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Sampling Algorithms



Yves Tillé
Institut de Statistique,
Université de Neuchâtel
Espace de l’Europe 4,
Case postale 805
2002 Neuchâtel,
Switzerland
yves.tille@unine.ch

Library of Congress Control Number: 2005937126

ISBN-10: 0-387-30814-8
ISBN-13: 978-0387-30814-2

© 2006 Springer Science+Business Media, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer Science+Business Media, Inc., 233 Springer
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval, elec-
tronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether
or not they are subject to proprietary rights.

Printed in the United States of America. (MVY)

9 8 7 6 5 4 3 2 1

springer.com



Preface

This book is based upon courses on sampling algorithms. After having used
scattered notes for several years, I have decided to completely rewrite the
material in a consistent way. The books of Brewer and Hanif (1983) and
Hájek (1981) have been my works of reference. Brewer and Hanif (1983) have
drawn up an exhaustive list of sampling methods with unequal probabilities,
which was probably a very tedious work. The posthumous book of Hájek
(1981) contains an attempt at writing a general theory for conditional Poisson
sampling. Since the publication of these books, things have been improving.
New techniques of sampling have been proposed, to such an extent that it
is difficult to have a general idea of the interest of each of them. I do not
claim to give an exhaustive list of these new methods. Above all, I would
like to propose a general framework in which it will be easier to compare
existing methods. Furthermore, forty-six algorithms are precisely described,
which allows the reader to easily implement the described methods.

This book is an opportunity to present a synthesis of my research and
to develop my convictions on the question of sampling. At present, with the
splitting method, it is possible to construct an infinite amount of new sampling
methods with unequal probabilities. I am, however, convinced that conditional
Poisson sampling is probably the best solution to the problem of sampling with
unequal probabilities, although one can object that other procedures provide
very similar results.

Another conviction is that the joint inclusion probabilities are not used for
anything. I also advocate for the use of the cube method that allows selecting
balanced samples. I would also like to apologize for all the techniques that
are not cited in this book. For example, I do not mention all the methods
called “order sampling” because the methods for coordinating samples are
not examined in this book. They could be the topic of another publication.

This material is aimed at experienced statisticians who are familiar with
the theory of survey sampling, to Ph.D. students who want to improve their
knowledge in the theory of sampling and to practitioners who want to use or
implement modern sampling procedures. The R package “sampling” available
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on the Web site of the Comprehensive R Archive Network (CRAN) contains
an implementation of most of the described algorithms. I refer the reader to
the books of Mittelhammer (1996) and Shao (2003) for questions of inferential
statistics, and to the book of Särndal et al. (1992) for general questions related
to the theory of sampling.

Finally, I would like to thank Jean-Claude Deville who taught me a lot on
the topic of sampling when we worked together at the École Nationale de la
Statistique et de l’Analyse de l’Information in Rennes from 1996 to 2000. I
thank Yves-Alain Gerber, who has produced most of the figures of this book.
I am also grateful to Cédric Béguin, Ken Brewer, Lionel Qualité, and Paul-
André Salamin for their constructive comments on a previous version of this
book. I am particularly indebted to Lennart Bondesson for his critical reading
of the manuscript that allowed me to improve this book considerably and to
Leon Jang for correction of the proofs.

Neuchâtel, October 2005

Yves Tillé



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V

1 Introduction and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Representativeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 The Origin of Sampling Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 Sampling with Unequal Probabilities . . . . . . . . . . . . . . . . . 2
1.3.2 Conditional Poisson Sampling . . . . . . . . . . . . . . . . . . . . . . . 2
1.3.3 The Splitting Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.4 Balanced Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Scope of Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Aim of This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Outline of This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Population, Sample, and Sampling Design . . . . . . . . . . . . . . . . . 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Population and Variable of Interest . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Sample Without Replacement . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Sample With Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Convex Hull, Interior, and Subspaces Spanned by a Support . . 12
2.6 Sampling Design and Random Sample . . . . . . . . . . . . . . . . . . . . . 14
2.7 Reduction of a Sampling Design With Replacement . . . . . . . . . . 14
2.8 Expectation and Variance of a Random Sample . . . . . . . . . . . . . 15
2.9 Inclusion Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.10 Computation of the Inclusion Probabilities . . . . . . . . . . . . . . . . . 18
2.11 Characteristic Function of a Sampling Design . . . . . . . . . . . . . . . 19
2.12 Conditioning a Sampling Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.13 Observed Data and Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.14 Statistic and Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



VIII Contents

2.15 Sufficient Statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.16 The Hansen-Hurwitz (HH) Estimator . . . . . . . . . . . . . . . . . . . . . . 26

2.16.1 Estimation of a Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.16.2 Variance of the Hansen-Hurwitz Estimator . . . . . . . . . . . 26
2.16.3 Variance Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.17 The Horvitz-Thompson (HT) Estimator . . . . . . . . . . . . . . . . . . . . 28
2.17.1 Estimation of a Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.17.2 Variance of the Horvitz-Thompson Estimator . . . . . . . . . 28
2.17.3 Variance Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.18 More on Estimation in Sampling With Replacement . . . . . . . . . 29

3 Sampling Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Sampling Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Enumerative Selection of the Sample . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Martingale Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Sequential Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6 Draw by Draw Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.7 Eliminatory Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.8 Rejective Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Simple Random Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Definition of Simple Random Sampling . . . . . . . . . . . . . . . . . . . . . 41
4.3 Bernoulli Sampling (BERN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Sampling Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.3 Sequential Sampling Procedure for BERN . . . . . . . . . . . . 44

4.4 Simple Random Sampling Without Replacement (SRSWOR) . 45
4.4.1 Sampling Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.3 Draw by Draw Procedure for SRSWOR . . . . . . . . . . . . . . 47
4.4.4 Sequential Procedure for SRSWOR: The Selection-

Rejection Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.5 Sample Reservoir Method . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.6 Random Sorting Method for SRSWOR . . . . . . . . . . . . . . . 50

4.5 Bernoulli Sampling With Replacement (BERNWR) . . . . . . . . . . 51
4.5.1 Sampling Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5.3 Sequential Procedure for BERNWR . . . . . . . . . . . . . . . . . 53

4.6 Simple Random Sampling With Replacement (SRSWR) . . . . . . 53
4.6.1 Sampling Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.6.2 Distribution of n[r(S)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.6.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6.4 Draw by Draw Procedure for SRSWR. . . . . . . . . . . . . . . . 60



Contents IX

4.6.5 Sequential Procedure for SRSWR . . . . . . . . . . . . . . . . . . . 61
4.7 Links Between the Simple Sampling Designs . . . . . . . . . . . . . . . . 61

5 Unequal Probability Exponential Designs . . . . . . . . . . . . . . . . . 63
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 General Exponential Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 Minimum Kullback-Leibler Divergence . . . . . . . . . . . . . . . 64
5.2.2 Exponential Designs (EXP) . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Poisson Sampling Design With Replacement (POISSWR) . . . . 67
5.3.1 Sampling Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.3 Sequential Procedure for POISSWR . . . . . . . . . . . . . . . . . 70

5.4 Multinomial Design (MULTI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.1 Sampling Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.3 Sequential Procedure for Multinomial Design . . . . . . . . . 74
5.4.4 Draw by Draw Procedure for Multinomial Design . . . . . . 76

5.5 Poisson Sampling Without Replacement (POISSWOR) . . . . . . . 76
5.5.1 Sampling Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5.2 Distribution of n(S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.5.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.5.4 Sequential Procedure for POISSWOR . . . . . . . . . . . . . . . . 79

5.6 Conditional Poisson Sampling (CPS) . . . . . . . . . . . . . . . . . . . . . . . 79
5.6.1 Sampling Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.6.2 Inclusion Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.6.3 Computation of λ from Predetermined Inclusion

Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.6.4 Joint Inclusion Probabilities . . . . . . . . . . . . . . . . . . . . . . . . 84
5.6.5 Joint Inclusion Probabilities: Deville’s Technique . . . . . . 85
5.6.6 Computation of α(λ,Sn) . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.6.7 Poisson Rejective Procedure for CPS. . . . . . . . . . . . . . . . . 89
5.6.8 Rejective Procedure with Multinomial Design for CPS . 90
5.6.9 Sequential Procedure for CPS . . . . . . . . . . . . . . . . . . . . . . . 91
5.6.10 Alternate Method for Computing π from λ . . . . . . . . . . . 92
5.6.11 Draw by Draw Procedure for CPS . . . . . . . . . . . . . . . . . . . 93

5.7 Links Between the Exponential Designs . . . . . . . . . . . . . . . . . . . . 95
5.8 Links Between Exponential Designs and Simple Designs . . . . . . 95
5.9 Exponential Procedures in Brewer and Hanif . . . . . . . . . . . . . . . . 96

6 The Splitting Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 Splitting into Two Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.1 A General Technique of Splitting into Two Vectors . . . . 99
6.2.2 Splitting Based on the Choice of πa(t) . . . . . . . . . . . . . . . 101
6.2.3 Methods Based on the Choice of a Direction . . . . . . . . . . 102



X Contents

6.2.4 Minimum Support Design . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2.5 Splitting into Simple Random Sampling . . . . . . . . . . . . . . 104
6.2.6 The Pivotal Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2.7 Random Direction Method . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2.8 Generalized Sunter Method . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3 Splitting into M Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.1 A General Method of Splitting into M Vectors . . . . . . . . 111
6.3.2 Brewer’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.3 Eliminatory Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
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1

Introduction and Overview

1.1 Purpose

The aim of sampling methods is to provide information on a population by
studying only a subset of it, called a sample. Sampling is the process of se-
lecting units (households, businesses, people) from a population so that the
sample allows estimating unknown quantities of the population. This book is
an attempt to present a unified theory of sampling. The objective is also to
describe precisely and rigorously the 46 procedures presented in this book.
The R “sampling” package available on the R language Web site contains an
implementation of most of the described algorithms.

1.2 Representativeness

One often says that a sample is representative if it is a reduced model of the
population. Representativeness is then adduced as an argument of validity:
a good sample must resemble the population of interest in such a way that
some categories appear with the same proportions in the sample as in the
population. This theory, currently spread by the media, is, however, erroneous.
It is often more desirable to overrepresent some categories of the population
or even to select units with unequal probabilities. The sample must not be a
reduced model of the population; it is only a tool used to provide estimates.

Suppose that the aim is to estimate the production of iron in a country,
and that we know that the iron is produced, on the one hand, by two huge
steel companies with several thousands of workers and, on the other hand,
by several hundreds of small craft-industries of less than 50 workers. Does
the better design consist in selecting each unit with the same probability?
Obviously, no. First, one will inquire about the production of the two biggest
companies. Next, one will select a sample of small companies according to
an appropriate sampling design. This simple example runs counter to the
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idea of representativeness and shows the interest of sampling with unequal
probabilities.

Sampling with unequal probabilities is also very commonly used in the
selfweighted two-stage sampling designs. The primary units are first selected
with inclusion probabilities proportional to their sizes and next, the same
number of secondary units is selected in each primary unit. This design has
several advantages: the sample size is fixed and the work burden can easily be
balanced between the interviewers.

Another definition of representativeness is that the sample must be random
and all the statistical units must have a strictly positive probability of being
selected. Otherwise, the sample has a problem of coverage and an unbiased
estimation of some totals is impossible. This definition is obviously wise, but
this term has been so overused that I think it should not be used anymore.

For Hájek (1981), a strategy is a pair consisting of a sampling design
and an estimator. A strategy is said to be representative if it allows estimat-
ing a total of the population exactly, that is, without bias and with a null
variance. If the simple Horvitz-Thompson estimator is used, a strategy can
be representative only if the sample automatically reproduces some totals of
the population; such samples are called balanced. A large part of this book is
dedicated to balanced sampling.

1.3 The Origin of Sampling Theory

1.3.1 Sampling with Unequal Probabilities

Sampling methods were already mentioned in Tschuprow (1923) and Neyman
(1934). Nevertheless, the first papers dedicated to sampling procedures were
devoted to unequal probability sampling. Hansen and Hurwitz (1943) pro-
posed the multinomial design with replacement with an unbiased estimator.
Rapidly, it appears that unequal probability sampling without replacement is
much more complicated. Numerous papers have been published, but most of
the proposed methods are limited to a sample size equal to 2.

Brewer and Hanif (1983) constructed a very important synthesis in which
50 methods were presented according to their date of publication, but only
20 of them really work and many of the exact procedures are very slow to
apply. The well-known systematic sampling design (see Madow, 1949; Samp-
ford, 1967) procedure remain very good solutions for sampling with unequal
probabilities.

1.3.2 Conditional Poisson Sampling

A very important method is Conditional Poisson Sampling (CPS), also called
sampling with maximum entropy. This sampling design is obtained by se-
lecting Poisson samples until a given sample size is obtained. Moreover, con-
ditional Poisson sampling can also be obtained by maximizing the entropy
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subject to given inclusion probabilities. This sampling design appears to be
natural as it maximizes the randomness of the selection of the sample.

Conditional Poisson sampling was really a Holy Grail for Hájek (1981),
who dedicated a large part of his sampling research to this question. The
main problem is that the inclusion probabilities of conditional Poisson sam-
pling change according to the sample size. Hájek (1981) proposed several
approximations of these inclusion probabilities in order to implement this
sampling design. Chen et al. (1994) linked conditional Poisson sampling with
the theory of exponential families, which has paved the way for several quick
implementations of the method.

1.3.3 The Splitting Technique

Since the book of Brewer and Hanif (1983), several new methods of sampling
with unequal probabilities have been published. In Deville and Tillé (1998),
eight new methods were proposed, but the splitting method proposed in the
same paper was also a way to present, sometimes more simply, almost all the
existing methods. The splitting technique is thus a means to integrate the
presentation of well-known methods and to make them comparable.

1.3.4 Balanced Sampling

The interest of balanced sampling was already pointed out more than 50 years
ago by Yates (1946) and Thionet (1953). Several partial solutions of balanced
sampling methods have been proposed by Deville et al. (1988), Ardilly (1991),
Deville (1992), Hedayat and Majumdar (1995), and Valliant et al. (2000).

Royall and Herson (1973a,b) and Scott et al. (1978) discussed the impor-
tance of balanced sampling in order to protect the inference against a mis-
specified model. They proposed optimal estimators under a regression model.
In this model-based approach, the optimality is conceived only with respect to
the regression model without taking into account the sampling design. Never-
theless, these authors come to the conclusion that the sample must be balanced
but not necessarily random. Curiously, they developed this theory while there
still did not exist any general method for selecting balanced samples.

Recently, Deville and Tillé (2004) proposed a general procedure, the cube
method, that allows the selection of random balanced samples on several bal-
ancing variables, with equal or unequal inclusion probabilities in the sense that
the Horvitz-Thompson estimator is equal or almost equal to the population
total of the balancing variables. Deville and Tillé (2005) have also proposed
an approximation of the variance for the Horvitz-Thompson estimator in bal-
anced sampling with large entropy.
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1.4 Scope of Application

Sampling methods can be useful when it is impossible to examine all the
units of a finite population. When a sampling frame or register is available, it
is possible to obtain balancing information on the units of interest. In most
cases, it is possible to take advantage of this information in order to increase
the accuracy. In business statistics, registers are generally available. Several
countries have a register of the population. Nevertheless, in the two-stage
sampling design, the primary units are usually geographic areas, for which a
large number of auxiliary variables are generally available.

The Institut National de la Statistique et de l’Analyse de l’Information
(INSEE, France) has selected balanced samples for the most important statis-
tical projects. In the redesigned census in France, a fifth of the municipalities
with fewer than 10,000 inhabitants are sampled each year, so that after five
years all the municipalities will be selected. All the households in these mu-
nicipalities are surveyed. The five samples of municipalities are selected with
equal probabilities using balanced sampling on a set of demographic variables.
This methodology ensures the accuracy of the estimators based upon the five
groups of rotation.

The selection of the primary units (areas) for INSEE’s new master sample
for household surveys is done with probabilities proportional to the number
of dwellings using balanced sampling. Again, the balancing variables are a set
of demographic and economic variables. The master sample is used over ten
years to select all the households samples. This methodology ensures a better
accuracy of the estimates depending on the master sample.

1.5 Aim of This Book

In view of the large number of publications, a synthesis is probably necessary.
Recently, solutions have been given for two important problems in survey
sampling: the implementation of conditional Poisson sampling and a rapid
method for selecting balanced samples, but the research is never closed. A
very open field is the problem of the co-ordination of samples in repeated
surveys.

The challenge of this book is to propose at the same time a unified theory
of the sampling methods and tools that are directly applicable to practical
situations. The samples are formally defined as random vectors whose com-
ponents denote the number of times a unit is selected in the sample. From
the beginning, the notions of sampling design and sampling algorithm are dif-
ferentiated. A sampling design is nothing more than a multivariate discrete
distribution, whereas a sampling algorithm is a way of implementing a sam-
pling design. Particular stress is given to a geometric representation of the
sampling methods.
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This book contains a very precise description of the sampling procedures
in order to be directly applicable in real applications. Moreover, an imple-
mentation in the R language available on the website of the Comprehensive
R Archive Network allows the reader to directly use the described methods
(see Tillé and Matei, 2005).

1.6 Outline of This Book

In Chapter 2, a particular notation is defined. The sample is represented
by a vector of R

N whose components are the number of times each unit is
selected in the sample. The interest of this notation lies in the possibility
of dealing with sampling in the same way with or without replacement. A
sample therefore becomes a random vector with positive integer values and
the sampling designs are discrete multivariate distributions.

In Chapter 3, general algorithms are presented. In fact, any particular
sampling design can be implemented by means of several algorithms. Chapter
4 is devoted to simple random sampling. Again, an original definition is pro-
posed. From a general expression, all the simple random sampling designs can
be derived by means of change of support, a support being a set of samples.

Chapter 5 is dedicated to exponential sampling designs. Chen et al. (1994)
have linked these sampling designs to random vectors with positive integer
values and exponential distribution. Again, changes of support allow defining
the most classic sampling designs, such as Poisson sampling, conditional Pois-
son sampling, and multinomial sampling. The exact implementation of the
conditional Poisson design, that could also be called “exponential design with
fixed sample size”, was, since the book of Hájek, a Holy Grail that seemed
inaccessible for reasons of combinatory explosion. Since the publication of the
paper of Chen et al. (1994), important progress has been achieved in such a
way that there now exist very fast algorithms that implement this design.

Chapter 6 is devoted to the splitting method proposed by Deville and
Tillé (1998). This method is a process that allows constructing sampling pro-
cedures. Most of the sampling methods are best presented in the form of the
splitting technique. A sequence of methods is presented, but it is possible to
construct many other ones with the splitting method. Some well-known pro-
cedures, such as the Chao (1982) or the Brewer (1975) methods, are presented
only by means of the splitting scheme because they are more comparable with
this presentation.

In Chapter 7, are presented some sampling methods with unequal prob-
abilities that are not exponential and that cannot be presented by means
of the splitting scheme: systematic (see Madow, 1949) sampling, the Deville
(1998) systematic method, and the Sampford (1967) method. The choice of
the method is next discussed. When the same inclusion probabilities are used,
it is possible to proof that none of the methods without replacement provides
a better accuracy than the other ones. The choice of the method cannot thus
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be done in function of the accuracy, but essentially in function of practical
considerations. The problem of variance estimation is also discussed. Two ap-
proximations are constructed by means of a simple sum of squares. Several
sampling methods are compared to these approximations. One can notice that
the variance of the Sampford method and the exponential procedure are very
well adjusted by one of these approximations, which provides a guideline for
the choice of a sampling method and of a variance estimator.

In Chapter 8, methods of balanced sampling are developed. After a pre-
sentation of the methods for equal inclusion probabilities, the cube method is
described. This method allows selecting balanced samples on several dozens
of variables. Two algorithms are presented, and the question of variance es-
timation in balanced sampling is developed. Finally, in Chapter 9, the cube
method is applied in order to select a sample of municipalities in the Swiss
canton of Ticino.



2

Population, Sample, and Sampling Design

2.1 Introduction

In this chapter, some basic concepts of survey sampling are introduced. An
original notation is used. Indeed, a sample without replacement is usually
defined as a subset of a finite population. However, in this book, we define
a sample as a vector of indicator variables. Each component of this vector is
the number of times that a unit is selected in the sample. This formalization
is, however, not new. Among others, it has been used by Chen et al. (1994)
for exponential designs and by Deville and Tillé (2004) for developing the
cube method. This notation tends to be obvious because it allows defining
a sampling design as a discrete multivariate distribution (Traat, 1997; Traat
et al., 2004) and allows dealing with sampling with and without replacement
in the same way. Of particular importance is the geometrical representation
of a sampling design that is used in Chapter 8, which is dedicated to balanced
sampling.

2.2 Population and Variable of Interest

A finite population is a set of N units {u1, . . . , uk, . . . , uN}. Each unit can be
identified without ambiguity by a label. Let

U = {1, . . . , k, . . . , N}
be the set of these labels. The size of the population N is not necessarily
known.

The aim is to study a variable of interest y that takes the value yk for unit
k. Note that the yk’s are not random. The objective is more specifically to
estimate a function of interest T of the yk’s:

T = f(y1 · · · yk · · · yN ).
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The most common functions of interest are the total

Y =
∑
k∈U

yk,

the population size
N =

∑
k∈U

1,

the mean
Y =

1
N

∑
k∈U

yk,

the variance

σ2
y =

1
N

∑
k∈U

(
yk − Y

)2
=

1
2N2

∑
k∈U

∑
�∈U

(yk − y�)
2

and the corrected variance

V 2
y =

1
N − 1

∑
k∈U

(
yk − Y

)2
=

1
2N(N − 1)

∑
k∈U

∑
�∈U

(yk − y�)
2
.

2.3 Sample

2.3.1 Sample Without Replacement

A sample without replacement is denoted by a column vector

s = (s1 · · · sk · · · sN )′ ∈ {0, 1}N ,

where

sk =
{

1 if unit k is in the sample
0 if unit k is not in the sample,

for all k ∈ U.
The sample size is

n(s) =
∑
k∈U

sk.

Note that the null vector s = (0 · · · 0 · · · 0)′ is a sample, called the empty
sample and that the vector of ones s = (1 · · · 1 · · · 1)′ is also a sample, called
the census.
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2.3.2 Sample With Replacement

The same kind of notation can be used for samples with replacement, which
can also be denoted by a column vector

s = (s1 · · · sk · · · sN )′ ∈ N
N ,

where N = {0, 1, 2, 3, . . . } is the set of natural numbers and sk is the number
of times that unit k is in the sample. Again, the sample size is

n(s) =
∑
k∈U

sk,

and, in sampling with replacement, we can have n(s) > N.

2.4 Support

Definition 1. A support Q is a set of samples.

Definition 2. A support Q is said to be symmetric if, for any s ∈ Q, all the
permutations of the coordinates of s are also in Q.

Some particular symmetric supports are used.

Definition 3. The symmetric support without replacement is defined by

S = {0, 1}N .

Note that card(S) = 2N . The support S can be viewed as the set of all the
vertices of a hypercube of R

N (or N -cube), where R is the set of real numbers,
as shown for a population size N = 3 in Figure 2.1.

(000) (100)

(101)
(001)

(010) (110)

(111)(011)

Fig. 2.1. Possible samples without replacement in a population of size N = 3
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Definition 4. The symmetric support without replacement with fixed sample
size is

Sn =

{
s ∈ S

∣∣∣∣∣∑
k∈U

sk = n

}
.

Note that card(Sn) =
(

N
n

)
. Figure 2.2 shows an example of S2 in a population

of size N = 3.

(000) (100)

(101)
(001)

(010) (110)

(111)(011)

Fig. 2.2. The support S2 in a population of size N = 3

Definition 5. The symmetric support with replacement is

R = N
N ,

where N is the set of natural numbers.

The full support with replacement R is countably infinite. As shown in Fig-
ure 2.3, support R is the lattice of all the vector of N

N .

Definition 6. The symmetric support with replacement of fixed size n is de-
fined by

Rn =

{
s ∈ R

∣∣∣∣∣∑
k∈U

sk = n

}
.

Result 1. The size of Rn is

card(Rn) =
(

N + n − 1
n

)
. (2.1)

Proof. (by induction) If G(N, n) denotes the number of elements in Rn in
a population of size N, then G(1, n) = 1. Moreover, we have the recurrence
relation

G(N + 1, n) =
n∑

i=0

G(N, i). (2.2)

Expression (2.1) satisfies the recurrence relation (2.2). �
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(000)

(010)

(020)

(001)

(011)

(021)

(100)

(110)

(120)

(101)

(111)

(121)

(200)

(210)

(220)

(201)

(211)

(221)

Fig. 2.3. Geometrical representation of support R

Figure 2.4 shows the set of samples with replacement of size 2 in a popu-
lation of size 3.

(020)

(011)

(002)

(101)
(200)

(110)

Fig. 2.4. Samples with replacement of size 2 in a population of size 3

The following properties follow directly:

1. S, Sn, R, Rn, are symmetric,
2. S ⊂ R,
3. The set {S0, . . . ,Sn, . . . ,SN} is a partition of S,
4. The set {R0, . . . ,Rn, . . . ,RN , . . . } is an infinite partition of R,
5. Sn ⊂ Rn, for all n = 0, . . . , N.
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2.5 Convex Hull, Interior, and Subspaces Spanned by a
Support

A support can be viewed as a set of points in R
N . In what follows, several

subsets of R
N are defined by means of the support: the convex hull, its interior,

and several subspaces generated by the support. This geometrical vision is
especially useful in Chapter 5 dedicated to exponential design and in Chapter 8
dedicated to balanced sampling. We refer to the following definitions.

Definition 7. Let s1, . . . , si, . . . , sI be the enumeration of all the samples of
Q. The convex hull of the support Q is the set

Conv Q =

{
I∑

i=1

λisi,

∣∣∣∣∣λ1, . . . , λI , of R+, such that
I∑

i=1

λi = 1

}
,

where R+ = [0, ∞) is the set of nonnegative real numbers.

Definition 8. Let s1, . . . , si, . . . , sI be the enumeration of all the samples of
Q. The affine subspace spanned by a support is the set

Aff Q =

{
I∑

i=1

λisi,

∣∣∣∣∣λ1, . . . , λI , of R, such that
I∑

i=1

λi = 1

}
.

Definition 9. The direction
−→Q of the affine subspace spanned by a support Q

(the direction of the support for short) is the linear subspace spanned by all
the differences si − sj , for all si, sj ∈ Q.

Note that
−→Q is a linear subspace.

Definition 10. Let s1, . . . , si, . . . , sI be the enumeration of all the samples of
Q. The interior of Conv Q in the affine subspace spanned by Q is defined by

◦
Q=

{
I∑

i=1

λisi

∣∣∣∣∣λi > 0, for all i = 1, . . . , I, and
I∑

i=1

λi = 1

}
.

In short, afterwards
◦
Q is called the interior of Q.

Definition 11. The invariant subspace spanned by the support is defined by

Invariant Q =
{
u ∈ R

N |u′(s1 − s2) = 0, for all s1, s2 ∈ Q}
.

Remark 1.
◦
Q⊂ Conv Q ⊂ Aff Q.

Remark 2. Invariant Q and
−→Q are two linear subspaces. Invariant Q is the

orthogonal subspace of
−→Q .
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Table 2.1 gives the list of the most common supports and their invariant
subspace, direction, affine subspace, convex hull, and interior, where R

∗
+ =

{x ∈ R|x > 0} is the set of positive real numbers.

Table 2.1. Invariant, direction, affine subspace, convex hull, and interior of the
supports R, Rn, S, and Sn

R Rn S Sn

Invariant {0}
{
x ∈ R

N |x = a1, for all a ∈ R

}
{0}

{
x ∈ R

N |x = a1, for all a ∈ R

}
Direction R

N

{
u ∈ R

N

∣∣∣∣∣
N∑

k=1

ui = 0

}
R

N

{
u ∈ R

N

∣∣∣∣∣
N∑

k=1

ui = 0

}

Aff R
N

{
v ∈ R

N

∣∣∣∣∣
N∑

i=1

vi = n

}
R

N

{
v ∈ R

N

∣∣∣∣∣
N∑

i=1

vi = n

}

Conv (R+)N

{
v ∈ [0, n]N

∣∣∣∣∣
N∑

i=1

vi = n

}
[0, 1]N

{
v ∈ [0, 1]N

∣∣∣∣∣
N∑

i=1

vi = n

}

Interior (R∗
+)N

{
v ∈]0, n[N

∣∣∣∣∣
N∑

i=1

vi = n

}
]0, 1[N

{
v ∈]0, 1[N

∣∣∣∣∣
N∑

i=1

vi = n

}

Example 1. Let U = {1, 2, 3, 4} and

Q =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1
0
1
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
1
0
0
1

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
1
1
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
1
0
1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ .

Then
Aff Q =

{
u ∈ R

N |u1 + u2 = 1 and u3 + u4 = 1
}

,

Conv Q =
{
u ∈ [0, 1]N |u1 + u2 = 1 and u3 + u4 = 1

}
,

◦
Q=

{
u ∈]0, 1[N |u1 + u2 = 1 and u3 + u4 = 1

}
,

Invariant Q =

⎧⎪⎪⎨⎪⎪⎩a

⎛⎜⎜⎝
1
1
0
0

⎞⎟⎟⎠+ b

⎛⎜⎜⎝
0
0
1
1

⎞⎟⎟⎠ , for all a, b ∈ R

⎫⎪⎪⎬⎪⎪⎭ ,

and

−→Q =

⎧⎪⎪⎨⎪⎪⎩a

⎛⎜⎜⎝
1

−1
0
0

⎞⎟⎟⎠+ b

⎛⎜⎜⎝
0
0
1

−1

⎞⎟⎟⎠ , for all a, b ∈ R

⎫⎪⎪⎬⎪⎪⎭ .
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2.6 Sampling Design and Random Sample

Definition 12. A sampling design p(.) on a support Q is a multivariate prob-
ability distribution on Q; that is, p(.) is a function from support Q to ]0, 1]
such that p(s) > 0 for all s ∈ Q and∑

s∈Q
p(s) = 1.

Definition 13. A sampling design with support Q is said to be without re-
placement if Q ⊂ S.

Definition 14. A sampling design with support Q is said to be of fixed sample
size n if Q ⊂ Rn.

Remark 3. Because S can be viewed as the set of all the vertices of a hyper-
cube, a sampling design without replacement is a probability measure on all
these vertices.

Definition 15. A sampling design of support Q is said to be with replacement
if Q\S is nonempty.

Definition 16. If p(.) is a sampling design without replacement, the comple-
mentary design pc(.) of a sampling design p(c) of support Q is

pc(1 − s) = p(s), for all s ∈ Q,

where 1 is the vector of ones of R
N .

Definition 17. A random sample S ∈ R
N with the sampling design p(.) is a

random vector such that

Pr(S = s) = p(s), for all s ∈ Q,

where Q is the support of p(.).

2.7 Reduction of a Sampling Design With Replacement

Let S = (S1 · · · Sk · · · SN )′ be a sample with replacement. The reduction
function r(.) suppresses the information about the multiplicity of the units,
as follows. If

S∗ = r(S),

then

S∗
k =

{
1 if Sk > 0
0 if Sk = 0.

(2.3)



2.8 Expectation and Variance of a Random Sample 15

The reduction function allows constructing a design without replacement from
a design with replacement. If p(.) is a sampling design with support R, then
it is possible to derive a design p∗(.) on S in the following way:

p∗(s∗) =
∑

s∈R|s∗=r(s)

p(s),

for all s ∈ S.

Example 2. Let p(.) be a sampling design with replacement of fixed size n = 2
on U = {1, 2, 3} such that

p((2, 0, 0)′) =
1
9
, p((0, 2, 0)′) =

1
9
, p((0, 0, 2)′) =

1
9
,

p((1, 1, 0)′) =
2
9
, p((1, 0, 1)′) =

2
9
, p((0, 1, 1)′) =

2
9
;

then p∗(.) is given by

p((1, 0, 0)′) =
1
9
, p((0, 1, 0)′) =

1
9
, p((0, 0, 1)′) =

1
9
,

p((1, 1, 0)′) =
2
9
, p((1, 0, 1)′) =

2
9
, p((0, 1, 1)′) =

2
9
.

2.8 Expectation and Variance of a Random Sample

Definition 18. The expectation of a random sample S is

µ = E(S) =
∑
s∈Q

p(s)s.

Remark 4. Because µ is a linear convex combination with positive coefficient

of the elements of Q, µ ∈ ◦
Q .

Remark 5. Let C be the N × I matrix of all the centered samples of Q; that
is

C = (s1 − µ · · · sI − µ), (2.4)

where I = cardQ. Then Ker C′ = Invariant Q, where

Ker C′ = {u ∈ R
N |C′u = 0}.

The joint expectation is defined by

µk� =
∑
s∈Q

p(s)sks�.

Finally, the variance-covariance operator is

Σ = [Σk�] = var(S) =
∑
s∈Q

p(s)(s − µ)(s − µ)′ = [µk� − µkµ�].
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Result 2. ∑
k∈U

µk = E[n(S)],

and, if the sampling design is of fixed sample size n(S),∑
k∈U

µk = n(S).

Proof. Because ∑
k∈U

Sk = n(S),

we have ∑
k∈U

E(Sk) =
∑
k∈U

µk = E [n(S)] . �

Result 3. Let Σ = [Σk�] be the variance-covariance operator. Then∑
k∈U

Σk� = E [n(S)(S� − µ�)] , for all � ∈ U,

and, if the sampling design is of fixed sample size n,∑
k∈U

Σk� = 0, for all � ∈ U. (2.5)

Proof. Because∑
k∈U

Σk� =
∑
k∈U

(µk� − µkµ�) =
∑
k∈U

[E(SkS�) − E(Sk)E(S�)]

= E [n(S)(S� − µ�)] .

If var[n(S)] = 0, then∑
k∈U

Σk� = E [n(S)(S� − µ�)] = n(S)E (S� − µ�) = 0. �

Result 4. Let p(.) be a sampling design with support Q. Then

Ker Σ = Invariant Q.

Proof. Let C denote the matrix of the centered samples defined in (2.4).
Because Σ = CPC′ where P = diag[p(s1) · · · p(sI)], we have that, if u ∈
Invariant Q, C′u = 0, thus Σu = 0; that is, Ker Σ ⊂ Invariant Q. Moreover,
because P is of full rank, C and Σ have the same rank, which implies that
Ker Σ and Ker C have the same dimension. Thus, Ker Σ = Invariant Q. �
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Remark 6. Let the image of Σ be

Im(Σ) =
{
x ∈ R

N | there exists u ∈ R
N such that Σu = x

}
.

Because Im(Σ) is the orthogonal of KerΣ, Im(Σ) =
−→Q .

Example 3. If the sample is of fixed sample size, 1 ∈ Invariant Q, Σ1 = 0
where 1 = (1 · · · 1 · · · 1)′. Result 4 is thus a generalization of Expres-
sion (2.5).

2.9 Inclusion Probabilities

Definition 19. The first-order inclusion probability is the probability that unit
k is in the random sample

πk = Pr(Sk > 0) = E[r(Sk)],

where r(.) is the reduction function.

Moreover, π = (π1 · · · πk · · · πN )′ denotes the vector of inclusion probabili-
ties. If the sampling design is without replacement, then π = µ.

Definition 20. The joint inclusion probability is the probability that unit k
and � are together in the random sample

πk� = Pr(Sk > 0 and S� > 0) = E [r(Sk)r(S�)] ,

with πkk = πk, k ∈ U.

Let Π = [πk�] be the matrix of joint inclusion probabilities. Moreover, we
define

∆ = Π − ππ′.

Note that ∆kk = πk(1 − πk), k ∈ U. If the sample is without replacement,
then

∆ = Σ.

Result 5. ∑
k∈U

πk = E {n[r(S)]} ,

and ∑
k∈U

∆k� = E {n[r(S)] (r(S�) − π�)} , for all � ∈ U.

Moreover, if var {n[r(S)]} = 0 then∑
k∈U

∆k� = 0, for all � ∈ U.
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The proof is the same as for Results 2 and 3.
When the sample is without replacement and of fixed sample size, then

S = r(S), and Result 5 becomes∑
k∈U

πk = n(S),

and ∑
k∈U

∆k� = 0, for all � ∈ U.

2.10 Computation of the Inclusion Probabilities

Suppose that the values xk of an auxiliary variable x are known for all the
units of U and that the xk > 0, for all k ∈ U. When the xk’s are approximately
proportional to the values yk’s of the variable of interest, it is then interesting
to select the units with unequal probabilities proportional to the xk in order
to get an estimator of Y with a small variance. Unequal probability sampling
is also used in multistage selfweighted sampling designs (see, for instance,
Särndal et al., 1992, p. 141).

To implement such a sampling design, the inclusion probabilities πk are
computed as follows. First, compute the quantities

nxk∑
�∈U x�

, (2.6)

k = 1, . . . , N. For units for which these quantities are larger than 1, set πk = 1.
Next, the quantities are recalculated using (2.6) restricted to the remaining
units. This procedure is repeated until each πk is in ]0, 1]. Some πk are 1
and the others are proportional to xk. This procedure is formalized in Algo-
rithm 2.1.

More formally, define

h(z) =
∑
k∈U

min
(
z
xk

X
, 1
)

, (2.7)

where X =
∑

k∈U xk. Then, the inclusion probabilities are given by

πk = min
[
1, h−1(n)

xk

X

]
, k ∈ U. (2.8)

The selection of the units with πk = 1 is trivial, therefore we can consider
that the problem consists of selecting n units without replacement from a
population of size N with fixed πk, where 0 < πk < 1, k ∈ U, and∑

k∈U

πk = n.
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Algorithm 2.1 Computation of the inclusion probabilities
Definition f : vectors of N Integers;

π: vectors of N Reals;
X Real,
m, n, m1 Integer;

For k = 1, . . . , N do fk = 0 ; EndFor;
m = 0;
m1 = −1;
While (m1 �= m), do

m1 = m;
X =

∑N
k=1 xk(1 − fk);

c = n − m;
For k = 1, . . . , N do

If fk = 0 then πk = cxk/X; If πk ≥ 1 then fk = 1; EndIf;
Else πk = 1;
EndIf;

EndFor;
m =

∑N
k=1 fk;

EndWhile.

2.11 Characteristic Function of a Sampling Design

A sampling design can thus be viewed as a multivariate distribution, which
allows defining the characteristic function of a random sample.

Definition 21. The characteristic function φ(t) from R
N to C of a random

sample S with sampling design p(.) on Q is defined by

φS(t) =
∑
s∈Q

eit′sp(s), t ∈ R
N , (2.9)

where i =
√−1, and C is the set of the complex numbers.

In some cases (see Chapters 4 and 5), the expression of the characteristic
function can be significantly simplified in such a way that the sum over all
the samples of the support does not appear anymore. When the characteristic
function can be simplified, the sampling design is more tractable.

If φ′(t) denotes the vector of first derivatives and φ′′(t) the matrix of
second derivatives of φ(t), then we have

φ′(0) = i
∑
s∈Q

sp(s) = iµ,

and
φ′′(0) = −

∑
s∈Q

ss′p(s) = −(Σ + µµ′).
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2.12 Conditioning a Sampling Design

A sampling design can be conditioned with respect to a support.

Definition 22. Let Q1 and Q2 be two supports such that Q2 ⊂ Q1 and p1(.)
a sampling design on Q1. Then, the conditional design of Q1 with respect to
Q2 is given by

p1(s|Q2) =
p1(s)∑

s∈Q2
p1(s)

, for all s ∈ Q2.

A sampling design p(.) can also be conditioned with respect to a particular
value ak for Sk

p(s|Sk = ak) =
p(s)∑

s|sk=ak
p(s)

,

for all s such that Sk = ak.
Finally, a sampling design can also be conditioned with respect to partic-

ular values ak for a subset A ⊂ U of units in the sample

p

[
s

∣∣∣∣∣ ⋂
k∈A

(Sk = ak)

]
=

p(s)∑
s| ⋂

k∈A(sk=ak) p(s)
.

for all s such that sk = ak, k ∈ A.

2.13 Observed Data and Consistency

Definition 23. The set D = {(Vk, Sk), k ∈ U} is called the observed data,
where Vk = ykSk.

Also, let d denote a possible value for D

d = {(vk, sk), k ∈ U},

where vk = yksk. The set of possible values for the observed data is

X = {d|s ∈ S,y ∈ R
N}.

The following definition is necessary to define the probability distribution
of D.

Definition 24. A possible value d is said to be consistent with a particular
vector y∗

N = (y∗
1 · · · y∗

k · · · y∗
N ) if and only if yk = y∗

k, for all k such that
sk > 0.
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Because

Pr(D = d;y) = Pr(D = d and S = s;y) = Pr(D = d|S = s;y)Pr(S = s),

Pr(D = d|S = s;y) =
{

1 if d is consistent with y
0 otherwise.

The probability distribution of D can be written

pY (d) = Pr(D = d;y) =
{

p(s) if d is consistent with y
0 otherwise. (2.10)

2.14 Statistic and Estimation

Definition 25. A statistic G is a function of the observed data: G = u(D).

The expectation of G is

E(G) =
∑
s∈Q

p(s)G(s),

where G(s) is the value taken by statistic G on sample s, and Q is the support
of the sampling design. The variance of a statistic G is defined by

var(G) = E [G − E(G)]2 .

Definition 26. An estimator T̂ of a function of interest T is a statistic used
to estimate it.

The bias of T̂ is defined by

B(T̂ ) = E(T̂ ) − T,

and the mean square error by

MSE(T̂ ) = E
(
T̂ − T

)2
= var(T̂ ) + B2(T̂ ).

Definition 27. An estimator ŶL of Y is said to be linear if it can be written

ŶL1 = w0 +
∑
k∈U

wkykSk,

or
ŶL2 = w0 +

∑
k∈U

wkykr(Sk),

where wk can eventually depend on S and thus can be random.
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Result 6. Let p(.) be a sampling design such that µk > 0, for all k ∈ U. A
linear estimator ŶL1 of Y is unbiased if and only if

E(w0) = 0 and E(wkSk) = 1, for all k ∈ U.

A linear estimator ŶL2 of Y is unbiased if and only if

E(w0) = 0 and E[wkr(Sk)] = 1, for all k ∈ U.

Because the yk’s are not random, the proof is obvious.

2.15 Sufficient Statistic

In order to deal with the estimation problem, one could use the technique of
sufficiency reduction. We refer to the following definition.

Definition 28. A statistic G = u(D) is said to be sufficient for vector y =
(y1 · · · yN )′ if and only if the conditional distribution of D given that G = g
does not depend on y = (y1 · · · yN )′ (as long as this conditional probability
exists).

If Pr(D = d|G = g;y) is the conditional probability, a statistic G is sufficient if
Pr(D = d|G = g;y) is constant with respect to y as long as Pr(G = g;y) > 0.

A sample with replacement can always be reduced to a sample without
replacement of S by means of the reduction function r(.) given in Expres-
sion (2.3) that suppresses the information about the multiplicity of the units.
A sampling design p(.) with support Q ⊂ R can also be reduced to a sampling
design p∗(.) without replacement:

p∗(s∗) =
∑

s∈Q|r(s)=s∗
p(s).

Similarly, if the sample is with replacement, the observed data can also be
reduced using function u∗(.), where

u∗(D) =
{(

Vk

1 − r(Sk) + Sk
, r(Sk)

)
, k ∈ U

}
= {(ykr(Sk), r(Sk)) , k ∈ U}

and Vk = ykSk.

Theorem 1 (see Basu and Ghosh, 1967; Basu, 1969; Cassel et al., 1993,
p. 36; Thompson and Seber, 1996, p. 35). For all sampling designs with
support Q ⊂ R, D∗ = u∗(D) is a sufficient statistic for y.

Proof. Consider the conditional probability:

Pr(D = d|D∗ = d∗;y) =
Pr(D = d and D∗ = d∗;y)

Pr(D∗ = d∗;y)
.
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This probability is defined only if Pr(D∗ = d∗;y) > 0, which implies that D∗

is consistent with y.
Two cases must be distinguished.

1. If u∗(d) = d∗, then by (2.10) we obtain

Pr(D = d and D∗ = d∗;y) = Pr(D = d;y) = pY (d) = p(s).

2. If u∗(d) �= d∗, then Pr(D = d and D∗ = d∗;y) = 0.

If d∗ is consistent with y, we have

Pr(D = d;y) = p(s),

and thus

Pr(D = d|D∗ = d∗;y) =
{

p(s)/p∗(s∗) if d∗ = u∗(d)
0 if d∗ �= u∗(d),

where r(s) = s∗ and
p∗(s∗) =

∑
s∈Q|r(s)=s∗

p(s).

This conditional distribution does not depend on y and u∗(D) is thus suffi-
cient. �

The factorization theorem allows for the identification of a sufficient statis-
tic:

Theorem 2 (see Basu and Ghosh, 1967; Basu, 1969; Cassel et al., 1993,
p. 36). For all sampling designs on Q ⊂ R then G = u(D) is sufficient for y
if and only if

pY (d) = g[u(d),y]h(d),

where the function h(d) does not depend on y and g(.) only depends on u(d).

Proof. Define the indicator function

δ(d,y) =
{

1 if d is consistent with y
0 otherwise.

Expression (2.10) can thus be written:

pY (d) = p(s)δ(d;y). (2.11)

If G = u(D) is a sufficient statistic and Pr[G = u(d);y] > 0, we have

Pr[D = d|G = u(d);y] = h(d),

where h(d) does not depend on y. We thus have

pY (d) = Pr(D = d and G = u(d);y)
= Pr(G = u(d);y)h(d)
= g[u(d),y]h(d),

where g[u(d),y] only depends on u(d). �
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The reduction principle consists of retaining from the observed data a
minimum of information in the following way:

Definition 29. A statistic is said to be a minimum sufficient statistic if it
can be written as a function of all the sufficient statistics.

Theorem 3 (see Basu and Ghosh, 1967; Basu, 1969; Cassel et al., 1993,
p. 37; Thompson and Seber, 1996, p. 38). For all sampling designs with
replacement, the statistic D∗ = u∗(D) (suppression of the information about
the multiplicity of the units) is minimum sufficient.

Proof. A statistic u(.) can define a partition of X denoted Pu. This partition
is such that if u(d1) = u(d2) then d1 and d2 are in the same subset of the
partition. A statistic u∗(.) is thus minimum sufficient if, for every sufficient
statistic u(.), each subset of the partition Pu is included in a subset of the
partition Pu∗ .

Let u(.) be any sufficient statistic such that u(d1) = u(d2), which means
that d1 and d2 are in the same subset of the partition Pu. We show that it
implies that they are in the same subset of the partition Pu∗ . Because u(.) is
sufficient, by Theorem 2, we have

pY (d1) = g [u(d1),y] h(d1)

and
pY (d2) = g [u(d2),y] h(d2).

Because g[u(d1),y] = g[u(d2),y] and u(d1) = u(d2), we obtain

pY (d1)
h(d1)

=
pY (d2)
h(d2)

.

Finally, by (2.11), we have

p(s1)δ(d1;y)
h(d1)

=
p(s2)δ(d2;y)

h(d2)
,

which is true if and only if δ(d1;y) = δ(d2;y). In this case, r(s1) = r(s2) and
u∗(d1) = u∗(d2). Thus, d1 and d2 are in the same subset of the partition Pu∗ .
Because this result is true for any sufficient statistic u(.), the statistic u∗(.) is
minimum sufficient. �

This result shows that the information about the multiplicity of the units
can always be suppressed from the observed data. The Rao-Blackwell theorem
shows that any estimator can be improved by means of a minimum sufficient
statistic.
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Theorem 4 (of Rao-Blackwell, see Cassel et al., 1993, p. 40). Let p(s) be a
sampling design with replacement and an estimator T̂ (eventually biased) of
T where D∗ = u∗(D). If T̂ ∗ = E(T̂ |D∗), then
(i) E

(
T̂ ∗

)
= E

(
T̂
)

,

(ii) MSE
(
T̂
)

= MSE
(
T̂ ∗

)
+ E

(
T̂ ∗ − T̂

)2
,

(iii) MSE
(
T̂ ∗

)
≤ MSE

(
T̂
)

.

Proof. (i) is obvious because

E(T̂ ) = EE(T̂ |D) = E(T̂ ∗).

Next, for (ii), we have

MSE
(
T̂
)

= E
(
T̂ − T̂ ∗ + T̂ ∗ − T

)2

= E
(
T̂ − T̂ ∗

)2
+ E

(
T̂ ∗ − T

)2
− 2E

{(
T̂ − T̂ ∗

)(
T̂ ∗ − T

)}
.

The third term is null because

E
{(

T̂ ∗ − T
)(

T̂ − T̂ ∗
)}

= E
{(

T̂ ∗ − T
)

E
(
T̂ − T̂ ∗|D

)}
= 0.

Finally, (iii) comes directly from (ii). �

The classical example of Rao-Blackwellization is the estimation of a total
in simple random sampling with replacement and is developed in Section 4.6,
page 53. The result about sufficiency is interesting but weak. The informa-
tion about the multiplicity of the units can always be suppressed, but the
sufficiency reduction does not permit the construction of an estimator.

Because it is impossible to identify an estimator by means of the technique
of reduction by sufficiency, we are restricted to the use of linear unbiased
estimators of the totals defined on page 21. Consider two cases.

• The first estimator takes into account the multiplicity of the units:

ŶL1 = w0 +
∑
k∈U

wkykSk,

where E(w0) = 0 and E(wkSk) = 1, for all k ∈ U. If the wk’s are not
random, the only solution is: w0 = 0 and wk = 1/E(Sk) = 1/µk, for all
k ∈ U, which gives the Hansen-Hurwitz estimator.

• The second estimator depends on the sample only through the reduction
function:

ŶL2 = w0 +
∑
k∈U

wkykr(Sk),

where E(w0) = 0 and E[wkr(Sk)] = 1, for all k ∈ U. If the wk’s are not
random, the only solution is: w0 = 0 and wk = 1/E[r(Sk)] = 1/πk, for all
k ∈ U, which gives the Horvitz-Thompson estimator.
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2.16 The Hansen-Hurwitz (HH) Estimator

2.16.1 Estimation of a Total

Definition 30. The Hansen-Hurwitz estimator (see Hansen and Hurwitz,
1943) of Y is defined by

ŶHH =
∑
k∈U

Skyk

µk
,

where µk = E(Sk), k ∈ U.

Result 7. If µk > 0, for all k ∈ U, then ŶHH is an unbiased estimator of Y .

Proof. If µk > 0, for all k ∈ U, then

E(ŶHH) =
∑
k∈U

E(Sk)yk

µk
=
∑
k∈U

yk = Y. �

2.16.2 Variance of the Hansen-Hurwitz Estimator

The variance of the Hansen-Hurwitz estimator is

var1(ŶHH) =
∑
k∈U

∑
�∈U

yky�Σk�

µkµ�
. (2.12)

Result 8. When the design is of fixed sample size, the variance can also be
written:

var2(ŶHH) = −1
2

∑
k∈U

∑
�∈U
��=k

(
yk

µk
− y�

µ�

)2

Σk�. (2.13)

Proof. We have

−1
2

∑
k∈U

∑
�∈U
��=k

(
yk

µk
− y�

µ�

)2

Σk� = −1
2

∑
k∈U

∑
�∈U

(
yk

µk
− y�

µ�

)2

Σk�

= −
∑
k∈U

∑
�∈U

(
y2

k

µ2
k

Σk� − yky�

µkµ�
Σk�

)
=
∑
k∈U

∑
�∈U

yky�

µkµ�
Σk� −

∑
k∈U

y2
k

µ2
k

∑
�∈U

Σk�.

When the sampling design has a fixed sample size (see Result 3, page 16),∑
�∈U

Σk� = 0,

which proves Result 8. �
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2.16.3 Variance Estimation

From expressions (2.12) and (2.13), it is possible to construct two variance
estimators. For general sampling designs, we have:

v̂ar1(ŶHH) =
∑
k∈U

∑
�∈U

SkS�yky�Σk�

µkµ�µk�
. (2.14)

For sampling designs with fixed sample size, we have:

v̂ar2(ŶHH) = −1
2

∑
k∈U

∑
�∈U
��=k

(
yk

µk
− y�

µ�

)2
SkS�Σk�

µk�
. (2.15)

Both estimators are unbiased if µk� > 0 for all k, � ∈ U. Indeed,

E
[
v̂ar1(ŶHH)

]
=
∑
k∈U

∑
�∈U

yky�Σk�

µkµ�µk�
E(SkS�) = var1(ŶHH),

and

E
[
v̂ar2(ŶHH)

]
= −1

2

∑
k∈U

∑
�∈U
��=k

(
yk

µk
− y�

µ�

)2
Σk�

µk�
E(SkS�) = var2(ŶHH).

By developing v̂ar2(ŶHH), we get the following result.

Result 9.

v̂ar1(ŶHH) = v̂ar2(ŶHH) +
∑
k∈U

Sky2
k

µ2
k

∑
�∈U

S�Σk�

µk�
.

Note that, with fixed sample size, estimator (2.14) should never be used.
Indeed, if yk = µk, k ∈ U and the sampling design has a fixed sample size, we
have

var(ŶHH) = 0,

v̂ar2(ŶHH) = 0,

but
v̂ar1(ŶHH) =

∑
k∈U

Sk

∑
�∈U

S�Σk�

µk�
,

which is not generally equal to 0.
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2.17 The Horvitz-Thompson (HT) Estimator

2.17.1 Estimation of a Total

The Horvitz-Thompson estimator(see Horvitz and Thompson, 1952) is defined
by

ŶHT =
∑
k∈U

r(Sk)yk

πk
= r(S)′y̌,

where y̌ = (y1/π1 · · · yk/πk · · · yk/πk). When sampling is without re-
placement, the Horvitz-Thompson estimator is equal to the Hansen-Hurwitz
estimator.

2.17.2 Variance of the Horvitz-Thompson Estimator

The variance of the Horvitz-Thompson estimator is

var1(ŶHT ) =
∑
k∈U

∑
�∈U

yky�∆k�

πkπ�
= y̌′∆y̌. (2.16)

When the size of the reduced sample n[r(S)] is fixed, we can also write

var2(ŶHT ) = −1
2

∑
k∈U

∑
�∈U
��=k

(
yk

πk
− y�

π�

)2

∆k�. (2.17)

2.17.3 Variance Estimation

From expressions (2.16) and (2.17), it is possible to construct two variance
estimators. For general sampling designs, we have:

v̂ar1(ŶHT ) =
∑
k∈U

∑
�∈U

r(Sk)r(S�)yky�∆k�

πkπ�πk�
. (2.18)

When the reduced sample size n[r(S)] is fixed, we can define the Sen-Yates-
Grundy estimator (see Sen, 1953; Yates and Grundy, 1953):

v̂ar2(ŶHT ) = −1
2

∑
k∈U

∑
�∈U
��=k

(
yk

πk
− y�

π�

)2
r(Sk)r(S�)∆k�

πk�
. (2.19)

If πk� > 0 for all k, � ∈ U, v̂ar1(ŶHT ) and v̂ar2(ŶHT ) are unbiased estimators
of var1(ŶHT ) and var2(ŶHT ), respectively.

Both estimators can take negative values. Nevertheless, if ∆k� < 0, for all
k �= � ∈ U, then v̂ar2(ŶHT ) ≥ 0. Due to the double sum, both variance esti-
mators are not really applicable. For each particular sampling design, either
they can be simplified in a simple sum or an approximation must be used.

By developing v̂ar2(ŶHT ), we get the following result.
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Result 10.

v̂ar1(ŶHT ) = v̂ar2(ŶHT ) +
∑
k∈U

r(Sk)y2
k

π2
k

∑
�∈U

r(S�)∆k�

πk�
.

Note that, with fixed sample size, estimator (2.18) should never be used.

2.18 More on Estimation in Sampling With Replacement

When the sampling design is with replacement, there exist three basic ways
to estimate the total:

1. The Hansen-Hurwitz estimator

ŶHH =
∑
k∈U

Skyk

µk
,

2. The Horvitz-Thompson estimator

ŶHT =
∑
k∈U

r(Sk)yk

πk
,

3. The improved Hansen-Hurwitz estimator

ŶIHH = E
[
ŶHH |r(S)

]
=
∑
k∈U

E[Sk|r(S)]yk

µk
.

These three estimators are unbiased. They are equal when the sampling design
is without replacement.

From Theorem 4 (page 25) of Rao-Blackwell, we have that

var(ŶIHH) ≤ var(ŶHH). (2.20)

The Hansen-Hurwitz estimator is not admissible, in the sense that it is al-
ways possible to construct (at least theoretically) an improved estimator that
always has a smaller variance than ŶHH . Unfortunately, the conditional expec-
tation E[Sk|r(S)] needed to compute ŶIHH is often very intricate, especially
when the units are selected with unequal probabilities.
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Sampling Algorithms

3.1 Introduction

A sampling algorithm is a procedure used to select a sample. If the sampling
design is known and if the population size is not too large, a sample can be
selected directly by enumerating all the samples as explained in Section 3.3.
Nevertheless, when N is large, the number of possible samples becomes so
large that it is practically impossible to enumerate all the samples. The ob-
jective of a sampling algorithm is to select a sample by avoiding the enumera-
tion of all the samples. The main difficulty of the implementation is thus the
combinatory explosion of the number of possible samples.

Hedayat and Sinha (1991) and Chen (1998) pointed out that several dis-
tinct sampling algorithms (or sampling schemes) can correspond to the same
sampling design, which is clearly illustrated in Chapter 4, devoted to simple
random sampling. There are, however, several families of algorithms to imple-
ment sampling designs. In this chapter, we describe these general algorithms
and propose a typology. Indeed, most of the particular algorithms can be pre-
sented as particular cases of very general schemes that can be applied to any
sampling design.

3.2 Sampling Algorithms

We refer to the following definitions:

Definition 31. A sampling algorithm is a procedure allowing the selection of
a random sample.

Definition 32. A sampling algorithm is said to be enumerative if all the pos-
sible samples must be listed in order to select the random sample.

An efficient sampling algorithm is by definition a fast one. All enumerative
algorithms are therefore inefficient. The basic aim is thus to find a shortcut
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that allows us to select a sample by means of a sampling design and to avoid
the complete computation of the sample. It seems that there is no general
method for constructing a shortcut for any sampling design. The possibility
of constructing a fast algorithm depends on the sampling design that must
be implemented. There exist, however, some standard algorithms of sampling
that can be applied to any sampling design. Nevertheless, nonenumerative
sampling designs are obtained only for very specific designs.

3.3 Enumerative Selection of the Sample

In order to implement a sampling design p(.), an enumerative procedure pre-
sented in Algorithm 3.1 is theoretically always possible. As presented in Ta-

Algorithm 3.1 Enumerative algorithm
1. First, construct a list {s1, s2, . . . , sj , . . . , sJ} of all possible samples with their

probabilities.
2. Next, generate a random variable u with a uniform distribution in [0,1].

3. Finally, select the sample sj such that
j−1∑
i=1

p(si) ≤ u <

j∑
i=1

p(si).

ble 3.1, even for small population sizes, the size of the support is so large
that it becomes unworkable very quickly. A large part of the developments in
sampling theory is the research of shortcuts for avoiding this enumeration.

Table 3.1. Sizes of symmetric supports

SupportQ card(Q) N = 100, n = 10 N = 300, n = 30

R ∞ − −
Rn

(
N+n−1

n

)
5.1541 × 1013 3.8254 × 1042

S 2N 1.2677 × 1030 2.0370 × 1090

Sn

(
N
n

)
1.7310 × 1013 1.7319 × 1041

3.4 Martingale Algorithms

A very large family is the set of the martingale algorithms. Almost all sampling
methods can be expressed in the form of a martingale algorithm, except the
rejective algorithm (on this topic see Section 3.8).
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Definition 33. A sampling algorithm is said to be a martingale algorithm if
it can be written as a finite sequence of random vectors

µ(0),µ(1),µ(2), . . . ,µ(t), . . . ,µ(T ), of R
N ,

such that

• µ(0) = µ = E(S),
• E [µ(t)|µ(t − 1), . . . ,µ(0)] = µ(t − 1),
• µ(t) is in the convex hull of the support,
• µ(T ) ∈ R.

A martingale algorithm is thus a “random walk” in the convex hull of the
support that begins at the inclusion probability vector and stops on a sample.

Definition 34. In sampling without replacement, a sampling algorithm is said
to be a martingale algorithm if it can be written as a finite sequence of random
vectors

π(0),π(1),π(2), . . . ,π(t), . . . ,π(T ), of [0, 1]N ,

such that

• π(0) = π = E(S),
• E [π(t)|π(t − 1), . . . ,π(0)] = π(t − 1),
• π(t) is in the convex hull of the support,
• π(T ) ∈ S.

Note that, in sampling without replacement, the convex hull of the support
is a subset of the hypercube [0, 1]N .

A martingale algorithm consists thus of modifying randomly at each step
the vector of inclusion probabilities until a sample is obtained. All the sequen-
tial procedures (see Algorithm 3.2, page 35), the draw by draw algorithms (see
Algorithm 3.3, page 35), the algorithms of the splitting family (see Chapter 6),
and the cube family of algorithms (see Chapter 8) can be presented as mar-
tingales.

3.5 Sequential Algorithms

A sequential procedure is a method that is applied to a list of units sorted
according to a particular order denoted 1, . . . , k, . . . , N .

Definition 35. A sampling procedure is said to be weakly sequential if at step
k = 1, . . . , N of the procedure, the decision concerning the number of times
that unit k is in the sample is definitively taken.

Definition 36. A sampling procedure is said to be strictly sequential if it is
weakly sequential and if the decision concerning unit k does not depend on the
units that are after k on the list.
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The standard sequential procedure consists of examining successively all
the units of the population. At each one of the N steps, unit k is selected
sk times according to a distribution probability that depends on the decision
taken for the previous units. The standard sequential procedure presented in
Algorithm 3.2 is a weakly sequential method that can be defined and can
theoretically be used to implement any sampling design.

Algorithm 3.2 Standard sequential procedure
1. Let p(s) be the sampling design and Q the support. First, define

q1(s1) = Pr(S1 = s1) =
∑

s∈Q|S1=s1

p(s), s1 = 0, 1, 2, . . .

2. Select the first unit s1 times according to the distribution q1(s1).
3. For k = 2, . . . , N do

a) Compute

qk(sk) = Pr(Sk = sk|Sk−1 = sk−1, . . . , S1 = s1)

=

∑
s∈Q|Sk=sk,Sk−1=sk−1,...,S1=s1

p(s)∑
s∈Q|Sk−1=sk−1,...,S1=s1

p(s)
, sk =, 0, 1, 2, . . .

b) Select the kth unit sk times according to the distribution qk(sk);
EndFor.

This procedure provides a nonenumerative procedure only if the qk(sk)
can be computed successively without enumerating all the possible samples of
the sampling designs. The standard sequential algorithm is implemented for
particular sampling designs in Algorithm 4.1, page 44; Algorithm 4.3, page 48;
Algorithm 4.6, page 53; Algorithm 4.8, page 61; Algorithm 5.1, page 70; Al-
gorithm 5.2, page 75; Algorithm 5.4, page 79; and Algorithm 5.8, page 92.

Example 4. Suppose that the sampling design is

p(s) =
(

N

n

)−1

, s ∈ Sn,

which is actually a simple random sampling without replacement (see Sec-
tion 4.4). After some algebra, we get

qk(sk) =

⎧⎪⎪⎨⎪⎪⎩
n −∑k−1

�=1 s�

N − k + 1
if sk = 1

1 − n −∑k−1
�=1 s�

N − k + 1
if sk = 0.

This method was actually proposed by Fan et al. (1962) and Bebbington
(1975) and is described in detail in Algorithm 4.3, page 48.
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3.6 Draw by Draw Algorithms

The draw by draw algorithms are restricted to designs with fixed sample size.
We refer to the following definition.

Definition 37. A sampling design of fixed sample size n is said to be draw
by draw if, at each one of the n steps of the procedure, a unit is definitively
selected in the sample.

For any sampling design p(s) of fixed sample size on a support Q ⊂ Rn,
there exists a standard way to implement a draw by draw procedure. At each
one of the n steps, a unit is selected randomly from the population with
probabilities proportional to the mean vector. Next, a new sampling design
is computed according to the selected unit. This procedure can be applied to
sampling with and without replacement and is presented in Algorithm 3.3.

Algorithm 3.3 Standard draw by draw algorithm
1. Let p(s) be a sampling design and Q ⊂ Rn the support. First, define p(0)(s) =

p(s) and Q(0) = Q. Define also b(0) as the null vector of R
N .

2. For t = 0, . . . , n − 1 do
a) Compute ν(t) =

∑
s∈Q(t) sp

(t)(s);
b) Select randomly one unit from U with probabilities qk(t), where

qk(t) =
νk(t)∑

�∈U ν�(t)
=

νk(t)
n − t

, k ∈ U ;

The selected unit is denoted j;
c) Define aj = (0 · · · 0 1︸︷︷︸

jth

0 · · · 0); Execute b(t + 1) = b(t) + aj ;

d) Define Q(t + 1) = {s̃ = s − aj , for all s ∈ Q(t) such that sj > 0} ;
e) Define, for all s̃ ∈ Q(t + 1),

p(t+1)(s̃) =
sjp

(t)(s)∑
s∈Q(t) sjp(t)(s)

,

where s = s̃ + aj ;
EndFor.

3. The selected sample is b(n).

The validity of the method is based on the recursive relation:

p(t)(s) =
∑
k∈U

qk(t)
sjp

(t)(s)∑
s∈Q(t) sjp(t)(s)

=
∑
k∈U

qk(t)p(t+1)(s̃),

where s ⊂ Q(t), and s̃ = s − aj . As Q(0) ⊂ Rn, we have Q(t) ⊂ Rn−t. Thus,
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k∈U

νk(t) = (n − t).

Moreover, the sequence

µ(t) = ν(t) +
t∑

j=1

b(j),

for t = 0, . . . , n − 1, is a martingale algorithm.
The standard draw by draw procedure can theoretically be implemented

for any sampling design but is not necessarily nonenumerative. In order to
provide a nonenumerative algorithm, the passage from qk(t) to qk(t+1) should
be such that it is not necessary to compute p(t)(s), which depends on the
sampling design and on the support. The standard draw by draw algorithm
is implemented for particular sampling designs in Algorithm 4.2, page 48;
Algorithm 4.7, page 60; Algorithm 5.3, page 76; and Algorithm 5.9, page 95.

Example 5. Suppose that the sampling design is

p(s) =
n!
Nn

∏
k∈U

1
sk!

, s ∈ Rn,

which is actually a simple random sampling with replacement (see Sec-
tion 4.6). We have, for all t = 0, . . . , n − 1,

ν(t) =
(

n − t

N
· · · n − t

N

)′
,

qk(t) =
1
N

, k ∈ U,

Q(t) = Rn−t,

p(t)(s) =
(n − t)!
N (n−t)

∏
k∈U

1
sk!

, s ∈ Rn−t.

It is not even necessary to compute p(t)(s). At each step, a unit is selected
from U with probability 1/N for each unit. This method is developed in
Algorithm 4.7, page 60.

In the case of sampling without replacement, the standard draw by draw
algorithm can be simplified as presented in Algorithm 3.4.

Example 6. Suppose that the sampling design is

p(s) =
(

N

n

)−1

, s ∈ Sn,
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Algorithm 3.4 Standard draw by draw algorithm for sampling without re-
placement
1. Let p(s) be a sampling design and Q ∈ S the support.
2. Define b = (bk) = 0 ∈ R

N .
3. For t = 0, . . . , n − 1 do

select a unit from U with probability

qk =

{ 1
n − t

E (Sk|Si = 1 for all i such that bi = 1) if bk = 0

0 if bk = 1;

If unit j is selected, then bj = 1;
EndFor.

which is actually a simple random sampling without replacement (see Sec-
tion 4.4). In sampling without replacement, at each step, a unit is definitively
selected in the sample. This unit cannot be selected twice. The draw by draw
standard method is:

νk(t) =

{ n − t

N − t
if unit k is not yet selected

0 if unit k is already selected,

qk(t) =

{ 1
N − t

if unit k is not yet selected

0 if unit k is already selected.

Thus, at step t, a unit is selected with equal probabilities 1/(N − t) among
the N − t unselected units. The vector π(t) = [πk(t)] = is a martingale, where

πk(t) =

{ 1
N − t

if unit k is not yet selected

1 if unit k is already selected,

for t = 0, . . . , n − 1. This method is developed in Algorithm 4.2, page 48.

3.7 Eliminatory Algorithms

For sampling without replacement and of fixed sample size, it is possible to
use methods for which units are eliminated from the population, which can
be defined as follows.

Definition 38. A sampling algorithm of fixed sample size n is said to be elim-
inatory if, at each one of the N −n steps of the algorithm, a unit is definitively
eliminated from the population.
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Algorithm 3.5 Standard eliminatory algorithm
1. Let p(s) be the sampling design and Q the support such that Q ⊂ Sn.

Define p(0)(s) = p(s) and Q(0) = Q.
2. For t = 0, . . . , N − n − 1 do

a) Compute ν(t) = [νk(t)], where

νk(t) =
∑

s∈Q(t)|sk=0

p(t)(s) =
∑

s∈Q(t)

(1 − sk)p(t)(s);

b) Select randomly a unit from U with unequal probabilities qk(t), where

qk(t) =
νk(t)∑

�∈U ν�(t)
=

νk(t)
N − n − t

, k ∈ U ;

The selected unit is denoted j;
c) Define Q(t + 1) = {s ∈ Q(t)|sj = 0} ;
d) Define

p(t+1)(s) = p(t)(s|Q(t + 1)) =
p(t)(s)∑

s∈Q(t+1) p(t)(s)
,

where s ∈ Q(t + 1);
EndFor.

3. The support Q(N − n) contains only one sample that is selected.

Algorithm 3.5 implements a standard eliminatory procedure for a fixed size
sampling design without replacement.

The eliminatory methods can be presented as the complementary proce-
dures of the draw by draw methods. Indeed, in order to implement an elimina-
tory method for a sampling design p(.), we can first define the complementary
design pc(.) of p(.). Next, a sample s of size N − n is randomly selected by
means of a draw by draw method for pc(.). Finally, the sample 1−s is selected,
where 1 is a vector of N ones.

3.8 Rejective Algorithms

Definition 39. Let Q1 and Q2 be two supports such that Q1 ⊂ Q2. Also, let
p1(.) be a sampling design on Q1 and p2(.) be a sampling design on Q2, such
that

p2(s|Q1) = p1(s), for all s ∈ Q1.

A sampling design is said to be rejective if successive independent samples are
selected randomly according to p2(.) in Q2 until a sample of Q1 is obtained.

Example 7. Suppose that we want to select a sample with the design

p1(s) =
(

N

n

)−1

, s ∈ Sn,
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which is a simple random sampling without replacement. Independent samples
can be selected with the sampling design

p2(s) =
n!
Nn

∏
k∈U

1
sk!

, s ∈ Rn,

which is a simple random sampling with replacement, until a sample of Sn is
obtained. Indeed, we have

p2(s|Sn) = p1(s), for all s ∈ Sn.

In practice, rejective algorithms are quite commonly used. The rejective
methods are sometimes very fast, and sometimes very slow according to the
cardinality difference between Q1 and Q2. Rejective algorithms are imple-
mented for particular sampling designs in Algorithm 5.5, page 89; Algo-
rithm 5.6, page 90; Algorithm 7.3, page 136; Algorithm 7.4, page 136; and
Algorithm 7.5, page 136.
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Simple Random Sampling

4.1 Introduction

In this chapter, a unified theory of simple random sampling is presented.
First, an original definition of a simple design is proposed. All the particular
simple designs as simple random sampling with and without replacement and
Bernoulli sampling with and without replacement can then be deduced by a
simple change of symmetric support.

For each of these sampling designs, the standard algorithms presented in
Chapter 3 are applied, which allows defining eight sampling procedures. It is
interesting to note that these algorithms were originally published in statistics
and computer science journals without many links between the publications
of these fields of research.

In sampling with replacement with fixed sample size, the question of es-
timation is largely developed. It is indeed preferable to suppress the infor-
mation about the multiplicity of the units, which amounts to applying a
Rao-Blackwellization on the Hansen-Hurwitz estimator. The interest of each
estimator is thus discussed.

4.2 Definition of Simple Random Sampling

Curiously, a concept as common as simple random sampling is often not de-
fined. We refer to the following definition.

Definition 40. A sampling design pSIMPLE(., θ,Q) of parameter θ ∈ R
∗
+ on a

support Q is said to be simple, if

(i) Its sampling design can be written

pSIMPLE(s, θ, Q) =
θn(s) ∏

k∈U 1/sk!∑
s∈Q θn(s)

∏
k∈U 1/sk!

, for all s ∈ Q.

(ii)Its support Q is symmetric (see Definition 2, page 9).
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Remark 7. If a simple sampling design is defined on a support Q without
replacement, then it can be written:

pSIMPLE(s, θ, Q) =
θn(s)∑

s∈Q θn(s) ,

for all s ∈ Q.

Remark 8. If a simple sampling design has a fixed sample size, then it does
not depend on the parameter anymore:

pSIMPLE(s, θ, Q) =
∏

k∈U 1/sk!∑
s∈Q

∏
k∈U 1/sk!

,

for all s ∈ Q.

Remark 9. If a simple sampling design is without replacement and of fixed
sample size, then:

pSIMPLE(s, θ, Q) =
1

cardQ ,

for all s ∈ Q.

Remark 10. For any s∗ obtained by permuting the elements of s, we have

pSIMPLE(s|Q) = pSIMPLE(s∗|Q).

Remark 11. If S is a random sample selected by means of a simple random
sampling on Q, then, because the support is symmetric,

1. µ = E(Sk) and π = E[r(Sk)] do not depend on k,

2. µ =
E[n(S)]

N
,

3. π =
E {n[r(S)]}

N
.

The most studied simple sampling designs are:

• Bernoulli sampling design (BERN) on S,
• Simple random sampling without replacement (with fixed sample size)

(SRSWOR) on Sn,
• Bernoulli sampling with replacement (BERNWR) on R,
• Simple random sampling with replacement with fixed sample size (SR-

SWR) on Rn.
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4.3 Bernoulli Sampling (BERN)

4.3.1 Sampling Design

Definition 41. A simple design defined with parameter θ on support S =
{0, 1}N is called a Bernoulli sampling design with inclusion probabilities π =
θ/(1 + θ).

The Bernoulli sampling design can be deduced from Definition 40, page 41.
Indeed,

pBERN

(
s, π =

θ

1 + θ

)
= pSIMPLE(s, θ, S) =

θn(s)∑
s∈S θn(s) =

θn(s)∑N
r=0

∑
s∈Sr

θr
=

θn(s)∑N
r=0

(
N
r

)
θr

=
θn(s)

(θ + 1)N
=
(

θ

1 + θ

)n(s) (
1 − θ

1 + θ

)N−n(s)

= πn(s)(1 − π)N−n(s),

for all s ∈ S, where π = θ/(1 + θ), π ∈]0, 1[. Bernoulli sampling design can
also be written

pBERN(s, π) =
∏
k∈U

πsk(1 − π)1−sk ,

where the S1, . . . , SN are independent and identically distributed Bernoulli
variables with parameter π.

The characteristic function is

φBERN(t)

=
∑
s∈S

eit′spBERN(s, π) =
∑
s∈S

eit′sπn(s)(1 − π)N−n(s)

= (1 − π)N
∑
s∈S

∏
k∈U

(
π

1 − π
eitk

)sk

= (1 − π)N
∏
k∈U

(
1 +

π

1 − π
eitk

)
=

∏
k∈U

(
1 − π + πeitk

)
.

By differentiating the characteristic function, we get the inclusion probabilities
E(Sk) = π, for all k ∈ U. By differentiating the characteristic function twice,
we get the joint inclusion probabilities E(SkS�) = π2, for all k �= � ∈ U.

The sample size distribution is binomial, n(S) ∼ B(N, π), and

Pr [n(s) = r] =
∑
s∈Sr

πr(1 − π)N−r =
(

N

r

)
πr(1 − π)N−r,

with r = 0, . . . , N.
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Because the Sk’s have a Bernoulli distribution, the variance is

var(Sk) = π(1 − π), for all k ∈ U.

Due to the independence of the Sk,

∆k� = cov(Sk, S�) = 0, for all k �= � ∈ U.

The variance-covariance operator is Σ = π(1 − π)I, where I is an (N × N)
identity matrix.

4.3.2 Estimation

The Horvitz-Thompson estimator is

ŶHT =
1
π

∑
k∈U

ykSk.

The variance of the Horvitz-Thompson estimator is

var(ŶHT ) = y̌′∆y̌ =
π(1 − π)

π2

∑
k∈U

y2
k.

The variance estimator of the Horvitz-Thompson estimator is

v̂ar(ŶHT ) =
1 − π

π2

∑
k∈U

y2
kSk.

4.3.3 Sequential Sampling Procedure for BERN

Due to the independence of the sampling between the units, the standard
sequential Algorithm 3.2, page 34, is very easy to construct for a BERN sam-
pling as presented in Algorithm 4.1.

Algorithm 4.1 Bernoulli sampling without replacement
Definition k : Integer;
For k = 1, . . . , N do with probability π select unit k; EndFor.

Note that Algorithm 4.1 is strictly sequential. Conditionally on a fixed
sample size, a Bernoulli design becomes a simple random sample without re-
placement. Another method for selecting a sample with a Bernoulli design
is thus to choose randomly the sample size according to a binomial distri-
bution and then to select a sample with a simple random sampling without
replacement.
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4.4 Simple Random Sampling Without Replacement
(SRSWOR)

4.4.1 Sampling Design

Definition 42. A simple design defined with parameter θ on support Sn is
called a simple random sampling without replacement.

The simple random sampling without replacement can be deduced from Def-
inition 40, page 41:

pSRSWOR(s, n) = pSIMPLE(s, θ, Sn) =
θn∑

s∈Sn
θn

=
1

card(Sn)
=
(

N

n

)−1

=
n!(N − n)!

N !
,

for all s ∈ Sn. Note that pSRSWOR(s, n) does not depend on θ anymore.
The characteristic function is

φSRSWOR(t) =
∑
s∈Sn

eit′spSRSWOR,n(s) =
(

N

n

)−1 ∑
s∈Sn

eit′s,

and cannot be simplified. The inclusion probability is

πk =
∑
s∈Sn

skpSRSWOR(s, n) = card{s ∈ Sn|sk = 1}
(

N

n

)−1

=
(

N − 1
n − 1

)(
N

n

)−1

=
n

N
,

for all k ∈ U.
The joint inclusion probability is

πk� =
∑
s∈Sn

sks�pSRSWOR(s, n) = card{s ∈ Sn|sk = 1 and s� = 1}
(

N

n

)−1

=
(

N − 2
n − 2

)(
N

n

)−1

=
n(n − 1)
N(N − 1)

,

for all k �= � ∈ U.
The variance-covariance operator is given by

∆k� = cov(Sk, S�) =

⎧⎪⎨⎪⎩
πk(1 − πk) =

n(N − n)
N2 , k = � ∈ U

n(n − 1)
N(N − 1)

− n2

N2 = − n(N − n)
N2(N − 1)

, k �= � ∈ U.
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Thus,

∆ = var(S) =
n(N − n)
N(N − 1)

H,

where H is the projection matrix that centers the data.

H = I − 11′

N
, =

⎛⎜⎜⎜⎜⎜⎜⎝

1 − 1
N · · · −1

N · · · −1
N

...
. . .

...
...

−1
N · · · 1 − 1

N · · · −1
N

...
...

. . .
...

−1
N · · · −1

N · · · 1 − 1
N

⎞⎟⎟⎟⎟⎟⎟⎠ , (4.1)

and I is an identity matrix and 1 is a vector of N ones. We have

Hy̌ =
N

n

(
y1 − Y · · · yk − Y · · · yN − Y

)′
,

where y̌ = N
n (y1 · · · yk · · · yN )′

. Thus,

y̌′Hy̌ =
N2

n2

∑
k∈U

(
yk − Y

)2
.

In order to estimate the variance, we need to compute

∆k�

πk�
=

n(N − n)
N(n − 1)

⎧⎪⎨⎪⎩
n − 1

n
, k = � ∈ U

− 1
n

, k �= � ∈ U.

4.4.2 Estimation

Horvitz-Thompson estimator

The Horvitz-Thompson estimator is

ŶHT =
N

n

∑
k∈U

ykSk.

Variance of the Horvitz-Thompson estimator

The variance of the Horvitz-Thompson estimator is

var(ŶHT ) = y̌′∆y̌ =
n(N − n)
N(N − 1)

y̌′Hy̌ =
n(N − n)
N(N − 1)

N2

n2

∑
k∈U

(
yk − Y

)2
= N2 (N − n)

N

1
n(N − 1)

∑
k∈U

(
yk − Y

)2
= N2 N − n

N

V 2
y

n
,

where
V 2

y =
1

N − 1

∑
k∈U

(
yk − Ȳ

)2
.
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Variance estimator of the Horvitz-Thompson estimator

The variance estimator of the Horvitz-Thompson estimator is

v̂ar(ŶHT ) = N2 N − n

nN
v2

y, (4.2)

where

v2
y =

1
n − 1

∑
k∈U

Sk

(
yk − ŶHT

N

)2

.

Note that (4.2) is a particular case of estimators (2.18) and (2.19), page 28,
that are equal in this case. Estimator (4.2) is thus unbiased, but a very simple
proof can be given for this particular case:

Result 11. In a SRSWOR v2
y is an unbiased estimator of V 2

y .

Proof. Because

v2
y =

1
n − 1

∑
k∈U

Sk

(
yk − ŶHT

N

)2

=
1

2n(n − 1)

∑
k∈U

∑
�∈U

(yk − y�)
2
SkS�,

we obtain

E(v2
y) =

1
2n(n − 1)

∑
k∈U

∑
�∈U

(yk − y�)
2 E (SkS�)

=
1

2n(n − 1)

∑
k∈U

∑
�∈U

(yk − y�)
2
πk�

=
1

2n(n − 1)

∑
k∈U

∑
�∈U

(yk − y�)
2 n(n − 1)

N(N − 1)

=
1

2N(N − 1)

∑
k∈U

∑
�∈U

(yk − y�)
2 = V 2

y . �

4.4.3 Draw by Draw Procedure for SRSWOR

The standard draw by draw Algorithm 3.3, page 35, becomes in the case of
SRSWOR the well-known ball-in-urn method (see Example 4, page 34) where
a unit is selected from the population with equal probability. The selected
unit is removed from the population. Next, a second unit is selected among
the N − 1 remaining units. This operation is repeated n times and, when a
unit is selected, it is definitively removed from the population. This method is
summarized in Algorithm 4.2. Nevertheless, Algorithm 4.2 has an important
drawback: its implementation is quite complex and it is not sequential. For
this reason, it is preferable to use the selection-rejection procedure presented
in Section 4.4.4.
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Algorithm 4.2 Draw by draw procedure for SRSWOR
Definition j : Integer;
For t = 0, . . . , n − 1 do

select a unit k from the population with probability

qk =
{ 1

N−t
if k is not already selected

0 if k is already selected;
EndFor.

4.4.4 Sequential Procedure for SRSWOR: The Selection-Rejection
Method

The selection-rejection procedure is the standard sequential Algorithm 3.2,
page 34, for SRSWOR; that is, the sample can be selected in one pass in the
data file. The method was discussed in Fan et al. (1962), Bebbington (1975),
Vitter (1984), Ahrens and Dieter (1985) and Vitter (1987) and is presented
in Algorithm 4.3. The selection-rejection method is the best algorithm for
selecting a sample according to SRSWOR; it is strictly sequential. Note that
the population size must be known before applying Algorithm 4.3.

Algorithm 4.3 Selection-rejection procedure for SRSWOR
Definition k, j : Integer;
j = 0;
For k = 1, . . . , N do

with probability n − j
N − (k − 1) then

∣∣∣∣ select unit k;
j = j + 1;

EndFor.

This method was improved by Fan et al. (1962), Knuth (1981), Vitter
(1987), Ahrens and Dieter (1985), Bissell (1986), and Pinkham (1987) in order
to skip the nonselected units directly. These methods are discussed in Deville
et al. (1988).

4.4.5 Sample Reservoir Method

The reservoir method has been proposed by McLeod and Bellhouse (1983)
and Vitter (1985) but is also a particular case of the Chao procedure (see
Chao, 1982, and Section 6.3.6, page 119). As presented in Algorithm 4.4, at
the first step, the first n units are selected in the sample. Next, the sample is
updated by examining the last N − n units of the file.

The main interest of Algorithm 4.4 is that the population size must not be
known before applying the algorithm. At the end of the file, the population size
is known. The reservoir method can be viewed as an eliminatory algorithm.
Indeed, at each one of the N − n steps of the algorithm, a unit is definitively
eliminated.
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Algorithm 4.4 Reservoir method for SRSWOR
Definition k : Integer;
The first n units are selected into the sample;
For k = n + 1, . . . , N do

with probability n
k

∣∣∣∣∣∣
select unit k;
a unit is removed from the sample with equal probabilities;
unit k takes the place of the removed unit;

EndFor.

Result 12. (McLeod and Bellhouse, 1983) Algorithm 4.4 gives a SRSWOR.

Proof. (by induction) Let Uj denote the population of the first j units of U
with j = n, n + 1, . . . , N, and

Sn(Uj) = {s ∈ Sn |sk = 0, for k = j + 1, . . . , N } .

Let S(j) denote a random sample of size n selected in support Sn(Uj). All the
vectors

s(j) = (s1(j) · · · sk(j) · · · sN (j))′

of Sn(Uj) are possible values for the random sample S(j). We prove that

Pr [S(j) = s(j)] =
(

j

n

)−1

, for s(j) ⊂ Sn(Uj). (4.3)

Expression (4.3) is true when j = n. Indeed, in this case, Sn(Uj) only contains
a sample s(n) = Un and Pr(Sn = sn) = 1. When j > n, Expression (4.3) is
proved by induction, supposing that (4.3) is true for j − 1. Considering a
sample s(j) of Sn(Uj), two cases must be distinguished.

• Case 1. sj(j) = 0
We obtain

Pr[S(j) = s(j)]
= Pr[S(j − 1) = s(j)] × Pr(unit j is not selected at step j)

=
(

j − 1
n

)−1 (
1 − n

j

)
=
(

j

n

)−1

. (4.4)

• Case 2. sj(j) = 1
In this case, the probability of selecting sample s(j) at step j is the prob-
ability that:
1. At step j − 1, a sample s(j) −aj +ai is selected, where i is any unit of

Uj−1 that is not selected in sj and aj = (0 · · · 0 1︸︷︷︸
jth

0 · · · 0);

2. Unit j is selected;
3. Unit i is replaced by j.
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This probability can thus be written

Pr[Sj = s(j)] =
∑

i∈Uj−1|si(j)=0

Pr [S(j − 1) = s(j) − aj + ai] × n

j
× 1

n

= (j − n)
(

j − 1
n

)−1 1
j

=
(

j

n

)−1

. (4.5)

Results (4.4) and (4.5) prove Expression (4.3) by induction. Finally, Result 12
is obtained by taking j = N in Expression (4.3). �

4.4.6 Random Sorting Method for SRSWOR

A very simple method presented in Algorithm 4.5 consists of randomly sorting
the population file.

Algorithm 4.5 Random sort procedure for SRSWOR
1. A value of an independent uniform variable in [0,1] is allocated to each unit of

the population.
2. The population is sorted in ascending (or descending) order.
3. The first (or last) n units of the sorted population are selected in the sample.

Sunter (1977, p. 273) has proved that the random sorting gives a SRSWOR.

Result 13. The random sorting method gives a SRSWOR.

Proof. Consider the distribution function of the largest uniform random num-
ber generated for N − n units. If ui denotes the uniform random variable of
the ith unit of the file, this distribution function is given by:

F (x) = Pr

[
N−n⋂
i=1

(ui ≤ x)

]
=

N−n∏
i=1

Pr (ui ≤ x) = xN−n, 0 < x < 1.

The probability that the n remaining units are all greater than x is equal to
(1 − x)n. The probability of selecting a particular sample s is thus

p(s) =
∫ 1

0
(1 − x)ndF (x) = (N − n)

∫ 1

0
(1 − x)nxN−n−1dx, (4.6)

which is an Euler integral

B(x, y) =
∫ 1

0
tx(1 − t)ydt =

x!y!
(x + y + 1)!

, x, y integer. (4.7)

From (4.6) and (4.7), we get

p(s) =
(

N

n

)−1

.
�
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4.5 Bernoulli Sampling With Replacement (BERNWR)

4.5.1 Sampling Design

Bernoulli sampling with replacement is not useful in practice. However, we
introduce it for the completeness of the definitions.

Definition 43. A simple design defined on support R is called Bernoulli sam-
pling design with replacement.

The Bernoulli sampling design with replacement can be deduced from Defini-
tion 40, page 41:

pBERNWR(s, µ) = pSIMPLE(s, θ = µ,R) =
µn(s) ∏

k∈U
1

sk!∑
s∈R µn(s)

∏
k∈U

1
sk!

=
µn(s) ∏

k∈U
1

sk!∏
k∈U

∑∞
i=0

µi

i!

= e−Nµµn(s)
∏
k∈U

1
sk!

,

for all s ∈ R and with µ ∈ R
∗
+.

Because we can also write the sampling design as

pBERNWR(s, µ) =
∏
k∈U

e−µµsk

sk!
,

where the S1, . . . , SN are independent and identically distributed Poisson vari-
ables with parameter µ, the following results can be derived directly from the
Poisson distribution.

The expectation is µk = E(Sk) = µ, for all k ∈ U. The joint expectation
is

µk� = E(SkS�) = E(Sk)E(S�) = µ2, for all k �= � ∈ U.

In a Poisson distribution, the variance is equal to the expectation

Σkk = var(Sk) = µ, for all k ∈ U.

Due to the independence of the Sk,

Σk� = cov(Sk, S�) = 0, for all k �= � ∈ U.

The variance-covariance operator is Σ = Iµ. Because the sum of indepen-
dent Poisson variables is a Poisson variable, the probability distribution of the
sample size comes directly:

Pr [n(S) = z] =
e−(Nµ)(Nµ)z

z!
, z ∈ N.
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The characteristic function is

φBERNWR(t) =
∑
s∈R

eit′spBERNWR(s, µ) =
∑
s∈R

eit′s
∏
k∈U

e−µµsk

sk!

= e−Nµ
∑
s∈R

∏
k∈U

(
eitkµ

)sk

sk!
= e−Nµ

∏
k∈U

∞∑
sk=0

(
eitkµ

)sk

sk!

= e−Nµ
∏
k∈U

exp
(
eitkµ

)
=

∏
k∈U

exp
[
µ
(
eitk − 1

)]
= expµ

∑
k∈U

(exp itk − 1).

The inclusion probability is

πk = Pr(Sk > 0) = 1 − Pr(Sk = 0) = 1 − e−µ.

The joint inclusion probability is

πk� = Pr(Sk > 0 and S� > 0) = [1 − Pr(Sk = 0)] [1 − Pr(S� = 0)]
= (1 − e−µ)2, k �= �.

Finally, we have ∆ = I(1 − e−µ)e−µ, where I is an N × N identity matrix.

4.5.2 Estimation

Hansen-Hurwitz estimator

The Hansen-Hurwitz estimator is

ŶHH =
∑
k∈U

ykSk

µ
.

The variance of the Hansen-Hurwitz estimator is

var(ŶHH) =
∑
k∈U

y2
k

µ
.

The estimator of the variance is

v̂ar(ŶHH) =
∑
k∈U

Sky2
k

µ2 .

Improvement of the Hansen-Hurwitz estimator

Because
E(Sk|r(S)) = r(Sk)

µ

1 − e−µ
,



4.6 Simple Random Sampling With Replacement (SRSWR) 53

the improved Hansen-Hurwitz estimator is

ŶIHH =
∑
k∈U

ykE(Sk|r(S))
µ

=
∑
k∈U

ykr(Sk)
µ

µ

1 − e−µ
=
∑
k∈U

ykr(Sk)
1 − e−µ

.

As var[r(Sk)] = (1 − e−µ)e−µ, the variance of the improved Hansen-Hurwitz
estimator is given by

var
(
ŶIHH

)
=
∑
k∈U

y2
kvar[r(Sk)]
(1 − e−µ)2

=
∑
k∈U

y2
k

(1 − e−µ)e−µ

(1 − e−µ)2
=
∑
k∈U

y2
k

eµ − 1
.

The improvement brings an important decrease of the variance with respect
to the Hansen-Hurwitz estimator. This variance can be estimated by

v̂ar
(
ŶIHH

)
=
∑
k∈U

r(Sk)y2
k

(eµ − 1)2
.

The Horvitz-Thompson estimator

Because πk = 1 − e−µ, the Horvitz-Thompson estimator is

ŶHT =
∑
k∈U

ykr(Sk)
πk

=
∑
k∈U

ykr(Sk)
1 − e−µ

,

which is, in this case, the same estimator as the improved Hansen-Hurwitz
estimator.

4.5.3 Sequential Procedure for BERNWR

Due to the independence of the Sk, the standard sequential Algorithm 3.2,
page 34, is strictly sequential and simple to implement for a BERNWR, as
presented in Algorithm 4.6.

Algorithm 4.6 Bernoulli sampling with replacement
Definition k : Integer;
For k = 1, . . . , N do

select randomly sk times unit k according to the Poisson distribution P(µ);
EndFor.

4.6 Simple Random Sampling With Replacement
(SRSWR)

4.6.1 Sampling Design

Definition 44. A simple design defined on support Rn is called a simple ran-
dom sampling with replacement.
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The simple random sampling with replacement can be deduced from Defini-
tion 40, page 41:

pSRSWR(s, n) = pSIMPLE(s, θ, Rn) =
θn(s) ∏

k∈U
1

sk!∑
s∈Rn

θn(s)
∏

k∈U
1

sk!

=
n!
Nn

∏
k∈U

1
sk!

=
n!

s1! . . . sN !

∏
k∈U

(
1
N

)sk

,

for all s ∈ Rn. Note that pSRSWR(s, n) does not depend on θ anymore. The
sampling design is multinomial.

The characteristic function is

φSRSWR(t) =
∑

s∈Rn

eit′spSRSWR(s, n) =
∑

s∈Rn

eit′s n!
Nn

∏
k∈U

1
sk!

=
∑

s∈Rn

n!
∏
k∈U

(
eitk

N

)sk 1
sk!

=

(
1
N

∑
k∈U

exp itk

)n

.

The expectation of S is µ =
(

n
N · · · n

N

)′
. The joint expectation is

µk� = E(SkS�) =

⎧⎪⎨⎪⎩
n(N − 1 + n)

N2 , k = �

n(n − 1)
N2 , k �= �.

The variance-covariance operator is

Σk� = E(SkS�) =

⎧⎪⎨⎪⎩
n(N − 1 + n)

N
− n2

N2 =
n(N − 1)

N2 , k = �

n(n − 1)
N2 − n2

N2 = − n

N2 , k �= �.

Thus Σ = var(S) = Hn/N, where H is defined in (4.1). Moreover,

Σk�

µk�
=

⎧⎪⎨⎪⎩
(N − 1)

(N − 1 + n)
, k = �

− 1
(n − 1)

, k �= �.
(4.8)

The inclusion probability is

πk = Pr(Sk > 0) = 1 − Pr(Sk = 0) = 1 −
(

N − 1
N

)n

.

The joint inclusion probability is

πk� = Pr(Sk > 0 and S� > 0) = 1 − Pr(Sk = 0 or S� = 0)
= 1 − Pr(Sk = 0) − Pr(S� = 0) + Pr(Sk = 0 and S� = 0)

= 1 − 2
(

N − 1
N

)n

+
(

N − 2
N

)n

.
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4.6.2 Distribution of n[r(S)]

The question of the distribution of n[r(S)] in simple random sampling with
replacement has been studied by Basu (1958), Raj and Khamis (1958), Pathak
(1962), Pathak (1988), Chikkagoudar (1966), Konijn (1973, chapter IV), and
Cassel et al. (1993, p. 41). In sampling with replacement, it is always preferable
to suppress the information about the multiplicity of the units (see Theorem
3, page 24). If we conserve only the distinct units, the sample size becomes
random. The first objective is thus to compute the sample size of the distinct
units.

Result 14. If n[r(S)] is the number of distinct units obtained by simple ran-
dom sampling of m units with replacement in a population of size N , then

Pr {n[r(S)] = z} =
N !

(N − z)!Nm
s(z)

m , z = 1, . . . ,min(m, N), (4.9)

where s(z)
m is a Stirling number of the second kind

s(z)
m =

1
z!

z∑
i=1

(z

i

)
im(−1)z−i.

Proof. (by induction) The Stirling numbers of the second kind satisfy the
recursive relation:

s(z)
m = s(z−1)

m−1 + zs(z)
m−1, (4.10)

with the initial values s(1)
1 = 1 and s(z)

1 = 0, z �= 1 (see Abramowitz and
Stegun, 1964, pp. 824-825). If n[r(Sm)] is the number of distinct units obtained
by simple random sampling with replacement of m − 1 units in a population
of size N , then we have:

Pr {n[r(Sm)] = z}
= Pr {n[r(Sm−1)] = z − 1}
× Pr {select at the mth draw a unit not yet selected

given that n[r(Sm−1)] = z − 1}
+ Pr {n[r(Sm−1)] = z}
× Pr {select at the mth draw an unit already selected

given that n[r(Sm−1)] = z}
= Pr {n[r(Sm−1)] = z − 1} N − z + 1

N
+ Pr {n[r(Sm−1)] = z} z

N
.

(4.11)

Moreover, we have the initial conditions,

Pr {n[r(S1)] = z} =
{

1 if z = 1
0 if z �= 1.



56 4 Simple Random Sampling

If we suppose that Result 14 is true at step m − 1, and by property (4.10),
the recurrence equation is satisfied by Expression (4.9). Indeed

Pr {n[r(Sm−1)] = z − 1]}N − z + 1
N

+ Pr {n[r(Sm−1)] = z} z

N

=
N !

(N − z + 1)!Nm−1 s(z−1)
m−1

N − z + 1
N

+
N !

(N − z)!Nm−1 s(z)
m−1

z

N

=
N !

(N − z)!Nm

[
s(z−1)

m−1 + zs(z)
m−1

]
=

N !
(N − z)!Nm

s(z)
m = Pr {n[r(Sm)] = z} .

As the initial conditions are also satisfied, Result 14 is proved. �

The following result is used to derive the mean and variance of n[r(S)].

Result 15. If n[r(S)] is the number of distinct units by selecting m units with
replacement in a population of size N , then

E

[
j−1∏
i=0

(N − n[r(S)] − i)

]
=

(N − j)mN !
Nm(N − j)!

, j = 1, . . . , N. (4.12)

Proof.

E

(
j−1∏
i=0

{N − n[r(S)] − i}
)

=
min(m,N)∑

z=1

[
j−1∏
i=0

(N − z − i)

]
N !

(N − z)!Nm
s(z)

m

=
min(m,N−j)∑

z=1

(N − z)!
(N − z − j)!

N !
(N − z)!Nm

s(z)
m

=
(N − j)mN !
Nm(N − j)!

min(m,N−j)∑
z=1

(N − j)!
(N − z − j)!(N − j)m

s(z)
m . (4.13)

Because
(N − j)!

(N − z − j)!(N − j)m
s(z)

m

is the probability of obtaining exactly z distinct units by selecting m units in
a population of size N − j, we obtain

min(m,N−j)∑
z=1

(N − j)!
(N − z − j)!(N − j)m

s(z)
m = 1,

and by (4.13), we get directly (4.12). �
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By (4.12) when j = 1, the expectation can be derived

E {n[r(S)]} = N

[
1 −

(
N − 1

N

)m]
. (4.14)

By (4.12) when j = 2, after some algebra, the variance can be obtained

var {n[r(S)]} =
(N − 1)m

Nm−1 + (N − 1)
(N − 2)m

Nm−1 − (N − 1)2m

N2m−2 . (4.15)

4.6.3 Estimation

Hansen-Hurwitz estimator

The Hansen-Hurwitz estimator is

ŶHH =
N

n

∑
k∈U

ykSk,

and its variance given in (2.12) and (2.13) is

var(ŶHH) =
1
n

∑
k∈U

y2
k − 1

n

(∑
k∈U

yk

)2

=
N2

n

1
N

∑
k∈U

(
yk − 1

N

∑
k∈U

yk

)2

=
N2σ2

y

n
, (4.16)

where
σ2

y =
1
N

∑
k∈U

(
yk − Ȳ

)2 =
1

2N2

∑
k∈U

∑
�∈U

(yk − y�)
2
.

For estimating the variance, we have the following result.

Result 16. In a SRSWR, v2
y is an unbiased estimator of σ2

y, where

v2
y =

1
n − 1

∑
k∈U

Sk

(
yk − ŶHH

N

)2

.

Proof. Because

v2
y =

1
n − 1

∑
k∈U

Sk

(
yk − ŶHH

N

)2

=
1

2n(n − 1)

∑
k∈U

∑
�∈U

(yk − y�)
2
SkS�,

we obtain

E(v2
y) =

1
2n(n − 1)

∑
k∈U

∑
�∈U

(yk − y�)
2 E (SkS�)

=
1

2n(n − 1)

∑
k∈U

∑
�∈U

(yk − y�)
2 n(n − 1)

N2

=
1

2N2

∑
k∈U

∑
�∈U

(yk − y�)
2 = σ2

y. �
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Note that depending on the sampling design being a SRSWR or a SR-
SWOR, the sample variance v2

y estimates distinct functions of interest (see
Result 16, page 57 and Result 11, page 47).

By Result 16 and Expression (4.16), we have an unbiased estimator of the
variance:

v̂ar2(ŶHH) =
N2v2

y

n
. (4.17)

Estimator (4.17) is also a particular case of the estimator given in Expres-
sion (2.15), page 27.

The other unbiased estimator given in Expression (2.14), page 27, provides
a very strange expression. Indeed, by Result 9, page 27 and Expression (4.8),
page 54, we have

v̂ar1(ŶHH) = v̂ar2(ŶHH) +
∑
k∈U

Sky2
k

µ2
k

∑
�∈U

S�Σk�

µk�

=
N2v2

y

n
+
∑
k∈U

y2
k

µ2
k

[
S2

k

Nn

(n − 1)(N − 1 + n)
− Sk

n

n − 1

]
.

Although unbiased, v̂ar1(ŶHH) should never be used.

Improved Hansen-Hurwitz estimator

Because
E [Sk|r(S)] = r(Sk)

n

n[r(S)]
,

the improved Hansen-Hurwitz estimator is

ŶIHH =
N

n

∑
k∈U

ykE [Sk|r(S)] =
N

n[r(S)]

∑
k∈U

ykr(Sk),

and its variance is

var(ŶIHH) = E var

{
N

n[r(S)]

∑
k∈U

ykr(Sk)

∣∣∣∣∣n[r(S)]

}

+ var E

{
N

n[r(S)]

∑
k∈U

ykr(Sk)

∣∣∣∣∣n[r(S)]

}
.

The improved Hansen-Hurwitz estimator is unbiased conditionally on n[r(S)],
thus the second term vanishes. Conditionally on n[r(S)], the sample is simple
with fixed sample size, thus

var(ŶIHH) = E var

{
N

n[r(S)]

∑
k∈U

ykr(Sk)

∣∣∣∣∣n[r(S)]

}

= E

{
N2 N − n[r(S)]

N

V 2
y

n[r(S)]

}
= N2

(
E
{

1
n[r(S)]

}
− 1

N

)
V 2

y .
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In order to derive the variance, we have to compute E [1/n(S)] .

Result 17. If n[r(S)] is the number of distinct units obtained by selecting m
units according to a SRSWR, then

E
{

1
n[r(S)]

}
=

1
Nm

N∑
j=1

jm−1. (4.18)

Proof. (by induction) Let n[r(S), N ] be the number of distinct units obtained
by selecting m units according to a SRSWR from a population of size N . We
first show that

E
{

Nm

n[r(S), N ]

}
− E

{
(N − 1)m

n[r(S), N − 1]

}
= Nm−1. (4.19)

Indeed,

E
[

Nm

n[r(S), N ]
− (N − 1)m

n[r(S), N − 1]

]

=
min(m,N)∑

z=1

1
z

N !
(N − z)!

s(z)
m −

min(m,N−1)∑
z=1

1
z

(N − 1)!
(N − 1 − z)!

s(z)
m

= Nm−1
min(m,N)∑

z=1

N !
(N − z)!Nm

s(z)
m = Nm−1.

By (4.19), we get a recurrence equation

E
{

1
n[r(S), N ]

}
=

1
N

+
(N − 1)m

Nm
E
{

1
n[r(S), N − 1]

}
.

The initial condition is obvious:

E
{

1
n[r(S), 1]

}
= 1.

Expression (4.18) satisfies the recurrence equation and the initial condition.
�

The variance is thus:

var(ŶIHH) = N2

⎛⎝ 1
Nm

N∑
j=1

jm−1 − 1
N

⎞⎠V 2
y =

V 2
y

Nm−2

N−1∑
j=1

jm−1.
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The Horvitz-Thompson estimator

The Horvitz-Thompson estimator is

ŶHT =
[
1 −

(
N

N − 1

)n]−1 ∑
k∈U

ykr(Sk).

The variance is thus

var
(
ŶHT

)
= E var

{
ŶHT |n[r(S)]

}
+ var E

{
ŶHT |n[r(S)]

}
=

1
π2 E var

{
n[r(S)]ŶIHH |n[r(S)]

}
+

1
π2 var E

{
n[r(S)]ŶIHH |n[r(S)]

}
=

1
π2 E

(
{n[r(S)]}2 var

{
ŶIHH |n[r(S)]

})
+

Y 2

π2 var {n[r(S)]}

=
1
π2 E

(
{n[r(S)]}2

N2 N − n[r(S)]
N

V 2
y

n[r(S)]

)
+

Y 2

π2 var {n[r(S)]}

=
NV 2

y

π2 E
{
Nn[r(S)] − n[r(S)]2

}
+

Y 2

π2 var [n[r(S)]]

=
NV 2

y

π2

[
NE {n[r(S)]} − var

{
n[r(S)]2

}
+ (E {n[r(S)]})2

]
+

Y 2

π2 var {n[r(S)]} .

This variance is quite complex. Estimator ŶIHH does not necessarily have a
smaller variance than ŶHT . However, ŶHT should not be used because it de-
pends directly on Y 2; that means that even if the yk’s are constant, var(ŶHT )
is not equal to zero. We thus advocate for the use of ŶIHH .

4.6.4 Draw by Draw Procedure for SRSWR

The standard draw by draw Algorithm 3.3, page 35, gives a well-known pro-
cedure for simple random sampling: at each of the N steps of the algorithm,
a unit is selected from the population with equal probability (see Example 5,
page 36). This method is summarized in Algorithm 4.7.

Algorithm 4.7 Draw by draw procedure for SRSWR
Definition j : Integer;
For j = 1, . . . , n do

a unit is selected with equal probability 1/N from the population U ;
EndFor.
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4.6.5 Sequential Procedure for SRSWR

As SRSWOR has a fixed sample size, a standard sequential Algorithm 3.2,
page 34, can be easily implemented. This neglected method, presented in
Algorithm 4.8, is better than the previous one because it allows selecting the
sample in one pass.

Algorithm 4.8 Sequential procedure for SRSWR
Definition k, j : Integer;
j = 0;
For k = 1, . . . , N do

select the kth unit sk times according to the binomial distribution

B
(

n −
k−1∑
i=1

si,
1

N − k + 1

)
;

EndFor.

4.7 Links Between the Simple Sampling Designs

The following relations of conditioning can be proved using conditioning with
respect to a sampling design:

• pBERNWR(s, µ|Rn) = pSRSWR(s, n), for all µ ∈ R
∗
+,

• pBERNWR(s, θ|S) = pBERN

(
s, π =

θ

1 + θ

)
, for all θ ∈ R

∗
+,

• pBERNWR(s, θ|Sn) = pSRSWOR(s, n), for all θ ∈ R
∗
+,

• pSRSWR(s, n|Sn) = pSRSWOR(s, n),
• pBERN(s, π|Sn) = pSRSWOR(s, n), for all π ∈]0, 1[.

These relations are summarized in Figure 4.1 and Table 4.1, page 62.

BERNWR SRSWOR

BERN

SRSWR

reduction

conditioning on S conditioning on Sn

conditioning on Sn

conditioning on Rn

with 0 ≤ n ≤ N
conditioning on Sn

Fig. 4.1. Links between the main simple sampling designs
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5

Unequal Probability Exponential Designs

5.1 Introduction

A sampling design is a multivariate discrete distribution and an exponential
design is thus an exponential multivariate discrete distribution. Exponential
designs are a large family that includes simple random sampling, multinomial
sampling, Poisson sampling, unequal probability sampling with replacement,
and conditional or rejective Poisson sampling. A large part of the posthumous
book of Hájek (1981) is dedicated to the exponential family. Hájek advocated
for the use of Poisson rejective sampling but the link between the inclusion
probabilities of Poisson sampling and conditional Poisson sampling was not
yet clearly elucidated. Chen et al. (1994) have taken a big step forward by
linking the question of conditional Poisson sampling to the general theory of
the exponential family.

The fundamental point developed by Chen et al. (1994) is the link between
the parameter of the exponential family and its mean; that is, its vector of
inclusion probabilities. Once this link is clarified, the implementation of the
classical algorithms follows quite easily. Independently, Jonasson and Nerman
(1996), Aires (1999, 2000a), Bondesson et al. (2004), and Traat et al. (2004)
have investigated the question of conditional Poisson sampling. Chen and Liu
(1997), Chen (1998), and Deville (2000) have improved the algorithms and
the technique of computation of inclusion probabilities. A large part of the
material of this chapter has been developed during informal conversations
with Jean-Claude Deville. In this chapter, we attempt to present a coherent
theory of exponential designs. A unique definition is given, and all exponential
designs can be derived by changes of support. The application of the classical
algorithms presented in Chapter 3 allows for the deduction of nine sampling
algorithms.
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5.2 General Exponential Designs

5.2.1 Minimum Kullback-Leibler Divergence

In order to identify a unique sampling design that satisfies a predetermined
vector of means µ, a general idea is to minimize the Kullback-Leibler diver-
gence (see Kullback, 1959):

H(p, pr) =
∑
s∈Q

p(s) log
p(s)
pr(s)

,

where pr(s) is a design of reference on Q. The divergence H(p, pr) (also called
relative entropy) is always positive and H(p, pr) = 0 when p(s) = pr(s), for
all s ∈ Q. The objective is thus to identify the closest sampling design (in the
sense of the Kullback-Leibler divergence) to pr(s) that satisfies fixed inclusion
probabilities.

In this chapter, the study of minimum Kullback-Leibler divergence designs
is restricted to the case where the reference sampling design is simple; that is,

pr(s) = pSIMPLE(s, θ, Q) =
θn(s) ∏

k∈U
1

sk!∑
s∈Q θn(s)

∏
k∈U

1
sk!

. (5.1)

Because H(p, pr) is strictly convex with respect to p, the minimization of
H(p, pr) under linear constraints provides a unique solution. The Kullback-
Leibler divergence H(p, pr) is minimized under the constraints∑

s∈Q
p(s) = 1, (5.2)

and ∑
s∈Q

sp(s) = µ. (5.3)

The vector µ belongs to
◦
Q (the interior of Q) (see Remark 4, page 15), which

ensures that there exists at least one sampling design on Q with mean µ.
The Lagrangian function is

L(p(s), β,γ) =
∑
s∈Q

p(s) log
p(s)
pr(s)

− β

(∑
s∈Q

p(s) − 1

)
− γ′

(∑
s∈Q

sp(s) − µ

)
,

where β ∈ R and γ ∈ R
N are the Lagrange multipliers. By setting the deriva-

tives of L with respect to p(s) equal to zero, we obtain

∂L(p(s), β,γ)
∂p(s)

= log
p(s)
pr(s)

+ 1 − β − γ′s = 0,
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which gives
p(s) = pr(s) exp(γ′s + β − 1).

By using the constraint (5.2), we get

p(s) =
pr(s) expγ′s∑

s∈Q pr(s) expγ′s
.

Now, by replacing pr(s) by (5.1) we get the exponential designs

pEXP(s,λ,Q) =
θn(s)

(∏
k∈U

1
sk!

)
exp γ′s∑

s∈Q θn(s)
(∏

k∈U
1

sk!

)
exp γ′s

=

(∏
k∈U

1
sk!

)
exp λ′s∑

s∈Q
(∏

k∈U
1

sk!

)
exp λ′s

,

where λ = (λ1 · · · λN )′ = (λ1 + log θ · · · λN + log θ)′. The vector λ is
identified by means of the constraint (5.3). We show that the problem of
deriving λ from µ is one of the most intricate questions of exponential designs.

5.2.2 Exponential Designs (EXP)

We refer to the following definition.

Definition 45. A sampling design pEXP(.) on a support Q is said to be expo-
nential if it can be written

pEXP(s,λ,Q) = g(s) exp
[
λ′s − α(λ,Q)

]
,

where λ ∈ R
N is the parameter,

g(s) =
∏
k∈U

1
sk!

,

and α(λ,Q) is called the normalizing constant and is given by

α(λ,Q) = log
∑
s∈Q

g(s) expλ′s.

As it is the case for all of the exponential families, the expectation can be
obtained by differentiating the normalizing constant

α′(λ,Q) =
∂α(λ,Q)

∂λ
=

∑
s∈Q sg(s) expλ′s∑
s∈Q g(s) expλ′s

= µ.

By differentiating the normalizing constant twice, we get the variance-covariance
operator:

α′′(λ,Q)

=
∑

s∈Q ss′g(s) expλ′s∑
s∈Q g(s) expλ′s

−
[∑

s∈Q sg(s) expλ′s∑
s∈Q g(s) expλ′s

][∑
s∈Q sg(s) expλ′s∑
s∈Q g(s) expλ′s

]′

= Σ.
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The characteristic function of an exponential design is given by

φEXP(t) =
∑
s∈Q

g(s)
[
exp(it + λ′)s − α(λ,Q)

]
= exp [α(it + λ,Q) − α(λ,Q)] .

Simple random sampling designs are a particular case of exponential de-
signs. Indeed, we have

pEXP(s,1 log θ, Q) = pSIMPLE(s, θ, Q), θ ∈ R+,

where 1 is a vector of N ones.
The parameter λ can be split into two parts: λa, that is, the orthogonal

projection of λ onto
−→Q (the direction of Q, see Definition 9, page 12) and λb,

that is, the orthogonal projection of λ onto Invariant Q (see Definition 11,
page 12). We thus have that λ = λa + λb, and λ′

aλb = 0. Moreover, we have
the following result:

Result 18. Let λa and λb be, respectively, the orthogonal projection on
−→Q

and Invariant Q. Then

pEXP(s,λ,Q) = pEXP(s,λa + λb, Q) = pEXP(s,λa, Q) = pEXP(s,λa + bλb, Q),

for any b ∈ R.

Proof.

pEXP(s,λa + bλb, Q)

=
g(s) exp(λa + bλb)′s∑

s∈Q g(s) exp(λa + bλb)′s
=

g(s)(expλ′
as)(exp bλ′

bs)∑
s∈Q g(s)(expλ′

as)(exp bλ′
bs)

.

Because λb ∈ Invariant (Q), (s−µ)′λb = 0, and thus λ′
bs = c, where c = µ′λb

for all s ∈ Q. Thus,

pEXP(s,λa + bλb, Q)

=
g(s)(expλ′

as)(exp bc)∑
s∈Q g(s)(expλ′

as)(exp bc)
=

g(s)(expλ′
as)∑

s∈Q g(s)(expλ′
as)

= pEXP(s,λa, Q). �

Example 8. If the support is Rn =
{
s ∈ N

N
∣∣∑

k∈U sk = n
}

, then

Invariant Rn = {u ∈ R
N |u = a1 for all a ∈ R},

−→Rn =

{
u ∈ R

N

∣∣∣∣∣∑
k∈U

xk = 0

}
,

λb = 1
1
N

∑
k∈U

λk = 1λ̄,

and
λa = (λ1 − λ̄ · · · λk − λ̄ · · · λN − λ̄),

where 1 is a vector of ones of R
N .
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The main result of the theory of exponential families establishes that the
mapping between the parameter λ and the expectation µ is bijective.

Theorem 5. Let pEXP(s,λ,Q) be an exponential design on support Q. Then

µ(λ) =
∑
s∈Q

spEXP(s,λ,Q)

is a homeomorphism of
−→Q (the direction of Q) and

◦
Q (the interior of Q); that

is, µ(λ) is a continuous and bijective function from
−→Q to

◦
Q whose inverse is

also continuous.

Theorem 5 is an application to exponential designs of a well-known result of
exponential families. The proof is given, for instance, in Brown (1986, p. 74).

Example 9. If the support is Rn, then µ(λ) is bijective from

−→Rn =

{
u ∈ R

N

∣∣∣∣∣∑
k∈U

uk = 0

}
,

to
◦
Rn=

{
u ∈]0, n[N

∣∣∣∣∣∑
k∈U

uk = n

}
.

Another important property of the exponential design is that the parame-
ter does not change while conditioning with respect to a subset of the support.

Result 19. Let Q1 and Q2 be two supports such that Q2 ⊂ Q1. Also, let

p1(s) = g(s) exp
[
λ′s − α(λ,Q1)

]
be an exponential design with support Q1. Then

p2(s) = p1(s|Q2)

is also an exponential sampling design with the same parameter.

The proof is obvious.

5.3 Poisson Sampling Design With Replacement
(POISSWR)

5.3.1 Sampling Design

Definition 46. An exponential design defined on R is called a Poisson sam-
pling with replacement (POISSWR).
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The Poisson sampling with replacement can be derived from Definition 45,
page 45.

pPOISSWR(s,λ) = pEXP(s,λ,R) =

(∏
k∈U

1
sk!

)
exp

[
λ′s − α(λ,R)

]
,

for all s ∈ R, and with λ ∈ R
N .

The normalizing constant is

α(λ,R) = log
∑
s∈R

exp λ′s∏
k∈U sk!

= log
∑
s∈R

∏
k∈U

(exp λk)sk

sk!

= log
∏
k∈U

∞∑
j=1

(exp λk)j

j!
= log

∏
k∈U

exp(exp λk) =
∑
k∈U

exp λk.

Thus,

µk =
∂
∑

k∈U exp λk

∂λk
= expλk,

Σkk =
∂2 ∑

k∈U exp λk

∂λ2
k

= expλk = µk,

Σk� =
∂2 ∑

k∈U exp λ2
k

∂λk∂λ�
= 0, with k �= �,

and
Σ = diag(µ1 · · · µk · · · µN ),

which allows reformulating the definition of Poisson sampling with replace-
ment.

Definition 47. A sampling design pPOISSWR(.,λ) on R is said to be a Poisson
sampling with replacement if it can be written

pPOISSWR(s,λ) =
∏
k∈U

µsk

k e−µk

sk!
,

for all s ∈ R, and with µk ∈ R
∗
+.

The Sk’s thus have independent Poisson distributions: Sk ∼ P(µk). If the µk’s
are given, then λ can be computed by λk = log µk, k ∈ U. The characteristic
function is

φPOISSWR(t) = exp [α(it + λ,Q) − α(λ,Q)]

= exp

[∑
k∈U

exp(itk + λk) −
∑
k∈U

exp λk

]
= exp

∑
k∈U

µk(exp itk − 1).
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5.3.2 Estimation

The Hansen-Hurwitz estimator is

ŶHH =
∑
k∈U

ykSk

µk
.

Its variance is

var(ŶHH) =
∑
k∈U

y2
k

µk

and can be estimated by

v̂ar1(ŶHH) =
∑
k∈U

Sk
y2

k

µ2
k

.

However, because

E [Sk|r(S)] =

{ µk

1 − e−µk
if Sk > 0

0 if Sk = 0,

the improved Hansen-Hurwitz estimator can be computed

ŶIHH =
∑
k∈U

ykE[Sk|r(S)]
µk

=
∑
k∈U

ykr(Sk)
1 − e−µk

.

Because
E[r(Sk)] = 1 − Pr(Sk = 0) = 1 − e−µk ,

and
var[r(Sk)] = E[r(Sk)] {1 − E[r(Sk)]} = e−µk

(
1 − e−µk

)
,

we obtain

var(ŶIHH) =
∑
k∈U

e−µk
(
1 − e−µk

) y2
k

(1 − e−µk)2
=
∑
k∈U

y2
k

eµk − 1
,

and

v̂ar(ŶIHH) =
∑
k∈U

y2
k

(eµk − 1)(1 − e−µk)
.

The improvement brings an important decrease of the variance with respect
to the Hansen-Hurwitz estimator.

Finally, the Horvitz-Thompson estimator is

ŶHT =
∑
k∈U

ykr(Sk)
E[r(Sk)]

=
∑
k∈U

ykr(Sk)
1 − e−µk

and is equal to the improved Hansen-Hurwitz estimator.
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Algorithm 5.1 Sequential procedure for POISSWR
Definition k : Integer;
For k = 1, . . . , N do

randomly select sk times unit k according to the Poisson distribution P(µk);
EndFor.

5.3.3 Sequential Procedure for POISSWR

The standard sequential procedure (see Algorithm 3.2, page 34) applied to
POISSWR gives the strictly sequential Algorithm 5.1.

5.4 Multinomial Design (MULTI)

5.4.1 Sampling Design

Definition 48. An exponential design defined on Rn is called a multinomial
design.

The multinomial design can be derived from Definition 45, page 45.

pMULTI(s,λ, n) = pEXP(s,λ,Rn) =

(∏
k∈U

1
sk!

)
exp

[
λ′s − α(λ,Rn)

]
,

for all s ∈ Rn, and with λ ∈ R
N . The normalizing constant is

α(λ,Rn) = log
∑

s∈Rn

exp λ′s∏
k∈U sk!

= log
∑

s∈Rn

∏
k∈U

(exp λk)sk

sk!
= log

(∑
k∈U exp λk

)n

n!
.

Thus,

µk =
∂α(λ,Rn)

∂λk
=

n exp λk∑
�∈U exp λ�

,

and

Σk� =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂2α(λ,Rn)

∂λ2
k

=
µk(n − µk)

n
, k = �

∂2α(λ,Rn)
∂λk∂λ�

= − n exp λk exp λ�(∑
j∈U exp λj

)2 = −µkµ�

n
, k �= �.
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The variance-covariance operator is thus

Σ = var(S) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

µ1(n−µ1)
n · · · −µ1µk

n · · · −µ1µN

n
...

. . .
...

...
−µ1µk

n · · · µk(n−µk)
n · · · −µkµN

n
...

...
. . .

...
−µ1µN

n · · · −µkµN

n · · · µN (n−µN )
n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Moreover, we have

µk� =

⎧⎪⎪⎨⎪⎪⎩
µk(n − µk)

n
+ µ2

k = µk +
µ2

k(n − 1)
n

, k = �

−µkµ�

n
+ µkµ� =

µkµ�(n − 1)
n

, k �= �,

and thus

Σk�

µk�
=

⎧⎪⎪⎨⎪⎪⎩
(n − µk)

n + µk(n − 1)
, k = �

− 1
n − 1

, k �= �.

(5.4)

The computation of µ allows reformulating the multinomial design in function
of the µk’s.

Definition 49. A sampling design pMULTI(.,λ, n) on Rn is said to be a multi-
nomial design (MULTI) if it can be written

pMULTI(s,λ, n) =
n!

s1! . . . sk! . . . sN !

∏
k∈U

(µk/n)sk ,

for all s ∈ Rn, and where µk ∈ R
∗
+ and∑

k∈U

µk = n.

This new formulation clearly shows that S has a multinomial distribution.
The Sk’s thus have non-independent binomial distributions: Sk ∼ B(n, µk/n).

The invariant subspace spanned by support Rn is c × 1, for any value of
c ∈ R. If the µk are fixed then λ can be computed by λk = log µk + c, k ∈ U,
for any value of c ∈ R. The characteristic function is

φMULTI(t) =

(
1
n

∑
k∈U

µk exp itk

)n

.
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5.4.2 Estimation

1. The Hansen-Hurwitz estimator is

ŶHH =
∑
k∈U

Sk
yk

µk
,

and its variance is

var(ŶHH) =
∑
k∈U

y2
k

µk
− 1

n

(∑
k∈U

yk

)2

=
∑
k∈U

µk

n2

(
nyk

µk
− Y

)2

.

2. With Expression (5.4), the estimator (2.19), page 28, becomes

v̂ar2(ŶHH) =
n

(n − 1)

∑
k∈U

Sk

(
yk

µk
− ŶHH

n

)2

. (5.5)

Using Result 9, page 27, estimator (2.18), page 28, becomes

v̂ar1(ŶHH) = v̂ar2(ŶHH) +
∑
k∈U

Sky2
k

µ2
k

∑
�∈U

S�Σk�

µk�

=
n

(n − 1)

∑
k∈U

Sk

(
yk

µk
− ŶHH

n

)2

+
∑
k∈U

y2
k

µ2
k

n

n − 1

{
S2

k

n

[n + µk(n − 1)]
− Sk

}
. (5.6)

As for SRSWR, this estimator (5.6) should never be used.
3. Because

πk = Pr(Sk > 0) = 1 − Pr(Sk = 0) = 1 −
(
1 − µk

n

)n

,

and

πk� = Pr(Sk > 0 and S� > 0) = 1 − Pr(Sk = 0 or S� = 0)
= 1 − Pr(Sk = 0) − P (S� = 0) + Pr(Sk = 0 and S� = 0)

= 1 −
[
1 −

(
1 − µk

n

)n]
−
[
1 −

(
1 − µ�

n

)n]
+ 1 −

(
1 − µk

n
− µk

n

)n

=
(
1 − µk

n

)n

+
(
1 − µ�

n

)n

−
(
1 − µk

n
− µk

n

)n

,

the Horvitz-Thompson estimator is

ŶHT =
∑
k∈U

r(Sk)yk

1 − (
1 − µk

n

)n .

Its variance and variance estimator can be constructed by means of the
joint inclusion probabilities.
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4. The construction of the improved Hansen-Hurwitz estimator seems to be
an unsolved problem. The main difficulty consists of calculating E[Sk|r(S)].
A solution can be given for n = 3 but seems to be complicated for larger
sample sizes.

Case where n(S) = 3

Let ak = (0 · · · 0 1︸︷︷︸
kth

0 · · · 1)′ ∈ R
N . Defining qk = µk/n, we have

Pr [r(S) = ak] = Pr [S = 3ak] = q3
k, k ∈ U,

Pr [r(S) = ak + a�] = Pr(S = 2ak + a�) + Pr(S = ak + 2a�)
= 3q2

kq� + 3qkq2
� = 3qkq�(qk + q�), q �= � ∈ U,

Pr [r(S) = ak + a� + am] = Pr(S = ak + a� + am)

=
3!

1!1!1!
qkq�qm = 6qkq�qm.

The distribution of n[r(s)] can thus be computed

Pr {n[r(S)] = 1} =
∑
�∈U

q3
k, k ∈ U,

Pr {n[r(S)] = 2} =
∑
k∈U

∑
�∈U
�<k

3qkq�(qk + q�)

= 3
∑
k∈U

q2
k − 3

∑
k∈U

q3
k, k �= � ∈ U,

Pr {n[r(S)] = 3} =
∑
k∈U

∑
�∈U
�<k

∑
m∈U
m<�

6qkq�qm

= 1 − 3
∑
k∈U

q2
k + 2

∑
k∈U

q3
k, k �= � �= m ∈ U.

The first two conditional expectations are simple:

E[S|r(S) = ak] = 3ak, for all k ∈ U,

E[S|r(S) = ak + a� + am] = ak + a� + am, for all k �= � �= m ∈ U.
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In the case where n[r(S)] = 2, we have

E[Sk|r(S) = ak + a�]
= 1 × Pr(Sk = 1|r(S) = ak + a�) + 2 × Pr(Sk = 1|r(S) = ak + a�)

= 1 × Pr(Sk = 1 and r(S) = ak + a�)
Pr(r(S) = ak + a�)

+ 2 × Pr(Sk = 2 and r(S) = ak + a�)
Pr(r(S) = ak + a�)

= 1 × Pr(Sk = 1 and S� = 2)
Pr(r(S) = ak + a�)

+ 2 × Pr(Sk = 2 and S� = 1)
Pr(r(S) = ak + a�)

=
1 × 3qkq2

� + 2 × 3q2
kq�

3qkq2
� + 3q2

kq�
=

2qk + q�

qk + q�
, for all k ∈ U.

The improved Hansen-Hurwitz estimator can be computed as follows

ŶIHH =
∑
k∈U

ykE[Sk|r(S)]
µk

.

We have:
• If r(S) = ak, then ŶIHH =

3yk

µk
.

• If r(S) = ak + a�, then ŶIHH =
yk

µk

2µk + µ�

µk + µ�
+

y�

µ�

µk + 2µ�

µk + µ�
, k �= �.

• If r(S) = ak + a� + am, then ŶIHH =
yk

µk
+

y�

µ�
+

ym

µm
, k �= � �= m.

Unfortunately, the generalization to n > 3 becomes very intricate.

5.4.3 Sequential Procedure for Multinomial Design

For the sequential implementation, consider the following result.

Result 20. In multinomial design,

qk(sk) = Pr(Sk = sk|Sk−1 = sk−1, . . . , S1 = s1)

=

(
n −∑k−1

�=1 s�

)
!(

n −∑k
�=1 s�

)
!sk!

(
µk

n −∑k−1
�=1 µ�

)sk
(

1 − µk

n −∑k−1
�=1 µ�

)n−∑k
�=1 s�

.

Proof. By definition

qk(sk) = Pr(Sk = sk|Sk−1 = sk−1, . . . , S1 = s1)

=

∑
s∈Rn|Sk=sk,Sk−1=sk−1,...,S1=s1

pEXP(s,λ,Rn)∑
s∈Rn|Sk−1=sk−1,...,S1=s1

pEXP(s,λ,Rn)
.
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Moreover, ∑
s∈Rn

Sk=sk,Sk−1=sk−1,...,S1=s1

pEXP(s,λ,Rn)

=
∑

s∈Rn
Sk=sk,Sk−1=sk−1,...,S1=s1

n!
N∏

�=1

(µ�/n)s�

s�!

=
n!(∑N

�=k+1 s�

)
!

k∏
�=1

(µ�/n)s�

s�!

∑
s∈Rn

Sk=sk,Sk−1=sk−1,...,S1=s1

(
N∑

�=k+1

s�

)
!

N∏
�=k+1

(µ�/n)s�

s�!

=
n!(∑N

�=k+1 s�

)
!

k∏
�=1

(µ�/n)s�

s�!

(
N∑

�=k+1

µ�

n

)∑N
�=k+1 s�

.

By the same reasoning, we get

∑
s∈Rn

Sk−1=sk−1,...,S1=s1

pEXP(s,λ,Rn) =
n!(∑N

�=k s�

)
!

k−1∏
�=1

(µ�/n)s�

s�!

(
N∑

�=k

µ�

n

)∑N
�=k s�

.

We thus have

qk(sk) =

(∑N
�=k s�

)
!(∑N

�=k+1 s�

)
!sk!

(
µk/n∑N
�=k µ�/n

)sk
(∑N

�=k+1 µ�/n∑N
�=k µ�/n

)∑N
�=k+1 s�

=

(
n −∑k−1

�=1 s�

)
!(

n −∑k
�=1 s�

)
!sk!

(
µk

n −∑k−1
�=1 µ�

)sk
(

1 − µk

n −∑k−1
�=1 µ�

)n−∑k
�=1 s�

. �

By the standard sequential Algorithm 3.2, page 34 and Result 20, we can
define the very simple strictly sequential procedure in Algorithm 5.2.

Algorithm 5.2 Sequential procedure for multinomial design
Definition k : Integer;
For k = 1, . . . , N do

select the kth unit sk times according to the binomial distribution

B
(

n −
k−1∑
�=1

s�,
µk

n −∑k−1
�=1 µ�

)
;

EndFor.

This procedure was first proposed by Kemp and Kemp (1987) in another
context as survey sampling (see also Bol’shev, 1965; Brown and Bromberg,
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1984; Dagpunar, 1988; Devroye, 1986; Davis, 1993; Loukas and Kemp, 1983;
Johnson et al., 1997, pp. 67-69).

5.4.4 Draw by Draw Procedure for Multinomial Design

The standard draw by draw Algorithm 3.3, page 35, gives the well-known
ball-in-urn method (on this topic see Hansen and Hurwitz, 1943; Dagpunar,
1988; Devroye, 1986; Ho et al., 1979; Johnson et al., 1997, p. 68) presented in
Algorithm 5.3.

Algorithm 5.3 Draw by draw procedure for multinomial design
Definition j : Integer;
For j = 1, . . . , n do
a unit is selected with probability µk/n from the population U ;
EndFor.

5.5 Poisson Sampling Without Replacement
(POISSWOR)

5.5.1 Sampling Design

Poisson sampling design was studied by Hájek (1964), Ogus and Clark (1971),
Brewer et al. (1972), Brewer et al. (1984), and Cassel et al. (1993, p. 17).

Definition 50. An exponential design defined on S is called a Poisson sam-
pling design.

The Poisson design can be derived from Definition 45, page 45.

pPOISSWOR(s,λ) = pEXP(s,λ,S) = exp
[
λ′s − α(λ,S)

]
,

for all s ∈ S, and with λ ∈ R
N . A simplification is derived from the fact that

sk! = 1 because sk takes only the values 1 or 0. The normalizing constant is

α(λ,S) = log
∑
s∈S

exp λ′s = log
∏
k∈U

(1 + exp λk). (5.7)

Thus,

πk =
∂α(λ,S)

∂λk
=

exp λk

1 + exp λk
, (5.8)
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∆k� =

⎧⎪⎪⎨⎪⎪⎩
∂2α(λ,S)

∂λ2
k

=
exp λk

1 + exp λk

(
1 − exp λk

1 + exp λk

)
= πk(1 − πk), k = �

∂2α(λ,S)
∂λk∂λ�

= 0, k �= �,

and πk� = πkπ�, k �= �.
The variance-covariance operator is

∆ = diag [π1(1 − π1) · · · πk(1 − πk) · · · πN (1 − πN )] .

The computation of π allows reformulating the sampling design as a function
of πk.

Definition 51. A sampling design pPOISSWOR(.,λ) on S is said to be a Poisson
sampling without replacement if it can be written

pPOISSWOR(s,λ) =
∏
k∈U

[
πsk

k (1 − πk)1−sk
]
,

for all s ∈ S.

The vector λ can be computed easily from the πk by

λk = log
πk

1 − πk
.

The characteristic function is

φPOISSWOR(t) =
∏
k∈U

[1 + πk (exp itk − 1)] .

5.5.2 Distribution of n(S)

In Poisson sampling, the random variable n(S) has the possible values
0, 1, . . . , N, and is a sum of independent Bernoulli trials, which is usually
called a Poisson-binomial distribution (see among others Hodges and LeCam,
1960; Chen and Liu, 1997).

Chen and Liu (1997) and Aires (1999) have pointed out that it is possible
to compute recursively the distribution of n(S). This result was, however,
already mentioned in Sampford (1967, p. 507) in another context. Let

U j
i = {i, i + 1, . . . , j − 1, j} with 1 ≤ i ≤ j, j ≤ N,

Sz(U
j
i ) =

{
s ∈ Sz|sk = 0, for k /∈ U j

i

}
, with z ≤ i − j + 1,

G
[
λ,Sz(U

j
i )
]

=
∑

s∈Sz(Uj
i )

pPOISSWOR(s,λ) =
∑

s∈Sz(Uj
i )

j∏
k=i

πsk

k (1 − πk)1−sk ,
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and
πk =

exp λk

1 + exp λk
, k ∈ U.

We have

Pr[n(S) = z] =

∑
s∈Sz

∏N
k=1 πsk

k (1 − πk)1−sk∑
s∈S

∏N
k=1 πsk

k (1 − πk)1−sk

=
exp α(λ,Sz)
exp α(λ,S)

= G
[
λ,Sz(UN

1 )
]
.

This probability can be computed recursively by means of the following rela-
tion

G
[
λ,Sz(U

j
1 )
]

= G
[
λ,Sz−1(U

j−1
1 )

]
πj + G

[
λ,Sz(U

j−1
1 )

]
(1 − πj), (5.9)

for j = z, . . . , N. An example is given in Table 5.1. Equivalently,

G
[
λ,Sz(UN

i )
]

= G
[
λ,Sz−1(UN

i+1)
]
πi + G

[
λ,Sz(UN

i+1)
]
(1 − πi), (5.10)

for i = 1, . . . , N − z.

Table 5.1. Example of a recursive construction of G
[
λ, Sz(U j

1 )
]

for N = 10

πk j = 0 1 2 3 4 5 6 Total
z = 0 1 1

0.10208 1 0.89792 0.10208 1
0.22382 2 0.69695 0.28020 0.02285 1
0.44173 3 0.38909 0.46429 0.13653 0.01009 1
0.57963 4 0.16356 0.42070 0.32651 0.08338 0.00585 1
0.77935 5 0.03609 0.22030 0.39992 0.27286 0.06627 0.00456 1
0.87340 6 0.00457 0.05941 0.24304 0.38383 0.24671 0.05846 0.00398 1

5.5.3 Estimation

The Horvitz-Thompson estimator is

ŶHT =
∑
k∈U

ykSk

πk
.

Its variance is

var(ŶHT ) =
∑
k∈U

πk(1 − πk)
y2

k

π2
k

,

and its unbiased estimator

v̂ar(ŶHT ) =
∑
k∈U

(1 − πk)
y2

k

π2
k

.
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5.5.4 Sequential Procedure for POISSWOR

The implementation of Algorithm 3.2, page 34, to POISSWOR is presented
in the strictly sequential Algorithm 5.4.

Algorithm 5.4 Sequential procedure for POISSWOR
Definition k : Integer;
For k = 1, . . . , N, do select the kth unit with probability πk;
EndFor.

5.6 Conditional Poisson Sampling (CPS)

5.6.1 Sampling Design

The most interesting exponential design is defined with support Sn, but its
implementation is more intricate. It is generally called Conditional Poisson
Sampling (CPS) because it can be obtained by selecting samples by means
of a Poisson sampling design without replacement until a given sample size is
obtained. However, this appellation is a bit unfortunate because conditioning
a Poisson design with a fixed sample size is only a way to implement this
design. Several authors refer to it as “exponential design without replacement”
or “maximum entropy design” because it can be obtained by maximizing the
entropy measure

I(p) = −
∑
s∈Sn

p(s) log p(s),

subject to given inclusion probabilities.
The CPS design can also be obtained by minimizing the Kullback-Leibler

divergence sampling from a simple random sampling without replacement. It
was studied by Hájek (1964) and is one of the principal topics of his posthu-
mous book (Hájek, 1981). Hájek proposed to implement it by a Poisson re-
jective procedure, but the Hájek methods do not respect exactly the fixed
inclusion probabilities (Brewer and Hanif, 1983, see procedure 28-31, pp. 40-
41). The main problem with the implementation of this design is that the
characteristic function cannot be simplified and that it seems impossible to
compute the vector of inclusion probabilities without enumerating all the pos-
sible samples.

A very important result has, however, been given by Chen et al. (1994).
They have proposed an algorithm that allows deriving the inclusion probabil-
ities from the parameter and vice versa. In a manuscript paper, Deville (2000)
has improved this algorithm. Chen et al. (1994), Chen and Liu (1997), Chen
(1998, 2000), and Deville (2000) pointed out that a fast computation of the
parameter allows a rapid implementation of this sampling design. Jonasson
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and Nerman (1996) and Aires (1999, 2000a) have independently investigated
the Conditional Poisson Sampling. This recent progress allows constructing
several procedures: rejective Poisson sampling, rejective multinomial design,
sequential sampling, and the draw by draw procedure.

Definition 52. An exponential design defined on Sn is called a Conditional
Poisson Sampling (CPS) design.

The CPS design can be derived from Definition 45, page 45.

pCPS(s,λ, n) = pEXP(s,λ,Sn) = exp
[
λ′s − α(λ,Sn)

]
,

for all s ∈ Sn, and with λ ∈ R
N .

When the support is Sn, the problem becomes more intricate because
α(λ,Sn) cannot be simplified. For this reason, one could have believed (before
the paper of Chen et al., 1994) that it was not possible to select a sample
with this design without enumerating all the samples of Sn. We show that
this sampling design can now be implemented quite easily.

5.6.2 Inclusion Probabilities

The vector of inclusion probabilities is defined by

π(λ,Sn) =
∑
s∈Sn

spEXP(s,λ,Sn).

Because
Invariant (Sn) =

{
x ∈ R

N |x = a1, for all a ∈ R
}

,

vector λ can be re-scaled in order that
∑

k∈U λk = 0, which provides a unique
definition of λ.

Because
∑

k∈U πk = n, from Theorem 5, page 67, we obtain the particular
Result 21 (see also Chen, 2000, Theorem 3.1).

Result 21. The application π(λ,Sn) is bijective from

−→Sn =

{
λ ∈ R

N

∣∣∣∣∣∑
k∈U

λk = 0

}

to
◦
Sn=

{
π ∈]0, 1[N

∣∣∣∣∣∑
k∈U

πk = n

}
.

The first step consists of computing the inclusion probability π(λ,Sn)
from λ, which is theoretically given by

π(λ,Sn) =
∑
s∈Sn

spEXP(s,λ,Sn) =

∑
s∈Sn

s exp λ′s∑
s∈Sn

exp λ′s
. (5.11)
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Unfortunately, Expression (5.11) becomes impossible to compute when U is
large. The application of the CPS design seemed to be restricted only to very
small populations before an important result due to Chen et al. (1994) and
completed by Deville (2000). These authors have shown a recursive relation
between π(λ,Sn−1) and π(λ,Sn), which allows deriving π(λ,Sn) from λ
without enumerating all the possible samples of S.

Result 22.

(i) πk(λ,Sn) = (expλk) [1 − πk(λ,Sn−1)]
exp α(λ,Sn−1)
exp α(λ,Sn)

, (5.12)

(ii) πk(λ,Sn) = n
exp λk [1 − πk(λ,Sn−1)]∑
�∈U exp λ� [1 − π�(λ,Sn−1)]

, (5.13)

(iii) πk(λ,Sn) =
exp nλk

exp α(λ,Sn)

n∑
j=1

(−1)n−j exp α(λ,Sj−1)
exp(j − 1)λk

. (5.14)

Proof. (i) We have

πk(λ,Sn) =

∑
s∈Sn

sk exp λ′s
exp α(λ,Sn)

=
exp λk

exp α(λ,Sn)

∑
s∈Sn−1

sk=0

exp λ′s

=
exp λk

exp α(λ,Sn)

⎛⎝ ∑
s∈Sn−1

exp λ′s −
∑

s∈Sn−1

sk exp λ′s

⎞⎠
= (exp λk) [1 − πk(λ,Sn−1)]

exp α(λ,Sn−1)
exp α(λ,Sn)

.

(ii) Because
∑

k∈U πk(λ,Sn) = n, we get

n =
∑
k∈U

exp λk [1 − πk(λ,Sn−1)]
exp α(λ,Sn−1)
exp α(λ,Sn)

,

which gives Expression (5.13).
(iii) Expression (5.14) satisfies the recurrence equation (5.12). �

Because πk(λ,S0) = 0, for all k ∈ U, several methods that implement the
function π(λ,Sn) can be used. If the α(λ,Sz), z = 1, . . . , n, are known, then
Expression (5.14) can be used to compute π(λ,Sn) directly. The recursive
relation given in (5.13) allows defining a very quick algorithm to compute
function π(λ,Sn). An example is given in Table 5.2.

5.6.3 Computation of λ from Predetermined Inclusion
Probabilities

The knowledge of λ allows us to compute the inclusion probabilities π(λ,Sn)
quickly. Nevertheless, the inclusion probabilities are generally fixed and the
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Table 5.2. Recursive computation of π(λ, Sn) from a given parameter λ by means
of Expression (5.13)

k λk exp(λk) n = 0 1 2 3 4 5 6
1 −2.151 0.116 0 0.009 0.028 0.07 0.164 0.401 1
2 −1.221 0.295 0 0.022 0.069 0.17 0.372 0.764 1
3 −0.211 0.810 0 0.061 0.182 0.41 0.726 0.914 1
4 0.344 1.411 0 0.106 0.301 0.61 0.837 0.951 1
5 1.285 3.614 0 0.272 0.629 0.83 0.934 0.981 1
6 1.954 7.059 0 0.531 0.792 0.91 0.966 0.990 1

0 13.305 0 1 2 3 4 5 6

main problem is to compute λ from a given vector of inclusion probabilities π.
Suppose that π̃ is the vector of inclusion probabilities of a Poisson sampling
design p̃POISSWOR(.) with parameter equal to λ + c1; that is,

π̃ = (π̃1 · · · π̃k · · · π̃N )′ = π(λ + c1,S), c ∈ R.

Note that by Result 18, page 66,

pEXP(s,λ,Sn) = p̃POISSWOR(s,λ + c1|Sn) =
p̃POISSWOR(s,λ + c1)∑

s∈Sn
p̃POISSWOR(s,λ + c1)

.

From Expression (5.8), page 76, we have

π̃k =
exp(λk + c)

1 + exp(λk + c)
.

The constant c can be chosen freely, but it can be convenient for c that∑
k∈U

π̃k = n.

Thus,

λk + c = log
π̃k

1 − π̃k
.

Define now π as a function of π̃, that is denoted ψ(π̃, n):

ψ(π̃, n) = π(λ,Sn) =

∑
s∈Sn

s exp λ′s∑
s∈Sn

exp λ′s
=

∑
s∈Sn

s
∏

k∈U

(
π̃k

1−π̃k

)sk

∑
s∈Sn

∏
k∈U

(
π̃k

1−π̃k

)sk
,

and π(λ,S0) = 0. Expression (5.13) becomes:

ψk(π̃, n) = n

π̃k

1−π̃k
{1 − ψk(π̃, n − 1)}∑

�∈U
π̃�

1−π̃�
{1 − ψ�(π̃, n − 1)} . (5.15)
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If the inclusion probabilities π (such that
∑

k∈U πk = n) are given, Deville
(2000) and Chen (2000) have proposed to solve the equation

ψ(π̃, n) = π,

in π̃ by the Newton method, which gives the algorithm

π̃(i) = π̃(i−1) +
∣∣∣∣∂ψ(π̃, n)

∂π̃′

∣∣∣∣−1

π̃=π̃(i−1)

[
π − ψ(π̃(i−1), n)

]
,

where i = 1, 2, . . . and with π̃(0) = π. Let ∆ be the matrix of πk� − πkπ�’s,
Deville (2000) has pointed out that the matrix

∂ψ(π̃, n)
∂π̃′ = ∆ {diag[ π̃1(1 − π̃1) · · · π̃k(1 − π̃k) · · · π̃N (1 − π̃N ) ]}−1

is very close to the identity matrix, which allows simplifying the algorithm
significantly. Finally, we can use

π̃(i) = π̃(i−1) + π − ψ(π̃(i−1), n), (5.16)

which allows us quickly to derive π̃ and thus λk = log(π̃k/(1 − π̃k)) from π.
Aires (1999) has used the same algorithm with another definition of ψ that
gives a slower method. The number of operations needed to compute π̃k is
about O(N ×n× number of iterations). Table 5.3 presents an example of the
computation of λ from a given π by means of the Newton method.

Table 5.3. Computation of λ from a given π by means of the Newton method

k πk π̃k λk = log π̃k
1−π̃k

rescaled λk

1 0.07 0.1021 −2.1743 −2.1514
2 0.17 0.2238 −1.2436 −1.2206
3 0.41 0.4417 −0.2342 −0.2112
4 0.61 0.5796 0.3212 0.3442
5 0.83 0.7794 1.2619 1.2848
6 0.91 0.8734 1.9313 1.9543

3 3 −0.1377 0

A variant of recursive relation (5.16) consists of working on

logit πk = log
πk

1 − πk
.

The general step of the Newton method becomes

logit π̃(i) = logit π̃(i−1) +
∣∣∣∣∂logit ψ(π̃, n)

∂logit π̃

∣∣∣∣
π̃=π̃(i−1)

[logit π − logit ψ(π̃(i−1), n)].

(5.17)
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Note that logit π̃ = λ. Moreover

∂logit ψ(π̃, n)
∂logit π̃

=
∂logit π(λ,Sn)

∂λ

= ∆ diag (π̃1(1 − π̃1) . . . π̃k(1 − π̃k) . . . π̃N (1 − π̃N ))−1

Again, ∆ diag (π̃1(1 − π̃1) . . . π̃k(1 − π̃k) . . . π̃N (1 − π̃N ))−1 is close to the
identity matrix. Expression (5.17) can be approximated by

λ(i) = λ(i−1) + logit π − logit π(λ(i−1), Sn), (5.18)

with the initial value λ(0) = logit π.

5.6.4 Joint Inclusion Probabilities

The joint inclusion probabilities can also be computed. The following result
has been presented in Chen et al. (1994), Aires (1999), Chen and Liu (1997),
and Chen (2000).

Result 23. If

πk�(λ,Sn) =

∑
s∈Sn

sks� exp λ′s∑
s∈Sn

exp λ′s
,

and π(λ,Sn) is given in (5.11) then for k �= � :

(i) πk�(λ,Sn+1) = [πk(λ,Sn) − πk�(λ,Sn)] (expλ�)
exp α (λ,Sn)

exp α (λ,Sn+1)
, (5.19)

(ii) πk�(λ,Sn) =
πk(λ,Sn) exp λ� − π�(λ,Sn) exp λk

exp λ� − exp λk
, if λk �= λ�, (5.20)

(iii) πk�(λ,Sn+1) =
π�(λ,Sn+1) [πk(λ,Sn) − πk�(λ,Sn)]

1 − π�(λ,Sn)
, (5.21)

(iv) πk�(λ,Sn+1) = −
n∑

i=1

πk(λ,Si)
n∏

j=i

−π�(λ,Sj+1)
1 − π�(λ,Sj)

. (5.22)

Proof. (i)

[πk(λ,Sn) − πk�(λ,Sn)] expλ�

=

⎡⎢⎢⎢⎣ ∑
s∈Sn
sk=1

pCPS(s,λ, n) −
∑
s∈Sn
sk=1
s�=1

pCPS(s,λ, n)

⎤⎥⎥⎥⎦ exp λ�

=
∑
s∈Sn
sk=1
s�=0

pCPS(s,λ, n) exp λ� =

∑
s∈Sn
sk=1
s�=0

exp(λ′s + λ�)

exp α (λ,Sn)
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=

∑
s∈Sn+1
sk=1
s�=1

exp(λ′s)

exp α (λ,Sn+1)
exp α (λ,Sn+1)
exp α (λ,Sn)

= πk�(λ,Sn+1)
exp α (λ,Sn+1)
exp α (λ,Sn)

.

(ii) By symmetry, by Expression (5.19), we can also write

πk�(λ,Sn+1) = [π�(λ,Sn) − πk�(λ,Sn)] (expλk)
exp α (λ,Sn)

exp α (λ,Sn+1)
. (5.23)

By subtracting (5.19) from (5.23), we get

[πk(λ,Sn) − πk�(λ,Sn)] expλk − [π�(λ,Sn) − πk�(λ,Sn)] expλ� = 0,

which gives (5.20).
(iii) By summing (5.19) over k ∈ U\{�}, we get

π�(λ,Sn+1) = [1 − π�(λ,Sn)] (expλ�)
exp α (λ,Sn)

exp α (λ,Sn+1)
. (5.24)

With Expressions (5.19) and (5.24), we get (5.21).
(iv) Expression (5.22) satisfies the recurrence equation (5.21). �

If all the λk’s are distinct, the joint inclusion probabilities can be computed
very quickly by Expression (5.20). If some inclusion probabilities are equal,
Aires (1999) pointed out that, since∑

k∈U
k �=�

πk� = π�(n − 1),

we have for all k �= � such that λk = λ�

πk� =
1

card {k ∈ U\{k}|λk = λ�}

⎡⎢⎣π�(n − 1) −
∑
k∈U

��=�,λk �=λ�

πk�

⎤⎥⎦ .

5.6.5 Joint Inclusion Probabilities: Deville’s Technique

Once λ is derived from π, Deville (2000) has also given a fast method to
compute the joint inclusion probabilities.

Result 24. The joint inclusion probabilities of a CPS satisfy the recursive
equation: (size equal to n)

πk�(λ,Sn)

=
n(n − 1) exp λk exp λ� [1 − πk(λ,Sn−2) − π�(λ,Sn−2) + πk�(λ,Sn−2)]∑
i∈U

∑
j∈U
i �=j

exp λi exp λj [1 − πi(λ,Sn−2) − πj(λ,Sn−2) + πij(λ,Sn−2)]
,

(5.25)

with πk�(λ, 0) = 0, πk�(λ, 1) = 0, for all k, � ∈ U, k �= �.
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Proof. We have

πk�(λ,Sn)

=
∑
s∈Sn

sks�pEXP(s,λ,Sn) =

∑
s∈Sn

sks� exp λ′s
α(λ,Sn)

=
∑
s∈Sn

sk=s�=1

exp λ′s
α(λ,Sn)

=
exp λk exp λ�

∑
s∈Sn−2
sk=s�=0

exp λ′s

α(λ,Sn)

=
exp λk exp λ�

α(λ,Sn)

⎛⎜⎜⎝ ∑
s∈Sn−2

exp λ′s −
∑

s∈Sn−2
sk=1

exp λ′s

−
∑

s∈Sn−2
s�=1

exp λ′s +
∑

s∈Sn−2
sk=1,s�=1

exp λ′s

⎞⎟⎟⎠
= exp λk exp λ� [1 − πk(λ,Sn−2) − π�(λ,Sn−2) + πk�(λ,Sn−2)]

α(λ,Sn−2)
α(λ,Sn)

.

Because ∑
k∈U

∑
�∈U
k �=�

πk�(λ,Sn) = n(n − 1),

we finally get Expression (5.25). �

Example 10. With the CPS method, for N = 6, n = 3, and

π = (0.07 0.17 0.41 0.61 0.83 0.91)′,

vector λ is computed in Table 5.3, page 83. The matrix of joint inclusion
probabilities is given by

Π =

⎛⎜⎜⎜⎜⎜⎜⎝
0.07 0.0049 0.0130 0.0215 0.0447 0.0559

0.0049 0.17 0.0324 0.0537 0.1113 0.1377
0.0130 0.0324 0.41 0.1407 0.2888 0.3452
0.0215 0.0537 0.1407 0.61 0.4691 0.5351
0.0447 0.1113 0.2888 0.4691 0.83 0.7461
0.0559 0.1377 0.3452 0.5351 0.7461 0.91

⎞⎟⎟⎟⎟⎟⎟⎠ . (5.26)

Qualité (2005) has shown that conditional Poisson sampling provides always
a smaller variance than multinomial sampling with the same sample size and
the same expectation of the random sample.
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5.6.6 Computation of α(λ, Sn)

The computation of the normalizing constant can be done recursively and is
directly linked to Expressions (5.9) and (5.10), page 78 (see also Chen and
Liu, 1997; Aires, 1999; Sampford, 1967, p. 507). Define

U j
i = {i, i + 1, . . . , j − 1, j},

Sz(U
j
i ) =

{
s ∈ Sz|sk = 0 if k /∈ U j

i

}
,

with z ≤ j − i + 1,

α
(
λ,Sz(U

j
i )
)

= log
∑

s∈Sz(Uj
i )

exp λ′s.

These particular cases are obvious:

α
[
λ,S1(U

j
i )
]

= log
j∑

k=i

exp λk, (5.27)

α
[
λ,S

cardUj
i
(U j

i )
]

=
j∑

k=i

λk. (5.28)

The general case can be computed recursively by means of the following re-
sults:

(i) exp α
[
λ,Sz(UN

i )
]

= (expλi) exp α
[
λ,Sz−1(UN

i+1)
]
+ exp α

[
λ,Sz(UN

i+1)
]

(5.29)

(ii) exp α
[
λ,Sz(U

j
1 )
]

= (exp λj) exp α
[
λ,Sz−1(U

j−1
1 )

]
+ exp α

[
λ,Sz(U

j−1
1 )

]
.

An example of the recursive computation of α[λ,Sz(UN
k )] by means of Ex-

pressions (5.27), (5.28), and (5.29) is given in Table 5.4.

Table 5.4. Recursive computation of exp α[λ, Sz(UN
k )]: the computation is made

from the bottom to the top of the table by means of Expressions (5.27), (5.28), and
(5.29)

k λk exp(λk) z = 1 2 3 4 5 6
1 −2.151 0.116 13.305 55.689 89.990 59.182 14.349 1.000
2 −1.221 0.295 13.188 54.155 83.691 49.448 8.597
3 −0.211 0.810 12.893 50.351 68.835 29.138
4 0.344 1.411 12.084 40.568 35.991
5 1.285 3.614 10.673 25.511
6 1.954 7.059 7.059

Chen et al. (1994), Chen and Liu (1997), and Chen (1998, 2000) have given
several other relations on α (λ,Sn) .
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Result 25. For any V ⊂ U and 1 ≤ n ≤ card V, then

(i) exp α [λ,Sn(V )] =
1
n

∑
k∈V

exp {λk + α [λ,Sn−1(V \{k})]} ,

(ii) exp α [λ,Sn(V )] =
1

card V − n

∑
k∈V

exp {α [λ,Sn(V \{k})]} ,

(iii) exp α [λ,Sn(V )] =
n∑

�=1

exp {α [λ,S�(V )] + α [λ,Sn−�(U\V )]} ,

(iv) exp α [λ,Sn(V )] =
1
n

n∑
�=1

(−1)�+1

⎡⎣∑
j∈V

exp(�λj)

⎤⎦ exp α [λ,Sn−�(V )] .

Proof.

(i)
1
n

∑
k∈V

exp {λk + α [λ,Sn−1(V \{k})]}

=
1
n

∑
k∈V

(exp λk)
∑

s∈Sn−1(V \{k})

exp λ′s

=
1
n

∑
k∈V

∑
s∈Sn(V )|sk=1

exp λ′s = expα [λ,Sn(V )] .

(ii)
1

card V − n

∑
k∈V

exp {α [λ,Sn(V \{k})]}

=
1

card V − n

∑
k∈V

∑
s∈Sn(V \{k})

exp λ′s

=
∑

s∈Sn(V )

exp λ′s = expα [λ,Sn(V )] .

(iii)
max(n,cardV )∑

�=1

exp {α (λ,S�(V )) + α [λ,Sn−�(U\V )]}

=
max(n,cardV )∑

�=1

∑
s∈S�(V )

exp λ′s
∑

r∈Sn−�(U\V )

exp λ′r

=
∑

s∈Sn(U)

exp λ′s = exp α [λ,Sn(U)] .

(iv)Chen et al. (1994) have given an independent proof of this relation. Result
25 (iv) can, however, be derived by summing over all k ∈ U, Expression (5.14)
of Result 22, page 81. �
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5.6.7 Poisson Rejective Procedure for CPS

The CPS design can be obtained by conditioning a Poisson sampling design
on a fixed sample size.

Result 26.

pEXP(s,λ,Sn) = pEXP(s,λ + c1,S|n(S) = n) =
pEXP(s,λ + c1,S)∑

s∈Sn
pEXP(s,λ + c1,S)

,

for all s ∈ Sn and c ∈ R.

The proof is obvious. Note that a CPS with parameter λ can be obtained by
conditioning an infinity of Poisson sampling design with parameter λ + c1,
for any c ∈ R. Result 26 allows defining the rejective method described in
Algorithm 5.5.

Algorithm 5.5 Poisson rejective procedure for CPS
1. Compute λ and π̃ from π by means of the Newton method as written in (5.16).
2. Select a random sample S̃ with the Poisson design pEXP(s̃, λ + c1, S).
3. If the sample size is not equal to n Goto Step 2, Else Stop; EndIf.

Constant c can be any real number, but c should be chosen to minimize
1/Pr[n(S̃) = n]. A convenient solution consists of using a constant c such that∑

k∈U

π̃k =
∑
k∈U

exp(λk + c)
1 + exp(λk + c)

= n. (5.30)

Note that recursive relation (5.16) provides π̃k’s that directly have such prop-
erties. If the λk’s are such that

∑
k∈U λk = 0, then an interesting solution

could be c = log(n/N − n), which provides a valid approximation for (5.30).
The expected number of iterations is 1/Pr

[
n(S̃) = n

]
. Contrary to pop-

ular belief, this quantity is not very large and does not increase very much
with the population size. If ñ = n(S̃) denotes the random sample size of the
Poisson design, then

E(ñ) =
∑
k∈U

π̃k = n, and var(ñ) =
∑
k∈U

π̃k(1 − π̃k) ≤ N
n

N

N − n

N
.

Asymptotically, ñ has a normal distribution and

ñ ∼ N

(
n, n

N − n

N

)
,
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and thus

Pr(ñ = n) ≈ Pr
[
−1

2
≤ N

(
n, n

N − n

N

)
≤ 1

2

]

≈ Pr

⎡⎣− 1

2
√

nN−n
N

≤ N(0, 1) ≤ 1

2
√

nN−n
N

⎤⎦
≈ f(0)

1√
nN−n

N

=
1√

2πnN−n
N

,

where N(0, 1) is a centered reduced normal variable and f(.) is its density.
The expected number of operations needed to get the sample is about

N

Pr
[
n(S̃) = n

] ≈ N

√
2πn

N − n

N
,

which is very fast for a sampling method with unequal probabilities.

5.6.8 Rejective Procedure with Multinomial Design for CPS

We have the following result.

Result 27.

pEXP(s,λ,Sn) = pEXP(s,λ,Rn|r(S) = s) =
pEXP(s,λ,Rn)∑

s∈Sn
pEXP(s,λ,Rn)

,

for all s ∈ Sn, where r(.) is the reduction function defined in Section 2.7,
page 14.

The proof is obvious. The rejective method is defined in Algorithm 5.6.

Algorithm 5.6 Rejective procedure with multinomial design for CPS
1. Compute λ from π by means of the Newton method as written in Expres-

sion (5.16).
2. Select a random sample S with a multinomial design pEXP(s, λ, Rn).
3. If one of the s̃k > 1, k ∈ U then Goto Step 2; Else Stop; EndIf.

This algorithm is presented in Brewer and Hanif (1983, Carrol-Hartley
rejective procedure 14, page 31, procedure 28-31, page 40) and was also dis-
cussed in Rao (1963a), Carroll and Hartley (1964), Hájek (1964), Rao and
Bayless (1969), Bayless and Rao (1970), and Cassel et al. (1993), but the way
to rapidly calculate the exact working probabilities µk/n was not yet known.

A very simple implementation given in Algorithm 5.7 can be done from
Algorithm 5.2. The rejective procedure with replacement can be faster than
the Poisson rejective procedure when n/N is small.
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Algorithm 5.7 Rejective procedure with sequential sampling with replace-
ment for CPS
Definition k: Integer;
1. Compute λ from π by means of the Newton method as written in (5.16);

2. Compute µk =
n exp λk∑
�∈U exp λ�

;

3. For k = 1, . . . , N do
Select the kth unit sk times according to the binomial distribution

B
(

n −
k−1∑
�=1

s�,
µk

n −∑k−1
�=1 µ�

)
;

If sk ≥ 2 then Goto Step 3; EndIf;
EndFor.

5.6.9 Sequential Procedure for CPS

The sequential procedure for CPS was proposed by Chen and Liu (1997,
procedure 2) and Deville (2000) and is based on the following result.

Result 28.

qk(n−j) = E(Sk|Sk−1 = sk−1, . . . , S1 = s1)

= (exp λk)
exp α

[
λ,Sn−j−1(UN

k+1)
]

exp α
[
λ,Sn−j(UN

k )
] , (5.31)

where

j =
k−1∑
i=1

si,

and the notation is the same as in Section 5.6.6.

Proof.

E(Sk|Sk−1 = sk−1, . . . , S1 = s1) =

∑
s∈Sn−j(UN

k )

sk exp λ′s

∑
s∈Sn−j(UN

k )

exp λ′s

= (exp λk)

∑
s∈Sn−j−1(UN

k+1)

exp λ′s

∑
s∈Sn−j(UN

k )

exp λ′s
= (expλk)

exp α
[
λ,Sn−j−1(UN

k+1)
]

exp α
[
λ,Sn−j(UN

k )
] . �

Note that the probability of selecting unit k given that Sk−1 = sk−1, . . . ,
S1 = s1 depends only on the number of selected units; that is,

Pr(Sk = sk|Sk−1 = sk−1, . . . , S1 = s1) = Pr

(
Sk = sk

∣∣∣∣∣
k−1∑
i=1

Si = j

)
.
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Example 11. For N = 6, n = 3, and π = (0.07 0.17 0.41 0.61 0.83 0.91)′,
vector λ is computed in Table 5.3, page 83. Table 5.4, page 87, gives the values
exp α[λ,Sz(UN

k )] that are computed recursively from λ. Finally, in Table 5.5,
the qk(n−j) are computed directly from the table of expα[λ,Sz(UN

k )], which
allows a quick implementation of the CPS design.

Table 5.5. Computation of qkj from Table 5.4, page 87

j = 1 2 3 4 5 6
k = 1 0.009 0.028 0.070 0.164 0.401 1

2 0.022 0.070 0.178 0.411 1
3 0.063 0.194 0.477 1
4 0.117 0.371 1
5 0.339 1
6 1

In order to select a sample with the sampling design pEXP(s,Sn, λ), the
standard sequential Algorithm 3.2, page 34, gives Algorithm 5.8 (Deville,
2000; Chen and Liu, 1997, procedure 3).

Algorithm 5.8 Sequential procedure for CPS
1. Compute λ from π by means of the Newton method given in Expression (5.16).
2. For k = 0, . . . , N, do For z = 1, . . . , min(k, n) do

Compute α
[
λ, Sz(UN

N−k)
]
, by means of recursive Expression (5.29).

EndFor; EndFor;
3. For k = 1, . . . , N, do For j = 1, . . . , min(k, n) do

Compute the table of qkj by means of Expression (5.31);
EndFor; EndFor;

4. j = 0.
5. For k = 1, . . . , N do

select unit k with probability qk(n−j).
If k is selected then j = j + 1; EndIf;

EndFor.

Note that Algorithm 5.8 is weakly sequential because qkj depends on all
the units of the population. However, once the qkj are computed, the selec-
tion of the sample is immediate. Algorithm 5.8 is the best solution to make
simulations because the qkj ’s are computed once.

5.6.10 Alternate Method for Computing π from λ

The inclusion probabilities πk can be derived from qkj . Let

rk = n −
k−1∑
�=1

S�.
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In the sequential algorithm, rk is the number of units that remains to be
sampled at step k of the algorithm. Obviously r1 = n. Next

r2 =
{

n − 1 with probability πk

n with probability 1 − πk.

The inclusion probabilities can be deduced from

πk =
n∑

j=1

qkjPr (rk = j) ,

where the distribution probability of rk satisfies the recurrence relation:

Pr (rk = j) = Pr (rk−1 = j) (1 − qk−1,j) + Pr (rk−1 = j + 1) qk−1,j+1,

with k > 2, and

Pr (r1 = j) =
{

1 if j = n
0 if j �= n.

From λ, it is thus possible to compute α
[
λ,Sz(UN

N−k)
]

by means of recursive
Expression (5.29). Next qkj can be computed from α

[
λ,Sz(UN

N−k)
]

by means
of Expression (5.31). Finally, π can be derived from qkj , which allows defining
an alternate procedure of deriving π from λ in place of Expression (5.13),
page 81.

5.6.11 Draw by Draw Procedure for CPS

In order to have a fast implementation of the standard procedure, we use the
following result from Chen et al. (1994).

Result 29. Let S be a sample selected according to a CPS, A a subset of U
and

qk(A) =

{ 1
n − card A

E [Sk|Si = 1 for all i ∈ A] k /∈ A

0 k ∈ A.

Then qk(∅) = πk/n, and

qk(A ∪ {j}) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

n − cardA − 1

qk(A)
qj(A) exp λj − exp λk

exp λj − exp λk
k /∈ A, qk(A) �= qj(A)

1 −∑
k/∈A,qk(A)�=qj(A) qk(A ∪ {j})

card{k /∈ A, qk(A) = qj(A)} k /∈ A, qk(A) = qj(A)

0 k ∈ A ∪ {j}.
(5.32)
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Proof. Let a = cardA. If λj �= λk, we have, for all j �= k ∈ U\A,

(exp λj)
∑

s∈Sn−a(U\A)

sk exp λ′s − (exp λk)
∑

s∈Sn−a(U\A)

sj exp λ′s

= (exp λj)

⎛⎜⎜⎝ ∑
s∈Sn−a(U\A)

sk=1,sj=0

exp λ′s +
∑

s∈Sn−a(U\A)
sk=1,sj=1

exp λ′s

⎞⎟⎟⎠

− (exp λk)

⎛⎜⎜⎝ ∑
s∈Sn−a(U\A)

sk=0,sj=j

exp λ′s +
∑

s∈Sn−a(U\A)
sk=1,sj=1

exp λ′s

⎞⎟⎟⎠
= (exp λj − exp λk)

∑
s∈Sn−a(U\A)

sksj exp λ′s. (5.33)

Moreover, because

qk(A) =
1

n − a

∑
s∈Sn−a(U\A) sk exp λ′s∑
s∈Sn−a(U\A) exp λ′s

, k /∈ A,

and
qk(A)
qj(A)

=

∑
s∈Sn−a(U\A) sk exp λ′s∑
s∈Sn−a(U\A) sj exp λ′s

, k /∈ A,

we have

qk(A)
qj(A) exp λj − exp λk

exp λj − exp λk

=
(exp λj)

∑
s∈Sn−a(U\A) sk exp λ′s − (exp λk)

∑
s∈Sn−a(U\A) sj exp λ′s

(exp λj − exp λk)
∑

s∈Sn−a(U\A) sj exp λ′s
.

By (5.33), we obtain

qk(A)
qj(A) exp λj − exp λk

exp λj − exp λk

=

∑
s∈Sn−a(U\A) sksj exp λ′s∑
s∈Sn−a(U\A) sj exp λ′s

=

∑
s∈Sn−a−1[U\(A∪{j})] sk exp λ′s∑
s∈Sn−a−1[U\(A∪{j})] exp λ′s

= (n − a − 1)qk(A ∪ {j}). �

The standard draw by draw procedure given in Expression (3.3), page 35,
gives Algorithm 5.9. Other procedures that implement the CPS design are
proposed in Chen and Liu (1997).
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Algorithm 5.9 Draw by draw procedure for CPS
1. Compute λ from π by means of the Newton method as written in Expres-

sion (5.16).
2. Define A0 = ∅.
3. For j = 0, . . . , n − 1, do

Select a unit from U with probability qk(Aj) as defined in Expression (5.32);
If kj is the selected unit, then Aj+1 = Aj ∪ {kj};
EndIf;

EndFor.
4. The selected units are in the set An.

5.7 Links Between the Exponential Designs

The following relations can be proved using the definition of conditioning with
respect to a sampling design.

• pPOISSWR(s,λ|Rn) = pMULTI(s,λ, n),
• pPOISSWR(s,λ|S) = pPOISSWOR(s,λ),
• pPOISSWR(s,λ|Sn) = pCPS(s,λ, n),
• pMULTI(s,λ, n|Sn) = pCPS(s,λ, n),
• pPOISSWOR(s,λ|Sn) = pCPS(s,λ, n).

These relations are summarized in Figure 5.1 and Table 5.7, page 97.

POISSWR CPS

POISSWOR

MULTI

reduction

conditioning on S conditioning on Sn

conditioning on Sn

conditioning on Rn

with 0 ≤ n ≤ N

conditioning on Sn

Fig. 5.1. Links between the main exponential sampling designs

5.8 Links Between Exponential Designs and Simple
Designs

The following relations are obvious:

• pPOISSWR(s,1 log θ) = pEPPOISSWR(s, θ),
• pMULTI(s,1 log θ, n) = pSRSWR(s, n),
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• pPOISSWOR(s,1 log θ) = pBERN

(
s, π =

θ

1 + θ

)
,

• pCPS(s,1 log θ, n) = pSRSWOR(s, n).

5.9 Exponential Procedures in Brewer and Hanif

Brewer and Hanif (1983) have defined a set of properties in order to eval-
uate the sampling methods. These properties are listed in Table 5.6. Seven
exponential procedures are described in Brewer and Hanif (1983); they are
presented in Table 5.8, page 98.

Most of them are due to Hájek. Because the way of deriving the inclusion
probabilities from the parameter was not yet defined, Hájek proposed differ-
ent working probabilities to apply the rejective Poisson sampling design. The
Hájek procedures do not have probabilities of inclusion strictly proportional
to size (not strpps). The Yates and Grundy (1953) procedure and the Carroll
and Hartley (1964) methods are very intricate and can be used only for small
sample sizes.

Table 5.6. Abbreviations of Brewer and Hanif (1983) and definition of “exact” and
“exponential”

strpps Inclusion probability strictly proportional to size
strwor Strictly without replacement
n fixed Number of units in sample fixed
syst Systematic
d by d Draw by draw
rej Rejective
ws Whole sample
ord Ordered
unord Unordered
inexact Fails to satisfy at least one of the three properties: strpps, strwor, n

fixed
n=2 only Applicable for sample size equal to 2 only
b est var Estimator of variance generally biased
j p enum Calculation of joint inclusion probability in sample involves enumer-

ation of all possible selections, or at least a large number of them
j p iter Calculation of joint inclusion probability in sample involves iteration

on computer
not gen app Not generally applicable
nonrotg Nonrotating
exact Satisfies conjointly the three properties: strpps, strwor, n fixed
exponential Procedure that implements an exponential design
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Ŷ

∑ k
∈U

y
k
S

k

µ
k

∑ k
∈U

y
k
S

k

µ
k

∑ k
∈U

y
k
S

k

π
k

∑ k
∈U

y
k
S

k

π
k

V
ar

ia
nc

e
va

r(
Ŷ
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ájek’s

“M
ethod

II”
P

rincipal
reference:H
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6

The Splitting Method

6.1 Introduction

The splitting method, proposed byDeville and Tillé (1998), is a general frame-
work of sampling methods without replacement, with fixed sample size and
unequal probabilities. The basic idea consists of splitting the inclusion prob-
ability into two or several new vectors. Next, one of these vectors is selected
randomly in such a way that the average of the vectors is the vector of in-
clusion probabilities. This simple step is repeated until a sample is obtained.
The splitting method is thus a martingale algorithm. It includes all the draw
by draw and sequential procedures and it allows deriving a large number of
unequal probability methods. Moreover, many well-known procedures of un-
equal probabilities can be formulated under the form of a splitting. The pre-
sentation can thus be standardized, which allows a simpler comparison of the
procedures. In this chapter, we present the fundamental splitting algorithm.
Two variants can be defined depending on whether a vector or a direction is
chosen. Several applications are given: minimum support design, splitting into
simple random sampling, pivotal procedure, and the generalized Sunter pro-
cedure. Next, a general method of splitting into several vectors is presented.
The particular cases are the Brewer procedure, the eliminatory method, the
Tillé elimination method, the generalized Midzuno procedure, and the Chao
procedure.

6.2 Splitting into Two Vectors

6.2.1 A General Technique of Splitting into Two Vectors

Consider a vector of inclusion probabilities π = (π1 · · · πN )′ such that

n(π) =
∑
k∈U

πk = n,
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and n is an integer. The general splitting technique into two vectors is pre-
sented in Algorithm 6.1. As shown in Figure 6.1, at each step t = 0, 1, 2, . . . ,
vector π(t) is split into two other vectors. The splitting method is based on a
random transformation of vector π until a sample is obtained.

Algorithm 6.1 General splitting method into two vectors
1. Initialize π(0) = π, and t = 0.
2. While π(t) /∈ {0, 1}N do

• Construct any pair of vectors πa(t), πb(t) ∈ R
N , and a scalar α(t) ∈ [0, 1]

such that
α(t)πa(t) + [1 − α(t)] πb(t) = π(t),
n [πa(t)] = n

[
πb(t)

]
= n [π(t)] ,

0 ≤ πa
k(t) ≤ 1, and 0 ≤ πb

k(t) ≤ 1;

• π(t + 1) =
{

πa(t) with probability α(t)
πb(t) with probability 1 − α(t);

• t = t + 1;
EndWhile.

3. The selected sample is S = π(t).

⎡⎢⎢⎢⎢⎢⎢⎣

π1(t)
...

πk(t)
...

πN (t)

⎤⎥⎥⎥⎥⎥⎥⎦
���������

���������⎡⎢⎢⎢⎢⎢⎢⎣

πa
1 (t)
...

πa
k(t)
...

πa
N (t)

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

πb
1(t)
...

πb
k(t)
...

πb
N (t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

α(t) 1 − α(t)

Fig. 6.1. Splitting into two vectors
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Vector π(t) is a martingale because

E [π(t)|π(t − 1), . . . ,π(1)] = π(t − 1).

It follows that
E [π(t)] = π,

and thus the splitting method selects a sample with the inclusion probabilities
equal to π. At each step of the algorithm, the problem is reduced to another
sampling problem with unequal probabilities. If the splitting is such that one
or several of the πa

k and the πb
k are equal to 0 or 1, the sampling problem will

be simpler at the next step. Indeed, once a component of π(t) becomes an
integer, it must remain an integer for all the following steps of the method.
The splitting method allows defining a large family of algorithms that includes
many known procedures.

6.2.2 Splitting Based on the Choice of πa(t)

A first way to construct πa(t), πb(t), and α(t) consists of arbitrarily fixing
πa(t) and then of deriving appropriate values for πb(t) and α(t), which gives
Algorithm 6.2.

Algorithm 6.2 Splitting method based on the choice of πa(t)
Initialize π(0) = π;
For t = 0, 1, 2 . . . , and until a sample is obtained, do

1. Generate any vector of probabilities πa(t) such that n[πa(t)] = n(π) and
πa

k(t) = πk(t) if πk(t) ∈ {0, 1} . The vector πa(t) can be generated randomly or
not;

2. Define α(t) as the largest real number in [0, 1] that satisfies

0 ≤ πk(t) − α(t)πa
k(t)

1 − α(t)
≤ 1, for all k ∈ U ;

that is,

α(t) = min

⎡⎣ min
k∈U

0<πk(t)<1

πk(t)
πa

k(t)
; min

k∈U
0<πk(t)<1

1 − πk(t)
1 − πa

k(t)

⎤⎦ ; (6.1)

3. Define
πb =

π − α(t)πa(t)
1 − α(t)

; (6.2)

4. Select π(t + 1) =
{

πa with probability α(t)
πb with probability 1 − α(t);

EndFor.
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6.2.3 Methods Based on the Choice of a Direction

A second way to construct πa(t), πb(t), and α(t) consists of arbitrarily choos-
ing at each step a direction u(t) used to determine the splitting, which gives
Algorithm 6.3.

Algorithm 6.3 Splitting method based on the choice of a direction
Initialize π(0) = π;
For t = 0, 1, 2 . . . , and until a sample is obtained, do

1. Define U(t) = {k ∈ U |0 < πk(t) < 1};
2. Choose arbitrarily (randomly or not) a nonnull vector u(t) = (uk(t)) ∈ R

N such
that

uk(t) = 0 for all k /∈ U(t), and
∑
k∈U

uk(t) = 0;

3. Compute λ∗
1(t) and λ∗

2(t), the largest positive values of λ1(t) and λ2(t), such
that

0 ≤ πk(t) + λ1(t)uk(t) ≤ 1, and 0 ≤ πk(t) − λ2(t)uk(t) ≤ 1;

for all k ∈ U.
4. Define

πa = π(t) + λ∗
1(t)u(t),

πb = π(t) − λ∗
2(t)u(t),

α(t) =
λ∗

2(t)
λ∗

1(t) + λ∗
2(t)

;

5. Select

π(t + 1) =
{

πa with probability α(t)
πb with probability 1 − α(t);

EndFor.

6.2.4 Minimum Support Design

Wynn (1977, Theorem 1) proved that it is always possible to define a sampling
design with any fixed first-order inclusion probabilities by using only N sam-
ples s such that p(s) > 0. This sampling design is called the minimum support
design. However Wynn’s result is not constructive. The minimum support de-
sign was already proposed by Jessen (1969) in a more restrictive context (see
also Brewer and Hanif, 1983, procedures 35 and 36, pp. 42-43). Hedayat et al.
(1989, Theorem 2) have also proposed a related procedure in the context of
a method of emptying boxes, but its implementation is limited to inclusion
probabilities that can be written as rational numbers. The minimum support
design is presented in Algorithm 6.4.

With Algorithm 6.4, if the πa
k(t) are selected, the sample is automatically

selected. If the πb
k(t) are selected, the problem is reduced to the selection of a

sample from a smaller population. In at most N steps, the sample is selected.
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Algorithm 6.4 Minimum support procedure
Initialize π(0) = π;
For t = 0, 1, 2 . . . , and until a sample is obtained, do

1. Define
At = {k|πk(t) = 0}, Bt = {k|πk(t) = 1}, and Ct = {k|0 < πk(t) < 1};

2. Select a subset Dt of Ct such that card Dt = n − card Bt (Dt can be selected
randomly or not);

3. Define

πa
k(t) =

{
0 if k ∈ At ∪ (Ct\Dt)
1 if k ∈ Bt ∪ Dt,

α(t) = min{1 − max
k∈(Ct\Dt)

πk, min
k∈Dt

πk},

and

πb
k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if k ∈ At

1 if k ∈ Bt

πk(t)
1 − α(t)

if k ∈ (Ct\Dt)

πk(t) − α(t)
1 − α(t)

if k ∈ Dt;

4. Select π(t + 1) =
{

πa with probability α(t)
πb with probability 1 − α(t);

EndFor.

Example 12. Suppose that N = 6, n = 3, π = (0.07 0.17 0.41 0.61 0.83 0.91)′.
At each step, the subset Dt consists of the largest noninteger values of π(t).
In this case, the splitting is completed in four steps. The vector of inclusion
probabilities is split into two parts, as given in columns 2 and 3 of Table 6.1.

Table 6.1. Minimum support design for Example 12

Step 1 Step 2 Step 3 Step 4
πk α(0) = 0.59 α(1) = 0.585 α(2) = 0.471 α(3) = 0.778

π(0) πa(0) πb(0) πa(1) πb(1) πa(2) πb(2) πa(3) πb(3)
0.07 0 0.171 0 0.412 0 0.778 1 0
0.17 0 0.415 0 1 1 1 1 1
0.41 0 1 1 1 1 1 1 1
0.61 1 0.049 0 0.118 0 0.222 0 1
0.83 1 0.585 1 0 0 0 0 0
0.91 1 0.780 1 0.471 1 0 0 0
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With probability α(0) = 0.59, the sample (0, 0, 0, 1, 1, 1) is selected and,
with probability 1 − α(0) = 0.41, another sampling is applied with unequal
probabilities given by (0.171, 0.415, 1, 0.049, 0.585, 0.780)′. At step 2, the split-
ting is applied again to this vector and, in four steps, the sample is selected
as shown in the splitting tree presented in Figure 6.2. The sampling design is
thus given by:

p((0, 0, 0, 1, 1, 1)′) = 0.59,

p((0, 0, 1, 0, 1, 1)′) = (1 − 0.59) × 0.585 = 0.24,

p((0, 1, 1, 0, 0, 1)′) = (1 − 0.59 − 0.24) × 0.471 = 0.08,

p((1, 1, 1, 0, 0, 0)′) = (1 − 0.59 − 0.24 − 0.08) × 0.778 = 0.07,

p((0, 1, 1, 1, 0, 0)′) = (1 − 0.59 − 0.24 − 0.08 − 0.7) = 0.02.

(0, 0, 0, 1, 1, 1)

(0, 0, 1, 0, 1, 1)

(0, 1, 1, 0, 0, 1)

(1, 1, 1, 0, 0, 0)

(0.07, 0.17, 0.41, 0.61, 0.83, 0.91)

(0.171, 0.415, 1, 0.049, 0.585, 0.780)

(0.412, 1, 1, 0.118, 0, 0.471)

(0.778, 1, 1, 0.222, 0, 0)

(0, 1, 1, 1, 0, 0)

0.59 0.41

0.585 0.415

0.471 0.529

0.778 0.222

Fig. 6.2. Splitting tree for the minimum support design for Example 12

6.2.5 Splitting into Simple Random Sampling

This method also splits the inclusion probabilities into two parts. One part is
a vector with equal probabilities, so a simple random sample can be selected.
Algorithm 6.5 is an implementation of this splitting method into simple ran-
dom sampling.

Example 13. With the same π as in Example 12; that is, N = 6, n = 3,
π = (0.07 0.17 0.41 0.61 0.83 0.91)′, the result of the method is given in
Table 6.2 and the splitting tree is presented in Figure 6.3.
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Algorithm 6.5 Splitting procedure into simple random sampling
Initialize π(0) = π.
For t = 0, 1, 2 . . . , and until a sample is obtained, do

1. Define At = {k|πk(t) = 0}, and Bt = {k|πk(t) = 1};
2. Compute

πa
k(t) =

⎧⎪⎨⎪⎩
n − cardBt

N − cardAt − cardBt
if k /∈ At ∪ Bt

0 if k ∈ At

1 if k ∈ Bt,

α(t) = min
{

N − cardAt − cardBt

n − cardBt
min

k∈U\(A∪B)
πk(t);

N − cardAt − cardBt

N − n − cardBt

[
1 − max

k∈U\(A∪B)
πk(t)

]}
,

and

πb(t) =
π(t) − α(t)πb

1 − α(t)
;

3. Generate u, a uniform random variable in [0,1];
4. If α(t) < u then

select a sample s by means of SRS with inclusion probabilities πa(t);
Stop;

Else
If πb(t) is a sample, select s = πb(t) and Stop;
Else π(t + 1) = πb(t);
EndIf;

EndIf;

EndFor.

Table 6.2. Splitting into simple random sampling for Example 13

Step 1 Step 2 Step 3 Step 4 Step 5
πk α(0) = 0.14 α(1) = 0.058 α(2) = 0.173 α(3) = 0.045 α(4) = 0.688

π(0) πa(0) πb(0) πa(1) πb(1) πa(2) πb(2) πa(3) πb(3) πa(4) πb(4)
0.07 0.5 0 0 0 0 0 0 0 0 0
0.17 0.5 0.116 0.6 0.086 0.5 0 0 0 0 0
0.41 0.5 0.395 0.6 0.383 0.5 0.358 0.667 0.344 0.5 0
0.61 0.5 0.628 0.6 0.630 0.5 0.657 0.667 0.656 0.5 1
0.83 0.5 0.884 0.6 0.901 0.5 0.985 0.667 1 1 1
0.91 0.5 0.977 0.6 1 1 1 1 1 1 1
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(0.5, 0.5, 0.5, 0.5, 0.5, 0.5)

(0, 0.6, 0.6, 0.6, 0.6, 0.6)

(0, 0.5, 0.5, 0.5, 0.5, 1)

(0, 0, 0.667, 0.667, 0.667, 1)

(0, 0, 0.5, 0.5, 1, 1) (0, 0, 0, 1, 1, 1)

(0.07, 0.17, 0.41, 0.61, 0.83, 0.91)

(0, 0.116, 0.395, 0.628, 0.884, 0.977)

(0, 0.086, 0.383, 0.630, 0.901, 1)

(0, 0, 0.358, 0.657, 0.985, 1)

(0, 0, 0.344, 0.656, 1, 1)

0.14 0.86

0.058 0.942

0.173 0.827

0.045 0.955

0.688 0.312

Fig. 6.3. Splitting tree for the splitting method into simple random sampling of
Example 13

6.2.6 The Pivotal Method

The pivotal method proposed by Deville and Tillé (1998) consists of splitting
the vector of inclusion probabilities into two parts, but, at each step, only two
inclusion probabilities are modified. The basic step is as follows. At step t,
select two units from the population denoted i and j such that 0 < πi(t) < 1
and 0 < πj(t) < 1.

If πi(t) + πj(t) > 1, then

α(t) =
1 − πj(t)

2 − πi(t) − πj(t)
,

πa
k(t) =

⎧⎨⎩πk(t) k ∈ U\{i, j}
1 k = i
πi(t) + πj(t) − 1 k = j,

πb
k(t) =

⎧⎨⎩πk(t) k ∈ U\{i, j}
πi(t) + πj(t) − 1 k = i
1 k = j.
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On the other hand, if πi(t) + πj(t) < 1, then

α =
πi(t)

πi(t) + πj(t)
,

πa
k(t) =

⎧⎨⎩πk(t) k ∈ U\{i, j}
πi(t) + πj(t) k = i
0 k = j,

πb
k(t) =

⎧⎨⎩πk(t) k ∈ U\{i, j}
0 k = i
πi(t) + πj(t) k = j.

In the first case, a one is allocated to only one inclusion probability. In the
second case, a zero is allocated to only one inclusion probability. The problem
is thus reduced to a population of size N − 1. In at most N steps, a solution
is obtained. Algorithm 6.6 is a quick and strictly sequential implementation
of the pivotal method.

Algorithm 6.6 Pivotal procedure
1. Definition a, b, u Real; i, j, k Integer;
2. a = π1; b = π2; i = 1; j = 2;
3. For k = 1, . . . , N do sk = 0; EndFor
4. k = 3;
5. While k ≤ N do∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u = uniform random variable in [0,1];

If a + b > 1 then

∣∣∣∣∣∣
If u < 1−b

2−a−b
then b = a + b − 1; a = 1;

Else a = a + b − 1; b = 1;
EndIf;

Else

∣∣∣∣∣∣
If u < b

a+b
then b = a + b; a = 0;

Else a = a + b; b = 0;
EndIf;

EndIf;
If a is integer and k ≤ N then si = a; a = πk; i = k; k = k + 1; EndIf;
If b is integer and k ≤ N then sj = b; b = πk; j = k; k = k + 1; EndIf;

EndWhile;
6. u = uniform random variable in [0,1];

If a + b¿ 1 then

∣∣∣∣∣∣
If u < 1−b

2−a−b
then b = a + b − 1; a = 1;

Else a = a + b − 1; b = 1;
EndIf;

Else

∣∣∣∣∣∣
If u < b

a+b
then b = a + b; a = 0;

Else a = a + b; b = 0;
EndIf;

EndIf;
If a is integer and k ≤ N then si = a; a = πk; i = k; k = k + 1; EndIf;
If b is integer and k ≤ N then sj = b; b = πk; j = k; k = k + 1; EndIf;
si = a; sj = b.
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If the units are taken in a fixed order, most of the joint inclusion proba-
bilities are equal to zero. In order to overcome this problem, the procedure
can be randomized, as with systematic sampling (see Section 7.1, page 124),
by randomly sorting the population before applying the method.

6.2.7 Random Direction Method

In the random direction method, vectors πa and πb are constructed randomly.
A random direction is chosen by means of a vector u with zero mean, which
gives Algorithm 6.7.

Algorithm 6.7 Random direction procedure
For t = 0, 1, 2 . . . , and until a sample is obtained, do

1. Define U(t) = {k ∈ U |0 < πk(t) < 1};

2. Generate a random vector v(t), where vk(t) =
{

N(0, 1) if k ∈ U(t)
0 if k /∈ U(t), where

N(0, 1) is a standard normal distribution.
3. Define u(t) = [uk(t)], where

uk(t) =

⎧⎪⎨⎪⎩
vk(t) − 1

card U(t)

∑
k∈U(t)

vk(t) if k ∈ U(t)

0 if k /∈ U(t);

4. Compute λ∗
1(t) and λ∗

2(t), the largest values of λ1(t) and λ2(t), such that

0 ≤ π(t) + λ1(t)u(t) ≤ 1, and 0 ≤ π(t) − λ2(t)u(t) ≤ 1;

5. πa = π(t) + λ∗
1(t)u(t), πb = π(t) − λ∗

2(t)u(t), α(t) =
λ∗

2(t)
[λ∗

1(t) + λ∗
2(t)]

;

6. Select π(t + 1) =
{

πa with probability α(t)
πb with probability 1 − α(t);

EndFor.

6.2.8 Generalized Sunter Method

Sunter (1977, 1986) has proposed a sequential procedure that is not generally
applicable to any unequal probability vector of inclusion probabilities. The
Sunter procedure only works when the units are sorted in decreasing order
and when the smallest units have equal inclusion probabilities. In the frame-
work of the splitting procedure, Deville and Tillé (1998) have generalized the
Sunter method in such a way that it is applicable to any vector of inclusion
probabilities. Algorithm 6.8 is an implementation of the generalized Sunter
procedure and is a particular case of the method based on the choice of πa(t)
(see Algorithm 6.2, page 101).
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Algorithm 6.8 Generalized Sunter procedure
1. Initialize π(1) = π;
2. For t = 1, 2 . . . , N do

If πt(t) is an integer then
π(t + 1) = π(t);

Else
Define A(t) = {k ∈ U |πk(t) ∈ {0, 1}} and B(t) = {k ∈ U |0 < πk(t) < 1};

πa
k(t) =

⎧⎪⎪⎨⎪⎪⎩
πk(t) if k ∈ A(t)
1 if k = t

πk(t)

∑
k∈B(t) πk(t) − 1∑

k∈B(t) πk(t) − πt(t)
if k ∈ B(t), k �= t;

Define α(t) as the largest real number that satisfies

0 ≤ πk(t) − α(t)πa
k(t)

1 − α(t)
≤ 1, for all k ∈ U ;

that is,

α(t) = min

⎡⎣ min
k∈U

0<πk(t)<1

πk(t)
πa

k(t)
; min

k∈U
0<πk(t)<1

1 − πk(t)
1 − πa

k(t)

⎤⎦ ; (6.3)

Define
πb =

πk − α(t)πa(t)
1 − α(t)

; (6.4)

Select π(t + 1) =
{

πa with probability α(t)
πb with probability 1 − α(t);

EndIf;
EndFor;

3. If π(N) is not a sample, then π(1) = π(N) and Goto Step 2; EndIf.

It is interesting to analyze the first step of the generalized Sunter proce-
dure. First, define

πa
k(1) =

{
1 if k = 1
πk(1) n−1

n−π1(1)
if k �= 1.

Next, define α(1) and πb(1) by the usual method as given in Expressions (6.3)
and (6.4):

α(1) = min

⎡⎣ min
k∈U

0<πk(1)<1

πk(1)
πa

k(1)
; min

k∈U
0<πk(1)<1

1 − πk(1)
1 − πa

k(1)

⎤⎦
= min

[
π1(1);

[n − π1(1)][1 − πm(1)]
n[1 − πm(1)] + πm(1) − π1(1)

]
,
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where πm(1) is the largest πk(1), for k ∈ U\{1}, which gives, after some
algebra:

α(1) =

⎧⎪⎪⎨⎪⎪⎩
π1(1) if

nπm(1)
n − π1(1)

≤ 1

[n − π1(1)][1 − πm(1)]
n[1 − πm(1)] + πm(1) − π1(1)

if
nπm(1)

n − π1(1)
> 1.

Finally,

πb(1) =
πk(1) − α(1)πa(1)

1 − α(1)
.

Two cases can be distinguished.

Case 1. If nπm(1)/[n − π1(1)] ≤ 1, select

π(2) =
{

πa(1) = [πa
k(1)] with probability π1(1)

πb(1) = [πb
k(1)] with probability 1 − π1(1),

where

πa
k(1) =

{
1 k = 1
πk(1) n−1

n−π1(1)
k �= 1,

and

πb
k(1) =

{
0 k = 1
πk(1) n

n−π1(1)
k �= 1.

Case 2. If nπm(1)/[n − π1(1)] > 1, select

π(2) =

{
πa(1) = [πa

k(1)] with probability α(1)

πb(1) = [πb
k(1)] with probability 1 − α(1),

where

α(1) =
[n − π1(1)] [1 − πm(1)]

n [1 − πm(1)] + πm(1) − π1(1)
,

πa
k(1) =

{
1 k = 1
πk(1) n−1

n−π1(1)
k �= 1,

and

πb
k(1) =

{
π1(1) − [1 − πm(1)] [n − π1(1)] /πm(1) k = 1
πk(1)/πm(1) k �= 1.

The basic Sunter (1977, 1986) method considers Case 1 only. For this reason,
the Sunter method is not generally applicable to any vector of inclusion prob-
abilities. After the first step, the same elementary procedure is applied to the
noninteger units of vector π(2) and so on.

Example 14. With the same data as in Example 12; that is, N = 6, n = 3,
π = (0.07 0.17 0.41 0.61 0.83 0.91)′, the first step of Sunter’s method is
presented in Table 6.3.
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Table 6.3. Generalized Sunter method for Example 14

α = 0.07 1 − α = 0.93
πk πa

k πb
k

0.07 1 0
0.17 0.12 0.17
0.41 0.28 0.42
0.61 0.42 0.62
0.83 0.57 0.85
0.91 0.62 0.93

6.3 Splitting into M Vectors

6.3.1 A General Method of Splitting into M Vectors

The splitting procedure can be generalized to a splitting technique into M
vectors of inclusion probabilities, as presented in Algorithm 6.9.

Algorithm 6.9 General splitting method into M vectors
1. Initialize π(0) = π, and t = 0
2. While π(t) /∈ {0, 1}N do

a) Construct a set of M vectors π(i)(t), ∈ R
N , i = 1, . . . , M, and a set of M

scalars αi(t) ∈ [0, 1], such that⎧⎪⎨⎪⎩
∑M

i=1 αi(t)π(i) = π(t),
n
[
π(i)(t)

]
= n [π(t)] , for all i = 1, . . . , M,

0 ≤ π
(i)
k (t) ≤ 1, for all i = 1, . . . , M ;

b) π(t + 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

π(1), with probability α1(t)
...
π(i), with probability αi(t)
...
π(M), with probability αM (t);

c) t = t + 1;
EndWhile;

3. The selected sample is S = π(t).

Note that π
(i)
k (t) = πk(t), if πk(t) = {0, 1}, for all i = 1, . . . , M. Figure 6.4

shows the basic step of splitting into M vectors.
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⎡⎢⎢⎢⎢⎢⎢⎣

π1(t)
...

πk(t)
...

πN (t)

⎤⎥⎥⎥⎥⎥⎥⎦
����������

�����������

⎡⎢⎢⎢⎢⎢⎢⎢⎣

π
(1)
1 (t)

...
π

(1)
k (t)

...
π

(1)
N (t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

π
(i)
1 (t)
...

π
(i)
k (t)
...

π
(i)
N (t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

π
(M)
1 (t)

...
π

(M)
k (t)

...
π

(M)
N (t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

α1(t) αj(t) αM (t)

. . .. . .

Fig. 6.4. Splitting into M vectors

6.3.2 Brewer’s Method

Brewer’s method was first proposed for the particular case n = 2 in Brewer
(1963a) and was discussed in Rao and Bayless (1969); Rao and Singh (1973);
Sadasivan and Sharma (1974), and Cassel et al. (1993). Next, Brewer (1975)
generalized this method for any sample size (see also Brewer and Hanif, 1983,
procedure 8, p. 26). This method is a draw by draw procedure. Thus, in n
steps, the sample is selected, but a presentation in a splitting form is more
understandable.

For simplicity, we present only the first step of the method. First, define

αj =

{
N∑

z=1

πz(n − πz)
1 − πz

}−1
πj(n − πj)

1 − πj
.

Next, compute

π
(j)
k =

⎧⎨⎩
πk(n − 1)

n − πj
if k �= j

1 if k = j.
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The validity of Brewer’s method comes from the following result.
Result 30. For Brewer’s method,

N∑
j=1

αjπ
(j)
k = πk,

for all k = 1, . . . , N.

Proof. If we denote

C =

[
N∑

z=1

πz(n − πz)
1 − πz

]−1

,

we obtain
N∑

j=1

αjπ
(j)
k =

N∑
j=1
j �=k

C
πkπj(n − 1)

1 − πj
+ C

πk(n − πk)
1 − πk

= Cπk

⎧⎨⎩
N∑

j=1

πj(n − 1)
1 − πj

+ n

⎫⎬⎭ = Cπk

N∑
j=1

[
πj(n − 1)

1 − πj
+

πj(1 − πj)
1 − πj

]
= πk.�

Example 15. With the same data as in Example 12; that is, N = 6, n = 3,
and π = (0.07 0.17 0.41 0.61 0.83 0.91)′, the first step of splitting for Brewer’s
method is given in Table 6.4.

Table 6.4. First step of Brewer’s method for Example 15

α1 = 0.006 α2 = 0.015 α3 = 0.047 α4 = 0.098 α5 = 0.278 α6 = 0.555
π(1) π(2) π(3) π(4) π(5) π(6)

0.07 1 0.049 0.054 0.059 0.065 0.067
0.17 0.116 1 0.131 0.142 0.157 0.163
0.41 0.280 0.290 1 0.343 0.378 0.392
0.61 0.416 0.431 0.471 1 0.562 0.584
0.83 0.567 0.587 0.641 0.695 1 0.794
0.91 0.621 0.643 0.703 0.762 0.839 1
3 3 3 3 3 3 3

At each step of the method, a unit is selected in the sample. Moreover, the
π

(j)
k ’s must not all be computed. Only the π

(j)
k ’s of the selected vector must

be computed. Practically, we can use the simple Algorithm 6.10.
The main problem of the method is that the joint inclusion probabilities

are difficult to compute. Brewer (1975) proposed a recursive formula, but
it implies a complete exploration of the splitting tree. The joint inclusion
probabilities are, however, strictly positive because at each step, all the split
vectors have strictly positive probabilities.
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Algorithm 6.10 Brewer’s procedure
Initialize s = 0.
For i = 1, . . . , n, do
Select a unit in the sample from U with probability

p
(i)
k =

[∑
z∈U

(1 − sz)
πz

(
n −∑

� s�π� − πz

)
n −∑

�∈U s�π� − πz {n − (i − 1)}

]−1

×(1 − sk)
πk

(
n −∑

� s�π� − πk

)
n −∑

�∈U s�π� − πk {n − (i − 1)} , for k ∈ U.

If j is the selected unit, sj = 1; EndIf.
EndFor.

6.3.3 Eliminatory Method

Again, we present only the first step of the method. First, define

αj =

[
N∑

z=1

(1 − πz)(N − n − 1 + πz)
πz

]−1
(1 − πj)(N − n − 1 + πj)

πj
.

Next, compute

π
(j)
k =

⎧⎨⎩1 − (1 − πk)(N − n − 1)
N − n − 1 + πj

if k �= j

0 if k = j.

The eliminatory method, presented in Algorithm 6.11, is the complementary
design of Brewer’s method. The validity follows immediately.

Algorithm 6.11 Eliminatory procedure
s = (1 · · · 1 · · · 1)′ ∈ R

N .
For i = 1, . . . , N − n, do
Eliminate a unit from U with probability

p
(i)
k =

{∑
z∈U

sz

(1 − πz)
[
N − n −∑

�∈U (1 − s�)(1 − π�) − (1 − πz)
]

N − n −∑
�∈U (1 − s�)(1 − π�) − (1 − πz) [N − n − (i − 1)]

}−1

×sk

(1 − πk)
[
N − n −∑

�∈U (1 − s�)(1 − π�) − (1 − πk)
]

N − n −∑
�∈U (1 − s�)(1 − π�) − (1 − πk) [N − n − (i − 1)]

, for k ∈ U.

If j is the eliminated, then unit sj = 0; EndIf.
EndFor.

Example 16. With the same data as in Example 12; that is, N = 6, n = 3,
and π = (0.07 0.17 0.41 0.61 0.83 0.91)′, the first splitting for the eliminatory
method is given in Table 6.5.
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Table 6.5. First step of the eliminatory method for Example 16

α1 = 0.624 α2 = 0.240 α3 = 0.079 α4 = 0.038 α5 = 0.013 α6 = 0.007
πg π(1) π(2) π(3) π(4) π(5) π(6)

0.07 0 0.143 0.228 0.287 0.343 0.361
0.17 0.198 0 0.311 0.364 0.413 0.430
0.41 0.430 0.456 0 0.548 0.583 0.595
0.61 0.623 0.641 0.676 0 0.724 0.732
0.83 0.836 0.843 0.859 0.870 0 0.883
0.91 0.913 0.917 0.925 0.931 0.936 0
3 3 3 3 3 3 3

6.3.4 Tillé’s Elimination Procedure

Another elimination procedure, proposed by Tillé (1996a), is presented in
Algorithm 6.12.

Algorithm 6.12 Tillé’s elimination procedure
1. First, compute for sample sizes i = n, . . . , N the quantities

π(k|i) =
ixk∑
�∈U x�

, (6.5)

for all k ∈ U. For any k for which (6.5) exceeds 1, set π(k|i) = 1. Next, the quan-
tities in (6.5) are recalculated, restricted to the remaining units. This procedure
is repeated until each π(k|i) is in [0, 1].

2. The steps of the algorithm are numbered in decreasing order from N − 1 to n.
At each step, a unit k is eliminated from U with probability

rki = 1 − π(k|i)
π(k|i + 1)

, k ∈ U.

The inclusion probabilities can be derived directly from Algorithm 6.12.
Indeed,

πk =
N−1∏
i=n

(1 − rik),

and

πk� =
N−1∏
i=n

(1 − rik − ri�).

Example 17. With the elimination method, for N = 6, n = 3, and π =
(0.07 0.17 0.41 0.61 0.83 0.91)′, the matrix of joint inclusion probabilities
is given by
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Π =

⎛⎜⎜⎜⎜⎜⎜⎝
0.07 0 0.0024 0.0265 0.0511 0.0600
0 0.17 0.0058 0.0643 0.1241 0.1457

0.0024 0.0058 0.41 0.1610 0.2994 0.3514
0.0265 0.0643 0.1610 0.61 0.4454 0.5229
0.0511 0.1241 0.2994 0.4454 0.83 0.7400
0.0600 0.1457 0.3514 0.5229 0.7400 0.91

⎞⎟⎟⎟⎟⎟⎟⎠ . (6.6)

The elimination method can also be presented as a splitting technique,
with the αj ’s calculated as follows. First, define F = ∅. Next, repeat the
following two allocations until convergence

αj =

⎧⎨⎩1 − πj
N − 1 − card(F )

n −∑
i∈F πi

if j /∈ F

0 if j ∈ F,
F = {j ∈ U |αj ≤ 0}.

Finally, define

π
(j)
k =

{
0 if k = j

πk

1 − αk
if k �= j.

Note that as soon as i is small enough to get π(k|i) < 0, for all k ∈ U, the
units are eliminated with equal probabilities. The problem is thus reduced
to simple random sampling and the N − n steps of the algorithm are rarely
required. Thus, this method can be applied to large populations. Slanta and
Fagan (1997), Slanta (1999), and Slanta and Kusch (2001) have modified the
elimination procedure in order to avoid null joint inclusion probabilities.

Example 18. If N = 6, n = 3, π = (0.07 0.17 0.41 0.61 0.83 0.91)′, we obtain
at the first step the splitting presented in Table 6.6. At the first step, we

Table 6.6. Elimination procedure, step 1, for Example 18

α1 = 0.708333 α2 = 0.291667
0 0.24

0.24 0
0.41 0.41
0.61 0.61
0.83 0.83
0.91 0.91

already see that π12 equals zero. The splitting obtained at the second step
is presented in Table 6.7. At this step, three units must be selected from the
four remaining units, which is straightforward.
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Table 6.7. Tillé’s elimination procedure, step 2 for Example 18

α1 α2 α3 α4 α5 α6

0.4384 0.2474 0.02249 0.1806 0.1019 0.0093
0 0 0 0 0.63 0.63
0 0.63 0.63 0 0 0

0.63 0 0.63 0.63 0 0.63
0.63 0.63 0 0.63 0.63 0
0.83 0.83 0.83 0.83 0.83 0.83
0.91 0.91 0.91 0.91 0.91 0.91

6.3.5 Generalized Midzuno Method

The Midzuno method(see Midzuno, 1950; Horvitz and Thompson, 1952; Yates
and Grundy, 1953; Rao, 1963b; Avadhani and Srivastava, 1972; Chaudhuri,
1974; Korwar, 1996; Brewer and Hanif, 1983, procedure 6, p. 25) is very simple
to implement and can be described as a splitting procedure into N parts that
needs only one step.

The first step of the procedure is as follows. One of the vectors of π
(j)
k , for

j = 1, . . . , M, will be selected with the probabilities αj ; π
(j)
k are the inclusion

probabilities by means of which the selection will be applied at the next step,
where

π
(j)
k =

{
1 if k = j
n − 1
N − 1

if k �= j,

αj = πj
N − 1
N − n

− n − 1
N − n

, for all j = 1, . . . , N.

Because, at the second step, the problem is reduced to sampling with
equal probabilities, except for one unit that is selected automatically, a simple
random sampling is applied. The joint inclusion probabilities are given by

πk� =
n − 1
N − 2

(
πk + π� − n

N − 1

)
. (6.7)

Because αj ∈ [0, 1], the method is applicable only if

πk ≥ n − 1
N − 1

, for all k ∈ U, (6.8)

which is very restrictive. By (6.8), we directly obtain

πk� ≥ (n − 1)(n − 2)
(N − 1)(N − 2)

> 0.

The Midzuno method can be generalized to apply to any inclusion proba-
bilities even if condition (6.8) is not satisfied. The αj are computed by means
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of the following procedure. First, define F = ∅. Next, repeat the following two
allocations until the same αj , for j = 1, . . . , N, are obtained in two consecutive
steps:

αj =

⎧⎨⎩1 − (1 − πj)(N − 1 − card(F ))
N − n −∑

i∈F (1 − πi)
if j /∈ F

0 if j ∈ F,
F = {1 ≤ j ≤ N |αj ≤ 0}.

Finally, define

π
(j)
k =

{
1 if k = j
πk − αk

1 − αk
if k �= j.

Moreover, when only one iteration is needed, the algorithm provides the αj

of Midzuno’s method. The fundamental difference from the classical Midzuno
method is that the problem is not necessarily reduced to a simple random
sampling at the second step. The algorithm is thus repeated until an equal
probability vector is obtained, which allows applying a simple random sam-
pling.

Example 19. With the same data as in Example 12; that is, N = 6, n = 3,
and π = (0.07 0.17 0.41 0.61 0.83 0.91), at the first step, αi = 0, i = 1, . . . , 4,
α5 = 0.346, and α6 = 0.654. The problem is thus reduced to a splitting into
two parts; see Table 6.8, step 1.

Table 6.8. Generalized Midzuno procedure for Example 19

Step 1 Step 2
α5 = 0.346 α6 = 0.654 0.017 0.128 0.201 0.032 0.243 0.380

0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
0.41 0.41 1 0.38 0.38 1 0.38 0.38
0.61 0.61 0.38 1 0.38 0.38 1 0.38
1 0.74 1 1 1 0.38 0.38 1

0.74 1 0.38 0.38 1 1 1 1

At the second step, the method provides a splitting of each of these two
parts into three parts. Finally, we get the breakdown given in Table 6.8, step
2. At step 3, the problem consists of selecting only one unit. This example
shows, however, that the generalized Midzuno method does not ensure strictly
positive joint inclusion probabilities, because π12 = 0.

Let pc(s) denote the complementary design (see Definition 16, page 14) of
a sampling design p(s). If the design p(s) has the inclusion probabilities πk,
then pc(U\s) = p(s), πc

k = 1 − πk , k ∈ U, and



6.3 Splitting into M Vectors 119

πc
k� = 1 − πk − π� + πk�, k �= � ∈ U.

It is easy to see that the generalized Midzuno method is complementary to
Tillé’s elimination method. The simple draw by draw Algorithm 6.13 can thus
be derived from Tillé’s elimination procedure.

Algorithm 6.13 Generalized Midzuno procedure
1. Compute πc

k = 1 − πk, k ∈ U.
2. First, compute for sample sizes i = N − n, . . . , N the quantities

πc
k(k|i) =

iπc
k∑

�∈U x�
, (6.9)

for all k ∈ U. For any k for which (6.9) exceeds 1, set πc(k|i) = 1. Next,
the quantities in (6.9) are recalculated, restricted to the remaining units. This
procedure is repeated until each πc(k|i) is in [0, 1].

3. The steps of the algorithm are numbered in decreasing order from N − 1 to
N − n. At each step, a unit k is selected from U with probability

pki = 1 − π(k|i)
π(k|i + 1)

, k ∈ U.

6.3.6 Chao’s Method

For the original description of this reservoir procedure, see Chao (1982) and
Richardson (1989), but Chao’s method was also studied by Sengupta (1989),
Bethlehem and Schuerhoff (1984), Sugden et al. (1996), and Berger (1998b).
The Chao method presented in Algorithm 6.14 is a generalization of the reser-
voir method for SRSWOR (see Algorithm 4.4, page 49).

It is also possible to present an arguably simpler description of the method
as an elimination procedure. At each of the N − n steps of the algorithm, a
unit is eliminated from the first n + 1 units of the sample. The method can
thus be presented as a splitting technique into M = n + 1 parts. First, define
F = ∅. Next, repeat the following two allocations until convergence:

αj =

⎧⎨⎩1 − πj
n − card(F )∑n+1

i=1\F πi

if j /∈ F

0 if j ∈ F,
F = {1 ≤ j ≤ n + 1|αj ≤ 0}.

Then, define

π
(j)
k =

⎧⎪⎨⎪⎩
0 if k = j

πk

1 − αk
if k �= j, k = 1, . . . , n + 1,

πk if k = n + 2, . . . , N.
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Algorithm 6.14 Chao’s procedure
1. First, compute for sample sizes i = n, . . . , N the quantities

π(k|i) =
nxk∑i
�=1 x�

, (6.10)

for all k = 1, . . . , i. For any k for which (6.10) exceeds 1, we set π(k|i) = 1. Next,
the quantities in (6.10) are recalculated, restricted to the remaining units. This
procedure is repeated until each π(k|i) is in [0, 1].

2. Select the first n units of the population in the initial sample.
3. For j = n + 1, . . . , N do

Generate a random variable with a uniform distribution u ∼ U [0, 1];
If u < π(j|j) then

select unit j;
remove a unit from the sample with probability

1
π(j|j)

[
1 − π(k|j)

π(k|j − 1)

]
,

for all the units k that belong to the sample and replace it by unit j;
Else retain the old sample;
EndIf;

EndFor.

6.4 Splitting Procedures in Brewer and Hanif

The splitting method allows constructing an infinite number of methods. In
Brewer and Hanif (1983), at least five splitting procedures can be written
directly under the form of a splitting procedure. The three methods proposed
by Jessen (1969) are typically particular cases of the splitting method (see
Algorithm 6.4, p. 103), they are linked to the minimum support design. The
Brewer procedure (see also Brewer, 1963a, 1975; Brewer and Hanif, 1983,
procedure 8, page 26) is maybe best presented in the form of a splitting
method (see Algorithm 6.10, page 114). These methods are summarized in
Table 6.9, page 121.
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7

More on Unequal Probability Designs

As we have seen in Chapters 5 and 6, there exist a large number of sampling
methods with unequal probabilities. Most of them can be expressed in the
form of a splitting method. Brewer and Hanif (1983) listed 50 methods in
chronological order. However, only 20 of them are really “exact” in the sense
that they are without replacement, have a fixed sample size, can be applied
to any vector of inclusion probabilities, and respect the fixed inclusion proba-
bilities. The exact methods are listed in Table 7.1, page 125. Several methods
of this list have already been described in Chapters 5 and 6.

In this chapter, we present some methods that are neither exponential nor
a particular case of the splitting procedure. Four methods have a real prac-
tical interest and are presented in this chapter: ordered systematic sampling,
random systematic sampling, Deville’s systematic sampling and Sampford’s
method. Each one can be easily implemented.

Next, we discuss a way to approximate the variance of the Horvitz-
Thompson estimator in an exponential design or in a design close to an expo-
nential design. We have seen that several proposed algorithms are such that it
is impossible to compute the corresponding sampling design. It is not neces-
sary to specify the sampling design for estimating simple population statistics
such as totals, means, and ratios. For that purpose, knowledge of the first-
order inclusion probabilities is all that is required. In Sections 7.5, page 137
and 8.8, page 169, we show that it is even possible to estimate the variances of
the estimates given no more than those first-order inclusion probabilities. So,
being able to specify the sample design merely in order to evaluate the second-
order inclusion probabilities, once considered essential for the estimation of
variance, is now of little or no consequence.

We propose several approximations of variance that allow constructing
several variance estimators. Although biased, these estimators generally have
a smaller mean square error than the Horvitz-Thompson estimators or the
Sen-Yates-Grundy estimators of variance. Finally, the variance-covariance op-
erators of the four sampling designs are compared to two approximations of
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variance, which allow choosing a method of sampling with unequal probabil-
ities and an approximation of the variance.

7.1 Ordered Systematic Sampling

Systematic sampling was first proposed by Madow (1949) and is one of the
most useful methods owing to its simplicity and its exactness. Suppose that
the inclusion probabilities are such that 0 < πk < 1, k ∈ U with∑

k∈U

πk = n.

Define

Vk =
k∑

�=1

π�, for all k ∈ U, (7.1)

with V0 = 0 and VN = n.
The method is the following. First, generate u, a uniform variable U [0, 1].

• The first selected unit k1 is such that Vk1−1 ≤ u < Vk1 ,
• The second selected unit k2 is such that Vk2−1 ≤ u + 1 < Vk2 ,
• The jth selected unit is such that Vkj−1 ≤ u + j − 1 < Vkj

.

More formally, systematic sampling can be defined as follows. Select the
units ki, i = 1, . . . , n, such that the intervals [Vk−1 − u, Vk − u[ contain an
integer number. This definition allows constructing Algorithm 7.1 that is par-
ticularly simple, where the notation 
x� denotes the largest integer number
smaller than x.

Algorithm 7.1 Systematic sampling∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Definition a, b, u real; k Integer;
u = U [0, 1[;
a = −u;

For k = 1, . . . , N do

∣∣∣∣∣∣
b = a;
a = a + πk;
If 
a� �= 
b� then select k EndIf;

EndFor.

However, ordered systematic sampling has a drawback: a lot of joint in-
clusion probabilities can be equal to zero. Formally, it is possible to derive
a general expression of the joint inclusion probabilities that depends on the
quantities:
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Vk� =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�−1∑
i=k

πi, if k < �

N∑
i=k

πi +
�−1∑
i=1

πi = n −
k−1∑
i=�

πi, if k > �.

The joint inclusion probabilities are given by:

πk� = min {max (0, πk − δk�) , π�} + min {πk, max (0, δk� + π� − 1)} , k < �,
(7.2)

where δk� = Vk� −
Vk�� (for further results, see Connor, 1966; Pinciaro, 1978;
Hidiroglou and Gray, 1980).

Example 20. Suppose that N = 6 and n = 3. The inclusion probabilities and
the cumulative inclusion probabilities are given in Table 7.2. Suppose also

Table 7.2. Inclusion probabilities and cumulative probabilities for Example 20

k 0 1 2 3 4 5 6 Total
πk 0 0.07 0.17 0.41 0.61 0.83 0.91 3
Vk 0 0.07 0.24 0.65 1.26 2.09 3

that the value taken by the uniform random number is u = 0.354. The rules
of selections presented in Figure 7.1 are:

• Because V2 ≤ u < V3, unit 3 is selected;
• Because V4 ≤ u < V5, unit 5 is selected;
• Because V5 ≤ u < V6, unit 6 is selected.

The sample selected is thus s = (0, 0, 1, 0, 1, 1).

0 1 2 3

V0 V1 V2 V3 V4 V5 V6

u u + 1 u + 2

Fig. 7.1. Rules of selection in systematic sampling

An examination of Figure 7.1 allows deriving completely the sampling
design:

• If 0 ≤ u < 0.07 then the selected sample is (1, 0, 0, 1, 1, 0);
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• If 0.07 ≤ u < 0.09 then the selected sample is (0, 1, 0, 1, 1, 0);
• If 0.09 ≤ u < 0.24 then the selected sample is (0, 1, 0, 1, 0, 1);
• If 0.24 ≤ u < 0.26 then the selected sample is (0, 0, 1, 1, 0, 1);
• If 0.26 ≤ u < 0.65 then the selected sample is (0, 0, 1, 0, 1, 1);
• If 0.65 ≤ u < 1 then the selected sample is (0, 0, 0, 1, 1, 1).

This result allows deriving the sampling design in Table 7.3.

Table 7.3. Sampling design obtained by systematic sampling in Example 20

k s1 s2 s3 s4 s4 s6 π

1 1 0 0 0 0 0 0.07
2 0 1 1 0 0 0 0.17
3 0 0 0 1 1 0 0.41
4 1 1 1 1 0 1 0.61
5 1 1 0 0 1 1 0.83
6 0 0 1 1 1 1 0.91

p(s) 0.07 0.02 0.15 0.02 0.39 0.35

Finally, the joint inclusion probabilities can be computed, either from Ta-
ble 7.3 or from general Expression (7.2).

Π =

⎛⎜⎜⎜⎜⎜⎜⎝
0.07 0 0 0.07 0.07 0
0 0.17 0 0.17 0.02 0.15
0 0 0.41 0.02 0.39 0.41

0.07 0.17 0.02 0.61 0.44 0.52
0.07 0.02 0.39 0.44 0.83 0.74
0 0.15 0.41 0.52 0.74 0.91

⎞⎟⎟⎟⎟⎟⎟⎠ .

Several inclusion probabilities are null. Under certain assumptions, it is, how-
ever, possible to construct a variance estimator under ordered systematic sam-
pling (see among others Madow and Madow, 1944; Cochran, 1946; Bellhouse
and Rao, 1975; Bellhouse, 1988; Iachan, 1982, 1983; Berger, 2003). Péa and
Tillé (2005) have shown that systematic sampling is a minimum support de-
sign.

7.2 Random Systematic Sampling

In order to overcome the problem of null joint inclusion probabilities, system-
atic sampling can be applied after randomly sorting the file. With ordered
systematic sampling, the joint inclusion probabilities depend on the order
of the units. So the joint inclusion probabilities of random systematic sam-
pling are the means of the joint inclusion probabilities of ordered systematic
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sampling for all permutations of the population. The computation is thus con-
fronted with the problem of combinatorial explosion but can be carried out
for a small population size.

Example 21. With the random systematic method, for N = 6, n = 3, and
π = (0.07 0.17 0.41 0.61 0.83 0.91)′, the matrix of joint inclusion probabilities
is given by

Π =

⎛⎜⎜⎜⎜⎜⎜⎝
0.07 0.0140 0.0257 0.0257 0.0373 0.0373

0.0140 0.17 0.0623 0.0623 0.0740 0.1273
0.0257 0.0623 0.41 0.0873 0.2957 0.3490
0.0257 0.0623 0.0873 0.61 0.4957 0.5490
0.0373 0.0740 0.2957 0.4957 0.83 0.7573
0.0373 0.1273 0.3490 0.5490 0.7573 0.91

⎞⎟⎟⎟⎟⎟⎟⎠ . (7.3)

Nevertheless, a random sorting of the data does not entirely solve the
problem of null joint inclusion probabilities. Consider the following example.

Example 22. Suppose that N = 5, n = 2, and π1 = π2 = 0.25, π3 = π4 =
π5 = 0.5. With systematic sampling, the probability of jointly selecting the
“smallest” two units is null whatever the order of the units. Indeed, for random
systematic sampling, the matrix of joint inclusion probabilities is

Π =

⎛⎜⎜⎜⎜⎝
0.250 0 0.083 0.083 0.083

0 0.250 0.083 0.083 0.083
0.083 0.083 0.500 0.170 0.170
0.083 0.083 0.170 0.500 0.170
0.083 0.083 0.170 0.170 0.500

⎞⎟⎟⎟⎟⎠ .

Hartley and Rao (1962) proposed an approximation of the joint inclusion
probabilities based on an Edgeworth expansion of the distribution function
of the Vk�. However, a large number of publications have shown that the
computation of the joint inclusion probabilities are not necessary to estimate
the variance (see among others Hartley and Rao, 1962; Raj, 1965; Wolter,
1984; Rosén, 1991; Stehman and Overton, 1994; Brewer and Donadio, 2003;
Matei and Tillé, 2006). The general issue of variance estimation in unequal
probability sampling is developed in Section 7.5.2, page 140.

7.3 Deville’s Systematic Sampling

Deville (1998) presented a particular systematic technique. The Vk’s are con-
structed according to Expression (7.1). Deville’s technique consists of selecting
only one unit at random in each interval [i − 1, i[ with i = 1, . . . , n. The tech-
nique consists of generating n random variables ui, i = 1, . . . , n, with a uniform
distribution ui ∼ U [0, 1[. For each random variable i, unit k is selected if
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Vk−1 ≤ ui + (i − 1) < Vk.

Suppose that we want to select four units in a population of size N = 7.
Figure 7.2 illustrates Deville’s method.

0 1 2 3 4

V0 V1 V2 V3 V4 V5 V6 V7

u1 u2 u3 u4

Fig. 7.2. Deville’s method

Figure 7.2 shows that after generating u1, u2, u3, and u4, units 1, 2, 5,
and 6 are selected. An examination of the example shows that an intricate
problem must be considered. A unit � is said to be cross-border if [V�−1, V�[
contains an integer number. In Figure 7.2, units 2, 4, and 6 are cross-border.
If the ui are selected independently, the cross-border units can be selected
twice. Deville proposed to introduce a dependence between the ui in such a
way that no unit is selected twice.

First, let � be the cross-border unit such that [V�−1 ≤ i − 1 < V�[. In this
case, unit � can be selected at step i − 1. The density function of ui is defined
in such a way that � is not selected twice:

• If � is selected at step i − 1, ui has the density function:

f1(x) =

⎧⎨⎩
1

i − V�
if x ≥ V� − (i − 1)

0 if x < V� − (i − 1)
, x ∈ [0, 1[.

• If � is not selected at step i − 1, ui has the density function:

f2(x) =

⎧⎪⎨⎪⎩
1 − (i − 1 − V�−1)(V� − i + 1)

[1 − (i − 1 − V�−1)][1 − (V� − i + 1)]
if x ≥ V� − i + 1

1
1 − (i − 1 − V�−1)

if x < V� − i + 1.

Knowing that the probability of selecting unit � at step i − 1 is equal to
i − 1 − V�−1, it can be shown that ui has a uniform distribution in [0,1[.
Indeed,

(i − 1 − V�−1)f1(x) + [1 − (i − 1 − V�−1)]f2(x) = 1, x ∈ [0, 1[.

Deville’s method is presented in Algorithm 7.2. The computation of the
joint inclusion probabilities is tedious and is developed in Deville (1998).
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Algorithm 7.2 Deville’s systematic procedure
1. Generate u1, a realization of a uniform random variable in [0,1]. Unit k such

that Vk−1 ≤ u1 < Vk is selected.
2. For i = 2, . . . , n, do

Let � be the cross-border unit such that [V�−1 ≤ i − 1 < V�[.
If unit � is selected at step i − 1 then

f(x) =

{ 1
i − V�

if x ≥ V� − (i − 1)

0 if x < V� − (i − 1)
, x ∈ [0, 1[.

Else

f(x) =

⎧⎪⎨⎪⎩
1 − (i − 1 − V�−1)(V� − i + 1)

[1 − (i − 1 − V�−1)][1 − (V� − i + 1)]
if x ≥ V� − i + 1

1
1 − (i − 1 − V�−1)

if x < V� − i + 1.

EndIf
Generate ui, a random variable with density f(x).
Unit k such that Vk−1 ≤ ui + i − 1 < Vk is selected.

EndFor

7.4 Sampford Rejective Procedure

7.4.1 The Sampford Sampling Design

Sampford’s method (1967) is a very ingenious procedure (see also Bayless and
Rao, 1970; Asok and Sukhatme, 1976; Gabler, 1981). It is linked with the
exponential methods but is not formally exponential. The implementation is
very simple, and the joint inclusion probabilities can be computed relatively
easily.

Let π1, . . . , πk, . . . , πN be given inclusion probabilities such that∑
k∈U

πk = n

and
ωk =

πk

1 − πk
.

The Sampford sampling design is defined as follows:

pSAMPFORD(s) = Cn

N∑
�=1

π�s�

N∏
k=1
k �=�

ωsk

k , (7.4)
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or equivalently

pSAMPFORD(s) = Cn

(
N∏

k=1

ωsk

k

)(
n −

N∑
�=1

π�s�

)
,

where

Cn =

(
n∑

t=1

tDn−t

)−1

and

Dz =
∑
s∈Sz

N∏
k=1

ωsk

k ,

for z = 1, . . . , N, and D0 = 1.

7.4.2 Fundamental Results

In order to prove that ∑
s∈Sn

pSAMPFORD(s) = 1

and that the sampling design reaches the required inclusion probabilities,
Sampford first proved the following lemma:

Lemma 1. (Sampford, 1967) If

g(n, r, k) =
∑

s∈Sn−r(U\k)

(∏
�∈U

ωs�

�

)(
n − rπk −

N∑
i=1

πisi

)
,

where
Sn−r(U\{k}) = {s ∈ Sn−r|sk = 0},

then

g(n, r, k) = (1 − πk)
n∑

t=r

tDn−t. (7.5)

Proof. When card(s) = n − r,

n − rπk −
N∑

i=1

πisi = r(1 − πk) +
N∑

i=1

(1 − πi)si.

Thus
g(n, r, k) =

[
r(1 − πk)Dn−r(k̄) + h(n, r, k)

]
, (7.6)
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where

h(n, r, k) =
∑

s∈Sn−r(U\k)

(∏
�∈U

ωs�

�

)
N∑

i=1

(1 − πi)si, (7.7)

and

Dz(k̄) =
∑

s∈Sz(U\{k})

N∏
�=1

ωs�

� .

Note that 1 − πi = πi/ωi. Now, if in Expression (7.7), we replace 1 − πi with
πi/ωi, we get

h(n, r, k) =
∑

s∈Sn−r(U\k)

(∏
�∈U

ωs�

�

)
N∑

i=1

πi

ωi
si

=
∑

s∈Sn−r−1(U\k)

(∏
�∈U

ωs�

�

)⎡⎢⎣ N∑
i=1
i�=k

πi(1 − si)

⎤⎥⎦
=

∑
s∈Sn−r−1(U\k)

(∏
�∈U

ωs�

�

)⎛⎜⎝n − πk −
N∑

i=1
i�=k

πisi

⎞⎟⎠
= g(n, r + 1, k) + rπkDn−r−1(k̄). (7.8)

Because
Dm(k̄) = Dm − ωkDm−1(k̄),

by Expressions (7.6) and (7.8), we obtain the recursive relation:

g(n, r, k) = r(1 − πk)Dn−r + g(n, r + 1, k),

with the initial condition

g(n, n, k) = 1 − πk.

Expression (7.5) satisfies this recurrence relation. �

Lemma 1 also holds when πk > 1. In the case where πk = 1, Sampford (1967)
pointed out that a modified form can be stated:

g(n, r, k) = πk

n−1∑
t=r

Dn−t−1(k̄). (7.9)
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Now, the most fundamental results can be derived from Lemma 1.

Result 31. (Sampford, 1967) For the Sampford design defined in (7.4)

(i)
∑
s∈Sn

pSAMPFORD(s) = 1.

(ii)
∑
s∈Sn

skpSAMPFORD(s) = πk.

(iii) πk� = Cnωkω�

n∑
t=2

(t − πk + π�)Dn−t(k̄, �̄),

where

Dz(k̄, �̄) =
∑

s∈Sz(U\{k,�})

N∏
j=1

ω
sj

j .

Proof.
(i) Suppose that a phantom unit z has a null inclusion probability; that is,
πz = ωz = 0. Then, by Lemma 1:

∑
s∈Sn

pSAMPFORD(s) = Cng(n, 0, z) = Cn

n∑
t=1

tDn−t = 1.

(ii)
∑
s∈Sn

skpSAMPFORD(s) = Cnωkg(n, 1, k) = πkCn

n∑
t=1

tDn−t = πk.

(iii)
∑
s∈Sn

sks�pSAMPFORD(s) = Cnωkω�Ψk�, (7.10)

where

Ψk� =
∑

s∈Sn−2(U\{k,�})

N∏
i=1

ωsi
i

⎛⎝n − πk − π� −
N∑

j=1

πjsj

⎞⎠ .

Now suppose that units k and � are aggregated in a new unit α; that is, the
size of this new population U ′ is N − 1, πα = πk + π�, and ωα = πα/(1 − πα).
Moreover, define g′ and D′ as the functions g and L defined over the modified
population U ′. Then

Ψk� =
∑

s∈Sn−2(U ′\{α})

N∏
i=1

ωsi
i

⎛⎝n − πα −
N∑

j=1

πjsj

⎞⎠
= g′(n, 2, α) + παD′

n−2(ᾱ).

Because
D′

n−t = D′
n−t(ᾱ) + ωαD′

n−t−1(ᾱ),
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for t < n − 1 with D′
0(ᾱ) = 1, using Lemma 1, we obtain

Ψk� = (1 − πα)

[
n∑

t=2

tD′
n−t(ᾱ) +

n∑
t=2

tωαD′
n−t−1(ᾱ)

]
+ παD′

n−2(ᾱ)

=
n∑

t=2

(t − πα)D′
n−t(ᾱ).

The case where πα = 1 can be treated by using Expression (7.9). Reverting
to the original population, we obtain

Ψk� =
n∑

t=2

(t − πk + π�)Dn−t(k̄, �̄). (7.11)

The proof is completed by inserting (7.11) in (7.10). �

7.4.3 Technicalities for the Computation of the Joint Inclusion
Probabilities

In order to compute the joint inclusion probabilities, it is not necessary to
enumerate all the possible samples. Sampford pointed out that the following
relation, which is proved in Result 25, page 88, can be used,

Dm =
1
m

m∑
r=1

(−1)r−1

(
N∑

i=1

ωr

)
Dm−r,

with the initial condition D0 = 1. Next, a recursive relation can be used to
compute Dm(k̄, �̄) :

Dm(k̄, �̄) = Dm − (ωk + ω�)Dm−1(k̄, �̄) − ωkω�Dm−2(k̄, �̄).

Gabler (1981) has shown that Sampford’s procedure has a smaller variance
than multinomial sampling; that is, sampling with unequal probabilities with
replacement.

Example 23. With Sampford’s method, for N = 6, n = 3, and

π = (0.07 0.17 0.41 0.61 0.83 0.91)′,

the matrix of joint inclusion probabilities is given by

Π =

⎛⎜⎜⎜⎜⎜⎜⎝
0.07 0.004 0.012 0.022 0.046 0.057
0.004 0.17 0.029 0.054 0.114 0.139
0.012 0.029 0.41 0.145 0.289 0.345
0.022 0.054 0.145 0.61 0.466 0.533
0.046 0.114 0.289 0.466 0.83 0.745
0.057 0.139 0.345 0.533 0.745 0.91

⎞⎟⎟⎟⎟⎟⎟⎠ . (7.12)
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7.4.4 Implementation of the Sampford Design

General result

The most powerful algorithms for implementing Sampford’s design are based
on the following result.

Result 32. Let Q be a support such that Sn−1 ⊂ Q. Let S1 and S2 be two
independent random samples such that

• S1 = (S11 · · ·S1N )′ is a random sample of size 1 and inclusion probabilities
qk = πk/n from U ,

• S2 = (S21 · · ·S2N )′ is an exponential random sample with support Q with
parameter λ = (λ1 · · ·λN )′ and λk = log(ωk) = log[πk/(1 − πk)].

Then Pr[S1 + S2 = s|(S1 + S2) ∈ Sn] is a Sampford sampling design with
inclusion probabilities πk, k ∈ U .

Proof. Because
Pr[S1 = s] =

∏
k∈U

qsk

k , for all s ∈ S1,

and

Pr[S2 = s] =
exp λ′s∑

s∈Q exp λ′s
=

∏
k∈U ωsk

k∑
s∈Q

∏
k∈U ωsk

k

, for all s ∈ Q,

we get

Pr[S1 + S2 = s] =
∑
v∈S1

Pr[S2 = s − v]Pr[S1 = v]

=
∑
�∈U

s�q�Pr[S = s − a�],

for all s ∈ {r+v, for all r ∈ Q,v ∈ S1}, where a� ∈ S1 such that a�� = 1 and
a�k = 0 when k �= �. By conditioning on Sn, we obtain

Pr[S1 + S2 = s|(S1 + S2) ∈ Sn] = Cn

∑
�∈U

π�s�

∏
k∈U
k �=�

ωsk

k ,

which is the Sampford sampling design.

Multinomial rejective Sampford’s procedure

If Q = Rn, we obtain a simple implementation by means of a multinomial
rejective procedure that is presented in Algorithm 7.3. This procedure can
be very slow especially when the sample size is large with respect to the
population size.
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Algorithm 7.3 Multinomial rejective Sampford’s procedure
1. Select n units with replacement, the first drawing being made with probabilities

qk = πk/n and all the subsequent ones with probabilities proportional to πk/(1−
πk).

2. If any unit is selected multiple times, reject the sample and restart the procedure.

Poisson rejective Sampford’s procedure

If Q = S, we obtain a simple implementation by means of a Poisson rejective
procedure that is presented in Algorithm 7.4.

Algorithm 7.4 Poisson rejective Sampford’s procedure
1. Select the first unit with equal probability, qk = πk/n.
2. Select a sample by means of a Poisson sampling design (with replacement) with

inclusion probabilities

π̃k =
cπk

1 − (1 − c)πk
, for any c ∈ R+.

(Of course, one can choose c = 1, which gives π̃k = πk.)
3. If any unit is selected twice or if the sample size is not equal to n, reject the

sample and restart the procedure.

CPS rejective Sampford’s procedure

If Q = Sn, we obtain an implementation by means of a CPS rejective pro-
cedure. Traat et al. (2004) have suggested the ingenious implementation
presented in Algorithm 7.5.

Algorithm 7.5 CPS rejective Sampford’s procedure
1. Select the first unit with equal probability, qk = πk/n.

Let i be the selected unit.
2. Exchange the places of unit i and 1 in the list.
3. Perform a CPS design of size n−1 by means of sequential procedure 5.8, page 92,

with parameter λk = log(ωk) = log[πk/(1 − πk)].
4. If unit 1 (former i) is selected twice, reject the sample and restart the procedure.
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7.5 Variance Approximation and Estimation

7.5.1 Approximation of the Variance

Each one of the unequal probability sampling methods presented in Chap-
ters 5 through 7 has particular joint inclusion probabilities. Their variances
of the estimator can theoretically be estimated by the Horvitz-Thompson es-
timator (see Expression 2.18, page 28) or the Sen-Yates-Grundy estimator of
the variance (see Expression 2.19, page 28). In practice, the use of joint in-
clusion probabilities is often unrealistic because they are difficult to compute
and n2 terms must be summed to compute the estimate.

Ideally, a practical estimator should be computed by a simple sum over
the sample, and the computation of the joint inclusion probabilities should
be avoided. Such an estimator exists for the multinomial sampling design (see
Expression (5.5), page 72), but multinomial sampling is not satisfactory. In-
deed, sampling with replacement can always be improved (see Section 5.4.2,
page 72). It is, however, possible to conclusively approximate the variance for
several sampling methods by using a quite simple estimator. On this mat-
ter, Berger (1998a) showed that if the sampling design does not diverge too
much from the exponential sampling design, it is possible to construct an
approximation.

Numerous publications (Hájek, 1981; Hartley and Chakrabarty, 1967; Dev-
ille, 1993; Brewer, 1999; Aires, 2000b; Brewer, 2001; Brewer and Donadio,
2003; Matei and Tillé, 2006) are devoted to the derivation of an approxi-
mation of the variance. A simple reasoning can provide an approximation
of variance for exponential designs without replacement: Result 26, page 89
shows that a CPS design p(s) is obtained by conditioning a Poisson design
p̃(s) given that its sample size ñS is fixed. If varPOISSON(.) denotes the variance
and covPOISSON(.) the covariance under the Poisson sampling design p̃(s) and
var(.) the variance under the design p(.), we can write

var
(
ŶHT

)
= varPOISSON

(
ŶHT |ñS = n

)
.

If we suppose that the pair (ŶHT , ñS) has a bivariate normal distribution (on
this topic see Hájek, 1964; Berger, 1998a), we obtain

varPOISSON

(
ŶHT |ñS = n

)
= varPOISSON

[
ŶHT + (n − ñS)β

]
,

where

β =
covPOISSON

(
ñS , ŶHT

)
varPOISSON (ñS)

,

varPOISSON (ñS) =
∑
k∈U

π̃k(1 − π̃k),
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and
covPOISSON

(
ñS , ŶHT

)
=
∑
k∈U

π̃k(1 − π̃k)
yk

πk
.

If bk = π̃k(1 − π̃k), we get a general approximation of the variance for an
exponential sampling design (see Deville and Tillé, 2005; Tillé, 2001, p. 117):

varAPPROX

[
ŶHT

]
=
∑
k∈U

bk (y̌k − y̌∗)2 , (7.13)

where y̌k = yk/πk and

y̌∗ = β =
∑

�∈U b�y�/π�∑
�∈U b�

.

According to the values given to bk, we obtain numerous variants of this
approximation. Indeed, Expression (7.13) can also be written

varAPPROX

(
ŶHT

)
=
∑
k∈U

y2
k

π2
k

(
bk − b2

k∑
�∈U b�

)
− 1∑

�∈U b�

∑
k∈U

∑
�∈U
��=k

yky�bkb�

πkπ�

or
varAPPROX

(
ŶHT

)
= y̌′∆APPROXy̌,

where

∆APPROX = diag(b) − bb′∑
k∈U bk

,

and b = (b1 · · · bN ). Each variant of b thus allows approximating the matrix
∆, from which is possible to derive an approximation of Π by ΠAPPROX =
∆APPROX + ππ′.

Hájek approximation 1

The most common value for bk has been proposed by Hájek (1981):

bk =
πk(1 − πk)N

N − 1
(7.14)

(on this topic see also Rosén, 1997; Tillé, 2001).

Example 24. With N = 6, n = 3, and π = (0.07 0.17 0.41 0.61 0.83 0.91)′,
we obtain

b1 = (0.07812 0.16932 0.29028 0.28548 0.16932 0.09828),
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∆APPROX1 =

⎛⎜⎜⎜⎜⎜⎜⎝
0.073 −0.011 −0.02 −0.019 −0.011 −0.006

−0.011 0.143 −0.044 −0.043 −0.025 −0.014
−0.02 −0.044 0.213 −0.075 −0.044 −0.025
−0.019 −0.043 −0.075 0.211 −0.043 −0.025
−0.011 −0.025 −0.044 −0.043 0.143 −0.014
−0.006 −0.014 −0.025 −0.025 −0.014 0.089

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and

ΠAPPROX1 =

⎛⎜⎜⎜⎜⎜⎜⎝
0.077 0 0.008 0.022 0.046 0.057

0 0.172 0.025 0.059 0.115 0.139
0.008 0.025 0.381 0.174 0.295 0.347
0.022 0.059 0.174 0.583 0.462 0.529
0.046 0.115 0.295 0.462 0.832 0.740
0.057 0.139 0.347 0.529 0.740 0.918

⎞⎟⎟⎟⎟⎟⎟⎠ . (7.15)

Note that the diagonal of ΠAPPROX1 is not equal to the inclusion probabilities.

Fixed-point approximation

The general approximation given in (7.13) can also be written:

varAPPROX

(
ŶHT

)
=
∑
k∈U

y2
k

π2
k

(
bk − b2

k∑
�∈U b�

)
− 1∑

�∈U b�

∑
k∈U

∑
�∈U
��=k

yky�bkb�

πkπ�
.

The exact variance can be written

var(ŶHT ) =
∑
k∈U

y2
k

π2
k

πk(1 − πk) +
∑
k∈U

∑
�∈U
��=k

yky�

πkπ�
(πk� − πkπ�).

Deville and Tillé (2005) proposed to compute bk in such a way that the coef-
ficient of the y2

k’s are exact, which amounts to solving the following equation
system to find another approximation of bk,

bk − b2
k∑

�∈U b�
= πk(1 − πk). (7.16)

In Matei and Tillé (2006), a large set of simulations shows that this approx-
imation is very accurate. Because the equation system (7.16) is not linear,
the coefficients bk can be obtained by the fixed-point technique, using the
following recurrence equation until convergence:

b
(i)
k =

[
b
(i−1)
k

]2
∑

l∈U b
(i−1)
l

+ πk(1 − πk), (7.17)

for i = 0, 1, 2, 3, . . . , and using the initialization:
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b
(0)
k = πk(1 − πk)

N

N − 1
, k ∈ U.

Unfortunately, Equation (7.16) has no solution unless (see Deville and Tillé,
2005)

πk(1 − πk)∑
�∈U π�(1 − π�)

≤ 1
2
, for all k in U.

If the method is not convergent, one can use the following variant, which
consists of using one iteration,

b
(1)
k = πk(1 − πk)

[
Nπk(1 − πk)

(N − 1)
∑

�∈U π�(1 − π�)
+ 1

]
.

Example 25. With N = 6, n = 3, π = (0.07 0.17 0.41 0.61 0.83 0.91)′, we
obtain

b2 = (0.06922, 0.1643, 0.3431, 0.3335, 0.1643, 0.08866),

∆APPROX2 =

⎛⎜⎜⎜⎜⎜⎜⎝
0.065 −0.009 −0.019 −0.019 −0.009 −0.004

−0.009 0.141 −0.047 −0.046 −0.022 −0.012
−0.019 −0.047 0.242 −0.097 −0.047 −0.025
−0.019 −0.046 −0.097 0.238 −0.046 −0.024
−0.009 −0.022 −0.047 −0.046 0.141 −0.012
−0.004 −0.012 −0.025 −0.024 −0.012 0.082

⎞⎟⎟⎟⎟⎟⎟⎠
and

ΠAPPROX2 =

⎛⎜⎜⎜⎜⎜⎜⎝
0.07 0.002 0.008 0.023 0.048 0.058
0.002 0.17 0.021 0.057 0.118 0.142
0.008 0.021 0.41 0.152 0.292 0.347
0.023 0.057 0.152 0.61 0.459 0.530
0.048 0.118 0.292 0.459 0.83 0.743
0.058 0.142 0.347 0.530 0.743 0.91

⎞⎟⎟⎟⎟⎟⎟⎠ . (7.18)

Note that the diagonal of ΠAPPROX2 is now equal to the inclusion probabilities.

7.5.2 Estimators Based on Approximations

From the general approximation given in (7.13), it is possible to construct a
class of estimators that depend only on first-order inclusion probabilities for
all k ∈ S. A general variance estimator can be derived (see Deville and Tillé,
2005; Tillé, 2001, p. 117):

v̂ar(ŶHT ) =
∑
k∈U

Skck

(
y̌k − ˆ̌y∗)2 , (7.19)

where y̌k = yk/πk and

ˆ̌y∗ =
∑

�∈U S�c�y�/π�∑
�∈U S�c�

.

A large set of values has been proposed for ck.
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Estimator 1

A simple value for ck can be (Deville, 1993, see, for instance) :

ck = (1 − πk)
n

n − 1
. (7.20)

Estimator 2 of Deville

In the same manuscript, Deville (1993) suggested a more complex value (see
also Deville, 1999):

ck = (1 − πk)

{
1 −

∑
k∈U

Sk

[
1 − πk∑

�∈U S�(1 − π�)

]2
}−1

.

Estimator based on the approximation

When the bk are defined by solving Equation (7.16), the following coefficient
can be constructed:

ck =
(N − 1)n
N(n − 1)

bk

πk
,

which gives

v̂ar1[ŶHT ] =
n(N − 1)
N(n − 1)

∑
k∈U

Sk
bk

πk
(y̌k − ˆ̌y∗)2, (7.21)

where
ˆ̌y∗ =

∑
�∈U S�b�y�/π2

�∑
�∈U S�b�/π�

.

In the case where the inclusion probabilities are equal, we obtain the variance
of simple random sampling without replacement. Unfortunately, the inclusion
probabilities must be known for the entire population in order to compute
the ck.

Fixed-point estimator

Deville and Tillé (2005) proposed to use the following development to derive
a value for ck. The estimator defined in Expression (7.19) can also be written
as

v̂ar[ŶHT ] =
∑
k∈U

Sk
y2

k

π2
k

(
ck − c2

k∑
�∈U S�c�

)
− 1∑

�∈U S�c�

∑
k∈U

Sk

∑
�∈US�

��=k

yky�ckc�

πkπ�
.

(7.22)
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Using Formula (2.18), we can look for ck which satisfies the equation:

ck − c2
k∑

�∈U S�c�
= (1 − πk). (7.23)

These coefficients can be obtained by the fixed-point technique, using the
following recurrence equation until the convergence is fulfilled:

c
(i)
k =

[
c
(i−1)
k

]2
∑

�∈U S�c
(i−1)
�

+ (1 − πk),

for i = 0, 1, 2, 3, . . . and using the initialization:

c
(0)
k = (1 − πk)

n

n − 1
, k such that Sk > 0.

Unfortunately, Equation (7.23) has no solution unless the following inequality
is satisfied (see Deville and Tillé, 2005):

1 − πk∑
�∈U S�(1 − π�)

≤ 1
2
, for all k in S.

If the method is not convergent, one can use the previous variant, which uses
one iteration:

c
(1)
k = (1 − πk)

[
n(1 − πk)

(n − 1)
∑

�∈U S�(1 − π�)
+ 1

]
.

It is difficult to conclude that a particular estimator is better than the
other ones. Nevertheless, a large set of simulations (see Deville, 1993; Brewer
and Donadio, 2003; Matei and Tillé, 2006; Brewer, 2002, Chapter 9) shows
that the estimator given in Expression (7.20) gives very satisfactory results
and is almost always better than the Horvitz-Thompson and the Sen-Yates-
Grundy estimators.

7.6 Comparisons of Methods with Unequal Probabilities

There exist a large number of sampling methods with unequal probabilities
and fixed sample size. When the same inclusion probabilities are used, none of
the methods without replacement provides a better accuracy than the other
ones, as shown in the following result.

Result 33. Let p1(.) and p2(.) be two sampling designs without replacement
with the same first-order inclusion probabilities π1, . . . , πN . Their variance-
covariance operators are denoted ∆1 and ∆2. If, for some u ∈ R

N ,

u′∆1u < u′∆2u,

then there exists at least one v ∈ R
N such that

v′∆1v > v′∆2v.
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Proof. (by contradiction, as given by Lionel Qualité)
Suppose that for all x ∈ R

N ,x′∆1x ≤ x′∆2x, and that u′∆1u < u′∆2u.
It follows that x′(∆2 − ∆1)x ≥ 0. Matrix ∆2 − ∆1 is thus positive semi-
definite. Now, p1(.) and p2(.) have the same inclusion probabilities, which
implies that ∆1 and ∆2 have the same trace. Thus, trace(∆1 − ∆2) = 0.
Because ∆2 −∆1 is positive semi-definite, all the eigenvalues of ∆1 −∆2 are
null and x′(∆2 − ∆1)x = 0, which is contradictory to u′∆1u < u′∆2u. �

Result 33 is quite disappointing because it does not allow choosing a sam-
pling design. The variances of different sampling designs, however, can be
compared with each other. An interesting indicator consists of computing the
largest possible deviation (LPD) of variance between two sampling designs:

LPD(2|1) = max
u|u′π �=0

u′∆2u
u′∆1u

− 1.

Note that the LPD is equal to 0 if ∆1 is equal to ∆2, but the LPD is
not symmetrical; that is, LPD(1|2) �= LPD(2|1). Practically LPD(2|1) is the
largest eigenvalue of matrix ∆+

1 ∆2, where ∆+
1 is the Moore-Penrose inverse

of ∆1.

Example 26. The LPD has been computed to compare several sampling de-
signs for which it is possible to compute the matrix of joint inclusion proba-
bilities:

• The CPS design (see Expression (5.26), page 86),
• Sampford’s method (see Expression (7.12), page 134),
• Tillé’s eliminatory method (see Expression (6.6), page 116),
• The random systematic method (see Expression (7.3), page 128).

These four matrices of inclusion probabilities are next compared to

• The Hájek approximation (Approx 1) (see Expression (7.15), page 139),
• The fixed-point approximation (Approx 2) (see Expression (7.18), page 140).

Table 7.4 contains the LPD computed among the four sampling designs and
the two approximations.

Figure 7.3 contains a multidimensional scaling of the matrix of the LPD
given in Table 7.4. First Table 7.4 and its transpose are added in order to
obtain a symmetric matrix. Next, the optimal Euclidian representation in R

2

is obtained by multidimensional scaling.
Although the inclusion probabilities are very uneven, Table 7.4 shows that

the CPS design and the Sampford design are very close and are well approxi-
mated by the fixed-point approximation (Approx 2). For instance, the use of
fixed-point approximation (Approx 2) in place of the true variance for a CPS
provides a maximum overestimation of the variance equal to 8.5% and a max-
imum underestimation of 14.5%. For the standard deviation, the maximum
overestimation is 4.1% and the maximum underestimation is 7.0%.
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Table 7.4. Largest possible deviation for the CPS, Sampford, Tillé, and random
systematic designs and two approximations of ∆ for Example 26; for instance, col-
umn 1 and row 2 contain LPD(CPS | Sampford)

CPS Sampford Tillé Systematic Approx 1 Approx 2
CPS 0 0.032 0.157 0.385 0.134 0.085
Sampford 0.040 0 0.122 0.439 0.125 0.052
Tillé 0.374 0.322 0 0.876 0.228 0.204
Systematic 0.694 0.747 0.958 0 0.773 0.837
Approx 1 0.240 0.214 0.190 0.583 0 0.175
Approx 2 0.142 0.099 0.069 0.574 0.123 0

CPS Sampford
TilléSystematic

Approx1

Approx2

Fig. 7.3. Multidimensional scaling (MDS) of the symmetrized matrix of the LPD
from Example 26

Example 27. With another vector of inclusion probabilities

π = (0.15 0.3 0.35 0.45 0.5 0.55 0.6 0.65 0.7 0.75)′,

N = 10 and n = 5, Table 7.5 contains the matrix of the LPD. The vector π
is less uneven and the LPD’s are thus still reduced.

Table 7.5. Largest possible deviation for the CPS, Sampford, Tillé and random
systematic designs and two approximations of ∆ for Example 27

CPS Sampford Tillé Systematic Approx 1 Approx 2
CPS 0 0.003 0.111 0.166 0.048 0.007
Sampford 0.010 0 0.108 0.177 0.047 0.004
Tillé 0.306 0.293 0 0.511 0.294 0.277
Systematic 0.141 0.144 0.151 0 0.151 0.147
Approx 1 0.023 0.019 0.079 0.189 0 0.018
Approx 2 0.024 0.013 0.105 0.191 0.046 0

Figure 7.4 contains a multidimensional scaling of the symmetrized matrix
of the LPD given in Table 7.5. Next, the optimal Euclidian representation
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in R
2 is obtained by multidimensional scaling. Although the distances are

smaller, the configuration is very similar to the previous example.

CPS
Sampford

Tillé
Systematic

Approx1

Approx2

Fig. 7.4. Multidimensional scaling (MDS) of the symmetrized matrix of the LPD
for Example 27

7.7 Choice of a Method of Sampling with Unequal
Probabilities

Which sampling method with unequal probabilities to choose? We advocate
the CPS design or the Sampford procedure. The CPS method is exponential
and is linked with the Poisson sampling design and the multinomial sampling.
Sampford’s method is obviously a good alternative that is simple to imple-
ment. Obviously, random systematic sampling is already very much used due
to its extreme simplicity, but the variance will be less well approximated and
estimated. Nevertheless, it is now possible to select balanced samples with un-
equal probabilities (see Chapter 8), which provides more accurate estimators.
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Balanced Sampling

8.1 Introduction

A balanced sampling design has the important property that the Horvitz-
Thompson estimators of the totals for a set of auxiliary variables are equal to
the totals we want to estimate. Therefore, the variances of all the variables
of interest are reduced, depending on their correlations with the auxiliary
variables. Yates (1949) had already insisted on the idea of respecting the
means of known variables in probabilistic samples because the variance is
then reduced.Yates (1946) andNeyman (1934) described methods of balanced
sampling limited to one variable and to equal inclusion probabilities.

Royall and Herson (1973a) stressed the importance of balancing a sample
for protecting inference against a misspecified model. They called this idea
‘robustness’. Since no method existed for achieving a multivariate balanced
sample, they proposed the use of simple random sampling, which is mean-
balanced with large samples. More recently, several partial solutions were
proposed by Deville et al. (1988), Deville (1992), Ardilly (1991), and Hedayat
and Majumdar (1995). Valliant et al. (2000) surveyed some existing methods.

In this chapter, after surveying the most usual methods for equal inclusion
probabilities, we present the cube method proposed byDeville and Tillé (2004,
2005) that allows selecting balanced samples with equal or unequal inclusion
probabilities.

8.2 The Problem of Balanced Sampling

8.2.1 Definition of Balanced Sampling

The aim is always to estimate the total

Y =
∑
k∈U

yk.
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Suppose also that the vectors of values

xk = (xk1 · · · xkj · · · xkp)′

taken by p auxiliary variables are known for all units of the population. The
vector of population totals of the balancing variables is thus also known

X =
∑
k∈U

xk,

and can be estimated by

X̂HT =
∑
k∈U

xkSk

πk
.

The aim is to construct a balanced sampling design, defined as follows.

Definition 53. A sampling design p(s) is said to be balanced with respect
to the auxiliary variables x1, . . . , xp, if and only if it satisfies the balancing
equations given by

X̂HT = X, (8.1)

which can also be written ∑
k∈U

xkjSk

πk
=
∑
k∈U

xkj ,

for all s ∈ S such that p(s) > 0 and for all j = 1, . . . , p; or in other words

var
(
X̂HT

)
= 0.

Balanced sampling can thus be viewed as a restriction on the support.
Indeed, only the samples that satisfy the balancing equations have a strictly
positive probability; that is, the support is

Q =

{
s ∈ S

∣∣∣∣∣∑
k∈U

xksk

πk
= X

}
.

8.2.2 Particular Cases of Balanced Sampling

Some particular cases of balanced sampling are well-known. Consider the fol-
lowing two particular cases.

Particular case 1: Fixed sample size

A sampling design of fixed sample size n is balanced on the variable xk =
πk, k ∈ U, because ∑

k∈U

xkSk

πk
=
∑
k∈U

Sk =
∑
k∈U

πk = n.
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Remark 12. In sampling with unequal probabilities, when all the inclusion
probabilities are different, the Horvitz-Thompson estimator of the population
size N is generally random:

N̂HT =
∑
k∈U

Sk

πk
.

When the population size is known before selecting the sample, it could be
important to select a sample such that∑

k∈U

Sk

πk
= N. (8.2)

Equation (8.2) is a balancing equation, in which the balancing variable is
xk = 1, k ∈ U. We show that balancing equation (8.2) can be satisfied by
means of the cube method.

Particular case 2: stratification

Suppose that the population can be split into H nonoverlapping groups (or
strata) denoted Uh, h = 1, . . . , H, of sizes Nh, h = 1, . . . , H. A sampling design
is said to be stratified if a sample is selected in each stratum with simple
random sampling with fixed sample sizes n1, . . . , nh . . . , nH , the samples being
selected independently in each stratum.

Now, let δk1, . . . , δkH , where

δkh =
{

1 if k ∈ Uh

0 if k /∈ Uh.

A stratified design is balanced on the variables δk1, . . . , δkH ; that is,∑
k∈U

Skδkh

πk
=
∑
k∈U

δkh = Nh.

for h = 1, . . . , H. In other words, the Horvitz-Thompson estimators of the Nh’s
are exactly equal to Nh. Stratification is thus a particular case of balanced
sampling.

8.2.3 The Rounding Problem

In most cases, the balancing equations (8.1) cannot be exactly satisfied, as
Example 28 shows.

Example 28. Suppose that N = 10, n = 7, πk = 7/10, k ∈ U, and the only
auxiliary variable is xk = k, k ∈ U . Then, a balanced sample satisfies
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k∈U

kSk

πk
=
∑
k∈U

k,

so that
∑

k∈U kSk has to be equal to 55 × 7/10 = 38.5, which is impossible
because 38.5 is not an integer. The problem arises because 1/πk is not an
integer and the population size is small.

The rounding problem also exists for simple random sampling and strat-
ification. If the sum of the inclusion probabilities is not an integer, it is not
possible to select a simple random sample with fixed sample size. In propor-
tional stratification, all the inclusion probabilities are equal. In this case, it is
generally impossible to define integer-value sample sizes in the strata in such
a way that the inclusion probabilities are equal for all strata.

The rounding problem exists for almost all practical cases of balanced
sampling. For this reason, our objective is to construct a sampling design,
that satisfies the balancing equations (8.1) exactly if possible and to find the
best approximation if this cannot be achieved. This rounding problem becomes
negligible when the expected sample size is large.

8.3 Procedures for Equal Probabilities

8.3.1 Neyman’s Method

Neyman (1934, p. 572) (see also Thionet, 1953, pp. 203-207) was probably the
first author to propose a sampling procedure based on the use of small strata:

Thus, we see that the method of purposive selection consists, (a) in
dividing the population of districts into second-order strata according
to values of y and x and (b) in selecting randomly from each stratum
a definite number of districts. The number of samplings is determined
by the condition of maintenance of the weighted average of the y.

8.3.2 Yates’s Procedure

Yates (1946, p. 16) also proposed a method based on the random substitution
of units.

A random sample is first selected (stratified or other factors if re-
quired). Further members are then selected by the same random pro-
cess, the first member being compared with the first member of the
original sample, the second with the second member and so on, the
new member being substituted for the original member if balancing is
thereby improved.

The Neyman and Yates procedures are thus limited to equal probability
sampling with only one balancing variable.
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8.3.3 Deville, Grosbras, and Roth Procedure

Deville et al. (1988) proposed a method for the selection of balanced samples
on several variables with equal inclusion probabilities. This method is based
on the construction of groups that are constructed according to the means
of all auxiliary variables. If p is not too large, we can construct 2p groups
according to the possible vector of signs:

sign
(
xk1 − X1 · · · xkj − Xj · · · xkp − Xp

)
,

where
Xj =

1
N

∑
k∈U

xkj , j = 1, . . . , p.

The objective of Algorithm 8.1 is to select a sample balanced on(
X1 · · · Xj · · · Xp

)
.

Unfortunately, Algorithm 8.1 provides an equal probability sampling de-
sign. The inclusion probabilities are approximately satisfied. Moreover, the
2p groups can be difficult to compute when p is large, for instance, 220 =
1 048 576.

8.4 Cube Representation of Balanced Samples

8.4.1 Constraint Subspace and Cube of Samples

As we have seen in Section 2.4, in sampling without replacement, each vector
s is a vertex of an N -cube and the number of possible samples is the number of
vertices of an N -cube. A sampling design with inclusion probabilities πk, k ∈
U, consists of assigning a probability p(s) to each vertex of the N -cube such
that

E(S) =
∑
s∈S

p(s)s = π,

where π = (πk) is the vector of inclusion probabilities. Geometrically, a sam-
pling design consists of expressing vector π as a convex linear combination
of the vertices of the N -cube. A sampling algorithm can thus be viewed as a
“random” way of reaching a vertex of the N -cube from a vector π in such a
way that the balancing equations (8.1) are satisfied.

The balancing equations (8.1) can also be written{∑
k∈U x̌ksk =

∑
k∈U x̌kπk

sk ∈ {0, 1}, k ∈ U,
(8.3)

where x̌k = xk/πk, k ∈ U, and sk equals 1 if unit k is in the sample and 0
otherwise. The first equation of (8.3) with given x̌k and coordinates sk defines
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Algorithm 8.1 Deville, Grosbras, and Roth balanced procedure for equal
inclusion probabilities
1. Initialization. First, assume by convention that the population mean X =

(X̄1 · · · X̄j · · · X̄p)′ is a null vector of R
p. Split the population into G groups,

where G ≥ p and p is the number of balancing variables. Let Xg, g = 1, . . . , G
be the vectors of R

p containing the means of the gth group. The groups must
be constructed in such a way that the sizes Ng of the groups are nearly equal.
Next, compute ng = nNg/N. Note that ng is not necessarily integer.

2. Rounding the sample group size. The ng’s are rounded by means of an unequal
probability algorithm (see Section 5.6 and Chapters 6 and 7) with fixed sample
size and without replacement. Select a sample denoted (I1 · · · Ig · · · IG)′

from population {1, . . . , g, . . . , G} with unequal inclusion probabilities (n1 −

n1� · · · ng − 
ng� · · · nG − 
nG�)′, where 
ng� is the greatest integer number
less than or equal to ng. The rounded group sizes are mg = 
ng� + Ig, g =
1, . . . , G.

3. Computation of the sample mean. Set t = 1 and x̄(1) =
∑

g µgx̄g.

4. Computation of ν. Search a vector ν = (ν1 · · · νg · · · νG)′ by solving the
following program

minimize
G∑

g=1

ν2
g

Ng
,

subject to
G∑

g=1

νg = 0 and
G∑

g=1

νgXg = −nx̄(t).

5. Rounding ν. The νg will be rounded by means of an unequal probability al-
gorithm (see Section 5.6 and Chapters 6 and 7) with fixed sample size and
without replacement. Select a sample denoted (I1 · · · Ig · · · IG) from popula-
tion {1, . . . , g, . . . , G} with unequal inclusion probabilities (ν1 − 
ν1� · · · νg −

νg� · · · νG − 
νG�). The rounded νg are µg = 
ng� + Ig, g = 1, . . . , G.

6. Stopping rule. If
∑

g |µg| ≥ A, retain the sample and stop; otherwise set t = t+1
and compute A =

∑
g |µg|.

7. Updating the sample. If µg > 0 draw µg units from the sample by simple random
sampling and drop them. If µg < 0 draw |µg| new units from group g by simple
random sampling and add them to the sample.

8. Computation of the sample mean. Compute the new sample mean x̄(t) and
Goto Step 4.

an affine subspace Q in R
N of dimension N − p. Note that Q = π + Ker A,

where
Ker A =

{
v ∈ R

N |Av = 0
}

is the kernel of the p × N matrix A given by A = (x̌1 · · · x̌k · · · x̌N ) . The
main idea in obtaining a balanced sample is to choose a vertex of the N -cube
that remains in the subspace Q or near Q if that is not possible.

If C = [0, 1]N denotes the N -cube in R
N whose vertices are the samples of

U , the intersection between C and Q is nonempty because π is in the interior
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of C and belongs to Q. The intersection between an N -cube and a subspace
defines a convex polytope K = C ∩ Q which has a dimension N − p because
it is the intersection of an N -cube and a plane of dimension N − p that has a
point in the interior of C.

8.4.2 Geometrical Representation of the Rounding Problem

The fact that the balancing equation system is exactly, approximately, or
sometimes satisfied depends on the values of x̌k and X.

Definition 54. Let D be a convex polytope. A vertex, or extremal point, of D
is defined as a point that cannot be written as a convex linear combination of
the other points of D. The set of all the vertices of D is denoted by Ext(D).

Definition 55. A sample s is said to be exactly balanced if s ∈ Ext(C) ∩ Q.

Note that a necessary condition for finding an exactly balanced sample is that
Ext(C) ∩ Q �= ∅.

Definition 56. A balancing equation system is

(i) Exactly satisfied if Ext(C) ∩ Q = Ext(C ∩ Q),
(ii)Approximately satisfied if Ext(C) ∩ Q = ∅,
(iii)Sometimes satisfied if Ext(C) ∩ Q �= Ext(C ∩ Q) and Ext(C) ∩ Q �= ∅.

A balancing system can thus be exactly satisfied if the extremal point of the
intersection of the cube and of the subspace Q are also vertices of the cube.
This case is rather exceptional. However, the following result shows that the
rounding problem concerns only a limited number of units.

Result 34. If r = [rk] is a vertex of K = C ∩ Q then

card{k|0 < rk < 1} ≤ p,

where p is the number of auxiliary variables and card(U) denotes the cardi-
nality of U .

Proof. Let A∗ be the matrix A = (x̌1 · · · x̌k · · · x̌N ) restricted to the non-
integer components of vector r; that is, restricted to U∗ = {k|0 < rk < 1}.
If q = card(U∗) > p, then Ker A∗ has dimension q − p > 0, and r is not an
extreme point of K. �

The following three examples show that the rounding problem can be
viewed geometrically. Indeed, the balancing equations cannot be exactly sat-
isfied when the vertices of K are not vertices of C; that is, when q > 0.
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Example 29. In Figure 8.1, a sampling design in a population of size N = 3
is considered. The only constraint consists of fixing the sample size n = 2,
and thus p = 1 and xk = πk, k ∈ U. The inclusion probabilities satisfy π1 +
π2 + π3 = 2, so that the balancing equation is exactly satisfied. We thus have
A = (1, 1, 1), Aπ = 2, Q = {g1, g2, g3 ∈ R|g1 + g2 + g3 = 2}, Ext(Q ∩ C) =
{(1, 1, 0), (1, 0, 1), (0, 1, 1)}, and Ext(C) ∩ Q = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}.

(000) (100)

(101)
(001)

(010) (110)

(111)(011)

Fig. 8.1. Fixed size constraint of Example 29: all the vertices of K are vertices of
the cube

Example 30. Figure 8.2 exemplifies the case where the constraint subspace
does not pass through any vertices of the cube. The inclusion probabilities
are π1 = π2 = π3 = 0.5. The only constraint, p = 1, is given by the auxiliary
variable x1 = 0, x2 = 6π2, and x3 = 4π3. It is then impossible to satisfy exactly
the balancing equation; the balancing equation is always approximately satis-
fied. We thus have A = (0, 6, 4), Aπ = 5, Q = {g1, g2, g3 ∈ R|6g2 + 4g3 = 5},
Ext(Q∩C) = {(0, 5/6, 0), (0, 1/6, 1), (1, 5/6, 0), (1, 1/6, 0)}, and Ext(C)∩Q =
∅.

(000) (100)

(101)
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(010) (110)

(111)(011)

Fig. 8.2. Example 30: none of vertices of K are vertices of the cube
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Example 31. Figure 8.3 exemplifies the case where the constraint subspace
passes through two vertices of the cube but one vertex of the intersection is
not a vertex of the cube. The inclusion probabilities are π1 = π2 = π3 = 0.8.
The only constraint, p = 1, is given by the auxiliary variable x1 = π1, x2 = 3π2
and x3 = π3. The balancing equation is only sometimes satisfied. In this case,
there exist balanced samples, but there does not exist an exactly balanced
sampling design for the given inclusion probabilities. In other words, although
exact balanced samples exist, one must accept selecting only approximately
balanced samples in order to satisfy the given inclusion probabilities. We
thus have A = (1, 3, 1), Aπ = 4, Q = {g1, g2, g3 ∈ R|g1 + 3g2 + g3 = 4},
Ext(Q ∩ C) = {(1, 1, 0), (0, 1, 1), (1, 2/3, 1)}, Ext(C) ∩ Q = {(1, 1, 0), (0, 1, 1)}.

(000) (100)

(101)
(001)

(010)
(110)

(111)(011)

Fig. 8.3. Example 31: some vertices of K are vertices of the cube and others are
not

8.5 Enumerative Algorithm

A first way to find a balanced sampling design is to define a cost function
Cost(s) for all possible samples of S. The choice of the cost function is an
arbitrary decision that depends on the priorities of the survey manager. The
cost must be such that

• Cost(s) > 0, for all s ∈ S.
• Cost(s) = 0, if s is balanced.

A simple cost could be defined by the sum of squares function

Cost1(s) =
p∑

j=1

[
X̂jHT (s) − Xj

]2
X2

j

,

where X̂jHT (s) is the value taken by X̂jHT on sample s. Instead, we might
take

Cost2(s) = (s − π∗)′A′ (AA′)−1 A(s − π∗),
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where A = (x̌1 · · · x̌k · · · x̌N ) . The choice of Cost2(.) has a natural inter-
pretation as a distance in R

N , as shown by the following result.

Result 35. The square of the distance between a sample s and its Euclidean
projection onto the constraint subspace is given by

Cost2(s) = (s − π)′A′ (AA′)−1 A(s − π). (8.4)

Proof. The projection of a sample s onto the constraint subspace is

s − A′ (AA′)−1 A(s − π).

The square of the Euclidean distance between s and its projection is thus

(s−π)′A′ (AA′)−1 A(s−π) = (s−π∗+π∗−π)′A′ (AA′)−1 A(s−π∗+π∗−π)

and, because A(π − π∗) = 0, (8.4) follows directly. �

The sample can then be selected by means of Algorithm 8.2.

Algorithm 8.2 Balanced sampling by linear programming
Solve

min
p(s)

∑
s∈S

p(s)Cost(s), (8.5)

subject to ∑
s∈S

p(s) = 1,

∑
s∈S

sp(s) = π,

and
p(s) ≥ 0, for all s ∈ S.

Next, select the sample by means of the enumerative method (see Algorithm 3.1,
page 32).

A linear program always gives particular sampling designs defined in the
following way.

Definition 57. Let p(.) be a sampling design on a population U with inclusion
probabilities πk, and let B = {s|p(s) > 0}. A sampling design p(.) is said to
be defined on a minimum support if and only if there does not exist a subset
B0 ⊂ B such that B0 �= B and∑

s∈B0

p0(s)sk = πk, k ∈ U, (8.6)

has a solution in p0(s).
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Wynn (1977) studied sampling designs defined on minimum supports. The
minimum support design presented in Algorithm 6.4, page 103, for select-
ing unequal probability sampling designs gives sampling designs on minimum
supports.

Result 36. The linear program (8.5) has at least one solution defined on a
minimum support.

The proof follows directly from the fundamental theorem of linear program-
ming.

Example 32. Suppose that N = 8 and n = 4. The first balancing variable is
proportional to πk, which corresponds to a fixed size sampling design. The
second variable is xk = k, k = 1, . . . , N. The inclusion probabilities are equal.
Thus, we have

π =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,A′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 2
2 4
2 6
2 8
2 10
2 12
2 14
2 16

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and
Aπ = (8, 36)′.

The total of the second variable is thus X = 36. Table 8.1 contains the sam-
pling design selected by linear programming, the cost Cost2(s) of each possi-
ble sample, and their Horvitz-Thompson estimator. Eight samples are exactly

Table 8.1. Sample cost and balanced sampling design for Example 32

s Cost2(s) X̂HT p(s) X̂HT p(s)
(0, 0, 1, 1, 1, 1, 0, 0) 0 36 0.5 18
(1, 1, 0, 0, 0, 0, 1, 1) 0 36 0.5 18

1 36

balanced and are

(0, 0, 1, 1, 1, 1, 0, 0), (0, 1, 0, 1, 1, 0, 1, 0), (0, 1, 1, 0, 0, 1, 1, 0), (0, 1, 1, 0, 1, 0, 0, 1),

(1, 0, 0, 1, 0, 1, 1, 0), (1, 0, 0, 1, 1, 0, 0, 1), (1, 0, 1, 0, 0, 1, 0, 1), (1, 1, 0, 0, 0, 0, 1, 1).

Nevertheless, the linear program proposes a solution where only two samples
have a strictly positive probability of being selected. Other balanced sampling
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designs are possible because the solution of a linear program is not necessarily
unique.

The enumerative methods have several drawbacks. Firstly, their imple-
mentation is limited by the combinatory explosion of the number of samples.
Enumerative methods are thus limited to a population size N ≤ 20. Moreover,
the design obtained by a linear program has a very small support, which can
be problematic to estimate the variance or to construct a confidence interval.

Example 33. Suppose that N = 8 and n = 4. The first balancing variable is
πk, which corresponds to a fixed size sampling design. The second variable is
xk = 1, k = 1, . . . , N, which implies∑

k∈U

Sk

πk
=
∑
k∈U

1 = N.

The inclusion probabilities are unequal because πk = k/9. Thus, we obtain

π =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/9
2/9
3/9
4/9
5/9
6/9
7/9
8/9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/9 1
2/9 1
3/9 1
4/9 1
5/9 1
6/9 1
7/9 1
8/9 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,A′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 9
1 9/2
1 9/3
1 9/4
1 9/5
1 9/6
1 9/7
1 9/8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and
Aπ = (4, 8)′.

The total of the second variable is thus X = 8. Since the first balancing vari-
able corresponds to a fixed size constraint, we can restrict the linear program
to Sn. Table 8.2 contains the selected sampling design, the cost Cost2(s) of
each possible sample, and their Horvitz-Thompson estimator. The sampling

Table 8.2. Sample cost and balanced sampling design for Example 33

s Cost2(s) X̂HT p(s) X̂HT p(s) (X̂HT − X)2p(s)
(0, 0, 0, 1, 1, 1, 0, 1) 0.03588 6.675 0.222 1.4833 0.3901
(0, 0, 0, 1, 1, 1, 1, 0) 0.02770 6.836 0.111 0.7595 0.1506
(0, 0, 1, 0, 1, 0, 1, 1) 0.01273 7.211 0.222 1.6024 0.1384
(0, 0, 1, 1, 0, 0, 1, 1) 0.00235 7.661 0.111 0.8512 0.0128
(0, 1, 0, 0, 0, 1, 1, 1) 0.00345 8.411 0.222 1.8690 0.0375
(1, 0, 0, 0, 0, 1, 1, 1) 0.49285 12.911 0.111 1.4345 2.6794

1 8 3.406
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design contains only six samples. Note that the most balanced sample, which
is (0, 0, 1, 1, 0, 1, 1, 0) and has a cost equal to 0.00003, is not in this sampling
design.

Remark 13. Example 33 shows that the sampling design which minimizes the
average cost does not necessarily allocate a nonnull probability to the most
balanced sample.

Table 3.1, page 32 shows the limits of the enumerative methods. Even if we
limit ourselves to samples of fixed size, the enumerative methods cannot deal
with populations larger than 30 units. In order to select a balanced sample,
the cube method provides the necessary shortcut to avoid the enumeration of
samples.

8.6 The Cube Method

The cube method is composed of two phases, called the flight phase and the
landing phase. In the flight phase, the constraints are always exactly satisfied.
The objective is to randomly round off to 0 or 1 almost all of the inclusion
probabilities; that is, to randomly select a vertex of K = Q ∩ C. The landing
phase consists of managing as well as possible the fact that the balancing
equations (8.1) cannot always be exactly satisfied.

8.6.1 The Flight Phase

The aim of the flight phase is to randomly choose a vertex of

K = {[0, 1]N ∩ Q},

where Q = π + Ker A, and A = (x̌1 · · · x̌k · · · x̌N ) , in such a way that the
inclusion probabilities πk, k ∈ U, and the balancing equations (8.1) are exactly
satisfied. Note that by Result 34, a vertex of K has at most p noninteger values.
The landing phase is necessary only if the attained vertex of K is not a vertex
of C and consists of relaxing the constraints (8.1) as minimally as possible in
order to select a sample; that is, a vertex of C.

The general algorithm for completing the flight phase is to use a balancing
martingale.

Definition 58. A discrete time stochastic process π(t) = [πk(t)], t = 0, 1, . . .
in R

N is said to be a balancing martingale for a vector of inclusion probabilities
π and the auxiliary variables x1, . . . , xp if

(i) π(0) = π,
(ii) E {π(t)|π(t − 1), . . . ,π(0)} = π(t − 1), t = 1, 2, . . . ,
(iii) π(t) ∈ K =

{
[0, 1]N ∩ (π + Ker A)

}
, where A is the p×N matrix given

by A = (x1/π1 · · · xk/πk · · · xN/πN ) .
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A balancing martingale therefore satisfies that π(t − 1) is the mean of the
following possible values of π(t).

Result 37. If π(t) is a balancing martingale, then we have the following:

(i) E [π(t)] = E [π(t − 1)] = · · · = E [π(0)] = π;

(ii)
∑
k∈U

x̌kπk(t) =
∑
k∈U

x̌kπk = X, t = 0, 1, 2, . . . ;

(iii) When the balancing martingale reaches a face of C, it does not leave it.

Proof. Part (i) is obvious. Part (ii) results from the fact that π(t) ∈ K. To
prove (iii), note that π(t− 1) belongs to a face. It is the mean of the possible
values of π(t) that therefore must also belong to this face. �

Part (iii) of Result 37 directly implies that (i) if πk(t) = 0, then πk(t+h) =
0, h ≥ 0; (ii) if πk(t) = 1, then πk(t + h) = 1, h ≥ 0; and (iii) the vertices of
K are absorbing states.

The practical problem is to find a method that rapidly reaches a vertex.
Algorithm 8.3 allows us to attain a vertex of K in at most N steps.

Algorithm 8.3 General balanced procedure: Flight phase
Initialize π(0) = π.
For t = 0, . . . , T, and until it is no longer possible to carry out Step 1, do

1. Generate any vector u(t) = [uk(t)] �= 0, random or not, such that u(t) is in the
kernel of matrix A, and uk(t) = 0 if πk(t) is an integer number.

2. Compute λ∗
1(t) and λ∗

2(t), the largest values of λ1(t) and λ2(t) such that 0 ≤
π(t) + λ1(t)u(t) ≤ 1, and 0 ≤ π(t) − λ2(t)u(t) ≤ 1. Note that λ1(t) > 0 and
λ2(t) > 0.

3. Select

π(t + 1) =
{

π(t) + λ∗
1(t)u(t) with probability q1(t)

π(t) − λ∗
2(t)u(t) with probability q2(t),

(8.7)

where q1(t) = λ∗
2(t)/{λ∗

1(t) + λ∗
2(t)} and q2(t) = λ∗

1(t)[λ∗
1(t) + λ∗

2(t)].

EndFor.

Figure 8.4 shows the geometric representation of the first step in a bal-
ancing martingale in the case of N = 3. The only constraint is the fixed
sample size. Now, Algorithm 8.3 defines a balancing martingale. Clearly,
π(0) = π. Also from Expression (8.7), we obtain E [π(t)|π(t − 1), . . . ,π(0)} =
π(t − 1), t = 1, 2, . . . , because

E [π(t)|π(t − 1),u(t)] = π(t − 1), t = 1, 2, . . . .
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π(0)

π(0) + λ∗
1(0)u(0)

π(0) − λ∗
2(0)u(0)

(000) (100)
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(010) (110)

(111)(011)

Fig. 8.4. Example for the first step of a balancing martingale in S2 and a population
of size N = 3

Finally, because u(t) is in the kernel of A, from (8.7) we obtain that π(t)
always remains in K =

{
[0, 1]N ∩ (π + Ker A)

}
.

At each step, at least one component of the process is rounded to 0 or 1.
Thus, π(1) is on a face of the N -cube; that is, on a cube of dimension N − 1
at most, π(2) is on a cube of dimension N − 2 at most and so on. Let T be
the time when the flight phase has stopped. The fact that step 1 is no longer
possible shows that the balancing martingale has attained a vertex of K and
thus by Result 34, page 153, that card{0 < πk(T ) < 1} ≤ p.

8.6.2 Fast Implementation of the Flight Phase

Chauvet and Tillé (2006, 2005a,b) proposed an implementation of the flight
phase that provides a very fast algorithm. In Algorithm 8.3, the search for a
vector u in Ker A can be expensive. The basic idea is to use a submatrix B
containing only p + 1 columns of A. Note that the number of variables p is
smaller than the population size N and that rank B ≤ p. The dimension of
the kernel of B is thus larger than or equal to 1.

A vector v of Ker B can then be used to construct a vector u of Ker A by
complementing v with zeros for the columns of B that are not in A. With this
idea, all the computations can be done only on B. This method is described
in Algorithm 8.4.

If T̃ is the last step of the algorithm and π̃ = π(T̃ ), then we have

1. E(π̃) = π,
2. Aπ̃ = Aπ,
3. If q̃ = card{k|0 < π̃k < 1}, then q̃ ≤ p, where p is the number of auxiliary

variables.
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Algorithm 8.4 Fast algorithm for the flight phase
1. Initialization

a) The units with inclusion probabilities equal to 0 or 1 are removed from
the population before applying the algorithm in such a way that all the
remaining units are such that 0 < πk < 1.

b) The inclusion probabilities are loaded into vector π.
c) The vector ψ is made up of the first p + 1 elements of π.
d) A vector of ranks is created r = (1 2 · · · p p + 1)′.
e) Matrix B is made up of the first p + 1 columns of A.
f) Initialize k = p + 2.

2. Basic loop
a) A vector u is taken in the kernel of B,
b) Only ψ is modified (and not the vector π) according to the basic technique.

Compute λ∗
1 and λ∗

2, the largest values of λ1 and λ2 such that 0 ≤ ψ+λ1u ≤
1, and 0 ≤ ψ − λ2u ≤ 1. Note that λ∗

1 > 0 and λ∗
2 > 0.

c) Select

ψ =
{

ψ + λ∗
1u with probability q

ψ − λ∗
2u with probability 1 − q,

where q = λ∗
2/(λ∗

1 + λ∗
2).

d) (The units that correspond to ψ(i) integer numbers are removed from B and
are replaced by new units. The algorithm stops at the end of the file.)
For i = 1, . . . , p + 1, do

If ψ(i) = 0 or ψ(i) = 1 then∣∣∣∣∣∣∣∣∣∣∣∣∣∣
If k ≤ N then

∣∣∣∣∣∣∣∣∣∣
π(r(i)) = ψ(i);
r(i) = k;
ψ(i) = π(k);
For j = 1, . . . , p, do B(i, j) = A(k, j); EndFor;
k = k + 1;

Else Goto Step 3(a);
EndIf;

EndIf;
EndFor.

e) Goto Step 2(a).
3. End of the first part of the flight phase

a) For i = 1, . . . , p + 1, do π(r(i)) = ψ(i) EndFor.

In the case where some of the constraints can be satisfied exactly, the
flight phase can be continued. Suppose that C is the matrix containing the
columns of A that correspond to noninteger values of π̃, and φ is the vector
of noninteger values of π̃. If C is not full-rank, one or several steps of the
general Algorithm 8.3 can still be applied to C and φ. A return to the general
Algorithm 8.3 is thus necessary for the last steps.

The implementation of the fast algorithm is quite simple. Matrix A never
has to be completely loaded in memory and thus remains in a file that can be
read sequentially. For this reason, there does not exist any restriction on the
population size because the execution time depends linearly on the population
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size. The search for a vector u in the submatrix B limits the choice of the
direction u. In most cases, only one direction is possible. In order to increase
the randomness of the sampling design, the units can possibly be randomly
mixed before applying Algorithm 8.4.

Another option consists of sorting the units by decreasing order of size. In-
deed, from experience, with the general Algorithm 8.3, the rounding problem
often concerns units with large size; that is, large inclusion probabilities or
large values of x̌k. With the fast Algorithm 8.4, the rounding problem often
concerns the units that are at the end of the file. If the units are sorted by de-
creasing order of size, the fast algorithm will try to first balance the big units
and the rounding problem will instead concern small units. Analogously, if we
want to get an exact fixed weight of potatoes, it is more efficient to first put
the large potatoes on the balance and to finish with the smallest potatoes.
This popular idea can also be used to balance a sample, even if the problem
is more complex because it is multivariate.

The idea of considering only one subset of the units already underlays in
the moving stratification procedure(see Tillé, 1996b) that provides a smoothed
effect of stratification. When p = 1 and the only auxiliary variable is xk = πk,
then the problem of balanced sampling amounts to sampling with unequal
probabilities and fixed sample size. In this case, A = (1 · · · 1). At each step,
matrix B = (1 1) and u = (−1 1)′. Algorithm 8.4 can therefore be simpli-
fied dramatically and is identical to the pivotal method (see Algorithm 6.6,
page 107).

8.6.3 The Landing Phase

At the end of the flight phase, the balancing martingale has reached a vertex
of K, which is not necessarily a vertex of C. This vertex is denoted by π∗ =
[π∗

k] = π(T ). Let q be the number of noninteger components of this vertex. If
q = 0, the algorithm is completed. If q > 0 some constraints cannot be exactly
attained.

Landing phase by an enumerative algorithm

Definition 59. A sample s is said to be compatible with a vector π∗ if π∗
k = sk

for all k such that π∗
k is an integer. Let C(π∗) denote the set with 2q elements

of compatible samples with π∗.

It is clear that we can limit ourselves to finding a design with mean value π∗

and whose support is included in C(π∗).
The landing phase can be completed by an enumerative algorithm on sub-

population C(π∗) as developed in Section 8.5. The following linear program
provides a sampling design on C(π∗).

min
p∗(.)

∑
s∈C(π∗)

Cost(s)p∗(s), (8.8)
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subject to ∑
s∈C(π∗)

p∗(s) = 1,∑
s∈C(π∗)

sp∗(s) = π∗,

0 ≤ p∗(s) ≤ 1, for all s ∈ C(π∗).

Next, a sample is selected with sampling design p∗(.). Because q ≤ p,
this linear program no longer depends on the population size but only on
the number of balancing variables. It is thus restricted to 2q possible samples
and, with a modern computer, can be applied without difficulty to a balancing
problem with a score of auxiliary variables. If the inclusion probabilities are
an auxiliary variable and the sum of the inclusion probabilities is integer, then
the linear program can be applied only to

Cn(π∗) =

{
s ∈ C(π∗)

∣∣∣∣∣∑
k∈U

sk =
∑
k∈U

πk = n

}
,

which dramatically limits the number of samples.

Landing phase by suppression of variables

If the number of balancing variables is too large for the linear program to
be solved by a simplex algorithm, q > 20, then, at the end of the flight
phase, an balancing variable can be straightforwardly suppressed. A constraint
is thus relaxed, allowing a return to the flight phase until it is no longer
possible to “move” within the constraint subspace. The constraints are thus
successively relaxed. For this reason, it is necessary to order the balancing
variables according to their importance so that the least important constraints
are relaxed first. This naturally depends on the context of the survey.

8.6.4 Quality of Balancing

The rounding problem can arise with any balanced sampling design. For in-
stance, in stratification, the rounding problem arises when the sum of the
inclusion probabilities within the strata is not an integer number, which is
almost always the case in proportional stratification or optimal stratification.
In practice, the stratum sample sizes nh are rounded either deterministically
or randomly. Random rounding is used so as to satisfy in expectation the val-
ues of nh. The purpose of random rounding is to respect the initial inclusion
probabilities.

The cube method also uses a random rounding. In the particular case of
stratification, it provides exactly the well-known method of random rounding
of the sample sizes in the strata. With any variant of the landing phase,
the deviation between the Horvitz-Thompson estimator and the total can be
bounded because the rounding problem only depends on q ≤ p values.
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Result 38. For any application of the cube method∣∣∣X̂jHT − Xj

∣∣∣ ≤ p × max
k∈U

∣∣∣∣xkj

πk

∣∣∣∣ . (8.9)

Proof.

∣∣∣X̂jHT − Xj

∣∣∣ =

∣∣∣∣∣∑
k∈U

Skxkj

πk
−
∑
k∈U

xkj

πk
πk

∣∣∣∣∣ =

∣∣∣∣∣∑
k∈U

Skxkj

πk
−
∑
k∈U

xkj

πk
π∗

k

∣∣∣∣∣
=

∣∣∣∣∣∑
k∈U

S∗
kxkj

πk
−

∑
k∈U∗

xkj

πk
πk

∣∣∣∣∣ ≤ sup
F |card(F )=q

∑
k∈F

∣∣∣∣xkj

πk

∣∣∣∣
≤ p × max

k∈U

∣∣∣∣xkj

πk

∣∣∣∣ . �

Result 39. If the sum of the inclusion probabilities is integer and if the sam-
pling design has a fixed sample size, then, for any application of the cube
method, ∣∣∣X̂jHT − Xj

∣∣∣ ≤ (p − 1) × max
k∈U

∣∣∣∣xkj

πk
− NXj

n

∣∣∣∣ . (8.10)

where
Xj =

1
N

∑
k∈U

xkj .

Proof. With the cube method, we can always satisfy the fixed sample size
constraint when the sum of the inclusion probabilities is integer, which can
be written ∑

k∈U

Skπk

πk
=
∑
k∈U

πk.

Thus, at the end of the flight phase, at most p−1 values of π∗ are not integer.
We obtain∣∣∣X̂jHT − Xj

∣∣∣ =

∣∣∣∣∣∑
k∈U

Sk

(
xkj − cπk

πk
−
∑
k∈U

xkj − cπk

πk
πk

)∣∣∣∣∣
≤ (p − 1) × max

k∈U

∣∣∣∣xkj − cπk

πk

∣∣∣∣ ,
for any c ∈ R. If c = NXj/n, we get Result 39. �

This bound is a conservative bound of the rounding error because we
consider the worst case. Moreover, this bound is computed for a total and
must be considered relative to the population size. Let αk = πkN/n, k ∈ U.
For almost all the usual sampling designs, we can admit that 1/αk is bounded
when n → ∞. Note that, for a fixed sample size
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1
N

∑
k∈U

αk = 1.

The bound for the estimation of the mean can thus be written:

|X̂jHT − Xj |
N

≤ p

n
× max

k∈U

∣∣∣∣xkj

αk
− Xj

∣∣∣∣ = O(p/n),

where O(1/n) is a quantity that remains bounded when multiplied by n. The
bound thus very quickly becomes negligible if the sample size is large with
respect to the number of balancing variables.

For comparison note that with a single-stage sampling design such as sim-
ple random sampling or Bernoulli sampling, we have generally that

|X̂jHT − Xj |
N

= Op(1/
√

n)

(see, for example, Rosén, 1972; Isaki and Fuller, 1982).
Despite the overstatement of the bound, the gain obtained by balanced

sampling is very important. The rate of convergence is much faster for bal-
anced sampling than for a usual sampling design. In practice, except for the
case of very small sample sizes, the rounding problem is thus negligible. Fur-
thermore, the rounding problem also becomes problematic in stratification
with very small sample sizes. In addition, this bound corresponds to the “worst
case”, whereas the landing phase is used to find the best one.

8.7 Application of the Cube Method to Particular Cases

8.7.1 Simple Random Sampling

Simple random sampling is a particular case of the cube method. Sup-
pose that π = (n/N · · · n/N · · · n/N) and that the balancing vari-
able is xk = n/N, k ∈ U. We thus have A = (1 · · · 1) ∈ R

N and
Ker A =

{
v ∈ R

N |∑k∈U vk = 0
}

.
There are at least three ways to select a simple random sampling without

replacement.

1. The first way consists of beginning the first step by using

u(1) =
(

N − 1
N

− 1
N

· · · − 1
N

)′
.

Then, λ1(1) = (N − n)/(N − 1), λ2(1) = n/(N − 1) and

π(1) =

⎧⎨⎩
(
1 n−1

N−1 · · · n−1
N−1

)′
with probability q1(1)(

0 n
N−1 · · · n

N−1

)′
with probability q2(1),
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where q1(1) = π1 = n/N and q2(1) = 1 − π1 = (N − n)/N. This first
step corresponds exactly to the selection-rejection method for SRSWOR
described in Algorithm 4.3, page 48.

2. The second way consists of sorting the data randomly before applying the
cube method with any vectors v(t). Indeed, any choice of v(t) provides a
fixed size sampling with inclusion probabilities πk = n/N. A random sort
applied before any equal probability sampling provides a simple random
sampling (see Algorithm 4.5, page 50).

3. The third way consists of using a random vector v = (vk), where the vk

are N independent identically distributed variables. Next, this vector is
projected on Ker A, which gives

uk = vk − 1
N

∑
k∈U

vk.

Note that, for such vk, it is obvious that a preliminary sorting of the
data will not change the sampling design, which is thus a simple random
sampling design.

An interesting problem occurs when the design has equal inclusion prob-
abilities πk = π, k ∈ U , such that Nπ is not an integer number. If the only
constraint implies a fixed sample size; that is, xk = 1, k ∈ U, then the bal-
ancing equation can only be approximately satisfied. Nevertheless, the flight
phase of the cube method works until N−p = N−1 elements of π∗ = π(N−1)
are integer numbers. The landing phase consists of randomly deciding whether
the last unit is drawn. The sample size is therefore equal to one of the two
integer numbers nearest to Nπ.

8.7.2 Stratification

Stratification can be achieved by taking xkh = δkhnh/Nh, h = 1, . . . , H, where
Nh is the size of stratum Uh, nh is the sample stratum size and

δkh =
{

1 if k ∈ Uh

0 if k /∈ Uh.

In the first step, we use

uk(1) = vk(1) − 1
Nh

∑
�∈Uh

v�(1), k ∈ Uh.

The three strategies described in Section 8.7.1 for simple random sampling
allow us to obtain directly a stratified random sample with simple random
sampling within the strata. If the sums of the inclusion probabilities are not
integer within the strata, the cube method randomly rounds the sample sizes
of the strata so as to ensure that the given inclusion probabilities are exactly
satisfied.
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The interesting aspect of the cube method is that the stratification can be
generalized to overlapping strata, which can be called “quota random design”
or “cross-stratification”. Suppose that two stratification variables are avail-
able, for example, in a business survey with “activity sector” and “region”.
The strata defined by the first variable are denoted by Uh., h = 1, . . . , H, and
the strata defined by the second variable are denoted by U.i, i = 1, . . . , K.
Next, define the p = H + K balancing variables,

xkj = πk ×
{

I [k ∈ Uj.] j = 1, . . . , H
I
[
k ∈ U.(j−H)

]
j = H + 1, . . . , H + K,

where I[.] is an indicator variable that takes the value 1 if the condition is true
and 0 otherwise. The sample can now be selected directly by means of the
cube method. The generalization to a multiple quota random design follows
immediately. It can be shown (Deville and Tillé, 2000) that the quota random
sampling can be exactly satisfied.

8.7.3 Unequal Probability Sampling with Fixed Sample Size

The unequal inclusion probability problem can be solved by means of the cube
method. Suppose that the objective is to select a sample of fixed size n with
inclusion probabilities πk, k ∈ U, such that

∑
k∈U πk = n. In this case, the

only balancing variable is xk = πk. In order to satisfy this constraint, we must
have

u ∈ Ker A =

{
v ∈ R

N

∣∣∣∣∣∑
k∈U

vk = 0

}
,

and thus ∑
k∈U

uk(t) = 0. (8.11)

Each choice, random or not, of vectors u(t) that satisfy (8.11) produces an-
other unequal probability sampling method. Nearly all existing methods, ex-
cept the rejective ones and the variations of systematic sampling, can easily
be expressed by means of the cube method. In this case, the cube method is
identical to the splitting method based on the choice of a direction described
in Section 6.2.3, page 102.

The techniques of unequal probability sampling can always be improved.
Indeed, in all the available unequal probability sampling methods with fixed
sample size, the design is only balanced on a single variable. Nevertheless,
two balancing variables are always available, namely, xk1 = πk, k ∈ U, and
xk2 = 1, k ∈ U. The first variable implies a fixed sample size and the second
one implies that

N̂HT =
∑
k∈U

Sk

πk
= N.

In all methods, the sample is balanced on xk1 but not on xk2. The balanced
cube method allows us to satisfy both constraints approximately.
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8.8 Variance Approximations in Balanced Sampling

8.8.1 Construction of an Approximation

The variance of the Horvitz-Thompson estimator is

var
(
ŶHT

)
=
∑
k∈U

∑
�∈U

ykyk

πkπ�
∆k�, (8.12)

where

∆k� =
{

πk� − πkπ� if k �= �
πk(1 − πk) if k = �

and ∆ = [∆k�]. Matrix ∆ is called the variance-covariance operator. Thus,
the variance of ŶHT can theoretically be expressed and estimated by using
the joint inclusion probabilities. Unfortunately, even in very simple cases like
fixed sample sizes, the computation of ∆ is practically impossible.

Deville and Tillé (2005) have proposed approximating the variance by
supposing that the balanced sampling can be viewed as a conditional Poisson
sampling. A similar idea was also developed by Hájek (1981, p. 26, see also
Section 7.5.1, page 139) for sampling with unequal probabilities and fixed
sample size. In the case of Poisson sampling, which is a sampling design with
no balancing variables, the variance of ŶHT is easy to derive and can be
estimated because only first-order inclusion probabilities are needed. If S̃ is
the random sample selected by a Poisson sampling design and π̃k, k ∈ U, are
the first-order inclusion probabilities of the Poisson design, then

varPOISSON

(
ŶHT

)
= varPOISSON

(∑
k∈U

yk

πk
S̃k

)
=
∑
k∈U

y2
k

π2
k

π̃k (1 − π̃k) = y̌′∆̃y̌,

(8.13)
where y̌ = (y̌1 · · · y̌k · · · y̌N )′, y̌k = yk/πk, and ∆̃ = diag [π̃k(1 − π̃k)] . Note
that Expression (8.13) contains πk, and π̃k because the variance of the usual
estimator (function of πk’s) is computed under Poisson sampling (function of
π̃′

ks). The π′
ks are always known, but the π̃′

ks are not necessarily known.
If we suppose that, through Poisson sampling, the vector (ŶHT X̂′

HT )′ has
approximately a multinormal distribution, we obtain

varPOISSON

(
ŶHT |X̂HT = X

)
≈ varPOISSON

[
ŶHT +

(
X − X̂HT

)′
β

]
, (8.14)

where
β = varPOISSON

(
X̂HT

)−1
covPOISSON

(
X̂HT , ŶHT

)
,

varPOISSON

(
X̂HT

)
=
∑
k∈U

xkx′
k

π2
k

π̃k (1 − π̃k) ,
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and
covPOISSON

(
X̂HT , ŶHT

)
=
∑
k∈U

xkyk

π2
k

π̃k (1 − π̃k) .

Again varPOISSON

(
X̂HT

)
and covPOISSON

(
X̂HT , ŶHT

)
are functions of πk and

π̃k because we compute the variance of the usual Horvitz-Thompson estimator
(function of πk) under the Poisson sampling design (function of π̃k).

If
bk = π̃k(1 − π̃k),

Expression (8.14) can also be written

varAPPROX

(
ŶHT

)
=
∑
k∈U

bk (y̌k − y̌∗
k)2 , (8.15)

where

y̌∗
k = x̌′

k

(∑
�∈U

b�x̌�x̌′
�

)−1 ∑
�∈U

b�x̌�y̌� =
[
A′(A∆̃A′)−1A∆̃y̌

]
k

is a regression predictor of y̌k for the suitable regression such that y̌k − y̌∗
k

appears as a residual and A = (x̌1 · · · x̌k · · · x̌N ) .
When p = 1 and the only balancing variable is xk = πk, then the problem

of balanced sampling amounts to sampling with unequal probabilities and
fixed sample size. The approximation of variance given in (8.15) is then equal
to the approximation given in Expression (7.13), page 138. In this case, y̌∗

k is
simply the mean of the y̌k’s with the weights bk.

The weights bk unfortunately are unknown because they depend on the
π̃k’s, which are not exactly equal to the πk. We thus propose to approximate
the bk. Note that Expression (8.15) can also be written

varAPPROX

(
ŶHT

)
= y̌′∆APPROXy̌,

where ∆APPROX = {∆appk�} is the approximated variance-covariance operator
and

∆appk� =

{
bk − bkx̌′

k

(∑
i∈U bix̌ix̌′

i

)−1
x̌kbk k = �

bkx̌′
k

(∑
k∈U bix̌ix̌′

i

)−1
x̌�b� k �= �.

(8.16)

Four variance approximations can be obtained by various definitions of
the bk’s. These four definitions are denoted bk1, bk2, bk3, and bk4 and permit
the definition of four variance approximations denoted Vα, α = 1, 2, 3, 4, and
four variance-covariance operators denoted ∆α, α = 1, 2, 3, 4, by replacing in
(8.15) and (8.16), bk with, respectively, bk1, bk2, bk3, and bk4.

1. The first approximation is obtained by considering that at least for large
sample sizes, πk ≈ π̃k, k ∈ U. Thus, we take bk1 = πk(1 − πk).
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2. The second approximation is obtained by applying a correction for the
loss of degrees of freedom:

bk2 = πk(1 − πk)
N

N − p
.

This correction allows obtaining the exact expression for simple random
sampling with fixed sample size.

3. The third approximation is derived from the fact that the diagonal el-
ements of the variance-covariance operator ∆ of the true variance are
always known and are equal to πk(1 − πk). Thus, by defining

bk3 = πk(1 − πk)
trace ∆
trace ∆1

,

we can define the approximated variance-covariance operator ∆3 that has
the same trace as ∆.

4. Finally, the fourth approximation is derived from the fact that the diago-
nal elements ∆APPROX can be computed and are given in (8.16). The bk4
are constructed in such a way that ∆k� = ∆appk�, or in other words, that

πk(1 − πk) = bk − bkx̌′
k

(∑
k∈U

bkx̌kx̌′
k

)−1

x̌kbk, k ∈ U. (8.17)

The determination of the bk4’s then requires the resolution of the non-
linear equation system. This fourth approximation is the only one that
provides the exact variance expression for stratification.

In Deville and Tillé (2005), a set of simulations is presented which shows
that bk4 is indisputably the most accurate approximation.

8.8.2 Application of the Variance Approximation to Stratification

Suppose that the sampling design is stratified; that is, the population can be
split into H nonoverlapping strata denoted Uh, h = 1, . . . , H, of sizes Nh, h =
1, . . . , H. The balancing variables are

xk1 = δk1, . . . , xkH = δkH ,

where

δkh =
{

1 if k ∈ Uh

0 if k /∈ Uh.

If a simple random sample is selected in each stratum with sizes n1, . . . , nH ,
then the variance can be computed exactly:

var
(
ŶHT

)
=

H∑
h=1

N2
h

Nh − nh

Nh

V 2
yh

nh
,
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where
V 2

yh =
1

Nh − 1

∑
k∈Uh

(
yk − Y h

)2
.

It is thus interesting to compute the four approximations given in Section 8.8.1
in this particular case.

1. The first approximation gives

bk1 = πk(1 − πk) =
nh

Nh

Nh − nh

Nh
.

Next,

y̌∗
k =

1
nh

∑
k∈Uh

yk =
Nh

nh
Y h,

and

varAPPROX1

(
ŶHT

)
=

H∑
h=1

Nh(Nh − 1)
Nh − nh

Nh

V 2
yh

nh
.

2. The second approximation gives

bk2 =
N

N − H
πk(1 − πk) =

N

N − H

nh

Nh

Nh − nh

Nh
.

Next,

y̌∗
k =

1
nh

∑
k∈Uh

yk =
Nh

nh
Y h,

and

varAPPROX2

(
ŶHT

)
=

N

N − H

H∑
h=1

Nh(Nh − 1)
Nh − nh

Nh

V 2
yh

nh
.

3. The third approximation gives

bk3 = πk(1 − πk)
trace ∆
trace∆1

=
nh

Nh

Nh − nh

Nh

∑H
h=1

nh

Nh
(Nh − nh)∑H

h=1
nh

N2
h
(Nh − nh)(Nh − 1)

.

Next,

y̌∗
k =

1
nh

∑
k∈Uh

yk =
Nh

nh
Y h,

and

varAPPROX3

(
ŶHT

)
=

⎡⎣ ∑H
h=1

nh

Nh
(Nh − nh)∑H

h=1
nh

N2
h
(Nh − nh)(Nh − 1)

⎤⎦ H∑
h=1

Nh(Nh − 1)
Nh − nh

Nh

V 2
yh

nh
.
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4. The fourth approximation gives

bk4 =
nh

Nh − 1
Nh − nh

Nh
.

Next,

y̌∗
k =

1
nh

∑
k∈Uh

yk =
Nh

nh
Y h,

and

varAPPROX4

(
ŶHT

)
=

H∑
h=1

N2
h

Nh − nh

Nh

V 2
yh

nh
.

Although the differences between the variance approximations varAPPROX1,
varAPPROX2, varAPPROX3, and varAPPROX4 are small relative to the population
size, varAPPROX4 is the only approximation that gives the exact variance of a
stratified sampling design.

8.9 Variance Estimation

8.9.1 Construction of an Estimator of Variance

Because Expression (8.15) is a function of totals, we can substitute each total
by its Horvitz-Thompson estimator (see, for instance, Deville, 1999) in order
to obtain an estimator of (8.15). The resulting estimator for (8.15) is:

v̂ar
(
ŶHT

)
=
∑
k∈U

ckSk

(
y̌k − ˆ̌y∗

k

)2
, (8.18)

where

ˆ̌y∗
k = x̌′

k

(∑
�∈U

c�S�x̌�x̌′
�

)−1 ∑
�∈U

c�S�x̌�y̌�

is the estimator of the regression predictor of y̌k.
Note that (8.18) can also be written∑

k∈U

∑
�∈U

y̌kDk�y̌�SkS�,

where

Dk� =

{
ck − ckx̌′

k

(∑
i∈U ciSix̌ix̌′

i

)−1
x̌kck k = �

ckx̌′
k

(∑
i∈U cickx̌ix̌′

i

)−1
x̌�c� k �= �.

The five definitions of the ck’s are denoted ck1, ck2, ck3, ck4, and ck5 and
allow defining five variance estimators by replacing ck in Expression (8.18) by,
respectively, ck1, ck2, ck3, ck4, and ck5.



174 8 Balanced Sampling

1. The first estimator is obtained by taking ck1 = (1 − πk).
2. The second estimator is obtained by applying a correction for the loss of

degrees of freedom:
ck2 = (1 − πk)

n

n − p
.

This correction for the loss of degrees of freedom gives the unbiased esti-
mator in simple random sampling with fixed sample size.

3. The third estimator is derived from the fact that the diagonal elements of
the true matrix ∆k�/πk� are always known and are equal to 1−πk. Thus,
we can use

ck3 = (1 − πk)
∑

k∈U (1 − πk)Sk∑
k∈U Dkk1Sk

,

where Dkk1 is obtained by plugging ck1 in Dkk.
4. The fourth estimator can be derived from bk4 obtained by solving the

equation system (8.17).

ck4 =
bk4

πk

n

n − p

N − p

N
.

5. Finally, the fifth estimator is derived from the fact that the diagonal ele-
ments Dkk are known. The ck5’s are constructed in such a way that

1 − πk = Dkk, k ∈ U, (8.19)

or in other words that

1 − πk = ck − ckx̌′
k

(∑
i∈U

ciSix̌ix̌′
i

)−1

x̌kck, k ∈ U.

A necessary condition of the existence of a solution for equation system
(8.19) is that

max
k

1 − πk∑
�∈U Si(1 − π�)

<
1
2
.

The choice of the weights ck is tricky. Although they are very similar, an
evaluation by means of a set of simulations should still be run.

8.9.2 Application to Stratification of the Estimators of Variance

The case of stratification is interesting because the unbiased estimator of
variance in a stratified sampling design (with a simple random sampling in
each stratum) is known and is equal to

v̂ar
(
ŶHT

)
=

H∑
h=1

N2
h

Nh − nh

Nh

v2
yh

nh
,
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where
v2

yh =
1

nh − 1

∑
k∈Uh

Sk

(
yk − Ŷ h

)2
.

It is thus interesting to compute the five estimators in the stratification case.

1. The first estimator gives

ck1 = (1 − πk) =
Nh − nh

Nh
.

Next,
ˆ̌y∗
k =

Nh

nh

1
nh

∑
k∈Uh

ykSk =
Nh

nh
Ŷ h,

and

v̂arAPPROX1

(
ŶHT

)
=

H∑
h=1

N2
h

Nh − nh

Nh

nh − 1
nh

v2
yh

nh
.

2. The second estimator gives

ck2 =
n

n − H
(1 − πk) =

n

n − H

Nh − nh

Nh
.

Next,
ˆ̌y∗
k =

Nh

nh

1
nh

∑
k∈Uh

ykSk =
Nh

nh
Ŷ h,

and

v̂arAPPROX2

(
ŶHT

)
=

n

n − H

H∑
h=1

N2
h
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Nh

nh − 1
nh

v2
yh

nh
.

3. The third estimator gives

ck3 =
Nh − nh

Nh

n −∑H
h=1

n2
h

Nh

n − H −∑H
h=1

nh

Nh
(nh − 1)

.

Next,
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nh

1
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Nh
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Ŷ h,
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(
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4. The fourth estimator gives

ck4 =
Nh − nh

Nh − 1
n

n − H

N − H

N
.

Next,
ˆ̌y∗
k =

Nh

nh

1
nh

∑
k∈Uh

ykSk =
Nh

nh
Ŷ h,

and

v̂arAPPROX4

(
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n − H

N − H
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nh
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.

5. The fifth estimator gives

ck5 =
nh

nh − 1
Nh − nh

Nh
.

Next,
ˆ̌y∗
k =

Nh

nh

1
nh

∑
k∈Uh

ykSk =
Nh

nh
Ŷ h,

and

v̂arAPPROX5

(
ŶHT

)
=

H∑
h=1

N2
h

Nh − nh

Nh

v2
yh

nh
.

The five estimators are very similar, but v̂arAPPROX5 is the only approximation
that gives the exact variance of a stratified sampling design.

8.10 Recent Developments in Balanced Sampling

Balanced sampling is at present a common procedure of sampling which is
used, for instance, for the selection of the master sample at the Institut Na-
tional de la Statistique et des Études Économiques (INSEE, France). The
implementation of the cube method has posed new, interesting problems. The
question of the determination of the optimal inclusion probabilities is devel-
oped under balanced sampling in Tillé and Favre (2005) and generalizes the
optimal stratification. The problem of coordinating several balanced sampling
designs is intricate, but several solutions have been given in Tillé and Favre
(2004). The delicate question of the use of calibration or balanced sampling
is discussed in Deville and Tillé (2004) and in a restricted context in Berger
et al. (2003). Deville (2005) has proposed to use the cube method in order to
provide balanced imputations for nonresponse.
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An Example of the Cube Method

9.1 Implementation of the Cube Method

The cube method was first implemented in SAS-IML� by three students from
the École Nationale de la Statistique et de l’Analyse de l’Information (Rennes,
France) (see Bousabaa et al., 1999). This prototype was circulated in the In-
stitut National de la Statistique et des Études Économiques (INSEE, France)
and was modified by Jean Dumais, Philippe Bertrand, Jean-Michel Grignon,
and Fréderic Tardieu (see Tardieu, 2001). Next, the macro was completely
rewritten by Pascal Ardilly, Sylvie Rousseau, Guillaume Chauvet, Bernard
Weytens Frederic Tardieu and is now available on the INSEE website (see
Rousseau and Tardieu, 2004). In the R language, a package has also been de-
veloped by Tillé and Matei (2005) which allows selecting unequal probabilities
and balanced samples.

This macro allows the selection of samples with unequal probabilities of
up to 50’000 units and 30 balancing variables. INSEE has adopted the cube
method for its most important statistical projects. For instance, in the re-
designed census in France, a fifth of the municipalities with fewer than 10,000
inhabitants are sampled each year, so that after five years all municipali-
ties will be selected. All households in these municipalities are surveyed. The
5 samples of municipalities are selected with equal probabilities using the cube
method and are balanced on a set of demographic variables (Dumais and Is-
nard, 2000). Wilms (2000) has also used the cube method for the selection of
the French master sample of households.

A first version of the fast Algorithm 8.4, presented on page 162, has also
been implemented in a SAS-IML� macro by Guillaume Chauvet (see Chauvet
and Tillé, 2006, 2005a,b). With this faster method, a sample of size 62,740 has
been selected in a population of 313,702 units, corresponding to the addresses
of the largest municipalities (10,000 inhabitants or more) of the Rhone-Alpes
French region. Because the computation time of this new version increases
linearly with the population size, the population size is no longer limited.
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9.2 The Data of Municipalities in the Canton of Ticino
(Switzerland)

The data of municipalities in Ticino were kindly furnished by the Swiss federal
statistical office and come from the federal census of population whose date
of reference is May 5, 2000. Ticino is made up of 245 municipalities. The list
of variables is presented in Table 9.1. The data are presented in the appendix
on page 181.

Table 9.1. List of variables for the population of municipalities in Ticino

POP Number of men and women
ONE Constant variable that always takes the value 1
ARE Area of the municipality in hectares
POM Number of men
POW Number of women
P00 Number of men and women aged between 0 and 20
P20 Number of men and women aged between 20 and 40
P40 Number of men and women aged between 40 and 65
P65 Number of men and women aged 65 and over
HOU Number of households

At the time of the census, there is a total of 306,846 inhabitants in the
canton of Ticino. The largest municipality is Lugano and has 26 560 inhabi-
tants, and the smallest one is Corippo with 22 inhabitants. The sizes of the
municipalities are thus very heterogeneous.

9.3 The Sample of Municipalities

The municipalities are selected with unequal inclusion probabilities propor-
tional to the variable “number of men and women” in the municipalities
(variable POP). The sample size is 50. Algorithm 2.1, page 19, has been
used to compute the inclusion probabilities. The largest 12 cities are Lugano,
Bellinzona, Locarno, Chiasso, Pregassona, Giubiasco, Minusio, Losone, Vi-
ganello, Biasca, Mendrisio and Massagno and have an inclusion probability
equal to 1. They are thus always selected in the sample. We have used the
SAS-IML� macro CUBE that is available on the INSEE website. The selected
option for the landing phase is the resolution of the linear program, and the
cost is the sum of the coefficients of variation. The selected units are pre-
sented in Table 9.2 in decreasing order of population size. The last column
(PI) contains the inclusion probabilities.
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Table 9.2: Selected sample of municipalities

NUM MUNI POP ARE POM POW P00 P20 P40 P65 HOU PI
5192 Lugano 26560 1170 11953 14607 4337 7846 8554 5823 13420 1.000
5002 Bellinzona 16463 1915 7701 8762 3170 4709 5432 3152 7294 1.000
5113 Locarno 14561 1929 6678 7883 2929 4166 4730 2736 6730 1.000
5250 Chiasso 7720 533 3584 4136 1257 2186 2538 1739 3774 1.000
5005 Giubiasco 7418 623 3545 3873 1526 2147 2455 1290 3273 1.000
5215 Pregassona 7354 223 3549 3805 1602 2417 2431 904 3211 1.000
5118 Minusio 6428 585 2940 3488 1126 1623 2278 1401 3080 1.000
5234 Viganello 6284 118 2887 3397 1118 1884 2089 1193 3026 1.000
5254 Mendrisio 6146 673 2847 3299 1012 1727 2069 1338 2794 1.000
5115 Losone 5907 953 2900 3007 1194 1828 2068 817 2545 1.000
5281 Biasca 5795 5913 2886 2909 1253 1630 1984 928 2369 1.000
5196 Massagno 5558 73 2552 3006 993 1682 1834 1049 2685 1.000
5091 Ascona 4984 497 2242 2742 853 1154 1834 1143 2472 0.993
5158 Breganzona 4782 227 2250 2532 1058 1333 1607 784 2079 0.953
5257 Morbio Inferiore 4105 229 1934 2171 846 1169 1399 691 1661 0.818
5108 Gordola 3878 703 1886 1992 816 1060 1348 654 1652 0.773
5001 Arbedo-Castione 3729 2128 1862 1867 827 1028 1380 494 1452 0.743
5210 Paradiso 3694 89 1750 1944 625 1202 1235 632 1762 0.736
5141 Agno 3655 249 1710 1945 702 1143 1276 534 1588 0.729
5242 Balerna 3415 257 1647 1768 651 956 1104 704 1519 0.681
5227 Torricella-Taverne 2704 524 1314 1390 684 789 936 295 1036 0.539
5120 Muralto 2676 60 1225 1451 403 667 899 707 1448 0.533
5251 Coldrerio 2538 246 1221 1317 519 717 891 411 1074 0.506
5131 Tenero-Contra 2295 369 1121 1174 481 655 746 413 992 0.457
5282 Claro 2159 2122 1020 1139 527 641 687 304 797 0.430
5017 Sant’Antonino 2066 658 1045 1021 491 669 693 213 794 0.412
5221 Savosa 2061 74 967 1094 346 603 715 397 862 0.411
5224 Sonvico 1600 1106 774 826 325 444 550 281 646 0.319
5189 Lamone 1564 186 767 797 375 496 521 172 632 0.312
5072 Faido 1548 372 725 823 316 365 501 366 614 0.309
5212 Ponte Capriasca 1478 620 714 764 344 436 534 164 594 0.295
5226 Tesserete 1424 309 639 785 307 363 467 287 589 0.284
5217 Rivera 1415 1335 696 719 319 431 479 186 581 0.282
5214 Porza 1348 158 657 691 286 386 506 170 586 0.269
5180 Cureglia 1219 106 601 618 292 350 454 123 497 0.243
5220 Sala Capriasca 1179 842 620 559 268 337 424 150 473 0.235
5010 Lumino 1127 995 556 571 229 307 411 180 470 0.225
5194 Manno 1045 238 536 509 211 334 379 121 414 0.208
5111 Intragna 915 2405 416 499 173 214 309 219 395 0.182
5247 Capolago 758 178 370 388 151 241 238 128 299 0.151
5205 Muzzano 736 157 354 382 154 176 301 105 322 0.147
5008 Gudo 679 994 328 351 133 207 224 115 304 0.135
5161 Cademario 596 396 276 320 114 160 196 126 266 0.119
5181 Curio 521 287 263 258 128 137 167 89 211 0.104
5006 Gnosca 514 745 255 259 99 157 180 78 202 0.102
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Table 9.2: (continued)

NUM MUNI POP ARE POM POW P00 P20 P40 P65 HOU PI
5031 Aquila 487 6296 246 241 108 110 153 116 214 0.097
5123 Piazzogna 362 387 180 182 76 117 114 55 160 0.072
5074 Mairengo 272 665 139 133 66 76 90 40 94 0.054
5038 Leontica 267 738 138 129 46 62 84 75 125 0.053
5122 Palagnedra 92 1674 40 52 7 18 39 28 54 0.018

9.4 Quality of Balancing

The quality of balancing is analyzed in Table 9.3, which contains:

• The population totals for each variable Xj ,
• The estimated total by the Horvitz-Thompson estimator X̂jHT ,
• The relative deviation in % defined by

RD = 100 × X̂jHT − Xj

Xj
.

Table 9.3. Quality of balancing

Variable Population Estimated Relative
Total Total Deviation in %

POP 306846 306846.0 0.00
ONE 245 248.6 1.49
HA 273758 276603.1 1.04
POM 146216 146218.9 0.00
POW 160630 160627.1 -0.00
P00 60886 60653.1 -0.38
P20 86908 87075.3 0.19
P40 104292 104084.9 -0.20
P65 54760 55032.6 0.50
HOU 134916 135396.6 0.36

In spite of the small sample size (n(S) = 50), the quality of balancing is
very good. The rounding problem is less than 1% for almost all the variables.
This sample will provide very accurate estimators for all the variables that
are correlated with the balancing variables.



Appendix: Population of Municipalities in the
Canton of Ticino (Switzerland)

Table 9.4: Municipalities in the canton of Ticino, population by gender
and age, area, and number of households. Source: Swiss federal statistical
office (the data are described in Section 9.2, page 178)

NUM MUNI POP ARE POM POW P00 P20 P40 P65 HOU
5001 Arbedo-Castione 3729 2128 1862 1867 827 1028 1380 494 1452
5002 Bellinzona 16463 1915 7701 8762 3170 4709 5432 3152 7294
5003 Cadenazzo 1755 565 906 849 399 575 581 200 688
5004 Camorino 2210 828 1096 1114 496 623 757 334 934
5005 Giubiasco 7418 623 3545 3873 1526 2147 2455 1290 3273
5006 Gnosca 514 745 255 259 99 157 180 78 202
5007 Gorduno 621 922 294 327 133 196 199 93 258
5008 Gudo 679 994 328 351 133 207 224 115 304
5009 Isone 353 1282 193 160 60 94 134 65 147
5010 Lumino 1127 995 556 571 229 307 411 180 470
5011 Medeglia 330 627 164 166 51 98 111 70 144
5012 Moleno 105 749 50 55 23 30 31 21 41
5013 Monte Carasso 2133 964 1048 1085 460 685 690 298 932
5014 Pianezzo 489 802 231 258 103 122 174 90 220
5015 Preonzo 484 1644 237 247 117 137 173 57 195
5016 Robasacco 108 273 53 55 20 27 42 19 53
5017 Sant’Antonino 2066 658 1045 1021 491 669 693 213 794
5018 Sant’Antonio 168 3358 78 90 31 39 58 40 88
5019 Sementina 2646 825 1290 1356 554 792 928 372 1072
5031 Aquila 487 6296 246 241 108 110 153 116 214
5032 Campo (Blenio) 68 2196 39 29 10 17 25 16 32
5033 Castro 81 307 35 46 20 25 14 22 35
5034 Corzoneso 506 1152 219 287 107 119 130 150 157
5035 Dongio 423 1286 207 216 85 117 130 91 187
5036 Ghirone 44 3027 22 22 7 9 18 10 21
5037 Largario 25 126 14 11 10 4 7 4 8
5038 Leontica 267 738 138 129 46 62 84 75 125
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Table 9.4: (Continued)

NUM MUNI POP ARE POM POW P00 P20 P40 P65 HOU
5039 Lottigna 79 651 39 40 13 21 25 20 40
5040 Ludiano 291 619 150 141 54 87 76 74 129
5041 Malvaglia 1172 8030 590 582 229 329 366 248 503
5042 Marolta 43 281 23 20 7 7 17 12 22
5043 Olivone 845 7609 416 429 163 231 256 195 364
5044 Ponto Valentino 218 1029 103 115 33 42 72 71 99
5045 Prugiasco 136 595 71 65 18 33 50 35 57
5046 Semione 320 1042 166 154 64 69 125 62 151
5047 Torre 282 1073 140 142 68 57 88 69 117
5061 Airolo 1593 9437 814 779 288 410 593 302 700
5062 Anzonico 98 1061 46 52 8 20 36 34 48
5063 Bedretto 72 7523 35 37 4 16 16 36 37
5064 Bodio 1058 644 538 520 180 288 374 216 496
5065 Calonico 42 318 17 25 6 11 12 13 21
5066 Calpiogna 40 330 22 18 6 7 16 11 18
5067 Campello 45 396 25 20 8 7 18 12 22
5068 Cavagnago 83 668 44 39 9 10 32 32 44
5069 Chiggiogna 378 392 185 193 87 95 120 76 166
5070 Chironico 403 5777 195 208 91 88 137 87 185
5071 Dalpe 158 1452 80 78 29 25 73 31 70
5072 Faido 1548 372 725 823 316 365 501 366 614
5073 Giornico 885 1948 440 445 162 243 310 170 380
5074 Mairengo 272 665 139 133 66 76 90 40 94
5075 Osco 168 1190 128 40 9 47 78 34 43
5076 Personico 353 3904 175 178 79 82 121 71 148
5077 Pollegio 723 589 393 330 149 207 249 118 284
5078 Prato (Leventina) 397 1685 205 192 81 108 137 71 166
5079 Quinto 1057 7520 523 534 214 272 357 214 433
5080 Rossura 55 1458 31 24 6 8 23 18 28
5081 Sobrio 74 636 37 37 14 10 23 27 38
5091 Ascona 4984 497 2242 2742 853 1154 1834 1143 2472
5092 Auressio 71 299 33 38 19 10 26 16 31
5093 Berzona 48 505 22 26 9 17 12 10 21
5094 Borgnone 143 1060 69 74 24 21 56 42 63
5095 Brione (Verzasca) 203 4856 102 101 41 38 77 47 84
5096 Brione sopra Minusio 484 384 225 259 71 110 200 103 241
5097 Brissago 1833 1779 854 979 284 436 621 492 862
5098 Caviano 111 320 50 61 24 15 46 26 46
5099 Cavigliano 646 548 306 340 147 168 227 104 269
5101 Contone 703 233 343 360 147 246 224 86 307
5102 Corippo 22 773 11 11 1 5 8 8 11
5104 Cugnasco 1120 1703 542 578 273 330 361 156 436
5105 Frasco 100 2573 53 47 25 29 29 17 37
5106 Gerra (Gambarogno) 254 314 124 130 32 59 85 78 127
5107 Gerra (Verzasca) 1098 1868 517 581 225 281 419 173 467
5108 Gordola 3878 703 1886 1992 816 1060 1348 654 1652
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Table 9.4: (Continued)

NUM MUNI POP ARE POM POW P00 P20 P40 P65 HOU
5109 Gresso 35 1108 14 21 1 6 13 15 19
5110 Indemini 39 1132 20 19 11 3 15 10 21
5111 Intragna 915 2405 416 499 173 214 309 219 395
5112 Lavertezzo 1098 5811 545 553 263 361 326 148 450
5113 Locarno 14561 1929 6678 7883 2929 4166 4730 2736 6730
5114 Loco 254 907 116 138 32 55 91 76 107
5115 Losone 5907 953 2900 3007 1194 1828 2068 817 2545
5116 Magadino 1499 723 722 777 308 435 492 264 677
5117 Mergoscia 181 1214 89 92 35 51 55 40 84
5118 Minusio 6428 585 2940 3488 1126 1623 2278 1401 3080
5119 Mosogno 57 861 33 24 7 13 25 12 26
5120 Muralto 2676 60 1225 1451 403 667 899 707 1448
5121 Orselina 866 195 354 512 135 154 299 278 399
5122 Palagnedra 92 1674 40 52 7 18 39 28 54
5123 Piazzogna 362 387 180 182 76 117 114 55 160
5125 Ronco sopra Ascona 659 502 322 337 102 130 270 157 343
5127 San Nazzaro 641 553 291 350 104 138 214 185 278
5128 Sant’Abbondio 123 320 53 70 16 28 46 33 59
5129 Sonogno 86 3752 48 38 7 22 38 19 38
5130 Tegna 661 289 332 329 144 180 233 104 274
5131 Tenero-Contra 2295 369 1121 1174 481 655 746 413 992
5132 Vergeletto 65 4078 29 36 3 6 24 32 35
5133 Verscio 887 300 440 447 190 220 349 128 375
5134 Vira (Gambarogno) 616 1199 290 326 97 145 215 159 277
5135 Vogorno 304 2388 151 153 59 69 112 64 147
5136 Onsernone 322 2986 160 162 45 63 114 100 147
5141 Agno 3655 249 1710 1945 702 1143 1276 534 1588
5142 Agra 401 128 199 202 96 105 147 53 159
5143 Aranno 267 258 131 136 58 85 81 43 115
5144 Arogno 969 850 478 491 220 241 300 208 411
5145 Arosio 422 656 215 207 71 140 144 67 188
5146 Astano 290 378 155 135 50 57 107 76 137
5147 Barbengo 1559 266 744 815 404 495 497 163 613
5148 Bedano 1196 187 564 632 245 357 401 193 441
5149 Bedigliora 540 248 261 279 140 137 173 90 233
5150 Bidogno 296 349 142 154 42 86 120 48 138
5151 Bioggio 1504 305 689 815 326 460 499 219 635
5153 Bironico 512 418 258 254 118 162 167 65 212
5154 Bissone 711 181 344 367 112 202 253 144 348
5155 Bogno 93 421 44 49 16 21 29 27 41
5156 Bosco Luganese 348 153 174 174 82 84 129 53 139
5158 Breganzona 4782 227 2250 2532 1058 1333 1607 784 2079
5159 Breno 255 575 122 133 56 49 88 62 126
5160 Brusino Arsizio 454 404 219 235 97 123 151 83 205
5161 Cademario 596 396 276 320 114 160 196 126 266
5162 Cadempino 1317 76 650 667 304 434 442 137 528
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Table 9.4: (Continued)

NUM MUNI POP ARE POM POW P00 P20 P40 P65 HOU
5163 Cadro 1797 452 938 859 381 530 676 210 639
5164 Cagiallo 538 551 265 273 124 138 197 79 221
5165 Camignolo 596 453 299 297 124 172 218 82 237
5167 Canobbio 1825 130 885 940 336 601 627 261 806
5168 Carabbia 512 106 248 264 121 125 190 76 195
5169 Carabietta 100 46 51 49 21 23 27 29 44
5170 Carona 681 475 327 354 154 160 264 103 298
5171 Caslano 3495 284 1633 1862 799 943 1208 545 1497
5173 Certara 65 273 31 34 9 17 20 19 31
5174 Cimadera 100 528 48 52 16 22 36 26 55
5175 Cimo 209 86 102 107 39 64 77 29 87
5176 Comano 1594 206 740 854 334 380 614 266 662
5177 Corticiasca 138 215 75 63 33 36 52 17 58
5178 Croglio 865 438 396 469 153 237 297 178 372
5179 Cureggia 112 69 56 56 27 27 44 14 45
5180 Cureglia 1219 106 601 618 292 350 454 123 497
5181 Curio 521 287 263 258 128 137 167 89 211
5182 Davesco-Soragno 1288 249 616 672 303 393 436 156 536
5183 Fescoggia 88 245 41 47 15 15 35 23 40
5184 Gandria 207 343 105 102 28 60 70 49 108
5185 Gentilino 1328 122 644 684 254 345 512 217 576
5186 Grancia 366 63 177 189 95 118 120 33 145
5187 Gravesano 1022 69 508 514 227 297 383 115 402
5188 Iseo 69 100 30 39 13 17 28 11 29
5189 Lamone 1564 186 767 797 375 496 521 172 632
5190 Lopagno 496 537 254 242 95 140 193 68 182
5191 Lugaggia 697 347 353 344 152 213 230 102 286
5192 Lugano 26560 1170 11953 14607 4337 7846 8554 5823 13420
5193 Magliaso 1359 109 619 740 274 360 473 252 553
5194 Manno 1045 238 536 509 211 334 379 121 414
5195 Maroggia 562 100 288 274 92 163 185 122 268
5196 Massagno 5558 73 2552 3006 993 1682 1834 1049 2685
5197 Melano 1102 464 542 560 222 345 373 162 500
5198 Melide 1501 168 695 806 280 436 519 266 740
5199 Mezzovico-Vira 938 1021 466 472 186 279 311 162 367
5200 Miglieglia 215 513 107 108 40 61 79 35 100
5201 Montagnola 2092 314 981 1111 594 478 696 324 810
5202 Monteggio 784 336 388 396 152 214 265 153 352
5203 Morcote 754 280 345 409 103 202 262 187 344
5204 Mugena 141 363 61 80 41 37 39 24 57
5205 Muzzano 736 157 354 382 154 176 301 105 322
5206 Neggio 352 91 173 179 73 110 121 48 137
5207 Novaggio 716 431 319 397 172 174 238 132 315
5208 Origlio 1158 207 560 598 294 297 419 148 462
5209 Pambio-Noranco 570 57 296 274 118 176 210 66 232
5210 Paradiso 3694 89 1750 1944 625 1202 1235 632 1762
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Table 9.4: (Continued)

NUM MUNI POP ARE POM POW P00 P20 P40 P65 HOU
5211 Pazzallo 1162 162 556 606 248 392 390 132 511
5212 Ponte Capriasca 1478 620 714 764 344 436 534 164 594
5213 Ponte Tresa 769 41 353 416 119 212 254 184 373
5214 Porza 1348 158 657 691 286 386 506 170 586
5215 Pregassona 7354 223 3549 3805 1602 2417 2431 904 3211
5216 Pura 1040 304 481 559 217 249 379 195 438
5217 Rivera 1415 1335 696 719 319 431 479 186 581
5218 Roveredo (TI) 126 69 55 71 30 32 43 21 49
5219 Rovio 673 553 327 346 135 205 246 87 281
5220 Sala Capriasca 1179 842 620 559 268 337 424 150 473
5221 Savosa 2061 74 967 1094 346 603 715 397 862
5222 Sessa 604 287 291 313 128 127 223 126 265
5223 Sigirino 390 871 210 180 83 129 127 51 166
5224 Sonvico 1600 1106 774 826 325 444 550 281 646
5225 Sorengo 1557 85 715 842 311 427 554 265 618
5226 Tesserete 1424 309 639 785 307 363 467 287 589
5227 Torricella-Taverne 2704 524 1314 1390 684 789 936 295 1036
5228 Vaglio 496 319 243 253 96 153 178 69 197
5229 Valcolla 558 1134 248 310 94 140 181 143 245
5230 Vernate 363 151 169 194 76 104 128 55 172
5231 Vezia 1575 139 768 807 316 479 570 210 671
5232 Vezio 208 367 98 110 46 63 66 33 90
5233 Vico Morcote 250 191 122 128 49 51 113 37 129
5234 Viganello 6284 118 2887 3397 1118 1884 2089 1193 3026
5235 Villa Luganese 467 220 225 242 93 135 169 70 184
5241 Arzo 1010 279 478 532 236 280 340 154 409
5242 Balerna 3415 257 1647 1768 651 956 1104 704 1519
5243 Besazio 501 88 241 260 105 113 203 80 209
5244 Bruzella 183 344 94 89 40 49 60 34 74
5245 Cabbio 173 569 88 85 32 50 52 39 75
5246 Caneggio 343 390 170 173 75 88 126 54 147
5247 Capolago 758 178 370 388 151 241 238 128 299
5248 Casima 61 99 28 33 13 16 24 8 29
5249 Castel San Pietro 1728 805 810 918 345 446 610 327 675
5250 Chiasso 7720 533 3584 4136 1257 2186 2538 1739 3774
5251 Coldrerio 2538 246 1221 1317 519 717 891 411 1074
5252 Genestrerio 827 149 400 427 146 283 278 120 360
5253 Ligornetto 1408 202 672 736 306 422 481 199 571
5254 Mendrisio 6146 673 2847 3299 1012 1727 2069 1338 2794
5255 Meride 293 746 142 151 56 65 109 63 137
5256 Monte 92 241 47 45 26 27 28 11 38
5257 Morbio Inferiore 4105 229 1934 2171 846 1169 1399 691 1661
5258 Morbio Superiore 700 275 337 363 142 205 254 99 270
5259 Muggio 206 839 102 104 27 48 78 53 101
5260 Novazzano 2369 518 1153 1216 482 677 789 421 941
5262 Rancate 1353 231 657 696 266 349 480 258 558
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Table 9.4: (Continued)

NUM MUNI POP ARE POM POW P00 P20 P40 P65 HOU
5263 Riva San Vitale 2292 597 1137 1155 511 702 763 316 924
5264 Sagno 238 168 125 113 38 61 94 45 108
5265 Salorino 487 498 242 245 102 106 195 84 198
5266 Stabio 3627 615 1782 1845 834 1136 1186 471 1447
5267 Tremona 393 158 192 201 95 100 137 61 158
5268 Vacallo 2758 162 1344 1414 517 770 989 482 1169
5281 Biasca 5795 5913 2886 2909 1253 1630 1984 928 2369
5282 Claro 2159 2122 1020 1139 527 641 687 304 797
5283 Cresciano 587 1723 298 289 117 196 192 82 255
5284 Iragna 491 1839 243 248 102 157 160 72 190
5285 Lodrino 1461 3150 752 709 315 441 517 188 549
5286 Osogna 941 1899 495 446 224 291 311 115 352
5301 Aurigeno 372 1094 189 183 84 96 142 50 161
5302 Avegno 493 811 243 250 118 131 172 72 191
5303 Bignasco 306 8151 168 138 86 76 104 40 114
5304 Bosco/Gurin 71 2204 39 32 12 22 27 10 35
5305 Broglio 88 1297 41 47 29 26 19 14 34
5306 Brontallo 50 1044 24 26 15 10 18 7 19
5307 Campo (Vallemaggia) 58 4327 28 30 2 7 24 25 30
5308 Cavergno 468 5520 227 241 118 116 141 93 203
5309 Cerentino 58 2007 30 28 12 16 13 17 28
5310 Cevio 497 1477 241 256 93 107 165 132 201
5311 Coglio 96 957 48 48 23 22 37 14 35
5312 Fusio 45 6080 24 21 6 8 15 16 21
5313 Giumaglio 202 1316 96 106 41 53 75 33 81
5314 Gordevio 798 1924 347 451 175 194 261 168 272
5315 Linescio 32 661 14 18 2 3 14 13 19
5316 Lodano 171 1375 87 84 39 40 65 27 68
5317 Maggia 850 2385 398 452 195 203 259 193 314
5318 Menzonio 73 1064 31 42 13 22 27 11 34
5319 Moghegno 336 703 164 172 82 88 117 49 141
5320 Peccia 171 5422 82 89 39 33 59 40 64
5321 Prato-Sornico 104 3837 59 45 21 24 43 16 40
5322 Someo 254 3279 122 132 38 54 89 73 111
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ŶHT Hansen-Hurwitz estimator of Y
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∆ matrix of ∆k�
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