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Preface

Time-delay systems have been intensively studied in various disciplines. On one
hand, delay phenomena exist in many dynamical systems encountered in engi-
neering, physics, chemistry, biology, and economics. For instance, examples can be
found in population dynamics [63], biological systems [76], as well as engineering
systems [92]. On the other hand, sometimes, complex dynamics can be well
approximated by a time-delay system (see [36] and the references therein) and a
high-order linear model can be approximately “reduced” to a low-order one with
delays (see [47]). In other words, delays may induce some simplifications in
modeling a dynamical system (less parameters to be taken into account) although
the corresponding time-delay system is infinite dimensional.

It is well known that the delay considerably affects the system stability and
related performances. One may tend to have some intuition that the delay always
has a negative effect (i.e., increasing the value of delay in a system must deteriorate
the system dynamics and even brings instability). This intuition does not always
hold. As pointed out in the control literature, the delay may have a positive effect on
the system dynamics. For instance, several examples in this monograph illustrate
that increasing the delay properly may stabilize some unstable systems.

In this book, we will mainly focus on the analysis of the delay’s effect on the
stability and our objective is to find the whole stability domain with respect to the
delay parameter in the case of linear systems with commensurate delays. Both
retarded and neutral systems will be addressed. This problem, referred to as the
complete stability problem for time-delay systems, has attracted a lot of attention
since the 1950s, but it has not received full characterization. For an overview of the
stability study of time-delay systems, one may refer to [102].

Actually, the complete stability problem is generally much more complicated
than we can expect, due to the intricate spectral characteristics. First, a time-delay
system has infinitely many characteristic roots. For this reason, time-delay systems
represent a class of infinite-dimensional systems. In this context, it is important to
point out that, given a delay, the unstable roots (if any) are always in finite number
for a retarded time-delay system as well as a neutral time-delay system whose
neutral operator is stable. By existing mathematical tools, it is impossible to
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accurately detect all the infinitely many characteristic roots. Second, a critical
imaginary root of a time-delay system has infinitely many critical delays. Thus, a
thorough asymptotic behavior analysis for a general time-delay system is very
difficult to achieve.

In our opinion, the current bottleneck mainly lies in the involved singularities
associated with the spectra (the case without singularities can be studied by the
existing methods). As a matter of fact, the complexity of the singular case (as
illustrated by various examples proposed in this book) was underestimated until
recently.

In order to systematically address the singularities and eventually solve the
complete stability problem, a new methodology will be proposed in this book.
Roughly speaking, a singular point of a time-delay system can be reformulated
(from a new analytical curve perspective) such that its asymptotic behavior can be
studied from the corresponding singular point of the frequency-sweeping curves
associated to this time-delay system. Since such an approach covers the regular
case, it is quite general. The methodology proposed in this book is called a new
frequency-sweeping framework. It is worth mentioning that the origin of the clas-
sical frequency-sweeping method for studying the stability of time-delay systems
goes back to Tsypkin in 1946 (see [114]). Further insights into such approaches and
techniques will be addressed throughout this volume.

Outline of the Book

First, a new analytic curve perspective will be introduced, making the line of this
book distinct from the existing ones in the literature. From this new perspective, the
asymptotic behavior of the critical imaginary roots with respect to the critical delays
can be systematically investigated. One of the most important results is that the
asymptotic behavior of a critical imaginary root can be accurately described and
studied by means of the Puiseux series. Next, we will propose to prove the general
invariance property, to overcome the peculiarity that a critical imaginary root has
infinitely many critical delays. In order to determine whether the general invariance
property holds, we will improve the classical frequency-sweeping method by
adopting the analytic curve perspective. We will show that the asymptotic behavior
of the frequency-sweeping curves can be reflected by the dual Puiseux series. With
the help of such dual Puiseux series, the frequency-sweeping curves will play an
important role in studying the complete stability problem. The general invariance
property will be confirmed by studying carefully the (equivalence) relation between
the Puiseux series and the dual Puiseux series. As a consequence, the complete
stability problem can be fully solved with the following important results.
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• An explicit expression of the number of the unstable roots with respect to the
delay parameter will be found. By using such a function, the analysis and design
of time-delay systems may be significantly simplified.

• The ultimate stability problem (the system stability property when the delay
approaches infinity) can be thoroughly studied. Moreover, all time-delay sys-
tems, according to their ultimate stability properties, may be classified into three
types: Type 1: A time-delay system has infinitely many unstable roots as delay
tends to infinity, Type 2: A time-delay system has a fixed number of unstable
roots for all delay values (delay-independently hyperbolic system), and Type 3:
A time-delay system has a fixed number of unstable roots except at the critical
delays.

• A simple frequency-sweeping criterion will be presented. Using this graphical
test, the asymptotic behavior analysis for the critical imaginary roots at all the
positive critical delays can be fulfilled by simply observing the frequency-
sweeping curves (without any calculation).

In most part of the book, the time-delay systems under consideration are of
retarded type with commensurate delays. The proposed methodology will be
extended to the time-delay systems of neutral type with commensurate delays, by
paying attention to the additional features of the corresponding neutral operators.

The book is mainly based on the contributions of the authors in the last five
years, namely [66–74]. Further extensions could be made in the future, based on the
methodology proposed in this book.

Further Extensions

In our opinion, the ideas proposed here may be applied to some other problems not
covered in this book. In the sequel, we list two possible directions:

From τ-decomposition to D-decomposition: If one differentiates the system
parameters in two categories: delays and others, appropriate methods have been
developed to handle the stability problems in frequency-domain. More precisely,
the τ-decomposition [64] corresponds to the case when the delay is “free” and the
other parameters are “fixed”. Similarly, the D-decomposition [89] corresponds to
the counterpart case: “free” parameters for all system parameters, except the delay
which is assumed to be “fixed”. This book addresses the τ-decomposition problem.
Despite the differences between the two classes of problems, the methodology
proposed here may bring some useful insights into the D-decomposition problem as
it also relies on the asymptotic behavior analysis of the critical characteristic roots.

From single delay parameter to multiple delay parameters: As mentioned
earlier, the time-delay systems considered in this book are supposed to have
commensurate delays. This means that the problem involves in fact only one
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(delay) parameter and we will see that the results to be presented are mathematically
elegant. However, if the delays are not commensurate, the problem has multiple
(delay) parameters and will become much more complicated (the problem is gen-
erally nondeterministic polynomial (NP)-hard [113]). Extending the results of this
book to the problem with multiple incommensurate delays may not be straight-
forward as, to the best of the authors’ knowledge, we still lack an effective math-
ematical tool for multiple-parameter asymptotic behavior analysis.
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Chapter 1
Introduction to Complete Stability
of Time-Delay Systems

Time delays are widely encountered in various types of control systems and usually
affect the stability and related performances considerably. Here, we only mention
a few examples: data transfer in high-speed networks [93], sampled-data control
systems [12, 31], networked control systems [16, 126], design of PID controllers [99,
106], consensus for multi-agents [87, 96], supply chain systems [103], traffic flow
[84], cell dynamics [100], switched systems [50], fuzzy systems [35, 42], fractional-
order systems [28, 81], and neural networks [78, 125].

In this introductory chapter, some preliminaries and prerequisites regarding the
complete stability problem and the sketch of the technical line of the book are given.

1.1 Preliminaries and Prerequisites

Recall now some fundamentals concerning the stability of linear time-delay systems
in the frequency domain framework.

1.1.1 Basic Concepts

In most part of this book, we consider linear systems with commensurate delays:

ẋ(t) =
m∑

�=0

A�x(t − �τ), (1.1)

under appropriate initial conditions, where x(t) ∈ R
r (r ∈ N+) is the system state at

time t , A� ∈ R
r×r (� = 0, . . . , m, m ∈ N+) are constant matrices, and τ ∈ R+ ∪{0}

is the delay parameter.

© The Author(s) 2015
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2 1 Introduction to Complete Stability of Time-Delay Systems

The time-delay system (1.1) is of retarded type. If the system dynamics also
depend on the derivatives of the past states, such a time-delay system, subject to some
appropriate assumptions (associated with the neutral operator), may enter the class
of time-delay systems of neutral type and will be studied specifically in Chap. 10.

We start by recalling some fundamentals needed for our development of the sta-
bility analysis, which can be found in, e.g., [6, 39, 45, 85, 92, 112].

First, the characteristic function of time-delay system (1.1) is given by1

f (λ, τ ) = det

(
λI −

m∑

�=0

A�e−�τλ

)
, (1.2)

which is a quasipolynomial of the form

f (λ, τ ) = a0(λ) + a1(λ)e−τλ + · · · + aq(λ)e−qτλ, (1.3)

where a0(λ), . . . , aq(λ) (q ∈ N+) are polynomials in λ with real coefficients. A
complex number λ such that f (λ, τ ) = 0 is called a characteristic root for the
time-delay system (1.1).

A distinctive feature of the time-delay system (1.1) is that it has an infinite number
of characteristic roots for a τ > 0, representing a class of infinite-dimensional
systems. It is important to point out that the structure of the spectrum changes when
τ increases from 0 to a sufficiently small positive number +ε. When τ = 0, the
system (1.1) is finite dimensional with r characteristic roots (i.e., the eigenvalues of∑m

�=0 A�). During the transition as τ increases from 0 to +ε, infinitely many new
characteristic roots appear (see [6, 85]). A natural question may arise about the initial
locations of these infinitely many new roots.

As the time-delay system (1.1) is of retarded type, it follows that

deg(a0(λ)) > max{deg(a1(λ)), . . . , deg(aq(λ))}.

Such a condition ensures that as τ increases from 0 to +ε, all the new roots appear
at far left of the complex plane. However, this property does not necessarily hold
for a neutral time-delay system, as will be discussed in Chap.10. More precisely, in
the neutral case, an infinitesimal change in the delays may sharply change the roots
distribution in the right half-plane C+. Such discontinuities are strongly related to
the essential spectrum of the system (see [6, 85]).

We now introduce the asymptotic stability definition and a necessary and sufficient
condition characterizing such a notion.

Definition 1.1 The trivial solution x(t) = 0 of time-delay system (1.1) is said to
be stable if for any t0 ∈ R and any ε > 0, there exists a δ = δ(t0, ε) > 0 such that

max
t0−mτ≤t≤t0

‖x(t)‖ < δ implies ‖x(t)‖ < ε for t ≥ t0. Furthermore, it is said to be

1 The characteristic function can be equivalently obtained in two ways: (1) substituting a sample
solution into (1.1) or (2) applying the Laplace transformation to (1.1) under the assumption of zero
initial conditions.
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Fig. 1.1 Characteristic roots for Example 1.1. a τ = 0.01. b τ = 1

asymptotically stable if it is stable, and for any t0 ∈ R, there exists a δa = δa(t0) > 0
such that max

t0−mτ≤t≤t0
‖x(t)‖ < δa implies lim

t→∞x(t) = 0.

For convenience, throughout this book,wewill simply adopt the expression “time-
delay system (1.1) is asymptotically stable” instead of “the trivial solution x(t) = 0
of time-delay system (1.1) is asymptotically stable”.

As the system (1.1) is linear and of retarded type, the asymptotic stability is
equivalent to the exponential stability (the definition of exponential stability can be
found in [85]).

Theorem 1.1 The time-delay system (1.1) is asymptotically stable if and only if all
the characteristic roots are located in the open left half-plane C−.

However, a direct application of Theorem 1.1 is generally impossible since the
system has an infinite number of characteristic roots. The following simple example
illustrates the root locations intuitively.

Example 1.1 Consider the following time-delay system:

ẋ(t) =
(

0 1
−1 1

)
x(t) +

(
0 0

−9 −1.5

)
x(t − τ),

with the characteristic function f (λ, τ ) = (1.5λ + 9)e−τλ + λ2 − λ + 1.
When τ = 0, the system has only two characteristic roots −0.2500 ± 3.1524 j .

As τ increases from 0 to +ε, infinitely many new characteristic roots appear at far
left of the complex plane. Figure1.1a shows the case when τ = 0.01, where the
two points denote the locations of the original roots. In the domain of Fig. 1.1a, the
other (infinitely many) roots do not appear as they are still at far left of the complex
plane. Next, as τ increases, some roots move to the selected domain. For instance,
when τ = 1, some roots enter the selected domain and the two original roots enter
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Fig. 1.2 Root loci for Example 1.1. a Re(λ) versus Im(λ). b Re(λ) versus τ

the right-half plane as shown in Fig. 1.1b. For further illustration, Fig. 1.2 gives the
corresponding root loci with respect to the increasing delay. �

The root loci in Fig. 1.2 are numerically generated by using the DDE-BIFTOOL
[24]. To verify the theoretical results, we will often provide the corresponding root
loci using this MATLAB�-based package. Additional numerical methods or algo-
rithms for estimating the spectra of time-delay systems include [10, 11, 43, 44, 118].

1.1.2 Complete Stability Problem

Following the notation widely used in the literature (see [64, 97, 109]), we use
NU (τ ) ∈ N to denote the number of unstable roots (i.e., the characteristic roots
located in C+) in the presence of delay τ . According to Theorem 1.1, a time-delay
system is asymptotically stable for a given τ , if and only if it does not have roots
located on the imaginary axis and NU (τ ) = 0.

For a time-delay system with commensurate delays, the objective of this book is
to obtain its exhaustive stability domain for the delay parameter τ (i.e., the whole
domain for τ ≥ 0 such that NU (τ ) = 0 excluding the possible critical points), which
is known as the complete stability problem.

For a finite-dimensional system, e.g., an autonomous system ẋ(t) = Ax(t) or
a linear system ẋ(t) = Ax(t) + Bu(t) with the feedback control u(t) = K x(t),
the characteristic roots are the eigenvalues of A or A + BK , respectively. Thus, the
number of the unstable roots can be easily known. However, the case of time-delay
systems (monitoring NU (τ ) as τ varies) becomes much more involved and, to the
best of the authors’ knowledge, there is no straightforward way to compute NU (τ ).

Only some partial results were reported on the explicit computation of NU (τ )

(related references, e.g., [21, 48, 52, 97, 112, 122], will be discussed in Sect. 9.2). To
fix better the ideas, some representative examples from the literature are presented
below.

http://dx.doi.org/10.1007/978-3-319-15717-7_9
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Example 1.2 Consider the time-delay system (Example5.11 in [39])

ẋ(t) =
(

0 1
−2 0.1

)
x(t) +

(
0 0
1 0

)
x(t − τ).

This system is unstable when τ = 0. While, as τ increases, the system may
become asymptotically stable. More precisely, this system is asymptotically stable
if and only if τ ∈ (0.1002, 1.7178). The root loci are shown in Fig. 1.3a. �

It is commonly accepted that increasing the delay tends to destabilize a system.
However, this assertion does not necessarily hold. Example 1.2 and the subsequent
Example 1.3 are counterexamples, where increasing the delay may induce stability.

Example 1.3 The following time-delay system (Example of Sect. 3 in [97])

ẋ(t) =
⎛

⎝
−1 13.5 −1
−3 −1 −2
−2 −1 −4

⎞

⎠ x(t) +
⎛

⎝
−5.9 7.1 −70.3
2 −1 5
2 0 6

⎞

⎠ x(t − τ)

is asymptotically stable if and only if τ ∈ [0, 0.1624) ∪ (0.1859, 0.2219). The root
loci are shown in Fig. 1.3b. �

We underline here an interesting phenomenon, as shown in Example 1.3, that
a time-delay system may have multiple stability intervals. Especially, the system
to be considered in Example6.3 has 12 stability intervals. For such an interesting
phenomenon, one may also refer to [1, 75, 92, 108].

Solving the complete stability problem requires to analyze NU (τ ) along thewhole
positive τ -axis. Some reported approaches can be used to approximately estimate the
delay margin (i.e., the first stability interval, including τ = 0). The approach based
on simple Lyapunov-Krasovskii functionals (see [30, 124]) requires a low compu-
tational load and has the advantage of treating non-nominal models. The complete
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Fig. 1.3 Root loci for Examples 1.2 and 1.3. a Re(λ) versus τ for Example1.2. b Re(λ) versus τ

for Example1.3

http://dx.doi.org/10.1007/978-3-319-15717-7_6
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Lyapunov-Krasovskii functionals together with the discretization technique (called
the discretized Lyapunov-Krasovskii approach [37]) may be used in the case of mul-
tiple stability intervals. However, both the aforementioned approaches inevitably
involve conservatism (i.e., some stability interval may be missing). For the above
time-domain approaches, one may refer to [29, 39, 57, 92].

In order to compute NU (τ ) for a given delay value, one of the classical ways is
to study the argument of the characteristic function (by complex analysis, see [3])
along some particular contour in the complex plane. Such an idea was explicitly used
in [112] for both retarded and neutral systems and applied to construct the so-called
stability chart, which is a region in the parameter plane (defined by two appropriate
parameters other than delay) such that the corresponding system is asymptotically
stable for parameters belonging to this region. For some extensions of the work of
[112], one may refer to [48], where the derived criterion provides further information
about NU (τ ) even in the case when some characteristic roots are located on the
imaginary axis. Similar algebraic ideas can also be found in [51, 119].

Although it appears quite complicated to directly compute NU (τ ), the root con-
tinuity property offers an indirect way. We now recall this important property.

First, if τ = 0, the system (1.1) is a delay-free system with r roots. When τ

increases from 0 to +ε, as discussed in Sect. 1.1.1, infinitely many new roots appear
in C−. In parallel, the original r roots vary continuously with respect to τ (Rouché’s
theorem [3] offers a simple way to prove such a property). Next, as τ increases from
+ε, all the (infinitely many) roots vary continuously with respect to τ . Therefore,
NU (τ ) changes as τ increases from+ε toward+∞ only if for some τ the system has
characteristic roots located on the imaginary axis C0, called the critical imaginary
roots. These delays are called the critical delays. For further continuity properties of
time-delay systems, one may refer to [85].

Remark 1.1 It is worth mentioning that we keep track of NU (τ ) from τ = +ε (not
from τ = 0) because some systems involve critical imaginary roots when τ = 0 (for
instance, the systems considered in Example a1 of [109] and Example 2 of [122] have
simple critical imaginary roots when τ = 0). This case has to be treated carefully
and the related result will be given and explained later.

Based on the root continuity argument, the τ -decomposition idea was proposed
and largely used in the literature. Roughly speaking, this corresponds to a two-
step method requiring to solve two problems, which will be reviewed in the next
subsection. The approach we are proposing is in line of such an idea.

1.1.3 τ -Decomposition Idea

The τ -decomposition idea may be traced back to at least the 1960s (see [64] and
the references therein), along which a great number of stability results have been
reported, see [7, 19, 21, 85, 97, 122]. In our opinion, the τ -decomposition method
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can be applied in two steps by solving the two problems (Problems 1 and 2) described
below.

According to the root continuity argument, if NU (τ ) changes as τ increases,
there must be a critical delay at which the system has a (simple or multiple) critical
imaginary root. This gives rise to the first problem along the τ -decomposition idea.

Problem 1 The exhaustive detection (if any!) of the critical imaginary roots and
the corresponding critical delays.

Various effective methods for solving Problem 1 have been proposed in the liter-
ature (one may refer to a survey paper [110]) and the frequency-sweeping approach
proposed in this book also covers Problem 1. In our opinion, Problem 1 has been
well studied and understood.

Unlike for the critical imaginary roots, the analytic computation for the other
characteristic roots is generally very difficult. For instance, one may compute the
characteristic roots located in a vertical line parallel to the imaginary axis. But the
procedure ismuchmore complicated. In order to solve the complete stability problem,
we have to further analyze the variation of a critical imaginary root as τ increases
near the corresponding critical delay (called the asymptotic behavior of a critical
imaginary root).

So, we are now led to the second problem of the τ -decomposition method.

Problem 2 The asymptotic behavior analysis of the critical imaginary roots with
respect to the corresponding critical delays.

A pair (λ, τ ), where τ ∈ R+ ∪ {0} and λ ∈ C0, such that f (λ, τ ) = 0 is called
a critical pair. Most of the work in this book will focus on the algebraic properties
of the critical pairs, from a new analytic curve perspective to be introduced in the
forthcoming Chaps. 2 and3.

Remark 1.2 Owing to the conjugate symmetry of the spectrum, it suffices to consider
only the critical imaginary roots with nonnegative imaginary parts. More precisely, if
a critical imaginary root jω at a critical delay is detected, the system necessarily has a
critical imaginary root − jω for the same critical delay. Furthermore, the asymptotic
behavior of jω and − jω are symmetric with respect to the real axis.

Remark 1.3 Under the assumption that Problem 1 is solved, the critical delays divide
the positive τ -axis into infinitely many subintervals and within each subinterval
NU (τ ) is constant. We will next monitor NU (τ ) as τ increases by means of solving
Problem 2. For instance, consider a subinterval τ ∈ (τ ′, τ ′′) where τ ′ and τ ′′ are
two positive critical delays such that there are no other critical delays inside this
subinterval. If the value of NU (τ ′ − ε) is known and the asymptotic behavior of
the critical imaginary roots at τ = τ ′ is properly studied, we may precisely know
the value of NU (τ ′ + ε). According to the root continuity argument mentioned
previously, for any τ ∈ (τ ′, τ ′′), NU (τ ) = NU (τ ′ + ε). It is worth noting that this
result is accurate, without any conservatism.

However, Problem 2 is rather involved and we need to further divide it into two
sub-problems (see Sect. 1.3 for details).

http://dx.doi.org/10.1007/978-3-319-15717-7_2
http://dx.doi.org/10.1007/978-3-319-15717-7_3
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1.1.4 Frequency-Sweeping Framework of this Book

We will propose a frequency-sweeping framework along the τ -decomposition idea
in this book. In this subsection, we explain the distinction of the frequency-sweeping
approach used in this book with respect to the existing ones in the literature.

The frequency-sweeping idea is not new and has been largely used in studying
the stability of time-delay systems. In [20], some necessary and sufficient delay-
independent stability conditions based on the frequency-sweeping technique were
proposed.However, the interest of the authors focusedmore on the delay-independent
stability instead of characterizing the delay intervals guaranteeing the asymptotic
stability. Next, some frequency-sweeping criteria were introduced and discussed in
[39] for detecting the stability interval including τ = 0 for time-delay systems. In
[41], the frequency-sweeping testwas used to determine the stability crossing set for a
class of quasipolynomials with two delays by an appropriate geometric interpretation
(triangle geometry) of the characteristic equation. An extension of this idea to the
case of three delays can be found in [40]. In [107], a frequency-sweeping approach
within the cluster treatment of characteristic roots (CTCR) framework was given, by
which the potential stability switching hyperspace can be obtained formultiple-delay
systems. Such a result makes use of the so-called Rekasius substitution in order to
detect critical imaginary roots.

The above frequency-sweeping methods were mainly used for solving Problem 1
([20, 39] consider commensurate delays case while [40, 107] treat incommensurate
delays case), without considering Problem 2. In [21, 64], frequency-sweeping tests
were used for studying Problem 2. However, the characteristic functions considered
therein are confined to a class of simple quasipolynomials.

Unlike the existing approaches, we will study in-depth the asymptotic behavior
of the frequency-sweeping curves (the procedure for plotting them will be given in
Sect. 1.2.3) from a new analytic curve perspective. As a consequence, the frequency-
sweeping approach will cover both Problems 1 and 2 for general time-delay systems
with commensurate delays. In this sense, the frequency-sweeping approach in this
book refers not only to the frequency-sweeping curves but also to the new mathe-
matical framework to be established.

1.2 Detecting Critical Pairs and Frequency-Sweeping Curves

In this section, we will show that Problem 1 can be easily solved from the frequency-
sweeping curves (the graphical tool adopted in this book)with the aid of an immediate
yet important transformation of the quasipolynomial. In addition, two useful indices
will be introduced and discussed.
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1.2.1 Rewriting Characteristic Function

The characteristic function f (λ, τ ) (1.3) is often transformed by letting z = e−τλ

into a more tractable form, including two variables λ ∈ C and z ∈ C (see [55]):

p(λ, z) =
q∑

i=0

ai (λ)zi . (1.4)

The function p(λ, z) (1.4) is a two-variate polynomial,whichmayhelp to facilitate
our study. The detection of the critical pairs (λ, τ ) for f (λ, τ ) = 0 amounts to
detecting the critical pairs (λ, z) (λ ∈ C0 and z ∈ ∂D, i.e., λ and z are located on the
imaginary axis and the unit circle, respectively) such that p(λ, z) = 0.

Remark 1.4 The time-delay system (1.1) is said to be hyperbolic at a given τ , if it
has no critical imaginary roots at this τ [46]. Furthermore, the time-delay system
(1.1) is said to be hyperbolic independently of delay, if it has no critical imaginary
roots for any τ ≥ 0. According to the root continuity argument, a time-delay sys-
tem with delay-independent hyperbolicity is either asymptotically stable or unstable
for all τ ≥ 0. The former case corresponds to the well-known delay-independent
stability, see [20, 22, 23, 49, 55]. The latter case representing the so-called delay-
independent instability, to the best of the authors’ knowledge, is seldom encountered
in the literature. Such an example will be presented in Sect. 9.1.3.

Consider now that the system is not delay-independently hyperbolic. Such a con-
dition will be automatically assumed in the forthcoming chapters. In this context,
without any loss of generality, suppose there are u critical pairs for p(λ, z) = 0
throughout this book: (λ0 = jω0, z0), (λ1 = jω1, z1), . . . , (λu−1 = jωu−1, zu−1)

where ω0 ≤ ω1 ≤ · · · ≤ ωu−1. Notice that two critical pairs may share the same
critical imaginary root.

Once all the critical pairs (λα, zα), α = 0, . . . , u − 1, are found, all the critical
pairs (λ, τ ) can be obtained. More precisely, for each critical imaginary root λα ,

the corresponding critical delays are given by τα,k
Δ= τα,0 + 2kπ

ωα
, k ∈ N, where

τα,0
Δ= min{τ ≥ 0 : e−τλα = zα}. The pairs (λα, τα,k), k = 0, 1, . . . , define a set of

critical pairs associated with (λα, zα).
We illustrate the notations introduced above through the following example.

Example 1.4 Consider a time-delay systemwith the characteristic function f (λ, τ )=
e−2τλ + (λ2 + 1)e−τλ + λ4 − 2. The system has five sets of critical pairs: (λα, τα,k),
α = 0, . . . , 4. In particular, λ0 = 0 and hence this system cannot be asymptotically
stable for any τ ≥ 0. To further characterize the system property (marginally stable
or unstable), we need to know NU (τ ) and the distribution of the critical imaginary
roots. The second and the third sets of critical pairs have the same critical imagi-
nary root λ: (λ1 = j, τ1,k = 2kπ) and (λ2 = j, τ2,k = (2k + 1)π). The fourth
and the fifth sets of critical pairs also involve the same critical imaginary root λ:
(λ3 = 1.3161 j, τ3,k = 1.1961+2kπ

1.3161 ) and (λ4 = 1.3161 j, τ4,k = 5.0871+2kπ
1.3161 ). �

http://dx.doi.org/10.1007/978-3-319-15717-7_9
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Remark 1.5 For a critical imaginary rootλα = jωα , regardless of itsmultiplicity,ωα

must be bounded (see Proposition 1.8 in [85]). In other words, all the characteristic
roots located on the imaginary axis are bounded. Further remarks on the estimation
of the frequency interval including all the critical imaginary roots can be found in
[27, 95].

Remark 1.6 A critical imaginary root λα is invariant with respect to the delay shift
2π
ωα

(i.e., if λα is a critical imaginary root for τ = τα,0, then the system has a critical

imaginary root λα for all τ = τα,0 + k 2π
ωα

, k ∈ N). However, the multiplicity of
a critical imaginary root is not necessarily fixed with the delay shift (see the next
subsection). This phenomenon is a source of the complexity of the problem.

1.2.2 Two Useful Indices and Related Remarks

Introduce now two indices n and g associated with a critical pair. Such indices play
an important role in the asymptotic behavior analysis.

For a critical pair (λα, τα,k), denote by n ∈ N+ the multiplicity of λα at τα,k .
Clearly, a critical imaginary root is called a simple critical imaginary root (a multiple
critical imaginary root) if the corresponding index n = 1 (n > 1). In other words,
the index n simply implies that for λ = λα and τ = τα,k ,

fλ0 = · · · = fλn−1 = 0, fλn 
= 0. (1.5)

Next, introduce the index g ∈ N+ at (λα, τα,k), by which we may artificially treat
τα,k as a g-multiple root for f (λ, τ ) = 0 when λ = λα , having the property that
when λ = λα and τ = τα,k ,

fτ 0 = · · · = fτ g−1 = 0, fτ g 
= 0. (1.6)

Both indices n and g are bounded for critical imaginary roots distinct from the
origin, as given in the following property, with q defined in (1.3).

Property 1.1 For a critical imaginary root λα of the time-delay system (1.1), it
follows that n < ∞ and that g ≤ q(g = ∞) if λα 
= 0(λα = 0).

Proof In any vertical strip of the complex plane, there are only a finite number of
(multiplicity taken into account) roots for the system (1.1) (Corollary 1.9 in [85]).
With this remark, the first part of the proof is finished. Next, we have fτ = −pzzλ,
fττ = (−1)2 pzz(zλ)2 + (−1)2 pzzλ2, . . . Thus, for λ = 0, fτκ = 0,∀κ ∈ N+. For
λ 
= 0, the index g implies that pz0 = · · · = pzg−1 = 0. Given a λ, z can be treated as
a g-multiple root for polynomial equation p(λ, z) = 0 with degree q. As a q-degree
polynomial has at most q roots, the second part of the proof is complete. �

We next recall two important properties reported in [66]:
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Property 1.2 For a critical imaginary root λα 
= 0, the index g is a constant for all
the critical delays τα,k .

Proof Following the proof of Property 1.1, for a critical pair (λα, τα,k) with λα 
= 0,
the condition (1.6) is equivalent to that at the critical pair (λα, zα)

pz0 = · · · = pzg−1 = 0, pzg 
= 0. (1.7)

The proof is now complete as the condition (1.7) does not explicitly depend on τ . �

Property 1.3 For a critical imaginary root λα , the index n may vary with respect to
different critical delays τα,k .

Examples 6.1 and 6.2, to be seen in this book (Chap.6), illustrate Property 1.3.

Remark 1.7 It would be more formal to express indices n and g as functions of the
critical imaginary root and the corresponding critical delay. For brevity, we simply
denote them by “n” and “g” throughout this book with a slight abuse of notations.

1.2.3 Frequency-Sweeping Curves

Problem 1 can be effectively solved from the frequency-sweeping curves generated
by the method recently proposed by the authors in [70], which is easy to implement
with a low computational load.

Frequency-Sweeping Curves Sweep ω ≥ 0 and for each λ = jω we have q
solutions of z such that p( jω, z) = 0 (denoted by z1( jω), . . . , zq( jω)). In this way,
we obtain q frequency-sweeping curves Γi (ω): |zi ( jω)| versus ω, i = 1, . . . , q.

If (λα, τα,k) is a critical pair with index g, g frequency-sweeping curves collide
with ℑ1 (throughout this book we denote by ℑ1 the line parallel to the abscissa axis
with ordinate 1) at ω = ωα and the frequency ωα is called a critical frequency.

Remark 1.8 For each given ω, p( jω, z) = 0 is a polynomial equation of z, which
can be easily solved by using the MATLAB command roots.

Remark 1.9 If some Γi (ω) collide with ℑ1 at ω = 0 with the associated z = 1 for
p(λ, z) = 0 (i.e., λ = 0 is a critical imaginary root), as earlier discussed, the system
cannot be asymptotically stable for any τ ≥ 0. However, if the corresponding z 
= 1,
λ = 0 is evidently not a critical imaginary root (since e0τ = 1 for all τ ≥ 0) and this
point should be ignored. For instance, a systemwith f (λ, τ ) = λ+1+e−τλ exhibits
the delay-independent stability (sometimes called weak delay-independent stability
[92]). Obviously, λ = 0 is not a critical imaginary root, though p(0,−1) = 0.

Remark 1.10 If no critical imaginary roots are detected from the frequency-sweeping
curves, the system is, clearly, hyperbolic independently of delay (Remark 1.4).

http://dx.doi.org/10.1007/978-3-319-15717-7_6
http://dx.doi.org/10.1007/978-3-319-15717-7_6
http://dx.doi.org/10.1007/978-3-319-15717-7_6
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Remark 1.11 As previously mentioned, for a critical imaginary root (say, λ = jω′)
there may exist multiple critical pairs (say, two pairs ( jω′, z1) and ( jω′, z2)). In this

case, λ = jω′ corresponds to two sets of critical delays, τ1,k
Δ= τ1,0 + 2kπ

ω′ with

τ1,0
Δ= min{τ ≥ 0 : e−τω′ j = z1} and τ2,k

Δ= τ2,0 + 2kπ
ω′ with τ2,0

Δ= min{τ ≥ 0 :
e−τω′ j = z2}. Such a case will be presented and discussed in Example7.4.

Consider now a simple example to demonstrate howall the critical imaginary roots
and the corresponding critical delays for time-delay system (1.1) can be detected
according to the frequency-sweeping curves.

Example 1.5 Consider the system in Example 1.2, where f (λ, τ ) = −e−τλ + λ2 −
0.1λ + 2 and p(λ, z) = −z + λ2 − 0.1λ + 2. This system has only one frequency-
sweeping curve and it can be easily generated using MATLAB (or other software for
scientific computation). For instance, in the MATLAB environment, for each given
ω, we assign its value to a variable w. The solution of z1( jω) for p( jω, z) = 0 can
be obtained by using the command roots([-1,(w*j)ˆ2-0.1*w*j+2]). The
frequency-sweeping curve is shown in Fig. 1.4.

Two critical pairs (λ, z) for p(λ, z) = 0 are found from the frequency-sweeping
curve: (λ0 = 1.0025 j, z0 = 0.9950−0.1003 j) and (λ1 = 1.7277 j, z1 = −0.9850−
0.1728 j). For the first critical pair,we calculate the corresponding critical delays such
that e−τλ0 = z0 = e−(0.1004+2kπ) j .We get: τ0,k = 0.1002+ 2kπ

1.0025 , k ∈ N. Similarly,
for the second critical pair, the associated critical delays can be computed by the
condition: e−τλ1 = z1 = e−(2.9680+2kπ) j . We have that τ1,k = 1.7178 + 2kπ

1.7277 , k ∈
N. In addition, n = 1 (i.e., the critical imaginary roots are simple) and g = 1 for
both sets of critical pairs, as fλ 
= 0 and fτ 
= 0 at these critical pairs.

Following the τ -decomposition idea, the positive τ -axis can be divided into
subintervals: [0, 0.1002), (0.1002, 1.7178), (1.7178, 5.3546), (5.3546, 6.3676), . . .
When τ lies in each such subinterval, NU (τ ) is a constant. �

Later in this book, some algebraic properties of the frequency-sweeping curves
will be derived fromananalytic curveperspective and, consequently, a new frequency-

Fig. 1.4 Frequency-
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sweeping framework will be established. Such a framework will be helpful in order
to characterize and to explicitly compute NU (τ ) in each detected interval.

1.3 Asymptotic Behavior of Critical Imaginary Roots

Unlike Problem 1, Problem 2 has not been fully investigated (it received some partial
characterizations). Due to its complexity, we further divide it into two sub-problems
(Problems 2.1 and 2.2).

1.3.1 Critical Imaginary Root at a Critical Delay

The first sub-problem of Problem 2 is as follows:

Problem 2.1 The analysis of the asymptotic behavior of a critical imaginary root
at a critical delay.

Introduce now some notations describing the asymptotic behavior of a critical
imaginary root from the stability perspective. Suppose (α, β) (withβ > 0) is a critical
pair with the index n. Near this critical pair, there exist n roots λi (τ ) continuous with
respect to τ satisfying α = λi (β), i = 1, . . . , n. Under some perturbation ε (−ε)
on β, the n roots are expressed by λi (β + ε) (λi (β − ε)), i = 1, . . . , n. Denote the
number of unstable roots among λ1(β+ε), . . . , λn(β+ε) (λ1(β−ε), . . . , λn(β−ε))
by NUα(β+) (NUα(β−)). With these notations, we define:

ΔNUα(β)
Δ= NUα(β+) − NUα(β−). (1.8)

In other words, the notation ΔNUα(β) simply stands for the change in NU (τ )

caused by the variation in the critical imaginary root λ = α in some neighborhood
of the root as τ increases from β − ε to β + ε. For a critical pair (λα, τα,k > 0), we
need to compute the value of ΔNUλα (τα,k) in order to solve Problem 2.1.

Remark 1.12 If τα,0 = 0 for a critical imaginary rootλα , such a situation corresponds
to the case where the system (1.1) free of delays has original critical imaginary roots.
In this case, the asymptotic behavior of the critical pair (λα, τα,0) refers to how the
original critical imaginary root λα varies as τ increases from 0. This information is
necessary for computing NU (+ε) (see Sect. 5.1 for details).

Remark 1.13 ThenotationΔNU (τ ) has been largely used in the literature.However,
at a critical delay, the system may happen to have more than one critical imaginary
root. That is the reason for taking explicitly into account the critical imaginary root
as a subscript in the notation (1.8).

http://dx.doi.org/10.1007/978-3-319-15717-7_5
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Problem 2.1 will be studied in detail in Chap.4. Once Problems 1 and 2.1 are
solved,wemay accurately know the stability property for system (1.1) in the presence
of any finitely large τ (see Sect. 5.3). It is worth mentioning that such a stability result
is accurate without any conservatism. For general linear time-delay systems with
commensurate delays, this result represents a new contribution. However, it is still
not sufficient for solving the complete stability problem. First, if τ is very large, the
procedure may be computationally prohibitive. As we will see in Chap. 4, solving
Problem 2.1 is not a trivial task. Second, it is impossible to “calculate” NU (τ ) as
τ → ∞ by using only the solution of Problem 2.1. Since a critical imaginary root
has an infinite number of critical delays, we are unable to analyze the asymptotic
behavior at all the critical delays one-by-one.

Hence, we need to explore deeply Problem 2.2 discussed below.

1.3.2 Critical Imaginary Root with Infinitely Many
Positive Critical Delays

The second sub-problem of Problem 2 can be described as follows:

Problem 2.2 The analysis of the asymptotic behavior of a critical imaginary root
with respect to all the infinitely many positive critical delays.

Problem 2.2 (though has not been explicitly proposed in the literature) has been
noticed and solved for some specific time-delay systems.

If a critical imaginary root is simple for all the critical delays, it was proved in
[97] together with [109] that the way the critical imaginary root moves as τ increases
near each positive critical delay always has the same effect on NU (τ ). If a multiple
critical imaginary root appears, the case will become much more complicated and
computationally involved. To the best of the authors’ knowledge, only one paper
[54] explicitly discusses such a case. More precisely, in [54], it was proved that if
λα is a double critical imaginary root for one of the critical delays, ΔNUλα (τα,k) is
a constant for all k ∈ N with τα,k > 0. However, in order to perform the analysis,
additional assumptions are needed in [54] (details are given in Chap. 6).

The above intriguing property (ΔNUλα (τα,k) is a constant for all k ∈ N with
τα,k > 0) is called the invariance property. Though this property was only found for
some very specific time-delay systems, we are inspired to consider if the following
more general result is valid:

The invariance property holds for any time-delay system with commensurate
delays.

If the above result (named the general invariance property) holds, Problem 2.2
will be tractable and the complete stability problem can be solved. In Chaps. 6–8 of
this book, we will study in detail the general invariance property. It will be exciting
to see in Chap.8 that the general invariance property really holds!

http://dx.doi.org/10.1007/978-3-319-15717-7_4
http://dx.doi.org/10.1007/978-3-319-15717-7_5
http://dx.doi.org/10.1007/978-3-319-15717-7_4
http://dx.doi.org/10.1007/978-3-319-15717-7_6
http://dx.doi.org/10.1007/978-3-319-15717-7_6
http://dx.doi.org/10.1007/978-3-319-15717-7_8
http://dx.doi.org/10.1007/978-3-319-15717-7_8
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Consider once again the time-delay system in Example 1.5 in order to better
illustrate the objective of Problem 2.

Example 1.6 In the sequel, we will continue the analysis of Example 1.5, for which
all the critical imaginary roots and the critical delays have been found. These critical
delays divide the positive τ -axis into infinitely many subintervals.

First, the system has two unstable roots as τ = 0. Therefore, NU (τ ) = 2 for τ

lies in the first subinterval [0, 0.1002). In order to compute NU (τ ) when τ lies in
the second subinterval (0.1002, 1.7178), we need to know the asymptotic behavior
of the critical imaginary root 1.0025 j at the boundary point τ = 0.1002. As this is a
simple critical imaginary root case, we have at least two effective ways to accomplish
it. We may either compute the derivative of λ with respect to τ by using the implicit
function theorem (see [97]) or observe the frequency-sweeping curve (see [21]). It is
not hard to include that, as τ increases near τ = 0.1002, a root crossesC0 at 1.0025 j
from right to left. Due to the conjugate symmetry, a root crosses C0 at −1.0025 j
from right to left as well when τ increases near τ = 0.1002. Therefore, NU (τ ) = 0
for τ ∈ (0.1002, 1.7178). Continuing the above procedure, we have: NU (τ ) = 2
for τ ∈ (1.7178, 5.3546); NU (τ ) = 4 for τ ∈ (5.3546, 6.3676); NU (τ ) = 2 for
τ ∈ (6.3676, 8.9913); . . ..

As the invariance property has been proved for the simple critical imaginary root
case, we have stronger results: Each time τ increases near some τ0,k (τ1,k), two
roots cross C0 from right to left (from left to right). Moreover, such results can be
directly known from the frequency-sweeping curve. More precisely, for this time-
delay system we have two fascinating properties [70]: (1) The frequency-sweeping
curve crosses ℑ1 from below to above (from above to below) if and only if the
corresponding critical imaginary root crosses C0 from left to right (from right to
left). (2) The frequency-sweeping curve touches without crossing ℑ1 if and only if
the corresponding critical imaginary root touches without crossing C0.

Consequently, we may easily keep track of NU (τ ) and analyze the complete
stability: In this case study, the system is asymptotically stable if and only if τ ∈
(0.1002, 1.7178). �

Example 1.6 shows that the frequency-sweeping curves can be used for solving
Problem 2 and considerably simplify the analysis. However, the time-delay system
in Example 1.6 is specific (n = g = 1 for all critical pairs) and extremely simple
to handle by using the existing methods in the literature. For general time-delay
systems with commensurate delays, a new frequency-sweeping methodology will
be established step-by-step and next illustrated through some examples.

1.4 Book Structure

Characterizing the general invariance property as well as the (complete) stability of
linear time-delay systems need a better understanding of the asymptotic behavior
of the critical imaginary roots. In this book, we will introduce a new analytic curve
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perspective to address the problem. From the analytic curve perspective, a series of
new mathematical properties will be obtained regarding the asymptotic behavior of
the critical imaginary roots and the frequency-sweeping curves, which allow us to
thoroughly solve Problems 1 and 2 in the commensurate delays case and to open
interesting perspectives in handling the incommensurate delays case.

The remainder of the book is organized as follows:
In Chap.2, we introduce some preliminary results concerning analytic curves,

including the notions of analytic curves and the Puiseux series, the classical Newton
diagram, as well as some useful properties.

In Chap.3, we show that the analytic curve perspective may be appropriately
adopted for studying the asymptotic behavior of the critical imaginary roots and the
frequency-sweeping curves of time-delay systems.

In Chap.4, we show how to obtain the Puiseux series in order to solve Problem
2.1. Moreover, some important mathematical properties are given.

In Chap.5, we first present a procedure to compute NU (τ ) for a finitely large τ .
Next, we explain in detail why it is not sufficient for the complete stability problem as
well as the necessity of studying Problem 2.2. In order to find a solution to Problem
2.2, we propose to prove the general invariance property.

In Chap.6, we prove the invariance property for a specific case where the index
g is always “1”, using the frequency-sweeping curves. An important feature of the
frequency-sweeping curves is that they are independent of the critical delays. It will
play a key role in addressing the general invariance property in Chaps. 6–8.

In Chap.7, the invariance property for simple critical imaginary roots is revisited.
A contribution of this chapter is that an embryonic form of the frequency-sweeping
framework is presented.

In Chap.8, we study whether the invariance property holds for general time-delay
systems. First, a new frequency-sweeping mathematical framework is established
based on the embryonic form given in Chap.7. Next, a series of new mathematical
properties regarding the asymptotic behavior of the critical imaginary roots and the
frequency-sweeping curves are found. Finally, the general invariance property is
confirmed in virtue of these new properties.

In Chap.9, we give a systematic approach, the frequency-sweeping approach, to
study the complete stability of time-delay systems with commensurate delays. We
obtain the explicit expression of NU (τ ) and solve the complete stability problem.

In Chap.10, we extend the proposed frequency-sweeping framework to the time-
delay systems of neutral type by taking care of an additional necessary condition for
the stability of such time-delay systems.

Finally, some concluding remarks and future perspectives are given in Chap.11.

http://dx.doi.org/10.1007/978-3-319-15717-7_2
http://dx.doi.org/10.1007/978-3-319-15717-7_3
http://dx.doi.org/10.1007/978-3-319-15717-7_4
http://dx.doi.org/10.1007/978-3-319-15717-7_5
http://dx.doi.org/10.1007/978-3-319-15717-7_6
http://dx.doi.org/10.1007/978-3-319-15717-7_6
http://dx.doi.org/10.1007/978-3-319-15717-7_8
http://dx.doi.org/10.1007/978-3-319-15717-7_7
http://dx.doi.org/10.1007/978-3-319-15717-7_8
http://dx.doi.org/10.1007/978-3-319-15717-7_7
http://dx.doi.org/10.1007/978-3-319-15717-7_9
http://dx.doi.org/10.1007/978-3-319-15717-7_10
http://dx.doi.org/10.1007/978-3-319-15717-7_11


Chapter 2
Introduction to Analytic Curves

The study of analytic curves, which at first sight appears to be unrelated to the
stability analysis of time-delay systems, will be extremely helpful for addressing the
stability problem.

In this book, we will see that the mathematical properties concerning the sin-
gularities of analytic curves provide us with a new angle (called the analytic curve
perspective or point of view in this book) to study the stability of time-delay sys-
tems. New insights for the complete stability problem will be developed based on
this analytic curve perspective. To be more precise, two aspects are essential. First,
it will be used for studying the asymptotic behavior of the critical pairs. Second, the
analytic curve perspective will be used to improve the classical frequency-sweeping
approach. Moreover, as we will discuss later, the analytic curve perspective may be
applied to many other important problems.

In this chapter, we start by presenting some fundamentals concerning analytic
curves. Especially, as an important tool for studying analytic curves, the Puiseux
series will be introduced and discussed in detail.

In Sect. 2.1, we will first present the related concepts on analytic curves and show
that an analytic curve can be understood in an intuitive manner. In Sect. 2.2, the
Puiseux series will be introduced for describing and analyzing an analytic curve.
The convergence of the Puiseux series will be discussed in Sect. 2.3. In Sect. 2.4,
we will briefly review a classical method, the Newton diagram, for computing the
Puiseux series. In Sect. 2.5, wewill explain how to analyze the asymptotic behavior of
an analytic curve by means of the Puiseux series. Finally, some notes and comments
will be given in Sect. 2.6.

© The Author(s) 2015
X.-G. Li et al., Analytic Curve Frequency-Sweeping Stability Tests for Systems
with Commensurate Delays, SpringerBriefs in Control, Automation and Robotics,
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2.1 Introductory Remarks to Singularities
of Analytic Curves

Consider a power series Φ(y, x) in two variables x ∈ C and y ∈ C:

Φ(y, x) =
∑

α,β≥0

φα,β yαxβ, (2.1)

where φα,β (α ∈ N, β ∈ N) are complex coefficients.
We suppose that Φ(0, 0) = 0 (that is, the constant term φ0,0 = 0) and

that the power series Φ(y, x) is convergent in a small neighborhood of the point
(x = 0, y = 0).

Remark 2.1 If there exists a point (y∗, x∗) other than (0, 0) such thatΦ(y∗, x∗) = 0,
we may obtain a new power series with a zero constant term. More precisely, we
may define two new variables x̃ = x − x∗ and ỹ = y − y∗. As a result, we obtain a
new power series Φ̃(ỹ, x̃) satisfying that Φ̃(0, 0) = 0 from the original power series
equation Φ(y∗, x∗) = 0 and the local behavior of the original equation Φ(y, x) = 0
as y → y∗ and x → x∗ is reflected by that of the new one Φ̃(ỹ, x̃) = 0 as ỹ → 0
and x̃ → 0.

Remark 2.2 One may have a question why we are now considering a power series.
The reason is related to the fact that for many stability problems in the control area,
we need to study characteristic functions of the form ρ(λ, ξ), where λ and ξ denote,
respectively, the characteristic root and the system parameter under consideration,
and ρ(λ, ξ) is usually analytic. One may notice that in the case of time-delay system
(1.1), the corresponding characteristic function f (λ, τ ) falls in this class. Next, near
a critical pair (λ∗, ξ∗) such that ρ(λ∗, ξ∗) = 0, we may expand ρ(λ, ξ) as a two-
variable Taylor series, which is exactly a power series of the Φ(y, x) type.

From the algebraic geometry point of view, in e.g., [15, 121], the equation
Φ(y, x) = 0 defines an analytic curve in the C

2 plane.1 Instead of studying the
whole curve, we are interested in a small neighborhood of the origin O (i.e., the
point (x = 0, y = 0)) in the C2 plane. In other words, we study how y varies near
“0” with respect to an infinitesimal variation of x near “0”. Such a local study will be
extremely useful in the subsequent study of the asymptotic behavior of time-delay
systems.

Throughout this book, we define the notation ord( · ) as follows.

Definition 2.1 For a function ϕ(x), ord(ϕ(x)) = κ for x = x∗ denotes that di ϕ(x)

dxi =
0 (i = 0, . . . , κ − 1) and that dκϕ(x)

dxκ �= 0 when x = x∗.

Furthermore, for simplicity, we denote by ordy and ordx , respectively, the values
of ord(�(y, 0)) when y = 0 and ord(�(0, x)) when x = 0. If ordx = 1 and/or

1 Note that we cannot explicitly draw such a curve since there are two complex variables.

http://dx.doi.org/10.1007/978-3-319-15717-7_1
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ordy = 1, the curve defined by Φ(y, x) = 0 is called non-singular at the origin O
and the origin O is called a non-singular point of the curve. If both ordx and ordy

are larger than 1, the curve defined by Φ(y, x) = 0 is called singular at the origin
O and the origin O is called a singular point of the curve.

In order to have a better understanding of the above notions and notations,
consider now two simple examples.

Example 2.1 Consider Φ(y, x) = y3 + yx + x (polynomials represent a specific
type of power series). At the point (0, 0), it follows that Φ(0, 0) = 0, ordy = 3

( dΦ(y,0)
dy = d2Φ(y,0)

d y2
= 0, d3Φ(y,0)

d y3
�= 0), and ordx = 1 ( dΦ(0,x)

dx �= 0). The curve

defined byΦ(y, x) = y3+ yx + x = 0 is non-singular at the origin O (ordx = 1).�

Example 2.2 Consider Φ(y, x) = y3 + yx + x2. At the point (0, 0), it follows that

Φ(0, 0) = 0, ordy = 3 ( dΦ(y,0)
dy = d2Φ(y,0)

d y2
= 0, d3Φ(y,0)

d y3
�= 0), and ordx = 2

( dΦ(0,x)
dx = 0, d2Φ(0,x)

dx2
�= 0). The curve defined by Φ(y, x) = y3 + yx + x2 = 0 is

singular at the origin O (both ordy and ordx are larger than 1). �

As we will show later in the book, a critical pair for the time-delay system (1.1)
can be viewed as a non-singular (singular) point if n = 1 and/or g = 1 (both n and
g are greater than 1). As expected, the singular case is much more complicated than
the non-singular case.

For simplicity, we will only study the case where both ordy and ordx are bounded.
In fact, we will see that this case corresponds to the complete stability problem under
consideration in this book.

The study of singularities of analytic curves is a meeting point for various math-
ematical fields such as algebra, geometry, topology, and function theory. The first
systematic contribution on curve singularities is due to Isaac Newton. Later on, some
theoretical framework (for analysis and classification of curve singularities) was
established by many geometers such as Puiseux, Smith, Noether, Halphen, Enriques,
and Zariski. A detailed introduction to this subject can be found in e.g., [2, 15, 121].
It is worth mentioning that the analytic curve perspective to be introduced in this
book is at an elementary level at present.

Intuitively speaking, we may view y = 0 as a root for Φ(y, x) = 0 when x =
0, whose multiplicity is ordy . Clearly, the equation Φ(y, x) = 0 determines the
corresponding ordy root loci near the origin O . Such an angle (we interpret the
relation between y and x as local root loci in the C2 plane) is easy to follow and will
be frequently used in the sequel.

We now recall the classical Weierstrass preparation theorem (see, e.g., [15, 60,
91, 121]). It states that in a small neighborhood of O ,Φ(y, x) can be decomposed as

Φ(y, x) = G(y, x)Q(y, x), (2.2)

where G(y, x) is a convergent power series with G(0, 0) �= 0 and Q(y, x) is a
polynomial in y

http://dx.doi.org/10.1007/978-3-319-15717-7_1
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Q(y, x) = yordy +
ordy−1∑

i=0

qi (x)yi ,

where for i = 0, . . . , ordy − 1, qi (x) are convergent power series at x = 0 such that
qi (0) = 0. This polynomial Q(y, x) is called a Weierstrass polynomial.

In other words, in a small neighborhood of O , the root loci of y with respect
to x governed by the equation Φ(y, x) = 0 coincide with those for the equation
Q(y, x) = 0.

Now we know that in a small neighborhood of O , for each x there are ordy

continuous solutions for y, denoted by y(x), such that Φ(y(x), x) = 0 (since a
polynomial equation with degree ordy always has ordy solutions in C).

In addition, it is not hard to anticipate that the solutions of y(x) can be expressed
by some appropriate convergent series.

Two questions arise here. First, which class of series do the solutions of y(x)

belong to? Second, how to obtain the corresponding series? In the following two
sections, we will give some answers. It should be pointed out that the factorization
(2.2) is in general difficult to find since all qi (x) are power series.

2.2 Puiseux Series

In this section we will introduce an effective tool, the Puiseux series, to describe
the local behavior of power series Φ(y, x) (i.e., the solutions y(x) in a small neigh-
borhood of O). We start with a specific case. If ∂Φ(y,x)

∂y �= 0 at O (i.e., ordy = 1),
we may apply the well-known implicit function theorem (see Appendix A). In this
particular case (corresponding to the case where the linear time-delay system with
commensurate delays has a simple critical imaginary root), y(x) corresponds to a
Taylor series, and we can calculate the derivatives of y with respect to x (based on
the implicit function theorem) to determine the coefficients of the Taylor series.

However, in the general case, i.e., ordy is allowed to be greater than 1 (corre-
sponding to the general case where the time-delay system is allowed to have a critical
imaginary root with anymultiplicity), the implicit function theorem does not allow to
conclude. For this reason, the analysis of y(x) calls for a different mathematical tool.

In mathematics, the local variation of y(x) can be well studied by using the
Puiseux’ theorem, see, e.g., [91, 121]. Actually, this theorem hasmultiple versions. In
the sequel, we briefly recall some results closely related to the objective of our study.

According to the Puiseux’ theorem, the general solutions of y(x) such that
Φ(y(x), x) = 0 are some series “s” of the form

s =
∞∑

i=1

Ci x
i
N , (2.3)
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where Ci are complex coefficients and N is a positive integer.
The fractional power series of the form (2.3) are called the Puiseux series. The

concept of Puiseux series is not new in mathematics. It was first introduced by
Issac Newton in his correspondence with Leibniz and Oldenburg in 1676 [90] and
further developed by Victor Puiseux in 1850 [101]. The naming of the series after
Puiseux rather than Newton is based upon the fact that Puiseux investigated this
series expansion more thoroughly. The above information can be found in [13].

Remark 2.3 Unlike the well-known Taylor series, the exponents of a Puiseux series
are allowed to be positive fractional numbers.

A Puiseux series s is called a y-root for Φ(y, x) = 0 if Φ(s, x) = 0. In Sect. 2.4,
we will introduce an effective tool for obtaining such y-roots.

Remark 2.4 It should be stressed that a Puiseux series has an infinite number of
terms and, hence, we are unable to entirely obtain a Puiseux series by calculation.
Fortunately, for the stability problem, we only need to invoke finitely many terms of
a Puiseux series (see Chap. 4). In particular, we only need to obtain the first-order
term of a Puiseux series in the nondegenerate case. Of course, the more terms we
obtain, a more elaborate picture of the root loci we have.

At the end of this section, we borrow two examples from the literature on solving
polynomial2 equations.

Example 2.3 Consider a polynomial equation y3 − 3xy + x3 = 0, where y = 0
is a root when x = 0. Following the discussions in Sect. 2.1, there exist three y(x)

solutions near the origin O as ordy = 3. The solutions, which can be found in [115],

are the Puiseux series y = 1
3 x2 + o

(
x2

)
and y = ±√

3x
1
2 + o(x

1
2 ). �

Remark 2.5 It shall be noticed that solving a polynomial equation generally cannot
be accomplished by radicals (for a power series equation, it is obviously more diffi-
cult). It has been proved that the general equation of the fifth degree is not solvable
by radicals [53].

Example 2.4 Consider a polynomial equation y5 + 2x y4 − x y2 − 2x2y − x3 +
x4 = 0, for which y = 0 is a root when x = 0. As ordy = 5, the equation has five
y(x) solutions near the origin O . The solutions, reported in [120], are as follows: Two

solutions are of the form y = −x+o (x) and the other three ones are y = x
1
3 +o(x

1
3 ),

y =
(
− 1

2 +
√
3
2 i

)
x

1
3 + o(x

1
3 ), and y = (− 1

2 −
√
3
2 i)x

1
3 + o(x

1
3 ). �

In Sect. 2.4, we will provide some details on how to acquire the above Puiseux
series solutions.

2 For simplicity, we here give two examples whereΦ(y, x) are polynomials, which represent a spe-
cific form of power series. The approach applies to the general power series equations. Historically,
the study of the singularities of analytic curves stemmed from solving the polynomial equations.

http://dx.doi.org/10.1007/978-3-319-15717-7_4
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2.3 Convergence of Puiseux Series

Before discussing deeper the way to derive the Puiseux series, it is necessary to pay
attention to the corresponding convergence property. Needless to say, a divergent
series will not be useful for the problem studied in this book. A property regarding
the convergence of a Puiseux series is given as follows, see [15].

Property 2.1 A Puiseux series
∞∑

i=1
Ci x

i
N is a convergent series if and only if the

power series
∞∑

i=1
Ciχ

i is convergent.

We see from Property 2.1 that the convergence of a Puiseux series
∞∑

i=1
Ci x

i
N

depends only on the coefficients Ci , i = 1, . . . ,∞ (it does not depend on the inte-
ger N).

As the Puiseux series considered in this chapter are derived from the power series
Φ(y, x), a nice result for the convergence property is available from [15] and given
below.

Property 2.2 If the power series Φ(y, x) are convergent, all the y-roots for
Φ(y, x) = 0 are convergent series.

In light of property 2.2, the convergence of all the Puiseux series used in this book
associated with the complete stability problem for time-delay systemswith commen-
surate delays (including the Puiseux series for studying the asymptotic behavior of
the critical imaginary roots as well as the dual Puiseux series, to be proposed later in
this book, for studying the asymptotic behavior of the frequency-sweeping curves)
can be guaranteed.

2.4 Newton Diagram

The Newton diagram (or Newton polygon) is a geometrical approach proposed by
Newton in order to obtain the y-roots for the equation Φ(y, x) = 0 in terms of the
Puiseux series. In this section, we briefly review this approach.

Consider power series Φ(y, x) described by (2.1), where both ordy and ordx are
bounded. As we just mentioned, according to the Puiseux’ Theorem, all the y-root
solutions are in the form of Puiseux series.

In the sequel, we demonstrate how to find the initial terms of the correspond-
ing Puiseux series by using the classical Newton diagram. More precisely, we will
determine the solutions of the form

y = Cxμ + o(xμ), (2.4)
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where C is the complex coefficient and μ is a rational number. Obviously, C and μ

may have multiple values.
We mark the point (α, β) by a “dot” in a coordinate plane if there is a nonzero

coefficient φα,β in (2.1). In this way, we obtain a discrete set of points with non-
negative integral coordinates in the coordinate plane, called the Newton diagram of
Φ(y, x).

We draw a line through the point (0, ordx ) (this point belongs to the Newton
diagram) coinciding with the ordinate axis and we rotate this line counterclockwise
around the point (0, ordx ) until it touches other points from the Newton diagram.
Among the touched points from the Newton diagram, we select the one with the
greatest abscissa, say (M1,N1). We now have a segment linking the two points
(0, ordx ) and (M1,N1). We next rotate the line counterclockwise around the point
(M1,N1) until it touches new points from the Newton diagram. We also select
the one with the greatest abscissa, say (M2,N2), among the touched points. We
have a new segment linking two points (M1,N1) and (M2,N2). We continue this
procedure till the segment ending at the point (ordy, 0) (this point belongs to the
Newton diagram) is found.

As a result, we obtain the so-called Newton polygon which consists of all the
segments found by the above procedure (referred to as the rotating ruler method).
Without any loss of generality, suppose that the Newton polygon ofΦ(y, x) consists
of p ∈ N+ segments. The starting point and the ending point of the i th segment are
denoted by (Mi−1,Ni−1) and (Mi ,Ni ) (it is easy to see that M0 = 0,N0 =
ordx ,Mp = ordy,Np = 0), respectively. The Newton polygon is depicted in
Fig. 2.1.

Note that on a segment of the Newton polygon, say, the i th segment with
the endpoints (Mi−1,Ni−1) and (Mi ,Ni ), there may exist other points from
the Newton diagram. Without loss of generality, suppose there are q points other
than the endpoints lying on the i th segment: (M̃i1, Ñi1), . . ., (M̃iq , Ñiq), with
Mi > M̃i1 > · · · > M̃iq > Mi−1.

Each segment of the Newton polygon determines a set of solutions of C and μ.
More precisely, from the i th segment linking points (Mi−1,Ni−1) and (Mi ,Ni ),
we have Mi − Mi−1 roots in the form (2.4) with μ = Ni−1−Ni

Mi −Mi−1
(note that −μ is

the slope of the segment). The coefficient C associated with this exponent μ has

Fig. 2.1 Newton polygon
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Mi −Mi−1 (note that this value is equal to the length of the i th segment’s projection
on the abscissa axis) solutions, which are given by the solutions of the polynomial
equation.

φMi ,Ni C
Mi −Mi−1 + φM̃i1,Ñi1

CM̃i1−Mi−1 + · · · + φMi−1,Ni−1 = 0. (2.5)

A rigorous proof of the above results can be found in e.g., [115]. In summary, a
segment of the Newton polygon gives rise to some initial terms of the Puiseux series
with the same exponent. To be more precise, the number of the obtained Puiseux
series equals to the length of the projection of this segment on the abscissa and the
exponent is the negative slope of this segment.

One can see that the p sets of Puiseux series derived from the p segments of the
Newton polygon include all the ordy y-roots (expressed by the first-order terms of
the Puiseux series) for Φ(y, x) = 0.

We now give the Newton polygons, for Examples 2.3 and 2.4, respectively, in
Fig. 2.2a, b, from which one may obtain the Puiseux series solutions by employing
the Newton diagram introduced above.

2.5 A Direct Application of Puiseux Series

It should be pointed out that, to the best of the authors’ knowledge, there are at least
two ways to express the Puiseux series solutions. The expression given in the sequel
is relatively simple to understand.3

Without any loss of generality, the Newton polygon for the power series Φ(y, x)

is supposed to have p segments.

(a) (b)

Fig. 2.2 Newton polygons for Examples2.3 and 2.4. a Example 2.3. b Example2.4

3 In Chap.4, the expression of the Puiseux series will be simplified. However, some additional
algebraic properties (mainly concerning the concept of the conjugacy class) will be required.

http://dx.doi.org/10.1007/978-3-319-15717-7_4
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Following Sect. 2.4, the i th segment determines a set of Puiseux series

y = C̃μi ,l x
μi + o(xμi ), l = 1, . . . ,Mi − Mi−1, (2.6)

where μi is the negative slope of the i th segment, C̃μi ,l are the corresponding coef-
ficients calculated according to (2.5), and Mi − Mi−1 equals to the length of the
segment’s projection on the abscissa axis.

Totally, the p segments give rise to the following Puiseux series

⎧
⎪⎨

⎪⎩

y = C̃μ1,l x
μ1 + o(xμ1), l = 1, . . . ,M1 − M0,

...

y = C̃μp,l xμp + o(xμp ), l = 1, . . . ,Mp − Mp−1.

(2.7)

With the expression (2.7), we may consider each xμi as a single-valued number4

in C. As a result, the Mi − Mi−1 Puiseux series corresponding to the i th segment
as described by (2.6) have Mi − Mi−1 values for y(x). The total p sets of Puiseux
series corresponding to all the p segments (i.e., the total ordy Puiseux series) as
described by (2.7) present all the ordy solutions y(x).

Remark 2.6 In (2.7), we only present the first-order terms (also called the initial
terms) of the Puiseux series. As we will see later in this book, the first-order terms
are sufficient for the stability analysis in the nondegenerate case. However, in the
degenerate case, we need to obtain higher order terms. We will see in Sect. 4.3 that
the Newton diagram can be used in an iterative manner such that higher order terms
of the Puiseux series can be obtained.

Remark 2.7 On may notice that invoking the Puiseux series (by using the Newton
diagram) is not a trivial work, even if only the first-order terms are required. Some
representative examples will be given in Chap. 4. Fortunately, the calculation of the
Puiseux series may be bypassed. It will be interesting to see that we can accomplish
the complete stability analysis for time-delay systems with commensurate delays
(by adopting the frequency-sweeping approach to be proposed in this book) without
explicitly employing the Newton diagram.

2.6 Notes and Comments

In this chapter, we introduced some useful results for analytic curves including the
basic concepts, the Puiseux series, and the Newton diagram. More precisely, we
followed the ideas proposed by [15, 60, 91, 121] in order to introduce some of the

4 In fact, each xμi may have multiple values. We may choose any one among them. As will be
illustrated by the examples in Chap.4, the value set of all the Puiseux series is identical for any
choice.

http://dx.doi.org/10.1007/978-3-319-15717-7_4
http://dx.doi.org/10.1007/978-3-319-15717-7_4
http://dx.doi.org/10.1007/978-3-319-15717-7_4
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notions and properties needed in the forthcoming chapters. From the next chapter,
we will apply these results to study the complete stability problem of time-delay
systems.

In our opinion, the analytic curve idea in fact may be used for a broader range of
stability and stabilization problems in the area of control, as it is applicable to both
continuous-time and discrete-time systems.

For continuous-time systems (including the time-delay systems considered in the
forthcoming chapters), we are concerned with the variation of the critical roots with
respect to the imaginary axis C0 as some system parameters vary. Recall that for a
continuous-time system a critical root refers to a characteristic root located on the
imaginary axis C0. We may perform a qualitative stability analysis through the real
parts of the corresponding Puiseux series.

For discrete-time systems (e.g., the state transition expression of a networked
control system is a discrete-time model [80]), we are concerned with the variation
of the critical roots (note that for discrete-time systems a critical root refers to a
characteristic root located on the unit circle ∂D) with respect to the unit circle ∂D,
as some system parameters vary. In this case, the stability analysis requires to know
the variation directions of the critical roots with respect to the unit circle ∂D, based
on the Puiseux series. For instance, if for a critical root its variation direction points
to the outside (inside) of the unit circle ∂D, it implies that the critical root becomes
an unstable (stable) root.

It was already pointed out that we only adopt some preliminary results on the
singularities of analytic curves and one will find that they are not hard to follow.
The studies from a decidedly geometrical viewpoint (e.g., resolution of singularities
and classification of singularities) are generally much more complicated and can be
found in [2, 15, 121].



Chapter 3
Analytic Curve Perspective
for Time-Delay Systems

In this chapter, we will apply the analytic curve point of view to the stability problem
of time-delay systems with commensurate delays, using the prerequisites introduced
in Chap.2.

In Sect. 3.1, we will explain in detail why the analytic curve standpoint helps us
to understand the asymptotic behavior of the critical imaginary roots more deeply.
We will first present a motivating example in Sect. 3.1.1 to show that some key infor-
mation may be hidden behind the characteristic function. Then, in Sect. 3.1.2, we
will propose to obtain the series expansion expression of the characteristic function,
instead of using it directly. Based on this series expansion expression, we will see
in Sect. 3.1.3 that the analytic curve perspective fits well with the asymptotic behav-
ior analysis of the critical imaginary roots for time-delay systems. In Sect. 3.2, we
will roughly demonstrate that the analytic curve perspective is also applicable to
the asymptotic behavior analysis for the frequency-sweeping curves. A motivating
example will be given to show that such a new idea is important as the classical
frequency-sweeping method fails to handle the general case.

3.1 Further Focus on Asymptotic Behavior Analysis
of Critical Imaginary Roots

Consider the time-delay system (1.1)

ẋ(t) =
m∑

�=0

A�x(t − �τ),

with the characteristic function (1.3)

f (λ, τ ) = a0(λ) + a1(λ)e−τλ + · · · + aq(λ)e−qτλ.

© The Author(s) 2015
X.-G. Li et al., Analytic Curve Frequency-Sweeping Stability Tests for Systems
with Commensurate Delays, SpringerBriefs in Control, Automation and Robotics,
DOI 10.1007/978-3-319-15717-7_3
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As discussed in Chap. 1, in order to analyze the stability of system (1.1), for a
critical imaginary root we need to know its asymptotic behavior at a critical delay.
This is the objective of Problem 2.1.

We now explain through a motivating example why the existing methods (based
on a direct study of f (λ, τ )) do not allow solving Problem 2.1.

3.1.1 A Motivating Example

It is true that the asymptotic behavior of a critical imaginary root with respect to a
critical delay is fully determined by the characteristic function f (λ, τ ). In fact, most
of the existing results are based on a direct study of f (λ, τ ).

However, we here point out that some key information may be hidden behind the
characteristic function f (λ, τ ) (or, its explicit form), as demonstrated below.

Example 3.1 Consider the following three different characteristic functions:

f (1)(λ, τ ) = e−3τλ − (λ6 − λ4 + λ2)e−2τλ − (λ10 − λ8 + λ6)e−τλ + λ12, (3.1)

f (2)(λ, τ ) = e−2τλ +
(π

2
λ3 − λ2 + π

2
λ + 1

)
e−τλ − π

2
λ5 − π

2
λ3 − λ2, (3.2)

f (3)(λ, τ ) = e−τλ + 3π

8
λ5 − π2

8
λ4 + 5π

4
λ3 − π2

4
λ2 + 7π

8
λ − π2

8
+ 1. (3.3)

For all the above three quasipolynomials (3.1), (3.2), and (3.3), λ = j is a triple
critical imaginary root at τ = π . However, the asymptotic behavior of the critical
pair ( j, π) is quite different for the quasipolynomials above, which can be observed
from the root loci near ( j, π) shown in Figs. 3.1, 3.2, and 3.3.

The root loci of f (3)(λ, τ ) given in (3.3), as shown in Fig. 3.3, exhibit a nearly
symmetric structure with respect to the critical imaginary root. By contrast, the root
loci of f (1)(λ, τ ) given in (3.1), as shown in Fig. 3.1, are asymmetric (in fact, they
are independent of each other, as will be further illustrated in Chap.4). Finally, the
root loci of f (2)(λ, τ ) given in (3.2), as shown in Fig. 3.2, are mixed with the nearly
symmetric and the asymmetric structures (among the three root loci, two are nearly
symmetric while the other one is independent).

What is the reason causing different structures of the root loci? The answer is
related to their respective dominating partial derivatives of the quasipolynomials.
Some nonzero partial derivatives induce the leading effect on the root loci.1

Leaving the detailed analysis in Chap.4, we are listing the respective dominant
factors for the three characteristic functions: For f (1)(λ, τ ) given in (3.1), f (1)

λ3
�= 0

and f (1)
τ 3

�= 0 and these two quantities are the dominant factors. For f (2)(λ, τ ) given

1 This argument will be verified later in Chap. 4.

http://dx.doi.org/10.1007/978-3-319-15717-7_1
http://dx.doi.org/10.1007/978-3-319-15717-7_1
http://dx.doi.org/10.1007/978-3-319-15717-7_4
http://dx.doi.org/10.1007/978-3-319-15717-7_4
http://dx.doi.org/10.1007/978-3-319-15717-7_4
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in (3.2), f (2)
λ3

�= 0, f (2)
λτ �= 0, and f (2)

τ 2
�= 0 are the dominant factors. Finally, for

f (3)(λ, τ ) given in (3.3), f (3)
λ3

�= 0 and f (3)
τ �= 0 are the dominant factors. �

Remark 3.1 It should be pointed out that most of the existing methods (e.g., [21, 97,
122]) cannot be used to analyze the asymptotic behavior of the quasipolynomials in
Example 3.1. Generally, these methods are based on the implicit function theorem
and not applicable to Problem 2.1 in the case of multiple critical imaginary roots (the
reason will be given in detail in Sect. 4.1).

3.1.2 Two-Variable Taylor Expansion

Inspired by Example 3.1, we realized that the asymptotic behavior of a critical pair is
determined by the information concerning the partial derivatives of the characteristic
function f (λ, τ ) with respect to λ and τ .

So, instead of treating the characteristic function f (λ, τ ) directly, we propose to
transform it into a power series. As f (λ, τ ) (1.3) is a quasipolynomial, it is analytical
with respect to variables λ and τ . Thus, in a small neighborhood of a critical pair
(λα, τα,k), the characteristic function f (λ, τ ) can be expanded as a convergent power
series of the form:

f (λ, τ ) = f (λα, τα,k) + ( fλΔλ + fτΔτ) + fλλ(Δλ)2 + 2 fλτΔλΔτ + fττ (Δτ)2

2!

+ fλ3(Δλ)3 + 3 fλ2τ (Δλ)2Δτ + 3 fλτ 2Δλ(Δτ)2 + fτ 3(Δτ)3

3! + · · · ,

(3.4)

where λ = λα + Δλ and τ = τα,k + Δτ .
The expression (3.4) is a standard two-variable Taylor expansion of f (λ, τ ). All

the partial derivatives of f (λ, τ )with respect to λ and τ are included in this formula.

Remark 3.2 We can see that the relation between Δλ and Δτ is completely deter-
mined by the two-variable expansion given in (3.4). In fact, such a relation implicitly
describes the asymptotic behavior we are interested in.

Remark 3.3 Wewill focusmainly on the casewith no characteristic roots at the origin
for time-delay system (1.1). If λ = 0 is a characteristic root, this root is invariant
with respect to the delay parameter and hence the system cannot be asymptotically
stable for any τ ≥ 0. It is worth mentioning that an example (Example 4.7) will
be presented later to explain the particularity of such a case and the corresponding
asymptotic behavior.

Furthermore, we may reformulate (3.4) in a convenient form. Since f (λ, τ ) =
f (λα, τα,k) = 0, we have:

http://dx.doi.org/10.1007/978-3-319-15717-7_4
http://dx.doi.org/10.1007/978-3-319-15717-7_1
http://dx.doi.org/10.1007/978-3-319-15717-7_1
http://dx.doi.org/10.1007/978-3-319-15717-7_4
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0 = ( fλΔλ + fτΔτ) + fλλ(Δλ)2 + 2 fλτΔλΔτ + fττ (Δτ)2

2!

+ fλ3(Δλ)3 + 3 fλ2τ (Δλ)2Δτ + 3 fλτ 2Δλ(Δτ)2 + fτ 3(Δτ)3

3! + · · · (3.5)

Recall that, in light of the index n, fλ = · · · = fλn−1 = 0 and fλn �= 0. As a result,
for a critical pair (λα, τα,k) with indices n and g, we now obtain a series expression
F(λα,τα,k )(Δλ,Δτ) (from the right-hand side of (3.5)) describing the relation between
Δλ and Δτ as follows:

F(λα,τα,k )(Δλ,Δτ) =
∞∑

i=n

Li0(Δλ)i +
∞∑

i=0

(Δλ)i
∞∑

l=1

Lil(Δτ)l = 0, (3.6)

where Lil = f
λi τ l

(i+l)!
(i+l

i

)
(
(i+l

i

)
denotes the number of i-combinations froma set of i+l

elements). In addition, in view of the index g, we have that L01 = · · · = L0(g−1) = 0
and L0g �= 0.

From the root-locus point of view, for aΔτ ,Δλmust have n solutions (multiplicity
taken into account) satisfying that F(λα,τα,k )(Δλ,Δτ) = 0 and that Δλ → 0 as
Δτ → 0. The n solutions of Δλ represent the local root loci near the critical pair for
the time-delay system.

Remark 3.4 For the sake of simplicity, in the remaining part of the book, we usually
use a more concise expression F(Δλ,Δτ) (i.e., we omit the subscript “(λα, τα,k)”)
when no confusion occurs.

3.1.3 Analytic Curves and Asymptotic Behavior
of Critical Imaginary Roots

Now, we can see that the asymptotic behavior of a critical pair for the time-delay
system (1.1) is fully determined by the corresponding power series F(Δλ,Δτ).
Moreover, F(Δλ,Δτ) belongs to the class of the power series Φ(y, x) discussed in
Chap.2 since F(Δλ,Δτ) is convergent near the point (0, 0) with F(0, 0) = 0. As
a consequence, we can use the existing mathematical results for analytic curves to
study the time-delay system (1.1).

The first important result concerning the variation ofΔλwith respect toΔτ , based
on the expression (3.6), can be summarized as follows:

Theorem 3.1 Consider the time-delay system (1.1) and assume λα �= 0 is an
n-multiple imaginary root for τ = τα,k . If τ is perturbed at τα,k by Δτ , the variation
Δλ of λ at λα corresponds to n Puiseux series solutions with respect to Δτ . Any
Puiseux series solution converges in a neighborhood of (Δλ = 0,Δτ = 0).

http://dx.doi.org/10.1007/978-3-319-15717-7_1
http://dx.doi.org/10.1007/978-3-319-15717-7_2
http://dx.doi.org/10.1007/978-3-319-15717-7_1
http://dx.doi.org/10.1007/978-3-319-15717-7_1
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The proof of Theorem 3.1 can be found in [71]. In order to make the book
self-contained, a modified version of the proof is given as follows:

Proof The solutions of Δλ in terms of Δτ are determined by F(Δλ,Δτ) = 0,
where F(Δλ,Δτ) is a power series given by (3.6). In F(Δλ,Δτ), the term (Δλ)n

appears with a nonzero coefficient, in view of the multiplicity n. According to the
discussions in Sects. 2.1 and 2.2, the solutions are in the form of Puiseux series.

As F(Δλ,Δτ) is a convergent power series, anyPuiseux series solution converges
in some neighborhood of the origin (Property 2.2). �

Unlike the well-known Taylor series, the Puiseux series are generally with frac-
tional exponents. Thus, it is much more complicated to determine a Puiseux series
(by means of calculating the exponents as well as the associated coefficients). The
approach for computing the Puiseux series (based on the Newton diagram) will be
detailed in Chap.4. Furthermore, in Chap.4, some useful mathematical properties of
the Puiseux series will be presented. With the aid of these properties we may express
the Puiseux series in a more convenient form.

At the end of this subsection, we give some useful remarks concerning the power
series F(Δλ,Δτ).

In order to explicitly compute the Puiseux series solutions Δλ(Δτ), we need to
invoke the power series F(Δλ,Δτ). Generally, it is neither necessary nor possible
to obtain all the infinitely many terms of F(Δλ,Δτ). We only need to calculate a
finite number of partial derivatives of f (λ, τ )with respect to λ and τ , as will be seen
in Chap.4.

Without any loss of generality, F(Δλ,Δτ) may be decomposed as a product of
some power series:

F(Δλ,Δτ) = U (Δλ,Δτ)F1(Δλ,Δτ) · · · Fv(Δλ,Δτ), (3.7)

where U (0, 0) �= 0, F1(0, 0)= · · · =Fv(0, 0)=0, and each Fl(Δλ,Δτ) (l =
1, . . . , v) is irreducible (i.e., it cannot be further decomposed into a product of some
power series which equal to 0 at the point (0, 0)).

Property 3.1 For a critical pair (λα �= 0, τα,k), neither Δλ factor nor Δτ factor
appears in the right-hand side of (3.7).

Proof According to Property 1.1 (Chap.1), for a critical pair (λα �= 0, τα,k), the
indices n and g must be bounded. Thus, F(Δλ,Δτ) cannot be decomposed into
the form U (Δλ,Δτ)(Δλ)χ(Δτ)κ F1(Δλ,Δτ) · · · Fv(Δλ,Δτ) (χ ∈ N, κ ∈ N,
χ + κ ≥ 1), as both the (Δλ)n term and the (Δτ)g term exist in F(Δλ,Δτ). �

The decomposition form (3.7) indicates that each equation Fl(Δλ,Δτ) = 0
independently determines some Puiseux series solutions (equivalently, some local
root loci). That is, according to (3.7), the Puiseux series can be divided into groups.

It is important to point out that the decomposition form (3.7) is generally very
difficult to find in practice (since F1(Δλ,Δτ), . . . , Fv(Δλ,Δτ) are all power series)
and that we do not need to really decompose F(Δλ,Δτ).

http://dx.doi.org/10.1007/978-3-319-15717-7_2
http://dx.doi.org/10.1007/978-3-319-15717-7_2
http://dx.doi.org/10.1007/978-3-319-15717-7_2
http://dx.doi.org/10.1007/978-3-319-15717-7_4
http://dx.doi.org/10.1007/978-3-319-15717-7_4
http://dx.doi.org/10.1007/978-3-319-15717-7_4
http://dx.doi.org/10.1007/978-3-319-15717-7_1
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Instead, the decomposition form (3.7) will be implicitly used along with the
concept of the conjugacy class, to be introduced later in this book. We will see
in Chap.8 that such an idea is very useful for a macroscopic study of the asymptotic
behavior of the critical pairs.

3.2 Asymptotic Behavior Analysis of Frequency-Sweeping
Curves

The frequency-sweeping approach is by now a classical tool in the field of control
theory and has been extensively used for the stability analysis of time-delay systems.
One of its first versions is the so-called Tsypkin’s criterion [114] (see, e.g., [92] and
the discussions therein) used for studying delay-independent stability of some closed-
loop systems. However, to the best of the authors’ knowledge, in most of the existing
applications, the frequency-sweeping curves are only used to detect the critical pairs
(if any!) of time-delay systems, see, e.g., [39]. Only a few attempts have been made
to employ the frequency-sweeping curves to the asymptotic behavior analysis. For
instance, in [64], the (single) frequency-sweeping curve is used for analyzing the
asymptotic behavior of the critical imaginary roots. However, the scenario considered
therein is specific and it is not easy to extend the approach to the general case.

In the sequel, we give a motivating example to show that the frequency-sweeping
curves of a time-delay systemmay possess some involved characteristics, even if the
time-delay system under consideration has only simple critical imaginary roots.

Example 3.2 Consider a time-delay system with the quasipolynomial f (λ, τ ) =
e−3τλ + 3e−2τλ + 3e−τλ + λ3 − λ2 + λ, where λ = j (for τ = (2k + 1)π, k ∈ N)
is a simple critical imaginary root with g = 3. At the critical frequency ω = 1, the
frequency-sweeping curves (see Fig. 3.4) have a multiple point. To the best of the
authors’ knowledge, such a case has not been reported and investigated so far. �
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Fig. 3.4 Frequency-sweeping result for Example 3.2. a Frequency-sweeping curves for 0 ≤ ω ≤
1.8. b Zoomed-in figure near ω = 1
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Similar exampleswill also be encountered inChaps. 7 and 8, forwhich the existing
frequency-sweeping approaches do not allow to conclude.

As mentioned in Chap.1, we will adopt the analytic curve perspective to study
the asymptotic behavior of the frequency-sweeping curves and gradually we will
establish a new frequency-sweeping framework (detailed development will be given
from Chap.6). Roughly speaking, the following new results will be obtained.

First, we will introduce a new concept: the dual Puiseux series. For the charac-
teristic equation f (λ, τ ) = 0, we propose to consider the variation of τ in C with
respect to λ. This is equivalent to analyzing the way Δτ varies in C with respect
to Δλ for the equation F(Δλ,Δτ) = 0. The resultant series are the so-called dual
Puiseux series Δτ(Δλ).

Second,wewill prove that the frequency-sweeping curves have a close connection
with the dual Puiseux series. Consequently, the asymptotic behavior for general
frequency-sweeping curves can be fully studied by means of the dual Puiseux series.

With the above mentioned novelties, the classical frequency-sweeping approach
will be improved and the frequency-sweeping approach in this book is also referred
to as the the frequency-sweeping framework. Using this frequency-sweeping frame-
work, the complete stability problem will be systematically solved for linear time-
delay systems with commensurate delays. Moreover, computing the Puiseux series
(through first transforming f (λ, τ ) into F(Δλ,Δτ) and then employing the Newton
diagram), which is clearly not a trivial work, will not be necessary. The complete
stability may be graphically studied from the frequency-sweeping curves. Such an
idea will be proposed and discussed in Chap. 9.

3.3 Notes and Comments

In this chapter, we briefly explained how the mathematical tool for studying the
analytic curves (introduced in Chap.2) can be used for the stability analysis of time-
delay systems. Such an analytic curve perspective presents a novelty with respect to
the existing studies in the literature (see, e.g., [6, 39, 45, 85]) and most of the results
to be proposed in this book arise from this idea.

Although the study of analytic curves appears to be complex and computation-
ally involved, most of the relevant results used in this book can be appropriately
interpreted from an intuitive root-locus angle, making the contents of this book not
difficult to follow.
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Chapter 4
Computing Puiseux Series
for a Critical Pair

As pointed out in Chap.3, the Puiseux series is an effective tool for analyzing the
asymptotic behavior of the critical imaginary roots for general time-delay systems.
Thus, computing the Puiseux series is important in solving the stability problem and
the Puiseux series will be extensively used throughout this volume.

In Sect. 4.1wewill explainwhy the existingmethods for describing the asymptotic
behavior do not work in the general case. Next, in Sect. 4.2, an algorithm for calcu-
lating all the Puiseux series will be proposed. Furthermore, we will show (Sect. 4.3)
that the proposed approach can be used in an iterative manner to obtain higher order
terms of the Puiseux series such that the degenerate case can be studied appropriately.
In Sect. 4.4, some useful properties on the Puiseux series will be presented. Finally,
concluding remarks will be given in Sect. 4.5.

4.1 Why Puiseux Series Are a Necessary Tool

To the best of the authors’ knowledge, the Puiseux series was first introduced in
the stability analysis of time-delay systems in a recent paper [19] (see Sect. 4.5 for
more details). In this section, we will explain the necessity for adopting this tool.
It is worth mentioning that the idea may be extended for dealing with systems with
incommensurate delays.

4.1.1 Introductory Remarks

Consider the time-delay system (1.1)

ẋ(t) =
m∑

�=0

A�x(t − �τ),

© The Author(s) 2015
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with the characteristic function (1.3)

f (λ, τ ) = a0(λ) + a1(λ)e−τλ + · · · + aq(λ)e−qτλ.

As discussed in Chap. 1, we need to know how a critical imaginary root behaves
at a critical delay, which is nothing else than the objective of Problem 2.1.

If a critical imaginary root λα is simple at a critical delay τα,k (i.e., f = 0 and
fλ �= 0 at (λα, τα,k)), we may compute the derivative of λ with respect to τ based
on the implicit function theorem (see Appendix A):

dλ

dτ
= − fτ

fλ
. (4.1)

As a result, we have a straightforward asymptotic behavior characterization for a
critical pair (λα, τα,k > 0) as: As τ increases from τα,k −ε to τα,k +ε, a characteristic
root λ such that f (λα, τα,k) = 0 crosses the imaginary axis C0 from the left half-
plane C− to the right half-plane C+ if Re( dλ

dτ
) > 0, while it crosses the imaginary

axis C0 from the right half-plane C+ to the left half-plane C− if Re( dλ
dτ

) < 0.

Remark 4.1 As mentioned in Remark 1.12, the case when τ = 0 is a critical delay
will be specifically discussed in Sect. 5.1 (for computing NU (+ε)).

Throughout this book, we usually adopt a more concise (but less precise) expres-
sion “a critical imaginary root λα crosses (or touches) C0 near a positive critical
delay τα,k” instead of “a characteristic root λ such that f (λα, τα,k) = 0 crosses (or
touches) C0 as τ increases from τα,k − ε to τα,k + ε”.

If Re( dλ
dτ

) = 0, the first-order derivative is not sufficient for concluding on the
variation of the critical imaginary root with respect toC0. This is the so-called degen-
erate case, forwhich higher order derivatives are needed. To intuitively illustrate such
degenerate cases, we present two examples:

Example 4.1 Consider a time-delay system with f (λ, τ ) = e−2τλ + (−λ6 − 3λ4 −
3λ2 + λ + 2)e−τλ − λ7 − 2λ6 − 3λ5 − 6λ4 − 3λ3 − 6λ2, where λ = j is a simple
critical imaginary root at τ = π . For the critical pair ( j, π), Re( dλ

dτ
) = Re( d2λ

dτ 2
) =

0,Re( d3λ
dτ 3

) > 0. Thus, the critical imaginary root j crosses C0 from C− to C+ near
the critical delay π . The corresponding root locus is given in Fig. 4.1a. �

Example 4.2 Consider a time-delay systemwith f (λ, τ ) = e−2τλ − (λ2−1)e−τλ +
λ6 − λ5 + λ + 2, where λ = j is a simple critical imaginary root for τ = π . For
the critical pair ( j, π), Re( dλ

dτ
) = 0,Re( d2λ

dτ 2
) �= 0. Therefore, the critical imaginary

root j touches C0 near the critical delay π . The corresponding root locus is given in
Fig. 4.1b. �
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Fig. 4.1 Root loci for Examples4.1 and 4.2. a Example4.1. b Example 4.2

A more formal description on the asymptotic behavior of a simple critical imagi-
nary root is given in Theorem 7.11 stating that:

The variation of a simple critical imaginary root, Δλ, with respect to an infin-
itesimal perturbation Δτ at the critical delay, subjects to the Taylor series Δλ =
∞∑

i=g
Ci (Δτ)i , where Cg �= 0, Cg+1, Cg+2, . . . are complex coefficients.

Recall that g denotes the index defined in (1.6) for a critical pair. The coefficients
C1 = dλ

dτ
, C2 = 1

2!
d2λ
dτ 2

, . . . can be obtained using the implicit function theorem.
However, if the critical imaginary root is multiple, i.e., f = fλ = 0, the implicit

function theorem is no longer valid (the denominator of the right-hand side of (4.1)
is 0). In such a situation, we have to seek a new mathematical tool describing the
asymptotic behavior.

The asymptotic behavior analysis plays a critical role in describing the qualitative
behavior of the dynamics of physical systemswith respect to the change of the system
parameters (see [104, 116], and the references therein). If such a methodology was
largely applied to various classes of dynamical systems, to the best of the authors’
knowledge, its application to time-delay systems needs further developments. The
research in this book as well as some earlier contributions (e.g., [64, 122]) related to
Problem 2.1 follows this line.

4.1.2 Asymptotic Behavior Must Correspond to Puiseux Series

As pointed out by Theorem 3.1 (Chap.3), the asymptotic behavior of a critical
imaginary root must correspond to some Puiseux series Δλ(Δτ). For a critical pair
(λα, τα,k) with indices n and g, the critical imaginary root λα is an n-multiple root
for the equation f (λ, τ ) = 0. Equivalently, for a Δτ , there must be n solutions for
Δλ such that F(Δλ,Δτ) = 0, where F(Δλ,Δτ) is defined in (3.6).

1 The theorem as well as the proof will be given in Chap.7.
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Obviously, the Taylor series is only valid for the simple critical imaginary root case
since it is a single-valued function with respect to Δτ . Unlike the Taylor series, the
Puiseux series are generally with fractional exponents and hence they are multiple-
valued for each Δτ . As a result, we may use the Puiseux series to appropriately
describe the local root loci of a multiple critical imaginary root if the exponents and
the associated coefficients are available.

Remark 4.2 Notice that a Puiseux series has infinitely many coefficients since it is a
power series. Fortunately, in practice, calculating finitely many terms of a Puiseux
series will be sufficient for the stability analysis.

4.2 How to Obtain Puiseux Series

In Sect. 4.2.1, we will present an algorithm, which is an application of the Newton
diagram for computing the Puiseux series. Some illustrative examples will be given
in Sect. 4.2.2.

4.2.1 An Algorithm for General Case

For some specific time-delay systems, the Puiseux series were calculated in [71]
(Propositions 1 and 2 of [71]). In the sequel, we present an algorithm (Algorithm 4.1)
for general time-delay systems with commensurate delays.

Algorithm 4.1 Algorithm for calculating the Puiseux series
Step 0: Let α0 = 0 and β0 = g.
Step 1: Define μ = max{ β0−β

α−α0
> 0 : Lαβ �= 0, α > α0, β < β0}, where the coefficients Lαβ are

defined in (3.6).
Step 2: If there exists a μ, go to Step 3. Otherwise, skip to Step 5.
Step 3: Collect all the nonzero Lαβ satisfying β0−β

α−α0
= μ to form a set

{
Lα1β1 (Δλ)α1 (Δτ)β1 , Lα2β2 (Δλ)α2 (Δτ)β2 , . . .

}
, (4.2)

with the order α1 > α2 > . . . We find a set of Puiseux series

Δλ = C̃μ,l (Δτ)μ + o((Δτ)μ), l = 1, . . . , α1 − α0, (4.3)

where the coefficients C̃μ,l are the solutions of the polynomial equation

Lα1β1Cα1−α0 + Lα2β2Cα2−α0 + · · · + Lα0β0 = 0. (4.4)

Step 4: Let α0 = α1, β0 = β1 and return to Step 1.
Step 5: The algorithm stops.
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Theorem 4.1 For an n-multiple nonzero critical imaginary root of the time-delay
system (1.1), all the Puiseux series can be obtained by Algorithm 4.1.

Proof The relation betweenΔλ andΔτ is determined by the equation F(Δλ,Δτ) =
0, where F(Δλ,Δτ) is the power series described by (3.6). We apply the Newton
diagram to obtain the Puiseux series, as introduced in Sect. 2.4. The Newton polygon
may be constructed via Steps 0, 1, and 4. Each segment of the Newton polygon
determines a set of Puiseux series: The exponent is given by the negative slope of
the segment (Step 1) and the associated coefficients are determined by all the points
from the Newton diagram lying on the segment (Step 3).

According to (1.5) and (1.6), ord(F(Δλ, 0))|Δλ=0 = n and ord(F(0,Δτ))|Δτ=0
= g. In light of Property 1.1, n and g are bounded. Thus, the Newton polygon starts
at the point (0, g) (Step 0) and must terminate at the point (n, 0). The first segment
can be obtained by performing Step 1 for the first time, the endpoint found of which
is denoted by (M1,N1). Step 1 acts as the rotating ruler method to construct the
segments of the Newton polygon. Then, we set (M1,N1) as the initial point for
the next segment, which is realized by Step 4. Repeating Steps 1, 2 and 4, we can
construct the remaining segments. Without any loss of generality, we assume that the
Newton polygon is composed of p (p ∈ N+) segments linking the points (M0,N0),
(M1,N1), . . ., (Mp,Np) (M0 = 0,N0 = g,Mp = n,Np = 0), as shown
in Fig. 2.1.

During the i th (i = 1, . . . , p) implementation of Step 1, there must exist a μ

with 0 < μ < ∞. The repeating of Steps 1–4 must stop when the pth segment
is found. After that, no new μ can be found and Algorithm 4.1 stops. The Puiseux
series obtained from the p segments correspond to totally

∑p
i=1Mi − Mi−1 = n

roots. In other words, all the Puiseux series can be found. �

Remark 4.3 The boundedness of n and g ensures that Algorithm 4.1 necessar-
ily terminates. However, if λ = 0 is a characteristic root, g = ∞ and conse-
quently Algorithm 4.1 does not stop. Such an example will be studied specifically in
Example 4.7 and show that this case can be treated in light of the proposed approach.

4.2.2 Illustrative Examples

We first revisit the three quasipolynomials discussed in Example 3.1. All the three
quasipolynomials have a triple critical imaginary root.However, they exhibit different
types of Puiseux series. Next, we present an example with g > n. To the best of the
authors’ knowledge, such cases have not been sufficiently discussed in the literature.
Finally, we consider an example with a critical imaginary root at the origin.

Example 4.3 Consider a time-delay system with f (λ, τ ) = e−3τλ − (λ6 − λ4 +
λ2)e−2τλ−(λ10−λ8+λ6)e−τλ+λ12 (i.e., the quasipolynomial (3.1)). For τ = π ,λ =
j is a triple critical imaginary root ( fλ( j, π) = fλλ( j, π) = 0 and fλ3( j, π) �= 0).As

http://dx.doi.org/10.1007/978-3-319-15717-7_1
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http://dx.doi.org/10.1007/978-3-319-15717-7_1
http://dx.doi.org/10.1007/978-3-319-15717-7_1
http://dx.doi.org/10.1007/978-3-319-15717-7_2
http://dx.doi.org/10.1007/978-3-319-15717-7_3
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fτ ( j, π) = fττ ( j, π) = 0 and fτ 3( j, π) �= 0, g = 3. By calculation, fλτ ( j, π) = 0.
Now,we invokeAlgorithm4.1. In Step 0,we letα0 = 0 andβ0 = 3. In Step 1,we find

μ = 1. Next, in Step 2, as there exists aμ, go to Step 3. The set satisfying β0−β
α−α0

= 1 is{ 1
6 fλ3( j, π)(Δλ)3, 1

2 fλ2τ ( j, π)(Δλ)2Δτ, 1
2 fλτ 2( j, π)Δλ(Δτ)2

}
. We obtain three

seriesΔλ = C̃1,lΔτ+o(Δτ), l = 1, 2, 3,where C̃1,l are the solutions of the equation
fλ3( j, π)C3 + 3 fλ2τ ( j, π)C2 + 3 fλτ 2( j, π)C + fτ 3( j, π) = 0, with fλ3( j, π) =
−643.34 − 422.61 j , fλ2τ ( j, π) = 150.80 − 28.78 j , fλτ 2( j, π) = −18.85 + 24 j ,
fτ 3( j, π) = −6.00 j . Thus, we have Δλ = (0.14 − 0.23 j)Δτ + o(Δτ), Δλ =
(0.15 − 0.12 j)Δτ + o(Δτ), and Δλ = (0.13 − 0.07 j)Δτ + o(Δτ). After Step 3,
in Step 4, we let α0 = 3, β0 = 0 and return to Step 1. In Step 1, there does not exist
a μ > 0 and hence we skip to Step 5. All the Puiseux series have been explicitly
found and, in particular, they are three Taylor series.

We now study how the asymptotic behavior of the critical imaginary root affects
the stability (more precisely, the number change of the unstable roots caused by
the splitting of the critical imaginary root) based on the Taylor series. For the three
Taylor series, we compare the real parts of Δλ when Δτ = +ε and Δτ = −ε,
respectively. It is easy to conclude that as τ increases from π −ε to π +ε, three roots
cross the imaginary axis C0 at j from C− to C+, i.e., the asymptotic behavior of the
triple critical imaginary root leads to three more unstable roots. The above analysis
is consistent with the root loci given in Fig. 3.1. �

Example 4.4 Consider a time-delay system with f (λ, τ ) = e−2τλ + (π
2 λ3 − λ2 +

π
2 λ+ 1)e−τλ − π

2 λ5 − π
2 λ3 −λ2 (i.e., the quasipolynomial (3.2)). For τ = π , λ = j

is a triple critical imaginary root with g = 2. We now invoke Algorithm 4.1. In Step
0, we let α0 = 0 and β0 = 2. In Step 1, we findμ = 1 ( fλτ ( j, π) �= 0). Next, in Step
2, as there exists a μ, go to Step 3. The set satisfying β0−β

α−α0
= 1 is { fλτ ( j, π)ΔλΔτ }.

We have a Taylor series Δλ = C̃1,1Δτ + o(Δτ), where C̃1,1 is the solution of
1
2 (2 fλτ ( j, π)C + fττ ( j, π)) = 0, with fλτ ( j, π) = 2 + π j , fττ ( j, π) = −2. Thus
we have Δλ = (0.14 − 0.23 j)Δτ + o(Δτ). After Step 3, in Step 4, we let α0 = 1,
β0 = 1, and return to Step 1. In Step 1, we find μ = 1

2 . In Step 2, as there exists

a μ, go to Step 3. The set satisfying β0−β
α−α0

= 1
2 is

{ 1
6 fλ3( j, π)(Δλ)3

}
. We have

the Puiseux series Δλ = C̃ 1
2 ,l(Δτ)

1
2 + o((Δτ)

1
2 ), l = 1, 2, where C̃ 1

2 ,l are the

solutions of 1
6 fλ3( j, π)C2 + fλτ ( j, π) = 0, with fλτ ( j, π) = 2 + π j , fλ3( j, π) =

−36.47 + 148.04 j . We have Δλ = (0.15 + 0.35 j)(Δτ)
1
2 + o((Δτ)

1
2 ) and Δλ =

−(0.15+ 0.35 j)(Δτ)
1
2 + o((Δτ)

1
2 ). After Step 3, in Step 4, we let α0 = 3, β0 = 0,

and return to Step 1. In Step 1, there is no μ > 0. In Step 2, we skip to Step 5. All
the Puiseux series have been explicitly found.

We now study the effect of the asymptotic behavior on the stability. We first
consider the Taylor series. We conclude that one root crosses C0 at j from left to
right as delay increases. We next consider the Puiseux series. Unlike the Taylor
series case, for a Puiseux series, the fractional power of a Δτ has multiple values. In

fact, we may choose any one among them. For this example, two values of (Δτ)
1
2

corresponding to Δτ = +ε are ±√
Δτ . For either value, the two Puiseux series take

http://dx.doi.org/10.1007/978-3-319-15717-7_3
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the values Δλ = ±(0.15 + 0.35 j)
√

Δτ + o(
√

Δτ). Similarly, for Δτ = −ε, two

values of (Δτ)
1
2 are ± j

√−Δτ . For either value, the two Puiseux series take the
values Δλ = ±(0.15 + 0.35 j) j

√−Δτ + o(
√−Δτ). We conclude that two roots

collide at j as τ increases from π − ε to π , one from C− while the other from C+.
As τ increases from π to π +ε, the root j splits into two branches (one heads forC−
while the other heads for C+). Thus, from the stability point of view, the asymptotic
behavior of the triple root leads to one more unstable root. The root loci (Fig. 3.2)
are consistent with the above analysis. In particular, the root locus corresponding to
the Taylor series is marked in the figure. In this case, unlike the ones corresponding
to the Puiseux series, the root locus is smooth near the critical imaginary root. �

Example 4.5 Consider a time-delay system with f (λ, τ ) = e−τλ + 3π
8 λ5 − π2

8 λ4 +
5π
4 λ3 − π2

4 λ2 + 7π
8 λ − π2

8 + 1 (i.e., the quasipolynomial (3.3)). For τ = π , λ = j
is a triple critical imaginary root with g = 1. We invoke Algorithm 4.1. In Step 0,
we let α0 = 0 and β0 = 1. In Step 1, μ = 1

3 . In Step 2, as there exists a μ, go to

Step 3. The set satisfying β0−β
α−α0

= 1
3 is

{ 1
6 fλ3( j, π)(Δλ)3

}
. We have the Puiseux

series Δλ = C̃ 1
3 ,l(Δτ)

1
3 + o((Δτ)

1
3 ), l = 1, 2, 3, where C̃ 1

3 ,l are the solutions of
1
6 fλ3( j, π)C3 + fτ ( j, π) = 0, with fλ3( j, π) = −16.12 − 29.61 j , fτ ( j, π) = j .

We have Δλ = (0.55+0.09 j)(Δτ)
1
3 +o((Δτ)

1
3 ), Δλ = (−0.36+0.43 j)(Δτ)

1
3 +

o((Δτ)
1
3 ), and Δλ = (−0.20 − 0.53 j)(Δτ)

1
3 + o((Δτ)

1
3 ). After Step 3, in Step 4,

we let α0 = 3, β0 = 0, and return to Step 1. In Step 1, there does not exist aμ > 0. In
Step 2, we skip to Step 5. Algorithm 4.1 terminates. Similar to the analysis presented
in Example4.4, the number of the unstable roots decreases by 1 due to the asymptotic
behavior of the triple critical imaginary root (see the root loci in Fig. 3.3). �

Example 4.6 Consider f (λ, τ ) = e−3τλ − 3e−2τλ + 3e−τλ + λ4 + 2λ2. For τ = 0,
λ = j is a double critical imaginary root with g = 3 ( fλ( j, 2π) = 0, fλλ( j, 2π) =
−8, fτ ( j, 2π) = fττ ( j, 2π) = 0, fλτ ( j, 2π) = 0, fτ 3( j, 2π) = 6 j). This is a case

with g > n. By Algorithm 4.1, the Puiseux series are Δλ = (0.35+0.35 j)(Δτ)
3
2 +

o((Δτ)
3
2 ) and Δλ = −(0.35 + 0.35 j)(Δτ)

3
2 + o((Δτ)

3
2 ). Unlike the previous

examples, the numerators of the first-order exponents in this example are not 1. �

For a more intuitive illustration, we explicitly give the Newton polygons for the
above four examples in Fig. 4.2.

In the previous part of this chapter, we have not considered the case where the
origin is a critical imaginary root. In this case, there is always a root at the origin
(invariant root) for all delay values and thus the system can never be asymptotically
stable. When studying the stability, it appears as a common assumption that the
origin is not a critical imaginary root. However, one may still wonder how the critical
imaginary roots at the origin vary with respect to delay (Algorithm 4.1 is not valid
in this case). In the sequel, we give such an example and show that we can also
explicitly compute the Puiseux series following the idea of the Newton diagram.
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(a) (b)

(c) (d)

Fig. 4.2 Newton polygons for Examples4.3–4.6. a Example 4.3. b Example4.4. c Example 4.5.
d Example4.6

Example 4.7 Consider the example of an inverted pendulum controlled by a delayed
controller as discussed in [105]. The characteristic function of the linearized system
in closed-loop writes as (by choosing, e.g., ε = 2/3, a = b = 1 in [105]): f (λ, τ ) =
λ2 + 2(e−τλ(1 + λ) − 1). It is easy to see that f (0, τ ) = 0 for all τ . We study the
asymptotic behavior near τ = 1. Forλ = 0 and τ = 1, fλ = fλλ = 0, fλ3 = 4. Thus,
λ = 0 is a triple root at τ = 1. For any γ ∈ N+, fτγ = 2(1 + λ)(−λ)γ e−τλ = 0.
Algorithm 4.1 can not be applied since g = ∞. However, it is not hard to treat the
problem. We have that fλτ = −2 �= 0. As discussed in [71], to make the right-

hand side of (3.5) equal to 0, the only possibility is to let
f
λ3

6 (Δλ)3 + fλτΔλΔτ =
o(ΔλΔτ). It is easy to haveΔλ = (3Δτ)

1
2 +o((Δτ)

1
2 ) (it is a degenerate case, which

will be discussed in the next section). The Puiseux series provide the information on
two roots passing through the origin. Since there are three root loci (the multiplicity
is 3), we need to find the expression of Δλ for the remaining one. Obviously, it is
Δλ = 0, which is easy to understand: λ = 0 is an invariant root for all delays and
as τ increases to 1 two new roots collide at the origin. The root loci are shown in
Fig. 4.3. The fixed root λ = 0 is seen in Fig. 4.3b. �

Remark 4.4 It is worth mentioning that, in Example 4.7, the multiplicity of the root
at the origin is larger than the degree of the polynomial corresponding to the delay-
free system. For a deeper discussion on tracking the root multiplicity at the origin

http://dx.doi.org/10.1007/978-3-319-15717-7_3
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Fig. 4.3 Root loci for Example4.7. a Re(λ) versus Im(λ). b Re(λ) versus τ

of time-delay systems as well as related upper bounds and properties, one may refer
to [8, 9].

4.3 Studying Some Degenerate Cases

For Examples4.3–4.6,2 all the first-order terms of the Puiseux series do not contain
purely imaginary numbers whenΔτ = ±ε. Thus, the first-order terms of the Puiseux
series are sufficient for the asymptotic behavior analysis. However, the first-order
terms of the Puiseux series are not sufficient for our problem if they involve purely
imaginary numbers when Δτ = ±ε (this is the so-called degenerate case). The
following example will show that we may invoke Algorithm 4.1 in some iterative
manner to obtain the higher order terms of the Puiseux series. As a consequence, the
asymptotic behavior in the degenerate case may also be analyzed.

Example 4.8 Consider the time-delay system

ẋ(t) =
⎛

⎝
0 1 0
0 0 1
0 −2π − π2 2

⎞

⎠ x(t) +
⎛

⎝
0 0 0
0 0 0

−π3 −2π 2 − π

⎞

⎠ x(t − τ),

with f (λ, τ ) =λ3 − 2λ2 + (2π + π2)λ + ((π − 2)λ2 + 2πλ + π3)e−τλ. As τ = 1,
λ = jπ is a double critical imaginary root with g = 1 ( fλ = 0, fλλ = π(2 j−2)
(π − 1) �= 0). Near the critical pair ( jπ, 1), the power series F(Δλ,Δτ) (3.6) is

F (Δλ,Δτ) = fτΔτ + 1

2
fλλ(Δλ)2 + · · ·

2 Example4.7 is specific as there is an invariant characteristic root at the origin.

http://dx.doi.org/10.1007/978-3-319-15717-7_3
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Fig. 4.4 Root loci for Example4.8. a Re(λ) versus Im(λ). b Re(λ) versus τ

(the terms denoted by “· · · ” are not needed for computing the first-order terms
of the Puiseux series). Using Algorithm 4.1, we have the Puiseux series Δλ =
3.04 j(Δτ)

1
2 +o((Δτ)

1
2 ) andΔλ = −3.04 j(Δτ)

1
2 +o((Δτ)

1
2 ). This is a degenerate

case and we need to calculate the higher order terms. For Δλ = 3.04 j(Δτ)
1
2 +

o((Δτ)
1
2 ), we let Δτ1 = (Δτ)

1
2 . By substituting Δλ = Δτ1(3.04 j + Δλ1) into

F(Δλ,Δτ), we have F(Δλ,Δτ) = (Δτ1)
2 F̃1 (Δλ1,Δτ1) with

F̃1 (Δλ1,Δτ1) = 3.04 j fλλΔλ1 + (3.04 j fλτ + 1

3! (3.04 j)3 fλ3)Δτ1 + · · ·

ApplyingAlgorithm4.1 to F̃1 (Δλ1,Δτ1) = 0yieldsΔλ1 = (2.15+0.68 j)Δτ1+
o(Δτ1). Hence, we obtain a Puiseux series sufficient for the asymptotic behav-

ior analysis Δλ = 3.04 j(Δτ)
1
2 + (2.15 + 0.68 j)Δτ + o(Δτ). Similarly, for

Δλ = −3.04 j(Δτ)
1
2 + o((Δτ)

1
2 ), we have Δλ = −3.04 j(Δτ)

1
2 + (2.15 +

0.68 j)Δτ + o(Δτ). Root loci near ( jπ, 1) (Fig. 4.4) illustrate the results. �

4.4 Useful Properties for Puiseux Series

In this section, we will introduce some algebraic properties of analytic curves (see
[2, 15, 121]). These properties will be very useful for invoking and analyzing the
Puiseux series.

4.4.1 Conjugacy Class

In the examples of this chapter, for an n-multiple critical imaginary root, we invoke n
independent Puiseux series. Such expressions are in fact a little clumsy. The Puiseux
series can be expressed in a more compact form if we introduce the concept of
conjugacy class, see, e.g., [15].
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For a Puiseux series s = ∑∞
i=1 Ci x

i
N (2.3), N is called the polydromy order if N

and all i with Ci �= 0 have no common factor greater than 1. Without any loss of
generality, if a Puiseux series is given in the form (2.3), N is the polydromy order.

For a Puiseux series s described in (2.3), the Puiseux series σξ (s) (ξN = 1)

σξ (s) =
∞∑

i=1

ξ i Ci x
i
N (4.5)

will be called the conjugates of s. The set of all the N conjugates of s will be called
the conjugacy class of s. Recall that for a power series Φ(y, x), the Puiseux series s
is called a y-root for Φ(y, x) = 0 if Φ(s, x) = 0 (Sect. 2.2). We have:

Property 4.1 If s is a y-root for Φ(y, x) = 0, then all conjugates of s are y-roots
too.

According to Property 4.1, for the Puiseux series belonging to one conjugacy
class, one expression will be sufficient to describe all of them. We demonstrate the
advantage through the following example.

Example 4.9 Revisit now Example 4.5, where ( j, π) is a critical pair with indices
n = 3 and g = 1. For the critical pair, three expressions of the Puiseux series are:

Δλ = (0.55+0.09 j)(Δτ)
1
3 +o((Δτ)

1
3 ),Δλ = (−0.36+0.43 j)(Δτ)

1
3 +o((Δτ)

1
3 ),

and Δλ = (−0.20−0.53 j)(Δτ)
1
3 +o((Δτ)

1
3 ). These three expressions correspond

to a same conjugacy class. Therefore, any one among the above three expressions is
enough to fully express the asymptotic behavior of the triple critical imaginary root.

For instance, we choose the expression Δλ = (0.55 + 0.09 j)(Δτ)
1
3 + o((Δτ)

1
3 ).

The variation of the triple critical imaginary root as delay increases from π to π + ε

(π − ε to π ) can be deduced by substituting the three values of (+ε)
1
3 ((−ε)

1
3 ) into

(Δτ)
1
3 for this expression. One may notice that the value sets of the Puiseux series

by the substitution of the values of (+ε)
1
3 and (−ε)

1
3 do not change if we choose the

other two expressions of the Puiseux series. �

Remark 4.5 It should be pointed out that a critical pair may correspond to multiple
conjugacy classes of Puiseux series. In this book, without any loss of generality, we
suppose that a critical pair corresponds to v ∈ N+ conjugacy classes of Puiseux
series. For the sake of simplicity, we adopt the short expression “v Puiseux series”
instead of “v conjugacy classes of Puiseux series”.

4.4.2 Structure of Puiseux Series

Algorithm 4.1 only allows us to obtain finitely many terms of the Puiseux series. In
the remaining part of the book, we will often need to know the general expression

http://dx.doi.org/10.1007/978-3-319-15717-7_2
http://dx.doi.org/10.1007/978-3-319-15717-7_2
http://dx.doi.org/10.1007/978-3-319-15717-7_2
http://dx.doi.org/10.1007/978-3-319-15717-7_2
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(also called the structure) of the Puiseux series. The general expression is determined
by the number of conjugacy classes, polydromy orders, and first-order coefficients.
We now explain it through revisiting Examples 4.4 and 4.6.

For Example 4.4, ( j, π) is a critical pair with n = 3 and g = 2. The asymp-
totic behavior corresponds to two conjugacy classes of Puiseux series. The general
expression of the Puiseux series is

⎧
⎪⎪⎨

⎪⎪⎩

Δλ =
∞∑

i=1
C1i (Δτ)i ,

Δλ =
∞∑

i=1
C2i (Δτ)

i
2 ,

where C1i (C11 �= 0) and C2i (C21 �= 0) are complex coefficients.
For Example 4.6, ( j, 2π) is a critical pair with n = 2 and g = 3. The asymp-

totic behavior corresponds to one conjugacy class of Puiseux series. The general
expression of the Puiseux series is

Δλ =
∞∑

i=3

C1i (Δτ)
i
2 ,

where C1i (C11 = C12 = 0, C13 �= 0) are complex coefficients.
The structures of Puiseux series for some specific classes of time-delay systems

will be given in Chaps. 6 and 7. The structure for general time-delay systems with
commensurate delays will be presented in Chap.8.

Remark 4.6 For a critical imaginary root λα associated with infinitely many critical
delays τα,k, k ∈ N, the structure of the Puiseux series may vary considerably with
respect to different k, which makes the analysis of the complete stability involved.

4.5 Notes and Comments

To the best of the authors’ knowledge, the Puiseux series was first introduced in
studying the stability of time-delay systems by a cornerstone work [18, 19],3 impact-
ing significantly our research. The perturbation analysis for analytic matrix functions
(see [5, 56])was adopted therein.However, in our opinion, themethod of [18, 19] can-
not be applied directly to the general case. As discussed in Chap. 3 and this chapter,
the analytic curve perspective allows us to fully study the asymptotic behavior of a
critical pair. Moreover, some useful properties for analytic curves will be introduced
later for the complete stability problem.

Most of the results in the first three sections of this chapter are taken from [71].
The materials in Sect. 4.4 are new.

3 The earlier conference versions of the work were reported in [17, 33].

http://dx.doi.org/10.1007/978-3-319-15717-7_6
http://dx.doi.org/10.1007/978-3-319-15717-7_7
http://dx.doi.org/10.1007/978-3-319-15717-7_8
http://dx.doi.org/10.1007/978-3-319-15717-7_3


Chapter 5
Invariance Property: A Unique Idea
for Complete Stability Analysis

In Chap.4, we have pointed out that the asymptotic behavior of a critical imaginary
root must correspond to some Puiseux series. Furthermore, an algorithm was pre-
sented to obtain all the Puiseux series of a critical pair. Therefore, we can now solve
Problem 2.1.

In the first three sections of this chapter, we will show that the number of unstable
roots (NU (τ )) can be precisely calculated for any finitely large τ , based on the
solution of Problem 2.1. More precisely, in Sect. 5.1, we will give the procedure to
compute NU (+ε) and in Sect. 5.2, wewill explain how to calculateΔNUλα (τα,k) for
a critical pair (λα, τα,k > 0). Amethod for the calculation of NU (τ )will be presented
in Sect. 5.3. However, it is still far from being able to solve the complete stability
problem for time-delay systems with commensurate delays. The obstacles will be
explained in Sect. 5.4, giving rise to Problem 2.2. Since there exist no appropriate
“routine” ways to address Problem 2.2, we need to seek for a new analysis line.
The existing literature is helping us, and a very useful property will be recalled in
Sect. 5.5: The invariance property has been found for some specific types of time-
delay systems. If such an invariance property holds for any time-delay system with
commensurate delays, thenProblem2.2 can be fully investigated.However, it appears
rather uncertain if this hypothesis is true. In Sect. 5.6, we will formally formulate the
problem of proving the general invariance property.

A main purpose of this chapter is to propose a potential solution (by means of
proving the general invariance property) for Problem 2.2. Rigorous proof will be
given in subsequent chapters.

© The Author(s) 2015
X.-G. Li et al., Analytic Curve Frequency-Sweeping Stability Tests for Systems
with Commensurate Delays, SpringerBriefs in Control, Automation and Robotics,
DOI 10.1007/978-3-319-15717-7_5
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5.1 Infinitesimal Delay Case and Spectral Properties

As mentioned earlier, it is always required to know NU (+ε) for precisely studying
the stability of a time-delay system. If the delay-free system contains no critical imag-
inary roots, then, according to the root continuity argument, NU (+ε) = NU (0). If
the delay-free system has simple critical imaginary roots (without multiple ones), the
method based on the implicit function theorem for computing NU (+ε)was proposed
in e.g., [109, 122]. Such a situation appears naturally when oscillatory systems are
controlled by using delay (block) controllers (see [58, 85, 92]). However, to the best
of the authors’ knowledge, the scenario that the delay-free system involves multiple
critical imaginary roots has not been studied.

In this section, we give a procedure to compute NU (+ε), covering the general
case. The procedure is stated in the following straightforward result.

Theorem 5.1 If the system (1.1) has no critical imaginary roots when τ = 0,
NU (+ε) = NU (0). Otherwise, NU (+ε) − NU (0) equals to the number of the
values in C+ of the Puiseux series for all the corresponding critical imaginary roots
when τ = 0 with Δτ = +ε.

Example 5.1 Consider the time-delay system in Example 4.6 with f (λ, τ ) =
e−3τλ − 3e−2τλ + 3e−τλ + λ4 + 2λ2. When τ = 0, this system has four character-
istic roots. More precisely, λ = j as well as λ = − j is a double critical imaginary
root. Using Algorithm 4.1, we have the following Puiseux series for the critical pair
( j, 0)1:

Δλ = (0.3536 + 0.3536 j)(Δτ)
3
2 + o

(
(Δτ)

3
2

)
. (5.1)

Fig. 5.1 Re(λ) versus τ for
Example 5.1
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1 Notice that the two independent Puiseux series calculated in Example 4.6 can be expressed by a
conjugacy class of Puiseux series (5.1) following the discussions in Sect. 4.4.1.

http://dx.doi.org/10.1007/978-3-319-15717-7_1
http://dx.doi.org/10.1007/978-3-319-15717-7_4
http://dx.doi.org/10.1007/978-3-319-15717-7_4
http://dx.doi.org/10.1007/978-3-319-15717-7_4
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Substituting Δτ = +ε into (5.1) indicates that as τ increases from 0, the double
root j splits into two branches toward C− and C+ respectively, which is verified
by the root loci given in Fig. 5.1. Thus, NU (+ε) = +2 in light of the conjugate
symmetry. �

5.2 Quantifying Asymptotic Behavior of a Critical
Imaginary Root

In the sequel, we show that ΔNUλα (τα,k) can be accurately calculated by means of
the Puiseux series for the critical pair (λα, τα,k). More precisely, for a critical pair
(λα, τα,k) with τα,k > 0, we substitute Δτ = +ε (Δτ = −ε) into the corresponding
Puiseux series. Then, the value of ΔNUλα (τα,k) can be obtained by comparing the
numbers of the values of the Puiseux series in C+ when Δτ = +ε and Δτ = −ε,
respectively.

Example 5.2 Revisit the time-delay system in Example 4.5 with f (λ, τ ) = e−τλ +
3π
8 λ5 − π2

8 λ4 + 5π
4 λ3 − π2

4 λ2 + 7π
8 λ − π2

8 + 1, where λ = j is a triple criti-
cal imaginary root at τ = π . For the critical pair ( j, π), the Puiseux series have
one (two) value(s) in C+ when Δτ = +ε (Δτ = −ε). Thus, ΔNU j (π) =
1 − 2 = −1. �

5.3 Stability Test for Bounded Delay

Now we can effectively solve Problems 1 and 2.1. As a consequence, we are able to
compute NU (τ ) for any finitely large delay value τ .

Theorem 5.2 For a finitely large τ which is not a critical delay, NU (τ ) for the
time-delay system (1.1) can be computed as

NU (τ ) = NU (+ε) + 2
∑

0<τα,k<τ

ΔNUλα (τα,k). (5.2)

Proof Due to the root continuity argument, as τ increases from +ε, only at critical
delays NU (τ )may change. At a critical delay τα,k , the variation of NU (τ ) caused by
the asymptotic behavior of λα is ΔNUλα (τα,k). In view of the conjugate symmetry
of the spectrum, at the critical delay τα,k ,−λα is also a critical imaginary root and the
effect of its asymptotic behavior on NU (τ ) can also be quantified as ΔNUλα (τα,k).
Thus, the proof is completed. �

http://dx.doi.org/10.1007/978-3-319-15717-7_4
http://dx.doi.org/10.1007/978-3-319-15717-7_1
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Fig. 5.2 NU (τ ) for
Example 5.3
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An example is given below to show that we may plot NU (τ ) for any bounded
interval of τ .

Example 5.3 Consider the time-delay system in Example 5.1. Our task is to compute
NU (7) and plot NU (τ ) for τ ∈ [0, 7]. This system has two sets of critical pairs
( j, 2kπ) and (1.9566 j, (2k+1)π

1.9566 ). According to Theorem 5.2, it follows that

NU (7) = NU (+ε) + 2ΔNU j (2π) + 2ΔNU1.9566 j (1.6056)

+ 2ΔNU1.9566 j (4.8169),

where NU (+ε) = 2 (see Example 5.1). Using the approach in Chap.4, we
have that the Puiseux series for the critical pairs ( j, 2π), (1.9566 j, 1.6056), and

(1.9566 j, 4.8169) are respectively: Δλ = (0.3536 + 0.3536 j)(Δτ)
3
2 + o((Δτ)

3
2 ),

Δλ = (0.6036−0.5253 j)Δτ +o(Δτ), andΔλ = (0.1357−0.3543 j)Δτ +o(Δτ).
Next,ΔNU j (2π) = 0,ΔNU1.9566 j (1.6056) = +1, andΔNU1.9566 j (4.8169) =

+1, following the discussions in Sect. 5.2. We have NU (7) = 6 and the variation of
NU (τ ) for τ ∈ [0, 7] can be obtained, see Fig. 5.2. �

In Example 5.3, we invoke four Puiseux series for four critical pairs (including
the critical pair ( j, 0) in order to compute NU (+ε)). For each Puiseux series, we
only need to compute the first-order terms as no degenerate case occurs. However,
the computational load may significantly increase for a more involved case (e.g.,
when τ is large and when the degenerate case occurs).

5.4 Limitations

Although we can now compute NU (τ ) for any bounded τ , the existing results are
still not enough for the complete stability problem. In this section, we list the main
limitations of the currently available results.

http://dx.doi.org/10.1007/978-3-319-15717-7_4
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5.4.1 Computational Complexity Issues

The calculation of NU (τ ) for a given τ requires a series of tedious algebraic
manipulations. We have to manually obtain the Puiseux series for all the critical
pairs (λα, τα,k) with τα,k < τ . Unfortunately, for the moment, this task cannot be
automatically fulfilled by existing software. Note that, even for a same critical imag-
inary root, the Puiseux series may exhibit remarkable differences (not only in the
coefficients but also in the structure) for different critical delays. If the number of
critical pairs to be analyzed is large, the computational load increases accordingly.
Thus, it is very difficult to explicitly calculate NU (τ ) by Theorem 5.2 when τ is
large.

5.4.2 Large Delays and Ultimate Stability Problem

In order to thoroughly solve the complete stability problem, we need to understand
the way the spectrum changes when τ → +∞. This is the so-called ultimate stability
problem, which has not been fully investigated so far.

As seen in Example 1.2 (i.e., Example 5.11 in [39]), Example 1.3 (i.e., the case
study of [97]), and Example 2 in [122], increasing the delay in a certain interval may
bring a stabilizing effect. One may naturally wonder the effect of delay (stabilizing
or destabilizing) if it keeps increasing. To answer this question, we need to know the
limit behavior as τ → ∞, i.e., lim

τ→∞ NU (τ ).

To the best of the authors’ knowledge, it is impossible to “compute” NU (∞) by
using the existing methods. Without a general understanding of NU (∞), we will
always suspect if some stability intervals distant in the τ -axis are missing since, as
already discussed, we can only compute NU (τ ) by Theorem 5.2 for a finitely large τ

in practice.

5.5 Invariance Property for Some Specific Delay Systems

A very useful property of the form “ΔNUλα (τα,k) is a constant for all k ∈ N with
τα,k > 0” (called the invariance property) has been found for some specific time-
delay systems. Most of the studies reported in the literature were devoted to case
with only simple critical imaginary roots, see [21, 122], and the references therein.
One may think that the issue of proving the invariance property in the case without
multiple critical imaginary roots should be easy. In fact, it was in two recent papers
[97, 109] that this issue was systematically solved. However, the above approaches
cannot be extended to general time-delay systems as the mathematical tools used are
only valid for the specific scenario without multiple critical imaginary roots.

http://dx.doi.org/10.1007/978-3-319-15717-7_1
http://dx.doi.org/10.1007/978-3-319-15717-7_1
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To the best of the authors’ knowledge, only a few results have been reported for the
invariance property related to time-delay systems with multiple critical imaginary
roots. A pioneering work is [64], although the invariance issue was not explicitly
discussed therein. An interesting geometric criterion was proposed, which offers a
simple way to analyze the asymptotic behavior: An any-multiple critical imaginary
root’s asymptotic behavior can be graphically determined by the criterion. However,
the time-delay system considered therein is restricted to have a simple form of char-
acteristic functions. The result in [64] is very enlightening as the critical imaginary
root is allowed to bewith anymultiplicity. However, in our opinion, themathematical
argument proposed in [64] (based on the Lagrange’s inversion formula) cannot be
easily extended to the general case. Another work motivating considerably our study
is the recent paper [54]. Its novelty consists in characterizing explicitly an invariance
property for multiple critical imaginary roots of time-delay systems, though some
strong constraints (it is required that n ≤ 2 and g = 1 and that the degenerate case
does not occur) were imposed.

5.6 General Invariance Property Statement

Asdiscussed earlier, Problem2.2 cannot be addressedby a “routine”method. Inspired
by the invariance property for some specific time-delay systems recalled in Sect. 5.5,
wewonder if this useful property holds for any time-delay systemwith commensurate
delays. If such a property is true, Problem 2.2 then can be fully investigated and new
insights for time-delay systems may be derived.

However, this appears very uncertain as the Puiseux series for a critical imaginary
root may vary considerably with respect to different critical delays.We now formally
present the concept of general invariance property in this study, as follows:

General Invariance Property For a critical imaginary root λα , ΔNUλα (τα,k) is a
constant for all k ∈ N with τα,k > 0.

In the subsequent three chapters, we will concentrate on proving this general
invariance property.

5.7 Notes and Comments

As we will see it is not a trivial work to verify whether or not the general invariance
property holds. The difficulty lies in that we do not have an effective tool at hand
for this issue. Furthermore, no existing mathematical results in the literature can be
directly employed to prove it. The frequency-sweeping framework to be proposed in
this volume will allow addressing such a problem.



Chapter 6
Invariance Property for Critical Imaginary
Roots with Index g = 1

We start confirming the invariance property with the specific case where g = 1
for all the critical pairs, which is the central task of this chapter. For this specific
case, we will find in this chapter a useful equivalence relation between the critical
imaginary roots’ asymptotic behavior and the frequency-sweeping curves, based on
which the invariance property can be proved in the case g = 1. In the following two
chapters, such an equivalence relation will be further studied and play a pivotal role
in confirming the general invariance property.

6.1 Preliminaries

Consider the time-delay system (1.1)

ẋ(t) =
m∑

�=0

A�x(t − �τ),

with the characteristic function f (λ, τ ) described by (1.3)

f (λ, τ ) = a0(λ) + a1(λ)e−τλ + · · · + aq(λ)e−qτλ.

The aim of this chapter is to confirm the invariance property, under the following
assumption:

Assumption 6.1 Assume that g = 1 for all critical pairs.

If Assumption 6.1 is violated, the problem will be deferred to the latter chap-
ters. Furthermore, Assumption 6.1 ensures that λ = 0 is not a characteristic root
(otherwise, the system cannot be asymptotically stable for any τ ≥ 0).

© The Author(s) 2015
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Property 6.1 Under Assumption 6.1, λ = 0 is not a characteristic root of the system
(1.1).

Proof If λ = 0 is a characteristic root, fτ = 0 at all the associated critical pairs,
which contradicts Assumption 6.1. �

We now recall the results of [54], which considerably motivate the current study.

Property 6.2 ([54]) If λα is a double root at τα,k′ (k′ ∈ N) of the system (1.1)
and Assumption 6.1 holds, then λα is a simple root for the system (1.1) at any τα,k

(k �= k′).
Sketch of the proof: For a double critical imaginary root, fλ = 0. Thus, at (λα, τα,k′),
fλ = pλ− pzzτα,k′ = 0 (p(λ, z) is defined in (1.4)). It is natural that at any (λα, τα,k)

with k �= k′, fλ = −pzz(τα,k − τα,k′) �= 0, as pz �= 0 under Assumption 6.1.
In fact, the condition “ fλ = 0” will be used for any critical imaginary root with

multiplicity larger than 1 (to be seen in the proof of Property 6.5).

Theorem 6.1 ([54]) Suppose Assumption 6.1 holds and λα is a double root at τα,k′ >

0 of the system (1.1). Near (λα, τα,k′), the variation of λ with respect to τ can be
expressed as the Puiseux series

Δλ = C1(Δτ)
1
2 + o((Δτ)

1
2 ), (6.1)

where C1 is the complex coefficient with C2
1 = −2 fτ

fλλ
. If C2

1 is not purely real, it

follows that for any τα,k > 0, k �= k′,

ΔNUλα (τα,k) = ΔNUλα (τα,k′). (6.2)

However, if C2
1 is purely real, Theorem 6.1 does not help in concluding on the

asymptotic behavior and this is called a degenerate case. In this chapter, we will
extend the results of Theorem 6.1 in order to handle the cases of any multiplicity as
well as the degenerate cases. For a general time-delay system (1.1), to the best of
the authors’ knowledge, the Puiseux series expansion represents the only effective
tool for studying the asymptotic behavior of critical imaginary roots. In Chap. 4, a
systematic approach for computing the Puiseux series was proposed. However, the
closed form of the Puiseux series for a general time-delay system has not yet been
explicitly reported in the literature. As discussed in Sect. 4.4.2, a critical imaginary
root may exhibit various types of Puiseux series. In the sequel, we will give the
general expression of the Puiseux series for the systems under consideration in this
chapter. Next, we will propose a more general invariance property and an easily
implemented frequency-sweeping criterion.

6.2 General Expression of Puiseux Series When g = 1

For a critical imaginary root satisfying Assumption 6.1, according to Property 1.1
(Chap. 1), the multiplicity n must be finite. We have the following result:

http://dx.doi.org/10.1007/978-3-319-15717-7_1
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Theorem 6.2 For an n-multiple critical imaginary root λα of the system (1.1) at a
critical delay τα,k′ , if Assumption 6.1 holds, all its root loci are subject to the Puiseux
series

Δλ = C1(Δτ)
1
n + C2(Δτ)

2
n + C3(Δτ)

3
n + · · · , (6.3)

where C1 �= 0, C2, C3, . . . are the complex coefficients.

The proof of Theorem 6.2 can be found in [72], following a similar line of [123].
In the sequel, we give a more concise proof.

Proof First, using Algorithm 4.1, we have that the exponent of the first (nonzero)
term of the Puiseux series is 1

n . We may next finish the proof according to the fact

that the Puiseux series has n values for a Δτ . As the term (Δτ)
1
n has n values for a

Δτ , the general form of the Puiseux series must have only one conjugacy class and
the polydromy order must be n. The general form (6.3) is now obtained. �
Remark 6.1 When n = 1, the Puiseux series (6.3) reduces to the well-known Taylor
series. We can study the stability accordingly, see [70].

For ann-multiple critical imaginary rootλα at τα,k′ ,ΔNUλα (τα,k′) can be obtained
according to the Puiseux series (6.3). If it is the non-degenerate case, the first-order

term C1(Δτ)
1
n (C1 = (−n! fτ

fλn
)
1
n by Algorithm 4.1) is sufficient. However, in the

degenerate case, the higher order terms are required. In the sequel, we will show that
we can estimate ΔNUλα (τα,k′) without invoking the Puiseux series.

6.3 Invariance Property When g = 1

Introducing z = e−τλ, we can rewrite f (λ, τ ) as (1.4)

p(λ, z) =
q∑

i=0

ai (λ)zi .

Weassume thataq( jω) �= 0 for anyω ∈ R+. As discussed in [70], this assumption
is introduced here only for brevity and does not affect the result of the work.

Define

p̃(λ, z) =
q∑

i=0

ãi (λ)zi = 0, (6.4)

where ãi (λ) = ai (λ)
aq (λ)

. It is easy to see that ãq(λ) = 1. Given ai (λ) (i = 0, . . . , q),
there exist continuous functions Ll(λ) (l = 1, . . . , q) such that

p̃(λ, z) =
q∏

l=1

fl =
q∏

l=1

(z + Ll(λ)). (6.5)
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We do not need the explicit expressions of Ll(λ). The following properties will
be sufficient for confirming the invariance property.

Property 6.3 The continuous mappings Ll(λ) : C �→ C (l = 1, . . . , q) are unique.

Proof For each given λ, p(λ, z) = 0 can be viewed as a polynomial equation in z,
with the solutions −L1(λ), . . . ,−Lq(λ). �

The following property will reveal that f (λ, τ ) = 0 at (λα, τα,k′) if and only if
one factor (z + Ll(λ)) is 0 at (λα, τα,k′). In addition, the corresponding function
Ll(λ) is analytic with respect to λ near λα .

Property 6.4 Assume that (λα, τα,k′) is a critical pair for the system (1.1). Under
Assumption 6.1, there is only one factor fl = z + Ll(λ) = 0 at (λα, τα,k′). The
function Ll(λ) with z + Ll(λ) = 0 at (λα, τα,k′) is analytic with respect to λ at
λ = λα .

Proof As fτ = −pzzλ, pz �= 0 at any critical pair under Assumption 6.1. Thus,
z = e−τα,k′λα is a simple root of p(λ, z) = 0 when λ = λα . By the implicit function
theorem (see Appendix A), there exists a unique solution z(λ) satisfying z(λα) =
e−τα,k′λα , which is analytic at λα . �

Without any loss of generality, we let f1 = 0 and fl �= 0, l = 2, . . . , q at
(λα, τα,k′). In fact, by this setting, f1 = 0 and fl �= 0, l = 2, . . . , n, at all (λα, τα,k),
k ∈ N.

Property 6.5 Suppose λα is an n-multiple root at τα,k′ for the system (1.1). If
Assumption 6.1 holds, it follows that:

(i) λα is an n-multiple (a simple) root at τα,k′ (any τα,k, k �= k′) for the system
(1.1).

(ii) Only factor f1 = 0 when λ = λα and τ = τα,k, k ∈ N.

Proof First, λα is a κ-multiple (κ ∈ N+) root of the system (1.1) at τα,k′ if and only if
λα is a κ-multiple root for f1 = 0 at τα,k′ , due to Property 6.4 and our setting. Next,
if λα is a multiple root at τα,k′ , the condition fλ = 0 holds at (λα, τα,k′). As f1 = 0
and fl �= 0, l = 2, . . . , q, at (λα, τα,k′), fλ = (−τe−τλ + d L1(λ)

dλ
) f2 · · · fqaq(λ) at

(λα, τα,k′). According to the context, −τe−τλ + d L1(λ)
dλ

= 0 and f2 · · · fqaq(λ) �= 0

at (λα, τα,k′). Then, at any (λα, τα,k), k �= k′, fλ �= 0 since −τe−τλ + d L1(λ)
dλ

=
−(τα,k − τα,k′)e−τα,k′λα �= 0 (the value of f2 · · · fqaq(λ) is independent of k). Thus,
for any τα,k , k �= k′, λα is a simple root for the system (1.1). �

To summarize, all these properties lead to the following result:

Theorem 6.3 Under Assumption 6.1, if λα = jωα is an n-multiple root at τα,k′ > 0,
it follows that, for any τα,k > 0 (k �= k′), ΔNUλα (τα,k) = ΔNUλα (τα,k′).

Furthermore, λα = jωα is an n-multiple root for f1 = 0 at τα,k′ .
Finally, for all positive critical delays τα,k , k ∈ N, the following properties hold:
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(i) ΔNUλα (τα,k) = +1(−1) if and only if as ω increases, |L1( jω)| − 1 changes
its sign near ωα from negative to positive (from positive to negative).

(ii) ΔNUλα (τα,k) = 0 if and only if as ω increases, |L1( jω)| − 1 does not change
its sign near ωα .

The proof relies on the following lemma:

Lemma 6.1 Assume that λα = jωα is an n-multiple critical imaginary root at τα,k′
for the characteristic equation

e−τλ + φ(λ) = 0, (6.6)

where φ(λ) is an analytic function at λα . At all positive critical delays τα,k , k ∈ N,
ΔNUλα (τα,k) is mirrored by the frequency-sweeping property of φ(λ):

(i) ΔNUλα (τα,k) = +1(−1) if and only if as ω increases, |φ( jω)| − 1 changes its
sign near ωα from negative to positive (from positive to negative).

(ii) ΔNUλα (τα,k) = 0 if and only if as ω increases, |φ( jω)| − 1 does not change
its sign near ωα .

Lemma 6.1 is slightly extended from Theorem 15 in [64], where φ(λ) is of the
form h(λ)

g(λ)
(h(λ) and g(λ) are polynomials). The proof of Lemma 6.1 is given below.

Proof The characteristic equation (6.6) can be rewritten as τ = ζ
λ
with ζ =

− ln(−φ(λ)) + 2kπ j (ln(·) denotes the principal value of the logarithmic func-
tion). The geometric criterion used in [64] is obtained by analyzing the derivatives
of ζ with respect to λ, which is equivalent to the frequency-sweeping test here. More

precisely, if λα is an n-multiple root at τα,k′ , we can define: τα,k′ = ζα,k′
λ

, ζα,k′ =
− ln(−φ(λ)) + 2k0π j , τα,k = ζα,k

λ
, ζα,k = ζα,k′ + 2(k − k′)π j , where k0 ∈ Z. By

Property 6.5, at all τα,k , k �= k′, λα is a simple root. It is easy to see that ζα,k′ and
ζα,k have the same derivatives (of all orders) with respect to λ. Thus, according to
the approach in [64], ΔNUλα (τα,k) is a constant for all positive τα,k and it can be
examined by the frequency-sweeping test as stated in the lemma. It can be seen that
the result in [64] is applicable to any φ(λ) only if φ(λ) is analytic at λα . �

According to Property 6.4, L1(λ) is analytic at λα . We can now prove Theorem
6.3 based on Lemma 6.1.

Remark 6.2 TheexplanationofTheorem6.3 is twofold. First, it proves the invariance
property of any-multiple critical imaginary roots, including the degenerate case.
Second, it provides a simple method to compute ΔNUλα (τα,k). We may simply
observe the frequency-sweeping curves, without invoking the Puiseux series.

We recall here the procedure for generating the frequency-sweeping curves given
in Sect. 1.2.3: Sweep ω and for each λ = jω we have q solutions of z such that
p(λ, z) = 0 (denoted by z1( jω), . . . , zq( jω)). In this way, we obtain q frequency-
sweeping curves Γi (ω) : |zi ( jω)| versus ω (i.e., in the context of this chapter,
|Li ( jω)| versus ω since zi ( jω) = −Li ( jω)), i = 1, . . . , q.

http://dx.doi.org/10.1007/978-3-319-15717-7_1
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6.4 Simple Class of Quasipolynomials

In this section, we will consider specifically a simple class of quasipolynomial:

Q(λ) + P(λ)e−τλ, (6.7)

where Q(λ) and P(λ) are co-prime polynomials in λ with deg(Q(λ)) > deg(P(λ)).
This class of quasipolynomials (6.7) have been largely studied in the literature,

see [7, 21, 64, 77, 82]. However, the complete stability has not been solved so far.
We now make use of the approach proposed in this chapter and we will see that the
complete stability problem can be fully investigated.

Property 6.6 For any nonzero critical imaginary root of the system (6.7), the index
g equals to 1.

Property 6.6 follows straightforwardly from Property 1.1 (Chap. 1).
Thus, all the results derived in this chapter apply to the time-delay systems whose

characteristic functions are in the form (6.7). We have the following results:

Corollary 6.1 For an n-multiple nonzero critical imaginary root of the system (6.7),
the Puiseux series is in the form (6.3).

Corollary 6.2 The invariance property holds for a time-delay system whose char-
acteristic function is of the form (6.7).

6.5 Illustrative Examples

We first revisit some of the examples proposed and discussed in Chap.4.

Example 6.1 Consider the time-delay systemofExample 4.5with f (λ, τ ) = e−τλ+
3π
8 λ5 − π2

8 λ4 + 5π
4 λ3 − π2

4 λ2 + 7π
8 λ − π2

8 + 1. As τ = π , λ = j is a triple critical
imaginary root with fτ �= 0. Using the approach proposed in Chap.4, we have the

Puiseux series Δλ = (0.55 + 0.09 j)(Δτ)
1
3 + o((Δτ)

1
3 ). Thus, ΔNU j (π) = −1.

This result can be directly obtained from the frequency-sweeping curve as shown
in Fig. 6.1a. Moreover, the invariance property holds (Theorem 6.3). At the critical
frequency ω = 1, the frequency-sweeping curve crosses the line �1 from above to
below. Therefore, according to Theorem 6.3,ΔNU j ((2k +1)π) = −1. Both the two
cases are included: (1) As τ increases near π , the number of unstable roots decreases
by 1 due to the splitting of the triple critical imaginary root. (2) As τ increases near
3π, 5π, . . ., each simple critical imaginary root λ = j enters inC−. That is to say, at
the point λ = j , despite simple or multiple critical imaginary root, the influence of
the asymptotic behavior on NU (τ ) is equivalent. To further argue the analysis, we
may observe the root loci in Fig. 6.1b. �
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Fig. 6.1 Frequency-sweeping curve and root loci for Example 6.1. a Frequency-sweeping result.
b Re(λ) versus τ

Example 6.2 Consider the time-delay system of Example 4.8 with f (λ, τ ) = λ3 −
2λ2 + (2π + π2)λ + ((π − 2)λ2 + 2πλ + π3)e−τλ. As τ = 1 and λ = jπ ,
fλ = 0, fλλ = π(2 j − 2)(π − 1) �= 0. Thus, at τ = 1, λ = jπ is a double root. In
addition, Assumption 6.1 holds as fτ = π3(2 j − 2) �= 0. This is a degenerate case
and hence one cannot use the method proposed by [54], i.e., Theorem 6.1.

According to Theorem 6.2, the Puiseux series is in the form Δλ = C1(Δτ)
1
2 +

C2(Δτ)
2
2 + · · · and, as discussed in Example 4.8, the Puiseux series is Δλ =

3.04 j(Δτ)
1
2 + (2.15 + 0.68 j)Δτ + o(Δτ). Therefore, ΔNU jπ (1) = +1.

The above result can be easily derived without invoking the Puiseux series by
observing the corresponding frequency-sweeping curve as shown in Fig. 6.2a. At
the critical frequency ω = π , the frequency-sweeping curve crosses the line �1
from below to above. Therefore, according to Theorem 6.3, ΔNU jπ (1) = +1.
Moreover, according to Theorem 6.3, we may have a stronger result, the invariance
property. No matter the critical imaginary root λ = jπ is simple or double (it is
double at τ = 1, while it is simple at the critical delays other than τ = 1), its
asymptotic behavior always makes the number of unstable roots increase by 1. The
above analysis is verified by the root loci as shown inFig. 6.2b. For further illustration,
we also list two Taylor series, which are also degenerate, corresponding to the critical
delays τ = 3 and τ = 5: Δλ = −1.5708 jΔτ + 2.4118 j(Δτ)2 + (1.8506 −
8.1679 j)(Δτ)3 + o((Δτ)3) for τ = 3 and Δλ = −0.7854 jΔτ + 0.4978 j(Δτ)2 +
(0.1157 − 0.6155 j)(Δτ)3 + o((Δτ)3) for τ = 5. We may notice that the proposed
approach significantly simplifies the analysis since we have to invoke two terms of
the Puiseux series and three terms of the Taylor series if the series expansion analysis
is used. �

Finally, we give two interesting examples to illustrate the results in Sect. 6.4.

http://dx.doi.org/10.1007/978-3-319-15717-7_4
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Fig. 6.2 Frequency-sweeping curve and root loci for Example 6.2. a Frequency-sweeping result.
b Re(λ) versus τ

Example 6.3 Consider the following oscillator system (see, e.g., [58])

[
d4

dt4
+ 5

d2

dt2
+ 4

]
: x(t) = u(t), (6.8)

where x(t) is a scalar. It has been pointed out in the literature that the system (6.8)
cannot be stabilized by a state feedback u(t) = K x(t) (K is the scalar gain). Inter-
estingly, the system can be stabilized by a delayed controller u(t) = K x(t − τ).

The characteristic function of the closed-loop system is f (λ, τ ) = λ4 + 5λ2 +
4− K e−τλ. As the characteristic function falls in the class discussed in Sect. 6.4, we
may straightforwardly study the complete stability (here, we let K = −0.1) from
the frequency-sweeping curve. Note that, the system has critical imaginary roots for
τ = 0. As mentioned earlier, we may calculate NU (+ε) using Theorem 5.1.

The frequency-sweeping curve is given in Fig. 6.3a, from which we find four sets
of critical pairs: (λ0 = 0.9834 j, τ0,k = 3.1947 + 2kπ

0.9834 ), (λ1 = 1.0167 j, τ1,k =
2kπ

1.0167 ), (λ2 = 1.9916 j, τ2,k = 2kπ
1.9916 ), and (λ3 = 2.0082 j, τ3,k = 1.5643+ 2kπ

2.0082 ).

The “NU (τ ) versus τ” plot can be obtained (see Fig. 6.3b). This system has
multiple stability intervals and NU (τ ) → ∞ as τ → ∞. �

Example 6.4 Consider a chain of three integrators (see [94])

d3

dt3
x(t) = u(t), (6.9)

(x(t) is a scalar) controlled by a proportional + delay controller u(t) = K2x(t) +
K1x(t − τ), where K1 and K2 are scalar gains. The characteristic function of the
closed-loop system is f (λ, τ ) = λ3 − K2 − K1e−τλ. It is easy to see that the
system cannot be asymptotically stable if K1 = 0.We now try to find the appropriate
parameters (K1, K2, and τ ) such that the closed-loop system is asymptotically stable.

http://dx.doi.org/10.1007/978-3-319-15717-7_5
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Fig. 6.3 Frequency-sweeping curve and NU (τ ) for Example 6.3. a Frequency-sweeping result. b
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Fig. 6.4 Frequency-sweeping curves for Example 6.4. a
∣∣∣ K2

K1

∣∣∣ < 1. b
∣∣∣ K2

K1

∣∣∣ > 1

We first consider the cases when
∣∣∣ K2

K1

∣∣∣ < 1 and
∣∣∣ K2

K1

∣∣∣ > 1. For both cases,

NU (0) > 0. If the system can be stable for some τ , there must exist critical imagi-

nary roots whose asymptotic behavior causes a decrease in NU (τ ). When
∣∣∣ K2

K1

∣∣∣ < 1,

the frequency-sweeping curve is depicted in Fig. 6.4a. We see from Fig. 6.4a that
the system has one and only one positive critical imaginary root, whose asymptotic

behavior always causes an increase in NU (τ ) (by Corollary 6.2). If
∣∣∣ K2

K1

∣∣∣ > 1, the

system has no critical imaginary roots (see the frequency-sweeping curve depicted in

Fig. 6.4b). Next, we consider the case
∣∣∣ K2

K1

∣∣∣ = 1. If K2
K1

= −1, λ = 0 is a characteristic

root. If K2
K1

= 1, the system has no critical imaginary roots (see Remark 1.9).
By the above discussions, the system (6.9) cannot be stabilized by a proportional

+ delay controller. This conclusion is consistent with Proposition 1 in [94]. �

http://dx.doi.org/10.1007/978-3-319-15717-7_1
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6.6 On Some Limitations (Lack of Analyticity)

The development of the results in this chapter is relatively simple as we may follow
the idea of [64] through introducing a factorization (6.5). However, there are two
limitations for extending the approach in this chapter to general time-delay systems.

First, if Assumption 6.1 does not hold, the factor f1 is not necessarily analytic
at the critical imaginary root and hence the method of this chapter will be invalid
(having in mind that the analyticity of f1 is the prerequisite of Theorem 6.3). Such
examples will be seen in Chaps. 7 and 8. Especially, we will see in Chap.7 that the
index g may be larger than 1 even for a simple critical imaginary root.

Second, themathematical tool lying behindTheorem6.3, theLagrange’s inversion
formula (which plays a critical role in the study of [64]), is not easy to apply to
general time-delay systems.Asmentioned earlier,weneed amathematicalmachinery
compatible with the Puiseux series.

6.7 Notes and Comments

The work of this chapter, though only applied to a specific case, opens some inter-
esting perspectives in analyzing the general case. More precisely, as the frequency-
sweeping curves are independent of different critical delays, we may choose their
asymptotic behavior as a “reference object”. If for each positive critical delay τα,k ,
an equivalence betweenΔNUλα (τα,k) and the asymptotic behavior of the frequency-
sweeping curves at ω = ωα is proved, the general invariance property can be proved.

Particularly, for the time-delay system considered in this chapter, the asymptotic
behavior of the frequency-sweeping curves refers to their intersection with respect to
�1 at ω = ωα . More specifically, we know from Theorem 6.3 that ΔNUλα (τα,k) =
+1 (−1) if and only if the corresponding frequency-sweeping curve crosses �1 from
below to above (from above to below) and that ΔNUλα (τα,k) = 0 if and only if the
corresponding frequency-sweeping curve “touches” without crossing �1. It is worth
mentioning that the key lemma (Lemma 6.1) in developing the above results is an
extension of Theorem 15 in [64].

However, the above result will be invalid when the frequency-sweeping curves
mayhavemultiple points at somecritical frequencies. Such a situationwill be encoun-
tered and studied in the next chapter.Amore general description and discussion on the
asymptotic behavior of the frequency-sweeping curves will be proposed, providing
an embryonic form of the new mathematical framework of this book.

Most of the results of this chapter were reported in [72]. Some new materials are
added in Sects. 6.4–6.6.

http://dx.doi.org/10.1007/978-3-319-15717-7_7
http://dx.doi.org/10.1007/978-3-319-15717-7_8
http://dx.doi.org/10.1007/978-3-319-15717-7_7


Chapter 7
Invariance Property for Critical Imaginary
Roots with Index n = 1

First of all, it should be emphasized that the invariance property for simple critical
imaginary roots has been proved in [97, 109]. However, as mentioned earlier, the
mathematical tool used therein is not applicable to general time-delay systems. In this
chapter, we will “revisit” the invariance issue for simple critical imaginary roots by
adopting the frequency-sweeping approach. In this context, some new perspectives
will be introduced and they will be crucial for confirming the general invariance
property in Chap.8.

More precisely, we will equip the classical frequency-sweeping approach with a
new mathematical tool. First, we will point out that the frequency-sweeping curves
may involve multiple points if g > 1 and the existing results will be no longer valid
in this case. To cover the general case, we will introduce a new notationΔN Fzα (ωα)

to describe the asymptotic behavior of the frequency-sweeping curves. Next, we will
propose a new mathematical tool, the dual Puiseux series, and we will prove that the
value of ΔN Fzα (ωα) is fully determined by the dual Puiseux series. Finally, a useful
equivalence relation between the Puiseux series and the dual Puiseux series will be
found, based on which the invariance property can be proved.

Based on the new ideas proposed in Chap. 6 and this chapter, we will establish a
new frequency-sweeping mathematical framework in Chap.8.

7.1 Preliminaries

Consider the time-delay system (1.1)

ẋ(t) =
m∑

�=0

A�x(t − �τ),

with the characteristic function f (λ, τ ) described by (1.3)

© The Author(s) 2015
X.-G. Li et al., Analytic Curve Frequency-Sweeping Stability Tests for Systems
with Commensurate Delays, SpringerBriefs in Control, Automation and Robotics,
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f (λ, τ ) = a0(λ) + a1(λ)e−τλ + · · · + aq(λ)e−qτλ.

Without any loss of generality, suppose that the time-delay system (1.1) has u
sets of critical pairs (λα, τα,k), α = 0, . . . , u − 1, k ∈ N. As usual, we adopt the
common assumption that λ = 0 is not a characteristic root. Otherwise, the system
(1.1) cannot be asymptotically stable for any τ ≥ 0. As discussed in Chap.1, the
asymptotic behavior of a critical imaginary root λα near a positive critical delay τα,k

can be simply described by usingΔNUλα (τα,k). The aim of this chapter is to confirm
the invariance property, under the following assumption:

Assumption 7.1 Assume that all the critical imaginary roots are simple.

In particular, the asymptotic behavior of a simple critical imaginary root may be
simply described by its crossing direction with respect to the imaginary axisC0. Due
to the conjugate symmetry discussed in Remark 1.2, it suffices to consider only the
critical imaginary roots with nonnegative imaginary parts.

7.2 Embryo of New Frequency-Sweeping Framework

Concerning the general invariance property, we have two important observations
from the previous chapters:

(1) The technical line should be compatible with the Puiseux series.
(2) The frequency-sweeping curves are very useful as they are invariant with respect

to different critical delays.

We will seriously take the above two points into account in the subsequent study.
Although the time-delay systems (under Assumption 7.1) considered in this

chapter are still specific, we will find some new insights. Moreover, an embryonic
form of the new mathematical framework will be explicitly built.

7.2.1 Asymptotic Behavior of Simple Critical Imaginary Roots

The asymptotic behavior of a simple critical imaginary root corresponds to a Taylor
series, which can be regarded as a specific type of the Puiseux series.

Theorem 7.1 Consider a simple critical imaginary root λα at a critical delay τα,k

with the index g of system (1.1). For an infinitesimal perturbation Δτ of τ , the
variation of λ, Δλ, subjects to the Taylor series in the form

Δλ =
∞∑

i=g

Ci (Δτ)i , (7.1)

http://dx.doi.org/10.1007/978-3-319-15717-7_1
http://dx.doi.org/10.1007/978-3-319-15717-7_1
http://dx.doi.org/10.1007/978-3-319-15717-7_1
http://dx.doi.org/10.1007/978-3-319-15717-7_1
http://dx.doi.org/10.1007/978-3-319-15717-7_1
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where Cg �= 0, Cg+1, Cg+2, . . . are complex coefficients.

Proof As fλ �= 0 (condition automatically satisfied for a simple root), by the implicit
function theorem (see Appendix A), there exists a unique solution λ(τ), which is
analytic at τα,k with λ(τα,k) = λα . Thus, near (λα, τα,k), the asymptotic behavior

subjects to a Taylor series Δλ =
∞∑

i=1
Ci (Δτ)i . Furthermore, by the method given in

Chap.4, C1 = · · · = Cg−1 = 0. �

7.2.2 Some New Angles for Frequency-Sweeping Curves

As seen in Chap.6, the asymptotic behavior of the frequency-sweeping curves may
act as a reference object for addressing the invariance issue. In this chapter, we will
further study the related properties. Though the case studied in this chapter is also
specific (under Assumption 7.1), the frequency-sweeping curves may exhibit some
complicated characteristics (see Example 3.2).

It is worth mentioning that, in the case g > 1, the asymptotic behavior of the
frequency-sweeping curves cannot be described by the existing results. For this rea-
son, we now introduce a new notation.

Suppose (λα, τα,k), k ∈ N, is a set of critical pairs (as usually assumed, λα �= 0)
with the index g (having in mind that g is a constant with respect to different k, see
Property 1.2). There must exist g frequency-sweeping curves such that zi ( jωα) =
zα = e−τα,0λα colliding with ℑ1 when ω = ωα . Among such g frequency-sweeping
curves, we denote the number of the frequency-sweeping curves when ω = ωα + ε

(ω = ωα − ε) above ℑ1 by N Fzα (ωα + ε) (N Fzα (ωα − ε)). Introduce now a new
notation ΔN Fzα (ωα) as

ΔN Fzα (ωα)
Δ= N Fzα (ωα + ε) − N Fzα (ωα − ε). (7.2)

Remark 7.1 It is a very useful property that ΔN Fzα (ωα) is invariant with respect
to different critical delays. In addition, we may straightforwardly know ΔN Fzα (ωα)

from the frequency-sweeping curves, simplifying thus the implementation of
the method.

A single frequency-sweeping curve may either cross ℑ1 (from below to above or
the other way) or simply touch ℑ1 (e.g., the frequency-sweeping curve is tangent to
ℑ1), at the critical frequency. Thus, if g = 1,ΔN Fzα (ωα)must be±1 or 0. However,
in the case where g > 1, g frequency-sweeping curves collide with ℑ1 at ω = ωα

and ΔN Fzα (ωα) generally takes more possible values.
As mentioned in Sect. 3.2, we will address the frequency-sweeping curves from

a new analytic curve angle. If we let τ ∈ C, we may treat τα,k as a g-multiple root
of f (λ, τ ) = 0 when λ = λα .

http://dx.doi.org/10.1007/978-3-319-15717-7_4
http://dx.doi.org/10.1007/978-3-319-15717-7_6
http://dx.doi.org/10.1007/978-3-319-15717-7_3
http://dx.doi.org/10.1007/978-3-319-15717-7_1
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Theorem 7.2 For a simple critical imaginary root λ = λα for τ = τα,k with the
index g of system (1.1), if λ is imposed by an infinitesimal Δλ at λα , the variation of
τ subject to f (λ, τ ) = 0, Δτ , corresponds to the Puiseux series in the form

Δτ =
∞∑

i=1

Di (Δλ)
i
g , (7.3)

where D1 �= 0, D2, D3, . . . are complex coefficients.

The proof is in the same line of the proof of Theorem 6.2 in Chap.6 and, for the
sake of brevity, it is omitted. The Puiseux series of the form (7.3) will be called the
dual Puiseux series.

Remark 7.2 In the literature, the asymptotic behavior of the frequency-sweeping
curves has only been analyzed in the case g = 1, due to the limitations of the
adopted mathematical tools (e.g., computing the derivatives of the module of the
frequency-sweeping curves with respect to ω, see, e.g., [21]). We will show that
the frequency-sweeping curves of general time-delay systems can be appropriately
treated by means of the dual Puiseux series.

The following property brings a new angle to study the asymptotic behavior of
the frequency-sweeping curves.

Property 7.1 For a simple critical imaginary root λα = jωα , ΔN Fzα (ωα) can be
determined by the dual Puiseux series (7.3):

ΔN Fzα (ωα) = N D(λα,τα,k )(+ε j) − N D(λα,τα,k )(−ε j),

where N D(λα,τα,k )(+ε j) (N D(λα,τα,k )(−ε j)) denotes the number of the values in CU

of the dual Puiseux series (7.3) evaluated when Δλ = +ε j (Δλ = −ε j).

Proof To study the frequency-sweeping curves, we consider (7.3) with Δλ = ±ε j .
For aΔλ, we have g values ofΔτ from (7.3). By (1.4), nearω = ωα , a corresponding
frequency-sweeping curve reflects the variation of

∣∣e−τλ
∣∣ with

∣∣e−τα,kλα
∣∣ = 1. As

λα +Δλ is a positive imaginary number,
∣∣e−(τα,k+Δτ)(λα+Δλ)

∣∣− ∣∣e−τα,kλα
∣∣ > 0 (< 0)

if and only if the corresponding Im(Δτ) > 0 (< 0). �

Remark 7.3 Using Property 7.1, we can now study the frequency-sweeping curves
in an algebraic way (by means of the dual Puiseux series), such that the graphical
frequency-sweeping criterion will be applicable to general time-delay systems with
commensurate delays.

In Chap.6, an equivalence relation between the asymptotic behavior of the critical
imaginary roots and the frequency-sweeping curves was found. In the sequel, we will
study if such an equivalence relation also holds when g > 1.

http://dx.doi.org/10.1007/978-3-319-15717-7_1
http://dx.doi.org/10.1007/978-3-319-15717-7_6
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7.3 Equivalence Relation Between Two Types
of Asymptotic Behavior

It is exciting that the equivalence relation between ΔNUλα (τα,k) and ΔN Fzα (ωα)

exists in the context of this chapter, as stated in the following theorem:

Theorem 7.3 For a simple critical imaginary root λα at a positive critical delay
τα,k , it follows that ΔNUλα (τα,k) = ΔN Fzα (ωα).

Theorem 7.3 is based on analyzing the connections between the Puiseux series
(7.1) and the dual Puiseux series (7.3). This new idea will be used in the next chapter.
Detailed development of Theorem 7.3 is given in the following two subsections:

A useful property, extracted from Lemmas 3 and 4 in [64], is given below.

Property 7.2 For a complex number x �= 0, the following results hold.

(1) If (p + 1)/2 is even and x ∈ C+, then among the p values of x
1
p , (p − 1)/2

ones lie in C+ and (p + 1)/2 ones lie in C−. If x ∈ C−, then the reverse is true.

(2) If (p + 1)/2 is odd and x ∈ C+, then among the p values of x
1
p , (p + 1)/2

ones lie in C+ and (p − 1)/2 ones lie in C−. If x ∈ C−, then the reverse is true.

(3) If p is even and x /∈ R+, then among the p values of x
1
p , p/2 ones lie in CU

and p/2 ones lie in CL .

One may prove the property by simply analyzing the arguments of x
1
p .

7.3.1 Nondegenerate Case

We first consider the nondegenerate case with Re(Cg) �= 0 in (7.1). Substituting

(7.3) into (7.1), we have that D1 = ( 1
Cg

)
1
g .

If g is odd, ΔNUλα (τα,k) = +1(−1) if and only if Re(Cg) > 0 (< 0) in view of

(7.1). For Δλ = ±ε j , D1(Δλ)
1
g =

(
Δλ
Cg

) 1
g =

(
±ε j (Re(Cg)−Im(Cg) j)

|Cg|2
) 1

g

. According

to Properties 7.1 and 7.2, ΔN Fzα (ωα) = +1 (−1) if and only if Re(Cg) > 0 (< 0).

Remark 7.4 We may express
(

Δλ
Cg

) 1
g =

(
Δλ j g

Cg

) 1
g
(− j) and then analyze

(
Δλ j g

Cg

) 1
g

using Property 7.2. Such a simple manipulation will also be used later.

If g is even, it is easy to see from (7.1) that ΔNUλα (τα,k) = 0. We now consider

the term D1(Δλ)
1
g . For Δλ = ±ε j , D1(Δλ)

1
g = (Δλ

Cg
)
1
g has g

2 values in CU and g
2

values in CL by Property 7.2. Thus, according to Property 7.1, ΔN Fzα (ωα) = 0.
From the above analysis, we have:

Lemma 7.1 If Re(Cg) �= 0, Theorem 7.3 holds.
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7.3.2 Degenerate Case

We now consider the degenerate case, i.e., Re(Cg) = 0.1 Without any loss of gener-
ality, suppose Re(Cg) = · · · = Re(Cg+M−1) = 0,Re(Cg+M ) �= 0.

By substituting (7.3) into (7.1), we know that D1 = ( 1
Cg

)
1
g , Di = ri−1Di

1, 2 ≤
i ≤ M, and D1+M = D1+M

1
g (

−Cg+M
Cg

+ rM ), where r1, . . . , rM are real numbers. We
have the following two properties:

Property 7.3 If g is odd, for Δλ = ±ε j ,
M∑

i=1
Di (Δλ)

i
g has g−1

2 values in CU , g−1
2

values in CL , and one real value.

Proof The property can be proved by the equation

M∑

i=1

Di (Δλ)
i
g =

(
Δλ

Cg

) 1
g +

M∑

i=2

ri−1

(
Δλ

Cg

) i
g

. (7.4)

The proof ends by noting that Cg is an imaginary number. �
Property 7.4 If g is even, one of the following two cases must happen:

(1) For Δλ = −ε j ,
M∑

i=1
Di (Δλ)

i
g has g

2 values in CL and g
2 values in CU . For

Δλ = +ε j ,
M∑

i=1
Di (Δλ)

i
g has g

2 − 1 values in CL , g
2 − 1 values in CU , and two (one

negative and one positive) real values.

(2) For Δλ = −ε j ,
M∑

i=1
Di (Δλ)

i
g has g

2 − 1 values in CL , g
2 − 1 values in CU ,

and two (one negative and one positive) real values. For Δλ = +ε j ,
M∑

i=1
Di (Δλ)

i
g

has g
2 values in CL and g

2 values in CU .

Proof In light of (7.4), case (1) (case (2)) happens if and only if Cg is a positive
imaginary number (negative imaginary number). �

According to Properties 7.3 and 7.4, we need to explicitly take into account the

term D1+M (Δλ)
1+M

g when analyzing the dual Puiseux series (7.3):

Δτ =
M∑

i=1

Di (Δλ)
i
g +1

g

(
−Cg+M

Cg
+rM

) (
Δλ

Cg

) 1+M
g + o

((
Δλ

Cg

) 1+M
g

)
. (7.5)

To summarize, we have the following result:

1 Notice that “Re(Cg) = 0” is the degeneracy condition for the specific case where n = 1. The
general degeneracy condition will be presented in Appendix B.
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Lemma 7.2 If Re(Cg) = 0, Theorem 7.3 holds.

Proof We need to consider the four possible cases (g + M is odd and g is odd, g + M
is odd and g is even, g + M is even and g is odd, and g + M is even and g is even)
separately. For the sake of brevity, we suppose that g + M is odd and g is odd in the
sequel. The other three cases can be studied by similarity.

According to (7.1), ΔNUλα (τα,k) = +1 (−1) if and only if Re(Cg+M ) > 0
(< 0). We now study Δτ via the dual Puiseux series (7.3). We first assume that Cg

is a positive imaginary number. It follows from (7.4) that for Δλ = +ε j (−ε j),
M∑

i=1
Di (Δλ)

i
g has g−1

2 values in CU , g−1
2 values in CL , and a positive real value

(negative real value). We need to further consider the term D1+M (Δλ)
1+M

g . Observe
that 1+ M is odd if g + M is odd and g is odd. In light of (7.5), forΔλ = +ε j (−ε j),
if Re(Cg+M ) > 0, Δτ has 1+ g−1

2 ( g−1
2 ) values in CU . Similarly, for Δλ = +ε j

(−ε j), if Re(Cg+M ) < 0,Δτ has g−1
2 (1+ g−1

2 ) values inCU . Thus, by Property 7.1,
ΔNUλα (τα,k) = ΔN Fzα (ωα)whenCg is a positive imaginary number.Analogously,
we can prove the result when Cg is a negative imaginary number. Now the proof
is complete. �

7.4 Invariance Property for Simple Critical Imaginary Roots

With the methodology described previously in this chapter, the invariance property
for the time-delay systems without multiple critical imaginary roots can be proved
in a new way.

Theorem 7.4 For a simple critical imaginary root λα = jωα of the time-delay
system (1.1), it follows that for all the corresponding positive critical delays τα,k

(k ∈ N),
ΔNUλα (τα,k) = ΔN Fzα (ωα).

One may easily prove the result according to Theorem 7.3 and Remark 7.1.
In this chapter, we proposed a simple frequency-sweeping criterion. As we will

show in Sect. 7.5 that the asymptotic behavior of all the critical pairs with posi-
tive critical delays can be directly known from the frequency-sweeping curves. No
calculation related to the analysis of the asymptotic behavior is required.

The most important contribution of this chapter lies in the introduced technical
line (description and analysis of the asymptotic behavior of the frequency-sweeping
curves, the dual Puiseux series, and the equivalence relationship ΔNUλα (τα,k) =
ΔN Fzα (ωα)). Along this new technical line, we will establish a new frequency-
sweeping mathematical framework for general time-delay systems with commensu-
rate delays in the next chapter.

http://dx.doi.org/10.1007/978-3-319-15717-7_1


70 7 Invariance Property for Critical Imaginary Roots with Index n = 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5

ω

Γ 1
,

Γ 2

0.9 0.95 1 1.05 1.1
0.6

0.7

0.8

0.9

1

1.1

1.2

ω

Γ
1
,

Γ
2

(a) (b)

Fig. 7.1 Frequency-sweeping results for a Example 7.1 and b Example 7.4

7.5 Illustrative Examples

We now give some illustrative examples. As the nondegenerate case with g = 1 is
relatively simple (see, e.g., [68]), it will not be discussed here.

Example 7.1 Consider the system in Example 4.1 with f (λ, τ ) = e−2τλ + (−λ6 −
3λ4−3λ2 +λ+2)e−τλ −λ7−2λ6−3λ5−6λ4−3λ3−6λ2. For this system, λ = j
is a simple critical imaginary root with g = 1 for τ = π, 3π, 5π, . . . According to
Theorem 7.1, near λ = j and τ = π, 3π, 5π, . . ., the asymptotic behavior can be
expressed by the Taylor series Δλ = C1Δτ + C2(Δτ)2 + C3(Δτ)3 + · · · . This is a
degenerate case as Re(C1) = Re(C2) = 0,Re(C3) > 0.

According to Theorem 7.4, we directly know from the frequency-sweeping curves
shown in Fig. 7.1a that ΔNU j (τ ) = ΔN F−1(1) = +1 for all the critical delays.
This frequency-sweeping criterion considerably simplifies the analysis, since we do
not need to invoke the Puiseux series. �

Example 7.2 Consider again the time-delay system treated in Example 3.2 with
f (λ, τ ) = e−3τλ+3e−2τλ +3e−τλ+λ3−λ2+λ, for which the frequency-sweeping
curves have been given in Fig. 3.4. This system has three simple critical imaginary
roots λ = j (τ = (2k + 1)π ) with g = 3, λ = 1.0433 j (τ = 2.5228+ 2kπ/1.0433)
with g = 1, and λ = 1.6791 j (τ = 2.9051 + 2kπ/1.6791) with g = 1. For the
critical imaginary roots λ = 1.0433 j and λ = 1.6791 j , it is easy to know the
corresponding crossing directions (both from C− to C+) by using Theorem 8.5 (the
method in [70] also applies as g = 1).

Consider now the critical imaginary root λ = j . The existing frequency-sweeping
methods are not applicable as g = 3. According to Theorem 7.4, we know the
corresponding crossing direction (from C+ to C−) as ΔN F−1(1) = −1.

For τ = 0, the system has two (unstable) roots 1.2442 ± 1.7764 j . We can now
precisely know NU (τ ), see Fig. 7.2. �

http://dx.doi.org/10.1007/978-3-319-15717-7_4
http://dx.doi.org/10.1007/978-3-319-15717-7_3
http://dx.doi.org/10.1007/978-3-319-15717-7_3
http://dx.doi.org/10.1007/978-3-319-15717-7_8
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Fig. 7.2 NU (τ ) for
Example 7.2
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Fig. 7.3 Frequency-sweeping result for Example 7.3. a Frequency-sweeping curves for 0 ≤ ω ≤
1.4. b Zoomed-in figure near ω = 1

Example 7.3 Consider the system in Example 4.2 with f (λ, τ ) = e−2τλ − (λ2 −
1)e−τλ + λ6 − λ5 + λ + 2, where λ = j is a simple critical imaginary root with
g = 2 for τ = (2k + 1)π . The frequency-sweeping curves are shown in Fig. 7.3.
According to Theorem 7.4, the critical imaginary root j touches without crossingC0
as τ increases near each corresponding critical delay. To verify the result, we now
invoke the Puiseux series. All the critical pairs ( j, (2k + 1)π) correspond to a same
Puiseux seriesΔλ = −1−2 j

20 (Δτ)2+o((Δτ)2) (this is a special case as fλ = −4+8 j
for all the critical pairs ( j, (2k + 1)π)), which is consistent with our analysis. �

Finally, we present an interesting example, where a simple critical imaginary root
has multiple sets of critical delays. This case may lead to a confusion with the case
of multiple critical imaginary roots. We will show that such a confusion can be easily
avoided and the results proposed in this chapter are still applicable.

http://dx.doi.org/10.1007/978-3-319-15717-7_4
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Example 7.4 Consider a time-delay systemwith f (λ, τ ) = e−2τλ + (λ2+1)e−τλ +
λ4 − 2. For this system, λ = j is a simple critical imaginary root with g = 1 for
both τ = 0, 2π, 4π, . . . and τ = π, 3π, 5π, . . .

Observe the frequency-sweeping curves (Fig. 7.1b). Although two frequency-
sweeping curves simultaneously collidewithℑ1 atω = 1, they correspond to two sets
of critical delays as they correspond to two sets of critical pairs ( j, τ = 0, 2π, 4π, . . .)

and ( j, τ = π, 3π, 5π, . . .).
For the former critical pair e−τλ = 1, while for the later critical pair e−τλ = −1.

Thus, the two frequency-sweeping curves corresponding to two sets of critical pairs
can be easily distinguished, as depicted in Fig. 7.1b. In addition, using the notation
defined earlier, we have that ΔN F1(1) (ΔN F−1(1)) corresponds to the critical pairs
( j, τ = 0, 2π, 4π, . . .) (( j, τ = π, 3π, 5π, . . .)). �

7.6 Notes and Comments

In this chapter, we studied the invariance property for time-delay systems with only
simple critical imaginary roots. Though this property has already been proved, we
introduced some new ideas that will play a crucial role in confirming the general
invariance property.

First, we introduced a new notation ΔN Fzα (ωα) in order to describe the asymp-
totic behavior of the frequency-sweeping curves. Then, we proved that the value of
ΔN Fzα (ωα) can be fully determined by the dual Puiseux series. Furthermore, we
found the equivalence relation that ΔNUλα (τα,k) = ΔN Fzα (ωα) through analyzing
the Puiseux series and the dual Puiseux series. Finally, the invariance property was
proved based on the fact that ΔN Fzα (ωα) is a constant with respect to different
critical delays.

The above ideas provide a preliminary scheme for confirming the invariance
property in the general case where both the indices n and g for a critical pair are
allowed to be greater than 1. Motivated by the results in Chap.6 and this chapter, we
will study if the equivalence relation ΔNUλα (τα,k) = ΔN Fzα (ωα) is satisfied for
general time-delay systems with commensurate delays. If so, the general invariance
propertywill be naturally confirmed.To this end, the currentmathematical framework
will be further improved in the next chapter.

Some of the ideas proposed in this chapter can be found in [67]. However,
in that paper the proof was not given and the notation ΔNUλα (τα) was not
explicitly adopted.

http://dx.doi.org/10.1007/978-3-319-15717-7_6


Chapter 8
A New Frequency-Sweeping Framework
and Invariance Property in General Case

In Chaps. 6 and 7, we proved the invariance property for two specific types of time-
delay systems and proposed an embryonic form of the new frequency-sweeping
mathematical framework.

In this chapter, we will further discuss the results of Chaps. 6 and 7 and a more
sophisticated frequency-sweeping methodology will be established. With this new
frequency-sweeping framework, the invariance property for general time-delay sys-
tems with commensurate delays will be eventually confirmed.

8.1 Preliminaries

Consider the time-delay system (1.1)

ẋ(t) =
m∑

�=0

A�x(t − �τ),

with the characteristic function f (λ, τ ) given by (1.3)

f (λ, τ ) = a0(λ) + a1(λ)e−τλ + · · · + aq(λ)e−qτλ.

As usual, we adopt the trivial assumption that λ = 0 is not a characteristic root.
Inspired by Chaps. 6 and 7, we find that the frequency-sweeping curves have

a close relationship with the asymptotic behavior of the critical imaginary roots. In
addition, inChap.7, a new idea for studying the frequency-sweeping curves (studying
the asymptotic behavior of the frequency-sweeping curves by means of the dual
Puiseux series) was adopted, from which some useful algebraic properties regarding
the frequency-sweeping curves can be obtained. In the sequel, we will build a new
frequency-sweeping framework as our mathematical tool to address the invariance
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issue for general time-delay systems with commensurate delays, based on its embry-
onic form proposed in Chap.7.

8.2 Constructing a New Frequency-Sweeping Framework

As pointed out in Chap.3, the asymptotic behavior for a critical pair (λα, τα,k) is
determined by the equation F(λα,τα,k )(Δλ,Δτ) = 0, where F(λα,τα,k )(Δλ,Δτ) is a
convergent power series given in (3.6). For simplicity, when no confusion occurs, we
usually omit the subscript “(λα, τα,k)”. It follows that ord(F(Δλ, 0)) = n atΔλ = 0
and ord(F(0,Δτ)) = g at Δτ = 0. As discussed in Sect. 3.1.3, without any loss of
generality, F(Δλ,Δτ) can be decomposed as (3.7):

F(Δλ,Δτ) = U (Δλ,Δτ)

v∏

l=1

Fl(Δλ,Δτ),

where, in a sufficiently small neighborhoodof (0, 0) ∈ C
2, Fl(Δλ,Δτ) (l = 1, . . . , v)

are irreducible and U (0, 0) �= 0 in the ring of convergent power series. For each
Fl(Δλ,Δτ), ord(Fl(Δλ, 0)) at Δλ = 0 and ord(Fl(0,Δτ)) at Δτ = 0 are denoted
by nl ∈ N+ and gl ∈ N+, respectively. It is true that n = ∑v

l=1 nl and g = ∑v
l=1 gl .

Note that, in the right-hand side of (3.7), repeated Fl(Δλ,Δτ) are allowed and,
according to Property 3.1, neither (Δλ)α (α ∈ N+) factor nor (Δτ)β (β ∈ N+)
factor appears.

We now present a useful property concerning the Puiseux series solutions for an
irreducible power series equation.

Property 8.1 Let ΦI (y, x) is an irreducible power series in x ∈ C and y ∈ C, which
is convergent in a small neighborhood of the point (x = 0, y = 0) with ΦI (0, 0) = 0.
Denote by ordIy (ordIx ) the value of ord(ΦI (y, 0)) at y = 0 (ord(ΦI (0, x)) at x = 0).
All the y-roots for ΦI (y, x) = 0 can be expressed by a conjugacy class of Puiseux
series “s” with the general form

s =
∞∑

i=ordIx

Ci x
i

ordIy ,

where Ci are complex coefficients.

Proof AsΦI (y, x) is irreducible, the equationΦI (y, x) = 0 determines a conjugacy
class of Puiseux series (Proposition 2.2.1 in [15]). From ΦI (y, x), the polydromy
order and the initial termof this Puiseux series canbederived. First, byCorollary 1.8.5
in [15], the polydromy order is ordIy . Next, the first exponent must be ordIx

ordIy
(see

Exercise 11.3.1 in [91]). The general expression of the Puiseux series is hence
obtained. �
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We are now in a position to give the general form of the Puiseux series for a
critical pair for the time-delay system (1.1).

Theorem 8.1 For a critical pair (λα, τα,k) with the indices n and g, the asymptotic
behavior corresponds to v (counted with multiplicities) Puiseux series

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

PS1 : Δλ =
∞∑

i=g1

C1i (Δτ)
i

n1 ,

...

PSv : Δλ =
∞∑

i=gv

Cvi (Δτ)
i

nv ,

(8.1)

where C1i , . . . , Cvi are complex coefficients with Clgl �= 0 (l = 1, . . . , v), nl ∈ N+
and gl ∈ N+ satisfy that n1 + · · · + nv = n and g1 + · · · + gv = g.

Proof First, in view of the factorization form (3.7) and Property 8.1, there are totally
v (counted with multiplicities) Puiseux series PSl (l = 1, . . . , v) and each PSl

is determined by the equation Fl(Δλ,Δτ) = 0. Next, for each PSl the general
form is known according to Property 8.1. The general expression (8.1) is hence
obtained. �

The frequency-sweeping approach has been largely applied in studying the stabil-
ity of time-delay systems, see [20, 39, 64, 114], and the references therein. However,
its application to the complete stability analysis of general time-delay systems has
not been reported. In Chaps. 6 and 7, some new ideas were introduced concerning the
frequency-sweeping curves. In the sequel, we will extend these ideas to the general
case and establish a new frequency-sweeping framework.

As proposed in Chap.7, we consider how τ varies in C with respect to λ (τα,k is
viewed as a g-multiple root for f (λ, τ ) = 0) and, consequently, the dual Puiseux
series is introduced for describing such asymptotic behavior. Similar to the Puiseux
series, we have v (countedwithmultiplicities) dual Puiseux series aswell, determined
by F1(Δλ,Δτ), . . . , Fv(Δλ,Δτ), respectively. Although the idea of dual Puiseux
series seems to be a little abstract since Δτ ∈ R for a practical system (Δτ ∈ C

when considering the dual Puiseux series), it will give rise to a series of important
properties for addressing the general invariance property. A fundamental feature of
the new frequency-sweeping framework is given below.

Theorem 8.2 For a critical pair (λα, τα,k) with the indices n and g, each Puiseux

series PSl : Δλ =
∞∑

i=gl

Cli (Δτ)
i

nl (Clgl
�= 0, 1 ≤ l ≤ v) corresponds to a dual

Puiseux series DPSl : Δτ =
∞∑

i=nl

Dli (Δλ)
i

gl , where Dli are complex coefficients

with Dlnl �= 0.

Proof By using the same idea as for the proof of Theorem 8.1, we may obtain the
general expression of the dual Puiseux series. �
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By Theorems 8.1 and 8.2, for a critical pair (λα, τα,k), we have a group of Puiseux
series (8.1) as well as a group of dual Puiseux series:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

DPS1 : Δτ =
∞∑

i=n1

D1i (Δλ)
i

g1 ,

...

DPSv : Δτ =
∞∑

i=nv

Dvi (Δλ)
i

gv .

(8.2)

The above dual Puiseux series group (8.2) has an important connection with
ΔNFzα (ωα) (ΔNFzα (ωα)was defined in (7.2) for describing the asymptotic behavior
of the general frequency-sweeping curves):

Property 8.2 For a critical pair (λα, τα,k) with any indices n and g, it follows that

ΔNFzα (ωα) = ND(λα,τα,k )(+ε j) − ND(λα,τα,k )(−ε j),

where ND(λα,τα,k )(+ε j) (ND(λα,τα,k )(−ε j)) denotes the number of the values in CU

of the dual Puiseux series (8.2), evaluated when Δλ = +ε j (Δλ = −ε j ).

Property 7.1 (with the constraint n = 1) can be straightforwardly extended to
Property 8.2 (with any index n), since the information on n is not explicitly used in
the development of Property 7.1.

Now we have equipped the “classical” frequency-sweeping approach with a new
mathematical tool (we study the asymptotic behavior of the frequency-sweeping
curves in terms of the dual Puiseux series) and, consequently, we establish a new
frequency-sweeping framework, as depicted in Fig. 8.1.

A very useful property of the frequency-sweeping framework is that ΔNFzα (ωα)

is independent of different critical delays in light of (1.4). Therefore, the remaining

Fig. 8.1 Scheme of the new
frequency-sweeping
mathematical framework
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task in verifying the general invariance property is to see if the equivalence relation
ΔNUλα (τα,k) = ΔNFzα (ωα) holds for general time-delay systems with commensu-
rate delays.

8.3 Proving General Invariance Property

In the sequel, we will prove the general invariance property. First, we will prove the
invariance property for the case where the critical imaginary root involves only one
conjugacy class of Puiseux series. Next, we will generalize the result to the case of
any number of conjugacy classes of Puiseux series.

8.3.1 Critical Imaginary Roots with One Puiseux Series

In this subsection, we adopt the following assumption:

Assumption 8.1 Assume that a critical pair (λα, τα,k) has only one Puiseux series.

The following property follows straightforwardly from Theorems 8.1 and 8.2.

Property 8.3 For a critical pair (λα, τα,k) satisfying Assumption 8.1, we have the
following Puiseux series

Δλ =
∞∑

i=g

Ci (Δτ)
i
n , (8.3)

as well as the following dual Puiseux series

Δτ =
∞∑

i=n

Di (Δλ)
i
g , (8.4)

where Ci and Di are complex coefficients with Cg �= 0 and Dn �= 0.

Theorem 8.3 For a critical pair (λα, τα,k > 0) with any indices n and g, if Assump-
tion 8.1 holds, it follows that:

ΔNUλα (τα,k) = ΔNFzα (ωα). (8.5)

The proof is given in Appendix B.
To summarize, under Assumption 8.1, the invariance property holds.

Theorem 8.4 For a critical imaginary root λα , if Assumption 8.1 holds for all the
critical pairs (λα, τα,k > 0), ΔNUλα (τα,k) is a constant ΔNFzα (ωα) for all τα,k > 0.

Proof By using Theorem 8.3, the proof can be completed as ΔNFzα (ωα) is inde-
pendent of different τα,k . �
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8.3.2 Critical Imaginary Roots with Multiple Puiseux Series

Without any loss of generality, when Assumption 8.1 is removed, we let a critical
pair (λα, τα,k) have v pairs of Puiseux series and dual Puiseux series:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

PSl : Δλ =
∞∑

i=gl

Cli (Δτ)
i

nl ,

DPSl : Δτ =
∞∑

i=nl

Dli (Δλ)
i

gl ,

l = 1, . . . , v. (8.6)

We call the Puiseux series PSl together with the dual Puiseux series DPSl as
expressed in (8.6) the lth dual Puiseux series pair.

Based on the decomposition (3.7), we can extend Theorem 8.4 to the general case
as follows:

Theorem 8.5 For a critical imaginary root λα of the time-delay system (1.1), it
always holds that ΔNUλα (τα,k) is a constant ΔNFzα (ωα) for all τα,k > 0.

Proof For a critical pair (λα, τα,k), all the v dual Puiseux series pairs are deter-
mined by F(Δλ,Δτ) (3.6). Furthermore, in light of (3.7), the lth dual Puiseux
series pair is determined by Fl(Δλ,Δτ). Now, denote byΔNUl ,λα

(τα,k) the number
change of the values of the lth Puiseux series in C+ as τ increases from τα,k − ε

to τα,k + ε. Similarly, denote by ΔNFl ,zα
(ωα) the number change of the values

of the lth dual Puiseux series in CU as λ varies from (ωα − ε) j to (ωα + ε) j .
As each Fl(Δλ,Δτ) corresponds to one conjugacy class of Puiseux series, in the
same spirit of Theorem 8.3, ΔNUl ,λα

(τα,k) = ΔNFl ,zα
(ωα), l = 1, . . . , v. Since

ΔNUλα (τα,k) = ∑v
l=1 ΔNUl ,λα

(τα,k) and ΔNFzα (ωα) = ∑v
l=1 ΔNFl ,zα

(ωα), the
result (8.5) follows. As a consequence, the proof is completed by noting that
ΔNFzα (ωα) is invariant with respect to k. �

We have proved the invariance property for general time-delay system with com-
mensurate delays (1.1), using the new frequency-sweeping framework proposed in
this book. Now, we are able to systematically solve the complete stability problem
(see the next chapter).

8.4 Illustrative Examples

We have presented some illustrative examples on the invariance property. In
Example 1.6, all critical imaginary roots are with n = g = 1. In Chap.6, the critical
imaginary root considered in Example 6.1 is with n = 3 and g = 1 and the critical
imaginary root considered in Example 6.2 with n = 2 and g = 1 corresponds to a
degenerate case. In Chap.7, some examples for the degenerate cases with n = 1 and
g > 1 are presented. In the sequel, we illustrate the cases where n > 1 and g > 1
by some numerical examples.
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Example 8.1 Consider the time-delay system studied inExample 5.1with f (λ, τ ) =
e−3τλ − 3e−2τλ + 3e−τλ + λ4 + 2λ2. The frequency-sweeping result is shown in
Fig. 8.2a (there are three frequency-sweeping curves where two of them above �1
coincide), from which we detect two critical imaginary roots λ = j (with the critical
delays 2kπ ) and λ = 1.9566 j (with the critical delays (2k+1)π

1.9566 ).

The root λ = 1.9566 j is simple for τ = (2k+1)π
1.9566 . From Fig. 8.2a, we see that

ΔNF−1(1.9566) = +1. Thus, according to the invariance property (Theorem 8.5),
ΔNU1.9566 j (

(2k+1)π
1.9566 ) = +1 for all k ∈ N. To verify such a result, we may choose

a critical delay and invoke the Puiseux series. For instance, near (1.9566 j, 1.6056),
the Puiseux series is Δλ = (0.6036 − 0.5253 j)Δτ + o(Δτ), indicating that
ΔNU1.9566 j (1.6056) = +1. The analysis is also consistent with the root loci, see
Fig. 5.1.

The root λ = j is double for τ = 2kπ , with fλλ = −8.00, fτ = fττ = 0,
fλτ = 0, and fτ 3 = 6.00 j (i.e., n = 2 and g = 3) for all k ∈ N. Therefore,
for any critical pair ( j, 2kπ) (k ∈ N), the Puiseux series is (5.1). It is seen from
the frequency-sweeping curves that ΔNF1(1) = 0. Thus, by the invariance property
(Theorem8.5),ΔNU j (2kπ) = 0 for all k ∈ N+, which is consistent with the Puiseux
series analysis as well as the root loci near ( j, 2π) shown in Fig. 8.2b. �

Example 8.2 Consider a time-delay system with the quasipolynomial f (λ, τ ) =∑5
i=0 ai (λ)e−iτλ, where a0(λ) = λ4 + 2λ3 + 5λ2 + 4λ + 4, a1(λ) = 5λ3 + 10λ2 +

15λ + 10, a2(λ) = 4λ3 + 14λ2 + 24λ + 14, a3(λ) = λ3 + 11λ2 + 21λ + 11,
a4(λ) = 5λ2 + 10λ + 5, and a5(λ) = λ2 + 2λ + 1.

The frequency-sweeping result is shown in Fig. 8.3a. Five sets of critical pairs
are found1: (0.7266 j, 5.1884 + 2kπ

0.7266 ), (0.8753 j, 2.9402 + 2kπ
0.8753 ), ( j, π + 2kπ),

(3.0777 j, 0.4083 + 2kπ
3.0777 ), and (5.9358 j, 0.1577 + 2kπ

5.9358 ).
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Fig. 8.2 Frequency-sweeping curves and root loci for Example 8.1. a Frequency-sweeping result.
b Re(λ) versus Im(λ)

1 Although p(λ = 0, z = −0.5 ± 0.866 j) = 0 with |z| = 1, according to Remark 1.9, λ = 0 is,
however, not a critical imaginary root.
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Fig. 8.3 Frequency-sweeping curves and root loci for Example 8.2. a Frequency-sweeping result.
b Re(λ) versus Im(λ)

We study the critical pairs ( j, π + 2kπ) (the asymptotic behavior of the others is
relatively simple). For all k ∈ N, the indices are n = 2 and g = 5. By Theorem 8.5,
from the frequency-sweeping curves, ΔNU j ((2k + 1)π) = +1 for all k ∈ N. We
next verify this result. The Puiseux series for ( j, (2k + 1)π) consists of two Taylor
series

{
Δλ = (0.5 − 0.5 j)(Δτ)2 + o((Δτ)2),

Δλ = (0.5 + 0.5 j)(Δτ)3 + o((Δτ)3).
(8.7)

We also give the root loci near ( j, π) in Fig. 8.3b. �

Remark 8.1 It isworthmentioning that, for bothExamples 8.1 and8.2, the invariance
property can be analytically proved from the Puiseux series owing to a nice feature
that for both examples the first-order terms of the Puiseux series (5.1) and (8.7) are
invariant with respect to different k (this feature is not always satisfied as generally
a Puiseux series varies with respect to k).

8.5 Notes and Comments

In this chapter, we established a new frequency-sweeping mathematical framework,
based on its embryonic form proposed in Chaps. 6 and 7. Using this frequency-
sweeping framework, we confirmed the invariance property for general time-delay
systemswith commensurate delays. The skeleton of theworkpresented in this chapter
can be found in [66, 74] (see also [73]).

With the aid of the general invariance property, some exciting results (the explicit
expression of NU (τ ), the ultimate stability property, and a unified approach for the
complete stability problem) will be derived in the next chapter.
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Chapter 9
Complete Stability for Time-Delay Systems:
A Unified Approach

With the aid of the general invariance property, proved in Chap.8, we focus now
on the complete stability problem for time-delay system (1.1) with commensurate
delays.

In order to thoroughly solve the complete stability problem, we will first study
the so-called ultimate stability problem, which has not been fully investigated so
far. Next, we will present the explicit expression of NU(τ ) for general time-delay
systems. We will see that the complete stability problem (which consists in solving
both Problems 1 and 2) can be systematically solved by the frequency-sweeping
approach proposed in this book.

9.1 Ultimate Stability Property

As introduced in Chap.5, it is necessary to understand the way the spectrum of time-
delay system (1.1) behaves as τ → ∞ (equivalently, to know lim

τ→∞ NU(τ )). Such a

problem, called the ultimate stability problem, has only been studied for some specific
time-delay systems (see Theorem1 in [21] for a simple form of quasipolynomials).
In this section, we will further characterize the ultimate stability problem. First, a
core result will be presented in Sect. 9.1.1. Then, we can classify time-delay systems
from the viewpoint of the ultimate stability property (see Sect. 9.1.2). Finally, in
Sect. 9.1.3, the delay-independent cases will be discussed.
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9.1.1 Characterizing Some Limit Cases

As the time-delay system (1.1) is of retarded type, the characteristic function f (λ, τ )

(1.3) satisfies that the degree of a0(λ) is greater than the degrees of a1(λ), . . . , aq(λ).
Therefore, we have the following property:

Property 9.1 The frequency-sweeping curves of time-delay system (1.1) satisfy

lim
ω→+∞ |zi ( jω)| = +∞, i = 1, . . . , q.

Notice that we do not need to distinguish the q frequency-sweeping curves though
we have multiple choices to label them. It is important to point out that, due to the
invariance property, different choices do not affect the stability analysis.

A critical frequency ωα is called a crossing (touching) frequency for a Γi (ω), if
Γi (ω) crosses (toucheswithout crossing)�1 asω increases nearωα . If aΓi (ω) crosses
�1, we denote the crossing frequencies by ωi,1, ωi,2, . . . with ωi,1 > ωi,2 > · · · .
By Property9.1, at the crossing frequencies ωi,ρ where ρ are odd, Γi (ω) crosses �1
from below to above (the number of such intersections is denoted by Nodd,i ), while
at the crossing frequencies ωi,ρ where ρ are even, Γi (ω) crosses �1 from above to
below (the number of such intersections is denoted by Neven,i ). It must be true that
either Nodd,i = Neven,i or Nodd,i = Neven,i + 1.

In the case q = 1 (the system has only one frequency-sweeping curve), if the
system has crossing frequencies, then NU(τ ) increases more frequently on average
than it decreases as τ increases from +ε, following the discussions in [21].

Lemma 9.1 If q = 1 and the frequency-sweeping curve has a crossing frequency,
there exists some delay value τ ∗ such that the time-delay system (1.1) is unstable for
all τ > τ ∗ and lim

τ→∞ NU(τ ) = ∞.

Next, we extend the result of Lemma9.1 to the case with any q.

Theorem 9.1 If the frequency-sweeping curves have a crossing frequency, there
exists some delay value τ ∗ such that the time-delay system (1.1) is unstable for all
τ > τ ∗ and lim

τ→∞ NU(τ ) = ∞.

Proof Due to Theorem8.5, we may equivalently consider a time-delay system with

the characteristic function f̃ (λ, τ ) =
q∏

i=1
f̃i (λ, τ ) =

q∏
i=1

(e−τλ + φi (λ)) satisfying:

(a) each φi (λ) is an analytical function and (b) the frequency-sweeping curve for
each f̃i (λ, τ ), denoted by Γ̃i (ω), has the same crossing frequencies of Γi (ω). By
Lemma6.1, the asymptotic behavior of the critical imaginary roots for f̃i (λ, τ ) = 0
satisfies the invariance property and can be fully mirrored by Γ̃i (ω). Therefore,
f̃ (λ, τ ) and f (λ, τ ) have the same number change of unstable roots as τ increases
from +ε. If Γ̃i (ω) has a crossing frequency, similar to Lemma9.1, f̃i (λ, τ ) has
infinitely many unstable roots as τ → +∞. Since the union of the characteristic

http://dx.doi.org/10.1007/978-3-319-15717-7_1
http://dx.doi.org/10.1007/978-3-319-15717-7_1
http://dx.doi.org/10.1007/978-3-319-15717-7_1
http://dx.doi.org/10.1007/978-3-319-15717-7_1
http://dx.doi.org/10.1007/978-3-319-15717-7_1
http://dx.doi.org/10.1007/978-3-319-15717-7_8
http://dx.doi.org/10.1007/978-3-319-15717-7_6
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roots for f̃i (λ, τ ) (i = 1, . . . , q) constitutes the spectrum of f̃ (λ, τ ), the result holds
for f̃ (λ, τ ) as well as f (λ, τ ). �

From Theorem9.1 we have an important conclusion that once the time-delay sys-
tem (1.1) has crossing frequencies, the systemwill become “more andmore unstable”
(the value NU(τ ) > 0 denotes the instability degree [85]) as τ → ∞. Although this
conclusion seems natural, it has not been rigorously proved in the literature.

Theorem9.1 is the core result for the ultimate stability problem, with which we
will obtain a macroscopic understanding of time-delay systems, from the stability
point of view.

9.1.2 Classification

With the remarks and results above, we can now categorize all time-delay systems
according to the ultimate stability property, as follows:

Theorem 9.2 A time-delay system (1.1) must fall in the following three types:

Type 1: The system has crossing frequencies and lim
τ→∞ NU(τ ) = ∞.

Type 2: The system has neither crossing frequencies nor touching frequencies and
NU(τ ) = NU(0) for all τ > 0.

Type 3: The system has touching frequencies but no crossing frequencies and NU(τ )

is a constant for all τ ≥ 0 except for the critical delays.

One may easily prove Theorem9.2 according to Theorem9.1 and the root con-
tinuity argument for time-delay systems. Time-delay systems of Type 1 are often
encountered in the literature and will be seen in Sect. 9.3. Time-delay systems of
Type 3 can be found in Example4 in [70] (simple critical imaginary root case) and
Sect. 3 in [54] (a double critical imaginary root case). A time-delay system of Type
2 must be either asymptotically stable or unstable independently of delay. We will
discuss this type of time-delay systems specifically in the next subsection.

9.1.3 Delay-Independent Stability (Instability)

Time-delay systems of Type 2 are called hyperbolic independently of delay [45]. For
a time-delay system of Type 2, it exhibits the well-known delay-independent stability
if NU(0) = 0. It is easy to have that NU(0) = 0 for the time-delay system (1.1) if
and only if all the eigenvalues of

∑m

=0 A
 are located inC−. The delay-independent

stability has been extensively studied in the literature, see [20, 22, 23, 49, 55]. If
NU(0) > 0 for a time-delay system of Type 2, this system is unstable independently

http://dx.doi.org/10.1007/978-3-319-15717-7_1
http://dx.doi.org/10.1007/978-3-319-15717-7_1
http://dx.doi.org/10.1007/978-3-319-15717-7_1
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Fig. 9.1 Frequency-sweeping curves and root loci for Example9.1. a Frequency-sweeping result.
b Re(λ) versus τ

of delay1 (i.e., this system is unstable for all τ ≥ 0).Wepresent now such a time-delay
system.

Example 9.1 Consider the time-delay system

ẋ(t) = A0x(t) + A1x(t − τ),

with

A0 =
(
5.6035 −3.2483
2.1573 4.8251

)
, A1 =

(−7.9037 −7.4422
0.9908 −0.2954

)
.

When τ = 0, the characteristic roots of this system are 1.1148 ± 4.6897 j . Thus,
NU(0) = 2. This system has no critical imaginary roots, which can be verified by the
frequency-sweeping result given in Fig. 9.1a. Therefore, for this system, NU(τ ) =
NU(0) = 2 for all τ ∈ [0,∞). The root loci for this system are given in Fig. 9.1b,
illustrating thus the analysis. �

In the sequel, we give some complementary discussions regarding the effects
of the system matrices. For simplicity, we consider a time-delay system ẋ(t) =
A0x(t)+ A1x(t −τ) as studied in Example9.1. A straightforward property is already
mentioned in this book that the system is asymptotically stable when τ = 0 if and
only if the matrix A0 + A1 is asymptotically stable (i.e., all the eigenvalues of the
matrix A0 + A1 are in C−). Another necessary condition for the delay-independent
stability is the asymptotic stability of the matrix A0. We now discuss it through
referring to a delay-independent stability theorem reported in [20].

1 It is worth mentioning that a delay-independently unstable system is not necessarily delay-
independently hyperbolic (see Example9.2).
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Theorem 9.3 A time-delay system ẋ(t) = A0x(t) + A1x(t − τ) is asymptotically
stable independently of delay if and only if

(i) A0 is asymptotically stable,
(ii) ρ(( jωI − A0)

−1A1) < 1,∀ω > 0, and
(iii) either

(1) ρ(A−1
0 A1) < 1 or

(2) ρ(A−1
0 A1) = 1 and det(A0 + A1) 	= 0.

For the system in Example9.1, conditions (ii) and (iii) of Theorem9.3 are met.
However, condition (i) is violated (the eigenvalues of A0 are 5.2143± 2.6184 j , i.e.,
A0 is unstable). One may notice that the conditions (ii) and (iii) of Theorem9.3 are
equivalent to the frequency-sweeping test used in this book. For the time-delay system
in Example9.1, the matrix A0 is the key factor affecting the stability property (delay-
independent stable or unstable). In addition, some discussions on the spectrum of the
matrix A0− A1 and its link with the delay-independent stability can be found in [92].

9.2 A Unified Approach for Complete Stability

We now present the steps of the new frequency-sweeping approach, a unified
approach for studying the complete stability problem.

Step 1: Generate the frequency-sweeping curves, through which we can detect all
the critical imaginary roots and the corresponding critical delays.

Step 2: For each critical imaginary root λα , we may choose any positive critical
delay τα,k to compute ΔNUλα (τα,k) (the value is denoted by Uλα ). Alter-
natively, we may directly have from the frequency-sweeping curves that
Uλα = ΔN Fzα (ωα), according to Theorem8.5.

Step 3: Compute NU(+ε) (by Theorem5.1).

With the steps above,we obtain the explicit expression ofNU(τ ) for the time-delay
system (1.1), as stated in the following theorem.

Theorem 9.4 For any τ > 0 which is not a critical delay, NU(τ ) for the time-delay
system (1.1) can be explicitly expressed as

NU(τ ) = NU(+ε) +
u−1∑

α=0

NUα(τ ), (9.1)

where

NUα(τ ) =
⎧
⎨

⎩

0, τ < τα,0,

2Uλα

⌈
τ−τα,0
2π/ωα

⌉
, τ > τα,0,

if τα,0 	= 0,

http://dx.doi.org/10.1007/978-3-319-15717-7_8
http://dx.doi.org/10.1007/978-3-319-15717-7_5
http://dx.doi.org/10.1007/978-3-319-15717-7_1
http://dx.doi.org/10.1007/978-3-319-15717-7_1
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NUα(τ ) =
⎧
⎨

⎩

0, τ < τα,1,

2Uλα

⌈
τ−τα,1
2π/ωα

⌉
, τ > τα,1,

if τα,0 = 0.

Proof Since ΔNUλα (τα,k) is a constant Uλα for all k ∈ N with τα,k > 0 due to the
invariance property as stated in Theorem8.5, NU(τ ) can be expressed by the closed
form (9.1). �

Nowwe have proposed a systematic approach (a new frequency-sweeping frame-
work) to solve the complete stability problem. The time-delay system (1.1) is asymp-
totically stable for the domain of τ with NU(τ ) = 0 excluding the critical delays. In
addition, according to Theorem9.2, the ultimate stability property is known.

Remark 9.1 In the literature, similar results have only been obtained for some spe-
cific time-delay systems, see [21, 97, 122]. The analysis and design of a general
time-delay system have long been considered rather involved. In our opinion, the
explicit form of NU(τ ) (9.1) may help to simplify the existing analysis and design
procedures for time-delay systems and open some new perspectives in this domain.

Remark 9.2 For fixed delay parameters, some interesting formulas for counting the
number of unstable roots have been reported in the literature, see [48, 52, 112], which
are in a substantially different line (argument principle-based methods) compared
with the τ -decomposition one adopted in [21, 97, 122], and this book. However, in
our opinion, it is not easy to apply the formulas in [48, 52, 112] to the complete
stability problem discussed in this book (specifically, it is difficult to apply them to
achieve the “NU(τ ) versus τ” plot) since one explicitly needs to know the critical
pairs and the corresponding asymptotic behavior.

9.3 Illustrative Examples

In the sequel, the examples considered inChap.8 are completely solved in the context
of the complete stability.

Example 9.2 Go on with the analysis in Example8.1, for which the characteristic
function is f (λ, τ ) = e−3τλ −3e−2τλ +3e−τλ +λ4+2λ2. The frequency-sweeping
result has been given in Fig. 8.2a (there are three frequency-sweeping curves where
two of them above �1 coincide). From the frequency-sweeping result, we detect two
critical imaginary rootsλ0 = j (with the critical delays 2kπ ) andλ1 = 1.9566 j (with
the critical delays (2k+1)π

1.9566 ). The root λ = 1.9566 j is simple for τ = (2k+1)π
1.9566 and the

root λ = j is double for τ = 2kπ . In fact, we do not need to know the multiplicities
of the critical imaginary roots and further information. According to Step 2 we may
directly know that U j = 0 and U1.9566 j = +1. When τ = 0 this system has multiple
critical imaginary roots. We need to first compute NU(+ε) using Theorem5.1. This
task has been finished in Example5.1 with the result NU(+ε) = +2.

http://dx.doi.org/10.1007/978-3-319-15717-7_8
http://dx.doi.org/10.1007/978-3-319-15717-7_1
http://dx.doi.org/10.1007/978-3-319-15717-7_8
http://dx.doi.org/10.1007/978-3-319-15717-7_8
http://dx.doi.org/10.1007/978-3-319-15717-7_8
http://dx.doi.org/10.1007/978-3-319-15717-7_5
http://dx.doi.org/10.1007/978-3-319-15717-7_5
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By Theorem9.4, we have the explicit expression of NU(τ ) for any τ other than
critical delays:

NU(τ ) = 2 + NU1(τ ),

where

NU1(τ ) =
⎧
⎨

⎩

0, τ < 1.6056,

2U1.9566 j

⌈
τ−1.6056
3.2113

⌉
, τ > 1.6056.

The plot of NU(τ ) is shown in Fig. 9.2a. Finally, we have that NU(τ ) → ∞ as
τ → ∞ by Theorem9.1, which is illustrated by Fig. 9.2a. This system is unstable
for all τ ∈ [0,∞) without being delay-independently hyperbolic. �

Example 9.3 Consider the system of Example8.2 with the characteristic func-
tion f (λ, τ ) = ∑5

i=0 ai (λ)e−iτλ, where a0(λ) = λ4 + 2λ3 + 5λ2 + 4λ + 4,
a1(λ) = 5λ3 + 10λ2 + 15λ + 10, a2(λ) = 4λ3 + 14λ2 + 24λ + 14, a3(λ) =
λ3 + 11λ2 + 21λ + 11, a4(λ) = 5λ2 + 10λ + 5, and a5(λ) = λ2 + 2λ + 1. The
frequency-sweeping curves are given in Fig. 8.3a. Five sets of critical pairs are found:
(λ0 = 0.7266 j, τ0,k = 5.1884 + 2kπ

0.7266 ), (λ1 = 0.8753 j, τ1,k = 2.9402 + 2kπ
0.8753 ),

(λ2 = j, τ2,k = π + 2kπ), (λ3 = 3.0777 j, τ3,k = 0.4083 + 2kπ
3.0777 ), and

(λ4 = 5.9358 j, τ4,k = 0.1577+ 2kπ
5.9358 ). We may directly have from the frequency-

sweeping curves that U0.7266 j = −1, U0.8753 j = −1, U j = +1, U3.0777 j= +1, and
U5.9358 j = +1.All the characteristic rootswhen τ = 0 lie inC−. Thus,NU(+ε) = 0,
according to Theorem5.1.

According to Theorem9.4, for a τ which is not a critical delay, we have

NU(τ ) =
4∑

α=0

NUα(τ ),
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Fig. 9.2 NU(τ ) for Examples9.2 and 9.3. a Example9.2. b Example9.3

http://dx.doi.org/10.1007/978-3-319-15717-7_8
http://dx.doi.org/10.1007/978-3-319-15717-7_8
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where

NU0(τ ) =
⎧
⎨

⎩

0, τ < 5.1884,

2U0.7266 j

⌈
τ−5.1884
8.6474

⌉
, τ > 5.1884,

NU1(τ ) =
{
0, τ < 2.9402,

2U0.8753 j
⌈

τ−2.9402
7.1783

⌉
, τ > 2.9402,

NU2(τ ) =
{
0, τ < π,

2U j
⌈

τ−π
2π

⌉
, τ > π,

NU3(τ ) =
{
0, τ < 0.4803,

2U3.0777 j
⌈

τ−0.4803
2.0415

⌉
, τ > 0.4803,

NU4(τ ) =
⎧
⎨

⎩

0, τ < 0.1577,

2U5.9358 j

⌈
τ−0.1577
1.0585

⌉
, τ > 0.1577.

The plot of NU(τ ) is given in Fig. 9.2b. The ultimate stability property
( lim
τ→∞ NU(τ ) = ∞ by Theorem9.1) is illustrated by Fig. 9.2b. This system has only

one stability interval: τ ∈ [0, 0.1577). That is to say, this system is asymptotically
stable if and only if τ ∈ [0, 0.1577). �

Through the above examples, we see that the complete stability of time-delay
systems with commensurate delays can be systematically studied. Both Problems 1
(detecting all the critical imaginary roots and the critical delays) and 2 (analyz-
ing the asymptotic behavior of the critical imaginary roots) can be solved by the
frequency-sweeping approach proposed in this book. The asymptotic behavior at all
the (infinitely many) positive critical delays can be studied by a graphical test of the
frequency-sweeping curves. Thus, the frequency-sweeping approach appears to be
simple to implement in practice.

9.4 Notes and Comments

Now, we have systematically solved the complete stability problem for a general
time-delay system with commensurate delays (1.1) in the retarded case. We will see
in the next chapter that the proposed approach can be extended to another class of
time-delay systems, the neutral time-delay systems.

As the delays appearing in time-delay system (1.1) are commensurate, the problem
considered in this book involves in fact only one parameter τ . If the delays are

incommensurate (e.g., consider a time-delay system ẋ(t) = A0x(t)+
m∑


=1
A
x(t−τ
)

http://dx.doi.org/10.1007/978-3-319-15717-7_1
http://dx.doi.org/10.1007/978-3-319-15717-7_1
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where τ1, . . . , τm are incommensurate delays), the problem will contain multiple
parameters and be much more involved. Such a problem is far beyond the scope of
this book. For solving Problem 1 in the case of multiple incommensurate delays,
some effective methods have been proposed, see [25, 40, 41, 88, 107]. However, to
the best of the authors’ knowledge, no result has been reported on Problem 2 for such
a time-delay system so far. In the small-gain analysis framework, some necessary and
sufficient delay-independent and sufficient delay-dependent stability conditions can
be obtained for a system with incommensurate delays (one may refer to Part III of
[39] for a detailed introduction). Apart from the above results, some sufficient criteria
have been reported, see [59, 86]. Overall, there is much room for the improvement
concerning the stability research of systems with multiple incommensurate delays.

The skeleton of the work in this chapter was reported in [66, 74] (see also [73]).



Chapter 10
Extension to Neutral Time-Delay Systems

In the preceding chapters, we solved the complete stability problem for time-delay
systems of retarded type (shortly called retarded systems) by proposing a frequency-
sweeping framework. In this chapter, we will see that this new framework is applica-
ble to time-delay systems of neutral type (shortly called neutral systems) as well.

In the stability analysis framework (in the case of commensurate delays), com-
pared to retarded systems, the major distinction of neutral systems lies in that infi-
nitely many new characteristic roots may appear in the right-half plane C+ when
delay increases from 0 to +ε. For this reason, we have to first check the stability
of the neutral operator (sometimes called delay-difference operator), which ensures
that all the infinitely many new characteristic roots appear in the left-half plane C−.
In other words, the stability of the neutral operator is a necessary condition for the
stability of the neutral time-delay system. We will show in this chapter that this nec-
essary condition can be embedded in the frequency-sweeping approach, i.e., we may
directly verify this condition from the frequency-sweeping curves.

If the stability of the neutral operator is guaranteed, we will proceed to address
the invariance and ultimate stability issues. It will turn out that the general invariance
property holds for neutral systems. Thus, the results derived in the retarded case
can also be applied to neutral systems. Next, we will analyze the ultimate stability
problem for neutral systems. Although the frequency-sweeping curves of neutral
systems exhibit different limit characteristics from the ones of retarded systems, two
types of time-delay systems possess the same ultimate stability property essentially.

Combining the aforementioned results, we will demonstrate that the frequency-
sweeping framework also represents a unified approach for the stability analysis of
neutral time-delay systems with commensurate delays. The complete stability of
general neutral time-delay systems has not been solved in the literature, though a
great number of results have been reported. To the best of the authors’ knowledge,
the newest results were reported in [98, 109]. However, it was assumed therein that
the neutral system under consideration has only simple critical imaginary roots.

© The Author(s) 2015
X.-G. Li et al., Analytic Curve Frequency-Sweeping Stability Tests for Systems
with Commensurate Delays, SpringerBriefs in Control, Automation and Robotics,
DOI 10.1007/978-3-319-15717-7_10
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Finally, some complementary discussions concerning the cases with multiple
delays will be given. In particular, we will show that, in the commensurate delays
case, the complete stability is covered by the approach proposed in this chapter.

10.1 Preliminaries

10.1.1 Basic Concepts

Consider the following time-delay system of neutral type

ẋ(t) = Ax(t) + Bx(t − τ) + Cẋ(t − τ), (10.1)

under appropriate initial conditions, where A ∈ R
r×r , B ∈ R

r×r , and C ∈ R
r×r are

constant matrices. The characteristic function of system (10.1) is given by [45]

fN (λ, τ ) = det(λI − A − Be−τλ − λCe−τλ), (10.2)

which is a quasipolynomial of the form

fN (λ, τ ) = a0(λ) + a1(λ)e−τλ + · · · + aq(λ)e−qτλ, (10.3)

where a0(λ), . . . , aq(λ) are polynomials in λ with real coefficients.
For a τ > 0, the neutral time-delay system (10.1) has infinitely many characteristic

roots (i.e., the roots for fN (λ, τ ) = 0). We have the following theorem [85]:

Theorem 10.1 The trivial solution x(t) = 0 of neutral time-delay system (10.1) is
exponentially stable if and only if all the characteristic roots lie in the open left-half
plane C− and are bounded away from the imaginary axis C0.

For the sake of brevity, in the sequel we simply say “neutral system (10.1) is
exponentially stable” instead of “the trivial solution x(t) = 0 of neutral system
(10.1) is exponentially stable”.

Remark 10.1 For the retarded time-delay system (1.1), it is exponentially stable if
and only if it is asymptotically stable. However, for the neutral time-delay system
(10.1), the asymptotic stability does not in general imply the exponential stability
(the converse holds), see the example given in Sect. 4.2 of [117].

Remark 10.2 Different from Theorem 1.1 concerning the stability of retarded
systems, it is additionally required in Theorem 10.1 that all the characteristic roots
must be bounded away from the imaginary axis C0. In fact, such an additional con-
dition can be guaranteed by the stability of the neutral operator [34], which will be
discussed later. In other words, if the neutral operator is stable, we only need to verify
if all the characteristic roots lie in C−.

http://dx.doi.org/10.1007/978-3-319-15717-7_1
http://dx.doi.org/10.1007/978-3-319-15717-7_4
http://dx.doi.org/10.1007/978-3-319-15717-7_1
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The objective of this chapter is to find the whole domain for τ (delay intervals)
where the neutral system (10.1) is exponentially stable. As usual, we denote the
number of unstable roots (i.e., the characteristic roots in C+) by NU (τ ) in the
presence of delay τ . We need to find the whole domain for τ ∈ [0,∞) such that
NU (τ ) = 0.

To rule out a trivial case, we assume that a0(λ), . . ., aq(λ) have no common zeros
in C+ ∪C0 (otherwise, the system (10.1) is not exponentially stable for any τ ≥ 0).
Another straightforward remark is that if λ = 0 is a characteristic root, the system
(10.1) has one invariant root at the origin for all τ ≥ 0 and hence wewill not compute
NU (τ ) for such systems.

With the notation z = e−τλ, fN (λ, τ ) can be rewritten as the following form:

pN (λ, z) =
q∑

i=0

ai (λ)zi . (10.4)

The detection of the critical imaginary roots and the corresponding critical delays
for fN (λ, τ ) = 0 amounts to detecting the critical pairs (λ, z) (λ ∈ C0 and z ∈ ∂D)
such that pN (λ, z) = 0.Without any loss of generality, assume that there are u critical
pairs denoted by (λ0 = jω0, z0), (λ1 = jω1, z1), . . ., (λu−1 = jωu−1, zu−1) where
ω0 ≤ ω1 ≤ · · · ≤ ωu−1. Once all the critical pairs (λα, zα), α = 0, . . . , u − 1, are
found, all the critical pairs (λα, τα,k), α = 0, . . . , u − 1, k ∈ N, can be obtained:
For each critical imaginary root λα , the corresponding critical delays are given by

τα,k
Δ= τα,0 + 2kπ

ωα
with τα,0

Δ= min{τ ≥ 0 : e−τλα = zα}.
In light of (10.4), we may employ the frequency-sweeping test to obtain the

frequency-sweeping curves.
Frequency-Sweeping Curves Sweep ω ≥ 0 and for each λ = jω we have q

solutions of z such that pN (λ, z) = 0 (denoted by z1( jω), . . . , zq( jω)). In this way,
we obtain q frequency-sweeping curves Γi (ω): |zi ( jω)| versus ω, i = 1, . . . , q.

In addition, we define “ΔN Fzα (ωα)” as in (7.2) to describe the asymptotic behav-
ior of the frequency-sweeping curves. It is easy to see that all the critical pairs can
be detected from the frequency-sweeping curves. In the sequel, we will show that
the other issues for the complete stability problem can also be solved by using the
frequency-sweeping approach.

10.1.2 Subtleties of Neutral Time-Delay Systems

Though retarded systems and neutral systems share the same type of characteristic
functions (their characteristic functions are both quasipolynomials of the form
(10.3)), they exhibit the following “subtle” difference:

(i) For the system (10.1) with C = 0 (i.e., a retarded system), it follows that

deg(a0(λ)) > max{deg(a1(λ)), . . . , deg(aq(λ))}.

http://dx.doi.org/10.1007/978-3-319-15717-7_7
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(ii) For the system (10.1) with C �= 0 (i.e., a neutral system), it happens that

deg(a0(λ)) = max{deg(a1(λ)), . . . , deg(aq(λ))}.

The above difference results in a distinction between two types of time-delay
systems. For a retarded time-delay system, when τ increases from 0 to +ε, all the
infinitely many new roots appear at far left of the complex plane (i.e., all with −∞
real parts). Therefore, all these infinitelymany new characteristic roots are “dormant”
from the stability point of view. However, when τ increases from 0 to +ε, infinitely
many new roots may appear in the right-half plane for a neutral time-delay system
and, hence, the neutral system may be unstable for all τ > 0. That is, the spectrum
of a neutral system may exhibit some discontinuity properties (see [4, 83, 85]). This
gives rise to the stability issue of the neutral operator.

For the system (10.1), the neutral operator refers to the following difference
equation:

x(t) = Cx(t − τ). (10.5)

The exponential stability of the neutral operator (10.5) is a necessary condition for
the exponential stability of system (10.1). Recall the followingwell-known condition,
see [85].

Lemma 10.1 The neutral operator (10.5) is exponentially stable for any positive τ

if and only if
ρ(C) < 1. (10.6)

Therefore, in order to analyze the complete stability for neutral system (10.1), we
have to first check the necessary condition (10.6). For a comprehensive introduction
to the spectral properties of linear neutral time-delay systems, we recommend a
recent review article [38]. See also [14] for further discussions.

10.2 Complete Stability Characterization

In this section, the technical issues (the stability of the neutral operator, the invari-
ance property, and the ultimate stability property) required by the complete stability
problem of neutral time-delay systems will be studied. Finally, the unified approach
will be presented.

10.2.1 Embedding Stability Condition of Neutral Operator

In this chapter, all eigenvalues of C are denoted by λ1(C), . . . , λr (C) and naturally
the spectrum of C corresponds to the set {λ1(C), . . . , λr (C)}. We have the following
properties connecting the spectrum of C with the frequency-sweeping curves:

Lemma 10.2 If q = r , as ω → ∞, { 1
z1( jω)

, . . . , 1
zr ( jω)

} → {λ1(C), . . . , λr (C)}.
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Proof In the case q = r , we have r values of z (i.e., r frequency-sweeping curves)
from pN ( jω, z) = ( jω)r det(M(ω) − N (ω)z) = 0 where M(ω) = I − A

jω and

N (ω) = B
jω + C . It is easy to see that M(ω) → I and N (ω) → C as ω → ∞.

For each λi (C) �= 0, we may find a z( jω) → 1
λi (C)

such that pN ( jω, z( jω)) = 0
as ω → ∞. For each λi (C) = 0 (if any!), we may find a z( jω) → ∞ such that
pN ( jω, z( jω)) = 0 as ω → ∞. �

If q < r , r − q eigenvalues of C cannot be reflected by the q frequency-
sweeping curves. Without any loss of generality, we denote the spectrum of C by
the set {λ1(C), . . . , λq(C)} ∪ {λq+1(C), . . . , λr (C)}, where the q eigenvalues in
{λ1(C), . . . , λq(C)} connect with the frequency-sweeping curves while the r − q
eigenvalues in {λq+1(C), . . . , λr (C)} do not.We have the following lemma concern-
ing the eigenvalues λq+1(C), . . . , λr (C).

Lemma 10.3 If q < r , λq+1(C) = · · · = λr (C) = 0.

Proof Following the proof of Lemma 10.2, pN ( jω, z) = ( jω)r det(M(ω) −
N (ω)z) and we can express det(M(ω) − N (ω)z) as a polynomial: bq(ω)zq +
bq−1(ω)zq−1 + · · · + b0(ω) where bq(ω) �≡ 0, bq−1(ω), . . . , b0(ω) are continu-
ous functions of ω. As M(ω) → I and N (ω) → C as ω → ∞, det(I − Cz) is a
polynomial in z whose degree is not larger than q. More precisely, det(I − Cz) =
cq zq +cq−1zq−1+· · ·+c0 such that bq(ω) → cq , · · · , b0(ω) → c0 = 1 asω → ∞.
Let s = z−1. Then, it follows straightforwardly that det(s I − C)=sr det(I − Cz) =
sr +c1sr−1+· · ·+cqsr−q = sr−q(sq +c1sq−1+· · ·+cq), which is the characteristic
function of C . That is to say, λq+1(C) = · · · = λr (C) = 0. �

The ideas of Lemmas 10.2 and 10.3 lead to the following lemma:

Lemma 10.4 If q < r , as ω → ∞, { 1
z1( jω)

, . . . , 1
zq ( jω)

} → {λ1(C), . . . , λq(C)}.
Combining Lemmas 10.2–10.4, we have the following result, which allows

embedding the necessary condition (10.6) in the frequency-sweeping approach.

Theorem 10.2 The neutral operator (10.5) is exponentially stable if and only if all
the frequency-sweeping curves are above ℑ1 as ω → ∞.

To illustrate Theorem 10.2, two numerical examples are proposed.

Example 10.1 Consider the neutral time-delay system of Example case 2 in [98],
i.e., the system (10.1) with matrices:

A =

⎛

⎜⎜⎝

0 1 −1 0
−3.346 −2.715 2.075 −2.007

−4 0 2 0
−3 0 0 6

⎞

⎟⎟⎠ , B =

⎛

⎜⎜⎝

−1 2 2 −1
3 3 −2 0
1 2 −1 1
2 3 1 −3

⎞

⎟⎟⎠ ,
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C =

⎛

⎜⎜⎝

0.2 −0.1 0.5 −0.1
−0.3 0.09 −0.15 −0.027

−3.333 0.1 0.2 1
−1 2 0.5 1

⎞

⎟⎟⎠ .

The four eigenvalues of C are 0.0881 ± 0.8494 j and 0.6569 ± 0.5284 j . Hence,
ρ(C) < 1 (i.e., the neutral operator (10.5) is exponentially stable). This result can be
directly obtained from the frequency-sweeping curves shown in Fig. 10.1a. We see
that as ω → ∞, |zi ( jω)| > 1, i = 1, . . . , 4. By Theorem 10.2, the neutral operator
(10.5) is exponentially stable. �

Example 10.2 Consider the neutral time-delay system of Example b2 in [109], i.e.,
the system (10.1) with matrices:

A =

⎛

⎜⎜⎝

12 10 −6 14
7 8 11 9

−5 7 3 3
6 2 3 4

⎞

⎟⎟⎠ , B =

⎛

⎜⎜⎝

−169 −276.85 −445.76 −675.75
−11 −46 −61 −83
249 360.05 1070.43 1431.02
81.65 158.32 127.61 230.85

⎞

⎟⎟⎠ ,

C =

⎛

⎜⎜⎝

−4 12 3 1
0 1 −2 6
12 −8 4 2
1.47 −10.09 −4.33 0.03

⎞

⎟⎟⎠ .

The four eigenvalues ofC are 0.2816±1.3641 j , –1.3469, and 1.8138. As ρ(C) >

1, the neutral operator (10.5) is unstable. That is, NU (τ ) = +∞ for any τ > 0.
We now apply the frequency-sweeping test. It is seen from the frequency-sweeping
curves, Fig. 10.1b, that as ω → ∞, |zi ( jω)| < 1, i = 1, . . . , 4. By Theorem 10.2,
we directly know that the neutral operator (10.5) is not exponentially stable. �
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Fig. 10.1 Frequency-sweeping results for a Example 10.1 and b Example 10.2
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10.2.2 Infinitesimal Delay Case

As a straightforward extension of Theorem 5.1, we present themethod for computing
NU (+ε) of neutral systems in the case when the neutral operator is stable.

Theorem 10.3 If the system (10.1) with ρ(C) < 1 has no critical imaginary roots
when τ = 0, then NU (+ε) = NU (0). If the system (10.1) with ρ(C) < 1 has
critical imaginary roots when τ = 0, then NU (+ε) − NU (0) equals to the number
of the values in C+ of the Puiseux series for all the corresponding critical imaginary
roots when τ = 0 with Δτ = +ε.

10.2.3 General Invariance Property for Neutral Time-Delay
Systems

It is not hard to prove that the invariance property, which was confirmed for general
retarded systems in Chap. 8, also holds for general neutral systems, as two types of
time-delay systems share the same type of characteristic functions.

Theorem 10.4 For a critical imaginary root λα of the system (10.1), ΔNUλα (τα,k)

is a constant ΔN Fzα (ωα) for all τα,k > 0.

Recall that “ΔN Fzα (ωα) ∈ Z” is a constant number reflecting the asymptotic
behavior of the frequency-sweeping curves near ω = ωα .

10.2.4 Ultimate Stability Property

For retarded time-delay systems, we studied the ultimate stability problem in Chap.9
relying on the invariance property and an important property on the frequency-
sweeping curves (Property 9.1): lim

ω→+∞ |zi ( jω)| = +∞, i = 1, . . . , q, for the

system (1.1). Property 9.1 ensures that the largest crossing frequency for each
frequency-sweeping curve must correspond to the intersection of ℑ1 from below
to above. Next, based on the invariance property we have that as τ increases NU (τ )

increases more frequently than it decreases, on average.
We now consider the frequency-sweeping curves for neutral system (10.1) as

ω → ∞. In light of Theorem 10.2, we have:

Property 10.1 If ρ(C) < 1 for the neutral time-delay system (10.1), the frequency-
sweeping curves satisfy that

lim
ω→+∞ |zi ( jω)| > 1, i = 1, . . . , q. (10.7)

http://dx.doi.org/10.1007/978-3-319-15717-7_5
http://dx.doi.org/10.1007/978-3-319-15717-7_8
http://dx.doi.org/10.1007/978-3-319-15717-7_9
http://dx.doi.org/10.1007/978-3-319-15717-7_9
http://dx.doi.org/10.1007/978-3-319-15717-7_1
http://dx.doi.org/10.1007/978-3-319-15717-7_9
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Property 10.1 also ensures that at the largest crossing frequency each frequency-
sweeping curve must intersect ℑ1 from below to above. As a result, we may now
have the same results on the ultimate stability for neutral time-delay system (10.1)
as for retarded time-delay system (1.1).

Theorem 10.5 If the frequency-sweeping curves have a crossing frequency, there
exists some delay value τ ∗ such that the neutral time-delay system (10.1)with ρ(C) <

1 is unstable for all τ > τ ∗ and lim
τ→∞ NU (τ ) = ∞.

Theorem 10.6 A neutral time-delay system (10.1) with ρ(C) < 1 must belong to
the following three types:

Type 1: The system has a crossing frequency and lim
τ→∞ NU (τ ) = ∞.

Type 2: The system has neither crossing frequencies nor touching frequencies and
NU (τ ) = NU (0) for all τ > 0.

Type 3: The system has touching frequencies but no crossing frequencies and NU (τ )

is a constant for all τ ≥ 0 except for the critical delays.

10.2.5 Frequency-Sweeping Framework: A Unified Approach

We can now solve the complete stability of neutral time-delay systems within the
frequency-sweeping framework. We summarize the steps as Algorithm 10.1.

Algorithm 10.1 Algorithm for analyzing the complete stability of a neutral system
Step 1: Perform the frequency-sweeping test to obtain the frequency-sweeping curves.
Step 2: Verify condition (10.6) by Theorem 10.2. If the condition is violated, the system (10.1) is
not exponentially stable for any τ > 0. Otherwise, go to Step 3.
Step 3: Calculate all the critical pairs (λα, τα,k) from the frequency-sweeping curves.
Step 4: Compute ΔNUλα (τα,k) for all α = 0, . . . , u − 1, and τα,k > 0 by the invariance property
(Theorem 10.4).
Step 5: The explicit expression of NU (τ ) is of the form (9.1), where the value of NU (+ε) is
computed according to Theorem 10.3.

The neutral time-delay system (10.1) is exponentially stable if and only if τ lies
in the domain where NU (τ ) = 0 excluding critical delays. The ultimate stability
property is obtained by Theorem 10.6.

10.3 Discussions on Neutral Systems with Multiple Delays

In the previous sections of this chapter, the considered neutral system (10.1) has a
single delay parameter. In this section, we will briefly discuss the cases with multiple
delays. If the multiple delays are commensurate, we will see in Sect. 10.3.1 that

http://dx.doi.org/10.1007/978-3-319-15717-7_1
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this case can be well studied. However, for the case where the multiple delays are
incommensurate, the problem is rather involved (see Sect. 10.3.2).

10.3.1 Multiple Commensurate Delays

Consider a neutral system with commensurate delays

ẋ(t) = Ax(t) +
m∑

�=1

B�x(t − �τ) +
m∑

�=1

C� ẋ(t − �τ), (10.8)

where A ∈ R
r×r , B� ∈ R

r×r , and C� ∈ R
r×r (� = 1, . . . , m) are constant matrices.

The characteristic function of system (10.8) is

fNC (λ, τ ) = det

(
λI − A −

m∑

�=1

B�e−�τλ −
m∑

�=1

λC�e−�τλ

)
. (10.9)

Since the characteristic function (10.9) involves only one parameter τ , the asymp-
totic behavior of the critical imaginary roots can be analyzed by the frequency-
sweeping approach. We will show that the examination of the stability of the neutral
operator can also be properly embedded in the frequency-sweeping approach as for
the neutral system (10.1) with a single delay.

Remark 10.3 Unlike for the characteristic function fN (λ, τ ) (10.2) (we may gener-
ate the frequency-sweeping curves via computing the generalized eigenvalues of the
matrix pencil (( jωI − A), (B + jωC))), in general, we cannot directly obtain the
frequency-sweeping curves for the characteristic function fNC in the form (10.9).
An efficient way is to acquire the scalar form of fNC (λ, τ ) (i.e., the quasipolynomial
form (10.3)) and then employ the procedure introduced in Sect. 10.1.1.

The neutral operator of system (10.8) is

x(t) =
m∑

�=1

C�x(t − �τ). (10.10)

A necessary condition for the exponential stability of system (10.8) is the expo-
nential stability of the neutral operator (10.10), with the criterion given below.

Theorem 10.7 ([34]) The neutral operator (10.10) is exponentially stable for any
positive τ if and only if

ρ(Ĉ) < 1,
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where

Ĉ =

⎛

⎜⎜⎜⎝

C1 · · · Cm−1 Cm

I · · · 0 0
...

. . .
...

...

0 · · · I 0

⎞

⎟⎟⎟⎠ .

Property 10.2 The characteristic function of Ĉ, det(λI − Ĉ), is equivalent to
det(ΔN̂ ) where

ΔN̂ = λm I −
m∑

�=1

λm−�C�.

Proof For simplicity,we here consider the casem = 3. For the characteristic function
det(λI − Ĉ), we may transform the characteristic matrix λI − Ĉ by a series of
elementary transformations into the form

ΔÑ =
⎛

⎝
ΔN̂ −λC2 − C3 −C3
0 λ2 I 0
0 0 λI

⎞

⎠

The elementary transformations can be described by (λI − Ĉ)S1S2 = ΔÑ , with

S1 =
⎛

⎝
I 0 0
0 λI 0
0 I I

⎞

⎠ , S2 =
⎛

⎝
λ2 I 0 0

I I 0
0 0 I

⎞

⎠ .

It is easy to have that

det((λI − Ĉ)S1S2) = det(λI − Ĉ)det(λI ) det(λ2 I ),

det(ΔÑ ) = det(ΔN̂ )det(λ2 I )det(λI ).

Therefore, det(λI − Ĉ) = det(ΔN̂ ) as det((λI − Ĉ)S1S2) = det(ΔÑ ). One may
easily extend the above analysis to the case with any m ∈ N+. �
Based on Property 10.2, we may have the following stability criterion for the neutral
operator (10.10), following the idea of Theorem 10.2.

Theorem 10.8 The neutral operator (10.10) is exponentially stable if and only if all
the frequency-sweeping curves are above ℑ1 as ω → ∞.

10.3.2 Multiple Incommensurate Delays

In this subsection, wewill briefly discuss the casewhere a neutral systemhasmultiple
incommensurate delays.
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Consider such a neutral system

ẋ(t) = Ax(t) +
m∑

�=1

B�x(t − τ�) +
m∑

�=1

C� ẋ(t − τ�), (10.11)

where A ∈ R
r×r , B� ∈ R

r×r , andC� ∈ R
r×r are constantmatrices and τ� ∈ R+∪{0}

are independent delays (� = 1, . . . , m).
Generally speaking, the complete stability for this type of time-delay systems is

very complicated. One may refer to, e.g., [111] and the references therein.
First, it is impossible to accurately verify the stability of the neutral operator by

existing methods in the general case.1

The corresponding neutral operator for system (10.11) is

x(t) =
m∑

�=1

C�x(t − τ�), (10.12)

It should be emphasized that, even if the neutral operator (10.12) is exponentially
stable for some commensurate delays τ�, the stability may be fragile (the stability
may be lost when sufficiently small perturbations are imposed on the delays τ�).
Thus, we need to ensure the strong stability of the neutral operator (10.12). We have
the following theorem from the literature (more details can be found in [4, 38]).

Theorem 10.9 The neutral operator (10.12) is exponentially stable for arbitrary
positive delays if and only if

max
0≤θ�≤2π,�=1,...,m

ρ

( m∑

�=1

e jθ�C�

)
< 1 (10.13)

However, it is difficult to check condition (10.13) in practice. To the best of
the authors’ knowledge, no method has been reported for precisely checking this
condition when m > 2 (in the case m = 2, see [32]). An easily testable criterion was
proposed in [14], which is, however, sufficient but not necessary.

If the neutral operator (10.12) is exponentially stable, we next need to study the
asymptotic behavior of the critical imaginary roots with respect to multiple delay
parameters τ� (� = 1, . . . , m). Such an issue will be much more complicated than
the single delay parameter case addressed in this book.

1 In the specific case where the system includes two independent delays, a matrix pencil-based
approach allows to check the stability of the neutral operator (see [32]).
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10.4 Illustrative Examples

We now give two illustrative examples.

Example 10.3 Consider the neutral time-delay system (10.1) with

A =
(

a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
, C =

( 1
π

1
0 1

3π

)
,

a11 = 14π − 150π2 − 1182π3 + 2

π2(3π + 1)2
− 120,

a12 = 5961

5
− 2422π/15 − 13931π2/10 − 63003π3/5+691/30

π2(3π + 1)2
,

a21 = −10, a22 = 100,

b11 = 14π − 370π2 − 1842π3 + 2

π2(3π + 1)2
− 245,

b12 = 13149

5
− 2417π/15 − 19621π2/5 − 100959π3/5 + 23

π2(3π + 1)2
,

b21 = −20, b22 = 215.
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Fig. 10.2 Frequency-sweeping result for Example 10.3. a Frequency-sweeping curves for 0 ≤
ω ≤ 5000, b Frequency-sweeping curves for 0 ≤ ω ≤ 1.2

First, from the frequency-sweeping result given in Fig. 10.2a, we know that
according to Theorem 10.2 the necessary condition (10.6) is satisfied. In light of
the frequency-sweeping curves, we have that the system has three sets of critical
pairs: (λ0 = 0.1638 j, τ0,k = 19.8105 + 2kπ

0.1638 ), (λ1 = j, τ1,k = (2k + 1)π),
and (λ2 = 182.6684 j, τ2,k = 0.0062 + 2kπ

182.6684 ) (λ0 and λ1 can be observed from
Fig. 10.2b and λ2 can be observed from Fig. 10.2a).
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Fig. 10.3 NU (τ ) versus τ for Example 10.3. a NU (τ ) for 0 ≤ τ ≤ 2, b First decrease of NU (τ )

Then, by Theorem 10.4, ΔNUλ0(τ0,k) = −1, ΔNUλ1(τ1,k) = 0, and
ΔNUλ2(τ2,k) = +1, for all k ∈ N (the asymptotic behavior for critical pairs
(λ0, τ0,k) and (λ1, τ1,k) can be studied from the zoomed-in figure given in Fig. 10.2b).

We have the explicit expression of NU (τ ) for any τ other than critical delays:

NU (τ ) = NU0(τ ) + NU2(τ ),

with

NU0(τ ) =
{
0, τ < 19.8105,

−2
⌈

τ−19.8105
2π/0.1638

⌉
, τ > 19.8105,

NU2(τ ) =
{
0, τ < 0.0062,

+2
⌈

τ−0.0062
2π/182.6684

⌉
, τ > 0.0062.

This system is exponentially stable if and only if τ ∈ [0, 0.0062).
We now verify the above result by invoking the Puiseux series. Here, we only

analyze the critical pair ( j, π) (the critical pairs (λ0, τ0,k) and (λ2, τ2,k) corre-
spond to simple critical imaginary roots and can be studied by the existing meth-
ods). The critical imaginary root λ = j is double at τ = π . Using the approach
in Chap.4, the asymptotic behavior of ( j, π) corresponds to the Puiseux series

Δλ = (0.0049 + 0.0248 j)(Δτ)
1
2 +o((Δτ)

1
2 ), which is consistent with the analysis

based on Theorem 10.4. As ΔNUλ1(τ1,k) = 0 for all k ∈ N, we need not explicitly
take “NU1(τ )” into account in the expression of NU (τ ).

Furthermore, by Theorem 10.5, NU (τ ) → ∞ as τ → ∞, which is verified by
the plot of NU (τ ), see Fig. 10.3a. Compared to the increase of NU (τ ), the decrease
of NU (τ ) takes place much less frequently, as shown in Fig. 10.3b, where we see
that when the first decrease of NU (τ ) occurs NU (τ ) is already 1152. �

Example 10.4 We now consider the neutral system of Example 1.17 in [85]:

http://dx.doi.org/10.1007/978-3-319-15717-7_4
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Fig. 10.4 Frequency-sweeping curves and NU (τ ) for Example 10.4. a Frequency-sweeping result,
b NU (τ )

ẋ(t) = 1

4
x(t) + 3

4
x(t − τ1) + 3

4
ẋ(t − τ1) − 1

2
ẋ(t − τ2).

This system has multiple delays. We first consider the commensurate delays case
where τ1 = τ and τ2 = 2τ . According to Theorem 10.7, the neutral operator is
exponentially stable for any positive delay τ , as ρ(Ĉ) = 0.7071 < 1 with

Ĉ =
( 3

4 − 1
2

1 0

)
.

This condition can be directly obtained from the frequency-sweeping curve
(Fig. 10.4a) according to Theorem 10.8. Then, using the frequency-sweeping
approach we may obtain the “NU (τ ) versus τ” plot as shown in Fig. 10.4b.

Next,we analyze the incommensurate delays case, i.e., the casewhere τ1 and τ2 are
two independent delay parameters. It is worth mentioning that, although the neutral
operator x(t) = 3

4 x(t − τ1) − 1
2 x(t − τ2) is exponentially stable for any positive

τ in the commensurate delays case discussed above, the condition of the strong
stability (Theorem 10.9) does not hold. One may easily find a counterexample, e.g.,
ρ(e jθ1 3

4 − e jθ2 1
2 ) = 5

4 > 1 when θ1 = 0 and θ2 = π . �

10.5 Notes and Comments

In this chapter, we studied the complete stability of neutral systems. Compared with
the retarded systems studied in Chaps. 1–9, an additional necessary condition, the
stability of the neutral operator, is required. It was shown that this necessary condition
can be effectively embedded in the frequency-sweeping framework proposed in this
book. Thus, the complete stability for neutral systems can also be thoroughly studied
by using the frequency-sweeping framework.

Main results of this chapter have been reported in [68] (see also [69]). Some
complementary discussions were added in Sect. 10.3.

http://dx.doi.org/10.1007/978-3-319-15717-7_1
http://dx.doi.org/10.1007/978-3-319-15717-7_9


Chapter 11
Concluding Remarks and Further
Perspectives

11.1 Concluding Remarks

It is generally difficult to study the spectrum of a linear time-delay system (infinite-
dimensional system) mainly due to two reasons: (1) a time-delay has infinitely many
characteristic roots and (2) a critical imaginary root of a time-delay system corre-
sponds to infinitely many critical delays. Owing to the involved spectral features, the
complete stability of linear time-delay systems has remained an open problem.

In this book, we introduced a new analytic curve perspective for addressing the
spectrum of a time-delay system in both retarded and neutral cases. We may system-
atically study the asymptotic behavior of the critical imaginary roots as well as the
frequency-sweeping curves from this new perspective. It turned out that the asymp-
totic behavior of the critical imaginary roots (frequency-sweeping curves) can be
fully investigated through the Puiseux series (dual Puiseux series). In addition, some
useful properties in the area of the singularities of analytic curves can be adopted for
the stability analysis of time-delay systems.

Consequently, a new frequency-sweepingmathematical frameworkwas gradually
established allowing a deeper study of the asymptotic behavior related to time-delay
systems. One of the most important results, derived within this new framework, is
that we can now confirm the invariance property for general time-delay systems with
commensurate delays (i.e., the general invariance property termed in this book).With
the aid of the general invariance property, we have been able to solve the complete
stability problem for linear time-delay systems. It isworthmentioning two interesting
results: First, we find the explicit expression of the number of unstable roots with
respect to the delay parameter. Second, the ultimate stability property of time-delay
systems can be fully understood and all time-delay systems can be appropriately
categorized. In addition, the proposed approach is applicable to both retarded and
neutral time-delay systems.

It is natural that this book cannot cover all the aspects of time-delay systems.
We do not claim to give the best approach and tool for the stability analysis of

© The Author(s) 2015
X.-G. Li et al., Analytic Curve Frequency-Sweeping Stability Tests for Systems
with Commensurate Delays, SpringerBriefs in Control, Automation and Robotics,
DOI 10.1007/978-3-319-15717-7_11
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time-delay systems. Some problems still remain open due to the lack of a more
in-depth understanding and more powerful mathematical tools for time-delay sys-
tems. For instance, as mentioned earlier, if a time-delay system involves multiple
incommensurate delay parameters, the asymptotic behavior issue will become much
more complicated and the ideas proposed here are helpful but do not allow han-
dling directly such cases. However, combining some of the ideas proposed here with
the geometric method discussed in [41] seems to open interesting perspectives in
fully characterizing the stability regions in the delay-parameter space for the case of
quasipolynomials including two delays.

Most of the results in this book stemmed from the analytic curve perspective.
However, as we mentioned, such an analytic curve perspective is only at an ele-
mentary level in algebraic geometry. We believe that this book just opens some new
perspectives for (rather than closes) the stability study of time-delay systems.

11.2 Future Perspectives

In the future, we may consider extending the approach proposed in this book to other
problems, e.g., the D-decomposition and the multiple-delay problems mentioned in
the Preface of the book.

Recently, the authors applied themethodology of this book to analyze the stability
of linear systems with multiple incommensurate delays and some new results were
obtained. Though a direct asymptotic behavior analysiswith respect tomultiple delay
parameters is quite difficult, we may analyze the asymptotic behavior of a critical
imaginary root with respect to one delay parameter at a time (fixing the other delay
parameters). The invariance property in this case can be proved and then the number
of unstable roots for any given combination of multiple delays can be calculated by
applying the frequency-sweeping test in an iterative way. If for the given multiple
delays the system has a critical imaginary root, we may analyze the asymptotic
behavior with respect to each delay parameter such that we may find a stabilizing
combination of multiple delays (if any!) near the given one.

In the sequel, we list some additional interesting options for the future work. In
general, they are much more involved than the problem discussed in this book.

11.2.1 Extra Requirements on Spectra of Time-Delay Systems

Sometimes, we may have more stringent requirements on the system dynamics than
the asymptotic stability. For instance, in some situation, we are concerned not only
with the convergence of the system states but also with how fast they converge. The
decay rate1 is usually used as an index for measuring the convergence speed. In order

1 For the time-delay system (1.1), if there exist two positive numbers α and β such that ‖x(t)‖ ≤
βe−αt ( max

t−mτ≤t≤0
‖x(t)‖), α is called the decay rate.

http://dx.doi.org/10.1007/978-3-319-15717-7_1
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to guarantee a desired decay rate α ∈ R+, we need to make sure that all the real parts
of the characteristic roots are less than −α, see Theorem6.2 in [45].

Such a problem appears similar to the one studied in this book as the only differ-
ence lies in the “boundaries” we choose: In this book, the boundary is the imaginary
axis in the complex plane,while for the decay rate analysis the boundary is the vertical
linewith abscissa−α in the complex plane.However, for the latter,manynice spectral
properties will be lost due to this difference (for instance, the periodicity discussed
in Remark1.6 is not satisfied), making the analysis in fact much more involved.

11.2.2 Design Problem

In this book, we have mainly considered the “analysis” problem for time-delay sys-
tems with commensurate delays. However, for some simple cases (see Examples6.3
and 6.4: controlling an oscillator and a chain of integrators by using delay blocks),
we have pointed out that the proposed methodology allows handling the stability
analysis of the closed-loop systems. In this context, it is natural to consider if the
results proposed in this book can be extended to the “design” problem. For instance,
consider a linear system ẋ(t) = Ax(t)+ Bu(t − τ) with an input delay τ , where the
control signal u(t) is a widely-used state feedback u(t) = K x(t) (K is the controller
matrix to be designed). The task is to design K such that the stability domain of τ

for the closed-loop system is as large as possible.
Such a design problem is much more complicated than the analysis problem

discussed in this book. For given K and τ , the system has infinitely many roots and
there does not exist an explicit relation between K and the corresponding stability
domain of τ . Thus, the adjustment of K is generally computationally demanding
[85]. In our opinion, this is a very challenging topic.

11.2.3 Other Types of Time-Delay Systems

The time-delay systems considered in this book belong to the classical type of func-
tional differential equations. The reported results may be applicable to other types of
time-delay systems, e.g., fractional-order time-delay systems (one may refer to [26]
for a detailed introduction). In this case, it appears clearly that the Puiseux series still
works and allows concluding on the asymptotic behavior.

As other types of time-delay systems are generally infinite dimensional aswell and
the corresponding stability problems need to be recast into the asymptotic behavior
analysis of the characteristic roots located on the stability boundaries. We believe
that the ideas proposed in this book would also be helpful.

http://dx.doi.org/10.1007/978-3-319-15717-7_1
http://dx.doi.org/10.1007/978-3-319-15717-7_6
http://dx.doi.org/10.1007/978-3-319-15717-7_6
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Fig. 11.1 Delay-sweeping
result
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11.2.4 Applying Parameter-Sweeping Techniques
to Other Problems

A further effort is also suggested here concerning the graphical tool used in
this book. The “frequency-sweeping” test is a class of parameter-sweeping tech-
niques. Parameter-sweeping techniques have been widely used in the control area,
owing to the more and more powerful computer-processing power. For instance,
parameter-sweeping criteria have been used for studying the stability and related
problems for networked-control systems (NCSs), see [16, 65], where the authors
sweep the sampling period and/or the network-induced delay parameters. Here, we
borrow a delay-sweeping test for Example10.2 of [16], as shown in Fig. 11.1 (sweep-
ing the networked-induced delay τ to monitor the spectral radius of the transition
matrix of the NCS). For that example, the NCS is asymptotically stable if and only
if the spectral radius is less than 1. In this way, the stability domain of the network-
induced delay can be precisely obtained.

However, such an application is relatively elementary as no deeper analysis con-
cerning the parameter-sweeping curve has been reported. In our opinion, there is still
much room for further improvement regarding the parameter-sweeping techniques.



Appendix A
Implicit Function Theorem

In the sequel we briefly recall an important (classical) theorem, the implicit function
theorem. Although this theorem has some limitations, it is very helpful for under-
standing the spectral characteristics related to the stability problem considered in this
book, especially when one variable can be regarded as a simple root.

A.1 Implicit Function Theorem and Related Remarks

The implicit function theorem has multiple versions. In this section, we recall a
simple one.

Theorem A.1 ([79]) Let F(z, w) be a function of two complex variables which is
analytic in a neighborhood of the point (z0, w0), and suppose that

F(z0, w0) = 0 and Fw �= 0 at (z0, w0).

Then there are neighborhoods N (z0) and N (w0) such that the equation F(z, w) =
0 has a unique root w = w(z) in N (w0) for any given z ∈ N (z0). Moreover, the
function w(z) is single-valued and analytic in N (z0), and satisfies the condition
w(z0) = w0.

Furthermore, according to Theorem A.1, the derivatives of w with respect to z are
well-defined. For instance, dw

dz and d2w
dz2

can be calculated as follows:

dw

dz
= − Fz

Fw
,

d2w

dz2
= ∂

∂z

(
− Fz

Fw

)
+ ∂

∂w

(
− Fz

Fw

)
dw

dz
= − Fzz F2

w − 2Fzw Fz Fw + Fww F2
z

F3
w

.
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As mentioned, Theorem A.1 is a simple version of the implicit function theorem.
This version fits well with the methodology in the current book.

When the number of the variables increases (besides, the number of the equations
may also increase), one may adopt a more advanced version of the implicit func-
tion theorem, see, e.g., Theorem 1.4.11 (the holomorphic implicit function theorem)
in [61].

For a more comprehensive introduction to the implicit function theorem, we
recommend the book [62]. As pointed out in [62], the implicit function theorem
should be better understood as an ansatz, which is a way of looking at various
problems.

A.2 Application of Implicit Function Theorem

As discussed above, if Fw �= 0 at (z0, w0), w(z) represents a (single) root locus near
(z0, w0). Furthermore, the local behavior of w(z) can be reflected by the derivatives
of w with respect to z.

Remark A.1 Conversely, we may also consider how z varies with respect to w.
Namely, if Fz �= 0 at (z0, w0), z(w) denotes the corresponding (single) root locus
near (z0, w0).

In summary, based on the implicit function theorem, we may analyze the local
behavior of a simple root-path. As often mentioned, the implicit function theorem
can not be used to address a multiple root.

In the case with multiple roots, we need to employ the Puiseux’ theorem as dis-
cussed in Chap.2, to study the asymptotic behavior from the analytic curve per-
spective. In our opinion, in analyzing the asymptotic behavior for the equation
F(z, w) = 0 (F(z, w) is an analytic function), Puiseux’ theorem covers the implicit
function theorem.

http://dx.doi.org/10.1007/978-3-319-15717-7_2


Appendix B
Proof of Theorem 8.3 (One Conjugacy Class)

When a critical imaginary root has only one Puiseux series (i.e., v = 1), the dual
Puiseux series pair is given by (8.3) and (8.4). For the first-order coefficients, it is true

that Dn = ( 1
Cg

)
n
g [66]. For higher-order coefficients, we have the following relation.

Property B.1 For any integer h ≥ 1, it follows that

Dn+h =
⎛

⎝
∑

i1+2i2+···+hih=h

αi1,...,ih

h∏

w=1

γ
iw
h,w

⎞

⎠
(

1

Cg

) n+h
g

,

where αi1,...,ih (i1, . . . , ih are non-negative integers) are real coefficients, γh,w = 1

if Cg+w = 0 and iw = 0, γh,w = Cg+w
Cg

otherwise.

Proof Substituting (8.3) into (8.4), we have that

Δτ =
∞∑

h=0

Dn+hC
n+h

g
g (Δτ)

n+h
n

( ∞∑

i=0

Cg+i

Cg
(Δτ)

i
n

) n+h
g

. (B.1)

By the binomial theorem (pp. 90 in [2]),

( ∞∑

i=0

Cg+i

Cg
(Δτ)

i
n

) n+h
g

=1+
∞∑

k=1

⎛

⎝
( n+h

g ) · · · ( n+h
g − k + 1)

k!

( ∞∑

i=1

Cg+i

Cg
(Δτ)

i
n

)k
⎞

⎠.

Thus, the right-hand side of (B.1) is of the form
∞∑

h=0
χh(Δτ)

n+h
n , where χ0 = 1

and χh = 0 for all h ≥ 1. We have that, for any h ≥ 1, χh is of the form
h−1∑
v=0

Dn+vC
n+v

g
g

(
∑

i1+···+(h−v)ih−v=h−v
β

(v)
i1,...,ih−v

h−v∏
w=1

γ
iw
h−v,w

)
+Dn+hC

n+h
g

g , where
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β
(v)
i1,...,ih−v

are real coefficients. First, Dn is known from χ0 = 1. It can be seen that
after determining Dn, . . . , Dn+h−1, we can proceed to determine Dn+h fromχh = 0,
which can be viewed as a linear equation with the variable Dn+h (Dn, . . . , Dn+h−1
are already known). In this way, we obtain the general forms of Dn+h by induction
as stated by the property. ��

For Δτ = +ε (−ε), the n principal arguments of (Δτ)
1
n are denoted by a set

Θ(+) (Θ(−)) with elements θ
(+)
i (θ(−)

i ), i = 1, . . . , n. For Δλ = +ε j (−ε j), the g

principal arguments of (Δλ
Cg

)
1
g are denoted by a set Ψ (+) (Ψ (−)) with elements ψ

(+)
i

(ψ(−)
i ), i = 1, . . . , g.
Without any loss of generality, suppose that the greatest common factor of n and

g is η ∈ N+, i.e., g
n = ηg̃

ηñ = g̃
ñ , where ñ ∈ N+ and g̃ ∈ N+ are co-prime. Hence,

there are three possible cases (Case 1: ñ is odd and g̃ is odd, Case 2: ñ is odd and g̃
is even, and Case 3: ñ is even and g̃ is odd).

If the first term Cg(Δτ)
g
n when Δτ = ±ε of the Puiseux series (8.3) contains

purely imaginary values, we need to further consider higher-order terms until we can
conclude on the value of ΔNUλα (τα,k). This corresponds to the so-called degener-

ate case. The higher-order terms Cg+1(Δτ)
g+1

n , . . . are also called degenerate if the
corresponding branches of these terms still contain purely imaginary values plus 0.

Similarly, if the first term Dn(Δλ)
n
g whenΔλ = ±ε j of the dual Puiseux series (8.4)

contains purely real values, we need to further consider the higher-order terms until
we can conclude on the value ofΔNFzα (ωα) according to Property 8.2. This also cor-

responds to the so-called degenerate case. The higher-order terms Dn+1(Δλ)
n+1

g , . . .

are also called degenerate if the corresponding branches of these terms still contain
purely real values.

It is necessary to understand the condition causing a degenerate case (i.e., the
degeneracy condition).Wewill see (byLemmasB.2,B.3,B.5,B.6,B.8, andB.9 given
later) that a degenerate Puiseux series (8.3) must be concurrent with a degenerate
dual Puiseux series (8.4) under the degeneracy condition: When ñ is odd (even), the
degenerate case occurs if and only if Re(Cñ

g ) = 0 (Im(Cñ
g ) = 0).

We first consider the non-degenerate case, for which ΔNUλα (τα,k) is as follows.
For Case 1: (1) when ñ mod 4 = 1, if Re(Cñ

g ) > 0 (< 0), ΔNUλα (τα,k) = η (−η);
(2) when ñ mod 4 = 3, if Re(Cñ

g ) > 0 (< 0), ΔNUλα (τα,k) = −η (η). For Case 2
and Case 3: ΔNUλα (τα,k) = 0.

Regarding the value ofΔN Fzα (ωα), we can precisely calculate it via studying the

dual Puiseux series (8.4), according toProperty 8.2.As Dn(Δλ)
n
g = (Δλ

Cg
)

n
g = (Δλ

Cg
)

ñ
g̃

and we are interested in the case where Δλ = ±ε j , we have that

(
Δλ

Cg

) ñ
g̃ =

⎛

⎜⎝
(±ε)̃n j ñ(Re(Cñ

g ) − Im(Cñ
g ) j)

∣∣∣Cñ
g

∣∣∣
2

⎞

⎟⎠

1
g̃

. (B.2)
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By Property 7.2, we have the results for the non-degenerate case. For Case 1:
(1) when ñ mod 4 = 1, if Re(Cñ

g ) > 0 (< 0), ΔN Fzα (ωα) = η (−η); (2) when
ñ mod 4 = 3, if Re(Cñ

g ) > 0 (< 0), ΔN Fzα (ωα) = −η (η). For Case 2 and Case 3:
ΔN Fzα (ωα) = 0.

From the above analysis, we obtain the following result.

Lemma B.1 Theorem 8.3 holds for the non-degenerate case.

In the forthcoming sections, we suppose that the degenerate cases occur and we
will explicitly address Cases 1, 2, and 3. The following notations will be adopted in
the sequel. For the elements in Θ(+) (Θ(−)) causing a degenerate case, we denote
them by a set Θ

(+)

D
(Θ(−)

D
). For the elements in Ψ (+) (Ψ (−)) causing a degenerate

case, we denote them by a set Ψ (+)

D
(Ψ (−)

D
).

B.1 Case 1 (ñ Odd and g̃ Odd)

According to the degeneracy condition, Arg(Cg) = π
2ñ + 2k1π

ñ or Arg(Cg) =
− π

2ñ + 2k1π
ñ , k1 ∈ Z. In this section, we let Arg(Cg) = π

2ñ + 2k1π
ñ (the proof

when Arg(Cg) = − π
2ñ + 2k1π

ñ can be completed in the same manner). For an odd
ñ, it has two possibilities: ñ mod 4 = 1 and ñ mod 4 = 3. In this section, we let
ñ mod 4 = 1 (the proof when ñ mod 4 = 3 can be completed in the same spirit). To
avoid confusion, we emphasize that the results to be given below are developed in
the case where Arg(Cg) = π

2ñ + 2k1π
ñ and ñ mod 4 = 1. For the other possibilities,

we may prove the result analogously.
By analyzing the arguments of Cg(Δτ)

g
n , we have that Θ(+)

D
has η elements such

that

gθ
(+)
i + Arg(Cg) = π

2
(mod(2π)), (B.3)

and that Θ(−)

D
has η elements such that

gθ
(−)
i + Arg(Cg) = −π

2
(mod (2π)). (B.4)

In light of (B.2), Ψ (+)

D
contains η elements satisfying that

nψ
(+)
i = 0(mod(2π)), (B.5)

and Ψ
(−)

D
contains η elements satisfying that

nψ
(−)
i = π(mod(2π)). (B.6)
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Withproper relabeling,we letΘ(+)

D
= {θ(+)

1 , . . . , θ
(+)
η },Θ(−)

D
= {θ(−)

1 , . . . , θ
(−)
η },

Ψ
(+)

D
= {ψ(+)

1 , . . . , ψ
(+)
η }, and Ψ

(−)

D
= {ψ(−)

1 , . . . , ψ
(−)
η }.

Property B.2 For each θ
(+)
a ∈ Θ

(+)

D
, 1 ≤ a ≤ η, there exists a unique ψ

(+)
c(a) ∈

Ψ
(+)

D
, 1 ≤ c(a) ≤ η, such that ψ

(+)
c(a) = θ

(+)
a . Furthermore, for different θ

(+)
a , the

corresponding c(a) are different.

Proof From (B.3) and (B.5), ηθ
(+)
1 , . . . , ηθ

(+)
η correspond to a same principal ar-

gument (denoted by θ
(+)

) and ηψ
(+)
1 , . . . , ηψ

(+)
η correspond to a same principal

argument (denoted by ψ
(+)

). The proof will be complete if ψ
(+) = θ

(+)
.

Since ψ
(+)

corresponds to a principal argument of (
+ε j
Cg

)
1
g̃ , it follows that

ψ
(+) = 1

g̃
(
π

2
+ 2s1π − Arg(Cg)), (B.7)

where s1 ∈ Z. From (B.3), we have that Arg(Cg) = −g̃θ
(+) + π

2 + 2s2π , s2 ∈ Z.
Then, from (B.7),

ψ
(+) = θ

(+) + (s1 − s2)2π

g̃
. (B.8)

Note that θ
(+) = 2s3π

ñ with s3 ∈ Z (corresponding to a principal argument of (+ε)
1
ñ )

and that ψ
(+) = 2s4π

ñ with s4 ∈ Z (by (B.5)). According to (B.8), it must be true that

s1 − s2 = 0, as ñ and g̃ are co-prime. Thus, ψ
(+) = θ

(+)
. ��

Similarly, from (B.4) and (B.6), we have:

Property B.3 For each θ
(−)
b ∈ Θ

(−)

D
, 1 ≤ b ≤ η, there exists a unique ψ

(−)
d(b) ∈

Ψ
(−)

D
, 1 ≤ d(b) ≤ η, such that ψ

(−)
d(b) = θ

(−)
b . Furthermore, for different θ

(−)
b , the

corresponding d(b) are different.

Lemma B.2 For each θ
(+)
a ∈ Θ

(+)

D
, 1 ≤ a ≤ η, satisfying that the corresponding

branches of Cg(+ε)
g
n , . . . , Cg+M(a)−1(+ε)

g+M(a)−1
n are all degenerate and that the

corresponding branch of Cg+M(a)(+ε)
g+M(a)

n is not degenerate, there exists a unique
c(a), 1 ≤ c(a) ≤ η, satisfying the following properties.

(1) For ψ
(+)
c(a), the corresponding branches of Dn(+ε j)

n
g , . . . , Dn+M(a)−1

(+ε j)
n+M(a)−1

g are all degenerate.

(2) For θ
(+)
a and ψ

(+)
c(a), the corresponding branch of Cg+M(a)(+ε)

g+M(a)
n lies in

C+ (C−) if and only if the corresponding branch of Dn+M(a)(+ε j)
n+M(a)

g lies in CU

(CL).
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Proof We start by proving property (1) for h = 1, . . . , M(a) − 1 (the degen-

eracy of Dn(+ε j)
n
g is apparent from (B.2)). First, assume that Cg+h �= 0 for

h = 1, . . . , M(a) − 1. According to the conditions of the lemma, ((g + h)θ
(+)
a +

Arg(Cg+h))mod 2π = ±π
2 , h = 0, . . . , M(a) − 1. It follows that for h =

1, . . . , M(a) − 1,

(Arg(Cg+h) − Arg(Cg) + hθ(+)
a )mod 2π = 0 or π. (B.9)

In light of Property B.1, for h = 1, . . . , M(a) − 1, Dn+h(+ε j)
n+h

g is the sum of a

finite number of terms subject to the form αi1,...,ih

h∏
w=1

γ
iw
h,w(

+ε j
Cg

)
n+h

g . For each such

term, the argument corresponding toψ
(+)
c(a) is (by (B.9)) (n+h)ψ

(+)
c(a)−hθ

(+)
a +κπ, κ ∈

Z, having in mind that i1 + · · · + hih = h and αi1,...,ih ∈ R. Then, according to

Property B.2 and (B.5), for h = 1, . . . , M(a) − 1, the value of Dn+h(+ε j)
n+h

g

associated with ψ
(+)
c(a) is purely real. We may also prove property (1) in the same

spirit if some Cg+h = 0 (1 ≤ h ≤ M(a) − 1) by noting that 0 corresponds to a
degenerate term for both the Puiseux series and the dual Puiseux series.

We next consider property (2). Clearly, Cg+M(a) �= 0 by the conditions of

the lemma. It follows from Property B.1 that Dn+M(a) = (D′ + D′′)( 1
Cg

)
n+M(a)

g

where D′ = ∑
i1+···+M(a)iM(a)=M(a)

αi1,...,iM(a)

M(a)∏
w=1

γ
iw
M(a),w (iM(a) = 0) and D′′ =

α0,...,0,1
Cg+M(a)

Cg
(α0,...,0,1 = − n

g ). By the same idea of the proof for property (1),

we have that the value of D′(+ε j
Cg

)
n+M(a)

g associated with ψ
(+)
c(a) is purely real. Conse-

quently, property (2) can be proved if the following condition holds

Arg

(
D′′(+ε j

Cg
)

n+M(a)
g

)
− Arg

(
Cg+M(a)(+ε)

g+M(a)
n

)
= π

2
. (B.10)

Taking into account (B.3), (B.5), and Property B.2, we see that (B.10) is satisfied
and hence the proof is complete. ��
Lemma B.3 For each θ

(−)
b ∈ Θ

(−)

D
, 1 ≤ b ≤ η, satisfying that the corresponding

branches of Cg(−ε)
g
n , . . . , Cg+M(b)−1(−ε)

g+M(b)−1
n are all degenerate and that the

corresponding branch of Cg+M(b)(−ε)
g+M(b)

n is not degenerate, there exists a unique
d(b), 1 ≤ d(b) ≤ η, satisfying the following properties.

(1) For ψ
(−)
d(b), the corresponding branches of Dn(−ε j)

n
g , . . . , Dn+M(b)−1

(−ε j)
n+M(b)−1

g are all degenerate.

(2) For θ
(−)
b and ψ

(−)
d(b), the corresponding branch of Cg+M(b)(−ε)

g+M(b)
n lies in

C+ (C−) if and only if the corresponding branch of Dn+M(b)(−ε j)
n+M(b)

g lies in CU

(CL).
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The proof is in the same spirit of that of Lemma B.2.
Combining the above discussions, we have:

Lemma B.4 Theorem 8.3 holds if ñ is odd and g̃ is odd.

Proof For the elements in Θ(+) − Θ
(+)

D
(Θ(−) − Θ

(−)

D
), the number of the corre-

sponding values of the Puiseux series (8.3) in C+ is denoted by NU
Θ(+)−Θ

(+)
D

(+ε)

(NU
Θ(−)−Θ

(−)
D

(−ε)). Similarly, for the elements in Ψ (+) −Ψ
(+)

D
(Ψ (−) −Ψ

(−)

D
), the

number of the corresponding values of the dual Puiseux series (8.4) inCU is denoted
by N D

Ψ (+)−Ψ
(+)
D

(+ε j) (N D
Ψ (−)−Ψ

(−)
D

(−ε j)). It follows that NU
Θ(+)−Θ

(+)
D

(+ε) =
NU

Θ(−)−Θ
(−)
D

(−ε) and N D
Ψ (+)−Ψ

(+)
D

(+ε j) = N D
Ψ (−)−Ψ

(−)
D

(−ε j) for Case 1. Thus,

ΔNUλα (τα,k) is determined by the effect of the elements in Θ
(+)

D
and Θ

(−)

D
on the

Puiseux series (8.3) and ΔN Fzα (ωα) is determined by the effect of the elements in
Ψ

(+)

D
and Ψ

(−)

D
on the dual Puiseux series (8.4). According to Lemmas B.2 and B.3,

the above two effects are equivalent. ��

B.2 Case 2 (ñ Odd and g̃ Even)

According to the degeneracy condition, Arg(Cg) = π
2ñ + 2k2π

ñ or Arg(Cg) = − π
2ñ +

2k2π
ñ , k2 ∈ Z. For an odd ñ, there are two possibilities: ñ mod 4 = 1 and ñ mod 4 = 3.

In this section, we suppose Arg(Cg) = π
2ñ + 2k2π

ñ and ñ mod 4 = 1.

By analyzing the arguments of Cg(Δτ)
g
n , we have that Θ

(+)

D
has η elements

satisfying (B.3) and that Θ(−)

D
has η elements satisfying that

gθ
(−)
i + Arg(Cg) = π

2
(mod (2π)). (B.11)

By (B.2), Ψ (+)

D
contains two subsets (Ψ (+)

D1
and Ψ

(+)

D2
) and Ψ

(−)

D
is empty. More

precisely, Ψ (+)

D1
has η elements satisfying (B.5) and Ψ

(+)

D2
has η elements satisfying

that

nψ
(+)
i = π(mod(2π)). (B.12)

After proper relabeling,we letΘ(+)

D
= {θ(+)

1 , . . . , θ
(+)
η },Θ(−)

D
= {θ(−)

1 , . . . , θ
(−)
η },

and Ψ
(+)

D
= {ψ(+)

1 , . . . , ψ
(+)
2η } = Ψ

(+)

D1
∪ Ψ

(+)

D2
where Ψ

(+)

D1
= {ψ(+)

1 , . . . , ψ
(+)
η }

and Ψ
(+)

D2
= {ψ(+)

η+1, . . . , ψ
(+)
2η }.

Property B.4 For each θ
(+)
a ∈ Θ

(+)

D
, 1 ≤ a ≤ η, there exists a unique ψ

(+)
c(a) ∈

Ψ
(+)

D1
, 1 ≤ c(a) ≤ η, such that ψ

(+)
c(a) = θ

(+)
a . Furthermore, for different θ

(+)
a , the

corresponding c(a) are different.

http://dx.doi.org/10.1007/978-3-319-15717-7_8
http://dx.doi.org/10.1007/978-3-319-15717-7_8
http://dx.doi.org/10.1007/978-3-319-15717-7_8
http://dx.doi.org/10.1007/978-3-319-15717-7_8
http://dx.doi.org/10.1007/978-3-319-15717-7_8
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Property B.5 For each θ
(−)
b ∈ Θ

(−)

D
, 1 ≤ b ≤ η, there exists a unique ψ

(+)
d(b) ∈

Ψ
(+)

D2
, η + 1 ≤ d(b) ≤ 2η, such that ψ

(+)
d(b) = θ

(−)
b . Furthermore, for different θ

(−)
b ,

the corresponding d(b) are different.

Lemma B.5 For each θ
(+)
a ∈ Θ

(+)

D
, 1 ≤ a ≤ η, satisfying that the corresponding

branches of Cg(+ε)
g
n , . . . , Cg+M(a)−1(+ε)

g+M(a)−1
n are all degenerate and that the

corresponding branch of Cg+M(a)(+ε)
g+M(a)

n is not degenerate, there exists a unique
c(a), 1 ≤ c(a) ≤ η, satisfying the following properties.

(1) For ψ
(+)
c(a), the corresponding branches of Dn(+ε j)

n
g , . . . , Dn+M(a)−1

(+ε j)
n+M(a)−1

g are all degenerate.

(2) For θ
(+)
a and ψ

(+)
c(a), the corresponding branch of Cg+M(a)(+ε)

g+M(a)
n lies in

C+ (C−) if and only if the corresponding branch of Dn+M(a)(+ε j)
n+M(a)

g lies in CU

(CL).

Lemma B.6 For each θ
(−)
b ∈ Θ

(−)

D
, 1 ≤ b ≤ η, satisfying that the corresponding

branches of Cg(−ε)
g
n , . . . , Cg+M(b)−1(−ε)

g+M(b)−1
n are all degenerate and that the

corresponding branch of Cg+M(b)(−ε)
g+M(b)

n is not degenerate, there exists a unique
d(b), η + 1 ≤ d(b) ≤ 2η, satisfying the following properties.

(1) For ψ
(+)
d(b), the corresponding branches of Dn(+ε j)

n
g , . . . , Dn+M(b)−1

(+ε j)
n+M(b)−1

g are all degenerate.

(2) For θ
(−)
b and ψ

(+)
d(b), the corresponding branch of Cg+M(b)(−ε)

g+M(b)
n lies in

C+ (C−) if and only if the corresponding branch of Dn+M(b)(+ε j)
n+M(b)

g lies in CL

(CU ).

Combining Properties B.4 and B.5 and Lemmas B.5 and B.6, we have:

Lemma B.7 Theorem 8.3 holds if ñ is odd and g̃ is even.

B.3 Case 3 (ñ Even and g̃ Odd)

According to the degeneracy condition, Arg(Cg) = 2k3π
ñ or Arg(Cg) = π

ñ + 2k3π
ñ ,

k3 ∈ Z. For an even ñ, there are two possibilities: ñ mod 4 = 0 and ñ mod 4 = 2. In
this section, we assume Arg(Cg) = 2k3π

ñ and ñ mod 4 = 0.

In light of the arguments of Cg(Δτ)
g
n , Θ

(+)

D
has two subsets (Θ(+)

D1
and Θ

(+)

D2
),

while Θ
(−)

D
is empty. More precisely, Θ(+)

D1
contains η elements satisfying (B.3), and

Θ
(+)

D2
contains η elements satisfying that

gθ
(+)
i + Arg(Cg) = −π

2
(mod(2π)). (B.13)

http://dx.doi.org/10.1007/978-3-319-15717-7_8


118 Appendix B: Proof of Theorem 8.3 (One Conjugacy Class)

According to (B.2),Ψ (+)

D
has η elements satisfying (B.5), andΨ

(−)

D
has η elements

satisfying that

nψ
(−)
i = 0(mod(2π)). (B.14)

With suitable relabeling, we let Θ(+)

D
= {θ(+)

1 , . . . , θ
(+)
2η } = Θ

(+)

D1
∪ Θ

(+)

D2
(where

Θ
(+)

D1
= {θ(+)

1 , . . . , θ
(+)
η } andΘ

(+)

D2
= {θ(+)

η+1, . . . , θ
(+)
2η }),Ψ (+)

D
= {ψ(+)

1 , . . . , ψ
(+)
η },

and Ψ
(−)

D
= {ψ(−)

1 , . . . , ψ
(−)
η }.

Property B.6 For each θ
(+)
a ∈ Θ

(+)

D1
, 1 ≤ a ≤ η, there exists a unique ψ

(+)
c(a) ∈

Ψ
(+)

D
, 1 ≤ c(a) ≤ η, such that ψ

(+)
c(a) = θ

(+)
a . Furthermore, for different θ

(+)
a , the

corresponding c(a) are different.

Property B.7 For each θ
(+)
b ∈ Θ

(+)

D2
, η + 1 ≤ b ≤ 2η, there exists a unique

ψ
(−)
d(b) ∈ Ψ

(−)

D
, 1 ≤ d(b) ≤ η, such that ψ

(−)
d(b) = θ

(+)
b . Furthermore, for different

θ
(+)
b , the corresponding d(b) are different.

Lemma B.8 For each θ
(+)
a ∈ Θ

(+)

D1
, 1 ≤ a ≤ η, satisfying that the corresponding

branches of Cg(+ε)
g
n , . . . , Cg+M(a)−1(+ε)

g+M(a)−1
n are all degenerate and that the

corresponding branch of Cg+M(a)(+ε)
g+M(a)

n is not degenerate, there exists a unique
c(a), 1 ≤ c(a) ≤ η, satisfying the following properties.

(1) For ψ
(+)
c(a), the corresponding branches of Dn(+ε j)

n
g , . . . , Dn+M(a)−1

(+ε j)
n+M(a)−1

g are all degenerate.

(2) For θ
(+)
a and ψ

(+)
c(a), the corresponding branch of Cg+M(a)(+ε)

g+M(a)
n lies in

C+ (C−) if and only if the corresponding branch of Dn+M(a)(+ε j)
n+M(a)

g lies in CU

(CL).

Lemma B.9 For each θ
(+)
b ∈ Θ

(+)

D2
, η+1 ≤ b ≤ 2η, satisfying that the correspond-

ing branches of Cg(+ε)
g
n , . . . , Cg+M(b)−1(+ε)

g+M(b)−1
n are all degenerate and that

the corresponding branch of Cg+M(b)(+ε)
g+M(b)

n is not degenerate, there exists a
unique d(b), 1 ≤ d(b) ≤ η, satisfying the following properties.

(1) For ψ
(−)
d(b), the corresponding branches of Dn(−ε j)

n
g , . . . , Dn+M(b)−1

(−ε j)
n+M(b)−1

g are all degenerate.

(2) For θ
(+)
b and ψ

(−)
d(b), the corresponding branch of Cg+M(b)(+ε)

g+M(b)
n lies in

C+ (C−) if and only if the corresponding branch of Dn+M(b)(−ε j)
n+M(b)

g lies in CL

(CU ).

We have the following result for Case 3:

Lemma B.10 Theorem 8.3 holds if ñ is even and g̃ is odd.

http://dx.doi.org/10.1007/978-3-319-15717-7_8
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The proofs of the properties and lemmas for Cases 2 and 3 are omitted as they
follow the same ideas as for Case 1.

The proof of Theorem 8.3 is now complete according to Lemmas B.1, B.4, B.7,
and B.10.

http://dx.doi.org/10.1007/978-3-319-15717-7_8
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