
123

S P R I N G E R  B R I E F S  I N  CO M P U T E R  S C I E N C E

Mu Zhang
Heng Yin

Android Application 
Security
 A Semantics and 
Context-Aware 
Approach 



SpringerBriefs in Computer Science

Series editors

Stan Zdonik, Brown University, Providence, USA
Shashi Shekhar, University of Minnesota, Minneapolis, USA
Jonathan Katz, University of Maryland, College Park, USA
Xindong Wu, University of Vermont, Burlington, USA
Lakhmi C. Jain, University of South Australia, Adelaide, Australia
David Padua, University of Illinois Urbana-Champaign, Urbana, USA
Xuemin (Sherman) Shen, University of Waterloo, Waterloo, Canada
Borko Furht, Florida Atlantic University, Boca Raton, USA
V.S. Subrahmanian, University of Maryland, College Park, USA
Martial Hebert, Carnegie Mellon University, Pittsburgh, USA
Katsushi Ikeuchi, University of Tokyo, Tokyo, Japan
Bruno Siciliano, Università di Napoli Federico II, Napoli, Italy
Sushil Jajodia, George Mason University, Fairfax, USA
Newton Lee, Newton Lee Laboratories, LLC, Tujunga, USA

More information about this series at http://www.springer.com/series/10028

http://www.springer.com/series/10028


Mu Zhang • Heng Yin

Android Application Security
A Semantics and Context-Aware Approach

123



Mu Zhang
Computer Security Department
NEC Laboratories America, Inc.
Princeton, NJ, USA

Heng Yin
University of California, Riverside
Riverside, CA, USA

ISSN 2191-5768 ISSN 2191-5776 (electronic)
SpringerBriefs in Computer Science
ISBN 978-3-319-47811-1 ISBN 978-3-319-47812-8 (eBook)
DOI 10.1007/978-3-319-47812-8

Library of Congress Control Number: 2016959410

© The Author(s) 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



The authors would like to dedicate this book
to their beloved families and friends and to
those who overcome their frustration and
persevere with resubmitting papers to top-tier
computer security conferences.



Preface

This book is an introduction to the cutting-edge technologies for discovery, diagno-
sis, and defense of emerging security problems in modern Android applications.

With great power comes great threat. Recently, due to the popularity of Android
smartphones, Android apps have attracted varieties of cyber attacks: some involve
advanced anti-detection techniques; some exploit “genetic” defects in Android
programs; some cover up identity theft with camouflage; some trick end users
to fall into a trap using intriguing but misleading language. To defeat malicious
attempts, researchers strike back. Many traditional techniques have been studied
and practiced: malware classification, taint analysis, access control, etc. Yet,
intrusive techniques also advance, and, unfortunately, existing defenses fall short,
fundamentally due to the lack of sufficient interpretation of Android application
behaviors.

To address this limitation, we look at the problem from a different angle.
Android apps, no matter good, bad, or vulnerable, are in fact software programs.
Their functionality is concretized through semantically meaningful code and varies
under different circumstances. This reveals two essential factors for understanding
Android application, semantics and contexts, which, we believe, are also the key to
tackle security problems in Android apps. As a result, we have developed a series of
semantics and context-aware techniques to fight against Android security threats.
We have applied our idea to four significant areas, namely, malware detection,
vulnerability patching, privacy leakage mitigation, and misleading app descriptions.
This will be elaborated through the whole book.

Intended Audience

This book is suitable for security professionals and researchers. It will also be useful
for graduate students who are interested in mobile application security.

vii



viii Preface

Acknowledgments

The authors would like to thank Lok, Aravind, Andrew, Qian, Xunchao, Yue,
Rundong, Jinghan, Manju, Eknath, and Curtis for the stimulating discussions and
generous support.

Princeton, NJ, USA Mu Zhang
Riverside, CA, USA Heng Yin
September 2016



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Security Threats in Android Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Malware Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Software Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Information Leakage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.4 Insecure Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 A Semantics and Context Aware Approach to Android
Application Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Android Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Android Framework API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Android Permission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Android Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Android App Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Android Malware Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Signature Detection and Malware Analysis . . . . . . . . . . . . . . . . . . . 10
2.2.2 Android Malware Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Android Application Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Component Hijacking Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Automatic Patch and Signature Generation . . . . . . . . . . . . . . . . . . . 12
2.3.3 Bytecode Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.4 Instrumentation Code Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Privacy Leakage in Android Apps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Privacy Leakage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Privacy Leak Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.3 Information Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Text Analytics for Android Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.1 Automated Generation of Software Description . . . . . . . . . . . . . . 15

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

ix



x Contents

3 Semantics-Aware Android Malware Classification . . . . . . . . . . . . . . . . . . . . . . 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Weighted Contextual API Dependency Graph. . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1 Key Behavioral Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 Formal Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.3 A Real Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.4 Graph Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Android Malware Classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.1 Graph Matching Score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Weight Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.3 Implementation and Graph Database Query. . . . . . . . . . . . . . . . . . . 32
3.4.4 Malware Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5.1 Dataset and Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5.2 Summary of Graph Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5.3 Classification Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.4 Runtime Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5.5 Effectiveness of Weight Generation and Weighted

Graph Matching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Automatic Generation of Vulnerability-Specific Patches for
Preventing Component Hijacking Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Problem Statement and Approach Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.3 Approach Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Taint Slice Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.1 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Patch Statement Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Patch Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5.1 Optimized Patch for Running Example. . . . . . . . . . . . . . . . . . . . . . . . 54
4.6 Experimental Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.6.2 Summarized Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6.3 Detailed Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Efficient and Context-Aware Privacy Leakage Confinement . . . . . . . . . . . 63
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Approach Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.1 Key Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



Contents xi

5.3 Context-Aware Policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.1 Taint Propagation Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.2 Source and Sink Call-Sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.3 Parameterized Source and Sink Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Experimental Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4.1 Summarized Analysis Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.2 Detailed Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4.3 Runtime Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Automatic Generation of Security-Centric Descriptions for
Android Apps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2.2 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3 Security Behavior Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.1 Formal Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.2 SBG of Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.3 Graph Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4 Behavior Mining and Graph Compression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.5 Description Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.5.1 Automatically Generated Descriptions . . . . . . . . . . . . . . . . . . . . . . . . 87
6.5.2 Behavior Description Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.5.3 Behavior Graph Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.5.4 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.6.1 Correctness and Security-Awareness . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.6.2 Readability and Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7 Limitation and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.1 Android Malware Classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2 Automated Vulnerability Patching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.3 Context-Aware Privacy Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.4 Automated Generation of Security-Centric Descriptions . . . . . . . . . . . . . 102
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



Chapter 1
Introduction

Abstract Along with the boom of Android apps come severe security challenges.
Existing techniques fall short when facing emerging security problems in Android
applications, such as zero-day or polymorphic malware, deep and complex vulnera-
bilities, privacy leaks and insecure app descriptions. To fight these threats, we have
proposed a semantics and context aware approach, and designed and developed a
series of advanced techniques.

1.1 Security Threats in Android Applications

Android has dominated the smartphone market and become the most popular
operating system for mobile devices. In the meantime, security threats in Android
apps have also quickly increased. In particular, four major classes of problems,
malware, program vulnerabilities, privacy leaks and insecure app descriptions,
bring considerable challenges to Android application security. Although a great deal
of research efforts have been made to address these threats, they have fundamental
limitations and thus cannot solve the problems.

1.1.1 Malware Attacks

Malicious apps have been increasingly exponentially according to McAfee’s annual
report [1]. Malware steals and pollutes sensitive information, executes attacker
specified commands, or even totally roots and subverts the mobile devices. Unfortu-
nately, existing automated Android malware detection and classification methods
can be evaded both in theory and practice. Signature-based detections [2, 3]
barely look for specific bytecode patterns, and therefore are easily evaded by
bytecode-level transformation attacks [4]. In contrast, machine learning-based
approaches [5–7] extract features from simple, external and isolated symptoms of
an application (e.g., permission requests and individual API calls). The extracted
features are thus associated with volatile application syntax, rather than high-level
and robust program semantics. As a result, these detectors are also susceptible to
evasion.

© The Author(s) 2016
M. Zhang, H. Yin, Android Application Security, SpringerBriefs in Computer
Science, DOI 10.1007/978-3-319-47812-8_1

1



2 1 Introduction

1.1.2 Software Vulnerabilities

Apps may also contain security vulnerabilities, such as privilege escalation [8],
capability leaks [9], permission re-delegation [10], component hijacking [11],
content leaks & pollution [12] and inter-component communication vulnerabil-
ities [13, 14]. These vulnerabilities are largely detected via automated static
analysis [9, 11–14] to guarantee the scalability and satisfactory code coverage.
However, static analysis is conservative in nature and may raise false positives.
Therefore, once a “potential” vulnerability is discovered, it first needs to be
confirmed; once it is confirmed, it then needs to be patched. Nevertheless, it is fairly
challenging to programmatically accomplish these two tasks because it requires
automated interpretation of program semantics. So far, upon receiving a discovered
vulnerability, the developer has no choice but to manually confirm if the reported
vulnerability is real. It may also be nontrivial for the (often inexperienced) developer
to properly fix the vulnerability and release a patch for it. Thus, these discovered
vulnerabilities may not be addressed for long time or not addressed at all, leaving a
big time window for attackers to exploit these vulnerabilities.

1.1.3 Information Leakage

Information leakage is prevailing in both malware and benign applications.
To address privacy leaks, prior efforts are made to perform both dynamic and static
information flow analyses. Dynamic taint tracking based approaches, including
DroidScope [15], VetDroid [16] and TaintDroid [17], can accurately detect
information exfiltration at runtime, but incur significant performance overhead and
suffer from insufficient code coverage. Conversely, static program analyses (e.g.,
FlowDroid [18] and AmanDroid [19]) can achieve high efficiency and coverage,
but are only able to identify “potential” leakage and may cause considerable false
positives. Besides, both approaches merely discover the presence of private data
transmission, but do not consider how and why the transmission actually happens.
Due to the lack of “context” information, these detectors cannot explain the cause of
detected “privacy leaks”. Thus, they cannot differentiate legitimate usage of private
data (e.g., Geo-location required by Google Map) from true data leakage, and may
yield severe false alarms.

1.1.4 Insecure Descriptions

Unlike traditional desktop systems, Android provides end users with an opportunity
to proactively accept or deny the installation of any app to the system. As a result,
it is essential that the users become aware of each app’s behaviors so as to make



1.2 A Semantics and Context Aware Approach to Android Application Security 3

appropriate decisions. To this end, Android markets directly present the consumers
with two classes of information regarding each app: (1) permissions requested by
the app and (2) textual descriptions provided by the developer. However, neither
can serve the needs. Permissions are not only hard to understand [20] but also
incapable of explaining how the requested permissions are used. For instance, both a
benign navigation app and a spyware instance of the same app can require the same
permission to access GPS location, yet use it for completely different purposes.
While the benign app delivers GPS data to a legitimate map server upon the
user’s approval, the spyware instance can periodically and stealthily leak the user’s
location information to an attacker’s site. Due to the lack of context clues, a user is
not able to perceive such differences via the simple permission enumeration. Textual
descriptions provided by developers are not security-centric. There exists very little
incentive for app developers to describe their products from a security perspective,
and it is still a difficult task for average developers to write dependable descriptions.
Besides, malware authors deliberately deliver misleading descriptions so as to hide
malice from innocent users. Previous studies [21, 22] have revealed that the existing
descriptive texts are deviated considerably from requested permissions. As a result,
developer-driven description generation cannot be considered trustworthy.

1.2 A Semantics and Context Aware Approach to Android
Application Security

The fundamental problem of existing defense techniques lies in the fact that they
are not aware of program semantics or contexts. To direct address the threats to
Android application security, we propose a semantics and context-aware approach,
which is more effective for malware detection and privacy protection, more usable to
improve the security-awareness of end users and can address sophisticated software
vulnerabilities that previously cannot be solved. Particularly, we propose four new
techniques to address the specific security problems.

(1) Android Malware Classification. To battle malware polymorphism and zero-
day malware, we extract contextual API dependency graphs of each Android
app via program analysis, assign different weights to the nodes in the graphs
using learning-based technique, measure the weighted graph similarity, and
further use the similarity score to construct feature vectors.

(2) Automatic Patch Generation for Component Hijacking Vulnerabilities.
To fix detected vulnerabilities, we perform static analysis to discover the
small portion of code that leads to component hijacking attacks, and then
selectively insert patch statements into the vulnerable program so as to defeat
the exploitations at runtime.

(3) Privacy Policy Enforcement. To defeat privacy leakage without compromising
legitimate functionality, we first rewrite the privacy breaching app to insert code
that tracks sensitive information flow and enforces privacy polices, and then at



4 1 Introduction

runtime associate the policies to specific contexts via modeling the user reaction
to each incident of privacy violation.

(4) Automated Generation of Security-Centric Descriptions. To improve the
security sensitivity of app descriptions, we first retrieve the behavior graphs
from each Android app to reflect its security-related operations, then compress
the graphs by collapsing the common patterns so as to produce more succinct
ones, and finally translate the compressed graphs into concise and human-
readable descriptions.

References

1. McAfee Labs Threats report Fourth Quarter (2013) http://www.mcafee.com/us/resources/
reports/rp-quarterly-threat-q4-2013.pdf

2. Zhou Y, Wang Z, Zhou W, Jiang X (2012) Hey, you, get off of my market: detecting malicious
apps in official and alternative android markets. In: Proceedings of 19th annual network and
distributed system security symposium (NDSS)

3. Grace M, Zhou Y, Zhang Q, Zou S, Jiang X (2012) RiskRanker: scalable and accurate zero-
day android malware detection. In: Proceedings of the 10th international conference on mobile
systems, applications and services (MobiSys)

4. Rastogi V, Chen Y, Jiang X (2013) DroidChameleon: evaluating android anti-malware against
transformation attacks. In: Proceedings of the 8th ACM symposium on InformAtion, computer
and communications security (ASIACCS)

5. Peng H, Gates C, Sarma B, Li N, Qi Y, Potharaju R, Nita-Rotaru C, Molloy I (2012) Using
probabilistic generative models for ranking risks of android apps. In: Proceedings of the 2012
ACM conference on computer and communications security (CCS)

6. Aafer Y, Du W, Yin H (2013) DroidAPIMiner: mining API-level features for robust malware
detection in android. In: Proceedings of the 9th international conference on security and privacy
in communication networks (SecureComm)

7. Arp D, Spreitzenbarth M, Hübner M, Gascon H, Rieck K (2014) Drebin: efficient and
explainable detection of android malware in your pocket. In: Proceedings of the 21th annual
network and distributed system security symposium (NDSS)

8. Davi L, Dmitrienko A, Sadeghi AR, Winandy M (2011) Privilege escalation attacks on android.
In: Proceedings of the 13th international conference on Information security. Berlin/Heidelberg

9. Grace M, Zhou Y, Wang Z, Jiang X (2012) Systematic detection of capability leaks in stock
android smartphones. In: Proceedings of the 19th network and distributed system security
symposium

10. Felt AP, Wang HJ, Moshchuk A, Hanna S, Chin E (2011) Permission re-delegation: attacks
and defenses. In: Proceedings of the 20th USENIX security symposium

11. Lu L, Li Z, Wu Z, Lee W, Jiang G (2012) CHEX: statically vetting android apps for component
hijacking vulnerabilities. In: Proceedings of the 2012 ACM conference on computer and
communications security (CCS)

12. Zhou Y, Jiang X (2013) Detecting passive content leaks and pollution in android applications.
In: Proceedings of the 20th network and distributed system security symposium

13. Chin E, Felt AP, Greenwood K, Wagner D (2011) Analyzing inter-application communication
in android. In: Proceedings of the 9th international conference on mobile systems, applications,
and services (MobiSys)

14. Octeau D, McDaniel P, Jha S, Bartel A, Bodden E, Klein J, Traon YL (2013) Effective inter-
component communication mapping in android with epicc: an essential step towards holistic
security analysis. In: Proceedings of the 22nd USENIX security symposium

http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q4-2013.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q4-2013.pdf


References 5

15. Yan LK, Yin H (2012) DroidScope: seamlessly reconstructing OS and Dalvik semantic
views for dynamic android malware analysis. In: Proceedings of the 21st USENIX security
symposium

16. Zhang Y, Yang M, Xu B, Yang Z, Gu G, Ning P, Wang XS, Zang B (2013) Vetting undesirable
behaviors in android apps with permission use analysis. In: Proceedings of the 20th ACM
conference on computer and communications security (CCS)

17. Enck W, Gilbert P, Chun BG, Cox LP, Jung J, McDaniel P, Sheth AN (2010) TaintDroid:
an information-flow tracking system for realtime privacy monitoring on smartphones. In:
Proceedings of the 9th USENIX symposium on operating systems design and implementation
(OSDI)

18. Arzt S, Rasthofer S, Fritz C, Bodden E, Bartel A, Klein J, Traon YL, Octeau D, McDaniel
P (2014) FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. In: Proceedings of the 35th ACM SIGPLAN conference on
programming language design and implementation (PLDI)

19. Wei F, Roy S, Ou X, Robby (2014) Amandroid: a precise and general inter-component data
flow analysis framework for security vetting of android apps. In: Proceedings of the 21th ACM
conference on computer and communications security (CCS). Scottsdale

20. Felt AP, Ha E, Egelman S, Haney A, Chin E, Wagner D (2012) Android permissions: user
attention, comprehension, and behavior. In: Proceedings of the eighth symposium on usable
privacy and security (SOUPS)

21. Pandita R, Xiao X, Yang W, Enck W, Xie T (2013) WHYPER: towards automating risk
assessment of mobile applications. In: Proceedings of the 22nd USENIX conference on
security

22. Qu Z, Rastogi V, Zhang X, Chen Y, Zhu T, Chen Z (2014) Autocog: measuring the description-
to-permission fidelity in android applications. In: Proceedings of the 21st conference on
computer and communications security (CCS)



Chapter 2
Background

Abstract Android applications are developed on top of Android framework and
therefore bear particular features compared to traditional desktop software. In the
meantime, due to the unique design and implementation, Android apps are threat-
ened by emerging cyber attacks that target at mobile operating systems. As a result,
security researchers have made considerable efforts to discover, mitigate and defeat
these threats.

2.1 Android Application

Android is a popular operating system for mobile devices. It dominates in the battle
to be the top smartphone system in the world, and ranked as the top smartphone
platform with 52 % market share (71.1 million subscribers) in Q1 2013. The success
of Android is also reflected from the popularity of its applications. Tens of thousands
of Android apps become available in Google Play while popular apps (e.g., Adobe
Flash Player 11) have been downloaded and installed over 100 million times.

Android apps are developed using mostly Java programming language, with the
support of Android Software Development Kit (SDK). The source code is first
compiled into Java classes and further compiled into a Dalvik executable (i.e., DEX
file) via dx tool. Then, the DEX program and other resource files (e.g., XML layout
files, images) are assembled into the same package, called an APK file. The APK
package is later submitted to the Android app markets (e.g., Google Play Store)
with the developer’s descriptions in text and other formats. An app market serves
as the hub to distribute the application products, while consumers can browse the
market and purchase the APK files. Once a APK file is downloaded and installed
to a mobile device, the Dalvik executable will be running within a Dalvik virtual
machine (DVM).

© The Author(s) 2016
M. Zhang, H. Yin, Android Application Security, SpringerBriefs in Computer
Science, DOI 10.1007/978-3-319-47812-8_2

7



8 2 Background

2.1.1 Android Framework API

While an APK file is running in DVM, the Android framework code is also loaded
and executed in the same domain. As a matter of fact, a Dalvik executable merely
acts as a plug-in to the framework code, and a large portion of program execution
happens within the Android framework.

A DEX file interacts with the Android framework via Application Programming
Interface (API). These APIs are provided to the developers through Android
SDK. From developers’ perspective, Android API is the only channel for them to
communicate with the underlying system and enable critical functionalities. Due
to the nature of mobile operating system, Android offers a broad spectrum of
APIs that are specific to smartphone capabilities. For instance, an Android app can
programmatically send SMS messages via sendTextMessage() API or retrieve
user’s geographic location through getLastKnownLocation().

2.1.2 Android Permission

Sensitive APIs are protected by Android permissions. Android exercises an install-
time permission system. To enable the critical functionalities in an app, a devel-
oper has to specify the needs for corresponding permissions in a manifest file
AndroidManifest.xml. Once an end user agrees to install the app, the required
permissions are granted. At runtime, permission checks are enforced at both
framework and system levels to ensure that an app has adequate privileges to make
critical API calls.

There exist two major limitations for this permission system. Firstly, once
certain permission is granted to an app at the install time, there is no easy way
to revoke it at runtime. Secondly and more importantly, the permission enforcement
is fundamentally a single-point check and thus lacking continuous protection. If an
application can pass a checkpoint and retrieve sensitive data via a critical API call,
it can use the data without any further restrictions.

2.1.3 Android Component

Android framework also provides a special set of APIs that are associated to
Android components. Components in Android are the basic building units for
apps. In particular, there exist four types of components in Android: Activity,
Service, Broadcast Receiver, and Content Provider. An Activity
class takes care of creating the graphical user interface (GUI) and directly interacts
with the end user. A Service, in contrast, performs non-interactive longer-running
operations in background while accepting service requests from other apps or app



2.2 Android Malware Detection 9

components. A Broadcast Receiver is component that listens to and processes
system-wide broadcast messages. A Content Provider encapsulates data content and
shares it with multiple components via a unified interface.

Components communicate with one another via Intents. An Intent with
certain ACTION code, target component and payload data indicates a specific
operation to be performed. For example, with different target parameter, an Intent
can be used to launch an Activity, request a Service or send a message to any
interested Broadcast Receiver. A developer can create custom permissions to protect
components from receiving Intents from an arbitrary sender. However, such a simple
mechanism cannot rule out malicious Intent communication because it does not
prevent a malicious app author from requesting the same custom permission at
install time.

2.1.4 Android App Description

Once an Android app has been developed, it is delivered to the app markets along
with the developer’s descriptions. Developers are usually interested in describing the
app’s functionalities, unique features, special offers, use of contact information, etc.
Nevertheless, they are not motivated to explain the security risks behind the sensitive
app functions. Prior studies [33, 36] have revealed significant inconsistencies
between what the app is claimed to do and what the app actually does. This indicates
that a majority of apps exercise undeclared sensitive functionalities beyond the
users’ expectation. Such a practice may not necessarily be malicious, but it does
provide a potential window for attacks to exploit.

To mitigate this problem, Android markets also explains to users, in natural
language, what permissions are required by an app. The goal is to help users
understand the program behaviors so as to avoid security risks. However, such a
simple explanation is still too technical for average users to comprehend. Besides,
a permission list does not illustrate how permissions are used by an app. As an
example, if an application first retrieves user’s phone number and then sends it
to a remote server, it in fact uses two permissions, READ_PHONE_STATE and
INTERNET in a collaborative manner. Unfortunately, the permission list can merely
inform that two independent permissions have been used.

2.2 Android Malware Detection

The number of new Android malware instances has grown exponentially in recent
years. McAfee reports [28] that 2.47 million new mobile malware samples were
collected in 2013, which represents a 197 % increase over 2012. Greater and greater



10 2 Background

amounts of manual effort are required to analyze the increasing number of new
malware instances. This has led to a strong interest in developing methods to
automate the malware analysis process.

Existing automated Android malware detection and classification methods fall
into two general categories: (1) signature-based and (2) machine learning-based.
Signature-based approaches [17, 54] look for specific patterns in the bytecode and
API calls, but they are easily evaded by bytecode-level transformation attacks [37].
Machine learning-based approaches [1, 2, 34] extract features from an application’s
behavior (such as permission requests and critical API calls) and apply standard
machine learning algorithms to perform binary classification. Because the extracted
features are associated with application syntax, rather than program semantics, these
detectors are also susceptible to evasion.

2.2.1 Signature Detection and Malware Analysis

Previous studies were focused on large-scale and light-weight detection of malicious
or dangerous Android apps. DroidRanger [54] proposed permission-based footprint-
ing and heuristics-based schemes to detect new samples of known malware families
and identify certain behaviors of unknown malicious families, respectively. Risk-
Ranker [17] developed an automated system to uncover dangerous app behaviors,
such as root exploits, and assess potential security risks. Kirin [11] proposed a
security service to certify apps based upon predefined security specifications. WHY-
PER [33] leveraged Natural Language Processing and automated risk assessment of
mobile apps by revealing discrepancies between application descriptions and their
true functionalities. Efforts were also made to pursue in-depth analysis of malware
and application behaviors. TaintDroid [12], DroidScope [47] and VetDroid [51]
conducted dynamic taint analysis to detect suspicious behaviors during runtime.
Ded [13], CHEX [25], PEG [6], and FlowDroid [3] exercised static dataflow analysis
to identify dangerous code in Android apps. The effectiveness of these approaches
depends upon the quality of human crafted detection patterns specific to certain
dangerous or vulnerable behaviors.

2.2.2 Android Malware Classification

Many efforts have also been made to automatically classify Android malware
via machine learning. Peng et al. [34] proposed a permission-based classification
approach and introduced probabilistic generative models for ranking risks for
Android apps. Juxtapp [18] performed feature hashing on the opcode sequence
to detect malicious code reuse. DroidAPIMiner [1] extracted Android malware
features at the API level and provided light-weight classifiers to defend against
malware installations. DREBIN [2] took a hybrid approach and considered both



2.3 Android Application Vulnerabilities 11

Android permissions and sensitive APIs as malware features. To this end, it
performed broad static analysis to extract feature sets from both manifest files
and bytecode programs. It further embedded all feature sets into a joint vector
space. As a result, the features contributing to malware detection can be analyzed
geometrically and used to explain the detection results. Despite the effectiveness
and computational efficiency, these machine learning based approaches extract
features from solely external symptoms and do not seek an accurate and complete
interpretation of app behaviors.

2.3 Android Application Vulnerabilities

Although the permission-based sandboxing mechanism enforced in Android can
effectively confine each app’s behaviors by only allowing the ones granted with
corresponding permissions, a vulnerable app with certain critical permissions
can perform security-sensitive behaviors on behalf of a malicious app. It is so
called confused deputy attack. This kind of security vulnerabilities can present in
numerous forms, such as privilege escalation [8], capability leaks [16], permission
re-delegation [14], content leaks and pollution [53], component hijacking [25], etc.

Prior work primarily focused on automatic discovery of these vulnerabilities.
Once a vulnerability is discovered, it can be reported to the developer and a patch is
expected. Some patches can be as simple as placing a permission validation at the
entry point of an exposed interface (to defeat privilege escalation [8] and permission
re-delegation [14] attacks), or withholding the public access to the internal data
repositories (to defend against content leaks and pollution [53]), the fixes to the
other problems may not be so straightforward.

2.3.1 Component Hijacking Vulnerabilities

In particular, component hijacking may fall into the latter category. When receiving
a manipulated input from a malicious Android app, an app with a component
hijacking vulnerability may exfiltrate sensitive information or tamper with the
sensitive data in a critical data repository on behalf of the malicious app. In other
words, a dangerous information flow may happen in either an outbound or inbound
direction depending on certain external conditions and/or the internal program state.

A prior effort has been made to perform static analysis to discover potential
component hijacking vulnerabilities [25]. Static analysis is known to be conservative
in nature and may raise false positives. For instance, static analysis may find a
viable execution path for information flow, which may never be reached in actual
program execution; static analysis may find that interesting information is stored in
some elements in a database, and thus has to conservatively treat the entire database



12 2 Background

as sensitive. As a result, upon receiving a discovered vulnerability, the developer has
to manually confirm if the reported vulnerability is real. However, it is nontrivial for
average developers to properly fix the vulnerability and release a patch.

2.3.2 Automatic Patch and Signature Generation

While an automated patching method is still lacking for vulnerable Android apps,
a series of studies have been made to automatically generate patch for conventional
client-server programs. AutoPaG [23] analyzes the program source code and
identifies the root cause for out-of-bound exploit, and thus creates a fine-grained
source code patch to temporarily fix it without any human intervention. IntPatch [50]
utilizes classic type theory and dataflow analysis framework to identify potential
integer-overflow-to-buffer-overflow vulnerabilities, and then instruments programs
with runtime checks. Sidiroglou and Keromytis [39] rely on source code transfor-
mations to quickly apply automatically created patches to vulnerable segments of
the targeted applications, that are subject to zero-day worms. Newsome et al. [31]
propose an execution-based filter which filters out attacks on a specific vulnerability
based on the vulnerable program’s execution trace. ShieldGen [7] generates a data
patch or a vulnerability signature for an unknown vulnerability, given a zero-day
attack instance. Razmov and Simon [38] automate the filter generation process
based on a simple formal description of a broad class of assumptions about the
inputs to an application.

2.3.3 Bytecode Rewriting

In principle, these aforementioned patching techniques can be leveraged to address
the vulnerabilities in Android apps. Nevertheless, to fix an Android app, a specific
bytecode rewriting technique is needed to insert patch code into the vulnerable pro-
grams. Previous studies have utilized this technique to address varieties of problems.
The Privacy Blocker application [35] performs static analysis of application binaries
to identify and selectively replace requests for sensitive data with hard-coded
shadow data. I-ARM-Droid [9] rewrites Dalvik bytecode to interpose on all the API
invocations and enforce the desired security policies. Aurasium [46] repackages
Android apps to sandbox important native APIs so as to monitor security and
privacy violations. Livshits and Jung [24] implement a graph-theoretic algorithm to
place mediation prompts into bytecode program and thus protect resource access.
However, due the simplicity of the target problems, prior work did not attempt
to rewrite the bytecode program in an extensive fashion. In contrast, to address
sophisticated vulnerabilities, such as component hijacking, a new machinery has
to be developed, so that inserted patch code can effectively monitor and control
sensitive information flow in apps.



2.4 Privacy Leakage in Android Apps 13

2.3.4 Instrumentation Code Optimization

The size of a rewritten program usually increases significantly. Thus, an optimiza-
tion phase is needed. Several prior studies attempted to reduce code instrumentation
overhead by performing various static analysis and optimizations. To find error
patterns in Java source code, Martin et al. optimized dynamic instrumentation
by performing static pointer alias analysis [27]. To detect numerous software
attacks, Xu et al. inserted runtime checks to enforce various security policies in
C source code, and remove redundant checks via compiler optimizations [45]. As
a comparison, due to the limited resources on mobile devices, there exists an even
more strict restriction for app size. Therefore, a novel method is necessary to address
this new challenge.

2.4 Privacy Leakage in Android Apps

While powerful Android APIs facilitate versatile functionalities, they also arouse
privacy concerns. Previous studies [12, 13, 19, 44, 52, 54] have exposed that both
benign and malicious apps are stealthily leaking users’ private information to remote
servers. Efforts have also been made to detect and analyze privacy leakage either
statically or dynamically [12, 13, 15, 22, 25, 26, 48]. Nevertheless, a good solution
to defeat privacy leakage at runtime is still lacking.

2.4.1 Privacy Leakage Detection

Egele et al. [10] studied the privacy threats in iOS applications. They pro-
posed PiOS, a static analysis tool to detect privacy leaks in Mach-O binaries.
TaintDroid is a dynamic analysis tool for detecting and analyzing privacy leaks
in Android applications [12]. It modifies Dalvik virtual machine and dynamically
instruments Dalvik bytecode instructions to perform dynamic taint analysis. Enck
et al. [13] proposed a static analysis approach to study privacy leakage as well.
They convert a Dalvik executable to Java source code and leverage a commercial
Java source code analysis tool Fortify360 [20] to detect surreptitious data flows.
CHEX [25] is designed to vet Android apps for component hijacking vulnerabil-
ities and is essentially capable of detecting privacy leakage. It converted Dalvik
bytecode to WALA [43] SSA IR, and conducted static dataflow analysis with
WALA framework. AndroidLeaks [15] is a static analysis framework, which also
leverages WALA, and identifies potential leaks of personal information in Android
applications on a large scale. Mann et al. [26] analyzed the Android API for possible
sources and sinks of private data and thus identified exemplary privacy policies. All
the existing detection methods fundamental cause significant false alarms because



14 2 Background

they cannot differentiate legitimate use of sensitive data from authentic privacy
leakage. Though effective in terms of privacy protection, these approaches did not
attempt to preserve the system usability.

2.4.2 Privacy Leak Mitigation

Based on TaintDroid, Hornyack et al. [19] proposed AppFence to further mitigate
privacy leaks. When TaintDroid discovers the data dependency between source
and sink, AppFence enforces privacy policies, either at source or sink, to protect
sensitive information. At source, it may provide the app with fake information
instead of the real one; at sink, it can block sending APIs. To take usability into
consideration, the authors proposed multiple access control rules and conducted
empirical studies to find the optimal policies in practice.

The major limitation of AppFence is the lack of efficiency. AppFence requires
modifications in the Dalvik virtual machine to track information flow and incurs
considerable performance overhead (14 % on average according to TaintDroid [12]).
Besides, the deployment is also challenging. For one thing, end users have to
re-install the operating system on their mobile device to enable AppFence. For
another, once the Android OS upgrades to a new version, AppFence needs to be
re-engineered to work with the novel mechanisms.

2.4.3 Information Flow Control

Though AppFence is limited by its efficiency and deployment, it demonstrates that
it is feasible to leverage Information-Flow Control (IFC) technique to address the
privacy leakage problem in Android apps. In fact, IFC has been studied on different
contexts. Chandra and Franz [5] implement an information flow framework for Java
virtual machine which combines static analysis to capture implicit flows. JFlow [30]
extends the Java language and adds statically-checked information flow annotations.
Jia et al. [21] proposes a component-level runtime enforcement system for Android
apps. duPro [32] is an efficient user-space information flow control framework,
which adopts software-based fault isolation to isolate protection domains within
the same process. Zeng et al. [49] introduces an IRM-implementation framework at
a compiler intermediate-representation (IR) level.

2.5 Text Analytics for Android Security

Recently, efforts have been made to study the security implications of textual
descriptions for Android apps. WHYPER [33] used natural language processing
technique to identify the descriptive sentences that are associated to permissions



References 15

requests. It implemented a semantic engine to connect textual elements to Android
permissions. AutoCog [36] further applied machine learning technique to automati-
cally correlate the descriptive scripts to permissions, and therefore was able to assess
description-to-permission fidelity of applications. These studies demonstrates the
urgent need to bridge the gap between the textual description and security-related
program semantics.

2.5.1 Automated Generation of Software Description

There exists a series of studies on software description generation for traditional
Java programs. Sridhara et al. [40] automatically summarized method syntax
and function logic using natural language. Later, they [41] improved the method
summaries by also describing the specific roles of method parameters and integrat-
ing parameter descriptions. They presented heuristics to generate comments and
describe the specific roles of different method parameters. Further, they [42] auto-
matically identified high-level abstractions of actions in code and described them
in natural language and attempted to automatically identify code fragments that
implement high level abstractions of actions and express them as a natural language
description. In the meantime, Buse [4] leveraged symbolic execution and code
summarization technique to document program differences, and thus synthesize
succinct human-readable documentation for arbitrary program differences. Moreno
et al. [29] proposed a summarization tool which determines class and method
stereotypes and uses them, in conjunction with heuristics, to select the information
to be included in the class summaries. The goal of these studies is to improve the
program comprehension for developers. As a result, they focus on documenting
intra-procedural program logic and low-level code structures. On the contrary, they
did not aim at depicting high-level program semantics and therefore cannot help end
users to understand the risk of Android apps.

References

1. Aafer Y, Du W, Yin H (2013) DroidAPIMiner: mining API-level features for robust malware
detection in android. In: Proceedings of the 9th international conference on security and privacy
in communication networks (SecureComm)

2. Arp D, Spreitzenbarth M, Hübner M, Gascon H, Rieck K (2014) Drebin: efficient and
explainable detection of android malware in your pocket. In: Proceedings of the 21th annual
network and distributed system security symposium (NDSS)

3. Arzt S, Rasthofer S, Fritz C, Bodden E, Bartel A, Klein J, Traon YL, Octeau D, McDaniel
P (2014) FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. In: Proceedings of the 35th ACM SIGPLAN conference on
programming language design and implementation (PLDI)

4. Buse RP, Weimer WR (2010) Automatically documenting program changes. In: Proceedings
of the IEEE/ACM international conference on automated software engineering (ASE)



16 2 Background

5. Chandra D, Franz M (2007) Fine-grained information flow analysis and enforcement in a java
virtual machine. In: Proceedings of the 23rd annual computer security applications conference
(ACSAC)

6. Chen KZ, Johnson N, D’Silva V, Dai S, MacNamara K, Magrino T, Wu EX, Rinard M, Song
D (2013) Contextual policy enforcement in android applications with permission event graphs.
In: Proceedings of the 20th annual network and distributed system security symposium (NDSS)

7. Cui W, Peinado M, Wang HJ (2007) Shieldgen: automatic data patch generation for unknown
vulnerabilities with informed probing. In: Proceedings of 2007 IEEE symposium on security
and privacy

8. Davi L, Dmitrienko A, Sadeghi AR, Winandy M (2011) Privilege escalation attacks on android.
In: Proceedings of the 13th international conference on Information security. Berlin/Heidelberg

9. Davis B, Sanders B, Khodaverdian A, Chen H (2012) I-ARM-Droid: a rewriting framework
for in-app reference monitors for android applications. In: Proceedings of the mobile security
technologies workshop

10. Egele M, Kruegel C, Kirda E, Vigna G (2011) PiOS: detecting privacy leaks in iOS
applications. In: Proceedings of NDSS

11. Enck W, Ongtang M, McDaniel P (2009) On lightweight mobile phone application certifica-
tion. In: Proceedings of the 16th ACM conference on computer and communications security
(CCS)

12. Enck W, Gilbert P, Chun BG, Cox LP, Jung J, McDaniel P, Sheth AN (2010) TaintDroid:
an information-flow tracking system for realtime privacy monitoring on smartphones. In:
Proceedings of the 9th USENIX symposium on operating systems design and implementation
(OSDI)

13. Enck W, Octeau D, McDaniel P, Chaudhuri S (2011) A study of android application security.
In: Proceedings of the 20th USENIX Security Symposium

14. Felt AP, Wang HJ, Moshchuk A, Hanna S, Chin E (2011) Permission re-delegation: attacks
and defenses. In: Proceedings of the 20th USENIX security symposium

15. Gibler C, Crussell J, Erickson J, Chen H (2012) AndroidLeaks: automatically detecting
potential privacy leaks in android applications on a large scale. In: Proceedings of the 5th
international conference on trust and trustworthy computing

16. Grace M, Zhou Y, Wang Z, Jiang X (2012) Systematic detection of capability leaks in stock
android smartphones. In: Proceedings of the 19th network and distributed system security
symposium

17. Grace M, Zhou Y, Zhang Q, Zou S, Jiang X (2012) RiskRanker: scalable and accurate zero-
day android malware detection. In: Proceedings of the 10th international conference on mobile
systems, applications and services (MobiSys)

18. Hanna S, Huang L, Wu E, Li S, Chen C, Song D (2012) Juxtapp: a scalable system for detecting
code reuse among android applications. In: Proceedings of the 9th international conference on
detection of intrusions and malware, and vulnerability assessment (DIMVA)

19. Hornyack P, Han S, Jung J, Schechter S, Wetherall D (2011) These aren’t the droids you’re
looking for: retrofitting android to protect data from imperious applications. In: Proceedings of
CCS

20. HP Fortify Source Code Analyzer (2016) http://www8.hp.com/us/en/software-solutions/static-
code-analysis-sast/

21. Jia L, Aljuraidan J, Fragkaki E, Bauer L, Stroucken M, Fukushima K, Kiyomoto S, Miyake Y
(2013) Run-time enforcement of information-flow properties on android (extended abstract).
In: Computer Security–ESORICS 2013: 18th European symposium on research in computer
security

22. Kim J, Yoon Y, Yi K, Shin J (2012) Scandal: static analyzer for detecting privacy leaks in
android applications. In: Mobile security technologies (MoST)

23. Lin Z, Jiang X, Xu D, Mao B, Xie L (2007) AutoPAG: towards automated software patch
generation with source code root cause identification and repair. In: Proceedings of the 2nd
ACM symposium on information, computer and communications security

http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/
http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/


References 17

24. Livshits B, Jung J (2013) Automatic mediation of privacy-sensitive resource access in
smartphone applications. In: Proceedings of the 22th USENIX security symposium

25. Lu L, Li Z, Wu Z, Lee W, Jiang G (2012) CHEX: statically vetting android apps for component
hijacking vulnerabilities. In: Proceedings of the 2012 ACM conference on computer and
communications security (CCS)

26. Mann C, Starostin A (2012) A framework for static detection of privacy leaks in android
applications. In: Proceedings of the 27th annual ACM symposium on applied computing

27. Martin M, Livshits B, Lam MS (2005) Finding application errors and security flaws using PQL:
a program query language. In: Proceedings of the 20th annual ACM SIGPLAN conference on
object-oriented programming, systems, languages, and applications

28. McAfee Labs Threats report Fourth Quarter (2013) http://www.mcafee.com/us/resources/
reports/rp-quarterly-threat-q4-2013.pdf

29. Moreno L, Aponte J, Sridhara G, Marcus A, Pollock L, Vijay-Shanker K (2013) Automatic
generation of natural language summaries for java classes. In: Proceedings of the 2013 IEEE
21th international conference on program comprehension (ICPC)

30. Myers AC (1999) JFlow: practical mostly-static information flow control. In: Proceedings of
the 26th ACM symposium on principles of programming languages (POPL)

31. Newsome J (2006) Vulnerability-specific execution filtering for exploit prevention on com-
modity software. In: Proceedings of the 13th symposium on network and distributed system
security (NDSS)

32. Niu B, Tan G (2013) Efficient user-space information flow control. In: Proceedings of the 8th
ACM symposium on information, computer and communications security

33. Pandita R, Xiao X, Yang W, Enck W, Xie T (2013) WHYPER: towards automating risk
assessment of mobile applications. In: Proceedings of the 22nd USENIX conference on
security

34. Peng H, Gates C, Sarma B, Li N, Qi Y, Potharaju R, Nita-Rotaru C, Molloy I (2012) Using
probabilistic generative models for ranking risks of android apps. In: Proceedings of the 2012
ACM conference on computer and communications security (CCS)

35. Privacy Blocker (2016) http://privacytools.xeudoxus.com/
36. Qu Z, Rastogi V, Zhang X, Chen Y, Zhu T, Chen Z (2014) Autocog: measuring the description-

to-permission fidelity in android applications. In: Proceedings of the 21st conference on
computer and communications security (CCS)

37. Rastogi V, Chen Y, Jiang X (2013) DroidChameleon: evaluating android anti-malware against
transformation attacks. In: Proceedings of the 8th ACM symposium on information, computer
and communications security (ASIACCS)

38. Razmov V, Simon D (2001) Practical automated filter generation to explicitly enforce
implicit input assumptions. In: Proceedings of the 17th annual computer security applications
conference

39. Sidiroglou S and Keromytis AD (2005) Countering network worms through automatic patch
generation. IEEE Secur Priv 3:41–49

40. Sridhara G, Hill E, Muppaneni D, Pollock L, Vijay-Shanker K (2010) Towards automatically
generating summary comments for java methods. In: Proceedings of the IEEE/ACM interna-
tional conference on automated software engineering (ASE)

41. Sridhara G, Pollock L, Vijay-Shanker K (2011) Generating parameter comments and integrat-
ing with method summaries. In: Proceedings of the 2011 IEEE 19th international conference
on program comprehension (ICPC)

42. Sridhara G, Pollock L, Vijay-Shanker K (2011) Automatically detecting and describing high
level actions within methods. In: Proceedings of the 33rd international conference on software
engineering (ICSE)

43. T.J. Watson Libraries for Analysis (2015) http://wala.sourceforge.net/wiki/index.php/Main_
Page

44. Wu C, Zhou Y, Patel K, Liang Z, Jiang X (2014) AirBag: boosting smartphone resistance to
malware infection. In: Proceedings of the 21th annual network and distributed system security
symposium (NDSS)

http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q4-2013.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q4-2013.pdf
http://privacytools.xeudoxus.com/
http://wala.sourceforge.net/wiki/index.php/Main_Page
http://wala.sourceforge.net/wiki/index.php/Main_Page


18 2 Background

45. Xu W, Bhatkar S, Sekar R (2006) Taint-enhanced policy enforcement: a practical approach to
defeat a wide range of attacks. In: Proceedings of the 15th conference on USENIX security
symposium

46. Xu R, Sadi H, Anderson R (2012) Aurasium: practical policy enforcement for android
applications. In: Proceedings of the 21th USENIX security symposium

47. Yan LK, Yin H (2012) DroidScope: seamlessly reconstructing OS and Dalvik semantic
views for dynamic android malware analysis. In: Proceedings of the 21st USENIX security
symposium

48. Yang Z, Yang M, Zhang Y, Gu G, Ning P, Wang XS (2013) AppIntent: analyzing sensitive
data transmission in android for privacy leakage detection. In: Proceedings of the 20th ACM
conference on computer and communications security (CCS)

49. Zeng B, Tan G, Erlingsson U (2013) Strato: a retargetable framework for low-level inlined-
reference monitors. In: Proceedings of the 22th USENIX security symposium

50. Zhang C, Wang T, Wei T, Chen Y, Zou W (2010) IntPatch: automatically fix integer-overflow-
to-buffer-overflow vulnerability at compile-time. In: Proceedings of the 15th European
conference on research in computer security

51. Zhang Y, Yang M, Xu B, Yang Z, Gu G, Ning P, Wang XS, Zang B (2013) Vetting undesirable
behaviors in android apps with permission use analysis. In: Proceedings of the 20th ACM
conference on computer and communications security (CCS)

52. Zhou Y, Jiang X (2012) Dissecting android malware: characterization and evolution. In:
Proceedings of the 33rd IEEE symposium on security and privacy. Oakland

53. Zhou Y, Jiang X (2013) Detecting passive content leaks and pollution in android applications.
In: Proceedings of the 20th network and distributed system security symposium

54. Zhou Y, Wang Z, Zhou W, Jiang X (2012) Hey, you, get off of my market: detecting malicious
apps in official and alternative android markets. In: Proceedings of 19th annual network and
distributed system security symposium (NDSS)



Chapter 3
Semantics-Aware Android Malware
Classification

Abstract The drastic increase of Android malware has led to a strong interest
in developing methods to automate the malware analysis process. Existing auto-
mated Android malware detection and classification methods fall into two general
categories: (1) signature-based and (2) machine learning-based. Signature-based
approaches can be easily evaded by bytecode-level transformation attacks. Prior
learning-based works extract features from application syntax, rather than program
semantics, and are also subject to evasion. In this paper, we propose a novel
semantic-based approach that classifies Android malware via dependency graphs.
To battle transformation attacks, we extract a weighted contextual API dependency
graph as program semantics to construct feature sets. To fight against malware
variants and zero-day malware, we introduce graph similarity metrics to uncover
homogeneous application behaviors while tolerating minor implementation differ-
ences. We implement a prototype system, DroidSIFT, in 23 thousand lines of Java
code. We evaluate our system using 2200 malware samples and 13,500 benign
samples. Experiments show that our signature detection can correctly label 93 % of
malware instances; our anomaly detector is capable of detecting zero-day malware
with a low false negative rate (2 %) and an acceptable false positive rate (5.15 %)
for a vetting purpose.

3.1 Introduction

The number of new Android malware instances has grown exponentially in recent
years. McAfee reports [1] that 2.47 million new mobile malware samples were
collected in 2013, which represents a 197 % increase over 2012. Greater and
greater amounts of manual effort are required to analyze the increasing number of
new malware instances. This has led to a strong interest in developing methods to
automate the malware analysis process.

Existing automated Android malware detection and classification methods fall
into two general categories: (1) signature-based and (2) machine learning-based.
Signature-based approaches [2, 3] look for specific patterns in the bytecode and
API calls, but they are easily evaded by bytecode-level transformation attacks [4].
Machine learning-based approaches [5–7] extract features from an application’s
behavior (such as permission requests and critical API calls) and apply standard

© The Author(s) 2016
M. Zhang, H. Yin, Android Application Security, SpringerBriefs in Computer
Science, DOI 10.1007/978-3-319-47812-8_3

19



20 3 Semantics-Aware Android Malware Classification

machine learning algorithms to perform binary classification. Because the extracted
features are associated with application syntax, rather than program semantics, these
detectors are also susceptible to evasion.

To directly address malware that evades automated detection, prior works distill
program semantics into graph representations, such as control-flow graphs [8], data
dependency graphs [9, 10] and permission event graphs [11]. These graphs are
checked against manually-crafted specifications to detect malware. However, these
detectors tend to seek an exact match for a given specification and therefore can
potentially be evaded by polymorphic variants. Furthermore, the specifications used
for detection are produced from known malware families and cannot be used to
battle zero-day malware.

In this chapter, we propose a novel semantic-based approach that classifies
Android malware via dependency graphs. To battle transformation attacks [4],
we extract a weighted contextual API dependency graph as program semantics
to construct feature sets. The subsequent classification then depends on more
robust semantic-level behavior rather than program syntax. It is much harder for
an adversary to use an elaborate bytecode-level transformation to evade such a
training system. To fight against malware variants and zero-day malware, we
introduce graph similarity metrics to uncover homogeneous essential application
behaviors while tolerating minor implementation differences. Consequently, new
or polymorphic malware that has a unique implementation, but performs common
malicious behaviors, cannot evade detection.

To our knowledge, when compared to traditional semantics-aware approaches
for desktop malware detection, we are the first to examine program semantics
within the context of Android malware classification. We also take a step further
to defeat malware variants and zero-day malware by comparing the similarity of
these programs to that of known malware at the behavioral level.

We build a database of behavior graphs for a collection of Android apps. Each
graph models the API usage scenario and program semantics of the app that it
represents. Given a new app, a query is made for the app’s behavior graphs to search
for the most similar counterpart in the database. The query result is a similarity score
which sets the corresponding element in the feature vector of the app. Every element
of this feature vector is associated with an individual graph in the database.

We build graph databases for two sets of behaviors: benign and malicious.
Feature vectors extracted from these two sets are then used to train two separate
classifiers for anomaly detection and signature detection. The former is capable of
discovering zero-day malware, and the latter is used to identify malware variants.

We implement a prototype system, DroidSIFT, in 23 thousand lines of Java
code. Our dependency graph generation is built on top of Soot [12], while our
graph similarity query leverages a graph matching toolkit[13] to compute graph edit
distance. We evaluate our system using 2200 malware samples and 13,500 benign
samples. Experiments show that our signature detection can correctly label 93 %
malware instances; our anomaly detector is capable of detecting zero-day malware
with a low false negative rate (2 %) and an acceptable false positive rate (5.15 %)
for vetting purpose.



3.2 Overview 21

3.2 Overview

3.2.1 Problem Statement

An effective vetting process for discovering malicious software is essential for
maintaining a healthy ecosystem in the Android app markets. Unfortunately,
existing vetting processes are still fairly rudimentary. As an example, consider the
Bouncer [14] vetting system that is used by the official Google Play Android market.
Though the technical details of Bouncer are not publicly available, experiments
by Oberheide and Miller [15] show that Bouncer performs dynamic analysis
to examine apps within an emulated Android environment for a limited period
of time. This method of analysis can be easily evaded by apps that perform
emulator detection, contain hidden behaviors that are timer-based, or otherwise
avoid triggering malicious behavior during the short time period when the app is
being vetted. Signature detection techniques adopted by the current anti-malware
products have also been shown to be trivially evaded by simple bytecode-level
transformations [4].

We propose a new technique, DroidSIFT, illustrated in Fig. 3.1, that addresses
these shortcomings and can be deployed as a replacement for existing vetting
techniques currently in use by the Android app markets. This technique is based on
static analysis, which is immune to emulation detection and is capable of analyzing
the entirety of an app’s code. Further, to defeat bytecode-level transformations, our
static analysis is semantics-aware and extracts program behaviors at the semantic
level.

Consequently, we are able to conduct two kinds of classifications: anomaly
detection and signature detection. Upon receiving a new app submission, our vetting
process will conduct anomaly detection to determine whether it contains behaviors
that significantly deviate from the benign apps within our database. If such a
deviation is discovered, a potential malware instance is identified. Then, we conduct
further signature detection on it to determine if this app falls into any malware family
within our signature database. If so, the app is flagged as malicious and bounced
back to the developer immediately.

If the app passes this hurdle, it is still possible that a new malware species
has been found. We bounce the app back to the developer with a detailed report
when suspicious behaviors that deviate from benign behaviors are discovered,

Android
App Market

Online Detection

Offline Graph Database
Construction &
Training Phase

Update
Database &
Classifiers

Developer

Submit Vet

Report

Fig. 3.1 Deployment of DroidSIFT



22 3 Semantics-Aware Android Malware Classification

and we request justification for the deviation. The app is approved only after the
developer makes a convincing justification for the deviation. Otherwise, after further
investigation, we may confirm it to indeed be a new malware species. By placing this
information into our malware database, we further improve our signature detection
to detect this new malware species in the future.

It is also possible to deploy our technique via a more ad-hoc scheme. For
example, our detection mechanism can be deployed as a public service that allows
a cautious app user to examine an app prior to its installation. An enterprise that
maintains its own private app repository could utilize such a security service. The
enterprise service conducts vetting prior to adding an app to the internal app pool,
thereby protecting employees from apps that contain malware behaviors.

3.2.2 Architecture Overview

Figure 3.2 depicts the workflow of our graph-based Android malware classification.
This takes the following steps:

(1) Behavior Graph Generation. Our malware classification considers graph
similarity as the feature vector. To this end, we first perform static program
analysis to transform Android bytecode programs into their corresponding
graph representations. Our program analysis includes entry point discovery and
call graph analysis to better understand the API calling contexts, and it leverages
both forward and backward dataflow analysis to explore API dependencies
and uncover any constant parameters. The result of this analysis is expressed
via Weighted Contextual API Dependency Graphs that expose security-related
behaviors of Android apps.

(2) Scalable Graph Similarity Query. Having generated graphs for both benign
and malicious apps, we then query the graph database for the one graph
most similar to a given graph. To address the scalability challenge, we utilize
a bucket-based indexing scheme to improve search efficiency. Each bucket
contains graphs bearing APIs from the same Android packages, and it is indexed

[0,0,0,0.9,…,0.8]
[1,0.6,0,0,…,0.7]
[0,0.9,0.7,0,…,0]

...

[0.6,0.9,0,0,…,0]
[0.8,0,0.8,0,…,1]

Android Apps

Behavior Graph
Generation

Graph-based Feature
Vector Extraction

Anomaly & Signature
Detection

Scalable Graph
Similarity Query

{ }
buckets

{ }

[0,0,...,0,0,0,0,1]

[0,0,...,0,0,0,1,0]

[0,0,...,0,0,0,1,1]

...

[1,0,...,1,1,1,1,1]

[1,1,...,1,1,1,1,1]

{ }

Fig. 3.2 Overview of DroidSIFT



3.3 Weighted Contextual API Dependency Graph 23

with a bitvector that indicates the presence of such packages. Given a graph
query, we can quickly seek to the corresponding bucket index by matching the
package’s vector to the bucket’s bitvector. Once a matching bucket is located,
we further iterate this bucket to find the best-matching graph. Finding the best-
matching graph, instead of an exact match, is necessary to identify polymorphic
malware.

(3) Graph-based Feature Vector Extraction. Given an app, we attempt to find the
best match for each of its graphs from the database. This produces a similarity
feature vector. Each element of the vector is associated with an existing graph
in the database. This vector bears a non-zero similarity score in one element
only if the corresponding graph is the best match to one of the graphs for the
given app.

(4) Anomaly and Signature Detection. We have implemented a signature classi-
fier and an anomaly detector. We have produced feature vectors for malicious
apps, and these vectors are used to train the classifier for signature detection.
The anomaly detection discovers zero-day Android malware, and the signature
detector uncovers the type (family) of the malware.

3.3 Weighted Contextual API Dependency Graph

3.3.1 Key Behavioral Aspects

We consider the following aspects as essential when describing the semantic-level
behaviors of an Android malware sample:

(1) API Dependency. API calls (including reflective calls to the private framework
functions) indicate how an app interacts with the Android framework. It is
essential to capture what API calls an app makes and the dependencies among
those calls. Prior works on semantic- and behavior-based malware detection
and classification for desktop environments all make use of API dependency
information [9, 10]. Android malware shares the same characteristics.

(2) Context. An entry point of an API call is a program entry point that directly
or indirectly triggers the call. From a user-awareness point of view, there
are two kinds of entry points: user interfaces and background callbacks.
Malware authors commonly exploit background callbacks to enable malicious
functionalities without the user’s knowledge. From a security analyst’s per-
spective, it is a suspicious behavior when a typical user interactive API (e.g.,
AudioRecord.startRecording()) is called stealthily [11]. As a result, we
must pay special attention to APIs activated from background callbacks.

(3) Constant. Constants convey semantic information by revealing the values
of critical parameters and uncovering fine-grained API semantics. For
instance, Runtime.exec() may execute varied shell commands, such as
ps or chmod, depending upon the input string constant. Constant analysis



24 3 Semantics-Aware Android Malware Classification

also discloses the data dependencies of certain security-sensitive APIs whose
benign-ness is dependent upon whether an input is constant. For example, a
sendTextMessage() call taking a constant premium-rate phone number as a
parameter is a more suspicious behavior than the call to the same API receiving
the phone number from user input via getText(). Consequently, it is crucial
to extract information about the usage of constants for security analysis.

Once we look at app behaviors using these three perspectives, we perform
similarity checking, rather than seeking an exact match, on the behavioral graphs.
Since each individual API node plays a distinctive role in an app, it contributes
differently to the graph similarity. With regards to malware detection, we emphasize
security-sensitive APIs combined with critical contexts or constant parameters. We
assign weights to different API nodes, giving greater weights to the nodes containing
critical calls, to improve the “quality” of behavior graphs when measuring
similarity. Moreover, the weight generation is automated. Thus, similar graphs have
higher similarity scores by design.

3.3.2 Formal Definition

To address all of the aforementioned factors, we describe app behaviors using
Weighted Contextual API Dependency Graphs (WC-ADG). At a high level, a
WC-ADG consists of API operations where some of the operations have data
dependencies. A formal definition is presented as follows.

Definition 1. A Weighted Contextual API Dependency Graph is a directed graph
G D .V; E; ˛; ˇ/ over a set of API operations ˙ and a weight space W, where:

• The set of vertices V corresponds to the contextual API operations in ˙ ;
• The set of edges E � V � V corresponds to the data dependencies between

operations;
• The labeling function ˛ W V ! ˙ associates nodes with the labels of

corresponding contextual API operations, where each label is comprised of 3
elements: API prototype, entry point and constant parameter;

• The labeling function ˇ W V ! W associates nodes with their corresponding
weights, where 8w 2 W, w 2 R, and R represents the space of real numbers.

3.3.3 A Real Example

Zitmo is a class of banking trojan malware that steals a user’s SMS messages to
discover banking information (e.g., mTANs). Figure 3.3 presents an example WC-
ADG that depicts the malicious behavior of a Zitmo malware sample in a concise,
yet complete, manner. This graph contains five API call nodes. Each node contains



3.3 Weighted Contextual API Dependency Graph 25

<android.telephony.SmsMessage: createFromPdu(byte[])>,
BroadcastReceiver.onReceive, Ø

<android.telephony.SmsMessage: getOriginatingAddress()>,
BroadcastReceiver.onReceive, Ø

<android.telephony.SmsMessage: getMessageBody()>,
BroadcastReceiver.onReceive, Ø

<UrlEncodedFormEntity: <init>(java.util.List)>,
BroadcastReceiver.onReceive, Ø

<HttpEntityEnclosingRequestBase: setEntity(HttpEntity)>,
BroadcastReceiver.onReceive, Ø

<AbstractHttpClient: execute(HttpUriRequest,ResponseHandler)>,
BroadcastReceiver.onReceive, Setc

Setc = {”http://softthrifty.com/security.jsp”}

Fig. 3.3 WC-ADG of zitmo

the call’s prototype, a set of any constant parameters, and the entry points of the
call. Dashed arrows that connect a pair of nodes indicates that a data dependency
exists between the two calls in those nodes.

By combining the knowledge of API prototypes with the data dependency
information shown in the graph, we know that the app is forwarding an
incoming SMS to the network. Once an SMS is received by the mobile phone,
Zitmo creates an SMS object from the raw Protocol Data Unit by calling
createFromPdu(byte[]). It extracts the sender’s phone number and message
content by calling getOriginating- Address() and getMessageBody(). Both
strings are encoded into an UrlEncoded- FormEntity object and enclosed into
HttpEntityEnclosingRequestBase by using the setEntity() call. Finally, this
HTTP request is sent to the network via AbstractHttpClient.execute().

Zitmo variants may also exploit various other communication-related API calls
for the sending purpose. Another Zitmo instance uses SmsManager.sendTextMess-
age() to deliver the stolen information as a text message to the attacker’s phone.
Such variations motivate us to consider graph similarity metrics, rather than an
exact matching of API call behavior, when determining whether a sample app is
benign or malicious.

The context provided by the entry points of these API calls informs us that
the user is not aware of this SMS forwarding behavior. These consecutive API
invocations start within the entry point method onReceive() with a call to
createFrom- Pdu(byte[]). onReceive() is a broadcast receiver registered by
the app to receive incoming SMS messages in the background. Therefore, the
createFromPdu(byte[]) and subsequent API calls are activated from a non-user-
interactive entry point and are hidden from the user.



26 3 Semantics-Aware Android Malware Classification

Constant analysis of the graph further indicates that the forwarding destination
is suspicious. The parameter of execute() is neither the sender (i.e., the bank) nor
any familiar parties from the contacts. It is a constant URL belonging to an unknown
third-party.

3.3.4 Graph Generation

We have implemented a graph generation tool on top of Soot [12] in 20 k lines
of code. This tool examines an Android app to conduct entry point discovery and
perform context-sensitive, flow-sensitive, and interprocedural dataflow analyses.
These analyses locate API call parameters and return values of interest, extract
constant parameters, and determine the data dependencies among the API calls.

3.3.4.1 Entry Point Discovery

Entry point discovery is essential to revealing whether the user is aware that a
certain API call has been made. However, this identification is not straightforward.
Consider the callgraph seen in Fig. 3.4. This graph describes a code snippet that
registers a onClick() event handler for a button. From within the event handler,
the code starts a thread instance by calling Thread.start(), which invokes
the run() method implementing Runnable.run(). The run() method passes
an android.os.Message object to the message queue of the hosting thread via
Handler.sendMessage(). A Handler object created in the same thread is then
bound to this message queue and its Handler.handleMessage() callback will
process the message and later execute sendTextMessage().

The sole entry point to the graph is the user-interactive callback onClick().
However, prior work [16] on the identification of program entry points does not
consider asynchronous calls and recognizes all three callbacks in the program as
individual entry points. This confuses the determination of whether the user is aware

Fig. 3.4 Callgraph for
asynchronously sending an
SMS message. “e” and “a”
stand for “event handler” and
“action” respectively

e2

OnClickListener.
onClick Runnable.run

Handler.
handleMessage

e3

a3

Runnable.start Handler.
sendMessage

SmsManager.
sendTextMessage

e1

a1 a2



3.3 Weighted Contextual API Dependency Graph 27

Algorithm 1 Entry Point Reduction for Asynchronous Callbacks
Mentry  {Possible entry point callback methods}
CMasync  {Pairs of (BaseClass; RunMethod) for asynchronous calls in framework}
RSasync  {Map from RunMethod to StartMethod for asynchronous calls in framework}
for mentry 2 Mentry do

c the class declaring mentry

base the base class of c
if .base; mentry/ 2 CMasync then

mstart  Lookup(mentry) in RSasync

for 8 call to mstart do
r “this” reference of call
PointsToSet PointsToAnalysis(r)
if c 2 PointsToSet then

Mentry D Mentry � fmentryg
BuildDependencyStub(mstart, mentry)

end if
end for

end if
end for
output Mentry as reduced entry point set

that an API call has been made in response to a user-interactive callback. To address
this limitation, we propose Algorithm 1 to remove any potential entry points that are
actually part of an asynchronous call chain with only a single entry point.

Algorithm 1 accepts three inputs and provides one output. The first input is
Mentry, which is a set of possible entry points. The second is CMasync, which is a set
of (BaseClass, RunMethod) pairs. BaseClass represents a top-level asynchronous
base class (e.g., Runnable) in the Android framework and RunMethod is the asyn-
chronous call target (e.g., Runnable.run()) declared in this class. The third input
is RSasync, which maps RunMethod to StartMethod. RunMethod and StartMethod
are the callee and caller in an asynchronous call (e.g., Runnable.run() and
Runnable.start()). The output is a reduced Mentry set.

We compute the Mentry input by applying the algorithm proposed by Lu et al. [16],
which discovers all reachable callback methods defined by the app that are intended
to be called only by the Android framework. To further consider the logical order
between Intent senders and receivers, we leverage Epicc [17] to resolve the inter-
component communications and then remove the Intent receivers from Mentry.

Through examination of the Android framework code, we generate a
list of 3-tuples consisting of BaseClass, RunMethod and StartMethod. For
example, we capture the Android-specific calling convention of AsyncTask with
AsyncTask.on- PreExecute() being triggered by AsyncTask.execute(). When
a new asynchronous call is introduced into the framework code, this list is updated to
include the change. Table 3.1 presents our current model for the calling convention
of top-level base asynchronous classes in Android framework.

Given these inputs, our algorithm iterates over Mentry. For every method mentry

in this set, it finds the class c that declares this method and the top-level base class



28 3 Semantics-Aware Android Malware Classification

Table 3.1 Calling convention of asynchronous calls

Top-level class Run method Start method

Runnable run() start()

AsyncTask onPreExecute() execute()

AsyncTask doInBackground() onPreExecute()

AsyncTask onPostExecute() doInBackground()

Message handleMessage() sendMessage()

Fig. 3.5 Stub code for dataflow of AsyncTask.execute

base that c inherits from. Then, it searches the pair of base and mentry in the CMasync

set. If a match is found, the method mentry is a “callee” by convention. The algorithm
thus looks up mentry in the map SRasync to find the corresponding “caller” mstart. Each
call to mstart is further examined and a points-to analysis is performed on the “this”
reference making the call. If class c of method mentry belongs to the points-to set, we
can ensure the calling relationship between the caller mstart and the callee mentry and
remove the callee from the entry point set.

To indicate the data dependency between these two methods, we introduce a
stub which connects the parameters of the asynchronous call to the corresponding
parameters of its callee. Figure 3.5 depicts the example stub code for AsyncTask,
where the parameter of execute() is first passed to doInBackground() through
the stub executeStub(), and then the return from this asynchronous execution is
further transferred to onPostExecute() via onPostExecuteStub().

Once the algorithm has reduced the number of entry point methods in
Mentry, we explore all code reachable from those entry points, including both
synchronous and asynchronous calls. We further determine the user interactivity
of an entry point by examining its top-level base class. If the entry point
callback overrides a counterpart declared in one of the three top-level UI-
related interfaces (i.e., android.graphics.drawable.Drawable.Callback,
android.view.accessibi- lity.AccessibilityEventSource, and android.-
view.KeyEvent.Callback), we then consider the derived entry point method as a
user interface.



3.3 Weighted Contextual API Dependency Graph 29

3.3.4.2 Constant Analysis

We conduct constant analysis for any critical parameters of security sensitive API
calls. These calls may expose security-related behaviors depending upon the values
of their constant parameters. For example, Runtime.exec() can directly execute
shell commands, and file or database operations can interact with distinctive targets
by providing the proper URIs as input parameters.

To understand these semantic-level differences, we perform backward dataflow
analysis on selected parameters and collect all possible constant values on the
backward trace. We generate a constant set for each critical API argument and
mark the parameter as “Constant” in the corresponding node on the WC-ADG.
While a more complete string constant analysis is also possible, the computation of
regular expressions is fairly expensive for static analysis. The substring set currently
generated effectively reflects the semantics of a critical API call and is sufficient for
further feature extraction.

3.3.4.3 API Dependency Construction

We perform global dataflow analysis to discover data dependencies between API
nodes and build the edges on WC-ADG. However, it is very expensive to analyze
every single API call made by an app. To address computational efficiency and our
interests on security analysis, we choose to analyze only the security-related API
calls. Permissions are strong indicators of security sensitivity in Android systems, so
we leverage the API-permission mapping from PScout [18] to focus on permission-
related API calls.

Our static dataflow analysis is similar to the “split”-based approach used by
CHEX [16]. Each program split includes all code reachable from a single entry
point. Dataflow analysis is performed on each split, and then cross-split dataflows
are examined. The difference between our analysis and that of CHEX lies in the
fact that we compute larger splits due to the consideration of asynchronous calling
conventions.

We make a special consideration for reflective calls within our anal-
ysis. In Android programs, reflection is realized by calling the method
java.lang.reflect. Method.invoke(). The “this” reference of this API call
is a Method object, which is usually obtained by invoking either getMethod() or
getDeclaredMethod() from java.lang.Class. The class is often acquired in a
reflective manner too, through Class.forName(). This API call resolves a string
input and retrieves the associated Class object.

We consider any reflective invoke() call as a sink and conduct backward
dataflow analysis to find any prior data dependencies. If such an analysis reaches
string constants, we are able to statically resolve the class and method information.
Otherwise, the reflective call is not statically resolvable. However, statically unre-
solvable behavior is still represented within the WC-ADG as nodes which contain no
constant parameters. Instead, this reflective call may have several preceding APIs,
from a dataflow perspective, which are the sources of its metadata.



30 3 Semantics-Aware Android Malware Classification

3.4 Android Malware Classification

We generate WC-ADGs for both benign and malicious apps. Each unique graph
is associated with a feature that we use to classify Android malware and benign
applications.

3.4.1 Graph Matching Score

To quantify the similarity of two graphs, we first compute a graph edit distance.
To our knowledge, all existing graph edit distance algorithms treat node and edge
uniformly. However, in our case, our graph edit distance calculation must take into
account the different weights of different API nodes. At present, we do not consider
assigning different weights on edges because this would lead to prohibitively high
complexity in graph matching. Moreover, to emphasize the differences between two
nodes in different labels, we do not seek to relabel them. Instead, we delete the old
node and insert the new one subsequently. This is because node “relabeling” cost,
in our context, is not the string edit distance between the API labels of two nodes. It
is the cost of deleting the old node plus that of adding the new node.

Definition 2. The Weighted Graph Edit Distance (WGED) of two Weighted Con-
textual API Dependency Graphs G and G0, with a uniform weight function ˇ, is the
minimum cost to transform G to G0:

wged.G; G0; ˇ/ D min.
X

vI2fV0�Vg
ˇ.vI/ C

X

vD2fV�V0g
ˇ.vD/ C jEIj C jEDj/; (3.1)

where V and V 0 are respectively the vertices of two graphs, vI and vD are individual
vertices inserted to and deleted from G, while EI and ED are the edges added to and
removed from G.

WGED presents the absolute difference between two graphs. This implies that
wged(G; G0) is roughly proportional to the sum of graph sizes and therefore two
larger graphs are likely to be more distant to one another. To eliminate this bias, we
normalize the resulting distance and further define Weighted Graph Similarity based
upon it.

Definition 3. The Weighted Graph Similarity of two Weighted Contextual API
Dependency Graphs G and G0, with a weight function ˇ, is,

wgs.G; G0; ˇ/ D 1 � wged.G; G0; ˇ/

wged.G; ;; ˇ/ C wged.;; G0; ˇ/
; (3.2)

where ; is an empty graph. wged.G; ;; ˇ/ C wged.;; G0; ˇ/ then equates the
maximum possible edit cost to transform G to G0.



3.4 Android Malware Classification 31

3.4.2 Weight Assignment

Instead of manually specifying the weights on different APIs (in combination of
their attributes), we wish to see a near-optimal weight assignment.

3.4.2.1 Selection of Critical API Labels

Given a large number of API labels (unique combinations of API names and
attributes), it is unrealistic to automatically assign weights for every one of them.
Our goal is malware classification, so we concentrate on assigning weights to labels
for the security-sensitive APIs and critical combinations of their attributes. To this
end, we perform concept learning to discover critical API labels. Given a positive
example set (PES) containing malware graphs and a negative example set (NES)
containing benign graphs, we seek a critical API label (CA) based on two require-
ments: (1) frequency(CA,PES) > frequency(CA,NES) and (2) frequency(CA,NES)
is less than the median frequency of all critical API labels in NES. The first
requirement guarantees that a critical API label is more sensitive to a malware
sample than a benign one, while the second requirement ensures the infrequent
presence of such an API label in the benign set. Consequently, we have selected
108 critical API labels. Our goal becomes the assignment of appropriate weights to
these 108 labels while assigning a default weight of 1 to all remaining API labels.

3.4.2.2 Weight Assignment

Intuitively, if two graphs come from the same malware family and share one or more
critical API labels, we must maximize the similarity between the two. We call such a
pair of graphs a “homogeneous pair”. Conversely, if one graph is malicious and the
other is benign, even if they share one or more critical API labels, we must minimize
the similarity between the two. We call such a pair of graphs a “heterogeneous pair”.
Therefore, we cast the problem of weight assignment to be an optimization problem.

Definition 4. The Weight Assignment is an optimization problem to maximize the
result of an objective function for a given set of graph pairs {< G; G0 >}:

max f .f< G; G0 >g; ˇ/ D
X

<G;G0> is a
homogeneous pair

wgs.G; G0; ˇ/ �
X

<G;G0> is a
heterogeneous pair

wgs.G; G0; ˇ/

s:t:

1 � ˇ.v/ � �; if v is a critical nodeI
ˇ.v/ D 1; otherwise;

(3.3)



32 3 Semantics-Aware Android Malware Classification

Fig. 3.6 A feedback loop to
solve the optimization
problem

f({<G,G’>},β)
β

Homogeneous
Graph Pairs

Hill Climber

+

-

Heterogeneous
Graph Pairs

where ˇ is the weight function that requires optimization; � is the upper bound of a
weight. Empirically, we set � to be 20.

To achieve the optimization of Eq. (3.3), we use the Hill Climbing algorithm [19]
to implement a feedback loop that gradually improves the quality of weight assign-
ment. Figure 3.6 presents such a system, which takes two sets of graph pairs and an
initial weight function ˇ as inputs. ˇ is a discrete function which is represented as a
weight vector. At each iteration, Hill Climbing adjusts a single element in the weight
vector and determines whether the change improves the value of objective function
f .f< G; G0 >g; ˇ/. Any change that improves f .f< G; G0 >g; ˇ/ is accepted, and
the process continues until no change can be found that further improves the value.

3.4.3 Implementation and Graph Database Query

To compute the weighted graph similarity, we use a bipartite graph matching
tool [13]. We cannot directly use this graph matching tool because it does not
support assigning different weights on different nodes in a graph. To work around
this limitation, we enhanced the bipartite algorithm to support weights on individual
nodes.

We then develop a graph database, where dependency graphs are stored into
multiple buckets. Each bucket is labeled according to the presence of critical APIs.
To ensure the scalability, we implement the bucket-based indexing with a hash map
where the key is the API package bitvector and the value is a corresponding graph
set. Empirically, we found this one-level indexing efficient enough for our problem.
If the database grows much larger, we can transition to a hierarchical database
structure, such as vantage point tree [20], under each bucket.



3.4 Android Malware Classification 33

3.4.4 Malware Classification

3.4.4.1 Anomaly Detection

We have implemented a detector to conduct anomaly detection. Given an app, the
detector provides a binary result that indicates whether the app is abnormal or not.
To achieve this goal, we build a graph database for benign apps. The detector then
attempts to match the WC-ADGs of the given app against the ones in database. If
a sufficiently similar one for any of the behavior graphs is not found, an anomaly
is reported by the detector. We have set the similarity threshold to be 70 % per our
empirical studies.

3.4.4.2 Signature Detection

We next use a classifier to perform signature detection. Our signature detector is a
multi-label classifier designed to identify the malware families of unknown malware
instances.

To enable classification, we first build a malware graph database. To this end,
we conduct static analysis on the malware samples from the Android Malware
Genome Project [21, 22] to extract WC-ADGs. In order to consider only the unique
graphs, we remove any graphs that have a high level of similarity to existing ones.
With experimental study, we consider a high similarity to be greater than 80 %.
Further, to guarantee the distinctiveness of malware behaviors, we compare these
malware graphs against our benign graph set and remove the common ones.

Next, given an app, we generate its feature vector for classification purpose. In
such a vector, each element is associated with a graph in our database. And, in turn,
all the existing graphs are projected to a feature vector. In other words, there exists a
one-to-one correspondence between the elements in a feature vector and the existing
graphs in the database. To construct the feature vector of the given app, we produce
its WC-ADGs and then query the graph database for all the generated graphs. For
each query, a best matching graph is found. The similarity score is then put into the
feature vector at the position corresponding to this best matching graph. Specifically,
the feature vector of a known malware sample is attached with its family label so that
the classifier can understand the discrepancy between different malware families.

Figure 3.7 gives an example of feature vectors. In our malware graph database
of 862 graphs, a feature vector of 862 elements is constructed for each app. The
two behavior graphs of ADRD are most similar to graph G6 and G7, respectively,
from the database. The corresponding elements of the feature vector are set to the
similarity scores of those features. The rest of the elements remain set to zero.

Once we have produced the feature vectors for the training samples, we can next
use them to train a classifier. We select Naïve Bayes algorithm for the classification.
In fact, we can choose different algorithms for the same purpose. However, since
our graph-based features are fairly strong, even Naïve Bayes can produce satisfying



34 3 Semantics-Aware Android Malware Classification

ADRD

DroidDream

DroidKungFu

0 0 00 0 0.8 0.9 0 0 0

0.9 0 00 0.8 0.7 0.7 0 0 0

0 0.7 00 0.6 0 0.6 0 0 0.9

...

...

...

G1 G2 G4G3 G7 G8 G861 G862...G5 G6

Fig. 3.7 An example of feature vectors

results. Naïve Bayes also has several advantages: it requires only a small amount
of training data; parameter adjustment is straightforward and simple; and runtime
performance is favorable.

3.5 Evaluation

3.5.1 Dataset and Experiment Setup

We collected 2200 malware samples from the Android Malware Genome
Project [21] and McAfee, Inc, a leading antivirus company. To build a benign
dataset, we received a number of benign samples from McAfee, and we downloaded
a variety of popular apps having a high ranking from Google Play. Specifically,
without loss of generality, we followed the prior approach in major research
work [6, 23] and collected the top 1000 apps from each of the 16 categories.
To further sanitize this benign dataset, we sent these apps to the VirusTotal service
for inspection. The final benign dataset consisted of 13,500 samples. We performed
the behavior graph generation, graph database creation, graph similarity query and
feature vector extraction using this dataset. We conducted the experiment on a test
machine equipped with Intel(R) Xeon(R) E5-2650 CPU (20 M Cache, 2 GHz) and
128 GB of physical memory. The operating system is Ubuntu 12.04.3 (64bit).

3.5.2 Summary of Graph Generation

We summarize the characteristics of the behavior graphs generated from both benign
and malicious apps. Figures 3.8 and 3.9 illustrate the distribution of the number
of graphs generated from benign and malicious apps. On average, 7.8 graphs
are computed from each benign app, while 9.8 graphs are generated from each
malware instance. Most apps focus on limited functionalities and do not produce a
large number of behavior graphs. In 92 % of benign samples and 98 % of malicious
ones, no more than 20 graphs are produced from an individual app.



3.5 Evaluation 35

4000

3000

2000

1000

0

Number of Graphs

N
um

be
r 

of
 A

pp
s

0 6 12 18 24 30 36 42 48 54 60 66 72

Fig. 3.8 Distribution of the number of graphs in benign apps

600

450

300

150

0
1 4 7 10 13 16 19 22 25 3728 31 34

Number of Graphs

N
um

be
r 

of
 A

pp
s

Fig. 3.9 Distribution of the number of graphs in malware

Figures 3.10 and 3.11 present the distribution of the number of nodes in benign
and malicious behavior graphs. A benign graph, on average, has 15 nodes, while
a malicious graph carries 16.4. Again, most of the activities are not intensive, so
the majority of these graphs have a small number of nodes. Statistics show that
94 % of the benign graphs and 91 % of the malicious ones carry less than 50 nodes.
These facts serve as the basic requirements for the scalability of our approach, since
the runtime performance of graph matching and query is largely dependent upon the
number of nodes and graphs, respectively.



36 3 Semantics-Aware Android Malware Classification

100000

75000

50000

25000

0

0 40 80 120 160 200 240 280 320 360 400 440 480

N
um

be
r 

of
 G

ra
ph

s

Number of Nodes

Fig. 3.10 Distribution of the number of nodes in benign graphs

8000

6000

4000

2000

0
0 20 40 60 80 100 120 140

160 180 200 220

N
um

be
r 

of
 G

ra
ph

s

Number of Nodes

Fig. 3.11 Distribution of the number of nodes in malware graphs

3.5.3 Classification Results

3.5.3.1 Signature Detection

We use a multi-label classification to identify the malware family of the unrec-
ognized malicious samples. Therefore, we expect to only include those malware
behavior graphs, that are well labeled with family information, into the database.
To this end, we rely on the malware samples from the Android Malware Genome



3.5 Evaluation 37

Project and use them to construct the malware graph database. Consequently,
we built such a database of 862 unique behavior graphs, with each graph labeled
with a specific malware family.

We then selected 1050 malware samples from the Android Malware Genome
Project and used them as a training set. Next, we would like to collect testing
samples from the rest of our collection. However, a majority of malware samples
from McAfee are not strongly labeled. Over 90 % of the samples are coarsely
labeled as “Trojan” or “Downloader”, but in fact belong to a specific malware family
(e.g., DroidDream). Moreover, even VirusTotal cannot provide reliable malware
family information for a given sample because the antivirus products used by
VirusTotal seldom reach a consensus. This fact tells us two things: (1) It is a non-
trivial task to collect evident samples as the ground truth in the context of multi-label
classification; (2) multi-label malware detection or classification is, in general, a
challenging real-world problem.

Despite the difficulty, we obtained 193 samples, each of which is detected as
the same malware by major AVs. We then used those samples as testing data. The
experiment result shows that our classifier can correctly label 93 % of these malware
instances.

Among the successfully labeled malware samples are two types of Zitmo
variants. One uses HTTP for communication, and the other uses SMS. While the
former one is present in our malware database, the latter one was not. Nevertheless,
our signature detector is still able to capture this variant. This indicates that our
similarity metrics effectively tolerate variations in behavior graphs.

We further examined the 7 % of the samples that were mislabeled. It turns out
that the mislabeled cases can be roughly put into two categories. First, DroidDream
samples are labeled as DroidKungFu. DroidDream and DroidKungFu share multiple
malicious behaviors such as gathering privacy-related information and hidden
network I/O. Consequently, there exists a significant overlap between their WC-
ADGs. Second, Zitmo, Zsone and YZHC instances are labeled as one another. These
three families are SMS Trojans. Though their behaviors are slightly different from
each other, they all exploit sendTextMessage() to deliver the user’s information
to an attacker-specified phone number. Despite the mislabeled cases, we still
manage to successfully label 93 % of the malware samples with a Naïve Bayes
classifier. Applying a more advanced classification algorithm will further improve
the accuracy.

3.5.3.2 Anomaly Detection

Since we wish to perform anomaly detection using our benign graph database, the
coverage of this database is essential. In theory, the more benign apps that the
database collects, the more benign behaviors it covers. However, in practice, it is
extremely difficult to retrieve benign apps exhaustively. Luckily, different benign
apps may share the same behaviors. Therefore, we can focus on unique behaviors
(rather than unique apps). Moreover, with more and more apps being fed into the



38 3 Semantics-Aware Android Malware Classification

0

2000

4000

6000

8000

10000

12000

3000 4000 5000 6000 7000 8000 9000 10000 11000

N
um

be
r o

f U
ni

qu
e 

G
ra

ph
s

Number of Benign Apps

Fig. 3.12 Convergence of unique graphs in benign apps

benign database, the database size grows slower and slower. Figure 3.12 depicts our
discovery. When the number of apps increases from 3000 to 4000, there is a sharp
increase (2087) of unique graphs. However, when the number of apps grows from
10,000 to 11,000, only 220 new, unique graphs are generated, and the curve begins
to flatten.

We built a database of 10,420 unique graphs from 11,400 benign apps. Then,
we tested 2200 malware samples against the benign classifier. The false negative rate
was 2 %, which indicates that 42 malware instances were not detected. However, we
noted that most of the missed samples are exploits or Downloaders. In these cases,
their bytecode programs do not bear significant API-level behaviors, and therefore
generated WC-ADGs do not necessarily look abnormal when compared to benign
ones. At this point, we have only considered the presence of constant parameters
in an API call. We did not further differentiate API behaviors based upon constant
values. Therefore, we cannot distinguish the behaviors of Runtime.exec() calls or
network I/O APIs with varied string inputs. Nevertheless, if we create a custom filter
for these string constants, we will then be able to identify these malware samples
and the false negative rate will drop to 0.

Next, we used the remaining 2100 benign apps as test samples to evaluate the
false positive rate of our anomaly detector. The result shows that 5.15 % of clean
apps are mistakenly recognized as suspicious ones during anomaly detection. This
means, if our anomaly detector is applied to Google Play, among the approximately
1200 new apps per day [24], around 60 apps will be mislabeled as containing
anomalies and be bounced back to the developers. We believe that this is an
acceptable ratio for vetting purpose. Moreover, since we do not reject the suspicious
apps immediately, but rather ask the developers for justifications instead, we can



3.5 Evaluation 39

further eliminate these false positives during this interactive process. In addition,
as we add more benign samples into the dataset, the false positive rate will further
decrease.

Further, we would like to evaluate our anomaly detector with malicious samples
from new malware families. To this end, we retrieve a new piece of malware
called Android.HeHe, which was first found and reported in January 2014 [25].
Android.HeHe exercises a variety of malicious functionalities such as SMS inter-
ception, information stealing and command-and-control. This new malware family
does not appear in the samples from the Android Malware Genome Project, which
were collected from August 2010 to October 2011, and therefore cannot be labeled
via signature detection. DroidSIFT generates 49 WC-ADGs for this sample and,
once these graphs are presented to the anomaly detector, a warning is raised
indicating the abnormal behaviors expressed by these graphs.

3.5.3.3 Detection of Transformation Attacks

We collected 23 DroidDream samples, which are all intentionally obfuscated using
a transformation technique [4], and 2 benign apps that are deliberately disguised as
malware instances by applying the same technique. We ran these samples through
our anomaly detection engine and then sent the detected abnormal ones through the
signature detector. The result shows that while 23 true malware instances are flagged
as abnormal ones in anomaly detection, the 2 clean ones also correctly pass the
detection without raising any warnings. We then compared our signature detection
results with antivirus products. To obtain detection results of antivirus software,
we sent these samples to VirusTotal and selected 10 anti-virus (AV) products
(i.e., AegisLab, F-Prot, ESET-NOD32, DrWeb, AntiVir, CAT-QuickHeal, Sophos,
F-Secure, Avast, and Ad-Aware) that bear the highest detection rates. Notice that
we consider the detection to be successful only if the AV can correctly flag a piece of
malware as DroidDream or its variant. In fact, to our observation, many AV products
can provide partial detection results based upon the native exploit code included
in the app package or common network I/O behaviors. As a result, they usually
recognize these DroidDream samples as “exploits” or “Downloaders” while missing
many other important malicious behaviors. Figure 3.13 presents the detection ratios
of “DroidDream” across different detectors. While none of the antivirus products
can achieve a detection rate higher than 61 %, DroidSIFT can successfully flag all
the obfuscated samples as DroidDream instances. In addition, we also notice that
AV2 produces a relatively high detection ratio (52.17 %), but it also mistakenly
flags those two clean samples as malicious apps. Since the disguising technique
simply renames the benign app package to the one commonly used by DroidDream
(and thus confuses this AV detector), such false positives again explain that external
symptoms are not robust and reliable features for malware detection.



40 3 Semantics-Aware Android Malware Classification

Fig. 3.13 Detection ratio for
obfuscated malware

0
5

10
15
20
25

N
um

be
r o

f D
et

ec
tio

ns
Detector ID

True Positive False Positive

3.5.4 Runtime Performance

The average detection runtime of 3000 apps is 175.8 s, while the detection for
a majority (86 %) of apps is completed within 5 min. Further, most of the apps
(96 %) are processed within 10 min. The time cost of graph generation dominates
the overall runtime, taking up at least 50 % of total runtime for 83.5 % of the apps.
On the other hand, the signature and anomaly detectors are usually (i.e., in 98 % of
the cases) able to finish running in 3 and 1 min, respectively.

3.5.5 Effectiveness of Weight Generation and Weighted Graph
Matching

Finally, we evaluated the effectiveness of the generated weights and weighted
graph matching. Our weight generation automatically assign weights to the crit-
ical API labels, based on a training set of homogeneous graph pairs and het-
erogeneous graph pairs. Consequently, killProcess(), getMemoryInfo() and
sendTextMessage() with a constant phone number, for example, are assigned with
fairly high weights.

Then, given a graph pair sharing the same critical API labels, other than the
pairs used for training, we want to compare their weighted graph similarity with
the similarity score calculated by the standard bipartite algorithm. To this end, we
randomly picked 250 homogeneous pairs and 250 heterogeneous pairs.

The results of these comparisons, presented in Figs. 3.14 and 3.15, conform to
our expectation. Figure 3.14 shows that for every homogeneous pair, the similarity
score generated by weighted graph matching is almost always higher than the
corresponding one computed using standard bipartite algorithm. In addition, the
bipartite algorithm sometimes produces an extremely low similarity (i.e., near zero)
between two malicious graphs of the same family, while weighted graph matching
manages to improve the similarity score significantly for these cases.



3.5 Evaluation 41

Fig. 3.14 Similarity between
malicious graph pairs

0
0.2
0.4
0.6
0.8

1

0 50 100 150 200 250

Si
m

ila
rit

y 
Sc

or
e

Graph Pair ID

Standard Bipartite Weighted Graph Similarity

Fig. 3.15 Similarity between
benign and malicious graphs

0
0.2
0.4
0.6
0.8

1

0 50 100 150 200 250

Si
m

ila
rit

y 
Sc

or
e

Graph Pair ID

Standard Bipartite Weighted Graph Similarity

Similarly, Fig. 3.15 reveals that between a heterogeneous pair, the weighted
similarity score is usually lower than the one from bipartite computation. Again,
the bipartite algorithm occasionally considers a benign graph considerably similar
to a malicious one, provided that they share the same API nodes. Such results can
confuse a training system and the latter one thus fails to tell the differences between
malicious and benign behaviors. On the other hand, weighted graph matching can
effectively distinguish a malicious graph from a benign one, even if they both have
the same critical API nodes.

We further attempted to implement the standard bipartite algorithm and apply it
to our detectors. We then compared the consequent detection results with those of
the detectors with weighted graph matching enabled. The results show that weighted
graph matching significantly outperforms the bipartite one. While the signature
detector using the former one correctly labels 93 % of malware samples, the detector
with the latter one is able to only label 73 % of them. On the other hand, anomaly
detection with the bipartite algorithm incurs a false negative rate of 10 %, which is
5 times greater than that introduced by the same detector using weighted matching.

The result indicates that our algorithm is more sensitive to critical API-level
semantics than the standard bipartite graph matching, and thus can produce more
reasonable similarity scores for the feature extraction.



42 3 Semantics-Aware Android Malware Classification

References

1. McAfee Labs Threats report Fourth Quarter (2013) http://www.mcafee.com/us/resources/
reports/rp-quarterly-threat-q4-2013.pdf

2. Zhou Y, Wang Z, Zhou W, Jiang X (2012) Hey, you, get off of my market: detecting malicious
apps in official and alternative android markets. In: Proceedings of 19th annual network and
distributed system security symposium (NDSS)

3. Grace M, Zhou Y, Zhang Q, Zou S, Jiang X (2012) RiskRanker: scalable and accurate zero-
day android malware detection. In: Proceedings of the 10th international conference on mobile
systems, applications and services (MobiSys)

4. Rastogi V, Chen Y, Jiang X (2013) DroidChameleon: evaluating android anti-malware against
transformation attacks. In: Proceedings of the 8th ACM symposium on information, computer
and communications security (ASIACCS)

5. Peng H, Gates C, Sarma B, Li N, Qi Y, Potharaju R, Nita-Rotaru C, Molloy I (2012) Using
probabilistic generative models for ranking risks of android apps. In: Proceedings of the 2012
ACM conference on computer and communications security (CCS)

6. Aafer Y, Du W, Yin H (2013) DroidAPIMiner: mining API-level features for robust malware
detection in android. In: Proceedings of the 9th international conference on security and privacy
in communication networks (SecureComm)

7. Arp D, Spreitzenbarth M, Hübner M, Gascon H, Rieck K (2014) Drebin: efficient and
explainable detection of android malware in your pocket. In: Proceedings of the 21th annual
network and distributed system security symposium (NDSS)

8. Christodorescu M, Jha S, Seshia SA, Song D, Bryant RE (2005) Semantics-aware malware
detection. In: Proceedings of the 2005 IEEE symposium on security and privacy (Oakland)

9. Fredrikson M, Jha S, Christodorescu M, Sailer R, Yan X (2010) Synthesizing near-optimal
malware specifications from suspicious behaviors. In: Proceedings of the 2010 IEEE sympo-
sium on security and privacy (Oakland)

10. Kolbitsch C, Comparetti PM, Kruegel C, Kirda E, Zhou X, Wang X (2009) Effective and
efficient malware detection at the end host. In: Proceedings of the 18th conference on USENIX
security symposium

11. Chen KZ, Johnson N, D’Silva V, Dai S, MacNamara K, Magrino T, Wu EX, Rinard M, Song
D (2013) Contextual policy enforcement in android applications with permission event graphs.
In: Proceedings of the 20th annual network and distributed system security symposium (NDSS)

12. Soot: A Java Optimization Framework (2016) http://www.sable.mcgill.ca/soot/
13. Riesen K, Emmenegger S, Bunke H (2013) A novel software toolkit for graph edit distance

computation. In: Proceedings of the 9th international workshop on graph based representations
in pattern recognition

14. Lockheimer H (2012) Android and security. http://googlemobile.blogspot.com/2012/02/
android-and-security.html

15. Oberheide J, Miller C (2012) Dissecting the android bouncer. In: SummerCon
16. Lu L, Li Z, Wu Z, Lee W, Jiang G (2012) CHEX: statically vetting android apps for component

hijacking vulnerabilities. In: Proceedings of the 2012 ACM conference on computer and
communications security (CCS)

17. Octeau D, McDaniel P, Jha S, Bartel A, Bodden E, Klein J, Traon YL (2013) Effective inter-
component communication mapping in android with epicc: an essential step towards holistic
security analysis. In: Proceedings of the 22nd USENIX security symposium

18. Au KWY, Zhou YF, Huang Z, Lie D (2012) PScout: analyzing the android permission
specification. In: Proceedings of the 2012 ACM conference on computer and communications
security (CCS)

19. Russell SJ, Norvig P (2013) Artificial intelligence: a modern approach, 3rd edn. Prentice-Hall,
Inc., Upper Saddle River

20. Hu X, Chiueh TC, Shin KG (2009) Large-scale malware indexing using function-call graphs.
In: Proceedings of the 16th ACM conference on computer and communications security (CCS)

http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q4-2013.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q4-2013.pdf
http://www.sable.mcgill.ca/soot/
http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://googlemobile.blogspot.com/2012/02/android-and-security.html


References 43

21. Android Malware Genome Project (2012) http://www.malgenomeproject.org/
22. Zhou Y, Jiang X (2012) Dissecting android malware: characterization and evolution. In:

Proceedings of the 33rd IEEE symposium on security and privacy. Oakland
23. Enck W, Octeau D, McDaniel P, Chaudhuri S (2011) A study of android application security.

In: Proceedings of the 20th USENIX security symposium
24. Number of Android Applications (2014) http://www.appbrain.com/stats/number-of-android-

apps
25. Dharmdasani H (2014) Android.HeHe: malware now disconnects phone calls. http://www.

fireeye.com/blog/technical/2014/01/android-hehe-malware-now-disconnects-phone-calls.
html

http://www.malgenomeproject.org/
http://www.appbrain.com/stats/number-of-android-apps
http://www.appbrain.com/stats/number-of-android-apps
http://www.fireeye.com/blog/technical/2014/01/android-hehe-malware-now-disconnects-phone-calls.html
http://www.fireeye.com/blog/technical/2014/01/android-hehe-malware-now-disconnects-phone-calls.html
http://www.fireeye.com/blog/technical/2014/01/android-hehe-malware-now-disconnects-phone-calls.html


Chapter 4
Automatic Generation of Vulnerability-Specific
Patches for Preventing Component Hijacking
Attacks

Abstract Component hijacking is a class of vulnerabilities commonly appearing
in Android applications. When these vulnerabilities are triggered by attackers,
the vulnerable apps can exfiltrate sensitive information and compromise the data
integrity on Android devices, on behalf of the attackers. It is often unrealistic to
purely rely on developers to fix these vulnerabilities for two reasons: (1) it is
a time-consuming process for the developers to confirm each vulnerability and
release a patch for it; and (2) the developers may not be experienced enough to
properly fix the problem. In this paper, we propose a technique for automatic patch
generation. Given a vulnerable Android app (without source code) and a discovered
component hijacking vulnerability, we automatically generate a patch to disable this
vulnerability. We have implemented a prototype called AppSealer and evaluated its
efficacy on apps with component hijacking vulnerabilities. Our evaluation on 16
real-world vulnerable Android apps demonstrates that the generated patches can
effectively track and mitigate component hijacking vulnerabilities. Moreover, after
going through a series of optimizations, the patch code only represents a small
portion (15.9 % on average) of the entire program. The runtime overhead introduced
by AppSealer is also minimal, merely 2 % on average.

4.1 Introduction

With the boom of Android devices, the security threats in Android are also
increasing. Although the permission-based sandboxing mechanism enforced in
Android can effectively confine each app’s behaviors by only allowing the ones
granted with corresponding permissions, a vulnerable app with certain critical
permissions can perform security-sensitive behaviors on behalf of a malicious app. It
is so called confused deputy attack. This kind of security vulnerabilities can present
in numerous forms, such as privilege escalation [1], capability leaks [2], permission
re-delegation [3], content leaks and pollution [4], component hijacking [5], etc.

Prior work primarily focused on automatic discovery of these vulnerabilities.
Once a vulnerability is discovered, it can be reported to the developer and a patch is
expected. Some patches can be as simple as placing a permission validation at the
entry point of an exposed interface (to defeat privilege escalation [1] and permission

© The Author(s) 2016
M. Zhang, H. Yin, Android Application Security, SpringerBriefs in Computer
Science, DOI 10.1007/978-3-319-47812-8_4

45



46 4 Automatic Generation of Vulnerability-Specific Patches for Preventing. . .

re-delegation [3] attacks), or withholding the public access to the internal data
repositories (to defend against content leaks and pollution [4]), the fixes to the other
problems may not be so straightforward.

In particular, component hijacking may fall into the latter category. When
receiving a manipulated input from a malicious Android app, an app with a
component hijacking vulnerability may exfiltrate sensitive information or tamper
with the sensitive data in a critical data repository on behalf of the malicious app.
In other words, a dangerous information flow may happen in either an outbound
or inbound direction depending on certain external conditions and/or the internal
program state.

A prior effort has been made to perform static analysis to discover potential
component hijacking vulnerabilities [5]. Static analysis is known to be conservative
in nature and may raise false positives. To name a few, static analysis may find a
viable execution path for information flow, which may never be reached in actual
program execution; static analysis may find that interesting information is stored
in some elements in a database, and thus has to conservatively treat the entire
database as sensitive. Upon receiving a discovered vulnerability, the developer has
to manually confirm if the reported vulnerability is real. It may also be nontrivial
for the (often inexperienced) developer to properly fix the vulnerability and release
a patch for it. As a result, these discovered vulnerabilities may not be addressed for
long time or not addressed at all, leaving a big time window for attackers to exploit
these vulnerabilities. Out of the 16 apps with component hijacking vulnerabilities
we tested, only 3 of them were fixed in 1 year.

To close this window, we aim to automatically generate a patch that is specific
to the discovered component hijacking vulnerability. In other words, we would like
to automatically generate a vulnerability-specific patch on the original program to
block the vulnerability as a whole, not just a set of malicious requests that exploit
the vulnerability.

While automatic patch generation is fairly new in the context of Android
applications, a great deal of research has been done for traditional client and
server programs (with and without source code). Many efforts have been made
to automatically generate signatures to block bad inputs, by performing symbolic
execution and path exploration [6–10]. This approach is effective if the vulnerability
is triggered purely by the external input and the library functions can be easily
modeled in symbolic execution. However, for android applications, due to the
asynchronous nature of the program execution, a successful exploitation may
depend on not only the external input, but also the system events and API-call
return values. Other efforts have been made to automatically generate code patches
within the vulnerable programs to mitigate certain kinds of vulnerabilities. To
name a few, AutoPaG [11] focused on buffer overflow and general boundary
errors; IntPatch [12] addressed integer-overflow-to-buffer-overflow problem; To
defeat zero-day worms, Sidiroglou and Keromytis [13] proposed an end-point
first-reaction mechanism that tries to automatically patch vulnerable software by
identifying and transforming the code surrounding the exploited software flaw; and
VSEF [14] monitors and instruments the part of program execution relevant to



4.2 Problem Statement and Approach Overview 47

specific vulnerability, and creates execution-based filters which filter out exploits
based on vulnerable program’s execution trace, rather than solely upon input string.

In principle, our automatic patch generation technique falls into the second
category. However, our technique is very different from these existing techniques,
because it requires a new machinery to address this new class of vulnerabilities.
The key of our patch generation technique is to place minimally required code
into the vulnerable program to accurately keep track of dangerous information
originated from the exposed interfaces and effectively block the attack at the
security-sensitive APIs.

To achieve this goal, we first perform static bytecode analysis to identify small
but complete program slices that lead to the discovered vulnerability. Then we
devise several shadowing mechanisms to insert new variables and instructions along
the program slices, for the purpose of keeping track of dangerous information at run-
time. In the end, we apply a series of optimizations to remove redundant instructions
to minimize the footprint of the generated patch. Consequently, the automatically
generated patch can be guaranteed to completely disable the vulnerability with
minimal impact on runtime performance and usability.

We implement a prototype, AppSealer, in 16 thousand lines of Java code,
based on the Java bytecode optimization framework Soot [15]. We leverage
Soot’s capability to perform static dataflow analysis and bytecode instrumentation.
We evaluate our tool on 16 real-world Android apps with component hijacking
vulnerabilities. Our experiments show that the patched programs run correctly, while
the vulnerabilities are effectively mitigated.

4.2 Problem Statement and Approach Overview

4.2.1 Running Example

Figure 4.1 presents a synthetic running example in Java source code, which has
a component hijacking vulnerability. More concretely, the example class is one
of the Activity components in an Android application. It extends an Android
Activity and overrides several callbacks including onCreate(), onStart()
and onDestroy().

Upon receiving a triggering Intent, the Android framework creates the Activity
and further invokes these callbacks. Once the Activity is created, onCreate()
retrieves the piggybacked URL string from the triggering Intent. Next, it saves
this URL to an instance field addr if the resulting string is not null, or uses
the DEFAULT_ADDR otherwise. When the Activity starts, onStart() method
acquires the latest location information by calling getLastKnownLocation(),
and stores it to a static field location. Further, onDestroy() reads the location
object from this static field, encodes the data into a string, encrypts the byte array of
the string and sends it to the URL specified by addr through a raw socket.



48 4 Automatic Generation of Vulnerability-Specific Patches for Preventing. . .

1 public class VulActivity extends Activity{
2 private String DEFAULT_ADDR = "http://default.url";
3 private byte DEFAULT_KEY = 127;
4
5 private String addr;
6 private static Location location;
7 private byte key;
8
9 /* Entry point of this Activity */

10 public void onCreate(Bundle savedInstanceState){
11 this.key = DEFAULT_KEY;
12
13 this.addr = getIntent().getExtras().getString("url");
14 if(this.addr == null){
15 this.addr = DEFAULT_ADDR;
16 }
17 }
18
19 public void onStart(){
20 VulActivity.location = getLocation();
21 }
22
23 public void onDestroy(){
24 String location =
25 Double.toString(VulActivity.location.getLongitude()) + "," + Double.

toString(VulActivity.location.getLatitude());
26 byte[] bytes = location.getBytes();
27 for(int i=0; i<bytes.length; i++)
28 bytes[i] = crypt(bytes[i]);
29 String url = this.addr;
30 post(url, bytes);
31 }
32
33 public byte crypt(byte plain){
34 return (byte)(plain ˆ key);
35 }
36
37 public Location getLocation(){
38 Location location = null;
39 LocationManager locationManager = (LocationManager)getSystemService(Context

.LOCATION_SERVICE);
40 location = locationManager.getLastKnownLocation(LocationManager.

GPS_PROVIDER);
41 return location;
42 }
43
44 public void post(String addr, byte[] bytes){
45 URL url = new URL(addr);
46 HttpURLConnection conn = (HttpURLConnection)url.openConnection();
47 ...
48 OutputStream output = conn.getOutputStream();
49 output.write(bytes, 0, bytes.length);
50 ...
51 }
52 }

Fig. 4.1 Java code for the running example

This program is subject to component hijacking attack, because a malicious
app may send an Intent to this Activity with a URL specified by the
attacker. As a result, this vulnerable app will send the location information
to the attacker’s URL. In other words, this vulnerability allows the mali-
cious app to retrieve sensitive information without having to declare the



4.2 Problem Statement and Approach Overview 49

related permissions (i.e., android.permission.ACCESS_FINE_LOCATION and
android.permission.INTERNET).

Besides information leakage, a component hijacking attack may happen in the
reverse direction. That is, a vulnerable program may allow a malicious app to modify
the content of certain sensitive data storage, such as the Contacts database, even
though the malicious app is not granted with the related permissions.

4.2.2 Problem Statement

We anticipate our proposed technique to be deployed as a security service in the
Android marketplace, as illustrated in Fig. 4.2. Both the existing apps and the newly
submitted apps must go through the vetting process by using static analysis tools
like CHEX [5]. If a component hijacking vulnerability is discovered in an app, its
developer will be notified, and a patch will be automatically generated to disable the
discovered vulnerability. So the vulnerable apps will never reach the end users. This
approach wins time for the developer to come up with a more fundamental solution
to the discovered security problem. Even if the developer does not have enough
skills to fix the problem or is not willing to, the automatically generated patch can
serve as a permanent solution for most cases (if not all).

In addition, it is also possible to deploy our technique with more ad-hoc
schemes. For instance, an enterprise can maintain its private app repository and
security service too. The enterprise service conducts vetting and necessary patching
before an app gets into the internal app pool, and thus employees are protected
from vulnerable apps. Alternatively, establishing third-party public services and
repositories is also viable and can benefit end users.

Android App Market

In-Cloud App
Inspection & Patching

Report

Patching

End User

Vulnerable App V

Submission
Developer B

Good App G

Patched V’

Original G

Install

Developer A

Fig. 4.2 Deployment of AppSealer



50 4 Automatic Generation of Vulnerability-Specific Patches for Preventing. . .

Translation Taint Slice
Computation

Patch Statement
Placement

Patch
Optimization

Code
Generation

IR Slices New IR Optimized IR

dex

Resources

dex

Vulnerable App Patched App

Resources

Fig. 4.3 Architecture of AppSealer

4.2.3 Approach Overview

Figure 4.3 depicts the workflow of our automatic patch generation technique. It
takes the following steps:

(1) IR Translation. An Android app generally consists of a Dalvik bytecode
executable file, manifest files, native libraries, and other resources. Our patch
generation is performed on the Dalvik bytecode program. So the other files
remain the same, and will be repackaged into the new app in the last step. To
facilitate the subsequent static analysis, code insertion, and code optimization,
we first translate Dalvik bytecode into an Intermediate Representation (IR).
In particular, we first convert the DEX into Java bytecode program using
dex2jar [16], and then using Soot [15], translate the Java bytecode into Jimple
IR.

(2) Slice Computation. On Jimple IR, we perform flow-sensitive context-sensitive
inter-procedural dataflow analysis to discover component hijacking flows. We
track the propagation of certain “tainted” sensitive information from sources
like internal data storage and exposed interfaces, and detect if the tainted
information propagates into the dangerous data sinks. By performing both
forward dataflow analysis and backward slicing, we compute one or more
program slices that directly contribute to the dangerous information flow. To
distinguish with other kinds of program slices, we call this slice taint slice, as it
includes only the program statements that are involved in the taint propagation
from a source to a sink.

(3) Patch Statement Placement. With the guidance of the computed taint slices,
we place shadow statements into the IR program. The inserted shadow state-
ments serve as runtime checks to actually keep track of the taint propagation
while the Android application is running. In addition, guarding statements are
also placed at the sinks to block dangerous information flow right on site.

(4) Patch Statement Optimization. We further optimize the inserted patch state-
ments. This is to remove the redundant statements that are inserted from
the previous step. As Soot’s built-in optimizations do not apply well on
these patch statements, we devise three custom optimization techniques to
safely manipulate the statements and remove redundant ones. Thereafter, the
optimized code is now amenable to the built-in optimizations. Consequently,



4.3 Taint Slice Computation 51

after going through both custom and built-in optimizations, the added patch
statements can be reduced to the minimum, ensuring the best performance of
the patched bytecode program.

(5) Bytecode Generation. At last, we convert the modified Jimple IR into a new
package (.APK file). To do so, we translate the Jimple IR to Java package using
Soot, and then re-target Java bytecode to Dalvik bytecode using Android SDK.
In the end, we repackage the patched DEX file with old resources and create
the new .APK file.

4.3 Taint Slice Computation

Taking a Jimple IR program and the sources and sinks specified in the security
policies as input, our application-wide dataflow analysis will output one or more
taint slices for dangerous information flows. Our analysis takes the following steps:
(1) we locate the information sources in the IR program, and starting from each
source, we perform forward dataflow analysis to generate a taint propagation graph;
(2) if a corresponding sink is found in this taint propagation graph, we perform
backward dependency analysis from the sink node and generate a taint slice.

We follow the similar approach elaborated in Chap. 3 to conduct dataflow
analyses, and particularly we take special consideration of programming features
in Android apps, such as static and instance fields, Intent, threads, etc.

4.3.1 Running Example

Figure 4.4 illustrates the taint slices for the running example, after using both
forward dataflow analysis and backward dependency analysis. There are two
slices in this graph, each one of which represents the data propagation of one
source. The left branch describes the taint propagation of “gps” information,
which originates from the invocation of getLastKnownLocation(). The data
is then saved to a static field location, before a series of long-to-string and
string-to-bytearray conversions in onDestroy(). Converted byte array is further
passed to crypt() for byte-level encryption. The right branch begins with Intent
receiving in onCreate(). The piggybacked “url” data is thus extracted from
the Intent and stored into an instance field addr. The two branches converge at
post(String,byte[]), when both the encrypted byte array and “addr” string
are fed into the two parameters, respectively. “addr” string is used to construct an
URL, then a connection, and further an OutputStream object, while the byte array
serves as the payload. In the end, both sources flow into the sink OutputStream.
write(byte[],int,int), which sends the payload to the designated address.



52 4 Automatic Generation of Vulnerability-Specific Patches for Preventing. . .

<getLocation()>: $r4 = virtualinvoke
$r3.<getLastKnownLocation(String)>("gps");

<getLocation()>: return $r4;

<onStart()>: $r1 = virtualinvoke r0.<getLocation()>();

<Location location>

<onDestroy()>: $r3 = <Location location>;

<onCreate(Bundle)>: $r2 = virtualinvoke r0.<Intent getIntent()>();

<onCreate(Bundle)>:
$r3 = virtualinvoke $r2.<Intent: Bundle getExtras()>();

<onCreate(Bundle)>: $r4 = virtualinvoke $r3.<Bundle: String
getString(String)>("url");

<onDestroy()>: $d0 = virtualinvoke $r3.<getLongitude()>();

<onDestroy()>: $r4 = staticinvoke <toString(double)>($d0);

<onDestroy()>: $r5 = virtualinvoke $r1.<append(String)>($r4);

<onDestroy()>: $r6 = virtualinvoke $r5.<append(String)>(",");

<onDestroy()>: $r9 = virtualinvoke $r6.<append(String)>($r8);

<onDestroy()>: $r10 = virtualinvoke $r9.<StringBuilder: toString()>();

<onDestroy()>: r2 = virtualinvoke $r10.<String: byte[] getBytes()>();

<onDestroy()>: virtualinvoke r0.<post(String,byte[])>($r11, r2);

<post(String,byte[])>: virtualinvoke r6.<write(byte[],int,int)>(r2, 0, $i0);

Static Field

<String addr> Instance Field

<onDestroy()>: $r11 = r0.<String addr>;

<onDestroy()>: $b3 = virtualinvoke r0.<crypt(byte)>($b2)

<crypt(byte)>: b0 := @parameter0: byte

<crypt(byte)>: $b2 = b0 ^ $b1

<crypt(byte)>: return $b2

<onDestroy()>: $b3 = virtualinvoke r0.<crypt(byte)>($b2)

<onDestroy()>: r2[i0] = $b3

<void onDestroy()>: $b2 = r2[i0]

<post()>: r1 := @parameter0: String;
<post()>: r2 := @parameter1: byte[];

<post()>: specialinvoke $r3.<URL: void <init>(String)>(r1);

<post()>: $r4 = virtualinvoke $r3.<URL: openConnection()>();

<post()>: r5 = (java.net.HttpURLConnection) $r4;

<post()>: r6 = virtualinvoke r5.<HttpURLConnection: getOutputStream()>();

Fig. 4.4 Taint slices for the running example

4.4 Patch Statement Placement

Static dataflow analysis is usually conservative and may lead to false positives.
Therefore, we insert instrumentation code in these taint propagation slices. The
inserted code serves as runtime checks to actually keep track of the taint propagation
while the Android application is running. The sinks are also instrumented to
examine the taint and confine the information leakage.

We create shadows, for each data entity defined or used within the slices, to
track its runtime taint status. The data entities outside the slices do not need to be
shadowed, because they are irrelevant to the taint propagation. We create shadows
for different types of data entities individually. Static or instance fields are shadowed
by adding boolean fields into the same class definition. A local variable is shadowed
with a boolean local variable within the same method scope, so that compiler
optimizations can be applied smoothly on related instrument code.

Shadowing method parameters and return value requires special considerations.
Firstly, the method prototype needs modification. Extra “shadow parameters” are
added to parameter list to pass the shadows of actual parameters and return
value from caller to callee. Secondly, parameters are passed-by-value in Java, and
therefore primitive-typed local shadow variables (boolean) need to be wrapped as
objects before passing to a callee. Otherwise, the change of shadows in the callee
cannot be reflected in the caller. To this end, we define a new class BoolWrapper.
This class only contains one boolean instance field, which holds the taint status, and
a default constructor, as shown below. Notice that the Java Boolean class cannot
serve the same purpose because it is treated the same as primitive boolean type once
passed as parameter.



4.5 Patch Optimization 53

public class BoolWrapper extends java.lang.Object{
public boolean b;
public void <init>(){

BoolWrapper r0;
r0 := @this: BoolWrapper;
specialinvoke r0.<java.lang.Object: void <init>()>();
return; }

}

With the created shadows, we instrument sources, data propagation code and
sinks. At the source of information flow, we introduce taint by setting the corre-
sponding shadow variable to “true”. For data propagation code, we instrument an
individual instruction depending on its type. (1) If the instruction is an assignment
statement or unary operation, we insert a definition statement on correlative shadow
variables. (2) If it is a binary operation, a binary OR statement is inserted to operate
on shadow variables. If one of the operators is a constant, we replace its shadow
with a constant “false”. (3) Or, if it is a function call, we need to add code to bind
shadows of actual parameters and return value to shadow parameters. (4) Further,
if the instruction is a API call, we model and instrument the API with its taint
propagation logic.

We generally put APIs into the following categories and handle each category
with a different model. “get” APIs have straightforward taint propagation logic,
always propagating taint from parameters to their return values. Therefore, we
generate a default rule, which propagates taint from any of the input parameters
to the return value. Similarly, simple “set” APIs are modeled as they propagate
taint from one parameter to another parameter or “this” reference. APIs like
Vector.add(Object) inserts new elements into an aggregate construct and
thus can be modeled as a binary operation, such that the object is tainted if it is
already tainted or the newly added element is tainted. APIs like android.content.
ContentValues.put(String key, Byte value) that operate on (key, value)
pairs can have more precise handling. In this case, an element is stored and accessed
according to a “key”. To track taint more precisely, we keep a taint status for each
key, so the taint for each (key, value) pair is updated individually.

Then, at the sink, we insert code before the sink API to check the taint status of
the sensitive parameter. If it turns out the critical parameter is tainted, the inserted
code will query a separate policy service app for decision and a warning dialog is
then displayed to the user.

We also devise taint cleaning mechanism. That is, if a variable is redefined to be
an untainted variable or a constant outside taint propagation slices, we thus insert a
statement after that definition to set its shadow variable to 0 (false).

4.5 Patch Optimization

We further optimize the added instrumentation code. This is to remove the redundant
bytecode instructions that are inserted from the previous step. As Soot’s built-
in optimizations do not apply well on this instrumentation code, we devise three



54 4 Automatic Generation of Vulnerability-Specific Patches for Preventing. . .

custom optimization techniques to safely manipulate the instrumentation code and
remove redundant ones. Thereafter, the optimized code is now amenable to the
built-in optimizations. Consequently, after going through both custom and built-
in optimizations, the added instrumentation code can be reduced to a minimum,
ensuring the best performance of the rewritten bytecode program.

To be more specific, we have devised four steps of optimizations, described as
follows.

• O1: In instrumentation, we add a shadow parameter for every single actual
parameter and return value. However, some of them are redundant because they
don’t contribute to taint propagations. Therefore, we can remove the inserted
code which uses solely these unnecessary shadow parameters.

• O2: Next, we remove redundant shadow parameters from parameter list and
adjust method prototype. Consequently, instrumentation code, that is used to
initialize or update the taint status of these shadow parameters, can also be
eliminated.

• O3: Further, if inserted taint tracking code is independent from the control-flow
logic of a method, we can lift the tainting code from the method to its callers.
Thus, the taint propagation logic is inlined.

• O4: After custom optimizations, instrumentation code is amenable to Soot’s
built-in optimization, such as constant propagation, dead code elimination, etc.

4.5.1 Optimized Patch for Running Example

Figure 4.5 presents the optimized patch for the running example. For the sake of
readability, we present the patch code in Java as a “diff” to the original program,
even though this patch is actually generated on the Jimple IR level. Statements with
numeric line numbers are from the original program, whereas those with special
line number “P” are patch statements. The underlines mark either newly introduced
code or modified parts from old statements.

We can see that a boolean variable “addr_s0_t” is created to shadow the instance
field “addr”, and another boolean variable “location_s1_t” is created to shadow the
static field “location”. Then in onCreate(), the shadow variable “addr_s0_t” is
set to 1 (tainted) when the Activity is created upon an external Intent. Otherwise
it will be set to 0 (untainted). The shadow variable “location_s1_t” is set to 1
inside onStart(), after getLocation() is called. Note that this initialization
is originally placed inside getLocation() after Ln.40, and a BoolWrapper is
created for the return value of getLocation(). After applying the inlining
optimization(O3), this assignment is lifted into the caller function onStart() and
the BoolWrapper variable is also removed.

Due to the optimizations, many patch statements placed for tracking tainted
status have been removed. For example, the taint logic in crypt() has been lifted
up to the body of onDestroy() and further optimized there. The tainted values



4.5 Patch Optimization 55

Fig. 4.5 Java code for the patched running example

should also be properly cleaned up. For instance, “addr_s0_t” is set to 0 after Ln.15,
where “addr” is assigned a constant value, which means that if no “url” is provided
in the Intent, the “addr” should not be tainted.



56 4 Automatic Generation of Vulnerability-Specific Patches for Preventing. . .

In the method onDestroy(), when the information flows through the post()
method, we wrap the local shadow variables for corresponding parameters and pass
these BoolWrapper objects to new post() as additional parameters. In the end,
we retrieve the taints in post() and check the taint statuses before the critical
networking operation is conducted at Ln.49. Consequently, we stop this component
hijacking attack right before the dangerous operation takes place.

4.6 Experimental Evaluation

To evaluate the efficacy, correctness and efficiency of AppSealer, we conducted
experiments on real-world Android applications with component hijacking vulner-
abilities and generated patches for them.

4.6.1 Experiment Setup

We collect 16 vulnerable Android apps, which expose internal capabilities to
public interfaces and are subject to exploitation. Table 4.1 describes their exposed
interfaces, leaked capabilities and possible security threats.

Table 4.1 Overview of vulnerable apps

ID Package-version
Exposed
interface

Leaked
capability Threat description

1 CN.MyPrivateMessages-52 Activity Raw query SQL injection

2 com.akbur.mathsworkout-92 Activity Internet Delegation attack

3 com.androidfu.torrents-26 Activity Selection query SQL injection

4 com.appspot.swisscodemonkeys.paintfx-4 Activity Internet Delegation attack

5 com.cnbc.client-1208 Activity Selection query SQL injection

6 com.cnbc.client-1209 Activity Selection query SQL injection

7 com.espn.score_center-141 Activity Internet Delegation attack

8 com.espn.score_center-142 Activity Internet Delegation attack

9 com.gmail.traveldevel.android.vlc.app-131 Service Internet Delegation attack

10 com.kmshack.BusanBus-30 Activity Raw query SQL injection

11 com.utagoe.momentdiary-45 Service Raw query SQL injection

12 com.yoondesign.colorSticker-8 Activity Raw query SQL injection

13 fr.pb.tvflash-9 Activity Selection query SQL injection

14 gov.nasa-5 Activity Selection query SQL injection

15 hu.tagsoft.ttorrent.lite-15 Service Internet Delegation attack

16 jp.hotpepper.android.beauty.hair-12 Activity Raw query SQL injection



4.6 Experimental Evaluation 57

Most of these vulnerable apps accidentally leave their internal Activities
open and unguarded. Thus, any Intent whose target matches the vulnerable one
can launch it. Others carelessly accept any Intent data from a public Service
without input validations. Unauthorized external Intent can therefore penetrate
the app, through these public interfaces, and exploit its internal capabilities. Such
leaked capabilities, including SQLite database query and Internet access, are subject
to various security threats. For instance, Intent data received at the exposed
interface may cause SQL Injection; external Intent data sending to Internet may
cause delegation attack.

To detect and mitigate component hijacking vulnerabilities, AppSealer automat-
ically performs analysis and rewriting, and generates patched apps. We conduct
the experiment on our test machine, which is equipped with Intel(R) Core(TM) i7
CPU (8M Cache, 2.80 GHz) and 8 GB of physical memory. The operating system is
Ubuntu 11.10 (64bit).

To verify the effectiveness and evaluate runtime performance of our generated
patches, we further run them on a real device. Experiments are carried out on Google
Nexus S, with Android OS version 4.0.4.

4.6.2 Summarized Results

We configure AppSealer to take incoming Intents from exposed interfaces as
sources, and treat outgoing Internet traffic and internal database access as sinks. A
taint slice is then a potential path from the Intent receiver to these privileged
APIs. We compute the slice for each single vulnerable instance, and conduct a
quantitative study on it.

Figure 4.6 shows the proportional size of the slices, compared to the total size
of the application. We can see that most of the taint slices represent a small portion
of entire applications, with the average proportion being 11.7 %. However, we do
observe that for a few applications, the slices take up to 45 % of the total size. Some
samples (e.g., com.kmshack.BusanBus) are fairly small. Although the total slice size
is only up to several thousands Jimple statements, the relative percentage becomes
high. Apps like com.cnbc.client operate on incoming Intent data in an excessive
way, and due to the conservative nature of static analysis, many static and instance
fields are involved in the slices.

We also measure the program size on different stages of patch generation
and optimizations. We observe that the increase of the program size is roughly
proportional to the slice size, which is expected. After patch statement placement,
the increased size is, on average, 41.6 % compared to the original program.

Figure 4.7 further visualizes the impact of the four optimizations to demonstrate
their performance. The five curves on the figure represent the relative sizes of
the program, compared to the original app size, on different processing stages,
respectively. The top curve is the program size when patch statement placement
has been conducted, while the bottom one stands for the app size after all four patch



58 4 Automatic Generation of Vulnerability-Specific Patches for Preventing. . .

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pr
op

ot
io

na
l S

iz
e o

f S
lic

es

App ID

Fig. 4.6 Relative size of slices in percentage

100%

120%

140%

160%

180%

200%

220%

240%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pr
op

ot
io

na
l A

pp
 S

iz
e

App ID

Instru

O1

O2

O3

O4

Fig. 4.7 Relative app size in percentage. Five curves quantify app sizes at different stages

optimizations. We can see that (1) for some of these apps, the increase of program
size due to patch statement placement can be big, and up to 130 %; and (2) these
optimizations are effective, because they significantly reduce the program sizes. In
the end, the average size of patch code drops to 15.9 %.

4.6.3 Detailed Analysis

Here we present detail analysis for these vulnerable apps to discuss the effectiveness
and accuracy of our generated patches.



4.6 Experimental Evaluation 59

4.6.3.1 Apps with Simple Exploiting Paths

Some of the apps are vulnerable but exploitation paths are fairly simple. App 4,
7, 8, 9, 11, 12 fall into this category. Upon obtaining Intent data from an open
Activity or Service, these apps directly use it either as URL to load a webpage in
WebView, conduct a HTTP GET, or as a SQL string to query an internal database.
Consequently, the exploitation path is guaranteed to happen every time a malicious
Intent reaches the vulnerable interfaces. In this case, simply blocking the exposed
interface might be as good as our patching approach.

However, for other apps, a manipulated input may not always cause an actual
exploitation.

4.6.3.2 Apps with Pop-Up Dialogs

Some apps ask user for consent before the capable sink API is called. App 2,
3, 5, 6, 10, 13 share this same feature. If the user does not approve further
operations, the exploitation will not occur. In this case, blocking at the open interface
causes unnecessary interventions. Our approach, on the other hand, disables the
vulnerability and requires only necessary mediations.

com.akbur.mathsworkout (version code 92) is one of these examples.
This app is a puzzle game, which is subject to data pollution and leaks Internet
capability. Granted with Internet permission, the app is supposed to send user’s
“High Score” to a specific URL. However, the Activity to receive “High Score”
data is left unguarded. Thus, an malicious app can send a manipulated Intent with
a forged “score” to this vulnerable Activity, polluting the latter’s instance field.
This field is accessed in another thread and the resulting data is sent to Internet,
once the thread is started. However, starting this background thread involves human
interactions. Unless a “OK” button is clicked in GUI dialog, no exploitation will
happen. Our patch correctly addresses this case and only displays the warning when
sending thread is about to call the sink API (i.e. HttpClient.execute()).

com.cnbc.client (version code 1208 and 1209) asks for user’s consent
in a more straight-forward way. This finance app exposes an Activity interface
that can access internal database, and thus is vulnerable to SQL injection attack.
The exposed Activity is intended to receive the “name” of a stock, and further
save it to or delete it from the “watch list”. Malicious Intent can manipulate this
“name” and trick the victim app to delete an important one or add an unwanted
one. Nevertheless, the deletion requires user’s approval. Before deletion, the app
explicitly informs the user and asks for decision. Similarly, if the user chooses
“Cancel”, no harm will be done. Our patch automatically enforces necessary checks
but avoids intervention in this scenario. Notice that taint slices of this app take a great
portion (27 %) of the program, and therefore it is extremely hard to confirm and fix
the vulnerability, or further discover aforementioned secure path with pure human
effort. In contrast, AppSealer automatically differentiates secure and dangerous
paths, and in the meantime manages to significantly reduce the amount of patch
statements.



60 4 Automatic Generation of Vulnerability-Specific Patches for Preventing. . .

4.6.3.3 Apps with Selection Views

A similar but more generic case is that apps provide views such as AdapterView
for selection. The actual exploit only occurs if an item is selected. Apps 1, 14, 16
are of this kind.

CN.MyPrivateMessages (version code 52) is a communication app which
suffers the SQL injection attack. An vulnerable Activity may save a manipulated
Intent data to its instance field during creation. The app then displays an Adapter-
View for user to select call logs. Only upon selection does the event handler obtain
data from the polluted field and use it to perform a “delete” operation in database.

4.6.3.4 Apps with Multiple Threads

Some samples extensively create new threads during runtime and pass the manip-
ulated input across threads (e.g., app 2, 10, 15). Asynchronous program execution
makes it hard for developers or security analysts to reproduce the exploitation and
thus to confirm the vulnerability.

References

1. Davi L, Dmitrienko A, Sadeghi AR, Winandy M (2011) Privilege escalation attacks on
Android. In: Proceedings of the 13th international conference on Information security, (Berlin,
Heidelberg), 2011

2. Grace M, Zhou Y, Wang Z, Jiang X (2012) Systematic detection of capability leaks in stock
Android smartphones. In: Proceedings of the 19th network and distributed system security
symposium, 2012

3. Felt AP, Wang HJ, Moshchuk A, Hanna S, Chin E (2011) Permission re-delegation: attacks
and defenses. In: Proceedings of the 20th USENIX security symposium, 2011

4. Zhou Y, Jiang X (2013) Detecting passive content leaks and pollution in Android applications.
In: Proceedings of the 20th network and distributed system security symposium, 2013

5. Lu L, Li Z, Wu Z, Lee W, Jiang G (2012) CHEX: statically vetting Android apps for component
hijacking vulnerabilities. In: Proceedings of the 2012 ACM conference on computer and
communications security (CCS’12), October 2012

6. Cui W, Peinado M, Wang HJ (2007) Shieldgen: automatic data patch generation for unknown
vulnerabilities with informed probing. In: Proceedings of 2007 IEEE symposium on security
and privacy, 2007

7. Brumley D, Newsome J, Song D, Wang H, Jha S (2006) Towards automatic generation of
vulnerability-based signatures. In: Proceedings of the 2006 IEEE symposium on security and
privacy (Oakland’06), May 2006

8. Costa M, Crowcroft J, Castro M, Rowstron A, Zhou L, Zhang L, Barham P (2005) Vigilante:
end-to-end containment of internet worms. In: Proceedings of the twentieth ACM symposium
on systems and operating systems principles (SOSP’05), October 2005

9. Costa M, Castro M, Zhou L, Zhang L, Peinado M (2007) Bouncer: securing software by
blocking bad input. In: Proceedings of 21st ACM SIGOPS symposium on operating systems
principles (SOSP’07), October 2007



References 61

10. Caballero J, Liang Z, Poosankam, Song D (2009) Towards generating high coverage
vulnerability-based signatures with protocol-level constraint-guided exploration. In: Proceed-
ings of the 12th international symposium on recent advances in intrusion detection (RAID’09),
September 2009

11. Lin Z, Jiang X, Xu D, Mao B, Xie L (2007) AutoPAG: towards automated software patch
generation with source code root cause identification and repair. In: Proceedings of the 2nd
ACM symposium on information, computer and communications security, 2007

12. Zhang C, Wang T, Wei T, Chen Y, Zou W (2010) IntPatch: automatically fix integer-overflow-
to-buffer-overflow vulnerability at compile-time. In: Proceedings of the 15th European
conference on research in computer security, 2010.

13. Sidiroglou S, Keromytis AD (2005) Countering network worms through automatic patch
generation. In: IEEE security and privacy, Nov 2005, vol 3, pp 41–49

14. Newsome J (2006) Vulnerability-specific execution filtering for exploit prevention on com-
modity software. In: Proceedings of the 13th symposium on network and distributed system
security (NDSS), 2006

15. Soot: A Java Optimization Framework (2016) http://www.sable.mcgill.ca/soot/
16. dex2jar (2016) http://code.google.com/p/dex2jar/

http://www.sable.mcgill.ca/soot/
http://code.google.com/p/dex2jar/


Chapter 5
Efficient and Context-Aware Privacy
Leakage Confinement

Abstract As Android has become the most prevalent operating system in mobile
devices, privacy concerns in the Android platform are increasing. A mechanism for
efficient runtime enforcement of information-flow security policies in Android apps
is desirable to confine privacy leakage. The prior works towards this problem require
firmware modification (i.e., modding) and incur considerable runtime overhead.
Besides, no effective mechanism is in place to distinguish malicious privacy leakage
from those of legitimate uses. In this paper, we take a bytecode rewriting approach.
Given an unknown Android app, we selectively insert instrumentation code into
the app to keep track of private information and detect leakage at runtime. To
distinguish legitimate and malicious leaks, we model the user’s decisions with a
context-aware policy enforcement mechanism. We have implemented a prototype
called Capper and evaluated its efficacy on confining privacy-breaching apps. Our
evaluation on 4723 real-world Android applications demonstrates that Capper can
effectively track and mitigate privacy leaks. Moreover, after going through a series
of optimizations, the instrumentation code only represents a small portion (4.48 %
on average) of the entire program. The runtime overhead introduced by Capper is
also minimal, merely 1.5 % for intensive data propagation.

5.1 Introduction

Privacy concerns in the Android platform are increasing. Previous studies [1–6]
have exposed that both benign and malicious apps are stealthily leaking users’
private information to remote servers. Efforts have also been made to detect and
analyze privacy leakage either statically or dynamically [1, 2, 7–11]. Nevertheless,
a good solution to defeat privacy leakage at runtime is still lacking. We argue that a
practical solution needs to achieve the following goals:

• Information-flow based security. Privacy leakage is fundamentally an infor-
mation flow security problem. A desirable solution to defeat privacy leakage
would detect sensitive information flow and block it right at the sinks. However,
most of prior efforts to this problem are “end-point” solutions. Some earlier
solutions extended Android’s install-time constraints and enriched Android
permissions [12, 13]. Some aimed at enforcing permissions in a finer-grained

© The Author(s) 2016
M. Zhang, H. Yin, Android Application Security, SpringerBriefs in Computer
Science, DOI 10.1007/978-3-319-47812-8_5

63



64 5 Efficient and Context-Aware Privacy Leakage Confinement

manner and in a more flexible way [14–17]. Some attempted to improve
isolation on various levels and each isolated component could be assigned with a
different set of permissions [18–20]. In addition, efforts were made to introduce
supplementary user consent acquisition mechanism, so that access to sensitive
resource also requires user approval [21, 22]. All these “end-point” solutions only
mediate the access to private information, without directly tackling the privacy
leakage problem.

• Low runtime overhead. An information-flow based solution must have very low
runtime overhead to be adopted on end users’ devices. To directly address privacy
leakage problem, Hornyack et al. proposed AppFence to enforce information
flow policies at runtime [3]. With support of TaintDroid [2], AppFence keeps
track of the propagation of private information. Once privacy leakage is detected,
AppFence either blocks the leakage at the sink or shuffle the information from the
source. Though effective in terms of blocking privacy leakage, its efficiency is not
favorable. Due to the taint tracking on every single Dalvik bytecode instruction,
AppFence incurs significant performance overhead.

• No firmware modding. For a practical solution to be widely adopted, it is also
crucial to avoid firmware modding. Unfortunately, the existing information-flow
based solutions such as AppFence require modifications on the stock software
stack, making it difficult to be deployed on millions of mobile devices.

• Context-aware policy enforcement. Many apps need to access user’s privacy
for legitimate functionalities and these information flows should not be stopped.
Therefore, to defeat privacy leakage without compromising legitimate func-
tionality, a good solution needs to be aware of the context where a sensitive
information flow is observed and make appropriate security decisions. To the
best of our knowledge, we are not aware that such a policy mechanism exists.

In this chapter, we aim to achieve all these design goals by taking a bytecode
rewriting approach. Given an unknown Android app, we selectively rewrite the
program by inserting bytecode instructions for tracking sensitive information flows
only in certain fractions of the program (which are called taint slices) that are
potentially involved in information leakage. When an information leakage is
actually observed at a sink node (e.g., an HTTP Post operation), this behavior
along with the program context is sent to the policy management service installed
on the device and the user will be notified to make an appropriate decision. For
example, the rewritten app may detect the location information being sent out to a
Google server while the user is navigating with Google Map, and notify the user.
Since the user is actively interacting with the device and understands the context
very well, he or she can make a proper decision. In this case, the user will allow
this behavior. To ensure good user experiences, the number of such prompts must
be minimized. To do so, our policy service needs to accurately model the context
for the user’s decisions. As a result, when an information leakage happens in the
same context, the same decision can be made without raising a prompt. After
exploring the design space of the context modeling and making a balance between
sensitivity, performance overhead, and robustness, we choose to model the context
using parameterized source and sink pairs.



5.2 Approach Overview 65

Consequently, our approach fulfills all the requirements: (1) actual privacy leaks
are captured accurately at runtime, with the support of inserted taint tracking
code; (2) the performance overhead of our approach is minimal, due to the static
dataflow analysis in advance and numerous optimizations that are applied to the
instrumentation code; (3) the deployment of our approach is simple, as we only
rewrite the original app to enforce certain information flow policies and no firmware
modification is needed; (4) policy enforcement is context-aware, because the user’s
decisions are associated with abstract program contexts.

We implement a prototype, Capper ,1 in 16 thousand lines of Java code, based on
the Java bytecode optimization framework Soot [23]. We leverage Soot’s capability
to perform static dataflow analysis and bytecode instrumentation. We evaluate our
tool on 4723 real-world privacy-breaching Android apps. Our experiments show
that rewritten programs run correctly after instrumentation, while privacy leakage is
effectively eliminated.

5.2 Approach Overview

5.2.1 Key Techniques

Figure 5.1 depicts an overview of our techniques. When a user is about to install
an app onto his Android device, this app will go through our bytecode rewriting
engine (BRIFT) and be rewritten into a new app, in which sensitive information
flows are monitored by the inserted bytecode instructions. Therefore, when this

Phone

App Service

BRIFT

APK APK’
Install

Query

Prompt Decide

Warning Dialog

Fig. 5.1 Architecture of Capper

1Capper is short for Context-Aware Privacy Policy Enforcement with Re-writing.



66 5 Efficient and Context-Aware Privacy Leakage Confinement

new app is actually running on the device and is observed to send out sensitive
information, this behavior (along with the program context) will be reported to the
policy management service for decision.

If this behavior under this program context is observed for the first time, the
policy management service will prompt the user to make a proper decision: either
allow or deny such a behavior. The user’s decision will be recorded along with the
program context, so the policy management service will make the recorded decision
for the same behaviors under the same context.

Therefore, our solution to defeat privacy leakage consists of the following two
enabling techniques.

(1) Bytecode Rewriting for Information Flow Control. Given a bytecode pro-
gram, the goal of our bytecode rewriting is to insert a minimum amount of
bytecode instructions into the bytecode program to trace the propagation of
certain sensitive information flows (or taint). To achieve this goal, we first
conduct static dataflow analysis to compute a number of program slices that are
involved in the taint propagation. Then we insert bytecode instructions along
the program slices to keep track of taint propagation at runtime. Further, we
perform a series of optimizations to reduce the amount of inserted instructions.
Please refer to Chap. 4 for more details.

(2) Context-aware Policy Enforcement. The user allows or denies a certain
information flow in a specific context. The key for a context-aware policy
enforcement is to properly model the context. The context modeling must be
sensitive enough to distinguish different program contexts, but not too sensitive.
Otherwise, a slight difference in the program execution may be treated as a new
context and may cause unnecessarily annoying prompts to the user. Further, the
context modeling should also be robust enough to counter mimicry attacks. An
attacker may be able to “mimic” a legitimate program context to bypass the
context-aware policy enforcement.

5.3 Context-Aware Policy

Once our inserted monitoring code detects an actual privacy leakage, policy service
will enforce privacy policy based on user preferences. To be specific, the service app
inquires user’s decision upon detection and offers the user options to either “one-
time” or “always” allow or deny the specific privacy breaching flow. The user can
then make her decision according to her user experience and the policy manager
will remember users preference for future decision making situations if the “always”
option is chosen.

There exist two advantages to enforce a privacy policy with user preference his-
tory. Firstly, it associates user decisions with certain program contexts and can thus
selectively restrict privacy-related information flow under different circumstances.
Privacy-related outbound traffic occurs in both benign and malicious semantics.



5.3 Context-Aware Policy 67

However, from dataflow analysis perspective, it is fairly hard to distinguish between,
for example, a coordinates-based query towards a benign map service and a location
leakage via some covert malicious process within, say, a wallpaper app. On the
contrary, it is fairly straight-forward for a user to tell the difference because she
knows the application semantics. With human knowledge, it is possible to avert
overly strict restriction and preserve usability to the largest extent.

Secondly, it avoids repetitive warning dialogs and improves user experience.
Once an “always” decision is made, this decision will be remembered and used
for the same scenario next time. Thus, the user doesn’t need to face the annoying
dialog message over and over again for the exactly identical situation.

However, it is non-trivial to appropriately model the program context specific
to a user decision and the challenge lies in the way semantics is extracted from a
dataflow point of view. We hereby discuss some possible options and our solution.

5.3.1 Taint Propagation Trace

To achieve high accuracy, we first consider using the exact execution trace as pattern
to represent a specific information flow. An execution trace can be obtained at either
instruction or method level. It consists of all the instructions or methods propagating
sensitive data from a source to a sink, and therefore can uniquely describe a dataflow
path. Formally, we define a trace-based context as CT D Œt0; t1; : : : ; tn�, where each
ti represents an individual instruction or method. When a user decision is made for
a certain information flow, its execution trace is computed and saved as a pattern
along with user preference. Next time when a new leakage instance is detected, the
trace computation will be done on the new flow and compared with saved ones. If
there exists a match, action taken on the saved one will be applied correspondingly.

Nevertheless, there exist two major drawbacks with this approach. Firstly,
dynamic tracing is considerably heavy-weight. Comparison of two traces is also
fairly expensive. This may affect the responsiveness of interactive mobile apps.
Secondly, each dataflow instance is modeled overly precisely. Since any execution
divergence will lead to a different trace pattern, even if two leakage flows occur
within the same semantics, it is still difficult to match their traces. This results in
repeated warning messages for semantically equivalent privacy-related dataflows.

5.3.2 Source and Sink Call-Sites

Trace-based approach is too expensive because the control granularity is extremely
fine. We therefore attempt to relax the strictness and achieve balance in the accuracy-
efficiency trade-off. We propose a call-site approach which combines source-sink
call-sites to model privacy flow. That is to say, information flows of same source
and sink call-sites are put into one category. Thus, such a context is formally defined



68 5 Efficient and Context-Aware Privacy Leakage Confinement

to be CSS D fSource; Sinkg. Once an action is taken on one leakage flow, the same
action will be taken on future sensitive information flow in the same category. To this
end, we introduce labels for source and sink call-sites. Information flows starting
from or arriving at these call-sites are associated with corresponding labels, so that
they can be differentiated based on these labels.

With a significant improvement of efficiency, this approach is not as sensitive
to program contexts as the traced-based one—different execution paths can start
from the same origin and end at the same sink. However, we rarely observed this
inaccuracy in practice because the app execution with same source and sink call-
sites usually represents constant semantics.

5.3.3 Parameterized Source and Sink Pairs

In addition to source/sink call-sites, parameters fed into these call-sites APIs are also
crucial to the semantic contexts. For example, the user may allow an app to send data
to certain trustworthy URLs but may not be willing to allow access to the others.
Therefore, it is important to compare critical parameters to determine if a new
observed flow matches the ones in history. We therefore define this parameterized
callsites based context as a triple CPSS D fSource; Sink; Paramsg, where Params
contains the critical parameters that are consumed by the two callsites.

Notice that checking parameters can minimize the impact of mimicry attack.
Prior research shows that vulnerable Android apps are subject to various attacks
[7, 24–27]. For instance, an exposed vulnerable app component can be exploited
to leak private information to an attacker-specified URL. Without considering the
URL parameter, it is difficult, if not possible, to distinguish internal use of critical
call-sites from hijacking the same call-sites to target a malicious URL. Once a flow
through some call-sites is allowed and user preference is saved, mimicking attack
using same call-sites will also get approved. On the contrary, a parameter-aware
approach can differentiate outgoing dataflows according to the destination URL,
and thus, exploitation of a previously allowed call-sites will still raise a warning.

Besides the URL of a Internet API, we also consider some other critical
combinations of an API and its parameter. Table 5.1 summarizes our list. The
target of a sink API is sensitive to security. Similar to Internet APIs, target phone
numbers are crucial to sendTextMessage() APIs and thus need watching. On
the other hand, some source call-sites also need to be distinguished according to the

Table 5.1 APIs and critical parameters

API description Source or sink Critical parameter

Send data to internet Sink Destination URL

Send SMS message Sink Target phone number

Query contacts database Source Source URI



5.4 Experimental Evaluation 69

parameters. For instance, the API that queries contacts list may obtain different data
depending on the input URI (e.g., ContactsContract.CommonDataKinds.Phone
for phone number, ContactsContract.CommonDataKinds.Email for email).

5.3.4 Implementation

We implement the policy service as a separate app. This isolation guarantees the
security of the service app and its saved policies. In other words, even if the client is
exploited, the service is not affected or compromised, and can still correctly enforce
privacy policies.

The service app communicates with a rewritten client app solely through Android
IPC. Once a client app wants to query the service, it encapsulates the labels of source
and sink call-sites as well as the specific critical parameter into an Intent as extra
data payload. The client app is then blocked and waiting for a response. Since this
transaction is usually fast, the blocking won’t affect the responsiveness of the app
mostly. On the service side, it decodes the data and searches for a match in its
database. If there exists a match, it returns immediately with the saved action to the
client. Otherwise, the service app will display a dialog message within a created
Activity. The user decision is saved if the user prefers, or not saved otherwise.
Either way, user’s option is sent back to the client. On receiving the response from
service, the rewritten app will either continue its execution or skip the sink call-site
with respect to the reply.

It is noteworthy that we have to defend against spoofing attack and prevent
forged messages from being sent to a client app. To address that, we instru-
ment the client app to listen for the service reply with a dynamically registered
BroadcastReceiver. When a broadcast message is received, the receiver is
immediately unregistered. Thus, attack window is reduced due to this on-demand
receiver registration. Further, to restrict who can send the broadcast, we protect the
receiver with a custom permission. Broadcaster without this permission is
therefore unable to send messages to the client app. To defeat replay attack, we also
embed a session token in the initial query message, and the client app can therefore
authenticate the sender of a response message.

Similarly, we need to protect a policy service from spoofing, too. The
service app has to check the caller identity from a bound communication via
getCallingUid(), so that a malicious application cannot pretend to be another
app and trick the service to configure the policies for the latter.

5.4 Experimental Evaluation

To evaluate the efficacy, correctness and efficiency of Capper, we conducted
experiments on real-world Android applications. In the policy setting, we consider
IMEI, owner’s phone number, location, contacts to be the sensitive information



70 5 Efficient and Context-Aware Privacy Leakage Confinement

sources, and network output APIs (e.g., OutputStream.write(), HttpClient.
execute(), WebView.loadUrl(), URLConnection.openConnection() and
SmsManager.sendTextMessage()) as the sinks. The action on the sink can be
“block” or “allow”. User can also check an “always” option to have the same rule
applied to future cases of the same semantic context. Note that this policy is mainly
for demonstrating the usability of Capper. More work is needed to define a more
complete policy for privacy leakage confinement.

We obtain 4915 applications from Google Play and use them as our experiment
sample set. We then perform bytecode rewriting on these apps to enable runtime
privacy protection. We conduct the experiment on our test machine, which is
equipped with Intel(R) Xeon(R) CPU E5-2690 (20 M Cache, 2.90 GHz) and 200 GB
of physical memory. The operating system is CentOS 6.3 (64 bit). To verify the
effectiveness and evaluate runtime performance of the rewritten apps, we further
run them on a real device. Experiments are carried out on Google Nexus S, with
Android OS version 4.0.4.

5.4.1 Summarized Analysis Results

Figure 5.2 illustrates the partition of 4915 realworld apps. Amongst these apps,
Capper did not finish analyzing 314 of them within 30 min. These apps are fairly
large (many over 10 MB). Application-wide dataflow analysis is known to be
expensive for these large programs. We further extended the analysis timeout to
3 h, and 122 more apps were successfully analyzed and rewritten. Given sufficient
analysis time, we believe that the success rate can further increase from currently
96 % to nearly 100 %.

67%

24%

2% 3%

4% No Need for Rewriting

Safely Rewritten

Unsafe with Native Code

Unsafe with Reflection

Timeout

Fig. 5.2 Bytecode rewriting results on 4915 realworld android apps



5.4 Experimental Evaluation 71

Out of the 4723 apps that were completely processed by Capper, 1414 apps may
leak private information, according to our static analysis, and Capper successfully
performed bytecode rewriting on them. We observed that most of them leak IMEI
and location information. These types of information are frequently sent out by apps
due to analytic or advertisement reasons. Apps may also sometimes leak owner’s
phone number or phone numbers from contacts. For the rest of them (67 %), static
analysis couldn’t find a viable path from the sensitive information sources to the
network output sinks. It means that these apps do not leak private information, so
no rewriting is needed for these apps.

For these 1414 apps that were rewritten, we further investigate their use of native
code and reflection. Our study shows that unknown native code is invoked within the
taint slices for 118 (2 %) apps. As a bytecode-level solution, our system cannot keep
track of information flow processing in the native code. So the information flow may
be broken on these unknown native calls. The rest 3 % contain reflective calls within
the slices. If the class name and method name cannot be resolved statically, we do
not know how information is propagated through this function. Therefore, totally
5 % apps may be unsafe and may not be fully enforced with the specified policies.
The best suggestion for the end user is not to use these unsafe rewritten apps due to
the potential incompleteness in policy enforcement.

We compute the taint propagation slice for each single leakage instance, and
conduct a quantitative study on them. While most of the apps retrieve privacy-related
information moderately, some apps leak user’s privacy through up to 31 taint slices.
Such apps usually enclose various Ads libraries, each of which acquires private data
separately.

Most of the program slices represent a small portion of the entire application,
with the average proportion being 2.48 %. However, we do observe that for a
few applications, the slices take up to 54 % of the total size. Some samples (e.g.,
com.tarsin.android.dilbert) are fairly small. Although the total slice size is only up
to several thousands Jimple statements, the relative percentage becomes high. Apps
like de.joergjahnke.mario.android.free and de.schildbach.oeffi operate on privacy
information in an excessive way, and due to the conservative nature of static
analysis, many static and instance fields are involved in the slices.

We measure the program size on different stages. We observe that the increase of
the program size is roughly proportional to the slice size, which is as expected. After
instrumentation, the increased size is, on average, 10.45 % compared to the original
program. The proposed optimizations are effective and they significantly reduce the
program sizes. In the end, the average size of inserted code drops to 4.48 %.

5.4.2 Detailed Analysis

Here we present the detailed analysis results of ten applications, and demonstrate the
effectiveness of context-aware privacy policy enforcement. To this end, we rewrite
these apps with Capper, and run them in a physical device along with our policy



72 5 Efficient and Context-Aware Privacy Leakage Confinement

service app. We further manually trigger the privacy leakage components in the
app, so that inserted code would block the program and query policy service for
decision. The service will then search its own database to see if there exists a rule
for the specific dataflow context of the requesting app. If a corresponding rule exists,
service replies to requester immediately. Otherwise, a dialog is displayed to the user
asking for decision. The user can also check the “always” option so that current
decision will be saved for further reference (Fig. 5.3). Notice that, in order to test
the context-awareness of our approach, we always check this option during the
experiment. Therefore, from the logcat information on the service side, we may
observe and compare the number of queries an app makes with the amount of
warning dialogs prompted to the user. We also compute the number of information
flow contexts with trace-based model for comparison.

Table 5.2 lists the summarized results including number of queries, prompts
and trace-based contexts. For these apps, the prompt number is often equal to

Fig. 5.3 Warning dialog

Table 5.2 Effectiveness of context-aware policy enforcement

ID App-Version Queries Prompts Trace-based contexts

1 artfulbits.aiMinesweeper-3.2.3 5 2 2

2 com.avantar.wny-4.1.5.1 3 2 2

3 com.avantar.yp-4.1.5 4 2 2

4 com.bfs.papertoss-1.09 3 2 2

5 com.rs.autorun-1.3.1 10 4 6

6 com.skyfire.browser-2.0.1 4 2 2

7 com.startapp.wallpaper.browser-1.4.15 5 3 3

8 mabilo.ringtones.app-3.6 5 3 3

9 mabilo.wallpapers-1.8.4 4 2 2

10 net.flixster.android-2.9.5 6 3 3



5.4 Experimental Evaluation 73

or sometimes slightly smaller than the amount of trace-based dataflow contexts,
while the number of queries is usually much larger than that of prompts. This
means leakage contexts are modeled correctly: disparate contexts are usually treated
differently in our callsite-based approach; and equivalent contexts are enforced with
the same rule. The fundamental reason is that Android apps are often componentized
while a separate component exercises a dedicated function.

Firstly, different types of private information are accessed through separate
execution paths. Some apps (ID 2, 3) retrieve both device identifier and location
information, and send them at separate sinks. Similarly, mabilo.ringtones.app leaks
both geolocation data and user’s phone number.

Secondly, the same type of privacy-related data can be retrieved from isolated
packages but serves as different purposes. These apps (ID 4, 7, 10) consist of a main
program and advertisement components, both of which produce outgoing traffic
taking IMEI or location data. Take net.flixster.android as an example. In this movie
app, location data is both sent to flixster server for querying theaters and to Ads
server for analytical purpose.

Further, the same private data can be accessed in one package but contributes
to different use cases. For instance, com.rs.autorun obtains device identifier via
getDeviceId() API call in the first place. Then the app sends IMEI at multiple
sinks to load advertisement View, retrieve configuration or upload analytical
information including demographics, ratings, etc. Each semantic context is captured
from the perspective of taint propagation trace. However, due to the use of same
sink call-site, all the analytical traffics are considered to be with the same semantic
context in the call-site model. Though call-site-based model is not as sensitive to
context as the trace-based approach, it is still able to differentiate the contexts of
Ads View, configuration file loading and analytical dataflow, according to disparate
sink call-sites.

We also observe inconsistency between traced-based contexts and real
program semantics. That lies in apps (ID 1, 6, 7, 8, 9, 10) which acquire
location information, where the number of trace-based contexts exceeds that
of actual contexts. Geographic location is obtained either approximately from
getLastKnownLocation(), or from a real-time update by registering a listener
through requestLocationUpdates() and receiving updates via callback
onLocationChanged(Location). Some apps adopt both ways so as to achieve
higher accuracy. For instance, artfulbits.aiMinesweeper reads location data by
calling getLastKnownLocation() at the very beginning of the program, stores
it into an instance field, and then periodically updates it with the aforementioned
callback. Consequently, two separate paths achieve one sole purpose and thus
should be considered as of equivalent context. However, from either trace or call-
site point of view, there exist two separate contexts. Despite the disparity, we believe
that this would at most introduce one extra prompt. Further, it is also reasonable to
split this context into two, because one conducts a one-time access while the other
obtains data repeatedly.



74 5 Efficient and Context-Aware Privacy Leakage Confinement

5.4.3 Runtime Performance

We compare the runtime overhead of bytecode rewriting with that of dynamic taint
analysis in TaintDroid (on Android gingerbread version 2.3.4). In principle, if an
app leaks private information only occasionally, the rewritten version would have
much better performance than the original version on TaintDroid. This is because in
the rewritten app nearly no instrumentation code is added on non-leaking execution
paths whereas TaintDroid has to monitor taint propagation all the time.

Rather, we would like to compare the performance when the taint is actively
propagated during the execution. This would be the worst-case scenario for Capper.
Specifically, we build two customized applications for the measurement. Both leak
IEMI string via getDeviceId() API, decode the string to a byte array, encrypt
the array by doing XOR on every byte with a constant key, reassemble a string
from the encrypted byte array, and in the end, send the string out to a specific URL
through a raw socket interface. The only difference is that one merely sends the
IMEI string, while the other also appends extra information of totally 10 KB to the
IMEI string before encryption. In other words, the former conducts a short-period
data transfer while the latter manipulates the outgoing message within a much longer
period. We expect that the execution of the first one to be mainly under mterp
interpretation mode and the execution of the second to be boosted by JIT.

We measured the execution time from getDeviceId() to the network
interface. We observed that the rewritten application runs significantly faster than
the original on TaintDroid, and only yields fairly small overhead compared to
the original one running on Android, for both short-period and long-period data
propagation. Table 5.3 illustrates the result of runtime measurement. While our
approach causes 13 and 1.5 % overhead for short and long data propagation
respectively, TaintDroid incurs 330 and 47 % overhead. The results also show that
the presence of JIT significantly reduces runtime overhead, in both approaches.
However, though newer version of TaintDroid (2.3.4 and later) benefits from JIT
support, the overhead caused by dynamic instrumentation is still apparently high.

To further confirm the runtime overhead of the rewritten programs, we conduct
an experiment on Google Nexus S, with Android OS version 4.0.4. It is worth
mentioning that such verification on real device requires considerable repetitive
manual efforts and thus is fairly time consuming. We therefore randomly pick
10 apps from the privacy-breaching ones, rewrite them, run both the original app
and secured one on physical device, and compare the runtime performance before
and after rewriting. We rely on the timestamps of Android framework debugging
information (logcat logs) to compute the app load time as benchmark. The app load
time is measured from when Android ActivityManager starts an Activity

Table 5.3 Runtime
performance evaluation

Orig. Orig. on TaintDroid Rewritten

Short 30 ms 130 ms 34 ms

Long 10,583 ms 15,571 ms 10,742 ms



References 75

component to the time the Activity thread is displayed. This includes application
resolution by ActivityManager, IPC and graphical display. Our observation
complies with prior experiment result: rewritten apps usually have insignificant
slowdown, with an average of 2.1 %, while the maximum runtime overhead is less
than 9.4 %.

References

1. Enck W, Octeau D, McDaniel P, Chaudhuri S (2011) A study of Android application security.
In: Proceedings of the 20th usenix security symposium, August 2011

2. Enck W, Gilbert P, Chun BG, Cox LP, Jung J, McDaniel P, Sheth AN (2010) TaintDroid:
an information-flow tracking system for realtime privacy monitoring on smartphones. In:
Proceedings of the 9th USENIX symposium on operating systems design and implementation
(OSDI’10), October 2010

3. Hornyack P, Han S, Jung J, Schechter S, Wetherall D (2011) These aren’t the droids you’re
looking for: retrofitting Android to protect data from imperious applications. In: Proceedings
of CCS, 2011

4. Zhou Y, Jiang X (2012) Dissecting Android malware: characterization and evolution. In:
Proceedings of the 33rd IEEE symposium on security and privacy (Oakland’12), May 2012

5. Zhou Y, Wang Z, Zhou W, Jiang X (2012) Hey, you, get off of my market: detecting malicious
apps in official and alternative Android markets. In: Proceedings of 19th annual network and
distributed system security symposium (NDSS’12), February 2012

6. Wu C, Zhou Y, Patel K, Liang Z, Jiang X (2014) AirBag: boosting smartphone resistance to
malware infection. In: Proceedings of the 21th annual network and distributed system security
symposium (NDSS’14), February 2014

7. Lu L, Li Z, Wu Z, Lee W, Jiang G (2012) CHEX: statically vetting Android apps for component
hijacking vulnerabilities. In: Proceedings of the 2012 ACM conference on computer and
communications security (CCS’12), October 2012

8. Gibler C, Crussell J, Erickson J, Chen H (2012) AndroidLeaks: automatically detecting
potential privacy leaks in Android applications on a large scale. In: Proceedings of the 5th
international conference on Trust and Trustworthy Computing, 2012

9. Kim J, Yoon Y, Yi K, Shin J (2012) Scandal: Static Analyzer for Detecting Privacy Leaks in
Android Applications. In: Mobile Security Technologies (MoST) 2012

10. Mann C, Starostin A (2012) A framework for static detection of privacy leaks in Android
applications. In: Proceedings of the 27th annual ACM symposium on applied computing, 2012

11. Yang Z, Yang M, Zhang Y, Gu G, Ning P, Wang XS (2013) AppIntent: analyzing sensitive
data transmission in Android for privacy leakage detection. In: Proceedings of the 20th ACM
conference on computer and communications security (CCS’13), November 2013

12. Ongtang M, McLaughlin S, Enck W, McDaniel P (2009) Semantically rich application-centric
security in Android. In: Proceedings of ACSAC, 2009

13. Enck W, Ongtang M, McDaniel P (2009) On lightweight mobile phone application certifica-
tion. In: Proceedings of the 16th ACM conference on computer and communications security
(CCS’09), November 2009

14. Conti M, Nguyen VTN, Crispo B (2011) Crepe: context-related policy enforcement for
Android. In: Proceedings of the 13th international conference on information security, 2011

15. Zhou Y, Zhang X, Jiang X, Freeh VW (2011) Taming information-stealing smartphone
applications (on Android). In: Proceedings of the 4th international conference on Trust and
trustworthy computing, 2011

16. Nauman M, Khan S, Zhang X (2010) Apex: extending Android permission model and enforce-
ment with user-defined runtime constraints. In: Proceedings of the 5th ACM symposium on
information, computer and communications security, 2010



76 5 Efficient and Context-Aware Privacy Leakage Confinement

17. Beresford AR, Rice A, Skehin N, Sohan R (2011) Mockdroid: trading privacy for application
functionality on smartphones. In: Proceedings of the 12th workshop on mobile computing
systems and applications, 2011

18. Lange M, Liebergeld S, Lackorzynski A, Warg A, Peter M (2011) L4Android: a generic
operating system framework for secure smartphones. In: Proceedings of the 1st ACM workshop
on security and privacy in smartphones and mobile devices, 2011

19. Andrus J, Dall C, Hof AV, Laadan O, Nieh J (2011) Cells: a virtual mobile smartphone
architecture. In: Proceedings of SOSP, 2011

20. Shekhar S, Dietz M, Wallach DS (2012) Adsplit: separating smartphone advertising from
applications. In: Proceedings of the 20th usenix security symposium, August 2012

21. Xu R, Sadi H, Anderson R (2012) Aurasium: practical policy enforcement for Android
applications. In: Proceedings of the 21th usenix security symposium, August 2012

22. Livshits B, Jung J (2013) Automatic mediation of privacy-sensitive resource access in
smartphone applications. In: Proceedings of the 22th usenix security symposium, 2013

23. Soot: A Java Optimization Framework (2016) http://www.sable.mcgill.ca/soot/
24. Felt AP, Wang HJ, Moshchuk A, Hanna S, Chin E (2011) Permission re-delegation: attacks

and defenses. In: Proceedings of the 20th USENIX security symposium, 2011
25. Grace M, Zhou Y, Wang Z, Jiang X (2012) Systematic detection of capability leaks in stock

Android smartphones. In: Proceedings of the 19th network and distributed system security
symposium, 2012

26. Zhou Y, Jiang X (2013) Detecting passive content leaks and pollution in Android applications.
In: Proceedings of the 20th network and distributed system security symposium, 2013

27. Davi L, Dmitrienko A, Sadeghi AR, Winandy M (2011) Privilege escalation attacks on
Android. In: Proceedings of the 13th international conference on information security, Berlin,
Heidelberg, 2011

http://www.sable.mcgill.ca/soot/


Chapter 6
Automatic Generation of Security-Centric
Descriptions for Android Apps

Abstract To improve the security awareness of end users, Android markets directly
present two classes of literal app information: (1) permission requests and (2) textual
descriptions. Unfortunately, neither can serve the needs. A permission list is not only
hard to understand but also inadequate; textual descriptions provided by developers
are not security-centric and are significantly deviated from the permissions. To fill
in this gap, we propose a novel technique to automatically generate security-
centric app descriptions, based on program analysis. We implement a prototype
system, DESCRIBEME , and evaluate our system using both DroidBench and real-
world Android apps. Experimental results demonstrate that DESCRIBEME enables
a promising technique which bridges the gap between descriptions and permissions.
A further user study shows that automatically produced descriptions are not only
readable but also effectively help users avoid malware and privacy-breaching apps.

6.1 Introduction

Unlike traditional desktop systems, Android provides end users with an opportunity
to proactively accept or deny the installation of any app to the system. As a result,
it is essential that the users become aware of each app’s behaviors so as to make
appropriate decisions. To this end, Android markets directly present the consumers
with two classes of information regarding each app: (1) the Android permissions
requested and (2) textual description of the app’s behavior that is provided by the
app’s developer. Unfortunately, neither of these can fully serve this need.

Permission requests are not easy to understand. First, prior study [1] has shown
that few users are cautious or knowledgeable enough to comprehend the security
implications of Android permissions. Second, a permission list merely tells the users
which permissions are used, but does not explain how they are used. Without such
knowledge, one cannot properly assess the risk of allowing a permission request.
For instance, both a benign navigation app and a spyware instance of the same app
can require the same permission to access GPS location, yet use it for completely
different purposes. While the benign app delivers GPS data to a legitimate map
server upon the user’s approval, the spyware instance can periodically and stealthily

© The Author(s) 2016
M. Zhang, H. Yin, Android Application Security, SpringerBriefs in Computer
Science, DOI 10.1007/978-3-319-47812-8_6

77



78 6 Automatic Generation of Security-Centric Descriptions for Android Apps

leak the user’s location information to an attacker’s site. Due to the lack of context
clues, a user is not able to perceive such differences via the simple permission
enumeration.

Textual descriptions provided by developers are not security-centric. There exists
very little incentive for app developers to describe their products from a security
perspective, and it is still a difficult task for average developers (usually inexpe-
rienced) to write dependable descriptions. Malware authors can also intentionally
hide malice from innocent users by providing misleading descriptions. Previous
studies [2, 3] have revealed that the existing descriptive text deviate considerably
from requested permissions. As a result, developer-driven description generation
cannot be considered trustworthy.

To address this issue, we propose a novel technique to automatically generate app
descriptions which accurately describe the security-related behaviors of Android
apps. To interpret panoramic app behaviors, we extract security behavior graphs as
high-level program semantics. To create concise descriptions, we further condense
the graphs by mining and compressing the frequent subgraphs. As we traverse
and parse these graphs, we leverage Natural Language Generation (NLG) to
automatically produce concise, human-understandable descriptions.

A series of efforts have been made to describe the functionalities of traditional
Java programs as human readable text via NLG. Textual summaries are automat-
ically produced for methods [4], method parameters [5], classes [6], conditional
code snippets [7] and algorithmic code structures [8] through program analysis and
comprehension. These works focus upon depicting the intra-procedural structure-
based operations, while our technique presents the whole-program’s semantic-level
activities. Furthermore, we take the first step towards automating Android app
description generation for security purposes.

We implement a prototype system, DESCRIBEME , in 25 thousand lines of Java
code. Our behavior graph generation is built on top of Soot [9], while our description
production leverages an NLG engine [10] to realize texts from the graphs. We
evaluate our system using both DroidBench [11] and real-world Android apps.
Experimental results demonstrate that DESCRIBEME is able to effectively bridge
the gap between descriptions and permissions. A further user study shows that our
automatically-produced descriptions are both readable and effective at helping users
to avoid malware and privacy-breaching apps.

6.2 Overview

6.2.1 Problem Statement

Figures 6.1 and 6.2 demonstrate the two classes of descriptive metadata that are
associated with an Android app available via Google Play. The app shown leaks the



6.2 Overview 79

Fig. 6.1 Permission requests

user’s phone number and service provider to a remote site. Unfortunately, neither of
these two pieces of metadata can effectively inform the end users of the risk.

The permission list (Fig. 6.1) simply enumerates all of the permissions requested
by the app while replacing permission primitives with straightforward explanations.
Besides, it can merely tell users that the app uses two separate permissions,
READ_PHONE_STATE and INTERNET, but cannot indicate that these two permissions
are used consecutively to send out phone number.

The textual descriptions are not focused on security. As depicted in the example
(the top part in Fig. 6.2), developers are more interested in describing the app’s
functionalities, unique features, special offers, use of contact information, etc. Prior
studies [2, 3] have revealed significant inconsistencies between app descriptions and
permissions.

We propose a new technique, DESCRIBEME, which addresses these shortcom-
ings and can automatically produce complementary security-centric descriptions
for apps in Android markets. It is worth noting that we do not expect to replace
the developers’ descriptions with our own. Instead, we hope to provide additional
app information that is written from a security perspective. For example, as shown
in the bottom part of Fig. 6.2, our security-sensitive descriptions are attached to the



80 6 Automatic Generation of Security-Centric Descriptions for Android Apps

Fig. 6.2 Old+New
descriptions

existing ones. The new description states that the app retrieves the phone number
and writes data to network, and therefore indicates the privacy-breaching behavior.

We expect to primarily deploy DESCRIBEME directly into the Android markets,
as illustrated in Fig. 6.3. Upon receiving an app submission from a developer, the
market drives our system to analyze the app and create a security-centric description.
The generated descriptions are then attached to the corresponding apps in the
markets. As a result, these new descriptions, along with the original ones, are
displayed to consumers once the app is ready for purchase.

6.2.2 Architecture Overview

Figure 6.4 depicts the workflow of our automated description generation. This takes
the following steps:

(1) Behavior Graph Generation. Our natural language descriptions are generated
via directly interpreting program behavior graphs. To this end, we first perform



6.2 Overview 81

Android App Market

Behavior Analysis &
Natural Language

GenerationDeveloper’s App

Submit

Analysis

NLG

Security-centric
Descriptions

Attach

Fig. 6.3 Deployment of DESCRIBEME

Android App

getDeviceId

{ }
startRecording

{ }
sendTextMessage

{ }

getDeviceId

startRecording

sendTextMessage

{ }
{ }

getDeviceId

startRecording

sendTextMessage

{ }

Behavior Graph Generation Subgraph Mining & Graph Compression Natural Language Generation

Security-Centric
Descriptions

Fig. 6.4 Overview of DESCRIBEME

static program analyses to extract behavior graphs from Android bytecode
programs. Our program analyses enable a condition analysis to reveal the
triggering conditions of critical operations, provide entry point discovery to
better understand the API calling contexts, and leverage both forward and
backward dataflow analyses to explore API dependencies and uncover constant
parameters. The result of these analyses is expressed via Security Behavior
Graphs that expose security-related behaviors of Android apps.

(2) Subgraph Mining and Graph Compression. Due to the complexity of object-
oriented, event-driven Android programs, static program analyses may yield
sizable behavior graphs which are extremely challenging for graph traversal and
automated interpretation. To address this problem, we next reduce the graph
size using subgraph mining. More concretely, we first leverage data mining
based technique to discover the frequent subgraphs that bear specific behavior
patterns. Then, we compress the original graphs by substituting the identified
subgraphs with single graph nodes.

(3) Natural Language Generation. Finally, we utilize natural language gener-
ation technique to automatically convert the semantic-rich graphs to human
understandable scripts. Given a compressed behavior graph, we traverse all of
its paths and translate each graph node into a corresponding natural language
sentence. To avoid redundancy, we perform sentence aggregation to organically



82 6 Automatic Generation of Security-Centric Descriptions for Android Apps

combine the produced texts of the same path, and further assemble only the
distinctive descriptions among all the paths. Hence, we generate descriptive
scripts for every individual behavior graph derived from an app and eventually
develop the full description for the app.

6.3 Security Behavior Graph

6.3.1 Formal Definition

Similar to our approach to defining API dependencies in Chap. 3, we consider four
factors as essential when describing the security-centric behaviors of an Android app
sample: (1) API call and dependencies; (2) Trigger condition; (3) Entry point;
and (4) Constant.

To address all of the aforementioned factors, we describe app behaviors using
Security Behavior Graphs (SBG). At a high level, an SBG consists of behavioral
operations where some operations have data dependencies.

Definition 1. A Security Behavior Graph is a directed graph G D .V; E; ˛/ over a
set of operations ˙ , where:

• The set of vertices V corresponds to the behavioral operations (i.e., APIs or
behavior patterns) in ˙ ;

• The set of edges E � V � V corresponds to the data dependencies between
operations;

• The labeling function ˛ W V ! ˙ associates nodes with the labels of corre-
sponding semantic-level operations, where each label is comprised of 4 elements:
behavior name, entry point, constant parameter set and precondition list.

Notice that the behavior name can be either an API prototype or a behavior
pattern ID. However, when we build the SBGs using static program analysis, we
only extract API-level dependency graphs (i.e., the raw SBGs). Then, we perform
frequent subgraph mining to identify common behavior patterns so that we can
replace the subgraphs with pattern nodes. Graph mining and compression will be
discussed in Sect. 6.4.

6.3.2 SBG of Motivating Example

Figure 6.5 presents an SBG of the motivating example. It shows that the app first
obtains the user’s phone number (getLine1Number()) and service provider name
(getSimOperatorName()), then encodes the data into a format string (format
(String,byte[])), and finally sends the data to network (write(byte[])).



6.3 Security Behavior Graph 83

Fig. 6.5 An example SBG <TelephonyManager: getLine1Number()>,
OnClickListener.onClick, Øconst, Setcond

Setcond = {findViewById(View.getId)==Bu�on(“Confirm”)}

<TelephonyManager: getSimOperatorName()>,
OnClickListener.onClick, Øconst, Setcond

<String:format(String,Object[])>,
OnClickListener.onClick, Setconst, Øcond

Setconst = {100/app_id=an1005/ani=%s/dest=%s/phone_number=%s/company=%s/}

<OutputStream: write(byte[])>,
OnClickListener.onClick, Øconst, Setcond

Setcond = {findViewById(View.getId)==Bu�on(“Confirm”)}

Setcond = {findViewById(View.getId)==Bu�on(“Confirm”)}

All APIs in this graph are called after the user has clicked a GUI component, so
they share the same entry point, OnClickListener.onClick. This indicates that
these API calls will be directly triggered by the user.

The sensitive APIs, including getLine1Number(), getSimOperatorName()

and write(byte[]), are predominated by a UI-related condition. It checks whether
the clicked component is a Button object of a specific name. There exist two
security implications behind this information: (1) the app is usually safe to use,
without leaking the user’s phone number; (2) a user should be cautious when she is
about to click this specific button, because the subsequent actions can directly cause
privacy leakage.

The encoding operation, format(String,byte[]), takes a constant format
string as the parameter. Such a string will later be used to compose the target URL,
so it is an important piece of knowledge, that can be used to understand the scenario
in which the privacy-related data is used.

6.3.3 Graph Generation

We apply the same techniques illustrated in Chap. 3 to extract API data dependen-
cies, constant parameters and entry points.

Condition Reconstruction We then perform both control-flow and dataflow analy-
ses to uncover the triggering conditions of sensitive APIs. All conditions, in general,
play an essential role in security analysis. However, we are only interested in certain
trigger conditions for our work. This is because our goal is to generate human
understandable descriptions for end users. This implies that an end user should



84 6 Automatic Generation of Security-Centric Descriptions for Android Apps

Algorithm 2 Condition Extraction for Sensitive APIs
SG Supergraph
Set<a;c>  null
Setapi  {sensitive API statements in the SG}
for api 2 Setapi do

Setpred  GetConditionalPredecessors(SG,api)
for pred 2 Setpred do

for 8var defined and used in pred do
DDG BackwardDataflowAnalysis(var)
Setcond  ExtractCondition(DDG; var)
Set<a;c>  Set<a;c> [ f< api; Setcond >g

end for
end for

end for
output Set<a;c> as a set of < API; conditions > pairs

be able to naturally evaluate the produced descriptions, including any condition
information. As a result, it is pointless if we generate a condition that cannot be
directly observed by a user.

Consequently, our analysis is only focused on three major types of conditions that
users can directly observe. (1) User Interface. An end user actively communicates
with the user interface of an app, and therefore she directly notices the UI-
related conditions, such as a click on a specific button. (2) Device status. Similarly,
a user can also notice the current phone status, such as WIFI on/off, screen
locked/unlocked, speakerphone on/off, etc. (3) Natural environment. A user is aware
of environmental factors that can impact the device’s behavior, including the current
time and geolocation.

The algorithm for condition extraction is presented in Algorithm 2. This algo-
rithm accepts a supergraph SG as the input and produces Set<a;c> as the output. The
supergraph SG is derived from callgraph and control-flow analyses; Set<a;c> is a
set of < a; c > pairs, each of which is a mapping between a sensitive API and its
conditions.

Given the supergraph SG, our algorithm first identifies all the sensitive API state-
ments, Setapi, on the graph. Then, it discovers the conditional predecessors Setpred

(e.g., IF statement) for each API statement via GetConditionalPredecessors().
Conditional predecessor means that it is a predominator of that API statement but
the API statement is not its postdominator. Intuitively, it means the occurrence
of that API statement is indeed conditional and depends on the predicate within
that predecessor. Next, for every conditional statement pred in Setpred, it performs
backward dataflow analysis on all the variables defined or used in its predicate. The
result of BackwardDataflowAnalysis() is a data dependency graph DDG, which
represents the dataflow from the variable definitions to the conditional statement.
The algorithm further calls ExtractCondition(), which traverses this DDG and
extracts the conditions Setcond for the corresponding api statement. In the end, the
API/conditions pair < api; Setcond > is merged to output set Set<a;c>.



6.3 Security Behavior Graph 85

We reiterate that ExtractCondition() only focuses on three types of condi-
tions: user interface, device status and natural environment. It determines the condi-
tion types by examining the API calls that occur in the DDG. For instance, an API
call to findViewById() indicates the condition is associated with GUI components.
The APIs retrieving phone states (e.g., isWifiEnabled(), isSpeakerphoneOn())
are clues to identify phone status related conditions. Similarly, if the DDG involves
time- or location-related APIs (e.g., getHours(), getLatitude()), the condition
is corresponding to natural environment.

User Interface Analysis in Android Apps We take special considerations when
extracting UI-related conditions. Once we discover such a condition, we expect
to know exactly which GUI component it corresponds to and what text this GUI
actually displays to the users.

In order to retrieve GUI information, we perform an analysis on the Android
resource files for the app. Our UI resource analysis is different from prior work [12]
in two aspects. Firstly, the prior work aims at connecting texts to program entry
points, whereas we associate textual resources to conditional statements. Secondly,
the previous study did not consider those GUI callbacks that are registered in XML
layout files. In contrast, we handle both programmatically and statically registered
callbacks in order to guarantee the completeness.

Figure 6.6 illustrates how we perform UI analysis. This analysis takes four steps.
First, we analyze the res/values/public.xml file to retrieve the mapping between
the GUI ID and GUI name. Then, we examine the res/values/strings.xml file
to extract the string names and corresponding string values. Next, we recursively
check all layout files in the res/layout/ directory to fetch the mapping of GUI
type, GUI name and string name. At last, all the information is combined to
generate a set of 3-tuples {GUI type, GUI ID, string value}, which is queried by
ExtractCondition() to resolve UI-related conditions.

<CheckBox android:id="
@id/binary" android:text="
@string/send_binarysms"/>

<public type="id" 
name="binary" id="
0x7f050002" />

<string name="send_binarysms">
Send binary sms (to port 8091)
</string>

{type=Checkbox, 
id name=binary, 
string name=send_binarysms} 

<string name=send_binarysms, 
text=Send binary sms (to port 
8091)> 

<id=0x7f050002, 
id name=binary> 

3-tuple={type=Checkbox, 
id=0x7f050002, 
text=Send binary sms (to port 8091)}

res/values/public.xml

<GUI ID, id name> {GUI type, id name, string name}

{GUI type, GUI ID, text}

res/values/strings.xml res/layout/main.xml

<string name, text>

Step 1 Step 2 Step 3

Step 4

Fig. 6.6 UI resource analysis



86 6 Automatic Generation of Security-Centric Descriptions for Android Apps

Condition Solving Intuitively, we could use a constraint solver to compute predi-
cates and extract concrete conditions. However, we argue that this technique is not
suitable for our problem. Despite its accuracy, a constraint solver may sometimes
generate excessively sophisticated predicates. It is therefore extremely hard to
describe such complex conditions to end users in a human readable manner. As
a result, we instead focus on simple conditions, such as equations or negations,
because their semantics can be easily expressed using natural language.

Therefore, once we have extracted the definitions of condition variables, we
further analyze the equation and negation operations to compute the condition
predicates. To this end, we analyze how the variables are evaluated in condi-
tional statements. Assume such a statement is if(hour == 8). In its predicate
(hour == 8), we record the constant value 8 and search backward for the
definition of variable hour. If the value of hour is received directly from API
call getHours(), we know that the condition is current time is equal to

8:00am. For conditions that contain negation, such as a condition like WIFI is

NOT enabled, we examine the comparison operation and comparison value in
the predicate to retrieve the potential negation information. We also trace back
across the entire def-use chain of the condition variables. If there exists a negation
operation, we negate the extracted condition.

6.4 Behavior Mining and Graph Compression

Static analysis sometimes results in huge behavior graphs. To address this problem,
we identify higher-level behavior patterns from the raw SBGs so as to compress the
raw graphs and produce more concise descriptions.

Experience tells us certain APIs are typically used together to achieve partic-
ular functions. For example, SMSManager.getDefault() always happens before
SMSManager.sendTextMessage(). We therefore expect to extract these behavior
patterns, so that we can describe each pattern as an entirety instead of depicting
every API included. To this end, we first discover the common subgraph patterns,
and then compress the original raw graphs by collapsing pattern nodes.

To this end, we focus on 109 security-sensitive APIs and perform “API-oriented”
behavior mining on 1000 randomly-collected top Android apps. We first follow the
approach of our prior work (Chap. 3) and conduct concept learning to obtain these
critical APIs. Then, we construct the subset specific to each individual API. In the
end, we apply subgraph mining algorithm [13] to each subset.

Figure 6.7 exemplifies our mining process. Specifically, it shows that we discover
a behavior pattern for the API getLastKnownLocation(). This pattern involves
two other API calls, getLongitude() and getLatitude(). It demonstrates the
common practice to retrieve location data in Android programs.

Now that we have identified common subgraphs in the raw SBGs, we can further
compress these raw graphs by replacing entire subgraphs with individual nodes.
This involves two steps, subgraph isomorphism and subgraph collapse. We utilize



6.5 Description Generation 87

getLastKnownLocation()

getLongitude() getLatitude() getAltitude()

write()

getLastKnownLocation()

getLongitude() getLatitude()

getFromLocation()

getLastKnownLocation()

getLongitude() getLatitude()

Graph Mining

a) raw SBG# 1 b) raw SBG# 2

b) frequent pa�ern

Fig. 6.7 Graph mining for getLastKnownLocation()

the VF2 [14] algorithm to solve the subgraph isomorphism problem. In order to
maximize the graph compression rate, we always prioritize a better match (i.e.,
larger subgraph). To perform subgraph collapse, we first replace subgraph nodes
with one single new node. Then, we merge the attributes (i.e., context, conditions
and constants) of all the removed nodes, and put the merged label onto the new one.

6.5 Description Generation

6.5.1 Automatically Generated Descriptions

Given a behavior graph SBG, we translate its semantics into natural language
descriptions. This descriptive language follows a subset of English grammar,
illustrated in Fig. 6.8 using Extended Backus-Naur form (EBNF). The description
of an app is a conjunction of individual sentences. An atomic sentence makes a
statement and specifies a modifier. Recursively, a non-empty atomic modifier

can be an adverb clause of condition, which contains another sentence.
The translation from a SBG to a textual description is then to map the graph

components to the counterparts in this reduced language. To be more specific, each
vertex of a graph is mapped to a single sentence, where the API or behavioral
pattern is represented by a statement; the conditions, contexts and constant
parameters are expressed using a modifier. Each edge is then translated to “and”
to indicate data dependency.

One sentence may have several modifiers. This reflects the fact that one API
call can be triggered in compound conditions and contexts, or a condition/context
may accept several parameters. The modifiers are concatenated with “and” or “or”
in order to verbalize specific logical relations. A context modifier begins with
“once” to show the temporal precedence. A condition modifier starts with either
“if” or “depending on if”. The former is applied when a condition is statically



88 6 Automatic Generation of Security-Centric Descriptions for Android Apps

Fig. 6.8 An abbreviated
syntax of our descriptions

resolvable while the latter is prepared for any other conservative cases. Notice that
it is always possible to find more suitable expressions for these conjunctions.

In our motivating example, getLine1Number() is triggered under the condition
that a specific button is selected. Due to the sophisticated internal computation, we
did not extract the exact predicates. To be safe, we conservatively claim that the app
retrieves the phone number depending on if the user selects Button “Confirm”.

6.5.2 Behavior Description Model

Once we have associated a behavior graph to this grammatical structure, we further
need to translate an API operation or a pattern to a proper combination of subject,
verb and object. This translation is realized using our Behavior Description Model.
Conditions and contexts of SBGs are also translated using the same model because
they are related to API calls.

We manually create this description model and currently support 306 sensitive
APIs and 103 API patterns. Each entry of this model consists of an API or
pattern signature and a 3-tuple of natural language words for subject, verb and
object. We construct such a model by studying the Android documentation [15].
For instance, the Android API call createFromPdu(byte[]) programmatically
constructs incoming SMS messages from underlying raw Protocol Data Unit (PDU)



6.5 Description Generation 89

and hence it is documented as “Create an SmsMessage from a raw PDU” by Google.
Our model records its API prototype and assigns texts “the app”, “retrieve” and
“incoming SMS messages” to the three linguistic components respectively. These
three components form a sentence template. Then, constants, concrete conditions
and contexts serve as modifiers to complete the template. For example, the template
of HttpClient.execute() is represented using words “the app”, “send” and “data
to network”. Suppose an app uses this API to deliver data to a constant URL
“http://constant.url”, when the phone is locked (i.e., keyguard is on). Then, such
constant value and condition will be fed into the template to produce the sentence
“The app sends data to network “http://constant.url” if the phone is locked.” The
condition APIs share the same model format. The API checking keyguard status
(i.e., KeyguardManager.isKeyguardLocked()) is modeled as words “the phone”,
“be” and “locked”.

It is noteworthy that an alternative approach is to generate this model program-
matically. Sridhara et al. [8] proposed to automatically extract descriptive texts for
APIs and produce the Software Word Usage Model. The API name, parameter type
and return type are examined to extract the linguistic elements. For example, the
model of createFromPdu(byte[]) may therefore contain the keywords “create”,
“from” and “pdu”, all derived from the function name. Essentially, we can take the
same approach. However, we argue that such a generic model was designed to assist
software development and is not the best solution to our problem. An average user
may not be knowledgeable enough to understand the low-level technical terms, such
as “pdu”. In contrast, our text selections (i.e., “the app”, “retrieve” and “incoming
SMS messages”) directly explain the behavior-level meaning.

We generate description model for API patterns based on their internal
program logics. Table 6.1 presents the three major logics, we have discov-
ered in behavioral patterns. (1) A singleton object is retrieved for further
operations. For example, a SmsManager.getDefault() is always called prior
to SmsManager.sendTextMessage() because the former fetches the default
SmsManager that the latter needs. We therefore describe only the latter which
is associated to a more concrete behavior. (2) Successive APIs constitute a
dedicated workflow. For instance, divideMessage() always happens before
sendMultipartTextMessage(), since the first provides the second with necessary
inputs. In this case, we study the document of each API and describe the
complete behavior as an entirety. (3) Hierarchical information is accessed
using multiple levels of APIs. For instance, to use location data, one has to
first call getLastKnownLocation() to fetch a Location object, and then call
getLongitude() and getLatitude() to read the “double”-typed data from this

Table 6.1 Program logics in
behavioral patterns

Program logic How to describe

Singleton retrieval Describe the latter

Workflow Describe both

Access to hierarchical data Describe the former

http://constant.url
http://constant.url


90 6 Automatic Generation of Security-Centric Descriptions for Android Apps

object. Since the higher level object is already meaningful enough, we hence
describe this whole behavior according to only the former API.

In fact, we only create description models for 103 patterns out of the total 109
discovered ones. Some patterns are large and complex, and therefore are hard to
summarize. For these patterns, we have to fall back to the safe area and describe
them in a API-by-API manner.

In order to guarantee the security-sensitivity and readability of the descriptive
texts, we carefully select the words to accommodate the model. To this end, we
learn from the experience of prior security studies [2, 3] on app descriptions: (1)
The selected vocabulary must be straightforward and stick to the essential API
functionalities. As an counterexample, an audio recording behavior can hardly be
inferred from the script “Blow into the mic to extinguish the flame like a real
candle” [2]. This is because it does not explicitly refer to the audio operation.
(2) Descriptive texts must be distinguishable for semantically different APIs.
Otherwise, poorly-chosen texts may confuse the readers. For instance, an app
with description “You can now turn recordings into ringtones” in reality only
converts previously recorded files to ringtones, but can be mistakenly associated
to the permission android.permission.RECORD_AUDIO due to the misleading text
choice [2, 3].

6.5.3 Behavior Graph Translation

Now that we have defined a target language and prepared a model to verbalize
sensitive APIs and patterns, we further would like to translate an entire behavior
graph into natural language scripts. Algorithm 3 demonstrates our graph traversal
based translation.

This algorithm takes a SBG G and the description model Mdesc as the inputs and
eventually outputs a set of descriptions. The overall idea is to traverse the graph and
translate each path. Hence, it first performs a breadth-first search and collects all
the paths into Setpath. Next, it examines each path in Setpath to parse the nodes in
sequence. Each node is then parsed to extract the node name, constants, conditions
and contexts. The node name node:name (API or pattern) is used to query the model
Mdesc and fetch the {subj,vb,obj} of a main clause. The constants, conditions and
contexts are organized into the modifier (Cmod) of main clause, respectively. In
the end, the main clause is realized by assembling {subj,vb,obj} and the aggregate
modifier Cmod. The realized sentence is inserted into the output set Setdesc if it is
not a redundant one.



6.5 Description Generation 91

Algorithm 3 Generating Descriptions from a SBG
G {A SBG }
Mdesc  {Description model}
Setdesc  ;
Setpath  BFS(G)
for path 2 Setpath do

desc null
for node 2 path do

{subj,vb,obj} QueryMdesc (node:name)
Cmod null
Setconst  GetConsts(node)
for 8const 2 Setconst do

Cmod Aggregate(Cmod,const)
end for
Setcc  GetConditionsAndContext(node)
for 8cc 2 Setcc do

{subj,vb,obj}cc  QueryMdesc (cc)
textcc  RealizeSentence({subj,vb,obj}cc)
Cmod Aggregate(Cmod,textcc)

end for
text RealizeSentence({subj,vb,obj,Cmod})
desc Aggregate(desc; text)

end for
Setdesc  Setdesc [ fdescg

end for
output Setdesc as the generated description set

6.5.4 Motivating Example

We have implemented the natural language generation using a NLG engine [10] in
3 K LOC. Figure 6.9 illustrates how we step-by-step generate descriptions for the
motivating example.

First, we discover two paths in the SBG: (1) getLine1Number() ! format()

! write() and (2) getSimOperatorName() ! format() ! write().
Next, we describe every node sequentially on each path. For example, for the first

node, the API getLine1Number() is modeled by the 3-tuple {“the app”, “retrieve”,
“your phone number”}; the entry point OnClickListener.onClick is translated
using its model {“a GUI component”, “be”, “clicked”} and is preceded by “Once”
; the condition findViewById(View.getId)==Button(“Confirm”) is described
using the template {“the user”, “select”, “ ”}, which accepts the GUI name, Button
“Confirm”, as a parameter. The condition and main clause are connected using
“depending on if”.

At last, we aggregate the sentences derived from individual nodes. In this
example, all the nodes share the same entry point. Thus, we only keep one copy
of “Once a GUI component is clicked”. Similarly, the statements on the nodes are



92 6 Automatic Generation of Security-Centric Descriptions for Android Apps

<TelephonyManager: getLin um er >,
OnClickListener.onClick, Øconst, Setcond

Setcond = {findViewById(View.getId)==Button(“Confirm”)}

<TelephonyManager: getSimOperatorName()>,
OnClickListener.onClick, Øconst, Setcond

<String: format(String,Object[])>,
OnClickListener.onClick, Setconst, Øcond

Setconst = {1 00/app_id=an1 005/ani=%s/dest=%s/phone_number=%s/company=%s/}

<OutputStream: write(byte[])>,
OnClickListener.onClick, Øconst, Setcond

Setcond = {findViewById(View.getId)==Button(“Confirm”)}

Setcond = {findViewById(View.getId)==Button(“Confirm”)}

The app retrieves your phone number,
and encodes the data into format “1 00/app_id=an1 005/

ani=%s/dest=%s/phone_number=%s/company=%s/”,
and sends data to network

depending on if the user selects the Button ``Confirm’’

“The app”, “send”, “data to network”

depending on if “the user”, “select”, “the Button ``Confirm’’ “

“The app”, “retrieve”, “your phone number”

depending on if “the user”, “select”, “the Button ``Confirm’’ “

“The app”, “encode”, “the data into format”

“1 00/app_id=an1 005/ani=%s/dest=%s/phone_number=%s/company=%s/“

Description:
Once a GUI component is clicked, the app
retrieves you phone number, and encodes the
data into format “100/app_id=an1005/ani=%s/
dest=%s/phone_number=%s/company=%s/”, and
sends data to network, depending on if the user
selects the Button “Confirm”.

gettLLLiinn
ry oint

API prototype

Conditions

Once “a GUI
component”,
“be”, “clicked”

Once “a GUI
component”,
“be”, “clicked”

Once “a GUI
component”,
“be”, “clicked”

Once a GUI
component is

clicked

Finalize

Behavior Graph Natural Language Generation

e

p

1 /a//

enn

A
g
g
r
e
g
a
t
e

A
g
g
r
e
g
a
t
e

A
g
g
r
e
g
a
t
e

Realize Sentence

Translate
using model

Fig. 6.9 Description generation for the motivating example

also aggregated and thus share the same subject “The app”. We also aggregate the
conditions in order to avoid the redundancy. As a result, we obtain the description
illustrated at the bottom left of Fig. 6.9.

6.6 Evaluation

6.6.1 Correctness and Security-Awareness

Correctness To evaluate the correctness, we produce textual descriptions for
DroidBench apps (version 1.1) [11]. DroidBench apps are designed to assess the
accuracy of static analyses on Android programs. We use these apps as the ground
truths because they are open-sourced programs with clear semantics. Table 6.2
presents the experimental results, which show that DESCRIBEME achieves a true
positive rate of 85 %.

DESCRIBEME misses behavior descriptions due to three major reasons. (1)
Points-to analysis lacks accuracy. We rely on Soot’s capability to perform points-to
analysis. However, it is not precise enough to handle the instance fields accessed in
callback functions. (2) DESCRIBEME does not process exception handler code and
therefore loses track of its dataflow. (3) Some reflective calls cannot be statically
resolved. Thus, DESCRIBEME fails to extract their semantics.



6.6 Evaluation 93

Table 6.2 Description
generation results for
DroidBench

Total # Correct Missing desc. False statement

65 55 6 4

DESCRIBEME produces false statements mainly because of two reasons. First,
our static analysis is not sensitive to individual array elements. Thus, it generates
false descriptions for the apps that intentionally manipulate data in array . Second,
again, our points-to analysis is not accurate and may lead to over-approximation.

Despite the incorrect cases, the accuracy of our static analysis is still comparable
to that of FlowDroid [16], which is the state-of-the-art static analysis technique for
Android apps. Moreover, it is noteworthy that the accuracy of program analysis is
not the major focus of this work. Our main contribution lies in the fact that, we com-
bine static analysis with natural language generation so that we can automatically
explain program behaviors to end users in human language. To this end, we can in
fact apply any advanced analysis tools (e.g., FlowDroid, AmanDroid [17], etc.) to
serve our needs.

Permission Fidelity To demonstrate the security-awareness of DESCRIBEME, we
use a description vetting tool, AutoCog [3], to evaluate the “permission-fidelity”
of descriptions. AutoCog examines the descriptions and permissions of an app to
discover their discrepancies. We use it to analyze both the original descriptions
and the security-centric ones produced by DESCRIBEME, and assess whether our
descriptions can be associated to more permissions that are actually requested.

Unfortunately, AutoCog only supports 11 permissions in its current implemen-
tation. In particular, it does not handle some crucial permissions that are related
to information stealing (e.g., phone number, device identifier, service provider,
etc.), sending and receiving text messages, network I/O and critical system-level
behaviors (e.g., KILL_BACKGROUND_PROCESSES). The limitation of AutoCog in fact
brings difficulties to our evaluation: if generated descriptions are associated to these
unsupported permissions, AutoCog fails to recognize them and thus cannot conduct
equitable assessment. Such a shortcoming is also shared by another NLP-based
(i.e., natural language processing) vetting tool, WHYPER [2], which focuses on
even fewer (3) permissions. This implies that it is a major challenge for NLP-based
approaches to achieve high permission coverage, probably because it is hard to
correlate texts to semantically obscure permissions (e.g., READ_PHONE_STATE). In
contrast, our approach does not suffer from this limitation because API calls are
clearly associated to permissions [18].

Despite the difficulties, we manage to collect 30 benign apps from Google
play and 20 malware samples from Malware Genome Project [19], whose per-
missions are supported by AutoCog. We run DESCRIBEME to create the security-
centric descriptions and present both the original and generated ones to AutoCog.
However, we notice that AutoCog sometimes cannot recognize certain words
that have strong security implications. For example, DESCRIBEME uses “geo-
graphic location” to describe the permissions ACCESS_COARSE_LOCATION and
ACCESS_FINE_LOCATION. Yet, AutoCog cannot associate this phrase to any of the
permissions.



94 6 Automatic Generation of Security-Centric Descriptions for Android Apps

New Desc.

8

4

6

2

0
APPS

Orig.Desc.

Described Permissions
Permission List

N
um

be
r 

of
 P

er
m

is
si

on
s

Fig. 6.10 Permissions reflected in descriptions

The fundamental reason is that AutoCog and DESCRIBEME use different glos-
saries. AutoCog performs machine learning on a particular set of apps and extracts
the permission-related glossary from these existing descriptions. In contrast, We
manually select descriptive words for each sensitive API, using domain knowledge.

To bridge this gap, we enhance AutoCog to recognize the manually chosen
keywords. The experimental result is illustrated in Fig. 6.10, where X-axis repre-
sents the evaluated apps and Y-axis is the amount of permissions. The three bars,
from top to bottom, represent the amounts of permissions that are requested by the
apps, recognized by AutoCog from security-centric descriptions and identified from
original descriptions, respectively. Cumulatively, 118 permissions are requested by
these 50 apps. Twenty permissions are discovered from the old descriptions, while
66 are uncovered from our scripts. This reveals that DESCRIBEME can produce
descriptions that are more security-sensitive than the original ones.

DESCRIBEME fails to describe certain permission requests due to three rea-
sons. First, some permissions are used for native code or reflections that cannot
be resolved. Second, a few permissions are not associated to API calls (e.g.,
RECEIVE_BOOT_COMPLETED), and thus are not included into the SBGs. Last, some
permissions are correlated to certain API parameters. For instance, the query

API requires permission READ_CONTACTS only if the target URI is the Contacts

database. Thus, if the parameter value cannot be extracted statically, such a behavior
will not be described.



6.6 Evaluation 95

6.6.2 Readability and Effectiveness

To evaluate the readability and effectiveness of generated descriptions, we perform
a user study on the Amazon’s Mechanical Turk (MTurk) [20] platform. The goal
is two-fold. First, we hope to know whether the generated scripts are readable to
average audience. Second, we expect to see whether our descriptions can actually
help users avoid risky apps. To this end, we follow Felt et al.’s approach [21],
which also designs experiments to understand the impact of text-based protection
mechanisms.

Methodology We produce the security-centric descriptions for Android apps using
DESCRIBEME and measure user reaction to the old descriptions (Condition 1.1, 2.1–
2.3), machine-generated ones (Condition 2.1) and the new descriptions (Condition
2.4–2.6). Notice that the new description is the old one plus the generated one.

Dataset Due to the efficiency consideration, we perform the user study based on
the descriptions of 100 apps. We choose these 100 apps in a mostly random manner
but we also consider the distribution of app behaviors. In particular, 40 apps are
malware and the others are benign. We manually inspect the 60 benign ones and
further put them into two categories: 16 privacy-breaching apps and 44 completely
clean ones.

Participants Recruitment We recruit participants directly from MTurk and we
require participants to be smartphone users. Besides, we ask screening questions to
make sure participants understand basic smartphone terms, such as “Contacts” or
“GPS location”.

Hypotheses and Conditions Hypothesis 1: Machine-generated descriptions are
readable to average smartphone users. To assess the readability, we prepare both
the old descriptions (Condition 1.1) and generated ones (Condition 1.2) of the
same apps. We would like to evaluate machine-generated descriptive texts via
comparison.

Hypothesis 2: Security-centric descriptions can help reduce the downloading of
risky apps. To test the impact of the security-centric descriptions, we present both
the old and new (i.e., old C generated) descriptions for malware (Condition 2.1 and
2.4), benign apps that leak privacy (Condition 2.2 and 2.5) and benign apps without
privacy violations (Condition 2.3 and 2.6). We expect to assess the app download
rates on different conditions.

Study Deployment We post all the descriptions on MTurk and anonymize their
sources. We inform the participants that the tasks are about Android app descriptions
and we pay 0.3 dollars for each task.

Participants are asked to take part in two sets of experiments. First, they are given
a random mixture of original and machine-generated descriptions, and are asked to
provide a rating for each script with respect to its readability. The rating is ranged
from 1 to 5, where 1 means completely unreadable and 5 means highly readable.



96 6 Automatic Generation of Security-Centric Descriptions for Android Apps

0.
9

0

7.5

15

22.5

30

C2:New Desc. (count)

Readability Comparison
C1:Old Desc. (count)

2 5 8 1 4 7 3 6 9 2 5 8 1
1. 1. 1. 2. 2. 2. 3. 3. 3. 3. 4. 4. 4. 5.

Fig. 6.11 Readability ratings

Second, we present the participants another random sequence of descriptions.
Such a sequence contains both the old and new descriptions for the same apps.
Again, we stress that the new description is the old one plus the generated one. Then,
we ask participants the following question: “Will you download an app based on the
given description and the security concern it may bring to you?”. We emphasize
“security concern” here and we hope participants should not accept or reject an app
due to the considerations (e.g., functionalities, personal interests) other than security
risks.

Results and Implications Eventually, we receive 573 responses and a total of
2865 ratings. Figure 6.11 shows the distribution of readability ratings of 100
apps for Condition 1.1 and 1.2. For our automatically created descriptions, the
average readability rating is 3.596 while over 80 % readers give a rating higher
than 3. As a comparison, the average rating of the original ones is 3.788. This
indicates our description is readable, even compared to texts created by human
developers. The figure also reveals that the readability of human descriptions are
relatively stable while machine-generated ones sometimes bear low ratings. In a
further investigation, we notice that our descriptions with low ratings usually include
relatively technical terms (e.g., subscriber ID) or lengthy constant string parameters.
We believe that this can be further improved during an interactive process. User
feedbacks and expert knowledge can help us find out more smooth and user-friendly
words and expressions to construct our descriptions. We leave this improvement as
a future work.



References 97

Table 6.3 App download
rates (ADR)

# Condition ADR

2.1 Malware w/ old desc. 63.4 %

2.2 Leakage w/ old desc. 80.0 %

2.3 Clean w/ old desc. 71.1 %

2.4 Malware w/ new desc. 24.7 %

2.5 Leakage w/ new desc. 28.2 %

2.6 Clean w/ new desc. 59.3 %

Table 6.3 depicts experimental results for Condition 2.1–2.6. It demonstrates
the security impact of our new descriptions. We can see a 38.7 % decrease of
application download rate (ADR) for malware, when the new descriptions instead of
old ones are presented to the participants. We believe that this is because malware
authors deliberately provide fake descriptions to avoid alerting victims, while our
descriptions can inform users of the real risks. Similar results are also observed
for privacy-breaching benign apps, whose original descriptions are not focused on
the security and privacy aspects. On the contrary, our descriptions have much less
impact on the ADR of clean apps. Nevertheless, they still raise false alarms for
11.8 % participants. We notice that these false alarms result from descriptions of
legitimate but sensitive functionalities, such as accessing and sending location data
in social apps. A possible solution to this problem is to leverage the “peer voting”
mechanism from prior work [22] to identify and thus avoid documenting the typical
benign app behaviors.

References

1. Felt AP, Ha E, Egelman S, Haney A, Chin E, Wagner D (2012) Android permissions: user
attention, comprehension, and behavior. In: Proceedings of the eighth symposium on usable
privacy and security (SOUPS’12), 2012

2. Pandita R, Xiao X, Yang W, Enck W, Xie T (2013) WHYPER: towards automating risk
assessment of mobile applications. In: Proceedings of the 22nd USENIX conference on
security, August 2013

3. Qu Z, Rastogi V, Zhang X, Chen Y, Zhu T, Chen Z (2014) Autocog: measuring the description-
to-permission fidelity in Android applications. In: Proceedings of the 21st conference on
computer and communications security (CCS), 2014

4. Sridhara G, Hill E, Muppaneni D, Pollock L, Vijay-Shanker K (2010) Towards automatically
generating summary comments for Java methods. In: Proceedings of the IEEE/ACM interna-
tional conference on automated software engineering (ASE’10), 2010

5. Sridhara G, Pollock L, Vijay-Shanker K (2011) Generating parameter comments and integrat-
ing with method summaries. In: Proceedings of the 2011 IEEE 19th international conference
on program comprehension (ICPC’11), 2011

6. Moreno L, Aponte J, Sridhara G, Marcus A, Pollock L, Vijay-Shanker K (2013) Automatic
generation of natural language summaries for Java classes. In: Proceedings of the 2013 IEEE
21th international conference on program comprehension (ICPC’13), 2013

7. Buse RP, Weimer WR (2010) Automatically documenting program changes. In: Proceedings of
the IEEE/ACM international conference on automated software engineering (ASE’10), 2010



98 6 Automatic Generation of Security-Centric Descriptions for Android Apps

8. Sridhara G, Pollock L, Vijay-Shanker K (2011) Automatically detecting and describing high
level actions within methods. In: Proceedings of the 33rd international conference on software
engineering (ICSE’11), 2011

9. Soot: A Java Optimization Framework (2016) http://www.sable.mcgill.ca/soot
10. SimpleNLG: Java API for Natural Language Generation (2016) https://code.google.com/p/

simplenlg/
11. Droidbench-benchmarks (2016) http://sseblog.ec-spride.de/tools/droidbench/
12. Huang J, Zhang X, Tan L, Wang P, Liang B (2014) AsDroid: detecting stealthy behaviors in

Android applications by user interface and program behavior contradiction. In: Proceedings of
the 36th international conference on software engineering (ICSE’14), 2014

13. Yan X, Han J (2002) gSpan: graph-based substructure pattern mining. In: Proceedings of IEEE
international conference on data mining(ICDM’03), 2002

14. Cordella LP, Foggia P, Sansone C, Vento M (2004) A (Sub) graph isomorphism algorithm for
matching large graphs. In: IEEE transactions on pattern analysis and machine intelligence, vol
26(10), 2004, pp 1367–1372

15. Reference - Android Developers (2016) http://developer.android.com/reference/packages.html
16. Arzt S, Rasthofer S, Fritz C, Bodden E, Bartel A, Klein J, Traon YL, Octeau D, McDaniel

P (2014) FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for Android apps. In: Proceedings of the 35th ACM SIGPLAN conference on
programming language design and implementation (PLDI ’14), June 2014

17. Wei F, Roy S, Ou X, Robby X (2014) Amandroid: a precise and general inter-component data
flow analysis framework for security vetting of Android apps. In: Proceedings of the 21th ACM
conference on computer and communications security (CCS’14), Scottsdale, AZ, November
2014

18. Au KWY, Zhou YF, Huang Z, Lie D (2012) PScout: analyzing the Android permission
specification. In: Proceedings of the 2012 ACM conference on computer and communications
security (CCS’12), October 2012

19. Android Malware Genome Project (2012) http://www.malgenomeproject.org/
20. Amazon Mechanical Turk (2016) https://www.mturk.com/mturk/welcome
21. Felt AP, Reeder RW, Almuhimedi H, Consolvo S (2014) Experimenting at scale with google

chrome’s SSL warning. In: Proceedings of the SIGCHI conference on human factors in
computing systems, 2014

22. Lu K, Li Z, Kemerlis V, Wu Z, Lu L, Zheng C, Qian Z, Lee W, Jiang G (2015) Checking
more and alerting less: detecting privacy leakages via enhanced data-flow analysis and peer
voting. In: Proceedings of the 22th annual network and distributed system security symposium
(NDSS’15), 2015

http://www.sable.mcgill.ca/soot
https://code.google.com/p/simplenlg/
https://code.google.com/p/simplenlg/
http://sseblog.ec-spride.de/tools/droidbench/
http://developer.android.com/reference/packages.html
http://www.malgenomeproject.org/
https://www.mturk.com/mturk/welcome


Chapter 7
Limitation and Future Work

Abstract In this chapter, we discuss the limitation of our work and propose further
improvement as future work.

7.1 Android Malware Classification

Native Code and HTML5-based Apps We perform static analysis on Dalvik
bytecode to generate the behavior graphs. In general, bytecode-level static program
analysis cannot handle native code or HTML5-based applications. This is because
neither the ARM binary running on the underlying Linux nor the JavaScript
code executed in WebView are visible from a bytecode perspective. Therefore,
an alternative mechanism is necessary to defeat malware hidden from the Dalvik
bytecode.

Evasion Learning-based detection is subject to poisoning attacks. To confuse
a training system, an adversary can poison the benign dataset by introducing
clean apps bearing malicious features. For example, she can inject harmless code
intensively making sensitive API calls that are rarely observed in clean apps. Once
such samples are accepted by the benign dataset, these APIs are therefore no longer
the distinctive features to detect related malware instances. However, our detectors
are slightly different from prior works. First of all, the features are associated
with behavior graphs, rather than individual APIs. Therefore, it is much harder
for an attacker to engineer confusing samples at the behavioral-level. Second, our
anomaly detection serves as a sanitizer for new benign samples. Any abnormal
behavior will be detected, and the developer is requested to provide justifications
for the anomalies. On the other hand, in theory, it is possible for adversaries to
launch mimicry attacks and embed malicious code into seemingly benign graphs
to evade our detection mechanism. This, by itself, is an interesting research topic
and deserves serious consideration. Nevertheless, we note that it is non-trivial to
evade detections based upon high-level program semantics, and automating such
evasion attacks does not appear to be an easy task. In contrast, existing low-level
transformation attacks can be easily automated to generate many malware variants
to bypass the AV scanners. DroidSIFT certainly defeats such evasion attempts.

© The Author(s) 2016
M. Zhang, H. Yin, Android Application Security, SpringerBriefs in Computer
Science, DOI 10.1007/978-3-319-47812-8_7

99



100 7 Limitation and Future Work

7.2 Automated Vulnerability Patching

Soundness of Patch Generation The soundness of our approach results from that
of slice computation, patch statement placement and patch optimizations. (1) We
perform standard static dataflow analysis to compute taint slices. Static analysis,
especially on event-driven, object-oriented and asynchronous programs, is known
to introduce false positives. However, such false positives can be verified and
mitigated during runtime, with our devised shadowing mechanism and inserted
patch code. (2) Our patch statement placement follows the standard taint tracking
techniques, which may introduce imprecision. Specifically, our taint policy follows
that of TaintDroid. While effective and efficient in a sense, this multi-level tainting
is not perfectly accurate in some cases. For instance, one entire file is associated
with a single taint. Thus, once a tainted object is saved to a file, the whole file
becomes tainted causing over-tainting. Other aggregate structures, such as array,
share the same limitation. It is worth noting that improvement of tainting precision
is possible. More complex shadowing mechanism (e.g., shadow file, shadow array,
etc.) can be devised to precisely track taint propagation in aggregations. However,
these mechanisms are more expensive considering runtime cost and memory
consumption. (3) Our optimizations take the same algorithms used in compilers,
such as constant propagation, dead code elimination. Thus, by design, original
program semantics is still preserved when patch optimization is applied. (4) In spite
of the fact that our approach may cause false positives in theory, we did not observe
such cases in practice. Most vulnerable apps do not exercise sophisticated data
transfer for Intent propagation, and thus it is safe to patch them with our technique.

Conversion Between Dalvik Bytecode and Jimple IR Our patch statement
placement and optimizations are performed at Jimple IR level. So we need to
convert Dalvik bytecode program into Jimple IR, and after patching, back to Dalvik
bytecode. We use dex2jar [1] to translate Dalvik bytecode into Java bytecode and
then use Soot [2] to lift Java bytecode to Jimple IR. This translation process is not
always successful. Occasionally we encountered that some applications could not
be converted. Enck et al. [3] pointed out several challenges in converting Dalvik
bytecode into Java source code, including ambiguous cases for type inference,
different layouts of constant pool, sophisticated conversion from register-based to
stack-based virtual machine and handling unique structures (e.g., try/finally block)
in Java. In comparison, our conversion faces the same, if not less, challenges,
because we do not need to lift all the way up to Java source code. We consider
these problems to be mainly implementation errors. Indeed, we have identified a
few cases that Soot performs overly strict constraint checking. After we patched
Soot, the translation problems are greatly reduced. We expect that the conversion
failures can be effectively fixed over time. A complementary implementation option
is to engineer a Dalvik bytecode analysis and instrumentation framework, so that
operations are directly applied on Dalvik bytecode. Since it avoids conversions
between different tools, it could introduce minimal conflicts and failures.



7.3 Context-Aware Privacy Protection 101

Fully Automatic Defense For most vulnerable samples in our experiment, we
are able to manually verify the component hijacking vulnerabilities. However,
due to the object-oriented nature of Android programs, computed taint slices can
sometimes become rather huge and sophisticated. Consequently, we were not able
to confirm the exploitable paths for some vulnerable apps with human effort,
and thus could not reproduce the expected attack. Developers are faced with the
same, if not more, challenges, and thus fail to come up with a solution in time.
Devising a fully automated mechanism is therefore essential to defend this specific
complicated vulnerability. In principle, our automatic patching approach can still
protect these unconfirmed cases, without knowing the real presence of potential
vulnerability. That is to say if a vulnerability does exist, AppSealer will disable the
actual exploitation on the fly. Otherwise, AppSealer does not interrupt the program
execution and thus does not affect usability. With automated patching, users do not
have to wait until developers fix the problem.

7.3 Context-Aware Privacy Protection

Soundness of Our Bytecode Rewriting Our static analysis, code instrumentation,
and optimizations follow the standard program analysis and compiler techniques,
which have been proven to be correct in the single threading context. In the multi-
threading context, our shadow variables for local variables and function parameters
are still safe because they are local to each individual thread, while the soundness of
shadow fields depends on whether race condition vulnerability is present in original
bytecode programs. In other words, if the accesses to static or instance fields are
properly guarded to avoid race condition in the original app, the corresponding
operations on shadow fields are also guarded because they are placed in the same
code block. However, if the original app does have race condition on certain static or
instance fields, the information flow tracking on these fields may be out of sync. We
modeled Android APIs for both analysis and instrumentation. We manually generate
dedicated taint propagation rules for frequently used APIs and those of significant
importance (e.g., security sensitive APIs). Besides, we have general default rules for
the rest. It is well-recognized that it is a non-trivial task to build a fairly complete
API model, and it is also true that higher coverage of API model may improve
the soundness of our rewriting. However, previous study [4] shows that a model of
approximately 1000 APIs can already cover 90 % of calls in over 90,000 Android
applications. In addition, it is also possible to automatically create a better API
model by analyzing and understanding Android framework, and we leave it as our
future work.

Tracking Implicit Flow It is well known that sensitive information can propagate
in other channels than direct data flow, such as control flow and timing channels.
It is extremely challenging to detect and keep track of all these channels. In this
work, we do not consider keeping track of implicit flow. This means that a dedicated



102 7 Limitation and Future Work

malicious Android developer is able to evade Capper. This limitation is also shared
by other solutions based on taint analysis, such as TaintDroid [5] and AppFence [6].
Serious research in this problem is needed and is complementary to our work.

Java Reflection A study [7] shows that many Android applications make use of
Java reflection to call undocumented methods. While in 88.3 % cases, the class
names and method names of these reflective calls can be statically resolved, the
rest can still cause problems. In our experiment, we seldom encounter this situation,
because even though some apps indeed use reflective calls, they are rarely located
within the taint propagation slices. That is, these reflective calls in general are not
involved in privacy leakage. We could use a conservative function summary, such
that all output parameters and the return value are tainted if any of input parameter is
tainted, but it might be too conservative. A more elegant solution might be to capture
the class name and the method name at runtime and redirect to the corresponding
function summary, which enforces more precise propagation logic. We leave this as
our future work.

Native Components Android applications sometimes need auxiliary native com-
ponents to function, while, unfortunately, static bytecode-level analysis is not
capable of keeping track of information flow within JNI calls. However, many apps
in fact use common native components, which originate from reliable resources
and are of widely recognized dataflow behavior. Thus, it is possible to model
these known components with offline knowledge. In other words, we could build
a database for well-known native libraries and create proper function summaries for
JNI calls, and therefore exercise static data propagation through native calls with the
help of such summaries.

7.4 Automated Generation of Security-Centric Descriptions

The correctness and accuracy of generated description are largely affected by that
of static program analysis. Static dataflow analysis is conservative and may cause
over-approximation. We believe more advanced static analysis techniques can help
reduce false statements of generated descriptions. Besides, in order not to mislead
end users, DESCRIBEME attempts to stay on the safe side and does not over-claim
its findings.

Static bytecode-level program analysis may also yield false negatives due to the
presence of Java reflections, native code, dynamically loaded classes or JavaScript/
HTML5-based code. Fundamentally, we need whole-system dynamic analysis (e.g.,
DroidScope [8]) to address runtime behaviors. Nevertheless, from static analysis, we
can observe the special APIs (e.g., java.lang.reflect.Method.invoke()) that
trigger those statically unresolvable code. Further, DESCRIBEME can retrieve and
describe the dependencies between these special APIs and other explicit and critical
ones. Such dependencies can help assess the risks of former. Even if there exists
no such dependencies, DESCRIBEME can still directly document the occurrence of



References 103

special APIs. The prevalence of unresolved operations and the drastic discrepancy
between our description and permission requests are clues for end users to raise
alert.

References

1. dex2jar (2016) http://code.google.com/p/dex2jar/
2. Soot: A Java Optimization Framework (2016) http://www.sable.mcgill.ca/soot/
3. Enck W, Octeau D, McDaniel P, Chaudhuri S (2011) A study of Android application security.

In: Proceedings of the 20th usenix security symposium, August 2011
4. Chen KZ, Johnson N, D’Silva V, Dai S, MacNamara K, Magrino T, Wu EX, Rinard M, Song D

(2013) Contextual policy enforcement in Android applications with permission event graphs. In:
Proceedings of the 20th annual network and distributed system security symposium (NDSS’13),
February 2013

5. Enck W, Gilbert P, Chun BG, Cox LP, Jung J, McDaniel P, Sheth AN (2010) TaintDroid:
an information-flow tracking system for realtime privacy monitoring on smartphones. In:
Proceedings of the 9th USENIX symposium on operating systems design and implementation
(OSDI’10), October 2010

6. Hornyack P, Han S, Jung J, Schechter S, Wetherall D (2011) These aren’t the droids you’re
looking for: retrofitting Android to protect data from imperious applications. In: Proceedings of
CCS, 2011

7. Felt AP, Chin E, Hanna S, Song D, Wagner D (2011) Android permissions demystified. In:
Proceedings of CCS, 2011

8. Yan LK, Yin H (2012) DroidScope: seamlessly reconstructing OS and Dalvik semantic views for
dynamic Android malware analysis. In: Proceedings of the 21st USENIX security symposium,
August 2012

http://code.google.com/p/dex2jar/
http://www.sable.mcgill.ca/soot/


Chapter 8
Conclusion

Abstract In this chapter, we conclude our work and summarize this book.

To battle various security threats in Android applications, we propose a semantics
and context-aware approach. We argue that such an approach improves the effective-
ness Android malware detection and privacy preservation, ameliorates the usability
of security-related app descriptions and can solve complex software vulnerabilities
in mobile apps. Our argument has been validated via the design, implementation
and evaluation of a series of security enhancement techniques.

DroidSIFT demonstrated that semantics-aware Android malware classification
not only achieves high detection rate and low false positive and negative rates,
but also defeats polymorphic and zero-day malware. Moreover, it is resilient to
bytecode-level transformation attacks and outperforms all the existing antivirus
detectors with respect to the detection of obfuscated malware.

AppSealer showed that with the analysis of program semantics in advance, the
patch of complex application vulnerabilities can be automatically generated. In
addition, static program analysis facilitates a selective patch code instrumentation
and therefore improves the runtime performance of patched programs.

Capper illustrated that a context-aware privacy policy can effectively differentiate
legitimate use of private user data from real privacy leakage, because program
context can faithfully reflect the true intention of critical operations.

DESCRIBEME showed that natural language app descriptions, of better readabil-
ity and higher security sensitivity, are created via program analysis and comprehen-
sion of application semantics. Automatically produced descriptions can help users
avoid malware and privacy-breaching apps.

© The Author(s) 2016
M. Zhang, H. Yin, Android Application Security, SpringerBriefs in Computer
Science, DOI 10.1007/978-3-319-47812-8_8

105


	Preface
	Intended Audience
	Acknowledgments

	Contents
	1 Introduction 
	1.1 Security Threats in Android Applications
	1.1.1 Malware Attacks
	1.1.2 Software Vulnerabilities
	1.1.3 Information Leakage
	1.1.4 Insecure Descriptions

	1.2 A Semantics and Context Aware Approach to Android Application Security
	References

	2 Background
	2.1 Android Application
	2.1.1 Android Framework API
	2.1.2 Android Permission
	2.1.3 Android Component
	2.1.4 Android App Description

	2.2 Android Malware Detection
	2.2.1 Signature Detection and Malware Analysis
	2.2.2 Android Malware Classification

	2.3 Android Application Vulnerabilities
	2.3.1 Component Hijacking Vulnerabilities
	2.3.2 Automatic Patch and Signature Generation
	2.3.3 Bytecode Rewriting
	2.3.4 Instrumentation Code Optimization

	2.4 Privacy Leakage in Android Apps
	2.4.1 Privacy Leakage Detection
	2.4.2 Privacy Leak Mitigation
	2.4.3 Information Flow Control

	2.5 Text Analytics for Android Security
	2.5.1 Automated Generation of Software Description

	References

	3 Semantics-Aware Android Malware Classification
	3.1 Introduction
	3.2 Overview
	3.2.1 Problem Statement
	3.2.2 Architecture Overview

	3.3 Weighted Contextual API Dependency Graph
	3.3.1 Key Behavioral Aspects
	3.3.2 Formal Definition
	3.3.3 A Real Example
	3.3.4 Graph Generation
	3.3.4.1 Entry Point Discovery
	3.3.4.2 Constant Analysis
	3.3.4.3 API Dependency Construction


	3.4 Android Malware Classification
	3.4.1 Graph Matching Score
	3.4.2 Weight Assignment
	3.4.2.1 Selection of Critical API Labels
	3.4.2.2 Weight Assignment

	3.4.3 Implementation and Graph Database Query
	3.4.4 Malware Classification
	3.4.4.1 Anomaly Detection
	3.4.4.2 Signature Detection


	3.5 Evaluation
	3.5.1 Dataset and Experiment Setup
	3.5.2 Summary of Graph Generation
	3.5.3 Classification Results
	3.5.3.1 Signature Detection
	3.5.3.2 Anomaly Detection
	3.5.3.3 Detection of Transformation Attacks

	3.5.4 Runtime Performance
	3.5.5 Effectiveness of Weight Generation and Weighted Graph Matching

	References

	4 Automatic Generation of Vulnerability-Specific Patches for Preventing Component Hijacking Attacks 
	4.1 Introduction
	4.2 Problem Statement and Approach Overview
	4.2.1 Running Example
	4.2.2 Problem Statement
	4.2.3 Approach Overview

	4.3 Taint Slice Computation
	4.3.1 Running Example

	4.4 Patch Statement Placement
	4.5 Patch Optimization
	4.5.1 Optimized Patch for Running Example

	4.6 Experimental Evaluation
	4.6.1 Experiment Setup
	4.6.2 Summarized Results
	4.6.3 Detailed Analysis
	4.6.3.1 Apps with Simple Exploiting Paths
	4.6.3.2 Apps with Pop-Up Dialogs
	4.6.3.3 Apps with Selection Views
	4.6.3.4 Apps with Multiple Threads


	References

	5 Efficient and Context-Aware Privacy Leakage Confinement 
	5.1 Introduction
	5.2 Approach Overview
	5.2.1 Key Techniques

	5.3 Context-Aware Policy
	5.3.1 Taint Propagation Trace
	5.3.2 Source and Sink Call-Sites
	5.3.3 Parameterized Source and Sink Pairs
	5.3.4 Implementation

	5.4 Experimental Evaluation
	5.4.1 Summarized Analysis Results
	5.4.2 Detailed Analysis
	5.4.3 Runtime Performance

	References

	6 Automatic Generation of Security-Centric Descriptions for Android Apps 
	6.1 Introduction
	6.2 Overview
	6.2.1 Problem Statement
	6.2.2 Architecture Overview

	6.3 Security Behavior Graph
	6.3.1 Formal Definition
	6.3.2 SBG of Motivating Example
	6.3.3 Graph Generation

	6.4 Behavior Mining and Graph Compression
	6.5 Description Generation
	6.5.1 Automatically Generated Descriptions
	6.5.2 Behavior Description Model
	6.5.3 Behavior Graph Translation
	6.5.4 Motivating Example

	6.6 Evaluation
	6.6.1 Correctness and Security-Awareness
	6.6.2 Readability and Effectiveness

	References

	7 Limitation and Future Work 
	7.1 Android Malware Classification
	7.2 Automated Vulnerability Patching
	7.3 Context-Aware Privacy Protection
	7.4 Automated Generation of Security-Centric Descriptions
	References

	8 Conclusion 

