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Abstract

The noise reduction (or speech enhancement) problem has been studied for
at least five decades but its understanding and the development of reliable
solutions are more than ever very welcome. Therefore, by having a solid grasp
of this problem, it will certainly become easier to design a well-targeted so-
lution for a well-defined application. In this work, we propose a conceptual
framework that can be applied to the many different aspects of noise reduc-
tion. As a consequence, the monaural or binaural noise reduction problem,
in the time domain or in the frequency domain, with a single microphone
or with multiple microphones, is presented in a unified way. Moreover, the
derivation of optimal linear filters is simplified as well as the performance
measures for their evaluation.
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Chapter 1

Introduction

In this chapter, we very briefly introduce the problem of noise reduction. For
more details, the reader is invited to consult the rich literature on this topic.

1.1 Noise Reduction

The problem of noise reduction (or speech enhancement) is an important part
of speech processing [1] and all the ideas developed in this topic can be easily
applied to the general problem of signal enhancement. It is well known that
any speech communication system suffers from the ubiquitous presence of
additive noise [2], [3]. Typical examples of such products are cellular phones
and hearing aids. In these systems, the noise degrades the perceptual quality
of the speech and will impair the speech intelligibility when the signal-to-
noise ratio (SNR) comes down to a certain level. Therefore, the objective
of noise reduction is to suppress such additive noise for purposes of speech
enhancement.

The first noise reduction algorithm was proposed by Schroeder more than
50 years ago [4], [5]; it is basically the spectral magnitude subtraction method.
Since then a great deal of progress has been made. Not only we can better
exploit the temporal/spectral information of the signals but also the spa-
tial information by using multiple microphones. Thanks to the spatial in-
formation, we can better compromise between noise reduction and speech
distortion, which is a fundamental limitation of single-channel noise reduc-
tion algorithms. Even though today we have a better understanding of this
problem and some interesting solutions available, it is far from being solved.

Monaural or binaural noise reduction can be performed in the time domain
or in the frequency domain, with one single microphone or with multiple
microphones. Very often, in the literature, most approaches seem to be very
different and their evaluation does not seem to be consistent. In this work,
we present a framework that has the potential to simplify the study of the
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2 1 Introduction

general speech enhancement problem. Because of their great flexibility, we
limit this investigation to linear filters. Within the proposed framework, the
most important performance measures are derived as well as general forms
of the optimal filters.

1.2 Organization of the Work

This book consists of six chapters including this introduction. In Chapter 2,
we present a conceptual framework for studying the general problem of noise
reduction. Furthermore, we introduce two important performance measures:
the speech intelligibility index and the speech quality index. In Chapters 3,
4, 5, and 6, we show how this concept is applied to the single-channel noise
reduction in time domain, to the single-channel noise reduction in the short-
time Fourier transform (STFT) domain, to the binaural noise reduction in the
time domain, and to the multichannel noise reduction in the STFT domain,
respectively.
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Chapter 2

Conceptual Framework

In this chapter, a conceptual framework for noise reduction is proposed. This
new formulation gives a better insight into this fundamental problem. Within
this framework, we define all important performance measures and criteria
that will be of great help in the derivation of the most well-known estimators.
Some key discussions concern also the definitions of speech intelligibility and
speech quality that will be used in the rest of this work.

2.1 Signal Model

We consider the conventional signal model [1], [2], [3]:

y = x+ v, (2.1)

where y is the noisy observation, x is the desired (speech) signal, and v is the
unwanted additive noise. These signals can be in the time, frequency, or any
other domain. Therefore, in this chapter, we are interested in the general case
of complex random variables (CRVs). Furthermore, we assume that x and v
are uncorrelated, stationary, and zero mean. In this context, the variance of
y is

φy = E
(
|y|2

)
(2.2)

= φx + φv,

where E(·) denotes mathematical expectation, and

φx = E
(
|x|2

)
, (2.3)

φv = E
(
|v|2

)
, (2.4)

� The Author(s) 2015
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4 2 Conceptual Framework

are the variances of x and v, respectively.

2.2 Principle of the Conceptual Framework

The objective of noise reduction/speech enhancement in any domain is to
find a “good” estimate1, x̂, of the desired signal, x, given y and y∗, where
the superscript ∗ denotes complex conjugation, with an appropriate function
f(·), i.e.,

x̂ = f (y, y∗) . (2.5)

In order to be able to define consistent performance measures for any
function f (y, y∗), we need to decompose this latter into two orthogonal com-
ponents; one component that is proportional to the desired signal, x, and
will, therefore, correspond to a linear function of x, and the other component
that is uncorrelated with the desired signal and will, therefore, correspond to
the residual interference-plus-noise. As a result, we can express (2.5) as

x̂ = xld + xri + vrn (2.6)

= xld + u

= ρ∗x+ u,

where

xld = ρ∗x (2.7)

is a linear version of the desired signal,

ρ =
E (xx̂∗)

φx
(2.8)

=
φxx̂

φx

is the normalized (with respect to x) correlation between x and x̂,

φxx̂ = E (xx̂∗) (2.9)

is the correlation between between x and x̂,

u = xri + vrn (2.10)

= x̂− ρ∗x

1 By “good” estimate, we mean that the additive noise is significantly reduced while the
desired signal is lowly (or not) distorted.
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is the residual interference-plus-noise, xri is a speech component (called here
interference) that is uncorrelated with xld (and x), vrn is the residual noise,
and

φxrivrn = E (xriv
∗
rn) = 0, (2.11)

φxu = E (xu∗) = 0. (2.12)

Since the three components on the right-hand side of (2.6) are uncorre-
lated, the variance of x̂ is

φx̂ = φxld
+ φxri + φvrn (2.13)

= |ρ|2 φx + φu,

where

φxld
= |ρ|2 φx, (2.14)

φxri = E
(
|xri|2

)
, (2.15)

φvrn = E
(
|vrn|2

)
, (2.16)

φu = E
(
|u|2

)
(2.17)

= φxri + φvrn ,

are the variances of xld, xri, vrn, and u, respectively.
In the rest, it is assumed that f (y, y∗) does not amplify the estimated

desired signal, i.e.,

φxld
≤ φx, (2.18)

which is equivalent to saying that

|ρ|2 ≤ 1. (2.19)

We see from (2.6) that we should try to derive f (y, y∗) in such a way
that ρ∗ = 1 and u = 0 (and, hence, x̂ = x); but this is, in general, almost
impossible in practice. In most situations, the best we can do is to approach
x̂ to x by paying a price. We conclude that when φu → 0 then |ρ|2 → 0;
indeed, we have

φu = E
(
|x̂|2

)
− E (xx̂∗) (2.20)

and since x �= x̂, this implies that |ρ|2 → 0 when φu → 0. In other words,
complete removal of the noise may lead to the cancellation of the desired
signal (full distortion). This explains the classical compromise between noise
reduction and speech distortion.
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We also observe from (2.6) that two different distortions affect the esti-
mated desired signal. The first distortion is due to the scaling factor2, ρ∗

(and, possibly, to the residual interference, xri), and the second one is due
to the additive residual noise, vrn. We will refer to these two distortions as
distortion 1 and distortion 2, respectively. It is reasonable to say that dis-
tortion 1 affects the intelligibility of the estimated signal since when ρ∗ is
small, not much energy of x̂ is left in φx̂, and when ρ∗ is close to 1, almost
the whole desired signal is in x̂. Distortion 2 affects both the quality and
intelligibility of the estimated signal since the smaller is the variance of vrn,
the more pleasant it is to hear to x̂ and the better is its intelligibility. To
summarize, distortion 1 is related to speech intelligibility while distortion 2
is related to both speech quality and intelligibility.

2.3 Performance Measures

In this section, we derive the most useful performance measures for noise
reduction with the conceptual framework, where any function f (y, y∗) can
be used.

The signal-to-noise ratio (SNR) is the most important performance mea-
sure in the problem of speech enhancement since it gives a precise information
on the level of the noise before and after processing. We have the input SNR
(before processing) and the output SNR (after processing).

The input SNR is derived from (2.1). It is defined as

iSNR =
φx

φv
(2.21)

=
|γxy|2

1− |γxy|2
,

where

|γxy|2 =
|φxy|2
φxφy

(2.22)

=
|E (xy∗)|2

φxφy

is the magnitude squared correlation coefficient (MSCC) between x and y. It

is clear that 0 ≤ |γxy|2 ≤ 1.

2 The scaling factor distorts the desired signal. In the frequency domain, the value of the
scaling factor is different from one bin to the other; as a consequence, when the estimated
desired signal is reconstructed into the time domain, it will be up to a filter and the desired

signal may be badly affected. The processing in the time domain has a similar effect because
of the nonstationarity of the speech signal.
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To quantify the level of the interference-plus-noise remaining after the
noise reduction processing via the function f (y, y∗), we define the output
SNR as the ratio of the variance of the linear version of the desired signal
over the variance of the residual interference-plus-noise [see eq. (2.6)], i.e.,

oSNR =
φxld

φu
(2.23)

=
|ρ|2 φx

φu
.

Clearly, the function f (y, y∗) must be found in such a way that oSNR ≥
iSNR, which will be assumed in the rest of this section. In this scenario, we
should have

φu

φv
≤ |ρ|2 ≤ 1, (2.24)

which implies that the variance of the residual interference-plus-noise is
smaller than the variance of the additive noise.

The output SNR can be rewritten as

oSNR =
|γxx̂|2

1− |γxx̂|2
, (2.25)

where |γxx̂|2 is the MSCC between x and x̂. When x̂ = y, the input and
output SNRs are equal. The output SNR is always upper bounded.

The gain in SNR is defined as

G =
oSNR

iSNR
. (2.26)

Using (2.21) and (2.23), (2.26) becomes

G =
|ρ|2 φv

φu
(2.27)

=
|γxx̂|2
|γxy|2

× 1− |γxy|2
1− |γxx̂|2

.

The function f (y, y∗) must be derived in such a way that |γxx̂|2 ≥ |γxy|2, i.e.,
x̂ is more correlated with x than y is correlated with x. The gain depends on
the variances of the additive noise and residual interference-plus-noise, and
the normalized correlation between x and x̂.
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Let us now open a short parenthesis on a widely used definition in the
literature of the SNR after processing, often called SNR improvement3. It is
defined as

SNRimp =
φx

E
(
|x− x̂|2

) (2.28)

=
φx

|1− ρ∗|2 φx + φu

.

The SNR improvement is related to the output SNR as follows:

SNRimp =
oSNR

|1− ρ∗|2 oSNR + |ρ|2 . (2.29)

In some situations, SNRimp can be close to oSNR. However, in general, these
measures can be very much different. Moreover, only oSNR is the true defi-
nition of the output SNR and should be the one to be compared to the input
SNR.

To evaluate how f (y, y∗) affects intelligibility, we define the partial speech
intelligibility index (from distortion 1) as the (normalized) difference between
the variance of the original speech signal and the variance of the processed
one, i.e.,

υi =
φx − φxld

φx
(2.30)

= 1− |ρ|2 .

The larger is υi, the less intelligible is the estimated desired signal, x̂.
The speech quality index (from distortion 2) is obtained by comparing the

variance of the additive noise from the observation signal to the variance of
the additive residual noise after processing with f (y, y∗). We have4

υq =
φvrn

φv
. (2.31)

For a fixed value of the input SNR, the quality of the signal degrades as υq
increases.

It can be checked that

3 In our previous work, we defined the inverse of the SNR improvement, i.e., υsd =

φ−1
x E

(
|x− x̂|2

)
, as the speech distortion index. This is, indeed, a good measure of dis-

tortion.
4 In our previous work, we defined the inverse of the speech quality index, i.e., ξnr =

φv/φvrn , as the noise reduction factor. That definition also makes sense as it compared the
original level of noise to the residual noise.
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φx − φx̂

φx
= υi − υq

iSNR
− φxri

φx
(2.32)

or

φx̂ = (1− υi)φx + φxri + υqφv. (2.33)

Since υq also affects intelligibility, we can define the global speech intelli-
gibility index (from distortions 1 and 2) as

υ′
i = (1−�) υi +�υq, (2.34)

where � (0 < � < 1) is a weighting factor that allows to emphasize more on
one of the two distortions if desired.

Ideally, we would like to have a large gain in SNR with υi and υq as
small as possible. However, υi and υq are related by the function f (y, y∗)
and depending on how this latter is optimized, we will have to compromise
between distortion 1 and distortion 2. When υq is small (i.e., good quality of
the estimated desired signal), we observe that 1−υi should also get small; as a
result, the partial intelligibility decreases. In other words, quality can always
be improved but at the expense, at some point, of intelligibility degradation.

2.4 Mean-Squared-Error (MSE) Based Criterion

The mean-squared-error (MSE) is very convenient to use as a criterion in
many practical problems when the underlying parameters of the function
f (y, y∗) need to be optimized.

We define the error signal between the estimated and desired signals as

e = x̂− x (2.35)

= xld + u− x,

which can be written as the sum of two uncorrelated error signals:

e = ei + eq, (2.36)

where

ei = (ρ∗ − 1)x (2.37)

is the speech distortion, which affects the partial intelligibility, and

eq = u (2.38)



10 2 Conceptual Framework

is the residual interference-plus-noise, which affects the quality (and the other
part of intelligibility). It is easy to verify that

E
(
eie

∗
q

)
= 0. (2.39)

The classical MSE criterion is then

J [f (y, y∗)] = E
(
|e|2

)
(2.40)

= φx − φxx̂ − φ∗
xx̂ + φx̂

= |1− ρ∗|2 φx + φu

= Ji [f (y, y∗)] + Jq [f (y, y∗)] ,

where

Ji [f (y, y∗)] = E
(
|ei|2

)
(2.41)

= |1− ρ∗|2 φx

and

Jq [f (y, y∗)] = E
(
|eq|2

)
(2.42)

= φu.

Two particular functions are of great interest: f1 (y, y
∗) = y and

f0 (y, y
∗) = 0. With the first one, the partial intelligibility of the noisy signal

is not affected but there is no improvement of quality either. With the second
one, the estimated signal is totally unintelligible (since the desired signal is
completely cancelled) but the quality is maximum (since no residual noise is
left). For both functions, however, it can be verified that the output SNR is
equal to the input SNR. For these two particular functions, the MSEs are

J [f1 (y, y
∗)] = Jq [f1 (y, y

∗)] = φv, (2.43)

J [f0 (y, y
∗)] = Ji [f0 (y, y

∗)] = φx. (2.44)

As a result,

iSNR =
J [f0 (y, y

∗)]
J [f1 (y, y∗)]

. (2.45)

We define the normalized MSE (NMSE) with respect to J [f1 (y, y
∗)] as

Jn,1 [f (y, y∗)] =
J [f (y, y∗)]
J [f1 (y, y∗)]

(2.46)

= iSNR× |1− ρ∗|2 + φu

φv
.
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We define the NMSE with respect to J [f0 (y, y
∗)] as

Jn,2 [f (y, y∗)] =
J [f (y, y∗)]
J [f0 (y, y∗)]

(2.47)

= |1− ρ∗|2 + φu

φx

and, obviously,

Jn,1 [f (y, y∗)] = iSNR× Jn,2 [f (y, y∗)] . (2.48)

We are only interested in functions for which

Ji [f1 (y, y
∗)] ≤ Ji [f (y, y∗)] < Ji [f0 (y, y

∗)] , (2.49)

Jq [f0 (y, y
∗)] < Jq [f (y, y∗)] < Jq [f1 (y, y

∗)] . (2.50)

From the two previous expressions, we deduce that

0 ≤ |1− ρ∗|2 < 1, (2.51)

0 <
φu

φv
< 1. (2.52)

By minimizing the MSE criterion, J [f (y, y∗)], we obtain the classical
Wiener estimate [4], [5], [6]. Let us denote by x̂W this optimal estimate.
Using the orthogonality principle, i.e., E [x̂∗

W (x− x̂W)] = 0, we find that

φxx̂W
= φx̂W

. (2.53)

As a result, the minimum MSE (MMSE) is

Jmin [f (y, y∗)] = φx − φx̂W
. (2.54)

We deduce that φx̂W
≤ φx [i.e., the function f (y, y∗) does not amplify the

estimated desired signal],

ρ =
φx̂W

φx
≤ 1 (2.55)

is always real and positive,

|γxx̂W
|2 = ρ, (2.56)

Jmin [f (y, y∗)] = φx

[
1− |γxx̂W

|2
]
, (2.57)

oSNR =
ρ

1− ρ
, (2.58)
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φu = ρ (1− ρ)φx ≤ φv, (2.59)

and

Jmin [f (y, y∗)]
φx

= υi − υq
iSNR

− φxri

φx
. (2.60)

In order to better compromise between distortion 1 and distortion 2, we
propose to use the more powerful MSE-based criterion:

Jμ [f (y, y∗)] = μ
Ji [f (y, y∗)]

φx
+

Jq [f (y, y∗)]
φv

(2.61)

= μ |1− ρ∗|2 + φu

φv
,

where μ is a positive real number allowing to compromise between υi and υq.
For μ = iSNR, it is clear that minimizing Jμ [f (y, y∗)] is equivalent to

minimizing the MSE criterion, J [f (y, y∗)].
For μ = ∞, minimizing Jμ [f (y, y∗)] is equivalent to minimizing

J [f (y, y∗)] with the constraint that ρ∗ = 1. In other words, we don’t af-
fect much the partial intelligibility while we maximize quality (and, hence,
the other portion of intelligibility). This approach is equivalent to the well-
known minimum variance distortionless response (MVDR) technique [7], [8].
Comparing Wiener with MVDR, we understand that the former will affect
intelligibility but quality will be better than the latter, which does not affect
much the desired signal. The smallest output SNR should be obtained with
the MVDR.

Taking μ ≤ iSNR (resp. μ ≥ iSNR), will result to a noise reduction method
that will decrease the partial intelligibility (resp. quality and the other por-
tion of intelligibility) and increase the quality and the other portion of intel-
ligibility (resp. partial intelligibility). The output SNR should improve as μ
decreases but up to a certain point.

2.5 Summary

After giving a broad definition of the signal model, we presented a conceptual
framework for noise reduction. Within this context, we defined the most
important performance measures, namely, the input and output SNRs, and
the speech intelligibility and quality indices. We then proposed a general
MSE-based criterion from which all known estimators can be deduced. In the
rest of this work, we will show how to apply these different concepts to all
classical noise reduction schemes.
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Chapter 3

Single-Channel Noise Reduction in the
Time Domain

One of the most important schemes in the fundamental topic of speech en-
hancement is single-channel noise reduction in the time domain since most
communication devices have only one microphone and the time-domain pro-
cessing seems intuitive and natural. This approach has been very well studied
in the literature (see [1] for example). In this chapter, we revisit this method
from the perspective proposed in Chapter 2.

3.1 Signal Model

The noise reduction problem considered in this chapter is one of recovering
the desired signal (or clean speech) x(t), t being the discrete-time index, of
zero mean from the noisy observation (microphone signal) [1], [2]:

y(t) = x(t) + v(t), (3.1)

where the zero-mean random process v(t) is the unwanted additive noise,
which is assumed to be uncorrelated with x(t). In this context, all signals are
real.

The signal model given in (3.1) can be put into a vector form by considering
the L most recent successive time samples, i.e.,

y(t) = x(t) + v(t), (3.2)

where
y(t) =

[
y(t) y(t− 1) · · · y(t− L+ 1)

]T
(3.3)

is a vector of length L, superscript T denotes transpose of a vector or a
matrix, and x(t) and v(t) are defined in a similar way to y(t) from (3.3).
Since x(t) and v(t) are uncorrelated by assumption, the correlation matrix
(of size L× L) of the noisy signal can be written as

� The Author(s) 2015
J. Benesty and J. Chen, A Conceptual Framework for Noise Reduction,
SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-12955-6_3
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Φy = E
[
y(t)yT (t)

]
(3.4)

= Φx +Φv,

where

Φx = E
[
x(t)xT (t)

]
, (3.5)

Φv = E
[
v(t)vT (t)

]
, (3.6)

are the correlation matrices of x(t) and v(t), respectively. The objective of
noise reduction in the time domain and with a single microphone is then to
find a “good” estimate of the sample x(t) given the vector y(t), in the sense
that the additive noise is significantly reduced while the desired signal is not
much distorted. This is what will be studied in this chapter.

Since x(t) is the signal of interest, it is important to write the vector y(t)
as an explicit function of x(t). For that, we need first to decompose x(t) into
two orthogonal components: one proportional to the desired signal, x(t), and
the other one corresponding to the interference. Indeed, it is easy to see that
this decomposition is

x(t) = x(t)ρxx + xi(t), (3.7)

where

ρxx =
[
1 ρx(1) · · · ρx(L− 1)

]T
(3.8)

=
E [x(t)x(t)]

E [x2(t)]

is the normalized [with respect to x(t)] correlation vector (of length L) be-
tween x(t) and x(t),

ρx(l) =
E [x(t− l)x(t)]

E [x2(t)]
, l = 0, 1, . . . , L− 1 (3.9)

is the correlation coefficient between x(t− l) and x(t),

xi(t) = x(t)− x(t)ρxx (3.10)

is the interference signal vector, and

E [xi(t)x(t)] = 0L×1, (3.11)

where 0L×1 is a vector of length L containing only zeroes.
Substituting (3.7) into (3.2), the signal model for noise reduction in the

time domain can be expressed as

y(t) = x(t)ρxx + xi(t) + v(t). (3.12)
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This formulation will be extensively used in the following sections.

3.2 Linear Filtering

In this chapter, we try to estimate the desired signal sample, x(t), by applying
a finite-impulse-response (FIR) filter to the observation signal vector, y(t),
i.e.,

x̂(t) =

L−1∑
l=0

hly(t− l) (3.13)

= hTy(t),

where x̂(t) is the estimate of x(t) and

h =
[
h0 h1 · · · hL−1

]T
(3.14)

is a real-valued filter of length L. This procedure is called single-channel noise
reduction in the time domain with a linear filter.

Using (3.12), we can express (3.13) as

x̂(t) = hT [x(t)ρxx + xi(t) + v(t)] (3.15)

= xfd(t) + xri(t) + vrn(t),

where

xfd(t) = x(t)hTρxx (3.16)

is the filtered desired signal,

xri(t) = hTxi(t) (3.17)

is the residual interference, and

vrn(t) = hTv(t) (3.18)

is the residual noise.
Since the estimate of the desired signal at time t is the sum of three terms

that are mutually uncorrelated, the variance of x̂(t) is

φx̂ = hTΦyh (3.19)

= φxfd
+ φxri + φvrn ,

where
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φxfd
= φx

(
hTρxx

)2
(3.20)

= hTΦxd
h,

φxri = hTΦxih (3.21)

= hTΦxh− hTΦxd
h,

φvrn = hTΦvh, (3.22)

φx = E
[
x2(t)

]
is the variance of the desired signal, Φxd

= φxρxxρ
T
xx is

the correlation matrix (whose rank is equal to 1) of xd(t) = x(t)ρxx, and
Φxi = E

[
xi(t)x

T
i (t)

]
is the correlation matrix of xi(t). The variance of x̂(t)

is useful in the definitions of the performance measures.

3.3 Performance Measures

In this section, we extend the performance measures given in Chapter 2 for
the conceptual framework to the single-channel noise reduction problem in
the time domain.

The input SNR, derived from (3.1), is defined as

iSNR =
φx

φv
, (3.23)

where φv = E
[
v2(t)

]
is the variance of the additive noise.

The output SNR1 helps quantify the level of noise remaining at the filter
output signal. The output SNR is obtained from (3.19):

oSNR (h) =
φxfd

φxri + φvrn

(3.24)

=
φx

(
hTρxx

)2
hTΦinh

,

where

Φin = Φxi +Φv (3.25)

is the interference-plus-noise correlation matrix. Basically, (3.24) is the vari-
ance of the first signal (filtered desired) from the right-hand side of (3.19)
over the variance of the two other signals (filtered interference-plus-noise).
The objective of the noise reduction filter is to make the output SNR greater
than the input SNR. Consequently, the quality of the noisy signal may be
enhanced.

1 In this work, we consider the uncorrelated interference as part of the noise in the defini-
tions of the performance measures.
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For the particular filter:

h = iid =
[
1 0 · · · 0 ]T (3.26)

of length L, which corresponds to the first column of the identity matrix IL
of size L× L, we have

oSNR (iid) = iSNR. (3.27)

With the identity filter, iid, the SNR cannot be improved.
For any two vectors h and ρxx and a positive definite matrix Φin, we have(

hTρxx

)2 ≤ (
hTΦinh

) (
ρT
xxΦ

−1
in ρxx

)
, (3.28)

with equality if and only if h = ςΦ−1
in ρxx, where ς( �= 0) is an arbitrary real

number. Using the inequality (3.28) in (3.24), we deduce an upper bound for
the output SNR:

oSNR (h) ≤ φxρ
T
xxΦ

−1
in ρxx, ∀h (3.29)

and, clearly,

oSNR (iid) ≤ φxρ
T
xxΦ

−1
in ρxx, (3.30)

which implies that

φvρ
T
xxΦ

−1
in ρxx ≥ 1. (3.31)

The maximum output SNR is then

oSNRmax = φxρ
T
xxΦ

−1
in ρxx (3.32)

and

oSNRmax ≥ iSNR. (3.33)

We also observe that this maximum output SNR is achieved with the maxi-
mum SNR filter:

hmax = ςΦ−1
in ρxx. (3.34)

We define the maximum gain in SNR as

Gmax =
oSNRmax

iSNR
(3.35)

= φvρ
T
xxΦ

−1
in ρxx ≥ 1.

We define the partial speech intelligibility index as
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υi (h) =
φx − φxfd

φx
(3.36)

= 1− (
hTρxx

)2
.

The larger is υi (h), the less intelligible is the estimated desired signal, x̂(t).
The speech quality index is defined as the ratio of the residual noise over

the variance of the additive noise, i.e.,

υq (h) =
φvrn

φv
(3.37)

=
hTΦvh

φv
.

For a fixed value of the input SNR, the quality of the signal improves as
υq (h) decreases.

From the two previous expressions, we deduce the global speech intelligi-
bility index:

υ′
i (h) = (1−�) υi (h) +�υq (h) . (3.38)

The variance of the estimated desired signal can be rewritten as a function
of the two indices υi (h) and υq (h), i.e.,

φx̂ = [1− υi (h)]φx + hTΦxih+ υq (h)φv. (3.39)

3.4 MSE-Based Criterion

For any MSE-type criterion, an error signal is needed. We define the error
signal between the estimated and desired signals as

e(t) = x̂(t)− x(t) (3.40)

= xfd(t) + xri(t) + vrn(t)− x(t),

which can be written as the sum of two other uncorrelated error signals:

e(t) = ei(t) + eq(t), (3.41)

where

E [ei(t)eq(t)] = 0, (3.42)

ei(t) = xfd(t)− x(t) (3.43)

=
(
hTρxx − 1

)
x(t)
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is the speech distortion due to the FIR filter, which affects the partial intel-
ligibility, and

eq(t) = xri(t) + vrn(t) (3.44)

= hTxi(t) + hTv(t)

represents the residual interference-plus-noise, which affects the quality as
well as the other part of intelligibility.

The classical MSE criterion is then

J (h) = E
[
e2(t)

]
(3.45)

= φx + hTΦyh− 2hTE [x(t)x(t)]

= φx + hTΦyh− 2φxh
Tρxx

= Ji (h) + Jq (h) ,

where

Ji (h) = E
[
e2i (t)

]
(3.46)

= φx

(
hTρxx − 1

)2
and

Jq (h) = E
[
e2q(t)

]
(3.47)

= hTΦinh.

The two particular filters h = iid and h = 0L×1 described in the previous
section are of interest to us. With the first one (identity filter), we achieve
the worst quality and the best partial intelligibility, while with the second
one (zero filter), we have the best quality and the worst intelligibility. For
these two particular filters, the MSEs are

J (iid) = Jq (iid) = φv, (3.48)

J (0L×1) = Ji (0L×1) = φx. (3.49)

As a result,

iSNR =
J (0L×1)

J (iid)
. (3.50)

We define the NMSE with respect to J (iid) as
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Jn,1 (h) =
J (h)

J (iid)
(3.51)

= iSNR× (
1− hTρxx

)2
+

hTΦinh

φv
.

We define the NMSE with respect to J (0L×1) as

Jn,2 (h) =
J (h)

J (0L×1)
(3.52)

=
(
1− hTρxx

)2
+

hTΦinh

φx

and, obviously,

Jn,1 (h) = iSNR× Jn,2 (h) . (3.53)

Expressions (3.51) and (3.52) show how the NMSEs and the different MSEs
are implicitly related to the performance measures.

We are only interested in filters for which

Ji (iid) ≤ Ji (h) < Ji (0L×1) , (3.54)

Jq (0L×1) < Jq (h) < Jq (iid) . (3.55)

From the two previous expressions, we deduce that

0 ≤ (
1− hTρxx

)2
< 1, (3.56)

0 <
hTΦinh

φv
< 1. (3.57)

For this reason, we propose to use the more general MSE-based criterion:

Jμ (h) = μ
Ji (h)

φx
+

Jq (h)

φv
(3.58)

= μ
(
1− hTρxx

)2
+

hTΦinh

φv
,

where μ is a positive real number allowing to compromise between υi (h) and
υq (h).

3.5 Optimal Filters

Taking the gradient of (3.58) with respect to h and equating the result to
zero, we get the optimal filter:
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ho,μ = μ

(
μρxxρ

T
xx +

Φin

φv

)−1

ρxx. (3.59)

Using the decomposition:

Φy = φxρxxρ
T
xx +Φin, (3.60)

we can rewrite the optimal filter as

ho,μ = μ

[
(μ− iSNR)ρxxρ

T
xx +

Φy

φv

]−1

ρxx (3.61)

and the vector ρxx can be expressed as a function of the statistics of y(t) and
v(t), i.e.,

ρxx =
E [y(t)y(t)]− E [v(t)v(t)]

φy − φv
(3.62)

=
φyρyy − φvρvv

φy − φv
,

so that ho,μ can be estimated from the statistics of y(t) and v(t) only.
Using the Woodbury’s identity in (3.59), it can easily be shown that the

optimal filter can be reformulated as

ho,μ =
μ

φx

iSNR

1 + μ
oSNRmax

iSNR

Φ−1
in ρxx (3.63)

=
μφv

1 + μGmax
Φ−1

in ρxx.

Comparing ho,μ with hmax [eq. (3.34)], we see that the two filters are equiva-
lent up to a scaling factor. As a result, ho,μ also maximizes the output SNR,
i.e.,

oSNR (ho,μ) = oSNRmax, ∀μ > 0. (3.64)

From (3.63), we deduce the partial speech intelligibility index:

υi (ho,μ) = 1−
(

μGmax

1 + μGmax

)2

(3.65)

and the speech quality index:

υq (ho,μ) =
μ2φvρ

T
xxΦ

−1
in ΦvΦ

−1
in ρxx

(1 + μGmax)
2 . (3.66)
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Fig. 3.1 A speech signal from the speaker FAKS0 of the TIMIT database.

Taking μ = iSNR in (3.63), we find the well-known Wiener filter [1]:

hW =
φx

1 + oSNRmax
Φ−1

in ρxx (3.67)

= Φ−1
y Φxiid

=
(
IL −Φ−1

y Φv

)
iid

and taking μ = ∞ in (3.63), we find the MVDR filter [1]:

hMVDR =
φx

oSNRmax
Φ−1

in ρxx (3.68)

=
Φ−1

y ρxx

ρT
xxΦ

−1
y ρxx

=
1 + oSNRmax

oSNRmax
hW.

A value of μ in (3.63) greater (resp. smaller) than the input SNR will result
in a filter that will favor partial intelligibility (resp. quality) over quality (resp.
partial intelligibility) as compared to the Wiener filter.

3.6 Simulations

In this section, we illustrate the performance of the optimal filters de-
rived above through simulations. The clean speech used is from the TIMIT
database [3], [4]. This database was originally designed to provide speech
data for acoustic-phonetic studies and for the development and evaluation of
automatic speech recognition (ASR) systems; but it has now been used in
various applications including noise reduction [5]. The database consists of
a total of 6300 sentences spoken by 630 speakers with 10 sentences by each
speaker. All speech signals were recorded with a 16-kHz sampling rate and
a 16-bit quantization. Each signal is accompanied by manually segmented
phonetic (based on 61 phonemes) transcripts as illustrated in Fig. 3.1. In the
simulations of this chapter, we take all the ten sentences from the speaker
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FAKS0 and downsample the signals from 16 kHz to 8 kHz. We then use these
downsampled signals as the clean speech. The corresponding noisy signals are
obtained by adding noise to the clean speech, where the noise signal is prop-
erly scaled to control the input SNR level. We consider two types of noise:
white Gaussian and a babble signal recorded in a New York Stock Exchange
(NYSE) room. In comparison with the Gaussian random noise, which is sta-
tionary and white, the NYSE noise is nonstationary and colored. This babble
noise consists of sounds from various sources such as electrical fans, telephone
rings, and background speech.

The implementation of the noise reduction filters derived in Section 3.5
requires the estimation of the correlation matrices Φy and Φv, and the cor-
relation vector ρxx. Here, we directly compute the Φy matrix from y(t) using
a short-time average, i.e., at every time instant t, an estimate of Φy is com-
puted as

Φ̂y(t) =
1

P

P−1∑
p=0

y(t− p)yT (t− p), (3.69)

where P is the total number of samples used in the short-time average. In our
simulations, we choose P = 320, i.e., using the most recent 40 ms samples. In
a similar way, we compute the Φv matrix and the ρxx vector at time instant
t. Substituting the estimated correlation matrices and vector into (3.67) and
(3.68), we obtain the Wiener and MVDR filters, respectively.

We use the partial speech intelligibility index, υi, the speech quality in-
dex, υq, and the output SNR as the performance measures to evaluate the
implemented Wiener and MVDR filters. Figure 3.2 plots the performance
of the Wiener filter as a function of the filter length, L, in the white Gaus-
sian noise. As it can be seen, the partial speech intelligibility index decreases
monotonically with L. So, the larger the filter length, the more intelligible is
the enhanced speech with the Wiener filter. In comparison, the quality index
first decreases and then increases with L, which means that the quality of the
enhanced signal with the Wiener filter is not a monotonic function of L. The
quality first increases and then decreases as the filter length increases. The
output SNR is seen to increase with L for the studied range of filter length;
but it first increases quickly and then starts to saturate when L is large. In
real applications, the choice of the value of L has to take into consideration
both the noise reduction performance and complexity. If this value is too
small, the performance improvement may not be significant for the listener
to appreciate, while if it is too large, the complexity can be very high and,
meanwhile, the estimation of the correlation matrices and vector may become
less reliable, resulting degradation in noise reduction performance.

The performance of the Wiener filter as a function of the filter length, L,
in the NYSE noise is plotted in Fig. 3.3. Comparing Figs. 3.2 and 3.3, one can
see that there is some difference between the performance of the Wiener filter
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Fig. 3.2 Performance of the Wiener filter as a function of the filter length, L, in the white
Gaussian noise: (a) partial speech intelligibility index, (b) speech quality index, and (c)

output SNR. The input SNR is 10 dB.

in the NYSE noise and that in the white Gaussian noise; but the performance
trend as a function of the filter length in the two noise conditions is similar.

Now, let us fix the filter length, L, to 40 and investigate the performance
behavior of the Wiener and MVDR filters in different SNR conditions. Fig-
ure 3.4 plots the results in the white Gaussian noise. It is seen that the partial
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Fig. 3.3 Performance of the Wiener filter as a function of the filter length, L, in the NYSE
noise: (a) partial speech intelligibility index, (b) speech quality index, and (c) output SNR.
The input SNR is 10 dB.

speech intelligibility index, υi, of the MVDR filter is always 0 regardless of
the SNR level. In comparison, this index is not zero for the Wiener filter
and it decreases as the input SNR increases. The SNR improvement (i.e., the
difference between the input and output SNRs) decreases as the input SNR
increases. It can be seen that the speech quality index for both the Wiener
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Fig. 3.4 Performance of the Wiener and MVDR filters in the white Gaussian noise at
different input SNRs: (a) partial speech intelligibility index, (b) speech quality index, and
(c) output SNR. The filter length L = 40.

and MVDR filters increases with the input SNR. It should be pointed out
that the speech quality index, from its definition, measures the amount of
noise reduction. The value of this index depends on many factors including
the nature of the noise, the SNR condition, the noise reduction filter that is
used, etc. In a given noise and SNR condition, this index measures partially
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Fig. 3.5 Performance of the Wiener and MVDR filters in the NYSE noise at different input
SNRs: (a) partial speech intelligibility index, (b) speech quality index, and (c) output SNR.
The filter length L = 40.

the speech quality after noise reduction: the smaller is this index, the better
is the speech quality. In a particular noise environment and for a particular
noise reduction filter, we see that the value of this index increases with the
input SNR. In this case, this index measures the quality improvement. So, the
smaller is this index, the larger is the quality improvement. To summarize,
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if the input SNR is high, the speech quality index gets closer to 1, since the
improvement can be very small in this case. Consequently, the speech quality
index makes sense only when combined with the input SNR.

Figure 3.5 plots the performance of the Wiener and MVDR filters in the
NYSE noise. Comparing Figs. 3.5 and 3.4, one can see that the performance
trend of the two filters in the NYSE noise is similar to that in the white Gaus-
sian noise though the partial speech intelligibility index, the speech quality
index, and the output SNR of each filter differ slightly in values in the two
different noise cases with the same input SNR.

Note that one can also make a compromise in performance between the
Wiener and the MVDR filters by adjusting the parameter μ in the tradeoff
filter in (3.61). Simulations of this filter are left to the reader’s investigation.
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Chapter 4

Single-Channel Noise Reduction in the
STFT Domain with Interframe
Correlation

In the previous chapter, we studied single-channel noise reduction in the
time domain. In this chapter, we study the same problem but in the more
convenient short-time Fourier transform (STFT) domain. Contrary to most
conventional approaches, we do not assume here that successive STFT frames
are uncorrelated. As a consequence, the interframe correlation is now taken
into account and a filter is used in each subband instead of just a gain to
enhance the noisy signal.

4.1 Signal Model

Using the short-time Fourier transform (STFT), (3.1) can be rewritten in the
time-frequency domain as [1]

Y (k, n) = X(k, n) + V (k, n), (4.1)

where Y (k, n), X(k, n), and V (k, n) are the STFTs of y(t), x(t), and v(t),
respectively, at frequency bin k ∈ {0, 1, . . . ,K − 1} and time frame n. In
other words, these zero-mean complex random variables are the observation,
desired, and noise signals, respectively, in the STFT domain. Since x(t) and
v(t) are uncorrelated by assumption, the variance of Y (k, n) is

φY (k, n) = E
[
|Y (k, n)|2

]
(4.2)

= φX(k, n) + φV (k, n),

and

φX(k, n) = E
[
|X(k, n)|2

]
, (4.3)

φV (k, n) = E
[
|V (k, n)|2

]
, (4.4)

� The Author(s) 2015
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are the variances of X(k, n) and V (k, n), respectively.
By considering the Lmost recent time frames of the signals, we can express

(4.1) as

y(k, n) =
[
Y (k, n) Y (k, n− 1) · · · Y (k, n− L+ 1)

]T
= x(k, n) + v(k, n), (4.5)

where x(k, n) and v(k, n) are also vectors of length L defined similarly to
y(k, n).

At the time frame n, our desired signal isX(k, n) [and not the whole vector
x(k, n)]. However, the vector x(k, n) in (4.5) contains both the desired signal,
X(k, n), and the components X(k, n − l), l �= 0, which are not the desired
signals at time frame n but signals that are correlated with X(k, n). There-
fore, the elements X(k, n− l), l �= 0, contain both a part of the desired signal
and a component that we consider as an interference. This suggests that we
should decompose X(k, n− l) into two orthogonal components corresponding
to the part of the desired signal and interference, i.e.,

X(k, n− l) = ρ∗X,l(k, n)X(k, n) +Xi,l(k, n), (4.6)

where

Xi,l(k, n) = X(k, n− l)− ρ∗X,l(k, n)X(k, n), (4.7)

E
[
X(k, n)X∗

i,l(k, n)
]
= 0, (4.8)

and

ρX,l(k, n) =
E [X(k, n)X∗(k, n− l)]

E
[
|X(k, n)|2

] (4.9)

is the interframe correlation coefficient of the signal X(k, n). Hence, we can
write the vector x(k, n) as

x(k, n) = X(k, n)ρxX(k, n) + xi(k, n) (4.10)

= xd(k, n) + xi(k, n),

where

xd(k, n) = X(k, n)ρxX(k, n) (4.11)

is the desired signal vector,

xi(k, n) =
[
Xi,0(k, n) Xi,1(k, n) · · · Xi,L−1(k, n)

]T
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is the interference signal vector, and

ρxX(k, n) =
[
ρ∗X,0(k, n) ρ

∗
X,1(k, n) · · · ρ∗X,L−1(k, n)

]T
(4.12)

=
[
1 ρ∗X,1(k, n) · · · ρ∗X,L−1(k, n)

]T
=

E [x(k, n)X∗(k, n)]

E
[
|X(k, n)|2

]
is the (normalized) interframe correlation vector between x(k, n) andX(k, n).

Substituting (4.10) into (4.5), the signal model for noise reduction in the
STFT domain can be expressed as

y(k, n) = X(k, n)ρxX(k, n) + xi(k, n) + v(k, n). (4.13)

We will see how this important expression will be used in the following sec-
tions.

4.2 Linear Filtering

Since the interframe correlation is taken into account, we estimate
X(k, n), k = 0, 1, . . . ,K − 1, by passing Y (k, n), k = 0, 1, . . . ,K − 1, from
consecutive time frames through an FIR filter of length L, i.e.,

X̂(k, n) =
L−1∑
l=0

H∗
l (k, n)Y (k, n− l) (4.14)

= hH(k, n)y(k, n), k = 0, 1, . . . ,K − 1,

where L is the number of consecutive time frames, the superscript H is the
conjugate-transpose operator, and

h(k, n) =
[
H0(k, n) H1(k, n) · · · HL−1(k, n)

]T
is a complex-valued filter of length L. The case L = 1 corresponds to the
conventional STFT-domain approach where the consecutive time frames are
assumed to be uncorrelated.

Substituting (4.13) into (4.14), we get

X̂(k, n) = hH(k, n) [X(k, n)ρxX(k, n) + xi(k, n) + v(k, n)] (4.15)

= Xfd(k, n) +Xri(k, n) + Vrn(k, n),

where

Xfd(k, n) = X(k, n)hH(k, n)ρxX(k, n) (4.16)
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is the filtered desired signal,

Xri(k, n) = hH(k, n)xi(k, n) (4.17)

is the residual interference, and

Vrn(k, n) = hH(k, n)v(k, n) (4.18)

is the residual noise. We observe that the estimate of the desired signal is the
sum of three terms that are mutually uncorrelated. The first one is clearly the
filtered desired signal while the two others are the filtered undesired signals
(interference-plus-noise). Therefore, the variance of X̂(k, n) is

φ
̂X(k, n) = hH(k, n)Φy(k, n)h(k, n) (4.19)

= φXfd
(k, n) + φXri(k, n) + φVrn(k, n),

where

Φy(k, n) = E
[
y(k, n)yH(k, n)

]
(4.20)

is the correlation matrix of y(k, n),

φXfd
(k, n) = φX(k, n)

∣∣hH(k, n)ρxX(k, n)
∣∣2 (4.21)

= hH(k, n)Φxd
(k, n)h(k, n),

φXri(k, n) = hH(k, n)Φxi(k, n)h(k, n) (4.22)

= hH(k, n)Φx(k, n)h(k, n)− φX(k, n)
∣∣hH(k, n)ρxX(k, n)

∣∣2 ,
φVrn(k, n) = hH(k, n)Φv(k, n)h(k, n), (4.23)

Φxd
(k, n) = φX(k, n)ρxX(k, n)ρH

xX(k, n) (4.24)

is the correlation matrix (whose rank is equal to 1) of xd(k, n), and

Φa(k, n) = E
[
a(k, n)aH(k, n)

]
(4.25)

is the correlation matrix of a(k, n) ∈ {x(k, n),xi(k, n),v(k, n)}. In the rest,
it is assumed that the rank of Φv(k, n) is equal to L so that its inverse exists.

4.3 Performance Measures

In this section, the performance measures, which are tailored for noise reduc-
tion in the STFT domain with interframe correlation, are defined. We need
to distinguish between subband and fullband measures.
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We define the subband and fullband input SNRs at time frame n as [1]

iSNR(k, n) =
φX(k, n)

φV (k, n)
, k = 0, 1, . . . ,K − 1, (4.26)

iSNR(n) =

∑K−1
k=0 φX(k, n)∑K−1
k=0 φV (k, n)

. (4.27)

It is easy to show that

iSNR(n) ≤ max
k

iSNR(k, n). (4.28)

In words, the fullband input SNR can never exceed the maximum subband
input SNR.

To quantify the level of noise remaining at the output of the FIR filter, we
define the subband output SNR as

oSNR [h(k, n)] =
φXfd

(k, n)

φXri(k, n) + φVrn(k, n)
(4.29)

=
φX(k, n)

∣∣hH(k, n)ρxX(k, n)
∣∣2

hH(k, n)Φin(k, n)h(k, n)
, k = 0, 1, . . . ,K − 1,

where

Φin(k, n) = Φxi(k, n) +Φv(k, n) (4.30)

is the interference-plus-noise correlation matrix. For the particular filter
h(k, n) = iid (identity filter), where iid is the first column of the identity
matrix IL (of size L× L), we have

oSNR [iid(k, n)] = iSNR(k, n). (4.31)

And for the particular case L = 1, we also have

oSNR [H0(k, n)] = iSNR(k, n). (4.32)

Hence, in the two previous scenarios, the subband SNR cannot be improved.
Now, let us define the quantity:

oSNRmax(k, n) = tr
[
Φ−1

in (k, n)Φxd
(k, n)

]
(4.33)

= φX(k, n)ρH
xX(k, n)Φ−1

in (k, n)ρxX(k, n),

where tr[·] denotes the trace of a square matrix. This quantity corresponds
to the maximum eigenvalue, λmax(k, n), of the matrix Φ−1

in (k, n)Φxd
(k, n).

It also corresponds to the maximum subband output SNR since the fil-
ter, hmax(k, n), that maximizes oSNR [h(k, n)] [eq. (4.29)] is the maximum
eigenvector of Φ−1

in (k, n)Φxd
(k, n) for which its corresponding eigenvalue is
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λmax(k, n). As a result, we have

oSNR [h(k, n)] ≤ oSNRmax(k, n) = λmax(k, n), ∀h(k, n) (4.34)

and

oSNRmax(k, n) = oSNR [hmax(k, n)] ≥ oSNR [iid(k, n)] = iSNR(k, n).

(4.35)

The maximum SNR filter is then

hmax(k, n) = ς(k, n)Φ−1
in (k, n)ρxX(k, n), (4.36)

where ς(k, n) �= 0 is an arbitrary complex number. We will show in the next
section that the optimal filters are equivalent to hmax(k, n) up to ς(k, n).

We define the maximum subband gain in SNR as

Gmax(k, n) =
oSNRmax(k, n)

iSNR(k, n)
(4.37)

= φV (k, n)ρ
H
xX(k, n)Φ−1

in (k, n)ρxX(k, n) ≥ 1.

We define the fullband output SNR at time frame n as

oSNR [h(:, n)] =

∑K−1
k=0 φX(k, n)

∣∣hH(k, n)ρxX(k, n)
∣∣2∑K−1

k=0 hH(k, n)Φin(k, n)h(k, n)
(4.38)

and it can be verified that

oSNR [h(:, n)] ≤ max
k

oSNR [h(k, n)] . (4.39)

The fullband output SNR with the maximum SNR filter is

oSNR [hmax(:, n)] =

∑K−1
k=0

|ς(k, n)|2 λ2
max(k, n)

φX(k, n)∑K−1
k=0

|ς(k, n)|2 λmax(k, n)

φX(k, n)

. (4.40)

We see that the performance (in terms of SNR improvement) of the maximum
SNR filter is quite dependent on the values of ς(k, n). We can express (4.40)
as

oSNR [hmax(:, n)] =
ςH(n)D1(n)ς(n)

ςH(n)D2(n)ς(n)
, (4.41)

where
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ς(n) =
[
ς(0, n) ς(1, n) · · · ς(K − 1, n)

]T
(4.42)

is a vector of length K containing all the scaling factors and

D1(n) = diag

[
λ2
max(0, n)

φX(0, n)
,
λ2
max(1, n)

φX(1, n)
, . . . ,

λ2
max(K − 1, n)

φX(K − 1, n)

]
, (4.43)

D2(n) = diag

[
λmax(0, n)

φX(0, n)
,
λmax(1, n)

φX(1, n)
, . . . ,

λmax(K − 1, n)

φX(K − 1, n)

]
, (4.44)

are two diagonal matrices. Now, if we maximize (4.41) with respect to ς(n), we
find that the solution, ςmax(n), is the eigenvector corresponding to the max-
imum eigenvalue of the matrix D−1

2 (n)D1(n). Since this matrix is diagonal,
its maximum eigenvalue is its largest diagonal element, i.e., maxk λmax(k, n).
We deduce that

oSNR [h(:, n)] ≤ max
k

λmax(k, n), ∀h(k, n). (4.45)

This result is very interesting on its own since it shows that the fullband
output SNR of any filter can never exceed its maximum subband output
SNR.

The partial speech intelligibility index quantifies the amount of the desired
signal that is cancelled by the filter. The subband and fullband partial speech
intelligibility indices are then

υi [h(k, n)] =
φX(k, n)− φXfd

(k, n)

φX(k, n)
(4.46)

= 1− ∣∣hH(k, n)ρxX(k, n)
∣∣2 , k = 0, 1, . . . ,K − 1

and

υi [h(:, n)] =

∑K−1
k=0 [φX(k, n)− φXfd

(k, n)]∑K−1
k=0 φX(k, n)

(4.47)

=

∑K−1
k=0 φX(k, n)

[
1− ∣∣hH(k, n)ρxX(k, n)

∣∣2]∑K−1
k=0 φX(k, n)

=

∑K−1
k=0 φX(k, n)υi [h(k, n)]∑K−1

k=0 φX(k, n)
.

The partial speech intelligibility indices are expected to be upper bounded by
1 for optimal filters. Lower values of the partial speech intelligibility indices
imply a higher intelligible signal.

The quality of the signal is measured with the speech quality index. There-
fore, we define the subband and fullband speech quality indices as
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υq [h(k, n)] =
φVrn(k, n)

φV (k, n)
(4.48)

=
hH(k, n)Φv(k, n)h(k, n)

φV (k, n)
, k = 0, 1, . . . ,K − 1

and

υq [h(:, n)] =

∑K−1
k=0 φVrn(k, n)∑K−1
k=0 φV (k, n)

(4.49)

=

∑K−1
k=0 hH(k, n)Φv(k, n)h(k, n)∑K−1

k=0 φV (k, n)

=

∑K−1
k=0 φV (k, n)υq [h(k, n)]∑K−1

k=0 φV (k, n)
.

The speech quality indices are also expected to be upper bounded by 1 for
optimal filters. Low values of the speech quality indices imply a good signal
quality.

The global speech intelligibility index quantifies the amount of the desired
signal that is affected by the filter. The subband and fullband global speech
intelligibility indices are derived from the previous definitions:

υ′
i [h(k, n)] = (1−�) υi [h(k, n)] +�υq [h(k, n)] , k = 0, 1, . . . ,K − 1

(4.50)

and

υ′
i [h(:, n)] = (1−�) υi [h(:, n)] +�υq [h(:, n)] . (4.51)

The variance of the estimated desired signal can be rewritten as a function
of the subband speech intelligibility and quality indices, i.e.,

φ
̂X(k, n) = {1− υi [h(k, n)]}φX(k, n) + hH(k, n)Φxi(k, n)h(k, n)

+ υq [h(k, n)]φV (k, n), (4.52)

which is interesting to compare to the variance of the observation signal, i.e.,

φY (k, n) = φX(k, n) + φV (k, n). (4.53)

We see how any optimal filter will try to compromise between speech intelli-
gibility and speech quality.
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4.4 MSE-Based Criterion

The error signal between the estimated and desired signals at the frequency
bin k and the time frame n is

E(k, n) = X̂(k, n)−X(k, n) (4.54)

= hH(k, n)y(k, n)−X(k, n).

We can rewrite (4.54) as

E(k, n) = Ei(k, n) + Eq(k, n), (4.55)

where

Ei(k, n) = Xfd(k, n)−X(k, n) (4.56)

=
[
hH(k, n)ρxX(k, n)− 1

]
X(k, n)

is the speech distortion due to the complex filter, which affects the partial
intelligibility, and

Eq(k, n) = Xri(k, n) + Vrn(k, n) (4.57)

= hH(k, n)xi(k, n) + hH(k, n)v(k, n)

represents the residual interference-plus-noise, which affects the quality and
the other portion of intelligibility. It is obvious that

E
[Ei(k, n)E∗

q (k, n)
]
= 0. (4.58)

Having defined the error signal, we can now write the subband MSE cri-
terion:

J [h(k, n)] = E
[
|E(k, n)|2

]
(4.59)

= Ji [h(k, n)] + Jq [h(k, n)] ,

where

Ji [h(k, n)] = E
[
|Ei(k, n)|2

]
(4.60)

= E
[
|Xfd(k, n)−X(k, n)|2

]
= φX(k, n)

∣∣hH(k, n)ρxX(k, n)− 1
∣∣2

and



40 4 Single-Channel Noise Reduction in the STFT Domain

Jq [h(k, n)] = E
[
|Eq(k, n)|2

]
(4.61)

= E
[
|Xri(k, n)|2

]
+ E

[
|Vrn(k, n)|2

]
= φXri

(k, n) + φVrn
(k, n).

For the two particular filters h(k, n) = iid and h(k, n) = 0L×1, we get

J [iid(k, n)] = Jq [iid(k, n)] = φV (k, n), (4.62)

J [0L×1(k, n)] = Ji [0L×1(k, n)] = φX(k, n). (4.63)

We then find that the subband NMSE with respect to J [iid(k, n)] is

Jn,1 [h(k, n)] =
J [h(k, n)]

J [iid(k, n)]
(4.64)

= iSNR(k, n)× ∣∣1− hH(k, n)ρxX(k, n)
∣∣2

+
hH(k, n)Φin(k, n)h(k, n)

φV (k, n)

and the subband NMSE with respect to J [0L×1(k, n)] is

Jn,2 [h(k, n)] =
J [h(k, n)]

J [0L×1(k, n)]
(4.65)

=
∣∣1− hH(k, n)ρxX(k, n)

∣∣2 + hH(k, n)Φin(k, n)h(k, n)

φX(k, n)
.

We have

Jn,1 [h(k, n)] = iSNR(k, n)× Jn,2 [h(k, n)] . (4.66)

Expressions (4.64) and (4.65) show how the subband NMSEs and the different
subband MSEs are implicitly related to the subband performance measures.

We are only interested in complex filters for which

Ji [iid(k, n)] ≤ Ji [h(k, n)] < Ji [0L×1(k, n)] , (4.67)

Jq [0L×1(k, n)] < Jq [h(k, n)] < Jq [iid(k, n)] . (4.68)

From the two previous expressions, we deduce that

0 ≤ ∣∣1− hH(k, n)ρxX(k, n)
∣∣2 < 1, (4.69)

0 <
hH(k, n)Φin(k, n)h(k, n)

φV (k, n)
< 1. (4.70)

As we have shown in previous chapters, to better compromise between
speech intelligibility and speech quality, we propose to use the more general
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subband MSE-based criterion:

Jμ [h(k, n)] = μ(k, n)
Ji [h(k, n)]

φX(k, n)
+

Jq [h(k, n)]

φV (k, n)
(4.71)

= μ(k, n)
∣∣1− hH(k, n)ρxX(k, n)

∣∣2
+

hH(k, n)Φin(k, n)h(k, n)

φV (k, n)
,

where μ(k, n) is a positive real number allowing this compromise.

4.5 Optimal Filters

By minimizing Jμ [h(k, n)] [eq. (4.71)] with respect to h(k, n), we find the
complex optimal filter:

ho,μ(k, n) = μ(k, n)

[
μ(k, n)ρxX(k, n)ρH

xX(k, n) +
Φin(k, n)

φV (k, n)

]−1

ρxX(k, n).

(4.72)

From the decomposition:

Φy(k, n) = φX(k, n)ρxX(k, n)ρH
xX(k, n) +Φin(k, n), (4.73)

we can rewrite the optimal filter as

ho,μ(k, n) = μ(k, n)×{
[μ(k, n)− iSNR(k, n)]ρxX(k, n)ρH

xX(k, n) +
Φy(k, n)

φV (k, n)

}−1

ρxX(k, n)

(4.74)

and the vector ρxX(k, n) can be expressed as a function of the statistics of
Y (k, n) and V (k, n), i.e.,

ρxX(k, n) =
E [y(k, n)Y ∗(k, n)]− E [v(k, n)V ∗(k, n)]

φY (k, n)− φV (k, n)
(4.75)

=
φY (k, n)ρyY (k, n)− φV (k, n)ρvV (k, n)

φY (k, n)− φV (k, n)
,

so that ho,μ(k, n) can be estimated from the statistics of Y (k, n) and V (k, n)
only.

Now, by using the Woodbury’s identity in (4.72), it can easily be shown
that the optimal filter can be reformulated as
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ho,μ(k, n) =

μ(k, n)
φX(k, n)

iSNR(k, n)

1 + μ(k, n)
oSNRmax(k, n)

iSNR(k, n)

Φ−1
in (k, n)ρxX(k, n) (4.76)

=
μ(k, n)φV (k, n)

1 + μ(k, n)Gmax(k, n)
Φ−1

in (k, n)ρxX(k, n).

Comparing ho,μ(k, n) with hmax(k, n) [eq. (4.36)], we observe that the two
filters are equivalent up to a scaling factor. As a result, ho,μ(k, n) also maxi-
mizes the subband output SNR, i.e.,

oSNR [ho,μ(k, n)] = oSNRmax(k, n), ∀μ(k, n) > 0 (4.77)

and

oSNR [ho,μ(k, n)] ≥ iSNR(k, n), ∀μ(k, n) ≥ 0. (4.78)

From (4.76), we deduce that the subband partial speech intelligibility index
and the subband speech quality index are, respectively,

υi [ho,μ(k, n)] = 1−
[

μ(k, n)Gmax(k, n)

1 + μ(k, n)Gmax(k, n)

]2
(4.79)

= 1− ∣∣hH
o,μ(k, n)ρxX(k, n)

∣∣2
and

υq [ho,μ(k, n)] =
hH
o,μ(k, n)Φv(k, n)ho,μ(k, n)

φV (k, n)
. (4.80)

Obviously, ∀μ(k, n) ≥ 0, we have

0 ≤ υi [ho,μ(k, n)] ≤ 1, (4.81)

0 ≤ υq [ho,μ(k, n)] ≤ 1. (4.82)

We deduce that the fullband indices are

υi [ho,μ(:, n)] = 1−
∑K−1

k=0 φX(k, n)υi [ho,μ(k, n)]∑K−1
k=0 φX(k, n)

, (4.83)

υq [ho,μ(:, n)] =

∑K−1
k=0 φV (k, n)υq [ho,μ(k, n)]∑K−1

k=0 φV (k, n)
, (4.84)

and, ∀μ(k, n) ≥ 0, we also have

0 ≤ υi [ho,μ(:, n)] ≤ 1, (4.85)

0 ≤ υq [ho,μ(:, n)] ≤ 1. (4.86)
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It is easy to check that the fullband output SNR is

oSNR [ho,μ(:, n)] =

∑K−1
k=0 φX(k, n)

[
μ(k, n)Gmax(k, n)

1 + μ(k, n)Gmax(k, n)

]2
∑K−1

k=0 φV (k, n)
μ2(k, n)Gmax(k, n)

[1 + μGmax(k, n)]
2

. (4.87)

Taking μ(k, n) = ∞ in (4.76), we find the MVDR filter [2], [3]:

hMVDR(k, n) =
Φ−1

in (k, n)ρxX(k, n)

ρH
xX(k, n)Φ−1

in (k, n)ρxX(k, n)
. (4.88)

We deduce that

υi [hMVDR(k, n)] = 0, (4.89)

υi [hMVDR(:, n)] = 0. (4.90)

Taking μ(k, n) = iSNR(k, n) in (4.76), we find the Wiener filter [2]:

hW(k, n) =
φX(k, n)Φ−1

in (k, n)ρxX(k, n)

1 + φX(k, n)ρH
xX(k, n)Φ−1

in (k, n)ρxX(k, n)
(4.91)

= Φ−1
y (k, n)Φx(k, n)iid

=
[
IL −Φ−1

y (k, n)Φv(k, n)
]
iid.

It can be verified that

υi [hW(:, n)] > υi [hMVDR(:, n)] , (4.92)

υq [hW(:, n)] < υq [hMVDR(:, n)] . (4.93)

Therefore, we can expect a better signal quality with Wiener than MVDR
and a more intelligible signal with MVDR than Wiener.

It can also be verified that for μ(k, n) ≥ iSNR(k, n), we have

υi [hW(:, n)] ≥ υi [ho,μ(:, n)] ≥ υi [hMVDR(:, n)] , (4.94)

υq [hW(:, n)] ≤ υq [ho,μ(:, n)] ≤ υq [hMVDR(:, n)] , (4.95)

and for μ(k, n) ≤ iSNR(k, n), we have

υi [ho,μ(:, n)] ≥ υi [hW(:, n)] > υi [hMVDR(:, n)] , (4.96)

υq [ho,μ(:, n)] ≤ υq [hW(:, n)] < υq [hMVDR(:, n)] . (4.97)
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4.6 Particular Case

In this section, we briefly study the particular case of L = 1.
When the interframe correlation is not taken into account, i.e., when L = 1,

we get back to the conventional STFT-domain approach [1]. In this case, some
of the main variables simplify to

ρxX(k, n) = 1,

Φin(k, n) = φV (k, n),

Gmax(k, n) = 1.

As a result, the complex optimal filter becomes a real positive gain:

Ho,μ(k, n) =
μ(k, n)

1 + μ(k, n)
. (4.98)

For μ(k, n) = iSNR(k, n), we get the conventional noncausal Wiener gain [1]:

HW(k, n) =
iSNR(k, n)

1 + iSNR(k, n)
, (4.99)

while for μ(k, n) = ∞, we obtain the unity (distortionless) gain:

HDL(k, n) = 1, (4.100)

for which the estimated desired signal, X̂DL(k, n), is equal to the observation
signal, Y (k, n).

4.7 Simulations

In this section, we briefly study the performance of the STFT-domain noise
reduction filters derived above through simulations and illustrate the bene-
fit of using multiple STFT frames in improving the performance of single-
channel noise reduction. The simulation setup is the same as in Section 3.6.
Again, the clean speech is taken from the speaker FAKS0 in the TIMIT
database. We continue to study the narrowband case, so the original signals
are downsampled from 16 kHz to 8 kHz and these downsampled signals are
used as the clean speech in all the simulations. The noisy signals are obtained
by adding noise to the clean speech, where the noise signal is properly scaled
to control the input SNR level. Similar to the study in Chapter 3, two types
of noise are considered here: white Gaussian and NYSE babble.

To implement the STFT-domain noise reduction filters, the noisy speech
signal is partitioned into overlapping frames. Our targeted application is full-
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duplex voice communications, which allows only a small delay by a noise
reduction processor, generally in the magnitude of 10 ms, so we set the frame
size to 8 ms in our simulations with a 75% overlapping with neighboring
frames (note that if a longer delay is permissible with the applications, one
can use a larger frame size, which may slightly improve the performance of
noise reduction). A Kaiser window is then applied to each frame (to reduce
the aliasing effect due to circular convolution) and the windowed signal is sub-
sequently transformed into the STFT domain using a 64-point fast Fourier
transform (FFT). A noise reduction filter is then constructed and applied
to the noisy STFT coefficients in every subband. After noise reduction, the
inverse FFT (IFFT) with the overlap-add method is used for signal recon-
struction in the time domain. A same Kaiser window is applied to the output
of the IFFT before the overlap-add process, again, to reduce the aliasing
effect caused by circular convolution.

Obviously, the most critical step in the above implementation process is
the computation of the noise reduction filters in the STFT subbands. It is seen
from (4.72) or (4.74) that we need to know the signal statistics Φin(k, n) and
ρxX(k, n) or Φy(k, n) and ρxX(k, n) in order to compute the optimal noise
reduction filters. In our simulations, these statistics are estimated as follows.
We first estimate the Φy(k, n) and Φv(k, n) matrices using the following
recursions [note that we assume that the noise signal, V (k, n), is accessible
so that the process of noise estimation is avoided]:

Φ̂y(k, n) = αyΦ̂y(k, n− 1) + (1− αy)y(k, n)y
H(k, n), (4.101)

Φ̂v(k, n) = αvΦ̂v(k, n− 1) + (1− αv)v(k, n)v
H(k, n), (4.102)

where αy ∈ (0, 1) and αv ∈ (0, 1) are the forgetting factors that control
the influence of the previous data samples on the current correlation matrix
estimate (the initial estimates of these two matrices are obtained from the
first 100 signal frames with a short-time average). After the estimates of the
Φy(k, n) and Φv(k, n) matrices are available at time frame n, the estimate

of Φx(k, n) is computed as Φ̂y(k, n) − Φ̂v(k, n). And then, the estimate of
the interframe correlation vector ρxX(k, n) is taken as the first column of

Φ̂x(k, n) normalized by its first element.
With the previous way of statistics estimation, the noise reduction per-

formance of the STFT-domain optimal filters certainly depends on the filter
length, L, and the forgetting factors, αy and αv. To evaluate this depen-
dency, we can examine either the subband performance measures as defined
in Section 4.3 or the fullband measures as defined in Section 3.3. The dif-
ference is that the subband measures in Section 4.3 can be used to derive
and assess every subband noise reduction filter while the measures in Sec-
tion 3.3 are convenient to analyze the overall performance. In what follows,
we will use the three fullband performance measures defined in Section 3.3,
i.e., the partial speech intelligibility index, the speech quality index, and the
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output SNR. We first reconstruct the time-domain signals xfd(t), xri(t), and
vrn(t), from their respective STFT-domain counterparts Xfd(k, n), Xri(k, n),
and Vrn(k, n). The fullband partial speech intelligibility index, speech qual-
ity index, and output SNR are then computed according to their definitions
in Section 3.3 by replacing the mathematical expectation with a long-time
average.

Now, suppose that the noise is stationary so that we can set αv to a large
value that is close to 1. The noise reduction performance of the STFT-domain
filters is then a function of the filter length, L, and the forgetting factors αy.
Figure 4.1 plots the performance of the STFT-domain MVDR filter as a
function of the forgetting factor αy for different values of the filter length,
L, in the white Gaussian noise with αv = 0.98. Note that the MVDR filter
degenerates to the unity gain when L = 1, which does not change the noisy
signal; in this case, the output SNR is equal to the input SNR, the partial
speech intelligibility index is zero, and the speech quality index is maximal.

One important observation one can make from Fig. 4.1 is that the value of
αy plays an important role on the noise reduction performance. This role is
even more critical as the filter length, L, increases. The reason is that the size
of the correlation matrix that needs to be inverted grows as the filter length
increases and, as a result, a larger value of αy needs to be used to make
the correlation matrix estimate numerically well defined. Consequently, the
optimal forgetting factor that produces the best noise reduction performance
increases with L. However, regardless of the value of L, the value of αy

cannot be too large. If it is too large, the estimated statistics cannot capture
the time-varying property of the nonstationary speech signals, leading to
performance degradation. In general, the optimal value of αy depends on
both the stationarity of the signal of interest and the noise as well as the
filter length, L. It should be tuned based on the application scenario for the
best noise reduction performance.

Another important observation we can make from Fig. 4.1 is that using
multiple STFT frames can greatly help improve noise reduction performance.
In comparison with the single-frame case where it is a unity gain, the MVDR
filter using two consecutive frames can improve the SNR by more than 3 dB
if the forgetting factor αy is properly chosen as seen from Fig. 4.1. When the
filter length is 8, more than 5-dB SNR improvement is achieved with a proper
value of αy. Comparing the case with L = 16 and that with L = 8, one can
see that there is no performance improvement. This performance saturation
is primarily due to the fact that there exists not much correlation between
distant frames.

In practice, noise can also be nonstationary and, therefore, choosing a
proper value of αv is also important. One easy way is to set αy = αv. Fig-
ure 4.2 plots the performance of the MVDR filter also in the white Gaussian
noise, but this time with αy = αv. Again, one can clearly see the dependency
of the noise reduction performance of the MVDR filter on the forgetting fac-
tors and the usefulness of using multiple STFT frames to help improve noise
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Fig. 4.1 Fullband performance of the MVDR filter for different values of the filter length,
L, as a function of the forgetting factor αy in the white Gaussian noise. The forgetting

factor is αv = 0.98, the window size is K = 64 (8 ms) with a 75% overlap, and the fullband
input SNR is 10 dB.

reduction performance. Comparing Figs. 4.1 and 4.2, we can see that varying
the forgetting factor αv can help optimize the performance even when the
noise is stationary. In practice, the two forgetting factors αy and αv can be
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Fig. 4.2 Fullband performance of the MVDR filter for different values of the filter length,

L, as a function of the forgetting factor αy (= αv) in the white Gaussian noise. The window
size is K = 64 (8 ms) with a 75% overlap and the fullband input SNR is 10 dB.

optimized separately in an iterative way, which will be left to the reader’s
investigation.

Figure 4.3 plots the performance of the MVDR filter in the NYSE noise.
The conditions of this simulation are the same as those in the previous one
except that, this time, we take the NYSE noise. Comparing Figs. 4.3 and
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Fig. 4.3 Fullband performance of the MVDR filters for different values of the filter length,
L, as a function of the forgetting factor αy (= αv) in the NYSE noise. The window size is
K = 64 (8 ms) with a 75% overlap and the fullband input SNR is 10 dB.

4.2, one can see that the performance trend of the MVDR filter in the NYSE
noise is similar to that in the white Gaussian noise though the partial speech
intelligibility index, the speech quality index, and the output SNR differ
slightly in values in the two different noise cases with the same input SNR.
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The fullband partial speech intelligibility index is always 0 with the MVDR
filter. If some degradation of this index is allowed, one may use the general
optimal filter given in either (4.72), (4.74), or (4.76) by setting a proper value
of μ(k, n) or the Wiener filter given in (4.91) to improve the SNR; the results
are not presented here.
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Chapter 5

Binaural Noise Reduction in the Time
Domain

Binaural noise reduction is an important problem in applications where there
is a need to produce two “clean” outputs from noisy observations picked up by
multiple microphones. But the mitigation of the noise should be made in such
a way that no audible distortion is added to the two outputs (this is the same
as in the single-channel case) and meanwhile the spatial information of the
desired sound source should be preserved so that, after noise reduction, the
remote listener will still be able to localize the sound source thanks to his/her
binaural hearing mechanism. In this chapter, we approach this problem with
the widely linear theory in the time domain, where both the temporal and
spatial information is exploited.

5.1 Signal Model

In this study, we consider the signal model in which 2M microphones1 capture
a source signal convolved with acoustic impulse responses in some noise field.
The signal received at the ith microphone is then expressed as

yr,i(t) = gi(t) ∗ s(t) + vr,i(t) (5.1)

= xr,i(t) + vr,i(t), i = 1, 2, . . . , 2M,

where gi(t) is the acoustic impulse response from the unknown speech source,
s(t), location to the ith microphone, ∗ stands for linear convolution, and vr,i(t)
is the additive noise at microphone i. We assume that the impulse responses
are time invariant. We also assume that the signals xr,i(t) = gi(t) ∗ s(t) and
vr,i(t) are uncorrelated, zero mean, real, and broadband.

In this chapter, we consider the problem of recovering the signals xr,1(t)
and xr,M+1(t) given the observations yr,i(t), i = 1, 2, . . . , 2M . This means

1 The generalization to an odd number of microphones is straightforward.
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that the desired signals in our problem are the speech signals received at the
first and (M+1)th microphones2. It is clear then that we have two objectives.
The first one is to attenuate the contribution of the noise terms vr,1(t) and
vr,M+1(t) as much as possible. The second objective is to preserve xr,1(t) and
xr,M+1(t) with their spatial information, so that with the enhanced signals,
along with our binaural hearing process, we will still be able to localize the
source s(t). This is the well-known problem of binaural noise reduction.

Since we have binaural signals, it is more convenient to work in the complex
domain in order that the original (binaural) problem is transformed to the
conventional (monaural) noise reduction processing with a microphone array
[1], [2]. Indeed, from the 2M real microphone signals given in (5.1), we can
form M complex microphone signals as

ym(t) = yr,m(t) + jyr,M+m(t) (5.2)

= xm(t) + vm(t), m = 1, 2, . . . ,M,

where j =
√−1,

xm(t) = xr,m(t) + jxr,M+m(t), m = 1, 2, . . . ,M (5.3)

is the complex convolved speech signal, and

vm(t) = vr,m(t) + jvr,M+m(t), m = 1, 2, . . . ,M (5.4)

is the complex additive noise. Now, our problem may be stated as follows:
given the M complex microphone signals, ym(t), m = 1, 2, . . . ,M , which are
a mixture of the uncorrelated complex signals xm(t) and vm(t), our goal is
to recover x1(t) = xr,1(t) + jxr,M+1(t) (i.e., our desired signal) the best way
we can, including the phase, which is important for the localization of the
source signal.

The signal model given in (5.2) can be put into a vector form if we accu-
mulate L successive time samples:

ym(t) = xm(t) + vm(t), m = 1, 2, . . . ,M, (5.5)

where

ym(t) =
[
ym(t) ym(t− 1) · · · ym(t− L+ 1)

]T
(5.6)

is a vector of length L, and xm(t) and vm(t) are defined in a similar way to
ym(t). Concatenating the M vectors in (5.5) together, we get the vector of
length ML:

2 We can try to recover the desired signals from any other pair of microphones, if we like.
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y(t) =
[
yT
1 (t) y

T
2 (t) · · · yT

M (t)
]T

= x(t) + v(t), (5.7)

where x(t) and v(t) are defined in a similar way to y(t).
Since xm(t) and vm(t) are uncorrelated by assumption, the correlation

matrix (of size ML×ML) of the noisy signal is

Φy = E
[
y(t)yH(t)

]
(5.8)

= Φx +Φv,

where

Φx = E
[
x(t)xH(t)

]
, (5.9)

Φv = E
[
v(t)vH(t)

]
, (5.10)

are the correlation matrices of x(t) and v(t), respectively.

5.2 Widely Linear Filtering

As it can be noticed from the model given in (5.2), we deal with complex
random variables. A very important statistical characteristic of a complex
random variable (CRV) is the so-called circularity property or lack of it
(noncircularity) [3], [4]. A zero-mean CRV, z, is circular if and only if the
only nonnull moments and cumulants are the moments and cumulants con-
structed with the same power in z and z∗ [5], [6]. In particular, z is said to
be a second-order circular CRV (CCRV) if its so-called pseudo-variance [3] is
equal to zero, i.e., E

(
z2
)
= 0, while its variance is nonnull, i.e., E

(|z|2) �= 0.
This means that the second-order behavior of a CCRV is well described by
its variance. If the pseudo-variance E

(
z2
)
is not equal to 0, the CRV z is

then noncircular. A good measure of the second-order circularity is the circu-
larity quotient [3] defined as the ratio between the pseudo-variance and the
variance, i.e.,

γz =
E
(
z2
)

E (|z|2) . (5.11)

It is easy to show that 0 ≤ |γz| ≤ 1. If γz = 0, z is a second-order CCRV;
otherwise, z is noncircular, and a larger value of |γz| indicates that the CRV
z is more noncircular.

Now, let us examine whether the complex desired signal, x1(t) = xr,1(t)+
jxr,M+1(t), is second-order circular. We have
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γx1 =
E
[
x2
1(t)

]
E [|x1(t)|2] (5.12)

=
E
[
x2
r,1(t)

]− E
[
x2
r,M+1(t)

]
+ 2jE [xr,1(t)xr,M+1(t)]

φx1

,

where φx1
= E

[
|x1(t)|2

]
is the variance of x1(t). One can check from (5.12)

that the CRV x1(t) is second-order circular (i.e., γx1 = 0) if and only if

E
[
x2
r,1(t)

]
= E

[
x2
r,M+1(t)

]
and E [xr,1(t)xr,M+1(t)] = 0. (5.13)

Since the signals xr,1(t) and xr,M+1(t) come from the same source, they are
in general correlated. As a result, the second condition in (5.13) should not
be true. Therefore, we can safely state that the complex desired signal, x1(t),
is noncircular, and so is the complex microphone signal, y1(t). If we assume
that the noise terms at the two microphones are uncorrelated and have the
same power then γv1 = 0 [i.e., v(t) is a second-order CCRV].

Since we deal with noncircular CRVs as demonstrated above, the classical
linear estimation technique [7], which is developed for processing real signals
or CCRVs, cannot be applied. Instead, an estimate of x1(t) should be obtained
using the widely linear (WL) estimation theory as [4], [8]

x̂1(t) = hHy(t) + h′Hy∗(t) (5.14)

= h̃H ỹ(t),

where h and h′ are two complex FIR filters of length ML and

h̃ =

[
h
h′

]
, (5.15)

ỹ(t) =

[
y(t)
y∗(t)

]
, (5.16)

are the augmented WL filter and observation vector, respectively, both of
length 2ML. We can rewrite (5.14) as

x̂1(t) = h̃H [x̃(t) + ṽ(t)] (5.17)

= xf(t) + vrn(t),

where x̃(t) and ṽ(t) are defined in a similar way to ỹ(t),

xf(t) = h̃H x̃(t) (5.18)

is a filtered version of the desired signal, and

vrn(t) = h̃H ṽ(t) (5.19)
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is the residual noise. From (5.17), we see that x̂1(t) depends on the vector x̃(t).
However, our desired signal at time t is only x1(t) [and not the whole vector
x̃(t)]; so we should decompose the vector x̃(t) into two orthogonal vectors:
one corresponding to the desired signal at time t and the other corresponding
to the interference. Therefore, we have

x̃(t) = x1(t)ρx̃x1
+ x̃i(t) (5.20)

= x̃d(t) + x̃i(t),

where

x̃d(t) = x1(t)ρx̃x1
(5.21)

is the desired signal vector,

x̃i(t) = x̃(t)− x̃d(t) (5.22)

is the interference signal vector,

ρx̃x1
=

E [x̃(t)x∗
1(t)]

E
[
|x1(t)|2

] (5.23)

is the normalized [with respect to x1(t)] correlation vector between x̃(t) and
x1(t), and

E [x̃i(t)x
∗
1(t)] = 02ML×1. (5.24)

Substituting (5.20) into (5.17), we obtain

x̂1(t) = h̃H
[
x1(t)ρx̃x1

+ x̃i(t) + ṽ(t)
]

(5.25)

= xfd(t) + xri(t) + vrn(t),

where

xfd(t) = x1(t)h̃
Hρx̃x1

(5.26)

is the filtered desired signal and

xri(t) = h̃H x̃i(t) (5.27)

is the residual interference. We observe that the estimate of the desired signal
at time t is the sum of three terms that are mutually uncorrelated. Therefore,
the variance of x̂1(t) is

φx̂1
= φxfd

+ φxri + φvrn , (5.28)

where
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φxfd
= φx1

∣∣∣h̃Hρx̃x1

∣∣∣2 (5.29)

= h̃HΦx̃d
h̃,

φxri = h̃HΦx̃i
h̃ (5.30)

= h̃HΦx̃h̃− φx1

∣∣∣h̃Hρx̃x1

∣∣∣2 ,
φvrn = h̃HΦṽh̃, (5.31)

Φx̃d
= φx1ρx̃x1

ρH
x̃x1

is the correlation matrix (whose rank is equal to 1)

of x̃d(t), and Φx̃i
= E

[
x̃i(t)x̃

H
i (t)

]
, Φx̃ = E

[
x̃(t)x̃H(t)

]
, and Φṽ =

E
[
ṽ(t)ṽH(t)

]
are the correlation matrices of x̃i(t), x̃(t), and ṽ(t), respec-

tively.
It is clear from (5.25) that the objective of our noise reduction problem

is to find optimal filters that can minimize the effect of xri(t) + vrn(t) while
preserving the desired signal, x1(t). But before deriving such filters, we first
give some very useful performance measures for the evaluation of the time-
domain binaural noise reduction problem with the WL model.

5.3 Performance Measures

Since the complex microphone signal y1(t) is our reference signal, all measures
are defined with respect to this signal.

The input SNR is defined as

iSNR =
φx1

φv1

, (5.32)

where φv1 = E
[
|v1(t)|2

]
is the variance of the complex additive noise at the

first complex microphone.
To quantify the level of noise remaining at the output of the complex WL

filter, we define the output SNR as the ratio of the variance of the filtered
desired signal over the variance of the residual interference-plus-noise, i.e.,

oSNR
(
h̃
)
=

φxfd

φxri + φvrn

(5.33)

=
φx1

∣∣∣h̃Hρx̃x1

∣∣∣2
h̃HΦinh̃

=
h̃HΦx̃d

h̃

h̃HΦinh̃
,

where
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Φin = Φx̃i
+Φṽ (5.34)

is the interference-plus-noise correlation matrix. The objective of the WL
noise reduction filter is to make the output SNR greater than the input SNR
so that the quality of the noisy signal may be enhanced.

For the particular filter h̃ = ĩid, where the identity filter, ĩid, is the first
column of the identity matrix, I2L of size 2L× 2L, we have

oSNR
(̃
iid

)
= iSNR. (5.35)

With the filter ĩid, the SNR cannot be improved.
Now, let us introduce the quantity oSNRmax, which is defined as the max-

imum output SNR that can be achieved through filtering so that

oSNR
(
h̃
)
≤ oSNRmax, ∀h̃. (5.36)

It can be checked from (5.33) that this quantity is equal to the maximum
eigenvalue of the matrix Φ−1

in Φx̃d
, i.e.,

oSNRmax = λmax. (5.37)

The filter that can achieve oSNRmax is called the maximum SNR filter and
is denoted by h̃max. It is easy to see from (5.37) that h̃max is the eigenvector
corresponding to the maximum eigenvalue of Φ−1

in Φx̃d
, i.e.,

h̃max = ςΦ−1
in ρx̃x1

, (5.38)

where ς �= 0 is an arbitrary complex number. Clearly, we have

oSNRmax = oSNR
(
h̃max

)
≥ oSNR

(̃
iid

)
= iSNR. (5.39)

Since the rank of the matrix Φx̃d
is equal to 1, we also have

oSNRmax = tr
(
Φ−1

in Φx̃d

)
(5.40)

= φx1ρ
H
x̃x1

Φ−1
in ρx̃x1

.

We define the array gain as

G
(
h̃
)
=

oSNR
(
h̃
)

iSNR
. (5.41)

We easily deduce that the maximum array gain is

Gmax = φv1ρ
H
x̃x1

Φ−1
in ρx̃x1

≥ 1. (5.42)
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The partial speech intelligibility index measures the amount of the desired
signal, x1(t), that is cancelled by the WL filter. It is defined as

υi

(
h̃
)
=

φx1 − φxfd

φx1

(5.43)

= 1−
∣∣∣h̃Hρx̃x1

∣∣∣2 .
A high value of υi

(
h̃
)

implies a high distortion of the estimated desired

signal.
The speech quality index measures the amount of the residual noise left

after the WL filtering process. We define it as

υq

(
h̃
)
=

φvrn

φv1

(5.44)

=
h̃HΦṽh̃

φv1

.

A high value of υq

(
h̃
)
implies a low quality of the estimated desired signal

or a high input SNR.
We deduce that the global speech intelligibility index is

υ′
i

(
h̃
)
= (1−�) υi

(
h̃
)
+�υq

(
h̃
)
. (5.45)

The variance of the estimated desired signal can be rewritten as a function

of the two indices υi

(
h̃
)
and υq

(
h̃
)
, i.e.,

φx̂1
=

[
1− υi

(
h̃
)]

φx1 + h̃HΦx̃i
h̃+ υq

(
h̃
)
φv1 . (5.46)

5.4 MSE-Based Criterion

The error signal between the estimated and desired signals is defined as

e(t) = x̂1(t)− x1(t) (5.47)

= xfd(t) + xri(t) + vrn(t)− x1(t).

We can express (5.47) as

e(t) = ei(t) + eq(t), (5.48)

where
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ei(t) = xfd(t)− x1(t) (5.49)

=
(
h̃Hρx̃x1

− 1
)
x1(t)

is the speech distortion due to the WL filter, which affects the partial intel-
ligibility, and

eq(t) = xri(t) + vrn(t) (5.50)

= h̃H x̃i(t) + h̃H ṽ(t)

represents the residual interference-plus-noise, which affects the quality and
the other part of intelligibility. The two error signals ei(t) and eq(t) are clearly
uncorrelated.

The classical MSE criterion is then

J
(
h̃
)
= E

[
|e(t)|2

]
(5.51)

= φx1 + h̃HΦỹh̃− φx1 h̃
Hρx̃x1

− φx1ρ
H
x̃x1

h̃

= Ji

(
h̃
)
+ Jq

(
h̃
)
,

where Φỹ is the correlation matrix of ỹ(t),

Ji

(
h̃
)
= E

[
|ei(t)|2

]
(5.52)

= φx1

∣∣∣h̃Hρx̃x1
− 1

∣∣∣2 ,
and

Jq

(
h̃
)
= E

[
|eq(t)|2

]
(5.53)

= h̃HΦinh̃.

The two particular filters h̃ = ĩid and h̃ = 02ML×1 are of interest to us.
With the first one (identity filter), we achieve the worst quality and the best
partial intelligibility, while with the second one (zero filter), we have the best
quality and the worst intelligibility. For these two particular filters, the MSEs
are

J
(̃
iid

)
= Jq

(̃
iid

)
= φv1 , (5.54)

J (02ML×1) = Ji (02ML×1) = φx1 . (5.55)

As a result,

iSNR =
J (02ML×1)

J
(̃
iid

) . (5.56)
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We define the NMSE with respect to J
(̃
iid

)
as

Jn,1

(
h̃
)
=

J
(
h̃
)

J
(̃
iid

) (5.57)

= iSNR×
∣∣∣1− h̃Hρx̃x1

∣∣∣2 + h̃HΦinh̃

φv1

.

We define the NMSE with respect to J (02ML×1) as

Jn,2

(
h̃
)
=

J
(
h̃
)

J (02ML×1)
(5.58)

=
∣∣∣1− h̃Hρx̃x1

∣∣∣2 + h̃HΦinh̃

φx1

and

Jn,1

(
h̃
)
= iSNR× Jn,2

(
h̃
)
. (5.59)

Expressions (5.57) and (5.58) show how the NMSEs and the different MSEs
are implicitly related to the performance measures.

We are interested in WL filters for which

Ji

(̃
iid

)
≤ Ji

(
h̃
)
< Ji (02ML×1) , (5.60)

Jq (02ML×1) < Jq

(
h̃
)
< Jq

(̃
iid

)
. (5.61)

From the two previous expressions, we deduce that

0 ≤
∣∣∣1− h̃Hρx̃x1

∣∣∣2 < 1, (5.62)

0 <
h̃HΦinh̃

φv1

< 1. (5.63)

For this reason, we propose to use the more general MSE-based criterion:

Jμ

(
h̃
)
= μ

Ji

(
h̃
)

φx1

+
Jq

(
h̃
)

φv1

(5.64)

= μ
∣∣∣1− h̃Hρx̃x1

∣∣∣2 + h̃HΦinh̃

φv1

,
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where μ is a positive real number allowing to compromise between υi

(
h̃
)

and υq

(
h̃
)
.

5.5 Optimal Filters

Taking the gradient of (5.64) with respect to h̃ and equating the result to
zero, we get the optimal filter:

h̃o,μ = μ

(
μρx̃x1

ρH
x̃x1

+
Φin

φv1

)−1

ρx̃x1
. (5.65)

Using the decomposition:

Φỹ = φx1ρx̃x1
ρH
x̃x1

+Φin, (5.66)

we can express the optimal filter as

h̃o,μ = μ

[
(μ− iSNR)ρx̃x1

ρH
x̃x1

+
Φỹ

φv1

]−1

ρx̃x1
(5.67)

and the vector ρx̃x1
can be expressed as a function of the statistics of ỹ(t)

and ṽ(t), i.e.,

ρx̃x1
=

E [ỹ(t)y1(t)]− E [ṽ(t)v1(t)]

φy1 − φv1

(5.68)

=
φy1ρỹy1

− φv1ρṽv1

φy1 − φv1

,

so that h̃o,μ can be estimated from the statistics of ỹ(t) and ṽ(t) only.
Using the Woodbury’s identity in (5.65), we reformulate the optimal filter

as

h̃o,μ =
μ

φx1

iSNR

1 + μ
oSNRmax

iSNR

Φ−1
in ρx̃x1

(5.69)

=
μφv1

1 + μGmax
Φ−1

in ρx̃x1
.

Comparing h̃o,μ with h̃max [eq. (5.38)], we see that the two filters are equiva-

lent up to a scaling factor. As a result, h̃o,μ also maximizes the output SNR,
i.e.,
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oSNR
(
h̃o,μ

)
= oSNRmax, ∀μ > 0. (5.70)

From (5.69), we deduce the partial speech intelligibility index:

υi

(
h̃o,μ

)
= 1−

(
μGmax

1 + μGmax

)2

(5.71)

and the speech quality index:

υq

(
h̃o,μ

)
=

μ2φv1ρ
T
x̃x1

Φ−1
in ΦṽΦ

−1
in ρx̃x1

(1 + μGmax)
2 . (5.72)

We see clearly that, ∀μ ≥ 0, we have

0 ≤ υi

(
h̃o,μ

)
≤ 1, (5.73)

0 ≤ υq

(
h̃o,μ

)
≤ 1. (5.74)

Taking μ = iSNR in (5.69), we find the Wiener filter:

h̃W =
φx1

1 + oSNRmax
Φ−1

in ρx̃x1
(5.75)

= Φ−1
ỹ Φx̃ ĩid

=
(
I2L −Φ−1

ỹ Φṽ

)
ĩid

and taking μ = ∞ in (5.69), we find the MVDR filter:

h̃MVDR =
φx1

oSNRmax
Φ−1

in ρx̃x1
(5.76)

=
1 + oSNRmax

oSNRmax
h̃W.

A value of μ in (5.69) greater (resp. smaller) than the input SNR will
result in a filter that will favor intelligibility (resp. quality) over quality (resp.
intelligibility) as compared to the Wiener filter.

5.6 Simulations

In this section, we illustrate the performance of the optimal binaural noise
reduction filters deduced above. Simulations are conducted using impulse re-
sponses measured in a reverberant room. The room is 6 m long and 5 m wide.
For ease of exposition, positions in the room are designated by (x,y) coordi-
nates with reference to one corner of the room, 0 ≤ x ≤ 6 and 0 ≤ y ≤ 5.
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An equispaced linear array with six omnidirectional microphones is config-
ured where the first and last microphones are, respectively, at (3.4, 0.5) and
(3.9, 0.5), and the spacing between two neighboring microphones is 0.1 m. A
loudspeaker is placed at (1.3, 3.0) to simulate a speech source. To make the ex-
periments repeatable, the acoustic channel impulse responses were measured
from the source position to all the six microphones. During experiments, the
microphones’ outputs are generated by convolving the source signal with the
corresponding measured impulse responses and noise is then added to the
convolved results to control the input SNR level. The source signal is taken
from the speaker FAKS0 in the TIMIT database. We continue to study the
narrowband case, so the original signals from the TIMIT database are down-
sampled from 16 kHz to 8 kHz before convolving them with the measured
impulse responses.

With the microphone array of six sensors, we divide the performance study
of binaural noise reduction into three cases: with two microphones, with four
microphones, and with six microphones. In the two-microphone case, the
first and fourth microphones are used while in the four-microphone case, the
first, second, fourth, and fifth microphones are used. The reason to select the
microphones in this way is to enable fair comparison of performances among
the three cases.

To implement the optimal binaural noise reduction filters given in the pre-
vious section, we need to know either the noisy correlation matrix Φỹ or
the interference-plus-noise correlation matrix Φin and the correlation vector
ρx̃x1

. In our simulations, we compute the Φỹ matrix from the noisy signals
using a short-time average. Specifically, at each time instant t, an estimate
of Φỹ is computed using the most recent 640 samples (80-ms long) of the
noisy signals, ym(k),m = 1, 2, 3. To obtain an estimate of the correlation
vector ρx̃x1

, we assume that the noise signals are accessible and then com-
pute this vector according to the relationship given in (5.68) where all the
statistics φy1 , φv1 , ρỹy1

, and ρṽv1 are computed directly from the respective
signals, again, with a short-time average using the most recent 640 samples.
Substituting these statistics estimates into (5.67), (5.75), and (5.76), we im-
plement, respectively, the general optimal filter, the Wiener filter, and the
MVDR filter.

Figure 5.1 plots the partial speech intelligibility index, the speech quality
index, and the output SNR of the binaural WL Wiener filter, all as a function
of the filter length, L. The noise in this simulation is white Gaussian and the
input SNR is 10 dB. It is seen that the performance of the WL Wiener filter
with four microphones (M = 2) is better than that with two microphones
(M = 1); not only the output SNR is larger, the values of both the partial
speech intelligibility index and the speech quality index are also smaller. Sim-
ilarly, the performance with 6 microphones (M = 3) is better than that with
four microphones. This clearly shows the benefit of using more microphones
to help improve binaural noise reduction.
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Fig. 5.1 Performance of the WL Wiener filter as a function of the filter length, L, in the
white Gaussian noise with 2 (M = 1), 4 (M = 2), and 6 (M = 3) microphones: (a) partial
speech intelligibility index, (b) speech quality index, and (c) output SNR. The input SNR
is 10 dB.

Regardless of how many microphones are used, the value of the filter
length, L, plays an important role on the noise reduction performance as
seen in Fig. 5.1. Not only the output SNR increases with L, the values of the
partial speech intelligibility index and the speech quality index also decrease
with L. Therefore, sufficiently large filter lengths should be used for good
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performance. However, as the value of L increases, so is the dimension of
the correlation matrix to be inverted. This would not only increase the com-
putational complexity, but may also cause numerical instability for matrix
inversion. Therefore, a proper value of L should be a compromise between
the noise reduction performance and the algorithm complexity and stability.
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Chapter 6

Multichannel Noise Reduction in the
STFT Domain

In Chapters 3 and 4, we exploited the temporal (and spectral) information
from a single microphone signal to derive different techniques for noise reduc-
tion in the time and STFT domains. In this chapter, we exploit the spatial
information available from signals picked up by a determined number of mi-
crophones at different positions in the acoustics space in order to mitigate
the noise effect. The processing is performed in the STFT domain.

6.1 Signal Model

We consider the conventional signal model in which a microphone array with
M sensors captures a convolved source signal in some noise field. The received
signals are expressed as [1], [2]

ym(t) = gm(t) ∗ s(t) + vm(t) (6.1)

= xm(t) + vm(t), m = 1, 2, . . . ,M,

where gm(t) is the acoustic impulse response from the unknown speech
source, s(t), location to the mth microphone, ∗ stands for linear convolu-
tion, and vm(t) is the additive noise at microphone m. We assume that
the impulse responses are time invariant. We also assume that the signals
xm(t) = gm(t) ∗ s(t) and vm(t) are uncorrelated, zero mean, real, and broad-
band. By definition, the convolved speech signals, xm(t), m = 1, 2, . . . ,M ,
are coherent across the array. The noise terms, vm(t), m = 1, 2, . . . ,M , are
typically only partially coherent across the array.

In this work, our desired signal is designated by the clean (but convolved)
speech signal received at microphone 1, namely x1(t). Obviously, any signal
xm(t) could be taken as the reference. Our problem then may be stated as
follows [3]: given M mixtures of two uncorrelated signals xm(t) and vm(t),

� The Author(s) 2015
J. Benesty and J. Chen, A Conceptual Framework for Noise Reduction,
SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-12955-6_6

67



68 6 Multichannel Noise Reduction in the STFT Domain

our aim is to preserve x1(t) while minimizing the contribution of the noise
terms, vm(t), m = 1, 2, . . . ,M , at the array output.

Expression (6.1) can be rewritten in the STFT domain as

Ym(k, n) = Gm(k)S(k, n) + Vm(k, n) (6.2)

= Xm(k, n) + Vm(k, n), m = 1, 2, . . . ,M,

where Ym(k, n), Gm(k), S(k, n), Xm(k, n) = Gm(k)S(k, n), and Vm(k, n) are
the STFT-domain representations of ym(t), gm(t), s(t), xm(t), and vm(t),
respectively. The zero-mean complex random variable X1(k, n) is our desired
signal in the time-frequency domain.

It is more convenient to write the M STFT-domain microphone signals in
a vector notation:

←−y (k, n) = S(k, n)←−g (k) +←−v (k, n) (6.3)

= ←−x (k, n) +←−v (k, n)

= X1(k, n)
←−
d (k) +←−v (k, n),

where

←−y (k, n) =
[
Y1(k, n) Y2(k, n) · · · YM (k, n)

]T
,

←−x (k, n) =
[
X1(k, n) X2(k, n) · · · XM (k, n)

]T
= S(k, n)←−g (k),

←−g (k) =
[
G1(k) G2(k) · · · GM (k)

]T
,

←−v (k, n) =
[
V1(k, n) V2(k, n) · · · VM (k, n)

]T
,

and

←−
d (k) =

[
1
G2(k)

G1(k)
· · · GM (k)

G1(k)

]T
(6.4)

=
←−g (k)

G1(k)
.

Let us note that we assume that G1(k) �= 0. Expression (6.3) depends ex-
plicitly on the desired signal, X1(k, n); as a result, (6.3) is the STFT-domain

signal model for noise reduction. The vector
←−
d (k) is obviously the STFT-

domain steering vector for noise reduction [3] since the acoustic impulse re-
sponses ratios from the broadband source to the aperture convey information
about the position of the source.

There is another interesting way to write (6.3). First, it is easy to see that

Xm(k, n) = ρ∗X1Xm
(k, n)X1(k, n), m = 1, 2, . . . ,M, (6.5)
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where

ρX1Xm(k, n) =
E [X1(k, n)X

∗
m(k, n)]

E
[
|X1(k, n)|2

] (6.6)

=
G∗

m(k)

G∗
1(k)

, m = 1, 2, . . . ,M

is the partially normalized [with respect to X1(k, n)] correlation coefficient
between X1(k, n) and Xm(k, n). Using (6.5), we can rewrite (6.3) as

←−y (k, n) = X1(k, n)ρ←−xX1
(k, n) +←−v (k, n) (6.7)

= ←−x (k, n) +←−v (k, n),

where

←−x (k, n) = X1(k, n)ρ←−xX1
(k, n) (6.8)

is the speech signal vector and

ρ←−xX1
(k, n) =

[
1 ρ∗X1X2

(k, n) · · · ρ∗X1XM
(k, n)

]T
=

E
[←−x (k, n)X∗

1 (k, n)
]

E
[
|X1(k, n)|2

]
=

←−
d (k) (6.9)

is the partially normalized [with respect to X1(k, n)] correlation vector (of
length M) between ←−x (k, n) and X1(k, n).

We see that←−y (k, n) is the sum of two uncorrelated components. Therefore,
the correlation matrix of ←−y (k, n) is

Φ←−y (k, n) = E
[←−y (k, n)←−y H(k, n)

]
(6.10)

= φX1(k, n)ρ←−xX1
(k, n)ρH←−xX1

(k, n) +Φ←−v (k, n)

= Φ←−x (k, n) +Φ←−v (k, n),

where φX1(k, n) = E
[
|X1(k, n)|2

]
is the variance of X1(k, n),

Φ←−x (k, n) = φX1(k, n)ρ←−xX1
(k, n)ρH←−xX1

(k, n) (6.11)

is the correlation matrix (whose rank is equal to 1) of ←−x (k, n), and

Φ←−v (k, n) = E
[←−v (k, n)←−v H(k, n)

]
(6.12)

is the correlation matrices of ←−v (k, n).
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6.2 Linear Filtering

In the STFT domain, the conventional multichannel noise reduction is per-
formed by applying a complex weight to the output of each sensor, at fre-
quency bin k, and summing across the aperture [3], [4]:

X̂1(k, n) =
←−
hH(k, n)←−y (k, n), (6.13)

where X̂1(k, n) is the estimate of X1(k, n) and
←−
h (k, n) is a complex-valued

filter of length M containing all the complex gains applied to the microphone
outputs at frequency bin k.

We can express (6.13) as a function of the steering vector, i.e.,

X̂1(k, n) =
←−
hH(k, n)

[
X1(k, n)ρ←−xX1

(k, n) +←−v (k, n)
]

(6.14)

= Xfd(k, n) + Vrn(k, n),

where

Xfd(k, n) = X1(k, n)
←−
hH(k, n)ρ←−xX1

(k, n) (6.15)

is the filtered desired signal and

Vrn(k, n) =
←−
hH(k, n)←−v (k, n) (6.16)

is the residual noise.
The two terms on the right-hand side of (6.14) are uncorrelated. Hence,

the variance of X̂1(k, n) is also the sum of two variances:

φ
̂X1
(k, n) =

←−
hH(k, n)Φ←−y (k, n)

←−
h (k, n) (6.17)

= φXfd
(k, n) + φVrn

(k, n),

where

φXfd
(k, n) = φX1(k, n)

∣∣∣←−hH(k, n)ρ←−xX1
(k, n)

∣∣∣2 , (6.18)

φVrn
(k, n) =

←−
hH(k, n)Φ←−v (k, n)

←−
h (k, n). (6.19)

The different variances in (6.17) are important in the definitions of the per-
formance measures.
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6.3 Performance Measures

Since microphone 1 is our reference, all measures are defined with respect to
the signal from this microphone.

The subband and fullband input SNRs at time frame n are defined as

iSNR(k, n) =
φX1(k, n)

φV1(k, n)
, k = 0, 1, . . . ,K − 1, (6.20)

iSNR(n) =

∑K−1
k=0 φX1(k, n)∑K−1
k=0 φV1(k, n)

, (6.21)

where φV1(k, n) = E
[
|V1(k, n)|2

]
is the variance of V1(k, n). It is easy to

show that

iSNR(n) ≤ max
k

iSNR(k, n). (6.22)

In words, the fullband input SNR can never be greater than the maximum
subband input SNR.

The subband output SNR is obtained from (6.17):

oSNR
[←−
h (k, n)

]
=

φXfd
(k, n)

φVrn(k, n)
(6.23)

=
φX1(k, n)

∣∣∣←−hH(k, n)ρ←−xX1
(k, n)

∣∣∣2
←−
hH(k, n)Φ←−v (k, n)

←−
h (k, n)

, k = 0, 1, . . . ,K − 1.

For the particular filter
←−
h (k, n) =

←−
i id, where

←−
i id is the first column of the

identity matrix, IM (of size M ×M), we have

oSNR
[←−
i id(k, n)

]
= iSNR(k, n). (6.24)

With the identity filter,
←−
i id, the SNR cannot be improved.

For any two vectors
←−
h (k, n) and ρ←−xX1

(k, n) and a positive definite matrix
Φ←−v (k, n), we have

∣∣∣←−hH(k, n)ρ←−xX1
(k, n)

∣∣∣2 ≤
[←−
hH(k, n)Φ←−v (k, n)

←−
h (k, n)

]
×[

ρH←−xX1
(k, n)Φ−1←−v (k, n)ρ←−xX1

(k, n)
]
, (6.25)

with equality if and only if
←−
h (k, n) ∝ Φ−1←−v (k, n)ρ←−xX1

(k, n). Using the previ-
ous inequality in (6.23), we deduce an upper bound for the subband output
SNR:
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oSNR
[←−
h (k, n)

]
≤ φX1(k, n)×

ρH←−xX1
(k, n)Φ−1←−v (k, n)ρ←−xX1

(k, n), ∀←−h (k, n) (6.26)

and, clearly,

oSNR
[←−
i id(k, n)

]
≤ φX1(k, n)ρ

H←−xX1
(k, n)Φ−1←−v (k, n)ρ←−xX1

(k, n), (6.27)

which implies that

ρH←−xX1
(k, n)Φ−1←−v (k, n)ρ←−xX1

(k, n) ≥ 1

φV1(k, n)
. (6.28)

The role of the filter is to produce a signal whose subband SNR is higher
than that of the subband input SNR. This is measured by the subband array
gain:

G
[←−
h (k, n)

]
=

oSNR
[←−
h (k, n)

]
iSNR(k, n)

, k = 0, 1, . . . ,K − 1. (6.29)

From (6.26), we deduce that the maximum subband array gain is

Gmax(k, n) = φV1(k, n)ρ
H←−xX1

(k, n)Φ−1←−v (k, n)ρ←−xX1
(k, n) ≥ 1. (6.30)

The maximum SNR filter,
←−
hmax(k, n), is obtained by maximiz-

ing the subband output SNR as given above. In (6.23), we recog-
nize the generalized Rayleigh quotient. It is well known that this
quotient is maximized with the maximum eigenvector of the matrix
φX1(k, n)Φ

−1←−v (k, n)ρ←−xX1
(k, n)ρH←−xX1

(k, n). Let us denote by λmax(k, n) the
maximum eigenvalue corresponding to this maximum eigenvector. Since the
rank of the mentioned matrix is equal to 1, we have

λmax(k, n) = tr
[
φX1(k, n)Φ

−1←−v (k, n)ρ←−xX1
(k, n)ρH←−xX1

(k, n)
]

(6.31)

= φX1(k, n)ρ
H←−xX1

(k, n)Φ−1←−v (k, n)ρ←−xX1
(k, n).

As a result,

oSNR
[←−
hmax(k, n)

]
= λmax(k, n), (6.32)

which corresponds to the maximum possible subband output SNR and

G
[←−
hmax(k, n)

]
= Gmax(k, n). (6.33)

Let us denote by G(m)
max(k, n) the maximum subband array gain of a micro-

phone array with m sensors. By virtue of the inclusion principle [5] for the
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matrix φX1(k, n)Φ
−1←−v (k, n)ρ←−xX1

(k, n)ρH←−xX1
(k, n), we have

G(M)
max(k, n) ≥ G(M−1)

max (k, n) ≥ · · · ≥ G(2)
max(k, n) ≥ G(1)

max(k, n) = 1. (6.34)

This shows that by increasing the number of microphones, we necessarily
increase the gain. If there is one microphone only, the subband SNR cannot
be improved as expected [1] (if the interframe correlation is not taken into
account, which is the case here).

Obviously, we also have

←−
hmax(k, n) = ς(k, n)Φ−1←−v (k, n)ρ←−xX1

(k, n), (6.35)

where ς(k, n) is an arbitrary scaling factor different from zero. While this
factor has no effect on the subband output SNR, it has on the fullband
output SNR.

We define the fullband output SNR at time frame n as

oSNR
[←−
h (:, n)

]
=

∑K−1
k=0 φX1

(k, n)
∣∣∣←−hH(k, n)ρ←−xX1

(k, n)
∣∣∣2∑K−1

k=0

←−
hH(k, n)Φ←−v (k, n)

←−
h (k, n)

(6.36)

and it can be verified that

oSNR
[←−
h (:, n)

]
≤ max

k
oSNR

[←−
h (k, n)

]
, ∀←−h (k, n). (6.37)

The previous inequality tells us that the fullband output SNR can never

exceed the maximum subband output SNR for any filter
←−
h (k, n).

The fullband output SNR with the maximum SNR filter is

oSNR
[←−
hmax(:, n)

]
=

∑K−1
k=0

|ς(k, n)|2 λ2
max(k, n)

φX1(k, n)∑K−1
k=0

|ς(k, n)|2 λmax(k, n)

φX1(k, n)

. (6.38)

We see that the performance (in terms of fullband SNR improvement) of the
maximum SNR filter is quite dependent on the values of ς(k, n).

We also define the fullband array gain as

G
[←−
h (:, n)

]
=

oSNR
[←−
h (:, n)

]
iSNR(n)

. (6.39)

We define the subband and fullband partial speech intelligibility indices
as
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υi

[←−
h (k, n)

]
=

φX1(k, n)− φXfd
(k, n)

φX1(k, n)
(6.40)

= 1−
∣∣∣←−hH(k, n)ρ←−xX1

(k, n)
∣∣∣2 , k = 0, 1, . . . ,K − 1

and

υi

[←−
h (:, n)

]
=

∑K−1
k=0 [φX1(k, n)− φXfd

(k, n)]∑K−1
k=0 φX1(k, n)

(6.41)

=

∑K−1
k=0 φX1(k, n)

[
1−

∣∣∣←−hH(k, n)ρ←−xX1
(k, n)

∣∣∣2]∑K−1
k=0 φX1(k, n)

=

∑K−1
k=0 φX1(k, n)υi

[←−
h (k, n)

]
∑K−1

k=0 φX1(k, n)
.

The higher is the value of the partial speech intelligibility index, the less
intelligible is the estimated desired signal.

We define the subband and fullband speech quality indices as

υq

[←−
h (k, n)

]
=

φVrn(k, n)

φV1(k, n)
(6.42)

=

←−
hH(k, n)Φ←−v (k, n)

←−
h (k, n)

φV1(k, n)
, k = 0, 1, . . . ,K − 1

and

υq

[←−
h (:, n)

]
=

∑K−1
k=0 φVrn(k, n)∑K−1
k=0 φV1(k, n)

(6.43)

=

∑K−1
k=0

←−
hH(k, n)Φ←−v (k, n)

←−
h (k, n)∑K−1

k=0 φV1
(k, n)

=

∑K−1
k=0 φV1(k, n)υq

[←−
h (k, n)

]
∑K−1

k=0 φV1(k, n)
.

The quality of the estimated desired signal decreases as the value of the
speech quality index increases.

We deduce from the previous definitions that the subband and fullband
global speech intelligibility indices are

υ′
i

[←−
h (k, n)

]
= (1−�) υi

[←−
h (k, n)

]
+�υq

[←−
h (k, n)

]
, k = 0, 1, . . . ,K − 1

(6.44)

and
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υ′
i

[←−
h (:, n)

]
= (1−�) υi

[←−
h (:, n)

]
+�υq

[←−
h (:, n)

]
. (6.45)

The variance of the estimated desired signal can be rewritten as a function
of the subband speech intelligibility and quality indices, i.e.,

φ
̂X1
(k, n) =

{
1− υi

[←−
h (k, n)

]}
φX1(k, n) + υq

[←−
h (k, n)

]
φV1(k, n), (6.46)

which is interesting to compare to the variance of the observation signal at
the reference microphone, i.e.,

φY1(k, n) = φX1(k, n) + φV1(k, n). (6.47)

We see how any optimal filter will try to compromise between speech intelli-
gibility and speech quality.

We easily derive the fundamental relations:

oSNR
[←−
h (k, n)

]
iSNR(k, n)

=
1− υi

[←−
h (k, n)

]
υq

[←−
h (k, n)

] , k = 0, 1, . . . ,K − 1, (6.48)

oSNR
[←−
h (:, n)

]
iSNR(n)

=
1− υi

[←−
h (:, n)

]
υq

[←−
h (:, n)

] . (6.49)

6.4 MSE-Based Criterion

The error signal between the estimated and desired signals at the frequency
bin k and time frame n is

E(k, n) = X̂1(k, n)−X1(k, n) (6.50)

=
←−
hH(k, n)←−y (k, n)−X1(k, n),

which can be rewritten as the sum of two other uncorrelated error signals,
i.e.,

E(k, n) = Ei(k, n) + Eq(k, n), (6.51)

where

Ei(k, n) = Xfd(k, n)−X1(k, n) (6.52)

=
[←−
hH(k, n)ρ←−xX1

(k, n)− 1
]
X1(k, n)
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is the speech distortion due to the complex filter, which affects the partial
intelligibility, and

Eq(k, n) = Vrn(k, n) (6.53)

=
←−
hH(k, n)←−v (k, n)

represents the residual noise, which affects the quality as well as the other
portion of intelligibility.

From the error signal defined in (6.50), we can now form the subband MSE
criterion:

J
[←−
h (k, n)

]
= E

[
|E(k, n)|2

]
(6.54)

= Ji

[←−
h (k, n)

]
+ Jq

[←−
h (k, n)

]
,

where

Ji

[←−
h (k, n)

]
= E

[
|Ei(k, n)|2

]
(6.55)

= E
[
|Xfd(k, n)−X1(k, n)|2

]
= φX1(k, n)

∣∣∣←−hH(k, n)ρ←−xX1
(k, n)− 1

∣∣∣2
and

Jq

[←−
h (k, n)

]
= E

[
|Eq(k, n)|2

]
(6.56)

= E
[
|Vrn(k, n)|2

]
= φVrn(k, n)

= φV1(k, n)υq

[←−
h (k, n)

]
.

For the two particular filters
←−
h (k, n) =

←−
i id and

←−
h (k, n) = 0M×1, we get

J
[←−
i id(k, n)

]
= Jq

[←−
i id(k, n)

]
= φV1(k, n), (6.57)

J [0M×1(k, n)] = Ji [0M×1(k, n)] = φX1(k, n). (6.58)

We then find that the subband NMSE with respect to J
[←−
i id(k, n)

]
is

Jn,1

[←−
h (k, n)

]
=

J
[←−
h (k, n)

]
J
[←−
i id(k, n)

] (6.59)

= iSNR(k, n)×
∣∣∣1−←−

hH(k, n)ρ←−xX1
(k, n)

∣∣∣2 + υq

[←−
h (k, n)

]
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and the subband NMSE with respect to J [0M×1(k, n)] is

Jn,2

[←−
h (k, n)

]
=

J
[←−
h (k, n)

]
J [0M×1(k, n)]

(6.60)

=
∣∣∣1−←−

hH(k, n)ρ←−xX1
(k, n)

∣∣∣2 + 1− υi

[←−
h (k, n)

]
oSNR

[←−
h (k, n)

] .
We have

Jn,1

[←−
h (k, n)

]
= iSNR(k, n)× Jn,2

[←−
h (k, n)

]
. (6.61)

Expressions (6.59) and (6.60) show how the subband NMSEs and the different
subband MSEs are related to the subband performance measures.

We are interested in complex filters for which a reasonable compromise
can be made between speech quality and speech intelligibility, i.e.,

Ji

[←−
i id(k, n)

]
≤ Ji

[←−
h (k, n)

]
< Ji [0M×1(k, n)] , (6.62)

Jq [0M×1(k, n)] < Jq

[←−
h (k, n)

]
< Jq

[←−
i id(k, n)

]
. (6.63)

From the two previous expressions, we deduce that

0 ≤
∣∣∣1−←−

hH(k, n)ρ←−xX1
(k, n)

∣∣∣2 < 1, (6.64)

0 < υq

[←−
h (k, n)

]
< 1. (6.65)

In order to derive the filters we are looking for, we propose to use the
general subband MSE-based criterion:

Jμ

[←−
h (k, n)

]
= μ(k, n)

Ji

[←−
h (k, n)

]
φX1(k, n)

+
Jq

[←−
h (k, n)

]
φV1(k, n)

(6.66)

= μ(k, n)
∣∣∣1−←−

hH(k, n)ρ←−xX1
(k, n)

∣∣∣2 + υq

[←−
h (k, n)

]
,

where μ(k, n) is a positive real number. This parameter allows us to design a
large class of flexible filters that can compromise between speech intelligibility
and speech quality.

6.5 Optimal Filters

The minimization of (6.66) with respect to
←−
h (k, n) leads to the optimal filter:
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←−
h o,μ(k, n) = (6.67)

μ(k, n)

[
μ(k, n)ρ←−xX1

(k, n)ρH←−xX1
(k, n) +

Φ←−v (k, n)
φV1(k, n)

]−1

ρ←−xX1
(k, n).

From the decomposition of Φ←−y (k, n) given in (6.10), we can express the
optimal filter as

←−
h o,μ(k, n) = μ(k, n)× (6.68){
[μ(k, n)− iSNR(k, n)]ρ←−xX1

(k, n)ρH←−xX1
(k, n) +

Φ←−y (k, n)
φV1(k, n)

}−1

ρ←−xX1
(k, n)

and the vector ρ←−xX1
(k, n) can be expressed as a function of the statistics of←−y (k, n) and ←−v (k, n), i.e.,

ρ←−xX1
(k, n) =

E
[←−y (k, n)Y ∗

1 (k, n)
]− E

[←−v (k, n)V ∗
1 (k, n)

]
φY1(k, n)− φV1(k, n)

(6.69)

=
φY1(k, n)ρ←−y Y1

(k, n)− φV1(k, n)ρ←−v V1
(k, n)

φY1(k, n)− φV1(k, n)
,

so that
←−
h o,μ(k, n) can be estimated from the statistics of←−y (k, n) and←−v (k, n)

only.
Now, by using the Woodbury’s identity in (6.67), it can easily be shown

that the optimal filter can be reformulated as

←−
h o,μ(k, n) =

μ(k, n)
φX1(k, n)

iSNR(k, n)

1 + μ(k, n)
λmax(k, n)

iSNR(k, n)

Φ−1←−v (k, n)ρ←−xX1
(k, n) (6.70)

=
μ(k, n)φV1(k, n)

1 + μ(k, n)Gmax(k, n)
Φ−1←−v (k, n)ρ←−xX1

(k, n)

=
μ(k, n)iSNR−1(k, n)

1 + μ(k, n)Gmax(k, n)
Φ−1←−v (k, n)Φ←−x (k, n)

←−
i id

=
μ(k, n)iSNR−1(k, n)

1 + μ(k, n)Gmax(k, n)

[
Φ−1←−v (k, n)Φ←−y (k, n)− IM

]←−
i id.

Comparing
←−
h o,μ(k, n) with

←−
hmax(k, n) [eq. (6.35)], we observe that the two

filters are equivalent up to a scaling factor. As a result,
←−
h o,μ(k, n) also max-

imizes the subband output SNR, i.e.,

oSNR
[←−
h o,μ(k, n)

]
= λmax(k, n), ∀μ(k, n) > 0 (6.71)

and
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oSNR
[←−
h o,μ(k, n)

]
≥ iSNR(k, n), ∀μ(k, n) ≥ 0. (6.72)

From (6.70), we deduce that the subband partial speech intelligibility index
and the subband speech quality index are, respectively,

υi

[←−
h o,μ(k, n)

]
= 1−

[
μ(k, n)Gmax(k, n)

1 + μ(k, n)Gmax(k, n)

]2
(6.73)

= 1−
∣∣∣←−hH

o,μ(k, n)ρ←−xX1
(k, n)

∣∣∣2
and

υq

[←−
h o,μ(k, n)

]
=

μ2(k, n)Gmax(k, n)

[1 + μGmax(k, n)]
2 (6.74)

=

∣∣∣←−hH
o,μ(k, n)ρ←−xX1

(k, n)
∣∣∣2

Gmax(k, n)
.

Clearly, ∀μ(k, n) ≥ 0, we have

0 ≤ υi

[←−
h o,μ(k, n)

]
≤ 1, (6.75)

0 ≤ υq

[←−
h o,μ(k, n)

]
≤ 1. (6.76)

We deduce that the fullband indices are

υi

[←−
h o,μ(:, n)

]
= 1−

∑K−1
k=0 φX1(k, n)

∣∣∣←−hH
o,μ(k, n)ρ←−xX1

(k, n)
∣∣∣2∑K−1

k=0 φX1(k, n)
, (6.77)

υq

[←−
h o,μ(:, n)

]
=

∑K−1
k=0 φV1(k, n)

∣∣∣←−hH
o,μ(k, n)ρ←−xX1

(k, n)
∣∣∣2

Gmax(k, n)∑K−1
k=0 φV1(k, n)

, (6.78)

and, ∀μ(k, n) ≥ 0, we also have

0 ≤ υi

[←−
h o,μ(:, n)

]
≤ 1, (6.79)

0 ≤ υq

[←−
h o,μ(:, n)

]
≤ 1. (6.80)

It is easy to check that the fullband output SNR is
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oSNR
[←−
h o,μ(:, n)

]
=

∑K−1
k=0 φX1(k, n)

[
μ(k, n)Gmax(k, n)

1 + μ(k, n)Gmax(k, n)

]2
∑K−1

k=0 φV1(k, n)
μ2(k, n)Gmax(k, n)

[1 + μGmax(k, n)]
2

. (6.81)

Taking μ(k, n) = ∞ in (6.70), we find the MVDR filter [1]:

←−
hMVDR(k, n) =

Φ−1←−v (k, n)ρ←−xX1
(k, n)

ρH←−xX1
(k, n)Φ−1←−v (k, n)ρ←−xX1

(k, n)
(6.82)

=
Φ−1←−v (k, n)Φ←−y (k, n)− IM

tr
[
Φ−1←−v (k, n)Φ←−y (k, n)

]−M

←−
i id.

We deduce that

υi

[←−
hMVDR(k, n)

]
= 0, (6.83)

υi

[←−
hMVDR(:, n)

]
= 0, (6.84)

υq

[←−
hMVDR(k, n)

]
= G−1

max(k, n), (6.85)

υq

[←−
hMVDR(:, n)

]
=

∑K−1
k=0 φV1(k, n)G−1

max(k, n)∑K−1
k=0 φV1

(k, n)
. (6.86)

Taking μ(k, n) = iSNR(k, n) in (6.70), we find the Wiener filter [1]:

←−
hW(k, n) =

φX1(k, n)Φ
−1←−v (k, n)ρ←−xX1

(k, n)

1 + φX1(k, n)ρ
H←−xX1

(k, n)Φ−1←−v (k, n)ρ←−xX1
(k, n)

(6.87)

=
Φ−1←−v (k, n)Φ←−y (k, n)− IM

1 + tr
[
Φ−1←−v (k, n)Φ←−y (k, n)

]−M

←−
i id.

It can be verified that

υi

[←−
hW(:, n)

]
> υi

[←−
hMVDR(:, n)

]
, (6.88)

υq

[←−
hW(:, n)

]
< υq

[←−
hMVDR(:, n)

]
. (6.89)

Therefore, we can expect a better signal quality with Wiener than MVDR
and a more intelligible signal with MVDR than Wiener.

It can also be verified that for μ(k, n) ≥ iSNR(k, n), we have

υi

[←−
hW(:, n)

]
≥ υi

[←−
h o,μ(:, n)

]
≥ υi

[←−
hMVDR(:, n)

]
, (6.90)

υq

[←−
hW(:, n)

]
≤ υq

[←−
h o,μ(:, n)

]
≤ υq

[←−
hMVDR(:, n)

]
, (6.91)
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and for μ(k, n) ≤ iSNR(k, n), we have

υi

[←−
h o,μ(:, n)

]
≥ υi

[←−
hW(:, n)

]
> υi

[←−
hMVDR(:, n)

]
, (6.92)

υq

[←−
h o,μ(:, n)

]
≤ υq

[←−
hW(:, n)

]
< υq

[←−
hMVDR(:, n)

]
. (6.93)

6.6 Simulations

In this section, we illustrate the performance of the optimal multichannel
noise reduction filters deduced above. The simulation setup is similar to the
one in Section 5.6. An equispaced linear array with six omnidirectional mi-
crophones is configured and placed in a reverberant room of size 6 m long
and 5 m wide. For ease of exposition, positions in the room are designated by
(x, y) coordinates with reference to one corner of the room, 0 ≤ x ≤ 6 and
0 ≤ y ≤ 5. The positions of the six microphones are, respectively, at (3.4,
0.5), (3.5, 0.5), (3.6, 0.5), (3.7, 0.5), (3.8, 0.5), and (3.9, 0.5). A loudspeaker is
placed at (1.3, 3.0) to simulate a speech source. To make the experiments re-
peatable, the acoustic channel impulse responses from the source position to
all the six microphones were measured. During experiments, the microphones’
outputs are generated by convolving the source signal with the corresponding
measured impulse responses and noise is then added to the convolved results
to control the input SNR level. The source signal is taken from the speaker
FAKS0 in the TIMIT database. We continue to focus on the narrowband
case, so the original signals from the TIMIT database are downsampled from
16 kHz to 8 kHz before convolving with the measured impulse responses. We
consider two types of noise: white Gaussian (in this case the noise signals at
different sensors are uncorrelated) and a point source (in this case the noise
signals at different sensors are coherent). To simulate the noise from a point
source, a loudspeaker is placed at (5.3, 3.0) to play back the pre-recorded
NYSE noise (see Section 3.6). Again, to make the simulations repeatable, the
acoustic impulse responses from this loudspeaker to all the six microphones
are measured. The point-source noise at each sensor is generated by con-
volving the NYSE noise with the corresponding measured acoustic impulse
response. This convolution result is scaled according to the input SNR level
and then added into the multichannel speech signals.

To implement the STFT-domain noise reduction filters, the noisy speech
signals received at the array are partitioned into overlapping frames with
a frame size of 8 ms and an overlapping factor of 75%. A Kaiser window
is then applied to each frame (to reduce the aliasing effect due to circular
convolution) and the windowed signals of all the channels are subsequently
transformed into the STFT domain using a 64-point fast Fourier transform
(FFT). A multichannel noise reduction filter is then constructed and applied
to the multichannel noisy STFT coefficients in every subband to obtain an
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estimate of the clean speech at the first microphone. After noise reduction,
the inverse FFT (IFFT) with the overlap-add method is used for signal recon-
struction in the time domain. A same Kaiser window is applied to the output
of the IFFT before the overlap-add process, again, to reduce the aliasing
effect caused by circular convolution.

With the above implementation process, the most critical step is the com-
putation of the multichannel noise reduction filters in the STFT subbands.
It is seen from (6.67) or (6.68) that we need to know the statistics Φ←−v (k, n),
Φ←−y (k, n), and ρ←−xX1

(k, n) in order to compute the optimal noise reduction
filters. In our simulation, these statistics are estimated as follows. We first
estimate the Φ←−v (k, n) and Φ←−y (k, n) matrices using the following recursions:

Φ̂←−v (k, n) = αvΦ̂←−v (k, n− 1) + (1− αv)
←−v (k, n)←−v H(k, n), (6.94)

Φ̂←−y (k, n) = αyΦ̂←−y (k, n− 1) + (1− αy)
←−y (k, n)←−y H(k, n), (6.95)

where αv ∈ (0, 1) and αy ∈ (0, 1) are the forgetting factors that control
the influence of the previous data samples on the current correlation matrix
estimate (the initial estimates of these two matrices are obtained from the
first 50 signal frames with a short-time average).

After the estimates of the Φ←−v (k, n) and Φ←−y (k, n) matrices are available at

time frame n, the estimate of theΦ←−x (k, n) matrix is computed as Φ̂←−x (k, n) =
Φ̂←−y (k, n)− Φ̂←−y (k, n). To ensure that this Φ̂←−x (k, n) matrix is positive semi-
definite, all the negative eigenvalues of this matrix are forced to be 0. And
then, the estimate of the correlation vector ρ←−xX1

(k, n) is taken as the first

column of Φ̂←−x (k, n) normalized by its first element.
With the previous way of statistics estimation, the noise reduction per-

formance of the STFT-domain multichannel optimal filters depends on the
forgetting factors, αy and αv, and the number of microphones, i.e.,M . As how
the two forgetting factors affect the noise reduction performance and how the
optimal values can be found, the reader can follow the study in Section 4.7.
In the following simulation, we evaluate the dependency of the noise reduc-
tion performance on the number of microphones. For that purpose, We can
examine either the subband or the fullband performance measures defined in
Section 6.3. For ease of visualization, we will use, in the following simulations,
the long-term average of the three fullband performance measures defined in
Section 6.3, i.e., the long-term average partial speech intelligibility index, the
long-term average speech quality index, and the long-term output SNR to
evaluate performance. They are computed, respectively, as
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Fig. 6.1 Performance of the multichannel Wiener and MVDR filters as a function of the
number of microphones, M , in the white Gaussian noise: (a) partial speech intelligibility
index, (b) speech quality index, and (c) output SNR. The window size is K = 64 (8 ms)

with a 75% overlap, the fullband input SNR is 10 dB, and the forgetting factors are
αy = αv = 0.8.

υi

(←−
h
)
=

∑N−1
n=0

∑K−1
k=0 [φX1(k, n)− φXfd

(k, n)]∑N−1
n=0

∑K−1
k=0 φX1(k, n)

, (6.96)

υq

(←−
h
)
=

∑N−1
n=0

∑K−1
k=0

←−
hH(k, n)Φ←−v (k, n)

←−
h (k, n)∑N−1

n=0

∑K−1
k=0 φV1(k, n)

, (6.97)

oSNR
(←−
h
)
=

∑N−1
n=0

∑K−1
k=0 φX1(k, n)

∣∣∣←−hH(k, n)ρ←−xX1
(k, n)

∣∣∣2∑N−1
n=0

∑K−1
k=0

←−
hH(k, n)Φ←−v (k, n)

←−
h (k, n)

, (6.98)
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where N is the total number of frames. Note that the above long-term average
fullband performance measures are similar to those time-domain measures de-
fined in Section 3.3. The only difference is that the output of the multichannel
noise reduction filter in this chapter does not have the residual interference
component.

In the first simulation, we examine the performance of both the multichan-
nel Wiener and MVDR filters in the white Gaussian noise. In this case, the
noise signals at different microphones are white Gaussian and uncorrelated.
The input SNR is 10 dB. Following the study in Section 4.7, we set the two
forgetting factors as αy = αv = 0.8. The partial speech intelligibility index,
the speech quality index, and the output SNR [as defined, respectively, in
(6.96), (6.97), and (6.98)] of the Wiener and MVDR filters as a function of
the number of microphones, M , are plotted in Fig. 6.1. As seen, the partial
speech intelligibility index and speech quality index of the Wiener filter de-
creases with M while its output SNR increases with M . So, the more the
microphones, the better is the performance of the multichannel Wiener filter
in terms of both the speech intelligibility and quality as well as the output
SNR.

When there is only one microphone, the MVDR filter degenerates to the
unit gain, which is clearly seen in Fig. 6.1. As the number of microphone
increases, we observe that the speech quality index decreases and the output
SNR increases, while the partial speech intelligibility index is approximately
0. So, same as the Wiener filter, the MVDR filter also yields better perfor-
mance as the number of microphone increases. In comparison, one can see
that the values of the partial speech intelligibility index and the output SNR
of the Wiener filter are higher than those of the MVDR filter, while the value
of the speech quality index of the Wiener filter is smaller than that of the
MVDR filter. This corroborates with the theoretical analysis in Section 6.5.

In the second simulation, we consider the point-source noise case. As ex-
plained before, the noise at each sensor is generated by convolving the prere-
corded NYSE noise with the acoustic impulse response measured from posi-
tion (5.3, 3.0) to the sensor’s position. The input SNR at each sensor is 10 dB.
Again, we set αy = αv = 0.8. The results of this simulation are plotted in
Fig. 6.2.

With one microphone, the MVDR filter is the unit gain and, therefore,
does not have any noise reduction, which is seen in Fig. 6.2. But the Wiener
filter can achieve more than 6-dB SNR improvement. With two microphones,
one can see that both the Winer and MVDR filters achieve significant noise
reduction and the SNR improvement is more than 20 dB for both filters.
However, the performance of the Wiener and MVDR filters do not change
much with the number of microphones if the number is greater than two.
The underlying reason can be explained as follows. With two microphones,
both the Wiener and MVDR filters can generate a null pointing to the noise
source, leading to significant noise reduction. With point-source noise and
perfect knowledge of the noise statistics, more (than two) microphones do not
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Fig. 6.2 Performance of the multichannel Wiener and MVDR filters as a function of the
number of microphones, M , in the point-source noise: (a) partial speech intelligibility index,

(b) speech quality index, and (c) output SNR. The window size is K = 64 (8 ms) with a
75% overlap, the fullband input SNR is 10 dB, and the forgetting factors are αy = αv = 0.8.

seem help further improve performance. However, in practice, both additive
noise and point-source noise may co-exist and there may be estimation errors
in the noise statistics; in this case, increasing the number of microphones can
help improve performance.
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Theoretically, the value of the partial speech intelligibility index should
be in the range between 0 and 1. However, we observe from Fig. 6.2(a) that
the value of this index is smaller than 0 if two or more microphones are
used, which is different from the theoretical analysis. The reason may be due
to the estimation error of the the correlation vector ρ←−xX1

(k, n). From its
definition, the first element of the ρ←−xX1

(k, n) vector is 1, and the magnitude
of any other element is less than 1. In our simulation, the estimate of the
Φ←−x (k, n) matrix is computed as Φ̂←−x (k, n) = Φ̂←−y (k, n) − Φ̂←−y (k, n) and the
estimate of the correlation vector ρ←−xX1

(k, n) is taken as the first column of

this Φ̂←−x (k, n) matrix normalized by its first element. With this estimation,
the first element of ρ̂←−xX1

(k, n) is one; but occasionally some other elements
may have a magnitude larger than 1 and this happens more frequently as the
number of microphones increases.
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