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Preface

Cloud Computing is a computing paradigm that delivers hosted services over the
Web, based on a ‘pay-per-use’ approach. This new style of computing, promises to
revolutionize the IT industry by making computing available over the Internet, in a
fashion similar to other utilities like water, electricity, gas, cable, and telephony.

Growing adoption of Cloud Computing, by the general public as well as the IT
industry, is driving service providers into deploying new data centers. Data centers
are sites that host tens of thousands of servers. These servers typically commu-
nicate with each other over high speed network interconnects. With growing
application deployments, data centers utilize a multi-tiered model where several
servers work together to service a single client request. As a result, the overall
application performance in a data center, largely depends on the efficiency of its
underlying communication fabric.

As far as building communication fabric for a data center goes, there are
essentially two choices. The first relies on specialized hardware and protocols like
Infiniband, Myrinet, or FibreChannel; the second relies on Ethernet based com-
modity switches that are available off-the-shelf. Cost and compatibility reasons,
however, persuade many data center administrators to employ Ethernet as their
baseline communication fabric.

Until a few years ago, Ethernet speeds inside data centers averaged around
100 Mbps. However, recent revisions to IEEE 802.3 standards have led to the
development of Ethernet networks, that have speeds of 1 and 10 Gbps. The sudden
increase in Ethernet’s speeds requires proportional scaling of communication
protocols that use it, so that applications that are network intensive can ultimately
benefit from the increased bandwidth. Although IP is expected to scale well with
evolving Ethernet, there are some legitimate concerns about TCP.

TCP is a protocol standard that is mature and has survived the test of time.
However, the unique workloads, speed, and scale of modern data centers violate
some of the basic assumptions that TCP was originally based upon. As a result,
when TCP is utilized in high-bandwidth, low-latency data center environments, we
discover new shortcomings in the protocol. One such shortcoming is referred to as
the ‘Incast’ problem.

TCP Incast is a catastrophic collapse in TCP’s throughput that occurs in high
bandwidth, low latency network environments when multiple senders communi-
cating with a single receiver, collectively send enough data to surpass the buffering

vii



abilities of the receiver’s Ethernet switch. The problem arises from a subtle
interaction between limited Ethernet switch buffer sizes, TCP’s loss recovery
mechanisms, and the many-to-one synchronized traffic patterns. Unfortunately,
such traffic patterns occur frequently in many data center applications and services.
Hence, a feasible solution that addresses the Incast problem is urgently needed.

Our objective in this manuscript, is to address TCP’s Incast problem by pro-
viding transport layer solutions that are both practical and backward compatible.
We approach this goal in two steps. First, we derive an analytical model of TCP
Incast. Such a model is essential to understand the reasons behind TCP’s
throughput collapse. The analytical model provides a closed form equation, which
can be used to compute throughput at the client for various synchronized work-
loads. We verify the accuracy of our model against measurements taken from ns-2
simulations. Next, we discuss some solutions that were designed to address TCP
Incast at the transport layer. Specifically, we develop transport layer solutions that
improve TCP’s performance under Incast traffic, by either proactively detect-
ing network congestion through probabilistic retransmission or by dynamically
resizing TCP’s segments in order to avoid incurring timeout penalty. We evaluate
the merits of the aforementioned solutions using ns-2 simulations. Results show
that each of our suggested techniques outperforms standard TCP under various
experimental conditions.

Auburn, AL, July 2013 Santosh Kulkarni
Prathima Agrawal
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Chapter 1
Introduction

Speaking at the MIT Centennial in 1961, Dr. John McCarthy [1], a leading scientist
who pioneered the concept of timesharing [2], said: “If computers of the kind I
have advocated become the computers of the future, then computing may someday
be organized as a public utility just as the telephone system is a public utility... The
computer utility could become the basis of a new and important industry.” Fifty years
on, the Information Technology (IT) industry is finally on the brink of realizing Dr.
McCarthy’s vision for computing utilities.

With significant advances in information and communications technology over
the last five decades, computing is now on the verge of becoming the next utility
behind water, electricity, gas, cable and telephony. This computing utility promises
to provide the user community with a basic level of service that is sufficient to meet
their everyday computing needs [3]. To herald this new era of utility computing, a
number of computing models have been proposed, of which Cloud Computing is the
latest one.

Cloud Computing is a computing paradigm that delivers hosted services over the
Web, based on a ‘pay-per-use’ approach. It derives its name from the ‘cloud’ symbol
that is often used to represent the Internet in networking diagrams and promises to
revolutionize the computing industry by making IT available over the Internet [4].
However, Cloud Computing is still an evolving paradigm and as yet, there is no
single, widely accepted definition for it. Garnter in [5], defines Cloud Computing
as a style of computing where a scalable and elastic IT-related capabilities are pro-
vided as a service to external customers using Internet technologies. Forrester in [6],
suggests that Cloud Computing refers to a pool of abstracted, highly scalable and
managed infrastructure capable of hosting end customer applications and billed by
consumption. NIST (National Institute of Standards and Technology) in [7], defines
Cloud Computing as a computing model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly provisioned
and released with minimal management effort or service provider interaction.

S. Kulkarni and P. Agrawal, Analysis of TCP Performance in Data Center Networks, 1
SpringerBriefs in Electrical and Computer Engineering,
DOI: 10.1007/978-1-4614-7861-4_1, © The Author(s) 2014



2 1 Introduction

Among the numerous definitions for Cloud Computing, the NIST definition is
meant to serve as a reference for broad comparisons of hosted services and deploy-
ment strategies. The NIST definition is also intended to provide a baseline for dis-
cussions ranging from ‘What is Cloud?’ to ‘How to best use it?’ [7]. Hence, we adopt
NIST’s definition of Cloud Computing for the remainder of this document.

1.1 NIST’s Model of Cloud Computing

In accordance to the definition from NIST, Cloud Computing covers more than just
computing technology. As shown in a three-dimensional diagram in Fig. 1.1 from [8],
the model of Cloud Computing is actually composed of five essential characteristics,
four deployment models and three service models.

In the subsections below, we outline the key characteristics of Cloud Computing
along with a brief overview on the service models and the deployment approaches
that are associated with it.

Fig. 1.1 NIST’s model of cloud computing
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1.1.1 Cloud Characteristics

According to NIST in [7], the essential characteristics of Cloud environment include:

• On-demand self service that enables consumers to unilaterally provision comput-
ing capabilities, such network storage and server time as needed, automatically,
without requiring human involvement.

• Broad network access which ensures that all Cloud functionalities and the resources
are available over the network and can be accessed through standard mechanisms
via thick or thin clients (e.g., laptops, desktops, tablets and mobile phones).

• Resource pooling which allows the computing resources provisioned by the
provider to be pooled, in order to serve numerous consumers using a multi-tenant
model, where different physical and virtual resources are dynamically assigned
and reassigned according to the demands of the consumer.

• Rapid elasticity and scaling that not only allows the functionalities and resources
to scale rapidly outward and inward in accordance to the demands of the consumer,
but also allows those capabilities to be elastically provisioned and released.

• Measured service that facilitates automatic control and optimization of resource
allocations in addition to providing the capability to monitor, control and report
resource usage, for both the providers as well as the consumers.

1.1.2 Cloud Service Models

In NIST’s model of Cloud Computing, providers offer their services in three flavors,
namely, Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software
as a Service (SaaS) [7]. Among the three service models, IaaS offers the most basic
form of Cloud Computing. The three service models can be represented as a pyramid,
as depicted in Fig. 1.2, where SaaS is at the top and IaaS is at the bottom. Abstraction
among the service models increases as we move towards the top of the pyramid in
Fig. 1.2, while the element of control among the service models increases as we move
towards the bottom of the pyramid.

• Software as a Service—SaaS refers to software applications that are deployed as a
hosted services on the Cloud infrastructure. Consumers typically access these
applications from client devices that support thin client interfaces like a web
browser or use Application Programming Interfaces (API) defined by the hosted
software. Under the SaaS service model, consumers do not control or manage
the underlying infrastructure or platform. Their only control is usually limited to
user specific application configuration settings. Examples of SaaS include: Gmail,
Google Docs, Salesforce.com and Microsoft Office 365.

• Platform as a Service—PaaS refers to the service where, the providers deliver
a computing platform using which consumers can build and deploy their own
applications on the Cloud. The computing platform delivered typically includes
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Fig. 1.2 Pyramid of service models in cloud computing

operating systems, compilers, programming libraries and tools that are supported
by the service provider. Under the PaaS service model, subscribers do not have
access to the underlying Cloud infrastructure. However, they are typically able to
control the deployed applications and configuration settings for the application-
hosting environment. Examples of PaaS include: Google App Engine, Microsoft
Azure and Amazon Elastic Beanstalk.

• Infrastructure as a Service—IaaS delivers compute services, typically in the form
of a set of virtual machines with associated storage, processing capability, other
relevant resources like network connectivity [4]. Under this model, consumers
are given the capability to provision computing resources that are made avail-
able by service providers. Consumers also have the capacity to deploy and run
arbitrary software including operating systems and other applications on the pro-
visioned resources. However, consumers do not have access to the underlying
Cloud infrastructure. Their control is limited to operating systems, storage and
applications that are deployed by them. Some examples of IaaS include: Amazon
CloudFormation, Rackspace Cloud and Google Compute Engine.

1.1.3 Cloud Deployment Models

Cloud deployment approaches represent the way providers deploy Cloud service
models in order to make Cloud functionalities available to their consumers. Orga-
nizations choose Cloud deployment models based on their specific business, oper-
ational and technical requirements [4]. As depicted in Fig. 1.1, NIST categorizes
Clouds deployments as Public, Private, Community or Hybrid [7].

• Public Clouds—Under Public deployment model, the Cloud functionalities and
resources are made available for open use to the general public. Customers access
and use hosted Cloud services that are either free or offered on pay-per-use basis.
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Generally, public Cloud service providers like Microsoft, Amazon and Google
own and operate their Cloud infrastructure and offer access to end users via the
Internet.

• Private Clouds—Under Private deployment model, the Cloud infrastructure is
exclusively used by a single organization. In this environment, the organization
is in charge of setting up and maintaining the Cloud resources. Accomplishing
this requires a significant level of understanding of the organization’s business
environment and existing resources. However, when done right, there is an added
advantage in terms of better control of security, more effective regulatory compli-
ance and improved quality of services.

• Community Clouds—Under Community deployment model, the Cloud infrastruc-
ture is shared exclusively between organizations from a specific group or commu-
nity and have common computing concerns. The Cloud framework may be owned,
managed and operated by one or more organizations and may be deployed on or
off their premises.

• Hybrid Clouds—Under Hybrid deployment model, the Cloud infrastructure con-
sists of two or more distinct Clouds (Public, Private or Community). These com-
posite Clouds remain unique entities, but under the Hybrid model, they are bound
together by standardized or proprietary technologies that enable data and appli-
cation portability. By utilizing this model, organizations are able to achieve fault
tolerance for their mission-critical processes.

1.2 Benefits of Cloud Computing

Cloud Computing promises numerous benefits, inherent in the characteristics listed
in Sect. 1.1.1. According to [4, 9, 10], some of the key benefits offered by Cloud
Computing include:

• Lower cost—Cloud Computing significantly lowers the cost of entry for firms
trying to take advantage of compute-intensive business analytics that were hitherto
only available at large corporations. Cloud Computing also represents a huge
opportunity to many poor nations that have so far been playing catch-up in the IT
revolution.

• Optimization of capital investment—Cloud Computing allows companies to opti-
mize their capital investments by reducing the costs of hardware and software
purchases. Organizations that have peak requirements can now rent additional
hardware on the Cloud instead of having to purchase new equipment. Similarly,
instead of purchasing separate software packages for each computer in the orga-
nization, Cloud Computing allows IT administrators to host the required software
on Cloud, which allows for lower installing and maintenance costs.

• Rapid scaling—Cloud Computing allows enterprises to scale their services accord-
ing to the demands of the customer. Since the computing resources are managed
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through software, services can be deployed very quickly as and when new require-
ments arise.

• Self service—Cloud Computing enables consumers to access, configure and deploy
Cloud services without requiring to interact with any of the service providers. Users
typically use a service portal provided by the Cloud platform to configure various
resources and services.

• Anywhere, anytime access—Cloud Computing enables true device and location
independence for its users. Users are no longer bound to a single computer, net-
work or geographic location. Users can access Cloud services using the Internet
regardless of their location or device type.

• Multi-tenancy—Cloud Computing typically allows single instances of software
applications to serve multiple customers, allowing the service providers to leverage
on the economies of scale while also reducing maintenance costs.

• Easier collaboration—Cloud Computing allows multiple users to easily collab-
orate, as witnessed by Cloud services like Google Docs and Microsoft Office
365, which enable users across different geographical locations to collaborate on
documents, spreadhseets and presentations.

• Utility service—Cloud Computing follows a pricing model similar to other utili-
ties, which allows users to pay for only those computing resources that they actually
used and not for any dedicated resources which may only be used at certain peak
times.

• Disaster recovery—Through use of virtualization [11, 12], Cloud Computing
delivers faster recovery times and high availability to enterprises, at a fraction of
the cost of conventional systems. This makes Cloud very attractive for enterprises
who want to deploy comprehensive disaster recovery plans for their computing
infrastructure.

1.3 Cloud Computing and Data Centers

In a survey conducted by Cloud.com in the second quarter of 2011, about 61 % of the
organizations surveyed were either in early stages of planning or had already acquired
an approved strategy for implementing Cloud Computing. Furthermore, about 20 %
of the surveyed participants already had Cloud implementations in their organizations
[13]. While the number of organizations leaning towards Cloud related technologies
continues to grow, the general public has already embraced Cloud Computing in
form of services like Office 365 [14], Facebook [15], Flikr [16], Yahoo Applications
[17], Amazon EC2 [18], Youtube [19] and Gmail [20].

Growing adoption of Cloud Computing, by the general public as well as the IT
industry, is driving service providers into deploying new data centers. Data centers
are sites that host hundreds of thousands of servers which concurrently support a
myriad of distinct services and applications [21]. Such facilities, not only let service
providers leverage the economies of scale for bulk deployments, but also allow them
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Fig. 1.3 Data center switch network architecture

to dynamically relocate resources among services as workloads change or equipments
fail [22, 23].

A data center is generally organized in rows of ‘racks’ where each rack contains
modular assets such as servers or storage ‘bricks’ [24]. These racks are intercon-
nected through Top-of-Rack (TOR) switch, which in subsequently connects to the
Aggregation switch as depicted in Fig. 1.3 from [25].

The Aggregation switch communicates with other Aggregation switches and
through them to other servers or storage bricks within the data center. A Core switch
services various Aggregation switches and provides them with connectivity to the
outside world, typically over the Network Layer [26]. It is evident that most of the
intra-data center traffic would only traverse the Top-of-Rack and the Aggregation
switches [25]. As a result, the overall performance of services and applications within
a data center, largely depends on the efficiency of its underlying communication fab-
ric.

As far as building communication fabric for a data center goes, there are essen-
tially two choices. The first option relies on specialized hardware and protocols like
Infiniband [27], Myrinet [28] or FibreChannel [29]; the second choice relies on Eth-
ernet [30] based commodity switches that are available off-the-shelf [31]. While
the first option is capable of scaling up to thousands of nodes, it is generally more
expensive (about $500–$2000 per port [32]) and not natively compatible with TCP/IP
applications. On the other hand, the second option is cheap (less than $30 per port
[32]), supports a familiar management infrastructure and requires no modification to
applications, operating system or system hardware, but scales poorly with increasing
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number of nodes. Cost and compatibility reasons however, persuade many data center
administrators to employ Ethernet as their baseline communication fabric [33].

Until a few years ago, speeds in Ethernet based data centers averaged around
100 Mbps. However, recent revisions to IEEE 802.3 standards have led to the develop-
ment of Ethernet networks, that have speeds of 1 and 10 Gbps. Today, 1 Gbps Ethernet
networks are being widely deployed, and 10 Gbps will be commonly deployed as it
becomes affordable. The sudden increase in Ethernet’s speeds requires proportional
scaling of communication protocols that use it, so that applications that are network
intensive can ultimately benefit from the increased bandwidth [34]. Although Inter-
net Protocol (IP) [35] is expected to scale well with the evolving Ethernet, there are
some legitimate questions about Transmission Control Protocol (TCP) [36] as noted
in [37].

1.3.1 TCP in Data Centers

TCP is a protocol standard that is mature and has survived the test of time. As a
standard it has been successfully adapted to several new environments like, long
fat networks [38–44], Asynchronous Transfer Mode (ATM) [45] networks [46, 47],
as well as wireless and cellular networks [48–58]. However, the unique workloads,
speed and scale of modern data centers violate some of the basic assumptions that
TCP was originally based upon. For example, in contemporary operating systems
such as Linux, the default value of TCP’s retransmission timer is set to 200 ms—a
reasonable duration for wide area networks where round trip times (RTT) are typically
clocked in milli seconds, but two to three orders of magnitude greater than the average
round trip time inside data centers [59]. As a result, when TCP is utilized in high-
bandwidth, low-latency data center environments, we discover new shortcomings in
the protocol. One such shortcoming is referred to as the ‘Incast’ problem [60].

1.3.1.1 TCP Incast

TCP Incast is a catastrophic collapse in TCP’s throughput that occurs in high band-
width, low latency network environments when multiple senders communicating
with a single receiver, collectively send enough data to surpass the buffering abili-
ties of the receiver’s Ethernet switch. The problem arises from a subtle interaction
between limited Ethernet switch buffer sizes, TCP’s loss recovery mechanisms and
traffic patterns that are characteristic of data center applications. Small Ethernet
buffers get overwhelmed by the large volume of traffic arising concurrently from
many servers, which results in packet drops at the switch and one or more TCP
timeouts at the servers. These TCP timeouts impose a delay of hundreds of millisec-
onds at the senders that operate on a network whose round trip time is measured in
tens and hundreds of microseconds [61]. As a result of this, the perceived goodput,
which can be defined as the data throughput observed at the receiver’s application,
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Fig. 1.4 Synchronized reads in cluster storage system

is orders of magnitude lower than the receiver’s link capacity. For example, consider
a cluster-based storage system discussed in [62]. In a cluster-based storage system,
data is typically saved across many storage servers to enhance the reliability and
performance of the system. Typically, the networks of such storage systems have
low latency (round trip times of 10–100 µs) and high bandwidth (1–10 Gbps). The
clients and the servers in such networks are usually separated from each other by
one or more switches.

In this environment, the storage severs only store a fragment of the data block
since the blocks get striped across a number of servers by the storage system. The
fragment of data stored by the servers is denoted as a Server Request Unit (SRU)
and is depicted in Fig. 1.4 from [62]. A client requesting a data block from the
cluster-based system sends request packets to all the storage servers that contain the
SRUs for that particular block; it makes the request for the next block only after
receiving all the SRUs for the current requested block. Such requests are referred to
as synchronized reads in [62].

However, when performing synchronized reads across an increasing number of
servers, the requesting client may observe TCP’s throughput drop by one or two
orders of magnitude below its Ethernet link capacity. Figure 1.5 from [62] illustrates
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Fig. 1.5 TCP goodput collapse for synchronized reads

TCP’s catastrophic drop in performance when operating in a cluster-based storage
network environment with HP ProCurve 2848 as the intermediate switch.

Simulation traces reveal that TCP’s retransmission timeouts are the primary cause
behind Incast. Even when the goodput experienced by the client application degrades,
most servers continue to send their SRUs quickly, but some servers begin to expe-
rience timeouts from packet losses leading to transmission delays. The servers that
finish their transfers receive requests for new SRUs only after the client has com-
pletely received its previously requested data block, resulting in underutilized links
within the network [63].

Unfortunately, such synchronized read patterns occur frequently in many data
center applications and services. For example, in cluster storage when storage nodes
respond to requests for data [64–67], in web search when many worker threads
respond near simultaneously to query strings [68–71], and in batch processing jobs
like MapReduce in which ‘mappers’ transfer intermediate key-value pairs to appro-
priate ‘reducers’ during the ‘shuffle’ stage [72, 73]. Hence, a feasible solution that
addresses the Incast problem is urgently needed.

To the best of our knowledge the problem of Incast has so far never been addressed
convincingly. Except for a few attempts in recent literature ([61, 62, 74, 75]), Incast
has largely remained unscrutinized. Most existing systems employ solutions that
attempt to avoid TCP throughput collapse by capping the number of storage servers
involved in a block transfer, by increasing the size of the data blocks, by relying
on enhancements to underlying Ethernet technology, or by drastically reducing the
value of TCP’s minimum retransmission timeout using system extensions to support
microsecond clock granularity. Such solutions unfortunately, are specific to a given
environment (e.g. a number of servers involved, sizes of data blocks being exchanged,
Ethernet support, availability of microsecond timers, etc.), and thus are not robust to
any changes in the data center.



1.4 Structure of Manuscript 11

Our goal in this study therefore, is to provide practical, backward compatible,
transport layer solutions to TCP’s Incast problem when operating in high bandwidth,
low latency data center network environment.

1.4 Structure of Manuscript

This manuscript is organized as follows: In Chap. 2, we provide an overview of the
Transmission Control Protocol, including a brief description of some of its features
like reliable delivery, flow control and congestion control. In Chap. 3, we derive
a simple analytical model for TCP Incast, followed by its empirical validation. In
Chap. 4, we describe techniques to address TCP Incast and evaluate the solutions
using simulations. Finally we present our conclusions and directions for future work
in Chap. 5.
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Chapter 2
The Transmission Control Protocol

For over three decades, Transmission Control Protocol (TCP) [1] has been the de-
facto transport protocol for a countless number of network applications. So popular
is the protocol that according to prior studies, TCP accounts for almost 90 % of the
byte count in the Internet [2, 3]. TCP’s robustness in a wide variety of network-
ing environments is one of the primary reasons for its large scale deployment. The
protocol’s ability to provide adequate performance to diverse applications has only
been possible through continuous study, improvements and modifications, making
TCP one of the most active areas of research [4]. In this chapter we provide an
overview of the TCP along with brief description of its internal mechanisms like
reliable delivery and congestion control that that are key to our understanding of the
Incast phenomena.

2.1 Overview

The Internet is a huge network or networks, each implementing the Internet Protocol
(IP). IP is the principal communications protocol for transmitting information packets
across network boundaries where the source and the destination hosts are identified
by fixed length addresses [5]. The design of IP however, assumes that the underlying
network infrastructure is inherently unreliable. As a result, IP only provides best
effort delivery, meaning, the service it provides is not entirely trustworthy.

User applications however, need reliable, in-order delivery with flow control
between two communicating endpoints. One possible approach to follow would be to
allow each application to implement its own error detection and recovery mechanism.
However, given that the mechanism is needed by many applications, advantages of
having a common protocol that provides these functionalities, is immediately appar-
ent. Not only would the availability of such a protocol ease the design and implemen-
tation of user programs, it would also allow for efficient multiplexing of datagrams
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Fig. 2.1 Layout of a TCP Segment

from host to the applications [4]. The TCP was specifically designed to provide such
a service.

TCP described in [1] is a connection-oriented, end-to-end reliable protocol
designed to fit into the layered hierarchy just above the Internet Protocol. The protocol
provides for reliable inter-process communication between pairs of applications in
hosts attached to distinct but interconnected communication networks. TCP makes
very few assumptions about the reliability of the communication protocols in the
layers below itself. TCP only assumes that it has access to a simple and potentially
unreliable datagram services from the layers below. This implies that TCP can con-
ceivably perform over a wide spectrum of communication systems ranging from
packet-switched networks to hard-wired connections.

Using TCP, applications on networked hosts can create virtual circuits (or con-
nections) to each other, over which they can exchange streams of data. TCP assigns
a 32-bit sequence number to every byte of data on its connection. The protocol guar-
antees reliable, in-order delivery of all data bytes that are sent from the sender to
the receiver. TCP also has the ability to distinguish data for multiple connections by
concurrent applications.

The sending and receiving TCP endpoints exchange their data in the form of
packets that are called segments. A TCP segment consists of a fixed 20-byte header
(plus an optional extensions) followed by zero or more data bytes [6]. Figure 2.1
shows the layout of a TCP segment. Table 2.1 lists the purpose of each field in a TCP
segment.

The size of the segments exchanged between two endpoints is controlled by the
TCP. TCP even decides whether to accumulate data from several writes into one
segment or to split data from a single write over several segments. Segment sizes
over a given TCP connection is governed by two limits. First, each segment including
the segment header must fit into the 65,535 byte IP payload. Second, each network has
a Maximum Transfer Unit (MTU), and each TCP segment must fit in this MTU [6].
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Table 2.1 TCP segment fields

Field name Length in bits Function

Source Port 16 Identifies the local end point at the source
Destination Port 16 Identifies the local end point at the destination
Sequence Number 32 Sequence number of the segment’s first data byte in

the overall connection byte stream
Acknowledgment

Number
32 Sequence number of the next byte expected by the

receiver
Header Length 4 Indicates the segment header length in words
URG flag 1 Control flag indicates that the Urgent Pointer field is

significant
ACK flag 1 Control flag indicates that the Acknowledgment Num-

ber field is significant
PSH flag 1 Control flag requests the receiver to deliver the data

to application on arrival
RST flag 1 Control flag used to reset connection
SYN flag 1 Control flag used in establishing connections
FIN flag 1 Control flag to request normal termination of TCP

connection in the direction of the segment
Window 16 Used for flow control. Indicates the number of bytes

that may be sent starting at the byte acknowledged
Checksum 16 Provides bit error detection for the TCP segment
Urgent Pointer 16 Indicates the position of the first octet of non expedited

data in the segment
Options 32∗ Zero or more words designed to provide extra facilities

not covered by the regular header

*The field is optional

A segment that is too large to fit into the MTU of a network is broken down into
multiple fragments by an intermediate router. All resulting fragments get their own
IP header and are assembled back into the original segment at the destination.

TCP relies on sliding window protocol to transfer data between two endpoints.
When the sender transmits a segment, it also starts a timer called the retransmission
timer. On receiving this segment, the destination TCP endpoint sends back a seg-
ment bearing an acknowledgment number that indicates the next sequence number it
expects to receive from the sender. If the sender’s retransmission timer expires before
receiving an acknowledgement, the sender would transmit that segment again [6].

Though the operations of TCP sound simple, there are a number of complex
situations that the protocol needs to handle. For example, transmitted segments may
arrive out of order at the destination. Segments can also get delayed in the network in
which case the sender times out and retransmits them. If the retransmitted segments
take a different path to the destination, the receiver can end up with multiple copies
of the same bytes in the steam. Additionally, if the segment is fragmented, part of the
fragmented segments may never arrive at the destination. And last but not the least,
a segment may occasionally hit a congested link along its path to the destination.
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TCP must be able to handle these situations in an efficient way. A considerable
amount of effort has gone into making TCP robust for all network situations. Some
of these techniques used by various implementations of TCP will be discussed in the
sections below.

2.2 Reliable Data Delivery

In this section, we describe various mechanisms of TCP that are involved in ensuring
in-order transfer of stream bytes between source and destination endpoints, as well
as, multiplexing of network traffic to different application processes.

Transmission in TCP is made reliable via smart use of sequence numbers and
acknowledgments. Conceptually, each byte of data is assigned a sequence number.
The sequence number of the segment is also the sequence number of the first byte of
data within the segment and is transmitted along with the segment as part of its header.
Segment headers also include an acknowledgment number which is the sequence
number of the next expected data byte in the opposite direction. When TCP transmits
a segment containing data, it puts a copy of the segment on a retransmission queue
and starts a timer; when the acknowledgment for the transmitted data is received,
it deletes the segment from its retransmission queue. If the acknowledgment is not
received before the expiry of the timer, TCP retransmits the segment [1].

In addition to sequence numbers and acknowledgments, TCP’s solution for deliv-
ering data reliably over an unreliable internet communication system involves the
following three mechanisms:

• Establishing connection state at communicating endpoints
• Handling data duplication and reordering
• Handling data loss

The first step in ensuring reliable in-order data delivery between two hosts is the
setup of connection state at each endpoints [7] as discussed in the subsection below.

2.2.1 Connection Establishment and Multiplexing

In order to provide reliable data delivery, TCP needs to initialize and maintain certain
status information for each connection. The combination of this status information
along with sockets, sequence numbers and window sizes, forms a TCP connection
or a virtual circuit.

When two network enabled applications wish to communicate, their TCP stacks
must first establish a connection by initializing status information at each endpoint.
When their communication is complete, the connection is terminated in order to free
the resources for other uses [1].
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Fig. 2.2 TCP Three-way handshake and initial data exchange

Since connections must be established between processes over the unreliable
internet communication system, TCP uses a handshake mechanism with clock-based
sequence numbers. The procedure to establish a TCP connection involves exchanging
three segments between communicating endpoints, utilizing the synchronize (SYN)
control flag in the segment header. This exchange has been termed a three-way hand
shake [1] and is depicted in Fig. 2.2. Unlike other connection establishing protocols,
three-way handshake does not require communicating endpoints to begin transmis-
sions with same sequence numbers. Furthermore, three-way handshake can be used
to establish a TCP connection even in absence of a global clock. The mechanism can
also prevent old connection initializations and data packets from causing any con-
fusion. Additionally, the endpoints can exchange parameter and option information
such as MSS, during connection establishment [7].

The process which initiates the three-way handshake does so by issuing an active
open request. Processes can also issue passive opens before waiting for matching
active opens from other networked applications and be informed by TCP when con-
nections have been established. Two applications which issue simultaneous active
opens to each other will still be correctly connected. This flexibility is critical for
TCP to operate in distributed environments where network components can act asyn-
chronously with respect to each other [1].

TCP provides 16-bit port identifiers to distinguish separate data streams that the
protocol might handle. Since port identifiers are selected independently by TCP
at each communicating endpoint, many endpoints in the network can pick the same
identifier for a port. To provide for unique addresses for all communicating processes,
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TCP concatenates the IP address identifying the end point with the port identifier
that identifies the process, to create a socket which is unique throughout the Internet.
A connection in TCP can be fully specified by the pair of sockets at the communi-
cating endpoints.

At each endpoint, the TCP examines the port identifiers in the received segment
and places the segment in the receive buffer of the process associated with that port
[7]. A range of port identifiers is reserved for well-known user applications such as
HTTP [8], FTP [9], SMTP [10], NNTP [11] and SSH [12–17].

2.2.2 Re-ordering and Duplicate Elimination

In this subsection we describe TCP’s mechanisms which allow data to be re-ordered
at the receiver and duplicate data to be eliminated.

Packet reordering refers to the scenario where relative ordering of some TCP
segments belonging to the same connection get altered as they are transported over
the network. In other words the receiving order of a stream of segments differs from
the sending order.

TCP has the ability to recover from data that is lost, damaged, delivered out of
order or duplicated by the network. It achieves this by assigning a sequence number
to each transmitted byte and requiring a positive acknowledgment from the receiving
endpoint [1]. The receiving endpoint can detect transmission errors by computing
a checksum on the received segment and comparing it to the checksum value in
the received segment’s header. If the checksum test fails, TCP discards the segment.
Otherwise, it checks to see if the received sequence number falls within the acceptable
range of sequence numbers defined by the receive window, rwnd. In TCP, the receive
window indicates the allowed number of bytes that the sender may transmit before
waiting for new permissions from the receiver.

A data byte whose sequence number does not fall within the sequence number
range defined by the receive window is discarded by the TCP. Bytes whose sequence
numbers fall within the sequence number range specified by rwnd but are not equal to
rwnd’s start sequence number are buffered by the TCP. This allows TCP to properly
re-order any out of order data. On the other hand, bytes which are received in-order,
advance the range boundaries defined by rwnd.

Duplicate data in TCP may result from segment duplication by faulty devices, from
the finiteness of the sequence space (wrap around), from the presence of segments
in the network sent by earlier incarnations of the connection or from retransmissions
from the source [7].

In order to limit the possibility of duplicate segments from previous instances of
the same connection being erroneously accepted, TCP starts the numbering of data
bytes with a “random” value when initiating the connection.
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2.2.3 Retransmission of Lost Data

In this subsection we describe TCP’s strategy for loss recovery. The strategy
employed by TCP mainly relies on positive acknowledgments and timer based
retransmissions.

2.2.3.1 Acknowledgments

The receipt of each transmitted byte has to be acknowledged by the receiving end-
point. TCP acknowledgment numbers refer to the sequence number of the next
byte that the destination expects to receive. This strategy is referred to as “positive
acknowledgment” strategy [7]. The acknowledgment mechanism employed by TCP
is “cumulative” meaning, an acknowledgment of sequence K indicates that all bytes
up to but not including K have been received by the destination. This mechanism
allows for simple duplicate detection in presence of retransmissions [1].

If a received segment’s sequence number does not match rwndś current start
sequence number, it elicits an acknowledgment for the start sequence number of
rwnd. Such ACKs, called duplicate ACKs, stimulate the sender to retransmit the
segment that appears to be missing [7].

It is important to note that an acknowledgment received by the sending endpoint
does not guarantee that the data has been delivered to the networked application, but
only that the TCP at the receiving endpoint has taken the responsibility to do so.

2.2.3.2 Retransmission Queue

When TCP transmits a segment containing data, it puts a copy of the segment on a
queue called retransmission queue and starts a timer that is initialized to a dynamically
computed retransmission timeout (RTO) value; when the acknowledgment for that
data is received, TCP deletes the segment from this queue. If the acknowledgment
is not received before the timer expires, TCP retransmits the segment [1]. Note that
segments carrying no data are not transmitted reliably, except for segments carrying
the SYN or FIN flag.

In addition, a “fast” retransmission of the segment at the head of the retransmission
queue can be triggered by the reception of at least three duplicate ACKs before the
expiry of the retransmission timer [7]. In both cases the retransmission is followed
by congestion control measures that are discussed in Sect. 2.4.

Note that some implementations of TCP, organize the data in retransmit queue in
segments, as they were originally transmitted, while others do not keep the segment
boundaries. In the first case, when the retransmission timer expires, the segment at the
head of the queue is retransmitted. In the second case, a new segment can be created
from the data at the head of the retransmission queue. The data in the newly created
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segment can span over multiple previous segments. This results in more efficient use
of the network by decreasing the segment header overhead.

2.3 Flow Control

Flow control is a mechanism whose main purpose is to properly match the transmis-
sion rate of the sending end point to that of the receiving end point [18]. TCP uses
sliding window mechanism to provide flow control, whereby the receiving end point
returns a “window” in each ACK, indicating a range of acceptable data byte sequence
numbers beyond the last segment that was successfully received. The window, called
receive window or rwnd, indicates the allowed number of bytes that the sender may
transmit before waiting for new permission from the receiver. Since TCP’s rwnd field
is limited to 16 bits in length, it allows for a maximum possible size of 65,535 bytes.

Figure 2.3 illustrates the concept of the sliding window. In this simple example,
the sliding window spans over four bytes of the data stream. The sequence numbers
within the sender’s window represent the bytes sent but as yet not acknowledged. All
sequence numbers to the left of the sliding window are bytes that were transmitted
and also acknowledged; sequence numbers to the right of the sliding window are
bytes that are yet to be transmitted. As bytes in the window get acknowledged and
new bytes get transmitted the window “slides”, moving from left to right.

A receiver can adjust the window size each time it sends the acknowledgments
to the sender. The maximum transmission rate is ultimately bound by the receiver’s
ability to accept and process data. If the receiver is incapable of accepting any new

Fig. 2.3 Sliding window mechanism
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data, it can announce a “zero receive window” in an ACK, which forces the sender
TCP to stall its data transmission.

A sender which receives a zero window advertisement for rwnd, regularly probes
the receiver for window updates. This is because the underlying IP protocol only
provides a best effort service, due to which, an ACK carrying a window update from
the receiver can sometimes fail to reach the sender. TCP at the sending endpoint
sends the first probe after a retransmit timeout period and sends the subsequent ones
at exponentially increasing time periods [19].

TCP at the sending end point also deals with the case where the receiver advertises
a window that is smaller than the amount of data already in the network (which
corresponded to a previously advertised window value). This case, labeled “shrinking
window”, causes the sender to wait for the receive window, rwnd, to open up beyond
the previously sent limit before sending any new data [20].

2.4 Congestion Control

Congestion control in TCP concerns with controlling the entry of segments into the
network in order to avoid overwhelming the processing or link capabilities of the
intermediate nodes. This section describes TCP’s four intertwined algorithms that
are implemented as part of the protocol’s congestion control strategy: slow start,
congestion avoidance, fast retransmit, and fast recovery. The following subsections
discuss these algorithms in detail.

2.4.1 Slow Start and Congestion Avoidance

All TCP senders use slow start and congestion avoidance algorithms to control the
amount of unacknowledged data being injected into the network. To implement these
algorithms, TCP makes use of two variables, namely, congestion window (cwnd) and
receiver’s advertised window (rwnd). The congestion window is the sender-side limit
on the number of bytes the sender can inject into the network before receiving an
acknowledgment, while the receiver’s window is a receiver-side limit on the amount
of outstanding bytes of data. The minimum of cwnd and rwnd governs TCP’s data
transmission.

Another variable, the slow start threshold (sstrhesh), is used by the TCP to deter-
mine the algorithm to employ—slow start or congestion avoidance—in controlling
data transmission.

Starting data transmission with unknown network condition requires TCP to avoid
congesting the network with large burst of data. Hence it probes the network slowly
and determines the available capacity, using its slow start algorithm. It is either
used at the very beginning of data transfer or after repairing loss detected by TCP’s
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retransmission timer. In both these situations, TCP is unaware of the current state of
the network causing it to probe the system for available capacity.

Initially, TCP sets ssthresh to an arbitrarily high value, but reduces it in response to
congestion. Setting ssthresh to a high value initially ensures that network conditions,
rather than some arbitrary host limit, dictates the sending rate. TCP uses the slow start
algorithm when its cwnd ≤ ssthresh and uses the congestion avoidance algorithm
when cwnd > ssthresh.

During slow start, TCP increments its cwnd by at most one maximum segment
size (MSS) for each ACK received. Slow start ends when cwnd exceeds ssthresh or
when TCP observes congestion in the network.

In reality, slow start is not very slow when the network is not congested and
network response time is good. For example, the first successful transmission and
acknowledgment of a TCP segment increases cwnd to two segments. After successful
transmission and acknowledgment of these two segments, the cwnd is doubled to four
segments, then eight segments, then sixteen segments and so on, up to the maximum
window size (rwnd) advertised by the receiver or until TCP observes congestion in
the network.

During congestion avoidance, cwnd is increased by roughly one MSS per round-
trip time. Congestion avoidance continues until congestion is detected. Another com-
mon formula that is used by various implementations of TCP in updating cwnd during
congestion avoidance phase is given in Eq. 2.1.

cwnd = cwnd + (MSS × MSS)

cwnd
(2.1)

This adjustment to congestion window is executed on every incoming ACK that
acknowledges new data during the congestion avoidance phase.

When a TCP sender detects segment loss through expiry of the retransmission
timer and the segment in question has not yet been retransmitted, TCP sets the value
of its ssthresh according to Eq. 2.2. Furthermore, upon a timeout, TCP sets the value
of its cwnd to one MSS. Therefore, after retransmitting the dropped segment, TCP
sender uses slow start algorithm to increase the size of its congestion window (cwnd)
from one MSS to the new value of ssthresh, at which point congestion avoidance
again takes over [21].

ssthresh = max

(
segments in flight

2
, 2 × MSS

)
(2.2)

2.4.2 Fast Retransmit and Fast Recovery

When the destination receives an out-of-order segment, TCP at the receiving endpoint
immediately sends back a duplicate ACK to the sender. Duplicate ACK informs the
sender that the destination received a segment that was out-of-order. The acknowledg-
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ment number in the duplicate ACK also informs the sender about the byte sequence
number that the destination expects. From the sender’s perspective, there are a num-
ber of problems that can result in duplicate ACKs. For example, duplicate ACKs can
be caused by segments getting dropped by the network. In this case, all segments
received by the destination after the dropped segment will trigger duplicate ACKs
until the loss is repaired. Duplicate ACKs can also be caused by the re-ordering or
replication of segments within the network.

TCP’s fast retransmit algorithm uses the arrival of three consecutive duplicate
ACKs as an indication that the segment has been lost. After receiving three duplicate
ACKs, the sender retransmits the lost segment, without waiting for its retransmission
timer to go off.

After TCP’s fast retransmit algorithm sends the missing segment, the protocol’s
fast recovery algorithm controls the transmission of new data until the sender receives
non-duplicate ACK from the destination. The reason that TCP does not perform slow
start at this stage is that in addition to indicating a segment loss, duplicate ACKs also
inform the sender that the segments are most likely leaving the network.

TCP implements the fast retransmit and the fast recovery algorithms in the fol-
lowing manner:

• On the first and the second duplicate ACKs received by the sender, TCP sends a
segment of previously unsent data provided, the receiver’s rwnd allows for it. TCP
also does not change its cwnd to reflect the transmission of these two segments.

• When the third duplicate ACK is received at the sender, TCP sets ssthresh to a
value given in Eq. 2.2.

• When the third duplicate ACK is received, following the reset of ssthresh, TCP sets
its cwnd to (ssthresh + 3 × M SS) ensuring that the cwnd is artificially inflated
by the number of segments that are outstanding in the network.

• For each additional duplicate ACK that the sender receives, TCP increments its
cwnd by one MSS.

• When finally the sender receives an ACK that acknowledges previously unac-
knowledged data, TCP sets cwnd to ssthresh. This sequence is also known as
“deflating” of the congestion window (cwnd).

A summary of TCP’s congestion control mechanisms is depicted in Fig. 2.4. An
illustration of how TCP’s congestion window evolves due to the protocol’s afore-
mentioned congestion control algorithms, is shown in Fig. 2.5.

In Fig. 2.5, TCP begins by setting its slow start threshold, ssthresh, to an arbitrarily
high value. It then starts its data transfer using the slow start algorithm to determine
the available capacity in the network. During this phase, TCP’s congestion window
cwnd, grows exponentially. In the example above, slow start phase ends when TCP
experiences a timeout. Following the timeout, TCP sets its ssthresh, to half the number
of segments that were in flight before the timeout. The protocol also sets the size of
its cwnd to one. Since cwnd is now less than ssthresh, TCP resumes its data transfer
with slow start. Like before, cwnd grows exponentially as long as cwnd ≤ ssthresh.
When cwnd > ssthresh, TCP’s slow start phase ends. TCP then continues with
its data transfer using the congestion avoidance algorithm. During this phase, cwnd
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Fig. 2.4 Summary of TCP’s congestion control mechanisms

grows linearly until TCP receives 3 duplicate ACKs. On receiving 3 duplicate ACKs,
TCP ends its congestion avoidance phase and invokes fast retransmit and fast recovery
algorithms. This congestion avoidance-fast retransmit-fast recovery cycle continues
until TCP experiences another timeout. Following a timeout, TCP resumes its data
transfer with slow start algorithm as before. The resulting evolution pattern for TCP’s
congestion window cwnd, is often referred to as “TCP’s sawtooth behavior”.

2.5 Summary

In this chapter, we presented details on mechanisms that are responsible for TCP’s
reliable data transfer, flow control and congestion control. Our goal in this chapter is
to not only provide the necessary background for the following chapters, but to also
help readers working with TCP to gain a better understanding of the protocol.

We note that TCP is a highly dynamic protocol, especially when the details of its
implementations are considered. Many developers independently add non-standard
modifications and enhancements to standard implementations of TCP. Moreover,
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Fig. 2.5 Evolution of TCP’s congestion window

due to the complexity of the protocol and some ambiguity in its specification, many
developers allow themselves the freedom to deviate from the standard behavior to
provide simplicity or inter-operability with other implementations of TCP. Therefore
the information contained in this chapter may not apply to every implementation of
TCP.
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Chapter 3
Modeling Incast and its Empirical Validation

Transmission Control Protocol is the transport layer workhorse for several application
layer protocols like HTTP [1], FTP [2], SMTP [3], NNTP [4] and SSH [5–10]. As a
result, TCP carries a significant amount of today’s Internet traffic [11]. Studies have
shown that traffic from TCP and UDP [12] make for more than 96 % of the packets
in the Internet. TCP alone accounts for almost 82 % of packets and about 91 % of the
byte count on the Web [13].

TCP also accounts for the bulk of traffic in data centers. TCP is at the core of
several data center applications like distributed filesystems [14, 15], cluster comput-
ing [16, 17], parallel databases [18] as well as disaster recovery [19, 20]. However,
recent works have shown that under certain many-to-one traffic patterns, data center
networks experience Incast: a drastic collapse in throughput due to TCP timeouts
triggered by severe packet losses at Ethernet [21] switches [22–24].

In typical Incast communication pattern, a receiver issues synchronized data
requests to multiple senders. The senders, upon receiving the request, concurrently
transmit a large amount of data to the receiver. The data from all senders traverse
a bottleneck link in a many-to-one fashion. As the number of concurrent senders
increase, the perceived application-level throughput at the receiver collapses. The
application at the receiver sees throughput that is orders of magnitude lower than
its link capacity [25]. TCP throughput collapse was first observed in early parallel
network storage projects such as NASD [26]. It was later documented as part of a
larger paper by Nagle et al in [27]. Today, the same Incast communication pattern
can be found in many popular data center applications such as cluster based storage
systems [27–29], data analytics [30–32], Big Data [33], MapReduce [34] as well
as Hadoop [35]. Hence a thorough solution that addresses the Incast pathology is
urgently needed.

To substantially solve TCP Incast at low cost, we first need to understand the
reasons behind its throughput collapse. Traditionally, simulation and implementa-
tion/measurement have been tools of choice for examining the performance of various
aspects of TCP. In this chapter we develop a simple analytic characterization of the
steady state throughput of multiple TCP flows, as a function of loss rate and round

S. Kulkarni and P. Agrawal, Analysis of TCP Performance in Data Center Networks, 31
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trip time under many-to-one Incast communication pattern. Although many earlier
works have already modeled TCP [36–41], our modeling is different in two aspects:

1. The application in our model exhibits Incast communication pattern whereas
existing models usually assume that the application layer has infinite amount of
data to send.

2. Our model describes the overall throughput of the bottleneck link which contains
multiple flows, while existing TCP models usually focus on the throughput of a
single flow.

In our TCP Incast model, we summarize that the throughput collapse in many-to-
one communication pattern is mainly caused by two kinds of timeouts.

• Anterior Block Transfer Timeout (ABTT): Anterior Block Transfer Timeouts hap-
pen when a large number of senders get involved in a many-to-one synchronized
data transfer. During the transfer of a block, some senders finish transmitting their
blocks early due to TCP’s unfairness at small timescales. Such completed flows
wait for other senders to finish transmitting their blocks, without consuming any of
the available bandwidth. Meanwhile the remaining flows finish transmitting their
blocks using additional bandwidth vacated by the completed flows. This results in
larger transmission window for some flows by the end of the block transfer. At the
beginning of the next block transfer, all senders inject their whole windows into
the network overwhelming the small buffers at the intermediate Ethernet switch.
This results in a lot of dropped packets and if any flow loses all the packets in its
window, then it will enter a timeout period.

• Intermediate Block Transfer Timeout (IBTT): Unlike Anterior Block Transfer
Timeouts, Intermediate Block Transfer Timeouts are not limited to the start of
a block transfer. IBTTs are caused when a participating sender fails to receive
enough duplicate ACKs to trigger Fast Recovery following the loss of transmitted
packets during a block transfer. The sender waits for a period of time defined
by TCP’s timeout before retransmitting its unacknowledged packets. Following a
timeout, the congestion window is reduced to one, and only one packet is resent
in the first round after the timeout. However, because of the synchronized nature
of the Incast traffic, the receiver cannot issue its next request until all the senders
have finished transmitting their current blocks.

Investigating the causes behind the aforementioned category of timeouts is ben-
eficial in developing effective solutions that are capable of avoiding the ill effects of
TCP Incast.

3.1 Modeling Incast

More than a decade after its publication in [36], the steady state throughput equation
of TCP by Padhye et al. remains the most widely used method for calculating the
throughput that a TCP sender achieves under certain environmental conditions. While
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there now is a wealth of other models available (e.g. [37–41]), many of which are
better in some aspect, none of them seem to strike the same balance between precision
and ease of use that makes equation from [36] the useful tool that it is.

In an effort to enable practical calculation of the throughput in Incast communi-
cation pattern, we extend the equation from [36] to multiple synchronized TCP flows
across a single bottleneck link. We do this by following the basic approach in [36],
but considering a number of synchronized flows using an identical path at the same
time instead of a single flow.

3.1.1 Model Using Loss Measure of Cumulative Flow

In order to derive an equation for the throughput of Incast traffic, we extend the
model presented in [36] to multiple synchronized flows. We assume that the reader is
familiar with [36] and therefore will only repeat the preliminary assumptions where
needed and shortly repeat necessary definitions.

Consider n parallel TCP flows f1, . . . , fn sharing the same bottleneck link inside
a data center network. Like in [36], we too model the congestion avoidance phase of
these n flows in terms of “rounds”, assuming furthermore that the flows are synchro-
nized in rounds (i.e. in a round, all flows send packets in their current congestion
window before the next round starts for all of them). For each flow f , the round starts
with the back-to-back transmission of W f packets, where W f is the size of the flow’s
current congestion window. Once all packets falling within the congestion window
of all n flows have been sent in this back-to-back manner, no other packets are sent
until each flow f , receives an ACK for one of its W f packets already sent. The first
ACK reception by all senders marks the end of the current round and the beginning
of the next round. In this model, the duration of a round is equal to the round trip time
and is assumed to be independent of the window size. Note that another assumption
here is that the time needed to send all the packets in a window is smaller than the
round trip time.

At the beginning of the next round, a group of W ′
f new packets will be sent by each

flow f , where W ′
f is the new size of the flow’s TCP congestion window. Assume that

the receiver acknowledges every packet received with an ACK. Many TCP receiver
implementations can be configured to send one ACK for every packet received. If W f

packets are sent by a flow f , in the first round and all are received and acknowledged
correctly, then the flow will receive W f acknowledgments. Since each acknowledg-

ment increases the flow’s congestion window size by
(

1
W f

)
, the congestion window

size for the flow f , at the beginning of the next round is W ′
f = W f + 1. That is,

during congestion avoidance and in the absence of loss, the congestion window size
of each flow increases linearly in time, with the slope of one packet per round trip
time.

Loss of packets in TCP can be detected in one of two ways, either by the reception
of three “duplicate ACKs” by the sender or via timeouts. We denote the former
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event as a “TD” for triple-duplicate ACK loss indication and “TO” for timeout loss
indication. When the loss indicating event is a TD, the composite flow f reduces its
congestion window W f , by a factor of two. On the other hand if the loss indication
is of type TO, the composite flow f waits for a period of time denoted by T0 and
then reduces the size of its congestion window W f to one before retransmitting its
unacknowledged segments.

As in [36], we too assume that a packet is lost in a round independently of any
packets lost in other rounds. On the other hand we assume that packet losses are
correlated among the back-to-back transmissions within a round, i.e., if a packet is
lost, all remaining packets transmitted until the end of that round, irrespective of
which flow they belong to, are also lost. This bursty loss behavior which has been
shown to arise from the drop-tail queuing discipline in [42, 43], perfectly matches
the queue management policy of the Ethernet switches used in data center networks.

3.1.1.1 Cumulative Flow

Now, consider F to be the cumulative flow of n parallel, synchronized TCP flows
f1, . . . , fn , sharing the same bottleneck link in a data center network. Let W be the
cumulative window size of all n composite flows. Because the composite flows are
all synchronized, W is essentially the sum of all n congestion windows. As with the
single sender, each round starts with the back-to-back transmission of a total of W
packets belonging to n flows. If all W packets are sent, received and acknowledged
correctly, then the participating n flows will together receive W acknowledgments.
Since each acknowledgment increases the individual flow f ’s congestion window

size by
(

1
W f

)
, the cumulative congestion window size at the beginning of the next

round is W ′ = ∑n
i=1(W fi +1), which implies, W ′ = W + n, as there are n parallel flows

involved. This means that, when all n composite flows are in congestion avoidance
phase and none of them experience a loss, the cumulative window size of all n flows
increases linearly in time, with the slope of n packets per round trip time.

Note that we have assumed the packets lost in the same round to be correlated
(i.e., if a packet is lost, all remaining packets transmitted until the end of that round,
irrespective of which flow they belong to, are also lost). Hence, more than one among
n composite flows could potentially experience a loss event in the same round. But
TCP flows that experience a loss, reduce their congestion window only once per
round trip time. Since the flows are all synchronized in terms of rounds, the resulting
cumulative window W, is also modified only once per round trip time. Hence, in the
event of correlated losses, recognizing a packet loss in a composite flow f, serves as
a loss event indicator for the cumulative flow F. We define TD-period (TDP) for the
cumulative flow F, as the period between two consecutive loss event indicators. For
the ith TD-period, TDPi , we define Ai be the duration of the period.

A sample path of the evolution of the cumulative window W is shown in Fig. 3.1.
Between two TD loss indications, the composite flows are all in congestion avoidance
and the cumulative window increases by n packets per round, as discussed above.
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Fig. 3.1 Evolution of cumulative window W over time when loss indications are TDs

Immediately after a loss indication occurs, any composite flow f experiencing a loss,
reduces its congestion window size W f by a factor of two. This implies that a loss

experiencing flow f , will also reduce the cumulative window W, by
(

W f
2

)
packets.

In the following subsections, we model the cumulative flow’s behavior in the
presence of packet losses. We develop a stochastic model of the cumulative flow
corresponding to its operating regimes: when loss indications are exclusively TD and
when loss indications are both TD and TO. During the process, we ignore certain
aspects of TCP’s behavior (e.g. slow start) but believe that we have still managed to
captured the essential elements of the protocol, as indicated by the generally good
fits between model predictions and simulations, as discussed in Sect. 3.2.

3.1.1.2 Triple Duplicate Loss Indications

In this subsection we assume that loss indications are exclusively of type “triple-
duplicate” ACK (TD), and that the composite flow f ’s window size is not limited
by the receiver’s advertised flow control window.
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For any given time t ≥ 0, we define Nt as the total number of packets transmitted

by the cumulative flow F, in the interval [0, t]. Let Bt =
(

Nt
t

)
be the cumulative

throughput of all n composite flows in that interval. We can then define the long term
steady-state throughput of all n flows as,

B = lim
t→∞ Bt

= lim
t→∞

(
Nt

t

)
(3.1)

Note that Bt is the number of packets sent per unit of time regardless of their even-
tual fate (i.e., whether they are received or not). Thus Bt represents the throughput
of the cumulative flow F, at the shared link.

For our new extended equation, we define pc as the probability of a loss event of
the cumulative flow F. It is only counted as a loss event when one or more composite
flows f , experiences a loss in a round.

As discussed in the previous subsection, in a loss event of the cumulative flow F,
more than one composite flow f , could experience packet loss. In order to estimate the
number of composite flows that experience packet loss for each cumulative loss event,
we will also use information about real loss probability in our extended equation.
With pr , we denote the probability that a packet (belonging to any composite flow)
is lost, given that either it is the flow’s first packet in its round or the flow’s preceding
packet in its round is not lost.

In this subsection, we are interested in establishing a relationship B(n, pc, pr )

between the throughput of the cumulative flow F and n the number of parallel syn-
chronized flows involved, pc the loss probability of the cumulative flow as well as
pr the loss probability in any composite flow f.

For a period T D Pi , let Yi be the number of packets sent in that period and Ai be
the duration of that period. From [36], it can be shown that,

B = E[Y ]
E[A] (3.2)

where E[Y] and E[A] are the expected values of Y and A respectively. Hence, to
derive B, the longterm steady-state throughput of the cumulative flow, we must next
derive the expressions for the mean of Y and mean of A. To achieve this, we need to
take a closer look at how the evolution of window size W f of each composite flow,
the time between two loss events of a flow A f and the duration of a TD-period of
each individual flow f , influence the development of the cumulative window size W.

As in [36], we define ri j to be the duration (round trip time) of the jth round of
T D Pi and Xi to be the number of rounds in T D Pi . Then, the duration of T D Pi can
be computed as Ai = ∑Xi

j=1 ri j . We consider the round trip times ri j to be random
variables, that are assumed to be independent of the size of the cumulative window
W, and thus independent of the round number, j. It follows that



3.1 Modeling Incast 37

E[A] = E[X ]E[r ] (3.3)

Henceforth, we denote by RTT = E[r], the average value of round trip time.
Since we are now dealing with the cumulative flow, in a single loss event in F,

more than one composite flow can experience loss. Let ji be the number of flows,
belonging to the cumulative flow, that experience loss at the end of the ith TD-
period. Assuming that loss is identically distributed over all flows, the probability

that a composite flow experiences a loss in the ith TD-period is
(

ji
n

)
.

The probability that the time between two loss events of a composite flow A f ,
is k TD-periods (k = 1, 2,. . .) is equal to the probability that the flow did not lose a
packet in k − 1 consecutive TD-periods and in the kth period it loses a packet:

P[loss in the kth TDP] = ji
n

k−1∏
l=1

(
1 − j(i−l)

n

)
(3.4)

If j is the mean number of composite flows experiencing a loss in a round, we have:

P[A f = k E[A]] = j

n

(
1 − j

n

)k−1

(3.5)

The mean value of A f , the time between two loss events for a composite flow, is:

E[A f ] =
∞∑

k=1

(
j

n

(
1 − j

n

)k−1

k E[A]
)

(3.6)

=
(

nE[A]
j

)

From 3.3 and 3.6 we can express the average number of rounds between two loss
events of a flow as:

E[X f ] = nE[X ]
j

(3.7)

For deriving Y, we will examine the evolution of the cumulative window W, as
shown in Fig. 3.2. In each round, the composite window W, is incremented by n. αi

denotes the sequence number of the first packet lost in T D Pi (for simplicity, we
assume the sequence numbers to begin at 1 for every TD-period). After receiving
a triple duplicate acknowledgment for one of the composite flows, the cumulative
flow recognizes that a packet has been lost (receiving the ACK for packet γi ). We
consider that a TD period ends when the cumulative flow recognizes a loss event.
This usually happens in the round following the actual loss; we call this round the
“loss round”. The total number of packets sent in Xi rounds in T D Pi is Yi = γi ,
hence

E[Y ] = E[γ] (3.8)
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Fig. 3.2 Packets sent during a TD period

The probability that γi = k is equal to the probability that k − 1 packets are not
loss indications and the ACK for the kth packet triggers the fast retransmission in
one of the the composite flows of the cumulative flow F:

P[γi = k] = (1 − pc)
k−1 pc, k = 1, 2, . . . (3.9)

And the mean value of γ is:

E[γ] =
∞∑

k=1

(1 − pc)
k−1 pck (3.10)

=
(

1

pc

)

For the ith TD-period let flows xe, e = 1,. . ., ji (subset of n composite flows) be
the ji flows experiencing loss at the end of the period. The same xe flows do not
experience loss in every TD-period. Instead, the TD-periods in which these xe flows
experience loss are a subset ({is}, s = 1, 2,. . .) of TD-periods of the cumulative flow
F. For example, in Fig. 3.2, only flow f2 experiences loss in T D Pi . Its next loss
could perhaps happen in the period T D Pi+2.

If W fxeis
are the congestion windows of the flows xe at the end of the (is)th period,

and X fxeis
is the number of rounds from the end of T D Pis−1 till the end of T D Pis ,
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during these X fxeis
rounds, the congestion window of flows xe increase by X fxeis

packets. Hence, we have:

W fxeis
=

W fxeis−1

2
+ X fxeis

(3.11)

Assuming that X fxeis
and W fxeis

are mutually independent sequences of indepen-

dent and identically distributed (i.i.d.) random variables, from [41] we have:

E[W f ] = 2E[X f ] (3.12)

Assuming that at the end of each TD-period the window sizes of the j flows expe-
riencing loss are E[W f ], and the window sizes of the j flows experiencing loss in the

previous loss events are
(

E[W f ]
2 + E[X ]

)
,
(

E[W f ]
2 + 2E[X ]

)
,
(

E[W f ]
2 + 3E[X ]

)
and so on, the mean window size of the cumulative flow is:

E[W ] = j E[W f ] +
n
j −1∑
k=1

j

(
E[W f ]

2
+ k E[X ]

)
(3.13)

From 3.7, 3.12 and 3.13, we have:

E[W ] = nE[X ]
2

+ 3n2 E[X ]
2 j

(3.14)

The number of packets sent in a TD-period by the cumulative flow F, is the number
of packets sent between its two loss events. For the ith TD-period this includes packets
sent in the last round of the (i − 1)th TD-period, starting from the γ(i−1)th packet
till the end of the window (βi−1 packets) and the packets sent in the next Xi rounds
till the γi th packet. If flows xe, e = 1,. . ., ji experience loss in the (i − 1)th TD-
period and W fxei−1

are their respective congestion window sizes at the end of the
(i − 1)th TD-period, the window size of the cumulative flow at the beginning of

the ith TD-period is Wi =
(

Wi−1 − ∑ ji−1
e=1

W fxei−1
2 + (n − ji−1)

)
, where, ji flows

reduce their congestion windows by factor of two while the remaining (n − ji−1)
flows increase their window size by one segment. Additionally, the window size W
of the cumulative flow F is increased by n every round of the ith TD-period. So the
number of packets sent in a TD-period can be expressed as:

Yi = βi−1 +
Xi −1∑
k=0

⎛
⎝Wi−1 −

ji−1∑
e=1

W fxei−1

2
+ (n − ji−1) + nk

⎞
⎠ − βi (3.15)
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where βi is the number of packets sent in the loss round after the loss event is recog-
nized. Assuming that loss events in the cumulative flow are uniformly distributed
over the size of the cumulative window W in a loss round, we have:

E[β] = E[W ]
2

(3.16)

From 3.15 and 3.16, we can show that:

E[Y ] =
(

E[W ] − j E[W f ]
2

+ (n − j)

)
E[X ] + nE[X ]2

2
− nE[X ]

2
(3.17)

and including 3.7, 3.8, 3.10 and 3.12:

1

pc
= 3n2 E[X ]2

2 j
+ nE[X ]

2
− j E[X ] (3.18)

Solving the equation in 3.18 for E[X], we get

E[X ] = 2 j2 pc − npc j + √
n2 pc

2 j2 − 4n pc
2 j3 + 4 j4 pc

2 + 24n2 pc j

6n2 pc
(3.19)

Including 3.14, we have:

E[W ] = 2 j2 pc − npc j + √
n2 pc

2 j2 − 4n pc
2 j3 + 4 j4 pc

2 + 24n2 pc j

4pc j

+ 2 j2 pc − npc j + √
n2 pc

2 j2 − 4n pc
2 j3 + 4 j4 pc

2 + 24n2 pc j

12npc
(3.20)

From 3.2, 3.3, 3.10 and 3.19 we can express B, the longterm steady state throughput
of all n synchronized flows as:

B = 1

RT T
× 6n2

2 j2 pc − npc j + √
n2 pc

2 j2 − 4n pc
2 j3 + 4 j4 pc

2 + 24n2 pc j
(3.21)

Equation 3.21 gives us an expression to compute the throughput of Incast traffic
when all the composite flows are in congestion avoidance phase and receive only
loss indicating events that are of type TD. In this equation, we can approximate j,

the mean number of flows experiencing a loss in a round, with the expression
(

pr
pc

)
.

Since j must be no more than n, we have j = min
(

n,
pr
pc

)
.
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3.1.1.3 Timeout Loss Indications

In this subsection we model the throughput of cumulative flow for loss indications
that are of type “time out” (TO). As already mentioned, TCP’s throughput collapse in
many-to-one synchronized communication is mainly caused by two kinds of time-
outs, namely, Intermediate Block Transfer Timeouts (IBTT) and Anterior Block
Transfer Timeouts (ABTT).

Figure 3.3 shows the scenario where IBTT happens in ns-2 [44, 45] simulations.
The simulation consists of four senders that transmit synchronized data block to the
same receiver. As with the standard Incast communication pattern, the client makes
a request for the next block only when the previous block has been completely
received. The advertised window size of the receiver is set to 1,00 packets, which is
large enough to have no impact on the congestion window evolution at the sender.
Figure 3.3 plots the window evolution of three of the four senders involved. The dotted
vertical lines running across all three evolutionary graphs indicate the completion
of a block transfer. We can see that at time t ≈ 13.559886s, the client successfully
receives block number 20. Following the complete reception of the block, the client
makes a request for the transfer of the next block and all senders start transmitting
their share for block 21. During transfer of this block, sender 1 at time t = 13.563974s,
experiences a TO. Since the loss indicator is a timeout, sender 1 waits for a period
of time T0, defined by TCP’s retransmission timer before retransmitting its lost
packets. And although the other servers involved in the block transfer complete
transmitting their share of the block well before the recovery of sender 1, the client
does not make a request for a new block till sender 1 also follows suit. Hence, the
shared link is completely idle between 13.568913s ∼ 13.764448s, which results in
throughput collapse. By observing the congestion window evolution of sender 1, we
find that although the packets in its congestion window at t ≈ 13.559886s, were all
successfully transmitted, the server received less than 3 duplicate ACKs resulting in
a TO.

Figure 3.4 illustrates the situation where ABTTs occur. In this ns-2 simulation
setup, ten senders transmit synchronized data block to the same receiver. As with the
simulations for IBTT, the advertised window size of the receiver is set to 1,00 packets,
which is again large enough to have no impact on the congestion window evolution at
the sender. Figure 3.4 plots the window evolution of three of the ten senders involved.
Like before, the dotted vertical lines running across all three evolutionary graphs
indicate the completion of a block transfer. Here, we notice that sender 10 experiences
a TO very early (t ≈ 1.855538s) in the transfer of block 9 to the receiver. By the
time sender 10 resumes with its transmission (at t ≈ 2.054982s), all the remaining
servers involved, have finished transmitting their share of the data and are waiting
for sender 10 to catch up. Like with IBTT, the shared link remains completely idle
during this interval (1.875551s ∼ 2.054982s), which drastically reduces the overall
throughput of the Incast traffic. However once sender 10 resumes its transmission, it
does not have to compete with any other sender for a portion of the shared bandwidth.
This results in a large congestion window for sender 10 at the end of the transfer of
block 9. At the beginning of the next block transfer, all senders start off by injecting
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Fig. 3.3 Scenario for intermediate block transfer timeouts

their whole windows into the network. The small buffers at the intermediate Ethernet
switch are easily overwhelmed by large windows of senders like 10 and as a result,
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a lot of packets get dropped. Unfortunately, few senders like sender 9, lose all the
packets in their congestion window resulting in an early TO for block 10. And like
sender 10 during transfer of block 9, sender 9 too ends up with a large congestion
window during the transfer of block 10. The cycle repeats for block 11 too, with
sender 8 experiencing an early TO.

Through investigating numerous simulations, we find that IBTT dominates TCP
throughput when n is small, while ABTT dominates Incast when n is large.

Consider the evolution of the cumulative window W, in the presence of loss
indications that include type “TO”, as shown in Fig. 3.5. Timeouts occur when any
composite flow f loses packets (or ACKs) and receives less than three duplicate ACKs
in response. The loss experiencing flow then waits for a period of time denoted by
T0 before retransmitting its non-acknowledged packets. Following a timeout, the
congestion window of the flow W f is reduced to one, and only one packet is thus
resent in the first round after the timeout. In case the composite flow suffers another
timeout before successfully retransmitting the packets lost during the first timeout,
the period of timeout doubles to 2T0; this doubling is repeated for each unsuccessful
retransmission until 64T0 is reached, after which the timeout period remains constant
at 64T0 [36].

The evolution of the cumulative window W depicted in Fig. 3.5 is an approxi-
mation of the real Incast traffic pattern observed during timeouts. Because we have
assumed all n flows to be synchronized in terms of rounds, when one composite
flow experiences a timeout, the remaining flows refrain from transmitting data as
well. However, in the real world when one composite flow experiences a loss, the
other (n − 1) flows continue to transmit their remaining share of data (e.g. Figs. 3.3
and 3.4).

Slow Start is another aspect of TCP that we have conveniently chosen to ignore
in our handling of TO type loss indicators. Following a timeout, TCP uses a mech-
anism called “Slow Start” to increase its congestion window. Slow Start operates
by observing that the rate at which new packets should be injected into the network
is the rate at which the acknowledgments are returned by the other end. Unlike the
Congestion Avoidance phase where the congestion window is increased by one seg-
ment per round trip time, the Slow Start increases the congestion window by one
segment for every ACK received. This provides for an exponential growth of the
congestion window after it was reduced to one following a timeout. The Slow Start
phase is usually much shorter than the Congestion Avoidance phase and for the sake
of simplicity, we choose to ignore this phase in our model of Incast.

Despite these aforementioned approximations, we believe that we have still man-
aged to capture the essential aspects of the Incast phenomenon, as indicated by the
generally good fit between our model and the simulations as discussed in Sect. 3.2.

Let Z T O
i denote the duration of a sequence of timeouts and Z T D

i denote the time
interval between two consecutive timeout sequences. We define Si to be

Si = Z T D
i + Z T O

i (3.22)
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Fig. 3.4 Scenario for anterior block transfer timeouts

Let Mi be the number of packets sent during Si . Then {(Si , Mi )}i is an i.i.d.
sequence of random variables [36] from which we have,

B = E[M]
E[S] (3.23)
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Fig. 3.5 Evolution of W over time when loss indications are TD and TO

Let vi be the number of TD periods in interval Z T D
i . For the jth TD period of

interval Z T D
i , we define Yi j to be the number of packets sent in the period, Ai j to be

the duration of the period, Xi j to be the number of rounds in the period, and Wi j to
be the cumulative window size of n parallel synchronized TCP flows at the end of
the period. From these definitions we have,

Mi =
vi∑

j=1

Yi j (3.24)

and,

Si =
vi∑

j=1

Ai j + Z T O
i (3.25)

Thus,
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E[M] = E

⎡
⎣ vi∑

j=1

Yi j

⎤
⎦ (3.26)

and,

E[S] = E

⎡
⎣ vi∑

j=1

Ai j

⎤
⎦ + E

[
Z T O

i

]
(3.27)

If we assume {vi }i to be an i.i.d. sequence of random variables, independent of
Yi j and Ai j [36], then we have

E

⎡
⎣

⎛
⎝ vi∑

j=1

Yi j

⎞
⎠

i

⎤
⎦ = E[v]E[Y ] (3.28)

and,

E

⎡
⎣

⎛
⎝ vi∑

j=1

Ai j

⎞
⎠

i

⎤
⎦ = E[v]E[A] (3.29)

To derive E[v] observe that, during Z T D
i the time between two consecutive timeout

sequences, there are vi TDPs, where each of the first (vi −1) end in a TD, and the last
TDP ends in a TO. It follows that in Z T D

i there is one TO out of vi loss indications.
Therefore if we denote by Q the probability that a loss indication ending a TDP is a

TO, we have Q =
(

1
E[v]

)
. Consequently,

B = E[Y ]
E[A] + Q × E[Z T O ] (3.30)

Since Ai j and Yi j do not depend on timeouts, their means are those derived in 3.3
and 3.10. To compute throughput of n parallel synchronized TCP connections using
3.30 we must still determine Q and E[Z T O ].

We begin by deriving an expression for Q. Let j be the mean number of composite
flows experiencing packet loss at the end of a TDP as discussed in the previous
subsection. For simplicity, we assume that at most, only one “TO” type loss indication
occurs at the end of a TDP. That is, of the j composite flows that lose packets at the
end of a TDP, no more than one flow experiences a timeout event. Since a timeout
is either of type IBTT or of type ABTT, the probability of a TO type loss indication
ending a TDP can be expressed as,

Q = min (1, Qibtt + Qabtt ) (3.31)
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Fig. 3.6 Packet and ACK transmissions preceding a loss indication

where Qibtt and Qabtt are probabilities of ending a TDP with a single timeout
indication of type IBTT and ABTT respectively.

Next, we focus on deriving an expression for Qibtt —the probability of a composite
flow experiencing an IBTT at the end of a TDP. Consider the round where a composite
flow f, loses its packets; we will refer to this round as the “penultimate” round
(see Fig. 3.6). Let W f be the size of the flow’s congestion window. Thus packets
u1, . . . , uW f are sent in the penultimate round. Packets u1, . . . , uk are acknowledged
and packet uk+1 is the first one to be lost. Since we have assumed packet losses within
a round to be correlated, if a packet is lost all packets that follow it till the end of the
round are also lost. Thus, all packets following uk+1 in the penultimate round are also
lost. However, since packets u1, . . . , uk are ACKed, another k packets, s1, . . . , sk

are sent in the next round, which we will refer to as the “loss” round. This round of
packets may have another loss, say packet sm+1. Again, our assumptions on packet
loss correlation mandates that packets sm+2, . . . , sk are also lost in the loss round. The
m packets successfully sent in the loss round are responded to by ACKs for packet
uk , which are counted as duplicate ACKs. If the number of such ACKs is higher
than three, then a TD indication occurs, otherwise an IBTT occurs. In both cases,
the current period between losses, TDP, ends. We denote by A (w, k) the probability
that the first k packets are ACKed in a round of w packets, given there is a sequence
of one or more losses in the round. Then,
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A(w, k) = (1 − pr )
k pr

1 − (1 − pr )w
(3.32)

Also, we define C (g, m) to be the probability that m packets are ACKed in
sequence in the loss round (where g packets were sent) and the rest of the packets in
the round, if any are lost. Then,

C(g, m) =
{

(1 − pr )
m pr , m < g

(1 − pr )
n, m = g

(3.33)

Then, ˆQibtt (w), the probability that a loss in a congestion window of size w is an
IBTT, is given by,

ˆQibtt (w) =
{

1, if w ≤ 3∑2
k=0 A(w, k) + ∑w

k=3

(
A(w, k) × ∑2

m=0 C(k, m)
)

, otherwise

(3.34)
Since an IBTT occurs if the number of packets successfully transmitted in the

penultimate round, k, is less than three or if the number of packets successfully
transmitted in the loss round, m is less than three. Also, due to the assumption that
packets following sk+1 are lost independently of packets following uk+1 (since they
occur in different rounds), the probability that there is a loss at uk+1 in the penultimate
round followed by a loss at sm+1 in the loss round equals A (w, k) × C (k, m).

Therefore, Qibtt , the probability that composite flow’s loss indication is an IBTT,
can be expressed as

Qibtt =
∞∑

w=1

ˆQibtt (w) P
[
W f = w

] = E
[ ˆQibtt

]
(3.35)

We can approximate this to,

Qibtt ≈ ˆQibtt
(
E

[
W f

])
(3.36)

where E
[
W f

]
is the mean congestion window size of a composite flow, derived

from the Eq. 3.12.
To begin deriving an expression for Qabtt we must first consider the number of

packets transmitted in a TDP in relation to the size of the block being transferred. Let
L be the size of the block that all n senders are trying to transmit to the destination. If
E [Y ] is the mean number of packets sent during a TD-period (Eq. 3.10), the average
number of TDPs needed to transfer a block of size L, can be expressed as,

ρ = L

E [Y ]
(3.37)
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If δ is the mean number of ABTTs occurring at the start of a block transfer, the
series δi and ρi can be assumed to be mutually independent sequence of i.i.d. random
variables from which, the probability of a TDP ending due to a TO indication of type
ABTT can be expressed as

Qabtt = E [δ]

E [ρ]
(3.38)

We can substitute the results of Eqs. 3.36 and 3.38 in 3.31 to get an expression for
Q—the probability that a loss indication ending a TDP is a TO.

Next, we consider the derivation of E
[
Z T O

]
, the average duration of a timeout

sequence. Since we have assumed that there can be at most one timeout at the end
of a TDP, we can approximate E

[
Z T O

]
with T0.

By substituting the obtained expressions for Q and E
[
Z T O

]
into Eq. 3.30, we

now obtain the following expression for B

B =
(

E[Y ]
RT T × E[X ] + Q × E[Z T O ]

)
where, (3.39)

E [Y ] =
(

1

pc

)

E [X ] =
(

2 j2 pc − npc j +
√

n2 pc2 j2 − 4n pc2 j3 + 4 j4 pc2 + 24n2 pc j

6n2 pc

)

j ≈ min

(
n,

pr

pc

)

Q = min(1, Qibtt + Qabtt )

Qibtt ≈ ˆQibtt
(
E

[
W f

])

E
[
W f

] =
(

2n

j
× 2 j2 pc − npc j +

√
n2 pc2 j2 − 4n pc2 j3 + 4 j4 pc2 + 24n2 pc j

6n2 pc

)

ˆQibtt (w) =
{

1, if w ≤ 3∑2
k=0 A(w, k) + ∑w

k=3

(
A(w, k) × ∑2

m=0 C(k, m)
)

, otherwise

A (w, k) = (1 − pr )k pr

1 − (1 − pr )w

C (k, m) =
{

(1 − pr )m pr , m < k

(1 − pr )n, m = k

Qabtt = E [δ]

E [ρ]

E
[

Z T O
]

= T0

In Sect. 3.2, we verify whether the Eq. 3.39 successfully models the behavior of
Incast or not. Henceforth we will refer to the model expressed in Eq. 3.39 as the “Full
Model”.
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3.2 Validation and Analysis

In this section, we validate the performance of our Incast model using the ns-2
simulator. With simulations we demonstrate that the throughput expression derived
in the previous section works relatively well for broad range of conditions.

For our ns-2 simulations, we used the topology depicted in Fig. 3.7 which is
commonly used to study a set of parallel, synchronized flows sharing the same
bottleneck link. We vary various parameters like, number of flows, block size as well
as buffer length to validate our model under different experimental conditions.

Our ns-2 simulation configuration depicted in Fig. 3.7 consists of a cluster based
storage system where storage client and storage servers are all connected to the same
switch. In this environment, data blocks are striped over multiple servers, such that
each server stores a fragment of the data block denoted as the Server Request Unit
(SRU) in Fig. 3.7. A client requesting a data block sends request packets to all storage
servers that contain SRUs for that particular block; the client requests the next block
only after it has received all the data for the current requested block. That is, if the
client requests a data block from n servers, it sends request for the next block only
after receiving (n × S RU ) bytes of data in total.

Next, we measure the throughput of n parallel, synchronized TCP flows at the
shared bottleneck link after varying the number of storage servers involved in data
transfer. To more accurately model the real-world scheduling variance, we also add a
random scheduling delay of up to 20 μs between every consecutive data request from
the client. Table 3.1 lists various other parameters that were used in our experiments.
Notice that we have enabled “Slow start” in our experiments even after choosing to
ignore it for our model. As we demonstrate later in this section, the impact of “Slow

Fig. 3.7 Setup for n parallel, synchronized TCP flows sharing a bottleneck
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Table 3.1 Simulation parameters with default settings

Parameter Default

Number of servers –
SRU size (L) 256 KB
Link capacity (C) 1 Gbps
Link delay (D) 50 μs
Switch buffer size (B) 32 KB
Segment size (S) 1 KB
TCP implementation NewReno
Receive window size 1,000 segments
Duplicate ACK threshold 3
Slow start enabled
RTOmin 200 ms

start” on Incast is negligible; our model produces a good fit with the simulations
despite ignoring “Slow start”. Each trial in the experiment runs for 40 sec of simulated
time, providing enough data transfer to accurately calculate the throughput of the
Incast traffic.

Simultaneously, we also gather traces generated by ns-2 for all the traffic simulated
in our experiment. Later, we analyze these traces with a set of analysis programs
developed by us. These programs compute the values of pc by dividing the total
number of loss indications in the cumulative flow by the total number of packets sent
by all flows, pr by dividing the total number of loss indications in a composite flow
by the total number of packets sent by the flow and δ the mean number of ABTTs
occurring at the start of a block transfer. Additionally, the programs also measure the
round trip time and the average duration of a “single” timeout. These values are then
averaged over several runs and our model’s throughput computed using Eq. 3.39.

Figure 3.8 compares the throughput of ns-2 Incast simulations to the through-
put obtained by our model using Eq. 3.39. From the graph, it can be seen that our
model characterizes the general tendency of TCP Incast relatively well, although it
underestimates the throughput at the bottleneck link when the number of senders is
large.

Figure 3.9 on the other hand compares the throughput of ns-2 Incast simulations
to the throughput obtained by our model using Eq. 3.21. It is important to note that
the expression in Eq. 3.21 computes the throughput of the Incast traffic when all
the composite flows are in congestion avoidance phase and receive only TD type
loss indicating events. That is, Eq. 3.21 computes the throughput of the Incast traffic
without taking timeouts into account.

Comparing Figs. 3.8 and 3.9 it is clear that, timeouts—both ABTT and IBTT—are
essentially the main causes for TCP’s throughput collapse under Incast workloads.
To better understand the impact of IBTT and ABTT on Incast traffic, we compute
the throughput achieved in our model by considering just one type of timeout at a
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Fig. 3.8 Comparing full model with incast simulation results

Fig. 3.9 Comparing TD only model with incast simulation results
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time. Figures 3.10 and 3.11 plot the throughput resulting from our Full Model when
only IBTT and ABTT, are considered respectively.

From Fig. 3.10 it is clear that IBTTs have a greater impact on throughput when the
number of senders is small. When the number of senders is between three and eight,
our model overestimates the impact of IBTTs when compared to throughput resulting
from ns-2 simulations. Also, when the number of senders is greater than eight, we
observe that the model’s throughput no longer matches that of the ns-2 simulations.
This is mainly because the expression for Qibtt in Eq. 3.36 does not take into account
the timeouts happening at the beginning of a block transfer. Furthermore, since Qibtt

in Eq. 3.36 only relies on the probabilities pc and pr , even small deviations in their
measured values, can result in large fluctuations in the model’s throughput.

On the other hand, from Fig. 3.11, it is clear that ABTTs dominate timeouts when
the number of senders is large. From the graph, we observe that the ABTTs have
little or no impact on the model’s throughput when the number of senders is less than
ten. As the number of senders increase, some of them finish transmitting their SRUs
early allowing the remaining senders to transmit their SRUs using the additional
bandwidth vacated by the finished peers. This results in large transmission windows
for some of the senders at the end of the block transfer. At the beginning of the next
block transfer, all senders begin by injecting their entire congestion windows into the
network. With some senders injecting larger number of segments, this packet burst

Fig. 3.10 Impact of IBTT on proposed model
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Fig. 3.11 Impact of ABTT on proposed model

at the beginning of a block transfer overwhelms the bottleneck link’s port buffers
resulting in packet drops and ABTTs.

It is interesting to observe that ABTTs are the result of the start-stop nature of the
synchronized block transfers. The senders stop transmission after completing their
SRU transfer and start transmitting again only after receiving a new transfer request.
This new transfer request results in a packet burst which floods the buffers at the
bottleneck link resulting in packet loss and ABTTs. If the senders each had SRUs of
infinite size like in [36], there would be no start-stop pattern to Incast’s traffic and
hence, no ABTTs. This would have resulted in the senders experiencing only IBTTs
in which case, the expression for Qibtt in Eq. 3.36 would have been sufficient for
estimating the probability of a timeout at the end of a TDP.

Going back to Fig. 3.8, we can now analyze the performance of our model in two
parts: the first part, where the number of senders is large and ABTTs have a bigger
impact and the second part, where the number of senders is small and IBTTs are
dominant. In the first part, it is clear that our model underestimates the throughput of
multiple TCP flows at the bottleneck link. This is because our model overestimates the
time spent in recovering from an ABTT. If we were to revisit the expression for Qabtt

in Eq. 3.38, we find that δ is defined as the mean number of timeouts occurring at the
beginning of a block transfer. While our model simply counts the average number
of flows experiencing timeouts at the beginning of a block transfer, from the traces
generated by ns-2, we find that most of these timeouts occur simultaneously. With
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simultaneous timeouts, the participating flows wait for a single T0 period before
recovering, although the timeout events are counted separately. Since we do not
take simultaneous timeouts into account while deriving an expression for Qabtt ,
the estimated duration between two successive TDs in our model is slightly longer
than that of ns-2. This in turn decreases the number of packets estimated per unit
time, which is why our model underestimates Incast throughput when the number of
senders involved is large.

In the second part of our performance analysis of the Full Model, we find that
the model predicts a huge drop in Incast throughput when the number of senders
is approximately three. The throughput obtained via ns-2 simulations on the other
hand, appears to have a step around the four senders mark, followed by a significant
drop in performance when the number of senders is around seven. In order to better
understand this discrepancy in the results, we analyzed the traces generated by ns-2
simulations in great detail. From these traces we found that whenever the number of
senders is less than or equal to three, IBTTs are caused by only one reason—whole
window losses. That is, when the sender experiences a timeout with n ≤ 3, it loses
all the packets in its congestion window, without receiving a single ACK in return.
This type of loss happens when two or more individual flows simultaneously attempt
to fill the bottleneck link buffer, resulting in at least one flow losing all its packets.
On the other hand when the number of senders is greater than three, IBTTs in ns-2
simulations happen only because of one reason—ack of enough duplicate ACKs.
This type of loss happens when a sender loses packets in both “penultimate” as well
as “loss” rounds due to severe congestion at the bottleneck link, as discussed earlier
in Sect. 3.1 while deriving an expression for C(g, m) in Eq. 3.33.

Taking into account the exclusive nature of IBTT type of timeouts in ns-2 simu-
lations, we can now compute the following new expression for ˆQibtt (w).

ˆQibtt (w) =

⎧⎪⎪⎨
⎪⎪⎩

1, if w ≤ 3

A (w, 0) , if n ≤ n∗∑w
k=3

(
A(w, k) × ∑2

m=0 C(k, m)
)

, otherwise

(3.40)

where n∗ is the number of senders after which IBTTs are entirely caused by insuffi-
cient duplicate ACKs.

By substituting the Eq. 3.40 in Eqs. 3.35 and 3.36, we end up with a new expression
for B, the throughput of the Incast traffic across the bottleneck link. We refer to the
model resulting from Eq. 3.40 as the “Split Model” as opposed to the “Full Model”
derived in Eq. 3.39.

Figure 3.12 compares the throughput of ns-2 Incast simulations to the throughput
obtained by the Split Model described above. From the graph it can be seen that the
Split Model is much better at characterizing the overall tendency of TCP Incast. When
the number of senders n is less than or equal to three, Split Model only considers
whole window losses for IBTTs. Beyond that, as the number of senders increase,
Split Model only considers insufficient duplicate ACKs for IBTTs. When combined
with timeouts of type ABTT resulting from packet burst at the start of a block transfer,
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Fig. 3.12 Comparing split model with incast simulation results

the Split Model appears to model the Incast traffic much better than our earlier Full
Model.

Next, we compare the performance of our proposed models against the simula-
tion results for different sizes of switch buffers. From the four simulation curves in
Figs. 3.13, 3.14, 3.15 and 3.16, we can summarize the following:

• Larger switch buffer improves the throughput at the bottleneck link with different
number of senders n. This can be explained by our proposed model. Larger buffer
size implies fewer dropped packets i.e., smaller values for probabilities pc and pr .
Hence, the expected number of packets Y in a TDP increases.

• Larger switch buffer shifts throughput collapse to the right. That is, for larger
switch buffers, several parallel, synchronized senders can transmit data without
experiencing Incast. This is because larger switch buffers can cache more packets,
thereby reducing the probability of packet loss. And since packet losses lead to
Anterior Block Transfer Timeouts as the number of senders increase, large buffers
delay the onset of performance loss by reducing the number of ABBTs.

Following this, we compare the performance of our proposed models against the
simulation results for different sizes of SRU at the senders. Figures 3.17, 3.18, 3.19
and 3.20 plot the performance of our proposed model and simulation results for these
scenarios. From these graphs, we can summarize the following:
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Fig. 3.13 Performance of full model, split model and ns-2 with 16 KB switch buffer

Fig. 3.14 Performance of full model, split model and ns-2 with 32 KB switch buffer
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Fig. 3.15 Performance of full model, split model and ns-2 with 64 KB switch buffer

Fig. 3.16 Performance of full model, split model and ns-2 with 128 KB switch buffer
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Fig. 3.17 Performance of full model, split model and ns-2 with 64 KB SRU

Fig. 3.18 Performance of full model, split model and ns-2 with 128 KB SRU
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Fig. 3.19 Performance of full model, split model and ns-2 with 256 KB SRU

Fig. 3.20 Performance of full model, split model and ns-2 with 512 KB SRU
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• We can see that the throughput increases when the SRUs grow larger. But large
SRU size has little impact on the onset of throughput collapse. According to our
model, SRU size is irrelevant to the maximum cumulative window size.

• With larger SRU size, the time wasted by a TO period to the time spent by unlucky
flows transmitting packets becomes smaller. As a result, the throughput across the
bottleneck link increases after Incast.

3.2.1 Comparing with Single Flow Model

Due to the simplicity of our model, it is tempting to believe that a similar result
could also be obtained by simply multiplying the original equation from [36] with
the number of flows n. In Fig. 3.21, we compare the simulations results from ns-2
with n × (equation from [36]). Here, in order to obtain the curve for the expression
n × (equation from [36]), we have substituted the packet loss probability p in [36]
with average pr from Sect. 3.1, the probability that a packet (belonging to any flow)
is lost.

Fig. 3.21 Comparing n * (equation from Padhye et al.) with incast simulation results
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As expected the expression n × [36]), works reasonably well for small values of
n. That is because for smaller values of n, the resulting TCP timeouts are largely
dominated by IBTTs. On the other hand, when n is reasonably large, ABTTs hap-
pen more frequently. Unfortunately, the equation in [36] does not take ABTTs into
account. Hence, as n becomes large, the predicted throughput of the expression n ×
(equation from [36]) is orders of magnitude larger than the one obtained through sim-
ulations. This discrepancy in performance only reinforces our decision to develop a
new analytical model to examine various aspects of Incast.

3.3 Summary

In this chapter, we built analytical models to understand the essential causes behind
TCP Incast, which is an important problem in data center networks. Existing inves-
tigations on TCP Incast try to find a good solution to the problem despite incurring
high costs. For example, some of the prevalent Incast solutions include, substituting
TCP with UDP, reducing RT Omin value, increasing switch buffer size, limiting the
number of senders in Incast transfers, etc... To solve TCP Incast substantially, the fun-
damental reasons behind it should be first explored. Unfortunately, almost all existing
studies of TCP, model the protocol considering a single flow with an application that
has an infinite amount of data to transmit. Furthermore, there are practically no prior
TCP models that study the protocol’s performance under synchronized traffic work-
loads in high speed, low latency, data center networking environments. Our models
fill this void by extending the single flow model in [36] to multiple synchronized
flows, where each flow contributes a finite amount of data.

In our work, we find that two types of timeouts, ABTT and IBTT, are together
responsible for TCP’s throughput collapse in many-to-one synchronized traffic work-
loads. IBTT, which is caused by one of the last three packets in a round being dropped,
has a greater impact on throughput when the number of senders is small. ABTT, which
is caused by the start-stop nature of Incast traffic at the beginning of a block transfer,
dominates timeouts when the number of senders is large. We validate the perfor-
mance of our proposed models by comparing them with simulation data. Although
our models characterize the overall effect of Incast pretty well, we find them to be a
little conservative in their estimation of the cumulative throughput. This is because,
our models overestimate the frequency of ABTTs, resulting in longer delays and
lower throughput when compared to simulation data.

From our experiments we were also able to demonstrate that larger switch buffers
can not only improve the throughput of the Incast traffic but can even delay the onset
of throughput collapse. Similarly, we show that larger SRUs can also improve the
throughput of Incast traffic. However, we find that the size of the SRU has little
impact on the onset of throughput collapse.

Finally, all the insights gained in building and validating our proposed models,
will help us develop more effective solutions that address the problem of TCP Incast,
preferably at lower costs.
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Chapter 4
Addressing TCP Incast

As discussed in Chaps. 1 and 3, clients performing synchronized reads across an
increasing number of servers in high bandwidth, low latency data center environ-
ments, observe TCP’s throughput drop by one or two orders of magnitude below
their link capacity. Labeled Incast, this pathological behavior of TCP is endured by a
growing number of data center applications and services. Hence, a feasible solution
that addresses the Incast problem is urgently needed. In this chapter, we provide a
broad overview of existing Incast solutions followed by detailed description of our
proposed techniques that are designed to address the Incast problem at the Transport
Layer [1].1

4.1 Existing Solutions

Since timeouts are the primary reason behind TCP Incast, in this section, we shall
briefly discuss existing solutions that either avoid timeouts or reduce their penalty.
While all the solutions discussed here are moderately effective in masking Incast,
only two techniques discussed in Sects. 4.1.3 and 4.1.4, manage to accomplish this
at the transport layer.

4.1.1 Larger Switch Buffers

This Incast solution, discussed in [2], tries to mitigate the root cause of timeouts—
packet losses—by increasing the buffer space allocated per port on the Ethernet
switches. To evaluate this solution, we vary the size of the switch port buffers in the
cluster based storage system detailed in Sect. 3.2. Furthermore, to match the setup

1 All simulations discussed in this chapter use the same topology as depicted in Fig. 3.7. Furthermore,
unless noted explicitly, the simulations use the same parameters and values as listed in Table 3.1.
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Fig. 4.1 Effect of the size of switch buffers on TCP Incast

presented in [2], we configure our network link delay to 100µs and limit TCP’s
receive window size to 20 segments (the rest of the parameters remain as outlined
in Table 3.1). The results of this experiment are depicted in Fig. 4.1. Please note
that unlike the measure packets/sec used to discuss results in Chap. 3, throughput in
Fig. 4.1 is measured in Mbps. Figure 4.1 clearly shows that doubling the size of the
switch’s output port buffer, doubles the number of servers that can supported before
the onset of Incast.

Consequently, given the number of servers, Incast can be avoided with a large
enough buffer space. Unfortunately, switches with larger buffers tend to cost a lot
more, forcing system designers to choose between over-provisioning and hardware
budgets. This suggests that a more cost-effective solution is needed to address TCP
Incast.

4.1.2 Increasing SRU Size

This is another Incast countermeasure discussed in [2]. It aims to mask TCP’s
throughput collapse by utilizing the spare link capacity of the stalled flow in trans-
ferring larger SRUs belonging to other flows. To evaluate this solution, we vary the
size of the SRUs in the cluster based storage system discussed in Sect. 3.2, while
limiting the size of the switch port buffer to 32 KB. The results of this experiment

http://dx.doi.org/10.1007/978-1-4614-7861-4_3
http://dx.doi.org/10.1007/978-1-4614-7861-4_3
http://dx.doi.org/10.1007/978-1-4614-7861-4_3
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Fig. 4.2 Effect of the size of the SRUs on TCP Incast

are depicted in Fig. 4.2. Figure 4.2 illustrates that increasing the size of the SRUs,
improves the overall throughput at the client. For example, with seven servers, the
throughput for 1 MB SRU is orders of magnitude greater than the throughput of SRU
of size 256 KB.

As discussed in Chap. 3, TCP performs well in settings without synchronized
reads, which can be modeled by infinite sized SRUs. With large SRUs, the servers
take longer to complete transmitting their share of data. This allows the active servers
to utilize the spare link capacity made available by the stalled flows during timeouts.
In doing so, the servers effectively reduce the idle link time experienced by the client,
which in turn improves its overall throughput.

Unfortunately, SRU of size 1 MB is quite impractical; most applications ask for
data in small chunks, corresponding to a size range of 1–256 KB. This is because,
larger the size of the SRU, greater is the prefetching that the storage system has
to commit to. With prefetching, the storage system needs to allocate pinned space
in the client kernel memory, increasing the memory pressure at the client [3]. This
increased pressure at the client, often leads to kernel failures. Hence it is really not
advisable to use larger SRUs on cluster based storage systems.

http://dx.doi.org/10.1007/978-1-4614-7861-4_3
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4.1.3 Reducing Timeout Penalty

This technique, proposed in [3], aims to address TCP Incast by reducing the time
spent in waiting for a timeout to end.

The amount of time a flow waits before retransmitting a lost packet without the
duplicate ACK assisted Fast Retransmit mechanism, is determined by TCP’s RTO
value. Estimating TCP’s RTO value involves achieving timely response to packet
losses and also avoiding the occurrence of premature timeouts. Premature timeouts
have the following negative effects:

• They lead to spurious retransmissions which can potentially cause and prolong
network congestion.

• They cause TCP to enter the Slow Start recovery after reducing its Slow Start
Threshold (ssthresh) value by half, even when no packets were lost. In doing this,
the protocol underestimates its link capacity resulting in lower throughput for its
users.

TCP therefore, has a conservative minimum RTO (RTOmin) value to guard itself
against the ill effects of spurious retransmissions [4, 5].

Popular implementations of TCP use a RTOmin value of 200 ms [6]. Although
this value is appropriate in wide area networks, it is orders of magnitude greater than
the round trip times in data center networks. This large RTOmin value, imposes a
huge penalty on TCP’s throughput as the transfer times for segments within a data
center, are significantly smaller than the value of its RTOmin .

In [3], the authors suggest reducing the value of RTOmin from 200 ms to 200µs, in
order to lessen the penalty of TCP timeouts on synchronized reads. To evaluate this
solution, we decrease the value of TCP’s RTOmin in the cluster based storage system
discussed in Sect. 3.2, while limiting the size of the switch port buffer to 32 KB.
The results of this experiment are depicted in Fig. 4.3. From Fig. 4.3, it is clear that
reducing TCP’s RTOmin value, improves the overall throughput at the client even
after taking into account, the drop in peak performance when the number of servers
is greater than 40.

In general, for any given SRU size, reducing RTOmin value improves the overall
throughput at the client. Unfortunately, setting RTOmin to 200µs poses the following
challenges:

• According to RTO computing algorithms in [4, 5], reducing RTOmin to 200 µs
requires a TCP clock granularity of 100 µs. TCP implementations on most operat-
ing systems including the likes of BSD and Linux, are currently unable to provide
this fine grained timer. For example, BSD implementation of TCP, expects the
operating system to provide two coarse-grained “heartbeat” software interrupts
every 200 ms and 500 ms, which are used to handle internal per-connection timers
[7]. Similarly, TCP implementation on Linux, expects a clock granularity of 10 ms

http://dx.doi.org/10.1007/978-1-4614-7861-4_3
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Fig. 4.3 Effect of the RTOmin value on TCP Incast

from the operating system. Some operating systems can support fine grained timers
by either employing specialized external hardware or utilizing high resolution soft-
ware timers [8]. However, neither of these options are feasible in the context of
data centers. External hardware scales poorly inside a data center while software
timers which require kernel changes, are not supported by all operating systems.

• Even if sufficiently fine grained TCP timers were supported, reducing RTOmin

value can be harmful, especially in situations where the servers communicate
with clients outside the data center. In [9], the authors note that low values for
RTOmin increases the occurrence of premature timeouts as RTOmin can be used
for trading “timely response with premature timeouts”. Other studies of RTO esti-
mation in similar high-bandwidth, low-latency ATM networks also show that very
low RTOmin values result in spurious retransmissions [10] because variations in
round-trip-times inside wide-area networks clash with the standard RTO estima-
tor’s short RTT memory.

In summary, the solution proposed in [3] should be viewed with caution as it
increases the risk of premature timeouts.
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4.1.4 Relying on Explicit Congestion Notification

Data Center TCP (DCTCP), is a protocol proposed in [11]. It aims to achieve high
burst tolerance, low latency and high throughput during synchronized data transfers,
by requiring Ethernet switches to support Explicit Congestion Notifications (ECN).

DCTCP relies on a simple marking scheme at switches that sets the Congestion
Experienced (CE) codepoint of packets as soon as the buffer occupancy exceeds a
fixed small threshold. DCTCP uses these ECNs to provide multi-bit feedback to its
end hosts. The DCTCP source reacts to such notifications by reducing the window
by a factor that depends on the fraction of marked packets: larger the fraction, bigger
is the decrease factor.

Unfortunately, not all switches support ECN. Without the underlying ECN sup-
port, DCTCP faces the same issues and hurdles as standard TCP. Additionally, ECNs
are known to be effective in simple configurations only. With more than one switch,
ECNs have an adverse effect on data flows [2]. Furthermore, authors in [11], make
no claims about he suitability of DCTCP for wide area networks as they assume
internal data center traffic to be separate from that of the external world.

4.2 Probabilistic Retransmission

In TCP world, timeouts are indicators of severe network congestion. Although the
penalty for detecting congestion through timeouts is quite large in TCP, they are
unavoidable in certain scenarios like, full window losses and retransmission losses.
In this section, we shall examine a technique that reduces the time taken in detect-
ing network congestion when TCP’s loss recovery mechanism cannot be triggered
by duplicate ACKs. Specifically, we shall explore the notion of proactively detect-
ing network congestion through probabilistic retransmissions, while using TCP’s
retransmission timer as a fallback option.

4.2.1 Retransmit Thread

As discussed in Sect. 4.1.3, TCP has a conservative minimum RTO (RTOmin), whose
value is orders of magnitude greater than the round trip times at data centers. To
overcome the penalty imposed by a conservative RTOmin on timeouts in synchronized
workloads, we propose a congestion recovery technique that relies on probabilistic
retransmissions, kernel threads and duplicate ACKs.

Most modern operating systems support threads in their kernel space. A kernel
thread is the “lightest” unit of kernel scheduling. Our solution to the Incast problem
utilizes one such kernel thread to probabilistically retransmit the highest unacknowl-
edged segment in sender’s transmission window. That is, every time the thread is



4.2 Probabilistic Retransmission 73

scheduled for execution, it retransmits with probability p, the highest unacknowl-
edged segment in sender’s transmission window. Before retransmitting the segment,
the thread also “marks” it as being ‘probabilistically retransmitted’. Algorithm 1
captures necessary details regarding the Retransmit Thread.

Algorithm 1 Retransmit Thread at Sender
if length(T ransmit Window) ≥ 1 then

if uni f orm(0, 1) ≤ p then
mark Highest Un AC K ed Segment
retransmit marked Segment

end if
end if
yield processor

To “mark” the segment as being ‘probabilistically retransmitted’, the Retransmit
Thread uses one of the six reserved bits in the segment’s header. Figure 2.1 shows
the layout of a TCP segment with the reserved bits located next to the Header Length
field.

Because of its probabilistic nature, the retransmitted segment can arrive at the
Ethernet switch (i) before any congestion, (ii) during a congestion or (iii) after a con-
gestion. Case (i) would result in the destination receiving multiple copies of the same
segment—the original segment transmitted by TCP, followed by the “marked” seg-
ment transmitted by our Retransmission Thread. In this situation, the client ignores
the “mark” on the retransmitted segment and responds back with a normal cumu-
lative ACK. In case (ii), the retransmitted segment is dropped by the switch since
it arrives at a time when the switch’s port buffers are full. Since the “marked” seg-
ment never reaches the destination, neither the sender nor the receiver are required
to take any action. Under case (iii), if the sender’s original segment was dropped at
the switch due to congestion, the receiver would be seeing the sequence number on
the retransmitted segment for the first time. Since the first copy of the segment is
itself “marked”, the receiver responds back with a normal cumulative ACK followed
by three duplicate ACKs. By doing this, not only does the receiver acknowledge the
occurrence of a congestion at the intermediate switch, but it also helps the sender
trigger Fast Retransmit for quicker loss recovery. Algorithm 2 lists the steps involved
in handling retransmitted segments at the receiver.

When the sender receives three duplicate ACKs in a row, it automatically performs
loss recovery using Fast Retransmit mechanism, without waiting for retransmission
timer to expire. Algorithm 3 gives details on handling duplicate ACKs at the sender.

Receiving a “marked” segment with an unseen sequence number indicates that
(i) there was congestion in the network which accounted for the original copy of the
segment, and (ii) the congestion is now cleared, for the “marked” segment would
never have made it through otherwise. With congestion in the network now resolved,
the receiver would like the sender to start its loss recovery early, without having to
wait for a retransmission timer to expire. It initiates this by sending three duplicate

http://dx.doi.org/10.1007/978-1-4614-7861-4_2
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Algorithm 2 Handling Retransmitted Segments at Receiver
...normal handling of segment...
send AC K
if isduplicate(Received Segment) ≡ f alse then

if ismarked(Received Segment) ≡ true then
for i = 1 to 3 do

send AC K
end for

end if
end if

Algorithm 3 Handling ACKs at Sender
...normal handling of ACK...
if dupackcount ≡ 3 then

suspend retransmission thread
invoke Fast Retransmit

end if

ACKs back to the sender which forces the sender to immediately perform an smooth
reduction of its flow via Fast Recovery, instead of performing an abrupt reduction
through Slow Start following a timeout.

It is also possible that our Retransmission Thread never retransmits the highest
unacknowledged segment. In such a case, the sender detects and responds to con-
gestion only when its retransmission timer expires.

4.2.2 Performance Analysis

In order to measure the effectiveness of the suggested technique, we implement
Algorithms 1, 2 and 3 in ns-2. To keep the simulations realistic, we model the thread
context switch time by including a small delay of 20µs between each execution of
the Retransmission Thread. We also fix the RTOmin value to 200 ms. The rest of the
experimental setup is the same as the one described in Sect. 4.1.3. Figure 4.4 shows
that increasing the value of p (probability of retransmission), improves the throughput
at the client by orders of magnitude, when the number of senders is greater than eight.

From Fig. 4.4, it is clear that using Retransmission Threads can significantly
improve TCP’s performance under synchronized workloads. However, the value of
its retransmission probability, p, should be chosen with some consideration. If p is
set too low, the proposed technique provides no significant benefits over default TCP.
On the other hand, if p is set too high, it causes unnecessary retransmissions, con-
tributing further to the congestion at the switch. Figure 4.5 shows the drop ratio i.e.,
the number of packets dropped at the switch versus the number of packets received
by it, for varying values of p. The graph also includes plots for default TCP with
RTO 200 ms as well as modified TCP with RTO 200µs, for reference. For optimal
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Fig. 4.4 Effect of retransmission probability, p, on TCP Incast

Fig. 4.5 Effect of retransmission probability, p, on drop ratio
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Fig. 4.6 Comparing probabilistic retransmission with default and modified TCP

p, the probabilistic retransmission technique would yield high TCP throughput with a
low drop ratio. From Figs. 4.4 and 4.5, it is clear that for our simulation environment,
the best value of p is 0.001.

Figure 4.6 compares the performance of probabilistic retransmission (p = 0.001)
with default TCP (RTO 200 ms) and modified TCP (RTO 200µs). From Fig. 4.6, it
is evident that the probabilistic retransmission outperforms default TCP under all
experimental conditions. The technique also performs better than the modified TCP,
when the number of senders in the experiment is greater than ten. On the other hand,
when the number of senders in the experiment is between five and ten, modified TCP
yields slightly better throughput than our proposed solution. This is because, very
few senders experience severe losses when the sender count in the experiment is less
than ten. In addition to that, the value of the retransmission probability, p, is only
0.001. Therefore, it is quite likely that the loss experiencing senders make several
attempts before succeeding at their probabilistic retransmissions. This in turn leaves
the switch-client link underutilized for some period which results in a small dip in
the solution’s performance when compared to modified TCP.

However, when the number of loss experiencing senders is large, it is more likely
that at least one of them will quickly succeed in its probabilistic retransmission.
With every such success, the switch-client link is kept occupied for that much longer,
resulting in a performance that is significantly better than that of the modified TCP.
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One must also keep in mind that the results discussed above are true only for the
chosen value for p, in this case 0.001. In Fig. 4.4, we saw that higher values of p need
fewer senders to achieve throughput saturation. Hence, if the synchronized workload
inside a data center involves only a few senders, probabilistic retransmission can still
outperform modified TCP, if p is set to a higher value.

4.2.3 Summary

Based on our experiments and analysis, it is clear that probabilistic retransmission
offers a feasible solution to TCP’s Incast problem. In addition to being backwards
compatible with existing flavors of TCP, the technique is also able to outperform
existing Incast solutions, without incurring any of their drawbacks.

However, probabilistic retransmission relies heavily on the availability of kernel
threads. Also, its performance is governed by the value assigned to p, the retransmis-
sion probability. Ideally, the value of p should be auto computed and auto tuned, but
we take the easier option for now, and make it a user configurable variable. As part
of our future work, we plan to implement this technique on a Linux based cluster
and measure its performance in the real world.

4.3 Dynamic Segment Resizing

As detailed in Chap. 2, when TCP receives an out-of-order segment, it immediately
responds back with a duplicate ACK. From the sender’s perspective, receiving a
duplicate ACK indicates potential loss or reordering of transmitted segments. TCP’s
Fast Retransmit algorithm uses the arrival of three consecutive duplicate ACKs as an
indication that segments have been lost. The algorithm then initiates loss recovery
at the sender, without waiting for the retransmission timer to expire. But, when the
destination receives fewer than four segments due to severe network congestion, it
has no chance of sending three duplicate ACKs, meaning, retransmission timeouts
are the only means of loss recovery for a source, that has lost all its segments to
network congestion.

Timeouts are known to have a negative impact on TCP’s performance since, the
time needed for the protocol to recover losses through retransmission timer is much
longer than the time needed to recover via Fast Retransmit algorithm. As discussed
in Chaps. 1 and 3, timeouts are also known to cause the Incast problem that TCP
experiences during synchronized data transfers. In our proposed scheme, we aim to
address TCP Incast by making loss recovery through Fast Retransmit possible in
operating regions where currently, timeouts are the only option available.

Dynamic Segment Resizing is based on the idea of increasing the upstream flow
of ACKs by sending downstream, a large number of segments whose size is smaller
than the maximum segment size supported by the connection. When a large number

http://dx.doi.org/10.1007/978-1-4614-7861-4_2
http://dx.doi.org/10.1007/978-1-4614-7861-4_1
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Fig. 4.7 Timeout frequency for different segment sizes when sender count is 5

of segments are received at the destination, it triggers a large number of ACKs on
the back channel. And, larger the number of ACKs on the back channel, larger is the
probability of the source recovering lost segments without the aid of a retransmission
timer. In other words, our proposed procedure gives the transmitter a chance to
obtain more information about the current state of the network between itself and
the receiver.

To illustrate our approach by means of an example, we vary the size of TCP’s seg-
ments in the cluster file system experiment discussed in Sect. 3.2. In this experiment,
we also limit the port buffer length on the intermediate switch to 32 KB, set the size
of the SRU to 256 KB, cap the receive window size to 32 KB and fix the value of the
minimum retransmission timeout, RTOmin , to 200 ms.

Figures 4.7, 4.8, 4.9 and 4.10, depict the effects of smaller TCP segments on the
protocol’s retransmission timeouts when the number of senders in the experiment is
5, 10, 20 and 50 respectively. From these figures, it is clear that smaller sized segments
reduce the number of timeouts that TCP experiences during a synchronized transfer.
Additionally, smaller sized segments move the peak of the timeout histogram to the
right, meaning, with smaller segments, TCP will have to lose a greater number of
packets to experience a timeout. The graphs also suggest that with small enough
segments, TCP can completely avoid timeouts during synchronized data transfers.

http://dx.doi.org/10.1007/978-1-4614-7861-4_3
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Fig. 4.8 Timeout frequency for different segment sizes when sender count is 10

Apart from the aforementioned advantages, reducing the size of the segments
also gives TCP a finer control over the amount of data that can be outstanding in
the network. However, transmitting smaller sized segments decreases TCP’s line
efficiency, which is defined as the ratio of data size to the size of (header + data) in
a segment. In order to improve TCP’s line efficiency when operating with smaller
sized segments, we employ a header compression technique that is described in
[12]. This data compression mechanism, reduces the normal 40 byte TCP/IP packet
headers down to 3–4 bytes in average case. It does this by saving the state of TCP
connections at both ends of a link, and only sending the differences in the header
fields that change. With this header compression technique in place, even a small
data segment of 36 bytes will be able to achieve a line efficiency of 90 % for TCP.

In Figs. 4.7, 4.8, 4.9 and 4.10, we notice that different cluster configurations have
different limits on segment sizes that allow synchronized transfers to take place
without incurring any timeout penalty. In order to maximize TCP’s line efficiency
during synchronized transfers involving smaller segments, it is desirable to have seg-
ment sizes that operate closer to these limits. Dynamic Segment Resizing is able to
achieve this by relying on a congestion window threshold value called cwnddsr . The
solution mandates TCP to begin its synchronized transfer with a predefined segment
size of M SSdsr bytes. As TCP starts transmitting user data, its congestion window
begins to grow. When TCP’s congestion window, cwnd, grows beyond the congestion
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Fig. 4.9 Timeout frequency for different segment sizes when sender count is 20

Fig. 4.10 Timeout frequency for different segment sizes when sender count is 50
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window threshold, cwnddsr , our solution resizes TCP’s segments to (cwnd×M SSdsr )(
cwnddsr

2

)

bytes. TCP’s congestion window, cwnd, is also resized to
(

cwnddsr
2

)
segments. Fol-

lowing this resize procedure, TCP resumes transmitting user data albeit with slightly
bigger segments. As before, the segments are resized if TCP’s cwnd again grows
beyond cwnddsr . This resize-transmit-resize cycle continues as long as TCP’s seg-
ments remain smaller than the maximum segment size of the connection and its
congestion window, cwnd, continues to grow beyond the threshold, cwnddsr . The
cycle is eventually broken when the size of the resized segments equal the MSS of
the connection or when the flow encounters duplicate ACKs which prevent the con-
gestion window from growing beyond cwnddsr . Algorithm 4 captures the necessary
details regarding the resize procedure.

Algorithm 4 Resize Procedure for Dynamic Segment Resizing
...normal handling of cwnd growth...
if (M SSdsr < M SS) and (cwnd ≥ cwnddsr ) then

M SStemp = (cwnd×M SSdsr )(
cwnddsr

2

)
if M SStemp > M SS then

M SStemp = M SS
end if
cwnd = (M SSdsr ×cwnd)

M SStemp

M SSdsr = M SStemp
end if

Dynamic Segment Resize is a proposed Incast solution that requires some minor
changes to the sender’s TCP stack. These changes are easy to incorporate and only
require a few modifications to existing TCP code. The header compression procedure
on the other hand, needs to be implemented at both the communicating endpoints.

4.3.1 Performance Analysis

In order to measure the effectiveness of the suggested technique, we implement Algo-
rithm 4 in ns-2. We then measure the performance of Dynamic Segment Resizing
technique in the cluster file system example discussed in Sect. 3.2. For this experi-
ment, we limit the port buffer size on the intermediate switch to 32 KB, set the size of
the SRU to 256 KB, fix the value of the minimum retransmission timeout, RTOmin to
200 ms and cap the receive window size at 1,000 segments. We also set Algorithm 4
specific variables, M SSdsr and cwnddsr , to be 50 bytes and 50 segments respectively.
The rest of the experimental setup is the same as the one described in Sect. 4.1.3.

Figure 4.11, compares the performance of Dynamic Segment Resizing with
default TCP. From Fig. 4.11, it is evident that Dynamic Segment Resizing incurs
a small penalty in performance when the number of senders in the experiment is

http://dx.doi.org/10.1007/978-1-4614-7861-4_3
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Fig. 4.11 Comparing dynamic segment resize with default TCP

less than three. This is because, the proposed technique takes some time to con-
verge on the connection’s maximum segment size as the most appropriate size to
perform synchronized data transfers without incurring any timeout penalty. Default
TCP on the other hand, starts with maximum sized segments and therefore, is able to
achieve better line rate than Dynamic Segment Resizing. However, when the number
of senders in the cluster file system is greater than three, our proposed solution easily
outperforms default TCP.

4.3.2 Summary

From the simulation results discussed in Sect. 4.3.1, it is clear that Dynamic Seg-
ment Resizing offers a practical, transport-layer solution to the Incast problem. The
technique only requires some minor modifications on the sender side TCP and is
backwards compatible with many existing flavors of the protocol.

Unlike the Probabilistic Retransmission technique discussed in Sect. 4.2, Dynamic
Segment Resizing does not depend on the availability of external resources like
kernel threads. However, like p in Probabilistic Retransmission, the performance of
Dynamic Segment Resizing is also dependent on the initial values of M SSdsr and
cwnddsr . Ideally, the start values of M SSdsr and cwnddsr are auto computed, but
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we for now, make these variables user configurable. As part of our future work, we
plan to implement Dynamic Segment Resizing on Linux cluster and measure its
performance in the real world.
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Chapter 5
Conclusions and Future Work

In this chapter, we summarize the research discussed in this manuscript and follow
it up with the directions for future work.

5.1 Summary of Research

In this manuscript, we studied TCP’s performance under many-to-one synchronized
traffic, when operating in high speed, low latency data center networks. In particular,
we discussed the problem of TCP Incast, which causes the protocol’s throughput
to drop to almost a tenth of its link’s available capacity. We derived an analytical
model to investigate Incast and attributed TCP’s throughput collapse to its timeouts.
We also proposed some transport layer techniques to overcome Incast and evaluated
their merits using ns-2 simulations.

In Chap. 1, we discussed Cloud Computing and its different components. We out-
lined how growing adoption of Cloud Computing is prompting service providers to
spawn more data centers. We also discussed the cost and compatibility reasons that
persuade service providers to employ Ethernet as the baseline communication fabric
for their data centers. We then introduced the problem of TCP Incast that results
from utilizing TCP in an environment where many of its assumptions are violated. In
particular, we saw how TCP’s throughput collapses catastrophically under many-
to-one synchronized traffic, when operating in Ethernet-based, high speed, low
latency data center networks.

In Chap. 2, we presented details on mechanisms that are responsible for TCP’s
reliable data transfer, flow control and congestion control. Our work in this chapter,
provided the necessary background for Chaps. 3 and 4, where we have considered
the problem of TCP Incast in greater detail.

In Chap. 3, we presented a simple model for TCP Incast. The model captures
the essence of many-to-one synchronized workloads and expresses throughput as a
function of packet loss probability. In particular, it takes into account the behavior
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of multiple TCP flows in presence of loss induced duplicate acknowledgments and
retransmission timeouts. The model yields a simple, closed form formula for calculat-
ing throughput of many-to-one synchronized traffic and attributes TCP’s throughput
collapse to two types of timeouts, ABTT and IBTT. We validated the model through
extensive simulations done using ns-2 simulator. We found that our model provides
a very good match to the observed Incast behavior. The formula resulting from our
model, can be used for many purposes such as fast evaluation of Incast behavior and
design of Incast free transport protocols.

In Chap. 4, we discussed few existing Incast solutions and their drawbacks. We
then proposed two feasible solutions that addressed TCP Incast at the transport layer.
Specifically, we developed solutions that improved TCP’s performance under syn-
chronized workloads by either proactively detecting network congestion through
probabilistic retransmission or by dynamically resizing TCP’s segments in order to
avoid incurring timeout penalty. We also implemented these solutions in TCP and
tested them extensively using ns-2 simulator. We found that our proposed solutions
are both able to avoid timeouts and overcome the ill effects of throughput collapse
during synchronized data transfers in high speed, low latency, data center environ-
ments.

5.2 Future Work

There are several lines of research arising from the work presented in this manuscript.
Some research lines that should be pursued in the future include:

• Accounting window limitation in Incast model—The model presented in Chap. 3,
does not consider the impact of window limitation per composite flow. At the
beginning of TCP flow establishment, the receiver advertises a maximum buffer
size which determines the maximum congestion window size W fmax . As a conse-
quence, during a period without loss indications, the window size can grow up to
W fmax , but will not grow beyond this value. Our Incast model must be tweaked to
account for this scenario.

• Accounting flavor specific features—TCP New-Reno and TCP SACK are some
of the most dominant flavors of TCP that are currently deployed in data center
networks. In order to accurately model these protocols, we need to modify our
Incast model presented in Chap. 3 to accommodate flavor specific features.

• Developing techniques for loss rate estimation—For empirical validation of our
Incast model in Chap. 3, we estimated the loss rate probability based on the traces
generated by our ns-2 simulator. Since traces are not always available, we need to
understand and evaluate various techniques that help us in loss rate estimation.

• Apply Markovian analysis—The Incast model presented in Chap. 3, is very simple
and less accurate. Markovian analysis on the other hand, is known to be detailed
and precise. To better analyze the Incast phenomenon, we need to model Incast
using Markovian models.
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• Timeout type based solution—Neither the existing techniques nor our proposed
solutions differentiate between the type of timeouts causing the Incast. It should
be possible to design a solution that takes the type of timeouts, ABTT or IBTT,
into consideration.

• Auto computation of control variables—We currently use statically selected values
for our solution specific variables like p, M SSdr and cwnddr. More work is needed
to investigate means of automatically updating these variables in order to guarantee
better Incast performance.

• Implement in real world—Since, almost all the results presented in this manuscript
are based on ns-2 simulations, we need to check if our proposed solutions work
well in the real world. Towards this end we need to implement the techniques of
Probabilistic Retransmissions as well as Dynamic Segment Resizing on a Linux
based cluster and measure their performance in the real world.
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