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Preface

This book presents an extended version of a few selected papers originally sub-
mitted to the 11th International Workshop on Image Analysis for Multimedia
Interactive Services, which took place in April 2010 in Desenzano del Garda,
Brescia, Italy. This workshop is one of the main international events for the
presentation and discussion of the latest technological advances in interactive
multimedia services. The objective of the workshop is to bring together
researchers and developers from academia and industry working in the areas of
image, video, and audio applications, with a special focus on analysis.

The book is organized into five main sections, considering Multimedia Content
Analysis, Motion and Activity Analysis, High-Level Descriptors and Video
Retrieval, 3D and Multi-View, and Multimedia Delivery.

Part 1: Multimedia Content Analysis

Multimedia Content Analysis is of great relevance in the scenario of image
analysis for multimedia interactive services. In this respect, it is very important to
consider also the audio signal and caption text eventually superimposed on the
considered images. Also, the objects displayed in the images could be very helpful
in content analysis.

Panagiotis Sidiropoulos, Vasileios Mezaris, Ioannis Kompatsiaris, Hugo
Meinedo, Miguel Bugalho, and Isabel Trancoso, in the book chapter ‘‘On the use
of audio events for improving video scene segmentation’’ deal with the problem of
automatic temporal segmentation of a video into elementary semantic units known
as scenes. The novelty lies in the use of high-level audio information, in the form
of audio events, for the improvement of scene segmentation performance. More
specifically, the proposed technique is built upon a recently proposed audio-visual
scene segmentation approach that involves the construction of multiple scene
transition graphs (STGs) that separately exploit information coming from different
modalities. In the extension of the latter approach presented in this chapter, audio
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event detection results are introduced to the definition of an audio-based scene
transition graph, while a visual-based scene transition graph is also defined
independently. The results of these two types of STGs are subsequently combined.
The results of the application of the proposed technique to broadcast videos
demonstrate the usefulness of audio events for scene segmentation and highlight
the importance of introducing additional high-level information to the scene
segmentation algorithms.

The important problem of caption text extraction is addressed in the chapter
‘‘Region-based caption text extraction’’, authored by Miriam León, Veronica
Vilaplana, Antoni Gasull, and Ferran Marques. The authors present a method for
caption text detection that takes advantage of texture and geometric features to
detect the caption text. Texture features are estimated using wavelet analysis and
mainly applied for text candidate spotting. In turn, text characteristics verification
relies on geometric features, which are estimated exploiting the region-based
image model. Analysis of the region hierarchy provides the final caption text
objects. The final step of consistency analysis for output is performed by a
binarization algorithm that robustly estimates the thresholds on the caption text
area of support.

Image classification is a challenging task in computer vision. For e.g., fully
understanding real-world images may involve both scene and object recognition.
Many approaches have been proposed to extract meaningful descriptors from
images and classifying them in a supervised learning framework. In the chapter
‘‘K-nn boosting prototype learning for object classification’’, Paolo Piro, Michel
Barlaud, Richard Nock, and Frank Nielsen, revisit the classic k-nearest neighbors
classification rule, which has shown to be very effective when dealing with local
image descriptors. However, k-nn still features some major drawbacks, mainly due
to the uniform voting among the nearest prototypes in the feature space. In this
chapter, the authors propose therefore a generalization of the classic knn rule in a
supervised learning (boosting) framework. Namely, they redefine the voting rule
as a strong classifier that linearly combines predictions from the k closest proto-
types. In order to induce this classifier, they propose a novel learning algorithm,
MLNN (Multiclass Leveraged Nearest Neighbors), which gives a simple procedure
for performing prototype selection very efficiently. Experiments carried out first on
object classification using 12 categories of objects, then on scene recognition,
using 15 real-world categories, show significant improvement over classic K-nn in
terms of classification performances.

Part 2: Motion and Activity Analysis

Motion and activity information plays certainly a crucial role in content-based
video analysis and retrieval. In this context the problem of automatic tracking of
moving object in a video have been extensively studied in the literature and also in
this book.
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In the book chapter titled ‘‘Semi-automatic object tracking in video sequences
by extension of the MRSST algorithm’’, Marko Esche, Mustafa Karaman, and
Thomas Sikora investigate a new approach for segmentation of real-world objects
in video sequences. While some amount of user interaction is still necessary for
most algorithms in this field, in order for them to produce adequate results, these
can be reduced making use of certain properties of graph-based image segmen-
tation algorithms. Based on one of these algorithms a framework is proposed that
tracks individual foreground objects through arbitrary video sequences and partly
automates the necessary corrections required from the user. Experimental results
suggest that the proposed algorithm performs well on both low- and high-
resolution video sequences and can even, to a certain extent, cope with motion blur
and gradual object deformations.

The problem of tracking a non-rigid object in an uncalibrated static multi-camera
environment is considered in ‘‘A multi-resolution particle filter tracking with a dual
consistency check for model update in a multi-camera environment’’, where Yifan
Zhou, Jenny Benois-Pineau, and Henri Nicolas present a novel tracking method
with a multi-resolution approach and a dual model check. The proposed method is
based on particle filtering using color features. The major contributions of the
method are: multi-resolution tracking to handle strong and non-biased object
motion by short-term particle filters; stratified model consistency check by
Kolmogorov-Smirnov test, and object trajectory-based view corresponding defor-
mation in a multi-camera environment.

An interesting application of trajectories analysis in a surveillance scenario is
proposed by Mattia Daldoss, Nicola Piotto, Nicola Conci, and Francesco G. B. De
Natale in the book chapter ‘‘Activity detection using regular expressions’’. The
authors propose a novel method to analyze trajectories in surveillance scenarios by
means of Context-Free Grammars (CFGs). Given a training corpus of trajectories
associated to a set of actions, a preliminary processing phase is carried out to
characterize the paths as sequences of symbols. This representation turns the
numerical representation of the coordinates into a syntactical description of the
activity structure, which is successively adopted to identify different behaviors
through the CFG models. Such a modeling is the basis for the classification and
matching of new trajectories versus the learned templates and it is carried out
through a parsing engine that enables the online recognition of human activities.
An additional module is provided to recover parsing errors (i.e., insertion, deletion,
or substitution of symbols) and update the activity models previously learned. The
proposed system has been validated in indoor, in an assisted living context,
demonstrating good capabilities in recognizing activity patterns in different
configurations, and in particular in presence of noise in the acquired trajectories, or
in case of concatenated and nested actions.

Katharina Quast, and André Kaup, in ‘‘Shape adaptive mean shift object
tracking using gaussian mixture models’’ propose a new object tracking algorithm
based on a combination of the mean shift and Gaussian mixture models (GMMs),
named GMM-SAMT. GMM-SAMT stands for Gaussian mixture model-based
shape adaptive mean shift tracking. Instead of a symmetrical kernel like in
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traditional mean shift tracking, GMM-SAMT uses an asymmetric shape adapted
kernel which is retrieved from an object mask. During the mean shift iterations the
kernel scale is altered according to the object scale, providing an initial adaptation
of the object shape. The final shape of the kernel is then obtained by segmenting
the area inside and around the adapted kernel into object and non-object segments
using Gaussian mixture models.

Part 3: High-Level Descriptors and Video Retrieval

In the context of content-based video retrieval the high-level descriptors are
clearly of great relevance. This topic is covered in this part of the book.

Seunghan Han, Bonjung Koo, Andreas Hutter, and Walter Stechele in
‘‘Forensic reasoning upon pre-obtained surveillance metadata using uncertain
spatiotemporal rules and subjective logic’’ present an approach to modeling
uncertain contextual rules using subjective logic for forensic visual surveillance.
Unlike traditional real-time visual surveillance, forensic analysis of visual
surveillance data requires matching of high level contextual cues with observed
evidential metadata where both the specification of the context and the metadata
suffer from uncertainties. To address this aspect, there has been work on the use of
declarative logic formalisms to represent and reason about contextual knowledge,
and on the use of different uncertainty handling formalisms. In such approaches,
uncertainty attachment to logical rules and facts are crucial. However, there are
often cases that the truth value of rule itself is also uncertain thereby, uncertainty
attachment to rule itself should be rather functional. ‘The more X then the more Y’
type of knowledge is one of the examples. To enable such type of rule modeling, in
this chapter, the authors propose a reputational subjective opinion function upon
logic programming, which is similar to fuzzy membership function but can also
take into account uncertainty of membership value itself. Then they further adopt
subjective logic’s fusion operator to accumulate the acquired opinions over time.
To verify the proposed approach, the authors present a preliminary experimental
case study on reasoning likelihood of being a good witness that uses metadata
extracted by a person tracker and evaluates the relationship between the tracked
persons. The case study is further extended to demonstrate more complex forensic
reasoning by considering additional contextual rules.

Nowadays, multimedia data is produced and consumed at an ever-increasing
rate. Similar to this trend, diverse storage approaches for multimedia data have been
introduced. These observations lead to the fact that distributed and heterogeneous
multimedia repositories exist, whereas an easy and unified access to the stored
multimedia data is not given. In this respect, Florian Stegmaier, Mario Döller,
Harald Kosch, Andreas Hutter, and Thomas Riegel in ‘‘AIR: architecture for
interoperable retrieval on distributed and heterogeneous multimedia repositories’’
present an architecture, named AIR, that offers the aforementioned retrieval
possibilities. To ensure interoperability, AIR makes use of recently issued
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standards, namely the MPEG Query Format (multimedia query language) and the
JPSearch transformation rules (metadata interoperability).

In the final chapter of this section, the detection of high-level concepts in video
is considered. More specifically, Vasileios Mezaris, Anastasios Dimou, and
Ioannis Kompatsiaris propose in ‘‘Local invariant feature tracks for high-level
video feature extraction’’ the use of feature tracks for the detection of high-level
features (concepts) in video. Extending previous work on local interest point
detection and description in images, feature tracks are defined as sets of local
interest points that are found in different frames of a video shot and exhibit spatio-
temporal and visual continuity, thus defining a trajectory in the 2D + Time space.
These tracks jointly capture the spatial attributes of 2D local regions and their
corresponding long-term motion. The extraction of feature tracks and the selection
and representation of an appropriate subset of them allow the generation of a
Bag-of-Spatiotemporal-Words model for the shot, which facilitates capturing the
dynamics of video content. Experimental evaluation of the proposed approach on
two challenging datasets (TRECVID 2007, TRECVID 2010) highlights how the
selection, representation, and use of such feature tracks enhance the results of
traditional keyframe-based concept detection techniques.

Part 4: 3D and Multi-View

Among the various audio-visual descriptors useful for image and video analysis
and coding there are the descriptors related to 3D structure and multi-view. In this
section of the book we cover this topic, considering both the issue of 3D stereo
correspondences and 3DTV video coding.

The problem of 3D stereo correspondences is considered in ‘‘A new evaluation
criterion for point correspondences in stereo images’’ by Aleksandar Stojanovic,
and Michael Unger. In this chapter, the authors present a new criterion to evaluate
point correspondences within a stereo setup. Many applications such as stereo
matching, triangulation, lens distortion correction, and camera calibration require
an evaluation criterion for point correspondences. The common criterion used is
the epipolar distance. The uncertainty of the epipolar geometry provides additional
information, and the proposed method uses this information for a new distance
measure. The basic idea behind this criterion is to determine the most probable
epipolar geometry that explains the point correspondence in the two views. This
criterion considers the fact that the uncertainty increases for point correspondences
induced by world points that are located at a different depth-level compared to
those that were used for the fundamental matrix computation. Furthermore, the
authors show that by using Lagrange multipliers, this constrained minimization
problem can be reduced to solving a set of three linear equations with a compu-
tational complexity practically equal to the complexity of the epipolar distance.

A novel learning-based approach used to estimate local homography of points
belonging to a given surface is proposed in ‘‘Local homography estimation using
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keypoint descriptors’’ by Alberto Del Bimbo, Fernando Franco, and Federico
Pernici. In this chapter the authors present a new learning-based approach used to
estimate local homography of points belonging to a given surface and show that it
is more accurate than specific affine region detection methods. While other works
attempt to do this task by using iterative algorithms developed for template
matching, this method introduces a direct estimation of the transformation. In
more details, it performs the following steps. First, a training set of features
captures the geometry and appearance information about keypoints taken from
multiple views of the surface. Then, incoming keypoints are matched against the
training set in order to retrieve a cluster of features representing their identity.
Finally the retrieved clusters are used to estimate the local homography of the
regions around keypoints. Thanks to the high accuracy, outliers and bad estimates
are filtered out by multiscale Summed Square Difference test.

The problem of 3DTV multiple description coding is addressed by Simone
Milani and Giancarlo Calvagno in the book chapter titled ‘‘A cognitive source
coding scheme for multiple description 3DTV transmission’’. In this framework,
Multiple Description Coding has recently proved to be an effective solution for the
robust transmission of 3D video sequences over unreliable channels. However,
adapting the characteristics of the source coding strategy (Cognitive Source
Coding) permits improving the quality of 3D visualization experienced by the end-
user. This strategy has been successfully employed for standard video signals, but
it can be applied to Multiple Description video coding for an effective transmission
of 3D signals. The chapter presents a novel Cognitive Source Coding scheme that
improves the performance of traditional Multiple Description Coding approaches
by adaptively combining traditional predictive and Wyner-Ziv coders according to
the characteristics of the video sequence and to the channel conditions. The
approach is employed for video + depth 3D transmissions improving the average
PSNR value up to 2.5 dB with respect to traditional MDC schemes.

Part 5: Multimedia Delivery

In the final section of the book we consider the important aspects related to the
problem of multimedia documents delivery, focusing the attention on both images
and video.

In ‘‘An efficient prefetching strategy for remote browsing of JPEG 2000 image
sequences’’, Juan Pablo GarcÍa Ortiz, Vicente González Ruiz, Inmaculada Garcıa,
Daniel Müller, and George Dimitoglou propose an efficient prefetching strategy
for interactive remote browsing of sequences of high resolution JPEG 2000 ima-
ges. As a result of the inherent latency of client–server communication, the
experiments of this study prove that a significant benefit can be achieved, in terms
of both quality and responsiveness, by anticipating certain data from the rest of the
sequence while an image is being explored. In this work a model based on the
quality progression of the image is proposed in order to estimate which percentage
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of the bandwidth will be dedicated to prefetching. This solution can be easily
implemented on top of any existing remote browsing architecture.

Matteo Naccari and Fernando Pereira in ‘‘Comparing spatial masking modelling
in just noticeable distortion controlled H.264/AVC video coding’’ study the
integration of a just noticeable distortion model in the H.264/AVC standard video
codec to improve the final rate-distortion performance. Three masking aspects
related to lossy transform coding and natural video contents are considered:
frequency band decomposition, luminance component variations and pattern
masking. For the latter aspect, three alternative models are considered, namely the
Foley-Boynton, Foley-Boynton adaptive, and Wei-Ngan models. Their perfor-
mance, measured for high definition video contents, and reported in terms of bitrate
improvement and objective quality loss, reveals that the Foley-Boynton and its
adaptive version provide the best performance with up to 35.6 % bitrate reduction at
the cost of at most 1.4 % objective quality loss.

In traditional motion compensated predictive video coding, both the motion
vector and the prediction residue are encoded and stored or sent for every
predicted block. The motion vector brings displacement information with respect
to a reference frame while the residue represents what we really consider to be the
innovation of the current block with respect to that reference frame. This encoding
scheme has proved to be extremely effective in terms of rate distortion perfor-
mance. Nevertheless, one may argue that full description of motion and residue
could be avoided if the decoder could be made able to exploit a proper a priori
model for the signal to be reconstructed. In particular, it was recently shown that a
smart enough decoder could exploit such an a priori model to partially infer
motion information for a single block given only neighboring blocks and the
innovation of that block. The last contribution, given by Claudia Tonoli and Marco
Dalai presents an improvement over the single-block method. In the book chapter
‘‘Coherent video reconstruction with motion estimation at the decoder’’ the
authors show that higher performance can be achieved by simultaneously recon-
structing a frame region composed of several blocks, rather than reconstructing
those blocks separately. A trellis-based algorithm is developed in order to make a
global decision on many motion vectors at a time instead of many single separate
decisions on different vectors.

Brescia, Italy Nicola Adami
London, UK Andrea Cavallaro

Riccardo Leonardi
Pierangelo Migliorati
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Chapter 1
On the Use of Audio Events for Improving
Video Scene Segmentation

Panagiotis Sidiropoulos, Vasileios Mezaris, Ioannis Kompatsiaris, Hugo
Meinedo, Miguel Bugalho and Isabel Trancoso

Abstract This work deals with the problem of automatic temporal segmentation
of a video into elementary semantic units known as scenes. Its novelty lies in the
use of high-level audio information, in the form of audio events, for the improve-
ment of scene segmentation performance. More specifically, the proposed technique
is built upon a recently proposed audio-visual scene segmentation approach that
involves the construction of multiple scene transition graphs (STGs) that separately
exploit information coming from different modalities. In the extension of the latter
approach presented in this work, audio event detection results are introduced to the
definition of an audio-based scene transition graph, while a visual-based scene tran-
sition graph is also defined independently. The results of these two types of STGs are
subsequently combined. The results of the application of the proposed technique to
broadcast videos demonstrate the usefulness of audio events for scene segmentation
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and highlight the importance of introducing additional high-level information to the
scene segmentation algorithms.

Keywords Video analysis · Scene segmentation · Audio events · Scene transition
graph

1.1 Introduction

Video temporal decomposition into elementary semantic units is an essential pre-
processing task for a wide range of video manipulation applications, such as video
indexing, non-linear browsing, classification, etc. Video decomposition techniques
aim to partition a video sequence into segments, such as shots and scenes, according
to semantic or structural criteria. Shots are elementary structural segments that are
defined as sequences of images taken without interruption by a single camera [1]. On
the other hand, scenes are often defined as Logical Story Units (LSU) [2], i.e., as a
series of temporally contiguous shots characterized by overlapping links that connect
shots with similar content. Figure 1.1 illustrates the relations between different kinds
of temporal segments of a video.

Early approaches to scene segmentation focused on exploiting visual-only similar-
ity among shots [2, 3], to group them into scenes. In [3], the Scene Transition Graph
(STG) was originally presented. The Scene Transition Graph method exploits the
visual similarity between key-frames of video shots to construct a connected graph,
whose cut-edges constitute the set of scene boundaries. Another recent uni-modal
scene segmentation technique [4] uses spectral clustering to conduct shot grouping,
without taking into account temporal proximity. Subsequently, the clustering out-
come is used for assigning class labels to the shots, and the similarity between label
sequences is used for identifying the scene boundaries.

In the last years, several scene segmentation methods that exploit both the visual
and auditory channel have been developed, including [5–8]. In [5], a fuzzy k-means
algorithm is used for segmenting the auditory channel of a video into audio seg-
ments, each belonging to one of 5 classes (silence, speech, music etc.). Following
the assumption that a scene change is associated with simultaneous change of visual
and audio characteristics, scene breaks are identified when a visual shot bound-
ary exists within an empirically-set time interval before or after an audio segment
boundary. In [6], visual information usage is limited to the stage of video shot seg-
mentation. Subsequently, several low-level audio descriptors (i.e., volume, sub-band
energy, spectral and cepstral flux) are extracted for each shot. Finally, neighboring
shots whose Euclidean distance in the low-level audio descriptor space exceeds a
dynamic threshold are assigned to different scenes. In [7], audio and visual features
are extracted for every visual shot and serve as input to a Support Vector Machines
(SVM) classifier, which decides on the class membership (scene-change / non-scene-
change) of every shot boundary. However, this requires the availability of sufficient
training data. Although audio information has been shown in these and other pre-
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Fig. 1.1 Video stream decomposition to frames, shots and scenes

vious works to be beneficial for the task of scene segmentation, higher-level audio
features such as speaker clustering or audio event detection results are not frequently
exploited. In a recent work [8], the use of audio scene changes and automatic speech
recognition (ASR) transcripts together with visual features is proposed; audio scene
changes are detected using a multi-scale Kullback-Leibler distance and low-level
audio features, while latent semantic analysis (LSA) is used for calculating the sim-
ilarity between temporal fragments of ASR transcripts. In [9], the combined use
of visual features and some high-level audio cues (namely, speaker clustering and
audio background characterization results) for constructing scene transition graphs
was proposed.

In this work, this definition of the scene as a Logical Story Unit is adopted and
the method of [9] is extended in order to exploit richer high-level audio informa-
tion. To this end, a large number of audio event detectors is employed, and their
detection scores are used for representing each temporal segment of the audio-visual
medium in an audio event space. This representation together with an appropriate
distance measure is used, in combination with previously exploited high-level audio
(e.g. speaker clustering results) and low-level visual cues, for constructing a com-
bination of different scene transition graphs (Multi-Evidence STG—MESTG) that
identifies the scene boundaries. The rest of the chapter is organized as follows: an
overview of the proposed approach is presented in Sect. 1.2. Audio event definition
and the use of audio events in representing video temporal segments are discussed in
Sects. 1.3 and 1.4, while Sect. 1.5 presents the proposed MESTG approach. Experi-
mental results are presented in Sect. 1.6 and conclusions are drawn in Sect. 1.7.

1.2 Overview of the Proposed Approach

Scene segmentation is typically performed by clustering contiguous video shots; the
proposed MESTG approach is no exception to this rule. Thus, scene segmentation
starts with the application of the method of [1] for generating a decomposition S of
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Fig. 1.2 Overview of the proposed scene segmentation scheme

the video to visual shots,
S = {si }I

i=1. (1.1)

Subsequently, as illustrated in Fig. 1.2, visual feature extraction is performed. Audio
segmentation, which includes, among others, speaker clustering and background
classification stages [10] [11], is also performed in parallel. This audio segmentation
process results in the definition of a partitioning of the audio stream,

A = {αx }X
x=1, αx = [t1

x , t2
x ], (1.2)

where t1
x and t2

x are the start- and end-times of audio segment αx . For each αx ,
the speaker identity of it and its background class are also identified during audio
segmentation; we use σ(αx ) to denote the speaker identity of αx , if any, and β(αx )

to denote its background class. Audio event detection, as discussed in detail in the
following section, is also performed. Using the resulting features, i.e.,

• HSV histograms of shot key-frames,
• Speaker clustering results,
• Audio background classification into one of three categories (noise, silence,

music),
• Detection results (confidence values) for a multitude of audio events,

the proposed MESTG method proceeds with the definition of two types of scene
transition graphs (audio STG, visual STG) and a procedure for subsequently merging
their results.

1.3 Audio Events

For the purpose of scene segmentation, let us define an audio event as a semantically
elementary piece of information that can be found in the audio stream of a video.
Telephone ringing, dog barking, music, child voice, traffic noise, explosions are only
at few of a wide range of possible audio events. As can be deduced from the audio



1 Audio Events for Video Scene Segmentation 7

event definition, more than one audio events may coexist in one temporal segment
and may even temporally overlap with each other. For example, in a shot where a
person stands by a street and talks, several speech- and traffic-related audio events
are expected to coexist.

It is intuitionally expected that taking into account audio event detection results
may contribute to improved video scene segmentation. This is based on the reasonable
assumption that the presence of the same audio event in more than one adjacent
or neighboring audio segments may be a good indication of their common scene
membership. On the contrary, the presence of completely different audio events
in adjacent temporal segments may be a good indication of their different scene
membership, which reveals the presence of a scene boundary.

The first step in testing the validity of the above assumptions is the definition of a
number of meaningful audio events and of appropriate methods for their detection.
This work integrates two different sets of audio events. Different detection method-
ologies are used for each set.

1.3.1 Audio Segmentation

The first set includes the type of audio event that is dealt with by an audio segmen-
tation (or diarization) module. Audio segmentation can mean many different things.
In this chapter, we restrict its meaning to the type of segmentation that can be per-
formed on the audio signal alone, without taking into account its linguistic contents.
This type of segmentation can be done in several tasks. Acoustic Change Detection
(ACD) is the task responsible for the detection of audio locations where speakers
or background conditions have changed. Speech/Non-Speech (SNS) classification
is responsible for determining if the audio contains speech or not (i.e., it results in
a binary classification of the audio signal to either Speech or Non-Speech). Gender
Detection (GD) distinguishes between male and female gender speakers (i.e., given
a speech segment, it results in a binary classification of it to either Male or Female);
however, an age-directed segmentation can be also useful as part of the gender detec-
tion task, for detecting children voices for instance. Background Conditions (BC)
classification indicates whether the background audio signal (i.e, the audio signal,
excluding any speech that may be part of it) is clean (: nothing is heard), musical
(: music is heard), or noisy. Speaker Clustering (SC) identifies all the speech segments
produced by the same speaker. Speaker Identification (SID) is the task of recognizing
the identity of certain often recurring speakers, such as news anchors or very impor-
tant personalities, by their voice, based on a classifier that is trained specifically for
such speakers of interest (similarly in principle to how face recognition algorithms
can be trained to identify specific people of interest, e.g. a particular political figure,
by their faces). More recently, the term speaker diarization (SD) became synony-
mous to segmentation into speaker-homogeneous regions, answering the question
“Who spoke when?”. Altogether, 14 different events are automatically detected by
this audio segmentation module (ex: Male Voice, Voice with Background Noise,
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Music, etc.) [12]. The list is included in Table 1.1. Note, however, that this figure
does not include the information provided by the Speaker Clustering component on
the cluster identity, which is also exploited for scene segmentation in this work.

The audio segmentation components are mostly model-based, making extensive
use of feed-forward fully connected Multi-Layer Perceptrons (MLPs) that are trained
with the back-propagation algorithm. All the classifiers (realizing tasks SNS, GD,
BC, and SID, as defined above) share a similar architecture: a MLP with 9 input
context frames of 26 coefficients (12th order Perceptual Linear Prediction (PLP)
plus energy and deltas), two hidden layers with 250 sigmoidal units each and the
appropriate number of softmax output units (one for each class), which can be viewed
as giving a probabilistic estimate of the input frame belonging to that class. Despite
the Acoustic Change Detection and Speech/Non-speech blocks being conceptually
different, they were implemented simultaneously in the SNS component, considering
that a speaker turn is most often preceeded by a small non-speech segment. The output
of the SNS MLP classifier is smoothed using a median filter, and processed by a
finite-state machine, involving confidence and duration thresholds. When a speaker
change is detected, the first tsum frames of that segment are used to calculate gender,
background conditions, and speaker identification classifications (e.g. anchors). Each
classifier computes the decision with the highest average probability over all the tsum

frames. The Speaker Clustering component, which uses an online leader-follower
strategy, tries to group all segments uttered by the same speaker. The first tsum frames
(at most) of a new segment are compared with all the same-gender clusters found so
far. Two SC components are used in parallel (one for each gender). A new speech
segment is merged with the cluster with the lowest distance, provided that it falls
below a predefined threshold. The distance measure for merging clusters is a modified
version of the Bayesian Information Criteria [11]. Our latest addition to the audio
segmentation module is a telephone bandwidth detector. Given the lack of a large
manually labeled corpus, a bootstrapping approach has been adopted in which a
simple Linear Discriminant Analysis (LDA) classifier has been trained with a small
amount of manually labeled data in order to generate automatic transcriptions for the
posterior development of a binary MLP classifier. The adopted feature set consisted
of 15 logarithmic filter bank energies extracted at a frame rate of 20 ms with a time
shift of 10 ms, and corresponding deltas.

The background classifier was initially trained with only broadcast news data that
had very limited examples of music and noisy backgrounds, and were inconsistently
labeled in terms of these conditions. This motivated the development of alternative
classifiers with extended training data reflecting a wide variety of conditions. The
related detectors are: Music, Vocal Music, Non-Vocal Music and Speech (another
speech detector, using multi-layer perceptrons, also exists, corresponding to the Peo-
ple Talking event).

The new Gaussian mixture models (GMMs) included 1,024 mixtures, and were
trained using a different set of features (Brightness, Bandwidth, Zero Crossing Rate,
Energy, Audio Spectrum Envelope and Audio Spectrum Centroid), extracted from
16 kHz audio, with 500 ms windows and 10 ms step. Silences were removed from
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Table 1.1 List of the 14 audio-segmentation related events

Child Voice Female Voice Male Voice
Speech Voice with Background Noise Voice with Background Music
Music Non-Vocal Music Vocal Music
Clean Background Noise Background Music Background
Telephone Band People Talking

the audio. Four models were trained: World, Speech, Non-Vocal Music, and Vocal
Music.

Each of the GMM models was used to retrieve log likelihood values for each frame.
Frame confidence values were calculated by dividing the log likelihood values for
each model by the sum of all log likelihood values for all four models. The Vocal,
Non-Vocal and Speech models were used for the Vocal Music, Non-Vocal Music
and Speech event detectors. The Music detector is the sum of the confidence values
for the Vocal and Non-Vocal models. Segment confidence values were obtained by
averaging the frame confidence values.

1.3.2 Finer Discrimination of Noisy Events

The second set of events targets a finer discrimination of noise-like sounds, such as
Dog Barking, Siren, Crowd Applause, Explosion, etc. [13]. The greatest difficulty
in building automatic detectors for this type of event is the lack of corpora manually
labeled in terms of these events. This motivated the adoption of a very large sound
effect corpus for training, given that it is intrinsically labeled, as each file typically
contains a single type of sound. The corpus includes approximately 18,700 files with
an estimated total duration of 289.6 h, and was provided by one of the partners in the
VIDIVIDEO project (B&G).1 The list of 61 events for which this corpus provided
enough training material is shown in Table 1.2.

Most of the training files have a sampling rate of 44.1 kHz. However, many were
recorded with a low bandwidth (<10 kHz). This motivated a uniform downsampling
to 16 kHz. This corpus was used to train one-against-all detectors for each concept by
building concept-specific and world models. Our initial set of detectors was SVM-
based, and the experiments were made using the LIBSVM toolkit [14]. Preliminary
experiments compared the performance of a limited set of features: Perceptual Lin-
ear Prediction (PLP) or Mel-Frequency Cepstral Coefficients (MFCC) coefficients
(19 + energy + deltas), Zero Crossing Rate (ZCR), brightness, and bandwidth. The
latter are, respectively, the first and second order statistics of the spectrogram, and
they roughly measure the timbre quality. The world model was build using between
92 and 96 files, of which an average of 31 were used as the development set. As a

1 Netherlands Institute for Sound and Vision, http://www.instituut.beeldengeluid.nl/

http://www.instituut.beeldengeluid.nl/
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Table 1.2 List of 61 additional audio events corresponding to noise-like sounds

Airplane Engine Jet Airplane Engine Propeller Animal Hiss
Baby Whining or Crying Bear Bell Electric
Bell Mechanic Big Cat Birds
Bite Chew Eat Bus Buzzer
Car Cat Meowing Chicken Clucking
Child Laughing Cow Crowd Applause
Digital Beep Dog Barking Dolphin
Donkey Door Open or Close Drink
Elephant or Trumpet Electricity Explosion
Fire Fireworks Frog
Glass Gun Shot Heavy Gun Shot Light
Hammering Helicopter Horn Vehicle
Horse Walking Insect Buzz Insect Chirp
Moose or Elk or Deer Morse Code Motorcycle
Paper Pig Rattlesnake
Saw Electric Saw Manual Sheep
Siren Telephone Ringing Bell Telephone Ringing Digital
Thunder Traffic Train
Typing Walk or Run or Climb Stairs

(Hard)
Walk or Run or Climb Stairs
(Soft)

Water Whistle Wind
Wolf or Coyote or Dog
Howling

starting point, analysis windows of 0.5 s with 0.25 s overlap were adopted. Three
different kernels were considered for the SVM (linear, polynomial and radial basis
function (RBF)). Overall, the best results were obtained with the latter kernel. The
difference between the performance of MFCC and PLP coefficients was not signifi-
cant.

As a result of the event detection process discussed in this and the previous section,
a total of 75 audio events are defined and, based on the output of the corresponding
detectors, a vector EV ,

EV = [ev(1), ev(2), . . . , ev(J )], J = 75, (1.3)

of confidence values is extracted and stored for each audio segment.

1.3.3 Audio Event Detection Performance

The Audio Segmentation components were tuned to the Broadcast News (BN)
domain, which justifies the evaluation of their performance in a test set of six 1-h long
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BN shows. The classification error rate of the SNS and GD blocks are comparable to
the state of the art: 4.7 and 2.4 %, respectively.2 As explained, the BC results could
not be considered reliable as the manual labels unfortunately lacked consistency.

The speaker clustering performance for news anchors shows very good results
due to the SID models (4.1 % Diarization Error Rate (DER)). For the other speakers
the results are not so good (26.0 % DER). In part, these results can be attributed to
the long duration of the BN shows, which have an average of 64 different speakers
per news show, and also to the very large percentage of speech with loud background
noise, mainly from street interviews.

The telephone bandwidth classifier was not evaluated in this data set, which did not
include telephone data labels. The rate of correctly classified frames in the validation
data set, obtained by the LDA classifier, was 99.8 %. In other BN test sets, the rate
achieved by the MLP was lower, which we also attributed to the high variability of
the training data.

For the audio events of the second set, the performance was first evaluated in terms
of F-measure, in a development set of sound effects. The results were generally very
good (above 0.8). The worst results were obtained with Door, Fireworks, Hammering,
and Saw Manual. The performance with real-life data (movies, documentaries, talk
shows and broadcast news), however, is much more challenging than the classification
of isolated events. The worse performance can often be due to the fact that audio
events almost never occur separately, being corrupted by music, speech, background
noise and/or other audio events.

1.4 Audio Event-Based Segment Representation
and Similarity Evaluation

For enabling the effective representation of temporal segments in the audio event
space, and the evaluation of segment dissimilarity on the basis of audio events, two
tasks are necessary: the normalization of the extracted audio event vectors, and the
definition of an appropriate event vector distance measure.

Audio event vector normalization is motivated by the diversity of the distributions
of confidence values among different event detectors for a given video. This is in
part due to the differences in the actual frequency of appearance of different events
within the video. For example, in a video with a female narrator speaking throughout
the entire video and a thunder-like sound being heard in just a couple of shots, it is
expected that the “female voice” audio event will receive very high confidence values
in many shots, while the “thunder” audio event is likely to receive high or moderate
confidence values in just the shots where the thunder-like sound is heard, and even
lower values in all others. However, the high or moderate confidence values that the
latter audio event receives should be considered as a strong indication in favor of

2 A recent version of the GD component achieved the first place in the Interspeech 2010 Paralin-
guistic Challenge in the category of Male/Female/Child classification [15].
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those shots’ common scene membership. In order for them to receive the due attention
during scene segmentation, the normalization of confidence values depending on their
distribution for each audio event is proposed, and a very simple (most likely non-
optimal) normalization approach is adopted in this work. Specifically, if ev( j) is the
initial confidence value of the j th audio event in a temporal segment, and maxev j is
the maximum value of the j th audio event in all the temporal segments of the video,
then the normalized confidence value ẽv( j) is:

ẽv( j) = ev( j)

maxev j
. (1.4)

Following event vector normalization, the definition of a shot dissimilarity mea-
sure is based on the assumption that not only the difference of audio event confidence
values between two segments, but also the absolute confidence values themselves,
are important. Indeed, if for a given audio event two segments present similarly low
confidence values, the only deduction that can be made is that this audio event is most
probably not present in both segments; no conclusion can be drawn on the semantic
similarity of these two segments. On the contrary, if two segments present similarly
high confidence values, then it can be inferred that the same audio event is present
in both segments, and this concurrence reveals a significant semantic similarity. The
commonly used L1 distance or other Minkowski distances would not satisfy the
above requirements, since they depend only on the difference of the confidence val-
ues. Instead of them, a variation of the Chi-test distance is employed in this work. If
˜EV 1, ˜EV 2 are two normalized audio event vectors, then their distance D is defined

as:

D( ˜EV 1, ˜EV 2) =
√
√
√
√

J
∑

j=1

(ẽv1( j)− ẽv2( j))2

ẽv1( j)+ ẽv2( j)
. (1.5)

It can be seen that this dissimilarity measure does not depend only on the difference
of the audio event vectors, satisfying the previously discussed dissimilarity measure
requirements.

1.5 Multi-Evidence Scene Transition Graph Method

1.5.1 Audio STG Definition

The definition of the ASTG is based on the following assumptions:

• Scene boundaries are a subset of the visual shot boundaries of the video (i.e., a
visual shot cannot belong to more than one scenes).

• Each audio segment cannot belong to more than one scenes. The same holds for
a set of temporally consecutive audio segments that share the same σ(·), β(·)
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values and exhibit similar audio events. Two audio segments are said to exhibit
similar audio events if the distance between their audio event vectors, as defined
in Sect. 1.4, is lower than an empirical threshold.

• Audio event similarity and the distribution of speaker identities across two shots
(or two larger temporally contiguous video segments) can serve as measures of
audio similarity.

Based on these assumptions, an ASTG is constructed as follows (Fig. 1.3):

• Step 1. The similarity of temporally adjacent audio segments αx , αx+1 is exam-
ined, starting from α1. Denoting ˜EV x , ˜EV x+1 the audio event vectors of αx ,
αx+1 respectively, the two audio segments are merged if σ(αx ) = σ(αx+1),
β(αx ) = β(αx+1), and D( ˜EV x , ˜EV x+1) < Tev, where Tev is an empirically
defined threshold. For simplicity, the audio segments resulting from this merging
step and used in the next step continue to be denoted αx .

• Step 2. Merging of visual shots is performed: for every αx , the visual shots that
temporally overlap with it by at least Ta ms are merged to a video unit.

• Step 3. The video units formed in Step 2 are clustered according to the dissimilarity
�(·) of their speaker identity distributions and the distance D(·) of their audio event
vectors. The two dissimilarity measures are linearly combined to produce a one-
dimensional distance measure. Assignment of two video units to the same cluster
requires both this distance measure and the temporal distance between them to be
lower than certain thresholds.

• Step 4. A connected graph is formed, in which the nodes represent the clusters of
video units and a directed edge is drawn from a node to another if there is a shot
included the first node that immediately precedes any shot included in the second
node [3, 9]. The collection of cut-edges, i.e., the edges that, if removed, result in
two disconnected graphs, constitutes the set of estimated video scene boundaries.

It should be noted that the speaker identity distribution of a video unit is:

Hx = [h1, h2, . . . , hG ], (1.6)

where G is the total number of speakers in the video, according to the speaker
clustering results, and hg , g = 1, . . . ,G, is defined as the time that speaker g is
active in the video unit divided by the total duration of the same video unit. The L1
metric is used as similarity function �(Hx , Hy).

1.5.2 Visual STG Definition

Similarly to ASTG, a scene transition graph based on visual information (VSTG)
is defined. The VSTG comprises nodes, which contain a number of visually similar
and temporally neighboring shots, and edges which represent the time evolution
of the story. Visual similarity of shots is evaluated by calculating the Euclidean
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Fig. 1.3 An example of ASTG construction according to the algorithm of Sect. 1.5.1. The video
stream is initially decomposed into 8 audio segments (a1 to a8) and 6 video shots (s1 to s6). Firstly,
the audio segments that are adjacent and present same background class, speaker identity and also
similar audio events are merged (a2 and a3). Subsequently, in Step 2 shots s3 and s4, which overlap
with audio segment a3 by more than a threshold, are merged into a video unit. On the contrary,
shots s1 and s2 are not merged, since the overlapping of s2 with audio segment a1 is minimal. In
the third step, speaker identity distributions and audio event vectors are estimated for each video
unit and their dissimilarity is used to determine which video units should be assigned to the same
cluster (Unit 1 and Unit 3 are assigned to the same cluster; Unit 4 and Unit 5 are also assigned to
a single cluster). Finally, the scene transition graph is constructed and as a result, in this example,
the video units are joined to form 2 scenes

distance of HSV-histogram vectors of shot key-frames. More details on the visual
scene transition graph can be found in [3].
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1.5.3 Visual and Audio Scene Transition Graph Merging

In [9] we introduced a probabilistic scene transition graph merging approach that
combines the visual and audio STGs and simultaneously reduces the dependency of
the proposed approach on STG construction parameters. Similarly to this approach,
in this work multiple VSTGs are created, each using a different randomly selected
set of parameter values. Then, the fraction pv

i of VSTGs that identify the boundary
between shots si and si+1 as a scene boundary (i.e., the number of such VSTGs,
divided by the total number of generated VSTGs) is calculated and used as a measure
of our confidence on this being a scene boundary, based on visual information. The
same procedure is followed for audio information using multiple ASTGs, resulting in
confidence values pa

i . Subsequently, these confidence values are linearly combined
to result in an audio-visual confidence value pi :

pi = V · pv
i + U · pa

i . (1.7)

Finally, all shot boundaries for which pi exceeds a threshold form the set of scene
boundaries estimated by the proposed MESTG approach. In the above formula, U
and V are global parameters that control the relative weight of the ASTGs and VSTGs
in the audio-visual scene boundary estimation.

1.6 Experimental Results

For experimentation, a test-set of 7 documentary films (229 min in total) from the
collection of B&G was used. Application of the shot segmentation algorithm of [1]
to this test-set and manual grouping of the shots to scenes resulted in 237 ground
truth scenes. For evaluating the results of the proposed and other scene segmenta-
tion techniques, the Coverage and Overflow measures, proposed in [16] for scene
segmentation evaluation, were employed. Coverage measures to what extent frames
belonging to the same scene are correctly grouped together, while Overflow evaluates
the quantity of frames that, although not belonging to the same scene, are erroneously
grouped together. More detailed definitions of these two measures can be found in
[16]. The optimal values for Coverage and Overflow are 100 and 0 % respectively.
The F-score is defined in this work as the harmonic mean of C and 1− O , to combine
Coverage and Overflow in a single measure,

F = 2C(1 − O)

C + (1 − O)
, (1.8)

where 1 − O is used in the above definition instead of O to account for 0 being the
optimal value of the latter, instead of 1.
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Table 1.3 Performance evaluation of MESTG and comparison with literature works

Method VSTG [3] [5] [4] AVSTG [9] MESTG

Coverage (%) 79.18 77.93 70.13 83.86 85.75
Overflow (%) 17.81 13.88 21.93 11.05 10.71
F-Score 80.66 81.82 73.89 86.33 87.48

Table 1.4 Performance evaluation of 4 different audio STG variations in the documentary database

Method SP1 SP2 SPAE1 SPAE2

Coverage (%) 58.7 67.14 58.86 69.29
Overflow (%) 20.32 26.67 28.77 31.72
F-Score 67.6 70.1 64.46 68.78
Coverage (%) 78.5 83.86 84.43 85.75
Overflow (%) 10.73 11.05 11.53 10.71
F-Score 83.54 86.33 86.41 87.48

The first part of the table reports the performance of each variation when used by itself for scene
segmentation. The second part reports the overall performance when each variation is combined
with the visual STG as described in Sect. 1.5.3

Using the above test-set and measures, the proposed approach (MESTG) was
compared with the audio-visual scene segmentation technique (AVSTG) of [9], the
methods of [4, 5], and the visual scene transition graph (VSTG). For constructing the
latter, the required parameter values were chosen by experimentation, as in [3]. For
the MESTG and AVSTG approaches, the probabilistic merging procedure discussed
in Sect. 1.5.3 was followed, involving the creation of 1,000 ASTGs and 1,000 VSTGs
with different parameters for estimating the required probability values. Weights V ,
U of (1.7) were tuned with the use of least squares estimation and one video manually
segmented into scenes; the resulting values were 0.482 and 0.518 respectively. The
results of experimentation are shown in Table 1.3, where it can be seen that the
use of audio events in MESTG leads to an increase of Coverage by 1.89 % and a
decrease of Overflow by 0.34 %, compared to the AVSTG. The MESTG approach
also significantly outperforms the methods of [3–5].

Furthermore, we have compared four different alternatives for constructing the
audio scene transition graph. The first one (SP1) uses only the speaker identity
distribution, while omitting Steps 1 and 2 of the ASTG construction algorithm of
Sect. 1.5.1. The other 3 variations use the proposed ASTG construction algorithm
and differentiate only in terms of the considered audio descriptors. Specifically, SP2
makes use only of speaker identity distribution (1.6), whereas SPAE1 additionally
employs the 14 audio events of Table 1.1. Finally, in SPAE2 the ASTG is built as
proposed in this work, i.e, it exploits the speaker identity distribution, the 14 audio
events of Table 1.1 and the 61 audio events of Table 1.2.

In the experimentation we examined the results of these variations both when
they are used by themselves for scene segmentation and when each of them is com-
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Fig. 1.4 A scene segmentation example. In each row, video shots are represented by one keyframe.
According to the ground truth segmentation, all depicted shots belong to a single scene, related to
field sprays in which shots of airplanes spraying interchange with farmers talking. It can be seen
that the VSTG alone erroneously detects 3 scene boundaries, i.e., a scene boundary is declared
in all shot boundary positions where the visual signal changes significantly, providing that there
is no repetitive pattern (e.g. the same person re-appearing, as is the case with the second of the
two farmers shown above). AVSTG cannot fully remedy this over-segmentation, whereas MESTG
manages to assign all 8 shots to the same scene, making use of the common airplane sound that is
found in all shots in which a speaker is not included

bined with the visual STG, using the merging approach of Sect. 1.5.3. It should be
noted that the combination of SP2 and the visual STG leads to the technique that
is proposed in [9] (AVSTG), while the combination of SPAE2 and the visual STG
results in the MESTG, presented in this work. The results of experimentation are
shown in Table 1.4. It can be seen that none of the audio segmentation techniques
can provide adequate scene segmentation accuracy when used in isolation. However,
when combined with the visual STG, the additional improvement that each portion
of the audio information contributes to can be seen by comparing the results of the
last row of Table 1.4. Specifically, the proposed approach is shown to outperform the
other 3 variations by at least 1.07 % when used along with the VSTG. Finally, as it
is shown in Table 1.4, omitting Steps 1 and 2 of the ASTG construction algorithm
reduces the system performance by 2.79 %.

In Figs. 1.4 and 1.5 two examples of the outcome of MESTG, AVSTG and VSTG
are shown. In contrary to MESTG, both the VSTG and AVSTG approaches fail to
cluster all shots into a single scene in these examples.
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Fig. 1.5 A scene segmentation example. In each row, video shots are represented by one keyframe.
These correspond to part of a single scene, formed by shots from a firework contest. No speech is
contained in this part of the video; the audio content is limited to the sounds caused by the fireworks.
As can be seen, both VSTG and AVSTG fail to recognize that the 7th and 8th shot also belong to
the same scene with the rest of the shots, due to the fact that these are neither very similar in terms
of appearance nor can be linked to the same speakers, in the absence of speech. On the contrary,
MESTG manages to cluster all shots into a single scene, again demonstrating the significance of
non-speech-related audio events

1.7 Conclusions

In this work the use of high-level audio events for the improvement of scene segmen-
tation performance was examined, and a multi-modal scene segmentation technique
exploiting audio events and other audio-visual information was proposed. The pro-
posed technique was shown to outperform previous approaches that did not exploit
high-level audio events. Future extensions of this work include experimentation with
additional measures for evaluating similarity in the audio event space, and the use
of additional audio events, as well as other high-level audio-visual information, for
further improving the accuracy of the results.
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Chapter 2
Region-Based Caption Text Extraction

Miriam Leon, Veronica Vilaplana, Antoni Gasull and Ferran Marques

Abstract This chapter presents a method for caption text detection. The proposed
method will be included in a generic indexing system dealing with other semantic
concepts which are to be automatically detected as well. To have a coherent detection
system, the various object detection algorithms use a common image description,
a hierarchical region-based image model. The proposed method takes advantage
of texture and geometric features to detect the caption text. Texture features are
estimated using wavelet analysis and mainly applied for text candidate spotting. In
turn, text characteristics verification relies on geometric features, which are estimated
exploiting the region-based image model. Analysis of the region hierarchy provides
the final caption text objects. The final step of consistency analysis for output is
performed by a binarization algorithm that robustly estimates the thresholds on the
caption text area of support.

Keywords Text detection and localization · Binary Partition Tree

M. Leon (B) · V. Vilaplana · A. Gasull · F. Marques
Technical University of Catalonia,
Barcelona, Spain
e-mail: mleon@tsc.upc.edu

V. Vilaplana
e-mail: veronica.vilaplana@upc.edu

A. Gasull
e-mail: antoni.gasull@upc.edu

F. Marques
e-mail: ferran.marques@upc.edu

N. Adami et al. (eds.), Analysis, Retrieval and Delivery of Multimedia Content, 21
Lecture Notes in Electrical Engineering 158, DOI: 10.1007/978-1-4614-3831-1_2,
© Springer Science+Business Media New York 2013



22 M. Leon et al.

2.1 Introduction

Semantic image indexing relies on the annotation of the presence in the scene of
some a priori defined semantic concepts. At a first level of abstraction, semantic
concepts are commonly associated with objects. However, object detection is a non-
solved problem in a general framework and the extraction of the text in the scene
can provide additional relevant information for semantic scene analysis [1]. This is
specially true for caption text which is usually synchronized with the scene content.
Caption text is artificially superimposed on the video at the time of editing and
it usually underscores or summarizes the video content. This makes caption text
particularly useful for building keyword indexes [2]. For example, when recognizing
a given location (for example, a street), in addition to the information obtained by
recognizing the buildings in the image, a caption text associating the scene with a
given city may help to confirm the location.

As proposed in [3], text detection algorithms can be classified in two categories:
those working on the compressed domain and those working on the spatial domain.
Independently of their domain, algorithms can be divided into three phases: (i) text
candidate spotting, where an attempt to separate text from background is done; (ii)
text characteristics verification, where text candidate regions are grouped to discard
those regions wrongly selected; and (iii) consistency analysis for output, where re-
gions representing text are modified to obtain a more useful character representation
as input for an OCR. In this chapter, we develop the three phases of the algorithm
within the context of caption text.

The caption text detector presented in this work will be included in a more generic
indexing system. Actually, the global application is that of off-line enrichment of the
current annotation of very large video databases (for instance, the whole repository
of TV broadcasters) as well as of creation and instantiation of new descriptors for
future annotation of new semantic concepts (for example, searching in the database
for a person who previously did not require being explicitly annotated).

Two of the requirements imposed by this application are (i) analysis of the video
at the temporal resolution provided by the key frames that are currently stored and
(ii) use of an image representation and description which compacts all the scene
information in a small number of elements and, at the same time, is as generic as
possible, so that the representation can be reused in different contexts (for example,
to detect other objects) [4].

Given the first constraint, we concentrate on the problem of caption text extrac-
tion in still images. Caption text presents some features that are typically used by
text extraction algorithms. The horizontal intensity variations produced by the text
are exploited in techniques that analyze the image in the transform domain, either
using the DCT [5] or the wavelet transform [6]. Also spatial domain techniques take
advantage of this feature by proposing edge detectors to spot the areas with high
probability of containing text [7]. Next, spatial cohesion features, such as size, fill
factor, aspect ratio or horizontal alignment, are applied to check if text candidate
regions are consistent with its neighborhood and to discard false positives [8].



2 Region-Based Caption Text Extraction 23

Note that all these techniques are specific for text detection and commonly in-
dependent of the approaches dealing with the detection of other semantic concepts.
In the case of detecting text in a global indexing system, it is interesting to have a
common image representation and a common set of descriptors.

Regarding the image representation, region-based image representations provide
a simplification of the image in terms of a reduced number of representative elements,
which are the regions. In a region-based image representation, objects in the scene
are obtained by the union of regions in an initial partition. To reduce the number of
possible region unions, it is useful to create a hierarchy of regions representing the
image at different resolution levels. The idea is to have not only a single partition but
a universe of partitions representing the image at various resolutions. In this context,
object detection algorithms (and specifically text detection algorithms) only need to
analyze the image at those positions and scales that are proposed by the regions in
the hierarchy [4].

In a previous work, the tree of maxima (and minima) [9] was proposed as hier-
archical region-based image model for text detection [10]. Nevertheless, in order to
reuse the representation to detect other objects, the Binary Partition Tree (BPT) [11]
is used in this work since its suitability for generic object detection was illustrated
in [4] and, posteriorly, demonstrated in [12] for the case of various semantic objects
of different nature such as human faces, sky regions, traffic signals and car plates.

Given these requirements, we proposed in [13] a method for caption text extrac-
tion in still images using a hierarchical region-based image representation. Here,
improvements for the first two phases (text candidate spotting and text characteris-
tics verification) and a solution for the third phase (consistency analysis for output)
are proposed.

The presentation of these concepts is structured as follows. Section 2.2 summa-
rizes the main ideas behind the image model [11] and its use for object detection and,
specifically, text detection [4]. In Sect. 2.3, the region-based caption text detection
approach is detailed. This section is structured in three sections in which every phase
of the text detector is described. Section 2.3.1 discusses the use of wavelet informa-
tion to spot the text candidates in the image [6]. The use of the Haar transform in the
color domain is proposed to extract text candidates with low contrast in the luminance
component. In Sect. 2.3.2, geometrical descriptors are used to confirm the spotted
candidates and discard false positives [8]. In that case, we take advantage of the
region-based representation to estimate the geometrical descriptors [13] and of the
hierarchical image description to obtain the best set of text caption representatives.
In turn, Sect. 2.3.3 describes the proposal for the final consistency analysis for output
step. It is performed by an adaptive binarization algorithm that robustly estimates
the thresholds on the area of support of the caption text candidate and provides the
final input to the OCR. Section 2.4 discusses the results obtained by this technique.
Finally, conclusions are drawn in Sect. 2.5.
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Fig. 2.1 Region-based hierarchical representation

2.2 Hierarchical Region-Based Image Model

The Binary Partition Tree (BPT) [11] reflects the similarity between neighboring
regions. It proposes a hierarchy of regions created by a merging algorithm that can
make use of any similarity measure. Starting from a given partition, the region merg-
ing algorithm proceeds iteratively by (1) computing a similarity measure for all pair
of neighbor regions, (2) selecting the most similar pair of regions and merging them
into a new region and (3) updating the neighborhood and the similarity measures.
The algorithm iterates steps (2) and (3) until all regions are merged into a single
region. The BPT stores the whole merging sequence from an initial partition to the
one-single region representation. The leaves in the tree are the regions in the initial
partition. A merging is represented by creating a parent node (the new region result-
ing from the merging) and linking it to its two children nodes (the pair of regions
that are merged).

The BPT represents a set of regions at different scales of resolution and its nodes
provide good estimates of the objects in the scene. Using the BPT representation in
object detection, the image has to be analyzed only at the positions and scales that
are proposed by the BPT nodes. Therefore, the BPT can be considered as a means
of reducing the search space in object detection tasks.
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The initial partition can be made of individual pixels or flat zones, which produce
a very large BPT. In object detection applications, the use as initial partition of a
very accurate partition with a fairly high number of regions is more appropriate [4].
Since this partition is used to ensure an accurate object representation, it is called
the accuracy partition (see Fig. 2.1). Moreover, in the context of object detection, it
is useless to analyze very small regions because they cannot represent meaningful
objects. As a result, two zones are differentiated in the BPT: the accuracy space
providing preciseness to the description (lower scales) and the search space for the
object detection task (higher scales). A way to define these two zones is to specify
a point of the merging sequence starting from which the regions that are created are
considered as belonging to the search space. The partition that is obtained at this
point of the merging process is called the search partition (see Fig. 2.1).

In the case of caption text detection, text bars are assumed to be the objects to be
detected, and they are extracted by the analysis of the search space. In turn, in the
case of scene text detection, characters are not always found in the search partition.
This detection requires a more accurate image representation and it will be performed
analyzing nodes in the accuracy space. Scene text detection will not be detailed since
it is not under the scope of the work presented in this chapter.

2.3 Caption Text Detection Approach

Caption text can be described as text added inside a rectangular bar, horizontally
aligned, which contrasts strongly with the bar background and has textured aspect.
These features are commonly translated into two types of descriptors: texture and
geometric descriptors which are typically used for text candidate spotting and text
characteristic verification, respectively.

Textured areas can be detected using wavelet analysis. However, this approach
produces many false positives (that have to be filtered out using geometric descrip-
tors) and some misses in low contrast areas. On the other hand, given the generic
framework of our application, the BPT has been created combining color homogene-
ity and contour complexity criteria [4]. Due to their homogeneous background and
regular shape, caption text objects are likely to appear as single nodes in the BPT.
Hence, we propose to combine the two approaches.

In a first stage, texture is estimated over the whole image by means of a multi-
resolution analysis using a Haar wavelet decomposition. Texture information is used
to select highly textured regions (candidate regions) in the BPT. Candidate regions
are anchor points for caption text detection. In order to correctly estimate useful
descriptors to evaluate candidate regions, their area of support is conformed to the
object shape characteristics. Region evaluation is carried out combining region-based
texture information and geometric features. Among those nodes in the BPT that
pass this text characteristic verification stage, final caption text nodes are selected
analyzing the BPT structure.
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(c)(b)(a)

(d) (f)(e)

(g)

(h)

Fig. 2.2 Example of caption text detection. a Original image, b wavelet transform, c text candidate
pixels, d search partition, e text candidate regions, f set of final selected regions, g BPT showing the
selected leaves (squared nodes) and the candidate nodes (orange nodes), and h Detail of the BPT
(rectangle in g) showing the final selected nodes for each text bar (green, lilac and yellow nodes)
and the discarded nodes (red nodes)
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2.3.1 Text Candidate Spotting

As proposed in [6], texture descriptors such as DWT coefficients give enough in-
formation to determine where textured areas can be found in an image. In [13] we
proposed to use the power of the LH and HL subbands in a Haar transform (Fig. 2.2b)
analyzed over a sliding window of fixed size H×W (W>H to consider horizontal
text alignment):

Pl
L H (m, n) = 1

W H

W
∑

i=1

H
∑

j=1

L Hl(m + i, n + j)2, (2.1)

where l denotes the decomposition level and an analogous expression is used for Pl
H L .

The window is moved over subbands of the transformed image with an overlapping
of half the window size in both directions. Both subbands are analyzed because DWT
power in windows containing text should present high values (>T1) in at least one of
the two subbands and relevant enough values (>T2) in the other subband. This way,
all pixels in a window are classified as text candidates if the power in the window
satisfies the following condition:

(
(
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) ∧ (
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∨
(
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) ∧ (

Pl
H L > T1

)
)

, (2.2)

where T1 and T2 are two thresholds, T1 being more restrictive than T2 (T1 > T2).
This wavelet analysis may produce misses in low contrasted areas. In the case

of caption text, such misses are commonly related to text over a background with a
similar luminance value but whose chrominance values are different enough to be
distinguished by the human visual system. Taking into account this observation, the
previous technique has been separately applied to the three YCbCr image compo-
nents.

The final mask marking all the text candidates is obtained by performing the union
of the (upsampled) masks at each decomposition level (Fig. 2.2c) and at each image
component. For the results presented in Sect. 2.4, the size of the sliding window is
6 × 18, l = 2, T1Y = 1200 and T2Y = 400 for luminance, and T1CbCr = 18 and
T2CbCr = 10 for chrominance.

Finally, regions in the search partition (Fig. 2.2d) are selected if they contain any
text candidate pixel. Moreover, texture-based selection is propagated through the
BPT so that all ancestors of the candidate regions are selected as well (Fig. 2.2g).
This is a very conservative policy but, at this stage, it is important not to miss any
possible region containing text (Fig. 2.2e).
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2.3.2 Text Characteristic Verification

For every selected node, descriptors are estimated to verify if the region represents
a caption text object. Initially, a region-based texture descriptor is computed as in
Eq. (2.1) but now the sum is performed over interior pixels to avoid the influence
of wavelet coefficients due to the gradient in the region boundary. This descriptor is
mainly used to filter out regions that have been selected due to the presence in the
mask (see Fig. 2.2c) of a few wrong candidate pixels in the surroundings of textured
areas.

To complete the verification process, geometric descriptors are calculated for the
remaining candidate nodes. Before computing these descriptors, the area of support
of candidate nodes is modified by a hole filling process and an opening with a small
structuring element (typically, 9× 9).

This stage is needed to eliminate small leaks that the segmentation process may
introduce due to the interlacing or to color degradation between regions. Such leaks
result in very noisy contours that bias the geometric descriptor estimation. Finally,
since the opening may split the region into several components, the largest connected
component is selected as the area of support for computing geometric descriptors.
Descriptors and the thresholds that nodes should accomplish (following a restrictive
policy) are listed in the sequel. Values in brackets indicate the thresholds used for
the experiments presented in Sect. 2.4 for standard PAL format 720× 576 images.

• Rectangularity (R): R must be in the range [0, 1]. The calculation of the rectangu-
larity is done using the Discrepancy method [14]. A rectangle is fitted to the region,
and the discrepancies between the rectangle and region are measured. R must be
greater than TR ; the nearer to 1, the more similar to a rectangle (TR = 0.85).
• Aspect ratio: (AR = WidthB B/HeightB B) must be in the range [TAR1, TAR2 ],

the upper limit is not strictly necessary but is useful to discard line-like nodes
(TAR1 = 1.33, TAR2 = 20). Given the regular shape (close to rectangular) of
caption text objects, the AR is calculated with the bounding box (BB) of the node
area of support.
• Height: must be in the range [TH1, TH2 ] (TH1 = 13 pixels for character visibility

and TH2 = 144, a quarter of PAL format height).
• Area: must be in the range [TA1 , TA2 ] (TA1 = 225, the area of a node with minimum

height and minimum aspect ratio, and TA2 = 138.240, a third of the PAL format
image area).
• Compactness: (CC = Perimeter2/Area) must be smaller than TCC , to avoid

nodes with long, thin elongations commonly due to interlacing (TCC = 800).

The result of applying these descriptors and thresholds to the image shown in
Fig. 2.2a, is presented in Fig. 2.2g, where the verified nodes are marked in orange.

At this stage, verified nodes may present two problems. First, as shown in Fig. 2.2h,
several verified nodes may be in the same subtree; that is, several (complete or partial)
instances of the same caption text object may be represented in a subtree. Second, if
the image contains a collection of caption text bars laying close enough, they may
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be merged into a single node; that is, a single subtree may represent several caption
text objects that, due to their proximity, can be understood as a single one.

The first problem leads to the presence of unnecessary verified nodes, actually
representing the same caption text object, that are to be processed in the consistency
analysis for output step. In that case, the best node in the subtree has to be selected.
The straightforward solution of selecting the highest node in the subtree may lead
to non-optimal solutions, as discussed in [13]. In that work, a confidence value was
estimated for each node, and nodes in the subtree with the highest confidence value
were finally preserved.

Nevertheless, a second problem has been detected due to the presence of several
caption text objects in the image merged as a single node in the tree, that pass
the verification stage. Such configurations are very common, for instance, in sport
events, where the data of several participants are jointly presented. In that case,
the problem can be more severe due to possible differences in the colors of fonts
and backgrounds used in the neighbor caption text bars. If all the bars are selected
as a single object, these differences result in a decrease in the performance of the
subsequent consistency analysis for output step. This step relies on a binarization
of the validated caption text bar area of support; if the two classes (character and
background) are not homogeneous in color, the binarization may fail.

Having in mind these two problems, we propose here a new strategy to jointly
handle both situations in a more robust manner. Subtrees are traversed in postorder.
For each subtree, a list of possible caption text objects is created. Verified nodes in
the subtree are compared with the previous caption text objects already stored in
the list. If the geometrical features of the verified node under analysis allow us to
assume that this node belongs to a caption text object already in the list, the verified
node under analysis is assigned to this caption text object and the description of this
caption text object is updated. If the verified node under analysis cannot be assigned
to any already existing caption text object, it is added to the list as a new caption text
object.

All these comparisons are performed using only simple geometrical descriptors
previously extracted from the tree nodes. In particular, the features that are compared
between a verified node under analysis and an already existing caption text object are
the coordinates of its center of mass as well as the height and the width of the modified
node bounding box. Combining these three elements, the following situations can
be detected:

1. The node completes an already existing caption text object: This is the case of
a caption text object that is mostly represented by a single node in the BPT but
some parts of it (for instance, its interior) are missing. In that case, neither the
y-coordinate of the center of mass nor the height or the width of the BB present
a substantial change. The node is assigned to this caption text object and the
object description is updated.

2. The node horizontally extends an already existing caption text object: This is the
case of a caption text object that has been split in the BPT into two horizontal-
neighbor regions. The y-coordinate of the center of mass and the height of
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the bounding box do not present a substantial change, whereas the width of the
bonding box increases. The node is assigned to this caption text object and the
object description is updated.

For other situations, the overlap between the node under analysis and the extension
of the area of support of the caption text object is analyzed. If they overlap, the node
is assumed to be part of the caption text object and its description is updated. If they
do not overlap, a new caption text object is defined.

In the example of Fig. 2.2a the largest text box is detected as three separated text
bar objects. Figure 2.2h shows a subtree whose root node represents this text box.
The search algorithm detects the nodes with the same color as nodes which are part
of the same text bar object, obtaining each text bar independently (see Fig. 2.2f).

2.3.3 Consistency Analysis for Output

For every caption text object, a binarization step is carried out. Given the specific
characteristics of caption text bars, the binarization is performed by analyzing a
few lines in the image. N (typically N=3) equidistant horizontal line segments
are selected within the area of support of the caption text object. The mean and
the variance of the pixels in each line segment are computed. Line segments with
high variance are assumed to be formed by text and background and are used to
characterize the probability density function of the text, which is assumed to be
Gaussian.

In turn, low variance line segments are supposed to represent the background
and can be used to characterize its probability density function that is assumed to
be Gaussian as well. Then, binarization is performed by a Maximum Likelihood
approach. An example illustrating this process is presented in Fig. 2.3. As it can
be seen (and it will be further discussed in next section), this approach leads to
good results. Other binarization approaches have been also tested leading to lower
performance.

The output of the binarization method is directly used as input for the OCR
system. In this work, we have used the opensource tesseract-ocr system1 which can
be trained for a specific language and vocabulary.

As previously commented, the binarization approach assumes that background
and text can be statistically modeled by Gaussian probability density functions. This
assumption does not stand when, for instance, the various words in a given caption
text bar are not homogeneous in color. This situation typically leads to a wrong bina-
rization of some of the words. In order to solve this problem, words within the same
caption text bar are segmented and a word-by-word binarization is implemented. The
segmentation is carried out by applying first an edge detector (in our case, the Canny
edge detector [15] but any other similar system could be used) to the caption text bar

1 http://www.code.google.com/p/tesseract-ocr/

http://www.code.google.com/p/tesseract-ocr/
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Fig. 2.3 Illustration of the caption textbinarization process for N = 3

area and second by performing a dilation of the detected contours using a rectangular
structuring element. Every connected component is assumed to be a separate word
and the previous binarization approach is applied.

An example of the usefulness of this word-by-word binarization process is illus-
trated in Fig. 2.4. The global binarization process fails due to the differences between
the text representation in the first and third elements with respect to the second one.
The result of the global binarization is illustrated in the second row of Fig. 2.4, where
the second text element has been included in the background. The third row of Fig. 2.4
shows the correct result obtained when a word-by-word binarization is used. This
example is further illustrated in Fig. 2.6b.
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Fig. 2.4 Text bar binarization
versus word-by-word bina-
rization

Table 2.1 Detection results related to the number of objects in the first database

Detected objects % over 249 objects

Correctly detected 215 86.35 %
Partially detected 22 8.83 %
False negative 12 4.82 %

Table 2.2 Detection results related to the number of objects in the second database

Detected objects % over 2063 objects

Correctly detected 1758 85.21 %
Partially detected 40 1.93 %
False negative 265 12.84 %

2.4 Results

The technique has been tested in two corpus, one formed by news and sport event
videos, and the other one by sport event videos.2 In the first corpus, there is a total of
249 caption text objects extracted from a set of 150 challenging images with text of
different size and color, and complex background textures. Results, classified as cor-
rectly detected, partially detected, false positives and false negatives, are summarized
in Tables 2.1 and 2.3, and illustrated in Figs. 2.5 and 2.6.

If these values are expressed in terms of recall and precision, partially detected
objects (PDO) can be considered as false negative or as detected objects since they
represent good anchor points for the following step (see Table 2.3). The number of
false positives is 24. Results do not differ significantly from [13] but text bars are
detected separately instead of together in a single text box.

In the second corpus there are 2063 caption text objects extracted from 649 key
frames. The most remarkable result is that the number of false positives is very high
due to the presence in the images of advertising panels and spectators, whereas the

2 All images used in this chapter belong to TVC, Televisió de Catalunya, and are copyright protected.
These key-frames have been provided by TVC with the only goal of research under the framework
of the i3media project.
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Fig. 2.5 Illustration of the caption text detection process. First column Original image; Second
column List of the final selected regions; Third column Binarization result
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Table 2.3 Detection results presented as precision and recall for the first and second databases,
respectively

PDO As outlier As correct As outlier As correct

Recall 0.863 0.950 0.8521 0.871
Precision 0.885 0.894 0.692 0.697

Fig. 2.6 Illustration of the caption text detection process. First column Original image; Second
column List of the final selected regions; Third column Binarization result

number of detected text bar is satisfying (see Tables 2.2 and 2.3). Nevertheless, some
of these elements are discarded in the third step (see Fig. 2.5d, e).

Figures 2.5 and 2.6 illustrate these results with some images that exemplify the
performance and limitations of the algorithm. For every example, we present the
different caption text bars that have been detected. To allow analyzing which bars
have been detected isolately and which ones have been detected gathered in a single
component, when necessary the detected text bars are separately presented regardless
of their original position in the image.
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Figure 2.5a presents an example of non-perfectly rectangular caption text objects.
It is common that caption text objects present some modifications to make informa-
tion more attractive for the viewer. As it can be observed, the assumed variability on
the shape model allows the correct detection of such caption text objects.

Figure 2.5b is an example that illustrates false negatives and partial detections.
The similarity between caption text background and objects around mislead the
segmentation process and, in some cases, the caption text object is not correctly
represented in the BPT. Moreover, we can illustrate as well an example of partial
detection: caption text object marked with a “7” has been reported as partial detection
since it has not been fully extracted as a single node.

Figure 2.5c is another example of false negative. In this case, although the bar is
opaque and rectangular, the amount of text present in the lower caption bar (only
a letter “L”) does not produce an enough textured region to be detected in the text
candidate spotting phase (See Sect. 2.3.1). Actually, this false negative is mostly due
to a wrong selection of the key frame and in subsequent key frames the whole text
in the caption bar appears and is completely detected.

Figure 2.5d, e shows representative examples of typical outliers. These structures
correspond to highly textured, rectangular nodes in the BPT which are mistaken
by caption text blocks. Nevertheless, they are removed in the following phase of
consistency analysis for output. Figure 2.5d shows outliers, which are commonly
present in sports sequences due to the presence in the image of stands or spectators.

Figure 2.5f shows an example of the behaviour of the algorithm in the presence
of scene text. This type of text may present similar characteristics to the caption
text (it may be placed in a close-to-rectangular bar and be highly contrasted to its
background) and therefore it can be detected as such. Note that in the precision results
provided in Table 2.3, 25 % of the detections classified as False Positive are related
to scene text.

Figure 2.6a illustrates the robustness of the proposed algorithm to variations in the
font type. Note that the algorithm exploits the texture appearance of the text (which is
mostly common to all types of fonts) and, therefore, it presents similar performance
independently of the font.

Figure 2.6b presents an example of the usefulness of the division of a caption
text object into words and their subsequent separated binarization. In this example,
the various text elements within each caption object do not share the same color
features and, therefore, the global binarization, that assumes a Gaussian probability
density function for all the text in the caption object, is wrong. The word-by-word
binarization process allows us to correctly binaryze the various text elements.

Finally, Fig. 2.6c shows an image where the use of color information (see
Sect. 2.3.1) provides good results. Letters in fluorescent green would be discarded in
the text candidate spotting phase due to low contrast if only luminance information
had been used.
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2.5 Conclusions and Further Work

We have presented a new technique for caption text detection. This technique will
be included in a global indexing system and, therefore, works on a common hierar-
chical region-based image representation. The technique combines texture informa-
tion (through Haar wavelet decomposition) and geometric information (through the
analysis of the regions proposed by the hierarchical image model) to robustly extract
caption text objects in the scene.

Future work will focus on the creation of new text descriptors and on the analysis
of the temporal redundancy of text. The former aims to improve the detection of text
in textured areas. The latter, aims to take advantage of the fact that text has to appear
at least 2 seconds on the screen so that the viewer can understand the information.

Acknowledgments This work was partially founded by the Catalan Broadcasting Corporation
(CCMA) and Mediapro through the Spanish project CENIT-2007-1012 i3media and TEC2007-
66858/TCM PROVEC of the Spanish Government.
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Chapter 3
k-NN Boosting Prototype Learning for Object
Classification

Paolo Piro, Michel Barlaud, Richard Nock and Frank Nielsen

Abstract Image classification is a challenging task in computer vision. For example
fully understanding real-world images may involve both scene and object recogni-
tion. Many approaches have been proposed to extract meaningful descriptors from
images and classifying them in a supervised learning framework. In this chapter, we
revisit the classic k-nearest neighbors (k-NN) classification rule, which has shown
to be very effective when dealing with local image descriptors. However, k-NN still
features some major drawbacks, mainly due to the uniform voting among the nearest
prototypes in the feature space. In this chapter, we propose a generalization of the
classic k-NN rule in a supervised learning (boosting) framework. Namely, we rede-
fine the voting rule as a strong classifier that linearly combines predictions from the
k closest prototypes. In order to induce this classifier, we propose a novel learning
algorithm, MLNN (Multiclass Leveraged Nearest Neighbors), which gives a simple
procedure for performing prototype selection very efficiently. We tested our method
first on object classification using 12 categories of objects, then on scene recognition
as well, using 15 real-world categories. Experiments show significant improvement
over classic k-NN in terms of classification performances.
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3.1 Introduction

In this chapter, we address the two main tasks involved in multi-class real-world
image classification, i.e. object recognition and scene categorization. The first con-
sists in automatically classifying an unlabeled region extracted from an image (e.g.
by segmentation) according to a set of predefined objects. The latter task consists
in labeling the overall image according to a set of real-world scenes. Such tasks are
very challenging, and are attracting more and more research effort from the computer
vision community, as prompted by the plethora of classification approaches proposed
for PASCAL 2009 competition.1 A wide range of image descriptors has been inves-
tigated for object categorization purposes, which generally rely on detecting relevant
local characteristics of objects (e.g., local shape and appearance). The best known
examples of such descriptors are SIFT [13], which are commonly extracted for most
state-of-the-art image representations, like into Bags-of-Features (BoF) [21] and
Fisher vectors [15].

Despite lots of works, much remains to be done to challenge human level perfor-
mances. In fact, images carry only part of the information that is used by humans
to recognize scenes or objects, and parts of the information available from images
may be highly misleading: e.g. real object categories may exhibit high intra-class
variability (i.e. visually different objects may belong to the same category) and low
inter-class variability (i.e. distinct categories may contain visually similar objects).
The same holds for natural scene categories.

Voting classification techniques, like k-nearest neighbors (k-NN), have been
shown to be very effective when dealing with local image descriptors. However, they
may suffer from high sensitivity to “noisy” prototypes, thus requiring suitable learn-
ing procedures for rejecting unreliable matches. Moreover, it is a critical challenge
to reduce the computational cost of descriptor matching without impairing classifi-
cation performances. In order to cope with these issues, the literature has favored
two main approaches so far: improve categorization by means of local classifiers [6,
9, 23], or filter out ill-defined examples [3].

In this chapter, we propose a novel solution: a new provable boosting algorithm
for k-nearest neighbor (k-NN) rules in a multiclass framework. Our algorithm, called
MLNN (Multiclass Leveraged Nearest Neighbors), induces a multiclass leveraged
k-nearest neighbor rule that generalizes the uniform k-NN rule, using directly the
examples as weak hypotheses. Compared to other local learning methods for k-NN
classification [23], MLNN also speeds up query processing: instead of learning a
local classifier for each query, MLNN performs learning upwards, once and for all,
and does not need to be run again or updated depending on queries. Finally, the
most significant advantage of MLNN lies in its ability to find out the most relevant
prototypes for categorization, thus enabling to filter out the remaining examples.

In the following section we present MLNN, along with the statement of its the-
oretical properties (Sect. 3.2). Then, we present and discuss experimental results of

1 http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2009/

http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2009/
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both object recognition using SIFT descriptors (Sect. 3.3.1) and scene categorization
using Bag-of-Features histograms (Sect. 3.3.2).

3.2 Method

3.2.1 Problem Statement and Notations

Instead of splitting the multiclass classification problem in as many one-versus-all
(two-class) problems—a frequent approach in boosting [19]—we directly tackle the
multiclass problem, following [22]. For a given query, we compute its classification
score for all categories (or classes, or labels). Then, we select the label with the
maximum score. We suppose given a set S of m annotated descriptors arising from
images (or image regions). Each image descriptor provides a training example (x, y),
where x is the image feature vector and y the class vector that specifies the category
membership of the descriptor. In particular, the sign of component yc gives the
positive/negative membership of the example to class c (c = 1, 2, . . . ,C). Inspired by
the multiclass boosting analysis of [22], we constrain the class vector to be symmetric,
i.e.

∑C
c=1 yc = 0, by setting: yc̃ = 1, yc �=c̃ = − 1

C−1 , where c̃ is the true image
category.

3.2.2 (Leveraged) Nearest Neighbors

The regular k-NN rule is based on majority vote among the k nearest neighbors in
set S , to decide the class of query x. It can be defined as the following multiclass
classifier h = {hc, c = 1, 2, . . . ,C}:

hc(x) = 1

k

∑

i∼k x

[yic > 0] , (3.1)

where hc ∈ [0, 1] is the classification score for class c, i ∼k x denotes an example
(xi , yi ) belonging to the k nearest neighbors of x and square brackets denote the
indicator function.

In this chapter, we propose to generalize (3.1) to the following leveraged k-NN
rule h� = {h�c, c = 1, 2, . . . ,C}:

h�c(x) =
∑

j∼k x

α j y jc ∈ R , (3.2)

where the uniform voting of (3.1) is replaced by a weighted voting with weighting
coefficients α j . Furthermore, in (3.2) the k nearest neighbors are searched either in
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S , or in a sparse subset P ⊆ S obtained after a prototype selection step, achieved
before any query is presented. Each example in P is a relevant category prototype.
Prototype selection is achieved by using the leveraging coefficientsα j (3.2) computed
at training time, which are expected to represent the “confidence” of prototypes for
classifying new data.

In the following sections we describe the boosting-like procedure we propose to
compute the α j ’s. In particular, we propose to minimize a particular upperbound of
the risk functional on training data, thus exploiting a very important trick that has
been at the center of major advances in classification over the last ten years.

3.2.3 Multiclass Surrogate Risk Minimization

In order to fit our classification rule (3.2) onto training set S , we focus on the
minimization of a multiclass exponential (surrogate2) risk:

εexp
(

h�,S
)

.= 1

m

m
∑

i=1

exp

(

− 1

C

C
∑

c=1

yich�c(xi )

)

. (3.3)

This function is an upper bound of the empirical risk:

ε0/1
(

h�,S
)

.= 1

mC

m
∑

i=1

C
∑

c=1

[

yich�c(xi ) < 0
]

, (3.4)

which is not differentiable and often computationally hard to directly minimize [14].
Remark that both risks (3.3, 3.4) depend on quantity yich�c(xi ), the edge of classifier
h� on example (xi , yi ) for class c. This edge is positive iff the category membership
predicted by the classifier agrees with the true membership of the example. Plugging
definition (3.2) into surrogate risk (3.3) gives:

εexp
(

h�,S
)

.= 1

m

m
∑

i=1

exp

⎛

⎝−
m

∑

j=1

α j ri j

⎞

⎠ , (3.5)

which highlights an essential ingredient of our algorithm, i.e. the multiclass k-NN
edge matrix [ri j ]m×m , whose entry ri j is different from zero iff example j is a neighbor
of i , whereas the positive (negative) sign of ri j specifies the membership of the two
examples to the same (not the same) class. (See definition (7) in Algorithm 1.) Finally,
after computing the edge matrix, which is a constant term in (3.5), the unknown

2 We call surrogate a function that upperbounds the risk functional we should minimize, and thus
can be used as a primer for its minimization.
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leveraging coefficients α j can be fitted by running the algorithm described in the
following section, which iteratively minimizes the surrogate risk.

3.2.4 MLNN: Multiclass Leveraged k-NN Rule

Algorithm Pseudocode of MLNN is shown in Algorithm 1. Like common boosting
algorithms, MLNN operates on a set of weights wi (i = 1, 2, . . . ,m) defined over
training data. These weights are repeatedly updated based on δ j , which is a local
measure of the class density around a given example j . Namely, at each iteration t of
the algorithm, a weak index chooser oracle Wic({1, 2, . . . ,m}, t) determines index
j ∈ {1, 2, . . . ,m} of the example to leverage (step I.0). Various choices are possible
for this oracle. The simplest is perhaps to compute Eq. (3.10, 3.11) for all the training
examples, then to pick j maximizing δ j :

j ←Wic({1, 2, . . . ,m}, t) : δ j = max
j∈{1,2,...,m} δ

t
j . (3.6)

Furthermore, notice that, when whichever w+j or w−j is zero, δ j in (3.11) is not
finite. We propose a simple strategy to eliminate this drawback, inspired by [19],
i.e. to add 1/m to both the numerator and the denominator of the fraction in the log
term of (3.11). This smoothes out δ j , guaranteeing its finiteness without impairing
convergence of MLNN. This oracle allows an example to be chosen more than once,
thus letting its leveraging coefficient α j be updated several times (step I.3). It is
known that, to be statistically consistent some boosting algorithms require to be
run for T � m rounds [1]. Cast in the setting of MLNN, this constraint precisely
supports prototype selection, as T is an upperbound for the number of examples with
non-zero leveraging coefficients.

Complexity MLNN shares the property with boosting algorithms of being
resources-friendly: since computing the leveraging coefficients scales linearly with
the number of neighbors, its time complexity bottleneck does not rely on boosting,
but on the complexity of nearest neighbor search. Furthermore, its space complexity
is also reduced: since weak hypotheses are examples, example j can be a classifier
only for its reciprocal nearest neighbors—those examples for which j itself is a
neighbor—,corresponding to non-zero entries in column j of edge matrix (7). This
matrix is thus extremely sparse for reasonable values of k. As a consequence, update
rule (3.12) is to be computed on a small number of examples.

Convergence Using known arguments of the boosting theory [14], we proved the
convergence of MLNN to the minimum of the surrogate risk, along with a conver-
gence rate, which is based on the following weak index assumption (WIA):

WIA: let p j
.= w+j /(w+j +w−j ). There exist some γ > 0 and η > 0 such that

the following two inequality holds for index j returned by Wic({1, 2, . . . ,m}, t):
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Algorithm 1: Multiclass Leveraged k- NN MLNN(S )

Input: S = {(xi , yi ) , i = 1, 2, . . . ,m , yi ∈ {− 1
C−1 , 1}C }

Let ri j
.=

{
1
C

∑C
c=1 yic y jc if j ∼k i

0 otherwise
. (9)

Let α j ← 0, ∀ j = 1, 2, . . . ,m .
Let wi ← 1/m, ∀i = 1, 2, . . . ,m .
for t = 1, 2, . . . , T do

[I.0] Weak index chooser oracle:
Let j ←Wic({1, 2, . . . ,m}, t);
[I.1] Let

w+j =
∑

i : ri j>0

wi , w−j =
∑

i : ri j<0

wi , (3.10)

δ j ← (C − 1)2

C
log

(

(C − 1)w+j
w−j

)

; (3.11)

[I.2] Let
wi ← wi exp(−δ j ri j ), ∀i : j ∼k i ; (3.12)

[I.3] Let α j ← α j + δ j .
end
Output: h�c(x) =

∑

j∼k x α j y jc, ∀c = 1, 2, . . . ,C .

|p j − 1

C
| ≥ γ , (3.7)

(w+j + w−j )/||w||1 ≥ η . (3.8)

We summarize this fundamental convergence property in the following theorem:

Theorem 3.1 If the WIA holds for τ ≤ T steps, then MLNN converges with τ
to h� realizing the global minimum of the surrogate risk (3.3), and ε0/1(h�,S ) ≤
exp(− C

C−1ηγ
2τ).

Inequality (3.7) is the usual weak learning assumption, used to analyze classical
boosting algorithms [7, 19], when considering examples as weak classifiers. A weak
coverage assumption (3.8) is needed as well, because insufficient coverage of the
reciprocal neighbors could easily wipe out the surrogate risk reduction due to a large
γ in (3.7). For a deeper insight into the properties of our k-NN boosting method, see
[17].
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Fig. 3.1 Twelve categories from the Caltech-101 database

3.3 Experiments

3.3.1 Object Recognition

In this section we present experimental results of MLNN vs plain k-NN on a data-
base of real objects. The reason to use, and boost, plain k-NN instead of particular
sophisticated approaches on nearest neighbors (e.g. spatial pyramids [12] or Bag-of-
Features [21]) was more than merely remaining as general as possible. We carried
out experiments in order to investigate the improvements brought by boosting on
nearest neighbor voting. This necessitates to remove all unnecessary adjustments
which could potentially interfere. Namely, we used 12 categories from the well-
known Caltech-101 database for object classification: accordion, airplanes, car side,
cellphone, cup, ewer, ferry, grand piano, laptop, motorbikes, watch, Windsor chair
(Fig. 3.1). This database contains a large variety of objects, and also exhibits high
intra-class variability, i.e. visually different objects may be in the same category.

3.3.1.1 Training

We used 40 training images per category, and extracted dense SIFT descriptors [13]
from image regions corresponding to objects. For this purpose, we used the ground-
truth object masks provided with the database. We computed dense descriptors of
16 × 16 patches over a grid with spacing of 8 pixels, as proposed in [12]. We
used the descriptors of all training objects for learning prototypes, i.e. a subset of
relevant object descriptors with their leveraging coefficients. Namely, we retained
only examples with positive α j as prototypes for classifying test images. In Fig. 3.2
we show how values of prototype leveraging coefficients are distributed in each
category. The best represented categories are those maximizing the integral of such
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Fig. 3.2 Histograms of prototype leveraging coefficients α j per category. The overall number of
prototypes in each category is reported as well

histograms, i.e. those containing most of the prototypes with the largest coefficient
values. We used all non-training images (2,039 overall) to test MLNN.

3.3.1.2 Classification

In order to obtain an overall classification score for a test image X , each query
descriptor x ∈ X was first classified independently by our leveraged k-NN rule
(3.2). Because prototype classes are highly imbalanced, as displayed in Fig. 3.2, we
smoothed out aggregate scores with a standard technique [10]. Hence, we predict
label ĉ for a query image Q as follows:

ĉ(X)
.= arg maxc

1

mP
c

∑

x∈X

h�c(x) (3.13)

where mP
c is the cardinal of retained prototypes of class c. In order to speed up the

execution time we used a CUDA GPU implementation of Nearest Neighbor search
[8].

Classification results are summarized in Fig. 3.3, where the mean Average Preci-
sion (map%) over all test images is shown for different prototype sets. We computed
map as the average of diagonal entries in the confusion table, whereas the size of
prototype set is reported as θ , that is the ratio of the number of retained prototypes
and the overall size of training data. Fig. 3.3 also reports results of vanilla k-NN
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Fig. 3.3 MLNN classification performances in terms of map as a function of the proportion θ of
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(with random sampling of the prototypes from the training data). We observe that
the improvement over regular k-NN is dramatic, even when decreasing the prototype
number. For example only 14 % of prototypes allow for 20 % improvement over clas-
sic k-NN. (See the marked points in the figure.) Besides this precision improvement,
MLNN also enables to drastically reduce the computational complexity with respect
to plain k-NN (gain up to a factor 4 when discarding half prototypes).

Finally, the confusion table reported in Fig. 3.4 highlights the difficulty of dis-
criminating between couples of visually similar object categories, like “cup” and
“ewer”. Moreover, most of mistakes may be due to an insufficient representation
of an object category in the prototype set. Namely, categories with few prototype
descriptors, like “motorbikes”, are more likely to be confused with over-represented
categories (e.g. “accordion”). Normalizing the number of prototypes per class, e.g.
by adapting the resolution of dense descriptors to the actual object size, is expected
to improve classification rate in such categories [12].

3.3.2 Scene Categorization

In this section, we present experimental results of MLNN on the scene categorization
task. Namely, we focused on evaluating how the average classification precision
varies as a function of the number of prototypes that are used for testing. Indeed, one
of the main features of our method is to allow to explicitly fix the number of data to be
used at classification time, thus directly bounding the computational cost of the test
phase. In particular, in all the reported experiments we carried out prototype selection
by setting T < m, which corresponds to retaining at most T relevant prototypes (the
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Fig. 3.4 Confusion table when retaining all prototypes with positive leveraging coefficients (θ =
0.58, k = 11)

exact number of prototypes depends on which criterion is chosen for the Wic oracle,
namely whether allowing a prototype to be selected at multiple steps or not). When
running the baseline k-NN method, we carried out random prototype selection, which
is the easiest strategy for data reduction, and averaged the classification results over
a number of iterations.

We report image categorization results on the 15-cat database [12], which consists
of the following 15 categories: coast (360 images), forest (328), mountain (374),
open country (410), highway (260), inside of cities (308), tall buildings (356), street
(292), suburb residence (241), bedroom (174), kitchen (151), living room (289),
office (216), store (315), and industrial (311). In order to represent these images in
terms of feature sets, we tested a common descriptor for natural image classification,
i.e. Bag-of-Features (BoF) histograms computed from SIFT descriptors [20].

3.3.2.1 Settings

In the context of generic image categorization, the Bag-of-Features scheme is
among the best performing feature representation methods. Besides its simplicity, the
main advantage of this image representation approach is the one-to-one association
between images and feature vectors, that allows for a straightforward use of discrimi-
native learning tools like k-NN and SVM. Originally proposed for text categorization,
the BoF descriptors have been successfully applied to image classification problems,
with several implementations, ranging from using them as feature vectors for dis-
criminative learning [5] to more sophisticated approaches like pyramid match kernels
[12].
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In this section we present and discuss results we obtained using MLNN for Bag-of-
Features classification on the 15-cat database, which mixes outdoor scenes with more
difficult indoor scenes. All the results presented in this section refer to 10-fold cross-
validation. Thus we split the 15-cat database in 10 distinct random folds, in order to
form 10 different training/test subsets, each one containing more than 4,000 training
images and about 450 testing images. The following statistics refer to averaging
over these ten folds. For each training/test combination we first built a vocabulary
of visual words, that are SIFT descriptors densely extracted at four resolution levels
on a fixed regular grid (typically 1,000÷10,000 SIFT per image). In order to build
the visual vocabulary, we ran k-means with k = 1500, thus representing each image
as a feature vector in dimension d = 1500.

3.3.2.2 Histogram Intersection Metrics

Although BoF descriptors are widely used in most state-of-the-art image classifica-
tion techniques, some crucial issues are still unsolved and may significantly impact on
classification performances. In particular, we consider the two following problems:

1. how to normalize such image descriptors in order to make comparison between
different images as unbiased as possible;

2. which distance metric to use for measuring the dissimilarity between two
descriptors.

Such problems mainly arise from the histogram-based nature of BoF descriptors and
have been the object of much research effort in the computer vision community in
the recent years. Indeed, on the one hand, their normalization is particularly crucial
when images differ significantly from each other in terms of the local descriptors
counts, thus resulting in largely variable descriptor norms. Thus it is common to
pre-process BoF descriptors such that they have equal �1 norms. Less commonly,
these descriptors have been �2-normalized, mostly when normalization is part of a
pre-processing technique, like the squared root (sqrt) recently proposed by Perronnin
et al [16]. The most common alternative to �1-normalization for BoF descriptors is
represented by the TF-IDF schema, which was originally proposed in the context of
text retrieval and then successfully applied to image indexing, in order to take into
account the larger informative “power” of rare visual words [20].

On the other hand, defining the right dissimilarity measure between histograms
(not necessarily �1-normalized) is challenging, and the resulting behaviour often
strongly depends on the application. For example the Euclidean distance between
�2-normalized descriptors [2] or TF-IDF-weighted descriptors [20] are still the most
common choices for image classification. All the results we report in this section refer
to normalizing Bag-of-Features descriptors in terms of the �1 norm and comparing
them using the Manhattan distance. This choice was motivated by our evaluation
of different normalization/metric combinations that we report in Table 3.1, which
refer to 10-fold cross-validation using k-NN (k = 10). In particular, we tested some
of the most suitable histogram distance metrics, as defined in a recent taxonomy
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Table 3.1 Comparison of k-NN classification performances using different histogram normaliza-
tion criteria and intersection metrics on the 15-cat database (k = 10)

metric normalization mAP

Euclidean �1 54.55
Euclidean none 57.56
Euclidean �2 59.60
Manhattan �1 64.29
Manhattan none 62.09
Manhattan �2 53.19
Canberra �1 60.80
Canberra none 59.57
Canberra �2 59.81
Lorentzian �1 64.34
Lorentzian none 58.21
Lorentzian �2 52.07
Manhattan tf-idf 64.47
Euclidean tf-idf 55.22
Euclidean �2+sqrt 60.78
Euclidean �1+sqrt 62.22

of histogram intersection measures [4], i.e. Manhattan, Canberra, Lorentzian,
besides the baseline Euclidean distance. Furthermore, we evaluated different descrip-
tor normalization/pre-processing methods, like the common �1, �2 and TF-IDF [20],
as well as the most recent squared root pre-processing [16] and the baseline (absence
of normalization). First of all, our results show that the �1 normalization always out-
performs �2 and the baseline for a fixed metric (except for the Euclidean distance,
for which �2-normalization is the best), and the gap is particularly significant for
distances like Manhattan and Lorentzian (more than 11 % over �2-normalization).
The best performances are obtained for Manhattan and Lorentzian with
�1-normalization, and Manhattan with TF-IDF normalization, which still outper-
form the squared root pre-processing strategy. So as for the distance metric choice,
our results clearly show that the Euclidean distance is generally not the optimal
choice for comparing those histogram-like descriptors, thus suggesting intersection
metrics as better alternatives. (See for instance the 10 % gap between Euclidean and
Manhattan for �1-normalized BoF, or the 9 % gap between the same two metrics
when using TF-IDF normalization.)

In Fig. 3.5 we quantify the gain provided by using the Manhattan (�1) distance
over the Euclidean (�2) distance for our MLNN approach.Results of baseline k-NN
classification are also shown for both metric distances. This plot shows that the choice
of the k-NN metric significantly impacts on the precision of our method, with a 10 %
gap between the Euclidean distance implementation and the Manhattan histogram
intersection-based implementation.
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Fig. 3.5 Comparison between Manhattan (�1) and Euclidean (�2) distances for both MLNN and
k-NN classification

Fig. 3.6 MLNN with Histogram Intersection kernel compared to UNN (one-versus-all) and k-NN.
All the three classification methods rely on the same distance metric, that is �1 distance



50 P. Piro et al.

Fig. 3.7 Confusion table for MLNN on the 15-cat database

3.3.2.3 MLNN Performances

In order to evaluate the classification performances of our method, we report the
trend of cross-validation mAP as a function of the overall number of prototypes used
for testing (Fig. 3.6). We also compare these results, which were obtained using the
MLNN implementation relying on the Manhattan distance, with our one-versus-all
UNN method [18] and the baseline k-NN classification. Our method outperforms
k-NN classification significantly (gap between 6 and 8 %) while reducing the proto-
type dataset, thus the computational cost, considerably. (See for instance the precision
of MLNN for 400 prototypes, which equals that of k-NN using 2,400 prototypes,
thus resulting in a dataset reduction by a factor 6.) Furthermore, the advantage of
using our multiclass MLNN algorithm over its binary counterpart, UNN, is mainly
concentrated at very low prototype set sizes, e.g. 10 % of the original set, where
the multiclass learning allows for precision improvement up to 7 %. Notice that
the number of prototypes for UNN is reported as the average over the multiple
one-versus-all problems, i.e. it should be multiplied by the number of classes in
order to compute the actual number of prototypes involved in classification. Hence,
although UNN performances appear almost identical to those of MLNN, this latter
still benefits a significant computational advantage over UNN, thus providing the
best precision/cost trade-off.
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Fig. 3.8 Results of MLNN and k-NN obtained when combining multiple k values into the classi-
fication rule

Then, we look deeper into MLNN classification performances by analyzing the
confusion matrix (Fig. 3.7). Overall, the method performs well on most outdoor
scenes, as well as on the “office” category. Only some reasonable confusions are
present, e.g. between “coast” and “open country” or “inside city” and “street”. Thus,
average performance (mAP under 70 %) drops off mainly because of the low recogni-
tion rate in a few more challenging categories, such as the indoor category “bedroom”
(recognition rate of only 16.2 %), and the “industrial” category (36.5 %), that mixes
outdoor and indoor images, thus making recognition very challenging. In particular,
notice that “bedroom” images are more often misclassified into the “living room”
category, due to their similar scene layouts and the presence of similar objects,
e.g. paintings on the walls and sofas/beds. This drastically reduces the prototypical
relevance of bedroom images during the learning phase, thus biasing misclassifica-
tion into the “living room” category. This phenomenon is related to the well-known
“semantic gap”, which affects low-level visual descriptors that only collect statistics
on the appearance information without any semantic interpretation. This problem is
particularly critical for prototype-based methods when the inter-class variability is
low, preventing them from learning reliable discriminating prototypes.

A very simple strategy for improving the overall precision of MLNN is to combine
the scores from multiple MLNN tests, e.g. by summing the classification scores
corresponding to different values of k for the same (truncated) Histogram Intersection
kernel. An example of the performance increase enabled by this strategy is shown in
Fig. 3.8, where MLNN improves by almost 2 % by summing the scores obtained for
k = 5, 10, 15, with a best mAP of 69.23 %.
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3.4 Conclusion

In this chapter, we have proposed a novel method (MLNN) for boosting k-NN voting
in the context of object recognition and scene categorization, by minimizing a sur-
rogate risk function over a training dataset. Results on benchmark image categories
have shown considerable improvements over the classic uniform voting rule, both
in precision and in computation time. Furthermore, since our method is completely
independent on the kind of descriptor used, it is expected to conveniently apply
to k-NN–based methods relying on other state-of-the-art descriptors, like VLAD
descriptors [11] or Fisher kernel vectors [15].
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Chapter 4
Semi-Automatic Object Tracking in Video
Sequences by Extension of the MRSST
Algorithm

Marko Esche, Mustafa Karaman and Thomas Sikora

Abstract The objective of this work is to investigate a new approach for segmenta-
tion of real-world objects in video sequences. While some amount of user interaction
is still necessary for most algorithms in this field, in order for them to produce ade-
quate results, these can be reduced making use of certain properties of graph-based
image segmentation algorithms. Based on one of these algorithms a framework is
proposed that tracks individual foreground objects through arbitrary video sequences
and partly automates the necessary corrections required from the user. Experimental
results suggest that the proposed algorithm performs well on both low- and high-
resolution video sequences and can even, to a certain extent, cope with motion blur
and gradual object deformations.

Keywords Image segmentation · Object tracking · Binary partition tree

4.1 Introduction

The segmentation of real world objects in still images and the tracking of such objects
in video sequence have many applications especially in video processing and video
editing [4]. While a lot of progress has been made concerning the extraction of
binary object masks from single frames, automatic generation of such masks for an
entire video remains mainly unsolved. Since dynamic foreground objects both need
to be correctly identified and can also undergo sudden changes in shape and color,
most video segmentation tools rely on user interaction in order to produce accurate
results. In this chapter a new framework for the tracking of foreground objects in
video sequences based on the Modified Recursive Shortest Spanning Tree Algorithm
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(MRSST) is presented. It incorporates the interactive Object Contour Extraction
method proposed by Adamek and O’Connor in [1]. A new approach for identifying
corresponding image regions in consecutive frames is also integrated using a binary
partition tree (BPT) for each frame. In addition, an algorithm is described that auto-
matically locates a tracked object in new frames even if the object shape, size or
colour distribution changes. The remainder of the chapter is structured as follows.
Section 4.2 briefly revisits the segmentation of color images using the MRSST and
its applicability to the task of object extraction. Both a general outline of the pro-
posed algorithm and detailed descriptions of two of its main components are given
in Sect. 4.3. Experimental results and objective evaluation measures are provided in
Sect. 4.4. Section 4.5 shows how future extensions can improve the algorithm, while
Sect. 4.6 concludes the chapter with a short discussion.

4.2 Object Extraction and the MRSST

Among the various image segmentation approaches graph-based algorithms, such as
the one presented by Cooray et al. in [6], have lately received significant attention.
This is partly due to their ability to represent image segments of arbitrary sizes as
nodes in a BPT. This property enables the user or an automatic algorithm to easily
extract spatially connected regions or objects from the frame by labeling certain parts
of the BPT. A detailed analysis of the BPT’s suitability to object extraction and espe-
cially the detection of individual objects through using specialized merging criteria
can be found in [10]. There Vilaplana et al. also introduce the notion of the BPT as a
simplified search space that can used to identify certain image regions. One of these
graph-based approaches is the MRSST presented in [3], which also introduces new
so-called syntactic features. These features represent geometric porperties of image
regions and their spatial configurations. The following descriptions shall be used to
illustrate the basic idea behind syntactic features:

• Homogeneity: This feature controls the spatial color homogeneity of a region.
When considering two neighboring regions the color difference along their com-
mon boundary is used as a measure of similarity.
• Complexity: Starting with the boundary length li of a region and its spatial area

ai , the complexity of the region is then given by xi = li/
√

ai . The least complex
theoretical region, therefore, is a perfect circle.
• Compactness: A region is considered to be compact if all its constituent parts are

adjacent to one another.

A mathematically sound definition of each these syntactic features together with a
more detailed description may be found in [3]. Initially, the MRSST treats every pixel
of an image as a node in a graph that is connected via weighted edges to its four direct
neighbors. Here the weight of an edge depends on the colour of individual pixels,
the spatial complexity of the regions to be merged and the potential complexity
of the merged region. The segmentation of the image is achieved by iteratively
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Fig. 4.1 Top labels added to the BPT through scribbles drawn on the image by the user. Bottom
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merging those nodes that are connected by the least-cost link, which also enforces
the recalculation of associated graph edges and their weights. During this process
the BPT is created by storing the order in which nodes are merged and establishing a
father-child relationship between the newly created node and the two merged ones.
The output of the MRSST in this case is a BPT, whose root node contains the entire
image while the leafs are the individual pixels of the image. In [1] Adamek and
O’Connor proposed a method that allows for quick extraction of arbitrary foreground
shapes from a BPT by letting the user draw so-called scribbles on the image. Both
foreground (F) and background (B) scribbles are passed to the leafs of the BPT in
the form of competing labels. These are then iteratively propagated up the BPT.
When the algorithm tries to assign both labels to the same node, that node is marked
as a conflict node (C) and all its parent nodes are marked with the conflict label
as well. This results in the formation of homogeneously labeled local subtrees that
either belong exclusively to foreground or background. An example of a BPT before
and after label propagation is given in Fig. 4.1, where each subtree represents an
individual spatial region of its own. By adding more scribbles to the image the
resulting foreground mask can be refined further.

4.3 Proposed Algorithm

The new object tracking algorithm, which is proposed in this article, consists of a
three-stage approach as outlined by Fig. 4.2 for a video sequence of N frames. Initially
a BPT is created for the first frame of the sequence which is then labeled by the user
in order to correctly identify the foreground object to be tracked, which results in
the extraction of a shape Sn . The labeling is done based on the method described
in [1]. This initial step is illustrated by Fig. 4.3. Where the image on the left shows
the scribbles drawn by the user. Background scribbles are shown in blue while all
foreground labels are marked in red. In the actual implementation both the drawing of
the scribbles and the propagation of labels in the graph are done simultaneously. This
ensures that the user is at all times immediately presented with the resulting object
share, which reduces the number of scribbles to be drawn and the amount of error
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Fig. 4.2 The main part of the algorithm is a loop transferring shape silhouette and contour in form
of background and foreground labels from frame to frame. After every iteration the intermediate
result is presented to the user, who can then modify the labels by placing additional scribbles or by
starting with an entirely new object mask

introduced by wrongly placed labels. The image on the right displays the extracted
object shape after the processing of these scribbles. For every consecutive frame a
BPT is also created. An initial estimate of the shape Sn+1 of the tracked object in the
next frame is determined by matching local subtrees of the BPT among neighboring
frames. More details on this technique are provided in Sect. 4.3.1. Having obtained
this estimate, the object contour Cn is transferred into the next frame and used to
correct the object contour Cn+1 of the predicted object shape Sn+1 by automatically
generating an independent set of scribbles. See Sect. 4.3.2 for details. Afterwards the
predicted object shape is presented to the user who can now add further labels to
refine the object shape or to make necessary corrections. An approach with a similar
workflow, which however does not make use of a graph-based image representation
and therefore relies solely on the object contour, has been proposed in [5]. Another
approach based on a Mean Shift algorithm was for instance described in [7].
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Fig. 4.3 Scribbles added by the user for the first frame of the PlanetEarth sequence are shown on
the left. The extracted object is shown on the right

Fig. 4.4 Left object shape in the previous frame, right partially constructed object shape for the
current frame with center c n+1

S and the moved reference shape with center c n
S + v

4.3.1 Identification of Corresponding Subtrees

Before describing the actual algorithm for transferring the current object shape Sn in
frame n into the next frame n+1, a number of definitions have to be made. The areas
in pixels occupied by shapes Sxn and Sn+1 are denoted by an

S and an+1
S respectively.

The area associated with a subtree in the current frame is consequently denoted by
an

Ti
. A similar notation is used to describe the center pixel of the entire object shape

S in the current frame c n
S or the center pixel of a specific subtree T n+1

i in the next
frame c n+1

Ti
. In order to evaluate the suitability of a subtree T n+1

j for inclusion in the

new object shape Sn+1, the previously determined object shape is transferred into
the next frame using the motion vector v given in

v = (c n+1
S · an+1

S + c n
S · (an

S − an+1
S ))/an

S − c n+1
S . (4.1)
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The choice of this motion vector ensures that the predicted object shape Sn+1 is
initially placed at the same location cn

S as the previous object shape, see Fig. 4.4 for
a simple example. Once more local subtrees have been assigned to the new object
shape, the location of the predicted object shape c n+1

S is adapted to fit to the new
object location. This results in an object center that gradually moves itself to the
new position of the tracked object. The motion vector in Eq. 4.1 is only used as
long as an+1

S < an
S . Here the areas an+1

S and an
S can be interpreted as a measure of

confidence with which the tracked shape is at a certain location in the image. Based
on the transferred version of Sn it is now possible to compute a relative overlapp
cov(Tj

n+1) between every subtree in the current frame and the entire object shape in
the previous frame.

Additionally, a color cost cco(T
n+1
j ) is assigned to every local subtree T n+1

j in
the new frame. It is computed as the smallest euclidean distance in CIEL*u*v*
color space between the average color of T n+1

j and any subtree T n
i in the previous

frame within a search radius r(T n+1
j ). The usage of this colorspace according to

[8] guarantees a certain robustness against changing lighting conditions in the video
sequence due to the fact that these mostly affect the L-component. Initially the search

radius r(T n+1
j ) is set to 1

5

√

an+1
Tj

. The paradigm behind this choice is the following:

During the first iterations of the algorithm, when the location of the tracked object
in the next frame is still unknown, only larger subtrees are searched for as they are
allowed more motion according to the search radius given above. Large connected
regions that are represented by a single subtree in the previous frame are here expected
to be more easily reidentifyable in the next frame, as there is a strong likelihood that
at least some parts of these regions are again merged into a larger subtree. A greedy
algorithm that tests every subtree in the new frame for inclusion in the new object
shape is now developed: During every iteration the subtree with the smallest inclusion
cost as given in Eq. 4.2 is chosen and included in the new object shape

cinc(T
n+1
j ) =

⎧

⎨

⎩

∞, if cco(T
n+1
j ) > cmax

co ∨ cov(T
n+1
j ) < cmin

ov

cco(T n+1
j )

cmax
co

+ 1− cov(T
n+1
j ), otherwise.

(4.2)

Additionally, the subtree T n
k in the previous frame with the smallest color distance

to the included subtree T n+1
l is removed from the previous object shape to ensure that

the color distributions of Sn and Sn+1 remain identical. The thresholds cmax
co , cmax

ov

and rmax used in Eq. 4.2 are needed to control the behaviour of the inclusion algo-
rithm. When a subtree receives an infinite inclusion cost, it is split into its respective
shildren which are then examined during the next iteration. Here the BPT’s struc-
ture is employed as a binary search tree that ensures quick localization of individual
nodes within the tree and their respective spatial representation as seperate regions
in the image. Should it not be possible to include any candidate subtree during the
current iteration because no subtree received a finite inclusion cost, then the three
thresholds are adapted according to a three-stage schedule. The individual steps of
this schedule are described in the following list:



4 Semi-Automatic Object Tracking in Video Sequences 63

1. Subtrees T n+1
j with at least 50 % overlapp with the moved object shape from

the last frame and small color difference and little individual segment motion
r(T n+1

j ) are added to the new object shape Sn . For most tracked objects this
produces a rough reconstruction around the object center, which moves along
the motion trajectory of the entire object.

2. All subtrees T n+1
j with at least 50 % overlapp with the moved object shape, a

bigger color difference and more segment motion are merged with the object
shape in the new frame. During this step object parts with a slowly changing
color (i.e. due to lighting conditions) are included as well as slowly moving
object parts such as arms and legs for human beings or animals.

3. All segments T n+1
j that have a color distribution similar to T n

i and lie somewhere
within the entire region of interest are included without considering overlapp or
individual segment motion. Assuming that the average size of an object does not
change dramatically from frame to frame, this step results in a labeled group of
subtrees in the next frame which are a good approximation of the new object
shape. The region of interest around the predicted object center is a rectangular
image region whose dimensions depends on the size of the object shape in the
previous frame.

The resulting workflow of this step is illustrated by Fig. 4.5. As both color and spatial
orientation play a strong role during the first stage of the algorithm, only such regions
(marked in white) are added that undergo no change between the current and the next
frame. After iteration 5, small parts of the added regions do not belong to the object to
be tracked. Nevertheless, due to the overlapp criterion, such errors only occur at the
object boundary, where they can easily be corrected by the next step of the algorithm,
as will be shown in Sect. 4.3.2. The adding of new subtrees is automatically stopped
once the area of the reconstructed object shape an

S is bigger than 99 % of the object
shape an+1

S from the last frame. For sequences where the tracked object moves very
fast either away from or towards the camera, this threshold can be modified by the
user. The empirical value of 99 %, however, produced good results for all sequences
the algorithm was tested on since small missing regions are automatically added
again by the next step of the algorithm.

Two properties of most tracked objects that have not yet been taken into account
now also need to be examined. Firstly, in most cases tracking will only be done here
on non-dividable objects. That is to say, no tracked object shall be allowed to be split
or to be merged with other objects. Secondly, changes in the objects appearance are to
be expected at the object contour only while the central area of the two-dimensional
representation of the object should not undergo noticable changes from frame to
frame. Both of these properties as well as the errors introduced by the merging step
described above are now examined.
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Fig. 4.5 During every iteration of the algorithm that identifies corresponding subtrees between
neighboring frames new regions (marked in white) are added to the predicted object shape in the
next frame. These added regions are here shown in white. From left to right the merged object shape
for the new frame after 4, 7 and 12 iterations are shown

4.3.2 Boundary Correction

Since object deformations usually manifest themselves as a modification of the object
boundary, it is necessary to fit the object contour Cn from the previous frame to the
new object shape Sn+1 in the current frame. The strategy proposed here is to first
move the previous object shape into the current frame. For this step the motion
vector given in Eq. 4.1 is again utilized. Due to potential mismatch introduced by
the merging algorithm and due to natural changes of the object shape, the original
object contour Cn will not perfectly match the initially predicted object shape Sn+1.
In order to overcome this discrepancy every pixel along the original object contour
is now examined. For a square patch of size l× l, where l = 1

4

√

an
S , around the pixel

location in the previous frame the contrast measure (abbreviated by con) given in
Eq. 4.3 is computed. Here L F , uF , vF and L B , u B , vB are the three components of
the average colors of foreground and background inside the patch, respectively. The
value of 1

4

√

an
S is chosen based on empirical data and represents a good compromise

between computational complexity and the amount of variability allowed for the
object contour, since a large value l increases the size of the square patch to be
compared quadratically, while at the same time allowing for bigger modifications
of the boundary. Should Sn be a circular region with radius r for instance, then l is
roughly 0.44r

con = (L F − L B)2 + (uF − u B)2 + (vF − vB)2

3 · 255 · 255
. (4.3)
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Fig. 4.6 Original object
contour (left) and adapted
automatic scribbles (right).
B and F indicate background
and foreground labels, respec-
tively

F
F

F
F

FF
FF
FF

BB
B

B

background

foreground foreground

background

The contrast measure in turn indicates the confidence with which a contour pixel can
be located in the new frame. Should the contrast between background and foreground
be higher than 0.1 % then a local scribble model as shown in Fig. 4.6 is built. The
scribble model is basically a distribution of labels over the square patch mentioned
above that is assumed to extract the correct object shape if these automatic scribbles
were added to an unlabeled BPT. The actual distribution is chosen with respect
to possible contour deformations and only the one background pixel closest to the
center of the patch is expected to remain a background pixel. A best match for the
l × l patch is now found by performing a fullsize blocksearch around the initial
contour location. Once the best match has been identified, the previously obtained
automatic scribbles are added to the BPT of the new frame around the corrected
location of the considered contour pixel. An example for such a boundary correction
step is provided in Fig. 4.7. Of particular interest in the displayed frame is the flag
that occupies the lower right part of the image and is correctly identified as part of
the background despite having the same color as the foreground object. In order to
enforce the compactness of the reconstructed shape all disconnected segments with
a size smaller than 10 % of the entire labeled region are removed from the object
shape and are treated as background.

4.4 Experimental Results

The propsed algorithm has been implemented in C++ and tested on the MPEG
CIF test sequences House, Highway and Group. It was also tested on one sequence
each from the following movies in DVD resolution: Harry Potter and the Sorcerer’s
Stone, Planet Earth (BBC Documentary) and Star Wars-Episode IV. Some of these
also include global camera motion or moving background objects. Keyframes and
extracted foreground objects are shown in Fig. 4.8. Detailed examples for four suc-
cessive frames may be found in Fig. 4.9. In order to objectively evaluate the algorithm
all automatically generated object masks were compared with manually segmented
groundtruth masks. For each frame precision (p), recall (r ) and f-measure ( f ) were
computed. In addition, the number of user interactions (u) and the number of manu-
ally labeled pixels (l) per frame were recorded. In this context, a user interaction is
defined as a single connected scribble in either foreground or background color. The
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Fig. 4.7 Left initially predicted object shape (outlined in red) which was constructed using the
subtree matching approach; center automatically generated scribbles (green for foreground, red for
background); right corrected object shape, after the application of the scribbles

Table 4.1 Average precision, recall and f-measure per sequence for the automatically generated
object masks. rel4 and rel6 indicate the percentage of frames for which less than 4 respectively less
than 6 scribbles where necessary

Sequence p (%) r (%) f (%) rel4 (%) rel6 (%)

Group 93.0 89.3 91.0 70.7 92.7
Highway 92.7 89.2 90.1 88.2 94.1
House 93.3 86.4 88.7 70.3 94.6
Harry Potter 87.8 94.2 90.8 54.2 80.6
Planet Earth 91.8 93.1 92.4 67.5 95.8
Star Wars 97.6 98.3 97.9 100 100

per-frame values for p, r , f , u and l for the House sequence are given in Fig. 4.10
in the left column. Due to the foreground object (a person walking from right to
left) entering the scene during the first frames of the sequence satisfactory results
are only achieved from frame five onwards, when the person is visible in its entirety.
The right column shows the respective measures for the PlanetEarth sequence. Here,
high precision and recall are achieved from the first frame onward, a quality decrease
of the predicted masks can only be observed for frames 15 to 17, where foreground
and background of the displayed scene have almost identical color. The average mea-
sures for all sequences are given in Table 4.2. In addition, the percentage of frames
for which less than 4 or less than 6 scribbles were needed (rel4 and rel6 respectively)
are provided. Of particular interest is the Harry Potter sequence throughout which
motion blur is frequently present. Nevertheless, the dual approach still performs
as well as for the other sequences. A comparison with similar interactive tracking
approaches has not been conducted yet since, to the knwoledge of the authors, a gen-
eral framework for objectively measuring the amount of user interaction still needs
to be established (Fig. 4.10).
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Fig. 4.8 Sample frames and extracted foreground objects for all tested sequences. For the high-
resolution sequences displayed in the right columns only a magnified region of interest is shown

Fig. 4.9 In the top-row the extracted foreground objects for the first four frames of the Harry Potter
sequence are shown. The respective foreground objects of the PlanetEarth sequence are shown in
the bottom row

That none of the values shown in Table 4.2 are identical to 100 % is mainly due
to the fact that for most video sequences the definition of the object boundary will
be strongly dependent on the user providing the segmentation mask. This accounts
for a slight discrepancy between the manually segmented groundtruth masks and the
masks produced by the algorithm.
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Fig. 4.10 Left column the average recall (r ), precision (p) and f-measure f (top row) for the House
sequence as well as the number of interactions (u) and the number of labeled pixels per frame l
(bottom row) that were needed to produce these values are shown. Right column The respective
measures for the PlanetEarth are shown

Table 4.2 Average precision, recall and f-measure per sequence for the corrected object masks
after the application of user corrections. N denotes the average number of user interactions per
frame which were required to achieve the respective measures in columns 1 to 3

Sequence p (%) r (%) f (%) N̄

Group 94.1 93.8 93.9 1.92
Highway 95.4 93.5 94.4 0.93
Harry Potter 89.6 97.4 93.3 2.25
Planet Earth 93.1 94.2 93.6 1.73
Star Wars 97.8 98.0 97.9 0.33

4.5 Possible Extensions and Future Work

One advantage of the algorithm proposed here is the fact that additions to the MRSST
algorithm such as the one proposed in [2] can easily be integrated without affecting
the rest of the work flow. As described in [2] Dempster-Shafer theory can be used
to further improve the segmentations produced by the MRSST by making use of a
probabilistic model to describe new merging criterions during the formation of the
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Fig. 4.11 Background modeling could be used to remove certain subtrees in the new frame from
the inclusion process, which would speed up the subtree matching algorithm significantly

BPT. This addition, ensures a higher robustness against the unwanted merging of
foreground and background regions. Equivalently a more robust formation of seg-
ments firstly guarantees that spatial regions in neighboring frames are similar and
hence more easily identifyable. This could ensure that subtrees are identified with
greater precision. Another extension, which could be used to improve the effective-
ness of the approach discussed here, is the integration of a background subtraction
step. As shown for example in [9] background modelling itself can be used to seg-
ment moving foreground objects, or even static objects if a moving camera has been
used.

One of the problems with these approaches is the fact that they produce good
segmentations of foreground objects for certain sequences, but are unable to iden-
tify matching segmented regions between neighboring frames. Especially when two
foreground objects overlapp, no distinction is possible, concerning which pixels are
part of which object. Here the advantages of tree-based segmentation and background
modeling could be combined: In the approach outlined in Fig. 4.11 background mod-
elling is used to generate a probability map for the current frame, giving for every
pixel the probability with which it is either part of foreground or background. This
information can then be used by the subtree matching step, to use only those subtrees
that are considered likely foreground candidates. Other subtrees would equivalently
only be considered, once all expected foreground subtrees have been tested.



70 M. Esche et al.

4.6 Summary

The main objective of this work was to develop a new interactive object tracking
approach based on the MRSST that represents a good compromise between the
quality of extracted object masks and the required amount of user interaction. In this
chapter a two stage algorithm has been described that tracks individual foreground
objects in video sequences by matching local subtrees of the BPT among neighboring
frames and by generating an automatic set of foreground and background labels for
each consecutive frame. It has been shown that the algorithm performs comparatively
well for both high- and low-resolution videos. In addition, no restrictions have been
placed on movement, shape or variability of the tracked foreground object which
makes the algorithm applicable for arbitrary videos and a wide range of real-world
objects. Future work will include the incorporation of a background subtraction
approach in order to reduce the amount of misclassification done during the first
stage of the algorithm.
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Chapter 5
A Multi-Resolution Particle Filter Tracking
with a Dual Consistency Check for Model
Update in a Multi-Camera Environment

Yifan Zhou, Jenny Benois-Pineau and Henri Nicolas

Abstract In this chapter, we present a novel tracking method with a multi-resolution
approach and a dual model check to track a non-rigid object in an uncalibrated
static multi-camera environment. It is based on particle filter methods using color
features. The major contributions of the method are: multi-resolution tracking to
handle strong and non-biased object motion by short term particle filters; stratified
model consistency check by Kolmogorov-Smirnov test and object trajectory based
view corresponding deformation in multi-camera environment.

Keywords Particle filter· multi-resolution· dual consistency check· Kolmogorov-
Smirnov test· iteratively reweighted least-squares method

5.1 Introduction

Tracking of moving non-rigid objects is a key issue for efficient analysis of video
streams in the framework of multimedia applications. Both mono-camera and multi-
camera tracking of objects remain open issues despite a rich literature on the subject
[1]. In this chapter, we propose a tracking method for monocular camera which is
based on the family of particle filter methods [2]. Then, an extension of this method
for multiple camera tracking will be developed in the uncalibrated and unconstrained
environment.
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The inspiration of our work came color distribution model [3]. It is a Sequential
Monte Carlo method [4] based on Particle Filter (PF) whose color feature is used
to evaluate importance function. We chose it for its capacity to solve non-linear and
non-Gaussian state-space model, e.g., human tracking. Unfortunately, when applied
for tracking a non-rigid object in low and/or variable frame-rate videos, their tracking
quickly loses object because of its strong motion magnitude. Hence, we proposed a
multi-resolution technique with PF method [5] to reduce this magnitude as well as
computational time. The essential idea was to first quickly locate object by prediction
at the lowest resolution level and then refine it gradually at higher levels. Instead of
tracking only on full resolution [3] or a certain optimal level [6], our method involves
all the levels. Therefore, it offered a better accuracy of tracking result especially in
low and/or variable frame-rate videos in mono-camera environment.

A Consistency Check was employed to alarm the degeneracy phenomenon [7] in
PF methods so as to conduct a object reinitialization step. Instead of using an effective
sample size [7] to evaluate the effectiveness of a set of particles, the Kolmogorov-
Smirnov test was applied to control object appearance change. It is proved to give a
better mono-camera tracking result. Thus in this chapter, a Dual Consistency Check
is presented to adapt to multi-camera environment.

Nevertheless, the reinitialization in mono-camera tracking could not provide an
efficient solution to occlusion problems. Therefore, the reinitialization by an inter-
action of cameras in multi-camera tracking was proposed to relocate the object in
one camera by those in other cameras. Our transformation matrix between cameras
was estimated by least-squares (LS) method. The particularity of our approach is
to use object center position in each camera view as observations in place of sta-
tic scene elements. However, the position error can be relatively strong. Therefore,
in this chapter, we propose a robust (reweighted) least-squares estimation for the
transformation matrix with accumulation of observations along the time.

This chapter is organized as follows. The details of our tracking method will be
presented in Sect. 5.2. Some examples will be illustrated and discussed in Sect. 5.3.
The conclusion and perspectives will be shown in Sect. 5.4.

5.2 Tracking Algorithm

We first developed the method for one non-rigid object tracking in mono-camera
environment [5]. Figure 5.1 depicts the general scheme on 3 resolution levels and
Fig. 5.2 illustrates an example. The object estimate is firstly predicted on the lowest
resolution on the time level based on a short term temporal particle filter (red line in
Fig. 5.1) and refined gradually on the spatial level based on a short term spatial particle
filter (blue line in Fig. 5.1). By using this meander strategy (red line in Fig. 5.2), the
important motion change of objects in videos of low and variable frame-rate can be
largely alleviated.
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Fig. 5.1 General scheme of multi-resolution particle filter tracking with consistency check in
mono-camera environments

Fig. 5.2 Illustration of multi-resolution particle filter tracking with consistency check in mono-
camera environments

In this chapter, we further extend the method to multi-camera tracking. Suppose
Xl,c

t is an estimate of object state at time t of resolution l in camera c computed
by the mean of a predefined number Nl of particles xl

i,t with i = 1, 2, . . . , Nl , t =
0, 1, . . . , T, l = 0, 1, . . . , L . Figure 5.3 and Table 5.1 shows the general scheme and
process of our method Multi-resolution Particle Filter Tracking by Multiple Cameras
in two-camera environments. The method consists fundamentally of Single Camera
Tracking stage and Interaction of Cameras stage.

During the single camera tracking stage, for every camera c = 1, 2, the estimate
of object state XL ,c

t/t−1 is rapidly located by the prediction at lowest resolution l = L .

It is gradually refined at every higher level. The refined estimate X0/1,c
t at full
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Fig. 5.3 General scheme of multi-resolution particle filter tracking by multiple cameras in two-
camera environments

resolution l = 0 is then repassed to the lowest level for the Dual Consistency Check
(DCC). According to the test result of XL/0,c

t , an updating, a self reinitialization or
an adaptive iteratively weighted multiple reinitialization will be carried out during
the Interaction of Cameras (IoC) stage. The final object estimate of Xl,c

t on all levels
can be obtained afterwards after the object trajectory smoothing step. A new set of
particles is generated and resampled based on this final estimate in each camera in
order to prepare for the tracking to the next frame. The whole process is repeated
until the last frame t = T.

5.2.1 Single Camera Tracking

In our method, a particle x is composed of a motion M(x) and an appearance state
H(x). The motion state consists of a static E, a velocity E’ and an acceleration
state E′′ which are used for an adaptive 1st/2nd order propagation. The appearance
state contains a joint color histogram HA in a chosen 3D color space, a 2D cumu-
lative histogram HC, a color weight w based on HA and a color distance d based
on HC. In practice, a particle is a rectangle centered at coordinates (x, y) and of
size (sx, sy), i.e., E=(x, y, sx, sy). The object is included in this rectangle. Thus, a
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Table 5.1 General process of multi-resolution particle filter tracking by multiple cameras in two-
camera environments

For time t(t = 0, . . . , T ):

I. Single camera tracking (l = 0, . . . , L , c = 1, 2):
1. Initialization:
(a) Multiscaling: scale frame I0,c

t into Il,c
t ;

(b) Color space: change RGB to HSV if necessary;

(c) Quantization: quantize frame into Iq,l,c
t ;

(d) Detection (t = 0, 1, 2):initial object state as Xl,c
0 , Xl,c

1 , Xl,c
2 ;

For every camera c(c = 1, 2):
2.Prediction I (l = L):

(a) Propagation: propagate B
′L ,c
t−1 by M(XL ,c

t−1) into BL ,c
t/t−1;

(b) Estimation: estimate object state, noted as XL ,c
t/t−1;

3. Refinement (l = L − 1, . . . , 0):

(a) Generation: generate Bl,c
t on X

′l/ l+1,c
t ;

(b) Resampling: resample Bl,c
t to B

′l,c
t ;

(c) Estimation: estimate object state, noted as Xl/ l+1,c
t ;

(d) Repeat (a)–(c) until the full resolution 0;
4.Dual Consistency Check (l = L , . . . , 0):

(a) Pass M(X0/1,c
t ) to MXL/0,c

t ;
(b) DCC Test (l = L);
End for, go to II;

For every camera c(c = 1, 2):
5.Smoothing (l = L , . . . , 0):
smooth the object corrected estimate at the lowest resolution, pass it to
other levels, noted as Xl,c

t ;
6.Prediction II (l = L):
(a)Generation: generate a set of particles Bl,c

t on Xl,c
t ;

(b)Resampling: resample Bl,c
t to B

′l,c
t ;

End for, go to I1;

II. Interaction of Cameras (l = L , . . . , 0, c = 1, 2, c′ = 2, 1):

1. Pass MXL/0,c
t to MX

′0/L ,c
t ;

2. If d(XL/0,c
t ) ≤ �c

0: Updating;

3. If �c
0 < d(XL/0,c

t ) < �c
1: Self-Reinitialization;

4. If d(XL/0,c
t ) ≥ �c

1 and d(XL/0,c′
t ) ≤ �c′

0 :
Adaptive Iteratively Weighted Multiple Reinitialization;

5. If d(XL/0,c
t ) ≥ �c

1 and d(XL/0,c′
t ) ≥ �c′

0 : Hidden Tracking;

6. In all cases, X
′l,c
t is obtained, go to I5;

End for
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particle descriptor is presented as [2]:

x = (M,H) = ((E, E ′, E ′′), (HA,HC, w, d). (5.1)

During the single camera tracking stage, the object is tracked individually in
parallel in both cameras. For the sake of simplicity, we ignore the index c in this
section.

5.2.1.1 Initialization

The initialization step (cf. Fig. 5.3 and Table 5.1, Initialization) scales the video
frames to several resolution levels by a Gaussian pyramid decomposition [6], quan-
tizes them in RGB/HSV color space as well as initializes the object initial state. It
also detects the object initial state on the first three frames.

Thus, the velocity and acceleration state are calculated as:

E′(X0
t ) =

E(X0
t )− E(X0

t−�t )

�t
;E′′(X0

t ) =
E′(X0

t )− E′(X0
t−�t )

�t
. (5.2)

with �t = 1 in our case.
A simple down scaling based on the multi-resolution pyramid is used to determine

the object motion state at lower resolution levels:

M(Xl+1
t ) = 1

ε
M(Xl

t ). (5.3)

with ε the scaling coefficient.
The object appearance state H(Xl

t ) at different resolution levels is calculated
individually based on its own static state at that resolution. In our method, two
histograms are required. The joint histogram HA is calculated as [3]:

HA(Xl
t )

u = gn

J
∑

j=1

g

(‖E(Xl
t )− E(Xl

t ( j))‖
a

)

δ[h(HA(Xl
t ( j))− u]. (5.4)

where U = 256/η ∗ 256/η ∗ 256/η, the total bin number in the histogram.
One of the novelties in our tracking method is that a Dual Consistency Check

is applied to evaluate the consistency of the estimate. It is realized by comparing
the marginal cumulative histogram of the current estimate with that in the previous
frame. The marginal cumulative histogram HC first integrates HA to one of the
3 components (HM marginal histogram) and then accumulates itself along each
component (HC cumulative histogram):
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HC(Xl
t )

z =
⎛

⎜
⎝

HC(Xl
t )

z
R/H

HC(Xl
t )

z
G/S

HC(Xl
t )

z
B/V

=
⎛

⎜
⎝

HC(Xl
t )

z−1
R/H + (

∑A
a=0)G/S(

∑B
b=0)B/V HA(Xl

t )
z
R/H

HC(Xl
t )

z−1
G/S + (

∑A
a=0)R/H (

∑B
b=0)B/V HA(Xl

t )
z
G/S

HC(Xl
t )

z−1
B/V + (

∑A
a=0)R/H (

∑B
b=0)G/SHA(Xl

t )
z
B/V

(5.5)

with z = 1, . . . , 256/η − 1 and A = B = 256/η − 1.

5.2.1.2 Prediction

The prediction stage is realized only at lowest level L (cf. Fig. 5.3 and Table 5.1,
Prediction). It consists of generation, resampling, propagation and estimation steps.

A set of particles xL
i,t−1 is generated in the neighborhood of object final estimate

XL
t−1 on the previous frame t − 1 during the generation step. They are resampled in

a Sequential Importance Sampling way [7] during the resampling step. In the next
propagation step, they are then propagated to the current frame t by an adaptive
1st/2nd order way where the object velocity and acceleration are updated with time
(cf. Eq. 5.2):

M(xL
i,t ) = D · [M(XL

t−1)]T + [M(xL
i,t−1)]T + VL

p . (5.6)

where xL
i,t is a particle in the set B

′L
t−1 with i = 1, . . . , N L , D is the propaga-

tion matrix and VL
p is a Gaussian white noise vector VL

p ∼
⎛

⎝

N (0, (σ 2L
p )

. . .

N (0, (σ 2L
p )

)

⎞

⎠

12×1

.

Here, we consider a particle incomplete motion state in the vector M(xL
i,t−1) =

(x, y, sx, sy, 0, 0, 0, 0, 0, 0, 0, 0) (cf. Eq. 5.1). The new particle set is noted as
BL

t/t−1.
There are two propagation ways: an adaptive first order (AFO) way D1 and an

adaptive second order(ASO) way D2:

D1 =
⎛

⎝

0 �tI 0
0 I 0
0 0 I

⎞

⎠

12×12

;D2 =
⎛

⎝

0 �tI �t2

2 I
0 I 0
0 0 I

⎞

⎠

12×12

(5.7)

with I4×4, an identity matrix and 04×4, a zero matrix. Here, �t = 1.
Once the particles have been propagated into the current frame, their joint his-

togram HAxL
i,t is calculated individually based on their new motion state MxL

i,t
during the estimation step.
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The color weight of each particle is computed as:

w(xL
i,t ) =

1√
2πσe

L
e
−

(

1−ρ[HA(xL
i,t ),HA(XL

t−1)]
2σ2L

e

)

. (5.8)

with σ 2L
e the variance of a white noise and ρ the Bhattacharyya coefficient [3]. A

weight normalization of particles is carried out to ensure that
∑N L

t
i=1w(xL

i,t ) = 1.
Thus, the object state can be estimated as [3]:

M(XL/L
t/t−1) =

N L
∑

i=1

w(xL
i,t )M(xL

i,t ). (5.9)

Then M (XL
t/t−1) is passed immediately to higher resolution levels for the

refinement.

5.2.1.3 Refinement

During the refinement stage, the estimate is passed to higher levels and refined
gradually (cf. Fig. 5.3 and Table 5.1, Refinement). That is, the estimate Xl/ l+1

t/t at
level l + 1 is passed to the next successive higher level l by image pyramid [6].
A new set of particles is generated in the neigborhood of the passed estimate and
resampled. The object state is re-estimated.

5.2.1.4 Dual Consistency Check

The refined estimate is repassed to lowest level XL/0
t/t for DCC (cf. Fig. 5.3 and

Table 5.1, DCC). Because the Particle Filter methods are predictive methods, an
efficient metric has to be proposed to evaluate the reliability of the particle set. In
most of the PF methods, the effective sample size is applied to check the effectiveness
of a particle set [7]. In our method, there is a repetitive generation of particle set in
the neighborhood of the last estimate. The effectiveness of the particle set is always
very high. Therefore, a new evaluation has to be brought about. We propose the Dual
Consistency Check based on Kolmogorov-Smirnov (KS) test. It checks directly the
reliability of the object estimate in the place of the particle set.

In statistics, the Kolmogorov-Smirnov test is a goodness of fit test to determine
whether two hypothesized distributions are generated by the same underlying prob-
ability distribution based on the finite samples [8]. Both samples are described by
their cumulative distribution discrete functions, i.e., cumulative histogram, which
is given by the “Smirnov test” [9]. It calculates the similarity of 2 histograms by
building and comparing the cumulative distribution function of each histogram.
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We use the KS test to decide the reliability of the checked estimate. It is conducted
only at the lowest resolution level L . First, the KS statistics is calculated. In our
case, it is the color distance d(XL/0

t ) of the marginal cumulative histogram between
the object checked estimate after the refinement stage and the final estimate in the
reference frame:

d(XL/0
t ) = max

z
|HC(XL

τ )
z −HC(XL/0

t )z |. (5.10)

with z = 0, 1, . . . , 256/η − 1 and τ the index of the reference frame. The result
is actually the biggest difference of the marginal cumulative histogram on the 3
components between XL

τ and XL/0
t .

Kolmogorov and Smirnov proved that if the observed distance d(XL/0
t ) is greater

than a threshold �0, the 2 experimental distributions are not from the same hypoth-
esized distribution:

�0 =
√

−1

2
(

1

g
+ 1

h
) · ln λ0. (5.11)

where g and h are the cardinality of statistical samples. In our case, g = h =
(256/η)× 3, hence:

�0 =
√

−((256/η)× 3)−1 · ln λ0. (5.12)

λ0 is a parameter depending on the probability β0 that a tracking failure happens.
It is calculated by:

λ0 ∼
√

− ln β0

2
. (5.13)

A second parameter β1 is also applied, defined as the chance that the occlusion
on object happens, the object disappears from the scene and the scene changes. It
decides the second threshold λ1 as the same way as Eq. 5.13. Therefore, the reliability
of the object estimate is actually depended on these two parameters β0,1.

According to the area that the color distance of object estimate falls in, the object
consistency is evaluated as:

• d(XL/0
t ) < �0: a good estimate;

• �0 < d(XL/0
t ) < �1: a right estimate;

• d(XL/0
t ) > �1: a bad estimate;

When a bad estimate is announced, the tracking is interrupted. However, simply
stop the tracking can not principally solve these problems. Thus, an Interaction of
Cameras stage in a multi-camera environment is proposed in order to relocate the
“bad” estimate in the current camera by the “good” estimates in the other camera in
case of tracking degeneracy.
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Fig. 5.4 Table of interaction of cameras in two-camera environments

5.2.2 Interaction of Cameras

During the Interaction of Cameras stage (cf. Fig. 5.3 and Table 5.1, Interaction of
Cameras), the view correspondence between cameras are calculated based on the
object trajectory in each camera by the Iteratively Reweighted Least-Squares (IRLS)
method [10]. It is conducted at the full resolution l = 0 since the number of res-
olution levels used for tracking in 2 cameras might not be the same. The possible
combinations of each camera action based on the “good”, “right” or “bad” estimate
are shown in Fig. 5.4 and listed below:

1. U P ↔ U P: if a good estimate is obtained in both cameras, an updating (UP)
step is conducted in each camera separately (cf. (1) in Fig. 5.4);

2. U P ↔ S R: if a good estimate is found in one camera while a right one is
found in the other, an updating and a self-reinitialization (SR) step are carried
out respectively (cf. (2) in Fig. 5.4);

3. U P ↔ AI W M R: if a good estimate is found in one camera while a bad one
is found in the other, an updating and an adaptive iteratively weighted multiple
reinitialization (AIWMR) step are carried out respectively (cf. (3) in Fig. 5.4);

4. S R ↔ S R: if a right estimate is obtained in both cameras, a self-reinitialization
step is conducted in each camera separately (cf. (4) in Fig. 5.4);

5. S R ↔ H T : if a right estimate is found in one camera while a bad one is found
in the other, a self-reinitialization and a hidden tracking (HT) step are carried
out respectively (cf. (5) in Fig. 5.4);

6. H T ↔ H T : if a bad estimate is obtained in both cameras, a hidden tracking
step is conducted in each camera separately (cf. (6) in Fig. 5.4).

5.2.2.1 Updating

The updating (UP) step is conducted when the object is considered consistent, where
object joint color histogram at every level is updated recursively [5]:
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Fig. 5.5 Illustration of the four ROI reinitialization ways

HA(Xl,c
t ) = α0HA(Xl,c

t )+ (1− α0)HA(Xl,c
t−1). (5.14)

with α0 ∈ [0, 1] a predefined update coefficient.

5.2.2.2 Self-Reinitialization

The self-reinitialization (SR) step occurs when a “right” estimate is announced. The
object estimate is reinitialized by its past state in the same camera in region-of-
interest (ROI) way. Four different ROI ways are proposed here according to the
different failure situations:

1. Reinitialization by ROI 1: use its own position, its own size and the appearance
in the nearest past estimate: E(X

′L
t ) = E(XL/0

t );H(X′Lt ) = H(XL
tre f
)

2. Reinitialization by ROI 2: use its own position, the size in the initial estimate and
the appearance in the nearest past estimate: E(X

′L
t ) = {(x, y)(E(XL/0

t )), (sx, sy)
(E(XL

2 ))}; H(X
′L
t ) = H(XL

tre f
)

3. Reinitialization by ROI 3: use its own position, the size in the nearest past
estimate and the appearance in the nearest past estimate: E(X

′L
t ) = {(x, y)

(E(XL/0
t )), (sx, sy)(E(XL

tre f
))}; H(X

′L
t ) = H(XL

tre f
)

4. Reinitialization by ROI 4: use its own position, the size in the nearest past
estimate and the appearance in the initial estimate: E(X

′L
t ) = {(x, y)(E(XL/0

t )),

(sx, sy)(E(XL
tre f
))}; H(X

′L
t ) = H(XL

2 )

Here, tre f is the frame index. This frame is one frame after the frame where last
reinitialization has occurred. XL

2 is the initial object state on the frame t = 2 where
the tracking started. Figure 5.5 illustrates the four different ROI ways.
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5.2.2.3 Hidden Tracking

The hidden tracking (HT) occurs when a “bad” estimate in the current camera and no
“good” estimate in the other camera is announced. In this case, there is no need to save
the tracking result since it is surely inaccurate. However, the tracking is continued
in a hidden way. That is, the tracking continues, only the estimate is abandoned (not
saved/shown) on the current frame. The tracker stays in the neighborhood of the
last estimate where the object is occluded, it disappears from the scene or the scene
changes.

5.2.2.4 Adaptive Iteratively Weighted Multiple Reinitialization

Contrarily to the hidden tracking, Adaptive Iteratively Weighted Multiple Reinitial-
ization (AIWMR) is conducted when a “bad” estimate in the current camera and a
“good” estimate in the other camera is announced.

Since no prior knowledge on the scene is assumed in our method, the only way to
establish this relationship is then by using the object state already estimated, i.e., the
object trajectory in both cameras. Hence, the Iteratively Reweighted Least-Squares
(IRLS) method in MRPFMC is used for its ability to handle the regression situations
in which the data points are of varying quality [10]. More specifically, it is employed
to calculate the Adaptive Iteratively Weighted Transformation Matrix (AIWTM)
between two cameras at the full resolution.

Suppose the object trajectory matrix in the current and the other camera are:

Trc
t =

⎛

⎜
⎜
⎜
⎝

x(X0,c
0 ) y(X0,c

0 ) 1

x(X0,c
1 ) y(X0,c

1 ) 1
. . . . . . . . .

x(X0,c
vt
) y(X0,c

vt
) 1

⎞

⎟
⎟
⎟
⎠

t×3

;Trc′
t =

⎛

⎜
⎜
⎜
⎝

x(X0,c′
0 ) y(X0,c′

0 ) 1

x(X0,c′
1 ) y(X0,c′

1 ) 1
. . . . . . . . .

x(X0,c′
vt
) y(X0,c′

vt
) 1

⎞

⎟
⎟
⎟
⎠

t×3

. (5.15)

with vt = 0, 1, . . . t − 1, the number of frames having already been processed at
time t .

Therefore, the view correspondence between cameras can be computed by the
view correspondence matrix AIWTM [11]:

Trc
t ·�t = Trc′

t . (5.16)

where the AIWTM is defined as�t =
⎛

⎝

a d 0
b e 0
c f 1

⎞

⎠

3×3

with a, b, e, d, c, f , the coeffi-

cients of affine transformation. Figure 5.6 illustrates the relationship between object
trajectory matrix and the view correspondance matrix.

A new AIWTM is calculated whenever the AIWMR step is required based on the
object trajectory already estimated at that instant. The reason that the object trajectory
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Fig. 5.6 Relationship between object trajectory matrix and the view correspondance matrix

can be used to compute the 2D transformation between cameras is that there is one but
only one final estimate at every frame (and the cameras are stationary). The estimates
in the two cameras are surely correspondent. However, those estimates contain the
tracking error whose standard deviation at each frame is not constant. By applying
the IRLS method, the influence of this error can be reduced for its ability of assigning
different importance to the estimates of different tracking accuracy. Therefore, the
AIWTM in our method can be computed as [12]:

�t = ((Trc
t )

T ·WTt · Trc
t )
−1 · (Trc

t )
T ·WTt · Trc′

t . (5.17)

with the weight matrix defined as:

WTt =

⎛

⎜
⎜
⎝

wt0 0 . . . 0 0
0 wt1 . . . 0 0
. . . . . . . . . . . . . . .

0 0 . . . 0 wtvt

⎞

⎟
⎟
⎠

t×t

. (5.18)

Thus, finding the best view correspondence matrix AIWTM is actually to find the
best weight matrix. In [13], the authors report on the use of various robust estimators
to the problem of view correspondence for stereo imaging. The Lorentz and German-
McClure estimators yield good results. From the general theory of robust parameter
estimation presented in the fundamental work by [14], the weights can be found from
the derivation of estimators. Hence, for Lorentz and German-McClure estimators,
they will be as follows:
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wtvt ,L =
2

2δ2 + r2
vt

. (5.19)

wtvt ,G =
2δ

(δ2 + r2
vt
)2
. (5.20)

with δ2, a predefined weight distribution variance.
The rvt is the Euclidean distance between the object estimate in the current camera

and the projection of the estimate from the other camera to the current camera.
Suppose the projected estimate is:

(x, y, 1)(X0,c/c′
vt

) = (x, y, 1)(X0,c′
vt
) ·�−1

t . (5.21)

Then, the Euclidean distance between the estimate in the current camera at the
time vt and its projection from the other camera is calculated as [15]:

rvt =
√

(x(X0,c/c′
vt )− x(X0,c

vt ))
2 + (y(X0,c/c′

vt )− y(X0,c
vt ))

2. (5.22)

The calculation of the AIWTM is repeated mvt times until the weight matrix is
comparatively stable:

|
t−1
∑

vt=0

wt
mvt
vt −

t−1
∑

vt=0

wt
mvt−1
vt | < ε0. (5.23)

with ε0, a random generated threshold close to 0.
Once the AIWTM is obtained, it can be used to project the “good” estimate of

the other camera to the current camera and relocate the “bad” estimate. The size of
the projected estimate is reinitialized by the object initial size in the current camera
and its appearance is computed correspondingly. The tracking then goes to the single
camera tracking stage for the object trajectory smoothing.

5.3 Examples and Discussion

In this section, several tracking examples will be shown and discussed. The system
implementation is written in C++ and runs on a standard single-core 3.00 GHz CPU
Linux computer. To avoid the initialization error, the object initial state is initialized
manually. The different parameters are predefined experimentally.
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5.3.1 Multi-Resolution Improvement

The performance of a tracking method depends on many factors. Among them,
observation frame-rate, background clutters and illumination changes do have an
important impact, even for a single object tracking [16]. As a consequence, it is quite
important to fully examine each application problem formulation.

Our objective is to realize a real-time non-rigid object tracking in a complex
indoor environment. The term “non-rigid” indicates that the object changes its shape
and histogram along time. When it moves in a complex indoor environment, its
speed varies, the illumination changes and the occlusion happens from time to time.
Besides, a real-time tracking requires a system with a considerable computational
ability. All of these have to be taken into account in system design in order to get a
satisfactory tracking accuracy.

The inspiration of using Multi-resolution technique comes from our applica-
tions with videos of low and variable frame-rate. Some videos in our disposal have
only 8 fps. The object motion between successive frames in some of our videos has
more than 60 pixels. By passing the prediction step to lower resolution levels, the
object motion can be largely reduced, therefore, make it possible to use particle filter
methods.

Moreover, we not only track the object on the lowest resolution, we also refine the
estimate on higher resolutions. Figure 5.7 shows a comparison of tracking only on
full resolution, only on lowest resolution and on all the resolution levels. The object
motion magnitude between two successive frames is about 30 pixels. Tracking only
on full resolution (first line) uses a simple version of the method developed based
on [3]. Tracking only on lowest resolution (second line) uses a simple version of the
method developed based on [6]. And the tracking on all the resolution levels actually
uses our tracking method presented in this chapter. It can be seen that the tracking
degeneracy happens quickly if only track on the full resolution (method in [3]).
However, if the object is tracked only on the lowest resolution L = 2, the tracking
degeneracy does not happen, but the object size is not well estimated (method in [6]).
By adding the refinement at higher resolution levels, our method not only succeeds
in tracking, but also has a good accuracy of the estimate size (third line).

Another advantage of using multi-resolution technique is the reduction of com-
putational time. A large number of particles is needed in order to get a good approx-
imation of the object probability distribution. However, this number is always a
bottleneck for calculation, especially when tracking the object of large size [6]. By
passing the prediction stage onto the lowest resolution, the neighborhood of the parti-
cle generation become smaller. Thus, the necessary number of particles can be greatly
reduced. For example, if 600 particles are needed to succeed in tracking only on the
full resolution 0, only 200 particles are needed on the level 2, plus the 150 particles
for the refinement on resolution 1 and 100 on resolution 0. Thus, the total necessary
number for tracking in our method will be 450. In this way, the computational time
is reduced.
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(a) frame #8 (b) frame #15 (c) frame #35

(d) frame #8 (e) frame #15 (f) frame #35

(g) frame #8 (h) frame #15 (i) frame #35

Fig. 5.7 Comparison of tracking on 3 resolution levels, result shown on the full resolution. First
line: tracking only on the full resolution; second line: tracking only on the lowest resolution; third
line: tracking on all the 3 resolutions. (Sequence “Yifan2Cam1”, corpus LaBRI, image size on full
resolution 640× 480)

Finally, only the estimate (mean state) of a particle set is passed between time or
resolution levels. In other words, a repetitive particle generation is carried out in our
tracking method. The original thought of doing this is that as the prediction stage
is only conducted at the lowest resolution, it is unnecessary to propagate this set to
higher resolutions just for the refinement purpose as the object state has already been
well pre-located. Therefore, when refining the object estimate at high resolutions, a
new particle set is always generated on the same level. The biggest benefit of this
repetitive particle generation is that the well-known degeneracy problem and the
sample impoverishment problem in Particle Filters methods are somehow avoided.
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(a) #14 UP (b) #14 UP (c) #14 UP (d) #14 SR

(e) #16 SR (f) #16 SR (g) #16 SR (h) #16 SR

(i) #18 MR (j) #18 LSMR (k) #18 AIWMRG (l) #18 AIWMRL

(m) #20 MR (n) #20 LSMR (o) #20 AIWMRG (p) #20 AIWMRL

(q) #22 MR (r) #22 LSMR (s) #22 AIWMRG (t) #22 AIWMRL

Fig. 5.8 Comparison of different ways of calculating the view correspondence matrix. First column:
by a predefined matrix; second column: by LS method; third column: by IRLSG method; fourth
column: by IRLSL. (Sequence “RonanChris”, corpus LaBRI, image size on full resolution 640 ×
480)
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5.3.2 Influence of the Estimators for the Estimation
of Transformation Matrix

During the interaction of cameras stage, the view correspondence matrix is calculated
based on the object trajectory on the previous frames. It is then applied to project
the “good” estimate in one camera to the other camera in order to relocate the
“bad” estimate in case of tracking degeneracy. This is quite a sensible task, since the
inaccurate matrix will lead to the tracking degeneracy.

Figure 5.8 illustrates a comparison among different ways of calculating the view
correspondence matrix. For the simplicity, only the tracking result in Cam2 is
shown here. From the left to right column, the view correspondence matrix between
cameras is calculated by a predefined matrix, the Least-Squares (LS) method, the
Iteratively Reweighted Least-Squares based on German-McClure estimator (IRLSG)
method and the Iteratively Reweighted Least-Squares based on Lorentz estimator
(IRLSL) method. The red rectangle is the estimate obtained by the single camera
tracking stage. The black and blue rectangle present the estimate obtained by the
updating, self-reinitialization, respectively. And the green rectangle indicates the
estimate obtained by Multiple Reinitialization by the initial transformation matrix
(MR), Least-squares Multiple Reinitialization by LS method (LSMR), Adaptive
Iteratively Least-squares Multiple Reinitialization by IRLSG method (AIWMRG)
or Adaptive Iteratively Least-squares Multiple Reinitialization by IRLSL method
(AIWMRL) depending on the method used for view correspondence calculation,
which is specified below each frame in the figure.

Even without the inter-object occlusion, the tracking degeneracy happens when
using a predefined matrix (cf. Fig. 5.8q), the LS method (cf. Fig. 5.8r) and the IRLSG
method (cf. Fig. 5.8s). Only the tracking by the IRLSL method has succeeded (cf.
Fig. 5.8t). Therefore, the AIWMRL based on IRLSL method gives the best tracking
result.

5.3.3 Complete Examples

Figure 5.9 shows an example of tracking a car in an outdoor environment. The left
column is the tracking result in Cam1 while the right column is that in Cam2. The
red rectangle is the estimate obtained by the single camera tracking stage. The black,
blue and green rectangle present the estimate obtained by UP, SR and AIWMRL,
respectively. The object final tracking trajectory is illustrated in Fig. 5.9o, p.

Our system succeeds in tracking the car in both two cameras. In particularly, the
system once locates the head of the car in Cam2 (cf. black rectangle in Fig. 5.9j).
The estimate which is at the back of the car is considered incorrect by the system (cf.
red rectangle in Fig. 5.9i); and relocated by the estimate in Cam2 which is exactly at
the head of the car (cf. green rectangle in Fig. 5.9i). However, it can be noticed that
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(a) #0704 UP (b) #0704 UP (c) #0730 UP (d) #0730 UP

(e) #0745 UP (f) #0745 AIWMRL (g) #0803 SR (h) #0803 SR

(i) #0820 AIWMRL (j) #0820 UP (k) #0837 SR (l) #0837 SR

(m) #0863 SR (n) #0863 SR (o) #0930 Trajectory (p) #0930 Trajectory

Fig. 5.9 Example of tracking a car in a parking. (Sequence “Data1Testing”, corpus PETS2001,
image size on full resolution 768× 576, 231 frames tested)

the object shape is not well estimated when the car is zooming. This is due to the
constraint of color-based particle filter method.

Finally, the processing rate of this sequence is 2.69 f/s versus 25 f/s observation
rate.

5.4 Conclusion and Perspectives

In this chapter, a novel Multi-resolution Particle Filter Tracking with a Dual Consis-
tency Check for Model Update in an environment of two uncalibrated static cameras
is presented. The cameras track a non-rigid object in parallel in a meander strategy by
using multi-resolution particle filter method. In this way, the object strong non-linear
articulated motion change can be greatly reduced, therefore, make it possible for the
prediction step of particle filter methods. However, due to this short term temporal
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and spatial particle filter, the particle filter degeneracy problem can not be solved in
a conventional way, such as Sequential Importance Resampling. That is the reason
why we propose a Dual Consistency Check based on Kolmogorov-Smirnov test to
directly evaluate the tracking result in each camera. Once a “bad” estimate is found
in one camera, it is relocate/self locate by the correct/past estimate in the other/same
camera. The former one is realized by establishing the camera views directly using
the object already found trajectories based on Iteratively Reweighted Least-Squares
method. However, our system is not able to achieve a real-time tracking. Hence,
one of our future work is to accelerate the processing rate. The other future work
includes developing system to multiply non-rigid objects tracking in multi-camera
environment.
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Chapter 6
Activity Detection Using Regular Expressions

Mattia Daldoss, Nicola Piotto, Nicola Conci and Francesco G. B. De Natale

Abstract In this chapter we propose a novel method to analyze trajectories in sur-
veillance scenarios by means of Context-Free Grammars (CFGs). Given a training
corpus of trajectories associated to a set of actions, a preliminary processing phase
is carried out to characterize the paths as sequences of symbols. This representation
turns the numerical representation of the coordinates into a syntactical description of
the activity structure, which is successively adopted to identify different behaviors
through the CFG models. The obtained model is the basis for the classification and
matching of new trajectories versus the learned templates and it is carried out through
a parsing engine that enables the online recognition of human activities. An additional
module is provided to recover parsing errors (i.e., insertion, deletion, or substitution
of symbols) and update the activity models previously learned. The proposed system
has been validated in indoor, in an assisted living context, demonstrating good capa-
bilities in recognizing activity patterns in different configurations, and in particular
in presence of noise in the acquired trajectories, or in case of concatenated and nested
actions.

Keywords Activity analysis ·Context-free grammar ·Regular expressions ·Activ-
ity classification · Anomaly detection

6.1 Introduction

In the recent years there has been a relevant attention towards the implementa-
tion of automatic systems for activity detection and analysis in several application
areas, including environmental monitoring and video surveillance [13]. The analysis
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consists of the extrapolation of meaningful information about the event occurring in
the observed scene by interpreting and classifying low level features such as objects
trajectories [18, 19]. There are though situations in which the trajectory analysis
tools may be misleading, due to their connection to physical and geometrically ref-
erenced displacements. In fact, geometric displacements can be of great help in a
lot of situations where the personalization does not play a crucial role, such as for
example traffic monitoring (vehicles are driven by humans, but they have to comply
with a set of rules) [17], or in case the structure and the semantic of the environment
are not known a priori (monitoring in outdoor [20]). On the contrary, in other and
more defined circumstances, the structure of the environment is well known, typically
facilitating the interpretation of the context in which a specific activity is carried out.
This is the case for example of human behavior analysis in homes or offices. In these
situations the topology of the rooms is typically kept constant over a considerably
long range of time. However, although the observed space is static, subjects move
freely and tend to perform also the most common actions in slightly different man-
ners each time. This personalization factor is clearly not voluntary and relies on a
number of factors that cannot easily be measured. In practice, it consists of collecting
sets of trajectories, in which the point-to-point displacement of the moving subject
is different each time, thus making it impossible to apply conventional curve match-
ing tools. The activity detection can though be achieved by analyzing the event at a
higher level of abstraction, establishing connections between the moving subject and
the environment, and trying to categorize the activities on the basis of interactions.
Interactions can be of different forms, but in general, and considering trajectories as
the principal source of information, they can be modeled as the permanence for a
specific amount of time in the neighborhood of one or more meaningful spots in the
room.

The proposed framework stems from a preliminary work [4] the authors have car-
ried out in this area, and concerns a video analysis tool that exploits regular expres-
sions to automatically associate an observed activity pattern to a template of activities
learned a priori. In this work actions are modeled through an abstraction of the top-
view trajectory, which is summarized into a symbolic stream of Hot Spots, each of
them corresponding to specific and relevant areas in the observed environment. The
derived expressions corresponding to the activity models, are automatically learned
as separate CFGs using a set of training sequences. In the test phase, the resulting
symbolic strings are parsed using the Earley-Stolcke algorithm to determine the sim-
ilarity against all available CFGs. The main contribution with respect to the previous
work consists of the progressive update of the activity database and therefore the
capability of the system in adapting to the changes in the environment, as well as
users’ habits.

The chapter is structured as follows. After a quick overview of the algorithms
available in literature to capture and recognize activities (Sect. 6.2), Sect. 6.3 provides
a concise description of the CFG formalism. Section 6.4 introduces the proposed
framework focusing on the representation and discovery of activities, together with
the presentation of the corresponding matching strategy. The experimental validation
is presented in Sect. 6.6 for an indoor scenario.
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6.2 Related Work

The research in the area of analysis and modeling of complex activities is attracting a
lot of researchers also thanks to the reliability of motion tracking algorithms, which
allow locating the moving objects in the video with constantly increasing precision.
Once the spatio-temporal object displacement is extracted for each time instant, data
processing can be performed at different abstraction levels. Treating the trajectories
as generic series of coordinates, one could apply low-level matching techniques [5, 2]
to classify incoming samples and match them with pre-stored templates. Although
these techniques can effectively work in some simple situations, their application
to trajectories associated to complex activities, may give unreliable results due to
different factors, including noise or other uncertainties that typically affect the low-
level data.

For these reasons, higher level reasoning is often applied on top of the raw data
processing modules. The available literature is quite rich with this respect and some
of the most relevant approaches are summarized in the following paragraphs.

A common and widely used way to model the structure of human behaviors relies
on purely probabilistic approaches exploiting, for example, Hidden Markov Models
(HMM), related modifications [6], as well as Dynamic Bayesian Networks (DBN)
[12]. The general idea of these approaches is to extract sets of features from the
low-level data and feed them into the probabilistic graphical model used to define
the event structure.

As an example, the work in [6] implements a strategy to learn and recognize human
activities through a special type of Hidden Markov Models (Switching Hidden Semi-
HMM). A two-layer representation is proposed: in the bottom layer a sequence of
concatenated Hidden Semi-Markov Model (generalization of HMM with random
state duration) defines the atomic activities; the upper layer handles the temporal
structure of the activities composing the event by means of a sequence of switching
variables. In the same spirit, the authors of [16] proposed a Hierarchical HMM, in
order to exploit both the hierarchical structure and the shared semantics contained in
the movement trajectories. Moreover, they introduce a Rao-Blackwellised particle
filter in the recognition engine in order to cope with real-time recognition constraints.
Exploiting such a representation, the method first learns the actions of a subject
from an unsegmented training data set, and successively performs an online activity
classification, segmentation and anomaly detection. Among the purely probabilistic
approaches, an alternative is proposed in [12] where a scalable approach for complex
activity recognition is described. The system includes three major modules: a low-
level action detector, for the extraction of sub-events from the low-level data, a
Dynamic Bayesian Network (DBN) that encodes the prior knowledge of sub actions
ordering constraints, and a Viterbi-based inference algorithm, used to maintain the
most likely activity given the DBN status and the output of the low-level detectors.

The main advantage of these methods is the capability of handling the uncertainties
generated during the low-level processing. On the other hand, as the event complexity
increases, the recognition performance dramatically drops, due to a combination of
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factors including insufficient training data, semantic ambiguity in the model of the
process, or temporal ambiguity in competing hypothesis. Although some methods for
unsupervised parameter estimation of the graphical model have been proposed [3],
the major problem remains the definition of the network topology, which is usually
too complex to be learned from a sparse dataset, and is commonly pre-defined by
human operators.

Some other approaches perform the activity recognition in a symbolic domain.
In particular, in these works an intermediate step is introduced between the low-level
feature extraction and the high level reasoning. The low-level primitive processing is
carried out in different ways (e.g., HMM or similar), while for the high level behavior
modeling a common approach is to adopt the Context-Free Grammar formalism. In
[9], for example, the authors propose to split the problem into two parts, using a sta-
tistical approach to detect primitives (low-level activities), and a syntactic approach
to detect the high-level structures. In the first phase, HMMs are employed to propose
candidates for low-level temporal features; these features serve then as input for the
Stochastic Context-Free Grammar (SCFG), providing longer range temporal con-
straints, disambiguating uncertain low-level detections, and allowing the inclusion
of a priori knowledge about the structure of temporal events. In [14] a system is pro-
posed to generate detailed annotations of complex behaviors of humans performing
the Towers of Hanoi through a parameterized and manually-defined stochastic gram-
mar, able to identify both single operations as well as more complex tasks. In [15]
the authors also use SCFG to extract high-level behaviors from video sequences,
in which multiple subjects can perform different separable activities. An alterna-
tive approach is proposed in [10]. Here, the so-called attribute grammars [11] are
employed as descriptors for features that are not easily represented by finite symbols.
They provide, in other words, a formal way to define attributes for the production
rules of a formal grammar. The final goal of the proposed work is to recognize activi-
ties and signal potential anomalies. In particular, the proposed framework can handle
concurrent behaviors involving multiple entities, as well as uncertainties in semantic
conditions on the attributes which are used to express a confidence measure over the
recognized events.

A common drawback of the systems relying on formal grammars is in the def-
inition and update of the production rules. In fact, an exhaustive formalization and
structuring of the observable activities a person can perform in everyday life, is in
practice not available, since all possible actions cannot be defined a priori. For this
reasons, in [8] a computational framework is proposed, able to recognize behav-
iors in a minimally supervised manner, relying on the assumption that everyday
activities can be encoded through their local event subsequences, and assuming that
this encoding is sufficient for activity discovery and classification. In this work, the
authors introduce the concept of Motif, defined as the most frequent subsequences
that appeared in the data collection phase, that may be associated to relevant atoms
to be recognized as behaviors. The activity recognition is then based on the dis-
covery and matching of the Motif elements. However, since behaviors are modeled
using rigid variable-length event subsequences, the method is sensitive to the noise
introduced for example by changing the order of the sub-events. Another major
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limitation of SCFG based system that prevents their use in real applications is that
the parsing strategy can handle only sequential relations between sub-events, with
no capability in catching the parallel temporal relations often existing in complex
events. Recently, to overcome this issue, the authors of [21] have proposed to extract
the terminal symbols of a SCFG from motion trajectories. In particular, the motion
trajectories are transformed into a set of basic motion patterns (primitives) that are
taken as terminals for the formal grammar. Then, a rule induction algorithm based
on the Minimum Description Length (MDL) is proposed to automatically derive
the spatio-temporal structure of the event from the primitive stream. The complex
temporal logic between atomic events is modeled through a combination of SCFG
and Allen’s temporal logic, while a Multi-Thread Parsing algorithm with Viterbi-like
error recovering is developed in order to recognize interesting events in the stream.

6.3 Overview on Context-Free Grammars

As a brief introduction to CFGs [7], we define a language as a set of strings over
a finite set of symbols. The CFG is used as a formal mean to specify which strings
belong to the language. A CFG is defined as in (6.1):

G = (N ,Σ, P, S) (6.1)

where N is a finite set of non-terminal symbols,Σ is a finite set of terminal symbols
(N ∩Σ = 0), P is a finite set of rules of the form A→ α (A ∈ N and α ∈ (N ∪Σ)∗),
and S is the starting symbol (S ∈ N ).
In order to decide whether a given string X is compatible with a grammar G,
a parser scans it from left to right: for each symbol Xi a set of states is constructed,
representing the conditions of the recognition process. The algorithm is composed
of three stages, recursively executed:

• Prediction: estimates the possible continuation of the input, based on the current
position in the parsing process
• Scanning: reads the next input symbol and matches it against all pending states.

The states not confirmed by the read symbol are discarded
• Completion: updates the states confirmed by the scanning phase

If during Scanning the procedure encounters symbols that do not match any of
the predicted pending states (i.e., the input does not verify any of the available rules),
the procedure is aborted; the algorithm terminates successfully otherwise.

Before going into the details of the proposed solution, a toy example that describes
how the grammars work is provided in order to highlight the power and the flexibil-
ity of the matching through CFGs. The flowchart of Fig. 6.1 summarizes the steps
required to implement the action Watching TV : the activity includes three main parts,
i.e., the initial stage (b), the core of the action (c) and an end phase (d). Every section,
represented by a non-terminal symbol, is composed by one or more symbols, each of
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Fig. 6.1 Flowchart for
“Watching TV”

Watching TV
(a)

Currently
Watching TV 

(c)

Start
Watching TV 

(b)

Stop
Watching TV 

(d)

TV off

(D)

Sit on
Couch

(C)

TV on

(A)

Remote
Control

(e)

Table 6.1 Complete CFG
rules for example in Fig. 6.1

act → a
a→ b c d
b→ A e
e→ ε |B
c→ C
d → D

them being either a terminal (i.e., dark grey boxes) or a non-terminal symbol(light
grey boxes), leading to the tree structure reported in Table 6.1. Some symbols can
also represent wildcard elements, as for example the block corresponding to the
Remote Control (e), making the presence of one or more specific symbols optional
(ε). As a consequence, the sequences reported in 6.2 and 6.3 are both recognized as
the action Watching TV :

act1 → AC D (6.2)

act2 → ABC D (6.3)

6.4 Proposed Framework

Observing and tracking an object allows the characterization of its motion by means
of a trajectory. The trajectory consists of the frame-by-frame displacement of the
moving object with respect to a reference system (the ground plane is typically
adopted). In order to fulfill the requirements of the CFG framework, it is necessary
to convert the numerical representation of the trajectory into a symbolic stream.
This process can be carried out at different abstraction layers, such as for example
the quantization of the ground floor into a coarser grid, in order to avoid sudden
fluctuations of the object centroid projection. In our implementation we have chosen
to synthesize the trajectory as the succession of significant spots as pointed out also
in [8], therefore describing an activity as the corresponding symbol string resulting
from the concatenation of these elements. At first, a number of areas of interest in
the observed room is selected, and then each raw trajectory is converted into an event
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(a) (b)

Fig. 6.2 Two different instances (dashed line) of the same action (solid line)

stream of concatenated spanned regions. This representation, although much coarser
than the storage of the frame-by-frame coordinates, allows gathering an exhaustive
overview of the path the moving object has performed. The motion rules identifying
the training paths are automatically extracted and a specific CFG is computed for
each activity, allowing a parallel and online classification of specific behaviors.

After the initial setup, the method we propose operates as follows:

(i) pre-processing of the incoming paths and representation in a symbolic domain;
(ii) automatic discovery of the grammar sets encoding the motion rules for the train-

ing activities (learning);
(iii) verification, through parsing, of whether an incoming trajectory fits any of the

available rules (classification);
(iv) update of the grammar rules corresponding to the learned activities.

The choice of a framework, purely based on syntactical elements, compared to
more traditional approaches for trajectory analysis, arises from the fact that people
perform actions by introducing each time a certain level of personalization, which
makes any instance of the same activity different one from each other. Therefore,
the application of techniques that rely only on the spatial displacements, may be in
these situations less appropriate. For the same reason it can happen that the con-
nection among relevant elements for a specific actions is at some point interrupted
due external events such as for example, the phone ringing, or someone knocking at
the door. In this situation, the resulting trajectory would be strongly altered and the
match with the pre-stored template would be missed, even though the global action is
the same. As an example, in Fig. 6.2 it is possible to observe two different instances
of the same action, each of them showing non-negligible spatiotemporal differences
compared to the original template.
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6.4.1 Activity Representation

Each trajectory T , considered as the concatenation of the moving object locations at
successive time instant, is represented as a stream of 2-dimensional samples with a
temporal reference as in (6.4)

T = {Pi , ti }; i = 0...N (6.4)

where each sample Pi = (xi , zi ) is the projection on the ground plane of the moving
object centroid at time i . As anticipated, it is worth noting that apart from the noise,
object traces associated to the same activity may evolve in very different ways. This
is the main motivation behind our choice of defining a number of Hot Spots instead
of considering the whole motion trajectory, allowing for the extrapolation of a sort of
signature of the activity. Finally, the activities are represented as the stream returned
by the concatenation of Hot Spots the actor has interacted with, where the term
interaction is reduced here to the proximity of the actor to the specific Hot Spot for
a predefined temporal interval. This allows simplifying the representation in (6.4) to
a stream of indexed regions associated to a timestamp, as in (6.5).

T ′ = {R j , t j }; j = 0...M (6.5)

In (6.5), R j is an indexed Hot Spot and t j is the corresponding temporal reference.
Sampling the path in Hot Spots rather than at fixed time intervals allows preventing
the potential issues arising from the acquisition phase, such as noise and outliers, yet
preserving the general spatial evolution of the activity.

6.4.2 CFG Rules Discovery

For any of the considered activities, a set of symbolic sequences is employed in the
grammar induction phase to discover its specific CFG rules. The strategy employed
in this work relies on [1], a tool originally employed for NLP applications: here, each
sentence (i.e., each symbolic sequence) is iteratively decomposed in expressions and
contexts. For instance, in the sentence Jack (drinks) juice, drinks is the expression
while Jack (-) juice is the context. Intuitively, given the entire set of training sentences,
the algorithm searches for frequent combinations of expressions and contexts and
interprets them as a grammatical type. Types are then extended, whenever possible,
and the derivation rules based on the types are formulated as a CFG. Operatively, two
distinct stages are carried out: initially, all the expression/context pairs are arranged
in a matrix form, then a 2D-clustering algorithm is run to group the expressions
appearing in the same context, allowing the effective grammar definition.

As a simple example taken from NLP let us consider 4 sentences:

• (s1) Jack drinks juice;
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Jack 
drinks
juice
Jack drinks
drinks juice
Jack drinks juice
likes
Jack likes
likes juice
Jack likes juice

Jack
likes
(-)

(-)
drinks
water

(-)
likes
water

Jack
(-)

water

(-)
drinks
juice

Jack
drinks

(-)

Jack
(-)

juice

(-)
juice

(-)
water

Jack
(-)

(-)
likes
juice

(-)

likes water
Jack likes water

water

drinks water
Jack drinks water

Fig. 6.3 List of all the expression context pairs for s1, s2, s3 and s4

[“Jack (.) juice”,    {“drinks”,“likes”} ]
[“Jack drinks (.)”, {“water”,“juice”}] 
[“(.) juice”, {“Jack drinks”,“Jack likes”} ] 
[“Jack (.)”, {“drinks juice”, 

“likes juice”,
“drinks water”, 
“likes water”}} ] 

[“(.)”, {“Jack drinks juice”, 
“Jack likes juice”,
“Jack drinks water”, 
“Jack likes water”} ] 

[“Jack likes(.)”,     {“water”,“juice”}] 
[“Jack (.) water”, {“drinks”,“likes”}] 
[“(.) water”, {“Jack drinks”,“Jack likes”} ]

(b)(a)

drinks
juice
Jack drinks
drinks juice
Jack drinks juice
likes
Jack likes
likes juice
Jack likes juice

Jack
likes
(-)

Jack
(-)

water

Jack
drinks

(-)

Jack
(-)

juice

(-)
juice

(-)
water

Jack
(-)

(-)

likes water
Jack likes water

water

drinks water
Jack drinks water

Fig. 6.4 a List of all the expression context pairs for s1, s2, s3 and s4 after initial clustering; b
explicit rules

• (s2) Jack likes juice;
• (s3) Jack drinks water;
• (s4) Jack likes water.

All the initial expression/context pairs are reported in tabular format in Fig. 6.3.
In an initial stage, a clustering of the context appearing in the same expressions is
carried out, leading to the pairs in Fig. 6.4a and to the rules in Fig. 6.4b. A second
clustering is successfully performed leading to the final pairs shown Fig. 6.5. The
final grammar rules for the considered sequences are shown in Fig. 6.5b.
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[ {"Jack (.) juice", "Jack (.) water" } {"drinks", "likes"} ]
[ {"Jack drinks (.)", "Jack likes (.)" } {"juice", "water"} ]

(b)(a)

drinks
likes

juice

Jack
likes

(-)

Jack
(-)

water

Jack
drinks

(-)

Jack
(-)

juice

water

Fig. 6.5 a List of all the expression context pairs for s1, s2, s3 and s4 after the final clustering; b
explicit final rules

Fig. 6.6 a Sequence layout
at the parser; b detection of
nested actions; c detection of
1-corrupted sequence
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6.4.3 CFG-Based Parsing for Activity Recognition

In order to recognize predefined activities in a stream of events, we developed an
online algorithm to parse and analyze the incoming symbols. The stream of Hot
Spots (referred to as events) as described in Sect. 6.4.1, is taken as input and the pres-
ence of symbol chunks (i.e., activities) satisfying the learned CFGs (as in Sect. 6.4.2)
are verified. Symbols are processed as soon as they are acquired (see Fig. 6.6a) and
combined with the previous events to verify the pertinence of the chunk against the
learned CFGs. For computational reasons, the string is parsed backwards, removing
the detected chunks as soon as they are identified. In this way, an activity is detected
when it ends, without the need of generating multiple hypothesis. Moreover, the tem-
poral reference of each event allows recovering both the duration and the hierarchy
among possibly nested activities. In Fig. 6.6b the procedure is illustrated, consider-
ing C D G and A G F B as activities: according to the parsing order, the most recent
symbol at each iteration is on the left hand side of the string. In order to maintain a
finite list of possible events, a time-to-live constraint is also applied to the symbols,
such that the oldest events are dropped from the stream and not considered for further
processing.

Besides the detection of nested actions, an additional problem consists of the
activity detection in presence of noise, mainly due to sparse events not related to
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any of the known activities. To overcome this issue, we perform a second level of
analysis. We call G(n) a set of n grammars, and Gmax (i) the maximum length of any
of the possible sequence belonging to the i-th grammar. From the original sequence
S of length l, we compute

S′ = S(l − 1)...S(l − q) (6.6)

with
q = maxi {Gmax (i)} + f (6.7)

and f the number of corrupted symbols we choose to tolerate. Starting from S′,
we generate m new sequences S′′, removing at each step one symbol S(x) from the
original string, as shown in Fig. 6.6c. The quantity m is obtained as follows:

m =
f−1
∑

i=0

i
∏

j=0

(q − j) (6.8)

We apply G(n) on S′′, in order to verify whether the sequences belong to any
of the available grammars. If so, the symbols involved in the detected action are
removed from the sequence, and S(x) is restored.

6.4.4 CFG Rule Update

In order to maintain a coherent model for the learned activities, able to take into
account the temporal evolution, an update procedure is required to include potential
modifications. The choice we have adopted is to concentrate on a temporal window
and rebuild the grammar rules considering the most frequent observations matching
a given activity within that window. To this aim, a separate database is built to keep
track of all the incoming sequences fulfilling the rules of each grammar. For every
sequence matching the grammar, a set of features is stored, such as the corresponding
activity (i.e., the grammar) identifier and the list of symbols belonging to it, together
with the temporal reference that informs about the interaction time with the specific
hotspots. Moreover, for every grammar, the system keeps track of the most recent
observation, as well as, the list of all possible activity variations according to the
error tolerance strategy.

The system is updated on a regular basis and in accordance with the application
requirements. When an update takes place, the grammar rules for the models are
recalculated following the procedure illustrated in Sect. 6.4.2 and considering the
most recent set of observations for every particular grammar. Two combined criteria
are considered before updating:

• the number of occurrences of the single instance;
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CFG
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ID: 1
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Last obs time: ...
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CFG n
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Fig. 6.7 Flowchart of the CFG rule update strategy

• the timestamp of the last recognized instance.

In other words, an update is operated only when the number of observations for a
specific grammar exceeds a given occurrence threshold, and the time instant of the
last observation is within the given temporal window. The occurrence threshold and
the temporal window extension are tunable parameters regulating the update process.
As a consequence of the update, the system can successfully adapt the detection of
the defined actions to the variations that may occur due to changes of the environment
(e.g., new environmental objects to interact with) or in the habits of the user (Fig. 6.7).

6.5 Results

In order to validate the proposed approach, we acquired a set of video sequences and
extracted the top-view trajectories of each moving subject by means of calibrated
camera. Being the tracking algorithm out of the scope of this work, the experimental
validation only concerns the trajectory analysis module. All tests have been carried
out in an assisted living lab (Fig. 6.8a) and concern people monitoring while perform-
ing three classes of activities, namely Cooking, Serving food, and Taking a break. In
Fig. 6.9 a sample instance of each activity is reported for completeness.

Given the nature of the considered activities, the pre-processing phase described
in Sect. 6.4 is implemented considering the Hot Spots in Fig. 6.8b. For the grammar
induction phase, we selected and segmented five instances of each activity obtaining
three different CFGs. For conciseness reasons, only the rules for the Taking a break
activity are reported in Fig. 6.10a. The choice of these actions among all possible
scenarios is due to the consideration that they can occur in sequential or nested
configurations, thus slightly complicating the recognition process.
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Fig. 6.8 a Snapshot and b map of the environment. Hot Spots are provided with the corresponding
legend
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Fig. 6.9 Sample activity for a taking a break, b cooking, and c serving food

The test phase is divided in two different stages: we will first show how the learned
grammars can generalize, by recognizing activity instances not defined in the training
set; we will then show the capability of spotting activity sequences from a symbolic
stream, also in a nested configurations.

For the first tests, let us take as an example the CFG learned from one sim-
ple activity (e.g., Taking a break), even though the reasoning can be extended to
more complex grammars. As it can be seen from the rules reported in Fig. 6.10a,
the structural skeleton of the activity is modeled through the first three rules: each
rule provides for three possible variations, leading to a total number of sequences
satisfying the CFG rules, equal to 9. In general, the number of sequences belonging
to a given grammar depends on the grammar structure, and thus on the complexity of
the sequences used in the training. In this specific case, the rules have been extracted
from five training sequences (Fig. 6.10b) and the grammar returns a total number of
nine candidates. The generalized sequences are shown in Fig. 6.10c, and result in
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(a)

Derived CFG

1) [break] --> [arg1] 9 2
2)     --> [arg1] 7 2
3)    --> [arg1] 7 1
4) [arg1]  --> 11 1 4 7
5)    --> 3 1
6)    --> 3 4

(c)  

Generalized sequences

1) [break] --> 11 1 4 7 7 1
2)    --> 3 4 7 2
3)    --> 11 1 4 7 7 2
4)    --> 3 1 7 1

(b)

Training sequences

1) [break] --> 11 1 4 7 9 2
2)    --> 3 1 7 2
3)    --> 3 1 9 2
4)    --> 3 4 7 1
5)    --> 3 4 9 2

Fig. 6.10 a CFG for Taking a break (regions as in Fig. 6.8 ); b training sequences; c generalized
realizations

Act1

Act2

Act3

timeline

...

...

...

...
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input 4 9 2 4 6 10 12 8 62011879 55436101218457

Activity ground truth

Signaled activity

Act1 
Act2 
Act3 

... ...

... ...

... ...

Fig. 6.11 Activity spotting example: a 3 consecutive sequences; b hierarchy between 2 activities;
c 3 nested activities with noisy events

semantically legitimate examples of the activity Taking a break, even though they
were not available in the original training set.

The second test phase aims at demonstrating the capability of the parsing strategy
in spotting known activity patterns from a continuous event stream. In particular,
given the backward parsing paradigm, we show how the proposed engine can recog-
nize activities also in a nested form. To this aim, we randomly selected one activity
instance for each of the three learned grammars and composed them in different
nested configurations, as shown in Fig. 6.11. We first consider three consecutive
activities (a), then two simply nested sequences (b), and, finally, a complex hierar-
chy including 3 activities with noisy symbols (i.e., grey box in the figure). From top
to bottom we indicate (i) the ground truth for the activity stream, (ii) the event input
stream, and (iii) the signaled activity. As it can be noticed, the system is fully capable
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of disclosing chunks of activities even if the incoming data stream is corrupted by
noisy symbols.

The algorithm we have implemented is able to carry out the analysis of the incom-
ing data, in compliance with the real-time constraints, in order to raise alarms in case
an anomaly is detected.

6.6 Conclusions

In this chapter we have described a reconfigurable tool for activity detection in
indoor scenarios based on CFGs. Starting from the trajectory acquired by the cameras
installed in the environment, the algorithm takes as input a set of training trajectories.
The data is processed in order to extract the meaningful information of the path,
namely the interaction with a number of relevant areas in the observed environment.
Through the identification of these Hot Spots, it is then possible to construct the CFG-
based representation of the activities. During the test phase, the parsing algorithm
is run to evaluate the CFG that best matches the current trajectory with respect to
the acquired prototypes. The algorithm has been validated in an experimental test
site targeted at monitoring daily activities of people living in the environment and
it is able to recognize the activities, both as standalone, as well as in consecutive or
nested hierarchies, also handling noisy events.
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Chapter 7
Shape Adaptive Mean Shift Object Tracking
Using Gaussian Mixture Models

Katharina Quast and André Kaup

Abstract GMM-SAMT, a new object tracking algorithm based on a combination of
the mean shift principal and Gaussian mixture models (GMMs) is presented. GMM-
SAMT stands for Gaussian mixture model based shape adaptive mean shift tracking.
Instead of a symmetrical kernel like in traditional mean shift tracking, GMM-SAMT
uses an asymmetric shape adapted kernel which is retrieved from an object mask.
During the mean shift iterations the kernel scale is altered according to the object
scale, providing an initial adaptation of the object shape. The final shape of the kernel
is then obtained by segmenting the area inside and around the adapted kernel into
object and non-object segments using Gaussian mixture models.

Keywords Object tracking ·Mean shift tracking · Gaussian mixture models

7.1 Introduction

There has been an increasing interest in object tracking as it is one of the most impor-
tant and challenging tasks in computer vision. Among the many different methods
developed for object tracking the mean shift algorithm [1, 2] is one of the most famous
tracking techniques, because of its ease of implementation, computational speed, and
robust tracking performance. Mean shift is a nonparametric statistical method which
iteratively shifts each data point to the average of data points in its neighborhood [3].
It has been applied to several computer vision tasks such as segmentation [2] and
object tracking [1, 4].

In spite of its advantages traditional mean shift tracking has two main drawbacks.
The first problem is the fixed scale of the kernel or the constant kernel bandwidth. In
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order to achieve a reliable tracking result of an object with changing size an adaptive
kernel scale is necessary. The second drawback is the use of a radial symmetric kernel.
Since most objects are of anisotropic shapes a symmetric kernel with its isotropic
shape is not a good representation of the object shape. In fact the symmetric kernel
shape leads to an inclusion of background information into the target model, which
can cause tracking failures. In order to achieve a reliable tracking result of an object
with changing size and shape an adaptive kernel is necessary.

An intuitive approach of solving the first problem is to run the algorithm with three
different kernel bandwidths, former bandwidth and former bandwidth ±10 %, and
to choose the kernel bandwidth which maximizes the appearance similarity (±10 %
method) [5]. A more sophisticated method using difference of Gaussian mean shift
kernel in scale space has been proposed in [6]. The method provides good tracking
results, but is computationally very expensive. And both methods are not able to
adapt to the orientation or the shape of the object. Mean shift based methods which
are adapting the kernel scale and the orientation of the kernel are presented in [4, 7].
In [4] scale and orientation of a kernel are obtained by estimating the second order
moments of the object silhouette, but that is of high computational costs. Combining
the mean shift method with adaptive filtering as in [7] is another possibility to achieve
adaptive kernel scale and orientation. But even if the estimation of kernel scale and
orientation are good, due to the use of a symmetric kernel, both methods do not
achieve an adaptation of the kernel to the actual object shape.

Methods working with adaptive and asymmetric kernels are described in [8–10].
The method of [8] focuses on face tracking and uses ellipses as basic face models, thus
it can not easily be generalized for tracking other objects since adequate models are
required. In [9] asymmetric kernels are generated using implicit level set functions.
Since the search space is extended by a scale and an orientation dimension, the method
simultaneously estimates the new object location, scale and orientation. However,
the method can only estimate the orientation of the object for in-plane rotations. In
case of out-of-plane rotations this algorithm is also not capable to adapt to the objects
orientation and therewith to the object shape. A first approach for mean shift tracking
with an adaptive asymmetric kernel being able to deal with out-of-plane rotations
was presented in [10]. However, the technique for adapting the kernel to the shape
of an object is rather heuristic, since image segments produced by a segmentation
process are mainly assigned as object segments if more than 50 % of a segment is
included in an inital mask.

In this chapter we propose a new model-based method for kernel shape adaptation
which provides a more reliable discrimination between object and background and
therefore improves the tracking performance of the shape adaptive mean shift track-
ing [10]. The proposed method takes advantage of two Gaussian mixture models
(GMMs) modeling the color histogram of the object and the histogram of the back-
ground as usually done in applications for video matting or compositing [11]. The
scale adapted kernel, given after running the mean shift iterations in an extended
search space, is fully adapted to the object shape by a maximum a posteriori
estimation considering the GMM of the object and of the background. Thus, a good fit
of the object shape is retrieved even if the object is performing out-of-plane rotations.
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The rest of the chapter is organized as followed. Section 7.2 gives an overview
of the mean shift tracking algorithm. In Sect. 7.3 the proposed method is described
explaining the construction of the object shaped kernel, the execution of the mean
shift iterations in the spatial-scale-space and the final estimation of the kernel shape
using using GMMs. Experimental result and the evaluation of the tracking algorithm
is then described and given in Sect. 7.4. Finally conclusions are drawn in Sect. 7.5.

7.2 Mean Shift Tracking Overview

Mean shift tracking discriminates between a target model in frame n and a candidate
model in frame n + 1. For tracking purposes the target model is mostly defined
as the color density distribution of the object, but any other object feature than the
color of the object could also be used. Thus, the target model is estimated from the
discrete density of the weighted objects feature histogram q(x̂) = {qu(x̂)}u=1...m
with

∑m
u=1 qu(x̂) = 1. The probability of a certain feature belonging to the object

with the centroid x̂ is expressed as the probability of the feature u = 1 . . .m occurring
in the target model. Which is

qu(x̂) = C
N

∑

i=1

k

(∥
∥
∥
∥

xi − x̂
h

∥
∥
∥
∥

2
)

δ[b(xi )− u], (7.1)

where δ is the impulse function, h is the kernel bandwidth, N is the number of pixels
of the target model and normalization constant C is the reciprocal of the sum of
values of the kernel profile k(z). Basically Eq. (7.1) estimates the weighted feature
bin of the feature u, where the feature is weighted according to the positions of
the pixels containing that feature. The kernel K with kernel profile k(z) makes the
density estimation more reliable, because it provides pixels farther away from the
center of the ellipse with a smaller weight. Hence, the least reliable outer pixels
don’t influence the density estimation too much. Figure 7.1 shows the Epanechnikov
kernel, which is typically used in mean shift tracking, and an object marked by an
ellipse. The axes hx and hy of the ellipse are referred to as the bandwidth of the
kernel. Usually the ellipse is scaled such that hx and hy have a length of one and
only one bandwidth parameter h is necessary. Thus, the radial symmetric kernel can
be applied for ellipses of different size and shape.

The candidate model p(x̂new) = {pu(x̂new)}u=1...m (whereas
∑m

u=1 pu = 1) in
the following frame and the probability of a certain feature appearing in the candidate
model

pu(x̂new) = C
N

∑

i=1

k

(∥
∥
∥
∥

xi − x̂new

h

∥
∥
∥
∥

2)

δ[b(xi )− u] (7.2)

are defined similarly to the target model.
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Fig. 7.1 Object in image marked by an ellipse (left) and radial symmetric Epanechnikov kernel
(right), which is used to weight the pixel features according to the position of the pixels inside the
ellipse

The core of the mean shift method is the computation of the offset from an old
object position x̂ to a new position x̂new = x̂ + Δx by estimating the mean shift
vector

Δx =
∑

i K (xi − x̂)w(xi )(xi − x̂)
∑

i K (xi − x̂)w(xi )
, (7.3)

where K (·) is a symmetric kernel with bandwidth h defining the object area and
w(xi ) is the weight of xi which is defined as

w(xi ) =
m

∑

u=1

δ[b(xi )− u]
√

qu(x̂)
pu(x̂new)

. (7.4)

An important property of the weighting function w(xi ) is, that it sets all feature
bins of the current candidate model to zero if they are not contained in the target
model. Thus, the mean shift vector as given in Eq. (7.3) will shift the ellipse to a
feature centroid where the new candidate model has a feature histogram which is
much more similar to the one of the target model. In detail, the problem of localizing
the candidate model in the next frame n + 1 is formulated as the derivation of the
estimate that maximizes the Bayes error between the reference distribution of the
target model and the distribution of the candidate model. Or in other words, to find
the candidate model, which has the most similar feature distribution compared to the
distribution of the target model. For the similarity measure the discrete formulation
of the Bhattacharyya coefficient is chosen as in [1], since we have discrete feature
distributions on the one hand and the Bhattacharyya coefficient is nearly optimal
and imposes a metric structure on the other hand. The Bhattacharyya coefficient and
the distance between the two color distributions of target and candidate model are
defined as follows

ρ[ p(x̂new), q(x̂)] =
m

∑

u=1

√

pu(x̂new)qu(x̂), (7.5)
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d(x̂new) =
√

1− ρ[ p(x̂new), q(x̂)]. (7.6)

The distance defined in Eq. (7.6) is also known as Hellinger distance in probability
theory and measures the similarity between the distribution of the target model and
of the candidate model. The aim is to minimize the Hellinger distance between the
two color distributions as a function of x̂new in the neighborhood of a given position
x̂0 by using the mean shift algorithm. Starting with the Taylor expansion around
pu(x̂0) the Bhattacharyya coefficient is approximated as

ρ[ p̂(x̂new), q̂(x̂)] ≈ 1

2

m
∑

u=1

√

pu(x̂0)qu(x̂)

+ C

2

N
∑

i=1

w(xi )k

(∥
∥
∥
∥

xi − x̂new

h

∥
∥
∥
∥

2
)

. (7.7)

In Eq. (7.7) only the second term is dependent on x̂new. Hence, for minimizing the
distance it is sufficient to maximize the second term of (7.7). This term corresponds
to the density estimate computed with kernel profile k at location x̂new in frame n+1,
whereas the data is weighted with w(xi ). The maximization can be achieved using
the mean shift algorithm. By running this algorithm the kernel is recursively moved
from x̂0 to x̂1 according to the mean shift vector.

7.3 Shape Adaptive Mean Shift Tracking

7.3.1 Asymmetric Kernel Generation

Traditional mean shift tracking is working with a symmetric kernel. But a symmetric
kernel can not describe an object shape properly. Hence, the use of isotropic kernels
will always cause an influence of background information on the target model, which
can lead to tracking errors and even to tracking failure. To solve this problem we are
using an asymmetric and anisotropic kernel, which is adapted to the contour of the
object.

As the mean shift tracker cannot initialize the object by itself, it either requires
some user input or the result from a detection process which provides an object mask
like [12] or [13]. Based on such an object mask our asymmetric kernel is constructed
by estimating for each pixel inside the mask xi = (x, y) its normalized distance to
the object boundary:

Ks(xi ) = d(xi )

dmax
, (7.8)

where the distance from the boundary is estimated using morphological operations.
In Fig. 7.2 an object, its mask and the mask based asymmetric kernel are shown.
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Fig. 7.2 Object in the original image with green marked contour (left), object mask (right) and
asymmetric object kernel retrieved from object mask (bottom)

7.3.2 Mean Shift Tracking in Spatial-Scale-Space

Instead of running the algorithm only in the local space the mean shift iterations
are performed in an extended search space Ω = (x, y, σ ) consisting of the image
coordinates (x, y) and a scale dimension σ as described in [9]. Since the mean shift
iterations estimate a scale updateΔσ and a bandwidth update factor d = 1+√(2)Δσ ,
the new kernel bandwidth rnew(α) = dr(α) at angle α can be computed from the
product of the former bandwidth r(α) and the bandwidth update factor d. Thus,
the object’s changes in position and scale can be evaluated through the mean shift
iterations simultaneously. To run the mean shift iterations in the spatial-scale-space a
3D kernel consisting of the product of the spatial object based kernel from Sect. 7.3.1
and a kernel for the scale dimension

K (x, y, σi ) = K (x, y)K (σ ) (7.9)

is defined. The kernel for the scale dimension is a 1D Epanechnikov kernel with the
kernel profile k(z) = 1 − |z| if |z| < 1 and 0 otherwise, where z = (σi − σ̂ )/hσ .
The mean shift vector given in (7.3) can now be computed in the joint space as

ΔΩ =
∑

i K (Ωi − Ω̂)w(xi )(Ωi − Ω̂)
∑

i K (Ωi − Ω̂)w(xi )
, (7.10)

with ΔΩ = (Δx,Δy,Δσ).
Given the object mask for the initial frame the object centroid x̂ and the tar-

get model are computed. To make the target model more robust the histogram of a
specified neighborhood of the object is also estimated and bins of the neighborhood
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histogram are set to zero in the target histogram to eliminate the influence of colors
which are contained in the object as well as in the background. In case of an object
mask with a slightly different shape than the object shape too many object colors
might be suppressed in the target model, if the direct neighbored pixels are consid-
ered. Therefore, the directly neighbored pixels are not included in the considered
neighborhood.

Taking the distribution {qu(x̂)}u=1...m of the target model at location x̂ in frame
n the algorithm iterates as follows:

1. Initialize the location of the candidate model in frame n + 1 with x̂0 = x̂ and
set d0 = 1.

2. Subsequently compute p(x̂0) and ρ[ p(x̂0), q(x̂)].
3. Compute the weights w(xi ) according to Eq. (7.4).
4. According to the mean shift vector (7.10) estimate

• the new position of the candidate model x̂1 = x̂0 +Δx
• the bandwidth update factor d1 = d0(1+√(2)Δσ )
• p(x̂1)

• ρ[ p(x̂1), q(x̂)].
5. If ‖x̂1 − x̂0‖ < ε stop, else x̂0 ← x̂1, d0 ← d1 and go to step 2.

The algorithm uses the mean shift vector in step 4 to maximize the Bhattacharyya
coefficient. The termination threshhold ε in step 5 implies that the vectors x̂0 and
x̂1 point at the same pixel in image coordinates. Therefore, the algorithm terminates
for one thing if the same or a larger value for the Bhattacharyya coefficient is found
and for the other thing if the candidate model does not change its position in two
subsequent iterations.

7.4 Shape Adaptation Using GMMs

After the mean shift iterations have converged the final shape of the object is evaluated
from the first estimate of the scaled object shape Si . Therefore, the image is segmented
using the mean shift method according to [2]. Figure 7.3 shows the segmented object
area and its surrounding neighborhood indicated by the black outline.

Segments which are fully contained in the first shape estimate are assigned as
object segments. For each segment being only partly included in the found object
area we have to decide if it still belongs to the object shape or to the background.
Therefore, we learn two Gaussian mixture models, one modeling the color histogram
of the background and one the histogram of the object. The surrounding background
area H of the object is estimated by

H = Si · k − Si , with k ≥ 1, (7.11)

where k is usually chosen between 1.1 and 1.3. The GMMs are learned at the
beginning of the sequence based on the binary mask already being used for the
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Fig. 7.3 The object area and
its surrounding neighborhood
are segmented into segments
of similar colors. The neigh-
borhood H is the narrow band
between the outline of the
first shape estimate Si (green
outline) and the increased area
of it (black outline)

Si

Si·k

initial kernel generation. Since we are working in RGB color space the multivariate
normal density distribution of a color value c = (cr , cg, cb)

T is given by

p(c|μk,�k) = 1

(2π)
3
2 |�k | 12

e−
1
2 (c−μk )

T �−1
k (c−μk ), (7.12)

where μk is the mean and � is a 3×3 covariance matrix, while |�k | is its determinant
and �−1 its inverse. The Gaussian mixture model for an image area is given by

P(c) =
K

∑

k=1

Pk · p(c|μk,�k), (7.13)

where Pk is the a priori probability of distribution k, which can also be interpreted
as the weight for the respective Gaussian distribution.

To fit the Gaussians of the mixture model to the corresponding color histogram
as illustrated in Fig. 7.4 the parameters Θk = {Pk , μk , �k} have to be estimated. A
very common method to solve the parameter estimation problem is the expectation
maximization (EM) algorithm [14]. The EM algorithm is an iterative technique which
can be used for finding the maximum likelihood parameter estimates when fitting a
distribution to a given data set. A good description of the EM algorithm applied for
fitting the parameters of a Gaussian mixture model can be found in [15]. During the
EM iterations, first the probability (at iteration step t) of all N data samples cn to
belong to the kth Gaussian distribution is calculated by Bayes’ theorem

p(k|cn,Θ) = Pk,t p(cn|k,μk,t ,�k,t )
∑K

k=1 Pk,t p(cn|k,μk,t ,�k,t )
, (7.14)

which is known as the expectation step. In the subsequent maximization step the
likelihood of the complete data is maximized by re-estimating the parameters Θ:

Pk,t+1 = 1

N

N
∑

n=1

p(k|cn,Θ), (7.15)
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Fig. 7.4 Modeling the histogram of the green color channel of the car in sequence parking_lot
with K = 5 (left) and K = 8 Gaussians (right)

μk,t+1 = 1

N Pk,t+1

N
∑

n=1

p(k|cn,Θ)cn, (7.16)

�k,t+1 = 1

N Pk,t+1

N
∑

n=1

p(k|cn,Θ)(cn − μt+1)(cn − μt+1)
T . (7.17)

The updated parameter set is then used in the next iteration step t + 1. The EM
algorithm iterates between these two steps and converges to a local maximum of
the likelihood. Thus, after convergence of the EM algorithm the Gaussian mixture
model will be fitted to the discrete data and a nice representation of the histogram
will be given by the fitted mixture model, see Fig. 7.4. Since the visualization of
a GMM modeling a three-dimensional histogram is rather difficult to understand,
Fig. 7.4 shows two GMMs modeling only the histogram of the green color channel
of the car in sequence parking_lot.

The accuracy of a GMM depends on the number of Gaussians. Hence, the GMM
with K = 8 Gaussian distributions models the histogram more accurate than the
model with K = 5 Gaussians. Of course, depending on the histogram in some cases
a GMM with a higher number of Gaussian distributions might be necessary, but for
our purpose a GMM with K = 5 Gaussians showed to be a good trade-off between
modeling accuracy and parameter estimation.

To decide for each pixel if it belongs to the GMM of the object Pobj (c)=
P(c|α= 1) or to the background GMM Pbg(c) = P(c|α = 0) we use maximum
a posteriori (MAP) estimation. Using log-likelihoods the typical form of the MAP
estimate is given by

α̂ = argmax
α

(ln p(α)+ ln P(c|α)), (7.18)

where ˆα ∈[0, 1] indicates that a pixel, or more precise its color value c, belongs to
the object (α̂ = 1) or the background class (α̂ = 0), and p(α) is the corresponding
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Fig. 7.5 The initial object mask retrieved from the mean shift iterations in spatial-scale-space is
shown above the segmented object (left). The segments are classified either as one of the two pos-
sible object segment types (blue and yellow segments) or as background segments (red segments).
According to the object segments the contour of the final object mask is estimated and displayed
on the object being tracked (right)

a priori probability. To set p(α) to an appropriate value the object area and the
background area of the initial mask are considered.

Based on the number of its object and background pixels, a segment is assigned
as an object or background segment. If more than 50 % of the pixels of a segment
belong to the the object class, the segment is assigned as an object segment, otherwise
the segment is considered to belong to the background. Figure 7.5 shows from left to
right the segmented object and its neighborhood, a color coding of the different types
of segments and the final shape estimate after the segmentation process overlayed on
the original image of the object. The first shape estimate given by running the mean
shift iteration in the extended search space is also shown by the contour in Fig. 7.5
(left) and (middle). In Fig. 7.5 (middle) the three different types of segments are
shown: segments which are completely included in the initial mask are shown in blue,
segments which are partly included and are containing enough color information of
the target model are marked in yellow and the red segments are background segments.
The next object based kernel can now be obtained from the final shape and the next
mean shift iterations can be initialized. To summarize the new shape adaptive mean
shift tracking method GMM-SAMT a pseudo code of the tracking algorithm is given
by Algorithm 1.

7.5 Experimental Results

For modeling the histogram of the object region and the background histogram
we used K = 5 Gaussian distributions for each GMM, where K is determined
empirically. We found a maximum of 30 iterations of the EM algorithm sufficient
to fit the parameters of each GMM. The GMMs were estimated only once at the
beginning of the sequence. Given the first object mask the object centroid and the
mask based asymmetric kernel are estimated. The masked based kernel is then used
for computing the histogram in the RGB space with 32× 32× 32 bins. For the scale
dimension the Epanechnikov kernel with a bandwidth of hσ = 0.4 is used. For mean
shift segmentation a multivariate kernel defined according to Eq. (35) in [2] as the
product of two Epanechnikov kernels, one for the spatial domain (pixel coordinates)
and one for the range domain (color), is used. The bandwidth of the Epanechnikov
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Algorithm 1: Gaussian Mixture Model based Shape Adaptive Mean Shift Track-
ing (GMM-SAMT)

Input: frame n, frame n + 1, mask n, q(x̂), x̂, K Gaussian distributions
Output: mask n + 1, x̂new

GMMobj ← expectation maximization(object histogram, K )
GMMbg ← expectation maximization(background histogram, K )
x̂0 ← x̂

begin
K (x, y, σ )← Eq. (7.9)
pu(x̂0)← Eq. (7.2)
p(x̂0)← {pu(x̂0)}u=1...m
ρ[ p(x̂0), q(x̂)] ← Eq. (7.5)
w(xi )← Eq. (7.4)
(Δx,Δσ)← ΔΩ ← Eq. (7.10)
x̂1 ← x̂0 +Δx;
d1 = d0(1+√(2)Δσ );
if ‖x̂1 − x̂0‖ > ε then

to begin
else

x̂0 ← x̂1
d0 ← d1
x̂new ← x̂1
mask n← shift mask n according to Δx
mask n← scale mask n according to d1
mask n + 1← get_final_shape(mask n, GMMobj , GMMbg) (see Sect. 4)

end
end

kernel in range domain was set to hr = 4, and the bandwidth of the one in spatial
domain to hs = 5. The minimal segment size was set to 5 pixels.

In order to evaluate the performance of GMM-SAMT the algorithm has been
tested on several video sequences. We tested our algorithm on some self-recorded
sequences, which are either showing a parking lot or the traffic on an airport apron, and
we also used the sequence of PETS 2000.1 In Fig. 7.6 the tracking results of GMM-
SAMT are compared to the results of the traditional mean shift tracker combined
with the ±10 % method for tracking a car, which is backing out of a parking space.
The visual evaluation of the tracking results already shows that GMM-SAMT clearly
outperforms the traditional mean shift algorithm. While GMM-SAMT is able to adapt
to the shape of the turning car, the traditional method even fails to fit the size of the
ellipse indicating scale and position of the object being tracked to the size of the car.

More results of the standard mean shift tracker combined with the±10 % method
and the proposed GMM-SAMT are shown in Figs. 7.7, 7.8 and 7.9. In the first row
of Fig. 7.7 the results of the standard mean shift tracking for tracking a follow-
me car, which turns right, are shown. Even though the ellipse is chosen such
that no background color influences the target model, the mean shift tracker using

1 ftp://ftp.pets.rdg.ac.uk/pub/PETS2000/

ftp://ftp.pets.rdg.ac.uk/pub/PETS2000/
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Fig. 7.6 Results of traditional mean shift tracking (red ellipse) compared to GMM-SAMT (green
contour) for tracking a car on a parking lot

Fig. 7.7 Tracking a follow-me car using the standard mean shift tracker (top row) and using GMM-
SAMT (bottom row)

the ±10% method is not able to track or to adapt to the size of the follow-me car.
The mean shift tracker simply searches for the best match, which can be found inside
the true object area, that’s why the ±10% method is not working at all. Finally, the
standard mean shift tracker even fails to track the object. Whereas GMM-SAMT is
able to adapt to the changes of the follow-me car, although the contour of the car is
changing drastically while the car moves through the sequence.

Figure 7.8 compares the tracking results of the standard mean shift tracker and
GMM-SAMT for tracking a red car in the PETS 2000 sequence. The results of the
standard mean shift method are shown in the top row of Fig. 7.8, while the GMM-
SAMT results can be seen in the bottom row of Fig. 7.8. Even though the standard
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Fig. 7.8 Tracking a red car using the standard mean shift tracker (top row) and using GMM-SAMT
(bottom row)

Fig. 7.9 Tracking an airplane using the standard mean shift tracker (top row) and using GMM-
SAMT (bottom row)

mean shift tracker performs much better than in the case of the follow-me car, GMM-
SAMT still provides the more precise tracking results.

By comparing the GMM-SAMT results of tracking an airplane, see bottom row of
Fig. 7.9, to the results of the standard mean shift tracker given in the top row of Fig. 7.9,
one can see that GMM-SAMT is also able to track the contour of objects of quite
complex shape. Only if the color similarity between object color and background
color is to high, GMM-SAMT misses some small parts of the airplane.

For a more objective evaluation the tracking results are compared to a manually
labeled ground truth and the tracking error terr in pixels is estimated by computing
the averaged Euclidean distance of the tracked centroids to the ground truth centroids.
The tracking error for the standard mean shift tracker are given in Table 7.1, while
Table 7.2 lists the tracking error for GMM-SAMT. Since the standard mean shift
method fails to track the follow-me car, the tracking error is quite high in that case
and certainly does not represent the general performance of the mean shift tracker.
However, GMM-SAMT outperforms the standard mean shift tracking in all other
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Table 7.1 Tracking error as well as Recall, Precision and F1 measure of standard mean shift
tracking

Target Ground truth Standard mean shift
frames terr Recall Precision F1 score

Parking car 30 9 0.96 0.52 0.68
Follow-me car 20 88 0.23 0.14 0.60
Airplane 15 32 0.75 0.25 0.37
Red car 15 8 0.80 0.79 0.80

Table 7.2 Tracking error as well as Recall, Precision and F1 measure of GMM-SAMT

Target Ground truth GMM-SAMT
frames terr Recall Precision F1 score

Parking car 30 3 0.98 0.86 0.92
Follow-me car 20 3 0.99 0.83 0.90
Airplane 15 4 0.84 0.76 0.80
Red car 15 1 0.97 0.91 0.94

Table 7.3 The tracking error terr and F1 measure of GMM-SAMT compared to standard mean
shift tracking

Target Parking car Follow-me car Airplane Red car

�terr −6 −85 −28 −7
�F1 0.24 0.30 0.43 0.14

cases as well. For a better comparison the difference of the tracking error, estimated
by subtracting the tracking error of the standard mean shift tracker from the tracking
error of GMM-SAMT, is shown in Table 7.3.

To further evaluate the tracking performance the information retrieval measure-
ments Recall and Precision were also computed by comparing the detection results
to the ground truth as follows:

Recall = Ncor

Ngt
, (7.19)

Precision = Ncor

Ndet
, (7.20)

where Ncor is the number of correctly detected object pixels, Ndet is the number
of all detected object pixels and Ngt represents the number of object pixels in the
ground truth. The Recall and Precision scores given in Table 7.1 and in Table 7.2
confirm the impression of the visual inspection, since for all test sequences GMM-
SAMT achieves better results as the standard mean shift method. In addition to the
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information retrieval measurements, we also calculated the even more significant F1
measure:

F1 = 2 · Recall · Precision

Recall+ Precision
. (7.21)

The F1 scores of the standard GMM method and of the Auto GMM-SAMT detection
unit are compared in Table 7.3. Again the visual impression is confirmed.

7.6 Conclusions

GMM-SAMT extends the traditional mean shift algorithm to track the contour of
objects with changing shape without the help of any predefined shape model. Since
GMM-SAMT works with an object mask based kernel, the influence of background
color on the target model is avoided. Thus, the tracking algorithm is much more
robust than standard mean shift tracking. To adapt the kernel to the changing object
shape, a GMM of the object and a GMM of the surrounding background are used
to segment the object area from the background. The kernel is then adapted to the
segmented object shape. Thus, the proposed algorithm is able to track the position
and the contour of an object quite robust, even if the object is performing out-of-plane
rotations.

However, in case of very similar object colors GMM-SAMT also has to deal with
errors, since segmentation errors can occur. Hence, in future work we will focus on
the color similarity problem. The investigation of other additional object features
might provide a first solution to this problem.

Acknowledgments This work has been supported by the Gesellschaft für Informatik, Automa-
tisierung und Datenverarbeitung (iAd) and the Bundesministerium für Wirtschaft und Technologie
(BMWi), ID 20V0801I.

References

1. Comaniciu D, Ramesh V, Meer P (2000) Real-time tracking of non-rigid objects using mean
shift. In: Proceedings of IEEE conference on computer vision and pattern recognition, IEEE
Press, New York, pp 142–149

2. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis.
IEEE Trans Pattern Anal Mach Intell 24:603–619

3. Cheng Y (1995) Mean shift, mode seeking, and clustering. IEEE Trans Pattern Anal Mach
Intell 17:790–799

4. Bradski GR (1998) Computer vision face tracking for use in a perceptual user interface. Intel
Technol J 2:12–21

5. Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern
Anal Mach Intell 25:564–575

6. Collins RT (2003) Mean-shift blob tracking through scale space. In: Proceedings of IEEE
computer society conference on computer vision and pattern recognition, pp 234–240



122 K. Quast and A. Kaup

7. Qifeng Q, Zhang D, Peng Y (2007) An adaptive selection of the scale and orientation in kernel
based tracking. In: Proceedings of the third international IEEE conference on signal-image
technologies and internet-based system, IEEE Press, New York, pp 659–664

8. Vilaplana V, Marques F (2008) Region-based mean shift tracking: application to face
tracking. In: Proceedings of 15th IEEE international conference on image processing, IEEE
Press, New York, pp 2712–2715

9. Yilmaz A (2007) Object tracking by asymmetric kernel mean shift with automatic scale and
orientation selection. In: Proceedings of IEEE conference on computer vision and pattern
recognition, IEEE Press, New York, pp 1–6

10. Quast K, Kaup A (2009) Scale and shape adaptive mean shift object tracking in video sequences.
In: Proceedings 17th European signal processing conference, pp 1513–1517

11. Nowak A, Hörchens L, Röder J, Erdmann M (2006) Colourbased video segmentation for tv
studio applications. In: Proceedings of the 51st international scientific colloquium, 2006

12. Stauffer C, Grimson WEL (2000) Learning patterns of activity using real-time tracking. IEEE
Trans Pattern Anal Mach Intell 22(8):747–757

13. Quast K, Kaup A (2010) Real-time moving object detection in video sequences using spatio-
temporal adaptive Gaussian mixture models. In: Proceedings of international conference on
computer vision theory and applications (VISAPP ’10), Angers, France, 2010

14. Dempster AP, Laird NM, Rubin DB et al (1977) Maximum likelihood from incomplete data
via the EM algorithm. J Royal Stat Soc. Series B (Methodological) 39(1):1–38

15. Ihlow A, Heuberger A (2009) Sky detection in fisheye images for photogrammetric analysis of
the land mobile satellite channel. In: Proceedings of the 10th workshop digital broadcasting,
pp 56–60



Part III
High-Level Descriptors and Video

Retrieval



Chapter 8
Forensic Reasoning upon Pre-Obtained
Surveillance Metadata Using Uncertain
Spatio-Temporal Rules and Subjective Logic

Seunghan Han, Bonjung Koo, Andreas Hutter and Walter Stechele

Abstract This chapter presents an approach to modeling uncertain contextual rules
using subjective logic for forensic visual surveillance. Unlike traditional real-time
visual surveillance, forensic analysis of visual surveillance data requires mating
of high level contextual cues with observed evidential metadata where both the
specification of the context and the metadata suffer from uncertainties. To address this
aspect, there has been work on the use of declarative logic formalisms to represent and
reason about contextual knowledge, and on the use of different uncertainty handling
formalisms. In such approaches, uncertainty attachment to logical rules and facts
are crucial. However, there are often cases that the truth value of rule itself is also
uncertain thereby, uncertainty attachment to rule itself should be rather functional.
The more X then the more Y type of knowledge is one of the examples. To enable such
type of rule modeling, in this chapter, we propose a reputational subjective opinion
function upon logic programming, which is similar to fuzzy membership function but
can also take into account uncertainty of membership value itself. Then we further
adopt subjective logic’s fusion operator to accumulate the acquired opinions over
time. To verify our approach, we present a preliminary experimental case study on
reasoning likelihood of being a good witness that uses metadata extracted by a person
tracker and evaluates the relationship between the tracked persons. The case study
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is further extended to demonstrate more complex forensic reasoning by considering
additional contextual rules.

Keywords Visual surveillance · Forensic reasoning · Logic programming ·
Subjective logic

8.1 Introduction

As traditional computer vision technology further matures, higher level forensic
semantic understanding of visual surveillance data has been gaining increasing atten-
tion. Such forensic semantic analysis deals with a propositional assumption to be
investigated after an incident and the answer to the propositional assumption should
be an epistemic reasoning result upon pre-observed evidential and contextual cues.
Therefore, such forensic semantic analysis of visual surveillance data requires intel-
ligent reuse of low level vision analytic results with additional visual, and non visual,
contextual cues. However, unlike domains that can solely rely on deterministic knowl-
edge model, in visual surveillance, contextual knowledge as well as low level vision
analytic results are fraught with facets of uncertainties, incompleteness and incon-
sistencies. Therefore, the key challenges for such high level analysis approaches are
the choice of an appropriate contextual knowledge representation and the proper
reasoning mechanism under uncertainty. Depending on how such approaches han-
dle uncertainty, they can be roughly categorized into intensional and extensional
approaches [1]. In intensional approaches, also known as state based approaches,
uncertainty is attached to ‘subsets of possible states’ and handle uncertainty taking
into account relevance between the states. In extensional approaches, also known as
rule-based systems treat uncertainty as a generalized truth value attached to formulas
and compute the uncertainty of any formula as a function of the uncertainties of its
sub formulas. There is trade-off between the two approaches. Intentional approaches
assume completeness of the state model, therefore, semantically clear but computa-
tionally clumsy. Extensional approaches are computationally convenient but seman-
tically sloppy. In forensic visual surveillance, however, considering the variety of
possible semantics in scenes, extensional approaches have advantages in the flexi-
bility and expressive power due to their ability to derive a new proposition based
only on what is currently known (a) regardless of anything else in the knowledge
base (locality) and (b) regardless of how the current knowledge was derived (detach-
ment). locality and detachment are together referenced to as modularity [1]. Due to the
advantage of extensional approaches, there has been some extent of work on the use
of logic programming language with different uncertainty handling formalisms for
visual surveillance and computer vision problems. In such approaches, intermediate
metadata comes from vision analytics and additional visual or non visual contextual
cues are encoded as either symbolized facts or rules. Then uncertainty comes with
vision analytics are represented according to the chosen uncertainty formalism and
attached to their symbolized facts. Similarly, uncertainty as general trustworthiness
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or priority among rules is also represented according to the chosen uncertainty for-
malism and attached to given contextual rules. Once such an uncertainty attachment
is done, principled inference, which is often nonmonotonic, is conducted. The exam-
ples of such principled inferences are default reasoning [2] to handle inconsistent
information, abduction [3] to find most probable hypothesis of given observation
and belief revision over time upon the change of observation, etc. In this pipeline,
therefore, appropriate uncertainty assignment as well as proper uncertainty formal-
ism plays an important role. However, there are often cases that the trustworthiness
of rule itself is also uncertain thereby, uncertainty attachment to rule itself should
be rather functional. the more X then the more Y type of knowledge is one of the
examples. To enable such type of rule modeling, in this chapter, we further explorer
our previous work [4–6], where we proposed the use of subjective logic [7] with
logic programming and demonstrated that the proposed approach can cover incon-
sistent information handling as default reasoning and bidirectional reasoning as can
be typically done in intensional approaches. We first propose a reputational subjective
opinion function that is similar to fuzzy membership function but also can take into
account uncertainty of membership value itself. Then we further adopt subjective
logic’s fusion operator to accumulate the acquired opinions over time. To demon-
strate reasoning under uncertain rules, we present a preliminary experimental case
study by intentionally restricting the type of available metadata to the results from
human detection and tracking algorithms. Automatic human detection and tracking
is one of the common analytics and becoming more widely employed in automated
visual surveillance systems. The typical types of meta-information that most human
detection analytic modules generate comprise, for instance, localization information
such as coordinate, width, height, time and (optionally) additional low-level visual
feature vectors. We intend to use further such information for evaluating the relation-
ship between two persons and, more specifically, for estimating whether one person
could serve as a witness of another person in a public area scene. Examples for
(linguistic) domain knowledge applicable to this scenario include: (1) (At least) two
distinct people are required for building a relationship. (2) The closer the distance
between two people is, the higher is the chance that they can identify each other.
(3) If two persons approach each other directly (face-to-face) then there is a higher
chance that they can identify each other. Such linguistic knowledge can be modeled
and encoded as rules by the proposed approach. The case study is further extended to
demonstrate more complex forensic reasoning by considering additional contextual
rules together with the shown uncertain rules.

The rest of the chapter is organized as follows. In Sect. 8.2, we briefly review
related work regarding intensional and extensional approaches with more focus on
the latter one. In Sect. 8.3, we will first give a short introduction to subjective logic the-
ory. In Sect. 8.4, we introduce our approach to modeling uncertain rules. Section 8.5
presents a case study scenario in a typical public area scene and deals with rule
encoding and preliminary experimental demo results. Section 8.6 further extend the
scenario with more complex situational rules. Finally, Sect. 8.7 concludes with dis-
cussions and future research directions.
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Table 8.1 A comparison of previous extensional approaches

Approach Akdemir
et al. [9]

Jianbing
et al. [10]

Shet et. al
[11, 12]

Anderson
et al. [13]

Han et al.
[4–6]

Knowledge modeling Ontology Rule
based

Rule
based

Rule
based

Rule
based

Uncertainty formalism – Dempster
Shafer

Bilattice Fuzzy
logic

Subjective
logic

Traditional logic
operators

– –
√ √ √

Arithmetic operators – – – –
√

Info. fusion operators –
√ √

–
√

Extra operators (MP,
MT, reputation,
etc.)

– – – –
√

Default reasoning – –
√

–
√

Belief revision – –
√

–
√

Bidirectional inference – – – –
√

Uncertain rule
modeling

– – –
√ √

(by this
work)

8.2 Related Work

To address high level context modeling and reasoning in the visual surveillance
domain, traditionally, whole model based approaches such as Bayesian networks
have been used. Such approaches are called ‘intensional’. Bremont et al. [8] employs
a context representation scheme for surveillance systems. Hongeng et al. [14] con-
siders an activity to be composed of action threads and recognizes activities by
propagating constraints and likelihood of event threads in a temporal logic network.
Other approaches use a qualitative representation of uncertainty [15], HMM to reason
about human behaviors based on trajectory information [16], a use of bayesian net-
work and AND/OR tree for the analysis of specific situations [17] or a GMM based
scene representation for reasoning upon activities [18]. In such approaches, contex-
tual knowledge is represented as a graph structure having nodes that are considered
as symbolic facts. In the sense of logic, connected two nodes can be interpreted as a
propositional logic rule that can consider only one relation, the causality implication.
A piece of propositional knowledge segment should exist within the whole graph
structure, thereby, once uncertainty propagation mechanism is learnt, adding addi-
tional pieces of knowledge will require restructuring causality influence relation of
the whole graph structure. This aspect restricts expressive power and increases the
modeling cost. Due to this complexity and lack of modularity, such approaches have
been focusing on relatively narrow and specific semantics. However, as forensic sense
of semantics in visual surveillance is gaining more attention, more flexible knowledge
representation and uncertainty handling mechanism is required. For this reason, there
has been some work on the use of logic programming languages to achieve better
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expressive power and on the use of different uncertainty handling formalisms to rea-
son under uncertainty. The achievement of better expressive power is mainly due to
the first-order predicate logic that logic programming provides. While propositional
logic deals with simple declarative propositions, first-order logic additionally covers
predicates and quantifiers. Akdemir et al. [9] proposed an ontology based approach
for activity recognition, but without uncertainty handling mechanism (In ontology
community, Description Logics (DLs) are often used as knowledge representation
formalism and DLs are decidable fragments of first-oder-logic.). Shet et al. [11] pro-
posed a system that adopts Prolog based logic programming for high-level reasoning.
In [12] the same authors extended their system with the bilattice framework [19] to
perform the task of detecting humans under partial occlusion based on the output of
parts based detectors. Jianbing et al. [10] used rule-based reasoning with Dempster
Shafer’s Theory [20] for a bus surveillance scenario. Anderson et al. [13] used fuzzy
logic [21] to model human activity for video based eldercare. Han et al. [4–6] pro-
posed the use of logic programming and subjective logic [7] to encode contextual
knowledge with uncertainty handling, then demonstrated bidirectional conditional
inference and default reasoning. Such logic framework based uncertainty handling
approaches can be categorized as ‘extensional’. Table 8.1 shows a brief comparison
of the previously proposed extensional approaches. the table shows that the cover-
age of the subjective logic based approach is most broad. For example, while some
provides information fusion capability for fusing two contradictory information
sources, such as Dempster Shafer’s fusion operator, bilattice’s operator and sub-
jective logic’s consensus operator, only some of them support default reasoning
that handles such contradictory information to draw reasonable decision and belief
revision. Indeed, bidirectional inference is only supported by subjective logic based
approach. In this chapter, we further propose an approach to modeling uncertain
propositional rules and inference under such uncertain rules for high level semantic
analysis of visual surveillance data. In the sense of linguistic interpretation of the
rules, the most similar previous approach to the proposed work would be [13]. In the
work, quantitative low level features from human detection are linguistically sym-
bolized into terms such as ‘high’, ‘medium’, ‘low’ and ‘very low’ according to their
corresponding membership functions. Therefore, in such approach, defining mem-
bership function is critical. Then the linguistic symbols are used to form a conjunctive
logical patterns of a human activities. This means, rules contain symbolized static
facts. In our approach, rules allow to contain variable itself. Indeed, our approach
even allows uncertainty on a membership-like function by the use of the reputation
operator in subjective logic thereby, relieves the burden of defining exact form of
membership-like function.

8.3 Subjective Logic Theory

Jøsang [22, 7] introduced subjective logic as a framework for artificial reasoning.
Unlike traditional binary logic or probabilistic logic (the former can only consider
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Fig. 8.1 Opinion triangle and beta distribution (Colour figure online)

true or false, and the latter can consider degrees of truth or falseness), subjective logic
explicitly represents the amount of ‘lack of information (ignorance) on the degree
of truth about a proposition’ in a model called opinion and comes with a rich set of
operators for the manipulation of opinions [7]. The idea of explicit representation
of ignorance is introduced from belief theory and the interpretation of an opinion in
bayesian perspective is possible by mapping opinions to beta distributions. It is also
different from fuzzy logic: while fuzzy logic maps quantitative measure to non-crisp
premises called fuzzy sets (e.g. ‘fast’, ‘slow’, ‘cold’, ‘hot’ etc.), subjective logic deals
with the uncertain belief itself on a crisp premise (e.g. ‘intrusion happened’, ‘accident
happened’, etc.). However, in the sense of interpretation, mapping of an opinion into
the linguistic certainty fuzzy set (i.e., ‘very certainly true’, ‘less certainly true’, etc)
is also possible. In general, subjective logic is suitable for modeling real situations
under partial ignorance on a proposition’s being true or false. Known application
areas are trust network modeling, decision supporting, etc. However, to the best of
our knowledge, the application of subjective logic in computer vision related domains
has been limited to [4–6] that demonstrated the capability of default reasoning and
bidirectional interpretation of conditional rules. In this section, we will give a brief
introduction to subjective logic theory.

Definition 8.1 (Opinion) [7] Let Θ = {x, x} be a state space containing x and its
complement x . Let bx , dx , ix represent the belief, disbelief and ignorance in the
truth of x satisfying the equation: bx + dx + ix = 1 and let ax be the base rate
of x in Θ . Then the opinion of an agent ag about x , denoted by wag

x , is the tuple
wag

x = (bag
x , dag

x , iag
x , aag

x ).

Definition 8.2 (Probability expectation) [7] Let wag
x = {bag

x , dag
x , iag

x , aag
x } be an

opinion about the truth of x, then the probability expectation of wag
x is defined by:

E(wag
x ) = bag

x + aag
x iag

x .

Opinions can be represented on an so called opinion triangle as shown in Fig. 8.1.
A point inside the triangle represents a (bx , dx , ix ) triple. The corner points marked
with Belief, Disbelief or Ignorance represent the extreme cases, i.e., no knowledge
(0, 0, 1), full disbelief (0, 1, 0) and full belief (1, 0, 0). The base rate ax represents
the prior knowledge on the tendency of a given proposition to be true and can be
indicated along the base line (the line connecting Belief and Disbelief). The prob-
ability expectation E is then formed by projecting the opinion onto the base line,
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parallel to the base rate projector line (see the blue line) that is built by connecting
the ax point with the Ignorance corner (see the red line). An interesting property
of subjective opinions is their direct mapping to beta distributions. Beta distribu-
tions are normally denoted as Beta(α, β) where α and β are its two parameters
(α represents the number of positive observations and β represents amount of nega-
tive observations about a crisp proposition respectively). The beta distribution of an
opinion wx = (bx , dx , ix , ax ) is the function Beta(α, β) where α = 2bx/ ix + 2ax

and β = 2dx/ ix + 2(1 − ax ). In Fig. 8.1, Example (1) shows an opinion about a
proposition of an agent, that can be interpreted as seems likely and slightly uncertain
true, and Example (2) shows full ignorance (a.k.a. vacous opinion) at the time of
judgement about a proposition. Assuming base rate to be 0.7 in the example we get
expectation value also to be 0.7 and the beta distribution appears biased towards
‘True’ though the opinion represents full ignorance.

8.4 Modeling Uncertain Rule Using Subjective Logic

The proposed uncertain rule modeling approach mainly relies on rule-based system
that enables logic programming. The traditional rule-based system, which can only
handle binary logic, is extended to allow representation of uncertainty using sub-
jective opinions and operators. For a given propositional knowledge, we assume a
fuzzy-like membership function that grades degree of truth. Then we focus on that
the interpretation of such membership function can be dogmatic, thereby, when the
function is projected on the opinion space, it only lays on the bottom line of the opin-
ion space. Indeed, in many cases, the exact shape of the function is hard to determine.
To address this aspect, we introduce a reputational function that evaluates the trust
worthiness of the fuzzy-like membership function. Then we introduce accumulation
of the resulted opinions overtime. In this section, we will first give a brief overview
how rules are expressed in logic programming. Thereafter, comes with further details
of the uncertain rule modeling.

8.4.1 Logic Programming

Logic programming mainly consists of two types of logical formulae, rules and facts.
Rules are of the form A← f0, f1, . . . , fm where A is rule head and the right hand
side is called body. Each fi is an atom and ‘,’ represents logical conjunction. Each
atom is of the form p(t1, t2, . . . , tn), where ti is a term and p is a predicate symbol
that takes n terms (i.e. arity n). Terms could either be variables or constant symbols.
Negation is represented with the symbol ¬ such that ‘A = ¬¬A’. Both positive and
negative atoms are referenced to as literals. Given a rule head ← body, we interpret
the meaning as IF body THEN head. Traditionally, resolved facts that matches to a
rule is called extension. In extensional approaches [11, 12, 10, 4–6] mentioned in
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Sect. 8.2, rules have been used to define and reason about various contextual events
or activities.

8.4.2 Logic Programming Extended Using Subjective Logic

To extend logic programming with subjective logic, the CLIPS [23] rule engine was
used as a basis to provide flexibility for defining complex data structure as well as
for providing a rule resolving mechanism. To extend this system, a data structure
opinion(agent,proposition,b,d,i,a) was defined that can be interpreted as a fact of
arity 6 with the following terms, agent (opinion owner), proposition, belief, disbelief,
ignorance, and atomicity. To represent propositions, we extended the structure so that
it can take arity n properties as well. Therefore, given a predicate p the proposition can
be described as p(a1, a2, . . . , an). In our system, therefore, each fact is represented as
the form of wagent

p(a1,a2,...,an)
. Namely, rules are defined with the opinion and proposition

structure. Additionally, functions of subjective logic operators taking opinions as
parameters were defined. In this way, uncertainty in the form of opinion triangle is
attached to rules and facts. This aspect is depicted as follows:

Definition 8.3 (Opinion Assignment) Given a knowledge baseK in form of declara-
tive language and Subjective Opinion Space O , an opinion assignment over sentences
k ∈ K is a function φ : k → O . s.t.

1. φfact : Fact→ O , e.g. wa
p(a1,a2,...,a,n)

= (b, d, u, i)

2. φRule : Rule → O , e.g. (wac
pc(ac1,...,acn)

← wa1
p1(a11,...,a1n)

, . . . ,wai
pn(ai1,...,ain)

) =
(b, d, u, i)

3. φRuleEval : Rule Head→
(

�
w

ai
pi ∈Rule Body

wai
pi (aai1,...,ain)

= O
)

,where � indicates

one of subjective logic’s operators.

Example for a given rule wac
pc(ac1,...,acn)

← wa1
p1(a11,...,a1n)

, . . . ,wai
pn(ai1,...,ain)

,

wac
pc(ac1,...,acn)

= wa1
p1(a11,...,a1n)

� · · ·� wai
pn(ai1,...,ain)

= (b, d, u, i).

φinference denoted cl(φ) : q → O , where K |= q called Closure.

It is important to note that there are different ways of opinion assignment. While
Definition 8.3—2 assigns an opinion to a whole rule sentence itself, Definition 8.3—3
assigns an opinion to the consequence part of the rule (rule head). The assigned
opinion is functionally calculated out of opinions in the rule body using appropri-
ate subjective logic operators. Definition 8.3—2 especially plays an important role
for prioritizing or weighting rules for default reasoning [6]. Given the initial opin-
ion assignment by Definition 8.3—1 and 2, the actual inference is performed by
Definition 8.3—3 and 4, where Definition 8.3—4 is further defined as follows:
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Definition 8.4 (Closure) Given a knowledge baseK in form of declarative language
and an opinion assignmentφ, labeling every sentence k ∈ K into Subjective Opinion
Space O , then the closure over k ∈ K , is the opinion assignment function cl(φ)(q)
that labels information q entailed by K (i.e. K |= q).

For example, if φ labels sentences {a, b, c← a, b} ∈ K as φfact(a), φfact(b) and
φRule(c← a, b), then cl(φ) should also label c as it is information entailed by K . The
assignment can be principled by the definition of closure. For example, an opinion
assignment to c, in a simple conjunctive sense can be φfact(a) · φfact(b) · φRule(c←
a, b), where · represent conjunction in Subjective Logic. In our system, to support
the rich set subjective logic operators, we made the specification of Definition 8.3—
3 in rule description as follows (note that, most of rule based systems also support
describing actions in the head part of a rule):

ACTION : Assert new Opinion wac
pc(ac1,...,acn)

, where wac
pc(ac1,...,acn)

=
wa1

p1(a11,...,a1n)
� · · ·� wai

pn(ai1,...,ain)
← wa1

p1(a11,...,a1n)
, . . . ,wai

pn(ai1,...,ain)
. (8.1)

Due to the redundancy that arises when describing rules at the opinion structure level,
we will use abbreviated rule formulae as follows:

wac
pc(ac1,...,acn)

← wa1
p1(a11,...,a1n)

� · · ·� wai
pn(ai1,...,ain)

. (8.2)

where � indicates one of subjective logic’s operators. This way of representing
rules, we can build a propositional rules that comprise opinions about a predicate
as facts, check logical conjunction based existence of involved opinions and finally
define resulted predicate with opinion attached by calculating opinion values with
subjective logic operators. To realize this concept, a prototype system integrating
binary logic programming and subjective logic calculus has been implemented. For
the logic programming part, the CLIPS [23] rule engine was used.

8.4.3 Uncertain Propositional Rules

In logic programming, a conditional proposition y← x is interpreted as IF x THEN
y. However, there are often cases that we may want to interpret the meaning as the
more x then the more y or the more x then the less y, etc. In this case, the opinion
attached to the consequence of the rule should be rather functional in terms of the
elements within the rule body. Therefore, the opinion assignment suit to this inter-
pretation is Definition 8.3—3. In the sense of intrinsic linguistic uncertainty of the
rule, it resembles fuzzy rules shown by Anderson et al. [13, 21]. In the work, quanti-
tative low level features of human detection results such as ‘centroid’, ‘eigen-based
height’ and ‘ground plane normal similarity’ are linguistically mapped into non-
crisp premises (i.e. fuzzy sets) as ‘(H)igh’, ‘(M)edium’, ‘(L)ow’ and ’(V)ery Low’.
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Then fuzzy rules defines the conjunctive combination of those linguistic symbols to
draw higher semantics such as ‘Upright’, ‘In Between’ and ‘On the ground’ (e.g.
U pright (L) ← Centroid(H), EigenHeight (M), Similari t y(H) [13]). There-
fore, introducing appropriate fuzzy membership functions for each linguistic terms
and proper handling of the membership functions is an important issue. In this view,
Mizumoto et al. [24] showed comparison of sophisticated mathematical handling
of ambiguous concepts such as ‘more or less’ having various shapes. One another
thing worth to note concerning fuzzy logic is that, even if there are Zadeh’s original
logical operators, there are yet another ways of defining logical operators as well.
For example, for given two quantitative variables x and y come with correspond-
ing membership functions μa and μb, Zadeh’s AND operator is defined as x AND
y = min(μa(x), μa(y)). In so-called ‘t-norm fuzzy logic’, any form of t-norms can
be considered as AND operators. For example, in the case of using product t-norm,
the AND operator can be defined as x AND y = μa(x) · μb(x) [25]. This aspect
still remains controversial among most statisticians, who prefer Bayesian logic [26].
Contrary, as explained in the Sect. 8.3, subjective logic can be interpreted in the sense
of bayesian and also the final quantitative opinion space can also be interpreted in
the sense of fuzziness (i.e. ‘very certainly true’, ‘less certainly true’, etc). This way,
we believe that subjective logic can better bridge the interpretation of fuzzy intuitive
concepts with better bayesian sense. The basic idea of our approach is as follows:

1. For a given propositional rule ‘the less (more) y← the more x’ we could intro-
duce a membership-like function μi : x → y.

2. It is clear that the function μi should be monotonically decreasing (increasing)
but the shape is not quite clear.

3. Considering potentially possible multiple membership like functions μi , how-
ever the values of μi (x) at the two extreme point of (minx ≤ x ≤ maxx ) tend
to converge but the values in between are diverge therefore, the values of later
cases are more uncertain.

4. Considering the aspect of 3. we introduce so-called reputational opinion function
on the function μi and combine it with raw opinion obtained from μi using
subjective logic’s reputation operator.

This idea is depicted in Fig. 8.2, where the actual reputational operation is defined
as follows:

Definition 8.5 (Reputation) [27] Let A and B be two agents where A’s opinion
about B’s recommendations is expressed as wA

B = {bA
B , d A

B , u A
B , a A

B }, and let x be
a proposition where B’s opinion about x is recommended to A with the opinion
wB

x = {bB
x , d B

x , u B
x , aB

x }. Let wA:B
x = {bA:B

x , d A:B
x , u A:B

x , a A:B
x } be the opinion such

that:
{

bA:B
x = bA

BbB
x d A:B

x = d A
B d B

x
u A:B

x = d A
B + u A

B + bA
Bu B

x a A:B
x = aB

x
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Fig. 8.2 Uncertain rule modeling using subjective logic’s reputation operator

then wA:B
x is called the reputation opinion of A. By using the symbol⊗ to designate

this operation, we get wA:B
x = wA

B ⊗ wB
x .

For actual evaluation of a given function μi , an opinion assignment function on
the given μi need to be defined. Although there could be also another ways of such
function, in our approach, this is modeled as follows:

wreputμi (x)

μi (x)
=

⎧

⎨

⎩

bx = k + 4(1− k)(μi (x)− 1
2 )

2

dx = 1−bx
Dratio

ux = 1− bx − dx .

(8.3)

where k, represents the minimum boundary of belief about the value fromμi (x), and
the Dratio indicates the ratio for assigning the residue of the value μi to disbelief
and uncertainty. This is depicted as Fig. 8.2d.

8.5 Case Study I

8.5.1 Scenario Setting for Case Study

At this stage we focused on evaluating the modeling approach itself rather than the
reliability of the person detection algorithm. Therefore, we manually annotated a test
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video from one of i-LIDS [28] data sample with ground truth metadata for human
detection comprising bounding boxes and timing information (shown in Fig. 8.3).
In total, 1 minute of test video was annotated in which there are 6 people. For our
purposes, we intentionally marked one person as suspect. Then we encoded following
linguistic contextual knowledge according to the proposed approach as explained in
Sect. 8.4. (1) (At least) two distinct people are required for building a relationship.
(2) The closer the distance between two people is, the higher is the chance that they
can identify each other. (3) If two persons approach each other directly (face-to-face)
then there is a higher chance that they can identify each other. Then we calculate
subjective opinions between the person marked as suspect and other human instances
over time.

8.5.2 Uncertainty Modeling

8.5.2.1 Distance

The distance between a pair of people would be one of the typical pieces of clue for
reasoning whether one person could serve as a witness of another person. This relates
to the general human knowledge that The closer two people are in distance, the more
chances of perceiving the other are. Humans are very adapted to operating upon such
type of uncertain and ambiguous knowledge. Exactly modeling such a relation is not
trivial, but we can approximate it with a monotonic decreasing function about the
possibility of perceiving each other. This aspect is depicted as three possible curves
in the middle of Fig. 8.4a, where x represents the distance between the persons as
calculated from the person detection metadata and μi represents the likelihood that
two persons at this distance would perceive each other, maxdist is the maximum
possible (i.e. diagonal) distance in a frame and ai is the estimated probability that
two humans could have recognized each other at the maxdist distance. However, the
value derived from such function is not fully reliable due to the variety of real world
and uncertainty in the correctness of the function and uncertainty in the distance
value itself. Considering the aspect of distance, it is clear that both the extreme cases
i.e. very close or very far are much more certain than in the middle of the range.
Thus, to better model the real world situation, the reputational opinion function need
to be applied to any chosen function μi . This is modeled as opinion on the reliability
of μi (x) by applying Eq. (8.3). In order to evaluate the impact of choosing different
functions in Fig. 8.4a, three different types of μi functions (a concave, convex and
linear) have been applied. The derived reputational opinions showed similar aspects
having peaks of certain belief at each extreme cases as shown in Fig. 8.5.
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Fig. 8.3 Scenario setting for case study I

Fig. 8.4 Candidate uncertainty functions regarding distance and direction

8.5.2.2 Direction

Similarly, we also used direction information between two persons. The linguistic
knowledge to be modeled is if two persons approach each other directly (face-to-
face) then there is a higher chances of perceiving each other. The corresponding
direction-based relevance function is shown in Fig. 8.4b, where Θ represents the
angle between the persons heading directions as calculated from the person detection
metadata andμi represents the likelihood that two persons at the angle would perceive
each other and ai is the expected minimum probability that two humans could have
recognized each other at any angle. However, again the trustworthiness of the values
from such functions μi is uncertain, especially in the middle range of the Θ . To
roughly model such aspect, for a chosen function μi (Θ), the same reputational
function from Eq. (8.3) was used again. The impact of choosing different μi showed
similar behavior as of direction based opinions as shown in Fig. 8.5.

8.5.3 Rule Encoding

In addition to the uncertainty modeling, logic programming is used to represent the
given contextual rules as explained in Sect. 8.4.2. Encoded rules in form of Eq. (8.2)
are as follows:
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Fig. 8.5 Samples of reputational opinion according to distance and Eq. (8.3)

wRule1
witness(H1,H2,T1)

←
(

wHumanDetector
human(H1,T1)

∧ wHumanDetector
human(H2,T1)

)

⊗
(

wμdist (d)
witness(H1,H2,T1)

⊗ wreputμ(d)

μdist (d)

)

. (8.4)
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wRule2
witness(H1,H2,T1)

←
(

wHumanDetector
human(H1,T1)

∧ wHumanDetector
human(H2,T1)

)

⊗
(

wμdir (d)
witness(H1,H2,T1)

⊗ wreputμ(d)

μdir (d)

)

. (8.5)

wRule3
witness(H1,H2,T1)

←
(

wRule1
witness(H1,H2,T1)

∧ wRule2
witness(H1,H2,T1)

)

. (8.6)

wRule4
witness(H1,H2,Tn)

←⊕n
i=1wRule3

witness(H1,H2,Ti )
. (8.7)

The first rule (8.4) starts considering the necessary condition, meaning that there
should be a distinct pair of two people. Therefore the conjunction operation ∧ on
two opinions [29] is used that is very similar to the operation P(A) · P(B) except
that in subjective logic the opinion can additionally represent ignorance. Then, for
the resulting set of frames the reputational opinion about the distance opinions is
calculated as described in Sect. 8.5.2. Each result is assigned to a new opinion with
the predicate of the appropriate arity and is assigned the name of agent with the
final belief values. In this case, the final opinion value represents that there is an
opinion about two persons being potential witnesses of each other from an agent
named Rule1. The second rule (8.5) is almost same as rule (8.4). The only different
part of this rule is that the reputational opinion is about direction. The third rule
(8.6) combines the evidences coming from rule (8.4) and (8.5). The conjunction
operator∧ is used to reflect that for reliable positive resulting opinions both evidences
should have appeared with a certain amount of belief. The last rule (8.7) is about
accumulating the belief over time using the consensus operator ⊕ that is defined as
follows:

Definition 8.6 (Consensus) [30] Let wA
x = (bA

x , d A
x , i A

x , a A
x ) and wB

x = (bB
x , d B

x ,

i B
x , aB

x ) be opinions respectively held by agents A and B about the same state x , and
let k = i A

x + i B
x − i A

x i B
x . When i A

x , i B
x → 0, the relative dogmatism between wA

x and
wB

x is defined by γ so that γ = i B
x / i A

x . Let wA,B
x = (bA,B

x , d A,B
x , i A,B

x , a A,B
x ) be the

opinion such that:

k 
= 0 :

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

bA,B
x = (bA

x i B
x + bB

x i A
x )/k

d A,B
x = (d A

x i B
x + d B

x i A
x )/k

i A,B
x = (i A

x i B
x )/k

a A,B
x = a A

x i A
x +aB

x i A
x −(a A

x +aB
x )i

A
x i B

x
i A
x +i B

x −2i A
x i B

x

k = 0 :

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

bA,B
x = γ bA

x +bB
x

γ+1

d A,B
x = γ d A

x +d B
x

γ+1

i A,B
x = 0

a A,B
x = γ a A

x +aB
x

γ+1 .
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Fig. 8.6 Tree representation of rules

Then wA,B
x is called the consensus opinion between wA

x and wB
x , representing an

imaginary agent [A, B]’s opinion about x , as if that agent represented both A and B.
By using the symbol ⊕ to designate this operator, we define wA,B

x = wA
x ⊕ wB

x .

Figure 8.6 shows a graphical representation of the rules in a tree form.

8.5.4 Experimental Result

Using the rules described in Sect. 8.5.3, we calculated subjective opinions between
a person marked as suspect and other human instances over time. Figure 8.7 shows
a snapshot of the visualization in the prototype comprising a video player and an
opinion visualizer. While the video is being played the corresponding metadata is
transformed into the corresponding opinion representation. The translated opinions
are fed into the rule-engine which automatically evaluates the rules. The right part of
Fig. 8.7 shows the opinion about the proposition ‘human 5 is a witness for the sus-
pects marked red’ and its corresponding mapping to beta distribution. For verification
of these results, a questionnaire was prepared to collect scores about the witness-
ing chances for each of the ‘pairs’ in the scene (e.g. human1 and suspect, human2
and suspect , etc). Seven people from our lab took part in the questionnaire. Then
changing the uncertainty functions on uncertain rules, we tested the behavior of the
proposed approach to check whether it well models human intuition. Although there
can be 9 possible combinations of uncertainty functions (i.e. 3 distance functions
and 3 direction functions), to better contrast the impact of changing such uncertainty
functions, we have fixed the direction function to the type of μ3 defined in Fig. 8.4b
and tested with 3 different direction functions shown in Fig. 8.4a. Then the mean
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Fig. 8.7 Visualization of the experiment

Fig. 8.8 Experimental result

and standard deviation, min and max of the ‘human opinions’ were calculated and
compared to the computed results. According to [7], the following criteria should be
applied to the computed results.

(1) The opinion with the greatest probability expectation is the greatest opinion.
(2) The opinion with the least uncertainty is the greatest opinion.
(3) The opinion with the least relative atomicity is the greatest opinion.

In the described experiment, due to the small size of possible pairs, only the first
criterion was applied and the final expectation values of each opinion for candidate
pairs were plotted jointly with the questionnaire based result as shown in Fig. 8.8.
The final result turns out to be following the tendency of questionnaire based human
‘opinions’. The change of uncertainty function seems not introducing that critical
differences. However, there were more differences between the expected values,
when the final expectation values were low, for instance, though it was a slight
differences,μ3 tend to yield larger expectation value thenμ2 andμ1. The differences
ware smaller when the final expectation values were getting higher. However, in any
cases, the order on the ranking of witnesses show the same results. Therefore, in
the sense of human like reasoning, it seems that the proposed approach well models
human intuition.
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Fig. 8.9 Scenario setting for case study 2

8.6 Case Study II

In this section, we further explorer the proposed case study scenario for more complex
contextual forensic reasoning. Especially, we will consider the situation that is needed
to be modeled in the sense of so-called default reasoning [2].

8.6.1 Scenario Setting for Case Study II

Consider a conceptual scenario that a security personnel wants to get suggestions of
most probable witnesses of a selected suspect in a scene. Given an assumption that
automatic vision analytics are running and extracting basic semantics, we will also
assume two virtual situations as shown in Fig. 8.9, where, witnesses are reasoned
according to the uncertain spatio-temporal rules as demonstrated in Sect. 8.5. In
all situation we will assume that ‘witness2’ has higher opinion then ‘witness1’. In
addition to this, we will assume optional cases that additional evidential cues are
detected. In Fig. 8.9a, ‘witness2’ is talking on the phone. In Fig. 8.9b, the optional
case is the detection of a license plate of the car seems to belong to the ‘witness1’
and ‘witness2’ comes with face detection.

8.6.2 Reasoning Examples

Given the scenario with optional cases, we will also assume that (1) people usually
do not recognize well when they are talking on the phone, (2) identifiable witness
is a good witness. (3) License plate is better identifiable source than face detection
because we can even fetch personal information of the owner easily. Therefore, under
optional assumption, for example, in Fig. 8.9a, ‘witness1’ should be better witness,
and in Fig. 8.9b, ‘witness1’ should be suggested as a better witness. This kind of non
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monotonic reasoning under inconsistent information is called default reasoning and
defined as follows:

Definition 8.7 (Default theory) [2] Let Δ = (D,W ) be a default theory, where W
is a set of logical formulae (rules and facts) also known as the definite rules and D
is a set of default rules of the form α:β

γ
, where α is known as the precondition, β is

known as the justification and γ is known as the conclusion.

Han et al. [6] showed that this aspect can be modeled using subjective logic as
well under the opinion assignment defined in Definition 8.3 in Sect. 8.4.2. Here,
it is important to note that unlike the case of uncertain rule modeling, the type
of opinion assignment to prioritize belong to Definition 8.3—2. and the default
inference scheme belongs to Definition 8.3—4. As shown in [6], we set T � (1, 0, 0)
(full truth), DT1 � (0.5, 0, 0.5) (weak default true), DT2 � (0.8, 0, 0.2) (strong
default true), F � (0, 1, 0) (full false), DF1 � (0, 0.5, 0.5) (weak default false),
DF2 � (0, 0.8.0.2) (strong default false), ∗ � (0.33, 0.33, 0, 34) (contradiction),
U � (0, 0, 1) (full uncertainty) and ⊥ � (0.5, 0.5, 0) (full contradiction). For the
rest of truth values we will use opinion triple representation (b,d,i). The default
inference scheme using subjective logic is as follows:

Definition 8.8 (Def ault in f erencesl ) [6] Given a query sentence q and given S
and S′ that are sets of sentences such that S |= q and S′ |= ¬q, then the default
inference is the truth value assignment closure clsldi (φ)(q) given by:

clsldi (φ)(q) =
⊕

S|=q

u �
⎡

⎣

∏

p∈S

clsl(φ)(p)

⎤

⎦⊕¬
⊕

S′|=¬q

u �
⎡

⎣

∏

p∈S′
clsl(φ)(p)

⎤

⎦ . (8.8)

Example 1 (Witness talking on the phone) Assume the following set of rules about
determining good witness including the uncertain spatio-temporal relation based wit-
ness reasoning rule described in Sect. 8.5.3. Then also assume the following opinion
assignment that witness2 (denoted as wit_2) has higher opinion being the witness
than witness1 (denoted as wit_1).

φRule

[

wRule4
witness(H1)

←⊕n
i=1wRule3

witness(H1,H2,Ti )

]

= DT1.

φRule
[¬wwitness(H1)← wtalking_on_phone(H1)

] = DT2.

φRuleEval

[

wRule4
witness(wit_1)

]

= (0.6, 0.15, 0.25).

φRuleEval

[

wRule4
witness(wit_2)

]

= (0.7, 0.10, 0.20).

Given two default true and default false rules and facts that can be seen as definite
true, the inference for reasoning better witness using default logic with subjective
logic is as follows.
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clsldi (φ)(wwitness(wit_1)) = [U � ((0.6, 0.15, 0.25) · DT1)].
= [U � (0.44, 0.15, 0.41)] = (0.44, 0.15, 0.41) ∼ (Expectation = 0.54).

clsldi (φ)(wwitness(wit_2)) = [U � ((0.7, 0.10, 0.20) · DT1)].
= [U � (0.50, 0.10, 0.40)] = (0.50, 0.10, 0.40) ∼ (Expectation = 0.60).

Above result shows that given the weak rules, ‘witness2’ is more probable witness
candidate than ‘witness1’. Then, let us consider the weak opinion assignment to the
additional contextual cue that witness2 is using the phone. This semantics can be
interpreted as ‘the witness seems to using a phone but not quite sure’.

φ f act [wtalking_on_phone(wit_2)] = (0.6, 0.15, 0.25).

Given the additional information, the inference on witness2 is being witness is as
follows.

clsldi (φ)(wwitness(wit_2))

= [U � ((0.7, 0.10, 0.20) · DT1)] ⊕ ¬[U � ((0.6, 0.15, 0.25) · DT2)]
= [U � (0.50, 0.10, 0.40)] ⊕ ¬[U � (0.59, 0.15, 0.26)]
= (0.50, 0.10, 0.40)⊕¬(0.59, 0.15, 0.26)

= (0.50, 0.10, 0.40)⊕ (0.15, 0.59, 0.26)

= (0.34, 0.47, 0.19) ∼ (Expectation = 0.39).

The resulting opinion (0.34, 0.47, 0.19) on witness2’s being a good witness now
weaker than (0.44, 0.15, 0.41) which is for the case of witness1’s being a good witness.
The expectation values also captures this aspect. Thus, this result shows that the
inference scheme well models human intuition.

Example 2 (Witness with face detection vs. license plate detection) Consider the
following set of rules about determining good witness and the following opinion
assignment to capture the scenario described in Sect. 8.6.1 and depicted in Fig. 8.9b.

φRule

[

wRule4
witness(H1)

←⊕n
i=1wRule3

witness(H1,H2,Ti )

]

= DT1.

φRule

[

wwitness(H1)← wRule4
witness(H1)

· whas FaceDetect I n f o(H1)

]

= DT1.

φRule

[

wwitness(H1)← wRule4
witness(H1)

· whasLicenseDetect I n f o(H1)

]

= DT2.

φRuleEval

[

wRule4
witness(wit_1)

]

= (0.6, 0.15, 0.25).

φRuleEval

[

wRule4
witness(wit_2)

]

= (0.7, 0.10, 0.20).

φ f act
[

whasLicenseDetect I n f o(wit_1)
] = (0.6, 0.15, 0.25).

φ f act
[

whas FaceDetect I n f o(wit_2)
] = (0.6, 0.15, 0.25).
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Given two default true and default false rules and facts that can be seen as definite
true, the inference for reasoning better witness using default logic with subjective
logic is as follows.

clsldi (φ)(wwitness(wit_1))

= [U � ((0.6, 0.15, 0.25) · DT1 · (0.6, 0.15, 0.25) · DT2)]
= [U � ((0.44, 0.15, 0.41) · (0.59, 0.15, 0.26))]
= (0.33, 0.28, 0.39) ∼ (Expectation = 0.36).

clsldi (φ)(wwitness(wit_2))

= [U � ((0.7, 0.10, 0.20) · DT1 · (0.6, 0.15, 0.25) · DT1)]
= [U � ((0.5, 0.1, 0.4) · (0.44, 0.15, 0.41))]
= (0.3, 0.24, 0.47) ∼ (Expectation = 0.33).

Above result shows that given the evidences, ‘witness2’ is slightly more probable
witness candidate than ‘witness1’ because license plate info is more informative
thereby strongly considered than face related information by the opinion assignment.
However, due to the opinion on the fact level is not certain, the values were not
strongly forced the belief but rather increased the uncertainty in the final opinion.
The expectation values also captures this aspect. Thus, this result shows that the
inference scheme well models human intuition.

8.7 Discussions and Conclusion

Intelligent forensic reasoning upon metadata acquired from automated vision ana-
lytic modules is an important aspect of surveillance systems with high usage poten-
tial. The knowledge expressive power of the reasoning framework and the ability of
uncertainty handling are critical issues in such systems. In this chapter, based on our
previous work on the use of logic programming with subjective logic, we extended
the framework so that it can also handle uncertain propositional rules. The approach
is mainly based on the fuzzy-like membership function and the reputational operation
on it. Although we still need to extend this concept to large scale data, we advocate
that this work showed the potential of the proposed approach. The main advantage
of the proposed approach is that it offers more choices to model complex contex-
tual human knowledge by enriching the expressive power of the framework. The
other advantage of the proposed approach is that the modeled uncertain rules can be
used with another principled reasoning scheme. In this chapter, especially, we have
demonstrated how the reasoning results from uncertain spatio-temporal rules could
be used with default reasoning. Another interesting property of the system is that,
unlike traditional probability based conditional reasoning, this approach allows for
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representing lack of information about a proposition. We could also roughly assign
our subjective priors with lack of information, and observations can also be repre-
sented with any degree of ignorance, therefore we believe this better reflects human
intuition and real world situations. Another beneficial property is the flexibility of
assigning opinions to formulae. Especially, rule can embed its own opinion calcu-
lation scheme thereby, allows for sophisticated propagation of opinions through the
inference pipeline. There are, however, still several open issues such as how to better
model the reputational function, how to automatically assign proper prior opinions
to rules, etc. Our future research will cover further extending and applying the shown
approach to more complicated scenarios using automatically generated large scale
data.
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Chapter 9
AIR: Architecture for Interoperable Retrieval
on Distributed and Heterogeneous Multimedia
Repositories

Florian Stegmaier, Mario Döller, Harald Kosch, Andreas Hutter
and Thomas Riegel

Abstract Nowadays, multimedia data is produced and consumed at an ever
increasing rate. Similarly to this trend, diverse storage approaches for multimedia
data have been introduced. These observations lead to the fact that distributed and
heterogeneous multimedia repositories exist, whereas an easy and unified access to
the stored multimedia data is not given. This chapter presents an architecture, named
AIR, that offers the aforementioned retrieval possibilities. To ensure interoperabil-
ity, AIR makes use of recently issued standards, namely the MPEG Query Format
(multimedia query language) and the JPSearch transformation rules (metadata inter-
operability).

Keywords External metasearch · Heterogeneous databases · Interoperability ·
Standardization

9.1 Introduction

Multimedia data is produced in an immense rate and speed. By investigating solu-
tions and approaches for storing and archiving the produced data, one rapidly ends
up in a highly heterogeneous environment of data stores. In series, the involved
domains feature individual sets of metadata formats for describing content, techni-
cal or structural information of multimedia data [17]. Furthermore, depending on
the management and retrieval requirements, these data sets are accessible in differ-
ent systems supporting a multiple set of retrieval models and query languages. By
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summing up all these obstacles, an easy and efficient access and retrieval across those
system borders is a very cumbersome task [16].

Standards are one way to introduce interoperability among different peers. Recent
developments and achievements in the domain of multimedia retrieval concentrated
on the establishment of a multimedia query language (MPEG) [6], standardized
image retrieval (JPEG) and the heterogeneity problem between metadata formats
(JPEG [5] & W3C [17]).

In this context, the chapter introduces an architecture for a middleware component
abstracting the heterogeneous environment of multimedia data stores.

The development of our framework pursues the following main requirements:
modular architectural design, implemented as an external metasearch engine, a broad
scope of multimedia retrieval paradigms (e.g. query by example), unified multime-
dia requests and cross system multimedia retrieval (cross metadata as well as cross
query language). Furthermore AIR supports multiple query processing strategies
(autonomous and federated). Concepts and modules/placeholders for intelligent
query segmentation and distribution as well as result set aggregation are the
highlights of the current implementation. However, the actual retrieval process of
the multimedia data is performed inside the connected backends.

Constitutively on our article [19], this chapter deepens these findings and is
organized as follows: Sect. 9.2 introduces two examples for heterogeneous retrieval
whereas Sect. 9.3 identifies possible search concepts in this domain. Section 9.4 high-
lights the overall system architecture. A description of two projects, that utilize AIR
takes place in Sect. 9.5. Related work will be introduced in Sect. 9.6. The chapter
will be concluded in Sect. 9.7.

9.2 Heterogeneous Retrieval Scenarios

In the following, let us consider some heterogeneous retrieval scenarios demonstrat-
ing the complexity for an unified access.

(i) Scenario 1—Video surveillance: Airports, train stations and other popular
public places are already well equipped with surveillance systems (e.g. security
cameras). Today, the huge amount of available data is hardly annotated with meta-
data and thus, an analysis ends in inspecting the footage manually. Such tasks are
highly time consuming, defective and inefficient. Therefore, let us assume a future
surveillance network consisting of several autonomous systems of different vendors
(e.g. security systems of a bank and a grocery store). These systems store the captured
multimedia data in different databases that use diverse query languages (e.g. MOQL
[9] or SQL/MM [11]) and extract metadata information using diverse metadata for-
mats (e.g. MPEG-7 [10] or Dublin Core [7]). A possible query for this scenario could
be:

“Find video segments where an identified person (e.g. selected by a bounding
rectangle) is running through the scene!”



9 AIR: Architecture for Interoperable Retrieval 151

(a) (b)

Fig. 9.1 AIR query processing strategies. a Local processing. b Distributed processing

(ii) Scenario 2—Medical examination: Today’s advances in medical imaging
and the digitalization of patient data leads to the development of intelligent medical
image search engines. The main purpose is to improve the current workflow of
a physician (e.g. radiologist). In a medical system, there are different forms of a
patient studies, such as textual descriptions (e.g. findings or scientific papers) or
digital images (e.g. CT scan). This diversity leads to heterogeneous systems, where
the distributed knowledge base is semantically linked among each isolated peer, for
example by the patients name and his birthdate. Let us assume a scenario, where the
data about patients is subdivided into an image retrieval system dealing with visual
representations of CT scans, DICOM information about the patient data and an RDF
triple store containing semantic annotations about their diseases and anatomy. An
example query could be:

“Select CT scan, where disease is lesion, anatomy near liver and the CT scan is
similar to aGivenCTScan.jpg!”

9.3 Query Processing Strategies

The AIR framework can be operated in many different facets within a distributed and
heterogeneous multimedia search and retrieval framework. In general, the tasks of
every internal component of AIR highly depends on the registered retrieval services
or knowledge bases. In this context, two main query processing strategies have to be
distinguished, as illustrated in Fig. 9.1.

The first paradigm deals with registered and participating retrieval systems that
are able to process the whole query locally, see Fig. 9.1a. In this sense, those het-
erogeneous systems may provide their local metadata format (e.g. Dublin Core or
MPEG-7) and a local/autonomous data set as described in Scenario 1. A query
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transmitted to such a environment is understood as a whole by each peer and the
items of the result set are the outcome of an execution of the query. Of course, trans-
formation of the used metadata format (e.g. from Dublin Core to MPEG-7) may be
needed for some systems. In addition, depending on the degree of overlap among the
data sets (e.g. the same image is annotated in all databases), the individual result sets
may contain duplicates. However, a result aggregation process needs to perform an
overall ranking of the result items of the involved retrieval systems. Here, duplication
elimination algorithms may be applied as well.

The second paradigm deals with registered and participating retrieval systems
that allow distributed processing on the basis of a global data set, see Fig. 9.1b. The
involved heterogeneous systems may depend on different data representation (e.g.
ontology based semantic annotations and XML based low level features) and query
interfaces (e.g. SPARQL and XQuery), but describe a global data schema as shown
in Scenario 2. In this context, a query transmitted to AIR needs to be evaluated
and optimized. This results into a specific query execution plan. In series, segments
of the query are forwarded to the respective engines and executed. Now, the result
aggregation has to deal with a correct consolidation of the partial result sets. In this
context, AIR behaves like a federated multimedia database management system.

9.4 AIR Architecture

Figure 9.2 illustrates an end-to-end workflow scenario in a distributed multimedia
retrieval scenario by the use of AIR. At its core, AIR uses the MPEG Query Format
(MPQF)1, which is part 12 of the MPEG-7 standard and especially designed for the
retrieval of multimedia data. MPQF is an XML-based multimedia query language
which defines the format of queries and replies to be interchanged between clients
and servers in a multimedia information search and retrieval environment. The nor-
mative parts of the MPEG Query Format define three main components: The Input
Query Format provides means for describing query requests from a client to a mul-
timedia information retrieval system (MMRS). The Output Query Format specifies
a message container for MMRS responses and finally the Query Management Tools
provide means for functionalities such as service discovery, service aggregation and
service capability description (e.g. which query types or multimedia formats are
supported). Note, the term service refers to all MMRS including single databases as
well as service providers administrating a set of MMRSs. A query request can be
composed of three different parts. A declaration part points to resources (e.g. image
file or its metadata description, etc.) that are reused within the query condition or
output description part. The output description part allows, by using the respective
MMRS metadata description, the definition of the structure as well as the content of
the expected result set. Finally, the query condition part denotes the search criteria
by providing a set of different query types (e.g. QueryByMedia) and expressions

1 http://www.mpegqueryformat.org

http://www.mpegqueryformat.org
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Fig. 9.2 Overview of the AIR components

(e.g. GreaterThan) which can be combined by Boolean operators (e.g. AND). In
order to respond to MPQF query requests, the Output Query Format provides the
ResultItem element and attributes signaling paging and expiration dates. A detailed
description about MPQF can be found in [6].

9.4.1 Backend Management Layer

The main functionalities of the Backend Management Layer are the (de-)registration
of backends with their capability descriptions and the service discovery for the
distribution of incoming MPQF queries. As already mentioned, these capability
descriptions are standardized in MPQF, allowing the specification of the retrieval
characteristics of registered backends. Such characteristics consider for instance the
supported query types or metadata formats. In series, depending on those capabilities,
this component is able to filter registered backends during the search process (service
discovery). For a multimedia retrieval system, it is very likely that not all functions
specified in MPQF are supported. In such an environment, one of the important tasks
for a MPQF client is to identify the backends which provide the desired query func-
tions or support the desired media formats identified by an MIME type using the
service discovery.
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9.4.2 MPQF Factory Layer

The main purpose of the MPQF Factory Layer is the generation and validation of
MPQF queries. This layer also encapsulates interfaces for inserting preprocessing
plug-ins. These could for example expose methods to generate media specific meta-
data (e.g. MPEG-7 low level features) or to perform file conversion (e.g. smaller Bit
rate for better bandwidth usage). Two possible modes of operations are implemented
in order to pass a query request to AIR.

The first mode assumes that an instance of the MPQF query was already created
in another place. Then, the query is directly transmitted to AIR. In a next step, the
query runs through the validation process and is mapped into the internal MPQF
object structure.

As not every client is able to deliver complete MPQF queries to AIR, the second
mode addresses the creation of a MPQF query through an API. In general, a MPQF
query consists of two main parts. First, the QueryCondition element holds the filter
criteria in an arbitrary complex condition tree. In this context, the condition tree has
to be build bottom up. Second, the OutputDescription element defines the structure
of the result set. In this object, the needed information about required result items,
grouping or sorting is stored. After finalizing the query creation, the generated MPQF
query will be transmitted to AIR. A set of query templates at the client side can be
established to simplify the query creation process using the API approach.

9.4.3 MPQF Management Layer

The MPQF Management Layer organizes the registration of MPQF queries and their
distribution to the applicable retrieval services. After the registration with a unique
identifier of the entire query, the distribution of the query depends on the underlying
search concept. For the local processing scenario, the whole query is transmitted
to the backends. In contrast to that, in a distributed processing scenario, the query
will be automatically divided in segments by analyzing the query types used in
the condition tree. Here, well known tree algorithms like depth-first search can be
used. The key intention of this segmentation is that every backend only gets a query
segment, which it can process as a whole. Besides query splitting and distribution, the
transformation between metadata formats is another crucial task of the management
layer. In this context, the JPSearch transformation rules [5] have been integrated for
antagonizing metadata heterogeneity. They define XML-based syntactical mappings
between the JPSearch core schema and an arbitrary (XML based) metadata format.
The present implementation is able to transform metadata informations inside an
isolated, metadata specific query type (without touching the overall query semantic).
Currently, a second approach for improving the metadata interoperability issues will
be integrated. This approach is developed by the W3C Media Annotation Working
Group [21], which aims to improve interoperability between multimedia metadata
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formats on the Web by providing an interlingua ontology and an API designed to
facilitate cross-community data integration of information related to media resources
on the Web. To do so, syntactic as well as semantic mappings between the so-called
media ontology defined by the group and a large number of metadata formats have
been identified in a group report (available on the working group page).

In order to highlight the progress of the received queries, AIR introduces the
following MPQF query lifecycle: pending (query registered, process not started),
retrieval (search started, some results missing), processing (all results available,
aggregation in progress), finished (result can be fetched) and closed (result fetched
or query lifetime expired). These states are also valid for query segments, since they
are also valid MPQF queries.

9.4.4 MPQF Interpreter

The MPQF Interpreter is located at the backend and is supposed to act as a media-
tor between AIR and a particular retrieval service. Its main purpose is to receive a
MPQF query and to transform it into native calls of the underlying query language
(e.g. SQL/MM in a Oracle database). After a successful retrieval, the MPQF Inter-
preter forwards the result set (converted in a MPQF response) to the AIR framework.
in case of an error, a meaningful system message will be generated an inserted into
a special section of the result set.

9.4.5 Backend Benchmarking Layer

In order to describe the main advantage of the Backend Benchmarking Layer (BBL),
let us assume a scenario as shown in Fig. 9.1a. There, for instance image retrieval is
realized by a query by example search. A MPQF query is send directly to AIR and the
query is distributed to the applicable backends. The major issue in this case is not the
distribution, but the result aggregation of the different result sets. AIR has to aggre-
gate the results on the one side by eliminating all duplicates and on the other side by
performing an ideal ranking of the individual result items. A first implementation
uses the round robin approach [1], which guarantees efficient processing of result
sets of autonomous retrieval systems. However, it is supposable that different back-
ends use different implementations and quality measures for processing the fuzzy
retrieval that leads to quality discrepancies between the result sets. Therefore, similar
to approaches such as [2] where statistics about sources are collected, the BBL will
provide information about the search quality of a backend which leads to a more intel-
ligent re-ranking and aggregation of the result set. The idea is to calculate a specific
benchmarking score for a system on the basis of the produced/derivable quality mea-
sures. This helps to compare different retrieval systems, potentially evaluated by
different benchmarks. Here, we assume, that the benchmarks share a certain degree
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of overlap in the extracted measures (e.g. normalized discounted cumulative gain).
As already said, the most important information for an external metasearch engine
(for reranking) is, whether a relevant item is well ranked in the result set or not. This
information and a respective MPQF query classification model will be realized by a
new benchmarking environment that allows to rate the search quality of registered
backends. This topic is currently under development and a close collaboration with
related organizations (JPEG [3] and ImageCLEF [14]) is initiated. First results have
been proposed in [18].

9.4.6 Response Layer

The MPQF Response Layer performs in general the result aggregation and returns
the aggregated result set. This follows the definition of an external metasearch engine
given by Montague and Aslam in [13]. External metasearch treats existing search
engines, which are potentially operating on diverse document sets, as black boxes and
consolidates their output. Recent work [4] already highlighted useful result aggrega-
tion algorithms for MPQF. These algorithms could build the basis for a new approach,
which also takes the advantages of the BBL into account.

9.5 Projects Utilizing AIR

The following two real world projects are using the current prototype of the AIR
framework. These two have been selected, because they differ (a) in their covered
domain and (b) in the way, the query is being processed (cf. Sect. 9.2). This diversity
clearly shows the applicability of AIR in a wide range of usage scenarios.

9.5.1 THESEUS (Application Scenario MEDICO)

The THESEUS project2 is funded by the German Federal Ministry of Economics and
Technology. Its challenge is to find ways of providing users with simple and efficient
access to this enormous amount of knowledge available on the Web. The applications
of this project should develop new mechanisms for automatic annotation of data, rapid
processing of multimedia documents or innovative ontology management. The main
project is subdivided in six sub-projects, that are settled in a variety of domains (e.g.
digital libraries). The mission of the MEDICO application scenario is to establish an
intelligent and scalable search engine for the medical domain by combining medical
image processing and semantically rich image annotation vocabularies.

Figure 9.3 sketches an end-to-end workflow inside the MEDICO system. It pro-
vides the user with an easy-to-use web-based form to describe his/her search query.

2 http://www.theseus-programm.de

http://www.theseus-programm.de
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Fig. 9.3 Search infrastructure: end-to-end workflow between the Medico web interface and AIR

Currently, this user interface utilizes a semantically rich data set composed of DICOM
tags, image annotations, text annotations and gray-value based 3D CT images. This
leads to a heterogeneous multimedia retrieval environment with multiple query lan-
guages: DICOM tags are stored in a PACS system, image/text annotations are saved
in a triple store and the CT scans are accessible by a image search engine perform-
ing a similarity search. Apparently, all these retrieval services are using their own
query languages for retrieval (e.g. SPARQL) as well as the actual data representa-
tion for annotation storage (e.g. RDF/OWL). Beside all differences, these different
data sources describe a common (semantically linked) global data set. To fulfill a
meaningful semantic search, the present interoperability issues have to be solved.
Furthermore, it is essential to formulate queries that take the aforementioned diverse
retrieval paradigms into account. For this purpose, MEDICO integrates the AIR mul-
timedia middleware framework, following the federated query processing strategy as
described in Sect. 9.2. An evaluation regarding the retrieval abilities of the MEDICO
system can be found in [15].
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Fig. 9.4 Main components of the JPSearch based Interoperable Image Search

9.5.2 Interoperable Image Search

Figure 9.4 shows the image retrieval system consisting of three independent parts that
are connected by the AIR middleware framework. All components are implemented
in Java, using the SOAP protocol3 for communication. The retrieval process is based
on the JPSearch standard4 [8], issued by ISO/IEC SC29 WG1 (commonly known
as JPEG). The goal of JPSearch is to standardize interfaces for an abstract image
retrieval system. Within this standard, a specific query language—JPEG Query For-
mat (JPQF)—has been defined using a subset (tailored to image retrieval) of MPQF.
In the following, the different parts will be highlighted from a functional point of
view.

Note: It is no restriction for AIR, that this scenario is based on JPSearch, esp.
JPQF. AIR is able to process MPQF as well as JPQF due to the subset relation.
Further, a few components, e.g. implementation of JPSearch Transformation Rules
and QUASI:A, will serve as an official reference implementation for the standard.

9.5.3 Heterogeneous Image Retrieval Environment

The data source is a heterogeneous image retrieval environment, whereas the engaged
data stores act autonomous. In this context, autonomous means that the engaged
data stores have no direct correlation/connection in the first place. The following
assumptions are made: the data stores feature retrieval services in order to process
the incoming JPQF query as a whole (no segmentation of queries needed). Further-
more the image data sets are not overlapping, but are annotated with diverse metadata
formats, here MPEG-7 and Dublin Core. Therefore, duplicate elimination plays only
a minor role in the aggregation process. The main challenge is to manage heterogene-
ity that is expressed by (i) different metadata formats for annotation and (ii) different
query languages for retrieval following the local processing strategy of Sect. 9.2.

3 http://www.w3.org/TR/soap12-part1/
4 http://www.jpsearch.org/

http://www.w3.org/TR/soap12-part1/
http://www.jpsearch.org/
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9.5.4 User Interfaces

The query and search for images application (QUASI:A) is JavaFX based and sup-
posed to offer JPQF query generation (cf. Fig. 9.5a) as well as result presentation
functionalities. As a proof of concept, only a subset of JPSearch functionalities has
been implemented, focusing on the specified interoperability issues. Therefore, it is
restricted to the three JPQF query types: QueryByMedia, QueryByDescription and
QueryByRelevanceFeedback. The first query type is an implementation of the well-
known Query–By–Example paradigm. Here, a user is able to specify a picture (e.g.
accessible on the internet or via file upload) that serves as an input for a similarity
search. This picture can also be modified (e.g. crop or resize), as shown in Fig. 9.5b,
where a special region of interest has been selected. The second query offers the
possibility to define a metadata based search. Here, a user may fill out a form con-
taining elements of the JPSearch core schema to perform an exact metadata search.
These query types and the comparison types can be linked by the use of Boolean
operators (e.g. AND) in a tree based manner, as illustrated in Fig. 9.5a. This visual-
ization technique ensures clarity and usability. The images stored in the aggregated
result set will be presented in a gallery fashioned way. Here, a single image of the
gallery can be directly used as an input for a further similarity search (browsing) or
a subset (positive as well as negative examples) of the result set defining a relevance
feedback query.

The Query Observer is a subproject of AIR. Its main intention is to visual-
ize the process units of a JPQF query inside AIR. In other words it acts like a
query tracing system. This system is divided into two parts: tracing service and
visualization interface. The tracing service is implemented as a SOAP web service
and receives query events directly from AIR. A single event consists of the event
name, a generic comment, the processing time, the complete XML code of the JPQF
query and the assigned JPQF ID. These events are stored in a relational database.
Figure 9.6 shows the visualization interface presenting the stored events of a query.
After a preprocessing by the global JPQF ID, a query to evaluate can be selected.
The system distinguishes different process units of a JPQF query and presents the
stored event informations. For example, moving the cursor over an event symbol
the corresponding comment will be displayed as a tooltip. For every single event,
the complete XML code of a JPQF query can be displayed. This feature is especially
useful to show the metadata transformation process. Finally, the visualization can
be run in two modes of operation, namely automatic and manual playback using
playback functionalities (e.g. pause or play).

9.6 Related Work

Recently, several approaches for accessing multimedia data in a possibly distributed
and heterogeneous environment have been proposed:
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(a)

(b)

Fig. 9.5 JavaFX based user interface QUASI:A. a Query generation and result presentation b
QueryByMedia functionalities
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Fig. 9.6 Query Observer—JPQF visualization and tracing

Table 9.1 Comparison of the three systems referring to the requirements defined in Sect. 16.1

Generic framework LEGO-like architecture

Modularity + −
Multimedia specific query 4 q.t. (proprietary) 9 q.t. (standardized)

types
Cross system retrieval Unified access Not given
Metadata interoperability Limited to DICOM Metadata ontologies

AIR

Modularity ++
Multimedia specific query 9 q.t. (standardized)

types
Cross system retrieval Federated access
Metadata interoperability Transformation rules

& Metadata ontologies

Möller et al. issued in [12] a generic framework for medical search and retrieval.
The application consists of a graphical metadata extractor, an annotation interface
and a search interface. Here, the search interface is rather limited regarding the
multimedia search capabilities and the metadata extractor is closed to the DICOM
standard, but it is able to address heterogeneous data sources.

http://dx.doi.org/10.1007/978-1-4614-3831-1_16
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Tous et al. proposed in [20] an architecture for search & retrieval of still images.
This architecture is based on three main components, covering the query format, the
file transfer and registration of metadata ontologies. At its core, these interfaces use
international standards, such as MPQF. Unfortunately, this system is not able to deal
with heterogeneous data sources.

AIR, as it is described in this work, utilizes the findings described in [4]. However,
the AIR framework adopts the proposed result aggregation by the use in the BBL.
The consideration of the concepts described in Sect. 9.3 also had a deep impact
regarding the presented architecture of AIR. Also, the complete architecture as shown
in Sect. 9.4 is composed of modular components. This makes it possible to tailor AIR
specifically to the needs of a specific use case. These findings have been summarized
in Table 9.1.

9.7 Conclusion

This chapter introduced the AIR framework which targets on implementing interop-
erable multimedia search in an profoundly heterogeneous environment by the use of
standardized technologies. In this context, the framework used the newly developed
MPEG Query Format for unifying multimedia search requests. Besides, metadata
heterogeneity is antagonized by the established metadata transformation approach
of JPSearch/JPEG. These features are completed by means for query management
and distribution as well as service discovery and result set aggregation techniques.
The comparison in Table 9.1 clearly show the advances of the proposed architec-
ture. While the generic framework provides an unified access to heterogeneous data
sources, it lacks in the expressivness of proprietary multimedia queries and meta-
data interoperability. In contrast to that, the LEGO-like architecture sets the focus
on metadata interoperability, but the heterogeneity problem remains unstudied. Fur-
ther developments will concentrate on incorporating the quality of involved retrieval
systems by applying benchmarking results. In addition, work in the direction of a
federated multimedia database management system will be applied.
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Chapter 10
Local Invariant Feature Tracks for High-Level
Video Feature Extraction

Vasileios Mezaris, Anastasios Dimou and Ioannis Kompatsiaris

Abstract In this work the use of feature tracks for the detection of high-level
features (concepts) in video is proposed. Extending previous work on local inter-
est point detection and description in images, feature tracks are defined as sets of
local interest points that are found in different frames of a video shot and exhibit
spatio-temporal and visual continuity, thus defining a trajectory in the 2D+Time
space. These tracks jointly capture the spatial attributes of 2D local regions and
their corresponding long-term motion. The extraction of feature tracks and the selec-
tion and representation of an appropriate subset of them allow the generation of
a Bag-of-Spatiotemporal-Words model for the shot, which facilitates capturing the
dynamics of video content. Experimental evaluation of the proposed approach on two
challenging datasets (TRECVID 2007, TRECVID 2010) highlights how the selec-
tion, representation and use of such feature tracks enhances the results of traditional
keyframe-based concept detection techniques.
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10.1 Introduction

The development of algorithms for the automatic understanding of the semantics of
multimedia and in particular of video content, and the semantic indexing by means of
high-level features (concepts) corresponding to semantic classes (objects, events) is
currently one of the major challenges in multimedia research. This is motivated by the
ever-increasing pace at which video content is generated, rendering any annotation
scheme that requires human labor unrealistically expensive and unpractical for use
on anything but a very restricted subset of the generated content, which may be of
unusually high value or importance (e.g. cinema productions, medical content).

Research efforts towards the goal of high-level video feature extraction have
followed in the last decade or so several different directions that have the potential to
contribute to this goal, ranging from temporal or spatio-temporal segmentation [1, 2]
to key-frame extraction, video content representation using global shot or image
features, local interest point detection and description [3], creation of visual lexicons
for video representation (Bag-of-Words [4]), machine learning for associating low-
level and high-level features, etc. Typically, techniques belonging to several of the
aforementioned categories need to be carefully combined for extracting high-level
video features. The latter are useful in a wide variety of media organization and
analysis tasks, including interactive retrieval and the detection of scenes and high-
level events in video [5, 6].

This work focuses on video content representation, and in particular builds upon
previous work on local interest point detection and description to propose the extrac-
tion, selection and representation of feature tracks. These features compactly describe
the appearance and the long-term motion of local regions and are invariant, among
others, to camera motion, in contrast to both 2D interest point descriptors and their
known extensions to spatio-temporal interest points. The proposed feature tracks are
shown to be suitable for the generation of a Bag-of-Spatiotemporal-Words (BoSW)
model that facilitates capturing the dynamics of video content, allowing the more
reliable detection of high-level features that have a strong temporal dimension (e.g.
“people-dancing”).

The rest of the chapter is organized as follows: in Sect. 10.2, previous work on
local interest point detection and description is discussed. In Sect. 10.3, feature track
extraction and selection are presented, while the representation of feature tracks using
the LIFT descriptor and the use of such descriptors for building a BoSW model are
discussed in Sect. 10.4. Experimental results are reported in Sect. 10.5 and finally
conclusions are drawn in Sect. 10.6.

10.2 Related Work

Several approaches to scale-invariant interest point detection and description in still
images have been proposed and are widely used in still image understanding tasks
(image classification, object detection, etc.), as well as in other applications. SIFT
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[3] is probably the most widely adopted method; SIFT-based descriptors are shown
in [7] to outperform several previously proposed techniques for local region descrip-
tion. More recent work on this topic includes SURF [8], which focuses mostly on
speeding-up the interest point detection and description process, and [9], which
examines the introduction of color information to the original grey-value SIFT. For
the application of high-level feature extraction in generic image collections, the
above descriptors are typically used to build a Bag-of-Words (BoW) model [4],
which involves the definition of a “vocabulary” of visual words (typically, created by
clustering the interest point descriptors coming from a large number of images and
then selecting the resulting centroids as words) and the subsequent representation of
each image as the histogram of the visual words (i.e., corresponding interest points)
found in it.

Large-scale video analysis for the purpose of high-level feature extraction, using
local features, is in most cases performed at the key-frame level [10]. Thus, the video
analysis task reduces to still image analysis. This has obvious advantages in terms of
computational complexity, but on the other hand completely disregards the temporal
dimension of video and the wealth of information that is embodied in the evolution of
the video frames along time. The temporal evolution of the video signal, i.e. motion,
is generally considered to convey very important information in video, being a key
element of several video understanding and manipulation tasks, e.g. retrieval [11].
Long-term region trajectories in particular, rather than the motion at the frame level,
have been shown to be very useful for video segmentation, indexing and retrieval
in several works (e.g. [1]). Similarly to other analysis tasks, the use of video data
in excess of one single key-frame (e.g. using multiple key-frames per shot [12], or
treating all frames as key-frames and also considering their temporal succession [13])
for high-level feature extraction has been shown to lead to improved results.

In order to introduce temporal information in the interest-point-based representa-
tion of video shots, in [14] spatial interest points are detected using the SIFT method-
ology and additional motion constraints; the detected points are described using both
visual and motion information. In [15], the use of spatio-temporal (as opposed to
spatial-only) interest point detectors is proposed. Spatio-temporal interest points are
defined as locations in the video where intensity values present significant variations
both in space and in time. In [16] and other works, such points are used for human
action categorization, since the abrupt changes in motion that trigger the detection
of spatio-temporal interest points can be useful in discriminating between different
classes of human activity (walking, jumping, etc.). However, spatio-temporal inter-
est points define 3D volumes in the video data that typically neither account for
possible camera motion nor capture long-term local region trajectories. To alleviate
these drawbacks, the tracking of spatial interest points across successive frames has
been proposed for applications such as object tracking [17] and the visualization
of pedestrian traffic flow in surveillance video [18]. In [19], the problem of object
mining in video is addressed by tracking SIFT features and subsequently clustering
them, to identify differently moving objects within a shot. In [20, 21], interest points
are tracked and either the motion information alone [20] or appearance and motion
information in separate BoW models [21] are used for action recognition in video.
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However, neither one of the previous works on tracking spatial interest points uses
the outcome of tracking for defining a BoSW model of the shot, as in the present
work.

10.3 Feature Tracks

10.3.1 Feature Track Extraction

Let S be a shot comprising T frames, S = {It }T−1
t=0 , coming from the temporal sub-

sampling of the original video shot S0 = {Iτ }T 0−1
τ=0 by a factor of a; T = �T 0/a�.

Application of one of the available combinations of interest point detection and
description techniques (e.g. [3, 8, 9]) on any frame It of S results in the extraction
of a set of interest point descriptions �t = {φm}Mt

m=1, where Mt is the total number
of interest points detected in the frame, and interest point φm is defined as φm =
[φx

m, φ
y
m, φ

d
m]. φx

m , φy
m denote the coordinates of the corresponding local region’s

centroid on the image grid and φd
m is the local descriptor vector, e.g. an 128-element

SIFT vector. In this work, the SIFT method was used for interest point detection and
description, due to its well-documented [3, 7] invariance properties.

Having detected and described interest points in all frames of S, a temporal corre-
spondence between an interest point φm ∈ Φt and one interest point of the previous
frame can be established by local search in a square spatial window of dimension
2 ·σ +1 of frame It−1, i.e., by examining if one or more φn ∈ Φt−1 exist that satisfy
the following conditions:

|φx
m − φx

n | ≤ σ , (10.1)

|φy
m − φy

n | ≤ σ , (10.2)

d(φd
m, φ

d
n ) ≤ dsim , (10.3)

where σ is a constant whose value is chosen such that a reasonably-sized square
spatial window is considered during local search, and d(.,.) is the Euclidean distance.
The latter was also used in [3] for keypoint matching across different images, and is
chosen in this work for consistency with the K-Means clustering that is used at a later
stage for assigning the extracted tracks to words of the BoSW model (Sect. 10.4.3).
If multiple interest points satisfying (10.1)–(10.3) exist, the one for which quantity
d(φd

m, φ
d
n ) is minimized is retained. When such an interest pointφn exists, the interest

point φm ∈ Φt is appended to the feature track where the former belongs, while
otherwise (as well as when processing the first frame of the shot) the interest point
φm is considered to be the first element of a new feature track.

Repeating the temporal correspondence evaluation for all interest points and all
pairs of consecutive frames in S results in the extraction of a set Ψ of feature tracks,
Ψ = {ψk}Kk=1, where ψk = [ψ x

k , ψ
y
k , ψ

d
k ]. ψd

k is the average descriptor vector of
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a feature track, estimated by element-wise averaging of all interest point descriptor
vectors φd

m of the feature track, as in [19], while ψ x
k is the corresponding time-series

of camera-motion-compensated interest point displacement in the x-axis between
successive frames of S in which the feature track is present. ψ y

k is defined similarly
for the y-axis. Thus, ξk = [ψ x

k , ψ
y
k ] is the long-term trajectory of the interest point

that generates the feature track: ψ x
k = [ψ x,tk1

k , ψ
x,tk1+1
k , ... ψ

x,tk2
k ] where tk2 > tk1

(and similarly for ψ y
k ). The values ψ x,t

k are estimated for any given t by initially
using the differences φx

m − φx
n , φy

m − φy
n for all identified valid pairs of interest

points between frames It , It−1 to form a sparse, non-regular motion field for the
corresponding pair of frames; subsequently, the 8 parameters of the bilinear motion
model, representing the camera motion, are estimated from this field using least-
squares estimation and an iterative rejection scheme, as in [1]. Then ψ x,t

k and ψ y,t
k

are eventually calculated as the differences between the initial displacement of the
corresponding interest point’s centroid between times t − 1 and t , and the estimated
camera motion at the location of the centroid.

The simple interest point matching between successive frames of S, which is used
as part of the proposed feature track extraction process, was chosen primarily for its
simplicity; more elaborate techniques for tracking across frames have been proposed
(e.g. [18]) and can be used instead, for producing more accurate feature tracks, if the
added computational complexity is not a limiting factor. An example of the feature
tracks that are extracted by the proposed procedure is shown in Fig. 10.1.

10.3.2 Feature Track Selection

The feature track extraction process, described in the previous section, typically
results in the extraction of a large number of feature tracks (e.g. in the order of tens
of thousands) for every shot. These exhibit significant differences in their temporal
duration, with the track length tk2−tk1 ranging from 0 to T−1, T being the number of
frames in the shot (Fig. 10.2). Besides the practical problems associated with storing
and using such a large number of descriptors for every shot, the possible presence of
noisy or otherwise erroneous tracks among those originally extracted may adversely
affect concept detection. Therefore, selecting a suitable subset of these feature tracks
is proposed.

One possible criterion for selecting a subset of feature tracks is their repeatability
under variations (e.g. perspective, scale, and illumination variations). Repeatability
is among the main requirements for any descriptor. In this work, it is hypothesized
that the repeatability of a track can be approximated by examining the temporal
duration of it. More specifically, let us assume that R denotes the real-world scene
that is depicted in shot S. Under constant illumination conditions and assuming no
local (object) motion, the result of capturing scene R with an ideal static camera
would be an ideal image Ir . Then, every image It ∈ S can be seen as a different
noisy observation of Ir , affected by image acquisition noise and possible global and
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Fig. 10.2 Example of the distribution of feature tracks extracted for a shot, according to their
temporal duration

local motion, as well as perspective, scale, and illumination variations. Similarly,
every interest point in image It that is part of an extracted feature track ψk can be
perceived as the result of detecting the corresponding ideal interest point of Ir under
the specific variations affecting image It . Of course, the assumption made here is
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that the correspondences established with the use of (10.1)–(10.3) are not erroneous.
Consequently, the probability of a specific feature track being present in one frame
of S can be used as a measure of the repeatability of the interest point that defines
this feature track, thus also as a measure of the relevant repeatability of the feature
track itself, in comparison to other feature tracks of the shot.

Following this discussion, in this work the probability of a specific feature track
being present in one frame of S is calculated as the number of frames in which the
track extends, divided by the total number of frames of the shot,

p(ψk) = tk2 − tk1

T − 1
, (10.4)

and is used as a measure of the feature track’s repeatability. Consequently, the feature
tracks of set Ψ generated for shot S are ordered according to p(ψk) (equivalently,
in practice, according to tk2 − tk1) in descending order, and the N first tracks are
selected for generating the BoSW model of the shot.

It should be emphasized that repeatability is just one possible criterion for select-
ing feature tracks, and the most repeatable features are not necessarily the most
informative ones as well; thus, jointly considering repeatability and additional crite-
ria may be beneficial. Furthermore, note that the temporal duration of a track being a
good approximation of its repeatability is only a hypothesis that we make; this needs
to be experimentally verified. To this end, the track selection strategy described
above, which is based on this hypothesis, is evaluated against two other possible
such strategies in the experimental results section.

10.4 Bag-of-Spatiotemporal-Words

10.4.1 Feature Track Representation

The selected feature tracks are variable-length feature vectors, since the number of
elements comprising ψ x

k and ψ y
k is proportional to the number of frames that the

feature was tracked in. This fact, together with other possible track artefacts (e.g. the
extraction of partial tracks, due to failure in interest point matching between consec-
utive frames, occlusions, etc.) make the matching of feature tracks non-trivial and
render their current representation unsuitable for direct use in a BoW-type approach.
For this reason, each motion trajectory is transformed to a fixed-length descriptor
vector that attempts to capture the most important characteristics of the motion.

To capture motion at different time-scales, ψ x
k and ψ y

k are initially subject to
low-pass filtering using a filter bank shown in Fig. 10.3, based on the lowpass Haar
filter H(z) = 1

2 (1 + z−1). This results in the generation of a family of trajectories,
ξk,q = [ψ x

k,q , ψ
y
k,q ], q = 0, ..., Q − 1, as shown in Fig. 10.3, which due to the

simplicity of the Haar filter are conveniently calculated as follows:
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Fig. 10.3 Filter bank used for capturing motion at different time-scales

ψ x
k,q = [ψ x,tk1+2q−1

k,q , ψ
x,tk1+2q

k,q , ... ψ
x,tk2
k,q ] , (10.5)

ψ
x,t
k,q =

1

2q

2q−1
∑

i=0

ψ
x,t−i
k . (10.6)

The y-axis elements of the trajectory are calculated similarly.
For any trajectory ξk,q , the histogram of motion directions at granularity level θ is

defined as a histogram of π
θ

bins: [0, θ), [θ, 2 ·θ),..., [π−θ, π). When π ≤ θ < 2 ·π ,
θ ′ = θ−π is used instead of θ for assigning the corresponding elementary motion to
the appropriate bin of the histogram. The value of each bin is defined as the number
of elementary motions [ψ x,t

k,q , ψ
y,t
k,q ] of the trajectory that fall into it, normalized

by division with the overall number of such elementary motions that belong to the
examined trajectory. λ(ξk,q , θ) is defined as the vector of all bin values for a given
ξk,q and a constant θ .

Then, the initial trajectory ξk can be represented across different time-scales and
at various granularity levels as a fixed length vector μk :

μk =
[

λ
(

ξk,0,
π

2

)

, λ
(

ξk,1,
π

2

)

, ... λ
(

ξk,Q−1,
π

2

)

λ
(

ξk,0,
π

4

)

, λ
(

ξk,1,
π

4

)

, ... λ
(

ξk,Q−1,
π

4

)

, ...

λ
(

ξk,0,
π

2J

)

, λ
(

ξk,1,
π

2J

)

, ... λ
(

ξk,Q−1,
π

2J

)
]

. (10.7)

The corresponding Local Invariant Feature Track (LIFT) descriptor is defined as:

L I FT (ψk) = [ψd
k , μk] . (10.8)

The LIFT descriptor is a fixed-length vector that compactly captures both the 2D
appearance of a local image region and its long-term motion.
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10.4.2 Invariance Concerns

The definition of the LIFT representation was guided by the need to introduce, to
the extent possible, some invariance with respect to the scale and direction of the
extracted tracks. Starting with the interest point detection and description in the 2D,
the SIFT method was used, due to its well-documented [3, 7] and desirable invariance
properties; other similar methods [8, 9] could also be used instead. Concerning the
feature track extraction, camera-motion-compensated trajectories were estimated and
employed to ensure that the final LIFT representation will not be affected by camera
motion. Camera motion could also be useful for representing the shots, but should
in any case be separated from the local motion of the different local features within
the shot, rather than being allowed to corrupt the latter.

In the subsequent representation of the tracks by histograms, only the direction
of each elementary motion of the track was employed, rather than the direction and
magnitude of it. This was done for introducing some degree of invariance to image
scale, since the same motion (e.g. a person picking up the phone) will result in
different motion vector magnitudes depending on the focal length of the camera and
its distance from the plane of the motion; on the contrary, the direction of motion is
not affected by these parameters.

Histograms at various time-scales were selected for representing the tracks,
instead of e.g. comparing the overall displacement of the interest point along the
track, to allow for partial matches when considering partial tracks (i.e., when the
beginning and end of the different extracted tracks that correspond to the same class
of actions do not coincide with each other and with the actual beginning and end of
the depicted action). Although the adopted solution may be non-optimal, the reli-
able matching of partial tracks would otherwise require the use of a computationally
expensive optimization-based technique for evaluating the similarity of them, in place
of the Euclidean distance typically used in K-Means when creating the “words” used
in the Bag-of-Words approach.

The use of motion direction histograms at different granularity levels θ (instead of
using a single histogram with a high number of bins) aims at allowing again for partial
matches between tracks using a simple metric (i.e., L1/L2 rather than e.g. the Earth
Mover’s Distance), in the case of small variations in the direction of motion. When
considering only a very fine granularity level θ , significant such variations between
similar shots could be caused by even small differences in camera angle/viewpoint.
The combined use of multiple (from coarse to fine) granularity levels can alleviate this
effect to some degree. Alternatively, the weighted assignment of every elementary
motion to more than one neighboring bins, when constructing each motion direction
histogram, could be employed.
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Fig. 10.4 Illustration of the temporal pyramidal methodology

10.4.3 Shot Representation

The LIFT descriptors of the feature tracks extracted and selected for a video shot,
according to the processes of Sect. 10.3, can be used for generating a BoSW model.
This will essentially describe the shot in terms of classes of “similarly-moving,
visually-similar local regions”, rather than simply “visually-similar local regions”
(detected by either spatial or spatio-temporal interest point detectors), as in the current
state-of-the-art, e.g. [12, 16]. The BoSW model is expected to allow for the improved
detection of dynamic concepts in video, in contrast to the traditional keyframe-based
BoW that by definition targets the detection of static concepts. Furthermore, since the
shot features used in the BoW and BoSW models are different and, to some degree,
complementary, it is expected that combining the two models can result in further
improvement of the detection rates for both dynamic and static concepts.

For the generation of the BoSW model, the typical process of generating BoW
descriptions from any set of local descriptors is followed. Thus, K-Means clustering,
using a fixed number of clusters, is performed on a large collection of LIFT descriptors
for initially identifying a set of words (i.e., the centroids of the clusters). Hard- or
soft-assignment of each one of the LIFTs of a given shot to these words can then be
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performed for estimating the histogram that represents a given shot on the basis of
the defined spatio-temporal words. Furthermore, techniques such as spatial pyramids
[22] or temporal extensions of them (Fig. 10.4) can be used in combination with the
BoSW model, similarly to the way spatial pyramids are combined with the BoW
one.

10.5 Experimental Results

In the experimental evaluation of the proposed techniques, two datasets were used.
The first one is the TRECVID1 2007 dataset, which is made of professionally-created
videos (Dutch TV documentaries). The training and testing portions of it comprise
50 hours of video each, and 18120 and 18142 shots respectively; all these shots
are annotated with 20 concepts that were defined for the TRECVID 2009 contest.
This dataset was employed for evaluating different design choices of the proposed
BoSW (e.g. the feature track selection strategy) and for comparing them with alter-
nate approaches, as well as for comparing the overall proposed technique with the
traditional SIFT-based BoW one. The second dataset is the TRECVID 2010 one,
which is made of heterogeneous internet videos. The training and test portions of it
comprise approximately 200 h of video each, and 118536 and 144971 shots respec-
tively; the training portion is annotated with 130 concepts that were defined for the
TRECVID 2010 contest. This dataset was used for further comparing the overall
proposed technique with the traditional SIFT-based BoW one, on the basis of the
30 concepts (out of the overall 130 ones) that were evaluated for each run that was
submitted to TRECVID 2010.

In the process of extracting the proposed LIFT features of the video shots, the
temporal sub-sampling parameter a was set equal to 3. This represents a good com-
promise between the need for accurately establishing the SIFT point correspondences
from frame to frame (which calls for a low value of a, ideally 1) and the need for speed-
ing up the feature extraction process. For each frame of the temporally sub-sampled
sequence, the method of [3] was used for interest point detection and description,
resulting in a 128-element vector for the local region of each interest point. Parame-
ter σ , defining the local window where correspondences between SIFT descriptors
are evaluated, was set to 20, and parameter dsim , used for evaluating the similar-
ity of SIFT descriptors in different frames, was set to 40,000. Using four different
timescales (Q = 4) and three granularity levels θ (i.e., J = 3 in (10.7)) for repre-
senting the trajectory information of the extracted feature tracks resulted in the LIFT
descriptor of each feature track being a 184-element vector, while setting J = 5 in
selected experiments (indicated below) resulted in a 376-element vector instead.

A first series of experiments was carried out on the TRECVID 2007 dataset, in
order to evaluate the appropriate number of feature tracks that should be used for
representing each shot, given the above feature track extraction and representation

1 http://www-nlpir.nist.gov/projects/trecvid/

http://www-nlpir.nist.gov/projects/trecvid/
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parameter choices. A BoSW model, using hard assignment and 500 words, was used
to this end, together with Support Vector Machine classifiers. The latter produced
a fuzzy class membership degree in the range [0,1] when used for evaluating the
relevance of each shot of the TRECVID 2007 test dataset with every one of the
considered high-level features, exploiting the BoSW model. Prior to this, the SVM
classifiers were trained using the TRECVID 2007 training dataset and the common
annotation; for each high-level feature, a single SVM was trained independently of
all others. It should be noted that this is only a baseline configuration; it is used for
efficiently evaluating certain characteristics of the proposed BoSW, and is neither
optimal nor in par with SoA works such as [12], where 4000 words, soft assignment,
multiple color SIFT variants, and additional techniques such as pyramidal decompo-
sition are combined, increasing the dimension of the vector representing each shot
from 500 (as in our baseline configuration) to about 100,000. The results (mean
average precision, calculated for a maximum of 2000 returned samples per concept
[10]) are shown in Fig. 10.5a, where it can be seen that using 2500 feature tracks per
shot leads to the best results overall.

A second series of experiments was carried out to evaluate the soundness of the
feature track selection process of Sect. 10.3.2 and of the hypothesis that this process
has been based on. Specifically, the selection of the 2500 tracks with the highest
probability p(ψk), as proposed in Sect. 10.3.2 (denoted as selection criterion “BB”
in the sequel) was compared with a) the selection of the 2500 tracks with the highest
probability p(ψk) after removing from set Ψ those feature tracks used by selection
criterion “BB” (denoted as “SB” in the sequel), and b) the random selection of 2,500
feature tracks from set Ψ (selection criterion “RR”). The LIFT descriptor was used
in all the above cases for representing the selected tracks and for forming a 500-word
BoSW model. Experimentation with the 500-word keyframe-based BoW model that
uses SIFT descriptors was also carried out, for comparing BoSW and BoW when
used in isolation. For creating the BoW model of each shot, the median frame of
the shot was selected as a key-frame and SIFT descriptors were extracted from it.
The results (Fig. 10.5b) show that selection criterion “BB” significantly outperforms
criteria “SB” and “RR”. The BoSW model using selection criterion “BB” by itself
performs comparably to the keyframe-based BoW model overall, but considerably
better than the latter when considering only dynamic concepts (i.e., a subset of the
20 defined high-level features, which is discussed in more detail below).

In a third series of experiments, the merit of combining the BoSW and BoW
models was evaluated. The combination of the two was performed by concatenating
the shot descriptions produced by each of them, similarly to how different BoW
models based on different color SIFT variants are combined in [12]. In Table 10.1,
BoW and the combination of BoW and BoSW (using selection criterion “BB”) are
compared using a) the baseline configuration used in the previous experiments: 500
words and hard assignment, and b) 500 words, soft assignment, a spatial pyramid
of 2 levels for BoW and, in a similar fashion, the temporal pyramid of Fig. 10.4 for
BoSW. Additionally, in the latter case 5 granularity levels θ (i.e., J = 5 in (10.7)),
instead of 3, are used. The results of Table 10.1 document the contribution of the
proposed BoSW model to improved performance when combined with the BoW
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Fig. 10.5 Evaluation of (a) the impact of the number of feature tracks used for representing each
shot, and (b) the impact of different shot representation techniques, on concept detection perfor-
mance

Table 10.1 Comparison between BoW, combination of BoW and BoSW on the TRECVID 2007
dataset (mean average precision for all 20/6 dynamic concepts)

BoW BoW+BoSW(BB)

Number of considered concepts: 20 6 20 6
500 words, hard assignment 0.054 0.041 0.068 0.056
500 words, soft assignment, spatial/temporal 0.084 0.088 0.102 0.113
pyramidal decomposition

model, compared to the latter alone, as well as the applicability of techniques such
as soft assignment and pyramidal decomposition (particularly temporal pyramids)
to BoSW. Overall, considering the second of the the two tested configurations (500
words, soft assignment, spatial/temporal pyramidal decomposition), the SIFT-based
BoW resulted in a mean average precision (MAP) of 0.084, whereas the combination
of BoW and BoSW in a MAP of 0.102, representing an increase of the former by
approximately 21 %. Considering only high-level features that have a strong temporal
dimension (“people-dancing”, “person-playing-soccer”, etc.), i.e. features 5, 6, 7, 9,
11 and 13 of Fig. 10.6, the use of the proposed BoW and BoSW combination leads to
an increase of MAP by approximately 28 % over using the SIFT-based BoW alone.
The significance of taking into account motion information, as done by BoSW, for
detecting such dynamic concepts can also be seen in Fig. 10.6, where the per-concept
results (average precision) corresponding to the last row of Table 10.1 are shown.

Finally, the SIFT-based BoW and the combination of BoW and BoSW (using
again 500 words, soft assignment, spatial/temporal pyramidal decomposition, and 5
granularity levels θ ) were compared on the TRECVID 2010 dataset, by participating
with the two corresponding runs to the TRECVID 2010 contest [23]. The results for
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Fig. 10.6 Individual concept detection results on the TRECVID 2007 dataset for BoW alone and
for the combination of BoW and BoSW, using 500 words, soft assignment, and spatial/temporal
pyramidal decomposition

Table 10.2 Comparison between BoW, combination of BoW and BoSW on the TRECVID 2010
dataset (mean extended inferred average precision for all 30/8 dynamic concepts)

BoW BoW+BoSW(BB)

Number of considered concepts: 30 8 30 8
500 words, soft assignment, spatial/ 0.030 0.020 0.038 0.039
temporal pyramidal decomposition

the 30 concepts that were evaluated in this contest are reported in Table 10.2 and
Fig. 10.7 (overall and per-concept results, respectively). Extended inferred average
precision (xinfAP) and mean extended inferred average precision (MxinfAP) [24],
calculated for a maximum of 2000 returned samples per concept, were used for
quantifying the results, in order to account for the test portion of this dataset being
annotated only in part. It can be seen that the SIFT-based BoW resulted in a Min-
fAP of 0.030, whereas the combination of BoW and BoSW in a MinfAP of 0.038,
representing an increase of the former by approximately 26.7 %. Considering only
high-level features that have a strong temporal dimension, i.e. features 1, 4, 7, 11,
23, 26, 28, and 30 of Fig. 10.7, the use of the proposed BoW and BoSW combination
leads to an increase of MinfAP by approximately 95 % over using the SIFT-based
BoW alone.
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Fig. 10.7 Individual concept detection results on the TRECVID 2010 dataset for BoW alone and
for the combination of BoW and BoSW, using 500 words, soft assignment, and spatial/temporal
pyramidal decomposition

10.6 Conclusions

In this work the use of feature tracks was proposed for jointly capturing the spatial
attributes and the long-term motion of local regions in video. In particular, techniques
for the extraction, selection, representation and use of feature tracks for the purpose of
constructing a BoSW model for the video shots were presented. Experimental eval-
uation of the proposed approach on two challenging test corpora (TRECVID 2007,
TRECVID 2010) revealed its potential for concept detection in video, particularly
when considering dynamic rather than static concepts.
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Chapter 11
A New Evaluation Criterion for Point
Correspondences in Stereo Images

Aleksandar Stojanovic and Michael Unger

Abstract In this chapter, we present a new criterion to evaluate point correspon-
dences within a stereo setup. Many applications such as stereo matching, triangula-
tion, lens distortion correction, and camera calibration require an evaluation criterion
for point correspondences. The common criterion here is the epipolar distance. The
uncertainty of the epipolar geometry provides additional information, and our method
uses this information for a new distance measure. The basic idea behind our crite-
rion is to determine the most probable epipolar geometry that explains the point
correspondence in the two views. This criterion considers the fact that the uncer-
tainty increases for point correspondences induced by world points that are located
at a different depth-level compared to those that were used for the fundamental
matrix computation. Furthermore, we show that by using Lagrange multipliers, this
constrained minimization problem can be reduced to solving a set of three linear
equations with a computational complexity practically equal to the complexity of
the epipolar distance.

Keywords Fundamental matrix · Robust matching · Probabilistic epipolar
geometry · Outlier elimination

11.1 Introduction

Over the past few decades, significant advances in the field of object recognition
have been made. In the case of matching points in a stereo image pair, the epipolar
geometry, once it has been estimated, can be used for the evaluation of further point
matches. For a given point in one image, the epipolar geometry describes where the
corresponding point in the second image may be located. In fact, a so-called epipolar
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line in the second image can be derived, and the corresponding point must be located
on this line. Stereo correspondence algorithms benefit from this in the sense that a
correspondence search can be restricted to the epipolar line.

In practice, due to noise and outliers, only an approximation of the epipolar geom-
etry can be estimated. By consequence the distance of a correspondence from the
epipolar line in stereo matching is a useful criterion for evaluation. Many different
distance measures, summarized in [6], evaluate how well a pair of points satisfies the
epipolar geometry. However, none of these measures take into account the uncertainty
of the epipolar geometry.

While for planar 3-D data a homographic model is sufficient to explain point
correspondences, for general data the epipolar geometry is the only constraint on
corresponding image points. For real images, some point correspondences tend to
accumulate on image planes, while others are spread over different depth levels.
In [12], a unified correspondence framework was introduced, that covers the homo-
graphic and epipolar extremes and limits the search region for point correspondences.
For that purpose, a probabilistic framework was developed, based on the covariance
matrix of the fundamental matrix.

Recently, in [2] a method to compute a probability density function for point
correspondences was introduced. A drawback of this method is that this function
is depending on the depth of points in the scene. This is in contradiction with the
basic idea of epipolar geometry, which provides a relation between views without
any dependency on the depth of points in the scene.

In this chapter, we present a novel distance measure that takes into account the
uncertainty of the epipolar geometry in a sound way. We show that, using Lagrange
multipliers, the constrained minimization problem can be reduced to solving a set
of three linear equations with a computational complexity practically equal to the
complexity of calculating the epipolar distance, as defined in [6]. We show the benefits
of our criterion for the fundamental matrix computation.

11.2 Estimation of the Fundamental Matrix and its Uncertainty

If two cameras observe several 3-D points, the locations of the accordingly mapped
2-D points into each camera plane are not arbitrary, but related to each other. Having
only one camera, one knows that a 3-D point must be located somewhere on the ray
defined by its image point and the camera center. A second camera may recognize this
ray. This means that the projection of the 3-D point into the second camera plane must
be located on the mapped ray. In fact, for each image point in one image, a line can be
determined in the other image. This relationship between two cameras is described
by the epipolar geometry. Stereo correspondence algorithms may benefit from this
geometric property in the sense that a correspondence search may be restricted to
a small area around the epipolar line, or that outliers may be detected. In [12], a
unified correspondence framework was introduced that covers the homographic and
epipolar extremes and limits the search region for point correspondences.
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11.2.1 Basic Equations

The complete epipolar geometry is algebraically expressed by a 3× 3 matrix, the so
called fundamental matrix F .

A given image point x = [x, y, w]T in homogeneous coordinates is mapped onto
a line l ′ = [a, b, c]T by using F :

l ′ = Fx . (11.1)

Since the corresponding point x ′ = [x ′, y′, w′]T must be located on the line l ′,
the following equation must hold:

l ′x ′ = 0. (11.2)

In order to calculate F , we may combine (11.1) and (11.2), obtaining a linear
equation on the entries of F .

x ′T Fx = 0. (11.3)

Due to the fact that the fundamental matrix is a homogeneous matrix, it is scale
invariant. In addition, the determinant must be zero because the mapping of a point
onto a line forces rank two.

At the first glance, it seems that the problem of calculating the fundamental matrix
is straightforward. By stacking up at least seven equations of the form of (11.3), the
linear equation system can be solved and F is derived. The problem becomes much
more challenging if the point correspondences are perturbed by noise or if they are
outliers.

11.2.2 Noisy Point Correspondences

Besides methods like Gaussian elimination, the most common method to solve over-
determined linear equation systems is the least squares technique (LS). The main
drawback of this method is its vulnerability to noise if the underlying problem is
not homoscedastic, so that the variance of the residuals is independent from the
data. However, the basic equations for estimating the parameters of the fundamen-
tal matrix show a heteroscedastic behavior. Common estimation approaches like
the normalized eight-point algorithm [7] (which is actually a modified least squares
approach), probabilistic methods like the RANSAC [5] or LMedS [4] and complex
iterative approaches like [10], which take into account the heteroscedasticity of the
underlaying problem, have been developed. A good overview on recent methods for
computing the fundamental matrix is given in [11]. In the context that point corre-
spondences are only perturbed by Gaussian noise, these methods can be regarded as
being nearly optimal. As the point correspondences are also corrupted by outliers,
these methods have a reduced accuracy and a decision whether it is an outlier has to
be made for each correspondence, see [16].
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11.2.3 Epipolar Distance

Many different distance measures summarized in [6] evaluate how well a point
correspondence satisfies the epipolar geometry. The most simple distance measure is
the algebraic error which is simply the residuum of the epipolar geometry constraint:

r = x ′T Fx . (11.4)

One problem with this measure is that it depends on the scaling of F as well as the
norms of the points x and x ′. The scaling of F is constant for a set of correspondences
and therefore does not directly influence comparisons between them. Points near
the origin are treated differently compared to ones with larger coordinates, which
is problematic when it comes to answering the question which one better fits the
epipolar constraint.

To overcome this difficulty, the geometric error can be determined. Since l = Fx
defines a line, the normal vector of that line has to be normalized, so that the Euclidean
distance of the point x ′ to that line can be computed. This distance measure is much
more accurate especially for points, which have very large vector norms. The measure
is not linear anymore in the entries of F . This makes it much more difficult to estimate
F , since noise behaves in a way such that a least squares solver cannot find an optimal
solution (Fig. 11.1).

All of these measures treat the epipolar distance equally throughout the image
plane. In other words, it is irrelevant, where in the image plane the epipolar dis-
tance is computed and how well the fundamental matrix is situated at this spot. But
none of these measures take into account the uncertainty of the epipolar geome-
try. In estimation theory it is well known that predictions of an estimator near the
mass center of the data set, which was originally used to compute the parameters
of the estimator, are more accurate compared to predictions at the border of the
data set [9]. Furthermore, since the covariance matrix of an epipolar line depends
on the position of the related point correspondence, the reliability of the epipolar
geometry is not homogeneously distributed, see Figs. 11.2 and 11.3. In [2] a method
for computing a probability density function for point correspondences was intro-
duced, where for each pixel the summarized probability of all possible epipolar lines
going through this pixel is computed. This implies that point correspondences, hav-
ing a disparity similar to the mean disparity of the data set, become more likely than
uncommon disparities. However, in this work, a novel distance measure is presented,
which takes into account the uncertainty of the epipolar geometry in a sound way.
Instead of computing the accumulated probability at a certain point, the probability
of one epipolar line is computed, going through a certain point, while best explain-
ing the present epipolar geometry at the same time. It is shown that, using Lagrange
multipliers, this constrained minimization problem can be reduced to solving a set
of three linear equations with a computational complexity practically equal to the
complexity of calculating the epipolar distance, as defined in [6]. The benefits of



11 A New Evaluation Criterion for Point Correspondences 187

F =

Fig. 11.1 Uncertainty of the fundamental matrix: for each entry of the fundamental matrix, a
histogram was computed from several sets of noisy point correspondences, showing the impact of
the noise

Fig. 11.2 Uncertainty of the epipolar geometry: point correspondences composing the data set,
used to estimate the epipolar geometry and its uncertainty (Upper left corner). Epipolar band (k2

values in gray scale), epipolar envelope (green, α = 0.95 interval), and most probable epipolar line
(blue) for a point near the mass center of the data set and outside of it (yellow). The narrowness of
the epipolar band indicates the accuracy of the epipolar line estimation. Hence, epipolar lines for
point correspondences located near the mass center of the data set are estimated more accurately
compared to correspondences at the border
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Fig. 11.3 Envelope of epipolar lines: point in the first image used for computation (green, k2 =
5.9915, α = 0.95 interval). Most likely epipolar line (red) and epipolar envelope (green) in the
second image

the new criterion for outlier removal are demonstrated for the example of camera
parameter estimation.

11.3 Probabilistic Epipolar Geometry

Existing measures to evaluate the quality of a point correspondence use the only
available geometric constraint in a stereo setup, the epipolar geometry and its alge-
braic representation, the fundamental matrix. In practice, due to noise and outliers,
only an approximation of the epipolar geometry can be estimated. By consequence,
the distance of a correspondence from the epipolar line is a useful criterion for eval-
uation in stereo matching. In order to compute a robust fundamental matrix, point
correspondences originating from uncommon depth levels are necessary. Having
only coplanar 3-D points and hence correspondences, which can be explained by a
homography, an epipolar geometry can not be found. If some additional correspon-
dences, originating from 3-D points that are not coplanar with the other points, are
available the quality of the resulting fundamental matrix will strongly depend on
the quality of those additional point correspondences. If the ratio between copla-
nar points and other points is high, the epipolar geometry will be well suited for
the coplanar points, but much less for the others. Hence, one has to derive a mea-
sure which incorporates the importance of a point correspondence for the epipolar
geometry estimation. One way to accomplish this is to observe the impact on the
fundamental matrix, if points are perturbed by some noise. While coplanar points
marginally propagate their noise to the fundamental matrix, the noise from uncom-
mon points has a significantly higher impact. Hence, point correspondences have to
be treated differently when it comes to an evaluation of their quality. Therefore, a
new distance measure has to be developed [13]. The basic idea for this is to invert the
problem of finding a confidence interval with a certain probability α that an epipolar
line is explained by the estimated epipolar geometry. Hence, for a given point x in the
first view and a corresponding point x ′ in the second view, one line u going through
x ′ and having at the same time the minimal Mahalanobis distance to the estimated
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epipolar line l has to be determined. For the Mahalanobis distance in this context,
the inverse covariance matrix of the epipolar line is used, since it encapsulates the
particular uncertainty of the epipolar geometry with respect to the correspondence
x ↔ x ′.

11.3.1 Determining the Covariance Matrix of the Fundamental
Matrix

To capture the uncertainty of the epipolar geometry, it is not practical to just add noise
to any single point, while evaluating the impact. Aside from computation complexity,
some methods and especially the robust ones do not treat all point correspondences
equally. Instead, the noise is added to all points at the same time, such that after a
Monte Carlo simulation, the impact of the noise aggregates into the covariance matrix
of the fundamental matrix. To compute the covariance matrixΣF of F , it is assumed
that the noise on the correspondences follows a Gaussian distribution. After point
correspondences are computed, several sets of point correspondences are generated
by adding Gaussian noise to the original points. For each set, the fundamental matrix
is computed using the normalized eight-point algorithm. Hence, a number of different
fundamental matrices are obtained, showing how the epipolar geometry varies under
slight changes in the point correspondences locations. In [15] a method for directly
estimating the covariance matrix of the fundamental matrix is described.

11.3.2 Epipolar Lines and Epipolar Envelopes

As zero mean Gaussian noise on the point correspondences is assumed, for a given
point x in the first image the estimated and most likely epipolar line l is given in
homogeneous coordinates by

l = F

⎛

⎝x +
⎛

⎝

N (0, σ )
N (0, σ )

0

⎞

⎠

⎞

⎠ . (11.5)

From the covariance matrix of the fundamental matrixΣF , the covariance matrix
of the epipolar line is determined by

Σl = JΣF J T, (11.6)

where J is the Jacobian of the mapping

l = (Fx)

|Fx | . (11.7)
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The squared Mahalanobis distance k2 between an arbitrary line u and the estimated
epipolar line l is then given by

k2 = (l − u)T Σ+l (l − u) , (11.8)

whereΣ+l is the pseudo-inverse ofΣl , as the covariance matrix of the line might be
rank deficient.

Thus, an approximation of how well an arbitrary line l matches with the knowledge
acquired so far about the epipolar geometry and its uncertainty is acquired. For a
given value of k2, an envelope of epipolar lines containing all possible epipolar lines
having a value less or equal to k2 may be derived [6]. With the assumption that the
elements of l have Gaussian distribution, k2 has a cumulative χ2

2 distribution and a
probability that the true epipolar line is located within this envelope can be associated
to the k2-value. The region can be described by a conic C defined in homogeneous
coordinates by

C = mmT − k2Σl , (11.9)

where m is defined by
m = Fx . (11.10)

In [3] a detailed description of the conic, describing a contour of equal likelihood,
is given. The epipolar envelope is also used for guided matching [6], i.e., searching
correspondences within the epipolar band after a first estimation of the fundamental
matrix. It can be observed that if the fundamental matrix is computed from correspon-
dences located only in the foreground, the uncertainty in the background becomes
very high, see Fig. 11.2. This is the reason why correct matches lying in the corners
of the image are often eliminated using a conventional criterion. To prevent this, we
have to develop a new criterion being less stringent for matches in regions of high
uncertainty.

11.3.3 New Distance Measure for Point Correspondence
Evaluation

The basic idea for a new criterion is to invert the problem of finding an epipolar band
for a given likelihood (i.e., a given k2, respectively probability α). For a given point
x ′ in the second view corresponding to a point x in the first view, the conic with
minimal k2 comprising the point x ′ has to be found. In other terms, the value k2 in
(11.9) that provides a hyperbola passing through x ′ is retrieved.
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11.3.4 General Problem Statement

The point x ′ belongs to the conic C if the following equation holds

x ′T Cx ′ = 0, (11.11)

where C is given by (11.9). F2(k2) = α is the probability to find x ′ within C . It is
not possible to retrieve the corresponding value k2 directly from a point x ′ using the
equations above. One possibility would consist in computing a multitude of different
conics using a range of different values for k2, and localize x ′ in between the conics.
An approximation for k2 would be obtained by interpolation, but for the problem
there is a closed-form solution available, providing an exact result.

11.3.5 Closed-Form Solution

Assuming that the confidence, that any point x ′ in the second image, is corresponding
to a point x in the first view is in relation with the probability of the epipolar geometry
that would explain the correspondence pair x ↔ x ′ and having at the same time the
highest probability. In other terms, for a potential point correspondence x ↔ x ′,
the epipolar line l passing through x ′ having maximal probability is retrieved, i.e.,
minimal k2 regarding (11.8). This assumption differs from the assumption made in
[2], and we obtain a different criterion, which is more suitable for our purpose. If we
denote the unknown epipolar line by u and the estimated line in the second image
by l, the constrained minimization problem can be stated as follows:

{

min f (a, b, c) = (l − u)T Σ+l (l − u)
g(a, b, c) = x ′T u = 0

, (11.12)

with x ′ = (x, y, 1), m = (l1, l2, l3)T, l = (a, b, c)T, and the inverse covariance
matrix Σ+l obtained by an SVD, which is still a symmetric matrix of the form

Σ+l =
⎛

⎝

σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

⎞

⎠ . (11.13)

In order to determine an exact solution, using Lagrange multipliers, this
constrained minimization problem can be reduced to solving a set of three linear
equations.

∇ f (a, b, c) = λ∇g(a, b, c)
g(a, b, c) = 0

. (11.14)
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After expanding f (a, b, c) and computing its derivatives, it follows:

∂ f

∂a
= 2 (aσ11 + bσ12 + cσ13 − l1σ11 − l2σ12 − l3σ13)

∂ f

∂b
= 2 (aσ12 + bσ22 + cσ23 − l1σ12 − l2σ22 − l3σ23)

∂ f

∂c
= 2 (aσ13 + bσ23 + cσ33 − l1σ13 − l2σ23 − l3σ33) . (11.15)

For g(a, b, c) the following derivatives are determined:

∂g/∂a = x

∂g/∂b = y

∂g/∂c = 1 (11.16)

This results into

λ∂g/∂a = ∂ f/∂a ⇔ λ = x−1∂ f/∂a

λ∂g/∂b = ∂ f/∂b⇔ λ = y−1∂ f/∂b

λ∂g/∂c = ∂ f/∂c⇔ λ = z−1∂ f/∂c (11.17)

As a problem with three unknown variables has to be solved, three equations are
sufficient. Using the relations from (11.17) and the constraint that the point is located
on the line l, the set of equations becomes

∂ f/∂a = x∂ f/∂c

∂ f/∂b = y∂ f/∂c

ax + by + c = 0 (11.18)

Expanding (11.18) the following linear equation system is obtained

(

A
x y 1

)

·
⎛

⎝

a
b
c

⎞

⎠ =
(

A
0

)

· u, (11.19)

where A is a 2× 3 matrix:

A =
(

σ11 − xσ13 σ12 − xσ23 σ13 − xσ33
σ12 − yσ13 σ22 − yσ23 σ23 − yσ33

)

. (11.20)

This set of equations can be easily solved and the solution vector (a, b, c)T is
the line l passing through x ′ and having minimal k2 in terms of (11.12). Finally, the
corresponding value k2 from (11.8) that induces an epipolar band delimited by a
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hyperbola passing through x ′ is obtained. The value k2 is of special interest and this
is the new distance measure, which can be used as an evaluation criterion for point
correspondences in applications.

11.3.6 Application to Outlier Removal

The aim of computing the Mahalanobis distance k2 for a point correspondence is
to acquire a measurement for its compliance to the epipolar geometry. As stated
before, 3-D points may agglomerate at similar depth levels or on planes. While point
correspondences which originate from such configurations may be explained by a
homography and the epipolar constraint may be well suited for them, the epipolar
geometry will not fit well for arbitrary points and hence can not describe the camera
parameters accurately. More often, the quality of a fundamental matrix is measured
by the mean or the root mean square (RMS) of the epipolar distances of all available
point correspondences. Nevertheless, computing a fundamental matrix with a low
mean epipolar distance does not directly mean that it represents a stereo setup well.
A fundamental matrix, computed from a set of point correspondences of coplanar
3-D points will show a low mean epipolar distance, but it will have a very poor
performance when it comes to extracting camera parameters. Since the fundamental
matrix encapsulates camera parameters, a decomposition into the extrinsic camera
matrices should fit to the true rotation and translation of the cameras rather than just
allowing many point correspondences to satisfy the epipolar constraint.

11.4 Results

In this section, a method for computing the fundamental matrix using the new distance
measure derived above within an outlier removal step, is compared to one using the
epipolar distance instead. In addition we compare it to RANSAC, as implemented
in [1] and to the HEIV [10] method as a representative of the methods taking into
account the heteroscedasticity of the fundamental matrix estimation problem.

11.4.1 Algorithm

To compare the new distance measure with the common epipolar distance, a modified
iterative version of the normalized eight-point algorithm is used, including outlier
removal. In each iteration, the minimal k2 distance or respectively in the other meth-
ods, the epipolar distance of the point correspondences to their appropriate epipolar
lines is determined. If the distance of a correspondence exceeds a threshold based on
the mean distance value of all point correspondences, it is classified as an outlier and



194 A. Stojanovic and M. Unger

removed from further usage. In addition, the k2 value or in the competing version,
the epipolar distance, is used for weighting the linear equations of the least squares
problem. After some iterations or if no significant outliers were detected, the process
stops and a final fundamental matrix is returned, which has the minimal mean dis-
tance to all point correspondences, where in one case the most probable epipolar line
is used and in the competitive method the common epipolar line.

In order to distinguish between the two methods, the one which uses the new dis-
tance measure is referred to as “Statistic”, while the method comprising the Euclid-
ean epipolar distance is called ‘Euclidean’. Both methods are identical except for
the distance measures used to eliminate outliers and weighting the linear equations.
The resulting fundamental matrices have to be compared in a sound way. Since we
replaced the epipolar distance, the “Statistic” method does not optimize the Sampson
distance [6] any more. Hence, common quality measurements like RMS, or the mean
epipolar distance are not practicable, even though the method is well recognized by
them, as shown later. Instead, a simulation environment where a true fundamental
matrix and the intrinsic camera parameters are known is used. This allows to evaluate
the similarity between the estimated fundamental matrices and the ground truth. This
is accomplished by separating the F-matrices into a rotation matrix and translation
components, so that the angles between the rotations and translations can be com-
pared, see Sect. 11.4.2. Nevertheless, results for the RMS-error and mean epipolar
distance values are shown.

11.4.2 Essential Matrix Decomposition

In contrast to the fundamental matrix F , the essential matrix only contains the five
extrinsic camera parameters. It can be regarded as a fundamental matrix, valid in the
metric of the scene rather than the pixel domain. In order to compute the essential
matrix, the intrinsic camera parameters have to be known. In conjunction with an
intrinsic camera matrix

K =
⎛

⎝

fl 0 x
0 fl y
0 0 1

⎞

⎠ , (11.21)

the essential matrix E can be determined by

E = K T F K . (11.22)

On the other hand, E can be computed from the rotation matrix R and translation
vector t

E = R[t]x . (11.23)

In order to obtain R and t , the essential matrix may be further decomposed.
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Using a singular value decomposition, matrices U , D, V may be computed such
that

E = U DV T (11.24)

Ignoring the sign of the translation, t is equal to the last column vector of U .
Also the rotation is ambiguous. The two possible rotation matrices R1 and R2 can
be obtained by

R1 = U W1V
R1 = U W2V,

(11.25)

with

W1 =
⎛

⎝

0 −1 0
1 0 0
0 0 1

⎞

⎠ W2 =
⎛

⎝

0 1 0
−1 0 0
0 0 1

⎞

⎠ . (11.26)

The ambiguities of the translation as well as the rotation indicate that several
camera setups exist, which lead to the same essential matrix. According to [6], there
are four of such cases. They arise from the fact that the pinhole camera model does
not reject points behind the camera plane. However, in a real camera, points behind
a camera are not visible. Hence, only one of the four possible camera setups has a
physical representation. It is simply the camera setup for which the 3-D reconstructed
points are located before both camera planes. However, the rotation matrices may
also be transposed, so that eight possible camera setups may be obtained. In [14]
the decomposition of the essential matrix with eight solutions for two perspective
cameras using an SVD is discussed.

11.4.3 Simulation Environment

A simulation environment with known camera matrices and 3-D world points is used
for comparison. A 3-D point cloud is randomly created and mapped into the camera
planes of a stereo camera system according to the rules of a pinhole camera. The
distribution of the 3-D world points follows a 3-D Gaussian distribution. The mapped
points in the first and second camera plane are interpreted as point correspondences.
Those point correspondences are perturbed by zero mean Gaussian noise and a certain
percentage of outliers is added. Using these point correspondences, the fundamental
matrix is computed by several approaches. The two resulting fundamental matrices
F1 and F2, which correspond to the “Statistic” and ‘Euclidean’ method are com-
pared with additional fundamental matrices F3 and F4, computed from the HEIV
and RANSAC approach. Despite measuring how well the three matrices fulfill the
epipolar constraint, the fundamental matrices are transformed into essential matrices
E1, E2, E3 and E4 using the known intrinsic camera parameter matrix K of the cam-
era setup. The essential matrices are decomposed into rotation matrices R1, R2, R3
and R4 and normalized translation vectors t1, t2, t3, t4, such that ||ti ||2 = 1.
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This comes from the fact that any 3-D reconstruction contains an arbitrary scaling
so that only directions instead of distances can be determined. All these quanti-
ties are compared with the true rotation and translation between the cameras of the
simulation.

Since the calculation of the rotation and translation takes place within the scale
invariant projective space, the angles between the rotation Ri and the true rotation
expressed by Rt and especially the angle between the translation vectors ti and the
true translation direction vector tt are evaluated.

In order to compare the rotation matrices Ri = [rx,i , ry,i , rz,i ] with the true
rotation matrix Rt = [rx,t , ry,t , rz,t ], the column vectors of the matrices are used.

After the rotation, the resulting vectors rx , ry, rz are still orthogonal to each other.
The similarity between the rotation matrices can be determined by computing the
angles between the mappings of the unit vectors.

αi = arccos
(

rx,i rx,t
)

βi = arccos
(

rx,i rx,t
)

γi = arccos
(

rx,i rx,t
)

(11.27)

The angles δi between tt and the ti are expressed by

δi = arccos (|tt ti |) (11.28)

Depending on the direction of the translation vectors and hence on the sign of
the argument, the δi can reach values between [0..π ]. Since the ti vectors are scale
invariant, δi >

π
2 have to be adjusted, so that the direction of the ti are inverted. This

may be accomplished by taking the absolute value of the argument tt ti .

11.4.4 Gaussian Point Cloud

In a first experiment, the four methods are tested on data coming from a point cloud
in 3-D, which was created at random. In order to capture the influence of the number
of point correspondences, their number has been varied through several experiments.
Since all methods comprise a kind of random generator, each experiment was carried
out 100 times and the results were averaged. The 3-D points are mapped into the
camera planes, where Gaussian noise with σ = 0.5 and 10 percent outliers were
added (by adding noise with σ = 5).

In Fig. 11.4, for all methods the accuracy increases with the number of point
correspondences. As expected, this comes from the fact that an estimation problem
can be solved more accurately if more sample data is available. The “Statistic” method
shows excellent results in all rotation and translation components compared to the
other methods. Since a simple 3-D world setup, based on a Gaussian distributed
point cloud is used, the statistical modeling and the fact that the uncertainty of the
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Rx Angle Deviation Ry Angle Deviation

Rz Angle Deviation T Angle Deviation

Fig. 11.4 Fundamental matrix decomposition results for different numbers of point correspon-
dences: angle deviation in degree from ground truth for the Rx , Ry , Rz rotation and translation
components for a Gaussian distributed point cloud in 3-D with 10 % outliers

fundamental matrix was made available payed off. In experiments with a low number
of point correspondences, the RANSAC method performs also very well, while the
other two methods outperform the RANSAC in accuracy when the number of point
correspondences is increased. However, all three methods remain very close to each
other, while the “Statistic” method is significantly better.

In Fig. 11.5 the results for common error measurements, namely the root mean
square error (RMS) and the mean epipolar distance are shown. Again, the “Statistic”
method performs best among all methods. While RANSAC is rated as the second best
method by the mean epipolar distance, it is the worst one using the RMS error mea-
surement. As there is a probability that RANSAC does not find any subset containing
only inliers, there are cases where no appropriate fundamental matrix is found. Since
the RMS error measurement is very sensitive to such events, the graph of RANSAC
bounces. Since bounces are missing in the graphs of the other methods, it can be
assumed that an appropriate fundamental matrix is always found by them.
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Fig. 11.5 Fundamental matrix evaluation varying the number of point correspondences: a RMS-
error and b mean epipolar distance computed for each method on a Gaussian distributed point cloud
in 3-D with 10 % outliers

11.4.5 More Scene Structure

In order to create a more reasonable scene model, several 3-D world setups are
created at random, such that a percentage of the point correspondences are located
on a wall-like structure while another percentage is located on a floor-like plane.
Again, the 3-D points are mapped into the camera planes, where Gaussian noise
with σ = 0.5 and 10 % outliers were added (by adding noise with σ = 5). The
percentage was chosen according to the experience with matching algorithms in
natural images, where a correspondence deviates more than a pixel from its true
location. From those point correspondences the fundamental matrix was estimated
once again by the “Statistic” and “Euclidean” method. In addition, the fundamental
matrix was computed using RANSAC implementation from OpenCV [8] and the
HEIV method from [10]. In Fig. 11.6 the results for varying the total number of point
correspondences are visualized, where the angle deviation compared to the ground
truth for all four methods regarding the rotation components and the translation are
shown.

It is shown that the “Statistic” method, which comprises the new criterion, per-
forms very well as soon as sufficient (n > 100) point correspondences are available.
The reason is that the computation of the covariance matrix requires the estimation
of additional parameters, which is less accurate for a low number of point corre-
spondences. In Fig. 11.7 the RMS-error as well as the mean epipolar distance of all
methods are displayed.

The “Statistic” method performs well in this context. The direct comparison to the
“Euclidean” method shows that, especially for a higher number of point correspon-
dences, the new distance measure leads to a better outlier removal. An important
observation is that the RMS-error and the mean epipolar distance are not always
consistent with the ground truth comparison, which was assumed above and is an
additional justification for a new measurement criterion. E.g., the HEIV method is
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Rx Angle Deviation Ry Angle Deviation

Rz Angle Deviation T Angle Deviation

Fig. 11.6 Fundamental matrix decomposition for different numbers of point correspondences:
angle deviation in degree from ground truth for the Rx , Ry , Rz rotation and translation components
for 3-D points located evenly on two planes

rated better in most cases than the “Euclidean” method by RMS and the mean epipo-
lar distance, but the comparison with the ground truth reveals that this evidence can
not be supported. Also the relative distances between the other methods among each
other behave differently.

In order to analyze the behavior of the four methods on structural changes, the
ratio of the number of points in the background and on the floor is varied.

In Fig. 11.8 the results for varying the ratio is shown, using n = 100 point corre-
spondences. The “Statistic” method performs well up to a ratio of 70 %, from where
the other methods reach a similar or even better performance. Due to its algorithmic
structure the RANSAC approach runs into heavy problems, if one 3-D plane is dom-
inant over the other. Since the correspondences of one plane can be explained by a
homography, the RANSAC chooses putative good subsets, which comprise corre-
spondences of only one plane. Hence, the resulting fundamental matrix is seriously
flawed. While the floor plane does not cover as much image space as the background
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Fig. 11.7 Fundamental matrix evaluation varying the number of point correspondences: a RMS-
error and b mean epipolar distance computed for 3-D points located evenly on two planes

Rx Angle Deviation Ry Angle Deviation

Rz Angle Deviation T Angle Deviation

Fig. 11.8 Fundamental matrix decomposition for N = 100 point correspondences, varying the
ratio of the two planes: angle deviation in degree from ground truth for the Rx , Ry , Rz rotation and
translation components
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Rx Angle Deviation Ry Angle Deviation

Rz Angle Deviation T Angle Deviation

Fig. 11.9 Fundamental matrix decomposition for N = 200 point correspondences, varying the
ratio of the two planes: angle deviation in degree from ground truth for the Rx , Ry , Rz rotation and
translation components

plane, the other methods tend to neglect point correspondences from the floor plane
as the ratio of background to floor exceeds 70 %. The most robust method to this
effect seems to be the HEIV method. Since it does not really reject points as out-
lier, but tries to correct them according to the heteroscedasticity of the estimation
problem, it achieves quite good results in this context. If more than n = 100 point
correspondences are used, one may expect that the performance of the “Statistic”
method increases compared to the other methods.

In Fig. 11.9 the same experiment was made with n = 200 point correspondences.
As expected, the performance of the “Statistic” method increased.

To conclude, the assignment of the squared Mahalanobis distance k2 instead of
the epipolar distance shows a significant benefit for the task of outlier removal and
indirectly for camera calibration. The direction of the translation as well as all angles
of the camera rotation show a significant lower deviation compared to the ground
truth.
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11.5 Conclusion

We presented a novel criterion to evaluate point correspondences in stereo images.
Our main contribution is to show that the uncertainty of the fundamental matrix can
be integrated into a novel distance measure that can help evaluating point correspon-
dences in stereo images by taking both geometry and probability into account. We
demonstrated the benefits of our criterion for the computation of the fundamental
matrix and outlier removal. Several other application scenarios are imaginable, but
these are beyond the scope of this chapter.
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Chapter 12
Local Homography Estimation Using Keypoint
Descriptors

Alberto Del Bimbo, Fernando Franco and Federico Pernici

Abstract This chapter presents a novel learning-based approach to estimate local
homography of points belong to a given surface and shows that it is more accurate than
specific affine region detection methods. While others works attempt this by using
iterative algorithms developed for template matching, our method introduces a direct
estimation of the transformation. It performs the following steps. First, a training set
of features captures geometry and appearance information about keypoints taken
from multiple views of the surface. Then incoming keypoints are matched against
the training set in order to retrieve a cluster of features representing their identity.
Finally the retrieved clusters are used to estimate the local homography of the regions
around keypoints. Thanks to the high accuracy, outliers and bad estimates are filtered
out by multiscale Summed Square Difference (SSD) test.

Keywords Homography estimation · SIFT keypoints · Nearest neighbor · Robust
matching · Scale and affine invariant features

12.1 Introduction

The last years have seen the development of many affine region detectors [11] that
derive an approximation of the local image transformation around points of interest.
Matched using a region descriptor, they provide to be very useful for many types of
applications because getting rid of most of the complexity due to the image forma-
tion. More recently, a novel class of learning based approaches has been proposed
[5–7]. This class of methods appears to be faster and more reliable, but relies on
iterative refinements that makes it unqualified for very large image database. In this
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(a)

(b) (c)

Fig. 12.1 Overview of the applications of the method and its performance on the Wall dataset. a:
Reference sample image of the standard Wall dataset (Wall1). b and c: Homography estimation on
the third image and fifth image of the Wall sequence

chapter, we propose a new learning-based approach that performs the other way
around by direct estimation of the local homography around points of interest. Given
a reference image of a smooth surface and an input image containing this surface,
our method proceeds in three steps. We first generate a training set of features that
compactly captures geometry and appearance information about multiple views of
the same keypoints. Then input keypoints are associated with the correspondent sets
of features by a matching process and a geometry consistency checking. At last, the
informations related to keypoints in the sets are used to estimate the local perspective
transformations. Outliers and bad estimates are filtered out using a multiscale SSD
validation. As shown in Figs. 12.1 and 12.2, our approach avoids specific estimation
of the transformation and gives us a more reliable estimate than affine region detec-
tors for both planar and non-rigid surfaces. The rest of the chapter is organized as
follows. Section 12.2 outlines the state of the art about local homography estimation.
Section 12.3 contains an overview of the approach with details about the training set
generation and the local homography estimation. In Sect. 12.4 experimental results
are shown and discussed. Conclusions are drawn in Sect. 15.6.

http://dx.doi.org/10.1007/978-1-4614-3831-1_15
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Fig. 12.2 Overview of the
applications of the method
and its performance on the
mousepad dataset. a: Ref-
erence sample image of the
mousepad dataset. b and c:
Homography estimation on
two different query images
depicting the mousepad

(a)

(b)

(c)

12.2 Related Works

Many computer vision applications rely on the recovery of properties of interest
points, or keypoints. For example, retrieving the poses of keypoints in addition to



206 A. D. Bimbo et al.

matching them is a fundamental task in vision-based robot localization [4], object
recognition [3, 15] or image retrieval [14] to transform unconstrained problems
into constrained ones. The standard approach proceeds by decoupling the matching
process from the keypoint pose estimation. This is done by first using some particular
affine region detectors and by then using SIFT descriptors computed on the rectified
regions to match them. In the recent years many different detectors have been pro-
posed to recognize keypoints under large perspective distortion. Among them, the
Hessian-Affine detector of Mikolajczyk and Schmid [11] and the MSER detector
by Matas et al. [10] have been shown to be the most reliable ones. However, they
retrieve only an affine transformation without estimating the full perspective pose
and often require handcrafting the descriptors to achieve invariance to specific dis-
tortion. Recently, a novel class of learning-based methods that attempts to compute
local homography of a planar patch around keypoint has been developed [5–7, 13].
In particular the approaches of [5–7] mainly consist in two steps: the incoming point
of interest is matched against a database of keypoints, each of which is associated
to a coarse estimation of its pose (defined as the homography between a reference
patch and the patch centered on the point); the coarse pose retrieved is hence iter-
atively refined by applying [8] and successively [2]. For the first step, [6] uses the
Ferns classifier [12] while [5] and [7] relies on linear classifiers. In [13] keypoints are
detected at 2D corners and matched to a pre-defined set of corners. Differently from
the previous approaches, an estimation by regression is inserted here in the loop of the
Ferns classifier for matching. In this way, the homographic transformation is directly
checked during matching. Finer regression is only performed for close matches.

12.3 The Approach

Given a point of interest extracted at run-time, we want to match it against a train-
ing set of features and to accurately estimate its local homography. Our approach
performs in three steps. The first builds a training set of features which captures
geometry and appearance information about keypoints taken from multiple views of
a given 3D object. The second step matches an incoming point of interest against the
database in order to retrieve a cluster of features representing keypoint identity. In
the last step the retrieved cluster is used to estimate the local patch homography. The
estimated homography, outliers and bad estimates are then filtered out by multiscale
Summed Square Difference (SSD) test.

12.3.1 Training Set Generation

Let us consider a set of m 3D points of interest K = {ki }mi=1 lying on the surface
of a given object. The aim is to build a large training set of features which captures
geometry and appearance about different patches around these points extracted by
multiple views of the object. According to this, an effective method to build the train-
ing set is to generate random synthetic views of the object using simple geometrical
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technique and extract SIFT keypoints from them. In this way, we can easily asso-
ciate each keypoint with information about the patch around it and select keypoints
that are more stable under noise and perspective distortion. We discuss below the
construction of multiple views of the object given a reference image and then the
process of extracting and selecting keypoints.

12.3.1.1 Multiple Views Sampling

Under the assumption of local smooth surface patches surrounding points of interest
ki can be considered as locally planar and their distortion under prospective pro-
jection can be represented by homographies. Therefore only one reference image
Ir of the query object could be enough to generate the set of multiple views {I j }.
Considering that for moderate foreshortening keypoints keep stable even under some
viewpoint changes distorted image views are created from the reference image Ir

taking a rectangular window of approximately one half the image area around each
vertex of the reference image, selecting one point at random in each window, and
assuming these points as the vertices of the newly generated image I j where the
original content is warped. Instead, since for strong foreshortening keypoints keep
stable only for small variations of the viewing angle, in order to provide a finer
sampling, the same procedure is applied to the vertices of already distorted images
with windows of approximately one tenth of the image area. Figure 12.3 shows some
views generated by this process.

12.3.1.2 Features Extraction

Once the multiple views {I j } are sampled, we can extract SIFT keypoints from them
in order to associate each feature with geometry and appearance information: f i =
{di ,Hr j }. Geometry information is captured by the homography Hr j between the
reference image and the view I j from which the keypoint is taken, while appearance
information is represented by SIFT descriptor di .

12.3.1.3 Features Selection

Because of noise and perspective distortion, the points lying on the object surface
don’t have the same probability P(ki ) to be found in a query image I t in which they
are visible at runtime. In order to select the m keypoints with highest probability to
be extracted, we proceed as follows. Let Hr j the homography which transforms the
reference image Ir in the image I j which contains the keypoint ki j . By applying
H−1

r j to ki j the found 2D point is back-projected in the coordinate system of Ir and
feed a 3D point accumulator which allows to estimate the probability P(ki ) with
which the corresponding 3D points can be detected in a new image. The 3D points
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Fig. 12.3 Training set generation in the case of moderate a and in the case of strong foreshortening
b. All views are respectively synthesized using the image depicted in Fig. 12.2 a and Fig. 12.1 a as
reference image

accumulating most votes are retained as points of interest, having a large probability
to be detected by SIFT in unknown query images.
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12.3.2 Matching

Given a set KQ of SIFT extracted by a query image at runtime and the set of keypoints
KI generated in the training phase, we want to retrieve the identities of keypoints
lying on the surface of the query object and to obtain an estimation of their local
homography. The problem of retrieving identity can be defined as a research for a
function B : KQ → KI ∪ k0 that assigns to every kq ∈ KQ either a cluster of
features {Cq} ⊂ KI or k0 representing no matching. According to this, since the
training set contains multiple views of each 3D point of interest, each keypoint kq

∈ KQ is matched to its k nearest neighbors. This can be done in logarithmic time
by using a kd-tree to find the approximate nearest neighbors [1]. We use k = |KI |

m ,
where |KI | is the total number of keypoints extracted and m is the number of 3D
points of interest views of which are contained in the training set. In particular the
cluster {Cq} is associated to the corresponding keypoint kq only if the descriptor
of the second-closest neighbor is far enough ε to the descriptor of the first closest
neighbor [1]:

mindi∈Cq ‖dq − di‖2
mindi∈Cq\B(dq ) ‖dq − di‖2 < ε , (12.1)

where
B(dq) = arg min

di∈Cq
‖dq − di‖2 (12.2)

is the Euclidean nearest neighbor of dq (in our experiments we used a distance ratio
greater than 0.75 as rejection criterion). Since each one of the retrieved keypoints in
{Cq} has its homography associated, matching also permits to obtain a number of
coarse estimation of the keypoint local homography. However checking the geometry
consistency of keypoints of cluster {Cq} is necessary to filter out wrong matches.

12.3.2.1 Geometry Checking

Because of several self similar keypoints, each cluster Cq is processed in order to
reject false matching with the corresponding kq . Since the closest neighbor f 1 (i.e.
1-NN) corresponds with high probability to a different view of kq , we proceed as
described in the following pseudo-code:

1. Back-project f 1 in the coordinate system of Ir using H−1
1 .

2. Define a circle c of radius 3 pixels centered on the back-projection of f 1.
3. For each feature f i i = 2..k apply steps 4 and 5.
4. Back-project f i in the coordinate system of Ir using H−1

i .
5. Discard f i if its back-projection is outside the circle c.

Figure 12.4 shows an example of that process. This solution does not make any
particular assumption about object rigidity but only exploits information of the key-
point local region. It allows therefore to apply the method also for matching keypoints
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of non-rigid objects. The approach differs from [15] where under the assumption of
rigid objects the geometry checking is applied to all the pairs of keypoints (i.e. the
existence of epipolar constraint and/or planarity relationship between 3D surface
patches). Since only local information of the keypoint is used with no assumption on
object rigidity, the method can be also applied to the case of non-rigid objects and
computational requirements are drastically reduced.

12.3.3 Local Homography Estimation

For each sample keypoint kq in Iq several valid keypoint correspondences with
slightly different descriptors are found in the {Cq} cluster, with homographies that
account for the differences in the viewing angle from which the object was observed.
In particular we estimate the homography Hq from the patch around kq to the refer-
ence image by proceeding as follows:

• The local image regions around valid corresponding keypoints ki are aligned
between them;
• The set of aligned homographies Hi and descriptors associated to these keypoints

are exploited for the estimation;
• The estimation is validated by checking the right scale.

12.3.3.1 Region Alignment

Let’s consider the set of valid corresponding keypoints that have been left in Cq after
the removal of the wrong correspondences according to the geometry checking pro-
cedure reported in the previous section. For each keypoint ki we calculate the shifts
of scale (σ ), orientation (θ ) and position (u, v) with respect to the mean scale, ori-
entation and position of the keypoints in Cq and define the similarity transformation
Si :

Si =
⎡

⎣

σi cos θi − sin θi ui

sin θi σi cos θi vi

0 0 1

⎤

⎦ . (12.3)

The local regions around keypoints ki can be hence aligned between them through
the homographic transformation:

H′i = Hi Si . (12.4)

Figures 12.5 and 12.6 give evidence of the importance of this alignment step for
the estimation of the homography. Both figures show a sample keypoint kq and the
valid corresponding keypoints left after projection and superimposed to the query
image. The comparison of the two figures show that while in Fig. 12.6 the use of
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(a)

(b)

(c)

Fig. 12.4 Geometry checking process. a: The features belonging to cluster Cq before the application
of the geometry checking. b: The features remaining in the cluster Cq before the application of the
geometry checking c
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Fig. 12.5 Homography estimation without the alignment between the local regions around valid
keypoints. Keypoints corners are projected and superimposed to the query image

aligned homographies determines some scattering, in Fig. 12.5 this scattering is lost
and consequently are completely lost any perspective effects.

12.3.3.2 Homography Estimation

After aligning local regions, the local homography Hq of the patch around kq is
directly estimated using information associated to the features in the {Cq} cluster.
Let {di }ni=1 the set of descriptors representing appearance information and {Hi }ni=1
the set of aligned homographies capturing geometry information about these features.
The estimate is performed by averaging the homographies. For better accuracy, the
contribution of each homography is weighed according to the distance between the
relative descriptor and the descriptor dq :
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Fig. 12.6 Homography estimation with the alignment between the local regions around valid
keypoints. Keypoints corners are projected and superimposed to the query image

Hq = 1

n

∑

hi∈Cq

wiHi , (12.5)

where wi = ‖dq − di‖2. Figures 12.1b, 12.1c, 12.2b and 12.2c show some applica-
tions of this estimation process.

12.3.3.3 Multiscale Validation

A final validation is needed to remove bad estimated keypoints. Thanks to the accu-
racy of the retrieved transformations, we are able to reject keypoints using the
Summed Square Difference between the estimated patch and the warped patch in the
reference image. We adopt a method similar to the one described in [9] in order to
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decide at which scale the reference patch should be warped to. In particular we apply
warping using a matrix A computed from the Jacobian of the estimated homography
evaluated at the keypoint:

A =
(
∂Ĥ
∂x

∂Ĥ
∂y

∂Ĥ
∂x

∂Ĥ
∂y

)

(x0,y0)

. (12.6)

The determinant of matrix A corresponds to the area (in square pixel), that a single
source pixel would occupy in the full-resolution image of the reference view. and the
scale is chosen so that det (A)/4l is closest to unity. In our experiments we perform
this SSD-based validation using a threshold of 0.9

12.4 Experimental Results

In the following we performed several experiments that asses the effectiveness of the
method to recover the local homography of points belong to a given object. For all
the experiments we build a large set of about 400,000 keypoints which correspond
to a set of 800 3D points of interest detected in the reference image. In particular
220,000 keypoints are extracted by views at moderate foreshortening synthesized
using the reference image, while the other keypoints are extracted by views at strong
foreshortening synthesized using a set of already distorted images.

12.4.1 Robustness to Viewpoint Change

A set of experiments was run in order to assess the effectiveness of the method and
compare it against specific affine region detectors. To this end, we generate synthetic
views I j with a factor of foreshortening ranging from 0 to 0.7. In this context, factor
of foreshortening is a function of the homography H j which transforms the vertices

of the reference image in the new vertices: Kr j = (λ j
1λ

j
2−1), where λ j

1,2 are the two
singular values of Hr j and represent the scaling values in two orthogonal directions.
In particular Kr j is much greater then 0 as I j is a more slanted version than the
reference image under perspective transformation. For each view I j , we apply our
method to identify approximately 50 keypoints and retrieve their homographies. We
repeat this test 2,000 times for each cost and report the accuracy results in Fig. 12.7,
in which our method is denoted by ‘SIFTHomography’. To create these graphs we
proceed as follow. In the case of affine region detectors, we fit a square tangent to
the normalized regions and warp this square back with the inverse transformation to
get a quadrangle. In the case of our method, the quadrangle is simply taken to be
the patch borders after warping the square on the reference image by the retrieved
homography. In Fig. 12.7a we compare the average overlap between the quadrangles
obtained using the ground truth homography and those obtained with our method and
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Table 12.1 Average processing times for detecting 200 SIFT keypoints and estimating their
homographies

Step Average time

SIFT point extraction 0.025 s
Geometry consistency check 0.021 s
Kerypoint homography estimation 0.028 s
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Fig. 12.7 Comparing our method against affine region detectors. a Average overlapping area of
all correctly matched regions. b Average sum of the distances from the ground truth for the corner
points. The factor of foreshortening in the abscissa is expressed in percentage values

with affine region detectors. This overlap is very close to 90 % for our method, about
5 % better than MSER and about 15 % than other affine region detectors. Figure 12.7b
shows the comparison of the mean reprojection error for the quadrangle corners. The
error of the patch corner is less than four pixel in average and outperforms other
methods.
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12.4.2 Computational Times and Memory Requirements

The present implementation runs at approx 15 frame per second with a keypoint set
of 400.000 obtained from about 200 SIFT keypoints in the reference images, on a
standard notebook with an Intel Centrino Core Duo with 2.4 GHz and 3 Gb RAM. The
average processing time for the steps of the method are reported in Table 12.1. This
compares favorably with both affine region detectors and other recently proposed
state-of-the-art methods. Concerning the memory requirements, we observe that the
method implementation uses about 300 MB for the storage of the training set, while
the mean memory consumption required for each keypoint is only 121 Kb.

12.5 Conclusion and Future Works

This chapter introduced a novel learning-based method for estimating the local
homography of a given 3D object. The effectiveness of our approach relies on two
key ideas. First, the generation of a training set that captures geometry and appear-
ance information about multiple views of the same keypoints, and second, the usage
of this information for the estimate. We have shown that this process avoids specific
estimation of the local transformation and gives better results than standard affine
region detectors. Since we used only SIFT keypoints, our future work will investigate
the use of different detectors and descriptors.
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Chapter 13
A Cognitive Source Coding Scheme for Multiple
Description 3DTV Transmission

Simone Milani and Giancarlo Calvagno

Abstract Multiple Description Coding has recently proved to be an effective
solution for the robust transmission of 3D video sequences over unreliable chan-
nels. However, adapting the characteristics of the source coding strategy (Cognitive
Source Coding) permits improving the quality of 3D visualization experienced by
the end-user. This strategy has been successfully employed for standard video sig-
nals, but it can be applied to Multiple Description video coding for an effective
transmission of 3D signals. The chapter presents a novel Cognitive Source Coding
scheme that improves the performance of traditional Multiple Description Coding
approaches by adaptively combining traditional predictive and Wyner-Ziv coders
according to the characteristics of the video sequence and to the channel conditions.
The approach is employed for video+depth 3D transmissions improving the average
PSNR value up to 2.5 dB with respect to traditional MDC schemes.

Keywords Multiple description · 3DTV transmission · Distributed video coding ·
Cognitive source coding · DIBR video · Robust video coding

13.1 Introduction

According to the latest research trends and marketed products, the future of 3D
video technology will not be limited to entertainment and gaming applications,
as more and more telecommunication companies are looking to use the upcom-
ing advancements in video technology to change the way people communicate. As a
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matter of fact, 3D video signals will be employed in most video communication sys-
tems, from IPTV broadcasts to immersive video conference and remote surveillance
applications. However, the widespreading of these new 3D applications requires an
adaptation of traditional coding and transmission strategies according to the charac-
teristics of the signals [1]. In fact, the massive amount of 3D data, together with the
strict Quality-of-Service (QoS) requirements that are proper of multimedia commu-
nications, make difficult to provide three-dimensional contents at a satisfying quality
over heterogeneous networks. Protocols and coding architectures have to deal with
independent sets of users operating with different devices and transmission capabil-
ities. As a matter of fact, the format of the transmitted signal must permit an easy
adaptation of the transmitted data to the characteristics of the 3D display and to the
available transmission rate. Moreover, video data streams must prove to be robust in
presence of data losses (due to channel noise, congestions, delays, etc…) enabling
a fast recovery of the lost information and limiting the amount of channel distortion
introduced in the displayed signal.

In order to effectively deal with these open problems, several solutions proposed
in literature rely on a robust and flexible characterization of the data that permits both
adapting the information stream to the network and mitigating the effects of losses.
Some of the proposed approaches are based on scalable video coding architectures
[2], which define several hierarchical streams that permit reconstructing the signal
with a progressively-increasing quality. As a matter of fact, scalable solutions seem to
fit the need of differentiating the transmitted video contents according the displaying
device and the transmission capability. Dealing with the problem of robustness to
packet losses, a significant research effort has been made on investigating effective
Cross-Layer (CL) solutions that maximize the quality of the received video signal
by allowing a synergic interaction between different protocol layers and varying the
protection level of the coded data according to their significance in the decoding
process [3]. In addition, new robust source coding strategies have been introduced
like Distributed Video Coding (DVC), named also Wyner-Ziv video coding, which
code the video signal such that a distortion-free reconstruction is still possible after
data losses or corruption.

Each technique presents some advantages and disadvantages which make it more
proper for certain transmission settings and applications. Among these, Multiple
Description Coding (MDC) seems to conjugate both the need for an easily-adapting
data stream and the need for a robust characterization of the transmitted signal.
MDC techniques characterize the input signals via multiple independently-coded
correlated streams. Each stream is transmitted to the end-users via separate channels.
Whenever one stream gets lost, it is possible to estimate the missing information from
the available data (i.e. the other streams correctly received). As a matter of fact, the
more streams a user gets, the higher the quality of the reconstructed sequence is.

The characterization of the input signals via several streams permits a better
differentiation of the transmitted stream and an increased robustness at high loss
percentages (see [4]) with respect to Single Description Coding (SDC) solutions.
This fact has contributed to its adoption in wireless 3DTV transmission schemes,
like the one proposed in [5]. The performance of MDC schemes has been recently
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improved with the adoption of Wyner-Ziv coding paradigms in the traditional MDC
structure [6]. These architectures have been called Multiple Description Distributed
Video Coding (MDDVC) and increase the error-resiliency of the produced packet
streams.

However, recent experimental results have shown that it is possible to improve the
performance of traditional source coding paradigms by adaptively switching from
one coding solution to another via a CL optimization. In this chapter we will refer to
these solutions with the term Cognitive Source Coding (CSC) schemes in analogy to
Cognitive Radio (CR) schemes [7] adopted for radio transmissions. CSC approaches
can be considered a subset of CL solutions despite most of the CL solutions jointly
adapt the transmission parameters at different layers but do not change the source cod-
ing strategy. A more careful analysis shows that CSC schemes present many features
in common with CR solutions. As defined by Haykin in [8], “Cognitive radio is an
intelligent wireless communication system that is aware of its surrounding environ-
ment (i.e., outside world), and uses the methodology of understanding-by-building to
learn from the environment and adapt its internal states to statistical variations in the
incoming RF stimuli by making corresponding changes in certain operating parame-
ters (e.g., transmit-power, carrier-frequency, and modulation strategy) in real-time.”
CSC architectures implement many source coding strategies and adaptively switch
from one to another depending on the channel state. In a similar way, CR systems
implement many modulation schemes and can adaptively switch from one to another
depending on which portion of the radio spectrum they want to use. Moreover, CSC
schemes, as well as CR solutions, must sense the transmission environment in order
to understand how many transmission channels are available and what their states
are.

In this chapter we present a reconfigurable Multiple Description transmission
scheme for 3DTV signals that adaptively switches from traditional predictive coding
to Wyner-Ziv video coding according to the states of the transmission channels and
the characteristics of the coded video signal. The proposed Cognitive Source Coding
scheme is applied to a 3D video signal consisting in a video sequence and its related
depth information, which permit a Depth Image Based Rendering (DIBR) of the
3D scene [9]. The proposed solution improves the quality of the reconstructed video
sequence and depth maps allowing a much better 3D Quality-of-Experience (QoE). In
the following, Sect. 13.2 overviews some of the solutions that have been proposed in
literature for a robust 3D video transmission. Section 13.3 presents the structure of the
coder, while Sect. 13.4 describes the cognitive optimization strategy. Experimental
results are reported in Sect. 13.5, and conclusions are drawn in Sect. 13.6.

13.2 Related Works

During the last years, different works have been focusing on the reliable transmission
of multimedia and 3D video data over unreliable networks. Several scalable coding
solutions have been proposed in literature for stereoscopic signals, like in [10, 11].
Many approaches relies on a CL configuration of the transmission environment.
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Among these it is possible to mention the solution proposed by Alregib et al. [12],
which adopts a scalable compression for 3D models and applies an Unequal Error
Protection (UEP) on the different layers in order to decrease the loss probability as
the significance of the data in the decoding process increases. Another approach has
been proposed by Balter et al. in [13], where the compression of the different signals
is organized in order to maximize the quality of the final 3D scene rendered by the
end user.

Other solution relies on characterizing the signal to be transmitted via multiple
descriptions. One of the first examples is provided by the work [14], where a multiple
description scheme is employed for stereoscopic video compression. Other solutions
were proposed during the last years [11] employing scalable video coding solutions
as well (see [5]).

A third set of strategies consider characterizing the 3D video signal using Wyner-
Ziv coding solutions. One of this approaches can be found in [15] where the PRISM
DVC coder [16] was adapted to the transmission of multiview video streams. Other
works follow this strategy [17] since a distributed source coder that exploits the
correlation existing between different camera views permits a successful decoding
of the transmitted information from any side view.

At the same time, Distributed Video Coding paradigms have been applied to
traditional MDC schemes. In this case, the correlation between different descriptions
permits an error-free reconstruction of the coded data using any of the available
description as reference. From the initial schemes in [18, 19], Multiple Description
Distributed Video Coding (referenced in literature with the acronym MDDVC or
MDVC) have so far evolved into a wide range of different approaches. Some of the
proposed solutions separately generate a set of descriptions and replace the traditional
predictive coding for their compression with a Wyner-Ziv coder (see [20]). Other
solutions include the distributed source coding approach within the native MDC
architecture, like the approaches in [21, 22]. Many MDDVC solutions rely on Wyner-
Ziv coding strategies employing a feedback-channel [23] like most of the previous
DVC video coders [24, 25]. Other solution rely on a PRISM-like characterization of
the residual signal where no feedback information is needed [26, 27].

During the last years, MDDVC approaches have been applied to the transmis-
sion of 3D video signals. The approach in [28] presents an MDDVC strategy for the
transmission of stereoscopic video sequences. Experimental results show that the
employment of a Wyner-Ziv coding strategy permits mitigating the distortion propa-
gation at high loss rates. These results have also shown that this strategy proves to be
effective for geometry signals as well [29]. In fact, MDDVC significantly improves
the transmission quality of DIBR video whenever the video signal presents strong
correlation and the state of the network proves to be critical. From these prelim-
inary results, it is possible to infer that performances can greatly benefit from an
adaptation of the characteristics of the source coder to the features of the 3D data
and of the network. As a matter of fact, within the existing cross-layer solutions, a
subset of the proposed approaches (referenced here with the acronym CSC) adapt
the chosen source coder to the characteristics of the transmitted video sequence and
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to the network state [30]. In the following a Multiple Description CSC scheme will
be presented showing how it can improve the quality of the 3D experience.

13.3 Structure of the Coding Scheme

The proposed multiple description strategy has been derived from a quite simple and
general approach based on a polyphase subsampling of pixel rows in the input frames.
The scheme was chosen since it is well-known in literature and the results can be
extended to other MDC schemes as well. Each frame from both the input video and
the depth signals is partitioned into odd and even lines of pixels creating two subse-
quences with halved vertical resolution. Each subsequence is coded independently
by a CSC coder1 as shown in Fig. 13.1, and the produced packets are multiplexed into
two streams (i.e., two descriptions) associating the odd rows of the video sequence
with the even rows of the depth signal and viceversa. Whenever two descriptions
are received, the sequence can be reconstructed by the decoder shown in Fig. 13.2
assuming that there is no additional channel distortion. In case only one description
is correctly received, it is possible to estimate the missing rows interpolating the
available ones. Despite the error concealment strategy is the same, it is possible to
obtain different performances in terms of source and channel distortions according
to the chosen coding strategy for the residual signal after temporal prediction. As
shown in Fig. 13.1, the coder of the CSC approach relies on processing the residual

1 The basic coding engine was derived from a standard H.264/AVC codec.
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signal after temporal prediction in different ways. In the following we will describe
the possible alternatives in detail.

In the proposed scheme, each input field generated by the MDC subsampling (for
both video and depth signals) is partitioned into blocks of 4×4 pixels. For each 4×4
block xm of the description MDm (m = 1, 2), the Motion Estimation unit estimates
a predictor block x p,m from the previously-coded fields.

From this point, different options can be chosen according to the state of the
channel and the characteristics of the input signal.

13.3.1 Traditional Predictive Coding (MDC Mode)

In the traditional H.264/AVC coding, the prediction residual block dm = xm−x p,m is
transformed by an approximated 4×4 DCT (see [31]), and the generated coefficients
are quantized into a block of integer values that are coded in the output binary
bit stream. In the reconstruction process, the decoded coefficients are dequantized
and inversely transformed into the reconstructed prediction residual dr,m , which
differs from the original prediction error dm for the additional distortion introduced
by the quantization of transform coefficients, i.e. dr,m = dm + er,m . The coded
field can be reconstructed adding dr,m to the predictor block x p,m and obtaining
xr,m = dr,m+x p,m . In case some packets get lost, an additional channel distortion has
to be taken into account such that the reconstructed block is x ′r,m = dr,m+x p,m+ec,m

where ec,m is the additional channel distortion produced by interpolation. The channel
distortion then propagates until a complete refresh of the reference buffer state (i.e.,
the coding of an Intra frame) is performed.
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13.3.2 Residual Coding using Syndromes (MDDVC Mode)

In order to mitigate the effects of the distortion propagation, it is possible to obtain
a better error resiliency by adopting a more robust coding strategy for the prediction
error after motion estimation. In the MDDVC coding setting, a distributed source
coding strategy based on a Nested Scalar Quantization was adopted [32].

In fact, each pixel xm(i, j) of block xm can be split into two components: a com-
ponent correlated with its predictor x p,m(i, j) in x p,m (given by the most significant
bits of the pixel value), and a component uncorrelated with x p,m(i, j) (given by the
nm(i, j) least significant bits).

Like for the PRISM coder [33], the parameter nm(i, j) is computed via the equa-
tion

nm(i, j) =
{

0 if dm(i, j) < δ,

2+ �log2 (|dm(i, j)|)� otherwise.
(13.1)

The threshold δ is chosen in order to avoid the coding of syndromes whenever the
x p,m(i, j) is close to xm(i, j) and prevent decoding errors (this latter motivation will
be explained later). After analytical modelling of the decoding error and extensive
coding trials on a wide set of sequences, the value δ has been set to 1/3 of the
quantization stepΔ for the current block. The nm(i, j) least significant bits of xm(i, j)
are referenced as

sm(i, j) = xm(i, j)&2nm (i, j)−1, (13.2)

where & denotes a bitwise AND operator. The syndrome sm(i, j) permits identify-
ing a quantizer characteristic which is centered on sm(i, j) with quantization step
2nm(i, j), and outputs the value xm(i, j)with respect to the side information x p,m(i, j).
Figure 13.3 shows an example of the syndrome generation and decoding process for
xm(i, j). In this case, the distance value dm(i, j) = 7 leads the encoder to create a
syndrome value sm(i, j) = 0100 of 4 bits via Eqs. (13.1) and (13.2). Therefore, it is
possible to recover the original xm(i, j) value quantizing x p,m(i, j) by means of the
quantizer characteristic Qsm (i, j) = Q4, which is centered on the value 0100 and has
a quantization step value equal to 2nm (i, j). In the general case, the output values of the
quantizer Qsm (i, j) can be written as sm(i, j)+ k · 2nm (i, j), k ∈ Z. Note that a correct
decoding is possible using a different x ′p,m(i, j) �= x p,m(i, j) such that the distance
d ′m(i, j) = xm(i, j) − x ′p,m(i, j) via Eq. (13.1) leads to a number of syndrome bits
n′m(i, j) ≤ nm(i, j).

The generation process for s(i, j) corresponds to the syndrome generation strategy
in [16] made exception for the facts that here it is performed in the pixel domain
and the quantization step is 1 (i.e., no distortion has been introduced so far). After
computing nm(i, j) for all the pixels in the block, the encoder chooses the maximum
value

nmax,m = max
i, j=0,...,3

{nm(i, j)} (13.3)
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Fig. 13.3 Example of syndrome generation and decoding process (position indexes (i, j) and
description index m are omitted for the sake of clarity). Assuming that d = 7 and n = 4, the
syndrome s = 0100 identifies the quantizer Q4. After lossy encoding s into sr = 0100 + e, the
associated quantizer becomes Q̃4, and the reconstructed pixel is sr = s + e (under the assumption
of additive quantization noise)

since it is possible to obtain a correct reconstruction of the pixel xm(i, j)with n′m(i, j)
syndrome bits in case n′m(i, j) > nm(i, j). In this way, the characterization of cor-
relation level for the current block requires specifying only one parameter nmax,m
and increases the robustness of the coded bit stream. The video encoder computes
sm(i, j) via Eq. (13.2) replacing nm(i, j) with nmax,m , and then the block of syn-
dromes sm is transformed into the block Sm via the 4 × 4 DCT defined within the
standard H.264/AVC. The resulting coefficients Sm(i, j) are then quantized into the
values Sq,m(i, j), which are coded in the bit stream together with the parameter
nmax,m and the other coding parameters. The proposed architecture inherits the set
of quantization steps defined within the standard H.264/AVC and identified by the
quantization parameter QP.

After the block Sq,m has been created, the coded block needs to be reconstructed
in order to be stored in the frame buffer. The coefficients Sq,m(i, j) are dequantized
and inversely-transformed into lossy syndromes

sr,m(i, j) = sm(i, j)+ em(i, j), (13.4)

where em(i, j) is the distortion introduced by quantization. The quantizer char-
acteristic related to sr,m(i, j) results slightly shifted with respect to sm(i, j), and
as a consequence, the reconstruction xr,m(i, j) obtained from x p,m(i, j) using
sr,m(i, j) in place of sm(i, j) differs from xm(i, j) in its least significant part,
i.e. xr,m(i, j) = xm(i, j) + em(i, j). As for the example in Fig. 13.3, the syndrome
sr,m(i, j) identifies the quantizer characteristic Q̃4, which corresponds to the char-
acteristic Q4 shifted by em(i, j).
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Note that the amount of shifting must be limited in order to avoid decoding errors.
Setting the threshold δ to Δ/3 permits satisfying the error-free decoding condition
Δ < 5.6 ·2nmax,m (which has been derived in Eq. (13.14) of the Appendix A). During
the syndrome generation process (see Eq. (13.1)), the number nm(i, j) of syndrome
bits is set to 0 if |dm(i, j)| < δ = Δ/3, i.e. Δ > 3|dm(i, j)| � 1.12 · 2nm(i, j),
providing a sufficiently-robust margin for the non-zero syndromes since the error-
free decoding condition Δ < 5.6 · 2nmax,m (which has been derived in Eq. (13.14)
of the Appendix) is satisfied. In fact, whenever Δ > 5.6 · 2nmax,m , using quantized
syndromes in decoding does not bring a significant quality improvement with respect
to the distortion related to the temporal correlation. As a matter of fact, it is possible
to reconstruct the signal as if no additional residual information is provided after
prediction.

In case |dm(i, j)| < δ ∀(i, j) in the block, the correlation parameter nmax,m is
reset to 0 and syndromes are not used at all for the decoding of the block; in the
reconstruction process, the pixel xr,m(i, j) is set equal to x p,m(i, j).

Using a higher threshold δ permits reducing the amount of coded bits at the
expense of a higher distortion level in the reconstructed residual signal. In the fol-
lowing paragraph, we will discuss how this choice can be useful for certain channel
conditions.

13.3.3 Residual Coding Using Syndromes and Skip Mode
(MDDVC-SM Mode)

The previous section has shown how decoding errors and bit rates can be controlled
via the threshold δ. In fact, increasing the value δmakes possible to reduce the amount
of coded syndromes sm(i, j) with nm(i, j) �= 0. As a result, the size of the coded
bit stream is decreased since the coder avoids transmitting the residual signal for a
greater number of 4× 4 blocks.

At the same time, the probability of a wrong decoding is mitigated since a high
packet loss probability induces a stronger channel distortion in the reconstructed
video signal. As a matter of fact, stronger syndromes are needed since the correlation
between the current pixel xm(i, j) and its predictor x ′p,m (which is different from
x p,m(i, j) because of corruption) is lower. A higher threshold δ′ 
 δ leads to zero
syndromes whenever Δ > h · 2nmax,m with h � 5.6 as Eq. (13.14) requires. As
a consequence, only residual blocks with high nmax,m are coded minimizing the
probability of decoding errors.

However, zero syndromes also reduce the quality of the reconstructed signal as,
in case nmax,m = 0, the predictor block x p,m simply replaces xm without any motion
compensation. As a matter of fact, the adoption of a higher threshold value must be
considered according to the characteristics of the coded sequence and to the packet
loss rates.
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In the following, we will refer to this coding as MDDVC Skip mode or
MDDVC-SM. In this residual coding unit, all the operations correspond to those
described for the MDDVC mode made exception for an additional skipping strat-
egy that avoids coding the current block sr,m of syndromes (by signalling nm = 0)
whenever the average number of syndrome bits is lower than a threshold δn , i.e.

nm = 1

16

∑

i, j=0,...,3

nm(i, j) < δn . (13.5)

13.4 Cognitive Source Coding of DIBR Video Sequences

Experimental results in Sect. 13.5 show that the effectiveness of MDC and MDDVC
approaches varies according to the different network conditions and to the 3D video
signal characteristics. As for the views captured by the camera, the performance of
MDC with respect to the MDDVC depends on the temporal and spatial correlations
of the coded signal. At low loss rates, signals with a strong temporal correlation
can be effectively coded using MDDVC while video sequences that present fast-
moving elements need to be coded effectively using a traditional MDC scheme.
Whenever the loss rate increases (approximately for values of packet loss percentage
higher than 10 %), MDDVC provides the best performance for all the coded video
sequences. As for depth maps, their regular structures permit coding effectively the
depth information with MDDVC most of the times. As a matter of fact, it is necessary
an adaptive technique that chooses which coding solution is the best in each situation.

The first step of the presented CSC solution is the computation of a set of features
that describe the current GOP of frames in terms of error resilience. In this compu-
tation, the capability of error concealment for MDC schemes has to be taken into
consideration. As a matter of fact, spatial correlation must be parameterized numer-
ically together with temporal correlation. This modelization permits estimating the
quality of the reconstructed frames whenever even the MDC error concealment fails
or performs poorly because of a low vertical correlation. Starting from these premises,
the CSC algorithm computes for each frame of the current Group Of Picture (GOP)
within the current video sequence the triplet of average gradients

gv = [gx , gy, gt ], (13.6)

where gx and gy are the average value of the vertical and horizontal Sobel operators
for the current frame, and gt is the average gradient computed between the pixels of
the current frame and the corresponding pixels of the previous reference frame. The
triplet gv is then averaged for all the frames in the GOP computing

Gv = E[gv]. (13.7)
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The average descriptor Gv is then normalized using the weights wv (which takes
into consideration the different range of values and the different frame resolutions
of the sequences) into the array G ′v = wv ◦ Gv (where ◦ denotes an element-
by-element multiplication) and classified via a K-means algorithm. Assuming that
G ′v lies within the class c, the classification algorithm associates to the class c
the loss probabilities PL ,v1 and PL ,v2. The packet loss probability PL ,v1 repre-
sents the probability threshold related to the current video sequence that separates
the PL values for which MDC is the best choice (PL < PL ,v1) from those val-
ues for which MDDVC and MDDVC-SM are better. As for the threshold PL ,v2,
it separates PL values for which MDDVC performs better than MDDVC-SM
(PL < PL ,v2).

A similar descriptor G ′d is computed for the depth signal and classified using
a different K-means classifier that outputs a different couples of loss probability
thresholds (PL ,d1, PL ,d2).

As a matter of fact, the CSC algorithm computes the loss probability from RTCP
control packets and identifies the best coding mode for the video signal and for
the depth signal via the classification strategy represented by the binary trees in
Fig. 13.4.

The whole algorithm can be summarized by the pseudo-code in the following
page.

13.5 Experimental Results

The proposed CSC strategy has been tested on a wide set of video+depth 3D video
sequences at different resolutions. Packet losses have been simulated using an inde-
pendent Gilbert model with burst length L B = 4 and varying loss probability PLi



230 S. Milani and G. Calvagno

Algorithm 1: Pseudo-code for the proposed CSC algorithm
for each description MDi , i = 1, 2 do

compute the packet loss rate PLi for description MDi from RTCP packets;
for the current GOP in the subsequence i do

compute array Gv for the current GOP;
classify Gv and finds out the thresholds PL ,v1 and PL ,v2;
compute array Gd for the current GOP;
classify Gd and finds out the thresholds PL ,d1 and PL ,d2;
if PLi < PL ,v1 then

use MDC coder for the view signal;
else

if PLi < PL ,v2 then
use MDDVC coder for the view signal;

else
use MDDVC-SM coder for the view signal;

end if
end if.
if PLi < PL ,d1 then

use MDC coder for the depth signal;
else

if PLi < PL ,d2 then
use MDDVC coder for the depth signal;

else
use MDDVC-SM coder for the depth signal;

end if
end if.

end for
end for

for each independent channel C Hi associated with description MDi . In our tests,
we coded different sequences at different bit rates Rb with GOP structure IPPP, one
slice per each row of macroblocks, and CABAC entropy coding. The adopted rate-
distortion optimization strategy and the rate control algorithms for both the MDC
and the MDDVC configurations are those defined within the JVT for the H.264/AVC
coder. The set of training videos for the K-means algorithm includes the sequences
breakdancers, ballet (format 1024×768) from Microsoft Research [34], the
sequencesinterview,orbi (format 720×576), andbook arrival (512×384
pixels) from FhG-HHI web-site [36]. As for the test sequences, we adopted the
sequence horse and car (format 480× 270) from the Mobile 3DTV project [35].
Since sequences present different formats, the values of Gv and Gd are equalized
via the weightswv andwd according to the size of the frames. The plots in Figs. 13.5
and 13.6 show that the Cognitive approach permits improving the average PSNR
values of the reconstructed views and reducing the average MSE of the received
depth information. In our tests, the quality of the reconstructed video sequence has
been evaluated using the PSNR and the SSIM quality metric, while the accuracy of
the reconstructed depth map has been measured using MSE (since depth information
is related to the geometry of the objects in the scene). In order to test the joint effects
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(d) PSNR of the warped view.

Fig. 13.5 Average PSNR, MSE, and SSIM metrics for the sequence ballet versus
PLm = PL1 = PL2

of the scheme on the final QoE level, we have also computed the PSNR between
the warped view generated from the original video and depth signals and the warped
view generated from their reconstructed versions. In this test, we generated a lateral
right view with a principal axis shifted by 6 cm (required for a stereo visualization).
The results show that the Cognitive approach is able to improve the PSNR value of
the reconstructed view up to 2.5 dB (see the results in Fig. 13.6a for PLi = 0.2).
This improvement can also be verified considering the other metrics. As for the com-
plexity increment, the only additional operations concern the classification since the
complexities of the MDC and the MDDVC schemes are approximately the same.
However, the computation of gradients and their clustering into a set of classes does
not require a great amount of calculation with respect to the computational load
required by the coding operations.
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Fig. 13.6 Average PSNR, MSE, and SSIM metrics for the sequence car versus PLm = PL1 = PL2

13.6 Conclusions

The chapter presented a Cognitive Source Coding scheme that adaptively chooses
the most appropriate source coding strategy for the current video and depth signals
according to the network conditions. The proposed solution increases the quality
of the reconstructed sequence and of the received depth information improving the
overall 3D Quality-of-Experience for a wide set of test sequences. Future work will
be focused on including other robust video coding schemes (like single description
video coding protected with additional FEC packets) in order to design a more flexible
architecture.
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Appendix

Given the original pixel xm(i, j) = sm(i, j) + k 2nmax,m (k ∈ Z) and its recon-
structed value xr,m(i, j) = sm(i, j) + em(i, j) + k 2nmax,m after the quantization of
the transformed syndromes, a wrongly-decoded pixel x ′r,m(i, j) can be written as

x ′r,m(i, j) = sm(i, j)+ em(i, j)+ k′2nmax,m

= xm(i, j)+ em(i, j)+ dk 2nmax,m ,
(13.8)

with k′ ∈ Z, k′ �= k, and dk = k′ − k. In the following, we will omit pixel position
indexes (i, j) and description index m for the sake of conciseness.

The probability of a wrong decoding is

PW = P
[

x ′r �= xr
] = P

[|x p − x ′r | < |x p − xr |
]

, (13.9)

which can be written as

PW = P
[| − d − e − dk2nmax | < | − d − e|] , (13.10)

where d is the difference between the current pixel and its predictor. Given d and dk ,
the probability PW becomes

PW =
{

P[e ≤ −d − dk 2nmax−1] if dk > 0,
P[e > −d − dk 2nmax−1] if dk ≤ 0.

(13.11)

The error e is modelled with a normal distribution N (0, σe,q) with mean 0 and
variance σ 2

e,q � A2Δ2/12 (where A is a scaling factor related to the adopted inverse
transform since quantization is perform on the coefficients S). The choice of a normal
distribution is motivated by the fact that e is a linear combination of independent
quantization errors generated in the transform domain and inversely-transformed.
From Eq. (13.1) it is possible to infer that 2nmax−2 ≤ |d| < 2nmax−1, and therefore,
the probability of a wrong decoding becomes

PW = Q

( |d + dk 2nmax−1|
σe,q

)

. (13.12)

From Eq. (13.12) it is possible to write the inequalities

PW ≤ Q

(
2nmax−2 + |dk | 2nmax−1

σe,q

)

≤ Q

(
1.5 2nmax−1

σe,q

)

= Q

(
2.6 2nmax

A Δ

)

.

(13.13)

As a matter of fact,
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Q

(
2.6 2nmax

A Δ

)

≤ 0.017 ⇒ Δ <
1.24 · 2nmax

A
= 5.6 · 2nmax (13.14)

where A is assumed to be approximately equal to 1/4 for the inverse 4×4 transform
defined in the standard H.264/AVC (considering both transform amplification and
rescalings).
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Chapter 14
An Efficient Prefetching Strategy for Remote
Browsing of JPEG 2000 Image Sequences

Juan Pablo García Ortiz, Vicente González Ruiz, Inmaculada García,
Daniel Müller and George Dimitoglou

Abstract This chapter proposes an efficient prefetching strategy for interactive
remote browsing of sequences of high resolution JPEG 2000 images. As a result
of the inherent latency of client-server communication, the experiments of this study
prove that a significant benefit, can be achieved, in terms of both quality and respon-
siveness, by anticipating certain data from the rest of the sequence while an image is
being explored. In this work a model based on the quality progression of the image is
proposed in order to estimate which percentage of the bandwidth will be dedicated to
prefetching. This solution can be easily implemented on top of any existing remote
browsing architecture.

Keywords JPEG 2000 · Remote browsing · Image sequences · JHelioviewer ·
Prefetching

14.1 Introduction

Some of the powerful features offered by the new JPEG 2000 standard [8] are very
efficient lossless/lossy compression, random access to the compressed data streams,
incremental decoding and high scalability. These characteristics make JPEG 2000
a state-of-the-art solution for remote browsing of high-resolution images. Using
the JPIP protocol, defined in Part 9 [9] of the JPEG 2000 standard, clients can
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interactively explore remote image data by specifying a window of interest (WOI).
This data exchange uses the available bandwidth efficiently and does not require any
recoding or additional processes. The server extracts <only the required data from
the images and transmits it to the clients.

JPEG 2000 has already been successfully used in many scientific areas; e.g.,
in tele-microscopy [23] or tele-medicine [11]. A promising application in space
sciences is the JHelioviewer project [16], developed by the European Space Agency
(ESA) in collaboration with the National Aeronautics and Space Administration
(NASA). Its main goal is to provide an interactive data browsing, visualization and
access platform to accommodate the staggering data volume of 1.4 TB of images
per day that are returned by the Solar Dynamics Observatory [18]. Among other
data products, SDO is providing full-disk images of the Sun taken every 12 s in ten
different ultraviolet spectral bands with a resolution of 4096 × 4096 pixels. As of
today, the combination of JPIP and JPEG 2000 seems to offer the best solution in
order to efficiently browse image data sets of this magnitude.

The basic functionality of JHelioviewer allows users to explore the available data
for a given point in time. A interesting extension of this functionality is to enable users
to move smoothly through a sequence of time-coded solar images given a specific
time range. This type of functionality could also prove to be very valuable in other
domains such as tele-medicine and tele-microscopy.

However, viewing JPEG 2000 image sequences is both computationally and
bandwidth-intensive and often compromises the quality of the viewing experience.
This compromise manifests itself to the user as lack of responsiveness, i.e. choppy
image rendering. To address these challenges, we propose a special prefetching strat-
egy that enables users to view image sequences with smooth transitions and without
experiencing any penalties in responsiveness or quality gaps.

This chapter is organized as follows: Sect. 14.2 gives a brief synopsis of related
work, while Sect. 14.3 provides a detailed analysis of the problems related to remote
browsing of JPEG 2000 image sequences. Section 14.4 is dedicated to explaining the
proposed solution, which is then evaluated in Sect. 14.5. Section 14.6 concludes the
chapter and discusses ideas for future work.

14.2 Related Work

The access and distribution efficiency of large image files over networks has been
an active research topic for a long time, in particular because images account for a
considerable fraction of the total network traffic. Caching has been historically recog-
nized as one of the most promising techniques to reduce bandwidth usage, server
load and to improve performance, and various caching and prefetching schemes and
algorithms have been proposed to reduce network traffic and minimize access delays
[1, 2, 7, 17]. More recently, image-specific caching techniques have been proposed to
take advantage of the memory and processing capabilities of modern client systems
and to expedite image retrieval [21, 22, 24]. The JPEG 2000 standard has introduced
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new capabilities that can also be leveraged to augment some of the existing caching
techniques.

Extensive work has been done in the area of accessing JPEG 2000 images over
HTTP to improve the user’s interactive browsing experience [6]. One approach used a
dynamic traffic regulating mechanism [14] and another one employed a virtual media
protocol to prioritize the compressed bit stream of the region of interest (ROI) [13].
Other approaches have focused on prefetching techniques using prediction-based
server scheduling and cache management algorithms [15] or quad-tree-based index-
ing techniques, which take advantage of the space-frequency localization property
of wavelet transforms and support subregion access [19, 20].

This notion of subregion access for streaming a WOI seems promising in enabling
efficient, demand-driven browsing, which allows clients to quickly access regions
of interest from voluminous images. Still, given the inherent client/server exchange
latency, the browsing experience of JPEG 2000 images can be further improved
by early fetching of future WOI data. A number of different approaches have been
proposed, such as introducing a new type of a prioritizing scheme that enables trans-
mission of volume regions by their scene content [12]. Others have included the use
of heuristic mechanisms that improve browsing responsiveness [15], using a formal
rate-distortion (RD) framework [5], and taking advantage of a user navigation model
to manage the client cache and to prefetch data [3].

When it comes to prefetching strategies for remote browsing of JPEG 2000
images, the work by Descampe et al. [4] provides a comprehensive view of the
state of the art along with their own proposed solution. In their work, the authors
propose and evaluate several solutions to anticipate future WOIs in order to achieve
a better responsiveness. However, all the solutions only take into consideration user
exploration of single large-scale images, discarding the dynamic nature of navigation
along an image sequence.

For the case studied in this chapter, the resolution of the images is not as high as
that used by Descampe et al. as it is more important to improve the responsiveness
to user movements along an image sequence as opposed to browsing just one single
image. Moreover, the solutions proposed by [4] require special scheduling of JPEG
2000 packets, which is rather difficult to implement given the existing standard.

To achieve an acceptable level of responsiveness and avoid disturbing quality
gaps while navigating through an image sequence, a special prefetching procedure
is required. In the following sections, we present an efficient prefetching strategy for
remote browsing of JPEG 2000 image sequences that offers good performance and
smooth transitions, as well as an easy implementation.

14.3 Problem Description

Client/server JPIP communication is based on the exchange of requests and responses.
Within each request, clients specify, among other parameters, the remote file to
explore and the WOI to be shown. Files may contain a sequence of N different images



242 J. P. G. Ortiz et al.

(in the case of JHelioviewer, they are related to a specific time range), so requests
must also include the desired range of images [a, b], with 0 ≤ a ≤ b ≤ N−1. With-
out any additional user interaction, the same WOI is retrieved from all the images
within the time range.

There are two kind of possible JPIP requests: stateless and session-oriented ones.
Stateless requests are independent of each other, and no state is recorded during the
exchange of messages between clients and servers. In the case of the session-oriented
requests, all the requests related to the same remote image file are associated with
the same session. This allows the server to remember which image parts have been
sent to a client, thus avoiding redundant transmissions, e.g. for overlapping WOIs.
Most of the remote browsing applications use this communication type.

JPIP servers assume by default that clients always retain all of the data received
within a session. If a client needs to remove some of the data, for example to free up
memory, the server should be notified. This study does not deal with client resource
restrictions, and we therefore assume that there are none.

Session-oriented communications allow clients to control the data flow. For a
certain WOI, a client can specify the maximum length L desired for the server
response in his request and then retrieve the data of the WOI in increments of L by
simply repeating the same request several times. In the case of image sequences, the
response data should be uniformly distributed by the server over the requested time
range.

For each request, the value L may be adapted depending on specific requirements.
The most common scheme balances the usage of the available bandwidth and the
response time to WOI changes by the user. Notice that for large values of L , the data
of a new WOI takes a long time to be received, especially at low bandwidths, after
receiving that of the previous WOI. This generates long response times for the user
interaction. On the contrary, a faster response time is achieved when a smaller value
of L is used, even though additional overhead is generated due to the increase in the
number of transmitted HTTP headers.

Some client applications, like kdu_show [10], adapt the L value according to
the relation between the round-trip time (RTT)1 and the time T taken to extract the
message data from the communication link, for each server response. Then, L is
modified with the aim of equaling RTT/T to a certain target ratio (L is decreased if
the ratio is higher and increased if it is lower), just after retrieving a server response
and before performing the next request. This method is implemented by the clients
in the solution proposed in this chapter.

This work focuses on JPIP applications, such as JHelioviewer, designed to explore
remote image sequences. Figure 14.1 shows an example of five sequential times
during a remote browsing session using JHelioviewer. Once the user has selected a
time range, the server builds a virtual JPEG 2000 file which only contains links to
those images whose time stamp belongs to that time range. The client starts a JPIP
session for that file and requests the first image, displayed at time t0. The user can

1 The round-trip time is the elapsed time between the instant when the client generates the request
and the instant when the first bit of the reply arrives to the client.
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t0 t1 t2 t3 t4

Fig. 14.1 An example of different points in time of a remote browsing session. In the beginning,
the user specifies a data source and a time range, and the first image is presented at time t0. At time
t1, where ti > ti−1, the image produced by the Sun has changed, due mainly to its rotation. At
time t2 the user specifies a window of interest (WOI). t3 and t4 are times during the remainder of
remote visualization session where only the selected WOI is displayed and transmitted

then watch the sequence of images belonging to the time range one by one. In this
example, at time t2 the user zooms in on a certain region, thus changing the current
WOI. From this new WOI, the user continues moving forward through the sequence,
to times t3 and t4.

This type of interactive browsing requires a new communication scheme capable
of offering smooth transitions while maintaining good responsiveness, and designed
to be implemented over session-oriented JPIP communications. An added value is
that this scheme is easy to implement on the client-side by simply combining the
parameters L and [a, b] of every request, and does not require any server or protocol
modifications.

14.4 The Proposed Prefetching Strategy

The method presented here assumes that the images have been encoded using a
suitable collection of encoding parameters. These parameters should allow spatial
and quality scalability, and the definition of WOIs without any transcoding on the
server side. It is also assumed that, for every WOI request, the JPIP server delivers
the associated data minimizing the distortion of the displayed imagery.

As described in the previous section, a typical JHelioviewer user will spend some
time displaying a concrete WOI (that could be the entire image) of a given single
image and some time reproducing the entire image sequence, and frequently repeat
these steps several times for the same image sequence (see Fig. 14.1), pausing the
movie mode at any image.

In the simplest transmission strategy (without prefetching), the data requested
by the client belongs only to the WOI of currently displayed image. Therefore, the
quality of a given WOI of each of the images of the sequence will be proportional
to the amount of time that each of the images have been displayed and the available
band-width of the transmission link during this time.

A rate-distortion curve of a typical image of the Sun (see Fig. 14.2) indicates that,
for a constant transmission rate, the visual quality of the images increases much faster
in the beginning of the transmission. Therefore, in order to maximize the quality of
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Fig. 14.2 Rate-distortion curve for the SDO/AIA image aia_test.lev1.304A_2010-06-
12T09_29_26.13Z.image_lev1. The reversible path of JPEG 2000 has been used

the entire image sequence, at any time of the visualization, a given part of the bit
budget should be dedicated to the currently displayed WOI w and the rest of the
budget should be used for prefetching the same w of subset of the remaining the
images of the time range.

To build our prefetching procedure, some definitions are required. Let Ew(b)
be the distortion between w and w(b), where w(b) is the reconstructed WOI after
receiving b bits of w, calculated by means of the Mean Square Error

Ew(b) = MSE(w,w(b)).

Ew(b) will exhibit an approximately exponential behavior (in this case with a
negative exponent). Thus, when b bits have been received for a given WOIw, Ew(b)
can be used to decide for the next request, which percentage of L is assigned to refine
ic (incrementing its quality) and which percentage of L is used for prefetching of
other images from the time range.

A central issue related to the calculation of Ew(b) is its dependence on the content
of w, i.e. image data that is only known at the end of the transmission. However,
taking into account the exponential trend of Ew(b), this behavior is fairly similar to
the behavior of a function that only considers the differential quality increments of
w(b), i.e.

d E K
w (b) = MSE(w(b), w(b−K )),

for a certain constant increment of received bits, K .
Note that the values of d E K

w (b)will decrease along the transmission of an image,
but faster in the beginning of the transmission than in the end. Therefore, d E K

w (b) can
be used to decide if the data requested next should be part of the currently displayed
image ic or should be dedicated to prefetching data from the other images within the
time range. The idea is that, if the d E K

w (b) value is close to zero, then most of the
requested data should be dedicated to the time range prefetching.
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Fig. 14.3 Impact of K on the prefetching model function P K
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With this idea in mind, the normalized percentage of each request to be dedicated
to the prefetching can be modeled as

P K
w (b) = σe−d K

w E(b),

where the value 0 ≤ σ ≤ 1 is used to limit this percentage. Figure 14.3 shows the
effect of K on the calculation of this percentage along the transmission of an image
(with σ = 1 for all the cases and also for the rest of the figures of this document).
It can be seen that the larger the value K is, the smaller the percentage P K

w (b) and,
therefore, the less aggressive the prefetching will be. It should be also noted that too
small values of K (less that 50 bytes) could lead to the current and the next WOIs
being identical, which will erroneously increase the prefetching of data, and that too
big values of K will produce a slow prefetching scheme that, if the available band-
width is also small, could disable the prefetching of data altogether. Our experiments
show that values close to 1,000 bytes are suitable for a common remote browsing
scenario.

According to P K
w (b), when the L value has been adjusted after receiving a server

response, the next request to the server would be divided into

Lc =
(

1− P K
w (b)

)

L

bytes for the WOI within the current image ic, and

L p = P K
w (b)L

bytes for prefetching of the rest of images of the time range. In our proposal, because
the time range could potentially include too many images to be prefetched, the
L p budget is dedicated only to those images of the time range that are, at most,



246 J. P. G. Ortiz et al.

Without prefetching
K = 500

K = 1000
K = 2000

10

15

20

25

30

35

40

45

50

100001000

PS
N

R
[d

B
]

b (in bytes)

Fig. 14.4 Quality of a window of interest of ic (the currently displayed image) retrieved
with and without prefetching

located λ images away from ic. λ therefore defines the size of a window of images
{ic−λ, · · · , ic−1, ic+1, · · · , ic+λ} that is centered on ic but does not include it.

In order to measure the loss of quality of ic due to the prefetching, Fig. 14.4
shows a rate/distortion comparison, in terms of Peak Signal-to-Noise Ratio (PSNR)
in decibels, between a WOI of ic retrieved with and without prefetching and for
different values of K . The figure shows that the loss of quality produced by the
time range prefetching is negligible in the beginning of the transmission and visually
insignificant in the end, when a user could hardly differentiate between both WOIs.

Finally, from an implementation perspective, several points should be clarified.
JPIP does not allow the specification of different values of L within the same request.
Due to this limitation, in order to carry out the prefetching of the time range, each
request must be divided into two requests: one with Lc and another one for the
prefetching with L p. These requests should be sent continusly, profiting from the
transmission pipelining, in order to avoid any communication delays.

Since an independent request must be used for ic as well as for prefetching, it
is necessary to control the overhead generated by the protocol. Experience leads to
the assumption that, on average, JPIP servers include around H = 300 additional
bytes within each response due to headers. Once the values Lc and L p have been
obtained, they must be modified depending on the ratio H/L p. If this ratio is above
a certain threshold, Lc is set to L , thus discarding the second prefetching request.
Experimental results show that a good value for this threshold is 0.5 or less. Changes
in the value of H might also be taken into account during the communication for a
better overall performance.

Once the current WOI has been completely received, the client should continue
prefetching data using L p = L . This makes it possible to also exploit the time spent
by the user to analyze the content of the image.
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14.5 Efficiency of the Prefetching in JHelioviewer

This proposed solution has been implemented in the JHelioviewer client. A random
user browsing session composed of 200 consecutive movements over a remote file
that contains a sequence of eighty-eight 4096×4096 solar images has been generated.
The same session was simulated twice, once with prefetching and another time
without it, for each condition evaluated. The Kakadu JPIP server [10] has been used
for these experiments. The client/server bandwidth has been fixed to 1 Mbit/s, with
a RTT of 1 s.

A slightly modified version of the user model proposed by Descampe et al. has
been used for generating the random user browsing session of the 200 movements.
The possible user movements have been reduced to five: panning, zooming in, zoom-
ing out, moving forward and moving backward. The first movement consists of
changing the position of the current WOI to a new random position within the same
resolution level, with a distance of 128 pixels. After a panning movement, the WOI
is fully overlapped by the precinct partition (128 × 128 for every resolution level)
without gaps. The zooming movements change the resolution level of the WOI one
by one. The zooming-in movement is limited so that the minimum allowed resolu-
tion level is 512× 512. The last two movement types allow the moving through the
sequence one image at a time. None of these movements modify the WOI dimension,
which is always 512× 512 pixels.

It is assumed that the user behavior is defined by a first order Markov process, so
given a movement of one type, the probability of choosing the same movement as
the next one is δ, while the probability of choosing a different one is (1− δ)/4. The
experiments in this study have used a value of δ = 0.4. From the point of view of
these experiments, the value of δ is not critical for evaluating our proposal since the
distribution of movements is homogeneous. In Descampe’s work this value had to be
evaluated because its was associated to the predictability of the user behavior, a factor
that affected the prefetching scheduler, but this is not the case for our solution. We
have therefore chosen an intermediate value for δ, corresponding to a user behavior
between almost deterministic (δ = 0.9) and fully random (δ = 0.2).

During the simulated browsing session, as soon as the quality of the current
reconstructed WOI achieves a quality better than a certain PSNR threshold Θ , the
next movement is triggered after a reaction delay Bτ , expressed in bytes. As in the
Descampe’s work, we have evaluated the values 30, 35 and 40 for Θ . For all values
of Θ we have assumed Bτ = 0, with the exception of Θ = 40, for which we have
also used the values 10 and 20 kB.

A total of 40 different conditions have been evaluated, varying σ from 0.1 to 1, in
steps of 0.1, with values of 1, 2, 5 and 10 for λ. The average difference of the PSNR
obtained in the remote browsing session, with and without prefetching, has been
calculated for each condition. This difference is expressed as a percentage relative
to the first session. The value used for K was 1,000 bytes.

Figures 14.5, 14.6 and 14.7 show that the best results are obtained for Θ = 40.
ForΘ = 30 the improvement is hardly noticeable because the WOI is moved before
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Fig. 14.5 Experimental results for Θ = 30 dB and Bτ = 0 bytes
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Fig. 14.6 Experimental results for Θ = 35 dB and Bτ = 0 bytes

a significant stabilization of the differential quality has happened, and prefetching
can therefore not be applied before the next user movement.

Figure 14.7 shows that with our solution there is always an improvement in the
average PSNR independently of the values used for σ and λ. Nevertheless, the max-
imum improvement is achieved around σ = 0.9.

In all cases, the higher the value of λ, the less improvement is achieved. Taking
into account the chosen user model, with one-by-one movements through the image
sequence, this result is to be expected. It is perceivable that with another user model,
with different degrees of freedom of movement through the sequence (e.g. allowing
the user to skip images), the impact of λ might be different.

Taking into account that the best results have been obtained withΘ = 40, we have
also evaluated this threshold value with two different reaction delays Bτ = 10 and
Bτ = 20, in Kbytes, as shown in Figs. 14.8 and 14.9, respectively. It is observed that
the performance worsens with increasing value of Bτ , and it is even possible to obtain
worse PSNR values with high σ values. These negative values are achieved due to
the PSNR metric. After 40 dB, the differences in the visual quality of the sun images
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Fig. 14.7 Experimental results for Θ = 40 dB and Bτ = 0 kB
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Fig. 14.8 Experimental results for Θ = 40 dB and Bτ = 10 kB

is hardly noticeable. At these high σ values, the client bandwidth is therefore almost
completely dedicated to prefetching. The PSNR is thus incremented very slowly,
while the non-prefetching solution continues to increase the PSNR. Although this
difference cannot be noticed by the user, the exact results are affected.

The results presented in this chapter show that the proposed solution improves the
general user experience, defined in terms of PSNR, when browsing remote sequences
of JPEG 2000 images. The best value for σ is associated to the speed of the user
movements: for fast movements, the best results are obtained with high σ values; for
slow movements, it is better to use low σ values that guarantee prefetching without
significantly affecting the download of the current WOI.

The client application might even adjust the value of σ dynamically depending on
the user behavior. When the user is moving through a sequence looking for a specific
image, the movements are usually quite fast. However, once the user has located an
interesting image, the movements become slow, with high reaction delays.
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Fig. 14.9 Experimental results for Θ = 40 dB and Bτ = 20 kB

14.6 Conclusions

In this work, a new efficient prefetching technique for interactive remote browsing
of JPEG 2000 image sequences is proposed. Its most relevant characteristics are: (i)
it offers an easy implementation that can be added to any existing JPIP client/server
architecture; (ii) from the client/server bandwidth available, a certain fraction is allo-
cated to prefetching, which is estimated using a differential quality model function;
and (iii) an average improvement of the reconstructed WOI is always achieved, inde-
pendently of how much fine-tuning is carried out. As a continuation of this study,
future work will analyze an extension of this technique that utilizes sequences of
images for video streaming.
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Chapter 15
Comparing Spatial Masking Modelling in Just
Noticeable Distortion Controlled H.264/AVC
Video Coding

Matteo Naccari and Fernando Pereira

Abstract This chapter studies the integration of a just noticeable distortion model
in the H.264/AVC standard video codec to improve the final rate-distortion perfor-
mance. Three masking aspects related to lossy transform coding and natural video
contents are considered: frequency band decomposition, luminance component vari-
ations and pattern masking. For the latter aspect, three alternative models are consid-
ered, namely the Foley–Boynton, Foley–Boynton adaptive and Wei–Ngan models.
Their performance, measured for high definition video contents, and reported in terms
of bitrate improvement and objective quality loss, reveals that the Foley–Boynton and
its adaptive version provide the best performance with up to 35.6 % bitrate reduction
at the cost of at most 1.4 % objective quality loss.

Keywords Human visual system · Just noticeable distortion modeling · Pattern
masking · Perceptual video coding

15.1 Introduction

Nowadays, video technologies allow capturing and displaying visual contents at high
resolutions with prices affordable for consumer usage. Therefore, it is expected that
the amount of high definition video stored and/or transmitted will rapidly increase,
demanding for more storing capacity and/or bandwidth. In this scenario, it is im-
portant to design new video compression algorithms able to further improve the
compression efficiency beyond the state-of-the-art H.264/AVC (Advanced Video
Coding) standard [17]. The Call for Proposals issued by both ITU and MPEG in
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January 2010 on Video Compression Technology and the following running stan-
dardization activities on the High Efficiency Video Coding project express well these
emerging needs [5].

One approach to reduce the video bitrate for a certain target quality may rely on
the exploitation of the characteristics of the Human Visual System (HVS) which is
always the last quality judge. In fact, the distortion induced by the usual quantization
tools is not uniformly perceived by human beings but it rather varies, notably due to
some video content masking capabilities/effects [18]. From this initial observation,
several studies have been conducted to model the Just Noticeable Distortion (JND)
corresponding to the minimum visibility threshold below which no change can be
perceived by the HVS [18]. JND in video contents usually depends on three main
spatial perceptual aspects: (1) the type of frequency representation (i.e. the transform)
used; (2) the luminance variations; and (3) the presence of some patterns such as
textured regions which boost masking effects. In the context of video coding, the
main purpose of a JND model is to drive the quantization process by performing a
coarser quantization in the image regions where the JND is higher since this should
allow saving rate resources without subjective quality reduction. As an example, if
the quantization is performed in the Discrete Cosine Transform (DCT) domain, then
a different quantization step might be used for the various DCT bands in different
image regions. Naturally, to correctly decode the coded video, these quantization
steps must be transmitted and/or stored as side information which would increase
the rate. While some authors claim that the bitrate associated to this side information
may be rather high [4], it is also possible to estimate the JND model, and thus the
associated quantization steps, at decoding time, thus eliminating the rate increase.

As an essential intermediary step to a complete perceptual video coding solu-
tion, the main objective of this chapter is to identify a good solution for the pattern
masking component of the JND model by comparing solutions available in the liter-
ature. With this purpose, this chapter integrates a complete spatial JND model into a
H.264/AVC High profile video codec to evaluate the bitrate reductions obtained for
a certain subjective quality. The adopted JND model accounts for all the three afore-
mentioned perceptual masking aspects and works in the DCT domain. Three pattern
masking models proposed in the literature are considered: the Foley–Boynton [3]
and Wei–Ngan [16] models, and an adaptive version of the Foley–Boynton model.
The result of this comparison will drive the selection of the most suitable spatial JND
model, notably the one bringing the best trade-off between bitrate reduction and side
information bitrate increase when a perceptual coding approach is adopted.

The remainder of this chapter is organized as follows: Sect. 15.2 provides a brief
overview on some of the most relevant JND models proposed in the literature. Sec-
tion 15.3 describes the adopted and integrated spatial JND model and the three pat-
tern masking models under evaluation. Section 15.4 presents the codec architecture
modified with the JND model integration. Moreover, it is also discussed how the
perceptual thresholds are considered in the quantization process. The experimental
setup, as well as the measured performance, are provided and discussed in Sect. 15.5,
while Sect. 15.6 concludes the chapter.
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15.2 Background Overview

One of the first attempts to derive a JND model in the DCT domain, taking into
account also the luminance variations in different image areas, dates back to the
early nineties with the work of Ahumada and Peterson [1]. The results of this seminal
study have been successfully applied to JPEG image coding in the DCTune algorithm
[15] which provides graceful quality degradation by allowing the optimization of the
quantization matrices for a given target rate. By taking into account also pattern
masking effects, Höntsch and Karam in [4] adapted the Foley–Boynton model [3] to
the DCT domain and proposed an estimation of the JND model at the decoder side.
The authors showed that the performance obtained with the estimated JND model
is comparable with the performance that would be achieved if the “original” JND
thresholds would be available at decoding time. Finally, the authors also show that
their model can reduce up to 23.9 % the bitrate required by the DCTune algorithm for
the same perceptual quality. The main reason for the better performance of the model
in [4] is related to the explicit modeling of the pattern masking mechanism which is
not taken into account in the DCTune algorithm [15]. The original Foley–Boynton
model in [3] can be further improved by considering inter-band masking [18]. In
analogy with the audio case, inter-band effects refer to the masking provided by one
DCT band with respect to the others. Inter-band masking has been modeled in the
literature by an empirical weighting of the JND thresholds computed according to
the Foley–Boynton model [3]. The weighting might be driven by either the absolute
energy of the DCT coefficients as in the work by Zhang et al. [20] or some image
features as proposed by Wei and Ngan [16]. Thanks to inter-band masking, the
model in [20] outperforms the DCTune algorithm for JPEG image coding based
on subjective assessment. For the same settings, the model in [16] shows a better
performance than both the DCTune and the model in [20]. In particular, for the same
subjective quality, the model in [16] can tolerate more distortion (i.e. lower Peak
Signal-to-Noise-Ratio values).

Naturally, also the wavelet domain has been targeted by the research on JND mod-
eling. As an example, Liu et al. proposed a perceptual image encoder which is fully
compliant with the JPEG 2000 standard and achieves a bitrate reduction up to 21.2 %
when compared with conventional JPEG 2000 coding [9]. In [8], Leung and Taubman
propose to adaptively modulate the exponent of the model in [3] to better preserve
image edges. The method is integrated into a wavelet based scalable video codec and
its performance is reported both in terms of objective and subjective measurements.
For the same bitrate, the sequence reconstructed with the proposed method achieves
lower Perceptual Distortion Metric (PDM) values [8]. Similar conclusions are also
achieved with subjective testing.

Finally, also the JND modeling in the pixel domain has been addressed in the
literature notably for subband and MPEG-2 Video coding. In [2], Chou and Li propose
a pixel domain JND model for subband image coding which nonlinearly blends
the variance and the average of the luminance background. The model is used to
suppress the DCT coefficients whose magnitude is less than the corresponding JND
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Fig. 15.1 JND thresholds
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threshold. The designed image codec has been compared with the JPEG standard for
grey level image coding using the Peak-Signal-to-Perceptible-Noise-Ratio (PSPNR)
as objective metric [2]. Experimental results show that the proposed perceptual codec
outperforms the JPEG standard by up to 10 dB PSPNR at the same rate. The model
in [2] has been later extended to the chrominance components by Yang et al. for
MPEG-2 Video coding [19]. The masking capabilities of the proposed JND model
have been assessed both for images and video. For images, the authors conducted
subjective tests showing that their model achieves the same perceptual quality of [2]
but with less 2 dB PSNR. Conversely, for the video case, the designed JND model
has been integrated in a MPEG-2 Video encoder to suppress the prediction residuals
with absolute values lower than their corresponding JND thresholds. The authors
showed that, at the same rate, the modified MPEG-2 Video encoder increases the
PSPNR up to 0.25 dB against conventional MPEG-2 Video coding.

15.3 Spatial and Model Description

This section presents the spatial JND model to be integrated in the H.264/AVC
encoder. First, the general form of the model is introduced and, after, all the terms
modeling the three (spatial) aspects mentioned in Sect. 15.1 are presented. The overall
spatial JND model for the (i, j) DCT band in the k-th B× B DCT block is given by:

JND(i, j, k) = JNDband(i, j) · JNDlum(k) · JNDpat (i, j, k), (15.1)

where JNDband(i, j) denotes the model for the DCT band decomposition masking,
JNDlum(k) denotes the model for the luminance variations masking in the DCT
block and, finally, JNDpat (i, j, k) denotes the model for the pattern masking at block
level. The JND threshold in Eq. 15.1 is computed over the luminance component of
each original video frame. The JND thresholds for the chrominance components are
obtained by selecting, at 4 × 4 level, and with the same chrominance subsampling
ratio, the even luminance JND thresholds as shown in Fig. 15.1. Finally, this chapter
considers a 4× 4 DCT block size as this is the basic H.264/AVC transform size; the
extension towards the 8× 8 size is currently ongoing work.
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15.3.1 Frequency Band Decomposition Masking Model

This model accounts for the different sensitivity of the human eye to the noise in-
troduced at different spatial frequencies (i.e. different DCT bands). In particular, the
human eye shows a band-pass behavior which can be approximated by a parabolic
function with downward concavity [18]. Closed form solutions for this approxima-
tion have been proposed in [1, 16] but their parameterization, carried out by means
of subjective tests, regards only the 8×8 floating point DCT. Therefore, an extension
of these models for the 4× 4 and 8× 8 integer DCT used in H.264/AVC would re-
quire new designs and subjective testing. In this chapter, the DCT masking model is
constituted by the default perceptual weighting matrices adopted in the H.264/AVC
reference software [7] since they were properly designed to quantify the error visi-
bility for each DCT band [13]. These perceptual weighting matrices differ for Intra
and Inter coded macroblocks as reported in Eqs. 15.2 and 15.3.

JNDintra
band (i, j) =

⎡

⎢
⎢
⎣

6 13 20 28
13 20 28 32
20 28 32 37
28 32 37 42

⎤

⎥
⎥
⎦
, (15.2)

JNDinter
band (i, j) =

⎡

⎢
⎢
⎣

10 14 20 24
14 20 24 27
20 24 27 30
24 27 30 34

⎤

⎥
⎥
⎦
. (15.3)

The values in Eqs. 15.2 and 15.3 include a multiplication by 16 in order to pre-
serve the 16-bit integer arithmetic adopted by the H.264/AVC integer DCT [10] and
also to obtain perceptual weights lower than 1 which reduce the quantization step.
For example, a value 6 in the JNDband matrix corresponds to a perceptual weight
of 6/16�0.37, i.e. a weight which reduces the quantization step for a given DCT
coefficient.

15.3.2 Luminance Variations Masking Model

This model accounts for the masking effect provoked by luminance variations in
different image regions. The rationale behind this masking is that quantization errors
are less visible in darker and brighter regions. The starting point is the Weber–Fechner
law which states that the minimal brightness difference which may be perceived
increases with the background brightness [18]. The work in [16] proposes a numerical
approximation of this law. Considering the H.264/AVC standard, this approximation
comes as follows:
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JNDlum(k) =

⎧

⎪
⎨

⎪
⎩

−3·L̄(k)
62 + 4 L̄(k) ≤ 62

1 62 < L̄(k) < 115
3·L̄(k)−205

140 L̄(k) ≥ 115

, (15.4)

where the term L̄(k) denotes the average luminance intensity in block k belonging
to the original frame. Regarding [16], Eq. 15.4 has been modified by changing the
range where JNDlum(k) = 1 and scaling its values. The former change is necessary
since experimental tests revealed that the original range was too wide. The latter
change is a consequence of the different frequency band masking term adopted in
this chapter; in fact, the JNDlum values have been rescaled to guarantee the same
increment as observed when the model in Eq. 15.4 is applied to the JNDband model
used in [16]. The varying JND thresholds due to luminance masking are shown in
Fig. 15.2 for the first frame of the Crew sequence with a luminance spatial resolution
of 720 × 1280 and 4 × 4 block size. As it may be noted, brighter areas as the wall
and the door frame have the higher JNDlum threshold values. The same trend is also
observed in darker areas, such as the men’s shoes and the man behind the one on the
left.

15.3.3 Pattern Masking Model

This model accounts for the spatial masking effects corresponding to some specific
patterns in the image. In fact, it is well known that quantization errors are less notice-
able on patterns such as textures or corrugate regions [18]. These pattern masking
effects have an impact on the JND thresholds. The work in [3] measured the JND
threshold variations operated by masker signals such as Gabor and sinusoidal pat-
terns. The measurements led to a nonlinear relation between the JND thresholds and
the normalized masking energy E(i, j, k) defined as the squared ratio between the
masker (i.e. the image) and the masking signal (i.e. the quantization error):

E(i, j, k) =
∣
∣
∣
∣

C(i, j, k)

JNDband(i, j) · JNDlum(k)

∣
∣
∣
∣

2

, (15.5)

where C(i, j, k)denotes the DCT coefficient for the (i, j) frequency band and the k-th
image block belonging to the original frame. This nonlinear relationship constitutes
the starting point for the three pattern masking solutions to be compared in this
chapter as described in the following.

Foley–Boynton Model

The nonlinear relationship between the normalized contrast energy E(i, j, k) and
the JND thresholds, firstly introduced in [3], has been adapted to the DCT case by
Höntsch and Karam in [4] as:
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Fig. 15.2 First frame of the Crew sequence (a) and JND thresholds for the JNDlum term (b)

JNDpat (i, j, k) =
{

1 if i, j = 0
max(1, E(i, j, k)ε) otherwise

, (15.6)

where the exponent ε is equal to 0.6. Considering the H.264/AVC standard, the values
of JNDpat (i, j, k) have been further clipped to 1.2 to guarantee the same increment
in the JND thresholds observed for the model in [4] with 4× 4 floating point DCT.

Adaptive Foley–Boynton Model

The exponent ε in Eq. 15.6 can be made adaptive at the B × B block level. The
rationale for this change comes from recent studies showing how spatio-temporal
edges (rather than interior regions) generate the strongest HVS responses [8]. From
this result, the exponent ε can be set to either εmin for image blocks which contain
edges and plane regions or to εmax for textured image blocks. In this chapter, the
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(a) (b) (c)

Fig. 15.3 B × B image block classification example. a Mandrill image, b image edges obtained
with the Canny’s edge detector and c block classification: plane blocks (black); edge blocks (grey)
and textured blocks (white)

values for εmin and εmax have been set to 0.3 and 0.6, respectively. These values
have been experimentally derived after visual inspections for several video contents,
under the same test conditions described in Sect. 15.5. The block classification for
edge, plane and textured image regions is performed following the same approach
in [16]. First, the Canny’s edge detector is applied over the n-th frame F(n). Then,
for each B × B block k, the edge pixels fraction, ρ(k), is computed as follows:

ρ(k) = Λ

B2 , (15.7)

whereΛdenotes the number of edge pixels inside block k. The image block k is classi-
fied as plane if ρ(k) = α, as edge if α < ρ(k) ≤ β and as textured, otherwise. Differ-
ently from the work in [16], the thresholds (α, β) are adaptively computed using the
normalized histogram hρ(F(n)) of the ρ values for F(n). In particular, the threshold
α is computed as the centroid of hρ(F(n))while β is computed as the centroid of the
histogram h̄ρ(F(n)) defined as:

{

h̄ρ(F(n)) = hρ(F(n)),∀k′ such that ρ(k′) > α
}

.
An example of the block classification for the image “Mandrill” is shown in Fig. 15.3.

Wei–Ngan Model

The work in [16] uses the model in 15.6 with ε equal to 0.36 and performs an adaptive
weighting of JNDpat (i, j, k). The adaptive weight ψ is selected depending on the
aforementioned block classification and the band location (i, j). In particular, ψ is
set to 1 for edge and plane blocks, while for texture blocks its value depends also on
the frequency band location (i, j):

ψ =
{

2.25 if i2 + j2 ≤ 4
1.25 otherwise

. (15.8)
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This weighting considers that for textured blocks the quantization can be coarser in
lower frequencies and smoother for higher frequencies. Finally, the JNDpat (i, j, k)
term is given as follows:

JNDpat (i, j, k) =
⎧

⎨

⎩

ψ i2 + j2 ≤ 4 and
plane or edge

ψ ·min(4,max(1, E(i, j, k)0.36)) otherwise
, (15.9)

In summary, the three presented pattern masking models can be characterized by:

1. They are all based on the general Foley–Boynton’s model depicted in Eq. 15.6.
2. Both the last two models are adaptive and require to code some additional side

information associated to the block classification.
3. While the adaptive Foley–Boynton adapts to the image content to preserve im-

age edges, the Wei–Ngan model adaptive weighting preserves better the texture
details.

15.4 H.264/AVC JND Model Integration

This section describes how the adopted spatial JND model has been integrated in
the H.264/AVC encoder architecture. To this end, Fig. 15.4 illustrates the overall en-
coder architecture, highlighting the JND model related blocks. As it may be noticed,
the JND model output controls the quantization of the transformed residuals, after
spatial or temporal prediction. As stated in the Introduction, the purpose of a JND
model is to perceptually modulate the quantization step for each DCT coefficient.
More specifically, the non-perceptul quantization step Q(i, j, k) is increased or de-
creased by a multiplying factor which corresponds to the JND threshold JND(i, j, k).
Therefore, the perceptual quantization step Q J N D becomes:

Q J N D(i, j, k) = Q(i, j, k) · JND(i, j, k). (15.10)

To implement Eq. 15.10, the Multiplication Factor (MF) [10] for the DCT coeffi-
cient at frequency band (i, j) is modified as follows:

M FJ N D(i, j) = (M F(i, j, Q P(k)%6) · 16)

JND(i, j, k)
, (15.11)

where Q P(k) denotes the Quantization Parameter (QP) for the k-th image block
and % denotes the division remainder. The multiplication by 16 is made to compen-
sate the multiplication by 16 of the JNDband values as described in Section 15.3.1.
Equation 15.11 highlights the need for the threshold JND(i, j, k) at the decoder side in
order to correctly decode the compressed bitstream. Furthermore, as already stated
at the end of Sect. 15.3.3, if either the adaptive Foley–Boynton or the Wei–Ngan
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Fig. 15.4 H.264/AVC JND enabled encoder architecture

model are used as the JNDpat term in Eq. 15.1, the information related to block k
classification must be also transmitted to the decoder side.

The overall processing performed by the architecture in Fig. 15.4 can be described
by the sequence of steps listed in Algorithm 1.

15.5 Experimental Results and Discussion

This section presents the experiments conducted to assess the rate-distortion perfor-
mance improvement obtained by integrating the adopted JND models. The selected
test videos have spatial resolutions of 1280× 720 and 1920× 1080 with frame rates
of 60 and 24, respectively, and 4:2:0 chrominance subsampling ratio. They have been
downloaded from the repository indicated in [14] which contains 15 sequences for
the former resolution and 6 for the latter. The results presented in this chapter refer
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Algorithm 1: Frame level processing performed by the H.264/AVC JND enabled
encoder architecture in Fig. 15.4.

1: for each frame F(n) of the video sequence do
2: if JNDpat model is adaptive Foley–Boynton or Wei–Ngan then
3: Perform Canny’s edge detection over F(n)
4: for each 4× 4 block k do
5: Compute the edge pixel density ρ(k) according to Eq. 15.7
6: Go to next block k
7: end for
8: Compute the histogram hρ(F(n)) and the thresholds α and β
9: for each 4× 4 block k do
10: Classify block k according to (α, β) as described in Sect. 15.3.3
11: Go to next block k
12: end for
13: end if
14: for each macroblock M B belonging to F(n) do
15: for each coding mode m ∈ {intra, inter} do
16: for each 4× 4 block k do
17: Set JNDband (k) to Eq. 15.2 or 15.3 depending on m
18: Compute JNDlum(k) according to Eq. 15.4
19: if JNDpat model is Adaptive Foley–Boynton then
20: Compute JNDpat according to Eq. 15.6 and block k classification (plane, edge or

texture)
21: else if JNDpat model is Wei–Ngan then
22: Compute JNDpat according to Eq. 15.9
23: else
24: Compute JNDpat according to Eq. 15.6
25: end if
26: Compute JND(i, j, k) according to Eq. 15.1
27: Compute M FJ N D(i, j) according to equation 15.11
28: Perform H.264/AVC integer DCT, forward quantization and entropy coding
29: Go to next block k
30: end for
31: Go to next coding mode m
32: end for
33: Go to next macroblock M B
34: end for
35: Go to next frame n
36: end for

only to three representatives sequences for each tested resolution.1 To choose the
representatives video sequences, the Spatial Index (SI) and Temporal Index (TI), ex-
pressing how a sequence would be difficult to encode, have been computed according
to the ITU specifications given in [6]. The SI and TI indexes for each sequence are
reported in Fig. 15.5, gathered into three clusters for each resolution. From the clus-
ters depicted in Fig. 15.5, the representatives selected for the 1280× 720 resolution
are “SpinCalendar”, “Raven” and “Preakness”, while for the 1920×1080 resolution

1 More results available at http://amalia.img.lx.it.pt/temp/wiamis_addendum.pdf

http://amalia.img.lx.it.pt/temp/wiamis_addendum.pdf
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(a) (b)

Fig. 15.5 SI and TI indexes for the 1280 × 720 resolution (a) and 1920 × 1080 resolution (b)
sequences

are “TableSetting”, “PlayingCards” and “VintageCar”. These video sequences have
been coded with the H.264/AVC High profile according to the parameters indicated
in [14], except for the DCT size which is only set to 4 × 4. Beside the coding pa-
rameters, [14] indicates also four QP values to be used for the Intra (I), Predicted
(P) and Bidirectional predicted (B) frames. The QP for I frames (QPI) can assume
the following values: 22, 27, 32 and 37 while the QP for P and B frames (QPP and
QPB) are computed as QPI + 1 and QPI + 2, respectively. Hereafter, each combi-
nation (QPI, QPP, QPB) is referred to as Group i (Gi, i = 1, · · · , 4). For each test
video, the bitrates required by the JND model enabled codec and the H.264/AVC
High profile codec (hereafter denoted as HP) are compared. The HP solution only
employs the perceptual matrices as in Eqs. 15.2 and 15.3. The bitrate related to the
JND based solution does not account for the rate spent for each JND (i, j, k) thresh-
old assuming the JND(i, j, k) thresholds are available at the decoder side without
taking into account the relative rate. From this assumption, the assessment presented
in the following should, thus, be understood as the asymptotic performance.

Together with the bitrate improvement, the objective quality of each reconstructed
sequence is measured by means of the Multiple Scale-Structural SIMilarity (MS-
SSIM) index [11] computed over the luminance component of each frame and av-
eraged for the entire sequence. This objective quality metric has been chosen given
the promising results of a recent study [11, 12] which reports a Pearson’s correlation
coefficient of up to 0.69 with subjective scores.

For the test sequences, both the bitrate and the MS-SSIM reductions in percentage
of the JND based solution regarding the HP solution are reported in Table 15.1. As
a first comment, one can notice that there are significant bitrate reductions (up to
35.63 %) against negligible losses in objective quality (with a maximum of 1.38 %
for the Foley–Boynton model with the VintageCar sequence). Moreover, all the
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Table 15.1 Bitrate and MS-SSIM comparison between the HP codec and the three alternative JND
enabled codecs

Foley–Boynton Adaptive Foley–Boynton Wei–Ngan
Sequence Group �

Rate(%)
�MS
SSIM(%)

�Rate(%)�MS
SSIM(%)

�Rate
(%)

�MS
SSIM(%)

SpinCalendar G1 −30.79 −0.09 −30.77 −0.09 −25.23 −0.08
G2 −16.85 −0.15 −17.03 −0.15 −12.03 −0.13
G3 −11.67 −0.29 −11.57 −0.29 −8.59 −0.25
G4 −9.28 −0.67 −9.16 −0.68 −7.45 −0.56

Raven G1 −24.27 −0.15 −24.31 −0.15 −22.03 −0.18
G2 −20.44 −0.29 −20.35 −0.29 −20.17 −0.36
G3 −17.41 −0.56 −17.32 −0.56 −17.48 −0.71
G4 −13.80 −0.87 −13.52 −0.88 −14.39 −1.06

Preakness G1 −29.44 −0.08 −29.32 −0.08 −17.55 −0.09
G2 −27.14 −0.15 −27.10 −0.15 −24.25 −0.13
G3 −19.65 −0.27 −19.55 −0.27 −16.01 −0.21
G4 −15.52 −0.54 −15.55 −0.55 −11.77 −0.40

TableSetting G1 −35.59 −0.30 −35.63 −0.30 −33.40 −0.31
G2 −22.94 −0.27 −22.96 −0.27 −21.49 −0.31
G3 −17.10 −0.39 −17.21 −0.39 −16.34 −0.45
G4 −13.18 −0.39 −13.18 −0.38 −13.47 −0.42

PlayingCards G1 −30.13 −0.11 −30.17 −0.11 −24.98 −0.13
G2 −22.06 −0.17 −21.99 −0.17 −19.58 −0.22
G3 −18.58 −0.32 −18.75 −0.32 −17.04 −0.38
G4 −15.64 −0.55 −15.77 −0.59 −15.41 −0.67

VintageCar G1 −32.68 −0.26 −32.71 −0.26 −28.38 −0.22
G2 −21.82 −0.40 −21.85 −0.40 −16.24 −0.30
G3 −16.18 −0.77 −16.18 −0.77 −12.24 −0.55
G4 −16.85 −1.38 −17.13 −1.35 −13.01 −0.85

Average −20.79 −0.39 −20.79 −0.39 −17.85 −0.37

reconstructed sequences have been visually inspected2 by the authors leading to the
general conclusion that the JND models additional artifacts are hardly noticeable.
Regarding the pattern masking models, the Foley–Boynton and its adaptive version
provide the highest bitrate reductions. The sequences reconstructed with these two
models are almost undistinguishable with the exception of some details which are
better preserved with the adaptive model. Conversely, the Wei–Ngan model provides
the smallest bitrate reductions and sometimes the objective quality reduction is higher
(for example, G1 for PlayingCards). Furthermore, this model over smoothes some
image details (e.g. in SpinCalendar3). From these results, the selection of the best

2 More results available at http://amalia.img.lx.it.pt/temp/wiamis_addendum.pdf
3 More results available at http://amalia.img.lx.it.pt/temp/wiamis_addendum.pdf

http://amalia.img.lx.it.pt/temp/wiamis_addendum.pdf
http://amalia.img.lx.it.pt/temp/wiamis_addendum.pdf
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pattern masking model for a perceptual video codec is to be made between the
Foley–Boynton model and its adaptive version. As stated at the end of Sect. 15.3.3, the
adaptive Foley–Boynton model requires additional bitrate for the block classification
side information. Therefore, in order to trade-off high bitrate reductions and low side
information related bitrates, the Foley–Boynton original model (see Eq. 15.6) seems
to be a suitable pattern masking model for the adopted spatial JND model.

15.6 Conclusion and Future Work

This chapter has studied and compared the benefits of integrating different pattern
masking models in the H.264/AVC video coding standard. The complete JND model
takes into account frequency decomposition, luminance variations and pattern mask-
ing. For this last aspect, three models proposed in the literature have been compared.
The performance comparison revealed that the Foley–Boynton model and its adap-
tive version provide the best performance. Between these two models, the former is
more suitable for integration into a practical perceptual video coding scheme since
it does not require additional rate for a similar quality. However, in order to obtain
a performance closer to the one achieved with the Foley–Boynton model, the JND
thresholds (JND(i, j, k)) need to be estimated at the decoder side. By looking at the
formulations for the JNDband , JNDlum and JNDpat models, it is easy to recognize
that the JNDband model does not need any decoder side estimation as the perceptual
weighting matrices (Eqs. 15.2 and 15.3) can be transmitted only once for each video
sequence. Conversely, for the JNDlum and JNDpat models, the L̄(k) and C(i, j, k)
terms need to be estimated at the decoder side. It should be noted that estimating
these terms would turn into estimating the original video frame F(n) (see Eqs. 15.4
and 15.6). However, in motion compensated predictive video coding scheme, a good
approximation of F(n) is constituted by the predictor P(k) used for the predictive
coding of block k. Therefore, the ongoing work targets the design of a decoder side
estimation mechanism for L̄(k) and C(i, j, k) based on the block k predictor P(k) as
well as the extension of the overall spatial JND model towards the 8×8 integer DCT
used in the H.264/AVC High profile. Finally, also the human visual system temporal
masking [18] due to the motion activity present in a video sequence will be taken
into account.
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Chapter 16
Coherent Video Reconstruction with Motion
Estimation at the Decoder

Claudia Tonoli and Marco Dalai

Abstract In traditional motion compensated predictive video coding, both the
motion vector and the prediction residue are encoded and stored or sent for every
predicted block. The motion vector brings displacement information with respect
to a reference frame while the residue represents what we really consider to be the
innovation of the current block with respect to that reference frame. This encoding
scheme has proved to be extremely effective in terms of rate distortion performance.
Nevertheless, one may argue that full description of motion and residue could be
avoided if the decoder could be made able to exploit a proper a priori model for the
signal to be reconstructed. In particular, it was recently shown that a smart enough
decoder could exploit such an a priori model to partially infer motion information
for a single block given only neighboring blocks and the innovation of that block.
This chapter presents an improvement over the single-block method. In particular, it
is shown that higher performance can be achieved by simultaneously reconstructing
a frame region composed of several blocks, rather than reconstructing those blocks
separately. A trellis based algorithm is developed in order to make a global deci-
sion on many motion vectors at a time instead of many single separate decisions on
different vectors.
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16.1 Introduction

In predictive video coding schemes very high compression efficiency is obtained
thanks to motion compensated prediction. The basic idea of this approach is to
exploit the temporal redundancy across frames to produce a prediction of the current
frame to be encoded relying on reference frames which are already available to
the decoder. This is done by estimating relative motion between current and reference
frames. The motion compensated prediction is then subtracted from the current frame
to obtain the so called residue. Thus, the encoding of the current frame is obtained
by encoding both the estimated motion field and the residue. The decoder, obviously,
reverts those operations. It reconstructs the frame by means of a motion compensated
prediction from the reference frame using the received motion field and it simply
adds the received prediction residue to the compensated frame.

In this scheme, the decoder does not take into account any additional information
aside from the received encoded stream. In particular, it does not take into account
any a priori information on the nature of the encoded signal, even if such information
could carry important knowledge about the possible results that one might expect
from the decoding process. For example, if a natural scene is being decoded, one
would expect to find as a result of the decoding process a relatively piecewise smooth
signal with relatively regular contours. In particular, given that the partitioning of
the frame in blocks is fixed and independent from the signal content, one does not
expect the reconstructed signal to have a high degree of irregularity across blocks
boundaries. Consider now what happens if a wrong motion vector is used for one
predicted block. In that case, the reconstructed frame would probably have high
discontinuities along the borders of that block. This could be interpreted by a smart
decoder as an indication of probable error in the motion vector. So, the motion vector
of a block is partially predictable given only neighboring blocks in the current frame
and the innovation of that block, and thus its description could be avoided in some
cases.

The possibility of omitting the transmission of motion information has recently
attracted an increasing interest. For example in [1] an algorithm for motion derivation
at the decoder side for the H.264/AVC codec is presented. Such algorithm is based
on the L-shaped causal past of each block, called “context”. At the decoder, the
context is searched for in the reference frame, obtaining its displacement. The same
displacement is taken as a motion vector for the current block.

In [2] an algorithm dealing with H.264/AVC B-frames is presented. According to
this algorithm, the decoder estimates the motion between two known key frames and
interpolates the obtained motion fields to estimate the motion field of the intermediate
B frame.

In [3] a block-wise algorithm for motion compensated prediction of the current
frame at the decoder side, performed in absence of motion information, is presented.
In that work, for every block to be predicted a set of possible candidates is analyzed
and the most appropriate predictor is chosen based on a LSE principle. The choice
is made block by block, independently, with a causal scanning of blocks. A problem
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observed in that case is that an erroneous choice for the motion vector of one block
rapidly propagates to adjacent blocks.

In this chapter we propose an algorithm that relies on the contextual decoding of a
region composed of several blocks. In particular, we propose a Viterbi-like algorithm
for the simultaneous estimation of the motion vectors associated to a row of blocks.
To this aim, in order to reduce as much as possible the computational complexity,
we introduce a new regularity parameter, with respect to [3], based on the energy
distribution in the DCT domain. This allows a faster construction and analysis of
the trellis that would require a much higher complexity with the regularity criterion
adopted in [3].

The chapter is structured as follows. In Sect. 16.2 motion estimation principles are
recalled and decoder based motion estimation is introduced. In Sect. 16.3 a model
based on side information and the spatial coherence principle is introduced and a
parameter for the evaluation of spatial coherence is described. In Sect. 16.4 a block-
wise motion estimation algorithm is briefly summarized, whereas in Sect. 16.5 the
proposed region-based algorithm is presented. Simulation results are presented and
discussed in Sect. 16.6. Finally, concluding remarks are given in Sect. 16.7.

16.2 Motion Estimation at the Decoder

Predictive video coding is based on motion estimation at the encoder and motion
compensation at the decoder. For a complete description of the topics related to
motion estimation and its applications in state-of-art video coding, we refer the
reader to [4–6]. In this section, instead, the basic ideas of motion estimation coding
are briefly recalled, while introducing the notation that will be used throughout the
chapter. Then, the idea of motion estimation at the decoder side is formalized.

In the following, the notation is referred to the scheme in Fig. 16.1. Let Xm,n ,
with 0 ≤ m < M and 0 ≤ n < N , be the B × B block having X (m B, nB) as
the top-left pixel. Let W be the search window in the reference frame Xre f , i.e., the
previous frame. W is centered in (m B, nB). A predictor for Xm,n is searched for
among all the blocks contained in W . Each possible predictor X̂i is identified through
the displacement from (m, n), i.e., its motion vector vi = (vy, vx ). Precisely, X̂m,n,vi

is the B × B block having Xref (m B + vy, nB + vx ) as the top-left pixel. Define
now the prediction error

Rm,n,v = Xm,n − X̂m,n,v,

where the difference is performed pixel by pixel. For the given block Xm,n the selected
optimal motion vector v is chosen so as to minimize, according to a given metric,
the residue norm, that is

v = argmin
v

∥
∥Rm,n,v

∥
∥ .
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Fig. 16.1 Candidate set generation
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Fig. 16.2 Scheme of a coding system based on motion estimation at the decoder side

In traditional coding, for every block the motion vector v and the block residues
Rm,n,v are suitably entropy encoded, and they are transmitted to the decoder. In this
case, at the decoder each predictor can be identified very easily, by the use of the
motion vector as an index. So each block is reconstructed as:

Xm,n = X̂m,n,v + Rm,n,v . (16.1)

The decoder reconstructs each frame operating in a strictly blockwise mode, since
each block is reconstructed independently from its neighbors. It is worth remarking
that the frame encoding order is such that the each frame is always decoded after its
reference frame.

In the scheme considered in this chapter, depicted in Fig. 16.2, only Rm,n,v is
known at the decoder, whereas v is not transmitted. Therefore, in this scenario the
main challenge is to infer the vector v, where the only available information consists
of causally neighboring pixel values and the residue Rm,n,v .
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The idea is to simply consider all possible motion vectors v and to build a set
of corresponding possible reconstructions for the block Xm,n . Since the decoder is
assumed to know the search window W , it can generate the set of all candidate
reconstructions for block Xm,n as

Cm,n =
{

X̂m,n,vk + Rm,n

}

(16.2a)

=
{

Xre f
i, j + Rm,n | Xref

i, j ∈ W
}

. (16.2b)

In other words, each block in the search window W is added the known residue and
is considered as a possible reconstruction for block Xm,n .

In the following, the generic element of the candidate set Cm,n is referred to
as C (m,n)

i , whereas K is the cardinality of Cm,n . In order to determine the best
candidate Cm,n and the corresponding vm,n , a model based on spatial coherence is
now formulated, which involves the use of a spatial coherence parameter.

16.3 Side Information and Spatial Coherence

In video coding, the phrase side information refers, to a general extent, to pieces
of information correlated to the signal to be trasmitted. For the purposes of the
model presented in this chapter, we define as side information the information that
the decoder knows and which is correlated to the part of the frame currently being
decoded.

In particular, our scheme inherits the decoding order from predictive coding. The
decoding order is such that, when decoding a given frame, its reference frame has
been decoded previously, and hence it is completely known. Besides the reference
frames, which can be referred to as inter-frame side information, our model relies
on another type of side information, i.e., intra-frame side information. Intra-frame
side information is composed of the already decoded blocks in the current frame. For
example, let us suppose that, when Xm,n is being decoded, the row above is known,
which is the case considered in Sect. 16.5. With this hypothesis, the intra-frame side
information for Xm,n is

Im,n =
{

Xi, j | 0 ≤ i < m, 0 ≤ j < N
}

. (16.3)

The key idea underlying this work is the practical exploitation of the intra-frame
side information, through the introduction of an assumption on the frame structure.
We assume that the frame content is characterized by edges that preserve their conti-
nuity across the block boundaries and we define this property spatial coherence. This
means that, given the neighborhood of a block, it is possible to infer that the more
suitable predictor in a candidate set will be the one that matches at best the neigh-
borhood edges. In Fig. 16.3b, c an example of a good match and one of a bad match,
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(a) Intra side information.

(b) Well matching
          predictor.

(c) Badly matching
            predictor.

Fig. 16.3 Spatial coherence at block edges

respectively, are shown. This example highlights the importance of the information
carried by the neighborhood: the side information (Fig. 16.3a) allows to predict that
the border contained in the unknown block is more likely to be structured as shown
in Fig. 16.3b rather than as shown in Fig. 16.3a. The introduced hypothesis is loose,
as the block boundaries are decided for coding convenience, regardless of the frame
content. In the following, a coding scheme based on this model is presented.

16.3.1 Spatial Coherence Parameter

In order to apply the ideas described in Sect. 16.3, our hypotheses about the spatial
coherence need to be formalized. To this extent, let us assume that, given any mac-
roblock composed of 2 × 2 neighboring blocks, its “amount of spatial coherence”
can be assessed through a one dimensional feature of the blocks. From now on such
feature will be referred to as Spatial Coherence Parameter (SCP).

In more detail, let Y be a macroblock of size 2B × 2B be composed of 4 B × B
blocks. The spatial coherence parameter p is a positive valued one-dimensional
feature of Y :

p : R2B × R
2B → R

+

Y �→ p(Y ).
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The function p(Y ) can be interpreted as a penalty and should ideally satisfy the
empirical requirement that given two macroblocks Y1 and Y2, p(Y1) < p(Y2) if the
blocks forming Y1 “match better” than the ones forming Y2.

The Spatial Coherence Parameter used in this work is different from that used
in [3] and is based on the properties of the Discrete Cosine Transform. This is
principally motivated by two different reasons. First, frequency domain techniques
which exploit the already decoded neighborhood to predict a missing block are used
in error concealment methods (see for example [7]). Second, as will be clarified
later, the introduced parameter will allow the construction of the trellis with a much
smaller computational complexity than the parameter proposed in [3] would require.

Let Y be a 2B × 2B macroblock composed of four neighboring blocks, and
consider its DCT transform. In the following, some remarks about how its spatial
coherence properties reflect in the frequency domain are presented. Then, a parameter
“measuring” the level of coherence of the macroblock is introduced. The presence of
a spatial discontinuity, i.e., a non matching edge across a block boundary, introduces
high frequencies, that do not belong to the original image. Thus, when this happens,
in the DCT domain the energy is distributed on a large number of coefficients,
some of them located in the higher frequency range. On the contrary, when edges
match properly, in the DCT domain the energy should be very concentrated on few
coefficients. For example, in Fig. 16.4 the squared moduli of the DCT coefficients,
for two macroblocks are reported. Whereas the side information is the same for
both the macroblocks, the candidates are different: the macroblock whose DCT
squared modulus is reported in Fig. 16.4a contains the correct candidate, whereas the
DCT squred modulus in Fig. 16.4b corresponds to the macroblock with the wrong
candidate. More specifically, the two macroblocks are the ones reported in Fig. 16.3b,
c, respectively. The squared moduli are represented in logarithmic scale, in gray tones,
where the lighter is the gray, the higher is the coefficient value. It can be seen that the
wrong candidate produces higher coefficients spread on almost all the frequencies,
whereas the energy in the DCT of the candidate containing the correct block is much
more concentrated: indeed, the coefficient in the central area in Fig. 16.4a are darker,
and thus smaller, than those in the corresponding area in Fig. 16.4b.

Given a macroblock Y , composed of 4 B× B blocks as described above, its DCT
Spatial Coherence Parameter p(Y ) is computed according to the following steps:

• ZY = DCT (Y ) is computed and normalized in order to have unitary energy.
• DCT coefficients are sorted in descending squared modulus magnitude order; let

Z̃Y (k) be the k − th coefficient in such order.
• given a fixed threshold T , p(Y ) is defined as the minimum value of k that verifies

the following condition:
∑k

j=1 |Z̃Y ( j)|2 ≥ T

In other words, the square moduli of the coefficients are added in descending
order, until the sum reaches a fixed threshold T ; the parameter p of the macroblock
y is the number of coefficients needed to obtain a value greater than the threshold.
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(a) DCT of the macroblock with
correct candidate.

(b) DCT of the macroblock with
wrong candidate.

Fig. 16.4 Squared moduli (in log scale) of the DCTs of two macroblocks with the same side
information but different candidates

16.4 Block-Wise Selection Algorithm

The Spatial Coherence Parameter can be used as a test to determine whether a block
fits the given neighborhood. In [3] an algorithm for motion estimation at the decoder
based on this principle, but using a different SCP, is described. This algorithm,
which operates on each block separately, in the following is referred to as block-
wise algorithm and it is used as a reference for the performance assessment of the
row-wise algorithm presented in this chapter. According to this algorithm, first the
candidate set for the current block Xm,n is generated, as described in Sect. 16.2. Then,
a ranking of the candidates is obtained, to determine which candidate fits best the
known causal neighborhood, i.e., the upper-left, upper and left neighbors. For each
C (m,n)

i , the macroblock Y (m,n)Ci
, composed of the current candidate C (m,n)

i and the
three known causal neighbors, is constructed as:

Y (m,n)Ci
=

[
Xm−1,n−1 Xm−1,n

Xm,n−1 C (m,n)
i

]

. (16.4)

Then, the SCP p(Y (m,n)Ci
) is computed. The selected predictor C

(m,n)
is the one that

minimizes p:

C
(m,n) = argmin

Ci∈Cmn

p(Y (m,n)Ci
). (16.5)

Hence, the estimated motion vector is the one associated with C
(m,n)

. This algorithms
works well as long as the hypothesis that the true original block is always the most
coherent one holds.
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Fig. 16.5 Computation of the pn
i j parameters and trellis construction

16.5 Region Based Model for Motion Estimation at the Decoder

In this section a novel algorithm for motion estimation at the decoder is introduced.
This algorithm is based on the contextual decoding of several blocks belonging to
a given region of the frame. All the possible combinations of blocks for the region
(or at least the more likely ones, depending on whether any optimization is carried
out, see Sect. 16.5.2) are generated, combining the candidates of each block in the
region.

The algorithm presented in this chapter is designed to overcome one of the main
drawbacks of the block-wise algorithm, i.e., the impossibility of detecting when the
Spatial Coherence Parameter fails to identify the correct original block. In fact, errors
occur when one or more candidates happen to have a SCP smaller than the original
block SCP, i.e., when the condition (16.5) does not provide the correct candidate.
A wrong block is likely to induce an error on the next block when it is used as a
neighbor for the latter, and so on, allowing the error to propagate across the frame.
A global algorithm, taking into account a region of adjacent blocks, can exploit
the propagation of a wrong choice. Indeed, the main feature of this algorithm is an
average of the SCP over the blocks of the entire region. Let us consider the case
in which the correct block is not the minimum SCP block, so a wrong candidate is
chosen. Since the neighbor of the next block contains such wrong candidate, all the
computed parameters will be high, because no good match with a wrong neighbor can
be found. So the averaging can be thought of as a balancing of the presence of a not
minimal SCP correct block with the effect of the error propagation on other blocks.
In the following, instead of an average a non-normalized sum will be performed; this
does not affect the just discussed property.

For the sake of simplicity, the algorithm has been implemented taking as a region
a single row of blocks. This special region shape simplifies the interdependency of
unknown blocks, allowing for a Viterbi-based minimization of the SCP sum.
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16.5.1 Row-Wise SCP Sum Minimization

In this section, the algorithm previously introduced is described in detail. In this
work, we have chosen the simplest possible region shape, which is an entire row of
blocks:

Tm =
{

X(m,n), 0 ≤ n < N
}

. (16.6)

The rows are decoded from the top one (T1) to the bottom one (TN−1). The first
row, T0, is assumed to be completely transmitted, because it is required for the
algorithm inizialization. So, a whole row is decoded at once, under the hypothesis
that the decoding of the row above has already been performed. Such hypothesis
guarantees that, for each block, its upper and upper-left neighbors are known. On
the contrary, the left neighbor is uncertain, since it still belongs to the current row
and it is being decoded too. Hence, for each candidate Cm,nk of the n-th block, K
coherence parameters pn

i j need to be computed, each one using a different candidate

Cm,n−1
i as left neighbor.

Let the region predictor Lq = (C1
q1
,C2

q2
, · · · ,C N

qN
), indexed by the index vector

q, be the row predictor composed of the candidate C1
q1

for the first block, the candidate
C2

q2
for the second block, and so on. As depicted in Fig. 16.5, the parameters pn

i j are
the SCP of the macroblock Y n

i j , defined as follows:

Y n
i j =

[

Xm−1,n−1 Xm−1,n

C (m,n−1)
i C (m,n)

j

]

. (16.7)

The sum σ(Lq) of the SCPs of all the involved blocks is considered, for each com-
bination Lq :

σ(Lq) =
N

∑

n=1

pn
q(n−1)qn

. (16.8)

In order to track the combinations with lower SCP Sumσ , a Viterbi-like minimization
(see for example [8]) is used: each path on the trellis represents a combination of can-
didates, i.e., a candidate row Lq . In Fig. 16.6 this model is depicted; the highlighted
path represents the combination composed of candidate C1

1 for the first block, C2
2

for the first block, and so on. Being each candidate univocally indexed by a motion
vector, each path represents a row of the motion field, as well. At each step, the

selected candidate C
n−1
l is such that

pn
l j = min

i
(pn

i j ) , (16.9)

where the hypotesis is Cn = Cn
j . Thanks to the application of the Viterbi algorithm,

the combination with higher σ are automatically discarded.
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Fig. 16.6 Trellis contruction:
the path represents the combi-
nation (C1

1 ,C2
2 ,C3

2 ,C4
2 ,C5

3 )

candidates for a block

blocks in the region

16.5.2 Computational Complexity Reduction

The main drawback of this scheme is that, despite the use of the Viterbi algorithm, the
decoding complexity remains quite high. This is important to be noted, especially
because the encoder is as complex as in predictive coding. In the following, the
methods used to reduce the computational load of the decoder are described.

16.5.2.1 Motion Smoothness

Introducing some hypothesis on the structure of the motion field can reduce consid-
erably the computational complexity while preventing unlikely combinations from
being erroneously selected. In this implementation, we have supposed that the motion
field is smooth, so as to discard the combinations leading to a motion field that varies
abruptly from one block to the next. Since each transition in the trellis corresponds
to a motion vector, reducing the set of admissible motion vectors also reduces the
number of SCP to be computed. This principle has been implemented by weighting
the SCPs of each candidate by means of a weight function depending on the differ-
ence between the motion vector associated to the candidate and the motion vector
associated to the neighbor and thresholding the obtained distance.

16.5.2.2 Parameter Decomposition

Since the SCP parameter is a scalar index of how well the four blocks in the mac-
roblock match with one another, the computation of an SCP can never be completely
decomposed into the separate computation of a feature of each block. Nevertheless,
if the parameter is easily deduced from a linear function of the pixel values, as is the
DCT, the number of operations required for the computations of the SCP used in the
trellis can be strongly reduced.
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Let us consider the computation of the parameter pn
i j , and let us focus the structure

of the associated macroblock Y mn
i j

Y mn
i j =

[

Xm−1,n−1 Xm−1,n

C (m,n−1)
i C (m,n)

j

]

.

Note that C (m,n−1)
i and C (m,n)

j are generic candidates for blocks Xm,n−1 and Xm,n ,
and they both thus run over a set of K possible values. Since the evaluation of pn

i j

requires the computation of the DCT of Y mn
i j , K 2 DCT evaluation would be required

for the computation of all optimal trellis transitions from block Xm,n−1 to Xm,n . Note
now that we can write Y n

i j = Y n
i0 + Y n

0 j , where

Y mn
i0 =

[
Xm−1,n−1 Xm−1,n

C (m,n−1)
i 0B×B

]

and

Y mn
0 j =

[

Xm−1,n−1 Xm−1,n

0B×B C (m,n)
j

]

,

0B×B being the null B × B matrix. For the linearity of the DCT we clearly obtain
that DCT (Y mn

i j ) = DCT (Y mn
i0 )+ DCT (Y mn

0 j ). This implies that the evaluations of

all the K 2 DCTs can be reduced to only 2K DCTs evaluations and K 2 matrix sums
with an obvious noticeable reduction of the complexity.

16.6 Experimental Results

In this section the Spatial Coherence Parameter behavior if first analyzed, then a
performance comparison between the proposed Viterbi-based decoding algorithm
and the blockwise one is presented.

16.6.1 SCP Behavior Assessment

As described in Sect. 16.3.1, the computation of the spatial coherence parameter
requires that a threshold is set. Such threshold value has been decided experimentally,
by evaluating the behavior of the blockwise algorithm at different thresholds, for
different video sequences. In Fig. 16.7 an example is reported. The number of correct
blocks in the first frame of the Mobile sequence is plotted vs. the considered threshold
values. It can be seen that, as the threshold increases, the number of correctly selected
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Fig. 16.7 Percentage of correct blocks at different threshold values

candidates keeps increasing until the threshold is very close to 1, then it decreases
slightly. As a similar behavior has been observed for all the sequences, the threshold
has been set to 0.9999.

In Fig. 16.8 the cumulative energy of macroblock DCT is shown for several can-
didate of the same block, namely block (3, 15) in the second frame of the Mobile
sequence, for increasing number of coefficients considered in the sum. To gener-
ate the curve, the coefficients are added in square modulus magnitude order and
the cumulative energy is normalized to the sum of all the coefficients, as required
for SCP computation (see Sect. 16.3.1). In this example, for two wrong candidates
the cumulative energy on the first 100 coefficients is higher than the one obtained
for the correct candidate. Only when more than 100 coefficients are added and the
cumulative energy is about 0.99 the correct candidate is the one associated to the
most concentrated energy. Thus, when the threshold value, i.e., 0.9999 is reached,
the candidate with lower SCP is the correct one. It has been verified experimen-
tally that the behaviour is the same for almost all blocks, even though the number
of coefficients that are needed to reach a given cumulative energy value may vary
substantially from one block to another.

Finally, in Fig. 16.9 an example of behavior of the DCT based Spatial Coherence
Parameter with the selected threshold is reported, in the case of blockwise selection
of the candidate. For different block positions (horizontal axis), the interval of SCP
values associated to all its candidates is reported. The circle corresponds to the SCP
of the correct block. For the sake of plot clarity, only a subset of the blocks in the
considered frame (frame n. 2 of the Mobile sequence) is reported. It can be seen that
the SCP can assume very different values, depending on the characteristics of the
blocks. The SCPs of the candidates in the set can be concentrated in a narrow range
or spread in a wider range, depending on the block characteristics.
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Fig. 16.8 Example of cumulative energy for the block in position (3, 15) in the first
frame of the Mobile sequence
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16.6.2 Performance Evaluation

The performance of the proposed algorithm has been evaluated by assessing the
improvement with respect to the block-wise algorithm, using the DCT based SCP for
both algorithms. The percentage of correctly reconstructed blocks, i.e., of correctly
estimated motion vectors, versus the PSNR of the encoded sequence are plotted in
Fig. 16.10 for the first 50 frames of the Foreman, Mobile, Highway, Bus, Coastguard
and Soccer sequences. From the obtained results, it emerges that the region-based
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(b)Mobile sequence.
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(c) Highway sequence.
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(d)Bus sequence.
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(e) Coastguard sequence.
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Fig. 16.10 Performance assessment for the row-wise (RW) and block-wise (BW) algorithm for
the Foreman, Mobile, Highway, Bus, Coastguard and Soccer sequences
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Fig. 16.11 Estimated rate-distortion curves for the Foreman sequence

reconstruction significantly improves the performance of the block-wise selection.
The gain in terms of correct blocks depends on the sequence and on the working point,
but it is substantial in general. For example, for the Mobile (Fig. 16.10b) sequence it
goes from about 15 % more correct blocks at lower quality to a difference of about
40 % more coding blocks at high quality. Very high gains are obtained also in the case
of the Coastguard sequence (Fig. 16.10e). For the Highway and Soccer sequences
(Fig. 16.10c, f respectively) high improvement is obtained especially at low rate.
Also in the case of Foreman (Fig. 16.10a) an improvement is achieved, even if less
strong than in the cases previously discussed. The only exception is the Bus sequence
(Fig. 16.10d): for this sequence, only the low quality case improves slightly, whereas
at higher qualities the performance of the Viterbi algorithm is fixed on about 40 %
correct blocks, whereas the performance of the block-wise algorithm increases.

An approximation of the rate-distortion curve for the proposed algorithm, com-
pared with the block-wise algorithm, is also reported in Fig. 16.11, for the Foreman
sequence. In order to give an idea of how the presented algorithm could perform
in a realistic scenario, it has been applied to a lossy codec. In more detail, the rate
and PSNR values for the case of transmission of the whole motion field have been
obtained using a simplified H.264 codec. The block size has been set to 16 and the
considered prediction mode is P, i.e., mono-directional prediction, with a single ref-
erence picture. An important remark about the rate estimation must be given: the
coding efficiency in modern predictive codecs, such as the H.264 codec, depends
heavily on how arithmetic coding is performed. Since our methods has not been
really implemented in H.264 yet, it is impossible to measure exactly the rate savings.
In order to produce a reliable estimate, the bits devoted to the motion transmission
for each block have been computed, and, for the correctly predicted block, the result
has been subtracted from the overall bit-rate. A signalling overhead has also been
taken into account. The three plots appear to be almost overlapping: in the considered
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case the coding gain seems to be limited by both the signalling overhead and the fact
that the motion represents a small amount of the total rate.

16.7 Conclusions

In this chapter a novel algorithm for motion estimation at the decoder side is pre-
sented. The main feature of this algorithm is that the blocks belonging to a whole
region of the frame are decoded at once. The decoding relies on the spatial coherence
of the current frame, i.e., on the assumption that the signal does not change abruptly
at the block boundaries. In order to evaluate the spatial coherence of a macroblock
composed of 2× 2 blocks, a Spatial Coherence Parameter based on the energy con-
centration property of the DCT is introduced. The decoding consists in generating a
candidate set for each block in the row and selecting the combination of candidates
which minimizes the sum of the SCPs over the whole row. In order to perform the
minimization, and thus to reconstruct the row, a model based on the Viterbi algorithm
is introduced. Simulation results show that the proposed approach outperforms the
block-wise algorithm that employs the same parameter. Moreover, the preliminary
analysis of the rate-distortion performance seems to be promising.
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