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Preface

Screening is the process of using designed experiments and statistical analyses to
sift through a very large number of features, such as factors, genes or compounds, in
order to discover the few features that influence a measured response. In this book,
international experts provide accounts of various aspects of screening. They explain
and illustrate recent advances and commonly applied methods that are important
tools in fields as diverse as industrial quality improvement, engineering research
and development, genetic and medical screening, drug discovery, simulation and
computer experiments. They also highlight available software for implementing
the methods and open issues for future research. The aim of the book is to help
practitioners and researchers not only learn about methodologies developed for
their own fields, but also to have access to methods from other fields that might
usefully be adapted to their own work.

The scene is set for industrial screening in chapter 1 where Montgomery and
Jennings describe methods for detecting “active” factors by the use of fractional
factorial experiments. They illustrate these methods via a plasma etching investi-
gation from the field of semiconductor manufacturing. In their context, an “active
factor” is one which produces different mean responses as the level of the factor
is changed. The aim is to manipulate the response to a particular target by setting
the values, or levels, of the active factors appropriately. This theme is modified by
Bursztyn and Steinberg in chapter 2. Here, an “active factor” is one whose lev-
els affect the variability of the measured response. Identification of active factors
then allows the response variability to be controlled through choice of factor level
settings. In modern industrial experimentation, generally the goal is to combine
the dual aims of reducing variability and achieving a target mean response, as
popularized by Taguchi.

The use of “pooling experiments” began nearly one hundred years ago, initially
in dilution studies for estimating the density of organisms in a medium. Pooling
experiments today, as described by Hughes-Oliver in chapter 3, are used to make
cost savings and gains in precision when investigating large numbers of features.
Hughes-Oliver explains how such studies are making a substantial impact in drug
discovery as well as in blood screening. The challenges of screening a huge number
of chemical compounds during drug development are recounted in more detail

xiii
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in chapter 4 by Cummins, who describes a wide variety of methods, examples,
problems, and experiences from the pharmaceutical industry.

Related to drug discovery is the field of genetic screening for “active genes”
linked to the occurrence of a disease. The technology of microarrays and various
methods of analysis of data from genetic screening experiments are described in
chapter 5 by Sebastiani, Jeneralczuk, Ramoni, and in chapter 6 by Hsu, Chang, and
Wang. The former chapter describes methods, both Bayesian and non-Bayesian, for
analysing experiments using single-channel synthetic oligoneucleotide microarrys
and then presents methods for sample size determination. The latter chapter focuses
on 2-channel microarrays and the concerns that arise in simultaneous or multiple
testing for active genes.

In the presence of many factors, industrial experiments often need to be designed
with fewer observations than can be accommodated in a fractional factorial design.
These smaller designs and the analyses of the data sets from the experiments are the
concerns of the next three authors. First, Cheng, in chapter 7, discusses the use of
designs with complex aliasing for screening. He shows how such designs can have
superior projection properties so that they provide good information on the small
number of active factors and their interactions. Second, Gilmour, in chapter 7
describes supersaturated designs which have even fewer observations than the
number of factorial effects to be investigated. He discusses methods of constructing
such designs and gives a variety of analysis methods for the resulting experimental
data. Third, Morris, in chapter 9, describes a related, but different, approach to
reducing the numbers of observations in a screening experiment by investigating
factors in groups. This “grouped screening” technique is related to the pooled
screening techniques of chapter 3 but in a different practical context.

Li, in chapter 10, turns our attention to designing an experiment when the aim
is to select the best response model from a very large set of possible models. Is-
sues of model estimation and discrimination between models are discussed and
recommendations for some efficient designs are made. chapters 11 and 12 give
more details about methods of analysis of screening experiments. In chapter 11,
Chipman describes Bayesian methods for identifying the active factors through
the detection of active factorial effects and he illustrates the approach via an ex-
periment in clinical laboratory testing. Voss and Wang, in chapter 12, return to
the problem of multiple testing discussed in chapter 6 but in the context of frac-
tional factorial experiments with no degrees of freedom for error. They explain a
number of techniques for testing for active effects and describe confidence interval
construction for effect sizes.

In some experimental situations, data are obtained by computer generation or
simulation rather than through physical experimentation. In such experiments,
large numbers of factors can be handled, although it is frequently impossible to
obtain large quantities of data due to the time needed for running the computer
code. In chapter 13, Kleijnen, Bettonvil, and Persson describe the recent technique
of “sequential bifurcation” for finding active factors. They illustrate the method
by evaluating three supply chain configurations of varying complexity, studied
for an Ericsson factory in Sweden. The techniques described can also be used
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for active effect identification from physical experiments. Experiments involving
complex computer codes are the concern of Welch and Schonlau in chapter 14. Such
experiments may have hundreds of input variables, in which case identification
of the important variables is crucial. Methods are described for decomposing a
complex input-output relationship into effects which can be easily interpreted
and visualized. The methodology is demonstrated on a computer model of the
relationship between environmental policy and the world economy.

All of the chapters have been reviewed and we are indebted to the following
referees for their help and excellent suggestions: Jane Chang, Hugh Chipman,
Jon Forster, Steven Gilmour, Jason Hsu, Jacqueline Hughes-Oliver, Jack Kleijnen,
William Li, Wei Liu, Yufeng Liu, Douglas Montgomery, William Notz, Shiling
Ruan, Sujit Sahu, Paola Sebastiani, David Steinberg, Anna Vine, Hong Wan, and
David Woods.

The idea for this book arose from a Research Section Ordinary Meeting of the
Royal Statistical Society and we are grateful to Denise Lievesley, then president of
the Society, for suggesting the book. We would like to thank John Kimmel for his
guidance and encouragement throughout the preparation process and the Springer
production team for their help.

We could not have finished the book without the typing and reference-checking
skills of research students from the University of Southampton, UK, especially
Roger Gill, Philip Langman, Andrew Rose, and Robert Stapleton. We thank David
Woods for his expert help in dealing with figures. We are indebted to our families
who supported us throughout this endeavour.

Our most grateful thanks go to all of the authors for their expertise, their time
and their patience. We hope that readers of this book will experience as much
pleasure as we have in learning about the various techniques.

Angela Dean
Susan Lewis

July 2005



1
An Overview of Industrial
Screening Experiments

Douglas C. Montgomery and Cheryl L. Jennings

An overview of industrial screening experiments is presented, focusing on their applications
in process and product design and development. Concepts and terminology that are used
in later chapters are introduced and explained. Topics covered include a discussion of the
general framework of industrial experimentation, the role in those activities played by
screening experiments, and the use of two-level factorial and fractional factorial designs for
screening. Aliasing in fractional factorial designs, regular and nonregular designs, design
resolution, design projection, and the role of confirmation and follow-up experiments are
discussed. A case study is presented on factor screening in a plasma etching process from
semiconductor manufacturing, including a discussion of the regular fractional factorial
design used and the analysis of the data from the experiment.

1 Introduction

Statistical experimental design methods are widely used in industry as an impor-
tant part of the product realization process. Their range of applications includes
the design and development of new products, the improvement of existing prod-
uct designs, evaluation of material properties, and the design, development, and
improvement of the manufacturing process. There is also a growing number of
applications of designed experiments in business processes, such as finance, mar-
keting or market research, logistics, and supply chain management as discussed
in Chapter 13. The objective of most industrial experiments is to characterize the
performance of a system (such as a product or a process) and ultimately to optimize
its performance in terms of one or more output responses.

The usual framework of industrial experimentation is response surface method-
ology. First introduced by Box and Wilson (1951), this methodology is an ap-
proach to the deployment of designed experiments that supports the industrial
experimenter’s typical objective cf systems optimization. Myers and Montgomery
(2002) described response surface methodology in terms of three distinct steps:

1. Factor screening;
2. Finding the region of the optimum;
3. Determining optimum conditions.

1



2 Douglas C. Montgomery and Cheryl L. Jennings

The objective of a factor screening experiment is to investigate, efficiently and
effectively, the factors of a system that possibly may be important to its perfor-
mance and to identify those factors that have important effects. Once the important
factors have been identified from the screening experiment, the experimenter will
typically move the region of experimentation from the initial location towards one
more likely to contain the optimum. The method of steepest ascent (Myers and
Montgomery, 2002, Chapter 5) is the procedure most widely employed for this
activity. Finally, once near the optimum, the experimenter will usually conduct one
or more experiments in order to obtain a fairly precise description of the response
surface and an estimate of the optimum conditions.

Response surface methodology is a sequential procedure, with each step con-
sisting of one or more fairly small experiments. Sequential experimentation is
important because it makes efficient use of resources and it allows process or
system knowledge gained at previous steps to be incorporated into subsequent
experiments with the size of each individual experiment remaining small. It is
important to keep experiments small because the probability of successfully com-
pleting an industrial experiment is inversely proportional to the number of runs
that it requires. A widely followed guideline is to allocate no more than 25% of the
total available resources to the initial screening experiment. The factor screening
step is critical. In many industrial settings, the number of factors that is initially
considered to be important can be large (because there is relatively little process
knowledge). Eliminating the unimportant factors at an early stage allows the re-
maining steps of response surface methodology to be completed more quickly,
with fewer resources, and usually with a higher overall likelihood of success.

This chapter provides an overview of industrial screening experiments, focusing
on process and product design and development. As in any experiment, the pre-
experimental planning aspects of a screening experiment are very important. We
define pre-experimental planning in terms of the following steps:

1. Problem definition
2. Identifying the response variable(s)
3. Identifying the factors to be studied in the design, including their levels and

ranges
4. Selecting the experimental design

Several aspects of these steps are discussed subsequently. For a broader discus-
sion of planning for industrial experiments, see Coleman and Montgomery (1993)
and Montgomery (2005), including the supplementary material on the World Wide
Web for this text (www.wiley.com/college/montgomery). Other useful references
include Andrews (1964), Barton (1997, 1998, 1999), Bishop et al. (1982), and
Hahn (1977, 1984).

2 Factorial Experiments for Factor Screening

For purposes of factor screening, it is usually sufficient to identify the main effects
of the important factors and to obtain some insight about which factors may be
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Figure 1. A 23 factorial design.

involved in two-factor interactions. Consequently, factorial designs are the basis
of most industrial screening experiments. Nearly all of these experiments involve
two levels for each of the f factors, so the 2 f series of factorial designs are logical
factor screening designs.

A 23 factorial design is shown in Figure 1. The geometric view in Figure 1(a)
illustrates that each of the n = 8 design points can be depicted as residing at the
corner of a cube. The two levels of the factors A, B, and C in the actual units are
referred to as low and high. This terminology is used regardless of whether the
factors are quantitative or qualitative.

The low and high levels of the factors in the design are expressed as −1 and +1,
respectively, in coded or design units. Sometimes the “1” is omitted, as shown in
the design matrix in Figure 1(b) which is written in standard order. In Figure 1(a),
the points are labeled with lower-case letters corresponding to factors at their high
level. For example, ac refers to A and C at the high level and B at the low level;
this is common alternative notation.

The main effect of a factor in the 2 f system is defined as the average change
in response that is observed when the factor is changed from its low level to
its high level. Thus the main effect of factor A is the difference in the average
response on the right side of the cube in Figure 1(a) and the average response
on the left side. The contrasts for calculating all of the effect estimates for the 23

factorial design are shown geometrically in Figure 2. Notice that the main effects
of A, B, and C are the differences in average response on opposite faces of the
cube and that the effects of the two-factor interactions AB, AC, and BC are the
differences in averages on planes connecting opposing diagonal edges of the cube.
The geometry of the three-factor interaction effect ABC is more complicated and
is defined as the difference in average response on two tetrahedrons formed by the
eight corners of the cube; see Montgomery (2005) or Box et al. (1978) for a worked
example.

The 2 f design supports a model containing the f main effects, the ( f
2 ) two-factor

interactions, the ( f
3 ) three-factor interactions, and so forth, up to and including the
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Figure 2. Contrasts for calculating the effect estimates in a 23 factorial design.

f -factor interaction. For the 23 design of Figure 1, this model is

Y = β0 +
3∑

j=1

β j x j +
∑
i< j

3∑
j=2

βi j xi x j + β123x1x2x3 + ε, (1)

where Y is the response variable, the x j s represent the levels of the design factors
expressed in coded units (−1, +1), ε is the random error component, and the βs
are regression coefficients. It is often a reasonable assumption that the error terms
are normally and independently distributed with mean zero and constant variance
σ 2. The least squares estimates of the regression coefficients are exactly one-half
of the factor effect estimates defined earlier and the intercept is estimated as the
average of all n observations (runs).

When the 2 f design is replicated, the statistical significance of the factor effects
can be evaluated formally using the analysis of variance. However, in screening
experiments with four or more factors, it is relatively common to conduct only



1. An Overview of Industrial Screening Experiments 5

one trial or observation at each design point. This is called an unreplicated or
single replicate factorial design. This practice is in keeping with the objective
of not running large experiments. An obvious risk when conducting an unrepli-
cated experiment is that we may end up fitting a model to noise; that is, if the
response Y is highly variable, the noise component of the observed response may
be large relative to the signal and misleading conclusions may result from the
experiment.

One way that experimenters can ensure that the noise will not overwhelm the
signal in an unreplicated design is to space the low and high levels of the factors
aggressively. In a screening experiment, if the experimenter wants to determine the
effect of a factor, then the factor must be changed enough to provide a reasonable
chance of observing its true effect. A common mistake in industrial screening
experiments is to be too conservative in choosing the factor levels. This often
leads to disappointing results, when factors shown later to be important are missed
in the initial stages of experimentation. Now the experimenter must be careful
about selecting the factor levels, and sound engineering or scientific judgment, as
well as some experience and practical insight regarding the process, is necessary
and should be applied to ensure that unreasonable or potentially dangerous changes
in factors are not made. However, remember that in factor screening the mission
of the experimenter is often similar to that of Captain James T. Kirk and the crew
of the Starship Enterprise: “to boldly go where no one has gone before” (emphasis
added).

The analysis of an unreplicated 2 f design is typically conducted using a nor-
mal, or half-normal, probability plot of the effect estimates or, equivalently, the
estimates of the model regression coefficients. Montgomery (2005) gives details
of these probability plots and several examples. The interpretation of these plots is
subjective, and some experimenters use more formal analysis procedures, often to
support or provide additional guidance regarding the conclusions drawn from the
graphical analysis. The method proposed by Lenth (1989) is easy to implement
(see Chapter 12) and is beginning to appear in some computer packages (see, for
example, Design-Expert, Version 6). The conditional inference chart proposed by
Bisgaard (1998–1999) is also a useful supplement to the normal probability plot.
Hamada and Balakrishnan (1998) reviewed and compared methods for analyzing
unreplicated designs.

A potential concern in the use of a two-level factorial design is the implicit
assumption of linearity in the true response function. Perfect linearity is not neces-
sary, as the purpose of a screening experiment is to identify effects and interactions
that are potentially important, not to produce an accurate prediction equation or
empirical model for the response. Even if the linear approximation is only very
approximate, usually sufficient information will be generated to identify important
effects. In fact, the two-factor interaction terms in equation (1) do model some cur-
vature in the response function, as the interaction terms twist the plane generated
by the main effects. However, because the factor levels in screening experiments
are usually aggressively spaced, there can be situations where the curvature in
the response surface will not be adequately modeled by the two-factor interaction
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terms. In such cases a logical model to consider is the complete second-order
model,

Y = β0 +
f∑

j=1

β j x j +
∑
i< j

f∑
j=2

βi j xi x j +
f∑

j=1

β j j x
2
j + ε. (2)

In this model, the regression coefficients of the pure quadratic terms (the β j j ) are
not estimable because the typical screening design has all factors at only two levels.
However, the experimenter should be alert to the possibility that the second-order
model is required. By adding center points to the basic 2 f factorial design we can
obtain a formal test for second-order curvature, that is, a test of the null hypothesis

H0 :
f∑

j=1

β j j = 0 versus H1 :
f∑

j=1

β j j �= 0. (3)

The center points consist of nc replicates run at the design point x j = 0, j =
1, 2, . . . , f, when all of the design factors are quantitative. Let ȳF be the average
of the response values at the nF factorial design points and ȳC be the average
response at the center points. The t-statistic for testing the null hypothesis in (3) is

t0 = ȳF − ȳC√
M SE

(
1

nF
+ 1

nC

) ,

where M SE is the mean square for error from the analysis of variance. If the only
replication in the design is at the center, then t0 is based on nC − 1 degrees of
freedom. Some computer software packages report the t-statistic for curvature,
whereas others report the F-statistic that is the square of t0, and some report
both.

When curvature is significant, it will be necessary to include the pure quadratic
terms in the model. This requires the experimenter to augment the 2 f design
(plus center points) with additional runs. The usual choices for augmentation are
the 2 f axial runs (±α, 0, 0, . . . , 0), (0, ±α, 0, . . . , 0), . . . , (0, 0, 0, . . . ,±α) plus
(usually) additional center runs to form a central composite design. The axial
runs allow the pure quadratic terms in the second-order model to be estimated.
Typical choices for α include unity (resulting in a face-centered cube), α = 4

√
nF

(resulting in a rotatable design), or α = f (resulting in a spherical design). These
choices impart different properties to the central composite design, and are dis-
cussed in detail by Khuri and Cornell (1996) and by Myers and Montgomery
(2002).

When the screening experiment is conducted in an ongoing process, it is usually
a good idea to choose the current operating conditions as the center point. This
can provide assurance to the operating personnel that at least some of the runs
in the experiment will be conducted under familiar conditions for which a satis-
factory product should be manufactured. Runs at these center points could also
be used to check for unusual conditions during the execution of the experiment
by comparing the response at the center points to historical process performance,
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perhaps through use of a control chart. It is also a good idea to space the center
points approximately evenly through the randomized run order of the other design
points so that an assessment of trend in the response during the experiment may be
made. In some screening experiments, there may be little prior information about
variability. By running two or three center points as the first runs in the screening
experiment, a preliminary estimate of variability can be made. If this estimate
seems unreasonably large, then the experiment can be halted until the reasons for
the unexpectedly large variability can be determined. Finally, our discussion of
center points has focused on the case where all f factors are quantitative. In some
screening experiments, there will be at least one qualitative or categorical variable
and several quantitative ones. Center points can still be used in these situations by
placing them in the centers of the regions involving only quantitative factors.

3 Screening Experiments with 2 f −q Fractional
Factorial Designs

Screening experiments often involve a large number of variables (factors). Con-
sequently, many such experiments will require a fractional factorial design. The
2 f −q fractional factorial design is a logical choice for most factor screening situa-
tions. This design is a 1/2q fraction of a 2 f design. For example, a 23−1 design is
a one-half fraction of a 23 design and has four runs, a 26−2 design is a one-quarter
fraction of a 26 design and has 16 runs, and a 28−4 design is a one-sixteenth fraction
of a 28 design also with 16 runs. Eight- and sixteen-run fractional factorial designs
are used extensively for factor screening.

Table 1 shows a one-half fraction of a 24 design. This design was constructed by
first writing down the levels of the “basic design”; that is, a full two-level factorial
design that contains the desired number of runs for the fraction. The basic design
in Table 1 is a 23 factorial design having 8 runs. Then the levels of the fourth factor
are determined by equating one of the interaction columns of the basic design (here
ABC) to the fourth factor, D. The ABC interaction column is found by multiplying
columns A, B, and C. The relationship D = ABC is called the design generator.
Multiplying both sides of D = ABC by D results in D2 = ABC D. Now D2 is a
column of +1s, called the identity column I , and I = ABC D is called the defining

Table 1. A 24−1 fractional factorial design.
Run A B C D = ABC

1 −1 −1 −1 −1
2 +1 −1 −1 +1
3 −1 +1 −1 +1
4 +1 +1 −1 −1
5 −1 −1 +1 +1
6 +1 −1 +1 −1
7 −1 +1 +1 −1
8 +1 +1 +1 +1
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relation for the fractional design. In a one-half fraction the defining relation will
contain exactly one word. In the 24−1 design of Table 1, this word is ABCD. All
2 f −q fractional factorial regular designs may be constructed by using this general
procedure. (Nonregular designs are discussed in Section 5 and also in Chapter 7)

3.1 Aliasing in a Fractional Factorial Design

Because a fractional factorial design uses less than the complete set of factorial
runs, not all of the parameters in the complete model supported by the full factorial
can be uniquely estimated. Effect estimates are linked together through aliases.
For example, in the 24−1 design in Table 1, the aliases are

A = BC D AB = C D

B = AC D AC = B D

C = AB D BC = AD

D = ABC.

Thus, in this 24−1 fractional factorial design, each factorial effect has a single alias;
the four main effects are aliased with the four three-factor interactions, and the
two-factor interactions are aliased with each other in pairs. Only one effect in each
alias chain can be estimated. Aliases can be found by multiplying the effect of
interest through the defining relation for the design. For example, the alias of A
is found by multiplying A by I = ABC D, which produces A = A2 = BC D =
BC D, because A2 is the identity column.

The design in Table 1 is called the principal fraction of the 24−1 design, and
the sign in the generator D = ABC is positive (that is, D = +ABC). Another
one-half fraction could have been constructed by using D = −ABC . This design
would have all of the levels in column D of Table 5 reversed. The two one-half
fractions can be concatenated to form the complete 24 factorial design.

As another example, the design in Table 2 is a one-sixteenth fraction of the 27

design; that is, a 27−4 fractional factorial design. This design was constructed by
starting with the 23 as the basic design and adding four new columns using the
generators D = AB, E = AC , F = BC , and G = ABC . The defining relation
is made up of I = AB D, I = AC E , I = BC F , and I = ABCG, along with all

Table 2. A 27−4 fractional factorial design.
Run A B C D = ABC E = AC F = BC G = ABC

1 −1 −1 −1 +1 +1 +1 −1
2 +1 −1 −1 −1 −1 +1 +1
3 −1 +1 −1 −1 +1 −1 +1
4 +1 +1 −1 +1 −1 −1 −1
5 −1 −1 +1 +1 −1 −1 +1
6 +1 −1 +1 −1 +1 −1 −1
7 −1 +1 +1 −1 −1 +1 −1
8 +1 +1 +1 +1 +1 +1 +1
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other words that are equal to the identity column. These are the products of the
words AB D, AC E , BC F , and ABCG taken two at a time, three at a time, and
four at a time. Thus the complete defining relation is

I = AB D = AC E = BC F = ABCG = BC DE = AC DF = C DG = AB E F

= B EG = AFG = DE F = ADEG = C E FG = B DFG = ABC DE FG.

The 27−4 design is a saturated design; by this we mean that the number of fac-
tors, f = 7, is one less than the number of runs, n = 8. The alias relationships
here are somewhat more complicated. Specifically, if we ignore all interactions of
order three or higher, each main effect is aliased with a chain of three two-factor
interactions:

A = B D = C E = FG

B = AD = C F = EG

C = AE = B F = DG

D = AB = CG = E F

E = AC = BG = DF

F = BC = AG = DE

G = C D = B E = AF.

Therefore, only the main effects can be estimated using this design, and unique
interpretation of these estimates would require the assumption that all two-factor
and higher interactions are negligible.

3.2 Design Resolution

The resolution of a fractional factorial design is a convenient way to describe the
alias relationships:

� A resolution III design has at least some main effects aliased with two-factor
interactions; so the 27−3 design in Table 2 is a resolution III design (often denoted
2 7−4

I I I ).
� A resolution IV design has main effects clear of (not aliased with) two-factor

interactions, but at least some two-factor interactions are aliased with each other;
so the 24−1 design in Table 1 is a resolution IV design (often denoted 24−1

I V ).
� A resolution V design has main effects clear of two-factor interactions and

two-factor interactions clear of each other; the 25−1 design with generator E =
ABC D is a resolution V design.

Resolution III and IV designs are used extensively in factor screening because
they are usually fairly small designs relative to the number of factors studied
and because they can provide the essential information required to do effective
screening: identification of important main effects, and some insight regarding
potentially important two-factor interactions. Specifically, with n = 8 runs, an ex-
perimenter can investigate f = 2 or 3 factors in a full factorial design, f = 4



10 Douglas C. Montgomery and Cheryl L. Jennings

factors in a resolution IV one-half fraction, and f = 5, 6, or 7 factors in a res-
olution III fractional factorial design. With n = 16 runs, one may study f = 2,
3, or 4 factors in a full factorial design; f = 5 factors in a resolution V one-half
fraction; f = 6, 7, or 8 factors in a resolution IV fraction; and from 9 to 15 factors
in a resolution III fractional factorial design.

Sometimes resolution is insufficient to distinguish between designs. For exam-
ple, consider the 27−2 design. A 32-run resolution IV design can be constructed
using F = ABC and G = BC D as the generators. Because this is a resolution IV
design, all main effects are estimated clear of the two-factor interactions, but the
two-factor interactions are aliased with each other as follows.

AB = C F

AC = B F

AD = FG

AG = DF

B D = CG

BG = C D

AF = BC = DG.

Note that this choice of generators results in 15 of the 21 two-factor interactions
being aliased with each other across seven alias chains. However, if instead we
choose F = ABC D and G = AB DE as the generators, then another resolution IV
design results, but in this design the two-factor interactions are aliased with each
other as follows.

C E = FG

C F = EG

CG = E F.

Thus only 6 of the 21 two-factor interactions are aliased with each other across
three alias chains. The second design has the property of minimum aberration,
which ensures that in a design of resolution R the minimum number of main
effects is aliased with interactions involving R − 1 factors, the minimum number
of two-factor interactions is aliased with interactions involving R − 2 factors, and
so forth. Tables of the appropriate choice of generators to obtain 2 f −q fractional
factorial designs with maximum resolution and minimum aberration are available
in many experimental design textbooks (see Montgomery, 2005, page 305, for
example) or can be constructed using widely available software packages such as
Minitab and Design-Expert.

The sparsity of effects principle (see Box and Meyer, 1986) makes resolution III
and IV fractional factorial designs particularly effective for factor screening. This
principle states that, when many factors are studied in a factorial experiment, the
system tends to be dominated by the main effects of some of the factors and a
relatively small number of two-factor interactions. Thus resolution IV designs
with main effects clear of two-factor interactions are very effective as screening
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designs. However, resolution III designs are also excellent choices, particularly
when the number of factors is large relative to the number of factors anticipated
to produce important effects.

3.3 Design Projection

An important aspect of the success of fractional factorial designs is due to their
“projection properties”. As an illustration, observe from Table 1 that, if any one
of the original four factors A, B, C , D can be eliminated after analysis of the
experimental data, then the remaining three factors form a full (unreplicated) 23

factorial design. Furthermore, if two factors are dropped, the remaining two factors
form two replicates of a 22 design. Thus elimination of unimportant factors results
in a stronger (more informative) experiment in the remaining factors and this can
greatly facilitate the practical interpretation of a screening experiment.

All 2 f −q fractional factorial designs possess projective properties in that they
contain within themselves either full factorial (possibly replicated) or smaller frac-
tional factorial designs involving fewer factors than originally investigated. Specif-
ically, a design of resolution R contains full factorial designs in any subset of R − 1
of the original factors. To illustrate, the 2 7−4

I I I design in Table 2 will project into a
full factorial design in any subset of two of the original seven factors. In general, a
2 f −q design will project into either a full factorial or a regular fractional factorial
design in any subset of p ≤ f − q of the original f factors. The subsets of factors
providing regular fractional factorial designs as projections are those subsets that
do not appear as words in the design’s defining relation. Thus, for example, the
2 7−4

I I I design in Table 2 will project into a full factorial in any subset of three factors
that does not form a word in the design’s complete defining relation. Therefore the
only combinations of factors that, upon projection, will not form a full 23 factorial
are AB D, AC E, BC F, C DG, B EG, AFG, and DE F .

The projection properties can be extremely useful in the planning stages of a
screening experiment if the experimenter has information about the likely impor-
tance of the factors. For example, in the 27−4 design in Table 2, if the experimenter
thought that as many as three of the original factors were likely to be important,
it would be a good idea to assign those most likely to be important to a subset of
columns that will produce a full factorial upon projection, such as A, B, and C .
For more details and recent work on projection properties, see Chapter 7.

3.4 Confirmation and Follow-Up Experiments

Interpretation of a fractional factorial experiment always requires careful study of
the results, engineering or scientific knowledge about the process being studied,
and sometimes the judicious use of Occam’s razor.1 Confirmation experiments

1 Law of Parsimony used by William of Occam, English philosopher and theologian, c1285–
c1349.
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should always be conducted to ensure that the experimental results have been
interpreted properly. A typical confirmation experiment uses the fitted model from
the original experiment to predict the response at a new point of interest in the
design space and runs the process at this point to see if the predicted and observed
response values are in reasonable agreement. This often provides valuable insight
about the reliability of the conclusions that have been drawn.

There are many other strategies for follow-up experimentation after a fractional
factorial experiment. These include dropping and adding factors from the original
design, rescaling some factors because they were varied over inappropriate ranges
in the original experiment, replication of some runs either to improve the precision
of estimation of effects or because some runs were not made correctly, shifting the
region of experimentation to take advantage of an apparent trend in the observed
response and, if center points were used, augmentation to account for apparent
curvature.

Not infrequently, we find that the interpretation of a fractional factorial experi-
ment involves some ambiguities. For example, suppose that in the 27−4 design in
Table 2 we found that the three largest contrast estimates were associated with the
main effects of A, B, and D (and their aliases). The simplest possible interpre-
tation of this finding is that there are three large main effects. However, the alias
relationships suggest many other possibilities, such as large main effects A, B, and
their interaction AB, or A, D, and AD, or B, D, and B D, and so forth. Unless
process knowledge or experience can be used to resolve these ambiguities, addi-
tional runs will be necessary. In a resolution III design the simplest way of adding
runs is to use the foldover procedure. To fold over a resolution III design, simply
run another experiment that is the “mirror image” of the first, that is, with all signs
reversed. The combined design consisting of the original design plus its foldover
form a resolution IV experiment from which all main effects can be estimated clear
of the two-factor interactions. This procedure is widely used in practice, particu-
larly with eight-run resolution III screening designs. A somewhat less widely used
variation of the full foldover is to fold over on a single column (change the signs
within the single column), which will allow the main effect of that single factor
and all two-factor interactions involving that factor to be estimated clear of other
two-factor interactions.

It is also possible to fold over resolution IV designs, but the procedure is more
complicated. Because the main effects are already estimated clear of the two-factor
interactions, an experimenter folds over a resolution IV design for reasons such as
(1) to break as many two-factor interaction alias chains as possible, (2) to separate
the two-factor interactions on a specific alias chain, or (3) to isolate one or more
specific two-factor interactions. Montgomery and Runger (1996) discussed and il-
lustrated these issues and provided a table of recommended foldover arrangements
for resolution IV designs with 6 ≤ f ≤ 10 factors. In our experience, however, a
complete foldover of a resolution IV design is often unnecessary. Generally, there
are one or two (or a very few) aliased interactions that need to be identified. These
interactions can usually be de-aliased by adding a smaller number of runs to the
original fraction than would be required by a full foldover. This technique is some-
times called a partial foldover or semifolding. Montgomery (2005, pages 329–331)
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presented a complete example of the procedure. Other useful references include
Mee and Peralta (2000), Nelson et al. (2000), Li and Mee (2002), and Li and Lin
(2003).

4 An Example of an Industrial Screening Experiment

Plasma etching is a widely used process in semiconductor manufacturing. A frac-
tional factorial design was used to study the effect of six factors, labeled A, B,
C , D, E , on a measure of how uniformly the wafer has been etched, namely,
the range of thickness measurements over the entire wafer. Based on experience
with similar etching processes, the experimenters felt that the main effects of the
six factors and some of the two-factor interactions involving these factors were
likely to be important, but that interactions involving three or more factors could
be safely ignored. They were also comfortable with the assumptions of normality
and constant variance for the response. This led to selection of the 2 6−2

I V design
with E = ABC and F = BC D in Table 3. This table shows the six design factors
and the observed responses that resulted when the experiment was conducted. The
complete defining relation and the alias relationships for main effects, two-factor
and three-factor interactions for this design are shown in Table 4.

Figure 3 shows a half-normal probability plot of the effect estimates obtained
from the Design-Expert software package. Three main effects, A (pressure), B
(power), and E (gap) are important. Because the main effects are aliased with
three-factor interactions, this interpretation is probably correct. There are also two
two-factor interaction alias chains that are important, AB = C E and AC = B E .
Because AB is the interaction of two strong main effects, those of pressure and

Table 3. The design and data for the plasma etching screening experiment.
Factor A: Factor B: Factor C: Factor D: Factor E: Factor F: Response:

Run Pressure Power He CF4 Gap Thickness Range
order torr watts sccm sccm cm Angstroms Angstroms

15 −1 −1 −1 −1 −1 −1 441
5 1 −1 −1 −1 1 −1 289
1 −1 1 −1 −1 1 1 454
8 1 1 −1 −1 −1 1 294

12 −1 −1 1 −1 1 1 533
13 1 −1 1 −1 −1 1 100

2 −1 1 1 −1 −1 −1 405
6 1 1 1 −1 1 −1 430
3 −1 −1 −1 1 −1 1 427
7 1 −1 −1 1 1 1 329

14 −1 1 −1 1 1 −1 469
11 1 1 −1 1 −1 −1 392
10 −1 −1 1 1 1 −1 558
4 1 −1 1 1 −1 −1 112

16 −1 1 1 1 −1 1 436
9 1 1 1 1 1 1 373
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Table 4. Defining relation and aliases for the plasma etching
experiment in Table 3.

I = ABC E = BC DF = ADE F

A = BC E = DE F AB = C E
B = AC E = C DF AC = B E
C = AB E = B DF AD = E F
D = AE F = BC F AE = BC = DF
E = ABC = ADF AF = DE
F = ADE = BC D B D = C F

B F = C D

AB D = AC F = B E F = C DE
AB F = AC D = B DE = C E F

power, and B E is the interaction between power and gap, it is likely that these are
the proper interpretations of these two-factor interactions. An analysis of variance
for the reduced model containing only these main effects and interactions is shown
in Table 5.

The model equation (in coded units) that results from this experiment is

ŷ = 377.61 − 87.75x1 + 28.95x2 + 51.78x5 + 53.39x1x2 − 26.91x2x5,

where x1, x2, and x5 are the levels of A, B, and E , respectively, and ŷ is the
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Table 3.
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Table 5. Analysis of variance for the reduced model identified in the plasma etching
screening experiment.
Source of Sum of Degrees
variation squares of freedom Mean square F Value Prob > F

Model 236693.20 5 47338.64 37.48 <0.0001
A 123201.00 1 123201.00 97.53 <0.0001
B 13409.64 1 13409.64 10.62 0.0086
E 42890.41 1 42890.41 33.95 0.0002
AB 45603.60 1 45603.60 36.10 0.0001
BE 11588.52 1 11588.52 9.17 0.0127
Residual 12631.62 10 1263.16
Corrected Total 249324.80 15

predicted response. A normal probability plot of the studentized residuals (see
Montgomery, 2005, page 397) from this model, shown in Figure 4, indicates that
there are no problems with the normality assumption and that there are no outliers.
Plots of the studentized residuals versus the fitted values and the design factors did
not reveal any problems with inequality of variance.

In the plasma etching experiment, the response variable is the range of thick-
ness measurements on the wafer after etching. It is a measure of the consistency or
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Range Figure 5. Contour plot for the
thickness range (Angstroms) in
terms of Power (watts) and
Pressure (torr) for the plasma
etching experiment with gap at
the low level.

uniformity of the etching process over the entire wafer. Therefore, small values of
the response are desirable. Figure 5 shows a contour plot of the response as a func-
tion of pressure and power, with gap set at the low level. (The other design factors
have no impact on this contour plot because they are not included in the model.)
This plot shows the region where small responses are observed. The indication is
that operating conditions with low power, high pressure, and low gap will result
in small values of the response variable. Additional experiments should be con-
ducted in the vicinity of these settings to confirm these findings. Other follow-up
experiments might include the determination of whether there is a region of lower
settings for power and gap and higher pressure that will result in further decreases
in the range of thickness, or the fitting of a second-order model to obtain a more
precise estimate of the location of the optimum operating conditions.

5 Some Other Aspects of Industrial Screening Experiments

In this section, we briefly discuss a few other topics on screening experiments that
occasionally arise in practice.

The 2 f −q fractional factorial designs that we discussed in Section 3 all require
that the number of runs in the design is a power of two. There are times where this
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may seem inconvenient; for example, if there are f = 7 factors, then the saturated
fractional factorial design in Table 2 requires only n = 8 runs, but the addition of
one more factor leads to a fractional factorial design with n = 16 runs, or twice as
many runs. Plackett and Burman (1946) developed a family of two-level resolution
III fractional factorial designs where the number of runs is only required to be a
multiple of four.

When n is a power of two, the Plackett–Burman designs are identical to the usual
2 f −q regular fractional factorial designs. However, the Plackett–Burman designs
for n = 12, 20, 24, 28, 32, . . . , are potentially useful for reducing the number of
runs in a factor screening experiment. For example, if there are f = 8, 9, 10, or
11 factors, the Plackett–Burman design would require only 12 runs whereas the
conventional 2 f −q fractional factorial design has 16 runs. When n is a multiple of
four that is not a power of two, the Plackett–Burman design is called a nongeomet-
ric design. These designs have very complex alias structures. To illustrate, for the
Plackett–Burman design with f = 11 factors and n = 12 runs, every main effect
is partly aliased with every two-factor interaction that does not involve that main
effect. Thus each of the 11 main effects is partly aliased with 45 two-factor interac-
tions. Furthermore, the two-factor interactions occur in more than one alias chain.
For example, AB occurs in every main effect alias chain except those for A and
B. This is called partial aliasing. If there are large two-factor interaction effects,
partial aliasing can make the interpretation of a Plackett–Burman design difficult.
This is a potential disadvantage to the practical deployment of these designs. There
are some analysis procedures that could be used for designs with complex alias-
ing. For example, Hamada and Wu (1992) proposed a stepwise regression-based
procedure that under some conditions can simplify the interpretation of a Plackett–
Burman design. (For further information on Plackett–Burman designs, see
Chapter 7.)

The use of supersaturated designs is another approach for further reducing the
number of runs in a factor screening experiment. These are designs where the
number of runs is less than the number of factors. Supersaturated designs were
proposed by Booth and Cox (1962) and then largely ignored until about a dozen
years ago, when researchers began to develop computationally intensive algorithms
for their construction. Lin (2000) provided a review of recent developments (see
also Chapter 8). The primary potential application of supersaturated designs is in
systems with either very large numbers of factors or in situations where each run
is very resource intensive as, for example, in many types of computer experiments
or scale model tests, such as finite element analysis models of complex structures,
wind tunnels, or towing basins.

The analysis of a supersaturated design is usually conducted by using some
type of sequential model-fitting procedure, such as stepwise regression. Abraham
et al. (1999) and Holcomb et al. (2003) have studied the performance of analysis
methods for supersaturated designs. Techniques such as stepwise model fitting
and all-possible-regressions type methods may not always produce consistent and
reliable results. Holcomb et al. (2003) showed that the performance of an analysis
technique in terms of its type I and type II error rate can depend on several factors,
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including the type of supersaturated design used, the number of factors studied,
and the number of active factors. Generally, a supersaturated design would have
the best chance of working satisfactorily in a screening situation when the sparsity
of effects principle holds and when the number of runs is at least equal to half the
number of factors studied; see also Chapter 8.

Occasionally a situation occurs where the experimenter considers conducting a
screening experiment where some of the design factors have more than two levels.
A common situation is that some factors have two levels and others have three
levels. There are many fractional factorial designs with “mixed” levels that could
be used in these situations. However, these designs generally have moderately
complex alias relationships, and this can lead to some difficulties in practical
interpretation. If factors are quantitative, the only reason to use more than two
levels in a screening experiment is to account for (or guard against) potential
curvature. Generally, keeping all factors at two levels and adding center points to
the design is a safer experimental strategy, although in some situations it could
lead to a slightly larger experimental design. Trading a small increase in the size
of the experiment to achieve simplicity in design execution and data interpretation
is usually an important consideration.

Special care needs to be taken in screening experiments when one or more of
the factors is qualitative or categorical. For example, catalyst type (organic versus
nonorganic) is a categorical factor. When categorical factors are present, we often
find that main effects and interactions between some quantitative factors may be
different at each level of the categorical factors. This can result in some unantic-
ipated high-order interactions. For example, if the time–emperature interaction is
strong but not consistent for the two types of catalyst, then a three-factor interaction
is present. If the experimenter has selected a design assuming that all three-factor
interactions are negligible (a common assumption in screening experiments), then
misleading conclusions may result. Multi-level categorical factors are especially
problematic as this increases the likelihood that high-order interactions may be
present. It is sometimes helpful to conduct separate experiments at each level of
the categorical factor to reduce the complexity of the problem. When there are
several categorical factors, screening can be very difficult because it is not uncom-
mon to find that the system only responds satisfactorily to certain combinations of
these categorical factors, and that other combinations produce no useful informa-
tion about the response. This is essentially a system that is dominated by (possibly
high-order) interactions rather than main effects. Breaking the overall screening
exercise into a series of smaller experiments is a strategy that can be effective in
some of these situations.
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2
Screening Experiments for
Dispersion Effects

Dizza Bursztyn and David M. Steinberg

Reduction of the variability in performance of products and manufacturing processes is
crucial to the achievement of high levels of quality. Designed experiments can play an im-
portant role in this effort by identifying factors with dispersion effects, that is, factors that
affect performance variability. Methods are presented for the design and analysis of experi-
ments whose goal is the rapid screening of a list of candidate factors to find those with large
dispersion effects. Several types of experiments are considered, including “robust design
experiments” with noise factors, and both replicated and unreplicated fractional factorial
experiments. We conclude that the effective use of noise factors is the most successful way
to screen for dispersion effects. Problems are identified that arise in the various analyses
proposed for unreplicated factorial experiments. Although these methods can be successful
in screening for dispersion effects, they should be used with caution.

1 Introduction

The use of statistical techniques to reduce the variability of manufactured prod-
ucts has been a key feature of the quality movement during the last 20 years.
In particular, the quality engineering ideas of Genichi Taguchi (1986) stimulated
widespread use of designed experiments to reduce variability. The goal of these
experiments is to find settings of design or control factors, whose nominal settings
can be controlled in the process or product specification, that improve the quality
of the final product. In particular, these experiments have been used in practice
to identify design factors that affect process variability. Such factors are said to
have dispersion effects. Knowledge about dispersion effects can be used to select
nominal factor values that reduce variation, thereby designing quality into prod-
ucts. The goal of this chapter is to describe methods that have been proposed for
screening a set of candidate factors to find those which have important dispersion
effects.

We distinguish between three basic paradigms that have been proposed for
identifying and estimating dispersion effects:

1. Include replicate observations at each of the design factor combinations to
permit estimation of variance;
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2. Force variation into the experiment by including so-called noise factors in the
experiment;

3. Analyze dispersion from experiments with no replication.

The inclusion of noise factors is one of the unique and important contributions of
Taguchi. We illustrate the important role that noise factors can play and explore
the relative advantages of the different paradigms in Section 2. The first paradigm,
simple replication, leads largely to standard designs and analyses, and this approach
is treated only briefly in Section 3 of this chapter. We discuss methods for analyzing
experiments with noise factors in Section 4. Much of the research in this area has
focused on what can be accomplished with no replication and these methods are
presented in Section 5. We discuss some examples in Section 6 and summarize the
ideas in Section 7.

Experiments for reducing variability are often called robust design experiments,
emphasizing the goal of making the product or process insensitive, or robust, to
variation in manufacturing or use environments. Interested readers who would like
more background on robust design in general can refer to a number of books or
review articles. In particular, Phadke (1989) has an excellent discussion of the
engineering aspects of robust design. An up-to-date statistical view that exploits a
response surface approach to robust design experiments is given in Chapters 10 to
12 of Wu and Hamada (2000) or Chapter 11 of Myers and Montgomery (2002),
and the review articles by Steinberg (1996), Montgomery (1999), and Ankenman
and Dean (2001).

2 Design Strategies

One of the principal questions that arises is how to design an experiment in order
to identify dispersion effects. The direct and obvious answer is to include replicate
observations at the different design factor combinations used in the experiment.
It is then possible to compute sample variances at each point and to use them as
the basis for modeling how the dispersion depends on the experimental factors.
The most immediate drawback to replication is that it increases the size and cost
of the experiment.

An important insight of Taguchi was that performance variation is often caused
by natural variation in important input factors. Typical examples include the nat-
ural variation of a component part dimension about its nominal value or of a field
condition at the time a product is used. Taguchi proposed that these variations
should be expressly included as noise factors in the experiment. A simple ex-
ample will clarify the idea and show how such an experiment differs from one
with simple replication. Suppose an experiment is run on a product with a com-
ponent part that has a nominal width of 3 mm. The parts are purchased from a
supplier and have an average width equal to the nominal setting and a standard
deviation of 0.05 mm. In a design with replication, the actual part used to build
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Figure 1. The natural variation in Part Width (mm) is seen to be a primary cause for the
variation in the performance measure Y.

each experimental product would be sampled from the parts in stock, so that some
would have widths as low as 2.9 mm, others as high as 3.1 mm, and many would
be close to 3.0 mm. Taguchi’s idea was to replace the random sample of parts by
a directed sample in which only those with widths, say, 2.9 and 3.1 mm, would
be used. The deviation from the nominal is always −0.1 mm or +0.1 mm. The
experimental design would include a two-level noise factor for the deviation from
the nominal width and a part of width 2.9 or 3.1 mm would be chosen for each ex-
perimental run in accordance with the levels of that noise factor as specified by the
design.

There can be significant advantages to the inclusion of a noise factor in a robust
design experiment. Suppose that the noise factor affects performance. In the ex-
ample above, this would mean that performance differs as a function of the actual
part width. Then the natural variation of the part width transmits variation to the
performance. Typical data that might arise from a random sample of manufactured
parts are shown in Figure 1. The measured part width (mm) is plotted on the hor-
izontal axis and performance, y, on the vertical axis. An experiment in which the
width of the part is ignored and only performance is measured (simple replication)
will not show the full picture in Figure 1. Instead, it exposes only the marginal
spread on the vertical axis. Moreover, simple replication makes no effort to balance
the actual widths used at different design factor combinations. Including the noise
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Weld Type at Low Level

Weld Type at High Level

Figure 2. Interaction plot of the design factor Weld Type with the noise factor Part Width
(mm) with performance measure on the vertical axis. The slope with respect to Part Width
is flatter when the Weld Type is at its low level, implying that the low setting of Weld Type
will reduce transmitted variation.

factor explicitly in the design removes both disadvantages. It guarantees balance
and enables us to make the plot in Figure 1. We can then assess the contribution
of the noise factor in terms of its regression slope.

The relation of noise factors to dispersion effects can now be understood by
making a simple interaction plot for a noise factor and a design factor, as in Fig-
ure 2. The figure shows that the regression slope of performance on the noise
factor (part width) differs according to the level of the design factor (weld type).
The “flatter” slope occurs when the design factor is at the lower of its two exper-
imental levels, resulting in lower transmitted variation. The design factor has a
dispersion effect related to its interaction with the noise factor. The fact that the
dispersion effect is found by comparing regression slopes is the key to the en-
hanced power provided by including noise factors. The relation of interactions to
dispersion effects was first emphasized by Shoemaker et al. (1991). Steinberg and
Bursztyn (1994, 1998) and Bérubé and Nair (1998) proved that including noise
factors in an experiment can significantly enhance its power to detect dispersion
effects.

There are also two possible disadvantages to experiments with noise factors.
First, it will often be difficult or expensive to control noise factors in an experiment.
Secondly, the inclusion of noise factors can substantially increase the size of the
experiment, without adding to the number of design factors studied.
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3 Experiments with Replication

Standard statistical methods can be used for designs that include simple replica-
tion. The data at each experimental condition can be summarized by measures of
location and spread of the response, typically the sample average Ȳ and standard
deviation s. Models can then be fitted that relate the measure of spread to the
experimental factors. If normality is reasonable, one can fit a generalized linear
model (McCullagh and Nelder, 1989, Myers et al. 2002) to the standard deviations
with the main effects of the factors, and possibly some interactions, as explanatory
variables. Vining and Myers (1990) gave a detailed and readable description of
how to fit joint response surface models to the averages and standard deviations.
See also Box (1988) and Nair and Pregibon (1988).

4 Experiments with Noise Factors

4.1 Statistical Analysis

In a robust design experiment with noise factors, each experimental observation is
characterized by the levels of the design factors and the noise factors. Two different
approaches have been advocated for the analysis of experiments with noise factors:
response model analysis and performance measure analysis.

In response model analysis, a single statistical model is fitted to the data, in-
cluding effects for both the design factors and the noise factors. As explained in
Section 2, design factors that interact with noise factors have dispersion effects.
So it is important to include such interactions as candidate terms in the analysis.
Denoting the design factors by D1, . . . , Dk and the noise factors by N1, . . . , Nt ,
the model for the ith observation with all linear main effects and design by noise
interactions is

Yi = β0 +
∑

j

β j di, j +
∑

u

αuni,u +
∑
j,u

αu, j di, j ni,u + εi , (1)

where di, j and ni,u give the settings of D j and Nu , respectively, on the ith ex-
perimental run, β j is the regression coefficient for the main effect of D j , αu is
the regression coefficient for the main effect of Nu , and αu, j is the regression co-
efficient for the interaction of D j and Nu . The effect of the noise factor Nu for
given settings d1, . . . , dk of the design factors can be found from (1) by grouping
together all the terms that multiply nu . This gives the regression slope

αu(d1, . . . , dk) = αu +
∑

j

αu, j d j . (2)

The experiment provides estimates of the parameters αu, αu,1, . . . , αu,k which can
be substituted into (2) and the d j can then be chosen so as to make the noise factor
regression slopes as close to 0 as possible. If there is a single design factor that
interacts with a noise factor, then interaction plots such as Figure 2 expose the full
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details about the dispersion effect. If factors are involved in several interactions, the
model equations are the most useful guide to identifying design factor settings that
will reduce dispersion. See Shoemaker et al. (1991), Myers et al. (1992), Steinberg
and Bursztyn (1994, 1998), Steinberg (1996), and Myers and Montgomery (2002,
Chapter 11) for more detail on the response model analysis.

Performance measure analysis was proposed by Taguchi (1986) and his influ-
ence on robust design experiments is no doubt a major reason for its continu-
ing popularity. The data at each design factor combination are summarized by a
“performance measure”, which is analyzed for dependence on the design factors.
Settings are then chosen to optimize the performance measure. Taguchi proposed
a number of different performance measures, depending on the goals of the exper-
iment and the nature of the data. Of most importance for dispersion effects is his
so-called signal-to-noise ratio for experiments whose goal is to reduce variation
about a target value, SNq = 20 log(Ȳq/sq ), where Ȳq and sq are the average and
standard deviation of the response at the qth design factor combination. Design
factors are identified as having dispersion effects if they have a strong effect on the
signal-to-noise ratio. Taguchi did not advocate any formal statistical criteria for
distinguishing between strong and weak effects on the signal-to-noise ratio and
many published case studies simply pick out the design factors with the largest
percent sum of squares in the analysis of variance breakdown of the signal-to-noise
ratio. In most of these studies, the design factors exhaust most of the degrees of
freedom, so any formal criterion needs to perform effectively in settings with few
error degrees of freedom.

Subsequent research has pointed out a number of serious drawbacks to perfor-
mance measure analysis. Box (1988) showed that the use of the signal-to-noise
ratio would be preferable to the standard deviation itself if, overall, the standard
deviation were roughly proportional to the average. Such dependence might be
anticipated if the data followed lognormal distributions. Box showed that a similar
analysis could then be obtained by taking logs of the original data and using the
standard deviation as a performance measure. He also showed that the signal-to-
noise ratio could be an inefficient measure of dispersion in other settings.

A fundamental criticism of performance measure analysis is that it makes no
explicit use of the noise factors in the experiment. The first stage of the analysis
is essentially to “collapse” the data over the noise factor settings. The analysis
then proceeds in exactly the same manner that would be used for experiments with
simple replication. Taguchi’s main argument in favor of this approach seems to be
simplicity. However, having made efforts to include noise factors in the experiment,
one may wonder why they would be ignored in the analysis. Steinberg and Bursztyn
(1994) showed that the performance measure analyses may misidentify dispersion
effects. They analyzed an experiment in which two design factors both interact with
the same noise factor. Although the response model analysis quickly identified
the dispersion effects of these factors, the performance measure analysis found,
instead, a phantom dispersion effect for the design factor that is aliased with the
interaction of the two original design factors. They explained why the erroneous
conclusion is built into the performance measure analysis.
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Steinberg and Bursztyn (1998) developed additional theory to support the con-
clusions of their earlier article. They also compared the power to detect a dispersion
effect in several types of robust design experiments. There are two important con-
clusions from their article. First, they found that explicit inclusion of noise factors
in an experiment significantly increases the power to detect a dispersion effect rela-
tive to experiments with simple replication. Second, they found that the increase in
power is obtained only via the response model analysis. The performance measure
analysis does not enjoy the same gains in power.

Bérubé and Nair (1998) reached similar conclusions. They also found that the
response model analysis was much more efficient than the performance model
analysis. In addition, their work highlighted the importance of choosing noise
factors that account for a substantial fraction of overall process variation.

4.2 Designing an Experiment with Noise Factors

Most robust design experiments involving noise factors have followed the cross-
product array format proposed by Taguchi. In this type of experiment, separate
experimental arrays are prepared for the design and the noise factors, typically
with the smallest sample size that can accommodate the number of factors in each
set. Then the two arrays are “crossed” to generate a matrix of design points, with
rows corresponding to design factor combinations and columns to noise factor
combinations.

The design array might be a two-level fraction, a three-level fraction, or a mixed
orthogonal array such as L18, which can include up to seven factors at three levels
and one more with two levels (see Wu and Hamada, 2000, Chapters 6 and 7, for
details on orthogonal array designs). In all the examples that we have seen, noise
factors were limited to two levels. Moreover, to reduce the overall sample size, the
noise factors are sometimes combined into “compound noise factors,” in which
an entire set of noise factors may be modified in unison (see also Chapter 9). The
compounding technique is most often used when changes in the noise factors have
a predictable effect on the direction of the outcome, say in switching from easy to
severe use conditions.

The crossed array designs have two important properties, related to the meth-
ods of analysis described above. First, these designs enable independent estima-
tion of all “design by noise factor” interactions; that is, interactions involving
one design factor and one noise factor (Shoemaker et al., 1991). Thus they are
well suited to the response model analysis. Second, they provide a “fair com-
parison” of the design factor combinations, by subjecting them to identical noise
conditions.

Shoemaker et al. (1991) pointed out that crossed array designs are fractional
factorial designs in the full set of design and noise factors with a particular aliasing
pattern. They suggested treating the design problem from the outset in terms of
finding a design with a desirable aliasing pattern. They called the resulting designs
combined arrays and presented some settings in which a combined array might be
preferred to a crossed array. For example, with 4 design factors and 1 noise factor,
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all at two levels, the crossed array could be a 24−1 fractional factorial design in the
design factors run at each of the two levels of the noise factor. Instead, one could
run a 25−1 design in all 5 factors. Both designs permit estimation of all main effects
and design by noise factor interactions. The latter design also permits estimation
of design by design factor interactions.

Borkowski and Lucas (1997) further explored the construction of combined
array designs. The important contribution in their approach was to set up a frame-
work for the different requirements on design resolution for different types of
effects in robust design experiments. They proposed the concept of mixed reso-
lution to characterize separately the resolution of the design for effects involving
only design factors, only noise factors, or interactions between design and noise
factors.

Another general class of designs that has been proposed for robust design ex-
periments is known as compound orthogonal arrays. These designs are similar to
crossed arrays in that a fractional factorial design in one set of factors is crossed
with levels of the remaining factors. However, rather than repeat the same frac-
tion in the remaining factors, different (equivalent) fractions can be run at each
experimental point in the first array. The 25−1 design that we described earlier is
an example of a compound array, in which the two different 24−1 fractions involv-
ing the four design factors are run at the two different levels of the noise factor.
Compound arrays can be used to improve the aliasing properties of the full de-
sign. Rosenbaum (1994, 1996) provided initial properties of compound arrays and
Hedayat and Stufken (1999) added considerable detail.

One of the issues that concerned Rosenbaum (1994, 1996) was the derivation
of conditions on the design that would guarantee that a performance measure pro-
vides an unbiased estimate of the variance across all possible noise conditions.
He used this argument as a justification for compound arrays. As we have already
written, the performance measure analysis is at best inefficient and at worst mis-
leading, so we find this argument irrelevant in assessing the benefits of compound
arrays.

5 Unreplicated Factorial Experiments

We now consider factorial experiments in which there is no replication of design
factor combinations and no use of noise factors. The idea of identifying dispersion
effects in unreplicated factorials again has roots in the work of Taguchi. It was first
studied in detail by Box and Meyer (1986) and has since attracted considerable
interest and research.

At first glance, one might think that an unreplicated experiment is hopelessly
overextended for finding dispersion effects. The standard analysis of an unrepli-
cated design begins by studying the effects of the factors and their interactions on
location. The location effects involve orthogonal contrasts that typically exhaust
all the degrees of freedom in an unreplicated design. The crucial insight of Box
and Meyer (1986) was that, often, only a small fraction of the factors really have
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substantial location effects and, when projected onto those active factors, the re-
sulting design might then have replication that could be used to study effects on
dispersion. (See Chapters 1 and 7 for discussion about projections.)

In subsequent years many papers have been devoted to this topic. A variety
of methods has been proposed and some important reservations and caveats have
been discovered. More research is being done and more is needed. At the present
time, it appears that the initial optimism generated by Box and Meyer (1986)
has been substantially moderated. One can, indeed, identify dispersion effects
from unreplicated designs, but there are numerous pitfalls and opportunities for
misleading conclusions.

Below we describe the most important methods that have been proposed and
review some of their pros and cons. Before proceeding, we remark that these same
ideas could also be used in a response model analysis of an experiment with noise
factors. These methods could be useful if the design factors affect the variance of
the random error term εi in equation (1).

In many of the descriptions, we refer to “statistics for the dispersion effect of
factor j”. By this we mean either a main effect associated directly with a single
factor or an interaction effect associated with some collection of factors. Much of
the presentation focuses on two-level factorial designs and +1 and −1 are used to
denote the high and low levels of each factor in these designs.

5.1 Dyestuffs Example

We illustrate the different methods by applying them to a 26 experiment on dyestuffs
presented by Box and Draper (1987). We consider here the results for hue, one
of three response variables studied in the experiment, and label the six factors
A to F . In this section we examine the full set of experimental data. However,
many screening experiments are smaller in size. So, in the next section, we ex-
tract some fractions from the experiment that will be typical of small screening
studies.

Figure 3 shows a half-normal plot for hue from the full experiment. Two effects
clearly stand out and these are the main effects of factors A and F. All the other
effects appear consistent with a null hypothesis of no effect. These conclusions are
reinforced by other analyses. Fitting a model with all main effects and two-factor
interactions results in highly significant effects for factors A and F. No other effects
are significant at the 5% level, but the main effect of B and the AC interaction
are both quite close, with p-values less than 0.075. Analysis by Lenth’s (1989)
method, discussed in Chapter 12, also finds that the only significant effects are
those for A and F.

A plot of the residuals versus the fitted values from the location model with A
and F only is shown in Figure 4. The spread of the residuals is seen to increase
with the fitted value, a feature that might be explained by dispersion effects of
the experimental factors, in particular those in the location model. We examine
this conjecture with the various methods that have been suggested for screening
dispersion effects.
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Figure 3. Half-normal probability plot of the factor effects from the 26 factorial experiment
on hue.
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Figure 4. Plot of residuals versus fitted values from the 26 experiment on hue. The location
model includes the main effects of factors A and F only.
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5.2 Box and Meyer’s Method

Box and Meyer (1986) considered the identification of dispersion effects in un-
replicated 2k−p designs. The first step in their approach is to identify and estimate
the active location effects. Let ri (i = 1, . . . , n) denote the residuals from the fitted
location model. To examine whether factor j has a dispersion effect (or, equiv-
alently, whether there is a dispersion effect associated with the jth main effect
contrast), compute the sums of squared residuals at the two levels of this factor:

SS( j+) = ∑
j(+) r2

i ,

SS( j−) = ∑
j(−) r2

i .

The indices j(+) and j(−) in the above definitions are used to denote summation
over the design points with factor j at its high and low levels, respectively. The
test statistic proposed by Box and Meyer was one-half the log of the ratio of these
sums of squares,

DBM
j = 0.5 log[SS( j+)/SS( j−)]. (3)

Box and Meyer did not present any formal inference procedures for using this
statistic to identify dispersion effects. The use seems to be informal for screening
factors with large effects from those with no or small effects on dispersion, for
example, by making a normal probability plot of the statistics; see Montgomery
(1990) for an application of this idea.

Box and Meyer also derived a useful result (which is applied in some of the
subsequent methods in this chapter) that relates dispersion effects to location effects
in regular 2k−p designs. We present the result first for 2k designs and then explain
how to extend it to fractional factorial designs. First, fit a fully saturated regression
model, which includes all main effects and all possible interactions. Let β̂i denote
the estimated regression coefficient associated with contrast i in the saturated
model. Based on the results, determine a location model for the data; that is, decide
which of the β̂i are needed to describe real location effects. We now compute the
Box–Meyer statistic associated with contrast j from the coefficients β̂i that are
not in the location model. Let i ◦ u denote the contrast obtained by elementwise
multiplication of the columns of +1s and −1s for contrasts i and u. The n regression
coefficients from the saturated model can be decomposed into n/2 pairs such that
for each pair, the associated contrasts satisfy i ◦ u = j ; that is, “contrast i ◦ u is
identical to contrast j”. Then Box and Meyer proved that equivalent expressions
for the sums of squares SS( j+) and SS( j−) in their dispersion statistic are

SS( j+) = (2/n)
∑

(β̂i + β̂u)2, (4)

SS( j−) = (2/n)
∑

(β̂i − β̂u)2, (5)

where the sums extend over all pairs for which i ◦ u = j and any regression coef-
ficients that are used in the location model are replaced by 0.

For 2k−p fractional factorial designs, the sums of squares can again be written,
as in equations (4) and (5), in terms of squared sums and differences of regression
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coefficients that are not included in the location model. Depending on the genera-
tors used to construct the fractional design, the relevant pairs of contrasts may be
those for which i ◦ u = − j , in which case the expressions for SS( j−) and SS( j+)
in (4) and (5) may be switched.

Brenneman and Nair (2001) and McGrath and Lin (2001) showed that the
method of Box and Meyer (1986) can be problematic as described below when
more than one factor has a dispersion effect. Brenneman and Nair (2001) exam-
ined the consequences of using the Box–Meyer method when there is a log-linear
dispersion model in which

Var(Yi ) = σ 2
i = exp(φ0 + Z

′
iφ), (6)

where φ0 is a constant, the vector Zi specifies the levels of the q explanatory
variables in the dispersion model, and φ is a vector of coefficients of the effects.
If two factors A and B have dispersion effects in this model, then they also affect
the Box–Meyer statistic DBM

j in (3), for the contrast associated with their interac-
tion. This could result in the spurious identification of a dispersion effect for the
interaction contrast or in the cancellation of a legitimate dispersion effect.

When applied to the data on hue in the 26 dyestuffs experiment, the Box–Meyer
statistic (3) points to factor F as having the most potential for a dispersion effect,
with a statistic of 0.59. The effect for factor F stands out, though not dramatically,
on a normal plot of the Box–Meyer statistics (Figure 5). The next strongest
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Figure 5. Normal probability plot of the Box–Meyer dispersion statistics for the 26 exper-
iment on hue, with A and F in the location model.
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effects, both with absolute values of 0.39, are the ADEF interaction and the CEF
interaction. The next strongest main effect is for factor B, with a statistic of −0.30.

5.3 Bergman and Hynén’s Method

Bergman and Hynén (1997) developed a method similar to that of Box and Meyer
(1986), but with a simple and exact distribution theory for inference from the test
statistic. The important observation of Bergman and Hynén was that the residuals
from the fitted location model could complicate inference for the Box–Meyer
statistic in two ways. First, the residuals in the two sums of squares could be
correlated. Second, the residuals at the high (low) level of factor j typically depend
on the actual variances at both levels of the factor, not just the level at which the
run was made.

Bergman and Hynén proposed a clever solution that corrects both of the problems
cited above. The source of both problems is that residuals, being linear combina-
tions of the observations will, in general, include observations at both levels of
factor j , inducing correlation and making the expected mean square of the resid-
ual depend on both variances. Both of these drawbacks can be overcome if the
residuals at the high (low) level of factor j depend only on the observations made
at that same level. One natural way to accomplish this “separation” of the obser-
vations is to fit separate location models at the two levels of j. Equivalently, for
2k−p designs, one can fit a single, expanded, location model to the full set of data
that includes the main effect of j and the product of j with each effect currently
in the model. For example, suppose the location model includes the main effects
of factors A and B. Table 1 shows the expanded location models that would need
to be fitted to test for dispersion effects associated with factor A, factor C , or with
the AC interaction. As is evident in this example, different location models need
to be fitted depending on the potential for having a dispersion effect of the factor
under consideration. The idea of the expanded location model is also discussed
very briefly by Box and Meyer (1986, Section 5).

The Bergman and Hynén (1997) statistic for factor j is given by

DBH
j = SS( j+)/SS( j−), (7)

Table 1. Expanded location models for the
Bergman–Hynén method for several potential dispersion
effects when the location model includes the main effects of
factors A and B. The location model always includes main
effects for A and B and also includes the main effect of the
dispersion candidate and its interactions with A and with B
Dispersion term Terms in location model

A A, B, AB
C A, B, C, AC, BC

AC A, B, AC, C, ABC
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where

SS( j+) = ∑
j(+) r ( j)2

i ,

SS( j−) = ∑
j(−) r ( j)2

i ,

and r ( j)i is the residual for the ith observation from the expanded location model
for factor j. Under the null hypothesis of no dispersion effects, DBH

j has an F
distribution with m( j) degrees of freedom in both numerator and denominator,
where m( j) = 0.5(n − b( j)), n is the total number of observations, and b( j) is
the number of location effects in the expanded model for factor j . The sums of
squares in the Bergman–Hynén statistic, like those in the Box–Meyer statistic, can
be expressed in terms of the coefficients from a saturated regression model. The
relevant expressions for the Bergman–Hynén statistic are identical to equations (4)
and (5), using squared sums and differences of pairs of regression coefficients. The
Bergman–Hynén statistic replaces by 0 any term (β̂i + β̂u) or (β̂i − β̂u) that con-
tains coefficients involved in the location model, whereas the Box–Meyer statistic
sets only the location model coefficients to 0.

Blomkvist et al. (1997) extended the Bergman–Hynén method to identify dis-
persion effects from unreplicated multi-level experiments. Arvidsson et al. (2001)
showed how the method could be applied to split-plot experiments.

Although the Bergman–Hynén statistic provides a clever correction to some
problems with the Box–Meyer statistic, it remains problematic in the face of mul-
tiple dispersion effects (see Brenneman and Nair, 2001 and McGrath and Lin,
2001). If factor j alone has a dispersion effect, the numerator and denominator of
the statistic DBH

j in (7) are unbiased estimators of the variances at the high and low
levels of j . However, if several factors have dispersion effects, one has instead un-
biased estimates of the average variances at these two levels, where the averaging
includes the effects of all the other dispersion effects. This dependence of DBH

j on
additional dispersion effects can lead to inflated type I error probabilities and thus
to spurious identification of dispersion effects.

On the dyestuffs example, the Bergman–Hynén method also signals factor F as
being related to dispersion. With the main effects of A and F in the location model,
F has a Bergman–Hynén statistic of 3.27 (p-value = 0.001). The next strongest
effects, as with the Box–Meyer method, are the ADEF interaction, with a statistic of
2.24 (p-value = 0.017) and the CEF interaction, with a statistic of 0.45 (p-value =
0.035).

5.4 Harvey’s Method

Harvey’s (1976) method was developed for general regression settings with het-
eroscedasticity and was aimed more at improving inference for the location
parameters than out of intrinsic interest in the dispersion effects. Harvey, like
Box and Meyer, begins by fitting a location model. Harvey’s idea was to proceed
by using ordinary least squares regression to fit a log-linear model to the squared
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residuals,

log(r2
i ) = φ0 + Z ′

iφ + vi , (8)

where φ0 and φ are defined as in equation (6), Zi is the vector of explanatory
variables on the i th run for the factors that affect dispersion, and vi is an error term.
For two-level orthogonal designs, the estimated dispersion effect φ̂ j for factor j is

DH
j =

(∑
j(+)

log(r2
i ) −

∑
j(−)

log(r2
i )
)/

n

= log

(∏
j(+) r2

i∏
j(−) r2

i

)1/n

.

The statistic DH
j is similar to the Box–Meyer statistic DBM

j , but uses the geometric
averages of the squared residuals rather than the arithmetic averages.

Assuming a log-linear dispersion model as in equation (8), Nair and Pregibon
(1988) showed that DBM

j is the maximum likelihood estimator of φ j for the model
in which factor j is the only one with a dispersion effect, whereas DH

j is the
maximum likelihood estimator of φ j for a fully saturated dispersion model with
effects for all possible factors. Nair and Pregibon concluded from this result that
DH

j would be a better statistic to use for initial analyses aimed at identifying
possible dispersion effects.

Brenneman (2000) found that Harvey’s method could underestimate the dis-
persion effect of factor j if that factor was left out of the location model. This
result led Brenneman and Nair (2001) to propose a modified version of Harvey’s
method for two-level factorial experiments that is based on the results of Bergman
and Hynén (1997). In the modified version, the dispersion statistic for factor j is
computed from residuals from an expanded location model that includes the effect
of factor j and all its interactions with other effects in the location model. For
two-level designs, the modified Harvey’s statistic for factor j is then

DM H
j =

(∑
j(+)

log(r ( j)2
i ) −

∑
j(−)

log(r ( j)2
i )

)/
n.

Brenneman and Nair (2001) noted that DM H
j can also sometimes give biased results

for an effect that is aliased with the interaction of two factors that have dispersion
effects.

An additional problem with Harvey’s method is that factorial experiments may
yield some residuals equal to zero. Ad hoc modification to Harvey’s method is
necessary in the presence of any zero residuals. One such suggestion was made
by Ferrer and Romero (1995), who replaced any zero residuals by one-half the
smallest (nonzero) absolute residual in the experiment. Ferrer and Romero (1993,
1995) also suggested adding 1.27 to the logarithm of each squared residual to
correct for the bias in estimating φ0.

The dyestuffs example illustrates the potential for problems with Harvey’s
method. With only A and F in the location model, the ABDEF interaction clearly
stands out with the largest value of the statistic DM H

j . However, subsequent
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examination shows that this occurs only because of two zero residuals that are
computed (both by S-Plus 2000 and by MATLAB) as nonzero numbers on the or-
der of 10−15. As these residuals are not zero, they do not trigger an error message in
applying Harvey’s method, but they completely dominate the dispersion statistics
computed. Thus the residuals must be checked as an essential preliminary step for
this method. Moreover, standard residual displays do not highlight zero residuals,
so it is important to specifically print out any residuals with absolute values below
a set threshold. The problem of zero residuals can be even more serious with the
modified Harvey’s method, as the presence of zero residuals may depend on the
particular location model being fitted.

5.5 Wang’s Method

Wang (1989) considered the problem of identifying dispersion effects using data
from a two-level orthogonal design of the type discussed in Chapter 1. He assumed
that the variance follows a log-linear model (as in our equation (6)) and based his
method on testing the null hypothesis that all of the dispersion effects are zero. Let
Z denote the n × q design matrix whose ith row is the vector Z ′

i in equation (6).
Assuming normal distributions, Wang applied results of Cook and Weisberg (1983)
and showed that the score statistic for the null hypothesis is

DW = 0.5R′ Z (Z ′ Z )−1 Z ′ R/σ̂ 4,

where R = (r2
1 , . . . , r2

n )′, ri is the residual for Yi from fitting the location model
by ordinary least squares, and σ̂ is the maximum likelihood estimator of σ =
exp(φ0/2) assuming common variance for all the observations. If none of the factors
in Z have dispersion effects, Wang showed that DW is distributed asymptotically
as χ2

q .
For the orthogonal designs considered, the statistic DW can be decomposed as

a sum of q orthogonal components, one for each effect in Z . Thus Wang proposed
testing the null hypothesis that factor j has no dispersion effect by comparing the
test statistic

DW
j = 0.5(Z ′

j R)2/σ̂ 4 Z ′
j Z j

to a χ2
1 reference distribution. For two-level designs, DW

j is

DW
j = 0.5(SS( j+) − SS( j−))2/(nσ̂ 4)

and uses the same decomposition of the residual sum of squares as the Box–Meyer
statistic. Wang (2001) showed how the method could be generalized to orthogonal
designs with factors at more than two levels.

Brenneman and Nair (2001) showed that a slightly modified version of Wang’s
statistic can be interpreted as a normalized estimate of a dispersion effect if the
following linear model is adopted for the variance, instead of (6),

σ 2
i = φ0 + Z ′

iφ + vi .
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An unbiased estimator of φ j can be obtained as follows. First fit an expanded
location model, as in Bergman and Hynén (1997). Then estimate φ j by

φ̂ j = (SS( j+) − SS( j−))/m( j),

where m( j) is the degrees of freedom given by Bergman and Hynén (1997). See
Arvidsson et al. (2003) for further discussion of this estimator.

For the dyestuffs experiment, the Wang statistic also finds that factor F has a dis-
persion effect. With the main effects of A and F in the location model, DW

F = 8.13
(p-value = 0.005). The next strongest effects are the ADEF interaction (DW

ADEF =
4.10, p-value = 0.043) and the CEF interaction (DW

C E F = 4.01, p-value = 0.045).

5.6 McGrath and Lin’s Parametric Method

McGrath and Lin (2001) developed a test statistic motivated by the need to contend
with multiple dispersion effects in two-level orthogonal designs. Suppose that
factors j and u are being considered as having potential dispersion effects. The
McGrath–Lin statistic is constructed from residuals from an expanded location
model, as in the Bergman and Hynén (1997) approach. McGrath and Lin fitted
a model that includes all identified location effects, the interactions of all such
effects, and the interactions of all these effects with j, u, and the ju interaction. If the
expanded location model exhausts all the degrees of freedom in the experiment,
the McGrath–Lin statistic cannot be applied. If not, the location model will divide
the runs of a 2k−p design into distinct sets in which the levels of the (expanded)
location factors are constant within each set. Denote these sets by Ct , t = 1, . . . , T ,
and let S2

t be the sum of squared residuals for runs in Ct . As j, u, and ju are all
included in the expanded location model, each will be at one level only in each set
Ct . The McGrath–Lin statistic for factor j is

DM L
j =

[∏
j(+) S2

t∏
j(−) S2

t

]2/T

,

with corresponding expressions for u and for ju.
The McGrath–Lin statistic is designed to work well if there is a log-linear

dispersion model with nonzero effects for at least two of the three effects being
tested. If φ j = 0 in the dispersion model, McGrath and Lin showed that DM L

j has
approximately an F(c, c) distribution, where

c = 2[Γ (d/2 + 2/T )Γ (d/2 − 2/T )]T/2

[Γ (d/2 + 2/T )Γ (d/2 − 2/T )]T/2 − Γ T (d/2)

and d = n/T − 1.
The main advantage of the McGrath–Lin (2001) statistic is reduced confounding

when multiple dispersion effects are present. There are also several drawbacks.
The statistic is complicated to compute and may be applicable only to a subset
of the main effects and interactions in the design. For example, McGrath and Lin
(2001) presented a 25−1 experiment with four active location effects. Eight potential
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dispersion effects could not be tested because they would have resulted in a fully
saturated location model. A further practical problem is the need to specify first
three potential dispersion effects ( j, u, and the ju interaction) and not just a single
effect. In the dyestuffs experiment, there are more than 600 such triples, so that
examining all of them is a major task and may lead to results that are difficult to
interpret. An alternative is to begin the analysis with another method that identifies
the most likely dispersion effects and then to use the McGrath–Lin statistic on the
interaction triples involving those identified effects.

For the dyestuffs experiment, we applied the McGrath–Lin method to all 15 pairs
of main effects with factors A and F in the location model. Factor F consistently
had a strong dispersion effect, with p-values of 0.0001 to 0.004, depending on the
second factor in the pair. Factor A was also found to have a potential dispersion
effect, with p-values of 0.028 to 0.16. The p-value for factor A was less than 0.05
except when paired with factor C. So the analyst is left with a practical problem of
deciding whether factor A has a dispersion effect. The analysis provides conflicting
evidence about factor A and it is not clear which pairing(s) should dictate the
decision.

5.7 McGrath and Lin’s Nonparametric Method

For all the test statistics presented thus far, reference distributions were derived
by assuming normally distributed data. McGrath and Lin (2002) developed a non-
parametric method that eliminates the need for this assumption. Their method is
based on an alternative representation of the Bergman–Hynén (1997) statistic that
exploits the formula derived by Box and Meyer (1986) to express sums of squares
in terms of estimated regression coefficients. To test for a dispersion effect of
factor j , McGrath and Lin (2002) proposed using location models that include
factor j and also its interactions with all active location effects, as in Bergman and
Hynén (1997). The standard Bergman–Hynén (1997) statistic can then be com-
puted from the regression coefficients for all effects not in the expanded location
model. McGrath and Lin (2002) created a nonparametric version of the statistic
by replacing the estimated regression coefficient β̂( j)i by its rank R( j)i among all
the coefficients not in the location model. The numerator and denominator in the
rank version of the Bergman–Hynén (1997) statistic have a constant sum, so the
test statistic can be constructed from the denominator alone,

DM L−N P
j =

∑
(R( j)i − R( j)u)2,

with the sum extending over all pairs of effects for which i ◦ u = j. McGrath and
Lin (2002) used simulations to tabulate the distribution of DM L−N P

k for a small
number of summands. They showed that a normal approximation could be applied
when the number of summands is large.

The McGrath–Lin nonparametric statistic finds a number of dispersion effects
in the dyestuffs experiment. The strongest effects are the main effect of F and
the CEF interaction, which have p-values of 0.003 and 0.001, respectively. In
addition, the main effect of B and the BC, BF, BDF, and ABCF interactions all
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have p-values between 0.02 and 0.03. The number of terms in the McGrath–Lin
statistics is large for this experiment, so the p-values were computed using the
normal approximation.

5.8 Combined Location and Dispersion Modeling

Once tentative models for location and dispersion have been identified, they can be
estimated by maximum likelihood. Most authors have advocated use of a log-linear
model for dispersion effects. The estimation typically requires an iterative scheme.
First the location effects are estimated and the residuals from the location model
are used to estimate initial dispersion effects. Then the location effects are re-
estimated by weighted least squares, with the weights computed from the estimated
dispersion effects. These two steps are then iterated until a convergence criterion
is satisfied. This type of approach has been described in the context of robust
design experiments by Nelder and Lee (1991, 1998), Engel and Huele (1996),
and Pan and Taam (2002). Lee and Nelder (1998) showed how to use restricted
maximum likelihood for estimating the dispersion model. Wolfinger and Tobias
(1998) applied ideas developed in the context of mixed linear models to a more
general setting that includes location, dispersion, and random effects. For more
general presentations of joint modeling of location and dispersion, see Aitkin
(1987), Carroll and Ruppert (1988), and Verbyla (1993). A linear model for the
dispersion effects has also been considered by some authors (Brenneman and Nair,
2001; Arvidsson et al., 2003). One limitation to the use of the above models is that
they are not available as standard options in most software packages. Thus some
custom programming is needed to fit them.

There is consensus among those who have written about dispersion effects
that combined location and dispersion models can provide good estimates of all
effects. The major source of controversy is about how to identify the models and,
in particular, the dispersion model.

We analyzed the dyestuffs data using a log-linear main effects model for the
dispersion. The dispersion effect of F is significant with a coefficient of 0.54 and
a standard error of 0.19 and the effect of B is barely significant with a coeffi-
cient of −0.40 and a standard error of 0.19. If the CEF interaction is added to
the dispersion model, it proves to have a significant effect with a coefficient of
0.43 and a standard error of 0.19. We wonder, though, whether many scientists
would be prepared to adopt a model with a three-factor interaction affecting the
variance.

5.9 Brenneman and Nair’s Method

Brenneman and Nair (2001) proposed a strategy that combines their modified
version of Harvey’s method with joint location and dispersion modeling for a log-
linear dispersion model. After fitting a location model with ordinary least squares
regression, they recommended an initial check to see if there are sufficient degrees
of freedom even to consider looking for dispersion effects. The condition they
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proposed is to look at the largest “closed” model contained in the location model,
where a model is closed if all interactions among its active effects are also included
in the model. If the largest closed model has at least n/2 terms, then the experiment
is deemed to lack sufficient information to consider dispersion effects. If not, then
they recommended using the modified Harvey method for initial identification.
The next step is to fit a joint location–dispersion model, estimating the dispersion
effects by restricted maximum likelihood. They cautioned that the dispersion model
should include all effects found at the previous stage and all effects that correspond
to interactions of two such effects. The reason for this is the potential for bias in the
modified Harvey statistic for interactions of active dispersion effects. Some effects
in the dispersion model may prove to be inert, so subsequent models deleting these
effects might also be estimated by the same joint analysis.

When applied to the dyestuffs experiment, the Brenneman–Nair method deter-
mines that there are enough residual degrees of freedom to study dispersion effects.
However, the method gets stuck at the next step due to the inability of the modified
Harvey’s method to handle the machine-zero residuals.

5.10 Other Methods

In the interest of completeness, we briefly mention some additional methods that
have been proposed.

Chowdhury and Fard (2001) presented a method for estimating dispersion effects
from robust design experiments with right censored data. Kim and Lin (2002)
proposed a method to determine optimal design factor settings that take account
of both location and dispersion effects when there are multiple responses. They
based their approach on response surface models for location and dispersion of
each response variable.

Liao (2000) derived a test statistic for single dispersion effects in 2n−k designs.
He applied the generalized likelihood ratio test for a normal model to the residu-
als after fitting a location model, which results in Bartlett’s (1937) classical test
for comparing variances in one-way layouts. The test is then applied, in turn, to
compare the variances at the two levels of each of the k experimental factors. We
caution that the test statistic (equation (3) in Liao) is written incorrectly.

Holm and Wiklander (1999) presented test statistics for dispersion effects
derived from quadratic functions of the location effects. These test statistics are
equivalent to the Box and Meyer (1986) statistics. The Holm and Wiklander version
emphasizes how they can be seen as correlation coefficients among the null location
effects, which can be used as a basis for making statistical inferences about possible
dispersion effects.

5.11 Location–Dispersion Confounding

Correct identification of the location model is a serious problem that affects all
the methods for identifying and estimating dispersion effects. Pan (1999) showed
that small to moderate location effects that are undetected can seriously impair
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subsequent identification of dispersion effects in the methods proposed by Bergman
and Hynén (1997) and Box and Meyer (1986). The other methods described here
are also affected by missed location effects. Pan found this to be a sufficiently seri-
ous problem that he argued against the use of unreplicated designs for identifying
dispersion effects.

Pan’s results on confounding of location and dispersion effects can be understood
from our equations (4) and (5) (Box and Meyer, 1986) relating sums of squared
residuals to the effects dropped from the location model. In most experiments,
some location effects will be not quite large enough to warrant inclusion in the
location model. Take the two largest effects (in absolute value) that were dropped
from the location model. The interaction of these effects is then likely to have
an extreme Box–Meyer statistic DBM

j (with larger variance at the high level if the
location effects have the same sign and at the low level if they have opposite signs).

McGrath and Lin (2002) suggested examining the contribution of each pair of
coefficients to DBM

j as an effective diagnostic check. For example, one can then
detect if just one pair of borderline location effects is responsible for a putative
dispersion effect.

One might try to correct for the problems caused by moderate location effects
by just fitting a larger location model. However, expanding the location model
may leave too few degrees of freedom in the residuals to enable identification of
dispersion effects.

The dyestuffs example illustrates the sensitivity of the dispersion analyses to the
fitted location model. All the analyses reported thus far adjust for location effects
of factors A and F. However, the conclusions on dispersion effects are altered if the
location model is expanded to include also the main effects of B and C and the AC
interaction. The strongest Box–Meyer statistic is now the BEF interaction (−0.42),
closely followed by the main effect of F (−0.40). The main effect for B is also of
similar magnitude (0.36). For this location model, a normal plot of the Box–Meyer
statistics does not show any effects that stand out from noise. The Bergman–Hynén
and Wang statistics also find that the strongest effect is for the BEF interaction
(BH = 2.57, p-value = 0.01, Wang = 4.26, p-value = 0.04) followed by the main
effect for F (BH = 2.49, p-value = 0.01, Wang = 3.92, p-value = 0.05). The
problem with Harvey’s method is exacerbated because additional observations
now have machine-zero residuals and they cause several effects to have similar
dispersion statistics. The McGrath–Lin statistic also runs into problems because of
machine-zero residuals. We again ran the method for all pairs of main effects and
discovered unusual results when factor E was one of the factors involved. Closer
investigation revealed that one of the T sets of residuals in these analyses had a
machine-zero residual variance. Among the other factor pairs, only factor F shows
some possibility of having a dispersion effect. However, the p-value for factor F
is highly dependent on the factor with which it is paired. When paired with factor
A, B, or C, it has a p-value of 0.013 (note that these analyses are identical, as all
involve the same location model and therefore the same sets of residuals), but when
paired with factor D, the p-value is 0.632. So the analyst is left with a quandary as
to whether factor F does, or does not, affect dispersion.
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6 The Dyestuffs Example—Fractional Factorials

In Section 5, we introduced the dyestuffs experiment to illustrate the methods for
screening for dispersion effects in unreplicated fractional factorial experiments.
Typically we anticipate that smaller experiments will be used for screening. So, in
this section, we analyze two sets of 16 runs that are extracted from the dyestuffs
experiment and which constitute fractional factorials more typical of the actual
size of screening experiments.

The first fraction has generators E = ABC and F = ABD and the second fraction
has generators E = BCD and F = ACD. In both fractions the dominant location
effects are the main effects for factors A and F, exactly as in the full factorial.
In the second fraction, these effects clearly stand out from all the rest and are
identified as significant by Lenth’s method. In the first fraction, A and F are not as
well distinguished from the next largest effects. Lenth’s method finds a significant
effect for A, but F just barely falls below the initial cutoff for significance. Given
the concern that missed location effects can lead to erroneous conclusions about
dispersion effects, we would recommend including A and F in the location model
for both fractions.

The Box–Meyer, Bergman–Hynén, and Wang statistics, for both fractions, point
to factor F as having the most potential for a dispersion effect, with weaker evidence
for the contrast associated with both the CD and EF interactions. In the first
fraction, the Box–Meyer statistic for F is 0.81, compared to −0.63 for the CD = EF
interaction. The Bergman–Hynén statistic for F is almost statistically significant
with a p-value of 0.064. The next strongest effects are the CD = EF interaction
and E, with p-values of 0.11 and 0.15, respectively. The Wang statistic for F is
3.49 (p-value = 0.13) and that for CD is 1.62 (p-value = 0.20).

The potential importance for dispersion of main effects for E and F and an
EF interaction suggests that this would be a good test case for the McGrath–Lin
statistic. The appropriate location model includes main effects and all interactions
of factors A, E, and F. That model has zero residuals for all four observations
with E and F at their low values. (As in the full factorial, our software actually
computes these as machine-zero.) Thus, the McGrath–Lin statistic will indicate
strong effects for all three terms. However, the presence of the zero residuals casts
questions on the validity of any distributional results for the statistic.

Use of restricted maximum likelihood to fit a main effects log-linear dispersion
model, with only A and F in the location model, also suggests possible dispersion
effects for E and F, both of which have absolute effects slightly greater than 0.6.
However, the standard errors of these coefficients are about 0.44, so they fall well
short of being statistically significant. Adding the EF interaction to the dispersion
model leads to highly significant effects for all three terms, with coefficients of 2.46
for E, 2.89 for F, and −2.91 for EF. Here, the location model includes only A and
F and does not have any zero residuals. Nonetheless, the residual sums of squares
arising from a simple linear regression on the location model differ substantially
across the combinations of E and F (see Table 2).
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Table 2. Sums of squares of the residuals (SSq) for levels
of E and F for the dyestuffs experiment, with only A and F
in the location model.

E F SSq in 26 SSq in first fraction

−1 −1 202 23
−1 1 670 396

1 −1 356 78
1 1 592 113

Do E and EF have dispersion effects, as indicated from this fraction? It is infor-
mative to return to the full experiment to examine this question. The residual sums
of squares from a simple linear regression on A and F are shown in Table 2. A disper-
sion model with all three effects has a coefficient of 0.47 for F, similar to that found
earlier, but the coefficients for E and EF are 0.06 and −0.16, respectively. Thus
the full experiment provides no evidence at all of dispersion effects for E or EF.

In the second fraction, the Box–Meyer, Bergman–Hynén, and Wang statistics
indicate that F is the only factor that affects dispersion. The Box–Meyer statistic
for F is 1.14, compared to 0.62 for the next strongest contrast, which is associated
with both the BC and DE interactions. Another contrast, associated with only three-
factor interactions, is of similar strength. The Bergman–Hynén statistic for F is
clearly significant with a p-value of 0.006. The same two contrasts with extreme
values of the Box–Meyer statistic have p-values of about 0.11 each. The Wang
statistic for F is 3.49 (p-value = 0.062). The same contrasts as above are next in
line, but with p-values above 0.20. We also computed the McGrath–Lin statistic
for possible joint dispersion effects of E, F, and EF. As with the first fraction, all
the residuals were zero when both E and F were at low levels, suggesting effects
for all three contrasts but leaving questions as to statistical inference for the effects.

Combined location–dispersion models also find significant dispersion effects
for factors D and E. With A and F in the location model and a log-linear dispersion
model, the effects of D, E, and F are 1.34, 1.75, and 2.84, respectively, all with
approximate standard errors of 0.4 to 0.45. As with the first fraction, we identify
dispersion effects that are not present in the full data set.

The modified Harvey’s method proves problematic in both fractions because of
zero residuals.

7 Discussion

Identifying factors that affect dispersion and estimating their effects can be of
great value. The understanding of dispersion effects can be used to improve the
quality of manufactured products. Outside the quality domain, knowledge of dis-
persion effects can be crucial for statistical modeling and as input into the design
of experiments or surveys. We have reviewed here the numerous methods that



44 Dizza Bursztyn and David M. Steinberg

have been presented in the last 15 years to study dispersion effects with screening
designs.

Our review has led us to two main conclusions.

� The best way to screen for dispersion effects is to include noise factors in the
experiment and to exploit noise factor by control factor interactions. Experiments
such as this will be most successful when the noise factors are indeed responsible
for a large share of the outcome variation. Taguchi’s idea of using noise factors
to force controlled variation into experimental data is a striking and important
contribution.

� The identification of dispersion effects from unreplicated experiments is a risky
business. If there is a single factor with a dominant dispersion effect, a number
of methods (such as those of Box and Meyer, 1986; Bergman and Hynén, 1997;
Wang 1989; or modified Harvey) appear to be reasonably successful. But, in
more complex settings, there is considerable risk of wrongly identifying effects
as present when they are not, or of missing effects that really are present. As
we have shown with our examples, the test statistics and more sophisticated
methods such as joint location–dispersion modeling can both go awry in the
small unreplicated experiments that are often used for screening location effects.
We can only issue the standard caution of caveat emptor.

There are several reasons why unreplicated experiments pose great difficulty for
identifying dispersion effects. The first problem is the requirement of specifying
the location effects. As shown by Pan (1999) (following on the derivations of Box
and Meyer, 1986), statistics for dispersion effects can depend critically on the
choice of location model. A second problem is the possible bias in the dispersion
statistics when there is more than one dispersion effect. The methods proposed
to date to overcome these problems do not appear to be adequate. The modified
Harvey’s method (Brenneman and Nair, 2001) could not be applied to our example
due to zero residuals. We point out that zero residuals will be quite unusual in the
simulation studies used to explore these methods, because simulated data have high
resolution. But in real experiments, the resolution of observations is limited and we
have seen many experiments with some zero residuals. The same problem caused
difficulty for the McGrath–Lin (2001) statistic. For the latter statistic, there is the
additional problem of specifying in advance which interaction triples should be
studied. The practitioner is faced with the circular problem of needing to identify
the dispersion effect triples in order to apply the identification procedure. Finally,
there is the problem observed clearly in our examples that results from a small
experiment may not reflect the patterns found when more data are collected.

Given results from a small, unreplicated screening experiment, we would rec-
ommend the following procedure.

1. If the location model is too large, do not attempt to study dispersion effects.
The Brenneman–Nair (2001) condition is a good guideline.

2. Use the Bergman–Hynén (1997) method as a quick screen for dominant dis-
persion effects.
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3. To check for possible additional dispersion effects, fit joint location–dispersion
models. These methods are easier to implement than the statistics proposed for
identifying multiple dispersion effects. They give both estimates of the strength
of the dispersion effects and approximate test statistics.

4. Regard the results with due caution! If at all possible, collect some additional
data to verify any conclusions.
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Bérubé, J. and Nair, V. N. (1998). Exploiting the inherent structure in robust parameter
design experiments. Statistica Sinica, 8, 43–66.

Blomkvist, O., Hynén, A., and Bergman, B. (1997). A method to identify dispersion ef-
fects from unreplicated multilevel experiments. Quality and Reliability Engineering
International, 13, 127–138.

Borkowski, J. J. and Lucas, J. M. (1997). Designs of mixed resolution for process robustness
studies. Technometrics, 39, 63–70.

Box, G. E. P. (1988). Signal-to-noise ratios, performance criteria and transformations.
Technometrics, 30, 1–40.

Box, G. E. P. and Draper, N. R. (1987). Empirical Model-Building and Response Surfaces.
John Wiley and Sons, New York.

Box, G. E. P. and Meyer, R. D. (1986). Dispersion effects from factorial designs. Techno-
metrics, 28, 19–27.

Brenneman, W. A. (2000). Inference for location and dispersion effects in unreplicated
factorial experiments. PhD Dissertation, University of Michigan, Ann Arbor.

Brenneman, W. A. and Nair, V. N. (2001). Methods for identifying dispersion effects in
unreplicated factorial experiments. Technometrics, 43, 388–405.

Carroll, R. J. and Ruppert, D. (1988). Transformation and Weighting in Regression.
Chapman & Hall, London.

Chowdhury, A. H. and Fard, N. S. (2001). Estimation of dispersion effects from robust
design experiments with censored response data. Quality and Reliability Engineering
International, 17, 25–32.

Cook, R. D. and Weisberg, S. (1983). Diagnostics for heteroscedasticity in regression.
Biometrika, 70, 1–10.



46 Dizza Bursztyn and David M. Steinberg

Engel, J. and Huele, A. F. (1996). A generalized linear modeling approach to robust design.
Technometrics, 38, 365–373.

Ferrer, A. J. and Romero, R. (1993). Small samples estimation of dispersion effects from
unreplicated data. Communications in Statistics: Simulation and Computation, 22, 975–
995.

Ferrer, A. J. and Romero, R. (1995). A simple method to study dispersion effects from
non-necessarily replicated data in industrial contexts. Quality Engineering, 7, 747–
755.

Hedayat, S. and Stufken, J. (1999). Compound orthogonal arrays. Technometrics, 41, 57–61.
Holm, S. and Wiklander, K. (1999). Simultaneous estimation of location and dispersion in

two-level fractional factorial designs. Journal of Applied Statistics, 26, 235–242.
Kim, K. J. and Lin, D. K. J. (2006). Optimization of multiple responses considering both

location and dispersion effects. European Journal of Operational Research, 169, 133–145.
Lee, Y. and Nelder, J. A. (1998). Generalized linear models for analysis of quality-

improvement experiments. Canadian Journal of Statistics, 26, 95–105.
Lenth, R. (1989). Quick and easy analysis of unreplicated factorials. Technometrics, 31,

469–473.
Liao, C. T. (2000). Identification of dispersion effects from unreplicated 2n−k fractional

factorial designs. Computational Statistics and Data Analysis, 33, 291–298.
McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, second edition.

Chapman & Hall, London.
McGrath, R. N. and Lin, D. K. J. (2001). Testing multiple dispersion effects in unreplicated

fractional factorial designs. Technometrics, 43, 406–414.
McGrath, R. N. and Lin, D. K. J. (2002). A nonparametric dispersion test for unreplicated

two-level fractional factorial designs. Journal of Nonparametric Statistics, 14, 699–714.
Montgomery, D. C. (1990). Using fractional factorial designs for robust process develop-

ment. Quality Engineering, 3, 193–205.
Montgomery, D. C. (1999). Experimental design for product and process design and devel-

opment. Journal of the Royal Statistical Society D, 38, 159–177.
Myers, R. H. and Montgomery, D. C. (2002). Response Surface Methodology: Process

and Product Optimization Using Designed Experiments, second edition. John Wiley and
Sons, New York.

Myers, R. H., Khuri, A. I., and Vining, G. (1992). Response surface alternatives to the
Taguchi robust parameter design approach. The American Statistician, 46, 131–139.

Myers, R. H., Montgomery, D. C., and Vining, G. G. (2002). Generalized Linear Models
with Applications in Engineering and the Sciences. John Wiley and Sons, New York.

Nair, V. N. and Pregibon, D. (1988). Analyzing dispersion effects from replicated factorial
experiments. Technometrics, 30, 247–257.

Nelder, J. A. and Lee, Y. (1991). Generalized linear models for the analysis of Taguchi-type
experiments. Applied Stochastic Models and Data Analysis, 7, 107–120.

Nelder, J. A. and Lee, Y. (1998). Joint modeling of mean and dispersion. Technometrics,
40, 168–175.

Pan, G. (1999). The impact of unidentified location effects on dispersion effects identifica-
tion from unreplicated factorial designs. Technometrics, 41, 313–326.

Pan, G. and Taam, W. (2002). On generalized linear model method for detecting disper-
sion effects in unreplicated factorial designs. Journal of Statistical Computation and
Simulation, 72, 431–450.

Phadke, M. S. (1989). Quality Engineering Using Robust Design. Prentice-Hall, Englewood
Cliffs, NJ.



2. Screening Experiments for Dispersion Effects 47

Rosenbaum, P. (1994). Dispersion effects from fractional factorials in Taguchi’s method of
quality design. Journal of the Royal Statistical Society B, 56, 641–652.

Rosenbaum, P. (1996). Some useful compound dispersion experiments in quality design.
Technometrics, 38, 354–364.

Shoemaker, A. C., Tsui, K.-L., Wu, C. F. J. (1991). Economical experimentation methods
for robust design. Technometrics, 33, 415–427.

Steinberg, D. M. (1996). Robust design: Experiments for improving quality. In Handbook
of Statistics, 13, Chapter 7, pages 199–240. Editors: S. Ghosh and C. R. Rao. Elsevier,
Amsterdam.

Steinberg, D. M. and Bursztyn, D. (1994). Dispersion effects in robust design experiments
with noise factors. Journal of Quality Technology, 26, 12–20.

Steinberg, D. M. and Bursztyn, D. (1998). Noise factors, dispersion effects and robust
design. Statistica Sinica, 8, 67–85.

Taguchi, G. (1986). Introduction to Quality Engineering. Unipub/Kraus International, White
Plains, New York.

Verbyla, A. P. (1993). Modelling variance heterogeneity: Residual maximum likelihood
and diagnostics. Journal of the Royal Statistical Society B, 55, 493–508.

Vining, G. G. and Myers, R. H. (1990). Combining Taguchi and response surface philoso-
phies: A dual response approach. Journal of Quality Technology, 22, 38–45.

Wang, P. C. (1989). Tests for dispersion effects from orthogonal arrays. Computational
Statistics and Data Analysis, 8, 109–117.

Wang, P. C. (2001). Testing dispersion effects from general unreplicated fractional factorial
designs. Quality and Reliability Engineering International, 17, 243–248.

Wolfinger, R. and Tobias, R. (1998). Joint estimation of location, dispersion and random
effects in robust design. Technometrics, 40, 62–71.

Wu, C. F. J. and Hamada, M. (2000). Experiments: Planning, Analysis and Parameter Design
Optimization. John Wiley and Sons, New York.



3
Pooling Experiments for Blood
Screening and Drug Discovery

Jacqueline M. Hughes-Oliver

Pooling experiments date as far back as 1915 and were initially used in dilution stud-
ies for estimating the density of organisms in some medium. These early uses of pool-
ing were necessitated by scientific and technical limitations. Today, pooling experiments
are driven by the potential cost savings and precision gains that can result, and they are
making a substantial impact on blood screening and drug discovery. A general review
of pooling experiments is given here, with additional details and discussion of issues
and methods for two important application areas, namely, blood testing and drug discov-
ery. The blood testing application is very old, from 1943, yet is still used today, espe-
cially for HIV antibody screening. In contrast, the drug discovery application is relatively
new, with early uses occurring in the period from the late 1980s to early 1990s. Statisti-
cal methods for this latter application are still actively being investigated and developed
through both the pharmaceutical industries and academic research. The ability of pool-
ing to investigate synergism offers exciting prospects for the discovery of combination
therapies.

1 Introduction

The use of pooling experiments began as early as 1915 and was, initially, used in
dilution studies for estimating the density of organisms in some medium. Examples
quoted by Halvorson and Ziegler (1933) include investigations of densities of
bacteria in milk and protozoa in soil. Prior to 1915, most dilution methods were
inadequate because they failed to account for chance or error in observation. In
1915, McCrady presented a method of estimation based on probability which
was then expanded by Halvorson and Ziegler (1933) to provide an estimator of
density based on pooled data. Fisher (1921) also used a similar pooling-based
estimator.

These early uses of pooling experiments were born of necessity, as explained
below for bacterial density estimation. In order to determine the absence or pres-
ence of bacteria in a fluid, cultures are made of a number of samples (small
amounts) of the fluid. Growth of a colony of bacteria within a fluid sample indicates
the presence of bacteria and no growth indicates absence of bacteria. The act of
culturing this fluid can be viewed as applying a test, the result of which is “good”
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or “bad”. This test is applied simultaneously to every molecule present in that
sample of fluid and the results for all the molecules are pooled. The combined
test results (from all samples) are then used to estimate the density of bacteria
present in the source fluid. Although it is virtually impossible to perform this test
on individual molecules, it is quite simple to ascertain whether a culture from the
pooled molecules is free of colony growth.

Today, pooling studies are not typically used from necessity. Rather, they are
used because of the economic gains, savings in time, or precision gains that can
result. A useful review of pooling experiments from the point of view of com-
posite sampling methods is offered by Lancaster and Keller-McNulty (1998).
This chapter focuses on current usage for populations in which individuals are
labeled with respect to one or more traits and where pooling experiments are op-
tional. More specifically, the discussion addresses applications in blood testing
and drug discovery. This is not meant to be an exhaustive review, but rather a
vehicle for highlighting some important aspects of pooled screening in these two
areas.

Applications in drug discovery require the identification of “hit compounds,”
which are those compounds having activity greater than some prespecified thresh-
old in one or more biological assays. Good hit compounds need to be identified
quickly to allow progression to other phases of drug discovery (see Chapter 4).
One application in blood screening requires the identification of individuals with
sero-prevalence (detectability in blood) of one or more diseases. Cost effectiveness
is important here because a balance must be struck between the cost of testing,
which can be high, and the large populations that must be screened. A second issue
that arises in blood screening is the need to estimate prevalences, possibly as a
function of covariates.

In order to address the two areas of application simultaneously, the term
individual is used to mean either a person (in the context of blood testing) or
a compound (drug discovery); the term active means either positive for one or
more diseases (blood testing) or exceeding an activity threshold (drug discovery);
and the term population means either a group of people being screened (blood
testing) or a compound library being screened (drug discovery).

Two fundamentally different problems arise from pooling experiments, namely,
estimation and classification. Estimation involves the use of pooled samples for
decreasing the cost-per-unit information when estimating the prevalence of active
individuals in a population. These estimation results may then be used as the end-
product of analysis or they may be incorporated into a classification scheme. The
estimation results serve as the end-product of analysis when the goal of the study is
to estimate the prevalence of active individuals but there is no interest expressed in
actually identifying these active individuals. In a classification scheme, the ultimate
goal is screening for the purpose of identifying active individuals. The performance
of a classification scheme is typically assessed by considering the expected number
of tests required to identify active individuals with particular attributes. Drug dis-
covery is considered to be a classification problem, but results from the estimation
problem can also be used to inform classification decisions. For blood testing, the
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application may be either a classification or an estimation problem, depending on
the context.

The most common assumptions of pooling experiments are briefly critiqued
in Section 2. In Section 3, general accomplishments and advances in pooling
experiments are reviewed, irrespective of their particular applications. Sections 4
and 5 provide details specific to blood testing and drug discovery, respectively.

2 Types of Pooling and Assumptions

Pooling experiments are of two basic types, simple or orthogonal. In simple pool-
ing, each individual appears in exactly one pool; see Figure 1(a), where each circle
in the box represents an individual, and individuals in the same column are in
the same pool. An active pool response must be followed by individual testing to
determine which specific individuals in the pool are active. In orthogonal pooling

Individual

Column Pools

(a)

Individual

Column
Pools

Row
Pools

(b)

Figure 1. (a) Simple pooling: Individuals, represented by circles, are pooled according to
their column location; each individual appears in exactly one pool. (b) Two-way orthogonal
pooling: Individuals are pooled according to both their column and row locations; each
individual appears in exactly two pools.
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using d dimensions, individuals appear in exactly d pools; see Figure 1(b) for
d = 2. The determination of active individuals from orthogonal pooling is easier
than that from simple pooling. Consider orthogonal pooling over d = 2 dimen-
sions corresponding to rows and columns. If a compound lies simultaneously in
an active row and an active column, then it is reasonable to believe that this com-
pound is active and that it should thus be assigned a favorable rank for individual
testing. Despite its benefits, orthogonal pooling adds many complexities and is,
consequently, not as popular as simple pooling. All further discussion is limited
to simple pooling.

Pooling experiments are based, historically, on several assumptions that are of-
ten blatantly unjustified. The first assumption is that individuals have equal prob-
abilities of being active. In blood testing, genetic characteristics, environmental
exposures, and demographic identities are widely accepted as sources of variabil-
ity for disease status, thus suggesting that probabilities of activity are not constant
across the population (Dorfman, 1943). In drug discovery, it is well recognized that
structure–activity relationships (SARs, see Chapter 4), where activity is related to
chemical structural features of a compound, lead to nonconstant probabilities of
activity; see McFarland and Gans (1986).

A second assumption generally used is that interactions do not occur within
a pool; that is, activity is neither enhanced nor degenerated by testing multiple
compounds using a single test on a pool. It is possible, however, that individually
inactive compounds can give an active test result when pooled together (Borisy
et al., 2003), thus providing a case of “activity enhancement” by pooling. This
phenomenon is called synergism and its detection is crucial to the development
of combination therapies in the pharmaceutical industry. The reverse situation can
also occur in that pooled testing of individually diseased samples can result in
disease-free pool results (Phatarfod and Sudbury, 1994), thus providing a case
of “activity degeneration” by pooling. This phenomenon is called antagonism or
blocking and is considered an undesirable potential effect of pooling in the blood
testing application. Blocking relationships that occur in drug discovery applica-
tions can have a positive impact on screening outcomes in that they provide further
implicit evidence of structure–activity relationships.

A third assumption concerns absence of errors in testing. Both blood testing and
drug discovery have strong potential for false negatives and false positives. Errors
in testing are inherently linked to assumptions regarding interactions within a pool.
Both concepts are, in turn, related to the sometimes arbitrarily chosen threshold
value used for categorizing a continuous assay response into only two classes of
“active” or “inactive”.

3 History of Pooling Experiments

Dorfman (1943) has been credited with the origin of pooling experiments in the
statistical literature. His ideas were popularized through the books of Feller (1957,
page 225) and Wilks (1962) and became known as “the blood testing problem”.
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Many efforts were then made to refine Dorfman’s proposal by extending the number
of stages using various retesting schemes and by relaxing assumptions. This section
provides a brief summary of some key results from these efforts; see also Chapter 9
for related work in factorial experiments.

3.1 The Dorfman Model and Assumptions

Suppose that, in a large population of f individuals, each individual has, indepen-
dently, the same probability p of being active. In this context, p represents a latent
propensity for an individual to be active; some individuals ultimately express this
latent feature and are thus labeled as actives, whereas others never express the
latent feature and thus are labeled as inactive. If individuals are pooled into groups
of size k and if pooling does not alter the behavior of individuals, then the resulting
g = f/k pools will, independently, have the same probability θ = 1 − (1 − p)k of
being active. Hence, the number of active pools, X , follows a binomial distribution
with parameters g and θ . Of course, activity of pools or individuals must be re-
vealed by some testing system and for now this system is assumed to be perfect. In
other words, sensitivity (the probability that a test will identify, by testing outcome,
an individual as active given that the individual is truly active) and specificity (the
probability that a test will identify, by testing outcome, an individual as inactive
given that the individual is truly inactive) are both assumed to be 1.0. Dorfman
himself did not believe these assumptions strictly but was able to build from the
strength of the overall approach to make worthwhile reductions in the required
number of tests over one-at-a-time testing. Aspects of sensitivity and specificity
are also discussed in Chapters 4 and 6.

3.1.1 Classification

Dorfman’s application was the need to identify World War II Selective Service in-
ductees whose blood contained syphilitic antigens. In other words, his was a classi-
fication problem and he wanted to minimize the number of tests required to classify
all inductees. All individuals in inactive pools were declared to be inactive, without
further testing. All individuals in active pools were subjected to one-at-a-time test-
ing, thus leading to a random total number of tests T = f/k + Xk (where f, k, and
X are defined above). Dorfman then needed to determine a pool size to minimize
the expected total number of tests. Pooling would only be advantageous if, on aver-
age, the total number of tests is less than f, which is the number of tests required by
one-at-a-time testing. Dorfman minimized the expected relative cost, for given p,

E(T )

f
= 1

k
+ 1 − (1 − p)k, for k > 1,

with respect to k, to determine the best possible improvements offered by pooling
experiments over one-at-a-time testing. For example, by pooling, he obtained an
80% cost savings in tests over one-at-a-time testing when p = .01 and k = 11.
The savings decrease as p increases but are still appreciable even for larger p
with, for example, 28% savings when p = .15 and k = 3. In fact, pooling, based
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on Dorfman retesting for classification, is better than one-at-a-time testing when
1/k < (1 − p)k . The approximation (1 − p)k ≈ e−pk is sometimes used to claim
that pooling is better than one-at-a-time testing when p < (ln k)/k. When p and k
are both large, many active pools are observed and, consequently, more individual
retests are required and this reduces the desirability of pooling.

Despite its simplicity, Dorfman’s retesting strategy is still very widely used
today, especially in blood testing and drug discovery applications. His rough guide-
lines for choosing k such that p < (ln k)/k, coupled with recommendations by
Thompson (1962), Kerr (1971), Loyer (1983), and Swallow (1987) to use an a
priori upper bound on p, is also commonly used today. Indeed, the attraction of
the Dorfman strategy is its simplicity. Improved methods for classification, some
of which are discussed in this article, add various levels of complications that users
may not yet be ready to accept.

3.1.2 Estimation

Dorfman (1943) did not really address the problem of estimating the prevalence
p but, using his assumptions, others did. Gibbs and Gower (1960) and Thompson
(1962) investigated the maximum likelihood estimator of p:

p̂ = 1 −
(

1 − X

g

)1/k

,

where g = f/k is the number of pools and X the number of active pools.
This is a positively biased, but consistent, estimator for p. Based on the asymp-

totic variance of p̂, Peto (1953) and Kerr (1971) determined that the optimum group
size k satisfies (1 − p)k = .203. Based on asymptotic considerations, Thompson
(1962) suggested that the group size should be approximately k = (1.5936/p) − 1.
He also argued, however, that the asymptotic results can be very misleading and
offered small-sample exact bias and variance formulae. Gibbs and Gower (1960),
Griffiths (1972), Loyer (1983), and Swallow (1985, 1987) also gave small-sample
results.

When c is the nontesting cost associated with obtaining an individual sample
(for example, personnel time for drawing blood from an individual) divided by the
cost of a test, Sobel and Elashoff (1975) showed that pooling is advantageous when

p < 1 − 1 + 2c

3 + 2c
.

For extremely costly tests, pooling can be beneficial for p as large as 2/3.

3.2 Some Alternative Models

Extensions of Dorfman’s procedure follow four main branches:

(i) Development of different retesting schemes;
(ii) Strategies when p is unknown, as is usually the case;

(iii) Departures from binomial assumptions; and
(iv) Errors in testing.
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The literature is quite extensive (see Hughes-Oliver, 1991), so only key papers are
referenced here. For brevity, no attempt has been made to separate extensions for
the goal of classification from extensions for the goal of estimation.

3.2.1 Retesting Schemes

Many different retesting schemes have been suggested in the literature, some of
which require infinite testability of the units. For example, Sterrett (1957) pro-
posed retesting individuals in an active pool only until an active individual is
found. The remaining untested individuals are then retested as a single pool and
the process is repeated. Sobel and Groll (1959) proposed a retesting scheme based
on nested halving procedures. Active pools are subdivided into two pools of size
approximately k/2, each of which is tested. Individuals in an inactive subpool
are declared inactive but an active subpool is again halved. Halving terminates
when pool size becomes one, that is, at individual testing. Sobel and Elashoff
(1975) proposed a general nested retesting scheme for estimation, of which nested
halving is a special case. They found that a certain class of nested halving pro-
cedures is highly efficient and the savings over one-at-a-time procedures is even
greater for the estimation problem than for the classification problem. They also
found that, when the cost of obtaining individuals relative to the cost of a test
is negligible, the optimal testing scheme does not include retesting. Chen and
Swallow (1990) confirmed the finding that retesting is not advantageous for es-
timation when testing costs far exceed costs of obtaining individuals, but they
showed that data from retesting can provide useful information for testing model
assumptions.

In contrast to the work of Sobel and Elashoff (1975) and Chen and Swallow
(1990), where the stated goal was to reduce cost per unit information for estimation
in the presence of perfect testing, retesting has been shown to be useful for classi-
fication, especially when test results may be inaccurate. Litvak et al. (1994) argued
that, even when testing is correctly executed, it can lead to incorrect conclusions
and, in these cases, retesting provides significant improvements over no-retesting
for reducing error rates associated with labeling samples when screening low-risk
HIV populations.

Based on nested halving, Litvak et al. (1994) also proposed a new retesting
scheme where inactive pools are subjected to a repeat test; if they again test inactive
then all individuals in those pools are declared inactive, otherwise the pool is halved
and subjected to additional testing. Gastwirth and Johnson (1994), who were also
concerned with error rates for labeling individuals assuming imperfect testing,
proposed a “back-end” retesting stage where pooled testing is used to rescreen a
subset of individuals who were declared inactive from “first-stage” pooled testing.

3.2.2 Choosing the Pool Size

The success of a pooling experiment depends heavily on the choice of a good value
for the pool size k. Unfortunately, optimal pool size depends on the value of p. In
the absence of a priori information on p, Le (1981) and a number of other authors
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recommended that different pool sizes be used and the resulting data on the number
of active pools for each pool size be combined to yield an estimator. Thompson
(1962) argued that an a priori upper bound on p should be used to determine a
single pool size, and Hughes-Oliver and Swallow (1994) and Hughes-Oliver and
Rosenberger (2000) proposed two-stage adaptation to allow a single update of the
pool size. These last authors also addressed the issue of pool size when there are
multivariate responses from pools, motivated by the need to monitor prevalence
rates for several diseases simultaneously.

3.2.3 Departures from Binomial Assumptions

On the issue of departures from binomial assumptions, Finucan (1964) considered
a case where stratification occurs and results in different probabilities of activ-
ity for different individuals. A good early reference for various approaches to
dealing with such situations is that of Hwang (1984). Chen and Swallow (1990)
noted that model assumptions can be tested if data on unequal pool sizes are
available. Many recent articles also consider the situation where probability of
activity is dependent on covariates. For small numbers of covariates, Hung and
Swallow (2000), Vansteelandt et al. (2000), Xie (2001), and Tebbs and Swallow
(2003a,b) obtained estimates of prevalences in the different strata. For large num-
bers of covariates, Xie et al. (2001), Zhu et al. (2001), and Yi (2002) obtained
estimates of prevalences in the different strata then ranked the estimated preva-
lences to define a testing order for the classification problem. Thus, the estima-
tion problem was an intermediate step, not the ultimate goal, of the drug dis-
covery applications of these authors. On a related note, Remlinger et al. (2005)
considered the design problem of assigning individuals to pools based on their
covariates; the goal was classification in the presence of covariate-dependent
prevalences.

3.2.4 Errors in Testing

The problem of errors in testing has been examined by a host of investigators.
References to investigators from a clinical/laboratory science viewpoint are given
in Section 4.2. From a statistician’s viewpoint, Gastwirth and Hammick (1989)
and Hammick and Gastwirth (1994) used trinomial models in which either a
confirmatory pool test or an independent pool test was used to reduce the num-
ber of false positives. They also incorporated sensitivities and specificities (Sec-
tion 3.1) of the testing scheme into their estimator while maintaining individual
anonymity. Tu et al. (1994, 1995) also incorporated sensitivities and specificities
of the testing scheme and showed that this leads to improved estimation accuracy.
Vansteelandt et al. (2000) took the same approach but with the added complication
of covariate-adjusted estimation of prevalence. Hung and Swallow (1999) investi-
gated robustness properties of the pooling estimator with respect to dilution effects
and serial correlation models. Wein and Zenios (1996) also investigated dilution
effects. In the area of drug discovery, Langfeldt et al. (1997), Xie et al. (2001),
Zhu et al. (2001), Yi (2002), and Remlinger et al. (2005) all investigated
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procedures that model possible interactions occurring within pools; such inter-
actions may be mislabeled as errors in testing.

4 Pooling for Blood Screening

4.1 Background

Pooling is now considered to be a routine option in blood screening, especially for
the human immunodeficiency virus (HIV). There are many reports espousing the
benefits of pooled testing in countries across the world, using a variety of assay
techniques.

There are actually three blood screening applications for which pooling has
been beneficial. The two most common applications are the context of classifi-
cation, where the goal of blood screening is to identify individuals with sero-
prevalence of one or more diseases. One classification application arises from the
need to screen donated blood and blood products and the other from the need
to screen for individual diagnoses. Cost effectiveness, as measured by the reduc-
tion in the expected total number of tests, is the most commonly used assess-
ment of pooling methods. The third application is the need to monitor changes in
sero-prevalence over time for (possibly) different sets of individuals, where de-
marcation of individuals may occur along demographic lines or spatial/regional
clusters.

4.1.1 Classification

Motivated by a more than 90% transmission rate of HIV by transfusion of blood
and blood products, the World Health Organization (WHO) argued for 100%
screening of donated blood. Recognizing that developing countries can ill-afford
the cost of 100% one-at-a-time screening, WHO issued recommendations for
testing for HIV antibody on serum pools (WHO, 1991) in areas where sero-
prevalence is less than 2%. In fact, this figure of 2% sero-prevalence is much
too restrictive. Many investigators have achieved success with much higher preva-
lences. For example, Soroka et al. (2003) described the successful use of pool-
ing where prevalence was 9%. It is important to note that, for screening blood
supplies, complete identification of sero-positive individuals is not necessary.
All that is needed is a method for tracking the complete donated sample, with-
out personal identifiers. This makes pooled screening very attractive for screen-
ing blood supplies because donors can be assured that their anonymity will be
maintained.

Another classification problem occurs when individual diagnosis is the required
outcome of a screening campaign. In such a campaign, personal identifiers must
be maintained for the purpose of reporting back to individuals about their sero-
prevalence. Moreover, diagnostic testing requires that sero-positive pools be sub-
jected to confirmatory gold-standard tests.
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4.1.2 Estimation

Gastwirth and Hammick (1989) and Hammick and Gastwirth (1994) approached
the blood testing problem with a keen eye towards preserving individual privacy
rights. They proposed screening strategies designed for estimating prevalences.
Rather than focus on the cost-saving advantages of pooling, these authors selected
pooling because of the anonymity it provides to individuals being screened. They
also reduced false predictive values by employing confirmatory tests to verify
sero-prevalence.

4.2 HIV Testing

The standard practice in developed countries for determining HIV sero-prevalence
is first to apply the cost-effective, but suboptimal, enzyme-linked immunosorbent
assay (ELISA) test. For those individuals who are identified as sero-positive by the
ELISA test, follow-up testing is then performed using the gold standard Western
blot test. Unfortunately, the Western blot is very expensive, difficult to standardize
and often results in no clear diagnosis for some individuals (Tamashiro et al., 1993).
To relieve the cost burden, the WHO recommends a series of repeat testing that
uses cheaper tests, namely ELISA or simple or rapid tests, to avoid the Western
blot while still maintaining testing accuracy. In general, the Western blot best is
up to six times as expensive as rapid or simple tests and 18 times as expensive as
ELISA; see, for example, WHO (1992). Rapid and simple tests provide results in
less than one hour (less than 30 minutes for rapid tests) and may be performed
by personnel having little or no laboratory training. ELISA must be performed
in a laboratory (so results are not immediately available) by extensively trained
laboratory professionals.

The WHO (1992) recommendations are shown in Figure 2 and supporting text
is given in Table 1. Strategy I is recommended for screening contributions to a
blood supply. It says that a contribution should only be accepted if it is sero-
negative according to either the ELISA test, or the rapid test, or the simple test.
Sero-positive samples are not considered further. Strategy I is also recommended
when prevalence is high and the goal is HIV surveillance.

WHO’s Strategy III is recommended for diagnosing symptom-free individuals
living in areas of low prevalence. It is the strategy that allows the greatest number
of retests. If the first test is sero-positive, it is followed up with a second test that is
not simply a repeat measurement of the first test. Specifically, the assay procedure
should differ from the first assay procedure in some substantial way; for example,
different antigen preparation, different test principle (such as indirect versus com-
petitive) or both. The first test should be very sensitive but the other two tests should
have higher specificity than the first. If this second test is again sero-positive, a
third and last test is applied. Strategy II is similar but with only two stages.

Effective clinical pooling studies for HIV classification and surveillance have
been reported by a large number of investigators. Emmanuel et al. (1988),
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Figure 2. The World Health Organization 1992 recommendations on how to screen for
HIV without using the Western blot test. ∗ denotes that subsequent assays should differ
from previous assays.

Cahoon-Young et al. (1989), Kline et al. (1989), Behets et al. (1990), Archbold
et al. (1991), Ko et al. (1992), Babu et al. (1993), and Perriens et al. (1993) have
all reported successes for several different countries, including countries in Africa
and Asia. “Success” here is defined as the appropriate management of the logistics
of pooling and the reduction of the amount of testing required. Moreover, suc-
cesses have been achieved based on several different testing protocols, including
ELISA, Western blot, and rapid testing techniques; see also Davey et al. (1991),
Seymour et al. (1992), Raboud et al. (1993), McMahon et al. (1995), Verstraeten et
al. (1998), and Soroka et al. (2003). These studies reported up to 80% reductions
in cost for pooling experiments compared with one-at-a-time testing.

Table 1. WHO recommendations for the use of the
strategies shown in Figure 2
Strategy Limits on p Objective

I None Blood supply
I p > 0.1 HIV surveillance
II p ≤ 0.1 HIV surveillance
II None Diagnosis, HIV symptoms
II p > 0.1 Diagnosis, no symptoms
III p ≤ 0.1 Diagnosis, no symptoms
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Since the late 1980s, statistical contributions to pooling for blood testing have fo-
cused on the following aspects: assessing changes in sensitivity and specificity due
to pooling, designing pooling strategies to accommodate both cheap initial screens
and gold-standard confirmatory screens, and estimation of covariate-dependent
prevalences.

Let us first consider approaches to assessing changes in sensitivity and speci-
ficity due to pooling. As defined in Section 3.1, sensitivity is the probability that a
test correctly detects antibodies in a serum sample, and specificity is the probability
that a test correctly identifies an antibody-free serum sample. These probabilities
have been a major area of concern in pooling studies for blood testing (WHO,
1991). The over-arching issue when screening a blood supply is whether dilution
effects will cause a single sero-positive individual to be missed when combined
in a pool with several (perhaps as many as 14) sero-negative individuals. This
issue relates to the false negative predictive value as follows. A predictive value
is the probability of truth given an individual’s testing outcome; a false negative
predictive value is the probability that the individual is truly active but is labeled
as inactive from testing; a false-positive predictive value is the probability that the
individual is truly inactive but is labeled as active from testing. When screening
for diagnostic purposes, the major concern is that sero-negative individuals will be
labeled sero-positive; this relates to the false positive predictive value. Repeatedly,
however, studies have indicated that, under their worst performance, these possible
pooling effects are negligible. In fact, Cahoon-Young et al. (1989), Behets et al.
(1990), Archbold et al. (1991), Sanchez et al. (1991) all reported reductions in the
number of misclassified sero-negative individuals; for example, Cahoon-Young
et al. (1989) found that there were seven misclassified sero-negative individ-
uals out of 5000 tested, but no misclassified sero-negative pools out of 500
tested.

For understanding sensitivity, specificity, false negative predictive value, and
false positive predictive value, consider the four cells and two column margins
of Table 2, where individuals are cross-classified with respect to their true sero-
status versus observed sero-status. Sensitivity is represented by Se = P(testing
outcome + | truth is +) and specificity is Sp = P(testing outcome − | truth is −).
With these definitions and with p denoting the probability of an individual having

Table 2. Cross-classification of individuals
for “true” versus “observed” sero-status
(+,−) in terms of sensitivity Se, specificity
Sp , and probability p of positive sero-status

True
+ −

Observed + pSe (1 − p)(1 − Sp)

− p(1 − Se) (1 − p)Sp
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positive sero-status, the false negative predictive value is

FNPV = P( truth is + | testing outcome −) = p(1 − Se)

p(1 − Se) + (1 − p)Sp

and the false positive predictive value is

FPPV = P( truth is − | testing outcome +) = (1 − p)(1 − Sp)

(1 − p)(1 − Sp) + pSe
.

Large false negative predictive values are particularly troubling when screening a
blood supply because they allow sero-positive samples to enter the blood supply
system, thus leading to possible transmission of deadly diseases. Minimizing the
false negative predictive value is probably more important than increasing cost
efficiency of pooling for this application. Of course, large false negative predictive
values can arise even when screening is accomplished using one-at-a-time test-
ing. False positive predictive values are of greater concern in diagnostic testing
because they can cause undue stress for the falsely identified individuals and in-
crease testing costs. Notice that if Se = Sp = 1, then FNPV = FPPV = 0 and no
misclassifications will occur.

Litvak et al. (1994) compared three pooling strategies and one-at-a-time testing
with respect to their abilities to reduce FNPV, FPPV, the expected numbers of
tests required, and the expected numbers of tests performed for each individual.
The first pooling study considered was Dorfman retesting with pool size k = 15;
that is, all individuals in sero-positive pools were tested one-at-a-time but no
retesting was applied to individuals in sero-negative pools. The pool size of 15 was
selected because, at the time, it was the largest acceptable size from a laboratory
perspective for maintaining high sensitivity and specificity after pooling. Litvak
et al. (1994) called this screening protocol T0. Their second pooling protocol, T2,
was essentially the retesting method proposed by Sobel and Groll (1959) whereby
sero-positive pools are recursively halved and testing of the subpools continues
until no further splits are possible. In this strategy with k = 15, a serum sample
must be positive four or five times before being declared sero-positive. Their
third pooling protocol, T +

2 , is similar to T2 except that each sero-negative pool is
subjected to one confirmatory pool test before all its individuals are labeled as sero-
negative. It was found that T2 and T +

2 were comparable and that both provided huge
reductions in FPPV compared with one-at-a-time testing but smaller reductions
compared with T0. For FNPV, T +

2 was the best protocol. In short, pooling reduced
both false negative and false positive predictive values.

The result from estimating sero-prevalence of HIV in the presence of errors
in testing is really quite startling. Tu et al. (1994, 1995) found that pooling actu-
ally increases estimator efficiency by reducing the effect of measurement errors.
Vansteelandt et al. (2000) extended the procedure to account for covariate ad-
justments. These results, along with the large number of empirical findings from
investigators such as Emmanuel et al. (1988), clear the way for heavy reliance on
pooling strategies to eliminate the backlog and reduce the cost of screening large
populations. This is of particular importance to developing countries that are often



3. Pooling Experiments for Blood Screening and Drug Discovery 61

cash-strapped but might benefit the most from 100% screening. Even developed
countries might want to rethink their screening strategies to take advantage of
fewer but more informative pooled test results.

5 Pooling for Screening in Drug Discovery

5.1 Background

Twenty percent of sales from the pharmaceutical industry for the year 2000 were
reinvested into research and development activities. This percentage is higher than
in most other industries, including the electronics industry. At the same time, it is
getting increasingly difficult to introduce (that is, discover, demonstrate efficacy
and safety, and receive approval for marketing of) new drugs in order to recoup in-
vestment costs. On average, one new drug requires investment of $880 million and
15 years development (Giersiefen et al., 2003, pages 1–2). The days of profitability
of “runner-up” or “me-too” drugs have long passed and the simple current reality
is that survival and financial security of a pharmaceutical company demands that
they find the best drugs as fast as possible. This means that the five major phases of
drug discovery, as illustrated in Figure 3, need to be traversed aggressively. Details
on the phases of drug discovery can be found in Chapter 4. Here, attention is di-
rected to the third phase, Lead Identification, which is where pooling experiments
for screening in drug discovery usually occur.

Preclinical
and clinical
development

Lead
optimization

Pharmacodynamic

Pharmacokinetic
Essential phase

Lead
identification

Assay

validation

Disease relevance
Assay quality

Target

identification

Disease selection
Molecular targets

500 of 10,000 used

Assay development

High-Throughput

Screening

Leads

Patentable hits
that have other
desirable properties.

Need 100 leads.

Dilution
screen

Secondary
screen

Hits
Compounds active

in an assay

Primary
screen

∼

Figure 3. Phases of drug discovery.
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Given a large collection of compounds, say f = 500,000, the goal of lead iden-
tification is to find about 100 compounds that are

(i) Active for the assay—this allows them to be called “hits”;
(ii) Patentable; that is, their structures are novel and not already under patent;

(iii) Have good chemical properties such as stability, can be synthesized, are not
toxic, and so on;

(iv) Something is understood about what makes them active; that is, their structure–
activity relationships have been, at least partially, identified;

(v) Each compound is fairly different from the other ninety-nine.

Compounds that satisfy all these requirements are called leads or lead compounds.
The need for properties (i)–(iii) is clear, but additional comments are warranted
for the other properties.

Knowledge of structure–activity relationships allows chemists to focus on the
essential substructures of the compound without wasting time with the portions
that do not affect activity. The drug discovery phase that follows lead identifi-
cation is lead optimization. In this phase, chemists expend enormous energies
“tweaking” the leads to increase the chances of compounds making it through the
grueling stages of preclinical and clinical development. It is imperative that the
lead optimization phase produces very strong lead compounds to be investigated
during preclinical and clinical development. Once a compound reaches the pre-
clinical and clinical development phase, extensive additional financial and time
investments are made, so that heavy losses would be incurred if the compound
had to be abandoned further down the drug discovery channel because it possesses
undesirable features (see also Chapter 4).

5.2 Differences and Similarities Between Blood Screening
and Screening for Drug Discovery

The goals of drug discovery, as stated above, seem to be very similar to those of
the blood screening for classification problem, but this is not at all the case. As
mentioned, in earlier sections of this chapter, approaches to solving the blood test-
ing for classification problem do not routinely incorporate covariate information.
For the HIV blood testing problem, relevant covariate information for an individ-
ual may include the following: number of blood transfusions received, number
of sexual partners, number of sexual partners who are HIV-infected, syringe use,
drug use, sexual preference, and HIV status of parents. Recent investigations have
allowed the estimation of prevalence in different covariate-defined strata, but the
number of strata is never large and is quite typically less than 10. In screening for
drug discovery, on the other hand, the number of covariates is quite often at least
twice the number of pooled responses available. Indeed, the significant challenges
that arise from the high-dimensional-with-low-sample-size data sets that usually
result from “high-throughput screening” in drug discovery present major obstacles
to analysis, even for one-at-a-time testing results. These difficulties are magnified
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in the presence of pooled responses. More information is given by Langfeldt et al.
(1997), Xie et al. (2001), Zhu et al. (2001), Yi (2002), and Remlinger et al. (2005).

Arguably, the biggest difference between the two application areas discussed
in this chapter is the potential for synergistic relationships between compounds in
pools for drug discovery, whereas no such concept has arisen for blood testing.
Synergism has recently become the major supporting argument for pursuing pool-
ing experiments in drug discovery (Xie et al., 2001; Yi, 2002; Remlinger et al.,
2005). Synergistic relationships can only be discovered through pooling studies
where compounds are forced together, and it is these synergistic relationships that
form the basis of combination therapies. These therapies involve deliberate mixing
of drugs and they are now the standard of care for life-threatening diseases such
as cancer and HIV. Current combination therapies were discovered by combining
individually active compounds after they had been approved by the Food and Drug
Administration. By investigating synergistic relationships in vitro, it is expected
that one could find a combination where, individually, the compounds are inactive
but, when pooled, their activities exceed all other combinations. Borisy et al. (2003)
demonstrated this quite nicely using several real experiments. For example, chlor-
promazine and pentamidin were more effective than paclitaxel (a clinically used
anticancer drug), even though individually neither drug was effective at tolerable
doses. Similar ideas were discussed by Tan et al. (2003).

So, are cost considerations no longer important for drug discovery? The answer
is “not really,” or at least not as much as they used to be. Before the advent of
high-throughput screening (HTS, see Chapter 4) and ultrahigh-throughput screen-
ing (uHTS), pooling was necessary for processing the large compound libraries
typically encountered. In those days, a large screening campaign might screen a
total of 50,000 compounds, and it would take months to complete. Today, uHTS
can screen 100,000 compounds in a single day; see Banks (2000) and Niles and
Coassin (2002). HTS and uHTS systems are centralized, highly automated, and
are under robotic control so they can work almost around the clock with very small
percentages of down-time.

The two applications of drug discovery and blood testing are similar in how
they process screening outcomes. Comparing Strategy III of Figure 2 with the
extended view of Lead Identification in Figure 3, it can be seen that both methods
use three tests in labeling the final selected individuals. The selected individuals are
the gems for drug discovery applications but, for the blood testing problem, they
actually cause concern because they are blood samples that have been confirmed
to be diseased.

5.3 Design and Analysis Techniques

A commonly used technique for analyzing drug discovery screening data from
individuals is recursive partitioning (RP), more commonly known as “trees” (see,
for example, Blower et al., 2002). In very recent times, efforts based on multiple
trees (Svetnik et al., 2003) have become the method of choice, despite the additional
difficulties associated with them, because of their good predictive abilities.
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The number of researchers working to develop methodology appropriate for
pooled drug screening data and who are allowed to discuss these issues outside
the big pharmaceutical companies is very small. Papers from these researchers
have been reviewed earlier in this chapter, but a few additional comments are
warranted. The bulk of the work has been divided into two major paths. One path
concerns the search for the efficient placement of individuals within pools; that
is, the design of pooling studies. Because of the very large number of covariates,
this is a difficult problem that requires computer-intensive techniques. Remlinger
et al. (2005) obtained structure-based pooling designs to assign pool placement
in response to covariate-adjusted prevalences. Zhu (2000) developed model-based
designs for the same problem.

The second major path concerns analysis methods, including nonparametric,
semi-parametric, fully parametric, and Bayesian approaches. Nonparameteric re-
sults are based on recursive partitioning on pooled data and require the formation of
pooled summaries and decisions of whether and how to include the retested data in
the analysis without violating independence assumptions. For the semi-parametric
work, Yi (2002) modeled data from pooling experiments as missing data scenarios
where missingness occurs at random. This was a novel use of the semi-parametric
methodology to an area that had never before been considered. Another interest-
ing finding is that random retesting of both active and inactive pools can lead to
improved estimators. Litvak et al. (1994) and Gastwirth and Johnson (1994) were
able to improve their estimators in the blood testing problem by retesting inactive
pools.

Zhu et al. (2001) described a trinomial modeling approach that incorporates
the phenomenon of blocking and used this model to develop criteria for creating
pooling designs. These fully parametric models were also extended by Yi (2002)
who considered pairwise blocking probabilities. Xie et al. (2001) used a Bayesian
approach for modeling blockers and synergism. Finally, Remlinger et al. (2005)
also considered design pooling strategies, but from a completely structure-based
approach.

When it comes to designing and analyzing pooling studies for drug discovery,
many open questions remain. Single-dose pooling studies, which is an area still
in its infancy, have been the focus of this chapter. Multiple-dose pooling studies,
which constitute a more mature area of research and application, can bring yet
another level of interesting questions and evidence of the utility of pooling; see,
for example, Berenbaum (1989).

6 Discussion

Many modern developments and applications point to a bright future for pooling
experiments. First, blood testing is ready to support heavy-duty use of pooling
studies all across the world. The evidence of success is overwhelming whereas the
costs are minimal. Secondly, the drug discovery application still has a long way
to go before it is fully developed, but researchers are making great strides. The
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ability to uncover synergistic relationships for discovering combination therapies
is very exciting and offers many new challenges and possibilities.
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4
Pharmaceutical Drug Discovery:
Designing the Blockbuster Drug

David Jesse Cummins

Twenty years ago, drug discovery was a somewhat plodding and scholastic endeavor; those
days are gone. The intellectual challenges are greater than ever but the pace has changed.
Although there are greater opportunities for therapeutic targets than ever before, the costs
and risks are great and the increasingly competitive environment makes the pace of pharma-
ceutical drug hunting range from exciting to overwhelming. These changes are catalyzed by
major changes to drug discovery processes through application of rapid parallel synthesis of
large chemical libraries and high-throughput screening. These techniques result in huge vol-
umes of data for use in decision making. Besides the size and complex nature of biological
and chemical data sets and the many sources of data “noise”, the needs of business pro-
duce many, often conflicting, decision criteria and constraints such as time, cost, and patent
caveats. The drive is still to find potent and selective molecules but, in recent years, key
aspects of drug discovery are being shifted to earlier in the process. Discovery scientists are
now concerned with building molecules that have good stability but also reasonable prop-
erties of absorption into the bloodstream, distribution and binding to tissues, metabolism
and excretion, low toxicity, and reasonable cost of production. These requirements result
in a high-dimensional decision problem with conflicting criteria and limited resources. An
overview of the broad range of issues and activities involved in pharmaceutical screening
is given along with references for further reading.

1 Introduction

The pharmaceutical industry is rapidly approaching a crisis situation. Epidemics,
such as AIDS, increasing rates of cancer, the threat of biological warfare agents,
and an increasing elderly population, mean that the demand for useful therapeutic
drugs is greater than ever. At the same time, pressure is increasing to reduce costs
in the face of the daunting challenge of discovering and developing therapeutic
agents. Approximately 50% of drugs in development fail due to safety issues and
25% fail due to efficacy issues. Most researchers estimate that the process of
developing a new drug from early screening to drug store shelves costs $600 to
$900 million and takes 8 to 15 years.

In this chapter, a screen refers to a biochemical test (or assay) to see if small
molecules bind to a target. The usual sense of this term suggests an experiment
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performed on some (physical) experimental unit. There is a hierarchy of results:
human clinical trials are the ultimate answer, which are approximated with animal
testing, animal testing is approximated with in vitro testing (cell cultures, enzyme
studies), and any of the above can be approximated in silico by the use of predictive
models (a virtual screen).

Although the greatest expenses in drug discovery and development are incurred
in the clinical trials phases, this chapter focuses on the early screening stage,
before the first human dose. Well-planned studies at this stage have great potential
to reduce expenses at later stages of the process. If it were possible to weed out the
toxic molecules prior to the clinical trials phase, fully 40% of the expenses incurred
in clinical trials would be eliminated! Even a small dent in this expensive process
would result in enormous savings. If this could be done through virtual screens
using predictive models, then additional savings would be achieved through less
animal toxicity testing and this would also reduce the overall drug development
time.

Drug discovery is a multidisciplinary endeavor with critical work at the interface
of biology, chemistry, computer science, and informatics. In biology, a major ac-
tivity is to make the linkages between what can be assayed and a disease response,
but activities also include design and validation of animal models, cell cultures,
biochemical screen design, and assay variability studies. Another important area
in biology, the pace of which has especially intensified in the last decade, is the
assessment in vivo of the extent of absorption into the blood stream, distribution
and binding to tissues, and the rates of metabolism and excretion. This is denoted
by ADME and is discussed in Section 11. In chemistry, the major responsibility
is to provide the creative spark to navigate effectively the large space of possible
compounds (another word for molecules) towards the blockbuster drug. Other ac-
tivities include synthesis of new molecules, analytical characterization of existing
molecules (including purity of batches, pKa, logP, melting point, and solubility)
and construction of libraries. Important issues in computer science include data
storage and extraction, implementation and scale-up of algorithms, management of
biological and chemical databases, and software support. Activities in informatics
or chemoinformatics (Leach, 2003) include design of experiments, development of
new chemical descriptors, simulation, statistical analysis, mathematical modeling,
molecular modeling, and the development of machine learning algorithms.

The successful development of a new drug depends on a number of criteria. Most
importantly, the drug should show a substantial beneficial effect in the treatment
of a particular disease (efficacy). This implies that, in addition to intrinsic activity,
the drug is able to reach its target (a biological gateway that is linked to a disease
state—a large organic molecule that may be a receptor, a protein, or an enzyme)
and does not produce overwhelming toxic effects. Many active drugs fail in later
phases of the development process because they do not reach their intended target.

The main challenges in drug discovery fall into four categories:

1. Potency: the drug must have the desired effect, in the desired time frame, at a
low dosage.
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2. Selectivity: the drug should produce only the desired activity and not cause
side effects. There are so many possible targets in the body that achieving high
selectivity is difficult. Side effects may be caused by metabolites of the drug,
by-products produced when the body uses enzymes to break down the drug in
the elimination process (Section 11.1).

3. ADME and pharmacokinetics (or PK ): the drug must reach the site of action. If
taken orally, it must be water soluble, survive the stomach, be absorbed through
the intestine, survive attack by many enzymes, and be transported into the target
cells across the cell membrane. It must not be metabolised too quickly, but also
must not be so stable or protein bound that it accumulates in the body. Another
important factor to control is whether a compound crosses the blood–brain
barrier (or BBB).

4. Toxicity: there are many mechanisms by which a compound can be toxic.
Toxicity issues may arise from PK or ADME or selectivity issues, depending
on the mechanism. Alternatively a compound may simply react harmfully with
tissues or organs in a direct manner.

One may think of an iterative model for the preclinical discovery screening
cycle. A large number of compounds are to be mined for compounds that
are active; for example, that bind to a particular target. The compounds may
come from different sources such as vendor catalogues, corporate collections,
or combinatorial chemistry projects. In fact, the compounds need only to ex-
ist in a virtual sense, because in silico predictions in the form of a model
can be made in a virtual screen (Section 8) which can then be used to de-
cide which compounds should be physically made and tested. A mapping from
the structure space of compounds to the descriptor space or property space
provides covariates or explanatory variables that can be used to build predic-
tive models. These models can help in the selection process, where a subset
of available molecules is chosen for the biological screen. The experimental
results of the biological screen (actives and inactives, or numeric potency val-
ues) are then used to learn more about the structure–activity relationship (SAR)
which leads to new models and a new selection of compounds as the cycle
renews.

The relationship between the biological responses and the changes in chemical
structural motifs is called SAR or QSAR (quantitative structure–activity relation-
ship). Small changes to the chemical structure can often produce dramatic changes
in the biological response; when this happens, chemists and biologists will often
describe the SAR as nonlinear, by which they mean that the SAR has a “sensi-
tive” or “rough” or “unstable” response surface. Often the chemical compounds
are considered to be the experimental unit even though, in actual experiments, an
animal or cell culture is the unit and the compound is a treatment. This is because
the important asset to the pharmaceutical company is the compound. The vast size
of the set of potential experimental units (potential compounds), coupled with the
high dimensionality of the response being optimized (potency, selectivity, toxicity,
and ADME) and the “roughness” of the response landscape make drug discovery
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a challenging arena. The level of noise in biological data can be extremely high
as well.

This chapter covers a selection of problems and case study examples. Perspec-
tives specific to Eli Lilly and Company (or Lilly) are distinguished from broader
perspectives believed to be shared by most companies across the industry. The
chapter covers both design and analysis issues, and touches on topics such as
simulation, computer experiments, and pooling. Section 2 gives an overview of
drug design. In Section 3 the issue of false negatives and false positives in drug
screening is addressed. Molecular diversity is discussed in Section 4, and machine
learning is the topic of Section 6. Section 7 describes a lower-throughput itera-
tive approach to screening and virtual screening in drug discovery projects in an
iterative Active Learning strategy. A brief mention of pooling strategies is made
in Section 9 and Section 10 discusses expectations for rare events. Section 11 de-
scribes aspects of a molecule that determine its ability to be safely transported
to the area of the body where it can be of therapeutic benefit. Finally, in Sec-
tion 12 the problem of multicriteria decision making in drug discovery is ad-
dressed.

2 Overview of Drug Design

2.1 Process Overview

The entire process of drug discovery and development can be depicted as a
rocketship with stages, an image that portrays the “funneling” effect as fewer
compounds are under consideration at successive stages of the process. The focus
of this chapter is screening issues in lead generation (the first stage of the rocket)
which begins with the chemical entity and the biological target. The chemical en-
tity (compound) may be a small molecule, a peptide, or a large protein. Typically,
chemical entities are purchased from external providers or synthesized within a
company. The compound can be viewed as binding or docking to the biological
receptor or target in order to competitively inhibit, or else to induce, some biolog-
ical signal such as the production of a protein or hormone, resulting in a specific
response. The number of molecules tested is dependent on reagent costs and other
practical factors. This chapter adopts the following paradigm for drug discovery
and development.

1. A target is validated to establish a direct link (such as a gene or a process
in the body, or a virus or a parasite) to the disease state of interest and the
feasibility of controlling the target to obtain the desired therapeutic benefit.
This stage involves scientific study that can be catalyzed by genomic and pro-
teomic technologies. Target validation requires careful scientific experiments
designed to explore how a target influences a biological response or disease
state.

2. A high-throughput screen (HTS) is designed, optimized, calibrated, vali-
dated, and run to obtain biological response data at a single concentration for
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200,000 compounds (Section 4). This may involve whole cells, enzymes, or
other in vitro targets. Reducing variability is crucial. Sittampalam et al. (1997)
introduced the concept of signal window, a method whereby two controls are
used to diagnose the ability of the assay to distinguish between actives and
inactives in the presence of background noise.

3. The most promising compounds, or actives, typically numbering from 1000
to 5000, are then tested in a secondary screen which involves testing each
compound at 5 to 10 different concentrations. These results are modeled with
a nonlinear dose–response curve and for each molecule a summary measure is
computed such as a 50% inhibitory concentration (IC50) or a 50% efficacious
concentration (EC50).

4. The secondary assay reduces the set of actives to those for which potency
reaches at least 50% of the maximum potency of a reference compound, at
some concentration. Typically there are 500 to 1000 of these compounds, and
they are called hits. Many hits may be nonspecific or for other reasons may
offer no prospect for future development. (In subsequent sections the distinction
between active and hit is blurred.)

5. The hits are examined in a series of careful studies in an effort often called hit
to lead. Chemists look at the hits and classify them into four to eight broad
series and, within each series, they try to find a structure–activity relationship.
The chemists characterize these SARs by testing (in the secondary assay) a few
hundred or a few thousand more molecules, thus expanding each SAR. Out of
these SARs, the chemists and biologists choose a few hundred compounds to
be tested in cell-based or enzyme in vitro screens. These screens require careful
design and validation. From the molecules run through the in vitro testing, 100
or so may go through in vivo single-dose tests using a rodent or some other
animal model. Some 10 to 40 of these molecules are finally tested for in vivo
efficacy in a full dose–response experiment performed on the animal of choice.

6. The lead compounds undergo careful studies in an effort known as lead op-
timization. At this point any remaining issues with metabolism, absorption,
toxicity, and so on, are addressed through molecular modification.

Some research groups contend that the HTS step should be eliminated and replaced
with a number of rounds of iterative medium-throughput screening (Section 7). It
is an issue of quantity versus quality. The lower-throughput screens tend to have
lower variability (“noise”) and less dependence on the single concentration test
as an initial triage. The iterative approach is closely akin to a strategy in machine
learning (Section 6) known as Active Learning.

In a successful project, the steps outlined above will lead to a First Human Dose
(FHD) clinical trial. How well those prior steps are done will, in part, determine
the success or failure of the human clinical trials. The adoption of high-throughput
screening and combinatorial chemistry methods in the early 1990s offered promise
that a shotgun approach to drug discovery would be possible. It was soon learned
that simply increasing the volume of screening results cannot be the answer. The
number of potential chemical entities is staggering, being estimated to be between
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1020 and 1060. The efficient exploration of a landscape of this magnitude requires
prudent use of machinery, human expertise, informatics, and, even then, an element
of fortuity. On average, for every 5000 compounds that enter a hit-to-lead phase,
only five will continue on to clinical trials in humans, and only one will be approved
for marketing. It is analogous to searching for a small needle in a whole field of
haystacks. In these terms, the future of drug design lies in no longer searching for
the needle but, instead, constructing the needle using available clues.

3 False Negatives and False Positives

In primary screening, compounds are tested at a single concentration; those whose
response exceeds a prespecified threshold are labeled as “active” and the rest as
“inactive”. Typically, 200,000 compounds are screened, giving numeric potency
results for each, then, based on exceeding a threshold, about 2000 are labeled as
active and 198,000 as inactive. The actives are studied further at multiple con-
centrations and the inactives are henceforth ignored. A false positive error occurs
when a compound labeled as active is, in fact, inactive when studied in the more
careful multiple concentration assay. The false positive rate can be lowered by
raising the decision threshold, or “hit limit”, but at the cost of increasing the false
negative error rate. In most HTS screens, of those compounds flagged as active
in a primary screen, roughly 30% to 50% are found to be inactive in the multiple
concentration–response follow-up study.

A false negative error occurs when a compound that is actually active is not
labeled as active. Biological noise, for example, and the choice of hit threshold
can affect the false negative error, as well as mechanical failures such as a leaking
well. Mechanical failure errors are unrelated to the true potency of the molecule.
The false negative rate is unknowable because the vast majority of compounds
are not studied further, but it can be estimated from small studies. From past HTS
screens at Lilly, we have estimated that a mechanical failure false negative occurs
in roughly 7% to 12% of compounds in an HTS screen, with a total false negative
error rate ranging from 20% to 30%. Aside from the mechanistic type of false
negative, the false negative rate can be viewed as a function of the activity level—
the greater the activity of the molecule, the lower the chance of a false negative
error.

Experimental results from an HTS assay are not the “truth” but merely an
estimate of the true potency of a molecule. Because molecules are only measured
one time in the HTS setting, there is a high degree of uncertainty. One thing that can
be done is to look for highly similar molecules and treat them as pseudo replicates
of the same “parent” molecule. See Goldberg (1978) for further discussion on
estimating the error rate.

One effective way of dealing with experimental errors is to build a predictive
model and score the screening results through the model, then to look at discrep-
ancies between the experimental screening result and the model prediction. Often
the highly potent but mechanical failure type of false negatives or false positives
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Table 1. Breakdown of hit rates from the
screening follow-up results.
Compound source Hit rate

150,000 original compounds 3%
2050 new compounds 34%
250 potential false negatives 55%

can be identified. In practice, the false positives will be tested in the secondary
screen and found to be inactive when that screening result is observed. Some re-
searchers favor raising the threshold to reduce the number of compounds labeled
as active. The false negatives can then be identified by a statistical or predictive
model and rescreened. In one recent project at Lilly we followed up a 150,000
compounds HTS with a small library (that is, a small collection of molecules) of
2300 compounds. A predictive model was trained (or fitted) using the 150,000
primary results and used to select 2050 molecules that had not yet been tested.
The same model was used to identify 250 molecules that were screened in the
150,000 and found to be inactive, yet scored by the model as highly active. These
250 were the potential false negatives that were to be retested. Fully 55% of these
false negatives were active upon retesting. The breakdown of hit rates is given in
Table 1.

The 3% hit rate in the primary screen was a concern, as such a high number
suggests a problem in the assay. It was found that there was a carryover problem
in which sticky compounds were not being completely washed from the robotic
tips. Such a trend can be found easily by analysis of hit rate as a function of well
location. This problem was resolved before the secondary runs (rows 2 to 3 of the
table) were made.

A computer experiment was done to confirm and further explore the above
findings. An iterative medium-throughput screening operation was simulated with
different levels of false negative rates, reflecting historical error rates seen across
past screens. For each level of false negative rate, the appropriate proportion of true
actives was randomly chosen (from a nonuniform distribution that is a function of
the “true” activity level of the molecule, based on historical data) and relabeled
(incorrectly) as inactive. The model was trained on this “polluted” data set and
used to select the set of compounds for the next round of testing. Computer exper-
iments of this type can be run many times to explore the behavior of the predictive
models under realistically stressed circumstances. For this particular experiment,
the model was able to find 25 times more false negatives than a random (hyperge-
ometric) search would produce, up to a false negative rate of 30% at which point
the enrichment over random decreases from 25-fold to about 15-fold higher than
random.

In both screening and predictive modeling, the relative cost of false negatives
versus false positives is an important component of decision making. From a
business standpoint, false negatives represent lost opportunities and false posi-
tives represent wasted efforts chasing down “red herrings.” The resources wasted
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chasing false positives is particularly troubling. The current trend is to reduce
the false positives and to tolerate the increased number of false negatives that
results.

4 Molecular Diversity Analysis in Drug Discovery

In the last two decades, three technologies have been co-developed that enable a
significant shift in the process of lead generation:

Combinatorial Chemistry ⇒ Large libraries of molecules

High-Throughput Screening ⇒ Many biological data points

Cheminformatics ⇒ Many molecular descriptors

The adoption of high-throughput screening and combinatorial chemistry meth-
ods in the early 1990s led to an immense interest in molecular diversity. It was
widely expected that making diverse libraries would provide an increase in the
number of hits in biological assays. It took a while to realize that this was the
wrong expectation. Molecular diversity designs do offer great benefits, but more
in the enhancement of the quality, rather than quantity, of information from a
screen. It became clear that other properties of molecules, beyond mere structural
novelty, need to be considered in screening. This led to extensive work on “drug-
likeness” and an attempt to achieve a balance between diversity and medicinal
reasonableness of molecules.

4.1 Molecular Diversity in Screening

Molecular diversity analysis is useful in several contexts:

� Compound acquisition: this avoids purchasing a compound very similar to one
that is already owned.

� General screening for lead identification: screening a diverse library is a sensi-
ble approach when little or nothing is known about the target or possible lead
compounds.

� Driving an SAR effort away from prior patent claims.

The second context, general screening, involves selecting subsets of molecules
for lead generation. Experimental designs are considered because it is not feasible
to screen all molecules available. Even with the application of high-throughput
screening, the demand for screening outpaces the capacity. This is due to the
growth of in-house chemical databases, the number of molecules synthesized
using combinatorial chemistry, and the increasing number of biological targets
fueling discovery projects. In addition, novel screens that are not amenable to
HTS automation may be attractive from a competitive standpoint but the gap be-
tween screening capacity and screening opportunities in this case is particularly
daunting. Given this imbalance, methods for selecting finite subsets of molecules
from potentially large chemical databases must be considered. Possible selection
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Blockbuster Molecule
Active Analog
Inactive

Figure 1. SAR paradigm. Fictitious two-dimensional projection of the property space of
feasible druglike molecules.

strategies include: random, diverse, and representative selection, each of which
may be performed as a biased or directed analysis if information such as a drug-
likeness score is available to weight the analysis in favor of certain classes of
molecules. A requirement of every selection method considered here is its com-
putational feasibility for the databases of hundreds of thousands to millions of
compounds that are now common with the application of combinatorial synthesis.
For example, many distance-based selection strategies involve computation and
storage of all pairwise distances for molecules in a database. If the number of
molecules n is 300,000, then there are approximately 45 × 109 (calculated from
( n

2 )) distances to compute and/or to store. This is a formidable task, necessitating
creative computational solutions.

Figure 1 illustrates a modern paradigm of drug hunting processes. In this ficti-
tious two-dimensional projection of the space of feasible druglike molecules, open
circles represent compounds that are not active relative to a specific target, solid
circles are active compounds, shown in one contiguous series of related molecules,
and the star is the blockbuster drug that is still undiscovered. In a primary screen,
finding a single solid circle is all that is needed. The medicinal chemistry teams
can follow up by making systematic changes to any one of the active compounds
to explore the whole series and find (or invent) the blockbuster drug. An important
point is that the blockbuster may not exist in the corporate collection. A typical
lead generation or lead optimization project involves not only testing molecules
in current libraries, but also synthesis of new molecules. Molecular modification
and subsequent testing is the way the trail gets blazed, through characterizing the
SAR.
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In recent years there has been strong dogma contending that, in filling a fixed
screening capacity, it is important to screen “backups”, that is, molecules that are
closely related. This argument is motivated by the high rate of false negatives
in primary screening. Thus screening two or more compounds from the same
related series effectively gives pseudo replicates. If one compound turns out to
be a false negative, it is likely that another from the same series will screen as
positive and thus, the active series will not be missed. This rationale is popular in
the industry. However, at Lilly we have demonstrated, through both simulations
and retrospective analysis, that it is better to tolerate the false negatives in favor
of sampling a larger number of different series. The motivating principle for this
position is that testing two closely related compounds (or analogues) is often
equivalent to testing the same hypothesis twice, which comes at the expense of
testing a different hypothesis; see Wikel and Higgs (1997).

Optimizing molecular diversity has the potential to maximize the information
gained about an SAR in the early stages of screening. Suppose a random screening
gives the same number of hits as a diverse screening. Then one would favor the
diverse set of hits, because this increases the chance of at least one structural lead
with a favorable ADME and toxicity profile. In fact, for primary screening, it is
often better to have 10 novel hits than 200 hits that are analogues of each other.
The proper focus, in our view, is quality of information gleaned from the screen.

Most pharmaceutical companies have clusters of compounds (for example, Lilly
has many SSRIs, cephalosporins, and so on). There are many analogues clustered
tightly in local subregions of chemical space, reflecting historical SARs inves-
tigated around related targets. A random sample will reflect the densities of the
compound classes in the collection; thus testing a random sample of molecules
for a certain biological activity will be equivalent to testing the same hypothesis
many times over.

4.2 Descriptors

Computationally, a structure space (represented as a set of two-dimensional graphs
of molecule structures) is mapped to property (or chemical) space (Rp) (for ex-
ample, Figure 2), where each point is a vector of values of each of p variables,

Poor Feature Set(a) (b) Good Feature Set

X2

X1

X4

X3

Figure 2. Descriptor validation example: (a) poor feature set; (b) good feature set.
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called descriptors, or sometimes properties. The descriptors can be binary, integer
counts, or continuous variables. A descriptor may be as simple as a count of the
number of oxygen atoms in a molecule, or as sophisticated as an estimate of the
three-dimensional polar surface area around the molecule. Molecules are assigned
positions in this high-dimensional descriptor space through their properties. The
relationships defining their molecular diversity are, therefore, represented through
their coordinates or positions in this space. The distance metrics most often used
are Euclidean and Mahalanobis for properties, and Tanimoto (Jaccard) for binary
bit strings; see Section 4.5.

Prior to selecting a set of molecules from a database, it is often necessary to
preprocess the molecular descriptors to replace missing descriptor values and to
scale the descriptors. Although it is possible to develop distance metrics that are
tolerant to missing values, at Lilly we have focused on imputing (replacing) missing
values and using distance metrics that assume all descriptor values are present.

A set of molecules is commonly described with anywhere from 4 to 10,000 de-
scriptors. It is also possible to represent molecules with sparse descriptors number-
ing up to 2 million. Variable selection, or descriptor subset selection, or descriptor
validation, is important, whether the context is supervised or unsupervised learning
(Section 6).

4.3 Molecule Selection

Discussions about molecular diversity involve the concepts of “similarity” and
“dissimilarity” and may be confusing as their meanings are content related. Sim-
ilarity is in the eye of the beholder. Chemists may find similarity hard to define,
but they generally are quick to identify it when they see it and at times are will-
ing to debate the similarity of one structure to another. Similarity is not abso-
lute, but relative to the space in which it is defined. In chemistry, this means the
definitions must always be held in context to the property space used to define the
structures.

If characteristics are known about the biological target then this target-specific
information may be used to select a subset of molecules for biological testing.
Various database searching methods, molecular similarity methods, and molecu-
lar modeling methods could be used to identify a favored (or biased) subset of
molecules for biological testing. This corresponds to the second row of Table 2.
One example of this situation is the case of neuroscience targets. If very little

Table 2. Subset selection strategies for primary screening at Lilly.
Situation Strategy

No target information Diversity Selection
Expert judgment or literature Directed Diversity Selection

information about target
Experimental results related to target, QSAR, Predictive Modeling

or structure of target known
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is known except that the receptor of interest is in the brain, a biased diversity
selection would be more useful than an unbiased one. For example, one might
construct a weight function based on the number of positively charged nitrogen
atoms in a molecule, because this is often observed to be present in desirable
neuroscience drugs. If there are no positively charged nitrogen atoms, or if there
are more than two, the weight function is very low and otherwise very high.
Other factors related to toxicity, solubility, and other aspects of medicinal viability
of molecules could be included in the weight function. Then a weighted diver-
sity selection could be performed to construct a reasonable starting set for initial
screening.

4.4 Descriptor Validation and Variable Selection

The concept of molecular similarity is strongly linked with the “SAR Hypoth-
esis” of Alexander Crum-Brown (Crum-Brown and Fraser, 1869) which states
that compounds that are similar in their structure will, on average, tend to display
similar biological activity. A modest extension holds that one can build mathemat-
ical models from the numerical descriptors to describe a relationship between the
chemical structure and the biological activity. When chemists discuss similarity
of two molecules, they often make arguments about the biological effects or bind-
ing potential of the compounds. There is a concept of bioisostere which says that
some chemical fragments function in the same way as other chemical fragments
(for example, a sulfur may behave like a methyl group). An ideal set of molec-
ular descriptors would be one that contains properties characterizing all aspects
important to potency, selectivity, ADME, and toxicity. Because our understanding
of any one of these processes is limited, expert judgment is needed. Descriptors
considered generally important include those describing lipophilicity, molecular
shape, surface area and size, electronic properties, and pharmacophoric elements
such as hydrogen bond donors and acceptors.

Just as with variable subset selection in linear regression, there are risks akin
to over-fitting a training set. (A training set is the subset of data used to fit the
model.) The topic of how best to do descriptor validation has been hotly debated,
and numerous ideas have been proposed, but the general goal is to select that
subset of descriptors that best achieves some sense of separation of the classes
of compounds, as illustrated in Figure 2. This figure illustrates three structural
series in two hypothetical two-dimensional configurations. Descriptors x3 and x4

are more useful because they separate the different structural classes.
There are dimensionality issues. Later we propose Mahalanobis distance

(Section 4.5) as a good metric for diversity analysis. With p descriptors in the
data set, this metric effectively, if not explicitly, computes a covariance matrix
with

( p
2

)
parameters. In order to obtain accurate estimates of the elements of the

covariance matrix, one rule of thumb is that at least five observations per parameter
should be made. This suggests that a data set with n observations can only investi-
gate approximately

√
2n/5 descriptors for the Mahalanobis distance computation.

Thus, some method for subset selection of descriptors is needed.
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In the case of molecular diversity, there is no response to guide the variable subset
selection (unsupervised learning) and hence creative ways to do subset selection
are needed. Ideally, chemical similarity is defined by the target or receptor. If one
has information about the target/receptor then it is more useful to do QSAR (last
row of Table 2). If such information is lacking, then one must impose an arbitrary
definition on chemical similarity in order to avoid testing duplicate, or very similar,
hypotheses in screening. Thus, at Lilly, our molecular diversity tools are generic
and depend on a generic notion of similarity that is relatively independent of
biology (rows 2 and 3 of Table 2).

4.5 Distance Metrics

Distance-based methods require a definition of molecular similarity (or distance)
in order to be able to select subsets of molecules that are maximally diverse with
respect to each other or to select a subset that is representative of a larger chemical
database. Ideally, to select a diverse subset of size k, all possible subsets of size k
would be examined and a diversity measure of a subset (for example, average near
neighbor similarity) could be used to select the most diverse subset. Unfortunately,
this approach suffers from a combinatoric explosion in the number of subsets that
must be examined and more computationally feasible approximations must be
considered, a few of which are presented below.

Given two molecules a and b, let x and y denote their vectors of descriptors.
The Mahalanobis distance between a and b is defined as:

d(a, b) =
√

(x − y)T V−1(x − y),

where V−1 denotes the inverse of the covariance matrix, V, of the vectors of the
descriptor values of all the molecules. If V = I the result is Euclidean distance:

d(a, b) =
√√√√ p∑

i=1

(xi − yi )2,

where xi and yi are the ith elements of x and y, respectively.
The effect of the V−1 is to divide each descriptor by its standard deviation, so that

some descriptors do not dominate others due to mere differences of scale. Many
cheminformaticians compute the standard deviations explicitly, but this alone is
not sufficient. The off-diagonal elements of the inverse covariance matrix adjust
for overweighting (due to high correlations between descriptors) of latent aspects
of a molecule, such as size.

A common practice is to scale each descriptor to have standard deviation of 1.
Another is to compute principal components and confine the analysis to the first
h components, where h may range from 1 to 20. This is an ad hoc form of dimen-
sion reduction that does not remove irrelevant information from the analysis. At
Lilly, we prefer a careful descriptor validation to avoid including many irrelevant
descriptors into the analysis, combined with a dimension reduction criterion using
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the
√

2n/5 rule of thumb, followed by a Mahalanobis distance computation using
all the descriptors that remain.

For presence or absence of features in the molecules, represented by binary bit
strings x and y as descriptors, the Tanimoto coefficient is a popular metric for
similarity:

sim(a, b) = (bits on in both x and y)

(bits on in x) + (bits on in y) − (bits on in both x and y)
.

Then

d(a, b) = 1 − sim(a, b).

Now consider d(a, b) to be a generic distance metric of which Tanimoto, Euclidean,
and Mahalanobis are three cases. Then, the distance between molecule a and the
set of molecules B is defined as follows,

d(a, B) = min
b∈B d(a, b),

and the overall dissimilarity of a set of molecules M is defined as

dis(M) = 1

n

∑
a∈M

d(a, M\a), (1)

where M\a denotes the set M with the molecule a removed.
These metrics are used by design algorithms for selecting dissimilar molecules

for chemical analysis (see Section 5.2).

5 Subset Selection Strategies

A requirement for any subset selection method is the ability to accommodate a set
of previously selected molecules, where augmentation of the pre-existing set is
desired. For example, when purchasing compounds, the goal is to augment what
is already owned so that the current corporate collection would be used in the
analysis as the pre-existing set of molecules. The goal then is to select a subset of
the candidate molecules that optimizes a specified criterion with reference to the
molecules in both the candidate set and the previously selected set.

In the case of iterative medium-throughput screening, at any given point in
the process, the set of molecules that have been screened thus far is the pre-
viously selected set for the next round of screening. In choosing molecules for
the next iteration, one may have a selection criterion such as predictive model
scores but a diversity criterion may also be applied: it is not desirable to screen
something identical, or nearly identical, to that which was screened in previous
rounds.
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There are two main strategies developed to select diverse and representative
subsets of molecules, namely, cell-based methods and distance-based methods.

5.1 Cell-Based Methods

Cell-based methods divide the space defined by a set of molecular descriptors into
a finite set of “bins” or “buckets”. Each molecule is then assigned to one of the
bins. Structurally similar molecules will occupy the same or adjacent bins and
dissimilar molecules will occupy bins that are spatially well separated. A diverse
subset of molecules can be identified by selecting a single molecule from each
of the occupied bins. Databases can be compared by examining the occupancy of
bins with molecules from different sources. For example, commercial databases
such as Comprehensive Medicinal Chemistry (2003), World Drug Index (2002),
and Maccs Drug Data Report (2003) contain molecules that can be used to define
the historically medicinally active volume (bins) of chemical space. Compounds in
another database, or collection, that fall within the bins defined by these databases
can then be selected for biological testing.

Cell-based methods have the advantage that they are intuitive and computa-
tionally more efficient than many distance-based methods. However, cell-based
methods suffer from a problem known as the “curse of dimensionality.” Consider
a database with each molecule described by 20 molecular descriptors. Subdividing
each molecular descriptor into merely 5 segments (or bins) will result in 520, or
approximately 1014 bins. Even with large chemical databases, most of the bins will
be empty and many bins will contain a single molecule. Outliers wreak havoc. Just
one molecule whose molecular descriptors take on extreme values will cause the
majority of molecules to be allocated to a small number of bins. In either case, a
cell-based method will present problems in selecting a diverse subset of molecules.
Thus, cell-based methods require a significant reduction in dimensionality from
the many possible molecular descriptors, attention to outliers, and careful con-
sideration of how to subdivide each dimension. An application to drug discovery
screening, which addressed the issues of outliers and dimensionality, was applied
to large databases by Cummins et al. (1996).

5.2 Distance-Based Methods

Statistics has a long-standing role in design of experiments. There is a long history
of the use of information optimal designs (for example, D-optimal designs), which
consist of the most informative points and are useful in designed experiments
where the “true” model is known. Space filling designs are used in numerous
contexts including geographical modeling (literal space filling), modeling response
surfaces, multivariate interpolation, and chemical library design.

A more in-depth discussion of three selection methods that are computationally
feasible with very large chemical databases is now given to highlight the issues
that must be considered when applying many of these molecular diversity selection
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methods. The three design methods described here are edge, spread, and coverage
designs. Each design method optimizes a specific objective.

� Edge design objective: obtain minimum variance estimates of parameters in a
linear model.

� Coverage design objective: select a subset of molecules that is most represen-
tative of the entire library. Heuristically, the distance from the chosen subset
to the remaining candidate points should be small. One might imagine a set of
umbrellas positioned to cover as many candidate points as possible.

� Spread design objective: select the maximally dissimilar subset of molecules.
This requires maximizing the distance of points within the subset from each
other. One analogy for this is electron repulsion.

Edge designs are often constructed using D-optimal design algorithms.
Molecules selected using D-optimal designs populate the edge of descriptor
space by first filling in the corners and then moving around the boundary. Edge
designs are appropriate when one intends to fit a linear regression model where
the descriptors are the predictors in the model, for example, if biological activity
is modeled as a function of the descriptors. This is usually the situation in lead
optimization, rather than lead generation.

Spread and coverage designs are space-filling designs. Let C be the candidate
set, that is, the set of possible design points. Once the criterion (space filling) is well
defined, selecting the points M ⊂ C to be space filling is simply an optimization
problem.

The objective of a spread design is to identify a subset of molecules in which
the molecules are as dissimilar as possible under a given similarity metric. For a
given metric to measure the similarity of a subset, all subsets of size k (plus any
molecules previously selected) could be evaluated and the subset that produces
the lowest similarity measure chosen. In practice, simple non-optimal sequential
algorithms are often used to approximate the maximally dissimilar subset: two
such algorithms are described below.

1. Maximum Spread Algorithm

The goal: out of all
( n

k

)
subsets of k molecules from a candidate set C , find the

subset M∗ where dis(M∗), defined in (1), is largest. The problem is that it is not
feasible to enumerate and evaluate all possible subsets. The solution is to use a
sequential approximation (greedy algorithm).

a. Select the first compound from the edge of the design space.
b. Select the second compound to be most distant from the first.
c. Select subsequent compounds in order to maximize the minimum distance to

all previously selected compounds.

This is the algorithm proposed by Kennard and Stone (1969). At Lilly we have
focused on an efficient implementation of this approach applied to large chemical
databases and have not implemented design optimization due to the marginal
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Figure 3. Spread design for fictitious example. (Reproduced from Higgs et al., 1997 with
permission.)

design improvements and increased computational time. To illustrate, the SAS
(2003) OPTEX (CRITERION = S ) procedure was used to select 20 points from
the 1400 two-dimensional points shown in Figure 3 using a modified Fedorov
optimization algorithm (Cook and Nachtsheim (1982)). The OPTEX procedure
seeks to maximize the harmonic mean distance from each design point to all other
design points. Eighty different designs were generated using the sequential method
of Kennard and Stone and compared with those obtained by the modified Fedorov
optimization method. On average, the Fedorov optimization generated a design that
was 8.5% better than that obtained from the simple sequential selection method
but required eight times more computational time. In larger data sets of 200,000
or more compounds this can mean a choice of eight hours versus three days to find
a design.

2. Maximum Coverage Algorithm

Define the coverage of a set M, where M ⊂ C as:

cov(M) = 1

n

∑
α∈M

d(a, C\M),

where C\M is the set C with the set M removed. The goal: out of all
( n

k

)
subsets

of k molecules with descriptor vectors in C , find the subset M∗ where cov(M∗)
is smallest. This is often approximated using cluster analysis (see Zemroch,
1986).

In Section 5.3 the different design types are compared.
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5.3 Graphical Comparison of Design Types

Figures 3–5 show a fictitious two-dimensional data set reproduced from Higgs
et al. (1997) with permission. The data set contains 1400 hypothetical molecules
and is constructed to illustrate the differences between edge, spread, and cov-
erage designs. The data set was constructed to have five tightly packed clusters
(bivariate normal), two loosely packed clusters (bivariate normal), and molecules
uniformly distributed over the two-dimensional design space. For illustrative pur-
poses, eight molecules were randomly chosen and labeled with an “X” as having
been selected in a previous design. Future selections should complement these
eight molecules. The data were simulated in two dimensions to depict how a
pharmaceutical compound collection might appear in some two-dimensional pro-
jection. Certain regions are sparse with low density whereas other regions are
highly clustered, reflecting the synthetic legacy of the company.

Figure 4 shows 20 molecules selected using an edge (D-optimal) design to
augment the previously selected molecules. Two quadratic terms and one linear
interaction term were included in the model used to select this design in order to
force some interior points into the selection. Figure 5 shows 20 molecules selected
using a k-means clustering approximation to a coverage design to augment the
previously selected molecules. Figure 3 shows 20 molecules selected using the
Kennard and Stone approximation to a spread design (see, for example, Johnson
et al., 1990) to augment the previously selected molecules.

Although not shown in the figures, a random selection is often considered the
baseline method of subset selection. Random sampling typically selects many
molecules from the dense clusters, and several molecules near the previously
selected molecules. Spread designs select the most diverse subset of molecules

Figure 4. Edge design (D-optimal with interactions) for fictitious example. (Reproduced
from Higgs et al., 1997 with permission.)
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Figure 5. Coverage design for fictitious example. (Reproduced from Higgs et al., 1997
with permission.)

(relative to the other methods presented here), including molecules near the edges
as well as throughout the design space. Spread designs ignore the density of the
candidate points and focus rather on efficient exploration of the space populated.
Coverage designs select molecules near the center of clusters. Molecules near the
edges of the design space are naturally avoided because they are unlikely to be
near the center of a cluster.

5.4 Combinatorial Chemistry Example

This example illustrates the usefulness of a tool that assigns a rank ordering to
molecules in a set. A combinatorial chemistry collection at Lilly consisted of a
number of separate libraries. The question arose as to which of the libraries was the
most diverse. To answer this question, a spread design was used to rank the combi-
natorial molecules. We pooled 22 combinatorial libraries (105,640 molecules) with
a set of 32,262 corporate library molecules. We rank ordered the combinatorial
molecules relative to the corporate library molecules; that is, the corporate library
molecules were marked as pre-selected and the task was for the combinatorial can-
didates to augment them as well as possible. The spread design chose molecules
from the pool irrespective of which library they came from—the only criterion
was their diversity. We examined the cumulative number of molecules selected
from each combinatorial library as a function of spread design rank, as follows.
The first molecule chosen was the one most dissimilar to the corporate collection
and received a rank of 1. The next molecule was that which was most dissimilar
to both the corporate collection and the first molecule, and received a rank of 2,
and so on. Libraries that were drawn from most frequently by the algorithm in
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(a) (b)

Figure 6. Combinatorial libraries comparison: cumulative number of molecules selected
versus the rank of the spread design for each of 10 random orderings of molecules within
(a) Library A; (b) Library B.

the early stages (early ranks) were taken to be the most diverse libraries. In the
case of Figure 6, library A was far better than library B at augmenting the current
collection.

This example shows how spread designs can be used to solve practical problems.
There is always a descriptor selection problem, as chemists continue to invent new
molecular descriptors. Which should be used? Which molecular similarity measure
performs best? Controlled experiments are expensive. Simulation can be used as
a guide.

All of this effort is invested in the first of a number of iterations in the drug
discovery cycle and the later stages are much more rewarding. At Lilly, we move
as quickly as possible into the predictive modeling stages.

6 Machine Learning for Predictive Modeling

Machine learning is defined as the use of algorithms to generate a model from
data, which is one step in the knowledge discovery process, applied in the context
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of QSAR (last row of Table 2). The last decade of machine learning advances has
seen tremendous increases in prediction accuracy, largely due to model averaging
techniques. A good starting point for reading about such ensemble methods is
the paper of Breiman (1996) and a valuable discussion about algorithmic versus
parametric modeling approaches is provided by Breiman (2001b). Hastie et al.
(2001) gave a broad overview of statistical learning (see, especially, the figures on
pages 194 and 199). Predictive models can serve as useful tools and have made
substantive contributions to many disciplines.

6.1 Overview of Data Handling and Model Building Steps

Figure 7 gives a brief layout of sequential steps for a typical data modeling exercise.
The first step, which is by far the most time consuming, starts from a representation
of the structures of the molecules and ends with a “training set” of descriptors to
be used in the model selection step. Medchem filtering, in step 1, is an application
of expert judgment to chemical structural data. Certain fragments of molecules are
known to be highly reactive, or carcinogenic, or unstable, or otherwise undesirable,
and these molecules can be eliminated at this first step with a simple rule-based
algorithm. Data cleaning is, by far, where most of the time is spent.

The data cleaning steps may involve the removal from the data frame of columns
(of descriptor values) that are constant or nearly constant, imputing missing values
and eliminating columns that are redundant due to a strong relationship with other
columns. All these steps are easily automated. Approximate algorithms can easily
be developed that are more than 100-fold faster than those available in commercial
packages.

The next step of data cleaning is to perform a replicate and pseudo replicate
analysis of the experimental values. When replicate data are available, highly
discrepant results can point to problems with the experimental data. When replicate
results are not available, pseudo replicates are almost always present in the data.
Often the same chemical structure exists more than once in the results file, where
the different identifiers refer to different batches of the same material. Thus, a

Predictive Modeling Tool Architecture

Figure 7. Steps involved in predictive modeling.
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large discrepancy in the biological response for two such identifiers suggests that
a follow-up meeting with the appropriate biologist is needed in order to resolve
the experimental discrepancies.

Another aspect of data cleaning arises when data come from different labo-
ratories. Then one is faced with the task of placing the results in a reliable and
consistent context (a sort of “metaanalysis”). Another data cleaning task involves
the imputation (estimation) of missing values. Often the programs that compute
descriptors will fail on unusual molecules and then those molecules are usually
removed from further consideration. However, sometimes a failure is not a reflec-
tion of the desirability of the molecule and imputation of the missing values is then
a reasonable strategy.

The final portion (the sampling step) of the first step of Figure 7 is to create a
training set which is the set of data to be used for fitting the model in the model
selection stage. This may be done in several different ways. The simplest is merely
to take random subsamples of the data and to split the data into training and test data.
A more rigorous approach involves splitting the data into a training, validation,
and test set (Hastie et al., 2001, pages 195–196), where the test set is used only
once for assessing the error of the final model (after the model selection studies
have finished) and the training and validation sets are used for model selection to
compare competing modeling methods.

The “design” question of what proportion of the data to use for training, relative
to the test set, is an important one. If the test set is too small, the estimates of error
will be unreliable, highly variable, and likely to have a high downward bias. On
the other hand, if the training set is too small the estimates of error will have high
upward bias.

The second step shown in Figure 7 lists the actual model training steps. These
typically involve a model selection exercise in which competing modeling methods
are compared and a choice of one or more modeling methods is made. Listed in
the figure are four of the many popular classes of modeling approaches. We use
all of the methods listed; see Section 6.3.

6.2 Error Rates

Some of the examples and discussion in this chapter draw on the two-class classi-
fication problem, which here is “hit” versus “inactive”. The word “active” refers to
a validated hit, that is, a molecule that truly does exhibit some level of the desired
biological response. A key point is that an assay is itself an estimator. With this in
mind, definitions and a discussion of error rates are given in the context of predic-
tive models. Borrowing from the terminology of signal detection, the “sensitivity”
of a model refers to the fraction of observed hits that are classified as (or pre-
dicted to be) hits by the model, and “specificity” refers to the fraction of observed
inactives classified as inactives by the model. An observed hit is not necessarily
an active molecule, but simply a molecule for which the primary screening result
exceeded a decision threshold. Whether such a molecule turns out to be an active
is a problem that involves the sensitivity of the assay, but the task at hand is for
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a model to predict accurately the primary screening outcome and to assess the
accuracy of the model for that purpose.

Let Î denote “predicted by the model to be inactive” and I denote “observed
to be inactive in the assay by exceeding the decision threshold”, with analogous
definitions for Â, “predicted to be a hit”, and A, “observed to be a hit”. With the
null hypothesis that a compound is inactive, we have:

specificity = P( Î | I ) = P(model prediction − | observed −)

P(Type I error) = P( Â | I ) = P(false positive) = 1 − specificity.

Similarly, 1 minus the sensitivity gives the probability of Type II error or the
false negative rate:

sensitivity = P( Â | A) = P(model prediction + | observed +)

P(Type II error) = P( Î | A) = P(false negative) = 1 − sensitivity.

The complementary rates are obtained from the opposite conditioning: the frac-
tion of model-predicted hits that are observed hits (A | Â) and the fraction of
model-predicted inactives (I | Î ) that are observed inactives. We call these the
“positive discovery rate” and “negative discovery rate”. It is important to look at
these conditional probabilities; a very clear example is in the analysis of gene chip
microarray data where the false discovery rate is 1 minus the positive discovery rate
as defined above and in Chapter 6; an excellent discussion is given by Benjamini
and Hochberg (1995).

An example in the context of blood–brain barrier (BBB) predictions (see
Section 6.5) is shown in Figures 8 and 9. Data from different laboratories at Lilly
and from various literature sources were pooled together and molecules were as-
signed binary class labels, BBB+ and BBB−, depending on whether they crossed
the blood–brain barrier. A random forest model, defined in Section 6.3, was trained
on this data set and molecules that were not part of the training set (called “out-of-
bag” in the bagging or random forest terminology) were predicted to be hits BBB+
or inactive BBB− according to a particular score/decision threshold. These pre-
dictions were evaluated and three rates were examined: sensitivity, specificity, and
positive discovery rates—shown as a function of decision threshold in Figure 8,
where the scores are multiplied by 10. If the goal is to obtain equal sensitivity and
specificity rates (a common practice), then the optimal threshold is 0.778. Because
both sensitivity and specificity are conditioned on the observed class labels, we
feel it is important to include a rate that conditions on the predicted score or class
label. Thus we include the positive discovery rate in our analysis.

Balancing these three rates equally yields an optimal threshold of 0.846. Both
thresholds are indicated by vertical lines in Figure 8. Figure 9 shows the actual
predicted scores for the molecules that do cross the blood–brain barrier (BBB+)
as well as those that do not (BBB−). The false positive and false negative rates
are, of course, direct consequences of which threshold is chosen. The appropri-
ate threshold depends on the goal. For example, if the project is a neuroscience
project where BBB+ is the goal, it may be that the team wants to find and reject
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Figure 8. Sensitivity, specificity, and positive discovery rate as a function of deci-
sion threshold; the two reference lines correspond to two decision thresholds. The
rates are estimated from predictions made for molecules not in the training set of the
model.

compounds that are BBB− at an early point. Then, the goal would be to maxi-
mize sensitivity or to maximize the negative discovery rate (while realizing that
going too far with this means losing a number of “good” compounds as well),
and an appropriately large weight could be given, say, to specificity in computing
the weighted average of the three rates to obtain an optimal threshold for that
purpose.

6.3 Machine Learning Methods

Some of the more popular predictive modeling methods used in drug discovery
include linear methods, tree-based methods, k-nearest neighbors, and kernel meth-
ods. In this section, a brief outline of these methods is given, together with refer-
ences for reading and further details.

Linear methods include simple linear regression, multiple linear regression,
partial least squares, logistic regression, and Fisher’s linear discriminant analysis;
see Hansch et al. (1962), Frank and Friedman(1993), and Hastie and Tibshirani
(1996b). Tree-based methods are some of the most widely used methods today;
see Breiman et al. (1984) and Rusinko et al. (1999). Bagging is a generic strategy
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Figure 9. Random forest BBB predicted scores for molecules assigned as BBB+ and
BBB−; horizontal reference lines correspond to two decision thresholds. All predictions
(scores) are for molecules not in the training set.

that is useful in many contexts including tree-based methods. It was introduced
by Breiman (1996) who motivated the strategy through the concept of unstable
predictors. The bias and variance properties of aggregated predictors were further
studied by Breiman (1998). Random forests is an improvement to the strategy of
tree-based models combined with bagging. Details are given by Breiman (1999,
2001a). This is currently the top-rated algorithm in our project work at Lilly.

A simple, yet useful, and often highly accurate method is that of K-nearest
neighbors described, for example, by Fix and Hodges (1951) and Dasarathy
(1991). A notable recent advance in this method is given by Hastie and Tibshirani
(1996a,b). In the case of a single descriptor, kernel regression and smoothing
splines are useful methods of model fitting. However, far more general is the re-
cent development known as support vector machines. This method is based on a
particular hyperplane in the descriptor or property space that separates the active
from the inactive compounds. This plane has the largest possible distance from
any of the labeled compounds and is known as the maximum margin separating
hyperplane. Support vector machines avoid overfitting by choosing the maximum
margin separating the hyperplane from among the many that can separate the pos-
itive from negative examples in the feature space. Good starting points for reading
about this topic are Burges (1998), Weston et al. (2002), and Vapnik (2000).
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Transduction is another generic strategy that is an important recent advance.
Standard practice in machine learning is to use inductive learning, that is, taking
known molecules and, through training or fitting a model, generating a general un-
derstanding of the underlying relationships and then applying that general knowl-
edge to make a prediction about a new molecule, for example, whether it will cross
the blood–brain barrier. If the ultimate goal is to make predictions for a finite set of
observations, then the rationale behind transduction is that the inductive learning
step is not necessarily needed. Transduction skips the inductive learning step and
goes directly to the prediction of the future examples. A nice heuristic explanation
of this is given by Vapnik (1998, page 355). The general model that is best when
applied to a universe of observations may not be the model that is best for the
specific subset of observations under current scrutiny.

6.4 Model Selection and Assessment

Usually a variety of different models can be applied to the same data set, each
model capturing part of the structural information relating explanatory variables
to responses and also part of the noise. The objective of model selection may be
considered, in a general sense, to be that of optimizing the quality of inference.
In practice this can take several forms including discovering the “true” model,
interpreting or understanding what natural process is driving a phenomenon, or
simply choosing the model that gives the most accurate predictions on new data. In
the QSAR drug discovery context, this latter objective is most often the appropriate
one.

It is important to distinguish between algorithms and models. An algorithm
creates a model, given data and tuning parameters as input. The model is a static
entity. At Lilly we perform studies to select the best algorithm for a data set as
well as the best model for a given algorithm, and finally to assess the error for a
given model. A crucially important issue in model selection is the issue of model
complexity, because training set error tends to decrease and test set error tends to
increase with increasing model complexity; see, for example, Hastie et al. (2001),
pages 194–199.

For the example of variable subset selection in multiple linear regression, the
R2 statistic increases monotonically as the number of variables added to the re-
gression model increases, leading to the situation dubbed as overfitting. Various
methods have been devised for avoiding an overfitted model. Some methods are
simple adjustments to the familar R2 statistic, such as the adjusted R2 (R2

adj ) which
adds a simple penalty for the number of covariates included in the model. Other
popular methods include the Bayesian Information Criterion (BIC), the Akaike
Information Criterion (AIC), and Mallow’s Cp; see, for example, Burnham and
Anderson (2002). In the context of high- or medium-throughput screening, when
little is known about a target or an SAR, and designed experiments are not possible,
there are no a priori models that can be assumed and, in any case, the key interest
in early stage screening is in predictive accuracy of models rather than inference
about model parameters.
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Table 3. Size of the model space for multiple
linear regression (MLR) with h descriptors and
for binary tree models.
k MLR Tree model

1 2 2
2 4 9
3 8 244
4 16 238,145
5 32 283,565,205,126

When the model space is large, the problem becomes extreme. One solution is
model averaging, in line with Breiman (1996). One good use for this approach is
in recursive partitioning or tree-based models. The model space for recursive par-
titioning is huge. Consider the special case of binary descriptors and an algorithm
that iteratively partitions data into two parts, depending on descriptor values. Once
a descriptor is used to split the data, it can never be used again. Thus the model
space is much smaller than when the descriptors have more than two values. For
binary descriptors, the number of possible tree models T (h) for a data set with h
descriptors can be computed from a simple recursive formula:

T (h) = 1 + h · [T (h − 1)]2, (2)

where h = 0 corresponds to the case of no descriptors where the tree model is the
null model composed of the overall mean. For multiple linear regression and a
simple additive model, there are 2h possible models for h descriptors. There is a
rough analogy between the choice of parameters in the regression model and the
choice of cutpoint along each descriptor in recursive partitioning. Table 3 shows
the size of the model space for multiple linear regression and for binary descriptor,
two-way split tree models, for up to five descriptors.

With great flexibility in model choice comes great power but also great danger
of misuse. As the model space spanned by tree models is huge for h ≥ 4, there is
need for both a computationally feasible way to search the space and for some way
to guard against finding spurious relationships in the data. The bagging method of
Breiman (1996) was a key advance in this area.

For regression models, one metric that we use for sorting the molecules by
their predicted activity, which is considered proprietary at Lilly, is similar to a
weighted variant of Spearman’s ρ. This metric, labeled S, ranges from −1 to +1
and compares the predicted and actual responses. The weights are higher earlier in
the sorted list to emphasize that, in practice, it is the top of the sorted list that will
identify the molecules selected for testing, and that accuracy farther down the list
is not nearly as important. We have very little interest in accurately distinguishing
the relative activity levels of molecules that are all considered inactive, but a great
deal of interest in the degree to which actives will rise to the top of a sorted list
of molecules. Quality assessments have been assigned to various values of S, but
these levels in isolation are not meaningful; a very high value of S (or R2, or any
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other metric) can easily be obtained for observations that are in the training set of a
model, but does not predict how the model will perform on untested molecules. The
thresholds established are based on appropriate test hold-out results, as described
below. With this in mind, a value of zero is equivalent to random (the mean value
resulting from scrambling the predicted responses and computing S many times). A
value of 0.40 is considered a minimum standard for a model to be used for decision
making at Lilly. Such a model would be considered weak and would not be used
at all by some scientists. A model with an S value of 0.60 is considered a solid and
useful model and an S value above 0.80 indicates a very good model. A difference
in values of less than 0.05 is not considered to be meaningful. Thus, if one were
doing model selection and two competing models were statistically significantly
different but the difference in mean S were below 0.05, the two models would be
treated as equivalent. At Lilly, we couple the concept of significant differences
with the concept of meaningful differences.

6.5 Example: Blood–Brain Barrier Penetration

We examine a data set of 750 molecules with blood–brain barrier penetration
measurements. An important aspect of drug design is the consideration of the
potential for penetration of the blood–brain barrier by any new candidate drug
molecule. Whether the goal is for the potential drug to cross or not to cross the
blood–brain barrier, the ability to estimate the blood–brain ratio is an essential part
of the drug design process. Determination of this aspect of a molecule is a low-
throughput operation and thus having the ability to prioritize molecules in silico
through the use of predictive models adds considerable value to the drug discovery
process.

The penetration of a compound across the blood–brain barrier is measured
experimentally as the ratio BB of the concentration of the compound in the brain
to that in the blood. This ratio is thought to be related to local hydrophobicity,
molecular size, lipophilicity, and molecular flexibility (Crivori et al., 2000), but
no explicit mathematical relationship has been given. The 750 available results,
from an in situ experiment with rats, are responses known as Kin values. These are
intended to be related to the BB ratio of these compounds in humans. The current
goal of the analysis is to select a subset of descriptors (covariates) from about 1000
possibilities and a modeling method that gives good predictive accuracy of the Kin.
At Lilly, the modeling methods used do the subset selection intrinsically. In this
example we compare just two methods: one is based on partial least squares (PLS)
with a model-averaging strategy, and the other is the random forest algorithm of
Breiman (1999).

We split the data set into two equal parts at random. We train our algorithms
on one half and score the other half as test data. The idea is to study how the
methods behave on new untested molecules. Whether a 50/50 split is the best
choice is discussed shortly; here we consider the question of how many repetitions
are needed. We started with 200 repetitions, each a random 50/50 split of the 750
data points into equal-sized training and test sets, where after each split the model
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was retrained and the test hold-out set was scored. The conclusion favored the
random forest model over partial least squares, and a natural question arises as to
whether smaller tests would lead to the same conclusion.

6.6 Training and Test Set Sizes

Two key questions in model selection are what proportion of molecules to use
for a training set versus a test set when doing random splits of the data, and how
many different training/test splits should be analyzed to obtain reliable inferences
about model performance. The number of repetitions needed is surprisingly low
and often the same decisions are made whether the number of training/test splits
used was 200 or 20 or 10.

Miller (2002, pages 148–150) recommended fivefold to tenfold validation, so
that effectively 80% to 90% of the data should be in the training set. Another
recommendation is that n3/4 of the data should make up a training set (randomly
selected) and the rest predicted as test hold-out data; see Shao (1993) for details.
However, it is easy to show that use of the n3/4 rule does not perform well in
settings such as drug discovery where prediction accuracy, rather than selection of
the true model, is the objective. We are sometimes better off with a model that is
not the true model but a simpler model for which we can make good estimates of
the parameters (leading to more accurate predicted values).

In order to choose the model that predicts most accurately for the test data, we
need a new rule or a new information criterion. The usual criteria, the Akaike
Information Criterion (AIC), the Bayesian Information Criterion (BIC), Leave
One Out (LOO or Qsquared), and so on, are all insufficient for our needs. This
motivated Kerry Bemis to propose a new measure which he called predictive R2

or pR2 (described below).
Although this is an area of ongoing research, the current opinion at Lilly is that,

when comparing candidate modeling methods in a model selection exercise, it
is best to look at the entire learning curve (leave 90% out up to leave 10% out)
and make a judgment about learning algorithms based on the performance across
the whole curve. This we call a learning curve (but note that the phrase is used
in other contexts with other meanings). Figure 10 shows the performance of the
two candidate modeling methods applied to the BBB data set of Section 6.5. We
generated 20 sampling runs for each level of Ptrain, where Ptrain is the proportion
of the data assigned randomly to the training set, and used the two methods over a
broad profile of training set sizes. The two lines connect the means of the values
of S obtained for the two methods at each Ptrain level. The same train/test splits
were used for both the PLS and the random forest methods. Thus a paired or block
analysis was done. Here, we could ask whether the random forest method is supe-
rior over all Ptrain levels and use a test such as Tukey’s HSD (Honestly Significant
Difference; see Tukey, 1997, Kramer, 1956). This is perhaps conservative in that
we are not interested in all of the pairwise comparisons but, as we can see from
simply looking at the plot, any formal comparison is going to give an unambiguous
result for this data set.
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Figure 10. Model selection and assessment diagnostic: performance measure S for ran-
dom forest and partial least squares (PLS) methods applied to the BBB data for various
percentages of the data (Ptrain) in the training set.

There is a minimum size of training set necessary for a statistical model to be able
to reveal links between vectors of descriptor values and biological activity. This
has been called “statistical traction” by Young et al. (2002). Suppose a particular
pharmacophoric feature is important for the binding of molecules to a receptor.
Having one molecule that binds and has that feature is not sufficient for that feature
to be detected as significant. Several examples of molecules that bind and contain
that feature are needed before the statistical algorithm can detect it. In the model
selection stage, it is possible to place a downward bias on the estimate of the
predictive power of an algorithm by selecting for the training set a subset of the
data that is too small. There may be a lack of “statistical traction” in the training
subset that would not exist when the model is trained on all the available data. On
the other hand, when the proportion of data selected for the training set is very
large, and the test set is correspondingly small, it is more likely that a given test set
molecule has a very similar “neighbor” in the training set and this gives an upward
bias to the estimate of predictive power of the model.

Once the choice of modeling method has been made, all available data are
used to train a final scoring model (to be used in the third step of Figure 7).
Sometimes sampling issues arise here; for example, the data sets can be very
large, and for classification data there is usually a huge imbalance in the number



4. Pharmaceutical Drug Discovery: Designing the Blockbuster Drug 99

of examples of one class compared with another. In drug hunting, there may be
400,000 examples of inactive compounds and as few as 400 active compounds.
If the available modeling methods do not deal well with this situation, there may
be motivation either to create a training set that alleviates such a mismatch, or to
create a smaller training set to reduce the computational burden. Either of these
issues may or may not be related to the problem of model selection. One strategy
for selecting a subset of available data for training a model is as follows.

1. Select all the active compounds.
2. Select a small subset of the inactive compounds whose nearest neighbor among

the active compounds is a relatively short distance (by some distance measure
such as those of Section 4.5). The motivation here is to preserve the boundary
between classes.

3. From the remaining inactive compounds, select a maximally diverse subset (as
described in Section 5). This augments the space beyond the boundary with an
optimal exploration of the chemical space represented by inactives.

At Lilly we have focused on predictive accuracy in most of our project work.
Predictive accuracy and interpretability tend to be inversely proportional. An active
area of research at Lilly is an investigation of the question of ways in which the
model can help us design a better molecule. This may involve interpretation, and
there are excellent tools that can be used for this, such as partial dependence plots.
It can also be approached through virtual screening—a scientist proposes a scaffold
or series and the model provides an evaluation of the prospects of that idea.

6.7 The Predictive R2 of Bemis

In the area of linear models, Bemis has proposed a “predictive R2” or pR2. Until
2004 this criterion was treated as a trade secret at Lilly. The pR2 does not in-
volve training/test split cross-validation, but rather uses an information-theoretic
criterion motivated by ideas of Shi and Tsai (2002). For a model with h parameters,

pR2
h = 1 − exp

[
RI Ch

k − h − 1
− RI C0

k − 1

]
,

where RI C0 corresponds to the Shi and Tsai RIC (residual information criterion)
for the null model. To give more clarity, we give an alternative notation of the pR2,
building up from the familiar R2 to the adjusted R2 and finally to the pR2. For a
linear model with h parameters:

R2
h = 1 − SSEh

SSE0
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0
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Figure 11. Performance of competing criteria: the number of descriptors in the model, for
various criteria versus the root mean squared prediction error (RMSEP) in forward selection.
(Reproduced with permission from the author.)

where

biash = h + 1

k − h − 1
[log(k) − 1] + 4

(k − h − 1)(k − h − 3)
.

Figures 11 and 12 illustrate the performance of the pR2 compared with several of
the currently popular criteria on a specific data set resulting from one of the drug
hunting projects at Eli Lilly. This data set has IC50 values for 1289 molecules.
There were 2317 descriptors (or covariates) and a multiple linear regression model
was used with forward variable selection; the linear model was trained on half the
data (selected at random) and evaluated on the other (hold-out) half. The root mean
squared error of prediction (RMSE) for the test hold-out set is minimized when the
model has 21 parameters. Figure 11 shows the model size chosen by several criteria
applied to the training set in a forward selection; for example, the pR2 chose 22
descriptors, the Bayesian Information Criterion chose 49, Leave One Out cross-
validation chose 308, the adjusted R2 chose 435, and the Akaike Information
Criterion chose 512 descriptors in the model. Although the pR2 criterion selected
considerably fewer descriptors than the other methods, it had the best prediction
performance. Also, only pR2 and BIC had better prediction on the test data set
than the null model.

6.8 Common Errors

Predictive modeling, statistical modeling, and machine learning are very open
areas in the sense that the barrier to admission is very low. All that is needed to
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Figure 12. The Bemis pR2 for an example data set. The “true” observed R2 based on the
test set, and the pR2 estimated only from the training set. (Reproduced with permission
from the author.)

start experimenting in this area is a PC and a data analysis package. Below is a list
of the most frequent errors as they occur in this field.

1. Belief that a very small p-value for a predictor (for example, a biomarker)
is more likely to occur with high predictive accuracy. The multiple testing
problem must not be ignored, and the false discovery rate (FDR) controlled;
see also Chapter 6.

2. Failure to pre-process and clean the data. Sometimes even data with missing
values are jammed through a learning algorithm with little thought.

3. Use of an unsupervised algorithm to do the job of a supervised algorithm. For
example, a cluster analysis or self-organizing map is used in combination with
a post hoc analysis to do prediction.

4. Failure to evaluate a method on test data.
5. Test data set too small, with these consequences:

a. Prediction error cannot be accurately estimated on each hold-out part.
b. The test sample and the training sample are likely to be similar in their

descriptor values.
6. “Cheating” in model assessment: using the whole training set to select descrip-

tors, and then splitting the data into train and test sets, and training the model
on the descriptor set selected from the whole training set.



102 David Jesse Cummins

7. Comparison of methods with the same type of feature selection forced on all
methods, rather than letting each method do what it does best.

8. Confusion of model selection with model assessment. If one chooses the model
with the lowest cross-validated error among competing models, that error is not
a valid estimate of the prediction error of that model (selection bias).

7 Iterative Medium-Throughput Screening

Researchers who use high-throughput screening (HTS) methods are troubled with
many obstacles such as poor data quality, misleading false-positive and false-
negative information, and the need to confirm and expand the SAR of the identified
lead candidates. Additionally, HTS strategies lead to the large-scale consumption
of valuable resources such as proteins and chemicals from the inventory, and may
not be applicable to all targets (Major, 1999). The problem is fueled, in particular,
by the prospects of expanding universes of targets—an increase by a factor of 10 is
expected (Drews. 2000)—that will lead to an explosion of costs. As a consequence,
there is a need not only to increase the scope of screening, but also the efficiency of
each screening experiment. Hybrid screening strategies have been suggested that
unite in silico and in vitro screening in one integrated process.

Iterative medium-throughput screening (MTS) starts with a small (200 to
20,000) and “diverse” subset of compounds. This initial sample is subjected to
a primary screening where the main objective is to gather SAR data for predic-
tive model building. This is a key distinction from the older paradigm where
the primary objective is to obtain an initial set of screening hits, and any subse-
quent model building is an added bonus. Based on this first SAR, the corporate
inventory is screened in silico in order to identify a further, more focused set
of compounds, the focused library, for a second round of MTS. Several cycles of
testing–analyzing–testing can be applied aimed at either refining the SAR model(s)
or the identification of more active compounds. Abt et al. (2001) studied the influ-
ence of the size of the focused sample and the number of cycles on the effectiveness
of the computational approaches.

One factor that plays a role in the decision on how compounds are chosen
in a given cycle is the stage of a project. An early stage project may require
more diversity to be built into the selection process, whereas a later stage lead
optimization effort would draw much more heavily on predictive modeling and
expert judgement.

Active learning is a strategy that is iterative and where the selection of com-
pounds to test in the next iteration is based on all the currently available data (see,
for example, Warmuth et al., 2003 and Campbell et al., 2000). A key distinction
between active learning and other modeling strategies is that, in active learning,
the primary objective for selecting the next batch of compounds for testing is to
improve the model optimally, whereas in drug screening programs the primary
goal is to find as many potent (and usually novel) compounds as possible. This
distinction and the consequent effects are dramatic. In active learning, the most
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interesting compounds are the ones for which the model has had difficulty in the
assignment of a clear classification whereas, in a typical drug hunting program,
the most interesting compounds are the ones that are scored the most unambigu-
ously as active. This has downstream implications on what will come out of future
iterations of screening. The traditional business-driven approach will find good
compounds faster, but the active learning approach will generate better models
faster, and eventually lead to better exploration of chemical space, resulting in
finding the best compounds.

There is also an analogy with ancillary efforts such as toxicity testing. A drug
hunting project tends to focus on finding compounds with potency and selectivity
for the target of interest. When interesting compounds are found, they are submitted
for toxicity testing so that a small set of structurally related compounds is tested
for the toxic endpoint of interest. This places a handicap on any toxicity modeling
effort. If the goal is to develop a good toxicity model (which would reduce the
need for animal testing and reduce cycle time in the project), then compounds that
are not interesting from a potency standpoint would need to be tested for toxicity.
This would mean that the interesting potent compounds must wait their turn due to
limited capacity in toxicity testing. The long view, both in terms of active learning
for potency and for toxicity, might be to strike some balance between immediate
and future gains.

8 Virtual Screening and Synthesis

Virtual screening is a simple concept, arising from the need to break out from the
confines of the currently available set of in-house chemical libraries. It is a simple
matter to construct representations of molecules using computers, and this can
be done in a combinatorial manner. Usually one or more “scaffolds” are chosen—
these are the “backbone” of the molecule. Then a number of “substituents” are
chosen; these can be thought of as the “appendages” that gets attached to the back-
bone at various (preselected) locations. All (reasonable) combinations of scaffolds
and substituents can be made in silico and these structures form a virtual library.
The library may contain millions of molecules but it is more typical to see some-
thing of the order of 500,000 structures. This is because most virtual screening
efforts are knowledge driven; something is known about the SAR before the vir-
tual screen is attempted. Most of the molecules in the virtual library will not
exist in the corporate molecular stores. This virtual library is then the subject
of a modeling effort whereby the virtual library is prioritized and rank ordered,
with the most promising structures at the top of the list. The biological screening
is done virtually through the use of the predictive models applied to the virtual
library.

Some of the high-ranking structures may be very similar to structures that have
already been tested. These are removed from the list using molecular diversity
methods such as a Leader algorithm (Hartigan, 1975). In this context, the Leader
algorithm is not providing a cluster analysis, but simply a post-processing of a rank
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ordered list. From what is left, a relatively small number of molecules are then
synthesized and tested for biological activity. Because this is a relatively expensive
part of the process, it is usually important that some knowledge about the SAR
has been gained before the virtual screening is done. That knowledge could come
from literature sources or from prior early-stage screening.

9 Pooling

Pooling strategies can take numerous forms, as discussed in Chapter 3. In the drug
hunting screening context, chemical compounds can be pooled. Ten compounds
may be pooled together in a well and tested as a mixture. If the mixture is potent, the
individual components can then be tested. If the mixture shows no potency, it might
be assumed that the individual components are each inactive. This assumption may
sometimes be incorrect, as compounds may exert an antagonistic (or conversely,
synergistic) effect on each other. For the use of orthogonal arrays in the design of
a pooling study see Phatarfod and Sudbury (1994; and also Dorfman, 1943).

The design and deconvolution of pools in drug discovery screening has been
approached in different ways by a number of companies. In a highly specialized
experiment at Merck, Rohrer et al. (1998) pooled a staggering 2660 compounds per
well. The deconvolution of these results was done using chemical technology rather
than the informatics approach one might use following Phatarfod and Sudbury
(1994).

An interesting informatics strategy involves pooling covariates in a variable
subset selection context. Suppose one has a data set with hundreds of thousands
of covariates (descriptors), as happens in the drug discovery setting, and perhaps
one does not have a data analysis package capable of handling so many columns
of data. If the covariates are sparse binary, meaning that each column is mostly
zeros with a few ones (a typical scenario), one strategy for data reduction is to
pool columns together. One could take batches of, say, 100 columns and simply
add them, creating a “pooled covariate.” This data set is now 100-fold smaller, and
a forward selection method might be run to fit a model on the reduced data set.
Variables selected by such a procedure can then be collected and the individual
covariates unpacked and a second stage of variable selection performed on this
reduced data set.

10 Expectations for Discovery of Rare Events

The hit rate within a set of molecules selected by a virtual screen is primarily
determined by two parameters: the unknown proportion of p hits that exist in the
set of molecules scored and the false positive error rate (α) of the classifier used
for virtual screening. To a large extent, the statistics of rare events (true hits within
a large compound collection) leads to some initially counterintuitive results in the
magnitude of a hit rate within a set of molecules selected by a model.
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Most pharmaceutical companies expect to see hit rates in the 0.1% to 1%
range for a high-throughput screen. In the virtual screening context, when the
hits are a rare event (of the order of 0.1%) even very good predictive models can-
not be expected to lead to arbitrarily high hit rates for the molecules selected. It
is quite likely that marginal to good virtual screen models will result in no hits
identified in a subset of molecules selected by virtual screening.

The virtual screen can be considered as a classifier that makes a prediction about
whether a molecule is likely to be active or inactive in a biochemical assay. It can
be constructed from training data (for example, a QSAR model) or constructed
from a model of a binding site. For a given molecule in a virtual library, let the
null hypothesis be that the molecule is not a hit. Then, using the notation of
Section 6.2,

P(A) = p, P(Â | A) = 1 − β, P(Â | I) = α,

P(A | Â) = P(Â | A)P(A)

P(Â | A)P(A) + P(Â | I)P(I)
(3)

= (1 − β)p

(1 − β)p + α(1 − p)
. (4)

Equation (3), which is an application of Bayes theorem, is referred to as the
“Positive Predictive Value.” The parameter p is unknown but believed to be very
small (<0.01) for large virtual libraries. 1 − β is the power (or 1 – type II error,
where β is the false negative error rate) and α is the type I error, also called the
“size” of a test in the hypothesis testing context, or the false positive error rate.
The last equation defines the probability that a molecule is determined to be a hit
in a biochemical assay given that the virtual screen predicts the molecule to be a
hit. This probability is of great interest because it is valuable to have an estimate of
the hit rate one can expect for a subset of molecules that are selected by a virtual
screen.

The values of parameters p, α, and β can be varied to observe the effect on
equation (3). It is straightforward to verify that the “power” of the classifier (1 − β)
has relatively little effect on the hit rate observed in the subset of molecules selected
by a virtual screen. The influence of power is greatly reduced as the probability of
a hit existing in the set of compounds being scored decreases (the low prevalence
effect) and, for rare events, the relative importance of α is greatly intensified. Even
for less rare events, say a hit rate of 10% (disturbingly high in drug discovery,
suggesting nonspecificity in the assay), the effect of α dominates.

11 Drugability of Molecules: ADME, Solubility, Toxicity

The word drugability is often used to cover all aspects of a molecule beyond initial
potency. A potential drug compound must overcome many challenges in order to
be a successful therapeutic. Critical components of drug design include absorption,
permeation, distribution, metabolism, stability, specificity (does it do more than
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intended?), and toxicity (related but not identical to specificity). In this section,
some of these issues are discussed in more detail.

11.1 ADME

Many of the compounds entering clinical trials are discontinued, often due to issues
directly related to ADME: absorption, distribution, metabolism, and elimination/
excretion of a drug. Absorption is of paramount importance, being the extent to
which an intact drug is absorbed from the gut lumen into the portal circulation.
Distribution is important because the drug will not work if it is not transported to
the intended site. A compound may have potent effects in vitro screens involving
cells or enzymes, but in a living organism the compound may have no effect
because of a distribution problem. This can be due to a number of things; for
example, the compound may bind so tightly to proteins in the bloodstream that
it does not leave the bloodstream until it is eliminated by the liver. The opposite
extreme can be a problem as well, because proteins in the blood can be important
as transport mechanisms. In addition, the unbound drug may penetrate the wall
of the blood vessel so that a certain amount of protein binding is desirable. Most
pharmaceutical companies have models that predict the protein binding affinity
of compounds. Distribution is only one problem that can confound an SAR effort
when transitioning from in vitro to in vivo screens.

Two endpoints important to distribution are oral bioavailability and first pass
clearance; see Birkett (1990, 1991). Oral bioavailability is particularly important
because a drug that has, say, only 10% oral bioavailability would require a 10-fold
higher dose when given orally as compared with being given intravenously. Orally
administered drugs, after absorption through the gut lumen into the portal circu-
lation, must then pass through the liver before reaching the systemic circulation.
Pre-systemic or first pass extraction refers to the removal of drugs during this first
pass through the liver. First pass clearance is the extent to which a drug is removed
by the liver during its first passage from the portal blood on its way to the systemic
circulation. Oral bioavailability is the fraction of the dose that reaches the systemic
circulation as intact drug. It is apparent that this will depend both on how well the
drug is absorbed and how much escapes being removed by the liver. In fact, the
simple equation for bioavailability is

Ba = fraction absorbed × (1 − extraction ratio),

where the extraction ratio is the proportion removed by the liver. Thus if drug A
has 80% absorption and 75% extraction ratio, then the bioavailability of A is 20%.
The 20% alone does not tell us anything about the metabolism or the absorption
of the drug.

Because there are many ways to achieve a given level of bioavailability, it
makes sense to consider using a compartmental model to predict bioavailability
rather than simply training a model on a set of bioavailability results. The role
of metabolism tends to dominate most often and variability in drug response is
greatly influenced by this. Drugs that are efficiently eliminated by the liver often
have high variability in the plasma levels both within and between individuals
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because, in that case, slight changes to the extraction ratio can cause large changes
to the resulting bioavailability.

Treated as a special case of distribution is the ability of a molecule to cross
the blood–brain barrier (BBB). This fact is important to know, both for central
nervous system (CNS) drugs and for drugs that do not target the central nervous
system. There has been a flurry of research attempts to model and/or predict the
BBB propensity of molecules. Many of these efforts are statistically destitute; for
example, a research group may examine only a set of molecules that do cross the
BBB. Proper inference must involve examples of compounds that do not cross
the BBB as well as compounds that do and this falls in the domain of predictive
modeling and machine learning (see Section 6). The BBB is formed by the highly
selective capillaries of the central nervous system. Passage of drugs through the
BBB may occur by passive diffusion or from various specific uptake mechanisms,
many of which are there to supply nutrients to the brain. There are also mechanisms
for transporting substances out of the brain. P-glycoprotein (or Pgp) is an efflux
pump that removes many drug compounds from the brain. Thus BBB transport is
a complex phenomenon and modeling this is a challenging and ongoing research
topic in most pharmaceutical companies.

Metabolism is another critically important aspect for determining the fate of a
drug. If a drug is metabolized quickly, it may be excreted in the urine before it has
a chance to reach the intended site, but the full story is much more complicated
than this. Most successful drugs are lipid-soluble and are reabsorbed from the
kidney back into the bloodstream. These compounds undergo metabolism, which
is a way for the body to break down and ultimately eliminate a substance. The
liver uses a number of different enzymes to break a compound down into smaller
parts, called metabolites. A metabolite may either be pharmacologically similar
to the parent compound or harmless, but not pharmacologically active, or may
possess life-threatening toxicity. Thus it is essential to know into which of these
categories a drug falls and it is desirable to control this aspect in a favorable way.
Ideally a compound would metabolize at a moderate rate, neither too slowly nor
too quickly. Because humans are genetically diverse, the same compound will be
metabolized differently in different people. All of these issues are interdependent
and are illustrated in the following examples.

A major group of enzymes, not just in the liver but also in the intestines, lung,
kidneys, and brain, is known as the Cytochrome P-450 isoenzymes, often abbre-
viated as CYP450. Some drugs interact with these enzymes. A drug with a high
affinity for an enzyme will slow the metabolism of any low-affinity drug; for ex-
ample, grapefruit juice inhibits a number of CYP450s which results in higher than
expected levels in the body of the drugs that are metabolized by those CYP450s.

The inhibition of CYP450 isoenzymes by grapefruit juice lasts about 24 hours
and occurs in all forms of the juice—fresh fruit and fresh and frozen juice. There is
the potential for dangerous arrhythmias for patients taking cisapride, astemizole,
and terfenadine. Other substances may induce the opposite effect, that is, upregulate
the levels of the enzymes and result in faster metabolism, for example, smoking and
the ingestion of charbroiled meats may induce isoenzymes, resulting in increased
clearance of drugs (such as theo-phylline). The herb known as St. John’s wort
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causes an increase in the Cytochrome P450 enzymes, especially CYP 3A4, which
are responsible for the metabolism and elimination of many drugs. This is why the
birth control pill is rendered less effective by St. John’s Wort. But in addition to
being an inducer of CYP 3A4, St. John’s Wort is also an inhibitor of CYP 2D6.
Hence patients taking St. John’s wort are likely to experience an increase in blood
levels of therapeutic drugs that are metabolized by the 2D6 family (this includes
beta blockers, antidepressants, antipsychotics, cough suppressants, codeine, and
others) as well as a decrease in blood levels of drugs that are metabolized by the
3A4 family of CYP 450s (which includes antibiotics, HIV protease inhibitors,
antihistamines, calcium channel blockers, and others).

Just two decades ago, the FDA was uninvolved in issues regarding CYP450
metabolism, but currently there are stringent guidelines that must be met to ensure
that the metabolic fate of a drug is under control. There are genetic polymorphisms
in some of the genes expressing CYP450 subfamilies. For example, 5 to 10 percent
of Caucasians have polymorphic forms of the 2D6 subfamily; such individuals are
called “slow metabolizers.” There is a large list of drugs metabolized by 2D6 that
can pose a risk to slow metabolizers and dosing must be done carefully.

11.2 Solubility

Solubility plays a critical role in the absorption of a drug. A compound with poor
solubility may not achieve high enough levels in the stomach and intestine to be
absorbed well. However, it is generally true that highly soluble compounds lack
sufficient lipophilicity to cross the blood–brain barrier and so, if the compound is
an intended CNS drug, a balance must be maintained; see Amidon et al. (1995).

11.3 Toxicity

Toxicity is often related to ADME; for example, when a compound cannot be bro-
ken down and eliminated by the body it builds up toxic levels in the system. Some
other toxicity issues that have recently received heightened attention are discussed
below. Phospholipidosis (an adaptive storage response to drug administration) and
cardiomyopathy (a pathologic condition of the heart muscle) have been reasons
for the recent FDA withdrawal of drugs. Another issue concerns the need for addi-
tional assurance of the absence of any potential for QT prolongation (an effect on
electrical impulse conduction in the heart). Many classes of drugs induce QT pro-
longation, including antihistamines, antibiotics, antipsychotics, and macrolides.
QT prolongation can lead to sudden death. At least four drugs have been taken
off the market due to QT prolongation alone: Terfenadine, Sertindole, Astemizole,
and Grepafloxacin. Acquired long QT syndrome (LQTS) occurs as a side effect of
blockade of cardiac HERG K+ channels by commonly used medications. These
issues have inspired modeling efforts aimed at predicting these effects and using
those predictions to filter compounds in the early screening stages. Because these
models are less than perfect, false negative and false positive rates are an issue.
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A common approach to lead optimization is now parallel optimization, which
is discussed in the following section. This is an extremely challenging undertak-
ing because it requires the simultaneous control of several medicinal chemistry
components. Furthermore, many of these components are not independent and,
in fact, may even be negatively correlated. To do parallel optimization, it is also
necessary to generate drugability related information in the early stages of lead
optimization.

12 Multi-Objective Optimization Methods

Decisions in drug discovery are almost always multidimensional. Numerous cri-
teria must be managed in order to develop a successful drug: potency, selectivity,
toxicity, and ADME characteristics, and these tend to have conflicting trends so that
difficult decisions are forced on scientists. For example, Zyprexa is an excellent
antipsychotic drug but it causes weight gain in most people, a side effect of almost
all antipsychotic drugs. Why this happens is still being investigated and there are at
least six different hypotheses given in the literature. It is possible to modify an
antipsychotic drug so that it does not produce weight gain, but such modifications
may reduce the potency of the drug or introduce other side effects which may be
even worse. A common side effect, for example, of many antipsychotic drugs is
“extrapyramidal side effects” (EPS) which produce symptoms such as tremors,
rigidity, and slowness of movement. These are deemed by most to be worse than
weight gain. Less clear-cut trade-offs might involve the propensity for a molecule
to cross the blood–brain barrier versus the therapeutic effect desired. For example,
Benadryl is still a popular drug because, in spite of its tendency to induce a feeling
of somnolescence, it is an extremely potent histamine (H1) blocker. Specificity
is a problem faced by virtually every project team in drug discovery. Potency is
desired at one receptor but not at another.

The old paradigm in drug discovery, which might be labeled “sequential search,”
generally fails. With this paradigm, one would optimize each objective indepen-
dently and in succession. Finding a lead compound corresponds to searching on
one landscape. Optimizing the lead corresponds to searching additional landscapes
starting with the results of searching the first. With more than two objectives, the
likelihood of failure increases exponentially. What is needed is a holistic approach
with a mathematical framework for considering trade-offs between objectives. A
variety of algorithms exists for finding the best possible trade-offs; these are used
surprisingly seldom despite their utility.

One strategy involves restricting a search to only those solutions that are Pareto
optimal. A solution is Pareto optimal if there is no other solution that is better
under one criterion without being worse for the other criteria. It is often true
that not every response has the same importance; for example, avoiding EPS
symptoms might be 50-fold more important to a team than avoiding weight
gain. Although Pareto optimality provides more than one solution, it does not
allow different weightings on different criteria, as this is difficult to manage with
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more than two dimensions. Another useful approach is Derringer’s desirability
function which does allow weights to be assigned to each criterion (Derringer,
1980). The desirability function involves transformation of each criterion to a de-
sirability value d, where 0 ≤ d ≤ 1. The transformation is done in such a way
that the value of d increases as the “desirability” of the corresponding crite-
rion increases. This transformation may be linear, quadratic, step function, and
so on. In the terminology of decision theory, these are monotonic utility func-
tions. The individual desirabilities are then combined using a geometric mean,
which is an overall assessment of the desirability of the combined response levels.
It can be a weighted mean where the weights reflect relative importance of the
criteria.

13 Discussion

Drug discovery is a challenging endeavor that involves many disciplines in the
life sciences and informatics. There are a great many interesting and diverse prob-
lems that need to be solved. This chapter has given an overview of a number of
them while omitting many others. Areas that are increasing in research intensity
include the areas of genomics, gene chip microarrays (see Chapter 5), proteomics,
metabolomics, and other technologies that involve spectral analysis. There are a
host of interesting and challenging problems in these areas and, currently, there
is great interest in merging these disciplines with the cheminformatics-related
disciplines that have been the focus of this chapter.

The future will see dramatic changes in drug discovery and development pro-
cesses. Within the next decade, researchers will almost certainly find most hu-
man genes and their locations. Explorations into the function of each one is
a major challenge extending far into the next century and will shed light on
how faulty genes play a role in disease causation. With this knowledge, com-
mercial efforts will shift towards developing a new generation of therapeutics
based on genes. Drug design will be revolutionized as researchers create new
classes of medicines based on a reasoned approach using gene sequence and
protein structure information rather than the traditional trial-and-error method.
The drugs, targeted to specific sites in the body, will not have the side ef-
fects prevalent in many of today’s medicines. Over 150 clinical gene therapy
trials are now in progress in the United States, most for different kinds of
cancers.

The road map of human biology generated by the human genome project will
supply an enormous store of genes for studying, and ultimately curing, the ills
that beset us. As the factors underlying the maladies of the human condition
slowly come to light, the challenge will be to use the information effectively and
responsibly.
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Appendix
Tools of the Trade

Robots: Used in a number of processes: screening compounds for biological ac-
tivity, inoculating microbial cultures, and filling compound libraries.

High-throughput screening (HTS): Technology where robotics is used to test many
compounds rapidly in an effort to identify novel inhibitors of receptors or en-
zymes. Usually 100,000 to 200,000 compounds are screened.

Medium-throughput screening (MTS): Similar to HTS but with only modest
throughput requirements which implies more careful usage of robotics and
higher quality of data. Typical MTS throughput is 1000 to 10000 compounds.

Combinatorial chemistry (Combi Chem): Used to make thousands of variants of
a compound. Consider a compound with a six-membered aromatic ring and
a chlorine atom attached at a certain position. One might change the location
of the chlorine to any of the other five positions, or change the chlorine to
a fluorine or a bromine, and/or make the same changes at all the other five
positions. To enumerate all the possible combinations is to make a combinatorial
library.

Genomic information: Used to identify possible protein therapies and targets, to
develop biomarkers, and to understand more deeply how a given compound
interacts with a complex living system.

X-ray crystallography, nuclear magnetic resonance (NMR): Used in exploring the
physical properties/shape of a molecule and/or a receptor target. If the structure
of the target is known, docking studies can be done to assess how well a molecule
may “fit” in one of the receptor’s binding sites.

Bioinformatics tools: Used to search enormous volumes of biological informa-
tion, for instance, to find the best genomic match of a nucleotide sequence or
learn the chromosomal location and disease linked to a particular gene. We
may know that a compound evokes a biological response but with genomics
and bioinformatics tools we can examine which proteins are affected by the
compound.

Cheminformatics tools: Used to explore the relationship between the structure of
a compound and the biological response it evokes (the SAR), with a view to-
ward predicting what will happen with new, as yet untested compounds. Also
used to model the docking of a small molecule (or ligand) to a protein or
receptor.
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5
Design and Analysis of Screening
Experiments with Microarrays

Paola Sebastiani, Joanna Jeneralczuk, and Marco F. Ramoni

Microarrays are an important exploratory tool in many screening experiments. There are
multiple objectives for these experiments including the identification of genes that change
expression under two or more biological conditions, the discovery of new cellular or molec-
ular functions of genes, and the definition of a molecular profile that characterizes differ-
ent biological conditions underlying, for example, normal or tumor cells. The technology
of microarrays is first described, followed by some simple comparative experiments and
some of the statistical techniques that are used for their analysis. A very important ques-
tion arising in the design of screening experiments with microarrays is the choice of the
sample size and we describe two approaches to sample size determination. The first ap-
proach is based on the concept of reproducibility, and the second uses a Bayesian decision-
theoretic criterion to make a trade-off between information gain and experiment costs.
Finally some of the open problems in the design and analysis of microarray experiments are
discussed.

1 Introduction

One of the results of the Human Genome project is that we now know that
the human DNA comprises between 30,000 and 35,000 genes. Only about
50% of these genes have known functions and several projects around the
world are currently underway to characterize these newly discovered genes
and to understand their role in cellular processes or in mechanisms leading to
disease.

An avenue of research focuses on gene expression, that is, the process by which
a gene transcribes the genetic code stored in the DNA into molecules of mRNA
that are used for producing proteins. The measurement of the expression levels of
all the genes in a cell is nowadays made possible by the technology of microar-
rays (Lockhart and Winzeler, 2000). The basic idea underlying the technology of
microarrays is that the genes responsible for different biological conditions may
have different expression and hence produce molecules of mRNA in differing pro-
portions. Microarray technology allows the measurement of the expression levels
of all the genes in a cell, thus producing its molecular profile. By measuring the
molecular profiles of cells in different conditions, researchers can identify the
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genes responsible for the different biological conditions as those with different
expression levels, or differential expression.

An important use of microarray technology is the generation of scientific hy-
potheses: many microarray experiments are conducted in order to discover new
genes that may have a role in a particular biological process or may be responsi-
ble for disease. Because of their high costs, however, microarray experiments are
often limited in sample size. From the experimental design point of view, the use
of microarray technology as a tool for generating hypotheses raises novel design
and methodology issues. Even the design of a simple experiment conducted to
discover the molecular profiles of two biological conditions opens up basic issues
such as the choice of the minimum sample size required to make a reliable claim
about a hypothesis.

In Sections 2 to 4, we review the technology of synthetic oligonucleotide mi-
croarrays and describe some of the popular statistical methods that are used to
discover genes with differential expression in simple comparative experiments. A
novel Bayesian procedure is introduced in Section 5 to analyze differential ex-
pression that addresses some of the limitations of current procedures. We proceed,
in Section 6, by discussing the issue of sample size and describe two approaches
to sample size determination in screening experiments with microarrays. The first
approach is based on the concept of reproducibility, and the second approach uses
a Bayesian decision-theoretic criterion to trade off information gain and experi-
mental costs. We conclude, in Section 7, with a discussion of some of the open
problems in the design and analysis of microarray experiments that need further
research.

2 Synthetic Oligonucleotide Microarrays

The modern concept of gene expression dates back to the seminal work of Jacob and
Monod (1961) and their fundamental discovery that differential gene expression
determines different protein abundance that induces different cell functions. During
its expression, a gene transcribes its DNA sequence combining the nucleotides A,
T , C , and G into molecules of mRNA (messenger ribonucleic acid) and these
are then transported out of the cell nucleus and used as a template for making a
protein. This two-step representation of the protein-synthesis process constitutes
the central dogma of molecular biology (Crick, 1970).

Because the first step of a gene expression consists of copying its DNA sequence
into mRNA molecules, the resulting proportion of mRNA molecules provides a
quantitative measure of the gene expression level. Thus, the expression level of
all genes in a cell can be measured by the mRNA abundance of each gene. This is
achieved by exploiting a property of the DNA sequence and the mRNA molecule
produced during the gene expression: each pair of molecules binds together at
a particular temperature. This property is known as hybridization (Lennon and
Lehrach, 1991).
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There are different technologies for microarrays and we refer the reader to
Chapter 6 and the review given by Sebastiani et al. (2003) for a description of
cDNA microarrays. Here, we focus on synthetic oligonucleotide microarrays.
Technically, a synthetic oligonucleotide microarray is a gridded platform where
each location of the grid corresponds to a gene and contains several copies of a
short specific DNA segment that is characteristic of the gene (Duggan et al., 1999).
The short specific segments are known as synthetic oligonucleotides and the copies
of synthetic oligonucleotides that are fixed on the platform are called the probes.

The rationale behind synthetic oligonucleotide microarrays is based on the con-
cept of probe redundancy; that is, a set of well-chosen probes is sufficient to identify
a gene uniquely. Therefore, synthetic oligonucleotide microarrays represent each
gene by a set of probes unique to the DNA of the gene. On the GeneChip r© plat-
form, each probe consists of a segment of DNA, and each gene is represented by a
number of probe pairs ranging from 11 in the Human Genome U133 set to 16 in the
Murine Genome U74v2 set and the Human Genome U95v2. A probe pair consists
of a perfect match probe and a mismatch probe. Each perfect match probe is cho-
sen on the basis of uniqueness criteria and proprietary empirical rules designed
to improve the odds that probes will hybridize to mRNA molecules with high
specificity. (Specificity, here, means the hybridization of the mRNA molecules in
the target to the probes corresponding to the correct genes, and only to those.) The
mismatch probe is identical to the corresponding perfect match probe except for
the nucleotide in the central position, which is replaced with its complementary
nucleotide, so A is replaced by T and vice versa, and C is replaced by G and vice
versa. The inversion of the central nucleotide makes the mismatch probe a further
specificity control because, by design, hybridization of the mismatch probe can be
attributed to either nonspecific hybridization or background signal caused by the
hybridization of salts to the probes (Lockhart et al., 1996). Each cell-grid of an
Affymetrix oligonucleotide microarray consists of millions of samples of a perfect
match or mismatch probe, and the probes are scattered across the microarray in a
random order to avoid systematic bias.

To measure the expression level of the genes in a cell, investigators prepare the
target by extracting the mRNA from the cell and making a fluorescencetagged
copy. This tagged copy is then hybridized to the probes in the microarray. During
the hybridization, if a gene is expressed in the target cells, its mRNA representation
will bind to the probes on the microarray, and its fluorescence tagging will make
the corresponding probe brighter. Studies have demonstrated that the brightness
of a probe has a high correlation with the amount of mRNA in the original sample.
Therefore, the measure of each probe intensity is taken as a proxy of the mRNA
abundance for the corresponding gene in the sample, and a robust average (such
as Tukey’s biweights average; see Hoaglin et al., 2000, Chapter 11) of the intensi-
ties of the probe set determines a relative expression for the corresponding gene.
Full details are in the Affymetrix document describing the statistical algorithm
that is available from www.affymetrix.com/support/technical/whitepapers and a
summary is given by Sebastiani et al. (2003). Figure 1 shows the three steps of a
microarray experiment.
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Figure 1. A diagram of a microarray experiment. The mRNA in a cell is fluorescently
labeled and hybridized to the microarray. After the hybridization, the intensity of each
probe is captured into an image that is then processed to produce a proxy of the expression
level of each gene in the target. In this figure, five microarrays were used to measure the
molecular profiles of three healthy cells (Samples 1–3) and two tumor cells (Samples 4 and
5). (Image courtesy of Affymetrix.)

3 Design of Comparative Experiments

A typical microarray experiment produces the expression levels of thousands of
genes in two or more biological conditions (described below). We denote the
measured expression levels by y = {yk ji }, where the index k specifies the kth gene
in the microarray (k = 1, . . . , g) and the index i denotes the i th sample measured in
condition j . Because of technical and biological variability that is due to difficulties
in the execution of the experiment and variability between different tissues used to
extract the mRNA, more than one sample in each biological condition is usually
measured. We denote by n j the number of samples measured in condition j so that
i = 1, . . . , n j ( j = 1, . . . , m). Note that samples of the same biological condition
may be pure replications or biological replications. In the first situation, the target
hybridized to the microarrays is made of mRNA extracted from the same cell and,
in the second case, the target hybridized to the microarrays is made of mRNA
extracted from different cells.

We call the set of expression levels measured for a gene across different con-
ditions its expression profile and we use the term sample molecular profile (or
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sample) to denote the expression level of the genes measured with one microarray
in a particular condition. Formally, the expression profile of a gene k in condition
j is the set of measurements yk j = {yk j1, . . . , yk jnj }, the overall expression profile
of the same gene across all conditions is the set yk = {yk1, yk2, . . . , ykm} and the
i th sample profile of condition j is the set of measurements y ji = {y1 j i , . . . , ygji }.

Common experimental objectives are the identification of the genes with sig-
nificant differential expression in two or more conditions, and the development of
models that can classify new samples on the basis of their molecular profiles. In
some experiments, the conditions may be controllable experimental factors such
as doses of a drug or the time point at which to conduct the experiment. In general
observational studies, which account for a large proportion of microarray studies,
the experimenter defines the conditions of interest (often disease and normal tis-
sues) and measures the molecular profile of samples that are randomly selected.
The study designs are typically case-control (Schildkraut, 1998) with subjects se-
lected according to their disease status: that is, “cases” are subjects affected by the
particular disease of interest, whereas “controls” are unaffected by the disease. For
example, in an experiment conducted to identify the genes that are differentially
expressed between normal lung cells and tumor lung cells, tissues from unaffected
and affected patients are randomly chosen and each tissue provides the mRNA
sample that is hybridized to the microarray.

In observational studies, the main design issue is the choice of the sample size,
whereas sample size determination and treatment choice are the primary design
issues in factorial experiments. Sample size determination depends on the analyti-
cal method used to identify the genes with different expression and the optimality
requirements selected for the study. These topics are examined in the next two
sections.

4 Analysis of Comparative Experiments

Popular techniques for identifying the genes with different expression in two bio-
logical conditions labeled 1 and 2 are based on the t-statistic:

tk = ȳk1 − ȳk2

SE(ȳk1 − ȳk2)
for k = 1, . . . , g, (1)

where ȳk j is the mean expression level of gene k in condition j , and the stan-
dard error of the sample mean difference, SE(ȳk1 − ȳk2), is computed assuming
that there will be different variances for the two conditions. Because of the large
variability of gene expression data measured with microarrays, several authors
have suggested some forms of penalization for the denominator of the t-statistic.
For example, Golub et al. (1999) suggested that the standard error SE(ȳk1 − ȳk2)
should be replaced by the quantity

sS2Nk = sk1√
n1

+ sk2√
n2

,
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where sk j is the sample standard deviation of the expression levels of gene k in
condition j . The ratio

|ȳk1 − ȳk2|/sS2Nk (2)

is known as the signal-to-noise ratio. Other forms of penalization are justified by
the fact that the standard error may be very small for genes with small expression
values, thus inflating the value of the t-statistic. Based on this reasoning, Tusher
et al. (2000) suggested adjustment of the standard error to a + SE(ȳk1 − ȳk2)
where the constant a is chosen to minimize the coefficient of variation of the t-
statistic of all the genes. More recently, Efron et al. (2001) suggested replacement
of a by the 90th percentile of the standard errors SE(ȳk1 − ȳk2), k = 1, . . . , g.

The choice of the threshold for selecting the genes with a statistically significant
change of expression is often based on distribution-free methods. The main idea
is to compute the value of a statistic from the data in which the sample labels that
represent the conditions are randomly reshuffled. By repeating this process a large
number of times, it is possible to construct the empirical distribution of a statistic
under the null hypothesis of no differential expression. From this distribution
one can select a gene-specific threshold for rejecting the null hypothesis with a
particular significance level. Authors have also developed algorithms for multiple
comparison adjusted p-values (see, for example, Dudoit et al., 2001; also, see
Chapter 6).

Distribution-free methods tend to be widely used in practice, but they often re-
quire a large sample size to detect the genes with different expression, while achiev-
ing a small false positive rate (Zien et al., 2003). Some authors have suggested
making distribution assumptions on the gene expression data and the most popular
choice is to assume that gene expression data follow a lognormal distribution (Baldi
and Long, 2001; Ibrahim et al., 2002). Another stream of work focuses on the es-
timation of the fold change of expression, that is, the ratio of the sample means
assuming a Gamma distribution for the gene expression data (Chen et al., 1997;
Newton et al., 2001). We investigated the adequacy of these distributional assump-
tions on some large data sets available from http://www-genome.wi.mit.edu/cancer
and none of these distributions appear to be, by themselves, appropriate for all
genes.

For example, Figure 2 depicts the histogram of one sample of size 50 of the probe
set corresponding to the “HSYUBG1 Homo sapiens ubiquitin” gene in the U95Av2
Affymetrix microarray. The distribution in Figure 2(a) has an exponential decay,
with a long right tail. Figure 2(b) displays the distribution of the log-transformed
data and shows that, under the log-transformation, the left skewness of the original
data is removed by introducing a right skewness. This phenomenon is typically
observed when the log-transformation is applied to data that follow a Gamma
distribution and, consequently, bias is introduced in the estimation of the mean
(McCullagh and Nelder, 1989).

The probe set of Figure 2 was selected from a publicly available data set of
expression profiles comprising 50 normal prostatectomy samples and 52 tumor
prostatectomy samples (Singh et al., 2002). We tested the competing distribution
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Figure 2. Distribution of gene expression data from 50 prostatectomy samples measured
with the U95Av2 Affymetrix microarray: (a) histogram of the expression level of the
“HSYUBG1 Homo sapiens ubiquitin gene”; (b) histogram of the same gene expression
level after the log-transformation was used.

assumptions on each of the 12,625 probe sets using the likelihood ratio test de-
scribed by Jackson (1969), at a 5% significance level. About 50% of gene expres-
sion data sets appeared to be better described by lognormal distributions, whereas
the remaining 50% were better described by Gamma distributions. This finding
opens a serious issue because discriminating between lognormal and Gamma dis-
tributions is notoriously difficult, particularly in small samples (Jackson, 1969).
To overcome this issue, we developed a methodology for differential analysis that
uses model averaging to account for model uncertainty.

5 Bayesian Analysis of Differential Gene Expression

Our software for Bayesian analysis of differential gene expression (badge), uses
model averaging to solve the problem of model uncertainty in gene expression data.
badge measures the differential expression by the fold change θk . Formally, if we
let μk j denote the average expression level for the gene k in condition j( j = 1, 2),
the fold change is the ratio

θk = μk1

μk2
, k = 1, . . . , g, (3)

where g is the number of genes. No change of expression for gene k is represented
by θk = 1, whereas changes of expression are represented by a fold change θk < 1
and θk > 1.

The method implemented in badge is Bayesian. It regards the fold change θk as a
random variable so that the differential expression of each gene is measured by the
posterior probability, p(θk > 1|yk), given that the observed differential expression
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profile was yk (defined in Section 3). Values of p(θk > 1|yk) near 0.5 identify the
genes that do not change expression across the two conditions, whereas values of
p(θk > 1|yk) near 1 identify the genes that have larger expression in condition 1
than in condition 2, and values of p(θk > 1|yk) near 0 identify the genes that have
smaller expression in condition 1 than in condition 2. The posterior probability
of differential expression of a gene k is independent of the measurements of the
other genes because we assume that the expression values of different genes are
independent given the parameter values. This assumption may not be realistic
because genes are known to interact with each other, but it allows screening for
genes with differential expression. More advanced methods that take gene–gene
dependence into account are described by Sebastiani et al. (2004).

The software, badge, computes the posterior probability of differential expres-
sion of each gene by assuming Gamma or lognormal distributions (with certain
probabilities) for each of the gene expression data sets. It then applies the tech-
nique known as Bayesian model averaging, described by, for example, Hoeting
et al. (1999), as follows.

If we let MLk and MGk denote the model assumptions that the expression data of
gene k follow either a lognormal or a Gamma distribution, the posterior probability
p(θk > 1|yk) can be computed as

p(θk > 1|yk) = p(θk > 1|MLk, yk)p(MLk |yk) + p(θk > 1|MGk, yk)p(MGk |yk),

(4)

where p(θk > 1|MLk, yk) and p(θk > 1|MGk, yk) are the posterior probabilities of
differential expression assuming a lognormal and a Gamma model, respectively.
The weights p(MLk |yk) and p(MGk |yk) = 1 − p(MLk |yk) are the posterior proba-
bilities of the two models. Because a Bayesian point estimate of the fold change is
the expected value E(θk |yk) of the posterior distribution of θk , the point estimate
of the fold-change θk is computed by averaging the point estimates conditional on
the two models

E(θk |yk) = E(θk |MLk, yk)p(MLk |yk) + E(θk |MGk, yk)p(MGk |yk). (5)

Similarly, an approximate (1 − α)% credible interval (see, for example, Berger,
1985, Chapter 1) is computed by averaging the credible limits computed under the
two models. In particular, if (lkL , ukL ) and (lkG, ukG) are the (1 − α)% credible
limits conditional on the two models, an approximate (1 − α)% credible interval
for θk is (θkl , θku), where

θkl = lkL p(MLk |yk) + lkG p(MGk |yk),

θku = ukL p(MLk |yk) + ukG p(MGk |yk).

Details of these calculations are given in Appendix A. To select the subset of
genes that characterizes the molecular profile of two experimental conditions, we
proceed as follows. The posterior probability of differential expression p(θk >

1|yk) is the probability that the gene k has larger expression in condition 1 than
in condition 2, given the available data. If we fix a threshold s so that we select
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as differentially expressed those genes that have p(θk > 1|yk) < s and p(θk <

1|yk) < s, then the expected number of genes selected by chance would be
2(g × s), where g is the number of genes in the microarray. If this number is
fixed to be c, then the threshold s is c/(2g). This can be interpreted as the expected
error rate, that is, the proportion of genes with differential expression that fail to be
detected.

6 Sample Size Determination

A crucial question in the design of comparative experiments is the determination
of the sample size that is sufficient for drawing conclusions from the data with
some level of confidence. The traditional approach to sample size determination
is power-based and leads to the choice of the sample size needed to achieve a
desired power for rejecting the null hypothesis in favor of a particular alternative
hypothesis. Dow (2003) and Zien et al. (2003) have investigated this approach in
simulation studies and showed that the sample size depends on the minimum fold
change to be detected, the statistical method used for the estimation of the fold
change, and the trade-off between false-positive and false-negative rates. So, for
example, with two conditions, a minimum of 25 samples per condition is needed
in order to detect genes that have more than a twofold change with a false-positive
rate of 0.1% and a power of 80% using the standard t-test (see Zien et al., 2003).
However, this approach appears to be too restrictive for a screening experiment and
it is also strongly dependent upon debatable assumptions about the distribution of
gene expression data. Therefore, we introduce two different criteria based on the
concept of reproducibility and information gain.

6.1 Reproducibility

The first approach to sample size determination that we investigate is based on
the concept of reproducibility. The objective is to identify the minimum sample
size that is needed to reproduce, with high probability, the same results in other
similar experiments. To investigate this issue, we need a large database of mi-
croarray experiments from which we can select nonoverlapping subsets of data
that are analyzed with the same statistic. The reproducibility is then measured by
computing the agreement between the statistic values for the different subsets. A
measure of agreement is the scaled correlation (1 + ρi )/2, where ρ, is the average
correlation between statistics in qi samples of size ni . Suppose, for example, the
differential expression of a gene k in two biological conditions is measured by
the t-statistics tk(D ji ) defined in (1), where Dji is the data set of size ni used in the
comparison. As we repeat the analysis in nonoverlapping data sets of the same size
ni , we obtain the set of values t(D ji ) = {t1(D ji ), . . . , tg(D ji )} for j = 1, . . . , qi ,
and we can measure the pairwise agreement by the qi (qi − 1)/2 correlations

ρrs,i = corr (t(Dri ), t(Dsi )).
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Figure 3. Reproducibility of: the
posterior probability (solid line);
the estimate of the fold change
(dashed line); the t-statistic (dash-
dot line); the signal-to-noise ra-
tio (dotted line); together with the
data reproducibility between sam-
ple means (long dashed line), for
different sized samples. Repro-
ducibility is (1 + ρi )/2, where ρi

is the average correlation between
statistics in samples of size ni (=
6, . . . , 20).

The average correlation ρi is then computed by averaging the qi (qi − 1)/2 pairwise
correlations.

Similar calculations can be done using other statistics. For example, Figure 3
shows a plot of the reproducibility of the posterior probability (4) and the es-
timate θk of the fold change (3) computed by badge together with the repro-
ducibility of the t-statistic (1) and of the signal-to-noise ratio statistic (2) im-
plemented in the GeneCluster software. The long-dashed line reports the data
reproducibility that was measured by the scaled correlation between the ratios
of sample means. To measure the reproducibility, we selected 32 nonoverlap-
ping subsets from the large data set of 102 expression profiles of prostatectomy
samples described in Section 4. Specifically, we chose eight different sample
sizes (ni = 6, 8, 10, 12, 14, 16, 18, 20) and, for each of the eight sample sizes
ni , we created four data sets by selecting four sets of ni normal samples and
ni tumor samples from the original database. This procedure generated 32 data
sets. Then we used badge to compute the posterior probability of differential
expression and the estimate of the fold change θ̂k in each data set. We also ana-
lyzed the data sets with GeneCluster using the standard t and signal-to-noise ratio
statistics.

The plot in Figure 3 shows a substantially larger reproducibility of the fold
change and posterior probability computed by badge compared to the t and signal-
to-noise ratio statistics. Furthermore, the reproducibility of the estimated fold
change is virtually indistinguishable from the data reproducibility. However, the
reproducibility of the posterior probability is about 5% less than the reproducibility
of the data, and both the t and signal-to-noise ratio statistics are about 10% less
reproducible than the data. The data reproducibility of experiments with fewer than
10 samples per group is very low (below 60%). A reproducibility higher than 70%
requires at least 20 samples per group. To investigate further the effect of sample
size on the reproducibility of detecting differential expression, we examined the
reproducibility of the analysis with 1329 genes that were selected by badge with
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Figure 4. (a) Reproducibility of: the posterior probability (solid line); the estimate of the
fold change (dashed line); the t-statistic (dash-dot line) and the signal-to-noise ratio (dotted
line) for different sample sizes, for the 1329 genes selected as most differentially expressed
by badge on the whole data set; (b) the same analysis for the 1329 genes selected as most
differentially expressed by the t-statistic. The reproducibility is measured by (1 + ρi )/2,
where ρi is the average correlation between statistics in samples of size ni (= 6, . . . , 20).

posterior probability of θk > 1 being smaller than 0.01 or larger than 0.99 in the
whole data set comprising 102 samples.

The objective of this comparison was to investigate whether these genes would
be detected as differentially expressed in experiments with smaller sample sizes.
Figure 4(a) summarizes the results and we can see the large reproducibility of
the analysis for small sample sizes: the reproducibility is above 70% even in
experiments with only 6 samples per group, and above 80% when the number of
samples per group is at least 12. Once again, the reproducibility of the fold analysis
conducted by badge is consistently larger than that of the analysis conducted with
the t or signal-to-noise ratio statistics. We also repeated the analysis using about
1300 genes that were selected by values of the t-statistic smaller than −2 or larger
than 2 in the whole data set. The results are summarized in Figure 4(b) and show
that the selection of the gene by the t-statistic is 5% less reproducible compared to
the selection based on badge. These results suggest the need for at least 12 samples
per condition to have substantial reproducibility with badge, whereas the analysis
based on the t or signal-to-noise ratio statistics would require more than 20 samples
per condition.

6.2 Average Entropy

Sample size determination based on reproducibility does not take the experimen-
tal costs into account. In this section, we introduce a formal decision-theoretic
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Figure 5. A decision tree for the choice of sample size and inference method. The first
decision node represents the choice of the sample size n. After this decision, the experiment
is conducted and generates the data y that are assumed to follow a distribution with parameter
θ . The data are used to make an inference on the parameter θ , and the second decision node
a represents the statistical procedure that is used to make this inference. The last node
represents the loss induced by choosing such an experiment.

approach that allows us to choose the sample size by trading off between the gain
of information provided by the experiment with the experimental costs.

The decision problem is represented by the decision tree in Figure 5, in which
open circles represent chance nodes, squares represent decision nodes, and the
black circle is a value node. The first decision node is the selection of the sample
size n used in the experiment, and c represents the cost per observation. The
experiment will generate random data values y that have to be analyzed by an
inference method a. The difference between the true state of nature, represented
by the fold changes θ = (θ1, . . . , θg), and the inference will determine a loss L(·)
that is a function of the two decisions n and a, the data, and the experimental costs.
There are two choices in this decision problem: the optimal sample size and the
optimal inference.

The solutions are found by “averaging out” and “folding back” (Raiffa and
Schlaifer, 1961), so that we compute the expected loss at the chance nodes (open
circles), given everything to the left of the node. We determine the best actions
by minimizing the expected loss at the decision nodes. The first decision is the
choice of the inference method a and the optimal decision a∗ (or Bayes action) is
found by minimizing the expected loss E{L(n, θ, y, a, c)}, where the expectation
is with respect to the conditional distribution of θ given n and y. The expected
loss evaluated in the Bayes action a∗ is called the Bayes risk and we denote
it by

R(n, y, a∗, c) = E{L(e, θ, y, a∗, c)}.
This quantity is also a function of the data y, and the optimal sample size

is chosen by minimizing the expected Bayes risk E{R(n, y, a∗, c)}, where this
expectation is with respect to the marginal distribution of the data.

A popular choice for the loss function L(·) is the log-score defined as

L(n, θ, y, a, c) = − log a(θ |n, y) + nc, (6)

in which a(θ |y, n) is a distribution for the parameter θ , given the data and the
sample size n. This loss function was originally advocated by Good (1952) as
a proper measure of uncertainty conveyed by a probability distribution. Lindley
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(1956, 1997) proposed the use of this loss function to measure the information
gain provided by an experiment and to determine the optimal sample size for an
experiment. With this choice of loss function, the Bayes action a∗ is the pos-
terior distribution p(θ |n, y) of θ given n and y, and so the Bayes risk is given
by

R(n, y, a∗, c) = −
∫

[log p(θ |n, y)]p(θ |n, y)dθ + nc

≡ Ent(θ |n, y) + nc. (7)

The quantity

Ent(θ |n, y) = −
∫

[log p(θ |n, y)]p(θ |n, y)dθ (8)

is known as the Shannon entropy, or entropy, and the negative Shannon entropy
represents the amount of information about θ contained in the posterior distribu-
tion. Therefore, the negative Bayes risk in (7) represents the trade-off between
information gain and experimental costs.

As stated above, in order to choose the optimal sample size n = n1 + n2, we
need to minimize with respect to n1 and n2 the expected Bayes risk (where n1 and
n2 are the numbers of tissue samples for conditions 1 and 2); that is,

E{R(n, y, a∗, c)} =
∫

Ent(θ |n, y)p(y|n)dy + nc.

Because we assume that expression data are independent given the parameters, the
joint posterior density of the parameter vector θ is

p(θ |n, y) =
∏

k

p(θk |n, yk).

This independence implies that the entropy Ent(θ |n, y) is the sum of the entropies∑
k Ent(θk |n, yk), and so the expected Bayes risk becomes

E{R(n, y, a∗, c)} =
∑

k

∫
Ent(θk |n, yk)p(yk |n)dyk + nc.

In the software badge, we account for model uncertainty by averaging the results
of the posterior inference conditional on the Gamma and lognormal distributions
for the gene expression data. As a parallel with the sample size determination
when the inference process is based on model averaging, we therefore introduce
the Average Entropy, denoted by Enta(·), and defined as

Enta(θk |n, yk) = p(MLk |n, yk)Ent(θk |n, yk, MLk)

+ p(MGk |n, yk)Ent(θk |n, yk, MGk).

This quantity averages the Shannon entropies conditional on the Gamma and log-
normal models, with weights given by their posterior probabilities. In Appendix
B, we show that the average entropy is a concave function on the space of prob-
ability distributions which is monotone under contractive maps (Sebastiani and
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Wynn, 2000) and has some nice decomposition properties. These properties ensure
that

Enta(θ |n, y) =
∑

k

Enta(θk |n, yk).

This last expression allows us to simplify the calculation of the expected Bayes
risk E{R(n, y, a∗, c)} by describing it as an average of Bayes risks conditional on
the Gamma and lognormal models, with weights given by their prior probabilities:

E{R(n, y, a∗, c)} =
∑

k

E{Enta(θk |n, yk)} + nc

=
∑

k

p(MLk)
∫

p(yk |n, MLk)Ent(θk |n, yk, MLk)dyk

+
∑

k

p(MGk)
∫

p(yk |n, MGk)Ent(θk |n, yk, MGk)dyk + nc.

The importance of this result is that it leads to an overall objective criterion for
sample size determination that averages criteria based on specific model assump-
tions. Thus it provides a solution that is robust to model uncertainty. Closed-form
calculations of (8) are intractable, so we have developed numerical approxima-
tions to the conditional entropies Ent(θk |n, yk, MLk) and Ent(θk |n, yk, MGk). The
computations of the expected Bayes risk are performed via stochastic simulations
and the exact objective function is estimated by curve fitting as suggested by
Müller and Parmigiani (1995). These details are available on request from the
authors.

Figure 6 shows an example of the stochastic estimation of the Bayes risk
as a function of the sample sizes n1 and n2, where the data were obtained by
resampling from the data set of 102 prostatectomy samples described in Sec-
tion 6.1. From the results on the reproducibility, we estimated that a sample of
size n induces a reproducibility of about (22.5 log(n) − 4)%, so we used as loss
function

− log(p(θk |n, yk)) + .22 ∗ log(n) − .04.

An interesting fact is the sharp decrease of the estimated Bayes risk when the
sample size increases from six to ten samples per condition, whereas the reduction
in risk is less effective for larger sample sizes (see Figure 6). This result agrees with
the findings in Section 6.1 about the reproducibility of the analysis. Furthermore,
the effect of changing the number of samples in the two conditions is not symmetric.
This finding is intriguing and suggests that, at least in microarray experiments
which compare normal versus tumor samples, it is better to have a larger number
of normal samples than tumor samples. An intuitive explanation of this finding is
that tumor samples are less variable because the individuals are all affected by the
same disease.
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Figure 6. (a) The surface for the estimated Bayes risk (vertical axis) as a function of the
number of samples n1 and n2 for the two conditions; (b) the contour plot of the same
surface.

7 Discussion

This chapter has focused on the design of comparative experiments conducted
to identify genes with differential expression. However, microarrays are used for
broader experimental objectives and their use challenges statisticians with novel
design questions. In comparative experiments, an important question is whether it
is better to make pure replicates of the expression measurements of the same cell
or to collect more data from different cells (biological replicates). Lee et al. (2000)
showed that a single replicate is not sufficient to achieve reproducible results and
suggested that at least three pure replications of each measurement should be used.
The costs of microarray experiments still impose serious sample size limitations,
and the designer of the experiment needs to trade off the number of biological
replications against the number of pure replications. The best solution depends on
the objective of the analysis. If the objective is to have an accurate estimate of
the error variability in the microarray measurements, then an experiment with a
large number of pure replicates and a small number of biological replicates will
be preferable to an experiment with one observation of each biological sample.
However, in experiments in which the biological variability between samples is
expected to be large, such as in clinical studies involving human subjects, the
investment of resources in biological replicates rather than in pure replicates is,
intuitively, the best strategy. This dilemma in the design of an experiment and the
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lack of an “out of-the-box” answer shows the need for further research in this
area.

Sample size and treatment choice are key design questions for general multifac-
tor experiments. Authors have proposed the use of standard factorial experiments
in completely randomized designs, block designs, or Latin squares (see, for ex-
ample, Chapter 6 and Churchill, 2003). However, the unusual distribution of gene
expression data makes one question the relevance of standard orthogonal factorial
experiments in this context.

Another important problem that has received little attention in the design com-
munity is the development of design criteria for experiments which are not limited
to the estimation of particular parameters. For example, data from comparative
experiments are often used to define classification models that are able to predict
a clinical feature by using the molecular profile of cells in a tissue. This objective
is particularly important for cancer classification (see Golub et al., 1999) when
is is difficult to discriminate between different subtypes of cancer. The typical
approach is to select the genes with differential expression and use them to build
a classification model. Several models have been proposed in the literature and
an overview is given by Sebastiani et al. (2003). Validation of the classification
accuracy is carried out by using a training set of data to build the model and a
test set of data to assess the classification accuracy of the model. Here, an impor-
tant design question is the sample size needed to determine a classification model
that is sufficiently accurate; an interesting approach based on learning curves is
described in Mukherjee et al. (2003).

More complex are the design issues involved in microarray experiments con-
ducted to identify gene functions or their network of interactions. The assump-
tion that genes with similar functions have similar expression patterns underlies
the popular approach of clustering gene expression profiles and sample molecu-
lar profiles for identifying subgroups of genes with similar expression patterns
in a subset of the samples (see, for example, Eisen et al., 1998). Design is-
sues are not only the sample size determination but also the selection of the
time points at which to make the measurements in temporal experiments. When
the goal of the experiment is to model the network of gene interactions, we
move into the area of experimental design for causal inference. Popular for-
malisms of knowledge representation, such as Bayesian networks (Cowell et
al., 1999) and dynamic Bayesian networks, seem to be the ideal tools for cap-
turing the dependency structure among gene expression levels (Friedman et al.,
2000; Segal et al., 2001; Yoo et al., 2002; Sebastiani et al., 2004). Apart from
preliminary work by Pearl (1999) and Spirtes et al. (1999), experimental design
to enable causal inference with Bayesian networks is an unexplored research
area.
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Appendix A
Computation of Posterior Distributions

Brief details are given below of some numerical approximations used to compute
the posterior distribution of the fold change θk (3), for k = 1, . . . , g. We assume
that, given the model parameters, the expression data yk ji are independent for
different genes and samples.

Computation Details: Lognormal Distribution

Suppose the expression data yk ji are generated from a random variable Ykj that
follows a lognormal distribution with parameters ηk j and σ 2

k j so that the mean
μk j is eηk j+σ 2

k j /2 and the variance is μ2
k j (e

σ 2
k j − 1). In particular, Xkj = log(Ykj ) is

normally distributed with mean ηk j and variance σ 2
k j . Because

p(θk > 1|MLk, yk) = p(log(μk1) − log(μk2) > 0|MLk, yk)

= p(ηk1 − ηk2 + (σ 2
k1 − σ 2

k2)/2 > 0|MLk, yk)

any inferences about θk can be done equivalently on the parameters ηk j , σ
2
k j of

the log-transformed variables. The posterior probability p(θk > 1|MLk, yk) can be
computed as

p(θk > 1|MLk, yk) =
∫

p(ηk1 − ηk2 >
σ 2

k2 − σ 2
k1

2
|σ 2

k1, σ
2
k2, MLk, yk)

× f (σ 2
k1, σ

2
k2|MLk, yk)dσ 2

k1dσ 2
k2, (9)

where f (σ 2
k1, σ

2
k2|MLk, yk) denotes the posterior density of the parameters σ 2

k1, σ
2
k2.

We assume a standard uniform prior on ηk j and log(σ 2
k j ) and prior independence

of (ηk1, σ
2
k1) from (ηk2, σ

2
k2). Then, it is well known that, given the data, the para-

meters σ 2
k2, σ

2
k1 are independent and distributed as s2

k j/σ
2
k j ∼ χ2

ni −1, i = 1, 2, where
χ2

n denotes a χ2 distribution on n degrees of freedom, and

s2
k j =

∑
j

(xk ji − x̄k j )
2/(ni − 1)

is the sample variance of the log-transformed data xk ji = log(yk ji ) in condition i .
Similarly, ηk j |σ 2

k j is normally distributed with mean x̄k j and variance σ 2
k j/ni , and

the marginal distribution of ηk j is

ηk j ∼ (s2
i /ni )

1/2tni −1 + x̄k j ,

where tn is a Student’s t distribution on n degrees of freedom (Box and Tiao, 1973).
To compute the integral in (9), we use the fact that, for fixed σ 2

k2, σ
2
k1, the quantity

p(ηk1 − ηk2 > (σ 2
k2 − σ 2

k1)/2) is the cumulative distribution function of a standard
normal distribution evaluated at

z = −{(σ 2
k2 − σ 2

k1)/2 − (x̄k1 − x̄k2)}/
√

σ 2
k1/n1 + σ 2

k2/n2
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and then we average this quantity with respect to the joint posterior distribution
of σ 2

k2, σ
2
k1. Because there does not seem to be a closed form solution, we use a

two-step numerical approximation. First we approximate the integral in (9) by the
first-order approximation

p(ηk1 − ηk2 >
s2

k2 − s2
k1

2
|MLk, yk)

and then we use the numerical approximation to the Behrens–Fisher distribution
described by Box and Tiao (1973), to approximate the posterior probability by

p(θk > 1|MLk, yk) ≈ p

(
tb > − x̄k1 − x̄k2 + s2

k1/2 − s2
k2/2

a(s2
k1/n1 + s2

k2/n2)1/2

)
.

The scaling factor a and the adjusted degrees of freedom b are given in Box and
Tiao (1973). For large n1, n2, the scaling factor a approaches 1 and the degrees of
freedom b approach n1 + n2 − 2 so that the posterior distribution of ηk1 − ηk2 is
approximately the noncentral Student’s t-statistic

(s2
k1/n1 + s2

k2/n2)1/2tn1+n2−2 + x̄k1 − x̄k2.

The approximation is applicable for n1 and n2 greater than 5, and the comparisons
we have conducted against inference based on MCMC methods have shown that
this approximation works well for samples of size 6 or more.

An approximate estimate of the fold change θk is

θ̂k = exp(x̄k1 − x̄k2 + s2
k1/2 − s2

k2/2)

and approximate credible limits are given by

lkL = exp((x̄k1 − x̄k2 + s2
k1/2 − s2

k2/2) − t(1−α/2,b)a(s2
k1/n1 + s2

k2/n2)1/2),

ukL = exp((x̄k1 − x̄k2 + s2
k1/2 − s2

k2/2) − t(1−α/2,b)a(s2
k1/n1 + s2

k2/n2)1/2),

where t(1−α/2,b) is the (1 − α/2) quantile of a Student’s t distribution on b degrees
of freedom.

Computation Details: Gamma Distribution

Suppose now that the gene expression data follow a Gamma distribution with
parameters αk j , βk j that specify the mean and the variance of the distribution as
μk j = αk j/βk j and V (Ykj |αk j , βk j ) = μ2

k j/αk j . We wish to compute the posterior
distribution of θk = μk1/μk2, or equivalently

θk = αk1

αk2

βk2

βk1
.

If αk j were known, say αk j = α̂k j , then the use of a uniform prior for βk j would
determine the posterior distribution for βk j |yk , namely, Gamma(ni α̂k j + 1, ni ȳk j ).
The value α̂k j can be, for example, the maximum likelihood estimate of αk j , which
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is the solution of the equation:

f (αk j ) = log(αk j ) − ψ(αk j ) − log(ȳk j ) +
∑

j

log(yk ji )/ni = 0,

where ψ(α) = d log(Γ(α))/dα is the digamma function. Then it is easily shown
that 2ni ȳk jβk j ∼ χ2

2(ni α̂k j +1) (Casella and Berger, 1990). Furthermore, βk1|yk and
βk2|yk are independent and, because the ratio of two independent random variables
that have χ2 distributions is proportional to an F distribution (Box and Tiao, 1973),
the distribution of the ratio βk2/βk1 is easily found to be

βk2

βk1
∼
(

n1 ȳk1

n2 ȳk2

)(
n2α̂k2 + 1

n1α̂k1 + 1

)
F2(n2α̂k2+1),2(n1α̂k1+1)

and an approximation to the probability p(θk > 1|MGk, yk) is

p(θk > 1|MGk, yk) = p

(
F2(n2α̂k2+1),2(n1α̂k1+1) >

ȳk2

ȳk1
· α̂k2

α̂k1
· α̂k1 + 1/n1

α̂k2 + 1/n2

)
.

The point estimate for θk is given by θ̂k = ȳk1/ȳk2, and (1 − α)% credible limits
are

lkG = ȳk1

ȳk2
· α̂k1

α̂k2
· α̂k2 + 1/n2

α̂k1 + 1/n1
fα/2,2(n2α̂k2+1),2(n1α̂k1+1),

ukG = ȳk1

ȳk2
· α̂k1

α̂k2
· α̂k2 + 1/n2

α̂k1 + 1/n1
f1−α/2,2(n2α̂k2+1),2(n1α̂k1+1).

The assessment of the error of the approximation depends on the posterior variance
of αk j for which we do not have a closed form expression. Empirical comparisons
that we conducted on gene expression data sets suggest that the results based on
our numerical approximation are virtually indistinguishable from those obtained
by Markov chain Monte Carlo methods when n1, n2 > 10. Details are described
by Sebastiani et al. (2005).

Computation Details: Mixing Weights

To compute the mixing weights in equations (4) and (5) in Section 5, we assume
that changes in the average expression levels between the two conditions can at
most affect the parameter values but not the distribution membership. Therefore,
the mixing weights are the posterior probabilities p(MLk |yk) and p(MGk |yk) com-
puted by disregarding the distinction between the two conditions j = 1, 2. We use
the approximation to the posterior odds Bk = p(MLk |yk)/p(MGk |yk) given by the
Bayesian information criterion to make the choice independent of the prior proba-
bilities (Kass and Raftery, 1995). In this way, the posterior probability p(MLk |yk)
is Bk/(1 + Bk) and p(MGk |yk) = 1/(1 + Bk). The Bayesian information criterion
is essentially the likelihood ratio:

Bk = p(MLk |yk)

p(MGk |yk)
= fl(yk |η̂k, σ̂

2
k )

fg(yk |α̂k, β̂k)
, (10)
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where fL (yk |η̂k, σ̂
2
k ) and fG(yk |α̂k, β̂k) are the likelihood functions for the log-

normal and Gamma models evaluated in the maximum likelihood estimates
η̂k, σ̂

2
k , α̂k, β̂k of the parameters. See Sebastiani et al. (2005) for further details.

Appendix B
Properties of the Average Entropy

In this appendix, we prove some general properties of the average entropy in the
context of gene expression analysis. We denote by θ the change of expression of a
generic gene in two conditions, and we suppose that the expression values follow
either a Gamma distribution, MG , or a lognormal distribution, ML . In this case,
the average entropy becomes:

Enta(θ) = w1 Ent(θ |ML ) + (1 − w1)Ent(θ |MG),

where, for simplicity of notation, w1 denotes the probability of the model ML ,
and 1 − ω1 is the probability of the model MG . The quantities Ent(θ |ML ) and
Ent(θ |MG) denote, respectively, the Shannon entropy of θ computed under the
assumption that the gene expression data follow a lognormal and a Gamma
distribution.

Theorem 1 (Concavity). The average entropy Enta(θ) is a concave function of
the set of probability distributions for θ .

Proof. The result follows from the fact that Shannon entropy is concave in the
space of probability distribution (DeGroot, 1970), and the average entropy is a
convex combination of Shannon entropies.

Theorem 2 (Monotonicity). Let η = ψ(θ) be a smooth transformation of θ , such,
that ψ−1 exists, and let J be the Jacobian of the transformation ψ−1. Then{

Enta(η) > Enta(θ), i f |J | < 1;

Enta(η) < Enta(θ), i f |J | > 1.

Proof. The result follows from the monotonicity of Shannon entropy (Sebastiani
and Wynn, 2000).

Theorem 3 (Decomposability). The average entropy of the random vector θ =
{θ1, θ2} can be decomposed as

Enta(θ1, θ2) = Enta(θ1) + Eθ1{Enta(θ2|θ1)}.
Proof. Let ML1 and ML2 denote lognormal distributions for the expression values
of two genes, and let w1 and w2 be the posterior probability assigned to the models
ML1 and ML2. When we decompose the average entropy of θ1 and θ2 we need to
consider the space of model combinations

M = {(ML1, ML2), (ML1, MG2), (MG1, ML2), (MG1, MG2)}.
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If we assume that the model specifications are unrelated, and that expression values
of different genes are independent given the parameter values, then the probabil-
ity distribution over the model space M is w1w2, w1(1 − w2), (1 − w1)w2, (1 −
w1)(1 − w2). Then we have

Enta(θ1, θ2|M) = w1w2 Ent(θ1, θ2|ML1, ML2)

+w1(1 − w2)Ent(θ1, θ2|ML1, MG2)

+ (1 − w1)w2 Ent(θ1, θ2|MG1, ML2)

+ (1 − w1)(1 − w2)Ent(θ1, θ2|MG1, MG2).

By the property of Shannon entropy Ent(θ1, θ2) = Ent(θ1) + Eθ1{Ent(θ2|θ1)},
where Eθ (·) denotes expectation with respect to the distribution of θ , it follows
that

w1w2 Ent(θ1, θ2|ML1, ML2)

= w1w2 Ent(θ1, |ML1) + w1w2 Eθ1|ML1{Ent(θ2|θ1, ML2)}
and, similarly,

w1(1 − w2)Ent(θ1, θ2|ML1, MG2)

= w1(1 − w2)Ent(θ1|ML1) + w1(1 − w2)Eθ1|ML1{Ent(θ2|θ1, MG2)};
(1 − w1)w2 Ent(θ1, θ2|MG1, ML2)

= (1 − w1)w2 Ent(θ1|MG1) + (1 − w1)w2 Eθ1|MG1{Ent(θ2|θ1, ML2)};
(1 − w1)(1 − w2)Ent(θ1, θ2|MG1, MG2) = (1 − w1)(1 − w2)

× Ent(θ1|MG1 + (1 − w1)(1 − w2)Eθ1|MG1{Ent(θ2|θ1, MG2)}.
Now group the terms

w1w2 Ent(θ1|ML1) + w1(1 − w2)Ent(θ1|ML1) = w1 Ent(θ1|ML1)

and

(1 − w1)w2 Ent(θ1|MG1) + (1 − w1)(1 − w2)Ent(θ1|MG1)

= (1 − w1)Ent(θ1|MG1)

to derive

w1 Ent(θ1|ML1) + (1 − w1)Ent(θ1|MG1) = Enta(θ1).

Similarly, we can group the terms

w1 Eθ1|ML1{w2 Ent(θ2|θ1, ML2) + (1 − w2)Ent(θ2|θ1, MG2)}
= w1 Eθ1|ML1{Enta(θ2|θ1)}

and

(1 − w1)Eθ1|MG1{w2 Ent(θ2|θ1, ML2) + (1 − w2)Ent(θ2|θ1, MG2)}
= (1 − w1)Eθ1|MG1{Enta(θ2|θ1)},
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to derive

w1 Eθ1|ML1{Enta(θ2|θ1)} + (1 − w1)Eθ1|MG1{Enta(θ2|θ1)} = Eθ1{Enta(θ2|θ1)}
that concludes the proof.

Theorem 4 (Additivity). If θ1, θ2 are independent, then

Enta(θ1, θ2) = Enta(θ1) + Enta(θ2).

Proof. The result follows from the previous theorem.
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6
Screening for Differential Gene
Expressions from Microarray Data

Jason C. Hsu, Jane Y. Chang, and Tao Wang

Living organisms need proteins to provide structure, such as skin and bone, and to pro-
vide function to the organism through, for example, hormones and enzymes. Genes are
translated to proteins after first being transcribed to messenger RNA. Even though every
cell of an organism contains the full set of genes for that organism, only a small set of the
genes is functional in each cell. The levels at which the different genes are functional in
various cell types (their expression levels) can all be screened simultaneously using mi-
croarrays. The design of two-channel microarray experiments is discussed and ideas are
illustrated through the analysis of data from a designed microarray experiment on gene
expression using liver and muscle tissue. The number of genes screened in a microarray
experiment can be in the thousands or tens of thousands. So it is important to adjust for the
multiplicity of comparisons of gene expression levels because, otherwise, the more genes
that are screened, the more likely incorrect statistical inferences are to occur. Different
purposes of gene expression experiments may call for different control of multiple compar-
ison error rates. We illustrate how control of the statistical error rate translates into control
of the rate of incorrect biological decisions. We discuss the pros and cons of two forms
of multiple comparisons inference: testing for significant difference and providing confi-
dence bounds. Two multiple testing principles are described: closed testing and partitioning.
Stepdown testing, a popular form of gene expression analysis, is shown to be a shortcut
to closed and partitioning testing. We give a set of conditions for such a shortcut to be
valid.

1 Introduction

1.1 Uses of Gene Expression Analysis

Living organisms need proteins to provide structure, such as skin and bone, and
to provide function to the organism through, for example, hormones and en-
zymes. Genes are translated to proteins after first being transcribed to mRNA
(messenger RNA). Even though every cell of an organism contains the full
set of genes for that organism, only a small set of the genes is functional
in each cell. The level to which the different genes are functional in various
cell types (their expression levels) can all be screened simultaneously using
microarrays.

139
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Microarray experiments may be observational studies whose sole purpose is to
screen the genome for differential gene expressions or they may have more specific
aims such as the following.

� Designer medicine: one potential use of gene expression is to tailor medicine or
treatment to individuals, with gene expressions used as explanatory or predictor
variables. Microarrays may be used to provide genetic profiles for individual
patients, to classify patients into more refined disease categories, or to predict
an individual’s predisposition to a certain disease.

� Patient targeting: the populations from which the samples of, for example, blood
or tissue, are drawn might be two subpopulations of patients, those who have
and those who have not had adverse reactions to a particular molecular entity.
Currently, some molecular entities of potential benefit to many patients cannot
be approved as drugs because a small but significant percentage of the patients
experience adverse events (AE) when receiving the drug. If the subpopulation
that is prone to adverse reactions can be identified in terms of differential gene
expressions then, by not giving the drug to this subpopulation, such a molecular
entity can perhaps be approved in order to benefit the vast majority of patients.

� Drug discovery: the populations from which the samples are drawn may
be healthy and disease tissues. A possible use of the comparison of gene
expressions is to find protein targets that might intervene with the disease
process.

We believe the statistical formulation of gene expression analysis should reflect
the intended use of microarray data. For example, to fabricate a diagnostic or
prognostic microarray for designer medicine, genes might first be screened for
differential expressions. Diagnostic/prognostic chips for gene profiling might then
be built containing the genes that appear to be differentially expressed. Clustering
(unsupervised learning) algorithms may be applied to group together genes that
have similarities. Classification (supervised learning) algorithms may be applied
to place patients into appropriate categories. When too many genes are present,
the processes of classification and clustering may be overwhelmed, or at least may
prove counterproductive. So one approach towards designer medicine is to use
multiple testing first to screen for relevant genes. The analysis of gene expression
data from the initial screening microarray study should thus reflect the need for
the fabricated chip to meet desired requirements for sensitivity, probability of
correctly inferring presence of a disease, and specificity, the probability of not
inferring presence of a disease when the disease is absent; see, also, Chapter 5,
Section 5.2.

On the other hand, an aim of drug discovery is to find proteins that can inter-
vene with a disease process. For example, it might be possible to determine and
synthesize the protein made by a gene that is under-expressed in disease tissues;
that is, the gene is transcribing less protein than it would for normal tissue. Genes
themselves are turned on and off by gene regulatory proteins (called transcription
factors). So it might also be possible to find proteins to regulate genes that are
too active, or not active enough, under disease conditions. Although a detailed
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description of the transcription and translation process is given by Alberts et al.
(2002, Chapter 6), for example, a good introduction is the online DNA from the Be-
ginning tutorial available at http://www.dnaftb.org/dnaftb. The function of a gene
can be studied by mutating or deleting it in entire organisms and then observing
the consequences, but this is a slow and costly process: knocking out one gene
in one mouse might cost a thousand dollars. Therefore, the statistical design of
microarray experiments and the analysis of gene expression data should maximize
the chance of biologists subsequently discovering the proteins that can affect a
disease process.

In this chapter, our discussion is in terms of multiple testing for drug discovery.
We use the example of screening genes in order to find proteins (transcription
factors) that might cure a disease or alleviate its symptoms to illustrate how to
couple the gene expression analysis with the intended purpose of the microarray
experiment.

1.2 Types of Microarrays

There are two main types of microarrays: oligonucleotide microarrays and two-
channel microarrays. An overview of the concepts behind the two types of
microarrays can be found in Module 36 of the DNA from the Beginning tutorial.
Two-channel microarrays were invented by Pat Brown in the mid 1990s. Institu-
tions and researchers can purchase robotic machines in order to design and make
their own two-channel microarrays.

The DNA sequence of a gene contains both coding segments (called exons) and
noncoding segments (called introns) and only the coding segments are transcribed
into mRNA. In making a two-channel microarray, the first step is to prepare target
DNA that contain only the coding segments of known and purported genes. These
segments can consist of either entire sequences or shorter segments called ex-
pressed sequence tags (EST). These target DNA are then deposited (spotted) onto
glass slides in a grid pattern. From each of two different mRNA samples (for exam-
ple, normal and disease tissues), the complementary DNA (cDNA) that can base
pair with the target DNA is then prepared. This process is called reverse transcrip-
tion. One sample is dyed fluorescent red and the other sample is dyed fluorescent
green. The samples are then allowed to bind (hybridize) to the target DNA of the
known genes and the ESTs spotted on the microarray. A scanner subsequently reads
separately the red and green intensity of each spot on the microarray and produces,
for the gene spotted there, a measure of its expression in each of the two samples.

In contrast to two-channel microarrays, oligonucleotide arrays are single-
channel microarrays, meaning that each microarray provides a profile of the gene
expressions of a single sample. Institutions and researchers purchase ready-made
oligonucleotide microarrays from manufacturers who build them using propri-
etary technologies. For a detailed description of oligonucleotide microarrays, see
Chapter 5.

An advantage of being able to design one’s own microarrays is that traditional
genomics and new technology can work more effectively together. For example,
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one can use linkage analysis or quantitative trait loci (QTL) analysis to narrow
the search for genes involved in a disease to a relatively small number of genes,
and then spot only these genes on two-channel microarrays. This allows for more
replications of the relevant genes on each array while keeping the total number of
spots on each array the same and this, in turn, leads to sharper statistical inferences
on each gene of relevance.

1.3 Design of Microarray Experiments

Variations observed in gene expressions may be attributable to differences in the
conditions being compared in the samples (for example, normal and disease tis-
sues), or to differences in nuisance factors such as array, dye, and spot. Thus,
we believe the design of microarrays should follow the statistical principles of
blocking, randomization, and replication.

Blocking for known nuisance factors removes systematic bias in estimation.
For example, it has been observed that different dyes may have different labeling
efficiencies. The use of a dye-swap design, which reverses the assignment of dyes
to the conditions being compared on successive arrays, avoids confounding the
difference due to efficiency of dye labeling with the difference in the conditions
being compared. If microarrays are used for diagnostic or prognostic purposes,
unbiased estimation is an important safeguard for the public.

Blocking can also improve the precision of estimation if within-block variation
is small compared to between-block variation. Sample-to-sample variability and
variation in the amounts deposited on different arrays can be blocked effectively
by hybridizing each replicate sample to a different array and considering the factor
“array” as a blocking factor in modeling the data.

Randomization is the basis for valid statistical inference. Random assignment of
replicate samples to arrays and dyes helps to avoid unintended systematic bias due
to such nuisance factors. In designing a two-channel microarray, a software driver
for the robotic arrayer allows appropriate programming to randomize and replicate
the spotting of the complementary DNA (cDNA) on each array. Unfortunately,
randomization of spotting on each array is often not done currently, perhaps due
to inconvenience.

Replication is necessary for the estimation of variability and can be accom-
plished by having multiple samples and spotting each gene more than once on a
microarray. Churchill (2003) gave an insightful discussion of the costs and benefits
of having different kinds of replications; see Churchill (2002) and Yang and Speed
(2002) for further discussions (also see Chapter 5).

2 Forms of Statistical Inference

There are two forms of statistical inference that are commonly used for differential
gene expressions. The first is to infer the presence of differential expressions. The
second is to infer the magnitude of the difference of differential expressions.
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To be able to execute a statistical analysis that infers the presence of differential
expressions, only a specification is needed of the probability mechanism leading to
the observations under the null hypothesis of equality of expressions. One reason
for the popularity of testing the equality of gene expressions is seemingly that the
tests can be performed without modeling (using permutation tests, for example),
that is, with no specification of dependency among the test statistics, and no spec-
ification of how differential expressions affect the responses. A minimal model is
the randomization model (Rao, 1973, page 502) which assumes that the assign-
ment of observed vectors of gene expressions to the two conditions has occurred
at random. A test of a null hypothesis of equality of expressions can only infer
the presence of differential expressions and not the absence. However, in clinical
trials, it has been recognized that testing for the presence of a treatment effect is
inadequate. Medical decisions are increasingly based on “clinically meaningful
differences” as opposed to “statistically significant differences” (differences from
zero). Examples of such inferences include establishment of the equivalence and
noninferiority of treatments (see ICH E10, 1999).

To execute a statistical analysis capable of providing confidence intervals or
bounds on the magnitude of differential gene expressions, the approach we take
is to build a model that specifies how a disease condition might, affect the dis-
tribution of the observed gene expressions; that is, we specify a model that is
more elaborate than the randomization model, connecting responses with param-
eters θi , i = 1, . . . , g, which, for example, may be differences or ratios of long
run averages, or location shifts. Even if only the presence of an effect needs to
be inferred, model building is still useful for constructing multiple tests that are
computationally feasible (see Section 5).

A number of authors have proposed model-based approaches to the analysis
of gene expression data. Churchill and Oliver (2001), Churchill (2003), Kerr and
Churchill (2001a,b), and Wolfinger et al. (2001) discussed the modeling of gene
expression data from controlled experiments, and Lee et. al. (2000) and Thomas
et al. (2001) discussed the modeling of gene expressions data from observational
studies. Our modeling approach follows that of previous authors so that we may

1. Build a model that includes blocking factors to remove nuisance effects (for
example, array and dye effects);

2. Perform diagnostic checks for the appropriateness of the model;
3. Estimate differential expressions and their standard errors;

but adds the additional step:

4. Adjust for multiplicity of simultaneous inference on multiple genes based on
the joint distribution of estimators.

We recommend that two types of control genes should be included in microarray
experiments as described below.

Gene expressions may differ in different cell types (for example, in normal
and disease tissues). These may occur even for genes not involved in the disease
process (housekeeping genes) which are functional in all cells (see, for example,
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Vandesompele et al., 2002). We recommend that housekeeping genes should be
included in microarray experiments and that their observed differential expressions
be used to normalize those of the genes under study. In other words, housekeeping
genes can serve a purpose similar to that of negative controls (placebos) in clinical
trials.

In microarray experiments, the observed differential gene expressions are also
functions of the intensity scale that the scanner is capable of measuring. The same
set of conditions will produce different amounts of differential expressions for the
same gene on different scanners if the scanners have different intensity scales. With
certain disease categories, there are genes known to be differentially expressed. For
example, the p53 gene is mutated in most cancer tumors. We recommend that such
genes be included in microarray experiments and that their observed differential
expressions be used to guide the choice of what constitutes a biologically mean-
ingful differential expression. In other words, genes known to be differentially
expressed can serve a purpose similar to that of active controls in clinical trials.

3 Control of Error Rate

Suppose that we wish to make inferences on the parameters θi , i = 1, . . . , g, where
θi represents the logarithm of the ratio of the expression levels of gene i under nor-
mal and disease conditions. If the ith gene has no differential expression, then the
ratio is 1 and hence θi = 0. In testing the g hypotheses H0i : θi = 0, i = 1, . . . , g,
suppose we set Ri = 1 if Hoi is rejected and Ri = 0 otherwise. Then, for any mul-
tiple testing procedure, one could in theory provide a complete description of the
joint distribution of the indicator variables R1, . . . , Rg as a function of θ1, . . . , θg

in the entire parameter space. This is impractical if g > 2. Different controls of the
error rate control different aspects of this joint distribution, with the most popular
being weak control of the familywise error rate (FWER), strong control of the
familywise error rate, and control of the false discovery rate (FDR).

We discuss the pros and cons of controlling each error rate, in the context of
drug discovery.

Weak control of the FWER, also referred to as the experimentwise error rate
in some traditional statistics books, controls the maximum probability of reject-
ing at least one null hypothesis H0i when all H0i , i = 1, . . . , g, are true. Weak
control of the FWER is inadequate in practice because, if there exists at least one
differentially expressed gene, then there is no guarantee that the probability of in-
correctly inferring the nondifferentially expressed genes as differentially expressed
is controlled.

Strong control of the FWER controls the maximum probability of rejecting any
true null hypothesis, regardless of which subset of the null hypotheses happens to
be true. We call a nondifferentially expressed gene that is incorrectly inferred to
be differentially expressed a false positive. Then controlling the FWER strongly at
5% guarantees that, with a probability of at least 95%, the number of false positives
is zero, regardless of how many genes are truly differentially expressed.
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Control of the FDR, controls the expected proportion of true null hypotheses
rejected among all the hypotheses rejected. In the gene expressions setting, the
FDR is the expected proportion of false positives among those inferred to be
differentially expressed.

Whether strong control of FWER or FDR is appropriate in the analysis of mi-
croarrays may depend on how the inference on differential gene expressions is
used subsequently. In one form of drug discovery, genes are first screened for
differential expressions under normal and disease conditions. Subsequently, nu-
cleotide sequences in the promoter regions of the genes selected in the first step
are “mined” for unusually common sequences (called consensus motifs). Proteins
(transcription factors) that bind to these motifs then become candidates for drug
compounds to intervene with the disease process.

Although fewer genes will be selected as differentially expressed by strong
control of the familywise error rate, one has confidence that each gene selected is,
indeed, involved in the disease process. More genes will be selected by controlling
the false discovery rate, but one is only confident that a proportion of the genes
selected is involved in the disease process. In fact, the number of false positive genes
selected by an FDR-controlling method is unknown, because it depends on the
unknown number of genes that are truly differentially expressed. Another problem
with this method is that one can manipulate the level at which the hypotheses of
interest are tested by including extra null hypotheses that are already known to
be false (see Finner and Roter, 2001). Suppose that a single null hypothesis is
of interest. If three additional null hypotheses known to be false are tested, then
the null hypothesis of interest can, in effect, be tested at a level of 20% while
controlling the FDR at 5%. Thus, one can artificially inflate the chance that an
FDR-controlling method will falsely discover “new” genes involved in a disease,
by purposely including as many genes as possible that are already known to be
involved in that disease. This is a dilemma because, as mentioned in Section 2, it
is a good idea to include such genes in the study to serve as active controls on the
microarrays. We thus caution against careless application of the FDR concept in
gene expressions analysis.

Instead of controlling the expected proportion of incorrect rejections, one might
control the expected number of incorrect rejections. As explained by Dudoit
et al. (2003), in essence this is what is achieved by the significance analysis of mi-
croarrays (SAM) methods of Efron et al. (2001) and Tusher et al. (2001). The issue
of which error rate is the best to control in terms of leading to more discoveries of
useful transcription factors is an on-going research project.

4 Construction of Multiple Tests

In this section, we discuss two methods of multiple testing for the family of null
hypotheses of no differential expressions

H0i : θi = 0, i = 1, . . . , g. (1)
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Previous discussions of multiplicity adjusted testing of gene expressions, by Dudoit
et al. (2002) and (2003), for example, generally took a nonmodeling approach. Be-
cause the joint distribution of the test statistics is generally not available with this
approach, multiplicity adjustments in these papers tend to be calculated based on
conservative inequalities (for example, the Bonferroni inequality or Sidak’s in-
equality) or on a joint distribution of independent test statistics. In contrast, here,
we describe multiplicity adjustment based on the actual joint distribution of the
test statistics. However, before describing such adjustments, we first address
the construction principles to which all multiple tests should adhere, regardless
of the approach taken. These principles do not appear to be as well known in the
field of bioinformatics as they are in clinical trials.

Tukey’s method, Scheffé’s method, and Dunnett’s method are familiar one-step
multiple comparison methods and they adjust for multiplicity based on the total
number of comparisons made (see Hsu, 1996, Chapters 3 and 5). Closed testing and
partition testing are two general principles that guide the construction of multiple
testing methods that strongly control the FWER. In contrast to one-step testing,
they are based on the idea that multiplicity needs to be adjusted only to the extent
that null hypotheses may simultaneously be true, letting the data dictate the extent
of multiplicity adjustment. All else being equal, closed testing and partition testing
are more powerful than one-step testing. Stepdown testing, a popular form of gene
expression analysis, is best thought of as a shortcut to closed/partitioning testing.
We give a set of conditions in the gene expression analysis setting for such a
shortcut to be valid. Subtleties of such conditions do not seem to have been fully
appreciated in practice.

The closed testing principle of Marcus et al. (1976) proceeds as follows.

Closed testing

C1: For each subset I ⊆ {1, . . . , g} of genes, form the null hypotheses
H0I : {θi = 0 for all i ∈ I }.

C2: Test each H0I at level α.
C3: For each i , infer θi �= 0 if and only if all H0I with i ∈ I are rejected; that is,

if and only if all null hypotheses containing θi = 0 are rejected.

As an illustration, suppose that g = 3. Then closed testing tests the following null
hypotheses.

H0{1,2,3} : θ1 = θ2 = θ3 = 0

H0{1,2} : θ1 = θ2 = 0

H0{1,3} : θ1 = θ3 = 0

H0{2,3} : θ2 = θ3 = 0

H0{1} : θ1 = 0

H0{2} : θ2 = 0

H0{3} : θ3 = 0
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and it is inferred, for example, that θ2 �= 0 if and only if H0{1,2,3}, H0{1,2}, H0{2,3},
and H0{2} are all rejected.

It turns out that a concept more easily explained and more powerful than closed
testing is the partitioning principle of Stefansson et al. (1988) and Finner and
Strassburger (2002), which proceeds as follows.

Partition testing

P1: For each subset I ⊆ {1, . . . , g} of genes, form the null hypotheses

H∗
0I : {θi = 0 for all i ∈ I and θ j �= 0 for all j /∈ I }.

P2: Test each H∗
0I at level α.

P3: For each i , infer θi �= 0 if and only if all H∗
0I with i ∈ I are rejected.

Again, suppose that g = 3 for illustration. Then partition testing tests:

H∗
0{1,2,3} : θ1 = θ2 = θ3 = 0

H∗
0{1,2} : θ1 = θ2 = 0 and θ3 �= 0

H∗
0{1,3} : θ1 = θ3 = 0 and θ2 �= 0

H∗
0{2,3} : θ2 = θ3 = 0 and θ1 �= 0

H∗
0{1} : θ1 = 0 and θ2 �= 0 and θ3 �= 0

H∗
0{2} : θ2 = 0 and θ1 �= 0 and θ3 �= 0

H∗
0{3} : θ3 = 0 and θ1 �= 0 and θ2 �= 0

and, for example, θ2 �= 0 is inferred if and only if H∗
0{1,2,3}, H∗

0{1,2}, H∗
0{2,3}, and

H∗
0{2} are all rejected.
It is easy to see why partition testing controls the FWER:

� Because the null hypotheses H∗
0I are disjoint, at most one H∗

0I is true. There-
fore, no multiplicity adjustment is needed in testing them to control the FWER
strongly;

� Because H0i : θi = 0 is the union of all H∗
0I with i ∈ I , the rejection of all H∗

0I
with i ∈ I implies θi �= 0.

Closed testing can now be justified by noting:

� A level-α test for H0I is automatically a level-α test for H∗
0I ;

� The union of all H0I with i ∈ I is the same as the union of all H∗
0I with i ∈ I .

Closed testing and partition testing are general principles of multiple testing.
Hence, to test each H0I and H∗

0I , any level-α test can be used. For testing a set of
null hypotheses H0I , i = 1, . . . , k closed and partition testing methods are more
powerful than the corresponding one-step multiple comparison methods (such as
Tukey’s, Scheffé’s, and Dunnett’s methods) because, in effect, one-step methods
adjust for a multiplicity of k in testing H0I or H∗

0I even when I ⊂ {1, . . . , k}. Also,
partition testing is always at least as powerful as closed testing (due to the second
justification, above, for closed testing). Finner and Strassburger (2002) showed



148 Jason C. Hsu et al.

that, because partition testing allows a bigger class of tests than closed testing,
it can be more powerful than closed testing in some applications. But in most
applications closed testing and partition testing provide the same inference. Our
subsequent discussion is mainly in terms of partition testing.

With suitable modeling of the observations, the joint distribution of estimates
of differential expressions and their standard errors can be obtained. Thus, in
principle, one can use this joint distribution to construct a level-α test for each H0I

or H∗
0I (without assuming independence or relying on probabilistic inequalities)

and execute a closed or partition test. However, a direct implementation of closed
testing or partition testing requires testing and collating the results of 2g − 1 null
hypotheses, clearly a computational impossibility if the number of genes g is more
than a handful. Fortunately, appropriate choices of test statistics allow the testing
of the vast majority of the hypotheses H∗

0I (or H0I ) to be skipped, resulting in
a stepdown test. Without such a shortcut, it would be practically impossible to
implement any multiple testing method that gives strong control of the familywise
error rate. In the following section, we describe conditions under which a closed or
partition test can be executed as a stepdown test. Although these conditions have
been well researched and applied in clinical biostatistics over the past decade,
their importance has yet to be sufficiently appreciated in the statistical analysis of
microarray data.

5 Stepdown Testing—A Shortcut to Closed
and Partition Testing

The key condition needed to effect a shortcut is roughly that the rejection of a
more restrictive hypothesis implies the rejection of certain less restrictive null
hypotheses. So if one starts by testing the more restrictive null hypothesis and then
skips the testing of less restrictive hypotheses as such implications allow, then
closed or partition testing becomes more computationally feasible. The resulting
shortcut version of a closed or partition test is a stepdown test.

Specifically, if gene i0 is the gene that appears the most significantly differen-
tially expressed among the genes whose indices are in the set I , and the rejection
of the null hypothesis H0I : {θi = 0, for all i ∈ I } guarantees rejection of all null
hypotheses which state that gene i0 is not differentially expressed (possibly among
others), then a shortcut can be taken. This would not be true if, for example, the
test for H0I : {θi = 0, for all i ∈ I } is in the form of a χ2 or F-test, rejecting H0I

if
∑

i∈I θ2
i is large. Hsu (1996, pages 136–137) provided an example of an erro-

neous previous shortcutting computer implementation of such a statistical method,
demonstrating with data explicitly why such shortcuts cannot be taken.

A precise set of sufficient conditions for such shortcutting to be valid is as
follows.

S1: Tests for all hypotheses are based on statistics Ti , i = 1, . . . , g, whose values
do not vary with the null hypothesies H∗

0I being tested;
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S2: The level-α test for H∗
0I is of the form of rejecting H∗

0I if maxi∈I Ti > cI ;
S3: Critical values cI have the property that if J ⊂ I then cJ ≤ cI .

For example, suppose that g = 3 and the values of the statistics are T1 < T3 < T2.
If |T2| > c{1,2,3} so that H{1,2,3} is rejected, then one does not need to test H{1,2}
and H{2,3} because, by conditions S1 to S3, it is known that the results would be
rejections. Thus, if conditions S1 to S3 are satisfied, then partition testing has the
following shortcut. Let [1], . . . , [g] be the indices such that T[1] < · · · < T[g], then

Step 1: If T[g] > c{[1] ,...,[g]} then infer θ[g] �= 0 and go to step 2; else stop;
Step 2: If T[g−1] > c{[1] ,...,[g−1]}, then infer θ[g−1] �= 0 and go to step 3; else stop;
· · ·
Step g: If T[1] > c{[1]}, then infer θ{[1]} �= 0 and stop.

A method of this form is called a stepdown test because it steps down from the
most statistically significant to the least statistically significant.

Subtleties in conditions S1 to S3 for shortcutting have not always been appreci-
ated. For example, suppose the critical values c1 are computed so that the probabil-
ity of maxi∈I Ti > cI is less than or equal to α when H∗

{1,...,g} : θ1 = · · · = θg = 0
is true, then the test for H∗

I may or may not be a level-α test. This is because the
distribution of Ti for i ∈ I may depend on the values of θ j , j /∈ I . A level-α test
for H∗

I should satisfy

supθ∈�I
Pθ {maxi∈I Ti > cI } ≤ α,

where �I = {θ : θi = 0 for i ∈ I and θ j �= 0 for j /∈ I } and the supremum of this
rejection probability may or may not occur at θ1 = · · · = θg = 0. Conditions S1 to
S3 guarantee that this undesirable phenomenon does not occur, thereby ensuring
strong control of the FWER.

Another condition, similar to conditions S1 to S3, which also guarantees that a
stepdown method strongly controls the familywise error rate is the subset pivotality
condition proposed by Westfall and Young (1993, page 42). Their original subset
pivotality condition is given in terms of adjusted p-values. For comparability with
S1 to S3, we have paraphrased that condition here in terms of test statistics:

Subset pivotality: For all I ⊂ {1, . . . , g}, the joint distribution of (Ti , i ∈ I )
under θi = 0, i ∈ I , remains the same regardless of the values
of θ j , j /∈ I .

One should verify either conditions S1 to S3 are satisfied, or subset pivotality
is satisfied, before implementing a stepdown test for, otherwise, the stepdown test
may not strongly control the familywise error rate. Such conditions are easier to
check with a model that connects the observations with the parameters, but harder
to check with a model (such as the randomization model) that only describes the
distribution of the observations under the null hypotheses. Indeed, Westfall and
Young (1993, page 91) cautioned that the randomization model does not guarantee
that the subset pivotality condition holds. Outside the context of bioinformatics,
there are in fact examples of methods that were in use at one time that violate
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these conditions (see, for example, Hsu, 1996, Chapter 6). In the context of gene
expressions, if it is possible for the correlations between nondifferentially ex-
pressed genes and differentially expressed genes to be different for normal and
disease tissues, then it seems to us that perhaps not all permutations of obser-
vations from genes that are not differentially expressed are equally likely across
normal and disease conditions. In that case, subset pivotality does not hold, and
conditions S1 to S3 may not hold, so stepdown permutation tests may not be valid.
For this reason, we believe multiple testing of gene expressions without modeling
requires careful validation.

6 An Example

Measurements of gene expression levels not only depend on true gene expression
under the treatments or conditions being compared, but potentially also on array
and dye variations. The amount of cDNA deposited may differ from one array to
the next. Genes might have differential affinity for the Cy3 (green) dye or the Cy5
(red) dye. The nuisance factors “array” and “dye” should be treated as blocking
factors in designing microarray experiments in order to eliminate their effects on
the analysis of the gene expressions.

For comparing two “treatments” t1 and t2 (such as tissue types or cell lines), both
Kerr et al. (2000) and Hsu et al. (2002) recommended the design of two-channel
microarray experiments as generalized Latin squares with an even number a of
arrays and two dyes, as follows.

1. Randomly assign treatment labels t1 and t2 to treatments (conditions) 1 and 2;
2. Randomly assign array labels 1, . . . , a to the actual microarrays;
3. Randomly assign dye labels 1 and 2 to the Cy5 (red) and Cy3 (green) dyes;
4. Assign treatment labels t1 and t2 to dyes and arrays according to Table 1;
5. Randomly spot each gene n times on each array.

This is an example of what are called “dye-swap experiments” by Churchill (2002)
and by Yang and Speed (2002).

To illustrate the modeling and subsequent analysis of gene expression levels, we
use the Synteni data of Kerr et al. (2000) which compared the expressions of 1286
genes of a human liver tissue sample to the same genes of a muscle tissue sample.
So, in this example, the two treatments are the two tissue types. The microarray
experiment was designed according to a generalized Latin square design as in
Table 1 with each of the 1286 genes spotted once on each array. The data can
be modeled successfully by a linear model, described below. Let ymdkir be the
observed gene expression of the mth array, dth dye, kth treatment, i th gene, and r th

Table 1. A generalized Latin square of size 2 × a
Dye/Array 1 2 3 . . . a − 1 a

1 t1 t2 t1 . . . t1 t2
2 t2 t1 t2 . . . t2 t1
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replication, and let y′
mdkir = loge(ymdkir ). Then a possible model for the logarithm

of observed gene expression levels is

y′
mdkir = μ + αm + δd + τk + γi + (αγ )mi + (δγ )di + (τγ )ki + εmdkir , (2)

m = 1, . . . , a; d = 1, 2; k = 1, 2; i = 1, 2, . . . , g; r = 1, 2, . . . , n;

where μ is the overall mean, αm is the effect of array m, δd is the effect of dye d , τk

is the effect of treatment k, γi is the effect of gene i , (αγ )mi is the interaction effect
of array m and gene i , (δγ )di is the interaction of dye d and gene i , (τγ )ki is the
interaction effect of treatment k and gene i , and the errors εmdkir are independent
N (0, σ 2). Inclusion of the array and dye effects in the model “pre-processes” the
data, removing from the analysis the effects of the nuisance factors and dependence
among the observations caused by such factors. In the above experiment, n = 1.

After deleting the outlying observations from one particular gene, regression
diagnostics show that, for the remaining 1285 genes, the reduced model

y′
mdkir = μ + αm + δd + τk + γi + (δγ )di + (τγ )ki + εmdkir , (3)

with independent normally distributed errors having equal variances, is adequate.
As Kerr et al. (2000) gave no indication that housekeeping genes were included

in the microarray experiment, the average expression level (averaged over arrays
and dyes) of all the genes serves as the (negative) control for normalizing the
data. The parameters of interest are, thus, the mean differences of log intensities
between treatments for the gene, compared to the mean difference in log intensities
between treatments averaged over all genes:

θi = τ1 + γi + (τγ )1i − (τ2 + γi + (τγ )2 j )

−

⎡⎢⎢⎢⎣τ1 +

g∑
j=1

γ j

g
+

g∑
j=1

(τγ )1 j

g
−

⎛⎜⎜⎜⎝τ2 +

g∑
j=1

γ j

g
+

g∑
j=1

(τγ )2 j

g

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦

= (τγ )1i − (τγ )2i − [τγ 1. − τγ 2.],

for i = 1, . . . , g, where a dot in the subscript and an overbar indicate averaging
over the levels of the corresponding factor. The least squares estimators of θi (i =
1, 2, . . . , g) are

θ̂i = ȳ′
..1. − ȳ′

..2i. −

⎡⎢⎢⎢⎣
g∑

j=1
ȳ′
..1 j.

g
−

g∑
j=1

ȳ′
..2 j.

g

⎤⎥⎥⎥⎦ .

The estimators have a (singular) multivariate normal distribution, with means
θi , i = 1, . . . , g, equal variances, and equal correlations −1/(g − 1). Let SE(θ̂i )
denote the estimate of the standard error of θ̂i , which is independent of i and hence
common to all genes.
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Whereas Hsu et al. (2002) obtained simultaneous confidence intervals for θi ,

i = 1, . . . , g, here we illustrate partition testing of the null hypotheses

H �
0I : {θi = 0 for all i ∈ I and θ j �= 0 for all j /∈ I }. (4)

We choose the following level-α test for (4). We reject H∗
0I if

max
i∈I

|Ti | = max
i∈I

∣∣∣∣∣ θ̂i − θi

SE(θ̂i )

∣∣∣∣∣ > cI , (5)

where the critical value cI is the upper 100(1 − α) percentile of the distribution of
maxi∈I |θ̂i − θi |/SE(θ̂i ). Because θi (i = 1, . . . , g) are equi-correlated, cI depends
only on the cardinality |I | of I . So let us denote cI by c|I |. The computation of the
exact value of c|I | is possible but, if the number of genes g is large, then c|I | is well
approximated by the 100(1 − α) percentile of the Studentized maximum modulus
distribution with |I | treatments and the error degrees of freedom given by the anal-
ysis of variance table. The reason is that, for the Studentized maximum modulus
distribution to be valid, the estimators θ̂i − θi , i ∈ I , need to be independent for
any I ⊆ {1, . . . , g}, and this is approximately true if g is large (see Section 1.3.1
of Hsu, 1996, and also Fritsch and Hsu, 1997.)

Without shortcutting, closed or partition testing would require testing 21285 − 1
tests, which is clearly impossible to achieve. However, conditions S1 and S2 for
shortcutting closed and partition testing are trivially satisfied. Also, condition S3 is
satisfied because the distribution of maxi∈I |Ti | does not depend on any parameter,
including θ j , j /∈ I .

For this data set, at a familywise error rate of 5%, one-step testing leads to
the conclusion that 174 genes are differentially expressed. Closed and partition
stepdown testing are guaranteed to infer at least those same 174 genes to be dif-
ferentially expressed. In fact, these last two methods both infer three additional
genes to be differentially expressed; that is, a total of 177 genes.

To guard against the possibility of nonnormal errors, we also applied the
bootstrap-t technique (see Beran, 1988, and Efron and Tibshirani, 1993); that
is, we bootstrapped the residuals to estimate the quantiles of maxi∈I |Ti |, and
used them as critical values for testing. At a FWER of 5%, one-step bootstrap
testing infers 161 genes to be differentially expressed, whereas stepdown boot-
strap testing infers 164 genes, with three additional genes, to be differentially
expressed.

Figure 1 shows plots of the ordered |Ti | values (solid dots) with normal distri-
bution critical values (dotted line) and bootstrap critical values (dashed line). On
the horizontal axis is the gene index that sorts the genes so that 1 corresponds to
the gene with the smallest |T | value, and 1285 corresponds to the gene with the
largest |T | value. A stepdown method starts by checking whether the largest |T |
value is larger than the largest critical value. If it is, then the gene corresponding
to that largest |T | value is inferred to be differentially expressed. Then one checks
whether the second largest |T | value is larger than the second largest critical value,
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Figure 1. Ordered |Ti | values (solid dots) with normal distribution critical values (dotted
line) and bootstrap critical values (dashed line) for the stepdown method.

and so on. The stepdown method stops as soon as an ordered |T | value is less
than the corresponding critical value. Thus, starting from the right of Figure 1 and
moving towards the left, those genes with solid dots above the critical value line
are inferred to be differentially expressed.

7 Discussion

For the potential of gene expression analysis to be fully realized, we believe good
choices of statistical design and analysis methods in microarray experiments are
essential. A good design not only avoids bias in estimation from nuisance factors,
but also allows the analysis to be executed efficiently. A good analysis method
guards against finding an excessive number of false positives and, hence, maxi-
mizes the probability of making a truly useful scientific discovery.
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7
Projection Properties of Factorial
Designs for Factor Screening

Ching-Shui Cheng

The role of projection in screening is discussed and a review of projection properties of
factorial designs is provided. The “projection of a factorial design onto a subset of factors”
is the subdesign consisting of the given subset of factors (or, equivalently, the subdesign
obtained by deleting the complementary set of factors). A factor-screening design with
good projections onto small subsets of factors can provide useful information when a small
number of active factors have been identified. The emphasis in this chapter is placed on
projection properties of nonregular designs with complex aliasing. The use of projection in
search designs and uniform designs is also discussed briefly.

1 Introduction

In the initial stage of experimentation, there may be a large number of potentially
important factors, however, according to the principle of effect sparsity (Box and
Meyer, 1986), often only a few of these factors are “active”. We say that a factor is
active if it is involved in at least one nonnegligible factorial effect. Thus, in design-
ing experiments for factor screening, it is important to consider properties of the
subdesigns consisting of small subsets of factors, called projections or projection
designs. A factor-screening design with good projections onto small subsets of
factors provides useful information after the small number of active factors has
been identified. Traditionally, designs with complicated alias structures, such as
Plackett–Burman designs, have been used for studying main effects, under the
assumption that all of the interactions are negligible. Interactions are typically
ignored due to the difficulty in disentangling complicated aliasing among the fac-
torial effects. However, if there are only a small number of active factors, then
such aliasing may no longer be a problem and it may be possible to study some
interactions. Hamada and Wu (1992) proposed a strategy to entertain and esti-
mate two-factor interactions from Plackett–Burman type designs. In their work
on screening and prediction in computer experiments, Welch et al. (1992) advo-
cated using the data from a small experiment not only to screen factors but also to
build an accurate predictor when the computer code is computationally expensive,
instead of treating the task of screening as a separate preliminary activity with
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follow-up experiments. More recently, Cheng and Wu (2001) also proposed an
approach that performs screening and response surface exploration using a single
design: the first-stage design is projected onto the factors that are identified as
important and then response surface exploration is conducted using the projection
design. The key to success lies in good low-dimensional projection properties of
the initial design. In this context, it is necessary to consider projection onto every
small subset of factors inasmuch as it is not known a priori which factors are active.

This chapter provides a review of some recent work on projection properties
of factorial designs. In Section 2, the concepts of orthogonal arrays and projec-
tivity are reviewed and a detailed example is provided to illustrate the concept of
projection. In Section 3, projection properties of regular designs are summarized,
and Section 4 is devoted to nonregular designs. Projection and search designs are
discussed in Section 5. A brief review of the use of projection in uniform and space-
filling designs, which arise in numerical integration, computer experiments, and
drug discovery, is presented in Section 6. The chapter ends with some concluding
remarks.

2 Orthogonal Arrays and Projectivity

Orthogonal arrays, introduced by C. R. Rao (1947), have been used extensively in
factorial designs. An orthogonal array, denoted OA(n, s f , t), is an n × f matrix
D of s symbols such that all the ordered t-tuples of the symbols occur equally
often as row vectors of any n × t submatrix of D. The array is said to be of
strength t . Each OA (n, s f , t) defines an n-run factorial design for f factors, each
having s levels, where the symbols represent factor levels, columns correspond to
factors, and rows represent factor-level combinations. In general, an orthogonal
array of strength t = 2l can be used to estimate all the main effects and interactions
involving at most l factors under the assumption that all the interactions involving
more than l factors are negligible. On the other hand, an orthogonal array of strength
t = 2l − 1 can be used to estimate all the main effects and interactions involving
at most l − 1 factors under the assumption that all the interactions involving more
than l factors are negligible. For example, an orthogonal array of strength two
defines a design under which all the main effects can be estimated when the
interactions are negligible; see Hedayat et al. (1999) for more technical details of
orthogonal arrays.

Implicit in the definition of an orthogonal array is the following important pro-
jection property: in the projection of an orthogonal array of strength t onto any
subset of t factors, all the factor-level combinations are replicated the same number
of times. Box and Tyssedal (1996) defined a design to be of projectivity p if, for
every subset of p factors, a complete factorial design (possibly with some combi-
nations replicated) is produced. This property can be viewed as an extension of
the concept of strength. It was also discussed by Constantine (1987, page 363) and
has further appeared in another context: p-projectivity is the same as p-covering in
designs for circuit testing; see, for example, Sloane (1993). If a design has projec-
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Table 1. An example of an OA(16, 26, 3)
Factors

1 2 3 4 5 6

−1 −1 −1 −1 −1 −1
−1 −1 −1 1 −1 1
−1 −1 1 −1 1 1
−1 −1 1 1 1 −1
−1 1 −1 −1 1 −1
−1 1 −1 1 1 1
−1 1 1 −1 −1 1
−1 1 1 1 −1 −1

1 −1 −1 −1 1 1
1 −1 −1 1 1 −1
1 −1 1 −1 −1 −1
1 −1 1 1 −1 1
1 1 −1 −1 −1 1
1 1 −1 1 −1 −1
1 1 1 −1 1 −1
1 1 1 1 1 1

tivity p and no more than p active factors, then no matter which factors are active,
all the main effects and interactions of the active factors can be estimated when
the design is projected onto the active factors.

Table 1 displays an orthogonal array of strength three because it contains each
of the 23 = 8 level combinations of any set of three factors exactly twice. In other
words, its projection onto any set of three factors consists of two replicates of the
complete 23 factorial design.

An orthogonal array is called regular if it can be constructed by using a “defining
relation”. For example, the array displayed in Table 1 is regular and is constructed
by the following method. Denote a row (factor-level combination) of the array
by (x1, . . . , x6). The first four columns of the array consist of all the 16 level
combinations of factors 1 through 4, and the levels of factors 5 and 6 are defined
via

x5 = x1x2x3 and x6 = x1x3x4.

Therefore, all the 16 factor-level combinations in the array satisfy

x1x2x3x5 = x1x3x4x6 = 1

and so the product

(x1x2x3x5)(x1x3x4x6) = x2x4x5x6

is also equal to 1. Thus, the array consists of solutions of the defining equations

1 = x1x2x3x5 = x1x3x4x6 = x2x4x5x6.
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This is often written as I = 1235 = 1346 = 2456, and is called the defining re-
lation of the design. Each term in the defining relation is called a defining word.
If we multiply each defining word by 1, then we obtain 1 = 235 = 346 = 12456.
This means that when only the 16 factor-level combinations in the array of Table 1
are observed, the main effect of factor 1, the interaction of factors 2, 3, 5, the
interaction of factors 3, 4, 6, and the interaction of factors 1, 2, 4, 5, and 6 are com-
pletely mixed up; we say that they are aliases of one another. The alias relations
of factorial effects under a regular design can be obtained easily from its defining
relation. The reader is referred to Chapter 1 of this book or Wu and Hamada (2000,
Chapter 4) for more detailed discussions of regular designs.

The length of the shortest defining word of a regular design is called its resolu-
tion. A regular design of resolution t is an orthogonal array of strength t − 1. For
example, the array displayed in Table 1 is a design of resolution four.

3 Projection Properties of Regular Designs

Projection properties of a regular design can easily be determined from its defining
relation. We refer the readers to Chen (1998) for various results on projection
properties of regular designs. The projection of a regular design onto any subset
of factors is also regular, either a regular fractional factorial design or a set of
replicates of a regular fractional factorial design. All defining equations satisfied
by the factor-level combinations in a projection design must also be satisfied by
the factor-level combinations in the parent design. Thus the defining words of
the projection design are precisely those defining words of the parent design that
involve only factors in the projection design.

For example, consider the 28−4 resolution IV design defined by

I = 1235 = 1346 = 2347 = 1248 = 2456 = 1457 = 3458 = 1267

= 2368 = 1378 = 3567 = 1568 = 2578 = 4678 = 12345678.

Among the 15 defining words, exactly three (3458, 3567, and 4678) involve fac-
tors 3, 4, 5, 6, 7, and 8 only. Therefore the projection onto these six factors is the
26−2 design defined by I = 3458 = 3567 = 4678. Because no defining word of
the above 28−4 design involves factors 1, 2, 3, and 4 only, the projection onto these
four factors is a 24 complete factorial design. On the other hand, one defining
word of the above design involves factors 1, 2, 3, and 5; therefore the projec-
tion onto these factors consists of two replicates of the 24−1 design defined by
I = 1235. Such a projection does not contain all the 16 factor-level combinations.
Thus the above 28−4 design does not have projectivity four but, because it con-
tains all eight level combinations of any set of three factors, it has projectivity
three.

In general, if a regular design has resolution t (maximal strength t − 1), then
it is of projectivity t − 1, but cannot be of projectivity t . This is because the
projection of the design onto the factors that appear in a defining word of length
t is a replicated 2t−1 fractional factorial design. Contrary to this, we shall see in
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the next section that a nonregular orthogonal array of maximal strength t − 1 can
have projectivity t .

4 Projection Properties of Nonregular Designs

When a regular design is used, any two factorial effects (main effects or interac-
tions) are either orthogonal or are completely aliased. Partial aliasing of factorial
effects makes the alias structures of nonregular designs much more complex (see
Chapter 8 for information on the difficulties in the analysis when complex aliasing
is present), but it also leads to some superior projection properties.

Plackett–Burman designs are important examples of nonregular orthogonal ar-
rays of strength two, and are constructed from Hadamard matrices (see, for ex-
ample, Wu and Hamada, 2000, Chapter 7). The economy in run sizes provided by
such designs makes them suitable for screening experiments. A Hadamard matrix
of order n is an n × n matrix with entries +1 and −1 in which any two columns
(and hence any two rows) are orthogonal in the usual sense of having a zero inner
product. Such a matrix can be “normalized” by multiplying all the entries of cer-
tain rows by −1 so that all the entries in the first column become equal to 1. An
OA(n, 2n−1, 2) can then be obtained by deleting the first column. Such a design
can accommodate n − 1 two-level factors in n runs and can be used to estimate all
the main effects when the interactions are assumed to be negligible.

Table 2 shows a 12-run Plackett–Burman design. All OA(12, 211, 2) are equiv-
alent in the sense that they can be obtained from one another by changing signs in
one or more complete columns and/or permuting rows and/or permuting columns.
Hadamard matrices of higher orders, however, are not unique.

Projection properties of Plackett–Burman designs were studied by Lin and
Draper (1991, 1992). Their computer searches examined all of the projections
of small Plackett–Burman designs onto a few factors. For example, each of the
165 projections of the 12-run design of Table 2 onto three factors consists of

Table 2. An example of an OA(12, 211, 2)
Factors

1 2 3 4 5 6 7 8 9 10 11

−1 −1 1 −1 −1 −1 1 1 1 −1 1
1 −1 −1 1 −1 −1 −1 1 1 1 −1

−1 1 −1 −1 1 −1 −1 −1 1 1 1
1 −1 1 −1 −1 1 −1 −1 −1 1 1
1 1 −1 1 −1 −1 1 −1 −1 −1 1
1 1 1 −1 1 −1 −1 1 −1 −1 −1

−1 1 1 1 −1 1 −1 −1 1 −1 −1
−1 −1 1 1 1 −1 1 −1 −1 1 −1
−1 −1 −1 1 1 1 −1 1 −1 −1 1

1 −1 −1 −1 1 1 1 −1 1 −1 −1
−1 1 −1 −1 −1 1 1 1 −1 1 −1

1 1 1 1 1 1 1 1 1 1 1
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a complete 23 design and a half-replicate of a 23 design. Thus, it is of projec-
tivity three. This property was also observed by Box and Bisgaard (1993), who
commented that the interesting projective properties of Plackett–Burman designs,
which experimenters have sometimes been reluctant to use for industrial experi-
mentation due to their complicated alias structures, provide a compelling rationale
for their use. This superior projection property of the 12-run Plackett–Burman
design is not shared by regular designs, as we have seen in the previous section.

It is the existence of a defining word of length t that prevents a regular design
of resolution t from having projectivity t . This key concept can be extended to
nonregular designs. For simplicity, this extension is described here for only two-
level designs.

Suppose an n-run design with f two-level factors is represented by an n × f
matrix D with elements di j , (i = 1, . . . , n; j = 1, . . . , f ), where di j is 1 or −1
representing the level of the jth factor on the i th run. If we denote the jth column of
D by d j , then the elements of d j define a contrast representing the main effect of the
jth factor. For each 2 ≤ l ≤ f and any subset S = { j1, . . . , jl} of {1, . . . , f }, let

d S = d j1 � · · ·� d jl ,

where, for x = (x1, . . . , xn)T and y = (y1, . . . , yn)T , x � y is their Hadamard, or
elementwise, product; that is,

x � y = (x1 y1, . . . , xn yn)T ,

where T denotes transpose. Then dS is a contrast corresponding to the interaction
of the factors in S. The design is said to have a defining word of length r if there
exist r columns, say columns j1, . . . , jr , such that d j1 � · · ·� d jr = 1n or −1n ,
where 1n is the n × 1 vector of 1s. Two factorial effects are said to be completely
aliased if their corresponding columns, say d S1 and d S2 , are such that

either d S1 = d S2 or dS1 = −d S2 ;

that is, |dT
S1

d S2 | = n. For example, we have already seen that the regular design
in Table 1 has a defining word 1235. Indeed, the Hadamard product of columns
1, 2, 3, and 5 of this array is equal to the vector of all 1s. Because the Hadamard
product of columns 1 and 2 is equal to that of columns 3 and 5, we see that the
interaction of factors 1 and 2 is completely aliased with that of factors 3 and 5. In
a regular design, we have

either |1T
n d S| = n or 1T

n d S = 0

for all subsets S of {1, . . . , f }. Thus any two factorial effects are either orthogonal
or completely aliased. For nonregular designs, we could have |1T

n d S| strictly
between 0 and n, leading to partial aliasing. For example, for the 12-run design in
Table 2, |1T

n d S| = 4 for all subsets S of size three. Even though this design only
has strength two, it does not have any defining word of length 3 or 4; that is, no d S

is +1n or −1n for subsets of size 3 or 4. This is not possible with regular designs.
It turns out that, in general, the nonexistence of defining words of length t + 1 in

an OA(n, 2 f , t) with f ≥ t + 1 is necessary and sufficient for the design, regular
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or not, to be of projectivity at least t + 1; notice that, because the array has strength
t, it has no defining words of lengths shorter than t + 1. It is, in fact, straightforward
to show that the condition is necessary and sufficient for regular designs and that
it is necessary for nonregular designs. Cheng (1995) showed that the condition is
also sufficient for nonregular designs. Thus, we have the following result.

Theorem 1. An OA(n, 2 f , t) with f ≥ t + 1 has projectivity t + 1 if and only if
it has no defining word of length t + 1.

The reason why a 12-run Plackett–Burman design is of projectivity three is that
it does not have a defining word of length three. The 12-run Plackett–Burman
design, although of projectivity three, is not of projectivity four. This is because,
in order to have projectivity four, a two-level design must have at least 16 runs.
Nevertheless, Lin and Draper (1993) and Wang and Wu (1995) observed an inter-
esting property of projections of the 12-run Plackett–Burman design onto any four
factors. By computer enumeration, they found that every such projection allows
the estimation of all the main effects and two-factor interactions, assuming that
three-factor and four-factor interactions are negligible, although their estimators
may not be independent. Wang and Wu (1995) coined the term hidden projection,
and also studied such projection properties of some other small Plackett–Burman
type designs. The success of Hamada and Wu’s (1992) strategy for entertaining
and estimating two-factor interactions from Plackett–Burman type designs was at-
tributed to the hidden projection properties of these designs. The hidden projection
properties provide further support for the use of such designs for factor screening
under the assumption of effect sparsity, even when some interactions are present.

Like projectivity, the hidden projection property is also tied to the nonexistence
of defining words of short lengths. It is clear that, if an orthogonal array of strength
two (regular or nonregular) has at least one defining word of length three or four,
then some two-factor interactions are completely aliased with main effects or
other two-factor interactions. In this situation, there are subsets of four factors
for which the projection design cannot estimate all main effects and two-factor
interactions. Thus, the nonexistence of defining words of length three or four is
necessary for the above four-factor hidden projection property to hold. For regular
designs, it is clearly also sufficient. Cheng (1995) showed that the condition is
necessary and sufficient in general for two-level orthogonal arrays of strength two.
This leads to the next theorem.

Theorem 2. A necessary and sufficient condition for an OA(n, 2 f , 2) with f ≥ 4 to
have the property that the main effects and two-factor interactions can be estimated
in all projections onto four factors is that it has no defining words of length three
or four.

Again, a 12-run Plackett–Burman design has the four-factor hidden projection
property stated in Theorem 2 because it has no defining words of length three or
four. On the other hand, it is not possible for a regular design to have the same
property unless it is of resolution five.

Cheng (1998a) further proved the following result for two-level orthogonal
arrays of strength three.
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Theorem 3. A necessary and sufficient condition for an OA(n, 2 f , 3) with f ≥ 5 to
have the property that the main effects and two-factor interactions can be estimated
in all projections onto five factors is that it has no defining words of length four.

By simple counting, it can be seen that if n is not a multiple of 8, then no
OA(n, 2 f , 2) with f ≥ 4 can have any defining words of length three or four.
This property, together with Theorems 1 and 2 above, lead to the results of Cheng
(1995) that such a design has projectivity three and that, in all of its four-factor
projections, the main effects and two-factor interactions can be estimated. All
Plackett–Burman designs whose run sizes are not multiples of 8 are covered by
this result. Similarly, if n is not a multiple of 16, then no OA(n, 2 f , 3) with f ≥ 5
has a defining word of length four, and Theorem 3 is applicable. In particular, if
n is not a multiple of 8, then the “foldover” (see Chapter 1) of any OA(n, 2 f , 2)
with f ≥ 4 has the property that, in all its five-factor projections, the main effects
and two-factor interactions can be estimated. Again, this result covers foldovers
of Plackett–Burman designs whose run sizes are not multiples of 8.

What happens if n is a multiple of 8? Cheng (1995) showed that, if the widely
held conjecture is true that a Hadamard matrix exists for every order that is a
multiple of 4, then for every n that is a multiple of 8, one can always construct an
OA(n, 2 f , 2) that has defining words of length three or four. Such designs are not
of projectivity 3, a fact also pointed out by Box and Tyssedal (1996), and do not
have the desirable hidden projection properties mentioned above. However, this
does not mean that, when n is a multiple of 8, there are no OA(n, 2 f , 2)s with good
hidden projection properties. One notable example is the family of Paley designs,
described below.

Many of the Plackett–Burman designs are constructed by a method due to Paley
(1933). Suppose that n is a multiple of 4 such that n − 1 is a power of an odd prime
number (for example, n = 12 or 20, and so on). Let q = n − 1 and let α1(= 0),
α2, . . . , αq denote the elements of GF(q), the Galois field with q elements; see Dey
and Mukerjee (1999, Section 3.4) for a review of Galois fields. Define a function
χ that maps the elements of GF(q) to the values 1 and −1 as follows,

χ (β) =
{

1, if β = y2 for y ∈ G F(q),

−1, otherwise.

Let A be the q × q matrix with (i, j)th element ai j , where ai j = χ (αi − α j ) for
i , j = 1, 2, . . . , q , and define

Pn =
[−1T

q

A

]
.

Then Pn is an OA(n, 2n−1, 2), and is called a Paley design. For n = 12, the Paley
design is the 12-run Plackett–Burman design. Paley designs can be constructed,
for example, for n = 12, 20, 24, 28, 32, 44. By using a result from number theory,
Bulutoglu and Cheng (2003) showed that all Paley designs with n ≥ 12 have
no defining words of length three or four. Therefore they all have projectivity
three, the main effects and two-factor interactions can be estimated in all four-
factor projections, and the same hidden projection property holds for all five-
factor projections of their foldover designs. This result covers 24- and 32-run
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Plackett–Burman designs even though 24 and 32 are multiples of 8. In fact, it
can be verified directly that the 32-run Plackett–Burman design has the stronger
property that all the main effects and two-factor interactions can be estimated in
all its six-factor projections (Cheng, 1998b).

Projection properties of designs with more than two levels have been relatively
unexplored. Cheng and Wu (2001) found a nonregular OA(27, 38, 2) such that the
quadratic model can be estimated in all four-factor projections. For f factors, each
with three quantitative levels, the quadratic model specifies the mean response at
factor level combination (x1, . . . , x f ) to be

μ +
f∑

i=1

βi xi +
f∑

i=1

βi i x
2
i +

∑
1≤i< j≤ f

βi j xi x j ,

where μ, βi , βi i , βi j are unknown constants. The four-factor projection property
mentioned above cannot be satisfied by any regular 38−5 design (with 27 runs),
again due to the presence of some defining words of length three. The design
of Cheng and Wu (2001) is constructed by taking the union of three carefully
chosen disjoint regular 38−6 fractional factorial designs of resolution two. Cheng
and Wu’s design almost achieves the same hidden projection property for five-
factor projections: among the projections onto five factors, only one is unable
to estimate the quadratic model. Xu et al. (2004) were able to find orthogonal
arrays, OA(27, 313, 2), such that the quadratic model can be estimated in all of the
five-factor projections.

5 Projection and Search Designs

The need to consider projections also arises in the study of search designs
(Srivastava, 1975) that can be used to identify and estimate nonnegligible effects.
Suppose that, in addition to a set of effects (say, the main effects of all factors)
that must be estimated, there is another set of effects (say, all the two-factor in-
teractions) that is known to the experimenter to contain at most a small number
of nonnegligible effects, but the identity of these is not known. The objective of a
search design is to find the nonnegligible effects and allow them to be estimated.
This approach can be adapted for factor screening. Suppose that there are at most
p active factors among f potentially active factors, where p is known and is small,
but it is unknown which of the factors are active. Here, as mentioned before, a
factor is active if at least one factorial effect involving it is nonnegligible. Then
the same kind of argument as that used by Srivastava (1975) can be applied to
show that, in the noiseless case (no random error), a design of size n can be used
to identify the active factors and estimate all of their main effects and interactions
if and only if

[1n
... X(A1, A2)] is of full column rank, (1)

for all pairs (A1, A2), where each of A1 and A2 is a subset of p potentially active
factors, 1n is the n × 1 vector of 1s, and X(A1, A2) is the matrix whose columns
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are contrasts that define the main effects of the factors in A1 ∪ A2, the interac-
tions of factors in A1, and the interactions of factors in A2. If, for example, it
can be assumed that all interactions involving three or more factors are negligi-
ble, then in X(A1, A2) we need only to include two-factor interaction contrasts.
For example, if p = 3, and A1 is the subset of factors 1, 2, 3 from the design
in Table 2 and A2 is the subset of factors 3, 4, 5, then X(A1, A2) has columns
d1, d2, d3, d4, d5, d1 � d2, d1 � d3, d2 � d3, d3 � d4, d3 � d5, d4 � d5.

When p = 2, A1 ∪ A2 involves at most four factors. It was mentioned in the
previous section that any OA(n, 2 f , 2) such that n is not a multiple of 8, and any
Plackett–Burman design of size n ≥ 12, has the property that the main effects and
two-factor interactions can be estimated in all four-factor projections. So, in these
designs, (1) is satisfied and can, therefore, be used to identify up to two active factors
and estimate their main effects and interaction. Similarly, the six-factor projection
property of the 32-run Plackett–Burman design mentioned in Section 4 implies
that the design can be used to identify up to p = 3 active factors and estimate their
main effects and two-factor interactions, under the assumption that the three-factor
and higher-order interactions are negligible. The reason why a design capable of
searching for up to p factors requires hidden projection properties for 2p factors
is that, without the above full rank condition for 2p factors, identifiability issues
would cause a pair of models each involving p factors to be indistinguishable in
certain situations.

Ghosh (1979), Ghosh and Avila (1985), and Müller (1993) considered the factor
screening problem under the assumption that all the interactions are negligible.
In this case, suppose there are f two-level potentially active factors. For a design
of size n, let D be the n × f matrix such that the (i, j)th entry is equal to 1 or
−1 depending on whether, on the ith run, the jth factor is at the high or low level
(i = 1, . . . , n; j = 1, . . . , f ). Then the design can be used for identifying up to
p factors if and only if

rank[1
... D0] = 1 + 2p, (2)

for every n × 2p submatrix D0 of D.
If [1

... D] is of full column rank, then clearly (2) is satisfied. Therefore, in this
context, it is of interest to consider those designs with f > n − 1. These are called
supersaturated designs which are discussed in Chapter 8.

6 Projection and Uniform Designs

Considerations of projections also arise in uniform or space-filling designs. Such
designs are proposed in several settings, including computer experiments, numeri-
cal integration, robust regression, and drug discovery that call for the design points
to be well spread over the entire design region. For discussions of drug discovery,
see Chapter 4.

When the dimension is high, due to the curse of dimensionality, uniformity
throughout the experimental region becomes difficult to achieve. Uniformity in
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low-dimensional projections then provides a viable alternative. For example, in
designs for computer experiments and numerical integration, Latin hypercube de-
signs have been proposed as improvements on the random selection of design points
(McKay et al., 1979). Such designs achieve better uniformity in one-dimensional
projections: if n points are to be selected from the unit cube [0, 1] f then, in all the
univariate margins, exactly one point can be found in each of n intervals of equal
width. Extensions such as orthogonal array-based Latin hypercubes (Tang, 1993),
randomized orthogonal arrays (Owen, 1992), and scrambled nets (Owen, 1997)
achieve uniformity in low-dimensional (for example, binary and ternary) margins.
Such designs are suitable when there are relatively few active factors.

Another approach to constructing uniform designs is based on minimizing a
criterion of “discrepancy” which is a measure of the difference between the empir-
ical distribution of the design points and the theoretical uniform distribution (Fang,
1980). In recent years, modifications have been proposed to take discrepancy in
low-dimensional projections into account (Hickernell, 1998). Space-filling designs
are also obtained through use of criteria that consider the coverage or spread of
a design across a given set of candidate points. A projection approach based on
these types of criteria is presented by Lam et al. (2002) for molecule selection in
screening for drug discovery.

7 Discussion

In designs for factor screening, the number of factors is usually large, but the
number of experimental runs is limited. The design points cannot provide a good
coverage of the experimental region, nor can they support complicated models.
On the other hand, often only a small number of factors and effects are expected
to be important, and so it is sensible to use a design with good low-dimensional
projections. This means that, when the design is restricted to the small subset of
factors identified to be important, the design points have a good coverage of the
reduced design space or are capable of entertaining more complicated models in
the smaller set of factors. This is useful and important for the subsequent follow-up
analyses and experiments. Knowledge about projection properties can also help
the experimenter to incorporate prior knowledge into designs for factor-screening
experiments; for example, it may be suspected that some factors are more likely
to be important than others.

This chapter provides a survey of recent results on the projection properties
of some commonly used designs, in particular, regular fractional factorial designs
and nonregular designs such as the Plackett–Burman designs. The properties of the
projection designs of a regular design can easily be determined from its defining
relation, and so this chapter has concentrated more on nonregular designs whose
complex alias structures lead to interesting hidden projection properties. The issue
of how to identify active factors is discussed in Chapters 8 and 11. The reader
is referred to Wu and Hamada (2000, Chapter 8), Cheng and Wu (2001), and
the discussants’ comments on the latter, for proposals and discussions of data
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analysis, including critiques of, and alternatives to, the strategy of screening only
main effects in the first stage of experimentation.
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8
Factor Screening via
Supersaturated Designs

Steven G. Gilmour

Supersaturated designs are fractional factorial designs that have too few runs to allow the
estimation of the main effects of all the factors in the experiment. There has been a great deal
of interest in the development of these designs for factor screening in recent years. A review
of this work is presented, including criteria for design selection, in particular the popular
E(s2) criterion, and methods for constructing supersaturated designs, both combinatorial and
computational. Various methods, both classical and partially Bayesian, have been suggested
for the analysis of data from supersaturated designs and these are critically reviewed and
illustrated. Recommendations are made about the use of supersaturated designs in practice
and suggestions for future research are given.

1 Supersaturated Designs

All factor screening designs are intended for situations in which there are too
many factors to study in detail. If the number of factors is very large and/or each
experimental run is very expensive, then it may be impractical to use even the
Resolution III two-level designs of Chapter 1, which allow all main effects to be
estimated. In such cases, it might be useful to run experiments with fewer runs
than there are factors to try to identify a small number of factors that appear to
have dominant effects.

A supersaturated design is a design for which there are fewer runs than effects
to be estimated in a proposed model. Usually the term “supersaturated” is used
more specifically for a design for which there are insufficient degrees of freedom
for estimating the main effects only model, that is, for designs with n runs where
estimating the main effects would require more than n − 1 degrees of freedom.
This chapter discusses the use of screening designs of this more restricted type.
In the early literature on the subject, and often today, the term was used still more
specifically for a design with n runs in which there are more than n − 1 two-level
factors. The discussion here concentrates on these two-level designs and their use
in factor screening. For recent work on factors with more than two levels, see Lu
et al. (2003) and the references contained therein.

Supersaturated designs have their roots in random balance experimentation,
which was briefly popular in industry in the 1950s, until the discussion of the papers

169
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by Satterthwaite (1959) and Budne (1959). In these experiments, the combinations
of the factor levels are chosen at random, subject to having equal numbers of runs at
each level of each factor, and they can include more factors than there are runs. Box
(1959) suggested that the latter idea was worth pursuing in the context of designed
experiments. However, the idea of random balance itself was totally refuted as a
useful way of running experiments and has rarely been seen since. Booth and Cox
(1962) presented the first supersaturated designs, but no more work on the subject
was published for more than 30 years.

The papers by Lin (1993) and Wu (1993) sparked a renewed interest in the sub-
ject. Since then there has been a large and increasing number of papers published in
the statistical literature, mostly on methods of constructing supersaturated designs.
It is less clear how much they are being used in practice. There appear to be no
published case studies featuring the use of supersaturated designs, although the
most likely area for their application is in early discovery experiments which are
unlikely to be sent for publication. In my own experience, industrial statisticians
are reluctant to recommend supersaturated designs because there are no successful
case studies in the literature, but the difficulties in interpreting the data might also
be a deterrent.

This chapter reviews the recent work on supersaturated designs in factor screen-
ing, concentrating on methods of obtaining designs and analyzing the data that are
most likely to be useful in practice. It also attempts to assess how much we know
about the usefulness of supersaturated designs and suggests areas where more re-
search is needed. Section 2 reviews methods of constructing designs, and Section 3
discusses the methods of analysis that have been recommended. In Section 4, some
recommendations for future research are made, including comparison of supersat-
urated designs with alternatives, exploratory data analysis, and Bayesian modeling.
A brief discussion is given in Section 5.

2 E(s2)-Optimal Designs

We assume that each factor has two levels, coded +1 and −1, often written as +
and −. As in almost all of the literature, we assume that each factor is observed
at each level an equal number of times, although Allen and Bernshteyn (2003)
recently relaxed this assumption.

2.1 Criteria of Optimality

Consider the “main effects only” model,

Y = β0 +
f∑

j=1

β j x j + ε, (1)

where Y is a response variable, β0, β1, . . . , β f are unknown parameters, x1, . . . , x f

are the coded levels of the f factors, ε is an error term with E(ε) = 0 and
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Table 1. Design for 10 factors in 6 runs.
Factors

1 2 3 4 5 6 7 8 9 10

+ + − + + + − − − +
+ + + − − − + − + +
− − + − + + − + + +
− + − + + − + + + −
+ − + + − + + + − −
− − − − − − − − − −

V (ε) = σ 2, and error terms are independent. We also write this model in matrix
notation as

Y = Xβ + ε. (2)

In a supersaturated design, even for this main effects only model, the matrix X
′
X

is singular, where ′ denotes transpose, and so no unique least squares estimates of
the parameters β can be obtained. Consider, for example, the small supersaturated
design shown in Table 1. This has

X
′
X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 0 0 0 0 0 0 0 0 0 0
0 6 2 2 2 −2 2 2 −2 −2 2
0 2 6 −2 2 2 −2 2 −2 2 2
0 2 −2 6 −2 −2 2 2 2 2 2
0 2 2 −2 6 2 2 2 2 −2 −2
0 −2 2 −2 2 6 2 −2 2 2 2
0 2 −2 2 2 2 6 −2 2 −2 2
0 2 2 2 2 −2 −2 6 2 2 −2
0 −2 −2 2 2 2 2 2 6 2 −2
0 −2 2 2 −2 2 −2 2 2 6 2
0 2 2 2 −2 2 2 −2 −2 2 6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3)

The diagonal elements of this matrix are fixed by the number of runs. If it were
possible to reduce the off-diagonal elements in absolute value, the matrix could be
made nonsingular. Best of all would be if the off-diagonal elements were all zero,
in which case all main effects would be estimated independently.

It is, of course, impossible to get an X
′
X matrix for 10 factors in 6 runs with rank

greater than 6. However, these considerations suggest that a good design will be
one that makes the off-diagonal elements as small as possible (in absolute value).
Letting the (i, j)th element of X

′
X be si j , Booth and Cox (1962) suggested two

criteria based on the sizes of the si j . The first criterion they used was to choose a
design with minimum maxi �= j |si j |, and among all such designs to choose one with
the fewest si j that achieves this maximum.
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The second suggestion of Booth and Cox was to choose a design that minimizes

E(s2) = 2

f ( f − 1)

∑
i< j

s2
i j . (4)

This has become the most commonly used criterion in the literature on supersatu-
rated designs. Sometimes these two criteria are combined, for example, by choos-
ing a supersaturated design that minimizes E(s2) subject to some upper bound on
maxi �= j |si j |. Cheng and Tang (2001) gave upper bounds on the number of factors
that could be included in a supersaturated design subject to maxi �= j |si j | ≤ c, where
c is a constant.

Booth and Cox (1962) gave two other interpretations of E(s2). They showed
that if there are only p important factors and their main effects are so large that
they can be easily identified, then the average variance of their estimated main
effects is approximately

σ 2

n

{
1 + (p − 1)E(s2)

n2

}
. (5)

Thus, an E(s2)-optimal design also minimizes this quantity. As p becomes larger,
this approximation becomes poorer and the assumption that the large effects can
be identified becomes less plausible, so it is most relevant for p = 2 and perhaps
p = 3. Wu (1993) showed that E(s2)-optimal designs also maximize the average
D-efficiency over all models with just two main effects.

The second interpretation of E(s2) arises from considering the estimation of the
main effect of a single factor X j , for example if only one factor appears to have
a very large effect. The simple linear regression estimate of β j from the model
Yi = β0 + β j x ji + εi

β̂ j =
n∑

i=1

x ji yi/n, with V (β̂ j ) = σ 2/n,

and is based on the assumption that all other factors will have zero effects. If, in fact,
all other factors have effects of magnitude 2δ, with their directions being chosen at
random, then the true variance of the single estimated main effect is not σ 2/n, but

σ 2

n
+ ( f − 1)

4n2
δ2 E(s2). (6)

Cheng et al. (2002) showed that supersaturated designs with a property called
“minimum G2-aberration” are E(s2)-optimal and suggested that G2-aberration
might be a useful criterion for supersaturated designs. Liu and Hickernall (2002)
showed that E(s2) is similar, but not identical, to a form of discrepancy, that is, a
measure of how far the points of the design are from being uniformly distributed in
the factor space. They also showed that, under certain conditions, the most uniform
designs are E(s2)-optimal. It is unknown how the concept of discrepancy is related
to the statistical properties of the designs.

A different criterion was used by Allen and Bernshteyn (2003) to construct
supersaturated designs. They used prior probabilities of factors being active (having
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nonnegligible effects) and inactive (having negligible effects) and then searched
for designs that maximize the probability of correctly selecting the active factors.
In all of the examples they studied, they found that designs which optimize this
criterion are also E(s2)-optimal, but that the converse is not true. This suggests that
they could restrict their search for designs to the class of E(s2)-optimal designs.

Other criteria have been suggested, but rarely used, for constructing supersat-
urated designs, although they are sometimes used for comparing different E(s2)-
optimal designs. One of these is to minimize the average D- or A-efficiency over
all submodels with p factors, 2 ≤ p < f (Wu, 1993; Liu and Dean, 2004). Deng
et al. (1996) suggested using the multiple regression of a column in the design
on p − 1 other columns. The regression sum of squares then gives a measure of
the nonorthogonality of this column to the others. The average of this regression
sum of squares over all sets of columns can be used as a criterion for comparing
designs, although the computation of this criterion is a major task in itself. Deng
et al. (1999) defined the resolution-rank of a supersaturated design as the max-
imum p such that any p columns of the design are linearly independent. They
suggested maximizing the resolution-rank, although again the computation of this
criterion is prohibitive for large f . Holcomb and Carlyle (2002) suggested using
the ratio the largest eigenvalue of X

′
X and the smallest nonzero eigenvalue and

stated that this was related to A-efficiency. None of these criteria have been studied
further.

2.2 Methods for Constructing E(s2)-Optimal Designs

Several different methods of constructing supersaturated designs have been sug-
gested, most based on Hadamard matrices, incomplete block designs, or computer
search routines. In the earlier papers, when a new method was suggested, it was
shown to give designs that are better than those obtained by previous methods with
regard to the E(s2) criterion. Some of these designs have later been shown to be
E(s2)-optimal, whereas others have been shown to be E(s2)-suboptimal. In this
section, attention is paid only to methods that are known to lead to E(s2)-optimal
designs. Ways of constructing designs when no E(s2)-optimal design is known are
discussed in the next section.

In order to know whether a given design is optimal, it is helpful to have lower
bounds on E(s2). Increasingly tight, or more widely applicable, bounds have been
given by Nguyen (1996), Tang and Wu (1997), Liu and Zhang (2000a,b), Butler
et al. (2001), and Bulutoglu and Cheng (2004). The bounds of Bulutoglu and
Cheng cover all cases with n even and with each factor having two levels with n/2
runs at each level, that is, all of the cases we are considering here. These results
allow us to identify many E(s2)-optimal supersaturated designs.

2.2.1 Methods Using Hadamard Matrices

A t × t matrix H with elements ±1 is called a Hadamard matrix if H′ H = t I.
Hadamard matrices are considered to be equivalent if they can be obtained from
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Table 2. Plackett–Burman design for 11 factors in 12 runs.
Factors

1 2 3 4 5 6 7 8 9 10 11

+ + − + + + − − − + −
+ − + + + − − − + − +
− + + + − − − + − + +
+ + + − − − + − + + −
+ + − − − + − + + − +
+ − − − + − + + − + +
− − − + − + + − + + +
− − + − + + − + + + −
− + − + + − + + + − −
+ − + + − + + + − − −
− + + − + + + − − − +
− − − − − − − − − − −

each other by elementary row operations and so they can always be written with
the first column consisting entirely of 1. Nguyen (1996) showed that the following
method of construction, due to Lin (1993), gives E(s2)-optimal supersaturated
designs. Take a 2n × 2n Hadamard matrix, H, and write it as

H =
[

1 1 H1

1 −1 H2

]
, (7)

where 1 is an n × 1 vector with every element 1. Then H1 is an E(s2)-optimal
supersaturated design for 2(n − 1) factors in n runs if it contains no identical
columns.

This method can be illustrated by taking the Plackett–Burman design for 11 fac-
tors in 12 runs, which is based on a 12 × 12 Hadamard matrix and is shown in
Table 2. Selecting the rows corresponding to + in Factor 11 and dropping this
factor gives the supersaturated design for 10 factors in 6 runs shown in Table 1.

Deng et al. (1994) suggested using quarter, eighth, or smaller fractions of
Hadamard matrices and Cheng (1997) showed that these are also E(s2)-optimal.
Tang and Wu (1997) showed that E(s2)-optimal designs can be constructed by join-
ing Hadamard matrices. Suppose that m Hadamard matrices, H1, . . . , Hm , each
of size n × n, exist with no columns in common. Then, writing Hi as [1 H∗

i ], the
array [H∗

1 · · · H∗
m] gives an E(s2)-optimal supersaturated design for m(n − 1) fac-

tors in n runs. For example, the design shown in Table 3 combines that in Table 2
with another Hadamard matrix obtained by permuting its rows and has no re-
peated columns. Hence it is an E(s2)-optimal supersaturated design for 22 factors
in 12 runs.

Wu (1993) suggested another method of construction, namely, adding interac-
tion columns to a saturated design obtained from a Hadamard matrix with the first
column deleted. For example, adding the pairwise interactions of Factor 1 with
every other factor to the design in Table 2, we get the supersaturated design for
21 factors in 12 runs given in Table 4. Bulutoglu and Cheng (2003) showed that
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Table 3. Design for 22 factors in 12 runs.
Factors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

+ + − + + + − − − + − + − − − + − + + − + +
+ − + + + − − − + − + − − − + − + + − + + +
− + + + − − − + − + + − − + − + + − + + + −
+ + + − − − + − + + − − + − + + − + + + − −
+ + − − − + − + + − + + − + + + − − − + − +
+ − − − + − + + − + + − + + + − − − + − + +
− − − + − + + − + + + + + + − − − + − + + −
− − + − + + − + + + − + + − − − + − + + − +
− + − + + − + + + − − + − + + − + + + − − −
+ − + + − + + + − − − − + + − + + + − − − +
− + + − + + + − − − + + + − + + + − − − + −
− − − − − − − − − − − − − − − − − − − − − −

this procedure does not, in general, produce E(s2)-optimal supersaturated designs,
but that it does in the following case.

� All interactions are used, along with the original design;
� All interactions are used, without the original design;
� All interactions with one factor are used, along with the original design.

Thus the design shown in Table 4 is E(s2)-optimal.

2.2.2 Method Using Incomplete Block Designs

Nguyen (1996) showed that E(s2)-optimal supersaturated designs could be ob-
tained from balanced incomplete block designs for n − 1 treatments in blocks of
size n/2 − 1, provided that there are no repeated blocks. Each block generates a

Table 4. Design for 21 factors in 12 runs.
Factors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

+ + − + + + − − − + − + − + + + − − − + −
+ − + + + − − − + − + − + + + − − − + − +
− + + + − − − + − + + − − − + + + − + − −
+ + + − − − + − + + − + + − − − + − + + −
+ + − − − + − + + − + + − − − + − + + − +
+ − − − + − + + − + + − − − + − + + − + +
− − − + − + + − + + + + + − + − − + − − −
− − + − + + − + + + − + − + − − + − − − +
− + − + + − + + + − − − + − − + − − − + +
+ − + + − + + + − − − − + + − + + + − − −
− + + − + + + − − − + − − + − − − + + + −
− − − − − − − − − − − + + + + + + + + + +
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Table 5. Design for 14 factors in 8 runs.
Factors

1 2 3 4 5 6 7 8 9 10 11 12 13 14

− + − − − + + − − − + − + +
+ − + − − − + + − − − + − +
+ + − + − − − + + − − − + −
− + + − + − − − + + − − − +
− − + + − + − + − + + − − −
− − − + + − + − + − + + − −
+ − − − + + − − − + − + + −
+ + + + + + + + + + + + + +

column of the supersaturated design with a + in row i if treatment i is in the block.
A final row of + is added to complete the supersaturated design. For example,
one possible balanced incomplete block design for 7 treatments in 14 blocks of
size 3 has the following blocks: (2,3,7), (1,3,4), (2,4,5), (3,5,6), (4,6,7), (1,5,7),
(1,2,6), (2,3,5), (3,4,6), (4,5,7), (1,5,6), (2,6,7), (1,3,7), and (1,2,4). This produces
the supersaturated design for 14 factors in 8 runs shown in Table 5. Because every
Hadamard matrix is equivalent to a balanced incomplete block design, but not every
balanced incomplete block design is equivalent to a Hadamard matrix, Bulutoglu
and Cheng (2004) pointed out that construction of supersaturated designs using
balanced incomplete block designs is more flexible. The only problem is in en-
suring that there are no repeated blocks. Bulutoglu and Cheng gave a number of
results useful in constructing balanced incomplete block designs with no repeated
blocks.

2.2.3 Methods Using Known E(s2)-Optimal Designs

The above construction methods give designs for many values of n, the number
of runs, and f , the number of factors, but there are still many values of n and
f for which they do not provide designs. Fortunately, methods have been devel-
oped for constructing new E(s2)-optimal designs based on known E(s2)-optimal
designs.

Nguyen (1996) showed that deleting any single column from an E(s2)-optimal
supersaturated design obtained from a balanced incomplete block design results
in an E(s2)-optimal supersaturated design. Cheng (1997) showed how to obtain
E(s2)-optimal supersaturated designs for m(n − 1) ± 1 and m(n − 1) ± 2 factors
in n runs when an E(s2)-optimal design is known for m(n − 1) factors in n runs for
any positive integer m. The addition of any one column that does not already appear,
or deleting any one column from the design, gives an E(s2)-optimal design. Hence
deleting any column from the design in Table 3 gives an alternative E(s2)-optimal
design for 21 factors in 12 runs to that shown in Table 4.

The cases of f = m(n − 1) ± 2 factors require more care. If n is a multiple
of 4, then we can add or delete any pair of orthogonal columns to obtain an
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E(s2)-optimal design; that is, in the two columns added or deleted each combina-
tion (−1, −1), (−1, +1), (+1, −1), (+1, +1), must appear n/4 times. If n is not
a multiple of 4, then the two columns added or deleted must be nearly orthogonal
in the sense that each of (−1, −1) and (1, 1) appears (n + 2)/4 times and each of
(−1, 1) and (1, −1) appears (n − 2)/4 times.

Butler et al. (2001) gave several methods for obtaining E(s2)-optimal supersat-
urated designs from smaller E(s2)-optimal supersaturated designs. First, if

1. D0 is an E(s2)-optimal supersaturated design for f0 factors in n runs,
2. D1 is an E(s2)-optimal supersaturated design for f1 = m(n − 1) factors in n

runs, where m must be even if n ≡ 2(mod 4), and
3. D0 and D1 have no columns in common,

then [D0 D1] is an E(s2)-optimal supersaturated design for f0 + f1 factors in n
runs. The method of Tang and Wu (1997), described in Section 2.2, uses a special
case of this result.

Secondly, if

1. D0 is an E(s2)-optimal supersaturated design for f0 factors in n/2 runs, where

f0 = m
(n

2
− 1

)
+ sign(r )

{
|r | + 4int

( |r |
8

)
− 4int

( |r |
4

)}
, (8)

where sign(·) and int(·) denote, respectively, the sign of the argument and the
integer part of the argument, where r is an integer;

2. D1 is a design for f1 factors in n/2 runs with orthogonal rows, where

f1 = mn

2
+ 4sign(r )int

( |r | + 4)

8

)
; (9)

3. f0 + f1 = m(n − 1) + r, where |r | < n/2; and
4. either

� n is a multiple of 8 and |r | �≡ 3(mod 8); or
� n is a multiple of 4 but not 8, m is even, |r | �≡ 2(mod 4), and |r | �≡ 3(mod 8),

then [
D0 D1

D0 −D1

]
(10)

is an E(s2)-optimal design for f0 + f1 factors in n runs.
Thirdly, any design obtained by deleting any column from a design obtained by

either of the two methods just described, or adding any column distinct from those
already in the design, is an E(s2)-optimal design. This extends the result of Cheng
(1997) to more general numbers of factors.

Finally, if

1. D0 is an E(s2)-optimal supersaturated design for f0 factors in n/2k runs where

f0 =
(mn

2k
− 1

)
+ sign(r )

{
|r | + 4int

( |r |
2k+2

)
− 4int

( |r |
4

)}
; (11)
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2. Di , i = 1, . . . , k, is a design for fi factors in n/2i runs with orthogonal rows,
where

fi = mn

2i
+ 4sign(r )int

( |r |
2i+2

+ 1

2

)
; (12)

and
3. either

� n is a multiple of 2k+2 and |r | �≡ 3(mod 4); or
� n is a multiple of 2k+1 but not of 2k+2, m is even, and |r | ≡ 0 or 1(mod 4),

then

[a1 ⊗ D1 . . . ak ⊗ Dk 12k ⊗ D0] (13)

is an E(s2)-optimal supersaturated design for f0 + f1 + · · · + fk factors in n runs,
where ai has length 2i and has odd elements equal to 1 and even elements equal
to −1.

2.2.4 Computer Construction

Several E(s2)-optimal designs are known that cannot be obtained from any
of the methods described above. Rather, they were constructed using com-
puter programs. These programs are based on algorithms that are not guaran-
teed to find the best design, but the designs found can be compared with the
corresponding lower bounds for E(s2) and sometimes they will achieve these
bounds.

Perhaps surprisingly, the earliest supersaturated designs, those of Booth and Cox
(1962), were obtained by computer-aided construction. However, their algorithm
has been shown to produce suboptimal designs in many situations. Lin (1995) was
the first to use a modern exchange algorithm, but the greatest advance was the
algorithm of Nguyen (1996). He realized that it was only necessary to swap +
and − within columns of a design, thus allowing an interchange algorithm to
be used, which is much more efficient than the exchange algorithm. A similar
algorithm was suggested by Li and Wu (1997).

Nguyen’s algorithm, known as NOA, is implemented within the Gendex pack-
age; see http://www.designcomputing.net/gendex for further details. Bulutoglu and
Cheng (2004) used this program to find several new E(s2)-optimal designs. Cela
et al. (2000) instead used a genetic algorithm to find E(s2)-optimal designs, but
this does not appear to have any advantage over the NOA algorithm.

2.3 Other Designs

If no E(s2)-optimal design is known to exist for a particular run size and number of
factors, then it is sensible to try to find a nearly E(s2)-optimal design. A reasonable
approach is to use an algorithm such as NOA, because this might find a design that
can be shown to reach the E(s2) lower bound but if it does not, the design it finds
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might actually be E(s2)-optimal and should certainly be nearly E(s2)-optimal.
However, this approach might fail to find a good design in a reasonable amount of
computing time, when very large designs are needed.

Various other approaches to constructing nearly E(s2)-optimal designs have
been suggested. One is the construction of Wu (1993), described in Section 2.2,
based on adding interaction columns to a Hadamard matrix which, when it does
not produce E(s2)-optimal designs, produces designs with reasonably high E(s2)-
efficiencies.

The correspondence between incomplete block designs and supersaturated de-
signs applies to unbalanced, as well as balanced, incomplete block designs. For this
reason, Eskridge et al. (2004) suggested using cyclic regular graph designs. They
showed that these designs are at least 94.9% E(s2)-efficient for f = m(n − 1)
and n ≥ 10 and showed how they can be used to construct supersaturated designs
for up to 12,190 factors in 24 runs. Liu and Dean (2004) used a more general
type of cyclic design, known as k-circulant supersaturated designs, to find all de-
signs based on balanced incomplete block designs, all those of Eskridge et al.
(2004), and several new designs. All the designs they presented are at least 97.8%
E(s2)-efficient.

Although several authors have used secondary criteria, especially minimizing
maxi �= j |si j |, to distinguish between different E(s2)-optimal designs, or to illustrate
the properties of the designs, few have used other criteria as the principal aim
of construction. One exception is Yamada and Lin (1997), who considered the
situation where a subset of the factors is identified, a priori, to be more likely to
have nonnegligible effects. They then built designs to minimize E(s2) subject to
correlations between pairs of factors within the identified group being less than
a given bound. Although appropriate for this purpose, the overall E(s2) of these
designs is much higher than the lower bounds.

3 Data Analysis

Standard methods for analyzing data from fractional factorial designs cannot be
used with data from supersaturated designs, because the least squares estimates
are not unique and, given any reasonable assumptions, there is no way to estimate
all the main effects simultaneously.

Several methods of analysis have been suggested in the literature and are dis-
cussed in the context of data from half of an experiment reported by Williams
(1968) and analyzed by several authors. Twenty-three factors were varied in 28 runs
and one continuous response was observed. The half-fraction analyzed by Lin
(1993) is shown in Table 6, which incorporates the corrections noted by Box and
Draper (1987) and Abraham et al. (1999).

Most methods of analysis assume that the objective is to identify a few active
factors, those with nonnegligible main effects, to separate them from the inactive
factors, those with negligible main effects.
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Table 6. Design and data for half-replicate of Williams’ experiment.
Factors

Response
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 y

+ + + − − − + + + + + − + − − + − − + − − − + 133
+ − − − − − + + + − − − + + + − + − − + + − − 62
+ + − + + − − − − + − + + + + + − − − − + + − 45
+ + − + − + − − − + + − + − + − + + + − − − − 52
− − + + + + − + + − − − + − + + − − + − + + + 56
− − + + + + + − + + + − − + + + + + + + + − − 47
− − − − + − − + − + − + + + − + + + + + − − + 88
− + + − − + − + − + − − − − − − − + − + + + − 193
− − − − − + + − − − + + − − + + + − − − − + + 32
+ + + + − + + + − − − + − + + + − + − + − − + 53
− + − + + − − + + − + − − + − − + + − − − + + 276
+ − − − + + + − + + + + + − − − − + − + + + + 145
+ + + + + − + − + − − + − − − − + − + + − + − 130
− − + − − − − − − − + + − + − − − − + − + − − 127

3.1 Least Squares Estimation Methods

Most often data analysis techniques are borrowed from regression analysis.
Satterthwaite (1959) suggested a graphical method that is essentially equiva-
lent to producing the least squares estimates from each simple linear regression.
For example, in the data in Table 6, the effect of factor 1 is estimated by fitting
Yi = β0 + β1x1i + εi and so on, giving the results in Table 7. Chen and Lin (1998)
showed that, if there is a single active factor with true magnitude greater than σ

and if all other factors have exactly zero effect, then this procedure gives a high
probability of the active factor having the largest estimated main effect. Lin (1995)
suggested plotting these simple linear regression estimates on normal probability
paper, although the lack of orthogonality makes the interpretation of such a plot
difficult. Kelly and Voelkel (2000) showed that the probabilities of type-II errors
resulting from this method are very high and recommended instead that all sub-
sets selection be used, which involves fitting all estimable submodels of the main
effects model.

Holcomb et al. (2003) studied the method of using the simple linear regression
estimates in more detail. They described it as a contrast-based method obtained by
using X′y from the full model, but these are the simple linear regression estimates
multiplied by n. They tried several procedures for separating the active from the

Table 7. Estimates of main effects obtained from the data of Table 6 using simple linear
regressions
Factors 1 2 3 4 5 6 7 8 9 10 11 12
Effect −14.2 23.2 2.8 −8.6 9.6 −20.2 −16.8 20.2 18.5 −2.4 13.2 −14.2

Factor 13 14 15 16 17 18 19 20 21 22 23
Effect −19.8 −3.1 −53.2 −37.9 −4.6 19.2 −12.4 −0.2 −6.4 22.5 9.1
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inactive factors based on these estimates. In a large simulation study they found
that resampling methods to control the type-II error rate worked best and better
than stepwise selection. However, they also concluded that none of the methods
worked very well.

Lin (1993) suggested using stepwise variable selection and Wu (1993) suggested
forward selection or all (estimable) subsets selection. Lin (1993) gave an illustrative
analysis by stepwise selection of the data in Table 6. He found that this identified
factors 15, 12, 19, 4, and 10 as the active factors, when their main effects are entered
into the model in this order. Wang (1995) analyzed the other half of the Williams
experiment and identified only one of the five factors that Lin had identified as
being nonnegligible, namely, factor 4.

Abraham et al. (1999) studied forward selection and all subsets selection in
detail. They showed, by simulating data from several different experiments, that
the factors identified as active could change completely if a different fraction was
used and that neither of these methods could reliably find three factors which
have large effects. However, they concluded that all subsets selection is better
than forward selection. Kelly and Voelkel (2000) showed more generally that the
probabilities of type-II errors from stepwise regression are high.

The first paper to concentrate on the analysis of data from supersaturated de-
signs was by Westfall et al. (1998). They suggested using forward selection with
adjusted p-values to control the type-I error rate. They showed how to obtain
good approximations to the true p-values using resampling methods, but con-
cluded that control of type-I and type-II errors in supersaturated designs is fun-
damentally a difficult problem. Applying their adjusted p-values to the data in
Table 6, they found that only the effect of factor 15 is significantly different from
zero.

3.2 Biased Estimation Methods

The methods described above all use ordinary least squares to fit several dif-
ferent submodels of the main effects model. Biased estimation methods attempt
to fit the full main effects model by using modifications of the least squares
method. Lin (1995) suggested using ridge regression, that is, replacing X′ X with
X′ X + λI for some λ and then inverting this matrix instead of X′ X in the least
squares equations. However, he reported that ridge regression seems to perform
poorly when the number of factors, f , is considerably greater than the number of
runs, n.

Li and Lin (2002) used a form of penalized least squares with the smoothly
clipped absolute deviation penalty proposed by Fan and Li (2001). This method
estimates the parameters, β, by minimizing not the usual residual sum of squares,
but

1

2n

n∑
i=1

(yi − x ′
iβ)2 +

f +1∑
j=1

φ(β j ), (14)



182 Steven G. Gilmour

where the penalty, φ(β j ), shrinks small estimated effects towards zero. It is defined
by its first derivative,

∂φ

∂β
= λ

{
I (β ≤ λ) + 3.7λ − β

2.7λ
I (β > λ)

}
, β �= 0, (15)

and φ(0) = 0, where I (·) is an indicator function and λ is a tuning constant chosen
from the data by cross-validation. Li and Lin also showed that a good approximation
to this method is given by iterated ridge regression. They showed that this method
greatly outperformed stepwise variable selection in terms of finding the true model
from simulated data. In the data set considered here, it identified 15, 12, 19, and 4
as the active factors.

Comparing the results from different methods of analyzing the data in Table 6,
it can be seen that they generally agree on the ordering of effects, namely, 15, 12,
19, 4, and 10, but that they lead to different decisions about which factors should
be declared active and which should not.

3.3 Bayesian Methods

A partially Bayesian approach was suggested by Chipman et al. (1997). They
used independent prior distributions for each main effect being active. The prior
distribution selected for β j was a mixture of normals, namely, N (0, τ 2

j ) with prior
probability 1 − π j and N (0, c jτ

2
j ) with prior probability π j , where c j greatly

exceeds 1. The prior distribution for σ 2 was a scaled inverse-χ2. They then used
the Gibbs-sampling-based stochastic search variable selection method of George
and McCulloch (1993) to obtain approximate posterior probabilities for β j , that is,
for each factor they obtained the posterior probability that β j is from N (0, c jτ

2
j )

rather than from N (0, τ 2
j ). They treated this as a posterior probability that the

corresponding factor is active and used these probabilities to evaluate the posterior
probability of each model.

Beattie et al. (2002) used the posterior probabilities of factors being active
to compare models based on subsets of the candidate factors using the intrin-
sic Bayes factors of Berger and Pericchi (1996). This approach involves start-
ing with noninformative priors, using a small training sample (part of the data)
to obtain posteriors, which are then used as proper priors to obtain Bayes fac-
tors from the rest of the data. Because there is no identifiable training set, they
used the arithmetic or geometric mean intrinsic Bayes factors over each possi-
ble choice of training set. The Bayes factor for comparing two models is inter-
preted as the ratio of the increase in posterior odds over prior odds for the two
models.

4 Recommendations and Future Research

Something is wrong! Several methods for analyzing data from supersaturated
designs have been proposed, but none of them seem very convincing. Designs are
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usually built to optimize the E(s2) criterion, but this appears to be unrelated to the
way in which the data are analyzed. The potential user of supersaturated designs
needs to know the answers to three questions.

1. Should supersaturated designs ever be used? If so, in what circumstances? If
not, what should be used instead?

2. How should data from supersaturated designs be analyzed and interpreted?
3. How should supersaturated designs be constructed?

In my opinion, we do not know how to answer any of these questions! In this section,
each is discussed in turn, although they are all interconnected. The objective is not
to answer these questions, but to clarify what research needs to be done to enable
them to be answered.

4.1 Alternatives to Supersaturated Designs

If experimenters have a list of f potentially important factors that might affect their
process and no prior knowledge about which are more likely to be important, but
only sufficient resources to do n(< f + 1) experimental runs, what alternatives to
supersaturated designs exist? They might consider any of the following.

1. Abandon the idea of experimentation and seek other scientific or engineering
solutions, or abandon or redefine the overall objective of their research program;

2. Experiment with only n − 1 factors (a saturated design);
3. Use the group screening methods described in Chapter 9.

All of these are serious competitors to the use of supersaturated designs.
Option 1 should be considered seriously and often this will have been done

before any discussion of running an experiment. If the costs of experimentation
are greater than the expected gains from improvements discovered by experimen-
tation, then it is obvious that it is better not to run the experiment. This applies
to any experiment, not just those using supersaturated designs or those for factor
screening. The incomplete knowledge about the benefits of supersaturated de-
signs, however, makes it particularly difficult to relate their expected outcomes to
costs.

Selecting only n − 1 factors for experimentation is probably what is done most
often in practice, the factors being selected by using available knowledge or guess-
ing. Many statisticians’ first reaction to such a proposal is very negative, because
there is a feeling that evidence from the data must be better than guesswork.
One situation in which this is not true is if there is prior knowledge about which
factors are more likely to have large effects; see Curnow (1972). If there is real
prior knowledge that some factors are more likely to be important, it might be
better to use a saturated design in these factors, rather than including many more
factors that are not expected to have large effects. Which particular forms of
prior knowledge are needed to make a saturated design for n − 1 factors bet-
ter than a supersaturated design for f factors is an interesting area for future
research.
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Even if there is no prior knowledge about which are likely to be the most
important factors, it is not immediately obvious that a supersaturated design is
better than a saturated design with a random selection of n − 1 factors. Allen
and Bernshteyn (2003) give an example for 23 factors in 14 runs where, if the
prior probability of each factor being active is 0.4, the supersaturated design has
a probability of correctly identifying the active factors which is no greater than
randomly declaring a certain number to be active. Therefore the supersaturated
design must do worse than randomly picking 13 factors for experimentation. Of
course a prior probability of 0.4 of a factor being active contradicts the basic
assumption of factor sparsity. Nevertheless, this example gives a warning about
the limitations of supersaturated designs. Allen and Bernshteyn showed that with
smaller probabilities, the supersaturated designs performed better.

The most obvious competitors to supersaturated designs are group screening
designs (Chapter 9), which could be considered as a particular type of supersat-
urated design with each si j = ±n or 0. They are regular Resolution II fractional
replicates, whereas supersaturated designs are usually irregular Resolution II frac-
tional replicates. (In this sense Option 2 above is to use a regular Resolution I
fractional replicate; see Chapter 1 for a discussion of resolution.) Some research
to compare these two types of design is needed. Group screening designs have
the advantage that they are very likely to identify any factor with a very large
main effect, but the disadvantage that its effect is estimated with correlation 1 with
several other factors’ effects so that a second stage of experimentation is always
needed to identify the important individual factors. Supersaturated designs have
the advantage that the correlations are always less than 1, but the disadvantage of
a more tangled set of correlations which can make it easier to miss an important
factor. Interestingly, group screening designs based on orthogonal main effects
designs are E(s2)-optimal supersaturated designs.

Personally, I would recommend the use of supersaturated designs, but only in
certain circumstances and only with a clear warning about their limitations. Screen-
ing is usually assumed to be a way of separating a few factors with nonnegligible
effects from many with negligible effects. All the evidence suggests that supersat-
urated designs are not very good at this. However, what they can do is separate a
very small number of factors with very large effects from those with smaller, but
perhaps nonnegligible, effects. We might call such factors dominant to distinguish
them from other factors with nonnegligible effects, which we call active.

It might be argued that experimenters will usually have information about dom-
inant factors already and will have set up the process to avoid their having a
deleterious effect. However, in this case, we are not in the state of complete ig-
norance for which supersaturated designs are intended. If we really have a very
large number of candidate factors and no reliable knowledge of the likely sizes of
their effects, then a first stage in experimentation should concentrate on finding
the dominant factors if any exist, so that large improvements in the system under
study can be made as quickly as possible, perhaps after further experimentation
with these dominant factors. Later stages in experimentation can then be devoted
to finding other active factors. The supersaturated design will at least have given
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us some idea about the likely sizes of their effects that will be useful for designing
further experiments. If no dominant factors are found, experimenters can be reas-
sured that they are not running the process disastrously below optimum conditions
and can make a better informed decision about whether further experimentation
will be useful to identify the active factors.

Further research is needed to make these recommendations more precise.

4.2 Data Analysis

Most of the methods for analyzing data from supersaturated designs have been
adapted from methods tailored for saturated or unsaturated designs. This might be
a mistake as supersaturated designs are fundamentally different. Consider from first
principles how we should carry out frequentist inference and Bayesian analysis.

If the experimental runs are completely randomized, then randomization the-
ory (see Hinkelmann and Kempthorne, 1994) tells us that least squares gives
us unbiased estimators of any pre-chosen set of n − 1 linearly independent con-
trasts among the n combinations of factor levels (treatments). In most factorial
experiments the pre-chosen treatment contrasts would be main effects and, per-
haps, interactions. However, in supersaturated designs there is no rational basis for
choosing a set of n − 1 contrasts before the analysis. Any model selection method
will lead to selection biases, perhaps large biases, in the estimators of effects. If
σ 2 is assumed known, then we can test the null hypothesis that all n treatment
populations have equal means. This would not be of great interest, because even
if this null hypothesis were true it would not imply that all main effects are zero,
only that a particular set of n − 1 linear combinations of treatment means are zero.
Of course, in practice, σ 2 is not known.

So, from a frequentist viewpoint, supersaturated designs do not allow us to
carry out any useful estimation or inference. However, estimation and inference
are not the objectives of running supersaturated designs. Identifying the dominant
factors is the objective. The estimation- and inference-based methods that have
been recommended for analysis are used indirectly for this objective, but there is no
reason to assume that they should be good for this. It is important to recognize that
data analysis from supersaturated designs should be exploratory and not inferential.

What we obtain from a supersaturated design is a set of n observations in which
we can try to look for patterns. The patterns of interest are indications that the
response is related to the main effects of one or more factors. This does, in fact,
make the regression-based methods seem reasonable, though perhaps with some
modifications. The idea of fitting all simple linear regressions and picking out
the factors with the largest effects does not seem unreasonable. It should identify
any dominant factors, although it might also identify several other factors whose
effects are highly correlated with a dominant factor’s effects. Again, we emphasize
that hypothesis testing plays no part in this and the estimates obtained are biased.
It should be used only as a method of identifying large effects.

Alternatively, a form of forward selection could be used to try to eliminate
effects that look large only because they are highly correlated with a dominant
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Table 8. Order of including factors and estimates obtained.
Factor 15 12 19 4 10 11
Effect at inclusion −53.2 −22.3 −24.8 22.1 −9.4 8.2
Effect in full model −70.6 −25.6 −29.0 21.8 −10.0 8.2

factor’s effect. However, the standard form of selecting effects for inclusion seems
inappropriate. Any effect that is highly correlated with the first effect included will
never be included in the model because the correlation makes its standard error so
high that the corresponding t or F statistic will always be small. Instead, perhaps
we could include in the model the effect with the largest point estimate at each
stage. Again, this is not attempting to find the correct model, just to identify the
factors that are dominant and give some suggestions about which are most likely
to be active. From our data we include factors in the order shown in Table 8. This
table also shows the least squares estimates of their effects at inclusion and in the
fullest model we have fitted, that with all the six factors listed in Table 8. Similar
ideas could be used with stepwise or all subsets selection.

These two methods should allow us to identify any truly dominant factors and
give some suggestions about which factors are most likely to be active. More than
this cannot really be expected. In the example, we can conclude that factor 15 is the
only apparently dominant factor and candidates as active factors are 12, 19, and 4.
From the complete set of simple linear regressions, summarized in Table 7, we
also note that factor 16 might be active, or even dominant, although probably only
if we have incorrectly identified factor 15 as being dominant. These two factors
are known from the design to be highly correlated and, although 15 is the stronger
candidate to be declared dominant, we would not do so with any great confidence.
Further experimentation with as many of these factors as possible might be fruitful.
These methods deserve further research.

From a Bayesian perspective, the problem with the standard methods of analysis,
Bayesian or not, is that they eliminate all factors whose effects have a moderate
posterior probability of being close to zero and select all factors whose effects have
a low posterior probability of being close to zero. Instead we should eliminate only
those factors whose effects have a high posterior probability of being close to zero
and should select those whose effects have a moderate probability of being far
from zero, perhaps leaving some in a state between selection and elimination.
In other words, current methods eliminate factors with a moderate probability of
being inactive, even if they also have a moderate probability of being dominant,
whereas they keep factors that are almost certainly active, but not dominant. Instead
we should keep all factors with nontrivial probabilities of being dominant, even
if we learn little about them from the supersaturated design. Those that seem
likely to be active but not dominant might or might not be the subject of further
experimentation, depending on costs and resources. In either case, the knowledge
gained about them might prove useful for future investigations.

The prior distributions used by Chipman et al. (1997) and Beattie et al. (2002),
described in Section 3.3, seem ideally suited for a Bayesian analysis. However,
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their use of variable selection and hypothesis testing methods, rather than doing
a standard Bayesian analysis, seems unnecessarily complex for the problem of
interpreting data from supersaturated designs, for the reasons described above
in this section. In particular, after defining the priors for the main effects to be
mixtures of normal distributions, the use of the mixing probability parameter as
an indicator of the probability of a factor being active seems misleading, because
by this definition it is possible for an inactive factor to have a larger effect than an
active factor. Allen and Bernshteyn (2003) tried to correct this by using a censored
(close to zero) normal distribution for the more widely spread component of the
mixture. This is not foolproof and anyway introduces more complexity.

The normal mixture prior does not need to represent a true mixture of two
different types of effect, active and inactive. Such a distinction may be convenient
for interpretation, but is artificial in the modeling and should be introduced later at
the interpretation stage. Instead the use of a normal mixture can be just a convenient
way of representing prior beliefs with a heavy-tailed distribution. A scaled t , double
exponential, or Cauchy prior distribution could be used instead, but the mixture of
two normal distributions is more flexible.

After obtaining the posterior distribution, no more formal data analysis is neces-
sary. Rather, at this stage we can work directly with the joint posterior distribution
to interpret the results. Plots of the marginal posteriors for each main effect should
be useful and we can work out the posterior probability of each factor’s main effect
being further from zero than some constant, for example, the posterior probability
that each factor is dominant and the posterior probability that each factor is active.
More research is needed in this area and is under way.

4.3 Design

Given the comments in the two preceding subsections, it is clear that consideration
will have to be given to how to design experiments for these forms of analysis.
Again, this is an area where more research is needed. However, this does not mean
that all previous research has been wasted. All the evidence suggests that designs
which are good for several purposes usually fall within the class of E(s2)-optimal
designs. However, often some E(s2)-optimal designs are better than others for
different purposes. If other criteria are developed for these other forms of analysis,
it might be sensible to search for designs that optimize them within the class of
E(s2)-optimal designs. This will be useful not only to reduce substantially the
amount of computation required for the search, but also to ensure that the designs
found are reasonable with respect to other criteria.

5 Discussion

Supersaturated designs, and likewise grouping screening designs, provide very
little information about the effects of the factors studied, unless they are followed
up with further experiments. If it is possible to use a fractional factorial design
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of Resolution III or greater, this should be done. However, there are situations
in which this is not possible and then using a design that provides very little
information is better than obtaining no information. If there is a likelihood that
only one experiment will be possible or economic, then a supersaturated design
might be better than a group screening design. If we are in this situation, then an
E(s2)-optimal supersaturated design will be clearly better than a random balance
design or any other known design.

In summary, there are some limited practical situations in which supersaturated
designs hold great promise and they are essentially ready for use in practice,
although more research is needed to ensure that the best use is being made of
resources. Good, although perhaps not optimal, designs are already available for
many sizes of experiment. The quick and dirty method of analysis described in
Section 4.2 should give enough information to identify dominant factors. For
situations where there really is no prior knowledge of the effects of factors, but a
strong belief in factor sparsity, and where the aim is to find out if there are any
dominant factors and to identify them, experimenters should seriously consider
using supersaturated designs.
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9
An Overview of Group
Factor Screening

Max D. Morris

The idea of using a group screening procedure to identify the important or active factors
using a small designed experiment was described by Watson (1961) and is now applied
in a variety of areas of science and engineering. Watson’s work built on the earlier ideas
of Dorfman (1943) for screening pooled samples of blood in order to identify diseased
individuals using minimal resources. Generalizations and extensions of Watson’s technique
have been developed by a number of authors who have relaxed some of the stringent
assumptions of the original work to make the methods more widely applicable to real
problems. An overview of some of the proposed screening strategies is presented, including
the use of several stages of experimentation, the reuse of runs from earlier stages, and
screening techniques for detecting important main effects and interactions.

1 Introduction

In experimental programs involving large numbers of controllable factors, one of
the first goals is the identification of the subset of factors that have substantial
influence on the responses of interest. There are at least two practical reasons
for this. One is the empirical observation that, in many important physical sys-
tems, much or most of the variability in response variables can eventually be
traced to a relatively small number of factors—the concept of effect sparsity (see,
for example, Box and Meyer, 1986). When this is true, it is certainly sensible
to “trim down” the problem to the factors that are “effective” or “active” before
detailed experimentation begins. Even when effect sparsity does not hold, how-
ever, it is obvious that careful experimentation involving many factors simply
costs more than careful experimentation involving a few. Economic and opera-
tional reality may necessitate experimentation in phases, beginning with attempts
to characterize the influence of the apparently most important factors while con-
ditioning on reasonable fixed values for other possibly interesting factors. Hence,
small factor screening experiments are performed not to provide definitive es-
timates of parameters but to identify the parameters that should be estimated
first.
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Following Dorfman’s (1943) description of an analysis for screening physically
pooled samples of blood, the idea of using group screening strategies to design
factorial experiments was carefully described by Watson (1961) whose analysis is
the starting point for much of the subsequent research in this area. As a matter of
historical record, Watson credited W. S. Conner as having suggested the idea of
group factor screening to him.

This overview begins with a description of Watson’s treatment (Section 2) and
then briefly discusses a number of modifications and generalizations that have
been presented by others (see Kleijnen, 1987, and Du and Hwang, 2000, for
additional reviews). Section 3 discusses strategies involving more than two stages
and a variety of other issues, including the reuse of runs. Multiple grouping strate-
gies and screening for interactions are discussed in Sections 4 and 5, respectively.
The intent of this chapter is not to offer a complete review of all that has been done
in the area, but to give the reader a sense of some things that can be done to make
group factor screening more applicable in specific situations.

2 Basic Group Factor Screening

Watson began his description of the technical problem in the following way.

Suppose that f factors are to be tested for their effect on the response. Initially we
will assume that

(i) all factors have, independently, the same prior probability of being effective,
p (q = 1 − p),

(ii) effective factors have the same effect, � > 0,
(iii) there are no interactions present,
(iv) the required designs exist,
(v) the directions of possible effects are known,

(vi) the errors of all observations are independently normal with a constant known
variance, σ 2,

(vii) f = gk where g = number of groups and k = number of factors per group.

These stringent assumptions are made only to provide a simple initial frame-
work. . . . Actually they are not as limiting as they appear.

The two-level experimental designs that Watson goes on to describe partition the
individual factors into the groups referenced in point (vii). In each experimental
run, all factors in the same group are either simultaneously at their high values or
simultaneously at their low values. In other words, the level of the group factor
dictates the level of all individual factors within the group.

Watson’s seven points might be restated in the common modern language of
linear models (although admittedly with a loss of some elegance and intuitive
simplicity) by saying that the collection of n observed responses may be written
in matrix notation as

Y = 1β0 + Xβ + ε, (1)
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where Y and ε are vectors containing the n responses and the n error variables,
respectively, 1 is a vector of 1s, β is a vector of the f main effect parameters, and
X is an n × f matrix, and where

1. For each element of β, independently,

βi = �/2 with probability p,

= 0 with probability q = 1 − p,

for some � > 0 (Watson’s (i) and (ii)),
2. ε ∼ N (0, σ 2 I) with known σ 2 (Watson’s (vi)),
3. X contains f columns, and has the (i, j)th element equal to

+1 if the j th individual factor is at its “high” level in the i th run
−1 if the j th individual factor is at its “low” level in the i th run

(Watson’s (iii) and (v)), and
4. X may be written in partitioned form as

X = (z1 · 1′|z2 · 1′| . . . |zg · 1′), (2)

where each z is an n × 1 vector and each 1′ is a 1 × k vector, and

(1|Z) = (1|z1|z2| . . . |zg)

is of full column rank (Watson’s (iv) and (vii)).

Section 2.1 contains an example with explicit quantities for several of the expres-
sions listed in these items.

The distinguishing characteristics of basic group factor screening, from the per-
spective of linear models, are the probabilistic assumption about the value of the
parameter vector β and the grouped-column restriction on the form of the model
matrix X. The intent of group screening is to learn important characteristics of
the system using fewer (often, far fewer) runs than would be required in a “con-
ventional” experiment. When data are lacking, inference requires that assumptions
must be made, and Watson’s points (i) and (ii) provide a practical and often reason-
able basis for approximate interpretation of the system. In fact, these assumptions
are “not as limiting as they appear” (see Watsons’s text above); the group screen-
ing technique often works quite well in cases where at least some of them are
violated.

The generation of the matrix X from Z is a statement of the group design strategy.
Physical factors are initially confounded in groups of size k > 1 so as to construct
artificially a reduced statistical model (which can be estimated based on the desired
smaller sample size). By this intentional confounding, the investigator abandons
the goal of estimating individual elements of β, focusing instead on grouped
parameters representing estimable functions in the original problem. Practically,
the problem can be restated as being

Y = 1β0 + Zγ + ε, (3)



194 Max D. Morris

where γ = [γ1, . . . , γg]′ is a g × 1 vector and Z is an n × g matrix, and where γi

is the sum of the subset of elements of β associated with individual factors in the
ith group. These grouped parameters can, therefore, be written as

γi = Ai�/2,

where Ai is a binomial random variable with parameters k and p, and Ai are
independent for i = 1, 2, 3, . . . , g. In the first stage, the focus is on determining
which of these grouped parameters is nonzero.

The second stage or “follow-up” experiment is designed to examine only those
individual factors included in groups that appear to be effective under the assump-
tions of the model, those for which γi > 0 based on Watson’s assumption (ii). The
decisions concerning whether groups are effective could, for example, be based
on individual z- (σ known) or t- (σ estimated) tests for each grouped parameter. If
Watson’s assumption (ii) is taken seriously, these would logically be one-sided tests
(H0 : γi = 0, HA : γi > 0), but a two-sided test (H0 : γi = 0, HA : γi �= 0) is more
robust against the failure of this assumption and so is often preferred in practice.
Factors included in groups that do not appear to be effective are fixed at constant
values in the second stage experiment. Watson applied the word “effective” only
to individual factors. Here I substitute the more popular term “active”, and extend
this use to say that a group factor is active if it includes at least one active factor.

Hence, a two-stage screening experiment as described by Watson requires
a predetermined number n of runs in the first stage and a random number
M of runs in the second. The distribution of M and the effectiveness of the
screening program (that is, success in labeling individual factors as “active” or
“not active”) depend on characteristics that can be controlled, at least to some
degree:

� value of k,
� value of n,
� the specific form of the stage 1 decision rule for each group; for example, selec-

tion of a significance level α for a z- or t-test,

and characteristics that cannot:

� value of p,
� value of �,
� value of σ 2.

Given values of p and �/σ , values of k, n, and α can be selected to pro-
duce desirable results, such as small expected sample size or small probability of
misclassifying individual factors. As with other statistical design problems, the
obvious goals are generally in conflict; smaller n + E(M) generally corresponds
to a larger expected number of misclassifications of at least one kind, and so some
degree of compromise between expense and performance is required. Watson de-
rived expected values of the number of runs required and the number of factors
misclassified, as functions of the parameters. These expressions may be used to
evaluate the performance of alternative sampling plans.
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2.1 Example

To demonstrate the strategy, suppose f = 50 experimental factors are to be
screened and that a decision is made to do this by forming g = 7 groups composed
of k = 7 factors (as factors 1–7, 8–14, and so on), with the 50th factor added as
an “extra” to the 7th group. If σ has a known value of 4, say, replicate runs will
not be needed and an orthogonal 8-run, 2-level design can be used in stage 1. For
example, the 8-run Plackett and Burman (1946) design has design matrix

Z =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+ + + − + − −
− + + + − + −
− − + + + − +
+ − − + + + −
− + − − + + +
+ − + − − + +
+ + − + − − +
− − − − − − −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The expanded X matrix for individual factors would be comprised of the columns
of Z, each repeated 7 times (or 8 for z7).

Suppose now that the true parameter values are as displayed in Table 1. These
values do not exactly correspond to Watson’s assumptions; in particular, (ii) is
violated. Still, if model (3) is fitted to the data via least squares, estimates of the
elements of γ will be independent and normally distributed, each with a stan-
dard error of

√
2, and with means E(γ̂1) = 6, E(γ̂2) = 0, E(γ̂3) = −4, E(γ̂4) = 0,

E(γ̂5) = 0, E(γ̂6) = 3, and E(γ̂7) = 1. It is likely that groups 1 and 6 will be de-
clared active, because z statistics based on γ̂1 and γ̂6 will probably be unusually
large. Group 3 would also be detected with high probability, but only if a two-sided
test is used; if Watson’s working assumption (v) is taken seriously, this would not
be the indicated procedure, but the uncertainty associated with many real appli-
cations would make two-sided testing an attractive modification. Group 7 might
be detected as active, but the probability of this is reduced, for either a one- or
two-sided test, by the partial “cancellation” of individual effects of opposite sign

Table 1. Individual parameters, grouped as in a first-stage screening experiment, for the
example in Section 2.1
Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7

β1 = 0 β8 = 0 β15 = 0 β22 = 0 β29 = 0 β36 = 3 β43 = 0
β2 = 0 β9 = 0 β16 = −4 β23 = 0 β30 = 0 β37 = 0 β44 = 0
β3 = 2 β10 = 0 β17 = 0 β24 = 0 β31 = 0 β38 = 0 β45 = −2
β4 = 0 β11 = 0 β18 = 0 β25 = 0 β32 = 0 β39 = 0 β46 = 0
β5 = 0 β12 = 0 β19 = 0 β26 = 0 β33 = 0 β40 = 0 β47 = 0
β6 = 0 β13 = 0 β20 = 0 β27 = 0 β34 = 0 β41 = 0 β48 = 3
β7 = 4 β14 = 0 β21 = 0 β28 = 0 β35 = 0 β42 = 0 β49 = 0

β50 = 0

γ1 = 6 γ2 = 0 γ3 = −4 γ4 = 0 γ5 = 0 γ6 = 3 γ7 = 1
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in this group—a violation of Watson’s assumption (ii). Mauro and Smith (1982)
examined the effect of factor cancellation on screening in the more extreme case
where parameters associated with active factors all have the same absolute value,
but not the same sign. They presented tables and graphs summarizing a numerical
study of performance. Expected degradation in performance is modest when both
p and the factor group sizes are small, because the probability is minimal that
active factors having main effects of opposite signs mask each other. However,
performance degradation becomes a more important issue as either p or the fac-
tor group sizes increase. Both the expected number of runs in the second stage
of the experiment and the expected number of correctly identified active factors
are minimized when, other things being equal, the proportion of active factors
with positive main effects equals the proportion with negative main effects. One
interesting conclusion from the study is that the factor group size leading to the
minimum number of runs is the same whether or not the main effects of the active
factors have the same signs.

In the present example, if each of groups 1, 3, 6, and 7 were to be declared
active, a follow-up experiment in the associated 29 individual factors might be
undertaken to complete the screening process. If an orthogonal design is used,
this will require M = 32 new runs. This ignores the possibility that some of the
original 8 runs might be “reused” which is discussed later. Regardless of the specific
orthogonal two-level plan used, the standard error of each parameter estimate will
be σ/

√
sample size = 4/

√
32, so all active factors are likely to be discovered if

two-sided testing is used. The expected number of “false positives” will depend on
the significance level selected. The total number of runs used here is n + M = 40,
compared to the 52 that would be required by a minimal orthogonal design for all
50 factors.

3 Strategies Involving More Than Two Stages

Most group screening experiments are sequential because the specific form of the
second stage design depends upon the analysis of data collected at the first stage.
Many other sequential plans are possible. I briefly describe a few strategies that
can be viewed as generalizations of (and, in some cases, improvements over) basic
group screening.

3.1 Multiple Stage Screening and Sequential Bifurcation

Perhaps the most obvious extension of Watson’s basic screening strategy is to
grouped factor plans involving more experimental stages. Patel (1962) described
multiple stage screening as follows.

� in stage 1, group the f factors into g1 groups of size ki = f/g1;
� for each group found apparently active at stage 1, the k1 factors are grouped into

g2 groups of size k2 = f/(g1g2);
� . . .
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� for each group found apparently active at stage s − 1, the ks−1 factors are grouped
into gs groups of size ks = f/(g1g2 · · · gs−1gs);

� for each group found apparently active at stage s, all factors are individually
examined.

Here, s refers to the number of screening stages not counting the final follow-up
in which each of the remaining factors is examined individually. Hence, Watson’s
description is of a 2-stage procedure characterized by s = 1.

Patel offered an analysis based on assumptions that the experimental design used
at each stage is of minimal size (and so contains one more run than the number
of group factors being investigated) and that σ 2 = 0. Under these conditions, he
showed that values of gi which minimize the expected number of total runs required
are approximately

g1 ≈ f ps/(s+1), gi ≈ p−1/(s+1), i = 2, . . . , s,

and that, when these numbers of equal-sized groups are used, the expected number
of runs required by this multiple stage procedure is approximately

(s + 1) f ps/(s+1) + 1.

These expressions can, in turn, be used to determine an optimal number of stages
for a given value of p, at least under the idealized assumptions of the analysis.
So, for example, if p were taken to be 6/50 in the example of Section 2.1, these
expressions would yield rounded values of 17 groups and 36 runs, respectively,
for the two-stage plans of Watson (s = 1). If one additional stage is added (s = 2)
then the values would be 12 groups for the first stage and 2 groups for the second
stage with a total of 37 runs, indicating that the addition of a stage does not improve
the expected number of required runs in this case.

Multiple stage screening could also be defined without the requirement of suc-
cessive splitting of each apparently active group. Instead, the factors included in
active groups at one stage could be randomly assigned to smaller groups at the
next stage without imposing this constraint.

Bettonvil (1995) discussed a particular form of the multiple group screening
idea called sequential bifurcation, in which

1. all factors are included in a single group in the first stage, k1 = f , and
2. the factors from an apparently active group at any stage are divided into two

subgroups of equal size in the next, ki+1 = ki/2.

Chapter 13 reviews sequential bifurcation in more detail.

3.2 Orthogonality and Reuse of Runs

The expected number of runs required by a sequential screening plan depends,
sometimes heavily, on (1) whether a response value may be used only once in the
analysis immediately following the experimental stage in which it is acquired or
may be reused in subsequent analyses, and (2) whether the experimental designs
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Table 2. Example of experimental runs added at each stage and used in each analysis:
sequential bifurcation

Data used in
analysis following

Factor stage

Run Added at stage 1 2 3 4 5 6 7 8 1 2 3 4

1 1 − − − − − − − − • • • •
2 1 + + + + + + + + • •
3 2 + + + + − − − − • •
4 3 + + − − − − − − • •
5 4 + − − − − − − − •

used at each stage are required to be orthogonal. Neither Patel (1962) nor Bettonvil
(1995) required orthogonality in the designs that they described. This is because
each author initially motivated his design for situations in which σ 2 = 0, and so
the usual statistical arguments for precision associated with orthogonality are not
relevant. However, Bettonvil allowed the reuse of as many runs as possible from
stage to stage, resulting in further reduction in the required number of runs. For
example, Table 2 presents a sequence of experimental runs that would be made
using sequential bifurcation as described by Bettonvil in an experiment in which
there are 8 factors, only the first is active, and no mistakes are made in testing. After
stage 1, runs 1 and 2 are used to test all 8 factors as a single group. After stage 2,
runs 1, 2, and 3 are used to test group factors (1, 2, 3, 4) and (5, 6, 7, 8); hence runs
1 and 2 are reused. Similarly, following stage 3, runs 1, 3, and 4 are used to test
group factors (1, 2) and (3, 4) and, following stage 4, runs 1, 4, and 5 are used to test
individual factors 1 and 2. In the analysis following each of stages 2, 3, and 4, the
response values of two runs from previous stages are incorporated in the analysis.

In comparison, Table 3 displays a similar description of how Patel’s multiple
screening would evolve in the same situation. An initial group of all the factors
(g1 = 1, k1 = f ) is used, followed in subsequent stages by groups that are half

Table 3. Example of experimental runs added at each stage and used in each analysis:
multiple stage (Patel •, modified ◦)

Data used in
analysis following

Factor stage

Run Added at stage 1 2 3 4 5 6 7 8 1 2 3 4

1 1 − − − − − − − − • • • •
2 1 + + + + + + + + • ◦
3 2 + + + + − − − − • ◦
4 2 − − − − + + + + •
5 3 + + − − − − − − • ◦
6 3 − − + + − − − − •
7 4 + − − − − − − − •
8 4 − + − − − − − − •
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Table 4. Example of experimental runs added at each stage and used in each analysis:
multiple stage with orthogonal plans at each stage and no reuse of runs

Data used in
analysis following

Factor stage

Run Added at stage 1 2 3 4 5 6 7 8 1 2 3 4

1 1 − − − − − − − − •
2 1 + + + + + + + + •
3 2 − − − − − − − − •
4 2 + + + + + + + + •
5 2 + + + + − − − − •
6 2 − − − − + + + + •
7 3 − − − − − − − − •
8 3 + + + + − − − − •
9 3 + + − − − − − − •

10 3 − − + + − − − − •
11 4 − − − − − − − − •
12 4 + + − − − − − − •
13 4 + − − − − − − − •
14 4 − + − − − − − − •

the size of their predecessors. Patel assumed that only the first run (all factors at
the low level) is reused at each stage. Hence runs 1, 3, and 4 are used for testing
group factors (1, 2, 3, 4) and (5, 6, 7, 8) following stage 2; runs 1, 5, and 6 are used
for testing group factors (1, 2) and (3, 4) following stage 3; and runs 1, 7, and 8
are used for testing factors 1 and 2 following stage 4. All eight runs are unique,
but all are not strictly necessary for the estimation of the group effects required
in the screening strategy. In this example, the analysis of Patel’s design can be
modified somewhat to allow the reuse of two runs at each stage, as indicated
by the open circles in Table 3, but this modification does not change the result
of the tests if the assumptions actually hold and there are no random errors in
observations.

When σ 2 is not negligible, the benefits of run reuse and nonorthogonal satu-
rated designs are not so clear-cut. Then, the reuse of runs makes the analysis of
performance more complicated because it introduces dependencies between test
statistics at each stage. Some duplication of runs (rather than reuse) would allow
estimation, or at least a check on the assumed value, of σ 2. Furthermore, as noted
by Watson, when observations include error, many investigators would be more
comfortable with the more efficient orthogonal designs. Table 4 shows a sequence
of runs for a modified version of multiple stage screening using minimal orthog-
onal designs at each stage and allowing no reuse of runs from previous stages.
This design requires more runs than either Patel’s multiple group procedure or
Bettonvil’s sequential bifurcation, but it provides more precise estimates of group
factor parameters in stages 2–4 when there is random error. Furthermore, it allows
for the option of blocking to correct for stage effects, or 6 degrees of freedom
(after the last stage) for estimating σ 2 if blocking is not needed. In this example,
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the strategy based on orthogonal designs with maximum reuse of runs from stage
to stage would be equivalent to the modified multiple stage plan in Table 3.

The decision to use orthogonal plans or to allow nonorthogonal plans, and
the decision to allow or disallow the reuse of runs from stage to stage, are related
operational issues. They individually and jointly affect the performance of a screen-
ing plan and the complexity of calculations required to assess analytically that
performance. Depending on characteristics of the application, such as the degree
of measurement error and the need to account for block effects in sequential ex-
perimentation, either or both may be important considerations.

3.3 Stepwise Screening

Odhiambo and Manene (1987) introduced a stepwise screening plan featuring se-
quential testing of individual factors after the first (grouped) experiment. After an
initial stage as described by Watson, a new experiment is undertaken for each ap-
parently active group in which individual factors are tested one by one until one of
them is found to be active. At that point, any remaining factors (not yet individually
tested) are tested together as a group, and depending on the result of that test, all are
labeled as not active or subjected to further individual examination as following the
initial stage. The sequential process of individual tests and group tests, following
the discovery of individual active factors, continues until all factors are classified.
A schematic of how this might develop in a hypothetical example is given in
Figure 1.

This strategy can offer some additional efficiency if some initial groups contain
only one active factor, because this factor may be discovered early in follow-up
testing and the remaining factors eliminated in one further group test. This occurs
in the second and third initial groups in Figure 1. Such efficiency may not neces-
sarily occur, however. For example, identification of the active factors in group 6
(individual factors 26–30) in Figure 1 requires 6 follow-up runs.

Odhiambo and Manene presented a performance analysis of stepwise screening
that assumes σ 2 > 0, where statistical tests are fallible even if all assumptions are
correct. They derived expected values of the number of runs required, the number
of factors mistakenly classified as active, and the number of factors mistakenly
classified as not active, in terms of p, f, k, and the significance level and power
of the tests used. These expressions are fairly complicated and are not repeated
here, but Odhiambo and Manene also provide simpler approximations that are
appropriate for small values of p.

4 Multiple Grouping Strategies

Sequential group screening methods can lead to substantial test savings; loosely
speaking, the more sequential a procedure, in terms of the number of decision
points, the greater is the potential for reduction in the expected number of runs
required. However, there are settings in which such approaches are operationally
impractical, for example, where execution of each run takes substantial time but
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Figure 1. Example of analyses and decisions made in a stepwise experiment. The numbers
in the boxes refer to factors and each box represents a test of the indicated group or individual
factor. Dashed and solid boxes indicate tests in which factors are determined to be not
active and active, respectively; asterisks indicate points at which individual active factors
are discovered.

many runs can be executed simultaneously as a “batch”. Nonsequential procedures
based on assigning each object/factor to more than one group were discussed by
Federer (1987) for the blood screening problem addressed by Dorfman, and by
Morris (1987) for factor screening. These “multiple grouping” methods can in some
cases, attain some of the savings of sequential approaches although requiring only
one or two temporal sets of tests.

The first, and sometimes only, stage of a multiple grouping screening experiment
can be thought of as r simultaneous applications of Watson’s original concept, in
which the factor groups are defined “orthogonally” in the different applications.
Hence f = 48 factors might be organized in g(1) = 3 type-1 groups of size k(1) =
16 factors, and g(2) = 4 type-2 groups of size k(2) = 12 factors, such that the
intersection of any group of type 1 with any group of type 2 contains 4 factors. This
arrangement is depicted graphically in Figure 2. The individual factors followed
up in the second stage are those for which all types of groups are apparently active.
So, for example, if only the first group of type 1 (containing factors 1–16) and
the first group of type 2 (containing factors 1–4, 17–20, and 33–36) are declared
active, only factors 1, 2, 3, and 4 would be examined in the follow-up experiment.
If intersections contain only one factor each, the second stage may be eliminated
or used for verification purposes.
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Figure 2. Example of individual factor assignments in a multiple grouping screening ex-
periment involving factors labeled 1, 2, . . . , 48.

Morris discussed the construction of minimal experimental designs for such
procedures, assuming σ 2 = 0. In most practical applications, performance trade-
offs involving run reuse and orthogonality, as discussed above, would need to be
addressed.

5 Interactions

All discussion up to this point is predicated fairly seriously on Watson’s assumption
(iii), that is, the assumption that factors do not interact. However, suppose now
that some two-factor interactions do exist so that, as distinct from equation (3), the
model is

Y = 1β0 + Z1γ1 + Z2γ2 + ε, (4)

where

� Z1 and γ1 are as described as Z and γ before (representing main effects for
factor groups), and

� Z2 is the appropriate model matrix for a set of two-factor interactions, elements
of the vector γ2.
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For experiments in which Z1 is of full column rank, it is well known that if model
(3) is used as the basis for analysis, least squares estimation is biased by the nonzero
elements of γ2:

E(γ̂1) = γ1 + (Z′
1 Z1)−1 Z′

1 Z2γ2. (5)

This issue is addressed, for instance, in the discussion of model coefficient aliasing
in books on response surface analysis such as Myers and Montgomery (2002). It
is clear that this aliasing can introduce serious problems into decision processes
based upon the realized estimates of model coefficients.

5.1 Avoiding Bias Due to Interactions

In a classic reference, Box and Hunter (1961) noted that “foldover” designs com-
prised of pairs of runs that are “mirror images” of each other, for example:

(+ + − − − + −)

(− − + + + − +),

eliminate the aliasing between odd- and even-order effects, and so allow unbiased
estimation of main effects even when two-factor interactions exist. Resolution
IV main effects plans comprised of foldover run pairs require at least twice as
many runs as factors—the operational cost of this benefit. Bettonvil (1993) noted
that the sequential bifurcation strategy can be modified to avoid aliasing of main
effects with two-factor interactions by adding foldover pairs of runs, rather than
individual runs, at each step; similar modifications could certainly be made to the
other strategies mentioned here.

5.2 Modeling Interactions

Often interest lies not in simply eliminating the bias from main effect estimates, but
also in identifying the interactions that are nonzero. The goal here is screening the
effects (main effects and two-factor interactions together) rather than the factors
(assuming only main effects are present). Dean and Lewis (2002) and Lewis and
Dean (2001) discussed the use of Resolution V designs (which allow estimation
of main effects and two-factor interactions) in the group factors in the first stage of
a two-stage screening study. These designs use more runs than the Resolution III
plans (main effects only) typically used in screening experiments. However, they
allow estimation of

� group main effects (the sum of all individual main effects for the group), and
� two-group interactions (the sum of all individual two-factor interactions with

one factor in each of two different groups).

Individual two-factor interactions for pairs of factors within the same group are
aliased with the intercept and so are not part of any informative estimable combi-
nation. In the second stage, the model of interest contains:
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� all individual main effects for factors included in an apparently active group
main effect,

� all individual two-factor interactions for pairs of factors included in a single
group with an apparently active group main effect,

� all individual two-factor interactions for pairs of factors, one each from two
groups with an apparently active group interaction, and

� any additional individual main effects required to make the model fully
hierarchical.

For example, to screen the main effects and two-factor interactions associated
with 20 individual factors, 5 groups of 4 factors each might be formed (say, with
factors 1–4 in group 1, and so on). Each 25−1 half-replicate associated with the
defining relation I = ±ABC DE is a resolution V design that supports estimation
of grouped main effects and two-factor interactions. Suppose that only the main
effect associated with group 1 and the two-factor interaction associated with groups
1 and 2 appear to be active in the first stage. Then the individual-factors model
used in the second stage would contain:

� an intercept,
� main effects for factors 1–4, because the group 1 main effect is active,
� two-factor interactions for all pairs of factors 1–4, because the group 1 main

effect is active,
� two-factor interactions involving one factor from group 1 (1, 2, 3, and 4) and

one factor from group 2 (5, 6, 7, and 8), because the interaction for groups 1 and
2 is active, and

� main effects for factors 5–8, so that the model is hierarchical.

The motivating context for this work is robust product design, where each factor
is labeled as either a control factor or noise factor. The distinction between these
factors leads to somewhat different effect classification rules and allows the use
of group designs of total resolution less than V when some interactions are not
of interest. See Lewis and Dean (2001) and Vine et al. (2004) for details, as well
as a description of software to evaluate interaction screening designs; the soft-
ware is available at www.maths.soton.ac.uk/staff/Lewis/screen assemble/group
screening.html.

6 Discussion

The essential characteristic of group screening for factors is the intentional con-
founding of main effects at various experimental stages, with the aim of reducing
the number of runs required to identify those factors that are most important. The
number of possible variations on the original theme described in Watson’s (1961)
paper is nearly limitless. The degree to which runs may be reused, the decision as
to whether orthogonal designs should be required at each stage, and modifications
to allow consideration of models that include interactions have been briefly con-
sidered here.
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The formulae for the expected numbers of runs and misclassified factors de-
rived in some of the referenced papers are somewhat complicated, but they are
useful in understanding how alternative screening designs and procedures can
be expected to perform under simple assumptions. When less stringent assump-
tions can be made, more elaborate decision rules can be considered. In other
circumstances for which classical analysis is difficult, expected performance of
competing plans may more easily be evaluated by numerical simulation stud-
ies that mimic the screening process. Randomly generated “realities” (such as
the number and magnitude of active effects) can be generated, results of each
screening strategy/plan applied to the simulated experiment, and those strategies
with the best statistical properties (such as smallest expected number of runs or
misclassified factors) can be identified. An investigator facing a specific factor
screening problem, with specific requirements for replication, blocking, and the
possibility that some combination of Watson’s working assumptions may be in-
appropriate, can experiment numerically with the ideas discussed in the literature
in order to understand the most relevant performance characteristics of alternative
strategies.
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10
Screening Designs for Model Selection

William Li

The problem of designing an experiment for selecting a good model from a set of mod-
els of interest is discussed in the setting where all factors have two levels. The models
considered involve main effects and a few two-factor interactions. Two criteria for the
selection of designs for model screening are introduced. One criterion selects designs
that allow the maximum number of distinct models to be estimated (estimation capac-
ity). The other maximizes the capability of the design to discriminate among competing
models (model discrimination). Two-level orthogonal designs for 12, 16, and 20 runs that
are optimal with respect to these criteria are constructed and tabulated for practical use.
In addition, several approaches are discussed for the construction of nonorthogonal de-
signs. The chapter includes new results on orthogonal designs that are effective for model
discrimination.

1 Introduction

An important aspect of designing an experiment is the selection of a design that
is efficient for answering the questions of interest to the practitioner. At the initial
stage of a project, there is usually a large number of candidate factors and there
is a need for screening designs to identify those factors that have an impact on
the response. One of the main objectives of a screening design is to build a model
that captures the relationship between factors and the response. Because the true
model is usually unknown, it is important that the selected design can be used to
estimate effectively models within a broad class of possible models.

To accomplish this goal, it is preferable that all models are estimable under the
design. The traditional designs, such as minimum aberration fractional factorial
designs (see Wu and Hamada, 2000), may not be good choices for this purpose.
For example, consider the illustration of Li and Nachtsheim (2000), where the
goal of the experiment was to reduce the leakage of a clutch slave cylinder in an
automobile. There were four potentially significant factors: body inner diameter,
body outer diameter, seal inner diameter, and seal outer diameter. It was believed
that the true model should contain all four main effects and was likely to include
one or two 2-factor interactions. In this chapter, the main effects of the four factors
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and their interactions are represented as 1, 2, 3, 4, 12, 13, 14, 23, 24, 34, rather
than by A, B, and so on, as in Chapter 1.

For this clutch experiment, the experimenters were seeking a design capable of
estimating main effects plus any pair of two-factor interactions. Because there are
( 4

2 ) = 6 two-factor interactions, the number of models containing main effects and
2 two-factor interactions ( 6

2 ) = 15. As pointed out by Li and Nachtsheim (2000),
if a resolution IV design with defining relation I = 1234 (see Chapter 1) is used,
then not all of the 15 possible models can be estimated. For example, the model
containing the main effects 1, 2, 3, 4, together with the two-factor interactions 12
and 34, is not estimable because of the aliased pair of interactions 12 = 34. In fact,
only 12 out of the 15 models can be estimated; thus the percentage of all possible
models that are estimable for this design is 12/15, or 80%.

A useful measure of the estimation capability of a design over a class of models
is estimation capacity, which was introduced by Sun (1993) and then used by Li
and Nachtsheim (2000) in a criterion for the construction of model-robust factorial
designs. Estimation capacity (EC) is defined as

EC = number of estimable models

total number of possible models
(1)

and is often represented as a percentage. In this chapter, proportions and percent-
ages are used interchangeably.

An ideal screening design would have EC = 100%. In this chapter, such a
design is called a full estimation capacity design. For the clutch experiment, a
full estimation capacity design exists and was constructed by Li and Nachtsheim
(2000, Figure 1, page 346). This design is not a minimum aberration design.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

Figure 1. Histogram of EC2 values for all 55 designs with 7 factors and 16 runs.
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For some numbers of factors and runs, full estimation capacity designs do not
exist. The objective is then to find a design that maximizes EC—called an EC-
optimal design. The construction of EC-optimal designs is discussed in the first
part of this chapter.

When choosing a screening design, the estimability over all possible models
is only the first consideration. A further issue needs to be addressed. Even if two
models are each estimable, it is not guaranteed that they can be separated in the
model analysis procedure. For instance, suppose that, in the clutch experiment, the
design with defining relation I = 1234 is used, and suppose that the true model
contains main effects of factors 1, 2, 3, 4 and interactions 12 and 13. Now consider
a competing model that contains main effects and interactions 1, 2, 3, 4, 12, and
24. The two models would produce exactly the same predictions because 13 = 24.
Consequently, a practitioner would not be able to identify the true model and
we say that it is aliased with another possible model. The model discrimination
capability of the design is discussed in the second part of the chapter.

The following notation is used in this chapter. Consider a design d with n
runs and f factors having two levels each. The design can be represented by an
n × f design matrix D = [x1, . . . , xn]′, where each row of D has elements +1
and −1. Each row of D defines the levels at which the factors are observed in
the corresponding run and is called a factor level combination or design point. A
linear model for representing the response is

y = Xβ + ε, (2)

where β is a vector of h unknown parameters and the error vector ε has mean 0
and variance σ 2 In . The model matrix (or expanded design matrix) is given by

X = [ f (x1), . . . , f (xn)]′, (3)

where the functional f indicates which effects are present in the model. For ex-
ample, if the model consists of all main effects and the intercept term, then, at a
given design point, x = (x1, . . . , x f ),

f ′(x) = (1, x1, . . . , x f ).

As a second example, suppose that the model contains all main effects and all
two-factor interactions, then

f ′(x) = (1x1, . . . , x f , x1x2, x1x3, . . . , x f −1x f ).

Both D and f are important for the design selection problem. The former denotes
the design to be used for the experiment and the latter indicates the underlying
model to be fitted. The impact of both D and f is reflected in the model matrix
X, which plays a key role for comparing designs under many commonly used
optimality criteria for design selection. For the linear model (2), the least squares
estimate of β is given by (X′ X)−1 X′y with corresponding variance–covariance
matrix (X′ X)−1

σ 2. Many optimality criteria are based on the information matrix
X′ X. For example, a D-optimal design maximizes |X′ X|, and an A-optimal design
minimizes trace (X′ X)−1.
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From a practical perspective, the design selection problem amounts to finding
the best design matrix D such that the design is optimal with respect do a criterion
based on a model f . Thus, the design matrix D, the model f , and the criterion that
depends on the model matrix X are three key elements that must be considered.
There are several important issues concerning the relationships among these three
elements.

Firstly, in the literature, the term orthogonal design usually refers to the design
matrix, not the model matrix; that is, D′ D is nI, where I is the n × n identity
matrix, but X′ X may or may not be an identity matrix. Secondly, the orthogonality
of the model matrix depends on the model f . If only main effects are present, then
X is orthogonal provided that D is orthogonal and that entries in every column of
D add to zero. In this case, some optimality criteria that are defined on X, such as
D-optimality, are achieved. From the perspective of optimal designs, orthogonal
designs are usually the best choice for main-effect-only models. When the models
are more complex, orthogonal designs may or may not be optimal. Thirdly, a design
D that is optimal with respect to one model f 1 may not be optimal with respect
to another model f 2.

In this chapter, we discuss the choice of screening designs for model selection
via the three elements of the design matrix D, the model f , and a criterion based
on X. One important feature about the design screening problem is that the true
model is usually unknown. If we denote the set of all possible models that might be
fitted by F = { f 1, . . . , f u}, where u is the number of all possible models, then the
optimality criterion for design selection should be based on all possible models,
rather than on a specific model in F .

The outline for the remainder of the chapter is as follows. In Section 2, a general
framework for constructing efficient screening designs is provided. EC-optimal
orthogonal designs that are efficient with respect to several model assumptions are
investigated in Section 3. The models all include main effects plus a few two-factor
interactions, but they vary in which types of two-factor interactions are included.
In Section 4, model-discriminating orthogonal designs are identified that are con-
structed to maximize the design’s capability of distinguishing between competing
models. New results are presented for 12-, 16-, and 20-run designs. Nonorthogo-
nal designs are considered in Section 5 and some concluding remarks are given in
Section 6. Throughout the chapter, only two-level designs are considered.

2 Selection of Screening Designs

In this section, a general “framework” for selecting and constructing designs is
introduced that addresses the model uncertainties at the screening stage of ex-
perimentation. The framework is composed of three elements: model, criterion,
and candidate designs. To save space, we can denote the list of possibilities for
these three elements by

(F, C,D), (4)
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where F is the set of possible models (also called the model space), C consists of
one or more criteria for selecting designs, and D is the set of candidate designs
(also called the design space).

2.1 Choice of Model Space F
In many factorial designs considered in the literature, the objective is to esti-
mate certain factorial effects, assuming that the remaining effects are negligible.
However, it is often the case that a small number of effects which, prior to the
experiment, were assumed to be negligible, were not actually negligible. In view
of this, Srivastava (1975) classified factorial effects into three categories: (i) those
effects that are regarded as certain to be negligible, (ii) those effects that are re-
garded as necessary to be included in the model, and (iii) the remaining effects,
most of which are actually negligible, but a few of which may be nonnegligible.
Srivastava then proposed a class of designs, called search designs, that can esti-
mate all effects of type (ii) and also search for nonnegligible effects in category
(iii). The model space for the search design is a rather general one:

F = {models involving all effects of type (ii) + up to q effects of type (iii)}.
(5)

Sun (1993) and Li and Nachtsheim (2000) considered a more restricted model
space, namely,

F = {models involving all main effects + up to q two-factor interactions}.
(6)

In their work, the main effects are considered to be important and are forced into
the model. The designs are then constructed to accommodate as many two-factor
interactions as possible in addition to the main effects.

There could also be model uncertainties with respect to main effects. In the
context of supersaturated designs (see Chapter 8), Li and Nachtsheim (2001) con-
sidered the model space

F = {any q out of f main effects}. (7)

Many other papers on supersaturated designs deal with the model space (7), al-
though implicitly, for example, Wu (1993). Other model spaces considered in the
literature include that of Li and Nachtsheim (2001), where the model contains f1

main effects known to be nonnegligible, plus any q out of the remaining f − f1

main effects that may be nonnegligible, and the space of nested linear models of
Biswas and Chaudhuri (2002).

2.2 Choice of Criteria C
Several criteria for design selection have been proposed in the literature. The choice
of criterion depends on the objective of the experiment. Here, criteria for model
estimation capacity and model discrimination capability are described.
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2.2.1 Estimation Capacity

Sun (1993) proposed estimation capacity as a measure of the capability of factorial
experimental designs for estimating various models involving main effects and
interactions. Motivated by this work, Cheng et al. (1999) considered estimation
capacity in the context of minimum aberration designs, and Li and Nachtsheim
(2000) proposed a class of designs, called model-robust factorial designs, that
maximize the estimation capacity. Some of these designs are discussed in detail
in Section 3. Using the notation of Li and Nachtsheim, consider the models that
contain all main effects and q two-factor interactions; that is,

Fq = {all main effects + exactly q two-factor interactions}. (8)

A design with f factors has t = ( f
2

)
two-factor interactions, so the number of

models in the model space Fq is u = ( t
q

)
.

Let ei (d) denote the efficiency of design d when the true model f T = f i , where
f i is the ith model in some model space. A design d∗ is model robust for F if it
has maximum average weighted efficiency. We write

d∗ = argmax
u∑

i=1

wi ei (d), (9)

where wi ≥ 0 is the weight assigned to model f i and
∑

i wi = 1. The weight wi

reflects how likely it is that model f i is the true model. When there is no prior
information on which models are more likely to be the true model, equal weights
can be used.

Following the definition of EC in (1), let ECq (d) denote the fraction of models
in Fq that are estimable using design d; that is,

ECq = number of estimable models in Fq

total number of models in Fq
, (10)

which is often represented as a percentage. It can be seen that (10) is a special case
of (9) when w1 = w2 = · · · = wu = 1/u and

ei (d) =
{

1 if f i is estimable

0 otherwise.
(11)

The EC of (1) or, more specifically, the ECq of (10), provides information on
the percentage of models over a model space F or Fq that are estimable. However,
it provides no information on how efficiently models can be estimated. Using the
usual D-criterion (see Myers and Montgomery (2002, page 394)) as a measure of
the efficiency, Sun (1993) proposed the information capacity (IC) criterion, which
was later extended by Li and Nachtsheim (2000). Specifically, for model space Fq

in (8), Li and Nachtsheim (2000) defined the information capacity I Cq criterion
as maximising

I Cq = 1

u

u∑
i=1

n−1|X′
i Xi |1/hi , (12)
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where hi is the number of columns in model matrix Xi for the i th model inFq . The
difference between this criterion and the original IC criterion of Sun (1993) is that,
in (12), the average is taken over all models in Fq , whereas Sun (1993) took the
average over all estimable models in Fq . The I Cq criterion of Li and Nachtsheim
(2000) was motivated by the pioneering work of Läuter (1974) and Sun (1993).
It is a special case of the general definition of (9) with equal weights and the
design efficiency defined as ei = n−1|X′

i Xi |1/hi . Note that the above discussion
on information capacity is also applicable to a more general model space F .

2.2.2 Model Discrimination Capability

After establishing that all models in a model space F are estimable (that is, EC =
100%), a practical issue is to determine which model is the correct model. Suppose
that f 1 is the true model and that it is estimable under a design d. Suppose another
model f 2 is also estimable under d . If the columns of the model matrices of both
f 1 and f 2 span the same vector space (that is, the columns of one can be written
as linear combinations of the columns of the other), then the experimenter would
have no way of determining which model is the correct one. In this case, we say
the two models, f 1 and f 2, are fully aliased under design d .

Srivastava (1975) proposed a measure, called resolving power, to evaluate the
model discrimination capability of a design. If a design can always identify the
true model that contains the type-(ii) effects (as defined in Section 2.1) and up to
q type-(iii) effects, then the design is said to have resolving power q. Srivastava
provided a necessary and sufficient condition for a design to have resolving power
q, based on the assumption of negligible error variability. The pioneering work of
Srivastava (1975) is important in this area and his designs can be useful in practical
situations where the error variance is small.

Miller and Sitter (2001) used a different approach based on the probability that
the true model can be identified for a given design. Using simulation, their method
finds the probability that the true model has the lowest residual sum of squares
among candidate models of the same size. Similarly, Allen and Bernshteyn (2003)
used simulation to identify supersaturated designs that maximise the probability
of identifying active factors.

Because simulation usually takes a large amount of computing time, it may
not be practical to use a simulation-based approach to evaluate a large number of
designs. A more practical method is to use model discrimination criteria that are
based on the model matrix. One such criterion is based on the subspace angle,
introduced by Jones et al. (2005) In the context of evaluating 18-run orthogonal
designs. Consider two models f 1 and f 2 with the corresponding model matrices
X1 and X2, respectively, and denote the corresponding “hat” matrices by Hi =
Xi (X′

i Xi )−1 X′
i (i = 1, 2). When two hat matrices are equal to each other for a

design d, then their predictions ŷ1 = H1 y and ŷ2 = H2 y are the same for all
values of the response vector y. Therefore, two such models are fully aliased
under the design. Equivalently, two models are fully aliased when linear vector
spaces V (X1) and V (X2), spanned by the columns of the model matrices X1
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and X2, are the same. One way of measuring the degree of model aliasing is to
evaluate the “closeness” between the two vector spaces V (X1) and V (X2) via
the subspace angle, which is a generalization of angles between two planes in a
three-dimensional Euclidean space. It can be defined as

a12 = max
v1εV (X1)

min
v2εV (X2)

arccos(v′
1v2); (13)

that is, for each vector v1 in V (X1) in turn, we search through V (X2) to find a
vector v2 that gives an angle a(v1) with the smallest cos(v′

1v2). Then a12 is the
largest of all the angles a(v1). The criterion of (13) can be easily computed in
some software; for example, MATLAB (2004) has a command called SUBSPACE
for computing the subspace angle. As noted by Jones et al. (2005), this angle is
equivalent to

a12 = max
v1εV (X1)

arccos(v′
1 H2v1), (14)

where H2 is the hat matrix corresponding to X2 and so H2v1 represents the pro-
jection of v1 onto X2.

It follows from (14) that the subspace angle criterion measures the maximum
distance between two fitted values obtained using models f 1 and f 2. When the
subspace angle a12 is zero, it follows that two models f 1 and f 2 produce the same
fitted values for any design point x , and the two models are fully aliased. Another
way to explain the subspace angle is that it gives a measure of the amount of new
information explained by one model that was not explained by the other model.
When the subspace angle is 0, two models explain the same amount of information
and are fully aliased. Thus the criterion for design selection is to choose the design
that maximises the subspace angle (13) or (14). As an example, consider the design
composed of the columns labelled 1–11 of the 12-run Hadamard matrix given in
Appendix A. If X1 is the model matrix for the main effects of factors 2 and 3,
then X1 contains main effects columns identical to the columns labelled 2 and 3
of the Hadamard matrix. Similarly, if X2 contains the columns labelled 4, 5, and
6, then the subspace angle of the spaces spanned by the columns of X1 and X2 is
π/2 = 1.57 radians, which is the maximum possible angle.

The model discrimination capability of a design can be measured by the differ-
ences between the predictions given by different models. This motivated Jones et al.
(2005) to propose two criteria based on the differences of predictions: the expected
prediction difference and the maximum prediction difference. The expected pre-
diction difference (EPD) is calculated as follows. Consider two models with model
matrices X1 and X2 and hat matrices H1 and H2. Then, for any response y, the dif-
ference between two predictions is given by ŷ1 − ŷ2 = (H1 − H2)y. The expected
prediction difference measures the average distance between two fitted values over
all possible normalised responses, where “normalised” means that the response
vector y is scaled so that y′y = 1.0. For any two model matrices X1 and X2,

EPD(X1, X2) = E((ŷ1 − ŷ2)′(ŷ1 − ŷ2)|y′y = 1) = E(y′ Dy|y′y = 1), (15)

where D = (H1 − H2)2. From the definition of (15), EPD = 0 if and only if two
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models are fully aliased. A design with good model discrimination capability
should maximise (15). The expected prediction difference can be computed easily
because it can be shown that EPD = 1/n trace(D). (For more details, see Jones
et al., 2005.)

Both the subspace angle and the expected prediction difference can be used to
evaluate the model discrimination capability of a design d over a model space
F . In Section 4, the selection of orthogonal designs using criteria based on these
measures is discussed.

2.3 Choice of Candidate Designs D
Both orthogonal designs and nonorthogonal designs (see Chapter 7) can be used
as screening designs for model selection. However, different approaches are taken
for the construction of efficient screening designs within these two classes of
candidate designs. To find optimal orthogonal designs, we can take advantage of
the existing orthogonal designs that are available in the literature. The procedure
would simply involve evaluating all existing designs and then selecting the best
design(s) with respect to a pre-specified criterion. This approach works particularly
well if, for given number of runs n and number of factors f , all orthogonal designs
are available. Then the global optimal design can be found by exhaustive evaluation
for any given criterion.

In some situations, a small sacrifice in orthogonality may result in gains for
another criterion that is considered to be more important for screening purposes,
in which case nonorthogonal designs may be more desirable. Almost always, it is
impractical to evaluate all nonorthogonal designs of a given size. Thus, a different
approach is needed to find efficient nonorthogonal designs.

2.3.1 Orthogonal Designs

Orthogonal designs have been among the most commonly used designs for several
decades. In the literature, the term “orthogonal design” usually refers to a design
for which the design matrix (not the model matrix) has orthogonal columns. Such
designs are efficient for main-effect-only models. Most of the orthogonal designs
discussed in the literature are projections of the Hadamard matrix (see Chapter 7).
A Hadamard matrix H of order n is an n × n matrix of +1s and −1s such that
H′ H = nI, where I is the identity matrix. Construction methods of Hadamard
matrices have been discussed by several authors in the literature (see, for example,
Hall, 1967).

Not all orthogonal designs are projections of Hadamard matrices. Sun et al.
(2002) used a sequential algorithm to obtain the complete catalogue of orthogonal
designs for n = 12, 16, and 20. They found that all 12-run and 16-run designs
are indeed projections of Hadamard matrices, but some of the 20-run orthogonal
designs are not projections of the 20-run Hadamard matrices.

Table 1 lists the numbers of nonisomorphic 12-, 16-, and 20-run orthogonal
designs. (Two designs are called isomorphic if one design can be obtained from
another by relabelling runs, relabelling factors, and exchanging factor levels.) For
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Table 1. Numbers of nonisomorphic
12-, 16-, and 20-run orthogonal designs
for 2 ≤ f ≤ 19 factors
f 12-Run 16-Run 20-Run

2 1 1 1
3 1 3 3
4 1 5 3
5 2 11 11
6 2 27 75
7 1 55 474
8 1 80 1603
9 1 87 2477

10 1 78 2389
11 1 58 1914
12 36 1300
13 18 730
14 10 328
15 5 124
16 40
17 11
18 6
19 3

instance, it shows that for an experiment with 6 factors, there are two 12-run,
twenty-seven 16-run, and seventy-five 20-run orthogonal designs. Table 1 also
shows there is one 12-run designs with 11 factors, five 16-run designs with 15
factors, and three 20-run designs with 19 factors. These (saturated) orthogonal
designs can be obtained by deleting the column of all 1s from a Hadamard matrix.
Thus, the results shown in Table 1 confirm that there is a unique 12-run Hadamard
matrix, five 16-run Hadamard matrices, and three 20-run Hadamard matrices.
For the convenience of readers, the 12-run and 16-run Hadamard matrices are
provided in Appendices A and B. In Appendix C, some 12- and 16-run designs
that are efficient for model screening purposes are listed. Complete catalogues of
designs are available on the author’s Web site: http://www.csom.umn.edu/∼wli.
In Sections 3 and 4, these designs are evaluated in terms of maximum estimation
capacity and maximum model discrimination criteria.

2.3.2 Nonorthogonal Designs

For main-effect-only models, orthogonal designs are usually preferred because
main effects can be estimated efficiently and interpreted easily due to the orthogo-
nality between columns in the design matrix. When the model contains interactions
as well as main effects, however, a greater concern may be the orthogonality be-
tween columns in the model matrix rather than just the orthogonality of columns
in the design matrix.
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Several authors have recommended the use of nonorthogonal designs for model
screening. Li and Nachtsheim (2000) proposed model-robust factorial designs to
estimate a class of models containing main effects plus several two-factor interac-
tions. In their work, the model space is the one defined in (6) and the criteria are
to maximise ECq and I Cq defined in (10) and (12). The candidate design space
D consists of all balanced designs in which each column has an equal number
of +1s and −1s. This property has recently been called mean orthogonal by Liu
and Dean (2004). Balanced designs are often preferred for two reasons. First, an
imbalance of +1s and −1s within a column implies that the estimated factorial
effect is correlated with the estimated grand mean, resulting in a lower efficiency
of estimation. Secondly, if the level of a factor that produces the better response
value happens to be assigned in the design so that it occurs in only a small number
of runs, then the experiment may not provide adequate information on the factor
main effect. Among the papers that recommended use of nonorthogonal designs
both balanced and unbalanced designs have been considered. For example, Miller
and Sitter (2005) proposed a class of balanced designs with the aim of maximising
the probability that the true model can be identified. Allen and Bernshteyn (2003)
considered supersaturated designs of both types that maximise the probability of
identifying the important factors.

3 Orthogonal Designs Optimal Under Estimation Capacity

In this and the next sections, it is shown that only a few of the orthogonal designs
for n = 12, 16, and 20 runs, discussed in Section 2.3, are appropriate for the
screening purpose of model selection. In this section, the maximum-ECq criterion,
defined through (10), is used to evaluate these designs. Specifically, designs are
ranked by the sequential maximization of (EC1, EC2, . . . ). The “best” designs are
called EC-optimal designs. Section 3.1 focuses on the model space defined in (8).
Then, in Section 3.2, EC-optimal designs for several alternative model spaces are
introduced.

3.1 EC-Optimal Orthogonal Designs

In this section, results on optimal orthogonal designs for the model space Fq ,
defined in (8), are introduced. The framework (see Section 2) is given by:

(Fq as in (8), (maxEC1, maxEC2, . . .) criterion, orthogonal designs). (16)

Optimal designs in the framework (16) are called model-robust orthogonal de-
signs with n runs and f factors. For instance, the 16-run six-factor model-robust
orthogonal design refers to the optimal orthogonal design, selected from all 27 non-
isomorphic 16-run designs with six factors, under the (maxEC1, maxEC2, . . .) cri-
terion. In the framework of (16), the model-robust orthogonal design is obtained
for each (n,f). Alternatively, given n and f , we can obtain a series of optimal



218 William Li

designs for q = 1, 2, . . . based on (ECq , I Cq ) of (10) and (12). This approach
was taken by Li and Nachtsheim (2000), whose method and results are also men-
tioned in this chapter.

3.1.1 12-Run Model-Robust Orthogonal Designs

All 12-run orthogonal designs are projections of the unique 12-run Hadamard ma-
trix (see Appendix A), which is also known as the 12-run Plackett–Burman design
(see, also, Chapter 7). For each of f = 5 and 6 factors, there are two nonisomorphic
designs. For other numbers of factors, f , all selections of f columns result in a set
of designs that are isomorphic under row, column, and level permutations; that is,
there a unique f -factor nonisomorphic design. Lin and Draper (1992) first consid-
ered the projection properties of 12-run Plackett–Burman designs. They found that
for f = 5, the two nonisomorphic projections can be obtained from the columns
(1, 2, 3, 4, 5) and (1, 2, 3, 4, 10) of the Plackett–Burman design in Appendix A and,
for f = 6, the two nonisomorphic projections can be obtained from the columns
(1, 2, 3, 4, 5, 6) and (1, 2, 3, 4, 5, 7) of the Plackett–Burman design.

The 12-run designs generally have high EC values. Li and Nachtsheim (2000,
Table 3) reported the EC values for designs with 5 ≤ f ≤ 9 factors and q =
1, 2, . . . , 5 two-factor interactions in the model. When q = 1 (only one two-factor
interaction in the model), all designs have full estimation capacity; that is, all
models containing main effects plus one two-factor interaction are estimable. When
q = 2, all the designs given by Li and Nachtsheim for f ≤ 6 are full estimation
capacity designs, and the designs with f = 7, 8, and 9 factors have, respectively,
EC = 0.914, 0.778, and 0.514. For q ≥ 3, the EC values are between 0.409 and
1.0. The I C values are also reported in Li and Nachtsheim (2000, Table 3). They
range from 0.298 (for f = 8 and q = 3) to 0.944 (for f = 5 and q = 1).

For f = 5 and 6 factors, two nonisomorphic designs exist. The two designs
for f = 5 have similar EC and I C values. However, the two designs for f = 6
are quite different in terms of the (EC, I C) values. The first design, which was
reported by Li and Nachtsheim and constructed from columns (1, 2, 3, 4, 5, 6) of the
Hadamard matrix, is much better than the second design. The ECq (q = 1, 2, 3, 4)
values for the first design are (1.00, 1.00, 1.00, 0.98), compared with (1.00, 0.86,
0.60, 0.30) of the second design. The I Cq (q = 1, 2, 3, 4) values are (0.93, 0.86,
0.79, 0.68) and (0.93, 0.76, 0.54, 0.32), respectively.

3.1.2 16-Run Model-Robust Orthogonal Designs

All 16-run orthogonal designs are projections of the five Hadamard matrices given
in Appendix B. As shown in Table 1, the numbers of f -factor designs with 16 runs
can be reasonably large. These designs may perform very differently in terms of
estimation capacity. Figure 1 displays a histogram for the EC2 values for the 55
designs for f = 7 factors. The variability in the EC2 values is quite considerable,
from a minimum of 0.0 to a maximum of 1.0. Similar patterns are found for other
f and q values. Thus, not all orthogonal designs are suitable for model screening
purposes.
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Table 2. Design indices for 16-run EC-optimal orthogonal designs over four model
spaces of Li and Nachtsheim (2000) (for model-robust orthogonal designs), Bingham
and Li (2002) (for model-robust parameter designs), Addelman (1962), and Sun (1993)

Model-robust
orthogonal

f designs

Model-robust Addelman Sun
parameter designs f1 f2

q = 1 q = 2 q = 3 4 5 6 7 2 3 4

6 26 5 13,19 26 5 19 — — 19 3 —
7 52 6 49,32 52 6 50 32 — 50 50 —
8 68 6 68 68 6 6 68 68 — 68 68
9 85 73,85 76 76 — 4 71 71 — — —

10 66 76 66 66 — — — — — — —

Some of the 16-run designs summarised in Table 1 are regular designs (having
defining relations, see Chapter 1). For a regular design, a factorial effect is either
independent or fully aliased with each other factorial effect. In contrast, a nonreg-
ular design (having no defining relation) allows partial aliasing between effects. In
the past, regular designs have been the most often used but, in recent years, there
has been a surge of interest in nonregular designs. Wu and Hamada (2000) gave
a comprehensive review of nonregular designs. In the context of model screening,
nonregular designs usually perform much better than regular designs. For example,
consider the case of f = 7 factors. There are 55 nonisomorphic designs, six of
which are regular designs. (The numbers of regular 16-run designs with f factors
can be found in, for example, Li et al. 2003, Table 2). For q = 2, the estimation
capacities for these six regular designs have range (0.00, 0.90) with an average
estimation capacity of 0.35. In comparison, the EC range for the remaining 49
nonregular designs is (0.23, 1.00) with average EC of 0.81. Similar results are
also observed for other f and q values.

In Table 2, efficient 16-run orthogonal designs for various criteria and model
spaces are summarized. In the second column, design indices for the 16-run model-
robust orthogonal designs based on the framework of (16) are listed. The designs
are obtained by the sequential maximization of (EC1, EC2, . . .). For the reader’s
convenience, selected 16-run designs, which are efficient for model estimation or
model discrimination for f = 6, . . . , 10 factors, are given in Appendix C where
the design index number corresponds to that of Sun et al. (2002); the designs
are also available on the author’s Web site (http://www.csom.umn.edu/∼wli). For
example, column 2 of Table 2 shows that the model-robust orthogonal design
for f = 6 factors is Design 26. This design, denoted in Appendix C by 26 =
III(2,4,8,10,12,15), is obtained by using columns 2, 4, 8, 10, 12, and 15 of Hall’s
design H16.III in Appendix B. The results given in the remaining columns of
Table 2 are discussed in Section 3.2.

3.1.3 20-Run Model-Robust Orthogonal Designs

The complete catalogue for 20-run orthogonal designs was not available in the
literature until recently. Sun et al. (2002) constructed all nonisomorphic 20-run
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Table 3. Summary of properties of 20-run model-robust orthogonal designs; pq denotes
the percentage of designs for which ECq = 100%; ave(ECq ) is the average ECq over all
designs with f factors
f p1(%) ave(EC1) p2(%) ave(EC2) p3(%) ave(EC3) p4(%) ave(EC4)

3 66.7 .677 66.7 .677 66.7 .677 — —
4 100 1.000 100 1.000 100 1.000 100 1.000
5 100 1.000 100 1.000 100 1.000 63.6 .994
6 100 1.000 100 1.000 100 1.000 40.0 .997
7 100 1.000 100 1.000 100 1.000 4.2 .998
8 100 1.000 99.7 1.000 99.6 1.000 65.6 .999
9 100 1.000 97.1 1.000 96.7 1.000 77.3 .999

10 100 1.000 77.6 .999 77.5 .998 56.0 .995
11 100 1.000 8.3 .998 7.6 .993 0 .985
12 100 1.000 0 .994 0 .982 0 .961
13 100 1.000 0 .958 0 .957 0 .906
14 100 1.000 0 .967 0 .900 0 .775
15 100 1.000 0 .922 0 .771 0 .489
16 100 1.000 0 .828 0 .501 — —
17 100 1.000 0 .605 — — — —
18 100 1.000 0 — — — — —

designs using an algorithmic approach and obtained EC-optimal designs. The
numbers of nonisomorphic 20-run designs with f factors ( f = 2, . . . , 19) are
given in Table 1.

We use the model space in (8) for q = 1, 2, 3, 4. In Table 3, two measures are
recorded for each value of the number, f , of factors and the number, q, of two-factor
interactions in the model. These measures are the percentage of 20-run designs
for which ECq = 1.00, denoted by pq , and the average ECq over all f -factor
designs. (In this section, we use a proportion for EC to avoid possible confusion
with the percentage Pq .) For models with q = 1 two-factor interaction, almost all
designs have estimation capacity EC = 1.00. The only exception is a design with
f = 3 factors, which consists of five replicates of a regular four-run resolution
III design. The defining relation of this design is I = 123, and thus ECq = 0
for q = 1, 2, and 3 two-factor interactions. When q = 2 and 3, pq = 100% for
4 ≤ f ≤ 7, indicating that all f-factor designs with 20 runs for f = 4, . . . , 7 have
ECq = 1.00; when q = 4, p4 = 100% only for four-factor designs. In many cases
where pq < 100%, the average EC value is very high. For instance, for f = 7 and
q = 4, only 4.2% of the seven-factor designs have EC = 1.00. But the average
EC of all designs is 0.998, which indicates that the EC values of the remaining
95.8% of the designs are actually close to 1.00.

In summary, Table 3 shows that most 20-run designs have good EC values
for q = 1, 2, 3, and 4. However, the estimation capacity should not be used as
the only criterion for selecting screening designs. Another useful criterion is the
measure of model discrimination capabilities. It is shown in Section 4 that only
a small fraction of 20-run orthogonal designs have good model discrimination
properties.
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3.2 EC-Optimal Designs for Alternative Model Spaces

The EC-optimal designs discussed in the previous section are based on the model
space defined in (8), in which models contain main effects plus q two-factor in-
teractions. Other model spaces have also been considered in the literature. In this
section, we introduce the EC-optimal designs under several alternative assump-
tions on the model space.

3.2.1 Robust Parameter Designs

Robust parameter designs are used to identify the factor levels that reduce the vari-
ability of a process or product (Taguchi, 1987). In such experiments, the dispersion
effects, which can be identified by examination of control-by-noise interactions
(see Chapter 2), are particularly important and hence the models of primary inter-
est are those that contain at least one control-by-noise interaction. This motivated
Bingham and Li (2002) to introduce a model ordering in which models are ranked
by their order of importance as follows.

F1 = {main effects + q two-factor interactions (among which

at least one is a control-by-noise interaction)}, (17)

and

F2 = {main effects + q two-factor interactions (among which

none is a control-by-noise interaction)}. (18)

Let EC1 and EC2 denote the estimation capacities for the models in F1 and
F2, respectively. Denote the information capacity for models in F1 by I C1. Then
the model-robust parameter designs proposed by Bingham and Li (2002) sequen-
tially maximise (EC1, EC2, I C1). The design indices for model-robust parameter
designs are provided in column 3 of Table 2. For example, the table shows that
the model-robust parameter design for f = 7 and q = 1 is Design 6. According
to Appendix C, this design is obtained by using columns 1, 2, 4, 7, 8, 11, and
13 of Hadamard matrix H16.1 in Appendix B. Table 2 shows that, for the same
f, the model-robust parameter designs may be different for different numbers q
of interactions to be estimated. Consider, for example, the case in which f = 6.
When q = 1, the model-robust parameter design is Design 5; but for q = 2, the
model-robust parameter designs are Designs 13 and 19.

3.2.2 Model Spaces Considered by Addelman and Sun

An alternative model space considered by Addelman (1962) is

F = {main effects + q two-factor interactions among f1 specific factors}. (19)

This model space is appropriate if prior experience indicates that two-factor inter-
actions are likely to be present among only f1 out of f factors. In addition to (19),
Addelman (1962) discussed two other model spaces, but the details are omitted
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here. Sun (1993) added a new model space to Addelman’s work:

F = {main effects + q two-factor interactions between f1 specific factors and

the remaining f − f1 factors}. (20)

This model space can be particularly useful for robust parameter designs, assuming
that the nonspecified interactions are negligible. If f1 and f2 denote the numbers
of control factors and noise factors, respectively, then the interactions between f1

control factors and f2 noise factors are usually considered to be more important than
other two-factor interactions. The EC-optimal designs among 16-run orthogonal
designs for the models spaces in (19) and (20) were found by Sun (1993). We
list the corresponding optimal design indices in columns 4 and 5 of Table 2.
With the design index number given in Table 2, the exact design can be found in
Appendix C.

4 Model-Discriminating Designs

The EC-optimal designs discussed in Section 3 maximise the EC criterion. If
they are full estimation capacity designs, then all models are estimable. However,
this does not imply that such a design will allow the models to be distinguished
or separated from each other. In this section, orthogonal designs are further char-
acterised according to their model discrimination capabilities, using the subspace
angle (SA) of (13) and expected prediction difference (EPD) of (15). New re-
sults are given concerning the discriminating capabilities of 12-, 16-, and 20-run
orthogonal designs and recommended designs are tabulated.

Suppose the model space F contains u models. For each pair of models, the SA
and EPD values can be computed. Then the model discrimination capability of a
design can be measured by considering the SA and EPD values over all pairs of
models, resulting in four measures (Jones et al., 2005):

min SA = min ai j ,

f i , f jεF
(21)

ave SA = 1

u

u∑
i=1

ai j , (22)

min EPD = min EPD,
f i f jεF

(23)

ave EPD = 1

u

u∑
i=1

EPD, (24)

where ai j is defined in (13) and (14), and where EPD is defined in (15). In all four
measures, larger values indicate better model discrimination properties. Thus, the
measures should all be maximised.
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In a design for which the minimum subspace angle is zero, there exists at least
one pair of models, say f i and f j , that are fully aliased. Then at any design point
x, two fitted values f i (x) and f j (x) are identical. Thus, it is important that the
min SA of (21) be greater than zero. A design satisfying this condition is called
a model-discriminating design. It can easily be proved that min SA is zero if and
only if min EPD of (23) is zero. Thus, a modeldiscriminating design is a design
that satisfies

min SA > 0, (25)

or, equivalently,

min EPD > 0. (26)

A necessary condition for a design to be model-discriminating is that all models
in F must be estimable; that is, the design must have 100% estimation capac-
ity. Thus, we focus on full estimation capacity designs and further distinguish
them using the model-discrimination criteria of (21)–(24). As shown below, many
full estimation capacity designs do not have good model discrimination capabil-
ity. In practice, it is best if only full estimation capacity designs are used when
model uncertainty is present. Whenever possible, only designs that are also model-
discriminating designs should be used.

4.1 12-Run Model-Discriminating Designs

In Table 4, the values of the four measures (21)–(24) are reported for full estima-
tion capacity, 12-run orthogonal designs with f = 4, 5, 6, 7 factors, respectively,
and model space Fq of (8) with q = 1, 2. The designs are those described in
Section 3.1 which consist of columns from the Hadamard matrix in Appendix
A. When q = 1 two-factor interaction is to be estimated, all f-factor designs are
full estimation capacity designs; when q = 2, the designs for which f < 6 sat-
isfy EC = 100%, as does the first design with f = 6 (see Section 3.1). For the
second six-factor design and for the seven-factor design, both the min SA and
min EPD are 0. When this happens, there exists at least one pair of models
that are fully aliased and hence such designs are not recommended in practice.

Table 4. Measures of discriminating capability of 12-run designs
q = 1 q = 2

f min SA ave SA min EPD ave EPD min SA ave SA min EPD ave EPD

4 1.13 1.37 .136 .158 1.14 1.40 .138 .220
5 0.84 1.34 .093 .098 0.79 1.38 .083 .220
5 1.23 1.23 .148 .148 1.05 1.28 .125 .204
6 0.93 1.22 .107 .143 0.84 1.28 .093 .200
6 0.00 1.17 .000 .138 — — — —
7 0.00 1.17 .000 .131 — — — —
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The designs for f ≥ 8 all have fully aliased model pairs and are not included in
Table 4.

It is interesting to note the difference between the two 5-factor designs. They
both have EC = 100% and almost identical I C values for each q (see Sun, 1993).
However, Table 4 shows that the second design has better model discrimination
capabilities. In summary, when 12-run designs are used for screening purposes,
they should be used for no more than six factors. To investigate five or six factors,
the second 5-factor design and the first 6-factor design in Table 4 should be used.
Complete catalogues of 12-run designs are available from the author’s Web site
(http://www.csom.umn.edu/∼wli).

4.2 16-Run Model-Discriminating Designs

Table 5 summarizes the results for the 16-run orthogonal designs described in
Section 2.3. From Li and Nachtsheim (2000), it can be verified that full estimation
capacity designs exist for f ≤ 9 when q = 1 and for f ≤ 8 when q = 2. It is of
interest to find the subset of designs that are model-discriminating. For each pair
( f, q) over the range f = 5, . . . , 9 and q = 1, 2, Table 5 shows the number, nE ,
of full estimation capacity designs, and the number, nM , of these that are model-
discriminating. For example, for f = 5 and q = 1, there are eight full estimation
capacity designs, six of which are model-discriminating designs. The indices for
model-discriminating designs are given in the fourth column in Table 5. For ex-
ample, when f = 5 and q = 2, the five model-discriminating designs are Designs
4, 8, 10, 5, and 11. They are ranked by sequentially maximising (min SA, ave SA)
of (21) and (22). The details of the resulting designs are provided in Appendix C.
For example, under f = 5 in Appendix C, it is shown that Design 4 is obtained
by using columns 1, 2, 4, 8, and 15 of Hadamard matrix H16.1 in Appendix B.

Several interesting issues arise from Table 5. First, the number of designs that are
suitable for the purpose of model discrimination is very small compared with the

Table 5. Design indices for 16-run full estimation capacity designs that are model
discriminating or (EC, I C)-optimal; nE and nM denote, respectively, the number of
full estimation capacity designs and the number of these designs that are model
discriminating
q f nE nM Model-discriminating (EC, I C)-optimal

1 5 8 6 4,8,10,5,11,7 3,4
6 16 8 26,24,27,13,20,19,22,23 5
7 27 10 51,52,32,55,45,49,53,43,54,50 6
8 16 3 67,68,72 6
9 4 0 — 68

2 5 6 5 4,8,10,5,11 4
6 8 2 26,27 13,19
7 10 1 52 32,49
8 3 0 — 67,68
9 0 — — —
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total number of candidate orthogonal designs. For f = 5, 6, 7, and 8, there are 11,
27, 55, and 80 orthogonal designs, respectively (see Table 1). Among these designs,
there are only 6, 8, 10, and 3 model-discriminating designs, respectively, for q = 1.
When q = 2, the numbers of designs are further reduced to 5, 2, 1, and 0, respec-
tively. Secondly, nonregular designs (with no defining relation) are usually better
than regular designs (with a defining relation) for the purpose of model discrim-
ination. Among all model-discriminating designs displayed in Table 5, only two
designs (Designs 4 and 5 for f = 5) are regular designs. (To find which design is
regular, see Appendix C, where only projections of Hadamard matrix I result in reg-
ular designs.) In fact, when f ≥ 6, all model-discriminating designs are nonregular
designs. Thirdly, the (EC, I C)-optimal designs may not be model-discriminating
designs. For example, when f = 6 and q = 2, the (EC, I C)-optimal designs are
Designs 13 and 19. In contrast, the model-discriminating designs are Designs
26 and 27. Further investigation reveals that Designs 26 and 27 are not much
worse than Designs 13 and 19 in terms of the (EC, I C) criterion. The former
has (EC, I C) values of (1.00,0.88) and the latter has values (1.00,0.94). Some
authors have advocated the use of I C as the second criterion for distinguishing
between designs having the same EC value (for example, Li and Nachtsheim,
2000). This example demonstrates that the model discrimination criterion may be
a better alternative in screening for model selection.

4.3 20-Run Model-Discriminating Designs

Table 6 summarizes the model discrimination capabilities of the 20-run orthog-
onal designs discussed in Section 2.3. Table 3 shows that most 20-run designs
have high EC values. For example, for models with q = 1 two-factor interac-
tion, f -factor designs have EC = 100% for all f ≥ 4. However, the numbers of
model-discriminating designs are much smaller. For example, for f = 11, q = 1,
only 8.3% of the total designs are model-discriminating designs. When f > 11,
none of the orthogonal designs are model-discriminating designs, even though
they are all full estimation capacity designs. For each pair ( f, q), Table 6 also

Table 6. Summary of the best 20-run designs for model discrimination; pq is the
percentage of model-discriminating designs among orthogonal designs

q = 1 q = 2

f p1(%) min SA Index p2(%) min SA Index

4 100 1.35 3 100 1.35 3
5 100 1.29 10,11 100 1.28 11
6 100 1.23 74,75 100 1.14 75
7 100 .94 452 100 .83 452
8 100 .88 855 99.7 .76 1370
9 97.1 .93 2477 — — —

10 77.6 .76 104 — — —
11 8.3 .94 4,7,8,13 — — —
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gives the design indices for the best model-discriminating designs, which are ob-
tained by sequentially maximising (min SA, ave SA). For example, for f = 6
and q = 1, the best model-discriminating designs are Designs 74 and 75, both of
which have min SA of 1.29 and the ave SA of 1.43. All 20-run orthogonal designs,
including these model-discriminating designs, are available at the author’s Web
site.

The results for models with q = 2 two-factor interactions are similar to those
for q = 1. Model-discriminating designs exist for f ≤ 11. When producing the
results for Table 6, I did not run the complete search for f = 9, 10, and 11,
due to the extremely large amount of computing time that would be required.
However, the results from the evaluation of randomly selected designs show that
the percentages of model-discriminating designs for q = 2 are similar to those for
q = 1.

5 Nonorthogonal Designs

In some situations, nonorthogonal designs may be better than orthogonal designs.
For instance, it has been found that sometimes a small sacrifice of orthogonality
can result in a design with greater capability for screening; see, for example, Li
and Nachtsheim (2000) and Miller and Sitter (2005).

To find the best nonorthogonal designs, the exhaustive search method used in
the previous two sections is usually not possible because the number of candidate
designs may be too large. One commonly used methodology is the algorithmic
approach, which is explained in Section 5.1 in the context of constructing model-
robust factorial designs. Then, in Section 5.2, a nonalgorithmic approach using the
foldover technique is discussed. In both sections, we focus on designs, in which
each column of the design matrix has the same number of +1s and −1s. In Section
5.3, a Bayesian approach is introduced.

5.1 Optimal Designs Using Exchange Algorithms

To search for an optimal design among balanced (mean orthogonal) designs for
a given model space F and a criterion in C, an algorithmic approach is usu-
ally appropriate. Most available algorithms aim to improve a design by chang-
ing either rows or columns of the design matrix. The columnwise-pairwise (CP)
algorithms of Li and Wu (1997), which were proposed for the construction of
optimal supersaturated designs, can retain the balance property during the op-
timization process for finding an optimal design. When the number of models
in the model space F is large, the evaluation of the criterion in C may take
a large amount of computing time. This motivated Li and Nachtsheim (2000)
to propose a restricted CP algorithm, which can reduce the computing time
substantially.

The restricted CP algorithm can be summarized as follows for two-level designs
with coded levels +1 and −1 (Li and Nachtsheim, 2000, Appendix B).
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Step 1: Choose a balanced (mean orthogonal) design at random; label the design
matrix D.

Step 2: Set j = 0.
Step 3: Set j = j + 1. Randomly choose an element di j from the j th column of

D. Consider swaps of di j and each other element in the same column. Find
i∗ such that an exchange of di j and di∗ j results in a maximum gain in the
criterion value.

Step 4: Repeat Step 3 until j = f + 1. If the new design matrix after f exchanges
makes negligible improvement, stop. Otherwise, repeat Steps 2–4.

Step 5: Record the optimal design. Repeat Steps 1–4 several times, the number of
which is given in advance. Then, choose the best among those resulting
designs.

This algorithm is also applicable to classes of designs where factors have more
than two levels. In the case of two-level designs, the exchange procedure described
in Step 3 amounts to swapping the sign of elements in a column. A MATLAB file
is available from the Web site: http://www.csom.umn.edu/∼wli. Using the algo-
rithm, Li and Nachtsheim (2000) constructed a class of model-robust factorial
designs, which maximise the (EC, I C) criterion among balanced (mean orthog-
onal) designs. Because the class of orthogonal designs is a subset of the class of
balanced designs, the model-robust factorial design, chosen from balanced de-
signs, is at least as good as the corresponding model-robust orthogonal design.
In many cases, model-robust factorial designs have much larger EC values than
competing orthogonal designs and, sometimes, the difference can be substantial.
Consider, for example, the 16-run design with nine factors. When q = 3 two-factor
interactions are estimated, the model-robust orthogonal design has EC3 = 0.661.
In comparison, the model-robust factorial design has EC3 = 1.0 (see Table 4 of
Li and Nachtsheim, 2000).

Li and Nachtsheim (2000) compared the (EC, I C) values for model-robust or-
thogonal designs and model-robust factorial designs with 12 runs and 16 runs,
respectively. Their Tables 3 and 4 demonstrated that, in many cases, the full esti-
mation capacity orthogonal designs do not exist, but the full estimation capacity
balanced designs are available. For instance, for the 16-run designs with nine fac-
tors, the full estimation capacity orthogonal design does not exist for q = 2 or
q = 3 but, in both cases, the model-robust factorial designs have EC = 100%.
Because it is important that full estimation capacity designs be used for model
screening, the model-robust factorial designs can be very useful when no full es-
timation capacity orthogonal designs exist. To measure the model discrimination
capabilities of the designs proposed in Li and Nachtsheim (2000), I computed the
values of (21)–(24) for those designs and found that they generally perform quite
well. For instance, consider the design for n = 16 and f = 8 shown in Figure 1 of
Li and Nachtsheim (2000), which is presented here in Table 7. When q = 2, this
design has min SA of .32 and min EPD of 0.20. It was demonstrated in Section
4.2. (see Table 5) that all 16-run full estimation capacity orthogonal designs with
eight factors have min S A = 0. Thus, the 16-run with eight factors model-robust
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Table 7. A 16-run model-robust factorial
design with eight factors

Factors

1 2 3 4 5 6 7 8

−1 1 −1 1 1 1 1 −1
1 1 1 1 1 −1 −1 −1
1 1 1 1 −1 1 1 1
1 −1 1 −1 −1 −1 −1 −1

−1 −1 −1 −1 1 1 1 1
1 −1 −1 1 1 −1 1 1

−1 1 −1 1 −1 1 −1 1
−1 −1 −1 −1 1 −1 −1 −1
−1 −1 1 1 −1 −1 −1 1

1 −1 1 1 −1 1 −1 −1
−1 1 −1 −1 −1 −1 1 1

1 1 −1 −1 1 1 1 −1
1 1 1 −1 1 −1 1 −1

−1 −1 1 1 −1 −1 1 −1
1 −1 −1 −1 −1 1 −1 1

−1 1 1 −1 1 1 −1 1

factorial design of Table 7 is superior to any of the corresponding orthogonal
designs.

5.2 A Non-algorithmic Approach Using Foldovers

Many efficient designs can be produced by an algorithmic approach. However,
there are many other types of designs that can be constructed through operations on
the existing classes of designs. The literature is replete with such non-algorithmic
approaches. For example, Lin (1993) and Wu (1993) both constructed efficient su-
persaturated designs from well-known Hadamard matrices. Such types of designs
may not be optimal under a given criterion but they are easy to construct and they
usually have some desirable properties. In the area of screening designs for model
selection, one such approach was proposed by Miller and Sitter (2005), and this is
described briefly below.

The approach of Miller and Sitter (2005) is focused on the use of foldover
designs. For a design d with design matrix D, if the signs of some columns of D
are reversed to obtain DR , then the resulting design composed of D and DR is called
a foldover design. For a review of foldover designs, see Chapter 1. Among related
studies, Diamond (1995) investigated the projection properties of the foldover of
the 12-run Plackett–Burman design. Miller and Sitter (2001) demonstrated that
the “folded over” 12-run Plackett–Burman design is useful for considering main
effects of up to 12 factors plus a few two-factor interactions. They considered
only the full foldover, where the signs of all columns of D are reversed. For full
foldover designs, the columns corresponding to two-factor interactions are not
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orthogonal to each other, but they are all orthogonal to the columns corresponding
to main effects. Thus, the identification of active main effects is not affected by
the presence of active two-factor interactions. (An effect that is large enough to be
of practical importance is called an active effect see Chapter 8). Miller and Sitter
(2001) proposed a two-step analysis approach to take advantage of this property
of the full foldover designs. Foldover designs can also be obtained by switching
some, but not all, of the all columns in D. The optimal foldover of regular and
nonregular designs (in terms of the aberration criterion) were constructed by Li
and Lin (2003), and Li et al. (2003), respectively. They found that many optimal
foldovers are not full foldovers.

One limitation on the foldover of a Plackett–Burman design is that the number
of runs of the combined design, resulting from the initial design plus its foldover,
may be too large. Miller and Sitter (2005) extended the previous work of Miller
and Sitter (2001) to the foldover of nonorthogonal designs. For example, they
constructed a 12-run design by switching the signs of all columns of a 6 × 5
design. Miller and Sitter (2005) compared the folded over 12-run design with
other competing designs, including the two 12-run five-factor orthogonal designs
discussed in Section 2.3. Miller and Sitter (2001, 2005) demonstrated that the
foldover design performs quite well in terms of the EC criterion and the probability
of identifying the correct model.

For nonorthogonal designs constructed by the full foldover, the columns cor-
responding to main effects are not orthogonal to each other. However, they are
orthogonal to all the columns corresponding to two-factor interactions. Conse-
quently, the design may actually have a higher ability to identify active main
effects than competing orthogonal designs while maintaining the ability to iden-
tify a few active two-factor interactions. For more details, see Miller and Sitter
(2005).

5.3 A Bayesian Modification of the D-Optimal Approach

DuMouchel and Jones (1994) proposed a Bayesian modification of the search
for D-optimal designs in order to address model uncertainties. Consider the usual
model of (2), y = Xβ + ε, where X is an n × h model matrix. Suppose, in addition
to the h parameters in the model, which were called primary terms by DuMouchel
and Jones (1994), there are q potential terms that are just possibly important. In their
work DuMouchel and Jones assumed that σ 2 = 1, coefficients of primary terms
have a diffuse prior (that is, the prior variance tends to infinity) with an arbitrary
prior mean, and coefficients of potential terms are independent, have a prior mean
of 0, and a finite variance τ 2. Let K be the (p + q) × (p + q) diagonal matrix
whose first p diagonal elements are equal to 0 and whose last q diagonal elements
are 1. Under the model assumptions, ε ∼ N (o, σ 2 I ) and β ∼ N (0, τ 2 K ),β|y ∼
N (b, (X′X + K/τ 2)−1), where b = (X′X + K/τ 2)−1X′y, and thus a Bayes D-
optimal design would maximise |X′X + K/τ 2| which leads to the selection of
different designs (see DuMouchel and Jones, 1994). This approach can preserve
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the flexibility and ease of use of algorithmic designs while being more resistant to
the bias caused by an incorrect model.

6 Discussion

In this chapter, some useful results and methods for the construction of screening
designs for model selection have been described. A general framework for finding
designs has been provided which consists of a model space, a criterion for design
choice, and a set of candidate designs. Several useful criteria and model spaces for
model selection have been considered, with the emphasis on finding designs that
maximise estimation capacity and model discrimination capability. Both efficient
orthogonal and nonorthogonal designs have been investigated. For orthogonal
designs, new results have been given, including the tabulation of effective 12-, 16-,
and 20-run designs for practical use. I recommend the use of model-discriminating
designs for screening experiments. Most of the results in this chapter have been
obtained using a model space consisting of models with all main effects and a
small number of two-factor interactions. However, the methods described here are
applicable to other model spaces as well.

Although this chapter is focused on model estimation and model discrimination
criteria, other criteria may also be useful. For example, Lewis and Dean (2001)
proposed a new strategy for using group screening to estimate both main effects
and key two-factor interactions. Their criteria minimise the expected total number
of observations, the probability that the size of the experiment exceeds a pre-
specified target, and the proportion of active effects that are not detected (see also
Chapter 9).

Appendix A
12-Run Hadamard Matrix

0 1 2 3 4 5 6 7 8 9 10 11

1 1 1 −1 1 1 1 −1 −1 −1 1 −1
1 −1 1 1 −1 1 1 1 −1 −1 −1 1
1 1 −1 1 1 −1 1 1 1 −1 −1 −1
1 −1 1 −1 1 1 −1 1 1 1 −1 −1
1 −1 −1 1 −1 1 1 −1 1 1 1 −1
1 −1 −1 −1 1 −1 1 1 −1 1 1 1
1 1 −1 −1 −1 1 −1 1 1 −1 1 1
1 1 1 −1 −1 −1 1 −1 1 1 −1 1
1 1 1 1 −1 −1 −1 1 −1 1 1 −1
1 −1 1 1 1 −1 −1 −1 1 −1 1 1
1 1 −1 1 1 1 −1 −1 −1 1 −1 1
1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
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Appendix B
Hall’s 16-Run Orthogonal Designs

H16.I: 1,2,4,8 are independent columns

1,2,3 = 12,4,5 = 14,6 = 24,7 = 124,8,
9 = 18,10 = 28,11 = 128,12 = 48,13 = 148,14 = 248,15 = 1248

H16.II:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1
1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1
1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1
1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 −1 1 1 −1
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1

H16.III:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1
1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1
1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
1 −1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 −1 1
1 −1 1 −1 −1 1 −1 1 −1 1 1 −1 −1 1 1 −1
1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 −1 1 1 −1
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1 1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 −1 1 1 −1 −1 1 −1 1 1 −1 1 −1
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H16.IV:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1
1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1
1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 1 −1 −1 1 1 −1 −1 1 −1 1 −1 1
1 −1 1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1
1 −1 1 −1 −1 1 −1 1 −1 1 1 −1 −1 1 1 −1
1 −1 −1 1 1 −1 1 −1 −1 1 −1 1 −1 1 1 −1
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1 1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1

H16.V:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1
1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1
1 1 −1 −1 −1 −1 1 1 1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 −1 −1 1 1 −1 1 −1 1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1 1 1 1 −1 −1 −1 1 1
1 −1 1 −1 1 −1 1 −1 −1 −1 1 1 1 1 −1 −1
1 −1 1 −1 −1 1 −1 1 1 −1 −1 1 −1 1 1 −1
1 −1 1 −1 −1 1 −1 1 −1 1 1 −1 1 −1 −1 1
1 −1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 1 −1 −1 1 −1 1 −1 1 1 −1 1 −1
1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1
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Appendix C
Selected 16-Run Orthogonal Designs (Expressed as
Projections of H16.I − H16.V )

f = 5:
4 = I(1,2,4,8,15); 5 = II(1,2,4,8,12); 7 = II(1,4,6,8,12);
8 = II(4,5,6,8,12); 10 = II(4,5,8,10,12); 11 = III(2,4,8,10,12);

f = 6:
3 = I(1,2,3,4,8,12); 5 = I(1,2,4,7,8,11); 13 = II(1,4,6,8,11,12);

19 = III(1,2,4,8,10,12); 22 = III(2,4,7,8,10,12); 23 = III(2,4,8,9,10,12);
24 = III(2,4,8,9,10,14); 26 = III(2,4,8,10,12,15); 27 = IV(2,4,6,8,10,12);

f = 7:
6 = I(1,2,4,7,8,11,13); 32 = III(1,2,4,8,10,12,15); 43 = III(2,4,7,8,9,10,12);

45 = III(2,4,7,8,10,12,15); 49 = IV(1,2,4,6,8,10,12); 50 = IV(2,3,4,6,8,10,12);
51 = IV(2,4,6,8,10,12,14); 52 = IV(2,4,6,8,10,12,15); 53 = V(1,2,4,8,9,10,12);
54 = V(1,2,4,8,9,10,13); 55 = V(1,2,4,8,10,12,15);

f = 8:
6 = I(1,2,4,7,8,11,13,14); 67 = IV(1,2,4,6,8,10,12,14); 68 = IV(1,2,4,6,8,10,12,15);

72 = IV(2,3,4,6,8,10,12,14);

f = 9:
4 = I(1,2,3,4,5,8,9,14,15); 71 = IV(1,2,3,4,6,8,10,12,14);

73 = IV(2,3,4,5,6,7,8,12,14); 76 = IV(2,3,4,5,6,8,10,12,14);
85 = V(1,2,4,8,9,10,11,12,13)

f = 10:
66 = IV(2,3,4,5,6,7,8,10,12,14); 76 = V(1,2,4,7,8,9,10,11,12,13);
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11
Prior Distributions for Bayesian
Analysis of Screening Experiments

Hugh Chipman

When many effects are under consideration in a screening experiment, it may be necessary
to use designs with complex aliasing patterns, especially when interactions and higher-
order effects exist. In this situation, the selection of subsets of active effects is a challenging
problem. This chapter describes Bayesian methods for subset selection, with emphasis on the
choice of prior distributions and the impact of this choice on subset selection, computation,
and practical analysis. Attention is focused on experiments where a linear regression model
with Gaussian errors describes the response. Ideas are illustrated through an experiment in
clinical laboratory testing and through an example with simulated data. Advantages of the
Bayesian approach are stressed, such as the ability to incorporate useful information about
which subsets of effects are likely to be active. For example, an AB interaction effect might
only be considered active if main effects for A and B are also likely to be active. When such
information is combined with a stochastic search for promising subsets of active effects,
a powerful subset selection tool results. The techniques may also be applied to designs
without complex aliasing as a way of quantifying uncertainty in subset selection.

1 Introduction

Many of the ideas in this chapter are motivated through the discussion, below,
of an example of a screening experiment. This discussion is then followed by an
overview of the rest of the chapter.

1.1 A Blood-Glucose Screening Experiment

An experiment to study the effect of eight factors on blood-glucose readings made
by a clinical laboratory testing device was described by Henkin (1986). The fac-
tor descriptions and levels are given in Table 1. One factor, A, has two levels
whereas each of the other seven factors, B − H , has three levels. The design of
the experiment had 18 runs and is shown, together with the data, in Table 2.

A goal of such screening experiments is the identification of the active effects.
The concept of the activity of an effect was introduced by Box and Meyer (1986)
who presented one of the first Bayesian methods for the analysis of designed
experiments; see also Chapter 8. The general approach described in this chapter
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Table 1. Factors for the glucose experiment
Factor Description Levels

A Wash yes, no
B Volume in microvial 2.0, 2.5, 3.0 ml
C Water level in caras 20.0, 28.0, 35.0 ml
D Speed of centrifuge 2100, 2300, 2500 RPM
E Time in centrifuge 1.75, 3.00, 4.50 minutes
F (Sensitivity, absorption) (0.10,2.5), (0.25,2.0), (0.50,1.5)
G Temperature 25, 30, 37◦C
H Dilution 1:51, 1:101, 1:151

is to view the analysis of screening data as a regression problem in which an
n × (h + 1) matrix, X, of predictors or explanatory variables is constructed with
the last h columns being contrasts in the levels of the factors (see Chapter 1). For
example, for the glucose data, linear and quadratic main effects and interaction
effects are considered and these effects are represented by a vector of regression
coefficients β. The first column of X is a vector of 1s and correspondingly, the first
element of β is an intercept. Most of the effects are assumed to be inactive (near
zero). The task of identifying a subset of active effects corresponds to identifying
which contrasts in X should be included in a regression model.

The selection of factorial effects may seem counterintuitive for screening exper-
iments, because the primary goal is to identify important factors. The philosophy
behind the identification of individual active effects is that, once active effects are

Table 2. The design and response data for the glucose experiment
Factor

Mean
A G B C D E F H reading

1 1 1 1 1 1 1 1 97.94
1 1 2 2 2 2 2 2 83.40
1 1 3 3 3 3 3 3 95.88
1 3 1 1 2 2 3 3 88.86
1 3 2 2 3 3 1 1 106.58
1 3 3 3 1 1 2 2 89.57
1 2 1 2 1 3 2 3 91.98
1 2 2 3 2 1 3 1 98.41
1 2 3 1 3 2 1 2 87.56
2 1 1 3 3 2 2 1 88.11
2 1 2 1 1 3 3 2 83.81
2 1 3 2 2 1 1 3 98.27
2 3 1 2 3 1 3 2 115.52
2 3 2 3 1 2 1 3 94.89
2 3 3 1 2 3 2 1 94.70
2 2 1 3 2 3 1 2 121.62
2 2 2 1 3 1 2 3 93.86
2 2 3 2 1 2 3 1 96.10
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identified, the important factors involved in these effects will also be known. An
emphasis on the selection of active effects instead of active factors means that
more insight is gained into the nature of the relationship between the factors and
the response.

In the glucose experiment, factor A has two qualitative levels and so there is
only one contrast with +1 and −1 corresponding to the levels “yes” and “no”. All
the three-level factors are quantitative and their main effects can be decomposed
into linear and quadratic effects using orthogonal polynomials; see, for example,
Draper and Smith (1998, Chapter 22) and Dean and Voss (1999, page 71). For
factors B, D, F, and H, with evenly spaced levels, the respective coefficients for
the low, middle, and high factor levels in each linear contrast are (−1, 0, 1)/

√
2

and in each quadratic contrast are (1, −2, 1)/
√

6. Factor F combines two variables
(sensitivity and absorption), and has slightly nonuniform spacing of sensitivity.
Because a single natural scale is difficult to specify for such a combined factor, the
contrasts used here to measure its main effect are identical to those used for a single
evenly spaced factor. For the unevenly spaced factors C , E , and G, linear contrast
coefficients depend on the spacing of the factor levels and are calculated as the
original values minus their means. This is called “centering”. Quadratic contrast
coefficients are formed by squaring the elements of the centered linear contrasts
and then centering the squared values. So, for factor C with levels {20, 28, 35}, the
linear contrast CL has coefficients (−7.67, 0.33, 7.33) and the quadratic contrast
CQ has coefficients (21.22, −37.44, 16.22).

The nonregular nature of the fractional factorial design makes it possible to
consider interaction effects as well as main effects; see also Chapter 7. An inter-
action between two factors, each with three levels, has four degrees of freedom
which can be decomposed into linear × linear, linear × quadratic, quadratic ×
quadratic, and quadratic × linear effects. The contrast coefficients for these ef-
fects are formed by multiplying the coefficients of the corresponding main effect
contrasts.

In the glucose experiment, a total of h = 113 effects is under considera-
tion. This includes 8 linear main effects (AL , . . . , HL ), 7 quadratic main effects
(BQ, . . . , HQ), 28 linear × linear interactions (AL BL , . . . , GL HL ), 7 + 7 × 6 =
49 linear × quadratic interactions (AL BQ, . . . , AL HQ, BLCQ, . . . , GL HQ) and
21 quadratic × quadratic interactions (BQCQ, . . . , G Q HQ).

The contrasts described above are not scaled to be directly comparable. Because
active effects are identified via regression modeling, detection of activity will be
unaffected by scaling of contrasts. By taking a regression approach to the analysis
of the glucose data in Table 2, the screening problem reduces to one of selecting a
small subset of active effects from the 113 effects under consideration. Hamada and
Wu (1992) tackled the subset selection problem for screening experiments using
a modified stepwise regression procedure. They first identified active main effects
and then identified active interactions between those active main effects. In the
glucose experiment, the subset of active effects that they identified was EQ, FQ ,
and interaction EL FL . The model composed of these effects plus an overall mean
has an R2 value of 68%.
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Table 3. Best fitting subsets of size 1–6, identified
by “all subsets” search for the glucose experiment
Subset of active effects R2

BL HQ 46.2
BL HQ , BQ HQ 77.0
BL , BL HQ , BQ HQ 85.5
EQ , AL CL , BL HQ , BQ HQ 94.3
FL , AL HQ , GL HQ , BL HQ , EL FL 97.0
AL , EQ , AL CL , BL DL , BL HQ , BQ HQ 98.7

Although stepwise selection algorithms run quickly, they do not consider all
possible subsets of active effects. Instead, they build up a model one term at a time.
An additional problem with the stepwise approach of Hamada and Wu (1992) is
that, by dividing the algorithm into stages, the search is further restricted: a highly
significant (active) interaction with no corresponding main effects that are active
will not be identified.

A remedy to the limited scope of a stepwise search is to use all subsets regres-
sion, in which regression models using every possible subset of active effects are
considered. Furnival and Wilson (1974) developed an efficient algorithm for this
computation. For the glucose data, a search over all subsets with six or fewer active
effects was carried out, using the leaps package in R (R Development Core Team,
2004). The computation took about 50 minutes on a 1 GHz Pentium-III computer.
For each size, the subset with highest R2 is shown in Table 3. The three-term model
with effects BL , BL HQ , and BQ HQ has R2 = 85.5% compared with R2 = 68%
for the Hamada–Wu model with EQ, FQ , and EL FL .

A problem with the “all subsets” approach is that all relationships between
predictors are ignored. For example, the best subset of size four, (EQ, ALCL ,

BL HQ, BQ HQ), contains an interaction involving factors A and C, but no cor-
responding main effects. Indeed, one of the main strengths of the Hamada–Wu
approach is the incorporation of the principle of effect heredity: an interaction be-
tween two effects is not considered active unless at least one of the corresponding
main effects is also active.

Neither all subsets regression nor the Hamada–Wu stepwise algorithm repre-
sents a complete solution. All subsets regression provides a complete search but
ignores effect heredity. The Hamada–Wu approach identifies models obeying effect
heredity but has an incomplete search and may miss the best effect heredity models.

The use of Bayesian priors, coupled with efficient stochastic search algorithms,
provides one approach that solves both problems. The stochastic search signif-
icantly improves the chances of finding good models, whereas Bayesian priors
focus the search on models obeying effect heredity.

To give a flavor of the Bayesian approach, two summaries of the Bayesian
analysis of the glucose data are now presented. A more detailed analysis, includ-
ing a discussion of prior distributions and computational methods, is given in
Section 5.2.
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Table 4. Ten subsets of effects with largest posterior probability for the
glucose experiment

Posterior
Subset probability R2

BL , BL HL , BL HQ , BQ HQ 0.126 86.0
BL HQ , BQ HQ 0.069 77.0
BL , BL HQ , BQ HQ 0.064 85.5
BL , BL HL , BQ HL , BL HQ , BQ HQ 0.037 88.3
FL , HL , HQ , AL HQ , GL HQ , BL HQ , EL FL 0.037 97.0
AL , BL , AL DQ , BL HL , BL HQ , BQ HQ 0.020 95.0
FL , HL , HQ , AL HQ , BL HQ , BQ HQ 0.019 93.0
FL , HL , HQ , AL HQ , BL HQ , BQ HQ , CL HQ 0.019 95.9
BL , BQ , BL HL , BL HQ , BQ HQ 0.018 89.2
FL , HL , HQ , AL HQ , GL HQ , BL HQ , BQ HQ , EL FL 0.017 97.8

Table 4 lists the 10 most probable subsets found by the Bayesian procedure.
With the exception of the second subset listed (BL HQ, BQ HQ), every term in
every subset has at least one lower-order effect also in the subset. For example, in
the fifth subset listed in Table 4 (FL , HL , HQ, AL HQ, GL HQ, BL HQ, EL FL ), the
active effect GL HQ has “parent” HQ which, in turn, has parent HL . (The notions
of parents and effect heredity are stated precisely in Section 2.2.) This fifth subset
contains all the effects in the best subset of size 5 listed in Table 3. The Bayesian
procedure has found a subset similar to one of the best subsets but which obeys
effect heredity.

The Bayesian approach is more than a tool for adjusting the results of the
all subsets regression by adding appropriate effects to achieve effect heredity.
Take, for example, the sixth model in Table 4 which consists of AL , BL , AL DQ,

BL HL , BL HQ, BQ HQ . The AL DQ effect identified as part of this model does not
appear in the best subsets of size 1–6 in Table 3. The Bayesian procedure has
therefore discovered an additional possible subset of effects that describes the
data.

Figure 1 displays a second summary in the form of the marginal posterior prob-
ability that each of the 113 effects is active. Effects are ordered by this probability
along the horizontal axis. The height of the vertical line for each effect represents
the posterior probability of activity under a certain choice of prior hyperparameters
(see Section 2.2). Robustness of these probabilities is indicated by the rectangles,
which give minimum and maximum marginal posterior probability of activity over
18 different choices of prior hyperparameters. From this plot, it evident that effects
BL HQ and BQ HQ are very likely to be active, as well as other effects involving
BL , HL , and HQ . In addition, effects AL HQ and FL might be active.

1.2 Overview of the Chapter

The Bayesian approach described in Section 1.1 can be applied to a wide variety of
screening problems, including those with both quantitative and qualitative factors.
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Figure 1. Marginal posterior probability of activity of the 113 effects for the glucose
experiment; rectangles indicate robustness of the probabilities.

Although a large number of high-order contrasts was examined in the glucose
example, this technique will work equally well when only linear main effects
and linear × linear interactions are considered. When there are complex aliasing
patterns between effects, the Bayesian approach is effective in identifying different
subsets of effects that fit the data well. It can also be used in conjunction with regular
fractional factorial designs.

Bayesian methods for subset selection offer several advantages over other ap-
proaches: the assignment of posterior probabilities to different subsets of active
effects provides a way of characterizing uncertainty about effect activity; prior
distributions can incorporate principles of effect dependence, such as effect hered-
ity; the identification of promising models via Bayesian stochastic search tech-
niques is faster than all subsets searches, and more comprehensive than stepwise
methods.

The motivating example has illustrated the challenges of subset selection for
screening experiments and the results of a Bayesian analysis. The remainder of
the chapter provides details of the Bayesian approach, but some familiarity with
Bayesian methods is assumed. Lee (2004) provides a good introduction to these
methods without assuming too much advanced statistical background. Chapter 3
of Zellner (1987) provides detailed background on Bayesian multiple regression
modeling. Bayesian simulation techniques, namely, Markov chain Monte Carlo
(MCMC), are overviewed in Chapter 11 of Gelman et al. (2003) and in Chapter 10
of O’Hagan and Forster (2004).

Central to Bayesian approaches is the treatment of model parameters, such
as the vector of regression coefficients β, as random variables. Uncertainty and
expert knowledge about these parameters are expressed via a prior distribution.
The observed data give rise to a likelihood for the parameters. The likelihood and
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prior distribution are combined to give a posterior distribution for the parameters.
In subset selection for linear regression, the model is extended to include not only
the regression coefficient vector β and the residual standard deviation σ , but also
a vector δ of binary indicators specifying whether each effect is active or inactive;
that is, δ identifies a subset of active effects. Interest focuses on prior and posterior
distributions for β, σ, and δ.

The Bayesian approach to subset selection is outlined in Sections 2 to 4. Section 2
gives the mathematical ingredients of the analysis: a probability model for the
data, prior distributions for the parameters (β, σ, δ) of the model, and the resultant
posterior distribution.

For a particular data set, subsets with high posterior probability must be iden-
tified. This can be a computational challenge: with h possible effects, there are
2h different subsets. In order to identify promising subsets, MCMC methods for
simulating from the posterior distribution on subsets may be used as a stochastic
search. Section 3 outlines efficient techniques for exploring the subset space using
MCMC methods.

Section 4 reviews simple, semi-automatic methods of choosing the hyper-
parameters of a prior distribution and adds some new insights into the choice
of hyperparameters for a prior on regression coefficient vector β. The glucose
experiment and a simulated data set are used in Section 5 to demonstrate the
application of the Bayesian subset selection technique.

A promising new use of prior distributions for subset selection is in the for-
mulation of optimality criteria for the construction of designs that allow model
discrimination. This technique is discussed in Section 6. The chapter concludes
with a discussion, including possible extensions of the techniques to generalized
linear models.

2 Model Formulation

This section gives a review of the linear regression model, including an augmented
form that allows specification of the subset of active effects. Prior distributions are
introduced and relevant posterior distributions given.

2.1 The Linear Regression Model

The usual regression model,

Y = Xβ + ε (1)

is used, where Y is a vector of n responses, X an n × (h + 1) matrix of predic-
tors, β = (β0, β1, . . . , βh)′ a vector containing an intercept β0 and h regression
coefficients, and ε a vector of n error variables ε1, . . . , εn which are assumed
to be independent and identically distributed as N (0, σ 2). The elements of the
columns of X are functions of the levels of one or more of the original factors and
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may represent linear, quadratic, or interaction contrast coefficients, or indicator
variables for qualitative factors.

This model is augmented by an unobserved indicator vector δ. Each element
δ j ( j = 1, . . . , h) of δ takes the value 0 or 1, indicating whether the corresponding
β j belongs to an inactive or an active effect, respectively. Because the intercept β0 is
always present in the model, it has no corresponding δ0 element. An inactive effect
has β j close to 0 and an active effect has β j far from 0. The precise definition
of “active” and “inactive” may vary according to the form of prior distribution
specified. Under this formulation, the Bayesian subset selection problem becomes
one of identifying a posterior distribution on δ.

2.2 Prior Distributions for Subset Selection in Regression

A Bayesian analysis proceeds by placing prior distributions on the regression
coefficient vector β, error standard deviation σ , and subset indicator vector δ. One
form of prior distribution is given in detail below and other approaches are then
discussed. Techniques for choosing hyperparameters of prior distributions, such
as the mean of a prior distribution, are discussed later in Section 4.

A variety of prior distributions has been proposed for the subset selection prob-
lem and most differ in terms of the distributions placed on β and δ. One particular
formulation, due to Box and Meyer (1986) and George and McCulloch (1997),
is reviewed in detail here. Subsequent examples use this particular formulation,
although many issues that arise are general.

The joint prior density on β, σ, δ can be factored and subsequently simplified
by assuming that the subset indicator vector δ and error variance are independent.
Then,

p(β, σ, δ) = p(β|σ, δ)p(σ, δ) = p(β|σ, δ)p(σ )p(δ). (2)

The prior densities p(β|σ, δ), p(σ ), and p(δ) are described below.

2.2.1 Prior Distribution on Regression Parameters β, σ

Prior distributions are often chosen to simplify the form of the posterior distri-
bution. The posterior density is proportional to the product of the likelihood and
the prior density and so, if the prior density is chosen to have the same form as
the likelihood, simplification occurs. Such a choice is referred to as the use of a
conjugate prior distribution; see Lee (2004) for details. In the regression model (1),
the likelihood forβ, σ can be written in terms of the product of a normal density on
β and an inverse gamma density on σ . This form motivates the conjugate choice
of a normal-inverse-gamma prior distribution on β, σ . Additional details on this
prior distribution are given by Zellner (1987).

The prior distribution used for the error variance is

σ 2 ∼ Inverse Gamma(ν/2, νλ/2) (3)
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and this is equivalent to specifying νλ/σ 2 ∼ χ2
ν . This prior distribution is identical

to the likelihood for σ 2 arising from a data set with ν observations and sample
variance λ. Although the data are normally distributed, the likelihood, when viewed
as a function of σ 2, has this form.

A variety of prior distributions for β has been proposed in the literature. Here,
the following formulation is used: for any given subset indicator vector δ and
value of the error variance σ 2, the effects β1, . . . , βh have independent normal
prior distributions. The variance of β j ( j = 1, . . . , h) is formulated to be large
or small depending on whether an effect is active (δ j = 1) or inactive (δ j = 0),
through use of the hyperparameters c j , τ j in the distribution with density

p(β j |δ j , σ ) ∼
{

N (0, (τ jσ )2) if δ j = 0,

N (0, (c jτ jσ )2) if δ j = 1.
(4)

This distribution is referred to as a “mixture of two normal distributions”. The
values of the hyperparameters c j , τ j are chosen to indicate magnitudes of inactive
and active effects. Roughly speaking, β j for an active effect will be c j times larger
than that for an inactive effect. Choosing c j much larger than 1 represents this
belief. In Section 4, an automatic method of selecting values of the hyperparam-
eters c j and τ j is suggested. The intercept β0 will have an uninformative prior
distribution (i.e., c0 = 1, τ0 → ∞). Implicit in (4) is the assumption of a diago-
nal prior covariance matrix for β. Other choices are explored by Chipman et al.
(2001) and Raftery et al. (1997), including a prior covariance matrix proportional to
(X′ X)−1.

Several alternatives to the prior distribution (4) have been proposed in the liter-
ature. Two alternative formulations are:

� George and McCulloch (1993) chose a prior distribution for β that does not
depend on σ .

p(β j |δ j , σ ) = p(β j |δ j ) ∼
{

N (0, τ 2
j ) if δ j = 0,

N (0, c2
jτ

2
j ) if δ j = 1.

(5)

� Raftery et al. (1997) and Box and Meyer (1993) used a prior distribution similar
to (4) but, when δ j = 0, the prior probability on β j is a point mass at 0. This is a
limiting case of (4) with c j → ∞, τ j → 0, and c jτ j fixed. It can be represented
as

p(β j |δ j , σ ) ∼
{

�(β j ) if δ j = 0,

N (0, (c jτ jσ )2) if δ j = 1,
(6)

where the Dirac delta function � assigns probability 1 to the event β j = 0.

Formally, �(x) integrates to 1 and takes the value zero everywhere except at
x = 0.

An important practical difference between priors (4)–(6) is the extent to which they
allow analytic simplification of the posterior density as discussed in Section 2.3.
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Prior distributions (4) and (6) are conjugate and allow analytic simplification of the
posterior density. Prior (5) is nonconjugate, and requires additional computational
techniques explored in Section 2.3.

2.2.2 Prior Distribution on the Subset Indicator Vector δ

A prior distribution must also be assigned to the subset indicator vector δ. Because
δ is a binary vector with h elements, there are 2h possible subsets of active effects.
The prior distribution on δ must assign probability to each subset. An initially
appealing choice is to make each of the 2h subsets equally likely. This is equivalent
to prior independence of all elements of δ, and p(δ j = 0) = p(δ j = 1) = 0.5.

In a screening context, this is implausible under the following widely accepted
principles:

1. Effect Sparsity: Only a small fraction of all possible effects is likely to be
active. Thus, the prior probability that δ j = 1 will be set to less than 0.5.

2. Effect Hierarchy: Lower-order effects are more likely to be active than higher-
order effects. For example, linear main effects are more likely to be active than
quadratic main effects or interaction effects.

3. Effect Heredity: Subsets should obey heredity of active effects. For example,
a subset with an active AB interaction but no A or B main effects may not be
acceptable. Nelder (1998) referred to this as the “marginality principle”.

The first two principles suggest that P(δ j = 1) should be less than 0.5 for all
j = 1, . . . , h and be smaller for higher-order effects. The third suggests that p(δ)
should incorporate effect dependencies such as that proposed, for example, by
Chipman (1996). There (and in this chapter) the probability that a given term is
active or inactive is assumed to depend on its “parent” terms, typically taken to be
those terms of the next lowest order from which the given term may be formed. A
higher-order term such as AL BQ could have parents AL BL and BQ (the “typical”
case), or have parents AL and BQ .

To illustrate, consider a simple example with three factors, A, B, and C , and
a model with three linear main effects and three linear × linear interactions. For
clarity, elements of δ are indexed as δA, δAB , and so on. Because all effects are
linear or linear × linear interactions, the L subscript is omitted from linear effects
AL , BL , and CL . The prior distribution on δ is

p(δ) = p(δA, δB, δC , δAB, δAC , δBC )

= p(δA, δB, δC )p(δAB, δAC , δBC |δA, δB, δC ). (7)

The effect heredity principle motivates two simplifying assumptions. The first
assumption is that terms of equal order are active independently of each other,
given the activity of the lower-order terms. Then (7) becomes

p(δ) = p(δA)p(δB)p(δC )p(δAB |δA, δB, δC )p(δAC |δA, δB, δC )p(δBC |δA, δB, δC ).
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Secondly, the activity of an interaction is assumed to depend only on the activity
of those terms from which it is formed, so that we have

p(δ) = p(δA)p(δB)p(δC )p(δAB |δA, δB)p(δAC |δA, δC )p(δBC |δB, δC ).

The prior distribution is specified by choosing marginal probabilities that each
main effect is active, namely,

P(δA = 1) = P(δB = 1) = P(δC = 1) = π (8)

and by choosing the conditional probability that an interaction is active as follows:

P(δAB = 1|δA, δB) =
⎧⎨⎩

π0 if (δA, δB) = (0, 0),
π1 if one of δA, δB = 1,

π2 if (δA, δB) = (1, 1).
(9)

Although, in principle, four probabilities could be specified in (9), the circum-
stances under which (δA, δB) = (0, 1) and (1, 0) can be distinguished are uncom-
mon. In some applications, π, π0, π1, π2 may vary for, say, effects associated with
A and with B. To keep notation simple, this straightforward generalization is not
discussed further. Probabilities for the AC and BC interactions being active are
defined in a similar way.

Effect sparsity and effect hierarchy are represented through the choice of hy-
perparameters π, π0, π1, π2. Typically π0 < π1 < π2 < π < 0.5. Section 2.3 pro-
vides details on the selection of these hyperparameters.

The choice of π0 = π1 = 0, π2 > 0 in (9) allows an interaction to be active
only if both corresponding main effects are active (referred to as strong heredity).
The choice of π0 = 0, π1 > 0, π2 > 0 allows an interaction to be active if one or
more of its parents are active (weak heredity). Models obeying strong heredity
are usually easier to interpret, whereas weak heredity may help the stochastic
search to move around the model space by providing more paths between subsets.
This is discussed further near the end of Section 3.3. Peixoto (1990) and Nelder
(1998) argued in favor of strong heredity, because the models identified under this
assumption are invariant to linear transformations of the factor levels. Chipman
et al. (1997) suggested that, in the exploratory stages of data analysis, it may
be desirable to relax the restrictions of strong heredity. They, instead, used the
weak-heredity prior distribution with π1 < π2 to indicate a preference for strong-
heredity models. A different choice of parameters in (9) was given by Box and
Meyer (1993), in which π0 = 0, π1 = 0, π2 = 1. An interaction would then be
active only if all of its main effect parents are active, in which case it is forced to
be active. This is referred to as an effect forcing prior distribution. Effect forcing
greatly reduces the number of models under consideration, because activity of
interactions is automatically determined by the activity of main effects.

Chipman (1996) and Chipman et al. (1997) adopted the convention that the
parents of a term are those terms of the next lowest order. Thus AL BQ has parents
AL BL and BQ . Figure 2 illustrates this relationship. Each term that is a func-
tion of two factors has two parents. Probabilities such as (9) can be specified for
higher-order terms. For those terms that involve only a single factor, one might
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Figure 2. Ordering and inheritance relations among polynomial interactions.

specify

P(δAQ = 1|δAL ) =
{

π3 if δAL = 0,

π4 if δAL = 1.
(10)

The hyperparameters π3, π4 would often be chosen as π3 = π0, π4 = π2.
If some factors are categorical with more than two levels, the corresponding ef-

fects are estimated via contrasts. If there are l + 1 levels, estimation of l contrasts
comparing each level with (say) level l + 1 are necessary. If F is the categori-
cal factor, and βF1, . . . , βFl are the corresponding effects, then τF1, . . . , τFl will
indicate activity of these effects. Chipman (1996) suggested a prior distribution in
which all of τF1, . . . , τFl are either 0 or 1. This effect grouping allows either all or
none of βF1, . . . , βFl to be active.

2.3 The Posterior Distribution on the Subset Indicator δ

The joint posterior distribution of β, σ, δ is proportional to the product of a like-
lihood from the linear model (1) and the prior distribution (2); that is,

p(β, σ, δ|Y) ∝ p(Y|β, σ, δ)p(β|σ, δ)p(σ )p(δ). (11)

Of primary interest in the subset selection problem is the marginal posterior dis-
tribution of the subset indicator δ:

p(δ|Y) ∝
∫ ∫

p(Y|β, σ, δ)p(β|σ, δ)dβdσ

= p(δ)
∫ ∫

p(Y|β, σ, δ)p(β|σ, δ)dβp(σ )dσ

= p(δ)p(Y|δ). (12)

The integral in (12) is evaluated either by MCMC methods (described in Sec-
tion 3.1) or analytically. The result of integration, p(Y|δ), is referred to as the
marginal likelihood of δ, because it is the likelihood of (β, σ, δ) integrated over
the prior distribution of (β, σ ). Conjugate prior distributions (4) or (6) allow ana-
lytic integration. The nonconjugate prior distribution (5) of George and McCulloch
(1993) requires MCMC integration.
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For prior distributions (3) and (4), the marginal likelihood of δ in (12) was given
by George and McCulloch (1997) as

p(Y|δ) ∝ |X̃ ′ X̃ |−1/2|Dδ|−1(λν + S2
δ)(n+ν)/2, (13)

where Dδ is a diagonal matrix with j th element equal to τ j (1 − δ j ) + c jτ jδ j , and
where

S2
δ = Ỹ

′
Ỹ − Ỹ

′
X̃(X̃′ X̃)−1 X̃′Ỹ,

Ỹ =
[

Y
0

]
and X̃ =

[
X

D−1
δ

]
.

The posterior density for the subset indicator δ is then given by

p(δ|Y) ∝ p(δ)p(Y|δ) ≡ g(δ). (14)

George and McCulloch (1997) also gave analytic results for a point mass mixture
prior distribution (6).

In the above, the uninformative prior distribution on intercept β0 is incorporated
into computations by analysis of a centered response Yi − Ȳ and centered predic-
tors. Thus, in computation, a model matrix X with no intercept column is actually
used.

Whether the marginal posterior density on the subset indicator vector is cal-
culated analytically (as in (13) and (14)) or via MCMC, there still remains the
challenge of identifying subsets of active effects (δ values) that have high posterior
probability. The form of (13) suggests a similarity with least squares regression:
the S2

δ term acts as a residual sum of squares for a model relating Ỹ to X̃. Thus,
in principle, efficient all-subsets search algorithms (Furnival and Wilson, 1974)
could be used to identify subsets with high marginal likelihood (13). The marginal
likelihoods would then be multiplied by the prior probability p(δ) to obtain the
posterior density (14). The limitations of this approach have already been illus-
trated in Section 1: slow computation in large problems, and the vast majority of
models with high R2 will not obey strong or weak heredity. For these reasons,
stochastic search methods based on MCMC techniques are a popular alternative.
These are discussed in the next section.

3 Efficient Stochastic Search for Active Subsets

The focus of this section is on MCMC methods for sampling from p(δ|Y), the
posterior distribution of δ. In some cases, for example, in conjunction with the non-
conjugate prior distribution (5), MCMC is also used to sample from p(β, σ, δ|Y).

It is impractical to evaluate the posterior probability (14) for all possible subsets
of active effects due to the large number of possible models. Instead MCMC
methods (either the Gibbs sampler or the Metropolis–Hastings algorithm) are used
to draw samples from the posterior distribution. George and McCulloch (1997)
discussed both the Metropolis–Hastings and Gibbs sampling algorithms for subset
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selection and, in this context, MCMC algorithms may be thought of as stochastic
search methods.

3.1 MCMC Sampling for the Subset Indicator Vector δ

The Gibbs sampler, used to sample from p(δ|Y), starts with initial values of all
parameters and then repeatedly draws values for each parameter conditional on all
the others and the data. The steps below generate K draws δ1, δ2, . . . , δK , that
converge to the posterior distribution of δ:

1. Choose an initial value, δ0 = (δ0
1, δ

0
2, . . . , δ

0
h),

2. For step i = 1, . . . , K , do the following:
� For j = 1, . . . , h in turn, draw a value δi

j from the distribution with density

p(δi
j |δi

1, . . . , δ
i
j , δ

i−1
j+1, . . . , δ

i−1
h , Y).

Each draw is from a Bernoulli distribution. In drawing δi
j , the j th component

of δi , we condition on the most recently drawn values of all other components
of δ. All values in the generated sequence δ1, . . . , δK are treated as draws from
the posterior distribution of δ.

For the nonconjugate prior distribution (5), George and McCulloch (1993) and
Chipman et al. (1997) used the Gibbs sampler to simulate the joint posterior
distribution of (β, σ, δ); that is, the above algorithm had, within step 2, an extra
substep to draw values of β1, . . . , βh from p(β|δ, σ, Y) and a substep to draw
values of σ from p(σ |β, Y).

3.2 Estimation of Posterior Probability on
δ Using MCMC Output

In both the conjugate and nonconjugate cases just described, the most natural
estimator of the posterior probability of a subset indicator vector δ′ is the observed
relative frequency of δ′ among the K sampled subsets S = {δ1, δ2, . . . , δK }; that
is,

p̂(δ′|Y) =
∑K

i=1 I (δi = δ′)
K

. (15)

Here, the indicator function I (.) is 1 whenever its argument is true, and zero
otherwise. A number of problems arise with the relative frequency estimate (15).
First, it is prone to variability in the MCMC sample. Second, any model that is not
in S has an estimated posterior probability of zero. Third, if the starting value δ0

has very low posterior probability, it may take the Markov chain a large number of
steps to move to δ values that have high posterior probability. These initial burn-in
values of δ would have larger estimates of the posterior probability (15) than their
actual posterior probability; that is, the estimate p̂(δ|Y) will be biased because
of the burn-in. For example, with the simulated data described in Section 4.2, the
first 100 draws of δ have almost zero posterior probability. In a run of K = 1000
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steps, the relative frequency estimate (15) of the posterior probability of these 100
draws would be 1/10, whereas the actual posterior probability is nearly zero.

In conjugate settings such as (4) or (6), a better estimate of the posterior prob-
ability p(δ|Y) is available. Instead of the relative frequency estimate (15), the
analytic expression for the posterior probability (14) is used; that is,

p(δ′|Y) = Cg(δ′), (16)

provided that the normalizing constant C can be estimated from the MCMC draws
S. Two methods for estimating C are discussed below. The analytic estimate
of posterior probability (16) is used throughout this chapter. Its use solves the
problems of sampling variation and bias in estimating posterior probability due to
burn-in described above.

The first approach to estimating the normalizing constant C is to renormalize
the probabilities for all unique subsets in the sampled set S so that they sum to 1.
That is, all nonsampled subsets are assigned posterior probability 0. Let U be the
set of unique δ values in S. The constant C is then estimated by

Ĉ = 1∑
i |δi ∈U g(δi )

. (17)

This estimate of C and the resultant approximation to posterior probability (16)
is commonly used when assigning posterior probability to models, and in sum-
marizing features of the posterior distribution on δ. For example, the marginal
probability of activity for a main effect A can be calculated as the expected value
of δA, where δA is the component of δ corresponding to main effect A. Based on
the unique draws U , the estimated posterior marginal probability would be

Pr(δA = 1|Y) ≈
∑
i∈U

δi
AĈg(δi ). (18)

The use of (17) in marginal posterior probability (18) corresponds to the posterior
probability that A is active, conditional on the models visited by the MCMC run.

In some situations, such as when estimates of the posterior probability of a
specific subsetδ or of groups of subsets are required, a second method of estimating
C can be used. Notice that the estimate Ĉ in (17) will be biased upwards, because
Ĉ = C in (17) only if U = D, the set of all possible values of δ. If U ⊂ D, then
Ĉ < C . A better estimate of C can be obtained by a capture–recapture approach,
as discussed by George and McCulloch (1997). Let the initial “capture set” A
be a collection of δ values identified before a run of the MCMC search; that is,
each element in the set A is a particular subset. The “recapture” estimate of the
probability of A is the relative frequency given by (15). The analytic expression
(16) for the posterior probability of A is also available, and contains the unknown
C . Let g(A) = ∑

δ∈A g(δ) so that p(A|Y) = Cg(A). Then, by equating the two
estimates, we have

Cg(A) =
K∑

i=1

I (δi ∈ A)/K
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and, on solving for C, a consistent estimator of C is obtained as

Ĉ = 1

g(A)K

K∑
k=1

IA(δk). (19)

This technique is illustrated in Section 5.1.
Having seen that the observed frequency distribution of the sampler is useful

in the estimation of the normalizing constant C, it is interesting to note that the
frequencies are otherwise unused. Analytic expressions for the posterior proba-
bility are superior because they eliminate MCMC variability inherent in relative
frequency estimates of posterior probabilities. In such a context, the main goal
of the sampler is to visit as many different high probability models as possible.
Visits to a model after the first add no value, because the model has already been
identified for analytic evaluation of p(δ|Y).

In later sections, (17) is used everywhere, except when estimating the posterior
probability of all models visited by the MCMC sampler. In this case, (19) is
used.

3.3 The Impact of Prior Distributions on Computation

The choice of prior distributions discussed in Section 2.2 has an impact on both
the ease of implementation of the MCMC algorithm, and its speed of execution.
Specific issues include the number of linear algebra operations and the rate at
which stochastic search methods can explore the space of all subsets.

The point mass prior on β in (6) reduces computation by dropping columns
from the X matrix; that is, δ j = 0 implies β j = 0, and the corresponding column
is dropped. When a mixture of two normal distributions (4) or (5) is used instead,
the X matrix is always of dimension h + 1.

Computations are also more efficient if the MCMC algorithm can sample directly
from the marginal posterior distribution p(δ|Y), rather than from the joint posterior
distribution p(δ,β, σ |Y). This efficiency occurs because fewer variables are being
sampled. As mentioned at the end of Section 3.1, the marginal posterior distribution
p(δ|Y) is available in closed form when conjugate prior distributions on β, as in
(4) or (6), are used.

The prior distribution chosen for δ affects the number of possible subsets of
active effects that are to be searched. Figure 3 shows the relationship between the
number of possible subsets and the number of factors when linear main effects
and linear × linear interactions are considered under four different priors. For f
factors, the number of effects under consideration is

h = f +
(

f

2

)
= (3 f + f 2)/2.

The number of possible subsets of active effects will be 2h if all possible subsets
of active effects are considered. Hence a log base 2 transformation is used on the
vertical axis of Figure 3. Strong and weak heredity reduce the number of subsets
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Figure 3. Relationship of the number of possible subsets of active effects (log2 scale) and
the number of factors for models with linear × linear interactions and linear main effects
only.

that can occur. The effect forcing of Box and Meyer (1993) yields far fewer subsets,
because activity of interactions is automatically determined by activity of main
effects. With effect forcing, the posterior probability can easily be calculated for
every possible subset, rather than via stochastic search methods.

Prior distributions on δ that enforce heredity can also affect the manner in which
stochastic search algorithms move around the subset space. The Gibbs sampling
algorithm described in Section 3.1 updates one element of δ at a time, conditional
on the values of all other elements; that is, the algorithm randomly adds or drops
a single effect from the subset at each step. This is a common approach used by
many stochastic search algorithms. Strong heredity restricts the number of paths
between subsets. For example, to move from the subset {A, B, C, AB, AC} to the
subset {A}, it would be necessary to drop AB before dropping B and to drop AC
before dropping C. Weak heredity, which allows subsets like {A, C, AB, AC},
provides more paths between subsets, enabling the stochastic search to move more
freely around the subset space.

Prior distributions that enforce effect grouping, such as those for indicator vari-
ables, also have an impact on computation. Unlike the Gibbs sampler, where
changing a single element δ j affects only one element β j of β, with grouped ef-
fects, a change in one element of δ implies a change to several elements of β.
Because updating formulae are used in calculating how changes to β affect the
posterior distribution of δ, a simultaneous change to several elements of β may
entail more complicated updates.
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4 Selection of Hyperparameters of the Prior Distribution

Choices of values for the hyperparameters, ν, λ, c j , τ j , of the prior distributions
(3) and (4) are now discussed, with an emphasis on automatic methods that use
simple summaries of the observed data. Many of these suggestions have been made
by Chipman et al. (1997) and Chipman (1998). Some suggestions relating to the
choice of c and τ are new.

4.1 Hyperparameters for the Prior Distribution on σ

I propose that the hyperparameters for the prior distribution (3) on σ 2 are chosen so
that the mean and 99th quantile of the distribution are consistent with the observed
values of the response. The prior expected value of σ 2 is

E(σ 2) = λν

ν − 2
, for ν > 2,

which suggests that λ should be chosen near the expected residual variance. In
the absence of expert knowledge, some fraction of the sample variance of the
response, s2 = ∑n

i−1(yi − ȳ)2/(n − 1) could be used to choose λ. Chipman et al.
(1997) proposed

λ = s2/25 =
[

n∑
i=1

(yi − ȳ)2/(n − 1)

]
/25.

This represents the prior belief that the residual standard deviation will be roughly
1/5 of the standard deviation of the response.

As was observed after (3) in Section 2.2, the hyperparameter ν can be thought
of as the amount of information about σ arising from a sample with ν observations
and sample variance λ. The parameter ν controls the length of the right tail of the
prior distribution (3) for σ . Larger values of ν imply a prior distribution that is more
tightly centered around λ. Various quantiles for an inverse gamma distribution with
λ = 1 are given in Table 5 and it can be seen that the distribution has quite a long
right tail for ν ≤ 5. A sufficiently diffuse prior distribution may be selected by
choosing ν so that the upper tail (say the 99th percentile) is not far below s2.
The choice of ν = 5 would place the 99th percentile of the prior distribution of
σ 2 at 9.02λ, for example. Combining this with the proposed λ = s2/25 gives the
99th prior quantile of the distribution of σ as 9.02s2/25 = 0.36s2. Smaller values
for ν are possible (for example, the value ν = 1.5 was used by Chipman et al.,
1997), although they can lead to unreasonably long tails, because the variance of
an Inverse Gamma distribution is not defined for ν ≤ 4. In general, one would
choose

ν = 5 or select from Table 5.

To sum up the section, the choices λ = s2/25 and ν = 5 are recommended.
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Table 5. The mean and various quantiles of Inverse Gamma
distributions with λ = 1 and ν = 1, . . . , 10. For other values of λ,
multiply the table entries by λ to obtain the appropriate quantile
ν Mean 0.01 0.1 0.5 0.9 0.99

1 — 0.15 0.37 2.2 63.33 6365
2 — 0.22 0.43 1.44 9.49 99.50
3 3 0.26 0.48 1.27 5.13 26.13
4 2 0.30 0.51 1.19 3.76 13.46
5 1.67 0.33 0.54 1.15 3.10 9.02
6 1.5 0.36 0.56 1.12 2.72 6.88
7 1.4 0.38 0.58 1.10 2.47 5.65
8 1.33 0.40 0.60 1.09 2.29 4.86
9 1.29 0.42 0.61 1.08 2.16 4.31

10 1.25 0.43 0.63 1.07 2.06 3.91

4.2 Hyperparameters for the Prior Distribution on β

Prior distribution (4) for β is defined by the hyperparameters c j and τ j ( j =
1, . . . , h). In choosing these hyperparameters, it is helpful to recall from (4) that
the coefficient β j associated with an inactive contrast has standard deviation στ j

and, if the contrast is instead active, then β j has a standard deviation that is c j

times larger. As mentioned earlier in Section 2.2, intercept β0 is always present in
the model, so taking c0 = 1, τ0 → ∞ gives a flat prior density for β0.

Box and Meyer (1986) suggested the choice c j = 10, for j = 1, . . . , h, thus
separating large and small coefficients by an order of magnitude. George and
McCulloch (1997) suggested the following technique for the choice of τ j . If the
jth contrast is inactive, even large changes in the contrast coefficients in the j th
column of X should produce only a small change in the mean response. Such a small
change in the mean response (say �Y ) could be considered to be similar in size
to the residual standard deviation σ . A small coefficient β j has standard deviation
στ j and its value will lie in the range 0 ± 3στ j with very high probability. Denote
by �X j the difference between the largest and smallest element in the j th column
of X. Then, when the contrast coefficient changes by �X j , the mean response
is unlikely to change by more than 3στ j�X j . On solving �Y ≈ σ = 3στ j�X j ,
we obtain τ j = 1/(3�X j ) = 1/3(max(X j ) − min(X j )). In two-level designs, in
which contrast coefficients are coded as +1 and −1, �X j = 2. In summary, the
default choice of the hyperparameter values is, for j = 1, . . . , h,

c j = c = 10, τ j = 1

3(max(X j ) − min(X j ))
. (20)

An alternative choice, labelled (21), is discussed later in this section.
The use of minimum and maximum coefficients of each contrast makes the

method invariant to rescalings of the contrasts. In the glucose example, contrasts
are coded with quite different ranges. This will not have an impact on the analysis
because the definition of large and small effects is adjusted accordingly.
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The subset selection procedure can be sensitive to the choice of τ j (see Chipman
et al., 1997 and George and McCulloch, 1993). Equation (20) captures the relative
magnitudes of the τ j for different variables, but the overall magnitude may need
tuning. Box and Meyer (1993) and Chipman et al. (1997) proposed methods for
tuning based on runs of the search algorithm. A faster alternative (Chipman, 1998)
based on predictive distributions is discussed here. For any given subset δ and
associated model, the posterior mean of Y for a given X may be calculated using
the posterior mean of β. The magnitude of τ j determines the degree of shrinkage
(toward zero) in the estimate of the coefficient β j in a manner similar to ridge
regression. A simple way to assess the impact of the τ j is to see how the predictions
(values of the posterior mean of Y) change for various multiples, r , of default
choices τ1, . . . , τh , where r ranges over the interval (1/10,10), for a single given
model. A good τ j value would be the smallest value that does not shrink the
posterior predictions too far from the least squares predictions.

The posterior mean for β conditional on a particular subset of active ef-
fects δ is obtained by integration of p(β, σ |Y, δ) with respect to σ to obtain
p(β|Y, δ), and by calculation of an expectation of β with respect to this distri-
bution. The resultant posterior mean is shown by George and McCulloch (1997)
to be

β̂δ = (X′ X + D−2
δ )−1 X′Y,

where Dδ is a diagonal matrix with elements τ j (1 − δ j ) + τ j c jδ j .
To illustrate the impact of the choice of the τ j , two examples are considered;

first, a simulated example and then the glucose data.
Hamada and Wu (1992) and Chipman et al. (1997) discussed a simulated screen-

ing experiment using the 12-run Plackett–Burman design shown in Table 6. The
11 factors are labeled A–K and each has two levels coded as +1 and −1. The
response was simulated from the true model

Y = A + 2AB + 2AC + ε, ε ∼ N (0, σ = 0.25).

In this model, factor A has an active main effect and there are active interactions
between A and B and between A and C , and the remaining factors D–K are
inactive.

Figure 4 shows the predictions (that is, the posterior mean of Y) in this sim-
ulated example. There are 12 design points (runs) and, for a model involving
two-factor interactions, there are h = 11 + 55 = 66 potentially active effects. The
default choices of τ j , j = 1, . . . , 66, given by (20), are all equal to τ = 1/6 and
are multiplied by values of r from (1/10, 10). Stepwise regression identified cor-
rectly the subset of active effects, A, AB, AC . Main effects for B and C were
subsequently included so that the subset (A, B, C, AB, AC) obeys strong hered-
ity. This set of effects was then used in the calculations of the posterior mean
(predicted response). The value 1.0 on the horizontal axis in Figure 4 denotes
the default choice for τ . Both the observed Yi values ( �) and predictions based
on the least squares estimate β̂ (◦) are shown on the right side of the plot. In
this example, the default choice for τ seems quite reasonable, as any smaller
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Table 6. Plackett–Burman 12-run design with simulated
response data

Factor

A B C D E F G H I J K Response

+ + − + + + − − − + − 1.058
+ − + + + − − − + − + 1.004
− + + + − − − + − + + −5.200
+ + + − − − + − + + − 5.320
+ + − − − + − + + − + 1.022
+ − − − + − + + − + + −2.471
− − − + − + + − + + + 2.809
− − + − + + − + + + − −1.272
− + − + + − + + + − − −0.955
+ − + + − + + + − − − 0.644
− + + − + + + − − − + −5.025
− − − − − − − − − − − 3.060

multiples would shrink the posterior mean away from the data ( �) and the least
squares estimates (◦).

In Figure 5(a), a similar plot is given for the glucose data, where the model con-
tains the subset of active effects BL , HL , BQ, HQ, BL HL , BL HQ, BQ HL , BQ HQ .
Close inspection of this plot reveals a problem: the posterior mean of Yi converges
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Figure 4. Predicted response at each of the 12 design points (two coinciding) in Table 6
for c = 10 and various multiples of the default value for τ = 1/6.



256 Hugh Chipman

0.1 0.2 0.5 1.0 2.0

−10

0

10

20

Multiple of τj

0

10

20

Y

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

response
least sq. fit

(a)

0.1 0.5 2.0 5.0
Multiple of τj

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

response
least sq. fit

(b)

Y

−10

Figure 5. Glucose data: Predicted response at each of the 18 design points of Table 2
for various multiples of the default τ j ; default values of c j and τ j are calculated (a) from
equations (20) and (b) from equations (21). The model used has active effects BL , HL , BQ ,
HQ , BL HL , BL HQ , BQ HL , BQ HQ .

to the corresponding data value ( �) rather than to the least squares estimate (◦).
This is somewhat unexpected: one might suppose that as τ j is increased, so that less
prior information is used, the posterior means would approach the least squares
estimates. The posterior means converge instead to the data because, in addition
to the intercept and eight active effects (BL , . . . , BQ HQ), there are 113 − 8 = 105
other “inactive” effects included in the model. The estimates of these are heavily
shrunk toward zero, but not set exactly to 0, because the prior distribution (4) spec-
ifies that inactive effect β j has prior standard deviation τ jσ . Some of the residual
variation not captured by the eight active effects is absorbed by the 105 inactive
effects rather than being captured in the error term ε.

The tendency of inactive effect estimates to capture residual variation suggests
an alternative strategy for choosing values for c j and τ j in experiments with very
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large numbers of candidate effects, namely, to reduce the prior magnitude of an
inactive effect. This can be accomplished by multiplying c j in (20) by, say 10,
and by dividing τ j in (20) by 10, giving alternative default choices of c j and
τ j of

c j = 100, τ j = 1

30 × range(X j )
. (21)

Because an active effect has prior standard deviation σc jτ j , this modification has
no effect on the distribution of the active effects. The prior standard deviation στ j

of a small effect has been shrunk by a factor of 10, approaching the point mass
prior distribution of Raftery et al. (1997) and Box and Meyer (1993).

The use of multiples of the default τ j in (21) for the glucose example produces
Figure 5(b). With a multiplier of 1–2, the posterior means first approach the least
squares estimates. For multiples in this range, the inactive effects are still shrunk
quite close to zero and unable to absorb residual errors. Only when the multiplier
of τ is quite large (such as a factor of 10 times the default) do the fitted values
converge to the data points.

To summarize, I recommend that (20) be used to choose c j , τ j , unless a very
large number of inactive effects are anticipated. In that case, (21) should be used.
In either case, a check of the effect of scaling the τ j values via a plot such as
Figure 4 is helpful.

4.3 Hyperparameters for the Prior Distribution
on Subset Indicator δ

Box and Meyer (1986) examined several published analyses of experiments and
concluded that, in these, between 10% and 30% of main effects were identified
as active, with an average of 20% active effects. Similar arguments may be made
for screening experiments, with some modification for interactions and higher-
order effects. The suggestions made here utilize calculations for the expected
number of active effects. Such expectations should be easier to specify than prior
probabilities.

First, a simplified method of choosing the hyperparameters is described fol-
lowing Bingham and Chipman (2002). The probability of an active interaction is
assumed to be proportional to π , the probability of an active linear main effect,
with the size of the proportionality constant dependent on which parents are active.
Thus (9) becomes

P(δAB = 1|δA, δB) =
⎧⎨⎩

πa0 if (δA, δB) = (0, 0),
πa1 if one of δA, δB = 1,

πa2 if (δA, δB) = (1, 1),
(22)

with proportionality constants a0, a1, a2 and (10) becomes

P(δAQ = 1|δAL ) =
{

πa3 if δAL = 0,

πa4 if δAL = 1,
(23)



258 Hugh Chipman

with proportionality constants a3 and a4. Bingham and Chipman (2002) chose
(a0, a1, a2) = (0.01, 0.5, 1.0). For quadratic effects one might choose (a3, a4) =
(0.01, 1.0). Such choices reduce the selection of a prior distribution on δ to the
specification of the value of a single hyperparameter π . The rationale for these
choices is as follows: a2 = a4 = 1.0 corresponds to the belief that, if all parents of
an effect are active, then that effect has the same probability of activity as each of
its parents. At the other extreme, with a0 = a3 = 0.01, when none of the parents
of an effect are active, then it is highly unlikely that the effect will be active. The
remaining choice, a1 = 0.5, corresponds to weak heredity in that an effect with
one out of two active parents has some chance of activity, but it should be smaller
than if both parents were active.

The value of the hyperparameter π may be chosen by considering the prior
expected number of active effects. Illustrative calculations are now given for a full
second-order model with f factors, and for subsets of active effects that include
linear and quadratic main effects and linear × linear interactions. Thus, the full
model contains f linear effects, f quadratic effects, and ( f

2 ) linear × linear inter-
action effects. Prior probabilities on the subsets being active have the form of (22)
and (23) above. A straightforward extension of the calculations of Bingham and
Chipman (2002) yields an expected number of active effects as

E(# active effects) = f π + f π{(1 − π )a3 + πa4}
+ π

(
f

2

)
{a0 + 2π (a1 − a0) + π2(a0 − 2a1 + a2)}. (24)

The two terms on the first line of (24) represent the expected number of active
linear and quadratic main effects; the second line gives the expected number of
active linear × linear interaction effects.

This simple expression is invaluable for elicitation of a prior distribution: instead
of specifying the probability of activity for a variety of different effects, an expected
number of effects can be specified, along with values of a0, . . . , a4 (for example,
the defaults suggested below (23)). The expression for the expected number of
active effects (24) is then solved for π . A data analyst could also experiment with
alternative values of a0, . . . , a4 and see the impact of these choices in terms of the
expected number of linear effects and interactions.

Choices of π yielding 2, 4, and 6 expected active effects for the simulated
example of Section 4.2 are shown in Table 7. In this example, there were 11 linear
effects and 55 linear × linear interaction effects. The columns of the table show

Table 7. Expected numbers of active effects, corresponding
hyperparameter π , and breakdown by linear main effects and linear ×
linear interaction effects, for the simulated experiment with 11 factors
E(# active effects) π E(# linear effects) E(# linear × linear int.)

2 0.113 1.245 0.754
4 0.185 2.040 1.960
6 0.243 2.674 3.326



11. Prior Distributions for Bayesian Analysis of Screening Experiments 259

the different number of effects expected to be active for different values of π and
the default values for a0, . . . , a4 given below (23).

5 Examples

Stochastic simulation methods for fitting Bayesian models are now discussed and
illustrated using the two examples that were described earlier in the chapter.

5.1 A Simulated Experiment

The simulated screening experiment was introduced in Section 4.2 and the data are
shown in Table 6. All 11 factors (A–K) are set at two levels, and so only linear main
effects and linear × linear interaction effects are considered. All corresponding
contrast coefficients are +1 or −1. The weak heredity prior distribution on δ,
(22), is calibrated with π = 0.185 so that there are four expected active effects.
The default choice (20) of τ j and c j yields τ j = τ = 1/3(1 − (−1)) = 1/6 and
c j = c = 10, for all j . For the prior distribution on σ , default choices are λ =
s2/25 = 10.01/25 = 0.40 and ν = 5.

One thousand draws from the posterior distribution (14) were collected via the
Gibbs sampler. The probability that each effect is active is plotted in Figure 6(a), as
a vertical line. This plot is quite similar to that of Figure 1 in Section 1.1: details are
given below. It is quite clear that the active effects (A, AB, AC) are well identified
by the algorithm and that all other effects are correctly identified as inactive. The
marginal posterior probabilities plotted in Figure 6 have been calculated analyti-
cally using (17) and (18) rather than the relative frequency estimates based on (15).

The joint posterior probability distribution on δ is also informative. The true
model (A, AB, AC) dominates, with 50.1% of posterior probability. The two next
most probable models each have posterior probability of about 3%. Each involves
the addition of either the B or C linear effects to the most probable model. Posterior
probabilities reported here are normalized (using (17)) to sum to 1 over all distinct
models visited by the 1000 Gibbs sampler draws.

An important feature of any subset selection procedure is that it should be able
to identify the situation where no effects are active. In order to explore this, the
12 values in the response vector Y were randomly shuffled in the order 6, 2, 7, 8,
9, 1, 4, 12, 5, 3, 11, 10, and rows of X were not changed. The analysis was re-run
and the marginal probabilities plotted in Figure 6(b). Although a few factors have
some probability of activity, there is nothing quite as convincing as in the original
analysis, see below.

To explore the sensitivity of the algorithm to a variety of hyperparameter choices,
various combinations of π, τ , and c were considered. The three values of π given
in Table 7 were used, giving 2, 4, and 6 expected active effects. Six combinations of
τ and c were explored. The first three choices were c = 10 and τ = (0.5, 1, 1.5)/6.
These are close to the default hyperparameter choice (20) of c = 10, τ = 1/6. The
second three choices were c = 100 and τ = (0.05, 0.1, 0.15)/6. These are close
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Figure 6. (a) Marginal probability of activity for each effect for the simulated screening
experiment. The lines correspond to hyperparameter settings that give four expected active
effects (π = 0.185, a0 = 0.01, a1 = 0.5, a2 = 1.0), default choice of τ and c = 10. Rect-
angles represent extremes over 2, 4, 6 prior expected effects and six (c, τ ) multipliers of
(1, .5), (1, 1), (1, 1.5), (10, .05), (10, .1), (10, .15). (b) Same plot, except that the values in
the response vector have been permuted.

to the default hyperparameter choice (21) of c = 100, τ = 0.1/6. The rectangles
in Figure 6 represent the range of posterior probabilities over the 18 combinations
of hyperparameters. Figure 6(a) shows that there is minimal sensitivity to the
hyperparameters, as the boxes are narrow and most probabilities are near 0 or
1. In Figure 6(b), with no signal, there is considerably more uncertainty and no
effects are identified “active” as clearly as in panel (a). Three effects have posterior
probabilities of activity of over 50% (C, CG, DK) under at least one of the 18
prior settings. The CG effect in particular appears quite active, with a posterior
probability nearly as high as that of B2 H 2 in Figure 1 for the glucose experiment.
Unlike the glucose experiment, there is no consistent set of variables appearing in
many active effects.
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Figure 7. Estimated cumulative posterior probability of the distinct models visited, up to
each iteration, for the simulated screening experiment.

One issue with stochastic simulation methods is for how long a simulation should
be run. This can be addressed, in part, by estimating the posterior probability
of all models (subsets) visited so far. To estimate this probability in the above
example, the normalizing constant C was estimated via the capture–recapture
method (19) discussed in Section 3.2. The “capture set” A was chosen as the
first 1000 draws from a run of 10,000 iterations. The capture set A contained 364
different values of δ (that is, 364 distinct subsets of active effects). The other 636
δ values visited in the first 1000 iterations were duplicates of these 364 and were
not included in A. In the remaining 9000 iterations, 73% of the δ values visited
were contained in A. Thus in (19),

∑K
i=1 IA(δk)/K = 0.73. After calculation of

the estimated normalizing constant via (19), it is estimated that, by the end of
10,000 iterations, the models visited account for 82% of the posterior probability.
The estimated cumulative posterior probability of models visited is graphed in
Figure 7. The algorithm takes approximately 100 iterations to identify a high-
probability indicator vector δ. By 1000 iterations there appear to be very few high
probability models that have not been visited, because the slope of the curve has
decreased (and continues to decrease, because the horizontal axis is on a log10
scale). There is little advantage in running many more than 1000 iterations for this
problem.

Figure 7 also illustrates the “burn-in” problem with relative frequency estimates
of posterior probability which was discussed in Section 3.2. The first 100 itera-
tions of the algorithm visit improbable subsets, so a relative frequency estimate of
posterior probability (15) will place too much probability on these 100 subsets.
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5.2 Glucose Experiment

The main results of the analysis of the glucose data have already been presented
in Section 1.1. Details of the hyperparameter choices, robustness calculations, and
estimation of the total probability visited by the MCMC sampler are given here.

The hyperparameters in the prior distributions of σ 2 and β are set as follows
for this example, unless otherwise indicated, ν = 5, λ = s2/25 = 101.2282/25 =
4.049; c j = c = 100 and τ j are specified according to (21). The exact values of
τ j vary with effect index j , because the factor levels have different ranges. As
discussed in Section 4.2, c = 10 seems to allow too much flexibility for the inactive
effects to capture residual error. Calibration of π via an expected number of effects
is difficult, because effects of so many types (linear, quadratic, linear × linear,
linear × quadratic, quadratic × quadratic) are present but calibration can be carried
out using only the expected number of linear and quadratic main effects and
linear × linear interaction effects. There are 8 possible linear, 7 quadratic, and
28 linear × linear interaction effects, for a total of 43 possible effects. The choice
of π = 0.2786 gives 5 effects expected to be active out of the 43. The inclusion of
higher-order interactions will raise this expectation, but not by much, because all
their parents are of at least second order and are unlikely to be active.

A single run of the MCMC sampler was used, with 2500 iterations. The posterior
probabilities of the models listed in Table 4 are normalized so that all subsets visited
have total probability 1.0 of being active; that is, estimate Ĉ from (17) is used in
conjunction with analytic expression (16) for the posterior probability on δ.

In a study of robustness, choices of π = 0.1486, 0.2786, and 0.3756 were con-
sidered, giving 2, 5, and 8 expected effects (considering up to linear × linear
effects only, as above). Six combinations of c and τ j settings were used, as in the
last example, with three τ j values set at 0.5, 1.0, and 1.5 times the defaults in (20)
with c = 10 and (21) with c = 100. The vertical lines in Figure 1 correspond to
the default choices given at the start of this section, and the rectangles correspond
to ranges over the 18 different hyperparameter settings.

The overwhelming conclusion from both Figure 1 and Table 4 is that high-order
interactions between B and H are present. As Chipman et al. (1997) mentioned,
this could well be due to the choice of the original factors: products of volume
(B) and dilution (H ) might give some absolute amount of blood in the sample. A
transformation might eliminate the need for higher-order effects.

A long run of 50,000 iterations was carried out to estimate the posterior prob-
ability that subsets visited by the MCMC algorithm are active, via the capture–
recapture method (19). The first 500 iterations determined a capture set A, and the
remaining 49,500 iterations were used to estimate the total posterior probability
of subsets visited. Figure 8 shows that just slightly over 40% of the probability is
visited by 50,000 iterations. The steadily increasing total probability in Figure 8
indicates that posterior probability is spread over a very large number of models.
Such a diffuse posterior distribution requires many iterations of the Gibbs sam-
pler to capture a significant fraction of the total probability. The small portion of
posterior probability visited by the search during the first 2500 iterations (roughly
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Figure 8. Estimated cumulative probability of the distinct models visited for the glucose
experiment, for up to 50,000 iterations.

25%) implies that true subset probabilities are likely to be 1/4 the values given
in Table 4 (posterior probabilities in the table are normalized to sum to 1). What
is perhaps more important is the relative size of the probabilities, given that the
posterior distribution is quite diffuse. In this problem, more information may be
obtained from marginal posterior distributions on individual δ j than from the joint
posterior distribution on δ.

6 Prior Distributions for Design

Bayesian methods have often proved useful for design of experiments, especially
in situations in which the optimal design depends on unknown quantities. Cer-
tainly, to identify a design for optimal estimation of β, the correct subset of active
effects must be identified. Bayesian approaches that express uncertainty about the
correct subset enable construction of optimality criteria that account for this uncer-
tainty. Such approaches typically find a design that optimizes a criterion which is
averaged over many possible subsets. DuMouchel and Jones (1994) exploited this
idea with a formulation in which some effects have uncertainty associated with
whether they are active. Meyer et al. (1996) extended the prior distributions of
Box and Meyer (1993) and constructed a “model discrimination” design criterion.
The criterion is based on a Kullback–Leibler measure of dissimilarity between
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predictions from two competing models and it averages this dissimilarity over all
possible pairs of models. Averaging is weighted according to the prior probabil-
ity of the models, thus incorporating prior information into the design criterion.
Bingham and Chipman (2002) used weak heredity, as defined in (22), in a similar
criterion based on the Hellinger distance.

Even in seemingly straightforward cases, such as a 16-run design, use of prior
information can lead to the selection of nonregular designs. For example, Bingham
and Chipman (2002) found that, if sufficiently small values of π were used when
looking for a six-factor, two-level design in 16 runs, a nonregular fractional fac-
torial design was optimal. Under their criterion, nonregular designs were chosen
over regular fractional factorial designs because they are better at estimating mod-
els containing interactions as well as main effects. Regular fractional factorial
designs enable estimation of many linear main effects, at the cost of estimability
of interactions. Some large models containing only linear main effects may ac-
tually seem implausible. For example, prior distribution (22) with π = 0.41 puts
over 600 times more prior probability on a model with effects A, B, AC than a
model with linear effects A, B, C, D, E, F. This leads the design criterion to select
designs that sacrifice simultaneous estimability of all linear effects for the ability
to estimate more interactions.

7 Discussion

Although the presentation here has focused on linear models with Gaussian errors,
similar ideas may be applied to subset selection in other models. For example,
George et al. (1995) extended the nonconjugate β prior distribution (5) to a probit
regression model for a binary response. They exploited a relationship between
a probit regression and a linear regression with normal errors. Let Yi = x′

iβ + ε,
with ε ∼ N (0, 1). Instead of observing Yi we observe a binary response Zi that is a
thresholding of Yi . Thus, we observe Zi = 1 if Yi > 0 and Zi = 0 otherwise. Then
Pr(Zi = 1) = Pr(Yi > 0) = �(x′

iβ) with � being the standard normal cumulative
probability function. This is the probit model for a binary response. George et al.
(1995) treated Y as missing data and use the data augmentation approach of Tanner
and Wong (1987) to simulate the unobserved Y. The Gibbs sampler for (5) can
be applied to Y , so the extended algorithm alternates between draws of β and the
unobserved latent variable Z .

Other more general modifications and extensions are possible. If an MCMC
sampler for a model exists, then an additional step incorporating a draw of the
subset indicator δ should be possible. For example, in a generalized linear model
with regression coefficient vector β, dispersion parameter φ, and a fixed sub-
set of active effects, an MCMC sampler might be available for the full joint
posterior distribution p(β, φ|Y). To generalize to subset selection, it is neces-
sary to draw from p(β, φ, δ|Y). The draws for φ are unchanged. The draws for
β are the same, except that the prior variances will be determined by δ. The
draw for δ is carried out one element at a time using the conditional distribution
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p(δ j |δ1 . . . , δ j−1, δ j+1, . . . , δh,β, φ, Y). This conditional probability distribution
will be a Bernoulli draw, with the probability of δ j = 1 depending on the ratio
of two densities of β j (one with δ j = 0, the other with δ j = 1). One paper that
developed such a sampler (without subset selection) is that of Dellaportas and
Smith (1993), in which a Gibbs sampling scheme was used for generalized linear
models and proportional hazards models.

Analytic approaches in which the marginal posterior distribution of δ is obtained
by integrating the posterior distribution with respect to β and φ, are also possible.
Analytic approximations such as the Laplace approximation (Tierney and Kadane,
1986) are necessary to obtain a closed-form expression for the marginal posterior
distribution p(δ|Y).

Another interesting problem in which prior distributions in Bayesian subset
selection might be used is in situations in which there is complete aliasing between
effects. By adding information about relationships between effects in the form of
heredity prior distributions, the posterior distribution can be used to disentangle
the most likely effects. Chipman and Hamada (1996) discovered such a pattern, in
which there is support for the model A, C, E, H, AE = C H = B F = DG. The
last four effects are aliased. Two of these (BF, DG) are discarded automatically
because they do not obey heredity. Two submodels involving the other two are
identified: C, E, H, CH and A, C, E, AE, with the former providing better fit and
consequently receiving higher posterior probability.

The emphasis of this chapter is very much on subset selection, because the
goal of screening experiments is to identify factors that influence the response.
An alternative technique is Bayesian model averaging in which predictions are
averaged across all possible subsets (or a representative sample), using posterior
probability as weights. A review of Bayesian model averaging is given in Hoeting
et al. (1999). The consensus among researchers in the field seems to be that model
averaging produces better prediction accuracy than selection of a single subset.
However, in screening experiments, selection remains paramount.

Software implementing the methods described in this chapter are available at
the author’s website, http://ace.acadiau.ca/math/chipmanh.
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12
Analysis of Orthogonal
Saturated Designs

Daniel T. Voss and Weizhen Wang

This chapter provides a review of special methods for analyzing data from screening
experiments conducted using regular fractional factorial designs. The methods considered
are robust to the presence of multiple nonzero effects. Of special interest are methods
that try to adapt effectively to the unknown number of nonzero effects. Emphasis is on
the development of adaptive methods of analysis of orthogonal saturated designs that
rigorously control Type I error rates of tests or confidence levels of confidence intervals
under standard linear model assumptions. The robust, adaptive method of Lenth (1989)
is used to illustrate the basic problem. Then nonadaptive and adaptive robust methods of
testing and confidence interval estimation known to control error rates are introduced and
illustrated. Although the focus is on Type I error rates and orthogonal saturated designs,
Type II error rates, nonorthogonal designs, and supersaturated designs are also discussed
briefly.

1 Introduction

In the design and analysis of experiments in industry, screening, plays an important
role in the early phases of experimentation. In Chapter 1, Montgomery and Jennings
provide an overview of screening experiments and also give an introduction to
regular fractional factorial designs which are often used in this context. Building
upon this foundation, we give further consideration to the analysis of data collected
using such designs. In particular, we describe methods that are appropriate when
the design of the experiment produces just enough observations to allow estimation
of the main effects and interactions of interest; that is, the design is saturated. We
concentrate on methods of analysis that are adaptive in the sense that the estimator
of the error variance is altered depending on the values of the estimated main
effects and interactions from the experiment.

For motivation and illustration, we consider the plasma etching experiment
discussed by Montgomery and Jennings in Chapter 1. The experimental design
was a 26−2

IV regular fractional factorial design with 16 observations that allows
the estimation of 15 factorial effects. The data and aliasing scheme are given in
Tables 3 and 4 of Chapter 1.

268
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The linear model, in matrix form, that we use for data analysis is

Y = Xβ + ε, (1)

where the vector Y holds the response variables Y1, . . . , Yn; the vector ε holds the
error variables ε1, . . . , εn and these are independent and normally distributed with
constant variance σ 2; the vector β holds the unknown parameters β0, β1, . . . , βh ;
and X is the model matrix which is formulated as described below.

The least squares estimate of each main effect is the average of the eight obser-
vations at the high level of the factor minus the average of the eight observations
at the low level and, likewise, the least squares estimate of each interaction effect
is the average of an appropriate set of eight observations minus the average of the
other eight observations, as described in Chapter 1, Section 2. In order for
the parameters in our model to measure the main effects and interactions directly,
the columns of the model matrix X are formed as follows. The first column con-
sists of a column of ones corresponding to the intercept parameter β0. For each
main effect parameter, the elements of the corresponding column of X consist of
+0.5 for the high level of the factor and −0.5 for the low level. For the parameter
measuring the interaction between factors i and j, the entries in the correspond-
ing column of X are obtained by multiplying the elements of the i and j main
effects columns, and then multiplying by 2 so that all elements are again +0.5
or −0.5.

When an experiment is carefully conducted and the correct model is used,
then independence of the response variables is often a reasonable assumption.
The experimenters of the plasma etching investigation were reportedly com-
fortable with the assumptions of normality and constant variance, based on
their prior experience with similar experiments. From the 16 observations col-
lected using this design, under the above model assumptions, there are 15 in-
dependent factorial effect estimators that can be used for the analysis. We
denote these estimators by β̂i , i = 1, 2, . . . , 15, corresponding to the effects
A, B, C, D, E, F, AB, AD, AE, AF, B D, B E, B F, AB D, AB F . These values
of i include a representative effect from each set of aliases for this design; see
Chapter 1 for a discussion of aliases and see Table 4 of that chapter for the defin-
ing relation and aliases for the plasma etching experiment under consideration
here.

Under the assumptions of model (1), the least squares estimators of the 15
main effects and interactions are independently normally distributed with equal
variances, and each estimator provides an unbiased estimate of the correspond-
ing effect. This effect is a factorial treatment contrast together with its aliases
(as explained in Chapter 1). Independence of the estimators of these effects is
a consequence of using an orthogonal design, because an orthogonal design is
one that yields uncorrelated estimators under the assumptions of model (1) and
uncorrelated estimators are independent under normality. For the plasma etching
experiment, the least squares estimates are given in Table 1 of this chapter and are
used to illustrate various methods of analysis.
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Table 1. Factorial effect least squares
estimates and squared estimates for the
plasma etching experiment of Chapter 1
Effect β̂i β̂2

i

A −175.50 30800.25
AB 106.75 11395.56
E 103.50 10712.25
B 58.00 3364.00
BE −53.75 2889.06
ABF −29.75 885.06
AE 27.25 742.56
D 18.75 351.56
F −18.75 351.56
C −18.50 342.25
BF −16.00 256.00
AF −13.00 169.00
ABD −5.75 33.06
AD 4.50 20.25
BD 3.00 9.00

Given a regular fraction of a 2 f experiment and independent response vari-
ables, the estimators described above have constant variance even if the individual
response variables do not. Also, the estimators are approximately normally
distributed by the Central Limit Theorem. However, if the response variables have
unequal variances, this unfortunately causes the estimators to be correlated and,
therefore, dependent. The use of the data analysis to assess whether the levels of
some factors affect the response variability is, itself, a problem of great interest
due to its role in robust product design; see Chapter 2 for a discussion of available
methods and analysis. In the present chapter, we consider situations in which the
estimators are independent.

One additional premise, fundamental to the analysis of data from screening
experiments, is the assumption of effect sparsity, namely, that very few of the
effects under study are sizable. In a screening experiment, it is common for an
investigator to study as many factors as possible in the experiment, but there is
usually a restriction on the number of observations that can be run. As a result,
screening experiments often include no replication and so provide no pure estimate
of error variance. Furthermore, such experiments are often designed to be saturated
(having just enough observations to estimate all of the effects, but leaving no
degrees of freedom for error). Thus, there is no mean squared error with which
to estimate the error variance independently of effect estimates. The lack of an
independent estimator of variance means that standard methods of analysis, such
as the analysis of variance and confidence intervals and tests based on the t-
distribution, do not apply. Nonetheless, provided that effect sparsity holds, the use
of a saturated design often leads to the estimates of the large effects standing out
relative to the others; this is fundamental to the effective analysis of data from a
saturated design.



12. Analysis of Orthogonal Saturated Designs 271

A traditional approach to the analysis of data from an orthogonal saturated
design utilizes half-normal plots of the effect estimates. This approach was intro-
duced by Daniel (1959) and is illustrated in Figure 3 of Chapter 1 for the plasma
etching data. In a half-normal plot, the ordered absolute values of the estimates are
plotted against their expected values, or half-normal scores, under the assumption
that the estimators all have mean zero in addition to being normally distributed
with equal variances. If only a few estimates are relatively large in absolute value,
then the corresponding points tend to stand out in the plot away from a line through
the points corresponding to the absolute values of the smaller estimates. Daniel
advocated using this approach iteratively: if the largest estimate is determined,
often subjectively, to correspond to a nonzero effect, then that estimate is removed
before the next step of the analysis; at the next step, the half-normal plot is regener-
ated using the remaining effects; the largest remaining estimate is then evaluated.
This process is iterated until the largest remaining estimate does not stand out. In
practice, such iteration is seldom done. Without iteration, a reasonable interpre-
tation of the half normal plot in Figure 3 of Chapter 1 is that five effects stand
out, these being the effects A, AB, E, B, and B E , or their aliases (for example,
B E = AC).

From an historical perspective, the analysis of orthogonal saturated designs was
considered initially by Birnbaum (1959) and Daniel (1959). In addition to half-
normal plots for the subjective analysis of orthogonal saturated designs, Daniel
(1959) also considered more formal, objective methods of analysis of such designs,
as did Birnbaum (1959) in a companion paper. Each considered testing for a
nonzero effect amongst h effects, assuming that at most one effect is nonzero.
Birnbaum provided a most powerful test of this simple hypothesis (see Section 2
for the definition of a most powerful test). His test is based on the proportion of the
total variation that is explained by the largest estimated effect. Such a test could
be iterated to test for more than one nonzero effect, but then true error rates and
the choice of a best test become unclear. Birnbaum also sought optimal rules for
deciding which, and how many, effects are nonzero when at most two effects are
truely nonzero and noted that the problem was then already quite complex.

Subsequently, Zahn (1969, 1975ab) considered some variations on the iterative
methods of Daniel (1959) and Birnbaum (1959), but his results were primarily
empirical. The subjective use of half-normal plots remains a standard methodology
for the analysis of orthogonal saturated designs, but the development of objective
methods is progressing rapidly.

Box and Meyer (1986, 1993) provided Bayesian methods for obtaining pos-
terior probabilities that effects are active; see Chapter 11, Section 2, for more
details. There followed a flurry of papers proposing new frequentist methods, giv-
ing refinements of the methods, and making empirical comparisons of the many
variations. Hamada and Balakrishnan (1998) provided an extensive review of these
methods, including a Monte Carlo-based comparison of the “operating character-
istics” of the methods; that is, a comparison of the power of the methods for a
variety of combinations of effect values (parameter configurations). They found
that comparison of methods is difficult for various reasons. For example, some
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are intended for individual inferences and others for simultaneous inference. Each
method is designed to be “robust”, as discussed in Section 3, but each method has
its own inherent “breakdown point” with respect to the number of nonnegligible
effects that can be identified. Still, there are commonalities of the better methods.
The preferred methods typically use the smaller ordered absolute values of the
estimated effects or the corresponding sums of squares to obtain a robust estimate
of variability. We refer the reader to Hamada and Balakrishnan (1998) for further
details on the many proposed methods.

The most influential of these methods is a “quick and easy” method introduced
by Lenth (1989). Lenth’s method was ground breaking because, in addition to
being simple, it is robust to the presence of more than one large effect and it is
adaptive to the number of large effects. Furthermore, empirical studies suggest
that it maintains good power over a variety of parameter configurations. We use
Lenth’s method to illustrate the concepts of “robust” and “adaptive” in Section 3
and apply it to the plasma etching study of Chapter 1. In Section 4, we introduce
robust methods of confidence interval estimation, some adaptive and some not,
but all known to provide at least the specified confidence level under all parameter
configurations. Section 5 contains some analogous results for hypothesis testing.
These confidence interval and testing methods are again illustrated using the data
from the plasma etching study. The chapter concludes with a broader discussion
of the issues for the analysis of unreplicated factorial designs. First though, in
Section 2, we give our formulation of the factor screening problem.

2 Formulation of the Factor Screening Problem

For a given experiment with f factors conducted using a 2 f −q fractional fac-
torial design, there are h = 2 f −q − 1 independent factorial effect estimators
β̂i , i = 1, . . . , h, where β̂i ∼ N (βi , σ

2
β ). Suppose that effect sparsity holds so that

most of the effects βi are zero (or negligible), with only a few of the effects being
large in magnitude.

The basic factor screening problem is to determine which effects are large
and which are small. Any factor found to have only negligible main effects and
interactions requires no further investigation and so need not be considered in
subsequent experimentation. The primary objective of a screening experiment is,
therefore, to screen out unimportant factors so that subsequent experiments can
focus on studying the important factors without being unduly large. Also, any
factors found to have large effects deserve further study, so their identification is
obviously of value.

In the language of hypothesis testing, it is generally agreed that Type I and
Type II errors are both of importance in screening experiments. If a Type I error is
made, the consequence is that an unimportant factor remains under investigation for
one or more subsequent rounds of experimentation, using additional resources and
perhaps slowing progress. On the other hand, if a Type II error is made, an important
factor may be excluded from future experiments and this could undermine the
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success of the entire study. In view of this, one could argue that confidence intervals
are more useful than hypothesis testing, provided that the confidence intervals
are tight enough to pin down adequately the magnitude of each effect. Perhaps
rejecting, or failing to reject, the null hypothesis that an effect is zero in the
absence of power calculations may be of little value. Or, one might argue that
a completely different formulation of the problem is needed, perhaps along the
lines of bioequivalence testing (see Brown et al., 1997), where the goal is to
demonstrate similarity of effects rather than differences. For example, one could
try to demonstrate that certain effects are close to zero so that the corresponding
factors merit no further consideration.

The above discussion suggests possible difficulties in formulating the problem
of data analysis for screening experiments. However, it is perhaps more accurate
to say that, even if Type II errors are as, or more, important than Type I errors in the
analysis of screening experiments, it is more difficult to deal with Type II errors.
(This is because the probability of making Type II errors depends on the parameter
configuration under composite alternative hypotheses.) We can obviously avoid
making Type II errors by always asserting that all effects are nonzero, so never
screening out any factors, but then the primary goal of a screening experiment
cannot be achieved. So, in searching for the methods that are best at detecting
large effects in the analysis of screening experiments, one must strike a balance
between Type I and Type II errors.

To be able to compare methods even-handedly, we have chosen to rely on a
fundamental approach in statistical hypothesis testing; namely, we seek the most
powerful level-α test. A test is of level-α if the supremum of the probability of
making a Type I error over the null hypothesis space is at most α. If this supremum
is equal to α, the test is said to be of size α. Amongst level-α tests, one is a most
powerful test if, loosely speaking, it is the most likely to detect nonzero effects,
large or small. In the analysis of saturated designs, establishing that a test is level-α
is complicated by the fact that all of the parameters are of interest yet, in testing
any single effect, the other effects are nuisance parameters. For the methods of
analysis proposed in the literature, critical values are invariably determined under
the assumption that all of the effects βi are zero; we call this the null case. However,
for most of the available methods of data analysis, it still remains an open problem
to prove that use of critical values obtained under the null distribution yields a
level-α test so that the Type I error rate cannot exceed α. If the answer to this
open problem is “yes,” then use of these critical values would yield size-α tests.
Such may well be the case for orthogonal designs but, most curiously, Wang and
Voss (2001b) provided a counterexample for a particular method of analysis of
nonorthogonal saturated designs.

In view of these considerations, a reasonable goal is to seek methods of analysis
for screening experiments that include powerful tests of specified size or level and
exact confidence intervals that are tight. An exact confidence interval is analogous
to a test of specified size—“exact” means that the confidence level is at least as
high as the level claimed and the level claimed is the greatest lower bound on the
confidence level.
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3 Robust Adaptive Methods

The most influential method of analysis of orthogonal saturated designs yet pro-
posed is the robust adaptive method of Lenth (1989). The “quick and easy” method
that he proposed is based on the following estimator of the standard deviation, σβ ,
of the effect estimators β̂i . This estimator is “robust” and “adaptive”, concepts
which are explained in detail after the following description of the method.

First, obtain an initial estimate of σβ :

σ̂o = 1.5 × (the median of the absolute estimates |β̂i |). (2)

For the plasma etching experiment, the median absolute estimate is 18.75, which
can be found as the eighth listed value in Table 1. This yields σ̂o = 28.13 from
(2). If the estimators β̂i are all normally distributed with mean zero and common
standard deviation σβ , then σ̂o is approximately unbiased for σβ .

Second, calculate an updated estimate

σ̂L = 1.5 × (the median of those |β̂i | that are less than 2.5σ̂o),

where subscript L denotes Lenth’s method. For the plasma etching experiment,
2.5σ̂o = 70.31. Each of the three largest absolute estimates exceeds this value and
so is set aside. The median of the remaining 12 absolute estimates is 18.63. Thus
σ̂L = 27.94, which is slightly smaller than σ̂o.

Lenth (1989) referred to this estimator σ̂L as the pseudo standard error of
the estimators β̂i . He recommended using the test statistic β̂i/σ̂L to test the null
hypothesis βi = 0 and recommended using the quantity (β̂i − βi )/σ̂L to construct
a confidence interval for βi .

Critical values for individual tests and confidence intervals are based on the
null distribution of |β̂i |/σ̂L , that is, on the distribution of this statistic when
all effects βi are zero. Lenth proposed a t-distribution approximation to the
null distribution, whereas Ye and Hamada (2000) obtained exact critical val-
ues by simulation of |β̂i |/σ̂L under the null distribution. From their tables of
exact critical values, the upper 0.05 quantile of the null distribution of |β̂i |/σ̂L

is CL = 2.156. On applying Lenth’s method for the plasma etching experiment
and using α = 0.05 for individual inferences, the minimum significant differ-
ence for each estimate is calculated to be cL × σ̂L = 60.24. Hence, the effects
A, AB, and E are declared to be nonzero, based on individual 95% confidence
intervals.

From empirical comparisons of various proposed methods of analysis of orthog-
onal saturated designs (Hamada and Balakrishnan, 1998; Wang and Voss, 2003),
Lenth’s method can be shown to have competitive power over a variety of para-
meter configurations. It remains an open problem to prove that the null case is the
least favourable parameter configuration.

We now discuss what it means for a method of analysis to be “robust” or “adap-
tive”. Lenth’s method is adaptive because of the two-stage procedure used to
obtain the pseudo standard error. The pseudo standard error σ̂L is computed from
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the median of most of the absolute estimates, but how many are excluded from
the calculation depends on the data. In other words, the procedure adapts itself
to the data, and it attempts to do so efficiently. It seems reasonable to believe that
βi �= 0 if |β̂i | > 2.5σ̂o because, for a random variable X having a normal distri-
bution with mean zero and standard deviation σ , P(|X | > 2.5σ ) ≈ 0.0124. In a
sense, one is pre-testing each hypothesis

H0,i : βi = 0

in order to set large estimates aside in obtaining the pseudo standard error, which
is then used for inference on the remaining effects βi .

Consider now robustness. If the estimators β̂i are computed from independent
response variables then, as noted in Section 1, the estimators have equal variances
and are usually at least approximately normal. Thus the usual assumptions, that
estimators are normally distributed with equal variances, are approximately valid
and we say that there is inherent robustness to these assumptions. However, the
notion of robust methods of analysis for orthogonal saturated designs refers to
something more. When making inferences about any effect βi , all of the other
effects βk (k �= i) are regarded as nuisance parameters and “robust” means that
the inference procedures work well, even when several of the effects βk are large
in absolute value. Lenth’s method is robust because the pseudo standard error
is based on the median absolute estimate and hence is not affected by a few
large absolute effect estimates. The method would still be robust even if one used
the initial estimate σ̂o of σβ , rather than the adaptive estimator σ̂L , for the same
reason.

Any robust method has a breakdown point, which is the percentage of large
effects that would make the method ineffective. For Lenth’s method, if half or
more of the effect estimates are very large in magnitude, then σ̂o will be large and
hence so will σ̂L , causing the method to lose so much power that the method breaks
down. Hence, the breakdown point is about 50%. One could lower the breakdown
point by using, for example, the 30th percentile of the absolute estimates rather
than the median to estimate σβ . However, this would increase the variability of
the pseudo standard error, which would reduce power when there truly is effect
sparsity.

In summary, Lenth’s method is robust in the sense that it maintains good power as
long as there is effect sparsity and it is adaptive to the degree of effect sparsity, using
a pseudo standard error that attempts to involve only the estimates of negligible
effects.

Like many methods of analysis of orthogonal saturated designs proposed in
the literature, the critical values for Lenth’s method are obtained in the null case
(all βi zero), assuming this is sufficient to control the Type I error rates. This
raises the question: can one establish analytically that Lenth’s and other proposed
methods do indeed provide the claimed level of confidence or significance under
standard model assumptions? The rest of this chapter concerns methods for which
the answer is “yes.”
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4 Robust Exact Confidence Intervals

In this section, we discuss the construction of individual confidence intervals for
each factorial effect βi , based only on the least squares estimates β̂1, . . . , β̂h . An
exact 100 (1 − α)% confidence interval for βi is analogous to a size-α test of the
null hypothesis βi = 0, against a two-sided alternative. In testing this hypothesis,
the probability of making a Type I error depends on the values of the other pa-
rameters βk, k �= i . Such a test would be of size α, for example, if under the null
hypothesis, the probability of making a Type I error were exactly α when βk = 0
for all k �= i and at most α for any other values of the βk for k �= i . By analogy,
a confidence interval for βi would be an exact 100(1 − α)% confidence interval
if the confidence level were exactly 100 (1 − α)% when βk = 0 for all k �= i and
at least 100 (1 − α)% for any values of the βk for k �= i . Inference procedures
that control the error rates under all possible parameter configurations are said to
provide strong control of error rates, see Hochberg and Tamhane (1987) and also
Chapter 6. For a confidence interval, the error rate is at most α if the confidence
level is at least 100 (1 − α)%.

When screening experiments are used, it is generally anticipated that several
effects may be nonzero. Hence, one ought to use statistical procedures that are
known to provide strong control of error rates. It is not enough to control error rates
only under the complete null distribution. This section discusses exact confidence
intervals. Size-α tests are considered in Section 5.

4.1 Non-Adaptive Confidence Intervals

The first confidence interval for the analysis of orthogonal saturated designs that
provided strong control of the error rate was established by Voss (1999). His
confidence interval for βi excludes β̂i from the computation of the standard error
and is obtained using the random variable

(β̂i − βi )/σ̂V ,

where the denominator is the square root of

σ̂ 2
V =

∑u
k=1 β̂2

(k)

u
, (3)

which is the mean squared value of the u smallest of the h − 1 effect esti-
mates excluding β̂i , and where u is specified before the data are examined.
Here β̂2

(k) denotes the kth smallest of the h − 1 squared estimates β̂2
k for

k �= i .
Let cV be the upper-α critical value, obtained as the upper-α quantile of the

distribution of |β̂i |/σ̂V when all effects are zero. Voss (1999) showed that

β̂i ± cV σ̂V
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is an exact 100 (1 − α)% confidence interval for βi . This result was obtained from
a basic but obscure Stochastic Ordering Lemma, which says that

|β̂i − βi |/σ̂V (4)

is stochastically largest under the complete null distribution. This follows be-
cause (4) is a nonincreasing function of β̂2

k for each k �= i , the estimators
β̂k (k = 1, . . . , h) are independent, and the distribution of each β̂2

k (k �= i) is in-
creasing in β̂2

k . As a consequence, if

P(|β̂i − βi |/σ̂V ≤ cV ) = 1 − α

under the null distribution, then

P(|β̂i − βi |/σ̂V ≤ cV ) ≥ 1 − α

under any parameter configuration. This stochastic ordering result was obtained
independently by Alam and Rizvi (1966) and Mahamunulu (1967).

We now apply Voss’ method to the data from the plasma etching experiment
to construct individual 95% confidence intervals for each effect using u = 8. The
pooling of 8 sums of squares into the denominator (3) provides a reasonably
robust procedure without undue loss of power. One could, of course, pool more
than 8 sums of squares into the denominator, as one would usually anticipate
greater effect sparsity—more than 8 negligible effects—in a screening experiment.
Still, 8 provides a reasonable trade-off between power and robustness. Also, for
simultaneous confidence intervals, Dean and Voss (1999) provided critical values
for this choice because, in a single replicate 24 factorial experiment, an inactive
factor is involved in 8 inactive main effects and interactions which could then be
used to provide the denominator (3) in Voss’ method.

On application of Voss’ method for h = 15 total effects, u = 8 smallest ef-
fects, and 95% individual confidence level, we find by simulation that the crit-
ical value is cV = 5.084. This and subsequent simulated critical values in this
chapter are obtained by generating a large number of sets of estimates under
the null distribution (that is, with mean zero and standard deviation one), com-
puting the relevant statistic for each set of estimates, and using the upper α

quantile of the resulting empirical distribution of values of the statistic as the
critical value. Sample programs for computing critical values are available at
http://www.wright.edu/∼dan.voss/screening.htm.

For any of the seven largest estimates, expression (3) gives σ̂ 2
V = 191.59, so the

minimum significant difference is cV σ̂V = 70.37. From Table 1, we see that three
effects have estimates larger than 70.37 in absolute value, namely, A, AB, and E.
Hence, individual 95% confidence intervals for these three effects do not include
zero, so these effects are declared to be nonzero. No other effects can be declared
to be nonzero using this method. These results match those obtained using Lenth’s
individual 95% confidence intervals.

Voss and Wang (1999) showed that simultaneous confidence intervals could
be obtained using a similar, but more complicated, technical justification. For
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simultaneous intervals, the computation of the critical value is based on the null
distribution of the maximum of the h random variables |β̂i |/σ̂V and the upper α

quantiles can be obtained via simulation, as described above. The critical values
are provided in Table A.11 of Dean and Voss (1999). We do not illustrate this
method here but instead illustrate adaptive simultaneous confidence intervals in
the following section. Based on power simulations conducted by Wang and Voss
(2003), adaptive methods appear to have better minimax power and competitive
average power when compared to nonadaptive methods over a variety of parameter
configurations.

4.2 Adaptive Confidence Intervals

We now extend the above ideas to obtain adaptive individual confidence intervals
for each effect βi and again apply the methods to the plasma etching example.
In developing such intervals that strongly control the error rate, the motivation of
Wang and Voss (2001a, 2003) was the approach used when examining the half-
normal probability plot. This involves looking for a jump in the magnitude of the
absolute estimates, or their squared values, in order to determine how many of these
should be pooled into the estimate of σ 2

β . Below, we describe the methodology of
Wang and Voss (2003) and, for simplicity, we concentrate on the special case of
their general theory that is most useful in practice.

Suppose that one allows the possibility of pooling into the estimate of error the j
smallest of the h − 1 squared estimates, excluding β̂2

i , for some prespecified set J
of choices for j. For example, for h = 15 effects, one might consider pooling either
8 or 12 of the 14 available squared estimates, because 12 might give very good
power if only one or two effects are nonnegligible, but 8 would be a better choice
if there happens to be less effect sparsity. This corresponds to taking J = {8, 12},
and simulations by Wang and Voss (2003) found that this choice provides good
power under a variety of parameter configurations. Let

σ̂ 2
j = w j

j∑
k=1

β̂2
(k)/j (5)

denote the mean squared value of the j smallest squared estimates (excluding β̂i ),
scaled by a prespecified weight w j , and let σ̂ 2

min be the minimum value of all the
σ̂ 2

j for values of j in the prechosen set J; that is,

σ̂ 2
min = min{σ̂ 2

j | j ∈ J }. (6)

Because the β̂2
(k) are ordered in increasing value,

∑ j
k=1 β̂2

(k)/j is increasing in j.
So, the condition that w j < w j ′ for j > j ′ is imposed on the constants w j in
order for σ̂min to be adaptive, namely, so that any j could yield the minimum value
of σ̂ 2

j . Also, σ̂min is a nondecreasing function of each β̂2
k for k �= i , providing

the means to establish strong control of error rates via the Stochastic Ordering
Lemma.
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An application of this lemma shows that an exact 100 (1 − α)% confidence
interval for βi is given by

β̂i ± cminσ̂min,

where cmin denotes the upper-α quantile of the null distribution of |β̂i |/σ̂min.
Some further guidance is needed concerning specification of the set J and

the weights w j for j ∈ J . When exactly j of the effects are zero or negligi-
ble, it is desirable that σ̂min is equal to σ̂ j and the chance of this happening
is greater for smaller w j . This provides some basis for choosing the w j us-
ing any existing knowledge concerning the likely number of negligible effects.
However, one generally does not know how many effects are negligible; hence
the desire for a robust adaptive method. Wang and Voss (2003) conducted an
empirical power study of the procedure for various choices of J and w j for
j ∈ J for the analysis of 15 effects. A choice of J that yielded good min-
imax and average power over a variety of parameter configurations was the
set J = {8, 12}, for which either the 8 or 12 smallest squared estimates are
pooled to estimate the variance. Furthermore, for this choice, each weight w j ,
for j ∈ {8, 12}, was chosen to make σ̂ 2

j an unbiased estimator of the common
variance of the estimators β̂i when all effects βi are zero. To apply this method,
each value w j can be obtained by simulation by computing the average value
of
∑ j

k=1 Z2
(k)/j—that is, the average of the j smallest squared values of h − 1

pseudo standard normal random variables—and then taking the reciprocal of this
average.

If we apply this method to the plasma etching experiment and compute indi-
vidual 95% confidence intervals using J = {8, 12}, we obtain by simulation the
values w8 = 4.308, w12 = 1.714, and cmin = 2.505. For the effects A, AB, and E
corresponding to the three largest estimates, σ̂ 2

8 = 825.35 and σ̂ 2
12 = 1344.54, so

σ̂ 2
min = 825.35 and the minimum significant difference is cminσ̂min = 71.97. There-

fore the effects A, AB, and E are declared to be significantly different from zero.
The effects with the next largest estimates are B and AC. These are not significant
based on the same minimum significant difference. We note, in passing, that the
value of σ̂ 2

12 is larger for these effects, because it is computed using the 12 smallest
squared estimates apart from the one for which the confidence interval is being
constructed.

Wang and Voss (2003) showed that simultaneous confidence intervals could
be obtained in a similar way, by computing the critical value based on the null
distribution of the maximum of the h random variables |β̂i |/σ̂min, i = 1, . . . , h,
where, for each i, σ̂min is a function of the estimators excluding β̂i . To obtain
simultaneous 95% confidence intervals for all 15 effects, the simulated critical
value provided by Wang and Voss (2003) is cmin = 6.164. For examining each of
the 7 largest estimates, σ̂ 2

min is again equal to σ̂ 2
8 = 825.35 from (5) and (6). So

we find that the minimum significant difference for simultaneous 95% confidence
intervals is

cminσ̂min = 177.08.
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The largest effect estimate, β̂A = −175.50, has magnitude just under this more
stringent threshold for simultaneous inference and thus none of the effects are
found to differ significantly from zero.

Obviously, simultaneous 95% confidence intervals are more conservative than
individual 95% confidence intervals, explaining the lack of significant results in
this case. We advocate that both individual and simultaneous confidence intervals
be used, because they provide different information and are both useful. The finding
that three effects are significant using individual, but not simultaneous, 95% con-
fidence intervals suggests the possibility of false positives, for example, whereas
the significant results would be more believable if the simultaneous confidence
intervals identified the same effects as being significant.

Simulations of Wang and Voss (2003) show little difference in power between
their adaptive confidence intervals using J = {8, 12} and the confidence intervals
of Lenth (1989), though the former have the advantage that control of Type I error
rates is established.

5 Robust Size-α Tests

In this section we focus on hypothesis testing and discuss both individual and si-
multaneous tests for detecting nonzero effects. Of special interest are the step-down
tests described in Section 5.2, as these offer improved power over single-step tests.

5.1 Individual and Simultaneous Single-Step Tests

Adaptive, robust single-step tests of size α, both individual and simultaneous, can
be based on the corresponding confidence intervals already discussed. To test the
hypothesis

H0,i : βi = 0

for each fixed i, or to test these hypotheses simultaneously, one may simply check
whether the corresponding Wang and Voss (2003) individual or simultaneous con-
fidence intervals include zero. The test procedure is: reject each null hypothesis
H0,i if and only if the confidence interval for βi excludes zero. This testing proce-
dure controls the error rate and uses the data adaptively.

Better yet, one can obtain adaptive robust tests that are more easily implemented
and are still of the specified size. For testing each null hypothesis H0,i : βi = 0,
one need not exclude the corresponding estimator β̂i from the computation of the
denominator or standard error, because βi = 0 under the null hypothesis.

For example, to obtain an individual test of H0,i : βi = 0, Berk and Picard (1991)
proposed rejecting the null hypotheses for large values of the test statistic

β̂2
i∑u

k=1 |β̂|2(k)/u
,
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where the denominator is the mean value of the u smallest squared estimates com-
puted from all h estimates, for a pre-specified integer u. This test controls the error
rate because the test statistic is nonincreasing in β̂2

k for each k �= i . Also, because
the denominator is the same for testing each hypothesis H0,i , implementation of
the test is simple relative to implementation of corresponding confidence interval
procedures.

Analogously, Voss and Wang (2005) proposed individual and simultaneous
adaptive tests based on β̂i/σ̂min for i = 1, . . . , h, which are similar to the adaptive
confidence intervals of Section 4.2, but with σ̂min computed from all h estimators
β̂k rather than by setting aside β̂i when testing H0,i : βi = 0. The more powerful
version of this test is discussed in Section 5.2.

5.2 Step-Down Tests

Although a single-step test compares each effect estimate with the same critical
value, a step-down test uses this “single-step” critical value only for the largest
effect estimate, then “steps down” to test the next largest effect estimate using a
sharper critical value, stepping down iteratively and stopping only when an effect
is not significant. It is well known, by virtue of sharper critical values after testing
the effect with largest estimate, that simultaneous step-down tests have a clear
power advantage over simultaneous single-step tests; see, also, Chapter 6.

Although step-up tests are analogous to step-down tests, they are not considered
here because error rate control remains an open problem. Step-down or step-up
tests have been proposed for the analysis of orthogonal saturated designs by Voss
(1988), Voss and Wang (2005), Venter and Steel (1996, 1998), Langsrud and Naes
(1998), and Al-Shiha and Yang (1999). Here we provide the details of the tests
of Voss and Wang (2005) because they have been proved to control the error rate.
The other tests are intuitively attractive but have been “justified” only empirically.

To develop the test, we use the closed testing procedure of Marcus et al. (1976).
This procedure requires the construction of a size-α test of the hypothesis

H0,i : βi = 0, for all i ∈ I

for each nonempty index set I ⊂ {1, . . . , h}. We test this null hypothesis using the
test statistic

TI = max
i∈I

Ti , where Ti = β̂2
i /σ̂ 2

min, (7)

and where σ̂ 2
min is defined as in equation (6) but with the modification that each σ̂ 2

j
is computed using all h effect estimators β̂i , rather than setting one aside.

Let cI denote the upper-α quantile of the distribution of TI when all h effects are
zero. Then, the test that rejects H0,I if TI > cI is a size-α test of the null hypothesis
because the test statistic TI is a nonincreasing function of β̂2

k for each K /∈ I (Voss
and Wang, 2005). For each i, the closed testing procedure rejects H0,i : βi = 0 if
and only if H0,I is rejected for each I containing i. Use of this procedure controls
the simultaneous error rate to be at most α; see Marcus et al. (1976). It requires the
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testing of 2h − 1 hypotheses, one for each subset I of effects. It is then necessary
to sort through the results to determine which effects βi can be declared to be
nonzero. However, by definition of the test statistic in (7), I ⊂ I ′ implies that
TI ≤ TI ′ . Also, it can be shown that the critical values cI decrease as the size of the
set I decreases. Thus, we can obtain a shortcut as follows (see also Chapter 6).

Step-Down Test Procedure: Let [1], . . . , [h] be the indices of the effects after
reordering so that T[1] < · · · < T[h]. We denote by c j,α the upper-α critical value
cI for any index set I of size j. The steps of the procedure are:

S1: If T[h] > ch,α , then infer β[h] �= 0 and go to step 2; else stop.
S2: If T[h−1] > ch−1,α , then infer β[h−1] �= 0 and go to step 3; else stop.
S3: · · ·

This procedure typically stops within a few steps due to effect sparsity. Voss and
Wang (2005) proved, for the above test of H0,i : βi = 0 (i = 1, . . . , h), that the
probability of making any false inferences (Type I) is at most α for any values of
the parameters β1, . . . , βh .

We now apply the step-down test to the plasma etching experiment, choosing
a simultaneous significance level of α = 0.05 and J = {8, 12}, as described in
Section 4.2. We obtained, via simulation, the values w8 = 4.995, w12 = 2.074,
c15,0.05 = 4.005, c14,0.05 = 3.969, and subsequent critical values not needed here.
The values of w8 and w12 are different from those in Section 4.2 for confidence
intervals, because now no β̂i is set aside to obtain σ̂min. For testing each effect,
σ̂ 2

8 = 956.97 and σ̂ 2
12 = 1619.94, so that σ̂min = 956.97. Hence, the minimum

significant difference for the largest estimate is c15,0.05σ̂
2
min = 123.89, and A is

declared to be significantly different from zero. Stepping down, the minimum
significant difference for the second largest estimate is c14,0.05σ̂

2
min = 122.78 and

AB is not declared to be significantly different from zero, nor are any of the
remaining effects at the simultaneous 5% level of significance.

We recommend the use of this method for the analysis of orthogonal saturated
designs. It is the only adaptive step-down test in the literature known to control
Type I error rates. Furthermore, it is more powerful than the corresponding single-
step test. The single-step test is analogous to the simultaneous confidence intervals
of Wang and Voss (2003) and the latter were shown via simulation to provide good
minimax and average power over a variety of parameter configurations.

6 Discussion

There are important advantages in using adaptive robust procedures that strongly
control the error rate. Strong control of the error rate provides the statistical rigor
for assessing the believability of any assertions made about the significance of the
main effects or interactions, whether confidence intervals or tests are applied. Use
of a robust adaptive procedure allows the data to be used efficiently.
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From the mathematical viewpoint, the existence of robust adaptive procedures
that strongly control the error rates is facilitated by the availability of an adaptive
variance estimator that is stochastically smallest when all βi are zero (the null case).
Wang and Voss (2003) provided a large class of such robust adaptive estimators,
with a lot of flexibility in the possible choices of the set J and weights w j for
construction of adaptive variance estimates. A remaining problem is to determine
which estimators in the class are the most robust, in the sense of performing well
over all reasonable parameter configurations under effect sparsity. Additional sim-
ulation studies seem necessary to investigate this issue; see Wang and Voss (2003).

One way to construct or formulate an adaptive variance estimator is to have
multiple variance estimators and to have a data-dependent choice of which one
is used. Adaptive methods known to strongly control error rates use special vari-
ance estimators of this type. In particular, the construction of adaptive variance
estimators that allow strong control of error rates depends fundamentally on choos-
ing between several possible variance estimators where (i) each possible variance
estimator is a nonincreasing function of each squared estimator β̂2

i , and (ii) the
adaptive estimator is the minimum of these contending variance estimators. Under
these circumstances, this minimum is also nonincreasing in each squared estima-
tor β̂2

i , as required for application of the Stochastic Ordering Lemma. The lemma
also requires that the estimators β̂i be independent and that the distribution of
each squared estimator β̂2

i be nondecreasing in β̂2
i . These requirements all hold for

analysis of an orthogonal design under standard linear model assumptions. Under
such assumptions, an orthogonal design yields independent effect estimators. A
design is nonorthogonal if any of the estimators β̂i are correlated under standard
linear model assumptions.

For a nonorthogonal design, the problem of how to construct a variance estimator
that is robust, adaptive, and known to strongly control error rates is difficult. So far,
there is only one procedure known to strongly control error rates. For analysis of
nonorthogonal designs, this method, developed by Kinateder et al. (1999), builds
upon a variance estimation approach of Kunert (1997) using sequential sums of
squares. However, the use of sequential sums of squares is equivalent to making
a linear transformation of the estimators β̂i to obtain independent estimators τ̂i ,
for which the corresponding sequential sums of squares are also independent.
Unfortunately, if the effects are entered into the model in the order β1, β2, . . . ,

then the expected value of τ̂i can involve not only τi but also the effects τ j for
j ≥ i ; see Kunert (1997). As a consequence, effect sparsity is diminished for the
means of the transformed estimators, τ̂i .

The problem of data analysis is even harder for supersaturated designs. Then, not
only is there necessarily nonorthogonality, but estimability of effects also becomes
an issue. Chapter 8 discusses some of the serious problems involved in the analysis
of supersaturated designs. Related references include Abraham et al. (1999), Lin
(2000), and Holcomb et al. (2003). There is currently no method of analysis of
supersaturated designs that is known to provide strong control of error rates. Further
work is needed in this area, as well as on the analysis of nonorthogonal saturated
designs.
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Returning to the discussion of orthogonal saturated designs, Lenth’s (1989)
method works well in general and no simulation study so far has detected a para-
meter configuration for which the error rate is not controlled. Also, his procedure
is not very dependent on making a good initial guess for the number of negligible
effects, although use of the median causes his method to break down if more
than half the effects are large. It is of great interest to show that his method
strongly controls the error rate. We cannot use the adaptive technique developed
by Wang and Voss (2003) to resolve this question for Lenth’s method because their
method uses a monotone function of the absolute effect estimates to estimate σβ ,
whereas Lenth’s method and its variants, proposed by Dong (1993) and Haaland
and O’Connell (1995), do not.

In the search for nonnegligible effects under effect sparsity, it may seem more
reasonable to step up than to step down, that is, to start with evaluation of the
smaller estimates, and step up from the bottom until the first significant jump
in the estimates is found. Then all effects corresponding to the large estimates
could be declared nonzero. Step-down tests, where the largest estimates are con-
sidered first and one steps down as long as each estimate in turn is significant,
are often justifiable by the closure method of Marcus et al. (1976). However, the
mathematical justification of step-up tests, including those of Venter and Steel
(1998) and others, remains an interesting and open issue. Wu and Wang (2004)
have made some progress in this direction and have provided a step-up test for the
number of nonzero effects that provides strong control of error rates. If at least
three effects are found to be nonzero, one would like to conclude that the three
effects corresponding to the three largest estimates are nonzero, but the procedure
does not provide this guarantee. Clearly further research on step-up procedures is
needed.

It is appropriate to close this chapter with the following reminder. Although
the focus of the work described here is on controlling the Type I error rate for
adaptive robust methods, the problem of Type II errors in the analysis of screening
experiments should not be overlooked. If a Type II error is made, then an important
factor would be ignored in subsequent experiments. On the other hand, if a Type
I error is made, then an inactive factor is unnecessarily kept under consideration
in future experiments, which is less serious. We argue that the best tests are the
most powerful tests of specified size. In a simulation study, we showed (Wang
and Voss, 2003) that, in terms of power, adaptive methods known to have strong
control of Type I error rates are competitive with alternative methods for which
strong control of Type I error rates remains to be established. Hence, one can use
adaptive robust methods known to strongly control error rates without sacrificing
power.
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13
Screening for the Important Factors in
Large Discrete-Event Simulation
Models: Sequential Bifurcation
and Its Applications

Jack P. C. Kleijnen, Bert Bettonvil and Fredrik Persson

Screening in simulation experiments to find the most important factors, from a very large
number of factors, is discussed. The method of sequential bifurcation in the presence of
random noise is described and is demonstrated through a case study from the mobile telecom-
munications industry. The case study involves 92 factors and three related, discrete-event
simulation models. These models represent three supply chain configurations of varying
complexity that were studied for an Ericsson factory in Sweden. Five replicates of observa-
tions from 21 combinations of factor levels (or scenarios) are simulated under a particular
noise distribution, and a shortlist of the 11 most important factors is identified for the most
complex of the three models. Various different assumptions underlying the sequential bi-
furcation technique are discussed, including the role of first- and second-order polynomial
regression models to describe the response, and knowledge of the directions and relative
sizes of the factor main effects.

1 Introduction

In this chapter, we explain the technique of sequential bifurcation and add some
new results for random (as opposed to deterministic) simulations. In a detailed case
study, we apply the resulting method to a simulation model developed for Ericsson
in Sweden. In Sections 1.1 to 1.3, we give our definition of screening, discuss our
view of simulation versus real-world experiments, and give a brief indication of
various screening procedures.

Our case study is introduced in Section 1.4. The assumptions behind, and the
steps involved in, sequential bifurcation are described in Sections 2.2 and 2.3 and
the steps are illustrated using a first-order polynomial model with random noise.
In Section 2.4, a more realistic model involving interactions is used for screening
the important factors in the case study. Issues of programming are addressed in
Section 3.

1.1 A Definition of Screening

We define screening as the “search for the most important factors among a large
set of factors in an experiment.” For example, in our case study described in
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Section 1.4, 92 factors are studied but we find only 11 of these to be important.
This is in line with the principle of effect sparsity, see Chapters 1 and 8. The sim-
plest definition of “importance” occurs when an experiment has a single response
(output from computer code) and the factors have only additive effects; that is,
the input–output relation is modelled by a first-order polynomial in regression
terminology or a “main effects only” model in analysis of variance terminology
(also see Chapter 8). The most important factor is then the one that has the largest
absolute value for its first-order effect or main effect; the least important factor is
the one whose effect is closest to zero.

The goal of screening is to draw up a shortlist of important factors from a long
list of potentially important factors. Depending on the application, this shortlist
might lead to a more thorough investigation of the possibly important factors
via additional experiments (Kleijnen et al., 2002) or through an optimization and
robustness analysis (Kleijnen et al., 2003). In an ecological case study, Bettonvil
and Kleijnen (1996) identified a shortlist of factors which included some factors
that the ecological experts had not expected to have large effects!

It is also important to find out from the screening experiment which factors are
“certainly” unimportant so that the clients of the simulation analysts are not both-
ered by details about these factors. We are distinguishing, in this chapter, between
the simulation analysts, who develop a simulation model and run experiments on
this model (as, for example, in Chapter 14) and their clients, who are the managers
and other users of the real system being simulated.

Of course, the perceived importance of factors depends on the experimental
domain or design region which is the experimental area to be explored and is also
called the “experimental frame” by Zeigler et al. (2000). The clients must supply in-
formation about this domain to the simulation analysts, including realistic ranges of
the individual factors and limits on the admissible scenarios or combinations of fac-
tor levels; for example, in some applications the factor values must add up to 100%.

We view the real or the simulated system as a black box that transforms in-
puts into outputs. Experiments with such a system are often analyzed through an
approximating regression or analysis of variance model. Other types of approxi-
mating models include those for Kriging, neural nets, radial basis functions, and
various types of splines. We call such approximating models metamodels; other
names include auxiliary models, emulators, and response surfaces. The simulation
itself is a model of some real-world system. The goal is to build a parsimonious
metamodel that describes the input–output relationship in simple terms.

We emphasize the following chicken-and-egg problem: once the design for
the simulation experiment is specified and the observations have been obtained,
parameters for an appropriate metamodel can be estimated. However, the types of
metamodels that the analyst desires to investigate should guide the selection of an
appropriate design.

1.2 Simulation Versus Real-World Experiments

The classic design of experiments focuses on real-world experiments; see, for
example, the classic textbook by Box et al. (1978) or the recent textbook by
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Myers and Montgomery (2002). We, however, focus on experiments with computer
or simulation models which may be either deterministic or stochastic; also see
Kleijnen et al. (2002). An introduction to simulation modelling is provided by
Law and Kelton (2000).

In simulation experiments, using advances in computing power, analysts are
no longer bound by some of the constraints that characterize real-world experi-
ments. This is a challenge, as it requires a new mindset. We argue that the ways in
which simulation experiments and real-world experiments should be approached
are fundamentally different, especially in the following three aspects.

(i) In real-world experiments, the analysts must often select a design that is exe-
cuted in one shot (for example, one growing season in an agricultural experiment).
In simulation experiments, however, the data are collected sequentially because
a standard computer operates sequentially and the use of computers in parallel
is still an exception. Thus the analysts may start with a small design for a very
simple metamodel, then test (validate) the adequacy of that model and, only if that
model is rejected, need they augment the original design to enable the estimation
of a more complicated model. This is a two-stage design. In this chapter, however,
we present an alternative strategy in which the design is analyzed for each new
observation before the next design point is selected (see also Kleijnen et al., 2002;
Kleijnen and Sargent, 2000).

On the occasions when analysts must collect observations sequentially in real-
world experiments, the experiment is viewed as prone to validity problems. Hence,
the analysts randomize the order in which the factor level combinations are ob-
served to guard against time-related changes in the experimental environment
(such as temperature, humidity, consumer confidence, and learning effects) and
perform appropriate statistical tests to determine whether the results have been
contaminated. For the simulation experiment, on the other hand, an input file can
be generated once a particular design type has been chosen. Such a file can be
executed sequentially and efficiently in batch mode without human intervention
and the computer implements the sequential design and executes rules for selecting
the next design point based on all preceding observations.

(ii) In real-world experiments, typically only a few factors are varied. In fact,
many published experiments deal with fewer than five factors. The control of
more than, say, ten factors in real-world experiments is a challenging area; see,
for example, Chapters 4, 8, and 9. In simulation experiments, the computer code
typically involves a very large number of factors; for example, there are 92 factors
in our case study. Good computer programming avoids the need to fix the values
of any of these factors within the code and allows them to be read in from an input
file. Thus, other than checking that the factor level combinations give a scenario
within the experimental domain, there are no restrictions on the scenarios that can
be run. Such a practice can automatically provide a long list of potential factors.
Analysts should confirm whether they, indeed, wish to experiment with all of these
factors or whether they wish a priori to fix some factors at nominal (or base) levels.
This type of coding helps to unfreeze the mindset of users who might otherwise
be inclined to focus on only a few factors to be varied in the experiment. For
example, Persson and Olhager (2002) simulated only nine combinations of factor
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levels. An investigation of a large set of factors, however, implies that computer
time may become an issue and then special screening procedures, such as sequential
bifurcation, and optimized computer code, must be used. For example, in our case
study, one run of the simulation code originally took three hours; this was reduced
to 40 minutes after modification of our code.

(iii) Randomness or random variability occurs in real-world experiments be-
cause the experimenters cannot control all of the factors that affect the response;
for example, human participants in an experiment have ambitions that cannot be
fully controlled by the experimenters. In computer simulation, such effects can be
modelled through random input variables; for example, the arrivals of customers
may be modelled as a Poisson process so that the times between two successive
arrivals are exponentially distributed. Values for random variables are generated
through pseudorandom numbers. A single simulation run gives an observation on
each of the responses of interest to the analysts; for example, in our supply chain
case study of Section 1.4, one simulation run represents the operations of a supply
chain during 17 weeks and the main response is the average cost per week. To ob-
tain independently and identically distributed observations, the analysts generate
several simulation runs or replicates, which all start in the same initial state of the
simulated system but use different pseudorandom numbers to generate the values
of the random input variables.

1.3 Screening Procedures for Simulation

Campolongo et al. (2000) discussed a variety of screening methods for simulation,
as opposed to real-world experiments. These include one-factor-at-a-time, such
as the method of Morris (1991), iterated fractional factorial designs of Andres
and Hajas (1993) as well as sequential bifurcation. The authors refer to avail-
able software and emphasize key assumptions. Some of the methods, including
sequential bifurcation (explained in Section 2), require fewer observations than
there are factors, as in supersaturated designs used for single shot experiments
(see Chapter 8; also Westfall et al., 1998). Recently, De Vos et al. (2003) applied
multi-stage group-screening to a model using the @Risk software. This software
is distinct from the discrete-event dynamic simulation software, such as the Taylor
II software (see Incontrol, 2003) used in our case study. Various other screening
methods are presented in this book; in particular in the closely related Chapters 9
and 14.

1.4 The Ericsson Case Study: Supply Chain Simulation

We now discuss a recent example of simulation that models three alternative config-
urations for a supply chain in the mobile communications industry at the Ericsson
company in Sweden. A supply chain consists of several links which may be sepa-
rate companies or independent business units of a single large company. Examples
of links are retailers, wholesalers, distributors, and factories. Customary strategies
imply that, at the individual links of the supply chain, decisions are made based on
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Figure 1. The three supply chain configurations: (a) the Old, (b) the Current, (c) the Next
Generation.

information about their nearest neighbour links instead of information about the fi-
nal link. The final link deals with the ultimate customers who demand the final prod-
uct, rather than some intermediate product or raw material. Under these customary
strategies, if the final demand at the final link increases by, say, 1%, then there is
likely to be a much greater increase in the orders placed from a link to its predeces-
sor when the link is early in the chain; this is known as the bullwhip effect. Banks et
al. (2002) and Kleijnen (2005) discussed simulation in supply chain management—
a rapidly developing field in operations research; see, for example, the Proceedings
of the 2004 Winter Simulation Conference and Simchi-Levi et al. (2000).

A central issue in supply chain management is the lean and mean strategy which
is the improvement in the performance of the total chain through the elimination
of links, or steps within links. In the Ericsson case study, three supply chain
configurations are investigated. Each configuration is actually the same chain, but
simplified over time. The Old configuration, which existed in 1998, consists of
many operations and test stations. The Current (1999) configuration has fewer
operational steps. The Next Generation chain is a future configuration that has a
minimum of operations and tests.

Figure 1 shows diagrams of the three configurations. A square denotes a test of
the products produced by the preceding operation, which is denoted by a circle.
There are several types of tests and operations, as the names in the figure show.
Products flow through the chain from left to right in the figure. The chain starts
with the purchase of “raw” products; next, these products are processed; the chain
finishes with the assembly of components into final products, which are then
sold. The abbreviation SMD stands for “surface mounted devices”, indicating
electronic devices that are mounted on the surface of a circuit board (which is
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Figure 2. The simulation model of the Current supply chain configuration.

modern technology compared with devices mounted in holes on the board). In
Figure 1, the dotted boxes indicate that the mounting and testing of the circuit board
is performed by the same machine—a very fast mounting machine with integrated
vision control of device placements. Into this machine is also integrated the heating
to make the soldering paste melt and connect the board to the electronic device.

Figure 2 shows the Current simulation model. This figure illustrates that buffers
(inventories) are located before and after each test station and operation; products
are transported between all operations and test stations.

As described in Section 1.1, the goal of the simulation study is to quantify the
relationships between the simulation outputs and the inputs or factors. For this
case study, the outputs are the steady-state mean costs of the whole supply chain
(discussed in Section 3.2) and the inputs are factors such as lead-time, quality,
operation time of an individual process, and number of resources. Our ultimate
goal (as reported by Kleijnen et al., 2003) is to find robust solutions for the supply
chain problem. Thus we distinguish between two types of factors:

1. Factors that are controllable by the company; for example, Ericsson can manip-
ulate the manufacturing processes and select logistic partners for transportation.

2. Noise factors that are uncontrollable and determined by the environment; exam-
ples include demand for products, process yield or percentage of faulty products,
and scrap percentage at each test station.

The simulation model of the Old supply chain has 92 factors, whereas those of
the Current and Next Generation supply chains have 78 and 49 factors, respectively.
Details on the results of the simulation are given in Section 3.

2 Sequential Bifurcation

Originally, sequential bifurcation was developed in the doctoral dissertation of
Bettonvil (1990) which was later summarized by Bettonvil and Kleijnen (1996)
and updated by Campolongo et al. (2000) to include a discussion of applications.
Other authors have also studied sequential bifurcation (see, for example, Cheng,
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1997; Cheng and Holland, 1999). Sequential bifurcation is related to binary search
(Wan et al., 2004) which searches a sorted array by repeatedly dividing the search
interval in half, beginning with an interval covering the whole array. First, we
give an outline of the sequential bifurcation procedure (Section 2.1). Second, we
present the assumptions and notation of sequential bifurcation (Section 2.2), and,
third, we illustrate the procedure through our case study (Section 2.3).

2.1 An Outline of the Sequential Bifurcation Procedure

A formal description of sequential bifurcation can be found in Bettonvil (1990).
The procedure follows a sequence of steps. It begins by placing all factors into a
single group and testing whether the group of factors has an important effect. If
it does, the group is split into two subgroups and each of these is then tested for
importance. The procedure continues in this way, discarding unimportant groups
and splitting important groups into smaller groups. Eventually, all factors that are
not in groups labelled as unimportant are tested individually.

2.2 Assumptions and Notation of Sequential Bifurcation

The two basic assumptions of sequential bifurcation are as follows.

Assumption 1: an adequate metamodel is a first-order polynomial, possibly aug-
mented with two-factor interactions; that is,

Y = β0 + β1x1 + · · · + βk xk + β1:2x1x2 + · · · + β(k−1):k xk−1xk + ε, (1)

where the following notation is used:

Y : The response for the metamodel
k: The total number of factors in the experiment
β j : The first-order or main effect of factor j with j = 1, . . . , k
β j ′: j : The interaction effect of the factors j ′ and j with 1 ≤ j ′ < j ≤ k
x j : The value of the j th factor, standardised to lie in [−1, +1]
ε: The noise variable arising from both the use of pseudorandom numbers and

approximation error

We observe that this metamodel is linear in the parameters β j and β j ′: j but nonlinear
in the variables x j . At the end of the case study in Section 3, we try to validate the
assumption that the model is adequate.

To estimate the parameters in the simple metamodel (1), it is most efficient to
experiment with only two levels (values) per factor. In practice, it is important that
these levels are chosen to be realistic, so the users of the underlying simulation
model should provide these values.

Assumption 2: the signs of all main effects are known and are nonnegative, that is,

β j ≥ 0 ( j = 1, . . . , k). (2)
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We need this assumption because, otherwise, main effects might cancel each other
(see also Chapter 9). Our experience is that, in practice, this assumption is easy
to satisfy; that is, it is straightforward to define the upper and lower level of
each factor such that changing a factor from its lower to its upper level does
not decrease the expected response. For example, in our case study, some factors
refer to transportation speed: the higher this speed, the lower the work in process
(WIP) and hence the lower the costs. Other examples are provided by Lewis and
Dean (2001). Consequently, we call the two levels of each factor the low level
and the high level, respectively, where the low level results in the lower expected
(simulation) response and the high level produces the higher expected response.
Nevertheless, if, in a particular case study, Assumption 2 seems hard to meet for
specific factors, then these factors should be treated “individually”; that is, none
of these factors should be grouped with other factors in the sequential bifurcation
procedure.

The simplest experimental domain is a k-dimensional hypercube where the
j th original factor is coded such that its respective low and high values, l j and
h j , correspond to the values −1 and +1 of the corresponding standardised factor.
Thus, the level z j of the original factor is transformed to level x j of the standardised
factor, where

x j = z j − (h j + l j )/2

(h j − l j )/2
. (3)

The scaling in (3) ensures that the experimental results are insensitive to the
scale used. Therefore, we may rank or sort the factors by the size of their main
effects so that the most important factor is the one with the highest main effect,
and so on. We note that the larger the range of an untransformed factor, the larger
is the difference between the responses at the two levels and the larger is the main
effect of the transformed factor. (See, also, the “unit cost” effects of Cheng and
Holland, 1999.)

For our case study, we could not obtain information on the factor ranges from
Ericsson. We decided therefore to change most factors by 5% of the base values
reported for the existing system by Persson and Olhager (2002) and to change the
transportation speeds between operations by 25% (see Cheng and Holland, 1999).

The efficiency of sequential bifurcation, as measured by the number of observa-
tions (that is, simulation runs and hence simulation time), increases if the individual
factors are renumbered to be in increasing order of importance (see Bettonvil 1990,
page 44), so that

β j ′ ≤ β j ( j ′ < j). (4)

We try to realize this efficiency gain by applying prior knowledge about the factors
in the simulated real system. In the case study, we anticipated that the environmental
factors would be the most important, so these factors appear last in the list of factors.

In order to increase the efficiency further, it is helpful to use any available
knowledge about the simulated real system to keep similar factors together. For
example, we group together all “test yield” factors and conjecture that, if one
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yield factor is unimportant, then all yield factors are likely to be unimportant too.
Bettonvil (1990, pages 40–43) further divided factor groups so that the number of
factors per resulting subgroup is a power of two. We use his approach as a secondary
guideline, unless it implies splitting up a group of related factors. (Cheng, 1997,
splits groups into two subgroups of equal size.) In our sequential bifurcation for the
Old supply chain, for example, we split the first 49 factors into a group of 32 (=25)
factors and a group of the remaining factors. Figure 3 shows the results of applying
sequential bifurcation to our Ericsson case study, where the factors are labeled
1–92, and the continuous horizontal band at the top of the figure indicates that all
factors have been grouped together in the first step. The steps of the sequential
bifurcation procedure are given in Section 2.3. We assume initially that a first-order
polynomial is an adequate metamodel, so that the interaction parameters in (1) are
zero, and also assume that the expected value of the noise variable ε is zero; that is,

β j ′: j = 0 ( j ′ �= j) and με = 0. (5)

We introduce the following additional sequential bifurcation notation adapted
for replicated random responses. We use y( j);r to represent the observed (simula-
tion) output in replicate r when factors 1 to j are set at their high levels and the
remaining factors are set at their low levels (r = 1, . . . , m).

We define β j ′− j to be the sum of the main effects for factors j ′ to j ; that is,

β j ′− j =
j∑

i= j ′
βi . (6)

An estimate of this aggregated main effect β j ′− j , using only the output from
replicate r , is

β̂ j ′− j ;r = y( j);r − y( j ′−1);r

2
. (7)

The sequential bifurcation procedure starts by observing (simulating) the two
most extreme scenarios. In scenario 1, all factors are at their low levels and, in
scenario 2, all factors are at their high levels. From the metamodel (1), we obtain
the expected values of the response variables as

E(Y(0)) = β0 − β1 − · · · − βk,

E(Y(k)) = β0 + β1 + · · · + βk .

It follows that

E(Y(k)) − E(Y(0)) = 2(β1 + · · · + βk) (8)

which shows that the estimator based on (7) is unbiased.
For the individual main effect of the j th factor, the estimate from the r th repli-

cate is

β̂ j ;r = y( j);r − y( j−1);r

2
. (9)



Figure 3. The steps of sequential bifurcation applied to the Old supply chain configuration,
assuming a first-order polynomial metamodel. Estimates of the β j ′− j defined in equation
(6) are indicated at each step.
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From the m replicates, we compute the sample average and its sample variance
for each (aggregated or individual) estimated main effect. For example, for the
individual main effect of factor j , we obtain

¯̂β j =
∑m

r=1 β̂ j ;r

m
and s2( ¯̂β j ) =

∑m
r=1(β̂ j ;r − ¯̂β j )2

m(m − 1)
. (10)

The variance estimators s2( ¯̂β j ) of the estimated effects ¯̂β j allow unequal re-
sponse variances and the use of common pseudorandom numbers. This is a well-
known technique used in simulation experiments to reduce the variances of the
estimated factor effects (Law and Kelton, 2000). This technique uses the same
pseudorandom numbers when simulating the system for different factor combina-
tions, thus creating positive correlations between the responses. Consequently, the
variances of the estimated effects are reduced. This technique is similar to blocking
in real-world experiments; see, for example, Dean and Voss (1999, Chapter 10).

2.3 The Steps of Sequential Bifurcation

We now illustrate the sequential bifurcation procedure using the Old simula-
tion model which has k = 92 factors and m = 5 replicates. Table 1 gives the
observations for the two extreme scenarios for each replicate. We start sequen-
tial bifurcation by finding the average simulated response when all factors are
at their low levels, ȳ(0) = 3,981,627, and that when all factors are at their high
levels, ȳ(92) = 34,013,832, where the overline denotes the average computed
from the m = 5 replicates. So, the estimated effect of all 92 factors aggregated
together is obtained from (7), together with a formula analogous to (10), as
¯̂β1−92 = (34,013,832 − 3,983,627)/2 = 15,016,102. This estimate is shown in

Figure 3 immediately below the first shaded line listing all factor labels from
1 through 92. The standard error of this estimated aggregated effect, averaged over
the replicates, is s( ¯̂β1−92) = 94,029.3/

√
5 = 42,051.18.

To test the importance of the estimated (either aggregated or individual) main
effects statistically, we assume that the (simulated) outputs for each scenario are
approximately normally and independently distributed. Different scenarios may
produce observations with different variances; the use of common pseudorandom

Table 1. Observations for the first two scenarios simulated
in sequential bifurcation for the Old supply chain
Replicate y(0) y(92) β̂1−92

1 3,954,024 34,206,800 15,126,388.0
2 3,975,052 33,874,390 14,949,669.0
3 3,991,679 33,775,326 14,891,823.5
4 4,003,475 34,101,251 15,048,888.0
5 3,983,905 34,111,392 15,063,743.5

Average 3,981,627 34,013,832 15,016,102.4
Standard Error 18,633 180,780 94,029.3
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numbers for different scenarios may produce correlated observations. However, in
view of the fact that only large effects need to be detected, we apply a two-sample
t-test as an approximate test, ignoring variance heterogeneity when determining
the degrees of freedom (see Kleijnen, 1987, pages 14–23). We apply a one-sided
test because we assume that all individual main effects are nonnegative and rank
ordered as in (2) and (4). Using a one-sided two-sample t-test with level α = 0.05
and 8 degrees of freedom, we conclude that the sum of the 92 main effects is
significantly different from zero. Our heuristic uses a fixed t-value throughout the
whole sequential bifurcation procedure with no adjustment for multiple testing;
see Kleijnen (1987, pages 41–45). In practice, significance is not essential but im-
portance is—we are searching for a shortlist of important factors. In a recent paper,
Wan et al. (2004) discuss the use of multiple testing procedures in a sequential
bifurcation setting.

In hindsight, we might have used fewer replications in the early steps of the
procedure, as these steps have higher signal/noise ratio due to the fact that the
signal decreases as a result of less aggregation of main effects as the sequential
bifurcation progresses.

The aggregated or group effect is an upper limit U for the value of any individual
main effect. The goal of sequential bifurcation is to find the most “important” fac-
tors, that is, the factors that have significant main effects. If, however, we terminate
our screening prematurely (for example, because the computer breaks down or our
clients get impatient), then sequential bifurcation still allows identification of the
factors with the largest main effects.

The next step is to divide the current group of 92 factors into two subgroups;
this explains the term bifurcation. Into one subgroup we place all the 79 con-
trollable factors and into the other subgroup we put all 13 environmental factors,
as indicated by the second shaded line in Figure 3. Simulation of the five repli-
cates of this scenario gives the average response ȳ(79) = 9,250,034 with standard
error 14,127. This value, ȳ(79), lies between ȳ(0) and ȳ(92), in line with the sequen-
tial bifurcation assumptions. Comparison of ȳ(79) and ȳ(0) via (9) and (10) gives
¯̂β1−79 = 2,634,203 (with standard error 16,534). Similarly, a comparison of ȳ(92)

and ȳ(79) gives ¯̂β80−92 = 12,381,899 (with standard error 128,220). So, this step
splits the total effect ¯̂β1−92 = 15,016,102 of the first step into its two additive
components. This step decreases the upper limit U for any individual effect in the
first subgroup to 2,634,203; for any individual effect in the second subgroup this
limit is 12,381,899.

To decide where to split a group into two subgroups, we use several principles
which are intended to increase the efficiency of our procedure, as explained in
the discussion between (4) and (5). Figure 3 also shows our remaining sequential
bifurcation steps. We do not split a group any further when its estimated aggre-
gated main effect is either nonsignificant or negative. For example, the estimated
aggregated main effect of factors 50 through 79 is −3230 with standard error
31,418.

For this case study, sequential bifurcation stops after 21 steps. The upper limit,
denoted by U (21), for the main effect of any remaining individual factor is then
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Table 2. Important factors identified in sequential bifurcation for the Old supply chain:
N/A denotes a dummy factor and √ denotes an important factor

Model

Factor Old Current Next generation

92 Demand √ √ √
90 Yield (circuit board) √ √ √
89 Yield (vision test) √ √ √
88 Yield (SMD test) √ √ N/A
87 Yield (test, after wave soldering) √ N/A N/A
86 Yield (function test) √ √ √
85 Yield (time test) √ √ N/A
49 Transportation (between factories) √ √ √
47 Transportation (internal, circuit board factory) √ √ √
45 Transportation (between SMD and test) √ √ √
43 Transportation (between wave soldering and test) √ N/A N/A

reduced to 12,792. Our list of the 11 most important factors is given in Table 2. The
corresponding reordered list in the left-hand column of Table 3 shows that factor
92 is the most important with an estimated main effect of 8,087,149, and factor 88
has the smallest main effect in the shortlist with estimate 241,809. Remembering
that we tried to label the factors such that equation (4) is satisfied, we now conclude
that, indeed, factor 92 is the most important factor and that no factor labelled with
a number smaller than 43 is significant.

In the next section we consider a more realistic metamodel that includes in-
teractions and we illustrate the design and analysis of experiments for sequential
bifurcation under such models.

Table 3. The important factors found from sequential bifurcation
under two meta-models for the Old supply chain simulation.
Details of the factors are given in Table 2

First-order polynomial model

Without interactions With interactions

Factor Estimated main effect Factor Estimated main effect

92 8,087,149 92 4,967,999
49 1,328,563 49 1,953,819
45 490,695 45 1,586,534
43 495,278 43 1,581,504
87 1,098,358 87 1,057,414
85 894,596 85 1,054,181
86 1,014,890 86 1,053,766
89 704,987 89 599,892
47 329,156 47 480,914
90 304,226 90 271,414
88 241,809 88 181,517
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2.4 Two-Factor Interactions and Foldover Designs
in Sequential Bifurcation

Aggregated main effects can be estimated independently of two-factor interactions
if the foldover principle (Box and Wilson, 1951) is used with sequential bifurcation.
Foldover designs are discussed in Chapters 1 and 9 and Kleijnen (1987, page 303).
Such designs consist of a set of factor level combinations and their mirror images,
that is, with levels switched from high to low, and vice versa. We let y−( j);r denote
the observed output with the factors 1 through j set to their low levels in replication
r and the remaining factors set to their high levels so that y−( j);r is the mirror
observation of y( j);r . As an example, we consider the third shaded line in Figure
4. The observations y(49);r and y(−49);r (r = 1, . . . , 5) are simulated and, from the
metamodel (1), it follows that

E(Y−(49)) = β0 − β1 − · · · − β49 + β50 + · · · + β92 + β1;2 + · · · +
+β48;49 − β1;50 − · · · − β49;92 + β50;51 + · · · + β91;92 (11)

and

E(Y(49)) = β0 + β1 + · · · + β49 − β50 − · · · − β92 + β1;2 + · · · +
+ β48;49 − β1;50 − · · · − β49;92 + β50;51 + · · · + β91;92. (12)

Subtracting these two equations demonstrates that all interactions cancel out. In a
similar way, the group effect estimates

β̂ j ′− j ;r = (y( j);r − y−( j);r ) − (y( j ′−1);r − y−( j ′−1);r )

4
(13)

are unbiased by two-factor interactions, as are the individual main effect estimates

β̂ j ;r = (y( j);r − y−( j);r ) − (y( j−1);r − y−( j−1);r )

4
(14)

(see Bettonvil, 1990, for more details).
Sequential bifurcation may give misleading results if, say, two factors have

unimportant main effects but the interaction between them is important (see, also,
Lewis and Dean, 2001). However, we only consider situations in which the fol-
lowing “strong heredity” assumption of Wu and Hamada (2000) holds.

Assumption 3: if a factor has no important main effect, then this factor does not
interact with any other factor:

β j = 0 =⇒ β j ; j ′ = 0 ( j �= j ′). (15)

If, a priori, we suspect that this assumption is violated, then we should investigate
such a factor after the screening phase.

The foldover design does not enable us to estimate individual interactions, but
it does enable us to estimate whether interactions are important, as follows. We
estimate the main effects from the original scenarios as in Section 2.3, ignoring
the mirror scenarios. If the analyses of the foldover design and of the “original”
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Figure 4. Sequential bifurcation assuming a first-order polynomial plus two-factor inter-
actions metamodel, applied to the Old supply chain simulation; includes upper limits for
parameter values.
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design give the same conclusions, then it can be concluded that interactions are
unimportant. This happened, for example, in the ecological simulation reported
by Bettonvil (1990) and Bettonvil and Kleijnen (1996). In the present case study,
however, we show that interactions are important. (In a follow-up experiment that
included only the factors declared to be important, Kleijnen et al., 2003, estimated
the sizes of the individual interactions from a Resolution V design.)

Analogous to Figure 3, Figure 4 shows the sequential bifurcation steps when
we do allow for interactions. A comparison of these two figures and the two lists
of important factors in Table 3 shows that, in our case study, we find the same
shortlist. The individual values, however, do differ: interactions are important.

In the next section, we apply sequential bifurcation to the other two supply
chain configurations (the Current and Next generations) and we interpret these
sequential bifurcation results through our knowledge of the simulated real system.

3 Case Study: Ericsson’s Supply Chain Simulation Models

We first discuss some programming issues and then we define the inputs and
outputs of the three simulation models. Finally, we present the results.

3.1 Programming the Three Simulation Models

We give only a short description of the three supply chain configurations and their
simulation models; for details we refer to Persson and Olhager (2002). At the start
of our sequential bifurcation, we have three simulation models programmed in the
Taylor II simulation software for discrete event simulations; see Incontrol (2003).
We conduct our sequential bifurcation via Microsoft Excel, using the batch run
mode in Taylor II. We store input–output data in Excel worksheets. This set-up
facilitates the analysis of the simulation input–output data, but it constrains the set-
up of the experiment. For instance, we cannot control the pseudorandom numbers
in the batch mode of Taylor II. Hence, we cannot apply common pseudorandom
numbers nor can we guarantee absence of overlap in the pseudorandom numbers;
we conjecture that the probability of overlap is negligible in practice.

In order to validate the simulation models, Persson and Olhager (2002) exam-
ined the simulation of the Current supply chain configuration. They were able to
validate this model because data were available at that time from the real-world
supply chain. More precisely, they validated the model of the Current configura-
tion through a structured walkthrough with the engineers and managers who are
familiar with the system being modeled (see, also, Balci, 2001). Next, they devel-
oped the models for the other two supply chains from the Current model. They
validated the model of the Old supply chain configuration through a less thorough
walkthrough. The model of the Next Generation supply chain was not validated at
all: Ericsson deemed this acceptable because this model was built from a validated
Current model and this supply chain did not even exist at that time.
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3.2 Inputs and Outputs of the Three Simulation Models

For our case study, we now apply sequential bifurcation assuming a metamodel
consisting of a first-order polynomial augmented with two-factor interactions. This
metamodel requires a foldover design, as described in Section 2.4. At the start of
the procedure, we simulate the two extreme combinations which themselves form
a foldover design. Then, as in Section 2.3, in the second step, we set the first 79
factors to their individual high levels and the remaining factors to their low levels;
all these levels are reversed in the mirror image scenario.

Note that the number of simulation observations would be much smaller if we
were to assume a first-order polynomial (see Figure 3), as this assumption avoids
the mirror scenarios required by the foldover principle. Also, this assumption may
lead to a different path through the list of individual factors, that is, a different
sequence of simulated scenarios (compare Figures 3 and 4). In our case study, we
felt almost certain that interactions would be important, so Figure 3 is meant only
to explain the basics of sequential bifurcation.

The environmental factors (labeled 80 through 92 in Section 2) are the demand
for products, the process yield, and the percentage of scrap at each test station.
It can be proved that creating one group of environmental factors and one group
of controllable factors enables estimation of sums of interactions between indi-
vidual controllable and environmental factors; see, for example, Lewis and Dean
(2001).

We label the factors such that all factors have the same meaning in the three
simulation models. To achieve this, we introduce dummy factors for the Current
and the Next Generation models that represent those factors that are removed as
the supply chain is changed. Such dummy factors have zero effects but simplify
the calculations and interpretations of the sequential bifurcation results.

Gunn and Nahavandi (2002) showed that initial conditions are important in
manufacturing simulations. Therefore we use a warm-up period in this case study
in order to be able to assume that the outputs of interest are in a steady state;
see Persson and Olhager (2002). We determine this period by applying Welch’s
procedure, described by Law and Kelton (2000). This procedure gives a warm-up
period of four weeks. (The warm-up period used by Persson and Olhager was only
one week; they determined this period through a rule-of-thumb, namely, that the
warm-up period should be three times the longest lead-time in the simulation.)
After this warm-up period, we run each scenario for 16 weeks of production. This
runlength seems to give steady-state output.

Each simulation model gives several outputs, but we focus on a single out-
put, namely, the average weekly cost of the total supply chain in the steady state.
This cost is calculated from inventory-related costs and quality-related costs. The
inventory-related costs are calculated from the inventory levels throughout the sup-
ply chain and the current value of each product at each step in the chain. The
quality-related costs concern yield, scrap, and modification time multiplied by the
modification cost. The rework affects the inventory-related costs with higher levels
of inventory as the reworked products once again flow through the supply chain.
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Different outputs may have different important factors so the sequential bifurcation
paths may differ.

3.3 Results for Three Simulation Models

The aggregated effects of the Old supply chain exceed those of the Next Generation
supply chain, because the former aggregates more (positive) individual effects. For
example, the Current simulation model has 14 dummy factors (which have zero
effects), so the first sequential bifurcation step gives a smaller main (group) effect:
for the Current model this effect is 7,101,983, whereas it is 15,016,102 for the Old
model.

Furthermore, the shortlists are slightly shorter for the Current and the Next
Generation models. The individual factors on the three shortlists are the same,
except that the Next Generation model includes on its shortlist the extra factors 91
(product demand), 44, and 46 (where the latter two factors represent transportation
between operations). The most important factor (92) is the demand for one of
Ericsson’s fast-selling products. The other factors represent transportation and
yield.

Figure 5 illustrates how the estimated upper limits U for main effects decrease
as new observations are obtained. Furthermore, this figure shows that, for the Old
supply chain, the most important individual main effect, that of factor 92, has
already been identified and estimated after only ten steps. The next important
factor, 49, is identified after 16 observations, and so on.

In order to verify the shortlist produced by the sequential bifurcation, we make
some confirmatory observations and test the effects of the remaining “unimportant”

Figure 5. Upper limit U (i) after step i(i = 9, . . . , 21) and individual main effect estimates
(shaded bars) versus the factor label j ( j = 1, . . . , 92) in the Old supply-chain simulation.
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factors in the Current model. First, we set all the unimportant factors at their low
values, while keeping the important factors fixed at their base or nominal values,
which are coded as zero. Second, we switch all the unimportant factors to their high
values, while keeping the important factors fixed. (These two scenarios are not used
in sequential bifurcation to reach the shortlist.) We again replicate these scenarios
five times. These replicates allow averages, standard deviations, and a t-statistic to
be calculated. The resulting test statistic is nonsignificant and we conclude that the
sequential bifurcation shortlist is valid. Persson (2003) gives many more details
on both the case study and the application of sequential bifurcation to create the
shortlists.

4 Discussion

The technique of sequential bifurcation is an important and useful method for
identifying important factors in experiments with simulation models that involve a
large number of factors. We have demonstrated the steps of this technique through
a case study on three supply chain configurations in the Swedish mobile communi-
cations industry. We have formalized the assumptions of the technique and found
that, in practice, these assumptions may not be too restrictive, as our case study
illustrates. We have extended the technique of sequential bifurcation to random
(as opposed to deterministic) simulations.

In a companion paper (Kleijnen et al., 2003), we changed the metamodel in
(1) after the screening phase, as follows. For those controllable factors found to
be important by sequential bifurcation, we augmented (1) with quadratic effects
to form a predictive model for optimization. For those environmental or noise
factors identified by sequential bifurcation as important, we created environmental
scenarios through Latin hypercube sampling for robustness analysis.

Further research is needed to derive the overall probability of correctly clas-
sifying the individual factors as important or unimportant in our sequential pro-
cedure, which tests each factor group individually; see Lewis and Dean (2001,
pages 663–664), Nelson (2003), Westfall et al. (1998), and Wan et al. (2004).
Also, the extension of sequential bifurcation from single to multiple responses is
an important practical and theoretical problem that requires further work.
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en CommunicatieTechnologie/Interdepartementale Commissie voor Economische
Structuurversterking (“Chain networks, Clusters and ICT”).
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14
Screening the Input Variables to a
Computer Model Via Analysis of
Variance and Visualization

Matthias Schonlau and William J. Welch

An experiment involving a complex computer model or code may have tens or even hundreds
of input variables and, hence, the identification of the more important variables (screening)
is often crucial. Methods are described for decomposing a complex input–output relation-
ship into effects. Effects are more easily understood because each is due to only one or a
small number of input variables. They can be assessed for importance either visually or via
a functional analysis of variance. Effects are estimated from flexible approximations to the
input–output relationships of the computer model. This allows complex nonlinear and in-
teraction relationships to be identified. The methodology is demonstrated on a computer
model of the relationship between environmental policy and the world economy.

1 Introduction

Computer models, also known as “math models” or “codes”, are now frequently
used in engineering, science, and many other disciplines. To run the computer
model software, the experimenter provides quantitative values for various input
(explanatory) variables. The code then computes values for one or more output
(response) variables. For instance, in a model of Arctic sea ice (Chapman et al.,
1994), the input variables included rate of snowfall and ice albedo and the code
produced values of ice mass, and so on. In circuit-design models (see, for example,
Aslett et al., 1998), the input variables are transistor widths and other engineering
parameters, and the output variables are measures of circuit performance such as
time delays.

Often, the computer model will be expensive to run, for example, if it solves
a large number of differential equations that may require several hours or more
of computer time. Thus, in a computer experiment, that is, an experiment with
several runs of the computer model, there is need for careful design or choice of
the values of the input variables and careful analysis of the data produced.

One major difference from traditional design and analysis of experiments with
physical measurements is that computer models are often deterministic. Two runs
of the code with the same set of values for the input variables would give identical
results across the two runs for each output variable. Nonetheless, there will often

308
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be considerable uncertainty in drawing conclusions about the behavior of the
input–output relationships from a limited number of runs, and statistical methods
are required to characterize the uncertainty. The management of uncertainty is
especially critical when the computer model has a high-dimensional set of input
variables.

In applications such as the Arctic sea ice model (Chapman et al., 1994) men-
tioned above, a strategic objective of a preliminary computer experiment is screen-
ing: finding the important input variables. Screening is not a trivial task because
the computer model is typically complex, and the relationships between input vari-
ables and output variables are not obvious. A common approach is to approximate
the relationship by a statistical surrogate model, which is easier to explore. This is
particularly useful when there are many input variables.

An example, which is discussed in this chapter, is the “Wonderland” model of
Lempert et al. (2003), adapted from Herbert and Leeves (1998). In this case study,
41 input variables are manipulated, relating to population growth, economic ac-
tivity, changes in environmental conditions, and other economic and demographic
variables. The output is a quasi global human development index (HDI) which
is a weighted index of net output per capita, death rates, annual flow of pollu-
tion, and the carrying capacity of the environment, spanning both “northern” and
“southern” countries. The model has many output variables under various policy
assumptions; we consider only one, corresponding to a “limits to growth” policy.
Under this scenario, economic growth is intentionally limited by a constraint on
global emissions. After 2010, both hemispheres must set carbon taxes high enough
to achieve zero growth in emissions levels. Larger values of HDI correspond to
greater human development and are better; see Lempert et al. (2003) for a full
description of this measure.

Figure 1 shows scatter plots of the raw data from a Latin hypercube experimental
design (see McKay et al., 1979) with 500 runs of the Wonderland code. The output
variable HDI is plotted against two of the input variables shown in Section 6 to be
important: economic innovation in the north (e.inov.n) and sustainable pollution
in the south (v.spoll.s).

The first plot suggests a slight upward trend in HDI with e.inov.n. It is shown
in Section 6 that the trend is actually very strong; it looks weak here because
there is considerable masking from other variables. The second plot shows a
very rapid dropoff in HDI for low values of v.spoll.s. This nonlinearity in the
computer model would have gone unnoticed without the three points on the left
with the lowest HDI values. Thus, a design with fewer runs, or with fewer lev-
els of each input variable, may well have missed the region containing these
three points. (Note also that very small values of v.spoll.s do not always give
such extreme values of HDI.) In our experience, nonlinear effects are common
in computer experiments because the input variables often cover wide ranges.
We explore the Wonderland application further in Section 6, but it is hoped we
have already illustrated some of the potential difficulties in screening the input
variables of a computer model: large dimensionality, complex nonlinearities, and
masking.
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Figure 1. Human development index (HDI) from the Wonderland model plotted against
(a) economic innovation in the north (e.inov.n) and against (b) sustainable pollution in the
south (v.spoll.s).

There is a spectrum of methods proposed for screening variables in a computer
experiment. They differ mainly in the assumptions they make about the form of
an input–output relationship: with stronger assumptions, fewer runs are typically
required.

Iman and Conover (1980) built a rank-regression approximation of a computer
model of the discharge of a nuclear isotope from radioactive waste. With seven
input variables, they used 200 runs in a Latin hypercube design. A sensitivity
analysis followed from the least squares estimates of the coefficients in the first-
order rank-regression model. (A sensitivity analysis, which explores how sensitive
the output variable is to changes in the input variables, is similar to screening.)
Morris (1991) described a screening method where the number of runs is a small
multiple of the number of input variables. The method does not attempt to model
the input–output relationship(s) of a computer code, rather it attempts to divide
the variables qualitatively into three categories: unimportant; those with linear and
additive effects; and those with more complex, nonlinear, or interaction effects.
Twenty variables in a heat-transfer model were investigated using 108 runs.

With even fewer runs relative to the number of input variables, Bettonvil and
Kleijnen (1996) used a sequential bifurcation algorithm (see Chapter 13) to analyze
a large deterministic global-climate model. The output is the worldwide CO2

circulation in the year 2100. The model has 281 input variables, 15 of which were
identified as important after 154 runs. The sequential bifurcation algorithm makes
several strong assumptions to enable an experiment with fewer runs than input
variables (a supersaturated design—see Chapter 8). Each variable is considered at
only two levels, and effects are assumed to be linear and additive. Moreover, the
direction (sign) of each effect must be known a priori. The sequential bifurcation
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method was followed up with a traditional Resolution IV design (Chapter 1) for
the most important factors in order to estimate a response surface model.

Gu and Wahba (1993) used a smoothing-spline approach with some similarities
to the method described in this chapter, albeit in a context where random error
is present. They approximated main effects and some specified two-variable in-
teraction effects by spline functions. Their example had only three explanatory
variables, so screening was not an issue. Nonetheless, their approach parallels
the methodology we describe in this chapter, with a decomposition of a function
into effects due to small numbers of variables, visualization of the effects, and an
analysis of variance (ANOVA) decomposition of the total function variability.

The approach to screening the input variables in a computer model described
in this chapter is based on a Gaussian random-function approximator to an input–
output relationship. This is a flexible, data-adaptive paradigm with a long history
in the analysis of computer experiments. Similarly, decomposing the random-
function approximator into low-order effects for the purposes of identifying and
examining the important effects has been in use for some time. The estimated
effects are visualized or quantified via a functional ANOVA decomposition. In
an experiment with six input factors and 32 runs, Sacks et al. (1989) identified
the important (nonlinear) main effects and two-variable interaction effects. Welch
et al. (1992) described a stepwise method for adding important input variables to
the statistical approximator and visualized the important effects. They were able to
find the important nonlinear and interaction effects among 20 input variables with
50 runs. Chapman et al. (1994) and Gough and Welch (1994) performed sensitivity
analyses of climate models with 13 and 7 input variables, respectively, and Mrawira
et al. (1999) were able to deal with 35 input variables in a civil-engineering ap-
plication. With up to 36 variables, Aslett et al. (1998) and Bernardo et al. (1992)
used visualization of important effects to guide the sequential optimization of
electronic circuit designs. Santner et al. (2003, Chapter 7) also summarized this
approach.

Thus, decomposition of a random-function approximator of a computer model
into low-dimensional effects, in order to identify the important effects and examine
them visually and quantitatively, has been widely applied and reported by many
authors. However, the implementation of these methods has not been described,
with the partial exception of Schonlau (1997), a shortcoming that we address in
this chapter.

The chapter is organized as follows. Section 2 reviews the key underlying
random-function approximator. Effects are defined in Section 3, leading to a func-
tional ANOVA, and Section 4 describes their estimation. Section 5 summarizes the
steps in the work flow for identifying and visualizing the important estimated ef-
fects. This approach has proved to be a powerful screening tool, as evidenced by the
above examples. In Section 6, we return to the Wonderland model and demonstrate
how the methodology is used. Some concluding remarks are given in Section 7.
Some details of the derivation of the best linear unbiased predictor of an effect
are provided in Appendix A, and Appendix B shows how the high-dimensional
integrals required for the estimated effects, for their pointwise standard errors, and
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for the ANOVA decomposition boil down to a series of low-dimensional integrals
under certain, fairly common, conditions.

2 The Random-Function Approximator

Here, we give a brief review of methods for the analysis of computer experiments,
concentrating on statistical approximation of the computer model. Strategies for
the design and analysis of computer experiments have been described by many
authors, including Currin et al. (1991), Koehler and Owen (1996), Sacks et al.
(1989), Santner et al. (2003), and Welch et al. (1992). All these authors take into
account the deterministic nature of a code, such as the Wonderland model, and
also provide uncertainty measures via a statistical approximation model.

In general, suppose that a code is run n times in a computer experiment. Each
run has a different set of values for the d-dimensional vector of input variables,
x = (x1, . . . , xd )T . A particular output variable is denoted by y(x). With several
output variables, each is treated separately. The data consist of n input vectors,
x(1), . . . , x(n), chosen from an input region of interest, χ , and the vector of n
corresponding output values, denoted by y.

Following the approach of the above authors, the output variable y(x) is treated
as a realization of a random function:

Y (x) = f ′(x)β + Z (x), (1)

where f (x) = [ f1(x), . . . , fh(x)]′ is a vector of h known regression functions, ′

denotes transpose, β is a h × 1 vector of parameters to be estimated, and Z is a
Gaussian stochastic process indexed by x. It is assumed that Z (x) has mean zero
and constant variance, σ 2, for all x. The covariance between Z (x) and Z (x̃) at two
input vectors, x = (x1, . . . , xd )′ and x̃ = (x̃1, . . . , x̃d )′, is

Cov[Z (x), Z (x̃)] = σ 2 R(x, x̃), (2)

where R(·, ·) is a “correlation function” and x̃ denotes a different set of input values
from x.

The correlation function R(·, ·) in (2) is central to this statistical model. The
power-exponential class of correlation functions is a popular choice, for its com-
putational simplicity and because it has been successful in many applications. The
power-exponential correlation function is

R(x, x̃) =
d∏

j=1

exp(−θ j |x j − x̃ j |p j ), (3)

where θ j ≥ 0 and 0 < p j ≤ 2( j = 1, . . . , d) are parameters that can be estimated
from the data, often via maximum likelihood. The p j can be interpreted as smooth-
ness parameters—the output surface is smoother with respect to x j as p j increases.
For p j = 2, the surface is infinitely differentiable. For 0 < p j < 2, the surface is
continuous, but not differentiable. As p j increases between 0 and 2, however, the
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surface appears to fluctuate less and less, and in this sense could be said to be
smoother. The θ j indicate the extent to which the variation in the output function
is local with respect to x j . If θ j is large, the correlation (3) between observations
or outputs at x and x̃ falls rapidly with the distance between x j and x̃ j , and the
function is difficult to predict in the x j direction.

We next describe the first steps in the derivation of the best linear unbiased
predictor (BLUP) of Y (x) at an untried input vector x (see, for example, Sacks
et al., 1989). Similar steps are used in Section 4 to estimate the effects of one, two,
or more input variables. It is then apparent how to adapt results and computational
methods for predicting Y (x) to the problem of estimating such effects.

Following the random-function model (1), consider the prediction of Y (x) by
Ŷ (x) = a′(x)y, that is, a linear combination of the n values of the output variable
observed in the experiment. The best linear unbiased predictor is obtained by
minimizing the mean squared error of the linear predictor or approximator, Ŷ (x).
The mean squared error, MSE[Ŷ (x)], is

E[Y (x) − Ŷ (x)]2 = E[ f ′(x)β + Z (x) − a′(x)(Fβ + z)]2

= {[ f ′(x) − a′(x)F]β}2

+ Var[Z (x)] + a′(x)Cov(z)a(x) − 2a′(x)Cov[Z (x), z],

where F is the n × h matrix with row i containing the regression functions f ′(x(i))
for run i in the experimental plan, and z = [Z (x(1)), . . . . , Z (x(n))]′ is the n × 1
vector of random Z values, with element i corresponding to run i . From the
covariance function (2) we can write Cov(z) as σ 2 R, where R is an n × n matrix
with element (i, j) given R(x(i), x( j)), and Cov[Z (x), z)] as σ 2r (x), where r (x) is
an n × 1 vector with element i given by R(x, x(i)). With this notation, the mean
squared error of Ŷ (x) is

MSE[Ŷ (x)] = {[ f ′(x) − a′(x)F]β}2

+ Var[Z (x)] + σ 2a′(x)Ra(x) − 2σ 2a′(x)r (x). (4)

Some further simplification of this expression is possible, for example, by using
the fact that Var[Z (x)] = σ 2, by assumption. We leave the mean squared error in
this form, however, to facilitate comparison with its counterpart in Section 4 for
the estimated effect of a group of variables.

We now choose a(x) to minimize (4). To avoid an unbounded contribution from
the first term on the right-hand side of (4) from large elements inβ, the contribution
is eliminated by imposing the constraint

Fa(x) = f (x).

This constraint is also sometimes motivated by unbiasedness, that is, from
E[Ŷ (x)] = E[Y (x)] for all β. Thus, the best linear unbiased predictor, or opti-
mal value of a(x), results from the following optimization problem,

min
a(x)

Var[Z (x)] + σ 2a′(x)Ra(x) − 2σ 2a′(x)r (x) (5)
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subject to

Fa(x) = f (x).

The optimal a(x) turns out to give the following form for the BLUP (or approx-
imator) (see, for example, Sacks et al., 1989),

Ŷ (x) = f (x)β̂ + r ′(x)R−1(y − Fβ̂), (6)

where β̂ = (F′ R−1 F)−1 FR−1 y is the generalized least squares estimator of β.
If we put the optimal a(x) into the expression for the mean squared error (4), we
obtain the following standard error, se[Ŷ (x)], for Ŷ (x):

se2[Ŷ (x)] = Var[Z (x)] − σ 2r (x)′ R−1r (x)

+ σ 2[ f (x) − F′ R−1r (x)]′(F′ R−1 F)−1[ f (x) − F′ R−1r (x)]. (7)

This formula ignores the uncertainty from estimating the correlation parameters,
for example, the θ j and p j in (3). Some comments on this issue are made in
Section 7.

3 Effects

The important input variables are those that have large effects on the output vari-
able. As with traditional analysis of variance, we can look at the main effects of
single variables, or the joint or interaction effects of several variables at a time.

Suppose that we are interested in the effect of a subset of input variables, held in
a vector xe, where e denotes the set of subscripts of the variables of interest. The
vector of remaining variables is denoted by x−e. For example, when interest is in the
effects of x1 and x2 among d > 2 variables, we have e = {1, 2} and xe = (x1, x2),
whereupon x−e = (x3, . . . , xd ). Without loss of generality we rearrange the order
of the input variables so that we can write x = (xe, x−e). To obtain a unique and
workable definition of the effect of xe is essentially the problem of how to deal with
the variables in x−e. We next discuss several ways of approaching this problem.

Keeping the variables in x−e fixed requires little new methodology. We con-
sider y(xe, x−e) as a function of xe, with x−e fixed, for example, at the variable
midranges. Estimates and pointwise standard errors of such effects follow immedi-
ately from (6) and (7), with Ŷ (xe, x−e) and se[Ŷ (xe, x−e)] considered as functions
of xe. There are two serious disadvantages of this method, however. First, in the
presence of interaction effects involving one or more variables in xe and one or
more variables in x−e, the magnitude of the effect of xe may change depending on
the levels chosen for x−e, and thus the effect of xe is not isolated. Consequently,
there is no straightforward decomposition of the total variation in y(x), or its
predictor Ŷ (x), into contributions from various effects.

Alternatively, we may define an effect by “integrating out” the other variables.
Under certain conditions, this leads to a simple decomposition of y(x) into con-
tributions from various effects, with a corresponding decomposition of the total
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variance of y(x) over χ . Moreover, as we show in Section 4, these effects and
their variance contributions can be easily estimated. Hence, defining an effect by
integrating out the other variables is the method pursued for the remainder of this
chapter.

For a convenient decomposition of y(x), we need two conditions on the region
of interest of the input variables. First, χ is assumed to be a direct product of
one-dimensional regions, which we write as

χ = ⊗d
j=1χ j , (8)

where χ j denotes the values of interest for variable x j , for instance, a continuous
interval or a discrete set of points (for which integration is interpreted as sum-
mation). Second, we assume that integration is with respect to a weight function,
w(x), which is a product of functions of one input variable at a time:

w(x) =
d∏

j=1

w j (x j ) for x j ∈ χ j , j = 1, . . . , d. (9)

Often, the weight function w j (x j ) for x j is chosen to be a uniform distribution,
representing equal interest across the range of values for x j . In other applica-
tions, x j might be a variable in the computer code because its value in nature is
uncertain. If this uncertainty is represented by a given statistical distribution, for
example, a normal distribution, then the distribution would be used as the weight
function, w j (x j ). The conditions (8) and (9) occur frequently in applications; a
minor relaxation of them is discussed in Section 4.

Under the assumptions (8) and (9), the marginal effect, ȳe(xe), of xe is defined
by integrating out the other variables,

ȳe(xe) =
∫

⊗ j /∈eχ j

y(xe, x−e)
∏
j /∈e

w j (x j )dx j for xe ∈ ⊗ j∈eχ j . (10)

Note that a marginal effect is the overall effect of all the variables in xe. With just
one variable in xe, we call this a main effect; with two or more variables, we call
this a joint effect.

We use the marginal effects (10) to decompose y(x) as follows into corrected
or adjusted effects involving no variables, one variable at a time, two variables at
a time, and so on, up to the contribution from all the variables:

y(x) = μ0 +
d∑

j=1

+μ j (x j ) +
d−1∑
j=1

d∑
j ′= j+1

μ j j ′ (x j , x j ′ ) + · · · + μ1...d (x1, . . . , xd )

(11)

for x ∈ χ , where

μ0 =
∫
χ

y(x)w(x)dx



316 Matthias Schonlau and William J. Welch

is an overall average,

μ j (x j ) = ȳ j (x j ) − μ0 for x j ∈ χ j (12)

is the corrected main effect of x j ,

μ j j ′ (x j , x j ′ ) = ȳ j j ′ (x j , x j ′ ) − μ j (x j ) − μ j ′ (x j ′ ) − μ0 for x j , x j ′ ∈ χ j ⊗ χ j ′

(13)

is the corrected joint effect or interaction effect of x j and x j ′ , and so on. Thus, each
corrected effect is the corresponding marginal effect corrected for all lower-order
terms.

For example, suppose interest centers on the variables x1 and x2. If their interac-
tion effect, μ12(x1, x2), has an important magnitude, it is not meaningful to consider
the effects of x1 or x2 in isolation. We would look at their overall joint effect,

ȳ12(x1, x2) = μ0 + μ1(x1) + μ2(x2) + μ12(x1, x2) for x1, x2 ∈ χ1 ⊗ χ2.

Similar comments apply to higher-order effects. In practice, we will have to
estimate the marginal effects, and hence the corrected effects, to decide which are
important.

The effects (11) are orthogonal with respect to the weight function w(x), leading
to a decomposition of the total variance of y(x), called the ANOVA decomposition
or functional analysis of variance as follows,∫
χ

[y(x) − μ0]2w(x)dx =
d∑

j=1

∫
χ j

μ2
j (x j )w j (x j )dx j

+
d−1∑
j=1

d∑
j ′= j+1

∫
χ j ⊗χ j ′

μ2
j j ′ (x j , x j ′ )w j (x j )w j ′ (x j ′ )dx j dx j ′

+ · · · +
∫
χ

μ2
1...d (x1, . . . , xd )

d∏
j=1

w j (x j )dx j . (14)

A quantitative measure of the importance of any effect, and hence the associated
variables, follows from the percentage contribution of each term on the right-hand
side to the total variance on the left. The functional analysis of variance (ANOVA)
in (14) goes back at least as far as Hoeffding (1948).

4 Estimating the Effects

Estimating the marginal (main or joint) effects ȳe(xe) in (10) is key to our approach
for assessing the importance of variables. From the estimated marginal effects, we
can also estimate the corrected effects in (11) and the ANOVA decomposition (14).
Furthermore, when visualizing the large estimated effects it is easier to interpret
main or joint effects than their corrected counterparts.
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If y(x) is treated as if it is a realization of the random function Y (x) in (1), it
follows that ȳe(xe) is a realization of the analogously integrated random function,

Ȳe(xe) = f̄ ′
e(xe)β + Z̄e(xe) for xe ∈ ⊗ j∈eχ j . (15)

Here, f̄ e(xe) and Z̄e(xe) have the input variables not in xe integrated out as in (10):

f̄ e(xe) =
∫

⊗ j /∈eχ j

f (xe, x−e)
∏
j /∈e

w j (x j )dx j for xe ∈ ⊗ j∈eχ j (16)

and

Z̄e(xe) =
∫

⊗ j /∈eχ j

Z (xe, x−e)
∏
j /∈e

w j (x j )dx j for xe ∈ ⊗ j∈eχ j . (17)

The statistical properties of the stochastic process Z̄e(xe) and the derivation of
the BLUP of Ȳe(xe) are derived in Appendix A. It is shown that the BLUP of Ȳe(xe)
is

ˆ̄Y e(xe) = f̄ e(xe)β̂ + r̄ ′
e(xe)R−1(y − Fβ̂) (18)

and its standard error is given by

se2[ ˆ̄Y e(xe)]=Var[Z̄e(xe)]−σ 2r̄ e(x)′ R−1r̄ e(xe)

+ σ 2[ f̄ e(xe)−F′R−1r̄ e(xe)]′(F′R−1 F)−1[ f̄ e(xe)−F′ R−1r̄ e(xe)],

(19)

where r̄ e(xe) is defined following (22) in Appendix A.
In other words, software for computing the BLUP of Y (x) and its standard error

is easily modified for estimating effects and, hence, the ANOVA decomposition,
provided that we can compute Var[Z̄e(xe)] from (21) in Appendix A, r̄ e(xe) follow-
ing (22), and f̄ e(xe) in (16), quantities that will involve high-dimensional integrals
in high-dimensional problems. These computations are described in Appendix B.

It is possible to relax the product-region condition (8) in some experiments. For
example, Mrawira et al. (1999) dealt with several groups of variables where there
were constraints like x1 ≤ x2. The triangular input space for such a group had a
product arrangement with all other variables or groups of variables. Thus, in all
the above formulas for estimated effects or their standard errors, we merely treat
the variables in a group together as if they were a single variable. This means,
however, that the estimated effect for a group cannot be decomposed further into
contributions from its constituent variables.

5 Steps for Identifying and Visualizing the Important
Estimated Effects

To screen the input variables, we carry out the following steps.

1. Estimate by maximum likelihood the unknown parameters, β in (1), σ 2 in (2),
and the correlation parameters, for example, the θ j and p j in (3).
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2. Before continuing with a screening analysis, it is prudent to check the overall
accuracy of the approximator in (6) and the validity of its standard error (7) by
cross validation (see Jones et al., 1998).

3. Compute the estimated marginal effects defined in (18) by carrying out the
required integrations as described in Appendix B. This will usually be done for
all main effects and all two-variable joint effects.

4. For each estimated marginal effect, compute the corresponding estimated cor-
rected effect by subtracting all estimated lower-order corrected effects. This
is best done recursively, correcting the main effects first, then correcting the
two-variable effects, and so on.

5. Using the estimated corrected effects, compute the estimated contributions in
the functional analysis of variance (14).

6. If an estimated interaction effect makes a substantial contribution to the ANOVA
decomposition, the corresponding joint effect (18) is plotted against the relevant
input variables as a contour or perspective plot. The standard error (19) can also
be plotted against the same input variables in a separate plot.

7. Any input variable that has a large ANOVA contribution from an estimated
(corrected) main effect but does not appear in any large ANOVA contributions
from interaction effects has its estimated (uncorrected) main effect plotted.
Approximate pointwise confidence intervals based on the standard error can
also be shown.

6 Application: The Wonderland Model

We illustrate these methods using the Wonderland computer model outlined in
Section 1. This model exemplifies the type of screening problem we have in mind,
as we show that it has highly nonlinear, interactive effects that demand a flexible,
data-adaptive statistical modeling strategy. The computer model has 41 input vari-
ables and we focus on one particular quasi global human development index (HDI)
output variable resulting from a policy that might be called “limits to growth”. The
data consist of 500 model runs from a “space-filling” Latin hypercube design (see
McKay et al., 1979).

The first step in the analysis is to fit the random-function model (1) and to check
the accuracy of the resulting approximator. We use a simple random-function
model:

Y (x) = β0 + Z (x),

where the regression component is just a constant, β0. The unknown parameters,
β0, σ

2 in (2) and the correlation parameters θ j and p j for j = 1, . . . , 41 in (3), are
estimated by maximum likelihood. Figure 2(a) shows the actual HDI value y(x(i))
from run i of the Wonderland model versus its leave-one-out cross-validated predic-
tion, Ŷ−i (x(i)) for i = 1, . . . , 500. The subscript −i indicates that the approximator
(6) is built from all the data except run i . (The random-function correlation para-
meters are not re-estimated). Figure 2(a) shows fairly good accuracy of
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Figure 2. Diagnostics for the Wonderland approximating model: (a) actual human de-
velopment index (HDI) values versus their cross-validation predictions; (b) standardized
cross-validation residuals versus cross-validation predictions.

approximation, though with some over-prediction of the extremely low HDI val-
ues. Figure 2(b) plots the standardized cross-validated residual,

[y(x(i)) − Ŷ−i (x(i))]/se−i [Ŷ (x)], (20)

versus Ŷ−i (x(i)) for i = 1, . . . , 500, where the standard error se−i [Ŷ (x)] is com-
puted from (7), again without the data from run i. The plot shows some standardized
residuals falling outside the bands at ±3, indicating that the error of approximation
is sometimes a little larger in magnitude than is suggested by the standard error.

The next step is to compute the estimated marginal effects (18). Following our
usual practice, this is done for all main effects and all two-variable joint effects.
The required integrations over the remaining 40 or 39 variables, respectively, are
computed as described in Appendix B.

Each estimated marginal effect leads to the estimate of the corresponding cor-
rected effect in (12) or (13). This is done recursively: the estimated main effects
are corrected first, followed by the two-variable interaction effects.

The functional analysis of variance in (14) is then computed from the estimated
corrected effects. Here, the 41 main effects and 820 two-factor-interaction effects
together account for about 89% of the total variance of the predictor. Hence, about
11% of the predictor’s total variability is due to higher-order effects. Table 1 shows
the estimated main effects and interaction effects that contribute at least 1% to the
functional ANOVA: These 12 effects together account for about 74% of the total
variation. Only six variables appear in these 12 effects; they are described in Table 2.

The ANOVA suggests that e.inov.n (economic innovation in the north) is an
important input variable. Its estimated main effect in Figure 3(a) shows a strong,
approximately linear trend. The estimated increase in HDI is fairly substantial:
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Table 1. Estimated main effects and two-variable interaction effects
accounting for more than 1% of the total variance of the predictor; the
variable names are defined in Table 2; suffix “.n” or “.s” indicates the
northern region or the southern region, respectively

% of Total % of Total
Effect variance Effect variance

e.inov.n 24.3 v.spoll.s × v.drop.s 2.7
v.spoll.s 13.5 e.grth.n × e.inov.n 1.9
e.inov.s 12.1 v.drop.s 1.9
e.cinov.s 5.3 e.finit.s 1.5
v.spoll.s × v.cfsus.s 4.6 e.inov.n × e.inov.s 1.4
v.drop.s × v.cfsus.s 3.7 v.cfsus.s 1.2

about 0.06 over the e.inov.n range. This was not obvious from the scatter plot in
Figure 1(a); certainly any guess as to the magnitude of the increase would have
been much smaller. The relationship was masked by other variables.

The estimated main effect of v.spoll.s (sustainable pollution in the south) in
Figure 3(b) confirms the same nonlinearity that we could see in the scatter plot
in Figure 1(b). The drop in HDI over the first twentieth of the range of v.spoll.s
is substantial. Given that we sampled 500 points we would suspect roughly one-
twentieth or 25 of the HDI values to be low. However, the scatter plot in Figure 1(b)
shows only three low points. This hints at a highly local interaction.

The analysis of variance in Table 1 does indeed identify several estimated in-
teraction effects involving v.spoll.s; the largest is that with v.cfsus.s (change in
sustainable pollution in the south). Figure 4(a) shows the estimated joint effect of
these two input variables on HDI. The surface is fairly flat for most of the area. As
previously seen in the main effect plot, HDI increases rapidly with v.spoll.s when
v.spoll.s is close to its lower limit. Now we see that this increase is larger for high
values of v.cfsus.s (an increase from −0.12 to 0) than for low values of v.cfsus.s
(an increase from −0.06 to 0). This difference appears to be substantial relative to
the standard errors shown in Figure 4(b), which are roughly of order 0.01.

For comparison, we also use stepwise regression to select variables, specifically
the R function step (R Development Core Team, 2005), which uses Akaike’s
information criterion (see Akaike, 1973). The selection from all 41 input variables

Table 2. Wonderland input variables that appear in the important estimated effects of
Table 1. Prefix “e.” or “v.” indicates an economic or environmental variable, respectively
Variable Description

e.finit Flatness of initial decline in economic growth
e.grth Base economic growth rate
e.inov Innovation rate
e.cinov Effect of innovation policies (pollution taxes) on growth
v.spoll Sustainable pollution
v.cfsus Change in level of sustainable pollution when natural capital is cut in half
v.drop Rate of drop in natural capital when pollution flows are above the sustainable level
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Figure 3. Estimated main effects on HDI in the Wonderland model: (a) estimated main
effect of e.inov.n (economic innovation in the north); (b) estimated main effect of v.spoll.s
(sustainable pollution in the south). The estimated effects are denoted by “+” and approx-
imate 95% pointwise confidence limits are denoted by “−”.

results in a first-order model (main effects model) with 15 variables, but e.finit.s and
v.cfsus.s in Table 1 are not included. Extending the model search space to allow
all second-order terms also, that is, the 41 squares and 820 bilinear interaction
effects of the input variables, yields a final model with 62 terms. Again e.finit.s
and v.cfsus.s do not appear. Thus, the bilinear v.spoll.s × v.cfsus.s interaction effect
is not included, contrary to Table 1. (Note that a two-factor interaction effect is
defined to be a more general, nonadditive effect in the random-function model.)
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Figure 4. Joint effect of sustainable pollution in the south (v.spoll.s) and change in sus-
tainable pollution in the south (v.cfsus.s) on HDI in the Wonderland model: (a) estimated
effect; (b) pointwise standard error of the estimated effect.
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Figure 5. Actual human development index (HDI) values versus their cross-validation
predictions from regression models: (a) selected from all first-order terms; (b) selected
from all second-order terms.

The two regression models have lower prediction accuracy than the random-
function model when assessed using “cross-validated root mean squared error of
prediction”. This quantity is simply the root mean of the squared cross-validated
residuals y(x(i)) − Ŷ−i (x(i)), for i = 1, . . . , n in the numerator of (20). The cross-
validated root mean squared error values are 0.040 and 0.035 for the first-order
and second-order regression models, respectively, compared with 0.026 for the
random-function model. Figure 5 shows that both regression models are particu-
larly poor at predicting extremely low values of HDI. The true relative importances
of the effects of the input variables are not known for the Wonderland model, but
it is arguable that the screening results from the random-function model are more
credible because of the better prediction performance of this model.

7 Discussion

The Wonderland model illustrates that, at least in some applications, very complex
effects involving highly nonlinear, interactive relationships, can exist. Naturally,
these are difficult to model and identify. The approach that we have described
starts with a random-function model that is data-adaptive to such complexities,
given enough computer-model runs. Similarly, the estimated effects derived from
the random-function approximator can be fairly complex if demanded by the data.
To detect such subtle effects, the experimental design has to allow exploration
of the input region densely, at least for a few variables at a time. “Space-filling”
designs such as Latin hypercubes, used in this chapter, and orthogonal arrays (see
Chapter 7) have good projective properties and are desirable in this respect (see
Koehler and Owen, 1996, for a review of designs for computer experiments). The
design does not have to be balanced in any sense. The ANOVA decomposition is
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of the approximator (that is, the predictor from the surrogate model); it is not a
traditional analysis of variance computed directly from the data.

In the Wonderland model, a pathological scenario was identified of very low
values of the human development index, dependent on extreme values of two of
the 41 variables. In the experiment with 500 runs, only three runs exhibited this
behavior; fewer runs in the design or a less flexible approximation strategy may
well have missed this feature.

In practice, one is often faced with choosing a model that is easily interpretable
but may not approximate a response very well, such as a low-order polynomial re-
gression, or with choosing a black box model, such as the random-function model
in equations (1)–(3). Our approach makes this black box model interpretable in two
ways: (a) the ANOVA decomposition provides a quantitative screening of the low-
order effects, and (b) the important effects can be visualized. By comparison, in a
low-order polynomial regression model, the relationship between input variables
and an output variable is more direct. Unfortunately, as we have seen, the complex-
ities of a computer code may be too subtle for such simple approximating models.

Throughout, we have used “plug-in” estimates of the correlation parameters in
(3). These parameters are estimated by maximum likelihood but the estimates are
treated as the true values thereafter. The uncertainty from estimating the correlation
parameters is not propagated through to the standard errors of estimated effects.
In principle, though, this is easily overcome with a Bayesian prior distribution
on the correlation parameters. We could: (1) sample say 10–100 sets of values
of the correlation parameters from their Bayesian posterior distribution (see, for
example, Robert and Casella, 2004); (2) estimate effects using the methods in
this chapter, conditional on each set of values of the correlation parameters; and
(3) combine the analyses using standard probability results to compute a standard
error taking account of parameter uncertainty. As the analysis in this chapter is
relatively straight-forward computationally, repeating it 10–100 times would not be
onerous; rather, the difficulty would be with sampling from the Bayesian posterior
for applications with many input variables.

Appendix A
Derivation of the Best Linear Unbiased Predictor of an Effect

The best linear unbiased predictor (BLUP) of Ȳe(xe) in (18) follows from the
properties of Z̄e(xe) in (17). Clearly, Z̄e(xe), like Z (x), has expectation zero. Its
variance, however, differs from one effect to another:

Var[Z̄e(xe)] =
∫

⊗ j /∈eχ j

∫
⊗ j /∈eχ j

Cov[Z (xe, x−e), Z (xe, x̃−e)]
∏
j /∈e

w j (x j )w j (x̃ j )dx j d x̃ j

= σ 2
∫

⊗ j /∈eχ j

∫
⊗ j /∈eχ j

R[(xe, x−e), (xe, x̃−e)]
∏
j /∈e

w j (x j )w j (x̃ j )dx j d x̃ j .

(21)
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The steps for deriving the BLUP of Ȳe(xe) with a standard error closely follow
those in Section 2 for the BLUP of Y (x). Again, consider predictors that are linear
in the n observed output values, ˆ̄Y e = a′

e(xe)y. From the random-function model

(15), the mean squared error of ˆ̄Y e(xe) is

E[Ȳe(xe) − ˆ̄Y e(xe)]2 = E[ f̄ ′
e(xe)β + Z̄e(xe) − a′

e(xe)(Fβ + z)]2

= {[ f̄ ′
e(xe) − a′

e(xe)F]β}2 + Var[Z̄e(xe)]

+ a′
e(xe)Cov(z)ae(xe) − 2a′

e(xe)Cov[Z̄e(xe), z].

Element i of the n × 1 vector Cov[Z̄e(xe), z] is computed from

Cov[Z̄e(xe), Z (x(i))] =
∫

⊗ j /∈eχ j

Cov[Z (xe, x−e), Z (x(i)
e , x(i)

−e)]
∏
j /∈e

w j (x j )dx j

= σ 2
∫

⊗ j /∈eχ j

R[(xe, x−e), (x(i)
e , x(i)

−e)]
∏
j /∈e

w j (x j )dx j . (22)

Thus, we have to integrate out the variables not in xe from the correlation function.
We write σ 2r̄ e(xe) for Cov[Z̄e(xe), z].

Again imposing a constraint to eliminate the contribution to the mean squared
error from the term involving β, the optimal choice of a′

e(xe) is formulated as

min
ae(xe)

Var[Z̄e(xe)] + σ 2a′
e(xe)Rae(xe) − 2σ 2a′

e(xe)r̄ e(xe) (23)

subject to

Fae(xe) = f̄ e(xe).

The constrained optimization problems leading to the BLUPs of Y (x) and Ȳe(xe)
are very similar: Var[Z (x)], r (x), and f (x) in (5) have simply been replaced by
Var[Z̄e(xe)], r̄ e(xe), and f̄ e(xe), respectively, in (23).

Appendix B
Computation of the Integrals Required for the Estimated
Effects and the ANOVA Decomposition

To compute the BLUP (18) of a marginal effect we need the vectors f̄ e(xe) in (16)
and r̄ e(x) following (22), both of which involve integration over all the variables
not in e. For computational convenience in performing these integrations, we need
two further “product-structure” conditions, in addition to (8) and (9). They relate to
the properties of the random-function model, specifically the regression functions,
f (x), in (1) and the correlation function, R(x, x̃), in (2).
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First, we assume each regression function is a product of functions in just one
input variable; that is, element k of f (x) can be written

fk(x) =
d∏

j=1

fk j (x j ) (k = 1, . . . , h). (24)

Fortunately, the polynomial regression models commonly used are made up of
functions fk(x) that are products of powers of single variables. With (24), element
k of f̄ e(xe) in (16) is∫

⊗ j /∈eχ j

fk(xe, x−e)
∏
j /∈e

w j (x j )dx j =
∏
j /∈e

fk j (x j )
∫

⊗ j /∈eχ j

∏
j /∈e

fk j (x j )w j (x j )dx j .

The integral on the right-hand side of this equation is clearly a product of one-
dimensional integrals, ∫

χ j

fk j (x j )w j (x j )dx j ,

which can be evaluated using simple techniques such as Simpson’s rule.
Second, we assume similarly that the correlation function is a product of one-

dimensional correlation functions; that is,

R(x, x̃) =
d∏

j=1

R j (x j , x̃ j ). (25)

The power-exponential correlation function (3), for example, is of this product
form. To compute r̄ e(x), the integral on the right-hand side of (22) is evaluated as∏

j∈e

R j (x j , x (i)
j )

∫
⊗ j /∈eχ j

∏
j /∈e

R j (x j , x (i)
j )w j (x j )dx j ,

and the integral involved is a product of one-dimensional integrals,∫
χ j

R j (x j , x (i)
j )w j (x j )dx j .

For the standard error (19), we also need Var[Z̄e(xe)] in (21). With condition
(25), the double integral on the right-hand side of (21) is computed as∏

j∈e

R j (x j , x j )
∏
j /∈e

∫
χ j

∫
χ j

R j (x j , x̃ j )w j (x j )w j (x̃ j )dx j d x̃ j .

Thus, two-dimensional numerical quadrature is sufficient. Further simplification
follows by noting that the correlation function should satisfy R j (x j , x j ) = 1 when
modeling a continuous function.

To visualize the estimated effect ˆ̄Y e(xe) and its standard error, se[ ˆ̄Y e(xe)],
these quantities are computed for a grid of values of xe. The required one- and
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two-dimensional integrals depend only on the variables not in xe and need be
computed only once for all grid points.

From the estimated marginal effects, it is straightforward to compute estimates
of the corrected main effects (12), the two-variable interaction effects (13), and so
on. The ANOVA contributions on the right-hand side of (14) for these low-order
effects involve correspondingly low-dimension integrals.
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2 f design, 3
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adaptive variance estimator, 283
ADME, 70
aggregation, 295
Akaike’s information criterion, 320
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assay calibration, 69
Average Entropy, 127
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base level, 289
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basis functions, 288
bayes factor, 182
Bayesian analysis, 242
Bayesian modeling, 170
Bergman–Hynén method, 33, 37, 41, 44
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biological assay (biochemical test), 76
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blood-glucose experiment, 235
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Box–Meyer method, 31, 32, 41, 44
Box–Meyer statistic, 41–43
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Brenneman–Nair method, 39, 44
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candidate design, 210
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cell-based design, 73
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completely randomized design, 185
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compound noise factors, 27
compound orthogonal arrays, 28
computer experiments, 72, 309, 312
computer models, 308, 318
confirmation experiments, 11
conjugate prior, 242
contour plot, 16
contrasts, 3
control factors, 21
controllable factors, 305
corrected effects, 315, 316, 318, 319
correlation function, 312, 325
coverage design, 84
cross validation, 318
cross-product array, 27
cross-validated residuals, 319, 322
cross-validation, 99, 182
crossed array, 27
curvature in the response function, 5, 18
cycle design, 179

D-efficiency, 173
D-optimal design, 83
data cleaning, 89
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design matrix, 3, 209
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design space, 211
diagnostic, 140
discrepancy, 172
dispersion effect, 21, 25, 26, 28, 31, 36,

38–44
dispersion model, 32, 37, 39, 42
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effect screening, 203, 236
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efficiency, 294
environmental factor, 294, 305
enzyme, 70
E(s2) criterion, 172
estimation, 49, 50, 53, 54
estimation capacity, 208
euclidean distance, 81
exact confidence interval, 273, 276
exchange algorithm, 178
expected number of active effects, 258
expected prediction difference, 214, 222
experimental domain, 288
exploratory data analysis, 170
expression levels, 139
expression profile, 118

factor cancellation, 196
factor effect estimates, 4
factor group, 293
factor level, 293
factor screening, 1, 2, 9, 16, 29, 191
factor sparsity, 188
factorial designs, 3
false negative, 72
false negative predictive value, 59, 60
false positive, 72
false-positive predictive value, 59, 60
Familywise Error Rate (FWER), 144, 152
first-order effect, 293
fold change, 120
foldover, 163
foldover design, 12, 228, 300
follow-up experiments, 11
food and drug administration (FDA), 108
forward selection, 181
fractional factorial designs, 179
frequentist inference, 185
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full estimation capacity design, 208
functional, 209
functional analysis of variance (ANOVA), 311,

316, 318, 319

Gamma distribution, 120
Gaussian random-function, 311
gene, 139
gene expression, 115
gene expression levels, 150
generalized Latin squares, 150
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generalized linear model, 25, 264
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genetic algorithm, 178
Gibbs-sampling, 182, 247
group screening, 183, 192
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half-normal probability plot of effects,
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Harvey Method, 34, 35, 40, 41, 43, 44
hidden projection, 162
high-throughput screening (HTS), 62, 63,

69
hit compounds, 49
hit rate, 75
hits, 73
HIV, 54, 56, 57, 62, 63
housekeeping genes, 143
hyperparameters, 257

IC50, 73
imputation, 90
inactive factor, 173
incomplete block design, 173
industrial screening experiments, 2
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input variables, 308, 312
interaction effects, 316, 318, 319, 321,
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interactions, 293, 300, 303
interaction screening, 203
interchange algorithm, 178
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intrinsic Bayes factor, 182
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iterated fractional factorial designs, 290
iterative analysis, 271

joint effects, 315, 316, 318–21

Kriging, 288

Latin hypercube, 166, 309, 310, 318, 322
Latin hypercube sampling, 305
lead compounds, 62
learning curve, 97
least squares, 4
Lenth method, 5, 29, 42
level-α test, 273
linear model, 293
linear predictor, 313
location effects, 28, 31, 37, 38, 41, 42, 44
location models, 29, 31, 32, 35–38, 40–44
log-linear model, 32, 34, 36, 37, 39, 42, 43

lognormal distribution, 120
lower bounds, 173

machine learning, 70
Mahalanobis distance, 80
main effects, 2, 3, 293, 294, 315, 316, 318, 319,

321, 326
marginal effects, 315, 316, 318, 319, 326
marginal likelihood, 246
masking, 309
maximum likelihood, 312, 317, 318
maximum likelihood estimator, 35, 36
maximum prediction difference, 214
McGrath–Lin parametric method, 37
McGrath–Lin statistic, 41–44
McGrath–Lin’s nonparametric method, 38
MCMC, 247, 262
mean orthogonal design, 217
mean squared error, 313, 322, 324
medium-throughput screening (MTS), 73
metabolism, 69
metamodels, 288
microarray experiment, 118, 139
microarrays, 115
minimum aberration, 10, 172
mirror observation, 300
mixed linear models, 39
mixed resolution, 28
mixed-level design, 18
mixture distributions, 243
model assessment, 101
model discrimination, 209, 223
model matrix, 209
model selection, 89, 185
model space, 95, 211
model-robust factorial design, 212
model-robust orthogonal design, 217
model-robust parameter design, 221
molecular diversity, 70
molecule (compound), 69
most powerful test, 273
Multi-Objective Optimization, 109
multicriteria decision making, 72
multiple regression, 173
multiple grouping, 200
multiple linear regression (MLR), 92
multiple outputs, 303, 304
multiple stage screening, 196

negative control, 144
nested halving, 54
neural net, 288
noise factors, 21, 22, 25, 28, 305
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nongeometric design, 17
nonlinear effects, 309
nonlinear model, 293
nonorthogonal, 283
nonregular designs, 160, 264
normal probability plot of effects, 5
normal probability plot of residuals, 15
null case, 273
null distribution, 274

one-factor-at-a-time, 290
optimization, 1, 305
orthogonal, 176, 197
orthogonal arrays, 27, 157
orthogonal designs, 210, 215, 269
orthogonal pooling, 50
output variables, 308, 312
overfitting, 93

Paley design, 163
partial aliasing, 17, 160
partial foldover, 12
partition testing, 146, 147
penalized least squares, 181
permutation test, 143
Plackett–Burman design, 17, 160, 174
polynomial models, 293
polynomial regression, 288
pooling, 72
positive predictive value, 105
positive discovery rate, 105
posterior distribution, 187, 246
posterior probability, 182, 248
potency, 70
power-exponential correlation function, 312, 325
pre-experimental planning, 2
predictive distribution, 254
predictive Modeling, 75
principal fraction, 8
prior distributions, 182, 242
prior hyperparameters, 252
prior knowledge, 294
prior probabilities, 172
process characterization, 1
product characterization, 1
prognostic, 140
projection designs, 156
projection properties, 11, 162
projectivity, 157
property space, 71
pseudo standard error, 274
pseudorandom numbers, 290, 293, 302

quadratic effect, 305
quadrature, 325
qualitative factor, 3, 18

random balance, 169
random effects, 39
random forests, 93
random function, 312, 317
randomization, 142, 185
rare events, 72
receptor, 70
recursive partitioning (tree model), 95
regression, 180
regression coefficients, 4, 172
regular fractional factorial design, 8, 158,
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replication, 290, 142
reproducibility, 123
resampling, 181
resolution, 9, 169, 159
resolution III, 9, 12
resolution IV, 9, 12, 311
resolution V, 9
resolving power, 213
response surface, 288
response surface, 1, 40
restricted CP algorithm, 226
restricted maximum likelihood, 39, 42
reuse of runs, 197
ridge regression, 181
robust design, 21–23, 25, 28, 39
robust methods, 262, 272, 275, 305

sample molecular profile, 118
saturated design, 9, 183, 268, 270
scaled level, 294
score statistic, 36
screening, 287
screening experiments, 29, 42, 44
search designs, 164
second-order model, 6
secondary screen, 73
selection bias, 185
selectivity, 71
semi-foldover, 12
sensitivity, 52, 59, 140
sensitivity analysis, 310, 311
separate location models, 33
sequential bifurcation, 287, 296, 301, 310
sequential experimentation, 2, 289
shrinkage, 255
signal-to-noise ratio, 26
similarity, 79
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simple linear regression, 172
simple pooling, 50
simulation, 70, 289
simulation software, 302
single-step tests, 280, 281
size-α test, 273, 276
space filling designs, 83, 165
sparsity of effects principle, 10, 288
specificity, 52, 59, 90, 140
spline, 288, 311
standard errors, 314, 317–21
standardization, 293
steady state, 303
steepest ascent, 2
step-down tests, 284, 281
step-up tests, 284
step-wise screening, 200
stepdown testing, 146
stepwise regression, 17, 237, 320
stepwise selection, 181
stochastic search variable selection, 182
Stochastic Ordering Lemma, 277, 283
strength, 157
strong control, 145, 276
strong heredity, 300
structure activity relationship (SAR, QSAR), 51,

71
studentized residuals, 15
subset pivotality, 149
subspace angle, 214, 222

supersaturated designs, 17, 169, 283, 290, 310
supply chain, 290, 302
support vector machines, 93
synergism, 51, 63

Taguchi, 21, 22
Tanimoto coefficient, 79
target, 69
test for curvature, 6
test set, 90
toxicity, 69
training set, 80
transmitted variation, 24
tree, 63
two-factor interactions, 3, 5
two-stage screening, 194

uniform designs, 165, 172
unreplicated factorial design, 5

validation, 302, 305
variable selection, 79
variance heterogeneity, 297, 298
variance reduction, 297
virtual screen, 70
visualization, 311, 317

Wang Method, 36, 44
weight function, 315
Wonderland model, 309, 318, 322, 323
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