
Advances in Intelligent Systems and Computing 305

Rituparna Chaki
Khalid Saeed
Sankhayan Choudhury
Nabendu Chaki Editors

Applied
Computation
and Security
Systems
Volume Two

Advances in Intelligent Systems and Computing

Volume 305

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

About this Series

The series ‘‘Advances in Intelligent Systems and Computing’’ contains publications on
theory, applications, and design methods of Intelligent Systems and Intelligent Computing.
Virtually all disciplines such as engineering, natural sciences, computer and information
science, ICT, economics, business, e-commerce, environment, healthcare, life science are
covered. The list of topics spans all the areas of modern intelligent systems and computing.

The publications within ‘‘Advances in Intelligent Systems and Computing’’ are primarily
textbooks and proceedings of important conferences, symposia and congresses. They cover
significant recent developments in the field, both of a foundational and applicable character.
An important characteristic feature of the series is the short publication time and world-wide
distribution. This permits a rapid and broad dissemination of research results.

Advisory Board

Chairman

Nikhil R. Pal, Indian Statistical Institute, Kolkata, India
e-mail: nikhil@isical.ac.in

Members

Rafael Bello, Universidad Central ‘‘Marta Abreu’’ de Las Villas, Santa Clara, Cuba
e-mail: rbellop@uclv.edu.cu

Emilio S. Corchado, University of Salamanca, Salamanca, Spain
e-mail: escorchado@usal.es

Hani Hagras, University of Essex, Colchester, UK
e-mail: hani@essex.ac.uk

László T. Kóczy, Széchenyi István University, Gy}or, Hungary
e-mail: koczy@sze.hu

Vladik Kreinovich, University of Texas at El Paso, El Paso, USA
e-mail: vladik@utep.edu

Chin-Teng Lin, National Chiao Tung University, Hsinchu, Taiwan
e-mail: ctlin@mail.nctu.edu.tw

Jie Lu, University of Technology, Sydney, Australia
e-mail: Jie.Lu@uts.edu.au

Patricia Melin, Tijuana Institute of Technology, Tijuana, Mexico
e-mail: epmelin@hafsamx.org

Nadia Nedjah, State University of Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: nadia@eng.uerj.br

Ngoc Thanh Nguyen, Wroclaw University of Technology, Wroclaw, Poland
e-mail: Ngoc-Thanh.Nguyen@pwr.edu.pl

Jun Wang, The Chinese University of Hong Kong, Shatin, Hong Kong
e-mail: jwang@mae.cuhk.edu.hk

More information about this series at http://www.springer.com/series/11156

http://www.springer.com/series/11156

Rituparna Chaki • Khalid Saeed
Sankhayan Choudhury • Nabendu Chaki
Editors

Applied Computation
and Security Systems
Volume Two

123

Editors
Rituparna Chaki
A.K. Choudhury School of Information

Technology
University of Calcutta
Kolkata, West Bengal
India

Khalid Saeed
Faculty of Physics and Applied Computer

Sciences
AGH University of Science and Technology
Cracow
Poland

Sankhayan Choudhury
Nabendu Chaki
Department of Computer Science

and Engineering
University of Calcutta
Kolkata, West Bengal
India

ISSN 2194-5357 ISSN 2194-5365 (electronic)
ISBN 978-81-322-1987-3 ISBN 978-81-322-1988-0 (eBook)
DOI 10.1007/978-81-322-1988-0

Library of Congress Control Number: 2014947644

Springer New Delhi Heidelberg New York Dordrecht London

� Springer India 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The First International Doctoral Symposium on Applied Computation and Security
Systems (ACSS 2014) took place during Apr 18–20, 2014 in Kolkata, India. This
symposium is aimed to facilitate the Ph.D. students to present and discuss their
research work leading towards high-quality dissertation. This symposium will
provide a friendly and supportive environment for doctoral students to present and
discuss their work both with their peers and with a panel of distinguished experts.
ACSS Doctoral Symposium allowed researchers working in different fields of
computer science such as Image processing, Remote Healthcare, Biometrics,
Pattern Recognition, Embedded Systems, Data Mining, Software Engineering,
Networking, and Network Security. The symposium evolved as a joint venture
between two collaborative universities: the University of Calcutta, India, and the
AGH University of Science and Technology, Poland.

The program committee members of ACSS 2014 were instrumental in dis-
seminating the objectives of the symposium among the scholars and faculty
members in a very short time. This resulted in a large number of submissions from
Ph.D. scholars from India and abroad. These papers underwent a minute and
detailed blind-review process with voluntary participation of the committee
members and external expert reviewers. The metrics for reviewing the papers had
been mainly the novelty of the contributions, technical content, organization, and
clarity in presentation. The entire process of initial paper submission, review,
and acceptance were done electronically. The hard work done by the Organizing
and Technical Program Committees led to a superb technical program for the
symposium. The ACSS 2014 resulted in high-impact and highly interactive pre-
sentations by the doctoral students.

The Technical Program Committee for the symposium has selected only 25
papers for publication out of a total 70 submissions. Session chairs were entrusted
with the responsibility of submitting feedbacks for improvements of the papers
presented. The symposium proceeding has been organized as a collection of
papers, which were presented and then modified as per reviewer’s and session
chair’s comments. This has helped the scholars to further improve their
contributions.

v

We would like to take this opportunity to thank all the members of the Technical
Program Committee and the external reviewers for their excellent and time-bound
review works. We especially thank Prof. Indranil Sengupta of IIT, Kharagpur for
his suggestions towards designing the Technical Program for ACSS-2014.
We thank all our sponsors who have come forward towards organization of this
symposium. These include Tata Consultancy Services (TCS), Springer India, ACM
India, M/s Business Brio, M/s Enixs. We appreciate the initiative and support from
Mr. Aninda Bose and Ms. Kamiya Khatter his colleagues in Springer for their
strong support towards publishing this post-symposium book in the series
‘‘Advances in Intelligent Systems and Computing.’’ Last, but not the least, we thank
all the authors without whom the symposium would not have reached up to this
standard.

On behalf of the editorial team of ACSS 2014, we sincerely hope that the
different chapters of this book will be beneficial to all its readers and motivate
them towards further research.

Rituparna Chaki
Khalid Saeed

Sankhayan Choudhury
Nabendu Chaki

vi Preface

Contents

Part I Software Engineering

Non-functional Property Aware Brokerage Approach
for Cloud Service Discovery . 3
Adrija Bhattacharya and Sankhayan Choudhury

A DWT-based Digital Watermarking Scheme for Image Tamper
Detection, Localization, and Restoration. 17
Sukalyan Som, Sarbani Palit, Kashinath Dey, Dipabali Sarkar,
Jayeeta Sarkar and Kheyali Sarkar

Service Insurance: A New Approach in Cloud Brokerage 39
Adrija Bhattacharya and Sankhayan Choudhury

Using Semiformal and Formal Methods in Software Design:
An Integrated Approach for Intelligent Learning
Management System . 53
Souvik Sengupta and Ranjan Dasgupta

A Lightweight Implementation of Obstruction-Free Software
Transactional Memory . 67
Ankita Saha, Atrayee Chatterjee, Nabanita Pal,
Ammlan Ghosh and Nabendu Chaki

Part II Cryptography

Multiplicative Polynomial Inverse Over GF(73): Crisis
of EEA and Its Solution. 87
J.K.M. Sadique Uz Zaman and Ranjan Ghosh

vii

http://dx.doi.org/10.1007/978-81-322-1988-0_1
http://dx.doi.org/10.1007/978-81-322-1988-0_1
http://dx.doi.org/10.1007/978-81-322-1988-0_2
http://dx.doi.org/10.1007/978-81-322-1988-0_2
http://dx.doi.org/10.1007/978-81-322-1988-0_3
http://dx.doi.org/10.1007/978-81-322-1988-0_4
http://dx.doi.org/10.1007/978-81-322-1988-0_4
http://dx.doi.org/10.1007/978-81-322-1988-0_4
http://dx.doi.org/10.1007/978-81-322-1988-0_5
http://dx.doi.org/10.1007/978-81-322-1988-0_5
http://dx.doi.org/10.1007/978-81-322-1988-0_6
http://dx.doi.org/10.1007/978-81-322-1988-0_6
http://dx.doi.org/10.1007/978-81-322-1988-0_6

A Novel Biometric Template Encryption Scheme
Using Sudoku Puzzle . 109
Arnab Kumar Maji and Rajat Kumar Pal

Part III Computer Aided Design

An ESOP-Based Reversible Circuit Synthesis Flow
Using Simulated Annealing . 131
Kamalika Datta, Alhaad Gokhale, Indranil Sengupta and Hafizur Rahaman

An Efficient Algorithm for Reducing Wire Length in Three-Layer
Channel Routing . 145
Swagata Saha Sau and Rajat Kumar Pal

A New Move Toward Parallel Assay Operations in a Restricted
Sized Chip in Digital Microfluidics. 157
Debasis Dhal, Arpan Chakrabarty, Piyali Datta and Rajat Kumar Pal

A 2D Guard Zone Computation Algorithm for Reassignment
of Subcircuits to Minimize the Overall Chip Area 183
Ranjan Mehera, Arpan Chakrabarty, Piyali Datta and Rajat Kumar Pal

Author Index . 211

viii Contents

http://dx.doi.org/10.1007/978-81-322-1988-0_7
http://dx.doi.org/10.1007/978-81-322-1988-0_7
http://dx.doi.org/10.1007/978-81-322-1988-0_8
http://dx.doi.org/10.1007/978-81-322-1988-0_8
http://dx.doi.org/10.1007/978-81-322-1988-0_9
http://dx.doi.org/10.1007/978-81-322-1988-0_9
http://dx.doi.org/10.1007/978-81-322-1988-0_10
http://dx.doi.org/10.1007/978-81-322-1988-0_10
http://dx.doi.org/10.1007/978-81-322-1988-0_11
http://dx.doi.org/10.1007/978-81-322-1988-0_11

About the Editors

Rituparna Chaki is an Associate Professor in the A.K. Choudhury School of
Information Technology, University of Calcutta, India since June 2013. She joined
the academia as faculty member in the West Bengal University of Technology in
2005. Before that she has served under Government of India in maintaining
industrial production database. Rituparna has done her Ph.D. from Jadavpur
University in 2002. She has been associated in organizing many conferences in
India and abroad as Program Chair, OC Chair, or as member of Technical Program
Committee. She has published more than 60 research papers in reputed journals
and peer-reviewed conference proceedings. Her research interest is primarily in
Ad-hoc networking and its security. She is a professional member of IEEE and
ACM.

Khalid Saeed received the B.Sc. Degree in Electrical and Electronics Engineering
from Baghdad University in 1976, the M.Sc. and Ph.D. Degrees from Wroclaw
University of Technology, in Poland in 1978 and 1981, respectively. He received
his D.Sc. Degree (Habilitation) in Computer Science from Polish Academy of
Sciences in Warsaw in 2007. He is a Professor of Computer Science with AGH
University of Science and Technology in Poland. He has published more than 200
publications—edited 23 books, Journals and Conference Proceedings, 8 text and
reference books. He supervised more than 110 M.Sc. and 12 Ph.D. theses. His
areas of interest are Biometrics, Image Analysis, and Processing and Computer
Information Systems. He gave 39 invited lectures and keynotes in different uni-
versities in Europe, China, India, South Korea, and Japan. The talks were on
Biometric Image Processing and Analysis. He received about 18 academic awards.
Khalid Saeed is a member of more than 15 editorial boards of international
journals and conferences. He is an IEEE Senior Member and has been selected as
IEEE Distinguished Speaker for 2011–2016. Khalid Saeed is the Editor-in-Chief
of International Journal of Biometrics with Inderscience Publishers.

ix

Sankhayan Choudhury is Associate Professor in the Department Computer
Science and Engineering, University of Calcutta, India. Currently, he is head of
this department. Moreover, he is Co-ordinator of TEQIP-II, University of Calcutta.
Dr. Choudhury has obtained his B.Sc. (Hons.) in Mathematics under University of
Calcutta. Thereafter he has obtained B.Tech. and M.Tech in Computer Science
and Engineering from University of Calcutta. He has completed Ph.D. from
Jadavpur University, India in 2006. His research interests include Mobile Com-
puting, Networking, Sensor Networking, Cloud Computing, etc. Besides authoring
a book, Dr. Choudhury has published close to 50 peer-reviewed papers in inter-
national journals and conference proceedings. He has also served in the Program
Committees of several international conferences and has also chaired the Program
and Organizing Committees of a few. Dr. Choudhury is a professional member of
ACM and an executive committee member for the local ACM professional chapter
in Kolkata, India.

Nabendu Chaki is a Senior Member of IEEE and an Associate Professor in the
Department Computer Science and Engineering, University of Calcutta, India.
Besides editing several volumes in Springer in LNCS and other series, Nabendu
has authored three textbooks with reputed publishers like Taylor and Francis (CRC
Press), Pearson Education, etc. Dr. Chaki has published more than 120 refereed
research papers in Journals and International conferences. His areas of research
interests include image processing, distributed systems, and network security.
Dr. Chaki has also served as a Research Assistant Professor in the Ph.D. program
in Software Engineering in U.S. Naval Postgraduate School, Monterey, CA. He is
a visiting faculty member for many universities including the University of
Ca’Foscari, Venice, Italy. Dr. Chaki has contributed in SWEBOK v3 of the IEEE
Computer Society as a Knowledge Area Editor for Mathematical Foundations.
Besides being in the editorial board of Springer and many international journals,
he has also served in the committees of more than 50 international conferences.
He is the founding Chapter Chair for ACM Professional Chapter in Kolkata, India
since January 2014.

x About the Editors

Part I
Software Engineering

Non-functional Property Aware
Brokerage Approach for Cloud
Service Discovery

Adrija Bhattacharya and Sankhayan Choudhury

Abstract In the fast growing service-oriented domain, cloud computing becomes
the focal issue of the current research initiatives. Increase in cloud services, pro-
viders, consumers and their requirements demands efficient handling of the
inherent complexity in a cloud environment. Cloud service broker (CSB) is one of
such initiative. Research on CSB, an inter-mediatory, has opened an unexplored
domain of service provisioning techniques. Seamless service provisioning with
better QoS (such as cost and time) is one of the major challenges in CSB design. In
this paper, an attempt has been made to propose a framework for facilitating
service provisioning techniques within CSB. The non-functional parameter (NFP)
along with functional one plays important role in service discovery from a set of
offered services. The service discovery process based only on functionality may
lead to an infeasible, hence unaccepted solution to a consumer. The meta-model, a
proposed component within CSB, in the form of a lattice is introduced for speed up
and to select more relevant set of services satisfying requirements of the con-
sumers. The lattice grabs service information for all possible NFP combinations
in a structured way. Different lattices with respect to each cloud layers are con-
structed independently. These lattices are exploited for finding the most relevant
services. Moreover, it is expected to behave better in terms of search time.

Keywords Service discovery � Lattice � Cloud broker

A. Bhattacharya (&) � S. Choudhury
Department of Computer Science and Engineering, University of Calcutta, Kolkata, India
e-mail: adrija.bhattacharya@gmail.com

S. Choudhury
e-mail: sankhayan@gmail.com

� Springer India 2015
R. Chaki et al. (eds.), Applied Computation and Security Systems, Advances in Intelligent
Systems and Computing 305, DOI 10.1007/978-81-322-1988-0_1

3

1 Introduction

In the fast growing service-oriented domain, cloud computing becomes the focal
issue of the current research initiatives. The cloud services are very much different
[1] and efficient with respect to Web services. Cloud actually offers software
(computational), platform (behavioural) and infrastructural data resources as ser-
vice from remote sources on demand. It consists of three types of models: Soft-
ware as a Service (SaaS), Platform as a service (PaaS) and Infrastructure as a
Service (IaaS) [2]. These three types of cloud services are often combined in
different manner to satisfy user requests.

The increase in different service offering as well as numbers of service pro-
viders has put up a new challenge to the cloud researchers as these poses enormous
different service provisioning with similar functionality but varying performance.
The Service Level Agreement (SLA) is a mediator document that has to be sat-
isfied for providing service to any consumer. In cloud computing paradigm, a
consumer may be an end user or another service provider. In spite of developing
and maintaining SLAs, cloud services often need mediation for coordinating
SLAs, consumer management, reporting, pricing and accounting, etc. In this
context, the cloud service broker (CSB) is proposed as a solution [3].

Cloud service provisioning through brokers is an open problem area of
research. A broker may be considered as an upgradation on classical multi-source
integrator used in distributed environments [4]. The service with similar func-
tionality in a cloud environment is differentiated by performance attributes such as
granularity, outcome, governance and control which works for betterment of cloud
service systems with the help of CSBs. Thus, service provisioning techniques
offered by a broker becomes a challenge.

An overall description of a broker is depicted in Fig. 1. There exists no such
standardized architecture of CSB. There are three major aspects, namely aggre-
gation, integration and customization, based on which a CSB can be formed.
Aggregation composes two or more service from one or more providers and then
delivers it to the user or any other service provider. Appstore is a typical example
of service aggregation through broker. Integration is another role that leads to
substantially new values to community management in cloud domain [5]. Gmail
contact list is the real-life example of integration by cloud broker. In customiza-
tion, newer functionalities are added to improve the existing service functionality.
The offered functionality of a broker can be customized in a flexible way based on
a specific application domain. Thus, automatic and technically advanced meth-
odologies are needed to enhance the strength of CSBs.

In Fig. 1, the component, marked in yellow, is the area of interest. In this paper,
our objective is to provide an enhanced service discovery mechanism with the help
of proposed meta-model. The said meta-model holds the detailed service infor-
mation and can be used for finding most relevant services in service provisioning.
Proposed enhanced service discovery mechanism is expected to behave in a more

4 A. Bhattacharya and S. Choudhury

efficient way in terms of overhead (time). The penalty is to be paid in terms of time
needed for model creation. This is insignificant as it is created offline, but can be
used several times to satisfy user query.

2 Related Work

This section gives a brief review on service provisioning role of cloud broker. In
recent time, a significant upgradation on existing cloud service architecture has been
done. A collaborative cloud market model [6] is proposed for collaboration among
service clouds by means of resource sharing. Guaranteed QoS [7] from consumer
side is considered for the first time, but this issue demands higher overhead in terms
of time. In another research work, a ranking system for cloud service composition
and goal-based method based on proposed SLA template for discovering proper
monitoring services have been incorporated [2]. Cloud service provisioning varies
in many ways with respect to service provisioning policies in Web. Lack of stan-
dardized representation of the cloud providers’ criteria and varying format and
content of SLAs made the existing Web service discovery and selection policies
infeasible to implement in cloud domain [1]. The tightly coupled nature of services
of a cloud often lacks flexibility, and as a result, one may not be able to club services
offered by different providers. Like, if a user has chosen Amazon S3 cloud storage,
then he is compelled to use Amazon provider’s services [8]. Besides that challenge,
due to complex relationship among cloud service providers, the existing service
composition policies also failed to accumulate required cloud services within a
composed single service. References [3, 9] have mentioned the required function-
alities of Cloud brokers such as service monitoring and service aggregation.

The work of service description is the foremost to remember. A formal and
detailed functional description about CSB and its role can be primarily identified
in [10]. Through the review work, an interesting taxonomy among the existing

Cloud Service
Users

Private CloudPublic Cloud

Security

Service
Provisioning

Service
Library

Monitoring

Billing &
Auditing

Reporting

Service
Discovery

Service
Selection

Service
Composition

Service
Integration

Broker

Fig. 1 Cloud service broker

Non-functional Property Aware Brokerage Approach… 5

works has been identified. A few of these comment on the service selection
techniques used. Several mathematical techniques are used for ranking-based
service selection [11]. The relevance of selection and discovery of cloud services
depends on the required functionality and non-functional parameters (NFP)
specification in query. A Key Performance Indicator (KPI)-based ranking [12] of
cloud services was proposed. This approach uses a set of NFPs, among which
some of the important are time, accuracy, interoperability, cost, reliability,
usability, etc. Only ranking strategy alone cannot be efficient enough for service
discovery and selection. A few feedback-based selections were incorporated in
[13, 14, 15]. Customer’s feedback is the key point considered in the approach. The
reliability of feedback raises a big question here. A prediction-based discovery
approach is described in [16]. The prediction bases are huge volume of previous
data. It is quiet infeasible in a real time system. Another prediction-based selection
is in [17]. But all of these are domain-specific applications. None of these takes all
possible NFPs into account, most of these dealing with the parameter ‘‘cost’’.
Obviously, it is the most important one, but it alone cannot be taken as the key
criteria for service selection.

Often the broker has a role in service decision-making and resource optimi-
zation. A set of works on this exists; for example, [18, 19] can be thought as
pioneer in the domain. But the optimization often leads to cost optimization which
is not the only need. Another cost optimization-based selection is done in [20]. It
uses two-way optimization, but this is a very problem-specific method and can
only be applied in feature placement problem.

The above discussion, especially on service provisioning, establishes the need
for a better service discovery mechanism that should consider the functional as
well as non-functional attributes as requested by consumers in a cloud environ-
ment. Most of the existing techniques are not considering all relevant NFPs used in
the query, and as a result, it may generate an infeasible solution for the consumer.
The scope of the work offers a meta-model that holds service information in the
contexts all possible NFPs such that it can be used for better service provisioning
as a whole.

3 Proposed Solution

The service provisioning in the area of cloud computing involves three main
entities in a dialogue session. Consumer agent and provider agent both interact
through third entity, broker agent or a set of broker agents. Brokers hold infor-
mation about multiple cloud providers and their services. Each service (SaaS,
PaaS, IaaS, etc.) has some non-functional specifications from provider’s end.
Consumer’s requirement has two parts one is functional and another is non-
functional requirements. Functional requirements of a query may be satisfied by
either a single service (any of SaaS, PaaS, IaaS, etc.) or a set of multiple services
(any combination of SaaS, PaaS, IaaS, etc.). In both of the cases, a minimum

6 A. Bhattacharya and S. Choudhury

required non-functionality (specified by user) has to be satisfied. The reason
behind is that in multi-cloud environment, information about all the service
offerings is large in size and impossible to accumulate at single point from where a
consumer can look for. In the process of searching, the consumer’s requested
services along with specified non-functionality held difficult due to huge amount of
information available at broker’s end. The proposed framework consisting of
brokerage meta-model is useful to manage the inherent complex relations among
the cloud providers in a much easier way. This is an efficient way to handle
information with intelligence, so that the time of search is decreased.

After the inclusion of our proposal within the framework, it runs in the manner
as depicted in Fig. 2. The query processing and extraction of service non-func-
tional specification from the query is the preliminary need.

The following steps are depicted in Fig. 2 to illustrate the enhanced service
discovery mechanism:

• First step considers the query from consumer.
• Functionalities are extracted from the query in second stage. Necessary SaaS,

PaaS and IaaS are identified.
• Matching of necessary NFPs is done in this stage.
• The proposed meta-model is consulted for finding relevant feasible services.
• An NFP adjustment scheme may be needed for providing an integral solution.

The focus of the paper lies on the proposition of the meta-model and to describe
the service discovery mechanism using the proposed work in Fig. 2.

3.1 The Proposed Meta-Model

The proposed meta-model grabs the non-functional information of the services and
arranges those in a structured way. The meta-model is lattice based. This is
immense helpful to use lattice as it contains all possible combinations of NFP in a
structured way. It is important for better discovery. If a set of NFP at a specific
level of lattice cannot satisfy the consumer-specified NFPs, it transfers to the next
lower level or levels which are connected. These lower level nodes are nothing but
the subsets of query NFPs. This actually increases the speed of discovery. Another
benefit of lattice is that it maintains a hierarchy among the nodes.

The proposed structure contains all unique combinations of non-functional
properties as elements. The elements together are defined as a set (say S). If the
non-functional properties (NFP) are denoted by the letters (A, B and C), then

S ¼ A; B; C; AB; AC; BC; ABCf g

Now each element in the set is actually a structure with varying dimension. The
dimension of the structure depends on the number of NFPs, such as ABC is a three-
dimensional structure as there are three NFPs (A, B, C). Node ABC has all services

Non-functional Property Aware Brokerage Approach… 7

whose specification has mentioned the values of NFP about A, B and C. Thus, the
structure can be conceptualized by Fig. 3.

Two binary operations have been defined as ‘‘consolidation’’ and ‘‘diversifi-
cation’’ on S.

Consolidation: It means accumulating common services from two different
nodes into a single node (from AB and AC to ABC).

Diversification: It means a higher order node is decomposed into lower order
nodes that is inclusion of more services in lower order nodes (AB to A and B).

Now from the definition of these two operations on the set S, following con-
clusions are drawn.

• Any node can be generated by higher level node using diversification or from
lower node using consolidation. As the structure has unique nodes, reflexivity
holds.

• Say nodes (X and Y) at level-p are generated by diversification from node Z at
level-p + 1. Again applying consolidation on X or Y cannot regenerate Z. Anti-
symmetry holds.

• Say a consolidation on M at level-p generates N at level-(p + 1). Now the same
is applied on N to generate K at level-(p + 2). It shows that K could be
generated from M using consolidation. Hence, transitivity holds.

Query from
consumer

Extracts functional
needs

Such as (SaaS’s,
PaaS, IaaS or else)

Extract query
NFPs for other

Extract query
NFPs for SaaS

Extract query
NFPs for PaaS

Extract query
NFPs for IaaS

Consult meta-
model for SaaS

Adjusting
Global NFPs

Return total
set of satisfying

services

Consult meta-
model for PaaS

Consult meta-
model for IaaS

Consult meta-
model for other

Fig. 2 Work flow of proposed cloud service discovery

8 A. Bhattacharya and S. Choudhury

S satisfies the reflexivity, anti-symmetry and transitivity properties. Thus, it is a
poset. Any two combination of level-i in the structure can be mapped to a unique
node in the level-(i - 1) which has all the common services of two selected level-i
nodes, but the reverse is not true. Two nodes from level-i and node in level-(i - 1)
are related by consolidation. So there exists unique least upper bound of any two
nodes in the structure.

Similarly, any two combination of level-i is connected with a unique level-
(i + 1) node by diversification, but also the reverse is not true. So there exists
unique greatest lower bound for any two elements (nodes). The poset contains the
unique least upper bound and unique greatest lower bound with respect to these
two operations defined. Thus, it is proved as a lattice. Lattice will contain 2N nodes
in case of N NFPs. (N + 1) will be the number of levels in the structure.

The direction of consolidation and diversification within the lattice is also
decided that helps into take dynamic decision at the time of discovery. For less
NFP information and more number of services, diversification is indicated, i.e. the
search will proceed from upper to lower nodes. Alternately, with more NFP
information and lesser services, search will have lower to upper direction execu-
tion by the operation consolidation. This model works also for partial matching of
NFP information though the existing ignores services with partial matches.

3.2 Description of the Framework

Consumer’s query is defined here as q(FS, NFS), where FS is the functional
specification and NFS is the non-functional specification. Again NFS can look like
(A = ‘‘a1’’, B = ’’b2’’) or (A = ‘‘a1 - ak’’, B = ‘‘b2 - bj’’) where A and B are
two NFPs. Number of NFPs are essentially 5, but can also vary within 8 to 10 for
particular domain-specific SaaSs or general PaaS, IaaS, etc. The lattice in Fig. 3
has all services access pointers in the lowest level. Next level contains the one NFP

ABLevel-2

Level-3

Level-1

Level-0

AC BC

ABC

A B C

Services without consolidation

Fig. 3 Framework
introduced

Non-functional Property Aware Brokerage Approach… 9

grouping of services; it is by the use of consolidation operation. In the next level,
services are arranged by two NFPs at a time. This way the lattice structure is
constructed. The lattice construction is primarily done at design time so the total
overhead of the structure is only due to maintenance. Each of the nodes is a
structure having dimensions. A typical structure is defined in Fig. 4.

The node ABC in Fig. 2 is internally looking like the above figure. Here, A,
B and C are assumed as NFPs (such as cost, time and security). a1 and a2 are the
different values assigned to the NFP A. The structure contains 24 cells
(2 9 3 9 4). Each cell contains service access pointer through which the original
services can be invoked. The very first cell in the above figure has edge labelled as
c1, a1 and b1 that means the cell contains the access pointers of the services whose
description contains NFPs A, B and C and that too in the form of (A = a1, B = b1

and C = c1).
This lattice model is introduced for containing service information in a struc-

tured way. Broker must have many lattices such as SaaS-lattice, PaaS-lattice and
IaaS-lattice. A SaaS-lattice contains information regarding SaaS, which are
accumulated and similar kind of structures formed for each of PaaS, IaaS, etc.

3.3 Service Discovery Algorithm

In this subsection, service discovery algorithm is defined. The described algorithm
works within a lattice model. This is a generic algorithm that will work for every
lattice within the framework. The following points are some prerequisite for
understanding the algorithm

• All the NFPs are declared in the power of 2, i.e. for 3 NFPs A, B and C. So,
A = 2�, B = 21, C = 22 AB = 2� + 21 = 3. So all NFP combinations are
declared as unique sums

• The algorithm works for all levels of the lattice.
• It is clear from the model that the number of NFP is equals the level of the

lattice from where search is to proceed.
• The algorithm passes execution to next lower level if no services in ith level are

matched with NFP specified.

Fig. 4 Example node of the
structure

10 A. Bhattacharya and S. Choudhury

• The algorithm will be recursively called several times until the services are
found satisfying NFP.

• If failing to find all NFP satisfying services, the structure returns all possible
combinations. For example, if the query specifies A, B and C and if at level-3
node ABC (in Fig. 3) has no matching services, then it will return services from
AB, BC, AC, A, B, C nodes and the last node at bottom also.

Algorithm for searching services at the ith level of the lattice

Step 0: [Initialize] Define unique weights to each NFPs. Set Source = level
who called level-i, N = number of non-functional criteria passed by the
user, Count = 1, Found[N] = false, fail = 1 (no of failed combination)

Step 1: For the ith non-functional criteria do
Step 1.1: If the user given non-functional criteria is valid then

Mark-no = i, [Mark it with i]
End If

Step 2: For all non-functional criteria, repeat step 1
Step 3: Calculate unique sums for valid NFPs using defined weights.
Step 4: Collect services with corresponding unique sums
Step 5: For all existing services do

Begin
If the all i non-functional criteria and functional criteria are
simultaneously satisfied with user query, then
set a flag Found[i] = true
Print ‘‘The service found with id’’.
Endif

End For
Step 6: Increment count by 1.

Repeat the steps from step 1 to step 4 for all combinations of valid ith
NFPs

Step 7: If Found[i] = true for all i then
If Source = manager then

Send a finish message to the manager.
Else

Send a found message to the Source.
End If

Else
If Source = manager then

Call its previous level (i - 1).
Else
Send a not found message to the Source.
End If

End If
Step 8: After all combination checked

If fail = no of all combination of all i NFPs then
Call (i - 2) level

End if

Non-functional Property Aware Brokerage Approach… 11

This multi-dimensional structure consists of several dimensions. These
dimensions often contain hierarchy, such as location. If the service declaration has
NFP, Location =‘‘West Bengal’’ . Then, the hierarchy information is held in the
lattice that ‘‘Kolkata’’ is in‘‘West Bengal’’. So the services relevant to West Bengal
will be retrieved, if the query demands it from Kolkata.

4 Illustration with Example

In this example, it is assumed that the framework consisting of five lattices for
SaaS, PaaS, IaaS, DaaS (data as a service) and Communication as a service
(CaaS). The example primarily is built upon a typical domain of SaaS. It is fixed as
health care. So SaaS may include cost, waiting time, reliability and location as
relevant NFPs with respect to health care services; particularly, emergency acci-
dental care services are considered as the functionality. Thus, a SaaS-lattice
formed containing emergency health services. Functionality of services includes
diagnostic test services, general medicine, orthopaedics and nursing care. Figure 5
illustrates the SaaS-lattice.

Four NFPs are specified in the lattice of different services irrespective of
functionalities, considering NFPs. A typical consumer query is of the following
form:

Query: Brain scan imaging with maximum 2-h waiting time in Kolkata within
cost Rs. 2,000 and the communication service with minimum delay to the services.

LRLevel-2

Level-3

Level-1

Level-0

LC CW

LRC

L R W

Services without grouping

C

LW RC RW

LRW LCW RCW

LRCWLevel-4

L Location
R Reliability
C Cost

W Waiting time

Fig. 5 SaaS-lattice for
health care services

12 A. Bhattacharya and S. Choudhury

Solution: Here, a SaaS-lattice and another CaaS-lattice have to be exploited for
satisfying the query. SaaS-lattice will be searched at level-2 and node CW. After
finding a set of relevant services with respect to cost and waiting time from SaaS-
lattice, a set of CaaS are to be found. Further, the CaaS-lattice is exploited with
minimum delay that will connect any of the scan services satisfying the user NFP
specification and Delay in CaaS.

5 Conclusion

Several discovery methods already exist in cloud domain; some of them are non-
functional property-based mechanisms. In this approach, a methodology is pro-
posed that works first to strike out the non-relevant NFP information. Further
based on the remaining NFPs, any of the existing search algorithms can work.

Lattice that is a mathematical structure is used in cloud service domain. Few
operations are there to explore the properties of the structure. Identification of the
lattice framework, construction of it and searching on this model are the major
contributions of this work. This model considers incomplete NFP information also
and gives all possible combinations of those NFPs. These enable consumers to
compromise at one of the NFPs and then subscribe the service where in existing
works no such provision was there. Offered solution should be considered as a
relevant one.

Scalability is another issue in this context. Huge number of services may occur
within service cells in each structure, if there are no functional differences con-
sidered. In the proposed work, the domain of deployment is limited to a small set
of cloud providers and they are related in some way. So the functionalities of
services vary within a small set. However, the proposed work can be combined
with any of the existing functionality-based solution of services discovery. As the
number of NFPs within closed domains varying over 8–10, the construction and
maintenance is easier.

In future, lattice of service units could be degenerated to work with only the
important service NFP combinations and ignoring the rest. Besides, the multi-
dimensional structure, referred here as node, could be exploited further. This may
lead to the discovery of new set of operations and further optimizations. The
identification of hierarchy and accordingly formation of new service at different
granular level is an important research area where different mathematical models
could be analysed.

Non-functional Property Aware Brokerage Approach… 13

References

1. Sundareswaran, S., Squicciarini, A., Lin, D.: A Brokerage-Based Approach for Cloud Service
Selection. In: IEEE 5th International Conference on Cloud Computing, Honolulu, HI. ISBN:
978-1-4673-2892-0, June 2012

2. Subashini, S., Kavitha, V.: A survey on security issues in service delivery models of cloud
computing. J. Netw. Comput. Appl. 34(1), 1–11 (2011)

3. Lheureux, B.: Cloud Services Brokerages: the Dawn Of The Next Intermediation Age.
Published in Gartner Blog Network, 8 Nov 2010

4. Lawler, C.M.: Cloud Service Broker Model, Green IT Cloud Summit, Washington, D.C,
April 18, Sheraton Premier, Tysons Corner, http://www.greenitsummit.org/summit/ (2012)

5. Houidi, I., Mechtri, M., Louati, W., Zeglache, D.: Cloud service delivery across multiple
cloud platforms. IEEE International Conference on Service Computing (SCC) (2011)

6. Nguyen, D.K., Lelli, F., Taher, Y., Parkin, M., Papazoglou, M.P., van den Heuvel, W.J. :
Blueprint Template Support for Engineering Cloud-Based Services, Springer LNCS,
Towards a Service-Based Internet. In: Proceedings of 4th European Conference,
ServiceWave 2011 Poznan, Poland, 26–28 Oct 2011

7. Siebenhaar, M., Lampe, U., Lehrig, T., Z̈oller, S., Schulte, S., Steinmetz, R.: Complex
Service Provisioning in Collaborative Cloud Markets, Springer LNCS, Towards a Service-
Based Internet. In: Proceedings of 4th European Conference, ServiceWave 2011 Poznan,
Poland, 26–28 Oct 2011

8. Tsai, W.T., Sun, X., Balasooriya, J.: Service-Oriented Cloud Computing Architecture. In:
IEEE Seventh International Conference on Information Technology 2010

9. Mondal, A., Yadav, K., Madria, S.: Ecobroker: An Economic Incentive-Based Brokerage
Model for Efficiently Handling Multiple-Item Queries to Improve Data Availability via
Replication in Mobile-P2P Networks. In: 6th International Workshop in Databases in
Networked Information Systems, pp. 274–283 (2010)

10. Buyya, R., Yeo, C., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging it
platforms: vision, hype, and reality for delivering computing as the 5th utility. J. Future
Gener. Comput. Syst. 25(6), 599–616 (2009)

11. World Wide Web consortium (W3C): Web Service Activity Statement. Retrieved from http://
www.w3.org/2002/ws/Activity on 03 June 2007

12. Garg, S.K., Versteeg, S., Buyya, R.: A framework for ranking of cloud computing services.
J. Future Gener. Comput. Syst. 29(4), 1012–1023 (2013)

13. Qu, L., Wang, Y., Orgun, M.A.: Cloud Service Selection Based on the Aggregation of User
Feedback and Quantitative Performance Assessment. In: IEEE 10th International Conference
on Services Computing 978-0-7695-5026-8/13

14. Villegas, D., Bobroff, N., Rodero, I., Delgado, J., Liu, Y., Devarakonda, A., Fong, L.,
Masoud Sadjadi, S., Parashar, M.: Cloud federation in a layered service model. J. Comput.
Syst. Sci. 78, 1330–1344 (2012)

15. Heng, D.Y., et al.: A user centric service-oriented modeling approach. J. World Wide Web
14(4), 431–459 (2011)

16. Narayanan, D., Flinn, J., Satyanarayanan, M.: Using history to improve mobile application
adaptation. In: Proceedings of Third IEEE Workshop on Mobile Computing Systems and
Applications, 2000

17. Balan, R., Satyanarayanan, M., Park, S., Okoshi, T.: Tactics-Based Remote Execution for
Mobile Computing. In: Proceedings of the 1st International Conference on Mobile Systems,
Applications and Services, ACM, pp. 273–286 (2003)

18. Kusic, D., Kandasamy, N.: Risk-aware limited look ahead control for dynamic resource
provisioning in enterprise computing systems. In: Proceedings of the IEEE International
Conference on Autonomic Computing, vol. 10(3); pp. 337–350 (2010)

14 A. Bhattacharya and S. Choudhury

http://www.greenitsummit.org/summit/
http://www.w3.org/2002/ws/Activity
http://www.w3.org/2002/ws/Activity

19. Kofler, K., Haq, I.U., Schikuta, E.: User-Centric, Heuristic Optimization of Service
Composition in Clouds. In: 16th International Euro-Par Conference, vol. 6271, Springer,
Berlin, pp. 405–417 (2010)

20. Moens, H., Truyen, E., Walraven, S., Joosen, W., Dhoedt, B., De Turck, F.: Cost-effective
feature placement of customizable multi-tenant applications in the cloud. J. Netw Syst.
Manag. (2013). doi:10.1007/s10922-013-9265-5

Non-functional Property Aware Brokerage Approach… 15

http://dx.doi.org/10.1007/s10922-013-9265-5

A DWT-based Digital Watermarking
Scheme for Image Tamper Detection,
Localization, and Restoration

Sukalyan Som, Sarbani Palit, Kashinath Dey, Dipabali Sarkar,
Jayeeta Sarkar and Kheyali Sarkar

Abstract The provision of image tamper detection, localization and restoration
forms an important requirement for modern multimedia and communication sys-
tems. A discrete wavelet transform (DWT)-based watermarking scheme for this
purpose is proposed in this communication. In our scheme, the original image is
first partitioned into blocks of size 2 9 2 in which a 1D DWT is applied to produce
a watermark which is embedded in four disjoint partitions of the image to enhance
the chance of restoration of the image from different cropping attack-based tampers.
The validity and superiority of the proposed scheme is verified through extensive
simulations using different images of two extensively used image databases.

Keywords Discrete wavelet transform (DWT) � Least significant bits (LSBs) �
Peak signal-to-noise ratio (PSNR) � Mean squared error (MSE) � Structural
SIMilarity (SSIM) index

S. Som (&) � J. Sarkar � K. Sarkar
Department of Computer Science, Barrackpore Rastraguru Surendranath College,
Barrackpore, West Bengal, India
e-mail: sukalyan.s@gmail.com

J. Sarkar
e-mail: sarkar.jayeeta9@gmail.com

K. Sarkar
e-mail: chelsea.kheyali9@gmail.com

S. Palit � D. Sarkar
CVPR Unit, Indian Statistical Institute, Kolkata, West Bengal, India
e-mail: sarbanip@isical.ac.in

D. Sarkar
e-mail: mampisarkar333@gmail.com

K. Dey
Department of Computer Science and Engineering, University of Calcutta,
92, APC Road, Kolkata 700009, West Bengal, India
e-mail: kndey55@gmail.com

� Springer India 2015
R. Chaki et al. (eds.), Applied Computation and Security Systems, Advances in Intelligent
Systems and Computing 305, DOI 10.1007/978-81-322-1988-0_2

17

1 Introduction

Tampering of digital media and its detection has been an interesting problem since
long time. Its importance has increased with the stepping up of the use of digital
media on the Internet. The volume of data transmission, especially that of images
and videos, has gone up exponentially and has naturally drawn the interest of many
including, unfortunately, fraudulent persons who would tamper with the transmitted
data to suit their purpose. The detection of tampering followed by restoration of the
original image is hence an important task. Most of the research carried out so far has
been of tamper detection, while more recent work includes recovery of the image as
well.

A number of digital watermarking schemes have been reported during the past
decade for different purposes and considerations. In [1], an image tamper detection
and recovery system has been developed based on the discrete wavelet transform
(DWT) technique where some information has been extracted as the eigenvalue of
the image and is embedded in the middle-frequency band of the frequency domain.
Such embedding has been used for tamper detection and localization. In [2], a novel
fragile watermarking scheme based on chaotic system for image authentication or
tamper proofing is proposed. The watermark is generated by using pixel values as
input values of a chaotic system, and a secret key controls a set of parameters of the
chaotic system. A quantization function is introduced to embed and detect water-
marks. This method can effectively detect minor alteration in a watermarked image.
In [3], a tamper detection and retrieval scheme has been proposed. Special char-
acteristic values of the low-frequency sub-band are embedded in the middle-
frequency sub-bands. The embedded data with a digital signature and a public key
are used to prove the authenticity of the image. Recovery with visually acceptable
quality has also been achieved. In [4], the watermark of a particular image is
generated from both frequency domain and spatial domain. The number of
encoding stages of each DWT coefficient during the multistage encoding is taken as
frequency watermark, and the mean values of blocks are stored as spatial water-
mark. The watermark is embedded into SPIHT encoded list of significant pixels
(LSP) bit stream. By comparing the embedded watermark and the corresponding
message extracted from decoded image, authentication is ensured. In [5], the semi-
fragile watermark is designed from low-frequency band of wavelet-transformed
image and is embedded into the high-frequency band by the human visual system
(HVS). The robustness for mild modification such as JPEG compression and
channel additive white Gaussian noise (AWGN) and fragility to malicious attack
are analyzed. In [6], the proposed scheme extracts content-based image features
from the approximation sub-band in the wavelet domain to generate two comple-
mentary watermarks. An edge-based watermark sequence is generated to detect any
changes after manipulations. A content-based watermark is also generated to
localize tampered regions. Both watermarks are embedded into the high-frequency
wavelet domain to ensure the watermark invisibility. In [7], the original image is
divided into two regions: region of interest (ROI), which is important region that

18 S. Som et al.

requires protection against malicious modification, and region of embedding
(ROE), which is the rest of the image where watermark sequence is embedded. In
[8], dual visual watermarks using DWT and singular value decomposition (SVD)
are presented. One is color image the same as original image, and the other is
ownership watermark which is grayscale image. Both of them are embedded into
original image using DWT-SVD to prove robustness. For recovery signal embed-
ding, luminance signal and chrominance signal of original image were embedded
into surplus chrominance space of original image using matrix transpose replace-
ment embedding method. In [9, 10], two watermarks are used, generated from the
low-frequency band and embedded into the high-frequency bands, one for detecting
the intentional content modification and indicating the modified location and
another for recovering the image. In [11], a multipurpose image watermarking
method based on the wavelet transform is proposed for content authentication and
recovery of the tampered regions where the original image is first divided into non-
overlapping blocks and each block is transformed into the wavelet domain. The
image features are subsequently extracted from the lowest frequency coefficients of
each block as the first embedded watermark. Next, the whole image is decomposed
into the two-level wavelet transform, and the orientation adjustment is calculated
based on the wavelet coefficients in the middle-frequency sub-bands for image
authentication. In addition, a logo watermark is embedded into the given middle-
frequency sub-bands.

The rest of the paper is organized as follows. In Sect. 2, a brief introduction to
DWT using Haar wavelet is given. In Sect. 3, the proposed scheme is presented
wherein watermark generation, watermark embedding, and watermark extraction
for the purpose of image tamper detection, localization, and recovery are
explained. Section 4 demonstrates the experimental results with conclusions being
drawn in Sect. 5.

2 Background

2.1 Discrete Wavelet Transform

The single-level 2D DWT decomposes an input image into four components,
namely LL, LH, HL, and HH where the first letter corresponds to applying either a
low-pass or a high-pass frequency operation to the rows and the second letter
refers to the filter applied to the columns. The lowest frequency sub-band LL
consists of the approximation coefficients of the original image. The remaining
three frequency sub-bands consist of the detail parts and give the vertical high
(LH), horizontal high (HL), and high (HH) frequencies. Figure 1 demonstrates
single-level 2D DWT. For an one-level decomposition, the discrete 2D wavelet
transform of the image function f(x, y) can be written as follows:

A DWT-based Digital Watermarking Scheme… 19

LL ¼ ðf ðx; yÞ � /� x/� yÞð2n; 2mÞ½ �ðn;mÞ2Z2

LH ¼ ðf ðx; yÞ � /� xw� yÞð2n; 2mÞ½ �ðn;mÞ2Z2

HL ¼ ðf ðx; yÞ � w� x/� yÞð2n; 2mÞ½ �ðn;mÞ2Z2

HH ¼ ðf ðx; yÞ � w� xw� yÞð2n; 2mÞ½ �ðn;mÞ2Z2

where /ðtÞ is a low-pass scaling function and wðtÞ is the associated band-pass
wavelet function. For computational simplicity, we have performed DWT using
Haar wavelet.

3 Proposed Scheme

The proposed method has three distinct phases. Firstly, a watermark is generated
from the image itself which is fragile to content modification as well as robust to
common image processing after a preparation for doing so. Secondly, the generated
watermark is embedded in the image. Finally, the watermark is extracted from the
image (the one that has gone several degradations due to cropping attacks and/or
noise attacks) to detect and localize tamper and recover the image as close as
possible to the original one.

3.1 Watermark Preparation

A block mapping sequence is used to scramble watermark information. A 1D
transformation algorithm, found in [12], shown in Eq. (1) is used to obtain a one-
to-one mapping sequence where X;X0ð2 ½0;N � 1�Þ the block number,
kða prime and 2 Z � ffactors of NgÞ is a secret key, and Nð2 Z � f0gÞ is the total
number of blocks in the image of size N ¼ 2n � 2n, n� 2, and n 2 N.

Fig. 1 Discrete wavelet transform

20 S. Som et al.

X0 ¼ f ðxÞ ¼ ðk � XÞmod N½ � þ 1 ð1Þ

A lookup table is constructed using the following algorithm to record the
mapping address of each block in the image.

3.1.1 Block Mapping Address Generation Algorithm

1. Divide the image into non-overlapping blocks of 2 9 2 pixels.
2. Assign a unique nonnegative integer X 2 f0; 1; 2; . . . N � 1g to each block

from top left in row major order, N ¼ 2n�1 � 2n�1.
3. Choose a prime number k 2 ½1;N � 1�.
4. For each block number X, obtain X0 and its mapping block by Eq. (1). All the

X0s construct the lookup table.

A push-aside operation is used to modify the lookup table. The watermarks of
the left half of the image are concentrated in the right half region of the image, and
the watermarks of the right half of the image are concentrated in the left half
region of the image. We simply push right the columns which originally belong to
the left half and push left the columns which originally belong to the right half and
thus result in a modified lookup table.

As an illustration, an image of size 8 9 8 is considered as the original image.
The original image along with its corresponding block index matrix, lookup table
generated using Eq. (1), and modified lookup table after push-aside operation is
shown in Fig. 2.

3.2 Watermark Generation

Step 1: Decompose each 2 9 2 sized block by the DWT decomposition yielding
from each block the approximation coefficient matrix LL1 and the detail
matrices HL1, LH1, and HH1.

Step 2: The watermark is generated from the coefficient of the LL1 sub-band of
each decomposed block. As LL1 wavelet coefficients may be beyond the
recovery scope, its value must be adjusted. Therefore, the coefficients,
after computation, are modified subsequently such that its value falls
within the recovery range, as done in [5].

Step 3: The original image is divided horizontally and vertically into four equal
parts. Let blocks A, B, C, and D be located at those four parts, respectively,
such that C is situated at the opposite angle of A and D is situated at the
opposite angle of B. Partner blocks of part A are located at the same
position of part C and vice versa. Partner blocks of part B are located at the
same position of part D and vice versa.

Step 4: The representative information of block A is constructed by extracting the
five most significant bits (MSBs) of LL1 sub-band coefficient of block A

A DWT-based Digital Watermarking Scheme… 21

and is then combined with (1) the representative information of block C
and (2) the in-block parity-check bits and its complementary bit p and v,
respectively, to construct the joint 12-bit watermark for blocks A and C.
Similarly, the representative information of block B is used to construct
the joint 12-bit watermark for blocks B and D.

The watermark generation technique is illustrated in Figs. 3 and 4.

3.3 Watermark Embedding

Two mapping blocks are needed to embed the joint 12-bit watermark of block A
(or B) and its partner blocks C (or D). The lookup table helps find these mapping
blocks. The watermark is embedded into the three LSBs of each pixel of a block.
Suppose blocks A and C (or B and D) are the two mapping blocks which are going
to be used to embed the 12-bit watermark resulted from blocks A and C (or B and
D). Both blocks A and C contain the same 12-bit watermark and the same
embedding sequence in the corresponding locations. That is to say, for each block
of size 2 9 2 pixels in the image, we have two copies of its representative
information hidden somewhere in the image. Therefore, if one copy is tampered by
any chance, we have two chances to recover this block from the other copy.

Figures 5 and 6 demonstrate the watermark embedding technique.

Fig. 2 a The original image matrix; b the original image matrix subdivided into 2 9 2 non-
overlapping blocks; c the original block matrix; d the lookup table; and e the modified lookup
table after push-aside operation

22 S. Som et al.

Fig. 3 a First two partner blocks (block 0 and block 10) in the original image matrix; b binary
equivalent of each of the four pixels of block 0; c modified pixel values of block 0 after replacing
three LSBs with 0s; d binary equivalent of each of the four pixels of block 10; and e modified
pixel values of block 10 after replacing three LSBs with 0s

Fig. 4 a and b Application of 2D DWT using Haar wavelets into block 0 and block 10,
respectively, resulting in the approximation coefficient matrix LL1 and detail matrices LH1, HL1,
and HH1 and c the 12-bit watermark generated from the five MSBs of the LL1 sub-band coefficient
of block 0 and block 10 followed by a in-block parity-check bit P and its complement V

A DWT-based Digital Watermarking Scheme… 23

Fig. 5 a Mapping blocks block 11 and block 9 of block 0 and block 10, respectively, found from
the modified lookup table; b mapping blocks highlighted in the modified lookup table; c mapping
blocks highlighted in the original block matrix; and d pixels of mapping blocks highlighted in the
original image matrix

Fig. 6 a Binary representation of each of the four pixels of the mapping blocks—block 11 and
block 9; b embedding of the same 12-bit watermark into block 11 and block 9; c modified block
11 and block 9 after watermark embedding; and d modified block 11 and block 9 in the original
image matrix

24 S. Som et al.

3.4 Watermark Extraction: Tamper Detection, Localization,
and Restoration

The watermarked image is tampered with different cropping attacks and covering
and replacement attacks. Figure 7 represents the watermarked image of Fig. 6e
cropped 25 % from center.

Tamper detection and localization A three-level hierarchical tamper detection
and localization algorithm has been employed as proposed in [12].

Level 1 detection: For each non-overlapping block B of size 2 9 2,

1. Retrieve the 12-bit watermark information from the block.
2. Get the parity-check bits p and v, respectively, from the 11th and 12th bits of

the retrieved watermark.
3. Perform exclusive-OR operation on the 10 MSBs of the 12-bit watermark,

denoted by p0.
4. If p ¼ p0 and p 6¼ v, mark block B valid; otherwise, mark it invalid.

Figure 8 demonstrates the level 1 tamper detection method.
Level 2 detection: For each block B marked valid after level 1 detection, check

four triples (N, NE, E), (E, SE, S), (S, SW, W), and (W, NW, N) of the 3 9 3
neighborhood of block B. If at least one triple has all of its blocks marked invalid,
mark block B invalid.

Level 3 detection: For each block B marked valid after level 2 detection, if at
least five of the 3 9 3 neighboring blocks of block B are marked invalid, mark
block B invalid.

Recovery of invalid blocks After the tamper detection process, all blocks in the
image are marked either valid or invalid. Those invalid blocks need only to be
recovered. A two-stage recovery scheme is applied for tamper recovery as follows:

Stage 1 recovery: For each non-overlapping block B of size 2 9 2 pixels which
is marked invalid,

1. Find the mapping block of B from the lookup table, denoted by B

Fig. 7 a Tampered image after cropping 25 % from the center of the watermarked image and
b image in (a) with blocks highlighted

A DWT-based Digital Watermarking Scheme… 25

2. If B is valid, then B is the candidate block, go to 5.

3. Find the mapping block of B0s partner block, denoted by B.

4. If B is valid, then B is the candidate block; otherwise stop, leave block B alone.
5. Retrieve the 12-bit watermark information from the candidate block.
6. If block B is located in the upper half of the image, the 5-bit representative

information of block B starts from the first bit (the leftmost bit) of the 12-bit
watermark; otherwise, it starts from the sixth bit.

7. Pad four 0s to the end of the 5-bit representative information to form a new
9-bit coefficient.

8. Perform the inverse DWT operation based on this coefficient as the approxi-
mation coefficient which generates a new block of size 2 9 2.

9. Replace block B with this new block and mark block B as valid.

The method for stage 1 recovery is shown in Fig. 9.
Stage 2 recovery: Recover the remaining invalid blocks after stage 1 recovery

from the neighboring pixels surrounding them. Corresponding to a central block B
being processed, the 3 9 3 neighboring blocks can be found as directional triples
(N, NE, E), (E, SE, S), (S, SW, W), and (W, NW, N) where each of the neigh-
boring blocks being denoted as N1–N8 from NW to W in a clockwise manner.
After the two-stage recovery process, lost blocks are reconciled by interpolating
pixel values.

Figure 10 presents the reconstructed image of Fig. 7 after stage 2 recovery.

Fig. 8 Level 1 tamper detection and localization: a four pixels of block 5 with their binary
equivalents; b four pixels of block 6 with their binary equivalents; c four pixels of block 9 with
their binary equivalents; d four pixels of block 10 with their binary equivalents; and e localization
of tampered block(s) after level 1 detection

26 S. Som et al.

4 Experimental Results

The performance and feasibility of the proposed scheme is examined through
extensive tests carried out over USC-SIPI [13] and CSIQ [14] image databases
which are collections of digitized images available and maintained by University
of Southern California and School of Electrical and Computer Engineering,

Fig. 9 Stage 1 recovery: a mapping block of the detected tampered block; b four pixels of the
mapping block (block 12) with 5-bit information of block 5 embedded as watermark; c 5-bit
information of block 5 padded with four 0s forming 9-bit approximation of block 5;
d reconstructed block resulting from 2D inverse DWT on (c); and e recovered image after
stage 1 recovery

Fig. 10 Stage 2 recovery: a and b the recovered image after reconciling the missing blocks by
interpolating pixel values

A DWT-based Digital Watermarking Scheme… 27

Oklahoma State University, respectively. The images are chosen to prove the
efficacy of the proposed scheme over various characteristics such as smooth areas,
edges, textures, curvature, and regular and irregular geometric objects. The pro-
posed scheme and the existing state of the art, considered for comparison, have
been implemented using MATLAB 7.10.0.4 (R2010a) on a system running on
Windows 7 (32 bit) with Intel Core i5 CPU and 4-GB DDR3 RAM.

The proposed scheme was examined against cropping attacks of different sizes.
The performance of the proposed method is measured by the peak signal-to-noise
ratio (PSNR) and Structural SIMilarity (SSIM) index [15].

The PSNR of a given image is the ratio of the mean square difference of two
images to the maximum mean squared difference that can exist between any two
images. It is expressed as a decibel value. An image with a PSNR value of 30 dB
or more is widely accepted as an image of good quality. SSIM measures the
similarity/dissimilarity between two images. For a watermarked image, greater
value of PSNR and SSIM close to unity is expected.

Let I1(i, j) and I2(i, j) be the gray level of the pixels at the ith row and jth
column of two images of size H 9 W, respectively. The MSE between these two
images is defined in Eq. (2), and PSNR is defined in Eq. (3).

MSE ¼ 1
H �W

XH�1

i¼0

XW�1

j¼0

I1ði; jÞ � I2ði; jÞj j2 ð2Þ

PSNR ¼ 20 � log10
255

sqrt(MSE)

� �
ð3Þ

The SSIM index between two images I1 and I2 as described in [15] is computed
using Eq. (4):

SSIMðI1; I2Þ ¼
ð2lI1

lI2
þ C1Þð2rI1I2 þ C2Þ

ðlI1
2 þ lI2

2 þ C1ÞðrI1
2 þ rI2

2 þ C2Þ
ð4Þ

where l, r, and r2 denote average, variance, and covariance, respectively, and C1

and C2 are constants as described in detail in [15].

4.1 Imperceptibility of Watermark

Imperceptible watermarks are invisible to naked eyes. If the embedded watermark
is imperceptible, human eye cannot discriminate between the original image and
its watermarked version. In the proposed scheme, the imperceptibility of the
watermark has been examined for a wide variety of images in terms of PSNR and
SSIM. For the watermarked images, greater value of PSNR (well above 35) and
SSIM close to unity justify the imperceptibility of the watermark. A sample image

28 S. Som et al.

of Lena and its watermarked version are shown in Fig. 11 where difference
between the two images is hardly visible. In Table 1, the PSNR and SSIM between
the original images and their watermarked versions using the proposed algorithm
and the algorithm proposed by Lee and Lin [12] are presented.

4.2 Payload

The payload represents the size of the watermark that can be hidden in the image
in terms of the number of bits per pixel (bpp). In our proposed algorithm, the size
of the watermark is a function of the image size and block size. Here, the block
size is of 2 9 2. For each block, a 12-bit watermark is embedded. For an image of
size H 9 W, the total size of the watermark embedded in the image is
H�W
2�2 � 12 bits with a payload of 12

2�2 ¼ 3 bpp.

4.3 Performance Against Tampering

To evaluate the effectiveness of the proposed scheme against tampering, localize
the tampered regions, and restore them back as close as possible to the original, the

Fig. 11 a Original image of Lena; b watermarked image of (a)

Table 1 Comparison of PSNR and SSIM of watermarked images

Image name Size Ref. [12] Proposed

PSNR (in dB) SSIM PSNR (in dB) SSIM

Lena 512 9 512 41.44 0.93 41.44 0.93

Peppers 512 9 512 41.39 0.93 41.39 0.93

Baboon 512 9 512 41.30 0.98 41.31 0.98

Boat 512 9 512 41.35 0.95 41.32 0.95

A DWT-based Digital Watermarking Scheme… 29

watermarked images were made to go through different types of tampers, viz.
(1) Direct Cropping which can be classified into two sub-categories: (a) cropping
as a whole where a single chunk is cropped from the image and (b) multiple
cropping that includes spread distribute cropping where the cropping is spread all
over the image and chunk distribute cropping where small number of relatively
large chunks are cropped from the image; (2) Object Insertion where external
objects are inserted into the watermarked image, and the object may be of large
size, medium size, or small size; and (3) Object Manipulation where specific
objects in the watermarked image are removed, destroyed, or changed.

Results of direct cropping (a) Cropping as a whole: Fig. 12 represents original
image Lena of size 512 9 512, its watermarked version, different percentages of
cropping attacks from center, and recovered images with their PSNR and SSIM
values. From the result, we can see that the image can be restored up to a relatively
good quality for cropping up to 60 %.

(b) Multiple cropping: Performance of the proposed scheme is evaluated against
four different types of spread distribute tampering and eight different chunk dis-
tribute tampering. A total of 50 % of Peppers image is cropped. The cropped
images along with corresponding tamper-localized and recovered images are
shown in Fig. 13. Figure 13a0–d0 represents spread distribute tampering, while
chunk distribute tampering is represented in Fig. 13e0–l0 for grayscale image of
Peppers. The corresponding recovered images are presented in Fig. 13a1–l1 along
with their PSNR values. For brevity, the same test image Peppers, as in [12], is
taken into consideration so that conclusions can be drawn that for different tamper
distributions too, our proposed scheme outperforms the one in [12].

Results of object insertion One of the most common image tamperings by
inserting objects is by copying/cutting regions of the watermarked image and
pasting them into somewhere else in that image. The proposed watermarking
system detects, localizes, and recovers the tampered regions of the images tam-
pered by inserting small-, medium-, and large-sized objects as depicted in Fig. 14.

Results of object manipulation The watermarked image is attacked to remove,
destroy, or change specific regions or objects in it. Figure 15 demonstrates three
such attacks. The watermarked images are shown in Fig. 15a–c, the tampered
images are shown in Fig. 15a0–c0, the tamper-localized images are shown in
Fig. 15a1–c1, and the corresponding recovered images are shown in Fig. 15a2–c2.

4.4 Comparative Study

To examine the advantages of the proposed scheme over the existing techniques, a
comparative study is presented in this section. As we employed a block-based
spatial domain watermarking scheme, a well-known work in this field proposed by
Lee and Lin [12] is taken into considerations for performance comparison. In our
approach, we have used the three LSBs of each pixel in the image for watermark
embedding where the watermark has been generated from the LL1 sub-band of

30 S. Som et al.

Fig. 12 a Original Lena image; b watermarked image of (a) with PSNR = 41.44 and
SSIM = 0.93; c image in (b) tampered by 25 % cropping at center; d recovered image from
(c) with PSNR = 35.51 and SSIM = 0.90; e image in (b) tampered by 50 % cropping at center;
f recovered image from (e) with PSNR = 30.91 and SSIM = 0.85; g image in (b) tampered by
60 % cropping at center; h recovered image from (g) with PSNR = 30.07 and SSIM = 0.82;
i image in (b) tampered by 75 % cropping at center; j recovered image from (i) with
PSNR = 27.55 and SSIM = 0.7645; k image in (b) tampered by 90 % cropping at center and
l recovered image from (k) with PSNR = 24.91 and SSIM = 0.67

A DWT-based Digital Watermarking Scheme… 31

32 S. Som et al.

Fig. 13 a0–d0 Spread distribute tampering, e0–l0 chunk distribute tampering of a total of 50 % in
the watermarked image of Peppers (grayscale) of size 512 9 512, a1 recovered image of (a0)
with PSNR = 32.19 dB, b1 recovered image of (b0) with PSNR = 30.58 dB, c1 recovered image
of (c0) with PSNR = 33.12 dB, d1 recovered image of (d0) with PSNR = 28.76 dB, e1 recovered
image of (e0) with PSNR = 32.89 dB, f1 recovered image of (f0) with PSNR = 33.30 dB, g1

recovered image of (g0) with PSNR = 27.56 dB, h1 recovered image of (h0) with
PSNR = 30.19 dB, i1 recovered image of (i0) with PSNR = 29.30 dB, j1 recovered image of
(j0) with PSNR = 29.95 dB, k1 recovered image of (k0) with PSNR = 31.39 dB, and l1
recovered image of (l0) with PSNR = 35.30 dB

b

Fig. 14 Results of small-sized object insertion: a Watermarked image (color) of Lena of size
512 9 512, a0 tampered image of (a) by inserting small flower on the hat, a1 image in (a0) with
localized tampered region, and a2 recovered image of (a0) with PSNR = 41.07 dB and SSIM
index = 0.94. Results of medium-sized object insertion: b Watermarked image (color) of
sailboat on lake of size 512 9 512, b0 tampered image of (b) by inserting a second sailboat on the
lake, b1 image in (b0) with localized tampered region, and b2 recovered image of (b0) with
PSNR = 39.61 dB and SSIM index = 0.0.95. Results of large-sized object insertion: c Water-
marked image (color) of airplane of size 512 9 512, c0 tampered image of (c) by inserting a
second F-16 airplane, c1 image in (c0) with localized tampered region, and c2 recovered image of
(c0) with PSNR = 33.92 dB and SSIM index = 0.90

A DWT-based Digital Watermarking Scheme… 33

DWT transformed blocks of the image. The quality of our watermarked image in
terms of PSNR is around 41.2 dB, which is acceptable, and the distortion is
imperceptible to HVS. In Table 1, the PSNR and SSIM between the original
images and their watermarked versions using the proposed algorithm and the
algorithm proposed by Lee and Lin [12] are presented. Table 2 lists the compar-
ison of the PSNR of the recovered image for the sample grayscale image of Lena
for various tampered sizes and locations. When the tampered region is as small as
2.34 %, the performance of [12] is better than ours. But when the amount of
tampered region (in percentage) grows gradually, it can be inferred from Table 2
that the proposed method performs better than the one in [12]. Table 3 presents the
comparative study of the average PSNR values of images recovered from cropping
attacks of different sizes for all the images available in the misc volume of USC-
SIPI [13] image database (color images are converted to their grayscale versions).

Fig. 15 a Watermarked image of Lena (color) of size 512 9 512, a0 tampered image of (b), b1

image of (b0) with localized tampered region, a2 recovered image of (a0) with PSNR = 32.90 dB
and SSIM index = 0.87, b a sample watermarked image (grayscale) of size 512 9 512, b0

tampered image of (b), b1 image in (b0) with localized tampered region, b2 recovered image of
(b0) with PSNR = 26.62 dB and SSIM index = 0.91, c watermarked image of boat (grayscale)
of size 512 9 512, c0 tampered image of (c), c1 image of (c0) with localized tampered region, c2

recovered image of (c0) with PSNR = 40.53 dB and SSIM index = 0.95

34 S. Som et al.

Table 2 PSNR of recovered image relative to the tampered size and location (test image Lena)

Tamper (crop %) Tamper location PSNR (in dB)

In Ref. [12] Proposed

2.34 Top 48.09 41.37

2.4 Center 39.48 41.05

8.01 Corner 41.42 41.13

9.7 Center 35.17 40.08

25.0 Left 33.45 40.44

34.0 Top 33.01 40.06

40.1 Center 27.97 33.53

50.0 Center 26.59 30.91

65.0 Center 24.57 29.21

70.0 Center 24.16 28.28

75.0 Center 23.43 27.55

80.0 Center 22.55 25.83

85.0 Center 21.28 25.50

90.0 Center 19.86 24.91

95.0 Center 18.05 20.96

97.0 Center 16.87 19.65

Average PSNR 28.50 31.90

Table 3 Comparative analysis of PNSR of recovered images from cropping attacks of different
sizes

Crop (%) PSNR (in dB)

Proposed method Ref. [12]

10 37.57 33.80

20 35.74 31.84

30 34.72 29.91

40 33.54 29.40

50 31.40 27.05

60 29.72 25.86

70 28.15 25.10

80 26.91 22.35

90 23.76 19.47

Average 31.28 27.20

A DWT-based Digital Watermarking Scheme… 35

5 Conclusion

The simulation of various kinds of tampering with different images has demon-
strated the superiority of the proposed method over that of the existing ones for
different extents of tampering. The embedding of the DWT-based watermark in
four regions of the image has been the major contribution of this work. Embedding
in multiple regions has made the approach robust and helped it to perform well in
even severe cases of tampering. Further research is being conducted to improve its
performance for situations where very small areas are tampered.

References

1. Li, K.F., Chen, T.S., Wu, S.C.: Image tamper detection and recovery system based on
discrete wavelet transformation. In: IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing, 26–28 Aug 2001. doi:10.1109/PACRIM.2001.953548
(2001)

2. Gang-chui, S., Mi-mi, Z.: Novel fragile authentication watermark based on chaotic system.
In: International Symposium on Industrial Electronics, 4–7 May 2004. doi:10.1109/ISIE.
2004.1572034 (2004)

3. Chen, T.S., Chen, J., Chen, J.G.: Tamper detection and retrieval technique based on
JPEG2000 with LL subband. In Proceedings of IEEE International Conference OD
Networking, Sensing & Control, Taipei, Taiwan (2004)

4. Tsai, P., Hu, Y.C.: A watermarking-based authentication with malicious detection and
recovery. In: 5th International Conference on Information, Communications and Signal
Processing. doi:10.1109/ICICS.2005.1689172 (2005)

5. Tsai, M.J., Chien, C.C.: A wavelet-based semi-fragile watermarking with recovery
mechanism. In: IEEE International Symposium on Circuits and Systems, ISCAS 2008.
doi:10.1109/ISCAS.2008.4542097 (2008)

6. Qi, X., Xin, X., Chang, R.: Image authentication and tamper detection using two
complementary watermarks. In: 16th IEEE International Conference on Image Processing
(ICIP). doi:10.1109/ICIP.2009.5413681 (2009)

7. Cruz, C., Mendoza, J.A., Miyatake, M.N., Meana, H.P., Kurkoski, B.: Semi-fragile
watermarking based image authentication with recovery capability. In: International
Conference on Information Engineering and Computer Science. doi:10.1109/ICIECS.2009.
5363496 (2009)

8. Wang, N., Kim, C.W.: Tamper detection and self-recovery algorithm of color image based on
robust embedding of dual visual watermarks using DWT-SVD. In: 9th International
Symposium on Communications and Information Technology. doi:10.1109/ISCIT.2009.
5341268 (2009)

9. Yuping, H., Guangjun, G.: Watermarking-based authentication with recovery mechanism. In:
2nd International Workshop on Computer Science and Engineering. doi:10.1109/WCSE.
2009.856 (2009)

10. Hui, L., Yuping, H.: A wavelet-based watermarking scheme with authentication and recovery
mechanism. In: International Conference on Electrical and Control Engineering (ICECE).
doi:10.1109/iCECE.2010.86 (2010)

11. Wang, L.J., Syue, M.Y.: Image authentication and recovery using wavelet-based
multipurpose watermarking. In: 10th International Joint Conference on Computer Science
and Software Engineering (JCSSE). doi:10.1109/JCSSE.2013.6567315 (2013)

36 S. Som et al.

http://dx.doi.org/10.1109/PACRIM.2001.953548
http://dx.doi.org/10.1109/ISIE.2004.1572034
http://dx.doi.org/10.1109/ISIE.2004.1572034
http://dx.doi.org/10.1109/ICICS.2005.1689172
http://dx.doi.org/10.1109/ISCAS.2008.4542097
http://dx.doi.org/10.1109/ICIP.2009.5413681
http://dx.doi.org/10.1109/ICIECS.2009.5363496
http://dx.doi.org/10.1109/ICIECS.2009.5363496
http://dx.doi.org/10.1109/ISCIT.2009.5341268
http://dx.doi.org/10.1109/ISCIT.2009.5341268
http://dx.doi.org/10.1109/WCSE.2009.856
http://dx.doi.org/10.1109/WCSE.2009.856
http://dx.doi.org/10.1109/iCECE.2010.86
http://dx.doi.org/10.1109/JCSSE.2013.6567315

12. Lee, T., Lin, S.D.: Dual watermark for image tamper detection and recovery. Pattern Recogn.
41, 3497–3506 (2008)

13. USC-SIPI image database: Available at http://sipi.usc.edu/database. Accessed on 1 Jan 2012
14. Computational Perception and Image Quality Lab, Oklahoma State University, www.vision.

okstate.edu. Accessed on 1 Jan 2012
15. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error

visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

A DWT-based Digital Watermarking Scheme… 37

http://sipi.usc.edu/database
http://www.vision.okstate.edu
http://www.vision.okstate.edu

Service Insurance: A New Approach
in Cloud Brokerage

Adrija Bhattacharya and Sankhayan Choudhury

Abstract In cloud service domain, an acceptable standard of quality of service
(QoS) must be maintained for subscribed services. The performance measurement
of those cloud services is based on the satisfaction of customers with respect to the
pre-defined QoS. Deviation of QoS as mentioned in SLA results dissatisfaction
among users. A large numbers of business entities and consumers are involved in
this service delivery process. In business environment, guaranteeing the QoS and
establishing the service contracts are essential. However, for the service providers,
it is challenging to maintain the QoS at run-time. Moreover, even if it is main-
tained, additional cost may be needed. Sometime a categorization among the
consumers (premium or ordinary) is also required due to the limitation of the
resources. Thus, the service management for ensuring the delivery with desired
QoS at least for the premium consumers is necessary. This paper proposes a novel
methodology termed as service insurances, which is incorporated into the service
broker as a new module. The proposed concept is expected to ensure customer’s
satisfaction in context of a business application domain.

Keywords Service insurance � Cloud service life cycle � Risk modeling

1 Introduction

The increasing demand of cloud services at different associated quality of service
(QoS) levels poses enormous challenges in service provisioning. In cloud archi-
tecture, broker plays an intermediate role of negotiating between cloud service

A. Bhattacharya (&) � S. Choudhury
Department of Computer Science and Engineering, University of Calcutta, Kolkata, India
e-mail: adrija.bhattacharya@gmail.com

S. Choudhury
e-mail: sankhayan@gmail.com

� Springer India 2015
R. Chaki et al. (eds.), Applied Computation and Security Systems, Advances in Intelligent
Systems and Computing 305, DOI 10.1007/978-81-322-1988-0_3

39

providers (CSP) and consumers. Typically in multi-cloud environment, broker is
useful for executing some specific responsibilities [1] such as service level
agreement (SLA) management, service provisioning, monitoring, and reporting.
Figure 1 depicts a standard architecture of a service cloud broker. In spite of all
necessary arrangement for ensuring service provisioning within a broker, the
subscribed services may fail or the service with the assured QoS may not be
delivered. The reasons behind these failures are mainly the over populated service
demands, incompatibility among multiple service providers or lack of high-
capacity infrastructures in smaller service provider’s end [2], and inefficient load
distribution. Customers use different hired services with various QoS levels in
safety critical systems. Especially in those systems, QoS failure has high impact on
customer applications, and as a result, this management issue demands higher
attention.

The failure of service provisioning with requested QoS certainly hampers the
reputation, and it may lead to a business loss of a corporate body. In a real-life
situation, hundred percent availability of services with guaranteed QoS at all
instances are practically impossible. A supporting mechanism will be necessary for
the management of the service offering techniques such that the prioritized users
(who are ready to pay premium) must be assured for getting the service with
desired level of QoS.

In this work, we are offering the above-said solution, called ‘‘service insurance’’
through the broker. A proposed module is added within the existing framework of
a broker to achieve this and is depicted in Fig. 1. The concept of paying insurance
money for ensuring service (with specified QoS) leads to some new tasks such as
premium amount calculation, categorization among users, and reserving resources
for the prioritized users. The broker is supposed to guarantee the QoS to the
consumers and helps providers also to decide which services are to be given more
priority during maintenance or which customers are important with respect to

Cloud Service
Users

Private CloudPublic Cloud

Security

Service Pro-
visioning

Service
Library

Monitoring

Billing &
Auditing

Reporting

Service
Insurance

Broker

Fig. 1 Cloud service broker
architecture

40 A. Bhattacharya and S. Choudhury

service offerings. Beside these, some of the other internal roles of the brokers are
contract generation and management, failure handling, penalty decomposition, etc.

The broker works as the middleman between service providers and consumers
during the negotiation. At the time of service publication, the insurance framework
is initiated. The risk analysis and actuarial calculations are done, based on which
the service insurance amount and periodical premiums are calculated. The nego-
tiation between provider and consumer is being done in the presence of broker and
is presented by a sequence diagram (Fig. 2).

In the negotiation phase, analyzing the consumer’s query and QoS demand,
total premium amount for all required services is calculated. If customer agrees on
the amount, then contract document is finalized. Thus, as per the given contract,
the providers take the responsibility for maintaining the QoS level and must utilize
the insurance revenue for improving the provisioning. In contrary, the consumer
may claim for penalties in case of failures. This is the main idea behind imposing
the service insurances in addition to ‘‘pay per use’’ plan. Different rates can be
fixed for multiple tariff options for insurances and they are directly related to the
given QoS. Guaranteeing the higher assurances, insurance premium goes higher.

This presented work is concentrating on the risk analysis and modeling issues
for cloud computing environment. The concept insurance is built up based on the
user dissatisfaction, and in turn, the dissatisfaction is highly dependent on the risk
analysis. Overall, description of the framework is given in Sect. 3. The reasons
behind identification of the risks and service failures are discussed in Sect. 4.
Section 5 proposes a model for risk calculation and the Sect. 6 concludes.

CSP Broker User

Service
info.

QoS offering information

Contract documents

Agree Query

Agree

Contract clause & premium

Fig. 2 Sequence diagram for cloud service insurance framework

Service Insurance: A New Approach in Cloud Brokerage 41

2 Related Work

The proposed concept of insurance can be achieved after successful implemen-
tation of some prerequisite tasks. The risk identification, analysis, and modeling
are some major issues on which the concept of insurance is build up. The risk
modeling is our current focus of work, and thus, in this section, we have mentioned
few notable works in this specific issue.

In [3], a set of threats such as natural disaster and cloud malware has been
identified. But all the threats declared here are not directly related to cloud ser-
vices. In [4], the risk mentioned as hardware failure is decomposed into poor I/O
performance, poor CPU utilization, etc. In [5], a number of risks identified and
discussed with respect to SaaS, PaaS, etc. Also, some risk terms are identified;
based on these terms, each risk factor is described. These terms include probability
of risk occurrence, impact of the risk, and categories of risk. Each of these three
terms has three levels associated, namely high, medium, and low. Based on these
terms, each risk is defined for SaaS, PaaS, and IaaS. However, no method for risk
assessment and modeling is discussed in this approach. A set of resource man-
agement policies and related risks is discussed in [6, 7]. These are helpful for
identifying risks, and the objective of the proposed policies is to make resource
provisioning better. In [8], the internet jurisdiction issues have been discussed. The
impact of geographical and jurisdictional information is described here. A few
legal issues are also addressed. The business and organizational policy-related
issues are discussed in [9]. The collaboration among service providers is important
in service cloud federation. The collaboration among providers is highly depen-
dent upon compliance issues. Violation of any contract clause, resulting loss of
governance or non compliance, has severe impact on service provisioning.
Inclusion of such issues in service life cycle is also needed.

In the above discussion, some of the risks have been identified. An investigation
about the probable risks is to be carried out. Necessary risks are to be considered
for apprehending the failure causes of a service. In the way of assessing the service
failure probabilities, there is a need to define a service life cycle. Our approach
should take care of the modeling and analysis of the probable risks and also
associates the risks to a specific phase of designed service life cycle. The concept
of service insurance will work on the life cycle model for ensuring service pro-
visioning at assured QoS level. Insurance calculation is dependent on the service
failure possibilities and related probability measure. The discussion about the
mentioned scope is described in the next section.

3 Proposed Work

In this present work, the outline of the proposed concept, i.e., ‘‘service insurance’’
is discussed. The sub-tasks for achieving the goal are identified, and all these tasks
are conceptualized within a module. This module is assumed to be added within

42 A. Bhattacharya and S. Choudhury

broker architecture for offering the said solution. The main focus of this paper is to
identify the risks and associate the risks with a specific phase of service life cycle.
Moreover, a measurement mechanism to assess the vulnerability of a service in
terms of failure (service provisioning without desired QoS) is proposed, and this
will be used for actual premium amount calculation.

Each set of required cloud services needs a guaranteed QoS for proper delivery.
It also depends on the QoS requirement of the consumer. Thus, for getting service
with guaranteed QoS, consumer has to subscribe, i.e., insure services. In broker-
based cloud service architecture, the broker should play the role of smooth service
delivery as per the requirement. As per our proposal, a broker has to include six
more modules for handling service insurance procedure. In Fig. 3, the boxes depict
the newer modules to be included. Some of the components are designed as
contributor at design time analysis. Rests are contributors to run-time analysis. In
the next section, purpose of all these tasks is discussed.

3.1 Component Description of the Framework

Risk Analysis and Modeling: Risks involved for insuring a set of services is
dependent on some assessment parameters. These parameters are very much
application specific. Modeling these factors and calculating the impact of them on
services performance are important. The idea of service life cycle is considered
here. This starts with the publication of service and ends at the service feedback
receipt. Risks are widely distributed over the different phases of life cycle. Risk
can have two types of reasons. One set of cause is fixed in nature and the rests are
variable (Random risk).

Contractual clause
violation

Contributes
to design time

analysis

Contributes
to runtime
analysis

Quality Metrics
determination from

queries

User

CSP

Broker

Risk analysis &
modeling

Actuarial
Calculations

Contractual service
Offering

Documentation

Penalty
Decomposition

Fig. 3 Service insurance components within broker

Service Insurance: A New Approach in Cloud Brokerage 43

Actuarial Calculations: This calculation involves typically the knowledge of
actuarial mathematics. This method of computation demands historic data on
services. After looking at the life cycle, composition, and contract details along
with some inferences from risk modeling, this module calculates the exact cost
amount for availing the service insurances. It may also happen that there exist
several different levels of insurances allowing varying costs related to different
levels of QoSs. It is the choice of a consumer that up to which level of assurance
he wants.

Contractual Service Offering Documentation: After calculating the final cost,
the formation of contract has to be done. This document contains the clauses from
both consumers and providers. This has to be structured in a standardized way so
that any cloud services will have same format of contracts. The contract document
acts as a safeguard for consumers mentioning offered services with given QoS. In
contrary, for the providers, it will assure the profit ratios as well as the additional
overheads for committing QoS at a desired level. If any discrepancies occur from
provider’s side, then there are provisions for penalties. But the key point is the
consumer and provider must agree on the standardized rates and clauses via CSB.

Penalty Decomposition: The penalty decomposition is an existing idea. There
are several existing methodologies for penalty decomposition among sub-providers.
Any of the standard decomposition method can be adapted by the framework for
actually assessing the failures and distributing those responsibilities. Further, the
penalties are calculated and collected from multiple providers.

Quality Metrics Determination with Respect to Queries: The quality
requirement of consumers (queries) varies often. Thus, for a specific query, the set
of services and the corresponding level of QoS determination are important. It
works on demand. The priority given by the users to a specific parameter (s) is also
an important issue at metric determination phase.

Contract Clause Violation: Violation of any contract rules by both the pro-
vider and consumer results same illegal affair. This is the phase that would indicate
that something out of contract has been occurred and necessary steps are to be
taken further.

3.2 Workflow of the Framework

This section illustrates the working procedure of the service insurances as depicted
in the Fig. 4. It has three entities: service provider, consumer, and broker. These
components of broker are highlighted by the gray boxes. The operations and
responsibility carried are labeled by the edges. For the ease of understanding, each
of the six broker module mentioned in Sect. 3.1 is marked in dark colors. Edges
1–5 are executed at the design time. It is the conversational phase between broker
and service providers. On the other hand, edges 6–9 are run-time execution phases
and this is query specific also. This conversation is between consumer and broker.

44 A. Bhattacharya and S. Choudhury

Edges 10–12 are executed after the failure occurrences. We have initiated the
concept of service insurance and also provide the framework for accomplishing
this. But the box marked with dotted line is the area of concentration in this paper.

4 Risk Analysis

In this paper, only the risk analysis and modeling component from Fig. 4 are
discussed in detail. It is the first stage of analysis. The potential risks are needed to
be identified with respect to each stage of the cloud service life cycle. Irrespective
of service functionalities (IaaS, PaaS, SaaS, etc.), some risks are inherent within
service life cycle. We consider the following definition of risk in this context. Risk
is failure of offered services for any cause or deviation from ensured level of QoS
in service offering. These risks are identified as follows:

C1 Data unavailability
C2 Natural disaster
C3 Malicious insider (provider)
C4 Data leakage
C5 Cloud malware

12. Asking responsi-
bility decomposition

5. Agree

Contract clause
violation

Quality Metrics
determination
from queries

Consumer

Provider

Risk analysis &
modeling

Actuarial
Calculations

Contract
Documentation

Penalty
Decomposition

1. Service
Declaration

2. Analysis
result

3. Policy
declarations

4. Premium
& other
clauses

9. Agree

6. Query

7. Matching
metrics &

clauses

8. Asking for
Premium amount

& consents

10. Failures
occurred

during service
provisioning

11. Asking
penalties

Fig. 4 The workflow of the framework

Service Insurance: A New Approach in Cloud Brokerage 45

C6 Loss of governance
C7 Social engineering attack
C8 Isolation failure
C9 Distributed denial of service
C10 Licensing and intellectual property issues
C11 Loss of cryptographic keys
C12 Loss of backups
C13 Determination of jurisdiction
C14 Vendor lock in
C15 Non-compliance
C16 Poor CPU utilization
C17 Slow I/O processing
C18 Data transfer bottle-neck bandwidth limitation
C19 Bugs
C20 Supply chain failure

All of the above causes of failure in a cloud environment are identified and
considered to calculate the vulnerability of cloud services. These causes are
described in Sect. 4.1.

4.1 Causes Behind Risk Identification

C1 may often cause failure. The unavailability of data [10] may cause a stop of an
ongoing service execution. It may reduce the speed of computing services or make
any service unauthorized and unavailable. Cause C2 can happen anywhere any-
time, though this can be thought under the random risks. Sometimes, there exists
some pseudo-provider or mal insider within the cloud federation. These providers
can harm execution and QoS offering that may ultimately lead to service failure.
Data leakage [11] is one of the fatal attacks that may happen to cloud data center,
and this failure causes insecure transaction or mal functioning service offering.
Another attack in this course is metadata spoofing attack [12]. It results the user’s
dissatisfaction. Cloud malwares [13] are often injected into the transmission data
and SQL codes that results failure.

The business behind the cloud provisioning is running in relation to some
profit–loss equation. Each provider has some business policy and a governing
entity [14] for proper management. The lack of responsibility and sometimes
ambiguity among business process declaration can cause service mal functioning.
Exponential increase in number of users compelled the IT services to distribute
data in cloud. This is a scope of exposure for an attacker who aims to confuse the
users about popular services. In social engineering attack [15], attacker often
confuses the employees of provider organization with bad intensions to expose
their business services to fatal errors. In public cloud service domain, different

46 A. Bhattacharya and S. Choudhury

users share infrastructures and they often feel lack of privacy with respect to data
and confidential business information. Sharing policies [16] at data center and
clouds plays important role here. But failure can also occur by this wing.

Distributed denial of service (DDOS) [17] is a type of attack that makes
resources unavailable to tenants. There exist three types of licensing among cloud
that are for user, device, and enterprise. Often, some provider has false licenses [18]
and intends to harm user’s information and security. Cloud service provider is
always liabilities for any content upload to a cloud, and always, the provider has to
take ‘‘notice and takedown’’ [19]. In browser security for cloud users, it is necessary
to protect encryption keys, but loss of it is a serious threat toward security [12].

Loss of saved data from data center due to any reason is alarming. But this
situation can be handled by some replication [20] policy along with network-
distributed storage mechanisms. But deletion or loss of backup data puts service
offerings in a critical situation. In determining crime over internet and its juris-
diction [8] is really difficult. The geographic location and applicable legal theories
often vary due to lack of standardization. However, risks due to this reason till date
persist. Data transfer between cloud providers held difficult due to vendor lock in.
It often solved by several mechanism, but it can be considered to contribute
significant risks in service offering [21].

Another important part of cloud computing is compliance especially [9] reg-
ulatory compliance. This issue can hamper inter-organizational collaborative
offerings and discontinuation of services. I/O processing speed and CPU utilization
[22] are two system performance parameters. Under performance of any of the two
hampers computing and infrastructure services highly. Other service offerings are
also get affected by these. On-demand applications and high bandwidth-consuming
applications [23] often fail due to limitation of bandwidth and poor management of
priority policies among users. There exist code bugs in any application. These are
one of the reasons of service failure. BPaaS [24] is one of the popular services in
cloud that is highly dependent on supply chain management. Any failure of supply
chain [4] will affect this service offering. Beside that lack of control and visibility
in any supply chain can cause risk at services.

4.2 Service Life Cycle and Risks

In Fig. 5, the cloud service life cycle is described, and the above-mentioned
causes are associated with each stage of the life cycle. There are four compo-
nents within the life cycle that are responsible for different cloud liabilities.
These four are Service Governance, Service Development, Service Release and
Communication, and Service offering. All the components and associated risks
are described here.

Service Insurance: A New Approach in Cloud Brokerage 47

4.3 Service Governance and Related Risks

Service Governance has service declaration and investigation as a component. It is
responsible for service announcement and investigating related business issues.
Different collaborative issues are handled within organizational issues. Business
policy and company decisions are governed by the policy decision-making com-
ponent. Including customer feedback and managing version-related information
are also the responsibility of this phase. From the identified causes list in Sect. 3,
C1, C3, C6, C10, C13, and C20 are the causes that may result failures in this
phase.

C1, C3, C6, C10, C13
C20

C2
C4
C7
C8
C10
C12
C14
C15

C4, C5, C8,
C9, C11,

C18

C8
C12
C16
C17
C19

Consumption

Service Governance

Service Development

Service Release &
Communication

Service Offering

Declaration
&

Investigation

Design

Implementation

Testing

Service
Deployment

Access publication

Feedback

Policy Decisions
Organizational

issues

Versioning
&

Maintenance

Role
Definitions

Interfaces
& working
Principles

Network
resource

management

Catalogue
Updating

SLA
Negotiation

Fig. 5 Service life cycle and risks

48 A. Bhattacharya and S. Choudhury

4.4 Service Development and Risks

This phase has five specific responsibilities. Service design and role definitions are
most important of the five. Implementation of services is associated with the risks
related to the infrastructure and software-related failure causes. Designing and
coding of interfaces has some of the hardware issues and some legal issues also.
Testing is done for bug removal and other error corrections, but still there exist
some causes that can result failure at this phase. These are C8, C12, C16, C17, and
C19.

4.5 Service Release and Communication and Related Risks

This phase has four components. Service deployment and access publication in
service catalog are two important responsibilities. Network resource management
is another issue. This component basically handles communication in cloud ser-
vice provisioning through bandwidth management. Network-related risks are all
valid for this stage. Additionally, cryptographic issues and malware of clouds also
result risk in this phase. C4, C5, C8, C9, C11, and C18 are valid causes in this
phase.

4.6 Service Offering and Risks

Service offering phase has three responsibilities. SLA negotiation is an important
one. In service level agreement (SLA), the service provider and consumer agree
upon QoS levels. This is significant to judge the user satisfaction. Customer
feedback also used to measure user satisfaction. This phase is prone to the attack
caused by C2, C4, C7, C8, C10, C12, C14, and C15.

5 Risk Modeling

There exist 20 causes for which a service may fail. Now in this section, we are
modelling the risk probability associated with the 20 different causes. In general,
there exists recovery mechanism associated with a specific failure. So it is to be
noted that a service actually fails due to a cause if the cause has been occurred and
the recovery from the cause has been failed also.

Service Insurance: A New Approach in Cloud Brokerage 49

Here, Yi is a random variable that is denoted as follows:

Yi ¼ 1ðCithcause in the list occurredÞwith probability pi

0ðCith cause in the list didn’t occurÞprobability (1� piÞ
Where; 0\pi\1 and i ¼ 1; . . .; 20

i:e:PðYi ¼ 1Þ ¼ pi

It is clear from the foundation that Yi follows Bernoulli’s distribution with
parameter pi. pi indicates the probability of occurrence of the Cith cause. It is
preliminarily assumed that the causes occur independently. Thus, it is clear that Yi

is independently distributed. It is obvious to state that occurrences of any of the
causes not always result service failure. There are some recovery mechanisms. The
failure occurs when the recovery is also failed. So the probability of cause
occurrence is different from that of service failure due to that cause. Let us con-
sider ri to be the probability of recovery from the Cith cause.

Pðrecovery from Cith causeÞ ¼ ri

P not recovery from Cith causeð Þ ¼ 1� ri

The probability of service failure from Cith cause = P(Ai \ Ni)
Where,

Ai the cause Ci occurs
Ni is an event that the failure from Cith cause is not recovered

Then, by theorem of conditional probability, we get,

PðAi \ NiÞ ¼ PðNiÞ :PðAijNiÞ
¼ ð1� riÞ � pi

Let us consider another random variable Xi as Bernoulli variable which signifies
that the value of Xi will be 1 if the failure is from Cith cause. So,

Xi ¼ 1 with probability ð1� riÞ � pi

0 with probability 1� fð1� riÞ � pig

Again, we are declaring the following variable Z as

Z ¼
X20

i¼1

Xi

50 A. Bhattacharya and S. Choudhury

Basically, Z is sum of all failures. Z can take values as 0, 1, … , 20. So
probability of service failure from any cause is formulated by

PðZ [0Þ ¼ 1� P Z ¼ 0ð Þ

¼
Y20

i¼1

1� rið Þ � pi

Initial probabilities ri and pi are to be estimated. pi can be obtained by fitting
Poisson model to the data obtained on failure causes. Each cause is fitted as
Poisson variable as the failure occurrences are happened to be infinite in nature.
After that normal approximation of failures will result the value of ri.

Here, it is assumed that the cause occurrences are independent. Further study can
be done on interdependence of causes. This analysis has to be done by the broker for
each service. Each service will have different values of P (Z [0). This probability
value is considered here as vulnerability quotient of that service. The vulnerability
quotient is considered here to calculate the service availability at assured level of
QoS. Further, the insurance calculation and sum of premium are calculated based
on that quotient. So this risk modeling satisfies the primary need on which the
insurance calculation and the calculation life expectancy of services depend.

6 Conclusion

This paper is to provide the outline of service insurance concept. The main focus
of this paper is identification of risks and association of those in the service life
cycle. Based on this, the detailed risk modeling and failure estimation are also
discussed here.

There exist a few other components in the service insurance model that are yet to be
explored. However, the components identified have high impact on business man-
agement. This will pioneer an avenue toward newer business systems. The deduction
of several new business rules is in the future scope of this work. This risk model may be
extended by mitigating failures from interdependent causes. Similarly, application of
actuarial mathematics in the domain, a comparative study among several actuarial and
risk modeling, and forecasting methods are the areas for future explore.

References

1. Lawler, C.M.: Cloud service broker model-sustainable governance for efficient cloud
utilization. Green IT Cloud Summit, Washington, D.C, Sheraton Premier, Tysons Corner, 18
Apr 2012

2. Hassan, M.M., Song, B., Huh, E.N.: A market-oriented dynamic collaborative cloud services
platform. Ann. Telecommun. 65, 669–688 (2010). doi:10.1007/s12243-010-0184-0

Service Insurance: A New Approach in Cloud Brokerage 51

http://dx.doi.org/10.1007/s12243-010-0184-0

3. Cloud computing vulnerability incidents: a statistical overview. Cloud Vulnerabilities
Working Group, Cloud Security Alliance (2013)

4. Pearson, S., Benameur, A.: Privacy, security and trust issues arising from cloud computing.
IEEE Second International Conference on Cloud Computing Technology and Science
(CloudCom). IEEE (2010)

5. Cloud computing-benefits, risks and recommendations for information security. European
Network and Information Security Agency, December 2012

6. Gmach, D., Roliat, J., Cherkasovat, L., Belrose, G., Turicchi, T., Kemper; A.: An integrated
approach to resource pool management: policies, efficiency and quality metrics. In:
International Conference on Dependable Systems & Networks: An-chorage, IEEE, Alaska,
24–27 June 2008

7. Toosi, A.N., Calheiros, R.N., Thulasiram, R.K., Buyya, R.: Re-source provisioning policies
to increase IaaS provider’s profit in a federated cloud environment. In: IEEE International
Conference on High Performance Computing and Communications 2011

8. Ward, B.T., Sipior, J.C.: The Internet jurisdiction risk of cloud computing. Inf. Syst. Manag.
27(4), 334–339 (2010)

9. Farrell, R.: Securing the cloud—governance, risk, and compliance issues reign supreme. Inf.
Secur. J.: A Global Perspect. 19(6), 310–319 (2010)

10. Cidon, A., et al.: Copysets: reducing the frequency of data loss in cloud storage. Presented as
part of the 2013 USENIX Annual Technical Conference. USENIX, (2013)

11. Wang, C., et al.: Privacy-preserving public auditing for data storage security in cloud
computing. INFOCOM, Proceedings IEEE, (2010)

12. Jensen, M., et al.: On technical security issues in cloud computing. IEEE International
Conference on Cloud Computing. CLOUD’09. IEEE (2009)

13. Jamil, D., Zaki, H.: Security issues in cloud computing and countermeasures. Int. J. Eng. Sci.
Technol 3(4), 2672–2676 (2011)

14. Fortis, T.F., Munteanu, V.I., Negru, V.: Steps towards cloud governance. a survey. In:
Proceedings of the ITI 2012 34th International Conference on Information Technology
Interfaces (ITI), IEEE (2012)

15. Bezuidenhout, M., Mouton, F., Venter, H.S.: Social engineering attack detection model:
SEADM. Information Security for South Africa (ISSA). IEEE (2010)

16. Raj, H., et al.: Resource management for isolation enhanced cloud services. In: Proceedings
of the ACM workshop on Cloud computing security. ACM (2009)

17. Bakshi, A., Yogesh, B.: Securing cloud from ddos attacks using intrusion detection system in
virtual machine. In: Second International Conference on Communication Software and
Networks. ICCSN’10, IEEE (2010)

18. http://searchcloudcomputing.techtarget.com/feature/Cloud-computing-licensing-Buyer-beware
19. Cordell N.: Intellectual property in the cloud. Allen &Overy LLP, May 2013
20. Vrable, M., Savage, S., Voelker, G.M.: Cumulus: filesystem backup to the cloud. ACM

Trans. Storage (TOS) 5(4), 14 (2009)
21. Marinos, A., Briscoe, G.: Community cloud computing. Cloud computing, pp. 472–484.

Springer, Berlin (2009)
22. Evangelinos, C., Hill, C.: Cloud computing for parallel scientific HPC applications:

feasibility of running coupled atmosphere-ocean climate models on amazon’s EC2. Ratio
2(2.40), 2–34 (2008)

23. Niu, D., et al.: Quality-assured cloud bandwidth auto-scaling for video-on-demand
applications. INFOCOM, IEEE (2012)

24. Crowe, H., Chan, W., Leung, H., Pili, H.: Enterprise risk management for cloud computing.
Committee of Sponsoring Organizations of the Treadway Commission, June 2012. http://
www.coso.org/documents/Cloud%20Computing%20Thought%20Paper.pdf

52 A. Bhattacharya and S. Choudhury

http://searchcloudcomputing.techtarget.com/feature/Cloud-computing-licensing-Buyer-beware
http://www.coso.org/documents/Cloud%20Computing%20Thought%20Paper.pdf
http://www.coso.org/documents/Cloud%20Computing%20Thought%20Paper.pdf

Using Semiformal and Formal Methods
in Software Design: An Integrated
Approach for Intelligent Learning
Management System

Souvik Sengupta and Ranjan Dasgupta

Abstract The use of graphical methods such as unified modelling language
(UML) in conjunction with formal methods such as Vienna development method
(VDM) can be significantly beneficiary in the software design phase due to their
complimentary features. UML diagrams are very useful in communication among
different stakeholders, but at the same time, being semiformal in nature, they lack
formal syntax and preciseness due to textual description in notations. This makes it
challenging to verify the design against the requirements. Conversely, a formal
specification language like VDM-SL has the advantage of preciseness an unam-
biguous modelling, but unable to provide ease of understanding like UML. This
paper presents a methodology that integrates the use of UML and VDM-SL in
software design phase and also proposes a verification technique for the design
artefacts with the requirements. A case study of intelligent learning management
system (ILMS) is used in this paper to illustrate the proposed work.

Keywords VDM-SL � Software design � UML � Design verification

1 Introduction

The software design artefacts demonstrate how to fulfil the requirements and guide
the implementation of that software item. UML notations are widely accepted and
used for visualizing models in different phases of developments, from abstraction
of requirements to detail design of them [1, 2]. The objective of this work is to
propose a design and specification methodology that integrates both an industrial

S. Sengupta (&)
Bengal Institute of Technology, Kolkata, India
e-mail: mesouvik@hotmail.com

R. Dasgupta
National Institute of Technical Teachers Training and Research, Kolkata, India
e-mail: ranjandasgupta@ieee.org

� Springer India 2015
R. Chaki et al. (eds.), Applied Computation and Security Systems, Advances in Intelligent
Systems and Computing 305, DOI 10.1007/978-81-322-1988-0_4

53

standard such as UML and a formal description language such as VDM-SL,
enhancing the relationship between the two methodologies. Integrating a semi-
formal graphical modelling technique with a formal development method results in
a development framework that supports rigorous analysis of the design model and
also verification of the design artefact against the requirement specification.
However, the use of formal methods in design phase entails formal methods to be
used in requirement specifications. We presume that the requirement artefact
contains use case and VDM-SL specification, and then, we design the system by
elaborating the use case diagram into class diagram, activity diagram, sequence
diagram and also VDM-SL specification. The verification model has two com-
ponents: first, we check for consistency and continuity among these UML dia-
grams at design phase, and then, finally, they are verified against the requirements
elicited and specified in the RE phase. Instead of mapping the design articles
against requirements written in natural language (NL) statements, we use con-
ceptual graph (CG) for this purpose. Since comparison of requirements written in
NL statements for traceability is difficult to perform, CG can work as an inter-
mediate stage, which can be easily compared with NL statements.

The work presented in this paper is arranged in the following manner. Section 2
details the related works and the scope of work in this domain. Section 3 describes
the proposed framework. Next, Sect. 4 gives overview of a simple case study and
is referred by the remaining parts of the paper. Section 5 states a requirement
specification as we expect from the RE phase. Section 6 depicts different design
artefacts, and finally, Sect. 7 illustrates the design verification technique.

2 Related Work

Integrating formal methods with semiformal or graphical methods in software
development is not an novel idea, and some forms of combinations are available in
a reasonable number of works [3]. However, as pointed out by several researchers,
there are many reasons why they are still to come into practice. One of that is the
lack of tools that support for integrating formal techniques with traditional
semiformal methods. Another reason is the apprehension of difficulty in following
complex mathematical expressions and to relate abstract descriptions with real-
world entities among the software engineers. Formal methods such as VDM and Z
come with specification languages which are intended to alleviate the rigour of
formalism for using them in software specification. These are often used by the
researchers to improve the consistency, traceability and verifiability of the design
components created with semiformal methods using UML diagrams.

Sengupta and Bhattacharya [4] proposed a method to ensure consistency
between different UML diagrams with the help of a defined set of consistency
rules. Z notations and XML are used to analyse different UML diagrams such as
class diagram, use case diagram, activity diagram and sequence diagram. The
objective of this work is to ensure traceability of requirements in different phases

54 S. Sengupta and R. Dasgupta

of SDLC. So Z equivalent structure for different UML diagrams is proposed, and
consistency between the UML diagrams and their relationship is verified.

Dascalu [3] worked on integration of semiformal, graphical representations
with formal notations for construction of time-constrained system. The graphical
notations employed are a subset of UML, whereas Z++ is the choice for formal
notation. The translation between UML and Z++ is performed in a pragmatic and
systematic way with detail algorithm being proposed. It results in a lightweight
practical specification which is reliable as well as supports rapid development.

Lausdahl and Lintrup [5] worked on identifying mapping potential between
VDM++ and UML diagrams such as class and sequence diagrams. The abstract
syntax tree (AST) for VDM is used as an essential part of the model transfor-
mation. A tool is built to support bidirectional transformation rules for each
construct language. The UML diagrams are exchanged between tools using XML-
based standard. This work also constructed a model transformation between
sequence diagram and VDM++ traces.

Mota et al. [6] observed that graphical specifications such as UML need to be
formally verified, before the implementation phase, in order to guarantee the
development of more reliable systems. This work presents a protocol interface for
joining computer-aided software engineering (CASE) using UML and formal
verification techniques (FVT). It uses automatic property extraction from UML
diagrams and first-order logic (FOL)-based level of suitable mechanisms for
keeping track of the aspects of system development which are verified.

Most of these works discussed above depend heavily on the model of trans-
formation between formal and semiformal techniques but lack in any commonly
acceptable algorithm. In this paper, we focus on independent construction of
semiformal and formal specifications, and instead of building a complete trans-
formation model, first we define the consistency rules to check the continuity of
different UML constructs with respect to VDM-SL specification, and secondly, we
propose a verification model that takes both semiformal and formal specifications
as input and results in tracing back the design article with the requirement spec-
ified in the requirement analysis phase. We use ILMS as a case study to illustrate
our proposal specially because the requirement analysis and design of e-Learning
software is a challenging job considering the diversity of its users, standards and
models followed in education [7].

3 Proposed Framework

Figure 1 represents the framework for the proposed methodology. The objective of
this framework is to provide a systemic approach for guiding the requirements
written in NL into a correct and implementable software design specification using
requirement model and design model. A systematic approach in requirement
engineering (RE) helps in discovering and understanding the requirements at
different levels of abstraction and also makes them traceable and verifiable early in

Using Semiformal and Formal Methods in Software Design… 55

the project. It also brings confidence to the design process about the correct
implementation of the requirement. The requirement model (Fig. 1) represents the
individual requirement with the help of use case diagram and corresponding
VDM-SL specification. Requirements being initially available or specified in NL
statements are thus hard to verify against the requirement model. In general,
conceptual graph defined by Sowa [8] can be used to model NL sentences in a
formal and yet easily understandable way. So we convert the requirement in NL
statements into conceptual graph and use it for the verification of the requirement
model. We will not discuss the requirement modelling in this paper in detail, but
we take the output of the requirement model that comes in the form of use case and
VDM-SL specification which is already verified against the requirements available
in NL statements. Our focus in this work is rather on the design model and its
verification.

We consider individual requirement representation in requirement model by use
case diagrams that are elaborated in the design phase by means of class diagram,
sequence diagram, activity diagram and state chart diagram, each of them repre-
senting different perspectives of modelling. The transition from requirement model
to design model involves elaboration of the requirement concepts (‘‘what to be
done’’) towards solution of the problem (‘‘how to be done’’). Such transition
involves many assumptions on the domain, so an early identification and
decomposition of the structure of the objects to be used are required to be spec-
ified. Our defined ontology serves this purpose; it represents the basic hierarchical
structure of the components or terms in the form of object, process and entity. This
ontology works as a common agreement between the semantics of the components
and is used throughout the RE and design phases. The VDM-SL design specifi-
cation is the extension of the VDM-SL requirement specification where the
operations and data types are elaborated in accordance with the ontology. Figure 2
shows the partial ontology for ILMS case study.

Fig. 1 Proposed framework

56 S. Sengupta and R. Dasgupta

4 The Case Study

We illustrate the proposed methodology with a case study from the domain of
intelligent learning management system (ILMS). ILMS fits in conjunction with
intelligent tutoring system (ITS) and conventional LMS. It grasps the essence of
ITS in terms of adaptivity within the context of LMS. We consider the following
sample requirements as case study. We choose only some of basic functionalities
to keep the illustration simple.

Authors upload contents. The LMS agent manages it in repository. Teachers create courses
from the available contents. The system agent manages the content and the course in the
repository.

5 Requirement Specification

The requirement analysis phase will redefine the NL requirements, and it repre-
sents it using use case diagram, VDM-SL specification and conceptual graph. The
output of the requirement model is available for a simple requirement as follows:

R1: Author creates content is represented as shown below:
Figure 3.

Fig. 2 Partial ontology for ILMS

Fig. 3 Requirement specification

Using Semiformal and Formal Methods in Software Design… 57

6 Design Model

Although many researches have been carried out [9–11] in the field of automatic
derivation of class, sequence, state chart and activity diagrams from use case
requirements, unfortunately most of them can provide partial benefits to the
requirement analysis and design models. In this paper, we use manual methods of
translating use cases into class, activity and state chart diagrams which are easily
understandable by both developers and domain experts. The design model (Fig. 1)
consists of different UML components such as class diagram, activity diagram and
state chart diagram. These UML diagrams are derived from the use case with the
help of the ontology and VDM-SL specification of the requirement model.
However, a continuity checking between the diagrams is essential to ensure
consistency between the two models (requirement analysis and design) of software
development life cycle. As the UML diagrams and VDM-SL specification used to
design the functionalities of the requirements are disjoint in nature, hence, we
propose a set of consistency rules that must be satisfied by the design components
to ensure continuity between different UML diagrams and VDM-SL.

6.1 Consistency Rules

i. Each action state of activity diagram corresponds to a use case in the use case
diagram.

Considering AS as a set of all action states and UC as a set of all use cases, we can
state the rule more formally as follows: V e [AS {Au [UC • e corresponds u}

ii. Each action state must access state variables mentioned as constrained.

Considering SV as a set of all state variables, we can state the rule more
formally as follows:
V e [As {As [SV • e access s}

iii. Methods implementing an action state must access its variables.

Considering M as a set of all methods, we can state the rule more formally as
follows:
V m [M {Ae [AS As [SV • m implements e ^ e access s ^ m access s}

iv. The sequence of invoking methods should match the order of their parent
action states.

We can state the rule more formally as follows:
V mi, mj [M {Aei, ej [AS • mi implements ei ^ mj implements ej ^ order
(mi, mj) % order (ei, ej)}

58 S. Sengupta and R. Dasgupta

v. The variable used by design-level VDM should have a correspondence with the
requirement-level VDM via the ontology structure.

Considering DVDM as a set of all state variables used in design specification of
VDM and RVDM as a set of all state variables used in requirement specifi-
cation of VDM and ONT as a set of all nodes in the ontology, we can state the
rule more formally as follows:
V vi [DVDM, vj [RVDM {V va, vb [ONT • mi implements ei ^ mj implements
ej ^ hierarchy (vi, vj) % hierarchy (va, vb)}

6.2 Use Case Diagram

Figure 4.

6.3 Activity Diagram

Figure 5.

Fig. 4 Use case diagram of case study

Using Semiformal and Formal Methods in Software Design… 59

6.4 Class Diagram

Figure 6.

Fig. 6 Class diagram of case study

Fig. 5 Activity diagram of case study

60 S. Sengupta and R. Dasgupta

6.5 Sequence Diagram

Figure 7.

6.6 VDM-SL Specification

The vienna development method specification language (VDM-SL) is a well-
established formalizing tool for requirements and design specification [12]. VDM-
SL follows a mathematical model based on simple algebraic theory and logic and
specifies system’s behaviour in its required level of abstraction. VDM-SL
expresses system behaviour as logic expressions in terms of operations [13]. The
proposed approach focuses only on operations which are defined with the help of
pre- and post-conditions. A pre-condition is an expression over the input variables

Fig. 7 Sequence diagram of case study

Using Semiformal and Formal Methods in Software Design… 61

representing restrictions assumed to hold on the inputs, whereas a post-condition is
an expression that must be satisfied to achieve the output. Figure 8 shows a simple
‘‘move’’ operation from the case study.

7 Design Verification

After the UML diagrams and VDM-SL specification for the software design are
prepared, we will verify its correctness against the above-specified consistency
rules. From the design diagrams, we get

UC = {create_content, arrange_content, create_course, arrange_course}
AS = {select_content_file, upload_content_file, content_received, content_
repository, search_content, build_course, course_repository}
SV = {client_selectedfile, server_selectedfile, content_bufferlist, contentlist,
cousre_bufferlist, courselist}
M = {browse, select, upload, post, move, contentindexed, courseindexed, dis-
play, search, setcourseinfo, sequenced, select}

Figure 9 illustrates the schematic concept of how the different diagrams are
interconnected by the above-specified set variables.

7.1 Verifying Continuity

Let us now check the correctness of the design artefacts against the specified
consistency rules. For the sake of simplicity, we will discuss only the first three
rules with respect to the case study. Table 1 shows mapping between diagrams for
the case study.

Rule I: Every action state in (e1..e7) has a corresponding origin in use cases
(uc1..uc4).
Rule II: Each action states accessed at least one state variable (from Fig. 5).
Rule III: Method m5 accessed the variable contentlist which belongs to e4,
while m5 implements e4 (from Fig. 8).

Fig. 8 Partial VDM-SL for move operation

62 S. Sengupta and R. Dasgupta

7.2 Verifying Requirement

Verifying consistency rule gives us only partial view about the correctness of the
design; for a complete view, the design artefact should be checked with the
requirement specification. Let us now check whether invoking m5 is justified
against UC2. In other words, we will check that ‘‘agent moves content’’ is the
correct design article of the requirement ‘‘agent arranges content’’.

Table 1 Continuity mapping between UML diagrams

Use case Action states Methods Class

Create content [UC1] Select content [e1] Browse [m1] Author

Select [m2]

Upload content [e2] Upload [m3]

Arrange content [UC2] Content received [e3] Post [m4] Content

Content repository [e4] Move [m5] LMS agent

Indexed [m6]

Create course [UC3] Search content [e5] Search [m7] Teacher

Build course [e6] Courseinfo [m8]

Selectcontent [m9]

Sequenced [m10]

Arrange course [UC4] Course repository [e7] Indexed [m11] LMS agent

Displayed [m12] Course

Fig. 9 Interconnection between design components

Using Semiformal and Formal Methods in Software Design… 63

The proposed verification technique (Fig. 10) is based on a three-dimensional
verification matrix where the three dimensions are methods, classes and state
variables. The data in each cell are either 0 or 1, representing the absence or
presence of the data variable belonging to the corresponding dimension.

In the case study, move () uses two variables storagepath and bufferpath, so
value corresponding to agent class and content class will be one. At the same time,
we can map the method m5 with the use case UC2 from Table 1. So we can write
this formally as ‘‘invoking m5’’ % ‘‘Agent, arrangecontent, content’’. Now,
manually we can check that ‘‘Agent, arrangecontent, content’’ is equivalent to the
requirement conceptual graph in Fig. 11.

8 Conclusions

This work proposes a methodology to bridge the semantic gap between require-
ment specification and design artefacts. The success of the design model depends
on the correctness of the requirement model. We assumed that the requirement
specification used combination of use case, VDM-SL and conceptual graph. The
design model illustrates the use case into activity, sequence and class diagrams. As
the semiformal UML diagrams and the formal VDM-SL specification are disjoint
in nature, we proposed a verification technique to check the continuity between the
design artefacts. We also proposed a three-dimensional-matrix-based verification
of the design component with the requirement specification. The use of formal

Fig. 10 Three-dimensional verification matrix

Fig. 11 Requirement conceptual graph for ‘‘agent arranges content’’

64 S. Sengupta and R. Dasgupta

method such as VDM and the availability of UML-based CASE tools enhance the
possibilities of making the proposed verification method automated. This can be
the future extension of this work.

References

1. Booch, G., Rumbaugh, J, Jacobson, I.: The Unified Modeling Language User Guide. Pearson
Education India, New Delhi (1999)

2. OMG: Unified modeling language specification, version 2.0. Available at http://www.omg.
org/uml

3. Dascalu, S.M.: combining semi-formal and formal notations in software specification: an
approach to modelling time-constrained systems. PhD thesis. Department of Computer
Science, Dalhousie University, Halifax, Sept 2001

4. Sengupta, S., Bhattacharya,S.: Formalization of functional requirements and their traceability
in uml diagrams—A Z notation based approach. In: Proceedings of the 11th Systems
Engineering Test and Evaluation Conference (SETE’06), Melbourne, Australia, 25–27 Sept
2006

5. Lausdahl, K.G., Lintrup, H.K: Coupling overture to MDA and UML. Overture Workshop,
Newcastle (2009)

6. Mota, E., Clarke, E., Groce, A., Oliveira, W., Falcao, M., Kanda, J.: VeriAgent: an approach
to integrating UML and formal verification tools. Electron. Notes Theor. Comput. Sci. 95,
111–129 (2004)

7. Sengupta, S., Dasgupta, R.: Identifying, analysing and testing of software requirements in
learning management system. In: Proceedings of 7th International Conference on
Virtual Learning (ICVL) (2012)

8. Sowa, J.: Conceptual graphs: draft proposed american national standard, conceptual
structures: standards and practices. Lecture Notes in Computer Science, vol. 1640,
pp. 1–65 (1999)

9. Yue, T., Briand, L.C., Labiche, Y.: An automated approach to transform use cases into
activity diagrams, modelling foundations and applications. Lecture Notes in Computer
Science, vol. 6138, pp. 337–353 (2010)

10. Liwu L.: A semi-automatic approach to translating use cases to sequence diagrams. In:
Proceedings of Technology of Object-Oriented Languages and Systems, pp. 184–193, Jul
1999. doi:10.1109/TOOLS.1999.779011

11. Liwu, L.: Translating use cases to sequence diagrams. In: Proceeding of ASE ’00, 15th IEEE
International Conference on Automated Software Engineering, p. 293

12. Sengupta, S., Dasgupta, R.: Integration of functional and interface requirements of an web
based software: a VDM based formal approach. In: Proceeding of IASTED International
Conference on Software Engineering (2013). doi:10.2316/P.2013.796-017

13. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.: The overture
initiative–integrating tools for VDM. ACM Softw. Eng. Notes 35(1), Jan 2010

Using Semiformal and Formal Methods in Software Design… 65

http://www.omg.org/uml
http://www.omg.org/uml
http://dx.doi.org/10.1109/TOOLS.1999.779011
http://dx.doi.org/10.2316/P.2013.796-017

A Lightweight Implementation
of Obstruction-Free Software
Transactional Memory

Ankita Saha, Atrayee Chatterjee, Nabanita Pal,
Ammlan Ghosh and Nabendu Chaki

Abstract Software transactional memory (STM) has evolved as an alternative for
traditional lock-based process synchronization. It promises greater degree of
concurrency and faster execution. This paper proposes a simple, lightweight, and
yet efficient implementation of OFTM. The major contribution of the paper is in
proposing a new STM algorithm that uses simple data structure. This does not
require any contention manager toward ensuring progress condition, atomicity,
and serializability of transactions besides maintaining data consistency. Experi-
mental simulation on random data set establishes the merit of the proposed
solution.

Keywords Concurrency control � Obstruction freedom � Abort freedom �
Throughput � CPU cycle � Spin count

1 Introduction

Transactional memory (TM) is a concurrency control mechanism to exploit par-
allelism in modern multiprocessor environment. A transaction in TM executes
series of reads and writes to shared memory by executing an atomic block of code.

A. Saha � A. Chatterjee � N. Pal � A. Ghosh � N. Chaki (&)
Department of Computer Science and Engineering, University of Calcutta, Kolkata, India
e-mail: nabendu@ieee.org

A. Saha
e-mail: arnabianki@gmail.com

A. Chatterjee
e-mail: atrayeechatterjeeiii@gmail.com

N. Pal
e-mail: nabanita1209@gmail.com

A. Ghosh
e-mail: ammlan.ghosh@gmail.com

� Springer India 2015
R. Chaki et al. (eds.), Applied Computation and Security Systems, Advances in Intelligent
Systems and Computing 305, DOI 10.1007/978-81-322-1988-0_5

67

TM provides an alternative to the traditional lock-based process synchronization,
where program can wrap its code in a transaction. Herlihy and Moss were first to
propose hardware-supported TM in 1993 [1] to ensure the consistency of data
when shared among several processes. In 1995, Shavit and Touitou [2] coined the
term (STM) to describe software implementation of TM for multiword synchro-
nization on a static set of data. The STM implementation is a non-blocking syn-
chronization construct where processes do not need to wait for accessing
concurrent objects during contention: a concurrent process either aborts its own
atomic operation or aborts the conflicting process. The non-blocking synchroni-
zation offers three different types of progress guarantees [3]: wait freedom [4], lock
freedom [5], and obstruction freedom [6]. The wait freedom guarantees that every
transaction will complete in a finite number of steps. In lock freedom, some
transactions will complete in a finite number of steps. And the obstruction freedom
demands that every transaction will commit in the absence of any contention. On
the basis of progress guarantee, the wait freedom is the strongest and the
obstruction freedom is the weakest non-blocking implementation. Even if
obstruction freedom is the weakest, its simplicity and faster performance have
made an increasing interest among the researchers. All non-blocking synchroni-
zations are free from deadlock, priority inversion, and convoying problems.
However, obstruction-free transactional memory (OFTM) may face live-lock
problem if a group of processes keep preempting or aborting each other’s atomic
operations. (DSTM) [7] is an OFTM implementation that minimizes the live-lock
problem by implementing various back-off techniques of contention management
policies. In DSTM, when a transaction faces contention, it aborts the conflicting
transaction or back-off for some specific time to give a chance so that the con-
flicting transaction can commit. The decision, whether to abort or back-off, is been
taken by consulting the contention manager. There are several contention man-
agement policies to resolve the contention among transactions [8].

There are other OFTM implementations [9–11] that present an improved solution
of obstruction-free non-blocking synchronizations. ASTM [9] offers adaptive
methodology to adjust the object acquire scheme in read-dominated and write-
dominated workload. In lazy acquire scheme, transaction acquires the data at
commit time, and in eager acquire scheme, transaction acquires the data earlier and
detects contention earlier. Thus, ASTM uses eager acquire scheme in write-domi-
nated workload and lazy acquire scheme in read-dominated workload. ASTM
increases the throughput by this adaptive nature of object acquire methodology.
Non-blocking zero indirection transactional memory (NZTM) [12] obeys the same
obstruction-free philosophy, but the design is considerably different from that of
DSTM and ASTM and relies much more on the underlying hardware architecture.
Most importantly, unlike DSTM and ASTM, the NZTM uses in-place data to
overcome data indirection overhead. In [11], a transaction is allowed to execute
without any abort or back-off during contention. The proposed method uses a
modified data structure similar to that of DSTM. In this implementation, transactions
consult with contention manager before back-off or self-abort. The implementation

68 A. Saha et al.

does not consider the scenario where multiple transactions share the data object for
write operation.

The recent research trends have shown an interest on reducing the abort while
ensuring the progress guarantee [13, 14]. In [13], multiple versions of data object
are being maintained to avoid spurious abort for read-only transactions. The
proposed method in [14] shows that by using single version of data object, abort-
free execution for read-only transactions is possible.

In this paper, a new algorithm has been proposed toward developing an OFTM
based on some preexisting works [11], where multiple transactions share the same
data object and execute in an abort-free manner. A pool of transactions is gen-
erated by using existing randomization algorithms such as linear congruence [15].
In the simulation, a more number of write transactions have been considered as
compared to the number of read-only transactions. This is strikingly different as
TM is known to perform better for read-dominated transactions, and most of the
prior works utilize the same while measuring performances. In order to make the
proposed STM lightweight, the data structure of TM object has been modified
from what has been used in earlier works [11]. The approach does not require
contention manager to resolve the conflict among transactions as the execution
pattern of transactions itself is capable to resolve the contention if any. Moreover,
the proposed method uses a simple validation mechanism to check for consistency.

In Sect. 2, the state-of-the-art progress condition in STM is described. In
Sect. 3, the basic concept has been stated. Section 4 presents the proposed light-
weight OFTM. In Sect. 5, the performance of the proposed algorithm has been
evaluated.

2 Software Transactional Memory and Progress Condition

Transactions, in STM, are dynamic sequence of operations that executes in parallel
as a single atomic operation till they do not conflict. STM ensures that execution of
transaction will be either successful, in which case it commits by making updates
permanent, or unsuccessful, in which case transaction aborts by discarding all its
updates. When two transactions run concurrently on same data, at least one of
them modifies it, and conflict occurs. STM resolves this conflict by aborting any
one of these transactions. Aborted transaction may reinitiate later and commit
eventually. Frequent aborts tend to waste system resource and deteriorate the
performance. Thus, the objective of STM is to allow as much as transactions to
make progress concurrently and commit eventually. This progress condition is
termed as positive concurrency. Positive concurrencies are of two types: pro-
gressiveness and permissiveness.

Progressiveness is an execution pattern that allows a transaction to commit. It
demands that transaction encountering no conflict must always commit. Among a
group of conflicting transactions, the progressiveness demands that at least one of
the transactions will commit [18]. This is a stronger version over the basic

A Lightweight Implementation of Obstruction-Free Software Transactional Memory 69

progressiveness. However, STM generally aborts a conflicting transaction to
resolve contention. Thus, strong progressiveness is not the strongest one because it
cannot guarantee that all the conflicting transaction will eventually commit.

Permissiveness demands that a transaction is never aborted unless it is required
for maintaining correctness [19]. The STM systems that randomize transactions’
commit/abort point using some random functions are known as probabilistically
permissive. In [20], Guerraoui et al. also indicated that some STM systems check
that the data consistency at commit point, i.e., check the value of data object read
by the transaction, has not been modified, and if modified, then abort the trans-
action. These types of transactions are not permissive with respect to the opacity
condition.

The available permissive STM techniques to detect and resolve conflict are
prone to error and susceptible to false abort. Thus, an important goal of permis-
siveness is to avoid spurious aborts. Multiversion (MV) permissiveness [13]
minimizes the rate of aborts for conflicting transactions by segregating read and
write transactions. MV permissiveness ensures that read-only transactions will
never abort. This is achieved by maintaining multiple versions of each data. As
maintaining multiple versions requires additional storage and complex computa-
tional mechanism, the PermiSTM [13] is being evolved that supports MV per-
missiveness by keeping only single version of each data item. Whether MV
permissiveness or PermiSTM, none of them guarantee abort freedom for write
transactions in the presence of conflict.

The obstruction-free software transactional memory (OFTM) [6] guarantees
progress for a transaction when all other transactions are suspended. As per the
generic definition given in [6], an obstruction-free synchronization guarantees pro-
gress for any thread that eventually executes in isolation. DSTM [7] is the first OFTM
implementation that uses a dynamic transactional memory object (TM Object),
which contains a pointer to the locator object. The locator object points to the
descriptor of the most recent transaction and holds old and new versions of the data
object. A transaction may be in active, committed, or aborted state. The descriptor
of the transaction holds this state. When a transaction acquires some object for
read/write operation, it makes the status filed as ‘Active’. When transaction commits
successfully, it changes its status filed as ‘Committed’. The status field is set as
‘Aborted’ when a transaction is aborted by other conflicting transactions.

When a transaction, say Tk wants to read an object X and finds that another
transaction, say Tm is updating X, then Tk may eventually abort Tm or back-off for
specific time after consulting with contention manager. Otherwise, if Tk finds that
no other transaction is updating X, then it reads the current value of X, and at
commit point, it checks for the consistent state of X. Transaction Tk commits if it
finds consistent state of X.

When transaction Tk wants to update the object X, it tries to acquire an
exclusive but revocable ownership of X. To do so, Tk gets the information of X. If
Tk finds that no other transaction has owned the object X, it exclusively owns the
object. Otherwise, if Tk finds another transaction, say Tm is updating X, then the
contention manager will decide whether Tk will back-off for a random duration or

70 A. Saha et al.

abort Tm to acquire the ownership of X. All the available OFTM techniques [9–11,
16] follow this basic high-level principle although they differ in the implemen-
tation techniques to achieve better throughput. An OFTM guarantees that a
transaction commits in the absence of contention. However, it is unable to provide
concurrency since progress is guaranteed only when one transaction is active at a
time [17].

In [11], algorithm implements concurrency, where the second transaction is
allowed to proceed immediately without affecting the execution of the first
transaction in the presence of contention. This method uses the basic data structure
of DSTM [7] but differs in the execution pattern. When a transaction, say Tx, wants
to access a data object, it checks whether the data object is already accessed by
another transaction or not. If data object is not accessed by any other transactions,
then Tx owns the data object. Otherwise, if it finds that the other transaction, say
Ty, owns the data object, then Tx reads the data object value from the Ty’s new data
field. In such case, when Tx reaches its commit point, it checks whether Ty is
committed and the data read by Tx is consistent or not. On failing to satisfy any of
the conditions, Tx re-executes its operation. In this algorithm, transactions take the
help of contention manager before back-off or abort. This approach yields a higher
throughput as compared to DSTM. It [11] supports abort-free execution for both
read-only and write transactions. However, the solution is restricted for only two
transactions. Like other OFTM approaches, the technique in [11] cannot support
permissiveness with respect to the opacity condition as transactions check for
consistent state of data object at their commit point. Moreover, the isolation
property too is not satisfied as the data object being updated by some transaction,
say Ty, is accessed by another transaction, say Tx, before Ty commits. In this paper,
lightweight OFTM approach has been proposed. Concurrency is achieved for
multiple transactions in a pairwise execution, where a transaction does not abort
after it begins to execute. When a transaction ends working with data object, it
checks for its previous transaction’s data access status (whether still accessing
the data object or not) and/or checks for the data inconsistency. The transaction
re-executes its data access region (i.e., spins) with the current value of the data
object when necessary to resolve the contention. The method does not require
additional contention manager.

The basic methodology of the proposed execution is motivated from [11]
although it uses a simplified data structure causing lesser number of memory
accesses than [11]. In the next section, the scope of the proposed work has been
elaborated.

3 Scope of the Work

The objective of the proposed algorithm is to maximize the throughput by
reducing the total execution time for a set of transactions. The proposed STM
system keeps the information about transactions’ data access region, i.e., when a

A Lightweight Implementation of Obstruction-Free Software Transactional Memory 71

transaction starts accessing the object and stops working with that object. The
execution flow of a transaction includes initiation point, data access region, and
commit point. It is assumed that each transaction has a single data access region.
Every transaction is allowed to access data, available in TM object, without
detecting any conflict. When a write transaction, say Tx, reaches its end data access
point, it checks the transaction type of its previous transaction, say Tm.

• If Tm is read-only transaction, then Tx checks whether Tm is out of its data
access region (i.e., its data access is completed) or not. If Tm is out of its data
access region, then Tx continues its execution and commits eventually.
Otherwise, Tx spins for specific time equal to its data access region and checks
again whether Tm is out of its data access region or not. In this case, Tx only
commits when Tm is out of its data access region. Both the scenarios are
depicted in Figs. 1 and 2. In neither case, Tx required to check data inconsis-
tency as its previous transaction Tm is read only and thus not going to update
the data object.

• If Tm is write transaction, then Tx checks whether Tm is out of its data access
region or not. If Tm is out of its data access region (but yet to commit), then Tx

reads from Tm’s last updated data value and re-executes its operation and
commits. Otherwise, when Tx finds that Tm is within its data access region, it
spins for specific time equal to its data access region and checks again whether
Tm is out of its data access region or not and follows the same procedure as
above. After spin Tx may find that Tm is already committed, then Tx accesses
the last updated data value of TM object to re-execute its operation and
commits. This is illustrated in Figs. 3 and 4.

When Tx and Tm both are read-only transactions, the case is trivial since no
contention arises. If Tx is read-only transaction and Tm is write transaction, then Tx

spins, till Tm is out of its data access region. When Tm is out of its data access
region, Tx reads the last updated value of data object from Tm.

Tm

(Read-only)

Initiation Start Data
Access

End Data
Access

Commit
Point

Data Access Region

Tx

(Write)

Fig. 1 When Tx reaches its end data access point, Tm is out of its data access region. Thus, Tx

commits eventually

72 A. Saha et al.

The data structure of the TM object [11] has been modified in the proposed
execution for simplicity. Here, the TM object includes the data object only. This
reduces the data indirection overhead. Every transaction uses its local memory to
store the data value that it reads and updates during its execution. Thus, data
storage mechanism has also been simplified. Moreover, the execution does not
include the contention manager as the proposed execution pattern is capable to
resolve the conflict. Further, each transaction has an update bit which determines
whether a transaction is a read-only (update bit = 0) or write (update bit = 1)
transaction. Inclusion of this update bit reduces the overhead of data consistency
check for a transaction that is preceded by a read-only transaction (as explained in

Tm
(Read-only)

Initiation Start Data
Access

End Data
Access

Commit Point

Data Access Region

Tx

(Write)

Fig. 2 When Tx reaches its end data access point, Tm is within its data access region. Thus, Tx

spins until Tm is out of its data access region

Tm

(Write)

Initiatio Start Data
Access

End Data
Access

Commit
Point

Data Access Region

Tx

(Read-only/Write)

Fig. 3 When Tx reaches its end data access point, Tm is within its data access region. Thus, Tx

spins until Tm is out of its data access region

A Lightweight Implementation of Obstruction-Free Software Transactional Memory 73

example above). All these features make the system lightweight in terms of simple
validation mechanism, lower computational overheads, and reduced memory
access.

In this execution, a set of (read/write) transactions has been generated ran-
domly. Each of the transactions has a finite length, specific arrival time, and
completion time. Each transaction accesses the data object within this interval.
These parameters are generated randomly in this execution. Access time of TM
object within a transaction is also determined by a random function. Since the
transactions are executing concurrently, total turnaround time is less than the
summation of their respective lengths even though a transaction may spin more
than one time.

4 Simulation of the Proposed Lightweight OFTM

Some important terminologies used in the rest of this paper such as data access
region, spin count, and transaction execution length have been defined in this
section.

4.1 Definitions

• Spin count is the number of times the transaction Tx executes its data access
region, while its previous transaction Tm is in its data access region.

Tm

(Write)

Initiatio Start Data
Access

End Data
Access

Commit
Point

Data Access Region

Tx

(Read-only/Write)

Fig. 4 When Tx reaches its end data access point, Tm is out of its data access region. Thus, Tx

reads data value from Tm and re-executes its operation and commits when Tm is successfully
committed

74 A. Saha et al.

Spin count is an overhead of the proposed method. However, it has been
observed that the number of transactions undergoing spin is much less with
respect to the subset considered in the execution phase.
Therefore, even if the average spin count is high, then also the total execution
time never exceeds the time when the subset of transactions are executed
serially.

• Data-access region (DR) is the time interval where (i.e., data access start point
to data access end point) each transaction accesses a shared resource.
Every transaction has a single data access region of a finite length.

• Length (absolute value) of the transaction is the time limit throughout which
the transaction executes.

• Extra CPU cycle is the overhead of the CPU caused by unnecessary spinning of
a transaction Tx, when both Tx and its preceding read-only transactions are in
their respective data access regions.
Consider that Tm is the preceding read-only transaction for Tx. Transaction Tx

keeps on spinning till Tm comes out of its data access region. In terms of data
consistency, this is unnecessary as the read-only transaction Tm will never
modify the value of the data object. The significance of defining extra CPU
cycle lies in this. This is different from computing spin count in case the first
transaction Tm is a write transaction.

• Update bit (one bit integer) determines whether a transaction is a read-only (0)
or write (1) transaction.

4.2 Assumptions

• There will be only one shared data object to be accessed by a set of
transactions.

• Proposed method considers both read-only transactions (update bit = 0) and
write transactions (update bit = 1).

• Every transaction has a single data access region of finite length.
• It is being assumed that that Tm precedes Tk 8m; k 2 ½1. . .n� iff transaction Tm

occurs before transaction Tk. Moreover, the transaction Tk will exit from its
data access region only when transaction Tm is out of its data access region.

• At a particular instance, during execution phase, only two transactions are
considered for checking the constraints.

• For better randomness, linear congruence [15, 16] method is used as the ran-
dom function to generate a pool of transactions.

• The subset of transactions is selected transactions from three regions, i.e.,
beginning, middle, and end of the transaction pool.

A Lightweight Implementation of Obstruction-Free Software Transactional Memory 75

4.3 Algorithm

Procedure lightweight_OFTM
/* Main procedure that coordinates other sub-procedures to
fetch the required output
*/

Begin
Call function lin_cong to generate a pool of
transactions randomly;
Store the transaction parameters in transaction_file;
Select a subset of transactions from the above pool;
Call procedure STM_execution;
Call Display;

End

Function lin_cong
/* Random number generation : The linear congruential method
[12] produces a sequence of integers X1, X2, X3… between zero
and m-1 according to the following recursive relationship:
Xi+1 = (a Xi + c) mod m, where i=0,1,2,… and X0 is called the
seed, a is called the constant multiplier, c is the increment
,m is the modulus.
*/

Begin
Generate random numbers using expression Xi+1 = (a Xi +
c) mod m;

End

Function STM_execution
/* A subset of transactions run concurrently to access a
single shared tm_data (TM object), satisfying few
constraints.
*/

Begin
for tr=(start+1) to (subset)+start

/*Loop runs for each of the transaction in the subset,
where start is the beginning of the subset */
Set two pointers for accessing the previous and
current transaction;

Check consistency of the tm_data;
Increment tm_data by 1, for each write
transaction;
Store the cumulative execution time in
execution_array;
Increment no_of_spin_count for every current
transaction, whose previous transaction is
within the data access region ;
Increment extra_cpu_cycle for every (read/write)
transaction, whose previous transaction is a
read transaction (and is within the data access
region);

End for
End

76 A. Saha et al.

5 Performance Evaluation by Experiments

The proposed algorithm has been implemented using C language. Based on
multiple parameters, a characterization of transaction is done and multiple set of
transactions are generated randomly. Performance is measured with respect to
multiple set of transactions generated randomly. Experimental verification is stated
in Sect. 5.1 for the sake of completeness. This is followed by experimental results
(Sect. 5.2).

5.1 Plan for Experimental Verification

The problem domain is divided into three phases:

Procedure Display
/* Display all the evaluated values.*/

Begin

total_ execution_ time= max(execution_array) ;
/* function max returns largest element from array */

average_spin_count=no_of_spin_count/tr_spin;
/* tr_spin= number of transaction undergoing spin*/

average_total_execution_time=total_execution_time/car
dinality_of_subset;

Print new modified value of tm_data,
no_of_spin_count,
average_spin_count,
total_ execution_time,
average_total_execution_time,
extra_cpu_cycle;

Store all the evaluated values in Result_file;

Call procedure comparison;

End

Procedure comparison
/* For comparing the theoretical and observed value (of
execution units).
*/

Begin
/* Summation of all the length of transactions in the subset
to obtain the theoretical value.
*/

Calculate the theoretical execution time;
Compare theoretical and observed value;

/* Percentage of reduced execution units*/
Compute reduce_factor;

End.

A Lightweight Implementation of Obstruction-Free Software Transactional Memory 77

Phase I (Transaction Generation): Initially, a set of N transactions are generated.
It includes the following steps:

(a) ‘Number of transactions’ has been taken as a user input.
(b) Initially, the value of data object is a set to a numeric constant.
(c) For each transaction, the following calculations are being done:

i. Length, arrival time, and completion time of each transaction using a
predetermined random function.

ii. Since it is being assumed that there is only one shared data object, it is
required to determine the time interval for accessing the data object for
each transaction. The interval will be within the length of corresponding
transaction. Using another random function, different from the function
that is used to determine the transaction length, the lower and upper
limits of accessing the data object are being evaluated. It is also being
assumed that each transaction can access the data object only once, and
thus, range of data access region is calculated only once for each
transaction.

(d) Aforesaid generated transactions will be stored in a file. There will be six
parameters associated with each transaction

i. Transaction id (TI)
ii. Length of transaction (TL)

iii. Arrival Time of transaction (AT)
iv. Completion Time of transaction (CT)
v. Region of Data Access—from Lower Limit (LL) to Upper Limit (UL)

vi. Update bit (UB)—either 0 or 1

Phase II (Subset of Transaction Formation): In this phase, the subset of
transactions has been taken into consideration for further analysis. The number of
transactions to form the subset is being taken as user input. Say, the subset contains
‘B’ number of transactions. This subset can be chosen from any region of the
transaction pool.

Phase III (Execution Phase): Let T be the turnaround time for executing
B number of transactions, which run concurrently as per the proposed method.

Now, we need to show that T �
PB

i¼1
Li where Li is the length of the transaction Ti.

In this phase, total execution time, average execution time, total number of
spins, average number of spins, and extra CPU cycle are evaluated. These are used
to compare between theoretical results when corresponding transactions run
sequentially. The sample set for the algorithm is shown in Figs. 5, 6 and 7. Each
column represents different parameters (transaction_id, transaction length, arrival
time, completion time, lower limit and upper limit of data access region, and
update bit) of transactions. Figs. 6 and 7 are two subsets of transactions selected
from pool of transactions (Fig. 5) from beginning and end, respectively (with
subset cardinality as 3 and 4).

78 A. Saha et al.

5.2 Experimental Results

The lightweight property of the proposed algorithm is derived from the fact that it
has reduced the number of memory accesses in comparison with [11]. This is
achieved by simplifying the data structure. TM object includes data object, and
thus, the data indirection overhead is reduced. Secondly, each transaction can
access the data object (available at TM object) and stores the read value of the data
object in its local variable. The proposed method does not have the descriptor’s
field such as ‘Status’, OldData, and NewData as it was in [11]. Besides, in [11],
every transaction checks the data consistency in its commit point. In case of
inconsistent data, transaction re-executes its operation from the data access point
to the commit point [11]. In the proposed method, the system has the data access
information a priori. When a transaction reaches the end of data access region, it
checks whether its previous transaction is out of its data access region or not. If the
previous transaction is a read-only one and is out of its data access region, then the
current transaction commits directly. However, when preceded by a write trans-
action, the current transaction re-executes its operation after reading the last
updated value by previous transaction and then commits.

Contention arises when more than one transactions access the same data object
concurrently and at least one of them is a write transaction. In the absence of
contention, a read-only transaction accesses the memory only once, i.e., at the time
of reading the data value. On the other hand, a write transaction accesses the
memory twice to read and update data. In the presence of contention, the number
of memory access for the proposed algorithm is computed for the best-case and
worst-case scenarios.

In the best-case scenario, a write transaction Tx reaches its end data access point
and finds its predecessor, say Tm, is a read-only transaction and is out of its data
access region. In this case, both Tm and Tx will commit eventually without facing
any contention. Thus, the number of memory access is 3 (1 for read-only trans-
action and 2 for write transaction). Now, in the same scenario, for n number of
transactions, where a write transaction is preceded by all read-only transactions the
number of memory accesses ={(n21) + 2)}.

In the worst-case scenario, a write transaction Tx reaches its end data access
point and finds its predecessor, say Tm, is a write transaction and is within its data

TI TL AT CT LL UL UB
T1 63 46 108 69 95 1
T2 45 49 93 79 90 1
T3 141 61 201 90 192 0
T4 129 152 280 273 279 1
T5 93 202 294 291 292 1
T6 135 244 378 375 377 0
T7 111 339 449 368 439 1
T8 39 414 452 431 444 1
T9 123 416 538 532 537 0
T10 75 460 534 514 531 1

Fig. 5 Set of 10 transactions
after phase I

A Lightweight Implementation of Obstruction-Free Software Transactional Memory 79

access region. Thus, Tx spins, until Tm is out of its data access region. When Tx

spins, it does not access the data object; thus, the number of memory count
remains unchanged. When Tx finds that Tm is out of its data access region (or
committed in between Tx’s spin), Tx accesses the data object and updates the value
at its commit point. Thus, the number of memory accesses is 5 (2 for Tm and 3 for
Tx). In the same scenario, for n number of write transactions that are executing
concurrently, the number of memory access = {2 + (n21)*3}.

Although the proposed algorithm has been implemented pairwise, the experi-
mental logic can be easily extended for a set of n transactions, both read only and
write. In pairwise execution, when a transaction is preceded by a read-only
transaction, data inconsistency cannot occur. Hence, no additional memory access
is actually required at the end data access region to check for data consistency. The
scenario is not the same for a set of n transactions because a transaction may be
preceded by write transactions earlier even if it is immediately preceded by a read-
only transaction. Hence, every transaction, irrespective of whether it is preceded
immediately by a write transaction or by a read-only transaction, requires data
consistency check at the end data access region. Thus, the number of memory
accesses for a read-only transaction is 2 at the start and end of its data access
region and 3 for a write transaction with an additional access for updating data
object.

In the event where R number of read-only transactions and W number of write
transactions, in a set of n transactions, executing concurrently, the total number of
memory accesses is {1 + (R21)*2 + W*3} [when the first transaction is read
only] or {2 + (W21)*3 + R*2} [when first transaction is write]. In [11], when a
transaction, say Tx, initiates and finds that another write transaction, say Tm, is
already owned the data object, then Tx reads from Tm’s new data and start exe-
cuting. At commit point, Tx checks whether Tm has been committed or not. If Tm is
active, then Tx again reads data value from Tm and re-executes it operation. Thus,
for every spin, Tx requires the memory access. Hence, for a set of n transactions,
where R is the number of read-only transactions and W is the number of write
transactions [i.e., R + W = n], the number of memory accesses in [11] is
{R + W*2 + total_no_of_spin}. Whenever this spin count increases, the number
of memory access is increased.

Thus, the total number of memory accesses for the proposed algorithm is
smaller as compared to [11].The efficiency and performance improvement of the
proposed method show that it is always preferable to run the transactions con-
currently rather than sequentially. The performance improvement criterion is
further supported by the results presented in the charts below. The bottom line for
the proposed approach would guarantee at least 30 % time save as compared to the
theoretical approaches that run transactions serially.

Figure 8 is a comparison of total execution time taken by the transactions when
executed serially and the value obtained using the proposed method (i.e., when run
concurrently). X-axis denotes the number of transactions that we select for analysis,
and y-axis denotes the execution time unit(s). The notation p(q) represents that ‘p’
number of transactions are selected from a set of ‘q’ transactions.

80 A. Saha et al.

In Fig. 9, x-axis denotes the number of transactions that we select for analysis
and y-axis denotes the number of transactions under spin count. Similar to Fig. 8,
the notation p(q) represents that ‘p’ number of transactions are selected from a set

TI TL AT CT LL UL UB

T1 63 46 108 69 95 1

T2 45 49 93 79 90 1

T3 141 61 201 90 192 0

Fig. 6 Data set 1 (after phase II)

TI TL AT CT LL UL UB

T7 111 339 449 368 439 1

T8 39 414 452 431 444 1

T9 123 416 538 532 537 0

T10 75 460 534 514 531 1

Fig. 7 Data set 2 (after phase III)

Total time taken by the transactions
when executed concurrently

Total time taken by the transactions
when executed serially

0

200

400

600

800

1000

1200

1400

4(10) 9(20) 10(30) 12(40) 14(50) 15(60)

Number of transactions

E
xe

cu
tio

n
tim

e
un

its

Fig. 8 Improvement in
execution time using
proposed algorithm

0

2

4

6

8

10

12

4(10) 9(20) 10(30) 12(40) 14(50) 15(60)

Number of transactions undergoing spin(s) Average spin count

Number of transactions

S
pi

n
co

un
t

Fig. 9 Spin count versus
number of transactions
undergoing spin

A Lightweight Implementation of Obstruction-Free Software Transactional Memory 81

of ‘q’ transactions. Spin count is obviously an overhead. However, it has been
observed that the number of transactions undergoing Spin is much less with
respect to the subset considered in the execution phase. Therefore, even for very
high value of the average spin count, total execution time never exceeds the time
when the subset of transactions are executed serially.

A higher number of read transactions incur greater CPU overhead. In the
proposed pairwise execution, transactions execute without checking their pre-
ceding read-only transaction’s data access region. Thus, transactions re-execute
unnecessarily.

The scenario has been depicted in Fig. 10. X-axis denotes the percentage of
write transactions over read transactions, and y-axis denotes the extra CPU cycle
caused by read transactions. In a revised approach, as documented in the algorithm
for function STM_execution_ver2, this problem has been resolved. Consequently,
the algorithm becomes more efficient and faster. With this improvement, extra
CPU cycle reduces to zero.

Function STM_execution_ver2
/* A subset of transactions run concurrently to access a
single shared tm_data (TM object), satisfying few
constraints.
*/

Begin
for tr=(start+1) to (subset)+start

/* Loop runs for each of the transaction in the subset,
where start is the beginning of the subset
*/

Set two pointers for accessing the previous and
current transaction;

Check consistency of the tm_data;

Increase tm_data by 1 for each write transaction;

Store cumulative execution time in execution_array;

Increment no_of_spin_count for every current
transaction, whose previous transaction is in data
access region and is not a read transaction;

End for
End

CPU Overhead Due to Read Transactions

-5

0

5

10

15

20

25

30

0 20 40 60 80 100

Percentage of write Transactions

E
xt

ra
 C

P
U

 C
yc

le

Fig. 10 CPU overhead due
to read transactions

82 A. Saha et al.

6 Concluding Remarks

An efficient implementation of STM without involving contention manager and by
using a simple data structure makes the proposed algorithm suitable for adopting
as compared to some of the existing ones. In the proposed method, a transaction,
read only or write, is never aborted after its initiation. This ensures progress
guarantee for every transaction in the set of n finite-length transactions, n being a
finite integer. Lightweight property of the algorithm is justified by avoiding the
indirection overhead, reducing the number of memory accesses, simplifying
the validation mechanism, and thus reducing the computation overheads. By
avoiding all these complex issues, the proposed algorithm has achieved all the
basic deliverables of OFTM.

Although the proposed work has been implemented by comparing the trans-
actions pairwise, this comparison can be easily extended for a set of n transactions,
where every transaction will check for the data consistency in its data access
region if the immediate previous transaction is out of its data access region. The
work may further be extended toward an empirical evaluation of the proposed
STM for a multicore environment with varying number of cores. Also, there could
be more than one TM object for contention within a given set of transactions. In
this paper, linear congruence has been used to generate random data sets for
different transactions, their length, time and order of occurrences, etc. This may
also be achieved using randomization functions, such as Mersenne Twister, WELL
(‘Well Equi-distributed Long-period Linear’), Blum Blum Shub, and Fortuna.

References

1. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lockfree data
structures. In: Proceedings of 20th Annual International Symposium on Computer
Architecture, ISCA ’93, pp. 289–300, May 1993

2. Shavit, N., Touitou, D.: Software transactional memory. In: ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, pp. 204–213. ACM August 1995

3. Marathe, V.J., Scott, M.L.: A Qualitative Survey of Modern Software Transactional Memory
Systems. Technical Report Nr. TR 839. University of Rochester, Computer Science
Department (2004)

4. Herlihy, M.: Wait-free synchronization. TOPLAS: ACM Trans. Program. Lang. Syst. 13(1),
124–149 (1997)

5. Fraser, K.: Practical lock freedom. PhD Dissertation, Cambridge University Computer
Laboratory (2003)

6. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: double-ended
queues as an example. In: Proceedings of the 23rd International Conference on Distributed
Computing Systems, pp. 522–529 (2003)

7. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional memory for
dynamic-sized data structures. In: 22nd Annual ACM Symposium on Principles of
Distributed Computing, pp. 92–101, July 2003

A Lightweight Implementation of Obstruction-Free Software Transactional Memory 83

8. Scherer III, W.N., Scott, M.L.: Advanced contention management for dynamic software
transactional memory. In: 24th Annual ACM Symposium on Principles of Distributed
Computing, PODC ’05, pp. 240–248 (2005)

9. Maranthe, V.J., Scherer III, W.N., Scott, M.L.: Adaptive software transactional memory. In:
Proceedings of the 19th International Symposium on Distributed Computing (DISC),
pp. 354–368, May 2005

10. Tabba, F., Wang, C., Goodman, J.R., Moir, M.: NZTM: non-blocking zero-indirection
transactional memory. In: Proceedings of the 21st ACM Annual Symposium on Parallelism
in Algorithms and Architectures (SPAA), pp. 204–213 (2009)

11. Ghosh, A., Chaki, N.: Design of a new OFTM algorithm towards abort-free execution. In: 9th
International Conference, ICDCIT 2013, pp. 255–266, Bhubaneswar, India, 5–8 Feb 2013

12. Harris, T., Larus, J., Rajwar, R.: Transactional Memory, 2nd edn., pp. 101–145. Morgan &
Claypool, (2010)

13. Perelman, D., Fan, R., Keidar, I.: On maintaining multiple versions in STM. In: Proceedings
of the 29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
PODC ’10, pp. 16–25 (2010)

14. Attiya, H., Hillel, E.: Single-version STMs can be multi-version permissive. In: Proceedings
of the 12th International Conference on Distributed Computing and Networking, ICDCN’11,
pp. 83–94, Bangalore, India (2011)

15. http://www.eg.bucknell.edu/*xmeng/Course/CS6337/Note/master/node40.html (2014)
16. Knuth, D.E.: The art of computer programming. Seminumerical Algorithms, vol. 2, 3rd edn.

Addison-Wesley, Reading (1997). ISBN 0-201-89684-2
17. Guerraoui, R., Kapałka, M.: On obstruction-free transactions. In: Proceedings of the 29th

Annual Symposium on Parallelism in Algorithms and Architectures, pp. 304–313 (2008)
18. Guerraoui, R., Kapalka, M.: The semantics of progress in lock-based transactional memory.

In: POPL ’09, pp. 404–415 (2009)
19. Guerraoui, R., Henzinger, T.A., Singh, V.: Permissiveness in transactional memories: In:

Proceedings of the 22nd International Symposium on Distributed Computing (2008)
20. Crain, T., Imbs, D., Raynal, M.: Read invisibility, virtual world consistency and probabilistic

permissiveness are compatible. In: Algorithms and Architectures for Parallel Processing,
pp. 244–257. Springer, Berlin (2011)

84 A. Saha et al.

http://www.eg.bucknell.edu/~xmeng/Course/CS6337/Note/master/node40.html

Part II
Cryptography

Multiplicative Polynomial Inverse Over
GF(73): Crisis of EEA and Its Solution

J.K.M. Sadique Uz Zaman and Ranjan Ghosh

Abstract The multiplicative polynomial inverses of all elemental polynomials
exist under each of all irreducible polynomials over the finite field GF(pm) where
p is a prime integer and both p and m C 2. For GF(28), the Extended Euclidean
Algorithm (EEA) successfully finds multiplicative inverses of all the 255
elemental polynomials under each of 30 irreducible polynomials. However, for
GF(73), the same algorithm cannot find multiplicative inverses of all the 342
elemental polynomials under each of its 112 monic irreducible polynomials. A
simple algebraic method proposed in the paper finds all the 112 monic irreducible
polynomials over GF(73) along with the multiplicative inverses of all the 342
elemental polynomials under each of the 112 irreducible polynomials.

Keywords Extended euclidean algorithm � Extension field � Galois field �
GF(73) � Monic irreducible polynomial � Multiplicative inverse

1 Introduction

A finite field, also known as a Galois field GF(q), contains a finite number of
elements from 0 to q - 1, where q is an integer and is called the order of the field.
The finite field can also be denoted by GF(pm) where p is a prime number and m is
a positive integer. When m = 1, the field is called a prime field and for m C 2, the
field is called an extension field which is related to polynomials. When p = 2, the
field is called a binary field.

J.K.M. Sadique Uz Zaman (&) � R. Ghosh
Department of Radio Physics and Electronics, University of Calcutta, 92 A.P.C. Road,
Kolkata 700 009, India
e-mail: jkmsadique@gmail.com

R. Ghosh
e-mail: rghosh47@yahoo.co.in

� Springer India 2015
R. Chaki et al. (eds.), Applied Computation and Security Systems, Advances in Intelligent
Systems and Computing 305, DOI 10.1007/978-81-322-1988-0_6

87

Using Extended Euclidean Algorithm, one can calculate the multiplicative
inverse of an element a [GF(q) over a finite field, except 0, if and only if a is
relatively prime to q [1, 2]. For a prime field, the same algorithm calculates the
multiplicative inverses for all elements a [GF(p). For an extension field (q = pm),
there exists elemental polynomials of all elements a [GF(pm) with highest degree
(m - 1) or less and a number of irreducible polynomials with highest degree m.
The multiplicative inverse of an element is calculated through its multiplicative
polynomial inverse obtained from its elemental polynomial under an irreducible
polynomial. Considering binary field (q = 2m), one can use the Extended
Euclidean Algorithm (EEA) to calculate the multiplicative inverses of all its
elemental polynomials under an irreducible polynomial [3, 4]. Following the said
algorithm, the multiplicative inverses of 255 elements over GF(28) can be calcu-
lated using the first irreducible polynomial among 30 such polynomials and this
array of multiplicative inverses is used as a preliminary substitution box to form
the S-Box used in AES [5, 6].

The GF(pm) has pm elements, and the polynomial representation E(x) of each
the element involves m terms with maximum degree (m - 1). The coefficients ai

belong to GF(p) and vary from 0 to (p - 1). The expression of E(x) is written as,

E xð Þ ¼
Xm�1

i¼0

aix
i: ai 2 GFðpÞ

()

The irreducible polynomial I(x) under GF(pm) is also expressed as [7–9],

I xð Þ ¼
Xm

i¼0

aix
i: ai 2 GF pð Þ and am 6¼ 0

()

The leading coefficient am in irreducible polynomials cannot be zero and other
coefficients ai vary from 0 to (p - 1). For GF(2m), all irreducible polynomials are
monic, since the unity value is the only option for the leading coefficient, while for
GF(pm) with p [2, the leading coefficient has options between 1 and (p - 1). For
such Galois field, there exists monic as well as non-monic irreducible polynomials.
When adding two elemental polynomials, the coefficients of elements having
identical power are added with modulo p. When two such elemental polynomials
are multiplied, the coefficients of elements having identical power are added with
modulo p following the addition rule without looking into the fact that the power
of x is becoming more than (m - 1). I(x) then modulo operate the product and the
result is in the range of polynomials earmarked for E(x).

For GF(73), no information is available with the authors in respect of finding
multiplicative inverse using EEA. We adopted EEA to find multiplicative inverse
under one of the 112 monic irreducible polynomials over GF(73) with limited
success. Its successful and unsuccessful applications are presented in Sect. 2. In
Sect. 3, we have proposed a simple algebraic method to calculate multiplicative
inverse over GF(73) with the same examples shown in Sect. 2. The computational

88 J.K.M. Sadique Uz Zaman and R. Ghosh

algorithm of the proposed method is presented in Sect. 4. In Sect. 5, we have
presented the results, discussion, and future scopes of the work. The conclusion is
in Sect. 6.

2 EEA and Multiplicative Inverse in GF(28) and GF(73)

There are two algorithms in respect of finding the GCD of two positive integers,
A and B for A C B. Euclidean Algorithm is the one, which finds the GCD directly,
while the EEA finds the same through two other integers S and T. Euclidean
Algorithm was invented around 300 B.C. by Euclid, a Greek mathematician.
During first half of seventeenth century, Bachet, a French mathematician first
conceived the idea of Extended Euclidean Algorithm.

The EEA is narrated in Sect. 2.1 along with examples and its computational
algorithm. In Sect. 2.2, the EEA is successfully applied to find multiplicative
inverse (MI) of elemental polynomial (EP) over GF(28) using one of the 30
irreducible polynomials (IP). However, it is noticed that for GF(73), the EEA is
selective for few elemental polynomials barring few others. A case of successful
application of EEA over GF(73) is shown in Sect. 2.3, while Sect. 2.4 depicts an
unsuccessful application. A comparative study focusing reasons for partial success
of EEA in GF(73) is made in Sect. 2.5.

2.1 The EEA with Examples and Its Computational
Algorithm

The Euclidean Algorithm, following notation, is stated as follows,

GCD A; Bð Þ ¼ C

where C is the Greatest Common Divisor of A and B, for A C B. It may be noted
that GCD(A, 0) = A, since A divides both A and 0. The Euclidean Algorithm can
thus be stated by the following recursive operation:

GCD A; Bð Þ ¼ GCD B; A mod Bð Þ;
Ex:1: GCD 30; 12ð Þ ¼ GCD 12; 6ð Þ ¼ GCD 6; 0ð Þ ¼ 6

Ex:2: GCD 15; 8ð Þ ¼ GCD 8; 7ð Þ ¼ GCD 7; 1ð Þ ¼ GCD 1; 0ð Þ ¼ 1

Multiplicative Polynomial Inverse over GF(73)… 89

The EEA finds the values of two integers S and T such that,

S� Aþ T � B ¼ GCD A;Bð Þ: ð1Þ

If one adopts EEA in the two examples cited above, one gets the values of
S = 1 and T = -2 for Ex. 1 and S = -1 and T = 2 for Ex. 2 and can write the
two examples as follows:

Ex:1: 1ð Þ � 30þ �2ð Þ � 12 ¼ GCD 30; 12ð Þ ¼ 6:

Ex:2: �1ð Þ � 15þ 2ð Þ � 8 ¼ GCD 15; 8ð Þ ¼ 1:

2.1.1 Computational Algorithm to Find S and T

The EEA finds GCD(A, B) and at the same time calculates the values of S and T.
The algorithm of computation is as follows:

Initialization: S1 ¼ 1; T1 ¼ 0; S2 ¼ 0; T2 ¼ 1;
Operations for next iteration(s):

Q A=B ; R A mod B ¼ A� Q� B : ð2aÞ

Rs S1 � Q� S2;Rt T1 � Q� T2: ð2bÞ

S1; T1; Að Þ S2; T2; Bð Þ: ð2cÞ

S2; T2; Bð Þ Rs; Rt; Rð Þ: ð2dÞ

The above operations are continued until R = 0. When R = 0, one considers
S = S1, T = T1, and GCD(A, B) = upgraded (A). Table 1 represents the recursive
algorithm in tabular form.

Here, it is to be noted that Q and R are, respectively, the quotient and remainder
of the division of A by B at all stages, while Rs is the remainder of a virtual division
of S1 by S2 with Q as the quotient and Rt is the same with T1 and T2. The recursive
algorithm stated in Table 1 considers three arrays, namely Dividend array (DD)
with three elements S1, T1, A; Divisor array (DR) with three elements S2, T2, B; and
Division array (DN) with two elements Q and R. In the paper, the symbol nS1 is
read as S1 in nth iteration.

At the nth step of table 1, the values of S and T are those obtained in DD[0] and
DD [1], respectively, and the GCD(A, B) is the value obtained in DD [2]. One finds
that the expression S 9 A + T 9 B = GCD(A, B) is always true.

90 J.K.M. Sadique Uz Zaman and R. Ghosh

T
ab

le
1

P
re

se
nt

at
io

n
of

th
e

E
xt

en
de

d
E

uc
li

de
an

A
lg

or
it

hm
re

cu
rs

iv
el

y
co

m
pu

te
d

D
N

[]
D

D
[]

D
R

[]
R

em
ar

k

D
N

[0
]

D
N

[1
]

D
D

[0
]

D
D

[1
]

D
D

[2
]

D
R

[0
]

D
R

[1
]

D
R

[2
]

Q
R

S 1
T

1
A

S 2
T

2
B

#0

–
–

1
0

A
0

1
B

#1

1
Q

=
A

/B
1
R

=
A

%
B

1
S 1

=
0

1
T

1
=

1
1
A

=
B

1
S 2

1
T

2
1
B

=
1
R

#2

2
Q

=
1
A

/ 1
B

2
R

=
1
A

%
1
B

2
S 1

=
1
S 2

2
T

1
=

1
T

2
2
A

=
1
B

2
S 2

2
T

2
2
B

=
2
R

#3

T
he

pr
oc

es
s

is
co

nt
in

ue
d

n-
ti

m
es

ti
ll

n
R

sh
ow

n
in

D
N

[1
]

is
ze

ro

#0
va

ri
ab

le
s

lo
ca

ti
on

,
#1

in
it

ia
li

za
ti

on
,

#2
S

te
p

1:
vi

de
E

q.
(2

a,
2b

,
2c

,
2d

),
#3

S
te

p
2:

vi
de

E
q.

(2
a,

2b
,

2c
,

2d
)

Multiplicative Polynomial Inverse over GF(73)… 91

2.2 Successful Application of EEA to Find Multiplicative
Inverse Over GF(28)

If A and B are relatively prime polynomials, the GCD(A, B) is unity. From Eq. (1),
one notes that

S� Aþ T � B ¼ GCD A; Bð Þ ¼ 1

Or T � B ¼ 1� S� A

Hence, T = B-1 mod A, since (T 9 B - 1) is divisible by A.
It is desired to find multiplicative inverse of an elementary polynomial

B(x) = (x7 + x5 + x3 + x) in GF(28) over the irreducible polynomial
A(x) = (x8 + x4 + x3 + x + 1).

[0] [1] [2]

Initialization:

DD[]: S1(x) = 1; T1(x) = 0; A(x) = x8 + x4 + x3 + x +1

DR[]: S2(x) = 0; T2(x) = 1; B(x) = x7 + x5 + x3 + x

Iteration 1:

DN[]: 1Q(x) = x; 1R(x) = x6 + x3 + x2 + x + 1

DD[]: 1S1(x) = 0; 1T1(x) = 1; 1A(x) = x7 + x5 + x3 + x

DR[]: 1S2(x) = 1; 1T2(x) = x; 1B(x) = x6 + x3 + x2 + x + 1

Iteration 2:

DN[]: 2Q(x) = x; 2R(x) = x5 + x4 + x2

DD[]: 2S1(x) = 1; 2T1(x) = x; 2A(x) = x6 + x3 + x2 + x + 1

DR[]: 2S2(x) = x; 2T2(x) = x2 + 1; 2B(x) = x5 + x4 + x2

Iteration 3:

DN[]: 3Q(x) = x+1; 3R(x) = x4 + x+1

DD[]: 3S1(x) = x; 3T1(x) = x2 + 1; 3A(x) = x5 + x4 + x2

DR[]: 3S2(x) = x2 + x +1; 3T2(x) = x3 + x2 + 1; 3B(x) = x4 + x + 1

Iteration 4:

DN[]: 4Q(x) = x+1; 4R(x) = 1

DD[]: 4S1(x) = x2 + x + 1; 4T1(x) = x3 + x2 + 1; 4A(x) = x4 + x + 1

DR[]: 4S2(x) = x3 + x + 1; 4T2(x) = x4 + x; 4B(x) = 1

Iteration 5:

DN[]: 5Q(x) = x4 + x + 1; 5R(x) = 0

DD[]: 5S1(x) = x3 + x + 1; 5T1(x) = x4 + x; 5A(x) = 1

DR[]: 5S2(x) = x7 + x5 + x3 + x; 5T2(x) = x8 + x4 + x3 + x + 1; 5B(x) = 0

92 J.K.M. Sadique Uz Zaman and R. Ghosh

In this example, GCD(A(x), B(x)) is 5A(x) = 1. Hence, the multiplicative
inverse of B(x) is 5T1(x) mod A(x),

x7 þ x5 þ x3 þ x
� ��1¼ x4 þ x

� �
:

2.3 Successful Application of EEA to Find Multiplicative
Inverse Over GF(73)

There are 112 irreducible polynomials in GF(73), its list is available in [7, 8]. For
IP, I(x) = x3 + 2x2 + 6x + 1 and EP = 2x + 4, corresponding to its value 18,
the calculation of MI is shown below. Here, I(x) is taken as A(x) and EP as B(x).

[0] [1] [2]

Initialization:

DD[]: S1(x) = 1; T1(x) = 0; A(x) = x3 + 2x2 + 6x + 1

DR[]: S2(x) = 0; T2(x) = 1; B(x) = 2x + 4

Iteration 1:

DN[]: 1Q(x) = 4x2 + 3; 1R(x) = 3

DD[]: 1S1(x) = 0; 1T1(x) = 1; 1A(x) = 2x + 4

DR[]: 1S2(x) = 1; 1T2(x) = 3x2 + 4; 1B(x) = 3

Iteration 2:

DN[]: 2Q(x) = 3x + 1; 2R(x) = 1

DD[]: 2S1(x) = 1; 2T1(x) = 3x2 + 4 2A(x) = 3

DR[]: 2S2(x) = 4x + 6; 2T2(x) = 5x3 + 4x2 + 2x + 4; 2B(x) = 1

Iteration 3:

DN[]: 3Q(x) = 3; 3R(x) = 0

DD[]: 3S1(x) = 4x + 6; 3T1(x) = 5x3 + 4x2 + 2x + 4; 3A(x) = 1

DR[]: 3S2(x) = 2x + 4; 3T2(x) = 6x3 + 5x2 + x + 6; 3B(x) = 0

In the example, GCD(A(x), B(x)) is 3A(x) = 1 and multiplicative inverse of
B(x) is 3T1(x) mod A(x),

2x þ 4ð Þ�1 ¼ 3T1 xð Þ mod A xð Þ
¼ 5x3 þ 4x2 þ 2x þ 4
� �

mod x3 þ 2x2 þ 6x þ 1
� �

¼ x2 þ 6

Now to verify that x2 + 6 is indeed multiplicative inverse of 2x + 4 over
GF(73) under irreducible polynomial I(x) = x3 + 2x2 + 6x + 1, we calculate the
product of those two elements mod I(x) to find 1,

Multiplicative Polynomial Inverse over GF(73)… 93

2xþ 4ð Þ x2 þ 6
� �

mod I xð Þ
¼ 2x3 þ 4x2 þ 5xþ 3
� �

mod x3 þ 2x2 þ 6xþ 1
� �

¼ 1

2.4 Unsuccessful Application of EEA to Find Multiplicative
Inverse Over GF(73)

The EEA is applied for a new E(x) = 2x2 + 5x + 3 corresponding to its value 136.
Here, A(x) = I(x), B(x) = E(x).

[0] [1] [2]

Initialization:

DD[]: S1(x) = 1; T1(x) = 0; A(x) = x3 + 2x2 + 6x + 1

DR[]: S2(x) = 0; T2(x) = 1; B(x) = 2x2 + 5x + 3

Iteration 1:

DN[]: 1Q(x) = 4x + 5; 1R(x) = 4x

DD[]: 1S1(x) = 0; 1T1(x) = 1; 1A(x) = 2x2 + 5x + 3

DR[]: 1S2(x) = 1; 1T2(x) = 3x + 2; 1B(x) = 4x

Iteration 2:

DN[]: 2Q(x) = 4x + 3; 2R(x) = 3

DD[]: 2S1(x) = 1; 2T1(x) = 3x + 2 2A(x) = 4x

DR[]: 2S2(x) = 3x + 4; 2T2(x) = 2x2 + 4x + 2; 2B(x) = 3

Iteration 3:

DN[]: 3Q(x) = 6x; 3R(x) = 0

DD[]: 3S1(x) = 3x + 4; 3T1(x) = 2x2 + 4x + 2; 3A(x) = 3

DR[]: 3S2(x) = 3x2 + 4x + 1; 3T2(x) = 2x3 + 4x2 + 5x + 2; 3B(x) = 0

Here, 3A(x) 6¼ 1 when 3R(x) = 0, i.e., EEA fails to find GCD(A(x), B(x)). It is
observed that the EEA fails to find multiplicative inverse in this case.

2.5 Comparative Study of Success and Failures of EEA Over
GF(28) and GF(73)

A complete list of successful and unsuccessful elemental polynomials under the
I(x) = x3 + 2x2 + 6x + 1 corresponding to (1261)7 is shown in Tables 2 and 3,
respectively. In both the tables, the columns entitled ‘‘No.’’, ‘‘Polynomial’’, and
‘‘G’’ represents serial number, the elemental polynomial E(x) and GCD(I(x), E(x)),
respectively.

The reason that EEA failed for an elemental polynomial E(x) under an irre-
ducible polynomial I(x) over GF(73) is that the GCD(I(x), E(x)) is not unity. It may

94 J.K.M. Sadique Uz Zaman and R. Ghosh

be noted that the said GCD for a finite field GF(pm) is supposed to vary between
1 and (p - 1). Table 2 lists 276 elemental polynomials, the GCD of each of all
these polynomials with the irreducible polynomial (1261)7 is observed to be unity.
The multiplicative inverses of all these elemental polynomials can be successfully
calculated following EEA under the irreducible polynomial (1261)7. Table 3 lists
66 elemental polynomials the GCD of each of all these polynomials with the
irreducible polynomial (1261)7 is observed to non-unity varying between 2 and 6.
However, for GF(28), there is no scope for the GCD being non-unity. It has been
observed that the said GCD is unity for each of all the 30 irreducible polynomials
with 255 elemental polynomials. In fact, EEA can be successfully applied for any
kind of binary extension field.

3 Proposed Algebraic Method and Multiplicative Inverse
Over GF(73)

We propose a new algebraic method that can successfully calculate multiplicative
inverse of each element for all the 112 monic irreducible polynomials over GF(73).
In Sect. 3.1, we discuss our proposed method and its application to calculate
multiplicative inverses of the examples shown in Sects. 2.3 and 2.4 above, are
presented in Sects. 3.2 and 3.3 respectively.

3.1 Algebraic Method to Find the Multiplicative Inverse
Over GF(73)

Let I(x) = (x3 + a2x2 + a1x + a0) be a monic irreducible polynomial.
We want to find multiplicative inverse of b(x) = (b2x2 + b1x + b0) under this

irreducible polynomial.
If c(x) = (c2x2 + c1x + c0) be MI, then we can write,

b xð Þ c xð Þ½ �mod I xð Þ ¼ 1

or; b2x2 þ b1xþ b0
� �

c2x2 þ c1xþ c0
� �� �

mod x3 þ a2x2 þ a1xþ a0
� �

¼ 1 :

ð3Þ

Here, the target is to find the values for c2, c1, and c0. One can get these values
by solving Eq. (3) as follows:

Multiplicative Polynomial Inverse over GF(73)… 95

T
ab

le
2

L
is

t
of

el
em

en
ta

l
po

ly
no

m
ia

ls
fo

r
w

hi
ch

E
E

A
is

ap
pl

ie
d

w
it

h
su

cc
es

s
to

fi
nd

m
ul

ti
pl

ic
at

iv
e

in
ve

rs
e

ov
er

ir
re

du
ci

bl
e

po
ly

no
m

ia
l

(1
26

1)
7

N
o.

P
ol

yn
om

ia
l

G
N

o.
P

ol
yn

om
ia

l
G

N
o.

P
ol

yn
om

ia
l

G
N

o.
P

ol
yn

om
ia

l
G

1
1

1
2

2
1

3
3

1
4

4
1

5
5

1
6

6
1

7
x

1
8

x
+

1
1

9
x

+
2

1
10

x
+

3
1

11
x

+
4

1
12

x
+

5
1

13
2x

1
14

2x
+

1
1

15
2

x
+

2
1

16
2x

+
3

1

17
2x

+
4

1
18

2x
+

5
1

19
2x

+
6

1
20

3x
1

21
3x

+
1

1
22

3x
+

2
1

23
3x

+
4

1
24

3x
+

5
1

25
4x

1
26

4x
+

1
1

27
4x

+
2

1
28

4x
+

3
1

29
4x

+
4

1
30

4x
+

5
1

31
4x

+
6

1
32

5x
1

33
5x

+
1

1
34

5x
+

2
1

35
5x

+
4

1
36

5x
+

5
1

37
5x

+
6

1
38

6x
1

39
6x

+
1

1
40

6x
+

2
1

41
6x

+
3

1
42

6x
+

4
1

43
6x

+
5

1
44

6x
+

6
1

45
x2

1
46

x2
+

1
1

47
x2

+
2

1
48

x2
+

3
1

49
x2

+
5

1
50

x2
+

x
1

51
x2

+
x

+
1

1
52

x2
+

x
+

3
1

53
x2

+
x

+
5

1
54

x2
+

2x
1

55
x2

+
2x

+
1

1
56

x2
+

2x
+

2
1

57
x2

+
2x

+
3

1
58

x2
+

2x
+

4
1

59
x2

+
2x

+
5

1
60

x2
+

2x
+

6
1

61
x2

+
3x

1
62

x2
+

3x
+

1
1

63
x2

+
3x

+
2

1
64

x2
+

3x
+

3
1

65
x2

+
3x

+
5

1
66

x2
+

4x
1

67
x2

+
4x

+
1

1
68

x2
+

4x
+

5
1

69
x2

+
5x

1
70

x2
+

5x
+

1
1

71
x2

+
5x

+
3

1
72

x2
+

5x
+

5
1

73
x2

+
5x

+
6

1
74

x2
+

6x
1

75
x2

+
6x

+
1

1
76

x2
+

6x
+

3
1

77
x2

+
6x

+
4

1
78

2x
2

1
79

2x
2

+
1

1
80

2x
2

+
3

1

81
2x

2
+

5
1

82
2x

2
+

6
1

83
2x

2
+

x
1

84
2x

2
+

x
+

1
1

85
2x

2
+

x
+

2
1

86
2x

2
+

x
+

5
1

87
2x

2
+

2x
1

88
2x

2
+

2x
+

1
1

89
2x

2
+

2x
+

2
1

90
2x

2
+

2x
+

3
1

91
2x

2
+

2x
+

5
1

92
2x

2
+

2x
+

6
1

93
2x

2
+

3x
1

94
2x

2
+

3x
+

2
1

95
2x

2
+

3x
+

4
1

96
2x

2
+

3x
+

6
1

(c
o
n
ti
n
u
ed
)

96 J.K.M. Sadique Uz Zaman and R. Ghosh

T
ab

le
2

(c
on

ti
nu

ed
)

N
o.

P
ol

yn
om

ia
l

G
N

o.
P

ol
yn

om
ia

l
G

N
o.

P
ol

yn
om

ia
l

G
N

o.
P

ol
yn

om
ia

l
G

97
2x

2
+

4x
1

98
2x

2
+

4x
+

1
1

99
2x

2
+

4x
+

2
1

10
0

2x
2

+
4x

+
3

1

10
1

2x
2

+
4x

+
4

1
10

2
2x

2
+

4x
+

5
1

10
3

2x
2

+
5x

1
10

4
2x

2
+

5x
+

1
1

10
5

2x
2

+
5x

+
2

1
10

6
2x

2
+

5x
+

5
1

10
7

2x
2

+
5x

+
6

1
10

8
2x

2
+

6x
1

10
9

2x
2

+
6x

+
1

1
11

0
2x

2
+

6x
+

2
1

11
1

2x
2

+
6x

+
3

1
11

2
2x

2
+

6x
+

4
1

11
3

3x
2

1
11

4
3x

2
+

1
1

11
5

3x
2

+
2

1
11

6
3x

2
+

3
1

11
7

3x
2

+
4

1
11

8
3x

2
+

5
1

11
9

3x
2

+
6

1
12

0
3x

2
+

x
1

12
1

3x
2

+
x

+
1

1
12

2
3x

2
+

x
+

2
1

12
3

3x
2

+
x

+
3

1
12

4
3x

2
+

x
+

4
1

12
5

3x
2

+
x

+
5

1
12

6
3x

2
+

x
+

6
1

12
7

3x
2

+
2x

1
12

8
3x

2
+

2x
+

1
1

12
9

3x
2

+
2x

+
4

1
13

0
3x

2
+

2x
+

5
1

13
1

3x
2

+
3x

1
13

2
3x

2
+

3x
+

1
1

13
3

3x
2

+
3x

+
2

1
13

4
3x

2
+

3x
+

3
1

13
5

3x
2

+
3x

+
4

1
13

6
3x

2
+

3x
+

6
1

13
7

3x
2

+
4x

1
13

8
3x

2
+

4x
+

1
1

13
9

3x
2

+
4x

+
2

1
14

0
3x

2
+

4x
+

3
1

14
1

3x
2

+
4x

+
4

1
14

2
3x

2
+

4x
+

6
1

14
3

3x
2

+
5x

1
14

4
3x

2
+

5x
+

1
1

14
5

3x
2

+
5x

+
5

1
14

6
3x

2
+

6x
1

14
7

3x
2

+
6x

+
1

1
14

8
3x

2
+

6x
+

2
1

14
9

3x
2

+
6x

+
4

1
15

0
3x

2
+

6x
+

6
1

15
1

4x
2

1
15

2
4x

2
+

1
1

15
3

4x
2

+
2

1
15

4
4x

2
+

3
1

15
5

4x
2

+
4

1
15

6
4x

2
+

6
1

15
7

4x
2

+
x

1
15

8
4x

2
+

x
+

1
1

15
9

4x
2

+
x

+
2

1
16

0
4x

2
+

x
+

3
1

16
1

4x
2

+
x

+
5

1
16

2
4x

2
+

x
+

6
1

16
3

4x
2

+
2x

1
16

4
4x

2
+

2x
+

1
1

16
5

4x
2

+
2x

+
4

1
16

6
4x

2
+

2x
+

5
1

16
7

4x
2

+
3x

1
16

8
4x

2
+

3x
+

1
1

16
9

4x
2

+
3x

+
2

1
17

0
4x

2
+

3x
+

3
1

17
1

4x
2

+
3x

+
4

1
17

2
4x

2
+

3x
+

5
1

17
3

4x
2

+
3x

+
6

1
17

4
4x

2
+

4x
+

1
1

17
5

4x
2

+
4x

+
2

1
17

6
4x

2
+

4x
+

3
1

17
7

4x
2

+
4x

+
4

1
17

8
4x

2
+

4x
+

5
1

17
9

4x
2

+
4x

+
6

1
18

0
4x

2
+

5x
1

18
1

4x
2

+
5x

+
1

1
18

2
4x

2
+

5x
+

4
1

18
3

4x
2

+
5x

+
5

1
18

4
4x

2
+

6x
1

18
5

4x
2

+
6x

+
1

1
18

6
4x

2
+

6x
+

2
1

18
7

4x
2

+
6x

+
3

1
18

8
4x

2
+

6x
+

4
1

(c
o
n
ti
n
u
ed
)

Multiplicative Polynomial Inverse over GF(73)… 97

T
ab

le
2

(c
on

ti
nu

ed
)

N
o.

P
ol

yn
om

ia
l

G
N

o.
P

ol
yn

om
ia

l
G

N
o.

P
ol

yn
om

ia
l

G
N

o.
P

ol
yn

om
ia

l
G

18
9

4x
2

+
6x

+
5

1
19

0
4x

2
+

6x
+

6
1

19
1

5x
2

1
19

2
5x

2
+

1
1

19
3

5x
2

+
2

1
19

4
5x

2
+

3
1

19
5

5x
2

+
4

1
19

6
5x

2
+

5
1

19
7

5x
2

+
6

1
19

8
5x

2
+

x
1

19
9

5x
2

+
x

+
1

1
20

0
5x

2
+

x
+

2
1

20
1

5x
2

+
2x

1
20

2
5x

2
+

2x
+

1
1

20
3

5x
2

+
2x

+
2

1
20

4
5x

2
+

2x
+

3
1

20
5

5x
2

+
2x

+
4

1
20

6
5x

2
+

2x
+

5
1

20
7

5x
2

+
3x

1
20

8
5x

2
+

3x
+

1
1

20
9

5x
2

+
3x

+
2

1
21

0
5x

2
+

3x
+

3
1

21
1

5x
2

+
3x

+
4

1
21

2
5x

2
+

3x
+

5
1

21
3

5x
2

+
3x

+
6

1
21

4
5x

2
+

4x
1

21
5

5x
2

+
4x

+
1

1
21

6
5x

2
+

4x
+

2
1

21
7

5x
2

+
4x

+
3

1
21

8
5x

2
+

4x
+

4
1

21
9

5x
2

+
4x

+
5

1
22

0
5x

2
+

4x
+

6
1

22
1

5x
2

+
5x

1
22

2
5x

2
+

5x
+

1
1

22
3

5x
2

+
5x

+
2

1
22

4
5x

2
+

5x
+

3
1

22
5

5x
2

+
5x

+
4

1
22

6
5x

2
+

5x
+

5
1

22
7

5x
2

+
5x

+
6

1
22

8
5x

2
+

6x
1

22
9

5x
2

+
6x

+
1

1
23

0
5x

2
+

6x
+

2
1

23
1

5x
2

+
6x

+
4

1
23

2
5x

2
+

6x
+

5
1

23
3

5x
2

+
6x

+
6

1
23

4
6x

2
1

23
5

6x
2

+
1

1
23

6
6x

2
+

3
1

23
7

6x
2

+
4

1
23

8
6x

2
+

5
1

23
9

6x
2

+
6

1
24

0
6x

2
+

x
1

24
1

6x
2

+
x

+
2

1
24

2
6x

2
+

x
+

3
1

24
3

6x
2

+
x

+
4

1
24

4
6x

2
+

x
+

5
1

24
5

6x
2

+
x

+
6

1
24

6
6x

2
+

2x
1

24
7

6x
2

+
2x

+
1

1
24

8
6x

2
+

2x
+

2
1

24
9

6x
2

+
2x

+
3

1
25

0
6x

2
+

2x
+

4
1

25
1

6x
2

+
2x

+
5

1
25

2
6x

2
+

2x
+

6
1

25
3

6x
2

+
3x

1
25

4
6x

2
+

3x
+

2
1

25
5

6x
2

+
3x

+
3

1
25

6
6x

2
+

3x
+

4
1

25
7

6x
2

+
3x

+
5

1
25

8
6x

2
+

3x
+

6
1

25
9

6x
2

+
4x

1
26

0
6x

2
+

4x
+

1
1

26
1

6x
2

+
4x

+
2

1
26

2
6x

2
+

4x
+

3
1

26
3

6x
2

+
4x

+
4

1
26

4
6x

2
+

4x
+

5
1

26
5

6x
2

+
4x

+
6

1
26

6
6x

2
+

5x
1

26
7

6x
2

+
5x

+
1

1
26

8
6x

2
+

5x
+

2
1

26
9

6x
2

+
5x

+
3

1
27

0
6x

2
+

5x
+

4
1

27
1

6x
2

+
5x

+
5

1
27

2
6x

2
+

6x
1

27
3

6x
2

+
6x

+
1

1
27

4
6x

2
+

6x
+

2
1

27
5

6x
2

+
6x

+
5

1
27

6
6x

2
+

6x
+

6
1

98 J.K.M. Sadique Uz Zaman and R. Ghosh

T
ab

le
3

L
is

t
of

el
em

en
ta

l
po

ly
no

m
ia

ls
fo

r
w

hi
ch

E
E

A
is

ap
pl

ie
d

w
it

h
fa

il
ur

e
to

fi
nd

m
ul

ti
pl

ic
at

iv
e

in
ve

rs
e

ov
er

ir
re

du
ci

bl
e

po
ly

no
m

ia
l

(1
26

1)
7

N
o.

P
ol

yn
om

ia
l

G
N

o.
P

ol
yn

om
ia

l
G

N
o.

P
ol

yn
om

ia
l

G
N

o.
P

ol
yn

om
ia

l
G

1
x

+
6

3
2

3x
+

3
3

3
3x

+
6

3
4

5x
+

3
3

5
x2

+
4

4
6

x2
+

6
3

7
x2

+
x

+
2

2
8

x2
+

x
+

4
2

9
x2

+
x

+
6

5
10

x2
+

3x
+

4
2

11
x2

+
3x

+
6

6
12

x2
+

4x
+

2
2

13
x2

+
4x

+
3

3
14

x2
+

4x
+

4
4

15
x2

+
4x

+
6

2
16

x2
+

5x
+

2
2

17
x2

+
5x

+
4

2
18

x2
+

6x
+

2
2

19
x2

+
6x

+
5

5
20

x2
+

6x
+

6
2

21
2x

2
+

2
6

22
2x

2
+

4
2

23
2x

2
+

x
+

3
2

24
2x

2
+

x
+

4
5

25
2x

2
+

x
+

6
2

26
2x

2
+

2x
+

4
2

27
2x

2
+

3x
+

1
3

28
2x

2
+

3x
+

3
3

29
2x

2
+

3x
+

5
5

30
2x

2
+

4x
+

6
2

31
2x

2
+

5x
+

3
3

32
2x

2
+

5x
+

4
2

33
2x

2
+

6x
+

5
5

34
2x

2
+

6x
+

6
2

35
3x

2
+

2x
+

2
2

36
3x

2
+

2x
+

3
2

37
3x

2
+

2x
+

6
3

38
3x

2
+

3x
+

5
2

39
3x

2
+

4x
+

5
2

40
3x

2
+

5x
+

2
2

41
3x

2
+

5x
+

3
3

42
3x

2
+

5x
+

4
2

43
3x

2
+

5x
+

6
2

44
3x

2
+

6x
+

3
3

45
3x

2
+

6x
+

5
5

46
4x

2
+

5
3

47
4x

2
+

x
+

4
2

48
4x

2
+

2x
+

2
2

49
4x

2
+

2x
+

3
2

50
4x

2
+

2x
+

6
6

51
4x

2
+

4x
3

52
4x

2
+

5x
+

2
2

53
4x

2
+

5x
+

3
3

54
4x

2
+

5x
+

6
2

55
5x

2
+

x
+

3
3

56
5x

2
+

x
+

4
2

57
5x

2
+

x
+

5
2

58
5x

2
+

x
+

6
2

59
5x

2
+

2x
+

6
2

60
5x

2
+

6x
+

3
2

61
6x

2
+

2
2

62
6x

2
+

x
+

1
2

63
6x

2
+

3x
+

1
2

64
6x

2
+

5x
+

6
6

65
6x

2
+

6x
+

3
2

66
6x

2
+

6x
+

4
5

Multiplicative Polynomial Inverse over GF(73)… 99

b2c2x4 þ b1c2 þ b2c1ð Þx3 þ b0c2 þ b1c1 þ b2c0ð Þx2 þ b0c1 þ b1c0ð Þxþ b0c0
� �

mod x3 þ a2x2 þ a1xþ a0
� �

¼ 1

or, b2c2x x3 þ a2x2 þ a1xþ a0

� �
þ b1c2 þ b2c1 � a2b2c2ð Þx3 þ b0c2 þ b1c1 þ b2c0 � a1b2c2ð Þx2

�

þ b0c1 þ b1c0 � a0b2c2ð Þx þ b0c0� mod x3 þ a2x2 þ a1xþ a0
� �

¼ 1

or; ½ b1c2 þ b2c1 � a2b2c2ð Þ x3 þ a2x2 þ a1x þ a0
� �

þ b0c2 þ b1c1 þ b2c0� a1b2c2�a2b1c2� a2b2c1 þ a2
2b2c2

� �
x2

þ b0c1 þ b1c0�a0b2c2�a1b1c2�a1b2c1 þ a1a2b2c2ð Þx
þ b0c0�a0b1c2�a0b2c1 þ a0a2b2c2ð Þ� mod x3 þ a2x2 þ a1xþ a0

� �
¼ 1

or; a2
2b2�a1b2�a2b1 þ b0

� �
c2 þ b1�a2b2ð Þc1 þ b2c0

� �
x2

�

þ a1a2b2�a0b2�a1b1ð Þc2 þ b0�a1b2ð Þc1 þ b1c0f gx
þ a0a2b2�a0b1ð Þc2�a0b2c1 þ b0c0f g� mod x3 þ a2x2 þ a1xþ a0

� �
¼ 1 :

ð4Þ

From Eq. (4), it is evident that the dividend is smaller than the divisor. Hence,
to satisfy the required condition of the remainder = 1, the following properties
must hold.

1. The coefficients of x2 : 0 mod 7.
2. The coefficients of x : 0 mod 7.
3. The constant part : 1 mod 7.

Therefore,

a2
2b2� a1b2� a2b1 þ b0

� �
c2 þ b1� a2b2ð Þc1 þ b2c0

� �
mod 7 ¼ 0: ð5aÞ

a1a2b2� a0b2� a1b1ð Þc2 þ b0� a1b2ð Þc1 þ b1c0f g mod 7 ¼ 0: ð5bÞ

a0a2b2� a0b1ð Þc2� a0b2c1 þ b0c0f g mod 7 ¼ 1: ð5cÞ

Note: Here, GFð73Þ is used, and in modular arithmetic with modulus 7, the -1 is
equivalent to (-1 + 7) = 6. Hence, the -X in Eq. (5a, 5b, 5c) can be written as
+6X. Accordingly, the Eq. (5a, 5b, 5c) becomes

a2
2b2 þ 6a1b2 þ 6a2b1 þ b0

� �
c2 þ b1 þ 6a2b2ð Þc1 þ b2c0

� �
mod 7 ¼ 0: ð6aÞ

a1a2b2 þ 6a0b2 þ 6a1b1ð Þc2 þ b0 þ 6a1b2ð Þc1 þ b1c0f g mod 7 ¼ 0: ð6bÞ

a0a2b2 þ 6a0b1ð Þc2 þ 6a0b2c1 þ b0c0f g mod 7 ¼ 1: ð6cÞ

The above Eq. (6a, 6b, 6c) can be written as,

k00c0 þ k01c1 þ k02c2ð Þ mod 7 ¼ 0: ð7aÞ

k10c0 þ k11c1 þ k12c2ð Þ mod 7 ¼ 0: ð7bÞ

100 J.K.M. Sadique Uz Zaman and R. Ghosh

k20c0 þ k21c1 þ k22c2ð Þ mod 7 ¼ 1: ð7cÞ

where k-values are known and these are equal to,

k00 ¼ b2ð Þ%7 k01 ¼ b1 þ 6a2b2ð Þ%7 k02 ¼ a2
2b2 þ 6a1b2 þ 6a2b1 þ b0

� �
%7:

ð8aÞ

k10 ¼ b1ð Þ%7 k11 ¼ b0 þ 6a1b2ð Þ%7 k12 ¼ a1a2b2 þ 6a0b2 þ 6a1b1ð Þ%7:

ð8bÞ

k20 ¼ b0ð Þ%7 k21 ¼ 6a0b2ð Þ%7 k22 ¼ a0a2b2 þ 6a0b1ð Þ%7: ð8cÞ

The Eq. (7a, 7b, 7c), i.e., (k 9 c) %7 = m can be solved by using matrix method
as,

c ¼ ðk�1 � mÞ%7: ð9Þ

where

m ¼
0
0
1

2
4
3
5; k ¼

k00 k01 k02

k10 k11 k12

k20 k21 k22

2
4

3
5; k�1 ¼

ik00 ik01 ik02

ik10 ik11 ik12

ik20 ik21 ik22

2
4

3
5; c ¼

c0

c1

c2

2
4

3
5

¼
ik02

ik12

ik22

2

4

3

5 ð10Þ

While calculating k-1 from k-matrix, one has to ensure that the determinant
det(k) is nonzero. In the event det(k) = 0, the I(x) is not an irreducible polynomial,
rather a reducible one and k-1 matrix for such a case does not exist. If det(k) is
nonzero for all elements, the I(x) is irreducible and the multiplicative inverses of
elements exist. By calculating k-1 from k-matrix given in Eq. (10), one can get
solution for c0, c1, and c2 using Eq. (9).

Now, (b2x2 + b1x + b0)-1 = (c2x2 + c1x + c0) mod (x3 + a2x2 + a1x + a0)
In the following Sects. 3.2 and 3.3, the two examples presented in Sects. 2.3 and

2.4 are successfully solved to provide the correct MI over GF(73).

3.2 Multiplicative Inverse of 2x + 4 in GF(73) by Using
the Algebraic Method

Here, we would like to demonstrate the successful application of our proposed
method to calculate the multiplicative inverse for a case shown in Sect. 2.3 where

Multiplicative Polynomial Inverse over GF(73)… 101

the EEA is successfully applied. The same irreducible and the elemental poly-
nomials are used in the present case.

Let the irreducible polynomial I xð Þ ¼ x3 þ a2x2 þ a1x þ a0

¼ x3 þ 2x2 þ 6xþ 1

The given polynomial b xð Þ ¼ b2x2 þ b1xþ b0

¼ 2xþ 4

One have to find b xð Þ�1 ¼ c xð Þ ¼ c2x2 þ c1xþ c0:

Here, a2 ¼ 2; a1 ¼ 6; a0 ¼ 1

b2 ¼ 0; b1 ¼ 2; b0 ¼ 4

ð11Þ

By using these a and b values in Eq. (8a, 8b, 8c), one can calculate the k-values
as,

k00 ¼ 0%7 ¼ 0 k01 ¼ 2%7 ¼ 2 k02 ¼ 28%7 ¼ 0
k10 ¼ 2%7 ¼ 2 k11 ¼ 4%7 ¼ 4 k12 ¼ 72%7 ¼ 2
k20 ¼ 4%7 ¼ 4 k21 ¼ 0%7 ¼ 0 k22 ¼ 12%7 ¼ 5

Following Eq. (10), the k-matrix and its inverse k-1 will be

k ¼
0 2 0
2 4 2
4 0 5

2

4

3

5; k�1 ¼
2 6 6
4 0 0
4 5 1

2

4

3

5

The solution of c in Eq. (9) will be obtained as c0, c1, and c2 from the last
column of the k-1 matrix obtained above from k-matrix.

The solution for this problem is
c0

c1

c2

2
4

3
5 ¼

6
0
1

2
4
3
5

So one can obtain the required multiplicative inverse by using Eq. (11) as,

b xð Þ�1 ¼ c xð Þ
¼ c2x2 þ c1xþ c0

¼ x2 þ 6

Hence, 2x þ 4ð Þ�1 ¼ x2 þ 6

The result is identical to that obtained in Sect. 2.3 above. The proposed method
successfully finds the multiplicative inverse for this polynomial.

102 J.K.M. Sadique Uz Zaman and R. Ghosh

3.3 Multiplicative Inverse of 2x2 + 5x + 3 in GF(73)
by Using the Algebraic Method

Now, we would like to demonstrate the successful application of our proposed
method to calculate the multiplicative inverse for a case shown in Sect. 2.4 where
the EEA has failed. The irreducible and the elemental polynomials used in the
present case are the same used in Sect. 2.4.

Let the irreducible polynomial I xð Þ ¼ x3 þ a2x2 þ a1x þ a0

¼ x3 þ 2x2 þ 6x þ 1

The given polynomial b xð Þ ¼ b2x2 þ b1x þ b0

¼ 2x2 þ 5x þ 3

One have to find b xð Þ�1 ¼ c xð Þ ¼ c2x2 þ c1x þ c0:

Here; a2 ¼ 2; a1 ¼ 6; a0 ¼ 1

b2 ¼ 2; b1 ¼ 5; b0 ¼ 3

ð12Þ

By using these a and b values in Eq. (8a, 8b, 8c), one can calculate the k-values
as,

k00 ¼ 2%7 ¼ 2 k01 ¼ 29%7 ¼ 1 k02 ¼ 143%7 ¼ 3
k10 ¼ 5%7 ¼ 5 k11 ¼ 75%7 ¼ 5 k12 ¼ 216%7 ¼ 6
k20 ¼ 3%7 ¼ 3 k21 ¼ 12%7 ¼ 5 k22 ¼ 34%7 ¼ 6

Following Eq. (10), the k-matrix and its inverse k-1 will be

k ¼
2 1 3
5 5 6;
3 5 6

2
4

3
5 k�1 ¼

0 4 3
4 6 6
6 0 3

2
4

3
5

The solution of c in Eq. (9) will be obtained as c0, c1, and c2 from k-1 matrix in
Eq. (10).

The solution for this problem is
c0

c1

c2

2

4

3

5 ¼
3
6
3

2

4

3

5

So one can obtain the required multiplicative inverse by using Eq. (12) as,

b xð Þ�1 ¼ c xð Þ
¼ c2x2 þ c1xþ c0

¼ 3x2 þ 6xþ 3

Hence; 2x2 þ 5xþ 3
� ��1 ¼ 3x2 þ 6xþ 3

Multiplicative Polynomial Inverse over GF(73)… 103

Now to verify that (3x2 + 6x + 3) is indeed the MI of (2x2 + 5x + 3) over
GF(73) under irreducible polynomial I(x) = (x3 +2x2 + 6x + 1), we calculate the
product of these two elements mod I(x) to find 1, that is,

2x2 þ 5x þ 3
� �

3x2 þ 6x þ 3
� �

mod I xð Þ
¼ 6x4 þ 6x3 þ 3x2 þ 5x þ 2
� �

mod x3 þ 2x2 þ 6x þ 1
� �

¼ 1:

The result is indeed correct.

4 Computational Algorithm

The strength of the proposed algebraic method is that it finds the first monic
irreducible polynomial and then all the 342 multiplicative inverses under it. The
algorithm continues computation till the last monic irreducible polynomial is
obtained along with all the 342 multiplicative inverses under it. It is noticed that in
course of computation, the algorithm finds all the 112 monic irreducible polyno-
mials reported in [7, 8]. For all the monic irreducible polynomials over GF(73), the
coefficient of the x3-term is taken as unity and for computing other coefficients of
such polynomials, one needs to vary the loop-index from 343 to 685 corresponding
to septenary equivalents of (1000)7 and (1666)7, respectively.

An indigenous C program entitled ‘‘GF7^3INV,’’ consisting of an EP-loop
with loop-index (ep) varying from 1 to 342 within an IP-loop with loop-index (ip)
varying from 343 to 685 and two subprograms, is developed. In the IP-loop, the IP-
coefficients are calculated based on IP-loop-index (ip) using coeff_pol(), stored in
array a[] and then the cal_inverse() is called after entering the EP-loop. The
cal_inverse() first calls the coeff_pol() to calculate EP-coefficients based on loop-
index (ep) and to store them in array b[] and then using the arrays a[] and b[]
values, the k-matrix, given in Eq. (10), is formed and the determinant det(k) is
calculated. If det(k) = 0, it concludes that the current ip is not an irreducible
polynomial and takes the next ip-index for subsequent computation. If det(k) 6¼ 0,
the k-1 is calculated whose third column is the array c[] shown in Eq. (10).
Program algorithm for GF7^3INV is described below in pseudo-code:

Step 1: For ip = 343 to 685 do the following steps.
Step 2: Convert the ip into its septenary equivalent and

store them in an array a[] defined in Eq.(3) where
is the least significant septenary digit.

Step 3: For ep = 1 to 342 do the following steps.
Step 4: Convert the ep into its septenary equivalent and

store them in an array b[]defined in Eq.(3) where
is the least significant septenary digit.

104 J.K.M. Sadique Uz Zaman and R. Ghosh

Step 5: From arrays a[] and b[] form the 3 9 3 k-matrix
described in Eq.(10).

Step 6: Calculate determinant of k-matrix det(k).
Step 7: If det(k) = 0, go to step 10, otherwise find the

inverse of k-matrix as -matrix.
Step 8: The result for the c coefficients in Eq.(3) is

obtained from Eq.(10) as
Step 9: Go to step 3 for next ep.
Step 10: Go to step 1 for next ip.
Step 11: Stop.

The above algorithm generates a full list of inverses corresponding to all the
112 monic irreducible polynomials given in [7, 8] and confirms that no other
monic irreducible polynomial exists. Under a particular monic polynomial, if
the corresponding determinant det(k) 6¼ 0 for a particular elemental polynomial,
the algorithm calculates its multiplicative inverse and if det(k) = 0, the algorithm
stops looking for further multiplicative inverses and declares that the current
monic polynomial is not an irreducible one.

5 Results, Discussion, and Future Scopes

A list of multiplicative inverses of 342 elemental polynomials from 1 to 342 for
two irreducible polynomials (x3 + 2) and (x3 + 2x2 + 6x + 1) over GF(73) is,
respectively, given in two blocks of Table 4. In each block, the multiplicative
inverses of all elemental polynomials are given sequentially. In 3rd block of
Table 4, first 7 multiplicative inverses for a polynomial (x3 + 1), supposed to an
irreducible one, are shown. For eighth elemental polynomial, no multiplicative
inverse exists indicating that the polynomial supposed to be irreducible is a
reducible. Detailed results of multiplicative inverses for all the irreducible poly-
nomials over GF(73) are given in a file ‘‘Result—MIs over GF7^3.pdf’’ entitled
‘‘Multiplicative Inverses of all the 342 Elemental Polynomials (EP) for all the 112
Irreducible Polynomials (IP) Over GF(73)’’ [10].

For future application scope of the proposed method in the field of cryptog-
raphy, it is foreseen that a 9-bit pseudo-random number generator derived from the
proposed method can be compared with an identical generator based on GF(29).
Similarly, one can generate 8-bit pseudo-random number generator based on
GF(73) and compare it with an identical generator based on GF(28). There is a
future scope of mathematical interest of the proposed method. It is now possible to
find the list of non-monic polynomials over GF(73). To the best knowledge of the
authors, no such information is available in literature. The approach presented here
to study monic and non-monic irreducible polynomials can be extended to higher-
order prime extension fields.

Multiplicative Polynomial Inverse over GF(73)… 105

6 Conclusion

A simple algebraic method is proposed in the paper to mark all possible monic
irreducible polynomials over GF(73) followed by calculating multiplicative
inverses of 342 elemental polynomials under each of all the 112 irreducible

Table 4 A sequential list of MIs of 342 EPs for IPs (x3 + 2) and (x3 + 2x2 + 6x + 1) over
GF(73)

(1) Multiplicative inverses of 342 EPs under IP (x3 + 2) corresponding to ip-index 345:

001, 004, 005, 002, 003, 006, 300, 616, 623, 214, 645, 241, 222, 500, 326, 343, 124, 315, 111,
142, 100, 365, 356, 252, 333, 264, 231, 600, 546, 513, 444, 525, 421, 412, 200, 635, 666, 462,
653, 434, 451, 400, 555, 536, 132, 563, 154, 161, 030, 413, 115, 643, 216, 346, 545, 461, 025,
636, 165, 363, 102, 135, 262, 335, 566, 433, 023, 463, 404, 521, 240, 063, 215, 604, 116, 310,
164, 665, 026, 201, 533, 236, 266, 324, 502, 440, 213, 065, 610, 416, 622, 066, 301, 510, 140,
113, 415, 050, 143, 245, 523, 446, 626, 325, 432, 655, 336, 153, 013, 133, 104, 234, 535, 016,
401, 353, 456, 436, 512, 036, 601, 340, 220, 243, 145, 131, 015, 556, 235, 633, 202, 255, 311,
420, 033, 445, 504, 246, 640, 614, 302, 120, 443, 035, 540, 146, 010, 162, 261, 651, 464, 352,
554, 136, 250, 351, 403, 652, 024, 660, 435, 552, 354, 360, 150, 206, 021, 625, 503, 524, 034,
514, 121, 212, 233, 551, 450, 022, 654, 560, 105, 526, 312, 305, 224, 322, 411, 032, 323, 621,
611, 114, 606, 031, 422, 060, 223, 425, 313, 126, 516, 615, 454, 355, 046, 101, 663, 166, 156,
251, 045, 366, 455, 553, 402, 465, 544, 602, 210, 123, 055, 320, 226, 152, 565, 656, 263, 043,
253, 204, 342, 056, 501, 620, 410, 423, 225, 641, 110, 053, 125, 304, 426, 520, 020, 452, 151,
331, 254, 532, 634, 163, 631, 230, 042, 334, 650, 405, 466, 130, 531, 203, 332, 044, 350, 646,
522, 505, 144, 542, 221, 062, 265, 632, 534, 550, 430, 106, 041, 543, 341, 321, 424, 306, 061,
242, 345, 603, 644, 064, 624, 441, 122, 040, 232, 431, 561, 134, 662, 364, 155, 362, 664, 630,
260, 406, 011, 453, 361, 160, 012, 564, 330, 205, 613, 511, 541, 244, 506, 051, 112, 256, 460,
661, 103, 562, 014, 530, 515, 303, 314, 054, 344, 211, 442, 316, 642, 605, 414, 612, 141, 052

(2) Multiplicative inverses of 342 EPs under IP (x3 + 2x2 + 6x + 1) corresponding to ip-index
484:

001, 004, 005, 002, 003, 006, 651, 223, 205, 346, 620, 630, 264, 364, 310, 115, 350, 106, 132,
523, 245, 210, 162, 331, 326, 230, 304, 532, 403, 540, 451, 446, 615, 560, 413, 254, 645, 601,
420, 662, 460, 126, 513, 140, 150, 431, 502, 554, 646, 154, 336, 164, 122, 426, 024, 435, 243,
306, 516, 466, 022, 421, 265, 612, 104, 352, 543, 222, 060, 153, 600, 025, 255, 551, 215, 240,
062, 621, 443, 362, 525, 406, 263, 063, 340, 536, 130, 101, 442, 636, 313, 566, 032, 440, 103,
656, 266, 323, 411, 462, 213, 553, 012, 432, 031, 616, 314, 203, 225, 135, 531, 256, 233, 125,
011, 503, 214, 643, 035, 404, 520, 221, 653, 353, 450, 136, 625, 341, 111, 402, 030, 561, 545,
405, 633, 363, 051, 133, 220, 465, 664, 300, 146, 016, 120, 166, 262, 632, 526, 546, 036, 533,
112, 021, 663, 510, 160, 212, 505, 412, 541, 354, 344, 200, 360, 445, 034, 614, 033, 452, 361,
635, 622, 102, 151, 242, 660, 422, 322, 501, 013, 023, 602, 123, 235, 321, 434, 661, 324, 333,
143, 253, 020, 461, 506, 515, 665, 244, 041, 231, 251, 145, 453, 201, 316, 050, 524, 634, 444,
054, 116, 343, 456, 542, 654, 105, 626, 064, 206, 455, 355, 110, 535, 163, 605, 155, 142, 416,
325, 044, 236, 043, 332, 410, 500, 433, 423, 056, 365, 202, 565, 610, 260, 114, 454, 345, 065,
224, 564, 315, 366, 312, 611, 650, 061, 631, 400, 113, 232, 550, 644, 026, 414, 144, 302, 641,
216, 040, 305, 666, 436, 152, 042, 320, 424, 124, 556, 250, 303, 521, 134, 563, 204, 066, 652,
544, 046, 246, 642, 552, 504, 463, 161, 131, 053, 351, 655, 613, 441, 623, 464, 511, 121, 604,
330, 045, 211, 014, 141, 335, 606, 640, 241, 430, 015, 514, 301, 252, 415, 334, 156, 624, 530,
562, 226, 522, 052, 100, 512, 010, 555, 234, 425, 603, 165, 342, 356, 055, 311, 261, 401, 534

(3) Multiplicative inverses of first 7 EPs under IP (x3 + 1) corresponding to ip-index 344:

001, 004, 005, 002, 003, 006, 600, No inverse exists for 8th EP (x + 1)

106 J.K.M. Sadique Uz Zaman and R. Ghosh

polynomials. Using the proposed method, one can have a mathematical look
toward monic as well as non-monic irreducible polynomials over GF(pm) for
necessary values of p and m. The integers over GF(73) require nine bits—the same
is also required for integers over GF(29). With array of multiplicative inverses of
both types of finite fields, one would be able to form two types of 9-bit random
number generators, both of which can be used in stream cipher and in block cipher.
From the quantitative measure of randomness of the two, one would able to
conclude which of the two is better and what is the status of those in respect of
similar type of 8-bit generator.

Acknowledgments We express our gratitude toward UGC, New Delhi, for providing financial
support to the first author. We are also indeed thankful to the Head of the Department of Radio
Physics and Electronics, University of Calcutta, for providing necessary infrastructural facilities
to undertake research activities.

References

1. Stallings, W.: Cryptography and Network Security Principles and Practices, 4th edn. Pearson
Education, Delhi (2008)

2. Forouzan, B.A., Mukhopadhyay, D.: Cryptography and Network Security, 2nd edn. TMH,
New Delhi (2011)

3. Arguello, F.: Lehmer-based algorithm for computing inverses in Galois fields GF(2m).
Electron. Lett. IET J. Mag. 42(5), 270–271 (2006)

4. Hasan, M.A.: Double-basis multiplicative inversion over GF(2m). IEEE Trans. Comput.
47(9), 960–970 (1998)

5. Daemen, J., Rijmen, V.: AES Proposal: Rijndael, AES Algorithm Submission, 3 Sept 1999
6. FIPS Pub. 197, Announcing the Advanced Encryption Standard (AES), 26 Nov 2001
7. Church, R.: Tables of irreducible polynomials for the first four prime moduli. Ann. Math.

36(1), 198–209 (1935)
8. Lidl, R., Niederreiter, H.: Finite fields, encyclopedia of mathematics and its applications, vol.

20. Addison-Wesley Publishing Company, Boston (1983)
9. Knuth, D.E.: The Art of Computer Programming Seminumerical Algorithms, 3rd edn, vol. 2.

Pearson Education, Upper Saddle River (2011)
10. https://www.academia.edu/attachments/32975915/download_file

Multiplicative Polynomial Inverse over GF(73)… 107

https://www.academia.edu/attachments/32975915/download_file

A Novel Biometric Template Encryption
Scheme Using Sudoku Puzzle

Arnab Kumar Maji and Rajat Kumar Pal

Abstract Identity theft is a growing concern in the digital era. As per the US
Federal Trade Commission, millions of people got victimized in each year [1].
Traditional authentication methods such as passwords and identity documents are
not sufficient to combat ID theft or ensure security. Such representations of
identity can easily be forgotten, lost, guessed, stolen, or shared. On the contrary,
biometric systems recognize individuals based on their anatomical traits (e.g.,
fingerprint, face, palm print, iris, and voice) or behavioral traits (e.g., signature,
gait). As such traits are physically linked to the user, biometric recognition is a
natural and more reliable mechanism for ensuring that only legitimate or autho-
rized users are able to enter a facility, access a computer system, or cross inter-
national borders. Biometric systems also offer unique advantages such as
deterrence against repudiation and the ability to detect whether an individual has
multiple identity cards (e.g., passports) under different names. Thus, biometric
systems impart higher levels of security when appropriately integrated into
applications requiring user authentication. In this paper, an attempt has been made
to secure the biometric data using sudoku puzzle.

Keywords Biometric � Trait � Encryption � Decryption � Sudoku � Key �
Minigrid � Backtracking

A.K. Maji (&)
Department of Information Technology, North Eastern Hill University,
Shillong 793 022, India
e-mail: arnab.maji@gmail.com

R.K. Pal
Department of Computer Science and Engineering, University of Calcutta,
Kolkata 700 009, India
e-mail: pal.rajatk@gmail.com

� Springer India 2015
R. Chaki et al. (eds.), Applied Computation and Security Systems, Advances in Intelligent
Systems and Computing 305, DOI 10.1007/978-81-322-1988-0_7

109

1 Introduction

Biometric authentication schemes have great potentials in building secured systems
since biometric data of the users are bound tightly with their identities and cannot be
forgotten. Typically, a biometric authentication scheme consists of two phases, i.e.,
enrollment phase and authentication phase [2]. During the enrollment phase, the
sensor module acquires the raw biometric data of an individual in the form of an
image, video, audio, or some other signal. The feature extraction module operates on
the biometric signal and extracts a salient set of features to represent the signal;
during user enrollment, the extracted feature set, labeled with the user’s identity, is
stored in the biometric system and is known as a template. This template is stored on
some central server or a device.

During the authentication phase, user would provide another biometric sample
to the sensor. Features extracted from this sample constitute the query, which the
system then compares to the template of the claimed identity via a biometric
matcher. The matcher returns a match score representing the degree of similarity
between the template and the query. The system accepts the identity claim only if
the match score is above a predefined threshold. The whole scheme is presented in
Fig. 1, where X and Y are templates.

Now, we briefly explain the activities performed in Fig. 1. During the enroll-
ment phase of biometric authentication, the images of the traits are captured using
some camera or devices. Then, features such as characteristics of the captured
image such as color, pattern of the image, are extracted. Then, a biometric tem-
plate (say, X) is generated from it. This template contains the characteristics of the
user’s biometric information that could be used to identify the said trait uniquely.
Further, a sketch is generated from the template (i.e., X). A sketch is essentially a
graph-like structure from which the template can be reconstructed, as and when
necessary. The generated sketch is stored in the database. This part follows the
upper row of the figure up to database. Now during the authentication phase, as

Fig. 1 Sketch generation and template reconstruction of biometric information

110 A.K. Maji and R.K. Pal

usual at first the trait’s image is captured; then in the same way, features are
extracted from it, and another template (say, Y) is constructed. Then, the template
X is reconstructed from the sketch stored in the database. Afterward it is matched
with the captured template (i.e., Y) by using some matching function. If the
templates match, then we may say that the user is authenticated; otherwise, not.

Thus, a biometric system may be viewed as a pattern recognition system whose
function is to classify a biometric signal into one of several identities (viz.,
identification) or into one of two classes—genuine and impostor users (viz.,
verification).

While a biometric system can enhance user convenience and security, it is also
susceptible to various types of threats [3, 4] as discussed below in the next section.

1.1 Biometric System Vulnerabilities

A biometric system is vulnerable to two types of failures. A denial of service
occurs when the system does not recognize a legitimate user, while an intrusion
refers to the scenario in which the system incorrectly identifies an impostor as an
authorized user. While there are many possible reasons for these failures, they can
broadly be categorized as intrinsic limitations and adversary attacks.

1.1.1 Intrinsic Limitations

Unlike a password-based authentication system, which requires a perfect match
between two alphanumeric strings, a biometric-based authentication system relies
on the similarity between two biometric samples. This is because an individual’s
biometric sample acquired during enrollment and authentication is seldom identical;
a biometric system can make two types of authentication errors. A false nonmatch
occurs when two samples from the same individual have low similarity and the
system cannot correctly match them. A false match occurs when two samples from
different individuals have high similarity and the system incorrectly declares them as
a match. A false nonmatch leads to a denial of service to a legitimate user, while a
false match can result in intrusion by an impostor. This is because the impostor need
not exert any special effort to fool the system; such an intrusion is known as a zero-
effort attack. Most of the research endeavor in the biometrics community over the
past five decades has focused on improving authentication accuracy—that is, on
minimizing false nonmatches and false matches.

1.1.2 Adversary Attacks

A biometric system may also fail to operate as intended due to manipulation by
adversaries. Such manipulations can be carried out via insiders, such as system

A Novel Biometric Template Encryption Scheme using Sudoku Puzzle 111

administrators, or by directly attacking the system infrastructure. An adversary can
circumvent a biometric system by coercing or colluding with insiders, exploiting
their negligence (for example, failure to properly log out of a system after com-
pleting a transaction), or fraudulently manipulating the procedures of enrollment
and exception processing, originally designed to help authorized users.

External adversaries can also cause a biometric system to fail through direct
attacks on the user interface (sensor), the feature extractor and matcher modules,
the interconnections between the modules, and the template database.

Examples of attacks targeting the system modules and their interconnections
include Trojan horse, man-in-the-middle, and replay attacks. As most of these
attacks are also applicable to password-based authentication systems, several
countermeasures such as cryptography, time stamps, and mutual authentication are
available to prevent them or minimize their impact. Two major vulnerabilities
specifically deserve attention in the context of biometric authentication and ID
cards, and it is not possible to replace stolen templates with new ones because
biometric traits are irrevocable. Finally, the stolen biometric templates can be used
for unintended purposes—for example, to covertly track a person across multiple
systems or obtain private health information.

There are several possible reasons for these attacks. One of the most common
reasons behind this type of attack is stealing of templates and modifying them [5]. So
securing the biometric template is immensely important. At the same time, the
quality of the template should not be degraded. In our proposed scheme, we have
used the puzzle of a 9 9 9 sudoku instance as key to encrypt the biometric template.
The novelty of our proposed scheme lies on encryption of the template with less
distortion as well as it is expected to be incredibly difficult for the intruder to know
about the keys and the intruder is not be able to change or distort the template.

2 Introduction to Sudoku

‘Sudoku’ is a popular Japanese puzzle game. It is usually a 9 9 9 grid-based
puzzle problem which is subdivided into nine 3 9 3 minigrids, wherein some
clues are given and the objective of the problem is to fill it up for the remaining
blank positions. Furthermore, the objective of this problem is to compute a
solution where the numbers 1 through 9 occur exactly once in each row, exactly
once in each column, and exactly once in each minigrid independently obeying the
given clues. An instance of a sudoku puzzle with its solution is shown in Fig. 2.
Besides the standard 9 9 9 grid, variants of sudoku puzzles include some of the
following.

• 4 9 4 grid with four 2 9 2 minigrids,
• 5 9 5 grid with pentomino regions published under the name Logi-5 [6]; a

pentomino is composed of five congruent squares, connected orthogonally;
pentomino is seen in playing the game Tetris [7],

112 A.K. Maji and R.K. Pal

• 8 9 8 grid with eight 2 9 4 minigrids [7],
• 16 9 16 grid (super sudoku) with 16 4 9 4 minigrids [8],
• 25 9 25 grid (sudoku, the Giant) with 25 5 9 5 minigrids [9], etc.

There are several logical techniques to solve the sudoku puzzle; some are basic
simple logic, some are more advanced [8]. Depending on the difficulty of the
puzzle [9], a blend of techniques may be needed in order to solve a puzzle. In fact,
most computer-generated sudoku puzzles rank the difficulty based upon the
number of empty cells in the puzzle and how much effort is needed to solve each
of them. In our proposed scheme, we have used the minigrid backtracking [8]
method to solve a sudoku puzzle.

The basic backtracking algorithm works as follows. The program places
number 1 in the first empty cell. If the choice is compatible with the existing clues,
it continues to the second empty cell, where it places a 1 (in some other row,
column, and minigrid). When it encounters a conflict (which can happen very
quickly), it erases the 1 a moment ago placed and inserts 2 or, if that is invalid, 3 or
the next legal number. After placing the first legal number possible, it moves to the
next cell and starts again with a 1 (or a minimum possible acceptable value). If the
number that has to be altered is a 9, which cannot be raised by one in a standard
9 9 9 sudoku grid, the process backtracks and increases the number in the pre-
vious cell (or the next to the last number placed) by one. Then, it moves forward
until it hits a new conflict. In this way, the process may sometimes backtrack
several times before advancing. It is guaranteed to find a solution if there is one,
simply because it eventually tries every possible number in every possible
location.

Fig. 2 a An instance of the sudoku problem. b A solution of the sudoku instance shown in
a where a digit /symbol occurs exactly once in each row, column, and minigrid

A Novel Biometric Template Encryption Scheme using Sudoku Puzzle 113

3 Existing Biometric Template Encryption Scheme

An ideal biometric template encryption scheme should have the following three
properties [10]:

Revocability: The biometric template should be encrypted in such a manner
that we can easily revoke the compromised template.
Security: It must be computationally hard to obtain the original biometric
template from the secure template, so that the intruder should not be able to
reconstruct the template.
Performance: The biometric template encryption scheme should not degrade
the quality of the template.

The existing biometric template encryption scheme can be broadly classified
into two categories: (1) the biometric cryptosystem approach and (2) the feature
transformation approach as shown in Fig. 3. The basic idea of these approaches is
that instead of storing the original template, the transformed/encrypted template
which is intended to be more secure is stored. In case the transformed/encrypted
template is stolen or lost, it is computationally hard to reconstruct the original
template and to determine the original raw biometric data simply from the
transformed/encrypted template.

In the feature transformation approach, a transformation function (F) is applied
to the biometric template (T) and only the transformed template (F(T, K)) is stored
in the database. The parameter of the transformation function is typically derived
from a Random Key (K) or password. The same transformation function is applied
to query features (Q), and the transformed query (F(Q, K)) is directly matched
against the transformed template (F(T, K)). Depending on the characteristics of the
transformation function F, the feature transformation schemes can be further
categorized as salting and noninvertible transforms. In salting, F in invertible, that

Template
Protection

Feature
Transformation

Biometric
Cryptosystem

Salting Noninvertible Transform Key binding Key generation

Fig. 3 Categorization of biometric template protection scheme

114 A.K. Maji and R.K. Pal

is if an adversary gains access to the key and the transformed template, s/he can
recover the original biometric template (or a close approximation of it). Hence, the
security of the salting scheme is based on the secrecy of the key or password. On
the other hand, noninvertible transformation schemes typically apply a one-way
function on the template and it is computationally hard to invert a transformed
template even if the key is known. Figure 4 depicts the approach as described.

Biometric cryptosystems [11, 12] were originally developed for the purpose of
either securing a cryptographic key using biometric features or directly generating
a cryptographic key from biometric features. However, they can also be used as a
template protection mechanism. In a biometric cryptosystem, some public infor-
mation about the biometric template is stored. This public information is usually
referred to as helper data, and hence, biometric cryptosystems are also known as
helper data-based methods [13]. While the helper data do not (is not supposed to)
reveal any significant information about the original biometric template, it is
needed during matching to extract a cryptographic key from the query biometric
features. Matching is performed indirectly by verifying the validity of the
extracted key. Error correction coding techniques are typically used to handle
intruder variations. Figure 5 depicts the approach as described above.

Biometric cryptosystems can further be classified as key-binding and key
generation systems depending on how the helper data are obtained. When the
helper data are obtained by binding a key (that is independent of the biometric
features) with the biometric template, we refer to it as a key-binding biometric
cryptosystem. Note that given only the helper data, it is computationally hard to
recover either the key or the original template. Matching in a key-binding system
involves recovery of the key from the helper data using the query biometric
features. If the helper data are derived only from the biometric template and the
cryptographic key is directly generated from the helper data and the query bio-
metric features, it leads to a key generation biometric cryptosystem.

Fig. 4 Authentication mechanism when the biometric template is protected using feature
transformation approach (courtesy to [5])

A Novel Biometric Template Encryption Scheme using Sudoku Puzzle 115

4 Biometric Template Encryption Scheme Using Sudoku

The entire existing template encryption scheme can provide adequate security to
the biometric template. But unfortunately, if somebody modifies the stored tem-
plate, they are unable to detect it. So in our proposed scheme, we have used sudoku
puzzle as a key to encrypt the template, so that if any modification in the template
takes place, it can easily detect it. The entire scheme is described as below:

Input: A solved sudoku puzzle and the biometric template of a trait (e.g., an
image).

Output: Sudoku-embedded biometric template.

Step 1 Block preparation: The biometric template is divided into 9 9 9 equal-
sized blocks.

Step 2 Embedding 9 9 9 sudoku puzzle: A solved sudoku instance and the
biometric template with blocks are taken as input.

For each individual block:
Make disjoint groups of four pixels each; padding is incorporated, if necessary.
For each group of four pixels:
The least significant bit (LSB) of the 8-bit representation of each pixel in block i is
added to the associated value present in the corresponding sudoku cell i,
1 B i B 81.

As for example, in Fig. 6, all pixels present in the first block of the first row are
to be replaced with 3 in a group of four pixels each, i.e., the LSBs of the first and
the second pixel are kept unchanged, whereas 1 is added to the LSB of each of the
third and the fourth pixel, as the corresponding binary representation of 3 is 0011.

Step 3 Sudoku instance and key generation: Here, a suitable sudoku instance is
generated (by excluding digits from some of the cells and making them
blank) from a given solved sudoku puzzle. Hence, a sudoku instance is

Fig. 5 Authentication mechanism using biometric cryptosystem (courtesy to [5])

116 A.K. Maji and R.K. Pal

generated by keeping some of the digits as clues and rest of the cells
remain blank so that at the end of the process the same solved sudoku
puzzle could be obtained. This process is known as the Dig-and-Hole
method for generating sudoku instance [9]. In Fig. 7, the clues are shown
in red colors that are generated (in obtaining an instance of the problem)
for some solved sudoku puzzle, as shown in Fig. 6, though this could also
be a different instance other than that is depicted in this figure.

Then, two keys are created from this sudoku instance: (1) server key and (2)
user key. Server key is created after removing clues from each corner cell. User
key is created by storing all the removed corner digits (row-wise); if there is no
clue, then 0 is stored as the corresponding key of the cell. For example, in Fig. 7,
the user key we obtain is 0850, as there are no clues in the top-left corner cell as
well as bottom-right corner cell; we may note that the top-right corner cell contains

Fig. 6 Biometric template encryption process: The biometric template is divided and placed
over a region of 9 9 9 blocks. The values of each cell of a (solved) sudoku puzzle are embedded
into the corresponding block of the template. Here, red digits are given clues of the problem
instance and black digits are inserted to get a solved solution of the instance

Fig. 7 The process of key generation

A Novel Biometric Template Encryption Scheme using Sudoku Puzzle 117

an 8 and the bottom-left corner cell contains a 5 as clues. In our scheme, we like to
keep the server key is retained in the database server, while the user key is returned
back to the user for future authentication, as and when necessary.

Then, the biometric sketch is created, and this sketch along with the server key
is stored in the server. So, in our proposed scheme, the server stores encrypted
biometric template sketches in the database as well as the server key generated
using the sudoku instance. The user key is kept by the biometric user. If anybody
wants to enter into the biometric system, one has to supply the biometric infor-
mation as well as the key generated by the server. The decryption technique of the
proposed scheme is as follows.

4.1 Biometric Template Decryption Technique

Step 1 Submission of keys: User has to submit its own key along with biometric
data to the server. The server places each number sequentially to each
corner of the server key as shown in Fig. 8. The first leftmost value is
placed in the top-left corner of the server key. The next value is placed in
the top-right corner, whereas the next two values are placed in the bottom-
left and bottom-right corner of the server key, respectively. Then, the
original instance of the sudoku is computed, wherefrom we can reach to
the original solved sudoku puzzle, which is ultimately embedded in the
template. If 0 is found in the user key, then the value is replaced by a
blank cell in the server key.

Fig. 8 Merging of Server
key with user key

118 A.K. Maji and R.K. Pal

Step 2 Here, the sudoku instance is solved by the server to get the complete
sudoku puzzle.

Step 3 Then, in the similar way during the encryption process, the reconstructed
templates are divided into 81 blocks.

For each individual block:
Make groups of four pixels each.
For each group:
The associated value present in a sudoku cell is subtracted from the LSB of each
pixel present in the corresponding group of the block, and then, padding is also
removed, if added earlier.

Then, the original biometric template (i.e., X, in Fig. 1) is recreated.
Now, this is obvious that an efficient sudoku solving algorithm is also very

essential to speed up the process of encryption and decryption. So for this purpose,
in our proposed work we have also designed an efficient sudoku solving algorithm,
which is described in the next section.

4.2 The Designed Sudoku Solving Algorithm

Our devised algorithm considers each of the minigrids that may be numbered as 1
through 9 as shown in Fig. 9. Each minigrid may or may not have some clues as
numbers that are given. We first consider a minigrid that contains a maximum
number of clues, and if there are two or more such minigrids, we consider the one
with the least minigrid number.

Needless to mention that each of the cells in a minigrid, either containing a clue
or a blank cell, is somehow differentiated from each of the cells of another
minigrid as the position of a cell in a sudoku instance could be specified by its row
number and column number, which is unique. So, a cell [i, j] of minigrid k may
either contain a number l as a given clue or a blank location that is to be filled in by
inserting a number m, where 1 B i, j, k, l, m B 9.

7

321

8 9
4 5 6

Fig. 9 The structure of a 9 9 9 sudoku puzzle (problem) with its nine minigrids of size 3 9 3
each as numbered 1 through 9. Minigrid number 1 consists of the cell locations [1], [1, 2], [1, 3],
[1, 2], [2], [2, 3], [1, 3], [2, 3], and [3], minigrid number 2 consists of the cell locations [1, 4], [1,
5], [1, 6], [2, 4], [2, 5], [2, 6], [3, 4], [3, 5], [3, 6], and so on

A Novel Biometric Template Encryption Scheme using Sudoku Puzzle 119

Now to start with a minigrid as stated above, we find that the minigrid 3
contains a maximum number of clues, i.e., four, among all the minigrids, and each
of the minigrids 1 and 2 contains less number of clues than that of minigrid 3 (see
Fig. 2a). For example, for the sudoku instance as shown in Fig. 2a, each of the
minigrids 3, 5, and 7 contains four clues each; hence, at the beginning, we consider
minigrid 3 for computing all its valid permutations of the missing numbers for its
blank locations (as 3 is the minimum minigrid number).

Besides, for a given sudoku instance, we know all the clues given as well as the
clue positions among the cells of a minigrid and subsequently the blank cells are
also known to us. For example, the given clues in minigrid 3 of Fig. 2a are 9 at
location [1, 8], 8 at location [1, 9], 1 at location [2, 8], and 5 at location [3, 9].
Here, we denote a cell location of a sudoku instance by [row number, column
number], where each of row numbers and column numbers varies from 1 to 9.
Hence, the blank locations are [1, 7], [2, 7], [2, 9], [3, 7], and [3, 8], and the
missing digits are 2, 3, 4, 6, and 7.

We compute all possible permutations of these missing digits in minigrid 3,
where the first permutation may be 23467 (the minimum number) and the last
permutation may be 76432 (the maximum number using the missing digits). Here,
as the number of blank locations is five, the total number of permutations is 5!,
which is equal to 120. Now, the algorithm considers each of these permutations
one after another and identifies only the valid set of permutations based on the
given clues available in rows and columns in other minigrids (that are minigrids 1,
2, 6, and 9). As for example, if we consider the first permutation 23467 and place
the missing digits, respectively, in order in locations [1, 7], [2, 7], [2, 9], [3, 7], and
[3, 8], which are arranged in rising mode, we find that this permutation is not a
valid permutation. This is because the location [6, 7] already contains 2 as a clue of
minigrid 6, and we cannot place 2 at [1, 7] as the permutation suggests. Also the
location [3, 5] contains 7 as a clue of minigrid 2, and we cannot place 7 at [3, 8] as
it is supposed to place.

Similarly, we may find that the last permutation 76432 is also not a valid
permutation as location [4, 9] already contains 4 as a clue of minigrid 6, and we
cannot place 4 at [2, 9] as the permutation suggests. But we may observe that
74362 is a valid permutation as we may safely place 7 at [1, 7], 4 at [2, 7], 3 at [2,
9], 6 at [3, 7], and 2 at [3, 8] based on the other clues in the corresponding rows
and columns of other minigrids (that are minigrids 1, 2, 6, and 9).

This is how we may compute all valid permutations of minigrid 3 and proceed
for a next minigrid that belongs to among the row and column minigrids of
minigrid 3 which contains a maximum number of clues, but the minigrid number is
minimum. Among all the valid permutations (for their respective blank locations)
of minigrid 3, at least one permutation must last at the end of computation of valid
permutations of each of the remaining minigrids if the solution of the given sudoku
instance is unique. To find out the next minigrid to be considered, we go through
the row and column minigrids of minigrid 3 in the sudoku instance of Fig. 2a (that
are minigrids 1, 2, 6, and 9), and among these minigrids, we find that the minigrid

120 A.K. Maji and R.K. Pal

1 contains a maximum number of clues, i.e., three (which is equally true for each
of the minigrids 6 and 9), and its minigrid number is the minimum.

So now, we consider minigrid 1, and as done before for minigrid 3, we find the
given clues and the missing digits therein along with their locations. Here, we do
exactly the same as we did earlier in computing all permutations of the missing
digits in minigrid 3. At the time of identifying all valid permutations of minigrid 1,
we consider one valid permutation (at their respective blank locations) of minigrid
3 in addition to all given clues of the instance under consideration. If we get at
least one valid permutation for minigrid 1 (obeying an assumed valid permutation
of minigrid 3), we consider it for some subsequent computation of permutations of
another minigrid; otherwise, we consider a second valid permutation of minigrid 3,
and based on that, we compute another set of valid permutations for minigrid 1,
and so on.

Now, it is straightforward to declare that here, the minigrid that is to be con-
sidered is one among the minigrids 2, 4, 6, 7, and 9 as the row and column
minigrids of minigrids 3 and 1 (for which we have already computed valid per-
mutation(s) one after another); note that neither of minigrids 5 and 8 are a row or
column minigrid of minigrids 3 and 1. Hence, following the instance in Fig. 2a, we
consider minigrid 7 for computing all its valid permutations allowing for one valid
permutation of minigrid 3 and then one subsequent valid permutation of minigrid
1, in addition to all given clues of the instance under consideration, as each of the
minigrids 2, 4, 6, and 9 contains less number of clues than that of minigrid 7. Here
in computing all valid permutations of minigrid 7, we may not consider an
assumed valid permutation of minigrid 3, as this minigrid is neither in a row nor in
a column of minigrid 7, but we have to consider a valid permutation of minigrid 1
and all given clues in the sudoku instance (primarily the clues given in minigrids 4,
8, and 9).

This process is continued till a valid permutation of a minigrid (or a set of valid
permutations of a group of minigrids) is propagated to compute a valid permu-
tation of a subsequent minigrid, and eventually, a valid permutation of the last
minigrid (i.e., the ninth minigrid; not necessarily minigrid number 9) is computed,
which altogether generate a desired solution of the given sudoku instance. It may
so happen that up to t minigrids, t valid permutations that we consider in a series
match each other toward a valid combination of the given sudoku instance, but
there is no valid permutation for the (t + 1)th minigrid obeying the earlier
assumed t valid permutations, where 1 \ t \ 9. Then, we consider a second valid
permutation of the tth minigrid, and after that we try to compute a valid permu-
tation for the (t + 1)th minigrid, if one exists. If for none of the valid permutations
of the tth minigrid a valid permutation for the (t + 1)th minigrid is obtained, we
consider a second valid permutation for the (t - 1)th minigrid that leads to
compute a new set of valid permutations for the tth minigrid, and so on.

We claim that we must acquire at least one valid permutation for each of the
minigrids one after another, obeying at least one valid permutation computed for
each of the minigrids considered earlier in the process of assuming the minigrids in

A Novel Biometric Template Encryption Scheme using Sudoku Puzzle 121

succession; we claim this result in the form of the following theorem if at least one
solution of the given sudoku puzzle exists.

Theorem 1 There is at least one valid permutation for the missing digits for their
respective blank locations in each of the minigrids such that the combination of all
such (nine) valid permutations for all the (nine) minigrids produces a desired
solution, if there exists a solution of a given sudoku instance.

Proof The verification of the theorem is straightforward following the steps of the
inherent development of the algorithm as stated above, if a feasible solution of the
given sudoku instance is there. We may start with one valid permutation for some
earlier assumed minigrid that may not be a valid partial solution in combination for
the whole sudoku instance; then, we must reach to a point of computing a valid
permutation of some subsequent minigrid when no such permutation is obtained
for that minigrid. In that case, we are supposed to return back to the former
minigrid we had to consider a next valid permutation, if any, for the same (i.e., for
the previous minigrid) and move to the current minigrid for computing its valid
permutations accordingly. Hence, it is clear that if one valid permutation for some
earlier assumed minigrid is not a valid partial solution in combination for the
whole sudoku instance, then we must have to return back to that prior minigrid to
consider a new valid permutation of the same to continue the process again in
computing all valid permutations of its subsequent minigrid, and so on. In this
way, a set of individual valid permutations is to be differentiated so that in
combination of all of them a desired solution of the given sudoku instance is
computed, if one such solution exists. h

To see the algorithm at a glance, let us write it in the form as follows:
Input: A sudoku instance, P of size 9 9 9.
Output: A solution, S of the given sudoku instance, P.

Step 1 Compute the number of clues, digit(s) given as clue, and the missing
digits in each of the minigrids of P.

Step 2 Compute SM, a sequence of minigrids that contains all the minigrids in
succession, wherein M [SM is the minigrid (and the first member in SM)
with a maximum number of clues and whose minigrid number is mini-
mum. In SM, a member N is a minigrid which is either in the row or in the
column of any of its earlier members in SM including M that contains a
maximum number of clues and whose minigrid number is minimum,
where 1 \ N B 9.

Step 3 Compute all valid permutations for the missing digits in M and store them.

122 A.K. Maji and R.K. Pal

Step 4 For all the remaining minigrids in succession in SM do the following:

Step 4.1: Consider a next minigrid, N [SM, and compute all its valid
permutations for the missing digits in N assuming a valid
permutation for each of the earlier minigrids up to M, and store
them.

Step 4.2: If one valid permutation for N is obtained, then consider a next
minigrid of N in SM, if any, and compute all its valid permu-
tations for the missing digits in this minigrid assuming a valid
permutation for each of the earlier minigrids up to M, and store
them.
Else consider a next valid permutation, if any, of the imme-
diately previous minigrid of N, and compute all its valid per-
mutations for the missing digits in N assuming a valid
permutation for each of the earlier minigrids up to M, and store
them.

Step 5 If all the valid permutations of the immediate successor minigrid of M are
exhausted to obtain a valid combination for all the nine minigrids in SM,
then consider a next valid permutation of M and go to Step 4. The process
is continued until a valid combination for all the nine minigrids in SM is
obtained as a desired solution S for P; otherwise, the algorithm declares
that there is no valid solution for the given instance P.

Now it is straightforward to compute SM for a given sudoku instance P. As for
example, consider the sudoku instance given in Fig. 2a. According to this instance,
the sequence SM of minigrids is 3; 1; 7; 6; 5; 9; 4; 8; 2h i as it has been described and
performed in Step 2 of the first version of the algorithm above.

Computation of all valid permutations for the missing digits in a minigrid is an
important task of the present algorithm. At the time of computing only all valid
permutations for the missing digits, we follow a tree data structure, where the
degree of the root of the tree is same as the number of missing digits, and level-
wise it reduces to one to obtain the leaf vertices, where each leaf at the lowest level
is a valid permutation of all the missing digits based on the clues given in P (and
the assumed valid permutation(s) in other minigrid(s) in subsequent iterations).

As for example, the number of clues given in minigrid 3 of the puzzle in Fig. 2a
is four, and the missing digits are 2, 3, 4, 6, and 7. The proposed algorithm likes to
place each of the permutations of these missing digits in the blank locations [1, 7],
[2, 7], [2, 9], [3, 7], and [3, 8]. Here, the tree structure we like to compute is shown
in Fig. 10, whose root does not contain any permutation of the missing five digits,
and it is represented by ‘*****’. This root is having five children where the first
child leads to generate all valid permutations staring with 2, the second child leads
to generate all valid permutations staring with 3, and so on.

Now note that none of the permutations starting with 2 is a valid permutation as
column 7 of minigrid 6 contains 2 as given clue (at location [6, 7]). So, we do not
expand this vertex (i.e., vertex with permutation ‘2****’) further in order to

A Novel Biometric Template Encryption Scheme using Sudoku Puzzle 123

compute only the set of desired valid permutations. Similarly, we do not expand
the child vertex with permutation ‘6****’, as location [1, 3] contains 6 as given
clue. Up to this point in time, as either 3, or 4, or 7 could be placed at [1, 7], we
expand each of the child vertices starting with permutations 3, and 4, and 7, as
shown in Fig. 10.

Similarly, we expand the tree structure inserting a new missing number at its
respective location (for a blank cell) leading from a valid permutation (as vertex)
in the previous level of the tree. Correspondingly, we verify whether the missing
digit could be placed at the respective location for a blank cell of the given sudoku
instance P. If the answer is ‘yes,’ we further expand the vertex; otherwise, we stop
expanding the vertex in some earlier level of the tree structure prior to the last
level of leaf vertices only. As for example, the vertex with permutation ‘742**’ is
not expandable, because we cannot place 2 at [2, 9] as [1, 2] contains a 2 as given
clue. So, this is how either a valid permutation is generated from the root of the
tree structure reaching to a bottommost leaf vertex, or the process of expansion is
terminated in some earlier level of the tree that must generate other than valid
(unwanted) permutations at this point in time.

Interestingly, Fig. 10 shows the reality that the number of possible permutations
of five missing digits is 120, and out of them, only seven are valid for minigrid 3 of
the sudoku instance shown in Fig. 2a. Note that the given clues in P are nothing
but constraints, and we are supposed to comply with each of them. So, usually, if
there are more clues, P is more constrained, and hence, the number of valid
permutations is even much less, and the solution, if it exists, is unique in most of
the cases. On the contrary, if there are fewer clues in P, more valid permutations
for some minigrid of P could be generated, computation of a solution for P might
take more time, and P may have two or more valid solutions. In any case, if there
is a unique solution of the assumed sudoku instance (in Fig. 2a), out of these seven

Fig. 10 The permutation tree for generating only valid permutations of the missing digits in
minigrid 3 of the sudoku instance shown in Fig. 2a

124 A.K. Maji and R.K. Pal

valid permutations, only one is finally be accepted following the subsequent steps
of the algorithm.

Now, the algorithm considers one valid permutation (out of the seven permu-
tations) of minigrid 3 and all given clues in P and generates all valid permutations
for minigrid 1. If at least one valid permutation for minigrid 1 is obtained, we
proceed for generating all valid permutations for minigrid 7 obeying all given
clues in P and the assumed valid permutations of minigrids 3 and 1; otherwise, a
second valid permutation of minigrid 3 is considered, for which in a similar way,
we generate all valid permutations for minigrid 1, and so on.

This is how the algorithm proceeds and generates all valid permutations of a
minigrid under consideration conforming the given clues in P and a set of assumed
valid permutations, one for each of the minigrids considered earlier in succession,
up to this point in time.

Note that at the time of computing a set of valid permutations for a minigrid, we
have to consider clues and (earlier computed) valid permutations in only four of
the remaining eight minigrids that are adjacent to the minigrid (currently) under
consideration. As for example, while computing valid permutations for minigrid 7,
we have to consider one valid permutation of minigrid 1 and the clues given in
minigrids 1, 4, 8, and 9 only; here, the assumed valid permutation of minigrid 3
has no use while computing valid permutations for minigrid 7. In the same way,
while computing valid permutations for minigrid 6, only we have to consider the
assumed valid permutation of minigrid 3 (up to this point in time) and the clues
given in minigrids 3, 4, 5, and 9 only; here, the assumed valid permutations of
minigrids 1 and 7 have no use while computing valid permutations for minigrid 6
and so on.

Now, we discuss about the size of the tree structure under consideration. If p be
the number of blank cells in a minigrid and the sudoku instance is of size n 9 n,
then the computational time as well as the computational space complexity of the
sudoku solver developed herein is (p! - x)n = O(pn), where x is the number of
other than valid permutations based on the clues given in the sudoku instance
P. Our observation is that for a given sudoku instance P, x is very close to p!, and
hence, p!-x is a reasonably small number and in our case the value of n is equal to
9. Hence, the experimentations made by this algorithm take negligible amount of
clock time, and this is of the order of milliseconds.

5 Experimental Results: Analysis and Discussion

We have tested our proposed approach of biometric template encryption scheme,
using the Essex Faces 94 face database (E94 database), which is publicly available
and essentially created for face recognition related research studies. The E94
database contains images of 152 distinct subjects, with 20 different images for
each subject where the size of each JPEG image is 180 9 200. In our approach, we
have transformed these images to 8-bit gray-level images and then used these gray-

A Novel Biometric Template Encryption Scheme using Sudoku Puzzle 125

level images in our experiments. For each subject, we have randomly chosen the
12 out of 20 samples for enrollment and the remaining 8 sample face images are
used for authentication. Some sample images from the E94 database are given in
Fig. 11.

Then, we have done histogram analysis of this proposed scheme. We have
noticed a very less distortion in the template. Sample histograms are shown in
Figs. 12 and 13; Fig. 12 shows the histogram of the template before embedding
sudoku, and Fig. 13 shows the same after embedding sudoku.

Fig. 11 Sample E94 database

Fig. 12 Histogram of the template before embedding sudoku

126 A.K. Maji and R.K. Pal

From the histogram analysis, we can easily notice that there is incredibly less
distortion in the image after embedding the sudoku puzzle, which is one of the
prime requirements of any template encryption scheme.

5.1 Computation Time

As we have performed only simple add operation on the LSB’s, it takes negligible
amount of computational time. The average computational time for the operation
is around 30 ms, which is small enough as compared to other encryption tech-
niques. Feature transformation takes in an average of 30-35 ms, whereas bio-
metric cryptosystem takes an average of 45–45 ms of computation time.

5.2 Robustness

In feature transformation approach, a noninvertible feature transformation function
is applied to the biometric template, whereas in case of biometric cryptosystems
using keys, biometric templates are embedded. But still there are scopes to modify
the template which ultimately leads to denial-of-service (DOS) attack. As in our
proposed scheme, we are embedding a sudoku puzzle inside the biometric tem-
plate and each 9 9 9 sudoku puzzle having the number 1–9 in each row, column,
and minigrid only once. Modification is not possible, as any modification in the
template ultimately leads to modification in the sudoku puzzle itself, which leads
to the violation of sudoku constraints.

5.3 More Number of Keys

There exist as many as 6,670,903,752,021,072,936,960 distinct sudoku puzzles
[2]. That means these many numbers of different keys can be used. Now, the
average computing time of a sudoku instance is *29 ms; that means, around
6,134,456,139,289 years are required to solve all the sudoku instances available in
practice. So guessing the key is almost impossible in our proposed method, and the
brute force attack is also not feasible in our projected scheme of encryption.

Fig. 13 Histogram of the template after embedding sudoku

A Novel Biometric Template Encryption Scheme using Sudoku Puzzle 127

6 Conclusion

Our anticipated encryption scheme is novel in the following sense. As we are
embedding a sudoku puzzle inside the template, it is almost impossible for an
intruder to modify the template as each row, column, and minigrid of the sudoku
instances contains 1–9 uniquely. Any changes in these data ultimately lead to an
error in the sudoku. If somebody changes the whole sudoku puzzle, then also the
user of the system is capable to find the alteration, as the original sudoku instance
is stored as key in the server as well as with the user. We are modifying the LSB of
each pixel. Hence, the probability of image distortion is significantly reduced. We
have distributed the key used for the encryption into two parties, i.e., user and
server. So, without getting these two keys, nobody is able to decrypt the template.
Therefore, we can claim that the proposed scheme is sincerely robust with least
distortion in the quality of the template.

References

1. www.ftc.gov/opa/reporter/idtheft/index.shtml
2. Roberts, C.: Biometric attack vectors and defenses. Comput. Secur. 26(1), 14–25 (2007)
3. Jain, A.K., Ross, A., Uludag, U.: Biometric template security: challenges and solutions. In:

Proceedings of the European Signal Processing Conference (EUSIPCO ’05), Antalya,
Turkey, Sept 2005

4. Cukic, B., Bartlow, N.: Biometric system threats and countermeasures: a risk based approach.
In: Proceedings of the Biometric Consortium Conference (BCC ’05), Crystal City, USA, Sept
2005

5. Jain, A.K., Ross, A., Pankanti, S.: Biometrics: a tool for information security. IEEE Trans.
Inf. Forensics Secur. 1(2), 125–143 (2006)

6. http://www.en.wikipedia.org/wiki/Pentomino
7. http://www.en.wikipedia.org/wiki/Tetris
8. Jussien, N.: A–Z of Sudoku. ISTE Ltd., USA (2007)
9. Lee, W.-M.: Programming Sudoku. Apress, USA (2006)

10. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition.
Springer, Berlin (2003)

11. Uludag, U., Pankanti, S., Prabhakar, S., Jain, A.K.: Biometric cryptosystems: issues and
challenges. Proc. IEEE 92(6), 948–960 (2004)

12. Cavoukian, A., Stoianov, A.: Biometric encryption: a positive-sum technology that achieves
strong authentication, security, and privacy. Technical Report, Office of the Information and
Privacy Commissioner of Ontario, Toronto, Ontario, Canada, March 2007

13. Vetro, A., Memon, N.: Biometric system security. In: Proceedings of the Second
International Conference on Biometrics, Seoul, South Korea, Aug 2007

128 A.K. Maji and R.K. Pal

http://www.ftc.gov/opa/reporter/idtheft/index.shtml
http://www.en.wikipedia.org/wiki/Pentomino
http://www.en.wikipedia.org/wiki/Tetris

Part III
Computer Aided Design

An ESOP-Based Reversible Circuit
Synthesis Flow Using Simulated
Annealing

Kamalika Datta, Alhaad Gokhale, Indranil Sengupta
and Hafizur Rahaman

Abstract The problem of reversible circuit synthesis has become very important
with increasing emphasis on low-power design and quantum computation. Many
synthesis approaches for reversible circuits have been reported over the last dec-
ade. Among these approaches, those based on the exclusive-or sum-of-products
(ESOP) realization of functions have been explored by many researchers because
of two important reasons: large circuits can be handled, and the mapping from
ESOP cubes to reversible gate netlist is fairly straightforward. This paper proposes
a simulated annealing (SA)-based approach for transforming the ESOP cubes
generated from Exorcism-4 tool using some cube mapping rules, followed by a
strategy to map the ESOP cubes to a netlist of reversible gates. Both positive- and
negative-control Toffoli gates are used for synthesis. Synthesis results on a number
of reversible logic benchmarks show that for many of the cases, it is possible to get
a reduction in quantum cost against the best-known methods.

Keywords Reversible circuits � ESOP � Simulated annealing � Template matching

K. Datta (&) � H. Rahaman
Department of Information Technology, Indian Institute of Engineering Science
and Technology, Shibpur, Howrah 711103, India
e-mail: kdatta.iitkgp@gmail.com

H. Rahaman
e-mail: hafizur@vlsi.becs.ac.in

A. Gokhale � I. Sengupta
Department of Computer Science and Engineering, Indian Institute of Technology,
Kharagpur 721301, India
e-mail: alhaadgokhale@gmail.com

I. Sengupta
e-mail: isg@iitkgp.ac.in

� Springer India 2015
R. Chaki et al. (eds.), Applied Computation and Security Systems, Advances in Intelligent
Systems and Computing 305, DOI 10.1007/978-81-322-1988-0_8

131

1 Introduction

With great advancements in semiconductor technology over the last few decades,
the number of transistors in a chip has grown exponentially, and the age-old
Moore’s law [14] continues to hold. With such miniaturization, power dissipation
has become a major problem with today’s VLSI chips. Various low-power design
techniques and architectures have been proposed to counter these problems.

Landauer [11] showed that whenever there is loss of information during some
computation, energy is dissipated in the form of heat. This has been quantified as
KT log 2 J of energy for every bit of information that is lost, where K is the
Boltzmann constant and T is the absolute temperature of the environment. Lan-
dauer’s principle has also been experimentally verified [3], by actually measuring
the energy dissipated when one bit of information is erased. Since traditional
irreversible gates lose information during computation, they will always dissipate
energy irrespective of the underlying technology. However, since reversible
computations are information lossless, they have the potential for having very low-
power implementations. This conjecture is also supported by an observation by
Bennett [2], who argued that zero power dissipation is possible only if the com-
putation is information lossless (that is, reversible). Moreover, reversible com-
puting finds its importance in quantum computation as well, where the basic
operations are reversible in nature.

Recently in [23], the authors proposed a reversible implementation of a low-
power channel encoding scheme and showed that the corresponding CMOS
realization consumes less power as compared to the best-known conventional
encoding method. Again in [5], a reversible implementation of the AES encryption
algorithm has been proposed. This ongoing effort by various researchers aims to
establish reversible computing as an alternate low-power design paradigm.

With such motivations, synthesis of reversible circuits has become an active
area of research. Various synthesis approaches have been proposed, which can be
broadly classified as exact methods [9], heuristic methods [4], and those based on
higher-level function representations [7, 22]. Exact (heuristic) methods generate
optimal (near-optimal) circuits but cannot handle large functions. Methods based
on higher-level function representations such as binary decision diagrams (BDD)
and exclusive-or sum-of-products (ESOP), in contrast, are able to synthesize large
circuits with several hundreds of inputs, again with no guarantee of optimality.
ESOP-based synthesis methods have the added advantage that they can also handle
nonreversible or incompletely specified functions, with the input given as a .pla
file.

The cost metrics that are typically used to evaluate a synthesized gate netlist are
number of gates, quantum cost [1], or the number of equivalent transistors. Here,
we have used the quantum cost metric for all comparison and evaluations.

In this paper, an integrated approach to synthesis of reversible circuits is pre-
sented, which is based on the ESOP representation of functions. A simulated
annealing (SA)-based approach is proposed for transformation of ESOP cubes,

132 K. Datta et al.

which are then mapped to a reversible gate cascade consisting of both positive-
and negative-control Toffoli gates. The rest of the paper is organized as follows.
Section 2 presents a review of the ESOP-based synthesis methods and some of the
important issues therein. Section 3 gives the theoretical framework based on which
the cube transformations are carried out. Section 4 explains the proposed scheme.
The experimental results are summarized in Sect. 5, with Sect. 6 giving some
concluding remarks and some scopes for future work.

2 Background of ESOP-Based Synthesis

In this section, we will briefly review the basics of reversible logic and ESOP-
based synthesis.

2.1 Reversible Logic and Reversible Gates

A Boolean function f : Bn ! Bn is said to be reversible if there is a one to one
mapping and it is bijective. The problem of synthesis is to determine a reversible
circuit that realizes a given function f.

Like in many previous methods, in this paper, we consider the gate library
consisting of NOT, CNOT, and generalized Toffoli gates. The method uses gen-
eralized Toffoli gates with both positive and negative controls. Figure 1 shows
CNOT, positive-control, and negative-control Toffoli gates that realize the func-
tions: fa; a� bg, fa; b; c� abg, and fa; b; c� abg, respectively.

To estimate the cost of an implementation, several metrics are used, namely
number of gates, number of equivalent MOS transistors, and number of equivalent
basic quantum operations called quantum cost [1]. There are standard ways of
computing the quantum cost from a given gate netlist [6], for gates having positive
controls only. Recently in [12], Toffoli gates with negative controls have been
introduced. For calculating quantum cost, the same calculation for positive con-
trols will hold for negative controls as well, with the only exception for the case
where all the controls are negative. In such case, a 1 has to be added to the
quantum cost as calculated.

2.2 ESOP-Based Synthesis Techniques

Exclusive-or sum-of-products (ESOP) is a type of representation of a Boolean
function, as an exclusive-or sum of several product terms (called cubes). An
example function in ESOP form is f ¼ ab� cd � a cd. One interesting thing

An ESOP-Based Reversible Circuit Synthesis Flow Using Simulated Annealing 133

about the ESOP representation is that we can map the ESOP cubes into equivalent
Toffoli gates in a straightforward way [7]. The ESOP cube list for a given function
can be generated by one of several ESOP generation algorithms, but in most of the
papers, a tool called Exorcism-4 [13] is used.

In [10], Gupta et al. proposed a synthesis approach based on positive-polarity
Reed–Muller expansion, which is a form of ESOP. Here instead of using a single
gate for each term in the expansion, a tree-like structure is used to explore all
possible factors of each term, and in turn, a circuit is constructed that shares factors.

In [7], Fazal et al. presented a synthesis approach, where a Toffoli gate is
directly generated from an ESOP cube list. The total number of lines required is
(2n + m) where n and m denote the number of input and output variables,
respectively. A Toffoli gate is added for each output of a particular cube. In a
further modification, the number of lines was reduced to (n + m) by inserting a
few NOT gates.

In [19], Sanaee et al. proposed a method that exploits the sharing of cubes
among outputs. A cube is realized once, and the result is transferred to the other
sharing outputs using CNOT gates. In [20], the authors proposed another technique
that uses negative-control Toffoli gates and some transformation rules to reduce
some of the output lines.

In [18] Rice et al. proposed an approach which uses an autocorrelation-based
cost metric for identifying the position of Toffoli gates. This method requires more
number of gates for many circuits as compared to [7].

In [15], Nayeem et al. presented a shared cube-based approach, which tries to
optimize the Toffoli gate mapping by grouping the cubes into sublists. They
achieved a significant reduction in quantum cost as compared to other works.

In [17] Rice et al. proposed an ordering-based technique to reorder the ESOP
cube list to reduce the number of NOT gates. The method shows better results as
compared to [7, 18].

In [6, 8], the authors suggest approaches to optimize the ESOP cubes using the
pseudo-Kronecker representation of a Boolean function. An evolutionary algo-
rithm is proposed in [6] to determine a good variable ordering and a suitable XOR
decomposition for the BDD, so as to minimize the quantum cost.

This paper proposes a rule-based technique for transforming a set of ESOP
cubes using simulated annealing, with the objective of reducing the quantum cost
of the corresponding reversible gate implementation. The theoretical basis of the
work is discussed in the following section.

a

b

c

a

b

c

a

b

CNOT Positive
Toffoli

Negative
Toffoli

Fig. 1 Basic reversible gates

134 K. Datta et al.

3 Theoretical Framework for the Work

In this section, we discuss some methods for transforming the ESOP cubes such
that the quantum cost of the resulting netlist is reduced. Some of these rules were
used in earlier works in the context of synthesis; however, in the present work, we
use them for cube transformation. The following results can be easily proved using
switching algebra.

Lemma 1 For an n-variable function, if A, B and Z denote cubes such that Z does
not contain any variables present in A or B, then

ðA� BÞZ ¼ AZ � BZ

Proof We have

AZ � BZ ¼ AZðBþ ZÞ þ BZ Aþ Z
� �

¼ ABZ þ ABZ

¼ ðABþ ABÞZ ¼ ðA� BÞZ

Theorem 1 For an n-variable function, if A, B, C, D and Z represent cubes such
that Z does not contain any of the variables present in A, B, C or D, then the
following result holds:

if A� B ¼ C � D ; then AZ � BZ ¼ CZ � DZ

Proof Let us assume that A� B ¼ C � D. Therefore,

AZ � BZ ¼ AZðBþ ZÞ þ BZðAþ ZÞ
¼ ABZ þ ABZ ¼ ðABþ ABÞZ
¼ ðA� BÞZ ¼ ðC � DÞZ
¼ CDZ þ CDZ

¼ CZðDþ ZÞ þ DZðC þ ZÞ
¼ CZ � DZ

Theorem 2 For an n-variable function, if Ai (1 B i B p), Bi (1 B i B m), and Z
represent cubes such that Z does not contain any of the variables present in Ai or
Bi, then the following result holds:

An ESOP-Based Reversible Circuit Synthesis Flow Using Simulated Annealing 135

If A1 � A2 � . . .� Ap ¼ B1 � B2 � . . .� Bm;

then A1Z � A2Z � . . .� ApZ ¼ B1Z � B2Z � . . .� BmZ:

Proof Follows along the same lines as in the previous theorem.

3.1 Cube Transformation Rules

A set of rules that can be used to transform a set of ESOP cubes is presented
below. The basic idea is to transform a set of ESOP cubes into an equivalent set of
cubes through selective application of these rules so that the quantum cost of the
final gate netlist is reduced.

R1: Rice and Nayeem [17] if two cubes A and B differ in one position, where it
is ‘1’ in A and ‘–’ in B, then we merge them into a single cube C by setting
the differing position to ‘0’. For example, the cubes {110–, 1–0–} can be
merged to {100–}.

R2: Rice and Nayeem [17] if two cubes A and B differ in one position, where it
is ‘0’ in A and ‘–’ in B, then they can be merged by setting the differing
position to ‘1’. For example, the cubes {10–, 1–} can be merged to {11–}.

R3: Mishchenko and Perkowski [13] if two cubes A and B differ in one position,
where it is ‘0’ in A and ‘1’ in B, then we merge them by setting the differing
position to ‘–’. For example, the cubes {10–, 11–} can be merged to {1–}.

R4: Mishchenko and Perkowski [13] split a cube into two cubes on a ‘–’ and
make it ‘0’ in one of the cubes, and ‘1’ in the other. For example, the cube
{1–0–} can be split into the pair of cubes {100–, 110–}.

R5: Using EXOR-link operation [13], a pair of cubes that are distance k apart can
be replaced by a set of k cubes of larger sizes. For example, the cubes {000,
111} that are distance-3 apart can be replaced by the cubes {00–, –01, 1–1}.

R6: If there are two cubes A and B that are at a distance of 2 apart, add two
copies of a cube C which is at a distance of 1 from both A and B and then
merge (A, C) and (B, C) using rules R1, R2 or R3.
For example, the cubes {1010, 0011} are at a distance of 2 apart. We select
a cube {1011} that is at unit distance from both. Then, we merge (1010,
1011) and (0011, 1011) to get the cubes {101–, –011}.

R7: If there is a set of cubes at even distances from each other, then repeated
applications of rule R6 followed by rules R1, R2 or R3 can be used to
achieve reduction in quantum cost.
For example, consider the cubes {1010, 0011, 1100, 1111} every pair of
which are either at distance 2 or 4 from each other. Using rule R7, we merge
cubes as: (1010, 0011) = (101–, –011) and (1100, 1111) = (11–0, 111–).

136 K. Datta et al.

Using rule R3, we can merge (101–, 111–) = (1–1–). We thus get the final
set of cubes as: {–011, 11–0, 1–1–}.

R8: Split two cubes at a distance of 3 into a set of three larger cubes. For
example, {101, 010} = {1–1, 11–, –10}.

The results of Theorems 1 and 2 can be utilized to extend the applicability of
the above rules, as shown in the example below.

Example 1 The cubes {101–10, 010–10} can be transformed into {1–1–10, 11–10,
–10–10} by using rule R10. Here, Z is ‘-10’. Similarly, the cubes {101–, 011–}
can be transformed into {1–1–, –11–} using rule R9. Here, Z is ‘1-’.

h

4 The Proposed Synthesis Approach

The proposed cube transformation and gate mapping approach is discussed in this
section. The steps used in the synthesis process are listed below:

1. Firstly, the input function specification is provided as a .pla file, which is
transformed into a set of ESOP cubes (in .esop format) using the Exorcism-4
tool [13].

2. Then, the proposed simulated annealing-based cube transformation tool is used
to modify the ESOP cubes into more desirable forms (with respect to quantum
cost) and generate another .esop file.

3. The final .esop cube list is mapped to reversible gate cascade consisting of posi-
tive- and negative-control generalized Toffoli gates using optimization concepts
as proposed in [7, 17, 20], along with some heuristics suggested in Sect. 4.2.

A block diagram of the synthesis flow is depicted in Fig. 2, which also shows an
optional last step of template-based optimization with both positive- and negative-
control gates to reduce the number of gates and also the quantum cost.

4.1 Cube Transformation Using Simulated Annealing

In this step, the cube list generated using Exorcism-4 is transformed into a more
desirable form by selective application of the rules presented in the previous
section. First, an approach where the rules are iteratively applied to a cube list as

Exorcism 4
.pla Cube

Transformation

.esop .esop Cube to
Reversible

Gate Mapping

.real Template Based
Optimization

.real

Fig. 2 The overall synthesis approach

An ESOP-Based Reversible Circuit Synthesis Flow Using Simulated Annealing 137

long as there is a reduction in quantum cost was tried out. However, results were
not so encouraging as the algorithm was often getting stuck in a local minimum.
For this reason, a simulated annealing-based approach has been tried out that
allows worse moves during the initial phases of the iterative process, while
exhibiting greedy behavior toward the later stages. The pseudo-code of the algo-
rithm is stated below.

Algorithm Simulated annealing-based cube reordering

The algorithm may accept worse moves at higher values of T, but becomes
more greedy as the iteration proceeds and T becomes less. The parameters have
been tuned through extensive experimentation. A fast cooling scheme is chosen
(i.e., T = T 9 0.1), since it is observed that slower cooling sequences do not give
any better results. The number of iterations in every cooling cycle is also selected
in a similar way.

• The function choose_rule (F) scans the cube list F, randomly selects a rule
r (vide Sect. 3) that can be applied to F, and returns the rule number r.

• The function trial_move (F, r) applies the rule r to the cube list F and returns
the modified cube list.

• The function compute_cost (E) estimates the quantum cost of a given cube list
E, by transforming every cube into a positive- or negative-control Toffoli gate.
In case the cube is shared among more than one outputs, a CNOT gate is used
to transfer the first output value to the other output(s).

138 K. Datta et al.

4.2 Cube to Reversible Gate Mapping

There exists various techniques in the literature for mapping ESOP cubes into
reversible gate netlists [7, 15, 20]. In the present work, we have used a combi-
nation of several techniques along with some heuristic gate mapping rules, with
the objective of obtaining a lower quantum cost. The ESOP cubes are grouped and
reordered as in [15], and then, each group of cubes is mapped directly to a
reversible gate cascade. For handling cubes shared by more than one outputs,
CNOT gates are used for forwarding the computed values to the shared outputs.

During the final mapping, the following heuristic optimization rules are used,
based on some bit patterns appearing among the cubes:

a. {11, 1-, -1} maps to a 3-input Toffoli gate with two negative controls, followed
by a NOT in the target position.

b. {00, 0-, -0} maps to a 3-input Toffoli gate with two positive controls, followed
by a NOT in the target position.

c. {11, 0-, -0} maps to a 3-input Toffoli gate with two negative controls, followed
by a NOT in the target position.

d. {00, 1-, -1} maps to a 3-input Toffoli gate with two positive controls, followed
by a NOT in the target position.

During the experimentation, it has been found that rule (a) above is mostly
responsible for reduction in quantum cost for most of the benchmarks.

Example 2 An illustrative example for mapping a set of ESOP cubes into a
reversible gate netlist is shown in Fig. 3. Here, the 4th, 5th, and 6th gate can be
mapped using the mapping rule presented in IV(B). Consider line b and c, here, the
heuristic optimization rule (a) can be applied and we get reduction in terms of both
gate count and quantum cost.

h

5 Experimental Results

The integrated synthesis tool has been implemented in C and run on an Intel dual-
core-based desktop with 2.8-GHz clock and 4-GB main memory. The tool
incorporates all the modules shown in Fig. 2 except the template matching
module. As benchmarks, we have used various functions from the LGSynth
package and Revlib [21].

In the experiment, the benchmarks in.pla format are first fed to the Exorcism-4
tool to generate the initial ESOP cube lists. Then, the proposed SA-based cube
transformation tool is run to generate a new set of ESOP cubes, which are then
reordered based on output sharing and finally mapped to reversible logic gates.
During the gate mapping process, the rule-based optimization as explained in
section IVB is also applied. Table 1 shows the results of synthesis. The first three

An ESOP-Based Reversible Circuit Synthesis Flow Using Simulated Annealing 139

01 _
a b c d f1 f2

_
0 _

01
1

_
_

0_

_
1

01
_

_
1

1 1
1 1
1 0

1 0
1 0

a

b

c

d

0

0

a

b

c

d

f1

f2

0

0

Quantum cost = 35 Quantum cost = 28

f1

f2

Fig. 3 Illustration of cube-to-gate mapping

Table 1 Synthesis results with benchmarks

Benchmark Proposed approach

Name PIs POs GC QC Time (in s)

5xp1 7 10 79 807 0

9symm1 9 1 52 3406 0

adr4 8 5 48 652 0

alu2 10 6 86 3679 0

alu3 10 8 83 1919 0

alu4 14 8 614 38635 7

apex2 39 3 1904 376757 217

apex5 117 88 664 33803 25

apla 10 12 98 1709 0

bw 5 28 442 790 0

clip 9 5 169 3218 0

cordic 23 2 2314 111955 32

cu 14 11 27 780 0

dc2 8 7 69 1099 0

dk17 10 11 36 1013 0

duke2 22 29 206 6165 1

e64 65 65 87 24345 1

f51 m 14 8 418 25119 5

frg2 143 139 1989 114239 271

misex1 8 7 63 352 0

misex3 14 14 1596 54132 10

rd84 8 4 81 1965 0

root 8 5 93 1583 0

spla 16 46 1008 45478 6

sym10 10 1 83 5990 1

table 3 14 14 995 32286 3

table 5 17 15 1003 28139 2

vg2 25 8 222 17830 2

140 K. Datta et al.

columns of the table specify the benchmark name, and the number of primary
inputs and outputs. The next three columns specify the gate count (GC), quantum
cost (QC), and the run time in seconds.

Table 2 compares the synthesis results with five recent methods [6, 15–17, 20].
It may be noted that the results of [17] that have been shown in the table are
without template matching, which has not been used by the other four methods,
and are expected to improve the quantum costs for all the methods. Also since all
the papers have not shown their results for the same set of benchmarks, some
entries in the table are shown as ‘-’ (result not available).

It can be seen from Table 2 that for 18 out of the 28 benchmarks reported, the
proposed approach gives the lowest quantum cost (highlighted and marked by

Table 2 Comparison with other works in terms of quantum cost

Benchmark Method 1
[6]

Method 2
[17]

Method 3
[20]

Method 4
[15]

Method 5
[16]

Proposed

5xp1 865 693 695 786 1349 807

9symm1 16487 4261 – 10943 5781 3406*

adr4 – 618 – – 770 652

alu2 4476 3953 – – 5215 3679*

alu3 – 2229 – – – 1919*

alu4 43850 34534 – 41127 48778 38635

apex2 – 595594 – – – 376757*

apex5 – 40835 36221 33830 – 33803*

apla – 2879 – 1683 – 1709

bw – 3106 1410 637 – 790

clip 4484 3059 – 3824 6616 3218

cordic – – – 187620 349522 111955*

cu – – – 781 1332 780*

dc2 – – – 1084 1956 1099

dk17 – – – 1014 1976 1013*

duke2 10456 – – – – 6165*

e64 – – 33591 – – 24345*

f51 m – – 28382 34244 25119*

frg2 – – 114976 112008 – 114239

misex1 466 – – 332 1017 352

misex3 67206 – – 49076 122557 54132

rd84 2062 – – – 2598 1965*

root – – – 1811 3486 1583*

spla 49419 – – – – 45478*

sym10 35227 – – – 9717 5990*

table 3 35807 – – – 86173 32286*

table 5 34254 – – – – 28139*

vg2 18417 – – – – 17830*

An ESOP-Based Reversible Circuit Synthesis Flow Using Simulated Annealing 141

asterisks) among all reported works. Another advantage of the proposed method is
that the synthesis time is very less, with the largest circuit (frg2) taking \5 min.
The following points can be noted from the comparison table.

• Out of the 10 benchmarks for which the proposed method does not give the
best results, 5 of them are small circuits with (PI + PO \ 20), and also the
differences in quantum cost are not so high. For 4 of the other benchmarks
(alu4, apla, Fig. 2, and misex3), the differences in quantum cost is\10 %. For
the benchmark bw, however, the difference is about 19 %. This is because for
this function, PI = 5 and PO = 28, and there are a large number of cubes
sharing various outputs for which Method 4 [15] is best suited.

• As compared to [6], the proposed method gives better results for all the 14
benchmarks compared with.

• As compared to [17], it may be noted that for most of the benchmarks where
(PI + PO \ 20), [17] gives better results compared to the proposed approach,
but for larger circuits (like apex2, apex4, apex5), our method gives far better
results. Overall, out of 11 benchmarks, our method provides better results for 7.

• Similar trend is observed for [20], where out of 5 benchmarks compared with,
they have got better results for one where (PI + PO \ 20), while for the larger
benchmarks the proposed method gives better results.

• As compared to [15], among the 16 compared benchmarks, our results are
better for 9 of them. But here for two benchmarks (9symm1 and cordic), we
have got significant reductions (69 and 40 %) as compared to their method.
This is due of the fact that for these two benchmarks, the number of outputs is 1
and 2, respectively, and so shared cubes are very less (or nonexistent).

• And finally, as compared to [16], the proposed method gives significantly better
results for all of the 17 benchmarks compared with.

It may be noted that the proposed method is more general as compared to
similar published works and considers optimization of ESOP cubelist as well as
that during gate netlist generation. As a future work, the power of the tool as
implemented can be enhanced by incorporating additional rules.

6 Conclusion

An approach to synthesis of reversible logic circuits has been reported in this
paper, which is based on ESOP realization of the function, and selective appli-
cation of rules for optimization. The approach is shown to give better quantum
costs compared to the best published results for many of the benchmarks used for
comparison. For some of the benchmarks, however, the results are found to be
worse since the rules used could not be applied to advantage on the list of cubes
generated by Exorcism-4, which is more tuned to minimizing the number of cubes
and not the quantum cost. As a future work, it is planned to implement an
indigenous scheme for generating the initial set of ESOP cubes targeting quantum

142 K. Datta et al.

cost as the metric to be minimized, and better cube clustering and gate mapping
techniques specifically targeting negative-control Toffoli gates. Also, template-
based optimizations for both positive- and negative-control Toffoli gates shall be
implemented to reduce the cost of implementation.

References

1. Barenco, A., Bennett, H.H., Cleve, R., DiVinchenzo, D.P., Margolus, N., Shor, P., Sleator, T.,
Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A (At.
Mol. Opt. Phy.) 52(5), 3457–3467 (1995)

2. Bennett, C.H.: Logical reversibility of computation. J. IBM Res. Dev. 17, 525–532 (1973)
3. Bèrut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz, E.:

Experimental verification of Landauer’s principle linking information and thermodynamics.
Nature 483(3), 187–189 (2012)

4. Datta, K., Rathi, G., Sengupta, I., Rahaman, H.: Synthesis of reversible circuits using
heuristic search method. In: Proceedings of 25th International Conference on VLSI Design,
pp. 328–333 (2012)

5. Datta, K., Shrivastav, V., Sengupta, I., Rahaman, H.: Reversible logic implementation of
AES algorithm. In: Proceedings of Design and Technology of Integrated Systems (DTIS),
March 2013

6. Drechsler, R., Finder, A., Wille, R.: Improving ESOP-based synthesis of reversible logic
using evolutionary algorithms. In: Proceedings of International Conference on Applications
of Evolutionary Computation (Part II), pp. 151–161 (2011)

7. Fazel, K., Thornton, MA., Rice, J.: ESOP-based Toffoli gate cascade generation. In:
Proceedings of IEEE Pacific Rim Conference on Communications, Computers and Signal
Processing, pp. 206–209 (2007)

8. Finder, A., Drechsler, R.: An evolutionary algorithms for optimization of pseudo Kronecker
expressions. In: Proceedings of International Symposium on Multi-Valued Logic,
pp. 150–155 (2010)

9. Grosse, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact multiple control Toffoli network
synthesis with SAT techniques. IEEE Trans. CAD Integr. Circuits Syst. 28(5), 703–715
(2009)

10. Gupta, P., Agrawal, A., Jha, N.K.: An algorithm for synthesis of reversible logic circuits.
IEEE Trans. CAD Integr. Circuits Syst. 25(11), 2317–2329 (2006)

11. Landauer, R.: Irreversibility and heat generation in computing process. J. IBM Res. Dev. 5,
183–191 (1961)

12. Maslov, D., Dueck, G.W.: Quantum circuit simplification and level compaction. IEEE Trans.
CAD Integr. Circuits Syst. 27(3), 436–444 (2008)

13. Mishchenko, A., Perkowski, M.: Fast heuristic minimization of exclusive-sums-of-products.
In: Proceedings of 6th Reed-Muller Workshop, pp. 242–250 (2001)

14. Moore, G.E.: Cramming more components onto integrated circuits. J. Electron. 38(8),
183–191 (1965)

15. Nayeem, N., Rice, J.E.: A shared-cube approach to ESOP-based synthesis of reversible logic.
Facta Universitatis of NiÊ, Elec Energ. 24(3), 385–402 (2011)

16. Rice, J., Fazel, K., Thornton, M., Kent, K.: Toffoli gate cascade generation using ESOP
minimization and QMDD-based swapping. In: Proceedings of 14th Reed-Muller Workshop,
pp. 63–72 (2009)

17. Rice, J.E., Nayeem, N.: Ordering techniques for ESOP-based Toffoli cascade generation. In:
Proceedings of IEEE Pacific Rim Conference on Communications, Computers and Signal
Processing (PACRIM), pp. 274–279 (2011)

An ESOP-Based Reversible Circuit Synthesis Flow Using Simulated Annealing 143

18. Rice, J.E., Suen, V.: Using autocorrelation coefficient-based cost functions in ESOP-based
Toffoli gate cascade generation. In: Proceedings of 23rd Canadian Conference on Electrical
and Computer Engineering (CCECE), pp. 1–6 (2010)

19. Sanaee, Y., Dueck, GW.: Generating Toffoli networks from ESOP expressions. In:
Proceedings of IEEE Pacific Rim Conference on Communications, Computers and Signal
Processing (PACRIM), pp. 715–719 (2009)

20. Sanaee, Y., Dueck, G.W.: ESOP-based Toffoli network generation with transformations. In:
Proceedings of 40th International Symposium on Multiple-Valued Logic, pp. 276–281 (2010)

21. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: Revkit: a toolkit for reversible circuit design.
In: Proceedings of Workshop on Reversible Computation. Revkit is available at http://www.
revkit.org (2010)

22. Wille,R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In:
Proceedings of Design Automation Conference, pp. 270–275 (2009)

23. Wille, R., Drechsler, R., Oswald, C., Garcia-Ortiz, A.: Automatic design of low-power
encoders using reversible circuit synthesis. In: Proceedings of Design Automation Test in
Europe (DATE), pp. 208–212 (2012)

144 K. Datta et al.

http://www.revkit.org
http://www.revkit.org

An Efficient Algorithm for Reducing Wire
Length in Three-Layer Channel Routing

Swagata Saha Sau and Rajat Kumar Pal

Abstract In VLSI physical design automation, channel routing problem (CRP)
for minimizing total wire length to interconnect the nets of different circuit blocks
is one of the most challenging requirements to enhance the performance of a chip
to be designed. Interconnection with minimum wire length occupies minimum
area and has minimum overall capacitance and resistance present in a circuit.
Reducing the total wire length for interconnection minimizes the cost of physical
wire segments required, signal propagation delays, electrical hazards, power
consumption, the chip environment temperature, the heat of the neighboring
interconnects or transistors, and the thermal conductivity of the surrounding
materials. Thus, it meets the needs of green computing and has a direct impact on
daily life and environment. Since the problem of computing minimum wire length
routing solutions for three-layer no-dogleg general channel instance is NP-hard, it
is interesting to develop heuristic algorithms that compute reduced total wire
length routing solutions within practical time limit. In this paper, we have
developed an efficient polynomial time graph-based heuristic algorithm that
minimizes the total wire length for most of the benchmark channel instances
available in the reserved three-layer no-dogleg Manhattan channel routing model.
The results we compute are highly encouraging in terms of efficiency and per-
formance of our algorithm in comparison to other existing algorithms for com-
puting the same.

Keywords Channel routing problem � Wire length minimization � Manhattan
routing � No-doglegging � Parametric difference

S.S. Sau (&)
Department of Computer Science, Sammilani Mahavidyalaya, Baghajatin, Kolkata,
West Bengal 700075, India
e-mail: swagatasahasau@gmail.com

R.K. Pal
Department of Computer Science and Engineering, University of Calcutta, Kolkata,
West Bengal 700009, India
e-mail: pal.rajatk@gmail.com

� Springer India 2015
R. Chaki et al. (eds.), Applied Computation and Security Systems, Advances in Intelligent
Systems and Computing 305, DOI 10.1007/978-81-322-1988-0_9

145

1 Introduction

The channel routing problem (CRP) for minimizing total wire length to inter-
connect the nets of different circuit blocks is one of the most challenging problems
in VLSI physical design automation. Reducing the total wire length for inter-
connection not only minimizes the total amount of area required, the cost of
physical wire segments needed, signal propagation delays, electrical hazards,
power consumption, the chip environment temperature, and the heat of the
neighboring interconnects or transistors, but also enhances the performance of the
chip to be designed and protect the environment [7]. Thus, it meets the require-
ments of green computing and has a direct impact on daily life and environment.

As the routing areas are fixed in gate arrays, hence minimizing total wire length
is one of the most challenging tasks in gate array design. Even in the case of
custom design and standard cell chip design, wire length minimization is one of
the usual objective functions as well as important from high-performance
requirement point of view, where routing space could be adjusted. CRP for wire
length minimization is an NP-hard problem [8, 13]. So it is interesting to develop a
heuristic algorithm that computes reduced total wire length routing solutions
within a reasonable time limit. There are several algorithms developed for
reducing area as well as total wire length for VLSI channel routing [1–3, 5–14]. In
this section, we shortly review them below.

Routing is a process of interconnecting the terminals (pins) on the periphery of
different cells or blocks using wire segments on different layers of interconnect.
Routing within a chip is obtained usually in two phases: in global routing phase
and in detailed routing phase. In the global routing phase, the router identifies the
empty regions through which a particular interconnection will be made, and in the
detailed routing phase, actual interconnections are realized within the rectangular
region of each channel and switchbox. A switchbox has fixed terminals on three or
four sides. Channel is a rectangular routing region with two open ends (left and
right), and the top and bottom sides of a channel have two rows of fixed terminals
(top terminals and bottom terminals). Terminals are aligned vertically at columns
and assigned by some integer numbers: zero for vacant terminals, not to be con-
nected. A set of terminals that need to be electrically connected together is called a
net and assigned by the same integer number. Channel is specified by channel
specification or net list. The channel length is the total number of pins in the top
(or bottom) row of a channel, and the height of the channel depends on the number
of tracks that are needed to route all the nets within the channel.

A net containing only two terminals is called two terminal net, and a net with
more than two terminals is called multi-terminal net. For floating terminals, the left
and/or the right end of the nets is not fixed. The set of nets that enter into the
channel from left (right) form the left (right) connection set and represented as
LCS (RCS) in the channel specification. The distance between the leftmost and
rightmost column positions of a net ni is known as interval Ii or span of net ni. For
reserved layer Manhattan routing model, only horizontal and vertical wire

146 S.S. Sau and R.K. Pal

segments are used for interconnection and placed in the respective layer(s). In case
of no-dogleg routing, the horizontal wire segment of a net is not split into two or
more parts and assigned to different tracks. Figure 1 shows the channel instance
RKPC2 with six nets [8].

Wire length minimization of the CRP means to obtain all the interconnections
obeying two constraints—horizontal constraints and vertical constraints of the
channel. A horizontal constraint exists between two nets if their horizontal seg-
ments overlap, when they are placed on the same track. Horizontal constraints of
the CRP can be represented by an undirected graph, known as horizontal constraint
graph, HCG (V, Eh), where V = {vi|vi represents interval Ii corresponding to net ni}
and Eh = {(vi, vj)|Ii and Ij overlap} [8–11]. A vertical constraint exists between two
nets if they have terminals in the same column, and vertical constraints determine
the order in which the intervals or nets should be assigned from top to bottom across
the channel height. Vertical constraints can be represented by a directed graph,
known as vertical constraint graph (VCG), VCG (V, Ev), where V = {vi|vi repre-
sents interval Ii corresponding to net ni} and Ev = {(vi, vj)|ni has vertical constraint
with nj in some column of the channel} [4, 9–12]. Although a vertical constraint
implies a horizontal constraint, the reverse is not necessarily true.

The local density of a column is the maximum number of nets passing through
the column, and density of a channel (dmax) is the maximum of all the local
densities. vmax is the number of vertices belonging to a longest path of an acyclic

0 2 5 2 5 0 3 1 0 1 0 6

I4

I6I5

I3

I1I2

2 3 0 2 3 5 1 4 6 6 4 0

Fig. 1 The channel instance RKPC2 with six nets

v6v4

v2v5

v3

v5

v3

v1

v1v2v6

v4
(a) (b)

Fig. 2 a The HCG of the channel instance in Fig. 1. b The VCG of the channel instance in Fig. 1

An Efficient Algorithm for Reducing Wire Length… 147

VCG. In Fig. 2a, b, the HCG and the VCG of the channel instance RKPC2 are
shown, respectively. The channel density dmax = 3 and vmax = 4 of the channel
instance RKPC2.

In this paper, we represent horizontal constraints using the complement of
HCG, known as the horizontal non-constraint graph (HNCG), HNCG ðV ;E0hÞ,
where V = {vi | vi represents interval Ii corresponding to net ni} and
E0h ¼ f vi; vj

� �
j vi; vj

� �
62 Ehg. An edge between a pair of vertices of an HNCG

represents that their corresponding intervals are non-overlapping. We consider
VCG and HNCG to compute a set of non-overlapping intervals for each track. We
provide transitive orientation to each edge (vi, vj) of the HNCG according to the
position of the corresponding intervals from left (right) to right (left) in a channel
and obtain an oriented horizontal non-constraint graph (OHNCG). Figure 3a, b
show HNCG and OHNCG of the channel instance RKPC2, respectively.

In three-layer routing, wires can be assigned to layers in two ways in the
reserved layer routing model. In the first model, a vertical layer is flanked by two
horizontal layers (i.e., HVH), and in the second model, a horizontal layer is flanked
by two vertical layers (i.e., VHV). In the case of VHV Manhattan routing model,
vertical constraints are ineffective as the top terminal and bottom terminal of
different nets belonging to a column can be connected through wires placing in
separate vertical layers. So in this case, we can apply Minimum_Clique_Cover_1
(MCC1) algorithm along with parametric difference of the nets incorporated in
horizontal constraint graph to compute a set of non-overlapping intervals for each
track [8]. Each of the routing solutions requires exactly dmax number of tracks, and
it can be computed in polynomial time.

In the HVH Manhattan routing model, two horizontal layers are separated by a
vertical layer, so at most two sets of non-overlapping intervals which are not
vertically constrained can be placed into the same track of different horizontal
layers. In HVH (no-dogleg) Manhattan routing model, the minimum number of
tracks required, i.e., the trivial lower bound (TLB) on the number of tracks
required is max dmax=2d e; vmaxð Þ [8]. The HVH routing model is preferred, when
vmax\ dmax=2d e. In this paper, we have developed an efficient high-performance

v4v4

v5v5

v3

v2v2

v3

v6v6

v1v1(a) (b)

Fig. 3 a The HNCG of the channel instance in Fig. 1. b The OHNCG of the channel instance in
Fig. 1

148 S.S. Sau and R.K. Pal

algorithm Minimum_Wire_Length_HVH for reducing the total (vertical) wire
length of a channel under the reserved three-layer Manhattan no-dogleg routing
model in VLSI physical design automation and that completes 100 % routing
interconnection for all the instances under consideration.

This paper is organized as follows. In Sect. 2, we formulate the problem and
develop the algorithm. In Sect. 3, we include experimental results and perfor-
mance of our algorithm. The paper is concluded with few remarks in Sect. 4.

2 Formulation of the Problem and the Proposed Algorithm

In this section, we state the nature of wire length minimization problem in VLSI
physical design automation. Reserved three-layer no-dogleg CRP for wire length
minimization is NP-hard problem [8, 13]. So development of polynomial time
heuristic algorithm with minimum wire length for interconnection is truly inter-
esting. Most of the algorithms have been developed for area minimization of a
channel mainly in different routing models [2, 8], and only a few have been con-
centrated on wire length minimization in the unreserved unrestricted channel
routing models [3, 5, 8, 10, 11]. The reducing of area usually reduces total (vertical)
wire length and vice versa, but there are examples of channels in VLSI circuits
where minimizing area does not minimize total wire length and vice versa [8].

Saha Sau et al. [11] have recently developed a purely graph-based polynomial
time heuristic algorithm Minimum_Wire_Length_of_CRP for computing minimum
wire length routing solutions in the reserved two-layer no-dogleg Manhattan
routing model for general instances of channel specification. This algorithm is
used for computing routing solutions using optimal or near optimal wire length for
most well-known benchmark channels. Reducing the total wire length of a channel
means reducing the total horizontal and total vertical wire length. As the terminal
positions are fixed in a channel, so reducing total wire length means reducing the
total vertical wire length only.

In this paper, we develop a graph-based algorithm Minimum_Wire_Length_HVH
to reduce the total (vertical) wire length of feasible channel routing solutions in the
reserved three-layer no-dogleg Manhattan routing model. If the total number of the
top terminals TTi of net ni is more than the total number of bottom terminals BTi of
the same net, then the assignment of net ni toward the top row reduces the total
vertical wire length and vice versa. Difference between TTi and BTi is called
parametric difference of net ni and it is denoted by pdi.

Our proposed algorithm Minimum_Wire_Length_HVH on three-layer no-dog-
leg HVH channel routing for minimizing total (vertical) wire length is based on the
algorithm Modified_MCC1, which has been developed in the two-layer no-dogleg
Manhattan routing model for doing the same [11]. The input to the algorithm is
channel specification or net list of a channel, and the output is a feasible three-
layer channel routing solution with minimum total wire length. In our proposed
algorithm, we assign weights hheight hti, parametric difference pdi, position pi of

An Efficient Algorithm for Reducing Wire Length… 149

the net ni from the left of the channel, interval spanii to the vertices in OHNCG in
the form of a 4-tuple and use the algorithm Maximum_Weighted_Clique (MWC) of
Golumbic for selecting a desired set of nets with non-overlapping spans or for
computing a clique in the comparability graph OHNCG [4].

To compute a clique, we maximize all the parameters of the 4-tuple except one
parameter, i.e., position pi of the net ni from the left of the channel. In each
iteration, we compute a set of non-overlapping intervals or clique Ct

1 of OHNCG
from the set of source vertices S1 of the current VCG using MWC of Golumbic and
assign its corresponding intervals to the tth track of the first horizontal layer. If Ct

1

[S1, then we compute another set of non-overlapping intervals or clique Ct
2 of

OHNCG from the remaining set S1-Ct
1 of source vertices of the current VCG

using MWC of Golumbic, assign its corresponding intervals to the tth track of the
second horizontal layer, and process for the next iteration, if a net is yet to assign.
If Ct

1 = S1, then no other intervals are left to assign to the tth track of the second
horizontal layer. In that case, the tth track of the second horizontal layer remains
vacant and then processes for the next iteration. The algorithm Mini-
mum_Wire_Length_of_CRP for computing reduced wire length channel routing
solutions in the reserved two-layer no-dogleg Manhattan model assigns the non-
overlapping sets of intervals to tracks using the sandwich method, once for the top
track, then for a bottom track, and so on, but we divide our way of implementation
into four sub-modules and execute each of them, and finally take the optimal one
among the routing solutions computed using all these sub-modules. Here, we state
the four sub-modules as follows.

Module 1: Track assignment from top to bottom and scan of a channel from left
to right: In each iteration, we scan a channel from the left end to the right end of
the channel and assign a set of non-overlapping intervals to the available topmost
track under certain constraints.

Module 2: Track assignment from bottom to top and scan of a channel from left
to right: In each iteration, we scan a channel from the left end to the right end of
the channel and assign a set of non-overlapping intervals to the available bot-
tommost track under certain constraints.

Module 3: Track assignment by top–bottom sandwiched and scan of a channel
from left to right: We scan a channel from the left end to the right end of the
channel, and in each odd iteration assign a set of non-overlapping intervals to the
available topmost track and in each even iteration assign a set of non-overlapping
intervals to the available bottommost track under certain constraints.

Module 4: Track assignment by bottom–top sandwiched and scan of a channel
from left to right: We scan a channel from the left end to the right end of the
channel, and in each odd iteration assign a set of non-overlapping intervals to the
available bottommost track and in each even iteration assign a set of non-over-
lapping intervals to the available topmost track under certain constraints.

As these four modules are independent to each other on computational aspect,
hence these modules may be computed in parallel. Channel specification of a
channel instance is the input of our proposed algorithm, and output is a feasible
three-layer channel routing solution with minimum total wire length. Let us

150 S.S. Sau and R.K. Pal

consider the channel instance RKPC2 and we discuss our proposed algorithm
considering the Module 1, i.e., top to bottom track assignment and left to right
scan of a channel in three-layer (HVH) no-dogleg routing model.

Let us consider an input channel specification as follows:

2 3 0 2 3 5 1 4 6 6 4 0
0 2 5 2 5 0 3 1 0 1 0 6

First, we construct a net_information_list containing all the nets scanning from
the left of the channel. Construct HNCG ðV ;E0hÞ and compute its transitively
oriented graph OHNCG (V, F) based on the natural transitive orientation from left
to right of the channel. Construct VCG (V, Ev) and compute the maximum height
of each vertex from sink vertices and represent it as the height hti of vertex vi for
net ni. Combine OHNCG (with orientation) and VCG and obtain a hybrid graph
structure where vertices represent different intervals (or nets) of the given channel
instance, where edges of OHNCG and VCG are differentiated by some means.
Assign natural numbers starting from 1 through n to the vertices of the hybrid
graph structure according to their starting column position from left to right of the
channel. Figure 4 shows the hybrid graph structure combining the graphs in
Figs. 2b and 3b of the channel instance RKPC2. We assign the 4-tuple weight to
each vertex vi of this graph as hHeight hti, parametric difference pdi, position pi of
the net ni from the left of the channel, and interval spanii in the hybrid graph
structure.

Now the net_information_list = {2, 3, 5, 1, 4, 6}. In subsequent iterations, we
compute the following for the channel instance RKPC2 shown in Fig. 1.

Iteration 1:
S = Set of source vertices of hybrid graph structure according to the current

VCG = {4, 6}.
Here, ht4 ¼ ht6 ¼ 4, but pd4 [pd6, hence net 4 is selected first. As net 4 and

net 6 are overlapping and there is no other net(s) in S, hence clique C1
1 ¼ 4f g.

Assign net 4 to the first track of the first horizontal layer and find another clique
from S�C1

1.

v2 1
v3 2

v5 3

v1 4

v4 5 v6 6

Fig. 4 The hybrid graph structure combining the graphs in Figs. 2b and 3b of the channel
instance RKPC2 shown in Fig. 1

An Efficient Algorithm for Reducing Wire Length… 151

Clearly, C2
1 ¼ 6f g.

So, we assign net 6 to the first track of the second horizontal layer. Delete
vertices 4 and 6 and all its connecting edges from the hybrid graph structure.
Delete 4 and 6 from net_information_list and go for the next iteration.

Iteration 2:
Now the net_information_list = {2, 3, 5, 1}.
S = Set of source vertices of hybrid graph structure according to the current

VCG = {1}. Similarly, we can compute clique C1
2 as {1}.

We assign net 1 to the second track of the first horizontal layer and as
S�C1

2 ¼ NULL, hence nothing to be assigned to the second track of the second
horizontal layer.

We delete vertex 1 and all its connecting edges from the hybrid graph structure
and also delete 1 from net_information_list and go for the next iteration.

Iteration 3:
At the beginning of this iteration, net_information_list = {2, 3, 5}.
S = Set of source vertices of hybrid graph structure according to the current

VCG = {3}.
We compute clique C1

3 as {3} for the third track of the first horizontal layer.
Assign net 3 to the third track of the first horizontal layer and as

S�C1
3 ¼ NULL, hence nothing to be assigned to the third track of the second

horizontal layer.
We delete vertex 3 and all its connecting edges from the hybrid graph structure

and delete 3 from net_information_list and go for next iteration.
Iteration 4:
Now, net_information_list = {2, 5}.
S = Set of source vertices of hybrid graph structure according to the current

VCG = {2, 5}.
Here, ht2 ¼ ht5 ¼ 1, but pd2 [pd5, hence net 2 is selected first. Now as the

nets 2 and 5 overlap in the channel, hence clique C1
4 ¼ 2f g.

We assign net 2 to the fourth track of the first horizontal layer and find another
clique from S�C1

4.
Clearly, the clique C2

4 is {5} as it also belongs to S.
So, we assign net 5 to the fourth track of the second horizontal layer. Then, we

delete vertices 2 and 5 and all their connecting edges from the hybrid graph
structure. Then, also we delete 2 and 5 from net_information_list.

As net_information_list is NULL, hence the algorithm terminates. Figure 5
shows the reduced wire length routing solution of the channel instance RKPC2
using the algorithm developed in this paper. This routing solution requires four
tracks and total vertical wire length of 40 units.

Now, we analyze the time complexity of the algorithm Minimum_Wire_Length
_HVH devised in this paper. The algorithm has an initial part of computation as well
as a part of iterative computation. The time complexity to construct the HNCG is
O(n + e), and the time complexity to construct the VCG is O(n) time, where n is
the number of nets in the given channel and e is the size of HNCG. The time

152 S.S. Sau and R.K. Pal

complexity of each iteration is also O(n + e). If the number of iterations required to
route a channel is t, then the time complexity of the iterative part of the algorithm is
O(t(n + e)), where n is the number of nets in the given channel, e is the size of
HNCG, and t is the number of tracks required to route the channel. Hence, the
overall time complexity of our algorithm is O(t(n + e)), where the variables con-
cerned are as stated above. The algorithm Minimum_Wire_Length_HVH correctly
computes a routing solution in the reserved three-layer no-dogleg CRP for a general
channel instance (where the VCG does not contain any cyclic vertical constraint).
We state this result in the form of the following theorem.

Theorem 1 Algorithm Minimum_Wire_Length_HVH successfully computes a
three-layer HVH routing solution in the reserved no-dogleg Manhattan channel
routing model for a general channel specification without any cyclic vertical
constraint in the VCG and takes time O(t(n + e)), where n is the number of nets
belonging to the channel, e is the size of the HNCG, and t is the number of
iterations or the number of tracks required to route the given channel.

3 Experimental Results and Performance of Our
Algorithm

In this section, we show some experimental results that are computed using the
algorithm Minimum_Wire_Length_HVH developed in Sect. 2. Results are shown
in Table 1 for the benchmark instances available in [8, 14]. Table 1 includes
different values relating a number of benchmark channel instances as A associating
other parameters like B: Channel density (dmax), C: Length of the longest path in
VCG (vmax), D: Trivial lower bound on the number of tracks in the HVH model, E:
Number of tracks computed using the developed algorithm for Module 1, F: Total
(vertical) wire length computed using the algorithm for Module 1, G: Number of

2 3 0 2

0 2 5 2 5 0 3 1 0 1 0 6

3 5 1 4 6 6 4 0

Fig. 5 The reduced wire length routing solution of the channel instance RKPC2 computed using
algorithm developed in this paper, where total number of tracks = 4 and the total vertical wire
length = 40 units

An Efficient Algorithm for Reducing Wire Length… 153

tracks computed using the algorithm for Module 2, H: Total (vertical) wire length
computed using the algorithm for Module 2, I: Number of tracks computed using
the algorithm for Module 3, J: Total (vertical) wire length computed using the
algorithm for Module 3, K: Number of tracks computed using the algorithm for
Module 4, L: Total (vertical) wire length computed using the algorithm for Module
4, M: Optimal number of tracks computed using the algorithm, and N: Optimal
total (vertical) wire length computed using the algorithm.

The channel routing solutions using our algorithm Minimum_Wire_Length_HVH
in the reserved no-dogleg three-layer HVH channel routing model drastically reduce
the total (vertical) wire length in comparison to the three-layer HVH routing solu-
tions computed using algorithm TAH for wire length minimization in the same
model [8]. Results are shown in Table 2 for several benchmark instances available in
[8, 14]. In Table 2, A: Channel instance, B: Channel density (dmax), C: Length of the
longest path in VCG (vmax), D: Number of tracks required computed using algorithm
TAH in the supposed routing model for wire length minimization in [8], E: Total
(vertical) wire length computed using the algorithm TAH in the said routing model
for wire length minimization in [8], F: Number of tracks computed using our
algorithm Minimum_Wire_Length_HVH in the assumed routing model, and G:

Table 1 Experimental results computed for different channel instances available in literature
[8, 14]

A B C D E F G H I J K L M N

RKPC1 3 3 3 3 34 3 34 3 34 3 34 3 34

RKPC2 3 4 4 4 40 4 40 4 40 4 40 4 40

RKPC3 4 3 3 3 27 3 26 3 26 3 26 3 26

RKPC4 4 4 4 4 29 4 34 4 26 4 26 4 26

RKPC5 4 4 4 4 37 4 34 4 27 4 31 4 27

RKPC6 4 5 5 5 90 5 89 5 85 5 85 5 85

RKPC7 4 3 3 5 59 5 57 5 57 5 54 5 54

RKPC8 5 5 5 5 78 5 83 5 79 5 79 5 78

RKPC9 6 5 5 6 173 6 169 6 174 6 164 6 164

Ex. 1 12 7 7 7 164 7 168 7 154 7 154 7 154

Ex. 2 15 4 8 8 223 9 306 9 254 9 264 8 223

Ex. 3(a) 15 4 8 10 349 9 377 9 315 9 310 9 310

where A Channel instance, B channel density (dmax), C length of the longest path in VCG (vmax),
D Trivial lower bound in HVH, E number of tracks computed using the algorithm for module 1,
F total (vertical) wire length computed using the algorithm for module 1, G number of tracks
computed using the algorithm for module 2, H total (vertical) wire length computed using the
algorithm for module 2, I number of tracks computed using the algorithm for module 3, J total
(vertical) wire length computed using the algorithm for module 3, K number of tracks computed
using the algorithm for module 4, L total (vertical) wire length computed using the algorithm for
module 4, M optimal number of tracks computed using the devised algorithm, and N optimal total
(vertical) wire length computed using the algorithm

154 S.S. Sau and R.K. Pal

Total (vertical) wire length computed using our algorithm Minimum_Wire_
Length_HVH in the implicit channel routing model. Note that the devised algorithm
grippingly reduces the total (vertical) wire length for all the instances we consider
and include in Table 2.

4 Conclusion

In this paper, we have developed reserved three-layer no-dogleg graph-based
heuristic algorithm for computing reduced wire length VLSI channel routing
solutions. Three-layer CRP for minimizing wire length is an NP-hard problem [8,
13]. Here, we have developed a polynomial time heuristic algorithm for reducing
total (vertical) wire length in the reserved three-layer HVH no-dogleg Manhattan
channel routing model. The time complexity of the algorithm developed herein is
O(t(n + e)), where t is the number of tracks to route the channel, n is the number
of nets in the given channel instance, and e is the size of the HNCG. The per-
formance of our algorithm is highly encouraging in terms of the results computed
and included in the tables. Here, we like to include a few probable extensions of
our work: (1) extension in computing reduced wire length dogleg routing solu-
tions, (2) extension in computing reduced wire length as well as reduced area
dogleg and no-dogleg routing solutions, and (3) extension in computing reduced
wire length routing solutions in the reserved multilayer channel routing models.

References

1. Alpert, C.J., Mehta, D.P., Sapatnekar, S.S.: Handbook of Algorithms for Physical Design
Automation. CRC Press, New York (2009)

2. Cong, J., Wong, D.F., Liu, C.L.: A new approach to the three-layer channel routing problem.
In: Proceedings of IEEE ICCAD, pp. 378–381 (1987)

Table 2 Experimental results computed for different channel instances available in literature
[8, 14]

A B C D E F G

Ex. 1 12 7 7 156 7 154

Ex. 2 15 4 8 275 8 223

Ex. 3(a) 15 4 8 338 9 310

Ex. 3(b) 17 9 10 474 10 446

Ex. 3(c) 18 6 10 557 10 520

Ex. 4(b) 17 13 13 1,017 15 909

Ex. 5 20 3 10 728 10 557

DDE 19 23 23 3,041 14 2,988

An Efficient Algorithm for Reducing Wire Length… 155

3. Formann, M., Wagner, D., Wagner, F.: Routing through a dense channel with minimum total
wire length. In: Proceedings of 2nd Annual ACM-SIAM Symposium, pp. 475–482 (1991)

4. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York
(1980)

5. Hashimoto, A., Stevens, J.: Wire routing by optimizing channel assignment within large
apertures. In: Proceedings of 8th ACM Design Automation Workshop, pp. 155–169 (1971)

6. Hong, C., Kim, Y.: The efficient hybrid approach to channel routing problem. Int. J. Adv. Sci.
Technol. 42, 61–68 (2012)

7. Lienig, J.: Introduction to electromigration-aware physical design (invited talk). In:
Proceedings of ISPD’06, pp. 39–46 (2006)

8. Pal, R.K.: Multi-layer Channel Routing: Complexity and Algorithms, Narosa Publishing
House, New Delhi (Also published from CRC Press, Boca Raton, USA and Alpha Science
International Ltd., UK) (2000)

9. Pal, R.K., Datta, A.K., Pal, S.P., Das, M.M., Pal, A.: A General Graph Theoretic Framework
for Multi-layer Channel Routing. In: Proceedings of 8th VSI/IEEE International Conference
on VLSI Design, pp. 202–207 (1995)

10. Pal, R.K., Datta, A.K., Pal, S.P., Pal, A.: Resolving Horizontal Constraints and Minimizing
Net Wire Length for Multi-layer Channel Routing. In: Proceedings of IEEE Region 10’s 8th
Annual International Conference on Computer, Communication, Control, and Engineering
(TENCON 1993), vol. 1, pp. 569–573 (1993)

11. Sau, S.S., Pal, A., Mandal, T.N., Datta, A.K., Pal, R.K., Chaudhuri, A.: A Graph based
Algorithm to Minimize Total Wire Length in VLSI Channel Routing. In: Proceedings of
International 2011 IEEE Conference on Computer Science and Automation Engineering
(CSAE), vol. 3, pp. 61–65 (2011)

12. Somogyi, K.A., Recski, A.: On the complexity of the channel routing problem in the dogleg-
free multilayer manhattan model, ACTA Polytechnica Hungarica, vol. 1, no. 2 (2004)

13. Szymanski, T.G.: Dogleg channel routing is NP-complete. IEEE Trans. CAD Integr. Circ.
Syst. 4, 31–41 (1985)

14. Yoshimura, T., Kuh, E.S.: Efficient algorithms for channel routing, IEEE Trans. CAD Integr.
Circ. Syst. CAD-1, 25–35 (1982)

156 S.S. Sau and R.K. Pal

A New Move Toward Parallel Assay
Operations in a Restricted Sized Chip
in Digital Microfluidics

Debasis Dhal, Arpan Chakrabarty, Piyali Datta
and Rajat Kumar Pal

Abstract Digital microfluidic biochip (DMFB) is modernizing many areas of
Microelectronics, Biochemistry, and Biomedical sciences. As a substitute for
laboratory experiments, it is also widely known as ‘lab-on-a-chip’ (LOC). Mini-
mization in pin count and avoiding cross-contamination are some of the important
design issues for realistic relevance. These days, due to urgent situation and cost
efficacy, more than one assay operations are essential to be carried out at the same
time. So, parallelism is inevitable in DMFB. Having an area of a given chip as a
constraint, how efficiently we can use a limited sized chip and how much paral-
lelism can be incorporated are the objectives of this paper. The paper presents a
design automation flow that enhances parallelism by adopting Connect-5 structure
of pin configuration and considering cross-contamination problem as well. The
algorithm developed in this paper assumes array-based partitioning of modules as
pin-constrained design technique, where a constant number of pins have been used
for desired scheduling of reagent and sample droplets. To avoid cross-contami-
nation and at the same time to minimize the delay required for washing, wash
droplet scheduling and proper placement of modules to minimize wash operations
are also taken care of.

D. Dhal (&)
Dum Dum Subhasnagar High School (H.S.), 43, Sarat Bose Road,
Kolkata 700 065, West Bengal, India
e-mail: todevcse@rediffmail.com

A. Chakrabarty � P. Datta � R.K. Pal
Department of Computer Science and Engineering, University of Calcutta,
92, A.P.C. Road, Kolkata 700 009, West Bengal, India
e-mail: arpan250506@gmail.com

P. Datta
e-mail: piyalidatta150888@gmail.com

R.K. Pal
e-mail: pal.rajatk@gmail.com

� Springer India 2015
R. Chaki et al. (eds.), Applied Computation and Security Systems, Advances in Intelligent
Systems and Computing 305, DOI 10.1007/978-81-322-1988-0_10

157

Keywords Lab-on-a-chip � Cross-contamination � Design automation � Sample �
Reagent � Wash droplet � Pin-constrained design � Algorithm � Parallelism

1 Introduction

In recent years, there are massive revolutions in terms of performance and
efficiency while using biochips to detect the status of samples. It is the most
advanced device nowadays in the micro-level for diagnosing (analyzing, testing,
and detecting) some specimen such as DNA, blood, saliva, stool, cough, urine, and
many others that we like to examine in our everyday life. There are some chal-
lenging scopes to betterment the performance of this biochip. This device is also
known as digital microfluidic biochip (DMFB) [1–5]. It can perform all the tasks
of droplet creation (dispense of droplet), transportation (routing of droplet), mixing
(amalgamation of sample and reagent droplets), and sensing (detection of
parameters present in a sample) that are much more cost-effective and time effi-
cient in comparison with that usually done in a pathological laboratory.

Droplet-based digital microfluidics are technologies that provide fluid-handling
capability on a chip. It leads to the automation of laboratory procedures; that is
why it is known as ‘lab-on-a-chip’ (LOC). In biochemistry and biomedical sci-
ences, microfluidic biochip has of much importance that is realized at the level of
microelectronic arrays of electrodes (or cells). These devices operate on microliter
or nanoliter volume of biological samples, which are routed throughout the chip
using electrowetting in a ‘digital’ manner under clock control on a 2D array of
electrodes [6, 7]. These electrodes in a DMFB combine Electronics with Biology
and integrate various bioassay operations from sample preparation to detection.
The foremost objective is to minimize the time required to get the result(s) of the
assay using micro- and nano-level samples and reagents, where the perfectness of
the results we obtain is greatly increased.

For a biochip, the efficiency is determined by the following criteria:

• Increasing portability: the device is to be portable with low energy consumption,
• Higher sample throughput: number of samples/assays per unit time,
• Lower the cost of instrument: development, maintenance, and testing costs of

the instrument,
• Minimizing the cost of disposables: defining the costs per assay (together with

reagent consumption),
• Reducing the number of parameters per sample: number of different param-

eters to be analyzed per sample, i.e., number of detections required,
• Low sample and reagent consumption: amount of sample and/or reagents

required per assay,
• Variety of unit operations performed: the variety of laboratory operations that

can be realized such as splitting, mixing, detection, and transportation,

158 D. Dhal et al.

• Programmability or scope of reconfiguration: the flexibility to assay planning
through software [3].

Portability, low sample and reagent consumption, and programmability are
inherent qualities of a DMFB. So, we can improve some factors that are mentioned
below through our work to meet the above criteria; the most important of which
are to efficiently use the chips, incorporating parallelism, and to avoid cross-
contamination.

Figure 1a shows a typical n 9 n 2D array of microfluidic biochip holding two
droplets and one detection site. Figure 1b shows a side view of the biochip. It
represents a typical detection site as well, where a mixed droplet can be detected
optically and generates some desired results. When the LED glows and light
passes through the electrode and also through the mixed droplet, the photoelectric
diode measures the intensity of this light and draws some voltage against this
intensity [8]. This voltage of the photoelectric diode helps to predict a set of
desired outcome of the parameters present in the sample we like to test.

The concept of DMFB occurred only in two decades back. The key sense of
DMFB is that a unit volume of some fluid under test is constant. It depends on the
geometry of the system, an array that consisting of cells or electrodes of a
matching size (to the droplet). This system is based on volume flow rate and again
the volume flow rate is based on the number of droplets transported for performing
some assay. This is how a droplet constitutes the fluid volume. The volume of
these droplets may be several microliters.

To acquire high throughput, multiple bioassay operations are supposed to be
performed concurrently. At the same time, we have to avoid droplet interference as
well as contamination problems at the cost of a minimum number of pins, that is,
the provision for availability of a minimum number of distinct input voltages.

To reduce the total time and to acquire accurate results in a reasonable amount
of time, often the task(s) is (are) required to be performed in parallel. Hence,
multiple operations often can be performed in the form of pipelining, if all the

(a)
Droplets

Electrowetting electrode

Electrical pad

Detection site Photodiode

Control electrodes

(b)

Top plate

Bottom plate

Fluid layerDroplet

Glass substrate

Glass substrate

Insulation

LED

Ground electrode

Fig. 1 a Top view of a microfluidic array with two droplets and a detection site. b A side view of
digital microfluidic platform (of a cell) with a conductive glass plate present in a detection site

A New Move Toward Parallel Assay Operations… 159

constraints and requirements are maintained up to a desired level of satisfaction.
Mixing between proper reagent and sample is the main operation, which takes
maximum time [5, 9] with respect to transportation and detection of droplets. So,
we need to adopt parallel distribution of reagent and/or sample to proper region on
a chip such that mixing can be performed in parallel. In our course of design, we
like to formulate a method that ensures performance as well as efficiency of the
detection process in a reasonable amount of time in parallel.

2 Preliminaries and Inherent Constraints

2.1 Preliminaries

In this section, we briefly define some of the basic terms associated to the problem
of DMFB. We know that in such a chip, droplets are disposed from the outside of
the array. So, there are several sources of droplets, either for sample, or for
reagent, or for washing the chip.

A routing path is the passageway that a droplet uses for its movement following
adjacent cells of an array through a synchronized activation and deactivation of the
electrodes. This path may route from a source to a mixer, then from a mixer to a
detection site, and then from there to a sink.

A mixer is a module in an array where the most important task of mixing
happens. Here, different sample(s) and reagent(s) come from their respective
sources and mix for detection. This mixing operation takes a maximum amount of
time needed for an assay. A mixer can also be used for splitting of a droplet or
dilute a sample droplet. A typical mixer takes 1,000–2,000 clock cycles.

Detection site is a small module usually formed by a single cell in the array that
helps to detect the parameters present in a sample to be detected. Generally, it is
done on mixed droplets, but it may often be required to detect a sample or reagent
before mixing as well. As optical detection is done in such a site, the electrodes
used in that cell are transparent and light of an LED can pass through it, and a
photodiode placed on the top can measure the intensity of the light that can detect
anomalies, if any in the sample. Usually, the number of detection sites is not many
(as it is a costly module) and their locations are also tentatively fixed.

An assay is a whole operation that includes creation of droplets, their routing,
mixing, and detection (of a sample’s state). We usually deploy an array of elec-
trodes that are activated and deactivated in a preferred synchronized fashion, and
all subsequent steps of an assay are tracked to meet the objective(s) affirmed by the
assay.

160 D. Dhal et al.

2.2 Constraints in Performing Bioassay Operations

A bioassay operation involves several tasks such as routing of droplets, mixing of
droplets, detecting some parameters present in a sample, and many others. Naturally,
some problem-related constraints are there; some of which are fluidic constraint,
electrode constraint, time constraint, and area constraint, as briefly discussed below.

Fluidic constraint: During droplet routing, in static condition, at least one cell is
supposed to be kept in between two electrodes containing two droplets to prevent
unintended mixing. During movement of droplets following a particular direction,
we may observe that at least a gap to two electrodes is must to avoid unwanted
mixing. Hence, static and dynamic fluidic constraints [10, 11] are introduced, as
these are necessary for a pair of droplets for their minimum separation on a
bioassay.

Electrode constraint: In case of pin-constrained design, more than one elec-
trodes are controlled by a single pin. This may introduce unwanted effect of
voltage on some electrode, and as a result, this electrode may activate a droplet
staying in an adjacent electrode inadvertently. Hence, the droplets may not move
following a given schedule. This imposes several constraints during routing. If we
can make proper voltage assignment over the pins, truthful movement of droplets
can be guaranteed.

Timing constraint: Timing constraint in droplet routing is given by an upper
bound on droplet transportation time. It is defined to have the proper synchroni-
zation among all the bioassay operations held in different modules. All the oper-
ations are pre-scheduled, and the result should be out within some specified time
limit. So, there is an upper bound on time for each individual operation, which is
referred to as the timing constraint.

Area constraint: We want to perform all the bioassays in a minimum chip area
in view of all the above-mentioned constraints. All kinds of assignments include
droplet transportation from the source of droplet to the mixing region and also to
the detection site. A mixing region is supposed to be located in a proper position
for utilization of total array area. So, a design must support how efficiently a chip
of some fixed area can be utilized. Though we are supposed to satisfy all the
constraints in isolation, maintaining all the constraints for some bioassay may
introduce the problem of cross-contamination.

Cross-contamination problem: Cross-contamination occurs when the residue of
one droplet transfers to another droplet with undesirable consequences, such as
misleading assay outcomes, that is, incorrect diagnosis. The problem of cross-
contamination may also occur when a common path is shared by two distinct
droplets by fulfilling their timing constraint.

Sequencing graph: The vertices represent the assay operations (dispensing,
mixing, detection, etc.), and the edges represent their mutual dependencies. This
method allows the user to describe bioassay at a high level of abstraction, and it
automatically maps behavioral description to the underlying microfluidic array.

A New Move Toward Parallel Assay Operations… 161

2.3 Various Fundamental Operations on DMFB

The droplet formation, that is, initial metering, is the elementary unit operation of
the platform. In this procedure, a proper sized droplet is created considering the
size of the chip, which is predefined. Droplets can be produced from an on-chip
reservoir in three steps [5]. First, a liquid column is extruded from the reservoir by
activating a series of adjacent electrodes. Second, once the column overlaps the
electrode on which the droplet is to be formed, all the remaining electrodes are
turned off, forming a neck in the column. The reservoir electrode is then activated
to pull back the liquid and breaking the neck, leaving a droplet on the electrode
predefined. Using this droplet metering structure, droplets down to 20 nl volume
can be generated where a deviation may arise, but it is a standard deviation of less
than 2 % [5].

A similar technology can be used for the splitting of a droplet into two or more
smaller droplets. This may be performed by activating two adjacent electrodes and
simultaneously deactivating the electrode holding that droplet before splitting.
Since the droplet volume is of great importance for the accuracy of all assays,
additional volume control mechanisms are introduced. Two such mechanisms on-
chip capacitance volume control and numerical methods for the design of elec-
trowetting-on-dielectric (EWOD) structures have been proposed [5]. Once the
droplets are formed, their actuation is accomplished by the EWOD effect as
described above.

The merging of droplets can be achieved easily with the use of three consec-
utive electrodes. Two droplets are individually moved to electrodes separated from
each other by a third one. Deactivating these two electrodes and activating the
third separation electrode merging are performed successfully.

Mixing is the most important basic operation in DMFB as proper or improper
mixing of samples and reagents may lead to successful or unsuccessful operations.
Improper mixing may cause deviation from the result, which may lead to dis-
carding of the chip. The most basic type of mixing within droplets on the EWOD
platform is an oscillation, forwards and backwards, between at least two elec-
trodes. Splitting and merging for several times is a type of very efficient mixing
that requires three successive electrodes. Another mixing scheme is the repetitive
movement of the droplet on a rectangular path. The shortest mixing time for two
1.3-ll droplets in linear oscillation on 4 electrodes is about 4.6 s [5].

2.4 Strengths and Limitations of DMFB

The strengths of the platform are the tiny liquid volumes in the nanoliter range that
can be handled with high precision, and the scope to program the droplet move-
ment. This reduces sample and reagent consumption and allows a maximum of
flexibility for the implementation of different assay protocols on a chip.

162 D. Dhal et al.

The simple setup without any moving parts can be fabricated using standard
lithographic processes. The program-based control of small droplets has its
enormous potential, since it allows varying the operations on the same chip.
However, although the sample and reagent consumption is low, portable systems,
for example, point-of-care applications have not yet been implemented due to the
bulky electronic instrumentation required to operate the platform.

Another drawback is the influence of the liquid properties on the droplet
transport behavior, that is, different materials show different wetting abilities. This
leads to differences in volume or movement speed. Also the long-term stability of
the hydrophobic surface coatings is another problem that introduces the contam-
ination risk, since every droplet can contaminate the surface and thus lead to false
results. Another issue is the possible electrolysis caused by the electric fields
themselves.

In case of handling the fluid, some problems appear. For example, nucleic acids
are critical molecules because of their negative charge and tendency to adhere to
charged surfaces such as metal oxides. Similar problems occur with proteins or
peptides that exist in a variety of electrical charges, molecular sizes, and physical
properties. In this case, adsorption is possible onto the surfaces. Again their cat-
alytic (enzymatic) activities can be influenced by the substrate. A general problem
due to the interaction of biomolecules and microfluidic substrates is the blocking
of substrates with another suitable biomolecule that is added in excess.

Instead of the disadvantages, it is highly acceptable and appreciable as the
EWOD technique bears great potential to manipulate many single droplets in
parallel. Thus, it is of immense importance for today’s fast life styles.

3 A Brief Literature Survey on DMFB

At the beginning of this century, the digital microfluidics is being tried to have
massive parallelism in bioassay analysis. This parallelism consequently requires
concurrent bioassay operations, that is, concurrent movement of multiple droplets
throughout a path and/or mixing of two or more reagents and samples in different
regions of a bioassay in parallel. Droplets are moved by proper sequence of
activation and deactivation of electrodes that are controlled by some external
control pins. So, the pins must be so chosen that we can achieve pipelining in
droplet routing [12]. In this context, a true parallelism has been introduced in the
present article. Now, we survey in very brief how droplets are moved to their
destination and tasks are performed accordingly.

A New Move Toward Parallel Assay Operations… 163

3.1 Direct Addressing Pin Configuration

To move a droplet, activation and deactivation of appropriate electrodes are
required [3, 4, 13, 14]. So, every electrode must be controlled by some control pin
to provide the necessary actuation voltage. The easiest procedure to assign pins to
electrodes is to allot individual control pins. So, the number of pins required for an
n 9 n array is n2; a model array is shown in Fig. 2a. A method of partitioning
based on array may greatly reduce pin number as stated below.

3.2 Array-Based Partitioning

An array-based partitioning is simple and efficient in respect of the number of
distinct voltages we are supposed to provide as input [3, 4, 15–17]. The chip is
divided into some partitions depending on the activities performed there, and an
optimum number of pins are used to assign the electrodes of the partition. These
partitions can be repeated anywhere on a chip to reduce the total number of control
pins in the chip. If array-based partitioning is done using Connect-5 algorithm
[4, 13], then we may find that here any pin has four distinct immediate adjacent
neighbors; see in Fig. 2b. Thus, we obtain an array of any size by assigning only
five pins as shown in Fig. 2c. Though only five pins are sufficient to assign all the
electrodes on an array of any size, only a single droplet can safely be allowed to
move in such a huge area.

Through the use of Connect-5 algorithm, electrodes in array of any size can be
assigned to pins. Now, if there is more than one droplets to move to different
directions, electrode interference may occur. By electrode interference, we mean
here that some of the electrodes in the array become activated due to the sharing of
a set of five pins by all the electrodes and it results in undesired movement, mixing,
splitting of the droplets, or resulting in stuck droplet and thus the performance of
the whole chip degrades. In Fig. 3a, there are two droplets each on pin 1 and tends
to move to pin 3. As a result, pin 3 is activated simultaneously deactivating pin 1
and both the droplets move to their destined position safely as shown in Fig. 3b.

1 2 3 4 5

6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

1 2 3 4 5

 3 4 5 1 2
5 1 2 3 4
2 3 4 5 1
4 5 1 2 3

5

 1 2 3

4

(a) (b) (c)

Fig. 2 a 25 pins are needed to cover all electrodes of a 5 9 5 array by direct addressing method.
b Pin number 2 is a droplet holder that has four direct neighbor pins 1, 3, 4, and 5. c A 5 9 5
array is covered by five pins using Connect-5 algorithm

164 D. Dhal et al.

On the other hand, in Fig. 3c, the droplets are on pin 3 and D1 is to move rightward
on pin 4, whereas D2 is to move upward on pin 1. So, pins 1 and 4 are activated
simultaneously deactivating pin 3. It results in stuck droplets at the junction of pins
1 and 4, as both of them are activated at a time as shown in Fig. 3d. This type of
unwanted circumstance is known as electrode interference. As a remedy of this
problem, the concept of cross-referencing is introduced.

3.3 Cross-referencing

As a remedy to the problem of using n2 number of distinct pins for an n 9 n array
of electrodes, array-based partitioning method is highly efficient [3, 4, 18]. But,
electrode constraint is again a hazard to this newly introduced method. Hence, a
pin-constrained design technique is introduced namely, cross-referencing [4, 15],
where only m + n number of control pins are required to assign to all the elec-
trodes in an m 9 n array. In this case, the electrode to be actuated is defined by the
row and column number whose intersection contains a next-active (droplet hold-
ing) electrode. A next-active electrode is certainly such an adjacent electrode of an
electrode that currently holds a droplet.

A method named after cross-referencing [4, 15] has been introduced to directly
decide the voltage to be applied (HIGH or LOW) at the row and column com-
bination for proper movement of a droplet. Instead of many advantages of this pin
assignment technique, there are some disadvantages too. When we activate a row
and a column for moving a droplet using HIGH–LOW or LOW–HIGH combi-
nation, then some unwanted cells might also be activated that may allow unwanted
movement of droplet. The following example of a part of scheduling shows this
problem. To authorize only wanted movements, electrode constraints have been
introduced accordingly.

HIGH–LOW combinations applied to rows and columns of an array of size
5 9 5 have been explained in Fig. 4. Say there are two droplets at cells (3,2) and
(3,5) as shown in Fig. 4a, and we like to move them to cells (2,2) and (4,5),
respectively. A droplet movement is possible only when a LOW–HIGH or a

1 2 3 4 5

3 5 2

5 2 3 4

3 4 5 12

34 5 1 2

1 2 3 4 5

3 4 5 1 2

5 1 2 4

4 5 12

34 5 1 2

1 2 3 4 5

3 4 5 1 2

5 1 2 4

4 5 12

34 5 1 2

1 2 3 4 5

3 4 5 2

5 2 3

3 5 12

34 5 1 2

(a) (b) (c) (d)

Fig. 3 a Both the droplets are on same pin and both of them intend to move to the same pin.
b Safe movement is possible to pin 3. c Both the droplets are on same pin, but tend to move to
different directions. d Both the droplets stuck between the two diagonally activated electrodes

A New Move Toward Parallel Assay Operations… 165

HIGH–LOW combination is applied for an electrode in a row–column intersec-
tion. Hence, if the columns 2 and 5 are made LOW and rows 2 and 4 are made
HIGH, then we may find that two desired LOW–HIGH combinations are obtained
at cells (2,2) and (4,5) whereas two unwanted combinations are formed at cells
(4,2) and (2,5) that confuse the droplets for their desired movements. So, these
HIGH–LOW combinations of rows and columns, as shown in Fig. 4b, are not
allowable combinations.

On the other hand, there are at least two such desired HIGH–LOW combina-
tions of rows and columns, as shown in Fig. 4c, d, each of which helps in allowing
desired movements of the said droplets. So, for the desired movement of the
distinct droplets in Fig. 4b, rows and columns may be activated and deactivated as
shown either in Fig. 4c or in Fig. 4d to get the desired solution. Incidentally, for a
large array with a number of droplets, it has been proved that the problem of
satisfying electrode constraints toward a desired solution is an NP-hard problem
[3, 15]. Though this is a voltage efficient technique, as a single row and a single
column are made either LOW or HIGH, in general for a big array with many
droplets, we cannot develop a polynomial time algorithm that expectantly may
solve each and every instance of the problem under consideration.

3.4 Broadcasting

In broadcasting, control pins are assigned to electrodes taking into account the
movement of droplets that is predefined in terms of scheduling of a complete
assay, that is, the activation–deactivation sequence of electrodes [3, 4]. It is stored
in a microcontroller in digital term, and the electrodes used to route a droplet is
assigned to a control pin maintaining that activation–deactivation sequence. Thus,
for a specific bioassay, it reduces the number of pins significantly, and hence, no
electrode interference occurs. In case of pin-constrained design, more than one

1
2
3
4
5

1 2 3 4 5
(a)

1
2
3
4
5

1 2 3 4 5

H

H

L L

(b)

1
2
3
4
5

1 2 3 4 5

L

H

H L

(d)

1
2
3
4
5

1 2 3 4 5

H

L

L H

(c)

Fig. 4 a The two droplets are moving from their respective cells to the cells pointed by arrows.
b Droplet movement will be in trouble due to electrode interference, as both rows 2 and 4 have
been made HIGH. c Desired movement as wanted in Fig. 4a is possible if row 2 and column 5 are
made HIGH whereas row 4 and column 2 are made LOW. d An alternative solution, as desired in
Fig. 4a, is obtained when row 4 and column 2 are made HIGH whereas row 2 and column 5 are
made low

166 D. Dhal et al.

electrodes are controlled by a single pin. It is voltage efficient, but there is a
deficiency that if more than one droplets are to move we have to maintain elec-
trode constraints as well. In this paper, we have adopted the notion of broadcasting
to develop a pin configuration of a restricted sized chip for a set of parallel
bioassay operations.

4 A 15 3 15 Array and Its Working Principle

4.1 The Existing Bioassay

A DMFB of size 15 9 15 is shown in Fig. 5, where two operations are performed
separately on two samples and two reagents [3, 4, 19]. A shared mixer is used,
where a first sample (say S1) and a first reagent (say R1) are routed from their
respective sources to the mixer, and after a desired level of mixing, the mixed
droplet is then routed to detection site 1 for necessary finding(s). After completion
of this phase, a second sample (say S2) and a second reagent (say R2), in a similar
manner from their respective origins, route to the mixer for their mixing and then
the mixed droplet goes to detection site 2 for necessary outcome(s). So, there
should be a delay in between the two operations as the array contains a common
mixer, some paths below and above the mixer common to different reagents and
mixed droplets to respective detection sites. Now, it is very important that such
regions and paths are need to be washed in between every alternative mixing
process; otherwise, unwanted contamination of residual samples, reagents, and
mixed droplets might cause for erroneous results.

Detection site 1 Detection site 2

Sample 1

Test
droplet
source

Reagent 1

Sample 2

Droplet
sink

Reagent 2

mixer
2×3 array

Fig. 5 A 15 9 15 array layout of droplet routing containing two sources of samples (Sample 1
and Sample 2) and two sources of reagents (Reagent 1 and Reagent 2) with one 2 9 3 mixer and
two detection sites. Direction of arrows shows the movement of droplets along the paths

A New Move Toward Parallel Assay Operations… 167

Though there are two detection sites, as the mixing is done in sequential order,
the chip is underutilized. If we use only one shared mixer, as in the case of existing
bioassay, washing of the mixing region as well as the paths below and above the
mixer, etc., is to be performed as an intermediate task of the assay. So, in this case,
the mixing operation is sequential in nature, where an inter-operational gap for
washing is necessary.

To achieve the aforementioned assay operations, the Connect-5 algorithm is used
as pin assignment [3, 4, 13]. Hence, there are at least five independent partitions for
desired movement of droplets obeying all necessary tasks as sought by the said
assay, and as an optimized result, 25 control pins are required [4, 13, 19], as shown
in Fig. 6.

Furthermore, based on a new requirement, say S2 and R1 are to be mixed first,
and then S1 and R2 are to be mixed in another instance of time (from their
respective sources, as shown in Fig. 5). Here, also the process is exactly similar (as
only one mixer is there in the array) to the earlier process of mixing.

A similar situation occurs when S1 and R2 are taken care of for their mixing.
Needless to mention that, an immediate washing is necessary between different
pairs of consecutive mixing. Thus, using two samples and two reagents, six dif-
ferent combinations of mixing are possible (like S1–R1, S1–R2, S2–R1, S2–R2,
S1–R1–R2, and S2–R1–R2) for their relevant detections in different instances of
time, and all of them can be performed on the given array using appropriate
scheduling providing desired stall and necessary washing in between [13, 19].

R2R1

S2S1

8

6
9

3
1
4

9

7
10
8

6
9
7

10

4
2
5

10

8
6
9

7
10
8

6

5
3
1

6

9
7

10

8
6
9

7

1
4
2

7
10

8

2
5
3

5
3

1

20
18
16

19

3
1
4

1
4

2
25
23

16
19
17

20
13

11
14
12
15

21
24

17
20
18

16
14

12
15
13
11

8
6

9
22
25

18
16
19

17
15

13
11
14
12

9
7

10

19
17
20

18

7
10
8

3
1

4

8
6
9

4

2
5
3

1
4
2

5

9
7

10

5

3
1
4

2
5
3

1

10
8
6

1

4
2
5

3
1
4

2

6
9
7

2

5
3

7
10
8

Fig. 6 Pin assignment of the array using Connect-5 algorithm that covers all the distinct
partitions and uses not more than 25 pins. Here, for the movement of a droplet along a path, the
adjacent cells are used as guard cells in most of the regions. Hence, for a mixer of size 2 9 3, an
array of size 4 9 5 is deployed for its realization. Different colors show the different partitions of
the array for pin assignment

168 D. Dhal et al.

4.2 A Modification Over the 15 3 15 Array

A modification of the previous array (in Fig. 6) has been proposed by Hwang et al.
[2, 20], where the array size is reduced to 10 9 10, the number of partitions is
reduced to four, and the mixer size is 2 9 2 (instead of 2 9 3) as shown in Fig. 7a.
Though this modification reduces the number of pins required but yet the mixing
or detection is sequential in nature as the number of mixers is not increased. In
Fig. 7b, we may observe that the mixing region of the array is the junction of four
partitions (taking only one cell from each of the partitions), so several droplets (as
necessary) can move to this region for mixing. Here, the droplets do not suffer by
the limitations of Connect-5 algorithm; rather, the pin number is also reduced by
20 % (as only four instead of five modules are present in this modification over the
earlier array).

4.3 Requirements and Objectives Toward Parallelism

In the earlier work, we have seen that using an array of size 15 9 15, we acquire
only one bioassay outcome at a time, where only 58 cells are used for routing,
mixing, and detection, 91 cells are used as guard cells, and the remaining 76 cells
are fully unexploited (see Fig. 6). As usual, the bioassay completion time is
dominated by the time required for mixing where routing time is negligibly small
(1,000:1, or more), as more time devoted for mixing results more truthful detection
of some parameter(s) of a sample. In this case, for any pair of combinations of
sample and reagent, assay operations are executed one after another.

We know that the Connect-5 algorithm has its inherent limitations [13]. This is
not a voltage efficient design as well as wasteful from the utilization of array space.

Detection sites

Sample 2

Reagent 2

Sample 1

Reagent 1

(a)

12
11
15
14
13

14
13
12
11
15

11
15
14
13
12

13
12
11
15
14

15
14
13
12
11

1719 16 18 20
16
20
19
18

18

17
16
20

20
19
18
17

17
16
20
19

19
18
17
16

2
1
5
4
3

4
3
2
1
5

1
5
4
3
2

3
2
1
5
4

5
4
3
2
1

7
6

10
9
8

9
8
7
6
10

6
10
9
8
7

8
7
6

10
9

10
9
8
7
6

(b)

R2R1

S2S1

2×2 mixer

Fig. 7 a Layout and droplet routes of the 10 9 10 array chip with a 2 9 2 mixer. b Partitions
along with pin configuration of the 10 9 10 array that requires 20 pins only. Here, the 2 9 2
mixer resides at the middle of the array comprising pins 3, 10, 12, and 19, taking one cell from
each of the partitions

A New Move Toward Parallel Assay Operations… 169

So, our objective is to activate as many cells as we can for routing, mixing, etc., in
order to achieve respective detections by doing such tasks in parallel. On the other
hand, cross-contamination that has already been pointed out earlier is not only a
major problem in achieving a correct result, it may also cause danger for human
lives. We know that it can only happen when different biomolecules share com-
mon cells in their path for routing, or share a common mixer. So, it is better to
provide disjoint routes of droplets, if applicable.

To increase the effectiveness of the chip of size 15 9 15, we consider several
practical aspects by making the chip voltage well organized as well as ingenious
from the utilization of array space. In this formulation, our focal objective is to
provide a proper division of the whole array such that a suitable pin configuration
may guide each of the partitions to move their respective droplets simultaneously.
Moreover, if necessary, we like to introduce two or more droplets to be inserted
into a partition for their synchronized movement as needed. In this paper, we also
like to introduce the scheduling of wash droplets by modifying the whole design
assay, as and when necessary, to make the outcomes exclusively useful.

5 A New Algorithm for Parallel Bioassay Operations

In this section, we have developed a novel algorithm for accomplishing several
pairs of bioassay operations in parallel.

5.1 An Algorithm for Pin Assignment

As Connect-5 algorithm tolerates unwanted movement of droplets that creates lots
of problem in executing the tasks, hence a different pin assignment is a matter of
research, which may satisfy some well-defined objectives taking care of all
practical hazards that may arise. Of course, minimization of pin number along with
its proper assignment over a restricted sized chip, here 15 9 15, may be consid-
ered as a goal.

The chip can be used more resourcefully if we be able to design the chip for
mixing separate sets of samples and reagents in isolation in two different mixers
and route them to the detection sites at the same time. This is how delay can also
be minimized. So, this alteration can give two results in parallel. Let us consider
the droplet routing layout as shown in Fig. 8, where two independent mixers (M1

and M2) have been introduced. Our objective is to efficiently use the restricted size
chip, as well as to assign all the electrodes using a minimum number of electrodes
possible. In this context, we focus mainly on the parallelism that can be incor-
porated in the tasks to be performed.

Module placement: Here, we have two sample and two reagent sources. Again
if we complete two mixings simultaneously, we have to perform the detections

170 D. Dhal et al.

individually in two separate detection sites and then they are to be moved to two
wastage sinks. To make the chip reusable, we need to perform washing of the used
paths and mixers immediately after one use of the chip such that it may be free
from cross-contamination. If the washing is also arranged in parallel, two wash
droplet sources are to be used. From all the assumptions, we can conclude that we
need to place eight devices (sources and sinks) at the periphery of the 15 9 15
chip and four modules (two mixers and two detection sites) are to be placed inside
the chip. Again to ensure parallelism as well as to avoid cross-contamination, the
routing path of the samples and reagents is to be set as much disjoint as possible.
These are put into consideration at the time of placement.

Here, we have planned to place the devices and the modules as shown in Fig. 9,
as two parallel assay operations are the target of this design and the whole chip is
to be partitioned into two halves. The key ideas are as follows:

• The 15 9 15 array is subdivided into three arrays of 15 9 5. We place the
mixing regions in the first and third array starting from the left and one sample
and reagent source pair is placed at the left periphery while another pair is
placed at the right periphery of the chip. The paths from left (right) sources to
the left (right) mixer are almost equal that helps to schedule the mixing
concurrently.

Wd1 Wd2

M2

Detection site 1 Detection site 2

Sample 1

Test droplet source / sink

Sample 2

Reagent 2

2
array
mixer

M1

Reagent 1

Sink

2×4

Fig. 8 Layout for droplet routing of a modified 15 9 15 array, where two 2 9 4 mixers are used
to execute two mixing operations in parallel. Two sources (and sinks) of test droplet and/or wash
droplet are placed at the bottom of the array. Droplet sinks are placed on the top of the array
where mixed droplets are thrown away from the array after desired detections

A New Move Toward Parallel Assay Operations… 171

• Now, the 15 9 5 array at the middle is left for routing the mixed droplets to the
detection site and then to the wastage sink. The detection sites are at (2,7) and
(2,9), that is, one electrode apart from the sink if we place the sinks at the top of
the seventh and ninth column. So, two related mixing regions are at same
distance from them. We have not placed it on the topmost electrode of the
corresponding column, as mixed droplets are usually double droplets, which
may have more overlapping to the adjacent electrodes. This overlapping to the
sink is not desirable.

• Wash droplet sources are placed at the bottom of the columns seven and nine,
such that two associated mixing regions are at same distance from them.

The chip can be used more resourcefully if we be able to design the chip for
mixing separate sets of samples and reagents in isolation in two different mixers
and route them to the detection sites at the same time. This is how delay can also
be minimized. So, this modification can give nearly two results in parallel. Let us
consider the droplet routing layout as shown in Fig. 8, where two independent
mixers (M1 and M2) have been introduced: M1 for mixing S1 with R1, and M2 for
mixing S2 with R2. As S1 and R1 are to be mixed in M1, it is desirable if the
coupled droplets could be moved simultaneously as much as we can. This is
equally true for the sample–reagent pair S2 and R2 that is supposed to be mixed in
M2. Hence, for all these droplets, same sequence of pin configurations numbered
1–10 is adopted as we observe in Fig. 9.

As just mentioned that a separate set of pins is not required for the mixing
regions, where mixing is performed in both the mixers at the same time instance.
So, these pins are also arranged and through activation and deactivation of elec-
trodes in adjacent cells, droplets are moved inside each mixer, as we desire to
move them. Out of several possible ways of mixing, a zigzag mode of mixing
[21, 22] is shown in Fig. 10.

If there are two reagents and two samples provided, there are 6 possible combi-
nations of mixing as there is no need to mix sample–sample or reagent–reagent pair.

R2R1

S2S1

14

11
13

2
5

7
9

13
11
14

15

12
14
11

5
3
1

8
10

11
14
12
15

11

13
15
12

1
4
2

9
6

12
15
13
11

12

14
11
13

2
5
3

10
7

13
11
14
12

3
1
4

6
8

12
15
13

13
12

11
15
14

13
12
11

16
9

15
13
11
14

12

11
15

14
13
12

11
15
14

17
18

20
21
17
16

20

14
13

12
11
15

14
13
12

19
16

5
6

19
7

8

11
15

14
13
12

11
15
14

20
18

17
16
20
21

17

13
12

11
15
14

13
12
11

21
9

15
13
11
14

12

3
1
4

6
8

12
15
13

12

14
11
13

2
5
3

10
7

13
11
14
12

11

13
15
12

1
4
2

9
6

12
15
13
11

15

12
14
11

5
3
1

8
10

11
14
12
15

14

11
13

2
5

7
9

13
11
14

Fig. 9 Pin configuration for
executing two sets of
bioassay operations in
parallel using an array of size
15 9 15 that requires no
more than 21 pins

172 D. Dhal et al.

So, we are interested in performing two mixings concurrently such that throughput is
doubled than the previous case where a single mixer has been used. To do it, we are
somewhat tricky in assigning the pins to the mixing region. We use same set of pins,
which are mirror refection to one another in the two mixers.

Again to minimize the pin count, our objective is to schedule the assay in such a
way that the reagent and the sample droplets can reach the mixer within a specified
time for mixing and the chip utilization is maximized. The pin configuration has
been shown in Fig. 9. So, these pins are also set and through activation and
deactivation of electrodes in adjoining cells, droplets are moved within each
mixer, as we want to move them. Out of several possible ways of mixing, a zigzag
mode of mixing [6, 7] is shown in Fig. 10. It may be noted that a same set of pins,
11–15 applied for routing of S1, S2, R1, and R2 in synchronism, can also be utilized
for the movement of mixed droplets from their mixers to the succeeding detection
sites.

We have used the set of pins comprising 11–15 for four 5 9 5 arrays at the four
corners of the 15 9 15 array and Connect-5 algorithm is operated. These arrays
are employed only for routing of the droplets to be mixed separately in two mixers
maintaining the sequence graph. Pins 1–5 have been assigned to two 3 9 5 arrays
along the rows, sixth, seventh, and eighth in the first five columns and in the last
five columns, and pins 6–10 have been assigned to two 2 9 5 arrays along the
ninth and tenth row in the first five columns and in the last five columns using
Connect-5 algorithm again.

The path of mixed droplets from the mixers to the detection sites is also
assigned with the same set of pins (11–15) except at eighth row, where pins from
set 1–5 have been used. A cell of this region is activated only when the preferred
level of mixing is over and mixed droplets are ready to move to the detection sites.
It may further be noted that for mixing in M1 and M2, 10 separate pins (two sets of
5 pins) 1–5 and 6–10 are introduced that are washed (by routing wash droplets) in

(a)

(b)

Fig. 10 a The routing path of a mixed droplet in a zigzag mode of mixing inside a 2 9 4 mixer
that has been introduced in duplicate for separate mixing of mixed droplets. Here, the arrows
show the transport pattern of partially mixed droplets for proper mixing. b The steps of one
complete cycle of mixing showing the movement of a mixed droplet inside a mixer

A New Move Toward Parallel Assay Operations… 173

between routing of unlike reagents that may use this set of pins as a common
portion of their paths. Now, for arranging all types of mixing among two sets of
samples and reagents and to reuse the mixing regions as early as possible, washing
is performed at the earliest. So, wash droplet paths are assigned with a different set
of pins (16–21) such that they have no overlapping with the regular droplets. But,
the two wash droplets destined for the two mixers can move concurrently.

This is how we obtain a complete pin configuration for executing all tasks
associated in performing some bioassay operation in parallel using a biochip of
size 15 9 15, where at most 21 pins are required, which is not more than the pin
number that Chakrabarty et al. used in performing the tasks one at a time for an
array of size 15 9 15 [5, 10]. The above pin configuration is shown in Fig. 9.

5.2 Working of the Chip

Different combinations of accessible mixing make the chip highly favorable. In the
following paragraphs, we like to describe in detail the performance of the chip.

We may examine that there are six sets of possible blend of mixing of sample(s)
and reagent(s) as follows that could be executed concurrently using the array
designed above: {(S1,R1), (S2,R2)}, {(S1,R2), (S2,R1)}, {(S1,R1), (S1,R2)},
{(S2,R1), (S2,R2)}, {(S1,R1), (S2,R1)}, and {(S1,R2), (S2,R2)}.

Let us consider the first case. In this case, the samples and reagents S1, S2, R1,
and R2 can move simultaneously as their paths do not cross (or overlap) from their
sources to the relevant mixers. S1, S2, R1, and R2 are dispensed concurrently, and
S1 and S2 follow the path 11–12–13–15–12–1–4–2, while R1 and R2 traverse the
path 11–12–13–15–12–6–8–2 in 8 clock pulses, that is, at clock pulse 8, S1 and R1

reach to the electrode assigned by pin 2 at mixer M1, and S2 and R2 reach to the
electrode assigned by pin 2 at mixer M2 and subsequently mixing starts in

(b)

R1 S2

Ds1

NOP

NOP

S1 R2

M1 M2

Ds2

(a)

R1 S2

Ds1

S1 R2

M1 M2

Ds2

Fig. 11 a The sequencing graph of the assay operations, where S1 and R1 (S2 and R2) mix in M1

(M2) and detection is performed in Ds1 (Ds2). b An associated sequence graph of the assay
operations

174 D. Dhal et al.

separation in two different mixers. So, in this case, there is no need to incorporate
stall to any of the droplets to be mixed. But, in each of the remaining cases suitable
stall is to be provided before mixing of desired droplets at some preferred mixer.
Figure 11 shows the corresponding sequence graph for the intended set of
operations.

Let us now consider the third case when S1 is mixed with R2 in M2, and also S1

is mixed with R1 in M1. The corresponding sequence graph is shown in Fig. 12. In
this case, at first, a droplet of S1 is routed from its own source to M2 using the path
11–12–13–15–12–1–4–5–1–12–11–16–17–19–20–21–6–4–3–2 and thus reaches
at mixer M2. With proper stall, R1 and R2 are routed from their sources to M1 and
M2 for mixing in the relevant mixer (at cell 2). Again a second droplet of S1 is also
dispensed at the same time instant with R1 and R2, such that mixing in both the
mixers may be completed simultaneously. More specifically, in the path of S1,
when the droplet is at cell 6, [in cell location (9,11)], droplets of R1, R2, and the
second droplet of S1 are entered in the array activating pin 11 at locations (13,1),
(13,15), and (3,1), respectively. From their corresponding positions, R1 and R2

traverse the related path 11–12–13–15–12–6–9–2 and S1 is moved on the path
11–12–13–15–12–1–4–2. Thus, after 8 clock pulses of their entrance to the array,
these three droplets reach their own destination and become ready for carrying out
a synchronized course of mixing in both the mixers.

So, it is required that the pair of droplets to be mixed in each mixer may arrive
the starting point, that is, on pin 2 in the mixer, at a time avoiding all the electrode
interferences in the path of its own and that of in the paths of other droplets to
reach to their mixers. To satisfy this condition, when R1, R2, and the next droplet
of S1 are moved on pin 12, the first droplet of S1 is also moved to pin 4, that is,
upward from pin 2. In this way, when the second droplet is on pin 1, first droplet is
also on pin 1 to synchronize the movement and then all the four droplets reach the
starting electrode of mixing, that is, on pin 2 simultaneously. At this moment, the
harmonized mixing (in both the mixers) starts and then the matched steps of

(b)

R1 S1

Ds1

NOP

NOP

S1 R2

M1 M2

Ds2

(a)

R1 S1

Ds1

S1 R2

M1 M2

Ds2

Fig. 12 a The sequencing graph of the assay operations, where S1 and R1 (S1 and R2) mix in M1

(M2) and detection is performed in Ds1 (Ds2). b An associated sequence graph of the assay
operations

A New Move Toward Parallel Assay Operations… 175

detection, etc., are performed in parallel, as desired in a case of application. Note
that here intermediate washing on the path of droplet S1 is not required; as in both
the mixers, the reagents are to be mixed with the same sample. So, there is no
question of contamination. Figure 12 shows the sequence graph required for the
assay operation.

Another combination of mixing is S2–R1 in M1 and S2–R2 in M2, that is, S2 is
common in the two mixing. So, S2 is to be distributed to the mixer instead of S1 (in
the previous case). We can follow a similar schedule where S2 is entered first and
then the other three droplets are entered and moved accordingly as has been stated
in the previous case (for S1).

There is another combination, where two samples are to be mixed with single
type of reagent (R1 or R2), which has been shown using the sequence graph in
Fig. 13. In this case, we distribute the common reagent to both the mixers. Let us
consider that R1 is to be moved to M1 and M2. Accordingly, R1 is dispensed at
(13,1) and traversed the path 11–12–13–14–15–11–17–19–20–16–17–18–20–21–
6–10–9 and reaches to M2. In the mean time, when the droplet is on pin 20 [at
location (9,9)], S1, S2, and the second droplet of R1 are entered into the array at
locations (3,1), (3,15), and (13,15), respectively, by activating pin 11 and then they
are moved to their destined mixer. Their paths are same as earlier. As they reach
the mixers at a time, mixing may be performed fully in parallel. Again for the sake
of synchronism, when there are two droplets in a partition assigned to pins using
Connect-5 algorithm, it is obvious to have unidirectional movement of the droplets
for their safety. In this case also, when in mixer M1, 6 is activated to hold the
second droplet of R1, the first droplet of R1 in mixer M2 is also moved to pin 6, and
then both of them move on pin 9 when S1 and S2 are on pin 4. At the next clock
pulse, the entire four droplets move on pin 2 and thus mixing is started in both the
mixers in parallel.

(b)

R1 S2

Ds1

NOP

NOP

S1 R1

M1 M2

Ds2

(a)

R1 S2

Ds1

S1 R1

M1 M2

Ds2

Fig. 13 a The sequencing graph of the assay operations, where S1 and R1 (S2 and R1) mix in M1

(M2) and detection is performed in Ds1 (Ds2). b An associated sequence graph of the assay
operations

176 D. Dhal et al.

In the same way as has been told in the last paragraph, another assay may be
accomplished on this platform, which requires the mixing of S1–R2 in M1

and S2–R2 in M2.
We may think that the second case of mixing is the most cumbersome, when we

mix S1 with R2 (in M1) and S2 with R1 (in M2). Figure 14 shows the corresponding
sequence graph (individually for two mixers and the joint sequence graph).

We briefly state it as follows. In this case, a droplet of reagent R1 is first
dispensed from its source, and it follows the path 11–12–13–14–15–11–17–19–
20–16–17–18–20–21–6–10 for mixing. When this droplet is at cell 20 (in row 13),
then a wash droplet WD1 is entered into the array at row 15 activating pin 20 and
R2 is ready for its entry into the array. Note that the wash droplet, WD1 moves
through the path 20–16–17–19–20–21–17 to the right source/sink of wash droplet.
In this path of WD1, when it is just out of the array and on the other hand R1

droplet is on pin 6 [at location (9, 11)], then cell 11 is activated to enter the
droplets of S1 and S2. At this very moment, S1 and S2 are entered into the array
from their respective source, and at this point in time R2 resides at cell 20 at
location (13,10) whereas R1 is at cell 6, and then it is stalled at pin 10 [at cell
location (11, 7)]. Thus, R2 moves to cell 10 of mixer M1. When R2 is to be entered
in M1, as R1 is already waiting in M2 and both the mixers are assigned to same set
of pins, R1 and R2 must be synchronized. So, when R2 appears on pin 6, R1 is also
moved to pin 6 from pin 10 to avoid electrode interference. On the other hand, S1

and S2 reach to mixers M1 and M2, respectively, and pairwise all the four droplets
appear on pin 2 in the two mixers at a time. As a consequence, mixing starts and
continues in complete synchronization.

We may further notice that there are decision points (or decision regions)
comprising four cells 11, 14, 16, and 17 adjacent to M1 and 11, 14, 20, and 21
adjacent to M2 for the movement of mixed droplets from the respective mixers to
the detection sites. A cell of this region is activated only when the desired level of
mixing is over and mixed droplets are ready to move to the detection sites. It may

(b)

R2 S2

Ds1

NOP

NOP

S1 R1

M1 M2

Ds2

(a)

R2 S2

Ds1

S1 R1

M1 M2

Ds2

Fig. 14 a The sequencing graph of the assay operations, where S1 and R2 (S2 and R1) mix in M1

(M2) and detection is performed in Ds1 (Ds2). b An associated sequence graph of the assay
operations

A New Move Toward Parallel Assay Operations… 177

further be noted that for mixing in M1 and M2, six separate pins 16–21 are
introduced that are washed (by routing wash droplets) in between routing of dif-
ferent reagents that may use this set of pins as a common portion of their paths.
This is how we obtain a complete pin configuration for executing all tasks asso-
ciated in performing some bioassay operation in parallel using a biochip of size
15 9 15, where at most 21 pins are required, which is one more than the pin
number that Hwang et al. used in performing the tasks one at a time for an array of
size 10 9 10 [2, 20]. The above pin configuration is shown in Fig. 9.

So, this is how we may perform all sets of assay operations mentioned above in
parallel. Similar paths for routing of droplets are to be defined, and then, mixing is
executed in the mixers. Mixing is the most important task in the case of droplet
routing and the most time consuming step in the whole process. Here, we use
mixers of size 2 9 4 each and allow zigzag way of doing the task. Then, mixed
droplets are sent to the detection sites for detection and thrown away from the
array chip as a later step.

5.3 An Example Run of Assay Operations in Parallel

As an example run, here we consider a typical case of parallel mixing as shown in
Fig. 15, where R1 mixes with R2 and S2 mixes with R3; as already discussed
several cases above, here we place the source of R3 instead of R2 for both the
phases and also we place R2 instead of the source of S1 only for the first phase of
mixing, and then the source of S1 is placed as usual for the second phase. One part
of mixed droplet of R1 and R2 mixes with S1; on the other hand, another part of
mixed droplet of R1 and R2 mixes with one part mixed droplet of S2 and R3. While
one part of mixed droplet of S2 and R3 mixes with a part of mixed droplet of R1

and R2, at that time another part of mixed droplet of S2 and R3 reaches to the
detection site (Ds2) for detection. Subsequent to the second phase of mixing, the
mixed droplet of M1 and M2 reaches to the detection sites Ds1 and Ds2, respec-
tively, for detection. The algorithm has already been made earlier, and thus, we
obtain the scheduling map, which is the necessary final outcome of the assay
operations performed in a given array of size 15 9 15.

We know that every operation is having its own sequence of processing. As for
example, mixing of S2 and R3 in M2, and then subsequent detection of the mixer in
the detection site (Ds2) is a complete course of action; an allied graphical repre-
sentation of this fact is shown in Fig. 15a, which is an example of a sequencing
graph.

A sequencing graph may contain two or more connected components as distinct
assay operations that are usually disjoint from each other. If we like to perform
some of the sequencing steps in parallel, then level by level that information is
captured when we represent it with the help of a connected sequence graph. As for
example, as shown in Fig. 15b, the graph tells that the droplets of samples and

178 D. Dhal et al.

reagents are dispensed and routed altogether, mixed concurrently at their respec-
tive mixers, and also detected at the same time in the coupled detection sites.

Here, we may note that there is no point of cross-contamination as the paths for
samples and reagents are distinct, and there is no overlapping even for a single
cell. So, washing is not required; however, in between two sets of consecutive
assay operations, it is desirable to wash the whole path and also the mixers,
detection sites, etc. The scheduling map for these assays is shown in Fig. 16.

We also may observe that here in this structure of pin assignment, as we
execute assay operations in parallel, we gain *100 % time (or more) in detecting
the samples. Use of wash droplet(s) might require in performing other pairs of
assay operations where a cell or a series of consecutive cells in a path is required to
wash within the assay operations in parallel. In these assay operations, we may
observe that, 83 cells are used for routing, mixing, and detection, 96 cells are used
as guard cells, and the remaining 46 cells are totally inoperative (see Fig. 6).

5.4 Experimental Results

In this section, we compare the three biochips, two in existing articles [2–4, 13,
19, 20] and the one introduced in this paper, as shown in Figs. 5, 6, 7, 8, and 9,
from their structural and functional points of view. The primary differences are

(b)

R3S2

M2

Ds2

M2 Ds2

S1

R2R1

M1

Ds1

M1

NOP

NOP

(a)

R3S2

M2

Ds2

M2 Ds2

S1

R2R1

M1

Ds1

M1

Fig. 15 a The sequencing graph of the assay operations, where R1 and R2 (S2 and R3) mix in M1

(M2) and detection is performed in a later phase (Ds2). Then, in a next phase, S1 is mixed with the
mixed droplet of R1 and R2 (the mixed droplet of S2 and R3 is mixed with the mixed droplet of R1

and R2) in M1 (M2) and detection is performed in Ds1 (Ds2). b An associated sequence graph of
the assay operations

A New Move Toward Parallel Assay Operations… 179

whether two bioassay operations are performed sequentially or in parallel, what
are the sizes of mixers, amount of mixing time needed, utilization of cells in an
array, number of tasks carried out, etc. These are all tried to include in Table 1 and
thus explained in brief as follows.

Regarding the number of cells in a biochip, 33.78 % cells are unused in the
foremost biochip whereas this value is only 20.44 % in our design. In our biochip, we
introduce 16 % less pins though its achievement is more than 100 % that uses two
larger mixers. This happens in practice because the former biochip needs 12 clock
pulses for routing of sample and reagent droplets from their sources to the mixer and
19 clock pulses for routing of mixed droplet from mixer to the detection site and
disposing, making a total of 2 9 (31 + m + d) + w clock pulses for a pair of two
successive assay operations with inter-assay washing, whereas this value reduces to
only 15 + m + d + (w) in our configuration, where no additional clock pulses are
applied for washing the biochip during the bioassays are executed in parallel.

1

8
9

10
13

20
9+m

k+1
k+8

Ds1 Wd1R1 S2R2 R3 Mixers Ds2 Wd2

k+9

k+10

S1

k+11
k+12
k+19
k+20
k+30

k+11

for
Macro time

M
ac

ro
 t

im
e

M1 M2

M1 M2

k+19+m

 k′+1
k′+2

 k′+9
 k′+10
 k′+12

Fig. 16 The scheduling map for the sequencing graph in Fig. 15a, where R1 mixes with R2 and
S2 mixes with R3, and then one part of the mixed droplet of R1–R2 is mixed with S1 in M1 and the
other part of the mixed droplet of R1–R2 is mixed with the mixed droplet of S2–R3. Here, m is the
number of clock pulses required for mixing, and k = 9 + m and k0 = k + 19 + m. Moreover, at
the (k + 12)th and (k0+12)th clock pulse, the mixed droplets are thrown away from the array after
the detection is made at the (k + 9)th and (k0+9)th clock pulse, respectively

180 D. Dhal et al.

In both the earlier two biochips, the primary tasks carried out are routing, mixing,
and detection, where sample and reagent droplets are dispensed and routed up to
mixer, mixed droplets are routed from the mixer to the detection sites, and detected
droplets are (routed and then) thrown away from the biochip. In our bioassay, we
have included two more tasks: One is inclusion of decision point (in a decision
region) after each mixer, a cell of which is activated only when the mixing operation
is over, and the second one is the routing of wash droplets as intra-assay requirement,
which is mandatory but not mentioned in both the earlier works.

6 Conclusion

In this paper, a restricted sized biochip whose array size is 15 9 15 has been taken
under consideration. In existing literature, such an array is used for only one bioassay
operation at a time as there is only one mixer of size 2 9 3. This chip is underutilized
that had been pointed later and subsequently a 10 9 10 array is introduced with a
mixer of size 2 9 2, though the assay operation is still sequential as they are sharing a
single mixer. In all these respects, we have configured a pin assignment where the pin
count is 16 % less than that of the earlier chip of same size, but here the assay
operations are performed in parallel where washing as cross-contamination avoid-
ance has also been introduced. In such a chip, we have introduced an additional
region as decision point, which is activated only when a desired level of mixing is
over. We strongly guess that intensive research could be carried over in future on
decision point as an important task in between mixing and detection in any assay
operation. In our configuration, larger mixers have also been included wherein we
suggest zigzag way of mixing of droplets, which is certainly better even if the same

Table 1 A table of comparison that assesses two existing arrays and the array introduced in this
paper from their pattern and practical viewpoint

Array structure 15 9 15 (Fig. 6) 10 9 10 (Fig. 7) 15 9 15 (Fig. 9)

Mode of operation Sequential Sequential Parallel

of tasks Six Five Eight

of mixers One One Two

Mixer size 2 9 3 2 9 2 2 9 4

Pin count 25 20 21

of active cells 58 48 83

of guard cells 91 46 96

of unused cells 76 6 46

Wash droplets No No Yes

of clock pulses (for two assays) 2 9 (12 + 19 +
m + d) + w

2 9 (8 + 5 +
m + d) + w

7 + 8 + m +
d + (w)

Here, m, d, w, and (w) are the number of clock pulses applied for mixing, detection, inter-assay
washing, and intra-assay washing, respectively

A New Move Toward Parallel Assay Operations… 181

number of clock pulses is applied as the scope of diffusion between the samples and
reagents to be mixed is higher in this case. Out of many other achievements, our
designed chip configuration achieves more than 100 % outcomes using the same
number of clock pulses as the assay operations are executed in parallel.

References

1. http://www.tutorgig.com/encyclopedia
2. Advanced Liquid Logic. http://www.liquid-logic.com
3. Chakrabarty, K., Su, F.: Digital Microfluidic Biochips: Synthesis, Testing, and

Reconfiguration Techniques. CRC Press, Boca Raton (2007)
4. Chakrabarty, K., Xu, T.: Digital Microfluidic Biochips Design Automation and Optimization.

CRC Press, Boca Raton (2010)
5. Fair, R.B.: Digital microfluidics: is a true lab-on-a-chip possible? In: Microfluid Nanofluid,

vol. 3, pp. 245–281. Springer, Berlin (2007)
6. Zeng, J., Korsmeyer, T.: Principles of droplet electro-hydrodynamics for lab-on-a-chip. Lab

Chip 4, 265–277 (2004)
7. Fair, R.B., Srinivasan, V., Ren, H., Paik, P., Pamula, V., Pollack, M.G.: Electrowetting based

on chip sample processing for integrated microfluidics. In: IEDM, pp. 779–782 (2003)
8. Srinivasan, V., Pamula, V.K., Pollack, M.G., Fair, R.B.: A digital microfluidic biosensor for

multianalyte detection. In: Proceedings of IEEE MEMS Conference, pp. 327–330 (2003)
9. Paik, P., Pamula, V.K., Fair, R.B.: Rapid droplet mixers for digital microfluidic systems. Lab

Chip 4, 253–259 (2003)
10. Su, F., Hwang, W., Chakrabarty, K.: Droplet routing in the synthesis of digital microfluidic

biochips. In: DATE, pp. 323–328 (2006)
11. Böhringer, K.F.: Towards optimal strategies for moving droplets in digital microfluidic

systems. In: ICRA, pp. 1468–1474 (2004)
12. Chakrabarty, K.: Digital microfluidic biochips: a vision for functional diversity and more

than Moore. In: VLSI Design, pp. 452–457 (2010)
13. Xu, T., Chakrabarty, K.: Automated design of digital microfluidic lab-on-chip under pin-

count constraints. In: ISPD, pp. 190–198 (2008)
14. Zhao, Y., Chakrabarty, K.: Pin-count-aware online testing of digital microfluidic biochips. In:

IEEE VLSI Test Symposium, pp. 111–116 (2010)
15. Xu, T., Chakrabarty, K.: A droplet-manipulation method for archiving high throughput in

cross-referencing based digital microfluidic biochips. TCAD 27, 1905–1917 (2008)
16. Xu, T., Chakrabarty, K.: Droplet-trace-based array partitioning and a pin assignment

algorithm for the automated design of digital microfluidic biochips. In: IEEE/ACM ICH/
SCSS, pp. 112–117 (2006)

17. Xu, T., Hwang, W.L., Su, F., Chakrabarty, K.: Automated design of pin-constrained digital
microfluidic biochips under droplet-interference constraints. ACM J. Emerg. Technol.
Comput. Syst. 3(3), Article 14 (2007)

18. Xu, T., Chakrabarty, K.: A cross-referencing-based droplet manipulation method for high-
throughput and pin-constrained digital microfluidic arrays. In: DATE, pp. 552–557 (2007)

19. Su, F., Chakrabarty, K.: High-level synthesis of digital microfluidic biochips. In: ICCAD,
vol. 3, no. 4, Article 16 (2008)

20. Hwang, W.L., Su, F., Chakrabarty, K.: Automated design of pin-constrained digital
microfluidic arrays for lab-on-a-chip applications. In: DAC, pp. 925–930 (2006)

21. Paik, P., Pamula, V.K., Pollack, M.G., Fair, R.B.: Electrowetting based droplet mixers for
microfluidic systems. Lab Chip 3, 28–33 (2003)

22. Paik, P., Pamula, V.K., Fair, R.B.: Rapid droplet mixers for digital microfluidic systems. Lab
Chip 3, 253–259 (2003)

182 D. Dhal et al.

http://www.tutorgig.com/encyclopedia
http://www.liquid-logic.com

A 2D Guard Zone Computation
Algorithm for Reassignment
of Subcircuits to Minimize the Overall
Chip Area

Ranjan Mehera, Arpan Chakrabarty, Piyali Datta
and Rajat Kumar Pal

Abstract The guard zone computation problem finds vast applications in the field
of VLSI physical design automation and design of embedded systems, where one
of the major purposes is to find an optimized way to place a set of 2D blocks on a
chip floor. In VLSI layout design, the circuit components (or the functional units/
modules or groups/blocks of different subcircuits) are not supposed to be placed
much closer to each other in order to avoid electrical (parasitic) effects among
them (http://en.wikipedia.org/wiki/Curve_orientation, [13]). The (group of) circuit
components on a chip floor may be viewed as a set of polygonal regions on a
two-dimensional plane. Each (group of) circuit component(s) Ci is associated with
a parameter di such that a minimum clearance zone of width di is to be maintained
around Ci. The regions representing the (groups of) circuit components are in
general isothetic polygons, but may not always be limited to convex ones. The
location of the guard zone (of specified width) for a simple polygon is a very
important problem for resizing the (group of) circuit components. In this paper, we
have developed an algorithm to compute the guard zone of a simple polygon as
well as to exclude the overlapped regions among the guard zones, if any. If the
number of vertices in the given polygon is n, then our algorithm requires O(n log
n + I log n) time, where I is the number of intersections among the guard zones.
So, it is output sensitive in nature that depends on the value of di. The algorithm
developed in the paper is proved to report a preferred guard zone of the given
simple polygon excluding all the intersections, if any.

R. Mehera (&) � A. Chakrabarty � P. Datta � R.K. Pal
Department of Computer Science and Engineering, University of Calcutta,
92, A.P.C. Road, Kolkata 700 009, West Bengal, India
e-mail: ranjan.mehera@gmail.com

A. Chakrabarty
e-mail: arpan250506@gmail.com

P. Datta
e-mail: piyalidatta150888@gmail.com

R.K. Pal
e-mail: pal.rajatk@gmail.com

� Springer India 2015
R. Chaki et al. (eds.), Applied Computation and Security Systems, Advances in Intelligent
Systems and Computing 305, DOI 10.1007/978-81-322-1988-0_11

183

http://en.wikipedia.org/wiki/Curve_orientation

Keywords Simple polygon � Guard zone � Notch � Placement problem � Circuit
component � Convex hull � Concave vertex � Convex vertex

1 Introduction

Guard zone computation problem is well defined in the literature as an application
of computational geometry. Often, this problem is also known as safety zone
problem [6]. Given a simple polygon P, its guard zone G (of width r) is a closed
region consisting of straight line segments and circular arcs (of radius r) bounding
the polygon P such that there exists no pair of points p (on the boundary of P) and
q (on the boundary of G) having their Euclidean distance d(p, q) less than r.

In case of VLSI layout design as well as in embedded system, a chip may
contain several million transistors. To handle this large number of components, the
concept of partitioning is introduced that results in a set of blocks along with
interconnections among them. The next step is the placement of these blocks of
different dimensions. The goal of placement is to find a minimum area arrange-
ment for the blocks that helps to complete interconnections among them. A good
routing and circuit performance heavily depend on a good placement algorithm.
Placement of modules is an NP-complete problem [5].

The circuit components on a chip floor may be viewed as a set of polygonal
regions on a two-dimensional plane. Each circuit component Pi is associated with
a parameter p such that a minimum clearance zone of width p must be maintained
around that circuit component. The regions representing the circuit components
are general polygons that may not always be convex ones.

The location of the safety zone of specified width for a simple polygon is a very
important problem for resizing the circuit components. If more than one polygonal
regions are close enough, their safety zones overlap, violating the minimum
separation constraint among them. Again inside a notch of such a polygonal
boundary, if a wide space is available which may accommodate some circuit
component, we cannot use that location, as space for routing the connecting wires
from those circuit components to the other circuit components, which are placed
outside the notch, is not available. Thus, with respect to the problems of resizing in
VLSI circuit components, this is the motivation of defining and computing the
safety zone of a (simple) polygon [6].

Without loss of generality, we may assume that the geometric shape of a
subcircuit is of a simple polygon P, as shown in Fig. 1a, as the design of each
subcircuit is already over; otherwise, sometimes, that could also be considered as a
part of floor plan to achieve an alternative design. Several algorithms exist to
address the area minimization problem in some phase of physical design either in
developing an embedded system or planning for a VLSI circuit [5]. In this paper,
we have addressed the problem by computing guard zone of each of the subcircuits
(rather, for only a simple polygon) and using guard zone computation as a tool

184 R. Mehera et al.

toward achieving the same. In Fig. 1a, a 2D simple polygon P is shown by thicker
line segments, whose guard zone G is required to be computed outside the
polygon.

In this paper, we have proposed and devised an algorithm for computing guard
zone of two-dimensional (2D) simple polygon, where each polygon represents a
subcircuit such that several such subcircuits are there for their placement on a
minimum area chip floor, placing each pair of adjacent subcircuits in a safe sep-
aration, toward realizing a VLSI circuit or designing an embedded system. This is
necessary to achieve the desired performance of the overall circuit to be designed.
In general, an instance of such a problem may contain thousands of subcircuits
at some level of design, and the (placement) problem under consideration is
NP-complete [5].

There are several other areas, like Robotics, Geographical Information System
(GIS), etc., where guard zone computation problem finds its applications.

A simple polygon may contain both convex and concave vertices in it. We
define these vertices as follows: A vertex v of a polygon P is defined as convex
(concave), if the angle between its associated edges inside the polygon, i.e., the
internal angle at vertex v, is less than or equal to (greater than) 180�. In Fig. 1b,
angle h1 (between edges a and b) at vertex (x2, y2) is convex, whereas angle h2

(between edges c and d) at vertex (x4, y4) is concave.
Let us consider a simple polygon P with n vertices and n edges. A polygon P is

given implies that the coordinates of the successive vertices of the polygon are
given, where no two polygonal edges cross each other; rather, two consecutive
polygonal edges intersect only at a polygonal vertex. We may assume that a
portion of this polygon is as shown in Fig. 1b. To know whether an angle h, inside
the polygon, is either convex or concave at vertex v, we do a constant time
computation of determining the value (of h) at vertex v. Thus, all the n internal
angles of P are identified as convex or concave in O(n) time.

(x1,y1)

G

P

v2

v14

v13

v12

v8

v11

v10

v9

v7v6

v5

v4

v1

v3

(a) (b)

(x2,y2)

(x3,y3)

(x4,y4)

(x5,y5)

(x7,y7)
(x6,y6)

(x8,y8)

a
b

d
e

f
c

g

θ1

θ2

Fig. 1 a Guard zone of a polygon. b Part of a polygon with vertices (x1, y1) through (x8, y8), and
edges a through g; the dotted line indicates the inner portion of the polygon

A 2D Guard Zone Computation Algorithm for Reassignment… 185

At this point, we can conclude that the guard zone is computed only with the
help of n straight line segments and n circular arcs, if all the n angles of the
polygon are convex. But for a given simple polygon, we may have concave angles
as well, in P. Problems may arise in computing guard zone for those portions of
polygon P with concave angles. In this context, we introduce the concept of notch
as defined below.

In R2, for a given set of three or more connected vertices that form a simple
polygon, the orientation of the resulting polygon is directly related to the sign of the
angle at any vertex of the convex hull of the polygon. For example, to determine the
type of angle formed between edges a and b with coordinates XA (x1, y1), XB (x2, y2),
and XC (x3, y3), the following equation is being used that takes constant time for
finding out the angle whether it is convex or concave [9].

det Oð Þ ¼ XB�XAð Þ YC�YAð Þ� XC�XAð Þ YB�YAð Þ

The sign of det(O) helps to identify the type of angle being formed at polygonal
vertex XB. A positive value indicates a convex angle outside the polygon, whereas
a negative value indicates a concave angle outside the polygon, and a value zero
indicates that the points XA, XB, and XC are colinear. In this way, all the
n polygonal angles of P are identified as convex or concave in O(n) time and
avoided the use of comparatively costly trigonometric functions.

At this point, it is fair to conclude that the guard zone is computed only with the
help of n straight line segments and n circular arcs, if all the n polygonal vertices
form convex (external) angles. But for a given simple polygon, it may have
concave angles as well, in P. Problems may arise in computing guard zone for
these portions of polygon P with concave (external) angles. In this context, the
concept of notch has been introduced as defined below.

A notch is a polygonal region outside polygon P that is formed with a chain of
edges of P initiating and terminating at two vertices of a false hull edge [4]. A
convex hull is a convex polygon (having no concave angle) of minimum area with
all the points residing on the boundary or inside the polygon for a given set of
arbitrary points on a plane.

Clearly, if P is a given simple polygon and CH(P) denotes the convex hull of
polygon P, then the area CH(P)—P consists of a number of disjoint notches
outside polygon P. According to this definition, a notch is formed outside the
polygon in Fig. 2, below (or inside) the dotted line v2v8, as this edge is a false hull
edge.

Now, the difficulty arises while excluding the part(s) of G that overlap(s). In
doing so, we may take the help of digital geometry that can do the task in linear
time too [10–12]. But as our inclination in doing the task is by means of com-
putational geometry only, we like to exclude the part(s) of G that overlap(s) using
the concept of analytical and coordinate geometry. In the prior computation, we
have at most O(n) straight line segments and O(n) circular arcs in computing
G. So, to find out all the intersection points and exclude the overlapped region(s)
accordingly (in order to obtain only the desired guard zone, including holes, if any,

186 R. Mehera et al.

as parts of G), we may execute an O(n2) algorithm for each pair of such segments,
among all straight line segments and circular arcs. Indeed, this algorithm is greatly
expensive. Hence, while computing the initial guard zone G, we enclose P by G,
which is essentially a collection of O(n) line segments only (and there is no
circular arc part as we have drawn so far for each of the convex polygonal vertex
of P); we explain it in the subsequent sections.

In this paper, we assume that for computing guard zone, an arbitrarily shaped
simple polygon is given. A simple polygon is defined as the polygon in which no
two boundary edges cross each other. If two or more polygons are close enough so
that their guard zones overlap, indicating the violation of the minimum separation
constraint among them, the intersecting regions are to be detected such that the
guard zone can be computed by eliminating those regions of intersection. In this
paper, we have developed an algorithm to compute all these intersections and in
the end, the outcome is the targeted guard zone that we compute by eliminating the
intersecting regions.

2 Literature Survey

If P is a simple polygon and G is its guard zone of width r, then the boundary of
G is composed of straight line segments and circular arcs of radius r, where each
straight line segment is parallel to an edge of the polygon at a distance r apart from
that edge, and each circular arc of radius r is centered at a (convex) vertex of the
polygon. The boundary of a guard zone describes a simple region in the sense that
no two edges (straight line segment(s) and/or circular arc(s)) on its boundary
intersect in (or pass through) their interior. This has been explained in Fig. 1. The
problem originates in the context of resizing of VLSI layout design [7], as
described later on (see Sect. 4).

bs1

bs1

Inside of the polygon

v9

v8

v7

v6

v5

v4

v3

v1

v2

Fig. 2 A notch is formed inside (or below) the false hull edge produced by vertices v2 and v8,
and a guard zone is obtained for this notch as shown by dotted lines and circular arcs outside of
the polygon

A 2D Guard Zone Computation Algorithm for Reassignment… 187

In the context of guard zone computation, several different algorithms have
been proposed so far. The most discussed tool for guard zone computation is the
Minkowski sum. Apart from Minkowski sum, convolution can also be used as a
tool for guard zone computation. A linear time algorithm is developed for finding
the boundary of the minimum area guard zone of an arbitrarily shaped simple
polygon in [3]. This method uses the idea of Chazelle’s linear time triangulation
algorithm [2].

Essentially, Minkowski sum between a line (as polygonal segment) and a point
(perpendicularly at a distance r apart) with same x- and y-coordinates gives a line
parallel to the given one. But the question arises is whether the parallel line is
inside or outside the polygon. Here, the definition of Minkowski sum [4] can be
extended as below.

If A and B are subsets of Rn, and k [R, then A + B = {x + y | x [A, y [B},
A - B = {x - y | x [A, y [B}, and kA = {kx | x [A}. Note that A + A does not
equal 2A, and A - A does not equal ‘zero’ in any sense.

The convolution between a polygon and a circle of radius r gives us the desired
solution. But the circles need to be drawn in every possible point of the polygon,
and consequently, the time complexity of the algorithm increases. Minkowski sum
and convolution theories find their vast applications in Mathematics, computa-
tional geometry, resizing of VLSI circuit components, and in many other subjects/
problems.

The computational complexity of the Minkowski sum of two arbitrary simple
polygons P and Q is O(m2n2) [1], where m and n are the number of vertices of
these two polygons, respectively. In particular, if one of the two polygons is
convex, the complexity of Minkowski sum reduces to O(mn). In [3], a number of
results are proposed on the Minkowski sum problem when one of the polygons is
monotone.

An algorithm for finding the outer face of the Minkowski sum of two simple
polygons is presented in [6]. It uses the concept of convolution, and the running
time of the algorithm is O((k + (m + n)Hl) log2(m + n)), where m and n are the
number of vertices of two polygons and k and l represent the size of the convo-
lution and the number of cycles in the convolution, respectively. In the worst case,
k may be O(mn). If one of the polygons is convex, the algorithm runs in
O(k log2(m + n)) time, and there exists no algorithm that can compute the
boundary defined by the Minkowski sum of an arbitrary simple polygon and a
circle or a convex polygon in time, linear in the worst case of the problem.

In this context, a linear time algorithm is developed for finding the boundary of
the minimum area guard zone of an arbitrarily shaped simple polygon in [4]. This
algorithm uses the idea of Chazelle’s linear time triangulation algorithm [2] and
requires space complexity of O(n) as well, where n is the number of vertices of the
polygon. After having the triangulation step, this algorithm uses only dynamic
linear and binary tree data structures.

188 R. Mehera et al.

3 Formulation of the Problem and the Algorithm

Here, we assume the case of guard zone for a simple polygon. The case becomes
simpler if the polygon is convex, and there is no overlapping among the guard
zonal regions. Thus, the guard zone for a convex polygon can always be computed
in linear time [12]. But for some other cases, a simple polygon may contain
notch(s). This is also possible where guard zones for different polygonal segments
overlap. Figure 3a, b shows two different cases of such overlapping.

It may so happen that overlapping of guard zones occurs for two close convex
polygonal vertices of a simple polygon as shown in Fig. 3a. Again, an overlapping
of guard zones may occur for a polygonal edge and a convex polygonal vertex as
shown in Fig. 3b.

We can assume another case where a part of a polygon is shown Fig. 3c, where
B is a convex vertex and A is concave, and the guard zones of these two regions
may overlap. Again the guard zones for the polygonal edges BD and BE may
overlap to that of AC and AF.

In this paper, we have developed a sequential algorithm that computes a guard
zone G of a simple polygon P. Usually, a guard zone contains straight line seg-
ments that are parallel to the edges of P and circular arc-shaped portions of G that
are obtained only for the convex polygonal vertices of P. Here, we introduce a
variable optimal-drawing that we initially set to true. During execution of the
algorithm, if a concave external polygonal vertex is encountered, the value of
optimal-drawing becomes false. Based on the value of this variable, the algorithm
decides whether the intersection step needs to be executed. A true value of opti-
mal-drawing indicates that the intersection detection step(s) can safely be ignored.
Now, the formal steps of the algorithm are as follows:

(c)

E

D

B
C

F

A

Inside of
the
polygon

(a)
Probable
intersection
region

(b)

Fig. 3 Different kinds of intersections among guard zones. a Overlapping of guard zones that
may occur due to two nearby convex regions of a simple polygon. b Overlapping of guard zones
that may occur due to one straight line segment and one convex region of a simple polygon. c A
simple polygon consists of a number of convex and concave vertices whose guard zonal regions
are probable to overlap

A 2D Guard Zone Computation Algorithm for Reassignment… 189

Algorithm 2D_Guard_Zone

Input: A simple polygon P.
Output: A guard zone G of polygon P.
Step 0: Set optimal-drawing = true
Step 1: Clockwise label the vertices v1, v2, …, vn, of polygon P.
Step 3: For i = 1 to n - 1 do

Step 3.2: If the external angle at vi is convex then

Step 3.2.1: Draw a circular arc (outside the polygon) of radius r centered
at vi.
Step 3.2.2: Find the external angle at vi+1, and consider polygonal edge
(vi, vi+1).
Step 3.2.3: If the external angle at vi+1 is convex then

Step 3.2.3.1: Draw a circular arc (outside polygon) of radius r cen-
tered at vi+1.
Step 3.2.3.2: Draw a line parallel to (vi, vi+1) at a distance r apart
from the polygonal edge (outside the polygon) that is a simple
common tangent to both the arcs drawn at vi and vi+1.

Step 3.2.4: Else bisect the external angle at vi+1, denote the bisection
bsi+1.

Step 3.2.4.1: Draw a line parallel to (vi, vi+1) at a distance r apart
from the polygonal edge (outside the polygon) that is a tangent to the
arc drawn at vi and intersects bsi+1 at a point, say pi+1.
Step 3.2.4.2: Set optimal-drawing = false

Step 3.2.5: Assign i / i + 1.
Step 3.2.6: If vi = vn, then vi+1 = v1.
Step 3.2.7: Else bisect the external angle at vi, denote the bisection bsi.
Step 3.2.8: Find the external angle at vertex vi+1, and consider polygonal
edge (vi,vi+1).
Step 3.2.9: If the external angle at vi+1 is convex then

Step 3.2.9.1: Draw a circular arc (outside the polygon) of radius
r centered at vi+1.
Step 3.2.9.2: Draw a line parallel to (vi, vi+1) at a distance r apart
from the polygonal edge (outside the polygon) that intersects bsi at a
point, say pi, and is a tangent to the arc drawn at vi+1.

Step 3.2.10: Else bisect the external angle at vi+1, denote the bisection
bsi+1.

Step 3.2.10.1: Draw a line parallel to (vi, vi+1) at a distance r apart
from the polygonal edge (outside the polygon) that intersects bsi at a
point, say pi, and also intersects bsi+1 at a point, say pi+1.
Step 3.2.10.2: Set optimal-drawing = false.

190 R. Mehera et al.

Step 3.2.11: Assign vi / vi+1.
Step 3.2.12: If vi = vn, then vi+1 = v1.

End for
Step 4: If optimal-drawing = false, then there is a possibility that two line
segments or a line segment and a circular arc or two circular arcs of the guard
zone intersect, then the line sweep algorithm is executed to determine and
report all such intersection points, which eventually exclude the portions of the
line segment(s) and/or the circular arc(s) that are at a distance less than r apart
from a polygonal edge or a polygonal vertex (outside the polygon).

In this computation of G, we have at most O(n) straight line segments and
O(n) circular arcs, if P has no false hull edge. Otherwise, to compute all the
intersection points on G and exclude the overlapped region(s) accordingly (in
order to get the desired guard zone only, including hole(s), if any, as part(s) of G),
we may execute an O(n2) algorithm for each pair of such segments, among all
straight line segments and circular arcs. Indeed, this algorithm is greatly expen-
sive. In this paper, we have developed an algorithm to find the guard zone of a
simple polygon efficiently such that all the overlapped regions are excluded, and
we have done it using the concept of computational geometry.

A polygon consists of a number of convex and concave vertices. At the convex
vertices, the guard zone is circular in shape having a predefined distance r from the
polygon vertex [12]. So the circular arc has two tangents at two points where it
meets with the two line segments of the guard zone as shown in Fig. 5. In case of
guard zone for concave vertices or line segments, we can compute the intersections
of the guard zones (if any) by using line sweep algorithm [13] as those guard zonal
regions are straight line segments. But in case of circular arc, it cannot be applied
so easily as for line sweep algorithm, it is obvious to use starting and end points of
the line segments as event points [13]. But a guard zone of a polygon is not only a
set of line segments only, there are circular arcs as well. So, line sweep algorithm
cannot be applied to it directly.

We know that a circular arc can be assumed as the aggregation of a number of
infinitesimally small ordered line segments. Thus, if we can somehow subdivide
the arc into line segments, we can then apply the line sweep algorithm for
detecting the intersection points between those circular arcs with others. Though to
break an arc into line segments, we have to take some precision, that does not
affect the output of our algorithm as it definitely reports all the intersections
existing among the guard zonal regions.

In our algorithm, we have developed a procedure to subdivide the circular arc
into a collection of small arcs such that they can be considered as line segments. If
we take n number of iterations to subdivide the arc, we get (n + 1) number of line
segments, i.e., (n + 2) number of event points (starting and end points) as two
consecutive line segments share one point as starting of one and end point of
another. So, (n + 1) line segments have (n + 2) event points. This arc is also to be

A 2D Guard Zone Computation Algorithm for Reassignment… 191

checked with other guard zonal arcs and line segments for intersections whether it
is probable to intersect or not.

Let us consider a simple polygon P. Now, to find the intersections in the guard
zonal regions and to exclude the intersecting regions, we use line sweep algorithm
[13]. Hence, while computing the initial guard zone G, we surround P by G, which
is essentially a collection of O(n) line segments only (and there is no circular arc
part as we have drawn so far for each of the convex polygonal vertex of P); we
explain it as follows taking Fig. 6 into consideration.

Now, we explain how we replace a circular arc that has been drawn so far for
each of the convex polygonal vertex v of P with the help of a collection of smaller
straight line segments. Next, we claim that the desired guard zone G is computed
with the help of O(n) straight line segments only. To show the first part under
consideration, we take the help of Fig. 4 that contains a convex polygonal vertex
v along with its associated polygonal edges uv and vw. Here, for the time, we do
not like to know whether u and w are convex or concave polygonal vertices, as we
are only interested to consider a convex polygonal vertex v, whose guard zone is to
be computed comprising a constant number of (smallest possible) straight line
segments instead of a circular arc centering at v with radius r. Without loss of
generality, we assume that both the polygonal vertices u and w are also convex. So,
what we do, we compute two straight line segments u0v0 and v00w0, where u0v0 || uv
and u0v0 = uv, and also v00w0 || vw and v00w0 = vw, and the perpendicular distance
between the parallel lines for both the pairs is same as r. Hence, we obtain two
rectangles uvv0u0 and vww0v00, where vv0 = uu0 = ww0 = vv00 = r, since u0u (or
v0v) is perpendicular to uv and w0w (or v00v) is perpendicular to vw. So, u0v0 and
v00w0 are guard zones for the polygonal edges uv and vw, respectively. Now, we
compute guard zone for the polygonal vertex v as follows.

p1

Inside the polygon

v″
v′

w′

w
u′

u

bs1

bs2bs3

r r

v

p2 p3

Fig. 4 Recursive division of a convex polygonal angle formed at vertex v wherefrom equal-
length smallest possible chords are computed that in a group replaces the circular arc that is
computed as a part of guard zone outside the polygon up to a desired level of precision of an
angle that is formed at the convex vertex for each such smallest possible chord

192 R. Mehera et al.

We have already told that the guard zone for polygonal vertex v is composed of
a number of straight line segments that collectively replace the guard zonal cir-
cular arc (of radius r) that we usually draw at a convex polygonal vertex v outside
the polygon (where u0v0 and w0v00 are two tangents to that circular arc). We like to
do this task recursively using a constant time computation for each such polygonal
vertex v, as the value of \v0vv00 is always less than 180�. In other words, we may
state that we like to replace the circular arc that we usually compute as a part of
G for v by exactly 2p number of straight line segments (for some constant p) that
are equal in length to each other.

In order to obtain the smallest possible line segments, we follow a recursive
procedure which is binary in nature. First of all, we bisect \v0vv00 (or \uvw) by a
bisector bs1 whereon p1 is a point outside the polygon such that vp1 = r. We join
v0p1 and p1v00, so v0p1v00 is an approximated guard zone (for p = 1) of the circular
arc we liked to draw. Next, to make this approximation finer, we further bisect
\v0vp1 by a bisector bs2 whereon p2 is a point outside the polygon such that
vp2 = r and bisect \p1vv00 by a bisector bs3 whereon p3 is a point outside the
polygon such that vp3 = r. Then, we join v0p2, p2p1, p1p3, and p3v00, so v0p2p1p3v00

is a finer approximation of the guard zone (for p = 2) than the previous one (i.e.,
v0p1v00) of the circular arc we usually draw.

Needless to mention that for p = 3, we are supposed to bisect each of the angles
\v0vp2 through \p3vv00 and obtain intermediate points p4 through p7 on each such
bisection bs4 through bs7, outside the polygon such that vp4 = vp5 = vp6 = vp7 = r,
and even smaller line segments v0p4 = p4p2 = p2p5 = p5p1 = p1p6 = p6p3 =
p3p7 = p7v00, and in due course, we obtain an even finer approximation of the guard
zone (for p = 3) than that we computed for p = 2, which is more closer to the
circular arc we usually draw as a part of guard zone for a convex polygonal vertex.

This process of bisection is continued till the value of each bisectional angle
becomes 0.50� or 0.25� or up to some precision of angle that makes the straight
line segments as chords of the circular arc reasonably very small. Now, it is very
clear that all the points pi over the bisections outside the polygon are the points on
the circular arc as part of G, and each small line segment (whose length tends to
zero for a smaller value of r) is an approximation of its associated arc for which it
is the largest chord. So, further bisection of each of the bisected angles in sub-
sequent levels of recursion and spotting a point pi on each of the bisections at
distance r from v outside the polygon helps to achieve more points on the said
circular arc that are consecutively equidistant and closer to each other. Hence, up
to some desired level of precision, we may obtain a set of equal-length straight line
segments collectively that replaces the circular arc we liked to draw as a part of
G for vertex v.

In any case, as the value of \v0vv00 is always less than 180�, which is a constant,
we claim that the number of bisections or the number of recursive calls to bisect
\v0vv00 is always a constant (up to an acceptable smallest precision of angle). Even
then, this method may lack in finding a point of intersection of two circular arcs or
a circular arc and an edge of G where the segments are tangential (or almost
tangential) to each other. However, the probability of occurrences of such a

A 2D Guard Zone Computation Algorithm for Reassignment… 193

circumstance significantly reduces as in general, the value of r is appreciably
small. If some smaller edge (or the initial or final chord or some intermediate
chord pipi+1 that approximates its coupled arc) is found, that intersects with other
part(s) of G, which is also a line segment, then we may further bisect only that
angle recursively to identify a more accurate point of intersection that in time may
reduce many redundant computations. In this context, we like to conclude that the
total number of straight line segments as part of the computed guard zone G is at
most O(n), as stated below.

Now, we can compute all the intersections among the parts of the guard zone,
which are now transformed into line segments instead of circular arcs. This is not a
challenging problem as we can take each pair of segments, compute whether they
intersect, and if so, we report their intersection points. This is a brute force
approach and clearly requires O(n2) time. In some cases, it may be optimal, when
each pair of line segments really intersects. Our objective is to have an algorithm
that is faster in some situations where number of intersecting line segments is
considerably less than total number of line segments. The line sweep algorithm
[12] is such an algorithm whose running time depends not only on the number of
segments in the input, but also on the number of intersection points. For this
reason, this algorithm is known as output-sensitive algorithm or in this case, we
may call it intersection sensitive algorithm, because the number of intersections
determines the size of the output or in other words running time of the algorithm.

Proceeding in this way, we can use line sweep algorithm as all the circular arcs
have been replaced by a set of only line segments, taking all the line segments
which are actually in guard zone and which have been derived. But we yet do not
know which pair of circular arc(s) and/or line segment(s) have been intersected. If
we can somehow detect the probable intersecting regions, the number of checking
can be reduced, and thus, we would apply the above procedure for a smaller set of
regions which are in fact probable to intersect.

So, our first phase of the algorithm searches for the probable regions of inter-
sections. The results achieved from this phase reduce the sample space to be
checked for original intersections. In this phase, we take the extended guard zone
instead of the original guard zone and that may be derived in the following way.
We can take each circular arc and extend its two tangents which are actually the
extended line segments of the guard zone attached to that circular arc. Thus, they
meet at a point and we get s points for s number of circular arcs.

For example, an overestimated guard zone is formed by extending two
neighboring guard zonal line segments drawn for the convex polygonal vertex
v that meet at point p, as shown in Fig. 5. Here, the circular arc v0v00 is the actual
guard zonal region of the convex vertex v. Thus, all the circular arcs of the guard
zone are now replaced by corresponding convex vertices in the extended polygon.
It may be simple or not. If the extended guard zone which is actually a polygon is
simple; that is, there is no intersection between any regions of the polygon, it is
sure that our original polygon has no intersections. On the other hand, if it has
some intersections, those may result in actual intersections, as those are detected

194 R. Mehera et al.

from the extended guard zone. So, to be sure of the intersection(s), we have to
proceed further.

In the second phase, we deal with the original guard zonal regions, not with the
extended guard zones but with the regions that are proved to have probable
intersection(s) by the first phase of the algorithm. As has been discussed earlier,
those regions involving a convex polygonal vertex are subdivided into line seg-
ments and line sweep algorithm is further applied on those line segments (com-
puted for the guard zone) only. At the end of the second phase, we get the unique
intersections and depending on this information, the algorithm reports the outer
guard zone. Two phases of the algorithm is discussed below with the help of an
example simple polygon, as shown in Fig. 6a.

Let us consider a simple polygon P whose vertices are stored in anticlockwise
manner as a through l, where a, b, c, d, e, f, g, k, and l are convex and h, i, and j are
concave vertices (Fig. 6a). This can be achieved by traversing the polygon in
anticlockwise direction starting from a point and ending at that very point, and at
the time of traversing, the vertices are checked to inform whether it is convex or
concave; accordingly, this information is stored with the corresponding vertices.

p

Inside the
polygon

v″
v′

w′

w

u′

u

r
r

v

Fig. 5 Extension of the two neighboring guard zonal line segments that meet at p, instead of a
circular arc of radius r, overestimates the guard zone for a convex polygonal vertex v

L

D

C3

A

B

G

K
F

E

J

H

I

1

2

4
8

9

6

5

107

12

11

(b)

d

l

a

b c

g

f
k

e

j

h

i

(a)

Fig. 6 a A simple polygon P drawn by dotted line segments. b An extended guard zone X of
P (where X is drawn by solid line segments)

A 2D Guard Zone Computation Algorithm for Reassignment… 195

This takes O(n) time, if n is the number of vertices in the simple polygon. So the
guard zone computed in linear time has circular arcs at the convex regions [1], and
the other portions are straight line segments only.

3.1 Phase-I of the Algorithm

As has been discussed earlier, every two neighboring line segments of every
circular arc (guard zone of a convex vertex) are extended and they meet at a point
which is again a convex vertex of the overestimated polygon. Let us consider an
overestimated guard zone X (for polygon P), whose vertices are stored in anti-
clockwise manner that are A through L, as shown in Fig. 6b. The edges that are
considered as line segments are labeled as AB(2), BC(3), CD(4), DE(5), EF(6),
FG(7), GH(8), HI(9), IJ(10), JK(11), KL(12), and LA(1).

When we are to apply line sweep algorithm, i.e., to avoid testing all pairs of
segments for intersections, we have to select lines that are close together. We need
to sweep a line, parallel to a horizontal line, downward over the plane, starting
from a position above all segments, and at the time of sweeping the imaginary line,
we keep track of all the segments. The status of the sweep line is the set of
segments intersecting it. The status is updated at particular points, not continu-
ously. We call these particular points the event points. At every event point, the
neighbors of the line segments are found. Only the neighbors are considered as
candidates for intersection.

In the traditional line sweep algorithm [12], an assumption has been taken that
no two line segments have same starting point. The neighbors of a line segment are
considered depending on the intersection points of the line segments with the
sweep line which is parallel to the x-axis. If no two line segments have same
starting point, it is straightforward to find the neighbors at any moment. But in case
of the guard zonal line segments, as a polygon is a closed region, at the top most
point, it is the starting point of two line segments. At that event point, we depend
on the end point to detect the order of neighborhood between the two lines.

According to the algorithm devised in this paper, we have considered the event
points as the vertices, the starting and ending points of the extended guard zonal
edges of the given polygon P. Here, these are stored in an event queue according
to the decreasing order of y-coordinates. If two or more vertices have the same
y-coordinate, then sort them according to increasing x-coordinate. So, here, the
order is L, E, A, F, K, J, D, G, H, I, B, and C. These are stored in a list which is
initially empty. At the starting of the algorithm, this array only contains all the
starting and ending points, but subsequently, the intersection points are also
inserted in it, which are later on treated as event points as well. To traverse this list
efficiently and for updating at the time of inserting an intersection point, we
represent this in a binary search tree.

196 R. Mehera et al.

Again we use a Query tree T to handle the line segments which is initially
empty. The lines (already labeled in clockwise or anticlockwise manner) are to be
inserted or deleted or updated at the event points.

Now, the sweep line is set parallel to x-axis at the point where y-coordinate is
maximum, i.e., at L. It is the starting point of two line segments 1 and 12. Now, the
x-coordinate of the end of 1 is less than that of the end of 12. So, in T, 1 is left
neighbor of 12. Accordingly, the tree may be any one like the trees shown in
Fig. 7a, b.

(j)

7

5

10

2

(l)

10

4

7

2

(k)

10

5

7

2

(m)

10

4

8

2

(i)

7

5

11

2

(n)

8

4

10

2

2

4

(o)

9

4

10

2

(q)
3

4

(r)(p)
4

2

6

5

12

2

(e) (f)

12

5

6

2

(h)

11

5

7

2

(g)

12

5

7

2

(c) (a) (b) (d)

1

12

6

5

1

12

12

1 6

5

12

1

Fig. 7 a 1 and 12 have been inserted making 12 as the right child of 1. b 1 and 12 have been
inserted making 1 as the left child of 12. c 5 and 6 have been inserted making 6 as right child of
12 and 5 as right child of 6. d The unbalanced tree in Fig. 7c is made height balanced. e 1 is
deleted, and 2 is inserted making 2 as left child of 12. f The position of 12 and 6 has been
interchanged. g 6 is deleted, and 7 is inserted at the position of 6. h 12 is deleted, and 11 is
inserted at the position of 12. i The position of 7 and 11 has been interchanged. j 11 is deleted,
and 10 is inserted at the position of 11. k The positions of 7 and 10 have been interchanged. l Five
is deleted, and 4 is inserted at the position of 5. m 7 is deleted, and 8 is inserted at the position of
7. n The position of 8 and 10 has been interchanged. o 8 is deleted, and 9 is inserted at the
position of 8. p 9 and 10 are deleted resulting 4 to be the root. q 9 and 10 are deleted resulting 2 to
be the root, and this tree is selected as the x-coordinate of the end point of 2 is less than that of 4,
though both of them have same y-coordinates. r 2 is deleted, and 3 is inserted at the position of 2

A 2D Guard Zone Computation Algorithm for Reassignment… 197

But this does not include any indefiniteness in our algorithm. We can always
select the root by comparing the y-coordinates of the two line segments whose
starting points are same. The line segment, whose end point is of greater
y-coordinate value between the two, is selected as the root. Now, the other line
segment is inserted in the tree as right child or left child of the root depending on
the neighboring relationship of this segment with the root. Thus, here 1 is the root
node and 12 is its right child as the y-coordinate of A, which is the end point of
segment 1, is higher than that of K; that is, the y-coordinate of A is greater than that
of K, which is the end point of segment 12. So the tree in Fig. 7b is chosen. Now,
as 1 and 12 are consecutive polygonal edges, there is no need to check their
intersection. L is deleted from the event list.

Now, the event queue is E, A, F, K, J, D, G, H, I, B, and C.
Next event point is E. It is the starting point of 6 and 5, and 6 is now neighbor to

12 as E is at more right than 12 and 5 is right neighbor to 6. So the tree is as
follows. Here, we have chosen the first one among the two previous trees as in the
other case, it would not be height balanced. Accordingly, the tree is shown in
Fig. 7c. As it is a height-imbalanced tree, it is modified to height balanced by AVL
rotation and the final tree is shown in Fig. 7d.

Now, checking is done for intersections between 6 and 12. There is an inter-
section, and the point is Q. So Q is inserted in the list with other information
Q(6,12). The intersection point Q is inserted in the event list maintaining
y-coordinate order. E is deleted from the event list, and Q is inserted. The event list
is now A, Q, F, K, J, D, G, H, I, B, and C.

Next event point is A. It is the end point for 1. So, 1 is deleted from T as it is a
leaf node; nothing to do for updating. Now, 2 is inserted in T and it is the left
neighbor of 12 as 1 has been deleted and A is at left of the point at which 12 cuts
the sweep line. Accordingly, the tree is shown in Fig. 7e. A is deleted from the
event list. Now, the event list is Q, F, K, J, D, G, H, I, B, and C.

Now, the event point Q is to be handled. As it is an intersection point, the
neighboring information is updated in T. Twelve and 6 are interchanged. Again
their set of neighbors has also been interchanged. Accordingly, the tree is shown in
Fig. 7f. Q is deleted from the event list. The event list is obtained as F, K, J, D, G,
H, I, B, and C.

Next event point is F. It is the end point of 6 and starting point of 7. Line 6 is
deleted from T, and line 7 is inserted into T. As F is at left of 12 but right of 2, 12 is
the right neighbor and 2 is the left neighbor of 7. So the tree is shown in Fig. 7g.
F is deleted from the event list. The event list is now K, J, D, G, H, I, B, and C. Now,
2 and 7, and 12 and 7 are to be checked for intersection. There is no intersection.

Next event point is K, and it is the ending point of 12 and starting of 11. Now,
K is at the right of 7 and left of 5; so the left neighbor and right neighbor of 11 are
7 and 5, respectively. Next, 12 is deleted and 11 is inserted. Accordingly, the tree
is shown in Fig. 7h. Now checking for intersection is done between lines 7 and 11,
and lines 5 and 11. Now, there is intersection between 11 and 7, and the point is
p. So the intersection list is updated q(6, 12), p(7, 12). p is inserted in the event list,
and K is deleted from it. The event list is now P, J, D, G, H, I, B, and C.

198 R. Mehera et al.

Next event point is p. As it is an intersection point, the neighboring information
is updated in T. Eleven and 7 are interchanged. Again their set of neighbors has
also been interchanged. Accordingly, the tree is shown in Fig. 7i. p is deleted from
the event list. The event list is now J, D, G, H, I, B, and C.

The next event point is J. It is the end point of 11 and starting of 10. Now, J is at
the right of 2 and left of 7. So, the left neighbor and right neighbor of 10 are 2 and
7, respectively. Eleven is deleted, and 10 is inserted. Hence, the tree obtained is
shown in Fig. 7j. Now, 10 and 7, and 10 and 2 are to be checked for intersection.
There is an intersection between 10 and 7, and the point is R. So the intersection
list is updated q(6, 12), p(7, 12), r(11, 7). r is inserted in event list, and J is deleted
from the event list. The event list is now r, D, G, H, I, B, and C.

Next event point is r. As it is an intersection point, the neighboring information
is updated in T. Ten and 7 are interchanged. Again their neighbor sets have also
been interchanged. The resulting tree is shown in Fig. 7k. Now, r is deleted from
the event list. The event list is now D, G, H, I, B, and C.

Next event point is D. It is the end point of 5 and starting of 4. Now, D is at the
right of 10. So the left neighbor of line 4 is line 10. Five is deleted, and 4 is
inserted. Accordingly, the tree is shown in Fig. 7l. Now checking for intersection
is done between 10 and 4. There is no intersection. D is deleted from the event list.
The event list is now G, H, I, B, and C.

Next event point is G. It is the end point of 7 and starting of 8. Now, G is at the
right of 2 and left of 10. So, the left neighbor and right neighbor of 8 are 2 and 10,
respectively. Seven is deleted, and 8 is inserted. The tree is shown in Fig. 7m.

Now, checking for intersection is done between 10 and 8, and 2 and 8. There is
an intersection between 10 and 8, and the point is s. Hence, the intersection list
is updated as q(6, 12), p(7, 12), r(11, 7). s(10, 8). s is inserted in event list, and G is
deleted from the event list. The event list is now S, H, I, B, and C.

Next event point is s. As it is an intersection point, the neighboring information
is updated in T. Ten and 8 are interchanged. Again their neighbor sets have also
been interchanged. Accordingly, the tree is shown in Fig. 7n. s is deleted from the
event list. The event list is now H, I, B, and C.

Next event point is H. It is the end point of 8 and starting of 9. Now, H is at the
right of 10 and left of 4. So, the left neighbor and right neighbor of 9 are 10 and 4,
respectively. Eight is deleted, and 9 is inserted. The tree is shown in Fig. 7o. Now,
9 and 10, and 9 and 4 are to be checked for intersection. There is no intersection,
so H is deleted from the event list. The event list is now reduced to I, B, and C.

Next event point is I. It is the end point of 10 and 9. Now, I is at the right of 2
and left of 4. So, 9 and 10 are deleted. Accordingly, the tree is shown in Fig. 7p.
Now, checking for intersection is done between 2 and 4. There is no intersection,
so I is deleted from the event list. The event list is now B and C.

Next event point is B. It is the end point of 2 and starting of 3. B is at the left of
4. So, 3 is inserted at left of 4, and 2 is deleted from T. Hence, the tree we obtain is
shown in Fig. 7q. No checking is made, as 3 and 4 are two consecutive edges of
the polygon. B is deleted from the event list, and the event list we obtain is C.

A 2D Guard Zone Computation Algorithm for Reassignment… 199

So, the next event point is C. It is the end of 3 and 4. So, 3 and 4 are deleted,
and the tree T as well as the event list becomes empty.

The intersection list is now considered. For each intersection detected in the
above phase, a second phase of the algorithm comes into picture.

3.2 Phase-II of the Algorithm

Now, we have already obtained the intersection points for the overestimated guard
zonal region. The intersection point can be on the actual guard zonal line segment
or on the extended portion of the line segment which has been drawn to make the
guard zone a polygon, which is not simple in general. So, for each intersection
point, we have to check among the original line segment and the circular arc(s)
depending on the fact whether the line segment joins two convex vertices, or one
concave vertex and one convex vertex. If it joins two concave vertices, then only
the line segment is considered.

If we repeatedly bisect the obtained angles after some iterations when the
angles are getting much smaller (with respect to some predefined value), the arcs
can be considered as line segments. Even when the convex angle tends to 360�, we
have to subdivide only 180� as we exclude two 90� angles before starting the
subdivision.

If we subdivide the arc p times, there are p + 1-ordered subarcs or line segments
where two consecutive line segments share their starting and ending points except
the two at the end. So, the number of event points is p + 2 for each circular arc.

In the intersection list, the first intersection point is q, which is obtained in
between lines 6 and 12. Line 6 joins two convex points F and E. So, we have to
consider both the circular arcs corresponding to E and F, and the line segment
joining those circular arcs. Again, line 12 also joins two convex points L and K,
and we consider both the circular arcs corresponding to L and K, and the line
segment joining these circular arcs.

From the above information, we have four circular arcs and two line segments
for a probable intersecting region which we have got from the first phase of the
algorithm. At the second phase, after subdividing the arcs, we get a total of
4(p + 1) + 2 number of line segments for the line sweep algorithm. After
applying the line sweep algorithm on the line segments mentioned above, we find
that actually there is no intersection among the original guard zone.

The next intersection point is p, which is obtained in between lines 7 and 11.
Line 7 joins two convex points F and G. So, we have to consider both the circular
arcs corresponding to F and G, and the line segment joining these circular arcs.
Again 11 joins a convex point K and a concave point J; so we consider the circular
arc corresponding to K and the line segment joining the circular arc and the
concave point J.

Now, we have three circular arcs and two line segments for a probable inter-
secting region. At the second phase, after subdividing the arcs, we get a total of

200 R. Mehera et al.

3(p + 1) + 2 number of line segments for the line sweep algorithm. After
applying the line sweep algorithm on the line segments mentioned above, we find
that actually there is also no intersection among the original guard zone.

From the intersection list, our next intersection point we get is r, which is
formed in between lines 7 and 10. Line 7 joins two convex points F and G. So, we
consider both the circular arcs corresponding to F and G, and the line segment
joining these circular arcs. Again, line 10 joins two concave points J and I, so we
consider only the line segment joining the concave points J and I.

Now, we have two circular arcs and two line segments for a probable inter-
secting region. At the second phase, after subdividing the arcs, we get a total of
2(p + 1) + 2 number of line segments for the line sweep algorithm. After
applying the line sweep algorithm on the line segments mentioned above, we find
that there is one intersection point between the circular arc corresponding to G and
the line segment JI. Let the point be Y. We store the intersection point as a triple
hintersection point, two ends of one of the intersecting line, two ends of the other
intersecting linei.

If the line joins two circular arcs, then the two ends of the line segment are
denoted as (arc, arc). If the line joins two concave points, the ends are defined as
(end point, end point). If the line joins one circular arc and one concave point, then
the ends are defined as (arc, end point). Again we store the ending information of
that very line which first contains the end point or arc which occurs before others
in the list of the line segments and arcs of the guard zone. So, here we store hY,
(arc(F1, F2), arc(G1, G2)), (I, J)i.

From the intersection list, our next intersection point is s, which is formed in
between lines 8 and 10. Eight joins one convex point G and one concave point
H. So we consider the circular arcs corresponding to G and the line segment
joining the circular arc and the concave point H. Again, 10 joins two concave
points J and I, so we consider only the line segment joining the concave points
J and I.

Now, we have one circular arc and two line segments for a probable intersecting
region. At the second phase, after subdividing the arcs, we get a total of
(p + 1) + 2 number of line segments for line sweep algorithm. After applying the
line sweep algorithm on the above-stated line segments, we find that actually there
is one intersection between the line segment joining the circular arc corresponding
to G and the concave point H and the segment JI. Let the point be X. We store it as
hX, (arc(G1, G2), H), (I, J)i.

The output is in the form of the list of guard zonal line segments and guard
zonal circular segments after eliminating intersecting region. As in the notch area,
guard zone may be divided into inner and outer guard zone after eliminating the
overlapping region. After detecting the intersecting points, they are also updated in
the list. Thus, before applying this algorithm, our list is in the form (Fig. 8):

arc(A1, A2), A2B1, arc(B1, B2), B2C1, arc(C1, C2), C2D1, arc(D1, D2), D2E1,
arc(E1, E2), E2F1, arc(F1, F2), F2G1, arc(G1, G2), G2H, HI, IJ, JK1, arc(K1,
K2), K2L1, arc(L1, L2), L2A1.

A 2D Guard Zone Computation Algorithm for Reassignment… 201

As our objective is to determine the intersection and update the original guard
zone eliminating it, we focus only on the intersection points. We start our stored list
of the line segments and circular arcs and traverse the guard zone anticlockwise.
When one of the intersection points is achieved (say, this is the intersection between
L1 and L2 and we are traversing through L1), we do not proceed through the line(L1)
we were so far traversing. We change the direction and continue traversing through
the other line segment or arc(L2) intersected at that point. From the intersection
point, we change our path, and through the other line, the traversing is continued in
anticlockwise manner. We can find the next line segment or arc after L2 in anti-
clockwise direction, as the original guard zone list is already stored. Thus, when we
reach at the starting point of the traversal, our job is done. It is performed in
O(n) time if the number of vertices in the polygon is n. In our example, it results in
the outer guard zone as follows: arc(A1, A2), A2B1, arc(B1, B2), B2C1, arc(C1, C2),
C2D1, arc(D1, D2), D2E1, arc(E1, E2), E2F1, arc(F1, F2), F2Y, YJ, JK1, arc(K1,
K2), K2L1, arc(L1, L2), L2A1.

In this case, when we arrive at Y after traversing segment F2Y, we check for the
line segment which intersects at Y other than F1G2. Here, it is JI and the vertex
from Y at anticlockwise direction is J. So, we move to J and report the segment YJ
as the next traversed line segment in the original guard zone excluding the
overlapped regions.

Sometimes, there may be an overlapping at the notch region and there is a
sufficient place in that notch to place a subcircuit to utilize the area more effi-
ciently. In this case, if we follow the above procedure, we compromise the pos-
sibility to find the region which is in the shape of a loop inside the notch. In that
case, we follow the procedure said below.

We start traversing the guard zonal line segments and circular arcs as said
above. When we are at one of the intersection point, we traverse anticlockwise
enlisting the line segments and circular segments including the intersection point
also. Thus, the list starting from one intersection point and ending at the same
point is to be eliminated from the guard zone as it includes the inner guard zone

Fig. 8 The computed entire
guard zone of the given
polygon P in Fig. 6a

202 R. Mehera et al.

and intersection region. Then, we get the resultant list for the guard zone. The
inner guard zone can also be specified by sublist of the above-said list. If there is
one such cycle starting from one intersection point and ending at that point without
having any other intersection point within it, it is the inner guard zone.

So, from our example, we have got two intersection triples
hY, (arc (F1, F2), arc (G1, G2)), (I, J)i
hX, (arc (G1, G2), H), (I, J)i.
Starting from arc (F1, F2), we get the list:
arc(F1, F2), F2Y, YG1, arc(G1, G2), G2X, XH, HI, IX, XY, YJ as it covers all
the end points of this triple and it is updated in the original guard zonal list. But
here is no inner guard zone starting from Y and ending at Y because in this
cycle, there is another intersection point X. Before updating the original list, we
remove the sublist starting from Y and ending at the line segment joining two
intersection points. Thus, here we remove this portion: YG1, arc (G1, G2),
G2X, XH, HI, IX, XY.
Starting from arc (G1, G2), we get the list: arc (G1, G2), G2X, XH, HI, IX,
XY, YJ
So the inner guard zone is XH, HI, IX.
The outer guard zone is arc(A1, A2), A2B1, arc(B1, B2), B2C1, arc(C1, C2),
C2D1, arc(D1, D2), D2E1, arc(E1, E2), E2F1, arc (F1, F2), F2Y, YJ, JK1,
arc(K1, K2), K2L1, arc(L1, L2), L2A1.

3.3 Algorithm at a Glance

The first phase of the algorithm to detect the probable regions of intersections:
Input: Vertices of the polygon (where we have considered the guard zone) in

anticlockwise manner. The edges, which are considered as line segments here, are
labeled.

Event points: Vertices (the starting and ending points of the polygonal edges)
intersection. An event queue is maintained to store the event points, and after
traversing a point, it is deleted from the event queue.

Query tree (T): the line segments (already labeled in clockwise or anticlockwise
manner) are to be inserted or deleted or updated at the event points in a tree
structure. Initially, the tree is empty.

Step 1: Sort all the vertices in the decreasing order of y. If two or more vertices
have the same y-coordinate, then sort them according to increasing x-
coordinate.
Step 2: Set the sweep line parallel to x-axis at the point where y-coordinate is
maximum. It is the first event point.
Step 3: At any event point, update the query tree T if it is a starting point.

A 2D Guard Zone Computation Algorithm for Reassignment… 203

Step 3.1: Insert the starting line segments to the query tree (T) according to
the order of the x-coordinates of the event points. As there may be two
starting lines at an event point, they are to be inserted in the query tree
having proper position with respect to x-coordinate of the end points of
those line segments.
Step 3.2: Then, check for intersection with those who are neighbors of the
line segment in the query tree. No checking is required for those pair of
neighbors which are consecutive edges in the polygon. If there is an
intersection, then retrieve the information as follows.

Step 3.2.1: Intersection point is stored in the intersection list as inter-
section point; the line segments intersected at that point.
Step 3.2.2: The intersection point is inserted in the event queue at the
position maintaining y-coordinate order.

Step 3.3: If it is an ending point, then delete the line and update the
neighboring nodes. The previous neighbors of the deleted line are now
neighbor of the new line.
Step 3.4: If it is an intersection point, update the query tree T by inter-
changing the positions of the intersecting lines.
Step 3.5: Delete the event point from the event queue.
Step 3.6: Terminate when the entire event points are visited; that is, event
queue is empty and the query tree T is again empty.

Output: The intersection list of which every entry is in the following form:
shvi(l1, l2)i vi denotes the intersection point, (l1, l2) denotes (line 1, line 2 that
have intersected at that point vi).

The second phase of the algorithm to detect the actual intersections from
probable regions of intersections

Input:

• The intersection list obtained from Phase-I.
• Corresponding line segments and arcs of the original guard zone of the given

polygon to the vertices of the extended polygon which were enlisted in the
intersection list.

Step 1: For every intersection point, two lines intersecting at that point are
considered and the list of the ends of those two line segments is built.

Step 1.1: If the two lines join two circular arcs each at the ends, the list
contains four circular arcs and two line segments which intersect.
Step 1.2: If both the two lines join two concave points each, the list contains
only two line segments which intersect.
Step 1.3: If one of the lines joins one circular arc and one concave point and
another joins two circular arcs, then the list contains three arcs and two line
segments which intersect.

204 R. Mehera et al.

Step 1.4: If both the lines join one circular arc and one concave point each,
then the list contains two arcs and two line segments which intersect.

Step 2: The following is performed for each circular arc.

Step 2.1: Every circular arc is the guard zonal region for one convex vertex
of the corresponding original polygon. Two perpendiculars are drawn on the
two points where the circular arcs meet the neighboring line segments.
Step 2.2: The angle between these two perpendiculars is bisected. Thus, we
get two subarcs of equal size. Then, every subarc is bisected again. This is a
recursive procedure, and p + 1 subarcs are there after bisecting p times. p is
predefined, such that p + 1 subarcs of equal size can be obtained.
Step 2.3: p is so chosen that the subarcs obtained are so small that they can
be treated as line segments. So, there is p + 1 line segments for each arc
which shares p number of points as common point of every two consecutive
line segments. If the list as said above contains ‘x’ number of circular arcs,
it has now (x*(p + 1)) +2 line segments.

Step 3: Now, line sweep algorithm is applied to the line segments of this list as
described in the first phase of the algorithm. As the information of consecu-
tiveness among the lines is known, if there exists an intersection point except
these common points, it is stored as it is the intersection point between the
original guard zone regions.

Thus, before applying this algorithm, the list contains all the line segments and
arcs without considering the intersection regions. Whenever the original inter-
section points are obtained (if any), the list is updated by inserting the intersection
point(s) on the line segment(s) and/or arc(s) and renaming the line segments or
arcs by dividing it at the intersection point(s).

At the time of reporting the guard zone excluding the overlapped regions,
starting from the end point as listed in one of the intersection triple, the polygon is
traversed anticlockwise enlisting the line segments and circular segments includ-
ing the intersection points also. Thus, the list starting from one intersection point
and ending at the same point is to be eliminated from the guard zone as it includes
the inner guard zone and intersection region. The resultant list for the guard zone is
thus obtained. The inner guard zone can also be specified by sublist of the above-
said list. If there is one such cycle starting from one intersection point and ending
at that point without having any other intersection point within it, it is the inner
guard zone.

After finding list of line segments and arcs, it is updated in the original guard
zonal list. There is no inner guard zone starting from one intersection point (Y) and
returning to that very intersection point (Y) if in this cycle, there is not any other
intersection point X and X 6¼ Y; otherwise, there is an inner guard zone which is to
be distinctly specified. If there exists any inner guard zone, before updating the
original list, the sublist starting from Y and ending at the line segment joining two
intersection points X, Y is removed. The remaining list is the outer guard zone.

A 2D Guard Zone Computation Algorithm for Reassignment… 205

4 Complexity Analysis

If the number of edges in the original polygon is n, then the number of edges in the
overestimated polygon is also n. The algorithm starts by constructing the event
queue by sorting the starting and end points of the line segments, which takes
O(n log n) time. Initializing the status structure takes constant time. The handling
of event queue consists of three operations, insertion, deletion, and interchange of
positions, which takes O(log n) time each. Now, m = n + I; I is the number of
intersection points. The complexity of line sweep algorithm is O(m log2n) [13].

Lemma The number of times any circular arc is to be subdivided to convert one
of the division a line segment, i.e., p is a constant.

Proof We consider two extreme cases, i.e., the circular arcs for the convex ver-
tices with two extreme values of the angles. If we can prove that p is a constant for
those two cases, it is true for all the intermediate values. The convex angle is
maximum when it tends to 180� and it is minimum when it tends to 0�. Figure 9a,
b show these two cases. If internal angle tends to 180�, the external angle tends to
180�. Hence we draw perpendiculars from the vertex of the original polygon to the
two adjacent line segments at points A and B as shown in Fig. 9a. So, \AOB tends
to 0� and we get the line segment corresponding to the circular arc by connecting
A and B. Thus there is no need to bisect the angle for this situation.

On the other hand if the external angle tends to 360�, observing Fig. 9b, \AOB
which tends to 360�-(90� + 90�) = 180�, is to be subdivided. When a sub arc
makes an angle less than or equal to 4�, we can consider the sub arc to be a line
segment. To subdivide the \AOB here, if we follow the sequential algorithm, we
need to perform the bisection operations 44 times, which is a constant, i.e., it does
not depend on n, the number of vertices in the original polygon. Hence p is a
constant between 0 and 44. r

Inside of the polygon

External angle ≈ 180º
External angle ≈ 360º

(b)(a)

A

O
B O

B

A

Fig. 9 a External angle tends to 180�, but the circular arc to be subdivided is associated with an
angle that tends to 0�. b External angle tends to 360�, but the circular arc to be subdivided is
associated with an angle that tends to 180�

206 R. Mehera et al.

Again, if the number of intersections is I, then the maximum number of line
segments that take part in the line sweep algorithm in the second phase is
(4(p + 1) + 2) for each case, where p is the number of iterations by which the
bisection has been done. So, the complexity is O(p log2 p). For I intersection
points, it is O(Ip log2 p). For two phases, it is O(n log2 n + Ip log2 p log2 n). As
p is a constant predefined, p log2 p is also a constant; we can conclude it as
O(n log2 n + cI log2 n).

The amount of storage used by the algorithm is to be analyzed. In the first phase
of the algorithm, the tree T stores a segment at most ones, so it uses O(n) storage.
The size of the event queue is bounded by O(n + I) [12]. In the second phase, we
need constant (in terms of p) amount of storage for every intersection point
detected in Phase-I, ultimately resulting in linear time.

5 Applications and Conclusion

Now, in brief, we like to point out the importance and motivation of the problem as
follows. Suppose, there are two (approximated) guard zones G1 and G2 that are
computed for two 2D simple polygons P1 and P2, respectively, those are not shown
in Fig. 10a. Moreover, these two polygons are to be placed adjacent in realizing a
larger VLSI circuit, where the two polygons or guard zones must not overlap. So,
there might have several 2D arrangement (or placement) of these two guard zones
as shown in Fig. 10b–e, out of which the placement in Fig. 10d takes the most
reduced space (or area).

Though we have considered here a simple polygon, sometimes there may be
more than one subcircuits whose guard zonal regions are somewhere so close that

(c) (d)

(e)

(b)

G2 G2

G2

G2G2

G1
G1 G1

G1
G1

(a)

Fig. 10 a Two (approximated) guard zones G1 and G2 are assumed as computed for two 2D
simple polygons P1 and P2 (that are not shown in these figures), respectively. b–e Different 2D
arrangement (or placement) of these two guard zones, out of which (d) consumes the least
amount of 2D space (due to better use of notches)

A 2D Guard Zone Computation Algorithm for Reassignment… 207

they overlap. This compels us to compute a common guard zonal region for them
removing the intersection regions.

It may so happen that sometimes a small polygon that has been placed outside a
large polygon with a sufficiently big notch in it. In this case, the small polygon
could be accommodated inside the notch of the large polygonal boundary. Often,
this sort of placement of a small polygon inside a notch of some other polygon
may provide a compact design and subsequently, space is also saved. Thus, re-
sizing is an important problem in VLSI layout design as well as in embedded
system design, while accommodating the (groups of) circuit components on a chip
floor, and this problem motivates us to compute a guard zone of a simple polygon.

The guard zone problem finds another important application in the automatic
monitoring of metal-cutting tools. Here, a metal sheet is given and the problem is
to cut a polygonal region of some specified shape from that sheet. The cutter is like
a ballpoint pen whose tip is a small ball of radius d, and it is monitored by a
software program. If the holes inside the notch also need to be cut, our algorithm
can easily be tailored to satisfy that requirement too.

The Minkowski sum is an essential tool for computing the free configuration
space of translating a polygonal robot [1]. It also finds application in the polygon
containment problem and in computing the buffer zone in geographical informa-
tion systems [5], to name only a few.

References

1. Bajaj, C., Kim, M.-S.: Generation of configuration space obstacles: The case of a moving
algebraic curves. Algorithmica 4(2), 157–172 (1989)

2. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry:
Algorithms and Applications. Springer, Berlin (1997)

3. Hernandez-Barrera, A.: Computing the minkowski sum of monotone polygons. IEICE Trans.
Inf. Syst. E80-D(2), 218–222 (1996)

4. Heywood, I., Cornelius, S., Carver, S.: An Introduction to Geographical Information
Systems. Addison Wesley Longman, New York (1998)

5. Hwang, K., Briggs, F.A.: Computer Architecture and Parallel Processing. McGraw-Hill, New
York (1984)

6. Lee, I.-K., Kimand, M.-S., Elber, G.: Polynomial/rational approximation of minkowski sum
boundary curves. Graph. Models Image Process. 60(2), 136–165 (1998). (Article No:
IP970464)

7. Nandy, S.C., Bhattacharya, B.B., Hernandez-Barrera, A.: Safety zone problem. J. Algorithms
37, 538–569 (2000)

8. http://en.wikipedia.org/wiki/Curve_orientation
9. Mehera, R., Chatterjee, S., Pal, R.K.: A time-optimal algorithm for guard zone problem. In:

Proceedings of 22nd IEEE Region 10 International Conference on Intelligent Information
Communication Technologies for Better Human Life (IEEE TENCON 2007), CD: Session:
ThCP-P.2 (Computing) (Four pages). Taipei, Taiwan (2007)

10. Mehera, R., Pal, R.K.: A cost-optimal algorithm for guard zone problem. In: Proceedings of
10th International Conference on Distributed Computing and Networking (ICDCN 2009),
pp. 91–98. Hyderabad, India (2009)

208 R. Mehera et al.

http://en.wikipedia.org/wiki/Curve_orientation

11. Mehera, R., Chatterjee, S., Pal, R.K.: Yet another linear time algorithm for guard zone
problem. Icfai J. Comput. Sci. II(3), 14–23 (2008)

12. Goodrich, M.T.: Intersecting line segments in parallel with an output-sensitive number of
processors. Soc. Ind. Appl. Math. 20(4), 737–755 (1991)

13. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry:
Algorithms and Applications. Springer, Berlin (1997)

A 2D Guard Zone Computation Algorithm for Reassignment… 209

Author Index

B
Bhattacharya, Adrija, 3, 39

C
Chaki, Nabendu, 67
Chakrabarty, Arpan, 157, 183
Chatterjee, Atrayee, 67
Choudhury, Sankhayan, 3, 39

D
Dasgupta, Ranjan, 53
Datta, Kamalika, 131
Datta, Piyali, 157, 183
Dey, Kashinath, 17
Dhal, Debasis, 157

G
Ghosh, Ammlan, 67
Ghosh, Ranjan, 87
Gokhale, Alhaad, 131

M
Maji, Arnab Kumar, 109

Mehera, Ranjan, 183

P
Palit, Sarbani, 17
Pal, Nabanita, 67
Pal, Rajat Kumar, 109, 145, 157, 183

R
Rahaman, Hafizur, 131

S
Saha, Ankita, 67
Sarkar, Dipabali, 17
Sarkar, Jayeeta, 17
Sarkar, Kheyali, 17
Sau, Swagata Saha, 145
Sengupta, Indranil, 131
Sengupta, Souvik, 53
Som, Sukalyan, 17

Z
Zaman, J.K.M. Sadique Uz, 87

� Springer India 2015
R. Chaki et al. (eds.), Applied Computation and Security Systems, Advances in Intelligent
Systems and Computing 305, DOI 10.1007/978-81-322-1988-0

211

	Preface
	Contents
	About the Editors
	Part ISoftware Engineering
	1 Non-functional Property Aware Brokerage Approach for Cloud Service Discovery
	Abstract
	1…Introduction
	2…Related Work
	3…Proposed Solution
	3.1 The Proposed Meta-Model
	3.2 Description of the Framework
	3.3 Service Discovery Algorithm

	4…Illustration with Example
	5…Conclusion
	References

	2 A DWT-based Digital Watermarking Scheme for Image Tamper Detection, Localization, and Restoration
	Abstract
	1…Introduction
	2…Background
	2.1 Discrete Wavelet Transform

	3…Proposed Scheme
	3.1 Watermark Preparation
	3.1.1 Block Mapping Address Generation Algorithm

	3.2 Watermark Generation
	3.3 Watermark Embedding
	3.4 Watermark Extraction: Tamper Detection, Localization, and Restoration

	4…Experimental Results
	4.1 Imperceptibility of Watermark
	4.2 Payload
	4.3 Performance Against Tampering
	4.4 Comparative Study

	5…Conclusion
	References

	3 Service Insurance: A New Approach in Cloud Brokerage
	Abstract
	1…Introduction
	2…Related Work
	3…Proposed Work
	3.1 Component Description of the Framework
	3.2 Workflow of the Framework

	4…Risk Analysis
	4.1 Causes Behind Risk Identification
	4.2 Service Life Cycle and Risks
	4.3 Service Governance and Related Risks
	4.4 Service Development and Risks
	4.5 Service Release and Communication and Related Risks
	4.6 Service Offering and Risks

	5…Risk Modeling
	6…Conclusion
	References

	4 Using Semiformal and Formal Methods in Software Design: An Integrated Approach for Intelligent Learning Management System
	Abstract
	1…Introduction
	2…Related Work
	3…Proposed Framework
	4…The Case Study
	5…Requirement Specification
	6…Design Model
	6.1 Consistency Rules
	6.2 Use Case Diagram
	6.3 Activity Diagram
	6.4 Class Diagram
	6.5 Sequence Diagram
	6.6 VDM-SL Specification

	7…Design Verification
	7.1 Verifying Continuity
	7.2 Verifying Requirement

	8…Conclusions
	References

	5 A Lightweight Implementation of Obstruction-Free Software Transactional Memory
	Abstract
	1…Introduction
	2…Software Transactional Memory and Progress Condition
	3…Scope of the Work
	4…Simulation of the Proposed Lightweight OFTM
	4.1 Definitions
	4.2 Assumptions
	4.3 Algorithm

	5…Performance Evaluation by Experiments
	5.1 Plan for Experimental Verification
	5.2 Experimental Results

	6…Concluding Remarks
	References

	Part IICryptography
	6 Multiplicative Polynomial Inverse Over GF(73): Crisis of EEA and Its Solution
	Abstract
	1…Introduction
	2…EEA and Multiplicative Inverse in GF(28) and GF(73)
	2.1 The EEA with Examples and Its Computational Algorithm
	2.1.1 Computational Algorithm to Find S and T

	2.2 Successful Application of EEA to Find Multiplicative Inverse Over GF(28)
	2.3 Successful Application of EEA to Find Multiplicative Inverse Over GF(73)
	2.4 Unsuccessful Application of EEA to Find Multiplicative Inverse Over GF(73)
	2.5 Comparative Study of Success and Failures of EEA Over GF(28) and GF(73)

	3…Proposed Algebraic Method and Multiplicative Inverse Over GF(73)
	3.1 Algebraic Method to Find the Multiplicative Inverse Over GF(73)
	3.2 Multiplicative Inverse of 2x + 4 in GF(73) by Using the Algebraic Method
	3.3 Multiplicative Inverse of 2x2 + 5x + 3 in GF(73) by Using the Algebraic Method

	4…Computational Algorithm
	5…Results, Discussion, and Future Scopes
	6…Conclusion
	Acknowledgments
	References

	7 A Novel Biometric Template Encryption Scheme Using Sudoku Puzzle
	Abstract
	1…Introduction
	1.1 Biometric System Vulnerabilities
	1.1.1 Intrinsic Limitations
	1.1.2 Adversary Attacks

	2…Introduction to Sudoku
	3…Existing Biometric Template Encryption Scheme
	4…Biometric Template Encryption Scheme Using Sudoku
	4.1 Biometric Template Decryption Technique
	4.2 The Designed Sudoku Solving Algorithm

	5…Experimental Results: Analysis and Discussion
	5.1 Computation Time
	5.2 Robustness
	5.3 More Number of Keys

	6…Conclusion
	References

	Part IIIComputer Aided Design
	8 An ESOP-Based Reversible Circuit Synthesis Flow Using Simulated Annealing
	Abstract
	1…Introduction
	2…Background of ESOP-Based Synthesis
	2.1 Reversible Logic and Reversible Gates
	2.2 ESOP-Based Synthesis Techniques

	3…Theoretical Framework for the Work
	3.1 Cube Transformation Rules

	4…The Proposed Synthesis Approach
	4.1 Cube Transformation Using Simulated Annealing
	4.2 Cube to Reversible Gate Mapping

	5…Experimental Results
	6…Conclusion
	References

	9 An Efficient Algorithm for Reducing Wire Length in Three-Layer Channel Routing
	Abstract
	1…Introduction
	2…Formulation of the Problem and the Proposed Algorithm
	3…Experimental Results and Performance of Our Algorithm
	4…Conclusion
	References

	10 A New Move Toward Parallel Assay Operations in a Restricted Sized Chip in Digital Microfluidics
	Abstract
	1…Introduction
	2…Preliminaries and Inherent Constraints
	2.1 Preliminaries
	2.2 Constraints in Performing Bioassay Operations
	2.3 Various Fundamental Operations on DMFB
	2.4 Strengths and Limitations of DMFB

	3…A Brief Literature Survey on DMFB
	3.1 Direct Addressing Pin Configuration
	3.2 Array-Based Partitioning
	3.3 Cross-referencing
	3.4 Broadcasting

	4…A 15 x 15 Array and Its Working Principle
	4.1 The Existing Bioassay
	4.2 A Modification Over the 15 x 15 Array
	4.3 Requirements and Objectives Toward Parallelism

	5…A New Algorithm for Parallel Bioassay Operations
	5.1 An Algorithm for Pin Assignment
	5.2 Working of the Chip
	5.3 An Example Run of Assay Operations in Parallel
	5.4 Experimental Results

	6…Conclusion
	References

	11 A 2D Guard Zone Computation Algorithm for Reassignment of Subcircuits to Minimize the Overall Chip Area
	Abstract
	1…Introduction
	2…Literature Survey
	3…Formulation of the Problem and the Algorithm
	3.1 Phase-I of the Algorithm
	3.2 Phase-II of the Algorithm
	3.3 Algorithm at a Glance

	4…Complexity Analysis
	5…Applications and Conclusion
	References

	Author Index

