. 1.

3 Case Study: Murrin Murrin Nickel Laterite Deposit

3.1 Geological Description

The Murrin Murrin nickel (Ni) laterite deposit is located in Western Australia.

Laterite deposits are formed during chemical weathering of ultramafic rocks near

the surface of the earth. At Murrin Murrin, the nickel laterite deposits occur as

laterally extensive, undulating blankets of mineralisation with strong vertical

anisotropy covering basement ultramafic rocks (Murphy 2003). From the bottom

of the deposit through to the top, the following layers can normally be recognised:
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ultramafic, saprolite, smectite, iron oxide, and/or clay layers with a hard ferruginous

cap at the top. In this study area, there are four main geological units that control the

spatial distribution of the Ni and Co. The following are short geological descrip-

tions for each unit (Markwell 2001):

• Ferruginous zone (FZ): This zone is mainly composed of goethite and clay

(kaolin). Although FZ tends to be less enriched in Ni, it can host significant

amounts of Co.

• Smectite zone (SM): Consists mainly of smectite and is confined to the shoul-

ders saprolite domes. SM is enriched in Ni and Co and depleted in Mg.

Fig. 1 Process of the joint simulation technique
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• Saprolite zone (SA): Consists mainly of lizardite and smectite, and high amount

of Mg is present in this zone.

• Ultramafic zone (UM): At the base of the deposit, there is a thin layer of

unweathered ultramafic rock.

3.2 Presentation of the Data Set

In total, 5145 samples, located in a volume of 1300� 500� 40 m (Fig. 2), make up

the database for this study with information on the rock types (FZ, SA, SM, and

UM), five major elements (Ni, Co, Mg, Al, and Fe), and five secondary elements

(Cr, Mn, Zn, Cu, and As). These ten elements plus the filler variable (i.e. continuous

variables) form the compositional data, with rock type the only categorical variable.

All samples were regularised to a bench height of 1 m.

Figure 3 shows a cross section of the rock types with Ni and Co distributions

near boreholes for northing 180 m. It can be observed from this figure that the

highly mineralised zones occur at the transitions between FZ, SA, and SM domains.

This illustrates the importance of joint modelling of grade and geological units, as

prior domaining may result in misclassification in the transition zones. Figure 4 and

Table 1 depict the histograms and descriptive statistics of the continuous variables

globally. Bimodal distributions can be recognised in Al, Fe, Filler, and Mg, while

the other variables are strongly positively skewed.

3.3 Joint Simulation of Continuous and Categorical
Variables

3.3.1 Categorical Data Preprocessing

According to the transition probability matrices and the geology of the deposit, UM

domain can only be in contact with SA, while SA, SM, and FZ are mutually in

contact. To define the truncation rule, two independent GRFs, {Y1(xα), Y2(xα)}, and
three thresholds, {y1, y2, y3}, are required (Fig. 5). Accordingly, the rock type

prevailing at a given spatial location xα is defined in the following fashion:

• Location xα belongs to UM domain , Y1 xαð Þ < y1
• Location xα belongs to SA domain , y1 � Y1 xαð Þ < y2
• Location xα belongs to SM domain , Y1 xαð Þ � y2 and Y2 xαð Þ � y3
• Location xα belongs to FZ domain , Y1 xαð Þ � y2 and Y2 xαð Þ < y3

The threshold values are determined in agreement with the domain proportions

calculated from the drill hole data. For variogram analysis, the two GRFs are

assumed to be independent and their variograms are determined through their

impact on the variograms of the domain indicators. Table 2 provides the parameters
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for the variogram models obtained for the two GRFs. In order to reproduce a regular

boundary between different domains, cubic variogram models which are isotropic

horizontally have been used for the GRFs, since they are smooth at the origin and

associated with regular boundaries. Gaussian data are generated at sample locations

via the Gibbs sampler algorithm as described in Armstrong et al. (2011) and

plurigaussian model parameters conditional to categorical information at sample

locations.

Fig. 2 Perspective view of samples showing a different rock types and b nickel grade

Fig. 3 Rock types (coloured data), nickel (left), and cobalt (right) distributions for the cross

section with north coordinate 180 m
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3.3.2 Continuous Data Preprocessing

Considering the compositional nature of the continuous data, log-ratio transforma-

tion is needed prior to any further analysis. Using Eq. 2 and the filler variable as the

denominator, continuous data are transformed to additive log-ratios. As the

alr-transformed data do not follow closely to a Gaussian distribution, a

Fig. 4 Histograms of raw data

Table 1 Descriptive statistics

Variable Min Max Mean Std. dev. Q25 Q50 Q75

Al (%) 0.05 16.90 3.92 3.42 0.90 2.50 6.90

As (ppm) 0.50 490.00 17.82 28.60 2.50 10.00 20.00

Co (%) 0.00 2.27 0.05 0.09 0.02 0.03 0.05

Cr (ppm) 40.00 27,400 3599 2849 1560 2780 4680

Cu (ppm) 2.50 1570 39.41 59.50 10.00 25.00 45.00

Fe (%) 0.40 55.90 21.59 12.92 10.10 17.90 32.70

Mg (%) 0.05 25.90 6.31 6.39 0.41 3.45 11.80

Mn (ppm) 25 59,000 2431.8 3550.20 740 1410 2530

Ni (%) 0.02 3.53 0.76 0.51 0.37 0.66 1.04

Zn (ppm) 8 720 131.49 94.38 66 100 172

Filler (%) 38.73 94.46 66.74 10.93 57.67 68.88 74.95
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transformation to normal scores is required prior to the simulation. The alr data are

transformed to Gaussian space via Gaussian anamorphosis.

3.3.3 Decorrelation and Independent Simulation

The final phase of this study is to achieve realisations of the whole composition of

11 components and rock types on selective mining units (SMU) of size

10� 10� 2 m. Based on the separation between drill holes, these SMUs are treated

as point data. The Gaussian data from all previous preprocessing steps (two

Gaussian variables from the Gibbs sampler algorithm and ten Gaussian variables

from the alr-transformed data) are transformed to orthogonal factors via the MAF

algorithm. Through testing several lag separations, a lag of 30 m has proven to be a

practical choice. Experimental variograms of the 12 factors were calculated using

10 lag distance classes at a spacing of 30 m and towards several directions in

horizontal plane. In the vertical direction, 25 lags at a spacing of 1 m and with an

angular tolerance of 10� were used. For the first factor, which has the greatest

contribution on variation, there is a presence of minor anisotropy in the horizontal

plane with N-115 as the direction with greatest continuity. Table 3 shows the

variogram model parameters for the MAF factors derived from the Gaussian data,

while Fig. 6 shows the experimental variograms and fitted model for the first factor.

Conditional turning bands simulation was applied on the punctual grid and

100 simulations were generated for each factor.

Fig. 5 Truncation rule

indicating relationship

between four rock types

Table 2 Parameters of variogram models of GRFs for the plurigaussian model (the anisotropy

ranges are long, middle, and short range, respectively)

GRFs Nugget Direction Type Sill Range (m)

Y1 0 N0 Cubic 1 250,250,20

Y2 0 N0 Cubic 1 200,200,20
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3.3.4 Back-Transformations and Truncation

Following simulation, the MAF factor realisations were back-transformed to sim-

ulated GRFs. The simulated GRFs associated with categorical variables were then

back-transformed to geological units based on the truncation rule and experimental

proportions of each rock type at target nodes. To obtain the compositional

realisations, the other ten simulated GRFs were first transformed to alr space and

then transformed to constraint space via the agl transformation.

4 Discussion

Figure 7a, b depicts perspective views of one realisation of Ni grade and mean of

the simulated Ni grade, respectively. A gradual transition from low-grade zones to

high-grade zones can be seen in these figures (soft boundaries). Figure 7c, d shows

one realisation of the rock types and the most probable simulated rock type,

respectively. A comparison of Figs. 2 and 7 indicates a good fit with the condition-

ing data and geology of the deposit. Quantile-quantile plots of realisations of the

major elements versus the sample data in Fig. 8 show that the global experimental

distributions and simulations are reasonably well reproduced especially for nickel

which is the main target economical element. However overestimation can be

recognised for high Ni grades. Figure 9 shows box plots of realisation proportions

for the four rock types. Compared to the proportions of the rock types in the sample

data, the method has overestimated the proportions of SA and UM units and

underestimated those of FZ and SM. Simulated proportions for FZ unit are close
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Fig. 6 Experimental

variograms and fitted model

for the first factor
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to the proportion in the exhaustive data. Figure 10 shows the experimental cross

variograms between rock-type indicators and Ni grade, calculated from the sample

data and the simulated model. The relationships between rock type and grade are

reproduced qualitatively, with high spatial cross-correlation between SA and Ni as

well as SM and Ni. For FZ and UM, there are negative correlations to the Ni grade.

The underestimation of SM proportions can also be seen in the lower sill of the

experimental cross variograms of the realisations in Fig. 10. Sensitivity analysis on

PGS parameters might improve the performance of the joint simulation.

FZ and SA domains occur with the greatest proportions in sample data and

simulated models. From Fig. 7c, d it is observed that most of the transitions between

rock types in the study area occur between these two rock types. From Fig. 3 it can

be seen that although SA domain is highly mineralised, high Ni grade

Fig. 7 Perspective view of (a) one realisation of Ni grade, (b) mean of the simulated Ni grade, (c)
one realisation of rock types and (d) most probable simulated rock type
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mineralisation occurs at the transition between SA and FZ. Figure 7a, b shows that

the proposed joint simulation algorithm has reproduced both the highly mineralised

zone at the transition area and the soft transition in realisations of Ni across

geological boundaries. The ability of the method to reproduce soft transition of

continuous data across geological domains is emphasised in the contact analysis

Fig. 8 Q-Q plots of realisations of the major elements against sample data

Fig. 9 Box plot of

realisation proportions for

the four rock types – the

sample proportions are

indicated by a black
horizontal line, the
exhaustive proportions by a

red horizontal line
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diagram of Fig. 11a. The Ni grade increases gradually from the FZ domain towards

the SA domain, and the highly mineralised zone occurs at the transition zone

between these two geological domains. Figure 11b depicts the average of prediction

error for Ni grade compared with the exhaustive data set. Even though there is

uncertainty in the exact locations of geological boundaries, the prediction errors are

close to zero at the transition zone. The prediction errors are high at the boundaries

of the deposit which shows that the method is sensitive to extrapolation.

5 Conclusion and Future Work

Uncertainty modelling of several dependent continuous and categorical variables is

a common challenge for the geoscience modelling projects. In this study a hybrid

model for joint simulation of high-dimensional continuous and categorical

Fig. 11 (a) Contact analysis between FZ and SA domains for sample Ni grade (black graph),
mean of simulated Ni grade (continuous red graph), and a realisation of Ni grade (dashed red
graph). (b) Average prediction error for Ni grade compared with exhaustive data set

Fig. 10 Experimental cross variograms between rock-type indicators and Ni grade, for sample

data (black line) and simulated realisations (dashed line)
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variables was presented based on the plurigaussian model and min/max autocorre-

lation factors. The proposed algorithm is able to simulate several constrained

continuous (compositional data) and categorical variables simultaneously. Uncer-

tainty measurement of the exact location of geological boundaries, incorporation of

the spatial dependence between continuous and categorical variables, reproduction

of spatial correlation of continuous data across geological boundaries, and the

ability to simulate high-dimensional and even constrained data are some of the

advantages of the proposed model. In addition it is faster and easier to apply than

co-simulation algorithms based on an LMC. The performance of the method was

tested on a real large mining data set producing results that are satisfactory from a

practical point of view. Considering the effect of the compositional data on Gibbs

sampler algorithm and sensitivity analysis on PGS parameters might further

enhance accuracy of the simulated model. These issues will be addressed in

future work.
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Performance Analysis of Continuous
Resource Model Updating in Lignite
Production

Cansın Y€uksel and J€org Benndorf

Abstract Recently an efficient updating framework was proposed aiming to

improve the raw material quality control and process efficiency in any type of

mining operation. The concept integrates sensor data measured on the production

line into the resource model and continuously provides locally more accurate

resource models. A demonstration in lignite production is applied in order to

identify the impurities (marine and fluvial sands) in the coal seams to lead better

coal quality management. The updating algorithm applies different algorithmic

parameters. This study aims to investigate the sensitivity of the performance with

respect to different parameters for optimal application. Main parameters include the

ensemble size, the localization and neighborhood strategies, and the sensor preci-

sion. The results should assist in future applications by determining the impact of

the different parameters.

1 Introduction

One of the main challenges in lignite mining, similar to other branches of mining, is

the waste intrusions in lignite seams. These marine and fluvial sand impurities can

lead to high ash values (e.g., more than 15% ash) and cannot be localized

completely by exploration data and captured in the predicted deposit models.

Utilizing online sensor techniques for coal quality characterization in combina-

tion with rapid resource model updating, a faster reaction to the unexpected
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deviations can be implemented during operations, leading to increased production

efficiency. This concept was first proposed as a closed loop framework by Benndorf

et al. (2015). The developed framework is based on ensemble Kalman filter (EnKF)

and basically integrates the online sensor data into the resource model as soon as

they are obtained.

The first investigation (Benndorf 2015) has proven the approach to work well

within a synthetic case study under a variation of several control parameters

(number of excavators, precision of the sensor, update interval, measurement

interval, extraction mode/production rate). The second investigation (Wambeke

and Benndorf 2015) introduced an extended version of the developed framework.

This extension includes a Gaussian anamorphosis of grid nodes, sensor-based

measurements, and model-based predictions; to deal with suboptimal conditions,

an integrated parallel updating sequence; to reduce the statistical sampling error

without the need of increasing the number of realizations and a neighborhood

search strategy; to constrain computation time; and to avoid the spurious correla-

tions. Thereafter, Yüksel et al. (2016) adapted the framework to update coal quality

attributes in a continuous mining environment. The applicability of the framework

for a full-scale lignite production environment is validated by successful results.

To further understand the effects of used parameters during the full-scale

application, to identify the sensitivity of the results and explore the performance

in depth, further studies are required. For this reason, this paper aims to investigate

the performance of the resource model updating framework with respect to main

parameters, which are the ensemble size, the localization and neighborhood strat-

egies, and the sensor precision. Findings of this research are expected to assist in

future applications of the resource model updating concept by making it easier to

achieve optimum performance.

The remainder of the article is structured as follows: First, the ensemble Kalman

Filter-based approach adapted to specific application in mining is briefly reviewed.

Next, application in continuous mining test case is described, and sensitivity

analysis experiments are described. Findings of the study are then presented. Key

findings of the study are discussed and summarized. The article concludes with a

summary of the research contributions and directions for the future research.

2 A Method for Updating Coal Attributes in a Resource
Model Based on Online Sensor Data

For rapid updating of the resource model, sequentially observed data have to be

integrated with prediction models in an efficient way. This is done by using

sequential data assimilation methods, namely, the EnKF-based methods.

With the goal of a continuously updatable coal quality attributes in a resource

model, a framework based on the normal-score ensemble Kalman filter (NS-EnKF)

(Zhou et al. 2011) approach was tailored for large-scaled mining applications. The
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NS-EnKF is chosen to deal with the non-Gaussianity of the data by applying a

normal-score transformation to each variable for all locations and all time steps,

prior to performing the updating step in EnKF.

A formal description of the real-time updating algorithm is provided (Yüksel
et al. 2016). Figure 1 gives general overview of the operations which are performed

to apply the updating algorithm for improving the coal quality control using online

data.

The concept initially starts with resource modeling by using geostatistical

simulation technique, namely, sequential Gaussian simulation (SGS). This is the

first required data set consisting of ensemble members to be updated. The second

data set consists of a collection of actual and predicted sensor measurements. The

actual online sensor measurement values are collected during the lignite produc-

tion, and the predicted measurements are obtained by applying the production

sequence as a forward predictor prior to resource model realizations. Once both

of the input data are provided, the updated posterior resource model will be

obtained. This process will continue as long as the online sensor measurement

data is received.

Fig. 1 Configuration of the real-time resource model updating concept (Modified fromWambeke

and Benndorf 2015)
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3 Sensitivity Analysis on a Full-Scale Study

The aim of the case study presented here is to analyze the performance of the

resource model updating framework method by performing sensitivity analyses on

main parameters, including the ensemble size, the localization and neighborhood

strategies, and the sensor precision.

3.1 Identification of Main Parameters

3.1.1 Number of Ensemble Members

The first sensitivity analyses focus on investigating the optimal realization number

(subsequently used as ensemble size) by performing resource model updating

experiments with different-sized ensembles. Defining the ensemble size that will

fully represent the ore body is a very delicate problem. A lot of research in literature

(Houtekamer and Mitchell 1998; Mitchell et al. 2002) focuses on the optimum

ensemble size investigation and usually concludes that the analysis error decreases

as the number of ensembles (realizations) increases. Contrary, the computational

costs increase with the ensemble size. Therefore a sensible size of the ensemble is

required.

3.1.2 Localization

The second sensitivity analyses focus on investigating the effects of localization

strategies and neighborhood size on the given case. As mentioned, one of the

limiting factors in EnKF-based applications is the restrained ensemble size. But

having an insufficient ensemble size might cause long-range spurious correlations.

In order to avoid these spurious correlations, a covariance localization technique is

applied to the updating framework by Wambeke and Benndorf (2015). The spuri-

ous correlations refer to the correlations between quality attributes that are at a

significant distance from one another where there is no spatial relation. Moreover,

these correlations can lead to inbreeding and filter divergence. Covariance locali-

zation modifies update equations by replacing the model error covariance by its

element-wise (the Schur) product with some distance-based correlation matrix

(Gaspari and Cohn 1999; Horn and Johnson 1985). This replacement increases

the rank of the modified covariance matrix and masks spurious correlations

between distant state vector elements (Sakov and Bertino 2011).
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3.1.3 Sensor Error

The final sensitivity analyses focus on testing the effect of the sensor precision. In

most cases errors are involved when taking measurements, due to calibration issues

of sensor technologies. For each experiment, different amounts of standard error are

added to the actual measurement values. The standard error can be calculated as

SE�x ¼ σffiffiffi
n

p ð1Þ

where σ is the standard deviation of the actual measurements and n is the size

(number of observations) of the actual measurements. For this study, the size of the

actual measurement data set contains 700 observations, which values correspond to

coal extracted from 28 mining blocks. This leads to approximately 25 actual

measurement data per block. Therefore, where the added standard error is 0.1%

ash, the absolute standard deviation will be 0.5% ash, and the variance will be

0.25%2 ash.

Similarly, when the added standard error is 0.2% ash, the standard deviation will

be 1% ash, and the variance will be 1%2 ash. The variance of the actual measure-

ments will be 6.25%2 ash, and the standard deviation will be 2.5% ash when the

added standard error is 0.5% ash. The variance will be 25%2 ash when the added

standard error is 1% ash. The variance of the averaged prior model for 48 ensembles

is calculated as 0.99.

To give a clear view, mentioned standard deviations are converted as the relative

error of the measurements. The average measurement value is calculated as 12%

ash. This leads around 4% ash relative error in measurement values when the added

standard deviation is 0.5% ash. Similarly, when the added standard deviation is 1%

ash, this indicates around 8% ash relative error in measurement values. In the same

way, when the added standard deviation is 2.5% ash, this indicates around 20% ash

relative error in measurement values. Finally, when the added standard deviation is

5% ash, this indicates around 40% ash relative error in measurement values.

3.2 Experiment Setup

The case study is performed on a particular lignite seam in a mining operation in

Germany. The seam contains multiple sand intrusions. The shape and size of these

sand partings are irregular, and both characteristics are showing a large variability.

To apply the resource model updating algorithm, preparation of input data is

required. First, the geological model of the defined coal seam is created on a

32� 32� 1 m dimensioned block model based on the roof and floor information

of the lignite seam. Second, a 32� 32� 1 m dimensioned quality model capturing

the wet ash content in percentages is generated with different number of simulations

(24, 48, 96, 192, and 384), based on the provided drill hole data. The simulated ash
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values are then merged with the previously defined coal seam. The block model

realizations are now ready to be imported into the algorithm as the first input.

Figure 2 illustrates the prior model of 48 simulations, the averaged ash values of

those simulations and related sensor measurement values, per block. A significant

underestimation of the actual measurement data is observed in the prior model. This

is because the prior model is created based on the drill hole data, where the local

sand intrusions are not fully captured. True variability of the coal seam is captured

by the online sensor measurements.

Predicted measurements are obtained by averaging the simulated ash values

from each simulation set, which falls into the defined production block boundaries.

The online sensor measurement data, namely, the Kohle OnLine Analytics (KOLA)

data, are provided for the defined time period. KOLA system applies X-ray dif-

fraction in order to accurately assess the components of the produced lignite. In

order to determine the location of the received KOLA data, in other words to track

back where the measured material comes from, the GPS data is matched with the

measurement data based on the given timecodes. The located measurements in coal

seam are then imported into the previously defined block model.

The second input file for the algorithm is written to a file containing the

following information: the block ID, the central block location (X, Y, Z coordi-

nates), and a series of real and predicted measurements.

A study bench is produced for a defined time period by considering all the

available data (topography, RGI, GPS, and production data). Later, the study bench

is divided into so-called production blocks. This was necessary to reproduce the

excavated production blocks. The horizontal divisions (or production slices) are

applied based on the movements of the excavator during production, provided by

GPS data. The vertical divisions are based on the changes in the Z coordinates in the

GPS data and capture a typical extraction sequence of bucket-wheel excavator

operations. In total, the defined production bench is divided into 28 blocks and

5 slices, which gives 140 production blocks. Once the study bench is divided both in

vertical and horizontal, the production blocks are now ready to be updated.

Fig. 2 Prior model and measurement data (before updating)
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First the first block of the second slice will be updated, based on the KOLA

measurements taken from that block. The series of updating experiments included

seven updating experiments and continued until the ninth block (since there are no

KOLA data obtained on sixth and seventh block, seven experiments are performed

to update until the ninth block). In each updating experiment, only one block is

updated based on the related measured KOLA value.

An empirical error measure so-called mean square difference or mean square

error (MSE) is used in order to present results of the performed experiments. MSE

compares the difference between estimated block value Z∗ xð Þ and actual KOLA

measurement v values per block, and it can be calculated as

MSE ¼ 1

N

XN

i¼1
z* xið Þ � νi
� �2 ð2Þ

where i ¼ 1, . . . ,N is the number of blocks. The mean square error graphs are

calculated relative to the averaged prior model of 384 ensembles, in order to make a

good comparison.

3.3 Experiments With Respect To Main Parameters

Table 1 provides a complete overview of the parameters used to perform the

mentioned experiments. The obtained results of these experiments are provided in

the next chapter. In every experiment performed for every parameter, one param-

eter is varied, and the others remain fixed (Table 1).

3.3.1 Number of Ensemble Members

With a view toward the real-time application of the updating resource model, the

industrial case presented by Yüksel et al. (2016) focused on small- and moderate-

sized ensembles (24). For the investigation of the optimum ensemble size, updating

experiment series are performed with 24, 48, 96, 192, and 384 ensembles. All of the

simulations are created by using SGS with same seed number and same variogram

parameters.

3.3.2 Localization

The initial neighborhood size is defined as 450 m in X and Y directions and 6 m in Z

direction based on the variogram of the drill hole data. For the experiments, three

different neighborhood sizes (225, 450, and 900 m) are tested while the localization

option was not being used. Three more experiments are performed while the

localization option was being used in order to test the effect of designed
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localization, with varying localization and neighborhood sizes. For the experiments

where the localization option was used, the localization neighborhood was assumed

as half of the defined neighborhood size, except the tenth experiment. In the tenth

experiment, in the X and Y direction, localization sizes were assumed as half of the

defined neighborhood size. In the Z direction, the localization size remained the

same. Reasons of this preference will be explained in the discussion chapter.

3.3.3 Sensor Error

For each experiment, different amounts of standard error are added to the actual

KOLA measurement values. In total, five experiments are performed, where the

relative measurement error varied between 4%, 8%, 20%, and 40%.

4 Results

4.1 Ensemble Size

Figures 3 and 4 present results of the updating process from the first block until the

ninth block, for some of the representative ensemble sizes. For these experiment

series, the localization strategies were applied; the neighborhood size was 225, 225,

6 m for X, Y, Z directions, respectively, and no sensor error is assumed.

Table 1 Experimental schema

Experiment

#

Ensemble

size

Localization

option on/off

and size (X,Y,

Z) (m)

Neighborhood

size (X,Y,Z)

(m)

Relative

sensor

error

(%)

Ensemble size

experiments

1 24 On, 125,125,3 225,225,6 0

2 48 On, 125,125,3 225,225,6 0

3 96 On, 125,125,3 225,225,6 0

4 192 On, 125,125,3 225,225,6 0

5 384 On, 125,125,3 225,225,6 0

Localization and

neighborhood

strategies

experiments

6 48 Off 225,225,6 0

7 48 On, 225,225,3 450,450,6 0

8 48 Off 450,450,6 0

9 48 Off 900,900,6 0

10 48 On, 450,450,3 900,900,6 0

11 48 On, 450,450,6 900,900,6 0

Sensor error

experiments

12 48 Off 450,450,6 4

13 48 Off 450,450,6 8

14 48 Off 450,450,6 20

15 48 Off 450,450,6 40

438 C. Yüksel and J. Benndorf



It can be seen that the average of the prior simulations substantially underesti-

mates the actual KOLA measurements. This is caused by the data effect. The prior

simulations are created based on the coal samples from drill holes spaced multiple

hundred meters apart, while the KOLA measurements measure more higher ash

values due to the sand intrusions in the coal seam. Integrating the KOLA measure-

ment to the first nine blocks updates the neighborhood blocks to some relatively

higher values. As expected, the update effect decreases while moving away from

the last updated block, block 9.

For all different ensemble sizes, a clear improvement is observed toward the

KOLA data when considering the average of the initial simulations, so-called prior

model.

Figure 5 presents the relative MSE values to the prior model for each experiment

performed with different ensemble sizes. The biggest reduction of the error occurs

in the update of the first block. While the skewness behavior of each MSE graphs is

similar, the biggest error behavior to the smallest is as follows: 48 ensembles,

96 ensembles, 192 ensembles, 384 ensembles, and 24 ensembles. Except for the

results from 24 ensembles, the rest of the listing supports the literature. It is

expected to observe a decrease in the MSE values while the ensemble size gets

Fig. 3 Experiment 2 – ensemble size: 48

Fig. 4 Experiment 5 – ensemble size: 384
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larger since the representativeness gets higher. However, to increase the computa-

tional efficiency and to apply the updating framework in real time during produc-

tion, an economic ensemble size is required.

At first glance, higher initial variance of the 24 ensembles explains the very low

MSE values. Nevertheless, a further investigation is performed in order to under-

stand the phenomenon better. Five different sets of newly derived sets of 24 ensem-

bles are generated with SGS, by using different random seeds for each set. New

series of updating experiments are performed with the new series of 24 ensembles,

and the results are compared. The comparison shows a high variety among results.

MSE values obtained from the ninth block’s update varied between 0.52 and 0.69.

In addition, the new sets of MSE values were equal to, lower or higher than the

48 ensembles, 96 ensembles, 192 ensembles, and 384 ensembles. This big variety,

which is caused by different seed numbers, shows that 24 ensembles were not

sufficient to represent a statistical stable estimate of the mentioned lignite seam.

When considering the 48 ensembles, even though the 48 ensembles have the

highest MSE values by comparing to the 96 ensembles, 192 ensembles, and

384 ensembles, the MSE dropped from 1.0 to 0.64. In his research, Yin et al.

(2015) found that improvements while using larger ensemble sizes (after the

optimum ensemble size) are relatively insignificant. Likewise, the improvements

between 48, 96, 192, and 384 ensembles are obvious, yet not very significant. For

this reason, this study concludes that the optimal ensemble size for this specific

study is 48 ensembles.

4.2 Localization and Neighborhood Strategies

Figures 6, 7, 8, and 9 present results of the updating process from the first block

until the ninth block, for different localization strategies and neighborhood sizes.

Experiments 2 (Fig. 3) and 6 (Fig. 6), Experiments 7 (Fig. 7) and 8 (Fig. 8), and

Fig. 5 Comparison graph for different ensemble-sized experiments
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Fig. 6 Experiment 6 – localization option off, neighborhood size: 225, 225, 6 m

Fig. 7 Experiment 7 – localization option on (225,225,3 m), neighborhood size: 450, 450, 6 m

Fig. 8 Experiment 8 – localization option off, neighborhood size: 450, 450, 6 m
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Experiments 9 (Fig. 9) and 10 (Fig. 10) are comparable to each other when

investigating the localization option. Experiments 6 (Fig. 6), 8 (Fig. 8), and 9 are

comparable to each other when investigating the neighborhood size.

Figure 10 compares all of the experiments performed in this section by plotting

MSE values of each. Higher MSE values are observed when localization strategies

are applied, and the neighborhood size is defined as 225, 225, 3 m. The MSE values

become lower when the neighborhood size is increased and localization option is

not used. This is expected because the neighborhood size was initially defined as

450, 450, 6 m based on the variogram, so performing the experiments with

225, 225, 3 m-sized neighborhood was not enough to cover the seam continuity.

Minor changes are observed between the MSE values of 450, 450, 6 m

neighborhood-sized experiment and 900, 900, 6 m-sized experiment due to no

spatial correlation between the attributes.

The reason that applying the localization strategies did not provide any improve-

ment in our case is due to the definition of the localization function.

Figure 14 illustrates the currently used function. Since the production block size

is varying for each block, sometimes the plateau phase of the used function cannot

cover a full block which is in the neighborhood. This creates un-updated values in a

block and consequently the updating process of the entire block fails. For this

Fig. 9 Experiment 11 – localization option on (450,450,6 m), neighborhood size: 900, 900, 6 m

Fig. 10 Comparison graph for different localization and neighborhood strategies experiments
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reason, better results are obtained while the localization strategies were not in use.

The future study will improve this drawback by developing the localization func-

tion in a way that it can define the block boundaries and act according to those

distances.

Experiment 10 uses the localization option with the following dimensions:

450, 450, 6 m in X, Y, Z directions. The used neighborhood size was 900, 900,

6 m. As mentioned before, the initial intention was to use a localization size half the

size of the neighborhood size. Yet, since the depth of a production block is 6 m,

limiting the localization by 3 m decreased the expected improvements. By running

the same experiment, only changing the Z localization size parameter from 6 to 3 m,

the same results as found in Experiment 6 (Fig. 6) are obtained. This can be

observed in Fig. 10, by comparing the related MSE values.

4.3 Sensor Precision

Figures 11, 12, and 13 present the final results of the updating process from the first

block until the ninth block, for different relative sensor errors. For all the experi-

ments performed in this section, the average prediction quality gets better in the

sense that they become closer to the KOLA measurement values.

When the relative sensor error gets higher, the posterior variance appears to

increase significantly. This is mainly because the KOLA measurement values are

almost out of the range of the prior model (Fig. 2), and the variance of the prior

model significantly underestimates the KOLA measurement values. By integrating

the KOLA measurements which have lower precision (applied relative error

varies between 4 and 40% ash), the algorithm opens up the option whether the

KOLA data can be right or the prior model. Subsequently, this inflates the posterior

uncertainty.

Fig. 11 Experiment 12 – relative sensor error: 4%
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5 Conclusions and Future Work

This study analyzes the performance of the resource model updating method by

performing sensitivity analyses on main parameters, including the ensemble size,

the localization and neighborhood strategies, and the sensor precision in lignite

Fig. 12 Experiment 14 – relative sensor error: 20%

Fig. 13 Experiment 15 – relative sensor error: 40%

Fig. 14 Localization function illustrations
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production. The results should assist in future applications by determining the

impact of the different parameters.

The findings of ensemble size sensitivity analysis supported the existed literature

(Houtekamer and Mitchell 1998; Mitchell et al. 2002), more accurate updates are

achievable by using a bigger ensemble size. Although 24 ensembles provided the

best results in terms of MSE, they are not chosen as the optimum ensemble size

since they were not representative enough of the lignite seam. Instead 48 ensembles

were, because it was the second best and was more representative of the

lignite seam.

The sensitivity analyses of the localization and neighborhood strategies con-

cluded that the applied localization strategies need to be improved, and the neigh-

borhood size needs to remain as 450, 450, 6 m in X, Y, Z directions, as previously

defined in the variogram modeling.

Sensitivity analyses for different sensor precision showed that the lower sensor

precision increases the uncertainty of the posterior model, due to the significant

difference between the prior model and the actual sensor data.

In general, the KOLA data is well covered by the range of uncertainty in the

updated neighborhood. It is observed that the uncertainty in the near neighborhood

gets slightly smaller and more of the actual KOLA measurements are captured by

this uncertainty range.

The current research was limited to a case where only one excavator is operating.

Future research should apply a case study where two, three, or four excavators are

operating. This will require an update to the coal quality parameters in different

production benches based on one combined material measurement.
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Geostatistics on Unstructured Grids,
Theoretical Background, and Applications

P. Biver, V. Zaytsev, D. Allard, and H. Wackernagel

Abstract Traditionally, geostatistical simulations are performed on regular grids,

in IJK coordinates system, simulating centroids of the cells. This approach (com-

monly used) has severe drawbacks: the support size effect is not taken into account

and some artifacts due to cells distortion may appear. On the other hand, reservoir

engineers and hydrogeologists are increasingly referring to new generation of grids

to perform dynamic simulation (Voronoı̈ grids, tetrahedral grids, etc.) which require

addressing the volume support effect.

In this paper, we present a theoretical framework to simulate variables directly

on this new generation of grids, using a depositional coordinates system (UVT) and

taking into account the support size effect.

A real field case study is subsequently presented (lithology and petrophysical

modeling) to illustrate the possibilities of the new generation of simulation tools. A

conclusion is provided and the remaining problems are discussed to propose some

guidelines for future works.
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1 Introduction

For more than 40 years, geostatistical estimations and simulations have been

performed on regular so-called “sugar-box” grids. This is mainly due to historical

reasons. The technology was emerging first from the mining industry, to estimate

grades for open pit blocks, and it was a reasonable choice to use such support of

information.

These regular grids have been kept for a long time as they allow following

stratigraphy in corner point grids geometry commonly used in petroleum industry;

they were also a convenient format to optimize algorithms of various kinds

(sequential simulations, simulation with fast Fourier transform, multiple-point

statistics simulations, etc.).

However, several new grid geometries have emerged in the last decades: tetra-

hedral meshes in hydrogeology and Voronoi grids with local grid refinements for

petroleum industry. These grids are more convenient to solve the physical equations

of flow and transport in porous media. Moreover, these grids are emerging in the

geo-modeling processes with a relevant formulation of the depositional UVT

coordinates system (see Mallet 2004); a dual grid approach was used to address

both the dynamic simulation and the geostatistical characterization (flow simulation

grid or FSG to solve the physical problem and the geological grid or GG to perform

geostatistics).

The dual grid approach has several drawbacks: the geological grid resolution is

driven by the smallest cells of the flow simulation grid, and, moreover, an upscaling

technique is necessary to transfer information from GG to FSG; this upscaling

technique needs to be general enough for the considered topologies.

As a consequence, it was necessary to adapt the geostatistical processes to use

directly the flow simulation grids; but, due to the various size and geometry of

elementary grid cells, it is mandatory to take into account the support size effect.

We present a technique based on the formalism of the discrete Gaussian model (see

Emery 2009 and Chilès and Delfiner 2012). A review of other solutions for

geostatistical simulations on unstructured grids can be found in Zaytsev et al.

2016. To simulate directly on unstructured reservoir grids, an alternative method

proposed by Boucher A. and Grosse H. (2015) will be also commented regarding

implementation aspects.

2 Recall of the Discrete Gaussian Model

The presentation of the discrete Gaussian model (DGM) can be found in Chilès and

Delfiner (2012). It can be described as follows:

– Each block of the grid vp is attributed a parameter rp E (0,1) which is called the

change of support coefficient for this block.

– We work on the Gaussian transform Y of the variable of interest Z.
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– We decompose the Gaussian anamorphosis of Z in a basis of normalized Hermite

polynomials χi (Y(x)):

Z xð Þ ¼ φ Y xð Þð Þ ¼
X1
i¼0

φiχi Y xð Þð Þ ð1Þ

– Using the Cartier’s relation (Chiles and Delfiner 2012 p. 441), we can derive the
block support distribution Z(v) since it can also be represented in the same

polynomial basis using the decomposition (1) and the block change of support

coefficient r:

Z vð Þ ¼ φv Yvð Þ ¼
X1
i¼0

φi:r
iχi Yvð Þ ð2Þ

– By double volumetric integration of the point support covariance C(x,x0) over the
volume of interest ν, we can derive the change of support coefficients rp:

Var Z vp
� �� � ¼ 1

vp
�� ��2

Z
v

Z
v

C x, x0ð Þdxdx0 ¼
X1
i¼1

φ2
i r

2i
p ð3Þ

– Following the same principle, by double volumetric integration of the point

support covariance C(x,x0) over two different volumes of interest νp and νq, we
can derive the block support covariances:

Cov Z vp
� �

,Z vq
� �� � ¼ 1

vp
�� �� vq

�� ��
Z
vp

Z
vq

C x, x0ð Þdxdx0 ¼
X1
i¼1

φ2
i r

i
pr

i
qcov Yvp ; Yvq

� �i

ð4Þ

– Once the change of support is known for each grid cell and covariance is known

between each pair of Gaussian random variables characterizing the volumes of

each grid cell, we are back to a classical problem of generating a multivariate

Gaussian random function with a given covariance matrix which can be solved

by classical methods such as SGS.

Different formulations are available for the discrete Gaussian model; in this

paper, these aspects will not be addressed; for such discussions, we refer to Zaytsev

et al. (2016).
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3 Practical Aspects of Applying Discrete Gaussian Model
for Geostatistical Simulations on Unstructured Grids

To apply the theory of DGM to unstructured grids, key additional issues need to be

addressed.

It is mandatory to integrate efficiently point support covariance (Eqs. 3 and 4)

over cells that are not usual octahedrons. This issue is solved with an efficient

lumping of each grid cell (see Korenblit and Shmerling 2006) followed by pseudo

Monte Carlo integration using Sobol sequence of quasi-random points in the

six-dimensional space of integration. This methodology is recommended for high

dimension space because of the convergence speed.

Figure 1 illustrates the advantage of Monte Carlo methods for the problem of

computing the variance of a block average value. In this figure, several integration

methods are compared (subsequent Gauss quadrature integration, approximating

the block with regularly spaced points, Monte Carlo integration). Clearly, Monte

Carlo and related techniques are much more efficient.

It is also important to have an efficient procedure to navigate in the topology of

the grid. The definition of searching neighborhood needs to be addressed in a

general and efficient way. We propose to address this issue with a k-d tree efficient

search (Bentley 1975). Expressed in the asymptotic notations for comparison of the

algorithm performance (Cormen 2009), for a grid of Nb blocks, the k-d tree gives

performanceO(log Nb) for the neighborhood search operation, which is much faster

than the naı̈ve approach of looking through all the blocks of the grid which is at

least Ω(Nb).

Fig. 1 Comparison of different integration methods to estimate variance of a typical grid cell

(Gauss integration, regular spacing, Monte Carlo with Sobol quasi-random sequence)
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4 What About Facies Modeling?

In the previous section, we addressed the problem of simulating a continuous

variable on an unstructured grid.

Another important problem is to simulate categorical variables on unstructured

grids. Following the same general approach, it is important to address the support

size effect, at least for sub-seismic heterogeneities.

The problem can be described as follows: let us consider a categorical variable

with K states k¼ 1,K. The appropriate way to handle support size effect is to

simulate on the unstructured grid a proportion vector p¼(p1,. . .,pK) with compo-

nents summing up to one.

Although using DGM for the problem of simulating categorical variables is

possible, the range of applicability of the resulting model is very limited.

In our case study, the problem of facies simulation has been addressed with the

method described by Gross and Boucher (2015). In their paper, the authors propose

an upscaling-based approach for geostatistical simulations on unstructured grids

which enables simulating the block values in a consecutive manner. Although using

upscaling, this method does not require creating and storing a refined grid for the

entire unstructured model, but only uses discretizations of a limited number of nodes

at every step. The algorithm is based on parsimonious simulation of control points

inside the cell of the unstructured mesh. The current point is simulated consistently

with the other points previously simulated in the cell and the neighboring previously

simulated cells; therefore, point-to-block covariances are still needed.

The key issue is to choose efficiently the number and the locations of the control

points inside the cell. For this problem, sensitivity tests can be performed similarly

than what has done for the integration of Eq. (3). A discretizing set of points can be

considered to be good, if it enables to approximate accurately the variance of the block.

Precisely, a set of points {xi, i ¼ 1 . . .N} can be used for simulating the value Z(v) if

Var
1

N

XN

1
Z xið Þ

� �
� Var Z vð Þð Þ: ð5Þ

Our tests indicate that when the Sobol quasi-random sequence of discretizing points

is used, a relatively small number of points (between 50 and 100; see Fig. 2) are

sufficient to satisfy (5).

5 Application to a Real Field Case

The above-described methods have been applied to field X. The objective is to

simulate groundwater flow on a very large grid including regional effects modeled

with large grid cells and local details for a zone of interest modeled with much

smaller grid cells (100–1,000 times smaller).
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The area covered by the grid is 70 by 90 km2. The previous model was built with

constant values over very large domain; it was not representative of the variability

of facies and porosity that can occur in this domain.

A new facies model (using the method in Gross and Boucher (2015)) was built.

Three facies are modeled (shale, shaly sand, and massive sand); the target pro-

portions over the entire grid are 20% for shales, 45% for shaly sands, and 35% for

massive sands; the covariance function used for the underlying Gaussian field in the

truncated Gaussian simulation is a spherical model with areal ranges of 800 m by

250 m (azimuth of maximum range is 55�); the vertical range is 100 m. The

coordinate system is a UVT coordinate system, built from the relevant horizons.

The facies simulation results are illustrated in Fig. 3. The simulated proportions

over the grid are clearly illustrative of the support size effect (less variations in large

cells, larger variations in small cells).

The important issue of modeling facies and related proportions is illustrated in

Fig. 4. The dominant facies (most likely facies regarding proportions) is

represented. In the area modeled with large cells, the shale facies is never dominant,

and proportional modeling procedure is the only way to keep that facies into

account; in the area of local grid refinement, this aspect is less important, and the

traditional truncated Gaussian simulation picture is observed.

The porosity model has been built using DGM assumptions. As each facies can

occur in each cell, it is therefore important to perform full field porosity model for

each facies. Point-scale distributions for each facies are provided in Table 1

(we used beta distributions with p and q referring to the shape parameters); these

porosity distributions are clearly different according to facies classification. Point-

scale normal score variogram for porosity is a spherical model with areal ranges of

600 m by 200 m (azimuth of maximum range axis is 55�); the vertical range is 80 m.

The porosity model inside each facies is represented in Fig. 5. The support size

effect is clearly visible with small variations in large cells and larger variations in

smaller cells.

Fig. 2 Approximating the

variance of blocks with the

variance of a set of

discretizing points.

Spherical covariance in 3D,

the dimensions of the blocks

approximately equal to the

ranges of the covariance
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Fig. 3 Facies modeling on field X, proportions maps for silt (blue), silty sand (pink), and massive

sands (yellow). The simulated facies proportion map is sharp in the region of the local grid

refinement and becomes smoother in the regions of coarse blocks

Fig. 4 Facies modeling on field X, dominant facies map

Table 1 Point-scale porosity

distributions for field X
Facies Distribution

Shales Beta (min¼ 0, max¼ 0.4, p¼ 1, q¼ 6)

Shaly sands Beta (min¼ 0, max¼ 0.4, p¼ 3, q¼ 3)

Sands Beta (min¼ 0, max¼ 0.4, p¼ 8.5, q¼ 3.5)
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From these facies porosities, it is possible to derive equivalent porosity for each

cell simply by weighting them according to simulated proportions. This result is

represented in Fig. 6; the support size effect is still visible.
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Fig. 5 Full field porosity modeling inside each facies of reservoir X

Fig. 6 Full field equivalent porosity inside reservoir X
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6 Conclusion and Future Work

In this paper, we have presented a methodology to address geostatistical simulation

on unstructured grids. Implementation issues have been discussed, and an illustra-

tive field case example has been performed. We have shown that the world of

geostatistics and the world of complex fit-for-purpose gridding can be reconciled.

The proposed workflow can be adapted to co-simulation techniques without

major difficulties. A co-simulation approach with DGM on regular grids can be

generalized without major modifications for unstructured grids (Emery and Ortiz

2011). In order to use the DGM for co-simulation, a linear model of

co-regionalization (LMC) can be used, and conditioning kriging should be

substituted with conditioning co-kriging.

However, it is important to notice than we have addressed only the domain of

additive variables. An important topic is still to be treated: nonadditive variables

such as permeabilities. We envisage treating these variables by using fit-for-pur-

pose transformation like power transform as suggested in Noetinger (1996) and

Deutsch (2002); but these transformations need to be calibrated by physical mea-

sures and numerical tests. This will be the next challenge of this research.

Other problems would be interesting to investigate: generalization of algorithms

to nonstationary cases, addressing facies simulation techniques different from

truncated Gaussian simulation.

Acknowledgments The authors would like to thank Total SA for sponsoring this research and

authorizing publication.

Bibliography

Bentley JL (1975) Multidimensional binary search trees used for associative searching. Commun

ACM 18:509–517

Chiles J-P, Delfiner P (2012) Geostatistics: modeling spatial uncertainty, 2nd edn. Wiley,

New York

Cormen TH (2009) Introduction to algorithms. MIT Press

Deutsch CV, Tran TT, Pyrcz MJ (2002) Geostatistical assignment of reservoir properties on

unstructured grids, SPE annual technical conference, SPE-77427-MS

Emery X (2009) Change-of-support models and computer programs for direct block-support

simulation. Comput Geosci 35:2047–2056

Emery X, Ortiz JM (2011) Two approaches to direct block-support conditional co-simulation. C R

Geosci 37:1015–1025

Gross H, Boucher AF (2015) Geostatistics on unstructured grid: coordinate system, connections

and volumes, petroleum geostatistics 2015, EAGE

Korenblit M, Shmerling E (2006) Algorithm and software for integration over a convex polyhe-

dron. In: Mathematical Software-ICMS 2006. Springer, pp 273–283

Mallet J-L (2004) Space time mathematical framework for sedimentary geology. Math Geol

36(1):1–32

Geostatistics on Unstructured Grids, Theoretical Background, and Applications 457



Noetinger B, Hass A (1996) Permeability averaging for well tests in 3D stochastic reservoir

models, SPE annual technical conference, SPE-366-53-MS

Sobol IM (1967) On the distribution of points in a cube and the approximate evaluation of

integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 7:784–802

Zaytsev V, Biver P, Wackernagel H, Allard D (2016) Change-of-support models on irregular grids

for geostatistical simulation. Math Geol l48(4):353–369

458 P. Biver et al.



Using Spatial Constraints in Clustering
for Electrofacies Calculation

Jean-Marc Chautru, Emilie Chautru, David Garner, R. Mohan Srivastava,

and Jeffrey Yarus

Abstract Petroleum reservoir geological models are usually built in two steps.

First, a 3-D model of geological bodies is computed, within which rock properties

are expected to be stationary and to have low variability. Such geological domains

are referred to as “facies” and are often “electrofacies” obtained by clustering

petrophysical log curves and calibrating the results with core data. It can happen

that log responses of different types of rock are too similar to enable satisfactory

estimation of the facies. In such situations, taking into account the spatial aspect of

the data might help the discriminative process. Since the clustering algorithms that

are used in this context usually fail to do so, we propose a method to overcome such

limitations. It consists in post-calibrating the estimated probabilities of the presence

of each facies in the samples, using geological trends determined by experts. The

final facies probability is estimated by a simple kriging of the initial ones. Mea-

surement errors reflecting the confidence in the clustering algorithms are added to

the model, and the target mean is taken as the aforementioned geological trend.

Assets and liabilities of this approach are reviewed; in particular, theoretical and

practical issues about stationarity, neighborhood choice, and possible generaliza-

tions are discussed. The estimation of the variance to be assigned to each data point

is also analyzed. As the class probabilities sum up to one, the classes are not
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independent; solutions are proposed in each context. This approach can be applied

for extending class probabilities in 3-D.

1 Introduction

Petroleum reservoir geological models are usually built in two steps. First, a 3D

model of geological bodies is computed, within which rock properties are expected

to be stationary and have low variability. Such geological domains are referred to as

“facies.” In a second step, petrophysical properties are distributed within each

facies.

A common issue in geological modeling is to determine such facies along each

well. It is quite easy in cored wells, where it is possible to describe the rocks and

make precise analyses and petrophysical measurements. Note that issues related to

measurement errors, interpretation mistakes, or poorly representative sampling that

will lead to an uncertainty on facies determination go beyond the scope of the

present paper and are not discussed here. Defining facies is more difficult in

uncored wells where only electric logs are available. The issue is usually solved

by defining “electrofacies,” which are classes created from clustering petrophysical

log curves. Such electrofacies are then calibrated with core data to ensure their

geological consistency. Electrofacies calculation results are not always of satisfac-

tory and constant quality, which may lead to inconsistencies.

Facies are never randomly distributed in a reservoir, and accounting for the

sedimentological conceptual model at the electrofacies calculation phase may

improve classification performance, leading to more realistic results. Such a sedi-

mentological model is commonly used in geological modeling for guiding facies

spatial distribution simulations, through its numerical representation which is the

facies proportions model calculated from local vertical proportion curves (VPC),

the facies trends.

The goal of this paper is to detail several methods that take advantage of the

facies proportions model at the early stage of electrofacies calculation. It is assumed

here that classification is made in a supervised mode, to account for visual facies

defined by the geologist; classes are defined by more than mathematical criteria. In

these methods, facies proportions coming from geological analyses will be consid-

ered as the expected average probability to belong to a given facies in the neigh-

borhood of each sample. Conditions of use of such methods are discussed, and some

illustration examples are proposed.
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2 The Classification Issue

Electrofacies defined during the rock-typing phase of geological modeling are

always calculated using statistical clustering techniques. Very often, probabilistic

classifiers are used, the output of which is not a simple set of classes determined

from electric logs at each sample but a set of probabilities to belong to the different

classes. Examples of such classifiers include linear discriminant analysis, artificial

neural networks (with appropriate characteristics), logistic regression, Bayesian

classifiers, etc. They are implemented in professional software dedicated to

petrophysics and rock typing. In this context, the predicted class at a given sample

(point in a well with several log measurements) is generally the one with the highest

probability.

Several issues may occur, which are always due to a lack of relevant

information.

• First, clustering methods do not account for the location of data samples but

define rock classes from the log response only. In some cases, in particular in

carbonate rocks, different facies can have similar log responses. For example, it

is common in carbonates to get facies with similar porosity but different pore

structure, therefore with different permeability. With the most common logs

such as NPHI, RHOB, and DT, which are mainly sensitive to porosity and

density or GR which is sensitive to shale content, such facies may not be

properly discriminated. This will generate a lot of trouble to the reservoir

engineer during the history match phase in flow simulations.

• Another common issue is due to the fact that electrofacies cannot be calculated

with the same set of logs in all the wells. It is very common to have to deal with

the absence of modern and accurate logs in some wells, sometimes many wells,

which leads to different electrofacies calculation results in different wells. Some

classes that are distinguished with the full set of logs may be merged in a single

class with fewer logs.

• Varying electrofacies calculation quality is also observed when recent and old

logs of same nature but different accuracy are merged. Electrofacies will be less

reliable in old wells than in the recent ones.

In all the aforementioned situations, taking into account spatial information

may help.

For instance, in the first case, facies with contrasted permeability are rarely

homogeneously distributed in space. Very often, a given facies is dominant at a

given location in the reservoir, the other ones being dominant in other areas.

Therefore, a sedimentological conceptual model expressed as a 3-D model of facies

proportions should provide valuable and relevant information to discriminate facies

of different permeability and capillary pressure curves with similar log responses.

Depending on the location in space, the same log response will be assigned to a

given facies or to another one. The value at each point of the a priori 3-D model of

proportions is considered here as the average probability of the presence of each
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facies or as the average probability to belong to a facies within a given neighbor-

hood around the point. The neighborhood size corresponds to the size of 3-D

modeling grid cells.

Such a numerical sedimentological model can be prepared by the geologist very

early in the geological modeling process. It requires knowing the main facies,

defined from core description, and the main sedimentological trends driving their

spatial distribution, which result from the geological interpretation of the deposi-

tional environments distribution observed along the cores. The conceptual model

has to be transformed into numerical data by defining local synthetic vertical

proportion curves, which will be added to experimental vertical proportion curves

calculated from cored wells to build a 3-D numerical model by interpolation.

For the second and third cases, the problem is not related to classes with similar

log responses but to a spatial variation of electrofacies accuracy due to the hetero-

geneity of the logs dataset. It is a different issue, for which the potential benefit of

using a 3-D model of facies proportions is not as clear. Taking into account

neighbor information of high accuracy is more important, if we can assume that

the spatial continuity of facies is high.

All the methods that are introduced to add spatial information to the classifica-

tion process rely on the same basic principle. We propose to alter the probabilities

of the presence of each facies computed from the electric logs, using in particular

the geological trends provided by experts. The new predicted classes are then

defined as those with highest updated probability.

3 Classification Using the Target Sample Only

Spatial information can be taken into account at each target sample without

considering spatial correlation with neighboring data points, using different

approaches. This particular case is relevant for improving classification results

when some classes cannot be easily discriminated.

3.1 Standard Classification with Additional Variables

A first method consists in adding all the a priori probabilities to belong to a class as

additional variables for a standard classification, using usual classification tech-

niques. Calculations are then made with several logs plus as many a priori average

probabilities as facies. As it is common to work with three to five logs and four to

six facies, classifications with about ten variables can be expected.

It is a very simple approach, but it has some practical limitations. In particular,

classifying with about ten variables will require a lot of data to get robust results. In

linear discriminant analysis, for example, a multivariate density function has to be

estimated from available samples. With ten variables, it requires a lot of samples to
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get a significant and robust estimate of the density function. In the oil and gas

industry, the required number of samples will be rarely reached, especially in

geological modeling for rock-typing purposes.

In addition, logs and a priori probabilities are not at the same scale and giving the

same status to the two types of information in the classification process is a risky

option. It may add some noise or imprecision. This approach is certainly not the

most appropriate for rock typing.

3.2 Combining Classification Results and A Priori Global
Information

3.2.1 Principle

Accounting for spatial information at a target sample location can be done in a very

simple way, by calculating a weighted average of local probability to belong to a

facies (from classification based on electric logs) and global probability (from a

priori model built by the geologist). Consider n samples (n> 1), K facies (K> 1)

and denote by Pi ¼ (Pi,1,. . .,Pi,K) (resp. Qi ¼ (Qi,1,. . .,Qi,K)) the set of probabilities

calculated from the electric logs (resp. from a geological model) at sample i. The
updated probability that sample i belongs to facies k is written as

P∗
i,k ¼ βPi,k þ 1� βð ÞQi,k; ð1Þ

where β 2 [0,1] represents the level of confidence given to the mathematical

classification relative to the geological model. Observe that taking the same β for

each facies k¼ 1,. . ., K guarantees that the updated probabilities at a single point

i are all in [0,1] and sum up to 1.

After calculating all P*
i,1,. . .,P

*
i,K, one may predict the facies at sample i by

choosing that with highest updated probability. The main issue here is the deter-

mination of β. For this, it is interesting to consider this weighted average as the

result of a simple kriging. For a stationary process, Z observed at locations j¼ 1,. . .,
n with known local expectation m, the simple kriging estimator Z* of Z at a new

point is the linear combination of the data that gives minimum squared error (with

respect to a spatial model) and ensures no bias:

Z∗ ¼
X

j
λjZj þ 1�

X
j
λj

� �
m: ð2Þ

In the presence of measurement errors, all Zj in Formula 2 can be replaced by

Zj þ Ej
� �

, where Ej is a white noise independent from Zj with variance σ2. In the

present context, Z* would play the role of the updated probability Pi,k
* at sample

i for some facies k, all Zj þ Ej
� �

in the sum would be neighboring probabilities Pj,k

and m ¼ Qi,k the local mean. In particular, if the kriging neighborhood is restricted
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to the target sample itself, then the simple kriging system can be developed very

easily, resulting in:

P∗
i,k ¼ 1

1þ Vi
Pi,k þ Vi

1þ Vi
Qi,k; ð3Þ

where Vι is the ratio between σ2 and the modeled variance of the proportion Pi,k

without measurement errors. This is equivalent to Eq. 1 with β ¼ 1
1þVi

. Therefore, β

can be viewed as a level of error in the initial classification.

More spatial information can be added if neighbor probabilities are also included

in the kriging formula. However, the kriging system would need to be altered to

ensure that the updated probabilities P*
i,1,. . .,P

*
i,K are in [0,1] and sum up to 1. Such

extensions are discussed in the next section “Accounting for neighbor wells.”

3.2.2 Application Examples

The following application examples are based on the dataset used in Garner

et al. (2015).

It can be observed in Fig. 1 that the final facies is intermediate between the initial

electrofacies and the facies corresponding to the highest a priori probability, as

expected. The lower the uncertainty assigned to the electrofacies, the more similar

to the electrofacies is the final result. When the variance characterizing this

uncertainty increases, the final result becomes closer to the a priori geological trend.

It can be noted in Figs. 1 and 2 that the geological trend is not identical to the

original reference facies. In particular, some shoulder effects exist at each facies

border, which are due to the fact that both data are not at the same scale. The

geological trend is less precise than the facies defined from core description. In

some cases, like at the right side of Fig. 2, some contradictions between the original

reference facies and the geological trend can be observed. Such discrepancies may

occur, due to local heterogeneities or mistakes in the estimation of the sedimento-

logical trends. In that case, combining electrofacies and geological trend cannot

restore the original facies.

Figures 3 and 4 show a typical practical issue in electrofacies determination. One

of the clusters in the multivariate distribution based on NPHI, RHOB, DT, and GR

logs is not very efficient for discriminating the existing facies in a supervised

classification, as shown in Fig. 3. The points in the cluster correspond to all of

the four facies, which may lead to classification mistakes. Such an effect is shown in

Fig. 4 in one well (W13) which is fully included in the selected cluster (see purple

points in the figure). The initial electrofacies calculation misses the facies 2, which

is actually dominant, and includes occurrences of facies 3 which is actually not

present in this well. This misclassification can be partially fixed by accounting for

spatial trend.
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Fig. 1 Sensitivity of updated facies to “measurement error” variance values. From left to right, in
both tables: the reference facies, the electrofacies, the geological trend, and the result of the

approach described above

Fig. 2 Examples of updated facies in different wells. From left to right, in both tables: the

reference facies, the electrofacies, the geological trend, and the result of the approach described

above

Using Spatial Constraints in Clustering for Electrofacies Calculation 465



3.2.3 Comments and Recommended Practices

With this method, each updated facies probability is between 0 and 1 and their sum

is equal to 1, the two parts of the linear combination honoring this constraint.

It is recommended to apply this method on a well-by-well basis, with specific

variance of “measurement error” for each well. The method is useful when several

facies cannot be discriminated by the classification technique but can be distin-

guished according to the location in the reservoir. The main practical issue will be

the determination of the most appropriate value for the variance representing the

relative level of confidence on the two sources of data. It is a user-defined value, but

some simple rules can be considered:

• With a null variance of “measurement error,” only the classification results are

considered.

• With a variance of “measurement error” equal to 1, classification results and a

priori geological trend have the same weight.

• It is interesting to compare the expected facies coming from the geological trend

with the initial electrofacies determined by the classification technique. In case

of strong discrepancies, it is highly recommended to revisit the geological trend,

to be sure of its validity, and/or to check in which cluster is the well under study.

If it is located in an ambiguous cluster, unable to discriminate the facies, then

electrofacies are uncertain, and it is better to put more weight on the geological

trend. By the way, it can be noted that comparing electrofacies and geological

trends is a way to QC the data.

The selected cluster (in green)
corresponds to the four facies, even
if one is poorly represented. 
It generatesan uncertainty in
electrofacies determination
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Fig. 3 Ambiguous cluster in logs leading to potential classification errors
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• In a cored well, it is easy to check the similarity of the final facies profile with the

initial description. In uncored wells, this check is impossible, but it is possible to

compute the proportions of each facies in the final result and compare it with the

average facies proportions at the well location. It is a way to check the geological

consistency of the result, assuming that the geological trend is reliable.

It is important to keep in mind that the geological trend which is used in this

method results from the quantification of large-scale trends defined by the sedi-

mentologist. Therefore, it is semi-qualitative information, which may be affected

by a significant level of uncertainty. If it is defined from many cored wells, the

accuracy of this trend is high, but if only few cored wells are available, the

corresponding facies average probability of presence have to be used with care.

Ultimately, the trend is a modeling choice, and its accuracy must be taken into

account in the definition of the linear combination weights.

A method to account for geological trend uncertainty and to quantify the

uncertainty associated with the final electrofacies consists in defining ranges of

variation for the average probability of the presence of each facies. Several

Fig. 4 An example of misclassification in a well included in the ambiguous cluster, with

enhancement by accounting for spatial trends. From left to right in the table: the reference facies,

the electrofacies, the geological trend, and the result of the approach described above
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realizations of the quantified geological trend can be generated, by drawing random

values in each interval of variation, in each layer of the reservoir. This leads to

multiple realizations of the weighted classification, from which statistics can be

calculated to estimate the uncertainty on the final electrofacies.

4 Accounting for Neighbor Wells

4.1 Principle

In many cases, electrofacies cannot be calculated in all the wells in the same

conditions, due to data issues:

• The optimal set of logs may be available in some wells only, and the

electrofacies in the other wells have to be calculated with fewer logs and/or

with different logs;

• Due to strong differences in the date of logs acquisition, the accuracy of the data

used for classification may vary a lot. Therefore, the quality of the classification

results varies from one well to another.

The consequence of these data issues is that some classes which are properly

discriminated in some wells are difficult or even impossible to distinguish in other

wells. These issues are practical and can be aided by database preparation and

thorough log normalization procedures used by petrophysicists.

A way to enhance electrofacies determination in a well where data quality is

questionable is to account for the neighbor wells where the data are of high quality,

as illustrated in Fig. 5. It assumes that the underlying geological phenomenon is

quite continuous, at the well-spacing scale.

Classification from 4 logs
Low uncertainty

Classification from 3 logs
Moderate uncertaintyClassification from 3 logs

Moderate uncertainty

Classification from 2 logs
High uncertainty

Target:

Classification from 2 logs
High uncertainty

Fig. 5 Mixing wells with electrofacies of various accuracy
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In practice, the method consists in estimating, at a target location, the probability

to belong to a given class by kriging such probabilities from the neighborhood,

using the “measurement error” option, the variance associated with each sample in

the neighborhood depending on the sample accuracy. For example, classification

results in the neighborhood will be considered as reliable (low or null variance) if

four logs were used; it is less reliable (high variance) if only three logs were

available.

It can be noted that the kriging estimation can be done:

• Only with the probabilities to belong to a class given by classification

• With the probabilities to belong to a class given by classification calculated in

neighbor samples, combined with similar probabilities derived from a geological

trend, at target location

The method detailed in the previous section is a limit case of the current

approach, with a neighborhood reduced to the target point only.

4.2 Constraints on Kriging

In this method, the different variables (probabilities to belong to class) are linked

together as they sum up to 1. As several samples are now included in the kriging

neighborhood, this constraint is not automatically honored, and normalization pro-

cedures or specific kriging approaches have to be considered.

A first simple approach consists in performing successive independent kriging

estimations for each variable, followed by a rescaling. On a numerical point of

view, the constraint on the sum of probabilities will be honored. On a geological

and mathematical point of view, considering as independent for calculations vari-

ables which are not independent is a strong approximation which may lead to

significant inconsistencies.

An alternative approach could be to use kriging or cokriging of compositional

data, where all the probabilities to belong to a facies are grouped in vectors. This

approach requires the use of preliminary transformations before applying kriging or

cokriging. Such transformations are generally based on logarithms, such as the

additive log-ratio transformation of Aitchison (1986) detailed in Pawlowsky et al.

(1994). It has been noted (Lan et al. 2006) that using log ratios in multiscale facies

modeling leads to issues, mainly related to null probabilities. In our context, such

occurrences are frequent, some facies having null proportions at different locations

in the reservoir.

Compositional kriging as introduced by Walvoort and de Guijter (2001) can be

considered instead. It extends ordinary kriging to the specific context of composi-

tional data by simply adding the non-negativity and constant sum constraints to the

minimization of the kriging mean squared error. Precisely, going back to Eq. 2, the

compositional kriging weights are determined by solving the following optimiza-

tion problem in vectorial form:

Using Spatial Constraints in Clustering for Electrofacies Calculation 469



minE Z* � Z 2
2

����� �
subject to E Z* � Z

� � ¼ 0, Z* � 0 and Z*
�� ��

1
¼ 1

In the present context, Z* stands for the full vector P*
i at a sample of interest i,

predicted by cokriging with neighboring vectors Pj. There, Z represents the ideal

value Pi that would have been obtained if the initial classification procedure was

perfect. In contrast to the additive log-ratio transformation techniques, no restric-

tion on the values of the involved vectors is necessary; some components can be

null without impeding estimation. Moreover, all components of the target vector are

assessed simultaneously with this procedure.

Initially, the authors chose not to take cross correlations into account; in the

present context, this means that the probability of the presence of a facies at a target

point is not influenced by those of the other facies at other locations. Thus, each

type of rock is compared to all others as a group instead of individually. When such

an assumption is considered too restrictive, given the depositional patterns, it is

possible to generalize the method to the context of cokriging. This would be the

case, for instance, when two types of rock are commonly found next to each other; a

sample consisting of the first would increase the probability of finding the second in

a close neighborhood. Even if such types of dependence are often nonlinear,

including extra facies in the cokriging formula can help capture at least part of

the depositional dynamic. Like before, expert knowledge about geological trends

can be included in the model through the vector of mean class probabilities at the

target sample. Because the latter vary through space, so proceeding has the advan-

tage of relaxing the stationarity hypothesis. The covariance matrix of the data can

also be altered to reflect the level of confidence in the statistical clustering results; in

practice, this amounts to supposing that the data contain measurement errors. The

main drawback of picking cokriging over kriging is the amount of extra parameters

to estimate: estimation efficiency decreases when the latter increase. It also requires

stipulating a cross-correlation model, which can be difficult when samples are

limited.

4.3 Application Examples

Following application examples are based on the dataset used in Garner

et al. (2015).

Let us consider a well for which the initial classification delivers unsatisfactory

results. The probability of each sample to belong to a given class will be estimated

from the neighborhood, as shown in Fig. 6 (W7 estimated from W10, W14, W15).

A compositional cokriging was applied, using electrofacies probabilities as input

data, with a priori geological trends serving as means. The level of confidence in the

probabilities provided by statistical clustering techniques was included in the model

by adding a variance term to the diagonal of the covariance matrix. In particular,
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entries in the covariance corresponding to well 7 were strongly penalized with a

measurement error variance of 2 versus 0.95 for all other wells, which will tend to

increase the impact of the geological trend. Results are summarized in Fig. 7. As

expected, the identification of the types of rocks is improved as compared with

electrofacies. Indeed, while only 21.43% of electrofacies are accurate, 78.57% of

the types of rocks are correctly predicted after post-calibration. Nonetheless, let us

mention that the technique is extremely sensitive to the choice of confidence

Fig. 6 Well estimated from

its neighborhood

Fig. 7 Facies estimation in W7 from electrofacies in W10, W14, and W15, accounting for

geological trend in W7. Result is the last column on the right
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parameters. They have to be picked with care, maybe using core data in a super-

vised approach.

5 Application to 3-D Facies Modeling

Several options for using electrofacies defined from the results of classification

based on well logs are proposed in Garner et al. (2015) to build 3-D facies models:

• Plurigaussian simulations (PGS) using electrofacies as input data

• 3-D simulation of electrofacies probabilities, known at wells from classification,

the final electrofacies at each point corresponding to the highest probability

• 3-D co-simulations of the well logs and application of the well-derived classi-

fication as a post-processing

The methods detailed in the current paper lead to an update of electrofacies

probabilities to account for geological trends. Therefore, the three facies modeling

methods will be affected, but at different levels.

For PGS, accounting for geological trends in electrofacies definition will lead to

a modification of input data (electrofacies). The lithological column may change in

some wells, which can lead to local adjustments of the vertical proportion curves

and to variogram fitting updates. It must be noted here that in PGS, the 3-D

proportion model used as soft input data is usually calculated from the electrofacies

at wells. The a priori geological trend used to modify classification results, which is

similar to the usual 3-D proportion model, is based on core data and on sedimen-

tologist interpretation. Both models are actually very close, and the one used to

update classification results could be used in PGS as an alternative choice.

The input data conditioning the 3-D simulation of electrofacies probabilities are

modified and include a contribution of the a priori geological trend. The whole

methodology shown in Fig. 8 can remain unchanged.

Details can be found in Garner et al. (2015) where this methodology is fully

described. It can be noted that the first steps of the procedure (normal score trans-

forms and MAF) can be applied to the geological trend itself. The results can be

used as external drifts for constraining the turning bands simulations. It is a way to

force this method to account for facies proportions in the whole 3-D model.

The first step of the third method, based on well logs co-simulations, will not be

affected by the classification results update. This part of the procedure remains

unchanged, but the next step, which consists in applying the classification technique

to the 3-D model of logs, will be improved. Classification results can be updated, in

the model, to account for the a priori geological trend. Here, the auxiliary spatial

information is introduced at the last moment in the calculation.
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6 Conclusion

Using a priori geological trend, defined in terms of expected facies proportions

which will be considered as the probability to belong to each facies, is an effective

way for integrating spatial constraints in classification techniques. One may con-

sider that it would be better to modify the classification techniques themselves, but

this is a long and complex work, which has to be adjusted to each classification

method. Updating classification results by means of a post-processing procedure is

simpler, can be applied immediately to all the stochastic classification methods, and

ensures a strong geological input.

The most common electrofacies calculation pitfalls related to available logs in

the different wells, to the logs quality in the different wells, and to the logs

relevance can be addressed. Depending on the technical issue and on the reservoir

heterogeneity, various approaches can be used, accounting for more or less infor-

mation in the target neighborhood, which gives enough flexibility to address most

of the practical configurations encountered.
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Pore Network Modeling from Multi-scale
Imaging Using Multiple-Point Statistics

T. Chugunova and H. Berthet

Abstract Petrophysical characterization through pore network modeling has

become a very active field in reservoir core analysis. The technique of X-ray

microtomography allows an accurate imaging at the micrometer scale. But the

engineer often faces a difficult choice – whether to resolve the heterogeneities

directly influencing the petrophysical characteristics on the small volumes or to

capture less resolved global tendencies on the statistically representative volumes.

The idea of this work is to reconcile different scales by reconstructing the internal

rock structures from the available scan images using multiple-point statistics

method. This method was successfully used to reconstruct 3D pore network from

2D images. In this work we want to demonstrate on the real cases application how

multiple-point statistics can be used to solve multi-scale and multi-support

problem.

1 Introduction

Sophisticated imaging technologies can be used to access the tiniest internal

structures of a reservoir rock sample. Modeling on the microscopic scale enables

the computation of petrophysical properties such as porosity and permeability

(Blunt et al. 2013) as well as enrich our understanding of multiphase flow in porous

media.

The method to accurately describe a pore network at the micrometer scale is

based on X-ray microtomography imaging (“3D scan”). This technique is becoming

nowadays a common tool in the petroleum laboratories providing 3D high-

resolution images of the pores and grains of almost any type of rock sample. The
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trade-off between imaged volume and resolution brings however a challenge to

capture heterogeneities at different scales: the smaller the imaged volume, the

higher the resolution. Thus, the petrophysical characteristics (e.g., porosity, perme-

ability) are computed with different accuracies for different scales. For example,

statistically robust values are calculated from a large volume but are less resolved

and have missing small structures. Otherwise, very small scales can be resolved and

provide accurate porosity and permeability estimation but on a too small and hence

statistically nonrepresentative volume. For instance, capillary pressure computation

is very sensitive to the image resolution. When small connections in the flow

pathway are badly resolved, computed capillary pressure curves diverge from

experimental results (Leu et al. 2014).

Okabe and Blunt (2005) have used multiple-point statistics (MPS) method to

reconstruct 3D pore network from 2D images. In their example, the internal

structure was represented by a relatively simple morphology with the heterogene-

ities of the same scale and the same shape. A tree-based MPS algorithm (Strebelle

2002) has been used for this purpose. In this work we propose two ways to model

the heterogeneities of different scales available in different supports of scan images

applying the latest generation MPS algorithm. In the first application, we address

the case where the high-resolution (HR) image contains the structures at several

scales. In the second, the highly resolved heterogeneities from nonrepresentative

sub-volumes are used to enrich a low-resolution (LR) image covering statistically

representative volumes. The demonstration of the methodology and the

corresponding illustrations in this paper are done for a 2D MPS model. The

extension of two approaches for a 3D MPS model is straightforward.

The paper is organized as follows. We demonstrate the multi-scale MPS appli-

cation on two case studies. In the first case study, we illustrate a preprocessing in

order to convert a scan image to a valuable training image (TI) for MPS algorithm.

Two scales of internal rock structure are present in the TI. We illustrate an example

of MPS simulation using the latest generation algorithm known in the literature

(Mariethoz et al. 2010) as multiple-point direct sampling (DS). The results of this

simulation are captivating. Without prior knowledge it is difficult to distinguish the

TI from the DS realizations. For the second case study, we introduce the problem of

downscaling having the scan images of a rock sample for different scales and

volumes. A low resolved image can be enriched with heterogeneities observed in

a high resolved image. For this purpose, the DS simulation is applied in its

nonstationary mode (Mariethoz et al. 2009) using a low-resolution image as an

auxiliary variable and the fine scale highly resolved image as a main variable. The

advantages and the difficulties of the proposed approaches applied to real cases are

discussed.
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2 Case 1

A 4-mm cylindrical sample of Castle Gate rock (outcrop sandstone, Utah, USA)

was cored and placed on the sample holder of an X-ray microtomograph

(Versa520XRM, Zeiss). A first image was obtained at a voxel resolution of

1.5 μm (field of view ~33 mm3). In order to access a higher level of details, we

carried out a series of imaging at a voxel resolution of 503 nm (Fig. 1), now

reconstructing a sub-volume of the initial image (so-called interior tomography or

region of interest). Two images were acquired at two successive vertical positions

and stitched together to study a larger imaged volume (~0.13 mm3).

2.1 Training Image Construction

A successful application of MPS strongly depends on the quality of the TI standing

for the heterogeneity description. Hence, a TI should be statistically representative

(Emery and Lantuejoul 2013). In terms of the MPS method, it mainly means that the

image should contain numerous representative patterns of the size much smaller

than the TI size. The image should also be of low entropy (each pattern should have

a lot of similar ones under the definition of similarity).

Nevertheless, in practice, the TI rarely satisfies all these conditions. Different

MPS options were developed in the last decade to deal with the nonstationary,

non-ergodic, or incomplete MPS model. For more details on the different options

available for MPS algorithm, we refer the reader to Hu and Chugunova (2008) and

Mariethoz and Lefebvre (2014). For example, the options of multiple grids (in tree-

based MPS algorithm) or flexible template (in DS algorithm) allow better repro-

duction of large-scale heterogeneities but do not guarantee any more an ergodicity

of the process.

The first application case we demonstrate here is a typical example of the

difficulties we may face. One may observe that a raw image of a core sample

(Fig. 2) is far from the required TI qualities. To transform this raw image into a

more valuable TI, we proceed as follows. The raw image is opened in the common

image editor (e.g., GIMP). The image is represented by a continuous property

Fig. 1 2D images extracted from the 3D-reconstructed image at 503 nm voxel resolution. Large

grains (a) and micro-porosity (b) are present in the structure. The edges of large grains display a

phase contrast artifact due to the very high resolution of the image
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between 0 and 1. First of all we improve the contrast of the image to better

distinguish the grains and the pores. Now we clearly see that the image contains

two main spatial structures corresponding to large grains and small particles.

Second, we found that even the smallest particles are represented by scores of

pixels in the initial image. The efficiency of MPS algorithm is not optimal when that

most of the neighbors in the template are wasted to capture same values and not

spatial heterogeneity. The image is rescaled (3� 3 average mean upscaling) in

order to optimize the representation of the given heterogeneities. Global statistics

analysis confirms an absence of bias neither the loss of information after upscaling.

2.2 DS Results with Continuous Training Image

At this stage the preprocessed image can be used as a TI by applying DS algorithm

dealing with continuous variables. The image is used as a 2D grid where each pixel

is a grid cell. The areal zone around the sample is not considered during the

simulation in order to exclude inappropriate patterns. Figure 3 illustrates the results

of such application.

We may observe a good quality of image reproduction. We also observe that

locally some simulated structures are very similar to some parts of the TI but

disposed and concatenated randomly in the DS realizations. Having fixed the DS

parameters such as maximal number of neighbors, threshold of similarity, and

percentage of TI scan (here we refer the reader to Mariethoz et al. 2010 to get

Fig. 2 Different steps of preprocessing of initial microtomography image in order to obtain a

representative training image
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familiar with common DS parameterization), the DS algorithm will reproduce

spatial structures up to a specific scale with low variability comparing to the TI,

and the maximal variability of structures will mainly appear on the larger scale.

Thus, a practitioner trades off between a copy-paste effect and maximum spatial

variability. In our case the low variability scales are the scales from the smallest

particle up to the large grains present in the TI. Since the large grains have a size

comparable to the size of a TI, it means also that our DS model (TI + DS algorithm

+ DS parameters) is non-ergodic. This is also reflected by the results (Fig. 3) where

the amount of small and large grains is different from one realization to another. To

minimize the non-ergodicity of our DS model, in our practical application, we use

several TIs coming from different parts of rock sample for 2D simulation or 3D TI

(a sequence of 2D TIs) for 3D simulation.

2.3 DS Results with Boolean Training Image

One of the main steps of image processing on scan data is segmentation

(binarization), leading to an estimate of porosity and local characteristics of the

pore network. A threshold choice is made by a petrophysician to discriminate pore

and no pore volumes. Once an appropriate level of threshold is chosen, the different

levels of color of initial image are not important. One may propose to transform a TI

into a binary property and to obtain the MPS results directly in the binary property

ready for estimations. Here below (Fig. 4) we illustrate the results of such an

experiment.

The disappointing quality of the results can be explained by comparing the

spatial organization of the continuous and Boolean TIs. Indeed, the continuous TI

contains the patterns where the points of low and high values are spatially organized

trough the transition (from black to white color); this transition is rapid for the small

particles and slow for the large grains. Thus, all patterns of the TI can be mainly

separated in two groups, one for large and another for small structures. Using a

binary representation of the small and large grains, there is no more transition zone

of intermediate values and no more evident criteria to distinguish the MPS patterns

Fig. 3 Training image of continuous variable and three DS realizations
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from large or small structures. Practically, it means that the same combination of

neighbors corresponding to a current simulation step may be compatible with both

small and large structures. Consequently, the motifs started as large structures can

be continued with a pattern corresponding to the small structures and inversely,

which in its turn explains the quality of the results.

2.4 DS Results with Segmented Training Image

Finally, by segmenting a continuous TI to several classes (into categorical vari-

able), we obtain the most convincing results (Fig. 5). Indeed, by segmenting the

initial continuous variable in six classes, we keep different transitions for large and

small particles, and so we reinforce the similarity between patterns characterizing

the same structures and increase the difference between the patterns describing

different scales. The threshold defining the limits of pore and no pore volumes

should remain the same as chosen by a petrophysician in its pore volume calcula-

tions. The choice of intermediate thresholds’ values is not important as far as it

allows representing a transition effect of initial image.

Fig. 4 Training Image of Boolean variable and three DS realizations

Fig. 5 Training image of categorical variable (six classes) and three DS realizations. TI is a

second image from the left
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As for previous tests, due to the non-ergodicity of our DS model, an amount of

small and large particles varies from one realization to another so as a global

porosity. It is recommended to use multiple TIs (coming from several HR images)

in order to guaranty the statistically representative results.

3 Case 2

A 11-mm diameter cylindrical rock sample was cored from a reservoir sandstone

petrophysics plug. The rock was chosen for its large porosity (25.4%) and perme-

ability (300 mD) and the presence of very small pore structures (mainly clay). A

first large 3D image was obtained by successively imaging the sample at seven

different vertical positions and by stitching all the images together. The result field

of view is around 1.6 cm3 at a voxel resolution of 3.1 μm (later referred to as the low

resolution). A region of the rock containing large and small structures was located

in the reconstructed volume and subsequently imaged at a voxel resolution of

905 nm (field of view ~5.9 mm3, later referred to as the high-resolution image).

3.1 Downscale Problem Description

Our second case study is illustrated Fig. 6. A large low-resolution (LR) image exists

for a statistically representative sample. A high-resolution (HR) image is available

only for a small part of the low resolved one. This HR part contains several types of

heterogeneities (grains, pores, different forms of clay). Calculated only on this

small HR part, the quantity of each type of heterogeneities is not reliable, but the

shapes are correctly represented. The idea is then to extrapolate different types of

the heterogeneities seen on the HR image to the initial large sample. From the

geostatistical point of view, it remains to apply a downscaling to the LR image.

To do so, we use a DS technique constrained by an auxiliary variable. The idea

of using an auxiliary variable to characterize a TI and to constrain an MPS

simulation was first proposed by Chugunova and Hu (2008) in its collocated

co-simulation form in order to deal with nonstationary TI with a tree-based MPS

algorithm. Then, the use of auxiliary variable was generalized to a DS algorithm

with non-collocated co-simulation (Mariethoz 2009). Recently, the auxiliary vari-

able approach was used to capture multiple-point statistics of geological heteroge-

neities on several scales in the reservoir modeling context (Doliges et al. 2014). In

this work, we propose to use auxiliary variable technique in order to link statisti-

cally two different scales represented by HR and LR images.

The principle of this technique can be described as follows. Let’s take HR TI

image for a small sample and its equivalent in LR (TI and Auxiliary TI in Fig. 7).

By extracting the multiple-point statistics simultaneously from both images, we

may statistically estimate a relation between the patterns in the HR and the

corresponding values of the LR. Then, for the simulation step, we impose the
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available LR image of the entire sample as a constraint. For a current point to

simulate, the DS algorithm will capture the neighborhood values in the simulation

grid corresponding to the HR but also the neighborhood values of the LR constraint.

Then, the algorithm will scan simultaneously the vector training image (HR and

LR) by looking for the similar (vector) pattern. In such a way, the reproduced

heterogeneities will have the structure of HR image and will be conditioned by

corresponding LR values.

3.2 DS Results and Discussion

In this downscaling test, we transform the HR raw image into the TI in the similar

way as in the Case 1: by improving contrasts and segmenting into several facies.

Note that for the Case 2 in HR image, the smallest heterogeneities are resolved by

only several pixels. The upscaling process will induce the loss of information and

will reduce the accuracy of the petrophysical properties calculation. Thus, the

resolution of the HR image was considered as the optimal, and no upscaling was

applied.

To illustrate the results, we show one part of the target simulation grid which has

approximately the same size as a HR TI. Intentionally, this illustrated zone contains

a part of HR TI (Fig. 7). Thereby, we could compare the DS simulation in two

zones: one covering the LR patterns with their exact replicates in the TI and another

where only similar patterns exist.

Fig. 6 LR image capturing large sample (on the left) and HR image capturing small sample (on
the right)
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The results of DS simulation are zoomed and illustrated in Fig. 8. We observe

generally acceptable quality of pattern reproduction: the borders of large grains are

sharp as it is a case in the TI; an evident filamentary clay feature (positioned in the

overlapping zone) is also downscaled with the appropriate details. The principle of

downscaling with DS constrained by the low resolved image is demonstrated.

Nevertheless, we notice that some features expected to be downscaled with clay-

like structure are simulated like grains (Fig. 8). The explanation can come from the

TI analysis. Coming back to the TI prerequisites, we recall here that a good TI

should have a lot of repetitive similar patterns representing a same spatial structure.

Whereas our TI contains not one but several types of heterogeneities rather different

one to each other: grains of different sizes with sharp edges, pores, small clay

patches, small clay features with lacy motifs, and small elongated clay features with

filamentary motifs. Quantifying the volumes occupied by different motifs, the

probability to reproduce one of the clay patterns is much smaller than the proba-

bility to reproduce grain or pore pattern. One may argue that the auxiliary constraint

(LR image) should guide the DS simulation in order to distinguish grains, pores,

and clays. By detailed analysis, we notice that some LR values may correspond to

Fig. 7 Vector TI consists of categorical TI of five facies obtained by segmentation of HR image

and auxiliary TI corresponding to the raw LR image. One DS realization is constrained with

auxiliary constraint coming from LR image of large sample
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both grain and clay structures, whereas the DS algorithm has no criteria to discrim-

inate them. As statistically it is more probable to find grain pattern, that is what

happens the most during the simulation process.

A way forward can be envisioned to improve clay heterogeneities simulation.

Knowing that the regions inside grains and pores are already clearly indentified in

the LR image, we may reduce our TI image as well as the simulation zone only to

the heterogeneities of interest such as pore edges and clay regions.

4 Conclusions

In this work we propose two approaches to tackle the problem of multi-scale and

multi-support pore network reconstruction with MPS. Two case studies applica-

tions illustrate these approaches.

In Case 1 we deal with relatively simple spatial structures but containing two

scales of heterogeneities: large grains and small particles. By applying an image

treatment (contrast improving, segmentation in several classes), we transform the

raw X-ray image in the reliable TI. Applying DS technique with flexible template,

we demonstrate a good-quality internal structure reproduction. The practitioner

should nevertheless pay attention to the ergodicity aspects. Indeed, the sole TI of

case 1 is non-ergodic, and it is recommended to use multiple TIs (or 3D TI) to cover

a representative area of sample and to obtain statistically robust results.

In Case 2 we deal with two different supports (resolutions) but are also

confronted with practical difficulties. The rock sample is characterized by two

images with different resolutions and cover different volumes. The TI contains

several very different spatial structures. The structures of interest are minatory

comparing to the most represented patterns of pores and grains. To reconcile two

different resolutions, we propose to apply the DS co-simulation with auxiliary

constraint where HR image will stand for a TI and the LR image – for a constraint.

We illustrate the results of DS application using the entire TI. The unresolved

Fig. 8 Zoom on the DS realization and corresponding auxiliary constraint
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features like vague edges or filamentary clays are correctly resolved by this

approach. But some of features instead of being simulated as clay heterogeneities

are simulated as grains. This phenomenon is explained by the most frequent

patterns in the TI which are the grains. As a way forward to solve these practical

difficulties, we propose to reduce the TI scan area and the simulation area to the

uncertain zone where the downscaling is necessary and so increase the frequency of

rare clay patterns in the TI.

Having learned from these two cases, the following can be drawn. In case of

heterogeneities on several scales and a spatial organization between scales (Case 1:

small particles appear where the boards of large grains become broken), we

recommend the first approach. In case where the spatial structure dramatically

changes while changing a resolution of scan and a precision is needed for more

accurate calculation (Case 2), we recommend the second approach.
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Bernstein Copula-Based Spatial Stochastic
Simulation of Petrophysical Properties Using
Seismic Attributes as Secondary Variable

Martı́n A. Dı́az-Viera, Arturo Erdely, Tatiana Kerdan,

Raúl del-Valle-Garcı́a, and Francisco Mendoza-Torres

Abstract A novel Bernstein copula-based spatial stochastic co-simulation

(BCSCS) method for petrophysical properties using seismic attributes as a second-

ary variable is presented. The method is fully nonparametric, and it has the

advantages of not requiring linear dependence between variables. The methodology

is illustrated in a case study from a marine reservoir in the Gulf of Mexico, and the

results are compared with sequential Gaussian co-simulation (SGCS) method.

1 Introduction

Modeling the spatial distribution of petrophysical properties in the framework of

reservoir characterization is a crucial and difficult task due to the lack of

enough data and hence the degree of uncertainty associated with it. For this reason,

in recent years a stochastic simulation approach for the spatial distribution of

petrophysical properties has been adopted.

Seismic attributes have been extensively used as secondary variables in static

reservoir modeling for petrophysical property prediction but usually assuming

linear dependence and Gaussian distribution (Parra and Emery 2013).

Quite recently, copulas have become popular for being a flexible means of

representing dependency relationships in the financial sector, and applications are
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already emerging in the field of geostatistics (Dı́az-Viera and Casar-González

2005; Bardossy and Li 2008; Kazianka and Pilz 2010).

A geostatistical simulation method, based on Bernstein copula approach as a tool

to represent the underlying dependence structure between petrophysical properties

and seismic attributes, is proposed. The procedure basically consists of applying the

simulated annealing method with a joint probability distribution model estimated

by a Bernstein copula in a completely nonparametric fashion (Hernández-

Maldonado et al. 2012).

The method has the advantages of not requiring linear dependence or a specific

type of distribution. The application of the methodology is illustrated in a case

study where the results are compared with sequential Gaussian co-simulation

(SGCS) method.

2 Methodology

As stated in the introduction, the main goal of this work is to show the application of

a Bernstein copula-based spatial co-simulation method for petrophysical property

predictions using seismic attributes as secondary variables and its comparison with

the classical sequential Gaussian co-simulation method. In what follows, a brief

description of both methods and a general workflow outline are presented.

2.1 Sequential Gaussian Co-simulation (SGCS)

The sequential Gaussian co-simulation (SGCS) method is very well established in

the geostatistics literature, so here we will just mention the details of its application.

Usually this method is applied with a linear model of coregionalization (Chiles and

Delfiner 1999) which is mostly unnatural, forced, very complicated, and difficult to

establish. The method assumes the existence of very strong linear dependence

between primary and secondary variables, which is its main assumption and at

the same time its main drawback. Here we choose to use an alternative variant, the

Markov model (MM), given in Chiles and Delfiner (1999, p. 305) and implemented

in SGeMS (Remy et al. 2009).

2.2 Bernstein Copula-Based Spatial Stochastic
Co-simulation (BCSCS)

A Bernstein copula-based spatial stochastic co-simulation (BCSCS) method has

been previously presented in a series of papers (Hernández-Maldonado et al. 2012,
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2014) and has been mainly applied in one dimension for petrophysical properties at

well-log scale.

The method basically consists of establishing a dependence model between a

primary and a secondary variable and then uses this model in conjunction with the

spatial dependence structure (variogram) of the primary variable to predict the first

one using the second one as a conditioning variable. This can be done in a global

optimization framework using simulated annealing method, but other methods,

such as genetic algorithms, could also be applied.

The modern way to analyze dependencies is by copula approach (Joe 1997).

Copula approach assumes neither a predetermined nor a priori type of dependency,

but from the data one tries to establish the best model that represents the existing

dependence on them.

In particular, here it is preferred to use a completely nonparametric approach to

modeling the dependence by using Bernstein copulas, which gives name to the

method. However, other approaches, parametric (Dı́az-Viera and Casar-González

2005) and semi-parametric (Erdely and Diaz-Viera 2010), are also possible. The

Bernstein copulas introduced by Sancetta and Satchell (2004) are nothing more

than an approximation of the sample copula by Bernstein polynomials. Its main

shortcoming is the curse of dimensionality, as it quickly becomes computationally

prohibitive for more than two dimensions. Alternatives have been proposed using

vine copulas (Erdely and Diaz-Viera 2016).

In summary, the algorithm consists of two stages:

1. A dependence model, using a Bernstein copula, is established from which a

number of sample values are generated (see Appendix A).

2. A stochastic spatial simulation is performed using a simulated annealing method

with a variogram model and a bivariate distribution function as objective

functions (Deutsch and Cockerham 1994; Deutsch and Journel 1998).

Additional details about the mathematical formulation of the method and its

computational implementation can be found on Hernández-Maldonado et al. (2012,

2014).

2.3 Workflow Outline

One of the biggest challenges in these applications is to simultaneously handle

multiple scales. Here, we have two scales: a well-log scale and a seismic scale. But

sometimes, due to the amount of data, an additional intermediate scale is required,

since the well-log scale data is a very large dataset and upscaled well logs may have

from a statistical point of view not enough data. Log data usually have a sampling

interval in the range of 10–25 cm, while seismic data are in the range of several

meters. So it is necessary to perform some upscaling process to make well logs

compatible with seismic data. For the upscaling process, there is no single recipe
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because it is largely dependent on the data. Here we will use the median as

upscaling procedure.

The general workflow is as follows: (1) univariate data analysis, (2) bivariate

dependence analysis, (3) variography analysis, and (4) simulations.

3 Case Study

Data used in the case study are from a marine reservoir in the Gulf of Mexico. The

reservoir is siliciclastic and it is formed mainly by alternating sequences of sands

and shales.

3.1 Data Description

The data consist of a total porosity well-log from a single well and seismic attribute

(P-impedance) obtained in a vertical (inline) section. The well log has a sample

interval of 0.1 m. The section has a length of 412.5 m and covers an interval of

336.4 m in depth and was chosen so that the well was located in the middle of it (see

Fig. 1). Seismic grid is made of 33 intervals of 12.5 m in X direction and 60 intervals

of 5.5 m in depth direction.

At well-log scale, the P-wave impedance log is obtained from the product of

P-wave velocity and density logs. At the seismic scale, a seismic inversion method

was used, based on the “LP sparse spike” approach by Li (2001). Proper care was

taken in incorporating low-frequency impedance trend so that the impedance from

the log and the impedance from the seismic section are equivalent around the well.

The impedance in general depends on the type of rock and its petrophysical

properties as well as the containing fluid types and their saturations. It is very

common in reservoir geophysics to take advantage of dependency relationships

between petrophysical properties (for instance, total porosity and P-impedance) at

well-log scale to predict the former ones (total porosity) using seismic attributes

(P-impedance) at the seismic scale.

In particular, in this work the total porosity was considered as primary variable

(variable to predict) and P-wave impedance as secondary variable (conditioning

variable). As mentioned in the previous section, three scales are considered: a well-

log, a seismic, and an additional intermediate “one-meter” scale. Hereafter, the

following notation will be used:

– PhiT_T and Ip_T for total porosity and P-impedance from original well logs

(well-log scale)

– PhiT_T_1m and Ip_T_1m for total porosity and P-impedance from original well

logs subsampled every meter (1-m scale)
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– PhiT_T_median and Ip_T_median for total porosity and P-impedance from

original well logs upscaled using median upscaling procedure (seismic scale)

– Ip_inline for P-impedance from the vertical inline section (seismic scale)

– Ip_inline_U for P-impedance from the vertical inline section restricted to the

corresponding well coordinates, i.e., only along the well trajectory (seismic

scale)

3.2 Univariate Data Analysis

In Fig. 2 are shown histograms and boxplots for PhiT and Ip at the three scales, and

in Tables 1 and 2 a summary of corresponding basic univariate statistics.

Note that median and mean are pretty close for 1-m scale and seismic scales,

while Ip_inline_U and Ip_inline have very consistent statistics.

3.3 Bivariate Dependence Analysis

In Fig. 3 are given the scatterplots with marginal histograms and boxplots for PhiT

vs. Ip (a) at well-log, (b) at 1-m, and (c) at seismic scale, respectively, while in the

Fig. 3d the corresponding scatterplot for a non-conditional Ip-PhiT simulation using

a Bernstein copula at 1-m scale is shown. In Fig. 4 are given pseudo-observations

(sample copula) scatterplots for Ip-PhiT, (a) at well-log scale, (b) at 1-m scale, (c) at

Fig. 1 Vertical (inline) section with P-impedance as a result of seismic inversion. The color scale
represents impedance values. In the middle of the section, two logs are plotted along a well: in

yellow P-impedance and in green total porosity
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Fig. 2 Histograms and boxplots for PhiT and Ip at well-log scale (a, b), at 1-m scale (c, d), and at
seismic scale (e, f), respectively
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seismic scale, and (d) for a non-conditional bivariate simulation with a Bernstein

copula at 1-m scale. In Table 3 a summary of corresponding correlation (Spearman

and Pearson) coefficients is given. It can be observed that the dependence is

weakened with the increasing of the scale.

3.4 Variography Analysis

In Fig. 5 are shown estimated variograms (a, b) and best-fit variogram models (c, d)

for PhiT and Ip at seismic scale in depth direction. As is evident in Fig. 5b, the

sample variogram of Ip_inline_U shows a typical behavior related with the pres-

ence of trend, which means that at least the intrinsic hypothesis is not satisfied.

Then, the trend, which in this case was of second order, was estimated and removed,

resulting a new variable Ip_inline_U_r2 without trend. The same previous proce-

dure was applied to Ip_Inline and a resulting detrended variable was named

Ip_inline_r2. Note, in Fig. 5d the variogram was obtained after removing trend

from Ip_inline_U. While in the Fig. 6 are displayed estimated variograms and best-

fit variogram models for impedance at seismic scale in (a) X and (b) depth direc-

tions, respectively, after removing trend from Ip_inline.

Table 1 Statistics summary of original and 1-m upscaled well logs

Statistics PhiT_T Ip_T PhiT_T_1m Ip_T_1m

n 4059 4059 337 337

Minimum 0.030 4802.22 0.057 4802.22

First quartile 0.218 6163.18 0.230 6064.66

Median 0.261 6717.99 0.273 6481.54

Mean 0.257 6906.39 0.266 6740.08

Third quartile 0.299 7270.29 0.304 7099.52

Maximum 0.571 11,812.36 0.556 11,013.43

Variance 0.004 1,264,603 0.003 1,133,016

Table 2 Statistics summary of median upscaled well logs and Ip at seismic scale

Statistics PhiT_T_med Ip_T_med Ip_inline_U Ip_inline

n 60 60 60 1980

Minimum 0.110 5730.23 5940.26 5940.16

First quartile 0.239 6074.77 6080.53 6083.72

Median 0.273 6426.24 6350.74 6340.04

Mean 0.267 6619.13 6623.50 6602.87

Third quartile 0.296 6967.11 6896.91 6893.98

Maximum 0.340 10,430.77 8726.18 8773.20

Variance 0.002 630,041 577,250 485,570
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Because of the lack of data for total porosity in the X direction, the same

variogram structure of the impedance in this direction is adopted, considering that

they show almost the same structure in the depth direction (see Fig. 5). A variogram

model for porosity at seismic scale is proposed so that the total variance of PhiT_T

median is preserved which basically it is to consider a correlation range equal to the

impedance variogram in the X direction (see Fig. 6). For both simulation methods,

the following variogram model for porosity is used: model¼spherical,

nugget¼ 0.0002, and structure contribution¼ 0.0016; ranges, maximum¼ 160,

medium¼ 50, and minimum¼ 1; angles, x¼ 90, y¼ 0, and z¼ 0.

Fig. 3 Scatterplots with marginal histograms and boxplots for Ip vs. PhiT, (a) at well-log scale,

(b) at 1-m scale, (c) at seismic scale, and (d) a non-conditional bivariate simulation with a

Bernstein copula at 1-m scale
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Fig. 4 Pseudo-observations (sample copulas) scatterplots of Ip-PhiT data ranks, rescaled to [0,1]

(a) at well-log scale, (b) at 1-m scale, (c) at seismic scale, and (d) a non-conditional bivariate

simulation with a Bernstein copula at 1-m scale

Table 3 Summary of correlation coefficients for Ip vs. PhiT at well-log, 1-m, and seismic scales

and for a non-conditional bivariate Ip-PhiT simulation with a Bernstein copula at 1-m scale

(BCS_1m)

Correlation coefficients Well-log scale One-meter scale Seismic scale BCS_1m

Spearman �0.589 �0.477 �0.361 �0.576

Pearson �0.711 �0.657 �0.529 �0.703
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3.5 SGCS Simulations

A sequential Gaussian co-simulation (SGCS) with Markov model variant (MM1),

implemented in SGeMS (Remy et al. 2009), was performed with the following

parameters: primary variable, PhiT_T_median; secondary variable, Ip_Inline_r2;

grid, 33� 60� 1 (the same as Ip_Inline_r2); Kriging type, simple kriging (SK);

max conditioning data, 12; correlation coefficient, �0.657; search ellipsoid,

160, 50, and 1; variogram model of primary variable¼spherical, nugget¼ 0.0002,

and structure contribution¼ 0.0016; ranges, maximum¼ 160, medium¼ 50, and

minimum¼ 1; angles, x¼ 90, y¼ 0, and z¼ 0.

Fig. 5 PhiT and Ip estimated variograms (a, b) and best-fit variogram models (c, d) at seismic

scale in depth direction. Note, in d variogram after removing trend from Ip
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The resulting simulation is named PhiT_SGC and its map in the vertical (inline)

section is given in the Fig. 8a.

3.6 BCSCS Simulations

A Bernstein copula-based spatial stochastic co-simulation (BCSCS) was performed

using the procedure explained before. First, a dependence model, using a Bernstein

copula at 1-m scale (see Fig. 4b), was obtained from which 40,000 conditional

bivariate simulations (BCsim40000_cond) conditioning by secondary variable

were generated (see Fig. 7). Then, as simulated annealing program was used a

modified version of SASIM from GSLIB (Deutsch and Journel 1998) with the

following parameters: primary variable, PhiT_T_median; secondary variable,

Ip_Inline; grid, 33� 60� 1 (the same as Ip_Inline); objective function, variogram

and bivariate distribution function; paired data, 40,000 conditional bivariate simu-

lations using a Bernstein copula (BCsim40000_cond); number of primary

thresholds¼ 10, number of secondary thresholds¼ 10, number of variogram lags

¼ 40, variogram model of primary variable¼ spherical, nugge t¼ 0.0002, and

structure contribution¼ 0.0016; ranges, maximum¼ 160, medium¼ 50, and

minimum¼ 1; angles, x¼ 90, y¼ 0, and z¼ 0. A map of the resulting simulation

is given in the Fig. 8b.

Fig. 6 Estimated variograms and best-fit variogram models for Ip at seismic scale after removing

trend in (a) X and (b) depth directions, respectively
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3.7 SGCS vs. BCSCS: A Comparative Summary

In comparison with the SGCS method, the BCSCS method better reproduces the

statistics in terms of variance and extreme values (see Fig. 9), and both methods

reproduce quite well the spatial structure (see Fig. 10), but the sequential Gaussian

co-simulation shows spurious correlation dependence, which does not exist in the

original data, highlighted in red color in Fig. 11. This is the main reason of the

difference between Fig. 8a and 8b.

Fig. 7 (a) Scatterplot with marginal histograms and boxplots and (b) pseudo-observations

(sample copulas) scatterplot for 40,000 conditional bivariate simulations using a Bernstein copula

at 1-m scale

Fig. 8 Maps for (a) a PhiT sequential Gaussian co-simulation, and (b) a PhiT Bernstein copula-

based co-simulation in the vertical (inline) section
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4 Final Remarks and Future Work

A Bernstein copula-based spatial stochastic co-simulation (BCSCS) method

presented in this paper possesses several advantages over the classical sequential

Gaussian co-simulation method (SGCS). Firstly of all, it does not require of a strong

Fig. 9 PhiT histograms and boxplots for (a) a sequential Gaussian co-simulation and (b) a

Bernstein copula-based co-simulation, respectively

Fig. 10 Ip vs. PhiT scatterplots with marginal histograms and boxplots for (a) a sequential

Gaussian co-simulation and (b) a Bernstein copula-based co-simulation, respectively. Simulated

values with spurious dependence, which does not exist in the original data, are highlighted in red
color
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linear dependence between variables; on the contrary, it can capture and reproduce

the existing dependence between them. The method is nonparametric which means

that it does not need a specific distribution function. Since the Bernstein copula is

based on the sample distribution function, it may reproduce the variability and the

extreme values. Another advantage is that there is no need to make back trans-

formations, which are potentially biased, since copulas are invariant under strictly

increasing transformations.

Instead of using a single seismic attribute, it could be used the best combination

of them depending on the primary (explanatory) variable by applying standard

multivariate statistical procedures such as principal component and factorial

Fig. 11 Estimated variograms and best-fit variogram models in X and depth directions for a

sequential Gaussian co-simulation (a, b) and a Bernstein copula-based co-simulation (c, d),
respectively
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analysis. Another option would be using a multivariate copula with three or more

variables to directly exploit their dependencies.

This work can be easily extended to 3D problems but it depends on the

computing power available. Although in this work the aim was to show the

performance of the simulation method, a simpler and efficient alternative, perhaps

more convenient for 3D large problems, could be the median regression approach

already shown in previous works (Erdely and Diaz-Viera 2010; Hernández-

Maldonado et al. 2012) in 1D.

Acknowledgments The present work was supported by the IMP project D.61037 “Interpretación

Sı́smica Cuantitativa Guiada por Litofacies para la Caracterización de Yacimientos.”

Appendix A: Copula-Based Approach for Dependence
Modeling

A theorem by Sklar (1959) proved that there exists a functional relationship

between the joint probability distribution function of a random vector and its

univariate marginal distribution functions. In the bivariate case, for example,

if (X, Y ) is a random vector with joint probability distribution

FXY x; yð Þ ¼ P X � x,Y � yð Þ, then the marginal distribution functions of X and

Y areFX xð Þ ¼ P X � xð Þ ¼ FXY x;1ð Þ andFY yð Þ ¼ P Y � yð Þ ¼ FXY 1; yð Þ, respec-
tively, but in the marginalization of FXY, some information is lost since the only

knowledge of the marginal distributions FX and FY is not generally possible to

specify FXY because the marginals only explain the probabilistic individual behav-

ior of the random variables they represent. Sklar’s theorem proves that there exists a

function CXY : 0; 1½ �2 ! 0; 1½ � such that

FXY x; yð Þ ¼ CXY FX xð Þ,FY yð Þð Þ

CXY is called copula function associated to (X, Y) and contains information about

the dependence relationship between X and Y, independently from their marginal

probabilistic behavior. CXY is uniquely determined on Ran FX � Ran FY , and

therefore, if FX and FY are continuous, then CXY is unique on [0, 1]
2. Among several

properties of copula functions, see Nelsen (2006), we have the following:

• C u; 0ð Þ ¼ 0 ¼ C 0; vð Þ
• C u; 1ð Þ ¼ u,C 1; vð Þ ¼ v
• C u2; v2ð Þ � C u2; v1ð Þ � C u1; v2ð Þ þ C u1; v1ð Þ � 0 if u1 � u2, v1 � v2
• C is uniformly continuous on its domain [0, 1]2.

• The horizontal, vertical, and diagonal sections of a copula C are all

nondecreasing and uniformly continuous on [0, 1].
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• W u; vð Þ � C u; vð Þ � M u; vð Þ where W u; vð Þ ¼ max uþ v� 1, 0ð Þ and M u; vð Þ
¼ min u; vð Þ are also copulas known as the lower and upper Fréchet-Hoeffding

bounds.

• A convex linear combination of copula functions is also a copula function.

• If X and Y are continuous random variables with copula CXY, and if α and β are

strictly increasing functions on Ran X and Ran Y, respectively, then

Cα Xð Þβ Yð Þ ¼ CXY . Thus, CXY is invariant under strictly increasing transformations

of X and Y.

Copula functions are a useful tool to build joint probability models in a more

flexible way since we may choose separately the univariate models for the random

variables of interest and the copula function that better represents the dependence

among them, in each case in a parametric or nonparametric way. In the case of a

multivariate normal model, for example, all the marginal distributions have to be

normally distributed, with no tail dependence at all and with finite second moments

for the correlations to be well defined. In fact, the multivariate normal model is a

particular case when the underlying copula is Gaussian and all the univariate

marginals are normally distributed.

In case FX and FY are continuous, by elementary probability we know that U
¼ FX Xð Þ and V ¼ FY Yð Þ are continuous Uniform(0, 1) random variables and the

underlying copula C for the random vector (U, V ) is the same copula corresponding

to (X, Y), and by Sklar’s theorem we have that the joint probability distribution

function for (U, V ) is equal to FUV u; vð Þ ¼ C FU uð Þ,FV vð Þð Þ ¼ C u; vð Þ. Therefore,
in case FX and FY are known and FXY is unknown, if {(x1, y1), . . ., (xn, yn)} is an

observed random sample from (X, Y), the set

uk; vkð Þ ¼ FX xkð Þ,FY ykð Þð Þ : k ¼ 1, . . . , nf g would be an observed random sample

from (U, V) with the same underlying copula C as (X, Y ), and since C ¼ FUV we

may use the (uk, vk) values (called copula observations) to estimate C as a joint

empirical distribution:

Ĉ u; vð Þ ¼ 1

n

Xn
k¼1

1 uk � u , vk � vf g

Strictly speaking, the estimation Ĉ is not a copula since it is discontinuous and

copulas are always continuous. If FX, FY, and FXY are all unknown (the usual case),

we estimate FX and FY by univariate empirical distribution functions:

F̂XðxÞ ¼
1

n

Xn
k¼1

1fxk�xg F̂YðyÞ ¼
1

n

Xn
k¼1

1fyk�yg

Now the set of pairs fðuk, vkÞ ¼
�
F̂XðxkÞ, F̂YðykÞ

�
: k ¼ 1, . . . , ng is referred to as

copula pseudo-observations. It is straightforward to verify that F̂XðxkÞ ¼ 1
n rankðxkÞ

and F̂YðykÞ ¼ 1
n rankðykÞ. In this case the concept of empirical copula, see Nelsen
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(2006), is defined as the following function Cn : I
2
n ! 0; 1½ �, where

In ¼ i
n : i ¼ 0, . . . , n

� �
, given by:

Cn
i

n
;
j

n

� �
¼ 1

n

Xn
k¼1

1 rank xkð Þ�i, rank ykð Þ�jf g

Again, Cn is not a copula, but it is an estimation of the underlying copula C on the

grid I2n that may be extended to a copula on [0, 1]2 by means of, for example,

Bernstein polynomials, as proposed and studied in Sancetta and Satchell (2004),

which leads to what is known as a Bernstein copula nonparametric estimation eC
: 0; 1½ �2 ! 0; 1½ � given by:

eCðu, vÞ ¼ Xn
i¼0

Xn
j¼0

Cn
i

n
,
j

n

� �
n
i

� �
uið1� uÞn�i n

j

� �
vjð1� vÞn�j

As summarized in Erdely and Diaz-Viera (2010) in order to simulate replications

from the random vector (X, Y) with the dependence structure inferred from the

observed data {(x1, y1), . . ., (xn, yn)}, we have the following:

Algorithm 1

1. Generate two independent and continuous Uniform(0, 1) random variates

u and t.

2. Set v ¼ c�1
u tð Þ where cu vð Þ ¼ ∂eC u;vð Þ

∂u .

3. The desired pair is ðx, yÞ ¼ ðeQnðuÞ, eRnðvÞÞ where eQn and eRn are empirical

quantile functions for X and Y, respectively.

For a value x in the range of the random variable X and a given 0 < α < 1, let

y ¼ φα xð Þ denote the solution to the equation P Y � y Xj ¼ xð Þ ¼ α. Then the graph

of y ¼ φα xð Þ is the α-quantile regression curve of Y conditional on X¼ x. In Nelsen

(2006), it is proven that:P Y � y Xj ¼ xð Þ ¼ cu vð Þ��u¼FX xð Þ,v¼FY yð Þ
This result leads to the following algorithm to obtain the α-quantile regression

curve of Y conditional on X ¼ x:

Algorithm 2
1. Set cu vð Þ ¼ α.
2. Solve for v the regression curve, say v ¼ gα uð Þ.
3. Replace u by eQ�1

n ðxÞ and v by eR�1
n ðyÞ.

4. Solve for y the regression curve, say y ¼ φα xð Þ.
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Robust MPS-Based Modeling via Spectral
Analysis

Morteza Elahi Naraghi and Sanjay Srinivasan

Abstract Spatially distributed phenomena typically do not exhibit Gaussian

behavior, and consequently methods constrained to traditional two-point covari-

ance statistics cannot correctly represent the spatial connectivity of such phenom-

ena. This necessitates the development of multiple-point statistics (MPS)-based

algorithms. However, due to the sparse data available to infer these MPS statistics,

one needs to have a training image (TI) to accurately model higher-order statistics.

Training images are usually inferred from outcrops and/or conceptual models and

are subject to uncertainty that have to be accounted for in MPS algorithms.

In this study, we propose a new method for ranking different sets of TIs

corresponding to different geological scenarios. These set of TIs represent the

associated uncertainty and contain features of different shapes (channels, ellipses,

fracture, etc.) as well as different sizes and orientation. We analyze the polyspectra

of the different TIs (power spectrum and bispectrum) to distinguish between

different TIs. We show that object size and orientation can be inferred from the

power spectrum, while the object shapes can be inferred from the bispectrum.

Therefore, the combination of power spectrum and bispectrum can be used as an

identifier for each TI.

We then infer the power spectrum and bispectrum from the available condition-

ing data. Since the data is scattered and sparse, we use a nonuniform fast Fourier

transform (NUFFT) method based on a basis pursuit algorithm to estimate the

Fourier transform of the scattered data. We then use the Fourier transform to

calculate the power spectrum and the bispectrum. Then, the identifier features are

calculated from the higher-order spectra. Finally, we choose the TI with the closest

identifier to that of conditioning data as the representative TI.

We implement the proposed algorithm on different geologic systems such as

channelized reservoir, fractured reservoirs, and models with elliptic objects with

different sizes and orientations and examine its performance. We study the sensi-

tivity of the algorithm to the available conditioning data. We show that the

algorithm performs well with very sparse conditioning data. This algorithm can

address one of the main issues pertaining to MPS algorithms, which is ensuring the
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consistency between the training image and conditioning data in order to develop

robust models that have improved predictive ability. In case MPS-based simula-

tions are performed accounting for the uncertainty in TI, the method can be used to

rank the prior TIs so as to yield robust estimates for uncertainty.

1 Introduction

One of the most important issues in reservoir modeling is to generate maps of flow

and geologic attributes that play a great role in hydrocarbon production. Mostly, the

primary source of information is borehole measurements that are only available at

sparse locations. Integrating the available data along wells within robust models for

spatial continuity, multiple reservoir models can be generated that can be used to

quantify the uncertainty associated with reservoir predictions. Investigation of new

methods to integrate information from multiple sources that are at different reso-

lution and precision accuracy is still an active area of research.

Different algorithms have been developed to stochastically simulate reservoir

properties using sparse measured data. All these methods aim to draw realizations

of the random function Z(u) based on the joint distribution function describing the

random function. Some popular methods are sequential simulation (Journel 1983;

Isaaks and Srivastava 1989; Goovaerts 1997; Chiles and Delfiner 1999), iterative

approaches (Maksimov et al. 1993), etc. that have become the core tools in many

current geostatistical applications.

These simulation methods are based on variogram functions – a measure of

spatial variability based on a two-point spatial template. It has been pointed out that

in order to ensure legitimacy of the kriged/simulated values, the first step should be

to model the inferred variograms in such a way that the covariance matrix is

guaranteed to be positive definite. To achieve this, the variogram functions need

to be modeled using some well-known positive definite functions. Alternatively,

Yao (1998) proposed that the covariance function could be modeled

non-parametrically in Fourier domain to satisfy the positive definiteness assump-

tion. This overcomes the limitation of parametric modeling of the covariance

function, where one is limited to a few families of positive definite functions for

covariance modeling, which limits our ability to model complex heterogeneities.

The major drawback of this traditional variogram-based geostatistical modeling

is that they are not able to reproduce complex spatial patterns such as fluvial

channels. The variogram is inadequate to capture complex curvilinear features.

To reproduce the curvilinear structures and pattern continuity, the anisotropy

direction of variogram must be changed locally (Deutsch and Lewis 1992; Xu

1996; Boisvert and Deutsch 2011). One could also correct for additional connec-

tivity of the geological patterns by modifying the variogram ranges (Gringarten and

Deutsch 2001).
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All the previous algorithms are based on two-point connectivity functions only

and cannot reproduce complex curvilinear objects such as fluvial channels. Initially

Srivastava (1992) proposed to go beyond bivariate moments by introducing

multiple-point geostatistics that considers variability at more than two locations

taken jointly. Caers and Journel (1998) proposed the idea of borrowing conditional

probabilities directly from a training image (TI), allowing the use of higher-order or

multiple-point statistics to reproduce geological structures and patterns.

Strebelle (2000) developed the first structured multiple-point statistics algorithm

of “single normal (extended) simulation” (called snesim) for simulating categorical

variables. The approach of snesim is based on inferring the probability of various

outcomes at the central node of a spatial template based on the pattern of outcomes

on the remaining nodes of the template from the training image. In order to reduce

the computational complexity of computing the conditional probabilities, instead of

scanning the training image for each conditioning data template, it stores all

probabilities in a search tree by a one-time scanning of the training image. The

search tree data structure allows a fast retrieval of all required conditional proba-

bilities during the simulation. One of the shortcomings of snesim, however, is that

the training image needs to be categorical, and it does not work with continuous

variables.

Several other algorithms for mps simulation have been proposed. GrowthSim
(Eskandari and Srinivasan 2007; Huang and Srinivasan 2012) introduced the notion

of simulating multiple-point simulation event conditioned to multiple-point data

event in the vicinity of the simulation node. This method is in contrast to traditional

multiple-point statistics algorithms where the simulation progresses one node at a

time. Huang and Srinivasan (2012) demonstrated the GrowthSim algorithm for

developing the reservoir model for a deepwater turbidite system. They also showed

the capability of GrowthSim algorithm to represent nonstationary features.

Cumulants are combinations of statistical moments, such as mean or variance

that allow the characterization of non-Gaussian random variables (Rosenblatt

1985). Higher-order spatial cumulants can capture the complex geological features

and geometrical shapes of the physical phenomena. Dimitrakopoulos et al. (2010)

first used the concept of cumulants in the spatial context to characterize nonlinear

stationary and ergodic spatial random fields.

They showed that higher-order cumulants are related to the orientation of the

spatial template. Each geological process requires its own choice of cumulants for

optimal pattern analysis. They also showed that cumulants up to and including fifth

order are sufficient for efficiently characterizing complex spatial geometries

observed in training images.

Mustapha and Dimitrakopoulos (2010b) provided a computer code for calculat-

ing higher-order spatial cumulants. Furthermore, spatial cumulants were used as the

basis for the simulation of complex geological phenomena by Mustapha and

Dimitrakopoulos (2010b). The simulation takes advantage of spatial cumulants in

the high-dimensional space of Legendre polynomials in a sequential framework,

called hosim. It proceeds by randomly choosing a spatial node u, estimating the

conditional probability of the random variable given the neighboring data and
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previously simulated nodes and, finally, drawing a value for that node from the

distribution. The process repeats until all the nodes of the grid have been visited.

The process is similar to sequential simulation; the only difference is the method of

deriving the analytical expressions for the local probability density functions. In

hosim, Legendre coefficients are inferred using multiple-point spatial templates and

used to derive the expressions for multivariate conditional distributions. The pro-

posed cumulant-based method is assumed to be less dependent on the training

image statistics than snesim method but more data-driven; in the sense that it first

tries to infer the multiple-point statistics from the data, and only if not enough

replicates could be found, the training image will be used for inference.

Many pattern-based algorithms such as Filtersim (Zhang 2006), direct sampling

(Mariethoz and Renard 2010), Wavesim (Chatterjee et al. 2012), dispat (Honarkhah

and Caers 2010), CCSIM (Tahmasebi et al. 2012), and Bunch-DS (Rezaee et al.

2013) have been proposed to improve the computational efficiency of the simula-

tion algorithm over previously introduced ones.

However, all the proposed algorithms rely heavily on training images and the

patterns depicted in the TI. We discuss the development of an MPS algorithm that

can be applied even if an exhaustive training image is not available. We discuss the

inference of higher-order moments from available data.

This paper mainly focuses on selecting the best training image from a set of

multiple scenarios, which is the problem addressed in (Pérez et al. 2014) with

another point of view. This paper is organized as follows: we first explain what

higher-order cumulants and polyspectra are and describe their features. We present

how they can be calculated and what features can be inferred from them. We

subsequently discuss the inference of polyspectra from sparse conditioning data.

We demonstrate the application of the proposed algorithm on different reservoir

models such as channelized reservoir, fractured reservoirs, and models with elliptic

objects with different sizes and orientations. We study the sensitivity of the

algorithm to the available conditioning data. We show that the algorithm performs

well even when the conditioning data is very sparse.

2 Method

The modeling algorithm presented in this paper is based on two steps: (1) calculat-

ing the polyspectra from training images and conditioning data and (2) feature

extraction from polyspectra (size, orientation, and shape of the objects). These steps

are explained in the next sections.
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2.1 Higher-Order Cumulants and Polyspectra

As mentioned earlier, the first step of most of geostatistical simulations is to infer

the multiple-point connectivity functions. In this section, we discuss higher-order

statistics and present the definition of polyspectra of random function and show a

fast algorithm for inferring it even when the training image is not available.

2.1.1 Higher-Order Statistics of Random Functions

Given a random variable, Z, its moment-generating function is defined as

(Rosenblatt 1985):

M ω½ � ¼ E eωz½ � ¼
Z 1

�1
eωzfZ zð Þdz ð1Þ

The rth (r �0) moment of Z is Momr Z½ � ¼ E zr½ � ¼
Z 1

�1
zrfZ zð Þdz. Provided that

the moment-generating function M has a Taylor expansion about the origin:

M ω½ � ¼ E eωz½ � ¼ E
X1

r¼0

ωrzr

r!

� �
¼

X1
r¼0

ωrMom Z½ �
r!

ð2Þ

Then the rth moment of Z is the rth derivative of M at the origin.

For a k-th order stationary random function Z(u), the k-th order moment of this

process, denoted asMk, z h1; h2; . . . ; hk�1ð Þ, is defined as the joint k-th order moment

of the random variables Z(u), Z(u+h1), . . ., Z(u+hk�1), i.e.,

Mk, z h1; h2; . . . ; hk�1ð Þ ¼ E Z uð Þ, Z uþ h1ð Þ, . . . , Z uþ hk�1ð Þf g ð3Þ

The k-th order polyspectrum is defined as the (k�1)-dimensional discrete Fou-

rier transform of the k-th order moment (Mk, z h1; h2; . . . ; hk�1ð Þ), i.e.,

Sk, z ω1;ω2; . . . ;ωk�1ð Þ ¼
X1

h1¼�1 . . .
X1

hk�1¼�1 Mk, z h1; h2; . . . ; hk�1ð Þ

� exp �j
Xk�1

i¼1
ωihi

h i
ð4Þ

The ω1 � ω2 � � � � � ωk�1 frequency space is the domain of support for

Sk, z ω1;ω2; . . . ;ωk�1ð Þ. S2, z (w) (which is the Fourier transform of covariance

function) is known as the power spectrum (in many papers the notation P(w)is
used). S3,z(ω1,ω2) and S4,z(ω1,ω2,ω3) are known as bispectrum (also noted as B
(ω1,ω2)) and trispectrum (also noted as T(ω1,ω2,ω3)) of the random process and

have been widely used for many applications in signal processing such as system

identification, image reconstruction, etc. (Chandran and Elgar 1993; Hall and
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Giannakis 1995; Giannakis and Mendel 1989). Many symmetries exist in argu-

ments of Mk, z h1; h2; . . . ; hk�1ð Þ making their calculation manageable.

By plugging Eq. 3 in Eq. 4, the power spectrum, bispectrum, and trispectrum can

be calculated by

S2, z ωð Þ ¼ F ωð Þj j2 ð5Þ
S3, z ω1;ω2ð Þ ¼ F ω1ð ÞF ω2ð ÞF∗ ω1 þ ω2ð Þ ð6Þ

S4, z ω1;ω2;ω3ð Þ ¼ F ω1ð ÞF ω2ð ÞZ ω3ð ÞF∗ ω1 þ ω2 þ ω3ð Þ ð7Þ

More generally, it can be proved that (Brillinger 1965)

Sk, z ω1;ω2; . . . ;ωk�1ð Þ ¼ F ω1ð Þ . . .F ωk�1ð ÞF∗ ω1 þ ω2 þ � � � þ ωk�1ð Þ ð8Þ

where F (w) is the Fourier transform of Z (u) and F* is its conjugate transform. As

can be seen in Eqs. 5 and 6, the power spectrum is related to the amplitude of the

Fourier transform, but bispectrum is related to both amplitude and the phase of the

Fourier transform.

If one aims to infer the moments from a training image, the Fourier transform of

the training image can be used in Eq. 8 to calculate the polyspectra and use inverse

Fourier transform to calculate the moment as in Eq. 4. This would be computation-

ally more efficient than the case that the pairs with prescribed lag size are searched

in the training image to calculate the moments. For example, for a simple 1-D

training image with N data points, calculating covariance by calculating power

spectrum density will be done in O (N log N ) operations instead of O(N2)

(by searching the pairs in the training image and calculating covariance function

directly). In addition, this allows us to model the connectivity function without

constraining to a few parametric functions. For example, it will be shown in the

results section that using the covariance inferred from power spectrum instead of

using covariance models based on positive definite functions improves the repro-

duction of connectivity in the simulated image.

However, when the training image is not available, calculating the Fourier

transform from scatter data points (conditioning data) and inferring the

polyspectrum will be challenging. This in fact is the main reason that when the

training image is not available, one is only limited to variogram-based (two-point

statistics) simulation techniques. In order to solve this issue, we propose a compu-

tationally efficient and robust method for calculating higher-order spectra of a

random function from scattered data points using a nonuniform fast Fourier trans-

form (NUFFT) (Fessler and Sutton 2003; Keiner et al. 2009; Khalighi et al. 2015;

Drach et al. 2015).
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2.1.2 Estimation of Higher-Order Spectra from Scattered Data Points

Estimation of higher-order moments by calculating higher-order polyspectra

improves the computational efficiency of the process due to the fast performance

of FFT. However, FFT requires an exhaustive dataset or image (such as a training

image) and not amenable to calculating higher-order moments from scattered data.

In this section, we present a new methodology for fast calculation of Fourier

transform from scattered data based on compressed sensing theory (Donoho

2006). This will be done by assuming that the Fourier transformation of geologic

variable is nearly sparse in frequency domain (have only a few nonzero coefficient).

This assumption has been used in many image reconstruction studies (Gan 2007;

Lustig et al. 2008; Wang et al. 2008). We propose to infer Fourier transform of

reservoir variables from the available scattered data by imposing sparsity constraint

on Fourier transform. A brief discussion of compressed sensing theory follows.

Compressed sensing has been recently proposed for reconstruction of sparse

signals from partial observations in a complementary “incoherent” domain using

convex optimization (Candès et al. 2006; Donoho 2006; Candes and Tao 2006).

Assume a sparse signal xN and its transformation coefficients yN when subject to

transformation matrix AN�N:

yN�1 ¼ AN�NxN�1 ð9Þ

In the notation of Eq. 9, x is the Fourier transform coefficient, A is the inverse

Fourier transform matrix, and y is the actual image. Because the image exhibits

spatial correlation, its Fourier transformation is sparse.

When performing conditional geostatistical simulations, construction of an

image or a map knowing only (K K � Nð Þ observations is desired. These sparse

observations yK�1 can be reconstituted as:

yK�1 ¼ AK�NxN�1 ð10Þ

This problem is ill-posed and has multiple solutions. However, a unique solution

can be found by imposing a sparsity constraint on x, by solving the following l1
norm optimization problem:

minx2RN xk k1 subject to yK�1 ¼ AK�NxN�1 ð11Þ

This is the basis pursuit problem in the field of signal processing (Chen and

Donoho 1994). It should be noted that because of the spatial correlation of the

images, x (the Fourier transform) has a sparse representation. Another approach for

solving this problem is to change the problem to a regularization problem and solve

the following (Zhdanov 2002):
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minx2RN y� Axk kp þ λ xk kq ð12Þ

Usually three alternatives for the objective function norms lq and lp in the above

equation are considered: the linear least squares (LLS) [p¼q¼ 2], the least absolute

deviation (LAD) [p¼q¼ 1], and the least mixed norm (LMN) [p¼ 2, q¼ 1].

As mentioned before, the Fourier transform coefficient of images is i sparse;

therefore, in our case, x is the Fourier transform coefficient of the geologic map, A is

the inverse Fourier transformation matrix, and y is the scattered measured geology

variables. By solving the optimization problem, Fourier transform can be calculated

and used to estimate the higher-order moments.

This idea has also been used for geostatistical simulation (Jafarpour et al. 2009)

where the Eq. 11 has been used to estimate a Fourier-based transform (DCT in that

paper) and the reservoir properties are calculated by inverse transform. However,

the proposed algorithm can only generate one realization and uncertainty cannot be

quantified.

2.2 Feature Extraction from Polyspectra

In this section, we present how the polyspectra can be used to extract information

about size, shape, and orientation of features in images. We focus on the properties

of power spectrum and bispectrum.

2.2.1 Image Orientation

One of the properties of Fourier transform is that if an image is rotated, its Fourier

transform also rotates (Fig. 1) (Reddy and Chatterji 1996). Therefore, by applying a

rotational transform in the Fourier transform space, one can account for changes in

the azimuth direction of continuity in the spatial domain. Since the amplitude of the

Fourier transform is related to power spectrum as in Eq. 4, this allows us to find the

orientation of the objects from its power spectrum. For instance, Fig. 2 shows three

different maps of channelized reservoir with different orientations, and their power

spectrum is shown in Fig. 3. As can be seen in Fig. 3, the angle subtended by the

main axis of the power spectrum represents the orientation of the objects. Figures 4

and 5 make the same point for different type of reservoirs with ellipsoid objects.

2.2.2 Size Identification from Power Spectrum

Another useful property of Fourier transform is that if the Fourier transform F{g(t})
is denoted as G(f), i.e.,
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F g tð Þf g ¼ G fð Þ, then F g ctð Þf g ¼ G f
c

� �
cj j

where c is a constant. This allows us to relate geobody dimension to the bandwidth

of the power spectrum ratio. For instance, Fig. 6 shows two different maps of

channelized reservoir with different sizes, and their power spectrum is shown in

Fig. 7. As can be seen in Fig. 7, the bandwidth of the power spectrum represents the

Fig. 1 The effect of rotation in the spatial domain on the frequency characteristics: The top row
images are the original image (left) and its power spectral density, and the two bottom images are
the rotated image and its power spectral density. It can be seen that the Fourier transform has been

also rotated (http://www.cse.iitd.ac.in/~parag/projects/DIP/asign1/transrotfft.shtml)

Fig. 2 Three different maps of facies type for channelized reservoirs with different orientation of

channels

Robust MPS-Based Modeling via Spectral Analysis 513

http://www.cse.iitd.ac.in/~parag/projects/DIP/asign1/transrotfft.shtml


size of the objects. Figures 8 and 9 make the same point for different reservoir

models with ellipsoidal objects.

2.2.3 Feature Extraction from Bispectrum

As shown previously, the size and orientation of the objects can be inferred from the

bandwidth and orientation of the power spectrum. However, the power spectrum

Fig. 3 The power spectrum of the facies map shown in Fig. 2. The white dashed line shows the
main orientation of the power spectrum. It can be seen that the azimuthal orientation of continuity

shown by the spatial objects is the same as that shown by the power spectrum

Fig. 4 Three different facies models with ellipsoidal objects in different orientations

Fig. 5 The power spectrum of the facies map shown in Fig. 4. The white dashed line shows the
main orientation of the power spectrum. It can be seen that the rotation of the objects shows the

same rotation as the power spectrum
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Fig. 6 Two different models for channelized reservoirs with different sizes of channels

Fig. 7 The power spectrum of the facies map shown in Fig. 6. The white dashed line shows the
bandwidth of the power spectrum. It can be seen that the size of the objects corresponds to the

bandwidth of the power spectrum

Fig. 8 Two different reservoir models with ellipsoidal objects of different dimensions
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cannot help with distinction of the object type. In this section, we present how to

distinguish between different objects using the bispectrum.

The bispectrum is a triple product of Fourier coefficients,

S3, z ω1;ω2ð Þ ¼ Z ω1ð ÞZ ω2ð ÞZ∗ ω1 þ ω2ð Þ, and is a complex-valued function of

two frequencies, unlike the power spectrum, which is a second-order product of

Fourier coefficients and a function of only one frequency. Unlike the power

spectrum, the bispectrum retains information about the phase of the Fourier trans-

form of the sequence. The phase of the Fourier transform is a nonlinear function of

frequency, and this nonlinearity is extracted by the biphase (the phase of the

bispectrum). For example, left and right asymmetric sequences will have opposite

signs for the biphase. These properties form a basis for the use of the bispectrum for

extracting features from patterns. Additionally, parameters can be defined from the

bispectrum that are invariant to translation, scaling, and amplification. In particular,

the phase of the integrated bispectrum along a radial line of slope (see Fig. 10)

satisfies these properties (Chandran and Elgar 1993; Chandran et al. 1997).

Parameters

P að Þ ¼ arctan
Ii að Þ
Ir að Þ

� �
ð13Þ

where

I að Þ ¼ Ir að Þ þ i Ii að Þ ¼
Z 1= 1það Þ

f 1¼0

B f 1, af 1ð Þdf 1 ð14Þ

for 0<a<1 can serve as features for patterns. The variables Ir and Ii refer to the real

and imaginary parts of the integrated bispectrum, respectively, and i ¼ ffiffiffiffiffiffiffi�1
p

. It has

been shown in Chandran and Elgar (1993) that these parameters satisfy the desired

Fig. 9 The power spectrum of the facies models shown in Fig. 8. The white dashed line shows the
bandwidth of the power spectrum. It can be seen that the size of the objects corresponds to the

bandwidth of the power spectrum
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invariance properties. It means that scaling and rotating will not change this

identifier. For example, scaling the original sequence results in an expansion or

contraction of the Fourier transform that is identical along the f1 and f2 directions.
Thus, the bispectral values along a radial line in bifrequency space map back onto

the same line upon scaling. The real and imaginary parts of the integrated

bispectrum along a radial line are multiplied by identical real-valued constants

upon scaling, and therefore, the phase of the integrated bispectrum is unchanged

(Nikias and Raghuveer 1987; Chandran and Elgar 1993; Chandran et al. 1997).

Since this identifier is not sensitive to rotation and scaling, it can be used as an

identifier to distinguish between the shapes of the objects within the image.

To demonstrate the feasibility of this application, we run an example on 4 1-D

signals. These signals are shown in Fig. 11. We also generate different signals with

different scaling factors as shown in Fig. 12. To show the sensitivity of the identifier

to noise, we also added Gaussian noise to each signal. We then calculated P(a) for
each signal as a function of a. Figure 13 shows the scatter plot of P(1) versus P
(1/16) for each signal. As shown in Fig. 13, given P(1/16) and P(1), the two similar

looking bolts clearly can be distinguished.

It should be noted that this example is just to demonstrate the feasibility of the

bispectrum identifier for shape classification. This method can be easily applied to

2-D images. The only difference is that the scalar a becomes a vector of size

2. Later in the results section, we will show the applicability of the algorithm for

2-D training images in the results section.

3 Results

In this section, we present the results of the explained methodology. First, we show

the results of calculating higher-order spectra from both TIs and conditioning data.

Then, we present how the best set of TIs in terms of shapes of the objects can be

detected using the phases of the bispectrum. Finally, we show how the size and

orientation of the objects can be corrected using the features from power spectrum.

2 = 1

1

2

Fig. 10 Region of

computation of the

bispectrum. Features are

obtained by integrating the

complex bispectrum along a

radial line with slope ¼ a

(dashed line). The phase of
this integral is translation

and scale invariant
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Fig. 11 Profiles of two types of bolts with left and right orientation
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Fig. 13 The values of a

feature vector consisting of

{P(a), a¼ 1/16 and a¼ 1)

for bolts 1 and 2 with left
and right orientations, for
scale variations between 0.5

and 2.0

Fig. 12 Examples of the 1-D signal with different scaling factor (1, 0.5, 2 from left to right)
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3.1 Calculating Higher-Order Spectra Training Image
and Conditioning Data

As mentioned above, the moments of random function z(u) can be calculated by

using FFT of the training image. Figure 14 shows the training image in this study,

and Fig. 15 shows the covariance map of the training image using direct searching

of pairs in the training image and covariance calculated using FFT. As can be seen

in Fig. 15, the covariance map can be correctly calculated by means of FFT, which

is much faster than directly calculating by searching the pairs in the training image.

Then, we selected 500 data points randomly from the training image shown in

Fig. 14 and calculated the covariance and third-order moment using the methodol-

ogy discussed for computing the polyspectra using sparse data. The scattered

conditioning data are shown in Fig. 18. Figures 19 and 20 show the calculated

covariance map and three-point connectivity functions with different template

configurations, respectively. This process is fast, and it can be seen that the

connectivity maps calculated using the scattered data point resemble the

polyspectra computed using the exhaustive image as shown in Figs. 15 and 17.

3.2 Selecting Best Training Image Given Bispectrum

In this section, we present the results for feature extraction from bispectrum for 2-D

training images. We selected three different training images for different geologic

scenarios as shown in Fig. 21. Then we generated several images with different

orientation and geobody size. Figure 22 shows four examples of these images. We

extracted four sets of scattered data from four random images of the data set and

Fig. 14 Training image

used for this study
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calculated the biphases of the bispectrum of all the images and the scattered data

sets. The biphases computed only using the sparse conditioning data are

superimposed (diamond points) on the scatter observed on the basis of the exhaus-

tive images. As can be seen, the three different scenarios can be successfully

distinguished using these features from both scattered data sets and training images.

Therefore, we can find the correct training image (in terms of the object shape) by

selecting the image with the closest feature value to the one of the scattered data set

(Fig. 23).

3.3 Size and Orientation Detection

In the previous section, we presented how the bispectrum can be used to distinguish

among different training images with different objects. However, the orientation

and scale of the objects cannot be detected from bispectrum. In this section, we

present how the power spectrum can be used to distinguish the orientation and the

scale of the objects. We generated the rotated realization from a TI (45�) and used it
as the correct map of the reservoir. We then sampled some conditioning data from

the correct map as shown in Fig. 24. Then, we calculated the power spectrum of

both available TI and the scattered data set. Figure 25 shows the covariance map of

Fig. 15 Covariance map calculated by directly searching training image (left) and by using FFT

(right)

Fig. 16 Three-point connectivity inferred using different spatial templates (from left to right: L
shape, 45 degree, x-x and y-y connectivity)
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the TI and conditioning data as well as the corresponding power spectrum. As

shown in Fig. 25, the orientation direction of the two power spectrums is different

(40�). Thus, we rotated the available TI to account for the mismatch of the

orientation of the channels. To show the importance of the orientation of TI in

simulations, we used both original and the rotated TIs to perform simulation using

Fig. 17 The third-order moment of the image shown in Fig. 14. The left column is calculated by

calculating bispectrum, and the right column is calculated by direct search of pairs in the image

1000
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0
0 500 1000 1500
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Fig. 18 Scattered

conditioning data used for

calculating covariance. The

number of data points is

500 (~2.3% of total data

points)
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Fig. 19 Covariance map

calculated by Fourier

transform of scattered data

by sparsity constraints

Fig. 20 Calculated three-point connectivity with different configurations using scattered data in

Fig. 18 (the templates are, from left to right, L shape, 45 degree, xx configuration, and yy

configuration, as shown in Fig. 16)
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direct sampling (Mariethoz and Renard 2010). As can be seen in Fig. 26, the results

of the simulation using the rotated TI is much closer to the correct map indicating

the importance of the orientation of objects within TI in simulation.

Fig. 21 The training images used in this study with different objects and geologic scenarios

Fig. 22 Different rotated and scaled images from the reference training images in Fig. 21

Fig. 23 The values of a feature vector consisting of {P(1,1), P(1/16,1/16)} for all of the different

images with different scale and orientations
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We also generated another realization form a TI with different geobody size, and

used it as the correct map of the reservoir. We sampled some conditioning data from

the correct map as shown in Fig. 27. Then, we calculated the power spectrum of

both available TI and the scattered data set. Figure 28 shows the covariance map of

the TI and conditioning data as well as the corresponding power spectrum. As

shown in Fig. 28, the bandwidth of the two power spectrums are different. Thus, we

Fig. 24 The available TI (in the left), the corrected map with different orientation (in the middle),
and the scattered data sampled from the correct map (in the right)

Fig. 25 The covariance map of the available TI (top left), the covariance map of the scattered data

(top right), the power spectrum of the available TI (bottom left), and the power spectrum of the

scattered data (bottom right). Dashed line represents the main orientation of the power spectrum
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generated another TI to account for the mismatch of the size of the channels. To

show the importance of the geobody size of TI in simulations, we used both original

and the corrected TIs to perform simulation using direct sampling. As can be seen in

Fig. 29, the results of the simulation using the corrected TI are much closer to the

correct map indicating the importance of the size of objects within TI in simulation.

4 Summary and Conclusion

In this paper, we presented a new method for modeling higher-order connectivity

functions. The method is based on calculating polyspectra. We showed the method

is faster than direct searching within the images due to the use of FFT. Also, we

proposed a new method for modeling polyspectra from scattered data. We showed

that the method has high accuracy for both training images and scattered data. We

then proposed a new method for ranking different sets of TIs corresponding to

different geological scenarios. These set of TIs represent the associated uncertainty

and contain features of different shapes (channels, ellipses, fracture, etc.) as well as

different sizes and orientation. We analyzed the spectra of the different TIs (power

spectrum and bispectrum) to distinguish between different TIs. We showed that

object size and orientation can be inferred from the power spectrum, while the

object shapes can be inferred from the bispectrum. Therefore, the combination of

power spectrum and bispectrum can be used as an identifier for each TI.

Fig. 26 The available TI (top left), the corrected TI (top right), the simulation using the available

TI (bottom left), and the simulation using the corrected TI (bottom right)
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Fig. 27 The available TI (in the left), the corrected map with different geobody size (in the
middle), and the scattered data sampled from the correct map (in the right)

Fig. 28 The covariance map of the available TI (top left), the covariance map of the scattered data

(top right), the power spectrum of the available TI (bottom left), and the power spectrum of the

scattered data (bottom right). Dashed line represents the bandwidth of the power spectrum
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Efficient Uncertainty Quantification
and History Matching of Large-Scale Fields
Through Model Reduction

Jianlin Fu, Xian-Huan Wen, and Song Du

Abstract Uncertainty quantification (UQ) and history matching (HM) have

become a regular routine for reservoir management and decision-making in petro-

leum industry. The zonation method was widely used to reparametrize correlated

fields with one lumped constant or multiplier specified for each zone such that the

dimensionality of problems can be reduced and the HM problem can be efficiently

solved. However, this ad hoc method faces a challenge to find the optimal zones.

Moreover, it may fail to honor the geological (or geostatistical) features after the

lumped constants or multipliers are applied, resulting in patches. In this work, we

present several PCA-based techniques to address this problem by reducing the

dimensionality of problem but not subject to the limitations of the zonation method.

1 Introduction

Uncertainty quantification (UQ) and history matching (HM) have become a regular

routine for efficient reservoir management and decision-making in petroleum indus-

try. There are many types of uncertain parameters (e.g., permeability, porosity,

geometry, aquifer, oil-water contact, relative permeability, PVT parameters, etc.)

that have been found to have evident impacts on reservoir performance. Among

them, spatially correlated reservoir geo-models (e.g., permeability) have been a
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J.J. Gómez-Hernández et al. (eds.), Geostatistics Valencia 2016, Quantitative
Geology and Geostatistics 19, DOI 10.1007/978-3-319-46819-8_35

531

mailto:fu_jianlin_ac@yahoo.com
mailto:xwen@chevron.com
mailto:dusong83@gmail.com


challenge for UQ and HMwhen combining with other parameters. These geo-models

are usually created by geostatistical tools with a high dimensionality. Traditionally,

this type of correlated parameters is reparametrized using a zonation method with one

lumped constant or multiplier specified for each zone such that the dimensionality of

problems can be reduced and the relative significance of these parameters for reservoir

performance prediction can be studied in comparison with other types of parameters.

However, this ad hoc method faces a challenge to find the optimal zones such that the

real impact can be accurately quantified. Moreover, it may fail to honor the geological

(or geostatistical) features after the lumped constants or multipliers are applied.

Several techniques are available to address this problem. For low-dimensional

problems (e.g., thousands of parameters), principal component analysis (PCA) is

used to efficiently reduce the dimensionality of geostatistical models for accurate

UQ and HM. For high-dimensional problems (e.g., large-scale correlated perme-

ability fields), the distance-based kernel PCA is used to reparametrize the field for

UQ, and geostatistical features can be preserved during HM. These approaches can

reduce the dimension of parameters yet preserve the key spatial geostatistical

features in the parameter fields. These methods have been implemented in our

in-house software platform. In this paper, we present a simple synthetic example to

demonstrate the effectiveness of this methodology.

2 Methodology

Principal component analysis (PCA) method can be used to re-parameterize the

correlated fields for UQ and HM by reducing the large-scale fields to several inde-

pendent parameters according to a threshold of the energy level (in terms of eigen-

values) such that the spatial heterogeneity can be accounted for. PCA is a statistical

procedure that converts a set of correlated parameters into a set of linearly

uncorrelated parameters (i.e., principal components) using an orthogonal transforma-

tion. This transformation is constructed in a way that the first principal component has

the largest possible variance, and each succeeding component in turn has the highest

variance possible under a constraint that it is orthogonal to the preceding components.

However, there remain two challenges for the PCA-based method when dealing

with more practical problems in petroleum engineering. The first one is the curse of

dimensionality. The existing PCA methods cannot efficiently handle large-scale

cases due to the inherent difficulty of numerical algorithm for high-dimensional

eigen-decomposition. A snapshot-based PCA (SPCA) method (e.g., Sirovich 1987;

Cardoso et al. 2009; Vo and Durlofsky 2014) was proposed to treat an arbitrarily

large-scale reservoir model, e.g., with a million cells. The main idea of SPCA is

that, instead of direct eigen-decomposition of the large-scale covariance matrix

(e.g., of million by million), one may generate an ensemble of stochastic realiza-

tions (e.g., several hundred models) using fast geostatistical tools to represent the

heterogeneity of field. Then, one can eigen-decompose the small-scale, so-called

“kernel” matrix (e.g., Scholkopf et al. 1998, 1999) with a smaller dimension (e.g.,

hundreds by hundreds), such that the main pattern of eigenvectors and eigenvalues
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of the original large-scale covariance matrix can be recovered from these small-

scale kernel matrices and the associated snapshots. These eigenvectors and eigen-

values can be used to reconstruct the images of correlated random fields. Unfortu-

nately, the eigenvectors of the covariance matrix cannot be accurately recovered in

terms of magnitude with this method. Another challenge is how to generate random

models that are consistent with the existing information for HM.

To address these challenges, we implement a distance-based kernel PCA

(DKPCA) for large-scale problems (Scheidt and Caers 2009; Park 2011). The

re-parameterization procedure of DKPCA is the same as SPCA except the way to

reconstruct new models. The concept “distance” between random realizations is

used such that the new models are generated through an optimization process that

minimizes the HM error through the linear combination of the ensemble realizations

under distance space (Kwok and Tsang 2004; Park 2011). By doing so, the stochastic

models generated always share the same geostatistical features as the given ensem-

ble and thus are “geologically” consistent. With the DKPCA, moreover, the condi-

tioning data can be always honored as long as all of the individual realizations

respect the hard data, which is straightforward for many existing geostatistical tools.

3 An Illustrative Example

3.1 Experimental Setup

The model presents an oil-water two-phase black-oil reservoir and has 1681

(41� 41� 1) active cells with each one 50� 50� 50 [ft3]. The porosity is assumed

to be homogeneous and is equal to 0.2. The isotropic permeability (e.g., xperm) is

heterogeneous with a multi-Gaussian model specified for lnk. The reservoir is

initially produced with five wells: four producers (PROD1, PROD2, PROD3, and

PROD4) located in the four corners and one injector (INJW1) in the center. Figure 1

shows the reservoir and well configuration.

All of the four wells are put into operation at the same time. The injector is

operated by a specified bottom-hole pressure, while the producers are constrained

by a constant bottom-hole pressure subject to a maximum oil rate. The constants are

fixed for a certain period but may vary over time. The simulation time spans

2000 days. The data from the first 1000 days are used for history matching, while

results from the second 1000 days will be used for checking the quality of pre-

dictions of the HM models. The production data include both water production rate

(WPR) and oil production rate (OPR). We are going to generate stochastic realiza-

tions for xperm by matching the historical production data at four producers.

Two scenarios of synthetic experiments are performed for HM. The first one is a

so-called zonation method, i.e., to divide the field into several regions (patches or

zones) such that the field can be reduced to small number of parameters for HM. The

second one is the DKPCA-based method for preserving geological consistency in

the models. In the two scenarios, we will use the same number (6) of parameters for
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comparison purpose. Now that the large-scale HM problem (with 1681 parameters)

is reduced to a very small-scale one (with six parameters), a variety of optimization

methods can be used to create multiple history-matched models. The particle swarm

optimization (PSO) is employed in this work as search engine to minimize the HM

error (Isebor 2013).

3.2 Scenario 1: History Matching and Prediction
with Existing Wells

The results of oil production rate (OPR) before and after HMwith the first 1000-day

data are compared in this section. The predictions of the second 1000 days with the

existing wells are also plotted and compared.

Figure 2 plots theOPRprofile of PROD1 by comparing the individual initial guesses

(the gray lines) generated by experimental design with the history-matched results (the

color lines) using the traditional zonation method. Obviously, the results from initial

guesses significantly deviate from the historical data, while the historical data of the first

1000 days (themagenta dots) can be reasonably reproduced by history-matchedmodels.

Although not shown in this case, it was also observed in other cases that an improper

zonation may lead to a poor HM or even fail to do the job. It also shows that the models

could also reasonably predict OPR for the second 1000 days for well PROD1.

Figure 3 plots the OPR result for PROD1 from the models generated by

DKPCA-based method. Obviously, the final-matched models are able to match

Fig. 1 Reservoir model and well configuration
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Fig. 2 Oil production rate of PROD1 from the zonation method: color lines (the final matched),

gray lines (the initial guess), and magenta dots (historical and reference data, only the first 1000-

day data are used for history matching)

Fig. 3 Oil production rate of four producers from the DKPCA method: color lines (the final

matched), gray lines (the initial guess), and magenta dots (historical and reference data, only the

first 1000-day data are used for history matching)
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the data quite well. The predictions of OPR for the second 1000 days using the

DKPCA-matched models capture the reference data well, while the initial guesses

fail to do so.

3.3 Scenario 2: Prediction with New Infill Wells

Results from Scenario 1 show that both the zonation and DKPCA methods are able

to history match the first 1000-day’s data equally well and are able to provide

reasonable predictions of the second 1000-day production with the existing wells. A

more interesting test is to check the predictability of the HM models for new well

locations where no production data are used during the HM process.

The drilling of infill wells represents a very common practice for staged oil field

development. Prediction of performances for these new wells under changing

production conditions is challenging. In some cases, the historical data from

existing wells may contain useful information to identify reservoir parameters

that impact performances of these new wells, but some history-matched models

may achieve data reproduction by locally tuning their parameters near well-bore

only, leading to lack of precision in predictions. This is the underfitting issue. In

other cases, the reservoir properties near new wells remain largely unsampled, and

the historical data contain very limited information to infer them. However, some

history-matched models may bring false information from optimization, resulting

in biased forecasts for those new wells. This is the overfitting issue. Both

underfitting and overfitting models are not robust for forecast of long-term reservoir

performances. Therefore, prediction of new wells may serve as a metric to measure

the robustness of reservoir simulation models.

Specifically in this case, a campaign with two new infill production wells

(PROD12 and PROD41 in Fig. 1) is run, and the results are compared in this part

so as to further check the prediction capability of history-matched models generated

before subject to new production conditions. Note that the history-matching sce-

nario is the same as the previous part, but in the prediction scenario, the two new

wells (PROD12 and PROD41) replace PROD1, PROD2, and PROD4 to produce

the reservoir. Although the well-level performances have the similar behavior, the

metric that we are looking at in this scenario is the field’s OPR, which plays a

critical role in finance and operations for efficient reservoir management and asset

development.

Figures 4 and 5 compare the OPR of field with the new production campaign.

Note that the first 1000-day’s data were used in history matching while the second

1000-day for prediction. The magenta dots show the reference data that are created

from the “actual” model, while the gray lines plot the prediction from the history-

matched models. The zonation method (Fig. 4) displays a clear deviation from the

reference data. The DKPCA-based method (Fig. 5) obviously is able to obtain a

better result: the reference data well reside in the envelope of predictions from the

DKPCA models.
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Fig. 4 OPR prediction of the field from the zonation method: The first 1000-day data are used for

history matching, while the second 1000-day for prediction. Note that the gray lines represent the
results from history-matched models and the magenta dots are historical (the first 1000-day) or

reference (the second 1000-day) data

Fig. 5 OPR prediction of the field from the DKPCA method: The first 1000-day data are used for

history matching, while the second 1000-day for prediction. Note that the gray lines represent the
results from history-matched models, and the magenta dots are historical (the first 1000-day) or

reference (the second 1000-day) data
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4 Discussion

Two history-matching methods (i.e., the zonation-based and the DKPCA-based

methods) can yield geo-models that reasonably reproduce the given historical data

(see the corresponding curves of the first 1000 days in Figs. 2 and 3). However, their

prediction abilities are quite different (see the second 1000 days in Figs. 4 and 5).

The model complexity (i.e., the dimensionality) is not a root cause for such

inaccuracy since all of the models are history matched with the same parameter

size (6) and with an equal precision in terms of HM residuals.

By comparing the geo-model structure of history-matched models with the

reference case (Fig. 6a) that was used to generate the historical production data,

we found that the zonation method (see Fig. 6b for a representative realization) fails

to describe the pattern of spatial heterogeneity. The DKPCA-based image (see

Fig. 6c for a representative realization) correctly reproduces the statistics of the

original model, and the spatial pattern is also reasonably identified from the

historical data. The two scenarios of model predictions show that the zonation

method has the worse structure and, as a consequence, produces the larger predic-

tion bias; the DKPCA-based method accurately captures the geo-model structure

and remains consistent during HM and, as a result, offers the more accurate

predictions.

As showed in several studies (e.g., Refsgaard et al. 2006; Clark and Vrugt 2006;

Fu 2008; Doherty and Christensen 2011; White et al. 2014), when the parameters to

be estimated are assigned a compensating role (e.g., by the zonation method), the

potential of prediction errors may actually increase, rather than decrease after HM

(see Figs. 4 and 5). By compensating, we mean that the error coming from

inadequate representation of the subsurface reality in model structure can be

mitigated by tuning the model parameters; in other words, model parameter errors

compensate the model structure errors in history matching. Besides the limitations

of methodology (e.g., unable to sample the entire model space of the posterior

distribution (Fu and Gómez-Hernández 2009a, b), the improper representative of

actual geo-model structure is another important factor that is mainly responsible for

Fig. 6 Typical lnk images: (a) reference field, (b) zonation, (c) DKPCA. Note that the unit of k in
the color bar is in [md]
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this paradox. This calibration-induced bias tends to result in a wrong conclusion

and thus is particularly dangerous in practice for decision-making.

In summary, accounting for the spatial variability pattern is important to build

robust simulation models for reliable forecasts. The “robustness” was traditionally

referred to an HM method that can generate models to match the data no matter

what prior was specified (whether correctly or wrongly). This is valuable when the

useful information from the subsurface is very limited for structure identification.

However, when there are sufficient data (including geological, geophysical, and

engineering data) to inform the heterogeneity structure of subsurface reservoir, the

separation of structure uncertainty and parameter uncertainty is valuable since it

precludes the clutter of their complications, leading to a better understanding of

reservoir behavior and robust predictions. In other words, when the geo-model

structure is adequate, the compensating role due to model calibration can be

excluded from the process of history matching or inverse modeling for a solution

with improved robustness (Taguchi and Clausing 1990) in terms of predictions.

5 Conclusion

This paper compares a PCA-based method with a traditional zonation method for

history matching. We have observed that the proposed method is efficient for

history matching large-scale heterogeneous fields. We also demonstrate the value

of the proposed method in building simulation models for improved forecasts

owing to a full consideration of the spatial heterogeneity pattern, a dominant factor

for reservoir management and asset development in reservoir engineering.

Bibliography

Cardoso MA, Durlofsky LJ, Sarma P (2009) Development and application of reduced-order model-

ing procedures for subsurface flow simulation. Int J Numer Methods Eng 77(9):1322–1350

Clark MP, Vrugt JA (2006) Unraveling uncertainties in hydrologic model calibration: assessing

the problem of compensatory parameters. Geophys Res Lett 33:L06406

Doherty JE, Christensen S (2011) Use of paired simple and complex models to reduce predictive

bias and quantify uncertainty. Water Resour Res 47:W12534

Fu J (2008) A Markov Chain Monte Carlo method for inverse stochastic modeling and uncertainty

assessment, Unpublished Ph. D. thesis, Universidad Politecnica de Valencia, Valencia, Spain,

p 140
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Revealing Multiple Geological Scenarios
Through Unsupervised Clustering
of Posterior Realizations from Reflection
Seismic Inversion

Mats Lundh Gulbrandsen, Knud Skou Cordua, Thomas Mejer Hansen,

and Klaus Mosegaard

Abstract In this study, we analyze 26,000 posterior realizations obtained through

Monte Carlo sampling from the posterior distribution of a reflection seismic inverse

problem and show that the posterior realizations cluster around multimodal peaks.

This problem is based on a seismic trace recorded in the southern part of Jutland,

Denmark. Prior information is based on observations of lithology sequences of the

geology in the area, and the multimodal modes in the posterior realizations will

hence represent different geological scenarios. In order to uncover the multimodal

nature of the posterior distribution, grouping of posterior realizations is done using

an unsupervised clustering technique, namely, the K-means clustering algorithm. In

order to quantify the choice on the number of clusters in the realizations, the gap

statistic method is used. The clustering method is applied on both categorical model

parameters representing lithological units (LU) and on the continuous parameters

representing the acoustic impedance (AI). These techniques allow quantifying the

probability of the different possible geological scenarios that are consistent with the

seismic and geological observations. Results demonstrate that the cluster charac-

teristics are significantly dependent on the types of parameters considered. If the

goal of the inversion is to identify different geological scenarios, using a parame-

terization based on lithological units is more informative than a parameterization

based on acoustic impedance.
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1 Introduction

A widely used approach for inversion of reflection seismic data is based on a linear

forward model and Gaussian assumptions about the prior distribution of the elastic

parameters and the noise model (Buland and Omre 2003; Jullum and Kolbjørnsen

2016; Hampson et al. 2005). The solution to such inverse problems is Gaussian

distributed, which is simply a single-modal distribution.

In reality, the Gaussian prior assumption and the linear forward model may not

adequately describe the information available. In order to handle this, these prob-

lems can instead be formulated probabilistically, which leads to a solution

described by a typically unknown and non-Gaussian posterior distribution, (Larsen

et al. 2006; Ulvemoen and Omre 2010; Zunino et al. 2014; Bosch et al. 2007). In

this way, the solution to the inverse problem can be characterized by a sample from

the posterior distribution, which will represent a set of realizations (i.e., possible

solutions) that are all consistent with observed data and prior information

(Mosegaard and Tarantola 1995). The posterior distribution of such non-Gaussian

inverse problems may be highly multimodal: i.e., realizations from the posterior

probability distribution may be located at isolated clusters in the high dimensional

space spanning all possible earth models. If such clusters exist, each cluster will

correspond to a group of realizations with similar appearance, and each cluster may

represent one geological scenario. For example, one cluster may represent a

commercially viable reservoir, while another cluster may represent a

non-commercially viable reservoir. Using a probabilistic approach to inverse prob-

lem theory, the relative probability of each local scenario can easily be quantified.

This may be hugely beneficial in characterizing reservoir models of all kinds. It

should be noted that this study does not intend to analyze the different geological

scenarios but demonstrates a technique to reveal their nature, which would be

helpful in this respect.

In the following we will analyze the result of a probabilistically formulated

inversion of a normal incidence seismic data set from the southern part of Jutland,

Denmark. Initially we will demonstrate that the posterior sample contains many

quite different realizations. Then we use a clustering algorithm to locate multi-

modal clusters (i.e., similar posterior realizations). This analysis will be done both

with respect to the realizations representing lithological units and with respect to

the realization’s corresponding acoustic impedance parameterization. Finally the

analysis obtained from the two different ways of parameterizing data will be

compared.

1.1 The Inverse Problem

Figure 1 shows 26,000 realizations resulting from sampling of the posterior distri-

bution for a probabilistically formulated inversion of a reflection seismic data set
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from of the Zechstein unit in the southern part of Jutland, Denmark (Cordua et al.

submitted). This distribution is based on a prior distribution that is statistically

consistent with geological scenes observed in borehole logs. Hence, the posterior

realizations are all consistent with both the observed geological scenes and the

observed seismic data (within the expected data uncertainty). A presentation of the

inversion method used to obtain the posterior realizations is outside the scope of

this paper. However, it can be assumed that the method in fact samples the true

posterior distribution. Later we actually show that the method in fact revisits the

same modes of the posterior distributions several times during the sampling period.

In Fig. 1 it can be seen that this highly underdetermined seismic inverse problem

has several possible solutions of different nature. Figure 1 further suggests some

clusters of similar posterior realizations. In this study, we try to quantify this

apparent clustering to get a better understanding of how the realizations actually

are distributed. This is done using the unsupervised clustering method called

K-means. In addition to provide a better visual representation of the results, the

clustering algorithm allows quantifying the probability of the possible geological

scenarios.

Fig. 1 26,000 1D lithology profiles resulting from an inversion of reflection seismic data. The

colors blue, turquoise, green, yellow, and orange represent the lithology units halite, limestone,

lamination, 50/50 anhydrite and limestone, and anhydrite, respectively
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Figure 1 represents one way of displaying the posterior realizations. Each color

represents a lithological unit. Another way could be to parameterize these units with

their elastic property, acoustic impedance (AI). Table 1 shows the relation between

the lithological units and their corresponding AI values, as used in the inversion

algorithm (Cordua et al. submitted).

2 Locating Cluster-Specific Geological Scenarios

The task is now to group all the individual posterior realizations into different

clusters. A general description of a cluster is difficult, and no unique definition

exists. However, it can be valuable to think of clusters as groups of which all

members are closer together with the other members from the same group than

members from other groups, even though this not always has to be a mathematical

fact. There are several ways of defining these mutual distances and several different

clustering algorithms exist. There is no correct algorithm, since the different

methods represent different ways of analyzing the data and the different methods

should be decided based on the problem. In this study, the K-means clustering

algorithm will be used to group the posterior realizations both with respect to the

lithological units and with respect to the acoustic impedance values.

2.1 K-Means Clustering

Assuming the number of clusters, K, is given, the aim is to group the D-dimensional

data x ¼ x1,x2, . . . xNf g into the K clusters. The clusters are represented by the D-
dimensional vectors μk, where k¼ 1. . . K, and each vector μk is a prototype vector
for the kth cluster (Bishop 2006). More specifically, the prototype vectors represent

the centers of each cluster, and hence, the K-means clustering model is a centroid

model. The objective goal of the method is to minimize the sum of the square

distances between all points and their closest prototype vector. Mathematically this

can be described as minimizing the objective function J (Bishop 2006):

Table 1 The different

lithological units and the

corresponding AI values as

used in (Cordua et al.

submitted)

Lithological units (color Fig. 1) AI values [kg/m2 s]

Halite (blue) 1.0*107

Dolomitic limestone (turquoise) 1.2*107

Lamination (green) 1.4*107

50/50 limestone/anhydrite (yellow) 1.6*107

Anhydrite (orange) 1.8*107
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J ¼
XN

n¼1

XK

k¼1
rnk xn � μkk k2; ð1Þ

where rnk is a set of binary indicator variables, rnk 2{0, 1}, each associated with one
data point xn, and stating which cluster each point is assigned to. In order to find the
values for rnk and μk that minimizes Eq. 1, an iterative procedure is performed.

Every iteration consists of two steps. The first step optimizes on the indicator

variables and the next step on the cluster centers. Prior to the simulation,

K prototype vectors are randomly chosen among the D-dimensional points x
(note that there are several other ways to choose the starting points as well). In

the first step of the iterations, each point is assigned a cluster based on the prototype

vector, i.e., cluster center, they are closest to. This is in fact optimizing J with

respect to rnk, since each data point is independent and taking the smallest distance

between xn and μk will therefore minimize J. For the realizations of continuous

variables, i.e., acoustic impedance, the Euclidean distance is used, and for categor-

ical variables, i.e., the lithological units, the Hamming distance1 is used. The next

step is to optimize on μk, and since J is a quadratic function of μk, the optimal μk is
found by setting the derivative of the objective function with respect to μk to zero:

2
XN

n¼1
rnk xn � μkð Þ ¼ 0 ð2Þ

Solving Eq. 2 with respect to μk gives

μk ¼
X

n
rnkxn

rnk
ð3Þ

From Eq. 3 it is seen that μk represents the mean of all points within each cluster.

The second step of each iteration is hence to compute the mean of all points

assigned to each cluster and define that new mean as the optimized cluster proto-

type. This procedure is repeated until the values converge. It should be noted that

depending on the data set, two different simulations (i.e., two different starting

positions) might not converge to the same local minimum. You can never be sure if

you reach the global minimum of the objective function, so it might be a good idea

to run the simulations more than once.

2.2 Gap Statistic

The K-means algorithm requires a predefined number of clusters. However, not

knowing the complete nature of the data set, this choice can be tricky. One way of

1 The hamming distance is the number of position (coordinates/elements) that differs between two

vectors of the same length.
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approaching this issue could simply be to try different values and visually examine

the results. Another way could be to use a statistical approach to get an idea of

which number of clusters that best represents the sample. In this study an analysis of

the gap statistic (Tibshirani et al. 2001) is done. The idea of the gap statistic is to

find the number of clusters which standardize the comparison of log (Wk) with a

distribution of no obvious clustering, when Wk is defined as the within-cluster

dissimilarity:

Wk ¼
XK

r¼1

1

2Nr
Dr; ð4Þ

where Nr is the number of points within clusters and Dr is the distance between all

points within cluster r. In this analysis the Euclidean distance is used for Dr when

the AI data is analyzed, and the Hamming distance is used for the lithological units.

The distribution with no obvious clustering is computed by taking the average of

20 simulations of uniformly distributed data within the range of the sample.

Computing the within-cluster dissimilarity of the uniformly distributed data, Uk,

the gap statistic is defined as

G ¼ log Ukð Þ � log Wkð Þ: ð5Þ

The optimal number of clusters is then the smallest number of k, which fulfill the

criteriaG kð Þ � G k þ 1ð Þ � s kþ1f g, where s{kþ1} is std log Ukð Þð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

20

� �q
and “std”

denotes the standard deviation. Figure 2 shows the logarithm of the within-cluster

dissimilarity for both the sample (blue) and for the simulated data (red). This

simulation is done with respect to the lithological units. As expected the blue

curve decreases with an increasing number of clusters, while the red curve is

more or less flat. In Fig. 3 the gap curve is plotted. Based on this plot, it is seen

that the optimal choice of clusters for this simulation is 15 (this is the first k whereG
(kþ 1) – 1std is less than G(k)).

This method is based on simulations, and the optimal number of clusters may

therefore vary a little for different simulations. It should also be mentioned that the

method is totally general and independent on any clustering method, so this analysis

can be done with different clustering techniques.

3 Results

Figures 2 and 3 show the results from an analysis of the gap statistic of the posterior

realizations in Fig. 1 with respect to the lithological units. The gap statistic

simulations are however ambiguous, and the information from one simulation is

hence not enough to base our choice of the optimal number of clusters. Figure 4

shows the histograms of ten simulations of the gap statistic using the K-means
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algorithm on both data sets. It is seen that the “optimal number of clusters” (Kopt)

varies between 6 and 20. It should be noted that the upper boundary of the

simulation was set to 20 clusters; hence, a result of Kopt¼ 20 indicates that no

optimal number of cluster was found within the test range (i.e., the optimal number

of cluster may exist outside of this range). (Tibshirani et al. 2001) states however

that it can be important to examine the whole gap curve and not only the optimal

choice. Figure 5 shows an example of a gap curve representing a simulation where

no optimal cluster numbers were found within the test range. It can however be seen

that the criteria for concluding on an optimal number of clusters almost are met,

both at k¼ 10 and k¼ 16.

All the gap curves for the ten simulations for both data sets have been analyzed.

This analysis combined with a visual examination of the clusters has resulted in the

choice of running the K-means clustering algorithm with respect of grouping

Fig. 2 The logarithmic

within-cluster dissimilarity

of the observations (blue)
and the simulated

distribution (red) as
functions of the number of

clusters

Fig. 3 The gap statistics

with its corresponding 1std

error bars as a function of

number of clusters
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Fig. 4 The histograms of optimal number of clusters from 10 runs of the gap statistic method

using the K-means clustering algorithm on the AI data (left plot) and the lithological unit data

(right plot), respectively, with respect to the optimum choice of K (x-axis)

Fig. 5 The gap curve from one simulation of the gap statistic analysis using the K-means

algorithm with respect to the AI data
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Fig. 6 The 15 clusters resulting from the K-means clustering of the lithology profiles in Fig. 1.

The left panel shows which models among the realizations belong to each cluster and the right
panel shows these models put together. The “probability of occurrence” represents the number of

models in each cluster relative to the whole sample. The lithology units are represented with the

same colors as in Fig. 1
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15 clusters for both parameterizations. These results are presented in Figs. 6 and 7.

The left panels of the two figures show which realizations from Fig. 1 that is

grouped in each cluster, and the right panels show all these realizations put together

to see the overall structure of each cluster. Note that the size of each plot in the right

panel of the two figures does not represent the actual size of the clusters. The

relative sizes are printed above each plot and represent the percentage of models

belonging to those specific clusters.

Analyzing the plots in the left panels of Figs. 6 and 7, we can see that the

realizations constituting the different clusters more or less are evenly distributed

throughout the set of all realizations. Even though the inversion algorithm itself is

outside the scope of this study, it can be mentioned as a curio that the distributions

of models (seen in Figs. 6 and 7) from the same clusters indicate that the sampling

algorithm actually visits the same modes of the posterior distributions several times

during the sampling period. This is an underlying assumption of sampling the

posterior distribution using the Metropolis algorithm. However, Figs. 6 and 7

demonstrate that this actually is the case.

Fig. 6 (continued)
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Fig. 7 The 15 clusters resulting from the K-means clustering of the AI realizations converted from

the realizations shown in Fig. 1, using the relation in Table 1. The left panel shows which models

among the realizations belong to each cluster and the right panel shows these models put together.

The “probability of occurrence” represents the number of models in each cluster relative to the whole

sample. The lithology units are represented with the same colors as in Fig. 1



4 Discussion

4.1 Other Clustering Algorithms

As stated earlier there is no such thing as a correct clustering algorithm. The

different algorithms and methods can be thought of as looking at your data with

different classes. In this specific study a few different agglomerative hierarchical

clustering techniques also have been tried out. Hierarchical clustering does not,

unlike the K-means clustering, need a predefined number of clusters. Instead the

hierarchical clustering techniques can be divided into two main groups, namely, the

agglomerative and divisive group (Everitt et al. 2001). The agglomerative tech-

niques all consist of a series of fusion of the N individual data points into groups,

where the divisive techniques start out with all points belonging to the same cluster

and successively separate all points into finer and finer groups. The merging or

splitting of clusters is done with respect to different similarity/dissimilarity or

distance measures between different clusters. All the different ways of measuring

distances give rise to the different clustering methods. For the data set in this study,

only techniques representing the agglomerative group have been tested, namely, the

single linkage, complete linkage, average linkage, and centroid linkage. None of

the results perform as well as the K-means method for this study, which is a

statement purely based on visual inspection of the clusters. None of these results

Fig. 7 (continued)
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will be presented here since the comparison of the different methods is outside the

scope of this paper. Distribution models such as the expectation maximization

(assuming data can be described as a Gaussian mixture model) are not considered

in this study since they are unsuited for clustering categorical variables.

4.2 Comparison of Clustering Results

The importance of being able to cluster the data in the lithological unit (LU) domain

is illustrated in Fig. 8. The figure displays the percentage overlap between realiza-

tions belonging to the different clusters arising from applying the K-means clus-

tering algorithm on the AI data (vertical axis) and the lithological units (horizontal

axis), respectively. As an example, it is seen from Fig. 8 that cluster 15 in the AI

domain is pretty well represented in the lithological unit (LU) domain. 80.9% of all

realizations in cluster 6 from the AI domain are grouped together in one cluster,

namely, number 9, in the LU domain. The rest of the realizations are mainly

distributed between cluster 14 and 15, with 6,8% and 9,1%, respectively. If we,

however, look at cluster 9 in the AI domain, we can see that the models belonging to

this cluster are split between two different clusters in the LU domain, namely,

Fig. 8 The percentage of models overlapping between the 15 clusters of the AI realizations

(y-axis) and the 15 clusters representing the lithological units (x-axis)
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cluster number 9 and 14 with 48,5% and 47,8%, respectively. These clusters are

plotted in Fig. 9. From the deeper part of the realizations displayed in Fig. 9, it is

clear that the clustering algorithm distinguishes between the blue (halite) and the

turquoise (limestone) when applied to the LU domain but cluster realizations with

both these sections together in the AI domain. This is because these models are

much closer together in the continuous parameter space, than in the discrete

parameter space, where the distance is the same between all the categorical vari-

ables. It should be noted that the clustering simulations for the two data sets have

the same starting points, i.e., the simulations start in the same random realizations.

This is important to emphasize, since it suggests that the differences illustrated in

Fig. 8 are actual differences of the two domains and not differences due to two

different local minima of the objective function (Eq. 1).

5 Conclusion

We have shown that K-means clustering can be used to get a better understanding of

how the multimodal landscape representing the solution space of a 1D reflection

seismic inversion is distributed. By clustering the posterior realizations, we get a

Fig. 9 The upper plot shows the models representing cluster 9 in the AI domain. The middle and
lower plot shows cluster number 9 and 14 from the LU domain
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much clearer picture of the potential geological scenarios and the probabilistic

distribution between them. The combination of probabilistic inverse problems and

cluster analysis thus allows us to perform scenario-based inversion of reflection

seismic data.

It is however important to emphasize that the posterior probability distributions

change for the different parameterizations, which in turn can result in very different

multimodal landscapes. Clustering the same realizations with different parameter-

ization will hence result in different clusters, and it is important to know what is

analyzed. In this study we show that one cluster in the AI domain actually is

represented in two different geological scenarios, and it is hence important to

analyze the domain representing the parameterization of interest.
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Object-Based Modeling with Dense
Well Data

Ragnar Hauge, Maria Vigsnes, Bjørn Fjellvoll, Markus Lund Vevle,

and Arne Skorstad

Abstract Although object models are popular with geologists due to their ability to

control the geometries that are produced, they tend to have convergence issues

when conditioning on complex well patterns. In this paper, we present a new well

conditioning algorithm that utilizes more local data when generating channels. We

show that this algorithm performs better than the currently commercially available

state-of-the-art object model and thus makes object models viable in modern

mature field well settings.

1 Introduction

Object models are one of the earliest geostatistical approaches to facies modeling,

originating with Bridge and Leeder (1979). This model lends itself nicely to both

geometrical descriptions of geology and Bayesian statistical modeling. A mathe-

matically rigorous description can be found in Holden et al. (1998). Other

approaches can be found in Deutsch and Wang (1996) and Viseur et al. (1998).

In the unconditional case, object models are simple to handle and can create very

realistic geology. They are the primary choice for generating training images for

multipoint methods such as Strebelle (2002). Low well densities are also easy to

handle both stringently and ad hoc, but as the wells get dense compared to the

object size, these models tend to have conditioning problems. This is seen either as

overshooting of target volume fractions or by lack of conditioning in some well

observations.

As the well density increases, the first noticeable problem is generally that each

object is not able to cover enough observations. Thus, more objects are needed to
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cover all observations, leading to a concentration of objects around wells. Typi-

cally, objects also get smaller, to maintain volume fraction.

An even further increase of well density leads to outright failures. The object

model no longer achieves correct volume fractions, as its algorithm is not able to

place enough objects between wells. There may also be cases of unconditioned

object observations, again because the algorithm is not able to place objects there

without colliding with other wells.

Another popular approach to facies modeling is multipoint methods, as

described in Strebelle (2002). These always guarantee well conditioning and

volume fractions but may give poor geometries. A natural idea is then to hybridize,

such as in Henrion et al. (2010). They combine an object model with a truncated

Gaussian post-process to ensure well conditioning.

Another example of hybridization can be found in Vargas-Guzman and

Al-Quassab (2006), where they combine object models with indicator kriging. In

this paper, the entire algorithm is hybridized, but ultimately, it relies on the

flexibility of the indicator kriging to ensure well conditioning. The problem for

all hybridization schemes is that it is very difficult to control how the hybridization

modifies the objects and thus preserves object geometry.

There are three possible reasons for why the object model fails with real data:

1. The object geometries are not flexible enough to describe true reservoir

geometries.

2. The parameters that are set for the object model are too restrictive and do not

allow description of the true reservoir geometries.

3. The algorithm fails to sample low-density areas of the prior, but it is here the

match with complex data is found.

It is interesting to note that failures in object models are more pronounced in

real-world cases. As long as synthetic data sampled from unconditional realizations

are used, object models can perform really well, as seen in Hauge et al. (2007).

Failures with real data could be due to mismatch between parameters and the truth

but also indirectly through the mapping between the stratigraphic and modeling

grid, which can make well observations incompatible.

We argue that a major part of the problem lies in the third point and will show

this by presenting a well conditioning algorithm that significantly improves object

model performance with respect to dense wells.

In this paper, we use the Bayesian framework of Holden et al. (1998). We

believe that this is the best way to get a reasonable uncertainty description for a

given geological scenario. Our ideas for well conditioning algorithms are based on

those in Skorstad et al. (1999) and Hauge et al. (2007). These are implemented in

commercial software and considered state of the art of what is commercially

available.

There are other approaches to well conditioning. In Deutsch and Wang (1996),

they essentially generate unconditional channels and see if they fit the wells. This

works in models with few wells but quickly fails in more complex settings. A more

sophisticated approach is described in Viseur et al. (1998), where they force objects
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to fit well observations. However, this non-iterative approach is not easy to fit into a

Bayesian framework.

A recent interesting approach, which also argues that the algorithms are the

problem, is that of Boisvert and Pyrcz (2014). Here, they look at the well condi-

tioning problem as an optimization problem and get good results. However,

establishing a sampling algorithm from an optimization is generally a difficult

problem, and we do not see how this can be generalized for any explicitly defined

model.

The next section describes the model we use, followed by a section with the

sampling algorithm for this model. The sampling algorithm is the new contribution

in this paper. Finally, we present some examples, followed by concluding remarks.

2 Object Model

We will here introduce our object model and its key parts. We also take a brief look

at some key differences between an object model and a multipoint model.

2.1 Mathematical Model

In this paper we use the same model as in Holden et al. (1998), but we will focus

only on the parts that are important for well conditioning. For a deeper understand-

ing of the full model, we refer to Holden et al. (1998). Choosing this point of view

means that we consider channel objects in a shale background; however, the

methodology is easily generalized.

The probability density for a realization r given well data d and volume fraction

target v is given by

f r dj , vð Þ / f g rð ÞId rð ÞIv rð Þf i rð Þ: ð1Þ

The first term here, fg, is the geological prior, controlling the shape of objects. Id
and Iv are indicators showing that all wells are conditioned and the volume fraction

is correct. Finally, fi is an interaction term, ensuring that objects do not get too close

to each other.

For a completely determined model, fg should consist of an intensity term, giving

the probability of the number of objects n in r, and the product of geometry priors

for each of the objects. We have found that in practice the distribution for n is very

troublesome; hence, we use
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f g rð Þ ¼
Yn

i¼1

f o oið Þ;

where fo is the geometry distribution for a single object, i.e., the distribution for size

and shape. The reason for ignoring the intensity term is that we do not know the

distribution for the number of objects in a realization. This distribution must be

estimated from the volume fraction. However, complexities in shape, interactions,

and erosion patterns can lead to inconsistencies in this estimate, giving a model

where the volume fraction term is very difficult to satisfy given the distribution for

the number of objects. Hence, we rely only on the volume fraction to control the

number of objects. This works since the interaction keeps the objects from hiding

inside each other.

The well conditioning indicator, Id, is 1 if all well observations are satisfied and

0 otherwise. This means that only realizations which honor the well data have

positive likelihood.

The volume fraction indicator, Iv, is 1 if all volume fraction criteria are fulfilled.

In this paper, we will only consider a global volume fraction, but any volume

fraction criteria that can be given by an indicator are valid. When working with

large objects, it is important to have enough tolerance on the volume fraction, since

adding or removing one channel can change the volume significantly.

We will not discuss the interaction term, fi, here since it is included only to create
a bound on the number of objects.

2.2 Geometrical Model

Each channel is parameterized along a line, which is denoted as the channel line.

The direction of the channel line is determined by the azimuth and dip, which are

typically given a normal prior distribution. The location within the simulation area

is most often uniform.

Let us for simplicity consider the case with no dip, where the lateral extent of the

object is determined in the xy-plane. The channel line defines a local x-axis where

y¼ 0. We let the channel line and the local coordinate system of the channel start at

the point where the normal to the line in the xy-plane is tangential to the simulation

area, setting x¼ 0 here. Similarly, the channel line ends at the other end of the

simulation area, at x ¼ L, where L is the length of the line. See Fig. 1.

We then add a 1D Gaussian field, mh, to this line, to define the local center of the
channel laterally. Another 1D Gaussian field, w, is defined, independent of mh. This

field is the local width of the channel.

Thus, the left and right channel edges, l(x) and r(x), at local x-coordinate x are

independent and are given by
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l xð Þ ¼ mh xð Þ þ 0:5w xð Þ,
r xð Þ ¼ mh xð Þ � 0:5w xð Þ:

This is shown in Fig. 2.

The variogram for the Gaussian fields, mh and w, are set equal. The range,

expected width, its local standard deviation, and the standard deviation for mh are

drawn from a prior distribution and will thus vary from channel to channel. By

using this parameterization, we can ensure that the channel has positive width by

truncating only one Gaussian field. We treat a dip of an object as a vertical

translation. That is, given a dip of φ, we translate everything at local coordinate

x vertically with xsin(φ). This gives the advantage of not having to do any rotations
to compensate for dip and gives almost the same results as long as the dip is small,

which it should be in a channel setting.

To create the full 3D representation of the channel, we add two 2D Gaussian

fields, mv and h. The field mv (similar to mh) defines the vertical center of the

channel and h defines the height. These fields are defined on a coordinate system

with the same x-axis as the local coordinate system but with y2D¼ 0 on the right

edge and y2D ¼ E(w) on the left edge. In this coordinate system, the channel

Fig. 1 Channel line

relative to realization area

and the definition of the

local coordinate system for

a channel

Fig. 2 Left and right edge
of channel seen in the

xy-plane. The edges are

defined by the channel line

and the 1D Gaussian fields

mh and w
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becomes a rectangle, and we can generate 2D Gaussian fields on it. The top and

base of the channel in local position (x,y2D) are given by

t x; y2Dð Þ ¼ mv x; y2Dð Þ � 0:5h x; y2Dð Þ,
b x; y2Dð Þ ¼ mv x; y2Dð Þ þ 0:5h x; y2Dð Þ:

This is shown in Fig. 3, using only the expected fields.

Fixing the y-coordinate at both edges leads to a stretching and compression of

the Gaussian fields in this direction as the channel width varies but gives a nice

lateral correlation along both edges. The expectation of mv and h can be given as

trends, defining the channel shape.

The uncertainty in these 2D fields is important to handle well conditioning. If

there were no uncertainties in these, an object with trends as shown in Fig. 3 would

have a completely flat top. This object could condition multiple well observations

only if the observations started at the same depth. Similarly, the thickness of the

observation would uniquely define how far from channel center it is located. By

adding uncertainty to these fields, we get an uncertainty on the vertical undulation

of the channel. This gives us the flexibility needed in the well conditioning and can

be thought of as a compensation for non-perfect translation from stratigraphy to the

modeling grid.

2.3 Object Models Versus Grid-Based Models

A notable difference between object models and grid-based models such as indi-

cator simulation or multipoint is that for some combinations of input parameters

and well data, object models explicitly fail, either to condition all well data or to

achieve the correct volume fraction. The reason is that object models are

implemented in a way that preserves a minimum of geometrical integrity. All

Fig. 3 Cross section

(in yz-plane) of channel in

plane normal to local x-axis.

The expected top and base
of the object is shown, as

defined by channel line, mv

and h
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objects generated will have positive probability density under the model. This also

implies that some facies realizations will have zero probability density, as they

cannot be generated by the given objects, so there is a true null space.

Pixel-based models will never assign zero probability to a realization. Standard

multipoint implementation, as in Strebelle (2002), shows the pragmatic stance

taken here: Initially, probabilities are assigned to the patterns seen in the training

image, based on how often they are seen. No assumptions are made for patterns that

are not seen; however, we know that some patterns should be strictly forbidden,

whereas others should have a positive probability. The next step is to fill in facies so

that the patterns that have assigned probabilities are preserved locally. Inevitably,

this creates conflicts elsewhere, and we run into unseen patterns. This is then solved

by assigning probabilities to the patterns with similarities to the ones that got an

initial probability. This entire process is ad hoc and simulation dependent; however,

it ensures that the simulation never stops. A result is always achieved, with correct

volume fraction and well conditioning. When a multipoint model meets a compli-

cated well set, it will thus sacrifice geometry, to a degree that object models

never will.

The challenge for object models is whether the null space is too large for them to

be useful in densely drilled reservoirs. However, what we argue here is that there is

still quite a bit to gain with better algorithms. As well data gets denser and more

complicated, we must be able to explore less likely realizations, as this is where the

data will take us.

3 Algorithm for Generating Channel Realizations

When we want to sample from distributions such as Eq. 1, the Metropolis-Hastings

(MH) algorithm (Hastings 1970) is a good tool. The MH algorithm is very robust

but may have convergence issues.

3.1 The Metropolis-Hastings Algorithm

Again, we refer to Holden et al. (1998) for details of how to implement the MH

algorithm in this setting. The most important aspect of the MH algorithm is that it

generates a Markov chain that converges to the desired distribution. All we need to

provide is a Markov chain sampling algorithm that covers the state space. We must

be able to compute the sampling densities and the true density of the realization up

to a scaling constant.

This allows us to manipulate the drawing algorithm any way we want. A

drawback is inherent in the fact that we need to use this algorithm: We are not

able to draw directly from the true distribution but must rely on the iterative
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convergence of the MH algorithm. This means that object models based on this

algorithm will be slow compared to single pass grid-based algorithms.

There are two extremes for the choice of the sampling algorithm. One is to go for

an algorithm that is very easy to compute so that proposals can be generated very

fast. The idea here is that a low acceptance rate does not matter as long as each

iteration is very fast. This is more or less the approach in Deutsch andWang (1996),

where they do not look at well data at all but generate unconditional channels. The

idea is that discretized on a grid, there is a positive probability of getting the correct

facies in all wells. This has extremely slow convergence in complex well situations.

The other extreme is going for very computer-intensive proposals with high accep-

tance rates. The algorithms described in Hauge et al. (2007) and Skorstad et al.

(1999) move in that direction. In this paper we take that approach even further.

3.2 Generating Conditioning Points for the Edges

We first draw the channel line for the object and transform the relevant well data to

local coordinates. Each object is parameterized at regular intervals along the

channel line, called sections. Lateral conditioning points are channel edge points

drawn in areas where the channel is close to wells to ensure consistency. These are

put in the sections on both sides of the observation, to ensure conditioning. See

Fig. 4 for an illustration. Sections without conditioning points are later filled

through simulation and kriging. Initially, the algorithm is a 2D version of the one

in Skorstad et al. (1999).

We divide the facies observations into four categories: Negative observations

are shale observations, and we must avoid them. Positive observations are sand

observations that we will condition with this channel. We often build a channel

around an observation, and the user may also have specified other observations

belonging to the same object. Possible observations are other channel observations

that may or may not be conditioned by this object, and irrelevant observations are

channel observations conditioned by other channels or missing observations.

4 Deciding Whether a Possible Observation Is Positive or
Irrelevant

This is done based on the probability of having the channel edges encompass both

the possible observation and existing positives, as well as the likelihood of the top

and base fields matching the end points of the possible observation. There is also a

stochastic element in this choice, to span the realization space. So an observation

that fits nicely into the expected channel shape will have a high probability of being
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turned positive, whereas observations with wrong thickness, height, or lateral

location have high probabilities of being classified as irrelevant.

5 Draw Conditioning Points in a Section

When drawing conditioning points in a section, we know the distribution for the

lateral edges, the vertical center displacement, and the vertical thickness. We have

chosen to condition these on the three nearest previously drawn conditioning points,

if such exists.

First, we find the expected vertical position of the object center. If we have

positive observations, we condition on these. Otherwise, this is done from the prior.

Given the vertical location, we are ready to map out the lateral possibilities.

We then reduce the well data to what we need to consider for this particular

object. Since we are now generating the lateral conditioning, we remove all well

data that is too far above or below the current vertical location. This distance

depends on the vertical standard deviation for the center but is also a tuning

parameter. So far, we have chosen to only take a narrow interval close to the center

and assume that the top and base fields can handle the rest. The wells are divided

into facies observations and projected down to the xy-plane of the object.

At this stage, all observations are already categorized as positive (object must

condition), negative (object must avoid), or irrelevant (object may pass through). In

a well, a positive observation is typically adjacent to negative observations, and

these are set to be irrelevant here, since we must partially cover them laterally.

Fig. 4 Three vertical wells in an xy cross section and the corresponding conditioning point for

edges. Given these, positive observations are inside the channel, and negative are outside
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At first, a starting point along the channel is selected, typically where we have

one or more positive observations between section j-1 and j. Assume that the

channel edges in section j-1 are known. We then create a map of legal locations

for the edges in section j by drawing straight lines from the edges in section j-1
through all the well observations and onto section j; see Fig. 5. Given the two edge

projections through a point, the interpretation is simple: If any part of the interval

these generate in section j lies between the channel edges in section j, the point is
inside the channel laterally.

This means that all edge projections together create a simple map for section j,
from where the channel edges must be drawn based on the following criteria: We

must avoid the intervals generated by negative points and cover (at least parts of)

the intervals generated by positive points. This is illustrated in Fig. 6.

So far, the algorithm is a slight simplification of the one described in Skorstad

et al. (1999). However, we now extend the algorithm by also creating another map,

looking at the transition from section j to j+ 1.

Fig. 5 Cross section in the xy-plane showing two sections. The edges are known in the left section

and projected through the well observation points

Fig. 6 Cross section in the xy-plane showing two sections and two well observations at relevant

depth. From the projections, we see that the channel edges in section j must lie so that the L1–R3

interval is completely covered, while none of the interval R4–L4 is covered
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We do this by scanning through a discretized space of potential center locations

of section j, using the expected width for the channel in section j. This width is

updated to condition positive observations between sections j-1 and j for the given
center, if necessary. For each center location, we check that it is legal under the first

map. Given a legal center location and appurtenant edges, we use the same rules as

above to create a map in section j+ 1 based on these edges.

We then compute the probability of drawing a valid channel from j to j+ 1 given
this map, if we disregarded the well observations when drawing. This probability is

the channel center goodness, and the channel center should be drawn where this is

high. We thus draw the edges in section j based on what is legal from the first map

and what gives high channel center goodness in the second. If the second map gives

no positive probabilities, we try again with a smaller width, if possible. Otherwise,

the channel has failed.

The idea of this second map is shown in Fig. 7. Here, we see how the second map

helps us to avoid negative observations that are just beyond the horizon of our first

map, thus greatly increasing the chance of generating a valid channel in a dense

well environment. The cost is that we have to do the scan through possible center

locations.

If the channel edges in section j-1 are unknown, e.g., at the start of the algorithm
or after a jump between sections, we make the map from j to j+ 1 and draw

the edges in j based on this. This works best if there are no observations between

j-1 and j.
As long as we have positive observations in the next section, we keep going

sequentially from section to section. When this is no longer true, we activate a

slightly more complex algorithm to find where to condition next. This algorithm is

beyond the scope of this paper, and it will often work to just keep processing all

sections in one direction and then continue with the other.

Fig. 7 Cross section in the

xy-plane of sections j and j
+ 1, with the channel center

goodness curve projected

onto section j. A channel

centered in C1 will

guarantee that we avoid the

negative observation, while

a center in C2 will fail
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6 Generating the Channel Edges

Given all the conditioning points, which are symmetrically located on the right and

left edge, it is trivial to simulate and krige the channel edges.

6.1 Generating Vertical Conditioning Points

The vertical conditioning is simpler than the lateral and is why we try to do much of

the conditioning here. First of all, we can disregard all well observations that are

outside the channel edges. We then identify the transition points at the ends of

positive observations. We also identify points where negative observations are

close to or inside the expected object and points where positive observations are

close to or outside the top or base of the expected object.

The set of transition points are possible exact observations of the top or base of

the object. We assume that a well going downward passes in through the top of an

object and out through the base and opposite for a well moving upward. This is a

slight approximation but greatly simplifies the problem. If an observation goes up

through the top into another channel, it is considered internal, and not an edge, since

the channel above has eroded into this channel.

Given the observations of top and base, we draw additional conditioning points

for top and base that ensures correct conditioning where we have high probability of

errors. At first we draw at the most crucial locations, that is, where the probability of

well conflict is largest. Multiple points close to each other are grouped to draw

conditioning points that satisfies them all. Figure 8 illustrates vertical conditioning

points. Based on the vertical conditioning points, the top and base of the object are

simulated and kriged to fit the observations.

Fig. 8 Cross section in the

xz-plane, showing vertical

conditioning points and top
and base of conditional
channel
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7 Examples

We present three examples here. In two of them, we show classic failure cases for

object models and how our new algorithm handles them, whereas the third case

shows the improved trade-off between prior model and data in our new algorithm.

7.1 Dense Vertical Wells

In this example, we have a densely drilled field. The dimensions of the field are

1,000 m by 1,000 m, and the well spacing is 50 m in both directions, as shown at the

left in Fig. 9. We have generated an unconditional realization with two channels and

sampled these into the wells, as facies observations. Trying to run a commercial

state-of-the-art object model on this case fails, meaning that we could not obtain a

single realization even after hours of run time. With our new algorithm, we are able

to generate a realization in less than a minute on an ordinary PC. Since both use the

same model, the improvement is due to the algorithm. A realization generated by

the new algorithm is shown to the right in Fig. 9.

Not only do we generate realizations, but by monitoring our proposals, we see

that we also generate almost 100% valid proposals. That is, we almost never have

to abandon a channel proposal due to well issues not handled by our algorithm. This

is also an important speedup, since time wasted on generating invalid objects either

leads to more or slower iterations. On the downside, there seems to be some kriging

overshoot in the upper channel, with the spike coming out. This is due to densely

drawn points not following the variogram completely, here a function of us

Fig. 9 At the left is the dense vertical well pattern with the observed channels, and at the right a
simulation of two channels conditioned to these well observations
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conditioning only on the three nearest points. Kriged points may then generate

extremes as here.

7.2 Wells from a Drilling Pad

Although there are fewer wells in this example, the general pattern is more

complex, as all wells are deviating from a common center. We only have a single

channel in our unconditional simulation; again, this is sampled into the wells as

facies observations. The well pattern and a realization generated from by the new

algorithm are shown in Fig. 10.

The results are the same as before. Our new algorithm is able to generate valid

channels in almost all proposals, although we note that the issue with overshooting

in the kriging of the edge fields is more severe here. We believe this is a tuning issue

that can be solved by choice of variogram and distance between conditioning

points. The commercially available algorithm fails to condition this pattern, mean-

ing that not even one valid proposal was generated when run for hours.

7.3 Biased Synthetic Case

The two previous cases have been very clinical and only looked at the improvement

in complex cases where all parameters were set correctly. But the first indication of

failure in an object model is that it starts to sacrifice its prior distribution. We

believe this happens too fast in existing models and has created a test example to

explore this.

We have taken a set of vertical wells and sampled a realization into these, as

shown in Fig. 11. This is our data set, and so far, it is similar to the ones above.

Fig. 10 At the left is the well pattern from a drilling pad, where we see one channel in black. At
the right is a channel conditioned to these observations with our new algorithm
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However, when generating conditional simulations, we have doubled the expected

width of the objects. This is a particularly effective test, since the width of the

channel is the parameter best describing how difficult it is to place. A very narrow

channel is easy to thread between wells, but a wide one requires more finesse.

The object modeling algorithm is Bayesian and thus has a prior distribution for

the width of channels. What we would expect now is a trade-off between the

channel width we used to generate the data and the new prior model. Due to edge

effects, we use the number of channels as a proxy for actual width; otherwise, wide

channels that only graze the modeling box may confuse the issue. The results are

summarized in Table 1.

What we see here is that the new algorithm is much better at keeping the number

of channels low, as it is much better at navigating wide channels through the well

pattern without generating conflicts in the wells. This means that even when the

parameters are off compared to the truth, we are able to generate realizations that

stay truer to the prior model. The new algorithm is thus better able to explore the

relevant parts of the prior distribution.

8 Concluding Remarks

Given the space available, we were not able to present the full model, which also

includes levees and crevasses, with full conditioning of the entire hierarchy. Even

with the focus on well conditioning, what is presented here is only the key idea in a

large and complex framework. As indicated by one of the examples, the tuning is

still not optimized. But already, we see significant advances in the complexity of

what can be handled. This means that object models can play an important role in

fields where the well data amounts previously was not handled by such models.

Fig. 11 Original reservoir and well pattern

Table 1 The number of channels originally, and the mean and standard deviation (in parentheses)

for the number of channels with 10 runs of our new and the commercial algorithm

Original New algorithm Commercial

# of channels 40 25.9 (0.53) 29.4 (0.79)
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Although we only present the basic channel and shale framework here, it should

be clear how this can be generalized to any object that can be straightened out in a

local coordinate system, since this is where the well conditioning occurs. Objects

built around piecewise linear backbones would thus fit right into this conditioning,

whether they are object- or rule-based.
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Machine Learning Methods for Sweet Spot
Detection: A Case Study

Vera Louise Hauge and Gudmund Horn Hermansen

Abstract In the geosciences, sweet spots are defined as areas of a reservoir that

represent best production potential. From the outset, it is not always obvious which

reservoir characteristics that best determine the location, and influence the likeli-

hood, of a sweet spot. Here, we will view detection of sweet spots as a supervised

learning problem and use tools and methodology from machine learning to build

data-driven sweet spot classifiers. We will discuss some popular machine learning

methods for classification including logistic regression, k-nearest neighbors, sup-
port vector machine, and random forest. We will highlight strengths and shortcom-

ings of each method. In particular, we will draw attention to a complex setting and

focus on a smaller real data study with limited evidence for sweet spots, where most

of these methods struggle. We will illustrate a simple solution where we aim at

increasing the performance of these by optimizing for precision. In conclusion, we

observe that all methods considered need some sort of preprocessing or additional

tuning to attain practical utility. While the application of support vector machine

and random forest shows a fair degree of promise, we still stress the need for

caution in naive use of machine learning methodology in the geosciences.

1 Introduction

In petroleum geoscience, sweet spots are defined as areas of oil or gas reservoirs

that represent best production potential. In particular, the term has emerged in

unconventional reservoirs where the reserves are not restricted to traps or struc-

tures, but may exist across large geographical areas. In unconventional reservoirs

the sweet spots are typically combinations of certain key rock properties. Total

organic carbon (TOC), brittleness, and fractures are some of the properties influenc-

ing possible production. In identifying these sweet spots, the operators face the
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challenge of working with large amounts of data from horizontal wells and model-

ing the complex relationships between reservoir properties and production.

In general, a more data-driven approach for sweet spot detection allows for a

more direct use of less costly reservoir data, such as seismic attributes. Moreover,

such an approach may potentially avoid parts of the expensive reservoir modeling.

In particular, the time-consuming computations needed to build a full reservoir

model can be avoided. Fast and reliable classification of the sweet spots is of high

significance, as it allows for focusing efforts toward the most productive areas of a

reservoir. This makes machine learning algorithms desirable, since these are typ-

ically fast to train, often easy to regularize, and have the ability to adapt and learn

complex relationships.

The use of machine learning methodology for predicting and detecting potential

areas of interest is gaining attention and is not new to the geosciences. A multidis-

ciplinary workflow in order to predict sweet spot locations is presented in Vonnet

and Hermansen (2015). An example of support vector machine application on well

data for prediction purposes is given in Li (2005). In Wohlberg et al. (2006), the

support vector machine is demonstrated as a tool for facies delineation, and in

Al-Anazi and Gates (2010), the method is applied for predicting permeability

distributions.

In this paper we continue this exploration and view sweet spot detection in a

machine learning setting, framed as a traditional supervised learning problem, i.e.,

classification. These are data-driven algorithms that aim to learn relationships

between the reservoir properties and sweet spots from labeled well-log training

data. We illustrate different popular machine learning algorithms through a case

study, considering a real and challenging data set with a weak signal for sweet

spots. The algorithms we consider and compare are logistic regression, k-nearest
neighbor (kNN), support vector machines (SVMs), and random forest.

We will emphasize a more moderate and cautious approach to uncritical use of

machine learning for classification, wherein the awareness of what we can learn is

of significance for interpreting the results. The main challenge here is related to the

low data quality and the limited evidence for sweet spots (see Sect. 2). In such

cases, the focus should be on the confidence of evidence of sweet spots, despite a

potentially low discovery rate. There is usually a high cost associated to exploration

and development of a field. It is therefore generally better to sacrifice some sweet

spots (i.e., detection rate) in order to gain accuracy and precision. This is our main

focus and we compare the ability of these machine learning algorithms to learn

from a weak signal. We show how a simple modification can be used to improve

such methods and how this improves recovering of the potential and providing

sufficiently confident evidence of sweet spots. We also discuss the inadequacy of

simple summary statistics for model validation and show that generally a more

detailed investigation is needed in order to assess the actual performance.

In Sect. 2 we describe our real data set and set the sweet spot detection in a

binary classification setting. Next, in Sect. 3, we discuss the machine learning

algorithms used in this case study. Section 4 outlines the setup for training and
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validating the machine learning methods, before the numeric results are presented

and discussed. Lastly, Sect. 5 concludes the case study.

The training and validation of machine learning methods and the predictions and

numeric comparisons are carried out in R, using the package e1071, class, and
randomForest.

2 Data and the Problem

The case study consists of labeled observations from four vertical blocked wells in a

reservoir, providing a total of 315 observation points. For each observation point,

there are six reservoir properties available for training, henceforth referred to as

features. These are the seismic attributes P-wave velocity (Vp), S-wave velocity

(Vs), density, acoustic impedance (AI), 4D residual of pre-stack time migration and

average magnitude of reflectivity. In addition, total organic carbon (TOC) and

gamma ray (GR) are provided in the wells, which are used to set the labels, i.e.,

sweet spots. See Fig. 1 and Table 1 for details regarding the number of observations

and fraction of sweet spots to non-sweet locations in the wells.

Note that the first four features (Vp, Vs, density, and AI) have been corrected for

a depth trend. Thus, the a priori background model for the parameters has been

removed, since this introduced a systematic bias in the predictions.

To illustrate the complexity of this data set and the weak relationship in the

underlying relationship between sweet spots and reservoir properties, we plot four

cross plots of a selection of pairwise combinations of the six features in Fig. 2.

These plots indicate a quite strong linear correlation between Vp and density and

also between density and AI. Moreover, there is no clear relationship between AI

and 4D residual and 4D residual and the average magnitude of reflectivity. This

seems to be caused by the high level of noise in the measured 4D residuals. In all

four cross plots, there is no trace of geometric delimitation of the sweet spots.

Indicating that the well data is not easily linearly separable in the feature space,

hence we expect a complex, or limited, relationships.

The reservoir model used for predicting sweet spots has dimensions 280 by

350 by 100 cells. Figure 3 shows the top layer and a vertical slice of the acoustic

impedance. Note that the upper left and lower right corners of the lateral view do

not contain defined values. Six wells are marked with a circle in the lateral plot.

Wells 1, 2, 5, and 6 have given the features defining the sweet spots. The two

additional wells in the reservoir, Wells 3 and 4, lack values for total organic carbon

and gamma ray. They cannot be used to define the sweet spots and are therefore

excluded from further analysis.

The S-wave velocity in the labeled data set appears to be artificially constructed

from P-wave velocity, as the estimated correlation between the two is above 0.99,

which is also verified by plotting. Traditionally, we would be inclined to exclude

one of these variables in the statistical analysis, e.g., to avoid collinearity. However,
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we will keep both features in our training data to test and illustrate the robustness of

the (probabilistic) model-free machine leaning methods.

The sweet spot classification is a binary classification problem, where we

identify the two classes: sweet spots and non-sweet spots. In a binary classification

there are four possible outcomes summarized below:

True negative (TN) False positive (FP)

Correctly classified true non-sweet spots Wrongly classified true non-sweet spots as

sweet spots

False negative (FN) True positive (TP)

Wrongly classified true sweet spots as

non-sweet spots

Correctly classified true sweet spots

A perfect performance of a classification is identifying all true non-sweet spots

as non-sweet spots and all true sweet spots as sweet spots. To measure the

performance of a classification, several accuracy and error measures are available.

In sweet spot detection, our primary goal is to obtain precise knowledge on the

locations of possible sweet spots and the corresponding accuracy and precision of

the predictions. We therefore focus on the performance measures True Detection

Rate (TDR) and True Prediction Rate (TPR) defined as

Fig. 1 The ranges of TOC

and GR used to define the

sweet spots. The

observations in the red
region are defined (by the

geologist) as sweet spots

Table 1 Number of sweet

spots and non-sweet spots in

the four wells

Sweet spots: non-sweet spots

Well 1 40: 63

Well 2 9: 40

Well 5 38: 63

Well 6 19: 43
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Fig. 2 Cross plots of a selection of pairwise combinations of the six features. All features are

plotted in the normalized domain, hence no units along the axis. Again, red color marks obser-

vations defined as sweet spots; blue color marks non-sweet spots

Fig. 3 Top layer of the acoustic impedance (left). The wells are numbered from 1 to 6, of which

Wells 3 and 4 do not have defined sweet spots. A vertical slice of the acoustic impedance along the

dashed line marked in the top layer (right). Note the values are corrected for a depth trend
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TDR ¼ TP

TPþ FN
¼ number of correctly predicted sweet spots

number of true sweet spots
ð1Þ

TPR ¼ TP

TPþ FP
¼ number of correctly predicted sweet spots

number of predicted sweet spots
ð2Þ

The TDR is a measure of the recall (or sensitivity) of the classification and

describes how well the classification method correctly detects the sweet spots that

actually are sweet spots. The TPR is a measure of precision and gives the proportion

of predicted sweet spots that are actual sweet spots. To combine the measure of

recall and precision, we will use the Fβ-score defined as the weighted harmonic

mean of recall and precision:

Fβscore ¼ 1þ β2
� � � TPR � TDR

β2 � TPR� �þ TDR
¼ 1þ β2

� � � TP
1þ β2
� � � TPþ β2 � FPþ FN

ð3Þ

In the following, we will use the balanced weighting with β¼ 1, denoted F1 score.

The more general Fβ score will become of value for tuning the algorithms.

Especially for the SVMs this score will be used as a mean of favorable balancing

of TPR and TDR to avoid overfitting and collapsing the model to the uninteresting

solution of predicting all locations as either sweet or non-sweet spots.

In the sweet spot setting, we argue that TPR is of most importance, as an

assurance of correct sweet spot predictions. On the other hand, a carefully balanced

focus on the TDR will ensure that more sweet spots are found, at the cost of

including misclassified sweet spots. Again, care is needed when tuning methods

against these measures.

Moreover, we expect that there is an overrepresentation of sweet spots in the

data. This seems obvious, since the initial or any wells are not placed randomly into

the field, but they are placed exactly where the developers expect they have the

greatest potential for success, i.e., in the sweet spots. This suggests that there is

most likely a confounding, or omitted, variable not observed. The information and

process underlying the positioning of wells can be thought of as an unobserved (and

highly complex) variable influencing both the response and the explanatory vari-

ables. This may in turn result in an unbalanced data problem (too many sweet spots)

and introduce potentially complex correlations among the explanatory variables

and the response; see, among others, He and Garcia (2009) and King and Xeng

(2001) for additional discussion. It is generally hard, or even impossible, to correct

for such; see Li et al. (2011) for an attempt to correct the support vector machine.

The logistic regression model is particularly sensitive; see also Mood (2010). As a

final remark, if we consider the overall reservoir from which well logs are collected,

we will expect a minority of the sweet spots, causing an additional imbalance, this

time in the opposite direction. Proper treatment of such effects and possible

extensions are outside the scope of this paper.
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3 Machine Learning Methods

In general, machine learning refers to algorithms and statistical methods for data

analysis. Here, we will focus on machine learning methodology for prediction of

binary class labels, i.e., two class problems. It should be pointed out that all

methods discussed can easily be generalized to multiclass problems. We will

consider four common and popular supervised learning algorithms, which are the

logistic regression, random forest, k-nearest neighbor (kNN), and support vector

machine (SVM).

3.1 Logistic Regression

Logistic regression is a classical and popular model-based classification algorithm.

We refer the reader to, e.g., Hastie et al. (2009) or any introductory textbook in

statistics for a general introduction. The logistic regression model provides esti-

mates for the probability of a binary response as a function of one or more

explanatory variables. Since it is model based, it is possible to obtain proper and

valid statistical inference, e.g., for statistical tests for feature selection. In addition,

compared to some machine learning algorithms, e.g., kNN, SVM, or tree-based

models, the outputs of a fitted logistic regression model can be interpreted as actual

class probabilities under the model conditions. Most (model-free) machine learning

algorithm only output class labels, and the probabilistic proxies are obtained and

tuned from the raw outputs to mimic an output from a probabilistic model; see, for

instance, Platt (1999) for an algorithm for obtaining class probabilities for SVMs.

The logistic regression model has certain well-known challenges. Firstly, com-

pared to simple machine learning algorithms, like the kNN and SVMs, fitting a

logistic regression model requires some form of semi-complex and iterative opti-

mization algorithm (like gradient decent). On the other hand, since it is based on a

low-dimensional parametric model (the number of parameters is essentially number

of features + 1), the fitted model is very efficient for predicting in large grids.

Another challenge is that the logistic regression is sensitive to collinearity and

confounding; it is not particularly robust against outliers and may become hard to

tune automatically (i.e., select the appropriate number of features to use); see,

among others, Menard (2002) for details on applied use of logistic regression.

3.2 Random Forest

Random forest is the ensemble of multiple decision or classification trees; see, e.g.,

Hastie et al. (2009). A decision tree is a greedy approach that recursively partitions

the feature space. A single decision tree will easily overfit the training data to the
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test data and has potentially a large bias. In particular, with noisy data, the

generalization of a single decision tree is poor. To avoid overfitting, the ensemble

of decision trees, i.e., random forest, averages multiple decision trees based on

different resampling of training data. Each of the trees in the ensemble has

potentially a high variance, and the averaging of the ensemble reduced this vari-

ance. In general, random forest is computationally efficient and is easily

interpreted. For more details, we refer the reader to Breiman (2001).

3.3 k-Nearest Neighbor (kNN)

The k-nearest neighbor (kNN) algorithm is one of the simpler and more robust

supervised learning algorithms. An introduction can be found in any introductory

textbook in machine learning. The algorithm classifies a new observation, or

location, by comparing it with the k-nearest observations in the training set and

classifies the new observation according to the dominant class. This algorithm is

completely model-free and nonparametric. However, each new prediction needs a

unique nearest neighbor search. This makes the algorithm less efficient for large

data sets and prediction grids. The best choice of the number of neighbors, k,
depends upon the data. In our case we perform a cross validation to find this

parameter. In general, small values of k may result in noisier results. Larger values

of k reduce the effect of noise, but make boundaries between classes less distinct.

This algorithm will always improve with more data, and the method is known to

work well in simpler classification problems; see also Beyer et al. (1999).

3.4 Support Vector Machine (SVM)

Lastly, support vector machine (SVM) classifies data by finding a hyperplane that

separates the data. In the case of linearly separable data in two dimensions, the

separating hyperplane is a separating line. Figure 4a shows an illustration of a

linearly separable case with the separating line marked as the black line and the data

points (support vectors) defining the line marked with circles. The dashed lines

mark the margins, i.e., the distance from the separating line to the nearest data

points.

For data sets that are not completely separable, the concept of soft margin is

introduced to allow some data to be within the margin. SVM now attempts to find a

hyperplane that separates the data as cleanly as possible, however, not strictly

enforcing that there are no data in the margin (hence the term soft margin). The

soft margin is controlled through a regularization parameter, often referred to as

C. A large value for this regularization parameter aims for a smaller soft margin and

fewer misclassified points. On the other hand, a small value for the regularization

parameter aims for a larger soft margin, allowing more points to be misclassified
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and yielding a smoother decision boundary. Figure 4b has interchanged three points

between the blue and red classes, making the data set linearly inseparable. This

figure shows the separating plane as the black line, support vectors again marked

with circles, and we observe that some points are allowed to appear within the

margins (dashed lines).

The SVMs handle nonlinear classification by applying the so-called kernel trick,

which allows for nonlinear decision boundaries, while the algorithm for the linear

SVM still can be applied for determination of the hyperplane. The kernel trick can

be thought of as mapping the observation points into some higher-dimensional

space, in which an optimal separating hyperplane is found. Projecting the hyper-

plane back to the original space yields a nonlinear decision boundary. A typical

choice for the kernel function applied is the radial basis function; see, e.g., Hastie

et al. (2009). The radial basis function kernel is a scaled version of the Gaussian

kernel, in which the squared Euclidean distance between two features is scaled by a

free parameter. In the following, we will denote this kernel parameter γ. Adjusting
these parameters allows the decision boundary to go from finely detailed decision

boundary to a coarser distinction between the classes. Figure 4c shows a nonlinear

separating boundary.

The use of SVMs is of great interest as a sweet spot classifier, as it is known to

perform well in classification problems where the decision regions of the feature

space are of a smooth geometric nature, as we expect to be the case in several

applications in the geosciences. The SVM is often referred to be the “out-of-the-

box” classifier and is known to be of high accuracy and has the ability to deal with

high-dimensional data, i.e., usually no preselection of features is needed.

For a more extensive introduction to SVMs, the reader is referred to Bishop

(2006) and Cortes and Vapnik (1995).

Fig. 4 Illustration of SVM for (a) a linearly separable data set, (b) a non-separable data set with
soft margins, and (c) a nonlinear separating hyperplane
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4 Numeric Comparisons

In the following, we first outline the setup for validating the various machine

learning methods. Next, we report results of several comparisons. Along with the

discussion of the results, we present additional tuning of the methods to sharpen and

balance the performances.

4.1 Training, Testing, and Validation of Methods

To evaluate the machine learning methods, we use the labeled data and carry out a

fitting (training and testing) and validation setup. In 100 rounds of validation, we

assign 30–70% of the labeled data set (randomly) for validating. The rest is left for

fitting. In the validation, the fitted methods are applied on the validation data set,

and F1 score, True Prediction Rate (TPR), and True Detection Rate (TDR) are

recorded. For fitting of the methods (training and testing), again 30–70% is

assigned (randomly) for testing the methods, leaving the rest of the data set for

training. In both training and testing, cross validation is used to obtain optimal

parameters for the algorithms. Here we have focused on maximizing mainly the

TPR value, but also various Fβ-scores. After the 100 rounds of training, testing, and
validating, we average the obtained performance measures.

Note that when validating the methods, we randomly choose the observations

from all of the four wells. We also consider a more real-case predicting study,

where we sequentially hold out one well, fitting the methods on the remaining three

wells, and investigate performance on the held-out well.

The optimal parameters, found by cross validation, refer to the parameters

yielding, e.g., the largest TPR score. For the kNN we find the optimal number of

nearest neighbors 0 < k <30. For the SVM we cross validate for the regularization

parameter 2�5 < C < 210 and kernel parameter 2�10 < γ < 25. For the random

forest algorithm, ensembles of up to a couple of 1000 trees were tested. Interest-

ingly we saw no significant change in performance for ensembles of more than

100 trees.

4.2 Results

Table 2 summarizes the performances of random forest, kNN, and SVM applied as

described above. We report the obtained performance measures from the fitting, as

well as on the validation set (in bold). The last column in Table 2 reports perfor-

mance of a random classifier, which randomly (with equal probability) assign

predictions as sweet or non-sweet spots. For the logistic regression, we were not

able to obtain any results better than TPR of 0.10. The failure of the logistic
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regression is explained by the weak signal (correlation between the explanatory

variables and the sweet spots are all less than 0.1) together with nonlinear separa-

tion in the feature space, as previously described. Inspection of residuals and

several corrections, such as feature and subset selections, and change of threshold

on the probabilistic output were tested, however, with no success. Other possible

extensions to logistic regression, for instance, by introduction of hidden layers

(neural nets) (see, e.g., (Bishop 2006)), are beyond the scope of this paper, and

the logistic regression is left out of the following discussion.

From Table 2 we observe that all methods perform more or less equally with the

random classifier, with quite low detection rate. Note that both kNN and SVM seem

to perform well with the high detection rates. These rates, however, are a conse-

quence of several cases of classifying all predictions as sweet spots, hence finding

all, at the cost of significant misclassification rates. This suggests that additional

fine-tuning, or preprocessing, is needed to improve the potential.

In further tuning of the methods, we were able to obtain better measures for all

reported methods. Specifically, the tuning of random forest consists of excluding

the features 4D residual and average magnitude of reflectivity. These features have

a negative variable importance measure score; see Liaw and Wiener (2002). It is

interesting to note that the kNN algorithm was essentially (with unchanged scores)

insensitive to this preprocessing. Furthermore, the SVM actually did worse on the

reduced data set, suggesting that SVM is able to make the feature selection on

its own.

Therefore, to further improve performance, we included an additional fine-

tuning parameter with the aim of obtaining a higher level of precision, i.e., TPR

score, by increasing the threshold used by each algorithm to classify observations

into the respective classes. This makes it harder, by requiring more evidence, to

classify locations as sweet spots.

For kNN this tuning was on the threshold for the majority vote in the neighbor-

hood and for SVM, tuning the threshold, or cutoff, on the decision function score.

As alluded to above, the random forest algorithm was not sensitive to additional

fine-tuning. For both kNN and SVM, the threshold-tuning comes in addition to

tuning of the model parameters. By changing this cutoff, the hope is that we are able

to modify the fraction of sweet spots detected. Table 3 thus summarizes the best

achieved rates as obtained by using the above described tuning.

Table 2 Summary of the performance of random forest, kNN (tuned k), and SVM (tuned C and γ)

Random forest kNN SVM Random

F1 0.24 0.23 0.51 0.50 0.50 0.49 0.40

TPR 0.33 0.32 0.35 0.34 0.36 0.34 0.33

TDR 0.21 0.19 1.00 1.00 0.88 0.89 0.50

All tuning is optimized for TPR. The first column for each method is the measures obtained on the

testing sets. The second column, marked with bold, is the measures obtained on the validation sets.

Last column is the performance of a random classifier
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Comparing reported results in Table 3 with Table 2, we see that (prior) feature

selection for random forest increases both precision and detection and seems to be

the winner among the three. Additional tuning provided no significant improve-

ments to the kNN algorithm, suggesting that sophisticated versions of kNN are

required, e.g., the popular (Friedman 1994) or the more involved (Goldberger et al.

2005). The SVM algorithm received a considerable increase in the TPR score,

indicating a good potential for additional fine-tuning of the SVM toward the most

important properties (e.g., a predefined balance between TPR and TDR).

To evaluate and to get a better understanding of how the obtained performance

measures will transfer to the real field, we now fit the models by sequentially

holding out one of the wells. Firstly, Fig. 5a shows predictions in all four wells

using random forest with four features as specified in Table 3. Here we get a visual

impression of how well sweet spots are predicted. We note several missing sweet

spots in the predictions, as well as sweet spots detected where the labeled data show

non-sweet spots. We accompany the plots of predictions with Table 4, reporting

obtained performance measures in the wells.

Next, Fig. 5b shows predictions in all four wells using kNN, with only tuning of

the number of neighbors, k (as specified for Table 2). This poor performance is

included to illustrate how “good” performance measures indeed transfer to real

field. Although we might be led to believe in the predicting power of kNN from

Table 2, here kNN is either useless (as in Wells 1 and 6) or yields quite noisy

predictions (as in Wells 2 and 5). Also, note that for Well 5 the performance

measures in Table 4 are indeed the same as one would expect from a random

classifier.

Acknowledging the need for additional balancing of TPR and TDR for a best

trade-off, we introduced for SVM additional tuning of the weighting of TPR and

TDR. This is done by optimizing the parameters, by cross validation, against the

Fβ-score, Eq. 3, for different values of β. The developments of the three perfor-

mance measures TPR, TDR, and Fβ score, as a function of the weight β, for the four
wells are shown in Fig. 6. Note that a TDR of 1.0 corresponds with predicting all

points as sweet spots, hence detecting all, at the cost of a large amount of

misclassifications.

Selecting an appropriate weight β for each well yields predictions in the wells as
displayed in Fig. 5c. By appropriate we here refer to the weights that best balance

TPR and TDR, typically at the point where TPR and TDR cross in Fig. 6. Here, the

“optimal” balance point is determined by inspecting of Fig. 6. Table 4 reports the

Table 3 Summary of the performance for random forest (excluding the features 4D residual and

average magnitude of reflectivity), kNN (also threshold tuned), and SVM (also threshold tuned)

Random forest kNN SVM

F1 0.32 0.34 0.41 0.38 0.21 0.27

TPR 0.38 0.40 0.38 0.35 0.49 0.44

TDR 0.30 0.33 0.61 0.58 0.20 0.26

All tuning is optimized for TPR. Columns are for test and validation sets as given for Table 2
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Fig. 5 Prediction of sweet spots in the four wells using (a) random forest with four features and

(b) kNN, (c) fine-tuned SVM, and finally (d) random forest with four features and without

corrections of the depth trend. Leftmost well column for each well is the labeled data, while the

rightmost well column for each well is the prediction

Table 4 Obtained performance measures when sequentially holding out one well at a time

Random forest SVM kNN

TPR TDR TPR TDR β TPR TDR

Well 1 0.55 0.15 0.60 0.30 0.30 0.39 1.00

Well 2 0.25 0.33 0.00 0.00 0.40 0.19 0.78

Well 5 0.54 0.18 0.50 0.37 0.30 0.38 0.55

Well 6 0.53 0.42 0.38 0.53 0.45 0.31 1.00

For the random forest and kNN, the two columns are TPR and TDR. For the SVM, we report, in

addition to TPR and TDR, the weight β used in the optimization for parameters
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weight β used for each of the wells. In general, we now observe in Fig. 5c that the

detection has increased compared to random forest, as well as the precision is kept

at an acceptable level, indicating good generalization potential.

Note again that predictions in Well 2 fail – more or less – for all methods.

Extracting wells as validation sets introduces a grouping of the observations. There

is reason to be skeptical regarding the results for Well 2. Figure 7 shows the

pairwise cross plots of some of the features, distinguished by color on the four

different wells. We observe that for Well 2 (red color) the features do not coincide

with the three other wells. Therefore, this well can be interpreted as significantly

noisier or to be representing something different. It is, of course, generally hard for

a predictor to predict something it has never seen before. On the other hand, a

Fig. 6 Development of the three performance measures TPR (solid), TDR (dashed), and Fβ score
(gray) as a function of the weight β for the four wells. Left column shows the development on the

testing set, while the right column shows the validation set
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simple linear classifier may still provide reasonable results, depending on the

structure of the underlying problem.

As pointed out earlier, four of the features in the data set have been corrected for

a depth trend. Figure 5d displays the obtained predictions applying random forest

by including depth as an independent feature. We observe a seemingly good match,

indicating possible spurious relationship. In the well data in our case study, the

majority of the defined sweet spots are indeed located toward the bottom of the

reservoir. However, none of the other methods performed acceptably with the depth

trend; results were indeed worse.

5 Conclusion

In this paper we have illustrated the application of machine learning methods to a

small, but challenging, real field case study of sweet spot detection. The data set has

weak evidence of sweet spots, and validation of the methods supports the difficulty

of detection. To increase the performance of the methods, we illustrate and discuss

a simple solution. As a concluding summary, random forest, given proper

preprocessing and feature selection, seems a safe and simple choice, at least for

the described data set. Next, SVM shows flexibility and a good potential by

responding well to tuning of parameters. SVM is able to obtain acceptable rates

and proves transferrable to field predictions. However, unguided use of SVM easily

leads to poor performance. The simple kNN with the described tuning does not

seem to yield trustworthy results, and logistic regression failed already in the onset

of these analyses and did not recover. In general, machine learning algorithms

should be used with caution and proper preprocessing, and guided tuning seems to

be needed for obtaining reasonable performance.
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Fig. 7 Cross plots of three pairs of features, distinguished on color for the four wells. Red color is
for Well 2. Values are in the normalized domain, hence no units on the axis
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Theoretical Generalization of Markov Chain
Random Field in Reservoir Lithofacies
Stochastic Simulation

Xiang Huang, Zhizhong Wang, and Jianhua Guo

Abstract This paper mainly focuses on the theoretical generalization of Markov

chain random field (MCRF) model and discusses its application in reservoir

lithofacies stochastic simulation. We first introduce the fully independent and

conditional independent assumptions of multidimensional Markov chain models.

The Equivalence of Markov property and conditional independence is derived

explicitly based on the Bayes’ theorem, which completes the theoretical foundation

of MCRF. The MCRF model is then applied to the lithofacies identification of a

region in China, and the results are compared with those by fully independent

assumption. Analyses show that conditional independent-based MCRF model per-

forms better in maintaining the percentage composition of each lithofacies and

reproducing the geological continuity of lithofacies distribution.

1 Introduction

Lithofacies identification is an important procedure in petroleum exploitation

industry. At present, determinative modeling and stochastic modeling techniques

in oil-gas reservoir engineering are available to characterize reservoir heterogeneity

(Liu 2008; Zhang et al. 2010). Determinative modeling requires detailed under-

ground characterizations, but it is especially difficult to acquire these information.

Stochastic modeling is mainly based on variograms and transition probabilities

(Carle and Fogg 1996; Weissmann and Fogg 1999). Variograms are symmetric, but

the actual reservoir formation has directional property, so that the interclass rela-

tionship between the associated position of reservoir categorical attribute is asym-
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metric. Transition probabilities can closely link reservoir categorical variables and

show the spatial (asymmetric) correlation relationships. As a measure for charac-

terizing spatial variability (Huang et al. 2016b), transition probabilities can be used

as fundamental tools for the spatial Markov chain theory.

Markov chain model was introduced by Markov in 1906 and applied to stratig-

raphy in the 1940s. One-dimensional (1-D) Markov chains (or transition probabil-

ities) have long been used in geosciences; see Krumbein and Dacey (1969) and

Carle and Fogg (1997) for some reviews in geology and soil science.

Multidimensional (M-D) Markov chain models can be traced to Lin and Harbaugh

(1984) in geology for modeling lithological (or sedimentological) structures. A

spatial hidden Markov chain was introduced by Huang et al. (2016a) for estimation

of petroleum reservoir categorical variables in M-D space. The M-D Markov chain

model proposed by Elfeki and Dekking (2001) and Li et al. (2012) is considered

nearest known neighbors in cardinal directions with the fully independent assump-

tion. This M-D Markov chain is composed of multiple fully independent 1-D

Markov chains, and they are forced to move to the same location with equal states.

The fully independent assumption causes the small-class underestimation problem.

Li (2007b) solved this problem based on Markov chain random field (MCRF)

theory and proposed a single spatial Markov chain (SMC) that moves in an M-D

space, with its transition probabilities at each given location entirely depending on

its nearest neighbors in different directions under the conditional independence

assumption (Li 2007a, b; Huang et al. 2016c). Although the conditional indepen-

dence assumption has been widely used to construct M-D models, the rationality to

use this assumption has not been well discussed. The MCRF theory was not

sufficiently described mathematically in previous publications (Li and Zhang

2013). The problem is discussed and solved in this paper on the basis of the

equivalence of Markovianity (Markov property) and conditional independence.

We first put forward the background information of M-D spatial Markov chain

models in Sect. 2. The fully independent assumption and conditional independence

assumption are described in Sects. 2.1 and 2.2, respectively. The Equivalence of

Markovianity and conditional independence is then derived explicitly based on the

Bayes’ theorem (Sect. 3), which gives a solid logical proof for MCRF theory. In

Sect. 4, we use MATLAB programming to give a simple reservoir lithofacies

simulation example to compare the performance of conditional independence-

based MCRF method and fully independent-based model. Finally, Sect. 5

concludes.

2 Spatial Markov Chain Models

Oil-gas reservoir field can be divided into discrete gridding units, and the

corresponding states (lithofacies) can be regarded as a sequence of random category

variables F1,F2, . . .,Fn defined on the n ordered spatial site set S ¼ 1; 2; . . . ; nf g, in
which each random variable Fs takes a state value fs in the m state set
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Ω ¼ 1; 2; . . . ;mf g. The sequence F1,F2, . . .,Fn satisfying Markovianity is defined

as an SMC or spatial Markov process if

Pr f s f 1; f 2; . . . ; f njð Þ ¼ Pr f s f s1 ; f s2 ; . . . ; f sl
��� � ð1Þ

where s1, s2, . . ., sl is its nearest known locations of current unknown site s in

different directions. In order to study the complex distribution of subsurface

reservoir categorical variables, the SMC models, based on the fully independent

and conditional independence assumptions, respectively, are proposed and system-

atically discussed in this paper.

2.1 Spatial Markov Chain Models with Fully Independent
Assumption

The SMC can be constructed by coupling l one-dimensional Markov chains

together, but these one-dimensional chains are forced to move to the same location

with equal states under the fully independent assumption. The fully independent is

defined as

Pr f s f s1 ; f s2 ; . . . ; f sl
��� � ¼ C � Pr f s f s1

��� �
Pr f s f s2

��� �� � �Pr f s f sl
��� � ð2Þ

where

C ¼
Xm
f s¼1

Pr f s f s1
��� �

Pr f s f s2
��� �� � �Pr f s f sl

��� �
" #�1

; ð3Þ

in order to ensure that
Xm
f s¼1

Pr f s f s1 ; f s2 ; . . . ; f sl
��� � ¼ 1.

If two-point conditional probabilities are replaced by transition probabilities

pr
f sr f s

, Eq. 2 can be expressed as

Pr f s f s1 ; f s2 ; . . . ; f sl
��� � ¼

p1f s1 f s
p2f s2 f s

� � �pl
f sl f sXm

f s¼1

p1f s1 f s
p2f s2 f s

� � �pl
f sl f s

ð4Þ

where pr
f sr f s

denotes a transition probability in the rth direction from state f sr to state

fs.
From Eq. 4, the conditional probabilities of two- and three-dimensional Markov

chain models are derived as follows:
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Pr Ziþ1, jþ1 ¼ k Zi, jþ1 ¼ u,Ziþ1, j ¼ t
��� � ¼ ph

ukp
v
tkXm

k¼1

ph
ukp

v
tk

ð5Þ

Pr Ziþ1, jþ1, rþ1 ¼ k Zi, jþ1, rþ1 ¼ u,Ziþ1, j, rþ1 ¼ t,Ziþ1, jþ1, r ¼ q
��� �

¼ ph
ukp

v
tkp

y
qk

Xm
k¼1

ph
ukp

v
tkp

y
qk

ð6Þ

where Zi,j and Zi,j,r are the coupled Markov chain (CMC) and triplex Markov chain

(TMC), respectively, all defined in the state spaceΩ ¼ 1; 2; . . . ;mf g, including k,t,
q, and u. pvtk, p

h
uk, and pyqk represent three transition probabilities in the vertical z,

horizontal x, and y directions. Equations 5 and 6 can be found in Elfeki and Dekking
(2001) and Li et al. (2012), which have been applied in reservoir modeling.

However, the transition in Eq. 2 requires moving to the same location with equal

states, which causes big-class-overestimation or small-class-underestimation prob-

lem (Li 2007b).

2.2 Spatial Markov Chain Models with Conditional
Independence Assumption

The acquisition mode and calculation of high dimensional transition probabilities

(conditional probabilities) is more complex than that of low dimensional transition

probabilities in SMC models. If the higher dimensional transition probabilities are

represented by the lower dimensional transition probabilities, it is a great aid and

advantage in simplifying the acquisition mode and reducing the calculation work.

Taking s 2 S, its neighboring set is ηs ¼ s1; s2; . . . ; stf g. By the Markovianity, we

have that

Pr f s f ηs ; f ηs

���
� �

¼ Pr f s f s1 ; f s2 ; . . . ; f st
��� � ð7Þ

where ηs denotes the non-neighboring set of site s. The categorical variables Fs1 ,

Fs2 , . . . ,Fst corresponding to the neighboring sites s1, s2, . . ., st may be condition-

ally dependent or conditionally independent. At most q sites in s1, s2, . . ., st are
non-neighbors, i.e., for 8 si , i21, 2, . . . , t, the other sites sj satisfy

sj=2ηsi , j21, 2, . . . , tð Þ \ j 6¼ ið Þ. Assuming that the q sites are s1, s2, . . ., sq and

corresponding categorical variables are Fs1 ,Fs2 , . . . ,Fsq . The conditional indepen-

dence assumption is given as
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Pr f s1 , f s2 , . . . , f sq f sj
� �

¼ Pr f s1 f sj
� �

Pr f s2 f sj
� �� � �Pr f sq f sj

� �
: ð8Þ

Thus, given a categorical variable at site s, the categorical variables at their

non-neighboring locations in the neighboring set of site s are conditional

independent.

For example, if we choose the first-order neighborhood system in a regular

two-dimensional rectangular lattice, given a site s, there are four nearest locations
in cardinal directions, and the corresponding categorical variables are conditionally

independent. In a regular three-dimensional rectangular lattice, the corresponding

categorical variables at the six nearest locations from cardinal directions are

conditionally independent. This seems to be basically consistent with the condi-

tional independence assumption proposed by Li (2007b), i.e., given a site, its

nearest neighbors are conditionally independent. For the second-order neighbor-

hood system in a two-dimensional rectangular lattice (horizontal plane), at most

four diagonal directions are conditional independent. In a three-dimensional rect-

angular lattice, at most eight diagonal directions are conditional independent. This

shows that the conditional independence depends on the order choice of a neigh-

borhood system and no pixels in any directions are conditionally independent; thus

conditional independence assumption should be checked whenever possible

(Journel 2002).

For the SMC, we assume that at most l+1 categorical variable Fs�1,Fs1 ,Fs2 , . . . ,
Fsl are conditional independent for its nearest unknown variable Fs, where s� 1 is the

last-stay location of the SMC (Li 2007b). Thus, the conditional independence of a

single spatial Markov chain is defined as

Pr f s�1, f s1 , . . . , f sl f sj
� � ¼ Pr f s�1 f sjð ÞPr f s1 f sj

� �� � �Pr f sl f sj
� � ð9Þ

Although a large number of applications for the conditional independence assump-

tion can be found in Bayesian network, indicator geostatistics, image processing,

and multiple-point statistics (Huang et al. 2013), some of these applications are

subjective. We can check the rationality of the use of conditional independent

assumption according to the method mentioned above.

3 Theoretical Generalization of MCRF

Let A, B, and C be three mutually disjoint subsets of the spatial site set

S ¼ 1; 2; . . . ; nf g, suppose A and B are non-neighbors, i.e., for 8s2A, there does

not exist i 2 B and i2ηs. FA, FB, and FC are three mutually disjoint subsets of

categorical random variables in F and are defined on the sets A, B, and C,
respectively. We have that Pr f Af B f Cjð Þ ¼ Pr f A f Cjð ÞPr f B f Af Cjð Þ:

By Markovianity, we obtain
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Pr f B f Af Cjð Þ ¼ Pr f B f Cjð Þ:

Therefore,

Pr f Af B f Cjð Þ ¼ Pr f A f Cjð ÞPr f B f Cjð Þ: ð10Þ

We find that FA and FB are conditionally independent given FC. The conditional

independence in the random field F implies that if A, B, and C are any three disjoint

subsets of the spatial site set S, A and B are non-neighbors; we have that FA and FB

are conditionally independent given FC.

We have proven that if the Markovianity holds, then the conditional indepen-

dence holds. Now we assume that the conditional independence holds, it needs to be

proven that the Markovianity holds. Take an arbitrary s 2 S, and let

A ¼ sf g,C � ηs,B � ηs . Obviously, A, B, and C are three mutually disjoint subsets

of S; in addition, A and B are non-neighbors. Because the conditional independence

in the random field F holds, we have that FA and FB are conditionally independent

given FC, i.e.,

Pr f Af B f Cjð Þ ¼ Pr f A f Cjð ÞPr f B f Cjð Þ:

With some transformations, we can obtain

Pr f A f Bf Cjð Þ ¼ Pr f Cð ÞPr f Af B f Cjð Þ
Pr f Bf Cð Þ ¼ Pr f A f Cjð Þ; ð11Þ

hence the Markovianity holds. Then we have the equivalence between the

Markovianity and conditional independence. By using the definition of conditional

probability, the general expression of the conditional probability at any location s in
a MCRF is expressed as

Pr f s f s�1; f s1 ; f s2 ; . . . ; f sl
��� � ¼ Pr f s�1ð Þ

Pr f s�1; f s1 ; f s2 ; . . . ; f sl
� � pf s�1f s

p1f sf s1
p2f sf s2

� � �pl
f sf sl

ð12Þ

where pr
f sf sr

denotes a transition probability in the rth direction from state fs to f sr ,

and pf s�1f s
denotes a transition probability along moving direction of the spatial

Markov chain from state f s�1 to fs.
Li (2007b) proposed the general expression of the SMC in an MCRF theory,

which is given as follows:
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Pr f sjf s�1, f s1, f s2 . . . , f s1ð Þ ¼ pf s�1f s
p1f sf s1p

2
f sf s2

. . . plf sf slXm
f s¼1

pf s�1f s
p1f sf s1p

2
f sf s2

. . . plf sf sl

ð13Þ

Note that Eqs. 12 and 13 are essentially equivalent. We derive Eq. 12 by using the

equivalence of Markovianity and conditional independence. The general solution

given by Li (2007b) was using the Bayes’ theorem (or the definition of conditional

probability).

Some special SMC models are provided and can be found in Li (2007a). For

example, the conditional probabilities of two- and three-dimensional Markov chain

models are provided as follows:

Pr Ziþ1, jþ1 ¼ k Zi, jþ1 ¼ u,Ziþ1, j ¼ t
��� � ¼ ph

ukp
v
ktXm

k¼1

ph
ukp

v
kt

ð14Þ

Pr Ziþ1, jþ1, rþ1 ¼ k Zi, jþ1, rþ1 ¼ u,Ziþ1, j, rþ1 ¼ t,Ziþ1, jþ1, r ¼ q
��� �

¼ ph
ukp

v
ktp

y
kq

Xm
k¼1

ph
ukp

v
ktp

y
kq

ð15Þ

These models are simple and useful in modeling categorical variables without the

overestimation or underestimation problem.

4 Case Study

4.1 Data Sets

The data we used for our research are gathered from Tahe area of the Tarim Basin in

Xinjiang Uyghur Autonomous Region, China. There are three major lithofacies in

this work area: mudstone, sandstone, and conglomerate. The conglomerate is

relatively low in content. We have got four wells’ lithologic data in the three-

dimensional space (Fig. 1). Three wells are located in the corners of this work area;

another well is located inside. The distance in east-west direction of the two wells is

6000 m and 8000 m in south-north direction, the simulated space is split into a

60� 80� 100 grid system, and each cell is a 100� 100� 1 m cuboid. Note that the

coordinate values represent the number of grids.
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4.2 Simulation Results and Analysis

According to the four wells and step size we choose, the unknown grids in this work

area are being simulated by using MCRF algorithm, which has been discussed in

Sect. 3. The four realizations of lithologic stochastic simulation are shown in Fig. 2.

These realizations generally reflect the basic rule of sand body development in this

area. The sandstone thickness is mostly in 1–5 m and presents a thin layer of output.

It is continuous in horizontal direction, which can extend to several kilometers.

Mudstone is the background lithofacies, and it is widely distributed in this area.

Conglomerate is not well developed in this work area, which is not continuous

neither in vertical direction nor horizontal direction. For one thing, we can safely

draw a conclusion from Fig. 2a–d that the conglomerate can only extend 200–300 m

in horizontal direction; the average thickness of this type of lithofacies is no more

than 3 m. For another, the conglomerate is more likely to appear in sandstone

distribution area, which means that the transition probability between conglomerate

and sandstone is higher than that of mudstone. Mudstone and sandstone are more

continuous than conglomerate in horizontal direction, and the occurrence frequency

of mudstone is significantly greater than the other lithofacies in vertical direction.

We also use the method based on fully independent assumption for comparison.

The simulation results has been shown in Fig. 3. Compared with Fig. 2, the

sandstone layer is thinner in vertical direction and less continuous in horizontal

direction. We also find that conglomerate is rarer distributed, which means that this

fully independent assumption may underestimate the small class proportion. This

conjecture is verified in Table 1. In our analysis, the well data (Table 1) are used for

validation. It is obvious that, compared with model based on fully independent

assumption, MCRF, a method based on conditional independence assumption, is

relatively better at maintaining the percentage composition of each lithofacies.

Fig. 1 The 3-D work area with four wells (S66, S67, S75, S92), x axis and y axis indicate east-

west direction and south-north direction, respectively. z axis indicates vertical direction. Note that
the coordinate values represent the number of grid
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Fig. 2 (a) the first simulation result; (b) the second simulation result; (c) the third simulation

result; (d) the fourth simulation result

Fig. 3 (a) the first simulation result; (b) the second simulation result; (c) the third simulation

result; (d) the fourth simulation result
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5 Conclusions

The focus of this article is the theoretical generalization of MCRF model. In

addition, a simple reservoir lithofacies simulation example is also given to illustrate

the superiority of the conditional independence assumption than the fully indepen-

dent counterparts. MCRF model uses conditional independence assumption for

stochastic simulation. The rationality of this assumption, however, has not been

well discussed in previous studies. We solve this by proving the equivalence of

Markovianity and conditional independence. Compared with fully independent-

based method, MCRF simulation has more advantage in reproducing the geological

continuity of lithofacies distribution and performs better in maintaining the per-

centage composition of each lithofacies.
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Deepwater Reservoir Connectivity
Reproduction from MPS and Process-
Mimicking Geostatistical Methods

Rhonika Kaplan, Michael J. Pyrcz, and Sebastien Strebelle

Abstract Deepwater unconfined lobe depositional systems are important reservoir

targets. High drilling cost and subsalt imaging greatly limit the quantity and quality

of data. In the absence of sufficient data, analog architectural studies have identified

a variety of potentially important reservoir quality related geometries and trends

resulting from the well-understood depositional processes. Internal lobe trends

(proximal, dominated by amalgamated sands, to distal, dominated by

non-amalgamated sands) impact horizontal connectivity and coupled with compen-

sational lobe stacking impact vertical connectivity (alternating proximal and distal

lobe components are superimposed locally).

Current geostatistical algorithms, pixel based or object based, using

semivariograms, training images, or geometric parameters, enable the reproduction

of spatial statistics inferred from available conditioning data and analogues but

rarely integrate information related to depositional processes. Indeed, because

conventional geostatistical models are constructed without any concept of time or

depositional sequence, their ability to incorporate sedimentological rules, which

explain facies geobodies interactions and intra-body porosity/permeability hetero-

geneity, is quite limited.

Process-mimicking methods provide an improved ability to honor these flow

unit stacking patterns and trends, but trade-off precise conditioning to [moderate to

dense] well data and detailed seismic informed trend models. To guide

geostatistical reservoir modeling practice, a study assesses the incremental impact

of process-mimicking relative to a common multiple-point statistics (MPS)

approach with respect to reservoir flow response.

A surface-based (a variant of process-mimicking) method coupled with hierar-

chical trends efficiently reproduces realistic deepwater lobe geometry, stacking
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patterns, and internal lobe heterogeneity. A spectrum of deepwater lobe reservoir

models, using archetypal well log data and flow diagnostics and benchmarked with

the current MPS approach, quantifies incremental flow significance of these reser-

voir features. This quantification supports guidance and best practice for

geostatistical reservoir modeling workflow design for unconfined deepwater lobes

reservoirs.

1 Introduction

Current geostatistical algorithms, pixel based or object based, using

semivariograms, training images, or geometric parameters, enable the reproduction

of spatial statistics inferred from available conditioning data and analogues but

rarely integrate information related to depositional processes. Indeed, because

conventional geostatistical models are constructed without any concept of time or

depositional sequence, their ability to incorporate sedimentological rules, which

explain facies geobodies interactions and intra-body porosity/permeability hetero-

geneity, is quite limited (Pyrcz et al. 2012).

While we do acknowledge the value and practical success of the more traditional

geostatistical models mentioned above, there still remains an opportunity for

developing models that incorporate stratigraphic rules that relate to the underlying

geologic processes and hence offer an improved representation of depositional

heterogeneity. Process-mimicking facies models attempt to increase the level of

integration of the geological conceptual model by integrating rules, based on the

geological process. The rules constrain the sequential construction of reservoir

architecture represented by object or, in our experiment, surfaces (Pyrcz and

Deutsch 2014).

Comparisons of modeling approaches are risky and may be misleading. The

purpose of this paper is not to determine that one modeling approach is better than

another. The authors are motivated by their practical experience in mentoring and

directing reservoir modeling on deepwater assets worldwide. The subsurface res-

ervoir modeling teams have consistently asked, “Will more geological process

information and realism impact the connectivity of the reservoir model?” This

paper demonstrates that in some cases the impact is significant, and with connec-

tivity quantification suggests that there are cases where one technique might be

more appropriate than the other, given the reservoir modeling goals aligned with

business need.

In our study we use a surface-based method to generate our geologically realistic

lobe model (see Fig. 1). Surface-based methods are a modified version of object-

based methods that produces and track surfaces that delineate objects. Within a

process-mimicking framework, surface-based methods incorporate aggradation and

erosion of surfaces based on geometric templates. For greater details on this method

602 R. Kaplan et al.



and other process-mimicking approaches, the reader can refer to various publica-

tions including Pyrcz and Deutsch (2005), Wen (2005), Miller et al. (2008),

Michael et al. (2010), Sylvester et al. (2010), and Pyrcz et al. (2015).

This technique allows for inclusion of realistic lobe stacking patterns and

internal lobe heterogeneity, which is not typically captured by conventional model-

ing approaches. Stacking is a fundamental characteristic of lobes, as well as the

internal architecture (proximal, dominated by amalgamated sands, to distal, dom-

inated by non-amalgamated sands).

This study endeavors to quantify the added value of utilizing a process-

mimicking approach compared to conventional modeling approaches. A simple

multiple-point statistics (MPS) model is utilized as a benchmark, because it repre-

sents the common modeling approach in this setting. To achieve our objective we

propose to generate typical deepwater lobe reservoir models using archetypal well

log data and perform flow diagnostics to estimate the impact recovery. Previous

studies have shown the importance of reservoir connectivity and heterogeneity on

reservoir performance (e.g., Larue and Hovadik 2006). Our results quantify the

incremental impact of connectivity (lobe stacking) and heterogeneity (within-lobe

trends) for different net-to-gross scenarios modeling with process-mimicking

models benchmarked with standard MPS workflow. This is useful to justify the

additional effort to adopt emerging process-mimicking methods rather than utiliz-

ing widely available MPS workflows.

Fig. 1 Continuum of process-mimicking approaches that allow us opportunities to produce more

geologically realistic reservoir models
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2 Methodology

The experiment is based on the application of three parallel modeling workflows

from stratigraphic characterization to reservoir modeling to connectivity analysis.

The first workflow is based on a standard MPS approach with associated training

image construction. The second workflow, based on the surface-based modeling

process described previously, generates lobes that capture the large-scale lobe

geometry and compensational stacking. The third workflow includes the features

of the second workflow with the added within-lobe reservoir property (porosity and

permeability) trends that include fining (decrease in reservoir quality) distally and

laterally, as well as sedimentary cycles vertically. Each workflow from 1 to 3 rep-

resents increasing integration of the stratigraphic characterization. The quantifica-

tion of impact is based on a flow diagnostic tool that calculates the dynamic Lorenz

coefficient, a global measure of the degree of connectivity complexity. The exper-

iment includes 20 stochastic realizations from each workflow for 40, 60, and 80%

NTG (ratio of lobe related to overbank facies).

2.1 Geologic Characterization

Deepwater lobe characterization is based on a hierarchical architecture. Individual

lobe elements are lenticular in cross section and lobate in map view, with high

aspect ratios on the order of 1,000:1 (Beaubouef et al. 1999; Sullivan et al. 2004;

Prélat et al. 2009, 2010). They represent the unconfined deposition of genetically

related sediment gravity flows. Lobe elements that are genetically related show

similar grain size and facies distribution and similar architectural styles and stack in

a compensational manner to form a lobe complex.

Lobe elements are characterized by individual depositional packages known as

stories. These include general trends in depositional grain size with fining from

proximal to distal and inner to outer lobe and vertical cycles (Fig. 2).

2.2 Geostatistical Modeling

Lithofacies modeling, for Workflow 1 geostatistical modeling, utilizes MPS. The

MPS variant is the standard SNESIM approach (Strebelle 2002). The training

image is composed of sand facies lobes in an overbank background (see Fig. 3).

It was built using a simple object-modeling tool that generates lobular shapes with

dimensions 60,000 ft in length, 40,000 ft in width, and 40 ft in thickness. The global

proportions are constrained by firstly designing training images with the target

facies proportions and updating conditional distributions from the training images

based on mismatch with target global proportions during simulation.
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For workflows 2 and 3 our surface-based method was applied to simulate

compensationally stacked lobes (Pyrcz et al. 2015). The same dimensions men-

tioned above were used in the construction of these lobes. Our tool also generates an

azimuth field within the lobe objects, as well as longitudinal, transverse, and

vertical trends which are combined to produce our hierarchical trend. More infor-

mation on the hierarchical trend approach is found in Pyrcz et al. (2005). The

hierarchical trend is crucial because it is used to guide the petrophysical modeling

in Workflow 3 (Fig. 4).

Sequential Gaussian simulation is applied to simulate porosity within the reser-

voir facies using a histogram of values ranging from 0.04 to 0.26, and a variogram

range of 2,000 ft in the longitudinal direction and 1,300 ft in the transverse direction

is assumed. For workflows 1 and 2, no trends are applied for the porosity simula-

tion. However, for workflow 3 within-lobe trends, which mimic the hierarchical

architecture recognized in deepwater lobes, are added. These trends are integrated

as a secondary variable with a correlation coefficient of 0.8.

Fig. 2 Dip section of a simple conceptual model of within-lobe heterogeneity for a simple lobe

geometry

Fig. 3 Training image used in MPS simulation at a sand proportion of 60%
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Cloud transform is applied to simulate permeability conditional to the simulated

porosity realizations using the same variogram mentioned previously. Permeability

values range from 5 to 30 mD within the reservoir facies. Examples of strike

sections for realizations from each workflow are shown in Figs. 5 and 6.

2.3 Flow Diagnostic Assessment

Flow diagnostic assessment was used to derive quantitative information on reser-

voir connectivity. These methods utilize standard reservoir property models (poros-

ity and directional permeability) along with efficient, simplified flow simulation to

provide immediate information on the impact of modeling decisions on flow

heterogeneity (Shook and Mitchell 2009; Shahvali et al. 2012; Møyner et al. 2015).

In this case study a steady-state pressure field is calculated that induces a

displacement or flux from injectors to producers across the reservoir. Importantly,

Fig. 4 Surface-based lobe

model with sand and

argillaceous sand

proportion of 60%

Fig. 5 Strike sections of a porosity realization from each of the workflows
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the computed flux does not account for the full physics of the flow between two

wells as the calculation of flux within the model makes several assumptions. Firstly,

the flow is assumed to be steady state and single phase; therefore, the phase of the

flow will not change due to buoyancy, well controls, or fluid mobility changes.

Secondly, a main assumption is that the flow is incompressible and well-driven

flow; any independent reservoir compartment or fault block in the model must have

at least one producer and one injector well to initiate some flow.

This approach yields a number of outputs including dynamic Lorenz coefficient

(DLC) and time of flight information. Once the flux across the volume and time of

flight are calculated, the F-Φ relationships can be calculated. When plotted this

generates a curve representing the relationship between normalized, cumulative

flow capacity (F) against storage capacity (Φ). Specifically, the curve explains the

ratio between the volume of injected and swept reservoir pore volume. Twice the

area under this curve and above the 1:1 line is the DLC and can be used to rank the

heterogeneity of multiple models (see Fig. 7). This is a good quantification of flow

Fig. 6 Strike sections of a permeability realization from each of the workflows

Fig. 7 Dynamic Lorenz coefficient to quantify reservoir connectivity heterogeneity as a summa-

rization of the storage capacity subtracted from the flow capacity based on a set of injectors and

producers
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complexity (reservoir heterogeneity) as it describes whether flow in the reservoir

represents a simple piston displacement or highly impacted by high permeability

streaks and barriers (indicated by high DLC).

3 Results

The flow diagnostic assessment quantified by DLC (a good indicator of recovery

factor) suggests that the level of reservoir connectivity and heterogeneity is

impacted by the additional features such as lobe stacking pattern and within-lobe

trends that are available with process-mimicking model. Visually, we see this

behavior in Fig. 8 where the volume that is being swept shrinks and is less uniform

as we go from the simplistic model from workflow 1 to a more complex model from

workflow 3.

The expectation over several model realizations, for each workflow, was calcu-

lated and plotted. It demonstrates increasing flow complexity with increasing model

complexity (see Fig. 9).

We assessed at each net-to-gross scenario which features, stacking patterns

(connectivity) or within-lobe architecture, contributed more significantly to the

change in the DLC. The proportion increase of DLC, as we move from a purely

geostatistical method to a geological method that incorporated stacking patterns

and within-lobe architecture, was calculated. At lower net-to-gross regimes, we see

Fig. 8 Time-of-flight represents the time it takes (in pore volumes injected) for injected fluid to

travel from an injector to a given point in the reservoir
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that connectivity has more of an effect on the DLC; hence more emphasis should be

placed on modeling shale placement (e.g., drapes, baffles, etc.) within the reservoir.

As the net-to-gross increases, the modeling of internal trends (lobe architecture)

becomes more critical (see Fig. 10).

Fig. 9 Graph showing the DLC at 40%, 60%, and 80% net-to-gross. It is apparent that as we add

compensational stacking and within-lobe trends, we see an increase in the DLC

Fig. 10 Graphs showing the proportion of DLC increase due to lobe stacking pattern and within-

lobe internal architecture
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4 Discussion

This work has demonstrated that the additional reservoir model complexity,

namely, lobe stacking patterns and detailed within-lobe trends, impacts reservoir

connectivity heterogeneity. This motivates adoption of new process-mimicking

technology that integrates these geologic features, depending on modeling objec-

tive. For example, this approach will be more appropriate for evaluating the

detailed flow behavior of a deepwater lobe reservoir in the presence of mud drapes

and within-lobe trends.

Conversely, this work suggests that current widely available reservoir modeling

approaches (such as MPS) may underestimate reservoir fluid flow complexity,

without the inclusion of addition constraints to directly capture these heterogene-

ities. In our experience, this may translate into overestimation of recovery factor

and time to water breakthrough. Generating more realistic models may assist in

managing and mitigating risk that may arise with conventional modeling methods.

Future work includes performing a full flow simulation which provides us with

measures of heterogeneity other than the DLC.

5 Conclusions

Deepwater lobes are important reservoir targets. New insights from geological

characterization suggest a hierarchy of heterogeneities including compensationally

stacked lobes and within-lobe reservoir property trends. The incremental impact of

these heterogeneities is determined through three workflows: (1) a traditional MPS

workflow, (2) a process-mimicking workflow that captures lobe stacking patterns,

and (3) a process-mimicking workflow that captures lobe stacking patterns and

within-lobe trends.

Each of these additional complexities has a significant impact on flow hetero-

geneity as represented by DLC.
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Modeling of Depositional Environments:
Shoreline Trajectory – The Link Between
Sequence Stratigraphy and Truncated
Gaussian Fields

Lars Edward Rygg Kjellesvik, Erling Igor Heintz Siggerud,

and Arne Skorstad

Abstract The key to understanding the reservoir and fluid properties of any

hydrocarbon system, clastic or carbonate, is to understand the depositional envi-

ronment. The distribution of sediments, reservoir quality, as well as source and seal

is controlled by well-understood geological processes that can be interpreted and

described. By understanding these processes, it is possible to make qualified pre-

dictions of the consequential distribution of sediments by proactive geostatistical

modeling. This paper directly links the main components of the depositional

systems, in a sequence stratigraphic context, to the controlling parameters of the

Truncated Gaussian Fields algorithm and uses this to predict sediment distribution

in time and space. The approach is demonstrated at several scales, all the way from

seismic-scale basin models to reservoir models, ensuring a systematic geological

modeling approach to the entire value chain, from exploration, through appraisal,

field development, and into production.
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1 Introduction

Up until the late 1970s, the understanding of sediment distribution was confined to

recognition of lithologically restricted packages of sediments (litho-stratigraphy),

where interpretation was based on correlating the same lithology between data

points. Sequence stratigraphy (Mitchum et al. 1977) developed this by stating that

logical predictions of sediment distribution could be made by correlating uncon-

formities. This fundamentally changed the understanding of reservoir architecture.

Being highly qualitative it did however not easily lend it selves to quantitative

predictions of sediment distribution.

This happened in parallel with the introduction of geostatistical methods to

populate reservoir models (Matheron et al. 1987). The main objective of

a geostatistical reservoir model was to reproduce a static image of the reservoir

architecture based on conceptual geological models and statistical measures. There

was little focus on replicating the result of the depositional processes. As a result,

the geostatistical models were able to introduce heterogeneity into reservoir

models, but not to predict the results of the sedimentary process. In other words,

if the conceptual model was wrong, the geostatistical model would not reflect this.

Furthermore, the geostatistical model could not predict changes in the stratigraphy

over larger areas.

This paper aims to demonstrate how Truncated Gaussian Fields can be used to

model the results of sedimentary processes. It will be demonstrated how this

methodology directly can be used to logically predict sediment distribution away

from points of “hard” information such as an outcrop or well at any scale (Siggerud

et al. 2015).

2 The Shoreline Trajectory – Link to Truncated Gaussian
Fields

An important milestone in the ability to predict sediment distribution within the

dynamic sedimentary system, introduced with Sequence Stratigraphy, was reached

with the introduction of the shoreline trajectory (Helland-Hansen and Gjelberg

1994). The shoreline trajectory is a theoretical “line” drawn through all the nick

points of clinoform successions making up a sedimentary system (cf. Fig. 1).

Although highly theoretical (Helland-Hansen and Gjelberg 1994) proposed that

changes in the angle of the trajectory would result in systematic differences in

sediment distribution. The recognition of the angle would therefore enable logical

prediction of sediment distribution (Patruno et al. 2015). While working on Eocene

outcrops in NE Spain, (Siggerud and Steel 1999) demonstrated the usefulness of

shoreline trajectory in the field, where the consequences of the change in angle

could be observed in Fig. 2. This realization is especially important because it
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essentially allows you to describe the sedimentary systems by a simple parametri-

zation of the shoreline trajectory, paleo-coastline, and variability of the boundaries,

which is paralleled to the parametrization of truncated Gaussian fields.

Truncated Gaussian Fields are fully specified probability distributions defined

by a trend, truncation levels, and a variogram (Beucher, Galli, Le Loc’h, and
Ravenne) (Wenlong and Journel 1993). In this setting, the trend is defined by the

depositional direction and the shoreline trajectory, the truncation levels by the

paleo-coastline, and the variability of the boundaries is reflected by the variogram

as illustrated in Fig. 3. In a Bayesian context, the parametrization of the sedimen-

tary system then describes a fully defined prior distribution and conditional simu-

lations of the truncated Gaussian field that reflect the posterior distribution.

Modeling the depositional system with truncated Gaussian fields will therefore

give an unbiased prediction of the distribution of sediments in time and space,

honoring the geological understanding and constrained by the available data.

This is critical, not only to represent the sediment distribution, but to proactively

test the consequences of the sedimentological understanding for any sedimentary

system (silisiclastic or carbonate) (Siggerud 2008). This is important since the

sequential development does not have an endless number of possible scenarios,

but rather an uncertainty within the angle of trajectory, which can be captured using

a Truncated Gaussian Field as seen in Fig. 4. In other words, the variability in the

extension of the sedimentary facies belts for any given setting can be logically

tested with respect to the extension and variability, illustrating the uncertainty for

each succession.

Fig. 1 The conceptual model elucidating the relationship between changes in shoreline trajectory

and the extension of the facies belts and subsequent reservoir architecture. Note the use of a clock

to denote the angle; a common mistake is in trying to depict the exact angle while in fact it is the

relative change (from, e.g., 10 to 12 o’clock) that is important, modified after (Helland-Hansen and

Gjelberg 1994)
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3 Practical Application, Basin-Wide to Reservoir Scale

While most common use of geostatistical geomodeling has been limited to fields

and reservoir scale (few kilometers), this paper demonstrates the extended use of

the ideas outlined above. While the ideas of shoreline trajectory were originally

related to shallow marine clinoform developments (sequence scale, which is hun-

dreds of meters; Burgess et al. 2008), it is equally applicable on megasequence or

basinal scale (tens to hundreds of kilometers: Siggerud 2012).

Drawing on extensive knowledge from several decades of fieldwork in the

Arctic islands of Svalbard and work in the Norwegian Barents Sea, a megasequence

subdivision of the post-Permian succession was established, using the facies

stacking pattern to establish an understanding of the depositional trajectory for

each megasequence. In addition, an interpretation of lithology, sedimentary facies,

and facies associations was undertaken for 255 outcrops and wells, serving as a

basis for the sedimentological sequence stratigraphic model. A megasequence is

here defined as a seismic-scale sequence, bounded by regional peak transgressions,

ranging from a few hundreds to more than 1,000 m in thickness and spanning

several million years of time (Steel 1993). In this case the near 6000 m thick

Fig. 2 Eocene outcrop example in NE Spain (above top) where the dipping foresets of the

low-angle shallow shelf clinoforms can be observed as shown schematically in the figure (yellow
color); note also the stacking light-colored sands and red beds in the skyline reflecting the aggrada-

tion (high-angle trajectory) of the transgressive systems tract (shown in dark red and green)
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Fig. 3 Outcrop example from Svalbard demonstrating changes in shoreline trajectory from

intermediate to very low- and high-angle trajectory (above top). The lower image illustrates the

variability around the shoreline captured by variograms

Fig. 4 The concept of shoreline trajectory as shown in Fig. 1 here visualized for a low angle (a),
high angle (b), low to high angle (c), and a “negative” angle (forced regression) following a

relative sea level fall (d). In the latter case note how the system begins to detach landward, as can

be observed for the quaternary deposits along the Norwegian coastline
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sedimentary succession was split into 12 megasequence that was identified and

correlated across the entire Barents Sea, covering some 650,000 km2, probably

making it the largest 3D geomodel ever built (Siggerud et al. 2015) (Fig. 5).

Un-eroded thickness maps were created using the stratigraphy to establish the

sedimentary sequences at the time of deposition in order to clarify the logical

orientation of the sedimentary system for each megasequence (the trend in the

Truncated Gaussian Field) (Fig. 6). This, combined with the shoreline trajectory for

each megasequence, enabled proactive modeling of the sedimentary system

depicting extension and limitations of all lithologies across the entire Barents Sea

(including Svalbard shelf) Fig. 7. Secondly, while not only illustrating sedimentary

facies distribution and volumes of deposited sediments, it also enabled proactive

modeling of source rock presence and improved migration probabilities using the

sand probability distribution derived from the geomodel (Throndsen et al. 2016). As

such the sedimentary distribution within the Norwegian Barents Sea is no longer

random but can be logically tested regardless of sedimentological understanding

and model.

A third aspect of this methodology is in the scalability of the approach. It is

possible to zoom in on an area of particular interest within the original

megasequence model, while carrying the regional information. This is illustrated

with the prolific Hoop Fault Complex within the central Barents Sea, cf. Fig. 5. A

detailed geomodel for this area was constructed while carrying all the main trends

and architecture from the main megasequence model. In the past this has proven to

be a challenge, because of the lack of a logical regional distribution of the

sedimentary system. Most other paleoreconstructions depict a somewhat arbitrary

range of shoreline locations for the Middle Triassic within the Hoop area (Riis et al.

Fig. 5 Bird’s-eye view of the 650,000 km2 basin-wide geomodel based on the 12 megasequences.

Inserted is the sequence-scale Hoop Fault Complex model, maintaining the overall trend while

elucidating the details on semi-regional scale, while even more detailed prospect-scale model
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Fig. 6 Example on the construction of un-eroded and current day (eroded) thickness maps for

megasequence two (Middle Triassic). The dashed green line on the left picture depicts the position
of the basin floor, while the orange dotted line elucidates the shoreline transition, thereby

illustrating the wide shallow shelf in the north as evident from seismic data

Fig. 7 Example of a vertical section from the Barents Sea Geomodel. Colors reflect the main

depositional environment as shown in the legend, and the shoreline trajectory is illustrated

schematically. Note the variability in the facies belts and that there will be higher-order variations

within the megasequences which reflect variations on sequence scale
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2008; Matheron et al. 1987) (Beucher, Galli, Le Loc’h, and Ravenne). Our model,

using the understanding of the shoreline trajectory while honoring the well data and

sedimentary understanding gleaned from the seismic data, gives the logical distri-

bution of the Middle Triassic depositional system as elucidated in Fig. 8.

A fourth point is that alternative scenarios from different sedimentological

models can be tested by coherently altering the angle of the trajectory. This gives

a true handle on the uncertainty of the interpretation and provides highly valuable

feedback to the geologist as to the physical probability of the proposed depositional

model. What this means is that while in a correlation panel any “irregularity” in the

sedimentological interpretation can be “accounted” for, the proactive modeling will

provide “bulls-eyes” where the sedimentary system proposed is not physically (and

mathematically) possible.

A fifth point to be remembered is that the proactive use of truncated Gaussian

field modeling is not dependent on an enormous database of well points and/or

seismic. Remembering the relationship as outlined above between the truncated

Gaussian field and the sequence stratigraphy and shoreline in particular, any

depositional system can readily be proactively modeled, whereby (again) the

logical and quantitative consequences can be elucidated. An example is work

undertaken by the authors on basin scale across the Arctic islands in Svalbard.

Here the lack of extensive outcrop data and basic structural mapping in the past had

not yielded a satisfactory understanding of the reservoir distribution. The shoreline

trajectory enabled the construction of different detailed sequence stratigraphical

models, as shown in reduced uncertainty and enabled systematic testing of alter-

native hypothesis as seen in Fig. 9.

Fig. 8 Detailed time section of one layer of the of the Hoop Fault Complex geomodel depicting

the main facies associations (depositional environments) where the shallow marine (best reservoir

potential) is shown highlighted in yellow
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Similarly, systematic use of outcrop data providing the physical relationships

between height and width of numerous incised valleys that can be observed in the

field on Svalbard and mappable across the north-central Barents Sea was used to

propagate the Hoop Fault Complex with fluvial channel deposits where again the

regional and semi-regional sediment distribution were derived from the larger

geomodels (Fig. 10).

4 Summary and Conclusions

As mentioned in the introduction, the aim of this paper has been to elucidate how

Truncated Gaussian Fields are suited to proactively model the consequences of our

geological understanding of any depositional environment or the sediment distri-

bution in time and space. The direct link between the parametrization of the

truncated Gaussian field and the parameters controlling and steering the sedimen-

tary succession is demonstrated with the principle of the shoreline trajectory.

Consequently, this allows an unbiased prediction of the distribution of sediments

and uncertainty, constrained by the available data.

Armed with this understanding, one can logically transfer from basin to field

scale maintaining the overall sedimentary system while capturing the details on

reservoir scale. While being systematic and highly predictive, it also is quantitative,

Fig. 9 Two depositional models as they appear in the model (a) thickness fence diagram (b)
facies distribution: gray ¼ offshore, yellow ¼ shallow marine, and light green ¼ nonmarine (c)
show only the shallow marine deposits in the left and an alternative hypothesis to the right
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thereby opening for reservoir characterization and maturation modeling. We

strongly believe that systematic use of sequence stratigraphy and shoreline trajec-

tory with truncated Gaussian fields is the way forward in not only understanding

sediment distribution but logically predicting it on all scales.
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Facies Inversion with Plurigaussian
Lithotype Rules

Lewis Li, Siyao Xu, and Paul Gelderblom

Abstract Accurate incorporation of geological concepts such as lithological facies

distributions is an important aspect of building reservoir models. Consequently,

accounting for facies in seismic inversion generates models conditioned to geolog-

ical concepts and plays an important role in decision-making. Shell’s proprietary
probabilistic model-based seismic inversion engine Promise is generally applied to
invert for continuous variables, such as NTG, saturation, and layer thickness from

seismic data. In some depositional environments, the spatial variability of reservoir

properties is characterized at fine geological scale by facies and the corresponding

petrophysical properties; hence, an implementation of facies in seismic inversion is

desirable. In this study, we propose a novel methodology for lithological facies

inversion utilizing Plurigaussian rock-type rules. Direct inversion of facies may

result in unrealistic facies contacts; therefore, the proposed technique instead

inverts for a pair of “guide” variables using Promise. The guide variables are then

classified into facies using a methodology inspired by Plurigaussian simulations,

where a defined lithofacies rule map is used to constrain facies proportions and

contacts. The required inputs for the workflow are the lithofacies rules and

variogram estimates of the guide variables. Both of these can be derived from a

prior estimate of the facies distribution and can also take into account geological

constraints from a human expert. We demonstrate the workflow for a three facies

case with a synthetic wedge model and seismic data of a marine survey.
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1 Introduction

Seismic inversion is the process by which acoustic impedance and other elastic

properties are derived from the seismic traces. The results of seismic inversion

should honor geological knowledge as well as observed data, such as well logs. One

of the aims of seismic inversion is to characterize the spatial variability of the

reservoir, by extracting subsurface information from the seismic data and other data

sources. Promise (Leguijt 2001, 2009) is the Shell proprietary model-based seismic

inversion tool. It can perform trace-by-trace inversion and has been designed to

naturally honor the prior models. Moreover, geological constraints have been

deployed aiming to improve the geological realism of inversion results

(Gelderblom and Leguijt 2010). In the trace-by-trace inversion, the algorithm

generates an ensemble of local model realizations at each trace location, taking

the seismic data and the well data into account. If a geologically constrained

inversion is performed, an ensemble of reservoir-size model realizations will be

generated taking also the lateral continuity of properties into account. Applications

of the algorithm have been performed on continuous variables, such as NTG,

porosity, and layer thickness. However, a reservoir is normally characterized by

lithological facies. A lithological facies prediction algorithm based on small exten-

sions to the current algorithm is presented in this paper.

In our methodology, we invert for a pair of continuous variables and apply a

classification technique inspired by Plurigaussian simulations (Armstrong et al.

2011) to obtain the inverted facies. Seismic inversion with the application of

geostatistics has been studied and published before (Doyen 2007; Larsen et al.

2006; Ulvmoen and Omre 2010; Grana and Della Rossa 2010; Rimstad and Omre

2010; Gelderblom and Leguijt 2010; Gunning et al. 2014). Our work is different in

the sense that this method is a combination of model-based inversion in depth

domain, vertical and lateral continuity constraints, and facies modeling, which did

not appear simultaneously in any previous publication. In comparison to the

popular multistep inversion methods (Dubois et al. 2007), the facies classification

in stochastic inversion methods is performed inside the inversion process, as

opposed to as a post-processing procedure. In multistep methods, acoustic imped-

ance values are first determined before facies probabilities and properties are

known. Next, the facies are chosen on the basis of the acoustic impedance values.

Since seismic inversion is generally performed at the acoustic scale, which corre-

sponds to the vertical resolution of the seismic dataset, a downscaling process is

needed to generate a fine-scale static model for dynamic reservoir simulation

(Hesthammer et al. 2001; Doyen et al. 1997). In our algorithm, seismic inversion

can directly produce fine-scale model realizations, in which the subseismic scale

properties are constrained by geological and lithological knowledge. The specifics

of our inversion algorithm will be described in the next section, followed by a

description of a methodology to derive necessary input parameters. Finally, the

workflow will be demonstrated on two cases, a synthetic wedge model and a field

case from a deepwater offshore reservoir.
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2 Plurigaussian Inversion

The proposed method, as shown in Fig. 1, uses a pair of underlying continuous

variables (herein termed guide variables) to represent the facies. Individually, these

variables lack physical meaning; rather they serve as random fields that express the

likelihood of a facies being present in that location. A separate categorization step

needs to be applied to convert this continuous variable into a discrete facies

representation. A rock model is then used to obtain reservoir properties from the

resulting facies map. A synthetic seismogram is then computed and compared with

the observed data. The inversion loop continues by adjusting the underlying guide

variable according to a given variogram using the Iterative Metropolis Simulation

(Gelderblom and Leguijt 2010). This is repeated until the observed seismic data is

matched to a certain tolerance. The key to this process is accurately and correctly

inferring the discrete facies map from the continuous guide variable. It is also

important that this categorization must also incorporate prior geological informa-

tion such as facies ordering and proportions.

To this end, we propose a technique based on Plurigaussian simulations (Arm-

strong et al. 2011). The procedure encodes the prior geological information as a

lithofacies rule map (LRM), shown in Fig. 2. The X-axis represents the CDF of the

first guide variable from 0 to 1, and the Y-axis is the second. In addition to the LRM,

an estimate of the variograms describing the spatial continuity of the guide vari-

ables is required for Plurigaussian inversion.

The Plurigaussian simulation has increased flexibility in the sense that it can

produce realizations in which the occurrence frequency of specific facies transitions

is determined by the user-specified lithofacies rules. In the next section, we will

discuss obtaining the required inputs from a prior model.

3 Deriving Input Parameters

The specific inputs to the Plurigaussian inversion process are:

1. Lithotype Rule: This is used to convert the guide variable from a continuous

variable into facies (a categorical variable).

2. Prior Facies Probabilities: As a Bayesian method, the proposed algorithm

requires prior facies probabilities for each facies.

3. Lateral and Vertical Variogram: To ensure lateral continuity, the inversion

process needs an estimate of the variograms of both guide variables in both

the vertical and lateral directions.

4. Rock Physics Model: This is then used to convert the facies into reservoir

properties, on which forward modeling is performed to yield the synthetic

seismic.
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We will assume that prior facies probability maps and rock physics models are

provided, and a preliminary static geological model is available to derive other

inputs. The following subsections will discuss how we can derive the lithotype rule

and variograms.

Fig. 1 Overall workflow for fine-scale facies inversion. The inversion process solves for a pair of

continuous guide variables that will be classified into facies. A prior geological and reservoir

property model is the required input for the process and is used for constructing the initial guess for

the guide variables and their respective spatial continuities

Fig. 2 Illustration of Plurigaussian simulation. Two coregionalized guide variables are jointly

thresholded to obtain a facies classification. This can be viewed as a lithofacies rule map, where

each axis represents the CDF of a guide variable. For a location x in the geological model, this

lithofacies rule map (LRM) can be used to “look up” the facies type for that location: if g1 and g2
are the realizations of the “guide” variable at x, then the color of the point (Φ(G1), Φ(G2)) in the

LRM defines the facies (Φ(.) is the standard normal CDF)
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3.1 Lithofacies Map

The central tenet of the Plurigaussian simulation is an explicit delineation of its

lithotype rule. This rule map is what enables us to convert a continuous random

field into a facies map. These rules also allow the modeler to constrain the facies

maps to certain geological knowledge, namely, proportions and contacts between

the different facies types. Obviously, the lithotype will need to be derived from

some prior geological model. For illustration, consider the scenario in Fig. 3. In this

schematic stratigraphic sequence, there are four facies, and the lithotype rules for

this sequence should reflect the following propositions:

Proposition 1 The area of a given facies Fi on the lithotype rule map will be equal

to the proportion of the facies in the inversion result.

Proposition 2 The lack of adjacency between any two facies on the lithotype rule

will prohibit contact between two facies in the inverted result.

3.2 Variogram Analysis

Inversion with lateral continuity necessitates the specification of variograms for

both guide variables. But the guide variables are artificial variables, introduced to

make this form of simulation possible. They do not represent a real-world quantity

on which a variogram could be empirically estimated. The only variograms we can

establish empirically are those of the indicator variable for a facies type.

For N facies, N-1 experimental indicator variograms (for a given facies Fi) can

be computed as in Eq. 1:

γFi x, xþ hð Þ ¼ 1

2
Var Fi

xð Þ � Fi
xþ hð Þ½ �

¼ 1

2
E Fi

xð Þ � Fi
xþ hð Þð Þ2

h i
� E Fi

xð Þ � Fi
xþ hð Þ½ �ð Þ2

n o ð1Þ

Fig. 3 Illustration of how a geological model can be used to construct a lithofacies rule. The

global proportions of each facies are used to determine the area of the rectangles in the rule map,

while the frequency of contacts is used for placement of the areas
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where the location and offset vectors are x, h2ℝ3 and E ∙ð Þ, Var ∙ð Þ, Fi
∙ð Þ are the

expectation operator, the variance operator, and the indicator operator.

Assuming second-order stationarity, the second term reduces to 0, and the

expression simplifies to Eq. 2:

γFi
x, xþ hð Þ ¼ 1

2
E

�
Fi

xð Þ � Fi
xþ hð Þ� �2�n o

ð2Þ

Empirically, this can be evaluated as

γ⋆Fi
¼ 1

2N

X
x�x0j j¼h

Fi
xð Þ � Fi

x0ð Þ½ �2 ð3Þ

The variogram model parameters (type, nugget, range) of the guide variables must

be chosen such that when realizations of the guide variables are converted to facies

realizations as described above, those facies realizations have indicator variograms

consistent with the observed empirical indicator variograms (Eq. 3).

The indicator variogram is defined as

γFi
ðx, xþ hÞ ¼ 1

2

n
P Fi

ðxÞ ¼ 1½ � þ P Fi
ðxþ hÞ ¼ 1½ �

�2P½ðFi
ðxÞ ¼ 1ÞT ðFi

ðxþ hÞ ¼ 1Þ�
o ð4Þ

where P is the probability by counting indicator frequencies. For each facies i,
denote the region on the lithofacies rule where it is defined as Ri. Therefore, for

guide variables G1 and G2,

Fi
¼ 1� G1 xð Þ,G2 xð Þ½ �2Ri ð5Þ

In comparison to the LRM, where Φ(G1), Φ(G2) 2 [0,1], the guide variables G1ðxÞ,
G2ðxÞ2½�1, 1� in this section. This means Eq. 4 can be reexpressed in terms of

facies regions as

γFi
ðx, xþ hÞ ¼ 1

2

n
P G1ðxÞ,G2ðxÞ2Ri½ � þ P G1ðxþ hÞ,G2ðxþ hÞ2Ri½ �

� 2P½ðG1ðxÞ,G2ðxÞ2RiÞ \ ðG1ðxþ hÞ,G2ðxþ hÞ2RiÞ�
o ð6Þ

The first two terms on the right side of Eq. 6 reduce to

1

2
P G1 xð Þ,G2 xð Þ2Ri½ � þ P G1 xþ hð Þ,G2 xþ hð Þ2Ri½ �f g ¼ Ai ð7Þ

Ai is the area of region Ri or equivalently the global proportion of facies i. Under the
assumption that the guide variables are Gaussian, the final term of Eq. 6 can be

evaluated by taking the integral of a quadvariate Gaussian distribution centered at μ
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and covariance Σ. As described in Armstrong et al. (2011), the quadvariate Gauss-

ian represents the joint pdf of G1 (x), G2 (x), G1 (x + h), and G2 (x + h) falling on a

given facies F. This allows us to rewrite Eq. 6 as

γFi
x, xþ hð Þ ¼ Ai �

ZZ

Ai

ZZ

Ai

f x1; y1; x2; y2ð Þdx1dx2dy1dy2 ð8Þ

The guide variables are assumed to have μ¼ 0. Assuming that the guide variables

are independent and have covariance functions ρ1(h) and ρ2(h), respectively, the
covariance matrix Σ can be expressed as

Σ ¼
1 0 ρ1 hð Þ 0
0

ρ1 hð Þ
1 0

0 1

ρ2 hð Þ
0

0 ρ2 hð Þ 0 1

2
64

3
75 ð9Þ

Using Eq. 8, it is possible to evaluate the corresponding expected indicator

variogram of a facies, given the variograms of two guide variables and the accom-

panying lithofacies rule. A typical procedure for tuning the variogram of the guide

variables would be:

1. Measure, estimate, or postulate (based on prior geological knowledge) the

indicator variograms γFi for all facies Fi .

2. Choose variograms for each guide variables γG1 and γG2. Furthermore, decide

upon a coregionalization model to evaluate the covariance matrix.

3. Transform guide variable variograms into expected indicator variogram using

Eq. 8.

4. Compare to empirical variogram from Step 1. Go back to Step 2 and repeat until

appropriate fit.

One of the difficulties with this methodology is that all N empirical indicator

variograms should be fitted with the same set of variograms for the guide variables.

In practice, this may be a daunting task especially as the number of facies increases.

An approximate approach is to take an average of the empirical indicator

variograms and attempt only to fit to this mean variogram.

In this Bayesian scheme, the variogram model specified by the user is used in the

prior distribution of the “guide” variable. The parameters of the prior distribution

are not updated during the inversion. An empirical variogram of the guide variables

of the posterior ensemble will have a different range and structure from the prior

variogram model, which is the consequence of conditioning to the data. However,

the prior fitting process described in this paper is based on the prior facies pro-

portions. If the facies proportion has been updated significantly by the inversion, the

variogram must be updated as well. This problem requires further investigation in

future works.
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4 Case Study: Synthetic Wedge Model

4.1 Synthetic Wedge

For demonstrating this process, a study was conducted on a synthetic wedge model

with maximum thickness of 90 m and three facies (clean sand, shale, and sand-shale

mix). The two guide variables were simulated using Sequential Gaussian Simula-

tion and the variogram parameters outlined in Table 1.

The grid thickness was chosen to be 2 m to allow for the generation of thin beds

of sand as seen in Fig. 4. The lithofacies rule used for categorizing the facies is

depicted in Fig. 5. The thresholds were chosen to be 0.4 for thresholds of both guide

variables. A rock model for laminated sand and shale (Allen 1984) was chosen. In

this rock model, the three lithological facies can be defined by net-to-gross ratio

(NTG) of 0 %, 50%, and 100%. The thresholding procedure yielded a global

proportion of 40% shale, 36% sand, and 24% sand-shale mix.

4.2 Seismic Scale Inversion

To compare with subseismic scale performance of our algorithm, a seismic scale

inversion was first performed. In this depositional environment, it is more appro-

priate to characterize reservoir rocks using continuous properties. Hence, the

seismic scale inversion was directly performed on NTG. The grid cells were set

to have a thickness of 20 m, and the prior NTG was set to be completely shale. The

sand fraction prior distribution was set to a truncated Gaussian distribution with

mean 0.5 and variance of 0.5, truncated at 0 and 1. An example of an inverted

realization is given in Fig. 6. The sand fraction exhibits the general trend of the true

underlying facies map but lacks the granularity to resolve the thin beds. Further-

more, the seismic scale inversion has produced a far larger estimate of the global

average net-to-gross ratio (48.5%) than the ground truth (42.6%). The inversion

result lies between the prior of 50% and the true model of 42.6%, which is the

expected result of a Bayesian method. In this test, the variograms generating the

ground-truth wedge model (Table 1) were used for the Plurigaussian facies inver-

sion, and an alternative variogram similar to the indicator variogram of the truth

model is used for the seismic scale inversion.

Table 1 Variogram parameters used to generate synthetic ground-truth guide variables

Name Long range Short range Vertical range Azimuth Nugget Type

Guide 1 600 400 20 90 0.0001 Exponential

Guide 2 400 200 20 0 0.0001 Exponential
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Fig. 4 2D profile view of a medial slice of the ground truth. The top two images indicate the guide
variables, while the bottom image is the generated facies map

Fig. 5 LRM used to

generate ground-truth facies

in the synthetic wedge

model

Fig. 6 2D profile view of seismic scale inversion for NTG in comparison with true NTG (slice 14)
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4.3 Plurigaussian Inversion

The fine-scale case assumes that both horizontal and vertical variograms can be

estimated accurately, and the prior facies probabilities are assumed to be equal

throughout the model grid. In this example of three facies, the prior probability for

each facies is 33%. The inverted result is shown in Fig. 7. The inverted result yields

an overall sand fraction of 41.4%, which is very close to the ground-truth value of

42.6%. This illustrates a reduction in the error misfit when compared to the seismic

scale case. The reduction of misfit may be attributed to the finer scale on which the

inversion was performed. Further studies are required to understand the impact of

model scales on the quality of Promise inversion results. Moreover, it should be

noted that the Plurigaussian inversion was able to generate realizations with

multiple contacts between facies (purple is in contact with both red and green

facies).

5 Case Study: Deepwater Lobate System

The algorithm was also tested with a marine survey on a deepwater channel-lobe

system. Internal petrophysical studies indicated that the reservoir consists of three

facies (clean sand, shale, and a mixture of the two), and prior facies probability

maps have been postulated for each facies (Fig. 8).

5.1 Preparing Inversion Inputs

Lithofacies Rule The lithofacies rule can be generated given the expected facies

proportions and the facies contact proportions. In this study, an initial geological

concept model of three facies has been built for the reservoir. The facies proportions

were obtained from the initial model, while the contacts between facies were

estimated by computing the facies transition probabilities (Table 2) from the initial

model.

The nine facies transition probabilities constitute nine constraints, but for three

rectangular facies, only two thresholds are available for regular rectangular facies

map, resulting in an overdetermined system. Therefore, a least squares approach is

used to fit the thresholds and results in the LRM shown in Fig. 9.

Variogram Fitting The final step before inversion is obtaining estimates for the

variograms. A prior most likely facies map is obtained by identifying the facies with
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Fig. 7 2D profile view of slice 14 of the ground truth (left) compared to the inverted result (right)
of 3D inversion with correct horizontal and vertical variograms

Fig. 8 Postulated prior facies probability maps for an offshore reservoir in deepwater channel-

lobe system

Table 2 Facies transition

probabilities
Facies type Shale Sand-shale mix Sand

Shale – 40% 60%

Sand-shale mix 56% – 43%

Sand 27% 73% –

Fig. 9 Estimated LRM for

offshore reservoir
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the highest probability from the input probability maps. By computing the indicator

variogram on the most likely facies map, and computing the integral in Eq. 8 over

the averaged thresholds, one continuous variogram can be fitted for each guide

variable. In a 3D grid, the variograms must be fitted to six directions in the space for

each facies. Variograms fitted for the sand-shale mix facies are shown in Fig. 10.

The fitted variogram parameters are shown in Table 3. It should be noted that

these parameters are not necessarily unique. Ideally, a single set of parameters

Fig. 10 Empirical indicator variograms computed for the sand-shale mix on the most probable

facies map shown in green along with the corresponding indicator variograms by modeling two

continuous variograms for each guide variable

636 L. Li et al.



should be used for each facies; however, in practice this is a difficult task. Conse-

quently, the averaged variogram over all three facies was used.

5.2 Inversion Results

For comparison, a seismic scale inversion (30 m cells) was performed with the

resulting average NTG map of the P50 realization of the inversion results shown in

Fig. 11a. Using the estimated LRM and variograms, fine-scale inversion (2 m) was

performed, with the resulting maps shown in Fig. 11b. The fine-scale inversion

indicates isolated regions of higher NTG than the coarse-scale result. The overall

trends for both approaches are similar, but the fine facies inversion provides

additional insight on areas of higher NTG which would be useful for drilling

decisions. The top view map and a vertical cross section shown in Fig. 12 demon-

strate results of the P50 realization of the fine-scale facies inversion. Lenticular

shape sand bodies of channels and lobes are identifiable in the vertical cross section.

In the top view, the transition between sand and shale is observed in the top view

map, which demonstrates the effect of the Plurigaussian lithofacies rule.

Table 3 Variogram parameters estimated for the testing data

Name Long range Short range Vertical range Azimuth Nugget Type

Guide 1 1620 1250 5 45 0.0001 Exponential

Guide 2 1500 750 20 90 0.0001 Exponential

Fig. 11 Arithmetic average map of NTG over the P50 of the posterior realizations of the inversion
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6 Conclusions

In this paper, a stochastic facies inversion algorithm was demonstrated using a

Plurigaussian-inspired technique. As part of the algorithm, a method to estimate

variograms for the underlying guide variables based on their mathematical rela-

tionship with the resulting indicator variable is presented. In comparison to con-

ventional multistep inversion, this method directly generated lithological facies

model and provides subseismic scale constraints based on geological and litholog-

ical knowledge. Using a synthetic case as a benchmark, it was found performing the

new algorithm with accurate input parameters resulted in realizations that closely

resembled the ground truth. The algorithm was also demonstrated with real seismic

data from a marine survey on a deepwater channel-lobe system. The inversion

process itself produces inversion results that are similar to the seismic scale

inversion but indicates specific pockets of higher NTG that could not be seen on

the seismic scale inversion. This could play an important role in drilling decisions.

Fig. 12 A vertical cross section and a map of the top view of the P50 posterior realization
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Combined Use of Object-Based Models,
Multipoint Statistics and Direct Sequential
Simulation for Generation of the
Morphology, Porosity and Permeability of
Turbidite Channel Systems

Inês Marques, José Almeida, Mariana Quininha, and Paulo Legoinha

Abstract This work presents a new methodology for simulating the morphology

and petrophysical properties of hydrocarbon reservoirs in turbidite channel sys-

tems. The simulation of the morphology uses an object-based algorithm that

imposes multipoint statistics of azimuth angle classes and cdfs of width and

thickness as measured from training images of channels. A facies is then assigned

to each block of the reservoir grid according to a conceptual model of facies both

laterally and vertically within the channels. Following this, as each facies has a

specific cdf for both porosity and permeability, simulated images of these

petrophysical properties are generated using direct sequential simulation (DSS)

with local histograms. For illustrative purposes, a case study of a reservoir in the

Lower Congo Basin is presented.

1 Introduction

Turbidite channel systems are one of the most common types of siliciclastic reservoirs

in deep-water settings. Such systems by some estimates account for between 1200 and

1300 oil and gas fields worldwide (Stow and Mayall 2000). Geologically, these
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systems are composed of sets of channels with similar architecture, referred to as

“channel complexes”. The considerable size and detritic properties of these com-

plexes mean that they form good hydrocarbon reservoirs, which has prompted great

interest in the petroleum industry to better characterize these structures. However,

modelling these complexes is a challenge because of their curvilinear geometries, the

connectivity between channels and the internal distribution of facies or rock types

(Babonneau et al. 2010; McHargue et al. 2011; Hashemi et al. 2014).

According to the literature, three classes of algorithms are used to model channel

reservoirs: simulation with two-point statistics (Luis and Almeida 1997), simula-

tion with multipoint statistics (Strebelle 2002; Liu 2006) and object-based simula-

tion (Deutsch and Wang 1996). Each method has advantages and drawbacks

regarding the modelling process: simulations based on two-point statistics are

straightforward in terms of calculations but do not fully capture the curvilinear

behaviour of the channels; simulations based on multipoint statistics can capture the

shape of the channels with large templates but are computationally very intensive;

and object-based modelling requires a simplified geometry for each class of objects,

and the conditioning to data, porosity and permeability can be difficult as the output

is typically in the form of polylines. Thus, there is great interest in the development

of new and more effective stochastic algorithms to characterize these curvilinear

structures, namely, by mixing the above approaches (Kuznetsova 2012; Kuznetsova

et al. 2014; Quininha 2015; Quininha et al. 2015; Marques 2015).

In this work, an integrated methodology is presented for simulating both the

morphology and the petrophysical properties (porosity and permeability) of turbidite

channel complex systems. The simulation of the morphology involves two main

stages: first, the complex pathline is generated, and second, the channels are generated

conditional to the complex pathline. Both the pathline and the channels are simulated

using an innovative algorithm that combinesmultipoint statistics of classes of azimuth

angles embedded within a stochastic object-based modelling approach. The algorithm

computes the multipoint statistics of the azimuth classes from training images and

stores the probabilities of their occurrence in a dynamic data structure termed a “search

tree”. For assessing porosity and permeability, the simulated channels are intersected

as individual objects by a high-resolution grid of blocks, and a facies is assigned to

each small block according to a conceptual facies model with both lateral and depth

variations in the channel section. Then, as each facies of the conceptual model has a

prior probability distribution function for porosity and another for permeability,

simulated images of these petrophysical properties are generated using direct sequen-

tial simulation (DSS) (Soares 2001) with local histograms. Finally, the high-resolution

grid of blocks is upscaled to a larger grid to be used in flow simulators.

2 Methodology

The methodology comprises five main stages: (i) data preparation, (ii) generation of

the morphology of the complex and the channels through multipoint statistics of

training images, (iii) conversion of the vector morphological model to a grid of

642 I. Marques et al.



blocks with the assignment of facies to each block, (iv) simulation of the porosity

and the permeability conditional to the facies model, and (v) upscaling of the grid of

blocks in order to be used in a flow simulator.

2.1 Data Preparation

To apply the proposed methodology, it is first necessary to prepare the data and

information as well as to establish the dimensions of the reservoir and the size of

each reservoir block. Representative training images of the complex pathline and of

the turbidite channel centreline are selected. A set of control points within the

reservoir volume where a channel complex occurrence is confirmed (from seismic

information or well data) are now defined. Each control point has an associated

maximum distance, and the complex pathline should approximate each control

point according to a random distance drawn between zero and the maximum

distance. Two 1D list values (for thickness and width dimensions, respectively) to

assign to the simulated channels are now simulated by DSS and Co-DSS (Soares

2001) imposing a correlation metric between the two variables. A conceptual facies

model is designed that accounts for the lateral and vertical distributions of the

porosity and permeability of each facies.

2.2 Simulation of Morphology and Assignment of Facies

As stated above, a channel complex is composed of sets of two or more channels,

and therefore it is necessary to simulate the complex pathline first, which will

influence the simulation of the individual channel centrelines. The following steps

are used to generate the complex pathline:

1. Scan the training image of the complex pathline as a polygonal line and adjust

the line for line segments of equal length.

2. Determine the azimuth angle of each line segment, by convention measured

from the north direction clockwise. The angles are a continuous, circular vari-

able ranging from 0� to 360�.
3. Convert the azimuth angles into classes of angles (build a categorical variable).

For example, if the classes have a range of 20�, there will be 18 classes.

4. Calculate the residual of each azimuth angle (the difference between the azimuth

angle itself and the azimuth angle that corresponds to the centre of the class). At

this point, the training image of the complex pathline is defined by two lists of

1D values: the first contains the azimuth classes and the second contains the

residual values. These two lists allow the precise geometry of the training image

to be recreated.

5. Calculate and adjust a variogram for the residual values and simulate new lists of

1D values using DSS.
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6. Evaluate the multipoint statistics of the azimuth classes from the training image

using a 1D template with a maximum predefined dimension, and create the

search tree (Marques 2015). The training image is scanned by the template, and

all the azimuth class sequences found in the image are stored in the search tree

along with their conditional probabilities. The structure of the search tree

histogram is quite simple: first, the proportions of each single class are stored,

and then the conditional probability of sequences of two classes is calculated and

stored, followed by the conditional probability of sequences of three classes, and

so on, until the maximum size of the template is reached. Because the probabil-

ities are stored as relative values, the sum of the proportions of all the sequences

composed of the same number of classes is always equal to 1.

7. Simulate the complex pathline through polyline object-based simulation condi-

tional to the multipoint statistics of the azimuth class sequences stored in the search

tree. A starting point is selected within the volume of the reservoir, and several line

segments with the same length are added to the point. The orientation angles of

these segments are computed, first by Monte Carlo simulation of an azimuth class

conditional to the multipoint statistics stored in the search tree and then by adding a

simulated residual value to the central angle of the class previously simulated.

8. Adjust the complex pathline according to the control points previously defined.

Each segment of the polyline is rotated locally until it reaches the drawn

generated distance for each control point.

The simulated pathline of the complex will condition the simulation of the

centrelines of the individual channels, which are also represented as polygonal

lines. The simulation of the individual channels is constrained to the reservoir area

by respecting a defined tolerance distance between the pathline of the channel

complex and the channel centrelines. The tolerance distance at the top of the

reservoir should be greater than that at the bottom of the reservoir to give the

complex the shape of a large channel. The following steps are used to generate the

morphology of the turbidite channels:

9. Using the training image of the individual channel, compute turbidite channel

centrelines at different depths within the reservoir volume, following the same

procedure as that used to generate the complex pathline between steps 1 and

7 above.

10. Assign thickness and width dimensions previously simulated during the data

preparation phase to each vertex of the centrelines. At this stage, each channel

is represented by four polygonal lines: the top of the channel, two lateral

margins and the base of the channel.

Having generated the morphology model, a conceptual facies model of the

section of a channel is applied to the simulated pathlines in order to obtain a global

facies model for the reservoir. In the present study, a model with five different

regions was considered (Fig. 1): Region I, coarse-grained sand; Region II, medium-

grained sand; Region III, fine-grained sand; Region IV, fine-grained sand and silt;

and Region V, clay. Region V corresponds to the outer channel region.
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The vector model is converted to a high-resolution grid of blocks, and then,

considering the position of the central point of each block relative to the centreline

of the turbidite channel, a facies from the conceptual model is assigned.

The vertical aggradation and migration of the channels can influence the facies

distribution because more recent channels can cut and fill older ones. For this reason,

the facies attribution is generated from the oldest channel to the most recent one.

2.3 Porosity and Permeability Simulation and Upscaling

At this stage, each high-resolution reservoir block has a facies assigned according

to the conceptual model of facies and the simulated pathlines of the channels. The

simulation of porosity and permeability conditional to the facies images is now

performed using an adapted version of DSS (proposed by Soares 2001, with the

algorithm parallelization proposed by Nunes and Almeida 2010) that uses local

histograms of the variables (here, the porosity and permeability conditional to each

facies) instead of a global histogram (Roxo et al. 2016). The stochastic simulation

process allows several equally probable scenarios of both properties to be generated

for the same morphological model.

The upscaling of both petrophysical properties allows the images to be used in a

dynamic flow simulator. The upscaling of porosity is calculated by the arithmetic

mean of the porosity values of the high-resolution blocks; for permeability, the

upscaling follows the classical approach of combining the arithmetic and harmonic

means of the small blocks, generating a tensor of permeability for each upscaled block.

3 Case Study

For illustrative purposes, we applied the proposed methodology to a region of the

turbidite channel system in the Lower Congo Basin, offshore Angola, located on the

West African passive margin. The reservoir has dimensions of 2000� 6200� 50 m,

Fig. 1 Proposed conceptual facies model defining five regions within a cross-section of a channel
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and a high-resolution grid with a block size of 10� 10� 1 m (6,200,000 blocks)

and a low-resolution grid with a block size of 50� 50� 5 m (49,600 blocks) were

established. The training image of the complex was drawn by analysing 3D seismic

images of the reservoir area. This analysis also allowed the locations of control

points to be defined where it was possible to detect the presence of the complex. A

training image of a turbidite channel centreline was also drawn with a very sinuous

path to evaluate the capacity of the algorithm to represent complex circular

geometries. The training images of the complex pathline and the channel centreline

are shown in Fig. 2.

A uniform distribution law [13 m, 25 m] was used to generate several 1D lists

with 1000 values of thickness, and another uniform law [50 m, 150 m] was used to

generate more 1D lists with 1000 values of width, to be attributed to the channels. A

linear correlation of 0.7 was considered between the two dimensions.

As data for porosity and permeability were not available for this particular

reservoir, Gaussian distribution laws for porosity and permeability were adopted

Fig. 2 (a) Training image of the complex pathline produced by analysing 3D seismic images of

the reservoir. (b) Training image of the channel centreline
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for each facies of the conceptual model, with values of mean and standard deviation

as appropriate for the different lithologies. The box plots of porosity and perme-

ability for each facies of the conceptual model are shown in Fig. 3.

For the case study, a templatewith amaximumdimension of 10 cells and 18 classes

of 20� for the complex pathline and 36 classes of 10� for the channel centrelines was
used. The complex pathline was adjusted for line segments of 100 m, and the channel

Fig. 3 (a) Box plots of porosity for each region of the conceptual facies model. (b) Box plots of

permeability for each region of the conceptual facies model
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centrelines were adjusted for line segments of 25 m. The tolerance radius between the

complex pathline and the control points was defined as 250 m.

Figure 4 presents a portion of a 3D vector model of a complex comprising

25 channels, in which it is possible to see the centrelines of the channels and the

sections of the channels separated by a distance of 25 m. Figure 5 presents an image

Fig. 4 A portion of a 3D morphology model of a simulated complex with 25 channels, showing

the channel centrelines and channel sections

Fig. 5 3D representation of a simulated channel complex with 25 channels
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of a complex comprising 25 channels, in which it is possible to observe the

morphology model and the facies distribution (Region V was excluded to allow a

better view of the model). Figure 6a–c, respectively, presents map views and cross-

section views of the facies distribution, porosity and horizontal permeability of a

complex generated with 25 channels at a depth of 30 m. The variograms of the

petrophysical properties have a spherical model with a range equal to 100 m in the

north–south direction and a range equal to 20 m in the east–west direction.

4 Discussion

Figures 4, 5 and 6 show that the algorithm used is very effective when representing

the complex curvilinear geometries that characterize the channels, even though the

training image of the channel is very sinuous. Also, it can be seen that the set of

generated channels follows a pathline (the complex pathline).

The thickness and width values of the channels were generated based on uniform

distribution laws, carrying a high level of uncertainty. However, these values

Fig. 6 (a) Map view (Z¼ 30 m) and cross-section view of the facies distribution of a simulated

channel complex. (b) Map view (Z¼ 30 m) and cross-section view of the porosity (%) of a

simulated channel complex. (c) Map view (Z¼ 30 m) and cross-section view
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should be re-evaluated when there is information available on the dimensions of the

channels (e.g. from 3D seismic images). It is important to remark that the proposed

methodology and the software have been developed to incorporate available infor-

mation about the thickness and width of the channels and about the porosity and

permeability of the facies in the form of any cdfs.
The mean and standard deviation of the distribution laws of the petrophysical

properties (porosity and permeability) decrease from Region I to Region V, and

therefore the range of values of Region I is larger compared with the other regions.

The applied histograms are plausible, but they must be altered when the real values

are known.

This work presents results only for template dimensions of ten cells. However,

additional tests were conducted to evaluate how this parameter would influence the

generated images. A lower number of cells were not sufficient to reproduce the

patterns of the training images. On the other hand, a template with many cells (for

instance, more than 50) gives simulations that are too similar to the training images,

detracting from the simulation process.

The 2D map views of Fig. 6 show that the facies belonging to the most recent

channels (at shallower depths in the reservoir) prevail over the facies belonging to

the older channels (at greater depths), respecting the aggradation and migration

processes. Also, the views demonstrate that the images of petrophysical properties

are in concordance with the image of the facies distribution. The warmer colours on

the porosity and permeability images match the zones on the facies image that have

the higher values of permeability and porosity.

In this case study, well data were not available and therefore not used. However,

the proposed methodology is able to impose well data as control points to locally

rectify the pathline of the channel complex. By analysing the facies data, it would

be possible to evaluate the location of the well within the conceptual facies model

of the channel and establish an appropriate tolerance radius between the well and

the channel centreline. Also, if porosity and permeability measurements are avail-

able, their values would condition the DSS with local histograms of the

petrophysical properties as conditioning data.

5 Concluding Remarks

This work has presented an innovative and effective methodology to simulate

channel complex systems. Three fundamental aspects should be highlighted. The

first aspect is that the morphological simulation is developed in two phases: firstly,

the generation of the complex pathline and, secondly, the generation of the channels

conditional to the complex. The second aspect is that the facies assignment to the

blocks of the grid follows a type of hierarchy, being assigned from the oldest

channels to the most recent. This respects what happens in reality when a new

channel cuts and fills existing channels. The third aspect is that the categorical

models of the facies images influence the generation of the petrophysical properties.
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The algorithm converts a continuous variable (azimuth angle) into a categorical

one (azimuth class), avoiding the problem of the azimuth being a circular variable.

Despite the fact that multipoint statistics may be considered a somewhat inefficient

method, even with all the recent computational optimisation, the proposed

multipoint algorithm runs at 1D, using azimuth classes from training images, and

stores the multipoint statistics in a dynamic data structure. This allows the use of

templates with large dimensions but with low computer processing demands.

The parameters involved in the algorithm are input as cdfs. Therefore, the
parameters can be used in all case studies in which the distribution functions are

known or can be assumed.

The present case study may be considered only partially real, as a more detailed

analysis of seismic information and well data would ideally be needed, which lies

beyond the scope of the study. However, the study demonstrates that the method-

ology and associated algorithm can be applied to real sizes of reservoirs, and the

achieved results respect the complex geometries of such reservoirs.
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Recent Advancements to Nonparametric
Modeling of Interactions Between Reservoir
Parameters

Håvard Goodwin Olsen and Gudmund Horn Hermansen

Abstract We demonstrate recent advances in nonparametric density estimation

and illustrate their potential in the petroleum industry. Here, traditional parametric

models and standard kernel methodology may often prove too limited. This is

especially the case for data possessing certain complex structures, such as pinch-

outs, nonlinearity, and heteroscedasticity. In this paper, we will focus on the Cloud

Transform (CT) with directional smoothing and Local Gaussian Density Estimator

(LGDE). These are flexible nonparametric methods for density (and conditional

distribution) estimation that are well suited for data types commonly encountered in

reservoir modeling. Both methods are illustrated with real and synthetic data sets.

1 Introduction

Proper understanding and modeling of relationships between various reservoir

properties is an important part in several applications in geostatistics. This is indeed

the case for prediction of seismic and geological attributes, in the imputation of

reservoir characteristics in areas with few observations and conditioning reservoir

properties on inverted seismic parameters (Kolbjørnsen and Abrahamsen 2005).

One important application of the estimated density is to use it for trans-Gaussian

Kriging, where the data are transformed to the Gaussian domain before the Kriging

interpolation is applied (Cressie 1993). Therefore, obtaining a reliable joint model

is a critical component related to several aspects of reservoir modeling. Here, we

will take a probabilistic standpoint and investigate methods for assessing such

relationships by nonparametric estimation of the corresponding joint (probability)

density.

The straightforward approach is to estimate the joint density, or distribution,

using either parametric or simple nonparametric methods, where standard methods

like the binned estimator or Kernel Smoothing (KS) (see Sect. 3 and Fig. 2) are
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among the more popular. The parametric methods may run into problems for data

with certain special or distinct features like pinch-outs, nonlinearity, and heterosce-

dasticity (see Fig. 1 above for an illustration). The simple nonparametric methods

also have limitations and may perform poorly if the data either has a high number of

variables or if there are few data points. They typically struggle to adapt pattern that

is easily seen visually; see also (Leuangthong and Deutsch 2003) for additional

discussion.

Therefore, in order to construct a reliable joint model, that can handle data

commonly encountered in reservoir modeling, it is necessary to rely on more

advanced methods.

Here, we will focus on two recent advances in the field of nonparametric density

(and conditional distribution) estimation. The first is a variation of the Cloud

Transform with directional smoothing (CT, all mentions of CT will hereafter

mean with directional smoothing, unless otherwise stated) (Hermansen et al.

2016), and the other is a nonparametric density estimation called Local Gaussian

Density Estimator (LGDE) (Otneim and Tjøstheim 2016a). Both are good and

robust estimators for lower-dimensional problems, with CT having a slight edge

over LGDE; however, the latter is more stable in problems with a high number of

variables where the curse of dimensionality comes into effect. This curse refers to

the problem of the exponential increase in volume when dimensions increase,

together with limited data support (Sammut and Webb 2010). The KS requires

certain amount of observation within a boundary to make a stable and reliable

estimation, but in a high-dimensional volume data tend to become very sparse.

Parametric models do not have the high-dimensional problems, and we will later

see how nonparametric models can use some parametric structures to overcome this

issue.

In Sect. 2 we will illustrate one limitation of the standard kernel methods on a

synthetic data and also outline the basic mechanics underlying the improvements of

CT. The two main methods, CT and LGDE, are properly introduced in Sects. 4 and 5,

Fig. 1 Examples of three different data features where parametric methods often perform poorly,

nonlinear (a), heteroscedasticity, (b) and pinch-out (c)
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respectively; both will be tested with synthetic and real data. The results are summed

up in Sect. 6.

2 The Problem and the Solution

In most applications, kernel density estimators improve the simplistic binned

estimator, as illustrated in (Kolbjørnsen and Abrahamsen 2005) and Fig. 2. How-

ever, estimators based directly on a standard KS often become sensitive and

unstable in areas with few observations. Therefore, direct and careless application

may result in quite undesired and introduce biased behavior when, e.g., used for

interpolation and extrapolation. Also, kernel-based methods may struggle when

applied on high-dimensional data, as the curse of dimensionality (described in

previous section) comes into effect; depending on the number, distribution, and

sparsity of the observations, such methods may even become unreliable in

low-dimensional problems.

To illustrate the problem (and foreshadowing the solution), we consider the

synthetic data case shown in Fig. 2, which illustrates a pinch-out effect of the data.

Data that pinch out is a common feature for highly correlated data, see, e.g.,

(Hermansen et al. 2016) for real data cases with this effect. The figure also shows

the conditional cumulative distribution function (cdf) of permeability (log) given

porosity for CT (b), binned estimator (c), and standard KS (d). The CT method

shown here is one of the main methods investigated in this paper and will be

described in detail in Sect. 4.

Somewhat simplified, the conditional cdf for permeability is traditionally

obtained by first estimating the joint density between both variables, here perme-

ability and porosity, and the corresponding conditional density (and distribution) is

obtained from the joint density by (numerical) integration. The conditional cdf is an

important part in simulations and predictions of permeability values, where we can

condition on additional info like certain values/levels of porosity. The binned

estimator (c) divides the data into equal proportions and estimates a

one-dimensional distribution in each bin, which will create artificial discontinuities.

Standard KS, which avoids this artifact, is easily seen as a better solution; see

(Kolbjørnsen and Abrahamsen 2005) for a more thorough comparison.

The estimated distributions in Fig. 2 clearly illustrate one improvement that

directional smoothing (b) has over standard kernel methods (d). While both

methods work well in areas with much data, the difference is easily seen at the

boundaries. Here, the KS (sort of) flattens out too early, while CT continues along

and follows the main “signal” in the data cloud. This structure is easily observed

visually; however, traditionally it is very hard to model this mechanically. If such

structures exist, the KS is almost always bound to commit several errors at the

boundaries. CT on the other hand adapts, more or less automatically, to such pinch-

out effect by utilizing certain transformation and normalization of the data (see
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Sect. 4 for details). Additional illustrations with the traditional KS are shown in

Fig. 5.

For a specific porosity value in Fig. 2, the corresponding vertical slice will give

the one-dimensional cdf. In Fig. 3, we have illustrated an example of the difference

between KS and CT for permeability (log) given porosity value equal to 0.1,

illustrating the potential of including porosity in the model.

3 Kernel Density Estimation

To understand the basic mechanics of the CT method, and also exactly how it

improves on the standard methods, some basic knowledge of the traditional meth-

odology is needed. Kernel smoothers refer to a general class of nonparametric

methods, used for function estimation, such as density and regression. In short, such

Fig. 2 Plot (a) shows the scatter plot of two synthetic data, and (b) is the corresponding

conditional cumulative distribution for Cloud Transform, (c) binned estimator, and (d) standard
Kernel Smoother. The colors represent values from 0 (blue) to 1 (red). These 2D cdf plots illustrate

the conditional cdf of permeability (log) given porosity
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methods use nearby locations (like a moving window) to borrow strength for the

estimation, e.g., density, distribution, or function, at every location; see Eq. 1 and

Fig. 4 below. Given a k-dimensional data set x1, . . ., xk from an unknown distribu-

tion f, the kernel density estimator is defined as

f̂ H xð Þ ¼ 1

n

Xn

i¼1
KH x� xið Þ; ð1Þ

with KH zð Þ ¼ Hj j�1
2K H�1z

� �
. Here, K �ð Þ is the kernel function, H is a

k-dimensional symmetric and positive definite matrix of bandwidths, and x is the

value where the density is estimated. A standard kernel choice is the Gaussian

kernel; with the bandwidth matrix H, the kernel function is given by KH zð Þ ¼
1
2π Hj j�1

2exp �1
2
zTH�1z

� �
(Wand and Jones 1993).

Figure 4 shows the porosity plotted against permeability (log) with an ellipse

indicating the bandwidth in x and y direction, indicated by h1 and h2, respectively.
This is KH from Eq. 1 for a 2D data set. In this illustration the density is estimated in

the center of the ellipse at point (xi,xj). Only the points inside the ellipse contribute

significantly to the density in this point, and the choice of the kernel function KH

decides how each point contributes.

In addition to choosing the kernel function K �ð Þ; an important part of kernel

density estimation is to determine the bandwidths in the matrix:

H ¼ h1 h12
h12 h2

� �
; ð2Þ

where the elements indicate the smoothing along the axes. Different setups of H
will result in different shapes of the ellipse shown in Fig. 4; h1¼ h2 and h12¼ 0

gives a circle, h1> h2 and h12¼ 0 gives an ellipse without orientation (it follows the

1

0.
0

0.
4

0.
8

F
(x

)

2 3

1D permeability
Kernel Smooth
Cloud Transform

4 5 6
Permeability (log)

Fig. 3 Three 1D cdf of permeability taken from Fig. 2. Red curve is the 1D cdf of permeability

(log) data in Fig. 2a. The blue and green curves are the 1D cdf of permeability (log) given porosity

obtained by setting porosity equal to 0.1 in Fig. 2 for KS (d) and CT (b), respectively. Note that the

level of porosity seen in Fig. 2 alters the estimated cdf
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axis like the example in Fig. 4), and finally h1> h2 and h12 6¼ 0 gives an ellipse with

an orientation. From Figs. 2 and 4, it seems clear that the last option provides the

best use of the information (direction) observed in the data.

The choice of bandwidths is important, e.g., too small may result in overfitting,

and very large bandwidths make it impossible to detect the finer details. Choosing

the optimal bandwidths is a nontrivial task. Under reasonable restrictive assump-

tions (Gaussian kernel and the underlying data is Gaussian), there exist “optimal”

bandwidth (rates) recommendations, and for the one-dimensional case, this is

h ¼ 1:06σn�0:2, where σ is the standard deviation and n is the number of data

points; see Silverman (1998). Still, most problems usually require some manual

tuning, which becomes hard for high-dimensional problems.

In two- or higher-dimensional problems, it is more difficult to determine and

tune the bandwidths and one must typically rely more on estimation from iterative

methods. A popular choice is cross-validation, where sections of the data will be

left out for testing and the remaining data will be used for estimation. The

bandwidths are then chosen based on the performance of a predetermined criterion,

but choosing a good criterion is a problem on its own and relies on a clear

understanding of the purpose of the model. One advantage of CT (discussed in

Sect. 4) is that it solves some of these difficulties and will often give good results

(as seen in Fig. 2) when used out of the box with almost no tuning required. The

issue with choosing bandwidths is illustrated in Fig. 5, which shows the same

synthetic data set as in Fig. 2, but estimated with two different bandwidths using

the standard Gaussian KS. In Fig. 2, we used the previously mentioned optimal 1D

bandwidth for each dimension, whereas in Fig. 5, this is scaled trying to obtain a

better fit.

Fig. 4 Porosity vs

permeability (log) with an

illustration of two

bandwidths in a Gaussian

kernel
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4 Cloud Transform (CT) with Directional Smoothing

We will now present the main components of the CT method. This was developed

to solve some of the challenges of traditional kernel smoothers for density estima-

tion, like bandwidth estimation, and adapting to the main structure of the data. The

CT method presented here is an extension of the one presented in (Kolbjørnsen and

Abrahamsen 2005) and builds on the work described in (Hermansen et al. 2016).

The main idea is to perform the kernel smoothing in a transformed domain (see

Fig. 6b) which makes the method more robust against outliers and better behaved in

areas where there are few observations. The kernel smoother borrows information

of nearby observations, which is problematic in areas with few observations.

Therefore, it performs better in the transformed domain, for most bandwidth

choices, as each point will have more evenly support.

The main focus will be on the implementation of two-dimensional data sources,

but we will also illustrate how the method can be extended to higher dimensions and

show an example of a three-dimensional case.

Let yi; xið Þ, i ¼ 1, . . . , n be independent observations of (Y,X) from an unknown

joint distribution f(y,x). Here, we will construct the nonparametric estimate for the

conditional cdf, F̂ y X ¼ xjð Þ; based on these observations. In short, the CT method

estimates this conditional cdf by the following four main steps; see (Hermansen

et al. 2016) for more details:

1. Normalize the response variable ŷ i ¼ yi � Ê Y X ¼ xijð Þ� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar Y X ¼ xijð Þ
q

,

where the estimated expectation and variance are obtained by a local linear

regression and a weighted sample variance.

2. Transform x1 to Ti ¼ F̂ xið Þ where F̂ �ð Þ is the estimated cdf.

3. Estimate the joint density and the conditional cumulative distribution in the

transformed domain using the pairs (ỹ i,Ti) and a standard Gaussian kernel.

4. Transform data back to the original domain by inverting step 1 and 2.

Fig. 5 Densities estimated with KS and two different bandwidths. Both have used optimal

bandwidth based on the standard deviation of the data, but in (a) we have scaled this by a factor

0.25 and in (b) we have scaled this by a factor of 2
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Figure 6 shows the process of CT. Plot (a) shows the original pinched-out data

with estimated mean (red line) and one standard deviation (blue lines); these are

used to transform the data to the domain seen in plot (b). Here, the density

is estimated with a KS before transforming back to the original domain, shown in

plot (c). An advantage of step 1 and 2 above is that the transformed data will be

somewhat similar across different data sets and makes it easier to set more general

bandwidths.

We have further applied the method on a real data case. The variables available

in this case were P-wave velocity (Vp, ms/ft), density (Rho), gamma ray (GR), and

total organic content (TOC, weight percent). This data set is of a conventional

reservoir and consists of four blocked wells with a total of 315 observations.

Figure 7 shows two 2D examples where we have used GR conditioned on Vp and

GR conditioned on Rho.

The previous examples have dealt with two variables and specifically exempli-

fied by estimating permeability (log) conditioned on porosity. In this section, we

will outline how CT can be extended to higher-dimensional problems, (Y1,X1, . . .,
Xk) with k fixed (Hermansen et al. 2016):

1. (a) Normalize each variable sequentially. First, let ex2 be the normalized

x2 conditioned on x1, and then let ex3 be normalized x3 conditioned on ex2

and x1, and so on for all variables xj. The normalization is done by

computing the corresponding conditional means and standard deviations.

(b) Finally, normalize y by computing the conditional mean and sd givenexk, . . . , ex2,x1.

2. Transform all the normalized x variables from step 1 (a) sequentially. First, let

T1i ¼ F̂ 1 x1ið Þ, where F̂ 1 �ð Þ is the marginal cdf of X1, and then let

T2i ¼ F̂
2j1ðex2ijx1iÞ, where F̂

2j1ð�Þ is the conditional cdf of normalized X2 given

X1. This is continued for all variables.

Fig. 6 The process of CT. Plot (a) is the original data with estimated mean (red solid) and one

standard deviation (blue stippled). The normalized data is shown in (b) with the corresponding

density estimated with a standard Kernel Smoother. Plot (c) is the backtransformed conditional cdf

in the original domain
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3. The n-dimensional joint density and conditional cdf can be computed in the

transformed domain by a standard kernel density method.

4. Finally, the density can be transformed back by using inverse operations from

step 1 and 2.

There are some general problems with the generalized version of CT. Firstly, the

normalization and transformation steps become quite involved for data that goes

beyond three dimensions, as each transformation and normalization step is condi-

tioned on all the previous normalization and transformations.

Moreover, we are still vulnerable to the curse of dimensionality since there is a

traditional kernel density smoother at the core of the algorithm after the normali-

zation and transformation. However, CT will generally be more robust, compared

to standard KS, since the kernel estimation takes place in a more well-behaved

space, but it will eventually run into the same high-dimensional challenges; see

(Hermansen et al. 2016) for a more detailed discussion.

We will now show CT applied in three-dimensional real data case. In this model

we will condition TOC on Vp and Rho; see Fig. 8 for a plot of the data. There are

15 high TOC values in this data set (orange to red dots). According to Roxar ASA,

who provided the data, these points may be erroneous, so we have chosen to

exclude them. In addition, we have excluded the low Vp value (under 60) as we

suspect that this may also be an error.

The result of 3D cdf estimated with CT is shown in Fig. 9. Plot (a) shows the data

and (b) shows the corresponding 2D cdf of TOC given Rho (Vp values are ignored).

The bottom row ((c) and (d)) shows two slices of the 3D cdf cube. It illustrates the

effect of the third parameter on the estimated density. From this we can see the

distribution of TOC given Rho is different for the two chosen Vp values (71.1 and

89.2). The lower Vp values give a wider cdf (larger variance). The one-dimensional

cdfs corresponding to Rho equal 2.2 is plotted in Fig. 10, where it is easier to see the

differences. From this we can conclude that to include Vp variable will give

additional information to the estimated density. The performance of CT, in relation

to LGDE, is discussed more in Sect. 6.

Fig. 7 Estimated conditional cdf with CT on a real data case, overlain by the observations, GR

conditioned on Vp (a) and GR conditioned on Rho (b)
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We have previously outlined how CT can be estimated in higher dimensions.

However, the curse of dimensionality, described in Sect. 1, may still break down the

KS in high dimensions due to the limited data and the increasing volume. In the

next section, we will therefore introduce an alternative nonparametric estimator,

which is generally more suited for high-dimensional problems.

5 Local Gaussian Density Estimator

Here, we present an alternative method called Local Gaussian Density Estimator

(LGDE) developed in the papers (Otneim and Tjøstheim 2016a, b). Here, we see

this as a response to the shortcomings of CT in high-dimensional problems. It

shares many of the same strengths; however, our experience is that LGDE is not as

flexible and is not able to achieve the same level of performance in low-dimensional

problems.

The LGDE method consists of three main steps for estimating the joint and

conditional density, f(x, y) and f ðyjxÞ, respectively. The first step is to estimate the

marginal cumulative distributions for each dimension, F̂ xið Þ, and transform each

marginal to standard normal. We have used a one-dimensional KS with a Gaussian

kernel in our testing.

The second step is to locally maximize the likelihood function

Fig. 8 Scatter plot of Vp vs

Rho with TOC values given

by contour colorings (right
bar). These are the data
from the real data case
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L θ; xð Þ ¼ 1

n

Xn

i¼1
KH Xi � xð Þlogψ Xi; θð Þ �

Z
KH v� xð Þψ v; θð Þdv ð3Þ

at the locations x from the sample X1, . . ., Xn (Otneim and Tjøstheim 2016a). This

estimates the unknown density by fitting a parametric family of densities ψ �; θð Þ

Fig. 9 Result of the 3D conditional cdf estimated with CT, here TOC is conditioned on Vp and

Rho. Figure (a) shows the 3D data set and (b) is the 2D CT of TOC given Rho (Vp is ignored). The

bottom row shows two slices of the 3D density, for Vp equal to 71.1 in (c) and Vp equal to 89.2 in
(d). Only sections of the 3D cube where there is ample data support are shown, and only closest

20% data to the chosen Rho value is plotted. The black lines indicate the corresponding 1D cdf in

Fig. 10

Fig. 10 Three 1D cdf

extracted from Fig. 9 of Rho

equal to 2.2 (black lines).
Red line is from the 2D cdf

(Vp ignored), and blue and
green are from the two

slices of the 3D cdf cube, a

low and high Vp value,

respectively
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locally, where θ̂ xð Þ maximizes the likelihood. The unknown density f̂X xð Þ is then
equal to ψ x, θ̂ xð Þ� �

. Here, ψ is chosen to be a standardized multivariate normal

distribution, that is,ψ z; θð Þ ¼ ψ z;Rð Þ ¼ 2πð Þ�p
2 Rj j�1

2exp �1
2
z
0
R�1z

� �
, whereR ¼ R

zð Þ ¼ ρij zð Þ� �
is the correlation matrix. KH �ð Þ is chosen to be Gaussian kernel.

The last step is to combine to a final density and transform the data back to the

original domain. The density given by (Otneim and Tjøstheim 2016a) is

f xð Þ ¼ fZ Φ�1 F1 x1ð Þð Þ, . . . ,Φ�n Fp xp
� �� �� �Yp

i¼1

f i xið Þ
ϕ Φ�1 Fi xið Þð Þ� � ; ð4Þ

where fi and Fi are the marginal distributions, andΦ�1 Fi xið Þð Þ is the transformation

of the original vector xi to the normal domain (by first the marginal F and then the

inverse standard normal Φ�1).

We have been investigating the conditional density, which previously has been

obtained by using the relation f ðyjxÞ ¼ f ðx, yÞ=f ðxÞ. This can however be unstable

due to the division of small values of the marginal f(x). The LGDE method makes

use of the Gaussian framework to make a stable estimation of the conditional

density directly. For a Gaussian distribution, the conditional distribution has an

explicit formula; if x ¼ x1; x2½ � is multinormal distributed with μ ¼ μ1; μ2½ � and
Σ ¼ Σ11Σ12;Σ21Σ22½ �, then x1jx2 ¼ a will be multinormal with μ ¼ μ1 þ Σ12Σ�1

22

a� μ2ð Þ and Σ ¼ Σ11 � Σ12Σ�1
22 Σ21. With this (Otneim and Tjøstheim 2016b)

obtains an estimator similar to Eq. 4 for f ðyjxÞ.
The main advantage of the LGDE method is for high-dimensional problems

where it is shown to overcome some of the problems related to the curse of

dimensionality. This is done by a simplification which is based on letting the

local correlation matrix at each point, ρ̂ ij, only depend on their own pair of

variables, that is, ρ̂ ij x1; . . . ; xp
� � ¼ ρ̂ ij xi, xj

� �
. This simplification reduces the

estimation of f(x) to a series of bivariate problems. Otneim and Tjøstheim

(2016a) have tested the LGDE method for several data cases and compared it to

standard kernel density. They have generated data from known distributions,

varying between two and ten dimensions and evaluate the results through a relative

square error (IRSE)

Z
f̂ xð Þ � f xð Þ� �2

=f xð Þdx. The result is that LGDE outper-

forms the KS for most cases and dimensions, chi-squared marginals with Gaussian

copula, lognormal marginals with t-copula, t-marginals with Clayton copula, uni-

form marginals with Clayton copula, and multivariate t-distribution. The case

where LGDE struggled against KS was a mixture of two Gaussian models; here,

KS performed better for the lower dimensions (less than 4). See (Otneim and

Tjøstheim 2016a) for more discussions.

While the main purpose of the LGDE method is for the high-dimensional data

sets, we demonstrate the use of the method in two dimensions. The results are

shown in Fig. 11a for the synthetic data and Fig. 11b, c for the real data, which is the
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same data previously used for CT in Figs. 2 and 7, respectively. The LGDE in

Fig. 11a is seen as an improvement of the KS in Fig. 2 as it is able to achieve some

pinch-out effects. Figure 12 shows the LGDE method applied on the real data set

for three dimensions; this is similar to the example in Fig. 9 for CT. We compare

CT and LGDE on this data set in Sect. 6; see Fig. 13 and Table 1. While the

comparisons show some small favor to CT, we see that LGDE also works well.

6 Discussions

Our experience using these methods is that both CT and LGDE work well for two-

and three-dimensional problems, but that CT has the edge both in performance and

stability. To compare the performances of the methods on the real data sets (Figs. 9

and 12), we backtransform using the estimated cdf and look at the residuals in the

normal transformed domain. This means to first transform each data point to the

uniform domain with the estimated cdf and then transform them to the standard

normal domain by using the inverse cdf of the standard normal distribution. A

perfect transformation, where all dependencies to the underlying parameters (which

we condition on) are removed, will give normal distributed residuals with mean and

standard deviation scattered around zero and one, respectively. The reason we base

our test on transforming to standard normal is that this is of particular interest in

geostatistics where methods like Kriging often uses a workflow of first transforming

the data toward Gaussianity; this is called trans-Gaussian Kriging (Cressie 1993).

See (Hermansen et al. 2016) for a more thorough explanation on this transformation

test, where they used it on CT in two and three dimensions.

The sliding average results of the backtransformations can be seen in Fig. 13

where the mean should be around zero. The summed absolute deviations are listed

in Table 1, where we have also included results for standard deviations and a model

Fig. 11 Result of the LGDE method used on the same data as in Fig. 2 shown in (a). Plots (b), (c)
show the estimated cdf on the real data case, GR conditioned on Vp (b) and GR conditioned on

Rho (c)
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with only using the Rho variable. From this table, and this criterion, we see that CT

performs better than the LGDE (lower values) for the 3D models (Vp + Rho). We

also see that in the 2D models that backtransforming the ignored variable gets high

Fig. 12 Result of the 3D conditional cdf estimated with LGDE, here TOC is conditioned on Vp

and Rho. Plot (a) shows the 3D data set and (b) is the 2D LGDE of TOC given Rho (Vp is ignored).

The bottom row shows two slices of the 3D density, for Vp equal to 71.1 in (c) and Vp equal to

89.2 in (d). Only sections of the 3D cube where there is ample data support are shown, and only

closest 20% data to the chosen Rho value is plotted

Fig. 13 Backtransformed data using the estimated cdfs (2D and 3D) for CT (a) and LGDE (b).
For the 2D estimations, only Rho is conditioned on; Vp is ignored. The red and green lines are
result of backtransforming the Vp and Rho data, respectively. The black lines are from the 3D

model, where both Vp and Rho are used as conditioned on. The goal of the plot is to see if the 2D

estimations have systematic bias in the direction of the variable not used in the model, and we see

that the Vp variable trails off. This indicates that Rho should also be included when modeling the

response TOC

666 H.G. Olsen and G.H. Hermansen



values; see line 2 and 5 in Table 1 and Fig. 13 where Vp was the only variable

conditioned on (Rho is ignored). This indicates that 2D model does not capture all

the underlying signals and that this variable should be included in the model.

We emphasize that one should not rely too much on the results in Table 1 for a

comparison of the methods, as this is only for one data case and this criterion. To

create test criteria for comparisons, one must consider what the estimated densities

will be used for. Another evaluation of the methods could be to draw data from

several known distributions, and then repeatedly measure the difference between

the true and estimated distributions, like was done for LGDE by (Otneim and

Tjøstheim 2016a).

6.1 Adaptive Bandwidths

The kernel density estimation in Eq. 1 was set up with a constant bandwidth matrix.

One disadvantage with constant bandwidths is that the number of data inside the

kernel varies, depending on the clustering of the data. An improvement to this is

letting the bandwidth vary with the data, e.g., use a small bandwidth in areas with

many observations, and increase the bandwidth in areas with few observations. This

fits within the kernel density estimator described in Sect. 3, but with replacing the

bandwidth H with H(x), one that varies along x in each direction. See (Sain 1994)

for a comparison of adaptive kernel estimation methods.

An example of estimating a density in one dimension with a varying bandwidth

is shown in Fig. 14. Both are estimated with a Gaussian Kernel, but the pdf in (a) is

estimated with a constant h and the pdf in (b) with an adaptive h. From this figure it

is clearly seen that the pdf in (b) is better suited to the underlying data.

As all three methods discussed in this paper use kernel smoothing at one point,

this extension could apply to all methods. However, CT and LGDE utilize trans-

formations of the data before applying the KS, which typically helps in regions with

sparse data.

Table 1 Summary of the

backtransformed variables, by

summing the absolute

deviation in Fig. 13

VP Rho

Mean SD Mean SD

CT VP + Rho 209.1 158.8 204.4 235.0

Vp 198.3 179.7 328.5 266.3

Rho 387.4 238.0 169.2 208.0

LGDE VP + Rho 253.3 220.5 321.4 233.0

Vp 201.8 224.6 475.5 230.4

Rho 392.2 245.6 267.0 237.3

For the standard deviations, we have subtracted 1 from the values

before summing, so the smaller number indicates the best

transformation
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7 Conclusion

We have investigated two alternatives to standard kernel density estimators, Cloud

Transform (CT) with directional smoothing, and Local Gaussian Density Estimator

(LGDE). While the standard kernel smoother potentially has some problems on its

own, as seen in Fig. 2, the two proposed methods utilize certain improvements, e.g.,

both transform the data before estimating the densities.

We have seen that both CT and LGDE work well for lower-dimensional

problems. However, a major advantage for LGDE is that it easily scales to high-

dimensional problems without introducing the increasing complexities between the

variables that occur for CT. As discussed in Sect. 4, generalizing CT to higher

dimensions adds in new layers of normalization and transformation that depends on

the other normalized and transformed variables. This will increase the complexity

of the method for each dimension, in contrast to LGDE which is already laid out for

n dimensions.

This complexity issue of the normalization and transformation step of CT is

mainly implementation wise, but the kernel method in CT may eventually break

down to the curse of dimensionality. LGDE uses a simplification to overcome this

curse, based on reducing the high-dimensional estimation to a set of bivariate

problems. An improvement to CT could be to replace the standard kernel method

with the local Gaussian approximation.

The LGDE method is a semiparametric density estimator, part nonparametric

and part parametric, with Gaussian distribution chosen as the parametric family in

Eq. 3. This will make the LGDE estimate unreliable if the data are far from

Gaussian, as the Gaussian assumption will be broken. As previously mentioned

the LGDE did struggle in comparison to KS when it was tested on a bimodal

distribution for lower dimensions; see (Otneim and Tjøstheim 2016a). Other para-

metric families may be also be considered. In addition, in the tail of the distribution,

where the data are sparse, LGDE will fit a Gaussian tail, which will be erroneous if

the general structure of the data is far from Gaussian.

Fig. 14 Porosity data with pdf (red line) estimated with constant bandwidth (a) and with an

adaptive bandwidth (b)
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Geostatistical Methods for Unconventional
Reservoir Uncertainty Assessments

Michael J. Pyrcz, Peter Janele, Doug Weaver, and Sebastien Strebelle

Abstract New methods are required to support unconventional reservoir uncer-

tainty modeling. Unconventional plays add additional complexity with greater

uncertainty in direct reservoir measures (e.g., unreliable permeability measures in

low-permeability rock) and weakened relationships between currently measurable

reservoir properties and production results (production mechanisms may not be

well understood). As a result, unconventional plays are often referred to as “statis-

tical plays,” suggesting the reliance on statistical characterization of production

distributions as a function of well counts. The application of the techniques

described herein can be utilized to integrate all available information to determine

appropriate levels of drilling activity to reduce uncertainty to an acceptable level.

Geostatistical approaches provide opportunities to improve the rigor in the

dealing with statistical plays. Rigor is introduced through integration of methods

that account for representative statistics, spatial continuity, volume-variance rela-

tions, and parameter uncertainty.

Analog production data from US shale gas plays are utilized for demonstration.

These datasets, after debiasing, are sources for analog production rate distributions

and spatial continuity. Given these statistics along with a decision of stationarity,

geostatistical workflows provide repeatable uncertainty models that may be sum-

marized over a spectrum of model parameters, drilling strategy, and well counts.

These geostatistical methods do not replace the need for expert judgment, but

they improve the rigor of statistical-based approaches that are essential in statistical

plays.
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1 Introduction

Modeling of unconventional reservoirs uncertainty presents new challenges relative

to conventional reservoirs. There may be limited sample coverage and highly

uncertain measures of reservoir properties due to extremely low-permeability

rock, and reservoir properties may be weakly related to production due to measure-

ment imprecision and complicated production mechanisms. Olea et al. (2011)

suggest that conventional reservoir modeling workflow assessments with pore

volume modeling through conventional porosity measures and mapping are

unfeasible for resource estimation. This has motivated (1) a direct modeling of

well estimated ultimate recovery (EUR) (or initial production, IP, as a proxy) as a

regionalized variable (Olea et al. 2011) and (2) a strong reliance on statistical

methods such as bootstrap to evaluate uncertainty (SPEE 2010).

This precludes common geostatistical reservoir modeling workflows that

sequentially model regions, facies, porosity, permeability, and saturations for

volumetrics and production forecasts (Pyrcz and Deutsch 2014). Nevertheless,

there are opportunities to employ geostatistical theory to address technical limita-

tions and to improve reservoir assessments and uncertainty modeling in unconven-

tional reservoirs. We first discuss the statistical play concept and currently applied

bootstrap methods for well aggregation-based uncertainty and then introduce new

workflows based on geostatistical concepts. We acknowledge the geostatistical

simulation of “production density” (cell-based EUR) workflow that has been

discussed by Olea et al. (2011) as an alternative to the workflows presented. The

demonstrations in the paper utilize custom code and GSLIB software (Deutsch and

Journel 1998).

1.1 Statistical Play

Unconventional plays are often considered statistical plays. With a traditional play,

the local data measures are reasonably accurate and in combination with local

geologic factors allow for the mapping of reservoir properties that are suitable for

forecasting with the application of flow simulation. In contrast, for a statistical play,

well measures are highly uncertain, and the relationships between the measured

values production is weak (see Fig. 1). In the face of this difficulty, Olea et al.

(2011) suggests directly modeling well production measures such as EUR (although

we utilize IP as a production proxy due to availability). This may first require a

standardization to account for well parameters such as completed length. Well

production is then treated as the regionalized variable of interest and summarized

for reservoir uncertainty modeling. Note, while geologic factors naturally enter the

traditional workflows through hierarchal depo- and lithofacies and porosity, per-

meability, and saturation distributions and relations, the challenge is to integrate

geologic factors in this statistical play workflow. Careful sub-setting and selection
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of analogs and matching and sub-setting modeling area of interest with consider-

ation of geologic setting and stationarity are essential.

1.2 Bootstrap-Based Workflow

The statistical play concept has been formalized within the SPEE#3 Monograph

that outlines methods to model uncertainty for undeveloped reserves based on the

bootstrap method (SPEE 2010). The bootstrap is a statistical resampling technique

that permits the quantification of uncertainty in statistics by resampling (with

replacement) from the original data (Efron 1982). Importantly, this method does

not account for neither spatial context such as location of samples nor spatial

continuity.

The SPEE#3 Monograph approach proceeds by identifying analogous wells,

modeling a distribution of EUR, determining the number of wells in the well plan,

and repeated bootstrap sampling to evaluate the uncertainty in production results

over a well aggregate measure (e.g., the average or sum of production). This

approach benefits from simplicity and ease of use.

Fig. 1 Workflows for traditional and statistical play assessment. In a statistical play, the well-

based petrophysical measures are highly uncertain and poorly related to production. This moti-

vates direct modeling of production as a regionalized variable (Figure from Pyrcz and Deutsch

2012)
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2 Methodology

There are opportunities to improve unconventional uncertainty assessments with

the addition of concepts widely known within geostatistical reservoir practice. The

fundamental geostatistical concepts of representative statistics, spatial continuity,

and volume-variance relations are demonstrated with examples based on domestic

US shale plays. This is followed by demonstration of additional workflows that

utilize these geostatistical concepts for well aggregate and unconventional block

uncertainty.

2.1 Representative Statistics

Representative statistics are a prerequisite for uncertainty modeling. Any

uncorrected sampling bias will bias the uncertainty model. In the proposed

workflows, the production distribution should be representative of the area of

interest. This step requires the pooling of all available information and correction

of the data for sampling representativity (spatial clustering and biased sampling).

These corrections may include declustering to correct for sample clustering and soft

data debiasing to correct for un- or under-sampled subsets of the property distribu-

tion (Deutsch and Journel 1998; Pyrcz et al. 2006).

Cell-based declustering is demonstrated with three US domestic shale plays

(Haynesville, Barnett, and Fayetteville) based on IP data (see Fig. 2). The wells

were filtered to pool similar vintage (recently drilled) and types of wells (horizontal

lengths and stages). Even with large domestic US IP datasets (100’s of wells), data
representativity is a major concern. This example indicates 4–8% reduction in play

mean IP due to accounting for sample clustering. While declustering does generally

improve results, it is not guaranteed to do so in all circumstances, yet these results

provide evidence for preferential sampling in these shale gas plays that must be

treated when formulating representative statistics for uncertainty modeling.

2.2 Spatial Continuity

A semivariogram provides a mathematically consistent model of spatial continuity

for a variable of interest. This model indicates the expected dissimilarity (and under

the assumption of stationarity, the correlation) for all offset distances and direc-

tions. An experimental semivariogram is calculated directly from the data as half

the expectation of the square difference of data offset by a lag vector, h. Expecta-
tion is calculated by pooling all data pairs with the same h offsets (within a decision

of lag angle and distance tolerance).
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Modeling and interpretation of production rate semivariograms offer insights

into the spatial behavior of production rates and the ability to predict away from

wells. For a single well, this is easy to visualize and calculate. At the well location,

there is no uncertainty and perfect correlation. At some small distance, below the

minimum sample spacing, the correlation decreases by the relative nugget effect. In

general correlation decreases with lag distance and at the range, no correlation

Fig. 2 Naı̈ve and cell-based declustered IP distributions for three US domestic shale plays.

Display includes distribution shape change and change in mean
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exists any longer; the well provides no information. Beyond the range there may be

some small negative correlation indicative of spatial trends.

The semivariogram is a fundamental input for geostatistical simulation and the

workflows presented later, but there are benefits in directly utilizing insights from

the semivariograms in unconventional reservoirs. A simple application of the

semivariogram is to determine the maximum extent of information from a well in

map view based on the semivariogram range. In general, wells that have a separa-

tion of twice the range are not redundant and carry the maximum information

content. Also, well location maps with range circles (or ellipses in the case of

anisotropy) provide visualization of data coverage and may be applied to assist in

well planning. The circle size may be reduced to reflect an acceptable level of

spatial uncertainty.

Experimental isotropic semivariograms are calculated for the normal score

transform of well IP (positioned at the well collars) with the filtered IP data for

three US domestic shale plays (see Fig. 3). Each of experimental semivariogram

indicates (1) 30–40% relative nugget effect, (2) long correlation ranges, and

(3) indication of long-range trends. These shale gas plays indicate a high degree

of variability between adjacent wells, but also some degree of correlation or

information over long distances. Large relative nugget effects are not expected to

be due to allocation issues, but may represent strong initial production sensitivity to

artificial fracture sets.

2.3 Volume-Variance Relations

Dispersion variance is a generalized form of variance that accounts for the scales of

the samples, scale of the area of interest, and spatial continuity. In geostatistics,

given the spatial and scale context, all variances are dispersion variances. Volume-

variance relations refer to the general relationship between the variance and scale

(Pyrcz and Deutsch 2014).

The dispersion variance may be calculated from volume integration of the

semivariogram values (known as gamma bar), γ:

D2 block; playð Þ ¼ γ play; playð Þ � γ block; blockð Þ ð1Þ

Since semivariograms tend to monotonically increase, as the scale of the estimate

(the lease block in the example above) increases, the dispersion variance is reduced;

therefore, the estimation uncertainty decreases under the assumption of stationarity.

For a variety of unconventional problems, we are concerned with how dispersion

variance scales as we move from well scale to exploration block scale. Krige’s
relation indicates the additivity of variance or in other words the partitioning of

variance over scales:
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D2 well; playð Þ ¼ D2 well; blockð Þ þ D2 block; playð Þ ð2Þ

It follows that selecting a larger lease block will reduce dispersion variance

between lease blocks within the play, D2 (block, play), but will retain a larger

dispersion variance within the lease block, D2 (well, block). While estimates of

larger lease block scale are easier, individual well results within the larger lease

block will have more variability.

Volume-variance relations based on gamma bar values are formulated under the

assumption that for the variable of interest, the variogram is stationary over the

domain, averaging is performed with nonoverlapping volumes, and variable aver-

ages linearly (Journel and Huijbregts 1978; Frykman and Deutsch 2002). In the

proposed workflow based on global kriging, well EUR (IP when EUR is not

available) is the variable of interest. This is reasonable if it is assumed that:

1. The EUR variogram is stationary over the block, V.

2. Well EUR is represented as the total volume of production at the scale of the

effective drainage of a nominal well, EURv(u).
3. EURv uαð Þ, 8uα 2V is an exhaustive set nonoverlapping data support production

volumes of the block, V.

4. There is no interaction in EUR between adjacent EURv(u).

Fig. 3 Semivariograms of normal score transformed IP data for three US domestic shale plays.

The sizes of the experimental points are scaled by number of pairs available
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Under these simplifying assumptions, block production volume, EURV, is additive

and is calculated as the summation of the well support subsets’ production volumes,

EURV ¼
X

uα 2V
EURv uαð Þ. By extension, IP is treated as a subset of the EUR volume.

3 New Workflows and Results

Given the geostatistical reservoir modeling concepts of representative statistics,

spatial continuity, and volume-variance relations, workflows are proposed to sup-

port unconventional uncertainty modeling. The first is a direct method to assess

lease block uncertainty with global kriging. The second is a method to assess well

aggregate uncertainty accounting for spatial concepts.

3.1 Block Uncertainty Modeling with Geostatistical Methods

Kriging is general and may directly integrate scale information. For example,

kriging may be applied to calculate models of data scale uncertainty represented

by a mesh of the kriging variances over the lease block. Also, kriging may be

applied with volume-integrated semivariogram models to directly estimate and

assess uncertainty of a production property over other scales, such as lease block

scale, through the kriging estimate and variance, respectively. Deutsch and Deutsch

(2010) propose the use of global kriging to directly estimate block uncertainty (and

declustered block mean).

The kriging variance equation derived in standard geostatistics textbooks is

composed of global dispersion variance, closeness, and redundancy terms (Pyrcz

and Deutsch 2014). (1) The global dispersion variance (the variance of the property

of interest at the correct scale) is the maximum uncertainty possible at the specified

volume support. This accounts for the size of the block being estimated. (2) Close-

ness accounts for the correlation of the data to the volume being estimated. This

component accounts for the respective coverage of the data within this volume

being estimated. For example, if for a specific dataset, the block expands further

away from the data, overall closeness decreases and the kriging variance increases.

(3) Redundancy accounts for the correlation between the data. For example, if the

spatial continuity range relative to well spacing is large, then the well data redun-

dancy is large and the kriging variance increases.

Closeness and redundancy components interact resulting in interesting behavior

in block uncertainty. A simple example is provided with representative histogram

(Haynesville declustered example) and a stationary 36� 36 km lease block. The

well data count was varied from 0 to 100 wells (assuming uniform well spacing)

and the spherical variogram range was varied from 0 to 50 km. The resulting
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response surface is displayed as block scale average IP uncertainty represented by

standard deviation (MCFPD) (see Fig. 4).

The block uncertainty response surface exhibits interesting features. (1) Reduc-

tion in spatial continuity (i.e., variogram range) decreases the maximum uncertainty

possible, because short-range features average out quickly as we scale up resulting

in a lower dispersion variance. (2) Increase in spatial continuity increases the

redundancy between the well data and, therefore, increases block uncertainty.

(3) Increase in spatial continuity increases the closeness between well data and

the entire block and, therefore, decreases block uncertainty. (4) Increase in number

of wells decreases uncertainty if the wells are spatially correlated with the block.

This response surface may be applied directly to assess the number of wells

required to reduce lease block uncertainty to an acceptable level (with the
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assumption of histogram and variogram stationarity over the block). For example,

for the Haynesville mid-variogram range case (vertical line drawn on Fig. 4), about

50 regularly spaced wells are required to reduce the block IP uncertainty to a

standard deviation of 400 MCFPD. This builds on the work of Wilde and Deutsch

(2013) to model uncertainty vs. well count.

3.2 Well Aggregation Uncertainty Modeling
with Geostatistical Methods

Well aggregation uncertainty is the calculation of the uncertainty in joint outcome

from multiple wells. This aggregation may be represented as average or sum of

production over a well set. The bootstrap workflow described in the introduction for

well aggregation uncertainty may benefit from integration of geostatistical spatial

concepts. As shown above, even large production rate analog datasets must be

checked for spatial bias. Declustering and general debiasing techniques are

recommended to ensure representative analog distributions are applied.

In addition, the previously discussed bootstrap approach does not account for

spatial context of production as related to (1) closeness (or spatial correlation) of

new wells with previously drilled wells and (2) redundancy (or spatial correlation)

between new wells (SPEE 2010). Both of these components may have important

impact on the well aggregate uncertainty distribution. For example, as the proposed

wells are more correlated with previously drilled well(s), uncertainty is reduced due

to the spatial constraints from the previously drilled well(s). Also pad drilling

clusters the new wells resulting in a high degree of redundancy between the

proposed wells that increases uncertainty, while widely scattered wells (drilling

for information) result in low to no redundancy that decrease the well aggregate

uncertainty.

Spatial bootstrap is a variant of bootstrap that accounts for the spatial context of

the samples (Journel 1994). With bootstrap samples randomly selected from the

reference distribution, but with spatial bootstrap, the sample locations are retained

and the samples are simulated at their respective locations accounting for spatial

continuity models that impose correlation between samples and with available

primary and secondary data. A simple method for calculating a single spatial

bootstrap sample set is to calculate a complete simulated realization over the area

of interest conditional to all available data and then to extract the local simulated

values at the proposed well locations and then to summarize these local values for a

well aggregate realization. This process is repeated to calculate the required number

of joint well realizations to build the aggregate distribution to model uncertainty of

the well aggregate.

The use of spatial bootstrap for well aggregation is demonstrated with a syn-

thetic 24� 35 km lease block. In Fig. 5 the available 20 well data locations are

superimposed on a map of local IP uncertainty (standard deviation of local
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production data uncertainty in MCFPD from the kriging variance). Three proposed

nine well scenarios are shown, including 3� 3 pads in low and high uncertainty

locations and drilling for information with their updated local uncertainty maps.

Global IP distribution and spatial continuity model is based on a declustered IP

dataset from a modeled analog dataset.

The resulting well aggregate IP distributions are shown in Fig. 6. The spatial

context significantly impacts the resulting well aggregate uncertainty model. The

mean is influenced by previously drilled well IP within the range of spatial

continuity. The uncertainty for the well aggregate result is significantly higher for

the pad in the second scenario due to the limited correlation with previously drilled

wells along with highly redundant proposed wells, and the third scenario has the

lowest uncertainty due to limited correlation between proposed wells resulting in

averaging out of variability in the aggregate summary.

4 Discussion

This work has demonstrated the application of geostatistical methods to support

block and well aggregate uncertainty modeling for unconventional plays. Concepts

such as representative statistics, spatial continuity, and volume-variance relations

are essential for accuracy of uncertainty models. Without consideration for repre-

sentative statistics, uncertainty models are likely biased by preferential well sam-

pling. Without spatial continuity and location context, the well data are assumed to

be independent. In the presence of well redundancy and/or poor data coverage of

Fig. 5 Original well data and local uncertainty in IP and three scenarios for proposed wells,

including 3� 3 pads in low and high uncertainty locations and drilling for information. The

proposed well locations are outlined in red
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the block, this may result in underestimation of uncertainty. Without the concept of

volume-variance relations, the scale of the block is assumed to be the scale of the

data, resulting in overestimation of block uncertainty.

5 Conclusions

Unconventional plays may be treated as statistical plays. Yet, in statistical plays,

there are opportunities to improve rigor with integration of geostatistical concepts

such as data representativity, spatial continuity, and volume-variance relations. The

simple demonstrations in this paper have shown (1) the need for declustering with

dense shale play IP datasets and (2) the spatial continuity features of shale play IP

and (3) response surface for block uncertainty to support well count choices and a

(4) workflow to assess well aggregate uncertainty with the integration of spatial

concepts.
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Fig. 6 Well aggregate uncertainty distributions (average IP) for three scenarios of nine proposed

wells based on representative statistics, spatial continuity, and spatial bootstrap
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Productivity Prediction Using Alternating
Conditional Expectations

Emmanuel T. Schnetzler

Abstract We present an approach to predict spatial distribution of a variable from

a set of geophysical and interpreted grids using Alternating Conditional Expecta-

tions (ACE). This technique is based on nonparametric transformations of the

predictor and response variables in order to maximize the linear correlation of the

transformed predictors with the transformed response. ACE provides a powerful

method to detect underlying relationships between the variables and use them in a

regression framework to predict the response variable. A case study is presented

illustrating the approach using a set of grids derived from geophysical attributes

(gravity, magnetic, electromagnetic) and interpreted grids (isopach, total organic

carbon, etc.) as predictor variables to estimate early hydrocarbon production.

1 Introduction

Data-driven approaches are increasingly being applied to geological settings. This

is particularly the case in a multivariate setting when multiple predictor variables

have complex and often nonlinear relationships with the response variables.

Machine learning algorithms can be difficult to interpret. ACE provides more

insight into the relationships extracted from the data.

2 Multiple Linear Regression

In the classical multiple linear regression approach, the response variable y is

modeled as a linear combination of the predictor variables x1, x2, . . ., xp:
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y ¼ β0 þ β1x1 þ β2x2 þ � � � þ βp xp ð1Þ

This imposes a strong assumption of linearity that is not appropriate when complex

relationships exist.

In some cases, nonlinear relationships are present and known, in which case

parametric transformations of the variables can be applied to build a model. This is

the case in the Box-Cox family of transformations for continuous variables (Box

and Cox 1964). However, this also imposes a strong preconceived model on the

data that is not valid in complex cases.

3 Alternating Conditional Expectations

3.1 Theory

A number of nonparametric regression techniques have been applied successfully

when complex unknown relationships are present between predictor variables and a

response variable.

In this family of techniques, the relationships between predictor and response

variables are built from the data via optimal transformations. In some, only the

predictor variables are transformed (Generalized Additive Models). In others, both

predictor and response variables are transformed. This is the case of the Alternating

Conditional Expectations technique (Breiman and Friedman 1985). The equation

takes the form

θ yð Þ ¼ φ1 x1ð Þ þ φ2 x2ð Þ þ � � � þ φp xp
� � ¼

Xp

i¼1
φi xið Þ ð2Þ

Each variable (predictor and response) is transformed with optimal transforma-

tions. The transformations are derived from the data using an iterative process

aimed at maximizing the linear correlation between transformed predictor variables

and transformed response variable. An iterative approach is applied that works in an

alternating fashion to minimize Eq. 3 with respect to one function while keeping the

other functions constant:

e2 ¼ E θ yð Þ �
Xp

i¼1
φi xið Þ

h i2� �
ð3Þ

Some constraints can be put on the shape of the transformations, such as

monotone or linear. The approach also allows the use of categorical variables as

predictors.

ACE has been shown to be able to model complex nonlinear relationships as

illustrated in Estimating Optimal Transformations for Multiple Regression Using
the ACE Algorithm (Wang and Murphy 2004).
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Ryan Barnett and Clayton Deutsch looked at an application to a geometal-

lurgical example in a nickel laterite deposit where Ni was predicted from five

predictor variables: Fe, SiO2, MgO, Co, and Al2O3 (Barnett and Deutsch 2013).

The application shows good results from the approach at finding underlying rela-

tionships although the spatial distribution was not presented.

3.2 Application to Spatial Data

Regression techniques can be applied in a spatial setting: down a borehole in 1D,

over a 2D area, or in a full 3D setting. In a 2D case, one can consider predicting a

response variable away from data locations where the variable is known (typically

wells), using a set of exhaustive datasets covering the area of interest.

The general workflow illustrated on Fig. 1 follows the steps:

• Select the response variable to be predicted and gather a consistent dataset

(training points).

• Select a set of relevant exhaustive predictor variables on a 2D grid (data layers)

and extract values of the predictor variables at the response variable locations

(wells).

• Build optimal transformations for response and predictor variables from values

at the training locations.

• Apply the transformations to the full 2D grid to predict the response variable

over the area.

4 Application to the Denver-Julesburg Basin

4.1 Overview

ACE is applied to a real case in an area of 3000 m2 located in the western part of the

Denver-Julesburg Basin in Colorado. Major oil-producing areas shown in Fig. 2 in

the Niobrara Formation include the Hereford in the northwest, the East Pony in the

northeast, and the Wattenberg Field in the center.

4.2 Input Data

The available data include production information and a set of geophysical and

geological layers.
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5 Response Variable

The response variable selected is the early cumulative oil production, calculated as the

sum of the production of the best 3 months in the first year of production. Because

historical production includes wells drilled over several decades using different

technologies, it is necessary to subset the data to a consistent set of wells; in this

case, only horizontal wells were used. This controls for part of the variability between

wells, although some further filtering could control for additional variables, in partic-

ular engineering factors. Exploratory data analysis shows that in this case the subset of

Fig. 1 Workflow for ACE application to spatial data
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Fig. 2 Overview of the study area and Niobrara isopach
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Fig. 3 Spatial distribution of early oil production (BBL)
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horizontal wells is sufficiently homogeneous. Figure 3 illustrates the spatial distribu-

tions of horizontal wells with corresponding early production in BBL.

6 Predictor Variables

A set of nine predictor variables available for the full area of interest and deemed

related to productivity is compiled. Figure 4 shows an overview of the data layers

listed below.

Top row, left to right:

• Precambrian depth

• Distance to interpreted faults

• Resistivity from wells

• Bouguer gravity anomaly

• RTP (reduced to pole) magnetic field

Bottom row, left to right:

• Niobrara isopach

• TOC (total organic carbon)

• Tmax (temperature at which the maximum rate of hydrocarbon generation occurs

in a kerogen sample during pyrolysis analysis)

• Vitrinite reflectance

Fig. 4 Data layers input to the ACE run as listed in the text
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7 ACE Result

The result of the prediction (early oil prediction in BBL) from the Alternating

Conditional Expectations is shown in Fig. 5. The three major oil-producing areas

are highlighted in the prediction, in part driven by the data. Additional areas with

limited data control are predicted as high-producing locations, in particular in the

northeast, south of the East Pony Field, and in the south where only a few training

data points are available.

Correlation between actual and predicted production is 0.38 for multiple linear

regression compared to 0.74 for ACE (Fig. 6).

Predictor variables can be ranked according to their influence on the response

variable, as shown in Table 1, with increasing influence from top to bottom.

The optimal transformation can be plotted and analyzed to understand the effect

of each variable on the response variable. Figure 7 shows the optimal transforma-

tion of the response variable (early oil production, in BBL).

8 Conclusions

Many regression techniques can be used to predict a variable from a set of predictor

variables. When relationships are complex and cannot be modeled parametrically

either through linear model or more complex functions, a nonparametric approach

is more appropriate.

Machine learning algorithms (Support Vector Machines, Neural Networks, etc.)

are powerful but tend to be difficult to interpret. Nonlinear, nonparametric

approaches based on optimal transformations of the variables such as Alternating

Conditional Expectations and some modifications designed to address some limi-

tations, AVAS, for example (Tibshirani 1988), provide the opportunity to inspect

the optimal transformations and put them in a physical context for validation.

A number of potential pitfalls need to be kept in mind when applying any

regression technique. Overfitting the training data is a common problem in predic-

tive modeling that should be closely watched through cross-validation. The predic-

tor variables should be chosen with care, and it should be possible to formulate a

reason why each is likely to be related to the response variable, even if the link

cannot be expressly defined. The method relies on colocated relationships and does

not take into account relations to neighbors such as is the case in co-kriging or

co-simulation.

The example presented shows how ACE can be applied in a spatial setting to

predict a grid of early oil production. The case study illustrates the improvement in

correlation between transformed predictors and transformed response. Other vari-

ables such as petrophysical properties (e.g., porosity) could be considered for this

approach, and while the case study is 2D, it is applicable in 3D.
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Fig. 5 Result of the ACE run
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Fig. 6 Correlation between true and predicted production for linear regression and ACE

Table 1 Influence of each

predictor variable on the

response variable

Variable Influence

Magnetic 0.156

Gravity 0.165

Distance to faults 0.179

Vitrinite 0.193

Niobrara isopach 0.194

Precambrian depth 0.223

Resistivity 0.234

Tmax 0.254

TOC 0.267

Fig. 7 Optimal

transformation of the

response variable

694 E.T. Schnetzler



Bibliography

Barnett RM, Deutsch CV (2013) Tutorial and tools for ACE regression and transformation. Centre

for Computational Geostatistics (CCG) Annual Report 15, 401, University of Alberta,

Edmonton

Box EG, Cox RD (1964) An analysis of transformations. J R Stat Soc Ser B 211–252

Breiman L, Friedman JH (1985) Estimating optimal transformations for multiple. Regression and

correlation. J Am Stat Assoc 80:580–598

Kuhn M, Johnson K (2013) Applied predictive modeling. Springer, New York

Tibshirani R (1988) Estimating transformations for regression via additivity and variance stabili-

zation. J Am Stat Assoc 83:394–405

Wang D, Murphy M (2004) Estimating optimal transformations for multiple regression using the

ACE algorithm. J Data Sci 2:329–346

Productivity Prediction Using Alternating Conditional Expectations 695



The Adaptive Plurigaussian Simulation
(APS) Model Versus the Truncated
Plurigaussian Simulation (TPS) Model Used
in the Presence of Hard Data

Bogdan Sebacher, Remus Hanea, and Andreas Stordal

Abstract In this study, we present a comparison between the traditional truncated

plurigaussian simulation (TPS) model conditioned to hard data (facies observa-

tions) and the adaptive plurigaussian simulation (APS) model in the presence of

facies probability fields that incorporate hard data. In practice, the prior probability

fields of the facies are developed by a group of experts (geologists, geophysicists,

geo-modelers) in the early phase of the reservoir exploration, using various data,

such as core information, seismic data, well log data, etc. Here we create ourselves

a set of probability fields of the facies occurrence that incorporate the hard data and

condition the plurigaussian simulation to it. We show that the APS is able to better

quantify the prior uncertainty than the traditional TPS conditioned to hard data.

1 Introduction

The truncated plurigaussian simulation (TPS) model is a powerful technique that

creates realistic and complicated distributions of the geological formations using

variogram information (two-point geostatistics). It was first introduced in the

literature by Galli et al. (1994) and Loc’h et al. (1994) as a natural generalization

of the truncated Gaussian simulation model and was further developed by Le Loch

and Galli (1997) to work for nonstationary case (TPS conditioned to nonstationary
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proportion maps). Its easy implementation within an inverse modeling process

(in reservoir engineering assisted history matching, AHM) has made this method-

ology to be used either in synthetic fields (Le Ravalec-Dupin et al. 2004) or even in

real fields (Deraisme and Farrow 2005). One of the challenges of the methodology

was the conditioning of the facies fields to the hard data (facies observations)

collected at the exploration wells (Lantuejoul 2002). In addition, the facies obser-

vations at the well locations must be kept during AHM process. In the papers of Liu

and Oliver (2005), Agbalaka and Oliver (2008, 2009), Astrakova and Oliver (2014),

Sebacher et al. (2013), and Zhao et al. (2008), the authors proposed various

methodologies to condition the facies fields to facies observations and also to

keep them during the history matching process. A common characteristic of all

methodology was that the prior seems to be over-constrained by the geostatistical

properties of the Gaussian fields (Agbalaka and Oliver 2008; Sebacher et al. 2013).

In this paper, we present a solution to prevent the drawback of the previous

methodologies. The solution consists of defining of prior probability fields of the

facies occurrence and modifies the TPS methodology in order to condition the

simulation to the prior probability fields. The methodology is called the adaptive

plurigaussian simulation (APS) model (Sebacher 2014) and can be simply charac-

terized as the TPS conditioned to soft data (facies probability fields). Consequently,

in the APS, the truncation map is changing with location and the facies observations

are always honored irrespective of the Gaussian field values. This is always

happening when the prior probability fields of the facies incorporate the hard data

(in probabilistic terms). The traditional TPS uses a single truncation map for the

entire domain, and the Gaussian fields are generated such that in combination with

the truncation map yield facies fields conditioned to facies observations. Conse-

quently, the Gaussian fields used in the TPS (conditioned to hard data) are not

stationary, while in the APS the Gaussian fields are typically stationary. We show in

an example that the facies fields obtained with the TPS conditioned to hard data

exhibit a bias in their spatial distribution. We conclude that an aspect analyzing the

spatial distribution of the probability fields of the facies is calculated from an

ensemble of realizations. The geostatistical properties of the Gaussian fields used

for the facies field simulations with TPS drastically influence the facies fields,

introducing a bias in the spatial distribution of the facies. This means that the

TPS constrains the prior too much, especially when many facies observations are

available and when some of the observations are inside the correlation range of the

Gaussian fields. In contrast, when the APS is used, the probability fields of the

facies types calculated from an ensemble of realizations reproduce very well the

prior probability fields and the geostatistical properties of the Gaussian fields have

little influence. Moreover, the prior probability fields incorporate the information

about the expected facies proportions because the mean of the probability fields is

the global proportion of the facies types. The APS is able to condition the facies

simulation to this indicator because the APS uses stationary Gaussian fields and

each grid cell has its own truncation map. The TPS uses a single truncation map of

which parameters are defined based on the prior information about expected facies

proportions but for the stationary case (using stationary Gaussian fields). In order to
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generate facies fields conditioned to hard data, the TPS truncates Gaussian fields

that are not stationary. Consequently, the simulated facies fields with TPS are no

longer conditioned to expected facies proportions.

The experiment is performed using a synthetic example with three facies types

of which facies fields exhibit a particular topology, characteristic of a real field from

the North Sea.

2 The Adaptive Plurigaussian Simulation (APS) Model

In order to give an easy description of the APS method, we describe the method-

ology for a reservoir model where three facies types are present (denoted F1, F2, and

F3). In each field, the probability is 1 at the well locations (or any other location

where we have a facies observation) where the associated facies type occurs and

0 where it does not occur. This means that the facies observations are already

incorporated into the probability fields. Important prior information is regarding the

transition (contact) between any two facies type and any topological information.

Suppose that any two facies types can intersect each other. We denote by pk the
probability field associated to facies type k (where k¼ 1, 2, 3).

The APS algorithm (for three facies types) for simulating a facies field is

summarized as follows:

1. Given the prior probability fields p1, p2, p3 and information of facies connec-

tions, create a layout of the simulation map (or truncation map1). The simulation

map consists of a reliable decomposition of the square (0, 12) in three

sub-domains, each having assigned a facies type. The area of each sub-domain

is equal to the probability of the associated facies type. In Fig. 1 is shown a

layout of the simulation map used in the APS procedure in the next section. The

construction of the simulation map must take into account the information about

the number of the facies, the facies connection, and the topological characteri-

zation of the reservoir geology.

2. Generate samples from two (stationary) Gaussian random fields, Y1 and Y2, with

predefined dependence structure. The geostatistical properties of the Gaussian

fields are correlated with the prior information of the spatial distribution of the

facies types (indicator variogram).

3. Transform the Gaussian random fields to uniform random fields, α1 and α2, using
the integral transform. For each grid cell j of the reservoir domain, α1 jð Þ ¼ Φ1

Y1 jð Þð Þ and α2 jð Þ ¼ Φ2 Y2 jð Þð Þ, where Φ1 and Φ2 are the marginal Gaussian

cumulative distribution functions (CDF) of Y1 and Y2.

1We prefer to call it the simulation map instead of truncation map because we consider that in the

APS we simulate a facies type from a discrete distribution rather than truncate some real values.
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4. For each grid cell j of the reservoir domain, build its simulation map from the

layout (using the marginal probabilities pj1, p
j
2, p

j
3 collected at the grid cell j) and

set the facies type in grid cell j to Fk if the point /1 jð Þ,/2 jð Þð Þ is situated in the

sub-domain assigned to facies type k (in the simulation map assigned to grid cell

j).

Consequently, each grid cell has its own simulation map that depends on the set

of probabilities collected at that location. At the location where we have facies

observation, its simulation map consists of the square (0, 1)2, occupied by the facies

type observed there. This means that irrespective of the Gaussian field values, the

observed facies will be always simulated so the hard data is preserved. With this

method, we always simulate facies fields honoring the marginal facies probabilities

and, consequently, the expected facies proportions.

3 APS vs TPS

The traditional plurigaussian simulation (TPS) model has two main ingredients:

• The Gaussian random fields defined on a region of interest. The region of interest

in reservoir engineering is the reservoir domain, but with a discrete structure

(grid cells).

• A truncation map defined on a multidimensional real space. The truncation map

is defined by the intersection of some curves that divide the space into regions,

each having assigned a facies type.

Fig. 1 The layout of the facies simulation map
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The number of the Gaussian fields is equal to the dimension of the space where

the truncation map is designed. If the dimension of the space is two, a pair of

Gaussian random fields, Y1 and Y2, is simulated, and, at each grid cell j, a facies

type is assigned depending on where the point of simulated values (Yj1,Y
j
2) is

situated in the truncation map. Consequently, in the TPS methodology, the trunca-

tion map tailors the facies fields according to the Gaussian field values at each grid

cell. This methodology can be easily rewritten in a similar manner as we have

presented the APS before. Let us consider for simplicity that the Gaussian fields Y1
and Y2 follow at each location a normal distribution of which CDF’s are Φ1 andΦ2.

Then, the function F : R2 ! 0; 1ð Þ2,F x1; x2ð Þ ¼ Φ1 x1ð Þ,Φ2 x2ð Þð Þ is a bijection and
has increasing components. Consequently, it defines a bijection between the trun-

cation maps designed in the space R2 and the ones designed in the space (0, 1)2.

Thus, assigning the facies type based on the projection of (Yj1,Y
j
2) in a truncation

map from R2 is equivalent with assigning a facies type based on projection of

(Φ1(Y
j
1),Φ2(Y

j
2) in a truncation map designed in (0, 1)2. Consequently, the APS can

be viewed as the TPS model conditioned to probability fields of the facies type (soft

data) or is the methodology that incorporates the probability fields in the TPS

model. In addition, the APS with uniform probability fields is the TPS.

In the traditional TPS, when facies observations are available at some locations,

the Gaussian field values are generated such that the simulated facies fields satisfy

the observations (interval conditioning). This implies a change in the mean and

variance functions of the Gaussian fields compared with the case where the facies

observations are not present, i.e., the Gaussian fields are no longer stationary. We

will show that this modification produces a bias for the probability field of each

facies type calculated from an ensemble of realizations.

Let us consider a rectangular domain with 50*100 grid cells with three facies

types present. One facies type exhibits a long correlation from west to east (denoted

facies type 2) and a small correlation from north to south. Another facies type

(denoted facies type 3) is characterized by bodies of rocks that occur most likely on

the edge of the other facies, and the last facies type is the medium where all other

facies types are propagated (denoted facies type 1). This topology is characteristic

to a real field from the North Sea (Hanea et al. 2014). We apply the TPS method-

ology for creating realistic facies distributions, using two Gaussian fields. Initially,

we set both Gaussian fields stationary with its marginal having a standard normal

distribution and having a Gaussian covariance type. The first Gaussian field is

anisotropic, modeled with a long correlation range of 50 grid cells and a small

correlation range of 5 grid cells and with the principal direction being the horizontal

direction. The second Gaussian field is isotropic with the correlation range of five

grid cells.

The truncation map used for generation of the facies fields is shown in Fig. 2,

where the parameters of its lines are calculated based on the expected facies

proportions p1¼ 0.425, p2¼ 0.425, and p3¼ 0.15. This truncation map is obtained

applying the inverse of function F to the simulation map from Fig. 1. Consequently,
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the thresholds α1, α2, and β (see Fig. 2) are calculated based on the inverse of

function F:

α1 ¼ Φ�1
1 p1 þ

p3
2
�

ffiffiffiffiffi

p3
p
4

� �

, α2 ¼ Φ�1
1 p1 þ

p3
2
þ

ffiffiffiffiffi

p3
p
4

� �

, β ¼ Φ�1
2 2

ffiffiffiffiffi

p3
p� � ð1Þ

This truncation map, in combination with the Gaussian fields presented before,

generates facies fields with realistic topological and geometrical structure (Hanea

et al. 2014), but is not necessarily conditioned to facies observations. We consider

13 locations from where we observe the facies types that occur at those positions.

The positions and the facies observations are presented in Table 1 and in Fig. 3.

In order to generate conditional facies fields, we follow a conditional simulation

approach (Armstrong et al. 2003). Firstly, at the observation grid cells, we generate

pairs of Gaussian values such that those pairs yield correct facies observations in

accordance with the truncation map. Secondly, the simulated Gaussian values are

used in a conditional sequential Gaussian simulation process in order to populate

with values the remaining grid cells. With this method, we generate an ensemble of

120 samples of pairs of Gaussian fields. These samples generate by truncation of

120 different facies fields with correct facies observations. We note that the

procedure of conditioning of the Gaussian fields destroys their stationarity. This

means that the mean function of the Gaussian fields is not 0 at each location, and

consequently, the simulated facies fields are no longer conditioned to expected

facies proportions. This raises the question if the truncation map is still valid (i.e.,

produces facies fields conditioned to expected facies proportions).

Fig. 2 The truncation map from R2
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In Fig. 4 is shown the probability fields of the facies types obtained from the

ensemble of facies fields generated with the TPS method and conditioned to the

facies observations presented in Table 1.

One may observe that these probability fields are biased in the sense that the

geostatistical properties of the Gaussian fields drastically influence their spatial

distribution. For instance, if we look at the top of probability field of the facies type

Table 1 The facies observations

x coordinate 5 5 5 25 25 50 50 50 75 75 95 95 95

y coordinate 5 25 45 15 30 5 25 45 15 30 5 25 45

Facies observation 2 2 1 3 2 2 3 1 1 2 2 1 3

Facies
type 2

Facies
type 2

Facies
type 2

Facies
type 2

Facies
type 2

Facies
type 2

Facies
type 3

Facies
type 3

Facies
type 3

Facies
type 1
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Fig. 3 The facies observations into the domain
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Fig. 4 The probability fields of the facies types in the TPS
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two, one may observe a long correlation in the horizontal direction due to the

placement of three facies observations of the facies type two within the correlation

influence of the first Gaussian field. The distance between the observation grids is

40 grid cells, whereas the long correlation range of the Gaussian fields is 50 grid

cells. This causes the bias for the probability fields. The bias increases with the

number of the facies observations situated within the correlation influence.

We also apply the APS methodology using stationary Gaussian fields having the

same geostatistical setup as before. In order to do that, we need to have prior

probability fields of the facies occurrence that incorporate the facies observations.

In practice the prior probability fields of the facies are developed by a group of

experts (geologists, geophysicists, geo-modelers) in the early phase of the reservoir

exploration, using various data, such as core information, seismic data, well log

data, etc. In the papers of Beucher et al. (1999) and Doligez et al. (2002), the authors

present methodologies to incorporate facies probability maps that comes out from

seismic inversion, in the geostatistical simulation of the facies distribution. Here

using a synthetic example, we have to create ourselves these probability fields, but

we want to avoid the strong bias observed in the probability fields from the

ensemble obtained with traditional TPS. Using an empirical approach, we generate

a set of “prior” probability fields of the facies that incorporate the facies observa-

tions (Fig. 5). We generate these fields with a small correlation around the obser-

vation locations and, in addition, with the property that the mean of each probability

field is equal with the expected facies proportions of the associated facies type. This

last property ensures that the simulated facies fields are conditioned to expected

facies proportions. The layout of the simulation map used in the APS is presented in

Fig. 1. We generate an ensemble of 120 samples of pairs of stationary Gaussian

fields, and, using the APS, the simulation map layout, and the probability fields, we

generate the ensemble of facies fields.

The probability fields for each facies type, calculated from the ensemble of

realizations with APS, are presented in Fig. 6. One clearly observes that the prior

probability fields are very good preserved and the geostatistical properties of the

Gaussian fields have little influence. This was expected because the APS samples

correctly at each grid cell from the prior marginal distribution of the facies types.
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Fig. 5 The “prior” probability fields of the facies types
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The ensembles of facies fields approximate the prior pdf of the facies field

conditioned to the facies observations and the probability fields from Figs. 4 and

6 approximate of the prior marginal distribution of the facies fields. In order to

completely quantify the quality of the simulation, we still have to look at the facies

fields from the topological and geometrical perspective, to see if they represent the

same geological concept. In Fig. 7 we present three ensemble members of facies

fields in both simulations; at the top is shown the simulation with the TPS condi-

tioned to facies observations and at the bottom the facies fields obtained with the

APS (facies type 1 is in blue, facies type 2 is in green, and facies type 3 is in red).

One can observe that there is no difference regarding topology and geometry of the

facies among these fields. Consequently, we have two ensembles of facies fields

with consistent facies observations at the well locations, both representing the same

geological concept, but the ensemble obtained with APS quantifies better the prior

uncertainty of the facies distribution.
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4 Conclusions

In this study, we presented a comparison between two methodologies of the same

geological simulation model, i.e., the plurigaussian simulation. We compared the

truncated plurigaussian simulation model conditioned to hard data and the

plurigaussian simulation model conditioned to soft data (facies probability fields).

We named the second model the adaptive plurigaussian simulation (APS) model.

We have shown that the ensemble generated with the APS offers a better uncer-

tainty quantification of the facies distribution than the ensemble generated with the

traditional approach of conditioning TPS on facies observations. In other words, the

TPS conditions the Gaussian fields to facies observations, which may significantly

change the probability fields based on the geostatistical parameters of the Gaussian

fields. The APS algorithm simulates facies fields directly from the probability fields

and thereby does not change the underlying Gaussian fields. It is independent of the

geostatistical parameters, and it can preserve the initial probability fields, which are

already conditioned to the facies observations. A consequence is that with the APS

method we are able to better characterize the prior uncertainty than the traditional

TPS method. Consequently, the use of the plurigaussian simulation model in the

presence of hard data gave better results if prior probability fields of the facies are

firstly developed.
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An MPS Algorithm Based on Pattern Scale-

Down Cluster

Yu Siyu, Li Shaohua, He Youbin, Tao Jinyu, and Dai Weiyan

Abstract A key evaluation indicator of multiple-point geostatistics modeling

algorithm is ensuring model quality as well as harmonizing the modeling calcula-

tion of time-consuming and space-consuming RAM. Due to the inherent flaws of

SIMPAT, poor efficiency of similarity match computation between the data event

and the whole pattern of train image led to the impracticability of SIMPAT many

years after it was proposed. Some improvement following methods based on

SIMPAT, such as Filtersim and DisPat, still did not resolve the problem. After

studying key points of SIMPAT, this paper proposes PSCSIM algorithm based on a

pattern scale-down clustering strategy which uses an interval sampling technique.

Unlike SIMPAT, PSCSIM replaces the one-step similarity computation with the

two-step similarity computation: firstly, comparing the representative patterns of

the pattern cluster to the data event to find the most related pattern cluster and,

secondly, matching the similarity of whole patterns in a pattern cluster with the data

event to search the target pattern. With the same condition, this paper made a

comparison of modeling in two dimensions and three dimensions among with

PSCSIM, SIMPAT, Snesim, Filtersim, and DisPat in the end. As a result, PSCSIM

greatly improves modeling efficiency on the premise of quality assurance.

1 Introduction

Most oil fields in China have entered into the middle and later development stage.

In order to effectively explore the remaining oil, it is necessary to finely character-

ize the reservoir. For example, the grid of the reservoir model should be refined to

10� 10 m in a plane and 0.2 m vertically. For some old oil fields, the nodes of the

reservoir model can reach up to ten million, and the greater the volume of the

model, the longer time the simulation needed. Reservoir stochastic modeling

method usually requires the establishment of multiple equal probability models.

These models are used to predict the risk development and increase the simulation
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J.J. Gómez-Hernández et al. (eds.), Geostatistics Valencia 2016, Quantitative
Geology and Geostatistics 19, DOI 10.1007/978-3-319-46819-8_48

709

mailto:573315294@qq.com


time. Therefore, the computational efficiency of the reservoir modeling algorithm

became the current focus of the research. Apart from the proposed SIMPAT which

is a multipoint geostatistics modeling algorithm based on pattern (Arpat 2005) in

the Stanford Reservoir prediction center session in 2003, unlike the object-based

algorithm and traditional multipoint geostatistics algorithm Snesim (Strebelle 2002;

Ortiz and Emery 2005; Jef 2001; Mariethoz et al. 2010), SIMPAT firstly applies the

idea of image rebuilding to the reservoir modeling field. The core idea of SIMPAT

is finding out the data pattern which has the greatest similarity with the estimated

“data event” in the study area from the priori geological model, through the

comparison of the similarity between data patterns and data events, using the

most similar data pattern cover and freezing the correspondent node until all

nodes in the work area are simulated. The bottleneck of computing the speed of

SIMPAT is the similarity calculation between the data event and all of the data

patterns in the database. Many improved algorithms are proposed based on

SIMPAT (Julien and Philippe 2011; Honarkhah and Caers 2012; Comunian et al.

2012; Abdollahifard and Faez 2013; Tao et al. 2013; Jeff 2007; Straubhaar et al.

2013; Mariethoz et al. 2010; Yanshu et al. 2008), such as Filtersim (Zhang 2006),

DisPat (Honarkhah 2011), and Filtersim using filter technology to cluster data

pattern. Although the simulation speed is faster than SIMPAT, it is still slow in

the actual field reservoir modeling. DisPat employs multidimensional scaling

analysis and K-means clustering to process the data, the calculation efficiency of

DisPat is higher than SIMPAT and Filtersim; however, the similarity matrix of the

data pattern established by multidimensional scaling analysis requires a great deal

of computer memory. This paper presents a clustering multipoint geostatistics

modeling algorithm PSCSIM which reduces dimension and cluster base on the

pattern (pattern scale-down cluster simulation), effectively improving the effi-

ciency of modeling and controlling the memory footprint.

2 The Basic Principle of SIMPAT Algorithm

Data patterns (pattern, called Pat) are based on the style of multipoint geostatistics

modeling algorithm in computing the minimum unit constituting a priori geological

concept model “of training image (TrainImage, referred as TI)” local space-related

multipoint structure. The data pattern is a data model (template, abbreviated T)

which is a framework for the training template scan image acquisition. First, define

the data model as follows:

T ¼ hm,m ¼ iþ j� I þ k � I � J
�� i2 0, I � 1½ �, j2 0, J � 1½ �, k2 0,K � 1½ �� �

I, J, and K are the length and breadth dimensions of the data template T. Figure 1

is a two-dimensional example of data pattern at position u and is obtained through

scanning the training image:
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PatTðuÞ ¼ fTIðuþ hÞ��h2Tg

The similarity is the index which can evaluate the degree of similarity between

two objects, and it is widely used in pattern recognition, computer vision, and other

fields. Common similarity functions are Minkowski function (Lk norm), Hsim

function, Pearson coefficient, and Jaccard similarity coefficient. Similarity function

takes two objects as input variables to determine a nonnegative real number which

can represent similarity. SIMPAT using Manhattan distance (L1 norm) calculates

the degree of similarity between data patterns or between the data pattern and data

event. It is defined as

L1 X; Yð Þ ¼
Xd

i¼1
xi � yij j

Distance calculations between data patterns X and Y based on Manhattan dis-

tance are equal to the absolute value of the difference between two points (Fig. 2f).

The distance between X and Y plus one is the inverse of similarity, and the greater

the distance, the smaller the similarity, where the value of similarity ranges from

0 to 1. The similarity is calculated as

s X; Yð Þ ¼ 1= d X; Yð Þ þ 1ð Þ

Figure 2a–e is the Manhattan distance of five data patterns. The Manhattan

distance of data patterns in Fig. 2a is equal to 1. X and Y are the most similar data

pattern. The similarity of X and Y in Fig. 2c is minimum.

The core idea of the pattern-based multipoint geostatistics algorithm SIMPAT is

that it adopts the degree of similarity between data patterns and data events in the

training image, getting all the priori geological model through by scanning the

training images and storing it in the computer memory to avoid repeated scanning

of training images. Calculating the similarity between data patterns and data events,

Fig. 1 Sketch of pattern and realization. (a) Pattern based on template. (b) Realization used to

scan by template

An MPS Algorithm Based on Pattern Scale-Down Cluster 711



matching the most similar data events and data pattern in the database, and covering

and freezing data event until the simulation are completed. The time complexity of

SIMPAT is proportional to the size and scale of pattern database, and the size of the

pattern database is closely related to the size of the training image and data pattern.

The larger the size of the training image and data pattern, the more information the

reservoir geological model library contains and the longer the simulation time.

When SIMPAT is applied to an actual oil field, in which grids reach one million to

ten million, the simulation time can be up to several hours or even days. By

analyzing the modeling features of SIMPAT and considering the memory footprint

drawbacks of previously improved methods, the new PSCSIM algorithm is pro-

posed to balance the contradiction between time-consuming and memory footprint.

3 The Core Idea of PSCSIM Algorithm

3.1 Pattern Scale-Down Cluster Method Based
on the Adjacent Equally Spaced Sampling

The core concept of the new algorithm is the thumbnail pattern. The commonly

used methods for the dimension reduction of data pattern are adjacent equally

spaced sampling method, bilinear interpolation and cubic convolution interpolation

method, etc. In this paper, the basic idea of adjacent equally spaced sampling

method is calculating the coordinate mapping relationship between the thumbnail

pattern and data pattern by the reverse transform of coordinates. If the coordinates

mapped to the data pattern are the floating point, then it changes to an integer. The

Fig. 2 Principle of calculating similarity of patterns by Manhattan distance (Arpat 2005)
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formula calculates nodes of thumbnail pattern based on the adjacent interval

sampling method follows:

ThumPat i; j; kð Þ ¼ Pat i� ri, j� rj, k � rk
� �

ri ¼ IPat=IThumPatrj ¼ JPat=JThumPat, rk ¼ KPat=KThumPat, IPat, and IThumPat is the

dimension of data patterns and thumbnail pattern in the direction of I.
Figure 3 is the principle diagram of calculating the thumbnail pattern based on

the adjacent equally spaced sampling method, where the dimension of the data

pattern is 7� 7 as shown in Fig. 3a and the dimension of thumbnail pattern is 4� 4

as shown in Fig. 3c. The nodes in the thumbnail pattern are arranged with equal

spaces in the data pattern. The probability of similar patterns classified as the same

kind of data pattern after dimension reduction processing is much larger than the

dissimilar data patterns.

The data pattern corresponding to the same thumbnail pattern was deemed as the

same type of pattern (pattern cluster, referred as PatClusters) as it was able to

cluster the pattern database after reducing the dimension of the data pattern.

Figure 4a shows the PatClusters which contain six data patterns, and Fig. 4b is

the thumbnail pattern corresponding to data pattern. Pattern database is clustered

into a lot of PatClusters after the dimension reduction processing, and they are

collectively called pattern clusters.

3.2 Represent Pattern Based on the E-Type (Ensemble
Average)

Only when data pattern in PatClusters has a link between data event and PatCluster

can it participate in the actual modeling, and that link is called represent pattern.

The represent pattern has the same dimensions as the data pattern. This paper

computed represent pattern based on the ensemble average method. The formula

calculates nodes of represent pattern as follows:

RepPat i; j; kð Þ ¼
Xn

1

Patin PatCluster i; j; kð Þð Þ=n

where n is the number of data patterns in pattern cluster, where the value of nodes in

represent pattern is equal to the average value of nodes in the entire data pattern.

Figure 4 shows the represent pattern of pattern cluster (4c). Each pattern cluster has

a unique represent pattern. The difference between represent pattern and data

pattern is that the value of represent pattern is not binary but continuous.
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4 The Implementation Steps of PSCSIM Algorithm

This paper proposed a pattern-based multipoint geostatistics algorithm PSCSIM

based on thumbnail pattern and represent pattern. PSCSIM is a kind of algorithm

based on the similarity comparison, the specific process of accessing all nodes on

the path successively, comparing the similarity of nodes, and constructing the

model. Its core principle is to cluster the similar data pattern in the pattern database,

converting the huge pattern database to relatively small pattern clusters. In

performing the simulation, compare the similarity of represent pattern and data

events (data event, referred as Dev) first. Then, find the most similar pattern cluster

Fig. 3 Principle sketch of the procedure for scaling down pattern by space sampling method. (a)

Pattern based on template, (b) process of reverse transformation, and (c) thumbnail pattern of

pattern

Fig. 4 The relationship of pattern cluster, thumbnail pattern, and represent pattern. (a) Pattern

cluster, (b) thumbnail pattern, and (c) represent pattern
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from the pattern clusters and also find the data pattern which is most similar to the

data event from the most similar pattern cluster.

The difference between PSCSIM and SIMPAT is the introduction of pattern

clusters and the calculation of similarity based on pattern clusters. The flowchart of

SIMPAT and PSCSIM is shown in Fig. 5.

Process of PSCSIM

1. In inputting the training image, define the size of simulate realizations and data

patterns.

2. Using data pattern, scan the training image and construct pattern database.

3. Clustering all data pattern in the database based on the pattern scale-down

cluster strategy, the data pattern corresponding to the same thumbnail pattern is

deemed as the same type of pattern, and construct pattern clusters.

4. Build a simulated realization-based random path.

5. Mesh nodes randomly access the nodes on the path. If there are no simulation

nodes, go to step 6; otherwise, proceed to step 10.

6. Take the data template as a unit, scanning the simulate realizations to obtain the

data event at the current simulation node.

7. The first similarity comparison: compare the similarity of represent pattern in

data events and PatClusters and identify data patterns most similar with the data

events.

8. The second similarity comparison: compare the similarity of data event and all

data patterns in pattern clusters and identify the data pattern most similar to the

data event.

9. Cover part of the estimated regions with the most similar data pattern and

freeze these areas. Then, return to step 5.

10. Complete the simulation. Output the realizations.

input TI define size of R and T

construct PatDB by scanning TI

construct PatClusters based on PatDB

use T to scan realization for getting Dev at node U 

Ouput realization

find most similar PatCluster by matching Dev 
and PatClusters 

cover part of estimated regions with 
the most similar pattern

find most similar Pat by matching Dev and 
PatCluster

visit next unsimulated 
node of realization

Y

N

input TI define size of R and T

construct PatDB by scanning TI

use T to scan realization for getting Dev at node U 

Ouput realization
cover part of estimated regions with 

the most similar pattern

find most similar Pat by matching Dev and 
PatDB’s Pat

Visit next unsimulated 
node of realization

Y

N

[a]

[b]

Fig. 5 Flow charts of SIMPAT and PSCSIM. (a) Flowchart of SIMPAT and (b) flowchart of

PSCSIM
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PSCSIM proposed the strategy of “pattern scale-down cluster,” where the

concept of pattern clusters is proposed based on SIMPAT and the similarity

matching process by the single-step comparison based on pattern database expands

to the two-step comparison based on pattern clusters.

5 Case Study

5.1 Comparison of the Time Consumed in Calculation

Taking two binary images as the training image, compare the efficiency of

PSCSIM, SIMPAT, Snesim, Filtersim, DisPat, and other mainstream multipoint

geostatistics algorithms. The first training image is a two-dimensional fluvial digital

model (Fig. 6a) with a 250� 250 dimension and a 1� 1 m grid cell. The second

training image is a three-dimensional fluvial digital model (Honarkhah 2011)

(Fig. 6d) with a dimension of 69� 69� 39 and a 1� 1� 1 m grid cell. Using

SIMPAT and PSCSIM in conducting the non-conditional simulation, the simulation

results are shown in Fig. 6b–c (black is the channel phase, whereas white is the

background phase) and Fig. 6e–f (red is the channel phase, whereas blue is the

hollow background phase). PSCSIM showed better internal priori geological struc-

ture characteristics of training image through the comparison of SIMPAT and

PSCSIM.

The CPU and memory of the testing hardware are 2.0 GHz and 8 GB, respec-

tively. The time consumed by PSCSIM, SIMPAT, Snesim, and Filtersim algorithm

generated 100 realizations as follows:

1. Taking two-dimensional model as training image, grid dimension of the simu-

lated realizations is 250� 250, dimension of data template is 9� 9, and dimen-

sion of thumbnail pattern is 5� 5 using three-grid simulation. Computation time

of SIMPAT is 5245 s, and PSCSIM algorithm is 204 s. The computational

efficiency of PSCSIM algorithm improved by 25 times compared to SIMPAT

algorithm.

2. Taking three-dimensional model as training images, the grid dimensions of the

simulated realizations are 69� 69� 39, dimensions of data template are

11� 11� 5, and dimensions of thumbnail pattern are 5� 5� 3 using the

two-grid simulation. The calculation time of SIMPAT is 96,588 s and PSCSIM

algorithm is 1498 s. The computational efficiency of PSCSIM algorithm

increased by 64-folds compared to SIMPAT algorithm (Table 1).
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5.2 Memory Footprint Comparison

Multipoint geostatistics modeling algorithm stored statistics of multipoints in a

computer memory; therefore, how much memory the algorithm occupies is one of

the important indicators to evaluate in multipoint geostatistics modeling algorithm.

To further verify the practicality of PSCSIM, take two-dimensional models and

three-dimensional models as training image, analyzing the computer memory

demand of PSCSIM and other mainstream algorithms:

1. Taking two-dimensional model Largetrain as training images, the dimension of

data pattern is 11� 11 and the dimension of data pattern is 5� 5 after reducing

Fig. 6 Training images and realizations in two dimensions and three dimensions. (a) Largetrain,

(b) realization of PSCSIM for Largetrain, (c) realization of SIMPAT for Largetrain, (d) fluvsim,

(e) realization of PSCSIM for fluvsim, and (f) realization of SIMPAT for fluvsim

Table 1 Consumed time of computing 100 realizations by MPS algorithms

Algorithms

Computation time (s)

Largetrain (250� 250) Fluvsim (69� 69� 39)

SIMPAT 5245 96,588

Filtersim 1790 50,938

Snesim 597 5170

PSCSIM 204 1498

DisPat 120 900
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its dimensionality using one-grid simulation. PSCSIM, SIMPAT, Filtersim, and

Snesim use the same order of memory (<100 MB), the distance matrix that

DisPat algorithm established for the multidimensional scaling analysis demand

for memory reaching 6799 MB.

2. Taking three-dimensional model fluvsim as the training image, the dimension of

data pattern is 11� 11� 5, and the dimension of data pattern is 5� 5 after

reducing its dimensionality using one-grid simulation. PSCSIM occupied

440 MB of memory, and the memory DisPat occupied reached up to 20.6 GB

completely beyond the ordinary amount of memory the computer can provide

(Table 2).

Comprehensive analysis of both consumed time and memory shows that though

the traditional multipoint algorithms Snesim and SIMPAT take less memory, they

are low in efficiency. DisPat improves the computational efficiency; however, the

memory footprint is too large. PSCSIM better balances the contradiction between

the time consumed and the memory footprint than other multipoint geostatistics

modeling algorithm because it has a great reference for the utility of multipoint

geostatistics modeling algorithm.

6 Conclusions

1. This paper found the efficiency bottleneck of SIMPAT through the analysis of

basic principles of multipoint geostatistics modeling algorithm, which includes

the process of similarity calculation by data event and data pattern, putting

forward the concept of data pattern dimension reduction and introducing the

adjacent equally spaced sampling method to geostatistics. Using adjacent

equally spaced resampling method to reduce the dimension of data patterns

reserved multipoint statistical information of space while effectively reducing

the data dimension.

2. A huge number of data patterns are clustered to establish a database library based

on the data pattern of which dimension is reduced. This method used the

ensemble average method of an E-type to calculate the representative data

pattern. With the proposed PSCSIM algorithm, the algorithm improved one

Table 2 Consumed RAM of PSCSIM and other mainstream MPS algorithms

Algorithms

Memory footprint (MB)

Largetrain (250� 250) Fluvsim (69� 69� 39)

SIMPAT 35 329

Filtersim 60 143

Snesim 50 64

PSCSIM 36 440

DisPat 6799 20,684
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similarity comparison of SIMPAT to twice the similarity comparison by first

comparing the similarity between the data event and the representative data

pattern. Then, find the most similar pattern classes, compare the data event with

the data pattern in pattern classes individually, and find out the most similar data

pattern.

3. Taking the 2D and 3D model as an example, compare the calculation time and

memory footprint of PSCSIM and the mainstream multipoint geostatistics

modeling algorithm such as SIMPAT, Snesim, and Filtersim under the same

conditions. The test results validate that PSCSIM can guarantee the quality of

modeling results and greatly improve the computational efficiency and effec-

tively balance the computational efficiency and memory footprint.

4. Some aspects of PSCSIM need further study. In addition to the adjacent equally

spaced resampling methods mentioned herein, using bilinear interpolation and

cubic convolution interpolation method to reduce the dimension may cause less

information loss and further improve the quality of data pattern cluster. The size

of lower-dimensional data pattern plays a key role on the clustering effect of the

new algorithm. The data library contains many pattern clusters after reducing

and clustering the dimension. The number of data patterns in the pattern clusters

is different. For example, there may be only one data pattern in the cluster; thus,

the occurrence probability of such pattern cluster in the global geological model

is very small, or we can consider removing it.
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Integrating New Data in Reservoir
Forecasting Without Building New Models

Sebastien Strebelle, Sarah Vitel, and Michael J. Pyrcz

Abstract In most hydrocarbon reservoir development projects, geological models

are fully rebuilt on a regular basis to integrate new data, in particular observations

from new wells, for up-to-date forecasts. Not only this common practice is very

time consuming as rebuilding models can take weeks or even months, but it also

leads to major, hard-to-justify, fluctuations in reservoir volume or flow performance

forecasts, especially when the modeling staff changes or a new modeling technol-

ogy, workflow, or software is adopted. Rationalizing the geological model updating

process is required to provide stable and reliable forecasting and make timely, well-

informed, reservoir management decisions. This paper presents an innovative

methodology to quickly reassess model forecasts, such as reservoir oil-in-place or

oil recovery, without rebuilding any geological models provided that the new data

observations are reasonably consistent with the current models. The proposed

methodology uses a Bayesian framework whereby the multivariate probability

joint distribution of new data predictions and forecast variables needs to be

modeled. Assuming that this joint distribution is multi-Gaussian, the first step

consists in computing proxies, e.g., response surfaces using experimental design,

to estimate from the set of current geological models the distribution (mean and

variance) of new data predictions and forecast variables as a function of the input

modeling parameters (e.g., property variograms or training images, trends, histo-

grams). Because the model stochasticity (i.e., spatial uncertainty away from wells)

typically entails significant uncertainty in the prediction of new local data obser-

vations, computing the previous proxies requires generating multiple stochastic

realizations for each combination of input modeling parameters. Then, using those

proxies and Monte Carlo simulation, the full multivariate probability joint distri-

bution of new data predictions and forecast variables is estimated. Plugging the

actual new data values into that joint distribution finally provides new updated
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J.J. Gómez-Hernández et al. (eds.), Geostatistics Valencia 2016, Quantitative
Geology and Geostatistics 19, DOI 10.1007/978-3-319-46819-8_49

721

mailto:stsb@chevron.com
mailto:mpyrcz@chevron.com
mailto:sarah.vitel@chevron.com


probabilistic distributions of the forecast variables. This new methodology is

illustrated on a synthetic case study. In addition to quickly reassess reservoir

volume and flow performance predictions, this new approach can be used to select

new data observation types and impact maps to assess potential well locations that

would optimally reduce forecasting uncertainties.

1 Introduction

Most reservoir modeling projects involve updating current models with new infor-

mation (e.g., logs from new wells, new seismic processing, or early production

data). Models are typically rebuilt from scratch, with very little quantitative effort

to check the consistency of the new data with the current models and to estimate the

impact of those same new data on the project forecasts (e.g., oil-in-place or ultimate

recovery). Yet, if the new data are consistent with the current models, i.e., if the new

data values could have been predicted by some of the current models, there may be

no need to rebuild models; a relationship between new data measurements

predicted from current models and corresponding forecasts could be developed

and used to update current forecasts with the actual new data measurements. This

would not only save a considerable amount of time, allowing rapid reservoir

management decisions in response to new information, but it would also reduce

the risk of irrational fluctuations of the model forecast uncertainty range due to

successive subjective reinterpretations of the data, arbitrary changes in modeling

decisions, and/or introduction of new modeling technologies.

The proposed approach identified as “direct forecast updating” is quite similar to

“direct forecasting,” a new reservoir modeling methodology that aims at making

reservoir forecasts by integrating data without performing any complex condition-

ing or inversion (Scheidt et al. 2015a; Satija and Caers 2015); the main difference is

that prior models, which are fully unconstrained in direct forecasting, are replaced

with reservoir models constrained by previously collected data. One particular

focus of this paper is the direct updating of reservoir forecasts using new well

data or, to be more specific, using statistical measures computed from those new

well data, for example, well net-to-gross or well hydrocarbon pore column. When

building models to make global forecasts, modelers only assess and model global

uncertainties, such as reservoir facies proportions or porosity and permeability

distributions. However, to be able to build a relationship between new well data

predictions and global forecasts, local variability at the new well locations also

needs to be captured in the current models. That local variability is derived from

both geostatistical simulation stochasticity (seed number) and local input modeling

parameter uncertainties, for example, local petrophysical property trends. In this

paper a new methodology is proposed to account for such local variability when

updating current forecasts directly with new well data.

722 S. Strebelle et al.



2 Methodology

To explain the methodology proposed in this paper, the following simple case study

is considered: the original oil-in-place (OOIP) forecasts of a reservoir need to be

updated after a new well was drilled and an average net-to-gross value NTG ¼
NTGm was estimated from the logs at the new well location. Statistically speaking,

we want to computePfOOIPjNTG ¼ NTGmg, which can be rewritten using Bayes’
formulation as:

PfOOIP��NTG ¼ NTGmg ¼ PfOOIP and NTG ¼ NTGmg
PfNTG ¼ NTGmg ð1Þ

Let θ be the set of input modeling parameters representing the major global

geological uncertainties identified in the reservoir, for example, the global reservoir

rock volume or the reservoir porosity distribution.

The numerator and denominator of Eq. 1 can be rewritten using integrals over

the whole input modeling parameter uncertainty space:

PfOOIP��NTG ¼ NTGmg ¼

Z

PfOOIP and NTG ¼ NTGm

�
� θgdθ

Z

PfNTG ¼ NTGm

�
� θgdθ

ð2Þ

The input modeling parameter uncertainty space can be sampled by drawing

n equiprobable combinations θi i ¼ 1 . . . nð Þ of global input modeling parameters:

PfOOIP��NTG ¼ NTGmg ¼
1
n

X

PfOOIP and NTG ¼ NTGm

�
� θig

1
n

X

PfNTG ¼ NTGm

�
� θig

ð3Þ

For each combination θi of global input modeling parameters, multiple realizations

can be generated to capture local uncertainties. Very often, generating multiple

stochastic realizations by changing the random seed numbers of the geostatistical

simulations is sufficient to capture local variability. However, in more complex

cases, additional local variability such as local property trends may need to be

accounted for.

One solution to compute PfOOIP and NTG ¼ NTGmj θig for any combination

θi of input parameters is to use a multi-Gaussian model, in which case only the

means and standard deviations of the NTG and OOIP, as well as the correlation

coefficient between NTG and OOIP, need to be estimated as a function of θi. The
multi-Gaussian assumption can be tested using various methods (Mecklin and

Mundfrom 2005) by generating a large number of realizations for some represen-

tative combinations θi of input parameters. Provided that the multi-Gaussian

assumption is not rejected, the NTG and OOIP means and standard deviations, as
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well as the correlation coefficient between NTG and OOIP, can be modeled using a

design of experiments built for the global input modeling parameters space θ:

1. For each of the N experimental design runs, which correspond to a specific

combination θi i ¼ 1 . . .Nð Þ of global input modeling parameters, generate

L stochastic realizations.

2. For each of the L realizations, compute the OOIP and NTG value at the new well

location.

3. Calculate the means and standard deviations of the L values of NTG and OOIP,

as well as the correlation coefficient between the NTG and OOIP values.

4. Using the N experimental design runs, model a response surface for the NTG and

OOIP means and standard deviations, as well as the correlation coefficient

between NTG and OOIP.

Using the previous response surfaces, under the multi-Gaussian assumption,

PfOOIP and NTG ¼ NTGmj θig and PfNTG ¼ NTGmj θig can be computed for a

very large number n of combinations θi randomly drawn from Monte Carlo

simulation; this provides a new updated OOIP probability distribution according

to Eq. 3.

The proposed approach has several advantages:

• First, the multi-Gaussian assumption, combined with the use of response sur-

faces to estimate the parameters of the multi-Gaussian model for any combina-

tion θi of input parameters, allows fully determining the bivariate distribution P
{OOIP and NTG}; there is no need to use any arbitrary interpolation technique

such as the traditional Kernel smoothing (Park et al. 2013; Scheidt et al. 2015b).

• Then, the exact NTGm value can be directly plugged into the multi-Gaussian

functionPfNTG ¼ NTGmj θig for any combination θi of input parameters; there

is no need to determine a quite arbitrary bandwidth around the new data

measurements (Scheidt et al. 2015a).

• PfNTG ¼ NTGmj θig provides the probability that the NTG value measured at

the new well location will be observed for the specific combination θi of global
input modeling parameters. Typically, one would expect the correlation between

NTG and OOIP over multiple stochastic realizations to be quite low. If this is

indeed the case, i.e., if NTG and OOIP are conditionally independent, which can

be tested, Eq. 3 can be rewritten as:

PfOOIP��NTG ¼ NTGmg ¼
1
n

X

PfOOIP�� θigPfNTG ¼ NTGm

�
� θig

1
n

X

PfNTG ¼ NTGm

�
� θig

ð4Þ

In that new Eq. 4, the updated OOIP forecasts can be interpreted as the linear

combination of the OOIP forecasts corresponding to each possible combination θi
of input parameters weighted by the probabilities that the NTG value at the new

well location be observed in the stochastic model realizations generated for θi.
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Extending the previous methodology to multiple new measurements, e.g., the

NTG values from several new wells, is straightforward, provided that the multi-

Gaussian assumption holds.

3 Illustrative Case Study

As an illustrative example, the following synthetic data set mimicking an actual

Chevron reservoir is used with a reference model corresponding to a tidal domi-

nated reservoir with 25% sandbars. The synthetic example was generated using the

multiple-point statistical simulation program snesim (Strebelle 2002). There is no

horizontal facies proportion trend, but a significant vertical trend; see the three

horizontal sections of the model displayed in Fig. 1.

The tidal sandbar porosity distribution is approximatively normal, with a 19%

mean, and the permeability distribution is lognormal with a 50 md mean. Porosity

was simulated using SGS, while permeability was simulated from porosity using

SGS with collocated cokriging and a 0.9 correlation coefficient. The background

shale porosity and permeability are assumed to be close to 0. The reference OOIP is

about 80 M bbl.

Table 1 provides the list of global input modeling parameters and their

corresponding uncertainties.

The reference model is consistent with the uncertainty ranges defined for the

different global input modeling parameters. A D-optimal design of experiments

(Atkinson et al. 2007) was used to generate 99 models, and a quadratic response

surface was computed to estimate the initial OOIP probabilistic distribution

displayed in Fig. 2. The initial P50 value (93 M bbl.) significantly overestimates

the OOIP from the reference model, while the uncertainty range is relatively broad

with a P10 value of 61 M bbl. and a P90 value of 128 M bbl.

Three wells were used to condition all the initial models. The objective of this

case study is to update the initial OOIP forecasts using the NTG values measured at

two alternative new well locations. The first location was randomly selected and has

a relatively low NTG of 4%, whereas the second location is very close to an

existing well and has a NTG value of 20% similar to the NTG of that well (see

Fig. 3).

The methodology presented in the previous section was applied by generating

10 stochastic realizations for each of the 99 runs of the D-optimal experimental

design. For each alternative new well location, the NTG and OOIP means and

standard deviations, as well as the correlation coefficient between NTG and OOIP,

were computed for the 99 experimental design runs, and quadratic response sur-

faces were computed as a function of the input modeling parameters.

Then, 10,000 combinations θi of input modeling parameters were generated

from Monte Carlo simulation. Figure 4 shows the histograms of predicted NTG

values for each new well location. The actual NTG value observed at the first new

well location corresponds to the 9th percentile of the prediction distribution, while
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the actual NTG value observed at the second new well location corresponds to the

64th percentile. Therefore, in both cases, the new NTG measurements can be

considered as consistent with the existing models, and the previously described

forecast updating process can be applied.

Figure 5 provides a bubble graph displaying the bivariate distribution P
{OOIP and NTG} resulting from Eq. 3 for the first new well location.

Table 2 provides the P10, P50, and P90 OOIP values for the two alternative new

well locations.

For the first well, the P50 value of the updated forecasts is closer to the reference

OOIP value (80 M bbl.), while the uncertainty forecast range significantly

decreased: the new P10-P90 difference is 46 M bbl. vs. 67 M bbl. initially. In

contrast, as expected, because the second well is very close to an existing well, its

Fig. 1 Facies proportion curve and three horizontal sections of the reference model

Table 1 Global input modeling parameters, uncertainty ranges, and reference model

Input modeling parameters P10 P50 P90 Reference

Reservoir sand proportion 20% 30% 40% 25%

Sand geobody shapes Ellipses Variogram-based Channels Ellipses

Vertical trend None Medium High Medium

Horizontal trend None Medium High None

Porosity average 15% 17% 19% 19%

Permeability average 10 md 50 md 250 md 50 md

Poro/perm correlation 0.5 0.7 0.9 0.9
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Fig. 2 Initial forecasts and horizontal sections of two models generated using the D-optimal

experimental design

Fig. 3 NTG map from reference model, with locations of the three existing wells (black dots) and
two alternative new wells (white dots)

Fig. 4 Histograms of the NTG predictions for both new well locations. The red line corresponds
to the actual observed NTG value
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impact on OOIP forecasts is extremely limited; thus the P10, P50, and P90 values of

the updated forecasts (66, 97, and 125 M bbl.) are very close to the initial forecasts

(61, 93, and 128 M bbl.).

The same methodology based on Eq. 3 can be applied to the case where both

wells 1 and 2 are drilled. This requires the computation of an additional response

surface: the correlation between NTG values at wells 1 and 2 for any combination θi
of global input parameters. Figure 6 provides the scatterplot of predicted NTG

values at well location 1 versus predicted NTG values at well location 2 for 10,000

combinations θi of input modeling parameters. The actual NTG values (0.04 for the

first well and 0.2 for the second well) are in the predicted ranges. Thus the

combination of the two new NTG measurements can be considered as consistent

with the existing models, which confirms that the previously described forecast

updating process can be applied. Note that several methods exist to quantitatively

check that consistency between new observed values and predictions, in particular

the Mahalanobis distance (Mahalanobis 1936).

When both new well locations are used, the P10, P50, and P90 values of the

updated forecasts are 65, 86, and 105 M bbl. The new P10-P90 difference is 40 M

Fig. 5 Bivariate distribution P{OOIP and NTG} for the first new well location. Each bubble

corresponds to a particular combination θi of global input modeling parameters; it is centered at the

estimated NTG and OOIP mean values, and its size is proportional to the estimated NTG standard

deviation (only 200 bubbles are displayed). The red line corresponds to the actual NTG value

observed at that first new well location

Table 2 Updated forecasts

for the two alternative new

well locations

New well location P10 P50 P90

1 (random) 57 79 103

2 (close to existing well) 66 97 125

Initial forecasts 61 93 128
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bbl., which is, as expected but not guaranteed, smaller than the P10-P90 difference

obtained for each well considered individually.

4 Discussion

The results obtained in the case study above show that reservoir forecasts can be

directly updated in the presence of new information without rebuilding any models

provided that the new information is consistent with the existing reservoir models.

It should be noted that there is no guarantee for the P50 value of the updated

forecasts to be closer to the true reservoir value or for the updated uncertainty range

to systematically decrease; it all depends on the new data measured value. How-

ever, getting more accurate and precise forecasts is expected on average as the

number of additional new wells increases.

In most cases, the previous methodology can be simplified by replacing some

response surface with constant values or straightforward functions. For example, in

the previous case study, it can be observed that, as expected, OOIP varies very little

across multiple stochastic realizations for any particular combination θi of global
input parameters. On average over the 99 experimental design runs, the coefficient

of variation (ratio between standard deviation and mean) is only 0.004. This means

that only the response surface for the OOIP mean need be modeled; the OOIP

standard deviation could be directly estimated by multiplying the OOIP mean by

0.004. This simplification provides updated P10, P50, and P90 OOIP values very

close (less than 0.5% relative difference) to the updated forecasts obtained using a

full response surface for the OOIP standard deviation. Ignoring completely the

Fig. 6 Scatterplot of predicted NTG values at well location 1 versus predicted NTG values at well

location 2 for 10,000 combinations θi of input modeling parameters. The red dot corresponds to the
actual NTG values observed at the new well location (0.04 for well location 1 and 0.2 for well

location 2)

Integrating New Data in Reservoir Forecasting Without Building New Models 729



OOIP standard deviation, i.e., setting it to a constant 0, still provides updated

forecasts with less than 1% relative difference compared to the initial methodol-

ogy. In contrast, the coefficient of variation for the NTG is 0.803 for the first new

well location and 0.243 for the second well location (close to an existing well) on

average over the same 99 experimental design runs, which demonstrates the

importance of capturing all the local variability at new well locations, a quite

challenging exercise. Finally, the correlation coefficient between NTG and OOIP

is systematically low for the 99 experimental design runs, 0.03 on average. Thus

Eq. 4, which assumes the conditional independence of NTG and OOIP for any

combination θi of global input modeling parameters, could have been used. This

simplification would have again yielded very similar updated P10, P50, and P90

OOIP values (less than 0.1% difference).

Expanding the proposed methodology to more than two new measurements

and/or forecast variables is straightforward from a theoretical point of view, but

will need to be tested in future work. In particular, when a large amount of new data

is available, our methodology may require the identification of a limited number of

physical metrics representing or summarizing the new data. For example, in the

illustrative case study presented in this paper, the average NTG at the new well

location was used instead of the whole facies log. If summary physical metrics are

difficult to identify or compute, brute-force dimensionality reduction techniques

such as nonlinear PCA (Scheidt et al. 2015a) could be applied.

Also, the proposed approach calls for the use of experimental design and the

construction of response surfaces, which limits the application to continuous and

ordinal input modeling parameters. However, other direct forecasting methodolo-

gies could reuse the main idea of this paper: explicitly account for local variability

at new measurement locations by modeling new measurement predictions and

global forecasts as the sum of an average value over multiple simulated realizations

and a residual. The average value captures the impact of the global modeling

uncertainty parameters, while the residual captures local variability, especially

geostatistical simulation stochasticity.

5 Conclusions

A simple methodology using a Bayesian framework with a traditional multi-

Gaussian assumption is presented in this paper to update forecasts after acquiring

new well log data, which allows making rapid reservoir management decisions in

response to new information. One main advantage of this methodology is that it

fully accounts for local uncertainties, in particular model stochasticity, when

estimating the impact of new local data on reservoir forecasts.

The proposed methodology was successfully applied to a simple synthetic case

study, but it needs to be further tested on more complex synthetic data sets and

actual reservoir modeling projects. Another next step is to use that methodology to

select what new data should be collected and where it should be collected to
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optimally decrease reservoir forecasts uncertainty similar to the impact map

approach of Zagayevskiy and Deutsch (2013).
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Statistical Scale-Up of Dispersive Transport
in Heterogeneous Reservoir

Vikrant Vishal and Juliana Y. Leung

Abstract Numerical methods are often used to simulate and analyze flow and

transport in heterogeneous reservoirs. However, they are limited by computational

restrictions including small time steps and fine grid size to avoid numerical disper-

sion. The ability to perform efficient coarse-scale simulations that capture the

uncertainties in reservoir attributes and transport parameters introduced by scale-

up remains challenging. A novel method is formulated to properly represent

sub-grid variability in coarse-scale models. First, multiple sub-grid realizations

depicting detailed fine-scale heterogeneities and of the same physical sizes as the

transport modeling grid block are subjected to random walk particle tracking

(RWPT) simulation, which is not prone to numerical dispersion. To capture addi-

tional unresolved heterogeneities occurring below even the fine scale, the transition

time is sampled stochastically in a fashion similar to the continuous time random

walk (CTRW) formulation. Coarse-scale effective dispersivities and transition time

are estimated by matching the corresponding effluent history for each realization

with an equivalent medium consisting of averaged homogeneous rock properties.

Probability distributions of scale-up effective parameters conditional to particular

averaged rock properties are established by aggregating results from all realiza-

tions. Next, to scale-up porosity and permeability, volume variance at the transport

modeling scale is computed corresponding to a given spatial correlation model;

numerous sets of “conditioning data” are sampled from probability distributions

whose mean is the block average of the actual measured values and the variance is

the variance of block mean. Multiple realizations at the transport modeling scale are

subsequently constructed via stochastic simulations. The method is applied to

model the tracer injection process. Results obtained from coarse-scale models

where properties are populated with the proposed approach are in good agreement

with those obtained from detailed fine-scale models. With the advances in

V. Vishal (*)

School of Mining and Petroleum Engineering, University of Alberta, 7-207 Donadeo

Innovation Centre for Engineering, Edmonton, AB T6G 1H9, Canada

e-mail: vvishal@ualberta.ca

J.Y. Leung

School of Mining and Petroleum Engineering, University of Alberta, 6-285 Donadeo

Innovation Centre for Engineering, Edmonton, AB T6G 1H9, Canada

e-mail: juliana2@ualberta.ca

© Springer International Publishing AG 2017
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nanoparticle technology and its increasing application in unconventional reservoirs,

the method presented in this study has significant potential in analyzing tracer tests

for characterization of complex reservoirs and reliable assessment of fluid distri-

bution. The approach can also be employed to study scale-dependent dispersivity

and its impacts in miscible displacement processes.

1 Introduction

Accurate predictions of flow and transport in natural porous media are crucial in the

management of valuable subsurface resources including water aquifers and hydro-

carbons reservoirs. These predictions are usually assessed with uncertainty due to

(1) underlying heterogeneity or spatial variation in rock and transport properties at

multiple scales and (2) conditioning data. This uncertainty, though can be reduced

by improved geophysical (e.g., seismic), core, well log, pressure test, and tracer test

data, cannot be entirely eliminated. Reservoir models are typically constructed and

subjected to flow and transport simulation to capture the aforementioned uncer-

tainties. Although fine-scale models could capture detailed description of the

heterogeneity, simulation with these models can be computationally demanding.

A commonly adopted alternative is to replace these fine-scale models with lower-

resolution coarse-scale (scale-up) models. During this process of coarsening, a

number of transport properties (e.g., dispersivity), along with reservoir properties

(e.g., porosity and absolute permeability), must be scaled up accordingly. Properly

scale-up models should not only honor the conditioning data, but they should also

account for the associated subscale heterogeneities.

Mass transfer mechanisms in single-phase flow involve: (1) advection or con-

vection, (2) diffusion, and (3) mechanical dispersion. These phenomena are gener-

ally described by the parabolic advection-dispersion equation (ADE). Common

solution techniques, such as finite volume and finite element, suffer various com-

putational restrictions including numerical dispersion; poor predictions are

observed if flow is advection-dominated (high Péclet number). An alternative

solution framework is the classical random walk particle tracking (RWPT), which

is free from numerical dispersion and imposes no restriction on grid size.

Another conceptual issue associated with the ADE is its inability to capture

non-Fickian transport behavior. ADE considers dispersion as a sum of diffusion and

convective spreading, ignoring any additional mixing introduced by the interaction

of these two mechanisms. It neglects heterogeneity that is not resolved completely

at the volume support on which the ADE and its associated parameters are defined.

It is true that if heterogeneities at all scales are modeled explicitly, the ADE reflects

non-Fickian behavior of transport (Salamon et al. 2007; John 2008; Rhodes et al.

2009; Li et al. 2011).
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To model the non-Fickian behavior due to unresolved heterogeneities, the

continuous time random walk (CTRW) has been developed as a viable option. As

opposed to the RWPT (which models the dispersion of space walks and reproduces

the ADE), CTRW takes into account dispersion of the particles’ times of flight by

sampling the transition time from a probability distribution function (pdf).

In this paper, a statistical framework is implemented to facilitate the represen-

tation of sub-grid variability in coarse-scale models. To capture additional

unresolved heterogeneities occurring below even the fine scale, the transition

time is sampled stochastically in a fashion similar to the CTRW formulation.

Coarse-scale conditional probability distributions of effective dispersivities and

transition time are established.

2 Governing Equations of Flow and Transport

Solute (or particle) transport in porous media is traditionally described by the

(Fickian-based) advection-dispersion equation (ADE):

∂c X; tð Þ
∂t

¼ ∇ � D∇c X; tð Þð Þ �∇ � Vc X; tð Þð Þ: ð1Þ

c(X, t) is the volumetric solute concentration, t is the time, X is the spatial

coordinates, V is the macroscopic flow velocity, and D is the dispersion coefficient

tensor. The flow velocity is estimated by solving the continuity equation for

incompressible flow, Eq. 2, and the Darcy Eq. 3:

∇ � V ¼ 0 : ð2Þ

V ¼ �k

μ
∇p: ð3Þ

k is the permeability tensor; p and μ are the pressure and viscosity of the fluid,

respectively. Equation 1 can be solved using the particle-tracking method, which

simulates mass transport by discretizing injected mass concentration into a number

of particles (walkers) of equal mass; over a given time step, the movement of each

particle is controlled by advection and dispersion/diffusion. The particle tracking

scheme is summarized by Eq. 4 (Kinzelbach 1986; Tompson and Gelhar 1990;

LaBolle et al. 1996; Delay et al. 2005; Salamon et al. 2006):

Xp tþ Δtð Þ ¼ Xp tð Þ þ A Xp tð Þ� �
Δtþ B Xp tð Þ� �

:ξ tð Þ ffiffiffiffiffi
Δt

p
:

A ¼ Vþ∇D,BBT ¼ 2D:
ð4Þ

Xp(t) is the position of a particle at time t; Δt is the time step; ξ is a vector of

independent, normally distributed random numbers with zero mean and unit
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variance. If the transition time is considered to be deterministic and constant for all

particles, the above formulation reduces to the classical RWPT framework and

converges to the ADE. To capture non-Fickian features due to unresolved hetero-

geneities occurring below the fine scale, Srinivasan et al. (2010) proposed a

different particle-tracking model, in which the transition time is considered to be

stochastic and vary among particles:

Xp τ þ Δτð Þ ¼ Xp τð Þ þ A Xp τð Þ� �
Δτ þ B Xp τð Þ� �

ξ τð Þ ffiffiffiffiffiffi
Δτ

p
:

t τ þ Δτð Þ ¼ t τð Þ þ η τ,Δτð Þ: ð5Þ

(ξ, η) is a set of random series that is drawn from the joint probability density

function of transition length ξ and time η. In this formulation, time steps are

incorporated implicitly and sampled from time distribution density function.

This formulation of the RWPT with stochastic transition time is equivalent to the

commonly adopted CTRW framework for modeling non-Fickian transport. The

governing equation in CTRW is the Fokker-Planck with memory equation, Eq. 6,

which is derived from the equivalence of the classical generalized master equation

and CTRW (Berkowitz et al. 2002). Solute particle migration is described as a

series of jumps over different transition times. The jump position (X) and transition
times (t) follow a joint probability density function ψ(X, t) that describes the jump

at position and time t:

sec X; sð Þ � co Xð Þ ¼ � eM sð Þ V �∇ec X; sð Þ �∇ � D∇ec X; sð ÞÞðð Þ: ð6Þ

where ec denotes the Laplace transform of c and co(X) is the initial condition. The
particle transport velocity V and the dispersion tensor D are defined by the first and

second moments of the pdf of the transition length, p(X):

vi ¼ 1

t1

Z
ℜ
p Xð ÞXidX ¼ 1

t1

X
X

Xip Xð Þ:

Dij ¼ 1

2t1

Z
ℜ
p Xð ÞXiXjdX ¼ 1

2t1

X
X

XiXjp Xð Þ:
ð7Þ

t1 is the median transition time or lower cutoff time. The memory function eM sð Þ that
accounts for the unknown heterogeneities below the model resolution is defined as

eMðsÞ ¼ st1eφðsÞ
1� eφðsÞ : ð8Þ

Equation 6 is obtained by decoupling the pdf eψ X; sð Þ as

eψ ðX, sÞ ¼ pðXÞeφðsÞ: ð9Þ
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eψ X; sð Þ is the Laplace transform of the ψ(X, t), and eφðsÞ is the pdf of the transition
time in Laplace space. The Gaussian function is typically considered for p(X), while
the truncated power-law, TPL, (Eq. 10) or exponential (Eq. 11) functions are

considered for φ (t) in the case of non-Fickian and Fickian transport, respectively

(Margolin et al. 2003; Dentz et al. 2004; Berkowitz et al. 2006; Gao et al. 2009):

φ tð Þ ¼ 1þ t=t1ð Þ�1�β

t1rβΓ �β, rð Þ e
�t1þt

t2

� �
, r ¼ t1

t2
, t1 < t2, 0 � β � 2: ð10Þ

φ tð Þ ¼ 1

t1
e

� t
t1

� �
ð11Þ

Г is the incomplete gamma function, β is an exponent controlling the nature of

transport behavior, and t2 is the upper cutoff time (Dentz et al. 2004; Cortis et al.

2004).

To illustrate that the implemented particle-tracking model follows the CTRW

framework, single-phase tracer transport through a one-dimensional homogeneous

porous medium, with the following initial and boundary conditions, is considered

(Kreft and Zuber 1978):

Boundary conditions:

c X1 ¼ 0, tð Þ ¼ co and c X1 ¼ L, tð Þ ¼ 0: ð12Þ

Initial conditions:

c X1, t ¼ 0ð Þ ¼ 0: ð13Þ

The corresponding solution in the Laplace space for the flux-average concen-

tration (cf) is determined by

ecf X1; sð Þ ¼ coexp � vX1

2DL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

sDLeM sð Þv2

s
� 1

( )" #
: ð14Þ

DL is the longitudinal dispersion and it is equal to αLv, where αL is the longitudinal
dispersivity. Equation 14 is computed using the CTRW toolbox that is readily

available in the public domain (Cortis and Berkowitz 2005). The solutions are

compared against those obtained with the particle-tracking model used in this study

for two scenarios, where transition time is sampled from Eqs. 10 and 11, respectively.

A total of 104 particles are employed. Fluid velocity (v)¼ 0.0342 km/year;

αL¼ 0.5 km; t1¼ 2.84� 10�2 year, t2¼ 4.44� 104 year; β¼ 1.35. The ensuing

effluent histories obtained from the two models are compared in Fig. 1. To demon-

strate the capability of the numerical model for two or three dimensions, a couple of

classical cases, such as transport through layered media when flux is perpendicular

and parallel to the layers, are tested, and the results are shown in Fig. 2.
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Fig. 1 Normalized mass flux at X1¼ L¼ 15.2 km corresponding to co¼ 1 for: (A) non-Fickian
model and (B) Fickian model

Fig. 2 Normalized mass flux at X1¼ L¼ 16.0 km corresponding to co¼ 1 for a non-Fickian

model when flux is: (A) parallel and (B) perpendicular to the layered porous media
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3 Method

3.1 Scale-Up of Reservoir Properties

The change in volume support introduces additional uncertainty in the coarse-scale

models due to the averaging of subscale heterogeneity. This uncertainty is referred

to as subscale variability. The variance of mean of the attribute is a measure of the

variability associated with the spatial average at a particular spatial volume V, and it
decreases with V. For a multivariate Gaussian random variable (Z ) with a variance

(σ2) and a autocorrelation model ρcorr, its spatial mean ( �Z) is obtained via linear

averaging; therefore, the corresponding variance of mean or Var �Zð Þ can be

computed by integrating over all possible lag distance η over a volume V (Lake

and Srinivasan 2004):

Var �Zð Þ ¼ 2σ2

V2

Z
v

Z
η

ρcorr ηð Þ dη dξ

0B@
1CA: ð15Þ

Apart from the volume variance, the spatial correlation length also changes with

volume support. Averaged semi-variogram γ is estimated numerically by averaging

the point-scale variogram γ on two volume supports V and V0 (Journel and

Huijbregts 1978):

γ V;V
0

� �
¼ 1

VV
0

Z
V

Z
V
0

γ v; v
0

� �
dvdv

0 � 1

nn00

Xn
i¼1

Xn0
j¼1

γ hij
� �

: ð16Þ

A procedure, which was described in Leung and Srinivasan (2011) and was also

implemented in Vishal and Leung (2015), is adopted to construct coarse-scale

models of reservoir properties that capture the subscale variability:

1. Compute the variance of mean (Var �Zð Þ) according to Eq. 15.

2. Estimate averaged variogram γ according to Eq. 16.

3. Draw multiple sets of conditioning data via parametric bootstrapping of a

Gaussian likelihood function, whose mean and variance are the block average

of the fine-scale conditioning data and Var �Zð Þ, respectively.
4. Perform conditional simulation at the coarse scale (i.e., transport modeling

scale) using histogram (mean ¼ fine-scale global mean; variance ¼ Var �Zð Þ)
and γ (which accounts for the spatial correlation) for a particular set of

conditioning data from step #3.

5. Repeat step #4 for the remaining sets of conditioning data from step #3.

In this work, porosity (ϕ) is modeled according to above mentioned steps, while

absolute permeability (k) is assumed to be correlated with porosity as k ¼ a � ϕb,
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where a and b are empirical constants. This assumption would imply that linearly

averaging is also valid in the transformed space of (k/a)1/b; therefore �k is estimated

from ϕ using the same empirical relation, assuming the transform relationship is

invariant with scale (Leung and Srinivasan 2011). In principle, permeability can be

scaled up in the same fashion as for the transport parameters, as explained in the

next section, particularly if a simple correlation with porosity is unattainable.

3.2 Scale-Up of Solute Transport Parameters

As discussed in the introduction, subscale variability also introduces uncertainty in

transport-related attributes at the coarse scale and contributes to non-Fickian

behavior. A particle-tracking model is employed for transport modeling. The

transition time is sampled from the TPL distribution, which is characterized by β,
t1, and t2. A workflow, which is modified from the one presented in Vishal and

Leung (2015), is implemented to construct probability distributions of the coarse-

scale TPL parameters. In this work, only probability distribution of β is estimated,

since β primarily controls the nature of particle migration and, thus, functionally

characterizes the dispersion behavior. Results obtained from the case study (next

section) also suggest that proper scale-up of β alone would have reasonably

captured the detailed fine-scale response. The steps are described as follows:

1. Assign nb bins to the histogram of ϕ.
2. For a given bin, perform unconditional sequential Gaussian simulation to gen-

erate ns sub-grid realizations of ϕ � Nðϕb, σ
2Þ using the fine-scale variogram γ.

The corresponding permeability value at each location is assigned according to

k ¼ a � ϕb.

3. Construct an equivalent homogeneous model with averaged properties for each

ns sub-grid model from step #2.

4. Compute steady-state velocity fields (incompressible flow) and solute transport

for both ns heterogeneous models and ns homogeneous models constructed in

steps #2–3, respectively.

5. Estimate an effective value of β (i.e., β*) by minimizing the root mean square

error in the breakthrough concentration profile between each heterogeneous

model and its equivalent homogeneous model. β* corresponds to the value of

β at the coarse scale.

6. Repeat steps #2–5 for other bins (step #1). Aggregate results over all realizations

and construct the probability distribution of Pfβ*jϕig for i ¼ 1,. . .,nb.
7. To construct the coarse-scale models, β* is assigned at each location by sampling

from Pfβ*jϕg.
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4 Case Study

A synthetic two-dimensional model of size 500� 500 m (Δx¼Δy¼ 1 m) is

considered. The true fine-scale porosity (ϕ) model is shown in Fig. 3A. It follows

a normal distribution N(0.25, 0.07) and spherical variogram (correlation lengths

along the X- and Y-direction are 200 m and 50 m, respectively). The absolute

permeability is modeled as k (md)¼ 25,000�ϕ2. The value of k ranges from 81.0

to 3058.4 md (mean¼ 1566.1 md), while ϕ ranges from 0.05 to 0.35 (mean¼ 0.25).

In addition, αL and αT at the 1-m2 volume support is equal to 0.5 m and 0.05 m,

respectively. The following TPL parameters are used: t1¼ 1.25 year,

t2¼ 10,000 year, and β¼ 1.25.

The objective is to construct a set of coarse-scale 50� 50 models

(Δx¼Δy¼ 10 m), which are subsequently subjected to transport modeling. A

normalized variance of mean of 0.8 is obtained based on Eq. 2, and scale-up

variogram (correlation length in X-direction is 215 m and Y-direction is 65 m) is

calculated based on Eq. 16 corresponding to a volume support 10� 10 m. This

relatively high value suggests that a substantial amount of subscale variability is

present.

A total of 100 realizations of porosity and permeability at the coarse scale are

constructed following the method for scale-up of reservoir properties described in

the previous section. For each realization, the corresponding TBL parameters (β, t1,
and t2) at the coarse scale are constructed following the method for scale-up of

solute transport parameters described in the previous section. An example of a

randomly selected realization is shown in Fig. 3B, which exhibits some dissimilar-

ities when compared to Fig. 3A: (1) there are fewer low values in the coarse-scale

model, since the Var(ϕ) < Var(ϕ); in addition, values are correlated over a longer

distance in the coarse-scale model since the ranges associated with γ are higher.

Each realization is then subjected to particle-tracking modeling. The breakthrough
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Fig. 3 Distribution of porosity: (A) true fine-scale model and (B) a randomly selected realization

of the coarse-scale model
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profiles for all 100 realizations are compared to the true fine-scale model in Fig. 4B.

Also shown in Fig. 4A is a case where there is no unresolved heterogeneity

occurring below the fine scale; constant transition time is assumed; therefore, α�L
and α�T , instead of β*, are modeled (Vishal and Leung 2015). It is clear that

significant non-Fickian behavior is observed when there is unresolved heterogene-

ity. In both cases, the true fine-scale response is captured by the variability

exhibited among all 100 coarse-scale realizations.

5 Conclusions and Future Works

1. A particle-based non-Fickian transport model is adopted, which is capable of

modeling unresolved heterogeneities occurring below the fine scale.

2. A multi-scale workflow is proposed to scale-up reservoir and transport param-

eters (e.g., β in the transition time distribution), such that subscale variability is

properly represented in the coarse-scale models.

3. Results from the case study show that coarse-scale transport responses are

capable of capturing the fine-scale transport response.

4. The case study illustrates the applicability of the method in 2D models. Previous

works have already demonstrated the feasibility of the workflow for scale-up of

reservoir properties in three dimensions. Future work should focus on the scale-

up of solute transport parameters in 3D models. It is hypothesized that the

workflow can be readily extended to multiple dimensions by performing the

sub-grid calculations (i.e., steps #4–5) over a 3D volume.

Fig. 4 Normalized cumulative mass flux profile for: (A) Fickian model and (B) non-Fickian
model
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A Comparative Analysis of Geostatistical
Methods for a Field with a Large Number
of Wells

Maria Volkova, Mikhail Perepechkin, and Evgeniy Kovalevskiy

Abstract This paper discusses methods for interpolating the well data that

describes a hydrocarbon reservoir. The main difficulty lies in the requirement that

the interpolation result should correspond not only to borehole data but also to some

additional criteria, such as variograms and histograms. In a broader sense, it should

reflect our knowledge of the geological environment. The authors are interested in

what capabilities the different stochastic methods, sequential Gaussian simulation

(SGS), multiple-point statistics (MPS) and fuzzy model simulation, can provide.

1 Introduction

Let us have a look at the problem in more detail. An interpolation of well data

requires taking into account the following:

1. A geological environment is of a categorical nature, and it is thus impossible for

the quantitative properties to be interpolated among different categories. The

quality of property interpolation in such an environment is controlled by com-

paring the histograms of initial well data with the histograms computed for

values in the interwell space.

2. The interpolated values should represent the actual variability of a geological

environment, where the term “actual” means meeting a certain criterion. But in

all cases, the variability of interpolated values should not depend on the spacing

of well data points. This requirement can be achieved only by means of multiple

stochastic realizations. Where a variogram is used as a mentioned criterion, the

quality of interpolation is controlled by comparing the variograms of initial well

data with the variograms computed for values in the interwell space.

3. It is geostatistical techniques that are mostly applied to compute stochastic

realizations. All of these methods are based on the assumption of stationarity,
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i.e. it is assumed that the geological environment is statistically uniform. Is a real

geological environment statistically uniform? Certainly it is not. So, in stochas-

tic methods, the key to a successful interpolation is dividing the interpolated

parameter into deterministic (non-random) and random components. The prob-

lem is that such division is always ambiguous and difficult to achieve.

4. The deterministic features of initial well data (trends, categories, anomalous

zones, etc.) are not obvious and, if not specially marked, will be erased in the

realizations. Stochastic realizations are “sterile” with respect to the deterministic

features and for this reason are not preferred by geologists. This is especially so

with the realizations calculated based on variograms.

5. In order to overcome this “sterility”, a number of “nonclassical” geostatistical

methods have been developed. All of them are of a heuristic nature. The object

modelling technique generates realizations which include sand bodies of a

particular shape. Its heuristics consists in that the shape is defined by a geologist.

Being able to manage the shape of individual bodies, the geologist however

cannot manage the configuration of the set thereof.

6. To enable managing such combinations, multiple-point geostatistics (MPS) has

been introduced and employed. Its heuristics consists in using a training image.

A new version of MPS, known as “direct sampling” (DS), allows computing

realizations of both categorical and quantitative parameters (e.g. for the porosity

value).

This paper is aimed to investigate the capabilities the three stochastic methods

(sequential Gaussian simulation, multiple-point statistics and the fuzzy geological

model simulation) can provide. For this, a real field consisting of nearly 200 wells

has been taken as an example. Used as initial data for interpolation are ASP

(normalized SP) well log values that are closely linked with the porosity parameter

and are presented along the entire section of each well.

2 Trial Field and Initial Data

A part of an existing large field in Western Siberia is shown below in Fig. 1. The

shown part was used as a trial field.

Figure 1 shows not only a trial field but also a three-dimensional model calcu-

lated based on the well data. It includes a geometrical framework (as a pile of

stratigraphic surfaces) resulting from the correlation of the well log data and the

subsequent interpolation of the stratigraphic marks. The frame is used as a base for

constructing a stratigraphic grid of 100� 100� 170 (170 cells on Z). The model

also includes an ASP cube, which is the result of a deterministic quasi 3D (layer-by-

layer) interpolation of the ASP well-logging curves calculated with a 1/R2

weighting. The stratigraphic surfaces and the ASP cube are shown in the paleo-

reconstruction where the surfaces are transformed to the horizontal planes. The

initial ASP curves are presented on the paths of the wells in the window for the
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vertical slice. Both (vertical and horizontal) slices show the intersection line.

Hereinafter, the stratigraphic grid of the model will remain unchanged. What will

change are the ASP cube calculation methods.

The ASP cube, as illustrated in Fig. 1, is considered as a starting point of our

investigation. Why only as a starting point? Because the quality of such an

interpolation is very low. First, it does not take into account the categorical nature

of the environment, being therefore incapable of reproducing a well data histogram.

The biggest error is seen for the AV4 horizon (see Fig. 2, right).

Second, this interpolation type incorrectly displays the variability of the envi-

ronment. If the range of the horizontal variogram for borehole data is about

1,000 m, its range for the interpolated values is about 2,000 m (see Fig. 3, left).

The horizontal variability of the deterministic ASP cube depends on the well

spacing. At the same time, the vertical variogram is displayed well (see Fig. 3,

right). The latter is the result of a layered interpolation. The other differences in the

variograms are not of great importance. The difference in the sills of the variograms

for the borehole and cube data follows from the difference in their histograms and

Fig. 1 Deterministic interpolation of the ASP well data. The red and green colours approximately

demonstrate sands and clays, respectively. On the top right is the stratigraphic frame of the model.

In the figures presented below, the colour legend is the same
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the difference in the sills of the horizontal and vertical variograms, from a greater

variability of the environment in the vertical direction.

Based on Figs. 2 and 3, we can conclude that the deterministic interpolation (see

Fig. 1) gives a false view of the environment. However, the cube shown in Fig. 1

has one advantage: it excellently displays the deterministic features contained in the

initial well data. It is immediately seen that the AV1 horizon is a heterogeneous

reservoir of a poor quality, that there is a massive buried channel in the AV3

horizon and that the AV5 horizon is a solid reservoir.

Fig. 2 Deterministic interpolation, histograms of the ASP values (with the red curves calculated
based on the initial well data; and with the grey curves, on the interpolated values; and with the

data for the AV1–AV5 horizons shown on the left and separately for the AV4 horizon on the right)

Fig. 3 Deterministic interpolation, variograms for the ASP values (the red and grey curves
representing the calculated initial well data and the interpolated values, respectively). Shown on

the left are the horizontal variograms, and on the right are the vertical variograms
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3 Stochastic Modelling by Sequential Gaussian Simulation
with Normal Score Transformation

Here we will try, within an interpolation, to reproduce a histogram and variogram of

the initial well data. It is obvious that the reproduction of a horizontal variogram is

possible only by means of stochastic realizations. The most often used method

therefore is sequential Gaussian simulation (SGS). Its application, however,

requires subdividing the environment into statistically uniform categories (the

criterion for statistical uniformity being the Gaussian histogram of values). The

SGS method is applied separately for interpolation within each category. The

histogram of initial well data would otherwise be roughly distorted.

At the same time, the normal score (NS) transformation method exists, allowing

the application of SGS when the histogram of initial data is not Gaussian (Deutsch

and Journel 1998). NS enables the exact reproduction of a non-Gaussian histogram

of initial data. The result of the interpolation of our ASP well data by SGS with NS

transformation is illustrated in Fig. 4, and the histograms and variograms are shown

in Fig. 5, with a very good fit.

Fig. 4 Interpolation of the ASP well data by the SGS method, using the normal score

(NS) transformation (one realization). A horizontal section within the AV1 horizon is shown on

the top right
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However, it should be kept in mind that the NS method allows fitting of the

histograms of initial and interpolated values only for the entire cube. To prove that

this method can lead to errors, it is quite enough to look at the “local” results it can

deliver. Figure 6 displays the histograms for the well data and for the interpolated

values for the AV1 horizon. What we see is that they have essential differences.

Figure 4 (top right) shows the horizontal section of the ASP cube within the AV1

horizon. It is noteworthy that all the red and green “spots” (high and low ASP

values) are located exactly between the wells. The AV1 horizon well data has no

such values.

Of course, the above problem of the vertical nonstationarity has been well

addressed. Each layer with different statistics (e.g. AV1) should be calculated

separately as well as each zone with different statistics on the XY plane. Let’s

Fig. 5 Interpolation of the ASP well data by the SGS method with NS transformation. Histograms

and variograms of the ASP values (with the red curves indicating values calculated based on the

initial well data and the blue curves on the interpolated values). In the centre are the horizontal

variograms, and the vertical variograms are on the right

Fig. 6 Interpolation of the

well ASP data by the SGS

method with NS

transformation. Histograms

of the ASP values within the

AV1 horizon, with the red
line indicating values

calculated based on the

initial well data and the blue
line on the interpolated

values
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have a look at the AV3 horizon once more (Fig. 4 top left). The presence of the

reservoir zones outside the channel predicted by NS is very unlikely. These

problems were mentioned in the Introduction section.

4 Stochastic Modelling by Multiple-Point Statistics

The second of the three techniques used to represent the actual variability of the

environment is multiple-point statistics (Strebelle 2002). Appropriate tools have

been developed and tested for this use (Volkova 2015). We have made such a

calculation as well. We used a fragment of the deterministic model shown above in

Fig. 1 as a training image (TI). It is a small cube of 13% of the total field with the

highest density of wells. The quality of the TI can be argued, but it is the best TI we

can obtain. The calculation was carried out using the direct sampling

(DS) algorithm (Mariethoz et al. 2010). Parameters of the DS algorithm are as

follows: the number of neighbours, 40; their weights, 1/R2, where R is the distance

in the 3D space measured in the cells; the threshold value, 0.10; and the maximum

fraction for TI scanning, 1%. The result of the interpolation (as well as the contour

of the fragment taken as the TI) is illustrated in Fig. 7, and the histograms and

variograms are presented in Fig. 8.

The direct sampling algorithm distinguishes areas having distinct statistical

properties. For example, the AV1 horizon is modelled almost correctly (see AV1

in Figs. 9 and 10). At the same time, the method leads to some errors. The well data

does not indicate that the AV5 horizon reservoir has a gap (see AV5 in Fig. 9).

5 Stochastic Modelling Based on the Fuzzy Model

The third of the above-named methods employed to represent the actual variability

of the environment is the fuzzy model (Kovalevskiy 2015). This method does not

rely on statistical generalizations. Computations are performed on a 3D strati-

graphic grid. In the most recent edition (aimed at simplification), the calculation

algorithm (for one realization) consists of the following steps:

1. We randomly choose an empty cell (as the forecast cell). Then we select an n
number of the non-empty cells nearest to that empty cell. (Those cells initially

contain borehole data.) For example, n can be equal to 6. The selection should

provide azimuthal control to ensure selection of a single nearest cell from each

azimuth sector (see Fig. 11, left). The selection of cells from the upper or lower

layer of the grid can be performed as an option.
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Fig. 7 Interpolation of the ASP well data by the MPS method, using the direct sampling algorithm

(one realization). A horizontal section of the deterministic cube is added on the top right, with an

indication of the fragment taken as a training image

Fig. 8 Interpolation of the ASP well data by the MPS method, using the direct sampling

algorithm. Histograms and variograms of the ASP values (with the red curves calculated based

on the initial well data and the pink curves on the interpolated values). In the centre are the

horizontal variograms, and on the right are the vertical variograms
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Fig. 9 Interpolation of the ASP well data by the MPS method, using the direct sampling

algorithm. On the top right is the horizontal section of the AV1 horizon. On the top left is the
horizontal section of the AV5 horizon

Fig. 10 Interpolation of the

ASP well data by the MPS

method, using the direct

sampling algorithm.

Histograms of the ASP

values within the AV1

horizon (with the red line
calculated based on the

initial well data and the pink
line on the interpolated

values)

A Comparative Analysis of Geostatistical Methods for a Field with a Large. . . 753



2. Each selected cell is represented by two numbers: the value in the cell and its

“weight” (see Fig. 11, right). The weight is calculated as 1/R2, where R is the

distance from the cell with data to the forecast cell. Each cell value is presented

with its estimated accuracy (set by expert evaluation).

3. On the basis of the selected values and taking into account the accuracy of each

value, we compute the fuzzy value in the forecast cell (see Fig. 12, left). We do it

by a simple summation of the inputs. After that, we normalize the membership

function so that its integral is equal to 1.

4. Next, we compute the integral distribution of the membership function (which is

an analogue of integral probability distribution – see Fig. 12, right). After that,

we select a random number from the uniform distribution on the interval [0, 1].

Using the integral distribution of the membership function, we transform the

selected random number to another, also random number, but one distributed

Fig. 11 Selection of the data affecting the forecast cell (on the left). On the right is the weight of
values calculated as 1/R2. The one cell’s value is presented with its estimated accuracy

Fig. 12 On the left is the fuzzy presentation of the parameter value in the forecast cell. On the

right is the random selection from the integral distribution
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according to the membership function. And it is this second random number that

we insert into the forecast cell and that is assigned the status of a data point. Then

we select the next forecast cell and repeat the same process. Thus, the described

algorithm is very similar to a standard sequential simulation.

The so calculated stochastic realization of the fuzzy model is illustrated in

Fig. 13 and the histograms and variograms in Figs. 14 and 15.

As regards selection of non-empty cells from the upper or lower layer of the grid,

we have not selected such cells in this calculation. However, because the initial well

data was presented as the vertical (or almost vertical) columns of cells, each of the

simulated predictions is also made for the entire vertical column, with individual

random numbers used for each forecast cell.

Fig. 13 Interpolation of the ASP well data as a realization of the fuzzy model. A horizontal

section of the AV1 horizon is added on the top right
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6 Conclusions

In conclusion, it is worth paying attention to the following. As was said above, the

deterministic interpolation technique (reproducing neither a histogram nor a

variogram) has an important advantage: it excellently displays the deterministic

features of the data. Indeed, it is possible to see in the AV3 horizon very specific

meandering facies (see Fig. 16(1)). This means that the well data indicates that

meandering facies are present.

On the other hand, no meandering facies can be seen as the result of the

interpolation by the SGS method (see Fig. 16(2)), while, just to repeat, the well

data indicates their presence. The interpolated values obtained using this technique

Fig. 14 Interpolation of the ASP well data as a realization of the fuzzy model. Histograms and

variograms of the ASP values (with the red curves calculated based on the initial well data and the
green curves on the interpolated values). In the centre are the horizontal variograms, and on the

right are the vertical variograms

Fig. 15 Interpolation of the

ASP well data as a

realization of the fuzzy

model. Histograms of the

ASP values within the AV1

horizon (with the red line
calculated based on the

initial well data and the

green line on the

interpolated values)
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is “sterile” with respect to those deterministic features, which have not been

specially marked.

This is that very “sterility” which was mentioned in the Introduction section. The

histograms and variograms of the initial data are displayed well, with the caveat that

SGS can lead to errors where the local histograms differ from the overall histogram.

The result of interpolation by the MPS method (see Fig. 16(3)) displays the

meandering facies well. On the whole, it can be said that it works, with the

variograms being displayed well and the histograms being displayed satisfactorily.

Fig. 16 1 deterministic interpolation, 2 realization of SGS, 3 realization of MPS, 4 realization of

the fuzzy model
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It is important that MPS allows dealing with nonstationary data and a nonstationary

training image. It can be assumed that the result may be improved by improving the

training image.

The fuzzy model realization as regards showing the meandering facies is also

good (see Fig. 16(4)). It clearly shows that the facies (meandering facies, channel

facies, etc.) cannot be considered as statically uniform. What we can see is a gradual

transition from one into the other. The well data histograms and variograms are

displayed well, even locally. So it can be stated that this approach seems to have

great potential.
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Building Piezometric Maps: Contribution
of Geostatistical Tools

B. Bourgine, M. Saltel, N. Pedron, and E. Lavie

Abstract This paper shows practical applications of two kriging techniques:

kriging with boundary conditions and kriging with external drift, which are used

in order to introduce hydrogeological constraints when producing piezometric

maps. These techniques are not new to geostatisticians, but not very well known

by many hydrogeologists. Kriging with boundary conditions is implemented here

with a discrete formulation that allows the use of non-differentiable or of aniso-

tropic covariance models. Kriging with external drift is applied here in the case of

an unconfined aquifer, the external drift being a smoothed version of the topogra-

phy. A method is proposed to select the appropriate smoothing radius. Results show

a clear improvement compared to standard kriging.

1 Introduction

Building piezometric maps is a rather common task for many hydrogeologists.

Indeed, piezometric maps are essential to characterize the aquifer behavior

(recharge and outlet area, flow path) or to quantify and monitor the aquifer temporal

evolution due to groundwater mining. They are frequently built using standard

kriging.

However, standard kriging does not take into account physical laws that govern

hydraulic head distribution. This sometimes leads to physically inconsistent results.

In addition, geostatistical methods that enable to take into account hydrogeological
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constraints in the interpolation are not always used neither known by

hydrogeologists. This is why some of them still prefer to draw these maps by

hand. In this context, BRGM and Aquitaine Region signed an agreement entitled

“Groundwater management in Aquitaine Region” for the 2008–2013 period, finan-

cially supported by the Adour Garonne Water Agency. The aim was to identify

tools and procedures in order to facilitate the production of piezometric maps of the

various aquifers of the Aquitanian Basin, using appropriate interpolation tech-

niques. The objective was also to propose a standardized procedure in order to

facilitate the work, from data control to the final map.

This paper presents two applications of geostatistics in hydrogeology: (1) kriging

with boundary conditions and (2) kriging with a smoothed topography taken as an

external drift, where we propose a procedure to select the degree of smoothing. The

results are general and applicable to other examples as those illustrated here.

Before detailing these applications, we present a short review of previous work.

2 Brief Review of Previous Work

Kriging hydraulic head has been used for a long time to build reference maps either

to characterize high or low water levels or to calibrate the parameters of flow

simulations (Renard and Jeannée 2008). As usually hydraulic heads are not station-

ary, kriging with a drift should be used. An example can be found in (Aboufirassi

and Marino 1983), where the drift depends on the coordinates. In unconfined

aquifers, the hydraulic head is generally well correlated with topography. Thus

hydraulic heads can be interpolated by co-kriging with topography (Hoeksema

1989) or by using a variable derived from topography as an external drift (Desbarats

et al. 2002). In this last case the authors compare two external drift variables: the

topography itself and another variable “TOPMODEL” which combines several

parameters such as the slope and the upslope area draining to a given point. This

second method is supposed to take into account the fact that the water table

elevation is much smoother than topography (Wolock and Price 1994) but authors

conclude that the results “are not always physically plausible.” Renard and Jeannée

(2008) use a smoothed topography as external drift and obtain smoothing by a

standard moving average algorithm. The smoothing radius is set empirically.

Boundary conditions are important constraints to take into account. The two

main ones are the Dirichlet condition (known and constant head) and the Neumann

condition (known and constant flow). The first one is easily satisfied by adding data

points with given hydraulic head along the boundary (e.g., on the banks of a lake).

The second one is generally used to take into account no flow boundary conditions.

A first application proposed by Delhomme (1979) was described by Chilès and

Delfiner (1999). This work was continued by Le Cointe (2006) during a joint work

with J.P. Delhomme as tutor. In this work, a co-kriging of heads and their deriva-

tives is implemented using a finite difference approach. At last, Kuhlman and Pardo
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Igúzquiza (2010) proposed the exact formulation using mathematical derivation of

covariances.

In this paper, we will investigate the use of kriging with boundary conditions,

using the finite difference approach, and compare different types of kriging. We

will also present a practical application of kriging with external drift based on

smoothed topography and propose a method to select the smoothing radius.

3 Kriging with Boundary Conditions: Finite Increments
Approach

3.1 Methodology

We start here from a preliminary internal unpublished work initiated in

2003–2004 at the BRGM with the cooperation of J.P. Chilès (2004), which corre-

sponds partly to the work presented later by Le Cointe (2006). The aim was to

interpolate hydraulic heads taking into account:

• Measured hydraulic heads from piezometer data or constant heads from

Dirichlet boundary conditions (e.g., river elevation).

• No flow boundary conditions, which are observed, for example, in case of an

impervious boundary, of a groundwater ridge, or at the watershed boundary. In

this case the gradient of hydraulic head is equal to zero in the direction perpen-

dicular to the no flow boundary. It is also possible to take into account a nonzero

value for the gradient in a given direction if such a value is known.

The hydraulic head is considered as a non-stationary random variable:

Z xð Þ ¼ m xð Þ þ Y xð Þ ð1Þ

The deterministic drift m(x) is expressed as usually as:

E Z xð Þ½ � ¼ m xð Þ ¼
XL

l¼0
alf

l xð Þ ð2Þ

where f l(x) are known drift functions that can depend on the coordinates or can be

also external drift and where al are unknown coefficients.

The residual Y(x) can be non-stationary, with a covariance σ(x, x0). In case of a

IRF-k, the polynomial components with degree lower or equal to k are part of m(x).
Data is denoted Za and can belong to two groups:

• The first group represents known hydraulic heads at point xα:

Zα ¼ Z xαð Þ ð3Þ
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• The second group corresponds to the value of the component of the gradient at

point xα along a unit vector uα and is used to represent non-flow boundary

conditions or fixed gradients:

Zα ¼ ∂Z
∂uα

xαð Þ ð4Þ

In this paper, we use a finite increment formulation. The value of the component

of the gradient at point xα is represented by two dummy points xα1 and xα2 separated
by a distance 2bα along the unit vector uα (the macroscopic gradient is calculated on

length 2bα). Thus a data of the second group has the following form:

Zα ¼ Z xα þ bαuαð Þ � Z xα � bαuαð Þ
2bα

ð5Þ

With xα1 ¼ xα � bαxα xα2 ¼ xα þ bαxα wα ¼ 1
xα1�xα2k k, Eq. 5 can be

rewritten as

Zα ¼ wα Z xα2ð Þ � Z xα1ð Þð Þ ð6Þ

Kriging can be expressed in the classical way. The estimator at point x0 is:

Z* x0ð Þ ¼
X

α
λαZα ð7Þ

Note that the Zα are of one of the two forms shown in (3) and (4). In the particular

case of no flow boundary condition, the Zα of the second group are equal to zero

(partial derivative equal to zero perpendicularly to the boundary) and don’t con-
tribute directly to the estimator in Eq. 7. But in fact they modify the weights and

consequently contribute indirectly to the estimation.

The kriging system can be written in a matrix form (Chilès and Delfiner 1999):

Σ F
F

0
0

� �
λ
μ

� �
¼ σ0

f 0

� �
ð8Þ

where Σ is the matrix of the covariances σαβ between data points, F the matrix of

drift functions fl(xα) at data points xα, λ the vector of weights λα, μ the vector of

Lagrange parameters μα, σ0 the vector of covariances σα0 between data points and

estimated point, and f0 the vector of drift functions at estimated point.

The covariances σαβ have different expressions according to the type of data. If

both α and β are indices of points of type “hydraulic heads,” the covariance is

simply σαβ ¼ σ xα; xβ
� �

where σ is the covariance of Y(x). If both α and β are indices
of points of type “component of a gradient,” the covariance σαβ can be written as

(using the finite increment formulation)
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σαβ ¼ wαwβ σ xα2; xβ2
� �� σ xα1; xβ2

� �� σ xα2; xβ1
� �þ σ xα1; xβ1

� �� � ð9Þ

At last, if α is a point of type “hydraulic heads” and β a point of type “component

of a gradient,” the covariance σαβ is σαβ ¼ wβ σ xα; xβ2
� �� σ xα; xβ1

� �� �
.

The drift functions take also different forms according to the type of data.

If α is a hydraulic head, fl(xα) is of the classic form. For example: f 0 xαð Þ ¼ 1;

f 1 xαð Þ ¼ Xcoord xαð Þ; f 2 xαð Þ ¼ Ycoord xαð Þ (Xcoord and Ycoord being the X and Y

coordinates of the data point).

If α is component of a gradient, fl(xα) is obtained by the following equation:

f l xαð Þ ¼ wα f l xα2ð Þ � f l xα1ð Þ� �
.

3.2 Applications of Kriging with Boundary Conditions

The expressions above were introduced in GDM software (Geological Data Man-

agement, http://gdm.brgm.fr) and were applied in a large aquifer of the Aquitaine

Region (France): the Middle Eocene aquifer. This aquifer shows many lateral facies

variations, from continental fluviatile deposits in the eastern part to marine deposit

to the west. It covers a 17,290 km2 area around Bordeaux city (Fig. 1) and is

intensively pumped. First measurements of hydraulic heads started in 1873.

The oldest available piezometric map represents the initial state of hydraulic

head corresponding to the 1870–1900 period. The aquifer is now monitored by a

network of piezometers that has been set up since 1959.

Nowadays a reference piezometric map of the average level of the last quarter of

the year is built every year. For the year 2007, that will be illustrated here,

119 piezometers are available. The aquifer is connected to the river network in

the northern and eastern parts of the studied area. Therefore points along the river

can be added as constant heads, the hydraulic head being equal to the surface

topography at these points. The aquifer is confined in almost the whole area, except

in the few square kilometers near the outcrops where it is unconfined.

The variogram of the hydraulic head (computed from piezometers only) is

non-stationary (Fig. 2) and can be fitted, for example, by a power model. Several

kriging options were tested and are presented in (Bourgine and Pédron 2011),

including co-kriging using data from different years and kriging with an external

drift based on a hydrodynamic flow model, but we will focus here on kriging with

boundary conditions.

Since 1993, a hydrodynamic flow model has been developed in order to improve

groundwater management and to find solutions to reduce impact due to pumping

(Saltel et al. 2012). The hydraulic head obtained from this model for year 2007 is

displayed in Fig. 3. The red ellipse indicates an area where the aquifer becomes

impervious, along its south boundary, just to the north of Villeneuve sur Lot City.
This boundary condition was integrated in the flow model, and consequently

contour lines are perpendicular to this boundary.
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Another piezometric map was computed independently by ordinary kriging

using piezometer and river data (Fig. 4). Obtained contour lines are not perpendic-

ular to the south boundary and are not very stable. Moreover, the estimated contour

line near Villeneuve sur Lot is 60 m, whereas the flow model gives a value of 50 m.

To improve this map, no flow boundary conditions were applied along the south

boundary. They are represented by vertical red segments on Fig. 5: the red dots

represent the point of application of the constraint (the xα) and the red segment the

segment joining the two dummy points xα1 and xα2 of Eq. 6. The length of the

segments is 4 km and the xα are separated also by approximately 4 km. The result

obtained by kriging under these boundary conditions is displayed Fig. 5 and is much

more consistent with the hydrogeological hypothesis.

Boundary conditions can also be used to account for groundwater ridge. Figure 6

shows the example of the Médoc groundwater ridge, located in the western part of

this aquifer, near the Atlantic Ocean. The upper left map (map a) shows the

Fig. 1 Available data for the Middle Eocene aquifer around Bordeaux City (France)
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Fig. 2 Variogram of hydraulic head for year 2007 (piezometers data only)

Fig. 3 Hydraulic head computed from the flow model
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hydraulic head derived from the hydrodynamic flow model for year 2007. Note that

additional constant heads have been added in the ocean (green point along the

western boundary) in order to calibrate the flow model.

The same data are used again with ordinary kriging (map b): the obtained

groundwater ridge is less continuous and the map is unstable in this area. Boundary

conditions are then introduced as no flow data perpendicularly to the groundwater

ridge. The new computed map (Fig. 6 – (map c)) is now much more continuous and

satisfactory. The comparison of the southwestern part of map (a) with the same part

of maps (b) or (c) shows that the high gradient area seen on map (a) near the

southern aquifer boundary is not reproduced on maps (b) and (c). This difference is

due to a supplementary point (named 08512X0001), not measured in 2007, that was

introduced in the flow model to calibrate it. After adding it to the 2007 piezometer

data with the same hydraulic head value, we get the map (d) that is now very

satisfactory. This shows that even if introducing boundary conditions in the kriging

improves the results, a sufficient number of measurements of hydraulic head is

essential to calibrate the correct value.

Fig. 4 Hydraulic head computed by ordinary kriging
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4 Kriging Heads with External Drift Based on Smoothed
Topography

4.1 Proposal of a Methodology to Smooth the Topography

As recalled in the review of previous work, kriging hydraulic heads with external

drift based on smoothed topography can be used in unconfined aquifers, but the

remaining question lies in the way to smooth the topography. We propose to smooth

the topography using a standard moving average and to set the smoothing radius

using the following method:

• Several smoothing radius are tested. In each cell of the initial topography grid,

we compute a new field equal to the initial topography averaged within the

specified radius.

• For each smoothing radius, we compute the variogram of the residual:

Fig. 5 Hydraulic head computed using no flow boundary conditions
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R xð Þ ¼ HH xð Þ � ZS xð Þ ð1Þ

where R(x) is the residual at point x, HH(x) the measured hydraulic head, and ZS
(x) the smoothed topography at this point.

• The scatter diagram of both variables and the linear regression of hydraulic head

against the smoothed topography are also computed.

The smoothing radius is then chosen close to the value that minimizes the

variance of the regression error and that gives the most correlated variogram as

well as a nearly linear scatter diagram.

Fig. 6 Use of boundary conditions given by a groundwater ridge; (a) hydraulic head from the flow

model; (b) from ordinary kriging; (c) from kriging with boundary conditions; (d) idem c with a

supplementary data
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4.2 Application

This method has been applied successfully for several unconfined aquifers (Saltel

and Bourgine 2015). We report here the example of an aquifer located in the

Turonian chalk located near Perigueux City (Dordogne department, southwest of

France) (Bourgine and Pédron 2011). In this aquifer, 67 piezometers are monitored

in an area of 38� 40 km. A manual contouring is available for the high waters of

year 2002 (Fig. 7). This figure shows that the manual piezometric map is much

smoother than topography but follows more or less the topography. As the ground-

waters are converging toward the La Dronne river, the contour lines were drawn

perpendicularly to the river axis.

To quantify the correlation between hydraulic head and topography (initial or

smoothed), the topography was smoothed using a moving average. The radius of

smoothing was increased from 0 (no averaging compared to initial 50 m resolution

digital elevation model) to 3,000 m. For each window size the standard deviation of

the error of the linear regression of the measured hydraulic head as a function of

smoothed topography was computed, as well as the variogram of the residual R(x)
(Fig. 8).

Figure 8 (left) shows that the standard deviation of the regression error reaches a

minimum for a window radius of 1,000 m. This radius is chosen as the optimal one

and the variogram of the residual R(x) is computed (Fig. 8 – right). It can be fitted

with an exponential model with a practical range of 5,300 m.

Figure 9 shows the linear regression between the measured hydraulic head and

(left) the initial topography (50 m resolution) or (right) the topography smoothed

with a radius of 1,000 m. The correlation is much better in the second case. In this

case it is clear that the window radius of 1,000 m gives the best results. We have

Fig. 7 Available data for the Turonian aquifer
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encountered other situations where the minimum in Fig. 8 can be chosen between

two or three window radius. In this case we compare the variograms of the residuals

and chose the radius that gives the best variogram continuity. It is also possible to

compare the linear regressions obtained for various radii and select the radius that

gives the best results. At last it is also possible to perform a cross validation for each

window radius and select the radius that gives the best results in the key areas of the

aquifer to be studied.

At last kriging with the smoothed topography as external drift was performed in

the whole aquifer, and results were compared to other kriging options: ordinary

kriging and universal kriging with polynomial drift, as well as with manual

contouring. Kriging was performed on a 500 m cell-size grid.

Table 1 shows a comparison between manual contouring and three types of

kriging. The second column gives the number of meshes in the estimated grid for

which the estimated hydraulic head is above topography. Considering that the

aquifer is not confined, this should not be observed. Results show that kriging

with external drift is far ahead from other methods and gives the best results. In

addition, we indicate in the table the mean and maximum value of the difference

between interpolated value and topography, when interpolated value is above

topography. Ordinary kriging and universal kriging give results of equivalent

quality and are not significantly better than manual contouring, whereas kriging

with external drift gives clearly the best results.

Another way to quantify the quality of the three kriging is to use a subset of data

as validation data set. For this we selected an area south of the Mareuil City where

the water table draws a dome (Fig. 10). The 19 piezometers located in the dome (red

points on the figure) were discarded, and only the other piezometers located outside

this dome (blue triangles) were used as input data for kriging.

Results of this validation test are shown Fig. 11. The upper part of the figure

shows the interpolations obtained using all data (blue triangles + red points). All the

interpolations are consistent and close to manual contouring. The lower part of the

Fig. 8 Residual standard deviation versus radius of the moving average (left) and variogram of

residual for the optimum size (right)
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figure shows the result obtained when only the points represented by blue triangles

on Fig. 10 are used. As expected, ordinary kriging and kriging with polynomial drift

are not able to reproduce the dome at the center of the figure. Conversely kriging

with external drift gives very satisfactory results, as it tends to mimic the shape of

the smoothed topography when interpolation is performed far from the data.

4.3 Discussion

Similar tests were performed in other areas of the aquifer, and similar results were

obtained.

As a conclusion of this example, kriging with external drift based on smoothed

topography gives consistent (and the best) results in this unconfined aquifer. The

influence of external drift becomes dominant far (compared to variogram range)

from the data, which is one of the well-known properties of this method. In areas

Fig. 9 Linear regression between hydraulic head and topography (initial and smoothed)

Table 1 Comparison of three kriging options with manual contouring

Calculation option

Nb of meshes with computed head >
topography

Mean crossing

(m)

Max. crossing

(m)

Manual contouring 120 5.9 32

Ordinary kriging 111 7.8 25

Universal kriging 116 4.7 15

Kriging with exter-

nal drift

14 2.1 7.5
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with sparse data, it can be a drawback if the correlation is not linear or weaker, but

that was not observed here.

One of the limitations of this method is that the window size used to smooth the

topography is constant over the whole studied area. Moreover it does not take into

account hydrodynamic properties of the aquifer. It is likely that results could be

improved by letting the size of the smoothing window vary, as a function of rock

hydrodynamic properties, or according to other topographical of hydrogeological

information (draining valley, dry valley, plateau, terrain slope or change of slope,

etc.), but that was not investigated in this work.

5 Conclusions

This work illustrates the use of two types of kriging in order to take into account

hydrogeological constraints when building piezometric maps. These two types of

kriging (kriging with external drift based on smoothed topography and kriging with

boundary conditions) are not new but not very well known by hydrogeologists. For

both methods we obtain much better results than with ordinary kriging or universal

kriging that are often proposed “by default” in many software. For kriging with

external drift, we propose a method that facilitates the choice of the smoothing

radius when smoothing the topography. Both kriging methods were implemented in

Fig. 10 Test zone in the “Mareuil dome” area. Blue triangles are points kept as input for

interpolation, and red points are data used to validate the interpolation result. AB cross section

shown next figure. Coordinates in Lambert II projection, meters
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GDM software. This software, developed by the BRGM, is used for many appli-

cations (geological modeling, geochemistry, environment, hydrogeology,

geostatistical analysis). A report was also written and training organized, in order

to describe the methodology to be followed by hydrogeologists. In this way a better

standardization of procedures is obtained that facilitates the work.

Of course the expertise of the hydrogeologist remains fundamental in order to

define, for example, the appropriate boundary conditions that should be taken into

account to assess the quality of the resulting map and to introduce additional

constraints when necessary.
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A Gradient-Based Blocking Markov Chain
Monte Carlo Method for Stochastic Inverse
Modeling

Jianlin Fu, J. Jaime Gómez-Hernández, and Song Du

Abstract Inverse modeling for subsurface flow and transport in porous media is

expected to improve the reliability of predictions in that the realizations generated

are consistent with the observations of states. A gradient-based blocking Markov

chain Monte Carlo (McMC) method is presented for stochastic inverse modeling.

The method proposed effectively takes advantage of gradient information for

tuning each realization to create a new “candidate” proposal, and hence it is capable

of improving the performance of McMC. The gradients are efficiently computed by

an adjoint method. The proposal mechanism is based on the optimization of a

random seed field (or probability field), and thus it is able to preserve the prior

model statistics. The method proposed has better performances than the single-

component McMC and also avoids directly solving a difficult large-scale

ill-conditioned optimization problem simply by turning it into a sampling proce-

dure plus a sequence of well-conditioned optimization subproblems. A synthetic

example demonstrates the method proposed.

1 Introduction

Inverse modeling for flow in heterogeneous porous media refers to a process of

producing geological models based on some measurements of model responses that

are related to model parameters according to known physical laws. Two typical
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examples are history matching in petroleum engineering and model calibration in

hydrogeology. Many inverse methods have been developed in the last few decades.

The Markov chain Monte Carlo (McMC) method stands itself from other compet-

itors probably because of its several merits. First, McMC can, in theory, sample the

entire space of the posterior probability density function, allowing extensive eval-

uation of model uncertainty and prediction uncertainty. Second, McMC is very

flexible; it does not limit to any prior assumption about the type of spatial variability

and can generate non-Gaussian fields, e.g., channels (Alcolea and Renard 2010).

Third, the ill-posed inverse problem is cast as a sampling problem (by construction)

without any explicit objective function optimization involved and thus becomes

well-posed. Fourth, McMC is relatively simple to implement, and the complex

forward simulator can be called in a noninvasive black-box way. On the other hand,

McMC has also some drawbacks, e.g., slow rate of convergence and high compu-

tational demand.

To improve the convergence rate of McMC, Fu and Gómez-Hernández (2009a,

b) proposed a so-called blocking McMC (BMcMC) scheme to accelerate the

generation of inverse-conditional realizations and demonstrated its capability and

efficiency. It is well known that a block scheme can accelerate the convergence of

McMC. Besides the efficient scaling, another possible reason for the success of

BMcMC is that it accounts, through a geostatistical approach, for the strong

correlation between the parameters within one coarse block; beyond the block,

the parameters are less dependent of or decoupled from others as displayed in

natural geological phenomena. Unlike the truncated Karhunen-Loeve expansion,

BMcMC treats the block as the updating unit and can be viewed as an implicit

dimension reduction technique (the relative dimension is reduced because of the

use of blocks) but without damaging the structure of the models.

The main contribution of this work is to develop a new proposal mechanism by

combining gradient information with BMcMC, such that optimal (based on the

current state) realizations can be efficiently generated due to the local optimization

property of the gradient-based method and, at the same time, the model space can

be sufficiently explored owing to the global optimization property of BMcMC.

Besides the specific differences in the algorithm from other gradient-based methods

(e.g., Duane et al. 1987; Casey et al. 2008; Girolami and Calderhead 2011; Hanson

2002; Martin et al. 2012; Qi and Minka 2002; Zhang and Sutton 2011), one of the

striking features of the present method is the preservation of the model structure for

stochastic inverse modeling.

A 2D transient single-phase flow inverse modeling problem is used to illustrate

the proposed method. Results show that the method proposed further improves the

performances of BMcMC simply because of the efficient coupling of gradients with

the generation of geostatistical models. The gradient information uncovers the most

sensitive places that significantly influence the objective function and, thus, can be

used to guide the search of the updating places such that the McMC computation

can be sped up. The gradients cannot guarantee a global minimum but can cause a

fast locating of possible regions of the several minima. The BMcMC can guarantee

the final finding of the global minimum in theory, but the efficiency might be
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problematic. The method proposed effectively combines both strengths of the

traditional gradient method and BMcMC.

2 Blocking McMC

Consider a random function (RF) discretized at n grid nodes and assume that there

are m hard data (i.e., direct observations) and k linear or nonlinear state data where
the term “nonlinear” means that the dependent state data are a nonlinear function

(e.g., through flow and transport partial differential equations) of model parameters.

Specifically, let x denote the RF, x1 ¼ xobs denote the m hard data, and y ¼ yobs
denote the dependent state data. The objective of a stochastic modeling is to

generate realizations of x conditioned to x1 and inverse conditioned to y, i.e., x|
x1,y. If we adopt a multi-Gaussian distribution to characterize the RF, thenex � Nðμ,CxÞ, where μ is the prior mean of the RF and Cx is the two-point

covariance. After conditioning to the hard data, the distribution remains multi-

Gaussian, xjx1 � Nðμxjx1 ,Cxjx1Þ, where μx|x1 is the conditional mean of the RF and

Cx|x1 is the conditional covariance, which, respectively, correspond to the simple

kriging (SK) estimate and the SK covariance commonly used in geostatistics.

The joint prior probability density function (pdf) of the multi-Gaussian random

field x conditioned to the hard data is

πðxjx1, θÞ / exp �1

2
ðx� μxjx1ÞTC�1

xjx1ðx� μxjx1Þ
� �

, ð1Þ

where the hyperparameter θ represents the prior information about the RF given by

the prior mean μ and the prior covariance Cx, which are necessary to compute the

SK estimate and the SK covariance. These prior values have to be either adopted as

a priori subjective estimates or modeled after some measurements. Essentially, this

pdf (1) measures the dissimilarity (or distance) of a realization from the prior; the

closer to the prior, the higher the probability. Usually the covariance reflects our

limited knowledge on the subsurface reality. The realizations generated from this

distribution by Monte Carlo are all considered as “equally likely.”

We assume a multi-Gaussian error for the discrepancy between the observed

state y and the state resulting from the approximate solution of the state equations

ysim ¼ gðxÞ, ysimjex � N
�
gðxÞ,Cy

�
, where Cy describes the degree of discrepancy

between the transfer function g(x) and the true but error-prone observation y.
The joint pdf of y for a realization of the parameters x is given by

πðyjxÞ / exp �1

2
ðy� gðxÞÞTC�1

y ðy� gðxÞÞ
� �

: ð2Þ

The error covariance matrix Cy is generally assumed diagonal. For the deterministic

optimization problem, the objective function JML is often defined as �lnπ(y|x),
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JML ¼ 1

2
y� g xð Þð ÞTC�1

y y� g xð Þð Þ; ð3Þ

the optimal solution of which corresponds to the maximum likelihood

(ML) estimate. Similarly, this pdf (2) measures the possibility (or simply the

distance in (3)) of the simulated results of a realization to reproduce the data by

recognizing the uncertainties of both data and simulations.

Following Bayes’ theorem, we can derive the posterior distribution of x given

the observations x1 and y, and the prior model θ, and write the posterior pdf as

πðxjx1, y, θÞ
/ exp �1

2
ðx� μxjx1ÞTC�1

xjx1ðx� μxjx1Þ �
1

2
ðy� gðxÞÞTC�1

y ðy� gðxÞÞ
� �

:
ð4Þ

For the deterministic optimization problem, the regularized objective function

JMAP is often defined as -lnπ(x|x1,y,θ) by dropping the constant, i.e.,

JMAP ¼ 1

2
ðx� μxjx1ÞTC�1

xjx1ðx� μxjx1Þ þ
1

2
ðy� gðxÞÞTC�1

y ðy� gðxÞÞ, ð5Þ

the solution of which corresponds to the maximum a posteriori (MAP) estimate.

Now the task for stochastic inverse modeling is how to draw independent

identically distributed (i.i.d.) multivariate samples (not just an estimate) from this

posterior distribution. In the sequel, the explicit dependency of x on the prior

model θ and on the conditioning data x1 is dropped out to lighten the notation,

thus πðxÞ � πðxjx1, θÞ and πðxjyÞ � πðxjx1, y, θÞ. Plus, x is normalized by remov-

ing the mean. A blocking McMC was proposed by Fu and Gómez-Hernández

(2009a) to draw i.i.d. realizations from (5).

The main idea of BMcMC is that the proposed member x* is built from the

previous member x by modifying an entire block of grid nodes. The mechanism of

how the block updating works was shown in Fig. 1 of Fu and Gómez-Hernández

(2009a): x denotes the entire field; _x: denotes a subset of the entire field centered at
the block to be updated for the purpose of approximating the prior multivariate pdf,

π _xð Þ � π xð Þ; x̂ is the block that will be modified in the updating from x to x*; x
^
is a

skin of grid cells around the block; and €x represents the “extended block” made up

of the updating block x̂ plus the skin x
^
. More details can be found in Fu and

Gómez-Herndez (2009a).
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3 Gradient-Based BMcMC

The central idea of the gradient-based BMcMC method (gBMcMC) is to propose a

new candidate x*|x using gradient information based on the block updating of

McMC (by “maximizing” the likelihood π(y|x*)), such that the convergence rate

and the acceptance ratio can be increased and thus the computational efficiency can

be enhanced. Another possible way is to find an optimal x*|x by maximizing the a

posteriori density π(x*)π(y|x*) using the gradient-based MAP method. A probabil-

ity perturbation gBMcMC method is presented here for this purpose.

Instead of focusing on x*|x itself for the proposal function q(x*|x), we introduce
a probability perturbation gBMcMC method that works on the random deviate z*|z
used for the generation of the block conditional realization:

x̂ ¼ L21L
�1
11 x

^ þ L22ẑ ð6Þ

where L11, L21, and L22 can be computed from

€C ¼ €C11
€C12

€C21
€C22

� �
¼ LU ¼ L11U11 L11U12

L21U11 L21U12 þ L22U22

� �
; ð7Þ

in which €C is the prior covariance matrix for the block €x. Working on the random

deviate allows the method to maintain the structure consistency for all the stochas-

tic realizations even though the optimization method itself does not. Although the

gradient can be computed for the entire field, we only utilize part of this information

that is closely related to the updating block such that we can locally work on that

block. The advantages of using only a block’s information are the following:

(1) McMC is more efficient based on block updating, (2) the dimensionality of

the local optimization problem used to tune the field can be limited to a relative

small size (i.e., of x̂ ) and thus the optimization problem can be efficiently solved,

and (3) if the multiscale adjoint method is used to compute the gradient, only the

local gradient is required and can be reconstructed selectively such that the com-

putational efficiency can be greatly improved (Fu et al. 2010, 2011).

Again, we only need to tune a local block x̂ in proposing x*|x. The derivative of
the objective function J ¼ JML in (3) with respect to the random deviate ẑ
(or equivalently the probability field) is computed by

∂J
∂ẑ

¼ ∂J
∂x

∂x
∂ẑ

� ∂J
∂x̂

∂x̂
∂ẑ

; ð8Þ

where ∂J
∂x̂ is simply the computed gradient of the objective function with respect to

model parameters using the adjoint method (Fu et al. 2010, 2011). Note that ∂x̂
∂ẑ is

simply the lower triangle matrix L22 in (6).

In this way, the structure information contained in the prior covariance is

explicitly applied to the realization generated, hence ensuring model consistence.
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More details can be found in Fu and Gómez-Hernández (2008). The accuracy of the

approximation in (8) largely depends on the correlation length of the field and the

flow scenario. However, the quality of the approximation does not damage the

quality of the solution because it only serves to find a candidate for the construction

of the Markov chains.

Sensitivity analysis shows that the size of the computational template associated

with each updating block is generally not necessarily very big (Fu and Gómez-

Hernández 2009a); a common multidimensional gradient-based optimizer will

work fine in finding the “optimal” ẑ opt for an updating block. The BFGS method

(Broyden-Fletcher-Goldfarb-Shanno; also called the quasi-Newton method) is one

of the most efficient gradient-based optimization methods and is applied here for

the local optimization problem. Its key feature is to iteratively build up a good

approximation to the inverse Hessian matrix (Press et al. 1992). Within this method,

the deviate at the iteration l is updated by

ẑ l ¼ ẑ l�1 þ Ĥ
�1

l ĝ l � ĝ l�1ð Þ; ð9Þ

where Ĥ
�1

l is the inverse Hessian matrix.

Several additional comments are pertinent:

1. Although one can start gBMcMC for stochastic inverse modeling with a history

matched model, which can be obtained by some deterministic approaches

(Fu et al. 2010, 2011), we assume that this large-scale model is not available

in this work but one can initialize gBMcMC with an unconditional guess model

that was generated by some geostatistical tool (Gómez-Hernández and Journel

1993).

2. Because updating one block may not necessarily reduce the objective function

too much (especially if the block is located at an insensitive zone), a general

recommendation is to perform only a couple of iterations for solving the local

optimization problem.

3. Only the relatively sensitive locations (e.g., above a certain sensitivity threshold)

should be subject to the gradient-based model update, while the insensitive

locations enter the standard McMC update without prior gradient optimization.

By doing so, many local optimization problems can be avoided.

4. In the case that the convergence is problematic for the local optimization, an

escape mechanism is required to ensure the continuous evolution of the chain

without break, for example, the chain can be advanced by the best result at hand

even though the convergent result is not available, or the chain keeps the current

state and finds another place to tune, i.e., the so-called “run-and-hit” scheme;

note that a “hit-and-run” scheme may not work fine with a gradient-based

proposal since if an “optimal” proposal is rejected, it is usually hopeless to

tune the same block at the current state to match the data.

An adaptive version of the probability perturbation gBMcMC can be formulated

when the gradient-based update is always located at the most sensitive places, i.e.,
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the block with the highest gradients. Again, a “run-and-hit” scheme may be invoked

if the objective function does not decrease too much after several iterations by

tuning the most sensitive places.

4 An Illustrative Example

4.1 Experimental Setup

Consider a 2D transient single-phase flow problem on a confined aquifer. All

parameters have consistent length and time units, the absolute magnitude of

which is irrelevant for the purpose of demonstrating the efficiency of the proposed

method, and only relative magnitudes are mentioned when necessary. The aquifer is

discretized in 100� 100 cells as shown in Fig. 1. The reference lnK field is

generated using GCOSIM3D (Gómez-Hernández and Journel 1993) with a prior

distribution lnK ~ N(0,1) and an exponential isotropic variogram. The correlation

range is set to 25 cells.

The four boundaries are set to be non-flow. The initial pressure head field is

assumed to be zero everywhere in the aquifer. The time discretization for flow

simulations employs the so-called time multiplier scheme which assumes that the

time increment for each step is multiplied by a constant time-step coefficient. The

simulation time of total 500 time units is discretized into 100 steps. The advantage

of this scheme is that it allows for an adequate time discretization at the early stage

Fig. 1 The reference lnK field and the well configuration: Four empty circles denote injection

wells and five solid dots are extraction wells
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of simulation such that the simulated transient pressure head distribution is to the

least degree influenced by the time discretization. Nine wells are drilled throughout

this confined aquifer (Fig. 1): four of them are injection wells with a constant flow

rate and the other five are production wells with a constant pressure. As the state,

the hydraulic head at the four injection wells is continuously collected for the first

50 time steps (approximately until after 40 time units).

The stochastic inverse modeling problem is to infer the hydraulic conductivity

field according to the observed hydraulic head data at the four injection well bores.

As a consequence of the method used for the generation of the conductivity fields,

lnK will preserve the prior distribution statistics, i.e., lnK ~ N(0,1), and the

exponential covariance with the range equal to 25. Measurement errors of state

(i.e., the pressure head) are assumed to have a normalized error variance of 5% at

all locations, and the error covariance matrix is diagonal.

5 Results

We first want to compare the performance of the BMcMC algorithms, i.e., how the

convergence rates and acceptance ratios of various algorithms look like. Figure 2

plots the traces of three BMcMC algorithms with different block sizes. The x axis
shows the chain index, scaled in log; the y axis shows the log normalized mismatch,

that is, the mismatch (i.e., the objective function) is first normalized to one by

dividing by the original initial value and then a log value of the normalized

mismatch is taken as the y value. An obvious observation is that, for the relatively

large block size (i.e., of 25� 25), the two gradient-based algorithms (i.e., the

gBMcMC and adaptive gBMcMC) do improve the convergence rate of BMcMC

(Fig. 2b); moreover, as expected, the adaptive scheme that is able to locate the most

sensitive places for model updating (i.e., the adaptive gBMcMC) seemingly has a

faster convergence rate than the others (both gBMcMC and BMcMC). However,

another observation is that for a small block size (i.e., of 8� 8), such improvement

is not very evident (Fig. 2a). This is mainly because the objective function can be

brought down much more quickly by the gradient-based methods if the block size is

larger; on the other hand, the difficulty of the underlying optimization problem is

also increased and may become very challenging for a large-scale problem. In other

words, updating the entire field may have the fastest convergence rate, but the

optimization problem for finding the updates is too challenging. In addition, from

Fig. 2, one can find that the adaptive algorithm has the highest rate of convergence,

yet the quality of inverse solution seemingly is the worst. By quality, we mean the

objective function value to measure the mismatch. Note that the adaptive algorithm

has the largest average objective function; yet, since the y axis is taken as log of the
normalized mismatch, the real difference of the objective functions between them is

quite small in reality. These observations are supported by several parallel chains.

Next, we want to see the quality of the history matching, i.e., how the historical

data are reproduced and how reliable the predictions are. Figure 3 plots the histories
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of the pressure head at the four injection wells from the three inverse modeling

algorithms. For comparison, the unconditional cases that were generated by

GCOSIM3D are also plotted. The conditioning state data are plotted in circles,

while the gray lines plotted 200 independent realizations from different methods.

Note that the inverse modelings only constrain the models to the first 40-day’s state
data, the rest of states is treated as the prediction. Clearly, the unconditional cases

cannot reproduce the historical data but stochastic inverse-conditional realizations

match well the given data; also, stochastic inverse modelings are able to offer much

better predictions than the unconditional cases. Moreover, the data are efficiently

enveloped by the inverse-conditional realizations, meaning that the realizations

generated by the stochastic inverse modeling algorithms (BMcMC, gBMCMC, and

adaptive gBMcMC) well represent a model of uncertainty consistent with the data.

The failure of unconditional realizations in representing the uncertainty is probably

because the well performances are very sensitive to the heterogeneity of lnK around

the well bores. In addition, the adaptative gBMcMC has a relatively larger uncer-

tainty than the others simply because it has larger objective function values (Fig. 2

also shows the mismatches).

Finally, we point out that the main spatial pattern of the reference field has been

reasonably reproduced by the proposed method using various block sizes. The

variograms follow the prior specifications and are consistent with the reference

field (Fig. 4). Note that the prior model represents the models before history

matching; BMcMC plots history matched models using BMcMC method; while

gBMcMC represents the models after history matching using the method proposed.

Therefore, the method proposed can effectively preserve the spatial statistics and

structure for stochastic inverse modeling.
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Fig. 2 Convergence rate of McMC inverse modelings: gBMcMC1 shows the gBMcMC method

and gBMcMC2 represents the adaptive gBMcMC method
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6 Discussion and Conclusions

We present a gradient-based probability perturbation BMcMC method for the

stochastic inverse modeling and uncertainty quantification of flow in porous

media. The method proposed further improves the performances of BMcMC simply

because of the efficient coupling of gradients with the generation of geostatistical

models. The gradient information uncovers the most sensitive places that signifi-

cantly influence the objective function and, thus, can be used to guide the search of

the updating places such that the McMC computation can be sped up. The gradients

cannot guarantee a global minimum but can cause a fast locating of possible regions

of the several minima. The BMcMC can guarantee the final finding of the global

minimum in theory, but the efficiency might be problematic. The method proposed

0
0

1

2

P
re

ss
ur

e 
he

ad 3

4

5 Well #2 (nonconditioning) 

(a) (b)

100 200 300 400 500

TIME

0
0

1

2

P
re

ss
ur

e 
he

ad 3

4

5 Well #2 (gBMcMC1 13x13) 

100 200 300 400 500

TIME

Fig. 3 Reproduction of the historical state data at well #2: (a) before history matching and (b)
after history matching

1.4 (A) x direction (B) x direction

1

0.8

0.6

0.4

0.2

0
0 10 20 30 40 50

distance

reference
prior model
BMcMC (8x8)
BMcMC (13x13)
BMcMC (25x25)
gBMcMC1 (8x8)
gBMcMC1 (13x13)
gBMcMC1 (25x25)

1.4

1.2

1

0.8

0.6

γγ

0.4

0.2

0
0 10 20 30 40 50

distance

reference
prior model
BMcMC (8x8)
BMcMC (13x13)
BMcMC (25x25)
gBMcMC1 (8x8)
gBMcMC1 (13x13)
gBMcMC1 (25x25)

Fig. 4 Ensemble mean of semivariogram of MCMC inverse modeling: (a) x direction and (b)
y direction

786 J. Fu et al.



effectively combines both strengths of the traditional gradient method and

BMcMC.

In the algorithms that we present, we only consider updating one block with a

fixed size. As we observed before for BMcMC (Fu and Gómez-Hernández 2009a),

a varying block scheme is also expected to improve the performance of gBMcMC

similarly. As observed, a larger updating block usually has a faster rate of conver-

gence but a moderately small block yields solutions with a better quality. One may

start McMC with a large block until convergence is reached and then switch to a

scheme with a small block to output realizations. Or simply pushing to an extreme

situation, one may initialize the chain with a history matched model that is obtained

from a deterministic method (Fu et al. 2011) and then use gBMcMC to generate the

stochastic realizations. A “multiblock” scheme may also be considered; this is

achieved by simultaneously updating the field with several blocks that are located

at the most sensitive positions as discovered by the gradients. In this way, the

dimensionality of problem can be reduced compared to the original large-scale

gradient-based optimization problem, and thus the computational challenge is

largely relaxed, but at the same time, the accuracy of the final results does not

deteriorate since the most sensitive places are always updating. This is somehow

similar to the localization scheme: the most sensitive places are often found in the

very near vicinity around the observation points (Fu et al. 2011).

Since the high-resolution gradient computation is also very expensive, just like

the forward simulation, a multiscale strategy may further apply and improve the

computational efficiency of BMcMC. There are two possible options to this goal.

One is the so-called two-stage McMC method proposed by Dostert et al. (2006).

Another more efficient way is to use the so-called multiscale gradient method

(Fu et al. 2010, 2011). The gradients are computed only at the coarse scale, but

the fine-scale gradients can be selectively reconstructed for the target block using

the basis functions and coarse-scale gradients. The MH test is only applied once to

the fine scale and avoids the two-stage procedure. Hence, this multiscale method is

a good candidate for gradient-based BMcMC.

The use of a gradient “mode” by accounting for model uncertainty may also be

considered for improving the performance of gradient-based stochastic inverse

modeling. A possible way is to use an ensemble gradient that is computed from

an ensemble of realizations such that the mode of gradients can be used for locating

the position of the targeted posterior distribution. For BMcMC, the ensemble

gradient will gradually progress toward such mode along the evolution of McMC

as more individual gradients of the models generated are computed and added into

the database for assembling the gradient mode. Note that even though the ensemble

mean of stochastic realizations is homogeneous, it does not necessarily mean that

the ensemble gradient is homogeneous. This is because it is the heterogeneity (i.e.,

the spatial variability), rather than the mean values of fields, that controls the

gradient.
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Geostatistical Modelling and Simulation
Scenarios as Optimizing Tools for Curtain
Grouting Design and Construction at a Dam
Foundation

V. Gavinhos and J. Carvalho

Abstract Foundation treatment is a crucial stage in dam construction. An intense

construction stage dedicated to ground improvement and quality control is often

implemented. Foundation permeability is the parameter to be monitored and opti-

mized during the construction stage. This work describes the application of

geostatistics to permeability data obtained by the Lugeon test during curtain

grouting at a dam foundation. The usual construction methodology consists in

applying a sequentially phased drilling strategy materialized by drilling and

grouting a first line of primary boreholes followed by a secondary collinear line

of in-between boreholes. The studied site is located at the Sabor river mouth,

northeastern part of Portugal. Groundwater flows in a fractured medium. The

main objective of this study is assessing the advantage of a geostatistical modelling

approach in identifying the zones in which the project design criteria may demand

for a first- and a secondary-stage grouting treatment defined by a threshold perme-

ability of 1 Lugeon unit, Lu. After a preliminary statistical, spatial continuity

characterization and error study, estimation and probability maps are compared

based on ordinary and indicator kriging and indicator simulation. The obtained

models are compared with the information of the acquired construction phase data.

Obtained models are finally compared with the initial geological–geotechnical

information indicating that the described approach can be used as an optimizing

tool for curtain grouting design at a dam foundation.
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1 Introduction

Dams are among the most complex and sensitive manmade structures both in terms

of project design and construction. To prevent water passing under the main

structure and particularly to avoid the effects of under pressure and foundation

erosion, safety standards are observed very closely. This makes the foundation

treatment design and construction a crucial phase in any dam project. With the

increasingly overall quality and safety awareness regarding the foundation condi-

tions, most designers adopt an intensive construction stage dedicated to ground

improvement and quality control. The overall criteria and general strategies are

established prior to construction stage, but the real amount of work and the

adaptations to real conditions are made with close monitoring of some geological–

geotechnical parameters (like fracture density, weathering), permeability, and grout

intake. A very common parameter used in decision making for depth and density of

drilling is permeability. In this case study the project design team (EDP 2011)

established the foundation permeability as the parameter to be monitored, used in

decision making, and, finally, optimized to values under 1 Lu, all during the

construction stage.

The foundation treatment consists basically of a consolidation stage and a

sealing stage where a deep curtain of grouted drill holes is built. Curtain grouting

is a series of parallel and vertical drill holes along the dam foundation which, after

grouting and sealing the surrounding fractured rock, work as an underground

barrier to water percolation. The usual construction methodology consists in apply-

ing a sequentially phased drilling strategy in which drill holes are grouted by stages

(upward or downward according to the quality of the rock). The curtain is materi-

alized by successively drilling and grouting a first line of primary boreholes

followed by a secondary collinear line of in-between boreholes. This implies that

the permeability of the secondary drilling locations may be affected by the first

phase grouting.

The general approach is to drill all primary-stage grout positions by sectors to a

target depth and evaluate the permeability of every 5 m in each drill hole and

immediately decide to go deeper and/or prepare for second-stage treatment if

permeability above 1 Lu is found.

Geostatistical models are used to identify the areas to be targeted with further

treatment at an early stage of construction development and enable decision making

for technical specification of further treatment and, in addition, allow production

management and planning to be optimized.
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2 Objective and Methodology

The main objective of this study is assessing the advantage of a geostatistical

modelling approach in identifying the zones in which the project design criteria

may demand for an extended first phase and a secondary phase grouting treatment

defined by a threshold permeability of 1 Lugeon unit, Lu.

Once initial data sets are prepared, quality controlled and loaded into the

geostatistical software (Surfer12 and Gslib), a typical work flow is followed with

exploratory statistical analysis, spatial continuity analysis, variogram model cross-

validation, estimation with ordinary kriging, indicator kriging and qualitative

model evaluation based on the geological model comparison, and a first approach

to simulations using sequential indicator kriging (sism).

3 Geological Setting

The studied site is located at Sabor river mouth, northeastern part of Portugal. This

river crosses two main geological settings along its course: schist and granitic

complexes. At the site the dam foundation rock mass is described as a medium to

good-quality schist alternating with quartz-rich wakes with a permeable fracture

network developed in a very compact rock matrix. Regionally there is an important

tectonic active fault – Vilariça Fault – crossing the center of the valley graben

located to the west side of the site (Fig. 1). The river flows from northwest to

southeast.

Groundwater flow in this fractured medium is governed by three main planar

orientations, with various fillings and close aperture. Due to fracture network and

foliation/schistosity pattern, the dam foundation has low permeability although

some occurrences of small faults and altered veins work as preferred pathways.

Regional foliation/schistosity and some important fracture systems occur with

dips of about 40�–50� along average bearings of N 70�E (EDP 2007). A cross

section of the rock mass shows the interpreted model from the early stages of the

project, Fig. 2.

4 Technical Features

The Feiticeiro Dam is the first of two dams built at the end of the Sabor river basin.

Along with the Laranjeiras Dam (4 km upriver), it comprehends the hydroelectric

complex of Baixo Sabor project from Energias de Portugal (EDP). Specifically the

Feiticeiro Dam is a conventional gravity concrete dam with 22 blocks up to 45 m

high with a 290 m development along a straight axis approximately perpendicular

to the river current.
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Construction began at level 95 m (asl) up to level 140 m. Full storage level is

located at 138 m (asl). It is equipped with two reversible pump/turbines with

independent circuits with a total power of 34 MW, and it works as a storage

reservoir for the main production units from the Laranjeiras Dam (123 m high).

Fig. 1 Geological setting of the Feiticeiro Dam (Adapted from IGM 1989)

Fig. 2 Cross section of the study area. Geological–geotechnical profile from early studies of the

project. View from upstream to downstream (Adapted from EDP 2007)
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5 Data

The data chosen for this procedure was acquired at the construction site at a location

of production where there was enough information for a probabilistic approach. The

first sector to be drilled and monitored for permeability was the center of the river

valley (riverbed), from inside the already built foundation drainage gallery (FDG)

of the Feiticeiro Dam (Fig. 3).

The sampling occurs within the cycle of wireline core drilling where a pressure

packer test (Lugeon test) is performed every 5 m in descending mode until at least

30 m depth. Then, for the 17 primary drill holes inside the bottom rectangle in

Fig. 3, 102 Lugeon values were collected. The interpretation was made according to

the (Houlsby 1976) guidelines, assuming the values to represent the point at the

bottom of each 5 m chamber. Also these drill holes are separated by 5 m from each

other along the FDG. From this description the resulting sampling grid is regular

(5� 5 m2) from 0 to 80 m along X and from 5 to 30 m along Y, Fig. 4.

This 2D grid was obtained by shifting the depths up toward the positive Y axis

by a vertical translation of 30 m. So the value 30 in Fig. 4 actually corresponds to a

depth of 5 m and the value 10 corresponds to the depth of 20 m.

6 Descriptive Statistics

The random variable to be characterized is the permeability of the first drilling

campaign – P1, Table 1.

Fig. 3 Location of the sampled area: primary drilling campaign, spaced 5 m. Axis convention for

data georeferencing (Adapted from EDP 2007)
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There is a total of seven permeability classes. The predominant classes are low

permeability (0 Lu and 1 Lu) with some scarce high values (4 Lu and 6 Lu). Table 2

summarizes the descriptive statistics of the permeability 102 values sample set.

As expected, data distribution is very positively skewed. High skewness (2,43)
and kurtosis (6,94) indicate asymmetry and departure from normality. The high

variation coefficient indicates influence from high values which can become prob-

lematic in the estimation process.

Next charts on Figs. 5 and 6 graphically complement the information on Table 2

concerning the statistical characteristics of the primary permeability data set. As

previously observed the data distribution follows a clear lognormal tendency. Data

stationarity was evaluated using moving windows statistics for the mean and

variance and polynomial regression analysis using the function polytool (Matlab

13, Mathworks) (Fig. 6).

No significant trend was identified along horizontal and vertical directions. This

is an expected behavior for permeability in the context of dam foundation rock

masses. Stationarity and homoscedasticity were assumed and ordinary kriging was

used in estimation.

Fig. 4 Spatial representation of the data grid (Surfer12), with measured (interpreted) Lugeon

values. Assumed punctual at the bottom of each 5 m chamber

Table 1 P1 permeability

data ordering and

classification

Unit. classes of P1 Nr. of samples Cumulative

0 69 69

1 18 87

2 9 96

3 3 99

4 2 101

5 0 101

6 1 102
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7 Analysis of Continuity

Variogram analysis was performed using Surfer 12 (Golden Software). Figure 7

shows the initial omnidirectional experimental variogram fitted by a spherical

model.

To investigate a probable anisotropic behavior, four major directions � 0�, 45�,
90�, and 135� – were tested with different angular tolerances (from 22,5� up to 45�)
(Fig. 8).

Table 2 Summary statistics of P1 permeability data

Data 102 Average 0,6 Lu Max. 6,0 Lu

Median 0,0 Lu Variance 1,14 Lu2

Mode 0,0 Lu Standard deviation 1,07 Lu2

Min. 0,0 Lu Skewness 2,43

1st Q. 0,0 Lu Kurtosis 6,94

3rd Q 1,0 Lu Variation coef. 1,84

Fig. 5 Permeability P1 data frequency and cumulative histograms

Fig. 6 Data regression models along horizontal and vertical directions (polytool-Matlab13)
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Direction 45� presented the major range. The 3D model of the variogram surface

(Fig. 9) confirms the higher continuity along direction 45�.
This evidence is corroborated by the real geological setting where there are

important structures oriented according to the identified ranges of anisotropic

behavior.

The process of variogram model adjustment was affected by an overall random-

ness tendency of the data. Nevertheless cross-validation was systematically used to

check error variance during variogram parameter adjustment. The adopted values

are summarized in Table 3.

From the refinement of the adjustments, the nugget effect was reduced to 0,75,

and a final geometric spherical variogram model was assumed, modeled with an

anisotropic ratio of 1,7 along direction 45�.

8 Estimation

A contour map of the ordinary kriging estimation, based on the referred variogram

model, is shown in Fig. 10. The underlying regular grid was defined as 100� 32

nodes with a spacing of about 0,8 m covering all data points in the sampled area of

the foundation (Figs. 3 and 4).

The error study by cross-validation (Fig. 11) and residual analysis showed an

error variance of 0,6 and a maximum error of 3,6.

Fig. 7 Omnidirectional

variogram with spherical

fitted model
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This map shows that error is concentrated in the areas that most likely will be

treated with secondary drilling and grouting.

The observation of the geological–geotechnical profile of the foundation rock

mass (Fig. 2), when compared with the estimated permeability map obtained by

ordinary kriging (Fig. 10), shows clear correlation in particular in which concerns

the referred regional foliation/schistosity pattern as well as some important fracture

systems occurring with dips of about 40�–50� along average bearings of N 70�E
(EDP 2007). Although the good correlation between the geological models with the

estimation map (Fig. 12) is a positive sign of the adequacy of the analysis and of the

reliability of the permeability spatial variability model, the main objective is to

Fig. 8 Directional variograms for the four selected directions: 0�, 45�, 90�, 135�, and fitted

spherical models
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Fig. 9 3D variogram surface model (Surfer12)

Table 3 Summary of

spherical model adjustment

parameters for selected

directions

Parameter 0� 45� 90� 135�

Nugget effect 0,75 0,75 0,75 0,75

c (var. contribution) 0,25 0,45 0,45 0,25

a (range) 20 30 25 18

Fig. 10 Contour map–ordinary kriging estimation (Surfer12)
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obtain probability maps to provide assistance in decision-making processes like

project review, production planning, and strategies of execution.

Indicator kriging was the first approach to build comprehensive probability maps

of the variable, above and below the cutoff of 1 Lu, in order to identify the areas of

the foundation to be treated with further grouting. The choice of indicator kriging

relies on four fundamental features:

• It is nonparametric and does not depend on prior assumptions about the shape of

the distributions, unlike parametric methods.

• Being a nonlinear interpolator, it is useful for highly skewed data like the set

used in this investigation.

• It is less prone to over-smoothing of the variable than ordinary kriging and other

linear interpolation methods.

• It gives a direct probabilistic estimation of the areas to be further treated at the

foundation.

Fig. 11 Error map (residuals) from the kriging estimation. Values above error variance (0,6)

(Surfer12)

Fig. 12 Geological–geotechnical model compared with OK estimation map (From Figs. 2 and 10)
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For this purpose, in addition to Surfer 12, GsLib software package was used.

The binary indicator transform of the data consisted in defining the cutoff

permeability (for P1 data), following (Soares 2006), as

I 1; pð Þ ¼ 1, if P1 � 1

0, if P1 > 1

�
ð1Þ

Given the short amount of data available, only two threshold data sets were

considered by grouping the classes [0–1] and [2–6].

Although the P1 data set gave fairly adjustable experimental variograms, the

second phase, P2, data set showed randomness, and it was more difficult to model

also due to the number of pairs being even smaller. For indicator kriging the main

anisotropy angle, 45�, identified previously in the variogram study of the P1 data,

was also consistent with class [0–1] but for class [2–6] an omnidirectional expo-

nential model was adopted (Fig. 13 and Table 4).

The major geometric anisotropy range is 45�. Zonal anisotropy is residual and

discarded of the analysis.

The output indicator probability values were mapped on a grid identical to the

one used on estimation (Fig. 10) with 3,200 nodes, providing at this time a least

square estimate of the ccdf (Deutch and Journel 1998). The probability map

providing information on the areas within the threshold 1 Lu, e.g., low permeabil-

ity, with no need for further grouting treatment is shown in Fig. 14.

From Fig. 14 the predicted areas to be treated with further grouting of the

foundation become clear. Also the areas of very low permeability become very

well defined. It is observed that the areas that were more affected by error in the

estimation by ordinary kriging are the ones that bear more certainty to be treated

with a secondary stage of grouting.

For a general risk analysis, it is possible to use the E-type estimate. This is

simply the average permeability derived by weighting the permeability in each

cutoff class by the probability for that class, e.g., it is an optimal estimation of the

ccdf value at each grid node location (Goovaerts 1997).

When assessing the permeability in terms of the E-type estimates, it is assumed

that each grid cell has a single value. In this case the task is simple in terms of

computation and visualization because we only have two classes. So, the map in

Fig. 15 is consistent with the cutoff map in Fig. 14 because high mean values are

associated with high original data values, class [2–6], and complementary low

mean values are associated with class [0–1].
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Fig. 13 Indicator variograms of the threshold data sets: class [0–1] – example of the 45� fit; class
[2–6] omnidirectional fit

Table 4 Spherical model

parameters for class [0–1]

variogram

Parameter 0� 45� 90� 135�

Nugget effect 0,08 0,08 0,08 0,08

c (var. contribution) 0,08 0,09 0,12 0,09

a (range) 5 25 13 19

Fig. 14 Probability map of the permeability being above 1 Lu

Geostatistical Modelling and Simulation Scenarios as Optimizing Tools for. . . 801



9 Exploratory Approach to Simulation

To consolidate this exploratory approach on using geostatistics as an optimization

tool for decision support in dam foundation curtain grouting, the use of simulation

was tested based on the indicator kriging approach performed earlier, using the

sequential indicator algorithm sisim (from GsLib).

Figure 16 shows an example of a random realization obtained by indicator

sequential simulation. It shows a very satisfactory consistency with previous

analysis which concerns the clear identification of the distinctive main low- and

high-permeability zones with the known additional significant advantage of keep-

ing the original data variability.

This consistency with the previous analysis and with the original data corrobo-

rates the idea that the geostatistical approach can be a useful and valuable tool in

decision support for optimization of project design and production management.

10 Conclusion

The main objective of this study is assessing the advantage of a geostatistical

estimation and simulation modelling approach in identifying the zones in a dam

foundation in which the project design criteria may demand for an extended first-

stage and a secondary-stage grouting treatment. This exploratory approach showing

Fig. 15 E-type estimation of the mean of the conditional cumulative distribution function (ccdf)
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initial very promising results is intended to be developed and applied in the project

of a new dam in river Tâmega, northern part of Portugal.

After a preliminary statistical, spatial continuity and error analysis study, the

obtained estimation, probability, and simulation maps were compared. All estima-

tion and simulation results appear to be very consistent with each other and with the

known geology and geotechnical information of the site. Ordinary kriging estima-

tion, indicator kriging, and sequential indicator simulation allowed defining prob-

abilistically quantified foundation zones needing treatment. Indicator kriging, being

a nonlinear interpolator, was useful for highly positively skewed data like the data

set used in this investigation.

Obtained models were successfully correlated with the initial information of the

project base study, namely, the geological–geotechnical model, indicating that the

described approach has an interesting potential as an optimizing tool for curtain

grouting design at the dam foundation during the construction stage.

A crucial further step in this investigation will be reducing model uncertainty by

including more data and to use secondary variables to complement information.

Nevertheless any accepted and validated method of predicting the permeability in

unsampled areas will be very useful in construction stages that last up to 3 years

long, which represent a significant percentage of cost and planning. In terms of

project and production management, a simple exercise of discarding secondary

drilling and grouting labor from the identified impermeable zones would give a

clear improvement in planning, cost control, and also environment and safety gains,

indicating this methodology as having an interesting potential for support in

efficiency decisions.

Fig. 16 Indicator sequential simulation realization map obtained with sisim, from GsLib
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Técnico, Lisboa

804 V. Gavinhos and J. Carvalho



Inverse Modeling Aided by the Classification
and Regression Tree (CART) Algorithm

Julio César Gutiérrez-Esparza and J. Jaime Gómez-Hernández

Abstract Inverse modeling in hydrogeology is a powerful tool to improve the

characterization of hydraulic conductivity and porosity. In the last few years, the

use of data assimilation techniques, such as the ensemble Kalman filter, has proven

very effective in this field. However, in some cases, the parameter updates by the

filtering process may create artificial heterogeneity in certain zones in order to

reduce the estimation error. This may happen when observations are scarce in time

or space, but also when the parameters being updated are not the only responsible of

the behavior of the aquifer (for instance, when high piezometric heads are due to an

undetected recharge event, and the filter keeps reducing the conductivity to increase

the gradients around high piezometric head observations). This study pretends to

avoid those artifacts by the use of classification and regression trees. The decision

and regression trees will be implemented using the CART algorithm with the aim of

discriminating whether an updated parameter field is acceptable, and in case it is not

acceptable how to proceed. When the algorithm marks as unacceptable a parameter

field, it is swapped with another parameter field. The method is demonstrated for a

contamination event in a synthetic aquifer based on real data. A numerical model

has been created to reproduce flow and transport as observed in the real aquifer. The

model has a rectangular-shaped area of 3000 m long by 500 m wide. For the inverse

modeling process, two ensembles of fields are used, one for hydraulic conductivity

and one for porosity; if needed, recharge can be modified smoothly using spline

interpolation. The ensemble Kalman filter is used to update porosities and conduc-

tivities, and, if the decision algorithm requests it, the recharge is also modified.
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1 Introduction

In the last decade, ensemble Kalman filtering (EnKF) has been used to characterize

aquifer heterogeneity by assimilating observations such as piezometric heads and

concentrations. The filter has shown very good results when reproducing piezo-

metric heads (Zhou et al. 2011), but not as good when reproducing concentrations

(Xu et al. 2013; Liu et al. 2008). It has been shown that matching concentrations is

easier when assimilating both piezometric heads and solute concentrations than if

only piezometric heads are used (Li et al. 2012), because piezometric heads do not

contain enough information about the transport process. Furthermore, for the

purpose of matching concentrations, results are improved if both porosity and

hydraulic conductivity are updated simultaneously.

One problem we can face is that when the aquifer is large and the density of

observation small, the filter update may be restricted to small areas around the

observations, producing nonrealistic anomalies in the spatial distribution of the

parameters.

Another problem we have found is related to observations that are too close in

space and that are much more different between them than what could be attributed

to measurement errors. In these cases, some observations must be treated as outliers

and removed from the dataset, otherwise, the filter will introduce artifacts trying to

match these dissimilar observations.

When the filtering is not able to provide good results in a specific area of the

aquifer, it could be a sign that the conditions imposed for the simulation are not

correct, but this is hard to know a priori. A typical problem is the treatment of

recharge as deterministic, since there is always large uncertainty in its estimation.

The main objective of this manuscript is to address these issues by using a

decision tree so the parameter or parameters that are causing troubles in the filtering

process can be modified when needed. To do so, we use the classification and

regression tree (CART) algorithm (Breiman et al. 1984); this algorithm creates a

decision tree by a binary recursive partitioning procedure, up until a previously

imposed stopping rule is met; at this point the tree is “pruned” to obtain a clearer

and more understandable decision tree.

In this context, we present the CART-aided EnKF as an alternative to the

standard EnKF to avoid the problems mentioned above. The CART algorithm

discriminates which of the updated parameter fields should be replaced by another

field in order to avoid convergence issues or if the parameter field is incongruent

with the case being analyzed. Section 2 explains the EnKF methodology as well as

the CART algorithm. Section 3 explains the synthetic example used throughout this

paper. Results and discussions are found in Sect. 4. Finally, conclusions are in

Sect. 5.
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2 Methodology

2.1 The EnKF

Kalman filtering methods have been used for many years to estimate both system

states and parameters in an optimal manner (Haykin 2001). The EnKF differs from

the original Kalman filter in the use of an ensemble of realizations in order to obtain

a better estimation of the augmented state covariance matrix P, necessary for

optimal updating of parameters and system state variables.

In the EnKF, the augmented state vector x is a collection of parameters and state

variables; in our case x consists of logarithm of hydraulic conductivity (LnK) and
porosity (Φ)—the parameters—, and hydraulic heads (h) and concentrations (c)—
the state variables. Vector x is updated with the aim of reducing the difference

between model predictions and observations, through the assimilation of state

observations in time.

For a number of realizations, Nre in the ensemble x ¼ x1; x2; . . . ; xNre
ð Þ, any

realization i, xi includes parameters and state variables:

xi ¼ A
B

� �
i

¼ a1; a2; . . . ; aNe�Np

� �T
b1; b2; . . . ; bNn�Ns
ð ÞT

 !
i

ð1Þ

where vector A is the vector of parameters and vector B is the vector of system state

variables, Ne is the number of elements in which the model is discretized (in our

example over a finite element mesh), Np is the number of parameters (in our case,

2, loghydraulic conductivity and porosity), Nn is the number of nodes in which

heads and concentrations are calculated (in our example, at the vertices of the finite

element mesh), and Ns is the number of state variables (in our case, 2, heads and

concentrations). For the parameters and state variables considered in our example,

Eq. (1) becomes

xi ¼ LnK1,Φ1,LnK2,Φ2, . . . ,LnKNe
,ΦNe

ð ÞT
h1; c1; h2; c2; . . . ; hNn

; hNn
ð ÞT

� �
i

ð2Þ

The filtering process then consists of two steps; the first one is called the forecast

step and the second one the update step. In the forecast step, an initial ensemble of

parameters is used as input for the transient groundwater flow and solute transport

model:

xt ¼ F xt�1ð Þ ð3Þ

where F(∙) is the transfer function (numerical model) used to calculate state vari-

ables, and it would correspond to the solution of Eq. (8) for heads and of Eq. (9) for

concentrations shown below. The transfer function only modifies the state vari-

ables, leaving parameters unchanged.

Inverse Modeling Aided by the Classification and Regression Tree (CART). . . 807



After the forecast is done, the update step starts by collecting observations at

observation locations. The discrepancy between observations and predictions is

used to update the augmented state vector according to the following equation:

xut ¼ x ft þ Gt zt þ ε� Hxft

� �
ð4Þ

where xut is the updated augmented vector; xft is the forecasted vector obtained with

the flow and transport model; zt is the observation vector at time t; ε is the

observation error following a normal distribution of zero mean and diagonal

covariance R; H is the observation matrix, it is composed of 1s and 0s when

observations are located at mesh nodes; and Gt is known as the Kalman gain and

is given by the following expression:

Gt ¼ Pf
t H

T HPf
t H

T þ Rt

� ��1

ð5Þ

where Pf
t is the covariance matrix of the augmented state, computed from the

ensemble of realizations.

In order to reduce spurious correlations, we have used covariance localization as

a way to constrain correlation up to a certain range. Using the distance-dependent

localization function used by Xu (Xu et al. 2013):

ρeX Y
ðdÞ ¼ ρYYðdÞ¼

� 1

4

d

a

� �5

þ 1

2

d

a

� �4

þ 5

8

d

a

� �3

� 5

3

d

a

� �2

þ 1, 0 � d � a;

1

12

d

a

� �5

� 1

2

d

a

� �4

þ 5

8

d

a

� �3

þ 5

3

d

a

� �2

� 5
d

a

� �
þ 4� 2

3

d

a

� ��1

, a � d � 2a;

0 d > 2a:

8>>>>><
>>>>>:

ð6Þ

where d is the Euclidean distance and a is a length parameter controlling the

influence distance of the covariance (200 m in our case for both ρeXY and ρYY).

Then, Eq. (5) can be rewritten as follows:

Gt ¼ ρeXY dð Þ∘P
f
t H

T ρYY dð Þ∘HP
f
t H

T þ Rt

� ��1

ð7Þ

In Eq. (7) � denotes the Schur product between correlation coefficients and

covariance terms.
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2.2 Flow and Transport Equations

The groundwater flow equation in saturated porous media can be written in the

form:

∇ � K∇hð Þ þ w ¼ Ss
∂h
∂t

ð8Þ

where ∇ denotes the gradient operator, ∇� is the divergence operator, K is the

hydraulic conductivity [LT�1], h is the hydraulic head [L], w represents the source/

sink terms [LT�1], Ss is the specific storage coefficient, and, finally,
∂h
∂t is the partial

derivative of h with respect to time t [T].
The transport equation for a nonreactive solute can be expressed as

Φ
∂c
∂t

¼ �∇ � qcð Þ þ∇ � ΦD∇Cð Þ ð9Þ

whereΦ denotes porosity, ∂c∂t is the partial derivative of concentration c [ML�3] with

respect to time t [T], q is the Darcy velocity [LT�1], and D is the dispersion

coefficient tensor [L2T�1].

3 CART Algorithm

The CART decision tree is a binary recursive partitioning procedure capable of

processing continuous and nominal attributes both as targets and predictors

(Springer-Verlag 2007); data can be treated in its raw form and it is not sensitive

about abnormal data or outliers.

First, the tree is grown to its maximum size, and then, it is pruned back to reduce

its complexity, where the nodes to be pruned are the ones that contribute the least to

the overall performance of the tree when using training datasets. Then, performance

is measured via cross-validation or with independent data.

To make a decision tree, an initial node is created; nodes will split the informa-

tion based on splitting rules in order to best comprehend the studied subject. When

growing the tree, the splitting rules compare an attribute with some threshold or

condition, for example:

IF X CONDITION then go left, otherwise go right:

where CONDITION can be related to a threshold or could be related to an attribute

value, e.g.,

Inverse Modeling Aided by the Classification and Regression Tree (CART). . . 809



if Xj >¼ XR
j : ð10Þ

Here Xj is one of the possible values of variable j in our training dataset, while X
R
j

is the threshold or attribute for variable j that will discriminate the data. This is

repeated, until all the dataset is analyzed and terminal nodes contain information

only for one class. For every split, the information is homogenous, so that the left

split and the right split separate the information in an optimum way; to do so the

threshold XR is searched within all the available values of attributes in the training

dataset with the CART algorithm. For variables that are continuous, as in our case,

the CART algorithm then solves the next minimization problem:

argminXj�X R
j j¼1, ...,M Pl Var Ylð Þ � Pr Var Yrð Þ½ � ð11Þ

where M is the number of variables or attributes in the training dataset, Y is the

vector of responses for our training dataset, Var(Y1) is the variance of other

responses that will go to the left node, and P1 and Pr are the probability of that

variable to go left or right (in our case both probabilities are equal). An impurity

measure is used to obtain an estimation of the homogeneity of the right and left

nodes after a split, using the impurity function i(t):

i tð Þ ¼
XN

k¼1
yk � μkð Þ2 ð12Þ

where i(t) is the impurity measure for node t, yk is the response for training set k, and
μk is the mean of responses in the node.

After all nodes in the tree have been created, pruning is the next step, and one

way to do it is to set a threshold for the reduction in the impurity measure, below

which no split will be made. A preferred approach is to grow a very large tree and

then prune the tree back to an optimal size (Moisen 2008). For our case we used the

cost-complexity function used by Timofeev (2004) with no parameters:

CðTÞ ¼ RðTÞ þ ð�TÞ ! min T ð13Þ

where R(T ) is the misclassification error observed in a cross validation dataset and
�T is a complexity measure of the tree �T which is equal to the sum of terminal nodes

in the tree.

The flowchart in Fig. 1 shows how the three parts are coupled. First, we start with

the flow and transport model and the initial ensemble of parameters for LnK and Φ,

where part of the ensemble is used as training dataset for the regression tree, and the

other part is used in the CART algorithm to prune a tree. Finally, the EnKF is used

to update the fields.
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4 Synthetic Example

We created a synthetic aquifer based on a true one, in which a contamination event

has occurred. The model has a rectangular-shaped area of 3000 m long by 500 m

wide. It has been discretized in 5 m by 5 m cells for the purpose of generating the

heterogeneous fields. (Later an irregular triangular mesh will be used for the

simulation of flow and transport.) For the parameters of the aquifer, four ensembles

(two ensembles for LnK and two for porosity) were created using SGeMS (Remi

2004) by sequential Gaussian simulation. Table 1 shows the parameters for the

geostatistical simulations.

Figure 2 shows four random hydraulic conductivity realizations to give an idea

of the range of variability in LnK.
For flow and transport an irregular triangular mesh is used. This mesh has 5,489

elements and it is superimposed on the heterogeneous fields of LnK and Φ in order

to compute values for each element. When a cell falls over several nodes of the

heterogeneous realization, the arithmetic average of values within the cell is

assigned to it, and when the cell is smaller than 5 m by 5 m, the value of the

heterogeneous field is directly assigned to the cell. This averaging procedure is

applied for both parameters.

Figure 3 shows the mesh used for solving the flow and transport equations. The

red line marks the model border and the blue line the contaminant source area.

Dirichlet boundary conditions are imposed in all four boundaries of the model,

the values of which are derived from the real aquifer that serves as reference.

Recharge is also taken from the real aquifer. Similarly, the information about the

contamination source is based on the information on the real aquifer.

Initial K Initial Φ 

Flow and transport model t0

CART Algorithm

Auxiliary K
Auxiliary Φ

Thresholds for h and c Recharge

ENKF

Flow and transport model t1

Fig. 1 Flowchart for the proposed methodology
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5 Results and Discussion

After 50 time steps and using ensembles of 100 realizations per parameter (together

with a reserve of 100 auxiliary realizations for each parameter), some fields of

hydraulic conductivity and porosity after updating are shown in the next set of

figures. Figures 4, 5, 6, 7, 8, and 9 show LnK fields before and after the first time

step updating. In general, conductivities increase after the first update because the

initial hydraulic head field was not very consistent with the observations at that time

step.

Porosity fields are also shown from Figs. 10, 11, 12, and 13; here four fields are

shown at the initial time step prior to any modification and after 50 time steps.

LnK after 50 time steps is shown for the same three fields in Figs. 14, 15, and 16.

It can be seen that an increase in LnK has occurred in the western-central part of the

aquifer. That is due to a drastic difference between the recharge needed in order to

obtain a good estimation and the one actually imposed to the model.

Hydraulic head is shown at four observation points in Figs. 17, 18, 19, and 20. In

general, the adjustment of hydraulic heads is not as good as we expected, and we

attribute it to the uncertainty on the recharge. At this moment we are working on

introducing modifications in the recharge field to improve the reproduction of the

hydraulic heads with realistic hydraulic conductivity patterns. To show the

Table 1 Parameters used in

geostatistical simulation
Field Variogram type λx λx Sill

LnK Spherical 75 165 9

Φ Spherical 75 165 0.012

12. 09

9. 765

7. 442

5. 119

2. 796

0. 4727

-1.85

Fig. 2 LnK fields for realization 3, 15, 26, and 64 in ensemble 1

Fig. 3 Finite element mesh for flow and transport calculations
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importance of recharge in the matching of the model, we have run a test with-

out modifying the recharge patterns, and the filter produces unrealistic conductivity

fields such as the one in Fig. 21.

Concentrations at observation points are shown in Figs. 22 and 23; the large

spread is similar as in the hydraulic head calculations, since the recharge is being

modified without any optimization criteria. Posterior optimization of recharge

Fig. 4 LnK field for realization 3 before the first time step updating

Fig. 5 LnK field for realization 3 after the first time step updating

Fig. 6 LnK field for realization 26 before the first time step updating
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could lead to an improvement in the concentrations and hydraulic head

calculations.

For the updating of the final steps, the CART algorithm thresholds, that is, the

error above which recharge had to be touched, were 0.275 m for h and 150 ppb for c.
Recharge had to be modified in all time steps since it was impossible to get

predictions with errors below the set thresholds.

Fig. 7 LnK field for realization 26 after the first time step updating

Fig. 8 LnK field for realization 64 before the first time step updating

Fig. 9 LnK field for realization 64 after the first time step updating

814 J.C. Gutiérrez-Esparza and J.J. Gómez-Hernández



6 Conclusions

The application of data assimilation algorithms to a realistic case faces the problem

that when some of the components defining the conceptual model is improperly

characterized, the filtering algorithm may result in very unrealistic heterogeneity

patters; patterns that are built to compensate the conceptual model errors. As it is

the case of our example with the initial estimation of the recharge, the hydraulic

Fig. 10 Porosity field at initial time for realization 60

Fig. 11 Porosity field after 50 time steps for realization 60

Fig. 12 Porosity field at initial time for realization 94
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head predictions do not match the observations, so the EnKF modifies drastically

the parameters. Since it was clear that modifying conductivities alone was not

enough to match observations, we have implemented a decision tree to force

modifications in the normal procedure of the filtering algorithm. For instance,

when an updated conductivity field is not plausible, the CART algorithm enters

into play proposing a modification in the workflow, either by replacing the

Fig. 13 Porosity field after 50 time steps for realization 94

Fig. 14 Final LnK field for realization 3

Fig. 15 Final LnK field for realization 26
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conductivity field or by activating the updating of a different parameter, in order to

re-steer the filter toward plausible results.

For future work it seems necessary to include the recharge as another parameter

to update by the filter.

Fig. 16 Final LnK field for realization 64

Fig. 17 Hydraulic head for observation point P4

Fig. 18 Hydraulic head for observation point P5
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Fig. 19 Hydraulic head for observation point P7

Fig. 20 Hydraulic head for observation point P19

Fig. 21 LnK field for realization 3 after 50 time steps if no recharge modification is implemented
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Numerical Simulation of Solute Transport
in Groundwater Flow System Using Random
Walk Method

Nilkanth H. Kulkarni and Rajesh Gupta

Abstract This paper presents the new random walk solute transport model

(RWSOLUTE) for solute transport simulation in groundwater flow system. This

model is novel in using an efficient particle tracking algorithm. The proposed model

is validated against analytical and other reported numerical solutions for chosen test

case. The accuracy and stability of the RWSOLUTE model solutions are verified

through mass balance error checks and Courant stability criteria. Further the

sensitivity of the model solutions is analyzed for varying values of time step size

and particle mass.

1 Introduction

Groundwater quality degradation in many parts of the world due to poorly planned

municipal, agricultural, and industrial waste disposal practices has continuously

drawn the attention of research worker to modify methods of predicting and

analyzing the impact of the migration of the dissolved solutes reliably in the

aquifers. The pollution of this vital water resource resulted into a serious environ-

mental problem which may damage human health and destroy the ecosystem. Thus

it has become essential to assess the severity of groundwater pollution and chalk out

the strategies of aquifer remediation, which are made possible by the use of the

statistical numerical models.
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The groundwater pollution problem becomes severe because of the migration of

solutes by advection and hydrodynamic dispersion from the point of its introduction

in aquifers (Freeze and Cherry 1979). Numerical models of groundwater flow and

solute transport are properly conceptualized versions of a complex aquifer system

which approximate the flow and transport phenomena through the set of assump-

tions pertaining to the geometry of the domain, heterogeneities of the aquifer, and

type of flow regime.

Prickett et al. (1981) presented the transport model on the basis of the random

walk method. The complex aquifer system is treated as a continuum, which implies

that the fluid and solid matrix variables are continuously defined at every point in

the aquifer domain (Wang and Anderson 1995). The equations that describe solute

transport in highly heterogeneous porous media are among the most difficult

equations to solve because of their hyperbolic nature due to sharp concentration

fronts so the random walk method is found to be suitable for solute transport

simulation in heterogeneous porous media. Neuman (1984) proposed an adaptive

Eulerian–Lagrangian formulation which solves the advective component of steep

concentration front by single-step reverse particle tracking of moving particles

clustered around each front and away from such fronts, and the dispersive transport

is solved by Lagrangian formulation on a fixed grid. It is found that the use of

particle clusters at steep concentration fronts only caused numerical dispersion.

A mixed Eulerian–Lagrangian method is proposed by Sorek (1988) which

decomposes the transport equation into pure advection along the characteristic

path lines and residual dispersion as the propagation of the solute mass residue at

a fixed grid point. This method worked well for coarse grid and high Peclet

numbers. Illangasekare and D€oll (1989) developed a discrete kernel approach for

solving the linear governing partial differential equation of groundwater flow to

obtain the flow velocities resulting from different pumping and injection schemes.

Further the two-dimensional transient solute transport in water table aquifers is

simulated by a method of characteristic model. However, the simulation of sharp

concentration fronts at injection wells and divergent velocity fields at pumping

wells caused numerical smearing of the solutions. Bentley and Pinder (1992)

discussed the Eulerian and Lagrangian methods (ELM) to reduce the smearing

and oscillations in the solutions of the advection–dispersion equation. It is noticed

that the accuracy of ELM is governed by the choice of time step size in second-

order Runge–Kutta method.

Zhang et al. (1993) proposed a computationally efficient Eulerian–Lagrangian

method for solving advection–dispersion equation in both steady and transient

velocity field. The method uses single-step reverse particle tracking technique for

steep concentration fronts, and separate weighting factors which relate to grid

Peclet and Courant numbers are used for upstream and downstream region of the

advection front. In transient velocity field, the model determines the weighting

factors automatically based on the mass balance errors. This model is found to be

more suitable for the solution of the advection-dominated problems. Bellin et al.

(1994) presented a new Eulerian–Lagrangian method for modeling flow and trans-

port of conservative solutes in heterogeneous porous formations. They used
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geostatistical model to generate physically plausible random velocity fields. In this

model the solute transport problem is solved by particle tracking approach with

suitable grid refinements to correctly handle the velocity fluctuations. Their model

is particularly found to be useful for large field scale problems where conventional

numerical methods are not computationally efficient. Lu (1994) discussed a

semianalytical method of particle tracking analysis under transient flow conditions.

In this method the particle velocity is interpolated linearly in both space and time

coordinates within each finite difference cell. This method uses analytical integra-

tion instead of numerical integration to obtain the trajectory of a particle within

each cell. Uffink (1988) presented a random walk solute transport model that is

different than the conventional model. The random walk is used as a mathematical

concept to create an analogue process that obeys the classical advection–dispersion

equation. The paper also discusses the conditions required for a complete equiva-

lency between random walk and advection–dispersion equation. It proposes the use

of proper coefficients in Fokker–Plank equation to eliminate the occurrence of

unphysical high solute concentrations due to trapping of particles near stagnation

points or in the parts of the aquifer with a much lower permeability than the

surrounding area.

Wen and Gomez-Hernandez (1996) proposed a constant displacement scheme of

particle tracking for simulation of advective transport. This scheme automatically

adjusts the time step for each particle according to local pore velocity so that each

particle always travels a constant distance. The application of this scheme for

two-dimensional solute transport in groundwater flow system is found to be four

times computationally faster than constant time step scheme which is convention-

ally used in particle tracking in random walk model simulations. Banton et al.

(1997) developed a time domain random walk method which is different than the

classical random walk method in the sense that it directly calculates the arrival time

of a particle cloud at a given location providing the direct solute concentration

breakthrough curve. The major advantage of this method lies in the fact that it is

quite flexible in case of the choice of space and time step sizes. The method is found

to be reliable from the comparison of its results with those of analytical and

classical random walk solutions. Unlike the classical random walk method, this

method does not generate high numerical dispersion.

Dentz et al. (2004) investigated the time behavior of solute transport in a

heterogeneous medium using a spatially biased continuous time random walk

method. This method is governed by the joint probability density function for an

event–displacement with an event–time. The proposed model calculates the solute

concentration distribution by using a generalized advection–dispersion equation

with Laplace transformation. It gives an equivalent advection–dispersion equation

which is solved to analyze the time dependence of the resident and flux concentra-

tions. It is demonstrated that the model results are in close agreement with efficient

random walk simulations based on the same joint probability density function.

Delay et al. (2005) reported that the random walk technique of solute transport is

especially well suited to the transport phenomena which are governed by strong

variations in fluid velocity over relatively short distances. It is found that this
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technique is quite capable of simulating non-Fickian solute transport so it is more

preferred than the Eulerian techniques which are potentially unstable or hampered

by numerical diffusions.

The proposed model overcomes the numerical dispersion and oscillations which

are prevalent in existing random walk models. The motivation behind the develop-

ment of the present model is to dampen the numerical dispersion which masks the

actual physical dispersion making particle tracking difficult. The new model

employs an efficient particle tracking algorithm to track the positions of particles

at new time steps.

The objectives of this study are (1) to develop the RWSOLUTE model, (2) to

validate the developed numerical model, (3) to investigate the performance of the

model for damping of numerical oscillation and numerical dispersion along with

the average mass balance error, (4) to ensure the stability of the model solutions

based on the criteria of Courant numbers, and (5) to examine the sensitivity of the

model solutions to time step size and particle mass.

2 Mathematical Model

2.1 Advection–Dispersion Equation

The governing equation of solute transport in two-dimensional transient unconfined

groundwater flow system that includes point and distributed sources/sinks of solute

due to injection/extraction wells and distributed recharge/discharge can be

described by the following equation:

R
∂c
∂t

¼ ∂
∂x

Dxx
∂c
∂x

� �
þ ∂
∂x

Dxy
∂c
∂y

� �
þ ∂
∂y

Dyx
∂c
∂x

� �

þ ∂
∂y

Dyy
∂c
∂y

� �
� Vx

∂c
∂x

� Vy
∂c
∂y

þ
Xnw

i¼1

ðc� ci
0 Þ

θ b
Qi δ ðxo � xi, yo � yiÞ

þPnp
j¼1

qj
θ
ðc� cj

0 Þ þ cSy
θ b

∂h
∂t

ð1Þ

where R is the retardation factor [dimensionless], c is the solute concentration [M/L3];
Dxx, Dxy, Dyx, and Dyy are hydrodynamic dispersion coefficients [L2/T]; Vx and Vy

are the components of average linear groundwater velocity [L/T]; c
0
i is the solute

concentration of the injected water at ith injection well [M/L3]; nw is the number of

injection wells in the domain; θ is the effective porosity of the aquifer [percent]; b is

the saturated thickness of the aquifer [L]; c
0
j is the solute concentration of the

recharge water at jth node with distributed recharge [M/L3]; Sy is the specific
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yield [dimensionless]; h is the hydraulic head averaged over vertical [L]; t is the
time [T]; x and y are spatial coordinates [L]; Qi is the pumping rate when (Qi < 0)

and injection rate when (Qi > 0) at ith pumping and/or injection well [L3/T]; nw is

the number of pumping and/or injection wells in the domain; np is the number of

nodes in the domain with distributed discharge and/or recharge; δ xo � xi, yo � yið Þ
is the Dirac delta function; xo and yo are the Cartesian coordinates of the origin [L];
xi and yi are the coordinates of ith pumping and/or injection well, [L]; and qj is the
distributed discharge rate when (qj< 0) and recharge rate when (qj> 0) at jth nodes
[L/T].

The hydrodynamic dispersion coefficients in the tensor form can be given as

Dxx Dxy

Dyx Dyy

� �
¼ αL

�vj j
v2x vxvy
vxvy v2y

����
���� þ αT

�vj j
v2y �vxvy
�vxvy v2x

����
���� ð2Þ

where αL and αT are longitudinal and transverse dispersivities [L] and �vj j is the
magnitude of the average linear groundwater velocity [L/T].

An initial concentration of the solute is prescribed in the entire aquifer domainΩ
by

c x; y; 0ð Þ ¼ c 0 x; yð Þ x; yð Þ2 Ω ð3Þ

where c0 is the initial solute concentration [M/L3].
Equation (1) is subject to the Dirichlet boundary condition which is given as

c x; y; tð Þ ¼ c1 x; yð Þ2Γ1; t � 0 ð4Þ

where c1 is the prescribed solute concentration over aquifer domain boundary γù
Γ1, [M/L3].

Neumann boundary conditions are considered as

v� c x; y; tð Þ � D½ � ∇c x; y; tð Þ½ �0 : nf g ¼ v� c
0
x; yð Þ2Γ2; t � 0 ð5Þ

where vc0 is the specified advective solute flux across the boundary Γ2 [M/L3/T] and
[D] ∇c is the dispersive solute flux across the boundary Γ2 [M/L3/T].

Although only numerical solutions of the Eq. (1) are sought, it is very important

to get head distribution from the following mass balance equation for the ground-

water flow which is given as

∇:v ¼ Sy
∂h
∂t

þ q ð6Þ

where v is the average linear groundwater velocity having two components in x-

and y-directions and is obtained from a momentum equation by using Darcy’s law
which is given as
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vx ¼ �Txx∇h , vy ¼ �Tyy∇h ð7Þ

where Txx and Tyy are components of the transmissivity tensor [L2/T] which are

approximated as Txx � Kxx h and Tyy � Kyy h, provided the change in the head in

unconfined aquifer is negligible as compared to its saturated thickness

(Illangasekare and D€oll 1989); Kxx and Kyy are components of the hydraulic

conductivity tensor [L/T].

2.2 Random Walk Solute Transport Model (RWSOLUTE)

The Random Walk Solute Transport Model (RWSOLUTE) (Kulkarni 2008) uses

real particles generated on the basis of total solute mass in the aquifer. Unlike

conventional random walk models, this model tracks real particles instead of

imaginary particles, which minimizes book keeping efforts. It also employs an

efficient particle tracking algorithm by taking weighted average of particle veloc-

ities computed at four time instances in a given time step.

This model does not directly solve the governing advection–dispersion equation.

It decouples that equation into advection and dispersion parts. The advective and

dispersive transport of the solute mass is simulated with the help of particles. Unlike

the other Eulerian–Lagrangian methods, only tracer particles are moved in the flow

field. Each particle represents the fraction of the total solute mass in the aquifer

system. The number of particles in a computational cell is worked out as

NPt
i, j

¼
c ti, j θ� Δx� Δy� bð Þ þ c

0
i, j Qi, jδ x0 � xi, y0 � yj

� �� �
þ qi, j

� �
θ� Δx� Δy� bð Þ

PM

ð8Þ

where NPt
i;j is the total number of the particles to be generated in the computational

cell (i, j) at a given point of time t and PM is the fixed particle mass, [M].

The advective transport is solved by tracking the movement of the particles

along flow lines. The advective displacement components of the particle in x- and

y-direction during a given time step due to average linear groundwater flow velocity

can be given as

dxap ¼ Vxp � Δtþ/L

Vxp
2

Vj j Δt

dyap ¼ Vyp � Δtþ/T

Vyp
2

Vj j Δt ð9Þ
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where dxap, dy
a
p are the advective displacement components of p the particle during a

time step Δt, [L]; dlap ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dxap

� �2

þ dyap

� �2
r

is a resultant displacement of the

particle, [L]; and Vxp and Vyp are the particle velocities, [L/T].

The particle velocity components in Eq. 9 are obtained from the nodal velocity

components using bilinear interpolation method. The time weighted value of the

particle velocity is calculated by using fourth-order Runge–Kutta method. In the

bilinear interpolation method, the computational cell in which the particle has

moved after advection during a given time step is identified. The groundwater

velocity components at the representative node of the identified cell along with the

velocities at the three closest nodes that are obtained from the velocity field are used

to interpolate the particle velocity. For the location of the particle in the first

quadrant, the x-component of the particle velocity is interpolated using the follow-

ing equations:

Vx
1
p ¼ 1� x tp � xi, j

Δx

� �� �
Vxi, j þ

x tp � xi, j

Δx

� �
Vxiþ1, j

Vx
2
p ¼ 1� x tp � xi, j

Δx

� �� �
Vxi, jþ1

þ x tp � xi, j

Δx

� �
Vxiþ1, jþ1

Vxp ¼
y tp � yi, j
Δy

� �
Vx

1
p þ 1� y tp � yi, j

Δy

� �� �
Vx

2
p

ð10Þ

Similarly the y-component of the particle velocity is interpolated using the

following equations:

Vy
1
p ¼ 1� y tp � yi, j

Δy

� �� �
Vyi, j þ

y tp � yi, j
Δx

� �
Vyi, jþ1

Vy
2
p ¼ 1� y tp � yi, j

Δy

� �� �
Vyiþ1, j þ

y tp � yi, j

Δy

� �
Vyiþ1, jþ1

Vyp ¼
x tp � xi, j

Δx

� �
Vy

1
p þ 1� x tp � xi, j

Δx

� �� �
Vy

2
p

ð11Þ

where Δx and Δy are the dimensions of the computational cell, [L], and (i, j), (i+ 1,
j), (i, j+ 1), and (i + 1, j+ 1) are the indices of the four closest nodes to the particle.

The above components of the particle velocity are weighted for taking into

account the variation of the velocity during a time step by fourth-order Runge–

Kutta method. The particle velocity components are obtained by the following

equations:

Numerical Simulation of Solute Transport in Groundwater Flow System Using. . . 827



VtþΔt
xp ¼ V t

xp þ
1

6
1Vxp


 �þ 2 2Vxp


 �þ 2 3Vxp


 �þ 4Vxp


 �
 �
VtþΔt
yp

¼ V t
yp þ

1

6
1Vyp


 �þ 2 2Vyp


 �þ 2 3Vyp


 �þ 4Vyp


 �
 � ð12Þ

where the superscripts 1, 2, 3, and 4 stand for the velocity components at t, t + Δt/2,
t + Δt/2, and t + Δt time levels. There are two velocity components (corresponding

to superscripts 2 and 3) at time instant t + Δt/2.
The dispersive transport of the particle due to hydrodynamic dispersion is

calculated from the random movement of particles following the Gaussian normal

distribution. The dispersive transport of a particle in x-and y-direction during a

given time step can be given as

dxdp ¼ ZLP sin φþ ZTP
cos φ ¼ ZLP

dxap
dlal

þ ZTP

dyap
dlal

dydp ¼ ZLP cos φ� ZTP
sin φ ¼ ZLP

dyap
dlal

� ZTP

dxap
dlal

ð13Þ

where dxdp, dy
d
p are the dispersive transport components of pth particle during Δt,

[L]; ZLp ¼ Nð0, σ2LÞ&ZTp
¼ Nð0, σ2TÞ are random numbers; N(0, σ2L) &N(0, σ2T) are

normally distributed random numbers with zero mean and one standard deviation

and which range from �6 to +6; φ is the angle between the direction of advective

transport dlap and the y axis; and σLp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αLdl

a
p

q
and σTp

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αTdl

a
p

q
are standard

deviations. Thus, the particle under consideration moves during a given time step

first by advective transport in proportion to the velocity of groundwater flow, and its

location after this movement is determined. Then the change in location during the

same time step due to dispersive movement is superimposed over this location.

Thus, the total displacement of a particle in x- and y-direction during a given time

step can be given as

xtþΔt
p ¼ x tp þ dxap þ dxdp

ytþΔt
p ¼ y tp þ dyap þ dydp

ð14Þ

where xtþΔt
p , ytþΔt

p is the location of the pth particle at t + Δt time level and xtp, y
t
p is

the initial location of pth particle. This procedure is repeated for all the particles

generated in the cell. The change in nodal solute concentration during a time step is

given as

ctþΔt
i, j ¼ c ti, j þ NPtþΔt

i, j

� �
PM ð15Þ

where NPtþΔt
i, j is the updated number of the particles residing in the computational

cell after both advective and dispersive transport. The model takes care of
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prescribed concentration boundary condition by adding the particles at the

corresponding boundary cells to maintain the prescribed level of solute concentra-

tion throughout the simulation. In case of zero solute flux boundary, the dispersive

solute flux is often assumed as zero, and thus the boundary solute flux consists

advective flux only. The stability of the model solutions is ensured through the

proper selection of time step size such that a particle should not cover more than one

fifth of the grid size in one advection step; this will further avoid the oscillations in

particle density (Prickett et al. 1981). But this model is likely to suffer from low

sensitivity of model solutions to the variation of certain transport parameters which

may be masked by statistical variation of solute mass.

2.3 Numerical Stability and Accuracy

The stability of the transport model solutions can be ensured by selecting proper

time step size which will satisfy the Courant number criteria that can be given as

Cx ¼ Vx � Δt
Δx

� 1

Cy ¼ Vy � Δt
Δy

� 1
ð16Þ

where Cx and Cy are the Courant numbers calculated for the maximum magnitudes

of the x- and y-components of the velocity vectors, respectively. It relates the

distance a particle travels during one time step to the spatial increment. The Courant

number controls the oscillations of the numerical solution arising from the temporal

discretization.

The accuracy of the transport model is verified with respect to the average mass

balance error in the solutions of Eq. (1) which is given as

Ec ¼
100 Δ Mf Tc � Δ MsTc


 �
M0

c

ð17Þ

where Ec is the average mass balance error in the solute transport solutions

[percent], ΔMfTc is the net solute flux in the aquifer system during the simulation

period [ppm], ΔMsTc is the change in solute mass in the aquifer system [ppm], and

M0
c is the initial solute mass in the aquifer system [ppm].
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3 Results and Discussion

3.1 Validation of RWSOLUTE Model

Figure 1 shows the schematic of aquifer modeled in test case (Sun 1996), which is

aimed at validating the RWSOLUTE model. The aquifer is 80 m long and 70 m

wide. The left and right sides of the aquifer are subject to no-flow boundary

conditions, while the top and bottom sides are subject to prescribed head boundary

conditions with the constant head of 100 m. The groundwater is flowing in from the

bottom to the top side at the uniform velocity of 1.0 m/day.

The boundary conditions for solute transport simulation involve zero solute flux

boundaries across the left and right sides and a concentration of 1 ppm on the

bottom side and zero concentration at the top side of the aquifer. Starting from an

initial state of zero solute concentration, the aquifer is gradually contaminated due

to transport of solute from a line source of pollution at the bottom side due to both

advection and dispersion.

For solute transport simulations by the proposed model, for advective transport

simulation, the aquifer is discretized by using a mesh-centered finite difference grid

with uniform nodal spacing in x- and y-direction as 5 m resulting into total

255 nodes involving 60 boundary nodes. For dispersive solute transport simulation,
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Fig. 1 Schematic of aquifer modeled in test case for the simulation of solute transport in uniform

one-dimensional groundwater flow in unconfined aquifer with line source of pollution
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a triangular finite element mesh is used with isosceles triangular elements of size

5 m resulting into 448 finite elements. The aquifer parameters used in this test

simulation are aquifer thickness (b¼ 30 m), effective porosity (θ¼ 0.30), transmis-

sivity (T¼ 10 m2/d), specific yield (Sy¼ 0.10), and longitudinal dispersivity

(αL¼ 10 m).

Figures 2 and 3 show comparison of transverse concentration profiles obtained at

the bottom side from the proposed model with the reported analytical solutions (Sun

1996) and FESOLUTE and RWSOLUTE solutions (Kulkarni 2008). It is found

from the comparison of the concentration profiles obtained from solute transport

simulation by proposed model that the initial error in numerical solutions dampens

out as the solution progresses through the time. The RWSOLUTE concentration

profile shows numerical overshoots at early times and deviates leftward from the

analytical concentration profile at later times. At distance of 10 m from the line

source of pollution, the percentages of the deviation between MMOCSOLUTE and

RWSOLUTE and analytical solutions are 5% and 30%, respectively. However,

RWSOLUTE model is justified as it simulates the randomness in actual solute

transport behavior.

3.2 Comparison of Mass Balance Error in RWSOLUTE
and Other Reported Models

The rise in mass balance curve is very sharp in the early stages of the simulation up

to 3 days. Thereafter the mass balance error curves increase gradually till the end of

the simulation period of 30 days. It is found from the results that the mass balance

error curve of RWSOLUTE simulations deviates from other reported model sim-

ulations by an order of 34%. The RWSOLUTE simulations are more erroneous

because of the randomness in generation of the particles to simulate the solute

transport process. As the simulation progresses, the numerical oscillations get

dampened, and consequently the errors in the later stages of the simulation are

comparatively less than the error in early stages of the simulation.

3.3 Effect of Time Step Size on RWSOLUTE Solutions

It is seen from Fig. 4 that the RWSOLUTE simulated concentration profiles for the

3.75-day time step size are severely affected by numerical oscillations and

dispersions.

The solutions are found to be reasonably accurate for the time step size of 1.25

days. Even for the choice of time step size of 0.25 day, an overshoot in the

numerical solutions of around 30% is observed at 10 m downstream from the

line source of pollution. The unacceptable overshoot of 100% is noticed at the
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distance of 25 m downstream of the source for 3.75-day time step simulation. Thus,

the RWSOLUTE simulations are found to be severely restricted by the choice of

time step size.
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3.4 Effect of Particle Mass on RWSOLUTE Solutions

Figure 5 shows the effect of particle mass variation on the shape of the concentra-

tion profiles simulated by RWSOLUTE model. The fixed particle mass signifies the

fraction of the total solute mass residing in the unit volume of groundwater at a

given point of time. The particle mass is a fixed quantity while the number of

particles is only varying due to the transport of the solute mass in a given time step.

The particle mass is varied from 1.0 to 10.0 g. The numerical solutions experienced

oscillations up to the distance of 20 m from the source of the pollution for all the

chosen values of the particle mass. The maximum overshoot is observed in the

concentration profile simulated for the 10.0-g particle mass to the order of 50%,

and the maximum undershoot is found in the concentration profile simulated for

5.0-g particle mass which is of the order of 30%.

4 Conclusion

1. Validation of RWSOLUTE model for chosen test case shows that the numerical

dispersion in solute concentration profiles is 24%.

2. The investigations pertaining to the effect of time step size (Courant number) on

proposed transport models reveal that the RWSOLUTE solutions suffer from
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high overshoots in the solutions to the order of 28% higher than analytical

solutions even for smaller time step of 0.25 day.

3. RWSOLUTE model produces 20% higher mass balance error compared to the

other two models. The results of RWSOLUTE simulations show that the numer-

ical undershoot and overshoot in solute concentration profiles are of two orders

magnitude greater than other two reported model solutions because of approx-

imation in dispersion term.

4. It is also found that the RWSOLUTE solutions are sensitive to the choice of

particle mass and in turn to the number of particles generated to represent the

solute mass in aquifer system. Study noted that almost all model solutions

develop numerical oscillations with the increase in time step size. It is found

from the RWSOLUTE simulations that large mass balance errors up to 25%

may occur when less number of particles is used in the solute transport

simulation.
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A Comparison of EnKF and EnPAT Inverse
Methods: Non-Gaussianity

Liangping Li, Haiyan Zhou, J. Jaime Gómez-Hernández,

and Sanjay Srinivasan

Abstract The EnKF has been extensively used for real-time data assimilation in

areas such as reservoir/groundwater modeling. One of the big challenges of the

EnKF is how to handle the non-Gaussianity of aquifer properties, particularly for

channelized aquifers where preferred flow conduits are encountered. EnPAT is a

pattern-based inverse method and was developed to deal with the non-Gaussianity

of model updating. In this work, we compared the EnKF and EnPAT on a bench-

mark example. The results show that EnPAT can better reproduce the curvilinear

geological features and thus has a better transport prediction.

1 Introduction

For developing and managing production of oil fields, it is important to predict the

locations of hydrocarbon-bearing areas accurately and thus determine optimum

production well locations. This is critical because of the significant cost of drilling

wells. However, one of most challenging tasks is to characterize the geological

structure and identify reservoir properties such as permeability and porosity, which

define the locations of hydrocarbons. The challenge mainly stems from inherent

strong heterogeneity of the deposits and from scarcity of data.
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Geostatistical approaches are usually employed to represent the spatial hetero-

geneity of reservoir properties, conditioned on static data such as measured perme-

ability. Besides the static data, dynamic data such as oil production rate also can be

used to condition the models and improve the characterization. The procedure of

constructing reservoir models conditioned to dynamic data is termed inverse

method, where the objective is to identify the parameter values at un-sampled

locations by integrating those dynamic data into the model, thus improving the

prediction of oil production in the future.

The EnKF has been often used to update models by integrating the dynamic data.

Its advantages include real-time data integrating and computational efficiency

(Evensen 2003). One remarkable disadvantage is that it can’t preserve the high-

order statistics which is a reflection of the geological structures. The EnPAT is

developed to deal with this problem and is based on multiple-point geostatistics. It

can honor not only the dynamic data but also the geology in accordance with the

geological field conditions (Zhou et al. 2011). A benchmark comparison between

the EnKF and EnPAT is conducted in this work. It clearly shows that a better

transport prediction is achieved using the EnPAT.

2 Example

A single-phase transient groundwater flow example is presented to compare the

effectiveness of the EnKF and the EnPAT for dynamic data integration when

considering non-multi-Gaussian conductivity fields. The aquifer has 50� 50� 1

cells of size 1 m� 1 m� 1 m. The east and west sides of the aquifer are constant

head boundaries with prescribed head values of 0 m, and the other two sides are

no-flow boundaries (see Fig. 1). Porosity and specific storage are assumed to be

constant and set equal to 0.3 and 0.02 m-1, respectively. An injection well is located

at the center of aquifer with a constant injection rate Q¼ 25 m3/day. The total

simulation time is 30 days, discretized into ten time steps with varying time step

size following a geometric sequence of ratio 1.2. The head data collected from nine

wells in the first five time steps will be used for conditioning.

3 Results

Figure 2 shows two individual realizations before and after conditioning to head

data using the EnKF and the EnPAT. The updated realization using the EnKF tends

to lose the channel features of the training image. Partly, this is expected because in

the EnKF each updated realization can be interpreted as a linear combination of the

ensemble of prior models. For the EnPAT, the individual conductivity realizations

retain the channel features of the training image and end with similar channel

structures as the ones in the reference field.
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Figure 3 shows the concentration distribution, after 30 days, for the reference

field, and the ensemble mean and variance of the predicted concentrations for the

prior models and for the updated models using the EnKF and the EnPAT. The

results show that the concentration profile is heavily impacted by the connectivity

of the conductivity channel structures.

4 Conclusion

The EnKF and the EnPAT are compared for inverse modeling of a conductivity

field characterized by curvilinear channel features. The EnKF has been widely used

in petroleum engineering and hydrogeology over the past decade. The remarkable

advantages of the EnKF are the capability to handle multiple parameters, compu-

tational efficiency, and real-time data assimilation. However, one significant draw-

back of the EnKF is that, because it is based on two-point statistics, it is optimal

only for linear state functions and parameters following multi-Gaussian distribu-

tion. As an alternative to the EnKF, the EnPAT method was proposed to condition

to dynamic data without the limitation that state variables should follow a multi-

Gaussian distribution. The application of the EnKF and the EnPAT to a synthetic

case shows that the EnPAT yields a more accurate characterization of conductivity

than EnKF, and more importantly, the updated models obtained using the EnPAT

honor the prior geologic features exhibited in the training image.

Fig. 1 Training image and reference conductivity field
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using the EnKF and the EnPAT
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Calibration of Land Subsidence Model Using
the EnKF

Liangping Li, Meijing Zhang, and Haiyan Zhou

Abstract Land subsidence modeling has been developed for reliable modeling and

prediction in the last several decades. Calibration of hydraulic properties such as

transmissivity and elastic and inelastic specific storages using observation data is a

challenge because of the strong nonlinearity of groundwater flow equation espe-

cially when it accounted for the interbed drainage process. The ensemble Kalman

filter is applied to calibrate hydraulic properties in a synthetic land subsidence

model. The characterization of transmissivity and specific storages and prediction

of land subsidence are improved after the drawdown and subsidence observation

data are conditioned.

1 Introduction

As a global scale problem, land subsidence has been studied by many researchers

(Galloway et al. 1999; Bell et al. 2002, 2008; Zhang and Burbey 2015). Due to

declining water levels, decreasing pore water pressures within the aquifer system

have led to significant increases in effective stress, which accounted for large-scale

compaction of sediments (Terzaghi 1925; Poland and Davis 1969; Holzer 2010).

Subsidence data, when combined with groundwater drawdown data, can be used to

improve groundwater model calibration of the hydrologic parameters such as

elastic and inelastic skeletal specific storage, transmissivity, the compaction time

constant, and others (Burbey 2001; Hoffmann et al. 2001, 2003b; Zhang et al. 2013;

Zhang and Burbey 2015). Hoffman et al. (2003a, b) used a regional groundwater

flow and subsidence model in conjunction with UCODE (Poeter et al. 2005) to
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estimate spatially varying compaction time constants and inelastic specific skeletal

storage coefficients in Antelope Valley, California (Hoffmann et al. 2003a). Zhang

et al. (2013) presented a discrete adjoint algorithm for identifying suitable zona-

tions of elastic and inelastic skeletal specific storage coefficients and hydraulic

transmissivity from hydraulic head and subsidence measurements (Zhang et al.

2013). The ensemble Kalman filter (EnKF) based on the sequential Bayesian

updating rule can be used to obtain results similar to those obtained by Monte

Carlo (MC)-type inverse methods but with reduced CPU time (Burgers et al. 1998;

Evensen 2003). The EnKF method is able to jointly map the hydraulic conductivity

and porosity fields accurately and efficiently by assimilating dynamic piezometric

head and multiple concentration data (Li et al. 2012). However, no research has

been done to joint estimation of spatially distributed hydraulic transmissivity and

elastic and inelastic specific skeletal storage coefficients using land subsidence and

groundwater level measurements. We will demonstrate the capability of the EnKF

to jointly map hydraulic transmissivity and elastic and inelastic specific skeletal

storage coefficients in a synthetic land subsidence model with MODFLOW 2005

(Harbaugh 2005).

2 Example

A synthetic aquifer has 38� 58 grid blocks with block size of 1� 1 km. Aquifer

thickness is 200 m. The aquifer is assumed to be confined and simulated as transient

flow. The total simulation time of flow and land subsidence is 15 years, with each

year being divided into two 6-month periods. A poorly permeable but highly

compressible clay interbed of constant thickness of 70 m is distributed within the

permeable aquifer. All the boundaries are assumed to be no-flow boundary, and the

initial hydraulic head is 800 m over the domain. The preconsolidation head is set as

795 m. Aquifer storage coefficient is set as 0.002. Five wells are pumped at a

constant rate in 6-month intervals (6 months on during the summer and 6 months off

during the winter) (see Fig. 1). The vertical hydraulic conductivity of interbed is

0.00006 m/day.

Three cases are considered. For the first case, no conditioning data are consid-

ered. Like the “true” fields, the initial models are generated using GCOSIM3D,

without conditioning any data. For the second case, only the measured static data at

well locations will be considered. For the case three, besides the static data,

dynamic data (drawdown and subsidence data) will be included as well; the initial

models of case 2 will be used in this case, and a further conditioning on dynamic

data is conducted using the EnKF such that a best characterization of both trans-

missivity and specific storages is achieved and a smallest uncertainty would be

observed since all the data are integrated into the models.
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3 Results

The predictions of land subsidence using calibrated transmissivity and specific

storages are shown in Fig. 2. The first 10 years of drawdown and subsidence

observation are used for conditioning, whereas the last 5 years of simulations are

used to validate the models. Like the characterization of hydraulic properties, the

uncertainty of predictions for subsidence is reduced if more data are considered.

The value of drawdown and subsidence data for inverse modeling is evident.

4 Conclusion

We have presented an application of the EnKF for calibration of transmissivity and

interbed specific storages using drawdown and subsidence data in a synthetic

example. This work is distinguished from other subsidence modeling studies. The

EnKF is successfully applied for calibration in subsidence modeling for the first

time, and a further application of real case studies is expected. The significance of

drawdown and subsidence data is patent for the characterization of transmissivity

and elastic and inelastic specific storages and for reliable predictions of land

subsidence.

Fig. 1 Boundary

conditions of hypothetic

example
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Influence of Heterogeneity on Heat Transport
Simulations in Shallow Geothermal Systems

Javier Rodrigo-Ilarri, Max Reisinger, and J. Jaime Gómez-Hernández

Abstract The influence of parameter heterogeneity, such as permeability, poros-

ity, and thermal conductivity, over results of heat transport simulation is studied. A

set of synthetic aquifer simulations considering different degrees of heterogeneity

in the hydraulic conductivity, porosity, and thermal conductivity fields were created

by sequential Gaussian simulation techniques. Heterogeneity of the hydraulic

conductivity showed to have a significant influence on the evaluation of a cold

plume in the porous media. Higher variances in the hydraulic conductivity distri-

butions cause an important rise in the variability of the simulated temperature fields

and a considerable increase of uncertainty in the simulated heat distribution in the

aquifer system. Results show that considering heterogeneity on the permeability

fields induces more impact on the model results than considering heterogeneity of

both porosity and thermal conductivity.

1 Introduction

Shallow geothermal system uses the energy stored in the first approximately 400 m

under the earth surface (Llopis Trillo and López Jimeno 2009). From about

10–20 m in depth, temperature is considered to be constant during the year. Deeper

below the surface, temperatures increase according to the geothermal gradient (3 �C
for each 100 m of depth on average) (Sanner 2001).

Due to low temperatures (10 �C to max. 30 �C) in the shallow zone, the so-called

low enthalpy energy is obtained. Low enthalpy energy cannot be used directly and

geothermal systems have to be applied to make use of it.
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The most common system to extract heat from the underground is the ground

source heat pump (GSHP) system. A GSHP system extracts thermal energy from a

cold zone to transport it to a warmer zone. The natural form of heat transport

would be in the opposite direction (from warm to cold) according to the second

law of thermodynamics. To invert the natural heat flow, it is necessary to supply

the system with energy, normally with a compressor. In these systems for each

kWh of electric energy used for the compressor, up to 4.5 kWh of thermal energy

can be provided (Conde Lázaro and Ramos Millán 2009). Another advantage of

GSHPs is the reversibility which allows to obtain heating and cooling with the

same system.

Natural groundwater or collectors installed in the underground in which a fluid

circulates are used as heat sources. In the first case, the natural groundwater is used

directly; it is pumped up with a well and transported to the heat exchanger. After

extracting energy it is reinjected to the ground. These systems are called open-loop

systems. In the second case, a fluid circulates through the collectors which are

installed in the underground. The fluid is heated up on this way in the collectors and

transports the energy to the GSHP system. This type of systems is called closed-

loop systems (Llopis Trillo and López Jimeno 2009).

2 Scope and Objectives

Different investigations on heat transport in the subsurface have been made so far,

most of them assuming homogenous aquifer conditions. Kupfersberger (2009)

developed a 2D numerical groundwater model to simulate the impact of ground-

water heat pumps on groundwater temperature in the Leibnitzer Feld aquifer,

Austria. He validated the simulated results comparing them to field site measure-

ments. A 3D density-dependent groundwater flow and thermal transport model was

developed and validated using the results of the thermal injection experiment by

Molson (1992).

The effect of heterogeneity on heat transport simulation was the object of several

investigations over the last few years. Ferguson (2007) presented a study on the

topic, using stochastic modeling on two aquifers with low and high degrees of

heterogeneity. He concluded that there is considerable uncertainty in the distribu-

tion of heat associated with injection of warm water into an aquifer. Bridger and

Allen (2010) developed a model to evaluate the influence of aquifer heterogeneity

as a result of geologic layering on heat transport and storage in an aquifer used for

thermal energy storage. Bridger and Allen (2010) used FEFLOW to create a three-

dimensional groundwater flow and heat transport model. All these investigations

considered only the heterogeneity of the permeability, porosity, and thermal con-

ductivities that were assumed to be constant.

The present work has been made in order to get more information about heat

transport modeling in aquifer systems. Based on the results obtained by Shuang

(2009), further investigation on how heterogeneity affects heat transport simulation
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has been made. Synthetic aquifers with different grades of heterogeneity were

created using the Stanford Geostatistical Modeling Software (SGeMS) (Remy

et al. 2009).

A set of heat transport simulations were performed using MT3DMS (Zheng and

Wang 1999) as heat transport code.

To evaluate the importance of heterogeneity in permeability as well as hetero-

geneity in porosity and thermal conductivity, different simulations with homoge-

neous and heterogeneous parameters were made and compared to each other.

Therefore, the main objectives of this work are:

• To analyze the influence of heterogeneous distributions of permeability on heat

transport simulations in shallow geothermal systems

• To analyze the influence of heterogeneous distributions of porosity, bulk density,

and thermal conductivity on heat transport simulations in shallow geothermal

systems

Mean values of permeability and porosity, injection rates, initial temperature

distributions, and the model dimensions and well layout were taken from

Shuang (2009).

3 Heat Transport Modeling Using MT3DMS

MT3DMS code (Zheng and Wang 1999) was originally written to simulate solute

transport. The comparison of the solute transport equation (Eq. 1) and the heat

transport equation (Eq. 2) shows the similarities of these two processes. Table 1

shows the nomenclature used hereafter:

1þ ρbKd

n

� �
n
∂C
∂t

¼ ∇ n Dm þ αsνað Þ∇C½ � �∇ νanCð Þ þ qsCs � λnC ð1Þ

ρcð Þe
n � ρf cf

 !
n
∂T
∂t

¼ ∇
λe

n � ρf cf
þ αhνa

 !
∇T

" #
�∇ n � νaTð Þ

þ qh
ρf cf

� λu
ρf cf HF

ΔT
0 ð2Þ

MT3DMS was verified for heat transport by Mendez Hecht (2008) and Molina

Giraldo (2008). Therefore, MT3DMS can be used for the simulation of heat

transport with some adaptations on the equation coefficients. Further information

about heat transport modeling with MT3DMS can be found in other studies such as

Molina (2009). In order to perform heat transport modeling, the following adapta-

tions of the original mass transport parameters were performed:

Heat exchange between solid and liquid phase:
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Table 1 Nomenclature

Parameter Unit Description

C [kg m�3] Dissolved mass concentration

cs [J kg�1 K�1] Specific heat capacity solid

Cs [kg m�3] Concentration sources and sinks

Dm [m2 s�1] Coefficient of molecular diffusion

F [m] Depth of the water table

H [m] Thickness of the aquifer

k [m s�1] Hydraulic conductivity

Kd m3 kg�1 Distribution coefficient

n [–] Effective porosity

Q [m3 s�1] Water injection rate

qh [W m�3] Heat injection or extraction

qs [m3 s�1 m�3] Flow rate of sources and sinks solute transport

R [–] Retardation factor

t [s] Simulated time period

T0 [K] Initial temperature

Tf [K] Temperature of the water

Tin [K] Temperature of the injected water

Ts [K] Temperature of the solid

va [m s�1] Seepage velocity

αh [m] Horizontal transverse dispersivity coefficient

αv [m] Vertical transverse dispersivity coefficient

αL [m] Longitudinal dispersivity coefficient

αs [m] Dispersivity coefficient

γ [–] Unit weight of the fluid

λ [W m�1 K�1] Thermal conductivity

λe [W m�1 K�1] Overall thermal conductivity of the saturated aquifer

λf [W m�1 K�1] Thermal conductivity of the fluid

λs [W m�1 K�1] Thermal conductivity of the solid

λu [W m�1 K�1] Thermal conductivity of the unsaturated soil

μ [kg s�1 m�1] Viscosity of the fluid

νs [m s�1] Velocity

ρb [kg m�3] Bulk density

ρece [J m�3K�1] Volumetric heat capacity of the saturated aquifer

ρf [kg m�3] Density of water

ρfcf [J m�3K�1] Volumetric heat capacity of the fluid

ρs [kg m�3] Density of the solid

ρscs [J m�3K�1] Volumetric heat capacity of the solid

σ2 [–] Variance
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1þ ρbKd

n

� �
¼ ρcð Þe

n � ρf cf

 !
ð3Þ

Heat exchange between solid and liquid phase is implemented in MT3DMS in

the chemical reaction package. The type of sorption has to be set to linear isotherm

sorption. The input parameters required by MT3DMS to calculate the retardation

factor are the bulk density ρb and the distribution coefficient Kd.

Conductive heat transport:

n Dm þ αsνað Þ ¼ λe
n � ρf cf

þ αhνa

 !
ð4Þ

The conductive heat transport is implemented in MT3DMS in the dispersion

package. The dispersivity coefficient αh can be introduced without adaptations.

However, the molecular diffusion coefficient Dm for heat conduction has to be

calculated. Previous computations of bulk density (ρb) and thermal conductivity for

the saturated aquifer (λe) are also required:

ρb ¼ 1� nð Þ � ρs ð5Þ

Dm ¼ λe
n � ρf cf

ð6Þ

Convective heat transport:

To simulate convective heat transport, the advection package of MT3DMS has

to be activated. MT3DMS provides different solution schemes for the advection

term. In this study, simulations using different solution schemes were made. The

results and the simulation time were compared to evaluate the most efficient

solution method. The most satisfying results were made with the hybrid

MOC/MMOC (HMOC) solution scheme.

Sources and sinks:

The sources and sinks term is introduced in the well package of MODFLOW and

MT3DMS. Temperature [�K] is treated like a concentration [kg/m3] and the

recharge rate is constant [kg/m3]:

qh
ρf cf

K

s

� �
¼ qsCs

kg

m3s

� �
ð7Þ
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4 Model Setup and Input Parameters

The model layout and dimensions were assumed considering the field site data

of the Esseling site (Shuang 2009). It consists of a grid with 100� 100 cells (1 m �
1 m x 1 m) and 40 layers. The same layout as Shuang (2009) was chosen to compare

results. Following Rasouli (2008), the aquifer is assumed to be confined. The left

and the right boundaries of the model are considered as constant head boundaries.

The upper and lower boundary and the bottom of the model are no-flow boundaries.

All other cells are assigned as active flow cells.

Flow simulations were performed assuming a hydraulic gradient i¼ 0.02. Pre-

scribed constant heads are 45 m on the left boundary and 43 m on the right

boundary. Horizontal and the vertical hydraulic conductivities were set equal to

make the aquifer isotropic.

The injection well is located in the cell (30, 50) from layer 10 to layer 15 of the

model. The total injection rate was divided and assigned to each layer. The recharge

was assumed to be constant over 360 days. The total simulation time was divided

into 12 stress periods and a steady-state simulation was performed. As the definition

of the boundary conditions is required, a constant temperature value was assigned

to the left-hand boundary of the model. All other cells are active temperature cells.

The advection term of the heat transport equation was solved with the hybrid

MOC/MMOC (HMOC) solution scheme as it runs faster than the ultimate TVD

scheme and it is free of numerical dispersion (Zheng and Wang 1999). The type of

sorption in the chemical reaction package was set to linear isotherm sorption. No

first-order reaction was simulated.

Table 2 summarizes the flow and heat transport model input parameters that

were considered to be known throughout the simulation process.

5 Results and Discussion

The stochastic simulation of the hydraulic conductivity fields was done with the

Stanford Geostatistical Modeling Software (SGeMS). The sequential Gaussian

simulation algorithm was used. Based on the set of hard data and a target histogram,

ten synthetic conductivity fields were created for the scenarios shown in Table 3.

Scenarios 1–3 correspond to heterogeneous permeability distributions and constant

n and λ values, and Scenarios 4–6 correspond to heterogeneous permeability

distributions and heterogeneous n and λ values.

Figure 1 shows the logK histogram and the conductivity field view of the first

simulated field (Simulation #0) for Scenario 3 σ2logk ¼ 1
� �

.

Figure 2 shows the heat transport model results and the position of the heat

plume after 360 days of injection for realizations #0 of Scenarios 0, 1, 2, and 3.
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Results show that heterogeneity has an important effect on the shape of the

temperature plume, which decreases both in length and width when heterogeneity

increases.

To demonstrate the influence of heterogeneous hydraulic conductivity on the

cold plume development, simulated temperatures along the observation line (from

the injection well downstream, 12 m depth) were plotted.

Figure 3 shows the temperatures along the observation line of Simulation #0 for

each scenario. The deviation of the cold plume in this model is mainly caused by

predominating advective transport.

To visualize the differences between each of the simulations for a specific

scenario, Fig. 4 shows the results obtained for the ten simulations of Scenario 1

Table 2 Fixed flow and heat transport model input parameters

Parameter Symbol Value Unit

Total recharge rate Q 1.84E�4 [m3s�1]

Pumping rate 3.05E�5 [m3s�1]

Initial temperature To 283.15 [K]

Longitudinal dispersivity αL 0.5 [m]

Horizontal transverse dispersivity αh 0.05 [m]

Vertical transverse dispersivity αv 0.05 [m]

Effective molecular diffusion coefficient Dm 1.838E�6 [m2s�1]

Bulk density ρb 1961 [kgm�3]

Distribution coefficient Kd 1.983E�4 [m3kg�1]

Temperature of injected water Tin 278.15 [K]

Retardation factor R 2.5

Density of the solid ρs 2.65 [kgm�3]

Solid specific heat capacity cs 830 [Jkg�1K�1]

Solid volumetric heat capacity ρscs 2,200,000 [Jm�3K�1]

Water volumetric heat capacity ρfcf 4,185,000 [Jm�3K�1]

Saturated aquifer volumetric heat capacity ρece 2,716,000 [Jm�3K�1]

Solid thermal conductivity λs 3 [Wm�1K�1]

Water thermal conductivity λf 0.6 [Wm�1K�1]

Saturated aquifer thermal conductivity λe 2 [Wm�1K�1]

Table 3 Overview of the simulated scenarios

Scenario σ2logK Mean logK Nr. Simul. Description

0 0 �3.86 1 K homogeneous

1 0.1 �3.86 10 k heterogeneous/n, λ constant

2 0.5 �3.86 10 k heterogeneous/n, λ constant

3 1 �3.86 10 k heterogeneous/n, λ constant

4 0.1 �3.86 10 k, n, ρb, λ heterogeneous

5 0.5 �3.86 10 k, n, ρb, λ heterogeneous

6 1 �3.86 10 k, n, ρb, λ heterogeneous
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σ2logk ¼ 0:1
� �

and Scenario 3 σ2logk ¼ 0:1
� �

(n, λ constant) together with their

correspondent mean values.

In order to estimate the influence of heterogeneity of all parameters over the heat

transport simulation results, a set of ten new realizations for each one of the

Scenarios 4–6 were obtained. These scenarios consider heterogeneous distributions

of permeability, porosity, and thermal conductivity.

There are some known empirical relationships between hydraulic conductivity

and porosity such as those proposed by Kozeny (1927), Carman (1937), Carrier

(2003), Schneider (2003), Regalado and Carpena (2004), and Mohnke (2008). In

this work, the relation of Busch and Luckner (1993) was used, as it provides a

simple linear relationship between hydraulic conductivity and porosity.

Following Eqs. 5 and 6, these new porosity fields were afterward used to

compute every other needed parameter, like bulk density (ρb) and thermal conduc-

tivity (λ) and in a further step the effective molecular diffusion coefficient (Dm).

In order to summarize the results, Fig. 5 shows the simulated temperatures along

the observation line for ten realizations of Scenarios 1, 3, 4, and 6.

To quantify the uncertainty in the prediction of temperature distribution caused

by heterogeneity of the parameters, the variance of the simulated temperature

plumes for the ten simulations was computed for all the scenarios. Figure 6

shows the temperature variances of the ten simulations of Scenarios 3 and 6.

When comparing results obtained between simulations of corresponding scenar-

ios (Scenarios 1 and 4 or Scenarios 3 and 6), it has been found that the temperature

differences are higher as heterogeneity increases. Some simulations made for

Scenario 3 σ2logk ¼ 1
� �

show temperature differences up to 1�K.
Results show that an increasing variance of permeability causes increasing

variance in the expected temperature distribution. Scenario 3 σ2logk ¼ 1
� �

shows

considerably higher variances than Scenario 1 σ2logk ¼ 0:1
� �

. The highest variances

have been found in the first 20 m from the injection well. The changes in flow

direction generate an uncertainty in the prediction of the temperature plume.

Fig. 1 Histogram and logK field – Simulation #0 of Scenario 3 σ2logk ¼ 1
� �
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360 days of injection for
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0, 1, 2, and 3
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If hydraulic gradients were lower and consequently flow velocities decrease, the

influence of dispersion would be higher, and changes in thermal conductivity and

porosity could have a major effect on the temperature distribution. Further simula-

tions should be made using different hydraulic gradients to investigate the influence

of heterogeneity in combination with the hydraulic gradient.

This shows that the effect of the heterogeneity of the porosity n and thermal

conductivity λ can be important for heat transport simulation in highly heteroge-

neous systems. It is possible that, in combination with a low hydraulic gradient,

high heterogeneity of the porosity n and thermal conductivity λ could cause a

considerable increase in the uncertainty of the predictions of the temperature

plume.

Fig. 3 Simulated temperatures along the observation line for Simulation #0 of Scenarios 0, 1,

2, and 3 (n, λ constant) (top) and mean value of ten realizations for each scenario (bottom)
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6 Conclusions

This work has been performed in order to analyze the influence of parameter

heterogeneity distributions on heat transport in shallow geothermal systems. Het-

erogeneous distributions of permeability, porosity, bulk density, and thermal con-

ductivity were considered on a set of simulations obtained by sequential Gaussian

simulation techniques. The following conclusions can be taken:

• Heterogeneity in the hydraulic conductivity field causes significant changes in

the hydraulic head distribution. This affects the flow velocity field which is used

for heat transport simulation.

Fig. 4 Temperatures on observation line for ten realizations of Scenarios 1 (top) and 3 (bottom)
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• Heterogeneity of hydraulic conductivity has a major influence on the shape and

development of a temperature plume in a porous media. A high degree of

variance in the logarithmic hydraulic conductivity distribution results in a rising

variability of the simulated temperature fields and a considerable uncertainty in

the prediction of the temperature distribution in an aquifer system. The calcu-

lated variances of the simulated temperature fields between are rising signifi-

cantly with increasing degree of variance in the permeability field.

Fig. 5 Temperatures on observation line for ten realizations of Scenarios 1–4 (top) and 3–6

(bottom)
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• Heterogeneity in permeability distribution causes changes in the shape and

configuration of the temperature plume. The length and width of the plume

decreased as the variance of the permeability increases.

• The zones of cold water seem to be more concentrated when the dispersion effect

gets less important due to the higher flow velocities in the pore channels. This

phenomenon is widely known as “channeling effect.”

• The heterogeneity of porosity and thermal conductivity seems to have less

impact on modeling results than the heterogeneity of permeability. Low hetero-

geneity degrees in the porosity and thermal conductivity distribution do not

cause important changes in shape and development of the simulated temperature

plume. The calculated temperature variances in these scenarios are very small.

• However, in the most heterogeneous case σ2logk ¼ 1
� �

, the calculated variance

of the simulated temperatures increases significantly. This effect can be even

more significant when the hydraulic gradient gets lower and consequently the

flow velocities are lower too. In these cases, highly heterogeneous distributions

of the porosity n and thermal conductivity λ could cause a considerable increase
in the uncertainty of the predictions of the temperature plume.
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Building a Geological Reference Platform

Using Sequence Stratigraphy Combined

with Geostatistical Tools

Bernard Bourgine, Éric Lasseur, Aurélien Leynet, Guillaume Badinier,

Carole Ortega, Benoı̂t Issautier, and Valentin Bouchet

Abstract This paper presents a methodology that is currently tested at the French

geological survey in order to validate drill holes interpretation. Validated drill holes

are intended to be included in the future French geological reference platform

which is under construction. To validate drill holes, a first subset of high-quality

holes is selected. This data is interpreted in terms of geology and a geostatistical

analysis is performed. A 3D geological model is built to assess the overall geolog-

ical consistency. Then the rest of the drill holes is progressively and iteratively

validated by geostatistical cross validation. As several thousands of drill holes are

to be validated, specific software and workflows have been developed and are

presented here.

1 The French Geological Reference Platform

The objective of this work is the setup of a methodology for the validation of drill

holes that will be included in the French geological reference platform.

The French geological reference platform (Fig. 1) is one of the major scientific

programs of the BRGM (BRGM is the French geological survey). It aims at

delivering 3D validated geological data to public institutes, to the scientific com-

munity or to private companies, as well as to every citizen.

The data to be validated is of various types: geological maps, well logs, field

data, seismic profiles, etc.
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It is heterogeneous data, stored presently in independent databases. Moreover, it

has often not been homogenized, verified, or compared to other data. For this reason

this data cannot always be used directly and is not always reliable.

In the geological reference platform that will be built, every type of data will be

stored in a normalized database and will share the same data model.

This will allow data comparison and data checking and will facilitate data

interpretation and data use.

Regarding data validation, several levels of validation will be defined, but one of

the key components will be the validation through the construction of 3D geological

models or other types of numerical models such as flow simulation or geophysical

inversion.

For new data acquired later, tools will be developed in order to check its

consistency toward other existing data and 3D models.

In the end, validated data and models will be made accessible on the Internet.

2 Definition and Objective of Drill Holes Validation

Drill holes are one of the most important subsurface data to be validated in the

RGF (french geological reference platform). These drill holes are currently stored

in the French national drill holes database (BSS), which actually includes more than

800,000 drill holes. For most of the drill holes, the only provided information is the

Fig. 1 The French geological reference platform
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location of the hole, as well as the description of the lithology encountered at

different depths along the hole.

This information in itself is not sufficient to enable direct use of the drill holes to

build a geological model. For this it is necessary at least to associate each lithology

encountered along the hole with a known geological formation, a formation age, or

a geological body.

This is why a preliminary litho-stratigraphic interpretation was made in the past,

for a subset of 10% of the database, approximately 90,000 holes (Fig. 2). This first

level of interpretation includes the definition of lexicons concerning standardized

formation names, their age, and their lithology, as well as their graphical

representation.

However, the quality of this preliminary interpretation can range from very good

to very low, depending on the quality of the original drill holes description.

Moreover, the drill holes were often interpreted independently, without taking

into account other drill holes around, geological maps, or other information.

This is why a next step of the process is planned in the framework of the RGF.

The objective is to reprocess the 90,000 drill holes in order to validate or not the

preliminary interpretation in terms of litho-stratigraphy and to record and validate

the main geological interfaces crossed by drill holes.

As many drill holes are to be processed and as each drill hole can intersect

frequently 10–20 interfaces, it is of course necessary to automatize the work as

much as possible, in order not to spend too much time and money.

Fig. 2 First litho-stratigraphic interpretation from initial lithology description of drill holes

(D-NF marine dunes, Fy-z quaternary alluviums, SUB bedrock)

Building a Geological Reference Platform Using Sequence Stratigraphy. . . 867



3 Overview of Drill Holes Validation Methodology

Basically, the methodology is divided into two steps (Fig. 3):

1. A reference set (set A) is created using a limited number of high-quality drill

holes.

2. Other drill holes of lower quality (set B) are validated progressively by compar-

ison to set A and are iteratively added to set A.

A geostatistical analysis of set A data enables data characterization as well as a

quantification of uncertainty and helps validating interpretation.

In the first step, the reference set (set A) is created by selecting a loose network of
high-quality drill holes, i.e., holes owning a well log, generally a gamma ray. These

well logs are correlated using sequence stratigraphy (Homewood et al. 1999), which

allows an accurate litho-stratigraphic interpretation. A geostatistical analysis of

interpreted data is performed. The objective of this analysis is to spatially charac-

terize this data, detect potential errors (by cross validation), and establish the

variogram model then used. 3D models are built in order to quantify uncertainty

and validate the set A by checking the overall consistency of geological bodies with

respect to geological knowledge. Isopach maps derived from the model contribute

to this validation procedure.

During step 2 all other drill holes (of lower and unknown quality) are checked. A

geostatistical cross validation technique is used to check their consistency as

compared to the reference set A. Drill holes that are in good agreement with

reference data are considered as validated and added to the reference set. Generally,

the geostatistical model itself is not challenged because it is supposed to have been

validated at step 1. However, in case of high inconsistency, it can be reviewed. Then

the process is iterated to look for other drill holes to validate. 3D models are

updated consequently and results verified (Fig. 3).

4 Application of the Methodology on Real Data

The methodology of validation of drill holes will be now presented in more details

and illustrated on two real datasets, one in the Paris basin and the other in the North

Aquitanian basin (France).

4.1 First Step: Analysis of the Reference Set

The first example shown in Fig. 4 is a 120 * 80 km area around Paris. In this area,

approximately 7000 drill holes are to be validated.
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Among them, 168 reference drill holes with a gamma ray are chosen for the

reference set (2.5%).

These reference drill holes are grouped along vertical transects (Fig. 4) that are

aligned along the major geological axes. Drill holes and well logging are displayed

along these transects (e.g., Fig. 5 in the Aquitanian basin). The geologist can

interpret well logs using sequence stratigraphy concepts. Basically, the geologist

Fig. 3 Overall

methodology
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Fig. 4 Dataset in the tertiary basin around Paris, France
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has to identify surfaces or time lines that correspond to depositional context change.

This allows restoring correctly the geometry of sedimentary bodies. This will also

make possible facies simulation in each geological body.

Once the well logs are interpreted in terms of sequence stratigraphy, it is possible

to define a litho-stratigraphic pile along the wells (Fig. 5). The litho-stratigraphic

pile interpretation defined here (shown at the left of each gamma ray (Fig. 5)) is a

simplification of sequence stratigraphy interpretation (shown at the right of each

gamma ray on Fig. 5), where several different facies are grouped together between

two “major” time lines.

A geostatistical analysis of reference drill holes is then performed. The studied

variable is the elevation of the top or base of each formation. It can also be the

formation thickness.

For each formation, a “formation status map” is drawn. It shows if the formation

is present or absent and if the drill hole has intersected only the top of formation, the

base of formation, or both top and base (Fig. 6).

For example, in Fig. 6 the green “#” symbols correspond to a formation gap.

When isolated and surrounded by holes intersecting the formation, it can indicate an

error of interpretation or a coordinate error. Otherwise, these “#” symbols show

where the formation has not deposited and help the geologist to check his

interpretation.

From a geostatistical point of view, the variograms of tops and bottoms are

computed and fitted. Generally, a polynomial drift (linear or quadratic) is consid-

ered, and the fitted variogram is that of the residual after removal of a global drift

(fitted by least squares to all data – which is an approximation of the true residual).

Figure 7 shows an example of variogram of the residual computed from high-

quality data. The error in the interpretation of logging is of the order of few

Fig. 5 Interpretation of drill holes using gamma ray logging and sequence stratigraphy concepts.

Example in the Aquitanian basin
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centimeters, and the nugget effect can be neglected. It would not be the case with

destructive holes for which the identification of formation change, based on cut-

tings, can be affected by an error of 1–2 m.

Then a cross validation (based on kriging) is then performed. At this step, the

coefficient of the drift function is computed locally by kriging using data of the

neighborhood, so the local drift (and then the local residual) may differ from the

global one used to fit the variogram of the residual. Ideally, the new residual should

be recomputed and the process should be iterated as shown by Hengl et al. (2007).

This is not done in our case. Consequently, there is a risk of error due to a

nonoptimal geostatistical model. However, in practice the cross validation of the

reference data gives very satisfactory results in terms of error and of normalized

error, and outliers found in data can generally be attributed to errors in the data. In

our case the approximation seems acceptable and the geostatistical model is

validated.

Fig. 6 Formation status map. Example for Champigny limestone. Paris basin
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During this cross validation, inequality constraints given by the drill holes that

have not crossed or reached a given formation are taken into account. For example,

if a drill hole does not reach a given formation, this gives an upper bound value for

the elevation of the top of this formation. When the top of this formation is

interpolated from other drill holes where it has been observed, the interpolated

value at the location of the drill hole is compared to the upper bound. A warning is

sent if the interpolated value is above the upper bound and data can be verified.

Note that at this step a standard kriging is used instead of a “kriging taking into

account inequalities” (Freulon and De Fouquet 1993; Abrahamsen and Benth 2001)

because the objective is first to check data consistency and detect potential error

(even in the inequality constraint themselves).

Other information like the DTM and the geological map are also taken into

account. For example, the geological map, if correct, virtually gives infinity of

inequality constraints: if at a given point the formation A is outcropping that gives

constraints on the elevation of other geological formations.

The whole litho-stratigraphic pile has to be processed. If the litho-stratigraphic

pile in the area includes 20 formations, this procedure has to be repeated for all the

formations.

To make this work possible in a consistent and largely automated way, specific

software has been developed by the BRGM: GDM MultiLayer (Geological Data

Management, http://gdm.brgm.fr) (Bourgine et al. 2008; Bourgine 2015). This

software and associated algorithms include the management of gaps due to erosion

or formation pinching.

At last a preliminary 3D geological model is built using the reference dataset.

This helps checking the overall interpretation and possibly to correct it.

4.2 Second Step: Validation of Remaining Drill Holes

Once the reference dataset is validated for all the formations, other drill holes

(dataset B) are compared to the reference dataset.

For this, we again apply a cross validation technique. For example, if we

consider the top of a formation, and if we denote TA as the top of the formation

known from reference drill holes (set A) and TB the top of the same formation

measured on drill holes dataset B, we estimate TB from drill holes belonging to

dataset A and compare estimated value TB* to the true value TB. Thus, we can

compute the estimation error (TB*-TB) and the normalized error if we divide by the

kriging standard deviation.

The B holes, where we do not know the true value TB, but an inequality

constraint on TB, can also be tested.

At last the software we have developed displays automatic maps highlighting

outliers and potential errors. By clicking on the map, the geologist can get vertical

cross sections showing the potential anomaly.
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For example, on the cross section in Fig. 8 (data from the Aquitanian basin), the

interpolation of the base of the dark-blue formation (named TOA) using reference

holes A is not consistent with B hole where the base of dark-blue formation is

intersected much lower. Either drill hole B is correct (e.g., in the case of a fault or a

fold between the two holes) or drill hole B is not located here (not GPS-tagged drill

hole, coordinate input error, database error) or has not been correctly interpreted.

Typically, this hole has to be validated or corrected by manual check.

In fact all the B holes are not checked systematically, but only when necessary.

In a first step, B holes which are consistent with reference holes and with the

geological model are validated automatically. These new validated holes are then

added to the reference set A, and the process is reiterated with nonvalidated holes

remaining in set B. The iterative process ends when there are no more automatically

validated holes in set B. The holes remaining in set B can then be checked and

corrected manually. At each step, the variogram can (on demand, if necessary) be

recomputed and remodeled, especially to improve fitting for the short-range

components.

For the selection of automatically validated holes, we use the table shown in

Fig. 9. Drill holes for which the estimation error is low and the normalized error is

lower than 2 (green cell in Fig. 9) are validated automatically and added to the

reference set A. The threshold between “low” and “high” estimation error is fixed

arbitrarily and depends on geological context, as well as on the lithology contrast

between successive formations, which can make the drill holes interpretation easy

or difficult.

The threshold value of 2 for the normalized error corresponds to a 95%

confidence interval if we assume that the kriging error distribution is Gaussian. It

is well known that kriging error is generally not Gaussian. However, we have

verified that it is a reasonable approximation in our case.

Fig. 8 Validation of B holes along a cross section. Example for the top of “TOA” formation

(dark-blue formation along holes)
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All the holes that are not automatically validated are kept for further checking,

and the process is iterated using reference A holes plus the validated B holes, as

soon as there is no new auto-validated B hole.

The B holes that are not automatically validated can be checked manually one by

one. As it is not always possible to check all drill holes, we check preferentially drill

holes that are located in critical zones, for example, that intersect important

aquifers. Outliers of the cross validation are also checked because often they reveal

a major error in the interpretation or in the data.

Another criterion is to select the next candidate for validation in areas where the

kriging error map obtained from reference dataset shows large errors and where

present B holes are that have not yet been validated.

For example, on the kriging standard deviation map in Fig. 10, reference holes

A are in black and B holes waiting for validation in red. We will try to validate first

B holes located in the yellow and orange areas in order to get a maximum standard

deviation of 10–12 m.

At each time new holes are validated, it is possible to rebuild the whole

geological model automatically.

Cross sections and isopach maps can be derived from the model and are used for

verification and for the final validation.

4.3 Automatization

As many drill holes and many formations are to be validated, it is necessary to

automatize the work as much as possible.

This is why R scripts are first used for methodology testing.

Once the methodology seems to work well, it is implemented in an in-house

software (GDM software, http://gdm.brgm.fr) to be used by geologists who are not

specialists in geostatistics.

One of the strengths of this software is that it is coupled with the geological litho-

stratigraphic pile and includes many consistency checks. It includes tools for

managing the results of cross validation (set A with set A, set B against set A),
building the model, generating and updating cross section or isopach maps, and

Fig. 9 Criterion for validating or not drill holes of type B
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managing gaps in case of erosion or formation pinching. However, it does not yet

handle variogram automatic fitting nor drift degree identification. This work is still

left to the geologist and requires a short training.

This software is able to handle several thousands of drill holes and work on large

areas. But in practice, it is preferable to work on a limited area, not for performance

reasons, but rather to consider relatively homogeneous areas where the drift degree

is constant or where the geological context does not change much.

4.4 Results

Examples of results are given for two areas: the North Aquitanian basin and the

Paris basin.

In the North Aquitanian basin (Fig. 11), the geological context is a carbonate

ramp, and we looked at Jurassic formations. In this area, 117 reference holes were

selected (set A), and 10 formations of the Jurassic were considered.

For the Toarcian, which is one of those ten formations, 60 drill holes were to be

validated (set B).
Two thirds of these drill holes could be automatically validated by the proce-

dure, so only one third was left for manual verification.

For control purposes, they were all checked: four were discarded, seven were

validated, and nine were erroneous but could be reinterpreted.

Fig. 10 Use of the kriging standard deviation map to define the next B holes to be validated
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With the new validated holes, we obtained a reduction of 30% of the average

kriging standard deviation, compared to the situation with only the set A holes.

In such simple geological context, drill holes are of good quality and can be

easily validated.

The second area where we tested the methodology is in the Paris basin, next to

Paris city (Fig. 12). Here we looked more precisely at Eocene formations which

deposited in shallow sea or lacustrine context. In this area there are 7000 holes to

validate, represented by the black dots in the map. 168 drill holes with gamma ray

were interpreted and were used as the reference set (Fig. 4). They are shown in red

on the map.

Among the 7000 holes, only 137 intersect the Champigny formation that was

selected for the test, and nearly 50% of holes could be validated automatically.

They are shown in blue on the map. These holes are close to reference drill holes

because we introduced a low value for the maximum allowable estimation error.

In this case where the geological context is more complex, we can auto-validate

only 50% of holes for the Champigny limestone formation. As there are 19 other

formations to validate, the work takes more time, but is facilitated by a semi-

automatized workflow.

5 Conclusion

A methodology has been set up in order to enable drill holes validation. It is based

on geological concepts mixed with basic geostatistical tools.

This methodology helps finding quickly consistent drill holes and discarding

erroneous ones.

As we are considering large datasets and many geological formations, automatic

and semiautomatic tools have been developed to save time and ensure repeatability.

Fig. 11 Result in North Aquitanian basin and location of the study area in France
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These tools have been made accessible to the geologists in charge of validation

and who are not geostatisticians.

Further work to be done concerns (1) improvement in the automation (e.g.,

automatic looping on formations and automatic database management when adding

validated B holes to dataset A), (2) automatic variogram fitting and drift identifica-

tion, and (3) finding a way to manage drill holes that have not been automatically

validated nor discarded by the present procedure. These holes are kept as “not yet

validated” but are not rejected. They are candidate for a further validation, but it

would be useful to assign to these drill holes some kind of probability index of

being consistent with present knowledge and develop other methods to assess their

quality.
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Constrained Spatial Clustering of Climate
Variables for Geostatistical Reconstruction
of Optimal Time Series and Spatial Fields

Peter Dowd, Hong Wang, Eulogio Pardo-Igúzquiza, and Yongguo Yang

Abstract The purpose of this work is to present a new methodology for identifying

geographical regions within which the climatic behaviour of a meteorological

variable is coherent. We have chosen temperature as the variable of interest, and

thermal coherence is defined here in the sense of having a strong (negative)

correlation between terrain altitude and temperature. An improved method of

constrained spatial cluster analysis is described in the form of a new constrained

clustering algorithm. The methodology includes spatial bootstrap statistical tests to

provide a more realistic measure of the uncertainty of the coefficient of correlation

together with a spatial test of the correlation of residuals. The results are used as

optimal estimates of areal temperature averages. The methodology is illustrated by

applying it to the annual mean temperature measured at 1220 temperature stations

across Spain.

1 Introduction

Changes in temperatures are perhaps the most common and reliable indicator of

climate change or global warming (Morice et al. 2012; Robeson 1994). Tempera-

ture is usually measured at a finite number of sampling locations over regional or

national networks of weather stations. Temperature measurements are affected by
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many factors, including latitude, altitude, continentality, atmospheric circulation

and proximity to the sea. For a geographical area of relatively small size, altitude is

the most significant variable and explains most of the structural variance in spatial

temperature. Thus, temperature and altitude are usually very well correlated. The

correlation is usually linear and negative so that temperature decreases as altitude

increases with, in general, a mean gradient of 0.6 �C per 100 m of altitude (Viers

1975). However, for large areas (several degrees of latitude), the many other factors

listed above may affect the temperature in such a way that the relationship between

altitude and temperature is much weaker because, for example, different climate

patterns and climate zones are merged within the area. This will reduce the

accuracy and reliability of estimated mean temperature values using geostatistical

interpolation estimators, such as regression kriging or kriging with an external drift

(Carrega 1995). It is thus useful to be able to identify zones in which the thermal

behaviour is coherent in the sense that the correlation between altitude and tem-

perature is as strong as possible. Cluster analysis is highly suited to this purpose.

Clustering algorithms (Thacker and Lewandowicz 1997; Gerstengarbe et al.

1999; DeGaetano 2001; Unal et al. 2003; Hoffman et al. 2005; Fereday et al.

2008; Zhou et al. 2009; Mahlstein and Knutti 2010; Tang et al. 2012; Zscheischler

et al. 2012; Stooksbury and Michaels 1991) have been used for similar, but not

identical, problems to the one dealt with here. In this work a new clustering method

is proposed in which there are two novel aspects. The first is the recognition that,

although the problem is outside the framework of classical cluster analysis, it is a

particular form of a constrained cluster analysis problem. The second is accounting

for the spatial correlation of the data when calculating the correlation statistics and

in testing the spatial correlation of the residuals of the regression of temperature on

altitude for the clusters. The regions resulting from the cluster analysis are not

interpreted climatologically and are used solely to obtain optimal estimates of mean

areal temperatures. In addition, the regional clusters implicitly take account of

secondary variables such as latitude, longitude and proximity to the sea.

The remainder of this paper proceeds as follows. A brief description of

approaches employed in this study is given in Sect. 2. A real case study is presented

in Sect. 3. Section 4 discusses the experimental results, and finally Sect. 5 summa-

rises the conclusions of the work.

2 Methodology

Classical cluster analysis identifies groups of objects that are similar. It does so by

maximising the similarity of objects (for the purposes of this paper, temperature

measurements from weather stations) within a group and maximising the dissimi-

larity of different groups of objects (Gordon 1981). There are two broad types of

clustering methods: hierarchical clustering and non-hierarchical clustering. Among

the non-hierarchical clustering algorithms, the most widely used is the k-mean

algorithm. The similarity of objects is usually defined in terms of a distance
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(e.g. Euclidean, Mahalanobis) and defined according to the measured characteris-

tics of the objects.

For the problem addressed in this paper, the first difference with respect to

classical clustering is that, instead of defining the similarity measure as a distance

between the objects of a group, it is an objective function to be maximised or

minimised. The second difference is that the problem in this paper is a case of

constrained clustering in which a contiguity constraint restricts the sets of solutions

that are allowed (Gordon 1996), i.e. the objects in each group must comprise a

spatially contiguous set. Thus, given a number of groups, an object can change its

membership from group A to group B if two requirements are met: (i) groups A and

B are contiguous and (ii) the value of the objective function is improved. Clustering

temperatures into thermally homogeneous regions can thus be seen as a contiguity-

constrained optimisation problem.

The first issue is the definition of clusters and contiguity. The locations of the

weather stations are used as the seeds of a Voronoi tessellation of the geographic

space covered by the stations. A cluster, or group, of weather stations (or of the

corresponding temperature measurements) is a union of contiguous Voronoi cells,

and the boundary of the cluster is the outermost sequence of its constituent cell

boundaries. Two clusters are contiguous if they share a boundary or a point on their

boundaries. A member, or object, belonging to cluster A is contiguous with cluster

B if its Voronoi cell shares a boundary with the Voronoi cell of any member of

cluster B. These definitions are used in the application of the contiguity constraint.

In the proposed algorithm for contiguity-constrained classification of a set of

N objects (weather stations), the algorithm starts with an exhaustive classification

into M groups. The manner in which this starting classification is obtained is

described below. The classification is exhaustive in the sense that the N objects

have been classified, and each belongs to one of the M groups.

For any given configuration of groups (G1, . . .,GM), the objective function, OF
(G1, . . .,GM), of the configuration is defined by

OF G1; . . . ;GMð Þ ¼
XM

i¼1
niρ

*
i ð1Þ

where ni is the number of objects that belong to the ith group and ρ*i is the value of
the modified Pearson product-moment correlation coefficient:

ρ*i ¼ ρi þ 1:96*SE ρið Þ ð2Þ

where ρi is the estimated Pearson correlation coefficient of the ith group and SE(ρi)
is the associated standard error. The correlation between altitude and temperature is

negative, and, thus, from Eq. 2, ρi< ρ*i . The modified coefficient, ρ*i , can be used

instead of ρi as an experimental measure of correlation between altitude and

temperature that accounts for the size of the group, i.e. the uncertainty of the

estimated value of the correlation coefficient as represented by the standard error

in Eq. 2. The value 1.96 * SE(ρi) is the lower bound of the 95% confidence interval
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and has been chosen as a conservative value for including cluster size in the

comparison of the correlation coefficient of two different clusters. The estimated

Pearson product-moment correlation coefficient, ρi, for the i
th group is

ρi ¼
Xni

j¼1
Tij � �Ti

� �
Hij � �Hi

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXni

j¼1
Tij � �Ti

� �2r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXni

j¼1
Hij � �Hi

� �2r� �

ð3Þ

where Tij is the temperature at the j th station of the ith group,Hij is the altitude of the

j th station of the i th group and �Ti and �Hi are the respective means of the i th group.
Weather stations are thus defined by their pair (T, H ) of temperature and altitude.

Stations are also defined by their geographical co-ordinates (X, Y), which are

implicitly included in the proposed methodology by the contiguity constraint.

It is obvious that

OF G1; . . . ;GMð Þ � �N ð4Þ

with the minimum value �N being unattainable in practice because it would imply

the unlikely case of a perfect (negative) correlation between altitude and temper-

ature for a given partition (G1, . . .,GM).

The standard error, SE(ρi), of the estimated Pearson correlation coefficient may

be calculated by a parametric method such as Student’s t-distribution or by using a

non-parametric method such as the bootstrap. The advantage of the latter is that it

works when the sampling distribution of the correlation coefficient is asymmetrical

and the data are (spatially) correlated, as is the case in the application

described here.

The clustering process is applied to each set of annual temperatures. In the

clustering process, there are two permitted operations: coalescence of two groups

and moving an element from one group to another. Both operations use the

definitions of contiguity given above.

Two groups Gi and Gj will coalesce to form a new group, Gk, if:

1. The two groups, Gi and Gj, are contiguous.

2. The value of the objective function improves.

An object, ok, that belongs to group Gi can move to group Gj if:

1. The object ok is contiguous with the group Gj.

2. The value of the objective function improves.

Finally, the constrained clustering algorithm comprises the following steps:

(i) Start with a partition of M clusters, where M is greater than the expected

optimal number of clusters. For example, M¼ 100 is used in the case study.

Select at random M stations from the total N stations (N > M ). Call these

locations the seed stations. Next, each of the N stations is assigned to the
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nearest seed station, and then M groups that comply with the contiguity

constraint are formed. This is the initial random partition with M groups:

G1,G2, . . . ,GMf g ð5Þ

for which the initial objective function value is given by Eq. 1.

(ii) Each group, {Gi}, is taken in turn, and the closest contiguous group (in terms

of geographical distance) {Gj} is found. The closest group is the one that

contains an object that has the shortest geographical distance (calculated using

geographical co-ordinates (X, Y )) to a member of the group {Gi}. Obviously,

the two objects and the two groups are contiguous. Three operations are then

tried. Operation 1 (O1): if either of the two groups has less than nmin objects,
the groups are merged; Operation 2 (O2): try to merge both groups; Operation

3 (O3): try to move an object from one group to the other. The purpose ofO1 is
that if either of the two groups has a small number of elements, defined by the

threshold value nmin (e.g. nmin¼ 20 is used in the case study), there is no point

in calculating a very unreliable correlation coefficient, and thus the groups are

merged to create a larger group. The meaning of O2 is that of merging two

groups if the resulting group is better than the worse of the two groups. In other

words, Operation 2 consists in merging group {Gi} and group {Gj} into a

single group if the following criterion is met:

ρ*ij � max ρ*i ; ρ
*
j

� �
ð6Þ

where ρ*ij is the modified Pearson correlation coefficient, defined in Eq. 2, for

the merged group {Gij}¼ {Gi} [ {Gi}. Note that maximum operator is used in

Eq. 6 because the correlations are negative, and groups with the largest

possible negative correlation are required.

(iii) If the operation of merging the two groups fails (because Eq. 6 is not satisfied),

then the operation of moving an element to the closest group is tried. If the pair

of elements {oik, ojl} is the two closest elements between groups {Gi} and

{Gj}, such that {oik}2 {Gi} and {ojl} 2 {Gj}, there are two possibilities to try:

(1) the station {oik} leaves group {Gi} and joins group {Gj}, and (2) the station

{ojl} leaves group {Gj} and joins group {Gi}. Note that the possibility of both

element swapping groups is not allowed because it violates the contiguity

constraint. Thus, for possibility (1), let ρ*i and ρ*j be the correlation

coefficients of {Gi} and {Gj}, respectively, and let ρ*i� and ρ*jþ be the

correlation coefficients of {Gi�} and {Gj+} where {Gi�} ¼ {Gi} � {ok},

i.e. group {Gi} without object {ok}, and {Gj+} ¼ {Gj} + {ok} is group {Gj}

with object {ok} added. The proposal to move an object from group i to
group j is accepted if
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max ρ*i�; ρ
*
jþ

� �
< max ρ*i ; ρ

*
j

� �
ð7Þ

where max(A, B) is the operator that selects the maximum of A and B.

Similarly, for possibility (2), the proposal to move an object from group j to
group i is accepted if

max ρ*iþ; ρ
*
j�

� �
< max ρ*i ; ρ

*
j

� �
ð8Þ

Combining (7) and (8), and noting that both conditions cannot hold simul-

taneously, gives

min
n
max

�
ρ∗i�, ρ

∗
jþ
�
, max

�
ρ∗iþ, ρ

∗
j�
�o

< max
�
ρ∗i , ρ

∗
j

�
ð9Þ

(iv) Go to (ii) to operate on the next group until all N groups have been visited

in turn.

3 Case Study

3.1 Study Area and Research Material

The study area is mainland Spain as shown in Fig. 1. It is bordered to the north and

northeast by France, to the south and east by the Mediterranean Sea and to the west

and northwest by Portugal and the Atlantic Ocean. A DEM of mainland Spain with

a resolution of 751� 728 m is used in this study. We used the Universal Transverse

Mercator (UTM) projection, and we selected UTM-30N as the reference system.

The DEM is a re-projection from the original resolution of 752� 752 m. The

experimental data are 1220 mean annual temperatures for year 2010, the locations

of which are also shown in Fig. 1.

3.2 Results of Constrained Spatial Clustering

Scatterplots of altitude and mean temperature for the year 2010 in Fig. 2 show a

clear linear relationship but with significant dispersion within a broad band. In

Fig. 2 the dispersion of temperatures is approximately 7 �C, which is most evident

for altitudes close to zero. Stations at zero altitude are at, or near, the coast and thus

belong to different climate regions than those at higher altitudes. The total corre-

lation coefficient is �0.729 with a 95% confidence interval of �0.755, �0.702.

Student’s t-statistic was used to calculate this interval as, for such a large sample,

the non-parametric bootstrap evaluation gives virtually the same value. The clusters

retained by the spatial clustering algorithm are shown in Fig. 3.
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The scatterplots between altitude and mean annual temperature for each spatially

constrained cluster are shown in Fig. 4 in which stations with different symbols and

colours represent the different clusters.

The 13 clusters are clearly distinguishable in these plots, and the stations in each

cluster display a strong (negative) correlation between altitude and mean annual

temperature. In particular, the weakest correlation coefficient among all clusters is

�0.848, which is significantly higher than the correlation coefficient (�0.729) for

all temperatures taken as a single group, and the strongest correlation coefficient is

�0.959. The value of the objective function (formula (1)) for the 13 retained

clusters is �1087.55, which is higher than the value of �889.38 when all stations

are considered as one group. These results demonstrate the ability of the

constrained spatial clustering approach to identify geographical regions that are

thermally coherent.

3.3 Hypothesis Test for Residuals of Annual Mean
Temperature

In this section, we assess the ability of the spatial clustering method to retain

clusters that explain most of the structural variance in temperature. If the retained

clusters are thermally coherent, then the regressions of temperature on altitude

within each cluster should explain almost all of the structural variance in temper-

ature within that cluster. If this is so, then the semi-variogram of the residuals

should indicate more or less spatial randomness, i.e. a pure nugget effect. The semi-

variogram of the residuals from all 13 retrained clusters taken together displays

some spatial variability up to a range of ~115,000 m, with a nugget variance of 0.37

and a structural variance of 0.24 as shown by the semi-variogram model fitted in

Fig. 1 Locations of the

1220 weather stations over

mainland Spain
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Fig. 5. Thus, 61% of the total variability is nugget (or random) variance, and only

39% is spatially structured variance. By way of comparison, the model fitted to the

semi-variogram of the original temperatures also has a range of ~115,000 m, but the

Fig. 2 Linear relationship between altitude and mean annual temperature for Spain, for all 1220

weather stations in the year 2010

Fig. 3 Constrained spatial clusters based on temperatures measured at 1220 stations
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nugget variance of 0.60 accounts for only 8% of the total variance with spatially

structured variance accounting for the remaining 92%. This confirms that the bulk

of the structural variance has been removed by spatial clustering. Some residual

structural variance might be expected from border effects of the clusters; even so,

the structured variance of the residuals (0.24) represents only 3% of the total

variance of temperature (7.5).

3.4 Hypothesis Test for Correlation Coefficients

In this section we test the significance of the estimated correlation coefficients using

a bootstrap statistical test and the Fisher transformation. The estimated correlation

coefficients for all other clusters are inside their confidence intervals. Thus, all

Fig. 4 Scatterplots of altitude and mean annual temperature based on constrained spatial clusters

for year 2010
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estimated correlation coefficients are significant. For the sake of brevity, we show

in Fig. 5 only two bootstrap histograms (clusters 57 and 18). With respect to the

estimated confidence limits, when the distribution is symmetrical, such as in B in

Fig. 5, both estimators give very similar 95% confidence intervals. Differences

between the two estimators increase as the skewness of the sampling distribution of

the correlation coefficient increases as can be seen in A in Fig. 6.

3.5 Optimal Estimation of Mean Annual Temperature

The regression kriging estimator, which is optimally determined by the previous

cluster analysis, is applied to estimate the mean annual temperature and the

corresponding standard error. The results, using a moving window of 23� 23 km,

are shown in Fig. 7a, b. The mean standard error is 0.68 and the maximum and

minimum standard errors are 0.85 and 0.63, respectively. For comparison, we have

also used regression kriging to interpolate the temperature and calculate the asso-

ciated standard error taking all 1220 stations as a single group. In this case, the

mean standard error is 1.04, which is significantly higher than the value obtained by

cluster analysis.

4 Discussion

We highlight three main points from the work presented here:

Fig. 5 Omnidirectional experimental variogram (red crosses) of the regression residual for the

year 2010 and the fitted model (black line): a spherical model with a nugget variance of 0.37(�C)2,
a structural variance of 0.24(�C)2 and a range of 115,000 m
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1. Firstly, the spatial clustering algorithm delivers a stable solution. Provided steps

(i) to (iv) in the methodology section are repeated at least 1000 times, all results

will have stabilised, in particular, the number of groups, the values of the

correlation coefficients and the value of the objective function in formula (1).

In addition, the objective function will have converged to an acceptable approx-

imation of its minimum value.

2. Secondly, the role of the modified correlation coefficient. In the case study, the

modified correlation coefficient outperforms the Pearson correlation coefficient

because the inclusion of the standard error reduces the effects of the varying

cluster sizes. In formula (2) the modified correlation coefficient is defined as the

estimated correlation coefficient plus 1.96 times the corresponding standard

error. This modified value is equal to the upper limit of the 95% confidence

interval using the Fisher transformation. Although the coefficient 1.96 is

required for a 95% confidence interval, it could be set to any other value

depending on the requirements of the application.

Fig. 6 Bootstrap histogram of two clusters: 95% confidence limits of correlation coefficient from

Student’s t-test (green dashed lines) and bootstrap percentile estimates (red dashed lines); blue
dashed lines are estimated correlation coefficients
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Fig. 7 (a) Estimated annual mean temperature; (b) estimated standard error
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3. Thirdly, the method used to quantify the uncertainty of the correlation coeffi-

cient. Provided there are sufficient data, the bootstrap will give the same result as

the Fisher transformation. However, we prefer to use the bootstrap procedure

because there may be significant differences when the sampling distribution of

the correlation coefficient is asymmetrical as, for example, in A in Fig. 6.

5 Conclusions

The improved constrained spatial clustering analysis presented in this paper has

proved to work well when applied to our experimental data. The spatial clusters that

it generates are reasonable and stable, and the correlation between annual mean

temperature and altitude in each cluster is more significant than the equivalent

correlation for all sample stations taken as a single group. In addition, by using our

modified correlation coefficient, the constrained spatial clustering approach reduces

the effect of the uncertainty caused by different cluster sizes.

In testing the spatial residual of mean annual temperature, the semi-variograms

of the residuals display near-random spatial variability for the complete data set.

This indicates that, within each cluster, altitude explains almost all of the structural

variation in mean annual temperature. For all stations taken together, it is possible

that cluster (region) border effects may introduce a small amount of structural

spatial variability in the residuals.

In testing the significance of the correlation coefficient, the bootstrap procedure

is preferred to the Fisher transformation. The reason is that for asymmetrical

distributions, which are common in practice, the bootstrap performs better.

Finally, the areal temperature average, estimated from the cluster results, pro-

vides an effective means of identifying climate zones across Spain and of detecting

climate patterns.

These results may assist in identifying effects of climate change and detecting

evidence of global warming in Spain especially when our approaches are applied to

more extensive data sets, such as a series of annual average temperature data over a

long sequence of years. We intend to investigate these possibilities in future work.
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Constraining Geostatistical Simulations
of Delta Hydrofacies by Using Machine
Correlation

Peter Dowd, Eulogio Pardo-Igúzquiza, Sara Jorreto, Antonio Pulido-Bosch,

and Francisco Sánchez-Martos

Abstract In some hydrogeology applications, the only subsurface geological

information available comes from a small number of boreholes from which

hydrofacies have been intersected and identified. Geostatistical simulation is a

widely used stochastic technique for generating a set of possible hydrofacies

images that cover the range of the complexity and heterogeneity of the structures.

However, the uncertainty due to the very sparse data may be significant to the extent

that the simulated images cover an unrealistically large range of possibilities for the

hydrofacies characteristics. In such cases it may be desirable to constrain the

simulations so as to provide a more realistic, or plausible, set of simulations. In

the absence of wireline logging, outcrops, geophysics, production data or any other

types of hard data, we propose the use of machine numerical correlation between

hydrofacies at the boreholes as a means of constraining the range of plausible

simulations. The procedure is used to simulate delta hydrofacies in a coastal aquifer

in Almerı́a (Southern Spain) where the variability of the hydrofacies is critical for

managing problems related to seawater intrusion.
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1 Introduction

The spatio-temporal patterns of groundwater quality in coastal aquifers are deter-

mined by the spatial heterogeneity and spatial distribution of hydrofacies (Eaton

2006). A general way of accommodating the stochastic character of the geology

consists of generating a set of numerical aquifer models and applying deterministic

equations of flow and transport to each of them; this approach provides a stochastic

solution to the seawater intrusion problem. Although the techniques are general for

different sedimentary environments, the focus in this paper is on deltaic environ-

ments. There are three main techniques for generating 3D geological models (in this

case, 3D models of hydrofacies) of deltas. These methodologies are sequential

stratigraphy (Cabello et al. 2007), geophysical techniques (Barakat 2010) and

geostatistical models (dell’Arciprete et al. 2011). In an ideal situation, all of these

techniques could be used for the integration of all the available information to

provide as realistic a model as possible. However, the choice of method depends on

the available data. Of the three methodologies, geostatistical methods are the least

demanding with respect to data requirements and can be applied even when only a

few sparsely located boreholes are available. Dell’Arciprete et al. (2011) compare

sequential indicator simulation, transition probability geostatistical simulation and

multiple-point simulation. We disregard multiple-point simulation because of the

requirement for 3D training images or at least orthogonal 2D training images. We

also disregard transition probability simulation because, as can be seen in

Dell’Arciprete et al. (2011), it generates unrealistic images of spatial heterogeneity.

Dowd et al. (2015) extended sequential indicator simulation to include the uncer-

tainty of the proportions of the facies.

A problem that often remains, however, is that the data are so sparse that they

cannot constrain the simulated realisations to realistic ranges. In the absence of

wireline logging, outcrops, geophysics and production data (e.g. pumping tests,

responses to tidal fluctuations), we propose to use machine correlation to rank the

realisations by their plausibility. In the absence of the required hard data, we

propose the use of the hydrofacies themselves together with the philosophy of the

CORRELATOR software (Olea 2004) to build probabilistic sections of correlation

between each pair of boreholes. We include a procedure to check the accuracy of

the automatic correlation. Finally, the planar sections between pairs of boreholes

are used to classify the simulations by assigning to them a score that quantifies their

plausibility. We explain the methodology in the following section.

2 Methodology

Machine correlation, or computer-assisted correlation, of litho-stratigraphic

sequences and wireline logging has been the subject of intensive research in

geology in general and in petroleum exploration in particular (Fang et al. 1992).
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Among the available software implementations of machine correlation, one of the

best known is CORRELATOR (Olea 2004), which emulates the visual inspection

used by experienced subsurface geologists in manual correlation. It uses two

properties at each borehole, shale content and the similarity in the patterns of

vertical variation of a specified petrophysical property. The automatic correlation

can be done between any pair of boreholes; one is the reference well and the other is

the matching well. We employ the same concept of a weighted correlation coeffi-

cient w1,2(i, k; n), which is defined as the product of a standardised similarity

coefficient α1,2(i, k; n), and the Pearson correlation coefficient, r(i, k; n), (Olea

2004):

w1,2 i; k; nð Þ ¼ α1,2 i; k; nð Þ � r1,2 i; k; nð Þ ð1Þ

where i is the depth index, zi is the centre of an interval in the reference well, k is the
offset between the centres of the intervals in the two wells being compared and n is
the number of data either side of the central interval value; the number of data in the

interval is thus 2n+ 1.
However, while in CORRELATOR the similarity index is based on the concept

of shale content as estimated from gamma logs, we have defined a similarity index

for hydrofacies:

α1,2 i; k; nð Þ ¼ 1�
XK

s¼1

Xiþn

j¼i�n
Is jð Þ �

Xiþn

j¼i�n
Is jþ kð Þ

���
���

2 2nþ 1ð Þ ð2Þ

where Is ( j) is the indicator of the s
th hydrofacies at the j th location in the interval in

well 1, Is ( j+ k) is the indicator of the s
th hydrofacies at the ( j + k)th location in the

interval in well 2 and K is the total number of hydrofacies. For example, if i¼ 5,

k¼13, n¼ 3 and K¼ 4, then the total number of each of the four hydrofacies in well

1 in the interval from depth 2 to depth 8 is compared with the total number in the

interval from depth 15 to depth 21 in well 2. The value of α1,2(i, k; n) ranges

between 0 and 1 in the same way as the similarity function based on the shale

content in CORRELATOR.

The Pearson correlation coefficient is defined in the standard way (Olea 2004):

r1,2 i; k; nð Þ ¼ cov12 i; j; nð Þ
s1 i; nð Þs2 i; k; nð Þ ð3Þ

where cov12(i, j; n) is the covariance between the two intervals (one in each

borehole) and s1(i; n)and s2(i, k; n) are the respective standard deviations. The

covariance term is

cov12 i; j; nð Þ ¼ E C ið ÞC jþ kð Þf g � E C ið Þf gE C jþ kð Þf g ð4Þ
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where E{.} is the mathematical expectation operator and C(i) is the category

number at ith location C ið Þ2 1, 2, . . . ,Kf g.
The final correlation function in Eq. (1) is used to establish the likelihood of

correlations between different parts of the boreholes, which, in turn, can be used to

assess the plausibility of different geostatistically simulated realisations of the

spatial distribution of hydrofacies.

3 Case Study

The study area (Fig. 1) is the detrital aquifer of the Andarax river delta in the

province of Almerı́a (Southern Spain). The aquifer comprises deltaic deposits from

the Pleistocene overlain by fluvial and deltaic deposits from the Quaternary

(Sanchez-Martos et al. 1999). The Andarax river is ephemeral, with flow usually

resulting from big storms, and is typical of rivers in the semiarid coastal regions of

the Mediterranean. Within the study area, there are 19 boreholes and three clusters

of four piezometers each (Jorreto-Zaguirre et al. 2005), the locations of which are

shown in plan view in Fig. 1. The borehole cores were classified into five types of

hydrofacies according to their permeability: very permeable (category 1), perme-

able (category 2), low permeability (category 3), impermeable (category 4) and

very impermeable (category 5).

Figure 2 shows the original 15 boreholes that were drilled along the coast. Their

absolute locations are shown in Fig. 1, whereas in Fig. 2 relative spatial locations

are used so as to show the distribution of the facies along the boreholes as well as

the relationships between them. A visual inspection shows that the most abundant

of the hydrofacies is number 2, and the least abundant is number 1. The proportions

of the hydrofacies are 2.65%, 43.70%, 27.10%, 18.50% and 7.80% for

hydrofacies 1 to 5, respectively.

It is also apparent from Fig. 2 that there are no clear patterns of spatial

distribution of the hydrofacies across the boreholes. This could, however, be a

subjective evaluation, whereas an evaluation by machine correlation could provide

a quantitative assessment that would be the same for everyone independent of

individual experience. The three functions given in Eq. 1, i.e. similarity, Pearson

correlation and weighted final correlation, are shown for boreholes 1 and 3 in

Figs. 3, 4 and 5, respectively. In these graphs if the maximum correlations are on

the 1:1 line, the implication is that the maximum correlation is along the horizontal

between the boreholes, while deviations from the 1:1 line give the likely dip of the

layer according to machine correlation. The similarity function has the effect of

screening large correlations between intervals with different hydrofacies but with

the same correlation pattern. Negative correlations are of no interest for hydrofacies

correlation, so the final image of interest is the weighted correlation using positive

correlations (Fig. 5).

Figure 5 shows that there is a relatively high probability (>0.6) that the

hydrofacies are correlated in the interval between depths of 36 m and 62 m in
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borehole 1 and in the interval between 28 m and 54 m in borehole 3. This is an

expression of the plausibility of the continuity of hydrofacies 2 between those two

intervals and can be verified in Fig. 1 by looking at borehole 2, which is located

between boreholes 1 and 3. To provide a better understanding of these diagrams, we

have done a random permutation of the hydrofacies along boreholes 1 and 3 as

shown on the left-hand side of Fig. 6.

The number and frequency of the hydrofacies in borehole 1 with random

permutation are identical to the hydrofacies in the original borehole 1 (Figs. 1, 2,

3, 4, and 5). The same is true for borehole 3. However, given the random permu-

tation, any continuity has been lost, and there is now no correlation between the two

boreholes. This can be seen on the right of Fig. 6. The similarity will be high

because the number and frequency of facies between the intervals will be similar,

but any continuity has been lost, and the raw correlation and final weighted

correlation will be low (<0.5) for virtually all the area. Another illustrative example

is given in Fig. 7, which shows the final machine correlation between boreholes

10 and 11. Despite these two boreholes being close in space, the correlation is high

only along the horizontal for the 8 first metres and for the last 12 metres along the

boreholes, which in this case have the same length.

The ultimate goal of machine correlation in this work is the ranking of condi-

tional geostatistical simulations and the screening of realisations using that ranking

to constrain the set of plausible realisations. Figure 8 shows three conditional

Fig. 1 Location of the study area (yellow square) in the Andarax river delta. 1 Quaternary detrital
material. 2 Pliocene detrital material
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simulations of the hydrofacies. Although the machine correlation between all the

boreholes should be considered, for illustration purposes we concentrate on bore-

holes 10 and 11 for which the machine correlation is given in Fig. 7. These two

boreholes are shown in 3D in Fig. 9.

Figures 10, 11 and 12 show panel 74, from the 3D simulations in Fig. 8b–d,

respectively, and which passes close to the line that joins boreholes 10 and 11. The

idea is to rank the plausibility of the three simulations of the panels between

boreholes 10 and 11 represented by the yellow square in Figs. 10, 11 and 12 by

using the machine correlation in Fig. 7.

This task could be accomplished in several ways using the fact that the condi-

tional simulation is a 3D grid of voxels so that each column of voxels (keeping x

and y constant) can be assimilated to a simulated or synthetic borehole. Thus, the

equidistant “synthetic borehole” (Fig. 13) could be correlated with boreholes 10 and

11 in turn (Fig. 14), and the weighted correlation function could be compared with

Fig. 7. The procedure is repeated for each simulation; it would then be possible to

rank the simulations in Figs. 10 and 11 according to this rank.

Fig. 2 Distribution of categories (from 1 to 5) along the 15 boreholes (from 1 to 15, Fig. 1) that are

located parallel to the coast
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Fig. 3 Raw correlation between boreholes 1 and 3 (Figs. 1 and 2)

Fig. 4 Similarity function between boreholes 1 and 3 (Figs. 1 and 2)
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A comparison of Figs. 14 and 7 shows that, of the three simulations, simulation

B is the closest to the machine correlation between boreholes and would thus be the

preferred choice. A quantitative assessment of the choice is left open for future

work. The simulation for which the final correlation shows the highest similarity

with the final correlation in Fig. 7 would be ranked first. The same procedure could

be applied to any other pair of boreholes, and the final scoring would be accumu-

lated to provide a final ranking. This procedure is computationally intensive and is

still under development, but the outline of the method has been established in this

work. The procedure described here is not the only possibility, and alternatives can

be developed and implemented. The probability of machine correlation between

each pair of boreholes could be integrated and mapped. This map could provide

information on spatial variation of the continuity of the hydrofacies. It could also

assist in the inference of the 3D semi-variogram by suggesting preferential direc-

tions of the anisotropy between the vertical and a non-vertical direction (horizontal

or dipping). Intervals with strong connectivity could be identified and their repro-

duction in the simulation investigated.

Fig. 5 Weighted correlation between boreholes 1 and 3 (Figs. 1 and 2)
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4 Discussion and Conclusions

The spatial distribution of hydrofacies in sedimentary delta environments is an

important factor in solving practical hydrogeological problems such as seawater

intrusion. Often, in these environments, as in the case study presented here,

subsurface data can only be acquired either directly from boreholes or indirectly

by using geophysical methods. Although both types of information are desirable

and complementary, it is often the case that only a small number of boreholes are

Fig. 6 Left random permutation of hydrofacies of boreholes 1 and 3. Right raw correlation

(upper), similarity function (middle) and weighted correlation (bottom)
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Fig. 7 Weighted correlation between boreholes 1 and 3 (Figs. 10 and 11)

Fig. 8 (a) 3D view of boreholes and (b, c and d) three different realisations of conditional

simulations of the geologic delta mediums by simulating the hydrofacies
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available and geophysical information is absent. The uncertainty of the geological

media (as described by a set of hydrofacies) can be quantified by conditional

geostatistical simulation, which generates a set of plausible realisations of the

spatial distribution of hydrofacies across the complete range of possible realities.

This set of scenarios can then be used with flow and transport models to simulate

seawater intrusion and assess the dispersion of the interface in a probabilistic way.

Fig. 9 3D location of

boreholes 10 and 11

Fig. 10 Boreholes 10 and 11
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Fig. 11 Boreholes 10 and 11

Fig. 12 Boreholes 10 and 11
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In practice, however, data are often so sparse that the range of generated

realisations is unrealistically wide. In the absence of sufficient data or other

information, machine correlation offers one possibility for constraining the

range of realisations by determining the possible continuity of the horizons of

the hydrofacies. In this work a method of machine correlation for hydrofacies has

been proposed as an extension of the CORRELATOR approach (Olea 2004) and

which does not require any additional information. The procedure has been

validated with real data, and we have shown how it could be used in constraining

the 3D realisations of hydrofacies such as those given in Dowd et al. (2015). The

work presented here is just a first step, and further work is needed to rank

realisations by a plausibility index, based on machine correlation, which could

then be used for screening the realisations.

In future work we will also explore a variation to the approach described in this

paper by conducting the well-to-well correlation before doing the geostatistical

simulations. The well-to-well correlation would define the stratigraphic grid on

which the simulations would be generated. As a reviewer pointed out, this would

avoid mixing correlation uncertainty and geostatistical uncertainty. Nevertheless,

for the particular application described in this paper, correlation after simulation is a

useful approach because underground geology data are sparse and there are no 3D

geophysics data available; this lack of data makes correlation before simulation far

too restrictive.

Fig. 13 Synthetic borehole equidistant from experimental boreholes 10 and 11 created by the

column of voxels at the intersection of two panels from the 3D simulation
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Assessing the Performance of the Gsimcli
Homogenisation Method with Precipitation
Monthly Data from the COST-HOME
Benchmark

S. Ribeiro, J. Caineta, and A.C. Costa

Abstract Nowadays, climate data series are used in so many different studies that

their importance implies the essential need of good data quality. For this reason, the

process of homogenisation became a hot topic in the last decades, and many

researchers have focused on developing efficient methods for the detection and

correction of inhomogeneities in climate data series. This study evaluates the

efficiency of the gsimcli homogenisation method, which is based on a geostatistical

simulation approach. For each instant in time, gsimcli uses the direct sequential

simulation algorithm to generate several equally probable realisations of the cli-

mate variable at the candidate station’s location, disregarding its values. The

probability density function estimated at the candidate station’s location (local

probability density functions (PDF)), for each instant in time, is then used to verify

the existence of inhomogeneities in the candidate time series. When an inhomoge-

neity is detected, that value is replaced by a statistical value (correction parameter)

derived from the estimated local PDF. In order to assess the gsimcli efficiency with

different implementation strategies, we homogenised monthly precipitation data

from an Austrian network of the COST-HOME benchmark data set (COST Action

ES0601, Advances in homogenization methods of climate series: an integrated

approach – HOME). The following parameters were tested: grid cell size, candidate

order in the homogenisation process, local radius parameter, detection parameter

and correction parameter. Performance metrics were computed to assess the effi-

ciency of gsimcli. The results show the high influence of the grid cell size and of the

correction parameter in the method’s performance.
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1 Introduction

As defined by the Intergovernmental Panel on Climate Change (IPCC), climate

change refers to a change in the state of the climate that can be identified by changes

in the statistical characteristics of its properties and that persists for an extended

period, typically decades or longer (Bernstein et al. 2007). In order to assess climate

change and to develop impact studies, it is imperative that climate signals are clean

from any external factors. Hence, two steps must be performed in climate time

series: quality control and homogenisation. Quality control relates to the verifica-

tion and treatment of extremely high and low values (outliers). The second includes

an analysis of the time series that is focused on the detection and correction of

inhomogeneities caused by non-climatic factors (Bližňák et al. 2014; Vertacnik

et al. 2015).

The non-climatic factors include stations’ relocations, changes in the environ-

ment, instrumentation, time and the methods of measurement (Aguilar et al. 2003).

Since these artificial discontinuities have often the same magnitude as the usual

variability of climate data series, they can erroneously influence the analysis of

natural climate variations (Hannart et al. 2014).

Homogenisation methods usually depend on the type of climate variable, the

temporal resolution of the observations, the weather station network density and

also the availability of metadata (Costa and Soares 2009). Indeed, metadata plays a

very important role in the homogenisation of climate data and should be

documented and treated with the same care as the data themselves (World Meteo-

rological Organization 2010). Direct homogenisation methods employ metadata in

order to assess the presence of a breakpoint; however, whenever metadata is absent,

the indirect homogenisation methods justify the presence of a breakpoint only with

the result of homogenisation tests (Ribeiro et al. 2016). The relative homogeneity

principle (Conrad and Pollack 1962) assumes that neighbouring series reveal the

same climate variations apart from the inhomogeneities integrated in one of the

series (Hannart et al. 2014). Based on this principle, homogenisation methods can

be classified in regard to the use of reference stations: absolute and relative

homogenisation methods. The use of absolute methods (without using reference

stations) should be used with care and always accompanied with metadata (Venema

et al. 2012), since they may introduce more inhomogeneities in the data series.

Several authors have prepared reviews of homogenisation methods (Aguilar

et al. 2003; Costa and Soares 2009; Domonkos 2013; Ribeiro et al. 2015). The

European initiative COST Action ES0601, Advances in homogenisation methods

of climate series: an integrated approach (HOME), is intended to review and

improve common homogenisation methods and to assess their impact in climate

time series (Chair of the Management Committee of the Action 2011). In order to

achieve such goals, HOME has executed a blind intercomparison and validation

study for homogenisation methods. The methods were tested against a realistic

benchmark data set, which included temperature and precipitation data (Venema

et al. 2012). This benchmark data set has three different groups of data: real,
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surrogate and synthetic. The first group contains real inhomogeneous data, while

the other two enclose simulated data with inserted inhomogeneities, outliers,

missing data periods, local station trends and a global trend, per network (Venema

et al. 2012). Fifteen simulated networks were prepared, and they are located in

different places within Europe. The networks comprise 5, 9 and 15 stations.

The submitted methods were evaluated by the calculation of performance

metrics. Based on the performance metrics, the best homogenisation contributions

were ACMANT (Domonkos et al. 2011), MASH (Szentimrey 1999, 2007, 2008),

PRODIGE (Caussinus and Mestre 1996, 2004) and USHCN (Menne and Williams

2009; Menne et al. 2009). Recently, some of the homogenisation methods were

transformed into software packages, in order to become fully automatic procedures,

and they are available in (http://www.climatol.eu/tt-hom/).

This study assesses the efficiency of the gsimcli homogenisation method, which

is based on a geostatistical simulation approach. To do so, we homogenised

monthly precipitation data from an Austrian network of the HOME benchmark

data set. The following parameters were tested: grid cell size, candidate order in the

homogenisation process, local radius parameter, detection parameter and correction

parameter. Performance metrics were computed to assess the efficiency of gsimcli.

Precipitation is the focus on this study, since it is one of the most important

variables for climate and hydrometeorology studies. Changes in precipitation

pattern may lead to floods, to droughts and consequentially to the loss of biodiver-

sity and agricultural productivity (Sayemuzzaman and Jha 2014).

This work is organised as follows. The following section depicts the study

domain and data. The methodological framework includes the description of the

gsimcli method and the set of performed homogeneity tests. In the results and

discussion section, the performance metrics are scrutinised. Finally, the conclusion

section brings a summary of the lessons learned and recommendations for

future work.

2 Study Domain and Data

This study analyses monthly surrogate precipitation data that are part of the HOME

data set, namely, the network 16. This network comprises 15 stations and it is

located in Austria (Fig. 1). The data series include 100 years of precipitation values,

between 1900 and 1999. It covers a rectangular area of approximately 24,640 km2

(220� 112 km). Considering the statistics for the annual series (Table 1), the lowest

values were recorded in stations 4313302 (northeast corner) and 4315421 (west

area), with 374.3 mm and 384.6 mm, respectively. The maximum value was

recorded in station 4319710 (southwest corner). The variability of both annual

and monthly series is very high. For example, the standard deviation of the annual

series varies between 131.4 mm (station 4315515) and 287.7 mm (station

4320123).
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Variography analysis is required to perform kriging interpolation, in which the

gsimcli method is based. Hence, before executing the homogenisation procedure,

the semivariogram model must be studied and its parameters defined. Data was

divided by month and then by decade. Due to the missing periods in the beginning

of the century (1900–1929) and in the fifth decade (1940–1945), the first three

decades were joined into a data set, as well as the fourth and fifth decade, for the

Fig. 1 Location of 15 stations from the network 16

Table 1 Summary statistics of the annual precipitation series from network 16

Station ID Mean Median Std. dev. Variance Range Min. Max.

4313116 868.9 812.2 211.2 44,582 974.7 415.5 1,390

4313302 769.5 759.9 131.7 17,343 780.8 374.3 1,155

4315343 903.0 885.2 152.4 23,217 834.1 563.0 1,397

4315421 786.0 795.3 194.4 37,777 749.6 384.6 1,134

4315515 1,051.4 1051.5 131.4 17,275 639.8 726.4 1,366

4315711 793.5 773.3 136.1 18,521 733.5 465.8 1,199

4316412 824.3 825.5 188.8 35,626 994.9 422.7 1,418

4317901 1,010.5 1,015.0 206.8 42,770 942.5 597.9 1,540

4318210 916.5 908.8 178.4 31,825 866.6 470.1 1,337

4318906 1,150.4 1,158.1 210.39 44,265 1,132.1 550.5 1,683

4319710 1,290.6 1237.4 279.8 78,299 1,498.6 618.2 2,117

4320001 1,247 1,270.5 244.4 59,720 1,096.4 685.5 1,782

4320123 1,164.0 1,100.1 287.7 82,792 1,408.2 510.1 1,918

4320212 1,000.5 1,012.4 190.8 36,409 881.2 538.1 1,419

4321300 1,282.4 1297.6 203.3 41,330 1,000.2 705.7 1,706
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purpose of the variography study. Seven semivariograms were modelled for each of

the monthly series, in a total of 84.

3 Methodological Framework

3.1 Gsimcli Method

This study evaluates the gsimcli homogenisation method, which is based on the

direct sequential simulation (DSS) algorithm (Soares 2001). The gsimcli method

uses the DSS in the calculation of the local probability density functions (PDF)

(Costa and Soares 2009) at the location of the candidate station. Such calculation is

prepared solely with the temporal and spatial observations of nearby reference

stations. A breakpoint is identified whenever the interval of a specified probability

p, centred in the local PDF, does not include the real observation of the candidate

station. The detected irregular value is then replaced by a statistic value of the local

PDF formerly computed (e.g. mean, median or a given percentile).

This method turned into a software package, which allowed the homogenisation

process to become direct and quasi-automatic (Caineta et al. 2015). Two subsets of

parameters must be defined before starting the homogenisation procedure: the

simulation parameters and the homogenisation parameters. The former define the

number of simulations, the kriging type of the geostatistical method, the maximum

number of nodes to be found, the number of CPU cores, the simulation grid size and

the semivariogram parameters. The latter depict the candidate order, the detection

parameter, the local radius and the correction parameter. The simulation grid

describing the area where the stations are located must also be analysed, in order

to ascertain the cell size, the number of columns and the number of rows. These

values take into account that the bordering stations of the network must be

surrounded by a number of cells at least equal to the value of the local radius

parameter. The gsimcli method is freely available at http://iled.github.io/gsimcli/.

3.2 Homogeneity Tests

In order to start the homogenisation procedure, the monthly precipitation surrogate

data set was divided in 12 folders, 1 per month. Each of these folders included the

variography file with the semivariogram parameters per decade, the grid settings

file containing the grid cell size, and a subfolder with the ten decadal data files. The

monthly folders are homogenised separately.

A sensitivity analysis comprising 16 different strategies was implemented for the

following parameters (Table 2): grid cell size, the detection parameter (the proba-

bility value to build the detection interval centred in the local PDF), the correction
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parameter (the statistic value used for the inhomogeneities correction: the inhomo-

geneities, outliers or missing values can be replaced by the mean, median, skewness

and percentile), the local radius (sets the radius of a circle centred at the candidate

station location where the simulated values of the nodes located within the circle are

considered in the calculation of the local PDF) and the candidate order (the order by

which the candidate stations are homogenised).

The analysed grid cell sizes are 1000 m, 5000 m and 10,000 m, which corre-

spond to grids of 27,709 cells (229� 121 cells), 2088 (58� 36 cells) and 792 cells

(36� 22 cells), respectively. The values of the detection parameter analysed are

0.95 and 0.975. The values considered for the correction parameter are the percen-

tiles of 0.90, 0.95 and 0.975. The investigated local radii are 0, 1, 2 and 3. It is

noteworthy to mention that the area of the circle centred in the candidate station

depends on the grid cell size and the local radius. Regarding the candidate order,

Tests #1 to #12 and #14 to #16 used the descending value of the stations’ data
variance, while Test # 13 used the network deviation (difference between the

station and the network average values) to define the sequence of the candidate

stations to be homogenised (Table 2).

The values defined for the remaining simulation parameters are common to the

16 strategies and correspond to default values proposed by Ribeiro et al. (2016):

• Number of simulations: 500

• Kriging type: ordinary kriging

Table 2 Different homogenisation strategies (grid cell size, detection parameter, correction

parameter and local radius parameter)

Test

#

Grid cell size

(metres)

Detection

parameter (p)

Correction parameter

(percentile p)

Local radius

parameter (r)

1 1,000 0.95 0.975 0

2 1,000 0.95 0.95 0

3 5,000 0.95 0.90 1

4 5,000 0.95 0.90 2

5 5,000 0.95 0.90 3

6 5,000 0.95 0.975 0

7 5,000 0.95 0.975 1

8 5,000 0.95 0.975 2

9 10,000 0.95 0.975 0

10 10,000 0.95 0.975 1

11 10,000 0.95 0.975 2

12* 10,000 0.95 0.90 0

13* 10,000 0.95 0.90 0

14 10,000 0.95 0.90 1

15 10,000 0.95 0.90 2

16 10,000 0.975 0.975 0

In all Tests the candidate order was based on the stations’ data variance, except in Test #13 (*) that
was based on the network deviation
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• Maximum number of nodes to be found: 16

• Number of CPU cores: 4

4 Results and Discussion

For each homogenisation strategy, four performance metrics are automatically

calculated by gsimcli software (Table 3). Tests with the lowest values of perfor-

mance metrics correspond to tests with the best set of parameters.

Those metrics are the station centred root mean square error (CRMSE), the

network CRMSE, the station improvement and the network improvement, as

defined by Venema et al. (2012). The CRMSE was chosen by the HOME project

since the main aim of the homogenisation is not to improve the absolute values but

rather the temporal consistency. The station CRMSE quantifies the homogenisation

efficiency for each station individually, and it is obtained by the mean CRMSE, by

station. The network CRMSE measures the efficiency of the homogenisation of the

network, as a whole.

The improvement metrics assess the enhancement over the inhomogeneous data.

Station (network) improvement metrics will reflect the quality of the procedure also

shown in the station (network) CRMSE. The improvement metrics are computed as

the ratio of the station (network) CRMSE of the homogenised networks and the

station (network) CRMSE of the same inhomogeneous networks.

Analysing the station CRMSE of the 16 strategies, it is possible to note that the

highest values belong to the strategies where the correction parameter was defined

Table 3 Performance metrics of the 16 homogenisation strategies

Test # Station CRMSE Network CRMSE Station improvement Network improvement

1 13.11 5.11 1.10 1.17

2 13.56 5.96 1.13 1.37

3 15.05 7.73 1.26 1.77

4 15.01 7.71 1.26 1.77

5 14.99 7.69 1.25 1.76

6 13.09 5.20 1.09 1.19

7 13.01 5.13 1.09 1.17

8 12.99 5.10 1.09 1.17

9 13.03 5.25 1.09 1.20

10 12.90 5.10 1.08 1.17

11 12.92 5.09 1.08 1.17

12* 15.02 7.71 1.26 1.77

13* 15.17 7.59 1.27 1.74

14 14.97 7.65 1.25 1.75

15 14.96 7.65 1.25 1.75

16 12.94 5.33 1.08 1.22
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as the percentile of 0.90, regardless of the other parameters. Therefore, it is less

appropriate for the correction of irregularities (inhomogeneities, outliers and miss-

ing values). These strategies (Tests #3, #4, #5, #12, #13, #14 and #15) also have the

highest values of the network CRMSE.

The most appropriate value for the correction parameter seems to be the per-

centile of 0.975, because the performance metrics exhibit smaller values.

Comparing the candidate order parameter, focus must be given to Tests #12 and

#13. The evaluation of their performance metrics is ambiguous, since the station

CRMSE is better for the Test #12 (candidate order by variance), while Test #13

performs better in the network CRMSE (candidate order by network deviation).

Tests #9 and #16 differ in the detection parameter, and their station and network

CRMSE vary in opposite directions. In this case, as it happens with the candidate

order parameter, it is not possible to make any judgement about the best value for

the detection parameter. The value of 0.95 is set as default.

The CRMSE metrics decrease with the increase of the cell size (e.g. Tests #1, #6

and #9); thus, increasing the cell size improves the method performance.

The best metrics are provided by Tests #10 and #11, where the cell size is

10,000 m, the detection and correction parameters are set to 0.95 and the percentile

of 0.975, respectively. The difference between these two Tests is the local radius

(1 and 2, respectively) parameter. Their performance metrics are very similar. The

larger the cell size and the local radius are, the greater the quality of the homog-

enisation results. This fact relates to the area that is considered for the computation

of the local PDF.

5 Conclusion

This study aimed at investigating several parameters in the homogenisation of

monthly precipitation surrogate series with the gsimcli approach. The analysed

parameters were the grid cell size, the detection parameter, the correction parameter

and the local radius parameter.

The analysis has emphasised the importance of the grid cell size and the local

radius parameters in the performance of gsimcli. The knowledge of the surrounding

area of a candidate station is essential to the improvement of its series quality. The

principle of relative homogeneity (Conrad and Pollack 1962) is again validated.
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Meteorol 117(1):91–112

Domonkos P, Poza R, Efthymiadis D (2011) Newest developments of ACMANT. Adv Sci Res

6:7–11

Hannart A, Mestre O, Naveau P (2014) An automatized homogenization procedure via pairwise

comparisons with application to Argentinean temperature series. Int J Climatol 34:3528–3545

Menne MJ, Williams CN Jr (2009) Homogenization of temperature series via pairwise compar-

isons. J Clim 22(7):1700–1717

Menne MJ, Williams CN Jr, Vose RS (2009) The U. S. historical climatology network monthly

temperature data, version 2. Bull Am Meteorol Soc 90:993–1007

Ribeiro S, Caineta J, Costa AC (2015) Review and discussion of homogenisation methods. Phys

Chem Earth, (in press)

Ribeiro S, Caineta J, Costa A, Henriques R, Soares A (2016) Detection of inhomogeneities in

precipitation time series in Portugal using direct sequential simulation. Atmos Res

171:147–158

Sayemuzzaman M, Jha MK (2014) Seasonal and annual precipitation time series trend analysis of

North Carolina, United States. Atmos Res 137:183–194

Soares A (2001) Direct sequential simulation and cosimulation. Math Geol 33(8):911–926

Szentimrey T (1999) Multiple analysis of series for homogenization (MASH). In: Proceedings of

the second seminar for homogenization of surface climatological data. WCDMP-No.

41, WMO-TD No. 1962. World Meteorological Organization, Budapest, pp 27–46

Szentimrey T (2007).Manual of homogenization software MASH v3.02. Hungarian Meteorolog-

ical Service

Szentimrey T (2008) Development of MASH homogenization procedure for daily data. In:

Lakatos M, Szentimrey T, Bihari Z, Szalai S (eds) Proceedings of the fifth seminar for

homogenization and quality control in climatological databases. WCDMP-No. 71. World

Meteorological Organization, Budapest, pp 123–130

Venema V, Mestre O, Aguilar E, Auer I, Guijarro J, Domonkos P et al (2012) Benchmarking

homogenization algorithms for monthly data. Clim Past 8(1):89–115

Assessing the Performance of the Gsimcli Homogenisation Method with. . . 917



Vertacnik G, Dolinar M, Bertalanic R, Klancar M, Dvorsek D, Nadbath M (2015) Ensemble

homogenization of Slovenian monthly air temperature series. Int J Climatol 35:4015–4026

World Meteorological Organization (2010) Guide to climatological practices. WMO No. 100, 3rd

edn. World Meteorological Organization, Geneva

918 S. Ribeiro et al.



Ecological Risk Evaluation of Heavy Metal
Pollution in Soil in Yanggu

Yingjun Sun

Abstract Soil pollution caused by heavy metals was studied. The potential eco-

logical risks posed by seven heavy metals (Cu, Pb, Cd, Cr, Ni, Zn, and As) in the

agricultural soils of Yanggu, Shandong Province, China, were analyzed. The spatial

variation of the seven heavy metals was used to develop a probability map of the

heavy metals based on sequential simulation methods. The ecological risks to the

region from the heavy metals were then assessed using the Hakanson potential

danger index. The result showed that Cd was the main problem in the Yanggu area.

The potential ecological risk from Cd was nearly 80 and the risk classification was

medium. The total potential ecological risk from all seven heavy metals was

114.656. This indicated that heavy metal pollution in the entire study area posed

only a slight ecological risk.

1 Introduction

Ecological risk assessment (ERA) is performed to evaluate the potential adverse

effects of physical or chemical stressors on the environment. Risk assessment

provides a way to develop, organize, and present scientific information so that it

is meaningful in the consideration of environmental decisions. Soil is a basic

element of ecological systems. Soil conditions affect economic development and

are directly related to agricultural product safety and human health. Many studies

have evaluated soil pollution caused by heavy metals and their potential ecological

risks (Liu 2010; Muyessar Trudi 2013). The multivariate statistical analysis, pol-

lution index, and potential ecological risk index methods were used to study the

spatial distribution of heavy metals (Zheng 2012; Li 2014; Lu 2012).
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Geostatistics has played an important role in soil environment studies.

Geostatistics includes description of spatial patterns, quantitative modeling of

spatial continuity, spatial prediction, and uncertainty assessment (Goovaerts

1998). The “bin” variogram has been used to quantify the spatial distribution of

heavy metal concentrations. There are two kinds of prediction methods in

geostatistics: kriging and simulation. The methods of kriging tend to produce

more “accurate” and “smoothed” values for the unsampled points. The results are

based on the condition of the minimum local error variance (Sun 2008). Simulation

methods focus on the spatial pattern of the sample points. Simulated maps will

reproduce the statistics drawn from the sample points, like the histogram or the

semivariogram model (Goovaerts 1997). Therefore, the maximum and the mini-

mum values will be retained in the map, and this is important for the discovery of

pollution sources. The sequential Gaussian simulation method was used to repre-

sent the possible pollution status of heavy metals in the Yanggu study area. In

advanced research, uncertainty in the spatial distribution of attribute values can be

reflected in the uncertainty of risk assessments. This, in turn, may compromise the

successful performance of remediation processes.

2 Experiment

2.1 Study Area

Yanggu (35�550–36�190 N, 115�390–116�060 E) is located in the west of Shandong

Province (Fig. 1). It covers an area of 1,064 km2 and the population size is 794,800.

It has a typical continental monsoon climate, with warm temperatures, semi-humid

conditions, and well-defined seasons. The mean annual temperature is 13.9 �C, and
the mean precipitation is 523.9 mm. The soil of Yanggu is typically moist; the soil

types are mainly sandy soil, loam soil, and clay soil. Yanggu is an important cotton-

producing area for both the Shandong Province and China.

2.2 Sampling

A digital map of Yanggu was used to establish uniform 2� 2 km grids for the entire

study area. Each grid center represented a sampling point. Topsoil samples

(0–20 cm) from Yanggu were collected from 226 different grids in 2008 (Fig. 1).

Some sampling point locations varied slightly from the grid center. These changes

were based on specific topography, land use, and soil type provided by 1:50,000

scale topographic maps, 1:100,000 scale soil maps, and 1:10,000 scale aerial

photos. Soil samples were obtained by mixing five subsamples from each site

within a 20� 20 m area and were recorded for the central point position using
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GPS. Approximately 1 kg of soil sample was collected at each location using a

stainless steel spade. Samples were stored in self-sealing plastic bags.

2.3 Chemical Analysis

All soil samples were air-dried, ground, and sieved through a 2-mm nylon sieve to

remove coarse materials and debris. Then a portion of each sample was ground with

a mortar and pestle until all particles passed through a 0.15-mm nylon sieve. For

Fig. 1 Study area
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analysis of total heavy metal concentrations, 1 g of each dry soil sample was

digested in a Teflon tube using a mixture of perchloric acid (HClO4), nitric acid

(HNO3), and hydrogen fluoride (HF). The solution of each digested sample was

analyzed by inductively coupled plasma atomic absorption spectrometry

(ICP/AAS) for the following heavy metals: As, Cd, Cr, Cu, Ni, Pb, and Zn (Meng

2014). Standard reference materials were obtained from the Center of National

Standard Reference Materials of China, and blank samples were used with each

batch of samples (one blank and one standard for each ten samples) for quality

assurance and quality control. The analytical precision values for the tests, mea-

sured as relative standard deviations, were all less than 10%. All samples were

analyzed in duplicate and results were accepted when the relative standard devia-

tion was within 5%. The results met the accuracy demand of the Technical

Specification for Soil Environmental Monitoring HJ/T 166–2004 ((SEPAC) 2004).

2.4 Assessment Method

We used the Hakanson potential ecological risk equations. The equations used to

compute the potential ecological risk of each heavy metal and the integrated

potential ecological risk were the following:

Ei
r ¼ T i

r � Ci
f ; ð1Þ

IR ¼
XN

i¼1
Ei
r ¼

XN

i¼1
T i
r � Ci

f ; ð2Þ

where Tir is the toxic response factor of the individual heavy metal. The

corresponding values of Cd, As, Pb, Ni, Cu, Cr, and Zn were 30, 10, 5, 5, 5, 2,

and 1, respectively. Ci
f ¼ Ci=C

i
r is the pollution coefficient of each heavy metal; Ci

is the concentration of each heavy metal; Ci
r is the recommended values of heavy

metal concentration in soils. The paper took the recommended values of Shandong

Province (Table 1).

A combination of different heavy metals can result in a relatively greater total

potential ecological risk. The Hakanson classification is shown in Table 2.

3 Results and Discussion

3.1 Histogram and Transformation

To obtain the spatial distribution of a heavy metal using the simulation method, we

initially tested for satisfaction of the assumption of multivariate normality. The

histograms of each heavy metal were generated (Figs. 2 and 3). Cd and Cr had
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almost normal distributions, with low skewness and kurtosis values close to 3. The

other five heavy metal values were log transformed to satisfy requirements for the

normal distribution.

3.2 The Semivariance Function Models

The semivariance function models included the exponential model, Gaussian

model, spherical model, and linear model (Fig. 4). The main parameters included

nugget (C0), sill (C0+C), range (Range), nug/sill ratios (C0/(C0+C)), coefficient of

determination (R2), and RSS. Among these parameters, we focused on the nug/sill

ratio. This parameter is used for spatial heterogeneity and reflects the influence of

natural regional factors and the role of man-made non-regional factors. When C0/

(C0+C) <0.25, it indicates that the variable space mutation has been given priority

to the structural variation (nature), and the variables have strong spatial correlation.

When 0:25 � C0= C0þ Cð Þ < 0:75, the variables have moderate spatial correla-

tion. When C0= C0þ Cð Þ � 0:75, the variables are random and the spatial correla-

tions are weak . The result of Table 3 shows that the nug/sill ratios of As, Cd, Cr, Ni,

Zn, and Cu are between 0.25 and 0.75, indicating a medium spatial correlation,

while the nug/sill ratios C0/ (C0+C) of Pb are smaller than 0.25.

Table 1 Recommended values of heavy metal concentrations in soil (mg/kg)

Cu Zn Pb Cd Cr Ni As

Value 24 63.5 25.8 0.084 66.0 25.8 9.36

Table 2 Classification of potential ecological risk

Potential ecological risk

Slight Medium High Higher Highest

Ei
r <40 40–80 80–160 160–320 >320

IR <150 150–300 300–600 �600

Fig. 2 Histograms of Cd and Cr
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Fig. 3 Histograms of As, Zn, Ni, Pb, and Cu
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Fig. 4 The semivariogram function diagram of heavy metal in Yanggu
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3.3 Spatial Distribution of Heavy Metals in Yanggu

The spatial distributions of the seven heavy metals were based on 1,000 simulations

(shown in Fig. 5). We used the upper limit of the background value of heavy metals

in soil established by the local government as the standard (Table 1). To present

spatial distribution details, the legend of each heavy metal had ten or more intervals.

We did not find an obvious concentration point of Pb, Cr, and Cu in the

simulation results. The areas contaminated with Zn, As, and Ni represented

25–50% of the entire area. Cd pollution was widely spread throughout the area

with higher accumulations in eastern and southern locations.

3.4 Probability Map of Heavy Metals in Yanggu

The probability map of each heavy metal was based on the 1,000 realizations, and

the corresponding recommended threshold values listed in Table 1. Cr, Pb, and Cu

had little probability of exceeding the threshold value (Fig. 6). Some areas for As,

Zn, and Ni had probabilities >50% for exceeding the threshold value. For Cd,

almost 80% of the total area had a probability >90% of exceeding the threshold

value. These results were the same as those from the spatial distribution analysis in

Sect. 3.3.

3.5 Potential Ecological Risks of Heavy Metals in Yanggu

An evaluation of the Hakanson potential ecological risk was completed for each

heavy metal and the total risk using the contamination sum. The results indicated

that Cd was the main heavy metal contaminant problem in Chiping. The potential

ecological risk from Cd was nearly 80 and the risk classification was medium

(Fig. 7).

The total potential ecological risk from all seven heavy metals was 114.656, and

this level of heavy metal pollution poses a slight potential ecological risk (Fig. 8).

Table 3 Semivariogram fitting of heavy metals in soils from Yanggu

Model C0 Sill Range C0/(C0+C)

As Exponential 2.04 5.564 314,700 0.366643

Cd Gaussian 0.000445 0.000934 90,239.847 0.476445

Cr Gaussian 22.4 59.68 10,1151.767 0.375335

Ni Exponential 4.53 12.27 34,200 0.369193

Pb Exponential 0.83 7.068 5,700 0.117431

Zn Spherical 29.1 83 133,000 0.350602

Cu Exponential 6.19 12.39 31,650 0.499596
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Fig. 5 Spatial distribution of heavy metals in Yanggu
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Fig. 6 Probability map of heavy metals in Yanggu
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Fig. 7 Potential ecological risks of heavy metals in Yanggu
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3.6 Discussion

Analysis of the seven heavy metals showed that the sampling schedule was impor-

tant. The goal of simulation is to get the attribution of unsampled locations. But the

uniform 1-km grid sampling was limited. No information was available for dis-

tances smaller than 2 km. This meant that short-distance spatial variation was

poorly estimated. For example, the nugget of Pb is forced to zero in Fig. 4, where

this was not supported by the data.

In addition, cross-correlations between heavy metals should be taken into

account. We found a strong positive relationship between Cu and Zn with the

Pearson coefficient 0.714. Thus, a co-kriging approach could be used which

estimates values of cross-variograms. This might provide an improved linear

unbiased prediction of intermediate values.

4 Conclusions

Levels of seven heavy metals (Cu, Pb, Cd, Cr, Ni, Zn, and As) were studied in

agricultural soils. Spatial variation of these heavy metals was determined based on

sequential simulation methods. The ecological risk of the heavy metals was

assessed using the Hakanson potential danger index. The results indicated that Cd

was the main problem in Yanggu. The potential ecological risk from Cd contam-

ination had a value of 80 and a medium risk classification. The total potential

Fig. 8 Integrated potential

ecological risk of heavy

metal in Yanggu
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ecological risk in the study area from all seven heavy metals had a value of 114.656,

and this total constitutes a slight ecological risk.
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Comparison of Trend Detection Approaches
in Time Series and Their Application
to Identify Temperature Changes
in the Valencia Region (Eastern Spain)

Hong Wang, Eulogio Pardo-Igúzquiza, Peter Dowd, and Yongguo Yang

Abstract The identification of systematic small- and intermediate-scale tempera-

ture changes (trends) in a time series is of significant importance in the analysis of

climate data. This is particularly so in the analysis of local climate change trends

and their potential impact on local hydrological cycles. Although many statistical

tests have been proposed for detecting these trends their effectiveness is often

affected by the presence of serial correlation in the time series. Hence, it is of

both interest and necessity to compare the performances of these tests by applying

them under a representative range of conditions. In this study, we use Monte Carlo

experiments to compare and explore six commonly used tests for detecting trend.

For this purpose, we use the confidence level and power to assess the ability to

detect trend in two groups of simulated time series with and without serial corre-

lation. The statistical tests are also applied to mean annual temperature measured at

13 weather stations located in the Valencia region (Eastern Spain).
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1 Introduction

The identification of systematic small-scale and intermediate-scale temperature

changes (trends) in a time series is a significant issue in the analysis of climate

data. It becomes especially crucial in the analysis of local climate change and its

potential impact on local hydrological cycles. Over the past few decades, a number

of studies have been undertaken to evaluate temperature trends in multi-scale

climatic and hydrological domains, for example (Gilbert 1987; Lins and Slack

1999; Zhang et al. 2001). The trend detection tests used in these and other similar

studies can be grouped into two broad categories: parametric and non-parametric

approaches. Despite the success of the parametric approaches, non-parametric

techniques are more popular in many applications because they require fewer

assumptions. There is a substantial body of published work, particularly in hydrol-

ogy, that reviews parametric and non-parametric approaches including, among

others (Khaliq et al. 2006, 2009; Sonali and Kumar 2013). It is beyond the scope

of this paper to explore all statistical tests included previously published studies and

we limit our study to six commonly used and representative approaches.

The rank-based Mann-Kendall (MK) and Spearman rank correlation (SRC) tests

are frequently used nonparametric tests. Study Yu et al. (1993) indicated that the

MK test, supported by a large number of case studies, is more widely used than the

SRC test. In contrast, the classical parametric approach of least squares linear

regression (LR) has also has been successful in many applications. We group

these three methods together because in time series applications they generally

assume serial independence. However, this assumption does not always hold.

Certain time series, for example, annual mean temperature, frequently display serial

correlation. The existence of positive serial correlation has been shown in Von

Storch (1995) to increase the possibility of a null hypothesis of no trend being

rejected when the null hypothesis is actually true. Various statistical tests have been

proposed to address the issues caused by serial correlation, the most well-known

being the pre-whitening Mann-Kendall (PW-MK) (Von Storch 1995), the Trend-

Free Pre-whitening Mann-Kendall (TFPW-MK) (Yue et al. 2002b) and the Vari-

ance Correction (VC) (Yue and Wang 2004) tests. These three tests are modified

MK tests and are included in the work presented here.

Because of the significant diversity of climatic and geographical phenomena

there is general agreement that there is no one test that surpasses the others in all

cases. A suboptimal choice is to find a test that works well for a number of specific

representative cases. To do so, we compare the performances of these six statistical

tests under a representative range of conditions with the objective of providing

useful guidelines. The comparison of MK and SRC tests in Yue et al. (2002a)

indicates that the two tests have the same power. In Yue and Pilon (2004) the

authors compared the MK test and LR and found that, for normally distributed data,

the power of LR is slightly higher than that of the MK test and, for non-normally

distributed data, the power of the MK test is higher than that of LR. It should be

noted that the work reported in Yue and Pilon (2004) and Yue et al. (2002a) was
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conducted using serially independent simulation data and did not address confi-

dence levels and power for serially dependent data. In Yue et al. (2002b) the authors

proved that the TFPW-MK test has a larger power than that of PW-MK test with AR

(1) simulated time series; performances were not assessed for correlated time series

with a skewed distribution.

In spite of the very large volume of literature comparing the performances of

various tests, there has been very little exploration of these six statistical tests and

especially of the assumptions under different models. In this paper, we use Monte

Carlo experiments to conduct a comprehensive comparison of the performances of

rank-based, LR and modified MK tests with respect to the confidence level and

power in order to assess the ability to detect trend in the presence and absence of

serial correlation. To do so we use two groups of simulated time series – one with

and one without serial correlation.

The remainder of this paper proceeds as follows. A brief description of

approaches employed in this study is given in Sect. 2. Section 3 compares the

performance of statistical tests using a simulation study. A real case study is

presented in Sect. 4. Section 5 provides conclusions from the study.

2 Methodologies

The statistical tests employed in this study are introduced in Sects. 2.1 and 2.2.

2.1 Statistical Tests for Trend Detection

The MK test (Kendall 1975; Mann 1945) is a rank-based non-parametric test. The

MK statistic S is calculated as:

S ¼
Xn�1

i¼1

Xn

j¼iþ1
sgn xj � xi

� � ð1Þ

where j>i, xj and xi are the values at i and j, respectively; n is the length of the time

series, and

sgnðθÞ ¼
1 if θ > 0

0 if θ ¼ 0

� 1 if θ < 0

8<
: ð2Þ

when n�10, S is approximately normally distributed (Gilbert 1987) with variance
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Var Sð Þ ¼ 1=18 n n� 1ð Þ 2nþ 5ð Þ �
Xm

k¼1
tk tk � 1ð Þ 2tk þ 5ð Þ

h i
ð3Þ

where m is the number of tied values and tk is the number of observations in the kth

value.

The standardized test statistic Z is computed by

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S� 1ð Þp

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þp

if S > 0

0 if S ¼ 0

Sþ 1ð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þp

if S < 0

8<
: ð4Þ

At the α significance level the null hypothesis of no trend is rejected if the

absolute value of Z is greater than Z1�1/α which is obtained from standard normal

cumulative distribution tables.

LR is a parametric approach. Assuming that there is a linear relationship in the

time series, the test statistic t is defined by

t ¼ b̂ =s b̂
� � ð5Þ

where s b̂
� �

is the standard error and b̂ is the estimated slope. The test statistic

t follows a student’s t-distribution with n-2 degree of freedom; n is the length of the
time series. The null hypothesis of zero slope will be rejected if tj j > t 1�α=2ð Þ,n�2 at

the α significance level.

The SRC test (Dahmen and Hall 1990) is a rank-based nonparametric approach

used for trend analysis. Spearman’s rank correlation coefficient, Rs, and the test

statistic, ts, are defined by

Rs ¼ 6
Xn

i¼1
di

2=n n2 � 1
� � ð6Þ

ts ¼ Rs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2ð Þ= 1� Rs

2
� �q

ð7Þ

where di¼ rxi – ryi; rxi and ryi are the rank numbers of xi and yi, respectively; and
n is the length of the time series. When there are ties in rxi and ryi the average rank
is used. Positive (negative) ts indicates an increasing (decreasing) trend. At an α
significance level the null hypothesis will be rejected if jtsj > tð1�α=2Þ,n�2.

2.2 Approaches for Trend Detection in Serially Correlated
Time Series

The PW-MK test is proposed by Von Storch (1995) and implemented in the

following steps.
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i. Compute the lag-1 correlation coefficient (r1) (Salas et al. 1980) of the time

series (x1, x2, . . . . . ., xn) with a significance level of α.
ii. If the lag-1 correlation coefficient is significantly different from zero at the

specified significance level of α, the original time series will first be

pre-whitened as x2 � r1x1, x3 � r1x, . . . . . . , xn � r1xn�1ð Þ, then MK test is

applied to the pre-whitened time series. Otherwise, the MK test is directly

applied to the original time series.

The TFPW-MK procedure (Yue et al. 2002b) is applied in the following manner

to identify a trend in a time series.

i. Estimate the slope of the original time series using the approaches of Sen (1968)

and Theil (1950).

ii. Compute the lag-1 correlation coefficient (Yue and Pilon 2004) of the time

series with a significance level of α. If the lag-1 correlation coefficient is not

significant, the time series is treated as serially independent and the MK test is

applied to the original time series. Otherwise, it is treated as serially correlated,

and the pre-whitening technique is applied to the de-trended time series.

iii. The MK test is applied to the blended series obtained by combining the

de-trended series and the estimated slope of the trend.

In Yue and Wang (2004) a procedure is proposed for correcting the variance of

the MK test statistic S by using an effective sample size (ESS) that takes into

account the impact of serial correlation on the variance of S. The variance V(S)*
modified by ESS is

Var Sð Þ* ¼ Var Sð Þn=n* ð8Þ

where n is the actual sample size (ASS) of the actual sample data; n* is the ESS; Var
(S) is the variance of S which can be calculated using Eq. 3. The formula for

computing n* for the lag-1 autoregressive process is given in (Matalas and

Langbein 1962) as:

n* ¼ n= 1þ 2 ρnþ1
1 � nρ21 þ n� 1ð Þρ1

� �
= n ρ1 � 1ð Þ2
� �� �

ð9Þ

The modified standard MK statistic Z* can be expressed, by Z in Eq. 4 based on

the relationship between Var(S) and Var(S)* in Eq. 8, as

Z* ¼ Z
ffiffiffiffiffiffiffiffiffiffi
n*=n

p
ð10Þ
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3 Simulation Study

3.1 Simulation Data

To provide a comprehensive assessment of the performances of the statistical tests,

groups of data were simulated according to the following requirements:

(i) Two types of independent time series: Gaussian and Chi-square time series.

The realisations of the Gaussian time series were generated using Sequential

Gaussian Simulation and the realisations of the Chi-square time series were

obtained by squaring the corresponding Gaussian time series. The Gaussian

time series is normally distributed. The Chi-square time series is characterized

by a highly skewed probability density with a long right-hand tail.

(ii) Auto-correlated random functions best describe the variability of natural

phenomena in time. In this work, the serial correlation is quantified by an

exponential semi-variogram. We use two models defined by semi-variogram

ranges equal to 10% and 50% of the side-length of the geometric field

respectively.

(iii) A linear drift (trend) defined by: m xð Þ ¼ β0 þ β1x, where β0¼ 0.

(iv) Five values of the scales of variability of the residual and the drift given by the

ratio σL/σH equal to 0.1, 0.2, 0.3, 0.4 and 0.5; where σL and σH denote the

standard deviation of the drift and the standard deviation of the residual of the

time series, respectively.

(v) Four sizes (lengths) of the time series: 40, 60, 80, 100.

Six types of time series were obtained by combining (i), (ii) with (v): indepen-

dent Gaussian (denoted Gaussian1), Gaussian with short range (Gaussian2), Gauss-

ian with long range (Gaussian3), independent Chi-square (Chi-square1), Chi-square

with short range (Chi-square2), Chi-square with long range (Chi-square3). A total

of 1000 of each of the six types of time series without drift were generated and used

to estimate the confidence level. Similarly, 1000 of each of the six types of time

series with drifts specified by (iii) and (iv) were generated to evaluate the power.

Examples of simulated data are shown in Fig. 1.

3.2 Simulation Results

At the significance level of α¼ 0.05 for a two-tailed test, the six statistical

approaches were applied to each time series with and without drift. The confidence

level and the power were then computed. For the sake of brevity, as the test results

are insensitive to different sample sizes, we show in this study the experimental

results for sample size 60.
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3.2.1 Confidence Level of Statistic Tests for Six Types of Time Series
Without Drift

In this subsection, we assess the influence of different time series in the trend

detection analysis. For this purpose, we employ the simulated time series data

without drift. The confidence interval is calculated for measuring purposes. Results

are summarized in Fig. 2, which shows the estimated confidence levels of the six

statistical tests for Gaussian1, Gaussian2, Gaussian3, Chi-square1, Chi-square2 and

Chi-square3, respectively, in the first, second, third, fourth, fifth and sixth columns.

In particular, Gaussian1 and Chi-square1 are simulated time series without serial

correlation while the other four are time series with serial correlation. In this Monte

Carlo simulation, the nominal confidence level is 95% as the nominal significance

level is set to 0.05. Using these experimental results, we now compare the perfor-

mance of the six tests with respect to the presence or absence of time series

correlation.

Comparing the first (Gaussian1) and fourth (Chi-square1) columns in Fig. 2, it

can be seen that the six statistical tests obtain almost the same confidence level

(around 95%) and achieve the nominal confidence level for independent time series

(Guassian1 and Chi-square1). Thus, for time series without serial correlation,

irrespective of the type of distribution (Gaussian or Chi-square), the performances

of the six tests for trend detection are very similar.

For the simulated data for correlated time series, shown in the second, third, fifth

and sixth columns in Fig. 2, the performances of all the six tests are similar. In

particular, (1) two of the modified MK tests, PW-MK and TFPW-MK, have almost

the same confidence level, which is slightly lower than that of the VC test; (2) the

confidence level of the VC test is similar to each of the other four correlated time

series and achieves the nominal value (95%); (3) the confidence level of the three

modified MK tests is obviously higher than that of the rank-based tests and the LR

test when the time series is serially correlated.

Fig. 1 Four realizations of simulated data used in the simulation study. (a) A realization of

Gaussian1; (b) A realization of Gaussian3 with drift specified by σL/σH which is equal to 0.3; (c) A
realization of Chi-square1; (d) A realization of Chi-square1 with drift specified by σL/σH which is

equal to 0.3
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On the other hand, the statistical tests perform differently for the correlated time

series. With the exception of the VC test, the second and third columns show that

the confidence levels of the six statistical tests for time series with short correlated

range (Gaussian2) are higher than the corresponding confidence levels for time

series with long correlated range (Gaussian3). This is also the case for the fifth

(Chi-square2) and sixth (Chi-square3) columns. In particular, the confidence levels

of the PW-MK and TFPW-MK tests for time series with long correlated range is

slightly lower than the corresponding values of these two tests for time series with

short correlated range. The differences are small and can be accepted. Similar

results were obtained in Yue et al. (2002b).

Thus, the three modified MK tests demonstrate almost the same ability to detect

no trend in a correlated time series without drift.

3.2.2 Powers of Statistical Tests for Independent Time Series with Drift

In this section, we summarize trend detection with the six tests in order to evaluate

their performances on time series without serial correlation and with drift. The

power criterion is calculated for measuring purposes. Rows 1–5 of Table 1 present

the power of the six tests for uncorrelated normally distributed time series (Gauss-

ian1) with different drifts specified by σL/σH. It can be seen that the six statistical

tests have almost the same power. Thus, for independent normally time series with

drift, the six tests demonstrate similar abilities to detect trend.

Rows 6–10 of Table 1 show the power for uncorrelated skewed distributed time

series (Chi-square1) with different drifts specified by σL/σH. It can be seen that the

Fig. 2 Confidence levels of the six statistical tests for time series without drift at the significance

level of α¼ 0.05
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rank-based tests and the modified MK tests have almost identical powers. However,

the LR test has the lowest power among the three groups of tests when drift is

present in time series. Thus, for uncorrelated skewed time series with drift, LR has

the lowest ability to detect trend.

Table 1 indicate that the LR test is sensitive to the distribution of uncorrelated

time series with drift. The other five statistical tests have almost the same ability to

detect trend irrespective of whether the time series is Gaussian or Chi-square.

3.2.3 Powers of Statistical Tests for Correlated Time Series with Drift

We conducted the trend detection with the six statistical tests to investigate their

performance on correlated simulated time series and with drift. The powers were

computed for four types of correlated time series (Gaussian2, Gaussian3,

Chi-square2, Chi-square3) with drift and are shown in Table 2.

For the four types of correlated time series with drift in Table 2, common

experimental results for the six statistical tests are (1) The LR test and rank-based

tests have significantly higher powers than those of the modified MK tests. This is

because positive serial correlation within a time series can increase the possibility

of a trend (Von Storch 1995). Thus, although the LR and rank-based tests have

more power than the modified MK tests, they are not our choices when correlated

time series data with drift; (2) the power of the TFPW-MK test is higher than that of

other two modified-MK tests (PW-MK and VC). This agrees with the studies in

Von Storch (1995) and Yue and Wang (2004) that show that the PW-MK and VC

tests underestimated the drift when both trend and positive serial correlation are

present in a time series. However, in our case, the power of PW-MK is higher than

that of VC for four correlated time series. This implies that, for correlated time

series with drift, the VC test is more likely to underestimate the drift than the

PW-MK test; (3) powers of the PW-MK and VC tests for time series with short

serial correlation (Gaussian2 and Chi-square2) are greater than the corresponding

Table 1 Power of six statistic tests for Gaussian1 and Chi-square1 with different drifts specified

by ratios (σL/σH) at the significant level of α¼ 0.05

Data type Ratio MK PW-MK TFPW-MK SRC LR VC

Gaussian1 0.1 0.14 0.14 0.14 0.14 0.14 0.14

0.2 0.37 0.37 0.37 0.37 0.39 0.37

0.3 0.65 0.65 0.65 0.65 0.67 0.65

0.4 0.85 0.84 0.84 0.84 0.89 0.85

0.5 0.94 0.94 0.94 0.94 0.97 0.94

Chi-square1 0.1 0.58 0.58 0.58 0.58 0.15 0.59

0.2 0.93 0.92 0.93 0.93 0.43 0.93

0.3 0.99 0.99 0.99 0.99 0.73 0.99

0.4 1.00 1.00 1.00 1.00 0.89 1.00

0.5 1.00 1.00 1.00 1.00 0.96 1.00
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values for time series with long serial correlation (Gaussian3 and Chi-square3).

This is because the estimated lag1 in a time series with long range is greater than

that in a time series with short range. A clear linear positive relationship between

lag1 and drift is reported in Yue and Wang (2002).

On the other hand, different performances are observed for the statistical tests for

correlated time series with drift. The results show that the power of TFPW-MK for a

time series with short range (Gaussian2) is similar to that of a time series with long

range (Gaussian3). This is also the case for Chi-square2 and Chi-square3. These

results for a Gaussian time series are similar to those reported in Yue et al. (2002b).

The results show that the TFPW-MK test can effectively eliminate the serial

correlation in the Chi-square long range time series. This can be considered as a

supplement to the results in Yue et al. (2002b) as the authors did not consider

Chi-square time series.

Thus, we can conclude that the TFPW-MK test has a greater ability than the

PW-MK and VC tests to detect trend in correlated time series.

Table 2 Power of six statistic tests for Gaussian2, Gaussian3, Chi-square2 and Chi-square3 with

different drifts specified by ratios (σL/σH) at the significant level of α¼ 0.05

Date type Ratio MK PW-MK TFPW-MK SRC LR VC

Gaussian2 0.1 0.37 0.08 0.08 0.38 0.40 0.07

0.2 0.47 0.12 0.14 0.48 0.50 0.11

0.3 0.63 0.18 0.20 0.63 0.65 0.17

0.4 0.75 0.25 0.29 0.76 0.77 0.22

0.5 0.85 0.32 0.39 0.85 0.87 0.29

Gaussian3 0.1 0.66 0.09 0.10 0.67 0.69 0.04

0.2 0.71 0.10 0.12 0.72 0.75 0.04

0.3 0.74 0.11 0.21 0.74 0.77 0.05

0.4 0.78 0.13 0.30 0.79 0.80 0.06

0.5 0.82 0.16 0.40 0.83 0.86 0.07

Chi-square2 0.1 0.60 0.07 0.09 0.62 0.63 0.04

0.2 0.68 0.09 0.14 0.69 0.72 0.05

0.3 0.79 0.13 0.21 0.79 0.79 0.09

0.4 0.84 0.17 0.30 0.85 0.86 0.12

0.5 0.91 0.21 0.42 0.91 0.92 0.17

Chi-square3 0.1 0.73 0.14 0.17 0.74 0.76 0.03

0.2 0.76 0.16 0.21 0.77 0.79 0.04

0.3 0.82 0.17 0.28 0.83 0.84 0.06

0.4 0.86 0.20 0.37 0.87 0.88 0.08

0.5 0.91 0.23 0.48 0.91 0.92 0.09
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4 Case Study

In this study the six statistical tests were used to assess the significance of trend in

mean annual temperatures measured at 13 weather stations located in the Valencia

region in Eastern Spain. The spatial distribution of the stations is illustrated in

Fig. 3. Of 13 time series, four mean annual temperature time series for stations 1, 5,

8 and 11 are shown in Fig. 4. Weather stations identified by number, X (east-west)

coordinate, Y (north-south) coordinate, altitude, time series period, skewness and

kurtosis are shown in rows (1–7) of Table 3 (Note that actual Y co-ordinate is

Yþ 4,000,000). For a normally distributed series, the skewness and kurtosis should

be approximately 0 and 3, respectively. From Table 3 it can be seen that the

experimental data are negatively skewed and are poorly described by a normal

distribution.

The lag-1 correlation coefficient and its lower and upper confidence interval

limits at the 0.05 significance level are shown in rows (8–10) of Table 3. All mean

annual temperature time series are serially correlated except that for station 2. The

magnitude of the slope, computed using Theil-Sen (Sen 1968; Theil 1950), is

shown in column (11) of Table 3. The P-values (Yue and Pilon 2004) of MK,

SRC, LR, PW-MK, TFPW-MK, VC tests are shown in column (14–17). The

Fig. 3 Locations of 13 weather stations in the Valencia region (Eastern Spain). In the figure,

triangles are station locations and the red circle is the city of Valencia
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P-values of the modified MK tests are obviously higher than those of the rank-based

and LR tests for all stations except station 2. In addition, the VC test has the highest

P-values for almost all stations. We conclude that the results of this real case study

are entirely consistent with the simulation results.

5 Conclusions

This study investigated the performances of six commonly used trend detection

approaches (two rank-based, LR and three modified MK tests) on two groups of

simulated time series with and without serial correlation. The theoretical compo-

nent of the study used Gaussian and Chi-square distributions as representative

symmetrical and skewed distributions; used semi-variogram models with different

ranges to quantify correlation in time series; and used linear forms of drift to asses

trends. We used confidence level and power to quantify the ability of the six tests to

detect trend in serially correlated, and in uncorrelated, time series. The Monte Carlo

simulation experiments document the performances of the different statistical tests

performances on different simulated time series. As an outcome of this work we

recommend the following strategy for choosing a suitable statistical test: (a) assess

the distribution of the time series (Gaussian or otherwise); (b) determine whether

Fig. 4 Mean annual temperature time series for stations 1, 5, 8 and 11
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the time series is correlated; and (c) choose a test from the analysis in Sect. 3 based

on (a) and (b). We also remark here that our case study could form the basis of a

feasible way of exploring proper test techniques for detecting trend.
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Big Data



Urban Dynamic Estimation Using Mobile
Phone Logs and Locally Varying Anisotropy

Oscar F. Peredo, José A. Garcı́a, Ricardo Stuven, and Julián M. Ortiz

Abstract In telecommunications, the billing data of each telephone, denoted call

detail records (CDRs), are a large and rich database with information that can be

geo-located. By analyzing the events logged in each antenna, a set of time series can

be constructed measuring the number of voice and data events in each time of the

day. One question that can be addressed using these data involves estimating the

movement or flow of people in the city, which can be used for prediction and

monitoring in transportation or urban planning. In this work, geostatistical estima-

tion techniques such as kriging and inverse distance weighting (IDW) are used to

numerically estimate the flow of people. In order to improve the accuracy of the

model, secondary information is included in the estimation. This information

represents the locally varying anisotropy (LVA) field associated with the major

streets and roads in the city. By using this technique, the flow estimation can be

obtained with a better quantitative and qualitative interpretation. In terms of storage

and computing power, the volume of raw information is extremely large; for that

reason big data technologies are mandatory to query the database. Additionally, if

high-resolution grids are used in the estimation, high-performance computing

techniques are necessary to speed up the numerical computations using LVA

codes. Case studies are shown, using voice/data records from anonymized clients

of Telefónica Movistar in Santiago, capital of Chile.

1 Introduction

The usage and ubiquity of mobile phones in all countries and social groups are

generating an unprecedented amount of behavioral data. According to the Interna-

tional Telecommunication Union (ITC 2015), by the end of 2015, there are more
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than seven billion mobile cellular subscriptions, corresponding to a penetration rate

of 97%, up from 738 million in the year 2000. Accompanying this large pool of

users comes an even larger dataset, commonly known as call detail records (CDRs),

which has been used for billing purposes since the early days of telecommunica-

tions. Each record stores the activity of a user, storing the origin and destination

phone number, the amount of minutes or kilobytes consumed in the event, the

antenna index in which the event happened, and several other fields. Each time a

user starts a phone call or consumes a fixed amount of kilobytes, a CDR event is

logged in the mobile phone operator servers. The richness of this dataset has

attracted researchers from different fields, all of them interested in understanding

the human behavior at individual and aggregate levels. Notable contributions have

been developed in the fields of transportation (Lima et al. 2016; Colak et al. 2015;

Toole et al. 2015), economic and public health development (Soto et al. 2011; Mao

et al. 2013; Oliver et al. 2015), and human urban mobility (Song et al. 2010;

Gonzalez et al. 2008).

Regarding human urban mobility inference using CDR datasets, the simplest

model uses a tower-based resolution where all devices are mapped to the geograph-

ical positions of the underlying tower or base transceiver station where their events
are registered (Song et al. 2010; Gonzalez et al. 2008; Candia et al. 2008). This

approach, although simple and straightforward, doesn’t reflect the true position of

the devices and also uses a comparatively small number of sample points in the map

where events are being placed. An improvement on the later method is based in

Voronoi diagrams calculated using the tower positions, and posteriorly the antennas

attached to each tower can be decoupled and placed in new virtual locations

(Horanont and Shibasaki 2008; Horanont 2012). Specifically, each Voronoi poly-

gon is divided in several pie chart sections centered in the tower, where each section

is oriented using the azimuth of the corresponding antenna. A rather different

approach can be applied using probabilistic simulations of each device position,

by estimating an a priori cumulative density function on the device location related

with the tower location (Traag et al. 2011). In order to use this approach, a

parameter that controls the speed of signal decay must be inferred from field data

in each region of interest. If real-time network monitoring is available for the

mapping estimation, like GPS or network package monitoring (Leontiadis et al.

2014; G€ornerup 2012; Saravanan et al. 2011), in addition to an antenna radiation

and propagation models (Calabrese et al. 2011), higher resolution location maps

can be obtained at a higher technological complexity.

In the previous approaches, the location of people’s devices is inferred without

considering the urban landscape, particularly the influence of highways, railroads,

and primary and secondary streets, among many other routes followed by pedes-

trians, cars, buses, and taxicabs. In the present work, we propose the introduction of

street-level information into estimations of the urban dynamics, particularly using

the geostatistical tools that allow the usage of locally varying anisotropy (LVA)

fields (Boisvert and Deutsch 2011). LVA field-based methods have been developed

to reduce the underlying uncertainty in natural resource estimation by adding

additional sources of information to assess non-stationarity, like geophysical
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remote sensing data, discrete point measurements of orientation, or geological solid

models. We postulate that this approach will serve to build better models for

prediction and monitoring in any process related with urban mobility that uses

population estimates based in CDR datasets.

The next section presents the problem of urban dynamic estimation in the

context of telecommunications. Section 3 presents the proposed methodology to

include the primary and secondary streets of a city into the urban estimation based

in telecommunication billing data. In Sect. 4 we explain the technical difficulties

associated to the extraction, aggregation, and estimation of the databases with

observations in the city map. A sample estimation using data from the city of

Santiago, capital of Chile, is presented in Sect. 5. Finally, conclusions and future

ideas to improve and validate the proposed methodology are presented in the last

section.

2 Urban Dynamic Estimation Using CDRs

Call detail records are the essential data stored for billing purposes by all telecom-

munication companies. In Table 1 we can observe some of the fields stored in this

database, with sample data attached. Telefónica Movistar stores these records using

a large number of column fields (more than 60) and keeps each day of records in a

long-term storage (more than 1 year of data). In this study only voice and data

records are collected. The voice CDR contains the duration, origin antenna, and

destination antenna, storing the antenna IDs registered at the beginning of the call.

The data CDR contains the size in kilobytes of the transaction and the origin

antenna, but in this case the timestamp of the event can be registered with a delay

fluctuating between 0 and 60 min on average. Although this delay can affect the

final results, theoretical studies (Song et al. 2010) have shown that even using

events with timestamp errors of 60 min approximately, the patterns of movement of

each mobile phone can be predicted with 93% of accuracy. The CDR dataset, in

voice and data, has inherently low spatial (at antenna/tower scale) and temporal

resolution (not enough to estimate velocities or other short-range properties), but

contains the mobility patterns of all active cellular subscribers without support of

Table 1 Call detail records schema and a sample register

Fields Sample value

Origin number (anonymized) 6957491b18b029f3f95e666c651ba7

Destination number (anonymized) bd48d4c6c086d985da6a2efa698fa0

Date (yymmdd) 140823

Time (hhmmss) 084533

Duration (seconds or KB) 447

Origin antenna ID CURZFU3

Destination antenna ID ATLBAL1

Urban Dynamic Estimation Using Mobile Phone Logs and Locally Varying Anisotropy 951



additional data, like GPS or network monitoring tools. This feature makes the CDR

dataset very attractive to perform studies on mobility for urban planning and

transportation policies, among many other use cases.

Regarding the antennas and towers, each antenna is attached to a specific tower,

colloquially known as base transceiver station (BTS). In Fig. 1, top, we can observe

several towers located in a central neighborhood of Santiago, Chile. Each tower can

have attached several antennas of different technologies (2G, 3G, or 4G), as shown

in Fig. 1, bottom. As mentioned in the previous section, there are algorithms that

can decouple the location of each antenna from the tower, increasing the number of

geographical positions with valuable data in the map. However, in this work only

the tower-based approach is used, where all antennas attached to the same tower

have the same geographical positions. Future versions of the method will explore

estimations increasing the number of locations for each antenna in the map,

including the antenna orientation and other geometrical and physical parameters.

With both data sources, the CDRs and the tower/antenna positions, we can count

the number of events registered in each tower/antenna in each second of the day.

For a fixed timestamp, we can define Z(x) as the random field that represents the

number of events in the position x. If {xa} is the set of positions where the towers/

antennas are located (without repetition, in case of erroneous tabulation of the

tower/antenna positions) and are registering CDR events, we can estimate the

number of events in the geographical zone of study (the complete city or some

specific regions) using geostatistical tools like inverse distance weighting (IDW)

and simple or ordinary kriging (Chilès and Delfiner 2012). In the related literature,

typically inverse distance weighting (IDW) is applied for the estimation (Horanont

and Shibasaki 2008; Horanont 2012), since no variographic analysis is involved in

the workflow. As a drawback, the estimation is highly smooth and does not reflect

the landscape features, such as empty lots or large open spaces, where the proba-

bility of finding a mobile device is relatively low compared to a street or a highway

(Fig. 2).

As the populations of interest are devices in movement around the city, only

outdoor antennas are used and a mobility filter is applied, where a minimum

different tower indicator is calculated for each device (if the device does not register

events in at least N different antennas on different towers, it is not included in the

mobility analysis). The indoor antennas capture with higher probability the events

of devices that are not in movement in the streets; for this reason they are not

included in the study (the inverse is not true, since an outdoor antenna can capture

events from indoor devices, but there are no methods to infer this using CDRs).

Since the average distance between two towers fluctuates between 400 and 2,500 m

approximately, the filter value is set to N¼ 2, meaning that each device must

register a movement of at least 400 m between two different towers (approximately

20% of the devices in this study can be dropped). Although the mobility filter works

on the majority of cases, there are some special behaviors of the cellular network

where a device can be “jumping” between different antennas located in the same or

different towers, even if the device is not in movement. This behavior is triggered

by network congestion and antenna misconfiguration, and according to recent
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Fig. 1 Top: towers of antennas located in a neighborhood of Santiago, Chile. Bottom: zoom in a

tower with several antennas attached
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studies (Li et al. 2016), it represents less than 3% of the observed records in

network data and an order of magnitude less in the aggregated CDR dataset.

3 LVA Field Inference from City Streets

Locally varying anisotropy can be included in geostatistical estimation or simula-

tion processes in several forms (Boisvert et al. 2009). The inference of a 2D LVA

field has been studied in Maksuda and Boisvert (2015), with success stories in

natural resource estimation, particularly in the mining and petroleum industries. In

the specific scenario of urban dynamic estimation and using a proper scale, the

streets and highways can be viewed in a similar way as iso-surfaces of geological

models, exhaustive geophysical seismic images, or discrete point measurements in

the context of natural resource estimation. The kind of secondary information will

depend on the quality of the underlying maps and metadata descriptions of the

objects in the map. In the case of Santiago, Chile, an exhaustive database of

volunteered geo-located objects can be extracted from the OpenStreetMap platform

(Haklay and Weber 2008). Figure 3 shows all streets registered in the platform until

March 2016 (total area is approximately 50� 50 km2). In Fig. 4 we can observe a

specific gridded zone of the city, used as background in Fig. 2 (squares of

50� 50 m). The total number of objects labeled as streets in the platform is

approximately 300,000, with the most important categories as bridleway, construc-
tion, cycleway, escape, footway, living_street, motorway, path, pedestrian, pri-
mary, residential, road, secondary, service, tertiary, track, and unclassified. From
these categories, the ones that are representative of streets with a considerable

Fig. 2 IDW applied to the samples collected in towers/antennas located in a neighborhood of

Santiago, Chile (Red, high number of events; blue, low number of events). The urban landscape,

such as the streets and highways, is not included in the estimation
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volume of traffic are motorway, primary and secondary. Using these representative

categories, the idea is to calculate the azimuth angle of each street segment that

intersects with a user-defined grid. In Figs. 3 and 4 the user-defined grid is

represented by orange regular squares. In Fig. 5 we can observe all the intersections

with their corresponding azimuth values (arrow orientation w.r.t. north) and also a

zoom to a particular region of the same grid, where the intersection of the street

segments and the grid square sides can be observed.

A standard IDW interpolation is applied to the azimuth values of the sparse 2D

field from the previous section. After that, a full 2D LVA field is reconstructed as

shown in Fig. 6. We can observe that the streets with wide azimuth are colored in

white, and the streets with narrow azimuth in black. With the full 2D LVA field, we

Fig. 3 Geo-located streets

from Santiago, Chile,

extracted from the

OpenStreetMap platform

Fig. 4 Zoom in to streets extracted from the OpenStreetMap platform. The grid matches with the

orange region of interest in Fig. 3
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Fig. 5 Top: primary and secondary streets in the zone of interest (red arrows). Bottom: zoom in to

observe the intersections between the street segments and the grid square sides (arrows with

orientation)

Fig. 6 IDW interpolation (degrees) of a 2D LVA sparse field
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can use LVA-based geostatistical codes (Boisvert and Deutsch 2011) to obtain the

estimation, adding the ratio between the X and Y axes.

4 Technical Aspects

4.1 Big Data

Up to this point, the CDR data have been assumed to exist in an aggregate form that

can be used to extract the event number Z(xa) in each sampled position xa
corresponding to tower/antenna locations. However, it is not straightforward to

obtain these values using standard tools for data management, like text-plain or

relational databases. For example, on October 6th of 2014, Telefónica Movistar

generated approximately 91,088,956 CDR registers only in data traffic (24 GBytes

of plain text) for all contract users located in Chile. Just in Santiago, the capital of

Chile, there are approximately one million mobile devices with Movistar contracts,

which are producing 38% of the total amount of data traffic CDRs. If several days

must be aggregated, a large storage facility must be used to handle the data. For

instance, each period of 6 months of data recording can increase an estimated of

4 TBytes the total space in the storage devices. Using data replication, in order to

backup the data in a different storage, at least 8 TBytes of space are needed to

handle the new 6-month CDR dataset. To solve the previous problem, we use

Hadoop technologies (White 2009), mainly because of the cheap pricing and the

on-demand features delivered by cloud computing providers, like Amazon Web

Services (Amazon 2008) or Microsoft Azure (Microsoft 2010). The CDRs are first

collected with an Extract-Transform-Load automatic process, which selects only

the columns of interest, as shown in Table 1. Those trimmed registers are stored in a

Hadoop distributed filesystem (HDFS) for long-term persistency using data redun-

dancy in different geographical locations. Finally, a Hadoop-based query is

launched periodically over the last days stored in the HDFS in order to collect the

event traces (timestamp and antenna ID) of each device, ordered by day and time.

The aggregated data can occupy space in the storage that is one or two order of

magnitude less than the raw CDRs (from 24 GBytes to 100 Mbytes in 1 day of

CDRs geo-located in antennas based in Santiago, Chile).

4.2 High-Performance Computing

In terms of computing capacity, the query that aggregates the CDRs and the

estimation using the LVA process are the most challenging. The query is

implemented in Pig (Gates 2011), a high-level data processing language that allows
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defining complex data flow patterns using syntax similar to SQL. The advantage of

this processing language is that it can use different back end distributed/parallel

computing technologies without changing the data flow specification or significant

portions of the code. Among the available back end technologies, we can mention

MapReduce (Dean and Ghemawat 2008), Tez (Saha et al. 2015) and Spark (Zaharia

et al. 2010). By using HDFS, the Hadoop distributed file system as storage tech-

nology, combined with a data processing language like Pig, we can launch instances

of clusters of computers using on-demand services in order to execute the query and

store the aggregated results in a storage container. For instance, Microsoft Azure

provides the service HDInsight (Microsoft 2013), which consists in a cluster of

computers, masters, and workers, all of them ready to use with an implementation

of Hadoop and the data processing tools. To allow the HDInsight instance to query

the raw CDR dataset, the access credentials to the corresponding HDFS storage

account must be previously loaded in the cluster management services.

Regarding the LVA process, we use a modified version of the LVA kriging code

developed by Jeff Boisvert (Boisvert and Deutsch 2011). This version uses multi-

core support (Chandra et al. 2001) allowing multiple threads to execute algebraic

operations related with the L-ISOMAP multidimensional scaling. Although the

multi-core support accelerates the computation of the distance matrix in the

multidimensional space, it is only useful the first time the code is executed. For

large estimation grids, the parallelization of the estimation loop as shown in Peredo

et al. (2015) is not yet developed. The distributed capacities of the on-demand

cluster can be exploited further to accelerate the estimation of different aggregated

dataset corresponding to different times of the day. We use MPI to distribute the

data preparation and execution of several LVA estimations of different timestamps

for each day. Using a time granularity of 1 min, a maximum of 1,440 LVA

estimations can be executed efficiently in parallel up to the total number of CPU

cores and depending on the free memory space in each node of the cluster. With this

schema, we can use an on-demand service to query and aggregate the raw CDRs

and with the same computational resources execute all the LVA estimations using

the CPU cores of the nodes in parallel. The final results, expressed as GEO-EAS or

CSV files containing the LVA estimations for each timestamp of the day, can be

stored in the HDFS persistent storage for further usage.

5 Case Study: Santiago, Chile

The proposed methodology is applied to the city of Santiago, Chile. In the first

scenario, the region of interest is described in Fig. 4, which corresponds to a zone

with 83 towers of antennas in a total area of 10 km2. The total number of event

traces registered on 12 August of 2015 in this zone is 129,598.

The northeast part in this zone is a business area with high density of tower/

antennas; it includes many office buildings, shops, and retail stores. The west part

corresponds to a residential area with low density of tower/antennas. The middle
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and southeast parts are mixed areas where the population can be traveling to other

zones of the city. Figure 7 shows two estimations, inverse distance weighting (top)

and ordinary kriging using the LVA field (bottom) generated with the primary and

secondary streets. The kriging parameters are depicted in Table 2.

Fig. 7 Comparison of estimation contours between the IDW (top) and ordinary kriging using the

LVA field with ratio r1¼ 0.01 (bottom). The small triangles represent the towers of antennas with
event numbers in the range [0,125] in each case. The time of these events is 6:08 PM

Table 2 Ordinary LVA kriging parameters using normal-scored data

Parameter Value

Estimation/LVA grid 576� 200� 1

Offset number 4

Landmark points grid 20� 20� 1

Min/max data for kriging 2,60

Variographic parameters Spherical, nugget 0.0, range 100

Urban Dynamic Estimation Using Mobile Phone Logs and Locally Varying Anisotropy 959



We can observe that the local anisotropy of the underlying urban landscape is

qualitatively more accurate using the LVA method. In Fig. 8, we can observe

different zones of the LVA estimation at different times. At 3:11 pm, more events

are registered in the commercial zone, and at 8:55 pm more events are registered in

the residential zone.

In order to compare quantitatively both estimations, IDW and LVA, a ground-

truth data must be necessary, for example, GPS or network monitoring data. With

the ground-truth data, we can locate with high precision each device at the specific

time of study. According to Calabrese et al. (2011) and Leontiadis et al. (2014),

extensive GPS campaigns and large volumes of network data are needed to build

the ground-truth model data. In our case, we have developed a special Android

application which collects the GPS position of the mobile phone each 60 s, together

with the local area code (LAC) and cell ID (CI) which are the basic network

parameters to identify the antenna sector of influence. Our idea is to measure a

specific day in the region of interest, using several devices at our disposal, tracking

their positions and antennas where the connections are made. With that ground-

truth data, we can approximately pair the sparse CDR events with some of the GPS

Fig. 8 Street-based anisotropy in the LVA-based estimation, comparing different zones at

different times of the day. Left column: 3:11 pm, before rush hour. Right column: 8:55 pm, after

rush hour
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events according to their timestamps (with tolerated delays of 60 min), building an

initial truth model. Due to the complexity of the validation process, we decided to

exclude it from the present work.

The previous scenario was analyzed in a region of relative small area, 10 km2.

The total size of Santiago metropolitan area is approximately 1,800,000 km2. As a

consequence, the estimation grid and variographic parameters necessary to execute

the full estimation are difficult to infer. Additionally, the LVA field inference is not

straightforward, since the OpenStreetMap objects primary and secondary streets

are densely sampled in the large region of interest (Fig. 9, top). A possible solution

is to extract a coarser object from the platform, namely, motorway, which repre-

sents large highways and motorways in the city. Using the new object, we can

calculate the azimuth angles in the intersections of a gridded area and the motor-

ways present in the map (Fig. 9, bottom). The estimation in the large region is left

for future versions of the application, since our primary interest is to include the

street-based anisotropy in low-range estimations. Another possible inclusion in

future versions is a velocity estimation filter, which can discriminate between

different modes of transport in the highway. However, the CDR dataset by itself

is not sufficiently fine grained to estimate this kind of short-range statistic.

6 Conclusions and Future Work

Two-dimensional locally varying anisotropy based in street orientation (azimuth)

has been included in the geostatistical estimation of mobile events registered in

different towers of antennas around a city. In related literature from urban planning

Fig. 9 Azimuth angles in Santiago metropolitan area. Using primary and secondary objects (left)
and using the motorway object (right)
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and transportation, the most common estimation method is the inverse distance

weighting, without including secondary information from the streets in the urban

landscape. To the best of the author’s knowledge, this work is the first application of
LVA-based geostatistical estimation in the context of mobile data geo-located in

towers of antennas. In our scenario, the mobile data corresponds to billing infor-

mation, denoted call detail records (voice and data traffic), and the network of

towers with antennas which are provided by Telefónica Movistar in the city of

Santiago, Chile.

A case study is presented in a specific zone of Santiago, with total area of 10 km2.

The estimations using inverse distance weighting and ordinary kriging with LVA are

compared qualitatively. An extended quantitative comparison is left as future work

due to its complexity and the amount of ground-truth data necessary to build a pivot

comparative model. The LVA estimation represents in an accurate way the flow of

mobile devices around the city streets. In order to obtain the orientations of the

streets, we have used the OpenStreetMap platform to extract objects from the city

map, like primary and secondary streets. After that, a gridded sampling of the

orientations (azimuths) is extracted and posteriorly interpolated using standard

methods. With the full 2D LVA field estimated, standard LVA-based geostatistical

tools can be used to obtain the final results in each timestamp of the day. The process

can be repeated each day, and further analysis can be done with the urban dynamic

estimation provided by the current methodology. LVA estimation parameters, such as

the landmark grid, offset number, or variographic parameters, must be inferred

previously using data from similar past days (working days, weekends, or holidays).

The presented work is the first step in a long-term effort with the final objective

of highly accurate dynamic position estimation of mobile devices in the city using

indirect geo-localization data, such as the CDR dataset. Although there are other

technologies that can provide directly this information, such as GPS or network

monitoring systems, the advantage of the CDRs is that no extra applications need to

be active in the client (possible battery exhaustion of the mobile device) or server

side (possible saturation of the network). The proposed methodology is flexible

enough to allow other types of data sources, by just changing the geo-location and

dataset passed to the LVA-based codes. The main feature is the inclusion of the

streets into the geostatistical estimation. If stochastic simulations must be obtained

to quantify uncertainty, sequential Gaussian simulation can be executed following

the same steps described in this work, using the LVA-based corresponding code.

Nonconventional sources of information, like antenna radiation and power, or

signal propagation models for wireless communications, can be added to the

models in the form of variographic parameters or local definitions of the ratio and

azimuth values of the LVA field (small ratios for small influence zones and large

ratios for large influence zones). This topic will be studied in future versions of the

proposed methodology.
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Using Classical Geostatistics to Quantify
the Spatiotemporal Dynamics of a
Neurodegenerative Disease from Brain MRI

Robert Marschallinger, Mark M€uhlau, Paul Schmidt, Peter Atkinson,

Eugen Trinka, Stefan Golaszewski, and Johann Sellner

Abstract We present a novel approach to characterize multiple sclerosis

(MS) from brain magnetic resonance imaging (MRI) with geostatistics. Brain

MRI provides excellent, exhaustive input data to geostatistical analysis, typically

several million voxels per MRI scan. A dataset of 259 spatially normalized binary

MS white matter lesion (WML) patterns covering very mild to extremely severe

MS cases was subject to directional variography. Using an exponential variogram

model function, the observed spatial variability in x,y,z directions can be expressed

by geostatistical parameters range and sill which perfectly correlate with WML

pattern surface complexity and lesion volume. A scatterplot of ln(range) vs. ln(sill),

classified by pattern anisotropy, enables a consistent and clearly arranged presen-

tation of MS-lesion patterns based on their geometry. The geostatistical approach

and the graphical representation of results are considered efficient exploratory data

analysis tools for longitudinal, cross-sectional, and medication impact studies.
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1 Introduction

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system

(CNS) that causes inflammatory demyelinating lesions in the brain and in the spine.

MS affects over 2.5 million people worldwide and is the primary nontraumatic

cause of neurologic disability in young adults, with an associated socioeconomic

impact. The individual course of MS is highly variable – while some patients may

acquire severe and irreversible disability within a few years, others may follow a

mild course with almost no disability even after decades (Compston and Coles

2008).

2 MRI Data

The introduction of magnetic resonance imaging (MRI) for MS diagnosis and

monitoring the disease course was a milestone in MS patient’s care (Filippi and

Rocca 2011). Recent diagnostic criteria allow setting MS diagnosis on the basis of

MRI (Polmann et al. 2011). The hallmark of MS is hyperintense sclerotic lesions

within cerebral white matter, as indicated in Fig. 1 which is a T2-weighted (FLAIR)

axial slice through an MS patient’s brain.
Traditionally, MRI scanners yield stacks of parallel images from which 3D

models can be derived; more recent MRI scanners provide voxel models which

directly represent the volume of interest. Before single-patient follow-upMRI scans

(longitudinal studies) or multiple-patient MRI scans (cross-sectional studies) can be

Fig. 1 MRI of MS-affected

brain. Arrows indicate
bright, hyperintense MS

lesions (FLAIR MRI

sequence, axial slice at top
of ventricle system)
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compared, the individual brain scans need to be geometrically matched to a

standard brain template like the Montreal Normal Brain (“MNB,” Collins et al.

1998; Penny et al. 2007). This approach compensates for varying head positions in

follow-up MRI scans and ensures reference brain geometry when working with

group data (Fig. 2).

From MRI data, 3D MS-lesion patterns can be extracted with semiautomatic or

automatic lesion extraction software that outputs binary MS-lesion models (Garcia-

Lorenzo et al. 2012).

3 The Geostatistical Approach

WML presents rather heterogeneously across patients not only with regard to the

number and overall volume but also with regard to spatial pattern, predilection

sites, and shape of single lesions. Routine radiological evaluation reports the

number of WML, the total lesion load (volume), and the associated changes as

from follow-up investigations. Our goal is to describe the spatial structure of a

WML pattern in MNB geometry with standard geostatistical parameters

(Marschallinger et al. 2014, 2016).

Variogram function γ hð Þ ¼ 1

2n hð Þ �
Xn
i¼1

z xið Þ � z xi þ hð Þðð Þ2 ð1Þ

Fig. 2 Geometrical transformation of individual brain geometry (left) to MNB geometry (right).
Axial slice of MS-affected brain at top of ventricle level
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Exponential variogram model γ hð Þ ¼ c � 1� e �3� hj jð Þ

a

� �
ð2Þ

Since the MNB can be considered a Euclidean space which is then dissected into

equally sized voxels, the constant extent and support of the MNB enable rapid, grid-

based variography (Eq. 1), variogram modeling (Eq. 2), and the sensitive compar-

ison of longitudinal and cross-sectional studies.

For efficient characterization of WML from MRI, we developed the following,

fully automatic processing pipeline that builds on a pair of T1 and FLAIR MRI

images, acquired on a 3-tesla scanner:

1. From FLAIR and T1 sequences of a single MRI investigation, automatically

derive a binary 3D model of the WML pattern in MNB geometry (e.g., Fig. 3

right). Software used is Lesion Segmentation Tool (LST) (Schmidt et al. 2012).

2. Compute directional empirical variograms (Eq. 1) in x,y,z directions (dextral-

sinistral, caudal-rostral, dorsal-ventral orientations). Variograms are confined to

lag distances from0 to 15mm, because this area holds themost relevant correlation

information and a variogram model can be fitted straightforwardly. Software used

is Geostatistical Software Library (GSLIB) (Deutsch and Journel 1997).

3. Fit an exponential variogram model function (Eq. 2) to each directional empir-

ical variogram to yield associated range and sill parameters. These characterize

overall surface smoothness, total lesion volume (TLL, total lesion load), and

preferred spatial continuity of a white matter lesion (WML) pattern. Software

used is R (R development core team 2008).

4. Derive scatterplots of ln(range) vs. ln(sill) to portray WML patterns in a space

defined by total pattern surface smoothness vs. total lesion volume. For the

current purpose, “surface smoothness” is defined as the ratio of total WML

pattern volume/total WML pattern surface. This space, making up the so-called

Fig. 3 Left: 3D model of white matter of MS-affected brain, normalized to MNB geometry (white

matter visualized in translucent style to show some MS lesions for orientation in 3D). Right:
associated WML model, white matter striped off, and axial slicing plane at ventricle level

indicated for orientation. MNB geometry
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MS-Lesion Pattern Discrimination Plot (LDP), enables a clear presentation of the

spatial characteristics of a WML pattern. Scatterplots involving individual x,y,z

directions account for anisotropy in WML geometry. Calculating mean center

(e.g., De Smith et al. 2007) for a WML from x,y,z directional ln(range) and ln

(sill) data, the overall x,y,z geometry of a WML can be expressed. Since all

parameters are derived from geometrically standardized data (i.e., MNB geom-

etry), in the course of longitudinal and cross-sectional studies,WML patterns can

be immediately related: On the one hand, data can be compared synoptically; on

the other hand, they are ready for automatic processing, e.g., for deriving

evolution paths in single-patient follow-up from mean center data (Fig. 6).

The LDP conveniently combines class symbols indicating the number of indi-

vidual lesions (Fig. 4) or standard distance (De Smith et al. 2007) to express overall

Fig. 4 Combining geostatistical Range ln(a) and geostatistical Sill ln(C) of 259 MS-affected,

geometrically normalized brains in the MS-Lesion Pattern Discrimination Plot (LDP). Four WML

pattern 3D models and their associated positions in the LDP are indicated. nLesions: number of

individual lesion objects per WML pattern, coded by symbols. See text for details (After

Marschallinger et al. 2016)
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WML anisotropy. Working through Fig. 4 shows that complex patterns with many

lesions or patterns with a “rough”/“complex” surface generally are positioned at the

left fringe of the point cloud while patterns with few, big, and “smooth” lesions are

placed toward the right border. Patterns around the long axis of the elliptic cloud

mediate between rough and smooth extremes.

More clinically relevant, the LDP can be used to portray the evolution of WML

during single-patient follow-up. Figure 5 shows WML patterns from MRI follow-

ups of three patients. Each patient was scanned three times at 6-month intervals,

yielding a total observation period of 1.5 years per patient. Patients are arranged in

rows, and columns represent MRI investigations (time series advancing from left to

right, also indicated by WML colors red-yellow-green). Using the abovementioned

processing pipeline, the evolution of the three individual WML patterns can be

Fig. 5 WML evolution in three MS patients, three time steps each chronology from left to right,
time interval 6 months each. (See text for details, compare with Fig. 6)
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visualized and quantitatively described by means of the LDP (Fig. 6). In Fig. 5,

Patient 1 shows a decrease in MS lesion sizes and concurrent decrease in surface

smoothness due to decomposition of big MS lesions into smaller ones; accordingly,

in the LDP, the evolution path arrows point to lower volumes and a less smooth

overall surface (Fig. 6). About the same is due for Patient 3; the WML pattern of

which shows volume loss at the cost of lesion pattern smoothness. This is more

pronounced between scans two and three where the biggest lesion continues to

decrease but new small lesions show up, yielding approximately constant volume.

Patient 2 shows increasing lesion volume at increasing WML pattern surface

smoothness caused by confluence of small lesions into bigger ones.

4 Conclusions

A workflow and processing pipeline has been established that enables the charac-

terization of MS-related white matter lesion (WML) patterns from MRI data by

estimation of geostatistical parameters’ range and sill. These are the bases for

representing a WML pattern in the MS-Lesion Pattern Discrimination Plot

Fig. 6 WML pattern evolution paths of three MS patients in the LDP. Arrows indicate evolution
direction. Compare Fig. 5 (See text for details)
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(LDP). The LDP is a versatile framework that combines WML pattern volume,

WML pattern surface smoothness, and geometrical anisotropy information in a

single, well-arranged plot. Major changes as well as subtle fluctuations in

MS-lesion pattern geometry can be visualized straightforwardly. The LDP provides

precise insight into the spatial development of WML patterns (i.e., selective

growth/shrink in specific directions) without requiring object-based characteriza-

tion. The LDP is considered an EDA tool that informs on the spatial/spatiotemporal

properties of WML patterns in cross-sectional and longitudinal studies and in

monitoring medication efficacy.
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